Mining REESE LIBRARY UNIVERSITY OF CALIFORNIA. Accessions No. fc^YY /. CA/ss No. _^_ A DICTIONAEY OP CHEMICAL SOLUBILITIES INOEGANIC A DICTIONAKY OF CHEMICAL SOLUBILITIES INORGANIC BY ARTHUR MESSINGER COMEY, Ph.D. FORMERLY PROFESSOR OF CHEMISTRY, TUFTS COLLEGE Hontion MACMILLAN AND CO. AND NEW YOEK 1896 TO HIS TEACHER, ADVISER, AND FRIEND (Sharks Storing Jarksott ERVING PROFESSOR OF CHEMISTRY, HARVARD UNIVERSITY THIS VOLUME IS DEDICATED WITH THE HIGHEST RESPECT AND KINDEST REGARDS OF THE AUTHOR PKEFACE FOR many years a need has been felt by chemists for a book which shall collect into convenient form for ready reference the various data concerning the solubility of chemical substances that have been published from time to time in chemical periodicals and elsewhere. The first mention that can be found of such a plan was made in 1731, when Peter Shaw delivered Chemical Lectures in London, as may be seen from the following : EXTRACTS from PETER SHAW'S Chemical Lectures, publickly read at London in 1731 and 1732. London. Second Edition, London 1755. 8vo. Page 97. Experiment I. That Water as a Menstruum dissolves more of one body and less of another. [He shows that two ounces of water dissolve two ounces of Epsom salt, five drachms of common salt, and eight grains of cream of tartar. Only in the latter case much remained undissolved until boiled.] " It might be proper for the further Improvement of Chemistry and Natural Philosophy to form a Table of the Time and Quantity wherein all the known Salts are dissolvable in Water. . . . Such a Table regularly formed might ease the Trouble of refining Salts, by shewing at once without future Trial or Loss of Time how much Water each Salt required to dissolve it for Clarification, Filtration, or Crystallization. It would likewise supply us with a ready and commodious Way of separating any Mixture of Salts, by shewing which would first shoot out of the Mixture upon Crystallization. . . . The same Table might also direct us to a ready and commodious Method of separating two Salts without waiting for Crystal- lization. . . ." It was many years, however, before the scheme suggested by Peter Shaw was put into execution. Professor F. H. Storer published the first work that undertook to carry out the idea in its entirety, in 1864, in a book, which he entitled " First Outlines of a Dictionary of Solubilities of Chemical Substances,'^ and which contained a compilation of nearly all the data on the viii PREFACE subject published before 1860. It was at once recognised as a most valuable contribution to chemical literature ; but for many years it has been difficult to obtain this work, as the limited edition which was published was soon wholly exhausted. Since then nothing has appeared on the subject except the brief tabulations found in various reference books, and no attempt has been made to cover the whole subject. It is needless to state that the growth of chemical science since the publication of Professor Storer's book has been so enormous that that work has lost, at least to a great extent, the practical value it possessed thirty years ago. This growth has been indeed so great, and the data which have accumulated since 1860 so far surpass the earlier in volume, that a simple revision of Professor Storer's book was impracticable, and it therefore seemed best to start afresh. With the facilities offered by the various scientific libraries at Harvard University, the Massachusetts Institute of Technology, and other libraries in Boston, it has been possible to collect nearly all the data relating to the subject. For the work before 1860 Professor Storer's work has been found invaluable. The method pursued has been to form a preliminary list of compounds with more or less data by consulting the two most complete works on inorganic chemistry Gmelin-Kraut's "Handbuch der anorganischen Chemie" and Graham- Otto -Michaelis's " Lehrbuch." These statements have been verified and elaborated by consulting the original memoirs in all the periodicals devoted to chemical literature which were obtainable. The " Jahresbericht der Chemie" also has been used extensively in tracing references, but the original memoirs have always been consulted and references given to them when possible. It has been found impracticable to draw any distinction as to reliability between the various data given by different observers. It was manifestly impossible to attempt to verify experimentally the statements of those who have carried on the researches, for the most assiduous labour of many could only cover a small portion of the attested facts. Therefore, even when two statements are directly contradictory, both have been given with the authority for each. The only exception to this has been made when more recent discoveries have shown beyond any reasonable doubt the falsity of previous work. In this way some of the older manifestly inaccurate work has been omitted. . In a majority of cases the more recent work may be considered to be the more accurate, but this is not the invariable rule. A Synchronistic Table of the more common periodicals is given in the PREFACE ix Appendix, whereby it is easy to determine the date of the publication of a research to which reference is made. It may be objected by the practical chemist that most of the work previous to 1850 might well have been omitted, but a great deal of this work possesses at least a historical value, and often furnishes facts which have not since been verified. Much of the earlier work, when obviously of less importance, has been printed in smaller type. The aim has been to include in this volume all analysed inorganic substances, that is, all substances which do not contain carbon, but exception has been made in the case of C0 2 , CO, CS 2 , the carbonates, cyanides, ferro- cyanides, etc., which are here included. The work has been brought up to March 1894, when this volume went to press, and the results of researches published since that time are not included in the present edition. It is hoped that this book will fill to some extent the want that has been felt by chemists for a compilation of this nature. While it has been attempted to make the book as free from errors as possible, nevertheless it is naturally impossible to avoid many mistakes, and the compiler will be very grateful to those who may call his attention to any errors or omissions. A. M. C. / C' F "** H P * \. CAMBRIDGE, MASS., Aug. 1895. i IJ N I P EXPLANATORY PEEFACE IN order to reduce this volume to a convenient size the subject matter has been abbreviated and condensed as far as seemed compatible with clearness ; but it has been the aim not to use any abbreviations which are not at once intelligible without consulting the explanatory table. The more common chemical for- mulae have been universally used, thereby saving a large amount of space without detracting from ready intelligibility to chemists. The solubility of the substance in water is first given, the data being arranged chronologically in the longer articles. Then follow the specific gravities of the aqueous solutions, and also any data obtainable regarding their boiling-points ; other physical data concerning solutions are not in- cluded. Following this is the solubility of the substance in other solvents first the inorganic acids, then alkali and salt solutions, and finally organic substances. In many cases no definite distinction can be drawn between the phenomena of solution and decomposition. At present the theory of solution is in a confused state, and until what really takes place when a substance dissolves is thoroughly understood no distinct line can be drawn. The whole subject is unsettled at the present time; for while many chemists believe in the so-called " dissociation " theory, yet the " hydrate " theory is not without its supporters. It is not my intention to discuss the theoretical side of the question, which has been so well treated in many recent works. It is, how- ever, obvious that the phenomena are essentially different, when, for example, sodium carbonate is dissolved in water, in which case the original salt is deposited on evaporation, and when iron is dissolved in sulphuric acid, and the solution deposits a sulphate of iron. Yet it is still the custom to speak of iron as soluble in sulphuric acid, although it would be much more accurate to say that the sulphuric acid was decomposed by the iron. It has thus been found impracticable to draw a sharp line between solution and decomposition, and the term "soluble" has in general been used where a solution of some sort is formed by the action of the solvent. The matter of alphabetical arrangement of chemical compounds, in the present somewhat confused state of chemical nomenclature, has been a difficult xii EXPLANATORY PREFACE question to decide. The plan followed has been practically that of the standard Dictionaries of Chemistry, whereby the compounds of metals with one of the non-metallic elements have been classified under the metals, while the salts of the other acids (the oxygen acids so-called and some few others) have been arranged alphabetically under the acids. Thus barium chloride is found under barium, while barium chlorate is found under chloric acid. No exception has been made in the case of the rare metals, as is usually the custom in Dictionaries of Chemistry. Double salts are to be found under the word which comes first alphabetically; thus, "common alum," potassium aluminum sulphate, is found under aluminum sulphate as aluminum potassium sulphate (under sulphuric acid), but ammonia chrome alum is found under ammonium sulphate as ammonium chromium sulphate. In the same way the double sulphate and chromate of potassium is found under potassium chromate (chromic acid), and not under potassium sulphate (sulphuric acid). The double chloride of ammonium and magnesium is found under ammonium chloride (ammonium), while the double chloride of potassium and magnesium is found under magnesium chloride (magnesium). An exception is made, however, in the case of double compounds of salts of oxygen acids with salts containing a single non-metallic element, in which case they are always found under the oxygen acid. Thus the double sulphate and chloride of lead, PbS0 4 , PbCl 2 , is found under lead sulphate (sulphuric acid), and not under lead chloride (lead). The above method in some cases widely separates analogous compounds, but it was found to be the only practical way to a strictly alphabetical arrangement, which is so necessary in a book containing so many very short articles. The ammonia addition-products furnished another difficulty. While their nature is more or less definitely understood in the cobalt, platinum, etc. compounds, and a definite nomenclature is in general use, there is an absolute lack of anything of the kind in the less definite compounds. It is good usage to speak of cuprammonium compounds, but how shall we designate the analogous cadmium compounds 1 " Cadmammonium " has not yet received the sanction of chemists, and A1C1 3? NH 3 is a still worse case for naming. I have, therefore, not attempted to name these compounds, but classified them all under the salts to which the ammonia is added, affixing the word ammonia, thus : aluminum chloride ammonia, cadmium chloride ammonia, and also cupric chloride ammonia for the salt now almost universally known as cuprammonium chloride. The ammonia compounds of cobalt, chromium, mercury, and the platinum metals are arranged alphabetically according to their universally accepted names, a list of which is given under each of those elements. It has further been necessary to settle arbitrarily the question whether a substance should be considered as a double salt or a salt of a compound acid containing one of the metals. For example, " fluosilicates " (or silico EXPLANATORY PREFACE xiii fluorides, as some may prefer) is the general name for the double fluorides of SiF 4 and a metal, but this unanimity in usage gradually disappears as the basic elements become more nearly alike, so that it is impossible to draw a line between such compounds and a compound such as the double chloride of magnesium and potassium, for which indeed the name " potassium chloro- magnesate " has been proposed. The aim has been in all these cases to follow the best usage rather than make an absolutely homogeneous system of nomenclature out of the existing confusion. In the matter of formulae no attempt at uniformity has been made. Thus in the case above some chemists write the formula of the double chloride of magnesium and potassium as KMgCl 3 , others as KC1, MgCl 2 . The form here used has been in most cases that of the author from whom the data are taken. The prefixes mono, di, tri, ortho, pyro, etc. have in general been dis- regarded in the alphabetical arrangement, and have been printed in italics. Exceptions to this have been made, however, in the cobalt, chromium, etc. ammonium compounds, and in a few others, as dithionic, perchloric, etc. acids. Cross references have been used, so as to prevent any confusion arising from lack of uniformity in this respect. In the Appendix will be found formulae and tables for the conversion of the degrees of various hydrometer scales into specific gravity, and a Synchronistic Table of the Periodicals to which references are most frequently made. ABBREVIATIONS abs. absolute. atmos. atmosphere. b. -pt. boiling-point. comp. compound. cone. concentrated. corr. correction. cry st. crystallised. decomp. decompose, decomposes, decomposition, etc. dil. dilute, insol. insoluble. M. a univalent Metal. Min. Mineral, mol. molecule. m. -pt. melting-point, ord. ordinary. ppt., pptd., etc. precipitate, pre- cipitated, etc. pt. part, sat. saturated, si. slightly, sol. soluble, sp. gr. specific gravity, supersat. supersaturated. t = temperature in Centigrade temp. temperature, vol. volume. ABBEEVIATIONS OF EEFEEENCES A. Annalen der Pharmacie, edited by Liebig and others, 1832-39 ; continued as Annalen de Chemie und Pharmacie, 1840-73 ; continued as Justus Liebig's Annalen der Chemie, 1874-94 + . 281 vols. A. ch. Annales de Chimie et de Physique. Paris. 1st series, 1789-1816, 96 vols. ; 2nd series, 1817-40, 78 vols. ; 3rd series, 1841-63, 69 vols. ; 4th series, 1864-73, 30 vols. ; 5th series, 1874-83, 30 vols. ; 6th series, 1884-93, 30 vols ; 7th series, 1893-94 + , 3 vols. Acta Lund. Acta Universitatis Lundensis, or Lunds Universitets Ars-skrift. Lund. 1864-94 + . 27 vols. Am. Chemist. The American Chemist. New York, 1870-77. 7 vols. Am. Ch. J. The American Chemical Journal, edited by Remsen. Baltimore, 1879-94 + . 16 vols. Am. J. Sci. American Journal of Science and Arts, edited by Silliman, Dana, and others. New Haven. 1st series, 1818-45, 50 vols. ; 2nd series, 1846-70, 50 vols. ; 3rd series, 1871-94 + , 48 vols. Also numbered consecutively, 148 vols. Analyst. The Analyst. London, 1876-94 + . 25 vols. Ann. chim. farm. Annali di chimica e di farmacologia. Milan, 1886-90. 5 vols. Ann. des Mines. See Ann. Min. Ann. Min. Annales des Mines. Paris. 1st series, 1817-26, 13 vols. ; 2nd series, 1827-31, 10 vols. ; 3rd series, 1832 - 41, 20 vols. ; 4th series, 1842 - 51, 20 vols. ; 5th series, 1852-61, 20 vols. ; 6th series, 1862-71, 20 vols. ; 7th series, 1872-81, 20 vols. ; 8th series, 1882-91, 20 vols. ; 9th series, 1892-94 + , 6 vols. Ann. Phil. Annals of Philosophy. London. 1st series, 1813-1820, 16 vols. ; new series, 1821- 26, 12 vols. Ann. Phys. See Pogg. and W. Ann. Arch. Pharm. Archiv der Pharmacie, continued from Archiv des Apothekervereins in Nord- deutschland, which forms the 1st series. 1st series, 1822-34, 50 vols. ; 2nd series, 1835-72, 150 vols. ; 3rd series, 1873-94 + , 32 vols. Also numbered consecutively, which system is exclusively used after 3rd series, vol. 27 = vol. 227 (1889). A. Suppl. Annalen der Chemie und Pharmacie. Supplement-Bande. Vol. i. 1861 ; vol. ii. 1862-63 ; vol. iii. 1864-65 ; vol. iv. 1865-66 ; vol. v. 1867 ; vol. vi. 1868 ; vol. vii. 1870 ; vol. viii. 1872. B. Berichte der deutschen chemischen Gesellschaft. Berlin, 1868-94 + . 27 vols. B. A. B. Sitzungsberichte der koniglichen preussischen Akademie der Wissenschaften zu Berlin. Belg. Acad. Bull. Bulletin de 1' Academic Royale des Sciences, des Lettres, et des Beaux- Arts de Belgique. Berz. J. B. Jahresbericht iiber die Fortschritte der physischen Wissenschaften, edited by Berzelius. 1822-47. 30 vols. Br. Arch. Archiv des Apothekervereins im nordlichen Teutschland, etc., edited by Brandes. 1st series, 1822-31, 39 vols., corresponds to 1st series of Arch. Pharm. Bull. Ac. St. Petersb. Bulletin de 1' Academic Imperial e des Sciences de St. Petersbourg. xviii ABBREVIATIONS OF REFERENCES Bull. Soc. Bulletin des Seances de la Societ6 chimique de Paris. 2nd series, 1864-88, 50 vols. ; 3rd series, 1889-94 + , 12 vols. Bull. Soc. ind. Mulhouse. Bulletin de la Societe industrielle de Mulhouse. 1828-49. 22 vols. Bull. Soc. Min. Bulletin de la Societe fran?aise de Mineralogie. 1878-94. 17 vols. C. C. Chemisches Centralblatt, continued from Pharmaceutisches Centralblatt. 2nd series, 1856-69, 14 vols. ; 3rd series, 1870-88, 19 vols. ; 4th series, 1889-94 + , 6 vols. Also numbered consecutively, 65 vols. Chem. Ind. Die Chemische Industrie, edited by Jacobsen. Berlin, 1878-94 + . 17 vols. Chem. Soc. Journal of the Chemical Society of London. 1st series, 1849-62, 15 vols. ; 2nd series, 1863-78, 17 vols. ; new series, 1878-94 + . The vols. are numbered consecutively from 1849. 1878= vol. 32. Total, 66 vols. Chem. -tech. Centr.-Anz. Chemisch-technischer Central- Anzeiger. 1883-94 + . 12 vols. Chem. Z.See Ch. Z. Ch. Gaz. The Chemical Gazette. London, 1843-59. 17 vols. Ch. Kal. Chemiker Kalender, edited by Biedermann. 1880-94 + . 15 vols. Ch. Z. Chemiker Zeitung. 1877-94 + . 18 vols. Cim. II Cimento. Turin, 1852-54. 6 vols. C. N. The Chemical News. London, 1860-94 + . 70 vols. Comm. Commentar zur Pharmacoposa germanica by Hager. Berlin, 1883. Compt. chim. Comptes - rendus mensuels des Travaux chimiques, edited by Laurent and Gerhardt. 1845-51. 7 vols. C. R. Comptes-rendus hebdomadaires des Seances de 1' Academic des Sciences. Paris, 1835- 94 + . 119 vols. Crell. Ann. Chemische Annalen fiir die Freunde der Naturlehre, etc., edited by Crell. 1784- 1803. 40 vols. Dansk. Vid. For. Oversigt over det kgl. danske Videnskabernes Selskabs Forhandlinger. Copenhagen, 1847-92 + . 20 vols. Dingl. Dingler's Polytechnisches Journal, edited by Dingier and others. 1820-94 + . 294 vols. Edinb. Trans. Transactions of the Royal Society of Edinburgh. 1788-1894 + . 35 vols. Ed. J. Sci. The Edinburgh Journal of Science. 1st series, 1824-29, 10 vols. ; 2nd series, 1829- 32, 6 vols. Continued as Phil. Mag. Gazz. ch. it. Gazzeta chimica italiana. Palermo, 1871-94 + . 24 vols. Gilb. Ann. Annalen der Physik, edited by Gilbert. 1st series, 1799-1808, 30 vols. ; 2nd series, 1809-18, 30 vols. ; 3rd series, 1819-24, 26 vols. Also numbered consecutively, 76 vols. Continued as Pogg. Gm.-K. Gmelin-Kraut's Handbuch der anorganischen Chemie, 6te Auflage. 1877-94 + . Gr.-Ot. Graham-Otto's ausfiihrliches Lehrbuch der anorganischen Chemie, 5te Auflage, by Michaelis. 1878-89. Jahrb. d. Pharm. Jahresbericht der Pharmacie. 1866-94 + . 28 vols. J. Am. Chem. Soc. Journal of the American Chemical Society. New York, 1876-94 + . 17 vols. J. Anal. Appl. Ch. The Journal of Analytical and Applied Chemistry, edited by Hart. 1887- 93. 7 vols. J. B. Jahresbericht iiber die Fortschritte der Chemie, u.s.w. 1847-90 + . 43 vols. J. Chim. med. Journal de Chimie medicale, de Pharmacie, et de Toxicologie. 1st series, 1825- 34, 10 vols. ; 2nd series, 1835-44, 10 vols. ; 3rd series, 1845-54, 10 vols. ; 4th series, 1855- 64, 10 vols. ; 5th series, 1865-76, 12 vols. Jena. Zeit. Jenaische Zeitschrift fiir Medicin und Naturwissenschaften. 1865-94 + . 22 vols. J. Pharm. Journal de Pharmacie et de Chimie. Paris. 2nd series, 1815-41, 27 vols. ; 3rd series, 1842-64, 46 vols. ; 4th series, 1865-79, 30 vols. ; 5th series, 1879-94 + . 30 vols. J. Phys. Journal der Physik, edited by Gren. 1790-98. 12 vols. Continued as Gilb. Ann. J. pr. Journal fiir praktische Chemie, edited by Erdmann, Kolbe, and v. Meyer. Leipzig. 1st series, 1834-69, 108 vols. ; 2nd series, 1870-94 + , 50 vols. J. Russ. Soc. Journal of the Russian Chemical Society. St. Petersburg, 1869-94 + . 26 vols. J. Soc. Chem. Ind. Journal of the Society of Chemical Industry. London, 1882-94 + . 13 vols. J. S. C. I. See above. Kastn. Arch. Archiv fiir die gesammte Naturlehre, edited by Kastner. Nuremberg, 1824-35. 25 vols. ABBREVIATIONS OF REFERENCES xix Listy Chemicke. Listy Chemicke, edited by Preis and others. Prague, 1875-94 + . 19 vols. Lond. R. Soc. Proc. See Roy. Soc. Proc. Lund. Univ. Arsk. Lunds Universitets Ars-skrift. Lund, 1864-94 + . 27 vols. M. Monatshefte fiir Chemie und verwandter Theile der anderer Wissenschaften. Vienna, 1880-94 + . 15 vols. M. A. B. Sitzungsberichte der mathematisch-physikalischen Classe der kgl. bayerischen Akademie der Wissenschaften zu Miinchen. 1871-94 + . 24 vols. Mag. Pharm. Magazin der Pharmacie. 1823-31. 36 vols. Mem. Acad. St. Petersb. Memoires de 1' Academic Imperiale des Sciences de Saint-Petersbourg. M. Ch. See M. Miner. Jahrb. Neues Jahrbuch fiir Mineralogie, etc. 1833-73. 40 vols. Monit. Scient. Le Moniteur Scientifique, edited by Quesnesville. Paris, 1857-94 + . 36 vols. N. Arch. So. ph. nat. Nouvelles Archives des Sciences physiques et naturelles. Geneva. N. Cim. II nuovo Cimento. Pisa, 1855-61. 14 vols. N. Edinb. Phil. J. New Edinburgh Philosophical Journal. 1819-64. 90 vols. N. Jahrb. Pharm. Neues Jahrbuch der Pharmacie. 1796-1840. 42 vols. N. J. Pharm. Neues Journal der Pharmacie fur Aerzte, etc., edited by Trommsdorff. 1817-34. 27 vols. N. Rep. Pharm. Neues Repertorium fiir Pharmacie. 1852-76. 25 vols. Pharm. Centralbl. Pharmaceutisches Centralblatt. 1830-49. 20 vols. Continued as C. C. Pharm. Era. Pharmaceutical Era. Pharm. J. Trans. Pharmaceutical Journal and Transactions. New series, 1870-94 + . 24 vols. Pharm. Vierteljb. Pharmaceutische Vierteljahresberichte. Pharm. Ztg. Pharmaceutische Zeitung. Phil. Mag. The Philosophical Magazine. London. 1st series, 1814-26, 26 vols. ; 2nd series, 1827-32, 11 vols. ; 3rd series, 1832-50, 37 vols. ; 4th series, 1851-75, 50 vols. ; 5th series, 1876-94 + , 38 vols. Phil. Mag. Ann. The Philosophical Magazine and Annals of Chemistry, etc. Corresponds to Phil. Mag. 2nd series. Phil. Trans. The Philosophical Transactions of the Royal Society of London. 1665-1894 + . Pogg. Annalen der Physik und Chemie, edited by Poggendorf. 1st series, 1824-43, 60 vols. ; 2nd series, 1844-53, 30 vols. ; 3rd series, 1854-63, 30 vols. ; 4th series, 1864-73, 30 vols. ; 5th series, 1874-77, 10 vols. Continued as W. Ann. Polyt. Centralbl. Poly technisches Centralblatt. 1st series, 1835-46, 12 vols. ; 2nd series, 1847- 73, 30 vols. Proc. Am. A. A. S. Proceedings of the American Association for the Advancement of Science. Proc. Am. Acad. Proceedings of the American Academy of Arts and Sciences. Boston, 1846- 94 + . 29 vols. Proc. Soc. Manchester. Proceedings of the Literary and Philosophical Society of Manchester. Proc. Roy. Soc. See Roy. Soc. Proc. Q. J. Sci. Quarterly Journal of Science. London, 1816-26. 22 vols. Real. Ac. Line. Atti di Reale Accademia dei Lincei. Rome. Rep. anal. Ch. Repertorium der analytischen Chemie. 1881-87. 7 vols. Rep. Brit. Assn. Adv. Sci. Reports of the Meetings of the British Association for the Advance- ment of Science. 1831-94 + . 64 vols. Repert. See Rep. Pharm. Repert. chim. appl. Repertoire de Chimie pure et appliquee. Paris, 1858-63. 9 vols. Rep. Pharm. Repertorium fiir die Pharmacie, edited by Buchner. 1st series, 1815-34, 50 vols. ; 2nd series, 1835-48, 50 vols. ; 3rd series, 1849-51, 10 vols. Continued as N. Rep. Pharm. Roy. Soc. Proc. Proceedings of the Royal Society of London. 1832-94 + . 54 vols. Roy. Soc. Trans. Abstracts of Philosophical Transactions of the Royal Society of London. 1832-54. 6 vols. Continued with Roy. Soc. Proc. R. t. c. Recueil des Travaux chimiques des Pays-Bas. Leiden, 1882-94 + . 13 vols. Russ. Zeit. Pharm. Pharmaceutische Zeitschrift fiir Russland. Scheik. Verhandel. Scheikundige Verhandelingen en Onderzoekingen, edited by Mulder. Rotterdam, 1857-64. 3 vols. xx ABBREVIATIONS OF REFERENCES Seller. J. Allgemeines Journal der Cliemie, edited by Soberer. 1798-1810. 17 vols. Continued as Scliw. J. Schw. J. Journal fiir Chemie und Physik, edited by Schweigger. 1st series, 1811-20, 30 vols. ; 2nd series, 1821-30, 30 vols. ; 3rd series, 1831-33, 9 vols. Continued as J. pr. Sill. Am. J. American Journal of Science, edited by Silliman, etc. See Am. J. Sci. Sitzungsb. bbhms. Gesell. Sitzungsberichte der koniglichen bohmschen Gesellschaft der Wissenschaften in Prag. 1859-94 + . Storer's Diet. First Outlines of a Dictionary of Solubilities of Chemical Substances, by F. H. Storer. Boston, 1864. Sv. V. A. F. Ofversigt af kongl. Svenska Vetenskaps-Akademien Fbrhandlingar. Stockholm, 1844-94 + . 51 vols. Sv. V. A. H. Kongliga Svenska Vetenskaps-Akademiens Handlingar. Stockholm, 1856-94 + . 26 vols. Sv. V. A. H. Bih. Bihang till kongl. Svenska Vetenskaps-Akademiens Handlingar. Stock- holm, 1872-94 + . 18 vols. Techn. J. B. Jahresbericht u'ber die Fortschritte der chemischen Technologic, edited by Wagner, Fischer, etc. 1st series, 1855-69, 15 vols. ; 2nd series, "N.F.," 1870-94 + , 25 vols. Also numbered consecutively, 40 vols. W. A. B. Sitzungsberichte der mathematisch-naturwissenschaftlichen Classe der kaiserlichen Akademie der Wissenschaften zu Wien. 1848-94 + . 104 vols. W. Ann. Annalen der Physik und Chemie, edited by Wiedemann. Continuation of Pogg. 1877-94 + . 52 vols. Z. anal. Zeitschrift fiir analytische Chemie, edited by Fresenius. Wiesbaden, 1862-94 + . 39 vols. Z. anorg. Zeitschrift fiir anorganische Chemie, edited by Kriiss. 1892-94 + . 6 vols. Zeit. angew. Ch. Zeitschrift fiir angewandte Chemie. Berlin, 1887-94 + . 8 vols. Zeit. Chem. Zeitschrift fiir Chemie und Pharmacie. 1st series, 1858-64, 6 vols. ; 2nd series, "N.F.," 1865-71, 7 vols. Zeit. d. allgem. bster. Apothekerv. Zeitschrift des allgemeinen osterreichischen Apotheker- vereins. Zeit. ges. Nat. Zeitschrift fiir die gesammten Naturwissenschaften. Zeit. Kryst. Zeitschrift fiir Krystallographie und Mineralogie. 1877-94 + . 24 vols. Zeit. Pharm. See Russ. Zeit. Pharm. Z. phys. Ch. Zeitschrift fiir physikalische Chemie, edited by Ostwald and van 't Hoff. 1887- 94 + . 14 vols. TTNXVEKSITY DICTIONABY OF CHEMICAL SOLUBILITIES INORGANIC Air, Atmospheric. See also Nitrogen and Oxygen. 100 vols. H 2 O at 15 and 760 mm. absorb about 5 vols. atmospheric air. (Saussure.) 1 vol. H 2 at t and 760 mm. pressure absorbs V vols. atmospheric air reduced to 760 mm. and 0. t V t V t V 0-02471 7 0-02080 14 0-01822 1 0-02406 8 0-02034 15 0-01795 2 0-02345 9 0-01992 16 0-01771 3 0-02287 10 0-01953 17 0-01750 4 0-02237 11 0-01916 18 0-01732 5 0-02179 12 0-01882 19 0-01717 6 0-02128 13 0-01851 20 0-01701 (Bunsen's Gasometry.) 1 1. H 2 absorbs ccm. N and from air at t c and 760 mm. pressure. t ccm. N ccm. O ccm. N+0 16-09 8-62 24-71 5 14-18 7-60 2178 10 12-70 679 19-49 15 11-67 6-25 17-92 20 11-08 5-93 17-01 (Bunsen, Gasometr. Methoden, 2te Aufl. 209, 220.) 1 1. H 2 absorbs ccm. N and from air at t and 760 mm. pressure (dry). t ccm. N ccm. O N+0 %o 10 15-47 7-87 23-34 3374 15 13-83 7-09 20-92 33-86 20 1276 6-44 19-20 33-55 25 11-78 5-91 17-69 33-40 (Roscoe and Lunt, Chem. Soc 55. 568.' 1 1. H 2 absorbs ccm. N and from air at t and 760 mm. V ccm. N ccm. O %o 19-53 10-01 33-88 6-0 16-34 8-28 33-60 6-32 16-60 8-39 33-35 9-18 15-58 7-90 33-60 1370 14-16 7-14 33-51 14-10 14-16 7-05 33-24 (Pettersson and Sonden, B. 22. 1439.) 1 1. H 2 absorbs ccm. N (0 and 760 mm.; from atmospheric air at t and 760 mm. pres- sure (dry). t ccm. N t ccm. N t ccm. N 19-14 10 15-14 20 12-63 2 18-20 12 14-53 22 12-27 4 17-34 14 13-98 24 11-95 6 16-54 16 13-48 25 11-81 8 15-81 18 13-03 ... (Hamberg, J. pr. (2) 33. 447.) 1 1. H 2 absorbs ccm. N from air at t and 760 mm. pressure. F ccm. N t ccm. N t ccm. N 5 19-29 17-09 10 15 15-36 13-95 20 25 12-80 11-81 (Dittmar, Challenger Expedition, vol. 1. pt. 1. 1 1. H 2 sat. with air at t and 760 mm. contains ccm. (red. to and 760 mm.). t ccm. O t ccm. O t ccm. O 10-187 5 8-907 10 7-873 1 9-910 6 8-682 11 7-692 2 9-643 7 8-467 12 7-518 3 9-387 8 8-260 13 7-352 4 9-142 9 8-063 14 7-192 AIR, ATMOSPHERIC 1 1. H 2 sat. etc. Continued. Absolute alcohol absorbs 0-11 vol. gas from air, of which is O and , N. On mixing with an equal vol. H 2 O, t ccm. O t ccm. O t ccm. O | of the dissolved gas is given off. (Dobereiner.) 100 vols. alcohol (95'1 %) absorb 14'1 vols. air. (Robinet, C. R. 58. 608.) 15 7-038 21 6-233 27 5-564 100 vols. petroleum absorb 6 '8 vols. air. ,, ,, oil of lavender ,, 6'89 16 6-891 22 6-114 28 5-460 ,, ,, benzene ,, 14-0 ,, 17 6730 23 5-999 29 5-357 ,, ,, oil of turpentine 24-18 ,, 18 6-614 24 5-886 30 5-255 [(Robinet, I.e.) 19 6-482 25 5-776 ... Alum, Ammonia. 20 6-356 26 5-669 See Sulphate, aluminum ammonium. (Winkler, B. 22. 1773.) 1 vol. H 2 absorbs '01748 vol. air at 24 '05 and 760 mm. pressure. (Winkler, B. 21. 2851.) Composition of the absorbed air between and 24 is 34'91 % and 65 '09 % N (Bunsen) ; between 15 and 16, 32'17 % and 67 '83 % N (Kbnig and Kranch, Z. anal. 19. 259) ; 32 % and 68 % N (Regnault) ; at 0, 35 '1 % ; 10, 34-8 % ; 20, 34 '3 % ; 25, 337 % (Winkler, B. 21. 2843). See also Roscoe and Lunt, and Pettersson and Sonden, page 1. Sea- water absorbs less and N from air than pure H 2 0, but the ratio between and N remains constant. In sea-water sat. with air at 6-22 the oxygen was 33 '50 % of the total gas absorbed. (Pettersson and Sonden. ) 1 1. sea- water absorbs ccm. N and from air at t and 760 mm. pressure. f ccm. N ccm. O N+O %o 14-41 777 22-18 35-03 5 13-22 6-93 20-15 34-39 10 12-08 6-29 18-37 34-24 15 11-01 5-70 1671 34-11 (Tornoe, Norwegian North Atlantic Exped. Chem. 18.) 1 1. sea water absorbs ccm. N from air at t and 760 mm. V ccm. N t ccm. N t ccm. N 15-60 10 12-47 20 10-41 5 13-86 15 11-34 25 9-62 (Dittmar.) 1 1. sea- water absorbs ccm. N (0 and 760 mm.) from atmospheric air at t and 760 mm. pres- sure (dry). t ccm. N t ccm. N V ccm. N 14-85 10 12-06 20 10-25 2 14-20 12 11-62 22 9-98 4 13-60 14 11-23 24 9-73 6 13-04 16 10-87 25 9-62 8 12-53 18 10-54 ... (Hamberg.; Alum, Chrome. See Sulphate, aluminum chromium. Alum, Iron. See Sulphate, aluminum ferric. Alum, Potash. See Sulphate, aluminum potassium. Alumina. See Aluminum oxide. Aluminic acid, H 2 A1 2 4 = A1 2 3 , H 2 0. Aluminum hydroxide possesses acid pro- perties, and salts corresponding to an acid of the above formula exist. See Aluminum hydroxide. Aluminates. All aluminates are insol. in H 2 except those of K and Na (Fremy) and Ba (Beck- mann, J. pr. (2) 26. 385). Barium aluminate, BaAl 2 4 + 4H 2 0. Sol. in 10 pts. H 2 ; can be recryst. from alcohol. (Deville, J. pr. 87. 299.) + 7H 2 0. SI. sol. in cold, not completely sol. in hot H 2 0. Sol. in cold dil. HCl + Aq. (Beckmann, J. pr. (2) 26. 385.) Ba 2 Al 2 5 + 5H 2 0. Sol. in 20 pts. H 2 by boiling. (Beckmann, B. 14. 2151.) Insol. in alcohol. Ba 3 Al 2 6 + 7-llH 2 0. Sol. in 15 pts. H 2 with decomp. into Ba 2 Al 2 5 + 5H 2 ; insol. in alcohol. (Beckmann. ) Barium aluminate bromide, BaAl 2 4 , BaBr 2 + 11H 2 0. SoL in H 2 0. (Beckmann, J. pr. (2) 26. 385, 474.) Barium aluminate chloride, BaAl 2 4 , 3BaCl 2 + 6H 2 0. Sol. in H 2 0. (Beckmann, I.e.) BaAl 2 4 ,BaCl 2 + llH 2 0. Sol.inH 2 0. (Beck- mann, I.e.) Barium aluminate iodide, BaAl 2 4 , BaI 2 . Sol. in H 2 0. (Beckmann, I.e.) Calcium aluminate, 3CaO, A1 2 3 . Insol. in H 2 ; not decomp. by KOH + Aq ; sol. in acids. (Tissier, C. R. 48. 627. ) 3CaO, 2A1 2 0> Insol. in H 2 ; only si. sol. in acids. CaAl 2 4 . Insol. in H 2 0. Cobalt aluminate. " Thenard's or Leithner's bhw." Insol. in H 2 0. ALUMINUM 3 CoAl 2 4 . Insol. in H 2 and acids. (Ebel- men.) Cobalt magnesium aluminate, r [MgCo]A! 2 4 . "Spinel blue" Insol. in H 2 or HCl + Aq. (Ebelmen.) Glucinum aluminate, G1A1 2 4 . Min. Chrysoberyll. Not attacked by acids, but decomp. by KOH + Aq. Ferrous aluminate, FeAl 2 4 . Min. Hercynite. Not attacked by acids. Magnesium aluminate, MgAl 2 4 . Min. Spinel. Insol. in H 2 0. Insol. in HN0 3 + Aq ; very si. sol. in HC1 + Aq ; partly sol. in H 2 S0 4 at boiling temp. (Abich, Pogg. 23. 316.) Sol. by standing 2 hours at 210 with a mix- ture of 3 pts. H 2 S0 4 and 1 pt. H 2 0, or by boiling with this mixture together with HF. (Mit- scherlich, J. pr. 81. 108.) Manganous aluminate. Insol. in H 2 and acids. (Ebelmen, A. ch. (3) 22. 225.) Nickel aluminate. Insol. in H 2 0. Potassium aluminate, K 2 A1 2 4 +3H 2 0. Decomp. by dissolving in pure H 2 with separation of A1 2 3 . (Fremy, A. ch. (3). 12. 362.) Can be recrystallised from water con- taining a little alkali, without decomposition. (Fremy. ) Insol. in alcohol. Sodium aluminate, Na 2 Al 2 4 . Easily and completely sol. in cold H 2 0. (Schaffgotsch, Pogg. 43. 117.) Na 6 Al 2 6 . Miscible with hot H 2 0, and as sol. as NaOH in cold H 2 0. Insol. in alcohol, but decomp. thereby. (Tissier, C. R. 43. 102.) Zinc aluminate, ZnAl 2 4 . Insol. in acids or alkalies. Min. GaJinite (Automolite). + zH 2 0. Sol. in KOH, and NH 4 OH + Aq. (Berzelius.) Aluminomolybdic acid. M. aluminomolybdates. See Molybdates, aluminum M. Aluminum, Al. Not attacked by cold H 2 0, but slowly oxidised at 100. Easily sol. in dil. or cone. HCl + Aq, whether hot or cold ; also in HBr, HI, or HF + Aq. Insol. in dil. H 2 S0 4 + Aq (de la Rive) ; si. attacked by cold, easily by hot cone. H 2 S0 4 . Not attacked by HN0 3 + Aq even when cone, and boiling (Wohler) ; easily sol. in dil. H 2 S0 4 , or HN0 3 + Aq in vacuo (Weeren, B. 24. 1798); slowly sol. in 27 % HN0 3 + Aq, 100 ccm. HN0 3 + Aq requiring 2 months to dissolve 2 g. Al (Montemartini, Gazz. ch. it. 22. 397) ; very si. sol. in most organic acids, but solubility is increased by presence of NaCl. Very easily sol. in cone, or dil. KOH, or NaOH + Aq. Slowly attacked by NH 4 OH + Aq (Wohler) ; sol. in Ba0 2 H 2 + Aq (Beekmann, J. pr. (2) 26. 385) ; slowly sol. in Ca0 2 H 2 + Aq. SI. attacked by sulphates, or nitrates + Aq, but all chlorides, bromides, and iodides, except those of the alkalies and alkaline earths, even A1C1 3 + Aq, dissolve the metal. Insol. in alum, or in NaCl + Aq, but sol. in alum + NaCl + Aq (Tissier, C. R. 41. 362); sol. in NaCl + Aq (Deville, A. ch. (3) 43. 14) ; sol. in neutral FeCl 3 + Aq in vacuo. (Weeren, I.e.] Violently attacked by CuCl 2 + Aq. (Tommasi, Bull. Soc. (2) 37. 443.) Attacked by POC1 3 at 100. (Renitzer, B. 13. 845.) Not attacked by sugar + Aq. (Klein, C. R. 102. 1170.) Less easily attacked than ordinary metals (iron, copper, lead, zinc, tin) by air, H 2 0, wine, beer, coffee, milk, oil, butter, fats, etc. Vinegar dissolves 0'349 g. from a sq. decimetre in 4 months, and 5 % NaCl + Aq, only 0'045 g. in the same time. (Ballaud, C. R. 114. 1536.) The action of various substances contained in foods and drinks on compact Al as it occurs in utensils is very slight. Hard or soft water, whether cold or hot, showed no action in 8 days ; 1 % solutions of tartaric, tannic, and acetic acids had no action in same time, also 5 % boric, carbolic, and salicylic acids. 4 % and 10 % acetic acid dissolved only 0'4 mg. of Al, while 10 % acetic acid dissolved 2'1 mg. from a roughened piece of Al foil in 8 days. 1 % soda solution dissolved 15 mg. in 8 days. (Rupp, Dingl. 283. 119.) Similar results were obtained by Arche. (Dingl. 284. 255.) Liquids which are ordinarily contained in foods and drinks do not attack sheet Al except in a very small degree. The following losses in weight in mg. by the action of the given liquids on 100 sq. centimetres sheet alumi- num for 6 days were obtained : Liquids. Loss in mg. Claret . 2-84 Hock 3-27 Brandy .... 1-08 5 % alcohol .... 0-61 5 % tartaric acid + Aq . 1-69 1 / - 1 /O 33 33 2-58 5 % acetic acid + Aq 3-58 i / 1 /O 33 33 4-38 5 % citric acid + Aq 2-15 1% 1'90 5 % lactic acid + Aq . 4-77 5 % butyric acid + Aq . Coffee . . . . 1-31 0-50 Tea Beer 4 % boric acid + Aq 5 % carbolic acid + Aq . 1-77 0-23 1 / /O ?) >3 * * 0-49 % salicylic acid + Aq . 6-35 (Lunge, C.N. 65. 110.) ALUMINUM ARSENIDE Aluminum arsenide. Decomp. by H 2 with evolution of AsH 3 . (Wohler, Pogg. 11. 160.) Aluminum boride, A1 2 B 4 . Very slowly sol. in hot cone. HCl + Aq, and hot NaOH + Aq, but easily in moderately strong warm HN0 3 + Aq. (Hampe, A. 183. 75.) A1 2 B24. Not attacked by HC1, or KOH + Aq. Scarcely attacked by boiling H 2 S0 4 . Hot cone. HN0 3 + Aq dissolves gradually but completely. (Hampe, I. c.) Aluminum borocarbide, A1 3 C 2 B 48 . Insol. in H 2 0, HCl + Aq, H 2 S0 4 + Aq, or KOH + Aq ; slowly sol. in hot cone. HN0 3 + Aq. (Hampe, I.e.) Aluminum bromide, AlBr 3 . Anhydrous. Dissolved by H 2 with great violence and evolution of much heat. Very sol. in alcohol. More sol. in CS 2 than All^. (Weber, Pogg. 103. 264.) + 6H 2 0. Very sol. in H 2 0. Aluminum potassium bromide, AlBr 3 , KBr. Sol. in H 2 0. (Weber, Pogg. 103. 267.) Aluminum bromide ammonia, AlBr 3 , xNH 3 . Decomp. by H 2 0. (Weber, Pogg. 103. 267.) Aluminum chloride, A1C1 3 . Anhydrous. Very deliquescent. Sol. in H 2 with a hissing noise and evolution of heat. Solution of A1C1 3 in H 2 loses HC1 on evapora- tion, and A1C1 3 is finally wholly converted into A1 2 3 . Sol. in 1-432 pts. H 2 at 15. (Gerlach.) A1C1 3 + Aq containing 19 '15 % A1C1 3 boils at 103-4; A101 3 + Aq containing 3 8 '3 % A1C1 3 boils at 112 -8. (Gerlach.) Sp. gr. of A101 3 + Aqatl5. % A1C1 3 . Sp. gr. % A1C1 3 . Sp.gr. 1 1-0072 22 1-1709 2 1-0144 23 1-1795 3 1-0216 24 1-1968 4 1-0289 25 1-2058 5 1-0361 26 1-2149 6 1-0435 27 1-2241 7 1-0510 28 1-2331 8 1-0585 29 1-2331 9 1-0659 30 1-2422 10 1-0734 31 1-2518 11 1-0812 32 1-2615 12 1-0890 33 1-2711 13 1-0968 34 1-2808 14 1-1047 35 1-2905 15 1-1125 36 1-3007 16 1-1207 37 1-3109 17 1-1290 38 1-3211 18 1-1372 39 1-3313 19 1-1455 40 1-3415 20 1-1537 41 1-3522 21 1-1632 (Gerlach, Z. anal, 8. 281. ; Sol. in 1 pt. strong alcohol at 12 '5 (Wenzel); easily sol. in ether ; si. sol. in CS 2 ; insol. in ligroine or benzene. + 6H 2 0. Very deliquescent ; very sol. in H 2 ; sol. in 0'25 pt. H 2 0. (Thomson.) Sol. in 2 pts. abs. alcohol at ordinary temp., and 1'5 pts. at b.-pt. (Thomson.) Aluminum nitrosyl chloride, A1C1 3 , NOC1. Deliquescent, and decomp. by H 2 0. (Weber, Pogg, 118. 471.) Aluminum palladium chloride, A1CL, PdCL + 10H 2 0. See Chloropalladite, aluminum. Aluminum phosphorus pentachlori&e, A1C1 3 , PCI* Decomp. violently by H 2 0. (Baudrimont. ) Aluminum phosphoryl chloride, A1C1 3 , POC1 3 . Deliquescent. Sol. in H 2 with decomp. Sol. in warm POC1 3 , from which it separates on cooling. (Casselmann, A. 98. 220.) Aluminum platinum chloride, A1C1 3 , PtCl 2 + 15H 2 0. See Chloroplatinite, aluminum. Aluminum potassium chloride, A1C1 3 , KC1. Slowly deliquescent. Sol. in H 2 with evolution of heat and decomp. (Degen, A. 18. 332.) Aluminum selenium chloride, 2A1C1 3 , SeCl 4 . Sol. in H 2 with evolution of heat and separation of traces of selenium. (Weber, Pogg. 104. 427.) Aluminum sodium chloride, A1C1 3 , NaCl. Much less deliquescent than A1C1 3 . Sol. in H 2 with evolution of heat. Upon evaporat- ing, NaCl crystallises out. (Wohler.) Aluminum sulphur chloride, 2A1C1 3 , SC1 4 . Decomp. by H 2 with evolution of much heat and separation of some sulphur. (Weber, Pogg, 104. 421.) Aluminum tellurium chloride, 2A1C1 3 , TeCl 4 . Very sol. in dil. H 2 S0 4 + Aq. (Weber, J. pr. 76. 313.) Aluminum chloride ammonia, A1C1 3 , NH 3 . Sol. in H 2 0. (Rose, Pogg. 24. 248.) A1C1 3 , 3NH 3 . Decomp. by H 2 0. Aluminum chloride phosphine, 3A1C1 3 , PH 3 . Decomp. by H 2 or NH 4 OH + Aq. (Rose, Pogg. 24. 295.) Aluminum chloride hydrogen sulphide. Deliquescent. Decomp. by H 2 or NH 4 OH + Aq. (Wohler.) Aluminum chloride sulphur dioxide, A1CL, S0 2 . Decomp. by H 2 0, alcohol, or benzene. (Adrianowski, B. 12. 688.) Aluminum fluoride, A1F 3 . Anhydrous. Not attacked by H 2 or acids, and only very slightly by boiling cone. H 2 S0 4 . ALUMINUM HYDROXIDE Insol. in boiling KOH + Aq. (Deville, C. R. 42. 49.) + 7H 2 0. Sol. in H 2 0. (Deville, A. ch. (3) 61. 329.) Min. Fluellite. Aluminum hydrogen fluoride, 3A1F 3 , 2HF + 5H 2 0. Sol. in H 2 ; precipitated by alcohol. (Deville.) 2A1F 3 , HF + 5H 2 0. (Deville, A. ch. (3) 61. 329.) Aluminum ammonium fluoride, A1F 3 , NH 4 F. Somewhat sol. in H 2 ; insol. in H 2 con- taining NH 4 OH or NH 4 F. (Berzelius, Pogg. 1. 45.) A1F 3 , 3NH 4 F. Nearly insol. in H 2 ; easily sol. in dil. acids. (Petersen, J. pr. (2) 40. 35.) Quite easily sol. in H>0, but insol. in NH 4 F + Aq. (Helmholt, Z. anorg. 3. 129.) Aluminum barium fluoride. Apparently not obtained in pure state. (Roder.) Aluminum calcium sodium fluoride, A1F 3 , CaF 2 , NaF + H 2 0. Min. Pachnolite. Aluminum cupric fluoride, 2A1F 3 , CuF 2 . Very slowly but completely sol. in H 2 0. (Berzelius. ) Aluminum lithium fluoride. Insol. in H 2 0. (Berzelius.) Aluminum magnesium fluoride. 2A1F 3 , MgF 2 (?). (Roder.) Aluminum nickel fluoride. Sol. in H 2 0. (Berzelius.) Aluminum potassium fluoride, A1F 3 , 3KF. Very si. sol. in acid solutions, and still less in H 0. (Gay-Lussac and Thenard.) A1F 3 , 2KF. As above. Aluminum sodium fluoride. 2A1F 3 , 3NaF. Min. Ohiolite. A1F 3 , 2NaF. Min. Chodneffite. A1F 3 , 3NaF. Min. Cryolite. SI. sol. in H 2 0. Insol. in HC1 + Aq. Decomp. by H 2 S0 4 , or by boiling with NaOH + Aq. Aluminum strontium fluoride. As the Ba salt. (Roder.) Aluminum zinc fluoride, 2A1F 3 , ZnF 2 . Slowly but completely sol. in H 2 0. (Ber- zelius. ) Aluminum hydroxide, A1 2 3 ,H 2 = A1 2 2 (OH) 2 . Dehydrated by cone, acids, without dissol- ving. (Becquerel, C. R., 67. 108.) Min. Diaspore. Insol. in HCl + Aq, and not attacked by boiling cone. H 2 S0 4 , unless it has been ignited. A1 2 3 ,2H 2 = A1 2 0(OH) 4 . Pptd. Al hy- droxide, when boiled twenty hours with H 2 is insol. in acids and alkalies, and has the above composition. (St. Gilles, A. ch. (3) 46. 57.) Min. Bauxite. Soluble modifications (a) Meta-aZummum hydroxide. From basic Al acetate. Sol. in H 2 and more readily in HC 2 H 3 2 . The aqueous solution is coagulated by traces of alkalies, many acids, and salts, while other acids and salts have no effect. Thus, 1 pt. H 2 S0 4 in 1000 pts. H 2 0, added to 7000 pts. of above solu- tion containing 20 pts. A1 2 3 , converts the liquid into a nearly solid mass. Citric, tartaric, oxalic, chromic, molybdic, racemic, suberic, salicylic, benzoic, gallic, lactic, cinnamic, butyric, valeric, camphoric, picric, uric, meconic, comenic, and hemipinic acids act in the same way. HC1 and HN0 3 have far less action, 600 mols. being necessary to produce the same effect as 1 mol. H 2 S0 4 , while acetic, formic, boric, arsenious, pyromeconic, and opianic acids do not coagulate the solution, except when moderately cone. 1 pt. KOH in 1000 pts. H 2 coagulates 9000 pts. of the solution. NaOH, NH 4 OH, and Ca(OH) 2 have the same effect. The solution is not coagulated by acetates, unless added in large quantity, and even then the ppt. is redissolved when treated with H 2 0. Nitrates and chlorides coagulate with difficulty ; Na 2 S0 4 , MgS0 4 , and CaS0 4 + Aq, however, have as strong an action as a liquid containing the same amount of H 2 S0 4 . A teaspoon ful of the solution introduced into the mouth solidifies at once from the action of the saliva. The ppt. formed by acids is not sol. in an excess of the acid, but by the long continued action of cone. H 2 S0 4 , especially if hot, the ppt. is dissolved ; boiling cone. HC1 + Aq also dissolves it, but less readily than H 2 S0 4 . The ppt. is sol. in boiling cone. KOH + Aq. The residue, when the solu- tion is evaporated at 100, has composition A1 2 3 , 2H 2 0, and is insol. in acids. (Crum, Chem. Soc. 6. 225.) (b) By Dialysis. Sol. in H 2 0, from which it is separated by extremely small amounts of various substances, as acids, ammonia, salts (especially K 2 S0 4 ), caramel, etc. An excess of acid dissolves the coagulum. If the solution con- tains '5% A1 2 3 or less, it may be boiled without change, but the hydroxide separates out sud- denly when it is reduced to ^ its vol., and even very dil. solutions gelatinise spontaneously in a few days. The solution is not coagulated by alcohol or sugar. (Graham, A. 121. 41.) A1 2 3 ,3H 2 = A1 2 6 H 6 . Crystallised. Diffi- cultly sol. in acids and alkalies. (Cossa, N. Cim. (2) 3. 228.) Insol. in boiling HCl + Aq. (Wohler, A. 113. 249.) SI. sol. in KOH + Aq ; nearly insol. in cold H 2 S0 4 , HC1, HN0 3 + Aq ; very slowly sol. in hot HC1 + Aq, more readily in hot H 2 S0 4 . (v. Bonsdorff, Pogg. 27. 275.) Min. Gibbsite. Sol. in HCl + Aq, and dil. H 2 S0 4 + Aq. Readily sol. in cone. KOH, and NaOH + Aq. Precipitated. Completely insol. in H 2 or H 2 C0 3 + Aq. Easily sol. in acids when freshly pptd., but solubility diminishes on standing. Easily sol. in KOH or NaOH + Aq. (Sonnen- schein.) SI. sol. in NH 4 OH + Aq when freshly pptd., but presence of NH 4 salts diminish its solu- ALUMINUM IODIDE bility, and it separates out completely after long standing. (Fresenius.) Somewhat sol. in NH 4 OH + Aq, the more readily the larger the vol. of H 2 0. Somewhat sol. in (NH 4 ) 2 C0 3 + Aq, but less than in NH 4 OH + Aq. SI. sol. in dil. NH 4 Cl + Aq, unless that salt be in large excess. It is finally wholly pptd. if allowed to stand several days. 18752 pts. NH 4 OH + Aq (4 % NH 4 OH) dis- solve an amt. of Al 2 OeHe corresponding to one pt. A1 2 3 ; NH 4 C1 prevents this solubility almost completely. (Hanamann, Pharm. Vier- telj. 12. 527.) Cone. (NH 4 ) 2 C0 3 + Aq does not dissolve A1 2 6 H 6 , and not a trace is dissolved by boiling cone. NH 4 Cl + Aq. (Weeren, Pogg. 92. 97.) With NH 4 F + Aq, it forms a double salt, A1F S , 3NH 4 F, which is sol. in H 2 0, but not in NH 4 F + Aq. (Helmholt, Z. anorg. 3. 127.) Insol. in (NH 4 ) 2 S + Aq. (Malaguti and Dur- ocher, A. ch. (3) 17. 421.) Fuchs found, on the contrary, that it is not wholly insol. in (NH 4 ) 2 S + Aq. (Fresenius, Quant.) Insol. in FeCl 3 + Aq. (Bechamp.) Sol. in Ba(OH) 2 + Aq. (Rose.) Sol. in boiling Fe(N0 3 ) 3 , Cr(N0 3 ) 3 , Bi(N0 3 ) 3 , Hg(N0 3 ) 2 , HgN0 3 , SnCl 2 , and SbCl 3 + Aq. (Persoz.) Insol. in HCN or cold KCN + Aq; but si. sol. in hot KCN + Aq. (Rose.) Insol. in KC 2 H 3 2 + Aq. (Osann, 1821.) When moist, sol. in H 2 S0 3 + Aq, from which it is repptd. on boiling. (Berthier, A. ch. (3) 7. 76.) Somewhat sol. in NaC 2 H 3 2 + Aq. (Mercer.) Not pptd. by NH 4 OH + Aq in presence of Na citrate. (Spiller.) Sol. in ethyl amine, amyl amine, sinkaline, ethyl picoline hydroxide, stibethylium hy- droxide, triethyltoluenyl ammonium hydroxide + Aq. (Friedlander. ) Sol. to a considerable extent in K 2 C 4 H 4 06 + Aq. Very si. sol. in cane sugar + Aq. (Ramsey.) Aluminum iodide, A1I 3 . Anhydrous. Fumes on air and deliquesces. Sol. in H 2 with evolution of much heat. Sol. in CS 2 and crystallises from the hot sat. solution on cooling. (Weber.) Sol. in alco- hol (Weber) ; ether and tetra-chlormethane. (Gustavson.) + 6H 2 0. Very sol. in H 2 0. Aluminum potassium iodide, A1I 3 , KI. Sol. in H 2 with evolution of much heat. (Weber, Pogg. 101. 469.) Aluminum iodide ammonia, A1I 3 , 3NH 3 . Decomp. by H 2 0. (Weber, Pogg. 103. 263.) Aluminum nitride, A1 2 N 2 . Slowly attacked by hot or cold H 2 0. Decomp. by acids and aqueous solutions of the alkalies, especially when they are concentrated. (Mallet, A. 186. 155.) Aluminum oxide, A1 2 3 . Crystalline. Min. Corundum, sapphire, ruby, emery. Insol. in acids. Amorphous. Ignited A1 2 3 is insol. in acids except that it dissolves slowly when heated with a mixture of 1 pt. H 2 S0 4 and 1 pt. H 2 0. (Berzelius.) Slowly sol. in boiling HCl + Aq. (Rose, Pogg. 52. 595.) Sol. in 22 pts. of a mixture of 8 pts. H 2 S0 4 and 1 pt. H 2 0. (Mitscherlich. ) The lower the temperature at which A1 2 3 has been heated, the more sol. is it in acids and alkalies. Solubility in (calcium sucrate + sugar) + Aq. 1 1. solution containing 41 8 '6 g. sugar and 34'3 g. CaO dissolves 1'35 g. A1 2 3 ; 1 1. solu- tion containing 296 '5 g. sugar and 24 '2 g. CaO dissolves '32 g. A1 2 3 ; 1 1. solution contain- ing 174 '4 g. sugar and 14 '1 g. CaO dissolves 0'19 g. A1 2 3 . (Bodenbender, J. B. 1865. 600.) See also Aluminum hydroxide. Aluminum oxybromide. Basic aluminum bromides containing three equivalents or less of A1 2 3 to one of AlBr 3 are sol. in H 2 0. Those containing more than three equivalents are insol. (Ordway, Am. J. Sci. (2) 26. 203.) Aluminum oxychloride. Sol. in dil. acids or alkalies. Decomp. by H 2 0. (Hautefeuille and Perrey, C. R. 100. 1220.) Basic aluminum chlorides containing two equivalents or less of A1 2 3 to one of A1C1 3 are sol. in H 2 0. Those containing more than two equivalents are insol. (Ordway.) A1 2 3 , 3A1C1 3 + 3H 2 0. (Tommasi, Bull. Soc. (2) 37. 443.) A1 2 3 , 8A1C1 3 + 3H 2 0. (Tommasi.) 3A1 2 3 , A1C1 3 + 15H 2 0. (Tommasi.) Aluminum phosphide. Decomp. by H 2 0. (Wohler.) Does not exist. (Erlenmeyer, B. 12. 152.) Aluminum selenide. Decomp. by H 2 0. Aluminum silicide, Al 2 Si 4 . More easily sol. in acids than Al. (Winkler, J. pr. 91. 193.) Aluminum sulphide, A1 2 S 3 . Decomp. in moist air and by H 2 0. (Wohler. ) Aluminum potassium sulphide. Violently decomposed by H 2 0. (St. Claire Deville, J. pr. 71. 293.) Does not exist. (Gratama, R. t. c. 3. 4.) Aluminum telluride. Decomp. by H 2 0. (Wohler, Pogg. 11. 160.) Aluminum titanide, Al 3 Ti 2 . Slowly sol. in HCl + Aq. Violently oxidised byHN0 3 + Aq. I^'amide, N 2 H 4 . See Hydrazine. Amidochromic acid. Potassium amidochromate, KCr0 3 NH 2 . Sol. only in H 2 0. Sat. solution in H 2 contains 13 % of the salt. (Heintze, J. pr. (2) 4. 214.) AMIDOSULPHONIC ACID Amidophosphoric acid, HP0 3 (NH 2 ) = PO (NH 2 ) (OH) 2 . Sol. in H 2 0, but decomp. on standing or by heat. (Stokes, Am. Ch. J. 15. 198.) Aluminum airidophosphate. Ppt. Sol. inNH 4 OH + Aq. (Stokes.) Ammonium amidophosphate, NH 4 HP0 3 (NH 2 ). Very sol. in H 2 0. (Stokes.) Barium amidophosphate, BaP0 3 (NH 2 ) + H 2 0. Very si. sol. in H 2 0. (Stokes.) BaH 2 (P0 3 NH 2 ) 2 + 2iH 2 0. Quite difficultly sol. inH 2 0. (Stokes.) Calcium amidophosphate, CaP0 3 (NH 2 ). Much less sol. in H 2 than Ba salt. (Stokes.) CaH 2 (P0 3 NH 2 )o. Much less sol. in H 2 than the Ba salt. (Stokes.) Chromic amidophosphate. Ppt. Sol. in warm NH 4 OH + Aq. (Stokes. ) Cobalt amidophosphate. Neutral. Ppt. Acid. SI. sol. in H 2 ; sol. in NH 4 OH + Aq. Cupric amidophosphate. Neutral. SI. sol. in H 2 0. Acid. Nearly insol. in H 2 0. Ferrous amidophosphate. Neutral. Sol. in much H 2 0, and in HC 2 H 3 2 , or NH 4 OH + Aq. Acid. Nearly insol. in H 2 or NH 4 Cl + Aq. Sol. inNH 4 OH + Aq. Ferric amidophosphate. Neutral. Ppt. Sol. in excess of alkali amido- phosphate and in NH 4 OH + Aq. Insol. in HC 2 H 3 2 + Aq. Acid. As the neutral salt. Hydroxylamine amidophosphate, (NH 3 0)H P0 3 (NH 2 ). SI. sol. in H 2 0. (Stokes.) Lithium amidophosphate, LiHP0 3 (NH 2 ). SI. sol. in H 2 0. (Stokes.) Magnesium amidophosphate, MgP0 3 (NH 2 ) + 7H 2 0. Very si. r )1. in H 2 ; quite easily sol. in dil. NH 4 Cl + Aq.' Sol. in HC 2 H 3 2 + Aq. (Stokes.) MH(P0NH + 3H 2 0. Insol. in NH 4 C1 gH 2 ( 32 + Aq. (Stokes.) Manganese amidophosphate. P Neutral. Ppt. Acid. SI. sol. in H 2 0. Nickel amidophosphate. Neutral. Ppt. Sol. in HC 2 H 3 2 or NH 4 OH + Aq. Acid. SI. sol. in H 2 0. Potassium amidophosphate, K 2 P0 3 (NH 2 ). Very sol. in H 2 and not decomp. by boil- ing. (Stokes.) KHP0 3 (NH 2 ). Easily sol. in cold H 2 ; insol. in alcohol. (Stokes.) Silver amidophosphate, Ag 2 P0 3 (NH 2 ). Almost insol. in H 2 0. Sol. in HN(X or NH 4 OH + Aq. AgHP0 3 (NH 2 ). SI. sol. in H 2 ; easily sol. in dil. HN0 3 or HC 2 H 3 2 + Aq, also in NH 4 OH + Aq. Sodium amidophosphate, Na 2 P0 3 (NH 2 ). Not deliquescent ; very sol. in H 2 ; pptd. from aqueous solution by alcohol. (Stokes. ) NaHP0 3 (NH 2 ) + i(?)H 2 0. Nearly insol. in cold, and decomp. by hot H 2 0. Insol. in alcohol. Zinc amidophosphate. Neutral. Perceptibly sol. in H 2 0. Acid. SI. sol. in H 2 ; sol. in NH 4 OH or HC 2 H 3 2 + Aq. Amidosulphonic acid, HOS0 2 NH 2 . Easily sol. in H 2 0, less easily in alcohol. (Berglund, B. 9. 252 and 1896.) Very stable ; less easily sol. in H 2 than its K salt. (Raschig, A. 241. 177.) Amidosulphonates. Easily sol. in H 2 ; si. sol. in alcohol. Aluminum amidosulphonate. Very sol. in H 2 0. (Berglund, Bull. Soc. (2) 29. 422.) Ammonium amidosulphonate, (NH 4 )NH 2 S0 3 . Deliquescent. Sol. in H 2 ; insol. in alcohol. Barium amidosulphonate, Ba(NH 2 S0 3 ) 2 . Sol. in 3 pts. H 2 0. (Berglund, I.e.) Cadmium amidosulphonate, Cd(NH 2 S0 3 ) 2 + 5H 2 0. Very sol. in H 2 0. (B.) Calcium amidosulphonate, Ca(NH 2 S0 3 ) 2 + 4H 2 0. Very sol. in H 2 0. (B.) Cobalt amidosulphonate, Co(NH 2 S0 3 ) 2 + 3H 2 0. Sol. inH 2 0. (B.) Copper amidosulphonate, Cu(NH 2 S0 3 ) 2 + 2H 2 0. Sol. in H 2 0. (B.) Lead amidosulphonate, Pb(NH 2 S0 3 ) 2 + H 2 0. The most sol. of all amidosulphonates. (B. ) Lithium amidosulphonate. LiNH 2 S0 3 . Deliquescent. (B.) Magnesium amidosulphonate. Very sol. in H 2 0. Manganese amidosulphonate, Mn(NH 2 S0 3 ) 2 + 3H 2 0. Very sol. in H 2 0. (B.) Nickel amidosulphonate, Ni(NH 2 S0 3 ) 2 + 3H 2 0. Sol. in H 2 0. (B.) Potassium amidosulphonate, KNH 2 S0 3 . Sol. inH 2 0. (Berglund.) Silver amidosulphonate, AgNH 2 S0 3 . Sol. in 15 pts. H 2 at 19. (B.) 8 AMMONIA Sodium amidosulphonate, NaNH 2 S0 3 . Sol. in H 2 0. Strontium amidosulphonate, Sr(NH 2 S0 3 ) 2 + 4H 2 0. Sol. in H 2 0. Thallium amidosulphonate, T1NH 2 S0 3 . Sol. in H 2 0. Uranyl amidosulphonate. Sol. in H 2 0. Zinc amidosulphonate, Zn(KH 2 S0 3 ) Ammonia, NH 3 . Very sol. in H 2 0, with evolution of much heat. 1 vol. H 2 O absorbs 670 vols. (i pt. by weight) NH 3 at +10 and 29'8 in. pressure; sp. gr. of solution = '875. (Davy.) At low temperatures H 2 absorbs more than its weight of NH 3 , and sp. gr. of solution = 0'S50. (Dalton.) 100 pts. H 2 O absorb 8 '41 pts. NH 3 at 24 ; 5 '96 pts. at 55. (Osann.) 1 vol. H 2 O absorbs 780 vols. NH 3) 6 vols. H 2 O in- creasing to 10 vols. sat. NH 4 OH+Aq; 1 vol. sat. NH 4 OH+Aq contains 468 vols. NH 3 . (Thomson.) 1 vol. H 2 O absorbs 450 vols. NH 3 at 15. (Dumas.) 1 vol. HoO absorbs 700 vols. NH 3 at ordinary tempera- ture. (Otto.) 100 pts. H 2 O absorb in NH 3 gas 47'7 pts. NH 3 by weight. (Berzelius.) 1 vol. HoO absorbs 505 vols. NH 3 and vol. is increased to 1-5 vol., and sp. gr. becomes O'OOO. (Ure.) 1 vol. H 2 at and 760 mm. absorbs 1177 '3 vols. NH 3 . (Sims.) 1 vol. H 2 at and 760 mm. absorbs 1146 vols. NH 3 . (Roscoe and Dittmar.) 1 vol. H 2 at and 760 mm. absorbs 1049 '6 vols. NH 3 . (Carius.) 1 vol. H 2 at and 760 mm. absorbs 1270 vols. NH 3 . (Berthelot.) 1 vol. H 2 at and 760 mm. absorbs 1050 vols. NH 3 . (Bunsen.) 100 ccm. H 2 absorb 64 '50 g. NH 3 . (Kaoult. ) Solubility of NH 3 in H 2 at 760 mm. and t : 1 g. H 2 absorbs g. NH 3 , according to Roscoe and Dittmar (A. 112. 347) (RD) ; and ac- cording to Sims (A. 118. 345) (S). t g ' R N D HS g.NH 3 t S B N D HS g.NH 3 0-875 0-899 36 0-343 0-363 2 0-833 0-853 38 0-324 0-350 4 0-792 0-809 40 0-307 0-338 6 0-751 0-765 42 0-290 0-326 8 0713 0-724 44 0-275 0-315 10 0-679 0-684 46 0-259 0-304 12 0-645 0-646 48 0-244 0-294 14 0-612 0-611 50 0-229 0-284 16 0-582 0-578 52 0-214 0-274 18 0-554 0-546 54 0-200 0-265 20 0-526 0-518 56 0-186 0-256 22 0-499 0-490 58 0-247 24 0-474 0-467 60 0-238 26 0-449 0*446 70 0-194 28 0-426 0-426 80 0-154 30 0-403 0-408 90 0-114 32 0-382 0-393 98 0-082 34 0-362 0-378 100 ... 0-074 Solubility of NH 3 by vol. in H 2 at 760 mm. and t : 1 vol. H 2 at 760 mm. and t dis- solves V vols. NH 3 gas, vols. reduced to and 760 mm. t V t V 1049-60 13 759-55 1 1020-78 14 743-11 2 993-26 15 727-22 3 966-98 16 711-82 4 941-88 17 696-85 5 917-90 18 682-26 6 894-99 19 667-99 7 873-09 20 653-99 8 852-14 21 640-19 9 831-98 22 626-54 10 81276 23 612-98 11 794-32 24 599-46 12 776-60 25 585-94 (Carius, A. 99. 144.) Solubility of NH 3 in H 2 at P mm. pressure and : 1 pt. H 2 absorbs pts. NH 3 at P mm. pressure and 0. P Pts. NH 3 P Pts. NH 3 10 0-044 900 0-968 20 0-084 950 1-101 30 0-120 1000 1-037 40 0-149 1050 1-075 50 0-175 1100 1-117 75 0-228 1150 1-161 100 0-275 1200 1-208 125 0-315 1250 1-258 150 0-351 1300 1-310 175 0-382 1350 1-361 200 0-411 1400 1-415 250 0-465 1450 1-469 300 0-515 1500 1-526 350 0-561 1550 1-584 400 0-607 1600 1-645 450 0-646 1650 1-707 500 0-690 1700 1-770 550 0-731 1750 1-835 600 0-768 1800 1-906 650 0-804 1850 1-976 700 0-840 1900 2-046 750 0-872 1950 2-120 800 0-906 2000 2-195 850 0-937 (Roscoe and Dittmar, A. 112. 349.) In proportion as the temperature is higher, so much the more nearly does the solubility of NH 3 in H 2 conform to the law of Henry and Dalton, but only obeys it completely when the temperature is 100, as is seen in the following table. AMMONIA Solubility of NH 3 in H^O at various pressures and temperatures : P= partial pressure, i.e. total pressure minus the tension of aqueous vapour at the given temperature; G= grammes NH 3 dissolved in 1 g. H 2 O at the given if the solubility was pressure; G at 760= number of grammes NH 3 that would be contained in 1 g. proportional to the pressure. (Sims, A. 118. 346.) p 20 40 100 GatP G at 760 'GatP G at 760 GatP G at 760 GatP G at 760 20 0-082 3-113 30 0-117 2-960 40 0-148 2-820 60 0-169 2-522 0-119 1-513 80 0-240 2-280 0-141 1-337 0-052 0-497 100 0-280 2-127 0-158 1-200 0-064 0-490 120 0-316 2-000 0-173 1-095 0-076 0-483 140 0-346 1-880 0-187 1-017 0-08S 0-476 160 0-375 1-780 0-202 0-962 0-099 0-470 180 0-398 1-684 0-207 0-918 0-109 0-462 200 0-421 1-598 0-232 0-881 0-120 0-454 250 0-472 1-434 0-266 0-810 0-145 0-440 300 0-519 1-315 0-296 0-750 0-168 0-426 350 0-563 1-223 0-325 0-705 0-191 0-414 400 0-606 1-152 0-353 0-670 0-211 0-402 450 0-650 1-100 0-378 0-638 0-232 0-399 500 0-692 1-052 0-403 0-612 0-251 0-382 550 0-732 1-012 0-425 0-587 0-269 0-372 600 0-770 0-975 0-447 0-566 0-287 0-363 650 0-809 0-946 0-470 0-550 0-304 0-355 700 0-850 0-923 0-492 0-534 0-320 0-347 0-068 0-074 750 0-891 0-903 0-514 0-521 0-335 0-339 0-073 0-074 760 0-899 0-899 0-518 0-518 0-338 0-338 0-074 0-074 800 0-937 0-888 0-535 0-504 0-349 0-332 0-078 0-074 850 0-980 0-876 0-556 0-497 0-363 0-325 0-083 0-074 900 1-029 0-869 0-574 0-485 0-378 0-319 0-088 0-074 950 1-077 0-862 0-594 0-475 0-391 0-313 0-092 0-073 1000 1-126 0-855 0-613 0-466 0-404 0-307 0-096 0-073 1050 1-177 0-852 0-632 0-457 0-414 0-300 0-101 0-073 1100 1-230 0-850 0-651 0-450 0-425 0-294 0-106 0-073 1150 1-283 0-848 0-669 0-442 0-434 0-287 0-110 0-073 1200 1-336 0-846 0-685 0-433 0-445 0-282 0-115 0-073 1250 1-338 0-844 0-704 0-428 0-454 0-276 0-120 0-073 1300 1-442 0-843 0-722 0-422 0-463 0-271 0-125 0-073 1350 1-496 0-842 0-741 0-417 0-472 0-266 0-130 0-073 1400 1-549 0-841 0-761 0-413 0-479 0-260 0-135 0-073 1450 1-603 0-840 0-780 0-409 0-486 0-255 1500 1-656 0-839 0-801 0-406 0-493 0-250 1600 1-758 0-835 0-842 0-400 0-511 0-242 1700 1-861 0-832 0-881 0-394 0-530 0-237 1800 1-966 0-830 0-919 0-388 0-547 0-231 1900 2-070 0-828 0-955 0-382 0-565 0-226 2000 0-992 0-377 0-579 0-220 2100 0-594 0-215 Sp. gr. ofNH 4 OH+Aq. %NH 3 Sp. gr. %NH 3 Sp. gr. 32-3* 0-8750 14-53 0-9435 29-25 0-8857 13-46 0-9476 26 0-9000 12-40 0-9513 25-37* 0-9054 11-56 0-9545 22-07 0-9166 10-82 0-9573 19-54 0-9255 10-17 0-9597 17-52 0-9326 9-6 0-9616 15-88 . 0-9385 9-5* 0-9632 (H. Davy, Elements, 1. 241.) * By direct experiment. The other numbers were obtained by calculation, making no allowance for con- pensation. Sp. gr. of NH 4 OH+Aq at 16, according to Otto in his Lehrbuch. %NH 3 Sp. gr. %NH 3 Sp. gr. 12-000 11-875 11-750 11-625 11-500 11-375 0-9517 0-9521 0-9526 0-9531 0-9536 0-9540 11-250 11-125 11-000 10-950 10-875 10-750 0-9545 0-9550 0-9555 0-9556 0-9559 0-9564 Sp. gr. of NH 4 OH+Aq at 16, etc. Continued. %NH 3 Sp. gr. %NH 3 Sp. gr. 10-625 0-9569 7-750 0-9678 10-500 0-9574 7-625 0-9683 10-375 0-9578 7-500 0-9688 10-250 0-9583 7-375 0-9692 10-125 0-9588 7-250 0-9697 10-000 0-9593 7-125 0-9702 9-875 0-9597 7-000 0-9707 9-750 0-9602 6-875 0-9711 9-625 0-9607 6-750 0-9716 9-500 0-9612 6-625 0-9721 9-375 0-9616 6-500 0-9726 9-250 0-9621 6-375 0-9730 9-125 0-9626 6-250 0-9735 9-000 0-9631 6-125 0-9740 8-875 0-9636 6-000 0-9745 8-750 0-9641 5-875 0-9749 8-625 0-9645 5-750 0-9754 8-500 0-9650 5-625 0-9759 8-375 0-9654 5-500 0-9764 8-250 0-9659 5-375 0-9768 8-125 0-9664 5-250 0-9773 8-000 0-9669 5-125 0-9778 7-875 0-9673 5-000 0-9783 10 AMMONIA Sp. gr. of NH 4 OH+Aq, according to Ure in Diet, of Arts. %NH 3 Sp. gr. %NH 3 Sp. gr. 27-940 0-8914 15-900 0-9363 27-633 0-8937 14-575 0-9410 27-038 0-8967 13-250 0-9455 26-751 0-8983 11-925 0-9510 26-500 0-9000 10-600 0-9564 25-175 0-9045 9-275 0-9614 23-850 0-9090 7-950 0-9662 22-525 0-9133 6-625 0-9716 21-200 0-9177 5-300 0-9768 19-875 0-9227 3-975 0-9828 18-550 0-9275 2-650 0-9887 17-225 0-9320 1-325 0-9945 Sp. gr., b.-pt., and vols. gas in NH 4 OH+Aq. %NH 3 Sp. gr. B.-pt. Vols. gas in 1 vol. liquid 35-3 0-85 -3-3 494 32-6 0-86 +3-3 456 29-9 0-87 10 419 27-3 0-88 16-6 382 24-7 0-89 23-3 346 22-2 0-90 30 311 19-8 0-91 36-6 277 17-4 0-92 43-3 244 15-1 0-93 50 211 12-8 0-94 56-6 180 10-5 0-95 63-3 147 8-3 0-96 70 116 6-2 0-97 78-3 87 4-1 0-98 86-1 57 2-0 0-99 91-1 28 (Dalton, in New System, 2. 422.) Sp. gr. of NH 4 OH + Aq sat. at t. t Sp.gr. t Sp. gr. t Sp. gr. 0-8535 9 0-8746 18 0-8903 1 0-8561 10 0-8766 19 0-8916 2 0-8587 11 0-8785 20 0-8928 3 0-8611 12 0-8804 21 0-8940 4 0-8635 13 0-8823 22 0-8952 5 0-8658 14 0-8841 23 0-8963 6 0-8681 15 0-8858 24 0-8974 7 0-8703 16 0-8874 25 0-8984 8 0-8725 17 0-8889 (Carius, A. 99. 141.) Sp. gr. of NH 4 OH + Aq at 14, according to Carius (A. 99. 148). %NH 3 Sp. gr. %NH 3 Sp. gr. 36-0 0-8844 33-2 0-8903 35-8 0-8848 33-0 0-8907 35-6 0-8852 32-8 .0-8911 35-4 0-8856 32-6 0-8916 35-2 0-8860 32-4 0-8920 35-0 0-8864 32-2 0-8925 34-8 0-8868 32-0 0-8929 34-6 0-8872 31-8 0-8934 34-4 0-8877 31-6 0-8938 34-2 0-8881 31-4 0-8944 34-0 0-8885 31-2 0-8948 33-8 0-8889 31-0 0-8953 33-6 0-8894 30-8 0-8957 33'4 0-8898 30-6 0-8962 Sp. gr. of NH 4 OH + Aq at 14, etc. Continued. %NH 3 Sp. gr. %NH 3 Sp. gr. 30-4 0-8967 18-0 0-9314 30-2 0-8971 17-8 0-9321 30-0 0-8976 17-6 0-9327 29-8 0-8981 17-4 0-9333 29-6 0-8986 17*2 0-9340 29-4 0-8991 17-0 0-9347 29-2 0-8996 16-8 0-9353 29-0 0-9001 16-6 0-9360 28-8 0-9006 16-4 0-9366 28'6 0-9011 16-2 0-9373 28-4 0-9016 16-0 0-9380 28-2 0-9021 15-8 0*9386 28'0 0*9026 15-6 0-9393 27-8 0-9031 15-4 0-9400 27'6 0-9036 15-2 0-9407 27-4 0-9041 15-0 0-9414 27'2 0-9047 14-8 0-9420 27-0 0-9051 14-6 0-9427 26-8 0-9057 14-4 0-9434 26'6 0-9063 14-2 0-9441 26-4 0-9068 14-0 0-9449 26'2 0-9073 13-8 0-9456 26-0 0-9078 13-6 0-9463 25-8 0-9083 13-4 0-9470 25'6 0-9089 13-2 0-9477 25-4 0-9094 13-0 0-9484 25'2 0-9100 12-8 0-9491 25-0 0-9106 12-6 0-9498 24-8 0-9111 12-4 0-9505 24'6 0-9116 12-2 0-9512 24-4 0-9122 12-0 0-9520 24-2 0-9127 11-8 0-9527 24-0 0-9133 11-6 0-9534 23-8 0-9139 11-4 0-9542 23-6 0-9145 11-2 0-9549 23-4 0-9150 11-0 0-9556 23-2 0-9156 10-8 0-9563 23-0 0-9162 10-6 0-9571 22-8 0-9168 10-4 0-9578 - 22-6 0-9174 10-2 0-9586 22-4 0-9180 10-0 0-9593 22-2 0-9185 9-8 0-9601 22-0 0-9191 9-6 0-9608 21-8 0-9197 9-4 0-9616 21-6 0-9203 9-2 0-9623 21-4 0-9209 9-0 0-9631 21-2 0-9215 8-8 0-9639 21-0 0-9221 8-6 0-9647 20-8 0-9227 8-4 0-9654 20-6 0-9233 8-2 0-9662 20-4 0-9239 8-0 0-9670 20-2 0-9245 7-8 0*9677 20-0 0-9251 7-6 0-9685 19-8 0-9257 7-4 0-9693 19'6 0-9264 7-2 0-9701 19-4 0-9271 7-0 0-9709 19'2 0-9277 6-8 0-9717 19-0 0-9283 6'6 0-9725 18'8 0-9289 6-4 0-9733 18-6 0-9296 6-2 0-9741 18-4 0-9302 6-0 0-9749 18-2 0-9308 5'8 0-9757 AMMONIA 11 Sp. gr. of NH 4 OH + Aq at 14, etc. Continued. %NH 3 Sp. gr. %NH 3 Sp. gr. 5-6 0-9765 2-8 0-9882 5-4 0-9773 2-6 0-9890 5-2 0-9781 2-4 0-9899 5-0 0-9790 2-2 0-9907 4-8 0-9799 2-0 0-9915 4-6 0-9807 1-8 0-9924 4-4 0-9815 1-6 0-9932 4-2 0-9823 1-4 0-9941 4-0 0-9831 1-2 0-9950 3-8 0-9839 i-o 0-9959 3 "6 0-9847 0-8 0-9967 3-4 0-9855 0-6 0-9975 3-2 0-9863 0-4 0-9983 3-0 0-9873 0-2 0-9991 Hager also gives a table in his Commentar zur Pharmacopoea, which is practically identical with those here given. Strength of NH 4 OH + Aq of certain sp. gr. at 12. Sp. gr. 1 kg. solu- tion con- tains g. NH 3 1 1. solu- tion con- tains g. NH 3 1 litre consists of H 2 Oin ccm. liquid NH 3 in ccm. 0-870 384-4 334-5 535-5 464-5 0-880 347-2 305-5 574-5 425-5 0-890 311-6 277-3 6127 387-3 0-900 277-3 249-5 650-5 349-5 0-910 244-9 222-8 687-2 312-8 0-920 213-4 196-3 723-7 276-3 0-930 182-9 170-1 759-9 2401 0-940 152-9 1437 796-3 2037 0-950 124-2 118-0 832-0 168-0 0'960 97-0 93-1 866-9 133-1 0-970 70-2 68-0 902-0 98-0 0-980 45-3 44-3 9357 64-3 0*990 21-0 207 969-3 307 (Wachsmuth, Arch. Pharm. (3) 8. 510.) Sp. gr. of NH 4 OH + Aq at 15. (Most careful experiments. ) Sp. gr. %NH 3 Sp. gr. %NH 3 0-990 2-15 0-900 2770 0-974 6-10 0-890 31-40 0-950 12'54 0-885 33-5 0-926 19-50 0-882 34-8 0-916 22-50 0-880 35-5 0-910 24-40 ... (Griineberg, Chem. Ind. 12. 97.) The following table is calculated from the above by interpolation : Sp. gr. %NH 3 Sp. gr. %NH 3 0-995 1'05 0-975 5-75 0-990 2-15 0-970 7-05 0-985 3-30 0-965 8-40 0-980 4-50 0-960 9-80 (Table continued.) Sp. gr. %NH 3 Sp. gr. %NH 3 0-955 11-20 0-915 22-85 0'950 12-60 0-910 24-40 0-945 14-00 0-905 26-00 0-940 15-45 0-900 2770 0-935 16-90 0-895 29-50 0-930 18-35 0-890 31-40 0-925 19-80 0-885 33-40 0-920 21-30 0-880 35-50 (Griineberg. ) Sp. gr. of NH 4 OH + Aq at 14. %NH 3 Sp. gr. %NH 3 Sp. gr. 31 23-8 20-4 0-8933 0-9116 0-9246 15-6 11-7 5-1 0-9400 0-9536 0-9780 (Lunge and Smith, B. 17. 777.) Sp. gr. of NH 4 OH + Aq at 15, according to Lunge and Wiernik (Zeit. f. angew. Ch. 1889. 183). (Most carefully worked out and calculated. ) Sp. gr. %NH 3 L 1. contains g. NH 3 Correction for 1 i-ooo o-oo o-o 0-00018 0-998 0-45 4-5 0-00018 0-996 0-91 9-1 0-00019 0-994 1-37 13-6 0-00019 0-992 1-84 18-2 0-00020 0-990 2-31 22-9 0-00020 0-988 2-80 277 0-00021 0-986 3-30 32-5 0-00021 0-984 3-80 37-4 0-00022 0-982 4-30 42-2 0-00022 0-980 4-80 47-0 0-00023 0-978 5-30 51-8 0-00023 0-976 5-80 56-6 0-00024 0-974 6-30 61-4 0-00024 0-972 6'80 66-1 0-00025 0-970 7-31 70-9 0-00025 0-968 7-82 757 0-00026 0-966 8-33 80-5 0-00026 0-964 8-84 85-2 0-00027 0-962 9-35 89-9 0-00028 0-960 9-91 95-1 0-00029 0-958 10-47 100-3 0-00030 0-956 11-03 105-4 0-00031 0-954 11-60 1107 0-00032 0-952 12-17 115-9 0-00033 0-950 1274 121-0 0-00034 0-948 13-31 126-2 0-00035 0-946 13-88 131-3 0-00036 0-944 14-46 136-5 0-00037 0-942 15-04 141-7 0-00038 0-940 15-63 146-9 0-00039 0-938 16-22 152-1 0-00040 0-936 16-82 157-4 0-00041 0-934 17-42 162-7 0-00041 0-932 18-03 168-1 0-00042 0-930 18-64 173-4 0-00042 12 AMMONIA Sp. gr. of NH 4 OH + Aq at 15, etc. Continued. (Most carefully worked out and cal- culated. ) Sp. gr. %NH 3 1 1. contains g. NH 3 Correction for 1 0-928 19-25 178-6 0-00043 0-926 19-87 184-2 0-00044 0-924 20-49 189*3 0-00045 0*922 21-12 194-7 0-00046 0-920 21-75 200-1 0-00047 0-918 22-39 205-6 0-00048 0-916 23-03 210-9 0-00049 0-914 23-68 216-3 0-00050 0-912 24-33 221-9 0-00051 0-910 24-99 227-4 0-00052 0-908 25-65 232-9 0-00053 0-906 26-31 238-3 0-00054 0-904 26-98 243-9 0-00055 0-902 27-65 249-4 0-00056 0-900 28-33 255-0 0-00057 0-898 29-01 260-5 0-00058 0-896 29-69 266-0 0-00059 0-894 30-37 271-5 0-00060 0-892 31-05 277-0 0-00060 0-890 3175 282-6 0-00061 0-888 32-50 288-6 0-00062 0-886 33-25 294-6 0-00063 0-884 34-10 301-4 0-00064 0-882 34-95 308-3 0-00065 NH 3 is much less sol. in KOH, or NaOH + Aq than in H 2 0. Solubility of NH 3 in H 2 0, and KOH + Aq of various strengths : 100 pts. solvent absorb g. NH 3 at t. t H 2 KOH+Aq 11-25% K 2 O KOH+Aq 25-25% K 2 O 8 16 24 . 90-00 72-75 59-75 49-50 72-00 57-00 46-00 37-25 49-50 37 -50 28-50 21-75 (Raoult, A. ch. (5) 1. 262.) 100 pts. sat. KOH + Aq dissolve only 1 pt. NH 3 . Solubility in NaOH + Aq is the same as in KOH + Aq of the same strength. NH 4 Cl + Aq absorbs slightly less NH 3 than the same vol. H 2 0. NaN0 3 , and NH 4 N0 3 + Aq absorb almost the same amount NH 3 as the same vol. H 2 0. (Raoult, I.e.) Solubility of NH 3 in 100 pts. Ca(N0 3 ) 2 + Aq. t H 2 Ca(N0 3 ) 2 +Aq 28-38% CaCNO^ Ca(N0 3 ) 2 +Aq 59-03% Ca(NO 3 ) 2 8 16 90-00 72-75 5975 96-25 78-50 65-00 104-50 84-75 70-50 (Raoult, I.e.) Sol. in alcohol and ether. Much less sol. in ethyl, propyl alcohol than in H 2 0. (Pagliano Gazz. ch. it. 13. 278.) Sol. in 3 pts. alcohol of 38 (Boullay.) 1 vol. alcohol of 0-829 sp. gr. absorbs about 50 vols. NH 3 . (Davy.) or amyl (Pagliano and Emo, Solubility of NH 3 in alcohol at t : weight NH 3 = weight NH 3 contained in a litre of solution sat. at 760 mm. and t ; sp. gr. =sp. gr. of solution ; C = coefficient of solubility. Temp. Degree of Alcohol 100 90 80" 70 60 50 Weight NH 3 . 8p.gr. . . . 130-5 0-782 209-5 146-0 0783 245*0 206-5 0-808 390'0 246-0 0-830 504-5 304-5 0-835 697 '7 10 Weight NH 3 . gp.gr. ... 108-5 0-787 164'3 120-0 0-803 186 "0 167-0 0-800 288-0 198-25 0-831 373*0 227-0 0-850 438'6 20 Weight NH 3 . s c p -. gr : : : : 75-0 0791 106-6 97'5 0788 147-8 11975 0-821 190-5 137-5 0-829 223-0 152-5 0-842 260-8 182-7 0-869 338-2 30 Weight NH 3 . S P .g, . . . 51-5 0798 97 "0 74-0 0-791 186 "7 81-75 0-826 121 '6 100-3 129-5 0-846 211*6 152-0 0-883 252 "0 (Delepine, J. Pharni. (5) 25. 496.) 1 1. methyl alcohol sat. with NH 3 contains 218 g. NH 3 at 0; sp. gr. of solution = 770 coefficient of solubility = 425 '0. (Delepine.) AMMONIUM BISMUTH BROMIDE 13 Solubility of NH 3 in ethyl alcohol (absolute) att. t %NH 3 Pts. NH 3 per 100 pt-s. alcohol 197 24-5 6 17-1 20-6 117 14-1 16-4 147 13'2 15-2 17 12-6 147 22 10'9 12'2 28'4 9'2 10-1 (de Bruyn, R. t. c. 11. 112.) Solubility of NH 3 in methyl alcohol (absolute) at t. f %NH 3 Pts. NH 3 per 100 pts. alcohol 29-3 41-5 6 26-0 35-2 117 23-5 307 147 21-8 27-9 17 20-8 26-3 22 18-3 22-4 28-4 14-8 17-4 at NH (de Bruyn, Lc.) Readily sol. in ether. Sol. in 0'4 vol. petroleum from Amiano. (Saussure. ) 1 vol. oil of turpentine absorbs 7 "5 vols. NH 3 at 16. 1 vol. oil of lemon absorbs 8 "5 vols. N 16. 1 vol. oil of rosemary absorbs 9 "75 vols. at 29. 1 vol. oil of lavender absorbs 47 vols. at 20. (Saussure.) 1 vol. caoutchine absorbs 3 vols. (Himly.) Valerol absorbs much NH 3 . (Gerhardt, A. ch. (3) 7. 278.) Ammonia, with metal salts. For the ammonia addition-products of metal salts, see under the respective metal salts, except in the case of Co, Or, Hg, and the Pt metals, for which see cobalt ammonium, chromium ammonium, etc. compounds, for further reference. Ammonium amalgam, NH 4 , xHg. Decomp. by H 2 0, but more easily in presence of naphtha, alcohol, or ether. Ammonium azoimide, N 4 H 4 = NH 4 N 3 . Easily sol. in H 2 ; si. sol. in absolute alcohol, easily in 80 % alcohol. Insol. in ether or benzene. (Curtius, B. 24. 3344.) Ammonium bromide, NH 4 Br. Easily sol. in H 2 with absorption of much heat. 1 pt. NH 4 Br dissolves in pts. H 2 at t. t Pts. H 2 O t Pts. H 2 O f Pts. H 2 O 10 1-51 30 1-23 100 078 16 1-39 50 1-06 (Eder, W. A. B. 82. (2) 1284.) Sp. gr. of NH 4 Br + Aq at 15. % NH 4 Br Sp. gr. % NH 4 Br Sp. gr. 5 1-0326 20 1-1285 10 1-0652 30 1-1921 15 1-0960 41-09 1-2920 (Eder.) Sp. gr. of NH 4 Br + Aq at 16 % NH 4 Br Sp. gr. % NH 4 Br Sp. gr. 2 1-0119 22 1-1375 3 1-0181 23 1-1440 4 1-0242 24 1-1506 5 1-0303 25 1-1573 6 1-0364 26 1-1642 7 1-0425 27 1-1713 8 1-0486 28 1-1787 9 1-0547 29 1-1862 10 1-0609 30 1-1938 11 1-0672 31 1-2018 12 1-0735 32 1-2098 13 1-0798 33 1-2180 14 1-0862 34 1-2260 15 1-0926 35 1-2342 16 1-0988 36 1-2425 17 1-1051 37 1-2509 18 1-1115 38 1-2594 19 1-1181 39 1-2679 20 1-1246 40 1-2765 21 1-1310 41 1-2850 (Hager, Comm. 1883.) NH 4 Br + Aq containing 41 '09 % NH 4 Br is sat. at 15. (Gerlach.) 25 g. NH 4 Br + 50 g. H 2 lower the temp, from 15 -I 9 to - 1 '1. (Riidorff. ) SI. sol. in alcohol. 1 pt. NH 4 Br dissolves in 32 '3 pts. alcohol (0-806 sp. gr.) at 15 ; 9 '5 pts. at 78. (Eder, Lc.) Sol. in 809 pts. ether (0729 sp. gr.). (Eder, Lc.) 100 pts. absolute methyl alcohol dissolve 12'5 pts. at 19 ; 100 pts. absolute ethyl alcohol dissolve 3 '22 pts. at 19. (de Bruyn, Z. phys. Ch. 10. 783.) Ammonium ^bromide, NH 4 Br 3 . Gives off Br in air. Sol. in H 2 0. (Rooze- boom, B. 14. 2398.) Ammonium bismuth bromide, NH 4 Br, BiBr 3 + H 2 0. Deliquescent. Decomp. by H 2 0. Sol. in alcohol. (Nickles, C. R. 51. 1097.) 14 AMMONIUM CADMIUM BROMIDE Ammonium cadmium bromide, NH 4 Br,CdBr 2 Sol. in 073 pt. H 2 0, 5 '3 pts. abs. alcohol, 280 pts. ether (sp. gr. 0729), and 24 pts. alcohol ether (1 : 1). (Eder, Dingl. 221. 89.) 4NH 4 Br, CdBr 2 . Sol. in 0'96 pt. H 2 0, from which it is pptd. by alcohol or ether. (Eder.) Ammonium chloromolybdenum bromide, 2NH 4 Br, Cl 4 Mo 3 Br 2 . Decomp. by pure H 2 0. Can be crystallised from HBr + Aq. Apparently sol. without decomp. in alcohol. (Blomstrand.) Ammonium cupric bromide, 2NH 4 Br, CuBr 2 + 2H 2 0. Very sol. in H 2 0. (de Koninck, B. 21. 777 E.) Ammonium ferric bromide (?). Sol. inH 2 0. (Lowig.) Ammonium lead bromide, 12NH 4 Br, 7PbBr 2 + 7H 2 0. Decomp. on air, or with cold H 2 0. (Andre, C. R. 96. 1502.) 6NH 4 Br, PbBr 2 + H 2 0. Decomp. by cold H 2 0. (A.) 7NH 4 Br, PbBr 2 + l|H 2 0. Stable on air; decomp. by cold H 2 0. (A. ) None of the above compounds exist. (Wells, Sill. Am. J. 146. 25.) 2NH 4 Br, PbBr 2 + H 2 0. (Wells. ) NH 4 Br, 3PbBr 2 . (Wells.) Ammonium magnesium bromide, NH 4 Br, MgBr 2 + 6H 2 0. Deliquescent. Sol. in H 2 0. (Lerch, J. pr. (2) 28. 338.) Ammonium mercury bromide (?). Sol. inNH 4 Br + Aq. (Lowig.) Ammonium molybdenum bromide chloride. See Ammonium chloromolybdenum bromide. Ammonium selenium bromide. See Bromoselenate, ammonium. Ammonium thallic bromide, NH 4 Br, TlBr 3 + 2H 2 0. Sol. in H 2 0. (Willm.) + 4H 2 0. Efflorescent. Sol.inH 2 0. (Nickles.) + 5H 2 0. Sol. inH 2 0. (Nickles.) Ammonium stannous bromide (ammonium bromostannite), NH 4 Br, SnBr 2 + H 2 0. Sol. in H 2 0. (Benas, C. C. 1884. 958.) 2NH 4 Br, SnBr 2 . Sol. in H 2 0. (Raymann and Preis, A. 223. 323.) + H 2 0. Sol. in H 2 O. (Benas, I.e.) + 2H 2 0. (Richardson, Am. Ch. J. 14. 96.) NH 4 Br, 2SnBr 2 (?). (Benas.) Ammonium stannic bromide, 2NH 4 Br, SnBr 4 . See Bromostannate, ammonium. Ammonium uranyl bromide, 2NH 4 Br,U0 2 Br 2 + 2H 2 0. Very deliquescent, and sol. in H 2 0. (Sendtner. ) Ammonium zinc bromide, 2NH 4 Br, ZnBr 2 . Deliquescent, and sol. in H 2 0. (Bodeker, J. B. 1860. 17.) + H 2 0. Very deliquescent, and sol. in H 2 0. (Andre, A. ch. (6) 3. 104.) Ammonium bromide arsenic ^'oxide. See Arsenite bromide, ammonium. Ammonium chloride, NH 4 C1. (Sal-ammoniac}. Not deliquescent. Sol. in H 2 with reduction of temp. Sol. in 2-24 pts. HoO. (Wenzel.) NH 4 Cl+Aq sat. at 10 has sp. gr. =1-072. (T.) Sol. in 2-72 pts. cold, and 1 pt. boiling H 2 O. (M. R., and P.) Sol. in 3 pts. H 2 O at 18-75. (Abl.) Sol. in 6 pts. cold, and 1 pt. boiling HsO. (Fourcroy.) 100 pts. H 2 O at 18-75 dissolve 3675 pts. NH 4 C1. NH 4 Cl+Aq sat. at its b.-pt. (114-2) contains 88 '9 pts. NH 4 C1 in 100 pts. of the solution. (Berzelius.) 100 pts. HoO at 15 dissolve 33-36 pts. ; and at 100, 100 pts. NH 4 C1. (Ure's Diet.) NH 4 Cl+Aq sat. at 15 has sp. gr. = 1-075209, and con- tains at least 31'88 pts. NH 4 C1 dissolved in every 100 pts. H 2 O. (Michel and Krafft, A. ch. (3) 41. 478.) NH 4 Cl+Aq sat. at 10 contains 23'8% NH 4 C1. (Eller.) NH 4 Cl+Aq sat. in the cold contains 14-3% NH 4 C1. (Fourcroy.) Sol. in 1 pt. H 2 O at 113-5, b.-pt. of sat. solution. (Griffiths.) Sol. in 2-7 pts. H 2 O at 18-75, forming a liquid of 1'08 sp. gr. (Karsten, 1840.) Sol. in 2-727 pts. H 2 O at 10. (Gren's Handbuch.) 100 pts. H 2 O at 718 mm. pressure and t dissolve pts. NH 4 C1. t Pts. NH 4 C1 t Pts. NH 4 C1 t Pts. NH 4 C1 t Pts. NH 4 C1 28-40 30 41-72 60 55-04 90 68-36 10 32-84 40 46-16 70 59-48 100 72-80 20 37-28 50 50-60 80 63-92 110 77-24 (Alluard, C.R. 59. 500.) Solubility in 100 pts. H 2 at t. t it t PMW V 4 flnW t if ft ft ft ft 297 30 41-4 60 55-2 90 71-3 1 30'0 31 41-8 61 557 91 71-9 2 30-3 32 42-2 62 56-2 92 72-5 3 30-6 33 427 63 567 93 73-1 4 31-0 34 43-1 64 57-2 94 737 5 31-4 35 43-6 65 577 95 74-3 6 31-8 36 44-0 66 58-2 96 74-9 7 32-2 37 44-4 67 587 97 75-5 8 32-6 38 44-9 68 59-2 98 76-1 9 33-0 39 45'3 69 597 99 767 10 33-3 40 45-8 70 60-2 100 77-3 11 337 41 46'2 71 607 101 78-0 12 34-1 42 467 72 61-2 102 78'6 13 34'5 43 471 73 617 103 79-2 14 34-8 44 47'6 74 62-3 104 79-9 15 35-2 45 48-0 75 62-8 105 80-5 16 35'6 46 48-5 76 63-4 106 81-2 17 36-0 47 49-0 77 63'9 107 81-8 18 36-4 48 49-5 78 64-5 108 82-5 19 36'8 49 49-9 79 65-1 109 83-1 20 37-2 50 50-4 80 65'6 110 83-8 21 37 '6 51 50-9 81 66-2 111 84-4 22 38-0 52 51-3 82 667 112 85-1 23 38-4 53 51-8 83 67'3 113 857 24 38-8 54 52-3 84 67-8 114 86-4 25 39-3 55 52-8 85 68-4 115 87-1 26 397 56 53-2 86 69-0 115-65 87-3 27 40-1 57 537 87 69-6 28 40'5 58 54'2 88 70-2 29 40-9 59 547 89 707 ... (Mulder, calculated from his own and other observations. Scheik. Verhandel. 1864. 57.) AMMONIUM CHLORIDE 15 Solubility in 100 pts. H 2 at t. t Pts. NH 4 C1 t Pts. NH 4 C1 t Pts. NH 4 C1 297 10-8 33-9 64-9 57'9 6-2 32-2 31'6 42-2 90-6 67-2 (Lindstrom, Pogg. 136. 315.) NH 4 Cl + Aq sat. at 13-16 contains 26'16 % NH 4 C1. (v. Hauer, J. pr. 103. 114.) Sol. in 272 pts. H,0 at 19. (Schiff, A. 109. 326.) Sol. in 2-803 pts. H 2 at 15. (Gerlach.) Spec, gravity of NH 4 C1 + Aq. G = according to Gerlach at 15 (Z. anal. 8. 281) ; S = accord- ing to Schiff at 19 (A. 110. 74). w K ^ Sp. gr. 6 H % ^? Sp. gr. G S G S 1 1-00316 1-0029 17 1-05086 1-0495 2 1-00632 1-0058 18 1-05367 1-0523 3 1-00948 1-0087 19 1-05648 1-0551 4 1-01264 1-0116 20 1-05929 1-0579 5 1-01580 1-0145 21 1-06204 1-0606 6 1-01880 1-0174 22 1-06479 1-0633 7 1-02180 1-0203 23 1-06754 1-0660 8 1-02481 1-0233 24 1-07029 1-0687 9 1-02781 1-0263 25 1-07304 1-0714 10 1-03081 1-0293 26 1-07375 1-0741 11 1-03370 1-0322 26-297 1-07658 ... 12 1-03658 1-0351 27 1-0768 13 1-03947 1-0380 28 1-0794 14 1-04325 1-0409 29 1-0820 15 1-04524 1-0438 30 1-0846 16 1-04805 1-0467 For older determinations, see Storer's Diet. Sp. gr. of NH 4 Cl + Aq at 18. %NH 4 C1 Sp.gr % NH 4 C1 Sp.gr. 5 10 15 1-0142 1-0289 1-0430 20 25 1-0571 1-0710 (Kohlrausch, "W. Ann. 1879. 1.) B.-pt. of NH 4 Cl + Aq, containing pts. NH 4 C1 to 100 pts. H 2 0. G = according to Gerlach (Z. anal. 26. 439) ; L = according to Legrand (A. ch. (2) 59. 436). B.-pt. G L B.-pt. G L 101 6'5 7-8 109 50-6 53-5 102 12-8 13-9 110 56-2 59-9 103 19-0 197 111 61-9 66-4 104 24-7 25-2 112 67-8 73-3 105 29-7 30-5 113 74-2 80-5 106 34-6 35-7 114 81-3 88-1 107 39-6 41-3 114-2 88-9 108 45-0 47-3 114-8 87-1 Sat. NH 4 Cl + Aq boils at 115 '8 at 718 mm. pressure. (Alluard, C. R. 59. 500.) NH 4 Cl + Aq containing 74 '2 pts. NH 4 C1 to 100 pts. H 2 O forms a crust at 113 ; highest temperature observed, 114 '8. (Gerlach, Z. anal. 26. 426.) NH 4 Cl + Aq containing 10 % NH 4 C1 boils at 1017; 20 % NH 4 C1, at 104 '4. (Gerlach.) NH 4 Cl + Aq containing 10 '6 % NH 4 C1 gives off NH 3 at 37. (Leeds, Am. J. Sci. (3) 7. 197.) When NH 4 Cl + Aq is boiled, or even evap. on water bath, a little NH 3 is expelled. (Fresenius.) 30 pts. NH 4 C1 mixed with 100 pts. H 2 lower the temp, from 13 "3 to - 5 '1, that is 18-4. (Riidorff, B. 2. 68.) Freezing-point of sat. solution is -15 '4, the same temp, which is caused by mixing 25 pts. NH 4 C1 with 100 pts. snow. (Riidorff, Pogg. 122. 337.) Cone. HCl + Aq precipitates part of NH 4 C1 from sat. NH 4 Cl + Aq. (Vogel, J. pr. 2. 199.) Solubility of NH 4 C1 in HC1 + Aq at 0. NH 4 C1 = mols. NH 4 C1 (in milligrammes) dissolved in 10 ccm. of the liquid; HCl = mols.HCl (in milligrammes) dissolved in 10 ccm. of the liquid. NH 4 C1 HC1 Sum of mols. Sp. gr. 46-125 o-o 46-125 1-076 43-6 2-9 46-5 1-0695 41-0 5*5 46-5 1-0705 39-15 7*85 47-0 1-0715 36-45 10*85 47-30 1-073 27-37' 21-4 48-77 1-078 10-875 53-0 63-875 1-106 8-8 61'0 69-8 1-114 (Engel, Bull. Soc. (2) 45. 655.) 100 pts. H 2 dissolve 33 '8 pts. NH 4 C1 + 11'6 pts. BaCl 2 at 20. (Riidorff, Pogg. 148. 467.) 100 pts. H 2 dissolve 29 '1 pts. NH 4 C1 + 173-8 pts. NH 4 N0 3 at 19 '5. (Riidorff, B. 6. 482.) NH 4 Cl + Ba(N0 3 ) 2 . 100 pts. H 2 dissolve at 18-5 1 2 3 4 5 NH 4 C1 Ba(N0 3 ) 2 r>/ ,H oo 7 38-6 8-6 38-06 1673 39-18 17-02 8 : 9 2, sat. Ba(N0 3 ) 2 + Aq treated with NH 4 C1 ; 3, sat. NH 4 Cl + Aq treated with Ba(N0 3 ) 2 ; 4, simultaneous treatment of both salts with H 2 0. (Karsten.) NH 4 C1 + KN0 3 . 100 pts. H 2 dissolve at ' i 2 3 4 5 6 KN0 3 NH 4 C1 29-9 30-56 44-33 37-68 37-98 38-62 39-84 36-7 34-2 38-8 74-89 75-66 78-46 73-0 16 AMMONIUM CHLORIDE 1 and 5, according to Mulder ; 2, sat. KN0 3 + Aq treated with NH 4 C1 ; 3, sat. NH 4 C1 + Aq treated with KN0 3 ; 4, simultaneous treat- ment of NH 4 C1 and KN0 3 (Karsten) ; 6, by warming solution with excess of both salts, and cooling to 14 -8. The amount of excess of one or the other salt has no influence. (Rudorff.) Slowly sol. in sat. NaN0 3 + Aq, at first to a clear solution, but afterwards NaCl separates out. (Karsten.) NH 4 C1 + KC1. 100 pts. H 2 dissolve KC1 . . . NH 4 C1 . . (Rudorff) 15 (Karsten) 18-75 16-97 28-90 34-4 16-27 29-83 37-02 KC1 . NH 4 C1 . . (Rudorff) 22 (Mulder) At b.-pt. 19-1 30-4 58-5 21-9 677 87-3 100 pts. sat. solution of NH 4 C1 + KC1 contain 30-61 pts. of the two salts at 13-16. (v. Hauer, J. pr. 103. 114.) NH 4 Cl + NaCl. 100 pts. H 2 dissolve 1-179. p. of sat. solution of NH 4 Cl + NaCl is (Karsten.) 100 pts. H 2 dissolve 26 '8 pts. NH 4 Cl + 46'5 pts. (NH 4 ) 2 S0 4 at 21-5. (Rudorff, B. 6. 484.) Sol. in sat. CuS0 4 + Aq, at first to a clear solution, but a double sulphate of NH 4 and Cu soon separates. (Karsten.) Slowly and difficultly sol. in sat. MgS0 4 + Aq with subsequent separation of double sulphate. (Karsten.) NH 4 C1 + K 2 S0 4 . 100 pts. H 2 dissolve, at 1875 K 2 S0 4 . NH 4 C1 . 10-8 0, b c 367 11-1 38-2 13-26 37-94 13-28 37-92 49-3 51-20 51-20 In (b) K 2 S0 4 was added to sat. NH 4 Cl + Aq. In (c) NH 4 C1 and K 2 S0 4 were treated together with H 2 0. (Karsten.) 100 pts. H 2 at 14 dissolve 14 '1 pts. K 2 S0 4 + 36'8 pts. NH 4 Cl=50-9 pts. K 2 S0 4 + NH 4 C1, under all conditions. (Riidorff, Pogg. 148. 565.) 100 -pts. H 2 at b.-pt. dissolve K 2 S0 4 . NH 4 C1 . . 2675 33-3- 33-9 90'4-Hl -8 87-3 1237-1457 (Mulder.) NH 4 Cl + Na 2 S0 4 . 100 pts. H 2 dissolve 28 '9 pts. NH 4 C1 + 24-7 pts. Na 2 S0 4 , if NH 4 Cl + Aq sat. at 10 is sat. with Na 2 S0 4 at 11. 100 pts. H 2 dissolve 31 '8 pts. NH 4 C1 + 9-0 pts. Na 2 S0 4 , if Na,,S0 4 + Aq sat. at 10 is sat. with NH 4 C1 at 11. "(Mulder, J. B. 1866. 68.) Sol. in sat. Na,,S0 4 + Aq. (Karsten.) Sol. in sat. ZnS0 4 + Aq. (Karsten. ) Solubility in NH 4 OH + Aq. NH 4 Cl=mols. NH 4 C1 (in mgs.) in 10 ccm. solution; NH 3 =mols. NH 3 (in mgs.) in 10 ccm. solu- tion. NH 4 C1 . NaCl . (Mulder) 10-20 10 10 (v. Hauer) 13-16 35-8 19-50 30-00 33-3 18-8-20-3 24-6-26-1 49-50 43-4-46-4 NH 4 C1 NaCl . (Karsten) 18-75 (Riidorff) 18-7 (Mulder) At b.-pt. 22-06 g 26-38 S7-02 22-9 23-9 87-3 78-5 ... 22-3 40-4 48-44 46-8 100-8 NH 4 C1 NH 3 Sp. gr. 46-125 1-076 45-8 5-37 1-067 45-5 12-025 1-054 45-125 23-4 1-044 44-5 38-0 1-031 44-0 47 1-025 43-625 54-5 1-017 43-125 80-0 0-993 44-0 90-0 0-992 44-375 95-5 0-983 4975 130 0-953 60-0 16975 0-931 In (a) NH 4 C1 was added to sat. K 2 S0 4 + Aq. (Engel, Bull. Soc. (3) 6. 17.) Very si. sol. in absolute alcohol. 100 pts. alcohol of 0*939 sp. gr. dissolve at 4 8 27 38 56 11-2 12-6 19-4 23-6 30 '1 pts. NH 4 C1. (Gerardin, A. ch. (4)5. 129.) 14 pts. boiling highest rectified spirit dissolve 1 pt. NH 4 C1. (Wenzel.) 100 pts. alcohol of 0-900 sp. gr. dissolve 6-5 pts. NH 4 C1. 0-872 ,, 4-75 0-834 1-5 (Kirwan.) Though somewhat sol. in pure absolute alcohol, NH 4 C1 is absolutely insol. in alcohol in presence of methyl amine chlorides. (Winkles, A. 93. 324.) 100 pts. absolute methyl alcohol dissolve 3 "35 pts. at 19. 100 pts. absolute ethyl alcohol dissolve 0'62 pt. at 19. (de Bruyn, Z. phys. Ch. 10. 783.) Insol. in ether and CS 2 . (Fordos and Gelis, A. ch. (3) 32. 393.) AMMONIUM MERCURIC CHLORIDE 17 Very si. sol. in acetone. (Krug and M'Elroy, J. anal. appl. Ch. 6. 184.) Ammonium antimonous chloride, NH 4 C1, SbCl 3 . Deliquescent. (Deherain, C. R. 52. 734.) 2NH 4 C1, SbCl 3 + 2H 2 0. Permanent in dry air ; decomp. by much H 2 0. (Poggiale.) 3NH 4 C1, SbCl 3 + 3H 2 0. As above. Ammonium antimonic chloride, 3NH 4 Cl,SbCl 5 . Decomp. by H 2 0. (Deherain, C. R. 52. 734.) 4NH 4 C1, SbCl 5 . Decomp. by H 2 0. (D.) Ammonium arsenyl chloride, 2NH 4 C1, AsOCl + (Wallace, Phil. Mag. (4) 16. 358.) Ammonium bismuth chloride, NH 4 C1, 2BiCl 3 . Deliquescent. (Deherain, C. R. 54. 724.) 2NH 4 C1, BiCl 3 . Decomp. by H 2 0. (Arppe, Pogg. 64. 237.) + 2JH 2 0. (Rammelsberg.) 3NH 4 C1, BiCl 3 . Decomp. by H 2 0. (Arppe.) 5NH 4 C1, 2BiCl 3 . (Rammelsberg.) Ammonium bismuth potassium chloride, 2NH 4 C1, BiCl 3 , KC1. (Deherain, C. R. 54. 724.) Ammonium cadmium chloride, 2NH 4 C1, 2CdCl 2 + H 2 0. SI. sol. in H 2 0, alcohol, and wood spirit, (v. Hauer, W. A. B. 13. 449.) 4NH 4 C1, CdCl 2 . Sol. in H 2 0. (v. Hauer.) Ammonium chloromolybdenum chloride, 2NH 4 C1, Cl 4 Mo 3 Cl 2 + 2H 2 0. Decomp. by pure H 2 ; can be crystallised from HCl + Aq. (Blomstrand.) Ammonium chromium chloride, 2NH 4 C1, CrCL + H 2 0. Sol. in H 2 with decomp. (Neumann, A. 244. 229.) Ammonium cobaltous chloride, NH 4 C1, CoCL + 6H 2 0. Deliquescent in moist air. Very easily sol. inH 2 0. (Hautz, A. 66. 284.) Ammonium cobaltous chloride ammonia, NH 4 C1, CoCLj, NH 3 . (F. Rose.) Ammonium cuprous chloride, 4NH 4 C1, 3Cu 2 Cl 2 . Decomp. by H 2 0, not by alcohol. (Ritt- hausen, J. pr. 59. 369.) Ammonium cupric chloride, NH 4 C1, CuCL + 2H 2 0. Sol. in 2 pts. H 2 0. (Hautz, A. 66. 280.) 2NH 4 C1, CuCl 2 + 2H 2 0. Easily sol. in H 2 0, also in alcohol, even when absolute. (Cap and Henry, J. pr. 13. 184.) Ammonium cupric chloride ammonia, 2NH 4 C1, CuCl 2 , 2NH 3 . Decomp. by H 2 0, less easily by alcohol. Decomp. by acids. (Ritthausen. ) Ammonium indium chloride, 2NH 4 C1, InCL + H 2 0. Easily sol. in H 2 0. (Meyer.) Ammonium iodine chloride, NH 4 C1, IC1 3 . More sol. in H 2 than KC1, IC1 3 . (Filhol, J. Pharm. 25. 441 ; Berz. J. B. 20. (2) 110.) Ammonium iridium chloride. See Chloriridate, ammonium. Ammonium ferrous chloride, NH 4 C1, FeCl 2 . Easily sol. in H 2 ; insol. in alcohol. (Winkler.) Ammonium ferric chloride, 2NH 4 C1, FeCL + H 2 0. Deliquescent. Sol. in H 2 without decomp. (Fritzsche) ; sol. in 3 pts. H 2 at 18 75. (Abl. ) Ammonium ferric potassium chloride, NH 4 C1, FeCl 3 , KC1 + HH 2 0. Min. Kremersite. Deliquescent. lead chloride, NH 4 C1, 2PbCl 2 + (Andre, Ammonium 3H 2 0. Sol. in H 2 without decomp. (?). C. R. 96. 1502.) 6NH 4 C1, PbCl 2 + H 2 0. 9NH 4 C1, PbCl 2 + HH 2 0. 9NH 4 C1, 2PbCl 2 +2iH 2 0. 10NH 4 C1, PbCl 2 + H 2 0. 11NH 4 C], 2Pb 18NH 4 C1, PbCl 2 + 4H 2 0. All these salts are decomp. by H 0. (Andre, A. ch. (6) 3. 104.) Of the salts prepared by Andre, only one exists, NH 4 C1, 2PbCLj. (Wells, Sill. Am. J. 146. 25.) NH 4 C1, PbCl 2 + JH 2 0. (Wells, I.e.) Ammonium lead trichloride. See Chloroplumbate, ammonium. Ammonium magnesium chloride, NH 4 MgCl 3 + 6H 2 = NH 4 C1, MgCl 2 + 6H 2 0. Deliquescent. Very sol. in H 2 0. Sol. in 6 pts. cold H 2 0. (Fourcroy.) 4NH 4 C1, 5MgCl 2 + 33H 2 0. Sol. in H 0. (Berthelot and Andre, A. ch. (6) 11. 294.) Ammonium manganous chloride, NH 4 C1, Sol. in 1 pts. H 2 at ordinary temp. (Hautz, A. 66. 280) ; does not exist. (Saunders, Am. Ch. J. 14. 134.) 2NH 4 C1, MnCl2 + H 2 0. Sol. in H 2 (Ram- melsberg) ; does not exist. (Saunders.) + 2H 2 0. Easily sol. in H 2 0, but with decomp. into NH 4 C1 and MnCl 2 . (Saunders.) Ammonium mercuric chloride, 2NH 4 C1, HgCl 2 + H 2 (sal alembroth). Sol. in 0*66 pt. H 2 at 10, and in nearly every proportion of hot H 2 0. NH 4 C1, HgCl 2 . Easily sol. in H 2 0. , + |H 2 0. Easily sol. in H 2 0. (Kane.) 2NH 4 C1, 3HgCl 2 + 4H 2 0. Easily sol. in H 2 0. (Holmes, C. N. 5. 351.) 2NH 4 C1, 9HgCl 2 . Sol. in H 2 0. (Holmes.) 18 AMMONIUM MERCURIC SODIUM CHLORIDE Ammonium mercuric sodium chloride, NH 4 C1, HgCl 2 , 4NaCl (?). Sol. in H 2 0. (Kossmann, A. ch. (3) 27. 243.) Ammonium molybdenum chloride. See Ammonium chloromolybdenum chloride. Ammonium molybdenum chloride iodide. See Ammonium chloromolybdenum iodide. Ammonium nickel chloride, NH 4 C1, NiCl 2 + 6H 2 0. Deliquescent in moist air. Easily sol. in H 2 0. (Haute.) 4NH 4 C1, NiCl 2 + 7H 2 0(?). Ammonium osmium trichloride. See Chlorosmate, ammonium. Ammonium osmium sesgmchloride. See Chlorosmite, ammonium. Ammonium palladium chlorides. See Chloropalladate, ammonium and chloro- palladite, ammonium. Ammonium rhodium cfo'chloride, 4NH 4 C1, Sol. in H 2 0, but decomp. slowly. (Willm, B. 16. 3033.) Does not exist. (Leidie, A. ch. (6) 17. 277. ) Ammonium rhodium trichloride. See Chlororhodite, ammonium. Ammonium rhodium chloride ammonium nitrate, Rh 2 Cl 6 , 6NH 4 C1, 2NH 4 N0 3 . See Chlororhodite nitrate, ammonium. Ammonium ruthenium trichloride. See Chlororuthenite, ammonium. Ammonium ruthenium trichloride. See Chlororuthenate, ammonium. Ammonium tellurium chloride. See Chlorotellurate, ammonium. Ammonium thallic chloride, 3NH 4 C1, T1C1 3 . Easily sol. in H 2 0. (Willm.) + 2H 2 0. Easily sol. in H 2 and alcohol. (Nickles, J. Pharm. (4) 1. 28.) Ammonium thorium chloride, 8NH 4 C1, ThCl 4 + 8H 2 0. Sol. in H 2 0. (Chydenius.) Ammonium stannous chloride (ammonium chlorostannite), NH 4 C1, SnCl 2 + H 2 0. Decomp. by H 2 0. Resembles K salt. (Richardson, Am. Ch. J. 14. 93.) 2NH 4 C1, SnCl 2 + H 2 0. Sol. in H 2 0, but decomp. by boiling. (Rammelsberg. ) Contains 2H 2 0. (Richardson.) 4NH 4 C1, SnCl 2 + 3H 2 0. Decomp. by H 2 0. (Poggiale, C. R. 20. 1182.) Does not exist. (Richardson.) Ammonium stannic chloride. See Chlorostannate, ammonium. Ammonium titanium chloride, 3NH 4 C1, TiCl 4 . Sol. in H 2 0. 6NH 4 C1, TiCl 4 . Sol. in H 2 0. (Rose.) Ammonium uranyl chloride. Very deliquescent, and sol. in H 2 0. (Peli- got.) Ammonium zinc chloride, NH 4 C1, ZnCl 2 + 2H 2 0. Deliquescent. Very sol. in H 2 0. (Hautz, A. 66. 287.) 2NH 4 C1, ZnCl 2 . Sol. in H 2 0. (Rammels- berg, Pogg. 94. 507.) + H 2 0. Deliquescent in moist air. Sol. in pt. cold H 2 with absorption of heat. Sol. in 0-28 pt. hot H 2 (Golfier-Bassayre, A. ch. 70. 344) ; sol. in ^ pt. cold H 2 0. (Hautz, A. 66. 287.) 3NH 4 C1, ZnCl 2 . Sol. in H 2 0. (Marignac.) + H 2 0. (Berthelot, A. ch. (6) 11. 294.) 4NH 4 C1, ZnCl 2 . (Deherain.) 6NH 4 C1, ZnCl 2 + H 2 0. (Berthelot, I.e.} Ammonium chloride zinc oxychloride, 2ZnCl 2 , 8NH 4 C1, ZnO. Sol. in a little H 2 0, but decomp. by excess. (Andre. ) 3ZnCl 2 , 10NH 4 C1, ZnO. As above. (Andre, A. ch. (6) 3. 88.) Ammonium chloride antimony fluoride, NH 4 C1, SbF 3 . Easily sol. in H 2 0. (de Haen, B. 21. 901 R.) Ammonium chloride arsenic trioxide. See Arsenite chloride, ammonium. Ammonium chloride bismuth bromide,3NH 4 Cl, BiBr 3 + H 2 0. Deliquescent ; decomp. by H 2 0. (Muir, Chem. Soc. 31. 148.) 2NH 4 C1, BiBr 3 + 3H 2 0. Decomp. by H 2 0. (Muir.) 5NH 4 C1, 2BiBr 3 + H 2 0. Decomp. by H 2 0. (Muir.) Ammonium chloride cuprocupric thiosulphate, 2NH 4 C1, Cu 2 0, CuO, 3S 2 2 . See Thiosulphate ammonium chloride, cuprocupric. Ammonium chloride lead iodide, 3NH 4 C1, PbI 2 . Decomp. with H 2 0. (Behrens, Pogg. 62. 252.) 4NH 4 C1, PbI 2 + 2H 2 0. Decomp. with H 2 0. (Poggiale, C. R. 20. 1180.) Ammonium chloride platinum sulphite. See Chloroplatosulphite, ammonium. Ammonium chloride stannous bromide, 2NH 4 C1, SnBr 2 + H 2 0. Sol. in H 2 0. (Rayrnann and Preis, A. 223, 323.) Ammonium fluoride, NH 4 F. Abundantly sol. in H 2 ; si. sol. in alcohol, (Marignac, Ann. Min. (5) 15. 221.) Ammonium hydrogen fluoride, NH 4 F, HF. Deliquescent in moist air. Sol. in H 2 0. Ammonium antimony fluoride, 2NH 4 F, SbF 3 . Deliquescent; sol. in 0'9 pt. cold H 2 AMMONIUM FLUORIDE VANADIUM OXYFLUORIDE 19 Insol. in alcohol or ether. (Fliickinger, A. 84. 248.) NH 4 F, SbF 5 . Easily sol. in H 2 0. (Marig- nac, A. 145. 239.) Ammonium bismuth fluoride, 2NH 4 F, BiF 3 . Insol. in H 2 0. Rather difficultly sol. in acids. (Helmholt, Z. anorg. 3. 115.) Ammonium cadmium fluoride, NH 4 F, CdF 2 . Insol. in H 2 0. Sol. in acids on boiling. (Helmholt, Z. anorg. 3. 115.) Ammonium chromium fluoride, 3NH 4 F, CrF 3 . Easily sol. in H 2 0. SI. sol. in NH 4 F + Aq. (Petersen, J. pr. (2) 40. 52.) 2NH 4 F, CrF 3 + H 2 0. (Wagner, B. 19. 896.) Ammonium cobaltous fluoride, 2NH 4 F, CoF 2 + 2H 2 0. SI. sol. in H 2 0. (Wagner, B. 19. 896.) Easily sol. in H 2 0. (Helmholt, Z. anorg. 3. 132.) Ammonium columbyl fluoride. See Fluoxycolumbate, ammonium. Ammonium columbium fluoride oxyfluoride, 3NH 4 F, NbF 5 , NbOF 3 . See Fluoxycolumbate columbium fluoride, ammonium. Ammonium copper fluoride, 2NH 4 F, CuF 2 + 2H 2 0. Insol. in H 2 0. (Helmholt, Z. anorg. 3. 115.) Ammonium glucinum fluoride, 2NH 4 F, G1F 2 . Sol. in H 2 0. (Marignac, A. ch. (4) 30. 51.) Very sol. in H 2 0. (Helmholt, Z. anorg. 3. 130.) Ammonium ferrous fluoride, 2NH 4 F, FeF 2 . (Wagner, B. 19. 896.) NH 4 F, FeF 2 + 2H 2 0. (W.) Ammonium ferric fluoride, 2NH 4 F, FeF 3 . More sol. in H 2 than the corresponding K compound. Decomp. by boiling. (Nickles, J. Pharm. (4) 7. 15.) 3NH 4 F, FeF 3 . SI. sol. in H 2 0. (Marignac, A. ch. (3) 60. 306.) Easily sol. in acids. (Helmholt, Z. anorg. 3. 124.) Ammonium manganic fluoride, 2NH 4 F, MnF 4 . More sol. than the K salt. (Nickles, C. R. 65. 107.) True composition is 4NH 4 F, Mn 2 F 6 . (Chris- tensen, J. pr. (2) 34. 41.) See Fluomanganate, ammonium. Ammonium manganyl fluoride. See Fluoxymanganate, ammonium. Ammonium molybdenum fluoride. Insol. in H 2 0. Sol. in HCl + Aq. (Berze- lius.) See Fluomolybdate, ammonium. Ammonium molybdenyl fluoride. See Fluoxymolybdate, ammonium. Ammonium nickel fluoride, 2NH 4 F, NiF 9 + 2H 2 0. Sol. in H 2 0. (Wagner, B. 19. 896.) Easily sol. in H 2 0. (Helmholt, Z. anorg. 3. 143.) Ammonium silicon fluoride. See Fluosilicate, ammonium. Ammonium tantalum fluoride. See Fluotantalate, ammonium. Ammonium tantalyl fluoride. See Fluoxytantalate, ammonium. Ammonium tellurium fluoride, NH 4 F, TeF 4 . Decomp. by H 2 0. (Hogbom, Bull. Soc. (2) 35. 60.) Ammonium stannous fluoride, 2NH 4 F, SnF 2 + 2H 2 0. Sol. in H 2 0. (Wagner, B. 19. 896.) Ammonium stannic fluoride, 2NH 4 F, SnF 4 . See Fluostannate, ammonium. Ammonium titanium sesgm'fluoride. See Fluotitanate, ammonium. Ammonium titanyl fluoride. See Fluoxypertitanate, ammonium. Ammonium tungstyl fluoride. See Fluoxytungstate, ammonium. Ammonium uranyl fluoride. See Fluoxyuranate, ammonium. Ammonium fluoride manganic oxyfluoride, 2NH 4 F, MnOF 2 . Precipitate. (Nickles.) See also Fluoxymanganate, ammonium. Ammonium fluoride molybdenum n'oxide, 2NH 4 F, Mo0 3 . Decomp. by H 2 0. (Mauro, Gazz. ch. it. 18. 120.) Ammonium vanadium sesqui&aori&e. See Fluovanadate, ammonium. Ammonium vanadyl fluoride. See Fluoxyvanadate, ammonium. Ammonium zinc fluoride, 2NH 4 F, ZnF 2 . Sol. inH 2 0. (R.Wagner.) + 2H 2 0. Very si. sol. in H 2 0. Easily sol. in dil. acids. (Helmholt.) Ammonium zirconium fluoride. See Fluozirconate, ammonium. Ammonium fluoride tungsten oxyfluoride. See Fluoxytungstate, ammonium. Ammonium fluoride tungsten oxyfluoride am- monium tungstate, 4NH 4 F, W0 2 F 2 , (NH 4 ) 2 W0 4 . See Fluoxytungstate tungstate, ammonium. Ammonium fluoride vanadium oxyfluoride. See Fluoxyvanadate, and fluoxyhypovana- date, ammonium. 20 AMMONIUM HYDROSELENIDE Ammonium hydroselenide, NH 4 HSe. Sol. in H 2 with decomp. (Bineau, A. ch. (2) 67. 229.) Ammonium hydrosulphide, NH 4 SH. Sol. in H 2 and alcohol. Solutions decomp. on air. Ammonium hydroxide, NH 4 OH. See Ammonia, NH 3 . Ammonium iodide, NH 4 I. Very deliquescent. Sol. in 0'60 pt. H 2 0. (Eder, Dingl. 221. 89.) Sp. gr. of aqueous solution of NH 4 I at 18 containing 10 20 30 40 50%NH 4 I. 1-0652 1-1397 1-2260 1-3260 1-4415 (Kohlrausch, W. Ann. 1879. 1.) Sol. in 4*0 pts. abs. alcohol. (Eder, I.e.) ,, 210 ,, ether. (Eder, I.e.) 20 ,, alcohol-ether (1 : 1). (Eder, I.e.) Ammonium cKiodide, NH 4 I 2 . Sol. in alcohol, ether, CS 2 , and KI + Aq ; less sol. in chloroform. (Guthrie, Chem. Soc. (2) 1. 239.) Ammonium modide, NH 4 I 3 . SI. deliquescent. Sol. in little H 2 0, but decomp. by much H 2 0. (Johnson, Chem. Soc. 33. 397.) Ammonium antimony iodide, NH 4 I, SbL + 2H 2 0. Decomp. by HoO. (Nickles, C. R. 51. 1097.) 3NH 4 I, 4SbI 3 + 9H 2 0. Decomp. by H 2 0, with separation of SbOI. Sol. in HC 2 H 3 2 , HC1, and H 2 C 4 H 4 6 + Aq. Decomp. by CS 2 . (Schaffer, Pogg. 109. 611.)! 3NH 4 I, SbI 3 + 3H 2 0. As above. 4NH 4 I, SbI 3 + 3H 2 0. As above. Ammonium bismuth iodide, NH 4 I, BiI 3 + H 2 0. Deliquescent ; decomp. by H 0. (Nickles, C. R. 51. 1097.) 4NH 4 I, BiI 3 + 3H 2 0. As above. (Linau, Pogg. 111. 240.) 2NH 4 I, BiI 3 + 2JH 2 0. Decomp. by H 2 0, or MCI, MBr, or MI + Aq. (Nickles, J. pr. (2) 39. 116.) Ammonium cadmium iodide, 2NH 4 I, CdI 2 + 2H 2 0. Deliquescent. (Croft.) Sol. at 15 in 0'58 pt. H 2 0, 070 pt. abs. alcohol, 8-9 pts. ether (sp. gr. 0729), and 1*8 pts. alcohol-ether (1:1). (Eder, Dingl. 221. 89.) NH 4 I, CdI 2 + iH 2 0. Sol. at 15 in 0'90 pt. H 2 0, 0-88 pt. "abs. alcohol, and 2 '4 pts. ether (sp. gr. 0729). (Eder, I.e.) Ammonium chloromolybdenum iodide, 2NH 4 I, Cl 4 Mo 3 I 2 + 2H 2 0. Decomp. by H 2 0. Cryst. from HI + Aq. (Blomstrand.) Ammonium cuprous iodide, 2NH 4 I, Cu 2 I 2 + H 2 0. Decomp. on the air, or by H 2 O, or alcohol. (Saglier, C. R. 104. 1440.) Ammonium cupric iodide ammonia, 2NELI, CuI 2 , 2NH 3 + 2H 2 0. Insol. in H 2 or alcohol ; si. sol. in NH 4 OH + Aq. + 6H 2 0. Unstable. (Saglier, C. R. 104. 1440.) 2NH 4 I 2 , CuI 2 , 2NH 3 + 2H 2 0. Decomp. by H 2 ; si. sol. in NH 4 OH + Aq. (Saglier.) Ammonium iridium ^iodide, 2NH 4 I, IrI 2 . Insol. in cold or hot H 2 0, and in alcohol. Sol. in warm dil. acids. (Oppler.) Ammonium iridium sesquiiodi&Q. See lodiridite, ammonium. Ammonium iridium tetraiodide. See lodiridate, ammonium. Ammonium lead iodide, NH 4 I, PbI 2 + 2H 2 0. Decomp. by much H 2 0. (Wells, Sill. Am. J. 146. 25.) Ammonium magnesium iodide, NH 4 I, MgI 2 + 6H 2 0. Very deliquescent. (Lerch, J. pr. (2) 28. 338.) Ammonium mercuric iodide, NH 4 I,HgI 2 + H 2 0. Decomp. into its constituents by H 2 0. (Boullay, A. ch. (2) 34. 345.) Sol. without decomp. in alcohol and ether. Ammonium silver iodide, 2NH 4 I, Agl. Deliquescent. Decomp. by H 2 0. (Poggiale.) Ammonium thallic iodide, NH 4 I, T1I 3 . Sol. in H 2 0. (Nickles, J. Pharm. (4) 1. 32.) Ammonium stannous iodide, NH 4 I, SnI 2 . Decomp. by small amt. H 2 0, but completely sol. in a large amt. (Boullay, A. ch. (2) 34. 376.) + HH 2 0. (Personne.) Ammonium zinc iodide, 2NH 4 I, ZnI 2 . Extremely deliquescent, and sol. in H 2 0. (Rammelsberg, Pogg. 43. 665.) Ammonium iodide arsenic trioxide. See Arsenite iodide, ammonium. Ammonium selenide, (NH 4 ) 2 Se. Sol. in H 2 with decomp. (Bineau, A. ch. (2) 67. 229.) Ammonium hydrogen selenide, NH 4 HSe. Sol. in H 2 0. (Fabre, C. R. 103. 269.) Ammonium sulphide, basic, (NH 4 ) 2 S, 4NH 3 (?). Sol. in H 2 with decomp. (Maumene, C. R. 89. 506.) Ammonium mowosulphide, (NH 4 ) 2 S. Decomp. on air. Sol. in H 2 0, but solution decomposes rapidly. Ammonium cfo'sulphide, (NH 4 ) 2 S 2 . Sol. in H 2 with decomp. ANTIMONATES 21 Ammonium tetrasulphi&e, (NH 4 ) 2 S 4 . Easily sol. in H 2 O. Cone, solution is stable, dil. solution decomp. on air. Easily sol. in alcohol without decomp. , but solution decomp. on the air more rapidly than the aqueous solu- tion. (Fritzsche, J. pr. 32. 313.) Ammonium pentasMlphide, (NH 4 ) 2 S 5 . Decomp. on air. Sol. in H 2 with separa- tion of S. Sol. in alcohol without decomp., but solution decomposes quickly on standing. (Fritzsche, J. pr. 32. 313.) Ammonium heptasulphidQ, (NH 4 ) 2 S 7 . More stable on air, and less easily decom- posed by H 2 than (NH 4 ) 2 S 5 . Ammonium copper sulphide, (NH 4 ) 2 S, 2CuS 3 (?). Sol. in warm H 2 0, but decomp. on standing. "Warm KOH + Aq acts similarly ; si. sol. in NH 4 OH + Aq, Na 2 C0 3 + Aq, or absolute alcohol. Insol. in ether. Decomp. by dil. acids. (Priwoznik, B. 6. 1291.) Ammonium stannic sulphide. See Sulphostannate, ammonium. Ammonium telluride, NH 4 HTe. Easily sol. in H 2 0. (Bineau, A. ch. (2) 67. 229.) Ammonplatinc&amine comps. See Platin^'amine comps. Ammoncfo'sulphonic acid, NH 3 (S0 3 H) 2 . Known only in its salts. (Glaus, A. 158. 52 and 194.) Contains 2 at. H less, and is identical with imidosulphonic acid NH(S0 3 H) 2 , which see. (Raschig, A. 241. 161.) Anunon^'sulphonic acid, NH 2 (S0 3 H) 3 . Known only in its salts. (Glaus, A. 158. 52 and 194.) Contains 2 at. H less, and is nitrilosulphonic acid N(S0 3 H) 3 , which see. (Raschig, A. 241. 161.) Ammon^msulplionic acid, NH(S0 3 H) 4 . Known only in its salts. (Claus, A. 158. 52 and 194.) Does not exist, but was impure nitrilosul- phonic acid, which see. (Raschig, A. 241. 161.) Anhydroarseniotungstic acid, H 3 AsW 8 28 . See under Arseniotungstic acid. Anhydrooxycobaltamine chloride, Easily sol. in H 2 0, but decomposes after a few minutes ; can be recrystallised from dil. HCl + Aq. Precipitated from sat. H 2 solu- tion by cone. HC1 + Aq, or alcohol. ( Vortmann, M. Ch. 6. 404.) Co 2 (NH 3 ) 10 (QH)ci 4 . Sol. in H 2 0. (Vort- mann. ) Anhydrooxycobaltamine chloride mercuric chloride, Co 2 (NH 3 ) 10 (C10 2 H)Cl 4 , 3HgCl 2 . Can be recryst. from very dil. hot HC1 + Aq. chloroplatinate, Co 2 (NH 3 ) 10 (C10 2 H)Cl 4 , 2PtCl 4 . Can be recrystallised from H 2 containing HC1. chloronitrate, Coo(NH 3 ) 10 Cl(0. OH)(N0 3 ) 4 + H 2 0. Can be recrystallised from dil. HCl + Aq. Co 2 (N"H 3 ) 10 Cl(0 . OH)C1 2 (N0 3 ) 2 + H 2 0. More easily sol. in H 2 than the preceding comp. chlorosulphate, Co 2 (NH 3 ) 10 Cl(0 . OH) (S0 4 ) 2 . eWchromate, [Co 2 (NH 3 ) 10 .OH] 2 (Cr 2 7 ) 5 + 8H 2 0. SI. sol. in H 2 0. nitrate, Co 2 (NH 3 ) 10 (N0 3 )(0 . OH)(N0 3 ) 4 + H 2 0. SI. sol. in pure H 2 with immediate decomp. Can be recrystallised from H 2 containing HN0 3 . sulphate, [Co 2 (NH 3 ) 10 . OH] 2 (S0 4 ) 5 , 2H 2 S0 4 +2H 2 0. SI. sol. in cold H 2 0. When crystallised from dil. H 2 S0 4 + Aq, is converted into [Co 2 (NH 3 ) 10 . OH] 2 (S0 4 ) 5 , H 2 S0 4 + 3H 2 0, which by further recrystallisation from very dil. H 2 SO 4 + Aq becomes [Co 2 (NH 3 ) 10 . OH] 2 (S0 4 ) 5 + 8H 2 0. SI. so]. in cold H 2 0. (Vortmann.) Anhydrophospholuteotungstic acid, H 3 PW 8 28 . See under Phosphotungstic acid. Antimonic Acid. HSb0 3 . Very si. sol. in H 2 ; sol. in cone. HCl + Aq; si. sol. in dil. HN0 3 + Aq; easily sol. in tartaric acid + Aq ; easily sol. in hot KOH, or NaOH + Aq ; completely insol. in NH 4 OH + Aq. (Fremy, A. ch. (3) 23. 407.) H 4 Sb 2 7 + 2H 2 0. More sol. in H 2 and acids than H 3 Sb0 4 . Sol. in cold NH 4 OH, or KOH + Aq. (Fremy.) H 3 Sb0 4 . SI. sol. in H 2 0. Insol. in NH 4 OH + Aq. Easily sol. in KOH + Aq. (Fremy.) Does not exist. (Raschig, B. 18. 2745.) Has, however, been prepared by Daubrawa (A. 186. 110), Conrad (C. N. 40. 198), and Beil- stein and Blaese (Bull. Ac. St. Petersb. 33. 97). + iH 2 0. (Beilstein and Blaese. ) According to Beilstein and Blaese only one antimonic acid, H 3 Sb0 4 , exists. Antimonates. a. Antimonates. From HSb0 3 . Some of the K and NH 4 salts are sol. in H 2 0, the others are slightly sol. or insol. j8. Pyroantimonates. From H 4 Sb 2 7 . As a class, insol. in H 2 0, but decomp. thereby ex- cept in presence of large excess of alkali. (Fremy, A. ch. (3) 12. 499.) Probably do not exist. (Beilstein and Blaese. ) 22 ANTIMONATE, ALUMINUM Aluminum antimonate, A1 2 3 , 3Sb 2 5 (?). Ppt. Somewhat sol. in excess of Al salts + Aq. Insol. in K 4 Sb 2 7 + Aq. Al(Sb0 3 ) 3 + 15H 2 = AlH 6 (Sb0 4 ) 3 + 12H 2 0. Ppt. (Beilstein and Blaese, Bull. Ac. St. Petersb. 33. 101.) Al(Sb0 3 ) 3 + 7H 2 = AlH 6 (Sb0 4 ) 3 + 4H 2 0. Ppt. (B. and B.) AlA, Sb 2 5 + 9H 2 0. Ppt. (Ebel, B. 22. 3043.) Ammonium antimonate, NH 4 Sb0 3 + 2H 2 0. Insol. in H 2 0. + 6H 2 0. ^(NH 4 ) 2 H 2 Sb 2 7 + 5H 2 0. Ammonium ^roantimonate, (NH 4 ) 4 Sb 2 7 . Known only in solution. (NH 4 ) 2 H 2 Sb 2 7 + 5H 2 0. Sol. in H 2 0, but decomp. by standing or boiling into insol. salt. Insol. in alcohol (Fremy, J. pr. 45. 215). Composition is NH 4 Sb0 3 + 6H 2 0, according to Raschig (B. 18. 2743). Barium antimonate, Ba(Sb0 3 ) 2 . Ppt. Scarcely sol. in H 2 0. Slowly sol. in BaCl 2 + Aq. + 5, or6H 2 0. Ppt. Bismuth antimonate, BiSb0 4 + H 2 0. Ppt. Insol. in H 2 ; sol. in HC1 + Aq. (Cavazzi, Gazz. ch. it. 15. 37.) 3Bi 2 3 , Sb 2 5 + H 2 0. Insol. in H 2 ; sol. in HCl + Aq. (Cavazzi.) 2Bi 2 3 , Sb 2 5 . As above. (Cavazzi.) Cadmium antimonate, Cd(Sb0 3 ) 2 + 6H 2 0. Ppt. (Ebel, B. 22. 3043.) Calcium antimonate, Ca(Sb0 3 ) 2 . Ppt. + 5H 2 0. Ppt. (Heffter, Pogg. 86. 418.) 3CaO, 2Sb 2 5 + 6H 2 0. Min. Ullmanite. Chromic antimonate, Cr(Sb0 3 ) 3 + 14H 2 0. Ppt. (Beilstein and Blaese.) Cobaltous antimonate, Co(Sb0 3 ) 2 + 7H 2 0. SI. sol. in H 2 0. SI. sol. in boiling solutions of cobalt salts. + 12H 2 0. Ppt. (Heffter, Pogg. 86. 448.) + 6H 2 0. Ppt. (Ebel, B. 22. 3043.) Cupric antimonate, Cu(Sb0 3 ) 2 . Insol. in H 2 0, acids, or alkalies. (Berzelius.) + 5H 2 0. Ppt. (Ebel, B. 22. 3043.) 3CuO, 2Sb 2 5 . Ppt. (Beilstein and Blaese.) Cupric antimonate ammonia, Cu(Sb0 3 ) 2 , 4NH 3 + 4H 2 0. Insol. in H 2 and NH 4 OH + Aq. (Schiff, A. 123. 39.) CuSb 2 N 3 H 21 12 = Cu(ONH 4 )OH, 2(NH 4 Sb0 3 + 2H 2 0). (Raschig, B. 18. 2743.) Glucinum antimonate, Gl(Sb0 3 ) 2 + 6H 2 0. Ppt. (Ebel, B. 22. 3043.) Ferrous antimonate. SI. sol. in H 2 0. (Berzelius.) Ferric antimonate. Insol. in H 2 0. (B.) Ppt. (Ebel, B. 22. Ppt. (Beilstein Fe 2 3 , Sb 2 5 + 7H 2 0. 3043.) Fe 2 3 , 2Sb 2 5 + 11H 2 0. and Blaese.) Fe(Sb0 3 ) 3 + 6|H 2 0. Ppt. (B. and B.) Lead antimonate, basic, Pb 3 (Sb0 3 ) 2 (OH) 4 + 2H 2 = Pb 3 (Sb0 4 ) 2 + 4H 2 0. Min. Bleinerite, Bindheimite. 2Pb(Sb0 3 ) 2 , PbO + llH 2 0. Ppt. (B.andB.) Lead antimonate, Pb(Sb0 3 ) 2 . Insol. in H 2 0. Incompletely decomp. by acids. (Berzelius.) Naples Yellow. Insol. in H 2 0. + 5H 2 0. Ppt. (Ebel, B. 22. 3043.) Pb(Sb0 3 ) 2 + 6H 2 0. Ppt. (Beilstein and Blaese.) Lead antimonate chloride, Pb(Sb0 3 ) 2 , PbCl 2 . Min. Nadorite. Sol. in HC1, HN0 3 , and tartaric acid + Aq. Lithium antimonate, LiSb0 3 . SI. sol. in cold, sol. in hot H 2 0, and crys- tallises on cooling. Much more sol. than NaSb0 3 . + 3H 2 0. Ppt. SI. sol. in H 2 0. (Beilstein and Blaese.) Magnesium antimonate, Mg(Sb0 3 ) 2 + 12H 2 0. Sol. in hot, less sol. in cold H 2 0. (Heffter.) Sol. in MgS0 4 + Aq ; insol. in KSb0 3 + Aq. (Berzelius.) Manganous antimonate, Mn(Sb0 3 ) 2 . Difficultly sol. in H 2 0. When heated, is sol. only in strong acids. + 5H 2 0. Ppt. (Ebel, B. 22. 3043.) + 7H 2 0. Ppt. (Beilstein and Blaese.) Mercurous antimonate. Insol. in H 2 0. (Berzelius.) Mercuric antimonate. Insol. in H 2 0, alkalies, and most acids. SI. attacked by boiling H 2 S0 4 , arid HCl + Aq. Hg(Sb0 3 ) 2 + 6H 2 0. Ppt. (Beilstein and Blaese.) Nickel antimonate, Ni(Sb0 3 ) 2 + 6H 2 0. Ppt. Insol. in H 2 0. (Heffter, Pogg. 86. 446.) + 12H 2 0. SI. sol. in H 2 0. (Heffter.) Potassium antimonate, KSb0 3 . Insol. in H 2 0. Sol. in warm KOH + Aq, but separates nearly completely on cooling. By boiling with H 2 0, or by standing for a long time with cold H 2 0, it gradually dissolves as 2KSb0 3 + 5H 2 0, or K 2 H 2 Sb 2 7 + 4H 2 0, or 2KH 2 Sb0 4 + 3H 2 0. 2KSb0 3 + 3H 2 ( = 2KSb0 3 + 5H 2 of Fremy). Easily sol. in H 2 0, especially if warm. Solution is pptd. by NH 4 C1 + Aq. (Fremy, A. ch. (3) 12. 499.) 2KSb0 3 + 5H 2 0. 100 pts. H 2 at 20 dis- solve 2 '81 pts. anhydrous salt ; sp. gr. of solu- tion sat. at 18= 1*0263. Composition is given as K 2 H 2 Sb 2 7 + 4H 2 0. (Knorre and Olschew- sky, B. 20. 3043.) ANTIMONITE, CALCIUM 23 Potassium ^T/roantimonate, K 4 Sb 2 7 . Deliquescent ; decomp. by boiling with H 2 into KSb0 3 + 5H 2 0, by cold H 2 into K 2 H 2 Sb 2 7 + 6H 2 0. (Fremy. ) Does not exist. (Knorre and Olschewsky.) Potassium hydrogen antimonate, 2K 2 0, 3Sb 2 5 + 7H 2 0. Very difficultly sol. in hot or cold H 2 0. (Knorre and Olschewsky, B. 18. 2358.) 2KH(Sb0 3 ) 2 + 5H 2 0, or 2KH 3 Sb 2 7 + 3H 2 0. Ppt. Potassium hydrogen ^yroantimonate, K 2 H 2 Sb 2 7 -f6H 2 0. Quite difficultly sol. in cold H 2 0. Not pre- cipitated by NH 4 Cl + Aq. Aqueous solution gradually decomposes. (Fremy.) + 4H 2 0. See 2KSb0 3 + 5H 2 0. Potassium antimonate sulphantimonate, KSb0 3 , K 3 SbS 4 + 5H 2 0. Decomp. on air, and with cold H 2 0. Sol. in hot H 2 0. (Rammelsberg. ) Silver antimonate. Insol. in H 2 0. (Berzelius.) AgSb0 3 + 3H 2 = AgH 2 Sb0 4 + 2H 2 0. Easily sol. in NH 4 OH + Aq, when freshly pptd. (Beil- stein and Blaese.) + HH 2 0. Ppt. (Ebel, B. 22. 3043.) Silver antimonate ammonia, AgH 2 Sb0 4 , 2NH 3 + H 2 0. (Beilstein and Blaese.) Sodium antimonate, NaSb0 3 . Sol. in much H 2 0, but soon becomes decomp. into Na 2 H 2 Sb 2 7 . + 3H 2 0, composition of Na 2 H 2 Sb 2 7 + 6H 2 0, according to Beilstein and Blaese. 1000 pts. H 2 dissolve 0*31 pt. NaSb0 3 + 3irH 2 at 12-3. 1000 pts. alcohol of 15 '8 % dissolve 0'13 pt. NaSb0 3 + 3JH 2 at 12 '3. 1000 pts. alcohol of 25 '6 % dissolve 0'07 pt. NaSb0 8 +3JHaO at 12 -3. Somewhat more sol. when freshly precipi- tated. Absolutely insol. in glacial HC 2 H 3 2 . Presence of NaOH or Na salts diminish sol- ubility, while NH 4 OH or K salts increase it slightly. (Beilstein and Blaese, Bull. Ac. St. Petersb. 33. 201.) Sodium >?/roantimonate, Na 2 H 2 Sb 2 7 + 6H 2 0. Boiling H 2 dissolves -^ pt. of this salt. (Fremy.) 1000 pts. H 2 dissolve 2'5 pts. salt. (Ebel, B. 22. 3044.) See also NaSb0 3 + 3H 2 0. + 5H 2 0. (Knorre and Olschewsky.) Strontium antimonate, Sr(Sb0 3 ) 2 + 6H 2 0. Ppt. Less sol. in H 2 than SrS0 4 . (Heffter, Pogg. 86. 418.) Thallous antimonate, TlSb0 3 + 2H 2 = TlH 2 Sb0 4 +H 2 0. Somewhat sol. in H 2 0, when freshly precipi- tated ; insol. when dried. (Beilstein and Blaese.) Stannous antimonate, 2SnO, Sb 2 5 . Ppt. (Lenssen, A. 114. 113.) Sn(Sb0 3 ) 2 + 2H 2 0. Attacked with difficulty by acids or alkalies, most easily by hot cone. H 2 S0 4 . (Schiff, A. 120. 55.) 2SnO, 3Sb 2 5 + 4H 2 0. SnO, 2Sb 2 5 . Stannic antimonate. Insol. in H 2 0. (Levol, A. ch. (3) 1. 504.) Uranium antimonate, 5U0 2 , 3Sb 2 5 + 15H 2 0. Ppt. Sol. in hot cone. HC1 + Aq, and in UC1 3 + Aq. (Rammelsberg.) Zinc antimonate, Zn(Sb0 3 ) 2 . Very slightly sol. in H 2 (Berzelius) ; sol. in solutions of Zn salts. + 5H 2 0. Ppt. (Ebel, B. 22. 3043.) Antimoniomolybdic acid. Ammonium antimoniomolybdate, 5(NH 4 ) 2 0, 4Sb 2 5 , 7Mo0 3 + 12H 2 0. Readily sol. in hot H 2 0. (Gibbs, Am. Ch. J. 7. 392.) Antimoniotungstic acid. Potassium antimoniotungstate, 6K 2 0, 4Sb 2 5 , 12W0 3 + 25H 2 0. SI. sol. in H 2 0. (Gibbs, Am. Ch. J. 7. 392.) Antimoniuretted hydrogen. See Antimony hydride. Antimonosomolybdic acid. Ammonium antimonosomolybdate, 6(NH 4 ) 2 0, 3Sb 2 3 , !7Mo0 3 + 21H 2 0. Insol. in cold H 2 0. (Gibbs, Am. Ch. J. 7. 313.) Antiinoriosophosphotungstic acid. Potassium antimonosophosphotungstate, 12K 2 0, 5Sb 2 3 , 6P 2 5 , 22W0 3 + 48H 2 0. Nearly insol. in cold or warm H 2 0. (Gibbs, Am. Ch. J. 7. 392.) Antimonosotungstic acid. Ammonium antimonosotungstate. Sol. in H 2 0. Barium antimonosotungstate, 4BaO, 6Sb 2 3 , 22W0 3 + 36H 2 0. Precipitate ; very si. sol. in hot H 2 0. (Gibbs, Am. Ch. J. 7. 313.) Antimonous acid, Ppt. (Schaffner, A. 51. 182.) H 3 Sb0 3 . Ppt. (Clarke and Stallo, B. 13. 1793.) Does not exist. (Guntz, C. R. 102. 1472.) H 4 Sb 2 5 . When freshly pptd., is sol. in dil. KOH, and NaOH + Aq. Scarcely sol. in NH 4 OH + Aq, or in (NH 4 ) 2 C0 3 , or KHC0 3 + Aq. Completely sol. "in K 2 C0 3 , and Na 2 C0 3 + Aq, especially if warm. When recently pptd. is si. sol. in succinic acid + Aq. Calcium antimonite, CaSb 2 4 (?). Min. Romeitc. Insol. in acids. 24 ANTIMONITE, COBALTOUS Cobaltous antimonite (?). SI. sol. in H 2 0. (Berzelius.) Cuprous antimonite, Cu 6 (Sb0 3 ) 2 . Insol. in H 2 0. Sol. in acids ; most easily in cone. HC1 + Aq. (Hausmann and Stromeyer, Schw. J. 19. 241.) Cupric antimonite (?). Insol. in H 2 O. (Berzelius.) CuSb 2 O g . Min. Ammiolite. Ferrous antimonite (?). More sol. in H 2 than the antimonate. (Dumas.) Potassium antimonite, K 2 0, 3Sb 2 3 . Easily decomp. by cold H 2 0. Not decomp. by KOH + Aq containing over 20 '9 % K 2 0. (Corimimboeuf, C. R. 115. 1305.) + 3H 2 0. As above. (C.) Sodium antimonite, NaSb0 2 + 3H 2 0. Difficultly sol. in H 2 0. (Terreil, A. ch. (4) 7. 380.) 2Na 2 0, 3Sb 2 3 + H 2 0. Decomp. by H 2 0, but not by NaOH + Aq containing 94 *3 g. NaOH per 1. (Corimimbosuf. ) Na 2 0, 2Sb 2 3 . Decomp. by H 2 but not by NaOH + Aq containing 188 '6 g. NaOH per 1. (C.) Na 2 0, 3Sb 2 3 . Decomp. by H 2 0, but not by NaOH + Aq containing 113*2 g. NaOH per 1. + 2H 2 0=NaH 2 (Sb0 2 ) 3 . (Terreil.) Antimony, Sb. Does not decomp. H 2 0. Not attacked by HCl + Aq (Berzelius) ; slowly sol. in cone. HC1 + Aq (Debray); slowly sol. in cone, warm HC1 + Aq (Troost). Attacked by very cone. HC1 + Aq only when finely divided (Schiitzenberger, Willm) ; very si. attacked by dil. or cone, acid (Guntz). Not attacked by boiling HCl + Aq (Gmelin). By careful experiments, pure Sb is absolutely insol. in dil. or cone., hot or cold HC1 + Aq, except when in contact with oxygen. (Ditte and Metzner, A. ch. (6) 29. 889.) Insol. in dil. or cold cone., but sol. in hot cone. H 2 S0 4 . Oxidised but not dissolved by HN0 3 + Aq. Easily and completely sol. in aqua regia. Very slowly attacked by pure HN0 3 + Aq of 1 '51-1 "42 sp. gr. ; weaker acid has no marked action whether it contains N0 2 or not. HC1 + HN0 3 has no action if dil. or at low temp. , but when even very dil. and KN0 2 is added, the action will begin. (Millon, A. ch. (3) 6. 101.) Not attacked in 10 months by 2 % HN0 3 + Aq. Sb is not dissolved by HN0 3 + Aq of any concentration, a white powder being always left, which is insol. in HN0 3 + Aq or H 2 0. (Montemartini, Gazz. ch. it. 22. 384.) Insol. in alkalies + Aq. Easily attacked by pyrosulphuryl chloride. (Heumann and Kochlin, B. 16. 479.) Antimony arsenide, Sb 2 As. (Descamps, C. R. 86. 1065.) Antimony tfribromide, SbBr 3 . Deliquescent ; decomp. by H 2 0. Sol. in alcohol and CS 2 . Antimony rubidium bromide, 2SbBr 3 , 3RbBr. Decomp. by H 2 ; can be recryst. from dil. HBr + Aq. (Wheeler, Z. anorg. 5. 258.) 10SbBr 3 , 23RbBr(?). Cryst. from cone. HBr + Aq. (Wheeler.) Antimony bromide potassium chloride, SbBr 3 , 3KC1 + HH 2 = SbCl 3 K 3 Br 3 + 1|H 2 0. Slowly deliquescent. Very sol. in H 2 0. Sat. solution contains 120'5 g. to 100 ccm. H 2 0, and has sp. gr. = 1 *9. Decomp. by much H 2 0. (Atkinson, Chem. Soc. 43. 290.) See also Antimony chloride potassium bromide. Antimony trichloride, SbCl 3 . Deliquescent. Decomp. by H 2 with pre- cipitation of SbOCl. This precipitation is pre- vented by tartaric, citric, or hydrochloric acid, or by cone, solutions of chlorides of alkalies and alkaline earths. Sol. in alcohol without decomp. Very sol. in hot CS 2 , but solubility diminishes rapidiy on cooling. (Cooke, Proc. Am. Acad. 13. 72.) Antimony hydrogen chloride, 2SbCl 3 , HC1 + 2H 2 0. Deliquescent. Decomp. by H 2 0. Melts in crystal H 2 at 16. (Engel, C. R. 106. 1797.) Antimony pentacbloride, SbCl 5 . Deliquesces to SbCl 5 + 4H 2 0, which can be crystallised out of a little H 2 0. Decomp. by more H 2 into Sb0 2 Cl. Sol. in a large anit. of H 2 0, if it is added all at one time. Precipita- tion by H 2 is also hindered by presence of tartaric, or hydrochloric acid. + H 2 0. Deliquescent. Sol. in chloroform. (Anschiitz and Evans, A. 239. 285.) + 4H 2 0. Insol. in chloroform. (Anschiitz and Evans.) Antimony hydrogen pcntactiloride, SbCl 5 , 5HC1 + 10H 2 0. Not deliquescent. Decomp. by H 2 0. Melts in crystal H 2 at about 55. (Engel, C. R. 106. 1797.) Antimony antimony 1 potassium chloride, SbCl 3 , SbOCl, 2KC1. Not deliquescent. Immediately decomp. by hot or cold H 2 ; sol. in hot glacial HC 2 H 3 2 , or in HC1, or tartaric acid + Aq. Insol. in KC1+ Aq, hot or cold alcohol, CS 2 , or ligroine. (Benedikt, Proc. Am. Acad. 29. 217.) Antimony barium chloride, BaCl 2 ,SbCl 3 + |H 2 0. Decomp. by H 2 0. Antimony caesium chloride, SbCl 3 , 6CsCl. Decomp. by H 2 0. Cryst. from dil. HC1 + Aq. (Godeffroy, Arch. Pharm. (3), 12. 47.) 2SbCl 3 , 3CsCl. Decomp. by H 2 ; si. sol. in cold, easily in hot dil. HCl + Aq. This is ANTIMONY HYDRIDE identical with the above salt. (Saunders, Am. Ch. J. 14. 152.) Antimony nitrosyl chloride, SbCl g , NOC1. Very deliquescent ; decomp. by pure H 2 ; sol. in H 2 containing tartaric acid. (Weber, Pogg. 123. 347.) 2SbCl 5 , 5NOC1. Decomp. by H 2 0. (Sud- borough, Chem. Soc. 59. 661.) Antimony phosphorus chloride, PC1 5 , SbCl 5 . Deliquescent. (Weber, Pogg. 125. 78.) Antimony phosphoryl chloride, SbCl 5 , POC1 3 . Deliquescent. (Weber.) Antimony potassium chloride, SbCl 3 , 2KC1. Sol. in H 2 without decomp. (Jacquelain, A. ch. (2) 66. 128.) Not deliquescent. Immediately decomp. by hot or cold H 2 0. Sol. in HC1, or tartaric acid + Aq. (Benedikt, Proc. Am. Acad. 29. 219.) + 2H 2 0. Very efflorescent. SbCl 3 , 3KC1. Deliquescent. Decomp. by hot H 2 0. (Poggiale.) + 2H 2 0. (Romanis, C. N. 49. 273.) Not obtained by Benedikt (I.e.). See also Antimony antimonyl potassium chloride. Antimony rubidium chloride, SbCl 3 , RbCl. Decomp. on air or with H 2 0. (Saunders, Am. Ch. J. 14. 162.) 2SbCl 3 , RbCl + H 2 0. Decomp. on air. (Wheeler, Z. anorg. 5. 253.) SbClg, 6RbCl. Decomp. by H 2 0. (Godeffroy, Arch. Pharm. (3) 9. 343.) Formula is 10SbCl 3 , 23RbCl(?). (Saunders, Am. Ch. J. 14. 159.) 10SbCl 3 , 23RbCl (?). Decomp. by H 2 ; sol. inHCl + Aq. (Saunders.) 3SbCl 3 , 5RbCl. As above. (Saunders.) Formula is 2SbCl 3 , 3RbCl. (Wheeler.) Antimony selenium chloride, SbCl 5 , SeCl 4 . Deliquescent. (Weber.) Antimony selenyl chloride, SbCl 5 , SeOCl 2 . Very deliquescent. (Weber, Pogg. 125. 325. ) Antimony sodium chloride, SbCl 3 , 3NaCl(?). Decomp. by much H 2 0. (Poggiale.) Antimony sulphur chloride, 2SbCl g , 3SCLj. Decomp. by H 2 0. SbCl 5 , SC1 4 . Sol. in dil. HN0 3 + Aq. Antimony trichloride ammonia, SbCl 3 , NH 3 . Not very deliquescent. Decomp. by H 2 0. Antimony^eTitochloride ammonia, SbCl 5 , 6NH 3 . Decomp. by H 2 0. (Persoz.) Antimony pentachloTi&e cyanhydric acid, SbCl 5 , 3HCN. Deliquescent ; decomp. by H 2 0. (Klein, A. 74. 85.) Antimony chloride potassium bromide, K 6 Sb 2 Cl 6 Br 6 + 3H 2 = K 3 SbCl 3 Br 3 + 1 A:H 2 0. Very deliquescent. Decomp. by much H 2 0. (Atkinson, Chem. Soc. 43. 289.) See Antimony bromide potassium chloride. K 3 Sb 2 Cl 6 Br 3 + 2H 2 0. (Atkinson.) KSbCl 3 Br + H 2 0. (Atkinson.) Antimony pentaclaloTide nitric oxide, 2SbCl 5 , NO. Decomp. by H 2 0. (Besson, C.R. 108. 1012.) Antimony pentacbloiide nitrogen peroxide, 3SbCl 5 , 2N0 2 . Decomp. by H 2 0. (Besson.) Antimony rifluoride, SbF 3 . Deliquescent. Sol. in H 2 0. Antimony penta&VLoride, SbF 5 . Sol. in H 2 0. (Marignac, A. 145. 239.) Antimony lithium fluoride, SbF 3 , 2LiF. Sol. in more than 20 pts. H 2 0. (Fliickinger, Pogg. 87. 245.) SbF 3 , LiF. Easily sol. in H 2 0. (Stein, Chem. Z. 13. 357.) Antimony potassium fluoride, SbF 3 , 2KF. Sol. in less than 2 pts. boiling, and in 9 pts. cold H 2 0. Insol. in alcohol or ether. SbF 3 , KF. More sol. than SbF 3 , 2KF. Sol. in 2-8 pts. H 2 0. (Fliickinger, Pogg. 87. 245.) SbF 5 , KF. " Easily sol. in H 2 0. SbF 5 , 2KF + 2H 2 0. Easily sol. in H 2 0. (Marignac, A. 145." 239.) Antimony sodium fluoride, SbF 3 , 3NaF. Sol. in 14 pts. cold, and 4 pts. boiling H 2 0. Sol. in HF. (Fliickinger, Pogg. 87. 245.) SbF 5 , 2NaF. Easily sol. in H 2 0. (Marig- nac, A. 145. 329.) Antimony ^fluoride ammonium chloride. SbF 3 , NH 4 C1. Easily sol. in H 2 0. (de Haen, B. 21. 901 R.) Antimony ^fluoride ammonium sulphate, SbF 3 , (NH 4 ) 2 S0 4 . More sol. than K or Na salt. 1 pt. H 2 dissolves 1 '4 pts. salt at 24. 1 pt. H 2 dis- solves 15 pts. salt at 100. (de Haen, B. 21. 902 R.) Antimony fluoride lithium chloride, SbF 3 , LiCl. Sol. in H 2 0. (Stein, Chem. Z. 13. 357.) Antimony ^'fluoride potassium chloride, SbF 3 , KC1. 100 pts. H 2 dissolve 51 pts. at 24, and 300 pts. at 100. (de Haen, B. 21. 901 R.) Antimony ^'fluoride potassium sulphate, SbF 3 , K 2 S0 4 . Sol. inH 2 0. (deHaen.) Antimony ^'fluoride sodium chloride, SbF 3 , NaCl. Easily sol. in H 2 0. (de Haen, B. 21. 901 R.) Antimony 2Hfluoride sodium sulphate, SbF 3 , Na 2 S0 4 . Sol. inH 2 0. (deHaen.) Antimony hydride, SbH 3 . Scarcely sol. in H 2 0. 1000 ccm. H 2 absorb 26 ANTIMONY HYDROXIDE 4-12 com. SbH 3 at 10 '5 Decomp. by long contact with H 2 ; also by cone. H 2 S0 4 or KOH + Aq. (Jones, Chem. Soc. 29. 641.) Antimony ZHhydroxide, Sb 2 3 , 2H 2 = Sb 2 0(OH) 4 . (Schaffner, A. 51. 182.) Sb(OH) 3 . Ppt. (Clarke and Stolla, B. 13. 1787.) Does not exist. (Guntz, C. R. 102. 1472.) See Antimonous acid and antimony rtoxide. Antimony tfniodide, SbI 3 . Decomp. by H 2 or 80% alcohol. Sol. in HI + Aq ; sol. in boiling CS 2 , and in boiling benzene, but separates out on cooling. Almost insol. in CHC1 3 . (Cooke, Proc. Am. Acad. (2) 5. 72.) Partly sol. in, and partly decomp. by alcohol or ether. (M'lvor, Chem. Soc. (2) 14. 328.) Insol. in oil of turpentine and CC1 4 . 100 pts. methylene iodide dissolve 11 '3 pts. SbI 3 at 12 ; sp. gr. of solution = 3 '453. (Retgers, Z. anorg. 3. 343.) Antimony pentaiodide, SbI 5 . Very unstable. (Pendleton, C.N. 48. 97.) Antimony barium iodide, SbI 3 , BaI 2 + 9H 2 0. Decomp. by H 2 0. Sol. in HC1, HC 2 H 3 2 , or H 2 C 4 H 4 6 + Aq. CS 2 dissolves out SbI 3 . (Schaffer, Pogg. 109. 611.) Antimony potassium iodide, 3KI, 2SbI 3 + 3H 2 0. Decomp. by H 2 0. Sol. in HC1, HC 2 H 3 2 , or H 2 C 4 H 4 6 + Aq. CS 2 dissolves out SbI 3 . (Schaffer, Pogg. 109. 611.) 2KI,SbI 3 + 2pI 2 0. Decomp. by H 0. (Mckles, J. Pharm. (3) 39. 116.) Antimony rubidium iodide, 2SbI 3 , 3RbI. Decomp. by H 2 0. (Wheeler, Z. anorg. 5. 259.) Antimony sodium iodide, 2SbI 3 , 3NaI + 12H 2 0. As 2SbI 3 , 3KI. (Schaffer, Pogg. 109. 611.) Antimony ^oxide, Sb 4 6 (formerly Sb 2 3 ). Very si. sol. in H 2 0. Sol. in 8900-10,000 pts. H 2 at 100; 55,000-61,100 pts. at 15. (Schulze, J. pr. (2) 27. 320.) Sol. in HCl + Aq. Insol. in HN0 3 + Aq, but not as insol. as metastannic acid. Sol. in cold fuming HN0 3 or H 2 S0 4 . Insol. in dil., but sol. in cone, alkalies, or alkali carbonates + Aq. Sol. in cold NH 4 C1, or NH 4 N0 3 + Aq. Sol. in 15 pts. boiling SbCl 3 . (Schneider, Pogg. 108. 407.) Sol. in HC 2 H 3 2 , or H 2 C 4 H 4 6 + Aq, and not pptd. from these solutions by H 2 0. Easily sol. in benzoic acid. Insol. in pyrotartaric acid. Very sol. in KHC 4 H 4 6 + Aq. Sol. in glycerine. Min. Valentinite, Senarmontite. Exists in a sol. colloidal modification. (Spring, B. 16. 1142.) + H 2 0. See Antimonous acid. Antimony tetroxide, Sb 2 4 . Insol. in H 2 0. Slightly attacked by acids ; hot cone, HCl + Aq acts only slightly. (Fre- senius.) Min. Cervantite. SI. sol. in HCl + Aq. Antimony pentoxide, Sb 2 5 . Insol. in H 2 0. Easily sol. in HCl + Aq. SI. sol. in cone. KOH + Aq. "Antimonoxyd" is sol. in glycerine in pres- ence of alkalies. 100 g. glycerine, to which have been added : 10 g. NaOH + Aq (1:1), dissolve 20'6 g. at b.-pt. ; 20 g. NaOH + Aq (1 : 1), dissolve 36 '0 g. at b.-pt. ; 40 g. NaOH + Aq (1 : 1), dissolve 68-5 g. at b.-pt. ; 80 g. NaOH + Aq (1 : 1), dis- solve 93-0 g. at b.-pt. ; 120 g. NaOH + Aq (1:1), dissolve 119'2 g. at b.-pt. (Kohler, Dingl. 258.520.) See also Antimonic acid. Antimony oxybromide. See Antimonyl bromide. Antimony oxychloride. See Antimonyl chloride. Antimony oxyfluoride. See Antimonyl fluoride. Antimony oxysulphide, Sb 2 OS 2 . Min. Antimony blende (kermesite). Insol. in H 2 or dil. acids, except HCl + Aq. (Schneider, Pogg. 110. 147.) Antimony phosphide, SbP. Insol. in benzene, ether, or CS 2 . (M'lvor, B. 6. 1362.) Antimony ^n'selenide, Sb 2 Se 3 . Sol. in KOH + Aq. (Hofacker, A. 107. 6.) Antimony pentaselemde, Sb 2 Se 5 . (Hofacker.) Antimony selenide, with M selenide. See Selenoantimonates, M. Antimony ^n'sulphide, Sb 2 S 3 (kermes). Insol. in H 2 and dil. acids. Decomp. by cone. HN0 3 or H 2 S0 4 . Sol. in cone. HCl + Aq. Easily sol. in dil. KOH, NaOH, (NH 4 ) 2 S, and K 2 S + Aq. SI. sol. in NH 4 OH + Aq; very si. sol. in (NH 4 ) 2 C0 3 + Aq ; insol. in KSH + Aq. (Fresenius. ) Slowly sol. in H 2 C 4 H 4 6 + Aq. Sol. in boiling Na 3 SbS 4 + Aq. Insol. inNH 4 Cl + Aq. Sol. in 14-15 pts. pure SbCl 3 . (Schneider, Pogg. 108. 407.) Sol. in ethylamine sulphydrate + Aq. Min. Stibnite. Sol. in cold citric acid + Aq. (Bolton, C.N. 37. 14.) Soluble modification, Sb 2 S 3 may be obtained in a colloidal state in aqueous solution contain- ing 1 pt. Sb 2 S 3 to 200 pts. H 2 0. This can be boiled without decomp., but Sb 2 S 3 is pptd. by acids and salts. Table of maximum dilution of solutions of acids and salts which cause pptn. of Sb 2 S 3 . HC1 . . . .1:270 H 2 S0 4 . . . 1 : 140 H 2 C 2 4 . . .1:45 K 2 S0 4 . . . 1 : 65 ARSENIC RUBIDIUM BROMIDE 27 Table of maximum dilution, etc. Continued. (NH 4 ) 2 S0 4 . MgS0 4 . . 1:130 1 : 1720 MnS0 4 1 : 2060 NaCl . 1:135 BaCl 2 1 : 2050 MgCl, 1 : 5800 CoClo 1 : 2500 KNO~ 3 1:75 Fe 2 Cl 6 1 : 2500 Ba(N0 3 ) 2 . 1 : 1250 K 2 A1 2 (S0 4 ) 4 . (NH 4 ) 2 Fe 2 (S0 4 ) 4 . 1 : 35,000 1:800 K 2 Cr 2 (S0 4 ) 4 KSbOC 4 H 4 6 . 1 : 40,000 1:18 (Schulze, J. pr. (2) 27. 320.) OS, Antimony pentaBMlphide, Sb 2 S 5 . Insol. in H 2 0, or H 2 containing H 2 S. Sol. in cone. HCl + Aq. Completely sol. in NH 4 OH + Aq; traces dissolve in (NH 4 ) 2 C0 3 + Aq. Easily sol. in KOH, or NaOH + Aq, or in alkali sulphides + Aq. Sol. in 50 pts. cold dil. NH 4 OH + Aq. (Geiger.) Insol. in(NH 4 ) 2 C0 3 + Aq. Insol. in cold, but sol. in hot alkali carbon- ates + Aq. (Berzelius. ) Insol. inNa 3 SbS 4 + Aq. When boiled with alcohol, ether, CS 2 , oil of turpentine, etc., portion of the S is dissolved out. (Berzelius.) CS 2 dissolves about 5 % of the sulphur. (Rammelsberg. ) Antimony sulphochloride, SbSCl 3 . Decomp. by moist air or H 2 0. (Cloez, A. ch. (3) 30. 374.) SbS 2 CL Easily attacked by acids ; insol. in (Ouvrard, C.R. 116. 1516.) SgCl. (Ouvrard.) 2SbSCl, 3Sb 2 S 3 . Decomp. by dil. HCl + Aq. (Schneider. ) SbSCl, 7SbCl 3 . Deliquescent ; decomp. by H 2 0. (Schneider, Pogg. 108. 407.) Antimony sulphoiodide, SbSI. Not attacked by H 2 0, and decomp. only by cone, acids. Insol. in CS 2 . (Schneider, Pogg. 110. 147.) Sb 2 S 3 I 6 . (Henry and Garot.) Sb 2 S 2 I 3 . Sol. in dry CS 2 . Very easily de- comp. (Ouvrard, C.R. 117. 108.) Antimony telluride, SbTe. Insol. in H 2 0. Sb 2 Te 3 . Insol. in H 2 0. (Oppenheim, J. pr. 71. 277.) Antimonyl bromide, SbOBr. Insol. in CS 2 . (Cooke, Proc. Am. Acad. 13. 104.) Sb 4 5 Br 2 . (M'lvor, C.N. 29. 179.) 10Sb 4 5 Br 2 , SbBr 3 . Antimonyl chloride. From SbCl 3 . SbOCl. Insol in H 2 0. De- comp. by boiling with H 2 ; sol. in HCl + Aq. Insol. in alcohol or ether"; sol. in CS 2 , CHC1 3 , or C 6 H 6 . (Sabanajew, Zeit. Ch. 1871. 204.) Sb 4 5 Cl 2 . Algaroth powder. Decomp. by H 2 0. Sol. in HCl + Aq. (Cooke, Proc. Am. Acad. 13. 1.) Lj. (Cooke.) From SbCl 5 . SbOCl 3 . Deliquescent. Decomp. by H 2 0. Sol. in H 2 0. (Daubrawa, A. 184. 118.) Does not exist. (Anschutz and Evans, A. 239. 285.) Sb 3 OCl 13 . Deliquescent. Insol. in CS 2 ; easily sol. in tartaric acid + Aq. (Williams, C.N. 24. 224.) Sb 3 4 Cl 7 . (Williams.) Sb0 2 Cl. Decomp. by hot H 2 into HSb0 3 . Antimonyl fluoride. From SbF 3 . Sb 4 3 F 6 . Not deliquescent. From SbF 5 . 3SbOF 3 , SbF 3 . Antimonyl sodium fluoride, r SbOF 3 , NaF + H 2 0. Deliquescent. Easily sol. in H 2 0. (Marignac, A. 145. 239.) Antimonyl iodide, Sb 4 5 I 2 . Difficultly sol. in solution of tartaric acid or tartrates. Decomp. by HC1, HN0 3 , or H 2 S0 4 + Aq. Easily sol. in alkalies, or (NH 4 ) 2 S + Aq. SbOI. Insol. in CS 2 . (Cooke, Proc. Am. Acad. (2) 5. 72.) Antimonyl sulphide. See Antimony oxy sulphide. Arsenic, As. Unaltered by pure H 2 0. Insol. in HCl + Aq if air is excluded, but si. sol. in presence of air. Not attacked by dil. H 2 S0 4 + Aq. Oxi- dised by cone. H 2 S0 4 , HN0 3 , or aqua regia. Not attacked at 20 by HN0 3 , cone, or dil., or containing N0 2 ; nor by HN0 3 + HC1, as long as they do not act on each other ; but if treated with the above mixture in extremely dilute state, and a few drops of KN0 2 + Aq are added, the As is attacked at once. (Millon, A. ch. (3) 6. 101.) Insol. in NaOH, KOH, or NH 4 OH + Aq. Sol. in S 2 Br 2 . (Hannay, Chem. Soc. (2) 11. 823.) Insol. in alcohol and ether. Sol. in certain fatty oils. Insol. in methylene iodide. (Retgers, Z. anorg. 3. 343.) Arsenic acid. See Arsenic bromide, AsBr 3 . Decomp. by H 2 0. Completely sol. in about 3 pts. boiling H 2 0, and much less, in presence of HBr. (Wallace, Phil. Mag. (4) 17. 261.) Sol. in CS 2 . Arsenic csesium bromide, 2AsBr 3 , 3CsBr. Decomp. by H 2 ; can be recryst. from cone. HBr + Aq. (Wheeler, Z. anorg. 4. 451.) Arsenic rubidium bromide, 2AsBr 3 , 3RbCl. As the corresponding Cs comp. 28 ARSENIC BROMIDE AMMONIA Arsenic bromide ammonia, AsBr 3 , 3NH 3 . Decomp. by H 2 0. (Besson, C. R. 110. 1258.) Arsenic chloride, AsCl 3 . Miscible with little H 2 0, and with alcohol, ether, and volatile oils. Decomp. by much H 2 0, or by boiling. (Gmelin.) Miscible with oil of turpentine, and with olive oil. Somewhat sol. in HC1 + Aq. Arsenic caesium chloride, 2AsCl 3 , 3CsCl. Decomp. by H 2 0. 100 pts. HCl + Aq (1-2 sp. gr.) dissolve 0'429 pt. salt. (Wheeler, Z. anorg. 4. 451.) Arsenic iridium phosphorus chloride. See Iridium phosphorus chloride arsenic chloride. Arsenic rubidium chloride, 2AsCl 3 , 3RbCl. Decomp. by H 2 0. 100 pts. HCl + Aq (sp. gr. 1-2) dissolve 2 '935 pts. salt. (Wheeler, Z. anorg. 4. 451.) Arsenic sulphur chloride, 2AsCl 3 , 3SC1 2 . Decomp. by H 2 0. (Rose.) Above compound is a mixture. (Nilson, C. N. 81. 81.) Arsenic chloride ammonia, 2AsCl 3 , 7NH 3 . Decomp. by cold H 2 0, with evolution of NH 3 . From the solution crystallises As 4 Cl2 N 2 H 10 8 . Sol. in alcohol without decomp. (Rose, Pogg. 62.62.) Composition is AsCl 3 , 4NH 3 . (Besson, C. R. 110. 1258.) Arsenic rifluoride, AsF 3 . Sol. in H 2 with evolution of heat and de- composition. (Berzelius.) Easily sol. in benzene. (Moissan, C. R. 99. 874.) Miscible with alcohol and ether. (M'lvor, C. N. 30. 169.) Arsenic potassium fluoride, AsF 5 , KF + |H 2 0. AsF 5 , 2KF + H 2 0. AsF 5 , AsOF 3 , 4KF + 3H 2 0. (Marignac, A. 145. 237.) Arsenic fluoride ammonia, 2AsF 3 , 5NH 3 . Easily decomp. by H 2 0. (Besson, C. R. 110. 1258.) Arsenic hydride, AsH 3 . SI. sol. in H 2 and alkali hydrates + Aq, with subsequent decomposition. H 2 absorbs ivol. AsH 3 , Decomp. by cone, acids. Absorbed rapidly by oil of turpentine, slightly by fixed oils, and not at all by alcohol, ether, or KOH + Aq. (Gmelin.) Insol. in KOH + alcohol. (Meissner. ) Not more sol. in alkaline solutions than in pure H 2 0. (Berzelius.) AsH. Solid. Insol. in H 2 0, alcohol, ether, and CS 2 . (Wiederhold, Pogg. 118. 615.) Insol. in H 2 ; sol. in methylene iodide, xylene, or in cone. KOH + Aq. (Retgers, Z. anorg. 4. 403.) Arsenic cModide, As 2 I 4 . Decomp. by H 2 or alkalies ; easily sol. in alcohol, ether, chloroform, or carbon disulphide. (Bamberger and Phillip, B. 14. 2643.) Arsenic ^iodide, AsI 3 . Sol. in 3 '32 pts. boiling H 2 0, and solution if boiled down deposits pure AsI 3 , but if left to cool slowly, deposits crystals of As 2 3 and AsOI. SI. sol. in HCl + Aq. Sol. in alcohol without decomp. Sol. in ether, benzene, chloroform, and CS 2 . 100 pts. methylene iodide dissolve 17 '4 pts. AsI 3 at 12. (Retgers, Z. anorg. 3. 343.) Arsenic caesium iodide, 2AsI 3 , 3CsI. Decomp. by H 2 ; sol. in cone. HI + Aq. (Wheeler, Z. anorg. 4. 451.) Arsenic rubidium iodide, 2AsI 3 , 3RbI. As the corresponding Cs comp. Arsenic sulphur iodide. See Arsenic sulphoiodide. Arsenic ^'iodide ammonia, 2AsI 3 , 9NH 3 . Insol. in benzene. (Bamberger and Phillip, B. 14. 2643.) AsI 3 , 4NH 3 . (Besson, C. R. 110. 1258.) Arsenic sw&oxide, As 2 (?). Insol. in H 2 ; decomp by dil. acids or NH 4 OH + Aq. Does not exist. (Geuther, A. 240. 208.) Arsenic dioxide, As 4 6 (formerly As 2 3 ). " White arsenic " exists in two modifications : aAs 2 3 , crystalline, octahedral, opaque, por- celaneous, etc. ; j8As 2 3 , amorphous, vitreous, "arsenic glass." The data concerning the solubility of As 2 3 are very contradictory, the reasons being that (1) the solubility of the two modifications is different ; (2) that the length of time necessary to effect solution differs in the two modifica- tions ; and (3) that there is a tendency of the amorphous As 2 3 to go over into the crystalline state during the process of solution. ctAs 2 3 is also not easily moistened, especially when in a pulverulent condition, which is not the case with the B modification. (Winkler, J. pr. (2) 31. 247.) The older data are very unreliable, but pos- sess a certain historical interest. 1 pt. As 2 O 3 is sol. in 10'55 pts. (Wenzel) ; 11-34 pts (Fischer); 11-86 pts. in J hour (Klaproth); 12-2 pts. (Bucholz); 15-0 pts. (Brandt; Bergman); 16'0 pts (Vogel) ; 24 pts. (Lametherie) ; 40 pts. (Porner) ; 64 pts (Baume) ; 80 pts. (Navier) ; 200 pts. (Aschof and Nasse, 1812) ; 640 pts. (Hagen, 1796) boiling H 2 O. 1 pt. As 2 O 3 is sol. in 7 -72 pts. H 2 O if a, or 9 -33 pts. if /3 (Guibort) ; in 24 pts. H 2 O if a, or 21 pts. if B (Taylor) Sol. in 53-3 pts. H 2 O at 1875. (Abl.) Sol. in 30 pts. H 2 0. (Nussembrock.) After the solution in H 2 O at 100 has been left stand- ing at ordinary temperatures 1 pt. As 2 O 3 remains dissolved in 16 pts. HoO at 16 and 20 pts. H 2 O at 7 (Bucholz) ; in 33 pts. HoO at 7 (Klaproth) ; in 38'45 pts. H 2 O after 3 days, 55 pts. HoO after 8 days, 64-50 pts. HoO after 2-3 weeks at 10 (Fischer); in 33-52 pts. if aAs 2 O 3 was used, 55-06 pts. if /3As 2 O 3 was used (Guibort); in 38 pts. if aAs 2 O 3 after 6 months, 53'7l pts. if As 2 O 3 after 48 hours (Taylor) ARSENIC OXIDE 29 When an excess of pulverised As 2 O 3 is left to digest for several days with cold H 2 O 1 pt. dissolves in 50 pts. (Bucholz) ; in 66 pts. (Fischer) ; in 80 pts. at 15 (Bergman) ; in 80 pts. if a, and 103 pts. if /3 (Guibort) ; 96 pts. at 10 (Spelman) ; 96 pts. at 35-5 (Hahnemann); 320 pts. H 2 O at 20 (Aschof and Nasse, 1812.) H 2 O at 15-6 or below dissolves less than 1 % As 2 O 3 . (Dalton.) To dissolve 1 pt. As 2 C>3 in 12 pts. H 2 O, it is necessary to boil an excess of As 2 O 3 with H 2 O ; if 1 pt. As 2 O 3 is boiled with 12 pts. H 2 O, considerable remains unclis- solved ; and even with 1 pt. As 2 O 3 to 50-60 pts. H 2 O long continued boiling is necessary to effect solution. If a clear solution saturated by long boiling with an excess of As 2 O 3 is poured off and evaporated con- tinuously to its original bulk, no As 2 O 3 separates out, and the solution contains 1 pt. AsoO 3 to 6 pts. HoO. (Fischer,) 100 pts. aqueous solution of /3As 2 O 3 sat. at 15 contain 0-96 pt. As 2 O 3 , and 9 -68 pts. when sat. at 100. (Guibort.) If 1 pt. pulverised As 2 O 3 be digested 10 days at 19-25 in 5-10 pts. H 2 O, the solution contains 1 pt. As 2 O 3 to 50 pts. H 2 O. A solution of same strength is obtained in 25 days by digesting 1 pt. As 2 O 3 in 40 pts. H 2 O. If 1 pt. As 2 O 3 be immersed in 80 pts. H 2 O, the resulting solution contains 1 pt. As 2 O 3 to 90 pts. H 2 O ; if in 160 pts. H 2 O, 1 pt. As 2 O 3 to 180 pts. H 2 O ; if in 240 g';s. H 2 O, 1 pt. As 2 O 3 to 280 pts. H 2 O ; if in 1000 pts. 2 O, 1 pt. As 2 O 3 to 1200 pts. H 2 O ; and even when 1 pt. As 2 O 3 is digested at ordinary temperatures for several days with 16,000-100,000 pts. H 2 O, a portion remains undissolved. Pulverised aAs 2 O 3 "was set aside with H 2 O in closed bottles for 18 years ; when 1 pt. ' ~ was present in 1000 pts. H 2 O, a perfect solution was obtained ; when 1 pt. As 2 O 3 in 100 pts. H 2 O, O'OIT % As 2 O 3 was undissolved ; when 1 pt. As 2 O 3 in 35 pts. H 2 O, 0'35 % As 2 O 3 was undissolved, so that the solution contained 1 pt. As 2 O 3 to 54 pts. H 2 O. (Gmelin.) Porcolaneous modification (aAs 2 6 3 ) is much more 'sol. in H 2 O than the vitreous ()3As 2 O 3 ). 100 pts. H 2 O at ordinary temperature dissolve 0'96 pt. j8As 2 O 3 and 1'25 pts. 5 ; 1000 pts. boiling castor-oil dissolve 34 pts. As 2 5 . (Heimpel and Grundner. ) Arsenic dioxide, with alkali haloid. See Arsenite, alkali haloid. Arsenic sulphur dioxide. As 2 3 , S0 3 . Deliquescent ; decomp. by H 2 0. (Adie, Chem. Soc. 55. 157.) As 2 3 , 2S0 3 . As above. (Adie.) As 2 3 , 3S0 3 . (Weber.) As 2 3 , 4S0 3 . As above. (Adie. ) As 2 3 , 6S0 3 . (Weber, B. 19. 3186.) As 2 3 , 8S0 3 . As above. (Adie.) Arsenic oxychloride, etc. See Arsenyl chloride, etc. Arsenic phosphide, AsP. Decomp. by H 2 0. Not attacked by cold H 2 S0 4 or HC1, and only si. sol. therein on warm- ing. Easily decomp. by HN0 3 , KOH, NaOH, Ba0 2 H 2 + Aq. Insol. in alcohol, ether, chloro- form ; si. sol. in CS 2 . P 2 As 3 2 . Product of action of H 2 on above compound, which it resembles. (Janowsky, B. 6. 216.) Arsenic ^n'selenide, As 2 S 3 . Partially sol. 'in KOH + Aq if boiled with it for a long time. (Uelsmann, A. 116. 123.) Arsenic selenosulphide. See Arsenic sulphoselenide. Arsenic ^sulphide, As 2 S 2 . Min. Realgar. Difficultly sol. in alkali sulphides + Aq. Partly dissolved by KOH + Aq with decomposition. Sol. at 150 in a sealed tube in NaHC0 3 + Aq, and crystallises out on cooling. (Senarmont, A. ch. (3) 32. 158.) Arsenic ^nsulphide, As 2 S 3 . Insol. in H 2 when prepared in the dry way, but when prepared moist is very liable to go into the colloidal modification mentioned below. Insol. in H 2 containing H 2 S0 4 , HN0 3 , HC1, H 2 C 2 4 , HC 2 H 3 2 , H 2 C 4 H 4 6 , C0 2 , NH 4 C1, KN0 3 , (NH 4 ) 2 S0 4 , MgS0 4 . (Bontigny.) Insol. in H 2 0. Traces are dissolved by H 2 S + Aq. SI. decomp. by boiling with H 2 0, or long contact with cold H 2 0. (Fresenius.) Insol. in dil. acids. Insol. in cold, and scarcely attacked by hot cone. HC1 + Aq. Easily decomp. by HN0 3 or aqua regia. Easily sol. in cold KOH, NaOH, or NH 4 OH + Aq, also in alkali carbonates, or sulphates + Aq. Sol. in hot KHS0 3 + Aq. Sol. in citric acid, and alkali citrates + Aq. (Spiller.) ARSENIC ACID 31 Insol in CS 2 . Min. Orpiment. As 2 S 3 may also be obtained in a colloidal form, sol. in H 2 0. Sat. solution contains 34 '46 % As 2 S 3 ; it is decomp. by standing, but may be boiled without undergoing decomposition ; most acids and many salts ppt. As 2 S 3 . (Schulze, J. pr. (2) 25. 431.) The following solutions cause pptn. of As 2 S 3 in a solution of the colloidal modification, when added in the given state of dilution : HCl + Aq . .1:555 HN0 3 + Aq . .1:276 H 2 S0 4 + Aq . .1:255 H 2 S0 3 + Aq . .1:138 H 2 C 2 4 + Aq . .1:65 H 3 P0 4 + Aq . .1:26 HC 2 H 3 2 + Aq. . 1:0-18 K 2 S0 4 + Aq . .1:76 Na 2 S0 4 + Aq . .1:129 (NH 4 ) 2 S0 4 + Aq . 1:188 CaS0 4 + Aq . . 1:2780 MgS0 4 + Aq . . 1:2630 ZnS0 4 + Aq . . 1:3330 MnS0 4 + Aq . . 1:2860 NiS0 4 + Aq . . 1:3440 FeS0 4 + Aq . . 1:2380 Al 2 (S0 4 ) 3 + Aq . . 1:52600 TL,S0 4 + Aq . .1:799 KCl + Aq. . .1:137 KBr + Aq. . .1:103 KI + Aq . . .1:55 Lil + Aq . . . 1 :127 NaCl + Aq . .1:212 NH 4 Cl + Aq . .1:207 BaCl 2 + Aq . . 1:2860 CaCl 2 + Aq . . 1:4370 MgCl 2 + Aq . . 1:10000 FeCl + A . . 1:50000 AlCl 3 CrCl 3 KN0 NH 4 N0 Ba(N0 3 ) 2 + Aq . KC10o + Aq . CaH 2 (C0 3 ) 2 + Aq K 2 C 2 H 4 6 + Aq. K 2 C 2 4 + Aq . NaC 2 H 3 2 + Aq Urea + Aq . (NH 4 ) 2 Fe(S0 4 ) 2 K 2 Al 2 (S0 4 ) 4 K 2 Fe 2 (S0 4 ) 4 K 2 Cr 2 (S0 4 ) 4 K 4 Fe(CN) 6 + Aq K 3 Fe(CN) 6 + Aq Cold cone, solutions of boric, arsenious, tar- taric,benzoic, and salicylic acids, also cane sugar, or chloral hydrate cause no pptn. Absolute alcohol and glycerine may also be mixed with the solutions without causing pptn. (Schulze, J. pr. (2) 25. 442.) Arsenic pentasulphide, As 2 S 5 . Insol. in H 2 0. Sol. in NH 4 OH, KOH, NaOH + Aq, and solutions of alkali sulphides and carbonates. Sol. in Ba0 2 H 2 , and Ca0 2 H 2 + Aq. 1:83000 1:20000 1:84 1:117 1:138 1 : 2080 1:88 1:3120 1:85 1:81 1:78 1 : 25 1:1160 1:50000 1:55500 1:25000 1:67 1:81 Sol. in citric acid, and alkali citrates + Aq. (Spiller.) Alcohol dissolves out S on boiling. (Ber- zelius.) Sol. in alkali arsenates + Aq. (Mlson, J. pr. (2) 14. 155.) + H 2 0. (Mlson, I.e.) Arsenic bisulphide, with M 2 S. See Sulpharsenite, M. Arsenic pentasulphiAe, with M 2 S. See Sulpharsenate, M. Arsenic sulphobromide, AsS 2 Br 3 =AsSBr + SBr 2 . Decomp. by H 2 0. (Hannay, Chem. Soc. 33. 284.) Arsenic sulphochloride, As 2 S 5 Cl. Slowly decomp. by boiling H 2 0. Sol. in hot AsCl 3 without decomp. (Ouvrard, C. R. 116. 1516.) AsS 2 Cl. Decomp. by H 2 0. Sol. in NH 4 OH, and alkali carbonates + Aq. (Ouvrard.) Arsenic sulphoiodide, AsSI. Insol. in alcohol, chloroform, or carbon disul- phide. (Schneider, J. pr. (2) 23. 486.) Formula is probably As 2 S 3 , AsI 3 . Slowly attacked by HCl + Aq; somewhat more easily by HN0 3 + Aq. Easily sol. in KOH, orNH 4 OH + Aq. (Schneider, J. pr. (2) 34. 505.) 2AsI 3 , SI 6 . Decomp. on air. (Schneider, J. pr. (2) 36. 509.) As 4 S 5 I 2 . Less sol. in CS 2 than AsI 3 . (Ouv- rard, C. R. 117. 107.) As 2 SI 4 . (Ouvrard.) See also Arsenyl sulphoiodide. Arsenic sulphoselenide, As 2 SeS 2 . Easily sol. in cold NH 4 SH + Aq. Nearly completely sol. in (NH 4 ) 2 C0 3 + Aq. (v. Ge- richten, B. 7. 29.) As 2 SSe 2 . More difficultly sol. than the pre- ceding comp. in NH 4 SH + Aq. (v. Gerichten. ) Arsenic telluride, As 2 Te 2 (?). (Oppenheim, J. pr. 71. 266.) As 2 Te 3 (?). (Oppenheim.) Arsenic acid, anhydrous, As 2 5 . See Arsenic pentoxide. Meta&isemc acid, HAs0 3 . Slowly sol. in cold, quite easily sol. in hot H 2 0, with considerable evolution of heat, and conversion into H 3 As0 4 . (Kopp, A. ch. (3) 48. 196.) Orthoaxsemc acid, H 3 As0 4 . Sol. in H 2 0, with absorption of heat. 1 pt. As 2 5 dissolves in 0'405 pt. H 2 at 12 '5, or 100 pts. H 2 dissolve 244 '81 pts. As 2 5 atl2-5. (Vogel.) Sol. in 0-5 pt. H 2 0. (Thenard.) Sol. in 6 pts. cold H 2 0, and more quickly in 2 pts. hot H 2 0. (Bucholz.) 100 pts. H 2 at 15-56 dissolve 150 pts. As 2 5 . (lire's Diet.) H 3 As0 4 + Aq sat. at 15 contains 15 % As 2 5 . 32 ARSENIC ACID Sp. gr. of H 3 As0 4 + Aq at 15 : a = sp. gr. if % is As 2 5 ; & = sp. gr. if % is H 3 As0 4 . Pi/roarsenic acid, H 4 As 2 O r . Very deliquescent ; easily sol. in H 2 with %' %' , evolution of much heat, and conversion into (t a H 3 As0 4 . 5 1-042 1-0337 45 1-540 1-3973 Arsenates. 10 1-085 1-0690 50 1-635 1-4617 Arsenates of the alkali metals, and , acid 15 1-134 1-1061 55 1-742 1-5320 arsenates of the alkaline-earth metals are sol. 20 25 1-187 1-245 1-1457 1-1882 60 65 ... 1-6086 1-6919 in H 2 0. Neutral and basic arsenates are easily sol. in mineral acids, including H 3 As0 4 ; less 30 1-306 1-2342 70 ... 1-7827 sol. in HC 2 H 3 2 + Aq. The neutral alkaline - 35 1-378 1-2840 75 ... earth arsenates are less sol. in NH 4 OH + Aq 40 1-453 1-3382 ... than in H 2 0, but more sol. in NH 4 Cl + Aq (Schiff, A. 113. 183, calculated by Gerlach, . anal. 27. 303.) (Field). The alkali arsenates are sol. in hot glycerine. (Lefevre, C. R. 108. 1058.) p. gr. of H 3 As0 4 + Aq at 15 : a = sp. gr. if % is As 2 5 ; & = sp. gr. if % is H 3 As0 4 . Aluminum arsenate, Al 2 (As0 4 ) 2 . Ppt. Insol. in H^O ; difficultly sol. in acids. (Coloriano, C. R. 103. 273.) % a 6 % a 6 2A1 2 3 , 3As 2 5 . Nearly unattacked by 1 1-008 1-006 47 1-564 1-412 ch. (6) 27. 2 5.) 2 3 1-016 1-023 1-013 1-019 48 49 1-582 1-601 1-425 1-437 Aluminum potassium arsenate, 2A1 2 3 , 3K 2 0, 4 1-031 1-026 50 1-620 1-450 3As 2 5 . 5 1-039 1-032 51 1-642 1-464 (Lefevre. ) 6 1-048 1-039 52 1-663 1-478 Aluminum sodium arsenate, 2A1 2 3 , 3Na 2 0, 7 1-057 1-046 53 1-685 1-491 3As 2 6 . 8 1-065 1-052 54 1-706 1-505 9 1-074 1-059 55 1728 1-519 (.Letevre.; 10 1-083 1-066 56 1-752 1-534 Ammonium arsenate, (NH 4 ) 3 As0 4 + 3H 2 0. 11 12 1-092 1-102 1-073 1-081 57 58 1-777 1-801 1-549 1-564 Difficultly sol. in H 2 0. Less sol. in H 2 than (NH 4 ) 2 HAs0 4 . (Mitscherlich.) 13 14 1-111 1-121 1-088 1-096 59 60 1-825 1-850 1-579 1-594 Ammonium hydrogen arsenate, (NH 4 ) 2 HAs0 4 . 15 16 1-130 1-140 1-103 1-111 61 62 1-880 1-910 1-610 1-626 Effloresces, giving off NH 3 ; more sol. in H 2 than (NH 4 ) 3 As0 4 . (Salkowsky, J. pr. 104. 129.) 17 18 19 1-150 1-160 1-170 1-119 126 134 63 64 65 1-940 1-970 2-000 1-643 1-659 1-675 Ammonium ^hydrogen arsenate, NH 4 H 2 As0 4 . Not efflorescent. Very sol. in H 2 0. 20 1-180 142 66 2-030 1-693 Ammonium barium arsenate, NH 4 BaAs0 4 + 21 1-191 150 67 2-060 1-712 -H 0. 22 1-203 158 68 2-090 1-730 Ppt. 23 24 25 1-214 1-226 1-237 167 1-175 1-183 69 70 71 2-120 2-150 1-749 1-767 1-788 (NH 4 ) 2 BaH 2 (As0 4 ) 2 . Efflorescent. Insol. in H 2 0; easily sol. in dil. HN0 3 + Aq. (Bau- mann, Arch. Pharm. 36. 36.) 26 1-249 1-192 72 1-809 27 1-261 1-201 73 1 -830 Ammonium calcium arsenate, NH 4 CaAs0 4 + 28 1-274 1-210 74 1-851 6H 2 0. 29 1-286 1-219 75 1-872 Sol. in hot, very si. sol. in cold H 2 ; si. sol. 30 1-298 1-228 76 ... 1-897 in NH 4 C1, and NH 4 OH + Aq. (Wach, Schw. 31 1-312 1-238 77 1-921 J. 12. 285.) 32 1-325 1-248 78 1'946 + i>H 2 0. 33 1-339 1-257 79 1-970 1000 pts. pure H 2 dissolve 0'20 pt. this 34 1-352 1-267 80 1-995 salt ; 1000 pts. NH 4 Cl + Aq (containing 50 pts. 35 1-366 1-277 81 2-020 NH 4 C1) dissolve 4 -15 pts. this salt; 900 pts. 36 1-381 1-288 82 2-045 H 2 + 100 pts. NH 4 OH (sp. gr.^0'880) dis- 37 1-396 1-299 83 ... 2-070 solve O'Ol pt. this salt. (Field, Chem. Soc. 11. 38 1-411 1-309 84 2-095 6.) 39 1-426 1-320 85 2-120 + 7H 2 0. (Bloxam, C. N. 54. 163.) 40 41 1-441 1-458 1-331 1-342 86 87 ... 2-149 2-178 (NH 4 )oCaH 2 (As0 4 ) 2 . Efflorescent. Insol. in H 2 0; easily sol. in dil. HN0 3 + Aq. (Bau- 42 1-475 1-353 88 2-207 mann, Arch. Pharm. 36. 36.) 43 1-492 1-366 89 2-236 Ca 8 (NH 4 )H 2 ( As0 4 ) 3 + 3H 2 0. 44 1-509 1-376 90 ... 2-265 Ca 6 (NH 4 )H 5 ( As0 4 ) 6 + 3H 2 0. (Bloxam, C. N. 45 1-526 1-387 91 ... 2-295 54. 163.) 46 1 -545 1-400 ... ... Ammonium magnesium arsenate, NH 4 MgAs0 4 . opp, calculated by Gerlach, Z. anal. 27. 316.) SI. sol. in H 2 0. Sol. in acids. ARSENATE, CADMIUM HYDROGEN 33 Anhydrous salt is sol. in 2784 pts. H 2 at 15; in 15,904 pts. NH 4 OH + Aq (1 : 3) (0'96 sp. gr.) ; in 1386 pts. NH 4 C1 + Aq (1 : 70) ; in 8867 pts. NH 4 Cl + Aq (1:7); in 3014 pts. NH 4 C1 (1 pt.) + NH 4 OH(0-96 sp. gr.) (10 pts.) + Aq (60 pts.) ; in 32,827 pts. magnesia mixture. (Fresenius, Z. anal. 3. 206.) Anhydrous salt is sol. in 4389 pts. NH 4 N0 3 + Aq (1 : 50) ; in 2561 '5 pts. KC1 + Aq (1 : 165) ; in 1422 pts. ammoniacal solution of 3 '5 g. tar- taric acid in 250 com. H 2 ; in 933 "5 pts. ammoniacal solution of 2 '5 g. citric acid in 250 ccm. H 2 0. (Puller, Z. anal. 10. 62.) + |H 2 0. Sol. in 2656 pts. H 2 at 15 ; in 15,038 pts. NH 4 OH + Aq (1 : 3) (0'96 sp. gr.) ; in 844 pts. NH 4 Cl + Aq (1:7); in 1315 pts. NH 4 Cl + Aq (1 :70); in 2871 pts. NH 4 C1 (1 pt.) + NH 4 OH (0-96 sp. gr.) (10 pts.) + Aq (60 pts.). (Fre- senius.) 1000 pts. pure H 2 dissolve 014 pt. salt; 1000 pts. NH 4 Cl + Aq (containing 100 pts. NH 4 C1) dissolve 0'95 pt. salt ; 900 pts. H 2 + 100 pts. NH 4 OH (sp. gr. 0'880) dissolve 0'07 pt. salt. (Field, Chem. Soc. 11. 6.) + 6H 2 0. SI. efflorescent. SI. sol. in H 2 0. Very si. sol. in NH 4 OH + Aq. Ammonium mauganous arsenate, NH 4 MnAs0 4 + 6H 2 0. Nearly insol. in cold H 2 ; easily sol. in dil. acids ; insol. in alcohol. Ammonium sodium arsenate, NH 4 NaHAs0 4 + 4H 2 0. Sol. in H 2 0. (Uelsmann, Zeit. f. ges. Nat. 23. 347.) Ammonium sodium hydrogen arsenate, H 6 (NH 4 ) 3 Na 3 ( As0 4 ) 4 + 6H 2 0. Sol. in H 2 0. (Filhol and Senderens, C. R. 94. 649.) Ammonium strontium arsenate, NELSrAsCL + W.O. Ppt. Ammonium uranyl arsenate, NH 4 (U0 2 ) As0 4 + aH 2 0. Insol. in H 2 0, HC 2 H 3 2 , and saline solutions as NH 4 Cl + Aq ; sol. in mineral acids. (Puller, Z. anal. 10. 72.) Ammonium vanadium arsenate, NH 4 (V0 2 ) 2 As0 4 , and (NH 4 ) 2 HAs0 4 + 2(V0 2 ) 2 H 2 As0 4 . Sec Arseniovanadate, ammonium. Antimony arsenate (?). Insol. in H 2 ; insol. in acids after ignition, but when fresh is sol. in cone, boiling HC1 + Aq, and si. sol. in HN0 3 + Aq. (Dumas.) Barium arsenate, Ba s (As0 4 ) 2 . 1000 pts. pure H 2 dissolve 0*55 pt. Ba 3 (As0 4 ) 2 ; 1000 pts. NH 4 Cl + Aq (containing 50 pts. NH 4 C1) dissolve 1'95 pts. Ba 3 (As0 4 ) 2 ; 900 pts. H 2 + 100 pts. NH 4 OH + Aq (sp. gr. = 0-88) dissolve 0'03 pt. Ba 3 (As0 4 ) 2 . (Field, Chem. Soc. 11. 6.) Sol. in cold HN0 3 , and HC1 + Aq (Berzelius) ; H 2 C 4 H 4 6 , andHC 2 H 3 2 + Aq. (Anthon.) Solubility in H 2 is not increased by presence of NH 4 , Na, or K salts. (Laugier. ) Not pptd. in presence of Na citrate. (Spiller. ) + HH 2 0. (Salkowsky, J. pr. 104. 129.) Barium hydrogen arsenate, BaHAs0 4 + 1|H 2 0. Very si. sol. in H 2 0, but decomp. thereby into Ba 3 (As0 4 ) 2 and BaH 4 (As0 4 ) 2 . (Berzelius.) SI. sol. in cold acids. + H 2 0. SI. sol. in either BaCl 2 + Aq or Na 2 HAs0 4 + Aq. (Maumene, J. B. 1864. 237.) Barium ^rahydrogen arsenate, BaH 4 (As0 4 ) 2 . Easily sol. in H 2 0. (Setterberg, Berz. J. B. 26. 206.) Barium arsenate, acid, BaO, 2As 2 5 + 4H 2 0. Very si. sol. in H 2 0. (Mitscherlich. ) Barium pyroarsenate, Ba 2 As 2 7 . Insol. in H 2 0, but decomp. thereby into BaHAs0 4 + H 2 0. (Lefevre, C. R. 108. 1058.) Barium potassium arsenate, BaKAs0 4 . SI. decomp. by cold H 2 ; rapidly sol. in dil. acids. (Lefevre, A. ch. (6) 27. 1.) Barium arsenate chloride, 3Ba 3 (As0 4 ) 2 , BaCl 2 . Insol. in H 2 ; sol. in dil. HN0 3 + Aq. (Lechartier, C. R. 65. 172.) Bismuth arsenate, basic, BiAs0 4 , 3Bi 2 3 . Insol. in H 2 0. Sol. in mineral acids. (Cavazzi, Gazz. ch. it. 14. 289.) 5Bi 2 3 , 2As 2 5 + 8H 2 0. Min. Rhagite. Easily sol. in HCl + Aq; si. sol. in HN0 3 + Aq. Bismuth arsenate, BiAs0 4 + |H 2 0. Insol. in H 2 0. Insol. in HN0 3 + Aq in presence of H 3 As0 4 , or alkali arsenates + Aq ; sol. in HCl + Aq. (Salkowsky, J. pr. 104. 129.) Not wholly insol. in HN0 3 + Aq. (Schneider, J. pr. (2) 20. 418.) Very sol. in H 3 As0 4 + Aq. (Dumas.) Insol. in Bi(N0 3 ) 3 + Aq. (Dumas.) Sol. in Bi(N0 3 ) 3 + Aq. (Salkowsky.) Insol. in cone. Bi(N0 3 ) 3 + Aq containing a small quantity of HN0 3 . (Schneider.) Bismuth copper arsenate, Bi 2 Cu 20 As 10 H 44 70 = Bi 2 3 , 20CuO, 5As 2 5 + 22H 2 0. Min. Mixite. Decomp. by dil. HN0 3 + Aq into insol. BiAs0 4 , and Cu 3 (As0 4 ) 2 , which goes into solution. (Dana.) Bismuth uranyl arsenate, Bi 2 (As0 4 ) 2 , 8Bi0 3 H 3 , (U0 2 ) 3 (As0 4 ) 2 . Min. Walpurgite. Cadmium arsenate, Cd 3 (As0 4 ) 2 . Ppt. (Salkowsky, J. pr. 104. 129.) 2CdO, As 2 5 . (Lefevre, C. R. 110. 405.) 5CdO, 2As 2 5 + 5H 2 0. Ppt. (Salkowsky.) Cadmium j^roarsenate, Cd 2 As 2 7 . (de Schulten.) Cadmium hydrogen arsenate, CdHAs0 4 + H 2 0. Decomp. by H 2 0. (Demel, B. 12. 1279.) CdH 4 (As0 4 ) 2 + 2H 2 0. Decomp. by excess of H 2 0. (de Schulten, Bull. Soc. (3) 1. 473.) ARSENATE, CADMIUM POTASSIUM Cadmium potassium arsenate, 2CdO, K 2 0, (Lefevre, C. R. 110. 405.) Cadmium sodium arsenate, CdO, 21STa 2 0, As 2 5 . Slowly sol. in dil. acids. (Lefevre, C. R. 110. 405.) 2CdO, 4Na 2 0, 3As 2 5 . (Lefevre.) Cadmium arsenate bromide, 3Cd 3 (As0 4 ) 2 , CdBr 2 . Sol. in very dil. HN0 3 + Aq. (de Schulten, Bull. Soc. (3) 1. 472.) Cadmium arsenate chloride, 3Cd 3 (As0 4 ) 2 ,CdCl 2 . Sol. in very dil. HN0 3 + Aq. (de Schulten.) Calcium arsenate, Ca 3 (As0 4 ) 2 + 3H 2 0. Ppt. Insol. in H 2 ; sol. in H 3 As0 4 + Aq. (Kotschoubey, J. pr. 49. 182.) Calcium ^T/roarsenate, Ca 2 As 2 7 . Slowly decomp. by cold H 2 into CaHAs0 4 + 1|H 2 0. (Lefevre.) Calcium hydrogen arsenate, CaHAs0 4 + |H 2 0. Insol. in H 2 0. (Debray, A. ch. (3) 61. 419.) + H 2 0. Min. Haidingerite. Easily sol. in acids. + 2|H 2 0. Min. Pharmacolite. Easily sol. in acids. + 3H 2 0. Insol. in H 2 ; sol. in HC1, HN0 3 , or H 3 As0 4 + Aq; also in (NH 4 ) 2 S0 4 , NH 4 N0 3 , NH 4 C 2 H 3 2 , and NH 4 C1 + Aq. (Pfaff. ) Calcium ^rahydrogen arsenate, CaH 4 (As0 4 ) 2 . Sol. inH 2 0. (Graham.) Calcium ferric arsenate, 6CaO, 4Fe 2 3 , 5As 2 5 + 15H 2 0(?). Min. Arseniosiderite. Sol. in acids. Calcium magnesium arsenate, Ca 5 H 2 (As0 4 ) 4 , Mg 5 H 2 (As0 4 ) 4 + 10H 2 0. Min. Picropharmacolite. Easily sol. in acids. Ca 3 ( As0 4 ) 2 , Mg 3 (As0 4 ) 2 . Sol. in HN0 3 + Aq. (Kiihn.) Min. Berzeliite. Sol. in HN0 3 + Aq. Ca 8 Mg 6 H 14 (As0 4 ) 14 + 49H 2 0. Min. Wap- plerite. Calcium potassium arsenate, CaKAs0 4 . (Lefevre, A. ch. (6) 27. 5.) Calcium sodium arsenate, CaNaAs0 4 . (Lefevre, A. ch. (6) 27. 1.) 4CaO, 2Na 2 0, 3As 2 5 . Not attacked by boiling H 2 ; easily sol. in dil. acids. (Lefevre.) Calcium uranyl arsenate, Ca(U0 2 ) 2 (As0 4 ) 2 + 8H 2 0. Min. Uranospinite. Calcium vanadium arsenate, CaHAs0 4 , 2(V0 2 )H 2 As0 4 + 8H 2 0. See Arseniovanadate, calcium. Calcium arsenate chloride, Ca 3 (As0 4 ) 2 , CaCl 2 . Insol. in H 2 ; sol. in dil. HN0 3 + Aq. (Lechartier, C. R. 65. 172.) 3Ca 3 (As0 4 ) 2 , Ca01 2 . As above. (Lechartier.) Cerous arsenate, CeHAs0 4 . Insol. in H 2 0. Sol. in arsenic acid + Aq. (Berzelius.) Chromic arsenate, 2Cr 2 3 , 3As 2 5 . Insol. in H 2 and cone, boiling acids. (Lefevre, A. ch. (6) 27. 5.) Chromic potassium arsenate, 2Cr 2 3 , 3K 2 0, 3As 2 5 . (Lefevre. ) Chromic sodium arsenate, 2O 2 3 , 3Na 2 3As 2 5 . (Lefevre.) Cobaltous arsenate, basic, 4CoO, As 2 5 . Easily sol. in acids. (Gentele, J. B. 1851 359.) Co(CoOH)As0 4 . Insol. in H 2 ; difficultly sol. in acids. (Coloriano.) Cobaltous arsenate, Co 3 (As0 4 ) 2 + 8H 2 0. Ppt. Insol. even in boiling H 2 ; easily sol. in HN0 3 , HC1, and NH 4 OH + Aq ; sol. ii H 3 As0 4 + Aq (Proust) ; sol. in dil. FeS0 4 + Aq (Karsten, Pogg. 60. 266.) Min. Cobalt bloom, Erythrite. Easily sol. ii acids. 5CoO, 2As 2 5 + 3H 2 0. Insol. in H 2 ; dif ficultly sol. in acids. (Coloriano, C. R 103. 273.) 2CoO, As 2 5 . SI. attacked by boiling H 2 easily sol. in dil. acids. (Lefevre.) Cobaltous hydrogen arsenate, CoH 4 (As0 4 ) 2 . Sol. in H 2 0. Cobaltous potassium arsenate, CoKAs0 4 . (Lefevre.) Cobaltous sodium arsenate, CoNaAs0 4 . (Lefevre.) 4CoO, 2Na 2 0, 3As 2 5 . (Lefevre.) Cobaltous vanadium arsenate, Co( V0 2 ) 2 H 2 ( As0 4 ) 2 + 8H 2 0. See Arseniovanadate, cobaltous. Cupric arsenate, 12H0 ?. basic, 8CuO, Min. Chalcophyllite. Easily sol. in acid andNH 4 OH + Aq. 6CuO, As 2 5 + 3H 2 0. Min. Aphanesite Chioclasite. Sol. in acids and ammonia. 5CuO, As 2 5 + 2H 2 0. Min. Erinite. Sol. ii HN0 3 + Aq. + 5H 2 0. Min. Cornwallite. Sol. in acids andNH 4 OH + Aq. 4CuO, As 2 5 + H 2 0. Insol. in H 2 0. (Debray A. ch. (3) 61. 423.) Min. Olivenite. Sol. in acids, and NH 4 OH -+ Aq ; decomp. by hot KOH + Aq. + 7H 2 0. Min. Euchroite. Sol. in HN"0 3 -+ Aq. + 3JH 2 0. (Hirsch, C. C. 1891, 1. 15.) Cupric arsenate, Cu 3 (As0 4 ) Insol. in H 2 0. Sol. in acids, and NH 4 OH + Aq. (Coloriano C. R. 103. 273.) + 5H 2 0. ARSENATE, LEAD POTASSIUM Min. Trichalcite. Easily sol. in cold HCl-t-Aq. Cupric arsenate, acid, 5CuO, 2As 2 5 . Sol. inlLjSOg + Aq. (Vogel.) + 3H 2 0. (Salkowsky.) CuHAs0 4 . Insol. in H 2 0. (Coloriano.) + HH 2 0. Insol. in H 2 0. (Debray, A. ch. (3) 61. 419.) 8CuO, 3As 2 5 . (Hirsch.) Cupric lead arsenate, 3CuO, PbO, As 2 5 + 2H 2 0. Min. Bayldonite. Nearly insol. in HN0 3 + Aq. Cupric potassium arsenate, CuKAs0 4 . Slowly sol. in NH 4 OH + Aq ; easily sol. in acids. (Lefevre, A. ch. (6) 27. 5.) 8CuO, K 2 0, As 2 5 . Easily sol. in dil. acids. (Lefevre.) Cupric sodium arsenate, CuNaAs0 4 . (Lefevre.) 3CuO, Na 2 0, 2As 2 5 . Very sol. in dil. acids. (Lefevre.) 2Cu 3 (As0 4 ) 2 , NaH 2 As0 4 + 5H 2 0. Ppt. (Hirsch, C. C. 1891, 1. 15.) 6Cu 3 (As0 4 ) 2 , 2NaH 2 As0 4 , Na 2 HAs0 4 + 13 H 2 0, or 16H 2 0. Ppt. (Hirsch.) 3Cu 3 (As0 4 ) 2 , Na 2 HAs0 4 + 9JrH 2 0. Ppt. (Hirsch.) 4Cu 3 (As0 4 ) 2 , Na 2 HAs0 4 + 11H 2 0. Ppt. (Hirsch.) Cupric uranyl arsenate, Cu(U0 2 ) 2 ( As0 4 ) 2 + 8H 2 0. (Werther, A. 68. 312.) Min. Zeunerite. Cupric vanadium arsenate, Cu(V0 2 ) 2 H 2 (As0 4 ) 2 + 3H 2 0. See Arseniovanadate, cupric. Cupric arsenate ammonia, Cu 3 (As0 4 ) 2 , 3NH 3 + 4H 2 0. Insol. in cold or hot H 2 0. (Damours, J. pr. 37. 485.) 2CuO, As 2 5 , 4NH 3 + 3H 2 0. Decomp. by H 2 0. (Schiff, A. 123. 42.) Cupric arsenate calcium carbonate, 5CuO, As 2 5 , CaC0 3 + 4H 2 0, or 9H 2 0. Min. Tyrolite. Easily sol. in acids, and NH 4 OH + Aq. Didymium arsenate, Di 2 H 3 (As0 4 ) 3 . Ppt. Insol. in H 2 ; si. sol. in weak acids. (Marignac, A. ch. (3) 38. 164.) 5Di 2 (As0 4 ) 2 , As 2 5 + 3H 2 0. Ppt. Glucinum arsenate, Gl 3 (As0 4 ) 2 . Insol. in H 2 ; sol. in H 3 As0 4 + Aq. (Ber- zelius.) Ferrous arsenate, Fe 3 (As0 4 ) 2 + 6H 2 (?). Ppt. SI. sol. in NH 4 OH + Aq. Insol. in (NH 4 ) 3 As0 4 + Aq or other NH 4 salts + Aq. (Wittstein.) + 8H 2 0. Min. Symplesile. Sol. in HC1 + Aq. Ferric arsenate, basic, 16Fe 2 3 , As 2 5 + 24H 2 0. Insol. in NH 4 OH + Aq. (Berzelius. ) 2Fe 2 3 , As 2 5 + 12H 2 0. Insol. in NH 4 OH + Aq. 3Fe 2 3 , 2As 2 5 . 3Fe 2 (As0 4 ) 2 , Fe 2 6 H 6 + 12H 2 0. Min. Phar- macosiderite. Easily sol. in acids ; decomp. by KOH + Aq. Ferric arsenate, Fe 2 (As0 4 ) 2 + 4H 2 0. Min. Scorodite. Easily sol. in HCl + Aq ; insol. in HN0 3 + Aq. + 8H 2 0. Insol. in H 2 0. When freshly pptd., sol. in NH 4 OH + Aq. Sol. in HC1, or HN0 3 + Aq. Insol. in HC 2 H 3 2 , or NH 4 salts + Aq. (Wittstein. ) Sol. in warm H 2 S0 3 + Aq or (NH 4 ) 2 S0 3 + Aq. (Berthier, A. ch. (3) 7. 79.) Ferric arsenate, acid, 2Fe 2 3 , 3As 2 5 + 12H 2 0. Insol. in H 2 or HC 2 H 3 2 + Aq. Sol. in mineral acids. Sol. only in cone. H 3 As0 4 + Aq. Sol. in (NH 4 ) 3 As0 4 , and other NH 4 salts + Aq. (Wittstein.) Sol. inNH 4 OH + Aq. Ferroferric arsenate, 6FeO, 3Fe 2 3 , 4As 2 5 + 32H 2 0. Insol. in H 2 0. Sol. in HCl + Aq. Decomp. by KOH + Aq. (Wittstein, J. B. 1866. 243.) Ferric lead arsenate, 5Fe 2 (As0 4 ) 2 , Pb 3 (As0 4 ) 2 . Min. Carmine Spar. Carminite. Sol. in acids ; KOH + Aq dissolves out As 2 5 . (Sand- berger. ) Ferric potassium arsenate, 2Fe 2 3 , 3K 2 0, 3As 2 5 . Not attacked by boiling H 2 ; easily sol. in dil. acids. (Lefevre.) Fe 2 3 , KjO, 2As 2 5 . (Lefevre.) Ferric sodium arsenate, Fe 2 3 , Na 2 0, 2As 2 5 . (Lefevre.) 2Fe 2 3 , 3Na 2 0, 3As 2 5 . (Lefevre.) Lanthanum arsenate, La 2 H 3 (As0 4 ) 3 . (Frerichs and Smith.) Doubtful. (Cleve, B. 11. 910.) Lead arsenate, Pb 3 (As0 4 ) 2 . Insol. in H 2 0, NH 4 OH, or NH 4 salts + Aq. (Wittstein.) Sol. in 2703-5 pts. HC 2 H 3 2 + Aq containing 38-94 % HC 2 H 3 2 . (Bertrand, Monit. Scient. (3) 10. 477.) Sol. in sat. NaCl + Aq. (Becquerel, C. R. 20. 1523.) Not pptd. in presence of Na citrate. (Spiller.) Lead ^2/roarsenate, Pb 2 As 2 7 . Insol. in H 2 or HC 2 H 3 2 + Aq. Sol. in HC1, or HN0 3 + Aq. (Rose.) Decomp. by cold H 2 0. (Lefevre.) + H 2 = PbHAs0 4 . Ppt. (Salkowsky, J. pr. 104. 109.) Lead potassium arsenate, PbKAs0 4 . (Lefevre, A. ch. (6) 27. 5.) 36 ARSENATE, LEAD SODIUM Lead sodium arsenate, PbNaAs0 4 . (Lefevre.) 4PbO, 2Na 2 0, 3As 2 5 . Superficially de- comp. by cold H 2 0. (Lefevre.) Lead arsenate chloride, 3Pb 3 (As0 4 ) 2 , PbCl 2 . Sol. indil. HN0 3 + Aq. (Lechartier. ) Min. Mimetite. Sol. in HN0 3 , and KOH + Aq. Lithium arsenate, Li 3 As0 4 . Ppt. Sol. in dil. acids and in HC 2 H 3 2 + Aq. (de Schulten, Bull. Soc. (3) 1. 479.) LiH 2 As0 4 + fH 2 0. Decomp. by H 2 into H 3 As0 4 and Li 3 As0 4 . (Rammelsberg, Pogg. 128. 311.) Magnesium arsenate, Mg 3 (As0 4 ) 2 . Ppt. + 8H 2 0. Min. Hornesite. Insol. in H 2 ; easily sol. in acids. Magnesium hydrogen arsenate, MgHAs0 4 . + iH 2 0. Insol. in H 2 0. (de Schulten, C. R. 100. 263.) + 5H 2 0. (Schiefer.) + 6iH 2 0. Insol. in H 2 0. 1000 pts. boiling H 2 dissolve 1'5 pts. (Thompson.) Sol. in HN0 3 + Aq before ignition, but insol. in acids after ignition. (Graham, A. 29. 29.) + 7H 2 0. Min. Roesslerite. Sol. inHCl + Aq. Magnesium ^rahydrogen arsenate, MgH 4 (As0 4 ) 2 . Yery deliquescent ; sol. in H 2 0. Magnesium potassium arsenate, MgKAs0 4 . Insol. in, but decomp. by cold H 2 0. (Rose. ) Easily sol. in dil. acids. (Lefevre.) 4MgO, 2K 2 0, 3As 2 O 5 . Not attacked by boiling H 2 ; slowly sol. in dil. acids. (Lefevre.) Magnesium sodium arsenate, MgNaAs0 4 . Insol. in H 2 0. Yery si. sol. in dil. acids. (Lefevre.) 4MgO, 2Na 2 0, 3As 2 5 . (Lefevre.) Magnesium vanadium arsenate, MgH 2 (Y0 2 ) 2 (As0 4 ) 2 + 9H 2 and MgHAs0 4 , 2(Y0 2 )H 2 As0 4 + 9H 2 0. See Arseniovanadate, magnesium. Magnesium arsenate chloride, Mg 3 (As0 4 ) 2 , MgCl 2 . Insol. in H 2 ; sol. in dil. HN0 3 + Aq. (Lechartier, C. R. 65. -172.) Magnesium arsenate fluoride, Mg 3 (As0 4 ) 2 , MgF 2 . Insol. in H 2 ; sol. in dil. HN0 3 + Aq. (Lechartier. ) Manganous arsenate, basic, 6MnO, As 2 5 + 3H 2 (?). Min. Chondroarsenite. Easily and com- pletely sol. in dil. HC1, and HN0 3 + Aq. Manganous arsenate, Mn 3 ( As0 4 ) 2 + H 2 0. Insol. in H 2 ; si. sol. in acids. (Coloriano, C. R. 103. 273.) 5MnO, 2As 2 5 + 5H 2 0. Insol. in H 2 0. (Coloriano. ) 2MnO, As 2 C but rapidly on HMnAs0 4 + into 5MnO, 5. H 2 S0 4 , or H 3 A Manganous i MnH 4 (As< Deliquescen Manganous p< (Lefevre, A, Manganous sc Very sol. ii: 2MnO, 4m boiling H 2 ; Manganous MnCl 2 . Insol. in ]' (Lechartier, A. &s. zoy.; Manganic arsenate, Mn 2 (As0 4 ) 2 + 2H 2 0. Insol. in H 2 ; sol. in acids. Mercurous arsenate, (Hg 2 ) 3 (As0 4 ) 2 . Insol. in H 2 ; difficultly sol. in acids. (Coloriano, C. R. 103. 273.) Ppt. (Haack, C. C. 1890, 2. 736.) Hg 2 (As0 3 ) 2 . Insol. in H 2 0, HC 2 H 3 2 , or alcohol. Decomp. by cold HCl + Aq. SI. sol. in cold HN0 3 + Aq, from which it is precipi- tated by NH 4 OH as Hg 2 HAs0 4 . (Simon, Pogg. 41. 424.) Mercurous hydrogen arsenate, Hg 2 HAs0 4 . Insol. in H 2 0, HC 2 H 3 2 , or NH 4 OH + Aq. Decomp. by cold HCl + Aq ; sol. in cold HN0 3 + Aq without decomp. ; very si. sol. without decomp. in NH 4 N0 3 + Aq. (Simon, Pogg. 41. 424.) Mercuric arsenate, Hg 3 (As0 4 ) 2 . Ppt. Sol. in H 3 As0 4 or HN0 3 + Aq. (Berg- man.) Very si. sol. in H 2 0. Easily sol. in HCl + Aq. SI. sol. in HN0 3 + Aq. Insol. in H 3 As0 4 + Aq. (Haack, C. C. 1890, 2. 736.) Mercurous arsenate nitrate, Hg 3 As0 4 , HgN0 3 + H 2 0. Insol. in H 2 or HC 2 H 3 2 ; sol. in HN0 3 + Aq. (Simon, Pogg. 41. 424.) 3Hg 3 As0 4 , 2HgN0 3 , 2Hg 2 0. Ppt. (Haack.) Molybdenum arsenate. Ppt. Nickel arsenate, basic, 5NIO, As 2 5 . Min. (Bergemann.) 5MO, 2As 2 5 + 3H 2 0. M(MOH)As0 4 . Difficultly attacked by acids or alkalies. (Coloriano, Bull. Soc. (2) 45. 241.) Nickel arsenate, Ni 3 (As0 4 ) 2 . Min. (Bergemann.) + #H 2 0. Insol. in H 2 0. Sol. in H 3 As0 4 , and cone, mineral acids. Easily sol. in NH 4 OH + Aq. + 2H 2 0. Insol. in H 2 ; difficultly sol. in acids. (Coloriano, Bull. Soc. 45. 241.) ARSENATE, SODIUM HYDROGEN 37 + 8H 2 0. Min. Nickel-bloom, Annabergite. Easily sol. in acids. Nickel potassium arsenate, 1 2MO, 3K 2 0, 5 As 2 5 . (Lefevre.) 2NiO, K 2 0, As 2 5 . Rapidly sol. in dil. acids. (Lefevre. ) Nickel sodium arsenate, NiNaAs0 4 . Very slowly sol. in dil, acids. (Lefevre.) 4NiO, 2Na 2 0, 3As 2 5 . (Lefevre.) Palladium arsenate (?). Ppt. Platinum arsenate (?). Ppt. Sol. inHN0 3 + Aq. Potassium arsenate, K 3 As0 4 . Deliquescent. Very sol. in H 2 0. (Graham, Pogg. 32. 47.) Potassium hydrogen arsenate, K 2 HAs0 4 . Sol. in H 2 0. Potassium ^hydrogen arsenate, KH 2 As0 4 . Sol. in 5 '3 pts. H 2 at 6, forming a solu- tion of sp. gr. 1-1134. Much more sol. in hot H 2 0. Insol. in alcohol. Sol. in 26 '666 pts. boiling cone, alcohol. (Wenzel.) Potassium sodium hydrogen arsenate, KNaHAs0 4 + 16H 2 0. Sol. in H 2 0. K 3 Na ? H 6 (As0 4 ) 4 + 9H 2 0. Sol. in H 2 0, and not easily decomp. thereby into its constitu- ents. (Filhol and Senderens, C. R. 95. 343.) Potassium strontium arsenate, KSrAs0 4 . (Lefevre, C. R. 108. 1058.) Potassium vanadium arsenate, (V0 2 ) 2 KAs0 4 + See Arseniovanadate, potassium. Potassium zinc arsenate, KZnAs0 4 . (Lefevre.) Rhodium arsenate (?). Ppt. Silver arsenate, Ag 3 As0 4 . Insol. in H 2 0. Sol. in acids ; easily sol. in H 3 As0 4 + Aq. (Joly, C. R. 103. 1071.) Sol. in NH 4 OH + Aq. (Scheele. ) Sol. in (NH 4 ) 2 C0 3 + Aq. Insol. in NH 4 sul- phate, nitrate, or succinate + Aq. (Wittstein. ) Very si. sol. in NH 4 N0 3 + Aq, more easily in HC 2 H 3 2 + Aq. (Graham.) Sol. in Na 2 S 2 3 + Aq, but not so easily as Ag 3 P0 4 . Not pptd. in presence of Na citrate. (Spiller.) Silver hydrogen arsenate, Ag 2 HAs0 4 . Decomp. by H 2 0, with formation of Ag 3 As0 4 . (Setterberg, Berz. J. B. 26. 208. ) AgH 2 As0 4 . Decomp. by H 2 0. (Joly, C. R. 103. 1071.) Ag 2 0, 2As 2 5 . Decomp. by H 2 0. Rather si. sol. in HN0 3 + Aq. Very easily sol. in NH 4 OH + Aq. (Hurtzig and Geuther, A. 111. 168.) Silver arsenate ammonia, Ag 3 As0 4 , 4NH 3 . Easily sol. in H 2 0. (Widmann, Bull. Soc. (2) 20. 64.) Silver arsenate sulphate, 3Ag 2 0, As 2 5 , S0 3 . Decomp. by H 2 0, with separation of Ag 3 As0 4 ; decomp. by dil. H 2 S0 4 + Aq. (Setterberg, Berz. J. B. 26. 209.) Sodium arsenate, Na 3 As0 4 + 12H 2 0. Permanent in dry air. Sol. in 3 "57 pts. H 2 at 15 '5. (Graham. ) 100 pts. H 2 at 15 '5 dis- solve 28 pts. Na 3 As0 4 + 12H 2 0. (Berzelius.) Sol. in 375 pts. H 2 at 17 ; or 100 pts. H 2 at 17 dissolve 267 pts. ; or sat. Na 3 As0 4 + Aq at 17 contains 21 "1 % Na 3 As0 4 + 12H 2 or 10 '4 % Na 3 As0 4 , and has sp. gr. 1 '1186. (Schiff, A. 113. 350.) Melts in crystal H 2 at 85 '5. Sp. gr. of Na 3 As0 4 + Aq at 17. % = %Na 3 As0 4 + 12H 2 0. % Sp.gr. % Sp. gr. % Sp. gr. 1 1-0053 9 1-0490 17 1-0945 2 1-0107 10 1-0547 18 1-1003 3 1-0161 11 1-0603 19 1-1061 4 1-0215 12 1-0659 20 1-1121 5 1-0270 13 1-0716 21 1-1179 6 1-0325 14 1-0773 22 1-1238 7 1-0380 15 1-0830 8 1-0435 16 1-0887 (Schiff, calculated by Gerlach, Z. anal. 8. 286.) "Arseniate of soda" dissolves in 60 pts. boiling alcohol. (Wenzel.) + 4PI 2 O. + 10H 2 0. (Hall, Chem. Soc. 51. 93.) Efflorescent. (Hall.) Sodium hydrogen arsenate, Na 2 HAs0 4 + 12H 2 0. Efflorescent. Sol. in H 2 ; sol. in 179 pts. H 2 at 14 ; or 100 pts. H 2 at 14 dissolve 56 pts. Na 2 HAs0 4 + 12H 2 0. Sat. Na 2 HAs0 4 + Aq contains 35 '9 % Na 2 HAs0 4 + 12H 2 0, or 16-5 % Na 2 HAs0 4 , and has sp. gr. = l'l722. (Schiff, A. 113. 350.) 100 pts. H 2 O at 7-2 dissolve 22*268 pts. (Thompson.) 100 pts. H 2 dissolve 17 '2 pts. Na 2 HAs0 4 + 12H 2 atO, and 140 '7 pts. at 30. (Tilden, Chem. Soc. 45. 409.) Melts in crystal H 2 at 28. (Tilden.) Sp. gr. of Na 2 HAs0 4 + Aq at 14. % = %Na 2 HAs0 4 + 12H 2 0. % Sp.gr. % Sp. gr. % Sp. gr. 1 1-0042 15 1-0665 29 1-1358 2 1-0084 16 1-0712 30 1-1410 3 1-0126 17 1 -0759 31 1-1463 4 1-0168 18 1-0807 32 1-1516 5 1-0212 19 1-0855 33 1-1569 6 1-0256 20 1-0904 34 1-1623 7 1-0300 21 1-0953 35 1-1677 8 1-0344 22 1-1003 36 1-1731 9 1-0389 23 1-1052 37 1-1786 10 1-0434 24 1-1103 38 1-1841 11 1-0479 25 1-1153 39 1-1896 12 1-0525 26 1-1204 40 1-1952 13 1-0571 27 1-1255 ... 14 1-0618 28 1-1306 (Schiff, calculated by Gerlach, Z. anal. 8. 280.) r \ TY) f O (UNIVERS ARSENATE, SODIUM HYDROGEN Insol. in alcohol. + 7H 2 0. Not efflorescent. (Schiff.) + 7|H 2 0. (Lescoeur, C. R. 104. 1171.) + 13iH 2 0. (Setterberg.) Sodium cfo'hydrogen arsenate, NaH 2 As0 4 + H 2 0. More sol. in H 2 than Na 3 As0 4 or Na 2 HAs0 4 . (Schiff.) + 2H 2 0. Efflorescent. (Joly and Duffet, C. R. 102. 1391.) Sodium ^hydrogen cKarsenate, Na 3 H 3 (As0 4 ) 2 + 3H 2 0. Sol. in H 2 0. (Filhol and Senderens, C. R. 95. 343.) Sodium strontium arsenate, NaSrAs0 4 . Not attacked by boiling H 2 0. (Lefevre.) + 9H 2 0. Scarcely sol. in H 2 0. (Joly, C. R. 104. 905.) + 18H 2 0. (Joly.) Sodium uranyl arsenate, Na(U0 2 )As0 4 . Ppt. (Werther, A. 68. 312.) Sodium zinc arsenate, NaZnAs0 4 . Slowly sol. in dil. acids. (Lefevre.) Na 2 ZnAs 2 Or. As above. (Lefevre.) Sodium arsenate fluoride, Na 3 As0 4 , NaF + 12H 2 0. Sol. in 9 '5 pts. H 2 at 25, and 2 pts. at 75. (Briegleb, A. 97. 95.) Sodium arsenate stannate, 6Na 2 0, 2As 2 5 , Sn0 2 + 50H 2 0. More difficultly sol. than sodium stannate. (Haeffely, Phil. Mag. (4) 10. 290.) Sodium arsenate sulphate, Na 8 As 6 19 , 2Na 2 S0 4 . Sol. in H 2 0. (Mitscherlich.) Na 4 As 2 7 , Na 2 S0 4 . (Setterberg.) Sodium arsenate tungstate, Na 4 As 2 7 , Na 2 W 3 10 + 20H 2 0. Yery easily sol. in H 2 0. (Lefort, C. R. 92. 1461.) Strontium arsenate, Sr 3 (As0 4 ) 2 . Not attacked by boiling H 2 ; easily sol. in dil. acids. (Lefevre, A. ch. (6) 27. 5.) Strontium ^>?/roarsenate, Sr 2 As 2 7 . Decomp. by cold H 2 into SrHAs0 4 + 1|H 2 0. (Lefevre.) Strontium hydrogen arsenate, SrHAs0 4 + liHjO. Insol. in cold, but decomp. by hot H 2 into a basic, and a sol. acid salt. 100 pts. H 2 at 15'5 dissolve 0'284 pt. (Thompson, 1831.) Sol. in HC 2 H 3 2 , and very easily in HC1 + Aq. (Kotschoubey, J. pr. 49. 182.) Sol. inHN0 3 + Aq. Strontium vanadium arsenate, SrHAs0 4 + 2(V0 2 )H 2 As0 4 + 7iH 2 0. See Arseniovanadate, strontium. Strontium arsenate chloride, 3Sr 3 (As0 4 ) 2 , SrCl 2 . Insol. in H 2 ; easily sol. in dil. HN0 3 + Aq. (Lechartier, C, R. 65, 172.) Thallous arsenate, TLAs0 4 . Sol. in H 2 0. (Willm, A. ch. (4) 5. 5.) Thallous hydrogen arsenate, Tl 2 HAs0 4 . Very easily sol. in H 2 0. (Willm.) Thallous c^hydrogen arsenate, TlH 2 As0 4 . Easily sol. in H 2 0. (Willm.) Thallic arsenate, Tl As0 4 + 2H 2 0. Insol. in H 2 ; sol. in HCl + Aq; decomp. by NH 4 OH, or KOH + Aq. (Willm. ) Thorium arsenate, ThHAs0 4 . Insol. in H 2 or H 3 As0 4 + Aq. (Berzelius.) Stannous arsenate, Insol. in H 2 0. (Lenssen, A. 114. 113.) Stannic arsenate, 2Sn0 2 , As 2 5 . Ppt. Insol. in H 2 and dil. HN0 3 + Aq. (Haeffely, Phil. Mag. (4) 10. 290.) Sn 3 (As0 4 ) 4 + 6H 2 0. Insol. in H 2 ; sol. in cone. HC1 + Aq, and in aqua regia ; insol. in HN0 3 + Aq or H 2 S0 4 . (Williams, Proc. Soc. Manchester, 15. 67.) Colloidal. Very slowly sol. in H 2 0, from which it is pptd. by HC1, HN0 3 , or H 2 S0 4 + Aq ; also by BaCl 2 , CaCl 2 , NH 4 C1, and FeCl 3 + Aq, and by AgN0 3 , or KI + Aq. Not pptd. by alcohol, HC 2 H 3 6 2 , HgCl 2 , Na 2 C0 3 , KjCOg, or (NH 4 ) 2 C0 3 + Aq. The pptd. jelly is readily sol. in cone, acids, and KOH, or NaOH + Aq. (Williams, I.e.) Stannous arsenate chloride, Sn 3 (As0 4 ) 2 , SnCl 2 + 2H 2 0. Decomp. on air. (Lenssen, A. 114. 113.) Titanium arsenate (?). Insol. in H 2 0. Sol. in titanic acid, arsenic acid, or HC1 + Aq. Sol. in Ti salts + Aq. (Rose.) Uranous arsenate, U 3 (As0 4 ) 2 . Ppt. Uranous hydrogen arsenate, UHAs0 4 + 1|H 2 0. Ppt. Sol. in HCl + Aq. Uranyl arsenate, (U0 2 )HAs0 4 + 4H 2 0. Insol. in H 2 0, HC 2 H 3 2 , and saline solutions, as NH 4 C1 + Aq ; sol. in the mineral acids ; sol. in K 2 C0 3 + Aq. (Ebelmen, A. ch. (3) 5. 220.) (U0 2 ) 2 As 2 7 Insol. in H 2 ; sol. in acids. (U0 2 ) 3 (As0 4 ) 2 + 12H 2 0. Min. Troegerite. Vanadium ^hydrogen arsenate, (V0 2 )HoAs0 4 + 4H 2 0. Easily sol. in H 2 0. (Friedheim, B. 23. 2600.) See Arseniovanadic acid. Vanadium zinc arsenate, (V0 2 ) 2 ZnH 2 (As0 4 ) 2 + 5|H 2 0, and 2( V0 2 )H 2 As0 4 + 6iH 2 0. See Arseniovanadate, zinc. Vanadyl arsenate, (VO) 2 HAs0 4 + H 2 0. Very slowly sol. in H 2 ; insol. in alcohol ; easily sol. in HCl + Aq. (Berzelius.) ARSENIOMOLYBDATE, POTASSIUM Composition given by Friedheim (B. 23. 2600). Yttrium arsenate, YtHAs0 4 . Ppt. Insol. in acetic, easily sol. in mineral acids. Zinc arsenate, basic, 4ZnO, As 2 5 + H 2 0. (Friedel, J. B. 1866. 949.) Min. Adamite. Easily sol. in dil. HC1 + Aq, and is attacked by HC 2 H 3 2 . Zinc arsenate, Zn 3 (As0 4 ) 2 + 3H 2 0. Ppt. Sol. in HN0 3 , and H 3 As0 4 + Aq. (Kottig, J. pr. 48. 182.) + 8H 2 0. Min. Kottigite. Zinc arsenate, acid, 5ZnO, 2As 2 5 . Insol. in H 2 ; sol. in H 3 As0 4 , or HN0 3 + Aq. (Mitscherlich.) + 5H 2 0. (Demel, B. 12. 1279.) 2ZnO, As 2 5 . Very slowly decomp. by cold, rapidly by boiling H 2 0. (Lefevre.) ZnHAs0 4 + H 2 0. Insol. in H 2 0. (Debray, Bull. Soc. (2) 2. 14.) Decomp. by hot H 2 into 4ZnO, Aso0 5 + H 2 0. (Goloriano, C. R. 103. 273.) Zinc arsenate ammonia, Zn 3 (As0 4 ) 2 , 2NH 3 + 3H 2 0. Insol. in H 2 ; sol. in acids, NH 4 OH, or KOH + Aq. (Bette, A. 15. 141.) Zirconium arsenate, 2Zr0 2 , As 2 5 (ZrO)HAs0 4 + |H 2 0. Ppt. Insol. in H 2 or HC1 + Aq. (Paykull, B. 6. 1467.) Arsenioarsenic acid, 3As 2 3 , 2As 5 + 3H 2 0. Decomp. by H 2 0. (Joly, C. R., 100. 1221.) 3As 2 3 , As 2 5 + H 2 0. Decomp. by H 2 0. (Joly.) As 2 3 , As 2 5 + H 2 0. Decomp. by H 2 0. (Joly.) See also Arsenic dioxide pentoxi&Q. Arseniomolybdic acid, As 2 o 5 , !8Mo0 3 + 30H 2 0. Sol. in H 2 0. Solution sat. at 18 '3 has sp. gr. 2 '45, and contains 2 '16 g. dissolved in 1 com. H 2 0. K salt is difficultly sol., Na, NH 4 , Co, Ni, and Cu salts are easily sol. in H 2 0. (Pu- fahl, B. 17. 217.) Sol. in ether with subsequent separation into two layers. See Phosphotungstic acid. (Drech- sel, B. 20. 1452.) 3H 2 0, 7Mo0 3 , As 2 5 + llH 2 0. (Seyberth, B. 7. 391.) 3H 2 0, 20Mo0 3 , As 2 5 + 24H 2 0. SI. sol. in HN0 3 + Aq. (Debray, C.R. 78. 1408.) 3H 2 0, 6Mo0 3 , As 2 5 + 13H 2 0. Sol. in H 2 0. (Debray.) Ammonium arseniomolybdate, 3 (NH 4 ) 2 0,As 2 5 , 24Mo0 3 + 6H 2 0. Insol. in H 2 0, HN0 3 , dil. H 2 S0 4 + Aq, and in solutions of salts when (NH 4 ) 2 Mo0 4 and HN0 3 are in excess. (Seligsohn, J. pr. 67. 481.) 5(NH 4 ) 2 0, H 2 0, As 2 5 , 16Mo0 3 + 8H 2 0. Nearly insol. in cold, sol. in boiling H 2 0. Easily sol. in NH 4 OH + Aq. (Gibbs, Am. Ch. J. 3. 402.) (NH 4 ) 2 0, 2H 2 0, 7Mo0 3 , As 2 5 + 4H 2 0. Sol. in hot H 2 0. (Seyberth, B. 7. 391.) Not obtained. (Pufahl.) 20Mo0 3 , 3(NH 4 ) 2 0, As 2 5 . Easily sol. in H 2 0. (Debray, C. R. 78. 1408.) 6Mo0 3 , 4(NH 4 ) 2 0, As 2 5 + zH 2 0. SI. sol. in cold H 2 ; sol. in acids. (Debray.) Not obtained. (Pufahl.) 6Mo0 3 , (NH 4 ) 2 0, As 2 5 + 2H 2 0. SI. sol. in cold H 2 ; sol. in acids. (Debray.) + 4H 2 0. (Pufahl, Leipzig, 1888.) 2(NH 4 ) 2 0, 4H 2 0, As 2 5 , 18Mo0 3 + 13H 2 0. (Pufahl.) Barium arseniomolybdate, 3BaO, As 2 5 , 7Mo0 3 . Ppt. (Seyberth.) BaO, 2H 2 0, As 2 5 , 6Mo0 3 + 8H 2 0. (Pufahl.) Cadmium arseniomolybdate, CdO, 2H 2 0, As 2 5 , 6Mo0 3 + llH 2 0. (Pufahl.) 3CdO, 3H 2 0, As 2 5 , 18Mo0 3 + 33H 2 0. (Pu- fahl.) Calcium arseniomolybdate, CaO, 2H 2 0, As 2 5 , 6Mo0 3 + 8H 2 0. (Pufahl.) 3CaO, 3H 2 0, As 2 5 , 18Mo0 3 + 29H 2 0. (Pu- fahl.) Cobalt arseniomolybdate, CoO, 2H 2 0, As 2 5 , 6Mo0 3 + llH 2 0. (Pufahl.) 3CoO, 3H 2 0, As 2 5 , 18Mo0 3 + 33H 2 0.^ (Pu- fahl. ) Cupric arseniomolybdate, CuO, 2H 2 0, As 2 5 , 6Mo0 3 + 15H 2 0. (Pufahl. ) 3CuO, 3H 2 0, As 2 5 , 18Mo0 3 + 34H 2 0. (Pu- fahl.) Lithium arseniomolybdate, Li 2 0,As 2 5 , Mo0 3 + 14H 2 0. (Pufahl, 1888.) 3Li 2 0,3H 2 0,As 2 5 ,18Mo 3 + 31H 2 0. (Pufahl.) Magnesium arseniomolybdate, MgO, 2H 2 0, As 2 5 , 6Mo0 3 + llH 2 0. (Pufahi.) 3MgO, 3H 2 0, As 2 5 , 18Mo0 3 + 33H 2 0. (Pu- fahl.) Manganese arseniomolybdate, MnO, 2H 2 0, As 2 5 , 6Mo0 3 + llH 2 0. (Pufahl.) 3MnO,3H 2 0,As 2 5 ,6Mo0 3 + 33H 2 0. (Pufahl.) Nickel arseniomolybdate, NiO, 2H 2 0, As 2 5 , 6Mo0 3 + llH 2 0. (Pufahl.) 3NiO, 3H 2 0, As 2 5 , 18Mo0 3 + 34H 2 0. (Pu- fahl.) Potassium arseniomolybdate, K 2 0, As 2 5 . 2Mo0 3 + 5H 2 0. Sol. in H 2 0. (Friedheim, Z. anorg. 2. 314.) 40 ARSENIOMOLYBDATE, SILVER K 2 0, As 2 5 , 6Mo0 3 + 5H 2 0. Difficultly sol. in H 2 0. (Pufahl, 1888.) 3K 2 0, As 2 5 , 6Mo0 3 + a;H 2 0. (Pufahl.) 3K 2 0, 3H 2 0, As 2 5 , 18Mo0 3 + 25H 2 0. (Pu- fahl.) K>0, 5H 2 0, As 2 5 , 18Mo0 3 + 21H 2 0. (Pu- fahl:) 3K 2 0, AsoOg, 20Mo0 3 . Insol. in H 2 0. (Debray, C. R. 78. 1408.) Silver arseniomolybdate, 3Ag 2 0, As 2 5 , 7Mo0 3 . Ppt. (Seyberth.) 3Ag 2 0, As 2 5 , 6Mo0 3 + zH 2 0. (Pufahl, Leipzig, 1888.) 3Ag 2 0, As 2 5 , 18Mo0 3 + 22H 2 0. 7Ag 2 0, 5H 2 0, 2As 2 5 , 36Mo0 3 + 25H 2 0. Sodium arseniomolybdate, Na 2 0, As 2 5 , 2Mo0 3 + 8H 2 0. (Friedheim, Z. anorg. 2. 314.) Na 2 0, As 2 5 , 6Mo0 3 . Sol. in H 2 0. (Debray, C. R. 78. 1408.) + 12H 2 0. (Pufahl.) 3Na 2 0, As 2 5 , 6Mo0 3 + H 2 0. (Pufahl.) + 11H 2 0. (Friedheim, Z. anorg. 2. 314.) 3Na,0, 3H 2 0, As 2 5 , 18Mo0 3 + 21H 2 0. (Pu- fahl.) " Strontium arseniomolybdate, SrO, 2H 2 0, As 2 5 , 6Mo0 3 + 8H 2 0. (Pufahl.) 3SrO, 3H 2 0, As 2 5 , 18Mo0 3 + 29H 2 0. (Pu- fahl.) Thallium arseniomolybdate, 6T1 2 0, As 2 5 , (Pu- (Pufahl.) STLjO, 3H 2 0, As 2 5 , 18Mo0 3 + 3H 2 0. fahl.) Zinc arseniomolybdate, ZnO, 2H 2 0, As 2 5 , 6Mo0 3 + llH 2 0. (Pufahl.) 3ZnO, 3H 2 0, As 2 5 , 18Mo0 3 + 34H 2 0. (Pu- fahl.) Arseniosulphuric acid. See Arsenic sulphur n'oxide. Arseniotungstic acid, 3H 2 0, As 2 5 , 16W0 3 + 32H 2 = H 3 AsW ? 28 + 16H 2 0(a-anhydro- arsenioluteotungstic acid). Sol. in H 2 0. (Kehrmann, A. 245. 45.) 3H 2 0, As 2 5 , 19W0 3 (?). Sp. gr. of sat. solu- tion in H 2 is 3 '279. (Fremery, B. 17. 296.) Is a mixture containing principally H 3 As WgO^ + 16H 2 0. (Kehrmann.) Ammonium arseniotungstate, 4(NH 4 ) 2 0, 2H 2 0, As 2 5 , 6W0 3 + 3H 2 0. SI. sol. in cold H 2 or HN0 3 + Aq ; easily sol. in boiling H 2 0. (Gibbs, Proc. Am. Acad. 16. 135.) ) 42 , 25 , 3 2 . . n H 2 0. (Fremery, B. 17. 296.) Barium arseniotungstate, 2BaO, As 2 5 , 16W0 3 Sol. in H 2 0. (Pechard, A. ch. (6) 22. 262.) Potassium arseniotungstate, 3K 2 0, 3H 2 0, As 2 5 , 6W0 3 . Insol. in H 2 0. Readily sol. in alkali hydroxides + Aq. (Gibbs.) 3K 2 0, As 2 5 , 16W0 3 + 16HoO = K 3 AsW 8 28 + 8H 2 0. Sol. in H 2 0. (Kehrmann.) 3K 2 0, As 2 5 , 19W0 3 + 16H 2 (?). Sol. in H 2 0. (Fremery.) Silver arseniotungstate, Ag 5 AsW 8 02g. Insol. in H 2 (Kehrmann, A. 245. 55) ; per- haps identical with 6Ag 2 0, As 2 5 , 16W0 3 + 11H 2 0. Insol. in H 2 0. (Gibbs.) Sodium arseniotungstate, 3Na 2 0, As 2 5 , 3W0 3 + 20H 2 0. Very sol. in H 2 0. (Lefort, C. R. 92. 1461.) Arsenious acid. Known only as solution of As 2 3 in H 2 0. Arsenites. All arsenites, except those of the alkali metals, are partially or wholly insol. in H 2 0, but easily sol. in acids ; several are sol. in (NH 4 ) 2 S0 4 , NH 4 N0 8 , or NH 4 Cl + Aq. All basic arsenites are sol. in acids except those that give an insol. salt with the bases. Many are sol. in excess of As 2 3 + Aq. Ammonium arsenite, NH 4 As0 2 . Very sol. in H 2 0. (Luynes, J. pr. 72. 180.) (NH 4 ) 4 As 2 5 . Very sol. in H 2 0. Insol. in alcohol or ether. (Stein, A. 74. 218.) Ammonium arsenite bromide, 2As 2 3 , NH 4 Br. SI. sol. in H 2 0. (Rudorff, B. 19. 2679.) Ammonium arsenite chloride, As 2 3 , NH 4 C1. SI. sol. in H 2 0. Sol. in warm dil. NH 4 OH + Aq. (Rudorff.) Ammonium arsenite iodide, 2As 2 3 , NHJ. SI. sol. in boiling H 2 0. Sol. in warm dil. NH 4 OH + Aq. (Rudorff.) Antimony arsenite (?). Ppt. Sol. in a small amount H 2 0, but insol. in a large quantity. (Berzelius. ) Completely sol. in KOH + Aq. (Reynolds.) Barium arsenite, Ba(As0 2 ) 2 . Easily sol. in H 2 when recently pptd., but insol. after being dried. Pptd. from aqueous solution by boiling. (Filhol, A. 68. 308.) BaH 4 (As0 3 ) 2 . Ppt. (Bloxam, Chem. Soc. 15. 281.) Ba 2 As 2 5 + 4H 2 0. SI. sol. in H 2 ; also somewhat sol. in alcohol. (Stein, A. 74. 218.) SI. sol. in H 3 As0 4 + Aq and Ba0 2 H 2 + Aq. (Dumas.) Sol. in NH 4 Cl + Aq. (Wackenroder, A. 41. 316.) Not pptd. from solutions containing Na citrate. (Spiller.) Caesium arsenite bromide, As 2 3 ,CsBr. Sol. in H 2 0. (Wheeler, Z. anorg. 4. 451.) Caesium arsenite chloride, As 2 3 , CsCl. As above. ARSENITE IODIDE, POTASSIUM Caesium arsenite iodide, As 2 3 , Csl. As above. Calcium arsenite, Ca(As0 2 ) 2 . Somewhat sol. in H 2 ; sol. in Ca(OH) 2 + Aq or As 2 3 + Aq. (Simon, Pogg. 47. 417.) 3CaO, 2As 2 3 + 3H 2 0. SI. sol. in H 2 ; easily sol. in NH 4 C1 + Aq ; sol. in As 2 3 + Aq. (Stein.) 2CaO, As 2 3 + H 2 0. Mixture of basic salts. (Stein, A. 74. 218.) SI. sol. in H 2 O; insol. in H 2 O containing Ca0 2 H 2 . (Berzelins.) Not pptd. in presence of 4000-5000 pts. H 2 O. (Hart- ing, Lassaigne.) Not pptd. from solutions containing NIL salts ; and when pptd. is sol. in (NH 4 ) 2 SO 4) NH 4 NO 3) NH 4 C 2 H 3 O 2) and NH 4 Cl+Aq. (Gieseke and Schweigger.) Sol. in NH 4 AsO 2 +Aq. (Schweigger.) Sol. in CaCl 2 +Aq. (Ordway.) Easily sol. in dil. acids. Not pptd. from solutions containing sodium citrate. (Spiller.) Ca 3 (As0 3 ) 2 . Ppt. (Kiihn, J. B. 1852. 379.) Chromic arsenite, CrAs0 3 . Sol. in H 2 0, but slowly decomp. by boiling. (Neville, 0. N. 34. 220.) Cobaltous arsenite, 3CoO, 2As 2 3 . Decomp. by HCl + Aq. Sol in HN0 3 + Aq. (Girard, C. R. 34. 918.) Cobaltous hydrogen arsenite, Co 3 H 6 (As0 3 ) 4 . Insol. in H 2 0; sol. in HN0 3 , HC1, or NH 4 OH + Aq. (Proust. ) Only sol. in KOH, or NaOH + Aq when formed in a solution containing an excess of those reagents. (Reynoso, C. R. 31. 68.) Cupric arsenite, CuHAs0 3 . (Scheele's green.) Insol. in H 2 ; sol. in KOH + Aq, NH 4 OH + Aq, and in most acids. Formula is Cu 3 (As0 3 ) 2 + 2H 2 0. (Sharpies, C. N. 35. 89.) xCuO, ?/As 2 3 . Min. TrippJceite. Easily sol. in HN0 3 and in HCl + Aq. Didymium arsenite, Di 2 H 3 (As0 3 ) 3 . Ppt. (Frerichs and Smith, A. 191. 355.) Does not exist. (Cleve, B. 11. 910.) Ferrous arsenite, Fe 2 As 2 5 . Ppt. Sol. in NH 4 OH + Aq; insol. in NH 4 arsenite, or other NH 4 salts + Aq. ( Wittstein. ) Ferric arsenite, basic, 4Fe 2 3 , As 2 3 + 5H 2 0. Ppt. H 2 extracts As 2 3 . Sol. in cone, acids with separation of As 2 3 . Acetic acid is without action. (Bunsen and Berthold, 1834.) Sol. in KOH, or NaOH + Aq. 2FeAs0 3 , Fe 2 3 + 7H 2 0. Sol. in NaOH, and KOH + Aq. "Ferric arsenite" is si. sol. in A1 2 (S0 4 ) 3 + Aq. (Kynaston, Dingl. 235. 326.) Lanthanum arsenite, La 2 H 3 (As0 3 ) 3 . Ppt. (Frerichs and Smith, A. 191. 355.) Does not exist. (Cleve, B. 11. 910.) Lead arsenite, Pb( As0 2 ) 2 + o;H 2 0. SI. sol. in H 2 0. Insol. in KOH, but sol. in NaOH + Aq. (Berzelius.) PboAs 2 5 . Insol. in H 2 0, NH 4 OH, NH 4 arsenite, or other NH 4 salts + Aq. (Witt- stein. ) Pb 3 (As0 3 ) 2 . Scarcely sol. in H 2 ; easily sol. in HN0 3 , or HC 2 H 3 2 + Aq. Boiling H 2 O dissolves some As 2 3 . Not completely insol. in KOH + Aq. (Streng, A. 129. 238.) Lead arsenite chloride, Pb 5 As 2 8 , 2PbCl 2 . Min. ETcdemite. Easily sol. in HN0 3 + Aq, and warm HCl + Aq. Magnesium arsenite, Mg 3 (As0 3 ) 2 . Insol. in NH 4 OH + Aq, but sol. in a large excess of NH 4 C1 + Aq. (Rose. ) MgHAs0 3 + H 2 0. Ppt. (Bloxam, Chem. Soc. 15. 281.) Manganous arsenite, 3MnO, 2As 2 3 + 5H 2 = H 6 Mn 3 (As0 3 ) 4 + 2H 2 0. Ppt. Mercurous arsenite (?). Insol. in H 2 ; sol. in HN0 3 + Aq. Mercuric arsenite (?). Sol. in HN0 3 , or potassium arsenite + Aq. Nickel arsenite, 3NiO, 2As 2 3 + 4H 2 0. Insol. in H 2 ; sol. in NH 4 OH + Aq. (Proust.) Sol. in KOH + Aq. (Girard, C. R. 34. 918.) 2NiO, As 2 3 . Insol. in H 2 ; sol. in NH 4 OH + Aq ; sol. in KOH + Aq. (Reynoso, C. R. 31. 68.) Potassium arsenite, basic, K 4 As 2 5 =2K 2 0, Very sol. in H 2 0. (Bloxam. ) Potassium arsenite, KAs0 2 . Sol. in H 2 ; si. sol. in alcohol. (Pasteur, A. 68. 309.) Potassium hydrogen arsenite, KH(As0 2 ) 2 + H 2 0. Sol. in H 2 ; si. sol. in alcohol. (Pasteur, A. 68. 309.) Potassium arsenite bromide, 4As 2 3 , 2KBr. More sol. in H 2 than iodide. (Schiff and Sestini, A. 228. 72.) 2As 2 3 , KBr. (Rudorff, B. 19. 2675.) Potassium arsenite chloride, 2As 2 3 , KC1. Much more quickly sol. in hot H 2 than bromide or iodide. (Riidorff, B. 19. 2675.) As 2 3 , KC1. Decomp. by H 2 0. Potassium arsenite iodide, 3As 2 3 , 2KI + H 2 0. SI. sol. in cold H 2 ; sol. in 20 pts. boiling, and 40 pts. cold H 2 0. (Emmet, Sill. Am. J. (2) 18. 583.) 6KAs0 2 , 2KI + 3H 2 0. Sol. in H 2 and alcohol. Decomp. by acids. (Harms.) 2KH(As0 2 ) 2 , As 2 3 , 2KI. SI. sol. in H 2 0. (Harms, A. 91. 371.) 4As 2 3 , 2KI + 4As 2 3 , 2KI, H 2 0. Sol. in 40 pts. cold, 20 pts. hot H 2 O ; sol. in alkalies. (Schiff and Sestini, A. 228. 72.) 2As 2 3 , KI. Very difficultly sol. even in boiling H 2 0. Very easily sol. in KOH + Aq, but much less so in K^COs + Aq. (Rudorff, B. 19. 2670.) 42 ARSENITE BROMIDE, RUBIDIUM Rubidium arsenite bromide, As 2 3 , RbBr. Decomp. by H 2 0. (Wheeler, Z. anorg. 4. 451.) Rubidium arsenite chloride, As. 2 3 , RbCl. As above. Rubidium arsenite iodide, As 2 3 , Rbl. As above. Silver arsenite, Ag 3 As0 3 . Insol. in H 2 0. Not pptd. in presence of 20,000 pts. H 2 0. (Harting.) Easily sol. in HN0 3 + Aq and other acids. (Marcet.) More easily sol. in HC 2 H 3 + Aq than Ag 3 P0 4 ; si. sol. in HC 2 H 3 2 + Aq. (Santos, C. N. 38. 94.) Insol. in KOH + Aq. (Klihn, Arch. Pharm. (2) 69. 267.) Easily sol. in NH 4 OH + Aq. (Marcet.) Insol. in NH 4 OH + Aq, but sol. therein in presence of alkali nitrates. (Santos, I.e.) Incompletely sol. in (NH 4 ) 2 C0 3 , (NH 4 ) 2 S0 4 , or NH 4 N0 3 + Aq. (Wittstein, Repert. 51. 41.) Decomp. by NH 4 Cl + Aq. Sol. in KAs0 2 + Aq. (Kiihn, I.e.) Not pptd. in solutions containing sol. citrates. (Spiller. ) 2Ag 2 0, As 2 3 . Ppt. (Pasteur, J. Pharm. (3) 13. 395.) 3Ag 2 0, 2As 2 3 . Sol. in cold HC 2 H 3 2 + Aq. (Santos.) Sol. in NH 4 OH + Aq and in potassium arsenite +Aq. (Girard, C. R. 34. 918.) Silver arsenite ammonia, 2Ag 2 0, As 2 3 , 4NH 3 . Insol. in H 2 or alcohol. (Girard.) Sodium arsenites. Correspond to potassium arsenites, but have not been obtained in crystalline form. All are very sol. in H 2 0. (Pasteur, A. 68. 308.) Sodium arsenite bromide, 2As 2 3 , NaBr. Decomp. by warm H 2 0. (Riidorff, B. 21. 3052.) Sodium arsenite iodide, 2As 2 3 , Nal. Decomp. by hot H 2 0. (Riidorff.) Strontium arsenite, Sr(As0 2 ) 2 + 4H 2 0. Quite easily sol. in H 2 0. (Stein.) SI. sol. in H 2 0, Sr0 2 H 2 + Aq, or H 3 As0 4 + Aq. (Dumas.) Very si. sol. in alcohol. (Stein.) Stannous arsenite (?). Ppt. Stannic arsenite (?). Insol. in H 2 0. Zinc arsenite, Zn 3 (As0 3 ) 2 . Ppt. Arseniovanadic acid, As 2 5 , V 2 5 + 2H 2 0. Easily sol. in H 2 0, but solution easily de- composes ; crystallises from H 2 with 10H 2 0. Composition is vanadium dihydrogen arsenate (V0 2 )H 2 As0 4 . (Friedheim, B. 23. 2600.) + 14, and +18H 2 0. (Ditte, C. R. 102. 757.) Could not be obtained. (Friedheim.) 3As 2 5 , 2V 2 5 . (Berzelius.) Correct formula is as above. (Friedheim.) 3H 2 0, 7As 2 5 , 6V 2 5 . (Gibbs, Am. Ch. J. 7. 209.) Could not be obtained. (Friedheim.) 3H 2 0,5As 2 5 ,8V 2 5 + 24H 2 0. (Gibbs.) Could not be obtained. (Friedheim.) Ammonium arseniovanadate, (NH 4 ) 2 0, 2V 2 5 , As 2 5 + 5H 2 0. Efflorescent in dry air ; si. sol. in cold, de- comp. by hot H 2 0. Composition is ammonium divanadium arsenate = (V0 2 ) 2 (NH 4 )As0 4 + 2iH 2 0. (Friedheim, B. 23. 2600.) 2(NH 4 ) 2 0, 2V 2 5 , 3As 2 5 + 4H 2 0. Cannot be crystallised from H 2 0. Composition is (NH 4 ) 2 HAs0 4 + 2( V0 2 ) 2 H 2 As0 4 . (Friedheim. ) 5(NH 4 ) 2 0, 4As 2 5 , 2V 2 5 +18H 2 0. Sol. in H 2 0. (Ditte, C. R. 102. 1019.) Does not exist. (Friedheim, B. 23. 2605.) Calcium arseniovanadate, 2CaO, 2V 2 5 , 3 As 2 5 + 21H 2 = CaHAs0 4 + 2(V0 2 )H 2 As0 4 + 8H 2 0. Can be crystallised in presence of vanadic acid without decomp. (Friedheim.) Cobalt arseniovanadate, CoO, V 2 5 , As 2 5 + 9H 2 = Co( V0 2 ) 2 H 2 (As0 4 ) 2 + 8H 2 0. Sol. in H 2 0. (Friedheim.) Copper arseniovanadate, CuO, V 2 g , As 2 5 + 4H 2 = Cu( V0 2 ) 2 H 2 (As0 4 ) 2 + 3H 2 0. Sol. inH 2 0. (Friedheim.) Magnesium arseniovanadate, MgO, V 2 5 , As 2 5 + 10H 2 = (V0 2 ) 2 MgH 2 (As0 4 ) 2 + Sol. inH 2 0. (Friedheim.) 2MgO, 2V 2 5 , 3As 2 5 + 23H 2 2(V0 2 )H 2 As0 4 + 9H 2 0. Sol. in H 2 0. (Fried- heim.) Potassium arseniovanadate, K 2 0, 2V 2 5 , As 2 5 + 5H 2 = ( V0 2 ) 2 KAs0 4 + 2^H 2 0. Sol. in H 2 0. (Friedheim.) Strontium arseniovanadate, 2SrO, 2V 2 5 , 3As 2 5 + 20H 2 = SrHAs0 4 + 2(V0 2 ) 2 H 2 Sol. inH 2 0. (Friedheim.) Zinc arseniovanadate, ZnO, V 2 5 , As 2 5 + 6iH 2 = Zn( V0 2 ) 2 H 2 (As0 4 ) 2 + 5iH 2 0. Sol. in H 2 0. (Friedheim.) 2ZnO, 2V 2 5 , 3As 2 5 + 5H 2 0, and + 18H 2 = ZnHAs0 4 4- 2( V0 2 ) 2 H 2 As0 4 ,and + 6iH 2 0. Sol. in H 2 0. (Friedheim.) Arseniovanadicovanadic acid. Ammonium arseniovanadicovanadate, 5(NH 4 ) 2 0, 12As 2 5 , 12V0 2 , 6V 2 5 + 7H 2 0. SI. sol. in cold, sol. in hot H 2 0, from which crystallises 4(NH 4 ) 2 0, 9As 2 5 , 9V0 2 , 8V 2 S + 11H 2 0. Sol. in H 2 0. (Gibbs, Am. Ch. J. 7. 209.) Arseniuretted hydrogen, AsH 3 . See Arsenic hydride. AUROAMIDOIMIDE Arsenosoarseniotungstic acid. Potassium arsenosoarseniotungstate, 10K 2 0, 4As 2 5 , As 2 3 , 21W0 3 + 26H 2 0. Precipitate. Sol. in a large amount of hot H 2 0. (Gibbs, Am. Ch. J. 7. 313.) Arsenosomolybdic acid. Ammonium arsenosomolybdate, 3(NH 4 ) 2 0, 5As 2 3 , 12Mo0 3 + 24H 2 0. 81. sol. in H 2 0. (Gibbs, Am. Ch. J. 7. 313.) Barium arsenosomolybdate, 3BaO, 2As 2 3 , 8Mo0 3 + 13H 2 0. Very si. sol. in H 2 0. (Gibbs.) Copper arsenosomolybdate, 2CnO, 3As 2 3 , 6Mo0 3 . Sol. in H 2 0. (Gibbs.) Manganese arsenosomolybdate, 2MnO, 3As 2 3 , 6Mo0 3 + 6H 2 0, and +15H 2 0. Insol. in H 2 0. Zinc arsenosomolybdate, 2ZnO, 3As 2 3 , 6Mo0 3 + 6H 2 0. Sol. in H 2 0. (Gibbs.) Arsenosophosphotungstic acid. Potassium arsenosophosphotungstate, 10K 2 0, 14As 2 3 , 3P 2 5 , 32W0 3 + 28H 2 0. Moderately sol. in cold, very easily in hot H 2 0. 7K 2 0, 2As 2 3 , 4P 2 5 , 60W0 3 +55H 2 0. Sol. in hot H 2 with decomp. Potassium sodium arsenosophosphotungstate, 5K 2 0, Na 2 0, 2As 2 3 , 2P 2 5 , 12W0 3 + 15H 2 0. (Gibbs, Am. Ch. J. 7. 313.) Arsenosotungstic acid. Ammonium arsenosotungstate, 7(NH 4 ) 2 0, 2As 2 3 , 18W0 3 + 18H 2 0. Sol. in H 2 0. Barium arsenosotungstate, 4BaO, As 2 3 , 9W0 3 + 21H 2 0. Precipitate. Nearly insol. in H 2 0. Sodium arsenosotungstate, 9Na 2 0, 8As 2 3 , 16W0 3 + 55H 2 0. Very sol. in H 2 0. (Gibbs, Am. Ch. J. 7. 313.) Arsenyl bromide, AsOBr. H 2 dissolves out As 2 3 ; insol. in alcohol. (Serullas.) + H 2 0. (Wallace, Phil. Mag. (4) 17. 122.) As 8 9 Br 6 = 2AsBr 3 , 3As 2 3 . 2AsBr 3 , HAs 2 3 + 12H 2 0. Arsenyl bromide with MBr. See Arsenite bromide, M. Arsenyl chloride, AsOCl. Sol. in H 2 with decomp. + H 2 0. (Wallace, Phil. Mag. (4) 16. 358.) As 3 4 Cl. (Wallace.) Arsenyl chloride with MCI. See Arsenite chloride, M. Arsenyl potassium fluoride, AsOF 3 , KF + H 2 0. (Marignac, A. 145. 237.) As 8 I 2 O n = 2AsOI, 3As 2 3 + (Wallace, Phil. Mag. (4) Arsenyl iodide, 6H 2 0. Decomp. by H 2 0. 17. 122.) Arsenyl iodide with MI. See Arsenite iodide, M. Arsenyl sulphoiodide, As 13 I 9 S 6 9 . Scarcely attacked by cold H 2 0. Boiling H 2 extracts AsI 3 . Decomp. by hot HN0 3 or H 2 S0 4 . Easily sol. in KOH, or NH 4 OH + Aq. (Schneider, J. pr. (2) 36. 513.) Arsine. See Arsenic hydride. Atmospheric air. See Air, atmospheric. NAu 3 , NH 3 . Decomp. by H 2 into NAu 3 . (Easchig, A. 235. 341.) Auric acid, HAu 2 4 . Sol. in HBr, or HCl + Aq. (Kriiss, B. 19. 2546.) Ammonium aurate. See Auroamidoimide. Calcium aurate (?). Insol. in H 2 ; sol. in CaCl 2 + Aq. (Fremy, A. ch. (3) 31. 485.) Magnesium aurate (?). Ppt. Insol. in H 2 ; sol. in MgCL + Aq. (Pelletier.) Potassium aurate, KAu0 2 + 3H 2 0. Very sol. in H 2 0, and easily decomp. (Fremy, A. ch. (3) 31. 483.) Sol. in alcohol ; the solution in alcohol does not decomp. below 50. (Figuier, A. ch. (3) 11. 364.) Potassium aurate sulphite, KAu0 2 , 2K 2 S0 3 + 5H 2 0. Sol. in H 2 with decomp. Nearly insol. in alkaline solutions. (Fremy, A. ch. (3) 31. 485.) Auriimide chloride, Au(NH)Cl. (Raschig.) Auriimide nitrate, Au 2 N 2 H 2 0, 2HN0 3 , or AuN, HN0 3 + H 2 0, or Au 2 0(NH) 2 , 2HN0 3 . Not deliquescent. Decomp. by hot H 2 into Au 2 0(NH) 2 . (Schottlander, J. B. 1884. 453.) Auroamidoimide, Au(NH)NH 2 + 3H 2 0. (Fulminating gold.) Insol. in HgO ; not attacked by dil. acids ; sol. in cone, acids, and in moderately dil. acids, when freshly pre- cipitated. Insol. in alkalies or alcohol. Sol. inKCN + Aq. 44 AURICYANHYDRIC ACID Auricyanhydric acid, HAu(CN) 4 + 1|H 2 0. Easily sol. in H 2 0, alcohol, or ether. See also Bromauricyanides. Chlorauricyanides. lodauricyanides. Ammonium auricyanide, NH 4 Au(CN) 4 . Easily sol. in H 2 or alcohol. Insol. in ether. Cobaltous auricyanide, Co[Au(CN) 4 ] 2 + 9H 2 0. SI. sol. in cold, easily in hot H 2 0. SI. sol. in alcohol. (Lindbom. ) Potassium auricyanide, KAu(CN) 4 + HH 2 0. Efflorescent. SI. sol. in cold, easily in hot H 2 0. Easily sol. in alcohol. Silver auricyanide, AgAuCN 4 . Insol. in H 2 or HN0 3 + Aq. Sol. in NH 4 OH + Aq. Z^'aurocfo'amme nitrate. See Auriimide nitrate. Aurobromhydric acid. See Bromauric acid. Aurobromic acid. See Bromauric acid. Aurochlorhydric acid. See Chlorauric acid. Aurochloric acid. See Chlorauric acid. Azoimide, HN 3 . Miscible with H 2 and alcohol. (Curtius and Radershausen, J. pr. (2) 43. 207.) For salts of HN 3 , see azoimide of metal under metal. Azophosphoric acid. See jFfyrophosphamic acid. D^azophosphoric acid. See Pyrophosphodi&mic acid. Barium, Ba. Decomposes H 2 at ordinary temperature. Barium azoimide, BaN 6 . Easily sol. in H 2 0. (Curtius, B. 23. 3023.) Barium bromide, BaBr 2 + 2H 2 0. 100 pts. H 2 dissolve at 20 40 60 80 100 98 104 114 123 135 149 pts. BaBr 2 . Sat. BaBr 2 + Aq boils at 113. (Kremers, Pogg. 99. 43.) Sp. gr. of BaBr 2 + Aq at 19 "5 containing : 5 10 15 20 25 30 % BaBr 2 , 1-045 1-092 1-114 1-201 1-262 1'329 35 40 45 50 55 % BaBr 2 . 1-405 1-485 1-580 1-685 1'SOO (Kremers, Pogg. 99. 444, calculated by Gerlach, Z. anal. 8. 285.) Very sol. in absolute alcohol. (Hiinefeld. ) 100 pts. absolute methyl alcohol dissolve 50 pts. BaBr 2 at 22 '5. 100 pts. absolute ethyl alcohol dissolve 3 pts. BaBr 2 at 22 '5. (de Bruyn, Z. phys. Ch. 10. 783.) Sat. solution in 87 % alcohol contains 6 % BaBr 2 . (Richards, Z. anorg. 3. 455.) 100 pts. absolute methyl alcohol dissolve 45-8 pts. BaBr 2 + 2H 2 at 15. 100 pts. 93-5 % methyl alcohol dissolve 27 '3 pts. BaBr 9 + 2H,Oatl5. 100 pts. 50 % methyl alcohol dissolve 4 pts. BaBro + 2H 2 at 15. (de Bruyn, Z. phys. Ch. 10. 787.) Nearly insol. in boiling amyl alcohol, 10 com. dissolving only an amt. equal to 1 '3 mg. BaO. (Browning, Sill. Am. J. 144. 459.) Barium cadmium bromide, BaBr 2 , CdBr 2 + 4H 2 0. Sol. in H 2 0. (v. Hauer, W. A. B. 20. 40.) Barium carbide, BaC 2 . Decomp. by H 2 0. (Maquenne, C. R. 144. 360.) Barium chloride, BaCl 2 , and +2H 2 0. Permanent in dry air. 100 pts. H 2 O at t dissolve (a) pts. BaCl 2 and (b) pts. BaCl 2 +2H 2 0. t a & t a 6 15-64 49-31 34-86 43-84 43-50 55-63 74-89 105-48 59-94 59-58 65-51 77-89 (Gay-Lussac, A. ch. (2) 11. 309.) 100 pts. H 2 at t dissolve 32-62+0'2711t pts. BaCl 2 . (Kopp.) 100 pts. H 2 dissolve pts. BaCl 2 +2H 2 O at t. f Pts. BaCl 2 +2H 2 O t Pts. BaCl 2 +2H 2 O 16-25 20-00 22-50 37-50 50-00 39-66 42-22 43-7 51-0 65-0 62-50 75-00 87-00 100 48-0 63-0 65-0 72-0 (Brandes.) Sol. in 2-67 pts. H 2 O at 18-75. (Abl.) 1 pt. BaCl 2 is sol. in 2-86 pts. H 2 O at 15-5, and 1-67 pts. at boiling temp. (M. B. and P.) 100 pts. H 2 O at 15-5 dissolve 20 pts. BaCl 2) and 43 pts. at 87-7. (Ure's Diet.) Solubility in 100 pts. H 2 O at t. t Pts. BaCl 2 t Pts. BaCl 2 12-2 38-4 62-75 31-1 33-9 41-2 47-7 77-5 95-65 102-5 105 51-9 57-7 58-9 59-7 (Nordenskiold, Pogg. 136. 316.) 100 pts. H 2 O dissolve pts. BaCl 2 at t. t Pts. BaCl 2 t Pts. BaCl 2 9 30 37 33-2 38-1 40-0 50 58 43-7 45-9 (Gerardin, A. ch. (4) 5. 143.) BARIUM CHLORIDE 45 1 pt. BaCl 2 + 2H 2 is sol. in 2 '18 pts. H 2 at 21 '5, and the solution has sp. gr. 1'2878. (Schiff, A. 109. 326.) 1 pt. anhydrous BaCl 2 is sol. in 2*86 pts. H 2 at 15. (Gerlach.) Solubility in 100 pts. H 2 at t. t Pts. BaCl 2 t Pts. BaCl 2 t Pts. BaCl 2 30-9 36 397 71 497 1 31'2 37 40-0 72 50-0 2 31-5 38 40-2 73 50-3 3 317 39 40-5 74 50-6 4 31-9 40 407 75 50-9 5 32-2 41 41'0 76 51-2 6 32-4 42 41-3 77 51-5 7 32-6 43 41-6 78 51-8 8 32-8 44 41-9 79 52-1 9 331 45 42-2 80 52-4 10 33-3 46 42-5 81 527 11 33-5 47 427 82 53-0 12 33-8 48 43-0 83 53-3 13 34-0 49 43'3 84 53'6 14 34-2 50 43-6 85 54-0 15 34-5 51 43'9 86 54-3 16 347 52 44-2 87 54-6 17 35-0 53 44-4 88 55'0 18 35-2 54 447 89 55'3 19 35'5 55 45-0 90 55-6 20 357 56 45'3 91 55-9 21 36-0 57 45-6 92 56-2 22 36-2 58 45-9 93 56'6 23 36-5 59 46-2 94 56-9 24 367 60 46'4 95 57-2 25 37*0 61 467 96 57-6 26 37-2 62 47'0 97 57'9 27 37'5 63 47'3 98 58-2 28 377 64 47-6 99 58-5 29 38-0 65 47-9 100 58'8 30 38-2 66 48-2 101 59-2 31 38-5 67 48'5 102 59-5 32 387 68 48-8 103 59-8 33 39-0 69 49-1 104 60-2 34 39-2 70 49-4 104-1 60'3 35 39'5 (Mulder, calculated from his own and other observations. Scheik. Verhandel. 1864. 45.) The saturated solution contains 60-3 pts. BaCl 2 to 100 pts. H 2 0, and boils at 104-1. (Mulder.) 60-1 pts. BaCl 2 to 100 pts. H 2 0, and boils at 104-4. (Legrand.) 61-8 pts. BaCl 2 to 100 pts. H 2 0, and boils at 104-5. (Griffith.) 59-58 pts. BaCl 2 to 100 pts. H 2 0, and boils at 105-48 (Gay-Lussac) ; at 106 (Kremers). 54-1 pts. BaCl 2 to 100 pts. H 2 0, and forms crust at 104 "4 ; highest temperature observed, 104-9. (Gerlach, Z. anal. 26. 426.) BaCl 2 +Aq sat. at 8 has sp. gr. 1-27. (Anthon.) BaCl 2 +Aq sat. at 15 has sp. gr. 1-282. (Michel and Krafft.) BaCl 2 -f Aq sat. at 18 1 has sp. gr. 1-285, and contains 44-31 pts. BaCl 2 +2H 2 O to 100 pts. H 2 O. (Karsten.) Sp. gr. of BaCl 2 +Aqat 19 -5. % BaCl 2 Sp. gr. % BaCl 2 Sp.gr. 8-88 18-24 1-0760 1-1521 27-53 35-44 1-2245 1-2837 (Kremers, Pogg. 99. 444.) Sp. gr. ofBaCl 2 + Aqatl5. % BaCl 2 Sp. gr. % BaCl 2 Sp. gr. 1 1-00917 14 1-13778 2 1-01834 15 1-14846 3 1-02750 16 1-15999 4 1-03667 17 1-17152 5 1-04584 18 1-18305 6 1-05569 19 1-19458 7 1-06554 20 1-20681 8 1-07538 21 1-21892 9 1-08523 22 1-23173 10 1-09508 23 1-24455 11 1-10576 24 1-25736 12 1-11643 25 1-27017 13 1-12711 (Gerlach, Z. anal. 8. 283.) ). gr. of BaCl 2 + Aq at 21 '5. % BaCl 2 , 2H 2 Sp. gr. % BaCl 2 , 2H 2 Sp. gr. 1 1-0073 16 1-1302 2 1-0147 17 1-1394 3 1-0222 18 1-1488 4 1-0298 19 1-1584 5 1-0374 20 1-1683 6 1-0452 21 1-1783 7 1-0530 22 1-1884 8 1-0610 23 1-1986 9 1-0692 24 1-2090 10 1-0776 25 1-2197 11 1-0861 26 1 -2304 12 1-0947 27 1-2413 13 1-1034 28 1-2523 14 1-1122 29 1-2636 15 1-1211 30 1-2750 (Schiff, calculated by Gerlach, I.e.) Sp. gr. of BaCl 2 + Aq at 18. % BaCl 2 Sp. gr. % BaCl 2 Sp. gr. 5 10 15 1-0445 1-0939 1-1473 20 24 1-2047 1-2559 (Kohlrausch, W. Ann. 1879. 1.) BaCl 2 + Aq containing 10 % BaCl 2 boils at 100-6. (Gerlach.) BaCl 2 + Aq containing 20 % BaCl 2 boils at 101-9. (Gerlach.) BARIUM CHLORIDE B.-pt. of BaCl2 + Aq containing pts. BaCl 2 to 100 pts. H 2 0. G = according to Gerlach (Z. anal. 26. 443) ; L = according to Legrand (A. ch. (2) 59. 452). B.-pt. G L 100-5 6-4 11-0 101-0 12-7 19'6 101-5 19-0 26-2 102-0 25-3 32-5 102-5 31 "6 38-6 103-0 377 44-5 103-5 437 50-3 104-0 49-5 56-0 104-4 60-1 104-5 55 '-2 Less sol. in H 2 containing HC1 than in pure H 2 0, and scarcely sol. in cone. HC1 + Aq. (Berzelius.) Solubility of BaCl 2 in HC1 + Aq at 0. Bad 2 = no. mols. (in milligrammes) dis- solved in 10 ccm. of the liquid ; HCl^no. mols. (in milligrammes) contained in the same quantity of liquid. BaCl 2 HC1 Sum of mols. Sp. gr. 29-45 29-45 1-250 27-8 1-1 28-9 1-242 26-075 2-8 28-875 1-228 23-4 5-0 28-4 1-210 14-0 14-36 28-36 1-143 10-2 18775 28-975 1-118 6-67 2275 29-42 1-099 2-74 32-0 34-74 1-079 0-29 50-5 5079 1-088 (Engel, Bull. Soc. (2) 45. 653.) Sol. in about 8000 pts. cone. HC1 + Aq. Sol. in about 20,000 pts. cone. HCl + Aq through which HC1 gas was passed. Practically insol. in cone. HC1 + Aq contain- ing $ vol. ether. (Mar, Sill. Am. J. 143. 521.) Much less sol. in HN0 3 + Aq than in H 2 0, because Ba(N0 3 )2 is nearly insol. therein. (Wurtz.) BaCl 2 is sol. in about 4-00 pts. H 2 O. 5-00 pts. NH 4 OH + Aq (cone.). 5-33 pts. NH 4 OH + Aq (1 vol. cone. : 3 vols. H 2 0). 5-33 pts. HCl + Aq (1 vol. cone.: 4 vols. H 2 0). 8'00 pts. HC 2 H 3 2 + Aq (1 vol. commercial acid : 1 vol. H 2 0). 6-00 pts. NH 4 Cl + Aq (1 pt. NH 4 C1 : 10 pts. H 2 0). 6-00 pts. NH 4 C 2 H 3 2 + Aq (dil. NH 4 OH + Aq neutralised by dil. HC 2 H 3 2 + Aq). 6 '67 pts. NaC 2 H 3 2 + Aq (commercial HC 2 H 3 2 neutralised by Na 2 C0 3 , and dil. with 4 vols. H 2 0). 6-33 pts. Cu(C 2 H 3 2 ) 2 + Aq. See Stolba (Z. anal. 2. 390). 5 "67 pts. grape sugar (1 pt. grape sugar: 10 pts. H 2 0). (Pearson, Zeit. Chem. 1869. 662.) Sol. in sat. Ba(N0 3 ) 2 + Aq. Very slowly sol. in sat. NaN0 3 + Aq with separation of Ba(N0 3 ) 2 . Rapidly sol. in sat. KN0 3 + Aq, forming Ba(N0 3 ) 2 , which separates out. (Karsten.) BaCl 2 + KCl. Sol. in sat. KCl + Aq, at first without pptn. The KC1 is pptd. after a time until a state of equilibrium is reached. 100 pts. H 2 at 16-6 dissolve 33 '8-27 '2 pts. KC1 and 18 '2-34 '9 pts. BaCl 2 . (Kopp, A. 34. 267.) BaCl 2 + NaCl. BaCl 2 is sol. in NaCl + Aq at first without separation of NaCl, which, however, finally separates. 100 pts. H 2 dissolve, when both salts are in excess l 2 3 4 5 6 NaCl BaCl 2 . . 35-9 4-1 34-5 3 5-0 40-4 35-3 19-4 547 60-3 38-6 1, 2, and 3 are at 17. (Kopp, A. 34. 268. 4, 5, and 6 are at b.-pt. (Mulder.) Solubility of BaCl 2 + NaCl. 100 pts. H 2 dissolve pts. BaCl 2 and NaCl at t. t Pts. BaCl 2 Pts. NaCl t Pts. BaCl 2 Pts. NaCl 10 4-1 33-9 60 97 33-5 20 4-1 33-8 70 11-7 33-6 30 5-0 337 80 13-9 33-6 40 6-3 33-6 90 15-9 33-6 50 7-9 33-5 100 17-9 33-6 (Precht and Wittgen, B. 14. 1667.) Solubility in alcohol: 100 pts. alcohol of given sp. gr. dissolve pts. of the anhydrous, i and crystallised salt. Sp.gr. Pts. BaCl 2 Pts. BaCl 2 +2H 2 O 0-900 0-848 0-834 0-817 1-00 0-29 0-185 0-09 1-56 0-43 0-32 0-06 (Kirwan.) Insol. in abs. alcohol, or below 19 in al- cohol of over 91 %. Dil. alcohol dissolves less BaCl 2 than corresponds to the amount of H 2 present. (Gerardin, A. ch. (4) 5. 142.) Solubility in 100 pts. alcohol at t. D = sp. gr. of alcohol ; s = solubility. D= 0-9904 D= 0-9848 D= 0-9793 D=0'9726 t s t s t s t s 14 29-1 14 25-0 11 19-6 15 15-6 25 32-0 32 29-1 15 20-4 23 17-0 32 33-5 39 30-9 20 21-7 33 19-1 47 37'4 50 33-2 35 24-6 50 22-0 60 39-8 63 37-6 45 26-8 BARIUM HYDROXIDE 47 Solubility in 100 pts. alcohol, etc. Continued. D= 0-9573 D=0'9390 D = 0-8967 D= 0-8429 t s t s t s t s 13 10 12 6-5 12 o-i 12 o-oo 24 11-4 23 7-2 30 4-3 19 o-oo 34 12-9 31 8-3 47 4-9 25 0-04 39 13-8 37 9-0 50 0-28 50 15-2 47 10-1 67 0-377 (Gerardin, A. ch. (4) 5. 142.) Solubility in dil. alcohol of a; % by weight at 15. % alcohol 10 20 30 40 60 80 Pts. BaCl 2) 2H 2 O 30'25 23'7 18'0 12'8 9'3 3'4 0'5 (Schiff, A. 118. 365.) Sol. in 6885-8108 pts. 99 '3 % alcohol at 14 '5, and in 1857 pts. at ebullition. (Fresenius. ) 100 pts. absolute methyl alcohol dissolve 2-18 pts. BaCl 2 at 15 '5, and 7 '3 pts. BaCl 2 , 2H 2 at 6. (de Bruyn, Z. phys. Ch. 10. 783.) Absolutely insol. in boiling amyl alcohol. (Browning, Sill. Am. J. 144. 459.) Absolutely insol. in acetic ether. (Cann, C. R. 102. 363.) Very si. sol. in acetone. (Krug and M'Elroy, J. Anal. Ch. 6. 184.) Barium cadmium chloride, BaCl 2 , 2CdCLj + 5H 2 0. Quite difficultly sol. in H 2 0. (v. Hauer.) BaCl 2 , CdCl2 + 4H 2 0. Easily sol. in H 2 0. (v. Hauer.) Barium mercuric chloride, basic, BaCl 2 , HgO + 6H 2 0. Decomp. by H 2 0. (Andre, C. R. 104. 431.) Barium mercuric chloride, BaCl 2 , 2HgCl2 + 2H 2 0. Efflorescent in dry air ; sol. in H 2 0. (v. Bonsdorff, Pogg. 17. 130.) Barium rhodium chloride, 3BaCl 2 , Rh 2 Cl 6 . See Chlororhodite, barium. Barium stannous chloride, BaCl 2 , SnCl 2 + 4H 2 0. Sol. in H 2 0. (Poggiale, C. R. 20. 1183.) Barium stannic chloride. See Chlorostannate, barium. Barium zinc chloride, BaCl 2 , ZnCl 2 +4H 2 0. Deliquescent, and sol. in H 2 0. (Warner, C. N. 27. 271.) Barium chloride fluoride, BaClF. Difficultly sol. in H 2 0, but much more sol. than BaF 2 . Decomp. by H 2 0, so that when washed on filter, the filtrate contains more BaCl 2 than BaF 2 . (Berzelius, Pogg. 1. 19.) Barium chloride hydroxylamine, BaCl 2 , 2NH 2 OH. Very sol. in H 2 0. (Crismer, Bull. Soc. (3) 3. 118.) Barium chloride sulphuric anhydride, BaCl 2 , 2S0 3 . Decomp. by H 2 0. (Schultz-Sellack, B. 4. 113.) Barium fluoride, BaF 2 . Scarcely sol. in H 2 (Berzelius) ; less sol. in H 2 than CaF 2 . Easily sol. in HC1, HN0 3 , or HF + Aq. (Gay-Lussac and Thenard.) Sol. in an aqueous solution of sodium citrate. (Spiller.) Barium stannic fluoride. See Fluostannate, barium. Barium tellurium fluoride, BaF 2 , 2TeF 4 . Decomp. by H 2 0. (Hogbom, Bull. Soc. (2) 35. 60.) Barium titanyl fluoride, Ti0 2 F 2 , BaF 2 . See Fluoxypertitanate and fluoxytitanate, barium. Barium uranyl fluoride. See Fluoxyuranate, barium. Barium zirconium fluoride, 3BaF 2 , 2ZrF 4 + 2H 2 0. Insoluble precipitate. (Marignac.) See also Fluozirconate, barium. Barium hydride, BaH. Decomp. by H 2 or HCl-fAq. (Winkler, B. 24. 1979.) Barium hydrosulphide, BaS 2 H 2 . Easily sol. in H 2 0. Insol. in alcohol. + 4H 2 0. Sol. in H 2 0, and the solution dis- solves S. (Veley, Chem. Soc. 49. 369.) Barium hydroxide, Ba0 2 H 2 . 100 pts. cold H 2 O dissolve 5 pts. BaO 2 H 2 . ,, boiling 50 (Davy.) 100 pts. H 2 O at 20 dissolve 3 '45 pts. BaO. (Bineau, C. R. 41. 509.) 100 pts. H 2 O at 13 dissolve 2-86 pts. BaO. 47 13-3 70 17-9 (Osann.) Sp. gr. of BaO 2 H 2 +Aq. %BaO Sp. gr. %BaO Sp. gr. 30 19 2-6 1-6 1-3 1-03 1-8 0-9 1-02 1-01 (Dalton.) 100 pts. H 2 dissolve pts. BaO at t t Pts. BaO t Pts. BaO t Pts. BaO 1-5 30 5-0 60 1876 5 175 35 6-17 65 24-67 10 2-22 40 7-36 70 31'9 15 2-89 45 9-12 75 56-85 20 3-48 50 1175 80 90-77 25 4-19 55 14-71 ... ... (Rosenthiel and Ruhlmann, J. B. 1870. 314.) More sol. inNaCl + Aq, KN0 3 + Aq, or NaN0 3 + Aq than in H 2 0. (Karsten.) Not precipitated by alcohol. Sol. with combination in absolute alcohol and anhydrous methyl alcohol. Insol. in ether. BARIUM IODIDE Ba0 2 H 2 is sol. in an aqueous solution of cane sugar (Hunton, Phil. Mag. (3) 11. 156) ; also in an aqueous sol. of mannite (Favre, A. ch. (3) 11. 76) ; sorbine (Pelouze) ; hot solution of quercite, separating on cooling (Dessaignes). + 8H 2 0. Sol. in 20 pts. cold, and 3 pts. boil- ing H 2 (Graham) ; 17 '5 pts. H 2 at 15 '5, and in all proportions of hot H 2 0. (Hope.) Sol. in 19 pts.H 2 at 15, and 2 pts. at 100. (Wittstein.) Readily sol. in cold NH 4 C1 + Aq ; si. sol. in Na, and K acid silicate + Aq. Melts in its crystal H 2 below 100. + H 2 0. Sol. in methyl alcohol. (For- crand, C. R. 103. 59.) Barium iodide, BaI 2 . Not deliquescent. Very sol. in H 2 and alcohol. 100 pts. of anhydrous salt dissolve : atO 19-5 30 40 60 90 106 in 59 48 44 43 41 37 35 pts. H 2 0. (Kremers, Pogg. 103. 66.) Sp. gr. of BaI 2 + Aq containing : 5 10 15 20 25 30%BaI 2 , 1-045 1-091 1-143 1-201 1-266 1'333 35 40 45 50 55 60 % BaI 2 . 1-412 1-495 1-596 1704 1'825 1'970 (Kremers, Pogg. 111. 63, calculated by Gerlach, Z. anal. 8. 279.) Cryst. with 2H 2 ; also 7H 2 0. (Thomson, B. 10. 1343.) Easily sol. in alcohol. (Henry.) Barium iodide, basic, Ba(OH)I-f 9H 2 0. See Barium oxyiodide. Barium bismuth iodide, BaI 2 , 2BiI 3 + 18H 2 0. Deliquescent ; decomp. by H 2 0. (Linau, Pogg. ill. 240.) Barium cadmium iodide, BaI 2 , CdI 2 + 5H 2 0. Deliquescent. (Croft.) Barium mercuric iodide, BaI 2 , 2HgI 2 . Decomp. by much H 2 0. (Boullay.) BaI 2 , HgI 2 . Sol. in H 2 0. (Boullay.) Sp. gr. of sat. solution = 3 -575-3 '588. (Rohr- bach, W. Ann. 20. 169.) Barium stannous iodide. Very sol. in H 2 0. (Boullay.) Barium zinc iodide, BaI 2 , 2ZnI 2 . Deliquescent, and sol. in H 2 0. (Ranmiols- berg.) Barium nitride, Ba 3 N 2 . Decomp. H 2 violently, not alcohol. (Ma- quenne, A. ch. (6) 29. 219.) Barium oxide, BaO. Sol. in H 2 with evolution of heat. Easily sol. in dil. HJST0 3 , or HCl + Aq. Sol. with combination in absolute alcohol and anhydrous wood-spirit. Insol. in ether. Easily sol. in absolute methyl alcohol. 1 1. absolute ethyl alcohol sat. with BaO at 9 contains 213 '8 g. BaO. (Berthelot, Bull. Soc. 8. 389.) See also Barium hydroxide. Barium peroxide, Ba0 2 . Insol. in H 2 ; decomp. by boiling H 2 0. Sol. in acids with formation of hydrogen dioxide. Forms hydrate with 8H 2 ; also 10H 2 (Ber- thelot, A. ch. (5) 21. 157) ; also a compound Ba0 2 , H 2 2 , which is very unstable, si. sol. in cold H 2 0, and insol. in alcohol or ether. (Schone, A. 192. 257.) Barium oxybromide, Ba(OH)Br + 2H 2 0. Decomp. by H 2 0. (Beckmann, J. pr. (2) 27. 132.) Barium oxychloride, Ba(OH)Cl + 2H 2 0. Decomp. by H 2 0. (Beckmann, J. pr. (2) 26. 388, 474.) Barium mercury oxychloride, BaCl 2 , HgOf 6H 2 0. Decomp. by H 2 0. (Andre, C. R. 104. 431.) Barium oxyiodide, Ba(OH)I + 9H 2 0. Decomp. by H 2 and alcohol. (Beckmann, B. 14. 2154.) Barium oxysulphides, Ba 7 4 S 3 + 58H 2 0, Ba 2 OS + 10H 2 0, Ba 4 S 3 + 28H 2 0. Very unstable ; decomp. by recrystallisation into BaS 2 H 2 and Ba0 2 H 2 . Barium phosphide, BaP 2 . Decomp. by H 2 0. (Dumas, A. ch. 32. 364.) Barium selenide, BaSe. Sol. in H 2 with decomp. SI. sol. in H 2 0. (Favre, C. R. 102. 1469.) Barium sulphide, BaS. Sol. in H 2 with decomp. + 6H 2 0. Slowly sol. in boiling H 2 0, with decomp ; insol. in, but decomp. by boiling alcohol. (Schone. ) Barium sulphide, Ba 4 S 7 + 25H 2 (?). Sol. in H 2 0. (Schone, Pogg. 112. 215.) Barium ^'sulphide, BaS 3 . Sol. in large amount of boiling H 2 0. (Schone, Pogg. 112. 215.) Barium i(erasulpm'de, BaS 4 + H 2 0. Easily sol. in H 2 0, especially if hot ; sol. in 2-42 pts. H 2 at 15 ; insol. in CS 2 or alcohol. (Schone, Pogg. 112. 224.) + 2H 2 0. (Veley, Chem. Soc. 49. 369.) Barium pentasulphide, BaS 6 . Known only in solution. Barium mercuric sulphide, BaS, HgS + 5H 2 0. Sol. in H 2 0. (Wagner, J. pr. 98. 23.) Barium stannic sulphide. See Sulphostannate, barium. Barium uranyl sulphide, 6BaS,U0 2 S +a;H 2 (?). Decomp. by HCl + Aq. (Remele, Pogg. 124. 159.) Baryta. See Barium oxide, BaO. BISMUTHIC HYDROXIDE 19 Beryllium, Be. . For beryllium and its salts, see Glucinum and the corresponding salts. Bismuth, Bi. Not attacked by H 2 0. Very slowly attacked by HCl + Aq (Troost). Very si. sol. in cone. HCl + Aq (Schutzenberger, Willm). Not at- tacked by dil. HC1 + Aq (Naquet and Hanriot). Very slowly attacked by cold HCl + Aq (Godef- froy). According to very careful experiments pure Bi is absolutely unattacked by hot or cold, dil. or cone. HCfl + Aq except in presence of oxygen. (Ditte and Metzner, A. ch. (6) 29. 397.) Not attacked by dil. H 2 S0 4 + Aq. Decomp. by hot cone. H 2 S0 4 . Easily sol. in dil. or cone. HN0 3 + Aq, or aqua regia. Not attacked by pure HN0 3 + Aq of 1-52 to 1 - 42 sp. gr. at 20 ; violently attacked by a more dil. acid, but the acid becomes concen- trated thereby. Cone. HN0 3 + Aq attacks only }>y heating or adding N0 2 . (Millon, A. ch. (3) 6. 95.) Bismuth arsenide, Bi 3 As 4 . (Descamp, C. R. 86. 1065.) Bismuth (//bromide, Bi 2 Br 4 . Not known in a pure state. (Weber, Fogg. 107. 599.) Bismuth ^n'bromide, BiBr 3 , Very deliquescent. Decomp. by H 2 0. Sol. in alcohol or ether. Bismuth bromide ammonia, BiBr 3 , 3NH 3 . Sol. in HCl + Aq. BiBr 3 , 2NH 3 (?). 2BiBr 3 , 5NH 3 . Not deliquescent ; not de- comp. by H 2 ; easily sol. in dil. acids. (Muir, Chem. Soc. 29. 144.) Bismuth bromide potassium chloride, Decomp. by H 2 0. (Atkinson, Chem. Soc. 43. 289.) Bismuth ^'chloride, Bi 2 Cl 4 . Very deliquescent. Decomp. by H 2 0, dil. acids, or cone. NH 4 Cl + Aq. (Weber, Pogg. 107. 596.) Bismuth trichloride, BiCl 3 . Deliquescent. Decomp. by H 2 0. Sol. in dil. HCl + Aq, and alcohol. Not decomp. by H 2 in presence of citrates. (Spiller. ) Bismuth chloride, Bi 3 Cl 8 (?). Decomp. by H 2 0. (Deherain, C. R. 54. 724.) Bismuth hydrogen chloride, 2BiCl 3 , HC1 + 3H 2 0. Not deliquescent. Decomp. by H 2 0. (Engel, C. R. 106. 1797.) BiCl 3 , 2HC1. (Jacquelain, A. ch. (2) 62. 363.) Bismuth caesium chloride, BiCl 3 , 3CsCl. Decomp. by H 2 0. SI. sol. in cold dil. HC1 + Aq, but easily sol. on warming. (Brigham, Am. Ch. J. 14. 181.) 2BiCl 3 , 3CsCl. As above. (Brigham.) BiCl 3 , 6CsCl. Easily sol. in H 2 and dil HCl + Aq. (Godeffroy, B. 8. 9.) Does not exist. (Brigham.) Bismuth nitrosyl chloride, BiCl 3 , NOC1. Very deliquescent. Decomp. by H 2 0. (Sudborough, Chem. Soc. 59. 662.) Bismuth potassium chloride, BiCl 3 ,KCl + H 2 0. Decomp. by H 2 0. Cannot be recryst. except from cone. BiCl 3 + HC1. Decomp. by HC1 + Aq into BiCl 3 , 2KC1 + 2H 2 0. (Brigham, Am. Ch. J. 14. 167.) BiCl 3 , 2KC1. Decomp. by H 2 0. (Arppe, Pogg. 64. 37.) + 2H 2 0. Decomp. by H 2 0. (Jacquelain, J. pr. 14. 1.) Sol. in moderately cone. HCl + Aq. BiCl 3 , 3KC1. Decomp. by H 2 0. (Arppe.) Does not exist. (Brigham.) Bismuth rubidium chloride, BiCl 3 , RbCl + H 2 0. Decomp. by H 2 ; sol. in dil. HC1 + Aq, from which BiCl 3 ,3RbCl crystallises. (Brigham, Am. Ch. J. 14. 174.) BiCl 3 , 3RbCl. Decomp. by H 2 ; sol. in dil. HCl + Aq without decomp. (Brigham.) BiCl 3 , 6RbCl. Decomp. by H 2 ; sol. in HCl + Aq (Godeffroy, B. 8. 9); does not exist. (Brigham.) 10BiCl 3 , 23RbCl (?). As above. (Brigham.) Bismuth sodium chloride, BiCl 3 , 2NaCl + H 2 0. + 3H 2 0. Decomp. by H 2 0. (Arppe, Pogg. 64. 237.) Bid.,, 3NaCl. Bismuth chloride ammonia, 2BiCl 3 , NH 3 . Stable. (Deherain, C. R. 54. 724.) BiCl 3 , 2NH 3 . (D.) BiCl 3 , 3NH 3 . (D.) Bismuth chloride selenide. See Bismuth selenochloride. Bismuth tri&uori&e, BiF 3 . Insol. in H 2 or alcohol. (Gott and Muir, Chem. Soc. 53. 138.) Bismuth hydrogen fluoride, BiF 3 , 3HF. Deliquescent. Decomp. by boiling H 2 0. (Muir, Chem. Soc. 39. 21.) Bismuthous hydroxide, Bi(OH) 3 . Sol. in strong acids. Insol. in solutions of alkalies, alkali carbonates, (NH 4 ) 2 C0 3 , or NH 4 N0 3 ; or of amyl amine (Wurtz). When recently pptd. is sol. in NH 4 Cl + Aq, but insol. in NH 4 N0 3 + Aq (Brett, 1837). Not pptd. in presence of Na citrates (Spiller). Bi 2 3 , 2H 2 0. Bi 2 3 , H 2 0. (Muir, Chem. Soc. 32. 131.) Bismuth ^rahydroxide, Bi 2 4 , H 2 0. Bi 2 4 , 2H 2 0. (Wernicke, Pogg. 141. 109.) Bismuthic hydroxide (Bismuthic acid), Bi 2 5 , H 2 0. Insol. in H 2 ; easily decomp. by acids. (Fremy, A. ch. (3) 12. 495.) Decomp. by H 2 S0 4 ; not attacked by S0 2 + Aq ; neither dissolved nor decomp. by dil. HN0 3 + Aq, but 50 BISMUTH IODIDE slowly converted into an allotropic modifica- tion (?). Partially decomp. by cone. HN0 3 . Slowly but wholly dissolved by hot cone. HN0 3 . SI. sol. in cone. KOH + Aq. (Arppe.) Sol. in about 100 pts. boiling KOH + Aq, so cone, that it solidifies on removing the lamp. (Muir, Chem. Soc. 51. 77.) Bi 2 5 , 2H 2 0. (Bodeker, A. 123. 61.) Does not exist. (Hoffmann and Geuther.) Bismuth iodide, BiI 3 . Not attacked by cold H 2 0, but by boiling, BiOI is formed. 100 pts. absolute alcohol dissolve 3| pts. salt at 20. (Gott and Muir, Chern Soc. 57. 138.) Sol. in HN0 3 , and HI + Aq, from which it is repptd. by H 2 or alcohol. Sol. in KI + Aq or KOH + Aq. (Rammelsberg. ) 100 pts. methylene iodide dissolve 0'15 pt. BiI 3 at 12, and very little more at higher temperatures. (Retgers, Z. anorg. 3. 343.) Bismuth hydrogen iodide, BiI 3 , HI + 4H 2 0. (Arppe, Pogg. 44. 248.) Bismuth calcium iodide, 2BiI 3 , CaI 2 + 18H 2 0. Deliquescent ; decomp. by H 2 0. (Linau, Pogg. 111. 240.) Bismuth magnesium iodide, 2BiI 3 , MgI 2 + 12H 2 0. Deliquescent ; decomp. by H 2 0. (Linau, Pogg. 111. 240.) Bismuth potassium iodide, BiI 3 , 4KI. Ppt. (Arppe, Pogg. 44. 237.) BiI 3 , SKI. (Astre, C. R. 110. 1137.) BiI 3 , 2KI. Sol. in acetic ether. (Astre.) + 4H 2 0. Sol. in small amt. H 2 without pptn., but decomp. by much H 2 0. Bil,, 2KI, HI. (Arppe.) 2Bi'l 3 , 3KI + 2H 2 0. (Astre.) BiI 3 , KI + H 2 0. Decomp. by H 2 0. (Nickles, C. R. 51. 1097.) 2BiI 3 , KI. Sol. in acetic ether. (Astre.) Bismuth sodium iodide, BiI 3 , Nal + H 2 0. Deliquescent ; decomp. by H 2 0. (Nickles, C. R. 51. 1097.) 2BiI 3 , 3NaI + 12H 2 0. As above. (Linau, Pogg. 111. 240.) Bismuth zinc iodide, 2BiI 3 , ZnI 2 + 12H 2 0. Very deliquescent. (Linau, Pogg. 111. 240.) Bismuth iodide ammonia, BiI 3 , 3NH 3 . Decomp. by H 2 0. (Rammelsberg.) Bismuth iodide zinc bromide. Sol. in H 2 0. (Linau, Pogg. 111. 240.) Bismuth dioxide, Bi 2 2 . Sol. in cone. HN0 3 + Aq. Decomp. by strong acids, and boiling KOH + Aq. Bismuth tnoia.de, Bi 2 3 . Insol. in H 2 0. Sol. in cone, acids. Min. Bismite. Easily sol. in HN0 3 + Aq. See also Bismuthous hydroxide. Bismuth ^roxide, Bi 2 4 . Sol. in cone. HC1 + Aq, with evolution of Cl ; in oxygen acids with evolution of O. Less easily sol. in cone. H 2 S0 4 than in HN0 3 , or HCl + Aq. Bismuth oxide, Bi 4 9 (?). (Hoffmann and Geuther.) Bismuth je?^oxide, Bi 2 5 . Sol. in dil. acids. Combines with H 2 to form bismuthic hydroxide, which see. (Hase- broek, B. 20. 213.) Bismuth oxybromide, etc. See Bismuthyl bromide, etc. Bismuth phosphide, BiP. (Cavazzi.) Bismuth ^'selenide, Bi 2 Se 3 . Insol. in H 2 0, alkalies, or alkali sulphides + Aq ; si. attacked by HCl + Aq ; oxidised by HN0 3 + Aq. (Schneider, Pogg. 94. 628.) Min. Frenzelite. Bismuth selenochloride, BiSeCl. Not attacked by H 2 ; very si. sol. in HC1 + Aq ; easily and completely sol. with decomp. in HN0 3 + Aq. (Schneider.) Bismuth ^'sulphide, Bi 2 S 2 + 2H 2 (?). Insol. in H 2 0. Decomp. by HCl + Aq. Bismuth ^'sulphide, Bi 2 S 3 . Insol. in H 2 0. Easily sol. in moderately dil. HN0 3 + Aq, and cone. HCl + Aq, with separa- tion of S. Insol. in alkalies, alkali sulphides, Na 2 S 2 3 , or KCN + Aq ; insol. in NH 4 C1, or NH 4 N0 3 + Aq (Brett). Insol. in potassium thiocarbonate +Aq. (Rosenbladt, Z. anal. 26. 15.) Min. Bismuthinite. Easily sol. in HN0 3 + Aq. Bismuth cuprous sulphide, Bi 2 S 3 , Cu 2 S. Insol. in H 2 0. Sol. with decomp. in HN0 3 + Aq. (Schneider, J. pr. (2) 40. 564.) Min. Emplectowite. Bismuth potassium sulphide, Bi 2 S 3 , K 2 S. (Schneider, Pogg. 136. 460.) Bismuth sodium sulphide, Bi 2 S 3 , Na 2 S. (Schneider. ) Bismuth sulphide telluride, Bi 2 S 3 , 2Bi 2 Te 3 . Min. Tetradymite. Sol. in HN0 3 with separ- ation of S. Bi 2 S 2 , 2Bi 2 Te. Min. Joseite. As above. Bismuth sulphochloride, BiSCl. Insol. in H 2 or dil. HCl + Aq. Sol. in cone. HC1, or HN0 3 + Aq. Decomp. by alkalies + Aq. (Schneider, Pogg. 93. 464.) Bismuth sulphoiodide, BiSI. Not attacked by boiling H 2 0, and dil. acids. Decomp. by hot cone. HCl + Aq, and HN0 3 + Aq. KOH + Aq dissolves out I 2 . (Schneider, Pogg. 110. 114.) Bismuth telluride, Bi 2 Te,. Min. Tetradymite. Sol. in HNO.. + Aq. See also Bismuth sulphide telluride. BORIC ACID 51 Bismuthic acid, HBi0 3 . Sec Bismuthic hydroxide. Potassium bismuthate, KBi0 3 . Sol. in H 2 0. (Arppe.) KH(Bi0 3 ) 2 . Insol. in H 2 0. Not decomp. by boiling H 2 0. (Andre, C. R. 113. 860.) No salts of HBi0 3 can exist. (Muir and Carnegie, Chem. Soc. 51. 77.) Bismuthyl bromide, BiOBr. Insol. in H 2 ; sol. in moderately cone. HBr + Aq. Bi 8 9 Br 6 . Insol. in H 2 ; easily sol. in cone. HC1, or HN0 3 + Aq; less sol. in dil. HN0 3 + Aq. Bi u 13 Br 7 . As the preceding com p. (Muir.) Bismuthyl chloride, BiOCl. Insol. in H 2 or dil. acids. Sol. in cone. HC1, or HN0 3 + Aq. + H 2 0. (Heintz, Pogg. 63. 55.) + 3H 2 0. (Phillips, Br. Arch. (1) 39. 41.) Bi 7 9 Cl 3 . (Arppe.) Bi0 2 Cl 3 . Insol. in H 2 ; sol. in hot HC1, or HN0 3 + Aq. (Muir.) Bismuthyl fluoride, BiOF. Insol. in H 2 ; sol. in HC1, HBr, or HI + Aq. (Gott and Muir, Chem. Soc. 33. 139.) BiOF, 2HF. Insol. in H 2 0. Bismuthyl iodide, BiOI. Not decomp. by H 2 or alkaline solutions. Sol. in HCl + Aq. Decomp. by HN0 3 + Aq. (Schneider, J. pr. 79. 424.) Insol. in KC1, or KI + Aq. BiI 3 , 5Bi 2 3 . Ppt. SI. sol. in HC 2 H 3 2 + Aq. Not decomp. by H 2 0. (Fletcher and Cooper, Pharm. J. (3) 13. 254.) 4BiI 3 , 5Bi 2 3 . Easily sol. in HCl + Aq. Decomp. by HN0 3 + Aq. SI. attacked by H 2 S0 4 ; somewhat sol. in HoC.H.Ofi, and KHC 4 H 4 6 + Aq. Sol. in (NH 4 ) 2 S, and KOH + Aq. (Storer's Diet.) Bismuthyl sulphide, Bi c 3 S. (Hermann, J. pr. 75. 452.) Bi,0 3 S. Insol. in H 2 0. (Sclierpenberg, C. C. 1889, 2. 641.) Bi 4 3 S. Min. Karelinite. Boracic acid. See Boric acid. Borax. Sec Te^raborate, sodium. Boric acid, anhydrous, B 2 3 . See Boron m>xide. Metabolic acid, HB0 2 . Sol. in H 2 0. Orthoboiic acid, H 3 B0 3 . Sol. in 33 pts. H 2 O at 10. ,. 25 20. 3 100. (Berzelins.) Sol. in 20 pts. H 2 O at 18-75. (Abl.) 100 pts. H 2 O at 100 dissolve 2 pts. (Ure's Diet.) 1 pt. crystallised acid dissolves in 25-66 pts. H 2 at 19. 14-88 , 25. 12-66 , 37-5. 10-16 , 50. 6-12 , 62-5. 4-73 , 75. 3-55 , 87-5. 2-97 , 100. Or, 100 pts. H 2 dissolve at 19 3-9 pts. H 3 B0 3 . 25 6 8 ,, 37-5 7 8 50 9 8 ,, 62-5 16 o 75 21 o 87-5 28 o 100 34 o Or, sat. aqueous solution contains at 19 3 75 % H 3 B0 3 . 25 6 27 37-5 7 32 50 8 96 ,, 62-5 14 04 ,, 75 17 44 ,, 87-5 21 95 ,, 100 25 17 (Brandes and Firnhaber, Arch. Pharm. 7. 50.) 1 litre H 2 dissolves at 19-47 g. H 3 B0 3 . 12 29-20 20 39-92 40 69-91 62 114-16 80 168-15 102 291-16 (Ditte, C. R. 85. 1069.) Sp. gr. of H 3 B0 3 + Aq at 15. % H 3 BO 3 Sp. gr. % H 3 B0 3 Sp. gr. 1 1-0034 4 1-0147 2 1-0069 Sat. sol. 1-015 3 1-0106 (Gerlach, Z. anal. 28. 473.) Sp. gr. of H 3 B0 3 +Aq sat. at 8=r014. (Anthon, A. 24. 241.) Sp. gr. of H 3 BO 3 +Aq sat. at 15 = 1 '0248. (Stolba, J. )r. 90. 457.) Volatile with steam. More sol. in dil. HCl + Aq than in H 2 0. Sol. in warm cone. H 2 S0 4 , HC1, orHN0 3 + Aq. Sol. in 6 pts. alcohol (Wittstein), 5 pts. boil- ing alcohol (Wenzel). Only traces dissolve in anhydrous ether. (Schiff.) Sol. in 100 pts. ether. (Hager's Comm. ) Sol. in several essen- tial oils. 52 BORIC ACID 100 pts. glycerine (sp. gr. 1'26 at 15 '5) dissolve pts. H 3 B0 3 at t. t Pts. H 3 B0 3 t Pts. H 3 B0 3 t Pts. H 3 B0 3 20 40 38 80 61 10 24 50 44 90 67 20 28 60 50 100 72 30 33 70 56 (Hooper, Ph. J. Trans. (3) 13. 258.) Sol. in 10 pts. glycerine. (Hager.) Sol. in 250 pts. benzene. (Hager.) Solubility in H 2 is increased by presence of tartaric acid or tartrates. Easily sol. in acetone. (Krug and M'Elroy, J. Anal. Ch. 6. 184.) Min. Sassolite. Pyroboric (tetrdboiic) acid, H 2 B 4 7 . Sol. in H 2 0. Sp. gr. of solutions of boric acid, calculated as H 2 B 4 7 , containing 6-3 1-27 1-91 2-54 % H 2 B 4 7 1-0034 1-0069 1-0106 l-0147sp.gr. Sat. solution at 15 has sp. gr. 1'015. (Ger- lach, Z. anal. 28. 473.) Berates. No borate is quite insol. in H 2 ; the alkali borates are very sol. The less sol. borates are easily decomp. by H 2 ; the easily sol. salts are also decomp., but less quickly. The less sol. borates are easily sol. in H 3 B0 3 , HN0 3 , etc. They are more sol. in H 2 containing tartaric acid or potassium tartrate than in pure H 2 0. (Souberain.) The normal borates of the alka- line-earths are sol. to no inconsiderable extent in H 2 0, and more readily in hot, than in cold H 2 0. (Berzelius, Pogg. 34. 568.) All borates are insol., or si. sol. in alcohol. Aluminum borate, 2A1 2 3 , B 2 3 . Min. Jeremciewite. + 3H 2 0. Ppt. (Rose, Pogg. 91. 452.) 3A1 2 3 , B 2 3 . Crystallised. Insol. in HN0 3 + Aq. (Ebelmen, A. ch. (3) 33. 62.) 3ALj0 3 , 2B 2 3 + 7H 2 0. Ppt. (Rose, I.e.) Ammonium ^raborate, (NH 4 ) 2 B 4 7 + 4H 2 0, or perhaps NH 4 H(B0 2 ) 2 + liH 2 0. Sol. in 12 pts. cold H 2 ; decomp. by heat. (Rammelsberg, Pogg. 90. 21.) + H 2 0. (Arfvedson.) Ammonium odoborate, (NH 4 ) 2 B 8 13 + 6H 2 0. Sol. in 8 pts. cold, decomp. by boiling H 2 0. (Rammelsberg, Pogg. 90. 21.) + 4H 2 0. Min. Lardellerite. Sol. in H 2 with decomp. Ammonium de&aborate, (NH 4 ) 2 B 10 16 + 6H 2 0. Permanent. Sol. in H 2 0. (Rammelsberg.) + 8H 2 0. (Atterberg, Bull. Soc. (2) 22. 350. ) Ammonium dodekaborate, (NH 4 ) 2 B 12 19 + 9H 2 0. Sol. in hot H 2 0. (Bechi, Sill. Am. J. (2) 17. 129.) Ammonium calcium borate, (NH 4 ) 8 CaB 4 O u = CaB 4 7 + 4(NH 4 ) 2 0. (Ditte, C. R. 96. 1663.) Ammonium magnesium borate. Sol. in H 2 0, decomp. by boiling. (Ram- melsberg, Pogg. 49. 451.) Ammonium zinc borate, 4(NH 4 ) 2 B 4 7 , Zn(B0 2 ) 2 + 5H 2 0. (Ditte, C. R. 96. 1663.) Barium borate, Ba(B0 2 ) 2 . Ppt. + H 2 0. + 2H 2 0. (Atterberg.) + 4H 2 0. (Benedikt, B. 7. 703.) Sol. in 3,300 pts. 45 % alcohol. 7,800 50 25,000 ,, 60 ,, 55,000 ,, 75 (Berg, Z. anal. 16. 25.) + 10H 2 0. SI. sol. in cold, more readily in hot H 2 0, especially in presence of ammonium salts. (Berzelius, Pogg. 34. 568.) Sol. in sodium citrate + Aq. (Spiller.) Insol. in wood spirit. (Ebelmen.) BaB 4 7 . Slowly sol. in warm dilute HN0 3 + Aq. (Ditte, C. R. 77. 892.) + 5H 2 0. Sol. in 100 pts. cold, and more freely in hot H 2 0. When freshly pptd. sol. in cold NH 4 Cl + Aq (Wackenroder, A. 41. 315); NH 4 N0 3 + Aq (Brett, Phil. Mag. (3) 10. 96); and BaCl 2 + Aq (Rose). BaB 6 10 + 13H 2 0. (Laurent, A. ch. (2) 67. 215.) Ba 3 (B0 3 ) 2 . Ba 2 B 2 5 . (Bloxam, Chem. Soc. 14. 143.) 5BaO, 2B 2 3 . Ba 3 B 10 18 + 6H 2 0. Sol. in 100 pts. cold H 2 0. Easily sol. in ammonium nitrate, or chloride, or barium chloride + Aq. (Rose, Pogg. 87. 1.) Ba 2 B 6 O n . Easily sol. in warm dilute acids. + 6H 2 O. + 7H 2 0. + 15H 2 0. (Laurent, A. ch. (2) 67. 215.) Bismuth borate (?). Insol. in H 2 0. (Storer's Diet.) Caesium borate, Cs 2 B 6 10 . Very sol in H 2 0, less in alcohol. (Reischle, Z. anorg. 4. 116.) Cadmium borate, 3CdO, 2B 2 3 + 3H 2 0. Ppt. SI. sol. in H 2 0. (Rose, Pogg. 88. 299.) Cd(B0 2 ) 2 . Difficultly sol. in H 2 (Strom- eyer) ; insol. in H 2 0, sol. in HCl + Aq (Odling) ; easily sol. in warm NH 4 Cl + Aq (Rose). Calcium borate, basic, 3CaB 4 7 , Ca0 2 H 2 + 9H 2 0. SI. sol. in H 2 0. 5CaB 4 7 , 2Ca0 2 H 2 +15H 2 0. Ppt. Calcium borate, Ca(B0 2 ) 2 + 2H 2 0. SI. sol. in H 2 ; insol. in alkali chlorides, or boiling cone, acetic acid + Aq; sol. in cold or BORATE, LEAD hot solutions of ammonium salts, especially ammonium nitrate, in CaCl 2 + Aq, and also easily sol. in dilute mineral acids at 50. (Ditte, C. R. 80. 490, 561.) + 7H 2 0. Sol. in H 2 without decomp. ; 1 1. solution contains 2 g. salt. (Ditte, C. R. 96. 1663.) CaB 4 7 . Decomp. by H 2 0. (Blount, C. N. 54. 208.) + 3H 2 0. (Ditte, C. R. 96. 1663.) + 4H 2 0. Min. Bechilite. + 6H 2 0. Min. Borocalcite. Sol. in acids. Ca 2 B 6 O u . (Ditte, C. R. 77. 785.) + 3H 2 0. Min. Pandermite, Priceite. + 6H 2 0. CaB 8 13 + 12H 2 0. (Ditte, C. R. 96. 1663.) Ca 3 B 10 18 . Precipitate. Calcium ferrous borate silicate, Ca 2 FeB 2 Si 2 10 . Min. Homilite. Easily sol. in HCl + Aq. Calcium magnesium borate, CaO, MgO, 3B 2 3 + 6H 2 0. Min. Hydroboracite. Somewhat sol. in H 2 0. Easily sol. in warm HC1 + Aq or HN0 3 + Aq. 3CaO, 3MgO, 4B 2 3 . (Ditte, C. R. 77. 894.) Calcium sodium borate, Ca 3 B 10 18 ,]Sra 3 B 5 9 + 15, or 24H 2 0. Min. Natroborocalcite, Ulexite. Decomp. by boilin with H 2 0. Sol. in acids. . Min. Franklandite. SI. sol. in H 2 O ; easily sol. in HC1, and HN0 3 + Aq. Calcium borate chloride, Ca 3 B 2 6 , CaCl 2 . Decomp. quickly by moist air or H 2 0, slowly by absolute alcohol. (Chatelier, C. R. 99. 276.) Calcium borate silicate, 2CaO, B 2 3 , 2Si0 2 + H 2 0. Min. Datolite. Sol. in HCl + Aq with separ- ation of gelatinous silica. + 2H 2 0. Min. Botryolite. CaO, B 2 3 , Si0 2 . Min. Danburite. Very si. attacked by HC1 + Aq before ignition. Chromous borate. Precipitate. Sol. in free acids ; insol. in borax + Aq. (Moberg. ) Chromic borate, 7Cr 2 3 , 4B 2 3 . Insol. in H 2 ; sol. in excess of borax + Aq. (Hebberling, C. C. 1870. 122.) Chromic magnesium borate, 3Cr 2 3 , 6MgO, Not attacked by acids. (Ebelmen, A. ch. (3) 33. 52.) 2Cr 2 3 , 9MgO, 3B 2 3 . (Mallard, C. R. 105. 1260.) Cobaltous borate, 3CoO, 2B 2 3 + 4H 2 0. SI. sol. in H 2 0. (Rose, Pogg. 88. 299.) 3CoO, B 2 3 . (Mallard, C. R. 105. 1260.) Cupric borate, basic. Composition depends on temperature and concentration of solutions. Boiling H 2 dis- solves out all the boric acid. Sol. in acids ; slowly sol. in hot cone. NH 4 C1 + Aq. Cupric borate ammonia, CuB 4 7 , 6H 2 0. Efflorescent. Can be recrystallised from a little NH 4 OH + Aq. (Pasternack, A. 151. 227.) Didymium borate, DiB0 3 . Insol. in H 2 acidulated with HCl + Aq. (Cleve, Bull. Soc. (2) 43. 363.) Di 2 (B 4 7 ) 3 . Insol. in H 2 ; sol. in acids. (Frerichs and Smith, A. 191. 355.) Glucinum borate, basic, 5G10, B 2 3 . Insol. in H 2 ; sol. in acids. (Kriiss and Moraht, B. 23. 735.) Ferrous borate. Ppt. H 2 dissolves out all the boric acid. (Tiinnerman. ) Ferric borate, Fe 2 (B0 2 ) 6 + 3H 2 0. Ppt. Insol. in H 2 0. Min. Lagonite. Sol. in acids. 2Fe 2 3 , 3B 2 3 . (Mallard, C. R. 105. 1260.) 6Fe 2 3 , B 2 3 + 6H 2 0. Ppt. (Rose, Pogg. 89. 473.) 9Fe 2 3 , B 2 3 + 9H 2 0. Ppt. (Rose.) Ferric magnesium borate, 3Fe 2 3 , 6MgO, 2B 2 3 . Insol. in H 2 0. Sol. in cone. HCl + Aq. (Ebelmen, A. ch. (3) 33. 53.) 2Fe 2 3 , 9MgO, 3B 2 3 . (Mallard, C. R. 105. 1260.) Ferroferric magnesium borate, 3MgO, FeO, Fe 2 3 , B 2 3 . Min. Ludwigite. Slowly sol. in HCl + Aq, when finely powdered. Ferrous borate bromide, 6FeO, 8B 2 3 , FeBr 2 . Slowly sol. in hot HN0 3 + Aq. (Rousseau and Allaire, C. R. 116. 1445.) Ferrous borate chloride, 6FeO, 8B 2 3 , FeCl 2 . Slowly sol. in hot HN0 3 + Aq. (Rousseau and Allaire, C. R. 116. 1195.) Lanthanum borate, 2La 2 3 , B 2 3 . (Nordeiiskjold, Pogg. 114. 618.) La 2 (B 4 7 ) 3 . Ppt. (Smith.) Formula is La 2 B 6 15 + a;H 2 0. (Cleve, B. 11. 910.) Lead borate, basic, 2PbO, B 2 3 + 2H 2 0. Ppt. 4PbO, 3B 2 3 + 4H 2 0. Ppt. + 5H 2 0. Ppt. 6PbO, 5B 2 3 + 6H 2 0. Ppt. 8PbO, 3B 2 3 + 8H 2 0. Ppt. 9PbO, 5B 2 3 + 9H 2 0. Ppt. (Rose, Pogg. 87. 470.) Lead borate, Pb(B0 2 ) 2 + H 2 0. Insol. in H 2 0. Easily sol. in dil. HN0 3 , or boiling HC 2 H 3 2 + Aq. Decomp. by H 2 S0 4 , HC1, also by boiling KOH, or NaOH + Aq. Insol. in alcohol. (Herapath, Phil. Mag. (3) 34. 375.) Sol. in NH 4 Cl + Aq ; sol. in sat. NaCl + Aq. 2PbO, 3B 2 3 + 4H 2 0. (Herapath.) PbB 4 7 + 4H 2 0. Slightly sol. in pure H 2 0, but insol. in solutions of Na salts as Na 2 B 4 7 + Aq. (Soubeiran. ) BORATE CHLORIDE, LEAD Lead borate chloride, Pb(B0 2 ) 2 , PbCl 2 + H 2 0. Insol. in cold, very slowly decomp. by hot H 2 into its constituents. Easily sol. in dil. hot HNX) 3 + Aq ; insol. in alcohol. (Herapath, Phil. Mag. (3) 34. 375.) Lead borate nitrate, Pb(B0 2 ) 2 , Pb(N0 3 ) 2 + H 2 0. Insol. in alcohol. (Herapath. ) Lithium borate, LiB0 2 . (Reischle. ) Li 2 H 4 (B0 3 ) 2 + 14H 2 0. (Reischle, Z. anorg. 4. 166.). Li 2 B 4 7 . Deliquescent ; easily sol. in H 2 0. (Arfvedson, A. ch. 10. 82.) + 5H 2 0. Insol. in alcohol. (Filsinger, Arch. Ph. (3) 8. 198.) Li 2 0, 3B 2 3 + 6H 2 0. Sol. in H 2 ; insol. in alcohol. (Filsinger.) Li 2 0, 4B 2 3 + 10H 2 0. Sol. in H 2 ; insol. in alcohol. (Filsinger.) "Acid lithium borate" is less sol. than the tetraborate. (Gmelin. ) Magnesium borate, Mg(B0 2 ) 2 . (Ditte, C. R. 77. 893.) + 3H 2 0. Min. Pinnoite. + 4H 2 0. (Laurent, A. ch. (2) 67. 215.) + 8H 2 0. Insol. in cold or hot H 2 ; easily sol. in HCl + Aq. Decomp. by cone. HC1 + Aq into H. ? B0 3 and MgCl 2 . (Wohler. ) MgB 4 7 + 8H 2 6. (Popp, A. Suppl. 8. 1.) MgO, 3B 2 3 + 8H 2 0. Very slowly sol. in H 2 0. (Rose, A. 84. 221.) Sol. in 75 pts. cold H 2 0. (Rammelsberg, g. 49. MgO, acids. (Ebelmen, A. 80. 208.) Very si. sol. in cold, but somewhat decomp. by boiling H 2 0. (Rammelsberg.) + 9H 2 0. Somewhat sol. in cold H 2 0. (Wohler, Pogg. 28. 525.) 3MgO, 2B 2 3 . Sol. in warm H 2 S0 4 or HN0 3 + Aq. (Ditte, C. R. 77. 893.) MgO, 6B 2 3 + 18H 2 = Mg(B0 2 ) 2 , 10HB0 2 + 13H 2 0. (Rammelsberg, Pogg. 49. 445.) 3MgO, 4B 2 3 . Sol. in hot dil. acids ; insol. in acetic acid. (Ditte, C. R. 77. 893.) 5MgO, 2B 2 3 + H, and 3H 2 0. Min. Szai- belyite. Difficultly sol. in HCl + Aq. 9MgO, B 2 3 . (Mallard, C. R. 105. 260.) Magnesium manganous borate, 3Mg 2 B 2 5 , 4Mn 2 B 2 5 + 7H 2 0. Min. Sussexite. Sol. in HCl + Aq. Magnesium potassium borate. Easily sol. in H 2 0. (Rammelsberg.) Magnesium sodium borate, Mg 2 B 6 O n , Na 2 B 4 7 + 30H 2 0. Efflorescent. About as sol. in cold H 2 as borax ; solution separates out a Mg borate on warming, which redissolves on cooling. Decomp. by boiling H 2 0. (Rammelsberg.) Magnesium strontium borate, 3MgO, 3SrO, 4B 2 3 . Easily sol. in dil. acids. (Ditte, C. R. 77. 895.) Pogg. 49. 445.) 3MO, B 2 S . Insol. in H 2 ; easily sol. in Magnesium borate chloride, 2Mg 3 B 8 15 , MgCl 2 . Min. Boracite. Insol. in H 2 ; slowly sol. in acids. (Kraut.) Stassfurthitc. Easily sol. in warm acids. (Bischof.) Magnesium borate phosphate, Mg(B0 2 ) 2 , 2MgHP0 4 + 7H 2 0. Min; Luneburgite. Manganous borate, MnB 4 7 (?). Insol. in H 2 (Berzelius) ; very si. sol. in H 2 (Thomas, Am. Ch. J. 4. 358) ; decomp. by warm, slowly by cold H 2 0. Sol. in MgS0 4 + Aq (Berzelius). 3MnO, B 2 3 . (Mallard, C. R. 105. 1260.) 3MnO, 2B 2 3 . (Mallard.) MnH 4 (B0 3 ) 2 . Very si. sol. in H 2 0. Solubility in 2 % Na 2 S0 4 + Aq. At 18'5, 077 g. MnH 4 (B0 3 ) 2 are dissolved per litre ; at 40, 0-65 g. ; at 60, 0'36 g. ; at 80, 0'12 g. Solubility in 2 % NaCl + Aq. 1 1. solution dissolves 1'31 g. salt at 18 '2 ; 0'6 g. at 59 ; and 0'29 g. at 80. Solubility in 2 % CaCl 2 + Aq. 1 1. CaCl 2 + Aq dissolves 2 '91 g. salt at 17'6 ; 2 '44 g. at 43 '0 ; 2-25 g. at 61 ; and 1'35 g. at 80. (Hartley and Ramage, Chem. Soc. 63. 129.) Molybdenum borate, Mo0 2 , 2B 2 3 (?). Insol. in H 2 ; sol. in H 3 B0 3 + Aq. (Ber- zelius.) Molybdenum borate, Mo 2 3 , B 2 3 . Precipitate. Insol. in H 2 ; si. sol. in a solution of boric acid. (Berzelius.) See Boromolybdic Acid. Nickel borate, Ni(B0 2 ) 2 + 2H 2 0. Insol. in H 2 0. Easily sol. in acids. Easily sol. in warm NH 4 Cl + Aq. (Rose, Pogg. 88. 299.) 2MO, B 2 3 + a;H 2 0. Easily sol. in acids. (Rose.) 3MO, 2B 2 3 + 5H 2 0. Easily sol. in acids. (Rose.) Potassium borate, KB0 2 . Sol. in small amount of H 2 0. (Berzelius, Pogg. 34. 568.) + 1- 2 H 2 0. (Atterberg, Bull. Soc. (2) 22. 350.) Potassium tetraborate, K 2 B 4 7 . Very sol. in H 2 0. + 4H 2 0. (Atterberg, Bull. Soc. (2) 22. 350.) + 5H 2 0. Very sol. in H 2 ; more sol. than K 2 B 6 10 or K 2 B 12 19 . + 6H 2 0. (Atterberg, I.e.) Potassium hexabora.ie, K 2 B 6 10 +5, and 8H 2 0. Easily sol. in H 2 0. Potassium elaborate, K 2 B 10 16 + 8H 2 0. Sol. in H 2 0. (Rammelsberg.) Potassium dodekoboT&ie, K 2 B 12 19 + 10H 2 0. SI. sol. in cold, very sol. in hot H 2 0. (Laurent, A. ch. 67. 215.) = K 2 B 10 16 . (Rammelsberg. ) Potassium borate fluoride, KB0 2 , KF. Sol. in H 2 0. (Schiff and Sestini, A. 228. 72. ) BORATE, STRONTIUM 55 KBO, much H 2 0. little, decomp. by H 2 0. (Schitf and 2KF. Sol. in Insol. in Sestini, A. 228. 72.) Rubidium borate, Rb 2 B 4 7 . Anhydrous. (Reischle, Z. anorg. 4. 166.) + 6H 2 0. Not deliquescent or efflorescent. Sol. in H 2 0. (Reissig, A. 127. 33.) Samarium borate, SmB0 3 . Insol. in H 2 0; sol. in HCl + Aq. (Cleve, Bull. Soc. (2)43. 1670.) Silver borate, AgB0 2 + pI 2 0. SI. sol. in H 2 0. By washing with H 2 the boric acid is dissolved out. (Rose, Pharm. Centralbl. 1853. 205.) Sol. with decomp. in Na 2 S 2 3 + Aq (Herschel) ; sol. in NH 4 N0 3 + Aq if pptd. cold. 3Ag 2 0, 4B 2 3 . (Rose, I.e.] Sodium wdaborate, NaB0 2 . Anhydrous. Easily sol. in H 2 0, with evolu- tion of heat. + H 2 0. Easily sol. in H 2 0. (Benedikt.) + 2H 2 0. Easily sol. in H 2 0. (Benedikt, B. 7. 703.) + 3H 2 0. Easily sol. in H 2 0. (Berzelius.) + 4H 2 0. SI. efflorescent. Sol. in hot, less sol. in cold H 2 0. Melts at 57 in its crystal H 2 0. Sodium ^raborate, Na 2 B 4 7 (Borax}. + 4H 2 0. + 5H 2 0. + 6H 2 0. Grows opaque in the air. (Bechi, Sill. Am. J. (2) 17. 129.) + 10H 2 0. Efflorescent on surface in dry air. Not efflorescent when free from Na COo. (Sims.) Sol. in 12 pts. cold, and 2 pts. hot H 2 O. Sat. cold Na 2 B 4 O7-f-Aq contains 9'23%, and sat. hot Na 2 B 4 O 7 +Aq contains 33'33 % Na 2 B 4 O 7 . (Gmelin.) Sol. in 20 pts. cold, and 6 pts. boiling HoO. (Wal- lerius.) Sol. in 15 pts. H 2 O at 1S'75. (Abl.) 100 pts. H 2 O at 15-5 dissolve 5 pts. ; at 65, 40 pts. ; at 100, 166 pts. Na 2 B 4 O 7 +10H 2 O. (lire's Dictionary.) 100 pts. sat. Na 2 B 4 O 7 +Aq at 105'5 contain 52-5 pts. Na 2 B 4 O 7 , or 100 pts. H 2 O dissolve 110*54 pts. Na 2 B 4 O 7 , or 1 pt. Na 2 B 4 O 7 is sol. in 0'9047 pt. H 2 O at 105 '5. (Griffith, Quar. J. Sci. 18. 90.) Solubility in 100 pts. H 2 at t. Pts. Pts t Pts. Na 2 B 4 O 7 Na 2 B 4 7 +10H 2 O t Pts. Na 2 B 4 O 7 Na 2 B 4 O 7 +10H 2 O 1-49 2-83 60 18-09 40-43 10 2-42 4-65 70 24-22 57-85 20 4-05 7-88 80 31*17 76-19 30 6-00 11-90 90 40-14 116-66 40 879 17-90 100 55-16 201-43 50 12-93 27-41 (Poggiale, A. ch. (3) 8. 46.) 100 pts. H 2 dissolve 1 '4 pts. Na 2 B 4 7 at 0, and 55-3 pts. at 100. (Mulder.) Na 2 B 4 7 + Aq sat. at 15 has sp. gr. =1'0199, and contains 3 '926 pts. Na 2 B 4 7 to 100 pts. HoO. (Michel and Kraft't, A. ch. (3) 41. 471.) Na 2 B 4 7 + Aq sat. at 17 has sp. gr. = 1'0208. (Stolba, J. pr. 97. 503.) Sp. gr. of Na 2 B 4 7 + Aq at 15. o9, 6- o9, s^ffl 1 **ffl"S Sp. gr. j^pq Sp. gr. 1 ff* 1 I? 1 0-52 1-0049 4 2-11 1-0199 2 1-06 1-0099 5 2-64 1-0249 3 1-59 1-0149 6 3-17 1-0299 (Gerlach, Z. anal. 28. 473.) Sp. gr. of Na.B 4 7 + Aq sat. at 15 =1 '032. (Gerlach.) Sat. Na B 4 7 + Aq boils at 105 '5, and con- tains 110-5 pts. Na 2 B 4 7 to 100 pts. H 2 0. (Griffith.) Sat. Na 2 B 4 7 + Aq forms a crust at 103, and contains 60 '14 pts. Na 2 B 4 7 to 100 pts. H 2 ; highest temp, observed, 104 '3. (Gerlach, . 427.) Z. anal. 26. B. -pt. of Na B 4 7 + Aq containing pts. Na 2 B 4 7 to 100 pts. H 2 0. B.-pt. Pts. Na 2 B 4 O 7 B.-pt. Pts. Na 2 B 4 O 7 100-5 8-64 103-0 61-2 101-0 17-2 103-5 75-4 101-5 26-5 104-0 90-8 102-0 37-5 104-5 109-0 102-5 48-5 104-6 112-3 (Gerlach, Z. anal. 26. 452.) M. -pt. of Na 2 B 4 7 + 10H 2 is 75 '5. (Tilden, Chem. Soc. 45. 407.) Insol. in alcohol. Sol. in alcoholic solution of NaC 2 H 3 2 . (Strom eyer. ) Sol. in 14 7 pts. glycerine of 1*225 sp. gr. (Vogel.) Sol. in 1 pt. glycerine. (Schultze, Arch. Pharm. (3) 6. 149.) Min. Tincal. Sodium borate, Na 2 B 8 13 + 10H 2 0. Sol. in 5-6 pts. cold H 2 0. (Bolley, A. 68. 122.) Perhaps sodium hydrogen tetraborate Na 2 B 10 16 + llH 2 0. (Laurent, C. R. 29. 5.) Sodium borate fluoride, NaB0 2 , 3NaF + 4H 2 0. Sol. in H 2 0. Basarow (B. 7. 112) considers this salt to be a mixture. Na 2 B 4 7 , 12NaF + 22H 2 0. Can be separated into its constituents by H 2 0. (Berzelius, Berz. J. B. 23. 96.) Strontium borate, Sr(B0 2 ) 2 . (Ditte, C. R. 77. 788.) SrB 4 7 . Sol. in 130 pts. boiling H 2 0. 100 pts. H 2 at 100 dissolve 7 '7 pts. (lire's Diet.). Easily sol. in cold NH 4 salts + Aq ; sol. in cold HNO 3 + Aq. When precipitated and dried at 100 contains 4H 2 0. 56 BORATE, THALLOUS SrB 6 10 . Very si. sol. in H 2 ; sol. in acids. (Laurent. ) SrB 8 13 + 7H 2 0. Ppt. (Laurent.) Sr 3 B 4 9 . Sol. in cold mineral acids and acetic acid. (Ditte, C. R. 77. 785.) 2SrO, 3B 2 3 . Easily sol. in acids. (Ditte, l.c.) Thallous borate. Ppt. Sol. in boiling H 2 ; insol. in cold dil. H 2 S0 4 + Aq. (Crookes.) Thorium borate (?). Precipitate. Insol. in H 2 and H 3 B0 3 + Aq. (Berzelius.) Stannous borate (?). Ppt. (Wenzel.) Dtvanadyl borate. Insol. in H 2 ; sol. in H 3 B0 3 + Aq. (Ber- zelius. ) Yttrium borate. Precipitate. (Berlin, Pogg. 43. 105.) Zinc borate, 3ZnO, 2B 2 3 . (Mallard, C. R. 105. 1260.) 9ZnO, 4B 2 3 + 9H 2 0. SI. sol. in H 3 B0 3 + Aq. (Rose, Pogg. 88. 299.) 3ZnO, B 2 3 . Insol. in mineral acids, (le Chatelier, C. R. 113. 1034.) Zinc borate ammonia, ZnB 4 7 , 4NH 3 + 6H 2 0. Easily sol. in NH 4 OH, HC.,H 3 2 , H 2 S0 4 , HC1, and HN0 3 + Aq. (Biichner, A. 151. 234.) Zinc borate bromide, 6ZnO, 8B 2 3 , ZnBr 2 . (Rousseau and Allaire, C. R. 116. 1446.) Zirconium borate (?). Insol. in H 2 0. Boric phosphoric acid. See Phosphoboric acid. Boric acid sulphur fr^'oxide. See Borosulphuric acid. Borofluorhydric acid, HBF 4 . See Fluoboric acid. Borofluorides. See Fluoborides. Boromolybdic acid. Sol. in H 2 0. Decomp. by alcohol. (Ber- zelius.) Boron, B. (a) Amorphous. Somewhat sol. in pure H 2 0, when not ignited. Salts and acids separate it out of aqueous solution. Upon evapora- tion of H 2 solution a crust is formed, which is only partially sol. in H 2 0. (Berzelius, Pogg. 2. 113.) Decomp. by hot H 2 S0 4 and cold moderately cone. HN0 3 + Aq. Strongly ignited amorphous B is much less easily attacked by reagents than freshly pptd., and is insol. in H 2 0. (Berzelius.) Insol. in caustic alkalies + Aq ; also in alcohol and ether. Above boron was very impure. (Moissan, C. R. 114, 392.) Pure B is not attacked by acids, but has a strong reducing action on KMn0 4 + Aq, FeCl 3 + Aq, etc. (Moissan, C. R. 114. 617.) (6) Crystallised. 1. Insol. in H 2 0, HC1, or KOH + Aq. Very slightly and slowly attacked by boiling cone. H 2 S0 4 . Gradually sol. in hot cone. HN0 3 . Formula is A1 2 B24. (Hampe, A. 183. 75.) 2. Very slightly attacked by cone. HC1 or H 2 S0 4 ; slowly but completely sol. in cone. HN0 3 ; insol. in KOH + Aq. Formula is C 2 A1 3 B 48 . (Hampe.) Boron ^'bromide, BBr 3 . Sol. in H 2 or alcohol with decomp. (Mckles, C. R. 60. 800.) Boron phosphorus bromide, BBr 3 , PBr 3 . Decomp. by H 2 0. Sol. in CS 2 , and CHC1 3 . Decomp. by alcohol, ether, etc. (Tarible, C. R. 116. 1521.) BBr 3 , PBr 5 . SI. sol. in cold, easily in hot CS 2 . (Tarible.) Boron bromide ammonia, BBr 3 , 4NH 3 . Decomp. by H 2 and alkalies. (Besson, C. R. 114. 542.) Boron bromide phosphine, BBr 3 , PH 3 . Violently decomp. by H 2 0. (Besson, C. R. 113. 78.) Boron bromoiodide, BBr 2 I. Decomp. violently by H 2 0. (Besson, C. R. 112. 100.) BBrI 2 . (Besson, C. R. 112. 100.) Boron carbide, BC or B 2 C 2 . Insol. in all the usual solvents. (Miill- hauser; Z. anorg. 5. 92.) Boron i(rtchloride, BC1 3 . Rapidly absorbed by H 2 and alcohol with decomposition. Boron nitrosyl chloride, BC1 3 , NOC1. Decomp. violently by H 2 0. (Geuther, J. pr. (2) 8. 854.) Boron phosphoryl chloride, BC1 3 , POC1 3 . Decomp. immediately by H 2 0. (Gustavson, Zeit. Chem. 1870. 521.) Boron chloride ammonia, 2BC1 3 , 3NH 3 . Decomp. by H 2 0. (Berzelius, Pogg. 2. 147.) Boron chloride phosphine, BC1 3 , PH 3 . Decomp. by H 2 0. (Besson, C. R. 110. 516.) Boron ^n'fluoride, BF 3 . H 2 absorbs 700 vols. BF 3 gas to form a liquid of 1 '77 sp. gr. On boiling, i of the BF 3 is given off, and a residue boiling at 165-200, with composition BF 3 + 2H 2 or HB0 2 + 3HF, is left. (J. Davy, A. ch. 86. 178.) 1 com. H 2 absorbs at and 762 mm. pres- sure 1057 com. BF 3 . 1 vol. cone. H 2 S0 4 of 1'85 sp. gr. absorbs 50 vols. BF 3 . Absorbed by alcohol with decomp. Cold oil of turpentine absorbs 6 '8 % of BF 3 . BOROTUNGSTIC ACID 57 Boron fluoride ammonia, BF 3 ,NH 3 , BF 3 , 2NH 3 , and BF 3 , 3NH 3 . Deconip. by H 2 0. Boron fluoride cyanhydric acid, BF 3 , HCN. Very unstable. (Patein, C. R. 113. 85.) Boron fluoride phosphine, 2BF 3 , PH 3 . Very unstable at ordinary temp. Decomp. by H 2 0. (Besson, C. R. 110. 80.) Boron hydride, BH 3 . Not obtained free from H. SI. sol. in H 2 0. (Jones, Chem. Soc. 35. 41.) Boron iodide, BI 3 . Very hygroscopic, and instantly decomp. by H 2 or alcohol. Very sol. in CS 2 , CC1 4 , C 6 H 6 ; less sol. in PC1 3 , AsCl 3 , and a great many organic liquids. (Moissan, C. R. 112. 717.) Boron iodide ammonia, BI 3 , 5NH 3 . Decomp. by H 2 0. (Besson, C. R. 114. 542.) Boron iodophosphide, BI 2 P. Very hygroscopic ; decomp. by H 2 0. Not attacked by cold cone. H 2 S0 4 , even if fuming, but on heating decomposition takes place. Very si. sol. in CS 2 . Insol. in benzene, PC1 3 , or GC1 4 . (Moissan, C. R. 113. 624.) BIP. Less hygroscopic than BI 2 P, but otherwise the properties are similar. (Moissan. ) Boron nitride, BN. Insol. in H 2 0, cone. HN0 3 , cone. HCl + Aq, or cone, solutions of alkalies. Decomp. by hot cone. H 2 S0 4 or HF. (Wohler, A. 74. 70.) Boron ^rtoxide, B 2 3 . Deliquescent. Sol. in H 2 with a large in- crease in temp. (Ditte, C. R. 85. 1069.) 1 pt. dissolves at 1875 in 47 '01 pts. H 2 0. 25 2775 ? 37-5 1873 50 15-13 62-5 9-29 75 7-28 87'5 5-58 100 474 Or 100 pts H 2 dissolve a t 1875 2-13 pts. B 2 3 25 3-60 ,, 37'5 4-24 ,, 50 6'61 ,, 62-5 1076 ,, 75 13-73 ,, 87-5 17-92 ,, 100 21-09 ,, (Brandes and Firnhaber, Arch. Pharm. 7. 50.) 1 litre H 2 dissolves at 0' 12 20 40 62 80 102 11-00 g. B 2 3 . 16-50 ,, 22-49 ,, 39-50 ,, 64-50 ,, 95*00 ,, 164-50 ,, (Ditte, C. R. 85. 1069.) Sat. H 2 solution boils at 100. (Brandes and Firnhaber.) Sat. H 2 solution boils at 103 '3. (Griffiths, Quar. J. Sci. 18. 90.) Sol. in acetic acid, hot cone. HCl + Aq, HN0 3 , and H 2 S0 4 . From the three latter it separates on cooling or dilution with H 2 0. Insol. in alcohol. (Graham.) Sol. in alcohol. (Berzelius, Ebelmen. ) Sol. in oils. See also Boric acid. Boron IHoxide potassium fluoride, B 2 3 , 2KF. Gradually sol. in H 2 0. Decomp. by much H 2 0. Insol. in alcohol. (Schiff and Sestini, A. 228. 82.) Boron oxychloride, BOC1. (Gustavson, Zeit. Chem. 1870. 521.) BOC1 3 . Slowly decomp. by H 2 0. (Coun- cler, J. pr. (2) 18. 399.) Oxychlorides of either the above formulae do not exist ; the true formula for boron oxy- chloride is B 8 O n Cl 2 . (Lorenz, A. 247. 226.) Boron phosphide, BP. Insol. in H 2 0. Sol. in cone, boiling alkalies + Aq with decomp. Decomp. by HN0 3 + Aq. (Besson, C. R. 113. 78.) Insol. in PC1 3 , AsCl 3 , SbCl 3 , CC1 4 , and in fact in all known solvents. Not attacked by boiling H 2 0, cone. HC1, or HI + Aq. Sol. in cone. HN0 3 with decomp. on heating. Not attacked by cold H 2 S0 4 . (Moissan, C. R. 113. 726.) B 5 P 3 . Not attacked by boiling cone. HN0 3 + Aq. Insol. in all solvents. (Moissan.) Boron phosphoiodide. See Boron iodophosphide. Boron selenide, B 2 Se 3 . Violently decomp. by H 2 0. (Sabatier, C. R. 112. 1000.) Boron bisulphide, B 2 S 3 . Decomp. with violence with H 2 0. Com- bines with alcohol and ether. (Fremy, A. ch. (3) 38. 312.) Insol. in most solvents, but si. sol. in PC1 3 without decomp. ; more sol. in SC1 2 , but does not crystallise from the solution. (Moissan, C. R. 115. 203.) Boron pentas\ilphi&e, B 2 S 5 . Decomp. by H 2 and alcohol. (Moissan, C. R. 115. 271.) Bore-sulphuric acid, BOHS0 4 +S0 3 . Decomp. by H 2 0. (Schultz-Sellac, B. 4. 12.) B(HS0 4 ) 3 . Very deliquescent. Easily sol. in fuming H 2 S0 4 . (D'Arcy, Chem. Soc. 55. 155.) Borc-Twmotungstic acid, H 4 B 2 W 9 32 + 22H 2 = 9W0 3 , B 2 3 , 2H 2 + 22H 2 0. Sol. in less than pt. H 2 0, and as easily sol. in alcohol and ether. Sp. gr. of aqueous solution is somewhat under 3. (Klein, A. ch. (6) 28. 370.) 58 BOROTUNGSTATE, ALUMINUM Aluminum bonmowotungstate, A1 4 (B 2 W 9 32 ) 3 + 70H 2 0. Extremely sol. in H 2 0. (Klein.) Ammonium , (NH 4 ) 4 B 2 W 9 32 +18H 2 0. Quickly effloresces. (Klein.) Barium , Ba^WgO^ + lSH-p. Sol. in 4 pts. cold, and less than pt. hot H 2 0. (Klein.) Cadmium , Cd 2 B 2 W 9 32 + 18H 2 0. Deliquescent. 100 pts. of salt dissolve in less than 8 pts. H 2 at 19. Sp. gr. of solution is 3 '28. (Klein.) Calcium , Ca 2 B 2 W 9 32 + 15H 2 0. Sol. in T V pt. H 2 0. Solution has sp. gr. = 3-10. (Klein.) Cerium , Ce 4 (B 2 W 9 32 ) 3 + 57H 2 0. Very sol. in H 2 ; sp. gr. of solution is over 3. Chromium , Cr 4 (B 2 W 9 32 ) 3 + 65H 2 0. Very sol. in H 2 ; sp. gr. of solution is 2 '80. (Klein.) Cobalt , Co 2 B 2 W 9 032 + 18H 2 0. Very sol. in H 2 ; sp. gr. of solution sat. at 19 = 3 -36. (Klein.) Copper , Cu^WgO^ + igHaO. 25 pts. H 2 dissolve 100 pts. salt. Sp. gr. of solution = 2 *6. (Klein. ) Lead , Pb 2 B 2 W 9 32 + llH 2 0. SI. sol. in cold, easily sol. in hot H 2 0. (Klein.) Lithium (?). Very sol. in H 2 0. Sp. gr. of solution is about 3. Magnesium , Mg 2 B 2 W 9 32 + 22H 2 0. Very sol. in H 2 0. (Klein.) Manganous , Mn 2 B 2 W 9 32 + 17H 2 0. 100 pts. dissolve in 13 pts. H 2 0. Sp. gr. of solution at 19 = 3 '15. (Klein.) Mercurous ,3Hg 2 0,B 2 3 ,9W0 3 + 14H 2 0(?). Precipitate. Insol. in H 2 0. (Klein.) Sol. in 20,000 pts. dil. cold, and 1000 pts. boiling HN0 3 + Aq of 1'42 sp. gr. Nickel , Ni 2 B 2 W 9 32 + 18H 2 0. Very sol. in H 2 ; sp. gr. of sat. solution at 19 = 3 '32. Potassium , K 4 B 2 W 9 32 + 13H 2 0. 5 pts. salt dissolve in 8 pts. H 2 at 19 to form a solution of 1'38 sp. gr. The solution sat. at 100 has sp. gr. of over 2. (Klein.) Silver , Ag 4 B 2 W 9 032+14H 2 0. Very si. sol. in H 2 0. Sodium , Na 2 H 2 B 2 W 9 32 + 22H 2 0. Very sol. in H 2 0. Solution sat. at 19 con- tains 84 pts. salt to 16 pts. H 2 0. (Klein.) Na 4 B 2 W 9 32 + llH 2 0. Sol. in less than pt. HoO. Thallium boro?wwotungstate, T1 2 B 2 W 9 32 + 5H 2 0. SI. sol. in hot H 2 and nearly insol. in cold H 2 O. (Klein.) Uranium , (U0 3 ) 3 (B 2 W 9 30 ) 2 + 30H 2 0. Very sol. in H 2 0. (Klein. ) Sp. gr. of solution =8*1. Zinc , Zn 2 B 2 W 9 32 + 2H 2 0. Very sol. in H 2 0. Sp. gr. of solution 3 '15. (Klein.) Borodeatungstic acid. Barium borofZeatungstate, BaoBoWjoOgg + 20H 2 0. Sol. in H 2 0. (Klein, C. R. 99. 35.) BoToduodecit\mgstic acid, H 8 B 2 W 12 43 = 4H 2 0,B 2 3 ,12W0 3 . Known only in solution, which decomposes into borowtwotungstic acid and tungstic acid, when evaporated to a certain concentration. (Klein, C. R. 99. 35.) Barium potassium boroc^odecitungstate, 3BaO, K 2 0, B 2 3 , 12W0 3 + 28H 2 0. Potassium , K 8 B 2 W 12 43 + 21H 2 0. Sol. inH 2 0. (Klein.)" BoroquatuordecituiLgstic acid,H 12 B 2 W 14 O r)1 = 6H 2 0, B 2 3 , 14W0 3 . Has not been obtained in the free state. (Klein, A. ch. (5) 28. 353.) Barium boroquatuordecitungsi&te, Ba 3 B 2 W 14 48 = 3BaO, B 2 3 , 14W0 3 + 5H 2 0. SI. sol. in H 2 0. (Klein.) Barium sodium , 3|BaO, HNa 2 0, 5H 2 0, B 2 3 , 14W0 3 + 29H 2 0. Potassium , 3K 2 O, H 2 0, B 2 3 , 14W0 3 + 22H 2 0. Sol. inH 2 0. (Klein.) Silver , Ag 6 H 2 B 2 W 14 49 + 7H 2 0. Nearly insol. in cold H 2 0. (Klein.) Sodium , Na 4 H 8 B 2 W 14 51 + 25H 2 0. Sol. inH 2 0. (Klein.) Sodium strontium , 3SrO, IP^O, B 2 3 , 14W0 3 + 29H 2 0. Decomp. by H 2 0. (Klein.) Borovanadic acid. Sol. in H 2 0. Easily decomp. (Guyard, Bull. Soc. (2) 25. 354.) Bromarsenious acid. See Arsenyl bromide. Bromauric acid, HAuBr 4 + 5H 2 0. Very sol. in H 2 0. (Thomsen, J. pr. (2) 13. 337. ) Barium bromaurate. Not deliquescent. Sol. inH 2 0. (v.Bonsdorff, Pogg. 17. 261.) Caesium bromaurate, CsAuBr 4 . SI. sol. in H 2 or alcohol. Insol. in ether. (Wells and Wheeler, Sill. Am. J. 144. 157.) BROMHYDRIC ACID f>9 Cerium bromaurate, CeAuBr 6 + 8H 2 0. Sol. in H 2 0. (Jolin, Bull. Soc. (2) 21. 533.) Didymium bromaurate, Di AuBr 6 + 9H 2 0. Very deliquescent. Sol. in H 2 0. (Cleve.) Lanthanum bromaurate, LaAuBr 6 + 9H 2 0. Sol. inH 2 0. (Cleve.) Magnesium bromaurate. Deliquescent in moist air. (v. Bonsdorff.) Manganese bromaurate. Deliquescent, (v. Bonsdorff.) Potassium bromaurate, KAuBr 4 . SI. sol. in H 2 0. More sol. in cold alcohol than in H 2 0. (v. Bonsdorff.) + 2H 2 O. Sol. in 5 '12 pts. H 2 at 15, 1'56 pts. at 40, and 0'48 pt. at 67. Decomp. by ether. SI. sol. in KBr + Aq. (Schottlander, A. 217. 314.) + 5H 2 0. Efflorescent, (v. Bonsdorff.) Rubidium bromaurate, RbAuBr 4 . As caesium bromaurate. Samarium bromaurate, SmAuBr 6 + 10H 2 0. Very deliquescent. (Cleve, Bull. Soc. (2) 43. 165.) Sodium bromaurate, NaAuBr 4 . Slowly sol. in H 2 0. (v. Bonsdorff.) Zinc bromaurate, Zn(AuBf 4 ) 2 . Very deliquescent, (v. Bonsdorff.) Bromauricyanhydric acid. Not known in free state. Barium bromauricyanide, Ba[Au(CN) 2 Br 2 ] 2 + 10H 2 0. Very sol. in hot or cold H 2 0, also in alcohol. (Lindbom, Lund. Univ. Arsk. 12. No. 6.) Cadmium bromauricyanide, Cd[Au(CN) 2 Br 2 ] 2 + 6H 2 0. Very sol. in hot or cold H 2 0, but solution is unstable. (Lindbom.) Calcium bromauricyanide, Ca[Au(CN) 2 Bro]o + 10H 2 0. Extremely sol. in H 2 and alcohol. (Lind- bom.) Cobalt bromauricyanide, Co[Au(CN) 2 Br 2 ] 2 + 9H 2 Moderately sol. in H 2 0. Less sol. than other bromauricyanides. (Lindbom.) Potassium bromauricyanide, KAu(CN) 2 Br 2 + 3H 2 0. Sol. in H 2 and alcohol. Sodium bromauricyanide, Na Au (CN) 2 Br 2 + 2H 2 0. Very sol. in H 2 or alcohol. Strontium bromauricyanide, Sr[Au(CN) 2 Br 2 ] 2 Very sol. in H 2 or alcohol. Zinc bromauricyanide, Zn[Au(CN) 2 Br 2 ] 2 + 8H 2 0. Easily sol. in cold or hot H 2 0. Bromhydric acid, HBr. Very sol. in H 2 0. The most concentrated HBr + Aq has a sp. gr. of 178, and contains 82 '02 % HBr. (Champion and Pellat, C. R. 70. 620.) This, or a weak acid on heating leaves a residue, which dis- tils unchanged at 125-125 '5 under 758 mm. pressure, and contains 48 '17 % HBr (Topsoe) ; at 126 under 758 mm. pressure, and contains 46-83 % HBr (Bineau) ; and has sp. gr. = l'486 at 20 (Bineau) ; sp. gr. = 1 '48 at 20 (Champion and Pellat) ; sp. gr. =1'49 at 20 (Topsoe). According to Roscoe (A. 116. 214) an acid of constant composition, obtained by boiling a stronger or a weaker acid, if distilled under 752-762 mm. pressure, contains 47 '38-47 '86 % HBr, and boils at 126 at 760 mm. pressure ; but the composition is dependent on the pressure, as, for example, under 1952 mm. pressure, the residue boils at 153, and contains 46-3 % HBr. (Roscoe.) By conducting dry air through HBr + Aq an acid is obtained containing 51 '65 % HBr if at 16, and 49 '35 % HBr if at 100 (Roscoe. ) 1 vol. H 2 dissolves 600vols. HBr at 10. (Berthelot, C. R. 76. 679.) 1 pt. H 2 at t and 760 mm. pressure dissolves pts. HBr. 1.0 Pts. i Pts. Pts. HBr HBr HBr -25 2-550 -5 2-280 + 50 1-715 -20 2-473 2-212 + 75 1-505 -15 2-390 + 10 2-103 + 100 1-300 -10 2-335 + 25 1-930 (Roozeboom, R. t. c. 4. 107.) Absorption by 1 pt. H 2 at t and p pressure in mm. t= -25. Pts. Pts. P HBr P HBr 760 2-550 100 2-056 300 2-263 1 1755 140 2-120 0-5 1-10 t= -20. Pts. Pts. P HBr P HBr 760 2-473 130 2-056 375 2-267 20 1-850 180 2-119 ... t=-15. Pts. Pts. P HBr P HBr 760 2-390 175 2-056 470 2-266 102 1-980 250 2-119 60 BROMHYDRIC CYANHYDRIC ACID p Pts. HBr P Pts. HBr 760 570 2-350 2-265 310 216 2-118 2-055 t= -5. P Pts. HBr P Pts. HBr 760 730 2-280 2-264 430 298 2-117 2-055 p Pts. HBr P iPts. HBr 760 540 2-212 2-116 380 5 2-054 1-085 (Roozeboom, R. t. c. 4. 107.) Sp. gr. of HBr + Aq. Sp. gr. HBr Temp. Sp. gr. HBr Temp. 1-055 7-67 14 1-335 36-67 13 1-075 10-19 14 1-349 37-86 13 1-089 11-94 14 1-368 39-13 13 1-097 12-96 14 1-419 43-12 13 1-118 15-37 14 1-431 43-99 13 1-131 16-92 14 1-438 44-62 13 1-164 20-65 14 1-451 45-45 14 1-200 24-35 13 1-460 46-09 13 1 -232 27-62 13 1-485 47-87 14 1-253 29-68 13 1-490 48-17 14 1-302 33-84 13 ... (Topsoe, B. 3. 404.) Sp. gr. of HBr + Aq at 14. HBr Sp. gr. ni Sp. gr. HBr Sp. gr. 1 1-007 18 1-140 35 1-314 2 1-014 19 1-149 36 1-326 3 1-021 20 1-158 37 1-338 4 1-028 21 1-167 38 1-351 5 1-035 22 1-176 39 1-363 6 1-043 23 1-186 40 1-376 7 1-050 24 1-196 41 1-389 8 1-058 25 1-206 42 1-403 9 1-065 26 1-215 43 1-417 10 1-073 27 1-225 44 1-431 11 1-081 28 1-235 45 1-445 12 1-089 29 1-246 46 1-459 13 1-097 30 1-257 47 1-473 14 1-106 31 1-268 48 1-487 15 1-114 32 1-279 49 1-502 16 1-122 33 1-290 ... 17 1-131 34 1-302 ... ... (Topsoe, calculated by Gerlach, Z. anal. 27. 316.) Sp. gr. of HBr + Aq at 15. y HBr Sp. gr. HBr Sp. gr. 7 HBr Sp. gr. 5 1-038 25 1-204 45 1-435 10 1-077 30 1-252 50 1-515 15 1-177 35 1-305 20 1-159 40 1-365 Only a "moderate degree of accuracy" is claimed for this table. (Wright, C. N. 23. 242.) Sp. gr. of HBr + Aq at 15. HBr Sp. gr. % HBr Sp. gr. % HBr Sp. gr. 1 1-0082 18 1-145 35 1-314 2 1-0155 19 1-154 36 1-326 3 1-0230 20 1-163 37 1-338 4 1-0305 21 1-172 38 1-350 5 1-038 22 1-181 39 1-362 6 1-046 23 1-190 40 1-375 7 1-053 24 1-200 41 1-388 8 1-061 25 1-209 42 1-401 9 1-069 26 1-219 43 1-415 10 1-077 27 1-229 44 1-429 11 1-085 28 1 -239 45 1-444 12 1-093 29 1-249 46 1-459 13 1-102 30 1-260 47 1-474 14 1-110 31 1-270 48 1-490 15 1-119 32 1-281 49 1-496 16 1-127 33 1-292 50 1-513 17 1-136 34 1-303 (Biel, C. C. 1882. 148.) Absorbed by alcohol with formation of C 2 H 5 Br. + H 2 0. (Roozeboom, R. t. c. 5. 363.) + 2H 2 0. (Berthelot, A. ch. (5) 14. 369.) Bromhydric cyanhydric acid, 3HBr, 2HCK Decomp. by H 2 and alcohol. Insol. in ether. (Gautier, A. ch. (4) 17. 141.) Bromic acid, HBr0 3 . Known only in aqueous solution. Solution evaporated on water bath decom- poses when it contains 4 '26 % HBr0 3 . In vacuo, an acid containing 50 "59 % HBr0 3 corresponding to formula HBr0 3 + 7H 2 can be obtained. Not decomp. by dil. HN0 3 , or H 2 S0 4 + Aq. Cone. H 2 S0 4 decomposes. Alcohol and ether are quickly oxidised by HBr0 3 . Bromates. Most of the bromates are very sol. in H 2 0, a few are si. sol., but none are insol., the least sol. being AgBr0 3 and Hg 2 (Br0 3 ) 2 . Aluminum bromate, Al(Br0 3 ) 3 . Deliquescent. (Rammelsberg, Pogg. 55. 63.) Ammonium bromate, NH 4 Br0 3 . Decomposes spontaneously ; sol. in H 2 0. (Rammelsberg, Pogg. 52. 85.) BROMATE AMMONIA, SILVER 61 Barium bromate, Ba(Br0 3 ) 2 + H 2 0. Sol. in 130 pts. cold, and 24 pts. boiling H 2 0. (Rammelsberg, Pogg. 52. 81.) Decomp. by H 2 S0 4 , or HC1 + Aq. Bismuth bromate. Known only in solution, which decomp. on evaporation. (Rammelsberg, Pogg. 55. 76.) Cadmium bromate, Cd(Br0 3 ) 2 + H 2 0. Sol. in 0'8 pt. cold H 2 0. (Rammelsberg, Pogg. 55. 74.) Cadmium bromate ammonia, Cd(Br0 3 ) 2 , 3NH 3 . Decomp. by H 2 0. (Rammelsberg, Pogg. 55. 74.) Calcium bromate, Ca(Br0 3 ) 2 + H 2 0. Sol. in I'l pts. cold H 2 0. (Rammelsberg, Pogg. 52. 98.) Cerous bromate, Ce(Br0 3 ) 3 + 9H 2 0. Easily sol. in H 2 0. (Rammelsberg, Pogg. 55. 63.) Cobaltous bromate, Co(Br0 3 ) 2 + 6H 2 0. Sol. in 2-2 pts. cold H 2 ; sol. in NH 4 OH + Aq. (Rammelsberg, Pogg. 55. 71.) Cupric bromate, basic, 6CuO, Br 2 5 + 10H 2 0. Ppt. (Rammelsberg, Pogg. 55. 78.) Cupric bromate, Cu(Br0 3 ) 2 + 6H 2 0. Easily sol. in H 2 0. (Rammelsberg, Pogg. 52. 92.) Cupric bromate ammonia, Cu(Br0 3 ) 2 , 4NH 3 . Completely sol. in a little H 2 0, but decomp. by dilution. Insol. in alcohol. (Rammelsberg, Pogg. 52. 92.) Didymium bromate, Di(Br0 3 ) 3 + 9H 2 0. Sol. in H 2 0. (Marignac. ) Erbium bromate, Er(Br0 3 ) 3 + 9H 2 0. Very sol. in alcohol and H 2 0. Glucinum bromate. Deliquescent. Ferrous bromate, Fe(Br0 3 ) 2 . Sol. in H 2 0, but solution decomp. very easily. Ferric bromate, 5Fe 2 3 , Br 2 5 + 30H 2 0. Partially sol. in H 2 0, with separation of a more basic salt. Sol. in HN0 3 + Aq. (Ram- melsberg, Pogg. 55. 68.) Lanthanum bromate, La(Br0 3 ) 3 + 9H 2 0. Sol. in 3^ pts. H 2 at 15. (Marignac, Ann. Min. (5) 15. 274.) Lead bromate, Pb(Br0 3 ) 2 + H 2 0. Sol. in 75 pts. cold H 2 0. (Rammelsberg, Pogg. 52. 96.) Lithium bromate, LiBr0 3 . Very deliquescent, and sol. in H 2 0. (Ram- melsberg, Pogg. A. 55. 63.) Not deliquescent. (Potilitzin, B. 23. 545 R.) + H 2 0. Not deliquescent. (Potilitzin.) Magnesium bromate, Mg(Br0 3 ) 2 + 6H 2 0. Efflorescent. Sol. in 1'4 pts. cold H 2 at 15. Melts in its water of crystallisation when heated. (Rammelsberg, Pogg. 52. 89.) Mercurous bromate, basic, 2Hg 2 0, Br 2 5 . Insol. in warm H 2 0. Sol. in HN0 3 + Aq. (Rammelsberg, Pogg. 55. 79.) Mercurous bromate, Hg 2 (Br0 3 ) 2 . Decomp. by H 2 into basic salt. Difficultly sol. in HN0 3 + Aq; easily sol. in HCl + Aq. (Rammelsberg.) Mercuric bromate, basic, 2HgO, Br 2 5 + H 2 Q. Slowly decomp. by cold, quickly by hot H 2 into oxide and an acid salt. Easily sol. in dil. acids. (Topsoe, W. A. B. 66, 2. 2.) Mercuric bromate, HgBr0 3 + 2H 2 0. Sol. in 650 pts. cold, and 64 pts. boiling H 2 0. SI. sol. in HN0 3 + Aq. Easily sol. in HC1 + Aq. (Rammelsberg, Pogg. 55. 79.) Mercuric bromate ammonia. Sol. with decomp. in HCl + Aq. (Storer's Diet.) Nickel bromate, Ni(Br0 3 ) 2 + 6H 2 0. Sol. in 3'58 pts. cold H 2 0. (Rammelsberg, Pogg. 55. 69.) Nickel bromate ammonia, Ni(Br0 3 ) 2 , 2NH 3 . Sol. in H 2 0, with decomposition of the major portion. Insol. in alcohol. (Rammelsberg, I.e.) Potassium bromate, KBr0 3 . 100 pts. H 2 dissolve 6 '58 pts. KBr0 3 at 15 (Rammelsberg). 100 pts. H 2 dissolve 5 '83 pts. KBr0 3 at 17 '1 (Pohl. W. A. B. 6. 595) ; at 0, 3-11 pts. ; at 20, 6 '92 pts. ; at 40, 13 '24 pts. ; at 60, 2276 pts. ; at 80, 33 '90 pts. ; at 100, 49'75 pts. KBr0 3 . Sat. solution boils at 104. (Kremers, Pogg. 97. 5.) Sp. gr. of KBr0 3 + Aq at 19 '5. %KBr0 3 1 2 3 4 5 Sp. gr. . 1-009 1-016 1-024 1-031 1-039 % KBrO, 6 7 8 9 10 Sp. gr. . 1-046 1-054 1-062 1-070 1-079 (Gerlach, Z. anal. 8. 290.) SI. sol. in alcohol. (Rammelsberg.) Insol. in absolute alcohol. Silver bromate, AgBr0 3 . 1 pt. H 2 dissolves '00810 pt. AgBr0 3 at 24-5. (Noyes, Z. phys. Ch. 6. 246.) Sol. in 595-3 pts. H 2 at 25. Sol. in 320-4 pts. HN0 3 + Aq (sp. gr. 1'21) at 25. Sol. in 2-2 pts. NH 4 OH + Aq (sp. gr. 0'96) at 25. (Longi, Gazz. ch. it. 13. 87.) Insol. in HN0 3 . (Lowig.) Easily sol. in NH 4 OH + Aq. Silver bromate ammonia, AgBr0 3 , 2NH 3 . Decomp. in air or by H 2 0. (Rammelsberg, Pogg. 52. 94.) 62 BROMATE, SODIUM Sodium bromate, NaBr0 3 . Sol. in 27 pts. H 2 at 15. (Rammelsberg.) 100 pts. H 2 dissolve at 20 40 60 80 100 27-54 34-48 50 '25 62 "5 75 75 90 '9 pts. NaBr0 3 . (Kremers, Pogg. 94. 271.) Easily forms supersaturated solutions. Sat. solution boils at 109. (Kremers.) Sp. gr. of NaBr0 3 + Aq at 19 '5. %NaBr0 3 . 5 10 15 Sp. gr. . . 1-041 1-083 1-129 %NaBr0 3 . 20 25 30 Sp. gr. . . 1-178 1-231 1-289 (Kremers, Pogg. 97. 5, calculated by Gerlach, Z. anal. 8. 290.) Sodium bromate bromide, 3NaBrOo, 21STaBr + 3H 2 0. Decomp. by H 2 or alcohol. (Fritzsche.) 2NaBr0 3 , NaBr + 2H 2 0. Strontium bromate, Sr(Br0 3 ) 2 + H 2 0. Sol. in 3 pts. H 2 (Rammelsberg, Pogg. 52. 84) ; less sol. in H 2 than SrBr 2 + 6H 2 0. (Lo- wig.) Thallous bromate, TlBr0 3 . SI. sol. in hot H 2 ; easily sol. in HN0 3 + Aq. (Oettinger.) Easily sol. in H 2 and dil. acids. (Ditte, A. ch. (6) 21. 145.) Thorium bromate. Not obtained pure. Stannous bromate (?). Insol. in H 2 ; sol. in HC1 + Aq. Uranyl bromate, 4U0 3 , 3Br 2 5 + 16H 2 0. Sol. in H 2 0. (Rammelsberg.) Yttrium bromate, Y(Br0 3 ) 3 + 9H 2 0. More easily sol. in H 2 than Y(I0 3 ) 3 . SI. sol. in alcohol. Insol. in ether. (Cleve.) Zinc bromate, Zn(Br0 3 ) 2 + 6H 2 0. Sol. in 1 pt. cold H 2 0. (Rammelsberg, Pogg. 52. 90.) Zinc bromate ammonia, Zn(BrOo) 2 , 2NEL + 3H 2 0. Decomp. by H 2 and alcohol. Sol. in NH 4 OH + Aq. (Rammelsberg, Pogg. 52. 90.) Perbromic acid. See Perbromic acid. Bromides. Most bromides are sol. in H 2 0, many in alcohol, and some in ether. AgBr and Hg 2 Br 2 are insol. in H 2 or acids ; PbBr 2 and TIBr are si. sol. therein. Cu 2 Br 2 is insol. in H 2 0, sol. in acids. See under each element. Bromine, Br 2 . Crystallises at 4 with 10H 2 0. 1 pt. Br dissolves at 15 in 33 pts. H 2 0. (Lowig, Pogg. 14. 485.) 1 pt. Br dissolves at 15 in 31 pts. H 2 0. (Dancer, Chem. Soc. 15. 477.) Solubility of Br in 100 pts. H 2 at t. t Pts. Br t Pts. Br t Pts. Br 5 3-600 15 3-226 25 3-167 10 3-327 20 3-208 30 3-126 (Dancer, I.e.) A sat. aqueous solution of Br contains 4 '05 % Br at ; 3 '80 % Br at 3 ; 3 '33 % Br at 10. (Roozeboom, R. t. c. 3. 29, 59, 73, 84.) Sp. gr. of Br 2 + Aq containing pts. Br in 1000 pts. solution. Pts. Br Sp. gr. Pts. Br Sp. gr. 1072 1-00901 18-74-19-06 1-01491 10-68 1-00931 19-52-20-09 1-01585 12-05 1-00995 20-89-21-55 1-01807 12-31 1-01223 31-02-31-69 1-02367 (Slessor, N. Edin. Phil. J. 7. 287.) Sol. in cone. HC1, HBr, cone., solutions of bromides, and in liquid S0 2 . (Sestini, Zeit. Chem. 1868. 718.) Much more sol. in HCl + Aq than in H 2 0. 100 com. HCl + Aq of 1'153 sp. gr. dissolve 36-4 g. Brat 12. More sol. in SrCl 2 , and BaCl 2 + Aq than in H 2 0. (Berthelot, C. R. 100. 761.) Bromine is not more sol. in KBr + Aq than inH 2 0(?). (Balard.) KBr + Aq containing 1 pt. KBr to 6 pts. H 2 takes up as much Br as it already contains ; when this solution is heated the dissolved Br is separated. 1 pt. KBr + 1 pt. H 2 takes up twice as much Br as it already contains, much heat being evolved. This solution loses Br on exposure to the air or when heated. (Lowig.) More sol. in alcohol than in H 2 ; miscible with ether, CS 2 , CHC1 3 . (Sestini, Zeit. Chem. 1868. 718.) Somewhat soluble in glycerine. (Pelouze.) Sol. in benzene (Mansfield) ; insol. in benzene (Moride, A. ch. (3) 39. 452). Sol. in warm chloral, bromal, and iodal. (Lowig, Pogg. 14. 485.) Sol. in SC1 2 (Solly), and SBr 2 . Sol. in cone. HC 2 H 3 2 + Aq. (Balard. ) Sol. in aqueous solution of potassium, sodium, or calcium acetates. (Cahours.) Bromine chloride, BrCl. Sol. in H 2 0, CS 2 , ether, etc. Bromine oxides. No oxides of bromine are known in the free state. See hypobromous, bromic, and per- bromic acids. Bromiridic acid. Ammonium bromiridate, (NH 4 ) 2 IrBr 6 . Less sol. in cold H.,0 than the K salt. (Birn- baum, Zeit. Chem. 1865. 22.) BROMOPALLADITE, ZINC 63 Potassium bromiridate, K 2 IrBr 6 . Moderately sol. in cold, more easily in hot H 2 0. Insol. in alcohol or ether. Sodium bromiridate. Deliquescent. Easily sol. in H 2 0, alcohol, or ether. Bromiridous acid, H 6 Ir 2 Br 12 + 6H 2 0. Easily sol. in H 2 0, alcohol, or ether. (Birn- baum, 1864.) Ammonium bromiridite, (NH 4 ) 6 Ir 2 Br 12 + H 2 0. Difficultly sol. in H 2 0. (Birnbaum.) Potassium bromiridite, K 6 Ir 2 Br 12 + 6H 2 0. Efflorescent. Sol. in H 2 0. Silver bromiridite, Ag 6 Ir 2 Br 12 . Ppt. Insol. in H 2 or acids. Sodium bromiridite, Na 6 Ir 2 Br 12 + 24H 2 0. Efflorescent. Very sol. in H 2 0. Bromocarbonatoplatin^'amine carbon- ate, B? 3 [Pt(N 2 H 6 ) 2 ] 2 (C0 3 ) 2 + 4H 2 0. Ppt. Bromocarbonatoplatincfo'amine carbonate bromoplatinfl^'amine nitrate, PO ^[Pt(N 2 H 6 ) 2 ] 2 (C0 3 ) 2 ,2Br 2 Pt(N 2 H 6 ) 2 (N0 3 ) 2 . Bromochloroplatinofoamine chloride, g>t(N 2 H 6 ) 2 Cl 2 . Very si. sol. in H 2 0. (Cleve.) -chlorobromide,^P t TO (?) Very si. sol. in H 2 0. Bromochloroplatinic acid. Potassium bromochloroplatinate, 2KBr, PtCl. = K 2 PtBr 2 Cl 4 . Bromochromic acid. Potassium bromochromate, KCr0 3 Br 2 = Cr0 2 (Br)OK. Decomp. by H 2 0. (Heintze, J. pr. (2) 4. 225.) Bromohydroxyloplatinc&amine bromide, %t(N 2 H 6 Br) 2 . Very si. sol. in H 2 0. (Cleve.) chloride, ^Pt(N 2 H 6 Cl) 2 . Sol. in H 2 0. (Cleve.) -nitrate, Pt(N 2 H 6 N0 3 ) 2 . Very si. sol. in cold, moderately sol. in hot H 2 0. (Cleve.) BromohydroxyloplatinmoTio^'amine nitrate, Easily sol. in H 2 0. (Cleve.) Bromomercurosulphurous acid. Ammonium bromomercurosulphite, NH 4 S0 3 HgBr. Sol. in H 2 0. t (Barth, Z. phys. Ch. 9. 215.) Potassium bromomercurosulphite, KS0 3 HgBr. As above. (B.) Bromomolybdenum bromide, Br 4 Mo 3 Br 2 = molybdenum c^bromide, MoBr 2 . Insol. in H 2 or acids, or even in boiling aqua regia. Easily sol. in dilute, decomp. by cone, alkalies + Aq. (Blomstrand, J. pr. 82. 436.) Bromomolybdenum chloride, Br 4 Mo 3 Cl 2 + 3H 2 0. Insol. in acids. (Blomstrand.) Bromomolybdenum chromate, Br 4 Mo 3 Cr0 4 + 2H 2 0. Insol. in dil. acids. Sol. in hot cone. HC1 + Aq. Insol. in alkali chromates + Aq. (At- terberg. ) Bromomolybdenum fluoride, Br 4 Mo 3 F 2 + 3H 2 0. Insol. in H 2 0. (Atterberg.) Bromomolybdenum hydroxide, Br 4 Mo 3 (OH) 2 . Completely sol. in alkalies if not heated over 90. (Atterberg.) + 2H 2 0. + 8H 2 0. Bromomolybdenum iodide hydroxide, 2Br 4 Mo 3 I 2 , Br 4 Mo 3 (OH) 2 + 8H 2 0. Precipitate. (Blomstrand, J. pr. 77. 92.) Bromomolybdenum molybdate, Br 4 Mo 3 Mo0 4 . Precipitate. (Atterberg.) Bromomolybdenum phosphate, Br 4 Mo 3 H 4 (P0 4 ) 2 . Precipitate. Insol. in H 2 0. (Atterberg.) Bromomolybdenum sulphate, Br 4 Mo 3 S0 4 + 3H 2 0. Precipitate. SI. sol. in boiling H 2 S0 4 . (Atterberg. ) Bromonitratoplatincfcamine nitrate, Br p N 2 H 6 N0 3 N0 3 rt N 2 H 6 N0 3 ' Decomp. by H 2 0. (Cleve.) - sulphate, ^ 3 Pt(N 2 H 6 ) 2 S0 4 + H 2 0. SI. sol. in H 2 0. Bromonitritoplatinsem^'amine nitrite, N0 2 Br 2 Pt(NH 3 ) 2 N0 2 . SI. sol. in H 2 0. (Blomstrand.) Bromopalladious acid. Barium bromopalladite. Not deliquescent. Sol. inH 2 0. (v.BonsdorfF.) Manganese bromopalladite. Sol. in H 2 and alcohol, (v. Bonsdorff.) Potassium bromopalladite, K 2 PdBr 4 . Easily sol. in H 2 0. (Joannis, C. R. 95. 295. ) Zinc bromopalladite. Sol. in H 2 0. (v. Bousdorff.) 64 BROMOPHOSPHATOPLATINAMINE PHOSPHATE Bromophosphatoplatincfoamine phos- phate, BrPt(N 2 H 6 ) 2 + 2H 2 0. SI. sol. inH 2 0. (Cleve.) Bromoplatinamine bromide, Br 2 Pt(NH 3 Br) 2 . SI. sol. in H 2 0. (Cleve, Sv. V. A. H. 10, 9. 31.) - nitrite, Br 2 Pt(NH 3 N0 2 ) 2 . Very si. sol. in H 2 0. (Cleve.) Bromoplatincfo'amine bromide, Br 2 Pt(N 2 H 6 ) 2 Br 2 . Only si. sol. in hot H 2 0. (Cleve.) - chloride, Br 2 Pt(N 2 H 6 ) 2 Cl 2 . Very si. sol. in H 2 0. (Cleve.) cfo'chromate, Br 2 Pt(N 2 H 6 ) 2 Cr 2 7 . SI. sol. in H 2 0. - nitrate, Br 2 Pt(N 2 H 6 N0 3 ) 2 . SI. sol. in cold, rather easily sol. in hot H 2 0. (Cleve.) phosphate, Br 2 Pt[N 2 H 6 P0 2 (OH) 2 ] 2 + 2H 2 0. Rather easily sol. in hot H 2 0. (Cleve.) - sulphate, Br 2 Pt(N 2 H 6 ) 2 S0 4 . Very si. sol. in H 2 0. BromoplatinraoTiocfc'amme nitrate, Easily sol. in H 2 0. sulphate, Br 2 Pt ( ^ H j s)2 S0 4 + H 2 0. Moderately sol. in H 2 0. (Cleve. ) Bromoplatinsera^'amine bromide, Br 3 Pt(NH 3 ) 2 Br. SI. sol. in cold H 2 0. (Cleve.) Bromo^'platin^'amine anhydronitrate, Sol. inHN0 3 + Aq. - chloride, Br 2 Pt 2 (N 2 H 6 ) 4 Cl 4 . Ppt. (Cleve.) - nitrate, Br 2 Pt 2 (N 2 H 6 ) 4 (N0 3 ) 4 + 2H 2 0. Moderately sol. in hot H 2 0. - sulphate, Br 2 Pt 2 (N 2 H 6 ) 4 (S0 4 ) 2 + 2H 2 0. Ppt. (Cleve.) Bromoplatinic acid, H 2 PtBr 6 + 9H 2 0. Very deliquescent, and sol. in H 2 0, alcohol, ether, chloroform, or acetic acid. (Topsoe, J. B. 1868. 273.) Ammonium bromoplatinate, (NH 4 ) 2 PtBr 6 . Sol. in 200 pts. H 2 at 15 (Topsoe.) 100 pts. (NH 4 ) 2 PtBr 6 + Aq sat. at 20 contain 0'59 pt. dry salt. (Halberstadt, B. 17. 2965.) Barium bromoplatinate, BaPtBr 6 + 10H 2 0. SI. deliquescent. Very sol. in H 2 0. Calcium bromoplatinate, CaPtBr 6 + 12H 2 0. SI. deliquescent. Very sol. in H 2 0. Cobalt bromoplatinate, CoPtBr 6 + 12H 2 0. Deliquescent. Copper bromoplatinate, CuPtBr 6 + 8H 2 0. Very deliquescent ; sol. in H 2 0. Lead bromoplatinate, PbPtBr 6 . Easily sol. in H 2 0, but decomp. by large amount. Magnesium bromoplatinate, MgPtBr 6 + 12H 2 0. Not deliquescent. Manganese bromoplatinate, MnPtBr 6 + 6H 2 0. Sol. in H 2 0. + 12H 2 0. Sol. inH 2 0. Nickel bromoplatinate, NiPtBr 6 + 12H 2 0. Deliquescent. Potassium bromoplatinate, K 2 PtBre. SI. sol. in H 2 0. Insol. in alcohol. (v. Bonsdorff, Pogg. 19. 344.) Sol. in 10 pts. boiling H 2 0. (Pitkin, C. N. 41. 218.) 100 pts. K 2 PtBr 6 + Aq sat. at 20 contain 2'02 pts. dry salt. (Halberstadt, B. 17. 2962.) Sodium bromoplatinate, Na 2 PtBr 6 + 6H 2 0. Easily sol. in H 2 and alcohol. Strontium bromoplatinate, SrPtBr 6 +10H 2 0. SI. deliquescent. Very sol. in H 2 0. Zinc bromoplatinate, ZnPtBr 6 + 12H 2 0. Sol. in H 2 0. Bromoplatinocyanhydric acid, H 2 Pt(CN) 4 Br 2 . See Perbromoplatinocyanhydric acid. Potassium bromoplatinocyanide, 5K 2 Pt(CN) 4 , Sol. in H 2 0. Bromopurpureochromium bromide, BrCr(NH 3 ) 5 Br 2 . Less sol. in H 2 than chloropurpureo- cliromium chloride. (Jorgensen, J. pr. (2) 25. 83.) bromoplatinate, BrCr(NH 3 ) 5 PtBr 6 . (Jorgensen, I.e.) - chloride, BrCr(NH 3 ) 5 Cl 2 . More sol. in H 2 than the bromide. (Jorgensen, I.e.) - chromate, BrCr(NH 3 ) 5 Cr0 4 . Precipitate. (Jorgensen, I.e.) nitrate, BrCr(NH 3 ) 5 (N0 3 ) 2 . More sol. than bromide and less than chloride. (Jorgensen, I.e.] Bromopurpureocobaltic bromide, CoBr(NH 3 ) 5 Br 2 . Sol. in 530 pts. H 2 at 16. Insol. in alcohol, NH 4 Br, KBr, or HBr + Aq. More sol. in hot HoO containing a little HBr. (Jorgen- sen, J. pr. (2) 19. 49.) BROMOTELLURATE, POTASSIUM 65 Bromopurpureocobaltic mercuric bromide, CoBr(NH 3 ) 5 Br 2 , 3HgBr 2 . More sol. in H 2 than the corresponding HgCl 2 salt. (J.) bromoplatinate. Very si. sol. in cold H 2 0. (J.) - chloride, CoBr(NH 3 ) 5 Cl 2 . Difficultly sol. in cold H 2 0, but much more easily than the bromide. Insol. in dil. HC1 + Aq, and in alcohol. mercuric chloride, CoBr(NH 3 ) 5 Cl 2 , 3HgCl 2 . SI. sol. in H 2 0. chloroplatinate. Nearly or quite insol. in H 2 0. (J. ) chromate, CoBr(NH 3 ) 5 Cr0 4 . Nearly insol. in H 2 0. - dithionate, CoBr(NH 3 ) 5 S 2 6 . Nearly insol. in H 2 0. - fluosilicate, CoBr(NH 3 ) 5 SiF 6 . Very si. sol. in cold H 2 ; insol. in alcohol, nitrate, CoBr(NH 3 ) 5 (N0 3 ) More sol. in H 2 than the bromide, but less than the chloride. Wholly insol. in dil. HN0 3 + Aq or alcohol. - oxalate, CoBr(NH 3 ) 5 C 2 4 . Nearly insol. in H 2 0. - sulphate, CoBr(NH 3 ) 5 S0 4 . Can be crystallised from very dil. H 2 S0 4 + Aq. Insol. in alcohol. + 6H 2 0. Efflorescent. Bromopurpureorhodium bromide, BrRh(NH 3 ) 5 Br 2 . Much less easily sol. in H 2 than the chloro- chloride. Insol. in dil. HBr + Aq and alcohol. (Jorgensen, J. pr. (2) 27. 433.) bromoplatinate, BrRh(NH 3 ) 5 PtBr 6 . Almost insol. in H 2 0. - fluosilicate, BrRh(NH 3 ) 5 SiF 6 . SI. sol. in H 2 0. Sol. in boiling NaOH + Aq as roseo salt. nitrate, BrRh(NH 3 ) 5 (N0 3 ) 2 . SI. sol. in H 2 0, but much more sol. than the bromide. Bromoselenic acid. Ammonium bromoselenate, (NH 4 ) 2 SeBr 6 . Sol. in H 2 with decomp. (Muthmann and Schafer, B. 26. 1008.) Potassium bromoselenate, K 2 SeBr 6 . AsNH 4 salt. (M. and S.) Bromo/?2/roselenious acid. Potassium brompp?/roselenite, KBr, 2Se0 2 + 2H 2 0. Sol. in H 2 0. (Muthmann and Schafer, B. 26. 1008.) Bromostannic acid, H 2 SnBr 6 + 8H 2 0. Very deliquescent. Sol. in H 2 0. (Seubert, B. 20. 794.) Ammonium bromostannate, (NH 4 ) 2 SnBr 6 . Very deliquescent, and sol. in H 2 0. (Ray- mann and Preis, A. 223. 323.) Caesium bromostannate. Sol. in H 2 0. (Raymann and Preis.) Calcium bromostannate, CaSnBr 6 + 6H 2 0. Very deliquescent. Sol. in H 2 0. (Raymann and Preis.) Cobalt bromostannate, CoSnBr 6 + 10H 2 0. Deliquescent. (Raymann and Preis.) Ferrous bromostannate, FeSnBr 6 + 6H 2 0. Deliquescent. (Raymann and Preis.) Lithium bromostannate, Li 2 SnBr(. + 6H 2 0. Extremely deliquescent. (Leteur, C. R. 113. 541.) Magnesium bromostannate, MgSnBr 6 + 10H 2 0. Deliquescent. (Raymann and Preis.) Manganous bromostannate, MnSnBr 6 + 6H 2 0. Deliquescent. (Raymann and Preis. ) Nickel bromostannate, NiSnBr 6 + 8H 2 0. Deliquescent. (Raymann and Preis. ) Potassium bromostannate, K 2 SnBr 6 . Sol. in H 2 0. (Topsoe.) Rubidium bromostannate. Sol. in H 2 0. (Raymann and Preis.) Sodium bromostannate, Na 2 SnBr 6 + 6H 2 0. Not deliquescent, but extremely sol. in H 2 0. (Seubert, B. 20. 796.) Strontium bromostannate, SrSnBr 6 + 6H 2 0. Very hygroscopic, and sol. in H 2 0. (Ray- mann and Preis.) Bromosulphatoplatinc&amine sulphate, S 0>Pt(N 2 H 6 ) 2 S0 4 HQ S r >Pt(N 2 H 6 ) 2 S0 4 +H * a Rather easily sol. in hot H 2 0. Bromotelluric acid. Caesium bromotellurate, Cs 2 TeBr e . Decomp. hy H 2 0. 100 pts. HBr + Aq (sp. gr. 1'49) dissolve 0'02pt. at 22. 100 pts. HBr + Aq (sp. gr. IDS) dissolve 0-13 pt. at 22. Insol. in alcohol. (Wheeler, Sill. Am. J. 145. 267.) Potassium bromotellurate, K 2 TeBr 6 + 3H 2 0. Sol. in little, decomp. by much H 2 0. (v. Hauer. ) Contains 2H 2 0. (Wheeler, Sill. Am. J. 145. 267.) Efflorescent. 100 pts. HBr + Aq (sp. gr. 1-49) dissolve 6-57 pts. at 22. G6 BROMOTELLURATE, RUBIDIUM 100 pts. HBr + Aq (sp. gr. 1'08) dissolve 62-90 pts. at 22. Anhydrous, Stable on air. (Wheeler.) Rubidium bromotellurate, Rb 2 TeBrfj. Sol. in a little hot H 2 0, but H 2 Te0 3 separates on cooling. 100 pts. HBr + Aq (sp. gr. 1'49) dissolve 0*25 pt. at 22. 100 pts. HBr + Aq (sp. gr. 1'08) dissolve 3'88 pts. at 22. (Wheeler.) Bromotetramine chromium bromide, CrBr(NH 3 ) 4 Br 2 + H 2 0. Easily sol. in H 2 0. (Cleve.) chloride, CrBr(NH 3 ) 4 Cl 2 + H 2 0. Sol. inH 2 0. (Cleve.) -sulphate, CrBr(NH 3 ) 4 S0 4 + H 2 0. Easily sol. in H 2 0. (Cleve. ) Bromotetramine cobaltic sulphate, BrCo(NH 3 ) 4 S0 4 , or Br 2 Co 2 (NH 3 ) 8 (S0 4 ) 2 . Sol. in H 2 0. (Vortmann and Blasberg, B. 22. 2652.) Cadmium, Cd. Not attacked by H 2 0. Sol. in HC1, or dil. H 2 S0 4 + Aq, but more easily in HN0 3 + Aq. Sol. in HC 2 H 3 2 + Aq. Not attacked by sugar solution. (Klein and Berg, C. R. 102. 1170.) Cadmium arsenide, Cd 3 As. (Descamps, C. R. 86. 1022.) Cadmium bromide, CdBr 2 . Deliquescent. Very sol. in H 2 0. Sp. gr. of CdBr 2 + Aq at 19 '5 containing : 5 10 15 20 25 % CdBr 2 , 1-043 1-090 1-141 1-199 1'260 30 35 40 45 50 % CdBr 2 . 1-326 1-400 1-481 1'578 1'680 (Kremers, calculated by Gerlach, Z. anal. 8. 280.) Sol. in HC1 + Aq, HC 2 H 3 2 , alcohol, or ether. (Berthemot, A. ch. 44. 387.) Sol. in 0'94 pt. H 2 0, 3'4 pts. abs. alcohol, 250 pts. ether, and 16 pts. alcohol-ether (1:1). (Eder, Dingl. 221. 89.) Anhydrous CdBr 2 is sol. in acetone. (Krug and M'Elroy.) + 4H 2 0. Efflorescent. (Raramelsberg, Pogg. 55. 241.") Cadmium hydrogen bromide. Decomp. by H 2 0. (Berthelot, C. R. 91. 1024.) Cadmium caesium bromide, CdBr 2 , CsBr. Easily sol. in H 2 0. (Wells and Walden, Z. anorg. 5. 270.) CdBr 2 , 2CsBr. Decomp. by H 2 into above comp. (W. and W.) CdBr 2 , 3CsBr. Decomp. by H into CdBr 2 , CsBr. (W. and W.) Cadmium potassium bromide, CdBr 2 , KBr + |H 2 0. Sol. in 0'79 pt. H 2 at 15; pptd. by alcohol and ether. (Eder, Dingl. 221. 89.) CdBr 2 , 4KBr. Sol. in 1'40 pts. H 2 at 15 ; pptd. by alcohol and ether. (Eder, Dingl. 221. 89.) Cadmium sodium bromide, CdBr 2 , NaBr + Sol. at 15 in 1'04 pts. H 2 0, 3 7 pts. abs. alcohol, and 190 pts. ether (sp. gr. 0729). (Eder, Dingl. 221. 89.) Cadmium bromide ammonia, CdBr 2 , 2NH 3 . Can be crystallised out of warm NH 4 OH + Aq. (Croft, Phil. Mag. 21. 356.) CdBr 2 , 4NH 3 . Decomp. by H 2 0. (Croft.) Cadmium chloride, CdCl 2 . Sol. at 20 40 60 80 100 in 0-71 072 072 070 0'67 pts. H 2 0. Sp. gr. of CdCl 2 + Aq containing pts. CdCl 2 to 100 pts. H 2 0. 13 26-9 41 pts. CdCl 2 , 1-1068 1-2106 1-3100 55-8 72-5 114-2 pts. CdCl 2 . 1-4060 1-5060 17266 (Kremers, Pogg. 103. 57.) + 2H 0. Easily sol. in H0 ; insol. in HCl + Aq. (John.) Readily sol. in alcohol. 100 pts. absolute methyl alcohol dissolve 171 pts. CdCl 2 at 15-5. 100 pts. absolute ethyl alcohol dissolve 1*52 pts. CdCL, at 15-5. (de Bruyn, Z. phys. Ch. 10. 783.)" Somewhat sol. in acetone. (Krug and M'Elroy.) Cadmium hydrogen chloride, CdCl 2 , 2HC1 + 7H 2 0. Decomp. on air. (Berthelot, C. R. 91. 1024.) Cadmium caesium chloride, CdCl 2 , 2CsCl. Easily sol. in H 2 and dil. HCl + Aq ; insol. in cone. HC1 + Aq. (Godeffroy, B. 8. 9. ) Nearly insol. in CsCl + Aq. (Wells and Warden, Z. anorg. 5. 266.) CdCl 2 , CsCl. SI. sol. in H 2 ; nearly insol. in CdCl 2 + Aq. (Wells and Walden. ) Cadmium calcium chloride, 2CdCl 2 , CaCl 2 + 7H 2 0. Rather deliquescent and very sol. in H 2 0. When ignited is only si. sol. in H 2 with evolution of heat. (v. Hauer, J. pr. 63. 432.) CdCl 2 , 2CaCl 2 + 12H 2 0. Very deliquescent. (v. Hauer.) Cadmium cobaltous chloride, 2CdCL, CoCL + 12H 2 0. Deliquescent. Sol. in H 0. (v. Hauer, W. A. B. 17. 331.) Cadmium cupric chloride, CdCl 2 , CuCl 2 + 4H 2 O. Sol. in H 2 0. (v. Hauer, W. A. B. 17. 331.) CADMIUM IODIDE 07 Cadmium ferrous chloride, 2CdCl 2 , FeCl 2 + 12H 2 0. Sol. in H 2 0. (v. Hauer, W. A. B. 17. 331.) Cadmium lithium chloride, CdCl 2 , LiCl + 3irH 2 0. Very deliquescent. Decomp. by solution in H 2 0, but not in alcohol. (Chassevant, A. ch. (6) 30. 39.) Cadmium magnesium chloride, 2CdCl 2 , MgCl 2 + 12H 2 0. Deliquescent in moist, stable in dry air. Easily sol. in H 2 with absorption of heat. Much more sol. in hot than in cold H 2 0. (v. Hauer. ) CdCl 2 , 2MgCl 2 + 12H 2 0. Very deliquescent, (v. Hauer.) Cadmium manganese chloride, 2CdCl 2 , MnCl 2 + 12H 2 0. Deliquescent in moist, efflorescent in dry air. Sol. in H 2 0. (v. Hauer.) Cadmium nickel chloride, CdCl 2 , 2MC1 2 + 12H 2 0. Sol. in H 2 0. (v. Hauer, W. A. B. 20. 40.) 2CdCl 2 , NiCl 2 + 12H 2 0. Sol. in H 2 0. (v. Hauer. ) Cadmium potassium chloride, CdCl 2 , KC1 + 4H 2 0. Sol. in H 2 without decomp. (v. Hauer. ) CdCl 2 , 4KC1. More sol. in H 2 than CdCl 2 , KC1. (v. Hauer.) CdCl 2 , 2KC1. 100 pts. H 2 at 15 '5 dissolve 33-45 pts. SI. sol. in alcohol. (Croft, Phil. Mag. (3) 21. 356.) Cadmium rubidium chloride, CdCl 2 , 2RbCl. Sol. in H 2 and HCl + Aq. (GodefFroy, B. 8. 9.) CdCl 2 , RbCl + pI 2 0. (GodefFroy, Arch. Pharm. (3) 12. 47.) Cadmium sodium chloride, CdCl 2 , 2NaCl + 3H 2 0. Sol. in 1'4 pts. H 2 at 16. SI. sol. in alcohol or wood alcohol. (Croft.) Cadmium strontium chloride, 2CdCl 2 , SrCl 2 + 7H 2 0. Sol. in H 2 0. (v. Hauer.) Cadmium chloride ammonia, CdCl 2 , 2NH 3 . Nearly insol. in H 2 0. (v. Hauer.) CdCl 2 , 3NH 3 + iH 2 0. CdCl 2 , 4NH 3 +|H 2 0. CdCl 2 , 5NH 3 . (Andre, C. R. 104. 908.) CdCl 2 , 6NH 3 . Difficultly sol. in cold H 2 0. (Schiller, A. 87. 34.) Cadmium chloride hydroxylamine, CdCl 2 , 2NH 2 OH. SI. sol. in cold, somewhat more in warm H 2 0. Very sol. in hydroxylamine + Aq. Very si. sol. in alcohol and other organic solvents. (Crismer, Bull. Soc. (3) 3. 116.) Cadmium fluoride, CdF 2 . Difficultly sol. in H 2 0. Easily sol. in HF + Aq. (Berzelius, Pogg. 1. 26.) Very sol. in H 2 ; insol. in 95 % alcohol ; sol. in HC1, H 2 S0 4 , or HN0 3 + Aq with evolu- tion of HF. (Poulenc, C. R. 116. 582.) Cadmium columbium fluoride. See Fluocolumbate, cadmium. Cadmium molybdenyl fluoride. Sec Fluoxymolybdate, cadmium. Cadmium stannic fluoride. See Fluostannate, cadmium. Cadmium zirconium fluoride. See Fluozirconate, cadmium. Cadmous hydroxide, CdOH. Insol. in H 2 0. Decomp. by acids into cadmic salt. (Morse and Jones, Am. Ch. J. 12. 488.) Cadmium hydroxide, Cd0 2 H 2 - Insol. in H 2 ; sol. in acids ; very sol. in NH 4 OH + Aq ; insol. in KOH, NaOH, Na 2 C0 3 , K 2 C0 3 , and (NH 4 ) 2 C0 3 + Aq. Easily sol. in (NH 4 ) 2 S0 4 , NH 4 C1, NH 4 N0 3 , and NH 4 succinate + Aq. ( Wittstein. ) Insol. in ethyl, and methyl amine + Aq. (Wurtz.) Very si. sol. in HCN + Aq even when freshly pptd. (Schiller, A. 87. 48.) Not pptd. in presence of Na citrate (Spiller), and many non - volatile organic substances. (Rose.) Cadmium iodide, CdI 2 . Sol. in 1-13 pts. H 2 at 15. (Eder, Dingl. 221. 89.) Sol. at 20 40 60 80 100 in 1-08 I'OO 0-93 0'86 075pts.H 2 0. (Kremers, Pogg. 103. 57.) Sp. gr. of CdI 2 + Aq containing pts. CdI 2 to 100 pts. H 2 0. 21-4 437 88-5 pts. CdI 2 . 1-1681 1-328 1-6139 (Kremers, Pogg. 111. 60.) Sp. gr. of CdI 2 + Aq at 19 '5 containing : 5 10 15 20 25 % CdI 2 , 1-044 1-088 1-138 1'194 1-253 30 35 40 45 50 % CdI 2 . 1-319 1-395 1-476 1'575 1'680 (Kremers, calculated by Gerlach, Z. anal. 8. 285.) Sol. in sat. HI + Aq. Sol. in warm NH 4 OH + Aq. Sol. in 15 pts. alcohol. (Vogel, N. Rep. Pharm. 12. 393.) Sol. in 0'98 pt. abs. alcohol. (Eder, Dingl. 221. 89.) Sol. in 3-6 pts. ether. (Eder, I.e.] Sol. in 2-0 pts. alcohol-ether (1 : 1). (Eder, I.e.) Sol. in 5 '2 mols. methyl, 7 mols. ethyl, and 9-8 mols. propyl alcohol at 20. (Timofejew, C. R. 112. 1224.) Insol. in methylene iodide. (Retgers, Z. anorg. 3. 343.) CADMIUM CESIUM IODIDE Cadmium caesium iodide, CdI 2 , Csl + H 2 0. Sol. in H 2 without decomp. (Wells and Waldon, Z. anorg. 6. 271.) CdI 2 , 2CsI. As above. CdI 2 , 3CsI. Decomp. by H a O into the above salt. Cadmium mercuric iodide. Very sol. in H a O. (Borthoniot, J. Pharm. 14. (513.) CdLj, 3HgL 2 . Sol. in H 2 0. Can bo ro- erystallised in alcohol. (Clarke and Kebler, Am. Oh. J. 5. 235.) Cadmium potassium iodide, CdL>, KI + H a O. Sol. in 0-94 pt. H a O at 15. (Eder, Dingl. 221. 89.) CdI 2 , 2KI + 2H 2 0. Deliquescent. Ex- tremely HO!, in HaO. Sol. at 15 in 073 pt. 1I..O. SI. sol. in alcohol and wood spirit, but less than (MI 2 . (Croft.) Sol. at 15 in 1*4 pts. absolute alcohol, 24 '5 pts. ether (0'729 sp. gr.), and 4*5 pts. alcohol- other (1:1). (Eder, I.e.) Cadmium sodium iodide, CdI 2 , 2NaI + 6H 2 0. Deliquescent. (Croft.) Sol. at 15 in 0*63 pt. IT./), 0*86 pt. aba. alcohol, and 10*1 pts. other (sp. gr. 0*729). (Eder, Dingl. 221. 89.) Cadmium strontium iodide, CdI 2 , SrI 2 + 8H 2 0. Deliquesces in moist, elUoresces in dry air ; sol. in ll.p. (Croft.) Cadmium iodide ammonia, CdI 2 , 2NH 3 . Decomp. by H a O. (Rammelsberg.) CdI 2 , 6NH;,. "Decomp. by H a O ; sol. in warm, less sol. in cold NIl 4 OII + Aq. (Ram- melsberg.) Cadmous oxide, Cd 2 0. Properties as cadmous hydroxide. (Morse and .lones.) Cadmium oxide, CdO. Insol. in H.,0. Sol. in acids. Sol. in NILOH + Aq. Insol. in (NH 4 )nCO + Aq. Easily sol. in "NH 4 Cl + Aq, less iiiNlf 4 NO., + Aq. (Brett, 1837.) Insol. in KOH, NaOH, KoCO.,, and Na 2 CO :i + Aq. See also Cadmium hydroxide. Solubility in (calcium suorate + sugar) +Aq. 1 1. solution containing 418*6 g. sugar and 34*3 g. CaO dissolves 0*22 g. CdO. 1 1. solution containing 174'4 g. sugar and 14'1 g. CaO dissolves 0*48 g. CdO. (Bodonbondor, J. B. 1865. GOO.) Cadmium peroxide, Cd 5 8 or Cd.,0 5 (?). (Haas.) CdO.,, Cd(OII) a . (Kouriloir, A. ch. (6) 23. 431.) Cadmium oxybromide, CdBr 2 , CdO. (do Schulten.) Cadmium oxychloride, CdCl a , CdO + H a O. SI. sol. in hot H a O. (Habormann, M. Ch. 5. 432.) Cadmium phosphide, Cd s P a . Sol. in HCl + Aq with evolution of PH 3 . (Stromeyer. ) Cd a P. Sol. in cone. HCl + Aq. (Emmer- ling, B. 12. 152.) Easily dcconip. by acids. (Kulisch, A. 231. 327.) CdP 2 . Decomp. by boiling cone. HCl + Aq. (Renault, C. R. 76. 283.) Cadmium selenide, CdSe. Sol. in HCl + Aq. (Uolsmann, A. 116. 122.) Cadmium sulphide, CdS. Insol. in H 2 0. Dillieultly sol. in hot dil. HCl + Aq. Easily sol. in cold cone." HCl + Aq. (Stromeyer.) Sol. in HNO., + Aq (Meissnor), and boiling dil. H 2 S0 4 + Aq (1:6). (A. W. Hoffmann, A. 115. 286.) Very si. sol. in NIIjOH + Aq. ( Wackenroder, Report. 46. 226. ) Insol. in KOH, or (NH 4 ),S + Aq. Much more sol. in (NH 4 ) 2 S + Aq than usually supposed. (Ditto, C. R. 85. 402.) Solubility increases by warming, and at 68 is twice that at ordinary temperatures. A sat. solution of (NH 4 ). 2 S dissolves about 2 g. CdS to a litre. Alkali sulphides dissolve much less. (Ditto.) Frosenius (Z. anal. 20. 236) could not con- firm the above. According to Fresenius, CdS is not appreciably sol. in (NH 4 ) 2 S + Aq. Insol. in Na.,SO., or KCN + Aq". (Fresenius.) Insol. in NH 4 C1 or NH 4 NO;, + Aq. (Brett.) Sol. in alkali sulpho-molyhdatos, -tungstates, -vanadates, -arsenates, -antimonates, -stannates + Aq. (Storch, B. 16. 2015.) Min. Grccnockitc. Sol. in HCl + Aq. Colloidal. Solution of 4 g. colloidal CdS in a litre H 2 remains transparent several days. If it contains 11 g. CdS in a litre, it is completely coagulated in 24 hours. Solutions of salts of the following concentration cause an immediate coagulation in an aqueous solution of CdS con- taining 3*62 g. in a litre. KC1 . KBr . KI . KCN . KC10, KNO.; K,s,6 (i KsFe( 4 CN) fl K.,Cr0 4 K'oCr,,0 7 NaOl . Na.jS.jOs, NuHCO, Niu.CO, ' 1 :1615 1 : 727 1:57 NaC,,H.,0 2 . Na benzoate (NH 4 ) 2 C 2 4 BaCl a . Ba(N0 3 ) 2 . MgS0 4 MnS0 4 166 1666 1000 5000 833 166 1 :100 1:400 1 :3571 1 : 2666 98 333 166 202 2451 10,000 1 : 588 1 : 11, 764 1 : 8032 1 : 5617 1 : 41, 666 1 : 22, 222 CESIUM LEAD CHLORIDE CdS0 4 . Cd(NO 3 ) 2 . Pb(C10.,) 2 . Pb(C 2 H 3 2 ) 2 Hg(CN) 2 . A1. 2 (S0 4 ) 3 . Alum . . Chrome alum HC1 . . H 2 S0 4 . HC 2 H 3 2 . H 2 C 2 4 . Succinic acid Tartaric acid 1:250,000 1:285,714 1 : 209 1 = 147,058 . 1:232,558 . 1 : 192,377 . 1 : 42,555 . 1:4807 . 1 : 8000 .1:15 . 1:23,255 . < 1 : 100 . 1 : 333 (Frost, Belg. Acad. Bull. (3) 14. 312 ; J. B. 1887. 537.) Cadmium pcnlasulphide, CdS 6 . Insol. in H 2 0. (Schiff, A. 115. 74.) Mixture of CdS and S. (Folleuius, Z. anal. 13. 412.) Cadmium sodium sulphide, 3CdS, Na 2 S. Decomp. by H 2 0. (Schneider, J. pr. (2) 8. 29.) Cadmium telluride, CdTe. (Fabre, C. It. 105. 673.) Cadmic acid. Potassium cadmate. Insol. in H 2 0, but gradually decomp. when in contact therewith. (Meunier, C. R. 63. 330.) Caesium, Cs. Decomp. H 2 with great violence. (Setter- berg, A. 211. 100.) Caesium O to l pt. CaO Pts. CaO in 100 pts. H 2 O t Pts. H 2 to 1 pt. CaO Pts. CaO in 100 pts. H 2 O 759 0-131 60 1136 0-088 10 770 0-129 70 1235 0-080 20 791 0-126 80 1362 0-073 30 862 0-116 90 1579 0-063 40 932 0-107 100 1650 0-060 50 1019 0-098 ... ... (Maben, Pharm. J. Trans. (3) 14. 505.) 1 pt. Ca0 2 H 2 is sol. in 640 pts. H 2 at 19, and 3081 pts. at 150. (Shenstone and Cun- dall, Chem. Soc. 53. 550.) 1000 g. H 2 dissolve 1-251 g. CaO. (Carles, Arch. Pharm. (3) 4. 558.) Solubility of Ca0 2 H 2 in H 2 0. 100 pts. H 2 dissolve pts. CaO at t. t" Pts. CaO t" Pts. CaO 20 0-1374 80 0-0845 40 0-1162 100 0-0664 60 0-1026 (Zahorsky, Z. anorg. 3. 34.) Readily sol. in most acids. Sol. in NH 4 C1 + Aq. Much more sol. in NaCl + Aq than in H 2 0. (Rose.) KOH or NaOH + Aq containing 1 pt. KOH or NaOH in 100 pts. H 2 do not dissolve more than -rsfas pt. Ca0 2 H 2 , but it is sol. in NH 4 OH + Aq. (Pelouze, A. ch. (3) 33. 11.) Solubility of Ca0 2 H 2 in CaCl 2 + Aq. 100 pts. CaClo+Aq of given strength dissolve pts. CaO at t. 0-1370 0-1160 0-1020 0-0936 0-0906 0-1661 0-1419 0-1313 0-1328 0-1389 ta 0-1993 0-1781 0'1706 0-1736 0-1842 0-1857 4 0-2249 0-2204 0-2295 0-2325 0-1661* 0-3020^ 0-2989 0-3261 0-3710 0-1630* 0-3684* 0-3664 0-4122 0-4922 * In these cases, ppts. of 3CaO,CaCl 2 +15H 2 O were formed. (Zahorsky, Z. anorg. 3. 34.) Alcohol dissolves traces. Insol. in ether. Much more sol. in glycerine, or sugar + Aq than in H 2 0. Solubility of CaO in glycerine. Wt. of glycerine in 100 ccm. of solution Wt. CaO contained in 100 ccm. of liquid sat. with CaO Relation of CaO to glycerine CaO Glycerine 10-00 0-370 3'6 96-4 5-00 0-240 4-6 95-4 2-86 0-196 6'4 93-6 2-50 0-192 7-1 92-9 2-00 0-186 8-5 91-5 i-oo 0-165 14-2 85-8 (Berthelot, A. ch. (3) 46. 176.) 1000 g. H 2 dissolve 1-251 g. CaO ; 1000 g. H 2 + 50 g. glycerine dissolve 1 '865 g. CaO ; 1000 g. H 2 + 100 g. glycerine dissolve 2 '583 g. CaO; 1000 g. H 2 + 200 g. glycerine dissolve 4-040 g. CaO; 1000 g. H 2 + 400 g. glycerine dissolve 6 '569 g. CaO. (Carles, Arch. Pharm. (3) 4. 558.) Insol. in pure glycerine. 100 CaO pts. sugar dissolved in H 2 O dissolve 55-6 pts. (Osann); 50 pts. CaO (Ure); 49 '6 pts. CaO CALCIUM LEAD OXYCHLORIDE 75 (Daniell); 29-30 '6 pts. CaO (Hunton) ; 23 pts. CaO. (Soubeiran.) Sugar solu Sugar solution at 100 takes up J mol. CaO for each mol. sugar ; at 0, if it contains not less than 25 % of sugar, it takes up 2 mols. CaO to 1 mol. sugar. (Dubrunfaut.) Amount dissolved is proportional to the density and temperature of the solutions. Solubility of CaO in sugar+Aq. Pts. sugar dissolved in 100 pts. H 2 O Relation of CaO to sugar CaO Sugar 40 21-0 79-8 37-5 20'8 79-2 35-0 20-5 79-5 32-5 20-3 79-7 30-0 20-1 79-9 27-5 19-9 80-1 25-0 19-8 80-2 22-5 19-3 80-7 20-0 18-8 81-2 17-5 18-7 81-3 15'0 18-5 81-5 12-5 18-3 81-7 lO'O 18-1 81-9 7'5 16-9 83-1 5-0 15-3 84-7 2-5 13-8 86-2 (Peligot, C.R. 32. 335.) 100 g. solution of sugar sat. with CaO between 10 and 54-4 contain 22'5 to 23'5 % CaO. (Hunton, 1837.) Solubility of CaO in dil. sugar solutions. Wt. of Wt. of CaO contained in Relation of CaO to sugar in 100 ccm. of solution 100 ccm. of liquid sat. with CaO sugar CaO Sugar 4-850 1-031 17-5 82-5 2-401 0-484 16-8 83-2 2-000 0-433 17-8 82-2 1-660 0-364 18-0 82-0 1-386 0-326 19-0 81-0 1-200 0-316 20-8 79-2 1-058 0-281 21-0 79'0 0-960 0-264 21-6 78-4 0-400 0-194 32-7 67'3 0-191 0-172 47-4 52-6 0-096 0-154 61-6 78-4 o-ooo 0-148 (Berthelot, A. ch. (3) 46. 176.) Solubility of CaO in mannite + Aq. Wt. of mannite in 100 ccm. of solution Wt. of CaO contained in 100 ccm. of liquid sat. with CaO Relation of CaO to mannite CaO Mannite 9-60 0753 7'3 927 4-80 0-372 7-2 92-8 2-40 0-255 9'6 90-4 1'92 0-225 10-5 89-5 1-60 0-207 11-4 88-6 1-37 0-194 12-5 87-5 1-20 0-193 13-9 86-1 1-07 0-190 15-1 84-9 0-96 0-186 16-2 86-8 0-192 0-155 44'6 55-4 0-096 0-154 61-6 38-4 o-ooo 0-148 (Berthelot, I.e.] Solutions of CaO in sugar, mannite, or gly- cerine afford an abundant ppt. on being heated, but this redissolves on cooling. (Berthelot.) Sol. in sorbine + Aq (Pelouze) ; si. sol. in quercite + Aq. Sol. in monobasic Ca sac- charate + Aq. (Peligot.) Much more sol. in gelatine + Aq than in pure H 2 0. Calcium iodide, CaI 2 . Deliquescent. 100 pts. H 2 dissolve at 20 40 43 92 192 204 228 286 435 pts. CaI 2 . (Kremers, Pogg. 103. 65.) Sp. gr. of CaI 2 + Aq at 19 '5 containing : 5 10 15 20 25 30%CaI 2 , 1-044 1-09 1-14 1-198 1'26 1'321 35 40 45 50 55 60 % CaL. 1-398 1-477 1-567 1'665 178 1'91 (Kremers, calculated by Gerlach, Z. anal. 8. 285.) Sol. in absolute ch. 91. 57.) alcohol. (Gay-Lussac, A. Calcium ^modide, CaI 4 (?). Decomp. by H 2 0. Calcium mercuric iodide, CaI 2 , 2HgI 2 . Decomp. by H 2 0. (Boullay.) CaI 2 , HgI 2 . Sol. inH 2 0. (Boullay.) Calcium silver iodide, CdI 2 , 2AgI + 6H 2 0. Immediately decomp. by H 2 0. (Simpson, Roy. Soc. Proc. 27. 120.) Calcium iodide ammonia, CaI 2 , 6NH 3 . (Isambert, C. R. 66. 1259.) Calcium oxide, CaO. Decomp. by H 2 0, with evolution of much heat, to form Ca0 2 H 2 , which see for solubility in H 2 0, etc. Calcium peroxide, Ca0 2 . Very si. sol. in H 2 ; easily sol. in acids, and NH 4 salts + Aq. Insol. in NH 4 OH + Aq. (Conroy, Chem. Soc. (2) 11. 808.) + 8H 2 0. Efflorescent. Difficultly sol. in H 2 with gradual decomp. Insol. in alcohol or ether. (Gay-Lussac and Thenard, A. ch. (2) 8. 313.) Calcium oxybromide. Decomp. by H 2 0. (Lb'wig.) Calcium oxychloride, Ca 4 3 Cl 2 + 15H 2 = 3CaO, CaCl 2 + 15H 2 0. Decomp. by H 2 or alcohol. (Rose. ) Formula is Ca 2 H0 2 Cl + 7H 2 0. (Grirnshaw, C. N. 30. 280.) + 16H 2 0. Decomp. by H 2 into Ca0 2 H 2 and CaCl 2 until a maximum of 85 g. CaCl 2 are dissolved per litre. (Ditte, C. R. 91. 576.) Calcium lead oxychloride, CaCl 2 , CaO, 2PbO + 4H 2 0. Sol. in H 2 with decomp. (Andr6, C. R. 104. 359.) CaCl 2 , 3PbO + 3H 2 0. (Andre.) 76 CALCIUM MERCURIC OXYCHLORIDE Calcium mercuric oxychloride, CaCl 2 , 2HgO + 4H 2 0. Decomp. immediately by H 2 0. (Klinger, B. 16. 997.) Calcium oxyiodide, CaO, CaI 2 +16H 2 0. (Tassily, Bull. Soc. (3) 9. 630.) Calcium oxysulphide, Ca 4 3 S 4 + 12H 2 = 3CaO, CaS 4 + 12H 2 0. Decomp. by H 2 0. Not acted on by absolute alcohol. (Schone, Fogg. 117. 77.) According to Geuther (A. 224. l78) = CaS 3 , 2CaO + 10, or 11H 2 0. Sol. in dil. HCl + Aq with separation of S. Ca 5 4 S 4 + 18H 2 - 4CaO, CaS 4 + 18H 2 0. De- comp. by H 2 0, but not acted on by absolute alcohol. (Schone, Pogg. 117. 82.) According to Geuther (A. 224. !78) = CaS 3 , 3CaO + 14, or 15H 2 0. Ca 6 5 S 5 + 20H 2 = 5CaO, CaS 5 + 20H 2 0. (Rose, Pogg. 55. 433.) Sol. in 400 pts. cold, decomp. by boiling H 2 (Buchner) ; si. sol. in cold, much more in hot H 2 0> but it is not deposited on cooling. Aqueous solution sat. at 6-7 "2 has sp. gr. = 1-0105 (Herschel) ; sol. in alcohol (Gay-Lus- sac) ; insol. in alcohol (Gmelin). Calcium phosphide, CaP. Deliquescent. Decomp. in moist air or with H 2 0. Not attacked by cone. HN0 3 , but decomp. by dil. HN0 3 + Aq. (Thenard, A. ch. (3) 14. 14.) Calcium selenide, CaSe. SI. sol. in H 2 0. Very easily decomp. (Fabre, C. R. 102. 1469.) Calcium sulphide, CaS. 500 pts. H 2 dissolve 1 pt. CaS completely ; less H 2 dissolves out CaS 2 H 2 and leaves Ca0 2 H 2 . Very much H 2 decomposes com- pletely into Ca0 2 H 2 and H 2 S. (Bechamp, A. ch. (4) 16. 222.) Not decomp. by H 2 0, and only si. sol. therein at ordinary temp. (Pelouze.) After 48 hours contact with CaS 1 1. H 2 contains at : 10 18 40 60 90 0-15 0-23 0-30 0-48 0'33g. CaS. After boiling for 2 hours, 0'27 g. CaS is dissolved ; addition of NaCl diminishes solu- bility, but Na 2 S0 4 increases it. Lime-water dissolves at 14 0'18g. CaS, the same amount which H 2 dissolves at 60. Milk of lime dissolves 0"55 g. at 60. H 2 containing 3 to 79g. Na 2 0per litre dissolves only traces of CaS at 10, but at 40-60, or by boiling, a large amount of Na 2 S is formed. (Kolb, A. ch. (4) 7. 126.) Sol. in 12,500 pts. H 2 at 12 '6. (Scheurer- Kestner, Repert. chim. appl. 1862. 331.) Sat. Na 2 C0 3 + Aq has scarcely any action on CaS, but a dilute solution has more action. (Kolb.) Sol. in H 2 and sulphur, forming CaS 4 . Sol. in 10 pts. glycerine. (Cap and Garot, J. Pharm. (3) 26. 81.) Sol. in acids. Calcium ^rasulphide, CaS 4 . Known only in solution. Calcium pcntasulphide, CaS 5 . Sol. in H 2 and alcohol. (Berzelius.) Exists only in aqueous solution. (Schone, Pogg. 117. 73.) Calcium hydroxyl sulphide, Ca(OH)SH + 3H 2 0. Easily sol. in H 2 with immediate decomp. and separation of Ca(OH) 2 . Insol. in alcohol, but slowly decomp. thereby. (Divers and Shimidzu, Chem. Soc. 45. 270.) Calcium stannic sulphide. See Sulphostannate, calcium. Calomel. See Mercurous chloride. Carbamic acid. Ammonium carbamate acid carbonate (com- mercial carbonate of ammonia). See Carbonate carbamate, ammonium hy- drogen. (salts of hartshorn), 2NH 4 HC0 3 , NH 4 CONH 2 . Sec Carbonate carbamate, ammonium hy- drogen. Carbazote silicon, C 2 SiN. Insol. in acids, even HF ; also in boiling KOH + Aq. (Schutzenberger and Colson, C. R. 92. 1508.) Carbon, C. Insol. in all solvents. Diamond is unacted upon by KC10 3 + fum. HN0 3 ; graphite forms graphitic acid by KC10 3 + fum. HN0 3 ; amorphous carbon is sol. in KC10o + fum. HNO S . (Berthelot, A. ch. (4) 19. 399.) Diamond is sol. in molten iron at 1160. Amorphous carbon is insol. in molten iron at 1160, but becomes sol. therein by heating to 1400. (Hempel, B. 18. 998.) Carbon boride, CB 6 . Insol. in boiling HN0 3 + Aq. (Joly, C. R. 97. 456.) Carbon monoxide, CO. Sol. in 50 vols. recently boiled H 2 O. (Davy.) Sol. in 16 vols. H^O. (de Saussure.) Sol. in 27 vols. H^O. (Dalton.) 100 vols. H 2 O dissolve 6 -2 vols. CO at 18. (de Saussure.) Solubility of CO in H 2 : 1 vol. H 2 at t dis- solves V vols. CO reduced to and 760 mm. t V t V t V 0-03287 7 0-02796 14 0-02466 1 0-03207 8 0-02739 15 0-02432 2 0-03131 9 0-02686 16 0-02402 3 0-03057 10 0-02635 17 0-02374 4 0-02987 11 0-02588 18 0-02350 5 0-02920 12 0-02544 19 0-02329 6 0-02857 13 0-02504 20 0-02312 (Bunsen's Gasometry, pp. 287, 128, 146.) Coefficient of absorption = '032874 - 0'00081632t + 0'000016421t 2 . (BunsenandPauli, A. 93. 16.) Cuprous chloride in an hydrochloric acid or ammoniacal solution, and ammoniacal solutions CARBON OXIDE 77 of cuprous salts absorb large amounts of CO. (Leblanc, C. R. 30. 488.) Cuprous chloride dissolved in HC1 + Aq absorbs 15-20 vols. CO. (Berthelot, A. ch. (3) 51. 66.) Absorbed by KOH, NaOH, Ba(OH) 2 , and Ca(OH) 2 + Aq ; more readily by ether, alcohol, and wood spirit, with formation of formic acid. (Berthelot, A. ch. (3) 61. 463.) Sol. in HCN. (Bottinger, B. 10. 1122.) 1 vol. alcohol absorbs 0*20443 vols. CO gas at all temperatures between and 25. (Carius, A. 94. 135.) 100 vols. alcohol (0'84 sp. gr.) dissolve 14-5 vols. CO at 18 ; 100 vols. rectified naphtha (0'784 sp. gr.), 20'0 vols. CO at 18 ; 100 vols. oil of lavender (0-88 sp. gr.), 15'6 vols. CO at 18 ; 100 vols. olive oil (0-915 sp. gr.), 14-2 vols. CO at 18; 100 vols. sat. KCl+Aq (1-168 sp. gr.), 5-2 vols. CO at 18. (de Saussure, 1814.) 1 vol. oil of turpentine absorbs 0'16-0'20 vol. CO. (de Saussure.) Sol. in ether. (Regnault.) Insol. in caoutchine. Coefficient of absorption for petroleum = 0-123 at 20, and 0'134 at 10. (Gniewasz and Walfisz, Zeit. phys. Ch. 1. 70.) Carbon dioxide, C0 2 . Gas. H 2 O dissolves about its own vol. CO2 at the ordinary temperature (the solution obtained being of 1-0018 sp. gr.) and pressure, and an additional vol. for the pressure of each additional atmosphere to which it is subjected. The power of H 2 O to absorb CO 2 does not increase in precisely the same ratio as the pressure. (Soubeiran.) 5 vols. CO 2 dissolve in 1 vol. H 2 O at 7 atmos. pressure, and much greater pressure is necessary in order to in- crease the amount of gas dissolved ; but up to 4 or 5 atmospheres the amount of gas dissolved is very nearly proportional to the pressure. (Courbe, J. Pharm. 26. 100 vols. H 2 O at 12-78 absorb 116 vols. CO 2 (Caven- dish); at 29-44, 84 vols. COo (Henry); at 15-56, 106 vols. CO^ (Saussure) ; at 15 -56, 108 vols. CO 2 (Henry) ; at 15-56, 100 vols. CO 2 (Dalton). 100 vols. H 2 O at t C. absorb V vols. of CO 2 gas reduced to 60 F. and 30 in. pressure. t V t V 4-4 10 15-6 21-1 175-72 147-94 122-27 100-50 83-86 26-7 32-2 37-8 65-6 100 68-60 57-50 50-39 11-40 trace (Rogers, Am. J. Sci. (2) 6. 107.) 1 vol. H 2 at 5 absorbs somewhat more than 1 vol. CO 2 ; at 10 scarcely 1 vol., and still less at higher temp. COa+Aq sat. at 2 has 1-0015 sp. gr. ; most of the CO 2 escapes upon exposing the solution to ithe air, the more quickly the higher the temperature. But as CO 2 diminishes, the remainder is more obstinately held, so that boiling for \ hour is necessary to expel it com- pletely. (Bergman.) Solubility of C0 2 in H 2 0. 1 vol. H 2 at t and 760 mm. dissolves V vols. C0 2 gas reduced to and 760 mm. t V t V t V 1-7967 7 1-3339 14 1-0321 1 1-7207 8 1-2809 15 1-0020 2 1-6481 9 1-2311 16 0-9753 3 1-5787 10 1-1847 17 0-9519 4 1-5126 11 1-1416 18 0-9318 5 1-4497 12 1-1018 19 0-9150 6 1-3901 13 1-0653 20 0-9014 (Bunsen's Gasometry, pp. 287, 128, 152.) Coefficient of absorption = 1 '7967 -0'07761t + -0016424 1 2 . (Bunsen.) Solubility in H 2 at various pressures : P = pressure in atmospheres. p Vol. gas in 1 com. H 2 O P Vol. gas in 1 ccm. H 2 atO at 12-43 atO at 12-43 1 5 10 15 1-797 8-65 16-03 21-95 1-086 5-15 9-65 13-63 20 25 30 26-65 30-55 3374 17-11 20-31 23-35 (Wroblewski, C. R. 94. 1355.) Absorption of C0 2 in H 2 at various pressures : P = pressure in mm. ; V^vols. C0 2 , reduced to and 760 mm., absorbed by 1 vol. H 2 0. P V P V 69771 0-9441 2188-65 3-1764 809-03 1-1619 2369-02 3-4857 1289-41 1-8647 2554-00 37152 1469-95 2-1623 2738-33 4-0031 2002-06 2-9067 3109-51 4-5006 (Khanikoff and Longuinine, A. ch. (4) 11. 412. C = coefficient of absorption in H 2 at t and 760 mm. t C t C t C 15-2 17-6 1-009 0-930 18-38 19-3 0-896 0-885 21 23 0-838 0798 (Setschenow, Mem. Acad. St. Petersb. 22. Nos. 6, 7.) SI. sol. inHCl + Aq. 100 vols. H 2 SO 4 of 1-840 sp. gr. absorb 45 vols. CO 2 . (de Saussure.) H 2 SO4 of ordinary density at 15-56 and common pressure absorbs 94 % of its vol. of CO 2 ; fuming H 2 SO 4 , 125 % ; the absorption for pure H 2 O under the same conditions being 98 %. (Rogers, Am. J. Sci. (2) 5. 115.) H 2 S0 4 absorbs 7-10 % C0 2 . (Hlasiwetz, W. A. B. 20. 193.) Coefficient of absorption by cone. H 2 S0 4 = 0-932, which is the same as that by H 2 ; but this diminishes on diluting, and is at its lowest limit 0"666, when the composition of the solution is H 2 S0 4 ,H 2 ; upon further dilution the coefficient of solubility gradually increases, and when 58 H 2 are present to 1 H 2 S0 4 , the coefficient of absorption is "857. (Setschenow, J. B. 1876. 46.) In collecting CO 2 gas in pneumatic operations, a saturated solution of common salt is better than H 2 O for filling the trough. This solution will only absorb about of the amount of C0 2 absorbed by pure H 2 O. (Saussure, I.e.) About half as sol. in NaCl + Aq (15 % NaCl) as in H 2 0. Much more sol. in Na 2 HP0 4 + Aq or Na 2 C0 3 + Aq than in H 2 0, the quantity dissolved increasing with the amount of salt in the solution. The solubility in, these -solutions ('UNIVERSITY; 78 CARBON OXIDE depends on the coefficient of solubility in H 2 plus the product of a constant coefficient multiplied by the amount of salt in the solution ; this constant equals 0*069 for Na 2 HP0 4 , and 0-088 for Na 2 C0 3 . (Fernet, A. ch. (3) 47. 307.) Fernet's determinations are not accurate. (L. Meyer, A. Suppl. 2. 157.) 1 mol. Na 2 HP0 4 in dil. Na 2 HP0 4 + Aq absorbs 2 mols. C0 2 . (Setschenow.) Solutions of salts of similar constitution are equivalent in regard to their power of absorp- tion of C0 2 , when they contain the same per- centage of crystal water. Experiments were made with solutions of alum, MgS0 4 , 7H 2 0, and ZnS0 4 ,7H 2 0, containing 10 % of the salts. The MgS0 4 solution absorbed the greatest pro- portional amount of C0 2 , and the alum the least. The further rule was deduced that with salts of similar constitution and the same amount of crystal water, the absorptiometric equivalents are identical with the chemical equivalents. (Setschenow, B. 6. 1461.) Salts can be divided into two classes, accord- ing as C0 2 has chemical action on the salt or not. In the first case, i.e. when there is chemical combination or action of C0 2 on the salt in solution, the amount of C0 2 absorbed increases with increasing concentration of the solution ; in the second case, however, the amount of C02 decreases with the strength of the solution. Several salts can be arranged in a series as regards their power of absorption, beginning with that which has the greatest, as follows: Na 2 C0 3 , Na 2 B 4 7 , Na 2 HP0 4 , NaC 2 H 3 2 , Na 3 C 6 H 5 6 7 , Na 2 C 2 4 , NaC 3 H 5 3 , MN0 3 , MCI, M 2 S0 4 . The division between the two classes occurs in this series at Na 2 C 2 4 . The matter is discussed at length in the original papers. (Setschenow, Memoires Acad. St. Petersb. 22. No. 6. Also further, Set- schenow, ib. 34. No. 3. and 35. No. 7. See also Ostwald, Allgemeine Chemie, 2 te Aufl. vol. 1, p. 629.) More recently (A. ch. (6) 25. 226) Setschenow has published a very complete paper on the absorption of C0 2 by solutions of salts, which, however, can only be referred to here. C0 2 is not disengaged at ordinary temp, from H 2 O, in which -^^ pt. of CaC0 3 or MgC0 3 is held in solution thereby. These solutions have a great power of retaining C0 2 even at a boiling temp, or with diminished pressure, and they also absorb C0 2 from the air in much larger quantity than pure H 2 0. (Bineau.) BaC0 3 in H 2 also retains C0 2 even after long boiling. (Storer. ) C0 2 is also absorbed from the air by Na 2 C0 3 , or K 2 C0 3 + Aq, especially if dilute. 100 vols. of the following solutions at 18 and ordinary pressure absorb vols. C0 2 Sp. gr. Sat. NaCl+ Aq (containing 29 % of NaCl) . 1 -212 Sat. NH 4 Cl+Aq (containing 27'53 % of NH 4 C1) Sat. KCl+Aq (contain! Vols. CO 2 32-9 NH 4 C1) 1-078 KCl+Aq (containing 26 % of KC1) . Sat. CaClg+Aq (containing 40'2 % of CaCl 2 ) 1-402 1-168 K 2 SO 4 +Aq (containing 9-42 % of 75 61 26-1 K 2 SCf 4 ) .". . 1-077 62 Sat. Na.,SO 4 +Aq (containing 11-14 % of NaoSO 4 ) 1-105 58 Sat. 8p.gr. Jg; ' 1-047 70 Sat. KN0 3 +Aq~ (containing 20'6 % of KN0 3 ) 1-139 57 Sat. NaNO 3 +Aq (containing 26*4 % of NaN0 3 )/. ...... .. . 1-206 45 Sat. H 2 C 4 H 4 O 6 +Aq (containing 53'37 % ofH 2 C 4 H 4 O 6 ) 1-285 41 (de Saussure, Gilbert's Ann. Phys. 47. 167.) 100 vols. alcohol (0-803 sp. gr.) at 18 absorb 260 vols. CO 2 . 100 vols. alcohol (0-840 sp. gr.) at 18 absorb 186 vols. CO 2 . (de Saussure, I.e.) Solubility of C0 2 in alcohol. 1 vol. alcohol at t and 760 mm. dissolves V vols. C0 2 gas reduced to and 760 mm. t V t V t V 4-3295 9 3-5844 18 3-0402 1 4-2368 10 3-5140 19 2-9921 2 4-1466 11 3-4461 20 2-9465 3 4-0589 12 3-3807 21 2-9034 4 3-9736 13 3-3178 22 2-8628 5 3-8908 14 3-2573 23 2-8247 6 3-8105 15 3-1993 24 27890 7 37327 16 3-1438 8 3-6573 17 3-0908 ... (Bunsen's Gasometry, pp. 287, 128, 153.) Coefficient of absorption = 4 '32955 - 0'09395t + 0'00124t 2 . (Bunsen.) Much less sol. in 30 % alcohol than in pure alcohol or pure H 2 0. (Miiller, W. Ann. 37. 24. ) Coefficient of absorption in chloroform is 0-20376 at 36 '57 mm., and 4 '43757 at 762 mm. pressure. (Woukoloff, C. R. 109. 62.) 100 vols. of following liquids absorb vols. CO-> at 18 ' Sp. gr. Vols. CO-> Ether 0'727 217 Rectified naphtha 0784 169 Oil of turpentine 0-S60 166 Oil of lavender (freshly distilled) . 0-880 191 Oil of thyme 0'890 188 Linseed oil 0'940 156 Olive oil 0-915 151 Gum-arabic +Aq (containing 25 % of the gum) 1-092 75 Cane-sugar+Aq (containing 25 % of sugar) 1-104 72 (de Saussure, I.e.) 1 vol. oil of turpentine absorbs 1'7-1'9 vols. CO 2 (Saussure.) 1 vol. spirit at 10 absorbs 2 vols. C0 2 . (de Saussure.) 1 vol. olive oil at 10 absorbs 1 + vol.'CO 2 . (de Saussure.) 1 vol. oil of tiirpentine at 10 absorbs 2 vols. CO 2 . (Bergman.) 1 vol. caoutchine absorbs 11 vols. CO 2 . (Bergman.) Coefficient of absorption for petroleum is 1'17 at 20 and 1 '31 at 10. (Gniewasz and Walfisz, Zeit. phys. Ch. 1. 70.) 100 vols. petroleum absorb 70 vols. C0 2 at 10. (Robinet, C. R. 58. 608.) Liquid. Not miscible with H 2 0, though slightly sol. therein, or with fatty oils ; mis- cible with alcohol, ether, CS 2 , and the essential oils. (Thilorier, Mitchell.) Unacted upon by H 2 ; sol. in alcohol, ethers, petroleum, oil of turpentine, and CS 2 . (Mareska and Donny.) Petroleum dissolves 5 to 6 vols. liquid C0 . (Cailletet, C. R. 75. 1271.) CARBONATES 79 SI. sol. in CS 2 . (Cailletet.) Solid. When immersed in H 2 0, rapidly volatilises and dissolves. With alcohol or ether it forms a semi-fluid mixture. (Chan- ning, Am. J. Sci. (2) 5. 186.) Only slightly sol. in anhydrous ether, but may be mixed therewith to a paste. (Thilorier.) Carbon silicide CSi. (Carborundum.) Not attacked by any acids, even HF ; si. attacked by caustic alkalies or carbonates. (Acheson, C. N. 68. 179.) Not attacked by KOH + Aq. (Schiitzen- berger, C. R. 114. 1089.) Carbon wowosulphide, CS. Insol. in H 2 0, alcohol, oil of turpentine, or benzene ; somewhat sol. in CS 2 or ether ; sol. in warm HN0 3 ; sol. in cone. KOH + Aq. (Sidot, C. R. 81. 32.) Carbon ffo'sulphide, CS 2 . Very si. sol. in H 2 0. 1 1. H 2 dissolves 2-3 g. CS 2 (Ckiandi, Bull. Soc. 43. 562); 3 "5-4 "52 g. (Peligot, ib. 43. 563). 30 com. CS 2 shaken with 8690 com. H 2 at 20-23 for 18 days decreased 11 ccm. in 9 days and 1 "4 ccm. in the next 3 days by diffused light, and 0*6 ccm. in the last 5 days (no light). Part of the CS 2 was decomp. and 7 '85 ccm. were dissolved, therefore H 9 dissolves y^ of its weight CS 2 . (Sestini, Gazz. ch. it. 1. 473.) Solubility of CS 2 in H 2 0. 100 pts. H 2 dissolve 0'203 pts. CS 2 at 12-13 0-191 15-16 0-168 25-27 ,, ,, 0-145 ,, ,, 30-33. (Page, C. N. 41. 195.) Solubility of CS 2 in H 2 0. a = g. CS 2 in 1000 ccm. solution at t. a t a V a t 2-04 1-79 20 1-11 40 1-99 5 1-69 25 070 45 1-94 10 1-55 30 0-14 49 1-87 15 1-37 35 (Chancel and Parmentier, C. R. 100. 773.) Vapours of CS 2 are most easily absorbed by alcoholic solution of KOH. SI. absorbed by KOH + Aq, and very slowly by CuS0 4 , Pb(C 2 H 3 2 ) 2 + Aq, cone. H 2 S0 4 , or CaCl 2 in HCl + Aq. (Berthelot, A. ch. (3) 51. 74.) Solubility in alcohol. S = strength of alcohol in per cent by weight ; P = pts. CS 2 which dissolve in 10 ccm. alcohol at 17. 8 P s P 100 oo 91-37 5-00 98-5 18-20 84-12 3-00 98-15 13-20 76-02 2-00 96-95 10-00 48-40 0-20 93-54 7-00 47-90 o-oo (Tuchschmidt and Follenius, B. 4. 583. Miscible with absolute alcohol, ether, ethe- real and fatty oils, and liquid C0 2 . THcarbon bisulphide, C 3 S 2 . Insol. in H 2 ; easily sol. in alcohol, ether, chloroform, benzene, and CS 2 . The alcoholic and ethereal solutions decomp. on standing. Solid modification. Insol. in H 2 and ordinary solvents. Sol. in KOH + Aq. (Lengyel, B. 26. 2960.) Carbonatochloroplatincfo'amine carbon- ate chloroplatin^'amine nitrate. [Co(NH 3 ) 4 C0 3 ] 2 PtCl 6 + (Jb'rgen- Cl 2 Pt(N 2 H 6 N0 3 ) 2 . Precipitate. (Cleve, J. B. 1867. 321.) Carbonatonitratoplatincfo'amine carbon- ate, ( ^o 3 yPt(N 2 H 6 ) 2 ] 2 (C0 3 ) 2 . Sol. in boiling H 2 0. (Cleve.) Carbonatotetramine cobaltic bromide, Co(NH 3 ) 4 C0 3 Br. Much less sol. than chloride. (Jorgensen, Z. anorg. 2. 279.) - carbonate, [Co(NH 3 ) 4 C0 3 ] 2 C0 3 + 3H 2 0. Very sol. in H 2 0. (Jorgensen.) chloraurate, [Co(NH 3 ) 4 C0 3 ] 2 AuCl 4 + |H 2 0. Somewhat sol. in H 2 ; nearly absolutely insol. in alcohol. (Jorgensen.) - chloride, Co(NH 3 ) 4 C0 3 Cl. Easily sol. in H 2 ; insol. in alcohol. (Jor- gensen. ) chloroplatinate, 2H 2 0. Nearly insol. in H 2 and alcohol, sen.) - chloroplatinite, [Co(NH 3 ) 4 C0 3 ] 2 PtCl 4 . Nearly insol. in H 2 ; wholly in alcohol. (Jorgensen. ) - dithionate, [Co(NH 3 ) 4 C0 3 ] 2 S 2 6 . Ppt. (Jorgensen. ) - iodide, Co(NH 3 ) 4 C0 3 I. Much less sol. than bromide or chloride. (Jorgensen. ) -nitrate, Co(NH 3 ) 4 C0 3 N0 3 + H 2 0. Sol. in about 15 pts. cold H 2 ; insol. in alcohol. (Jorgensen.) - sulphate, [Co(NH 3 ) 4 C0 3 ] 2 S0 4 + 3H 2 0. Considerably less sol. in H 2 than the nitrate. (Jorgensen. ) Carbonic acid, H 2 C0 3 . Solution of C0 2 in H 2 has the properties of a solution of H 2 C0 3 in H 2 0. Decomp. by heat. See Carbon cfo'oxide. Carbonates. Carbonates of Na, K, Rb, and Cs are easity sol. in H 2 ; carbonates of Li and Tl are much less sol. ; other carbonates are nearly or quite insol. All carbonates are sol. to some extent so CARBONATE, ALUMINUM, BASIC in H 2 containing C0 2 . All carbonates, except those of NH 4 , Rb, and Cs, are insol. in alcohol. Sol. in those acids which are themselves sol. in H 2 0, except HCN and H 3 B0 3 . Aluminum carbonate, basic. A1 2 3 , C0 2 . (Parkmann, Sill. Am. J. (2) 34. 324.) 3A1 2 3 , 2C0 2 + 16H 2 0. (Muspratt and Dan- son, A. 72. 120.) 3A1 2 3 , 2C0 2 +9H 2 0. (Wallace, Chem. Gaz. 1858. 410.) 5A1 2 3 , 3C0 2 +18H 2 0. (Bley, J. pr. 39. 11.) 2A1 2 3 , C0 2 +8H 2 0. (Urbain and Renoul, J. Pharm. (4) 30. 340.) 8A1 2 3 , 3C0 2 + 40H 2 0. (Langlois, A. ch. (3) 48. 505.) All are precipitates, insol. in H 2 0, sol. in acids, and give off C0 2 at slight heat. Aluminum ammonium carbonate, A1 2 3 , C0 2 , (NH 4 ) 2 C0 3 + 4H 2 0. Precipitate. (Rose, Pogg. 91. 460.) Aluminum sodium carbonate, A1 2 3 , C0 2 , 2Na 2 C0 3 + 24H 2 0. Precipitate. Sol. in cold dil. acids. (Bley, J. pr. 39. 22.) Ammonium carbonate, (NH 4 ) 2 C0 3 + H 2 0. Sol. at 15 in its own weight H 2 0. Solution in H 2 gives off gas at 70-75, and boils at 75-80. SI. sol. in cold dil. NH 4 OH + Aq, more sol. at ordinary temp. Insol. in cone. NH 4 OH + Aq. (Divers, Chem. Soc. (2) 8. 171, 359, and 364.) Insol. in alcohol. Ammonium hydrogen carbonate, NH 4 HC0 3 . Sol. at 15 in about 8 pts. H 2 0. (Berthollet, J. Phys. 66. 168.) Sol. at 12-8 in about 6 pts. H 2 0. (J. Davy, N. Edinb. J. 16. 245.) Solution decomp. on air or by gentle heat or by addition of the solid salt. (Berthollet.) 100 pts. H 2 dissolve at 0, 11 '9 pts. ; at 10, 15-85 pts. ; at 20, 21 pts. ; at 30, 27 pts. NH 4 HC0 3 . (Dibbits, J. pr. (2) 10. 417.) Insol. in alcohol. ( J. Davy. ) Ammonium e^hydrogen carbonate, (NH 4 ) 4 H 2 (C0 3 ) 3 + H 2 0. Sol. in 5 pts. H 2 at 15 ; decomp. by more H 2 or by heat. (Divers, Chem. Soc. (2) 8. 171, 359, and 364.) SI. sol. in alcohol. Ammonium hydrogen carbonate carbamate, 2NH 4 HC0 3 , NH 4 CONH 2 . (Salts of harts- horn. ) 1 pt. salt dissolves at : 13 in 4 pts. H 2 0. 167 3-3 32-2 27 40-6 2-4 49 2 (J. Davy, N. Edinb. J. 16. 245.) Strong alcohol dissolves out carbamate, and the carbonate remains undissolved. NH 4 HC0 3 , NH 4 C0 2 NH 2 . bonate of ammonia.} (Commercial car- Sol, at 15 in 4 pts. H 2 0, at 65 in 1| pts. H 2 0. (Divers.) 30 pts. salt + 100 pts. H 2 lower temp, from 15'3 to 3'2. (Riidorff, B. 2. 68.) Sol. in 1-667 pts. cold, and G'833 pt. hot H 2 O. (Four- croy.) 100 pts. H 2 O at 13 dissolve 25 pts. 17 30 37 37 ii 41 40 ,, 49 50 (Berzelius.) 100 pts. H 2 O at 15-5 dissolve 33 pts. ; at 100, 100 pts. (Ure's Diet.) Sol. in 2 pts. H 2 O at 15-5, and in less than 1 pt. boiling H 2 O ; sat. solution at 15-5 contains 33'3 %, and sat. boiling solution 50 %. (Abl.) Sat. aqueous solution at 10 contains 15-7 %. (Eller.) Sat. aqueous solution at (?) contains 6'1 %. (Mussein- broek.) Sat. solution in the cold contains 37*5 %. (Fourcroy.) Does not dissolve as such in HoO ; (NH 4 ).>CO 3 dis- solves out first, and NH 4 HCO 3 later. (Scanlan.) Sp. gr. of carbonate of ammonia +Aq at 12. Deg. Tw. Sp/gr. at 1 9 7 Garb. Change of sp. gr. JL& . aminon. for 1 C. 1 1-005 1-66 0-0002 2 1-010 3-18 0-0002 3 1-015 4-66 0-0003 4 1-020 6-04 0-0003 5 1-025 7-49 0-0003 6 1 -030 8-93 0-0004 7 1-035 10-35 0-0004 8 1-040 11-86 0-0004 9 1-045 13-36 0-0005 10 1-050 14-83 0-0005 11 1-055 16-16 0-0005 12 1-060 1770 0-0005 13 1-065 19-18 0-0005 14 1-070 20-70 0-0005 15 1-075 22-25 0-0006 16 1-080 23-78 0-0006 17 1-085 25-31 0-0006 18 1-090 26-82 0-0007 19 1-095 28-33 0-0007 20 1-100 29-93 0-0007 21 1-105 31-77 0-0007 22 1-110 33-45 0-0007 23 1-115 35-08 0-0007 24 1-120 36-88 0-0007 25 1-125 3871 0-0007 26 1-130 40-34 0-0007 27 1-135 42-20 0-0007 28 1-140 44-29 0-0007 29 1-144 44-90 0-0007 (Lunge, Chem. Ind. 1883. 2.) Sp. gr. of aqueous solution of salt with com- position 31-3 % NH 3 , 56-6 % C0 2 , 12 "1 % H 2 0. 100 pts. of solution contain 6-58 9-96 14-75 19 '83 2571 pts. salt 1-0219 1-0337 1-0497 1'0672 l-0863sp.gr. 29-74 35-85 40'23 44 '90 pts. salt. 1-0995 1-1174 1-1297 l-1414sp.gr. (J. H. Smith, Chem. Ind. 1883. 3.) Cone, alcohol dissolves out carbamate and leaves carbonate. (Hiinefeld, J. pr. 7. 25.) CARBONATE, BARIUM HYDROGEN 81 Ammonium cobaltous carbonate, (NH 4 ) 2 C0 3 , OoC0 3 + 4H 2 0. Permanent. Sol. in H 2 0. (Deville, A. ch. (3) 35. 460.) (NH 4 ) 2 0, 2CoO, 4C0 2 + 9H 2 0. Quickly de- comp. on air ; sol. in H 2 0. (Deville.) + 12H 2 0. Sol. inH 2 0. Ammonium didymium carbonate, (NH 4 ) 2 C0 3 , Di 2 (C0 3 ) 3 + 3H 2 0. Insol. inH 2 0. (Cleve.) Ammonium glucinum carbonate, 2(NH 4 ) 2 C0 3 , 3G1C0 3 (?). Very sol. in cold, decomp. by hot H 2 0. Nearly insol. in alcohol. (Debray. ) Composition is (NH 4 ) 2 C0 3 , 2G1C0 3 , G1(OH) 2 + 2H 2 0. (Humpidge, Royal Soc. Proc. 39. 1.) Ammonium magnesium carbonate, (NH 4 ) 2 Mg(C0 3 ) 2 + 4H 2 0. Sol. in 71 pts. H 2 with decomp. ; more sol. in NH 4 Cl + Aq. (Divers, Chem. Soc. 51. 196.) H 2 containing (NH 4 ) 2 C0 3 dissolves very slightly ; more sol. in H 2 containing NH 4 C1. (Favre, A. ch. (3) 10. 473.) Ammonium magnesium hydrogen carbonate, (NH 4 ) 2 Mg 2 H 2 (C0 3 ) 4 + 8H 2 0, or 12H 2 0. Decomp. on air. (Deville, A. ch. (3) 35. 454.) Ammonium nickel carbonate, NH 4 HC0 3 , NiC0 3 + 4H 2 0. Insol. in H 2 0. (Deville, A. ch. (3) 35. 452.) Ammonium samarium carbonate, (NH 4 ) 2 C0 3 , Sm 2 (C0 3 ) 3 + 4H 2 0. Ppt. Ammonium stannous carbonate, (NH 4 ) 2 C0 3 , 2SnC0 3 + 3H 2 0. Decomp. by cold H 2 0. (Deville, A. ch. (3) 35. 456.) Ammonium uranyl carbonate, 2(NH 4 ) 2 C0. 5 , U0 2 C0 3 . Sol. at 15 in 20 pts. H 2 0, more abundantly in H 2 containing (NH 4 ) 2 C0 3 . (Ebelmen.) Insol. in pure H 2 ; sol. in H 2 containing (NH 4 ) 2 C0 3 + Aq. Solution is decomp. by boil- ing. (Berzelius.) Sol. in S0 2 + Aq. (Berthier, A. ch. (3) 7. 76.) Ammonium yttrium carbonate, (NH 4 ) 2 C0 3 , Y 2 (C0 3 ) 3 + 2H 2 0. Insol. in (NH 4 ) 2 C0 3 + Aq. (Mosander. ) Ammonium zinc carbonate, basic, 3ZnO, NH 4 OH, 2C0 2 + H 2 0. Insol. in H 2 0. (Kassner, Arch. Pharm. (3) 27. 673.) Ammonium zinc carbonate, (NH 4 ) 2 C0 3 , ZnC0 3 . Insol. in H 2 0. (Deville.) Quite sol. in H 2 ; more sol. than (NH 4 ) 2 C0 3 , MgC0 3 . Tolerably permanent in the air. Slowly decomp. by cold, rapidly by hot H 9 0. Very sol. in (NH 4 ) 2 C0 3 + Aq. Not attacked by alcohol. (Favre, A. ch. (3) 10. 481.) Barium carbonate, BaC0 3 . Sol. in 4304 pts. cold, and 2304 pts. boiling H 2 0. (Fourcroy.) Sol. in 47,620 pts. H 2 0. (Bineau, A. ch. (3) 51. 290.) Sol. in 14,137 pts. H 2 at 16-20, and 15,421 pts. at 100. (Fresenius.) Sol. in 12,027 pts. H 2 at 15. (Kremers, Pogg. 85. 247.) Calculated from electrical conductivity of solution, 1 pt. BaC0 3 is sol. in 64,070 pts. H 2 at 8 '8 and 45,566 pts. at 24 '2. (Hollemann, Z. phys. Ch. 12. 125.) Sol. in H 2 C0 3 + Aq. (See barium hydrogen carbonate. ) Easily sol. in dil. acids. Not acted upon by cone. HN0 3 + Aq. Not decomp. by 1 pt. H 2 S0 4 + 6 pts. absolute alcohol. Slowly decomp. by 1 pt. HN0 3 + 6 pts. absolute alcohol. Slowly decomp. by 1 pt. H 2 C 2 4 + 6 pts. absolute alcohol. Not decomp. by absolute alcoholic solutions of racemic, tartaric, citric, or glacial acetic acids. (Babington and Phillips, 1816.) Almost completely insol. in H 2 containing NH 4 OH and (NH 4 ) 2 C0 3 , when digested in such a solution and allowed to stand. 1 pt. BaC0 3 dissolves in 141,000 pts. of such a solu- tion. (Fresenius.) Not more sol. in NaCl + Aq than in H 2 0. (Karsten.) Sol. in cold NH 4 C1, NH 4 N0 3 , or NH 4 suc- cinate + Aq. (Vogel, J. pr. 7. 453.) 2 mols. NH 4 C1 dissolved in H 2 dissolve 1 mol. BaC0 3 by continued boiling. (Smith, Phil. Mag. J. 9. 540.) Somewhat sol. in K 2 C0 3 + Aq. (Wacken- roder, A. 24. 30.) Slowly sol. in cone. Na 2 S0 4 , MgS0 4 , ZnS0 4 , Ca(N0 3 ) 2 , orCaClj + Aq, but insol. in ZnCl 2 + Aq. (Karsten.) SI. decomp. by boiling K 2 S0 4 + Aq. SI. decomp. in the cold by 1 pt. K 2 S0 4 + 2 pts. Na 2 S0 4 + Aq. Decomp. by salts of Al, Mn, Cr, Fe, U, Bi, Cd, Cu, Hg, Pb, Sn, Sniv, Hg 2 , Rh, Ir, Au, with pptn. of oxide of metal. (Rose, Tr.) Pptn. of BaC0 3 is hindered by presence of alkali citrates or metaphosphates. Sol. in solutions of various salts, as in the case of calcium carbonate (see Calcium car- bonate}. The solvent power of these solutions for barium carbonate is somewhat less than for calcium carbonate. Min. Witherite. Barium hydrogen carbonate, BaH 2 (C0 3 ) 2 (?). 100 pts. H 2 O containing C0 2 dissolve 0'079 pt. BaC0 3 . (Bineau.) 100 pts. H 2 containing C0 2 dissolve 0'17 pt. BaC0 3 . (Lassaigne.) 100 pts. H 2 sat. with C0 2 under a pressure of 4-6 atmospheres dissolve 0725 pt. BaC0 3 . Upon evaporating, BaC0 3 is deposited. (Wagner, Z. anal. 6. 167.) BaC0 3 is sol. in 833 pts. H 2 sat. with C0 2 at 10. (Lassaigne.) BaC0 3 is sol. in 830 pts. H 2 sat. with C0 2 at 10. (Fourcroy.) G 82 CARBONATE, BARIUM CALCIUM BaC0 3 is sol. in 1550 pts. H 2 sat. with C0 2 at 10. (Bergman.) Barium calcium carbonate, BaC0 3 , CaC0 3 . Min. Barytocalcitc, Bromlite. Sol. in dil. acids. Bismuth carbonate, basic, (BiO) 2 C0 3 f |H 2 0. Insol. in H 2 ; sol. in acids. Insol. in C0 2 + Aq. (Bergman.) Completely sol. in (NH 4 ) 2 C0 3 + Aq ; si. sol. in K 2 C0 3 + Aq. ; insol. in Na 2 C0 3 + Aq. (Lau- gier.) Absolutely insol. in (NH 4 ) 2 C0 3 + Aq unless H 3 P0 4 or H 3 As0 4 are present. (Berzelius.) Insol. in (NH 4 ) 2 C0 3 , K 2 C0 3 , or Na 2 C0 3 + Aq. (Rose.) Sol. inNH 4 Cl + Aq. ( Wackenroder. ) Insol. in NH 4 N0 3 + Aq. (Brett. ) Sol. in CaCl 2 + Aq. (Pearson. ) Min. Bismuthosphaerite. 3Bi 2 3 , C0 2 . Min. Bismuthite. Easily sol. in acids. 4Bi 2 3 , 3C0 2 + 4^H 2 0. Min. Bismuth spar. Easily sol. in acids. Cadmium carbonate, CdC0 3 . Insol. in H 2 ; easily sol. in acids ; insol. in K 2 C0 3 , and Na 2 C0 3 -f Aq ; very ' si. sol. in (NH 4 ) 2 C0 3 + Aq. (Fresenius. ) Easily sol. in NH 4 sulphate, nitrate, and succinate + Aq. (Wittstein. ) Sol. in KCN + Aq ; sol. in cold NH 4 Cl + Aq ; less sol. in NH 4 N0 3 + Aq. (Brett, 1837.) Not prevented from pptn. by non-volatile organic substances. (Rose.) Not pptd. from solutions containing sodium citrate. (Spiller.) + H 2 0. (Lefort, J. B. 1847. 346.) Caesium carbonate, Cs 2 C0 3 . Very deliquescent, and sol. in H 2 0. 100 pts. absolute alcohol dissolve 11*1 pts Cs 2 C0 3 at 19; 20*1 pts. Cs 2 C0 3 at boiling temp. (Bunsen.) Caesium hydrogen carbonate, CsHC0 3 . Not deliquescent. Sol. in H 2 0. Calcium carbonate, basic, CaO, CaC0 3 + H 2 0. Hardened by H 2 0, but not dissolved. (Raoult, C. R. 92. 189.) Calcium carbonate, CaC0 3 . More sol. in cold than in hot HoO. (Ginelin ) When recently pptd., sol. in 8834 pts. boiling, and 10,601 pts. cold H 2 O ; much less sol. in HoO containing NH 4 OH and (NH 4 ),CO 3 , 65,246 pts. of which dissolve 1 pt. CaC0 3 . (Fresenius (1846), A. 59. 122.) Sol. in 16,000 pts. pure H 2 O. (Brandes, 1825 ) Sol. in 12,858 pts. pure H 2 O at 15. (Kremers, Pogg. Sol. in 16,000-24,000 pts. pure H 2 O. (Bucholz.) 1 1. H 2 dissolves 34 mg. CaC0 3 . (Chevalet, Z. anal. 8. 91 ; Hoffmann, Z. anal. 4. 414.) 1 1. H 2 may contain 0*016 g. CaC0 3 ,' i.e. 1 pt. is sol. in 62,500 pts. H 2 0. (Bineau A. ch. (3) 51. 290.) 1 1. H 2 dissolves 0*02 g. CaC0 3 , i.e. 1 pt. CaC0 3 is sol. in 50,000 pts. H>0. (Peligot.) Solubility is much affected by COo of the air 1 1. K,0 at 16 dissolves 13 '1 mg. CaC(X. (Schlosing, C. R. 74. 1552.) Calculated from electrical conductivity of CaC0 3 + Aq, 1 pt. CaC0 3 is sol. in 99,500 pts. H 2 at 87, and 80,040 pts. at 23 '8. (Holle- mann, Z. phys. Ch. 12. 125.) By continued boiling CaH 2 (C0 3 ) 2 , 36 mg. CaC0 3 remain in solution. (Weltzien, A. 136. 165.) Solubility in H 2 at different pressures. Pressure in atmos. Solubility. 1 1079 2 1403 4 1820 6 2109 (Engel, C. R. 101. 949.) 100 pts. H 2 dissolve 0*0005 pt. (calculated as CaO) from pptd. CaC0 3 , and 0*0027 pt. from calcspar. (Lubavin, J. russ. Soc. 24. 389.) Found dissolved in 10,000 pts. sea water (Davy.) Pptd. amorphous CaC0 3 dissolves in 1600 pts. sea water. Pptd. crystalline CaC0 3 dis- solves in 8000 pts. sea water. (Irvine and Young, Chem. Soc. 56. 344.) For action of H 2 C0 3 + Aq, see Calcium hydrogen carbonate. Sol. in H 2 S0 4 , even when native. Sol. in acids generally. When treated with acids in closed vessels effervescence ceases on increase of pressure, but is renewed at once on removing it. (Link, 1814.) Unacted upon by cone. HN0 3 , even when boiling, as Ca(N0 3 ) 2 is insol. in cone. HN0 3 . Not decomp. by mixture of 1 pt. H 2 S0 4 and 6 pts. absolute alcohol, but immediately by HN0 3 + absolute alcohol. Not decomp. by absolute alcoholic solutions of oxalic, racemic, tartaric, citric, or glacial acetic acids. (Babington and Phillips, 1816.) Unacted upon by glacial HC 2 H 3 2 , even when boiling. Freshly pptd. CaC0 3 is sol. in cold NH 4 C1 + Aq ; but the solution becomes cloudy on ex- posure to air, a portion, however, of CaC0 3 remains dissolved, which cannot be pptd. even by boiling. If ppt. is washed and allowed to stand 24 hours, it is not as sol. in NH 4 C1 as at first, but natural CaC0 3 is not wholly insol. in NH 4 C1 + Aq ; it is, however, much less sol. than MgCOg. (Vogel, J. pr. 7. 453.) Sol. in boiling NH 4 C1 + Aq with evolution of NH 3 . (Demarcay, 1834.) When NH 4 OH + Aq, incompletely sat. with C0 2 , is mixed with CaCl 2 + Aq, no ppt. occurs even during several days, if kept in a closed vessel ; and only a slight ppt. if the mixture is exposed to the air, but CaC0 3 is pptd. if the solution is boiled. NH 4 OH + Aq wholly sat. with C0 2 produces ppt. when mixed with CaCl ? + Aq, but pptn. is not complete until heat is applied. Also when an excess of CaCl 2 + Aq is added to a solution of crystallised carbonate of ammonia, CARBONATE, CALCIUM HYDROGEN 83 only a portion of the CaC0 3 is pptd. until the solution is boiled. (Vogel, 1814.) When CaCl 2 + Aq mixed with NH 4 OH + Aq is exposed to an atmos. of pure C0 2 , no ppt. occurs for several hours, but CaC0 3 is com- pletely pptd. in several days. (Vogel.) When recently pptd. , readily sol. in NH 4 C1, and NH 4 N0 3 + Aq. (Brett, 1837 ; Wacken- roder, A. 41. 315.) When recently pptd., readily sol. in (NH 4 ) 2 C0 3 , (NH 4 ) 2 S0 4 , NH 4 N0 3 , NH 4 C1, and NH 4 succinate + Aq. (Wittstein.) Sol. in NH 4 G>H 3 2 + Aq. (Thomson. ) More sol. in NH 4 C1, or NH 4 N0 3 + Aq, or in neutral potassium, or sodium salts + Aq than in H 2 0. (Fresenius.) From solutions in NH 4 salts, NH 4 OH, and (NH 4 ) 2 C0 3 + Aq precipitate CaC0 3 more com- pletely than BaC0 3 . (Fresenius. ) When boiled with NH 4 Cl + Aq, CaC0 3 is dissolved, and (NH 4 ) 2 C0 3 given off. (D. Smith.) CaCl 2 + Aq prevents pptn. of CaC0 3 in the cold, as do also NH 4 C1, KC1, or NaCl + Aq, but it is pptd. when boiled, if the latter solutions are not too cone. K 2 S0 4 , KN0 3 , (NH 4 ) 2 S0 4 , or Na 2 S0 4 + Aq have a similar effect. A large excess of (NH 4 ) 2 C0 3 + Aq when quickly added to CaCl 2 + Aq produces no ppt. in the cold. Na 2 C0 3 , or K 2 C0 3 + Aq act likewise. (Storer, Am. J. Sci. (2) 25. 41.) 1 g. CaC0 3 requires 13 "98 g. NH 4 C1, 8 '380 g. (NH 4 ) 2 S0 4 , or 14-438 g. NH 4 N0 3 to effect solu- tion. (Bertrand, Monit. Sci. (3) 10. 477.) Less sol. in Na than in NH 4 salts, but more than in K salts. (Berthelot.) When NH 4 OH + Aq, partially neutralised by C0 2 , is mixed with Ca0 2 H 2 + Aq, no cloudi- ness appears until the mixture is boiled ; when more C0 2 has been added to NH 4 OH + Aq a ppt. appears at first, which disappears and only reappears on addition of much Ca0 2 H 2 + Aq ; but NH 4 OH + Aq does not dissolve pptd. CaCOo. (Vogel.) Ca0 2 H 2 + Aq dissolves a little CaC0 3 . (Welter and Berthollet, 1789.) Ca0 2 H 2 + Aq retains a little CaC0 3 in solu- tion at ordinary temperature, which is pptd. on boiling. (Eliot and Storer, Proc. Am. Acad. (1860) 5. 63.) Ca0 2 H 2 + Aq, mixed with dil. NaOH, KOH, or NH 4 OH + Aq, gives no immediate ppt. when C0 2 is passed through it, unless boiled. Sol. in boiling MgCl 2 + Aq even when dilute. (Couste.) Not decomp. when boiled with K 2 S0 4 , Na 2 S0 4 , CaS0 4 , MgS0 4 , and Na ? B 4 7 + Aq ; but partially decomp. by boiling with (NH 4 ) 2 S0 4 , K 2 S0 3 , Na 2 S0 3 , (NH 4 ) 2 S0 3 , Na 2 HP0 4 , (NH 4 ) 2 HP0 4 , K 2 HP0 3 , Na HPOo, (NH 4 ) 2 HP0 3 , K 2 HAs0 4 , Na 3 As0 4 , K 2 C 2 4 , (NH 4 ) 2 C 2 4 , NaF, and K 2 Cr0 4 + Aq. With the NH 4 salts the decomposition is complete. (Dulong, A. ch. 82. 286.) Not decomp. by alkali sulphates + Aq. (Malaguti.) Precipitation of CaC0 3 is much hindered by alkali citrates or metaphosphates. Sol. in ferric chloride or nitrate with evolu- tion of C0 2 and pptn. of Fe 2 6 H 6 (Fuchs, 1831) ; also in chlorides or nitrates of Al, Mn, Cr, or TJ, but not in FeCl 2 + Aq. Sol. in cold SnCl 4 + Aq with pptn. of Sn0 2 . Insol. in cone. Na 2 S0 4 , MgS0 4 , BaCl 2 , MgCl , Pb(N0 3 ) 2 , or AgN0 3 + Aq. (Karsten. ) Abundantly sol. when freshly precipitated in CaCLj + Aq, and MgS0 4 + Aq. (Hunt. ) Absolutely insol. at 15-19 in Ba0 2 H 2 + Aq ; also on boiling. 1 1. H 2 containing 3-4 g. MgS0 4 dissolves 1-2 g. CaC0 3 , and also 1 g. MgC0 3 . (Hunt, Am. J. Sci. (2) 26. 109.) 100 pts. NaCl + Aq (2 '525 % NaCl) dissolve 0'0037 pt. (calculated as CaO) pptd. CaC0 3 , and 0'0053 pt. calcspar. (Lubavin, J. russ. Soc. 24. 389.) Alcohol dissolves traces of CaC0 3 . (Gris- chow.) Sol. in Na citrate + Aq. (Spiller. ) Sol. in Ca sucrate +Aq. (Barreswill. ) Min. Calcite, Arragonite. + 5H 2 0. Efflorescent. + 6H 2 0. (Pelouze.) Calcium hydrogen carbonate, CaH 2 (C0 3 ) 2 (?). Known only in aqueous solution. CaC0 3 dissolves in C0 2 + Aq. CaCO 3 is sol. in 1428 pts. H 2 O sat. with C0 2 at 0, and 1136 pts. at 10. (Lassaigne, J. ch. med. 4. 312.) Bineau could dissolve, even in large quantities of H 2 O sat. with CO 2 , only f enough CaCOg to form CaH 2 (CO 3 >>. Chalk dissolves in 994'5 pts. H 2 O sat. with CO 2 , while Iceland spar requires 3149 pts. (Bischof.) CaCOg is sol. in 1015 pts. H 2 O sat. with COo at 21 and 748-3 mm. (Warington, Chem. Soc. 6. 296.)" Solubility of CaC0 3 in C0 2 + Aq at p pressure in atmospheres. CaO + C0 2 = mg. C0 2 and CaO dissolved, corresponding to CaC0 3 mg. CaCOg. P CaO+CO 2 CaCOg 0-000504 60-96 74-6 0-000808 72-11 85-0 0-00333 123 137-2 0-01387 218-4 223-1 0-0282 310-4 296-5 0-05008 408-5 360 0-1422 533 0-2538 1072 663-4 0-4167 1500 787-5 0-5533 1846 885-5 0-7297 2270 972 0-9841 2864 1086 (Schlosing, C. R. 74. 1522.) With high pressure 1 1. H 2 containing C0 2 dissolves at most 3 g. CaC0 3 . This maximum is reached at 5 under 4 atmospheres' pressure ; at 10-13 under 5 atmospheres ; and at 20 under 7 atmospheres. (Caro, Arch. Pharm. (3) 4. 145.) CaCOg is sol. in about 1000 pts. H 2 C0 3 + Aq, and solubility is considerably increased by Na 2 S0 4 or MgS0 4 . 84 CARBONATE, CALCIUM COPPER URANIUM 1000 pts. H 2 sat. with C0 2 dissolve pts. Carrara marble at t, and B = height of barometer in millimetres. t B Pts. CaC0 3 f B Pts. CaC0 3 7'5 754 1-224 22-0 746 0-920 8-5 752 1-202 26-0 740 0-875 9-5 754 1-115 26-5 743 0-860 20-5 741 0-975 27-0 741 0-885 21*5 744 0-935 28-0 737 0770 Or, from 7 '5-9 '5, 1000 pts. H 2 sat. with C0 2 dissolve 1'181 pts. CaC0 3 ; from 20 '5-22, 0-9487 pt. CaCOo ; from 26-28, 0'855 pt. CaC0 3 . Other varieties of CaC0 3 are dissolved as follows in 1000 pts. H 2 sat. with C0 2 . Variety t B Pts. CaCOg Liineburg chalk . 18 740 0-835 Pptd. CaC0 3 18 740 0-950 Iceland spar 18 735 0-970 Calcite ... 12 754 1 -223 Traversella . 12 754 1-212 Dolomite, semi - trans- parent 11-5 749 0-654 Dolomite, opaque, in small crystals . 11-5 755 0-725 Dolomite, opaque, in large crystals 11 746 1-224 Dolomite, transparent, in large crystals 11 749 1-073 Oolithic limestone 15 747 1-252 Dolomitic limestone 15-5 740 0-573 (Cossa, Z. anal. 8. 145.) Calcium copper uranium carbonate, CaCOo, 3CuC0 3 , 4U(C0 3 ) 2 + 24H 2 0. Sol. in acids. Calcium lead carbonate, ;CaC0 3 , ?/PbC0 3 . Min. Plumbocalcite. Calcium magnesium carbonate, CaC0 3 , MgC0 3 . Min. Dolomite. 1 1. H 2 sat. with C0 2 at 18 and 750 mm. dissolves 0'31 g. dolomite. (Cossa, B. 2. 697.) Not obtained by evaporating solution, but can be crystallised from C0 2 + Aq between 100 and 200. (Hoppe-Seyler.) Insol. in cold dil. acids. (Dolomieu, J. Phys. 39. 1.) Insol. in cold acetic acid. (Forchhammer. ) Calcium sodium carbonate, CaNa 2 (C0 3 ) 2 . Anhydrous. Decomp. by H 2 0. + 5H 2 0. Min. Gaylussite. Sparingly sol. in H 2 0. Calcium uranyl carbonate, CaC0 3 , U0 C0 3 + 20H 2 0. Min. LieUgite. Sol. in HC1 + Aq. UCa 2 C 4 12 + 10H 2 0. Min. (?). Sol. in acids. Calcium carbonate chloride, CaC0 3 6H 2 0. Sol. in H 2 with immediate decomp. (Fritzsche, J. pr. 83. 213.) Cerous carbonate, Ce 2 (C0 3 ) 3 + 5, and 9H 2 0. Insol. in H 2 0, and solution of C0 2 in H 2 0. (Vauquelin.) Somewhat sol. in (NH 4 ) 2 C0 3 + Aq. (Jolin. ) Insol. in neutral salt solutions and neutral alkali carbonates + Aq ; easily sol. in S0 2 + Aq. (Berthier, A. ch. (3) 7. 77.) Ceric carbonate, Ce(C0 3 ) 2 + |H 2 0. Precipitate. (Hisinger, A. ch. 94. 108.) Insol. in H 2 0. Sol. in slight traces in Na 2 C0 3 + Aq ; si. sol. in NaHC0 3 + Aq, and in (NH 4 ) 2 C0 3 + Aq. (Rose.) Cerous lanthanum carbonate fluoride. Min. Batnaesite, ffamartite, Hydrofluocerite. Slowly decomp. by HCl + Aq, easily by H 2 S0 4 . Cerous potassium carbonate, Ce 2 (C0 3 )o, K 2 COo + 3H 2 0. Ppt. (Jolin.) Cerous sodium carbonate, Ce 2 (C0 3 ) 3 , 2Na 2 C0 3 + 2H 2 0. Ppt. (Jolin.) Chromous carbonate, CrC0 3 . Sol. in much H 2 ; si. sol. in KHC0 3 + Aq. (Moberg, J. pr. 44. 328 ; Moissan, A. ch. (5) 21. 199.) Chromic carbonate, basic, Cr 2 3 , 2C0 2 . Precipitate. (Parkmann, Sill. Am. J. (2) 34. 321.) Cr 2 3 , C0 2 + 4H 2 0. Insol. in H 2 ; sol. in acids ; when freshly pptd. is sol. in K 2 C0 3 , or (NH 4 ) 2 C0 3 + Aq, and still more sol. in KOH + Aq. (Meissner.) 2Cr 2 3 , C0 2 + 6H 2 0. Precipitate. (Lang- lois, A. ch. (3) 48. 502.) Cobaltous carbonate, basic, 5CoO, 2C0 2 + 4H 2 0. Insol. in H 2 ; sol. in (NH 4 ) 2 S0 4 , (NH 4 ) 2 C0 3 , NH 4 N0 3 , and NH 4 Cl + Aq. Sol. in cold NH 4 N0 3 , and NH 4 Cl + Aq. (Brett, 1837.) Sol. in C0 2 + Aq, and acid alkali carbonates + Aq, from which it is pptd. on boiling. Very si. sol. in cone. Na 2 C0 3 , or K 2 C0 3 + Aq ; largely sol. in (NH 4 ) 2 C0 3 + Aq, and partly sol. in NH 4 OH + Aq. (Berze'lius. ) Not pptd. from solutions containing Na citrate. (Spiller. ) Ppt. (Beetz.) (Rose, Pogg. 84. 551.) (Bratin, Z. anal. 6. 76.) Converted into 5CoO, (Beetz.) Cobaltous carbonate, CoCOo. Anhydrous. Not attacked by cold cone. HC1, or HN0 3 + Aq. (Senarmont, A. ch. (3) 30. 129.) Min. Sphcerocolaltite. SI. attacked by cold HN0 3 , or HCl + Aq. 4CoO, C0 2 + 4H 2 0. 3CoO, C0 2 + 3H 2 0. 3CoO, 2C0 2 + 4H 2 0. 2CoO, C0 2 + 3iH 2 0. 2C0 2 + 4H 2 ObyH 2 0. CARBONATE, FERROUS HYDROGEN 85 + |H 2 0. Sol. in acids. (Deville, A. ch. (3) 33. 95.) + 6H 2 0. (Deville.) Decomp. by H 2 with formation of a basic carbonate. (Berzelius.) Cobaltous potassium carbonate, CoC0 3 , K 2 C0 3 + 4H 2 0. Decomp. by H 2 0. (Deville, A. ch. (3) 33. 90.) CoC0 3 , KHC0 3 + 4H 2 0. Decomp. by H 2 0. (Deville.) Cobaltous sodium carbonate, CoC0 3 , Na 2 C0 3 + 4H 2 0, and 10H 2 0. Decomp. by H 2 0. (Deville, A. ch. (3) 33. 75. ) Cupric carbonate, basic. 8CuO, C0 2 + 5H 2 0. (Deville, A. ch. (3) 33. 75.) 6CuO, C0 2 . (Field, Chem. Soc. 14. 70.) 3CuO, C0 2 + 2H 2 0. (Favre, A. ch. (3) 10. 119.) 5CuO, 2C0 2 + 6H 2 0. (Struve.) 2CuO, C0 2 + H 2 0. Insol. in H 2 ; easily sol. in acids, even H 2 S0 3 + Aq ; si. sol. in H 2 C0 3 + Aq, 30,720 pts. of the solution con- taining 1 pt. CuO. (Jahn.) Sol. in 4690 pts. H 2 C0 3 + Aq sat. at 4-6 atmos. pressure. (Wag- ner.) Sol. in 3833 pts. sat. H 2 C0 3 + Aq. (Lassaigne, J. ch. med. 4. 312.) Sol. in NH 4 salts + Aq. Partially sol. in Na 2 C0 3 , or K 2 C0 3 + Aq, and more sol. in NaHC0 3 , or KHC0 3 + Aq; sol. in (NH 4 ) 2 C0 3 + Aq. (Favre, A. ch. (3) 10. 18.) Less sol. in (NH 4 ) 2 C0 3 + Aq than CuO in NH 4 OH + Aq. (Thomson, 1831. ) Sol. in KCN -t-Aq. (Berzelius.) Sol. in NH 4 C1, or NH 4 N0 3 + Aq. (Brett.) Not pptd. from solutions containing sodium citrate. (Spiller. ) Sol. in ferric salts with pptn. of Fe 2 6 H 6 . Sol. in ethyl amine carbonate + Aq. (Wurtz.) Min. Malachite. Sol. in acids, and NH 4 OH + Aq. + 2H 0. (Favre.) 3CuO^ 2C0 2 + H 2 0. Insol. in H 2 0. Sol. in NH 4 OH + Aq, also in hot cone. NaHC0 3 + Aq. Min. Azurite. Cupric potassium carbonate, 5CuC0 3 , K 2 C0 3 + 10H 2 0. Decomp. by H 2 0. Cupric sodium carbonate, CuC0 3 , Na 2 C0 3 . Not decomp. by cold H 2 0. (Debray, C. R. 49. 218.) + 3H 2 0. Cupric zinc carbonate, 2CuO, 3ZnO, 2C0 2 + 3H 2 0, or 3CuO, 9ZnO, 4C0 2 + 8H 2 0. Min. Aurichalcite. Easily sol. in HCl + Aq. Cupric carbonate ammonia (cuprammonium carbonate), CuC0 3 , 2NH 3 . Decomp. by H 2 0. Insol. in alcohol and ether. Sol. in (NH 4 ) 2 C0 3 + Aq. (Favre, A. ch. (3) 10. 116.) Didymium carbonate, Di 2 (C0 3 ) 3 + H 2 0, or6H 2 0. Insol. in H 2 0. Only traces dissolve in C0 2 + Aq. Insol. in solutions of alkali carbonates or bicarbonates +Aq. (Marignac, A. ch. (3) 38. 166.) Very si. sol. in cone. NILCl + Aq. (Rose.) + 8H 2 0. (Cleve, Bull. Soc. (2) 43. 363.) Didymium potassium carbonate, Di 2 (COo)o, K 2 C0 3 + 4H 2 0. Insol. in H 2 0. (Cleve, Bull. Soc. (2) 43. 363. ) + 12H 2 0. (Cleve.) Didymium sodium carbonate, 2Di 2 (C0 3 ) 3 , 3Na 2 C0 3 + 9H 2 0. Ppt. (Cleve.) Di 2 (C0 3 ) 3 , 2Na 2 C0 3 + 8H 2 0. Ppt. (Cleve.) Erbium carbonate, Er 2 3 , 2C0 2 + 2H 2 0. Insol. in H 2 0. (Hoglund.) Erbium sodium carbonate, Er 2 (C0 3 ) 3 , 5Na 2 C0 3 + 36H 2 0. Efflorescent. Decomp. by H 2 0. Glucinum carbonate, basic, 3G10, C0 ; 4G10, C0 2 ; 5G10, C0 2 + 5H 2 0, etc. Not perceptibly sol. in H 2 or H 2 C0 3 + Aq. Decomp. by boiling H 2 0. Easily sol. in acids. Sol. in NH 4 salts, and KOH, or NaOH + Aq. Sol. in alkali carbonates, especially (NH 4 ) 2 C0 3 + Aq. (Vauquelin.) SI. sol. in K 2 C0 3 + Aq. When solution in (NH 4 ) 2 C0 3 is boiled, a more basic carbonate is pptd. (Rose.) Glucinum carbonate, G1C0 3 + 4H 2 0. Efflorescent. Sol. in 278 pts. H 2 O. (Klatzo, J. pr. 106. 242.) Glucinum potassium carbonate, SGlCOo, 2K 2 C0 3 . Easily sol. in H 2 0, but decomp. by boiling. (Debray.) Less easily sol. in alcohol. Indium carbonate, In 2 (C0 3 ) 3 . Ppt. Insol. in K 2 C0 3 , or Na 2 C0 3 + Aq. Sol. in (NH 4 ) 2 C0 3 + Aq. (Winkler, J. pr. 94. 1.) Iron (ferrous) carbonate, FeC0 3 . Insol. in H 2 0. Sol. in acids, even in H 2 C0 3 + Aq. See Carbonate, ferrous hydrogen. Min. Siderite, Spathic ore. SI. attacked by dil. acids. Sol. in H 2 C0 3 + Aq under pressure. See FeH 2 (C0 3 ) 2 . Insol. in NH 4 C1, or NH 4 N0 3 + Aq. (Brett.) + H 2 0. SI. sol. in H 2 ; easily sol. in acids ; sol. in H 2 CO. ? + Aq. Sol. in NH 4 Cl + Aq. Sol. in ferric salts + Aq with evolution of C0 2 and pptn. of Fe 2 6 H 6 . Soluble in an aqueous solution of cane sugar. Min. (?). Scarcely decomp. by acids. (Moissan, C. R. 59. 238.) Ferrous hydrogen carbonate, FeH 2 (C0 3 ) 2 (?). Known only in aqueous solution. By conducting C0 2 at ordinary pressure through H 2 in which Fe is suspended, a solu- tion containing 9*1 pts. FeC0 3 to 10,000 pts. H 2 is obtained, (v. Hauer, J. pr. 81. 391.) 100 pts. H 2 C0 3 + Aq dissolve 0'72 pt. FeC0 3 . (Wagner. ) FeC0 3 dissolves in 1381 pts. H 2 saturated with C0 2 , under a pressure of 6-8 atmospheres. (Wagner, J. B. 1867. 135.) 86 CARBONATE, FERRIC, BASIC Ferric carbonate, basic. 9Fe 2 3 , C0 2 + 12H 2 0. (Wallace, Chem. Gaz. 1858. 410.) 3Fe 2 3 , C0 2 + 4H 2 0, and 8H 2 0. (BaiTat, C. N. 1. 110.) + 6H 2 0. (Wallace.) 2Fe 2 3 , C0 2 + 1PI 2 0. (Rother, Pharm. J. Trans. (3) 4. 576.) Fe 2 3 , C0 2 . (Parkmann, Sill. Am. J. (2) 34. 321.) These and other similar basic salts are ppts. easily decomp. on standing into Fe 2 6 H 6 . Ferrous magnesium carbonate, FeC0 3 , MgC0 3 . Min. Pistomesite. FeC0 3 , 2MgC0 3 . Min. Mesitite. Lanthanum carbonate, La 2 (C0 3 ) 3 + H 2 0, 3H 2 0, and 8H 2 0. Insol. in H 2 0. C0 2 + Aq dissolves traces. Insol. in (NH 4 ) 2 C0 3 + Aq. Min. Lanthanite. Lead carbonate, basic, 2PbC0 3 , Pb0 2 H 2 ; 5PbC0 3 , 3Pb0 2 H 2 ; 3PbC0 3 , Pb0 2 H 2 ; 5PbC0 3 , Pb0 2 H 2 . White Lead. Insol. in H 2 0. Nearly insol. in H 2 C0 3 + Aq, even under pressure. Sol. in dil. , insol. in cone. KOH + Aq. Insol. in normal, or acid alkali carbonates + Aq. (Bottger.) Sol. in cold dil. NH 4 C1 + Aq. (Brett. ) PbC0 3 , Pb0 2 H 2 . Very si. sol. in H 2 0. (Yorke.) 2PbC0 3 , Pb0 2 H 2 . When not exposed to air, sol. in 32,000 pts. (NH 4 ) 2 S0 4 + Aq (0'2 g. per 1.) ; 26,000 pts. KN0 3 + Aq (0'2 g. per 1.) ; 23,000 pts. CaCl 2 + Aq (0'2 g. per 1.) ; 4600 pts. NH 4 N0 3 + Aq (0'2 g. per 1.) ; 4300 pts. H 2 sat. with C0 2 . When exposed to air in beakers, sol. in 43,000 pts. (NH 4 ) 2 S0 4 + Aq (0'2g. per 1.); 43,000 pts. KN0 3 + Aq (0'2 g. per 1.) ; 26,000 pts. CaCl 2 + Aq (0'2 g. per 1.) ; 26,000 pts. NH 4 N0 3 + Aq (0-2 g. per 1.); 4300 pts. H 2 sat. with C0 2 (0-2 g. per 1.). (Muir, Chem. Soc. 31. 664.) Lead carbonate, PbC0 3 . Sol. in 50,551 pts. H 2 at ordinary temp. Sol. in 23,450 pts. H 2 with little ammonium acetate, carbonate, and free ammonia ; and in somewhat less H 2 0, containing much am- monium nitrate with carbonate and free am- monia. (Fresenius, A. 59. 124.) Calculated from electrical conductivity of PbC0 3 + Aq, 1 1. H 2 dissolves 3 mg. PbC0 3 at 10. (Kohlrausch and Rose, Z. phys. Ch. 12. 241.) Easily sol. in acids, even HC 2 H 3 2 ; but not decomp. by cone. HN0 3 + Aq on account of in- solubility of Pb(N0 3 ) 2 in HN0 3 + Aq. Insol. in a mixture of 1 pt. H 2 S0 4 and 6 pts. absolute alcohol, or in an alcoholic solution of racemic or tartaric acids. Insol. in H 2 C0 3 + Aq. (Jahn, A. 28. 117.) Very si. sol. in H 2 C0 3 + Aq, but solution is pre- vented by traces of various salts. (Tiinnerman. ) Sol. in 7144 pts. sat. H 2 C0 3 + Aq. (Las- saigne, J. ch. med. 4. 312.) H 2 sat. with C0 2 under 4-6 atmos. pressure dissolves only traces of Pb ; 1000 pts. of solution containing 0'5 pt. PbC0 3 . (Wagner, Z. anal. 6. 167.) Sol. in NH 4 C 2 H 3 2 +Aq, and NH 4 Cl+Aq. (Weppen, 1837.) Sol. in KOH + Aq; not ab- solutely insol. at ord. temp, in an excess of K 2 C0 3 , or Na 2 C0 3 + Aq, and still more sol. at 100 ; but absolutely insol. inNaHC0 3 , KHC0 3 , or (NH 4 ) 2 C0 3 + Aq. (Rose.) Insol. in NH 4 OH + Aq ; sol. in KOH or NaOH + Aq ; decomp. by boiling Ca(N0 3 ) 2 + Aq. (Berzelius. ) Sol. in an aqueous solution of acetates. (Mercer, 1844. ) Not pptd. in presence of Na citrate. (Spiller. ) Not decomp. by K 2 S0 4 + Aq. (Rose. ) SI. decomp. (Persoz), not at all decomp. (Malaguti) by alkali sulphates + Aq. Partially decomp. by boiling with K 2 S0 4 , Na 2 S0 4 , (NH 4 ) 2 S0 4 , CaS0 4 , MgS0 4 , Na 2 HP0 4 , NaNH 4 HP0 4 , K 2 S0 3 , Na 2 SO s , (NH 4 ) 2 S0 3 , Na 2 HP0 3 , Na 2 B 4 7 , K 3 As0 4 , Na 3 As0 4 , K 2 C 2 4 , Na 2 C 2 4 , NaF, and K 2 Cr0 4 + Aq. With the NH 4 salts, the decomp. is complete. (Dulong, A. ch. 82. 290.) Easily sol. in hot NH 4 Cl + Aq. (Brett; Rose.) When 1 mol. PbC0 3 is boiled with 1 mol. K 2 C 2 4 , 15 % of the PbC0 3 is decomp. ; with 1 mol. K 2 C0 3 , 93-28 % is decomp. (Malaguti.) Min. Cerussite. Lead sodium carbonate, 4PbC0 3 , Na 2 C0 3 . Insol. in H 2 0. (Berzelius, Pogg. 47. 199.) Lead carbonate bromide, PbC0 3 , PbBr 2 . Insol. in H 2 0. (Storer's Diet.) Lead carbonate chloride, PbC0 3 , PbCl 2 . Insol. in H 2 0. (Miller, Chem. Soc. (2) 8. 37.) Min. Phosgenite. Easily sol. in acids. Lead carbonate iodide, PbC0 3 , PbI 2 . Insol. in H 2 0. (Poggiale.) Lead carbonate sulphate, PbC0 3 , PbS0 4 . Min. Lanarkite. Sol. in HN0 3 + Aq with residue of PbS0 4 . 3PbC0 3 , PbS0 4 . Min. Leadhillite. As above. Lithium carbonate, Li 2 C0 3 . 100 pts. H 2 dissolve 1 pt. Li 2 C0 3 . (Vau- quelin, A. ch. 7. 284.) 100 pts. H 2 at 13 dissolve 0769 pt. Li 2 C0 3 ; at 102, 0-778 pt. Li 2 C0 3 . (Kremers, Pogg. 99. 48.) 100 pts. H 2 0, cold or hot, dissolve 1'2 pts. Li 2 C0 3 . (Troost, A. ch. (3) 51. 103.) Sat. solution boils at 102. (Kremers.) 100 pts. H 2 dissolve 0796 pt., or 0'955 pt. Li 2 C0 3 at b.-pt., according as the solution is boiled J, or \ hour. (Bewad, B. 17. 406 R.) 100 pts. H 2 dissolve 1'4787 pts. at 15, 0-7162 pt. at 100. (Draper, C. N. 55. 169.) 100 pts. H 2 dissolve pts. Li 2 C0 3 at t. t Pts. Li 2 CO 3 t Pts. Li 2 C0 3 1-539 75 0-866 10 1-406 100 0-728 20 1-329 102 0*796 50 1-181 ... CARBONATE, MAGNESIUM HYDROGEN 87 0796 pt. is dissolved at 102 in less than | hour, and 0'955 in 1 hour. (Beketow, J. russ. Soc. 1884. 591.) Sat. solution at 15 has sp. gr. 1"014, and contains 1 g. Li 2 C0 3 to 70 g. H 2 0, while solu- tion sat. at has sp. gr. 1 '0168 and contains 1 g. Li 2 C0 3 in 64 '6 g. H 2 0. By long spontaneous evaporation at 15 a solution can be obtained of 1'0278 sp. gr. containing 1 g. Li 2 C0 3 in 45*57 g. H 2 0. (Fliickiger, Arch. Pharm. (3) 25. 549.) By boiling for an instant with H 2 a solu- tion is obtained, which has sp. gr. 1'0074 and contains 1 g. Li 2 C0 3 to 139 g. H 2 0. (Fliickiger, Arch. Pharm. (3) 26. 543.) More sol. in C0 2 + Aq than in H 2 0. 100 pts. sat. C0 2 + Aq dissolve 5 '25 pts. Li 2 C0 3 . (Troost.) Sol. in NH 4 salts + Aq. Insol. in alcohol. Lithium hydrogen carbonate, LiHC0 3 . 100 pts. H 2 dissolve 5 '501 pts. at 13. (Bewad, B. 17. 406 R.) Magnesium carbonate, basic, Mg 3 C 2 7 + 3H 2 = 3MgO, 2C0 2 + 3H or 2MgC0 3 , Mg0 2 H 2 + 2H 2 0. (Fritzsche, Pogg. 37. 310.) Magnesia alba, 3MgC0 3 , Mg(OH) 2 + 4H 2 0, 4MgC0 3 , Mg(OH) 2 + 5H 2 0, or 5MgC0 3 , 2Mg(OH) 2 + 7H 2 0. Very si. sol. in H 2 0. Sol. in 10,000 pts. hot or cold H 2 0. (Bineau.) Sol. in 2500 pts. cold, and 9000 pts. hot H 2 0. (Fyfe.) Sol. in H 2 containing C0 2 . Very easily sol. in acids. Easily sol. in dil. HCl + Aq. Easily sol. in NH 4 sulphate, nitrate, or suc- cinate + Aq, also in (NH 4 ) 2 C0 3 + Aq. (Witt- stein.) Sol. in cold Na 2 C0 3 , K 2 C0 3 , K 2 S0 4 , KC1, or KN0 3 + Aq (Longchamp) ; also in NH 4 C1 + Aq, separating out on heating. ( Vogel, J. pr. 7. 455.) Slowly sol. in cone. BaCl 2 , CaCl 2 , or ZnS0 4 + Aq. (Karsten.) Sol. inMgS0 4 + Aq. (Duloug.) Sol. in ferric salts + Aq with evolution of C0 2 and pptn. of Fe 2 6 H 6 . (Fuchs.) Sol. in boiling Co, Ni, Zn, Mn, or Cu nitrates or chlorides + Aq. Min. Hydromagnesite, 4MgO, 3C0 2 + 4H 2 0. + 10H 2 0. Sol. in considerable amount in H 2 C0 3 + Aq or MgH 2 (C0 3 ) 2 + Aq. (Engel, C. R. 100. 911.) Magnesium carbonate, MgC0 3 . Anhydrous. Insol. in H 2 0. 1 1. H 2 dis- solves 106 mg. MgC0 3 . (Chevalet, Z. anal. 8. 91.) Sol. in 5071 pts. H 2 at 15. (Kremers.) MgC0 3 combines with H 2 to form MgC0 3 + 3H 2 0, and + 5H 2 0, which are less sol. in H 2 than anhydrous salt. (Engel, C. R. 101. 814.) For solubility in H 2 C0 3 + Aq, see Magnesium hydrogen carbonate. Scarcely acted upon by HCl + Aq. (Senar- mont. ) Min. Magnesite. Very si. attacked by warm cone. HCl + Aq. 100 pts. H 2 dissolve 0'0027 pt., calculated as MgO. (Lubavin.) + H 2 0. + 2H 2 0. Decomp. by suspension in H 2 into basic salt. (Engel, C. R. 100, 911.) + 3H 2 0. Small quantities of this salt are wholly dissolved by much H 2 0. (Bineau.) The solution contains in 100 pts. at 6'5 8 16 0-15 0-153 0-155 0-179 pts. MgC0 3 + 3H 2 0. (Norgaard, 1850.) Decomp. by boiling H Q into a basic insol. salt and C0 2 . 100 pts." H 2 dissolve '1518 pt. at 19. (Fritzsche, Pogg. 37. 304.) Sol. in 48 pts. H 2 0, and decomp. by large amt. (Fourcroy.) 100 pts. H 2 dissolve 0'1518 pt. at 19, or sol. in 658 pts. H 2 at 19. (Beckurts, J. B. 1881. 212.) 100 pts. H 2 dissolve 0'0812 pt., calculated as MgO. (Lubavin, J. russ. Soc. 24. 389.) Easily sol. in acids, even when dil. Not decomp. by 1 pt. H 2 S0 4 + 6 pts. alcohol, or by alcoholic solutions of glacial acetic, racemic, or tartaric acids, but is slowly decomp. by alcoholic solution of citric acid, or HN0 3 + abs. alcohol. (Butini, 1827.) 100 pts. NaCl + Aq (2'525 %) dissolve 0'1250 pt., calculated as MgO. (Lubavin.) 1 % Na 2 C0 3 + Aq, when mixed with 1 % MgS0 4 + Aq, cause no ppt., but l'5-2 % solutions ppt. this salt. (Brandes, 1825.) More sol. inNH 4 Cl + Aq than CaC0 3 . Sol. in NH 4 N0 3 + Aq, but less easily than in NH 4 C1 + Aq. 1 1. H 2 0, containing 6 % MgS0 4 , 7H 2 and a little NaCl, dissolves 5 g. MgC0 3 . (Hunt, Sill. Am. J. (2) 42. 49.) More sol. in cold alkali borates + Aq than in hot. (Wittstein.) Sol. in Na citrate + Aq. + 4H 2 0. Efflorescent. + 5H 2 0. Two modifications. a. Plates. Sol. in 600 pts. H 2 at 0-7 ; solution gradually separates out MgC0 3 , 2H 2 0. H 2 C0 3 + Aq sat. at 3-4 atmos. pressure dissolves 9 % at 0-4. MgS0 4 + Aq dissolves 4 % moist salt at 3-4, and it is easily sol. in Na 2 C0 3 , or NaHCOg + Aq. (Norgaard.) j3. Prisms. More efflorescent than a. Sol. in 600 pts. H 2 but not in MgS0 4 , or Na 2 C0 3 + Aq. Both forms are decomp. by boiling H 2 0. (Norgaard.) Magnesium hydrogen carbonate, MgH 2 (C0 8 ) a (?). Known only in solution. 1 1. H 2 C0 3 + Aq sat. at 1 atmos. pressure dis- solves 23 '5 g. MgC0 3 . (Bineau.) 1 1. carbonic acid water dissolves 0'115 g. magnesite at 18 and 0"75 m. pressure. (Cossa, B. 2. 697.) 1 pt. MgC0 3 dissolves in H 2 saturated with C0 2 at 5 and a pressure of 1 2 3456 atmospheres in 161 144 134 1107 110 76 pts. (Merkel, Techn. J. B. 1867. 213.) H 2 C0 3 + Aq sat. at 3-4 atmos. pressure and 0-4 temp, dissolves 9 % MgC0 3 + 5H 2 0. (Norgaard.) MgC0 3 + 3H 2 is sol. in 72 '4 pts. H 2 C0 3 + Aq sat. at 20 and ord. pressure ; 30'5 pts. H 2 C0 3 CARBONATE, MAGNESIUM POTASSIUM + Aq sat. at 2 atmos. pressure; 26 '0 pts. H 2 C0 3 + Aq sat. at 3 atmos. pressure; 21 '1 pts. H 2 C0 3 + Aq sat. at 4 atmos. pressure ; 17 '09 pts. H 2 C0 3 + Aq sat. at 5 atmos. pres- sure. (Beckurts, J. B. 1881. 212.) 1 1. H 2 sat. with C0 2 at p pressure and t dissolves g. MgC0 3 . P atmos. t" MgC0 3 P mm. t MgC0 3 i-o 19-5 2779 751 13-4 28-45 2-1 19'5 33-11 760 19-5 2579 3-2 197 37-3 762 29-3 21-95 4-7 19'0 43-5 764 46 15-7 5'6 19-2 46-2 764 62 10-4 6-2 19'2 48-51 765 70 8-1 7-5 19-5 51-2 765 82 4-9 9-0 187 56-59 765 91 2-4 765 100 o-o (Engel and Ville, C. R. 93. 34.) The low figures of other observers are due to their using basic carbonates. By very care- ful experiments it was found that 1 1. H 2 sat. with C0 2 at 1 atmos. pressure and t dis- solved the following amts. of MgC0 3 : t MgCO;j t MgC0 3 t MgC0 3 3-5 35-6 18 22-1 40 22-1 12 26-5 30 15-8 50 9'5 (Engel, C. R. 100. 444.) Magnesium potassium carbonate, MgK 2 (C0 3 ) 2 + 4H 2 0. Quickly decomp. by cold H 2 0. (Deville, A. ch. (3) 33. 87.) MgKH(C0 3 ) 2 + 4H 2 0. Insol. in H 2 0, but decomp. thereby into an insol. basic Mg car- bonate, and MgH 2 (C0 3 ) 2 and KHC0 3 , which dissolve. (Berzelius.) Magnesium sodium carbonate, MgC0 3 ,Na 2 C0 3 . Quickly decomp. with H 2 0. (Deville, A. ch. (3) 33. 89.) + 15H 2 0. (Norgaard.) Manganous carbonate, MnC0 3 . Permanent. Practically insol. in H 2 0. Sol. in H 2 C0 3 + Aq and in acids generally. Min. Ehodochrosite. + |, or 1H 2 0. Insol. in H 2 0. Sol. in acids. Sol. in H 2 C0 3 + Aq. 1 pt. MnC0 3 requires 2000 pts. H 2 C0 3 + Aq for solution. (Lassaigne. ) Sol. in 7680 pts. H 2 0, and 3840 pts. H 2 con- taining C0 2 . (Jahn. ) When freshly precipi- tated is sol. in NH 4 salts + Aq. (Wittstein.) Not more sol. in H 2 containing Na 2 C0 3 or K 2 C0 3 than in pure H 2 0. (Ebelmen. ) Insol. in NH 4 C1, or NH 4 N0 3 + Aq. (Brett.) Not pptd. in presence of Na citrate. (Spiller.) Sol. in ferric salts +Aq, with evolution of C0 2 and pptn. of Fe 2 6 H 6 . (Fuchs). Manganous carbonate hydroxylamine, 4MnC0 3 , 3NH 3 + 2H 2 0. Ppt. Sol. in acids. (Goldschmidt and Syngros, Z. anorg. 5. 138.) Mercurous carbonate, Hg 2 C0 3 . Ppt. Decomp. by hot H 2 0. Sol. in hot or warm NH 4 C1 + Aq, but less easily than mer- curic carbonate ; less sol. in NH 4 N0 3 + Aq. (Brett, 1837.) SI. sol. in K 2 C0 3 + Aq ; partially sol. with decomp. in NH 4 OH + Aq. (Wittstein.) Mercuric carbonate, basic, 4HgO, C0 2 . Can be washed with cold H 2 without de- comp. (Millon, A. ch. (3) 19. 368.) 3HgO, C0 2 . Insol. in cold H 2 0. Sol. in C0 2 + Aq ; si. sol. in K 2 C0 3 + Aq. Easily sol. inNH 4 Cl + Aq. (Berzelius.) Nickel carbonate, basic, 3NiO, C0 2 + 5H 2 0. Min. Zaratite. Easily sol. in HCl + Aq. Pptd. nickel carbonate is a basic salt of varying composition. Insol. in H 2 or H 2 C0 3 + Aq. Sol. in acids. Sol. in (NH 4 ) 2 C0 3 + Aq ; very si. sol. in Na 2 C0 3 + Aq ; sol. in warm NH 4 C1 + Aq, and KCN + Aq. (Rose. ) Not pptd. in presence of Na citrate. (Spiller. ) Nickel carbonate, NiC0 3 . Not attacked by cold cone. HC1, or HN0 3 + Aq. (Senarmont, A. ch. (3) 30. 138.) + 6H 2 0. Sol. in acids. (Deville, A. ch. (3) 35. 446.) See also Carbonate, nickel, basic. el pot 4H 2 0. Ppt. (Deville, A. ch. (3) 33. 96.) NiC0 3 , KHC0 3 + 4H 2 0. Decomp. by H 2 0, but may be washed by KHC0 3 + Aq without decomp. (Rose, Pogg. 84. 566.) Nickel sodium carbonate, NiC0 3 , Na 2 C0 3 + 10H 2 0. Ppt. (Deville.) Palladious carbonate, PdC0 3 , 9PdO + 10H 2 0. Insol. in H 2 ; partly sol. in NH 4 OH + Aq ; si. sol. in Na 2 C0 3 + Aq ; sol. in acids. (Kane, 1842.) Potassium carbonate, K 2 C0 3 . Deliquescent. Very sol. in H 2 with evolu- tion of heat. Sol. in 1-05 pts. H 2 O at 3; 0'962 pt. at 6; 0'900 pt. at 12-6 ; 0747 pt. at 26 ; and 0'490 pt. at 70. (Osann.) Sol. in 0-92 pt. H 2 O. (M. R. and P.) Sol. in 0-922 pt. H^O at 15. (Gerlach.) Sol. in 1 pt. H 2 O. (Abl.) 100 pts. H 2 O at 15-5 dissolve 100 pts. K 2 CO 3 . (lire's Solubility in 100 pts. H 2 at t. Pts. Pts. Pts. t K 2 C0 3 K 2 C0 3 t K 2 C0 3 83-12 40 106-20 80 134-25 10 8872 50 112-90 90 143-18 20 94-06 60 119-24 100 153-66 30 100-09 70 127-10 135 205-11 (Poggiale, A. ch. (3) 8. 468.) CARBONATE, POTASSIUM 89 Solubility in 100 pts. H 2 at t. t Pts. K 2 C0 3 t Pts. K 2 C0 3 t Pts. K 2 C0 3 89'4 46 119 91 148 1 94 47 120 92 149 2 97 48 120 93 150 3 100 49 121 94 151 4 102 50 121 95 151 5 104 51 122 96 152 6 105 52 122 97 153 7 106 53 123 98 154 8 107 54 124 99 155 9 108 55 124 100 156 10 109 56 125 101 157 11 109 57 125 102 158 12 109 58 126 103 159 13 110 59 127 104 160 14 110 60 127 105 161 15 110 61 128 106 162 16 111 62 128 107 163 17 111 63 129 108 164 18 111 64 130 109 166 19 111 65 130 110 167 20 112 66 131 111 168 21 112 67 132 112 169 22 112 68 132 113 171 23 112 69 133 114 172 24 112 70 133 115 173 25 113 71 134 116 175 26 113 72 135 117 176 27 113 73 135 118 178 28 113 74 136 119 179 29 114 75 137 120 181 30 114 76 137 121 182 31 114 77 138 122 184 32 114 78 139 123 185 33 115 79 139 124 187 34 115 80 140 125 188 35 115 81 141 126 190 36 115 82 141 127 191 37 116 83 142 128 193 38 116 84 143 129 195 39 116 85 144 130 196 40 117 86 144 131 198 41 117 87 145 132 200 42 117 88 146 133 201 43 118 89 147 134 203 44 118 90 147 135 205 45 119 (Mulder, Scheik. Verhandel. 1864. 97. ; Sp. gr. of K 2 CO 3 +Aq at 15. % K 2 C0 3 Sp. gr. % K 2 C0 3 Sp. gr. 0-489 1-0048 11-748 1-1282 0-979 1-0098 12-727 1-1400 1-958 1-0108 13-706 11520 2-934 1-0299 14-685 1-1642 3-916 1-0401 15-664 1-1766 4-895 1 "0505 16-643 1-1892 5-874 1-0611 17-622 1-2020 6-853 1-0719 18-601 1-2150 7-832 1-0829 19-580 1-2282 8-811 1-0940 20-539 1-2417 9-790 1-1052 21-538 1-2554 10-769 1-1166 22-517 1-2694 Sp. gr. of K 2 CO 3 +Aq at 15 'Continued. % K 2 C0 3 Sp. gr. % K 2 C0 3 Sp. gr. 23-496 1-2836 33-286 1-3915 24-475 1-2980 34-265 1-4030 25-454 1-3078 35-244 1-4147 26-432 1-3177 36-223 1-4265 27-412 1-3277 37-202 1-4384 28-391 1-3378 38-181 1-4504 29-360 1-3480 39-160 1-4626 30-349 1-3585 40-139 1-4750 31-328 1-3692 40-504 1-4812 32-807 1-3803 (Tiinnerman.) Sp. gr. and boiling-point of K 2 C0 3 +Aq. % K 2 C0 3 Sp. gr. B.-pt. % K 2 C0 3 Sp. gr. B.-pt, 4-7 1-06 100-56 43-3 1-46 109-44 9-0 1-11 100-56 45-8 1-50 111-11 13-2 115 101-11 48-8 1-54 112-78 16-8 119 101-11 52-1 1-58 114-44 20-5 1-22 101-66 56-0 1-63 116-11 24-0 1-25 102-22 60-4 1-70 117-78 27-3 1-28 102-78 65-5 1-80 119-44 30-5 1-31 103-33 71-8 1-95 122-22 33-6 1-34 104-44 79-2 2-15 125-56 36-2 1-38 105-56 88-4 2-40 129-44 39-0 1-41 107-22 100-0 2-60 137-78 41-7 1-44 108-33 (Dalton.) Sp. gr. of K 2 C0 3 + Aq at 17 '5. % K 2 C0 3 Sp. gr. % K 2 CO 3 Sp. gr. y K 2 CO 3 Sp. gr. 1 1-009 19 1-182 36 1-368 2 1-018 20 1-192 37 1-380 3 1-027 21 1-203 38 1-392 4 1-036 22 1-213 39 1-404 5 1-045 23 1-224 40 1-416 6 1-054 24 1 -235 41 1-429 7 1-064 25 1-245 42 1-441 8 1-073 26 1-256 43 1-453 9 1-082 27 1-267 44 1-466 10 1-092 28 1-278 45 1-478 11 1-102 29 1-289 46 1-489 12 1-112 30 1-300 47 1-503 13 1-122 31 1-312 48 1-516 14 1-132 32 1 -323 49 1-529 15 1-141 33 1-334 50 1-542 16 1-151 34 1-345 51 1-555 17 1-161 35 1-357 52 1-569 18 1"172 (Hager, Comm. 1883.) The sp. gr. increases or diminishes between ' and 20 by a decrease or increase of temp, of ' by the following amounts : % K 2 C0 3 Corr. 40-50 30-40 20-30 10-20 0-0007 0-0005 0-0003 0-0002 (Hager.) '.in ('\UI-.ONATK, I'OTASHIUM Sp, gr, ofKgOOi+AqttlS', I-. |'i. uf KjjOOg-f Aq, viv. Continued. XK.OO, Ml'- r.r. ". K,M> :1 Ml'. I'.'- It. pi. (i L It. pi, (I 1. 1 I mini 1 28 27898 18" 9,1 -6 9,1-2 I 1 .'.. 1 62 "6 \ ::'.".'. 2 T01829 29 '28999 114 9N'fi 98'() \'M IfiH 167*8 a I -02748 80 '80106 115 lO.'f.'i 102 '8 127 10,1-6 1 (i'.!'! i 1 '0,1068 Ml 81201 110 IDS-;. 1 07 -6 128 I09'6 107-7 6 1 -04572 82 82417 117. 118*8 112M 129 176-5 172-9 1 '065 18 88 88678 118 117-6 117-1 180 181-6 178-1 7 1 (HUM ,14 1*84729 119 122'6 122-0 181 187-6 1 S.". ' I 8 07,190 86 86885 !'.!<) 127'6 127-0 1 82 lit:;-!, 188-8 9 08,1,17 MO 87082 121 182-6 182-0 188 199-6 194-2 10 '09278 87 88279 122 187-6 1 ,17 -0 IMMM 202-6 1 1 10268 88 89470 128 142-5 142-0 1,14 199*0 19 1 1 1 2,18 89 4007,1 r.-i 147-6 147-1 186 '.!<);>() 1M '12219 40 41870 M If. 10 18199 14179 16200 II 42 1.1 48104 44,188 4467M When K. 4 (X), i A.| is MM,!, with Nil,. 1 \\ layern form. When K U (K),, JH added to Nil/) I-A(|, it disHolvoH with formation of two lave 17 10222 44 40807 and evolution of Nil.,. The name takes pla< IH 19 '.'I) 1724,1 18206 19280 If. 40 47 48041 49,114 50688 also when sat. Ku(JO],4-A(i and NII 4 OII | A are brought together, (Utrard, Hull. Soo. (1 48. 662.) 91 20,144 48 61801 Sol. in 9 i. Is. alcohol of 17" 11. Innol. i 22 -21402 49 68186 abnolute alcohol 28 24 25 20 22469 28617 24676 25081 60 61 52 62-02-1 54408 1 '66728 1-67048 1 '67079 Notdi alcohol. al.Noluto solution donip. by 1 pt. II U S0 4 r, |>i ah lolu Not deeonip. by 1 pt. UNO,, I (1 |.| alcohol. Not deeonip. by mi nlcoliol of ll(!|, oxalie. raeemie. tartarie. ( 27 20787 glaoial .i> . by alculml . LJ-w-mmtn ' " ' "' ' ** sol u I ion (M > il M. i. i'l (Oerlaoh, /. anal. 8. 279.) Sol. it phenol. Sp. gr. ol'K u OCVl-A(| at 16". Sol. in IM'6 pis. glycerine of 1 '225 Hp. g (Vogel, N. Report. 16. 667.) XX00| Hp. KI-. % K u (H)j, Np. Hi'. Insoi. in acetone. (Krug and \ri ; .li..\ , . Anal. Appl. (!h. 6. 184.) , t 1'0'MU ,10 1 '8002 +H.O. 10 1 '0919 10 T4170 i I'll uO. very deliqueioei t. (P< .1.1.) 20 1 ' 1 920 60 1-6428 Delfqueioent only in very in ist ai (Stiideler.) (Kohlrauseh, VV. Ann. 1870. 1.) Sol. in :,,,l n. * II U with evolution of heat, 17*11" \vitli it 1 tui kt*t if ii ill 11! lint (Pohl t lit K,m, I A" with n. n lid kbeorption nor evolution of lioat. (Berthelot, (X It. 78. 1722.) I 2li u O. Salt usually ^ivon as containing UILO oontainn 'Jll u O. ((lorlaoh, /. anal. 96. 100.) I 4lly(). Not deliqueioent in oloHod veneli, (dorlanh, /.c.) Potanium hydrogen carbonate, KHCO i{ . Not doliqueeoent, Hoi. in ii'A pl.-i. ll .1. MI ifi", (llcthvnnd.) Hoi. In i ptM. ll.jO u(. ni..,i,'i.ii.- i.'iii|n'i-!ilnroM. Moi'Kiunuit,) Hoi. In Hoi. In 4 0-8888 pi. bolllnu HaO (Flltir) i In 4 ptn. oold, HU<| I-' pU. l.ollInK H a U(M. H. IIIKI I'.'M I'Imriii.). in. llj|(>nt IS'7^ 1 . (Abl.) 100 p(H. H.jOut 11,. pi. Q 1. U.-pi. (\ I, 101" 11-6 18 107" 01 69-0 102 22-5 22-6 108 67 06-9 108 82 Ml 109 78 71*9 104 40 M8'8 no 78'6 77'0 105 47 '6 40 '1 111 8,1 -6 88-0 100 64 '6 68-1 112 88'6 88 '2 :iO |>(H. uml lit UK>", sa ptn, (Dro'H Diet,) 100 ptH. ll.jl) Mi lO-ll'T (llHNOlVO 'J(fl ptH. KIUH>H, iin.l l.hn Mp. KI-. of Nolutlou IH I 'IWIO. (Aiithoii, Dlngl. Iff. U10.) 100 ptx, H tt O diHNolvoat 10 '-'O ao 19*01 28 '28 20-91 ,10 '67 pts. K1ICO.,, 60 a !(' 70 37'99 41 '85 46*94 pte, KHCOg, (Puggialo, A. oh. (8)8. 408.) 10 34'16 ('AIMU)NATK, SODIUM !U 1. 10 pis. 11,0 dissolve pis. KIK'0 ;1 al I". t" 1'U. KIIOO,, t IT, uiim. o 20 .!.! 1 aa-2 10 00 I:,-.! lii-i (DibbitH, .1. pr. (2)10. 417.) Sp. gr. "I" KINH),,| Aq ati Ifi" eontaining KIN'O,, 1'0:J28 ; eontaining 10 % KUDO,, = 1*0674. '(Kohli'iuiHoh, /,. anal. 28. 472.) Snl. iii 1200 pis. boiling alcohol. (Berthollet.) In ..I ill alntliol. i I IIMM I 100 ptn. !!,/) diHHolvo IH'.'i pts. KIN JO,, ami 8'3 ptH. NalKJO., if the wit. nolution of latter IN Hut. with former; and 20 1 ! ptn. KIIOO., ami 6'0 ptn. NallCO.,, if the Mat. lolution of tho i. .liner in Hat. with tho latter, all at 10". ( M..I.I. i . .1. II. 1866. 07.) Insol. in Hat. K|00i+Aq, (Bngel, <:. It. 102. M65.) PotaBBium carbonate, aoid, 2K a O, :u H), 4 . l>, h(|u. . ( MI Insol. in alcohol. (Horthollot.) 'I'.ii.loM of Holubility in ll. 4 tiro given by Potf- gialo (A. oh. (8) 8. 468). DoeinotexUt. (UOHI, Kraut, oto.) rot:i::iiuni n:uii:irium c:rl)on;il.. Hat. Holution at lf lian Hp. gr.l'886, (SI, .Ibii, .1. pr. 94. -100.) Diroiiip. by reoryitalliiing IVoin 11.^0, but hillintiH undooompoiod IVow nat. K.jOO,,-i- Aq, KgOOm 2Na u (!0,, MHll.jO. SI. effloreioent, Very Hoi. in ll.jO. (MarigQEOi) PoLiuiiiiiiiii itl,a,iinutii< ciirhonato, l\..< '< > ''.Sn( '( ' , -f-2ll a O. Dfiutiup. by H./). (Dnvilln.) Potawiumuranyl carbonate, 2 K.jCO.,, ( I !0 U )( 10.,. Sol. without diu'.onip. in Ul'fi jits. ILO at lf>", .MM| in ,.ni. \\ li.ii IHHH warm 1 1./). Sol. in boil- ing I l.jU with doromp. Mor HO!, in K.jtlOj,, or KHOO a +Aq than in H.,(). (KoNiO liiHol. iii alcohol, (Bbelmen, A. eh. (y) 8. IH',1.) PotaBBium zinc carbonate, * K U 0, 0/nO, llCO a I- 8H U 0. Can bo wanhod with c.old Il.jO without dmunnp. (Dovillo, A. oh. (JJ) 33. W).) Uiiliidiuin carbonato, 1M',<'<. ; . Vory dtliQttM00nt| and ol. in ll a (). Kio pl.s. Ml.-,,i|n|r aln.liol (Illinium,) o , i pi. Rubidium hydrogen carbonate, HbMOO a . Not; dolitpioHoout. Kanily wol. in II U 0. (HllllHOIl.) Samarium carbonate, Sni tt (CO }l ),,-HMH v O. hisi.l. in N.,,0. (Olovo, Bull, Sou. (2) 43. 168.) Samarium Bodium oarbonate,Sin u ((J0 ll ).,,Na u CO !l H-101I U 0. I'pt. (t)lcwo.) Silver carbonate, Ag u OO,,, Stmiowhat Hoi. in n> Sol. in 31,078 pta. H./) at lf>". (Knuitoi'H, I'otrg. 85. 2-iH.) 1 g. Ag|00| diHNolvoH in 2 1. boiling !!,,(>. (.loulin, A. oh. (-1) 30. 200.) IiiNol. in ll u (50; r h Aq. (HtM-gnian.) Sol. in 01 ptn. II^OOn + Aq. (Laiiaigne.) 1 1. nat. ELOOi+Aq diHnolvoH o-H-10 g. Ag a (JO u at 10". (Johaion, (J. N. 04. 75J Sol. in (NII 4 UJO,, + A| or NI1 4 ()II H-Aq ; 1. Hoi. in K U (1O,, I- An. ' (WittHtoin.) Kanily HO!, in Nays/),, t-Aq. (Heriohelj 1819.) Sol. in hot NII 4 ClVA(|, and nl. Hoi. in NII 4 N()., I AtH. Il.j0 nl, Ift". (FivNoiiliiM.) 100 |I!H. HyO ill, I -I -il" diMolvo 7'7-i plH. itfd-i III.M. Nit.i(!(>:|.IOII u <) IH NO). In rullim 1 pi. boulna HyD, (Tlummon, 1U31.) Hot. in -j pi,. ll>j(). (Bargman.) H()l. Ill -' pl.H. llyO lit IH'Vf)". (Alll.) n 100 pl,N. or limn Limn I t" I'lN. Nii.jCO., I'lH. NllyOOji | HHIyO 1," I'lH, Nii-jOOa I'U, NllgCOj, | HVII.jO o 7 'OH ai'5a .!( ilfi'lK) 171'HH 10 KlMlll tU'HH :io !I5'IH) 2-1 1 'fi" !iO iiO'Nii 'I'M'l'i KM'il -JH'M) WM ( P. iKKinl", A. till. 00 8. -HIM. ) I'OHNONHUH four (Ullenuit degreon of nolubility, tuuMH'ding to dillerent ntaten of inohuuilar oon- Htitution and degree! of hydnition. (Lbwel, A. fh. (:i) 44. U.'JO.) Little morn nol. at 4-88 q than at 10-1", but in i iiiiiini of lolubillty in probably at 15 M . (Lbwol.) 92 CARBONATE, SODIUM Solubility of Na 2 C0 3 , Na 2 C0 3 -f 10H 2 0, Na 2 C0 (a), and Na 2 C0 3 (6) in H 2 0. t Sat. solution of Na 2 CO 3 +10H 2 O contains Sat. solution of Na 2 C0 3 +7H 2 (b) contains Sat. solution of Na 2 CO 3 +7H 2 O (a) contains Pts. NaoCOs in 100pts.H 2 O Pts. Na 2 C0 3 + 10H 2 O in 100 pts. H 2 Pts. Na 2 C0 3 in lOOpts. H 2 Pts. Na 2 CO 3 + 7H 2 (b) in 100 pts. H 2 Pts. Na 2 C0 3 + 10H 2 O in 100pts.H 2 O Pts. Na 2 CO 3 in 100 pts. H 2 O Pts. Na 2 C0 3 + 7H 2 O (a) in 100pts.H 2 O Pts. Na 2 C0 3 + 10H 2 O in 100pts.H 2 O 10 15 20 25 30 38 104 6-97 12-06 16-20 2171 28-50 37-24 51-67 45-47 21-33 40-94 63-20 92-82 149-13 273-64 1142-17 539-63 20-39 26-33 29-58 38-55 38-07 43-45 58-93 83-94 100-00 122-25 152-36 196-93 84-28 128-57 160-51 210-58 290-91 447-93 31-93 37-85 41-55 4579 112-94 150-77 179-90 220-20 188-37 286-13 381-29 55671 (Lbwel, A. ch 100 pts. H 2 at 14 dissolve 60 '4 pts. Na 2 C0 3 -t-10H 2 0; at 36, 833 pts. ; at 104, 445 pts. Solubility increases to 36, then diminishes. (Payen, A. ch. (3) 43. 233.) There are apparently two maxima of solubility ; the one occurring at 15, or even lower, as warm solutions cool ; the other at 34-38, when cold solutions are warmed. (Payen, A. ch. (3) 44.330.) Solubility in 100 pts. H 2 at t. t Pts. Na 2 C0 3 t Pts. Na 2 CO 3 t Pts. Na 2 C0 3 7-1 35 46-2 71 46-2 1 7-5 36 46-2 72 46-2 2 7-8 37 46-2 73 46-2 3 8-4 38 46-2 74 46-2 4 8-9 39 46'2 75 46-2 5 9-5 40 46-2 76 46-2 6 10-0 41 46-2 77 46-2 7 10-6 42 46-2 78 46-2 8 11-2 43 46-2 79 46-2 9 11-9 44 46-2 80 46-1 10 12-6 45 46-2 81 46-1 11 13-3 46 46-2 82 46-1 12 14-0 47 46-2 83 46-0 13 14-8 48 46-2 84 46-0 14 15-6 49 46-2 85 45-9 15 16-5 50 46-2 86 45-9 16 17-4 51 46-2 87 45-8 17 18-3 52 46-2 88 45-8 18 19-3 53 46-2 89 45-8 19 20-3 54 46-2 90 457 20 21-4 55 46-2 91 457 21 22-6 56 46-2 92 457 22 23-8 57 46-2 93 45-6 23 25-1 58 46-2 94 45-6 24 26-5 59 46-2 95 45-6 25 28-0 60 46-2 96 45-6 26 297 61 46-2 97 45-5 27 31-6 62 46-2 98 45-5 28 33-6 63 46-2 99 45-5 29 35-8 64 46-2 100 45-4 30 38-1 65 46-2 101 45-4 31 41-4 66 46-2 102 45-3 32 46-2 67 46-2 103 45-3 32-5 59-0 68 46-2 104 45-2 33 46-2 69 46-2 105 45-1 34 46-2 70 46-2 ... ... (Mulder, Scheik. Verhandel. 1864. 129.) (3) 33. 382.) Liable to form supersaturated solutions. Supersat. Na 2 C0 3 + Aq (2 pts. Na 2 CO- 5 , 10H 2 0:1 pt. H 2 0) may be kept in a flask closed with cotton wool. (Schroder.) When supersat. Na 2 C0 3 + Aq is exposed to low temperatures, the lOHsO salt crystallises out ; but under other circumstances two other salts are formed, each containing 7H 2 ; one is four times as sol. at 10 as the 10H 2 salt, and the other twice as sol. See above. (Lowel, A. ch. (3) 33. 337.) Sp. gr. of Na 2 CO 3 +Aq at 15. % Na 2 C0 3 Sp. gr. % Na 2 C0 3 Sp. gr. 0-372 1-0040 7-812 1-0892 0-744 1-0081 8-184 1-0937 1-116 1-0121 8-556 1-0982 1-488 1-0163 8-928 1-1028 1-850 1-0204 9-300 1-1074 2-232 1-0245 9-672 1-1120 2-504 1-0286 10-044 1-1167 2-976 1-0327 10-416 1-1214 3-348 1-0368 10-788 1-1261 3-720 1-0410 11-160 1-1308 4-090 1-0452 11-532 1-1356 4-464 1-0494 11-904 1-1404 4-836 1-0537 12-276 1-1452 5-208 1-0576 12-648 1-1500 5-580 1-0625 13-020 1-1549 5-972 1-0669 13-392 1-1598 6-324 1-0713 13-764 1-1648 6-396 1-0757 14-136 1-1698 6-768 1-0802 14-508 1-1748 V440 1-0847 14-880 1-1816 (Tiinnerman.) Sp. gr. of Na 2 CO 3 +Aq at 15 /o Sp. gr. if % is Na 2 CO 3 Sp. gr. if % is Na 2 C0 3 +10H 2 % Sp. gr. if % is Na 2 C0 3 +10H 2 1 1-0105 1-004 15 1-058 2 1-0210 1-008 16 1-062 3 1-0315 1-012 17 1-066 4 1-0420 1-016 18 1-070 5 1-0525 1-020 19 1-074 6 1-0631 1-023 20 1-078 7 1-0737 1-027 21 1-082 8 1-0843 1-031 22 1-086 9 1-0950 1-035 23 1-090 10 1-1057 1-039 24 1-094 11 1-1165 1-043 25 1-099 12 1-1274 1-047 26 1-103 13 1-1384 1-050 27 1-106 14 1-1495 1-054 28 1-110 CARBONATE, SODIUM 93 Sp. gr. of Na 2 CO 3 +Aq at 15 Continued. 7, Sp. gr. if % is Na 2 CO 3 +10H 2 % Sp. gr. if % is Na 2 C0 3 +10H 2 O 29 30 31 32 33 1-114 1-119 1-123 1-126 1-130 34 35 36 37 38 1-135 1-139 1-143 1-147 1-150 (Gerlach, Z. anal. 8. 279.) Sp. gr. of Na 2 C0 3 + Aq at 17 '5. o/ % Na 2 C0 3 Na 2 C0 3 +10H 2 O Sp. gr. Na 2 C0 3 Na 2 C0 3 +10H 2 O Sp. gr. 1 2-70 1-010 9 24-30 1-095 2 5-40 1-020 10 27-00 1-105 3 8-10 1-031 11 29-70 1-116 4 10-18 1-041 12 32-40 1-127 5 13-50 1-052 13 35-10 1-137 6 16-20 1-063 14 37-80 1-148 7 18-90 1-073 15 40-50 1-157 8 21-60 1-084 ... (Hager.) Sp. gr. of Na 2 C0 3 + Aq increases or diminishes by a change of temperature of 1 by the following amounts Corr. % Na 2 C0 3 0-0004 0-00033 0-00026 13-15 8-12 3-7 (Hager, Comm. 1883.) Sp. gr. of cone. Na 2 C0 3 + Aq at 30. Sp. gr. % Na 2 C0 3 g. Na 2 C0 3 in 1 1. Sp. gr. Na 2 CO 3 g. Na 2 CO 3 in 11. 1-310 28-13 368-5 1-220 20-47 2497 1-300 27-30 354-9 1-210 19-61 237-3 1-290 26-46 341-3 1-200 1876 225-1 1-280 25-62 327-9 1-190 17-90 214-0 1-270 24-78 314-7 1-180 17-04 201-1 1-260 23 '93 301-5 1-170 16-18 189-3 1-250 23 -08 288-5 1-160 15-32 177-7 1-240 22-21 275-4 1-150 14-47 166-4 1-230 21-33 262-3 1-140 13-62 155-3 (Lunge, Chem. Ind. 1882. 320.) Sp. gr. of Na 2 C0 3 + Aq at 23. od Na 2 C0 3 . Sp. gr. oo / Na 2 C0 3 . Sp. gr. 1 0-370 1-0038 26 9-635 1-1035 2 0741 1-0076 27 10-005 1-1076 3 1-112 1-0114 28 10-376 1-1117 4 1-482 1-0153 29 10746 1-1158 5 1-853 1-0192 30 11-118 1-1200 6 2-223 1-0231 31 11-488 1-1242 7 2-594 1-0271 32 11-859 1-1284 8 2-965 1-0309 33 12-230 1-1326 9 3-335 1-0348 34 12-600 1-1368 10 3-706 1-0388 35 12-971 1-1410 11 4-076 1-0428 36 13-341 1-1452 12 4-447 1-0468 37 13712 1-1494 13 4-817 1 -0508 38 14-082 1-1536 14 5-188 1-0548 39 14-530 1-1578 15 5-558 1-0588 40 14-824 1-1620 16 5-929 1-0628 41 15-195 1-1662 17 6-299 1-0668 42 15-556 1-1704 18 6-670 1-0708 43 15-936 1-1746 19 7-041 1-0748 44 16-307 1-1788 20 7-412 1-0789 45 16-677 1-1830 21 7782 1-0836 46 17-048 1-1873 22 8-153 1-0871 47 17-418 1-1916 23 8-523 1-0912 48 17789 1-1959 24 8-894 1-0953 49 18-159 1-2002 25 9-264 1-0994 50 18-530 1 -2045 (Schiff, A. 113. 186.) Sp. gr. of Na 2 C0 3 + Aq at 23 '3. a = number of grms. x | mol. wt., dissolved in 1000 grms. H 2 ; b = sp. gr. if a = Na 2 C (mol. wt. =143) ; c = sp. gr. if = (JmoL wt.=53). a b c ct b c 1 1-048 1-052 5 1-163 1-226 2 1-086 1-100 6 1-182 3 1-117 1-145 7 1-198 4 1-142 1-187 ... ... (Favre and Valson, C.R. 79. 968.) Sp. gr. of Na 2 C0 3 + Aq at 18. %Na 2 C0 3 . Sp. gr. %Na 2 C0 3 . Sp. gr. 5 10 1-0511 1-1044 15 1-1590 (Kohlrausch, W. Ann. 1879. 1.) Na 2 C0 3 + Aq containing 5 % Na 2 C0 3 boils at 100*5; 10 % Na-aCOj,, at 101 '1 ; 15 % Na 2 C0 3 , at 101 -8. (Gerlach.) Sat. solution boils at 104 '4 (Griffiths, 1825) ; 106 (Kremers) ; 104 (Payen). Sat. solution forms a crust at 104-1, and contains 42 '2 pts. Na 2 C0 3 to 100 pts. H 2 ; highest temperature observed, 105. (Gerlach, Z. anal. 26. 427.) CARBONATE, SODIUM B.-pt. of Na 2 C0 3 + Aq containing pts. Na 2 C0 3 to 100 pts. H 2 0. G according to Gerlach (Z. anal. 26. 458) ; L = according to Legrand (A- ch. (2) 59. 426). B.-pt. G L B.-pt. G L 100-5 5'2 7'5 103-5 36-2 41-0 101-0 10-4 14-4 104-0 41-2 44-7 101-5 15-6 20-8 104-5 46-2 47-9 100-2 20-8 267 104-63 48'5 102-5 26-0 32-0 105-0 51-2 103-0 31-1 36-8 Less sol. in dil. NH 4 OH + Aq than in H 2 0. (Fresenius. ) Solubility in NaCl + Aq. 100 pts. H 2 dis- solve pts. NaCl and pts. Na 2 C0 3 , 10H 2 0, when that salt is in excess at 15. Pts. NaCl Pts. NaoCO 3 , lOHoO Pts. NaCl Pts. Na 2 CO 3 , 10H 2 O o-oo 61-42 2370 39-06 4-03 53-86 27-93 3973 8-02 48*00 31-65 41-44 12-02 4378 35-46 43-77 16-05 40-96 sat. 19-82 39-46 37-27 45'32 Solubility of anhydrous Na 2 C0 3 in 100 pts. NaCl + Aq containing % NaCl at 15. NaCl Pts. Na 2 C0 3 % NaCl Pts. Na 2 CO 3 16-408 12 10-488 1 15717 13 10-244 2 15-060 14 10-041 3 14-438 15 9-880 4 13-851 16 9762 5 13-299 17 9-686 6 12783 18 9-655 7 12*305 19 9-667 8 11-864 20 9725 9 11-461 21 9-828 10 11-097 22 9-997 11 10773 ... (Reich, W. A. B. 99, 2b. 433.) Insol. in alcohol. (Fresenius.) SI. sol. in absolute alcohol ; apparently insol. in an alcoholic solution of soap. (Duffy, Chem. Soc. 5. 305.) Not decomp. by 1 pt. H 2 S0 4 + 6 pts. absolute alcohol. Not decomp. by alcoholic solutions of race- mic, tartaric, or glacial acetic acids ; slowly decomp. by HN0 3 + absolute alcohol. Insol. in acetone. (Krug and M'Elroy.) + H 2 0. Takes up H 2 from the air. Less sol. in H 2 at 104 than at 38 ; at 15-20, 100 pts. H 2 dissolve 52 '4 pts. of this salt, cal- culated as Na 2 C0 3 . Insol. in alcohol. (Lowel.) Min. Thermonatrite. + 3H 2 0. (Schickendantz, A. 155. 359.) + 5H 2 0. (Persoz, Fogg. 32. 303.) Not efflorescent. Sol. in H 2 0. + 6H 2 0. (Mitscherlich, Fogg. 8. 441.) + 7H 2 0. Efflorescent. Two salts, 7H 2 (b) ( = with 8H 2 of Thomson), and 7H 2 (a). See page 92, for solubility. + 10H 2 0. Efflorescent. Sol. in 1'05 pts. H 2 at 23, and sat. solution has sp. gr. 1*1995. (Schiff, A. 109. 326.) Melts in crystal H 2 at 34. (Tilden, Chem. Soc. 45. 409.) See above for further data. + 15H 2 0. (Jacquelain, A. 80. 241.) Sodium hydrogen carbonate, NaHC0 3 . 100 pts. cold H 2 O dissolve 77 pts. NaHC0 3 . Schw. J. 6. 52.) (Rose, 100 pts. H 2 O at 11-25 dissolve 8-27 pts. NaHCO 3 1 form solution of 1'0613 sp. gr. (Anthon, Dingl. 16 216.) 100 pts. H 2 dissolve at 10 20 30 8-95 10-04 11-15 12-24 pts. NaHC0 3 , 40 50 60 70 13-35 14-45 15-57 16 "69 pts. NaHC0 3 . (Poggiale, A. ch. (3) 8. 468.) 100 pts. H 2 dissolve pts. NaHC0 3 at t. Pts. Pts. Pts. t NaHCO 3 t NaHCO 3 t NaHC0 3 6-90 21 9-75 42 13-05 1 7-00 22 9-90 43 13-20 2 10 23 10-05 44 13-40 3 20 24 10-20 45 13-55 4 35 25 10-35 46 13-75 5 45 26 10-50 47 13-90 6 7'60 27 10-65 48 14-10 7 770 28 10-80 49 14-30 8 7'85 29 10-95 50 14-45 9 8-00 30 11-10 51 14-65 10 8-15 31 11-25 52 14-85 11 8-25 32 11-40 53 15-00 12 8-40 33 11-55 54 15-20 13 8'55 34 11-70 55 15-40 14 8-70 35 11-90 56 15-60 15 8-85 36 12-05 57 15-80 16 9-00 37 12-20 58 16-00 17 9-15 38 12-35 59 16-20 18 9-30 39 12-50 60 16-40 19 9-40 40 1270 20 9-60 41 12-90 (Dibbits, J. pr. (2) 10. 417.) NaHC0 3 + Aq sat. at 16 has sp. gr. = 1-06904. (Stolba.) Nearly insol. in sat. NaCl, or Na 2 S0 4 + Aq. (Balmain, B. 5. 121.) Sodium ^'hydrogen ^'carbonate, Na 4 H 2 (C0 3 ) 3 + 3H 2 0. More sol. than NaHC0 3 ; less sol. than Na 2 C0 3 in H 2 0. (Rose, Fogg. 34. 160.) CARBONATE, ZINC, BASIC 95 at 100 pts. H 2 dissolve, calculated as 2NaoO, 3C0 2 at" ., 10 ' 20 30 , 40 60 70 80 90 100 29-68 pts. 32-55 35-8 38-63 ,, 41-59 ,. 12-63 pts. 15-50 18-30 21-15 23-95 ,, 50 26-78 (Poggiale, A. ch. (3) 8. 468.) Min. Trona, Urao. See Na 3 H(C0 3 ) 2 + 2H 2 0. ^medium hydrogen carbonate, Na 3 H(C0 3 ) 2 + 2H 2 0. Sol. in H 2 0. True formula of "Trona" and "Urao." (Zepharovich, Zeit. Kryst. 13. 135 ; de Mon- desir, C. R. 104. 1505.) Sodium thorium carbonate, 3Na 2 C0 3 , Th(C0 3 ) 2 + 12H 2 0. Decomp. by H 2 0. (Cleve.) Sodium uranyl carbonate, 2Na 2 C0 3 , (U0 2 )C0 3 . Slowly sol. in H 2 0. Solution sat. at 15 has sp. gr.= 1-161. (Anthon, Dingl. 156. 207.) Sodium yttrium carbonate, Na 2 C0 3 , Y 2 (C0 3 )o + 4H 2 0. Ppt. Not decomp. by cold H 2 0. (Cleve.) Sodium zinc carbonate, 3Na 2 0, 8ZnO, 11C0 2 + 8H 2 = 3Na 2 C0 3 , 8ZnC0 3 + 8H 2 0. SI. decomp. by pure H 2 0. (Wohler.) Less easily decomp. by H 2 than most double carbonates. (Deville, A. ch. (3) 33. 101.) Strontium carbonate, SrC0 3 . Sol. in 18,045 pts. H 2 at ordinary temp. (Fresenius. ) Sol. in 12,522 pts. H at 15. (Kremers, Pogg. 85. 247.) Sol. in 33,000 pts. H 2 0. (Bineau, C. R. 41. 511.) Less sol. in H 2 than SrS0 4 . (Dulong.) Sol. in 1536 pts. boiling H 2 0. (Hope, Edinb. Trans. 4. 5.) . Calculated from electrical conductivity of SrC0 3 + Aq, SrC0 3 is sol. in 121,760 pts. H 2 at 8-8 and 91,468 pts. at 24'3 (Holle- mann, Z. phys. Ch. 12. 130) ; 1 1. H 2 dis- solves 11 mg. SrC0 3 at 18. (Kohlrausch and Rose, Z. phys. Ch. 12. 241.) Sol. in 833 pts. H 2 C0 3 + Aq at 10. (Gmelin. ) Sol. in 56,545 pts. H 2 containing NH 4 OH and (NH 4 ) 2 C0 3 . Quite sol. in NH 4 Cl + Aq or NH 4 NO ; but reprecipitated on addition of NH 4 (NH 4 ) 2 C0 3 + Aq. (Fresenius. ) Partially decomp. by boiling with aqueous solutions of K 2 S0 4 , Na 2 S0 4 , CaSO,, (NH 4 ) 2 S0 4 , MgS0 4 , Na 2 HP0 4 , (NH 4 ) 2 HP0 4 , KjSOg, Na 2 S0 3 , (NH 4 ) 2 S0 3 , Na 2 B 4 7 , Na 2 As0 2 , K 2 As0 2 , K^O^ Na 2 C 2 4 , NaF, and K 2 Cr0 4 . Decomp. is com- plete with the NH 4 salts. (Dulong, A. ch. 82. 286.) SI. decomp. by Na 2 S0 4 , or K 2 S0 4 + Aq. (Persoz.) Easily sol. in NH 4 chloride, nitrate, or suc- cinate + Aq, but less so than BaC0 3 . (Fresenius.) 3 + Aq, OH and Sol. in ferric salts + Aq, with pptn. of Fe 2 6 H 6 . Sol. in Na citrate + Aq. (Spiller.) SI. decomp. by I^SO^ or Na 2 S0 4 + Aq. (Persoz.) Not decomp. by a mixture of 1 pt. H 2 S0 4 and 6 pts. absolute alcohol, nor by alcoholic solutions of tartaric, racemic, citric, or glacial acetic acids ; immedi- ately decomp. by HN0 3 + absolute alcohol, or H 2 C 2 4 +abs. alcohol. Min. Strontianite. Strontium hydrogen carbonate. SrC0 3 is sol. in 850 pts. of a sat. solution of C0 2 in H 2 0. Terbium carbonate. Precipitate. Less sol. in (NH 4 ) 2 C0 3 + Aq than yttrium carbonate. Thallous carbonate, T1 2 C0 3 . 100 pts. H 2 dissolve pts. T1 2 C0 3 (C = accord- ing to Crookes ; L = according to Lamy) at 100-8 22 -4 pts. T1 2 C0 3 . L 15-5 18 62 100 4-2 5-23 12-85 27'2 C L L C Insol. in absolute alcohol (L), and ether (C). Thallous carbonate acid, T1 2 0, 2C0 2 . Rather easily sol. in cold H 2 0. (Carstanjen.) Thallium carbonate platinocyanide, TLCOo, Tl 2 Pt(CN) 4 . SI. sol. in hot ; insol. in cold H 2 0. (Fris- well, Chem. Soc. (2) 9. 461.) Thorium carbonate, basic, 2Th0 2 , C0 2 + 3H 2 0. Insol. in C0 2 + Aq, but sol. in excess of alkali carbonates + Aq, if cone. Stannous carbonate, 2SnO, C0 2 . Easily decomp. on air ; insol. in H 2 or H 2 C0 3 + Aq. (Deville, A. ch. (3) 35. 448.) Yttrium carbonate, Y 2 (C0 3 ) 3 + 3H 2 0. Insol. in H 2 ; very si. sol. in H 2 C0 3 + Aq. Sol. in S0 2 + Aq and all mineral acids. Sol. in NH 4 salts, and alkali carbonates +Aq to some extent. More sol. in (NH 4 ) 2 C0 3 + Aq than in K^COg + Aq. (Berlin.) More sol. in (NH 4 ) 2 C0 3 + Aq than cerium, but 5 or 6 times less than glucinum carbonate. (Vauquelin.) Sol. in large excess of KHC0 3 + Aq. (Rose.) Slowly sol. in NH 4 salts + Aq. (Berzelius. ) Zinc carbonates, basic, 8ZnO, C0 2 + 2H 2 ; 5ZnO, 2C0 2 + 3, or 7H 2 ; 3ZnO, C0 2 + H 2 ; HZnO, 4C0 2 +14H 2 0; 14ZnO, 5C0 2 + 9H 2 0; 2ZnO, C0 2 + H 2 0; 8ZnO, 3C0 2 + 5H 2 0, etc. All ppts. formed from Zn salts and carbon- ates + Aq. Sol. in 2000-3000 pts. cold H 2 0, separates out on heating and does not redis- solve on cooling. (Schindler.) Sol. in 20,895 pts. H 2 at 15. (Kremers, Pogg. 85. 248.) Sol. in 44,600 pts. H 2 at ord. temp. (Fre- senius. ) Sol. in 1428 pts. sat. H 2 C0 3 + Aq. (Las- saigne.) Sol. in 189 pts. H 2 C0 3 + Aq sat. at 4-6 atmos. (Wagner, Z. anal. 6. 107.) Easily sol. in KOH, NaOH, NH 4 OH, (NH 4 ) 2 C0 3 + Aq, and in acids. Somewhat sol. in alkali bicar- bonates and NH 4 salts + Aq. (Fresenius.) Sol. 96 CARBONATE, ZINC in hot (Fuchs), also cold (Brett, 1837) NH 4 C1 + Aq ; less sol. in NH 4 N0 3 + Aq. (Brett.) Sol. in all NH 4 salts + Aq excepting (NH 4 ) 2 S + Aq. (Terreil, Bull. Soc. (2) 9. 441.) Insol. in Na 2 C0 3 , or K 2 C0 3 + Aq. Sol. in ferric salts +Aq with pptn. of Fe 2 6 H 6 . (Fuchs, 1831.) 3ZnO, C0 2 + 2H 2 0. Min. Zinc bloom, Hy- drozincite. ZnC0 3 , 3Zn0 2 H 2 . Min. Auricalcite. Zinc carbonate, ZnC0 3 . Sol. in acids, KOH + Aq, and NH 4 salts + Aq. Sol. inH 2 C0 3 + Aq. Min. Calamine, Smithsonite. + H 2 0. Zinc carbonate ammonia, ZnC0 3 , NH 3 . Slowly decomp. by H 2 0, but not on the air, or by boiling with alcohol. (Favre, A. ch. (3) 10. 474.) Zinc carbonate hydroxylamine, ZnC0 3 , 2NH 3 0. Insol. in H 2 0. Decomp. by acids. (Gold- schmidt and Syngros, Z. anorg. 5. 129.) Zirconium carbonate, 3Zr0 2 , C0 2 + 6H 2 0. Decomp. by hot H 2 0, all C0 2 being given off. (Hermann. ) Sol. in alkali carbonates + Aq. Carbonic anhydride, C0 2 . See Carbon cKoxide. Carbonyl chloride, COC1 2 . Phosgene. Cold H 2 dissolves 1-2 vols. COC1 2 gas with slow decomposition. Alcohol decomp. immediately. Immediately absorbed by KOH, or NH 4 OH + Aq. Very sol. in glacial HC 2 H 3 2 , benzene, and most liquid hydrocar- bons. (Berthelot, Bull. Soc. (2) 13. 14.) Sol. in SCL>. 1 vol. AsClo absorbs 10 vols. COC1 2 . Carbonyl platinous chloride, 2COC1 2 , PtCl 2 . SI. deliquescent. Easily sol. in H 2 without decomp. ; si. sol. in alcohol. Almost insol. in CC1 4 . (Pullinger, Chem. Soc. 59. 600.) Carbonyl ferrocyanhydric acid, H 3 Fe(CO)(CN) 5 . Very sol. in H 2 ; decomp. on heating. (Miiller, A. ch. (6) 17. 94.) Cobalt carbonyl ferrocyanide. SI. sol. in H 2 ; very sol. in dil. HN0 3 + Aq. (M.) Cupric carbonyl ferrocyanide, Cu 3 [Fe(CO)(CN) 5 ] 2 . Insol. in H 2 0, H 2 S0 4 , or dil. HN0 3 + Aq. (M.) Ferric carbonyl ferrocyanide, FeFeCO(CN) 5 . Insol. in H 2 0. Sol. in H 2 C 2 4 + Aq. Insol. in acetic, lactic, succinic, tartaric, and citric acids + Aq, but easily sol. in the neutral salts of those acids. Insol. in KC1, or KN0 3 + Aq, but sensibly sol. in Na 2 HP0 4 + Aq. Insol. even on warming in very dil. H 2 S0 4 , or H 3 P0 4 + Aq. (Miiller.) Potassium carbonyl ferrocyanide, K 3 Fe(CO)(CN) 5 + 3iH 2 0. 100 pts. H 2 dissolve 148 pts. at 16. (Miiller, C. R. 104. 992.) Silver carbonyl ferrocyanide, Ag 3 Fe(CO)(CN) 5 . Insol. in H 2 ; si. sol. in dil. H 2 S0 4 , HC1, or HN0 3 + Aq; scarcely attacked by cone. HC 2 H 3 2 + Aq. (Miiller.) Sodium carbonyl ferrocyanide, Na 3 Fe(CO)(CN) 5 + 6H 2 0. Sol. inH 2 0. (Miiller.) Uranyl carbonyl ferrocyanide, (U0 2 ) 3 [FeCO(CN) 5 ] 2 + 5H 2 0. SI. sol. in H 2 0, but more easily if H 2 is acidified with HC 2 H 3 2 . Carbonyl platinous bromide, CO, PtBr 2 . Sol. in H 2 with almost instant decomp. Sol. in absolute alcohol. (Pullinger, Chem. Soc. 59. 603.) Quite easily sol. in hot C 6 H 6 , insol. in ligroine, and can be crystallised from CC1 4 . Very easily sol. in HBr + Aq. (Mylius and Forster, B. 24. 2432.) Jfowocarbonyl platinous chloride, CO, PtCl 2 . Decomp. by H 2 and alcohol ; sol. in hot CC1 4 . (Schiitzenberger, A. ch. (4) 15. 100.) Sol. in cone. HCl + Aq. (Mylius and For- ster.) Di'carbonyl platinous chloride, 2CO, PtCl 2 . Decomp. by H 2 and alcohol. Sol. in CC1 4 . (Schiitzenberger. ) Decomp. by cone. HCl + Aq into CO and CO, PtCl 2 . (Mylius and Forster.) esgm'carbonyl platinous chloride, SCO, 2PtCl 2 . Decomp. by H Q or alcohol. Much more sol. in CC1 4 than 2"CO, PtCl 2 . Carbonyl platinous iodide, CO, PtI 2 . Not hygroscopic. Insol. in, but slowly de- comp. by, H 2 0. Easily sol. in benzene or ether, also in alcohol, which decomp. on warm- ing ; sol. in HI + Aq. (Mylius and Forster. ) Carbonyl platinous sulphide, CO, PtS. Easily decomp. Insol. in ordinary solvents. (Mylius and Forster.) Carbonyl sulphide, COS. H 2 absorbs 1 vol. COS. Cerium, Ce. Decomp. pure H 2 very slowly at ordinary temp. Not attacked by cold cone. H 2 S0 4 or red fuming HN0 3 . Sol. in dil. H 2 S0 4 + Aq, HN0 3 + Aq, and cone, or dil. HCl + Aq. (Hille- brand and Norton, Pogg. 155. 633.) Cerous bromide, CeBr 3 . Anhydrous. As the chloride. (Robinson, Proc. Roy. Soc. 37. 150.) + xH 2 0. Very deliquescent. (Jolin.) Cerium gold bromide, CeBr 3 , AuBr 3 + 8H 2 0. See Bromaurate, cerium. CHLORAURATE, CADMIUM 97 Sol. in H 2 Cerium carbide, CeC 3 . Not attacked by hot cone, acids. (Delafon- taine, J. B. 1865. 176.) Cerous chloride, CeCl 3 . Anhydrous. Deliquescent. with hissing and evolution of heat ; sol. in alcohol. + 7H 2 0. (Jolin, Bull. Soc. (2) 21. 533.) + 7iH 2 0. Deliquescent. (Berzelius.) Decomp. by boiling with H 2 0. Sol. in 1 pt. H 2 at ord. temp, and 3-4 pts. alcohol. (Dumas.) Ceric chloride. Known only in solution, which decomposes by slight heat. (Berzelius.) Cerous mercuric chloride. Not deliquescent, (v. Bonsdorff.) CeCl 3 , 4HgCl 2 + 10H 2 0. Permanent; easily sol. in H 2 0. (Jolin, Bull. Soc. (2) 21. 533.) Cerium stannic chloride. See Chlorostannate, cerium. Cerous chloride zinc iodide. Sol. in H 2 and alcohol. (Holzmann, J. pr. 84. 76.) Cerous fluoride, CeF 3 . Insol. ppt. + iH 2 0. Ceric fluoride, CeF 4 . Insoluble precipitate. (Berzelius.) + H 2 0. Insol. in H 2 0. (Brauner, B. 14. 1944.) Ceric potassium fluoride, 2CeF 4 , 3KF + 2H 2 0. Insol. in H 2 0. (Brauner, B. 14. 1944 ; 15. 109.) Ceroceric fluoride, 2CeF 3 , CeF 4 . Min. Fluocerite. Cerium hydride, CeH 2 . Decomp. by acids. (Winkler, B. 24. 873.) Cerous hydroxide, Ce 2 3 , #H 2 0. Easily sol. in acids. Insol. in excess of alkali hydroxides + Aq. Sol. in (NH 4 ) 2 C0 3 + Aq. Ceric hydroxide, 2Ce0 2 , 3H 2 0. Sol. in HN0 3 or H 2 S0 4 ; also in HCl + Aq, forming cerous chloride and free chlorine. Insol. in hydrofluoric, acetic, or formic acids + Aq. Somewhat sol. in dil. HN0 3 , or HC1 + Aq. (Ord way, Am. J. Sci. (2) 26. 205.) Insol. in NH 4 OH, KOH, and NaOH + Aq. SI. sol. in alkali carbonates + Aq. (Dumas. ) SI. sol. in (NH 4 ) 2 C0 3 + Aq. (Ord way.) Cerous iodide, CeI 3 + 9H 2 0. Very deliquescent and sol. in H 2 0. (Lange, J. pr. 82. 134.) Sol. in alcohol. Cerous oxide, Ce 2 3 . When ignited, insol. in HCl + Aq; when long digested with H 2 S0 4 , is sol. in HC1 + Aq with addition of alcohol. Ceric oxide, Ce0 2 . When ignited, is only dissolved in traces, even on heating, by HC1 or HN0 3 + Aq. Sol. in cone. H 2 S0 4 when warmed. Sol. in the cold in a solution of KI in HC1 + Aq (Bunsen), in a mixture of HC1 and FeCl 2 + Aq, or any reduc- ing substance. Cerium peroxide, Ce 4 9 . Insol. in boiling cone, acids. Sol. in H 2 S0 4 by long digestion. (Popp, A. 131. 361.) Probably does not exist. (Rammelsberg, Pogg. 108. 40.) Ce 2 5 . (Hermann, J. pr. 30. 184.) Probably does not exist. (Rammelsberg.) Ce0 3 + o;HoO. Sol. in HCl + Aq. (Popp, A. 131. 361.) (Lecoq de Boisbaudran, C. R. 100. 605.) Ce0 2 + H 2 2 , according to Cleve (Bull. Soc. (2) 43. 57). Cerium oxychloride, CeOCl. Slightly attacked by hot cone. HCl + Aq. Slowly sol. in cone. HN0 3 + Aq. (Wohler.) Easily sol. in dil. acids. (Didier, C. R. 101. 882.) Cerium oxychloride tungsten mxide, CeOCl, W0 3 . (Didier, C. R. 102. 823.) Cerium selenide. Insol. in H 2 ; difficultly sol. in acids. (Berzelius.) Cerium silicide, Ce 2 Si 3 . Insol. in acids. (Ullik, W. A. B. 52, 2. 115.) Cerium sesquisulphide, Ce 2 S 3 . Insol. in, and not decomp. by H 2 0, but easily decomp. by the weakest acids. (Mosander ; Didier, C. R. 100. 1461.) Chlor^ramine comps. See Chlorotetramine comps. Chlorarsenious acid. See Arsenyl chloride. Chlorauric acid, HAuCl 4 + 4H 2 0. Sol. in H 2 0, alcohol, and ether. Chloraurates. All chloraurates are easily sol. in H 2 and in alcohol, (v. Bonsdorff, 1829.) Ammonium chloraurate, NH 4 AuCl 4 + H 2 0. Very easily sol. in H 2 0. + 2H 2 0. Very easily sol. in H 2 0. Barium chloraurate, Ba(AuCl 4 ) 2 + a?H 2 0. Deliquescent in moist air. Sol. in H 2 and alcohol, (v. Bonsdorff, Pogg. 17. 261.) Cadmium chloraurate. Not deliquescent. Sol. in H 2 and alcohol. (v. Bonsdorff.) II CHLORAURATE, CAESIUM Csesium chloraurate, CsAuCl 4 . 100 pts. aqueous sat. solution contain at : 10 20 30 40 50 0'5 0'8 17 3'2 5'4 pts. anhydrous salt, 60 70 80 90 100 8*2 12 '0 16*3 217 27 '5 pts. anhydrous salt. (Rosenbladt, B. 19. 2538.) + |H 0. (Wells and Wheeler, Sill. Am. J. 144. 157".) Calcium chloraurate, Ca(AuCl 4 ) 2 + 6H 2 0. Deliquescent. Sol. in H 2 and alcohol, (v. Bonsdorff. ) Cerium chloraurate, CeCl 3 , AuCl 3 + 10H 2 0. Extremely deliquescent. Easily sol. in H 2 and absolute alcohol. (Holzmann, C. C. 1863. 206.) + 13H 2 0. (Jolin, Bull. Soc. (2) 21. 534.) Cobalt chloraurate, Co( AuCl 4 ) 2 + 8H 2 0. Sol. in H 2 and alcohol. (Topsoe. ) Didymium chloraurate, DiCl 3 , AuCl 3 + 10H 2 0. Very deliquescent. (Cleve, Bull. Soc. (2) 43. 361.) 2DiCl 3 , 3AuCl 3 + 20H 2 0. (Cleve.) Lanthanum chloraurate, LaCl 3 , AuCl 3 + 5H 2 0. Deliquescent in moist air. Sol. in H 2 0. (Cleve, B. 8. 128.) Lithium chloraurate, LiAuCl 4 . 100 pts. aqueous solution contain at : 10 20 30 40 53-1 577 62-5 67 '3 pts. anhydrous salt, 50 60 70 80 72 '0 76 '4 81 '0 85 7 pts. anhydrous salt. (Rosenbladt.) Magnesium chloraurate, Mg(AuCl 4 ) 2 + 8H 2 0. Somewhat deliquescent. Sol. in H 2 and alcohol. (Topsoe.) + 12H 2 0. Manganese chloraurate, Mn(AuCl 4 ) 2 + 8H 2 0. Deliquescent. Sol. in H 2 and alcohol. (Topsoe. ) + 12H 2 0. Nickel chloraurate, Ni(AuCl 4 ) 2 + 8H 2 0. Deliquescent. Sol. in H 2 and alcohol. (Topsoe). Potassium chloraurate, KAuCl 4 . Anhydrous. Very stable. (Lainer, W. A. B. 99, 2b. 247.) + 2H 2 0. Efflorescent. + i>H 2 0. 100 pts. solution in H 2 contain at : 10 20 30 277 38'2 487 pts. anhydrous salt, 40 50 60 59 '2 70 '0 80'2 pts. anhydrous salt. (Rosenbladt, B. 19. 2538.) Sol. in alcohol. Rubidium chloraurate, RbAuCl 4 . 100 pts. sat. RbAuCl 4 + Aq contain at : 10 20 30 40 50 4'6 9'0 13 '4 17722-2 pts. anhydrous salt, 60 70 80 90 100 26 '6 31 '0 35 '3 397 44 '2 pts. anhydrous salt. (Rosenbladt.) Easily sol. in 95 % alcohol. Samarium chloraurate, SmCl 3 , AuCl 3 + 10H 2 0. Deliquescent. Easily sol. in H 2 0. (Cleve, Bull. Soc. (2)43. 165.) Sodium chloraurate, NaAuCl 4 + 2H 2 0. Easily sol. in H 2 and absolute alcohol. 100 pts. aqueous solution contain at : 10 20 30 58 '2 60'2 64'0 pts. anhydrous salt, 40 50 60 69 '4 77 '5 90 '0 pts. anhydrous salt. (Rosenbladt. ) Easily sol. in NaCl + Aq. Strontium chloraurate. Sol. in H 2 and alcohol, (v. Bonsdorff.) Thallium chloraurate. (Carstanjen.) Yttrium chloraurate, YtCl s , 2AuCl 3 + 16H 2 0. Very sol. in H 2 0. (Cleve.) Zinc chloraurate, Zn( AuCl 4 ) 2 + 8H 2 0. Sol. inH 2 0. (Topsoe.) + 12H 2 0. Sol. in HoO and alcohol, (v. Bons- dorff.) Chlorauricyanhydric acid. Barium chlorauricyanide, Ba[Au(CN") 2 Cl 2 ] 2 + 8H 2 0. Very sol. in H 2 or alcohol. (Lindbom, Lund Univ. Arsk. 12. No. 6.) Potassium cklorauricyanide, KAu(CN) 2 Cl 2 + H 2 0. Very sol. in H 2 or alcohol. Strontium chlorauricyanide, Sr[Au(CN) 2 Cl 2 ] 2 + 8H 2 0. Sol. in H 2 0. Zinc chlorauricyanide, Zn[Au(CN) 2 Cl 2 ] 2 + 7H 2 0. Very sol. in H 2 0. Chlorhydric acid, HC1. Liquid. Miscible with liquid C0 2 , and H 2 S. Gas. Absorbed by H 2 with production of much heat. H 9 O absorbs 400-500 vols. at ord. temp, and pressure = a Tittle less than 1 pt. by weight. (Dalton.) 1 vol. HoO absorbs 480 vols. at ; sp. gr. of sat. solu- tion is 1-2109. (Davy.) 1 vol. H 2 O absorbs 417'822 vols. at 20, the vol. in- creasing to 1-4138 vols. ; 1 vol. of HCl+Aq then con- tains 311 vols. HC1, has sp. gr. 1-1958, and contains 40-39 % HC1 by weight. (Thomson, 1831.) 1 vol. HoO absorbs 464 vols. and sat. solution has 1'21 sp. gr. and contains 42-4 % HC1 by weight. (Wittstein.) H 2 O sat. at contains 480 times its vol. of HC1, and sp. gr. 1-2109 ; sat. at ord. temp., contains 38'3 % of its weight in HC1, and sp. gr. = 1-192. (Berzelius.) CHLORHYDRIC ACID 99 i v press and c ol. HoO absorbs V vols. HC1 at t and 760 are, and the liquid formed has the given sp ontains the given per cent HC1. mm. gr., Temp. %HC1 Temp. %HC1 Temp. %HC1 5 10 15 20 25 30 25-0 24-9 247 24-6 24-4 24-3 241 35 40 45 50 55 60 65 23-9 23-8 23-6 23-4 23-2 23-0 22-8 ; 70 75 80 85 90 95 100 22-6 22-3 22-0 217 21-4 21-1 207 t V Sp. gr. %HC1 4 8 14 18 18-25 23 525-2 494 -r 480-3 471-3 462-4 451-2 450-7 435-0 1-2257 1-2265 1-2185 1-2148 1-2074 1-2064 1-2056 1-2014 45-148 44-361 43-828 43-277 42-829 42-344 42-283 41-536 From the above it is seen that the aci (Deicke, Pogg. 119. 156.) At 760 mm. pressure 1 g. H 2 absorbs g. HC1 at t. t g. HC1 tf g. HC1 t g. HC1 0-825 22 0710 44 0-618 2 0*814 24 0700 46 0-611 4 0-804 26 0-691 48 0-603 6 0793 28 0-682 50 0-596 8 0783 30 0-673 52 0-589 10 0772 32 0-665 54 0-582 12 0762 34 0-657 56 0-575 14 0752 36 0-649 58 0-568 16 0742 38 0-641 60 0-561 18 0731 40 0-633 20 0721 42. 0-626 (Roscoe and Dittmar. ) Cone. HCl + Aq loses HC1, and dil. HCl + Aq loses H 2 on warming, until an acid of constant composition is formed, containing 20 '18 % HC1, with a sp. gr. of I'lOl at 15, which can be distilled unchanged at 110. (Bineau, A. ch. (3) 7. 257.) The above is true if barometer is at 760 mm., but the composition changes with the pressure as follows Mm. Hg %HC1 Mm. Hg. %HC1 Mm. Hg %HC1 50 23-2 800 20-2 1700 18-8 100 22-9 900 19-9 1800 18-7 200 22-3 1000 197 1900 18-6 300 21*8 1100 19-5 2000 18-5 400 21-4 1200 19-4 2100 18-4 500 21-1 1300 19*3 2200 18-3 600 207 1400 19-1 2300 18-2 700 20-4 1500 19-0 2400 18-1 760 20-24 1600 18-9 2500 18-0 (Roscoe and Dittmar.) Cone. HCl + Aq gradually gives off HC1 on the air until it has a sp. gr. 1'128 at 15, and contains 25 '2 % HC1. (Bineau, I.e.) According to Roscoe and Dittmar, this de- pends on the temperature. If a current of air is passed through HCl + Aq, acid or water is given off according as the acid is strong or weak, until an acid of constant composition for a given temperature is formed, as follows which distils unchanged at a given pressure, that is, boils at a certain constant temperature, is identical with the acid which undergoes no change in composition by a current of dry air at the same temperature, and under the ordin- ary pressure, thus Mm. Hg B.-pt. %HC1 Temp, of air current %HC1 100 61-62 22-8 62 22-9 200 76-77 22-1 77 22-2 300 84-85 217 85 217 380 91 21-3 91 21-4 >490 97 20-9 98 21-1 620 103 20-6 (Roscoe and Dittmar. ) Solubility of HC1 in H 2 at under different degrees of pressure. P = partial pressure in mm. Hg, i.e. total pressure minus the tension of aqueous vapour at the given temp. ; G = grammes of HC1 dissolved in 1 g. HoO at the pressure P and temp. P G P G 60 0-613 350 0751 70 0-628 400 0763 80 0-640 450 0772 90 0-649 500 0782 100 0-657 550 0791 110 0-664 600 0-800 120 0-670 650 0-808 130 0-676 700 0-817 140 0-681 750 0-824 150 0-686 800 0-831 175 0-697 900 0-844 200 0707 1000 0-856 225 0716 1100 0-869 250 0-724 1200 0-882 275 0-732 1300 0-895 300 0738 (Roscoe and Dittmar, A. 112. 334.) 1 vol. H 2 dissolves 560 vols. HC1 at - 12 500 440 + 20 (Berthelot, C.R. 76. 779.) 1 vol. H 2 absorbs 480 vols. HC1 at 15 to form a solution containing 42 "85 % HC1 with a sp. gr. of 1 '215. (Hager.) 100 CHLORHYDRIC ACID Sp.gr. ofHCl+Aq. Sp. gr. %HC1 Sp. gr. %HC1 Sp. gr. %HC1 1-203 1-179 1-162 1-149 1-139 40-66 37-00 33-95 31-35 29-13 1-1285 1-1197 1-1127 1-1060 1-1008 27-21 25-52 24-03 22-70 21-51 1-0960 1-0902 1-0860 1-0820 1-0780 20-44 19-47 18-59 17-79 17-05 (Thomson, in his System, 2. 189.) Sp. gr. of HCl+Aq. Sp. gr. %HC1 Sp. gr. %HC1 1-21 42-43 1-10 20-20 1-20 40-80 1-09 18-18 1-19 38-38 1-08 16-16 1-18 36-36 1-07 14-14 1-17 34-34 1-06 12-12 16 32-32 1-05 10-10 15 30-30 1-04 8-08 14 28-28 1-03 6-06 13 26-26 1-02 4-04 12 24-24 1-01 2-02 I'll 20-30 (Edm. Davy.) Sp. gr. of HCl+Aq. Sp. gr. %HC1 B.-pt. Sp. gr. %HC1 B.-pt. 1-199 1-181 1-166 1-154 1-144 1-136 1-127 1-121 34-01 31-09 28-29 26-57 24-84 23-25 21-06 20-74 49" 65 76 87 100 103 105 109 1-094 1-075 1-064 1-047 1-035 1-018 1-009 16-08 13-16 11-16 8-62 6-92 3-52 1-86 111 109 107 105 104 102 101 (Kirwan and Dalton.) Sp. gr. of HCl+Aq at 15'. %HC1 Sp. gr. %HC1 Sp. gr. 2-22 1-0103 29-72 1504 3-80 1-0189 31-50 1588 6-26 1-0310 34-24 1-1730 11-02 1-0557 36-63 1844 15-20 1-0751 38-67 1938 18-67 1-0942 40-51 1-2021 20-91 1-1048 41-72 1-2074 23-72 1-1196 43-09 1-2124 25-96 1-1308 (Kolb, C. R. 74. 337.) Sp. gr. of HCl+Aq at 15. Sp. gr. %HC1 Sp. gr. %HC1 Sp. gr. %HC1 1-2000 1-1982 1-1964 1-1946 1 1928 1-1910 1-1893 1-1875 40-777 40-369 39-961 39-554 39-146 38738 38-330 37-923 1-1859 1-1846 1-1822 1'1802 1-1782 1-1762 1-1741 1-1721 37-516 37-108 36-700 36-292 35-884 35-476 35-068 34-660 1-1701 1-1681 1-1661 1-1641 1-1620 1-1599 1-1578 1-1557 34-252 33-845 33-437 33-029 32-621 32-213 31-805 31-398 Sp. gr. of HCl+Aq at 15 Continued. Sp. gr. %HC1 Sp. gr. %HC1 Sp.gr. %HC1 1-1536 30-990 1000 20-288 1-0497 10-194 1-1515 30-582 0980 19-980 1-0477 9-768 1-1494 30-174 1-0960 19-572 1-0457 9-379 1-1473 29-767 0939 19-165 1-0437 8-971 1-1452 29-359 0919 18-757 1-0417 8-563 1-1431 28-951 0899 18-349 1-0397 8-155 1-1410 28-544 1-0879 17-941 1-0377 7-747 1-1389 28-136 1-0859 17-534 1-0357 7-340 1-1369 27-728 1-0838 17-126 1-0337 6-932 1-1349 27-321 1-0818 16-718 1-0318 6-524 1-1328 26-913 1-0798 16-310 1-0298 6-116 1-1308 26-505 1-0778 15-902 1-0279 5-709 1-1287 26-098 1-0758 15-494 1-0259 5-301 1-1267 25-690 1-0738 15-087 1-0239 4-893 1-1247 25-282 1-0718 14-679 1-0220 4-486 1-1226 24-874 1-0697 14-271 1-0200 4-078 1-1206 24-466 1-0677 13-363 1-0180 3-670 1-1185 24-058 1-0657 13-456 1-0160 3-262 1-1164 23-650 1-0637 13-409 1-0140 2-854 1-1143 23-242 1-0617 12-641 1-0120 2-447 1-1123 22-834 1-0597 12-233 1-0100 2-039 1-1102 22-426 1-0577 11-825 1-0080 1-631 1-1082 22-019 1-0557 11-418 1-0060 1-224 1-1061 21-611 1-0537 11-010 1-0040 0-816 1-1041 21-203 1-0517 10-602 1-0020 0-408 1-1020 20-796 (Ure, Handworterbuch.) Sp. gr. of HCl + Aq. U = sp. gr. at 15 '55 according to Ure ; K^sp. gr. at 15 accord- ing to Kremers. %HC1 U K %'HC1 U K 1 1-005 1-005 22 1-109 1-111 2 1-010 1-010 23 1-114 1-116 3 1-015 1-015 24 1-119 1-121 4 1-020 1-020 25 1-124 1-126 5 1-025 1-025 26 1-128 1-131 6 1-030 1-030 27 1-133 1-136 7 1-034 1-034 28 1-138 1-141 8 1-039 1-039 29 1-143 1-146 9 1-044 1-044 30 1-147 1-151 10 1-048 1-048 31 1-153 1-157 11 1-053 1-053 32 1-157 1-163 12 1-059 1-059 33 1-163 1-169 13 1-064 1-065 34 1-169 1-179 14 1-069 1-070 35 1-174 15 1-074 1-075 36 1-179 16 1-079 1-080 37 1-183 17 1-084 1-085 38 1-188 18 1-089 1-090 39 1-193 19 1-094 1-095 40 1-197 20 1-098 1-100 41 1-203 ! ... 21 1-104 1-105 (Calculated by Gerlacli, Z. anal. 8. 292.) Relation of sp. gr. of HCl + Aq at t to sp. gr. at 19'5 = 1-0. t 8-9 % HC1 sp. gr. = 1-0401 16-6 % HC1 sp. gr. = 1-0704 25'5%HC1 sp. gr. = 1-101 35-8 % HC1 sp. gr.- 1-133 46-6 % HC1 sp. gr. =1-1608 0-99557 0-99379 0-99221 0-99079 0-98982 19-5 1-00000 1 -00000 i-ooooo 1-00000 1-00000 40 1-00707 1-00781 1-00877 1-00990 1-01063 60 1-01588 1-01665 1-01794 1-01969 1-02180 80 1-02639 1-02676 1-02791 1-02986 ... 100 1-03855 1-03801 1-03867 1-04059 (Kremers, Fogg. 108. 115. CHLORHYDRIC CYANHYDRIC ACID 101 Sp. gr. of HCl + Aq at 15 (H 2 at = 1). HCl Sp. gr. % HC1 Sp. gr. % HC1 Sp. gr. 0-9992 15 1-07539 30 1-15079 1 1 -00503 16 08042 31 1-15581 2 1-01005 17 08545 32 1-16084 3 1-01508 18 09047 33 1-16587 4 1-02010 19 09550 34 1-17089 5 1-02513 20 10052 35 1-17592 6 1-03016 21 10555 36 1-18095 7 1-03518 22 11058 37 1-18597 8 1-04021 23 11560 38 1-191 9 1-04524 24 1-12063 39 1-196 10 1-05026 25 1-12566 40 1-200 11 1-05529 26 1-13068 41 1-204 12 1-06031 27 1-13571 42 1-208 13 1-06534 28 1-14074 43 1-212 14 1-07037 29 1-14516 ... (Kolb, recalculated by Gerlach, Z. anal. 27. 316.) Sp. gr. of HCl + Aq at 15. % HC1 Sp. gr. % HCl Sp. gr. % HCl Sp. gr. 5 1-0244 20 1-0982 35 1-1739 10 1-0488 25 1-1234 40 1-1969 15 1-0733 30 1-1488 41 1-2013 (Hager, Adjumenta varia, Leipzig, 1876.) Sp. gr. of HCl + Aq at 15 (H 2 at 15 = 1). %HC1 Sp. gr. %HCl Sp. gr. 44-345 1-21479 34-464 1-17138 43-136 1-21076 25-260 1-12479 41-901 1-20430 19-688 1-09675 41-212 1-20204 14788 1-07255 39-831 1-19703 6-382 1-03150 37-596 1-18687 ... ... (Pickering, B. 26. 277.) Most accurate table. Sp. gr. of HCl + Aq at 15 (H 2 at 4 = 1). Sp. gr. %HC1 Kg.HCl in 11. Sp. gr. %HC1 Kg.HCl in 11. i-ooo 0-16 0-016 1-070 14-17 0-152 1-005 1-15 0-012 1-075 15-16 0-163 1-010 2-14 0-022 1-080 16-15 0-174 1-015 3-12 0-032 1-085 17-13 0-186 1-020 4-13 0-042 1-090 18-11 0-197 1-025 5-15 0-053 1-095 19-06 0-209 1-030 6-15 0-064 1-100 20-01 0-220 1-035 7-15 0-074 1-105 20-97 0-232 1-040 8-16 0-085 1-110 21-92 0-243 1-045 9-16 0-096 1-115 22-86 0-255 1-050 10-17 0-107 1-120 23-82 0-267 1-055 11-18 0-118 1-125 2478 0-278 1-060 12-19 0-129 1-130 2575 0-291 1-065 13-19 0-141 1-135 2670 0-303 Sp. gr. of HC1, etc. Continued. Sp. gr. %HC1 Kg.HCl in 1 1. Sp.gr. % HC1 Kg.HCl in 11. 1-140 27-66 0-315 1-175 34-42 0-404 1-145 28-61 0-322 1-180 35-39 0-418 1-150 29-57 0-340 1-185 36-31 0-430 1-155 30-55 0-353 1-190 37-23 0-443 1-160 31-52 0-366 1-195 38-16 0-456 1-165 32-49 0-379 1-200 39-11 0-469 1-170 33-46 0-392 (Lunge and Marchlewski, Z. angew. Ch. 1891. 133.) HC1 is not absorbed by cone. H 2 S0 4 + Aq, but in large amounts by anhydrous H 2 S04. (Aime.) 100 pts. alcohol of 36 B absorb 68 pts. HC1 at 12-5. (Boullay.) Alcohol of 0*836 sp. gr. dissolves 327 vols. HC1 at 17-5 and 758 mm. pressure, and the solution has sp. gr. = 1"005. (Pierre, A. ch. (3) 31. 135.) Solubility of HC1 in methyl alcohol (absolute) att. t %HC1 t %HCl -10-3 54-6 18 46-9 51-3 31-7 43 (de Bruyn, R. t. c. 11. 112.) Solubility of HCl in ethyl alcohol (absolute) att. t %HC1 t %HC1 45-4 19-2 41 6-5 44-2 23-5 40-2 11-5 427 32-0 38-1 (de Bruyn, I.e.) Sol. in glacial HC 2 H 3 2 , ether, hexane, benzene, xylene, etc. Oil of turpentine absorbs 50 % HCl. (Thenard.) Oil of turpentine absorbs 163 vols. HCl at 22 and 724 mm. ; isoterebenthene absorbs 34 % at 24 and 724 mm. ; metaterebenthene absorbs 17 -7 % at 24 and 724 mm. (Berthelot. ) Oil of lavender absorbs 68 '7 vols. at 24 (Thenard.) Oil of lavender absorbs 210 vols. without being saturated ; oil of rosemary absorbs 218 vols. at 22 ; sol. in "4 vol. petroleum. (Saussure.) Absorbed by caprylic alcohol. (Bouis.) Fuming HCl + Aq is sol. in glycerine and miscible with cone. HC 2 H 3 2 . + 2H 2 0. (Pierre and Puchot, C. R. 82. 45. ) Chlorhydric cyanhydric acid, 3HC1, 2HON". Decomp. by H 2 or alcohol ; sol. in HC 2 H 3 2 . Insol. in ether, chloroform, or acetic ether. (Claisen, B. 16. 309.) 102 CHLORIC ACID HC1, HCN. Sol. in H 2 0, absolute alcohol, HC 2 H 3 2 , and CHC1 3 , with decomp. ; decomp. is especially rapid in H 2 0. Insol. in H 2 0. (Gautier, A. ch. (4) 17. 130.) Chloric acid, HC10 3 . Known only in aqueous solution, which can be concentrated in vacuo to a sp. gr. of 1*282 at 14-2, and then contains 40 '10 % HC10 3 , corresponding to HC10 3 + 7H 2 ; if left longer in vacuo over H 2 S0 4 an acid corresponding to HC10 3 + 4|H 2 is obtained. Aqueous solution of HC10 3 decomp. at 40. (Kammerer, Fogg. 138. 390.) Chlorates. All chlorates except mercurous chlorate are sol. in H 2 ; most of them are deliquescent ; many are sol. in alcohol. Aluminum chlorate. Deliquescent. Easily sol. in H 2 0. Sol. in alcohol. (Chevenix, 1802.) Ammonium chlorate, !SrH 4 C10 3 . Easily sol. in H 2 ; less sol. in alcohol. Much less sol. in H 2 at than NaC10 3 . (Storer.) Very si. sol. in absolute alcohol. (Wachter, J. pr. 30. 321.) Barium chlorate, Ba(C10 3 ) 2 + H 2 0. Sol. in 4 pts. cold, and less hot H 2 0. (Chevenix.) 100 pts. H 2 dissolve at : 20 40 60 80 100 22-8 37'0 52-1 77 '5 98 '0 126 '4 pts. Ba(C10 3 ) 2 . Sat. solution boils at 111. (Kremers, Pogg. 99. 43.) Only slight traces dissolve in absolute alcohol. (Wachter, J. pr. 30. 334.) Bismuth chlorate. Known only in solution, which decomp. on evaporation. Csesium chlorate, CsC10 3 . (Retgers, Z. phys. Ch. 5. 449.) Cadmium chlorate, Cd(C10 3 ) 2 + 2H 2 0. Very deliquescent ; sol. in H 2 and alcohol. Melts in crystal H 2 at 80. (Wachter, J. pr. 30. 321.) Calcium chlorate, Ca(C10 3 ) 2 + 2H 2 0. Deliquescent ; very sol. in H 2 and alcohol. (Wachter, J. pr. 30. 323.) Melts in its water of crystallisation at over 100. Chromic chlorate. Easily sol. in H 2 0. (Prudhomme, C. C, 1890, 1. 668.) Cobaltous chlorate, Co(C10 3 ) 2 + 6H 2 0. Very deliquescent. Sol. in H 2 and alcohol. Melts in crystal H 2 at 50. (Wachter, J. pr. 30. 321.) Cupric chlorate, basic. Insol. in H 2 0. Easily sol. in dil. acids. (Wachter.) Cupric chlorate, Cu(C10 3 ) 2 + 6H 2 0. Very deliquescent. Easily sol. in H 2 and alcohol. Melts in its crystal H 2 at 65. (Wachter, J. pr. 30. 321.) Erbium chlorate, Er(C10 3 ) 3 + 8H 2 0. Deliquescent. Sol. in H 2 and alcohol. Glucinum chlorate. Known only in aqueous solution, which de- composes on evaporation. Ferrous chlorate. Known only in solution. Ferric chlorate, Fe(C10 3 ) 3 . Sol. in H 2 0. Basic salt. Insol. in H 2 0. Lanthanum chlorate, La(C10 3 ) 3 . Deliquescent. (Cleve. ) Lead chlorate, Pb(C10 3 ) 2 + H 2 0. Deliquescent ; easily sol. in H 2 and alcohol. (Wachter, J. pr. 30. 321.) Lithium chlorate, LiC10 3 + |H 2 0. Very deliquescent and sol. in H 2 0. Very easily sol. in alcohol. Melts at 50 in its crystal water. (Wachter, J. pr. 30. 321.) Contains 3H 2 0, and is not deliquescent. (Lagorio, Zeit. f. Kryst. 15. 80.) Salt is anhydrous. (Retgers, Z. phys. Ch. 5. 449.) Magnesium chlorate, Mg(C10 3 ) 2 + 6H 2 0. Very deliquescent and sol. in H 2 0. Very easily sol. in alcohol. Melts at 40 in its crystal water. (Wachter, J. pr. 30. 325.) Manganous chlorate, Mn(C10 3 ) 2 . Known only in solution which decomposes on evaporation. (Wachter.) Mercurous chlorate, Hg 2 (C10 3 ) 2 . a. Easily sol. in alcohol and H 2 0. (Wachter, J. pr. 30. 321.) p. Insol. in H 2 ; easily sol. in HC 2 H 3 2 + Aq. (Wachter.) Decomp. by boiling H 2 0. Mercuric chlorate, 2HgO, C1 2 5 + H 2 0. Deliquescent. Decomp. by H 2 into oxide and an acid salt. (Wachter.) Sol. in 4 pts. cold H 2 0. (Chevenix, 1802.) Nickel chlorate, Ni(C10 3 ) 2 +6H 2 0. Deliquescent. Easily sol. in H 2 and alcohol. Melts in crystal H 2 at 80. (Wachter, J. pr. 30. 321.) Potassium chlorate, KC10 3 . Sol. in H 2 with absorption of heat. Sol. in about 16 pts. cold, and in much less hot HoO. (Chevenix, 1802.) Sol. in 30-03 pts. H 2 at 0; 17-85 pts. at 13'3; and in 1-66 pts. at 104-78. (M. R. and P.) Sol. in 16 pts. H 2 at 18-75. (Abl.) 100 pts. HoO at 15-5 dissolve 6 '2 pts. ; at 100, 40 pts. (Ure's Diet.)" 100 pts. H 2 dissolve pts. KC10 3 at t Pts.' KC10 3 '. 28 9-5 35 12-3 40 14-4 47 18-3 65 29-1 (Gerard in.) CHLORATE, POTASSIUM 103 100 pts. HoO dissolve pts. KC10 3 at t t" Pts. KC10 3 3-33 5-60 6-03 8-44 t Pts. KC10 3 13-32 15-37 24-43 35-0 49-08 74-89 104-78 12-05 18-96 35-40 60-24 (Gay-Lussac, A. ch. 11. 314.) 100 pts. H 2 dissolve pts. KC10 3 at t. Pts. Pts. t KC1O 3 KC1O 3 3'3 130 88'5 100 56-5 180 190 (Tilden and Shenstone, Roy. Soc. Proc. 35. 345.) 100 pts. H 2 dissolve pts. KC10 3 at t. Pts. II Pts. KC1O 3 KC1O 3 120 737 160 148 136 98'9 190 183 (Tilden and Shenstone, Phil. Trans. 1884. 23.) Coefficient of solubility is 3'2 + 0'109t + 0'0043t 2 between and 35. (Blarez, C. R. 112. 1213.) Sp. gr. of KC10 3 + Aq, according to Kremer's experiments (Pogg. 96. 62), and Gerlach's calculations. (Z. anal. 8. 290.) % KC10 3 Sp. gr. % KC10 3 Sp. gr. 1 1-007 6 1-039 2 1-014 7 1-045 3 1-020 8 1-052 4 1-026 9 1-059 5 1 -033 10 1-066 Sp. gr. of KC10 3 + Aq at 20 containing 1 mol. KC10 3 to 100 mols. H 2 0=l '04122. (Nicol, Phil. Mag. (5) 16. 122.) Sp. gr. of KC10 3 + Aq at 15 containing 5 % KC10 3 = 1-0316. (Kohlrausch, W. Ann. 1879. 1.) B.-pt. of KC10 3 + Aq containing pts. KC10 3 to 100 pts H 2 0. Pts. KC10 3 B.-pt. Pts. KC10 3 ' B.-pt. 6-5 100-5 ! 44-6 103-0 13-2 101-0 53-4 103-5 20-2 101-5 62-2 104-0 27-8 102-0 69-2 104-4 35-8 102-5 i (Gerlach, Z. anal. 26. 450.) Saturated solution boils at 105. (Kremers.) Saturated solution boils at 104 '2, and con- tains 61-5 pts. KC10 3 to 100 pts. H 2 0. (Legrand.) Saturated solution boils at 103 "3, and con- tains 66 -6 pts. KC10 3 to 100 pts. H 2 0. (Griffiths. ) Saturated solution boils at 104 '4. (Gerlach, Z. anal. 26. 427.) Sol. in pure HlSTOg without decomp., but decomp. at once by HN0 3 containing N0 2 . (Millon, A. ch. (3) 6. 92.) Sol. in sat. N"H 4 Cl + Aq without causing pptn. 1 mol. ( = 129 pts.) KC10 3 dissolves in 2493 vols. H 2 ; in 2208 vols. H 2 when 1 mol. ( = 59 pts.) NaCl is added ; in 2060 vols. BL 2 with 2 mols. ( = 118 pts.) NaCl ; and in 1910 vols. H 2 with 4 mols. ( = 236 pts.) NaCl. (Gladstone, Chem. Soc. 15. 302.) KC10 3 is sol. in about 29-50' pts. H 2 0. 35-50 pts. NH 4 OH + Aq cone. 39-00 pts. dil. NH 4 OH + Aq (1 vol. cone. : 3 vols. H 2 0). 30-50 pts. HNOo + Aq (1 vol. cone. HN0 3 : 5 vols. H 2 0). 33-00 pts. HC1 + Aq (1 vol. cone. HC1 : 4 vols. H 2 0). 48-00 pts. HC 2 H 3 2 + Aq (1 vol. commercial HC 2 H 3 2 : 1 vol. H 2 0). 31-50 pts. NH 4 C1 + Aq (1 pt. NH 4 C1 : 10 pts. H 2 0). 18-00 pts. NH 4 N0 3 + Aq (1 pt. NH 4 N0 3 : 10 pts. H 2 0). 34-00 pts. NH 4 C 2 H 3 2 + Aq (dil. NH 4 OH + Aq + dil. HC 2 H 3 2 + Aq). 32*50 pts. NaC 2 H 3 2 + Aq (commercial HC 2 H 3 2 + Na 2 C0 3 , diluted with 4 vols. H 2 0). 31-50 pts. Cu(C 2 H 3 2 ) 2 + Aq. (See Stolba, Z. anal. 2. 390.) 33'50 pts. cane-sugar (1 pt. cane-sugar : 10 pts. H 2 0). 36 "50 pts. grape-sugar (1 pt. grape-sugar : 10 pts. H 2 0). (Pearson, Zeit. Chem. 1869. 662.) Addition of K salts to sat. KC10 3 + Aq ppts. KC10 3 in such a way, that the sum of the KC10 3 remaining in solution and the K in the salt added, is a constant, which constant is equal to the solubility of KC10 3 , so that the following formula represents the coefficiency of solubility of KC10 3 after addition of a K salt, 3 -2 + -109t + -0043t 2 - K of salt added. (Blarez, C. R. 112. 1213.) Sol. in 120 pts. alcohol of 83 % at 16. (Wittstein.) Sol. in 120 pts. alcohol of 77 '1 %. (Pohl, W. A. B. 6. 595.) Insol. in absolute alcohol. (Gerardin.) Solubility of KC10 3 in dil. alcohol. D = sp. gr. of alcohol; S = solubility in 100 pts. alcohol at t. D = 0-9904 D =0-9848 D = 0-9793 t s t S t 13 4-9 14 47 14 3'2 21 6 "3 26 ! 7-1 26 5-4 25 7-5 39 j 9-3 38 7-9 30 9-1 47 ! 12-8 46 10-8 35 10-2 55 116-1 51 12-2 44 13-6 65 22-3 63 17-5 50 16-2 66 22-5 65 19-0 104 CHLORATE, POTASSIUM SILVER Solubility of KC10 3 , etc. Continued. D = 0-9726 D = 0-9573 D = 0-9390 t S t S t S 13 2'2 13 1-9 14-5 I'l 20 3-3 20 27 28 2'2 33 5'8 29 3'6 40 3'4 43 7-2 36 4-3 50 4-3 56 11-4 55 7'9 62 6'6 59 12-9 60 9-7 67 7'6 63 10-5 D = 0-9111 D = 0-8967 D = 0-8429 t S t S t S 13 074 12 6'46 25 0-09 25 1-08 31 1-28 34 0-12 32 178 43 1-95 56 0-24 52 3-35 58 3-10 64 0-32 (Gerardin, A. ch. (4) 5. 148.) Very si. sol. in acetone. (Krug and M'Elroy, J. Anal. Ch. 6. 184.) Potassium silver chlorate, KC10 3 , AgC10 3 . (Pfaundler, W. A. B. 46, 2. 266.) Rubidium chlorate, RbC10 3 . 100 pts. H 2 dissolve 2*8 pts. at 47 ; 3 '9 pts. at 13 ; 4'9 pts. at 18 '2 ; 5'1 pts. at 19. (Reissig, A. 127. 33.) Silver chlorate, AgC10 3 . Sol. in 10-12 pts. cold H 2 (Vauquelin) ; in 8-10 pts. cold, and 2 pts. hot H 2 (Chevenix) ; in 5 pts. cold H 2 (Wachter). SI. sol. in alcohol (Chevenix) ; easily sol. in alcohol (Wachter). Silver chlorate ammonia, AgC10 3 , 2NH 3 . Easily sol. in H 2 or alcohol. (Wachter, 1843.) Sodium chlorate, NaC10 3 . Deliquescent. Sol. in 3 pts. cold, and less hot H 2 O. (Wachter ; Chevenix.) Sol. in 3 pts. H 2 at 18-75. (Abl.) 100 pts. H 2 O dissolve 35'5 pts. NaClO 3 . (Ure's Diet.) 100 pts. H 2 dissolve at : 20 40 60 81-9 99 123-5 147 '1 pts. NaC10 3 , 80 100 120 175-6 232-6 333 '3 pts. NaC10 3 . 100 pts. H 2 dissolve 89 "3 pts. NaClO, at 12. (Schlosing.) Sat. solution boils at 132, and temp, can be raised to 135 by supersaturation. (Kremers, Pogg. 97. 4.) Sp. gr. of NaC10 3 + Aq, containing: 10 15 20 25 30 35%NaC10 3 . 1-070 1-108 1-147 1-190 1-235 1'282 (Gerlach, Z. anal. 8. 290.) Sp. gr. of NaC10 3 + Aq at 20 containing 1 mol. NaC10 3 in 100 mols. H 2 = l '03844. (Nicol, Phil. Mag. (5) 16. 122.) NaC10 3 + NaCl. 100 pts. H 2 dissolve" 50 -75 pts. NaC10 3 + 24-4 pts. NaCl at 12 ; 100 pts. H 2 dissolve 249-6 pts. NaClOg + 11-5 pts. NaCl at 122, and when cooled to 12 contain 68 "6 pts. NaC10 3 + 11-5 pts. NaCl. (Schlosing, C. R. 73. 1272.) Sol. in 34 pts. alcohol of 83 % at 16 and in less hot alcohol. (Wittstein.) Somewhat more easily sol. in alcohol than NaCl. (Berzelius.) Strontium chlorate, Sr(C10 3 ) 2 + 5H 2 0. Very deliquescent, and sol. in H 2 0. (Topsoe, W. A. B. 66, 2. 29.) Easily sol. in H 2 0, less in alcohol, but more sol. in alcohol than SrCl 2 . (Souchay, A. 102. 381.) Insol. in absolute alcohol. (Wachter.) Thallous chlorate, T1C10 3 . Sol. in H 2 0, but decomp. by heating. 100 pts. H 2 dissolve at : 20 50 80 100 2-80 3-92 12-67 36 '65 57 '31 pts. T1C10 3 . (Muir, Chem. Soc. 29. 857.) 1 1. TlC10 3 + Aq sat. at 10 contains 25 '637 g. T1C10 3 . (Roozeboom, Z. phys. Ch. 8. 532.) Ytterbium chlorate. Sol. in H 2 0. (Popp, A. 131. 179.) Yttrium chlorate, Y(C10 3 ) 3 + 8H 2 0. Deliquescent. Easily sol. in alcohol. SI. sol. in ether. (Cleve.) Zinc chlorate, Zn(C10 3 ) 2 + 6H 2 0. Very deliquescent. Easily sol. in H 2 and alcohol. Melts in crystal H 2 at 60. (Vau- quelin, A. ch. 95. 113.) Perchloric acid. See Perchloric acid. Chlorides. Most chlorides are sol. in H 2 ; a few, how- ever, are insol. or nearly so therein, the chief of which are AgCl, Hg 2 Cl 2 , Cu 2 Cl 2 , PtCl 2 , and AuCl. Several chlorides are decomp. into insol. basic salts or hydroxides, either by the addition of H 2 0, as in the case of BiCl 3 and SbCl 3 , or on evaporating the aqueous solution, as A1C1 3 , ZnCl 2 , MgCl 2 , etc. Some chlorides are sol. in alcohol or ether. See under each element. Chlorine, C1 2 . The maximum solubility of Cl in H 2 is at 10 (Schonfeld) ; at 8-10 (Gay-Lussac) ; at 9-10 (Pelouze). Solubility decreases from 9-0 ; at 100 the solubility = 0. (Gay-Lussac. ) C1 2 + Aq sat. at 6 has sp. gr. = 1'003. (Ber- thelot.) CHLORINE OXIDE 105 1 vol. H 2 at t absorbs vols. Cl reduced to and 760 mm. pressure. t Vols. Cl t Vols. Cl 10 2-5852 26 1-9099 11 2-5413 27 1-8695 12 2-4977 28 1-8295 13 2-4543 29 1-7895 14 2-4111 30 17499 15 2-3681 31 17104 16 2-3253 32 1-6712 17 2-2828 33 1-6322 18 2-2405 34 1-5934 19 2-1984 35 1-5550 20 2-1565 36 5166 21 2-1148 37 4785 22 2-0734 38 4406 23 2-0322 39 4029 24 1-9912 40 3655 25 1-9504 ... (Schonfeld, A. 93. 26.) 1 vol. H 2 absorbs vols. Cl at t (not corrected). Vols. Cl t Vols. Cl t Vols. Cl t 1-43 1-52 2-08 2-17 3 6-5 7 3-04 3-00 2-37 1-61 8 10 17 35 1-19 071 0-15 50 70 100 (Gay-Lussac, A. ch. (3) 7. 124.) 1 vol. H 2 O at 8 absorbs 3'04 vols. Cl, which is the maximum of solubility. At 50, 1*09 vols. are absorbed ; and at 0, 1*5 vols. (Pelouze and Fremy.) 1 vol. H 2 O at t dissolves vols. Cl (not corrected). t Vols. Cl t Vols. Cl t 40 50 70 Vols. Cl 1-55-1-60 1-15-1-20 0-60-0-65 9 10 1-75-1-80 2-70-2-75 2-70-2-75 12 14 30 2-50-2-60 2-45-2-50 2-00-2-10 (Pelouze, A. ch. (3) 7. 188.) 1 vol. H 2 O absorbs vols. Cl at t. t Vols. Cl t Vols. Cl t Vols. Cl 1-5 -1-6 9 2-65-2-70 14 2-6 -2-65 5 2-05-2-1 10 2-9 -3-0 16 2-35-2-4 8 2-5 -2'6 12 2-65-2-75 30 1*8 -1-85 (Riegel and Walz, Berz. J. B. 1846. 72.) Solubility in H 2 : a coefficient of solubility. t a t a t a 6-9 2-2931 10-1 2-8741 217 2-0422 8-4 2-5469 11-2 27267 32-1 1-5766 9'3 27135 137 2-5079 367 1-3802 (Goodwin, B. 15. 3040.) Goodwin also gives tables for solubility of Cl in HC1 and various chlorides, but they do not show evidence of accurate work. (A. M. C.) 1 1. HC1 + Aq (38 % HC1) dissolves 7 '3 g. Cl ; 1 1. HCl + Aq (12 % HC1) dissolves 11 g. Cl ; 1 1. HCl + Aq (3 % HC1) dissolves 6 '5 g. Cl. (Berthelot, C. R. 91. 191.) Solubility of Cl in NaCl + Aq. a = coefficient of solubility. NaCl = 9 '97 %. t a t a 7'9 1-8115 18-8 1-2785 11-9 1-5879 22-6 1-0081 15-4 1-3684 ... NaCl = 16 -01 %. t a t a 6 11-6 16-4 1-5866 1-2227 1-0121 21-4 26'9 0-8732 17017 NaCl = 19-66 . f j t a 1-6978 15-4 0-9511 9-2 1-2145 20-4 0-7758 9-3 1-2068 21-9 0-7385 14-8 0-9740 ... (Kumpf, W. Ann. Beibl. 6. 276.) Sat. KCl + Aq absorbs less Cl at 15 than pure H 2 0. (Dettmer, A. 38. 35.) 1 1. of a solution of CaCl 2 (1 pt. in 15 pts. H 2 0) dissolves 2 '45 g. Cl at 12. 11. of a solution of MgCl 2 (1 pt. in 15 pts. H 2 0) dissolves 2 '33 g. Cl at 12. 1 1. of a solution of MnCl 2 (1 pt. in 15 pts. H 2 0) dissolves 2 '00 g. Cl at 12. SI. sol. in KOH + Aq. (Fremy.) 1 mol. CrOCl 2 dissolves at 0, 070 atom Cl ; at -14, 1-24 atoms; at -21, 2'31 atoms; and at -24, 3 '00 atoms Cl. (Roozeboom, R. t. c. 4. 379.) Sulphuryl chloride absorbs 71 vols. Cl or 0-136 pt. Cl by weight at 0. (Schulze, J. pr. (2) 27. 168.) Insol. in benzene. (Moride.) SI. sol. in chloral and iodal. (Dumas. ) Sol. in perchlorethylene. (Faraday.) Sol. in a very large quantity of ether with decomp. Chlorine monoxide, C1 2 0. Sol. in H 2 0. At 0, H 2 absorbs at least 200 times its volume of C1 2 gas. Chlorine trioxide, C1 2 3 . Decomp. on air at 57 with explosion. H 2 absorbs 5-6 vols. C1 2 3 . (Millon, A. ch. (3) 7. 298.) H 2 absorbs at 8 '5 and 753 mm. 8-591 vols. C1 2 3 . (Brandan.) press. 106 CHLORINE OXIDE 100 g. H 2 dissolve at : 8'5 and 752 '9 mm. press. 4 '7655 g. C1 2 3 . 14 ,, 756'3 5-0117 21 754 5-4447 93 760 5-6508 (Brandan, A. 151. 340.) Does not exist, and above data are for mix- ture of C10 2 and Cl. (Garzarolli-Thurnlakh, A. 209. 184.) Chlorine peroxide, C10 2 . H 2 at 4 absorbs about 20 vols. C10 2 with formation of HC10 2 and HC10 3 . H 2 S0 4 at - 18 absorbs about 20 vols. C10 2 . (Millon, A. ch. (3) 7. 285.) Chlorine oxide, C1 6 17 . Very easily decomp. (Millon, A. 46. 281.) Probably a mixture of C10 2 and 0. Chloriridicfo'amine chloride, NH,NH 8 C1 SI. sol. in cold, easily in hot H 2 0. (Skobli- koff, A. 84. 275.) - nitrate, Cl 2 Ir(N 2 H 6 N0 3 ) 2 . Sol. in H 2 0. - sulphate, Cl 2 Ir(N 2 H 6 ) 2 S0 4 . SI. sol. in cold, much more easily in hot H 2 0. Chloriridic acid. Chloriridates. Most of the chloriridates are very difficultly sol. in H 2 0, but a little more sol. than the corresponding chloroplatinates. Insol. or nearly so in alcohol, but not so difficultly sol. as the chloroplatinates. (Rose.) Ammonium chloriridate, (NH 4 ) 2 IrCl 6 . Sol. in 20 pts. cold H 2 (Vauquelin) ; si. sol. in cold, much more in hot H 2 (Glaus) ; sol. in HCl + Aq (Soblewsky) ; insol. in cold NH 4 Cl + Aq (Glaus); insol. in alcohol (Ber- zelius). Lithium chloriridate, Li 2 IrCl 6 . Somewhat deliquescent ; very sol. in H 2 0. (Antony, Gazz. ch. it. 23, 1. 190.) Potassium chloriridate, K 2 IrCl 6 . SI. sol. in cold H 2 ; sol. in 15 pts. boiling H 2 ; less sol. in H 2 containing HC1 ; insol. in alcohol or sat. KC1, and CaCl 2 + Aq. Sodium chloriridate, Na 2 IrCl 6 + 6H 2 0. Easily sol. in H 2 ; sol. in alcohol of 0'837 sp. gr. Chloriridium pentamine comps. See Iridojpe?^amine chloro comps. Chloriridosulphurous acid. Potassium chloriridosulphite, K 4 Ir 2 Cl 2 (S0 3 ) 4 , 4KC1 + 12H 2 0. Insol. in cold, decomp. by hot H 2 0. K 4 Ir 2 Cl 2 (S0 3 ) 4 , 2K 2 S0 3 . Decomp. by H 2 0. Cl 2 Ir 2 (S0 3 ) 2 , 8KC1 + 4H 2 0. Sol. in H 2 ; insol. in alcohol. (Glaus, J. pr. 42. 354.) Chloriridous acid. Ammonium chloriridite, (NH 4 ) 6 Ir 2 Cl 12 + 3H 2 0. Sol. inH 2 0. (Glaus.) Potassium chloriridite, K 6 Ir 2 Cl 12 + 6H 2 0. Easily sol. in H 2 ; insol. in alcohol ; insol. in sat. KC1 + Aq. (Berzelius.) Silver chloriridite, Ag 6 Ir 2 Cl 12 . Insol. in H 2 or acids ; si. sol. in NH 4 OH + Aq. Sodium chloriridite, Na 6 Ir 2 Cl 12 + 24H 2 0. Efflorescent ; sol. in pt. H 2 0. Insol. in alcohol. Melts in crystal H 2 at 50. Chloro^ramine chromium comps. See Chlorotetramine chromium comps. Chlorobromo comps: See Bromochloro comps. Chlorocarbonic acid. See Carbonyl chloride. OTT Chlorochromic acid, CrO a ^J Known only in its salts. Cr0 2 Cl 2 . See Chromyl chloride. Ammonium chlorochromate, NH 4 Cr0 3 Cl= CrOo Cl /2 ONH 4 . More sol. in H 2 than the K salt. (Peligot, A. ch. 52. 283.) Barium chlorochromate chloride, Ba(CrOoCl). 2 , BaCl 2 . Deliquescent. Very sol. in H 2 0. (Pratorius, A. 201. 1.) + H 2 0. Not deliquescent. Calcium chlorochromate, Ca(Cr0 3 Cl) 2 . Deliquescent. (Peligot.) + 5H 2 0. Very deliquescent. (Pratorius. ) Chromous chlorochromate. See Tricbromyl chloride. Cobalt chlorochromate, Co(Cr0 3 Cl) 2 + 9H 2 0. Deliquescent ; melts at 40 in crystal H 2 0. (Pratorius.) Magnesium chlorochromate, Mg(Cr0 3 Cl) 2 . Deliquescent. (Peligot.) + 9H 2 0. Less deliquescent than the other chlorochromates. (Pratorius, A. 201. 1.) Nickel chlorochromate, Ni(Cr0 3 Cl) 2 + 9H 2 0. Deliquescent ; melts in its crystal H 2 at 46-48. (Pratorius.) Potassium chlorochromate, KCr0 3 Cl= Cr0 2 (Cl)OK. Sol. in H 2 with decomp. Cryst. from H 2 containing HC1 without decomp. (Peligot. ) Sodium chlorochromate, NaCr0 3 Cl. Deliquescent. (Peligot. ) + 2H 2 0. Deliquescent. (Pratorius.) CHLOROMOLYBDENUM OXYBROMIDE 107 Strontium chlorochromate, Sr(Cr0 3 Cl) 2 + 4H 2 0. Deliquescent ; melts in crystal H 2 at 72. (Pratorius.) Thallous chlorochromate, TlCr0 3 Cl. Decomp. by H 2 0. (Lachaud and Lepierre, C. R. 103. 198.) Zinc chlorochromate, Zn(Cr0 3 Cl) 2 + 9H 2 0. Deliquescent ; melts at 37*5 in crystal H 2 0. (Pratorius.) Chlorochromotetrammonium comps. See Chlorotetramine chromium comps. Chloroctamine cobaltic carbonate. Cl 4 Co 2 (NH 3 ) 8 C0 3 + 2H 2 0. Very sol. in H 2 0. (Vortmann and Blasberg, B. 22. 2651.) Cl 2 Co 2 (NH 3 ) 8 (C0 3 ) 2 + H 2 0. (Vortmann and Blasberg. ) Chloroferrous acid. Calcium chloroferrite, CaO, CaCl 2 , Fe 2 3 . Insol. in H 2 0. (le Chatelier, C. R. 99. 276.) Z^'chlorofulminoplatmum, Pt 4 N 4 Cl 2 12 H 22 (?). Insol. in H 2 0. (v. Meyer, J. pr. (2) 18. Tn'chlorofulminoplatinum, Pt 4 N 4 Cl 3 (OH)0 ]2 H 24 (?). Insol. in H 2 ; sol. in HC1 + Aq. (v. Meyer. ) ^Wrachlorofulminoplatinum, PWJIAaH* (?). Insol. in H 2 0. (v. Meyer.) Chlorohydroxylonitritoplatinsem^'- amine nitrite, (OH)ClN0 2 Pt(NH 3 ) 2 NO,. Easily sol. in hot H 2 0. (Cleve. ) Chlorohydroxyloplatinc&amine bromide, SI. sol. in H 2 0. - carbonate, ( ^Pt(N 2 H 6 ) 2 C0 3 . Insol. in H 2 0. (Cleve.) - chloride, ^Pt(N 2 H 6 Cl) 2 . SI. sol. in H 2 0. (Cleve.) - chromate, ( ^Pt(N 2 H 6 ) 2 Cr0 4 . Nearly insol. in H 2 0. - bichromate, ( ^ Cpt ( N 2H 6 ) 2 Cr 2 7 . Ppt. (Cleve.) nitrate (Raewsky's nitrate), G H Pt(N 2 H 6 N0 3 ) 2 . SI. sol. in cold, more easily in hot H 2 0. (Gerhardt.) Ohlorohyposulphuric acid, S 2 3 C1 4 . See Sulphur oxy^rachloride. Chloromanganic acid. See Manganic hydrogen chloride. Chloromercurosulphurous acid. Ammonium chloromercurosulphite, NH 4 S0 3 HgCl. Sol. in H 2 0. (Earth, Z. phys. Ch. 9. 205.) Barium chloromercurosulphite, Ba(S0 3 HgCl) 2 . Insol. inH 2 0. (Earth.) Potassium chloromercurosulphite, KS0 3 HgCl. Sol. in H 2 0. (Barth.) Sodium chloromercurosulphite, NaS0 3 HgCl + H 2 0. Very sol. in H 2 0. (Barth.) Chloromolybdenum bromide, Cl 4 Mo 3 Br 2 + 3H 2 0. Insol. in H 2 and dil. acids ; sol. in alcohol. + 6H 2 0. At first easily sol. in H 2 0, but a precipitate soon settles. Can be crystallised from dil. HBr + Aq. Sol. in alcohol and ether. (Blomstrand.) Chloromolybdenum potassium bromide, Cl 4 Mo 3 Br 2 , 2KBr + 2H 2 0. Decomp. by H 2 0. Can be cryst. from HBr + Aq. (Blomstrand.) Chloromolybdenum chloride, Cl 4 Mo 3 Cl 2 = molybdenum ^'chloride, MoCl 2 . Insol. in H 2 ; easily sol. in HC1 + Aq or H 2 S0 4 + Aq ; si. sol. in HN0 3 ; sol. in NH 4 OH + Aq, NaOH + Aq, or KOH + Aq, with separation of precipitate on boiling ; sol. in alcohol and ether. (Blomstrand, J. pr. 77. 96.) + 3H 2 0. Insol. in H 2 0. + 4^H 2 0. Insol. in H 2 0. (Liechti and Kempe, A. 170. 351.) + 6H 2 0. Sol. in H 2 0, alcohol, or ether. (Blomstrand.) Chloromolybdenum potassium chloride, Cl 4 Mo 3 Cl 2 , 2KC1 + 2H 2 0. Decomp. by pure H 2 ; can be recrystallised from HCl + Aq. (Blomstrand, J. pr. 77. 108.) Chloromolybdenum hydroxide, Cl 4 Mo 3 (OH) 2 + 2H 2 0. Insol. in H 2 or alcohol. Easily sol. in strong acids if fresh, and washed only with cold H 2 0. If washed with warm H 2 0, it is less sol. in acids. If precipitated hot, is insol. in acids, even H 2 S0 4 or fuming HN0 3 . (Blom- strand, J. pr. 77. 100.) + 8H 2 0. Chloromolybdenum iodide, Cl 4 Mo 3 I 2 + 3H 2 0. Precipitate. + 6H 2 0. Sol. in H 2 and alcohol. Chloromolybdenum potassium iodide, Cl 4 Mo 3 I 2 , 2KI + 2H 2 0. Decomp. by H 2 0. Recryst. from HI + Aq. (Blomstrand. Chloromolybdenum oxybromide, Cl 4 Mo 3 OH Insol. in alcohol. (Blomstrand, J. pr. 77. 116.) 108 CHLORONITRATOPLATINAMINE NITRITE Chloronitratoplatinamine nitrite, Easily sol. in H 2 0. Chloronitratoplatincfo'amine nitrate, Decomp. by H 2 with formation of C ^Pt[(NH 3 ) 2 N0 3 )] 2 . - sulphate, N C ^Pt(N 2 H 6 ) 2 S0 4 + H 2 0. SI. sol. in cold, more easily in hot H 2 0. Chloronitritotetramine cobaltic chloride, C1(N0 2 )CO(NH 3 ) 4 C1. Not very sol. in cold H 2 0. (Jorgensen, Z. anorg. 5. 195.) Chloronitritoplatinsemcfo'amine chloride, Cl 2 (N0 2 )Pt(NH 3 ) 2 Cl. 100 pts. solution in H 2 sat. at 18 contain 1 '8 pts. salt ; sat. at 100, 6 pts. Insol. in abs. alcohol or ether. Not decomp. by cone. HN0 3 , HC1, or H 2 C 2 4 + Aq, and by H 2 S0 4 only at a high heat. Formula given was PtN 6 H 12 Cl 6 5 . (Pey- rone, J. B. 1855. 421.) - nitrite, Cl 2 (N0 2 )Pt(NH 3 ) 2 N0 2 . Sol. in H 2 0. (Blomstrand. ) Chlorophosphatoplatincfo'amine phos- ClPt(N 2 H 6 ) 2 phate, \ / +2H 2 0. P0 4 Nearly insol. in cold, and only very si. sol. inhotH 2 0. (Raewsky.) Chloropalladic acid. Chloropalladates. The chloropalladates are generally very sol. in H 2 0, and sol. in alcohol, (v. Bonsdorff, Pogg. 17. 264.) Ammonium chloropalladate, (NH 4 ) 2 PdCl 6 . SI. sol. in H 2 0. (Berzelius.) Barium chloropalladate. Sol. in H 2 and alcohol, (v. Bonsdorff.) Cadmium chloropalladate. As above. Calcium chloropalladate. Deliquescent ; sol. in H 2 and alcohol, (v. Bonsdorff, 1829.) Glucinum chloropalladate, GlPdCl 6 + 8H 2 0. Very hygroscopic, and sol. in H 2 0. Magnesium chloropalladate, MgPdCl 6 + 6H 2 0. Deliquescent ; sol. in H 2 0. Nickel chloropalladate, NiPdCl 6 + 6H 2 0. Extremely deliquescent. Potassium chloropalladate, K 2 PdCl 6 . SI. sol. in cold H 2 0. Decomp. by long boil- ing with H 2 0. SI. sol. in dil. HCl + Aq with- out decomp. Insol. in NH 4 C1, KC1, or NaCl + Aq. Insol. in alcohol. (Berzelius.) Zinc chloropalladate, ZnPdCl 6 + 6H 2 0. Very deliquescent, (v. Bonsdorff.) Chloropalladous acid. Aluminum chloropalladite, Al 2 Pd 2 Cl 10 + 20H 2 0. Deliquescent. Sol. in H 2 0, alcohol, or ether. (Welkow, B. 7. 804.) Ammonium chloropalladite, (NH 4 ) 2 PdCl 4 + H 2 0. Easily sol. in H 2 0. Insol. in alcohol. Sol. inNH 4 Cl + Aq. (Glaus.) Barium chloropalladite. Easily sol. in H 2 or alcohol. Cadmium chloropalladite. Not deliquescent. Calcium chloropalladite. Deliquescent. Sol. in H 2 or alcohol. Glucinum chloropalladite, GlPdCl 4 + 6H 2 0. Very hygroscopic ; very sol. in H 2 0, alcohol, or ether. (Welkow.) Magnesium chloropalladite. Deliquescent. Easily sol. in H 2 0. (v. Bons- dorff.) Manganese chloropalladite. Sol. in H 2 and alcohol. Nickel chloropalladite. Sol. in H 2 0. Potassium chloropalladite, K 2 PdCl 4 . Much more sol. in hot than cold H 2 0. (Joannis, C. R. 95. 295.) Sol. in NH 4 OH + Aq. (Berzelius.) Sol. in cold sat. KC1 + Aq. (Gibbs, Sill. Am. J. (2) 31. 70.) Insol. in alcohol. (Wollaston.) Somewhat sol. in alcohol of 0'84 sp. gr., but insol. in absolute alcohol ; on boil- ing decomp. ensues. (Berzelius. ) Sodium chloropalladite. Deliquescent. Sol. in H 2 and alcohol. Zinc chloropalladite. Very deliquescent. Sol. in H 2 and alcohol, (v. Bonsdorff.) Chlorophosphoarsenioiridic acid, 2Ir01 3 , 3H 3 P0 3 , 3H 3 P0 4 , 5H 3 As0 4 (?). Very sol. in H 2 0. (Geisenheimer. ) Lead chlorophosphoarsenioiridate, 4lrCl 3 , 3Pb 2 H 2 (P0 3 ) 2 , 3Pb 3 (P0 4 ) 2 , 5Pb 2 H 2 (As0 4 ) 2 . Chlorophosphoiridic acid, 2lrCl 3 , 3H 3 P0 4 , 3H 3 P0 3 . Very sol. in H 2 0. Insol. in alcohol. (Geisenheimer, A. ch. (6) 23. 254.) 2IrCl 3 , 3H 3 P0 4 . Sol. in H 2 and alcohol. Ammonium chlorophosphoiridate, 2IrCl 3 , 3(NH 4 ) 3 P0 4 , 3(NH 4 ) 2 HP0 3 . Very deliquescent. Very sol. in H 2 0. (Geisenheimer.) CHLOROPLATINATE, CESIUM 109 Lead chlorophosphoiridate, 4IrCl s , 3Pb 3 (P0 4 ) 2 , 3PbH 2 (P0 3 ) 2 . Insol. in H 2 or acetic acid ; very sol. in dil. HN0 3 + Aq. (Geisenheimer.) Silver chlorophosphoiridate, 2IrCl 3 , 3 AgH 2 P0 4 , 3AgH 2 P0 3 . Insol. in H 2 0. Sol. in HN0 3 + Aq, and NH 4 OH + Aq. (Geisenheimer. ) Chlorophosphoplatinic acid. See Chloroplatinophosphoric acid. Chloroplatinamine chloride, Sol. in about 700 pts. H 2 at 0, and 33-34 pts. at 100. Not attacked by boiling cone. HN0 3 or H 2 S0 4 . Sol. in boiling KOH + Aq with decomp. Sol. in NH 4 OH + Aq. (Cleve, Sv. V. A. H. 10, 9. 30.) nitrite, Cl 2 Pt(NH 3 N0 2 ) 2 . SI. sol. in cold, easily in hot H 2 0. - nitrite silver nitrite, Cl 2 Pt(NH 3 N0 2 ) 2 , AgN0 2 . Easily sol. in hot, si. sol. in cold H 2 0. (Cleve.) nitritochloride, C^Pt^ 3 ^ 2 Sol. in H 2 0. (Cleve.) Chloroplatincfo'amine bromide, Cl 2 Pt(N 2 H 6 Br) 2 . SI. sol. in hot H 2 0. (Cleve.) chloride (Gros' chloride), Cl 2 Pt(N 2 H 6 Cl) 2 . Nearly insol. in cold, and only si. sol. in hot H 2 0. Sol. in hot cone. KOH + Aq, with de- comp. (Grimm. ) Sol. in cold KOH + Aq without decomp. Nearly insol. in NH 4 OH + Aq. (Buckton. ) + H 2 0. (Raewsky.) - chloroplatinate, Cl 2 Pt(N 2 H 6 Cl) 2 , PtCl 4 . Easily sol. in hot H 2 0. - chloroplatinite, Cl 2 Pt(N 2 H 6 Cl) 2 , PtCl 2 . SI. sol. in H 2 0. (Cleve.) chromate, Cl 2 Pt(N 2 H 6 ) 2 Cr0 4 . Nearly insol. in H 2 0. (Cleve.) - ^chromate, Cl 2 Pt(N 2 H 6 ) 2 Cr 2 7 . SI. sol. in cold, more sol. in hot H 9 0. (Cleve.) - nitrate (Gros' nitrate), Cl 2 Pt(N 2 H 6 N0 3 ) 2 . Much more easily sol. in hot than in cold H 2 0. Sol. in hot KOH + Aq with decomp. Nearly insol. in cone. HN0 3 + Aq. phos- - nitritochloride, Ppt. ( Jorgensen. ) phosphate. See Chlorophosphatoplatine^amine phate. - sulphate, Cl 2 Pt(N 2 H 6 ) 2 S0 4 . SI. sol. in both cold or hot H 2 0. (Cleve.) + a?H 2 0. SI. sol. in cold, easily in hot H 2 0. (Grimm.) ChloroplatincZmmine sulphocyanide, Cl 2 Pt(N 2 H 6 ) 2 (CNS) 2 + H 2 0. Ppt. (Cleve.) ChloroplatinmoTiocfo'amine chloride, C1 pt (NH 3 ) 2 Cl U 2 n NH 3 Cl. Quite easily sol. in H 2 0. (Cleve.) chloride, Cl 3 Pt(NH 3 ) 2 Cl. Sol. in 300 pts. H 2 at 0, and 65 pts. at 100. Not decomp. by cone. H 2 S0 4 . Sol. in KOH + Aq without decomp. (Cleve. ) Chloroplatinic acid, H 2 PtCl 6 +6H 2 0. Deliquescent. Sol. in H 2 0, alcohol, or ether. + 4H 2 0. Deliquescent. (Pigeon, C. R. 112. 1218.) PtCl 4 , HC1 + 2H 2 0. (Pigeon.) Aluminum chloroplatinate, A1C1 3 , PtCL + 15H 2 0. Very sol. in H 2 and alcohol. (Welkow, B. 7. 304.) Insol. in ether. Ammonium chloroplatinate, (NH 4 ) 2 PtCl e . SI. sol. in cold, more easily in hot H 2 0. (Fresenius.) 100 pts. H 2 dissolve 0'666 pt. at ord. temp, and 12 '5 pts. at 100. (Crookes, C. N. 9. 37.) Insol. in cold HCl + Aq. Separates out on cooling from solution in hot HC1, HNO S , or H 2 S0 4 . (Fischer.) Very si. sol. in cold, easily in hot NH 4 OH + Aq. (Fresenius.) Cone. NH 4 C1 + Aq ppts. it almost completely from aqueous solution. (Bottger.) Sol. in NH 4 succinate + Aq. (Dopping.) Less sol. in H 2 PtCl 6 + Aq than in H 2 0. (Rogojski, A. ch. (3) 41. 452.) Sol. inSnCLj + Aq. (Fischer.) Very sol. with decomp. in KCNS + Aq. (Claus.) At 15-20, sol. in 26,535 pts. 97 '5 % alcohol, in 1476 pts. 76 % alcohol, and in 665 pts. 55 % alcohol. If free HC1 is present, it is sol. in 672 pts. 76 % alcohol. (Fresenius, A. 59. 118.) Insol. in absolute alcohol or ether. Barium chloroplatinate, BaPtCl 6 + 6H 2 0. Permanent ; sol. in H 2 ; decomp. by alcohol, (v. Bonsdorff, Pogg. 17. 250.) Cadmium chloroplatinate, CdPtCl 6 + 6H 2 0. Deliquescent, and easilysol. in H 2 0. (v. Bons- dorff.) Caesium chloroplatinate, Cs 2 PtCl 6 . 100 pts. H 2 dissolve at : 10 20 30 40 50 0-024 0-050 0-079 O'llO 0'142 0'l77pts.Cs 2 PtCl 6 , 60 70 80 90 100 0-213 0-251 0-291 0'332 0-377pts.Cs 2 PtCl 6 . (Bunsen, Pogg. 113. 337.) Sol. in 1308 pts. H 2 at 15, and 261 pts. at 100. (Crookes, C. N. 9. 2Q$?j^ /> OP THE ^ 110 CHLOROPLATINATE, CALCIUM Calcium chloroplatinate, CaPtCl 6 + 8H 2 0. Deliquescent ; easily sol. in H 2 0. (v. Bons- do-rff.) Cerium chloroplatinate, CeCl 3 , PtCl 4 + 13H 2 0. Deliquescent ; very sol. in H 2 or alcohol ; insol. in ether. (Marignac.) 4CeCl 3 , 3PtCl 4 + 8H 2 0. Deliquescent ; easily sol. in H 2 O or alcohol ; insol. in ether. (Holz- mann, J. pr. 84. 80.) Chromium chloroplatinate, CrCl 3 , PtCl 4 + 10JH 2 0. Deliquescent. (Nilson, B. 9. 1056.) Cobalt chloroplatinate, CoPtCl 6 + 6H 2 0. Very deliquescent. (Jorgensen.) Copper chloroplatinate, CuPtCl 6 + 6H 2 0. Deliquescent in moist air. (v. Bonsdorff.) Didymium chloroplatinate, DiCl 3 , PtCl 4 + 13H 2 0. Less deliquescent than the cerium salt. (Marignac. ) + 10^H 2 0. Deliquescent. (Clove, Bull. Soc. (2)43. 361.) Erbium chloroplatinate, ErCl 3 , PtCl 4 + llH 2 0. Very deliquescent. (Cleve.) Glucinum chloroplatinate, GlPtCl 6 + 8H 2 0. Deliquescent in moist air. Very sol. in H 2 0, moderately in alcohol. Insol. in ether. (Welkow, B. 6. 1288.) Indium chloroplatinate, 2lnCl, 5PtCl 4 + 36H 2 0. Deliquescent. (Nilson.) Ferrous chloroplatinate, FePtCl 6 + 6H 2 0. Deliquescent. (Topsoe. ) Ferric chloroplatinate, FeCl 3 , PtCl 4 + 10H 2 0. Deliquescent. (Mlson.) Lanthanum chloroplatinate, LaCl 3 , PtCl 4 + 13H 2 0. Deliquescent ; extremely sol. in H 2 0. (Cleve.) Lead chloroplatinate, PbPtCl 6 + 3H 2 0. Easily sol. in H 2 and alcohol (Topsoe), with decomp. (Birnbaum, Zeit. Cli. 1867. 520.) Lithium chloroplatinate, Li 2 PtCl 6 + 6H 2 0. Extremely deliquescent (Jorgensen) ; efflor- escent. Easily sol. in H 2 0, alcohol, or ether- alcohol ; insol. in ether. (Scheibler.) Magnesium chloroplatinate, MgPtCl 6 + 6H 2 0. Sol. in H 2 and abs. alcohol. + 12H 2 0. Sol. in H 2 0. Manganese chloroplatinate, MnPtCl 6 + 6H 2 0. Not deliquescent ; sol. in H 2 0. + 12H 2 0. SI. efflorescent. Nickel chloroplatinate, NiPtCl 6 + 6H 2 0. Sol. in H 2 0. Potassium chloroplatinate, K 2 PtCl 6 . 100 pts. H 2 dissolve at : 10 20 30 40 50 074 0-90 1-12 1-41 176 2 -17 pts. KgPtClg, 60 70 80 90 100 2-64 3-19 3-79 4 '45 5 '18 pts. K 2 PtCl 6 . (Bunsen, Pogg. 113. 337.) 100 pts. H 2 dissolve 0'926 pt. at 15, and 5'26 pts. at 100. (Crookes, C.N. 9. 205.) Not attacked by cold cone. H 2 S0 4 . (Las- saigne. ) SI. sol. in cold, more easily in hot dil. acids. Less sol. in KC1 + Aq than in H 2 0, and nearly insol. in sat. KCl + Aq. (Schrbtter, W. A. B. 50, 2. 268.) Sol. ' in KOH + Aq. Insol. in cold or hot alkali carbonates or bicarbonates + Aq. (Rose. ) Easily sol. in warm Na 2 S 2 3 + Aq. (Himly. ) Sol. in NH 4 C1 + Aq. (Brett. ) Sol. in NH 4 succinate +Aq. (Dopping.) At 15-20, sol. in 12,083 pts. absolute alcohol, in 3775 pts. 76 % absolute alcohol, and in 1053 pts. 55 % absolute alcohol. (Fresenius. ) Sol. in 1835 pts. 76 % alcohol containing HC1 at 15-20. (Fresenius.) Nearly absolutely insol. in alcohol containing ether. Sol. in 42,600 pts. absolute alcohol. (Precht, Z. anal. 18. 509.) Eubidium chloroplatinate, Rb 2 PtCl 6 . 100 pts. H 2 dissolve at : 10 20 30 40 50 0-184 0-154 0-141 0-145 0'166 0'203pts.Rb 2 PtCl 6 , 60 70 80 90 100 0*253 0-329 0'417 0'521 0'634 pts. Rb 2 PtCl 6 . (Bunsen, Pogg. 113. 337.) Sol. in 740 pts. H 2 at 15, and 157 pts. at 100. (Crookes, C. N. 9. 205.) Insol. in alcohol. Samarium chloroplatinate, SniCl,, PtCl 4 + 10iH 2 0. Deliquescent. Very sol. in H 2 0. (Cleve, Bull. Soc. (2) 43. 165.) Silver chloroplatinate, Ag 2 PtCl 6 . Ppt. Gradually decomp. by H 2 into AgCl and PtCl 4 . (Jorgensen, J. pr. (2) 16. 345.) Ag 2 PtCl 4 (OH) 2 . Ppt. Silver chloroplatinate ammonia, Ag 2 PtCL, 2NH 3 . Insol. in H 2 0. (Birnbaum.) Sodium chloroplatinate, Na 2 PtCl 6 + 6H 2 0. Easily sol. in H 2 or alcohol ; sol. in Nad + Aq. Insol. in ether. More sol. in absolute alcohol than in 95 % alcohol. (Precht, Z. anal. 18. 502.) Strontium chloroplatinate, SrPtCl 4 + 8H 2 0. Very sol. in H 2 0. Thallium chloroplatinate, Tl 2 PtCl 6 . Very si. sol. in H 2 0. Sol. in 15,585 pts. H 2 at 15, and 1948 pts. at 100. (Crookes.) Thorium chloroplatinate, ThCl 4 ,TtCl 4 + 12H 2 0. Very deliquescent. (Cleve, Bull. Soc. (2) 21. 118.) Stannic chloroplatinate, SnCl 4 , PtCl 4 +12H 2 0. (Nilson, B. 9. 1142.) Vanadyl chloroplatinate, (VO)PtCl 4 + 10$H 2 0. Sol. in H 2 0; cryst. from PtCl 4 + Aq. (Brauner, M. 3. 58.) CHLOROPLATINITE, NICKEL 111 Yttrium chloroplatinate, 4YC1 3 , 5PtCl 4 + 52H 2 0. Very deliquescent. (Cleve.) 2YC1 3 , 3PtCl 4 + 30H 2 0. (Nilson, B. 9. 1059. ) 2YC1 3 , PtCl 4 + 2lH 2 0. (Nilson.) Zinc chloroplatinate, ZnPtCl 6 + 6H 2 0. Deliquescent ; sol. in H 2 and alcohol. Zirconyl chloroplatinate, (ZrO)PtCl 6 +12H 2 0. (Nilson.) Chloroplatinoanhydrop?yrophosphoric acid, ClPtPo0 6 H 4 =ClP \PO(OH) 2 . Not deliquescent. Sol. in H 2 0. (Schutzen- berger, Bull. Soc. (2) 18. 154.) Chloroplatinocyanhydric acid, H 2 Pt(CN) 4 Cl 2 . See Perchloroplatinocyanhydric acid. Potassium chloroplatinocyanide, 5K 2 Pt(CN) 4 , K 2 Pt(CN) 4 Cl 2 + 2lH 2 0. Sol. in H 2 ; insol. in alcohol. Chloroplatinophosphoric acid, Cl 2 PtP(OH) 3 . Very deliquescent, and sol. in H 2 0. (Schiitz- enberger, Bull. Soc. (2) 17. 493.) Lead chloroplatinophosphate, Pb 3 (Cl 2 PtP0 3 ) 2 + 8H 2 0. Ppt. Pb 3 (Cl 2 PtP0 3 ) 2 ,2PbO + 4H 2 0. Ppt. (Schiitz- enberger, Bull. Soc. (2) 17. 494.) Silver chloroplatinophosphate, Ag 2 HPOo, PtCLj. Ppt. (Schiitzenberger, Bull. Soc. (2) 17. 494.) Chloroplatinocfo'pliosphoric acid, PtCl 2 , P 2 (OH) 6 . Very deliquescent, and easily sol. in H 2 0. (Schiitzenberger, Bull. Soc. (2) 18. 153.) Ch.loroplatinop?/rophosplioric acid, ^P(OH) 2 OlPtf ^0 \P(OH) 3 . Less deliquescent than chloroplatinoefo'phos- phoric acid. Chloroplatinous acid, H 2 PtCl 4 . Known only in solution, and as the basic com- pound H 2 Pt(OH)01 3 + H 2 0. (Nilson, J. pr. (2) 15. 260.) Aluminum chloroplatinite, AlPtCl 5 + 10|H 2 0. Very deliquescent ; sol. in H 2 0. (Nilson, J. pr. (2) 15. 260.) Ammonium chloroplatinite, (NH 4 ) 2 PtCl 4 . SI. sol. in cold, easily in hot H 2 0. Insol. in alcohol. (Peyrone, A. 55. 206.) Barium chloroplatinite, BaPtCl 4 + 3H 2 0. Not deliquescent ; sol. in H 2 0. Very si. sol. in 93 % alcohol. Cadmium chloroplatinite ammonia, CdPtCl 4 , 4NH 3 . Insol. in H 2 or NH 4 OH + Aq. Sol. in HCl + Aq. (Thomsen, B. 2. 668.) Csesium chloroplatinite, Cs 2 PtCl 4 . SI. sol. in cold, easily in hot H 2 0. 100 pts. H 2 dissolve 3 '4 pts. salt at 20 673 40 8-68 ,, 60 10-92 80 12-10 ,, 100. (Godeffroy, A. 181. 176.) Calcium chloroplatinite, CaPtCl 4 + 8H 2 0. Deliquescent ; sol. in H 2 0. Cerium chloroplatinite, CeCl 3 , 2PtCl2+ 10|H 2 0. Deliquescent ; easily sol. in H 2 0. (Nilson, B. 9. 1847.) Chromium chloroplatinite, Cr 2 Pt 3 Cl 12 + 18H 2 0. Deliquescent. Cobalt chloroplatinite, CoPtCl 4 + 6H 2 0. SI. deliquescent in moist, efflorescent in dry air. Copper chloroplatinite, CuPtCl 4 + 6H 2 0. Permanent. Copper chloroplatinite ammonia (cupram- monium chloroplatinite), Cu(NH 3 ) 4 PtCl 4 . Insol. in H 2 or NH 4 OH + Aq ; easily sol. in H 2 S0 4 + Aq. (Millon and Commaille, C. R. 57. 822.) Didymium chloroplatinite, DiCl 3 , 2PtCl 2 + 10H 2 0. Deliquescent ; very sol. in H 2 0. (Nilson. ) 2DiCl 3 , 3PtCl 2 + 18H 2 0. As above. (Nilson. ) Erbium chloroplatinite, ErPtCl 5 + 13JH 2 0. Deliquescent. Er 2 Pt 3 Cl 12 + 24H 2 0. Deliquescent in moist air. Glucinum chloroplatinite, GlPtCl 4 + 5H 2 0. Deliquescent in moist air. Ferrous chloroplatinite, FePtCl 4 + 7H 2 0. Deliquescent. Lanthanum chloroplatinite, La 2 Pt 3 Cl 12 + 18, and 27H 2 0. Deliquescent. Lead chloroplatinite, PbPtCl 4 . Insol. in cold H 2 0. Lithium chloroplatinite, Li 2 PtCl 4 + 6H 2 0. Sol. in H 2 0. Magnesium chloroplatinite, MgPtCl 4 + 6H 2 0. Not very deliquescent ; very sol. in H 2 0. Manganese chloroplatinite, MnPtCl 4 + 6H 2 0. As the Mg salt. Mercurous chloroplatinite. Ppt. Nickel chloroplatinite, NiPtCl 4 + 6H 2 0. As the Co salt. 112 CHLOROPLATINITE, POTASSIUM Potassium chloroplatinite, K 2 PtCl 4 . Moderately sol. in H 2 ; insol. in alcohol. Rubidium chloroplatinite, Rb 2 PtCl 4 . SI. sol. in cold ; easily in hot H 2 0. Silver chloroplatinite, Ag 2 PtCl 4 . Insol. in H 2 0. NH 4 OH + Aq dissolves out AgCl. (Lang.) AgCl, PtCl 2 (?). As above. (Commaille, Bull. Soc. (2) 6. 262.) Silver chloroplatinite ammonia, Ag 2 PtCl 4 , 4NH 3 . (Thomsen.) Sodium chloroplatinite, Na 2 PtCl 4 + 4H 2 0. Deliquescent ; very sol. in H 2 0. Strontium chloroplatinite, SrPtCl 4 + 6H 2 0. Deliquescent. Thallium chloroplatinite, Tl 2 PtCl 4 . Sol. in much hot H 2 0. Thorium chloroplatinite, Th 2 Pt 3 01 14 + 24H 2 0. Very deliquescent. Yttrium chloroplatinite, Y 2 Pt 3 Cl 12 + 24H 2 0. Deliquescent. Zinc chloroplatinite, ZnPtCl 4 + 6H 2 0. SI. sol. in cold, more easily in hot H 2 ; insol. in alcohol. Zinc chloroplatinite ammonia, ZnPtCl 4 , 4NH 3 . SI. sol. in H 2 ; easily sol. in HC1 + Aq. Insol. in alcohol. (Thomsen, J. B. 1868. 278.) Zirconyl chloroplatinite, (ZrO)PtCl 4 + 8H 2 0. (Nilson. ) Chloroplatosulphurous acid. Ammonium chloroplatosulphite, acid, NH 4 PtClS0 3 , H 2 S0 3 + 4H 2 0. Sol. in H 2 0. (Birnbaum, A. 152. 149.) Ammonium chloroplatosulphite chloride sul- phite, NH 4 PtClS0 3 , (NH 4 ) 2 S0 3 , NH 4 C1. Very deliquescent. (Birnbaum.) Ammonium chloroplatosulphite sulphite, NH 4 ClPtS0 3 , (NH 4 ) 2 S0 3 + 3H 2 0. Sol. in H 2 0. (Birnbaum.) Barium chloroplatosulphite chloride ammonium chloride, Ba(ClPtS0 3 ) 2 , Ba(PtClS0 3 )(Cl), 6NH 4 C1 + 3H 2 0. Sol. inH 2 0. (Birnbaum.) Potassium chloroplatosulphite ammonium chloride, KPtClS0 3 , 2NH 4 C1. Very deliquescent. (Birnbaum, A. 152. 142.) Potassium chloroplatosulphite chloride, KPtClS0 3 , 2KC1. Deliquescent ; sol. in H 2 0. (Birnbaum, A. 152. 145.) Potassium chloroplatosulphite ammonium potassium sulphite, KPtClS0. 3 , (NH 4 )KS0. 3 + 3H 2 0. Very deliquescent. (Birnbaum, A. 159. 120.) Sodium chloroplatosulphite ammonium chlo- ride, NaPtClS0 3 , 2NH 4 C1. Very deliquescent. (Birnbaum, A. 159. 117.) Chloroplumbic acid. Ammonium chloroplumbate. Insol. in cone. NH 4 Cl + Aq. (Nikoljukin, B. 18. 370 R.) 5NH 4 C1, 2PbCl 4 . Not hygroscopic. De- comp. by H 2 with pptn. of Pb0 2 . Sol. in HCl + Aq and in cold HN0 3 + Aq without decomp. (Classen and Zahorski, Z. anorg. 4. 100.) Composition is 2NH 4 C1, PbCl 4 . (Friedrich, W. A. B. 102, 2b. 527.) Caesium chloroplumbate, Cs 2 PbCl 6 . Nearly absolutely insol. in cone. CsCl + Aq in presence of Cl. (Wells, Z. anorg. 4. 335.) 1 com. cone. HCl + Aq containing PbCl 4 dis- solves "000049 g. Cs 2 PbCl 6 . (Wells, Z. anorg. 4. 341.) Potassium chloroplumbate, K 2 PbCl 6 . Decomp. by H 2 ; sol. in KC1 + Aq. (Wells, Z. anorg. 4. 335.) Rubidium chloroplumbate, Rb 2 PbCl 6 . Decomp. by H 2 ; si. sol. in cone. RbCl + Aq. (Wells, Z. anorg. 4. 335.) 1 com. cone. HC1 + Aq containing PbCl 4 dis- solves 0-003 g. Rb 2 PbCl 6 . (Wells, Z. anorg. 4. 341.) Chloropurpureochromium bromide, CrCl(NH 3 ) 5 Br 2 . Somewhat more easily sol. in H 2 than the chloride. (Jorgensen, J. pr. (2) 20. 105.) - chloride, CrCl(NH 3 ) 5 Cl 2 . Difficultly sol. in cold, and decomp. by hot H 2 0. 1 pt. dissolves in 154 pts. H 2 at 16. Insol. in cone. HCl + Aq. More sol. in dil. H 2 S0 4 + Aq than in H 2 0. Sol. in NH 4 OH + Aq without decomp. (Jorgensen, J. pr. (2) 20. 105.) mercuric chloride, CrCl(NH 3 ) 5 Cl 2 , 3HgCl 2 . Very difficultly sol. in H 2 0. (Jorgensen.) - chloroplatinate, CrCl(NH 3 ) 5 (PtCl 6 ). Extremely difficultly sol. in H 2 0. (Jorgen- sen.) chromate, CrCl(NH 3 ) 5 (Cr0 4 ). SI. sol. in H 2 ; si. more sol. than chloro- purpureocobalt chromate. (Jorgensen.) - dithionate, CrCl(NH 3 ) 5 (S 2 6 ). Very si. sol. in cold, but much more easily in hot H 2 0. (Jorgensen.) ferrocyanide, [CrCl(NH 3 ) 5 ] 2 Fe(CN) 6 + 4H 2 0. Very difficultly sol. in cold H 2 0. (Jorgen- sen.) - fluosilicate, CrCl(NH 3 ) 5 (SiF 6 ). Very difficultly sol. in H 2 0. Insol. in H 2 SiF 6 + Aq. (Jorgensen, J. pr. (2) 20. 105.) CHLOROPURPUREOCOBALTIC PHOSPHOMOLYBDATE 113 Chloropurpureochromium mercuric iodide, CrCl(NH 3 ) 5 I 2 , 2HgI 2 . Decomp. by H 2 ; sol. in alcohol and warm KCN + Aq. ' CrCl(NH 3 ) 5 I 2 , HgI 2 . Very difficultly sol. in cold H 2 ; easily sol. in KCN + Aq. (Jbrgen- sen, I.e.) - nitrate, CrCl(NH 3 ) 5 (N0 3 ) 2 . Sol. in 71 pts. H 2 at 17 '5. Insol. in HN0 3 + Aq. (Jorgensen. ) - oxalate, CrCl(NH 3 ) 5 C 2 4 . Very si. sol. in cold H 2 0. (Jorgensen, I.e.) sulphate, CrCl(NH 3 ) 6 S0 4 + 2H 2 0. Sol. in H 2 ; precipitated by alcohol. (Jor- gensen.) - sulphate, acid, [CrCl(NH 3 ) 5 ] 4 S0 4 (HS0 4 ) 6 . Quite sol. in H 2 0. (Jorgensen, J. pr. (2) 20. 185.) ^mtosulphide, CrCl(NH 3 ) 5 S 5 . Very si. sol. in cold, easily sol. in warm H 2 0. Decomp. by dil. HCl + Aq. Insol. in alcohol. (Jorgensen.) Chloropurpureocobaltic bromide, CoCl(NH 3 ) 5 Br 2 . Properties resemble the chloride very closely. Sol. in 214 pts. H 2 at 14 '3 (Jorgensen, J. pr. (2) 18. 205.) - mercuric bromide, 4CoCl(NH 3 ) 5 Br 2 , 9HgBr 2 . Ppt. (J.) bromoplatinate, CoCl(NH 3 ) 5 Br 2 , PtBr 4 . Very si. sol. in H 2 0. (J.) - carbonate, CoCl(NH 3 ) 5 C0 3 Efflorescent ; very easily sol. in H 2 0. (J.) - chloride, CoCl(NH 3 ) 5 C] 2 . Very si. sol. in cold, more easily in hot H 2 0. Sol. in 244 pts. IL>0 at 15 "5. (Claudet, Phil. Mag. J. (4) 2. 253.) In 287 pts. H 2 at 10 "2 and 255 pts. at 11 '5. (Rose, Pogg. 20. 152.) 100 pts. H 2 dissolve 0'232 pt. CoCl 3 , 5NH 3 , at 0, and 1'031 pts. at 46 '6. (Kurnakoff, J. Russ. Soc. 24. 629.) SI. decomp. by cold, completely by boiling H 2 ; decomp. prevented by a little HC1. Pptd. from aqueous solution by alcohol, HC1, or sat. KC1 or Nad + Aq ; not decomp. by boiling HCl + Aq. (Claudet, I.e.) Nearly insol. in cold, but sol. in hot H 2 0, to which a few drops of HC1 have been added. Less sol. in dil. HCl + Aq than luteocobaltic chloride. (Rogoiski, A. ch. (3)41. 447.) Insol. in alcohol. (Gibbs and Genth.) antimony chloride, 2CoCl(NH 3 ) 5 Cl 2 , SbCl 3 . Ppt. Decomp. by H 2 0. (Gibbs.) bismuth chloride. Insol. in cone. HC1. Easily decomp. by H 2 0. (Gibbs.) Chloropurpureocobaltic mercuric chloride, CoCl(NH 3 ) 5 Cl 2 , 3HgCl 2 . Insol. in cold, less sol. in hot H 2 than Chloropurpureocobaltic chloride. Insol. in cold fuming HCl + Aq; si. sol. in hot HC1 + Aq, separating on cooling ; si. sol. in hot aqua regia ; moderately sol. in hot HN0 3 + Aq ; partly sol. in cold cone. H 2 S0 4 , wholly on warming. Easily sol. in warm H 2 C 2 4 + Aq. Insol. in HgCl 2 + Aq. Moderately sol. in NH 4 OH + Aq or (NH 4 ) 2 C0 3 + Aq. (Carstanjen.) CoCl(NH 3 ) 5 Cl 2 , 2HgCl 2 . SI. sol. in cold, but much more easily in hot H 2 0. (Gibbs, Proc. Am. Acad. 10. 33.) - chloropalladite, CoCl(NH 3 ) 5 Cl 2 , PdCl 2 . SI. sol. in cold, moderately sol. in hot H 2 0. (Carstanjen.) chloroplatinate, CoCl(NH 3 ) 5 Cl 2 , PtCl 4 . Nearly insol. in cold. Very si. sol. in hot H 2 0. (Gibbs and Genth, Sill. Am. J. (2) 23. 319.) - chromate, CoCl(NH 3 ) 5 Cr0 4 . Very si. sol. in H 2 0. (J.) ^chromate, CoCl(NH 3 ) 5 Cr 2 7 . Much more easily sol. in H 2 than the neutral salt. (J. ) - dithionate, CoCl(NH 3 ) 5 S 2 6 . Very si. sol. in cold, more easily in hot H 2 0. (J.) manganic fluoride. Ppt. SI. sol. in dil. HF + Aq. (Christen- sen, J. pr. (2) 35. 161.) fluosilicate, CoCl(NH 3 ) 5 SiF 6 . Very si. sol. in HF + Aq. - iodide, CoCl(NH 3 ) 5 I 2 . Much more sol. in H 2 than bromide or chloride. Sol. in 54 '4 pts. H 2 at 15-6, and 50 pts. at 19 '3. (J.) mercuric iodide, CoCl(NH 3 ) 5 I 2 , 2HgI 2 . SI. sol. in H 2 0. (J.) CoCl(NH 3 ) 5 I 2 , HgI 2 . Very si. sol. in cold H 2 0. (J.) - nitrate, CoCl(NH 3 ) 5 (N0 3 ) 2 . Sol. in 80 pts. H 2 at 15. Rather easily sol. in hot H 2 0. (Jorgensen, J. pr. (2) 18. 209.) oxalate, CoCl(NH 3 ) 5 C 2 4 . SI. sol. in_H 2 0. (J.) ^2/rophosphate, CoCl(NH 3 ) 5 (H 2 P 2 7 ). SI. and very slowly sol. in cold, much more easily in warm H 2 0. (J. ) [CoCl(NH 3 ) 5 ] 2 P 2 7 + zH 2 0. Quite easily sol. in H 2 0. [CoCl(NH 3 ) 5 ] 2 (5Mo0 3 , 2HP0 4 ). Ppt. Nearly insol. in pure H 2 ; more sol. in dil. H 2 S0 4 + Aq without decomp. (J.) 114 CHLOROPURPUREOCOBALTIC SULPHATE [CoCl(NH 3 ) 5 ] 2 (5Mo0 3 , 2NH 4 P0 4 ). above. Ppt. As Chloropurpureocobaltic sulphate, CoCl(NH 3 ) 5 S0 4 . Anhydrous. Slowly sol. in 128-131 '9 pts. H 2 at 16. + 2H 2 0. Sol. in 133 '4 pts. H 2 at 17 '3. Rather easily sol. in hot H 2 0, and much more rapidly than the anhydrous salt. (J.) [CoCl(NH 3 ) 5 ] 4 S0 4 (S0 4 H) 6 . Decomp. by H 2 into neutral sulphate. Sol. in H 2 S0 4 . - tartrate, CoCl(NH 3 ) 5 (C 4 H 5 6 ) 2 + 2iH 2 0. Moderately sol. in H 2 ; insol. in alcohol. - thiosulphate, CoCl(NH 3 ) 5 S 2 3 . Nearly insol. in cold H 2 ; very si. sol. in boiling H 2 with partial decomp. ( J. ) Chloropurpureoiridium comps. See Iiidopent&mine comps. Chloropurpureorhodium carbonate, ClRh(NH 3 ) 5 C0 3 + H 2 0. Easily sol. in H 2 0. (Jorgensen.) - chloride, ClRh(NH 3 ) 5 Cl 2 . Sol. in 179 pts. H 2 at 17, and more easily in hot H 2 0. Sol. in cone. H 2 S0 4 or boiling NaOH + Aq without decomp. Very si. sol. in cold dil. HC1 + Aq (1 : 1). SI. sol. in hot HC1 + Aq. Insol. in alcohol. (Jorgensen, J. pr. (2) 27. 433 ; 34. 394.) rhodium chloride, 3ClRh(NH 3 ) 5 Cl 2 , 2RhCl 3 . Ppt. (Jorgensen, Z. anorg. 5. 75.) - chloroplatinate, ClRh(NH 3 ) 5 PtCl 6 . Insol. in cold H 2 0. (J.) - fluosilicate, ClRh(NH 3 ) 6 SiF 6 . Very si. sol. in cold H 2 0. Sol. in NaOH + Aq as roseo salt. (J.) ; -hydroxide, ClRh( NH 3 ) 5 (OH) 2 . Known only in solution. (J.) - nitrate, ClRh(NH 3 ) 5 (N0 3 ) 2 . SI. sol. in cold H 2 0, but more easily than the chloride. Sol. in boiling NaOH + Aq as roseo salt. (J.) -sulphate, ClRh(NH 3 ) 5 S0 4 + 2H 2 0. SI. sol. in cold, more easily in hot H 2 0. ( J. ) 4ClRh(NH 3 ) 5 S0 4 , 3H 2 S0 4 . SI. sol. in cold, more easily in hot H 2 0. ( J. ) Chlororhodous acid. Ammonium chlororhodite, (NH 4 ) 4 Rh 2 Cl 10 + 2H 2 0. Sol. in H 2 ; insol. in alcohol. (Wollaston.) Not obtainable. (Leidie, A. ch. (6) 17. 275.) (NH 4 ) 6 Rh 2 Cl 12 + 3H 2 0. Sol. in H 2 0, but less easily than Na salt ; insol. in alcohol. Sol. in dil. NH 4 Cl + Aq. (Glaus, J. B. 1855. 423.) Ammonium chlororhodite nitrate, (NH 4 ) 6 Rh 2 Cl 12 , 2NH 4 N0 3 . Very sol. in H 2 0. Decomp. by boiling with H 2 0. SI. sol. in HN0 3 + Aq. (Leidie, C. R. 107. 234.) Barium chlororhodite, Ba 3 Rh 2 Cl 12 . Resembles the Na salt. (Bunsen, A. 146. 276.) Lead chlororhodite, Pb 3 Rh 2 01 12 . Ppt. Insol. in H 2 0. (Glaus.) Not obtain- able. (Leidie.) Mercurous chlororhodite, Hg 6 Rh 2 Cl 12 . Ppt. Insol. in H 2 0. (Glaus.) Not obtain- able. (Leidie.) Methylamine chlororhodite, (CH 3 NH 3 ) 6 Rh 2 Cl 12 . Sol. in H 2 0. (Vincent, C. R. 101. 322.) Dimethylamine chlororhodite, [(CH 3 ) 2 NH 2 ] 6 Rh 2 Cl 12 + 3H 2 0. Sol. in H 2 0. (Vincent.) IVrniethylamine chlororhodite, [(CH 3 ) 3 NH] 6 Rh 2 Cl 12 + 9H 2 0. Easily sol. in H 2 0. (Vincent.) Potassium chlororhodite, K 4 Rh 2 Cl 10 + 2H 2 0. Not efflorescent. SI. sol. in H 2 0. SI. sol. in KCl + Aq. (Gibbs.) Insol. or si. sol. in alcohol. (Berzelius.) Salt is anhydrous. (Leidie.) Contains 2H 2 0. (Seubert and Kobbe, B. 23. 2556.) K 6 Rh 2 Cl 12 + 6H 2 0. Efflorescent. SI. sol. in H 2 0. Aqueous solution decomp. to above on standing. (Glaus. ) Not obtainable. (Leidie.) Also obtained by Seubert and Kobbe. (B. 23. 2556.) + 3H 2 0. (Leidie, C. R. 111. 106.) Silver chlororhodite, Ag 6 Rh 2 Cl 12 . Ppt. Insol. in H 2 0. (Glaus.) Not obtainable. (Leidie.) Sodium chlororhodite, Na 6 Rh 2 Cl 12 + 18H 2 0. Efflorescent. Sol. in 1'5 pts. H 2 0. Melts in crystal H 2 at 50. Insol. in alcohol. (Glaus. ) Chlororuthenic acid. Ammonium chlororuthenate, (NH 4 ) 2 RuCl 6 . Easily sol. in H 2 0. (Glaus. ) Formula is (NH 4 ) 2 Ru(NO)Cl 5 . (Joly, C. R. 107. 994.) Potassium chlororuthenate, K 2 RuCl 6 . Very sol. in H 2 0. Very si. sol. in cone. NH 4 C1 + Aq. Insol. in 70 % alcohol. (Glaus. ) Formula is K 2 Ru(NO)Cl 5 . (Joly.) Chlororuthenious acid. Ammonium chlororuthenite, (NH 4 ) 4 Ru 2 Cl 10 . SI. sol. in H 2 0. Insol. in NH 4 Cl + Aq or alcohol. (Glaus, J. pr. 80. 282.) Potassium chlororuthenite, K 4 Ru 2 Cl 10 . Moderately sol. in cold, more easily in hot H 2 0. Decomp. easily by heating. Insol. in cone. NH 4 Cl + Aq. Insol. in 80 % alcohol. Sodium chlororuthenite, Na 4 Ru 2 Cl 10 . Deliquescent. Sol. in H 2 or alcohol. :ZV^chlorosilicomercaptane. See Silicon chlorohydrosulphide. CHLOROTELLURATE, POTASSIUM 115 Chlorosmic acid. Ammonium chlorosmate, (NH 4 ) 2 OsCl 6 . SI. sol. in H 2 0. Insol. in alcohol and H 2 containing HC1. Potassium chlorosmate, K 2 OsCl 6 . Properties as the NH 4 salt. Silver chlorosmate, Ag 2 OsCl 6 . Insol. in H 2 or HN0 3 + Aq. (Clans and , Jacoby.) Silver chlorosmate ammonia, Ag 2 OsCl 6 , 2NEL. Sol. in much H 2 0. SI. sol. in KOH + Aq. Easily sol. in KCN + Aq. (C. and J.) Sodium chlorosmate, Na 2 OsCl 6 + 2H 2 0. Easily sol. in H 2 or alcohol. Chlorosmious acid. Ammonium chlorosmite, (NH 4 ) 4 Os 2 Cl 10 + 3H 2 0. Easily sol. in H 2 and alcohol ; insol. in ether. (Glaus and Jacoby, J. pr. 90. 65.) Potassium chlorosmite, K 6 0s 2 01 12 + 6H 2 0. Very easily sol. in H 2 or alcohol. Insol. in ether. (C. and J.) ChloropT/roselenious acid. Ammonium chlorpp?/r0selenite, NH 4 C1, 2Se0 2 + 2H 2 0. Sol. in H 2 0. (Muthmann and Schafer, B. 26. 1008.) Potassium chlorppi/roselenite, KC1, 2Se0 2 + 2H 2 0. As NH 4 salt. (M. and S.) Rubidium chloropT/roselenite, RbCl, 2Se0 2 + 2H 2 0. AsNH 4 salt. (M. and S.) Chlorostannic acid, SnO(OH)Cl. (Mallet, Chem. Soc. 35. 524.) H 2 SnCl 6 + 6H 2 0. Extremely deliquescent; sol. in H 2 0. (Seubert, B. 20. 793.) Ammonium chlorostannate, (NH 4 ) 2 SnCl 6 (pink salt}. Sol. in 3 pts. H 2 at 14 '5. Solution de- comp. on boiling when dilute, but not when cone. (Bolley. ) Barium chlorostannate, BaSnCl 6 + 5H 2 0. Sol. in H 2 0. (Lewy, A. ch. (3) 16. 308.) Caesium chlorostannate, Cs 2 SnCl 6 . Nearly iusol. in cone. HC1 + Aq. (Sharpies, Sill. Am. J. (2) 47. 178.) Calcium chlorostannate, CaSnCl 6 + 5H 2 0. Very deliquescent. (Lewy, A. ch. (3) 16. 308.) Cerium chlorostannate, CeSnCl 7 + 9H 2 0. Deliquescent. Sol. in H 0. (Cleve, Bull. Soc. (2) 31. 197.) Cobalt chlorostannate, CoSnCl 6 + 6H 2 0. Sol. in H 2 0. ( Jorgensen. ) Didymium chlorostannate, DiCL, SnCL Sol. inH 2 0. (Cleve.) Glucinum chlorostannate, GlSnCl 6 + 8H 2 0. Deliquescent. Sol. in H 2 0. (Atterberg, Sv. V. A. Handl. 12. No. 4. 14.) Lanthanum chlorostannate, 4LaCL, 5SnCL + 45H 2 0. Deliquescent. Sol. in H 2 0. (Cleve. ) Lithium chlorostannate, Li 2 SnCl 6 + 8H 2 0. Sol. in little H 2 without decomp., but decomp. by dilution. (Chassevant, A. ch. (6) 30. 42.) Magnesium chlorostannate, MgSnCl 6 + 6H 2 0. Very deliquescent. (Lewy.) Manganous chlorostannate, MnSnCl 6 + 6H 2 0. Deliquescent in moist, efflorescent in dry air. (Jorgensen. ) Nickel chlorostannate, NiSnCl 6 + 6H 2 0. Sol. in H 2 0. (Jorgensen.) Potassium chlorostannate, KaSnCle. Sol. in H 2 0. Sodium chlorostannate, Na 2 SnCl 6 + 6H 2 0. Easily sol. in H 2 0. (Topsoe, Gm. K. Handb. 6 te aufl. III. 149.) Strontium chlorostannate, SrSnCl 6 + 8H 2 0. SI. deliquescent, and easily sol. in H 2 0. (Topsoe.) Yttrium chlorostannate, YC1 S , SnCl 4 + 8H 2 0. Sol. in H 2 0. (Cleve, Bull. Soc. (2) 31. 197.) Chlorosulphonic acid, HC1S0 3 . See Sulphuryl hydroxyl chloride. Chlorosulphnric acid, HS0 3 C1. See Sulphuryl hydroxyl chloride. S0 2 C1 2 . See Sulphuryl chloride. Chlorotelluric acid. Ammonium chlorotellurate, (NH 4 ) 2 TeCl 6 . Sol. without decomp. in a small amt. of H 2 0, but decomp. by much H 2 or alcohol. Caesium chlorotellurate, Cs 2 TeCl 6 . Decomp. by H 2 0. Sol. in dil. HC1 + Aq. 100 pts. HCl + Aq (sp. gr. 1'2) dissolve 0'05 pt. at 22. 100 pts. HCl + Aq (sp. gr. 1'05) dissolve 078 pt. at 22. Insol. in alcohol. (Wheeler, Sill. Am. J. 145. 267.) Potassium chlorotellurate, K 2 TeCl 6 . Deliquescent ; decomp. by H 2 and absolute alcohol. (Berzelius.) The most sol. in H 2 of the chloro- or bromo- tellurates. Easily sol. in dil. HC1 + Aq ; cone. HCl + Aq ppts. KC1. (Wheeler, Sill. Am. J. 145. 267.) 116 CHLOROTELLURATE, RUBIDIUM Kubidium chlorotellurate, Rb 2 TeCl 6 . Decomp. by H 2 0. Much more sol. in dil. HCl + Aq than Cs 2 TeTl 6 . 100 pts. HCl + Aq (sp. gr. 1'2) dissolve 0'34 pt. at 22. 100 pts. HCl + Aq (sp. gr. 1'05) dissolve 13-09 pts. at 22. SI. sol. in alcohol. (Wheeler.) Chlorotetramine chromium bromide, ClCr(NH 3 ) 4 (OH 2 )Br 2 . Very easily sol. in H 2 0. (Cleve, 1861 ; Jorgensen, J. pr. (2) 42. 210.) - chloride, ClCr(NH 3 ) 4 (OH 2 )Cl 2 . Sol. in H 2 0, but decomp. by boiling. Sol. in HCl + Aq, and this solution may be boiled without decomp. (Cleve. ) Sol. in 15 '7 pts. H 2 at 15. (Jorgensen, J. pr. 42. 208.) - chromate, ClCr(NH 3 ) 4 (OH 2 )Cr0 4 . Precipitate. (Cleve.) fiuosilicate, ClCr(NH 3 ) 4 (OH 2 )SiF 6 . SI. sol. in H 2 0. (Jorgensen, J. pr. (2) 42. 218. ) - hydroxide, ClCr(NH 3 ) 4 (OH) 2 . Known only in solution. (Cleve.) iodide, ClCr(NH 3 ) 4 (OH 2 )I 2 . Easily sol. in H 2 0. (Cleve. ) - nitrate, ClCr(NH 3 ) 4 (OH 2 )(N0 3 ) 2 . Yery easily sol. in H 2 0. (Cleve ; Jorgensen, J. pr. (2) 42. 209.) - sulphate, ClCr(NH 3 ) 4 (OH 2 )S0 4 . Very difficultly sol. in cold, more easily in hotH 2 0. (Cleve.) Chlorotetramine cobaltic bromide, ClCo(NH 3 ) 4 (OH 2 )Br 2 . More sol. in H 2 than chloride. Nearly insol. inHBr + Aq (1 : 1). (Jorgensen, J. pr. (2) 42. 215.) - chloride, ClCo(NH 3 ) 4 (OH 2 )Cl 2 . Sol. in about 40 pts. H 2 0, and = octamine cobaltic purpureochloride of Vortmann. (Jor- gensen, J. pr. (2) 42. 211.) chloroplatinate, ClCo(NH 3 ) 4 (OH 2 )PtCl 6 + 2H 2 0. SI. sol. in H 2 0. (Jorgensen.) chromate, ClCo(NH 3 ) 4 (OH 2 )Cr0 4 . Easily sol. in cold H 2 0. (Jorgensen, J. pr. (2)42. 216.) fluosilicate, ClCo(NH 3 ) 4 (OH 2 )SiF 6 . SI. sol. in H 2 0. Nearly insol. in H 2 SiF 6 + Aq. (Jorgensen, J. pr. (2)42. 219.) sulphate, ClCo(NH 3 ) 4 (OH 2 )S0 4 . Sol. in H 2 0. (Jorgensen, J. pr. (2) 42. 214. ) Chlorous acid, HC10 2 . Known only in aqueous solution. 100 g. H 2 at 8 '5 and 753 mm. pressure dissolve 4 '7 g. C1 2 3 . Hydrate with 50 '07-67 '43 % H 2 0, perhaps HC10 2 + H 2 0, separates out at 0. (Brandan, A. 151. 340.) Pure HC10 2 is not known even in solution. (Garzarolli-Thurnlakh, A. 209. 184.) Chlorites. All chlorites are easily sol. in H 2 and alcohol, w r ith gradual decomp. Ammonium chlorite. Known only in aqueous solution, which decomposes on evaporation or long standing. Barium chlorite, Ba(C10 2 ) 2 . Deliquescent ; easily sol. in H 2 0. Solu- tion decomp. on evaporation. Easily sol. in alcohol. (Millon, A. ch. (3) 7. 298.) Lead chlorite, Pb(C10 2 ) 2 . Nearly insol. in cold H 2 0, and only si. sol. in hot H 2 0. Sol. in KOH + Aq. (Garzarolli and Hayn, A. 209. 203.) Lead chlorite chloride, 6Pb(C10 2 ) 2 , 4PbCl 2 ,PbO. Rather difficultly sol. in H 2 0. (Schiel, A. 109. 317.) Potassium chlorite, KC10 2 . Very deliquescent and sol. in H 2 0. Sol. in alcohol of 38. (Millon, A. ch. (3) 7. 323.) Sol. inHC10 2 + Aq. Silver chlorite, AgC10 2 . Sol. in hot, less in cold H 2 0. Easily de- comp. by heating above 100. Decomp. by weakest acids. (Millon, A. ch. (3) 7. 329.) Sodium chlorite, NaC10 2 . Very deliquescent, and sol. in H 2 0. Strontium chlorite, Sr(C10 2 ) 2 . Deliquescent and sol. in H 2 0. Decomp. by slow evaporation. (Millon, A. ch. (3) 7. 327.) Chloroxyfulminoplatinum, Pt 4 N 4 Cl(OH)0 12 H 22 . Insol. in H 2 ; sol. in HC1 + Aq. (v. Meyer, J. pr. (2) 18. 305.) Chromacichloride, Cr0 2 Cl 2 . See Chromyl chloride. Chromatoiodic acid. See Chromoiodic acid. Chromic acid, H 2 Ci0 4 . Very sol. in H 2 0. (Moissan, C. R. 98. 1581.) Does not exist except in solution. (Field, Chem. Soc. 61. 405.) See also Chromium ^noxide. Chromates. Chromates of the alkali metals and of Ca, Mg, and Sr are sol. in H 2 ; the others are generally insol. or si. sol. in H 2 0, but sol. in HN0 3 + Aq. Aluminum chromate, basic, A1 2 3 , Cr0 3 + 7H 2 0. Easily sol. in NH 4 OH + Aq, alum, or acetic acid + Aq. Insol. in NH 4 Cl + Aq. (Farrie, Chem. Soc. 4. 300.) Insol. as such in H 2 0, but easily decomp. CHROMATES, BISMUTH, BASIC 117 Decomp. by H 2 0. (Jager (NH 4 ) 2 Cr 6 19 + into H 2 Cr0 4 and a basic insol. comp. Sol. in alkaline solutions and acids. Decomp. by many salts. (Eliot and Storer, Proc. Am. Acad. 5. 214.) Ammonium chromate, basic, 5 (NH 4 ) 2 0, 4Cr0 3 ( ?). Easily sol. in cold H 2 0. (Pohl, W. A. B. 6. 592.) Ammonium chromate, (NH 4 ) 2 Cr0 4 . Very sol. in H 2 ; pptd. from aqueous solu- tion by alcohol. (Malaguti and Sarzeau.) Ammonium bichromate, (NH 4 ) 2 Cr 2 7 . Less sol. in H 2 than (NH 4 ) 2 Cr0 4 . (Moser.) Ammonium bichromate, (NH 4 ) 2 Cr 3 10 . Not deliquescent, but very sol. in H 2 0. (Siewert.) Decomp. by H 2 into chromic acid and dichromate. (Jager and Kriiss, B. 22. 2036.) Ammonium ^rachromate, (NH 4 ) 2 Cr 4 13 . Deliquescent, and Kriiss, B. 22. 2037.) Ammonium /lexachromate, 10H 2 (?). Very efflorescent. (Rammelsberg, Pogg. 94. 516.) Ammonium chromous chromate (?),(NH 4 ) 2 Cr0 4 , CrCr0 4 = (NH 4 ) 2 Cr(Cr0 4 ) 2 . Difficultly sol. in H 2 0. Insol. in alcohol, ether, chloroform, or glacial acetic acid. Easily sol. in cone, acids, from which it is separated on dilution. Decomp. by NaOH + Aq. (Heintze, J. pr. (2) 4. 220.) Ammonium ferric chromate, (NH 4 ) 2 Cr0 4 , Fe 2 (Cr0 4 ) 3 + 4H 2 0. More easily decomp. by H 2 than K 2 Cr0 4 , Fe 2 (Cr0 4 ) 3 + 4H 2 0. (Hensgen, B. 12. 1300.) Ammonium lithium chromate, NH 4 LiCr0 4 + 2H 2 0. Not deliquescent. (Rammelsberg. ) Ammonium magnesium chromate, (NH 4 ) 2 Cr0 4 , MgCr0 4 + 6H 2 0. Much more sol. in H 2 than the correspond- ing sulphate, (v. Hauer.) Ammonium manganous chromate, (NH 4 ) 2 Cr0 4 , 2MnCr0 4 . Sol. in H 2 0. (Hensgen, R. t. c. 3. 433.) Ammonium potassium chromate, NH 4 KCr0 4 . Sol. in H 2 0. (E. Kopp, C. N. 11. 16.) + H 2 0. (Etard, C. R. 85. 443.) Ammonium uranyl chromate, (NH 4 ) 2 Cr0 4 , 2(U0 2 )Cr0 4 + 6H 2 0. Decomp. by boiling with H 2 0. Sol. in acidulated H 2 0. (Formanek, A. 257. 106.) + 3H 2 0. (Formanek.) Ammonium chromate chromyl fluoride, (NH 4 ) 2 Cr0 4 , Cr0 2 F 2 . Sol. in H 2 0. (Varenne, C. R. 91. 989.) Ammonium chromate iodate. See Chromoiodate, ammonium. Ammonium bichromate mercuric chloride, (NH 4 ) 2 Cr 2 7 , HgCl 2 . Cannot be recryst. from H 2 or HgCl 2 + Aq, but from (NH 4 ) 2 Cr 2 7 + Aq. (Jager and Kriiss, B. 22. 2044.) + HoO. (Richmond and Abel, Chem. Soc. Q. J. 3. 199.) Cannot be made to crystallise with H 2 0. (Jager and Kriiss. ) 3(NH 4 ) 2 Cr 2 7 , HgCl 2 . Decomp. by H 2 0. (J. and K.) 4(NH 4 ) 2 Cr 2 7 , HgCl 2 . Decomp. by H 2 0. (J. and K.) (NH 4 ) 2 Cr 2 7 , 3HgCl 2 . (J. and K.) (NH 4 ) 2 Cr 2 7 , 4HgCl 2 . (J. and K.) Barium chromate, BaCr0 4 . Extremely si. sol. in H 2 0. Calculated from electrical conductivity of BaCr0 4 + Aq, 11. H 2 dissolves 3 '8 mg. BaCr0 4 at 18. (Kohlrausch and Rose, Z. phys. Ch. 12. 241.) When not ignited, BaCr0 4 is sol. in 86,957 pts. H 2 0; 22,988 pts. NH 4 Cl + Aq (0'5 % NH 4 C1); 3670 pts. HC 2 H 3 2 + Aq (5 % HC 2 H 3 2 ); 1986 pts. HC 2 H 3 2 + Aq (10 % HC 2 H 3 2 ) ; 1813 pts. H 2 Cr0 4 + Aq (10 % Cr0 3 ). When ignited, 160,000 pts. H 2 are necessary for solution. (Schweitzer, by Fresenius, Z. anal. 29. 414.) Sol. in 23,000 pts. boiling H 2 0. (Mescher- zerski, Z. anal. 21. 399.) Insol. in K 2 Cr 2 7 + Aq. (Schweitzer.) Sol. in 49,381 pts. NH 4 C 2 H 3 2 + Aq (0'75 % salt) at 15; in 23,355 pts. NH 4 C 2 H 3 2 + Aq (1-5% salt) at 15; in 45,162 pts. NH 4 N0 3 + Aq (0-5 % salt) at 15. (Fresenius, Z. anal. 29. 418.) Easily sol. in HN0 3 , HC1, or chromic acid + Aq, from which it is precipitated by NH 4 OH, or by dilution with H 2 0. (Bahr. ) Easily sol. in alkali tartrates, or citrates + Aq. (Fleischer, J. pr. (2) 5. 326.) Barium bichromate, BaCr 2 7 + 2H 2 0. Decomp. by H 2 with separation of BaCr0 4 . Sol. in H 2 Cr0 4 + Aq. (Bahr, J. B. 1853. 358.) Barium potassium bichromate, Ba 2 K 2 (Cr 3 10 ) 3 + 3H 2 0. Extremely deliquescent. (Bahr.) Bismuth chromates, basic. These comps. are insol. in H 2 even in presence of H 2 Cr0 4 ; sol. in HC1 or HN0 3 + Aq. (Lowe, J. pr. 67. 288.) 100 pts. H 2 dissolve '00008 pt. "bismuth chromate " ; 100 pts. acetic acid dissolve '00021 pt. "bismuth chromate"; 100 pts. HN0 3 + Aq (sp. gr. -1-038) dissolve 0'00024 pt. "bismuth chromate"; 100 pts. KOH + Aq (sp. gr. = l'33) dissolve 0-00016 pt. "bismuth chromate." (Pear- son, Phil. Mag. (4) 11. 206.) Not insol. in dil. HN0 3 + Aq unless K 2 Cr0 4 is present. Less sol. in hot NaOH + Aq than PbCr0 4 . (Storer.) 3Bi 2 3 , 2Cr0 3 = 2(BiO) 2 Cr0 4 , Bi 2 0> Insol. in H 2 O ; sol. in HN0 3 + Aq. 118 CHROMATE, BISMUTH, ACID Bi 2 3 , Cr0 3 = (BiO) 2 Cr0 4 . InsoL in H 2 ; easily sol. in dil. HCl + Aq, less in dil. HN0 3 orH 2 S0 4 + Aq. (Muir.) Bi 2 3 , 2Cr0 3 = (BiO) 2 Cr 2 7 . Insol. in H 2 0. + H 2 0. 5Bi 2 3 , HCr0 3 + 6H 2 0. (Muir, Chem. Soc. 31. 24.) 3Bi 2 3 , 7Cr0 3 . Insol. in H 2 ; easily sol. in mineral acids, especially HCl + Aq. Partly sol. in KOH + Aq. Bismuth chromate, acid, Bi 2 3 , 4Cr0 3 + H 2 0. Insol. in hot or cold H 2 0. Sol. in dil. HC1 or HN0 3 + Aq. (Muir, Chem. Soc. 30. 17.) Bismuth potassium chromate, Bi 2 (Cr0 4 ) 3 , K 2 Cr0 4 . Insol. in H 2 0. Decomp. with hot H 2 0. Bi 2 3 , K 2 0, 6Cr0 3 + H 2 0. (Preis and Ray- mann, J. B. 1880. 336.) Bromomolybdenum chromate. (Atterberg). Cadmium chromate, basic, 2CdO, Cr0 3 + H 2 0. Very si. sol. in H 2 ; very slowly sol. in NH 4 OH + Aq with combination. (Malaguti and Sarzeau, A. ch. (3) 9. 431.) Composition as above. (Freese, B. 2. 478.) Cadmium chromate ammonia, CdCr0 4 , 4NH 3 + 3H 2 0. Efflorescent. Decomp, by H 2 0. Sol. in NH 4 OH + Aq ; insol. in alcohol and ether. (Malaguti and Sarzeau.) Cadmium potassium chromate, 3CdO, K 2 0, 3Cr0 3 + 3H 2 0. Ppt. (Preis and Raymann, Sitzungsb. bohms. Gesell. 1880.) Calcium chromate, CaCr0 4 . Anhydrous. Very si. sol. in H 2 0. (Sie- wert, J. B. 1862. 148.) + 2H 2 0. Sol. in 241 '3 pts. H 2 at 14. (Siewert.) Sol. in 34 pts. H 2 0. (Schwarz, Dingl. 198. 159.) Easily sol. in H 2 containing Cr0 3 . Insol. in absolute alcohol. 50 cc. of alcohol (29 %) dissolve 0'608 g. CaCr0 4 ; 50 cc. of alcohol (53 %) dissolve 0'44 g. CaCr0 4 . (Fresenius, Z. anal. 30. 672.) Calcium ^'chromate, CaCr 2 7 + 3H 2 0. Very deliquescent. (Bahr, J. pr. 60. 60.) Calcium potassium chromate, CaCr0 4 , K 2 Cr0 4 . + H 2 0. Easily sol. in H 2 0. (Duncan.) Insol. in H 2 when ignited. + 2H 2 0. Easily sol. in H 2 0, even after ignition. Insol. in alcohol. (Duncan, J. B. 1850. 313.) 4CaCr0 4 , K 2 Cr0 4 . 5CaCr0 4 , K 2 Cr0 4 . Sol. in much H 2 0. (Bahr.) Calcium potassium chromate sulphate, CaCr0 4 , K 2 S0 4 + H 2 0. Decomp. by H 2 0. (Hannay, Chem. Soc. 32. 399.) CaCr0 4 , K 2 S0 4 , K 2 Cr0 4 . As above. (H.) Cerous chromate, CeCr0 4 . Insol. in H 2 0. Cerous ^chromate. Easily sol. in H 2 0. Chromic chromate, Cr0 2 =Cr 2 3 , Cr0 3 . Insol. as such in H 2 0, but decomp. thereby into Cr0 3 and Cr 2 3 ; decomp. by alkaline and many saline solutions. Easily sol. in dil. acids if recently pptd, but with difficulty if dried at a high temp. (Eliot and Storer, Proc. Am. Acad. 5. 207.) Cr 5 12 = Cr 2 3 , 3Cr0 3 . Sol. in HCl + Aq. Very slowly sol. in HNO s + Aq. Slowly de- comp. by H 2 S0 4 or NH 4 OH + Aq. Easily de- comp. by KOH + Aq. Does not exist. (Eliot and Storer, I.e.] Cr 8 15 = 3Cr 2 3 , 2Cr0 3 . Easily sol. in HC1 or HN0 3 + Aq, difficultly sol. in acetic acid. Easily sol. in KOH + Aq. (Traube, A. 66. 108.) Existence doubtful. Cr 5 9 = 2Cr 2 3 , Cr0 3 . Insol. in all acids, even aqua regia ; slowly attacked by a boiling cone, solution of alkali hydroxides. (Geuther and Merz, A. 118. 62.) Cr 3 5 , according to Wb'hler. Chromic potassium chromate, K 2 Cr0 4 (?). Insol. in H 2 0, alcohol, or acetic acid. Not attacked by cold HN0 3 + Aq ; si. oxidised when hot. Insol. in cold, easily sol. in hot H 2 S0 4 . SI. sol. in S0 2 + Aq. Sol. in cone. HCl + Aq. (Tommasi, Bull. Soc. (2) 17. 396.) Chromous potassium chromate, K 2 Cr0 4 (Cr0 2 ) 2 = K 2 Cr(Cr0 4 ) 2 (?). Sat. cold solution in H 2 contains 9 % of the salt. Insol. in alcohol and ether. (Heintze, J. pr. (2) 4. 212.) Cobaltous chromate, basic, 3CoO, CrO Q + 4H 2 0. Ppt. Decomp. by H 2 0. (Malaguti and Sarzeau, A. ch. (3) 9. 431.) True formula is 2CoO, Cr0 3 + 2H 2 0. (Freese, Pogg. 140. 252.) Cupric chromate, basic, 3CuO, Cr0 3 + 2H 2 0. Insol. in H 2 0. Easily sol. in dil. HN0 3 + Aq and in NH 4 OH + Aq. Decomp. by KOH + Aq. (Malaguti and Sarzeau, A. ch. (3) 9 434.) 7CuO, 2Cr0 3 + 5H 2 0. Ppt. (Rosenfeld, B. 13. 1469.) 7CuO, Cr0 3 + 5H 2 0. Ppt. (R.) Cupric cfo'chromate, basic, CuCr 2 7 , 2CuO. (Stanley, C. N. 54. 194.) Cupric bichromate, CuCr 2 7 + 2H 2 0. Deliquescent. Very easily sol. in H 2 0, NH 4 OH + Aq, and alcohol. (Drbge, A. 101 39.) Aqueous solution is decomp. by boil- ing. (Malaguti and Sarzeau, A. ch. (3) 9. 456.) CHROMATE, MANGANOUS 119 Cupric lead chromate, 2(PbCr0 4 , PbO), (2CuCr0 4 , CuO). Min. Vauquelinite. Sol. in acids. Cupric potassium chromate, K 2 0, 3CuO, 3Cr0 3 + 2H 2 0. Nearly insol. in H 2 0. Sol. in NH 4 OH or (NH 4 ) 2 C0 3 + Aq. (Knop, A. 70. 52.) Does not exist. (Rosenfeld, B. 13. 1472.) K 2 0, 4CuO, 4Cr0 3 + H 2 0. Decomp. by boil- ing H 2 0. (Gerhardt.) Cupric chromate ammonia, 3CuO, 2Cr0 3 , 10NH 3 + 2H 2 0. Decomp. by H 2 ; si. sol. or insol. in alcohol, ether, or NH 4 OH + Aq. (Malaguti and Sarzeau. ) Decomp. by hot H 2 ; insol. in alcohol. (Bbttger.) Didymium chromate, Di 2 (Cr0 4 ) 3 . SI. sol. in H 2 0, easily in dil. acids. (Frerichs and Smith, A. 191. 353.) + 7H 2 0. (Cleve.) Didymium potassium chromate, Di 2 (Cr0 4 ) 3 , K 2 Cr0 4 . Precipitate. Decomp. by H 2 0. (Cleve. ) Glucinum chromate, basic, GlCr0 4 , 13G10 + 23H 2 0. Ppt. Insol. in H 2 0. (Creuzberg, Dingl. 163. 449.) Indium chromate. Ppt. (Meyer. ) Indium Bichromate. Very sol. in HoO. Known only in solution. Ferric chromate, basic. Decomp. by H 2 0. (Maus.) Fe 2 3 , Cr0 3 . Insol. in H 2 0, but decomp. thereby, or by saline solutions ; easily sol. in acids. Sol. in H 2 Cr0 4 + Aq. (Eliot and Storer, Proc. Am. Acad. 5. 216.) Ferric cfo'chromate. Sol. in H 2 and alcohol. (Maus, Pogg. 9. 132.) Ferric potassium chromate, Fe 2 (Cr0 4 ) 3 , K 2 Cr0 4 + 4H 2 0. Decomp. by much H 2 0, cone. HC1, or NH 4 OH + Aq. Not decomp. by alcohol. (Hensgen, B. 12. 1300.) Lanthanum chromate, La 2 (Cr0 4 ) 3 . SI. sol. in cold, more easily in hot H 2 ; easily sol. in acids. (Frerichs and Smith, A. 191. 355.) + 8H 2 0. Ppt. (Cleve.) Lanthanum potassium chromate. (Cleve.) Lead chromate, basic, 2PbO, Cr0 3 (chrome red}. Insol. in H 2 ; acetic acid dissolves out \ the PbO. Sol. in KOH + Aq. (Badams, Pogg. 3. 221.) 3PbO, CrO> (Hermann, Pogg. 28. 162.) Min. Melanochroite, Phoenicocroite. Sol. in acids. Lead chromate, PbCr0 4 . Insol. in H 2 0. Pptd. from Pb(N0 3 ) 2 in presence of 70,000 pts. H 2 0. (Harting.) Cal- culated from electrical conductivity of PbCr0 4 + Aq, 1 1. H 2 dissolves 0'2 mg. PbCr0 4 at 18. (Kohlrausch and Rose, Z. phys. Ch. 12. 241.) Sol. in dil. H 2 S0 4 + Aq (Storer); si. sol. in dil. HN0 3 + Aq. Sol. in 560 pts. HN0 3 + Aq of 1'12 sp. gr. ; in 150 pts. HN0 3 + Aq of 1'225 sp. gr. ; in 130 pts. HN0 3 + Aq of 1'265 sp. gr. ; in 80 pts. HN0 3 + Aq of 1'395 sp. gr. (Storer's Diet. ) Easily decomp. by hot HC1 + Aq. (Fresenius. ) Insol. in HC 2 H 3 2 + Aq. Easily sol. in KOH, or NaOH + Aq. 1 1. KOH + Aq (| normal) dissolves 11 -9 g. PbCr0 4 at 15 ; 16'2 g. at 60 ; 26 '1 g. at 80 ; 38 '5 g. at 102. (Lachaud and Lepierre, Bull. Soc. (3) 6. 230.) Insol. in NH 4 Cl + Aq. (Brett, 1837.) Sol. in K 2 Cr 2 7 + Aq ; almost completely insol. in NH 4 C 2 H 3 2 , or NH 4 N0 3 + Aq. Not pptd. in presence of Na citrate. (Spiller. ) Min. Crocoite. Sol. in hot HCl + Aq; diffi- cultly sol. in HN0 3 + Aq ; sol. in KOH + Aq. Lead cfo'chromate, PbCr 2 7 . Decomp. by H 2 0. + 2H 2 0. As above. (Preis and Raymann, B. 13. 340.) Lead lithium chromate, PbCr0 4 , Li 2 Cr0 4 . (Lachaud and Lepierre, C. R. 110. 1035.) Lead potassium chromate, PbCr0 4 , K 2 Cr0 4 . Insol. in hot or cold H 2 or in alcohol. Dil. acids dissolve out K 2 Cr0 4 . (Lachaud and Lepierre, C. R. 110. 1035.) PbCr0 4 , 2PbO, K 2 Cr0 4 . As above. (L. and L.) Lead sodium chromate, PbCr0 4 , Na 2 Cr0 4 . Sol. in H 2 (?). (Lachaud and Lepierre.) PbCr0 4 , 2PbO, Na 2 Cr0 4 . (L. and L.) Lithium chromate, Li 2 Cr0 4 + 2H 2 0. Very easily sol. in H 2 0. (Rammelsberg, Pogg. 128. 323.) Lithium bichromate, Li 2 Cr 2 7 + 2H 2 0. Deliquescent. Sol. in H 2 0. (Rammelsberg. ) Magnesium chromate, MgCr0 4 + 7H 2 0. Easily sol. in H 2 0. (Vauquelin.) + 5H 2 0. Very sol. in H 2 0. (Wyrouboff, Bull. Soc. Min. 12. 60.) Magnesium potassium chromate, MgCr0 4 , K 2 Cr0 4 + 2H 2 0. 100 pts. H 2 dissolve 28 '2 pts. at 20 ; 34 '3 pts. at 60. (Schweitzer. ) Insol. in alcohol. Magnesium sodium chromate. (Stanley, C. N. 54. 194.) Manganous chromate, 2MnO, Cr0 3 + H 2 0. Ppt. Sol. in dil. H 2 S0 4 , or HN0 3 + Aq. (Warrington and Reinsch, Schw. J. 3. 378.) 120 CHROMATE, MANGANOUS POTASSIUM Manganous potassium chromate, 2MnCr0 4 , K 2 Cr0 4 + 4H 2 0. Sol. in H 2 0. (Hensgen, R. t. c. 3. 433.) Mercurous chromate, basic, 4Hg 2 0, 3Cr0 3 . Very si. sol. in cold, more in boiling H 2 0. SI. sol. in HNOg + Aq. Decomp. by HCl + Aq. SI. sol. in NH 4 Cl + Aq or NH 4 N0 3 + Aq. (Brett.) Does not exist. (Richter, B. 15. 1489.) 3Hg 2 0, Cr0 3 . Sol. inHNOg + Aq. (Richter.) Mercurous chromate, Hg 2 Cr0 4 . Very si. sol. in cold, more readily in hot H 2 0. SI. sol. in dil. HN0 3 + Aq ; sol. in cone. HN0 3 ; sol. in KCN + Aq; insol. in Hg 2 (N"0 3 ) 2 + Aq. (Rose, Pogg. 53. 124.) Mercuric chromate, basic, 2HgO, Cr0 3 . Sol. in HC1, and in HN0 3 + Aq. (Geuther.) 3HgO, Cr0 3 . SI. sol. in H 2 0. (Millon.) 4HgO, Cr0 3 . SI. sol. in H 2 0. (Millon, A. ch. (3) 18. 365.) 7HgO, 2Cr0 3 . Easily sol. in warm HN0 3 , when freshly precipitated. Easily sol. in HCl + Aq. (Geuther, A. 106. 247.) Does not exist. (Freese, B. 2. 477.) 5HgO, Cr0 3 . Easily sol. in HCl + Aq. Very si. sol. in HN0 3 + Aq. Decomp. by H 2 into 6HgO, Cr0 3 . Insol. in H 2 0. (Jager and Kriiss, B. 22. 2049.) Mercuric chromate, HgCr0 4 . Decomp. by H 2 and acids into basic salt. (Geuther.) Sol. in acids. Sol. in warm NH 4 C1, or NH 4 N0 3 + Aq. Sol. in Hg(N0 3 ) 2 , or HgCl 2 + Aq. Mercuric chromate sulphide, 2HgCr0 4 , HgS. Not attacked by weak acids. (Palm, C. C. 1863. 121.) Nickel chromate, basic, 4MO, Cr0 3 + 6H 2 0. Insol. in H 2 ; easily sol. in NH 4 OH + Aq. (Malaguti and Sarzeau, A. ch. (3) 9. 451.) 3MO, Cr0 3 + 6H 2 0. Insol. in H 2 ; sol. in NH 4 OH + Aq. (Freese, J. B. 1869. 271.) 2MO, Cr0 3 + 6H 2 0. As above. (Schmidt, A. 156. 19.) 5NiO,2Cr0 3 + 12H 2 0. As above. (Schmidt.) Nickel chromate ammonia, NiCr0 4 , 6NH 3 + 4H 2 0. Decomp. by H 2 0. Quite easily sol. in NH 4 OH + Aqof 0-96 sp. gr. (Schmidt.) In- sol. in alcohol or ether. Potassium chromate, K 2 Cr0 4 . Easily sol. in H 2 0. 1 pt. dissolves in 2'07 pts. H 2 at 15 '5. (Thomson. ) 1 pt. dissolves in 1'75 pts. H 2 at 17 '5, and in 1'67 pts. H 2 at 100. (Moser.) 100 pts. H 2 dissolve at 10 20 -30 40 50 58*90 60*92 62 '94 64 '96 66 '98 69'OOpts.K 2 Cr0 4 , 60 70 80 90 100 71-02 73-04 75-06 77 '08 79'10 pts. K 2 Cr0 4 . (Alluard, C. R. 59. 500.) 100 pts. H 2 dissolve at 10 27-37 42-1 61-5 62-1 66-3 70 '3 pts. K 2 Cr0 4 , 63-6 93-6 106-1 74-9 79-7 81-8 pts. K 2 Cr0 4 . (Nordenskjold and Lindstronr, Pogg. 136. 314.) 100 pts. K 2 Cr0 4 + Aq sat. at 10-12 in 37 "14 pts. salt. (v. Hauer, J. pr. con- 103. tain 114. 100 pts. H 2 at 19-5 dissolve 62 '3 pts. K 2 Cr0 4 , and solution has sp. gr. of 1"3787. (Schiff, A. 109. 326.) Sol. in 2 pts. H 2 O at 18 '75. (Abl.) 100 pts. H 2 O at 15 dissolve 43'857 pts. K 2 CrO 4 , and solution has sp. gr. of 1-3032. (Michel and Krafft. A. ch. (3) 41. 478.) Sp. gr. of K 2 Cr0 4 + Aq at 19 '5. 9 % w Sp. gr. %K 2 Cr0 4 Sp. gr. I Sp.gr. i 1-0080 15 1-1287 28 1-2592 2 1-0161 16 1-1380 29 1-2700 3 1 -0243 17 1-1474 30 1-2808 4 1-0325 18 1-1570 31 1-2921 5 1-0408 19 1-1667 32 1-3035 6 1-0492 20 1-1765 33 1-3151 7 1-0576 21 1-1864 34 1-3268 8 1-0663 22 1-1964 35 1-3386 9 1-0750 23 1-2066 36 1-3505 10 1-0837 24 1-2169 37 1-3625 11 1-0925 25 1-2274 38 1-3746 12 1-1014 26 1-2379 39 1-3868 13 1-1104 27 1-2485 40 1-3991 14 1-1195 ... (Kremers, and Schiff, calculated by Gerlach, Z. anal. 8. 288.) K 2 Cr0 4 dissolved in 2 pts. H 2 has sp. gr. 1-28 ; 3 pts., 1-21 ; 4 pts., 1'18 ; 5 pts., 1*15 ; 6 pts., 1-12; 7 pts., 1-11; 8pts.,l'10. (Moser.) Sp. gr. of sat. solution at 8 = 1'368. (Anthon, 1837.) Sat. K 2 Cr0 4 + Aq boils at 107. (Kremers.) Sat. K 2 Cr0 4 + Aq boils at 104 '2 under 718 mm. pressure. (Alluard.) Freezing-point of sat. K 2 Cr0 4 + Aq= -12'5. (Rtidorff.) By dissolving K 2 Cr0 4 in 2 pts. H 2 0, the temp, is lowered 10. (Moser.) 100 pts. sat. solution of K 2 Cr0 4 and K 2 SO contain 37 '14 pts. of the two salts at 10-12. (v. Hauer, J. pr. 103. 114.) Potassium bichromate, K 2 Cr 2 7 . Sol. in H 2 0, with slight absorption of heat. Less sol. in H 2 than K 2 Cr0 4 . Sol. in 9-6 pts. H 9 O at 17'2. (Thomson.) ,, 10 ,', ,, 18-7. (Moser.) 100 pts. H 2 at 15 dissolve 9 '126 pts. K 2 Cr 2 7 , and Solution has sp. gr. =1'0618. (Michel and Krafft, A. ch. (3) 41. 478.) CHROMATE, SILVER 121 100 pts. H 2 dissolve pts. K 2 O 2 7 . A = ac- cording to Alluard (C. R. 59. 500) ; K = according to Kremers (Pogg. 92. 497). t A K t A K 10 20 30 40 50 4-6 7'4 12-4 18-4 25-9 35*0 4-97 8'5 13'1 29-1 60 70 80 90 100 45-0 567 68-6 81-1 94-1 50-5 73-0 102-00 Solubility in H 2 at high temperatures. 100 pts. H 2 dissolve pts. KjCr^ at t. t Pts. K 2 2 7 t Pts. K 2 Cr 2 O 7 117 129 128-3 153-8 148 180 200-6 262-7 (Tilden and Shenstone, Phil. Trans. 1884. 23.) 7 +Aq sat. at 8 has sp. gr. T065. ( Sp. gr. of K 2 Cr 2 7 + Aq at 19'5. K 2 Cr 2 O 7 +Aq sat. at 8 has sp. gr. T065. (Anthon, % K 2 Cr 2 O 7 Sp. gr. K 2 Cr 2 7 Sp. gr. 1 1-007 9 1-065 2 1-015 10 1-073 3 1-022 11 1-080 4 1-030 12 1-085 5 1-037 13 1-097 6 1-043 14 1-102 7 1-050 15 1-110 8 1-056 (Kremers, calculated by Gerlach, Z. anal. 8. 288.) Sat. K2Cr 2 7 + Aq boils at 104 (Kremers); 103-4 (Alluard). Insol. in alcohol. Potassium In'chromate, K 2 Cr 3 10 . Easily sol. in H 2 and alcohol. (Bothe, J. pr. 46. 184.) Not deliquescent ; decomp. by H 2 into chromic acid and K 2 Cr 2 7 . (Jager and Kriiss, B. 22. 2041.) Potassium tetrachrom&ie, K 2 Cr 4 13 . ' Very deliquescent, and easily sol. in H 2 0. (Schwarz, Dingl. 186. 31.) Not deliquescent. Decomp. by H 2 0. (Jager and Kriiss, B. 22. 2042.) Potassium samarium chromate, K 2 Sm 2 (Cr0 4 ) 4 + 6H 2 0. Precipitate. (Cleve.) Potassium sodium chromate, 3K 2 Cr0 4 ,Na 2 Cr0 4 . Sol. in H 2 0. (v. Hauer, J. pr. 83. 359.) Potassium thallium chromate, K 2 Cr0 4 ,Tl 2 Cr0 4 . (Lachaud and Lepierre, Bull. Soc. (3) 6. 232.) Potassium uranyl chromate, K 2 Cr0 4 , 2(U0 2 )Cr0 4 + 6H 2 0. Decomp. by boiling with H 2 0. Sol. in acidified H 2 0. (Formanek, A. 257. 103.) K2Cr0 4 ,(U0 2 )Cr0 4 + H 2 0,2K 2 Cr0 4 ,3(U0 2 )Cr0 4 + 7H 2 0, 3K 2 Cr0 4 , 4(U0 2 )Cr0 4 + 7H 2 0, and K 2 Cr0 4 , 3(U0 2 )Cr0 4 + 14H 2 0. Precipitates. (Wiesner, C. C. 1882. 777.) Potassium yttrium chromate, K 2 Cr0 4 , Y 2 (Cr0 4 ) 3 (Jager and cyanide, (Clarke and Ppt. (Cleve.) Potassium zinc chromate, K 2 0, 5ZnO, 4Cr0 3 + 6H 2 0, or K 2 0, 4ZnO, 3Cr0 3 + 3H 2 0. Slightly sol. in cold, decomp. by hot H 2 0. (Wohler.) Potassium chromate iodate. See Chromoiodate, potassium. Potassium chromate magnesium sulphate, K 2 Cr0 4 , MgS0 4 +9H 2 0. Sol. in H 2 0. (Etard, C. R. 85. 443.) Potassium chromate mercuric chloride, K 2 Cr0 4 , 2HgCl 2 . Easily sol. in H 2 0. Sol. in dil. HCl + Aq. (Darby.) Potassium cKchromate mercuric chloride, K 2 Cr 2 7 , HgCl 2 . Ether or absolute alcohol dissolves out HgCl 2 . (Millon, A. ch. (3) 18. 388.) Can be crystallised from H 2 0. Kriiss, B. 22. 2046.) Potassium chromate mercuric 2K 2 Cr0 4 , 3Hg(CN) 2 . Easily sol. in H 2 0. + H 2 0. (Dexter.) Formula is K 2 Cr0 4 , 2Hg(CN) 2 . Sterne, Am. Ch. J. 3. 352.) Potassium c^chromate mercuric cyanide, K 2 Cr 2 7 , Hg(CN) 2 + 2H 2 0. Sol. in H 2 0. (Wyrouboff, J. B. 1880. 309.) Potassium chromate sulphate, K 2 Cr0 4 , 6K 2 S0 4 . Easily sol. in H 2 0. (Boutron-Chalard.) Rubidium chromate, Rb 2 Cr0 4 . Sol. in H 2 0. (Piccard, J. pr. 86. 455.) Rubidium cfo'chromate, Rb 2 Cr 2 7 . Sol. in H 2 0. (Grandeau, A. ch. (3) 67. 227.) Silver (argentous) chromate, Ag 4 Cr0 4 . Sol. in dil. acids. (Wohler and Rautenberg. ) Existence very doubtful. Silver chromate, Ag 2 Cr0 4 . Absolutely insol. in H 2 0. Sol. in acids, am- monia, and alkali chromates + Aq. (Waring- ton, A. 27. 12.) Appreciably sol. in cold, and still more in hot H 2 0. (Meineke, A. 261. 341.) According to electrical conductivity of Ag 2 Cr0 4 + Aq, 1 1. HoO dissolves 28 mg. Ag 2 Cr0 4 at 18. (Kohlrausch and Rose, Z. phys. Ch. 12. 241.) 100 ccm. H 2 dissolve 0'064 grain Ag 2 Cr0 4 at 100 C. ; 100 ccm. H 2 containing 50 grains 122 CHROMATE, SILVER of the following salts dissolve the given amts. of Ag 2 Cr0 4 at 100 C. : NaN0 3 , 0'064 grain ; KN0 3 , 0-192 grain; NH 4 N0 3 , 0'320 grain; Mg(N0 3 ) 2 , 0-256 grain. (Carpenter, J. S. C. I. 5. 286.) Silver bichromate, Ag 2 O 2 7 . SI. sol. in H 2 0. Easily sol. in HN0 3 , or NH 4 OH + Aq. ( Warington. ) Decomp. by boiling with H 2 into Cr0 3 and Ag 2 Cr0 4 . (Jager and Kriiss, B. 22. 2050.) Silver uranyl chromate, 2Ag 2 Cr0 4 , U0 2 Cr0 4 . Ppt. (Formanek, A. 257. 110.) Silver chromate ammonia, Ag 2 Cr0 4 , 4NH 3 . Decomp. by H 2 0. Sol. in warm cone. NH 4 OH + Aq. (Mitscherlich, Pogg. 12. 141.) Silver bichromate mercuric cyanide, Ag 9 Cr 2 7 , 2Hg(CN) 2 . Scarcely sol. in cold, more readily in hot H 2 0. Sol. in hot HN"0 3 + Aq, separating on cooling. (Darby, Chem. Soc. 1. 24.) Sodium chromate, Na 2 Cr0 4 + 10H 2 0. Deliquescent. (Kopp, A. 42. 99.) Easily sol. in H 2 0. Melts in crystal H 2 at 23. (Berthelot.) SI. sol. in alcohol. (Moser.) 100 pts. absolute methyl alcohol dissolve 0-345 pt. Na 2 Cr0 4 at 25. (de Bruyn, Z. phys. Oh. 10. 783.) Sodium bichromate, Na 2 Cr 2 7 . .More sol. in H 2 than Na 2 Cr0 4 . + 2H 2 0. Deliquescent. 100 pts. H 2 dissolve at 15 30 80 100 139 107-2 109-2 116-6 142*8 162'8 2097 pts. salt. Sp. gr. of aqueous solution containing 1 5 10 15 20 25 %Na 2 Cr 2 7 , 1-007 1-035 1-071 1-105 1-141 1-171 30 35 40 45 50 % Na 2 Cr 2 7 . 1-208 1-245 1-280 1-313 1-343 (Stanley, C. N. 54. 194.) Sodium bichromate, Na 2 Cr 3 10 . Deliquescent. Very sol. in H 2 0. (Stanley, C. N. 54. 194.) Sodium uranyl chromate, Na 2 Cr0 4 , 2(U0 2 )Cr0 4 + 10H 2 0. Easily sol. in HaO. (Formanek, A. 257. 108.) Strontium chromate, SrCr0 4 . Somewhat sol. in H 2 0. Sol. in 840 pts. H 2 O (Meschezerski, Z. anal. 21. 399) ; sol. in 831-8 pts. H 2 at 15 (Fresenius, Z. anal. 29. 419). Easily sol. in HC1, HN0 3 , or H 2 Cr0 4 + Aq. Sol. in 512 pts. 0'5 % NH 4 C1 + Aq at 15. Sol. in 63-7 pts. 1 % HC 2 H 3 2 + Aq at 15. Sol. in 348 '8 pts. solution containing 0"75 % NH 4 C 2 H 3 2 , 4 drops HC 2 H 3 2 , and 6 drops (NH 4 ) 2 Cr0 4 + Aq. (Fresenius.) 50 com. alcohol (29 %) dissolve 0'0066 g. SrCr0 4 . 50 ccm. alcohol (53 %) dissolve O'OOl g. SrCr0 4 . (Fresenius, Z. anal. 30. 672.) Strontium bichromate, SrCr 2 7 . Easily sol. in H 2 0. Strontium bichromate, SrCr 3 10 + 3H 2 0. Very deliquescent, and sol. in H 2 0. (Preis and Raymann, B. 13. 340.) Thallous chromate, Tl 2 Cr0 4 . Ppt. . Insol. in cold moderately cone. HC 2 H 3 2 + Aq, or in very dil. HN0 3 + Aq, and very si. sol. on boiling therewith. Dil. NH 4 OH, and Na 2 C0 3 + Aq have the same action. At- tacked by very dil. HCl + Aq. Sol. in hot cone. HCl + Aq. Decomp. by dil. H 2 S0 4 + Aq. (Carstanjen.) 1 1. KOH + Aq (112 g. per 1.) dissolves about 3*5 g. Tl 2 Cr0 4 on boiling, which separates out on cooling. Cone. KOH + Aq (31 % KOH) can dissolve 18 g. Tl 2 Cr0 4 per litre. (Lepierre and Lachaud, C. R. 113. 196.) Thallous bichromate, Tl 2 Cr 2 7 . Insol. in H 2 0, etc. Has the same properties as Tl 2 Cr0 4 . Thallous bichromate, Tl 2 Cr 3 10 . Sol. in 2814 pts. H 2 at 15, and 438 '7 pts. at 100. (Crookes.) Thallic chromabe. Ppt. Thorium chromate, Th(Cr0 4 ) 2 + 8H 2 0. Insol. in H 2 0. (Chydenius, Pogg. 119. 54.) Stannous chromate. Ppt. Sol. in dil. acids. (Berzelius.) Stannic chromate. Ppt. (Leykauf, J. pr. 19. 127.) Uranyl chromate, U0 2 Cr0 4 + llH 2 0. Very sol. in H 2 0. (Formanek, A. 257. 108.) Yttrium chromate. Deliquescent. Easily sol. in H 2 0. (Berlin.) Zinc chromate, basic, 4ZnO, Cr0 3 + 5H 2 0. Insol. in H 2 ; sol. in hot H 2 Cr0 4 + Aq ; slowly sol. in NH 4 OH + Aq. (Malaguti and Sarzeau, A. ch. (3) 9. 431.) 2ZnO, Cr0 3 + 2H 2 0. Ppt. Not wholly insol. in H 2 0. (Priissen and Phillipona, A. 149. 92.) 4ZnO, 2Cr0 3 + 3H 2 0. Ppt. Insol. in H 2 0. Sol. in hot H 2 Cr0 4 + Aq. (Priissen and Phil- lipona. ) Zinc chromate ammonia, ZnCr0 4 , 4NH 3 + 5H 2 0. Decomp. by H 2 0. Sol. in NH 4 OH + Aq. Insol. in alcohol and ether. (Malaguti and Sarzeau, A. ch. (3) 9. 431.) + 3H 2 0. Efflorescent. Decomp. by H 2 0. Easily sol. in dil. acids and NH 4 OH + Aq. (Bieler, A. 151. 223.) 2ZnO, 3Cr0 3 , 10NH 3 + 10H 2 0. Ppt. (Mala- guti and Sarzeau.) Chromic sulphuric acid. See Sulphochromic acid. Chromicyanhydric acid, H 3 Cr(CN) 6 (?). Insol. in H 2 0. (Kaiser, A. Stippl. 3. 163.) CHROMIC CHLORIDE 123 Ammonium chromicyanide, (NH 4 ) 3 Cr(CN) 6 . Easily sol. in H 2 0. (Kaiser, A. Suppl. 3. 163.) Cupric chromicyanide, Cu 3 [Cr(ClSr) 6 ] 2 . Ppt. Insol. in dil. or cone, acids, except on heating. Insol. in NH 4 OH, or KOH + Aq. (Kaiser.) Lead chromicyanide, basic, 3Pb(CN) 2 ,2Cr(CN) 3 , Pb(OH) 2 . Ppt. Sol. in HN0 3 , NaOH + Aq, or Pb salts + Aq. (Kaiser.) Potassium chromicyanide, K 3 Cr(CN) 6 . Very sol. in H 2 0. 100 pts. cold H 2 dissolve 30 '9 pts. salt. Insol. in absolute alcohol, but somewhat sol. in dil. alcohol. Sol. in cone. H 2 S0 4 without decomp. (Kaiser, A. Suppl. 3. 170.) Silver chromicyanide, Ag 3 Cr(CN) 6 . Insol. in all solvents, excepting KCN + Aq. (Kaiser.) Chromisulphocyanhydric acid, H 3 Cr(SCN) 6 . Known only in aqueous solution. Ammonium chromisulphocyanide, (NH 4 ) 3 Cr(SCN) 6 + 4H 2 0. Easily sol. in H 2 0. (Rossler, A. 141. 185.) Barium chromisulphocyanide,Ba 3 [Cr(SCN) 6 ] 2 + 16H 2 0. Deliquescent, and sol. in H 2 0. (R.) Lead chromisulphocyanide, Pb 3 [Cr(SCN) 6 ] 2 , 4Pb0 2 H 2 + 8H 2 0. Insol. in H 2 0, but decomp. thereby into Pb 2 [Cr(SCN) 5 ] 2 , 4Pb0 2 H 2 + 5H 2 0. Insol. in H 2 0. Potassium chromisulphocyanide, K 6 Cr(SCN) 6 + 4H 2 0. Sol. in 072 pt. H 2 and 0'94 pt. alcohol. Silver chromisulphocyanide, Ag 6 Cr(SCN) 6 . Insol. in H 2 or cone. HN0 3 + Aq. Insol. in NH 4 OH + Aq. Sol. in KCN + Aq. Sodium chromisulphocyanide, Na 6 Cr(SCN) 6 + 7H 2 0. Deliquescent ; sol. in H 2 0. Chromium, Or. Two modifications (a) Not attacked by H 2 0. Easily sol. in cold HCl + Aq. SI. sol. in dil. H 2 S0 4 + Aq. (Deville.) Easily sol. in a hot mix- ture of 1 pt. H 2 S0 4 and 20 pts. H 2 0. (Regnault, A. ch. 62. 357. ) Easily sol. in warm cone. H 2 S0 4 . (Gmelin.) Very slowly sol. in hot HN0 3 + Aq. ( Vauquelin. ) Insol. in dil. or cone. HN0 3 + Aq. (Deville.) Very slowly (Richter), not at all (Berzelius) sol. in hot aqua regia. Easily sol. inHF + Aq. (|8) Insol. in all acids, even aqua regia (Fremy) ; probably contains Si. Chromium ammonia compounds. See Bromotetramine chromium compounds, BrCr(NH 3 ) 4 X 2 . Bromopurpureochromium compounds, BrCr(NH 3 ) 5 X 2 . Chlorotetramine chromium compounds, ClCr(NH 3 ) 4 X 2 . Chloropurpureochromium compounds, ClCr(NH 3 ) 5 X 2 . Diamine chromium sulphocyanides, Cr(NH 3 ) 2 (SCN) 4 M. Erythrochromium compounds (HO)Cr 2 (NH 3 ) 10 X 2 . lodopurpureochromium compounds, ICr(NH 3 ) 5 X 2 . lodotetramine chromium compounds, ICr(NH 3 ) 4 X 2 . Luteochromium compounds, Cr(NH 3 ) 6 X 3 . Ehodochromium compounds, (HO)Cr 2 (NH 3 ) 10 X 5 . Rhodosochromium compounds, (HO) 3 Cr 2 (NH 3 ) 6 X 3 . Roseochromium compounds, Cr(NH 3 ) 5 (OH 2 )X 4 . Xanthochromium compounds, (H0 2 )Cr(NH 3 ) 5 X 2 . Chromous bromide, CrBr 2 . Sol. in H 2 0. Not deliquescent in dry air. (Moissan, C. R. 92. 1051.) Chromic bromide, CrBr 3 . Anhydrous. Insol. in H 2 0, but dissolves at once in presence of the least trace of CrBr 2 . (Bauck, A. 111. 382.) + 6H 2 0. Deliquescent. Very sol. in H 2 0. H 2 dissolves more than 2 pts. crystals at ord. temp. Very sol. in alcohol. Insol. in ether. (Recoura, C. R. 110. 1029.) Blue modification. Insol. in alcohol. (Recoura, C. R. 110. 1193.) + 8H 2 0. Sol. in H 2 0. (Varenne, C. R. 93. 727.) Chromic bromide ammonia. See Bromotetramine chromium bromide. Chromous chloride, CrCl 2 . Deliquescent. Very sol. in H 2 with evolu- tion of much heat. (Moberg, J. pr. 29. 175.) + 1H 2 0. (Moissan, A. ch. (5) 25. 40.) Chromous hydrogen chloride, 3CrCL, 2HC1 + 13H 2 0. Decomp. by H 2 0. (Recoura, C. R. 100. 1227.) Chromic chloride, CrCl 3 . Anhydrous. Peach - blossom - coloured modi- fication. Insol. in pure H 2 (Peligot), but by long continued boiling of the finely divided salt with H 2 0, traces are dissolved with decomp. Not decomp. by boiling cone. H 2 S0 4 , or other acids, even aqua regia. Easily sol. with evolution of heat in H 2 containing only ^fanr P*- CrCl 2 (Peligot, J. pr. 36. 150). Also sol. in presence of traces of SnCl 2 (5 mg. SnCl 2 cause 1 g. CrCl 3 to dissolve), FeCl 2 , Cu 2 Cl 2 , Na 2 S 2 3 , and other reducing 124 CHROMIC GLUCINUM CHLORIDE substances ; chlorides without reducing pro- perties have no effect (Pelouze, A. ch. (3) 14. 251). TiCl 3 and S0 2 have similar solvent action (Ebelmen, A. ch. (3) 20. 390) ; also Zn + dil. acids (Moberg). Insol. in dil. alkalies + Aq ; very slowly decomp. by boiling cone, alkalies or alkali carbonates + Aq. (Fellenberg, Pogg. 50. 76.) Violet modification. Very sol. in H 2 to form a green solution. (Moberg, J. pr. 44. 325.) + 4H 2 0. SI. deliquescent. Very sol. in H 2 0, alcohol, and ethyl acetate. (Godeffroy, Bull. Soc. (2)43. 229.) + 6H 2 0. Deliquescent. Sol. in H 2 0, but probably decomp. to CrOCl 2 . + 6^H 2 0. Green modification. 100 pts. H 2 dissolve 130 pts. salt at 15. Sol. in alcohol. (Recoura, 0. R. 102. 518.) Greyish - blue modification. Very sol. in H 2 0. (Recoura, C. R. 102. 548.) + 10H 2 0. Very deliquescent; melts in crystal H 2 at 6-7. Very sol. in H 2 0, alcohol, and ethyl acetate. (Godeffroy.) Chromic glucinum chloride, CrCl 3 , G1C1 2 + H 2 0. Sol. in H 2 with decomp. (Neumann, A. 244. 329.) Chromic magnesium chloride, CrCl 3 , MgCl 2 + H 2 0. Decomp. by H 2 0. (Neumann.) Chromic phosphoric chloride, CrCl 3 , PC1 5 . Decomp. by H 2 0. (Cronander.) Chromic potassium chloride, CrCl 3 , KC1. Decomp. by H 2 0. CrCl 3 , 2KC1 + H 2 0. (Neumann, A. 244. 329.) CrCl 3 , 3KC1. Easily sol. in H 2 with de- comp. (Fremy, A. ch. (3) 12. 361.) Chromic rubidium chloride, CrCL, 2RbCl+ H 2 0. Decomp. by H 2 0. (Neumann, A. 244. 329. ) Chromic sodium chloride, CrCl 3 , NaCl. Sol. in H 2 0. (Berzelius. ) CrCl 3 , 3NaCl. Sol. in H 2 0. (Berzelius.) Chromic thallium chloride, CrCl 3 , 3T1C1. Sol. with decomp. in H 2 0. (Neumann, A. 244. 329.) Chromic chloride ammonia. See Chlorotetramine chromium chloride. Chromic chloride ferric oxide. Fe 2 3 is easily sol. in dil., difficultly sol. in cone. CrCL + Aq. (Bechamp, A. ch. (3) 57. 311.) Chromium ^'fluoride, CrF 3 . Perfectly sol. in H 2 0. (Berzelius.) Violet modification. CrF 3 + 9H 2 0. Very si. sol. in H 2 0. Insol. in alcohol. Sol. in HC1, and KOH + Aq. (Fabris, Gazz. ch. it. 20. 582.) Chromium hexa&uoTide, CrF 6 . Decomp. by H 2 with evolution of heat. (Berzelius.) Correct composition is Cr0 2 F 2 . (Oliveri, Gazz. ch. it. 16. 218.) Chromic cobaltous fluoride, CrF 3 , CoF 2 + 7H 2 0. Easily sol. in H 2 0. (Petersen, J. pr. (2) 40. 60.) Chromic nickel fluoride, CrF 3 , NiF 2 + 7H 2 0. Somewhat more sol. in H 2 than CrF 3 , CoF 2 + 7H 2 0. (Petersen, J. pr. (2) 40. 61.) Chromic potassium fluoride, CrF 3 , 3KF. Nearly insol. in H 2 0. (Christensen, J. pr. (2) 35. 161.) CrF 3 , 2KF + H 2 0. Nearly insol. in H 2 0. Sol. in cone. HCl + Aq. (Christensen.) Chromic sodium fluoride, CrF 3 , 2NaF + H 2 0. (Wagner, B. 19. 896.) Chromous hydroxide, Cr0 2 H 2 . Decomp. by H 2 O, especially if hot. (Peligot, A. ch. (3) 12. 539.) Slowly sol. in cold cone, acids, even aqua regia ; almost insol. in dil. acids. (Moberg, J. pr. 43. 119.) Chromic hydroxide, Cr 2 3 , ccH 2 0, probably Cr 2 6 H 6 . Insol. in H 2 0. Easily sol. in acids. Easily sol. in cold KOH, or NaOH + Aq ; much less sol. in cold NH 4 OH + Aq ; the presence of NH 4 C1 has no influence upon solubility in NH 4 OH + Aq. (Fresenius.) Insol. in NH 4 OH + Aq if it has been thoroughly washed. Insol. in KCN + Aq, but si. sol. in KCN + HCN + Aq. (Rodgers, 1834.) Gradually sol. in dil. FeCl 3 + Aq ; after three months 2 mols. Cr 2 6 H 6 are dissolved by 1 mol. FeCl 3 without pptn. of Fe 2 6 H 6 . (Bechamp, A. ch. (3) 57. 296.) Also sol. in CrCl 3 + Aq; in four months 1| mols. Cr 2 6 Hg are dissolved by 1 mol. CrCl 3 . (Bechamp.) Sol. in Cr(N0 3 ) 3 + Aq, and clear solution formed as long as 3 mols. HN0 3 are present for 8 mols. Cr 2 3 . (Ordway, Sill. Am. J. (2) 27. 197.) Not pptd. in presence of Na citrate. (Spill er. ) Insol. iji amylamine + Aq ; not pptd. in presence of alkali tartrates, sugar, etc. Cr 2 6 H 6 + 4H 2 0. Difficultly sol. in acids. Cr 2 6 Hg + H 2 O. Extremely hygroscopic. Exists in a soluble modification, obtained by dialysis ; solution can be diluted with pure H 2 0, but gelatinises with traces of salts. (Graham, Roy. Soc. Trans. 1861. 183.) Cr 2 2 (OH) 2 . Insol. in boiling dil. HC1 + Aq. Cr 2 0(OH) 4 (Guignet's green}. Scarcely sol. in boiling HCl + Aq. (Salvetat, C. R. 48. 295.) Guignet gave formula as 2Cr 2 3 + 3H 2 0. Chromochromic hydroxide, Cr 3 4 , H 2 (?). Slightly attacked by acids. (Peligot, A. ch. (3) 12. 539.) Chromous iodide, CrI 2 . Easily sol. in H 2 0. (Moissan, A. ch. (5) 25. 401.) Chromic iodide, CrI 3 (?). Insol. in cold, sol. in hot H 2 0, but no separa- tion occurs on cooling. (Berlin. ) CHROMIC SULPHIDE 125 Chromium nitride, Cr 2 N 2 . Insol. in dil. acids and alkalies, cone. HN0 3 , HC1, or HF + Aq, even on heating. Slowly sol. in hot aqua regia or cold H 2 S0 4 . Sol. in cold solutions of alkali hypochlorites. (Ufer, A. 112. 281.) Chromous oxide, CrO. Only known in form of hydroxide, which see. Chromic oxide, Cr 2 3 . When ignited is nearly insol. in acids, but dissolves in H 2 S0 4 by long boiling. Insol. in liquid HC1. (Gore.) Solubility in (calcium sucrate + sugar) + Aq. 1 1. solution containing 418 '6 g. sugar and 34-3 g. CaO dissolves 1'07 g. Cr 2 3 ; 1 1. solu- tion containing 296 '5 g. sugar and 24 '2 g. CaO dissolves 0'56 g. Cr 2 3 ; 1 1. solution containing 174'4 g. sugar and 14 '1 g. CaO dissolves 0'20 g. Cr 2 3 . (Bodenbender, J. B. 1865. 600.) See also Chromic hydroxide. Chromochromic oxide, Cr 3 4 =CrO, Cr 2 3 . Known only in form of hydroxide, which see. Cr 4 5 , or Cr 5 6 (?). Insol. in acids or in aqua regia. (Bunsen, Pogg. 91. 622.) Not obtainable. (Geuther, A. 118. 66.) Chromium ^'oxide, Cr0 3 . Deliquescent, and very sol. in H 2 0, to form solution of H 2 Cr0 4 or H 2 Cr 2 7 . Sp. gr. of Cr0 3 + Aq at t. t Sp. gr. %Cr0 3 16-0 1-0606 8-25 18-0 1-0679 8'79 14-5 1-0694 879 19-5 1-0957 12-34 19'0 1-1569 19-33 20-9 1-20269 31-83 20-1 1-20264 31-83 12-0 1-20714 31-83 35-0 1-20940 32-59 18-6 1-21914 32-59 15-2 1-22106 32-59 97 1-22384 32-59 22-0 1-3441 37-77 19-2 1-3448 37-82 22-0 1-34416 37-82 1-7028 62-23 (Zettnow, Pogg. 143. 474.) Sp. gr . of Cr0 3 + Aq (H 2 Cr0 4 + Aq). M = according to Mendelejeff at 15 ; Z = accord- ing to Zettnow, calculated by Gerlach (Z. anal. 27. 300). %Cr0 3 M Z %Cr0 3 M Z 5 1-036 1-037 35 1-324 1-312 10 1-076 1-076 40 1-383 1-373 15 1-119 1-118 45 1-445 1-440 20 1-166 1-162 50 1-510 1-512 25 1-215 1-208 55 1-579 1-587 30 1-268 1-258 60 1-665 r 8 Cr0 Sol. in H 2 S0 4 ; the solubility is least when the acid contains 66 % H 2 S0 4 (Schrotter) ; 84*5 % H 2 S0 4 (Bolley). Very sol. in H 2 S0 4 of 1'85 sp. gr. SI. sol. in cold KHS0 4 + Aq. (Fritzsche.) Sol. in alcohol with decomp. Sol. in anhydrous ether. Chromium oxide, Cr 5 9 =2Cr 2 3 , Cr0 3 . 15 = 3Cr 2 3 , 2Cr0 3 . 2 = Cr 2 3 , Cr0 3 . Cr 5 12 = Cr 2 3 , 3Cr0 3 . Cr 6 15 = Cr 2 3 , 4Cr0 3 . See Chromate, chromium. Chromium peroxide, Cr 2 7 (?). More sol. in ether than in H 2 0. Ether solu- tion is somewhat more stable than aqueous solution. (Aschoff, J. pr. 81. 401.) Formula is Cr0 3 , H 2 2 . (Moissan, C. R. 97. 96.) Chromic oxychloride. From Cr 2 3 . Sol. in H 2 as long as 1 mol. CrCl 3 is present for 2| mols. Cr 2 6 H 6 . (Ord- way, Sill. Am. J. (2) 27. 197.) Cr 2 3 , 2CrCl 3 . Sol. in H 2 0. (Kletzinsky, Zeit. Ch. 1866. 277.) Cr 2 3 , CrCl 3 = CrOCl. Anhydrous. Only partly sol. in H 2 0. + 3H 2 0. Very deliquescent, and sol. in H 2 0. (Peligot.) Cr 2 3 , 4CrCl 3 + 6H 2 = Cr 2 OCl 4 + 2H 2 0. (Peli- got, J. pr. 37. 38.) ~=Cr Q OCLt + 3H,0. Sol. in H 2 (Schiff, A. 2 = C r 2 (OH) 2 Cl 4 in H 2 (Moberg); = (Schiff, I.e.) (Moberg) ; 124. 157.) Cr 2 3 , 8CrCl 3 . + 24H 2 0. Sol. Cr 2 (OH)Cl 5 + 4H 2 0. From Cr0 3 . See Chromyl chloride. Chromium oxyfluoride, Cr0 2 F 2 . See Chromyl fluoride. Chromium phosphide, Cr 2 P 2 . Insol. in acids, but a trace dissolves in aqua regia. Insol. in HF + Aq. (Berzelius.) Chromous selenide, CrSe. (Moissan, C. R. 90. 817.) Chromic selenide, Cr 2 Se 3 . Insol. in H 2 0. (Moissan, C. R. 90. 817.) Chromous sulphide, CrS. Insol. in H 2 or K 2 S + Aq. _ (Peligot.) Easily sol. in acids. (Moissan, C. R. 817.) Min. Daubrelite. Chromic sulphide, Cr 2 S 3 . Insol. in H 2 or alkali sulphides + Aq. attacked by HCl + Aq. (W. Miiller, * 127. 404.) HN0 3 + Aq decomposes or not according to method of manufacture. Easily decomp. by aqua regia. Insol. in caustic alkalies + Aq. Insol. in K 2 S + Aq. (Berzelius. ) 90. SI. 126 CHROMOCHROMIC SULPHIDE Chromochromic sulphide, O 3 S 4 , = CrS, Cr 2 S 3 . Insol. in H 2 0, HC1, or dil. H 2 S0 4 + Aq. Easily sol. in HN0 3 + Aq. (Groger, W. A. B. 81. (2) 531.) Ohromocyanhydric acid, H 4 Cr(CN) 6 . Decomp. rapidly on air. Sol. in H 2 0. (Moissan, A. ch. (6)4. 144.) Potassium chromocyanide, K 4 Cr(CN) 6 . Very sol. in H 2 ; 100 pts. H 2 dissolve 32'33 pts. at 20. Much more sol. in hot H 2 0. Insol. in alcohol, ether, benzene, or chloroform. (Moissan, A. ch. (6)4. 136.) Above salt was K 3 Cr(CN) 6 . (Christensen.) K 4 Cr(CN) 6 + 3H 2 0. (Christensen, J. pr. (2) 31. 166.) Chromoiodic acid, Cr0 3 , HI0 3 + 2H 2 0. Deliquescent. (Berg, C. R. 104. 1514.) Ammonium chromoiodate,Cr0 3 ,NH 4 I0 3 + H 2 0. Moderately sol. in H 2 0. (Berg.) Lithium chromoiodate, Cr0 3 , LiI0 3 + H 2 0. Very sol. in H 2 0. (Berg.) Magnesium chromoiodate. Sol. inH 2 0. (Berg.) Potassium chromoiodate, Cr0 3 , KI0 3 . Sol. inH 2 0. (Berg.) + H 2 = KCrIH 2 7 . SI. decomp. by H 2 0. (Blomstrand, J. pr. (2) 40. 331.) Silver chromoiodate, Cr0 3 , AgI0 3 . SI. attacked by cold, rapidly decomp. by hot H 2 0. (Berg, C. R. 111. 42.) Sodium chromoiodate, Cr0 3 , NaI0 3 + H 2 0. Very sol. in H 2 0. (Berg. ) Chromosulphuric acid, H 2 O 2 (S0 4 ) 4 . Sol. in H 2 in all proportions, but solution is easily decomp. on standing or boiling. (Recoura, Bull. Soc. (3) 9. 586.) H 4 Cr 2 (S0 4 ) 5 . As above. H 6 Cr 2 (S0 4 ) 6 . As above. Ammonium chromosulphate, (NH 4 ) 2 Cr 2 (S0 4 ) 4 + 5H 2 0. Sol. in H 2 after a few minutes. (Recoura.) Potassium chromosulphate, K 2 Cr 2 (S0 4 ) 4 + 4H 2 0. Sol. in H 2 in a few minutes. (Recoura, Bull. Soc. (3) 9. 590.) Sodium chromosulphate, Na 2 Cr 2 (S0 4 ) 4 + 10H 2 0. As K salt. (Recoura.) Chromous acid, H 2 Cr 2 4 = Cr 2 3 , H 2 0. Chromic hydroxide shows slightly acid pro- perties, and salts corresponding to the above acid are known. Aluminum ferrous magnesium chromite (chrome iron ore), (Fe, Mg)0, (Cr 2 , A1 2 )0 3 . Insol. in H 2 or acids, even a mixture of H 2 S0 4 and HF. (Ebelmen.) Barium chromite, BaCr 2 4 . Insol. in H 2 0. (Gerber, Bull. Soc. (2) 27. 436.) Cadmium chromite, CdCr 2 4 . Not attacked by acids. (Viard, C. R. 109. 142.) Calcium chromite, 2CaO, Cr 2 3 . Insol. in H 2 0, KOH, or NH 4 OH + Aq; slowly decomp. by H 2 C0 3 , or M 2 C0 3 + Aq ; insol. in sugar solution. (Pelouze, A. ch. (3) 33. 9.) CaCr 2 4 . Insol. in H 2 0. (Gerber, Bull. Soc. (2) 27. 436.) Cobaltous chromite, CoCr 2 4 . (Elliot, Dissert. Gottingen, 1862.) Cupric chromite, CuCr 2 4 . Not attacked by HN0 3 + Aq. (Persoz, A. ch. (3) 25. 283.) Glucinum chromite, GlCr 2 4 . Insol. in H 2 0. (Mallard, C. R. 105. 1260. ) Ferrous chromite (chrome iron ore). See Chromite, aluminum ferrous magnesium. Ferroferric chromite, FeO, Fe 2 3 , Cr 2 3 . Not attacked by HC1 + Aq. (Ebelmen. ) Ferrous magnesium chromite. Insol. in HCl + Aq. Scarcely attacked by H 2 S0 4 . Lead chromite, PbCr 2 4 . Ppt. Insol. in KOH + Aq. (Chancel, C. R. 43. 927.) Magnesium chromite, MgO, 2Cr 2 3 . Insol. in H 2 0. (Nichols, Sill. Am. J. (2) 47. 16.) MgCr 2 4 . Insol. in acids or alkalies, except boiling H 2 S0 4 . (Schweitzer, J. pr. 39. 259.) Could not be obtained. (Viard, Bull. Soc. (3) 5. 934.) 2MgO, Cr 2 3 . Insol. in H 2 or acids. (Nichols.) 5MgO, 4Cr 2 3 . Insol. in acids. (Viard, C. R. 112. 1003.) 3MgO, 2Cr 2 3 . As above. (V.) Manganese chromite, MnCr 2 4 . Entirely insol. in acids. (Ebelmen, A. ch. (3)'33. 44.) Zinc chromite, ZnCr 2 4 . Insol. in acids and alkalies. (Viard, C. R. 109. 142.) + zH 2 0. (Chancel, C. R. 43. 927.) 3ZnO, 2Cr 2 3 . As above. (Viard, C. R. 112. 1003.) 6ZnO, 5Cr 2 3 . As above. (V.) Chromovanadic acid. Ammonium chromovanadate, 2(NH 4 ) 2 0, 2Cr0 3 , V 2 5 + 7H 2 0. Sol. in H 2 0. (Ditte, C. R. 102. 1105.) Chromyl chloride (chlorochromic acid), Cr0 2 Cl 2 . Decomp. by H 2 with evolution of much COBALTOUS CHLORIDE 127 heat. Sol. in glacial acetic acid without de- composition. Tricbromyl chloride, Cr 3 6 Cl 2 . Deliquescent. Sol. in H 2 with gradual de- composition. Sol. in cone. HC1 + Aq. (Thorpe, Chem. Soc. (2)8. 31.) Chromyl chlorides. From Cr 2 3 . See Chromium oxychlorides. Chromyl fluoride, Cr0 2 F 2 . Decomp. by H 2 with evolution of heat. (Oliveri, Gazz. ch. it. 16. 218.) Clay. See Silicate, aluminum, A1 2 3 , Si0 2 + 2H 2 0. Cobalt, Co. Not attacked by H 2 0. Sol. in dil. HC1, or H 2 S0 4 , or HN0 3 + Aq. Cone, hot H 2 S0 4 , and HN0 3 decomp. witli evolution of S0 2 or NO gas. Exists also in passive state. See Iron. (Nickles, J. pr. 61. 186.) Sol. in cone. KOH + Aq when in finely divided state. (Winkler, J. pr. 91. 211.) Cobalt ammonia compounds. See Anhydrooxycobaltamine compounds, [Co(NH 3 ) 5 ] 2 [g 1 (?H) ]x 4 . Bromotetramine cobaltic compounds, BrCo(NH 3 ) 4 X 2 . Bromopurpureocobaltic compounds, BrCo(NH 3 ) 5 X 2 . Carbonatotetramine cobaltic compounds, (C0 3 )Co(NH 3 ) 4 X. Chlorotetramine cobaltic compounds, ClCo(NH 3 ) 4 X 2 . Chloropurpureocobaltic compounds, ClCo(NH 3 ) 5 X 2 . Croceocobaltic compounds, Co(NH 3 ) 4 (N0 2 ) 2 X. Decamine cobaltic sulphite, Co 2 (NH 3 ) 10 (S0 3 ) 3 . Diamine cobaltic nitrites, Co(NH 3 ) 2 (N0 2 ) 4 M. Dichrocobaltic compounds, Co(NH 3 ) 3 X 3 . Flavocobaltic compounds, (N0 2 ) 2 Co(NH 3 ) 4 X. Fuscocobaltic compounds, (OH)Co(NH 3 ) 4 X 2 . lodotetramine cobaltic compounds, ICo(NH 3 ) 4 X 2 . Luteocobaltic compounds, Co(NH 3 ) 6 X 3 . Melanocobaltic compounds, [Co(NH 3 ) 3 Cl 2 ] 2 , NH 2 C1. Nitratotetramine cobaltic compounds, (N0 3 )Co(NH 3 ) 4 X 2 . Nitratopurpureocobaltic compounds, (N0 3 )Co(NH 3 ) 5 X 2 . Nitritocobaltic compounds, (N0 2 )Co(NH 3 ) 5 X 2 . Octamine cobaltic compounds, Co 2 (NH 3 ) 8 X 6 . ( = Tetramine cobaltic compounds, Co(NH 3 ) 4 X 3 ). Oxycobaltamine compounds, Co 2 (NH 3 ) 10 OH(OOH)X 4 . Praseocobaltic compounds, Co(NH 3 ) 4 X 3 . Purpureocobaltic compounds, Co(NH 3 ) 5 X 3 . Roseocobaltic compounds, Co(NH 3 ) 5 (OH 2 )X.>. Sulphatotetramine cobaltic compounds, (S0 4 )Co(NH 3 ) 4 X. Sulphatopurpureocobaltic compounds, (S0 4 )Co(NH 3 ) 5 X. " Tetramine cobaltic " compounds, Co(NH 3 ) 2 X 3 . Xanthoeobalticcompounds(N0 2 )Co(NH 3 ) 5 X 2 . Cobalt arsenide, CoAs 3 . Min. Skutterudite. Sol. in HN0 3 + Aq, with separation of As 2 3 . Cobalt arsenide sulphide, Co As 2 , CoS 2 . Min. Cobaltite. Sol. in HN0 3 + Aq, with separation of S and As 2 3 . Glaucodote. Completely sol. in HN0 3 + Aq. Cobaltous bromide, CoBr 2 . Deliquescent. Sol. in H 2 0, alcohol, and ether. + 2, and 6H 2 0. (Hartley, Chem. Soc. (2) 12. 214.) Cobalt stannic bromide. See Bromostannate, cobalt. Cobaltous bromide ammonia, CoBr 2 , 6NH 3 . Sol. in H 2 with residue of cobaltic hydrox- ide. (Rammelsberg, Fogg. 55. 245.) Cobaltous chloride, CoCl 2 . Deliquescent. Sol. in H 2 with evolution of heat. 100 pts. H 2 dissolve 43 '3 pts. CoCl 2 at 0. (Engel, A. ch. (6) 17. 355.) 100 pts. sat. CoCl 2 + Aq at t contain pts. CoCL. t Pts. CoCl 2 ,0 I PtS. 1 CoCl 2 t Pts. CoCl 2 -22 247 25 34-4 56 48-4 - 4 28-0 34 37-5 78 48-8 + 7 31-2 41 39-8 94 50-5 11 31-3 45 41-7 96 51-2 12 32-5 49 467 112 52-3 Deliquescent. (Bersch. ) Not deliquescent. Easily sol. in (Etard, C. R. 113. 699.) + H 2 0. + 2H 2 0. Very deliquescent. (Bersch, J. B. 1867. 291.) + 4H 2 0. + 6H 2 0. H 2 0. Sp. gr. of CoCl 2 + Aq containing 5 10 12 20 25 % CoCl 2 . 1-0496 1-0997 1'1579 1'2245 1-3002 Sat. solution 1 '3613. (Franz, J. pr. (2) 5. 284.) Sp. gr. of CoCl 2 + Aq containing in 1000 g. H 2 0, g. CoCl 2 + 6H 2 119g.( = imol.) 238 357 476 594 1-055 I'lOl 1-141 1-177 1-209 833 952 1071 1190 1-238 1-264 1-287 1-309 Containing g. CoCl 2 (anhydrous) 65g. ( = Jmol.) 130 195 260 325 390 1-058 1-112 1-164 1-213 1-260 1'304 (Gerlach, Z. anal. 28. 466.) 128 COBALT LITHIUM CHLORIDE Solubility in HC1 + Aq at 0. CoCl 2 in nigs, = mols. HC1 = J mols. in 10 com. of solution. HC1 in mgs. in ditto. H 2 g. CoCl 2 2 HC1 CoCl 2 +HC1 Sp. gr. H 2 62-4 62-4 1-343 9-36 58-525 3-7 62-2 1-328 9-34 50-8 11-45 62-25 1-299 9-27 37-25 25-2 62-45 1-248 9-13 12-85 55-0 67-85 1-167 475 74-75 79-50 1-150 8-46 12-0 104-5 116-5 1-229 7-5 25-0 139-0 164-0 1-323 (Engel, A. ch. (6) 17. 355.) Sol. in alcohol. Sat. solution in alcohol (0'792 sp. gr.) con- tains 23-66 % CoCl 2 and has sp. gr. =1-0107. (Winkler, J. pr. 91. 209.) Very sol. in ether. 100 pts. acetone dissolve 8 "62 pts. anhydrous CoCl 2 . (Krug and M'Elroy, J. Anal. Ch. 6. 184.) Cobalt lithium chloride, CoCl 2 , LiCl + 3H 2 0. Very deliquescent. Sol. in H 2 with de- comp. Sol. in LiCl + Aq without decomp. Sol. in alcohol without decomp. (Chassevant, A. ch. (6) 30. 27.) Cobaltous mercuric chloride, CoCl 2 , HgCl 2 . Very deliquescent, (v. Bonsdorff.) Cobaltous stannic chloride,CoCl 2 ,SnCl 4 + 6H 2 0. See Chlorostannate, cobaltous. Cobaltous chloride ammonia, CoCl 2 , 2NH 3 . Decomp. by H 0. (F. Rose.) CoCl 2 , 4NH,. Decomp. by H 2 0. (H. Rose.) CoCl 2 , 6NH 3 . Decomp. by H 2 0. Sol. in dil. NH 4 OH + Aq with ease, but difficultly in cone. NH 4 OH + Aq. Insol. in absolute alcohol. (Fremy. ) Cobaltous fluoride, CoF 2 . SI. sol. in H 2 ; insol. in alcohol and ether, slowly attacked by cold HC1, H 2 S0 4 , or HN0 3 + Aq. (Poulenc, C. R. 114. 1429.) + 2H 2 0. Sol. in a little H 2 without de- comp. Decomp. into oxyfluoride by boiling with much H 2 0. Sol. in HF + Aq. (Ber- zelius. ) Cobalt columbium fluoride. See Fluocolumbate, cobalt. Cobaltous manganic fluoride, 2CoF 2 , Mn 2 F 6 + 8H 2 0. (Christensen, J. pr. (2) 34. 41.) Cobalt molybdenyl fluoride. See Fluoxymolybdate, cobalt. Cobaltous potassium fluoride, CoF 2 , KF.- SI. sol. in H 2 ; less in ethyl or methyl alcohol ; insol. in amyl alcohol or benzene. Decomp. by hot H 2 S0 4 . (Poulenc, C. R. 114. 747.) + H 2 0. SI. sol. in H 2 0. (Wagner, B. 19. 896.) CoF 2 , 2KF. Cobaltous sodium fluoride, CoF 2 , NaF + H 2 0. Sol. in H 2 0. (Wagner, B. 19. 896.) Cobalt vanadium fluoride. See Fluovanadate, cobalt. Cobaltous hydroxide, Co0 2 H 2 . Insol. in H 2 0. Sol. in acids. Insol. in KOH + Aq. Sol. in ammonium sulphate, chloride, nitrate, or succinate +Aq. (Brett.) Sol. in warm acetic acid ; insol. in NH 4 OH + Aq and cold NH 4 C1 + Aq, but sol. in warm NH 4 Cl + Aq. (de Schulten, C. R. 109. 266.) Insol. in H 2 and dil. KOH + Aq ; somewhat sol. in cone. KOH + Aq ; easily sol. in NH 4 salts +Aq. (Fresenius.) Easily sol. in KCN + Aq. (Rodgers, 1834.) Sol. in cone. K 2 C0 3 + Aq. (Gmelin.) Not pptd. by KOH + Aq in presence of H 2 C 4 H 4 6 or NH 4 citrate. (Spiller. ) Insol. in methyl, or amyl amine +Aq. (Wurtz.) Many non-volatile organic substances prevent its pptn. Cobaltic hydroxide, 3Co 2 3 , 2H 2 0. (Mills, Phil. Mag. (4) 35. 257.) Co 2 3 , 2H 2 0. Decomp. by HC1 + Aq ; gives brown solutions with cold HN0 3 or H 2 S0 4 + Aq, which soon decomp. (Wernicke, Pogg. 141. 120.) Co 2 6 H 6 = Co 2 3 , 3H 2 0. Sol. in warm HC1, HN0 3 , and H 2 S0 4 , with decomp. (Proust.) Sol. in cold H 3 P0 4 , H 2 S0 4 , HN0 3 , or HC1 + Aq, but decomp. on standing or warming. (Winkelblech.) Sol. in racemic, tartaric, oxalic, or citric acid as cobaltous salt. Sol. in cone, acetic acid without immediate decomp. (Remele). Solution is not decomp. by boiling. Sol. in warm sat. (NH 4 ) 2 C 2 4 + Aq with decomp. Not attacked by cold or hot NH 4 OH + Aq. Insol. in boiling NH 4 C1 + Aq. Sol. when freshly pptd. in (NH 4 ) 2 S0 3 + Aq. (Geuther, A. 128. 157.) Cobaltocobaltic hydroxide, Co 3 4 , 3H 2 0. Insol. in H 2 0. Sol. in oxalic acid ; solution decomp. by heat. Sol. in HCl + Aq with evolution of Cl. (Gibbs and Genth, Sill. Am. J. (2) 23. 257.) Co 3 4 , 7H 2 0. Sol. in weak acids, especially HC 2 H 3 2 without decomp. (Fremy. ) Co 5 6 7 , 6H 2 0. Min. Heterogenite. Sol. in dil. HC1 + Aq with evolution of Cl. Cobaltous iodide, CoI 2 . Deliquescent, and very sol. in H 2 0. COBALT SULPHIDE 129 100 pts. sat. CoI 2 + Aq at t contain pts. CoI 2 . t Pts. CoI 2 t Pts. CoI 2 t Pts. CoI 2 -22 52-4 14 61-6 60 79-2 - 8 56-7 25 66-4 82 807 _ 2 58-7 34 73-0 111 80-9 + 9 61-4 46 79-0 156 83-1 (Etard, C. R. 113. 699. ; Easily sol. in alcohol. + 2H 2 0. + 4H 2 0. Very deliquescent. (Etard.) + 6H 2 0. (Hartley, Chem. Soc. (2) 12. 214.) Cobaltous iodide ammonia, CoI 2 , 4NH 3 . Decomp. by H 2 0. Sol. in NH 4 OH + Aq. (Rammelsberg, Pogg. 48. 155.) CoI 2 , 6NH 3 . Insol. in NH 4 OH + Aq. (Ram- melsberg. ) Cobaltic octamine compounds. See Octamine cobaltic compounds. Cobaltous oxide, CoO. Insol. in H 2 0. Easily sol. in dil. or cone. HC1 or HN0 3 + Aq. Slowly sol. in cold, but easily in hot dil. H 2 S0 4 + Aq, acetic, or tartaric acid +Aq. Insol. in NH 4 OH + Aq. Sol. in hot NH 4 C1 + Aq, KOH, or NaOH + Aq. (Rose. ) Insol. in NH 4 C1 or NH 4 N0 3 + Aq. (Brett, 1834.) Insol. in K/X^ + Aq. Sol. in boiling Ce and Ni nitrates + Aq, with pptn. of the oxides. (Persoz.) Easily sol. in dil. acids, even tartaric, acetic, and oxalic acids. Not attacked by NH 4 OH + Aq. Sol. in 13 % NH 4 C1 + Aq with evolution of NH 3 ; also in NH 4 SCN + Aq. Sol. in warm cone. NaOH, and KOH + Aq. (Zimmerman, A. 232. 324.) Solubility in (calcium sucrate + sugar) + Aq. 1 1. solution containing 418 '6 g. sugar and 34-3 g. CaO dissolves 1'56 g. CoO ; 1 1. solu- tion containing 296 '5 g. sugar and 24 '2 g. CaO dissolves 1*00 g. CoO ; 1 1. solution containing 174'4 g. sugar and 14 '1 g. CaO dissolves 0'29 g. CoO. (Bodenbender, J. B. 1865. 600.) See also Cobaltous hydroxide. Cobaltic oxide, Co 2 3 . Decomp. by most acids, even in the cold, with formation of cobaltous salts. Sol. in acetic acid without immediate decomp. See also Cobaltic hydroxide. Cobaltocobaltic oxide, Co 3 4 = CoO, Co 2 3 . Insol. in boiling cone. HC1, HN0 3 , or aqua regia. Sol. by long standing with H 2 S0 4 . (Gibbs and Genth, Sill. Am. J. (2) 23. 257.) See also Cobaltocobaltic hydroxide. Co 4 5 = 2CoO, Co 2 3 . Co 6 7 ^4CoO, Co 2 3 . Not attacked by boil- ing dil. HN0 3 or H 2 S0 4 + Aq. (Beetz. ) Co 8 9 = 6CoO, Co 2 3 + 20H 2 0. Sol. in dil. acids, with residue of Co 2 3 , which dissolves on warming. (Gentele, J. pr. 69. 131.) + 8H 2 0. As above. (Gentele. ) Cobaltous oxychloride, CoCl 2 , 3CoO + 3JH 2 0. Ppt. Very si. sol. in H 2 0. (Habermann, M. 5. 432.) Cobaltous oxyfluoride, CoO, CoF 2 + H 2 0. Ppt. (Berzelius, Pogg. 1. 26.) Cobaltous oxyiodide, CoO, CoI 2 . Insol. in H 2 0. (Rammelsberg.) Cobaltous oxysulphide, CoO, CoS. Cold HC1 + Aq dissolves out CoO ; hot HC1 + Aq decomp. with evolution of H 2 S. (Arfved- son, Pogg. 1. 64.) Cobalt phosphide, Co 3 P 2 . Insol. in cone. HCl + Aq. Sol. in HN0 3 + Aq. (Rose, Pogg. 24. 332.) Cobaltous selenide, CoSe. (Little, A. 112. 211.) Cobaltous sulphide, CoS. Anhydrous. Easily sol. in acids, even HC 2 H 3 2 , but only slowly in the latter case. (Hjortdahl, C. R. 65. 75.) Not attacked by cold dil. HCl + Aq. (Ebel- men, A. ch. (3) 25. 94.) Min. + a;H 2 0. Sol. in cone, mineral acids ; very si. sol. in cold dil. acids ; scarcely sol. in acetic acid. (Wackenroder.) Sol. when still moist in S0 2 + Aq. (Berthier. ) Easily sol. in HN0 3 , but only very si. sol. in HC1 + Aq. Not pptd. from very dil. acid solu- tions by H 2 S. Insol. in H 2 0, alkalies, and alkali carbonates, or sulphides + Aq. (Fresenius. ) Insol. in NH 4 C1, and NH 4 N0 3 + Aq. (Brett. ) Pptd. by (NH 4 ) 2 S + Aq, and shows a brown colour in presence of 200, 000 pts. H 2 0. (Pfaff. ) Tartaric acid, etc. does not hinder the pptn. by (NH 4 ) 2 S + Aq. (Rose. ) Sol. in potassium thiocarbonate + Aq. (Rosenbladt, Z. anal. 26. 15.) Sol. in Na 2 Sa; or K^ + Aq. (de Koninck, Zeit. angew. Ch. 1891. 202.) Cobaltic sulphide, Co 2 S 3 . Partially decomp. by HCl + Aq; sol. in HN0 3 + Aq with decomposition. SI. attacked by HCl + Aq ; and slowly even by aqua regia. (Schneider, J. pr. (2) 9. 209. ) Min. Cobalt pyrite. + ccH 2 0. Insol. in KCN + Aq. (Fleck, J. pr. 97. 303.) More sol. in HCl + Aq than CoS 2 . (Dingier, Berz. J. B. 10. 139.) Cobaltocobaltic sulphide, Co 3 S 4 . Min. Linnarite. Sol. in warm HN0 3 + Aq, with residue of S. Cobalt bisulphide, CoS 2 . Not attacked by alkalies or acids except HN0 3 and aqua regia. (Setterberg, Pogg. 7. 40.) ' Cobalt sulphide, Co 4 S 3 . Easily sol. in hot HC1 with evolution of H 2 S (andH 2 ?). (Proust.) 130 COBALT TELLURIDE Cobalt telluride, CoTe. (Fabre, C. R. 105. 673.) Cobalt decamine sulphurous acid. See Decamine cobaltisulphurous acid. Oobaltic acid. Potassium cobaltate, K 2 Co 9 16 + 2H 2 0, or 3H 2 0. Insol. in H 2 (Pebal, A. 100. 262), but de- comp. by long boiling. Sol. in cone, acids. K 2 0, xCo0 3 . Sol. in H 2 0. (Winkler, J. pr. 91. 351.) Does not exist. (Donath, W. A. B. 102, 2b. 71.) Cobalticyanhydric acid,H 3 Co(CN) 6 + |H 2 0. Deliquescent. Very sol. in H 2 and only si. decomp. on boiling. Sol. in HCl + Aq without decomp. even on boiling. SI. sol. in cone., more sol. in dil. HN0 3 + Aq. Not decomp. by boiling cone. HN0 3 + Aq or aqua regia. Insol. in cone., si. sol. in dil. H 2 S0 4 + Aq. Sol. in alcohol. Insol. in ether. (Zwenger, A. 162. 157.) Ammonium cobalticyanide, (NH 4 )..Co(CN) 6 + iH 2 0. Very sol. in H 2 ; si. sol. in alcohol. Ammonium barium cobalticyanide, NH 4 BaCo(CN) 6 + H 2 0. Sol. in H 2 0. (Weselsky.) Ammonium calcium cobalticyanide, NH 4 CaCo(CN) 6 +10H 2 0. Sol. in H 2 0. Ammonium lead cobalticyanide, NH 4 PbCo(CN) 6 + 3H 2 0. Sol. in 8'31 pts. H 2 at 18, and si. sol. in 93% alcohol. (Schuler.) Ammonium sodium cobalticyanide, NH 4 Na 2 Co(CN) 6 . Only si. sol. in H 2 0. (Weselsky, B. 2. 598.) Ammonium strontium cobalticyanide, NH 4 SrCo(CN) 6 + 9H 9 0. Sol. in H 2 0. (W.) Barium cobalticyanide, basic, Ba 3 [Co(CN) 6 ] 2 , Ba0 2 H 2 . Not very stable. Cannot be recryst. without partial decomp. (W.) Barium cobalticyanide, Ba 3 [Co(CN) 6 ] 2 + 10H 2 0. SI. efflorescent. Very sol. in H 2 0. Insol. in alcohol. Barium cobalticyanide chloride, Ba 3 [Co(CN) 6 ] 2 , BaCl 2 + 16H 2 0. Sol. in H 2 without decomp. (W.) Barium lithium cobalticyanide, BaLiCo(CN) 6 + 15H 2 0. The most. sol. of the double cobalticvanides. (Weselsky.) Barium potassium cobalticyanide, BaKCo(CN) 6 + 11H 2 0. Sol. inH 2 0. (W.) Calcium potassium cobalticyanide, CaKCo(CN) G + 9H 2 0. Sol. inH 2 0. (W.) Cobaltous cobalticyanide, Co 3 [Co(CN) 6 }> + 14H 2 0. Insol. in H 2 and acids. SI. sol. in NH 4 OH + Aq. Decomp. by KOH + Aq. Cupric cobalticyanide, Cu 3 [Co(CN) 6 ] 2 + 7H 2 0. Insol. in H 2 and acids. Sol. in NH 4 OH + Aq. Cupric cobalticyanide ammonia, Cu 3 [Co(CN) 6 ] 2 , 4NH 3 + 7H 2 0. Sol. iiiH 2 0. (Zwenger.) Lead cobalticyanide, basic, Pb 3 [Co(CN) 6 ] 2 , 3Pb0 2 H 2 + llH 2 0. Insol. in H 2 or alcohol ; somewhat sol. in hot Pb(CrH 3 2 ) 2 + Aq. (Schuler. ) Lead cobalticyanide, Pb 3 [Co(CN) 6 ] 2 + 4H 2 0. Very sol. in HoO. Insol. in alcohol. (Zwenger.) + 7H 2 0. Sol. in 177 pts. H 2 at 18, and 1'63 pts. at 19. Insol. in absolute alcohol. SI. sol. in 93 % alcohol. (Schuler, W. A. B. 79. 302.) Lead potassium cobalticyanide, PbKCo(CN) 6 + 3H 2 0. Sol. in 6*74 pts. H 2 at 18 and much more easily in hot H 2 0. Insol. in absolute, si. sol. in 93 % alcohol. (Schuler. ) Lead cobalticyanide nitrate, Pb 3 [Co(CN) 6 ]o, Pb(N0 3 ) 2 + 12H 2 0. Sol. in 16-91 pts. H 2 at 18, 1679 pts. at 19, and much less hot H 2 0. Nearly insol. in 93 % alcohol. (Schuler.) Nickel cobalticyanide, Ni 3 [Co(CN) 6 ] 2 + 12H 2 0. Insol. in H 2 and acids. Not attacked by boiling HCl + Aq. Sol. in NH 4 OH + Aq. Decomp. by KOH + Aq. Nickel cobalticyanide ammonia, Ni 3 [Co(CN) 6 ] 2 , 4NH 3 + 7H 2 0. Insol. in H 2 0. Potassium cobalticyanide, K 3 Co(CN) 6 . Easily sol. in H 2 0. Insol. in alcohol. Potassium strontium cobalticyanide, KSrCo(CN) 6 + 9H 2 0. Sol. inH 2 0. (Weselsky.) Silver cobalticyanide, Ag 3 Co(CN) 6 . Insol. in H 2 and acids. Sol. in NH 4 OH + Aq. Silver cobalticyanide ammonia, Ag 3 Co(CN) (i , Insol. in H 2 0. (Zwenger.) Sodium cobalticyanide, Na 3 Co(CN) 6 + 2H 2 0. Easily sol. in H 2 ; insol. in alcohol. Strontium cobalticyanide, Sr 3 [Co(CN) 6 ] 2 + 10H 2 0. Very sol. in H 2 0. (Weselsky.) COLUMBATE, SODIUM 131 Thallium cobalticyanide, Tl 3 Co(CN) 6 . 100 pts. H 2 dissolve 3 '6 pts. at 0, 5 '86 pts. at 9-5, 10-04 pts. at 19'5. (Fronmiiller, B. 11. 91.) Yttrium cobalticyanide, YCo(CN) 6 + 2H 2 0. Nearly insol. in H 2 0. (Cleve.) Cobaltisulphurous acid, H 6 Co 2 (S0 3 ) 6 . Not obtained in a solid state. (Berglund, Acta Lund. 1872.) Cobaltisulphites. The cobaltisulphites are insol. or at least very si. sol. in H 2 0. (Berglund, Acta Lund. 1872. 23.) Ammonium cobaltous cobaltisulpliite, (NH 4 ) 2 S0 3 , 2CoS0 3 , Co 2 (S0 3 ) 3 + 14H 2 = (NH 4 ) 2 Co 2 Co 2 (S0 3 ) 6 + 14H 2 0. Scarcely sol. in H 2 0, but decomp. thereby. Easily sol. in acids, when finely divided ; also in H 2 S0 3 + Aq. (Berglund.) 2(NH 4 ) 2 S0 3 , CoS0 3 , Co 2 (S0 3 ) 3 + 8H 2 = (NH 4 ) 4 CoCo 2 (S0 3 ) 6 + 8H 2 0. As above. (Berg- lund. ) Barium cobaltisulpliite, 3BaS0 3 , Co 2 (S0 3 ) 3 + 12H 2 = Ba 3 Co 2 (S0 3 ) 6 + 12H 2 0. Ppt. Insol. in H 2 0. Not attacked by cold acids, even H 2 S0 4 , but is decomp. by boiling therewith. (Berglund, Acta Lund. 1872.) Bismuth cobaltisulphite, Bi 2 Co 2 (S0 3 ) 6 . Insol. in H 2 0, dil. HN0 3 , or HC1 + Aq. (Berglund, Acta Lund. 1872. 31.) Calcium cobaltisulphite, Ca 3 Co 2 (S0 3 ) 6 . Ppt. Insol. in H 2 or HCl + Aq. (Berg- lund, Acta Lund. 1872. 30.) Cobaltous cobaltisulphite, Co 3 Co 2 (S0 3 ) 6 =: 3CoS0 3 , Co 2 (S0 3 ) 3 . Ppt. (Berglund, B. 7. 470.) Cobaltous potassium cobaltisulphite, CoK 4 Co 2 (S0 3 ) 6 . Insol. in H 2 0. (Berglund.) Silver cobaltisulphite, Co 2 (S0 3 ) 3 , 3Ag 2 S0 3 . Properties as the following comp. (Berg- lund.) Silver cobaltous cobaltisulphite, CoS0 3 , Co 2 (S0 3 ) 3 , 2Ag 2 S0 3 + 9H 2 0. Insol. in H 2 0. Insol. in HN0 3 + Aq. De- comp. by HC1 or H 2 S + Aq. (Berglund.) Sodium cobaltous cobaltisulphite. Decomp. by H 2 0, so that it has not been obtained pure. (Berglund, Acta Lund. 1872, 29.) Cobaltoctamine sulphurous acid. See Octamine cobaltisulphurous acid. Cobaltocyanhydric acid, H 4 Co(CN) 6 . Very unstable. Sol. in H 2 0. Insol. in alcohol. Potassium cobaltocyanide, K 4 Co(CN) 6 . Decomp. on air. Very deliquescent, and sol. in H 2 0. Insol. in alcohol and ether. (Des- camps, Zeit. Ch. 1868. 952.) Cobaltous acid. Barium cobaltite, BaCo0 3 . Insol. in H 2 or dil. HC 2 H 3 2 + Aq. Sol. in HCl + Aq. (Rousseau, C. R. 109. 64.) BaCo 2 5 . As above. (Rousseau.) Magnesium cobaltite. Insol. in H 2 0, NH 4 OH, or (NH 4 ) 2 C0 3 + Aq. Easily sol. in NH 4 Cl + Aq, from which it is pptd. by KOH + Aq. (Berzelius, Pogg. 33. 126.) Sodium cobaltite. Sol. in NaOH + Aq, but pptd. by diluting the solution. Columbic acid (Niobic acid), 3Cb 2 5 , 4H 2 0, or 3Cb 2 5 , 7H 2 0. Easily sol. in HF ; very si. sol. in HC1 + Aq, but is sol. in H 2 after being treated with HCl + Aq. Sol. in cone. H 2 S0 4 . Sol. in KOH + Aq. Insol. in NaOH + Aq, but be- comes sol. in H 2 by being treated with NaOH + Aq. Sol. in boiling Na 2 C0 3 + Aq. (Rose, Pogg. 113. 109.) Cb 2 5 , 4H 2 0. Cb 2 5 , 7H 2 0. (Santesson, Bull. Soc. (2) 24. 52. ) Calcium columbate, 2CaO, Cb 2 5 . Insol. in H 2 0. (Joly, C. R. 81. 266.) CaO, Cb 2 5 . As above. Ferrous columbate, Fe(Cb0 3 ) 2 . Min. Columbite. Insol. in acids. Ferrous columbate tantalate, o;Fe(Ta0 3 ) 2 , 2/Fe(Cb0 3 ) 2 . Min. Tantalite. Not attacked by acids. Fe(Cb0 3 ) 2 , 4Fe(Ta0 3 ) 2 . Min. Tapiolite. Magnesium columbate, Mg(Cb0 3 ) 2 + 4H 2 0. Precipitate. (Rammelsberg. ) 4MgO, Cb 2 5 . Insol. in H 2 0. (Joly, C. R. 81. 266.) 3MgO, Cb 2 5 . As above. Manganous columbate. Insol. in H 2 0. (Joly, C. R. 81. 266.) Potassium columbate, KCb0 3 . Sol. in H 2 0. (Joly, in Fremy's Encyc. Ch.) K 2 Cb 4 7 + 5JH 2 0. Insol. in H 2 0. (Santes- son.) . Nearly insol. in H 2 0. K 4 Cb 2 7 + llH 2 0. Insol. in H 2 0. (Santes- son, Bull. Soc. (2)24. 53.) K 4 Cb 8 022 + 11H 2 0. (Santesson. ) K 6 Cb 4 13 + 13H 2 0. Sol. in H 2 0. K 8 Cb 6 19 + 16H 2 0. Efflorescent. Sol. in H 2 0. (Marignac, A. ch. (4) 8. 20.) K 16 Cb 14 43 + 32H 2 0. Sol. in H 2 0. Potassium sodium columbate, 3K 2 0, Na 2 0, 3Cb 2 5 + 9H 2 0. Very slightly sol. in H 2 0. Insol. in alkalies. (Marignac.) Sodium columbate, NaCb0 3 + 3|H 2 0. Completely sol. in H 2 0. (Rose). 132 COLUMBATE, YTTRIUM + 2|H 2 0. SI. sol. in cold H 2 0. Insol. in NaOH + Aq. (Santesson.) 2Na 2 0, 3Cb 2 5 + 9H 2 0. Insol. in H 2 or NaOH + Aq. (Santesson. ) 8Na 2 0, 7Cb 2 5 . 1 pt. is sol. in 195-200 pts. H 2 at 14-20 ; in either 75-80 pts. or in 103 pts. boiling water. (Rose.) Yttrium columbate, Y 2 3 , Cb 2 5 . Insol. in H 2 0. (Joly, C. R. 81. 1261.) Oolumbium (Niobium), Cb. Scarcely attacked by HC1, HN0 3 , or aqua regia. Cone. H 2 S0 4 dissolves easily on warm- ing. Columbium pentabTomide, CbBr 5 . (Rose, Pogg. 104. 422.) Columbium carbide nitride, 3CbC, 2CbN. (Joly, Bull. Soc. (2) 25. 506.) Columbium trichloride, CbCl 3 . Not deliquescent ; not attacked by H 2 0, but easily oxidised by HN0 3 + Aq. Insol. in NH 4 OH + Aq. (Roscoe, C. N. 37. 25.) Columbium pcntachloride, CbCl 5 . Decomp. by H 2 with separation of a hydrate of Cb 2 5 . Sol. in cold HCl + Aq, forming a solution which soon gelatinises, and separates out Cb 2 5 by heat or dilution ; with hot HCl + Aq, forms a cloudy solution which does not gelatinise. Sol. in H 2 S0 4 to form a clear liquid which gelatinises on heating. Sol. in KQH + Aq. Sol. in alcohol with slight residue. (Rose, Pogg. 104. 432.) Columbium penta&noTide, CbF 5 . Known only in solution in HF, in which a fluocolumbic acid H 2 CbF 7 may also be assumed to exist. Columbium fluoride with MF. See Fluocolumbate, M. Columbium hydride, CbH (?). Insol. inHCl, HN0 3 , and dil. H 2 S0 4 + Aq, even on boiling. Sol. in boiling cone. H 2 S0 4 and in fused KHS0 4 . Sol. in cold HF + Aq if not too dilute. Also attacked by KOH + Aq. (Marignac, N. Arch. Phys. Nat. 31. 89.) Columbium hydroxide, Cb 2 5 , ccH 2 0. See Columbic acid. Columbium nitride. Not attacked by boiling nitric acid or aqua regia, but sol. in a cold mixture of HN0 3 and HF. (Rose, Pogg. 111. 426.) Columbium dioxide, Cb 2 2 . Sol. when still moist in boiling dil. HC1 + Aq. Insol. in hot HN0 3 ; less sol. in aqua regia than in HCl + Aq. Sol. in cone. H 2 S0 4 after long heating. (Rose.) Insol. in H 2 0, KOH, or cone, acids, even when boiling. (Delafontaine. ) Columbium ^roxide, Cb 2 4 . Not attacked by cold or hot H 2 0, HC1, HN0 3 , H 2 S0 4 , or aqua regia. Slightly attacked by boiling KOH + Aq. (Delafontaine. ) Columbium pentoxide, Cb 2 5 . When ignited insol. in hot cone. H 2 S0 4 . When it has not been ignited it forms a clear solution with H 2 S0 4 , which can be diluted without forming any precipitate. (Rose, Pogg. 112. 549.) Sol. in fused KHS0 4 , which can be diluted with H 2 without causing pptn. Insol. in HF. Columbium oxybromide, CbOBr 3 . Decomp. by H 2 into Cb 2 5 and HBr. Sol. in hot H 2 S0 4 and cone. HCl + Aq. (Rose, 5. 104. 442.) Columbium oxychloride, CbOCl 3 . Attracts H 2 from air without deliquescing and decomposes. Decomp. with H 2 with evolution of heat. Insol. in hot or cold HC1 + Aq. Sol. by long contact with H 2 S0 4 to a cloudy liquid, which clears up on warming, but soon separates out Cb 2 5 . Sol. in cold KOH + Aq and hot K 2 C0 3 + Aq. (Rose. ) Sol. in alcohol, from which it is precipil by ether. (Blomstrand.) precipitated Columbium oxyfluoride, CbOF 3 . (Joly, C. R. 81. 1266.) Columbium oxyfluoride with MF. See Fluoxycolumbate, and Fluoxyhypo- columbate, M. Columbium oxysulphide, Cb 2 OS 3 . Insol. in boiling HC1 + Aq. Slowly decomp. into Cb 2 5 by boiling with HN0 3 or aqua regia. Insol. in boiling dil. H 2 S0 4 + Aq. Converted into columbic sulphate, sol. in H 2 0, by boiling cone. H 2 S0 4 . SI. sol. in hot HF. Insol. in boiling K 2 S + Aq. (Rose, Pogg. Ill 193.) Copper, Cu. Copper is not attacked by distilled H 2 or by NH 4 N0 3 , KN0 3 , or (NH 4 ) 2 S0 4 + Aq, or by a mixture of those salts in solution. (Muir, cited by Carnelley, Chem. Soc. 30. 1.) Distilled H 2 has slight action on Cu. 100 ccm. H 2 dissolved from 2 sq. dcm. Cu from 0'035 mg. Cu in one hour up to 0'280 mg. in 72 hours. 100 ccm. H 2 dissolved 0'44 mg. from 6 sq. dcm. in 48 hours. Presence of solder diminishes solubility about one-half. At 90-100 the amount dissolved is about one- half that at ord. temp. (Carnelley, Chem. Soc. 30. 1.) 100 com. distilled H 2 dissolved only 1 mg. Cu from 11 '8 sq. cm. during a week, while air free from C0 2 was conducted through the solution. When" the air contained C0 2 , 3 mg. were dissolved. (Wagner, Dingl. 221. 259.) 100 1. sea water dissolved 12 '96 g. Cu from 1 sq. m. (Calvert and Johnson, C. N 11 171.) Solubility in H 2 S0 4 . Not attacked by dil. H 2 S0 4 + Aq. (Vogel, Schw.^J. 32. 301.) Action of H 2 S0 4 at ordinary temp, is very COPPER 133 slight even after a long time. (Barruel, J. Pharm. 20. 13 [1834].) H 2 S0 4 has no action below 130. (Calvert and Johnson, Chem. Soc. 19. 438.) H 2 S0 4 acts slightly even at 20. 16'3 g. H 2 S0 4 (1-843 sp. gr.) dissolved the following amts. from 3 g. Cu, having a surface of 65 sq. cm. at the given temp. Temp. Time % Cu dissolved 19 14 days About 6 60 120 min. 2-5 80 30 1-5 100 30 3-1 124 30 227 130 30 32-6 137 30 35-0 150 30 69-2 170 10 51-92 195 2 53-5 220 i 70-57 270 few seconds nearly 100 With dilute acid the action was much less violent, as is seen in the following table Temp. Time Acid Sp. gr. %Cu dis- solved 100 100 30 min. 30 H 2 S0 4 2H 2 S0 4 ,H 2 1-843 1-8295 2-380 0-585 100 30 H 2 S0 4 , H 2 1-780 100 30 H 2 S0 4 ,2H 2 1-620 130 130 30 30 H 2 S0 4 H 2 S0 4 ,H 2 1-843 1-780 32-6 1-18 130 165 30 15 H 2 S0 4 ,2H 2 H 2 S0 4 1-620 1-843 70 165 30 H 2 S0 4 ,H 2 1-780 16-5 165 30 H 2 S0 4 ,2H 2 1-620 27 (Pickering, Chem. Soc. 33. 112.) Cu is very si. attacked by cold HC1 + Aq of 1"12 sp. gr., but somewhat more on warming. Even less sol. in dil. HCl + Aq. (Lowe, Z. anal. 4. 361.) Sol. in warm cone. HI + Aq. (Rose. ) Slowly attacked by H 2 S0 3 + Aq. (Causse, Bull. Soc. (2) 45. 3.) More or less sol. in all dil. mineral acids and also in organic acids, as acetic, tartaric, etc., when supply of air is afforded ; but absolutely insol. in the latter acids when air is wholly excluded. The importance of this fact in the use of Cu cooking utensils is manifest. Easily attacked by ord. HN0 3 + Aq. With very cone. HN0 3 + Aq (sp. gr. 1 -52) it becomes passive, as in the case of Fe. Pure dil. HN0 3 + Aq of 1'07 sp. gr. or less does not attack Cu at 20, but if N0 2 or KN0 2 is added the action begins at once. If HN"0 3 + Aq is more cone, the Cu is attacked. HN0 3 + Aq of 1-108 sp. gr. begins to act at -2 and of 1 '217 sp. gr. at -10. HN0 3 + Aq of 1-512 sp. gr. attacks Cu vio- lently at 20, but action soon ceases on account of formation of a crust of Cu(N0 3 ) 2 , insol. in pure HN0 3 . (Millon, A. ch. (3) 6. 95.) When in contact with the air, Cu is soon oxidised by acids, alkalies (especially NH 4 OH + Aq), and many fatty bodies. Sol. in (NH 4 ) 2 C0 3 + Aq. (Traube, B. 18. 1887.) Slowly sol. in NH 4 OH + Aq. (Schonbein, B. A. B. 1856. 580.) Sol. in KI + Aq when warm and cone. (Rose.) When finely divided, Cu is easily sol. in hot FeCl 3 + Aq. Action of dilute solutions of salts on solubil- ity of Cu in H 2 0. 100 com. solution of the following salts dis- solve the amts. of Cu given below, from a surface of 1 sq. dcm. in 48 hours. Salts G. salt dissolved inlOOccm. H 2 Mg. Cu dissolved H 2 0-11 KN0 3 o-oi 0-05 5-00 0-07 0-13 0-16 NaN0 3 | 0-05 5-00 0-18 0-19 CaS0 4 0-05 0-11 K 2 S0 4 { 0-05 5-00 0-12 0-28 MgS0 4 | 0-05 5-00 0-16 0-34 Na 2 C0 3 - o-oi 0-05 5-00 0-05 0-11 2-80 K 2 C0 3 { 0-05 5-00 0-14 2-35 NaCl o-oi 0-05 5-00 0-05 0-18 7-50 KC1 5-00 8-17 (NH 4 ) 2 S0 4 ( 0-05 5-00 0-66 28-50 NH 4 N0 3 -j o-oi 0-05 5-00 0-17 0-66 60-00 NH 4 C1 { 0-05 5-00 0-92 158-75 134 COPPER NH 4 N0 3 is diminished, while that of (NH 4 ) 2 S0 4 , Na 2 C0 3 , and NaCl is increased. Tables are also given for mixtures of the above salts. (Carnelley, Chem. Soc. 30. 1.) Solubility of Cu in dilute salt solutions. 11 '8 sq. cm. Cu were used, and the action continued one week, while air with or without C0 2 was passed through the solution continu- ally. 100 com. solution of the following salts dis- solved the given amts. Cu. Salt G. salt dis- solved in 100 ccm. H 2 O Mg. Cu dis- solved with- out CO 2 Mg. Cu dissolved with CO 2 NaCl 0-50 4 115 KC1 0-50 4 115 MgCl 2 0-83 5 112 NH 4 C1 1-00 904 138 K 2 S0 4 1-00 4 KN0 3 Na 2 C0 3 NaOH 1-00 1-00 0-923 3 Ca0 2 H 2 sat. (Wagner, Dingl. 221. 260.) Distilled H 2 dissolved no Cu from 420 sq. mm. in 150 hours at ord. temp. NH 4 N0 3 + Aq with less than 0'4 g. per litre showed the same result. KN0 3 + Aq or (NH 4 ) 2 S0 4 + Aq containing '1 to 0'2 g. per litre dissolved no Cu. H 2 containing carbonates 4- nitrates, car- bonates + sulphates, or chlorides + nitrates also dissolved no Cu. NH 4 N0 3 + Aq containing 0'4 g. per litre dis- solved 3 nag. per litre after 150 hours' contact. From a surface of 2100 sq. m. of Cu, H 2 charged with C0 2 at ord. pressure, and con- taining the following salts in solution, dis- solved the given amts. Cu in 120 hours. Salt G. salt dissolved in 1 1. H 2 O Mg. Cu dissolved H 2 i-o K 2 C0 3 0-2 0-2 CaCl 2 0-2 1-80 NH 4 N0 3 0-02 1-40 NH 4 N0 3 K 2 C0 3 / NH 4 N0 3 \ K 2 C0 3 f 0-04 o-i \ 0-02 J 0-2 \ 1-40 1-00 O.-i NH 4 N0 3 \ 0-04 J CaCl 2 3 { 0-2 \ 0-2 J 3-6 From a surface of 2100 sq. m., H 2 charged with C0 2 at pressure of 6 atmos. dissolved "6 ing. in 48 hours. H 2 when charged with C0 2 at 6 atmos. and containing : 16 mg. NH 4 N0 3 per litre, dissolved 0'8 mg. in 48 hours. 80 mg. NH 4 N0 3 per litre, dissolved 1 '4 mg. in 48 hours. 40 mg. K 2 C0 3 per litre, dissolved 1 '2 mg. in 48 hours. (Muir, Proc. Soc. Manchester, 15. 31.) Amts. Cu dissolved by action of various oils on 8 sq. in. Cu by 10 days' exposure and subsequent 67 days Amt. Cu dissolved in 10 days Amt. Cu dis- solved in subse- quent 67 days Linseed oil . Olive oil . . Colza oil . . Almond oil . Seal oil . . Sperm oil . . Castor oil . . Neatsfoot oil . Sesame oil Paraffine oil . 0-3000 grain 0-2200 0-0170 0-1030 0-0485 0-0030 0-0065 0-1100 0-1700 0-0015 0-2435 grain 0-0200 0-1230 0-1170 0-0315 0-0575 0-0035 0-0015" (Watson, C. N. 36. 200.) Qualitative results of the action of various oils on Cu are also given by Thompson. (C. N. 34. 176, 200, 219.) Cupric arsenide, Cu 5 As 2 . (Reinsch, J. pr. 24. 244.) Cti 4 As 2 . (Gehlen. ) Cu 3 As 2 . Ppt. Decomp. by acids. (Kane, Pogg. 44. 471.) Cu 3 As. Min. Domeykite. Insol. in HC1 -f Aq ; sol. in HN0 3 . Cu 6 As. Min. Algodonite. Cu 9 As. Min. Darwinite. Cuprous azoimide. Insol. in H 2 0. (Curtius.) Cuprous bromide, Cu 2 Br 2 . Insol. in H 2 0. Sol. in HBr, HC1 without decomp., or HN0 3 + Aq with decomp., also in NH 4 OH + Aq. Insol. in boiling cone. H 2 S0 4 or HC 2 H 3 2 + Aq. (Berthemot, A. ch. 44. 385.) Sol. in NaCl, and Na 2 S 2 3 + Aq. (Renault, C. R. 59. 319.) Cupric bromide, CuBr 2 . Deliquescent. Very sol. in H 2 0. Insol. in benzene. (Franchimont, B. 16. 387.) + a?H 2 0. Very deliquescent, and sol. in H 2 0. Cupric bromide ammonia, CuBr 2 , 2NH 3 . Sol. in NH 4 Br + Aq without decomp. (Richards, B. 23. 3790.) 3CuBr 2 , 10NH 3 . Decomp. by H 2 0. (Richards, Am. Ch'. J. 15. 651.) CuBr 2 , 3NH 3 . Completely sol. in a little H 2 0, but is decomp. by dilution. Insol. in alcohol. (Rammelsberg, Pogg. 55. 246.) CiiBr 2 , 5N"H 3 . As above. (Rammelsberg.) CuBr 2 , 6NH 3 . Sol. in small amts. H 2 0, but decomp. on dilution. (Richards. ) CUPRIC CHLORIDE 135 Cuprous chloride, Cu 2 Cl 2 . Insol. in H 2 0. Sol. in cone. HC1 + Aq ; insol. in dil. HN0 3 , or H 2 S0 4 + Aq. Not attacked by cold cone. H 2 S0 4 , and only si. on warming. (Rosenfeld, B. 12. 954.) Sol. in NH 4 OH + Aq ; sol. in hot NaCl, KC1, FeCl 3 , ZnCl 2 , MnCl 2 , etc. +Aq. 1 mol. Na 2 S 2 3 in aqueous solution dissolves 1 mol. Cu 2 Cl 2 . (Winkler, J. pr. 88. 428.) Sol. in KI, I 2 , KCN, or (NH 4 ) 2 S0 4 + Aq. (Re- nault, C. R. 59. 558.) Solubility in HC1 + Aq at 17 C CuCl 2 in mgs. in 10 ccm. mols. HC1 in ditto. ! =| mols. t solution. HC1 = Cu a Cl 2 HC1 Sp. gr. 2 0-475 8-975 1-050 1-4 157 1-575 18-2 4-5 34-5 1-080 8-25 47-8 1-135 11-5 57-0 ... (Chatelier, calc. by Engel, A. ch. (6) 17. 377.) Solubility of Cu 2 Cl 2 in HC1 + Aq at 0. CugCla HC1 Sp. gr. 2 1-5 17-5 1-049 2-9 26-0 1-065 8-25 44-75 1-132 15-5 68-5 1-261 33-0 104-0 1-345 (Engel, I.e.) Solubility in NaCl + Aq. Sat. NaCl + Aq dissolves 16 '9 % Cu 2 Cl 2 at 90 ; 11-9 % at 40 ; and 8 '9 % at 11. 15 % NaCl + Aq dissolves 10 '3 % Cu 2 Cl 2 at 90 ; 6-0 % at 40 ; and 3'6 % at 14. 5 % NaCl + Aq dissolves 2 '6 % Cu 2 Cl 2 at 90, and 1-1 % at 40. (Hunt, Sill. Am. J. (2) 49. 154.) Insol. in alcohol. SI. sol. in ether. (Gehlen.) Min. NantoUte. Sol. in HC1, HN0 3 , or NH 4 OH + Aq. Cupric chloride, CuCl 2 . Deliquescent. 100 pts. H 2 dissolve 70 '6 pts. CuCl 2 at ; 100 pts. CuCl 2 + Aq contain 41-4 pts. CuCl 2 . (Engel, A. ch. (6) 17. 350.) 100 pts. H 2 dissolve 76 '2 pts. CuCl 2 at 16-1, or 100 pts. CuCl 2 + Aq sat. at 16 '1 con- tain 43-25 pts. CuCl 2 . (Riidorff, B. 6. 484.) 100 pts. CuCl 2 + Aq sat. at 17 contain 43 '06 pts. CuCl 2 ; at 31 '5, contain 44 '7 pts. CuCl 2 . Coefficient of solubility = 41 '4 + O'lOSt. (Reicher and Deventer, Z. phys. Ch. 5. 560.) + H 2 0. (Ditte, A. ch. (5) 22. 551.) + 2H 2 0. Deliquescent. 100 g. H 2 dis- solve 121-4 g. CuCl 2 + 2H 2 at 16-1, (Riidorff.) Sp. gr. of CuCl 2 + Aq at 17 '5. % CuCl 2 Sp. gr. % CuCl 3 Sp. gr. 5 1-0455 25 1-2918 10 1-0920 30 1-3618 15 1-1565 35 1-4447 20 1 -2223 40 1-5284 (Franz, J. pr. (2) 5. 274.) Sp. gr. of CuCl 2 + Aq at 22 '9, containing in 1000 g. H 2 0, g. CuCl 2 + 2H 2 0. 85 -5 ( = \ mol. ) 171 255 "5 g. CuCl 2 + 2H 2 0, 1-057 1-108 1-154 342 427-5 513 598 '5 684 g. CuCl 2 + 2H 2 0, 1-197 1-238 1'275 1'309 1'341 769-5 855 940 '5 1'026 g. CuCl 2 + 2H 2 0. 1-371 1-399 1-425 1'449 Containing CuCl 2 (anhydrous). 67-5 ( = \ mol.) 135 202 "5 270 g. CuCl 2 , 1-059 1-114 1-165 1-213 337-5 405 472-5 540 607 '5 675 g. CuCl 2 . 1-257 1-299 1-340 1'379 1-416 1'453 (Gerlach, Z. anal. 28. 468.) Sp. gr. of CuCl 2 + Aq at 0. S = pts. CuCl 2 in 100 pts. solution; S^mols. CuCl 2 in 100 mols. of solution. s Si Sp. gr. 39-4170 8-00 1-4797 35-3839 6-82 1-4173 30-9255 5-65 1-3529 26-1129 4-51 1-2881 20-6697 3-36 1-2204 14-5820 2-23 1-1494 8-0732 1-16 1-0796 (Charpy, A. ch. (6) 29. 25.) Tables for 7, 30 '5, 49 '2, and 65 are also given by Charpy. Not decomp. by cold H 2 S0 4 . Sol. in NH 4 Cl + Aq. Very sol. in cone. NaCl + Aq. (Boussingault.) 100 g. H 2 dissolve 72 '6 g. CiiCl 2 + 16'0 g. NaCl. (Riidorff, B. 6. 684.) Solubility in HC1 + Aq at 0. Cl 2 C - 2 = I mols. in milligrammes in 10 ccm. solution. HC1 = mols. HC1 in ditto ; H 2 = g. H 2 0. CuCl 2 2 HC1 Sum of equiv. Sp. gr. H 2 91-75 9175 1-490 873 86-8 4-5 91-3 1-475 874 83-2 7-8 91 1-458 79-35 10-5 89-85 1-435 8-64 68-4 20-25 88-65 1-389 8-56 50-0 37-5 87-5 1-319 8-47 22-8 70-25 93-05 1-231 8-21 23-5 102-5 126 1-288 7-56 267 128 154-7 1-323 677 (Engel, A. ch. (6) 17. 351.) 136 CUPRIC HYDROGEN CHLORIDE Sol. in alcohol and ether. Sol. in 1 pt. strong alcohol. 100 pts. absolute methyl alcohol dissolve 68 pts. CuCl 2 at 15'5 ; 100 pts. absolute ethyl alcohol dissolve 53 pts. CuCl 2 at 15 '5. (de Bruyn, Z. phys. Ch. 10. 783.) Easily sol. in acetone. (King and M'Elroy, J. Anal. Ch. 6. 184.) Insol. in benzene. Cupric hydrogen chloride, CuCl 2 , HC1 + 3H 2 0. Decomp. by H 2 0. Sol. in HCl + Aq below 0. (Engel, C. R. 106. 273.) CuCl 2 , 2HC1 + 5H 2 0. Properties as above. (Sabatier, C. R. 106. 1724.) Cupric lithium chloride, CuCl 2 , LiCl + 2|H 2 0. Decomp. on air. Decomp. by dissolving in H 2 0. Sol. in cone. LiCl + Aq without decomp. Decomp. by alcohol. (Chassevant, A. ch. (6) 30. 33.) + 2H 2 0. (Meyerhoffer, W. A. B. 100, 2b. 621.) Cupric mercuric chloride. Easily sol. in H 2 0. (v. Bonsdorff.) Cupric mercuric potassium chloride, CuCl 2 , 3HgCl 2 , 6KC1 + 2H 2 0. Deliquescent in moist air. Sol. in boiling H 2 without decomp., and recrystallises if cooled slowly. Insol. in absolute alcohol, (v. Bonsdorff, Pogg. 33. 81.) Cuprous nitrosyl chloride, Cu 2 Cl 2 , 2NOC1. Very deliquescent and sol. in H 2 with im- mediate decomp. (Sudborough, Chem. Soc. 59. 658.) Cupric potassium chloride, CuCL, 2KC1 + 2H 2 0. Sol. in H 2 and alcohol. (Berzelius, Pogg. 13. 458.) CuCl 2 , KC1. (Meyerhoffer, Z. phys. Ch. 3. 336.) Cuprous potassium chloride, Cu 2 Cl 2 , 4KC1. Sol. in H 2 0. (Mitscherlich, A. ch. 73. 384.) Cupric rubidium chloride, CuCl 2 , 2RbCl. Easily sol. in H 2 and HCl + Aq. (Godef- froy, B. 8. 9.) + 2H 2 0. Sol. in H 2 0. (Wyrouboff, J. B. 1887. 538.) Cuprous sodium chloride. Very sol. in H 2 0. Cupric sodium chloride. Easily sol. in cone. NaCl + Aq. Sol. in alcohol of 0'837 sp. gr. Cupric thallic chloride, CuCl 2 , 2T1C1 3 . Sol. in H 2 0. (Willm, A. ch. (4) 5. 55.) Cuprous chloride ammonia, Cu 2 Cl 2 , 2NH 3 . Decomp. by H 2 or acids, not by alcohol. (Ritthausen, J. pr. 59. 369.) Cupric chloride ammonia, CuCl 2 , 2NH 3 . Decomp. by H 2 0. (Kane, A. ch. 72. 273.) CuCl 2 , 4NH 3 + H 2 (Cuprammonium chloride}. Sol. in H 2 and hot NH 4 OH + Aq. CuCl 2 , 6NH 3 . Completely sol. in H 2 0. (Rose, Pogg. 20. 55.) Cuprocupric chloride ammonia, Cu 2 Cl 2 , CuCl 2 , 4NH 3 + H 2 0. Decomp. by H 2 or alcohol. Abundantly sol. in NH 4 Cl + Aq, but with partial decom- position. (Ritthausen. ) Cupric chloride ammonia platinous chloride, CuCl 2 , 4NH 3 , PtCl 2 . See Platocfo'amine cupric chloride. Cuprous chloride carbon monoxide, 4Cu 2 Cl 2 , 3CO + 7H 2 0. Insol. in H 2 0, but decomp. therewith very quickly. Sol. in Cu 2 Cl 2 + HCl. Cuprous chloride mercuric sulphide, Cu 2 Cl 2 , 2HgS. Insol. in H 2 ; sol. in cone, hot HCl + Aq; not decomp. by boiling dil. H 2 S0 4 + Aq, but decomp. by cone. H 2 S0 4 . (Heumann, B. 7. 1390.) Cuprous fluoride, Cu 2 F 2 . Insol. in H 2 or HF. Sol. in cone. HC1 + Aq, from which it is precipitated by H 2 0. Insol. in alcohol. (Berzelius, Pogg. 1. 28. ) Decomp. by H 2 into sol. CuF 2 . Sol. in boiling HCl + Aq and in HN0 3 + Aq. Only si. attacked by warm H 2 S0 4 . (Poulenc, C. R. 116. 1447.) Cupric fluoride, CuF 2 . Easily takes up H 2 to form CuF 2 + 2H 2 0. Sol. in HC1, HN0 3 , or HF + Aq. (Poulenc, C. R. 116. 1448.) + 2H 2 0. SI. sol. in cold, decomp. by hot H 2 0. (Berzelius.) Cupric potassium fluoride, CuF 2 , 2KF. Easily sol. in H 2 0. CuF 2 , KF. Very si. sol. in H 2 ; si. sol. in dil. acids. (Helmholt, Z. anorg. 3. 115.) Cupric rubidium fluoride, CuF 2 , RbF. As the K salt. (Helmholt.) Copper stannic fluoride. See Fluostannate, copper. Copper tantalum fluoride. See Fluotantalate, copper. Copper titanium fluoride. See Fluotitanate, copper. Copper tungstyl fluoride. See Fluoxytungstate, copper. Copper zirconium fluoride. See Fluozirconate, copper. Copper hydride, Cu 2 H 2 . Insol. in H 2 0. Sol. in HC1 + Aq. ( Wurtz, C. R. 18. 102.) Cuprous hydroxide, Cu 2 0, a?H 2 0. Sol. in acids as cupric salt. Insol. in NaOH, or KOH + Aq. Sol. in NH 4 OH, and (NH 4 ) 2 C0 3 + Aq ; sol. in Na 2 S 2 3 + Aq. CUPRIC OXIDE 137 Cupric hydroxide, 3CuO, H 2 0. Insol. in H 2 or dil. alkalies. Easily sol. in warm NH 4 Cl + Aq. (Rose.) Much more difficultly sol. than Cu0 2 H 2 in KOH + Aq. (Chodnew, J. pr. 28. 220.) True composition is 6CuO, H 2 0. See also Cupric oxide. Cu0 2 H 2 . Insol. in H 2 0, but decomp. into 6CuO, H 2 by being boiled therewith. Extremely easily sol. in acids. Sol. in NH 4 OH, and NH 4 salts + Aq. Sol. in cold NaOH, or KOH + Aq (Proust) ; but CuO is pptd. on boiling (Berthollet) ; is not pptd. (Chodnew, J. pr. 28. 220.) Insol. in NaOH or KOH + Aq unless they contain organic matter (Berzelius). This is contradicted by Volcker (A. 59. 34). Entirely sol. in cone. KOH + Aq, but solution is decomp. by heating. (Fremy, A. ch. (3) 12. 510.) Sol. in NaOH + Aq (70% NaOH). (Low, Z. anal. 9. 463.) SI. sol. in alkali carbonates + Aq, especially KHC0 3 and NaHC0 3 . (Berzelius. ) Sol. in cold Na 2 S 2 3 + Aq, but pptd. on warming. (Field, Chem. Soc. (2) 1. 28.) Partially sol. when freshly pptd. in KCN + Aq. (Rodgers, 1834.) Moderately sol. in amylamine, easily sol. in methyl-, less in ethylamine. (Wurtz.) Sol. in large amt. in NaC 2 H 3 2 + Aq. (Mer- cer, 1844.) Not pptd. in presence of Na citrate. (Spiller. ) Insol. in cane sugar + Aq, unless an alkali or alkaline earth is present. (Peschier.) Recently pptd. Cu0 2 H 2 is easily sugar with NaOH, KOH, or Ca0 2 H sol. in presence of Sr0 2 H 2 or Ba0 2 H 2 . (Bee querel. ) Not pptd. by KOH + Aq in solutions con- taining tartaric acid, cane sugar, and many other non- volatile organic substances. Sol, in Ca, Ba, Sr, K or Na sucrates + Aq, and ppts. of double sucrates form when solu- tions of the first three bases are heated, but no ppt. forms in the last two cases even at 100. (Hunton. ) Insol. in simple Ca, Ba, or K sucrates + Aq, but immediately sol. when an excess of cane sugar + Aq is present. (Peligot.) Sol. in sorbine + Aq. (Pelouze.) Not pptd. in presence of aromatic oxyacids or phenols of the ortho series. Thus in pres- ence of salicylic acid, pyrocatechin, gallic acid, pyrogallic acid, etc., NaOH + Aq does not ppt. Cu0 2 H 2 from Cu solutions, but pptn. is not prevented by oxybenzoic, paroxybenzoic acids, resorcin, hydrochinone, etc. (Weith, B. 9. 342.) Cuprous iodide, Cu 2 I 2 . Insol. in H 2 0, or dil. acids. Calculated from electrical conductivity of Cu 2 I 2 + Aq, 1 1. H 2 dissolves about 8 mg. Cu 2 I 2 at 18. (Kohl- rausch and Rose, Z. phys. Ch. 12. 241.) Sol. with difficulty in cone. HCl + Aq. Decomp. by cone. HN0 3 , or H 2 S0 4 . Insol. in NaCl, KN0 3 , Na 2 S0 3 , KBr, or NH 4 Cl + Aq. sol. in cane 2 + Aq; less Sol. in NH 4 OH, Na 2 S 2 3 , KCN, or KI + Aq. (Renault, C. R. 59. 558.) Cupric iodide, CuI 2 . Exists only in very dil. aqueous solution. (Traube, B. 17. 1064.) Cuprous mercuric iodide, Cu 2 I 2 , HgI 2 . KI + Aq dissolves out HgI 2 . Cuprous mercuric iodide ammonia, CuI 2 , 2HgI 2 , 4NH 3 . Decomp. by H 2 or acids. Sol. in a mixture of acetic acid and alcohol. CuI 2 , HgI 2 , 4NH 3 , As above. (Jorgensen, J. pr. (2) 2. 347.) Cupric nitrogen iodide, CuI 2 , N 2 H 4 I 2 . Decomp. by H 2 ; or NH 4 OH + Aq. (Guyard, C. R. 97. 526.) Cupric thallic iodide ammonia, CuI 2 , 2T1L, 4NH 3 . Decomp. slowly by H 2 0. Sol. in NH 4 OH + Aq with decoinp. Sol. in alcohol. Cuprous iodide ammonia, Cu 2 I 2 , 4NH 3 . (Levol, J. Pharm. 4. 328.) + H 2 0. (Saglier, C. R. 104. 1440.) Cupric iodide ammonia, CuI 2 , 4NH 3 + H 2 0. Decomp. by H 2 0. Sol. in NH 4 OH + Aq without decomp. Not attacked by cold alcohol or ether. (Berthemot, J. Pharm. 15. 445.) Copper tetraio&ide ammonia, CuI 4 , 4NH 3 . (Jorgensen, J. pr. (2) 2. 353.) Copper hexaiodide ammonia, CuI 6 , 4NH 3 . Not decomp. in H 2 in closed vessels. (Jorgensen. ) Copper nitride, Cu 6 N 2 . Decomp. by dil. or cone, acids. Copper sw&oxide, Cu 4 0. Not attacked by H 2 0. Decomp. by dil. H 2 S0 4 + Aq into Cu and CuS0 4 ; dil. HCl + Aq has similar action. Not attacked by NH 4 OH + Aq or NH 4 OH + (NH 4 ) 2 C0 3 +Aq. (Rose, Pogg. 120. 1.) Cuprous oxide, Cu 2 0. Insol. in H 2 0. Decomp. by H 2 S0 4 + Aq, H 3 P0 4 + Aq, or cold very dil. HN0 3 + Aq into a cupric salt and Cu. Converted by HCl + Aq into cuprous chloride. Sol. in boiling NH 4 C1 + Aq. (Rose. ) SI. sol. in excess of KOH + Aq. (Chodnew. ) Sol. in cone. MgCl 2 , and FeCl 2 + Aq. (Hunt, C. R. 69. 1357.) Min. Cuprite. Sol. in HC1, HN0 3 , and NH 4 OH + Aq. Cupric oxide, CuO. Insol. in H 2 0. Easily sol. in acids. Sol. in H 2 S0 3 + Aq. Insol. in NH 4 OH + Aq, but dissolves on addition of a few drops of acid or (NH 4 ) 2 C0 3 + Aq. Insol. in dil., but sol. in warm cone. NaOH, and KOH + Aq. (Low, Z. anal. 9. 463.) Slowly sol. in Ca or any other alkali sucrate + Aq, but not in cane sugar + Aq. 138 CUPROCUPRIC OXIDE (Hunton. ) Slowly sol. in boiling NH 4 C1 + Aq, and less easily in NH 4 N0 3 + Aq. (Rose.) Sol. in boiling H 2 solutions of A1 2 , Gl, U, Cr 2 , Fe 2 , or Bi nitrates and chlorides, Hg(N0 3 ) 2 , Hg 2 (N0 3 ) 2 , SbCl 3 , SnCl 2 , and SnCl 4 , with pptn. of oxides of the bases of those salts. Unacted upon by boiling H 2 solutions of Mn, Mg, Ni, Co, Zn, Ce 2 , or Fe nitrates or chlorides, AgN0 3 , Pb(N0 3 ) 2 , Cd(N0 3 ) 2 , and HgCl 2 . (Persoz.) Solubility in (calcium sucrate + sugar) + Aq. 1 1. solution containing 418 '6 g. sugar and 34-3 g. CaO dissolves 10 '26 g. CuO. 1 1. solution containing 296 '5 g. sugar and 24-2 g. CaO dissolves 5 '68 g. CuO. 1 1. solution containing 174 '4 g. sugar and 14'1 g. CaO dissolves 3 '47 g. CuO. (Boden- bender, J. B. 1865. 600.) + &H 2 - 6CuO + H 2 0. Insol. in dil. , but sol. in cone. KOH or NaOH + Aq. Sol. in volatile oils. See also Cupric hydroxide. Min. Melaconite. Sol. in HC1, or HN0 3 + Aq. Cuprocupric oxide, Cu 5 3 =2Cu 2 0, CuO. (Favre and Maumene.) Cu 3 2 + H 2 = Cu 2 0, CuO + H 2 0. When freshly pptd., sol. in HCl + Aq, but insol. after drying. (Siewert, J. B. 1866. 257.) Cu 4 3 = Cu 2 0, 2CuO. (Siewert.) All oxides of Cu except Cu 4 0, Cu 2 0, CuO, and Cu0 2 are mixtures. (Osborne, Sill. Am. J. (3) 32. 33 ; Debray, C. R. 99. 583.) Copper cfo'oxide, Cu0 2 + H 2 0. Insol. in H 2 0. Decomp. by acids with for- mation of cupric salt and H 2 2 . ( Weltzien, A. 140. 207.) Cuprous oxide ammonia (cuprosamnaonium oxide). Known only in solution. (Wagner, C. C. 1863. 239.) Cupric oxide ammonia (cuprammonium hy- droxide), 3CuO, 4NH 3 + 6H 2 0. Insol. in H 2 0. (Kane, A. ch. 72. 283.) CuO, 4NH 3 + 4H 2 0. Very deliquescent. Decomp. in the air and by H 2 0. (Malaguti and Sarzeau, A. ch. (3) 9. 438.) Cuprous oxybromide, Cu 2 Br 2 , CuO + H 2 0. (Spring and Lucion, Bull. Ac. Belg. (3) 24. 21.) Cupric oxybromide. Insol. in H 2 0. (Lowig.) CuBr 2 , 3CuO + 3H 2 0. Insol. in H 2 0. Easily sol. in dil. acids or NH 4 OH + Aq. (Brun, C. R. 109. 66.) Cuprous oxychloride, Cu 2 Cl 2 , CuO + 3H 2 0. (Spring and Lucion, Bull. Ac. Belg. (3) 24. 21.) Cupric oxychloride, 2CuO, CuCl 2 . Insol. in H 2 0. Sol. in HC1 + Aq, from which it is reprecipitated by dilution with H 2 0. + H 2 0. (Kane, A. ch. 72. 277.) + 4H,0. (Gladstone, Chem. Soc. 8. 211.) Insol. in cold H 2 0, si. decomp. by boiling. (Reindel, J. pr. 106. 378.) Insol. in boiling H 0. (Habermann, W. A. B. 90, 2. 268.) + 4H 2 (Brunswick green]. Insol. in H 2 0. Easily sol. in acids. Min. Atacamite. Sol. in acids, and NH 4 OH + Aq. 7CuO, 2CuCl 2 + 9H 2 0. (Reindel.) 6CuOCuCl 2 + 9H 2 0. Insol. in H 2 0. Sol. in acetic acid. (Neumann, Repert, 37. 304.) Cupric oxyfluoride, CuO, CuF 2 + H 2 0. Insol. in H 2 0. (Berzelius.) (Balbiano, Gazz. ch. it. 14. 74.) Cupric oxyfluoride ammonia (cuprammonium oxyfluoride), Cu(OH)F, 2NH 3 . (Balbiano, Gazz. ch. it. 14. 74.) Cuprous oxyiodide, Cu 2 I 2 , CuO + H 2 0. (Spring and Lucion, Bull. Ac. Belg. (3) 24. 21.) Cupric oxyiodide, 2CuI 2 , CuO + 4H 2 0. Easily decomp. by H 2 0. (Carnegie, Watts' Diet. II. 257.) Copper oxysulphide, 2Cu 2 S, CuO. Insol. in H 2 0. (Maumene, A. ch. (3) 18. 311. 5CuS, CuO. Ppt. (Pelouze.) 2CuS, CuO. Insol. in H 2 0. CuS, CuO. Insol. in H 2 0. Above comps. do not exist. ( Pickering, Chem . Soc. 33. 136.) Copper phosphide, Cu 6 P 2 . Easily sol. in HN0 3 or aqua regia ; insol. in HCl + Aq. (Rose, Pogg. 6. 209.) Cu 4 P 2 (?). (Hvoslef, A. 100. 100.) Cu 3 P 2 . Easily sol. in HN0 3 . Sol. in hot cone. H 2 S0 4 . Sol. in cone. HCl + Aq before the phosphide has been heated. (Rose, Pogg. 4. 110.) Cu 2 P 2 . Easily sol. in HN0 3 , or HCl + Aq. Sol. in NH 4 OH + Aq. (Granger, Bull. Soc. (3) 9. 661.) Cupric zinc phosphide, 10Cu 6 P 2 , Zn 6 P 2 (?). (Hvoslef, A. 100. 99.) Copper phosphoselenide, CuSe, P 2 Se. Insol. in H 2 or HCl + Aq ; sol. in HN0 3 + Aq. Insol. in cold alkalies, but decomp. slowly when heated therewith. (Hahn, J. pr. 93. 436.) 2CuSe, P 2 Se 3 . Attacked only by fuming HN0 3 . (Hahn.) 2CuSe, P 2 Se 5 . Sol. only in HN0 3 + Aq. (Hahn.) Copper phosphosulphide, 2Cu 2 S, P 2 S. Cu 2 S, P 2 S. (Berzelius.) 2Cu 2 S, P 2 S 3 . CuS, P 2 S. Insol. in H 2 and dil. HC1 + Aq. Sol. in cone. HC1 + Aq, from which it is precipitated by H 2 0. (Berzelius, A. 46. 252.) 8CuS, P 2 S 5 . (Berzelius.) COPPER IRON POTASSIUM SULPHIDE 139 Cuprous selenide, Cu 2 Se. Min. Berzelianite. Cupric selenide, CuSe. (Little, A. 112. 211.) Cuprous lead selenide, 3Cu 2 Se, PbSe. Min. Zorgite. Sol. in cold cone. HN0 3 + Aq with separation of Se. Cupric lead selenide, CuSe, PbSe. Sol. in cold cone. HN0 3 with separation of Se. (Karsten. ) CuSe, 2PbSe. As above. CuSe, 4PbSe. As above. Cuprous silver selenide, Cu 2 Se, Ag 2 Se. Min. Eucainite. Sol. in hot HN0 3 with decomp. (Berzelius.) Cuprous sulphide, Cu 2 S. Cold HN0 3 + Aq dissolves out Cu and leaves CuS ; hot HN0 3 dissolves with separation of S. SI. sol. in boiling cone. HC1 + Aq. Insol. in(NH 4 ) 2 S + Aq. Min. Chalcocite. Completely sol. in warm HN0 3 with separation of S. Cupric sulphide, CuS. Almost absolutely insol. in H 2 ; sol. in 950,000 pts. H 2 0. When exposed to the air, dissolves in H 2 as CuS0 4 . Easily sol. in boiling HN0 3 with separation of S. Diffi- cultly sol. in hot cone. HCl + Aq. Insol. in dil. H 2 S0 4 + Aq (1:6). (Hoffmann, A. 115. 286.) Insol. in KOH, or 1^8 + Aq, especially if boiling ; appreciably sol. in colourless and even more readily in hot yellow (NH 4 ) 2 S + Aq. SI. sol. in Na 2 S + Aq, more easily in NaSH + Aq. (Becker, Sill. Am. J. (3) 33. 199.) Sol. in considerable quantity in alkali sulph- arsenates, sulphantimonates, and sulphostan- nates + Aq. Therefore when a mixed ppt. of CuS and As 2 S 3 , Sb 2 S 3 , or SnS is treated with K^S, a portion of the CuS is dissolved. (Wohler, A. 34. 236.) Sol. in alkali sulphovanadates, or sulpho- tungstates +Aq. (Storch, B. 16. 2015.) Sol. in alkali sulphomolybdates + Aq. (Debray, C. R. 96. 1616.) Insol. in K thiocarbonate + Aq. (Rosen- bladt, Z. anal. 26. 15.) Sol. in (NH 4 ) 2 C0 3 + Aq. (Berzelius.) Sol. in alkali bicarbonates + Aq. Insol. in NH 4 N0 3 , or NH 4 C1 + Aq. (Brett. ) Sol. inKCN + Aq. Pptd. by H 2 S or (NH 4 ) 2 S + Aq in presence of 100,000 pts. H 2 (Pfaff), 200,000 pts. H 2 (Lassaigne), 15,000 pts. H 2 and 7500 pts. HC1, but with 40,000 pts. H 2 and 20,000 pts. HC1 no colour is visible (Reinsch). Min. Covellite. Colloidal. Aqueous solution is stable when it contains 5 g. CuS in a litre ; when it contains 4 or 5 times that amount it is decomposed in an hour. Solutions of salts of the following concentra- tion cause a precipitate in the above solution. Salts of univalent elements K 3 Fe(CN) 6 . . . K 4 Fe(CN) 6 . . . Na 2 S 2 3 . . . Na 2 C0 3 . . . Na 2 HP0 4 . . . Na 2 S0 4 . . . K2Cr 2 7 . . . KI . . . . KBr . . . . KC10 3 . . . NaC 2 H 3 2 . . . (NH 4 ) 2 C 2 4 . . . NaCl . . . . NaHC0 3 . . . :62 :127 : 157 : 200 : 252 :333 : 2083 :80 : 133 :166 : 221 : 255 :400 : 2500 : 117 : 133 :166 : 222 :333 : 500 j^i . . NaC 7 H 5 Oo . . K 2 S 2 6 . . KC1 . . . KN0 3 . . . Salts of bivalent metals BaS 2 6 . . . 1:2242 Cd(N0 3 ) 2 . . . 1 : 3483 MgS0 4 . . . . 1 : 6830 Ba(N0 3 ) 2 . . . 1:2677 BaCl 2 . . . . 1 : 3921 Pb(C10 3 ) 2 . . . 1:6988 CdS0 4 . . . . 1 : 3442 MnS0 4 . . . . 1:5518 Salts of trivalent metals Ammonia alum . . 1:31,896 Chrome alum . . 1:58,889 A1 2 (S0 4 ) 3 . . . 1:90,909 Acids Succinic . . . 1 : 100 Oxalic . . . . 1 : 162 HC1 . . . . 1 : 733 H 2 S0 4 . . . . 1 : 208 Citric . . . .1:20 Acetic .... Not at all Tartaric . . . ,, ,, (Spring and de Boeck, Bull. Soc. (2) 58. 165.) Cuprous ferric sulphide, Cu 2 S, Fe 2 S 3 . Decomp. by cone. HC1 + Aq. Sol. in boiling HN0 3 + Aq of 1'2 sp. gr. (Schneider, J. pr. (2) 38. 569.) Min. Chalcopyrite. Insol. in HCl + Aq. "When heated in a sealed tube with H 2 S + Aq, a portion of it dissolves with difficulty and subsequent deposition. (Senarmont, A. ch. (3) 32. 168.) Cuprocupric ferrous sulphide, Cu 2 S, CuS, FeS. Min. Bornite. Sol. in HCl + Aq with a residue of S. Cupric ferrous sulphide, CuS, Fe 2 S 3 . Min. Cubanite. Copper iron potassium sulphide, _ SI. attacked by cold dil. HCl + Aq. De- comp. by warming. (Schneider, Pogg. 138. 318.) 140 COPPER IRON SODIUM SULPHIDE Copper iron sodium sulphide, Na 2 FeCu 3 S 4 . SI. attacked by cold dil., easily decomp. by hot HCl + Aq. (Schneider, Pogg. 138. 318.) Cuprous lead sulphide, 9Cu 2 S, 2PbS. 3Cu 2 S, 2PbS. 2Cu 2 S, 2PbS. Min. Cuproplumbite. Copper phosphorus sulphide. See Copper phosphosulphide. Cupric platinum sulphide. See Sulphoplatinate, cupric. Cuprous potassium sulphide, 4Cu 2 S, K 2 S. (Ditte, C. R. 98. 1429.) Copper potassium sulphide, 2CuS 3 , KjS. Decomp. by H 2 0, NH 4 OH, or NH 4 SH + Aq. (Priwoznik, B. 5. 1291.) Cuprocupric potassium sulphide, 3Cu 2 S, 2CuS, K 2 S. Not decomp. by very dil. HCl + Aq, but easily by cone. HCl + Aq on warming. (Schneider, Pogg. 138. 311.) Cuprous silver sulphide, Cu 2 S, Ag 2 S. Min. Stromeyerite. Sol. in HN0 3 + Aq with separation of S. Cu 2 S, 3Ag 2 S. Min. Jalpaite. As above. Cuprocupric sodium sulphide, Cu 2 S, CuS, Na 2 S. Scarcely decomp. by cold dil. HCl + Aq ; cone. HCl + Aq decomp. easily on warming, without, however, dissolving all the Cu 2 S. Completely decomp. by warm HN0 3 + Aq. (Schneider, Pogg. 138. 315.) Copper zinc sulphide, CuS, 3ZnS. Copper sulphophosphide. See Copper phosphosulphide. Cupric telluride, CuTe. Cu 2 Te 3 . Insol. in H 2 0. (Parkmann, Sill. Am. J. (2) 3. 335.) Cu 2 Te. (Brauner, M. 1889. 423.) Croceocobaltic bromide, Co(NH 3 ) 4 (N0 2 ) 2 Br. Very si. sol. in cold, easily in hot H 2 0. (Gibbs, Proc. Am. Acad. 10. 1.) chloraurate, 2Co(NH 3 ) 4 (N0 2 ) 2 Cl, AuCl 3 . Difficultly sol. in H 2 0. - chloride, Co(NH 3 ) 4 (N0 2 ) 2 Cl. Very si. sol. in cold, easily in hot H 2 0, but more sol. than the sulphate. (Gibbs.) chloroplatinate, 2Co(NH 3 ) 4 (N0 2 ) 2 Cl, PtCl 4 . Can be recrystallised without decomp. with difficulty. (Gibbs and Genth, Sill. Am. J. (2) 24. 91.) chromate, [Co(NH 3 ) 4 (N0 2 ) 2 ] 2 Cr0 4 . SI. sol. in H 2 0. (Gibbs.) bichromate, [Co(NH 3 ) 4 (N0 2 ) 2 ] 2 Cr 2 7 . SI. sol. in H 2 0. (Gibbs.) ^eriodide, Co(NH 3 ) 4 (N0 2 ) 2 I, I 2 . Difficultly sol. in cold H 2 and alcohol. Decomp. by hot H 2 0. (Gibbs. ) Croceocobaltic nitrate, Co(NH 3 ) 4 (N0 2 ) 2 N0 3 . SI. sol. in cold, easily sol. in hot H 2 or dil. acids. Much more sol. than the sulphate. (Gibbs.) Sol. in about 400 pts. cold H 2 0. (Jorgen- sen, Z. anorg. 5. 163.) nitrite cobaltic nitrite, 3Co(NH 3 ) 4 (N0 2 ) 2 , Co(N0 2 ) 3 . Somewhat sol. in H 2 0. (Jorgensen, Z. anorg. 5. 178.) nitrite examine cobaltic nitrite, Co(NH 3 ) 4 (N0 2 ) 2 , (N0 2 ) 2 (NH 3 ) 2 Co(N0 2 ) 2 . Nearly insol. in cold, very si. sol. in boiling H 2 Q. (Jorgensen. ) phosphomolybdate, [Co(NH 3 ) 4 (N0 2 ) 2 ] 2 0, 24Mo0 3 , P 2 5 . SI. sol. in cold, easily in hot H 2 0. (Gibbs, Am. Ch. J. 3. 317.) - sulphate, [Co(NH 3 ) 4 (N0 2 ) 2 ] 2 S0 4 . Very si. sol. in cold or hot H 2 ; more easily in hot dil. H 2 S0 4 + Aq. Cuprammonium compounds. See Copper compounds, ammonia. Cupro^rammonium i^raiodide. See Cupric tetraiodide ammonia. Oupric acid. Known only in solution. (Kriiger, Pogg. 62. 445.) Calcium cuprate. Decomp. by H 2 with evolution of oxygen. (Kriiger and Crum, A. 55. 213.) Cyanhydric acid, HCN. Miscible with H 2 0, alcohol, and ether with absorption of heat. Sp. gr. of HCN + Aq. %HCN Sp.gr. %HCN Sp. gr. 1-60 0*9979 4-0 0-9940 1-68 0-9978 4-6 0-9930 1-77 0-9975 5-0 0-9923 2-0 0-9974 5-3 0-9914 2-1 0-9973 5-8 0-9900 2-3 0*9970 6-4 0-9890 2-5 0-9967 7-3 0-9870 2-7 0-9964 8-0 0-9840 3-0 0-9958 9-1 0-9815 3'2 0-9952 10-6 0-9768 3-6 0-9945 16-0 0-9570 (Ure, Quar. J. Sci. 13. 321.) Miscible with volatile oils and other organic compounds. 2HCN mixed with 3H 2 causes a diminution of temp, of 975. (Bussy and Buignet, A. cli. (4) 3. 231.) Cyanhydric iodhydric acid, HI, HCN. Easily sol. in H 2 or alcohol, with rapid decomp. SI. sol. in ether. (Gal, A. 138. 38. ) CYANIDE, CALCIUM ZINC 141 Cyanides. The alkali cyanides are easily sol. in H 2 ; those of the alkali-earths are less sol., while all others are insol. with the exception of Hg(CN) 2 . All cyanides are sol. in KCN + Aq. Ammonium cyanide, NH 4 CN. Unstable ; easily sol. in H 2 and alcohol. Ammonium cuprous cyanide, NH 4 CN, Cu 2 (CN) 2 . Ppt. Decomp. by acids. 2NH 4 CN, Cu 2 (CN) 2 . SI. sol. in H 2 0, but de- comp. by long boiling therewith. Sol. in HCN + Aq. (Dufau, A. 88. 278.) Ammonium cuprous cyanide ammonia, NH 4 CN, Cu 2 (CN) 2 , 3NH 3 . Insol. in cold., si. sol. in hot H 2 0. (Fleu- rent, B. 25. 103 R.) NH 4 CN, 2Cu 2 (CN) 2 , 2NH 3 + 2H 2 0. (Fleu- rent, B. 25. 498 R.) Ammonium aurous cyanide, NH 4 CN, AuCN. Easily sol. in cold or warm H 2 or in alcohol. Insol. in ether. Ammonium nickel cyanide, 2NH 4 CN, Ni(CN) 2 . Easily decomposed. Ammonium zinc cyanide, 2NH 4 CN, Zn(CN) 2 . Sol. in H 2 0. Barium cyanide, Ba(CN) 2 . Rather si. sol. in H 2 0, more easily in KCN + Aq. (Schulz, J. pr. 68. 257.) 10 pts. H 2 dissolve 8 pts., and 10 pts. 70 % alcohol dissolve 1'8 pts. Ba(CN) 2 at 14. (Joannis, A. ch. (5) 26. 489.) + 2H 2 0. Very deliquescent. Ba(CN) 2 , BaO. (Drechsel, J. pr. (2) 21. 84.) Barium cadmium cyanide, 2Ba(CN) 2 , 3Cd(CN) 2 + 10H 2 0. Sol. in H 2 0. (Weselsky, B. 2. 590.) Barium cuprous cyanide, Ba(CN) 2 , Cu 2 (CN) 2 + H 2 0. (Weselsky, B. 2. 590.) Barium aurous cyanide, Ba(CN) 2 , 2AuCN + 2H 2 0. SI. sol. in cold but easily sol. in hot H 2 0. SI. sol. in alcohol. (Lindbom, Lund Univ. Arsk. 12. No. 6.) Barium iridium cyanide. See Iridicyanide, barium. Barium manganous cyanide, Ba(CN) 2 , 2Mn(CN) 2 . Ppt. (Descamps.) See also Manganocyanide and Mangani- cyanide, barium. Barium palladium cyanide, Ba(CN) 2 , Pd(CN) 2 + 4H 2 0. See Palladocyanide, barium. Barium nickel cyanide, Ba(CN) 2 , Ni(CN) 2 + 3H 2 0. Sol. in H 2 ; decomp. by acids with pptn. of Ni(CN) 2 . (Weselsky, B. 2. 590.) Barium silver cyanide, Ba(CN) 2 , 2AgCN + H 2 0. Sol. in H 2 0. (Weselsky, B. 2. 589.) Barium zinc cyanide, Ba(CN) 2 , Zn(CN) 2 + 2H 2 0. Sol. in H 2 0. Cadmium cyanide, Cd(CN) 2 . SI. sol. in H 2 0. 100 pts. H 2 dissolve 1 7 pts. Cd(CN) 2 at 15. (Joannis.) Easily sol. in acids ; sol. in KCN + Aq. Sol. in warm NH 4 OH + Aq, but insol. in (NH 4 ) 2 C0 3 + Aq. (Wittstein.) 2Cd(CN) 2 , CdO + 5H 2 0. Insol. in H 2 0. (Joannis.) Cadmium cuprous cyanide, 2Cd(CN) 9 , Cu 2 (CN) 2 . Permanent. Insol. in H 2 0. SI. sol. in cold, easily in warm HCl + Aq without decomp., except by long boiling. Insol. in NH 4 OH, or NH 4 salts +Aq. (Schiller.) Cadmium cupric cyanide, Cd(CN) 2 , Cu(CN) 2 . Very unstable. Cadmium aurous cyanide, Cd(CN) 2 , 2AuCN. Nearly insol. in cold H 2 0. SI. sol. in boil- ing H 2 0. Insol. in alcohol. (Lindbom.) Cadmium mercuric cyanide, 2Cd(CN) 2 , 3Hg(CN) 2 . Permanent. Readily sol. in cold HoO. (Schiller.) Cadmium mercuric cyanide mercuric iodide, Cd(CN) 2 , Hg(CN) 2 , HgI 2 + 8H 2 0. Very sol. in H 2 0. (Varet, Bull. Soc. (3) 5. 8.) Cadmium mercuric cyanide mercuric iodide ammonia, Cd(CN) 2 , Hg(CN) 2 , HgI 2 , 4NH 3 . Very easily decomp. (Varet, Bull. Soc. (3) 6. 22.) Cadmium potassium cyanide, Cd(CN) 2 , 2KCN. Sol. in 3 pts. cold, and 1 pt. boiling H 2 0. Insol. in absolute alcohol. (Rammelsberg.) Calcium cyanide, Ca(CN) 2 . Sol. in H 2 0, but the solution is very un- stable. (Schulz. ) Ca(CN) 2 , 3CaO + 15H 2 0. Decomp. by H 2 0. (Joannis, A. ch. (5) 26. 496.) Calcium aurous cyanide, Ca(CN) 2 , 2 AuCN + 3H 2 0. Easily sol. in hot or cold H 2 or in alcohol. (Lindbom.) Calcium manganous cyanide, Ca(CN) 2 , 2Mn(CN) 2 . Ppt. (Descamps.) See also Manganocyanide, calcium. Calcium nickel cyanide, Ca(CN) 2 , Ni(CN) 2 + o;H 2 0. Sol. in H 2 0. Calcium zinc cyanide, Ca(CN) 2 , Zn(CN) 2 + Sol. in H 2 0. (Schindler, Mag. Pharm. 36. 70.) 142 CYANIDE, CEROUS Cerous cyanide (?). Ppt. Very easily decomp. (Beliringer, A. 42. 139.) Chromic cyanide with MCN. See Chromicyanide, M. Chromous potassium cyanide. See Chromocyanide, potassium. Cobaltous cyanide, Co(CN) 2 + H 2 0. Insol. in H 2 0. Easily sol. in NH 4 OH + Aq, and KCN + Aq; also in (NH 4 ) 2 C0 3 , or NH 4 succinate + Aq ; insol. in NH 4 N0 3 , or NH 4 C1 + Aq. (Wittstein.) Cobaltous cyanide with 4MCN. See Cobaltocyanide, M. Cobaltic cyanide with 3MCN. See Cobalticyanide, M. Cobalt aurous cyanide, Co(CN) 2 , 2AuCN. Insol. in H 2 or cold HC1 + Aq. Cuprous cyanide, Cu 2 (CN) 2 . Insol. in H 2 and dil. acids. Sol. in NH 4 OH, (NH 4 ) 2 S0 4 , or NH 4 succinate + Aq, and in hot NH 4 C1, or NH 4 N0 3 + Aq. Sol. in cone. HC1 + Aq. Sol. inKCN + Aq. Cupric cyanide, Cu(CN) 2 (?). Easily decomp. Insol. in H 2 0. Cuprocupric cyanide, Cu(CN) 2 , Cu 2 (CN) 2 + 5H 2 0. Insol. in H 2 0, but decomp. by boiling. Sol. in cold cone. HC1 + Aq. Sol. in NH 4 OH + Aq, (NH 4 ) 2 C0 3 + Aq, and in hot NH 4 salts + Aq. Easily sol. inKCN + Aq. + H 2 0. Ppt. (Dufau.) + Cu(CN) 2 , 2Cu 2 (CN) 2 + H 2 0. Ppt. Cuprous mercuric cyanide mercuric bromide, Cu 2 (CN) 2 , 2Hg(CN) 2 , HgBr 2 . Sol. in H 2 0. (Varet, Bull. Soc. (3) 4. 384.) Cuprous potassium cyanide, Cu 2 (CN) 2 , KCN + H 2 0. Insol. in H 2 0. Sol. in acids with decomp. Cu 2 (CN) 2 , 2KCN. SI. sol. in H 2 0, with partial decomp. Decomp. by acids, but not by alkalies. 3Cu 2 (CN) 2 , 4KCN. Sol. in H 2 0. Cu 2 (CN) 2 , 6KCN. Sol. in H 2 0. Cuprous silver cyanide, Cu 2 (CN) 2 , 2AgCN. Ppt. Cu 2 (CN) 2 , 6 AgCN. Sol. in excess of Cu 2 (CN) 2 , KCN + Aq. (Rammelsberg. ) Cuprocupric cyanide ammonia, Cu(CN) 2 , Cu 2 (CN) 2 , 2NH 3 + H 2 0. SI. sol. in cold, decomp. by boiling H 2 0. Sol. inNH 4 OH + Aq. (Dufau, A. 88. 278.) Cu(CN) 2 , Cu 2 (CN) 2 3NH 3 . (Mills, Z. Ch. 1867. 545.) Cu(CN) 2 , Cu 2 (CN) 2 , 4NH 3 . Insol. in cold, decomp. by hot H 2 0. Sol. in NH 4 OH, or (NH 4 ) 2 C0 3 + Aq. Cu(CN) 2 , 2Cu 2 (CN) 2 , 2NH 3 + H 2 0. (Mon- thier, J. Pharm. 11. 257.) Cu(CN) 2 , 2Cu 2 (CN) 2 , 4NH 3 . (Hilkenkamp, A. 97. 218.) Cu(CN) 2 , 2Cu 2 (CN) 2 , 6NH 3 . (Schiff and Becchi, A. 134. 33.) 2Cu(CN) 2 , Cu 2 (CN)o, 2NH 3 + 3H 2 0. (Fleu- rent, C. R. 114. 1060.)" 2Cu(CN) 2 , Cu 2 (CN) 2 , 4NH 3 + H,0. Correct formula. for Cu(CN)o, Cu 2 (CN) 2 , 4NH 3 . (Bou- veault, Bull. Soc. (3) 4. 641.) Cuprous cyanide mercuric iodide, Cu 2 (CN) 2 , HgI 2 . Sol. in H 2 0. (Varet, Bull. Soc. (3) 4. 484.) Aurous cyanide, AuCN. Insol. in H 2 0, alcohol, or ether. Not attacked by dil., or cone, acids, even boiling aqua regia. Sol. in NH 4 OH + Aq, also in soluble cyanides + Aq. Slowly decomp. by boiling KOH + Aq, also by (NH 4 ) 2 S + Aq. Auric cyanide with MCN. See Auricyanide, M. Aurous potassium cyanide, AuCN, KCN. Sol. in 7 pts. cold, and less than 0'5 pt. boil- ing H 2 0. SI. sol. in cold, and somewhat more sol. in boiling alcohol. Insol. in ether. (Himly, A. 42. 160.) Decomp. by warm acids, even tartaric, and acetic acids. Aurous sodium cyanide, AuCN, NaCN. SI. sol. in cold, more easily in hot H 2 0. SI. sol. in alcohol. (Lindbom.) Aurous strontium cyanide, 2 AuCN, Sr(CN) 2 + 3H 2 0. As the Na salt. Aurous zinc cyanide, 2AuCN, Zn(CN) 2 . Nearly insol. in hot or cold H 2 0. Insol. in cold HC1 + Aq. Iridium cyanide, Ir(CN) 3 . Insol. in H 2 0. Sol. in HCN + Aq. Iridium cyanide with MCN. See Iridicyanide, M. Lanthanum cyanide, La(CN) 3 . Ppt. (Frerichs and Smith, B. 11. 910, 1151.) Lead cyanide, Pb(CN) 2 . SI. sol. in cold, more in hot H 2 0. Sol. in HN0 3 + Aq, and KCN + Aq. Partially sol. in NH 4 OH + Aq, and NH 4 salts + Aq. Not pptd. in presence of Na citrate. Above compound is 2PbO, Pb(CN) + H 2 0. (Joannis, A. ch. (5) 26. 204.) 2PbO, Pb(CN) 2 + H 2 0. Insol. in H 2 0. Lead zinc cyanide, Pb(CN) 2 , 2Zn(CN) 2 . Ppt. (Rammelsberg. ) Lead cyanide chloride, 2 Pb(CN) 2 , PbCl 2 . Insol. in H 2 0. (Grissom and Thorp, Am. Ch. J. 10. 229.) Lithium mercuric cyanide mercuric iodide, 2Li(CN) 2 Hg(CN) 2 , HgI 2 + 7H 2 0. Deliquescent ; sol. in H 2 0. (Varet, C. R. 111. 526.) CYANIDE CHLORIDE, MERCURIC 143 Magnesium cyanide, Mg(CN) 2 . Known only in aqueous solution which de- composes on evaporation. (Schulz.) Magnesium mercuric cyanide mercuric , bromide, Mg(CN) 2 , Hg(CN) 2 , HgBr 2 + 8H 2 0. Very sol. in H 2 0. (Varet, Bull. Soc. (3) 7. 170.) Magnesium mercuric cyanide mercuric iodide, Mg(CN) 2 , Hg(CN) 2 , HgI 2 + 8H 2 0. Sol. in H 2 0. (Varet, Bull. Soc. (3) 7. 170.) Manganous and manganic cyanides. Sec Manganocyanhydric, and Manganicyan- hydric acids. Manganous strontium cyanide, 2Mn(CN) 2 , Sr(CN) 2 . Ppt. (Descamps. ) See also Manganocyanide, strontium. Mercuric cyanide, basic, Hg(CN) 2 , HgO. SI. sol. in cold, moderately sol. in hot H 2 0. Sol. with decomp. in KOH, KCN, or KC1 + Aq. (Johnston. ) Somewhat sol. in dil. alcohol. Hg(CN) 2 , 3HgO. More sol. in H 2 than (Joannis, A. ch. (5) 26. Hg(CN) 2 , HgO. 3Hg(CN) 2 , HgO. 469.) Mercuric cyanide, Hg(CN) 2 . Moderately sol. in H 2 0. 100 pts. Hg(CN) 2 + Aq sat. at 101 '1 contain 35 pts. Hg(CN) 2 , ^or 100 pts. H 2 dissolve 53-85 pts. Hg(CN) 2 at 101 '1. (Griffiths.) Sol. in 8 pts. H 2 at 15. (Abl.) Sol. in 11 pts. cold, and 2 '5 pts. boiling H 2 0. (Wittstein.) Not decomp. by acids except hot cone. H 2 S0 4 . Sol. without decomp. in HN0 3 + Aq. (Ber- zelius.) Sol. in KCN + Aq. Sol. in alkali chlorides + Aq. Sol. in 20 pts. cold, and 5 pts. boiling alcohol. (Wittstein.) Nearly insol. in absolute alcohol. Easily sol. in acetone. (Krug and M'Elroy, J. Anal. Ch. 6. 84.) Mercuric potassium cyanide, Hg(CN) 2 , 2KCN. Sol. in 4'4 pts. cold H 2 ; si. sol. in alcohol ; decomp. by acids. Mercuric silver cyanide, basic, Hg(CN) 2 , HgO, 7AgCN. Ppt. (Bloxam, B. 16. 2669.) Mercuric silver cyanide mercuric sulphate, Hg(CN) 2 , 2AgCN, HgS0 4 + H 2 0. i Mercuric thallium cyanide, Hg(CN) 2 , 2T1CN. Easily sol. in H 2 0. 100 pts. H 2 dissolve 7'9 pts. at 1, and 10 '3 pts. at 10. (Fron- miiller, B. 11. 92.) Mercuric zinc cyanide, 4Zn(CN) 2 , Hg(CN) 2 . Insol. in H 2 0. (Dunstan, Chem. Soc. 6. 666.) Mercuric cyanide ammonia, 2Hg(CN) 2 ,4NH 3 + H 2 0. Easily decomp. (Varet, Bull. Soc. (3) 6 221.) 2Hg(CN) 2 , 2NH 3 + H 2 0. Very sol. in NH 4 OH + Aq or alcohol. (V. ) Hg(CN) 2 , 2NH 3 . (V.) Mercuric cyanide barium bromide, 2Hg(CN) 2 , BaBr 2 + 6H 2 0. Easily sol. especially in hot H 2 and alcohol. Mercuric cyanide cadmium bromide, Hg(CN) 2 , CdBr 2 + 3H 2 0. Sol. in H 2 and NH 4 OH + Aq. (Varet, Bull. Soc. (3) 5. 8.) Mercuric cyanide cadmium bromide ammonia, 2Hg(CN) 2 , CdBr 2 , 4NH 3 . Efflorescent. Decomp. by H 2 0. SI. sol. in NH 4 OH + Aq. (Varet, Bull. Soc. (3) 6. 221.) Mercuric cyanide calcium bromide, 2Hg(CN) 2 , CaBr 2 + 5H 2 0. Sol. in 1 pt. cold, and 0'25 pt. boiling H 2 ; also in 2 pts. cold, and 1 pt. boiling 90 % alcohol. (Custer. ) Mercuric cyanide cupric bromide ammonia, 2Hg(CN) 2 , CuBr 2 , 4NH 3 . Decomp. by H 2 ; si. sol. in NH 4 OH + Aq. (Varet, Bull. Soc. (3) 6. 221.) Mercuric cyanide lithium bromide, 2Hg(CN) , 2LiBr + 7H 2 0. Deliquescent. (Varet, C. R. 111. 526.) Mercuric cyanide magnesium bromide. See Magnesium mercuric cyanide mercuric bromide. Mercuric cyanide potassium bromide, HgfCNk KBr + 2H 2 0. Sol. in 13-34 pts. H 2 at 18, and less than 1 pt. boiling H 2 0. (Brett. ) Sol. without decomp. in hot dil. H 2 S0 4 , HN0 3 , or HC1 + Aq. (Brett. ) Contains liH 2 0. (Berthelot, A. ch. (5) 29. 226.) Mercuric cyanide sodium bromide, Hg(CN) 2 , Sol. in H 2 and alcohol. Mercuric cyanide strontium bromide, 2Hg(CN) 9 , SrBr 2 + 6H 2 0. Efflorescent. Sol. in H 2 and alcohol. Mercuric cyanide zinc bromide, HgBr 2 Hg(CN) 2 , Zn(CN) 2 + 8H 2 0. Sol. in H 2 and NH 4 OH + Aq. (Varet, Bull. Soc. (3) 5. 8.) Mercuric cyanide zinc bromide ammonia, HgBr 2 , Hg(CN) 2 , Zn(CN) 2 , 4NH 3 . As the corresponding chloride. (Varet.) Mercuric cyanide chloride, Hg(CN) 2 , HgCl 2 . Sol. in H 2 0. Decomp. by alcohol, which dissolves out HgCl 2 . UNIVERSITY) 144 CYANIDE AMMONIUM CHLORIDE, MERCURIC Mercuric cyanide ammonium chloride, Hg(CN) 2 , NH 4 C1. Sol. in H 2 and alcohol. (Poggiale.) Hg(CN) 2 , 4NH 4 C1. Mercuric cyanide barium chloride, 2Hg(CN) 2 , BaCl 2 + 4H 2 0. Efflorescent. Easily sol. in H 2 and alcohol. + 6H 2 0. (Dexter.) Mercuric cyanide barium chloride ammonia, 2Hg(CN) 2 , BaCl 2 , 4NH 3 . Decomp. by H 2 0. SI. sol. in NH 4 OH + Aq. (Varet, Bull. Soc. (3) 6. 221.) Mercuric cyanide cadmium chloride, Hg(CN) 2 , CdCl 2 + 2H 2 O. Sol. in H 2 and NH 4 OH + Aq. (Varet, Bull. Soc. (3)5. 8.) Mercuric cyanide calcium chloride, 2Hg(CN) 2 , CaCl 2 + 6H 2 0. Efflorescent. Very sol. in H 2 0. Mercuric cyanide cerium chloride, 3Hg(CN) 2 , CeCl 3 + 8H 2 0. Very sol. in H 2 0. (Ahlen, Bull. Soc. (2) 27. 365.) Mercuric cyanide cobaltous chloride, Hg(CN) 2 , 2CoCl 2 + 4H 2 0. Sol. in H 2 0. (Poggiale.) 2Hg(CN) 2 , CoCl 2 + 7H 2 0. (Dexter.) Mercuric cyanide cupric chloride ammonia, 2Hg(CN) 2 , CuCl 2 , 4NH 3 . Decomp. by H 2 0. SI. sol. in cold NH 4 OH + Aq. (Varet, Bull. Soc. (3) 6. 221.) Mercuric cyanide didymium chloride, 3Hg(CN) 2 , DiCl 3 + 8H 2 0. Very sol. in H 2 0. (Ahlen.) Mercuric cyanide erbium chloride, 3Hg(CN) 2 , ErCl 3 + 8H 2 0. Easily sol. in H 2 0. (Ahlen. ) Mercuric cyanide ferric chloride, 2Hg(CN) 2 , (Dexter.) Mercuric cyanide lanthanum chloride, 3Hg(CN) 2 , LaCl 3 + 8H 2 0. Very sol. in H 2 0. (Ahlen.) Mercuric cyanide magnesium chloride, 2Hg(CN) 2 , MgCl 2 -l-2H 2 0. Easily sol. in H 2 and dil. alcohol. (Pog- giale. ) Mercuric cyanide manganous chloride, Hg(CN) 2 , MnCl 2 + 3H 2 0. Efflorescent. Very sol. in H 2 0. (Poggiale. ) Mercuric cyanide nickel chloride, Hg(CN) 2 , NiCl 2 + 6H 2 0. Deliquescent. Sol. in H 2 0. (Poggiale.) 2Hg(CN) 2 , NiCl 2 + 7H 2 0. (Dexter.) Mercuric cyanide potassium chloride, Hg(CN\, KC1 + H 2 0. Sol. in 675 pts. H 2 at 18. (Brett.) Sol. in alcohol. Mercuric cyanide sodium chloride, Hg(CN") 2 , NaCl. Easily sol. especially in hot H 2 ; insol. in alcohol. (Poggiale.) Mercuric cyanide strontium chloride,2Hg(CN) 2 , SrCl 2 + 6H 2 0. Easily sol. in H 2 and dil. alcohol. Mercuric cyanide yttrium chloride, 3Hg(CN) 2 , YC1 3 + 8H 2 0. Easily sol. in H 2 0. (Ahlen, Bull. Soc. (2) 27. 365.) Mercuric cyanide zinc chloride, 2Hg(CN) 2 , ZnCl 2 + 6H 2 0. Efflorescent. Sol. in H 2 0. (Kane.) HgCl 2 , Hg(CN) 2 , Zn(CN) 2 + 7H 2 0. Efflores- cent. Very sol. in H 2 0. (Varet, Bull. Soc. (3)5.8.) Mercuric cyanide zinc chloride ammonia, HgCl 2 , Hg(CN) 2 , ZnCl 2 , 4NH 3 . Decomp. by H 2 0. Sol. in NH 4 OH + Aq. (Varet, Bull. Soc. (3) 6. 221.) Hg(CN) 2 , Zn(CN) 2 , HgCl 2 , 6NH 3 . (Varet, C. R. 106. 1080.) Mercuric cyanide potassium chromate. See Chromate mercuric cyanide, potassium. Mercuric cyanide potassium ferrocyanide, 3Hg(CN) 2 , K 4 Fe(CN) 6 + 4H 2 0. Readily sol. in H 2 0. Mercuric cyanide barium iodide, 2Hg(CN) 2 , BaI 2 + 4H 2 0. Slowly deliquescent. Sol. in 16 '5 pts. cold, and 0'4 pt. boiling H 2 0. Sol. in 22 '5 pts. cold, and 1'6 pts. hot 90 % alcohol. Solution is decomp. on boiling. (Custer.) Mercuric cyanide cadmium iodide, Hg(CN) 2 , Cd(CN) 2 , HgI 2 + 8H 2 0. See Cadmium mercuric cyanide mercuric iodide. Mercuric cyanide calcium iodide, 2Hg(CN") 2 , CaI 2 + 6H 2 0. SI. efflorescent. More sol. in H 2 than cor- responding Sr comp. (Custer. ) Mercuric cyanide lithium iodide, Hg(CN) 2 , 2Li(CN) 2 , HgI 2 + 7H 2 0. See Lithium mercuric cyanide mercuric iodide. Mercuric cyanide magnesium iodide, Hg(CN) 2 , Mg(CN) 2 , HgI 2 + 8H 2 0. See Magnesium mercuric cyanide mercuric iodide. Mercuric cyanide potassium iodide, Hg(dS!") 2 , KI. Sol. in 16 pts. cold, and less hot H 2 0. Sol. in 96 pts. cold alcohol of 34 Baume. (Gail- lot. ) SI. sol. in ether. Decomp. by acids. 3Hg(CN) 2 , 2KI + PI 2 0. (Berthelot.) Mercuric cyanide sodium iodide, Hg(CN) 2 , Nal + 2H 2 0. Sol. in 4i pts: H 2 at 18, and f pt. boiling H 2 0. CYANIDE, NICKEL POTASSIUM 145 Sol. in 2 pts. boiling, and alcohol. (Custer.) pts. cold 90 % Mercuric cyanide strontium iodide, 2Hg(CN) 2 , SrI 2 + 6H 2 0. Sol. in 7 pts. H 2 at 18, and | pt. at b.-pt. Sol. 'in 4 pts. 90 % alcohol at 18, and | pt. at b.-pt. (Custer.) Mercuric cyanide zinc iodide, 2Hg(CN) 2 , ZnI 2 + 6H 2 0. Efflorescent ; sol. in H 2 0. Mercuric cyanide cadmium nitrate, 2Hg(CN) 2 , Cd(N0 3 ) 2 + 7H 2 0. Decomp. by H 2 0, not by alcohol. (Ny- lander, J. B. 1859. 271.) Mercuric cyanide cobalt nitrate, 2Hg(CN) 2 , Co(N0 3 ) 2 + 7H 2 0. Decomp. by H 2 0, not by alcohol. (Ny- lander.) Mercuric cyanide copper nitrate, Hg(CN) 2 , Cu(N0 3 ) 2 + 5H 2 0. Decomp. by H 2 0, not by alcohol. (Ny- lander. ) Mercuric cyanide ferrous nitrate, 2Hg(CN) 2 , Fe(N0 3 ) 2 + 7H 2 0. Decomp. by H 2 0, not by alcohol. (Ny- lander. ) Mercuric cyanide manganous nitrate, Hg(CN) 2 , Mn(N0 3 ) 2 + 5H 2 0. Decomp. by H 2 0, not by alcohol. (Ny- lander. ) 2Hg(CN) 2 , Mn(N0 3 ) 2 + 7H 2 0. As above. Mercuric cyanide nickel nitrate, 2Hg(CN) 2 , Ni(N0 3 ) 2 + 7H 2 0. Decomp. by H 2 0, not by alcohol. (Ny- lander. ) Mercuric cyanide silver nitrate, 2Hg(CN) 2 , AgN0 3 + 2H 2 0. SI. sol. in cold, more readily in hot H 2 0. Sol. with decomp. in HN0 3 + Aq. As sol. in alcohol as in H 2 0. Mercuric cyanide zinc nitrate, 2Hg(CN) 2 , Zn(N0 3 ) 2 + 7H 2 0. Sol. in H 2 with decomp. Not decomp. by alcohol. (Nylander, J. B. 1859. 271.) Mercuric cyanide potassium selenocyanide, Hg(CN) 2 , KSeCN. SI. sol. in cold, much more easily sol. in hot H 2 or alcohol. Traces dissolve in ether. (Cameron and Davy, C. N. 44. 63.) Mercuric cyanide ammonium sulphocyanide, Hg(CN) 2 , NH 4 SCN. Easily sol. in hot H 2 0. (Cleve, Bull. Soc. (2) 23. 71.) Mercuric cyanide barium sulphocyanide, 2Hg(CN) 2 , Ba(SCN) 2 + 4H 2 0. Permanent. Sol. in hot H 2 0. (Cleve.) Mercuric cyanide cadmium sulphocyanide, 2Hg(CN) 2 , Cd(SCN) 2 + 4H 2 0. Permanent. Sol. in hot H 2 0. (Cleve.) Mercuric cyanide calcium sulphocyanide, 2Hg(CN) 2 , Ca(SCN) 2 + 8H 2 0. Sol. inH 2 0. (Cleve.) Mercuric cyanide cerium sulphocyanide, 3Hg(CN) 2 , Ce(SCN) 3 + 12H 2 0. Easily sol. in hot H 2 0. ( Jolin. ) Mercuric cyanide didymium sulphocyanide, 3Hg(CN) 2 , Di(SCN) 3 + 6H 2 0. SI. sol. in cold, easily in hot H 2 0. (Cleve.) Mercuric cyanide erbium sulphocyanide, 3Hg(CN) 2 , 2Er(SCN) 3 + 12H 2 0. SI. sol. in cold, easily in hot H 2 0. (Cleve.) Mercuric cyanide lanthanum sulphocyanide, 3Hg(CN) 2 , La(SCN) 3 + 12H 2 0. Very sol. in H 2 0. (Cleve.) Mercuric cyanide magnesium sulphocyanide, 2Hg(CN) 2 , Mg(SCN) 2 + 4H 2 0. Permanent. Easily sol. in hot H 2 0. (Cleve.) Mercuric cyanide potassium sulphocyanide, Hg(CN) 2 , KSCN. Permanent. Easily sol. in hot H 2 0. (Cleve.) + 2H 2 0. (Philip, Z. Ch. 1867. 552.) Mercuric cyanide samarium sulphocyanide, 3Hg(CN) 2 , Sm(SCN) 3 + 12H 2 0. Easily sol. in H 2 0. (Cleve.) Mercuric cyanide sodium sulphocyanide, Hg(CN) 2 , NaSCN + 2H 2 0. Efflorescent. Sol. in H 2 0. (Cleve, Bull. Soc. (2) 23. 71.) Mercuric cyanide strontium sulphocyanide, 2Hg(CN) 2 ,Sr(SCN) 2 + 4H 2 0. Efflorescent. (Cleve.) Mercuric cyanide yttrium sulphocyanide, 3Hg(CN) 2 , Y(SCN) 3 + 12H 2 0. SI. sol. in warm, much less in cold H 2 0. (Cleve.) Mercuric cyanide zinc sulphocyanide, 2Hg(CN) 2 , Zn(SCN) 2 + 4H 2 0. SI. sol. in H 2 0. (Cleve.) Mercuric cyanide zinc sulphocyanide am- monia, 2Hg(CN) 2 , Zn(SCN) 2 , 3NH 3 . Not efflorescent. Decomp. by H 2 0. Mercuric cyanide potassium thiosulphate, Hg(CN) 2 , K 2 S 2 ? . Permanent. Sol. in H 2 0. (Kessler.) + H 2 0. (Fock and Kliiss, B. 24. 1355.) Nickel cyanide, Ni(CN) 2 + a;H 2 0. Insol. in H 2 0. Insol. in cone. HC1, H 2 S0 4 , or HN0 3 + Aq, but decomp. by heating there- with. Sol. in NH 4 OH, warm (NH 4 ) 2 S0 4 , or NH 4 succinate + Aq ; also in KCN + Aq. SI. sol. in NH 4 C1, or NH 4 N0 3 + Aq. ( Wittstein. ) Nickel potassium cyanide, Ni(CN) 2 , 2KCN + H 2 0. Sol. in H 2 0. Decomp. by acids with residue of insol. Ni(CN) 2 . + JH 2 0. (Rammelsberg. ) 146 CYANIDE, NICKEL SODIUM Nickel sodium cyanide, Ni(CN) 2 , 2NaCN + 3H 2 0. Sol. in H ; decomp. by acids with residue of Ni(CN) 2 . Nickel strontium cyanide, Ni(CN) 2 , Sr(CN) 2 + H 2 0. Sol. in H 2 0. (Handl, J. B. 1859. 273.) Osmium cyanide, Os(CN) 2 (?). Iiisol. in H 2 ; not attacked by acids. See also Osmocyanhydric acid. Palladous cyanide, Pd(CN) 2 . Iiisol. in H 2 0. Insol. in dil. acids. Sol. in KCN or NH 4 OH + Aq, also in cone. HCN + Aq. Platinous cyanide, Pt(CN) 2 . Insol. in H 2 0, alkalies, or acids. Sol. in KCN + Aq. When freshly pptd. sol. in NH 4 OH + Aq. Platinous cyanide with MCN. See Platinocyanide, M. Potassium cyanide, KCN. Deliquescent. Very sol. in H 2 0. 100 pts. KCN + Aq, sat. at b.-pt. 103 '3, con- tain 55 pts. KCN, i.e. 100 pts. H 2 dissolve 122-2 pts. KCN at 103 '3. (Griffiths.) KCN + Aq containing 3 '25 % KCN has sp. gr. =1-0154 ; 6-5 % KCN, 1'0316. (Kohlrausch, W. Ann. 1879. 1.) Almost insol. in absolute alcohol. Sol. in 80 pts. 95 % alcohol when boiling, and easily sol. in 35 % alcohol. (Geiger, A. 1. 50. ) 100 pts. absolute methyl alcohol dissolve 4 '91 pts. at 19'5 ; 100 pts. absolute ethyl alcohol dissolve 0'87 pt. at 19 '5. (de Bruyn, Z. phys. Ch. 10. 783.) Sol. in CS 2 when pure. (Loughlin, J. B. 1875. 234.) Wholly insol. in CS 2 . (Moldenhauer, Z. anal. 16. 199.) Potassium silver cyanide, KCN, AgCN. Sol. in 4-7 pts. H 2 at 15, 4 pts. at 20, and in much less at higher temp. Sol. in 25 pts. 85 % alcohol. (Baup, A. ch. (3) 53. 464.) Potassium silver sodium cyanide, 2 KCN, NaCN, 3 AgCN. Sol. in 4-4 pts. H 2 at 15, and 22 pts. 85 % alcohol at 17. (Baup.) Potassium zinc cyanide, 2KCN, Zn(CN) 2 . Easily sol. in cold H 2 0. Potassium cyanide sulphur dioxide, KCN, S0 2 + H 2 0. ,Much more sol. in hot than cold H.,0. (Etard, C. R. 88. 649.) KCN, HCN, 2S0 2 + 3H 2 0. Very si. sol. in cold H 2 ; decomp. by hot H 2 0. (tard.) Rhodium cyanide, Rh(CN) 3 . Ppt. Not decomp. by acids. Sol. in KCN + Aq. (Martins, A. 117. 361.) Rhodium cyanide with 3KCN. See Rhodicyanide, potassium. Ruthenium cyanide with 4MCN. See Ruthenocyanide, M. Silver cyanide, AgCN. Irisol. in H 2 or dil. acids. Decomp. by cone, acids. Not sol. to any extent in HCN + Aq. Sol. in NH 4 OH + Aq. Sol. in boiling KC1, NaCl, CaCl 2 , BaCl 2 , or MgCl 2 + Aq, but very slowly sol. therein at ord. temp. Sol. in Na 2 S 2 3 , K 4 Fe(CN) 6 , (NH 4 ) 2 C0 3 , (NH 4 ) 2 S0 4 , NH 4 N0 3 , and NH 4 succinate + Aq, and in large amt. of hot NH 4 C1 + Aq. ( Wittstein. ) Sol. in KCN, NaCN, Ba(CN) 2 , Ca(CN) 2 , or Sr(CN) 2 + Aq. Insol. in KOH, or NaOH + Aq. Sol. in cone, boiling AgN0 3 + Aq. (Wohler.) SI. sol. in Na citrate + Aq. Sol. inHg(N0 3 ) 2 + Aq. Sol. in 431-7 pts. 5 % NH 4 OH + Aq (s 0-998) at 12; in 184'5 pts. 10 % NH 4 Aq (sp. gr. 0'96) at 18. (Longi, Gazz. ch. it. 13. 87.) Silver sodium cyanide, AgCN, NaCN. Sol. in 5 pts. H.,0 at 20 and in much less hot H 2 0. Sol. in"24 pts. 85 % alcohol at 20. (Baup, A. ch. (3) 53. 468.) Silver thallous cyanide, AgCN, T1CN. Easily sol. in H 2 0. 100 pts. H 2 dissolve 4 '7 pts. at 0, and 7 '4 pts. at 16. (Fronmiiller, B. 11. 92.) Silver cyanide ammonia, AgCN, NH 3 . Efflorescent. Decomp. on air. Silver cyanide nitrate, 2AgCN, AgN0 3 . Decomp. by H 2 0. Sodium cyanide, NaCN. -Sol. in H 2 and 75 % alcohol. + 4H 2 0, and 2H 2 0. Very sol. in H 2 ; si. sol. in alcohol. (Joannis, A. ch. (5) 26. 484.) Sodium zinc cyanide, NaCN, Zn(CN) 2 + 2iH 2 0. Much more sol. in H 2 than the correspond- ing K Zn salt. (Rammelsberg.) Strontium cyanide, Sr(CN) 2 + 4H 2 0. Very unstable ; very deliquescent, and sol. in H 2 0. (Joannis, A. ch. (5) 26. 496.) Thallous cyanide, T1CN. 100 pts. H 2 dissolve 16 '8 pts. at 28 '5. (Fronmiiller, B. 6. 1178.) Thallothallic cyanide, T1 2 (CN) 4 = T1CN, T1(CN) 3 . Easily sol. in H 2 0. 100 pts. H 2 dissolve 27 '3 pts. at 30, 15 '3 pts. at 12, 97 pts. at 0. (Fronmiiller, B. 11. 92.) Thallous zinc cyanide, 2T1CN, Zn(CN) 2 . Easily sol. in H 2 0. 100 pts. H 2 dissolve 8'7 pts. at ; 15 '2 pts. at 14 ; and 29 '6 pts. at 31. (Fronmiiller, B. 11. 92.) Zinc cyanide, Zn(CN) 2 . Insol. in H 2 and alcohol. Sol. in alkalies. Easily sol. in KCN + Aq. Sol. in hot NH 4 salts +Aq. (Wittstein.) Easily sol. in (NH 4 ) 2 C0 3 + Aq. (Gore. ) DICHROCOBALTIC CARBONATE 147 SI. sol. in cone. Zn salts +Aq. 1 1. cone. Zn(C 2 H 3 2 ) 2 + Aq dissolves 4 g., and 1 1. cone. i ZnS0 4 + Aq dissolves 2 g. Zn(CN) 2 . Insol. in HCN + Aq. Easily sol. in dil. acids. (Joan- nis.) Zinc cyanide ammonia, Zn(CN) 2 , 2NH 3 . Decomp. on air. (Varet, C. R. 105. 1070.) + H 2 0. Decomp. on air. Decomp. by H 2 0. ! Sol. in NH 4 OH + Aq. (Varet.) Cyanogen, CN. H 2 absorbs 4J vols. CN gas at 20. Alco- hol absorbs 23 vols., and ether 5 vols. at the same temperature. (Gay-Lussac.) The solution gradually decomposes, but this is prevented by traces of acids. Oil of turpentine absorbs 5 vols. (Gay- Lussac. ) Absorbed by many essential oils. Very sol. in CuCl 2 + Aq. Absorbed with decomp. by NH 4 OH + Aq and other alkaline liquids. Absorbed by aniline. (Jacquemain, C. R. 100. 1006.) Decamine cobaltic sulphite, Co 2 (NH 3 ) 10 (S0 3 ) 3 + 3H 2 0. Sol. in H 2 0. (Vortmann and Magdeburg, B. 22. 2636.) Decamine cobaltisulphurous acid. Cobaltic decamine cobaltisulphite, Co 2 (NH 3 ) 10 (S0 3 ) 6 Co 2 + 8H 2 0. Ppt. (Vortmann and Magdeburg, B. 22. 2635.) Sodium decamine cobaltisulphite, Co 2 (NH 3 ) 10 (S0 3 Na) 6 + 2H 2 0. Sol. in H 2 0. (Vortmann and Magdeburg, B. 22. 2635.) Decipium, Dp. Element has not been isolated. Decipium hydroxide. Insol. in caustic alkalies. Decipium oxide, Dp 2 3 . Easily sol. in dilute acids. (Delafontaine, C. R. 93. 63.) Diamide, N 2 H 4 . See Hydrazine. Diamine chromium sulphocyanhydric acid, Cr(NH 3 ) 2 (SCN) 3 , HSCN + H 2 0. Sol. in H 2 0. (Nordenskiold, Z. anorg. 1. 130.) Diamine chromium o^aquo sulphocyanide, Cr(NH 3 ) 2 (SCN) 3 + 2H 2 0. Sol. in H 2 0, from which it is pptd. by cone. HCl + Aq. (Nordenskiold, Z. anorg. 1. 137.) Ammonium diamine chromium sulphocyanide, Cr(NH 3 ) 2 (SCN) 3 , NH 4 SCN. (Eeinecke's salt,) Quite easily sol. in H 2 0, less in alcohol, and insol. in benzene. Slowly decomp. by boiling H 2 or dil. acids. (Norden- skiold, Z. anorg. 1. 130.) + H 2 0. Insol. in absolute ether. (Christen- sen, J. pr. (2) 45. 218.) Ammonium diamine chromium sulphocyanide iodide, Cr(NH 3 ) 2 (SCN) 3 , NH 4 SCN, I. Barium , [Cr(NH 3 ) 2 (SCN) 3 ] 2 , Ba(SCN) 2 . Sol. in H 2 and alcohol. (N.) Cadmium , Cd(SCN) 2 , [Cr(NH 3 ) 2 (SCN) 3 ] 2 +H 2 0. Nearly insol. in cold, si. sol. in hot H 2 0. SI. sol. in boiling alcohol. (Christensea, J. pr. (2)45. 371.) Cupric Cu(SCN) 2 , (Reinecke, A. [Cr(NH 3 ) 2 (SCN) 3 ] 2 . Insol. 126. 116.) Ferric - , [Cr(NH 3 ) 2 (SCN) 3 ] 3 , Fe(SCN) 3 . (N.) Luteocobaltic , Co(NH 3 ) 6 (SCN) 3 [Cr(NH 3 ) 2 (SCN) 3 ] :5 . As good as insol. in cold H 2 0. SI. sol. in hot H 2 and alcohol. (Christensen, J. pr. (2) 45. 370.) Mercuric , [Cr(NH 3 ) 2 (SCN) 3 ] 2 , Hg(SCN) 2 . Insol. in H 2 0. (N.) Insol. in H 2 and dil. acids. (Reinecke.) Potassium , Cr(NH 3 ) 2 (SCN) 3 , KSCN. Properties as the NH 4 salt. (N. ) Cr(NH 3 ) 2 (SCN) 3 , KSCN, I. As the NH 4 salt. (N.) Sodium , NaSCN, Cr(NH 3 ) 2 (SCN) 3 . Sol. in H 2 0, alcohol, and ether. (Reinecke.) Diamine cobaltic nitrite ammonium nitrite, Co(NH 3 ) 2 (N0 2 ) 3 , NH 4 N0 2 . Sol. in H 2 0. (Erdmann.) nitrite lead nitrite, 2Co(NH 3 ) 2 (N0 2 ) 3 , Pb(N0 2 ) 2 . Sol. in hot H 2 with partial decomp. nitrite mercurous nitrite, 2Co(NH 3 ) 2 (N0 2 ) 3 , Hg 2 (N0 2 ) 2 . Ppt. Not sol. in hot H 2 without decomp. nitrite potassium nitrite, Co(NH 3 ) 2 (N0 2 ) 3 , KN0 2 . Sol. in H 2 0. (Erdmann, J. pr. 97. 385.) nitrite silver nitrite,Co(NH,) 2 (N0 2 ) 3 , AgN0 2 . Ppt. Crystallises out of hot H. 2 0. (Erd- mann. ) nitrite thallium nitrite, Co(NH 3 ) 2 (N0 2 ) 3 , T1N0 2 . Crystallises out of hot H 2 without decomp. Dichrocobaltic carbonate, Co(NH 3 ) 3 (OH)C0 3 + 1JH 2 0. Sol. in H 2 0. (Vortmann, B. 15. 101.) 148 DICHROCOBALTIC CHLORIDE Dichrocobaltic chloride, Co(NH 3 ) 3 Cl 3 + H 2 0. Quite sol. in cold H.,0, dil. acids, cone. H 2 S0 4 , or dil. alcohol. From solution in cone. H 2 S0 4 , the salt is precipitated by much HC1 + Aq. Composition is Co(NH 3 ) 3 (OH 2 )Cl 3 . (Jorgensen, Z. anorg. 5. 189.) -nitrate, Co(NH 3 ) 3 (N0 3 ) 3 + 4H 2 0. Deliquescent. Sol. in H 2 0. More sol. in dil. HN0 3 + Aq than praseocobaltic nitrate. (Vortmann, B. 15. 1897.) Anhydrous. Insol. in H 2 as such, but converted into above salt thereby. (Jorgen- sen, Z. anorg. 5. 186.) - . nitrite, Co(NH 3 ) 3 (N0 2 ) 3 . Difficultly sol. in cold, but rather easily sol. in hot H 2 0. - sulphate, [Co(NH 3 ) 3 ] 2 (S0 4 ) 3 + 6H 2 0. Easily sol. in H 0. (Vortmann, B. 15. 1900.) - sulphite, [Co(NH 3 ) 3 ] 2 (S0 3 ) 3 + H 2 0. Nearly insol. in cold, slowly decomp. by hot H 2 0. Decomp. by acids or KOH + Aq. Insol. in cold, sol. in warm NH 4 OH + Aq. (Kiinzel, J. pr. (1) 72. 209.) According to Geuther (A. 128. 157), is a double salt [Co(NH 3 ) 3 ] 2 (S0 3 ) 3 , Co 2 (S0 3 ) 3 + 2H 2 0. Didymium, Di. Slowly decomp. by H 2 0. Insol. in cold cone. H 2 S0 4 . Sol. in dil. acids. Compound of two elements, neodidymium and praseodidymium. (v. Welsbach, W. A. B. 92. 317.) Didymium bromide, DiBr 3 + 6H 2 0. Very deliquescent, and sol. in H 2 0. (Cleve. ) Didymium nickel bromide, 2DiBr 3 , 3NiBr 2 + 18H 2 0. Deliquescent. Very sol. in H 2 0. (Frerichs and Smith, A. 191. 342.) Didymium zinc bromide, DiBr 3 , 3ZnBr 2 + 12H 2 0. Extremely deliquescent. (Cleve, Bull. Soc. (2) 43. 361.) 2DiBr 3 , 3ZnBr 2 + 36H 2 0. (F. and S.) Didymium chloride, DiCl 3 . Anhydrous. Deliquescent. Sol. in H 2 and alcohol. (Marignac. ) + 6H 2 0. Deliquescent. Easily sol. in H 2 and alcohol. (Marignac. ) Didymium mercuric chloride, 2DiCl 3 , 9HgCl 2 -i- 24H 2 0. More sol. in H 2 than the corresponding La salt. (Marignac. ) DiCl 3 , 4HgCl 2 + llH 2 0. Not deliquescent. Easily sol. in H 2 0. Didymium stannic chloride. See Chlorostannate, didymium. Didymium fluoride, DiF 3 + JH 2 0. Precipitate. (Cleve.) Didymium hydrogen fluoride, 2DiF 3 , 3HF. Precipitate. (Smith.) Does not exist. (Cleve.) Didymium potassium fluoride, DiF 3 , KF + H 2 0. Sol. in H 2 0. (Brauner, B. 15. 114.) + JH 2 0. As above. (B. ) 2DiF 3 , 3KF + H 2 0. As above. (B.) Didymium hydroxide, Di 2 6 H 6 . Insol. in KOH, or NaOH + Aq, but is si. sol. inNH 4 Cl + Aq. (Rose.) See also Di 2 3 . Didymium 3H 2 0. Precipitate. (Brauner, B. 15. 113.) Didymium zinc iodide, 2DiI 3 , 3ZnI 2 + 24H 2 0. Very deliquescent. (Frerichs and Smith.) Didymium oxide, Di 2 3 . With H 2 slowly forms Di 2 6 H 6 . Sol. in cone., or dil. mineral acids (Marignac), and in acetic acid (Hermann). Sol. in am- monium salts + Aq. Slightly more slowly sol. in cone. NH 4 N0 3 + Aq than La 2 3 . (Damour and Deville. ) A solution of NH 4 N0 3 in H 2 that can dis- solve 2 '9 mols. La 2 3 dissolves 1 mol. Di 2 3 . (Brauner, B. 15. 114.) Didymium peroxide, Di 4 9 . Sol. in acids with decomp. (Frerichs, B. 7. 799.) Not obtained by Cleve. (B. 11. 910.) The contradictory statements concerning the composition of Di peroxide are owing to the fact that praseodidymium is the only one of the constituents of Di which easily forms a peroxide, (v. Welsbach.) Didymium ^ew^oxide, Di 2 5 . Sol. in dil. HN0 3 , or H 2 S0 4 + Aq in the cold without evolution of gas, but gas is evolved if treated with cone, acids. Insol. in HF + Aq. SI. sol. in cold NH 4 N0 3 + Aq. NH 4 NO ;? + Aq that can dissolve 10 mols. Di 2 3 and 29 mols. La 2 3 dissolves only 1 mol. Di 2 6 5 . (Brauner, B. 15. 111.) = Di 4 9 . (Cleve.) Didymium oxybromide, DiOBr. (Frerichs and Smith.) Didymium oxychloride, DiOCl. Anhydrous. Insol. in H 2 0. (Smith.) + 3H 2 0. Sol. in cold dil. HN0 3 + Aq. (Marignac. ) SI. sol. in HC1 + Aq. (Hermann. ) Didymium oxysulphide, Di 2 2 S. Insol. in H 2 0. Sol. in HCl + Aq without residue. (Marignac.) Didymium sulphide, Di 2 S 3 . Insol. in H 2 0. Decomp. by dil. acids. (Marignac, A. ch. (3) 38. 159.) Disulphuric acid, H 2 S 2 7 . See Disulphuric acid. DITHIONATE, CUPRIC, BASIC 149 Dithionic acid (Hyposulphuric acid), H 2 S 2 6 - Known only in aqueous solution, which is stable only when dil. Can be evaporated in vacuo until sp. gr. = 1 '347, but decomp. upon further evaporation. (Welter and Gay-Lussac, A. ch. 10. 312.) Dithionates. All dithionates are sol. in H 2 0. Aluminum dithionate, A1 2 (S 2 6 ) 3 + 18H 2 O. Extremely deliquescent. Easily sol. in H 2 or absolute alcohol. (Kliiss^A. 246. 218.) Aluminum ammonium dithionate, Al 9 (S 9 O fi )o. (NH 4 ) 2 S 2 6 + 27H 2 0. SI. deliquescent. Sol. in H 0. (Kliiss, A. 246. 303.) Ammonium dithionate, (NH 4 ) 2 S 2 6 . Very sol. in H 2 0. Sol. in 079 pt. H 2 at 16, with reduction of temp. Not decomp. on boiling. Insol. in absolute alcohol. (Heeren, Pogg. 7. 172.) Contains ^H 2 0. Sol. in 0'56 pt. H 2 at 19. (Kliiss, A. 246. 194.) Ammonium cadmium dithionate, 2(NH 4 ) 2 S 2 O fi , Sol. in H 2 0. (Kliiss, A. 246. 298.) Ammonium cobalt dithionate, 9(NH 4 ) 2 S 2 6 , 2CoS 2 6 +16^H 2 0. Sol. inH 2 0. (Kliiss.) Ammonium cupric dithionate, (NH 4 ) 2 S 2 6 , 2CuS 2 6 + 8H 2 0. Sol. in H 2 0. Ammonium ferrous dithionate, 3(NH 4 ) 2 S 2 O fi , Fe 2 S 2 6 + 6H 2 0. Sol. in H 2 0. (Kliiss, A. 246. 300.) 9(NH 4 ) 2 S 2 6 , 2Fe 9 S 2 6 + 16iH 2 0. Sol. in H 2 0. (Kliiss.) Ammonium manganous dithionate, 9(NH 4 ) 2 S 2 6 , 2MnS 2 6 . Sol. in H 2 0. (Kliiss, A. 246. 301.) Ammonium nickel dithionate, 9(NH 4 ) 2 S 2 6 , Sol. in H 2 0. (Kliiss.) Ammonium zinc dithionate, 5(NH 4 ) 2 S 2 6 , ZnS 2 6 + 9H 2 0. Easily sol. in H 2 0. (Kliiss, A. 246. 296. ) 9(NH 4 ) 2 S 2 6 , 2ZnS 2 6 + 16iH 2 0. Easily sol. in H 2 0. (Kliiss.) Ammonium dithionate chloride, (NH 4 ) 2 S 2 6 , NH 4 C1. Sol. in H 2 0. (Fock and Kliiss, B. 24. 3017.) Barium dithionate, BaS 2 6 + 2H 2 0. Not efflorescent. Sol. in 7 '17 pts. H 2 at 8, 4-04 pts. at 18, and I'l pts. H 2 at 100. Insol. in alcohol. (Gay-Lussac, Heeren. ) Sol. in 0-994 pt. H 2 at 102, the boiling- point of the sat. solution. (Baker, Bull. Soc. (2) 44. 166.) + 4H 2 0. Very efflorescent. (Heeren.) Barium magnesium dithionate, BaMg(S 2 6 ) 2 + Sol. in H 2 0. (Schiff, A. 118. 97.) Barium rubidium dithionate, BaRb 4 (S 2 6 ) 3 + H 2 0. Sol. in H 2 0. Solubility is diminished by presence of excess of Rb S0 4 , but increased by BaS 2 6 . (Bodlander, Chem. Ztg. 14. 1140.) Barium sodium dithionate, BaNa 4 (S 2 6 ) 2 + 4H 2 0. Sol. in H 2 0. Decomp. by recrystalMsation. (Kraut, A. 118. 95.) + 6H 2 0. (Schiff.) Barium dithionate chloride, BaS 2 6 , BaCl 2 + 4H 2 0. (Fock and Kliiss, B. 23. 3001.) Bismuth dithionate, basic, Bi 2 3 , S 2 5 + 5H 2 0. Efflorescent. Insol. in H 2 0, but decomp. thereby into the following salt. Easily sol. in dil. acids, especially HCl + Aq. (Kliiss, A. 246. 183.) 4Bi 2 3 , 3S 2 5 + 5H 2 0. Insol. in H 2 0. Sol. in dil. acids. (Kliiss. ) Cadmium dithionate. Deliquescent in moist air ; very sol. in H 2 0. (Heeren, Pogg. 7. 183.) Cadmium dithionate ammonia, CdS 2 6 , 4NH 3 . Decomp. by alcohol ; sol. in NH 4 OH + Aq, but decomp. on heating. (Rammelsberg, Pogg. 58. 298.) Calcium dithionate, CaS 2 6 + 4H 2 0. Sol. in 2-46 pts. H 2 at 19 ; 0'8 pt. at 100. Insol. in alcohol. (Heeren, Pogg. 7. 178.) Cerous dithionate, Ce 2 (S 2 6 ) 3 + 24H 2 0. Very sol. in H 2 0. (Jolin.) + 3, and 5H 2 0. (Wyrouboff. ) Chromic dithionate, Cr 2 (S 2 6 ) 3 + 18H 2 0. Sol. in H 2 and alcohol. (Kliiss, A. 246. 189.) 3Cr 2 3 , 4S 2 5 + 24H 2 0. Easily sol. in H 2 or alcohol. Insol. in ether. (Kliiss.) Cobaltous dithionate, CoS 2 6 + 6H 2 0. Not deliquescent. Very sol. in H 2 0. (Heeren.) + 8H 2 0. Sol. in 0'49 pt. H 2 at 19. Sol. in absolute alcohol. (Kliiss, A. 246. 203.) Cupric dithionate, CuS 2 6 + 4H 2 0. Not efflorescent. Very sol. in H 2 0. Insol. in alcohol. (Heeren.) + 5H 2 0. Efflorescent. Sol. in 0'64 pt. H 2 at 18'5. (Kliiss, A. 246. 204.) Cupric dithionate, basic, 4CuO, S 2 5 + 4H 2 0. Very si. sol. in H 2 0. (Heeren, Pogg. 7. 181.) Insol. in H 2 : easily sol. in dil. acids. (Kliiss, A. 246. 208.) + 3H 2 0. Insol. in H 2 and in NaC 2 H 3 2 + Aq ; sol. in traces in cone. CuS 2 6 + Aq. Easily sol. in dil. acids, evenHC 2 H 3 2 , orH 2 S 2 6 + Aq. (Kliiss.) 150 DITHIONATE AMMONIA, CUPRIC Cupric dithionate ammonia, CuS 2 6 , 4NH 3 . Difficultly sol. in cold H 2 0, moderately sol. in H 2 at 40. Decomp. by much H 2 or by heating the solution above 60. Decomp. by HCl + Aq. (Heeren.) Didymium dithionate, Di 2 (S 2 6 ) 3 + 24H 2 0. Extremely sol. in H 2 0. (Cleve.) Erbium dithionate, Er 2 (S 2 6 ) 3 + 18H 2 0. Very sol. in H 2 or alcohol ; insol. in ether. (Hoglund.) Glucinum dithionate, basic, 5G10, 2S./X + 14H 2 0. Easily sol. in H 2 and absolute alcohol. (Kliiss, A. 246. 196.) Ferrous dithionate, FeS 2 6 + 5H 2 0. Very sol. in H 2 0. Insol. in alcohol. Decomp. in aqueous solution into FeS0 4 by boiling. (Heeren, Pogg. 7. 181.) + 7H 2 0. Sol. in 0'59 pt. H 2 at 18 '5. (Kliiss, A. 246. 198.) Ferric dithionate, basic, 8Fe 2 3 , S 2 5 + 20H 2 0. Insol. in H 2 or alcohol. Very si. sol. in H 2 S 2 6 + M 5 easily sol. in HC1 + Aq. (Heeren.) Contains 14H 2 0. (Kliiss, A. 246. 200.) 3Fe 2 3 , S 2 5 -i-8H 2 0. Insol. in H 2 0. Easily sol. in acids. (Kliiss, A. 246. 201.) Lanthanum dithionate, La 2 (S 2 6 ) 3 + 16H 2 0, and 24H 2 0. Sol. inH 2 0. (Cleve.) Lead dithionate, basic, 2PbO, S 2 5 + 2H 2 0. Very difficultly sol. in H 2 0. (Heeren, Pogg. 7. 171.) lOPbO, S 2 5 + 2H 2 0. SI. sol. in H 2 0. (Heeren.) Lead dithionate, PbS 2 6 + 4H 2 0. Easily sol. in H 2 0. (Heeren.) Sol. in 0-869 pt. H 2 at 20 '5. (Baker, C. N. 36. 203.) Lead strontium dithionate, (Pb,Sr)S 2 6 + 4H 2 0. (Rammelsberg. ) Lithium dithionate, Li 2 S 2 6 + 2H 2 0. SI. deliquescent, and easily sol. in H 2 0. Insol. in alcohol. (Rammelsberg.) Magnesium dithionate, MgS 2 6 + 6H 2 0. Sol. in 0'85 pt. H 2 at 13. Solution can be boiled without decomp. (Heeren, Pogg. 7. 179.) Sol. in 0-692 pt. H 2 at 17. (Baker, C. N. 36. 203.) Manganous dithionate, MnS 2 6 + 3H 2 0. Sol. in H 2 0. (Kraut, A. 118. 98.) + 6H 2 0. Efflorescent. Sol. in H 2 0. (Marig- nac, J. B. 1855. 380.) Mercurous dithionate, Hg 2 S 2 6 . SI. sol. in cold, decomp. by hot H 2 0. (Rammelsberg.) Mercuric dithionate, basic, 5HgO, 2S 2 5 . SI. sol. in cold, decomp. by hot H 2 0. Easily sol. in HN0 3 + Aq. (Rammelsberg, Pogg. 59. 472.) Mercuric dithionate, HgS 2 6 + 6H 2 0. Decomp. by H 2 or on standing. (Kliiss, A. 246. 216.) Nickel dithionate, NiS 2 6 + 6H 2 0. Sol..inH 2 0. (Topsoe.) Sol. in 0-897 pt. H 2 at 12. (Baker, C. N. 36. 203.) Nickel dithionate ammonia, NiS 2 6 , 6NH 3 . Can be recryst. from warm NH 4 OH + Aq. Decomp. by H 2 0. (Rammelsberg, Pogg. 58. 295.) Potassium dithionate, K 2 S 2 6 . Not deliquescent. Sol. in 16 "5 pts. H 2 at 16, and 1'58 pts. at 100. Insol. in alcohol. (Heeren.) Sol. in 2-65 pts. H 2 O at 16. (Dumas.) Sol. in alcohol. (Dumas. ) Rubidium dithionate, Rb 2 S 2 6 . Sol. in H 2 0. (Topsoe and Christiansen.) Silver dithionate, Ag 2 S 2 6 + 2H 2 0. Sol. in 2 pts. H 2 at 16. Sol. in NH 4 OH + Aq. (Heeren, Pogg. 7. 191.) Silver sodium dithionate, Ag 2 S 2 6 , Na 2 S 2 6 + 4H 2 0. Sol. in H 2 0. (Kraut, A. 118. 96.) Silver dithionate ammonia, Ag 2 S 2 6 , 4NH 3 . Sol. in H 2 without decomp. (Rammels- berg, Pogg. 58. 298.) Sodium dithionate, Na 2 S 2 6 + 2H 2 0. Sol. in 2-1 pts. H 2 at 16, and in I'l pts. boiling H 2 0. Insol. in alcohol. Fuming HC1 + Aq precipitates the salt from aqueous solution. (Heeren, Pogg. 7. 76.) + 6H 2 0. (Kraut, A. 117. 97.) Strontium dithionate, SrS 2 6 + 4H 2 0. Sol. in 4-5 pts. H 2 at 16, 1'5 pts. boiling H 2 0. Insol. in alcohol. (Heeren, Pogg. 7. 177.) Thallous dithionate, T1 2 S 2 6 . Very easily sol. in H 2 0. (Werther.) Thallous dithionate sulphate, 3T1 2 S 2 6 , T1 2 S0 4 . Sol. in H 2 0. (Wyrouboff, Ann. Phys. Beibl. 8. 802.) Thorium dithionate, Th(S 2 6 ) 2 + 4H 2 (?). Very unstable. (Kliiss, A. 246. 188.) Stannous dithionate, SnS 2 6 . Known only in solution. 8SnO, S 2 B + 9H 2 O. Insol. in H 2 0. Sol. in dil. acids, even dithionic acid +Aq. (Kliiss, A. 246. 186.) Uranous dithionate, 6U0 2 , S 2 5 + 10H 2 0. Insol. in H 2 ; sol. in warm HCl + Aq. (Kliiss, A. 246. 191.) 7U0 2 , S 2 5 + 8H 2 0. As above. 8U0 2 , S 2 5 + 21H 2 0. As above. Z>ivanadyl dithionate, (V0 2 ) 2 S 2 6 . (Bevan, C. N. 38. 294.) FERRICYANIDE, AMMONIUM LEAD 151 Yttrium dithionate, Not deliquescent. Easily sol. in H 2 0, but difficultly sol. in alcohol. Insol. in ether. (Cleve, Bull. Soc. (2) 21. 344.) Zinc dithionate, ZnS 2 6 + 6H 2 0. Very sol. in H 2 ; decomp. on boiling. (Heeren, Pogg. 7. 183.) Zinc dithionate ammonia, ZnS 2 6 , 4NH 3 . Decomp. with H 2 ; sol. in warm, less sol. in cold NH 4 OH + Aq. (Rammelsberg, Pogg. 68. 297.) Dysprosium, Dy (?). (Lecoq de Boisbaudran, C. R. 102. 1005.) Erbium, Er. Decomposes H 2 0. (Hoglund.) Probably has not been isolated. The so-called element "erbium" can be further decomp. into simple substances. (Kriiss, Z. anorg. 3. 353.) Erbium bromide, ErBr 3 + 9H 2 0. Very deliquescent. Erbium chloride, ErCl 3 + 6H 2 0. Deliquescent. Sol. in H 2 and alcohol. (Hoglund.) Erbium mercuric chloride, ErCl 3 , 5HgCl 2 + Deliquescent. (Cleve. ) Erbium fluoride, ErF 3 . Insol. in H 2 0. Very si. sol. in HF + Aq. (Hoglund, Bull. Soc. (2) 18. 193.) Erbium hydroxide, Er 2 0(OH) 4 . Insol. in KOH, or NaOH + Aq. Easily sol. in acids. Decomp. ammonium salts by boiling therewith. Erbium iodide, ErI 3 . Very deliquescent. Very sol. in H 2 and alcohol. Insol. in ether. (Hoglund.) Erbium oxide, Er 2 3 . Difficultly but completely sol. in warm HN0 3 , H 2 S0 4 , or HCl + Aq. Decomp. NH 4 salts by boiling therewith. Erbium peroxide, Er 2 5 . Precipitate. (Cleve, Bull. Soc. (2) 43. 53.) Erbium sulphide. Decomp. in moist air and with acids. Erythrochromium bromide, HOCr 2 (NH 3 ) 10 Br 5 + H 2 0. Very easily sol. in H 2 0. Insol. in HBr + Aq. Sol. in NH 4 OH + Aq. (Jorgensen, J. pr. (2)25. 398.) bromide, basic, HOCr 2 (NH 3 ) 10 (OH)Br 4 + H 2 0. Very sol. in H 2 0. (Jorgensen. ) - chloroiodide, HOCr 2 (NH 3 ) 10 ClI 4 + H 2 0. Sol. in H 2 and in alcohol. (Jorgensen. ) chloroplatinate, [HOCr 2 (NH 3 ) 10 ] 2 (PtCl 6 ) 5 + 10H 2 0. Nearly insol. in H 2 0. (Jorgensen. ) Erythrochromium dithionate, basic, HOCr 2 (NH 3 ) 10 (S 2 6 ) 2 (OH) + 2 H 2 0. Insol. in H 2 0. Easily sol. in very dil. HN0 3 , HBr, HCl + Aq. Sol. in cone. NH 4 C1 + Aq. (Jorgensen. ) - nitrate, HOCr 2 (NH 3 ) 10 (N0 3 ) 5 + H 2 0. Easily sol. in H 2 0. Insol. in dil. HN0 3 + Aq. Sol. in cone. HN0 3 with decomp. Very sol. in dil. NH 4 OH + Aq. Insol. in alcohol. (Jorgensen. ) - nitrate, basic, HOCr 2 (NH 3 ) 10 (N0 3 ) 4 OH + Sol. in cold H 2 0. (Jorgensen. ) - sulphate, [HOCr 2 (NH 3 ) 10 ] 2 (S0 4 ) 5 . Nearly insol. in H 2 0. (Jorgensen.) ^ZWraferriammonium, Fe 2 N. S'ee Iron nitride. Ferric acid. Barium ferrate, BaFe0 4 + H 2 0. Ppt. Can be boiled for some time with H 2 without decomp. Decomp. by mineral acids. Sol. in dil. acetic acid. (Fremy, A. ch. (3) 12. 373.) Potassium ferrate, K 2 Fe0 4 . Very deliquescent. Easily sol. in cold H 2 with evolution of much heat. Decomp. by standing or warming. Decomp. by acids or alkalies. (Fremy, A. ch. (3) 12. 369.) Quickly decomp. by potassium tartrate or racemate, sugar, or albumen without separa- tion of Fe 2 6 H 6 , by alcohol with separation of Fe 2 6 H 6 . Potassium oxalate, acetate, formate, and benzoate, also citrate decomp. much more slowly. Insol. in cone. KOH + Aq. ( Wacken- roder, A. 33. 41.) Sodium ferrate, Na 2 Fe0 4 . Sol. in H 2 and in cone. NaOH + Aq. (Fremy, I.e.] Ferricyanhydric acid, H 3 Fe(CN) 3 , (or H 6 Fe 2 (CN) 12 ). Easily sol. in H 2 or alcohol. Solution de- composes slowly by standing, more rapidly by heating. Insol. in ether. Ferricyanides. The alkali, and alkaline-earth ferricyanides are sol. in H 2 ; the others are insol. The ferricyanides of metals, the oxides of which are sol. in NH 4 OH, or KOH + Aq, are them- selves sol. in those reagents. Ammonium ferricyanide, (NH 4 ) 3 Fe(CN) 6 + 3H 2 0. Permanent. Readily sol. in H 2 (and alcohol ?). Ammonium ferrous ferricyanide, NH 4 FeFe(CN) 6 + lirH 2 0. Sol. in H 2 and not pptd. by alcohol from aqueous solution. More stable than the corre- sponding K salt. Ammonium lead ferricyanide, NH 4 PbFe(CN) 6 + 3H 2 0. 152 FERRICYANIDE, AMMONIUM POTASSIUM Ammonium potassium ferricyanide, (NH 4 ) 2 KFe(CN) 6 . Sol. in H 2 0. (Schaller, Bull. Soc. (2) 1. 275.) Barium ferricyanide, Ba 3 [Fe(CN) 6 ] 2 + 20H 2 0. Easily sol. in H 2 ; insol. in alcohol. (Schuler, W. A. B. 77. 692.) Barium potassium ferricyanide, BaKFe(CN) 6 + 3H 2 0. Permanent. Easily sol. in H 2 0, less in alcohol. Barium ferricyanide, Ba 3 [Fe(CN) 6 ] 2 , 2BaBr 2 + 20H 2 0. Easily sol. in H 2 0. Boiling alcohol does not dissolve out BaBr 2 . (Rammelsberg, J. pr. (2) 39. 463.) Bismuth ferricyanide, Bi 3 [Fe(CN) 6 ] 5 . Insol. in H 2 0, but decomp. by boiling there- with. (Muir, Chem. Soc. 32. 40.) Cadmium ferricyanide ammonia, Cd 3 [Fe(CN) 6 ] 2 , 6NH 3 + 3H 2 0. Effloresces to form Cd.,[Fe(CN) 6 ] 2 , 4NH 3 + 2H 2 0. Insol. in H 2 0. (Wyrouboff, A. ch. (5) 10. 413.) Calcium ferricyanide, Ca 3 [Fe(CN) 6 ] 2 + 10, or 12H 2 0. Deliquescent. Sol. in H 2 and dil. alcohol. Calcium potassium ferricyanide, CaKFe(CN) 6 . Sol. in H 2 0. Cerous ferricyanide, CeFe(CN") 6 +4H 2 0. Sol. in H 2 ; easily decomp. (Jolin.) Chromic ferricyanide (?). Ppt. Cobaltous ferricyanide, Co 3 [Fe(CN) 6 ] 2 . Insol. in H 2 and HCl + Aq. Sol. in NH 4 OH + Aq. Cobaltous ferricyanide ammonia, Co 3 [Fe(CN) 6 ] 2 , 4NH 3 + 6H 2 0. Cobaltic ferricyanide ammonia. See Luteo-, purpureo-, etc. cobaltic ferri- cyanide. Cuprous ferricyanide, (Cu 2 ) 3 [Fe(CN) 6 ] 2 . Sol. in NH 4 OH + Aq ; insol. in NH 4 salts -f Aq. ( Wittstein. ) Cupric ferricyanide, Cu 3 [Fe(CN) 6 ] 2 . Insol. in H 2 or NH 4 salts + Aq. Sol. in NH 4 OH, and (NH 4 ) 2 C0 3 + Aq. (Wittstein.) Insol. in HC1 + Aq. Ferrous ferricyanide, Fe 3 [Fe(CN) 6 ] 2 + zH 2 0. ( TurnlulVs blue. ) Properties as ferric ferro- cyanide (Prussian blue), with which it is perhaps identical. (Gintl, Z. anal. 21. 110.) Ferrosoferric ferricyanide, Fe 13 (CN) 36 = Fe I 4 "Fe I 3 I [Fe(CN) 6 ] 6 . (Prussian green.) Insol. in H 2 or cone. HC1 + Aq, but slowly decomp. by boiling there- Fe 3 (CN) 8 + 4H 2 - Fe I 3 I FeT[ 12H 2 0. Properties as above. (Reynolds, Chem. Soc. 54. 767.) Ferrous potassium ferricyanide, KFe 2 (CN) 6 = KFeFe(CN) 6 + 4 or 3H 2 0. (Soluble Prussian blue.) Sol. in H 2 0, but insol. in salts + Aq or alcohol. Salt of the same composition, called "Wil- liamson's blue," is insol. in H 2 0. Lead ferricyanide, basic, Pb 3 [Fe(CN) 6 ] 2 , 3Pb0 2 H 2 + llH 2 0. (Schuler.) Lead ferricyanide, Pb 3 [Fe(CN) 6 ] 2 + 16H 2 0. SI. sol. in H 2 ; more sol. in hot, than cold H 2 0, but decomp. on boiling. (Gmelin.) + 4H 2 0. Easily sol. in H 2 ; si. sol. in alcohol. (Schuler, W. A. B. 77. 692.) Lead potassium ferricyanide, PbKFe(CN) 6 + 3H 2 0. Sol. in 475 pts. H 2 at 16, and the solution decomp. on standing. (Schuler.) + 1|H 2 0. Efflorescent. Much more sol. in H 2 than the Pb salt. Insol. in alcohol. (Wyrouboff.) Lead ferricyanide nitrate, Pb 3 [Fe(ClSr) 6 ] 2 , Pb(N0 3 ) 2 + 12H 2 0. Sol. in 13-31 pts. H 2 at 16. (Schuler.) + 11H 2 0. (Joannis, A. ch. (5) 26. 528.) Magnesium ferricyanide, Mg 3 [Fe(CN) 6 ] 2 . Sol. in H 2 0. Magnesium potassium ferricyanide, MgKFe(CN) 6 . (Reindel, J. pr. 103. 166.) Manganous ferricyanide, Mn s [Fe(CN),.] 2 . Insol. in H 2 0, acids, NH 4 OH, or NH 4 salts + Aq. Nickel ferricyanide ammonia, Ni 3 [Fe(CN) 6 ] 2 , 4NH 3 + H 2 0. Sol. in NH 4 OH + Aq. (Reynoso, A. ch. (3) 30. 254.) Nickel ferricyanide, Ni 3 [Fe(CN) 6 ] 2 (?). Ppt. Insol. in HCl + Aq. Potassium ferricyanide, K 3 Fe(CN) 6 , (or K 6 Fe 2 (CN) 12 ). Permanent. Easily sol. in H 2 0. 100 pts. H 2 dissolve pts. K 3 Fe(CN) 6 at t. t Pts. salt t Pts. salt t Pts. salt 4'4 33-0 15'6 40'8 100 77-5 10 36'6 37-8 58-8 104-4 82-6 (Wallace, Chem. Soc. 7. 80.) 100 pts. H 2 at 13 dissolve 38 pts., and the solution has sp. gr. =1*1630. (Schiff, A. 113. 350.) FERROCYANIDE, BISMUTH 153 Sp. gr. of K 3 Fe(CN) 6 + Aq at 13. Jh Sp. gr. Sp.gr. Jit Sp.gr. 1 1-0051 11 1-0595 21 1-1202 2 1-0103 12 1-0653 22 | 1-1266 3 1-0155 13 1-0712 23 1-1331 4 1-0208 14 1-0771 24 1-1396 5 1-0261 15 1-0831 25 1-1462 6 1-0315 16 1-0891 26 1-1529 7 1-0370 17 1-0952 27 1-1596 8 1 -0426 18 1-1014 28 1-1664 9 1-0482 19 1-1076 29 1-1732 10 1-0538 20 1-1039 30 1-1802 (Schiff.) Sat. K 3 Fe(CN) 6 + Aq boils at 104 '4. (Wal- lace. ) Insol. in absolute alcohol, and only si. sol. in dil. alcohol. Potassium sodium ferricyanide, KNa 2 Fe(CN) 6 . Sol. in H 2 0. K 2 NaFe(CN) 6 . Sol. in H 2 0. K 3 Na 3 [Fe(CN) 6 ] 2 . Sol. in H 2 0. + 3H 2 0. Potassium ferricyanide iodide, K 3 Fe(CN) 6 , KI. Very unstable. Silver ferricyanide, Ag 3 Fe(CN) 6 . Sol. in NH 4 OH, and hot (NH 4 ) 2 C0 3 + Aq, but insol. in NH 4 salts + Aq. Insol. in Hg(N0 3 ) 2 + Aq. (Wackenroder, A. 41. 317.) Silver ferricyanide ammonia, 2Ag 3 Fe(CN) 6 , Insol. in H 2 0. Sol. in NH 4 OH + Aq. (Gintl.) Sodium ferricyanide, Na 3 Fe(CN) 6 + H 2 0. Deliquescent. Sol. in 5 "3 pts. cold, and 1"5 pts. boiling H 2 0. Insol. in alcohol, but not pptd. thereby from aqueous solution. (Bette.) Ferrinitrososulphydric acid. See Ferro/^tanitrososulphydric acid. Ferrocyanhydric acid, H 4 Fe(CN) 6 . Sol. in H 2 and alcohol. 100 pts. H 2 dissolve 15 pts. acid at 14. (Joannis, A. ch. (5) 26. 514.) Insol. in ether, and much less sol. in ether- alcohol than in alcohol. Insol. in cone. HCl + Aq. Ferrocyanides. The ferrocyanides of the alkali and alkaline- earth metals are sol. in H 2 ; the others are insol., but sol. in alkalies + Aq in case the base is sol. therein. Aluminum ferrocyanide, Al 4 [Fe(CN) 6 ] 3 + 17H 2 0. SI. sol. in H 2 0. SI. sol. in HCl + Aq with partial decomp. (Wyrouboff, A. ch. (5) 8. 446.) Ammonium ferrocyanide, (NH 4 ) 4 Fe(CN) 6 + 3H 2 0. Very sol. in H 2 ; insol. in alcohol. + H 2 0. (Berzelius.) Ammonium cadmium ferrocyanide ammonia, (NH 4 ) 2 Cd 3 [Fe(CN) 6 ] 2 , 2NH 3 + H 2 0. Sol. in H 2 0. (Wyrouboff, A. ch. (5) 10. 413.) Ammonium calcium ferrocyanide, (NH 4 ) 2 CaFe(CN) 6 . SI. sol. in H 2 0. (Kunheim and Zimmer- man, Dingl. 252. 478.) Ammonium cupric ferrocyanide, (NH 4 ) 2 CuFe(CN) 6 . Ppt. Ammonium lithium ferrocyanide, (NH 4 ) 2 Li 2 Fe(CN) 6 + 3H 2 0. Sol. in H 2 0. (Wyrouboff, A. ch. (4) 21. 270.) Ammonium manganous ferrocyanide, NH 4 MnFe(CN) 6 . Ppt. (Blum, Z. anal. 30. 284.) Ammonium potassium ferrocyanide, NH 4 K 3 Fe(CN) 6 + 3H 2 0. Easily sol. in cold, more easily in hot H 2 0. Insol. in alcohol. (NH 4 ) 2 K 2 Fe(CN) 6 + 3H 2 0. Sol. in H 2 0. (NH 4 ) 3 KFe(CN) 6 , 2NH 4 C1. Sol. in H 2 0. (Etard, J. pr. (2) 31. 430.) Ammonium ferrocyanide bromide, (NH 4 ) 4 Fe(CN) 6 , 2NH 4 Br. Permanent. Very sol. in H 2 0. Ammonium ferrocyanide chloride, (NH 4 ) 4 Fe(CN) 6 , 2NH 4 C1 + 3H 2 0. Permanent. Very sol. in H 2 0, but less so thanNH 4 Cl. (Bunsen.) Antimony ferrocyanide, Sb 4 [Fe(CN) 6 ] 3 + 25H 2 0. Ppt. (Atterberg.) Barium ferrocyanide, Ba 2 Fe(CN) 6 + 6H 2 0. Permanent. SI. sol. in H 2 0. Sol. in 584 pts. cold, and 116 pts. boiling H 2 (Duflos, 1832) ; sol. in 1800 pts. cold H 2 (Porrett, 1814) ; sol. in 1920 pts. cold, and about 100 pts. boiling H 2 (Thomson) ; sol. in 2000 pts. cold, and 100 pts. boiling H 2 0. (lire's Diet.) Sol. in 1000 pts. H 2 at 15, and 100 pts. at 75. (Wyrouboff, A. ch. (4) 16. 292.) Sol. in HN0 3 , HC1, or cone. H 2 S0 4 + Aq. Barium potassium ferrocyanide, BaK 2 Fe(CN) 6 + 3H 2 0. Sol. in 38 pts. cold, and 9 '5 pts. boiling H 2 (Duflos, 1832); in 36 '4 pts. H 2 at 14 U , and 11-9 pts. at b.-pt. (Mosander.) Not more sol. in NH 4 Cl + Aq than in H 2 0. Sol. in dil., insol. in cone. HCl + Aq. (Rose.) + 5H 2 0. Sol. in 300 pts. H 2 at ord. temp. (Wyrouboff.) Bismuth ferrocyanide, Bi 2 Fe(CN) 6 + 5H 2 (?). SI. sol. in pure H 2 0. (Wyrouboff.) 154 FERROCYANIDE, BISMUTH POTASSIUM Bi 4 [Fe(CN) 6 ] 5 . Ppt. (Muir, Chem. Soc. 31. 657.) Bismuth potassium ferrocyanide, BiKFe(CN) 6 + 7H 2 0, or 4H 2 0. Ppt. Cadmium potassium ferrocyanide, CdK 2 Fe(CN) 6 + H 2 0. Insol. in H 2 0. Formula given by Wyrouboff is Cd 5 K 6 [Fe(CN) 6 ] 4 + llH 2 0(?). Calcium ferrocyanide, Ca 2 Fe(CN) 6 + 12H 2 0. Very sol. in H 2 0. Sol. in 0'66 pt. H 2 at 90 and not pptd. by cooling, and is apparently less sol. in warm than cold H 2 0. (Wyrouboff, A. ch. (4) 16. 280.) Calcium potassium ferrocyanide,CaK 2 Fe(CN) 6 . SI. sol. in H 2 0. (Kunheim and Zimmerman, Dingl. 252. 478.) + 3H 2 0. Sol. in 795 pts. H 2 at 15, and 145 pts. at b.-pt., with decomp. in the latter case. Sol." in dil., insol. in cone. HCl + Aq. Sol. in HN0 3 of 1 -2 sp. gr. (Mosander. ) Insol. inNH 4 Cl + Aq. Calcium sodium ferrocyanide, CaNa 6 [Fe(CN) 6 ] 2 . Sol. in H 2 0. Calcium strontium ferrocyanide, CaSrFe(CN) 6 +10H 2 0. Efflorescent. Sol. in about 3 pts. H 2 0. (Wyrouboff, A. ch. (4) 21. 278.) Cerium ferrocyanide, Ce 4 [Fe(CN) 6 ] 3 + 30H 2 0. Ppt. (Wyrouboff.) Cerium potassium ferrocyanide, CeKFe(CN) 6 + 3H 2 0. Ppt. (Jolin.) + 4H 2 0. (Wyrouboff.) Chromic ferrocyanide, Cr 2 [Fe(CN) 6 ]. ? + 20H 2 0. Ppt. Cobaltous ferrocyanide, Co 2 Fe(CN) 6 + 7H 2 0. Wholly insol. in H 2 0. Sol. in H 2 S0 4 with decomp. Insol. in HCl + Aq. SI. sol. in NH 4 OH + Aq. Sol. in (NHAjCOg + Aq. Insol. in NH 4 Cl + Aq. Sol. inKCN + Aq. Cobaltous ferrocyanide ammonia, Co 2 Fe(CN) 6 , 8NH 3 + 10H 2 0. Ppt. Decomp. on standing. (Curda, Z. Ch. 1869. 369.) Co 2 Fe(CN) 6 , 12NH 3 + 9H 2 0. As above. Cobaltous potassium ferrocyanide, CoK 2 Fe(CN) 6 . Ppt. (Wyrouboff.) Co 5 K 6 [Fe(CN) 6 ] 4 (?). Ppt. Insol. only in presence of an excess of K 4 Fe(CN) 6 . (Wyrou- boff.) Columbium potassium ferrocyanide, Cb 16 K[Fe(CN) 6 ] 2 + 67H 2 0(?). Sol. in H 2 0. (Wyrouboff.) Cb 12 K 2 Fe(CN) 6 + 39H 2 (?). Sol. in H 2 0. (CbO) 5 K 9 [Fe(CN) 6 ] 6 + 10H 2 0(?). Ppt. (Atter- berg.) Cuprous ferrocyanide, Cu 4 Fe(CN) 6 . Insol. in H 2 ; sol. in NH 4 OH + Aq ; insol. inNH 4 Cl + Aq. Cupric ferrocyanide, basic, CuFe(OH) 4 (CN) 4 . Ppt. (Bong, Bull. Soc. 23. 231.) Cupric ferrocyanide, Cu 2 Fe(CN) 6 + 7H 2 0. Insol. in H 2 or acids. Insol. in NH 4 salts +Aq. Sol. in NH 4 OH + Aq. Sol. in (NH 4 ) 2 C 2 4 + Aq and in KCN + Aq. + 10H 2 0. Sol. in excess of K 4 Fe(CN) 6 + Aq, especially if hot. (Wyrouboff. ) Cupric ferrocyanide ammonia (cupram- monium ferrocyanide), Cu 2 Fe(CN) 6 , 4NH 3 + H 2 0. Insol. in H 2 or alcohol. Sol. in NH 4 OH + Aq. (Bunsen.) Cu 2 Fe(CN) 6 , 8NH 3 + H 2 0. Cuprous potassium ferrocyanide, K 2 Cu 2 Fe(CN) 6 + HH 2 0. Insol. in H 2 0, alcohol, or ether. Decomp. by acids. Sol. in KCN + Aq. K 3 Cu 2 Fe(CN) 6 + 4H 2 0. + 5H 2 0. (Wonfor.) + 6H 2 0. (Wyrouboff.) Cupric potassium ferrocyanide,K CuFe(CN) fi + H 2 0. Insol. in cold, si. decomp. by boiling H 2 0. K 2 Cu 3 [Fe(CN) 6 ] 2 + 12H 2 0. Ppt. Cuprous sodium ferrocyanide, Cu 2 Na 2 Fe(CN) 6 . Ppt. Cupric sodium ferrocyanide, CuNa 2 Fe(CN) 6 . Ppt. Didymium potassium ferrocyanide, DiKFe(CN) 6 + 4 Ppt. (Cleve.) + 2H 2 0. (Wyrouboff.) Erbium potassium ferrocyanide, ErKFe(CN) 6 + xH 2 0. (Hoglund.) Gallium ferrocyanide. Sol. in boiling HC1 + Aq. (de Boisbaudran, C. R. 99. 526.) Glucinum ferrocyanide, Gl 2 Fe(CN) 6 , 4G10 2 H 2 + 7H 2 (?). Sol. inH 2 0. (Atterberg.) Ferric ferrocyanide, Fe 7 (CN) 18 = Fe 4 [Fe(CN) 6 ]., (Prussian blue.) Insol. in H 2 0, alcohol, ether, or oils. Decomp. slowly by boiling H 2 0. Insol. in dil. mineral acids. Sol. in cone. HCl + Aq, and cone. H 2 S0 4 without de- comp. Sol. in H 2 C 2 4 or NH 4 tartrate + Aq. Insol. in NH 4 OH + Aq. Decomp. by NaOH, or KOH + Aq. Not pptd. in presence of tar- trates or citrates. FERROCYANIDE NITRATE, POTASSIUM SODIUM 155 Ferrous potassium ferrocyanide, FeK 2 Fe(CN) 6 . Insol. in H 2 0. Decomp. on air. Ferric potassium ferrocyanide, FeKFe(CN) 6 . Is probably ferrous potassium ferricyanide, which see. Ferric ferrocyanide ammonia, Fe 4 [Fe(CN) 6 ] 3 , 6NH 3 + 9H 2 0. Insol. in NH 4 tartrate + Aq. Lanthanum potassium ferrocyanide, LaKFe(CN) 6 + 4H 2 0. Ppt. Lead ferrocyanide, Pb 2 Fe(CN) 6 + 3H 2 0. Insol. in H 2 0, acids, or NH 4 OH + Aq. (Wyrouboff, A. ch. (5) 8. 480.) SI. sol. in cone. H 2 S0 4 , from which it is pptd. by H 2 0. (Berzelius. ) Sol. in hot NH 4 C1, or NH 4 succinate + Aq ; insol. in other NH 4 salts + Aq. ( Wittstein. ) Insol. in NH 4 C1 + Aq. (Brett. ) Not pptd. in presence of Na citrate. (Spiller.) Lithium ferrocyanide, Li 4 Fe(CN) 6 + 9H 2 0. Deliquescent. Very sol. in H 2 0. Lithium potassium ferrocyanide, Li 2 K 2 Fe(CN) 6 + 3H 2 0. Very sol. in H 2 0. Sol. in 1 '5 pts. H 2 at ord. temp. (Wyrouboff, A. ch. (4) 21. 274.) Magnesium ferrocyanide, Mg 2 Fe(CN) 6 + 6H 2 0. Sol. in 3 pts. cold H>0. (Bette, A. 22. 148.) Magnesium potassium ferrocyanide, MgK 2 Fe(CN) 6 (?). Sol. in 1575 pts. H 2 at 15, and 238 pts. at 100. Solution is decomp. by boiling. (Storer's Diet. ) Manganous ferrocyanide, Mn 2 Fe(CN) 6 + 7H 2 0. Insol. in H 2 0. Sol. in HCl + Aq. Insol. in NH 4 C1, orNH 4 N0 3 + Aq. Manganous potassium ferrocyanide, MnK 2 Fe(CN) 6 . Ppt. (Berzelius. ) 5Mn 2 Fe(CN) 6 , 4K 4 Fe(CN) 6 + 4H 2 (?). Ppt. Sol. in dil. HCl + Aq. (WyroubofF.) Molybdenum ferrocyanide, Mo 4 Fe(CN) 6 + 20H 2 (?). Very sol. in NH 4 OH + Aq. (WyroubofF. ) Mo 2 Fe(CN) 6 + 8H 2 ( ?). ( W. ) + 14 H 2 (?). Very sol. in H 2 ; insol. in alcohol. (W.) Molybdenum potassium ferrocyanide, K 4 Mo 8 [Fe(CN) 6 ] 2 + 40H 2 0(?). (Wyrouboff.) K 2 (Mo0 2 ) 3 [Fe(CN) 6 ] 2 , 2Mo0 3 + 20H 2 (?). (Atterberg.) K 6 Mo 2 [Fe(CN) 6 ] 2 , 2Mo0 3 + 12H 2 (?). (Atter- berg.) Nickel ferrocyanide, Ni 2 Fe(CN) 6 +llH 2 0, or 14H 2 0. Ppt. Insol. in H 2 or HCl + Aq. Sol. in NH 4 OH + Aq ; insol. in NH 4 salts + Aq. Sol. in KCN + Aq. Nickel ferrocyanide ammonia, Ni 2 Fe(CN) fi , 4NH 3 + H 2 0. Completely insol. in H 2 and not attacked thereby ; sol. in NH 4 OH + Aq to form Ni 2 Fe(CN) 6 , 10NH 3 + 4H 2 0. Decomp. by hot H 2 0. (Reynoso, A. ch. (3) 30. 252.) Ni 2 Fe(CN) 6 , 2NH 3 + 4, and 9H 2 0. Hygro- scopic. Easily decomp. (Gintl, J. B. 1868. 304.) Ni 2 Fe(CN) 6 , 8NH 3 + 4H 2 0. Sol. in NH 4 OH + Aq. (G.) Ni 2 Fe(CN) 6 , 12NH 3 + 9H 2 0. Sol. in NH 4 OH + Aq, but less so than the above compounds. (G.) Nickel potassium ferrocyanide, NiKjFetCN)^ 3H 2 0. Ppt. (Wyrouboff.) Osmium ferrocyanide, Os 2 Fe(CN) 6 . Ppt. (Martius, A. 117. 368.) Potassium ferrocyanide, K 4 Fe(CN) 6 + 3H 2 0. Permanent. Easily sol. in cold, and more easily in hot H 2 0. Sol. in 4-23 pts. H 2 at 15, or 100 pts. H 2 dissolve 23 '6 pts. salt at 15. (Schiff, A. 113. 350.) 100 pts. H 2 dissolve 27 '8 pts. at 12 '2 ; 65'8 pts. at 377; 87 '6 pts. at 65 '5 ; and 90-6 pts. at 96-3. (Thomson.) Sol. in 4 pts. cold, and 2 pts. boiling H 2 0. (Wittstein.) 100 pts. H 2 dissolve 29 '2 pts. salt at 15, and solution has sp. gr. = 1-1441. (Michel and Krafft, A. ch. (3) 41. 478.) K 4 Fe(CN) 6 + Aq sat. at 8 has sp. gr. =1'13. (Anthon.) Sp. gr. of K 4 Fe(CN) 6 + Aq at 15. 9 1 1 P Sp. gr. fi Sp. gr. y Sp. gr. 1 2 1-0058 1-0116 8 9 1-0479 1-0542 15 16 1-0932 1-0999 3 1-0175 10 1-0605 17 1-1067 4 1 -0234 11 1-0669 18 1-1136 5 1-0295 12 1-0734 19 1-1205 6 1-0356 13 1-0800 20 1-1275 7 1-0417 14 1-0866 ... (Schiff, A. 113. 199.) Insol. in alcohol, even when dilute. Potassium samarium ferrocyanide, KSmFe(CN) 6 + 5H 2 0. Precipitate. (Cleve.) Potassium sodium ferrocyanide, KNa 3 Fe(CN) 6 + 12H 2 0. Sol. in H 2 0. K 2 Na 2 Fe(CN) 6 + 8H 2 0. Easily sol. in H 2 0. K 3 NaFe(CN) 6 + 3H 2 0. Permanent. Easily sol. in H 2 ; insol. in alcohol. Potassium sodium ferrocyanide nitrate, K 2 Na 2 Fe(CN) 6 , 4KN0 3 . Sol. in H 2 0. (Martius.) 156 FERROCYANIDE, POTASSIUM STRONTIUM Potassium strontium ferrocyanide, K 2 SrFe(CN) 6 + 3H 2 0. Easily decomp. Sol. in H 2 ; si. sol. in alcohol. (Wyrouboff, A. ch. (4) 21. 276.) Potassium stannic ferrocyanide, KSn 3 [Fe(CN) 6 ] 3 + 68H 2 0(?). Ppt. (Wyrouboff.) K 4 Sn 10 [Fe(CN) 6 ] n + 230H 2 (?). (Atterberg.) Potassium titanium ferrocyanide, K 3 Ti 3 [Fe(CN) 6 ] 2 + llH 2 0(?). Ppt. Sol. in K 4 Fe(CN) 6 + Aq. (Wyrouboff.) K 4 Fe(CN) 6 , llTi 2 Fe(CN) 6 + 43H 2 (?). Ppt. (Wyrouboff.) K a (TiO) 8 [Fe(CN) 6 ] a +23H a O (?). Ppt. (At- terberg. ) K 2 (TiO) n [Fe(CN) 6 ] 6 + 110H 2 0(?). Ppt. (At- terberg. ) Potassium tungsten ferrocyanide, KW 2 Fe(CN) 6 + 7H 2 0(?). Sol. inlLjO. (Wyrouboff.) K 2 W 5 Fe(CN) 6 + 20H 2 (?). Sol. in H 2 0. (W.) ' Potassium uranium ferrocyanide, K 2 U 3 [Fe(CN) 6 ] 2 + 6H 2 (?). Ppt. (Wyrouboff.) K 2 (U0 2 ) 3 [Fe(CN) 6 ] 2 + 6H 2 0. Ppt. (Atter- berg.) K 6 (U0 2 ) 5 [Fe(CN) 6 ] 4 + 12H 2 0. Sol. in H 2 0. (Atterberg. ) Potassium vanadium ferrocyanide, K 18 V[Fe(CN) 6 ] 6 + 39H 2 0(?). Ppt. SI. sol. in H 2 0. (Wyrouboff.) K 6 (VO) 5 [Fe(CN) 6 ] 4 + 60H 2 0(?). Ppt. (Atter- berg.) Potassium yttrium ferrocyanide, KYFe(CN) 6 + 2H 2 0. Ppt. (Wyrouboff, A. ch. (5) 8. 444.) Potassium zinc ferrocyanide, K 4 Zn 6 [Fe(CN) 6 ] 4 + 12H 2 0. Absolutely insol. in H 2 0. (Wyrouboff, A. ch. (5) 8. 485.) Potassium ferrocyanide carbonyl, K 3 Fe(CN) 5 (CO) + 3iH 2 0. See Carbonyl ferrocyanide, potassium. Rubidium ferrocyanide, Rb 4 Fe(CN) 6 + 2H 2 0. Sol. in less than 1 pt. H 2 at ord. temp, with great absorption of heat. (Wyrouboff, A. ch. (4) 16. 307.) Silver ferrocyanide, Ag 4 Fe(CN) 6 + H 2 0. Insol. in H 2 or dil. acids. Insol. in NH 4 OH, or NH 4 salts + Aq. Sol. in KCN + Aq. Decomp. by warm NH 4 OH + Aq. (Weith, Z. Ch. (2) 5. 381.) Silver ferrocyanide ammonia, Ag 4 Fe(CN) 6 , 2NH 3 + H 2 0. (Wyrouboff.) + 6H 2 0. (Gintl.) Sodium ferrocyanide, Na 4 Fe(CN) 6 + 12H 2 0. Efflorescent. Less sol. in H 2 O than K 4 Fe(CN) 6 . Sol. in 4 -5 pts. H 2 at 12. (John.) 100 pts. H 2 at 15'5 dissolve 22 pts. (Ure's Diet.) Insol. in alcohol. + 9H 2 0. (Weith, A. 147. 329.) + 10H 2 0. (Pebal, A. 233. 165.) Strontium ferrocyanide, Sr 2 Fe(CN) 6 + 15H 2 0. Efflorescent. Sol. in 2 pts. cold, and less than 1 pt. boiling H 2 0. (Bette.) Excessively sol. in H 2 0. (Wyrouboff, A. ch. (4) 16. 280.) + 8H 2 0. (Wyrouboff.) Thallous ferrocyanide, Tl 4 Fe(CN) 6 + 2H 2 0. 100 pts. H 2 dissolve 0'37 pt. at 18, and 3-93 pts. at 101. (Lamy.) Sol. in KCN + Aq. ( Kiihlmann. ) Thorium ferrocyanide, ThFe(CN) 6 + 4H 2 0. Ppt. (Cleve, Bull. Soc. (2) 24. 355.) Stannous ferrocyanide, Sn 2 Fe(CN) 6 + 4H 2 0. Insol. in H 2 or acids ; si. sol. in NH 4 OH + Aq. (Wyrouboff.) Stannic ferrocyanide, Sn 5 [Fe(CN) 6 ] 2 + 18JH 2 (?). (Wyrouboff.) Titanium ferrocyanide, Ti 7 [Fe(CN) 6 ] 2 (?). Ppt. (Wyrouboff. ) Uranium ferrocyanide, UFe(CN) 6 + 10H 2 0. Ppt. (Wyrouboff. ) Vanadyl ferrocyanide, (VO) 2 Fe(CN) 6 + llH 2 0. Ppt. (Atterberg.) Yttrium ferrocyanide, Y 4 [Fe(CN) 6 ] 3 . Easily sol. in H 2 ; insol. in alcohol. (Popp, A. 131. 179.) Zinc ferrocyanide, Zn 2 Fe(CN) 6 + 3H 2 0. Insol. in H 2 or acids. Insol. in HCl + Aq. (Lea, Sill. Am. J. (2) 31. 191.) Sol. in NH 4 OH, or NH 4 salts + Aq. (Witt- stein. ) Insol. in NH 4 C1, or NH 4 N0 3 + Aq. (Brett. ) SI. sol. in boiling K 4 Fe(CN) 6 , or K 3 Fe(CN) 6 + Aq. (Gore.) + 4H 2 0. Absolutely insol. in H 2 0. (Wyrouboff, A. ch. (5) 8. 485.) Ferro^mnitrososulphydric acid, H 2 S 2 (NO) 4 Fe 2 . Insol. in H 2 ; si. sol. in alcohol ; more easily in ether ; very sol. in CS 2 or CHC1 3 . Not obtained in a pure state. (Pawel, B. 15. 2600.) Ethyl ferro^ranitrososulphide, (C 2 H 5 ) 2 S 2 (NO) 4 Fe 2 . Insol. in H 2 0, difficultly sol. in alcohol, more easily in ether, and very easily in CS 2 , CHC1 3 , C 2 H 5 I, or C 6 H 6 . (Pawel, B. 15. 2609.) Ferrous , FeS 2 (NO) 4 Fe 2 . More difficultly sol. in H 2 and alcohol than the hepta salt. Sol. in ether. FERRITE, SODIUM 157 Potassium ferro^ranitrososulphide, K 2 S 2 (NO) 4 Fe 2 + 4H 2 0. Sol. in H 2 0. Easily sol. in alcohol ; insol. in ether. (Pawel, B. 15. 2600. ) True composition of " nitrosulphide of iron and potassium " of Roussin. (A. ch. (3) 52. 297.) (Pawel, B. 13. 1949.) Sodium , Na 2 S 2 (NO) 4 Fe 2 + 8H 2 0. Sol. in H 2 ; easily sol. in alcohol ; insol. in ether. (Pawel.) True composition of ' ' nitrosulphide of iron and sodium " of Roussin. (Pawel.) Thallium , Tl 2 S 2 (NO) 4 Fe 2 . Insol. in H 2 0, alcohol, or ether. (Pawel.) FerroAeptonitrososulphydric acid, HS 3 (NO) 7 Fe 4 . Insol. in H 2 0, alcohol, and ether. Easily sol. in CS 2 or CHC1 3 . (Pawel, B. 15. 2604. ) May be called Ferrinitrososulphydric acid. Ammonium ferro&eptanitrososulphide, NH 4 S 3 (NO) 7 Fe 4 + H 2 0. Less easily sol. in H 2 than the K com- pound. (Pawel, B. 15. 2600.) "^'nitrosulphide of iron" of Roussin. Sol. in about 2 pts. boiling H 2 ; very si. sol. in cold H 2 0. Very sol. in alcohols, methyl, ethyl, or amyl, and in HC 2 H 3 2 . Miscible with ether. Insol. in CS 2 or CHC1 3 . Decomp. by cone. HC1, HN0 3 , or H 2 S0 4 . Not attacked by H 2 C 2 4 , or H 2 C 4 H 4 6 + Aq. Insol. in NH 4 OH, and KOH + Aq. (Rous- sin, A. ch. (3) 52. 286.) Barium . Easily sol. in H 2 0. (Pawel.) Caesium . Insol. in H 2 0. Difficultly sol. in alcohol and ether. (Pawel.) Calcium . Easily sol. in H 2 0. (Pawel.) Ferrous , Fe[S 3 (NO) 7 Fe 4 ] 2 + 8H 2 0. More easily sol. in H 2 than Na salt. (Pawel.) Lead . Difficultly sol. in H 2 0. (Pawel.) Magnesium . Easily sol. in H 2 0. (Pawel.) Potassium , KS 3 (NO) 7 Fe 4 . Sol. in H 2 0, alcohol, and very sol. in ether with slight decomp. (Pawel, B. 15. 2600.) Rubidium . Less soluble (Pawel.) RbS 3 (NO) 7 Fe 4 . in H 9 than the NH 4 salt. Sodium NaS 3 (NO) 7 Fe 4 + 2 More sol. in H 2 than the potassium salt. (Pawel.) Thallium , TlS 3 (NO) 7 Fe 4 + H 2 0. Very difficultly sol. in H 2 0. More easily sol. in alcohol. (Pawel.) Ferrotungstic acid. Sol. in H 2 0. (Laurent, C. R. 31. 693.) Ammonium manganous ferrotungstate, 12(NH 4 ) 2 0, 6MnO, 2Fe 2 3 , 3H 2 0, 45WO,+ 81H 2 0. Sol. in H 2 0. (Laurent.) Barium ferrotungstate, 21BaO, 2Fe 2 3 , 45WOo + 27H 2 0. Sol. inH 2 0. (Laurent.) Potassium ferrotungstate, 9K 2 0, 2Fe 2 3 , 1 2H 2 0, 45W0 3 + 54H 2 0. Sol. inH 2 0. (Laurent.) 18K 2 0, 2Fe 2 3 , 3H 2 0, 45W0 3 + 54H 2 0. (Laurent.) Ferrous acid. Barium ferrite, BaO, Fe 2 3 . Ppt. (List, B. ll. 1512.) Calcium ferrite, 4CaO, Fe 2 3 . Insol. in H 2 0, or sugar + H 2 0. Decomp. by the weakest acids, but not by boiling KOH + Aq. (Pelouze, A. ch. (3) 33. 5.) CaO, Fe 2 3 . (List.) Calcium ferrite chloride, CaO, Fe 2 3 , CaCl 2 . Not decomp. by H 2 0. (Chatelier, C. R. 99. 276.) Cupric ferrite, CuO, Fe 2 3 . Ppt. (List.) + 5H 2 0. (List.) Ferrous argentous ferrite,2FeO, Ag 4 0,Fe 2 3 (?). Easily decomp. by HCl + Aq. Not com- pletely sol. in dil. HN0 3 + Aq. Easily sol. in cone. HN0 3 . Decomp. by acetic acid. (Rose, Pogg. 10. 323.) Magnesium ferrite, MgO, Fe 2 3 . Insol. in H 2 0. Not attacked by boiling cone. HN0 3 . (Deville, C. R. 52. 1264.) Min. Magnesioferrite. Difficultly sol. in HCl + Aq. (Rammelsberg, Pogg. 107. 451.) + 4H 2 0. Ppt. (List, B. 11. 1512.) 6MgO, Fe 2 3 + 9H 2 0. Ppt. + 15H 2 0. Min. Pyroaurite. Manganous ferrite, MnO, Fe 2 3 . Ppt. (List.) Nickel ferrite, NiO, Fe 2 3 . Ppt. (List.) Potassium ferrite, 3K 2 0, 4Fe 2 3 . Decomp. by H 2 0, KOH + Aq, NaOH + Aq, etc., but only slowly by NH 4 C1 + Aq. (Salm- Horstmar, J. pr. 55. 349.) K 2 Fe 2 4 . Decomp. by H 2 0. (Rousseau and Bernheim, C. R. 107. 240.) Silver (argentous) ferrite, Ag 4 0, Fe 2 3 (?). Decomp. by dil. HN0 3 + Aq. (Rose, Pogg. 10. 323.) Sodium ferrite, Na 2 0, Fe 2 3 . Na 2 O is dissolved out by H 2 0. Easily sol. in dil. HCl + Aq. Not easily decomp. by NH 4 C1 + Aq. (Salm-Horstmar. ) 158 FERRITE, ZINC Zinc ferrite, ZnO, Fe 2 3 . Sol. in boiling cone. HCl + Aq. (Ebelmen, A. ch. (3) 33. 47.) Min. Frcmklinite. Flavocobaltic compounds. See also Xanthocobaltic compounds. Flavocobaltic chloraurate, (N0 2 ) 2 Co(NH 3 ) 4 AuCl 4 . More easily sol. than the chloroplatinate. Not wholly insol. in absolute alcohol. (Jor- gensen, Z. anorg. 5. 159.) - chloroplatinate, [(N0 2 ) 2 Co(NH 3 ) 4 ] 2 PtCl 6 . As the chloroplatinite. (Jorgensen.) - chloroplatinite, [(N0 2 ) 2 Co(NH 3 ) 4 ] 2 PtCl 4 . Somewhat sol. in H 2 0, and not insol. in 50 % alcohol. (Jorgensen.) - chromate, [(N0 2 ) 2 Co(NH 3 ) 4 ] 2 Cr 2 7 . Ppt. (Jorgensen. ) - nitrate, Co(N0 2 ) 2 (NH 3 ) 4 N0 3 . Sol. in about 33 pts. cold H 2 ; insol. in HN0 3 . (Jorgensen. ) Co(N0 2 ) 2 (NH 3 ) 4 N0 3 , HN0 3 . Decomp. by H 2 or alcohol. (Jorgensen.) cobaltic nitrite, 3(N0 2 ) 2 Co(NH 3 ) 4 , Co(N0 2 ) 6 + 2H 2 0. SI. sol. in H 2 0. (Jorgensen, Z. anorg. 5. 179.) diamine cobaltic nitrite, (N0 2 ) 2 Co(NH 3 ) 4 , (N0 2 ) 2 (NH 3 ) 2 Co(N0 2 ) 2 . Very si. sol. in H 2 0. (Jorgensen.) - sulphate, [(N0 2 ) 2 Co(NH 3 ) 4 ] 2 S0 4 . SI. sol. in H 2 0, more easily in HC 2 H 3 2 + Aq. (Jorgensen.) Fluoborhydric acid, HBF 4 . Decomp. by H 2 very rapidly. (Landolph, C. R. 86. 603.) Aluminum fluoboride, 2A1F 3 , 3BF 3 . Sol. in H 2 only when acidulated ; sol. in acids. (Berzelius.") Ammonium fluoboride, NH 4 BF 4 . Easily sol. in H 2 0. Sol. in 4 pts. H 2 at 16, and 1 '02-1 '05 pts. boiling H 2 0. (Stolba, Chem. techn. Cent. Anz. 7. 459.) SI. sol. in alcohol. Barium fluoboride, Ba(BF 4 ) 2 + 2H 2 0. Deliquescent ; easily sol. in H 2 ; decomp. by alcohol. (Berzelius.) Caesium fluoboride, CsBF 4 . 100 pts. H 2 dissolve 0'92 pt. CsBF 4 at 20, and 0'04 pt. at 100. (Godeffroy, B. 9. 1367.) Calcium fluoboride, Ca(BF 4 ) 2 . Decomp. by H 2 0, with formation of a sol. acid salt and an insol. basic salt. (Berzelius. ) Cupric fluoboride, Cu(BF 4 ) 2 . Deliquescent, and very sol. in H 2 0. (Ber- zelius. ) Lead fluoboride, Pb(BF 4 ) 2 . Sol. in H 2 0. Decomp. by boiling with H 2 or alcohol into an acid soluble, and a basic in- soluble salt. (Berzelius.) Lithium fluoboride, LiBF 4 . Hygroscopic. Easily sol. in H 2 0. (Ber- zelius.) Magnesium fluoboride. Easily sol. in H 2 0. (Berzelius.) Potassium fluoboride, KBF 4 . Sol. in 223 pts. H 2 at 20. (Stolba.) Sol. in 70-4 pts. cold H 2 0. (Berzelius.) Sol. in 15*94 pts. H 2 at 100. (Stolba.) Not more sol. in NH 4 OH + Aq than in H 2 ; sol. in hot KOH, NaOH, or M 2 C0 3 + Aq. (Ber- zelius. ) More sol. in NH 4 C1 + Aq. (Rose, Pogg. 80. 276.) Insol. in 20 % KC 2 H 3 2 + Aq. (Stromeyer.) Insol. in cold, si. sol. in boiling alcohol. Rubidium fluoboride, RbBF 4 . 100 pts. H 2 dissolve 0'55 pt. at 20, and 1-0 pt. at 100. (Godeffroy, B. 9. 1337.) Sodium fluoboride, NaBF 4 . Easily sol. in H 2 0. Very si. sol. in alcohol. (Berzelius.) Yttrium fluoboride. Sol. in H 2 with excess of acid. (Berzelius.) Zinc fluoboride, Zn(BF 4 ) 2 . Deliquescent. Sol. in H 2 0. (Berzelius.) Fluoboric acid, HBF 4 . See Fluoborhydric acid. H 4 B 2 7 , 3HF, andH 4 B 2 9 , 2HF(?). Fume on air, and are decomp. with H 2 0. (Landolph, B. 12. 1583.) HB0 2 , 3HF. Decomp. by H 2 0. (Berzelius, Pogg. 59. 644.) Is either a mixture, or a solution of HB0 2 in HF, and is decomp. by distillation, and the salts are decomp. by recrystallisation. (Bas- arow, C. R. 78. 1698.) Potassium fluoborate, K 2 B 2 3 F 2 (?). SI. deliquescent. Scarcely sol. in boiling alcohol. (Schiff, A. Suppl. 5. 175.) See Boron ^ri'oxide potassium fluoride, B 2 0, 2KF. Fluochromic acid. Ammonium fluochromate, NH 4 Cr0 3 F. Sol. in H 2 0. (Varenne, C. R. 91. 989.) Potassium fluochromate, KCr0 3 F. Efflorescent. Sol. in H 2 0, with gradual decomp. (Streng, A. 129. 225.) Fluocolumbic acid. See also Fluoxycolumbic acid. Ammonium fluocolumbate fluoxycolumbate, (NH 4 ) 2 CbF 3J 2CbOF 3 , NH 4 F. Cadmium fluocolumbate, Cd 5 H 5 Cb 3 F 30 + 28H 2 0. Insol. in, and decomp. by H 2 0. (Streng.) FLUORIDES 159 Cobalt fluocolumbate, CogHgCbgF^ + 28H 2 0. Insol. in, and decomp. by H 2 0. (Strong.) Copper fluocolumbate, Cu 2 HCbF 10 + 9H 2 0. Insol. in, and decomp. by H 2 0. Ferrous fluocolumbate, Fe 3 H 4 Cb 2 F 20 + 19H 2 0. As above. Manganous fluocolumbate, Mn^H.CboFon 28H 2 0. Mercuric fluocolumbate, Hg 3 CbF u + 8H 2 0. As above. Nickel fluocolumbate, Ni 3 H 4 Cb 2 F 20 + 19H 2 0. As above. Potassium fluocolumbate, Decomp. by solution in H 2 0. (Marignac, A. ch. (4) 8. 34.) Zinc fluocolumbate, Zn 5 H 5 Cb 3 F :w + 28H 2 0. Insol. in cold H 2 ; decomp. by hot H 2 0. (Santesson, Bull. Soc. (2) 24. 52.) Fluogermanic acid, H 2 GeF 6 . Known only in solution. (Winkler, J. pr. (2) 36. 177.) Potassium fluogermanate, K 2 GeF 6 . Sol. in 173*98 pts. H 2 at 18. (Winkler.) Sol. in 184-61 pts. H 2 at 18 Nilson, B. 20. 1696.) Sol. in 34-07 pts. H 2 at 100. Sol. in 38-76 pts. H 2 at 100 Nilson.) Insol. in alcohol. (Kriiss and (Winkler.) (Kriiss and Fluomanganic acid, H 2 MnF 6 . Decomp. by H 2 0. Sol. in alcohol and ether in absence of H 2 0. (Nickles, C. R. 65. 107.) Ammonium fluomanganate, (NH 4 ) 2 MnF 6 . More sol. than the K salt. (Nickles, C. R. 65. 107.) True composition is (NH 4 ) 4 Mn 2 F 10 = 4NH 4 F, Mn 2 F 6 . (Christensen, J. pr. (2) 34. 41.) Cobalt fluomanganate, 2CoF 2 , Mn 2 F 6 + 8H 2 0. Sol. in H 2 0. (Christensen.) Nickel fluomanganate, 2NiF 2 , Mn 2 F 6 + 8H 2 0. Sol. inH 2 0. (Christensen.) Potassium fluomanganate, K 2 MnF 6 . Difficultly sol. in H 2 0. Decomp. by much H 2 0. (Nickles, C. R. 65. 107.) Composition is K 4 Mn 2 F 10 = 4KF, Mn 2 F 6 . Also with 2H 2 0. (Christensen, J. pr. (2) 34. 41.) Silver fluomanganate, Ag 2 Mn 2 F 8 + 14H 2 0. (Christensen, J. pr. (2) 34. 41.) Sodium fluomanganate, 4NaF, Mn 2 F 6 . Decomp. by much H 2 0. (Christensen. ) Zinc fluomanganate, 2ZnF 2 , Mn 2 F 6 + 8H 2 0. Sol. in H 2 0. (Christensen.) Fluomolybdic acid. #ee Fluoxyhypomolybdic, and Fluoxymolyb- dic acids. Fluopalladous acid. Potassium fluopalladite. SI. sol. in H 2 0. Sodium fluopalladite. SI. sol. in H 2 0. (Berzelius.) Fluophosphamide, PF 3 (NH 2 ) 2 . Sol. in H 2 0. (Potilenc, A. ch. (6) 24. 566.) Fluoplatinic acid. Ammonium fluoplatinate. Decomp. by H 2 to a sol. acid, and an insol. basic salt. Insol. in alcohol. (Berzeliusr) Potassium fluoplatinate. Deliquescent. Insol. in alcohol. Decomp. byH 2 0. (Berzelius.) Sodium fluoplatinate. Decomp. by H 2 0. (Berzelius.) Fluor- and Fluoro-. See Fluo-. Fluorhydric (Hydrofluoric) acid, HF or H 2 F 2 . Attracts H 2 O from air with great avidity. Very sol. in H 2 with evolution of much heat. Sat. solution has sp. gr. 1'25. (H. Davy.) On boiling the aqueous solution an acid of constant composition is obtained, which boils at 120, has sp. gr. 1'15, and contains 35 '37 7 HF (Bineau, A. ch. (3) 7. 257). The residual acid after boiling contains 36 to 38 % HF, and by standing over CaO gives off HF until an acid containing 32 '5 to 32 '7 % HF is formed. Weaker acids increase their strength to 32 '2 to 32'4 % HF, while an acid containing 32 '5 % HF remains unchanged. (Roscoe, A. 116 218.) Does not attack gutta-percha. Sol. in H 2 S0 4 . Sp. gr. of HF + Aqat 15. Sp. gr. %HF Sp. gr. %HP Sp. gr. %HF 1-01 2-90 1-10 29-00 1-19 55-10 1-02 5-80 I'll 31-90 1-20 58-00 1-03 870 1-12 34-80 1-21 60-90 1-04 11-60 1-13 37-70 1-22 63-80 1-05 14-50 1-14 40-60 1-23 66-70 1-06 17-40 1-15 43-50 1-24 69-60 1-07 20-30 1-16 46-40 1-25 72-50 1-08 23 -20 1-17 49-30 1-09 26-10 1-18 52-20 ... (Hart, J. Anal. Ch. 3. 372.) Fluorides. The alkali fluorides, also AgF and SnF 2 , are sol. in H 2 ; the fluorides of Fe, Sr, and Cd are si. sol. ; the others are insol. in H 2 0. Most fluorides are sol. in acids, especially HF + Aq. See under each element. 160 FLUORINE Fluorine, F 2 . Decomposes H 2 and all organic solvents with great violence. (Moissan, C. R. 103. 202 and 256.) Fluosilicic acid, H 2 SiF 6 . + 2H 9 0. Very deliquescent, and sol. in H 2 0. (Kessler, C. R. 90. 1285.) Solution decomp. into HF and SiF 4 on evaporation, when it becomes concentrated. Sp. gr. of H 2 SiF 6 + Aq at 17 '5 (H 2 at 17 '5 = 1'000). % H 2 SiF 6 Sp. gr. % H 2 SiF 6 Sp. gr. 2 1-0161 20 1-1748 4 1-0324 22 1-1941 6 1-0491 24 1-2136 8 1-0661 26 1-2335 10 1-0834 28 1-2537 12 1-1011 30 1-2742 14 1-1190 32 1-2951 16 1-1373 34 1-3162 18 1-1559 (Stolba, J. pr. 90. 193.) Fluosilicates. Most of the fluosilicates are sol. in H 2 0, but the alkali salts (especially K) and the Ba salt are only si. sol. in H 2 0. Aluminum fluosilicate, Al 2 (SiF 6 ) 3 . Easily sol. in H 2 0. After evaporating to dryness, the residue is slowly but completely sol. in H 2 0. (Deville, A. ch. (3) 61. 327.) Aluminum fluosilicate silicate, Al 2 SiF 10 , 5Al 2 Si0 5 . Min. Topaz. Insol. in acids. Ammonium fluosilicate, (NH 4 ) 2 SiF 6 . Sol. in 5 "38 pts. H 2 at 17 "5 to form a solu- tion of 1-0961 sp. gr. ; sol. in 1'8 pts. hot H 2 ; sol. in 45 '5 pts. alcohol of 31 %. (Stolba, C. C. 1877. 418.) 3NH 4 F, SiF 4 = (NH 4 ) 2 SiF 6 , NH 4 F. Sol. in H 2 0. (Marignac, Ann. Min. (5) 15. 221.) Barium fluosilicate, BaSiF 6 . Sol. in 3802 pts. cold H 2 0. (Fresenius, A. 59. 120.) Sol. in 3731 pts. H 2 at 17 '5 ; in 3315 pts. at 21; in 1175 pts. at 100. (Stolba, J. pr. 96. 22.) Sol. in 640-733 pts. H 2 containing a little HC1. (Fresenius.) 488 pts. HCl + Aq containing 4 '25 % HC1 dissolve 1 pt. at 22. (Stolba.) More sol. in HN0 3 + Aq than in H 2 0. (Fresenius. ) 272 pts. HN0 3 + Aq, containing 8 % N 2 5 , dissolve 1 pt. at 22. (Stolba. ) 1 pt. BaSiF 6 dissolves in 428 pts. sat. NH 4 C1 + Aq ; in 589 pts. sat. NH 4 C1 + Aq + 2 vols. H 2 0. (Mallet, Sill. Am. J. (2) 28. 48.) 1 pt. BaSiF 6 dissolves in 306 pts. sat. NH 4 Cl + Aqat22; in 361 pts. 15 % solution of NH 4 C1 ; in 563 pts. sat. boiling NaCl + Aq ; in 349 pts. 10 % solution of NaCl at boiling temp. ; in 2185 pts. 10 % solution of NaCl at 20 ; in 1140 pts. 5 % solution of NaCl at 20. (Stolba.) Nearly absolutely insol. in alcohol. (Fre- senius.) Solubility in a mixture of H 2 0, alcohol (96 %), HC1 + Aq (20 %), H 2 SiF 6 + Aq (3 '7 %). 1 pt. BaSiF 6 is sol. in pts. of solutions of given composition. H 2 Alcohol HCl+Aq H 2 SiF 6 +Aq BaSiFfj 50 50 37,219 74-1 25 0-9 5,263 70-8 25 4-2 2,860 77*95 20 0-9 1-15 39,061 73-0 25 0-9 1-1 70,679 97-09 1-25 1-66 3,247 75-0 25 16,914 (Fresenius, Z. anal. 29. 143.) Caesium fluosilicate, Cs 2 SiF 6 . Sol. in 166 pts. H 2 at 17, and much easier in hot H 2 0. Insol. in alcohol. (Preis, J. pr. 103. 410.) Cadmium fluosilicate. Efflorescent. Very easily sol. in H 2 0. Calcium fluosilicate, CaSiF 6 + 2H 2 0. SI. sol. in, and partly decomp. by H 2 0. Sol. in HF and HC1 + Aq. Sol. in fluosilicic acid without decomp. Easily sol. in 60 % alcohol. (Fleischer.) Cerium fluosilicate. Very difficultly sol. in H 2 0, acetic, or fluo- silicic acids. Insol. in alcohol. (Stolba, C. C. 1874. 130.) Chromium fluosilicate. Deliquescent. (Berzelius.) Efflorescent. Sol. in H 2 O. (Berlin.) Cobaltous fluosilicate, CoSiF 6 + 6H 2 0. Easily sol. in H 2 0. (Berzelius.) Cuprous fluosilicate, Cu 2 SiF 6 . Insol. in H 2 0. (Berzelius, Pogg. 1. 199.) Cupric fluosilicate, CuSiF 6 + 6H 2 0. Deliquescent in moist, efflorescent in dry air. Sol. in 0-428 pt. H 2 at 17. Sp. gr. of solution sat. at 17 = 1 '6241. Sol. in 17-5 pts. alcohol of 62 vol. % at 20 ; in 150 pts. of 85 % at 20 ; in 617 pts. of 92 % at 20. (Stolba, J. pr. 102. 7. ) Contains 6^ H 2 0. (Stolba. ) + 5iH 2 0. (Knop and Wolf. ) Cupric fluosilicate phosphate, CuSiF 6 , Cu 3 (P0 4 ) 2 . Insol. in H 2 0, but easily sol. in dil. HC1 + Aq. (Thorpe and Rodger, Chem. Soc. 55. 320.) Glucinum fluosilicate. Known only in solution. FLUOSILICATE, STRONTIUM 161 Ferrous fluosilicate, FeSiF 6 + 6H 2 0. Easily sol. in H 2 0. (Berzelius.) Ferric fluosilicate, Fe 2 (SiF 6 ) 3 . Sol. in H 2 0. (Berzelius.) Lead fluosilicate, PbSiF 6 + 2H 2 0. Deliquescent. Easily sol. in H 2 0. + 4H 2 0. (Marignac.) Lithium fluosilicate, Li 2 SiF 6 + 2H 2 0. 100 pts. H 2 at 17 dissolve 73 pts. crystal- line salt. (Marignac.) 100 pts. cold H 2 dissolve 52*6 pts. crystals. Sol. in dil. alcohol. (Stolba, J. pr. 91. 456.) 100 pts. alcohol of 46 vol. % dissolve about 4 pts., and 100 pts. alcohol of 79 vol. % dis- solve about 0"4 pt. crystals. (Stolba, Z. anal. 3. 311.) Insol. in ether or benzene. Magnesium fluosilicate, MgSiF 6 + 6H 2 0. Efflorescent. Sol. in 1534 pts. cold H 2 0, forming a solution of 1'235 sp. gr. at 17 '5. Separates out Si0 2 on warming, which nearly all redissolves on cooling. (Stolba, C. C. 1877. 578.) Magnesium fluosilicate silicate, Mg 5 Si 2 F 18 , zMg 5 Si 2 9 . Min. Humite ; Chondrodite. Gelatinises withHCl, or H 2 S0 4 + Aq. Manganous fluosilicate, MnSiF 6 + 6H 2 0. Sol. in H 2 0. (Marignac, J. pr. 83. 202.) 100 pts. salt dissolve in 71 '4 pts. H 2 at 17 '5, and sp. gr. of solution = 1'44825. Much more sol. in hot H 2 0, and less sol. in alcohol, the stronger the alcohol. (Stolba, C. C. 1883. 292.) Mercurous fluosilicate, Hg 2 SiF 6 + 2H 2 0. SI. sol. in H 2 0. More easily sol. in acidified H 2 0, but precipitated by HCl + Aq. (Ber- zelius.) Mercuric fluosilicate, basic, HgSiF 6 , HgO + 3H 2 0. Decomp. by H 2 0, but sol. in weakest acids. (Berzelius, Pogg. 1. 200.) Mercuric fluosilicate, HgSiF 6 + 6H 2 0. Deliquescent, and easily sol. in H 2 0. (Finkener, Pogg. 111. 246.) Nickel fluosilicate, NiSiF 6 + 6H 2 0. Easily sol. in H 2 0. (Marignac, Ann. Min. (5) 15. 262.) Potassium fluosilicate, K 2 SiF 6 . Sol. in 833-1 pts. H 2 at 17 '5, and 104 '8 pts. at 100. (Stolba, J. pr. 103. 396.) Sol. in 3800 pts. cold, and more easily sol. in hot H 2 0. (Fresenius. ) More sol. in HC1 + Aq than in H 2 0. Sol. in 337 pts. HCl + Aq of 26 '5 % at 14 ; in 307 pts. of 257 % at 15 ; in 340 pts. of 14'1 % at 14 ; in 303 pts. of 13 "6 % at 15 ; in 327 pts. of 9-6 % at 14 ; in 313 pts. of 9 '2 % at 15 ; in 376 pts. of 27 % at 14 ; in 319 pts. of O-/I / a 4- 1 ^ . in At 2-4 % at 15 (Stolba, I.e.) in 409 pts. of 1-8 % at 14 C Sol. in 428 pts. sat., and 589 pts. dil. NH 4 Cl + Aq. (Mallet.) Much less sol. in K 2 S0 4 , KN0 3 , or KC1 + Aq, but more sol. in NH 4 C1 + Aq than in H (Stolba.) Sol. in 24,066 pts. K 2 S0 4 + Aq containing 9-92 % K 2 S0 4 at 17 ; in 17,858 pts. containing 6 % at 18 ; in 19,530 pts. containing 5 % at 17 ; in 10,721 pts. containing 1 % at 17. Sol. in 125,000 pts. KN0 3 + Aq containing 18-4 % KN"0 3 at 15 ; in 43,478 pts. containing 8'7 % at 15 ; in 1/35 pts. containing 8 '8 % at 100 ; in 35,714 pts. containing 4 '3 % at 15 ; in 10,203 pts. containing I'OO % at 15. Sol. in 40,070 pts. KCl + Aq containing- 25 % KC1 at 17 17' 24, pts. containing 0'65 % at '17 ; in 1095 pts. containing 0'45 % at 18. Sol. in 358 pts. NH 4 Cl + Aq containing 26 '3 % NH 4 C1 at 17 ; in 306 pts. containing 15 % at 15 ; in 339 pts. containing 10 % at 15 ; in 436 pts. containing 5 % at 15. (Stolba, J. pr. 103. 306.) Completely pptd. from aqueous solution by an equal vol. of alcohol. Rubidium fluosilicate, Rb 2 SiF 6 . Sol. in 625 pts. H 2 at 20, and 73 '05-74 '5 pts. at 100. More sol. in acidified water. Insol. in alcohol. (Stolba, J. pr. 101. 1.) Silver fluosilicate, Ag 2 SiF 6 + 4H 2 0. Deliquescent. Easily sol. in H 2 0. (Marig- nac, Ann. Min. (5) 15. 221.) Sodium fluosilicate, Na 2 SiF 6 . Much more sol. in H 2 than K 2 SiF 6 , especi- ally in hot H 2 0. Addition of acid does not increase solubility. (Berzelius.) Sol. in 153-3 pts. H 2 at 17 '5, and 40 '66 pts. at 100. Easily forms supersaturated solutions. (Stolba, Z. anal. 11. 199.) Precipitated completely from aqueous solu- tion by alcohol. (Rose.) Strontium fluosilicate, SrSiF 6 + 2H 2 0. Sol. in cold H 2 0, but decomp. somewhat on heating. Sol. in 31 '06 pts. H 2 0. (Fresenius.) Easily sol. in acidified H 2 without decomp. Sol. in alcohol. Solubility in a mixture of H 2 0, alcohol (96 %), HCl + Aq (20 %), H 2 SiF 6 +Aq (37 %). 1 pt. SrSiF 6 is sol. in pts. of solutions of given composition. H 2 Alcohol HCl+Aq H 2 SiF 6 +Aq SrSiF 6 50 50 o 15-29 74-1 25 0-9 82-93 70-8 25 4-2 50-9 77*95 20 0-9 1-15 55-0 73 25 0-9 1-1 82-97 75 25 147-41 95-24 2-04 272 7-3 " (Fresenius, Z. anal. 29. 143.) M 162 FlAlOSILICATE, THALLOUS Thallous fluosilicate, Tl 2 SiF 6 +2H 2 0. Very easily sol. in H 2 0. (Kuhlmann.) Thorium fluosilicate, Tli(OH) 2 SiF 6 (?). (Cleve.) Stannic fluosilicate, SnF 4 , SiF 4 . Very easily sol. in H 2 0. (Berzelius.) Uranyl fluosilicate. Very si. sol. in acids. (Berzelius. ) Sol. in alcohol. (Stolba, Z. anal. 3. 71.) Vanadium fluosilicate. Deliquescent. Sol. in H 2 0. (Guyard, Bull. Soc. (2) 25. 352.) Yttrium fluosilicate. Insol. in pure, sol. in acidified H 2 0. (Berzelius.) Zinc fluosilicate, ZnSiF 6 + 6H 2 0. Very easily sol. in H 2 0. (Berzelius.) Zirconium fluosilicate. Sol. in H 2 0. Solution clouds up on boiling. (Berzelius.) Fluostannic acid. Ammonium fluostannate, (NH 4 ) 2 SnF 6 . Sol. in H 2 0. (Marignac, Ann. Min. (5) 15. 224.) 4NH 4 F, SnF 4 . Sol. in H 2 0. (Marignac.) Barium fluostannate, BaSnF 6 . Slowly sol. in H 2 0. + 3H 2 0. Sol. in 18 pts. H 2 at 18. (Marignac, Ann. Min. (5) 15. 246.) Calcium fluostannate, CaSnF 6 + 2H 2 0. Sol. in H 2 0. (Marignac, Ann. Min. (5) 15. 250.) Cadmium fluostannate, CdSnF 6 + 6H 2 0. Sol. in H 2 0. (Marignac. ) Cupric fluostannate, CuSnF 6 + 4H 2 0. Not deliquescent. (Marignac, Ann. Min. (5) 15. 291.) Lithium fluostannate, Li 2 SnF 6 + 2H 2 0. Sol. in H 2 0. (Marignac, Ann. Min. (5) 15. 242.) Magnesium fluostannate, MgSnF 6 + 6H 2 0. Not deliquescent. Sol. in H 9 0. (Marignac, Ann. Min. (5) 15. 256.) Manganous fluostannate, MnSnF 6 + 6H 2 0. Slowly efflorescent. (Marignac.) Nickel fluostannate, NiSnF 6 + 6H,0. Sol. in H 2 0. (Marignac, Ann. Min. (5) 15. 262.) Potassium fluostannate, K 2 SiiF 6 -f H 2 0. Two modifications (a) Thin plates. Sol. in 2'3 pts. H 2 at 100, and in 15-16 pts. at 18. (Marignac.) (b) Octahedra. Sol. in 3 pts. H 2 at 100, and 27 pts. at 18. (Marignac.) Potassium hydrogen fluostannate, 3KF, HF, SnF 4 . Sol. in H 2 0. (Marignac.) Silver fluostannate, Ag 2 SnF 6 + 4H 2 0. SI. deliquescent. Easily sol. in H 2 0. (Marignac.) Sodium fluostannate, Na^nFg. Sol. in 18-19 pts. H 2 at 20. (Marignac.') Strontium fluostannate, SrSnF 6 + 2H 2 0. Sol. in 5'5 pts. H 2 at 18. (Marignac.) Zinc fluostannate, ZnSnF 6 + 6H 2 0. Sol. in H 2 0. (Marignac.) Fluosulphonic acid, HS0 3 F. Sec Sulphuryl hydroxyl fluoride. Fiuotantalic acid. Ammonium fluotantalate, (NH 4 ) 2 TaF 7 . Very sol. in H 2 0. (Marignac, A. ch. (4) 9. 272.) Calcium fluotantalate. Difficultly sol. in H 2 (Berzelius.) Cupric fluotantalate, CuTaF 7 + 4H 2 0. Deliquescent. Easily sol. in H 2 0. (Marig- nac, A. ch. (4) 9. 294.) Lead fluotantalate. Difficultly sol. in H 2 0. (Berzelius.) Potassium fluotantalate, K 2 TaF 7 . SI. sol. in cold, much more easily in hot H 2 0. Decomposes, with formation of a white precipitate on boiling. (Berzelius.) Much more sol. in HF + Aq. 1 pt. of the salt is sol. in 200 pts. H 2 containing a trace of HF, and in 150-160 pts. of H 2 containing a little more HF. (Marignac, A. ch. (4) 9. 267.) Potassium hydrogen fluotantalate, KF, HF, TaF 5 (?). Sol. in H 2 0. (Berzelius.) Sodium fluotantalate, 3NaF, TaF 5 . Easily sol. in H 2 0. Na 2 TaF 7 + H 2 0. Sol. in H 2 0. (Marignac.) Zinc fluotantalate, ZnTaF 7 + 7H 2 0. Very deliquescent. Sol. in H 2 0. (Marig- nac, A. ch. (4) 9. 249.) Fluotelluric acid. Ammonium fluotellurate, NH 4 TeF 5 + H 2 0. Decomp. by H 2 0. (Hogbom, Bull. Soc. (2) 35. 60.) Barium fluotellurate, Ba(TeF 5 ) 2 + H 2 0. As above. Potassium fluotellurate, KTeF 5 . As above. Fluotitanic acid. Known only in solution as titanium hydro- gen fluoride. Ammonium fluotitanate, (NH 4 ) 2 TiF 6 . Sol. in H 2 0. (Marignac.) 3NH 4 F, TiF 4 . Sol. in H 2 0. (Marignac.) Ammonium fluose^mtitanate, 6NH 4 F, Ti 2 F 6 . Easily sol. in H 2 0. SI. sol. in NH 4 F + Aq. (Petersen, J. pr. (2) 40. 54.) FLUOXYCOLUMBATE, POTASSIUM 163 Insol. in NH 4 F + Aq. (Piccini, C. R. 97. 1064.) 4NH 4 F, Ti 2 F 6 . Properties as the correspond- ing K salt. (Piccini, B. 18. 257 R.) Calcium fluotitanate, CaTiF 6 + 3H 2 0. Decomp. by pure H 2 0. Sol. without de- comp. in acidified H 2 0. (Berzelius.) Separates a precipitate with cold H 2 0, which dissolves on heating. (Marignac, Ann. Min. (5) 15. 250.) Cupric fluotitanate, CuTiF 6 + 4H 2 0. Sol. in pure H 2 with partial decomp. ; easily and completely sol. in acidified H 2 0. (Berzelius.) Cupric fluotitanate ammonium fluoride, CuTiF 6 , NH 4 F + 4H 2 0. Efflorescent. Easily sol. in H 2 0. (Marig- nac, Ann. Min. (5) 15. 267.) Cupric fluotitanate potassium fluoride, CuTiF 6 , KF + 4H 2 0. As the above salt. (Marignac.) Ferrous fluotitanate, FeTiF 6 + 6H 2 0. Sol. in H 2 0. (Weber, Pogg. 120. 287.) Ferric fluotitanate. Decomp. by H 2 0. (Berzelius. ) Lead fluotitanate. Easily sol. in H 2 0. (Berzelius. ) Magnesium fluotitanate, MgTiF 6 + 6H 2 0. Easily sol. in cold H 2 0. (Marignac, Ann. Min. (5) 15. 257.) Nickel fluotitanate, NiTiF 6 + 6H 2 0. Easily sol. in H 2 0. (Weber, Pogg. 120. 282.) Potassium fluotitanate, K 2 TiF 6 + H 2 0. Difficultly sol. in cold, much more easily in hot H 2 0. 100 pts. H 2 dissolve at : 3 6 10 14 20 0-556 0-667 0775 0'909 1'042 1 "28 pts. K 2 TiF 6 . (Marignac, A. ch. (4) 8. 65.) Potassium fluosesgmtitanate, 4KF, Ti 2 F 6 . Scarcely sol. in H 2 ; sol. in dil. acids. (Piccini, B. 18. 257 R.) Silver fluotitanate. Very deliquescent. (Marignac.) Sodium fluotitanate, Na 2 TiF 6 . Much more sol. in H 2 than the correspond- ing potassium salt. (Marignac, Ann. Min. (5) 15. 238.) Sodium hydrogen fluotitanate, Na 2 TiF 6 + NaHF 2 . Sol. in H 2 0. (Marignac. ) Strontium fluotitanate, SrTiF 6 + 2H 2 0. Sol. in cold H 2 0. Solution clouds rip on heating. (Marignac.) Zinc fluotitanate, ZnTiF 6 + 6H 2 0. Sol. in H 2 0. (Marignac, A. ch. (3) 60. 304.) Fluovanadlc acid. Ammonium fluovanadate, 3NH 4 F, VF 3 . Moderately sol. in H 2 0. More easily sol. in dil. acids. Nearly insol. in alcohol or MF + Aq. (Petersen, J. pr. (2) 40. 52.) 2NH 4 F, VF 3 + H 2 0. Easily sol. in H 2 0. SI. sol. in alcohol. (Petersen.) NH 4 F, VF 3 + 2H 2 0. As above. (Petersen.) Cadmium fluovanadate, CdF 2 , VF 3 + 7H 2 0. Very si. sol. in H 2 0. (Piccini and Giorgis, Gazz. ch. it. 22, 1. 89.) Cobalt fluovanadate, CoF 2 , VF 3 + 2H 2 0. Sol. in H 2 without decomp. (Peterson?- 1. c. ) Nickel fluovanadate, NiF 2 , VF 3 + 2H 2 0. As the Co salt. (Petersen.) Potassium fluovanadate, 2KF, VF 3 + H 2 0. SI. sol. in H 2 ; easily sol. in acids. Insol. in KF + Aq. (Petersen, J. pr. (2) 40. 51.) Potassium fluovanadate fluoxyvanadate, 4KF, VF 5 , VOF 3 . Easily sol. in H 2 0, and still more easily in HF + Aq. SI. sol. in KF + Aq. (Petosen, J. pr. (2)40. 274.) Sodium fluovanadate, 5NaF, 2VF 3 + H 2 0. As the potassium salt. (Petersen.) Zinc fluovanadate, ZnF 2 , VF 3 + 7H 2 0. SI. sol. in cold H 2 0. Decomp. on heating. (Piccini and Giorgis.) Fluoxycolumbic acid. Ammonium fluoxycolumbate, 3NH 4 F, CbOF 3 . Cubic salt. Sol. in H 2 0. (Marignac, A. ch. (4) 8. 38.) 2NH 4 F, CbOF 3 . Lamellar salt. Much more sol. in H 2 than 2KF, CbOF 3 . '(M.) 5NH 4 F,3CbOF 3 + H 2 0. Hexagonal salt. (M.) NH 4 F, CbOF 3 . Rectangular salt. (M.) Ammonium fluoxycolumbate columbium flu- oride, 3NH 4 F, CbOF 3 , CbF 5 . (Marignac. ) Cupric fluoxycolumbate, CuF 2 , CbOF 3 + 4H 2 0. SI. deliquescent. Sol. in H 2 0. (Marignac, A. ch. (4) 8. 42.) Potassium fluoxycolumbate, 2KF, CbOF 3 + H 2 0. Sol. in 12-5-13 ts. H0 at 17-21. Much more sol. in hot (Marignac. ) 3KF, CbOF 3 . Decomp. by H 2 into above salt. (M.) 5KF, 3CbOF 3 + H 2 0. Sol. in H 2 0. (M.) 4KF, 3CbOF 3 + 2H 2 0. Sol. in H 2 0. (M. ) 3KF, 2Cb 2 5 + 5H 2 0. SI. sol. in H 2 0. (Petersen, J. pr. (2)40. 287.) KF, Cb 2 5 + 3H 2 0. SI. sol. in H 2 0. (Peter- sen.) 2KF, 3Cb0 2 F. Insol. in H 2 0. Sol. in HF. (Kriiss and Nilson, B. 20. 1689.) See also Fluoxypercolumbate, potassium. pts. 2 H 2 0, or H 2 containing HF. 164 FLUOXYCOLUMBATE, POTASSIUM HYDROGEN Potassium hydrogen fluoxycolumbate, 3KF, HF, CbOF 3 . Sol. in H 2 0. (Marignac. ) Sodium fluoxycolumbate, 2NaF, CbOF 3 + 2H 2 0. Sol. in H 2 0. NaF, CbOF 3 + H 2 0. (Marignac.) Zinc fluoxycolumbate, ZnF 2 , CbOF 3 + 6H 2 0. Sol. in H 2 0. (Marignac, A. ch. (4) 8. 41.) Fluoxyhypomolybdic acid. Ammonium fluoxyhypomolybdate, MoOF, 2NH 4 F. Decomp. by H 2 0. (Mauro, Gazz. ch. it. 19. 179.) 3MoOF 3 , 5NH 4 F + H 2 0. Decomp. by H 2 0. (Mauro. ) Cupric fluoxyhypomolybdate, CuF 2 , MoOF 3 + 4H 2 0. Deliquescent. Sol. in H 2 0. (Mauro, Real. Ac. Line. 1892, 1. 194.) Potassium fluoxyhypomolybdate, MoOF 3 , 2KF + H 2 0. Sol. in H 2 with decomp. Sol. in HF or HC1 + Aq. (Mauro and Pana- biaiico, Gazz. ch. it. 12. 80.) 3MoOF 3 , 5KF + H 2 0. Sol. in H 2 with decomp. (Mauro, Gazz. ch. it. 19. 179.) Zinc fluoxyhypomolybdate, ZnF 2 , MoOF.,4- 6H 2 0. Rapidly deliquescent. Sol. in H 2 0. (Mauro, Real. Ac. Line. 1892, 1. 194.) Fluoxyhypovanadic acid. See Fluoxyvanadic acid. Fluoxymanganic acid. Ammonium fluoxymanganate, (NH 4 ) 2 MnOF 4 . Precipitate. (Nickles. ) Potassium fluoxymanganate, K 2 MnOF 4 . Precipitate. (Nickles, C. R. 65. 107.) AS'esgm'fluoxymanganic acid. Potassium sesgm'fluoxymanganate, K 4 Mn 2 OF 8 = 4KF, Mn 2 OF 4 . Precipitate. (Nickles. ) Fluoxymolybdic acid. See also Fluoxyhypomolybdic, and fluoxy- permolybdic acids. Ammonium fluoxymolybdate, NH 4 F, Mo0 2 F 2 . Sol. in H 9 0. (Mauro, Gazz. ch. it. 20. 109.) + H 2 0. More sol. in H 2 than 2KH 4 F, Mo0 2 F 2 . (Delafontaine, ]S T . Arch. Sci. ph. nat. 30. 250".) Correct formula is 3NH 4 F, Mo0 2 F 2 . (Mauro, Gazz. ch. it. 18. 120.) 2NH 4 F, Mo0 2 F 2 . Much more sol. than 2KF, Mo0 2 F 2 . (Delafontaine.) 3NH 4 F, Mo0 2 F 2 . Sol. in H 2 0. (Mauro.) 5NH 4 F, 3Mo0 2 F 2 + H 2 0. Sol. in H 2 0. (Mauro, Gazz. ch. it. 20. 109.) Ammonium fluoxymolybdate molybdate, Mo0 2 F 2 , 4NH 4 F, (NH 4 ) 2 Mo0 4 . Sol. in H 2 0, but with decomp. (Mauro, Gazz. ch. it. 18. 120.) Cadmium fluoxymolybdate, CdF 2 , Mo0 2 F 2 + 6H 2 0. SI. efflorescent. (Delafontaine, J. B. 1867. 236.) Cobaltous fluoxymolybdate, CoF 2 , Mo0 2 F 2 + 6H 2 0. Sol. in H 2 0. (Delafontaine, J. B. 1867. 236.) Cupric fluoxymolybdate, CuF 2 , Mo0 2 F 2 + 4H 2 0. Deliquescent. (Mauro, Real. Ac. Line. 1892, 1. 194. Nickel fluoxymolybdate, NiF 2 , Mo0 2 F 2 + 6H 2 0. Sol. in H 2 0. (Delafontaine, J. B. 1867. 236.) Potassium fluoxymolybdate, 2KF, Mo0 2 F 2 + H 2 0. Easily sol. in boiling H 2 0. KF, Mo0 2 F 2 + H 2 0. Gradually efflorescent. (Delafontaine.) Mo0 3 F 2 , 2KF + H 2 0. " Fluoxypermolyb- date." SI. sol. in cold, easily in hot H 2 0. (Piccini, Real. Ac. Line. 7, 1. 267.) Rubidium fluoxymolybdate, 2RbF, 2Mo0 2 F 2 + 2H 2 0. Sol. in cold, more sol. in hot H 2 0. (Dela- fontaine. ) Sodium fluoxymolybdate, NaF, Mo0 2 F 2 + |H 2 0. Sol. in H 2 0. (Delafontaine.) Thallous fluoxymolybdate, 2T1F, Mo0 F 2 + H 2 0. Sol. in hot H 2 0. (Delafontaine.) Zinc fluoxymolybdate, ZnF 2 , Mo0 2 F 2 + 6H 2 0. Sol. in H 2 0. (Delafontaine.) Fluoxypercolumbic acid. Potassium fluoxypercolumbate, 2KF, Cb0 2 F.^ + H 2 0. (Piccini, Z. anorg. 2. 21.) Fluoxypermolybdic acid. Ammonium fluoxypermolybdate, MoO.,F 9 , 3NH 4 F. Sol. in H 2 0. (Piccini, Z. anorg. 1. 51.) Caesium fluoxypermolybdate, Mo0 3 F 2 , 2CsF + H 2 0. (Piccini.) Potassium fluoxypermolybdate, Mo0 3 F , 2KF + H 2 0. Not very sol. in H 2 ; more sol. in HF + Aq without decomp. (Piccini.) Rubidium fluoxypermolybdate, MoO.>F<>, 2RbF + H 2 0. Somewhat more sol. in H 2 than K salt. Easily sol. in HF + Aq. (Piccini.) FLUOXYVANADIC ACID 165 luoxypertantalic acid. ssium fluoxypertantalate, 2KF, Ta0 2 Fo + H 2 0. Sol. in H 2 0. (Piccini, Z. anorg. 2. 21.) Fluoxypertitanic acid, TiO^, 2HF. Known only in solution. (Piccini, B. 18. 255 R.) Ammonium fluoxypertitanate, Ti0 2 F 2 , 2NH 4 F. Very unstable. (Piccini, Gazz. ch. it. 17. 479.) Ti0 2 F 2 , 3NH 4 F. Sol. in H 2 0. 2Ti0 2 F 2 , 3NH 4 F. Sol. in H 2 0. (Piccini, B. 18. 698 R.) Barium fluoxypertitanate, Ti0 2 F 2 , BaF 2 . Precipitate. Easily sol. in acids. (Piccini, B. 18. 698 R.) 2Ti0 2 F 2 , 3BaF 2 . Insol. in H 2 ; sol. in dil. acids. (Piccini, Gazz. ch. it. 17. 479.) Potassium fluoxypertitanate, Ti0 2 F 2 , 2KF. Sol. inH 2 0. (Piccini, B. 21. 1391.) Fluoxypertungstic acid. Potassium fluoxypertungstate, 2KF, W0 3 F + H 2 0. (Piccini, Z. anorg. 2. 11.) Fluoxytantalic acid. See also Fluoxypertantalic acid. Ammonium fluoxytantalate, 3NH 4 F, TaOF 2 . Easily sol. in H 2 0. The solution clouds up by standing or on warming. (Joly, C. R. 81. 1266.) Fluoxytitanic acid. See also Fluoxypertitanic acid. Barium fluoxytitanate, TiOF 2 , BaF 2 . Insol. in H 2 ; sol. in dil. acids. (Piccini, Gazz. ch. it. 17. 479.) Fluoxytungstic acid. Ammonium fluoxytungstate, 2NH 4 F, W0 2 F 2 . Very sol. in H 2 0. (Marignac, A. ch. (3) 69. 65.) NH 4 F, W0 2 F 2 + H 2 0. Decomp. by H 2 0. Crystallises unchanged from H 2 containing HF. (Marignac.) Ammonium fluoxytungstate tungstate, 4NH 4 F, W0 2 F 2 , (NH 4 ) 2 W0 4 . Incompletely sol. in H 2 0. Residue dissolves in NH 4 OH + Aq. (Marignac. ) Cadmium fluoxytungstate. Very sol. in H 2 0. (Marignac.) Cupric fluoxytungstate, CuF 2 , W0 2 F 2 + 4H 2 0. Very sol. in H 2 0. (Marignac, C. R. 55. 888.) Cupric fluoxytungstate ammonium fluoride, CuF 2 , W0 2 F 2 , NH 4 F + 4H 2 0. Sol. in H 2 0. (Marignac.) Manganese fluoxytungstate. Very sol. in H 2 0. (Marignac.) Nickel fluoxytungstate, MF 2 , W0 2 F 2 + 10H 2 0. Deliquescent. Very sol. in H 2 0. (Marig- nac.) Potassium fluoxytungstate, KF, W0 2 F 2 + H 2 0. Can be recrystallised without decomp. only from H 2 containing HF. (Marignac, A. ch. (3) 69. 70.) 2KF, W0 2 F 2 + H 2 0. Difficultly sol. in cold, more easily in hot H 2 0. (Berzelius.) Sol. in 17 pts. H 2 at 15. (Marignac.) Can be recrystallised without decomp. from H 2 0, or H 2 containing HF. (Marignac. ) See also Fluoxypertungstate, potassium. Silver fluoxytungstate. Very easily sol. in H 2 0. (Marignac. ) Sodium fluoxytungstate, 2NaF, W0 2 F 2 . More sol. in H 2 than the corresponding K compound. (Berzelius. ) Zinc fluoxytungstate, ZnF 2 , W0 2 F 2 + 10H 2 0. Very sol. in H 2 0. (Marignac.) Fluoxyuranic acid. Ammonium fluoxyuranate, 3NH 4 F, U0 2 F 2 . Easily sol. in H 2 0, less in HF. Insol. in alcohol. (Bolton. ) Barium fluoxyuranate, 3BaF 2 , 2U0 2 F 2 + 2H 2 0. Traces dissolve in hot H 2 0. Easily sol. in dil. acids. (Bolton.) Potassium fluoxyuranate, 3KF, U0 2 F 2 . Sol. in 8 pts. H 2 at 21. Insol. in alcohol and ether. (Bolton, J. pr. 99. 269 % ) Does not exist. (Smithells, Chem. Soc. 43. 125.) 4KF, U0 2 F 2 . Insol. in H 2 0. Easily sol. in dil. acids. (Ditte, C. R. 91. 115.) 5KF, 2U0 2 F 2 . (Baker, Chem. Soc. 35. 760.) 3KF, 2U0 2 F 2 + 2H 2 0. (Baker.) Sodium fluoxyuranate, NaF, U0 2 F 2 . + 2H 2 0. Not efflorescent. + 4H 2 0. Insol. in H 2 and dil. acids. SI. sol. in cone. HCl + Aq. Sol. in cone. H S0 4 . (Bolton, J. B. 1866. 212.) 4NaF, U0 2 F 2 . (Ditte.) Does not exist. (Smithells, Chem. Soc. 43. 125.) Fluoxyvanadic acid. Ammonium fluoxyvanadate, 12NH 4 F, V 2 5 , 2VOF 3 . Easily sol. in H 2 0, and not attacked by cold cone. H 2 S0 4 . (Baker, Chem. Soc. 33. 388.) Formula is 3NH 4 F, V0 2 F. (Petersen, J. pr. (2) 40. 289.) 3NH 4 F, V0 2 F. Sol. in H 2 0. (Petersen, I.e.] Much less sol. in H 2 in presence of NH 4 F. (Piccini and Giorgis, Gazz. ch. it. 27, 1. 65.) 3NH 4 F, VOF 2 . "Hypovanadate." Quite sol. in H 2 0. Very si. sol. in MF + Aq. Less sol. in alcohol than in H 2 0. (Petersen, J. pr. (2) 40. 195.) 2NH 4 F, VOF 2 . Sol. in H 2 0. (Petersen.) + H 2 0. (Piccini and Giorgis. ) 166 FLUOXYYANADATE, AMMONIUM HYDROGEN 7NH 4 F, 4VOF 2 + 5H 2 0. Very sol. in H 2 0. (Petersen.) 3NH 4 F, 2V0 2 F. Sol. in H 2 without de- comp. Sol. in cone. HF + Aq. (Piccini and Giorgis, Gazz. cli. it. 24, 1. 68.) 3NH 4 F, 2YOF 3 + H 2 0. Sol. in H 2 with decomp. V 2 5 , 2NH 4 F. (Ditte, C. R. 106. 270.) V 2 5 , 8NH 4 F + 4H 2 0. As above. Y 2 6 , 4NH 4 F + 4H 2 0. As above. Sol. in H 2 0. Ammonium hydrogen fluefo'oxyvanadate, 7NH 4 F, HF, 4Y0 2 F. Yery sol. in H 2 0. (Petersen, J. pr. (2) 40. 284.) Ammonium hydrogen ^fiuoxyvanadate, 3HF, 9NH 4 F, 5YOF 3 . Easily sol. in H 2 0. SI. sol. in MF + Aq. (Petersen, J. pr. (2) 40. 280. ) 3NH 4 F, 3HF, 2VOF 3 . Sol. in H 2 0. (Baker, Chem. Soc. 33. 388.) Identical with 3HF, 9NH 4 F, 5YOF 3 . (Peter- sen.) Cadmium fluoxyvanadate, CdF 2 , YOF 2 + 7H 2 0. "Hypovanadate." As Zn salt. (Piccini and Giorgis. ) Cobalt fluoxyvanadate, CoF 2 , VOF 2 + 7H 2 0. "Hypovanadate." Sol. in H 2 0. (Piccini and Giorgis.) Nickel fluoxyvanadate, NiF 2 , VOF 2 + 7H 2 0. " Hypovanadate." As the Co salt. (Piccini and Giorgis.) Potassium fluoxyvanadate, 7KF, 3 YOF 2 . Yery si. sol. in H 2 and MF + Aq. Easily sol. in dil. acids. (Petersen, J. pr. (2) 40. 199.) 2KF, YOF 2 . As above. (Petersen.) 2KF, 2 Y 2 5 + 8H<>0. Sol. in H 2 and H 2 S0 4 . (Ditte, C. R. 105. 1067.) 2KF, 3Y 2 5 + 5H 2 0. As above. 2KF, 4 Y 2 5 + 8H 2 0. As above. 4KF, V 2 5 . Less sol. than 4KF, 3Y 2 5 . + 2H.,0, and +3H 2 0. Sol. in H 2 0. 4KF, ^3YA + 4H 9 0, and + 6H 2 0. Less sol. than 2KF, 3 Y 2 5 + 5H 2 0. 8KF, V 2 5 + 2H 2 0, and +3H 2 0. Sol. in H 2 0. Potassium (Mfluoxyvanadate, 2KF, YOF 3 . Ppt. (Petersen, J. pr. (2) 40. 272.) 6KF, V 2 5 , 2VOF 3 + 2H 2 0. Sol. in H 2 0. Insol. in cold cone. H 2 S0 4 . (Baker, Chem. Soc. 33. 300.) Formula is 3KF, 2Y0 2 F. (Piccini and Giorgis. ) See afooFluovanadate fluoxyvanadate, potas- sium. Potassium flu^'oxyvanadate, 2KF, Y0 2 F. Easily sol. in H 2 0. (Petersen, J. pr. (2) 40. 278.) 3KF, YO.,F. As above. (Petersen.) 3KF, 2V0 2 F. Sol. in H 2 ; scarcely at- tacked by H 2 S0 4 . (Piccini and Giorgis.) Potassium hydrogen fluoxyvanadate, 3KF, HF, 2VOF 3 . Sol. in H 2 0. (Petersen. ) Sodium fluoxyvanadate, 8NaF, 3YOF 2 + 2H 2 0. Sol. in H 2 6. (Petersen, J. pr. (2) 40. 200.) 3NaF, Y0 2 F, YOF 3 (?). Yery easily decomp. (Piccini and Giorgis.) 2NaF, 2Y 2 5 + 10H 2 0. Sol. in H 2 0. (Ditte, C. R. 106. 270.) 4NaF, Y 2 5 . As above. 4NaF, 3Y 2 5 + 18H 2 0. As above. 6NaF, Y 2 5 + 5H 2 0. As above. 8NaF, Y 2 5 + 3H 2 0. As above. Zinc fluoxyvanadate, ZnF 2 , ZnO, 2YOF 3 + 14H 2 0. Decomp. on air ; sol. in H 2 0. (Baker, Chem. Soc. 33. 388.) True composition is represented by the for- mula ZnF 2 , V0 2 F + 7H 2 0. (Petersen.) ZnF 2 , Y0 2 F + 7H 2 0. Yery sol. in H 2 0. (Piccini and Giorgis.) ZnF 2 ,YOF 2 + 7H 2 0. "Hypovanadate." Sol. in cold H 2 0, but decomp. by boiling ; sol. in dil. HF + Aq. (Piccini and Giorgis.) Fluozirconic acid. Ammonium fluozirconate, (NH 4 ) 2 ZrF 6 . Sol. in H 2 0. 3NH 4 F, ZrF 4 . Sol. in H 2 0. (Marignac.) Cadmium fluozirconate, 2CdF 2 , ZrF 4 + 6H 2 0. Sol. in H 2 ; can be recrystallised therefrom. (Marignac, A. ch. (3) 60. 257.) CdZrF 6 + 6H 2 0. Sol. in H 2 0. (Marignac.) Cupric fluozirconate, 2CuF 2 , ZrF 4 + 12H 2 0. Easily sol. in cold H 2 0. (Marignac, A. ch. (3) 60. 296.) 3CuF 2 , 2ZrF 4 + 16H 2 0. Sol. in H 2 0. (Marignac.) Magnesium fluozirconate, MgZrF 6 + 5H 2 0. Sol. in H 2 0. (Marignac.) Manganous fluozirconate, MnZrF 6 + 5H 2 0. Sol. in H 2 0. (Marignac, J. pr. 83. 202.) Nickel fluozirconate, 2NiF 2 , ZrF 4 + 12H 2 0. Sol. in H 2 0. (Marignac, A. ch. (3) 60. 291.) NiZrF 6 + 6H 2 0. Sol. in H 2 0. (Marig- nac. ) Nickel potassium fluozirconate, K 2 ZrF 6 , NiZrF 6 + 8H 2 0. Sol. in H 2 0. (Marignac.) Potassium fluozirconate, KF, ZrF 4 + H 2 0. Much more sol. in hot, than cold H 2 0. (Marignac.) 2KF, ZrF 4 = K 2 ZrF 6 . 100 pts. H 2 dissolve at 2, 0781 pt. ; at 15, 1'41 pts. ; at 19, 1-69 pts. ; at 100, 25 '0 pts. K 2 ZrF 6 . (Marig- nac.) 3KF, ZrF 4 . Sodium fluozirconate, 5NaF, ZrF 4 . 100 pts. H 2 dissolve 0'387 pt. at 18, and 1-67 pts. at 100. (Marignac.) GERMANIUM SULPHIDE 167 Zinc fluozirconate, ZnZrF 6 + 6H 2 0. Sol. in H 2 0. (Marignac. ) 2ZnF 2 , ZrF 4 + 12H 2 0. Sol. in H.,0. (Mar- ignac, A. ch. (3) 60. 257.) Fulminating gold. Sec Auroamidoimide. Fulminating platinum. See Fulminoplatinum. Fulminating silver. See Silver nitride. Fulminoplatinum compounds. See Dichlorofulmirioplatinum. ymhlorofulminoplatinum. T^rachlorofulminoplatinum. Chloroxyfulminoplatinum. Fuscocobaltic chloride, Co(NH 3 ) 4 (OH)Cl 2 + H 2 0. Sol. in H 2 0, from which it is precipitated by NH 4 Cl + Aq; decomp. by boiling H 2 ; pptd. from aqueous solution by alcohol. (Fremy, C. R. 32. 501.) nitrate, Co(NH 3 ) 4 (OH)(N0 3 ) 2 + H 2 0. Sol. in H 2 0. Properties as the chloride. (Fremy.) sulphate, Co(NH 3 ) 4 (OH)S0 4 + HH 2 0. Sol. in H 2 0. Insol. in NH 4 OH + Aq. (Fremy, C. R. 32. 501.) Insol. in H 2 0. Sol. in cone. HCl + Aq, or H 2 S0 4 , from which it is precipitated by H 2 0. (Vortmann, M. 6. 412.) Fusible white precipitate. See MercuritZi'ammonium chloride. Gadolinium, Gd (?). (Marignac, C. R. 102. 92.) Gadolinium oxide, Gd 2 3 (?). Sol. in acids, (de Boisbaudran, C. R. 111. 394.) Gallium, Ga. Not decomp. by H 2 ; easily sol. in cold HCl + Aq. Slowly sol. in warm dil. HN0 3 + Aq. Not attacked by cone. HN0 3 free from N 2 3 below 40-50, and only slowly in presence of N 2 3 . (Dupre, C. R. 86. 720.) Easily sol. in cold or warm KOH + Aq. (de Boisbaudran, A. ch. (5) 10. 100.) Gallium bromide, GaBr 3 . Deliquescent, and sol. in H 2 0. Gallium ^chloride, GaCl 2 . Deliquescent, and decomp. by H 2 0. (Nil- son and Petersen, C. R. 107. 527.) Gallium chloride, GaCl 3 . Deliquescent, and very sol. in little H 2 0. Decomp. by much H 2 0, with formation of basic salt, which .is slowly sol. in dil. HC1 + Aq. Gallium hydroxide. Sol. in acids ; sol. in KOH or NaOH + Aq, less easily in NH 4 OH + Aq, even in presence of ammonium salts. Gallium iodide, GaI 3 . Deliquescent, and sol. in H 2 0. (de Bois- baudran and Jungfleisch, C. R. 86. 578.) Gallium sw&oxide, GaO (?). Sol. in HN0 3 + Aq. (Dupre. ) Sol. in dil. H 2 S0 4 + Aq. Gallium oxide, Ga^g. Sol. in acids. Germanium, Ge. *~ Insol. in HCl + Aq. Easily sol. in aqua regia. Decomp. by HN0 3 + Aq to oxide. Cone. H 2 S0 4 decomp. to sulphate. Insol. in boiling KOH + Aq. (Winkler, J. pr. (2) 34. 177 ; 36. 177.) Germanium erabromide, GeBr 4 . Decomp. by H 3 0. (Winkler.) Germanium bichloride, GeCl 2 . Decomp. by H 2 0. (Winkler. ) Germanium ^rachloride, GeCl 4 . Sinks in H 2 0, and is gradually decomp. thereby. (Winkler, J. pr. 34. 177.) Insol. in and not attacked by hot cone. H 2 S0 4 . (Friedrich, W. A. B. 102, 2b. 540.) Germanium chloroform, GeHCl 3 . Decomp. by H 2 0. Sol. in HCl + Aq. (Winkler.) Germanium ^rafluoride, GeF 4 . Deliquescent, and sol. in H 2 0. + 3H 2 0. Deliquescent. Melts in its crystal H 2 when warmed. (Winkler.) Germanium potassium fluoride. See Fluogermanate, potassium. Germanium ^raiodide, GeI 4 . Deliquescent, and sol. in H 2 with decomp. (Winkler.) Germanium monoxide, GeO. Not appreciably sol. in dil. H 2 S0 4 + Aq. Easily sol. in HCl + Aq. Insol. in alkalies. (Winkler, J. pr.- (2) 34. 177.) Somewhat sol. in H 2 ; insol. in H 2 S0 4 + Aq, even when hot and cone, (van Bemmelen, R. t. c. 6. 205.) Germanium o^oxide, Ge0 2 . Not very difficultly sol. in H 2 0. Sol. in 247-1 pts. H 2 at 20 ; in 93 "3 pts. at 100. (Winkler.) Easily sol. in alkali carbonates or hydrates + Aq ; si. sol. in acids. Germanium oxychloride, GeOCl 2 . Insol. in H 2 ; sol. in acids. (Winkler, J. pr. (2) 36. 177.) Germanium wowosulphide, GeS. Sol. in 402'9 pts. H 2 0. Sol. in cone, hot 168 GLASS HCl + Aq. Sol. in KOH + Aq. Sol. in (NH 4 ) 2 S + Aq when precipitated. Insol. in (NH 4 ) 2 S + Aq if crystalline. Also exists in a colloidal state. (Winkler.) Germanium e^'sulphide, GeS 2 . Sol. in 221-9 pts. H 2 0. Easily sol. in KOH + Aq, or NH 4 OH + Aq. Insol. in acids. Exists also in a colloidal state. (Winkler. ) Glass. Numerous and extensive researches have been made on the action of H 2 and various solutions on glass. The older work has a cer- tain historical interest, but only a brief state- ment of some of the more important results can be given here. For a very thorough resume of the work before the year 1861, Storer's Dictionary, p. 555, should be con- sulted. All glass is more or less attacked by H 2 0, the more easily the jgreater the amount of alkali present, the finer it is powdered, and the higher the temperature. Glass, as that of a flask, is decomposed to a consider- able extent by several days' boiling with H 2 O, a portion of the fixed alkali being dissolved, but when powdered glass is rubbed with distilled H 2 O in a mortar, the H 2 O remains pure and exhibits no alkalinity. (Scheele.) Glass of alembics is partially dissolved by long boil- ing with H 2 O. (Lavoisier.) H 2 O extracts potash or soda from glass together with a portion of the silica, the decomposition taking place the more easily in proportion as the glass is richer in alkalies, more minutely divided, or the temperature of the water higher. (Bischof, Kastn. Arch. 1. 443.) Powdered crown glass and some varieties of window glass render cold HoO alkaline when in contact there- with. (Dumas.) 100 pts. finely divided flint glass lose 7 pts. potash when boiled one week with H 2 O. (Griffiths, Q. J. Sci. 20. 258.) Retorts of ordinary or flint glass are partially dis- solved by H 2 O when it is evaporated therein. (Chevreul, 1811.) Finely powdered plate-glass (Faraday, Pogg. 18. 569), and Thuringian potash glass (Ludwig, Arch. Pharm. 91. 47) redden moistened turmeric paper. The alkaline reaction disappears by continued wash- ing, but reappears when the glass is freshly rubbed. (Griffiths.) Cold H 2 O takes up SiO 2 as well as alkali from glass powder. (Fuchs.) Powdered lead glass gives up appreciable amounts of PbO to weakly acidified H 2 0. (Pelouze.) When powdered white glass, containing 12 '4 % Na 2 0, 15'5 % CaO, and 72 '1 % SiO 2 , is treated repeatedly with H 2 O, more than 3 % of the glass is dissolved, and the undissolved part gives up 1'5 % CaO to HCl+Aq with effervescence. A glass containing more alkali, i.e. 16-3 % Na 2 O, 6'4 % CaO, 77'3 % SiO a , lost with the same treatment 18 '2 %, and the residue gave up 2 % CaO to HCl+Aq. (Pelouze, C. R. 43. 117.) In the above case the fineness of the glass has an influence as well as its composition. When the same sample of glass was boiled 1 hour with H 2 O, amounts were dissolved in the proportion 1 : 4 :28, according as the glass was in the form of a coarse, fine, or very fine powder. Glass of the composition of the above samples, as given by Pelouze, lost 10 and 32 % respectively. If powdered glass is boiled with H 2 and CO 2 con- ducted into the solution, it is absorbed ; if boiled with K 2 SO 4 , Na 2 SO 4 is dissolved. (Pelouze.) Glass tubes are converted into a white crystalline mass by heating with H 2 O several months to 75-150 ; lead glass and Bohemian glass most easily, English crown glass least. A little H 2 O attacks glass more than much H 2 O. The action of H 2 is greatly increased by finely pulverising the glass. H 2 dissolved 10 % of a glass containing 12 % Na 2 0, 15-5 % CaO, and 72 '5 % Si0 2 , and 32 % of another glass containing 16 '3 % Na 2 0, 6'4 % CaO, and 77 '3 % Si0 2 . (Vogel, B. A. Miinchen, 1867. 437.) Action of H 2 on a glass containing 74 % Si0 2 , 8'6 % CaO, 14 % Na 2 0, 0'6 % K 2 0, with traces of A1 2 3 , Fe 2 3 , MnO, and MgO. By boiling with H 2 a decrease of 3*9 nag. was observed for the first hour, which soon became constant at 2 '2 mg. per hour. The action was then proportional to the time, and also to the surface in contact with the liquid, but independent of the amount of liquid evaporating. The action decreases rapidly with the tem- perature, so that at 90-100 only | as much glass is dissolved as by boiling H 2 0. (Emmer- ling, A. 150. 257.) When steam condenses in tubes of Na glass, they are so strongly attacked that the H 2 has an alkaline reaction, but tubes of hard or Bohemian K glass are not so strongly attacked. (Tollens, B. 9. 1540.) The effect of H 2 is so great as to impart a distinctly alkaline reaction to water condensing in a tube of ordinary glass. By condensing water in long tubes of various kinds of glass the following results were obtained. I. Easily fusible Thuringian glass. Surface exposed = 324 sq. cm. After 2 hours, 62 '0 mg. KOH were dis- solved. After 3 hours more, 36 '0 mg. KOH were dis- solved. After 3 hours more, 33 '2 mg. KOH were dis- solved. After 3 hours more, 20 '8 mg. KOH were dis- solved. After 3 hours more, 20 P 8 mg. KOH were dis- solved. Or, in 14 hours, 172 '8 mg. KOH were dis- solved. II. Less easily fusible Thuringian glass. Surface exposed = 499 sq. cm. After 3 hours, 19 '2 mg. KOH were dis- solved. After 3 hours more, 15 '2 mg. KOH were dis- solved. After 3 hours more, 12 '4 mg. KOH were dis- solved. After 3 hours more, 11'2 mg. KOH were dis- solved. Or, after 12 hours, 58 '0 mg. KOH were dis- solved. III. Combustion tubing of very difficultly fusible Bohemian glass. Surface exposed = 1130 sq. cm. After 3 hours 4 '16 mg. KOH were dis- solved. After 3 hours more 4*16 mg. KOH were dis- solved. After 3 hours more 4 '16 mg. KOH were dis- solved. After 3 hours more 4*16 mg. KOH were dis- solved. Or, after 12 hours, 16 '64 mg. KOH were dis- solved. GLASS 169 IV. Easily fusible Bohemian glass. Surface exposed = 1394 sq. cm. After 3 hours, 7*88 mg. KOH were dissolved. After 3 hours more, 8 '56 mg. KOH were dis- solved. After 3 hours more, 1*97 mg. KOH were dis- solved. Or, after 9 hours, 24 '32 mg. KOH were dis- solved. (Kreusler and Henzold, B. 17. 34.) From 'the above the following table has been calculated. 50 com. H 2 dissolves from a surface of 1000 sq. m. in 1 hour : 96 '0 mg. from easily fusible Thuringian glass. 12 '8 mg. from less fusible Thuringian glass. 1 '2 mg. from combustion tube of Bohemian glass. 2'0 mg. from harder tube of Bohemian glass. (Kreusler and Henzold, B. 17. 34.) 100 ccm. H 2 dissolves so much glass from a flask every 2 seconds when in contact there- with that 01 ccm. > normal oxalic acid is neutralised thereby. (Bohlig, Z. anal. 23. 518.) Action of H 2 on various kinds of Na glass. 1 g. of finely powdered glass was boiled 10-15 minutes in a silver dish with 100 ccm. H 2 0, and the per cent of Na 2 (or K 2 0) in the solution was determined. %Na 2 (K 2 0) Orthoclase felspar . . . .0*17 Glass of a Bohemian combustion tube . 0'56 ,, flask (German manuf.) . . 0'69 ,, champagne bottle . . 1'7 Natrolite 1*32 Glass of a wine bottle (Hungarian) . 2 '22 Glass which was attacked by H 2 under pressure 37 Lead glass . . . . . .3*8 Glass that broke easily . . . 4'8 Glass tubing that became rough when fused 6*1 Glass tubing that became opaque by fusing 14'35 Solid water glass 26 '97 (Wartha, Z. anal. 24. 220.) The relative ease by which various kinds of glass are attacked by H 2 is shown by the following table. The glass was powdered and heated on a water bath with exclusion of atmospheric C0 2 . Potassium water glass . . . 291 Sodium water glass . . .196 Yellow glass rich in alkali . . 34 Thuringian glass . . . . 19 Ditto from Tittel and Co. 8 Window glass .... 8 Lead glass from Jena ... 6 Bohemian glass from Kavalier . 2 '4 Lead crystal glass . . . . 1 '4 Thermometer glass, 161 V, from Jena I'O Zinc glass, 362, from Jena . . 0'8 Lead glass, 434, from Jena . . 0'6 Lead glass, 483, from Jena . . 0'2 Heaviest lead silicate, from Jena . O'O (Mylius, C. C. 1888. 1313.) Solubility of various kinds of glass in H 2 0. The amounts dissolved from various kinds of glass by heating 5 hours with H 2 were as follows. Yellow glass rich in alkali (13 % K 2 0, 15 % Na 2 0) ... 249 mg. Poor Thuringian glass (6 '6 % K 2 0, 16'5%Na 2 0). . . . 91-4 Glass from Tittel and Co. (7 '1 % K,0, 14'3%Na 2 0) .... 30-4 Bottle glass from Schilling (4 '2 % K 2 0, ll'9%Na 2 0). . . 13-0 Bohemian glass from Kavalier (13 '3 %K 2 0, ll'4%Na 2 0) . . 10-1 Rhenish window glass (13 '5 %Na 2 0) 8 '4 ,, Lead crystal glass from Ehrenfeld (12-1 % K 2 0) . . . . 8'5 Green bottle glass (1'3 % K 2 0, 9 '5 %Na 2 0) 6-5 Thermometer glass 16III from Jena (14 "0 % Na 2 0, 7 % ZnO) . 6'4 Lead glass, No. 483, from Jena (47%PbO, 7'3%K 2 0) . . 3-3 Lead silicate . . . . . 0'6 ,, (Mylius and Forster, B. 22. 1100.) By calculation from the electrical conduct- ivity of the solutions formed, various data were obtained by Kohlrausch (B. 24. 3561), which showed that different varieties of glass were attacked in very different degree by cold H 2 0, and, moreover, the amount dissolved was proportionately much greater during the first few minutes of treatment with H 2 than afterwards, and, furthermore, the rate of decrease was much faster for good glass than poor. Increase of temperature increased the rate of solubility to a very great degree, the increase for 1 C. being about 17 %. In 7 hours at 80 half as much was dissolved as in 6 months at 18. Extensive tables are given. (Kohlrausch, B. 24. 3561.) See also Kohl- rausch (W. Ann. 44. 577). A very extensive research on the action of H 2 on glass, with a historical review of the work previously done on the subject, has been published by Mylius and Forster. (Z. anal. 31. 241.) The general results may be summed up as follows : 1. The solution of glass in H 2 is caused by a decomposition, by which free alkali is formed. 2. The silicic acid of the glass is brought into solution by a secondary reaction of the free alkali in the solution. 3. The constituents of the solution change according to the conditions of the digestion. 4. The amount of alkali going into solution from a given surface under certain conditions is a measure for the resistance of a glass under those conditions. 5. The rate of attack of glass surfaces by cold H 2 decreases rapidly with the length of time of digestion, and finally approaches a constant value. 6. The solubility increases very rapidly with increase of temperature. 170 GLASS 7. The ratio of the solubility of several kinds of glass is dependent on the tempera- ture. 8. From glasses which show the same ease of attack unequal amounts of substance may be dissolved. 9. The solubility of a' glass is influenced by the condition of the surface from "weather- ing" by prolonged exposure to the C0 2 and H 2 of the air. 10. The poorer a glass is the less will its solubility decrease by prolonged treatment with H 2 0. 11. A good glass is essentially less easily attacked after having been previously treated with H 2 0. 12. After treatment with H 2 0, glass sur- faces have the property of fixing alkali from the solutions formed, and giving it up again by a subsequent treatment with H 2 0. 13. Potassium glass is much more sol. than sodium glass (contrary to previous researches), but the difference decreases as the glass be- comes richer in CaO. 14. In glass flasks which are to be only slightly attacked by cold or hot H 2 0, the CaO, alkalies, and Si0 2 must stand in a fixed relation to each other. 15. Of the more common varieties of glass, lead flint glass is least sol. in H 2 0, but its surface is corroded, and it is easily decomp. by acids. (Mylius and Fbrster, Z. anal. 31. 241.) Bottle glass containing much AloOs is easily attacked by acids. From powdered flint glass, boiling HCl+Aq extracts K, but no Pb. (Griffiths.) Bottles of flint glass with (NH 4 > 2 CO 3 +Aq became so fragile that on shaking pieces of glass were detached. (Griffiths.) All glass is decomp. by HF. Cone. H 3 PO 4 also attacks all glass. Glass containing small amounts of SiO 2 are attacked by H 2 SO 4 ; poorer glass by boiling HC1, HNO 3 , and aqua regia. (Berzelius.) Cone. HNO 3 does not act on flint glass at 145-150. (Sorby, C. R. 50. 990.) Glass of ordinary chemical apparatus gives up traces of metals to HC1 and HN0 3 + Aq, but hard Bohemian glass consisting of 75 % Si0 2 , 15 % K 2 0, 10 % CaO, resists the action of warm cone, acids ; also an easily fusible Na K glass with 77 % Si0 2 , 77 % K 2 0, 5 % Na 2 0, 10'3 % CaO, is not easily attacked. (Stas.) KOH, and NaOH + Aq dissolve Si0 2 from glass the more easily the hotter and the more cone, the solutions are. (Miiller.) NH 4 OH, and (NH 4 ) 2 C0 3 + Aq attack many kinds of glass, especially flint glass. Ca0 2 H 2 attacks glass appreciably at 45 and lower ; still more strongly on boiling. (Lamy, A. ch. (5) 14. 155.) The action of various solvents on the glass mentioned on page 168 in Emmerling's experi- ments is as follows : The action of HCl + Aq containing 0'2 to 3 % HC1 is practically null, but is increased either by dilution or concentration. A very small quantity (0'02 %) HC1 added to H 2 almost wholly prevents its action on glass. With HC1 + Aq (11 % HC1) a decrease of 4 -2 mg. was noticed in the first hour, and only 3-4 mg. afterwards. The same is the case for HN0 3 + Aq in still greater degree, O'OOS % HN0 3 sufficing to nearly counteract the solvent action of H 2 O. H 2 S0 4 + Aq has about double the solvent effect possessed by H 2 0. Oxalic and acetic acids both diminish the solvent action of H 2 0. The addition of even traces (0'04 %) of Na 2 C0 3 increases the solvent action, and this is further rapidty increased by an increase in the amount of NaoC0 3 . Na 2 C0 3 + Aq containing 1 % Na 2 C0 3 dissolves about 10 times as much as pure H 2 0, i.e. about 35 mg. per hour. The above is also the case with KOH + Aq, but in even greater degree. KOH + Aq con- taining 0-025 % KOH dissolved three times as much as pure H 2 0. (NH 4 ) 2 C0 3 + Aq has about the same action as H 2 0. With NH 4 OH + Aq (9 % NH 3 ) 7 mg. de- crease for the first hour, and 3 mg. afterwards was noticed. The concentration of the NH 4 OH + Aq was apparently without effect. The addition of NH 4 C1 decreases the solvent action of H 2 proportionately to the amount added, but with new flasks large amounts are dissolved. With NH 4 C1 + Aq (7 % NH 4 C1) 4 "2 mg. were dissolved in the first hour, and the amount dissolved gradually decreased to null after 24 hours on account of the liberation of HC1 by the decomp. of NH 4 C1. NaCl, KC1, KN0 3 , and Na 2 S0 4 show a similar behaviour to that of NH 4 C1. Na ? HP0 4 + Aq containing 0'4 % Na 2 HP0 4 has six times the solvent action of pure H 2 0, but the action is not increased by further con- centration. In general, those salts the acids of which form insol. Ca salts, as Na 2 C0 3 , Na 2 S0 4 , NagHPOj, (NH 4 ) 2 C 2 4 , increase the solvent action of H 2 0, and this effect is greater the more concentrated the solution. KC1, KN0 3 , NH 4 C1, and CaCl 2 decrease the effect, and the stronger the solution the less is the action. All Na glass with approximately the above composition has the same power of resistance against H 2 ; Bohemian K glass shows a greater resistance, especially against acids. (Emmerling, A. 150. 257.) Action of various reagents on hard Bohemian glass. 100 com. substance dissolved mg. glass in 6 days at 100. H 2 .... lO'O H 2 S + Aq . . . 87 Dil. (NH 4 ) 2 S + Aq. . 52 "5 Cone. (NH 4 ) 2 S + Aq . 47 '2 Cone. NH 4 OH + Aq . 42 '5 Dil. NH 4 OH + Aq . . 77 NH 4 SH + Aq. . . 51 '2 (Cowper, Chem. Soc. 41. 254.) GLUCINUM MERCURIC CHLORIDE 171 Action of various solutions on glass of different composition. (The figures denote decrease in weight in mg. of a 100 ccm. flask.) Time 1 2 3 4 5 6 7 8 9 10 H 2 5hrs. 62 31 29 17 13 9 7 7 5 4 H 2 S0 4 + Aq(25 % H 2 S0 4 ) 3 ... 43 35 8 7 6 5 5 5 3 HCl + Aq(12%HCl) 3 85 ... 27 4 2 1 1 1 NH 4 OH + Aq(10 % NH 3 ) 3 ... 62 11 8 7 7 6 5 5 Na 2 HP0 4 + Aq (12 % Na 2 HP0 4 ) Na 2 C0 3 + Aq (2 % Na^Og) . 3 3 283 160 81 130 64 124 40 50 35 45 34 42 30 42 15 26 12 25 Composition of above varieties of glass. l. 2 3 4 5 6 7 8 9 ro Si0 2 . 76-22 74-09 76-39 68-56 74-48 74-69 66-75 74-12 77-07 74-40 A1 2 3 0-40 0-50 1-85 0-50 0-45 1-31 0*50 0-30 0-70 CaO . 4-27 5-85 5-50 7-60 7-15 7-85 13-37 8-55 8-10 8-85 K 2 . 7-32 4-94 2-24 6-64 8-64 15-50 4-86 375 4-40 Na^O. 19-51 12-34 12-67 19-75 11-23 8-37 3-07 11-97 1078 11-65 It is seen that glass which resists the attack of H 2 also resists acids and alkalies, and that the relative resistance of all varieties to any of the solutions is the same. Therefore the action of H 2 may be accepted as a criterion for judging of the resistance of a glass to all solvents. Glass No. 10,. in which the molecular ratio of Si0 2 :CaO: K 2 0(Na 2 0) is 8 : 1 : 1'5, is recommended as best suited for chemical uses. (Weber and Sauer, B. 25. 70.) Mylius and Forster (B. 25. 97) recommend a glass in which the molecular ratio of Si0 2 : CaO : K 2 (Na 2 0) is 7'2 : 1 : I'l as the best suited for chemical apparatus. In an exhaustive research on the action of aqueous solutions on glass, which cannot be given in full on account of its great length, the following conclusions are reached : 1. Solutions of caustic alkalies act on glass much more strongly than H 2 0, dissolving all the constituents of the glass that is, the glass as such. Very dilute solutions form an ex- ception. 2. Of the caustic alkalies, NaOH + Aq has the strongest action, then come KOH, NH 4 OH, and Ba0 2 H 2 + Aq in the order named. 3. Increase in temperature increases the strength of the attack of alkalies very con- siderably. 4. At high temperatures, the ease with which glass is attacked increases at first rapidly with the concentration of the alkali, but afterwards more slowly. 5. At ordinary temperatures very concen- trated alkali solutions have less action on glass than dil. solutions. 6. Solutions of pure alkalies, if not too cone., act less on glass than when contaminated with small amounts of Si0 2 . 7. Alkali carbonates + Aq attack glass much more than H 2 0, even when they are very dilute. The action corresponds less to that of the caustic alkalies than to that of other salts. With equivalent concentration, Na 2 C0 3 + Aq has a stronger action than K 2 C0 3 + Aq. 8. The action of salt solutions on glass is a compound one, depending both on the concen- tration and the kind of salt dissolved, and is made up of the action of the H 2 and the salt in solution. 9. Each kind of attack is differently in- fluenced by the composition of the glass. 10. Solutions of those salts, the acids of which form insol. Ca salts, have a stronger action than H 2 0, and the action increases with the concentration. 11. Solutions of those salts, the acids of which form sol. Ca salts, have less action than H 2 0, and the action decreases with the concentration. (Forster, B. 25.2494.) Glucinic acid. Potassium glucinate, K 2 G10 2 . Very deliquescent. Sol. in H 2 and acids. (Kriiss and Moraht, B. 23. 733.) G-lucinum (Beryllium), Gl. Not attacked by hot or cold H 2 0. Sol. in cold dil. HN0 3 + Aq. ( Wohler, Pogg. 13. 577. ) Sol. only in boiling cone. HN0 3 -f-Aq. (Debray, A. ch. (3) 44. 5.) Sol. in dil. HO1 + Aq, dil. and cone. H 2 S0 4 + Aq, and KOH + Aq, but insol. in NH 4 OH + Aq. (Wohler, Debray.) Glucinum bromide, GlBr 2 . Sol. in H 2 with evolution of much heat. (Wohler.) Glucinum chloride, G1C1 2 . Anhydrous. Fumes and deliquesces in air. Sol. in H 2 with hissing and evolution of much heat. Easily sol. in alcohol. + 4H 2 0. Deliquescent, and very sol. in H 2 0. Glucinum ferric chloride, G1C1 2 , FeCl 3 + H 2 0. Decomp. by H 2 0. (Neumann, A. 244. 329.) Glucinum mercuric chloride, G1C1 2 , 3HgCl 2 + 6H 2 0. , Sol. in H 2 0. (Atterberg, B. 6. 1288.) 172 GLUCINUM THALLIC CHLORIDE Glucinum thallic chloride, 3G1C1 2 , 2T1C1 3 . Cryst. from HC1 solution. (Neumann, A. 244. 348.) Glucinum stannic chloride. See Chlorostannate, glucinum. Glucinum fluoride. Not known in solid state. Glucinum potassium fluoride, G1F 2 , KF. SI. sol. in H 2 0. (Awdejew.) Much more sol. in hot than cold H 2 0. (Berzelius.) G1F 2 , 2KF. Sol. in about 50 pts. H 2 at 20, and 19 pts. boiling H 2 0. (Marignac.) Glucinum sodium fluoride, G1F 2 , 2NaF. Sol. in 34 pts. H 2 at 100, and 68 pts. at 18. (Marignac.) Glucinum hydroxide, G10 2 H 2 . Easily sol. in acids. Sol. in H 2 S0 3 + Aq. * Sol. in C0 2 + Aq; 100 ccm. sat. C0 2 + Aq dissolve 0'0185 g. G10. (Sestini, Gazz. ch. it. 20. 313.) Also sol. in KOH, NaOH, NH 4 OH, or (NH 4 ) 2 C0 3 + Aq, especially when first precipi- tated ; also inNa 2 C0 3 , or K 2 C0 3 + Aq. (Debray. ) Insol. in NH 4 OH + Aq containing NH 4 C1 + Aq. Very si. sol. in Li 2 C0 3 + Aq. (Gmelin.) Sol. in H 2 S0 3 + Aq. (Berthier.) Sol. in Ba0 2 H 2 + Aq, from which it is pptd. by NH 4 salts, but not by boiling. Sol. in boiling NH 4 C1 + Aq when freshly pptd. Sol. in NH 4 F + Aq. (Helmholt, Z. ar 130.) Contains JH 2 (SchafFgotsch) ; |H 2 (Atter- berg). Glucinum iodide, G1I 2 . Sol. in H 2 with evolution of much heat. (Wohler.) Glucinum oxide, G10. Crystalline. Insol. in acids except cone. H 2 S0 4 . (Ebelmen, C. R. 32. 710.) Amorphous. Absolutely insol. in H 2 0. The higher the temp, to which the substance has been heated the more insol. is it in acids. Insol. in NH 4 OH + Aq or O absorbs 2 '5 vols. H 2 S at ord. temp. (Dalton.) 1 vol. H 2 absorbs 4 '3706 -0'083687t + 0'0005213t 2 vols. H 2 S at temperatures between 2 and 43 '3. (Bunsen and Schonfeld, A. 93. 26.) At and about 820 mm. pressure 1 ccm. H 2 absorbs 100 ccm. H 2 S, while only about 4 ccm. are absorbed at ord. pressure. (de Forcrand and Villard, C. R, 106. 1402.) 1 vol. H 2 at 760 mm. pressure and t absorbs V vols. H 2 S, reduced to and 760 mm. t V t V t V 4-3706 14 3-3012 28 2-4357 1 4-2874 15 3-2326 29 2-3819 2 4-2053 16 3-1651 30 2-3290 3 4-1243 17 3-0986 31 2-2771 4 4-0442 18 3-0331 32 2-2262 5 3-9652 19 2-9687 33 2-1764 6 3-8872 20 2-9053 34 2-1277 7 3-8103 21 2-8430 35 2-0799 8 37345 22 2-7817 36 2-0332 9 3-6596 23 2-7215 37 1-9876 10 3-5858 24 2-6623 38 1-9430 11 3-5132 25 2-6091 39 1-8994 12 3-4415 26 2-5470 40 1-8569 13 3-3708 27 2-4909 ... (Schonfeld, A. 93. 26.) Less sol. in NaCl, or CaCl 2 + Aq than in H 2 0. At 18 and ord. pressure, 100 vols. alcohol of 0'S4 sp. gr. absorb 606 vols. H 2 S. (de Saussure, 1814.) 1 vol. alcohol absorbs 17 '891 -0'65598t + 0'00661t 2 vols. H 2 S between and 22. (Carius.) 1 vol. alcohol at t and 760 mm. absorbs V vols. H 2 S reduced to and 760 mm. t V _^| V t V 17-891 9 12-523 18 8-225 1 17-242 10 11-992 19 7-814 2 16-606 11 11-475 20 7-415 3 15-983 12 10-971 21 7-030 4 15-373 13 10-480 22 6-659 5 14-776 14 10-003 23 6-300 6 14-193 15 9-539 24 5-955 7 13-623 16 9-088 ... 8 13-066 17 8-650 ... (Carius, A. 94. 140.) Sol. in methyl acetate (Marchand), ether (Higgins). Insol. in caoutchin. Difficultly sol. in cone. H 2 S0 4 with decomp. Instantly decomp. by fuming HN0 3 . Sol. in glycerine in less amount than in H 2 0. If a certain vol. of H 2 dissolves 100 pts. H 2 S, the same vol. of glycerine (1 pt. glycerine + 1 pt. H 2 0) dissolves only 60 pts. H 2 S, but the solution is very stable. After standing a year there is no appreciable decomp. (Lapage, J. Pharm. (4)5.256.) According to Lindo (C. N. 57. 173), the solu- tion in glycerine is no more stable than that in H 2 0. Sol. in CS 2 . + 7H 2 0. Easily decomp. by heat. (de Forcrand and Villard, C. R. 106. 1402.) N 178 HYDROGEN SULPHIDE Hydrogen jper sulphide, H 2 S 2 or H 2 S 5 . Decomp. by contact with H 2 0, in which it is apparently insol. Sol. in ether with subse- quent decomp. Sol. in CS 2 . (Thenard, A. ch. 48. 79.) H 2 S 2 . Quickly decomp. by ether, acetic ether, ethyl, or amyl alcohol. H 2 S has no action. Cone. HC1, or HC 2 H 3 2 + Aq have no action. Sol. in a solution of S in CS 2 , and in liquid hydrocarbons. Chloroform dissolves without decomp. (Sabatier, C. R. 100. 1346, 1585.) Alkalies, and K 2 S + Aq decomp. instantly. Formula is H 2 S 5 . (Rebs, A. 246. 356. ) Hydrogen telluride, H 2 Te. Rather sol. in H 2 0. Hydrosulphuric acid, H 2 S. See Hydrogen sulphide. Hydrosulphurous acid, H 2 S0 2 . See Hyposulphurous acid. Hydroxylamine, NH 3 = NH 2 (OH). Known only in solution. Sol. in alcohol. (Lossen, J. pr. 96. 462.) Prepared in free state by de Bruyn. Very deliquescent, and sol. in H 2 and alcohol. SI. sol. or insol. in CHC1 3 , C 6 H 6 , ether, or ethyl acetate. Methyl alcohol at 5 dissolves 35 % ; ethyl alcohol at 15, 15 % ; boiling dry ether, 1'2 % ; ethyl acetate, 1 '6 %. (de Bruyn, R. t, c. 11. 1 8. ) Hydroxylamine chloride, NH 3 (OH)C1. Not deliquescent. Very sol. in H 2 and hot ordinary alcohol. SI. sol. in absolute alcohol. Insol. in ether. (Lossen. ) 100 pts. absolute methyl alcohol dissolve 16'4 pts. at 1975; 100 pts. absolute ethyl alcohol dissolve 4 '43 pts. at 19 '75. (de Bruyn, Z. phys. Ch. 10. 783.) Hydroxylamine chloride, basic, NH 3 (OH)C1, NHoOH. Sol. in H 2 0. Alcohol precipitates from aqueous solution. Insol. in ether. (Lossen.) 2NH 3 (OH)C1, NH 2 OH. Deliquescent ; very sol. in H 2 0, less in alcohol, and insol. in ether. (Lossen.) Hydroxylamine zinc chloride, etc. See Zinc chloride hydroxylamine, etc. Hydroxylamine nitrate, NH 3 (OH)N0 3 . Very sol. in H 2 and absolute alcohol. (Lossen.) Hydroxylamine or^ophosphate, (NH 3 OH) 3 P0 4 . SI. sol. in cold H 2 0. (Lossen.) Hydroxylamine sulphate, (NH 3 OH) 2 S0 4 . Easily sol. in H 2 0. Precipitated from con- centrated aqueous solution by alcohol. (Lossen. ) For double salts, see under sulphuric acid. Hydroxylamine wo?iosulphonic acid, HONH(S0 3 H). "Sulphazidic acid" of Fremy. acid, " Sulphydroxylamic acid " of Glaus. Sol. in H>0. Slowly decomp. on boiling. (Raschig, A. 241. 161.) Jforaobariuxn hydroxylamine mcwosulphate, (HONHS0 3 )B 2 a + H 2 0. Easily sol. in H 2 0. (Divers and Haga, Chem. Soc. 55. 760.) ^'barium - , Ba(HONS0 3 ) 2 Ba + H 2 0. Nearly insol. in H 2 ; sol. in HC1 + Aq. (Divers and Haga, Chem. Soc. 55. 760.) Potassium - , HONH(S0 3 K). "Potassium sulphydroxylamate " of Glaus. " Potassium sulphazidate " of Fremy. Sol. in cold H 2 0. Easily sol. in hot H,0 without decomp. Insol. in alcohol. (Raschig.) + H,0. (Divers and Haga, Chem. Soc. 55. 760.) Hydroxylamine cfo'sulphonic HON(S0 3 H) 2 . " ifeulphydroazotic acid " of Glaus. ' ' Sulphazotic acid " of Fremy. Not known in free state. (Raschig, A. 241. 161.) Potassium hydroxylamine rftsulphonate, HON(S0 3 K) 2 + 2H 2 0. "Potassium cfo'sulphydroxyazotate " of Glaus (A. 158. 75). Insol. in cold H 2 0. Very unstable. Very difficultly sol. in H 2 0, more easily in dil. KOH + Aq. 241. 161.) D iky dr oxylamine (HO) 2 N(S0 3 H). " Sulphazinous acid " of Fremy. Known only in its salts. (Raschig, A. 241. 161.) Potassium ^'hydroxylamine sulphonate, (HO) 2 NS0 3 K. Not obtained in pure state ; forms basic salt ^NS0 3 K, which is quite sol. in H 2 0, and corresponds to "sulfazite de potasse " of Fremy (A. ch. (3) 15. 421). Sol. in H 2 ; insol. in alcohol and ether. (Fremy.) Hydroxyloiodoplatin^amine sulphate, (OH)IPt(NH 3 ) 4 S0 4 + H 2 0. Very si. sol., even in boiling H,0. (Carlgren, Sv. V. A. F. 47. 312.) Hydroxylonitratoplatin^/amine nitrate, OH p N,H 6 N0 3 (Raschig, A. sulphonic acid, SI. sol. in cold, more easily in hot H 2 0. Very si. sol. in H 2 containing HN0 3 . (Cleve.) I^T/rophosphate, "OH P ,N 2 H 6 " Very si. sol. in H 2 0. (Cleve.) Hydroxyloplatinamine hydroxide, (OH),Pt(NH 3 OH) 2 . Insol. in H,0. Easily sol. in dil. acids, even HYPOBROMITE, STRONTIUM 179 HC.,H 3 0,,+ Aq. Not decomp. by boiling KOH + Aq. (Gerhardt, Compt. Chem. 1849. 490.) Hydroxyloplatinamine nitrate, (OH) 2 Pt(NH 3 N0 3 ) 2 + 2H 2 0. SI. sol. in cold, easily in hot H 2 ; not attacked by cold HC1 + Aq. (Cleve.) " - oxalate, (OH) 2 Pt(NH 3 ) 2 CA + H 2 0. Sol. in hot H 2 0. - sulphate, (OH) 2 Pt(NH 3 ) 2 S0 4 + H 2 0. Difficultly sol. in H 2 0. (Cleve.) Hydroxyloplatin^'amine bromide, (OH) 2 Pt(NH 3 ) 4 Br 2 . SI. sol., even in boiling H 2 0. (Carlgren, Sv. V. A. F. 47. 320.) - chloride, (OH) 2 Pt(NH 3 ) 4 Cl 2 . Sol. in 206 pts. cold, and 49 pts. boiling H 2 0. (Carlgren, Sv. V. A. F. 47. 316.) - chromate, (OH) 2 Pt(NH 3 ) 4 Cr 2 7 . Very si. sol. in cold or hot H.,0. (Carlgren, Sv. V. A. F. 47. 319.) - iodide, (OH) 2 Pt(NH 3 ) 4 I 2 . SI. sol. in hot or cold H 2 0. (Carlgren.) - nitrate, (OH) 2 Pt(NH 3 ) 4 (N0 3 ) 2 . SI. sol. in cold, moderately sol. in hot H 2 0. (Gerhardt, A. 76. 315.) Sol. in 343 pts. cold, and 38 pts. boiling H 2 0. (Carlgren, Sv. V. A. F. 47. 318.) - nitrite, (OH) 2 Pt(NH 3 ) 4 (N0 2 ) 2 . Easily sol. in H 2 0. (Carlgren.) - sulphate, (OH) 2 Pt(NH 3 ) 4 S0 4 . Very si. sol. in boiling H 2 0. (Cleve.) + 4H 2 0. Efflorescent. (Carlgren, Sv. V. A. F. 47. 313.) nitrate, p NH 3 NH 3 N0 3 2 Pt NH 3 N0 3 . Very easily sol. in H 2 0. (Cleve. ) Hydroxyloplatinse/m'cfo'aniine nitrate, (OH) 3 PtNH 3 NH 3 N0 3 (?). Easily sol. in H 2 0. (Cleve. ) - sulphate, (OH) 2 PtNH 8 NH 8 Sci ' (?) " Sol. in hot H 2 0. 4 HydroxyloG^'platin^amine chloride, (OH) 2 Pt 2 (N 2 H 6 ) 4 Cl 4 + H,0. Extremely si. sol. in H 2 0. - ^chromate, (OH) 2 Pt 2 (N 2 H 6 ) 4 (Cr 2 7 ) 2 . Ppt. (Cleve.) nitrate, (OH) 2 Pt 2 (N 2 H 6 ) 4 (N0 3 ) 4 . Very si. sol. in cold, more easily in hot H.,0. (Cleve.) - phosphate, (OH) 9 Pt.,(N 2 H 6 ) 4 (P0 4 H) (> . Ppt. - sulphate, (OH) 2 Pt 2 (N,H 6 ) 4 (S0 4 ) 2 Ppt. Nearly insol. in H 2 0. Hydroxylosulphatoplatin^'amine (OH)Pt(N 2 H 6 ) 2 Br bromide, \ / +2H 2 0. Easily sol. in H 2 0. (Cleve.) (OH)Pt(N 2 H 6 ) 2 Cl chlonde, \ / +2H 9 0. S0 4 Moderately sol. in cold, very sol. in hot I, PtCV chloroplatinate, Ppt. chromate, S0 4 ] Cr 2 7 . SI. sol. in H 2 0. r(OH)Pt(N 2 H 6 , 2 ^chromate, \ / S0 4 , SI. sol. in H 2 0. (OH)Pt(N 2 H 6 ) 2 N0 3 . nitrate, \ / S0 4 Sol. in hot H 2 0. sulphate, [( OH)Pt(N 2 H 6)2] S0 4 J 2 SI. sol. in H 2 0. (Cleve. ) Hypoantimonic acid. Calcium hypoantimonate (?), Ca 2 Sb 3 8 . Min. llomeite. Insol. in acids. Potassium hypoantimonate, K 2 Sb 2 5 . Sol. in hot K>0. Sol. in 425 pts. boiling H 2 (Brandes). " Sol. in boiling KOH + Aq (Berzelius). K 2 Sb 4 9 . Ppt. Hypobromous acid, HBrO. Known only in aqueous solution. Solution containing 6 '21 pts. Br as HBrO in 100 com. H 2 decomposes at 30. If dilute solution is distilled in vacuo, an acid containing 0736 pt. Br as HBrO in 100 ccm. is obtained at first, but the distillate slowly grows weaker. Dil. solution, stable at ordinary temp., decomp. by heating over 60. (Dancer, A. 125. 237.) Barium hypobromite. Known only in solution. Calcium hypobromite with CaBr 2 . Deliquescent, and sol. in H 2 with partial decomp. (Berzelius.) Potassium hypobromite, KBrO. Known only in solution. Sodium hypobromite. Known only in solution. Strontium hypobromite. Known only in solution. 180 HYPOCHLOROUS ACID Hypochlorous acid, HC10. Miscible with H 2 0. Decomposes at in the dark, more rapidly at higher temp, or in light. The stronger the solution the more rapid the decomposition. Moderately strong acid may be distilled without any considerable de- comp., a stronger acid distilling over at first, and afterwards an acid weaker than the original acid. Very cone, or very dil. acids decomp. by distillation. Ammonium hypochlorite. Known only in aqueous solution, which de- composes at once. Barium hypochlorite. Known only in solution. Calcium hypochlorite, Ca(OCl) 2 + 4H 2 0. Deliquescent, and sol. in H 2 0. (Kinzgett, Chem. Soc. (2) 13. 404.) Calcium hypochlorite chloride, etc. (bleaching powder), Ca(OCl) 2 , CaCl 2 , Ca(OH) 2 + H 2 0. Not deliquescent. Sol. in H 2 0. Alcohol does not dissolve out CaCl 2 . Sol. in 20 pts. H 2 with a slight residue. Correct formula is CaOCl 2 (Lunge and Schappi ; Kraut, A. 214. 354), Ca^ 1 (Stahl- schmidt, B. 8. 869), CaOCl, Cl (Odling). CaCl 2 is dissolved out by alcohol. Formula = 2Ca^ 1 CaCl + 2H 2 0. (Dreyfuss, Bull. Soc. (2) 41. 600.) Didymium hypochlorite, Di(OCl) 3 . Difficultly sol. in H 2 0. Easily sol. in acids. (Frerichs and Smith, A. 191. 348.) Lanthanum hypochlorite, La(OCl) 3 . Easily sol. in H 2 0. (Frerichs and Smith.) Magnesium hypochlorite. Known only in solution. Potassium hypochlorite, KC10. Know r n only in solution. Silver hypochlorite, AgClO. Very sol. in H.,0, and decomp. very quickly. (Stas, Acad. R. de Belg. 35. 103.) Sodium hypochlorite, NaClO. Known only in solution. Hypoiodic acid, I 2 4 . See Iodine Hypoiodous acid. Calcium hypoiodite iodide, Ca (OI) 2 , CaI 2 . Not very unstable. (Lunge and Shoch, B. 15. 1883.) Hyponitric acid, N 2 4 . See Nitrogen ^roxide. Hyponitrous acid, HNO, or better H 2 N 2 2 . Known only in aqueous solution. Solution is quite stable, (van der Plaats, B. 10. 1507.) Barium hyponitrite, BaN 2 2 . Nearly insol. in, but gradually decomp. by H 2 0. Sol. in cone, acids with evolution of N 2 0, but sol. in dil. HC 2 H 3 2 + Aq without decomp. (Zorn, B. 15. 1007.) + a;H 2 0. Efflorescent. (Maquenne, C. R. 108. 1303. Barium hyponitrite acetate, BaN 2 0.,, Ba(C 2 H 3 2 ) 2 , 2HC 2 H 3 2 + 3H 2 0." Sol. in H 2 0. (Maquenne, C. R. 108. 1303.) Calcium hyponitrite, CaN 2 2 + 4H 2 0. Nearly insol. in H 2 ; easily sol. in dil. acids. (Maquenne, C. R. 108. 1303.) Calcium hyponitrite acetate, CaN 2 (X, Ca(C 2 H 3 2 ) 2 , 2HC 2 H 3 2 + 4H 2 0." Sol. in H 2 0. (Maquenne.) Potassium hyponitrite, K 2 N 2 2 . Sol. in H 2 0. (van der Plaats.) Silver hyponitrite (nitrosyl silver), Ag 2 N 2 2 . Insol. in H 2 0. Easily sol. in dil. HN0 3 + Aq or H 2 S0 4 + Aq. Decomp. by H 3 P0 4 , H 2 S, and boiling HC 2 H 3 2 + Aq. (van der Plaats. ) Insol/ in HC 2 H 3 2 + Aq; sol. in NH 4 OH + Aq. (Divers, C. N. 23. 206.) Sodium hyponitrite, Na 2 N 2 2 + 6H 2 0. Sol. in H 2 0. (van der Plaats.) Strontium hyponitrite, SrN 2 2 + 5H 2 0. Nearly insol. in H 2 ; easily sol. in dil. acids. (Maquenne, C. R. 108. 1303.) Strontium hyponitrite acetate, SrN 2 2 , Sr(C 2 H 3 0,) 2 , 2HC 2 H 3 2 + 3H 2 0. Sol. in H 2 0. (Maquenne.) Hypophosphomolybdic acid. Ammonium hypophosphomolybdate, 2(NH 4 ) 0, 2H 3 PO,, 8Mo0 3 + 2H 2 0. Not very sol. in cold H 2 0, readily in hot H 2 0. (Gibbs, Am. Ch. J. 3". 402.) Hypophosphoric acid, H 4 P 2 6 . Very deliquescent, and sol. in the least amount of H 2 0. (Joly, C. R. 101. 1058.) + H 2 0. (Sanger, A. 232. 14.) Does not exist. (Joly.) + 2H 2 0. Very deliquescent. (Joly.) Aluminum hypophosphate, A1 4 (P 2 6 ) 3 + 23H 2 0. Easily sol. in mineral acids. Sol. in Na 4 P 2 6 + Aq. (Palm, Dissertation, Rostock, 1890.) Ammonium hypophosphate, (NH 4 ).,P0 3 + JH 2 0, or (NH 4 ) 4 P 2 6 + H 2 0. Sol. in 30 pts. H 2 0. (Salzer, A. 194. 32. ) Ammonium hydrogen hypophosphate, NH 4 HP0 3 , or (NH 4 ) 2 H 2 P 2 6 . Sol. in 14 pts. cold, and 4 pts. boiling H.,0. (Salzer, A. 194. 32.) Ammonium ^'hydrogen hypophosphate, NH 4 H 3 P 2 6 . Sol. in H 2 0. (Salzer, A. 211. 1.) HYPOPHOSPHATE, SODIUM 181 Ammonium magnesium hypophosphate, (NH 4 ) 2 MgP 2 6 + 6H 2 0. Precipitate. (Salzer, A. 232. 114.) Barium hypophosphate, Ba 2 P 2 6 . Very slightly sol., but not wholly insol. in H 2 0. Very slightly sol. in acetic acid, but more soluble in hydrochloric, and hypophos- phoric acids. (Salzer, A. 194. 34.) Barium hydrogen hypophosphate, BaH.,P 2 6 + 2H 2 0. Soluble in about 1000 pts. H 2 0. Solution decomposes by heating. (Salzer, "A. 194. 34.) Bismuth hypophosphate, Bi 4 (P 2 6 ) 3 + 8pI 2 0. Completely sol. in HC1 + Aq, also in warm HN0 3 + Aq. Insol. in boiling dil. H 2 S0 4 + Aq. SI. sol. by long boiling with cone. H 2 S0 4 . (Palm, Rostock, 1890.) Cadmium hypophosphate, Cd 2 P 2 6 + 2H 2 0. Insol. in H 9 0. Sol. in dil. acids. (Drawe, B. 21. 3403.) " Cadmium sodium hypophosphate, CdNa 2 P 2 6 + 6H 2 0. Insol. in H 2 0, but decomp. thereby. Sol. in dil. acids. (Drawe.) Calcium hypophosphate, Ca 2 P 2 6 + 2H 2 0. Insol. in H 2 ; difficultly sol. in HC 2 H 3 2 , easily sol. in H 4 P 2 6 , or HC1 + Aq. (Salzer, A. 194. 36.) Calcium hydrogen hypophosphate, CaH 2 P 2 6 + 6H 2 0. Sol. in 60 pts. H 2 0. (Salzer, A. 232. 114.) Chromic hypophosphate, O 4 (P 2 6 ) 3 + 34H 2 0. Sol. in HCl + Aq on si. warming, also in HN0 3 + Aq. Not completely sol. in dil. H.,S0 4 + Aq, but completely sol. in cone. H 2 S0 4 . (Palm, Dissertation, Rostock, 1890.) Cobaltous hypophosphate, Co 2 P 2 6 + 8H 2 0. Insol. in H,0. Easily sol. in acids. (Drawe, B. 21. 3403.)" Cobaltous sodium hypophosphate, CoNa 2 P 2 6 + HH 2 0. Insol. in H 2 0, but decomp. thereby. Sol. in dil. acids. (Drawe, B. 21. 3403. ) Cupric hypophosphate, Cu 2 P 2 6 + 6H 2 0. Insol. in H 0. Sol. in dil. acids. (Drawe, B. 21. 3403.) JEHucinum hypophosphate, Grl 2 P 2 6 + 7H 2 0. Insol. in H.,0. Moderately sol. in all mineral acids. (Palm, Rostock, 1890.) + 3H 2 0. (Rammelsberg.) Ferrous hypophosphate, Fe 2 P 2 6 + 4|H 2 0. Insol. in H 2 0. Sol. in cold HCl + Aq. Decomp. by hot HN0 3 + Aq into Fe 4 (P 2 6 ) 3 . Insol. in HN0 3 + Aq. Insol, in boiling dil. H 2 S0 4 + Aq. Somewhat sol. in cold H 2 S0 4 , but a ppt. separates out on heating. (Palm, Rostock, 1890.) Ferric hypophosphate, Fe 4 (P 2 6 ) 3 + 20H 2 0. Easily sol. in HCl + Aq. Wholly insol. in HN0 3 , and dil. H 2 S0 4 + Aq. Completely sol. in cone. H 2 S0 4 by w r arming a short time, but a ppt. separates out on boiling. (Palm.) Lead hypophosphate, Pb 2 P 2 6 . Insol. in H 2 0, HC 2 H 3 2 , or H 4 P 2 6 + Aq; sol. in dil. HN0 3 + Aq. (Salzer.) Lithium hypophosphate, Li 4 P 2 6 + 7H 2 0. Very si. sol. in H 2 0. (Salzer, A. 194. 28.) Sol. in 120 pts. H 2 at ord. temp. (Ram- melsberg, J. pr. (2) 45. 153.) Li 2 H 2 P 2 6 + 2H 2 0. Deliquescent. (Ram- melsberg. ) Magnesium hypophosphate, Mg 2 P 2 6 + 12H 2 0. Sol. in 15,000 pts. H 2 ; si. sol. in acetic, easily in hypophosphoric, or mineral acids. (Salzer, A. 232. 114.) + 24H 2 0. (Rammelsberg. ) Magnesium hydrogen hypophosphate, MgH 2 P 2 6 + 4H 2 0. Sol. in 200 pts. H 2 0. (Salzer, A. 232. 114.) Manganese hypophosphate, Mn 2 P 2 6 + 2 JH 2 0. Insol. in H 2 ; sol. in mineral acids, insol. in acetic acid. (Palm, Dissertation, Rostock, 1890.) Manganous sodium hypophosphate, Mn 2 P 2 6 , Na 4 P 2 6 + llH 2 0. Insol. in H 2 ; sol. in mineral acids. (Palm.) Nickel hypophosphate, Ni 2 P 2 6 + 12H 2 0. Insol. in H 2 0. Sol. in dil. acids. (Drawe, B. 21. 3401.) " Nickel sodium hypophosphate, NiNa 2 P 9 6 + 12H 2 0. Insol. in H 2 0, but decomp. thereby. Easily sol. in dil. acids. (Drawe.) Potassium hypophosphate, K 4 P 2 6 + 8H 2 0. Sol. in | pt. H 9 ; insol. in alcohol. (Salzer, A. 211. 1.) Potassium hydrogen hypophosphate, K 3 HP 2 6 + 3H 2 0. Sol. in pt. H 2 0. (Salzer, A. 211. 1.) Potassium ^hydrogen hypophosphate, K 2 H 2 P 2 6 + 3H 2 0, and +2H 2 0. Sol. in 3 pts. cold, and 1 pt. boiling H 2 0. (Salzer, A. 211. 1.) Potassium ^'hydrogen hypophosphate, KH 3 P 2 6 . Sol. in 1 pts- cold, and pt. hot H 2 0. (Salzer, A. 211. 1.) Potassium pcntahydrogen ^'hypophosphate, K 3 H B (P 2 6 )a+2H 2 0. Sol. in 2 pts. cold, and pt. boiling H 2 0. (Salzer, A. 211. 1.) Silver hypophosphate, Ag 4 P 2 6 . SI. sol. in H 2 0. Easily sol. in HN0 3 , or NH 4 OH + Aq. Very si. sol. in H 4 P 2 6 + Aq. (Salzer, A. 232. 114.) Sodium hypophosphate, Na 4 P 2 6 + 10H 2 0. Sol. in about 30 pts. cold, much more easily inhotH 2 O. (Salzer.) 182 HYPOPHOSPHATE, SODIUM HYDROGEN Sodium hydrogen hypophosphate, Na 3 HP 2 6 + 9H 2 0. Sol. in 22 pts. H 2 0. (Salzer. ) Sodium ^hydrogen hypophosphate, Na 2 H 2 P 2 6 + 6H 2 0. Sol. in 45 pts. cold, and 5 pts. boiling H 2 0. More sol. in oil. H 2 S0 4 + Aq. Insol. in alcohol. (Salzer, A. 187. 331.) Sodium ^'hydrogen hypophosphate, NaH 3 P 2 6 . Sol. in H 2 0. (Salzer, A. 211. 1.) Sodium ^'hydrogen efo'hypophosphate, Na 5 H 3 (P 2 6 ) 2 + 20H 2 0. Very efflorescent. Sol. in 15 pts. cold H 2 0. (Salzer, A. 211. 1.) Zinc hypophosphate, Zn 2 P 2 6 + 2H 2 0. Insol. in H 2 0. Easily sol. in dil. acids. (Drawe, B. 21. 3403.) Hypophosphorous acid, H 3 P0 2 . Very sol. in H 2 and alcohol. (Rose. ) Aluminum hypophosphite. Not deliquescent, but very sol. in H.,0. (Rose, Pogg. 12. 86.) Ammonium hypophosphite, NH 4 H 2 P0 2 . Sol. in H 2 0, less deliquescent than the potassium salt. (Wurtz, A. ch. (3) 7. 193.) Very sol. in absolute alcohol. (Dulong.) Barium hypophosphite, Ba(H 2 P0 2 ) 2 + H 2 0. Sol. in 3 '5 pts. cold, and 3 pts. boiling H 2 0. Insol. in alcohol. (Wurtz, A. 43. 323.) Cadmium hypophosphite. Sol. in H 2 0. (Rose, Pogg. 12. 91.) Calcium hypophosphite, Ca(PH 2 2 ) 2 . Sol. in 6 pts. cold, and not much more sol. in hot H 2 0. Insol. in strong, very si. sol. in weak alcohol. (Rose, Pogg. 9. 361.) Calcium cobaltous hypophosphite, 2Ca(PH 2 2 ) 2 , Co(PH 2 2 ) 2 + 2H 2 0. Efflorescent. (Rose, Pogg. 12. 295.) Calcium ferrous hypophosphite. Sol. in H 2 0. (Rose, Pogg. 12. 294.) Cerous hypophosphite, Ce(PH 2 2 ) 3 + H 2 0. SI. sol. in H 2 0. (Rammelsberg, B. A. B. 1872. 437.) Chromium hypophosphite, Cr 2 (OH) 2 (H 2 P0 2 ) 4 . Anhydrous. Insol. in H 9 or dil. acids. + 3H 2 0. Sol. in H 2 0. (Wurtz, A. ch. (3) 16. 196.) Cobaltous hypophosphite, Co(PH 2 2 ) 2 + 6H 2 0. Efflorescent. Easily sol. in H 2 0. (Rose, Pogg. 12. 87.) Cupric hypophosphite, Cu(PH 2 2 ) 2 . Very sol. in H 2 0, but very easily decomp. on heating. (Wurtz, A. ch. (3) 16. 199.) Glucinum hypophosphite. Sol. in H 2 0. (Rose, Pogg. 12. 86.) Ferrous hypophosphite, Fe(PH 2 2 ) 2 + 6H 2 0. Sol. in H 2 0. (Rose, Pogg. 12. 294. ) Ferric hypophosphite. Difficultly sol. in H 2 or acids. Decomp. on boiling. SI. sol. in H 3 P0 2 + Aq. (Rose.) Lead hypophosphite, Pb(PH 2 2 ) 2 . Difficultly sol. in cold, more easily in hot H.,0. Insol. in alcohol. (Rose, Pogg. 12. 288.). Lithium hypophosphite, LiH 2 P0 2 + H 2 0. Sol. in H 2 0. (Rammelsberg, B. A. B. 1872. 416.) Magnesium hypophosphite, Mg(PH<,0.,) 2 + 6H 2 0. Efflorescent in dry air. Sol. in H 0. (Rose.) Manganous hypophosphite, Mn(H 2 P0 2 ) 2 + H 2 0. Permanent. Very sol. in H 2 0. (Wurtz, A. ch. (3) 16. 195.) Nickel hypophosphite, Ni(PH 2 2 ) 2 + 6H 2 0. Efflorescent. Sol. in H 2 0. (Rammelsberg, B. 5. 494.) Platinous hypophosphite Pt(PH 2 2 ) 2 . Insol. in H 2 0, HC1, H 2 S0 4 + Aq^ etc. Sol. in HN0 3 + Aq. Insol. in alcohol. (Engel, C. R. 91. 1068.) Potassium hypophosphite, KH 2 P0 2 . Very deliquescent. Very sol. in H 2 0. Easily sol. in weak, less in absolute alcohol. Insol. in ether. (Wurtz, A. ch. (3) 7. 192.) Sodium hypophosphite, NaH 2 P0 2 + H 2 0. Very deliquescent. Somewhat less sol. than the K salt. Very sol. in absolute alcohol. (Dulong.) Very sol. in H 2 0, and somewhat less sol. in alcohol. (Rammelsberg, B. A. B. 1872. 412.) Strontium hypophosphite, Sr(PH 2 2 ) 2 . Very easily sol. in H 2 0. (Dulong.) Insol. in alcohol. (Wurtz. ) Thallous hypophosphite, T1H 2 P0 2 . Sol. in R,0. (Rammelsberg, B. A. B. 1872. 492.) Uranyl hypophosphite, U0 2 (H 2 P0 2 ) 2 + H 2 0. SI. sol. in H 2 0. Easily sol. in HC1, or HN0 3 + Aq. (Rammelsberg, Cliem. Soc. (2) 11. 1.) Zinc hypophosphite, Zn(H 2 P0 2 ) 2 + H.,0. Sol. in H 2 0. + 6H 2 0. "Efflorescent. (Wurtz, A. ch. (3) 16. 195.) Hypophosphotungstic acid. Potassium hypophosphotungstate, 4K 0, 6H 3 P0 2 , 18W0 3 + 7H 2 0. Precipitate. Sol. in hot, very si. sol. in coldH 2 0. (Gibbs, Am. Ch. J. 5. 361.) Hyposulpharsenious acid. Hyposulpharsenites, As 2 S 2 , M 2 S. Difficultly sol. in H 2 0. (Berzelius.) Do not exist. (Nilson, B. 4. 989.) IMIDOSULPHONATE, BARIUM 183 Hyposulphuric acid, H 2 S 2 . Sec Dithionic acid. Hyposulphurous acid, H 2 S 2 3 . See Thiosulphuric acid. Hyposulphurous (Hydrosulphurous) acid, H 2 SOo. Known only in dil. aqueous solution, which decomposes rapidly. Correct formula is H 2 S 2 4 , according to Bernthsen (A. 211. 285). More sol. in alcohol than in H 2 0. (Bossier, Arch. Pharm. (3) 25. 845.) Sodium hyposulphite, NaHS0 2 . Very sol. in H 2 or dil. alcohol, but not in strong alcohol. According to Bernthsen (B. 13.2277), formula is Na 2 S 2 4 . Hypovanadic acid, V 2 2 (OH) 4 . Sec Vanadium ^rhydroxide. Hypovanadic acid with vanadic acid. See Vanadicovanadic acid. Ammonium hypovanadate, basic, 2(NH 4 ) 2 0, VA- SI. sol. in cold, easily in hot H 2 0. (Ditte, C. R. 102. 1310.) Ammonium hypovanadate, (NH 4 ) 2 V 4 9 + 3H 2 0. Sol. in H 2 0. (Crow, Chem. Soc. 30. 460.) Barium hypovanadate, BaV 4 9 + 5H 2 0. Precipitate. Easily sol. in HN0 3 , or HC1 + Aq. (Crow, Chem. Soc. 30. 460.) Lead hypovanadate, PbV 4 9 . Ppt. (Crow.) Potassium hypovanadate, K 2 V 4 9 + 7H 2 0. Easily sol. in H 2 0. Insol. in cold, sol. in hotKOH + Aq. Insol. in alcohol. (Crow.) + H 2 0. (Ditte, C. R. 102. 1310.) Silver hypovanadate, Ag 2 V 4 9 . Ppt. (Crow.) Sodium hypovanadate, Na 2 V 4 9 + 7H 2 0. Easily sol. in H 2 0. (Crow, Chem. Soc. 30. 459.) Z>amidocfo'phosphormPO-NH 2 . Correct formula for ^?/rophosphoPO OH. Correct name for ^?/rophosphamic acid. (Mente, A. 248. 241.) />PO Barium imidor^phosphate, Ba SI. sol. in H 2 0. (Mente, A. 248. 243.) Barium imidoo^'phosphate, basic, /VPO Ba< 0>X> N Ba \0 >i 2H 2 0. Ppt. (Mente.) Ferric imidocfo'phosphate. SI. sol. in cone, acids. 241.) Z>umidoGfo'phosplioric acid, HO / P0 \\ ( )0 >Ba + \p. Ppt. lodochloroplatin^'amine chloride, lodochromic acid. Potassium iodochromate, KCrOL Decomp. by boiling H0. (Guyot, C. R. 73. 46.) See also Chromoiodic acid. lodomolybdic acid. See Molybdoiodic acid. lodonitratoplatinmcwoc^'amine bromide, I p (NH 3 ) 2 Br m N0 3 NH 3 Br u ' Very si. sol. in H,0. (Cleve.) IODOPURPUREORHODIUM IODIDE 191 lodonitritoplatin^'amine nitrate, I(N0 2 )Pt(N 2 H 6 ) 2 (N0 3 ) 2 . Quite easily sol. in hot H 2 0. (Cleve.) lodopalladous acid. Potassium iodopalladite. Deliquescent. (Lassaigne.) lodoplatinamine iodide, I 2 Pt(NH 3 I) 2 . Sol. in HoO, especially easily if boiling. (Cleve.) lodoplatin^'amine iodide, I 2 Pt(N 2 H 6 I) 2 . Sol. in H 2 0, especially when hot. (Cleve.) mercuric iodide, I 2 Pt(N 2 H 6 I) 2 , 2HgI 2 . Extremely difficultly sol. in cold H 2 ; partly decomp. by boiling. (Jorgensen, Gm. K. 3. 1214.) - nitrate, I 2 Pt(N 2 H 6 N0 3 ) 2 . More sol. in hot than cold H 2 0. - sulphate, I 2 Pt(N 2 H 6 ) 2 S0 4 . Very si. sol. in H 2 0. (Jorgensen, J. pr. (2) 15. 429.) lodoplatinsera^'amine iodide, I 3 Pt(NH 3 ) 2 I (?). SI. sol. in H 2 0. (Jorgensen, J. pr. (2) 16. 345.) - ^modide, I 3 Pt(NH 3 ) 2 I, I 2 . Moderately si. sol. in H 2 0. (Cleve.) lodocfo'platinamine iodide, I 2 Pt 2 (N 2 H c ) 2 I 4 . Insol. in H 2 0. lodo^platindmmine anhydroiodide, I 2 Pt 2 (N 2 H 6 ) 4 OI 2 . Insol. in NH 4 OH + Aq. - anhydronitrate, I 2 Pt 2 (N 2 H 6 ) 4 0(N0 3 ) 2 . Easily sol. in warm H 2 S0 3 + Aq. (Cleve.) - iodide, I 2 Pt 2 (N 2 H 6 ) 4 I 4 . Ppt. - nitrate, I 2 Pt 2 (N 2 H 6 ) 4 (N0 3 ) 4 + 4H 2 0. SI. sol. in cold, moderately sol. in hot H 0. (Cleve.) - phosphate, I 2 Pt 2 (N 2 H 6 ) 4 [0 3 P(OH)] 2 . Nearly insol. in H 2 0. - sulphate, I 2 Pt 2 (N 2 H 6 ) 4 (S0 4 ) 2 . Nearly insol. in H 2 0. plato^'amine sulphate, I 9 Pt 2 (N H 6 ) 4 S0 4 , Pt(NH 3 ) 4 S0 4 . Very si. sol. in H 2 0. (Carlgren, Sv. V. A. F. 47. 306.) lodoplatinic acid, H 2 PtI 6 + 9H 2 0. Deliquescent. Easily sol. in H 2 0, with de- conip. into PtI 4 and _HI on standing or warm- ing. (Topsoe.) Ammonium iodoplatinate, (NH 4 ) 2 PtI 6 . Easily sol. in H 2 0. (Topsoe. ) NH 4 I, PtI 4 . SI. sol. in H 2 ; insol. in alcohol. (Lassaigne, A. ch. (2)51. 128.) Barium iodoplatinate, BaPtI 6 . Deliquescent, but less so than Na 2 PtI 6 , which it otherwise resembles. (Lassaigne.) Calcium iodoplatinate, CaPtI 6 + 12H 2 0. Not so deliquescent as Na salt. Cobalt iodoplatinate, CoPtI 6 + 9H 2 0. Very deliquescent. Magnesium iodoplatinate, MgPtI 6 + 9H 2 0. Sol. in H 2 0. Manganese iodoplatinate, MnPtI 6 + 9H 2 0. Very deliquescent. Nickel iodoplatinate, NiPtI 6 + 9H 2 0. Very deliquescent. Potassium iodoplatinate, K 2 PtI 6 . Easily sol. in H 2 0. Insol. in alcohol. Not attacked by cold cone. H 2 S0 4 . Sodium iodoplatinate, Na 2 PtI 6 + 6H 2 0. Not deliquescent, but easily sol. in H 2 and alcohol. (Vauquelin.) Deliquescent. (Las- saigne. ) Zinc iodoplatinate, ZnPtI 6 + 9H 2 0. Easily sol. in H 2 0. lodoplatinocyanhydric acid, H 2 Pt(CN) 4 I 2 . See Periodoplatinocyanhydric acid. Strontium iodoplatinocyanide platinocyanide, SrPt(CN) 4 I 2 , 10SrPt(CN) 4 + aH 2 0. (Hoist.) lodopurpureochromium chloride, ICr(NH 3 ) 5 Cl 2 . Quite sol. in H 9 0. (Jorgensen, J. pr. (2) 25. 83.) - chloroplatinate, ICr(NH 3 ) 5 PtCl 6 . Precipitate. (Jorgensen, I.e.] - iodide, ICr(NH 3 ) 5 I 2 . Difficultly sol. in H 2 0. Insol. in HI, or KI + Aq; insol. in alcohol. (Jorgensen, I.e.) - nitrate, ICr(NH 3 ) 5 (N0 3 ) 2 . Much less sol. in H 2 than the chloride. (Jorgensen, I.e.) lodopurpureocobaltic iodide, CoI(NH 3 ) 5 I 2 . (Claudet.) Does not exist. (Jorgensen, J. pr. (2) 25. 94. ) lodopurpureorhodium chloride, IRh(NH 3 ) 5 Cl 2 . Relatively easily sol. in H 2 ; insol. in HC1 + Aq and alcohol. Insol. in KI + Aq. (Jorgen- sen, J. pr. (2) 27. 433.) - fluosilicate, IRh(NH 3 ) 5 SiF 6 . Nearly insol. in cold H 2 0. - iodoplatinate, IRh(NH 3 ) 5 PtI 6 . Ppt. - iodide, IRh(NH 3 ) 5 I 2 . Very si. sol. in cold H 2 ; more sol. in hot H 2 ; insol. in dil. HI + Aq, and alcohol. (Jorgensen, J. pr. (2) 27. 433.) 192 IODOPURPUREORHODIUM NITRATE lodopurpureorhodium nitrate, IRh(NH 3 ) 5 (N0 3 ) 2 . SI. sol. in H 2 0, more easily sol. in hot H 2 ; insol. in dil. HN0 3 + Aq, and alcohol. - sulphate, IRh(NH 3 ) 5 S0 4 , and +3H 2 0. SI. sol. in even hot H 2 0. (Jorgensen.) lodosulphuric anhydride, IS0 3 . Decornp. very violently by H 0. (Weber, J. pr. (2) 25. 224.) >uodosulphuric anhydride, I 2 S0 3 . Decomp. with H 2 0, but not so violently as IS0 3 . (Weber, J. pr. (2) 25. 224.) lodo^risulphuric anhydride, I(S0 3 ) 3 . Decomp. by H0. (Weber, J. pr. (2) 25. 224.) lodosulphuric acid. Ammonium iodosulphate, (NH 4 ) 2 S0 3 I 2 (?). Very sol. in H 2 0. (Zinno, N. Rep. Pharm. 20. 449.) Mercuric iodosulphate, Hg 2 (S0 4 )I 2 . See Mercuric sulphate iodide. Potassium iodosulphate, K 2 S0 3 I 2 (?). Sol. in 7-14 pts. H 2 at 15. (Zinno, N. Rep. Pharm. 20. 449.) Sodium iodosulphate, Na 2 S0 3 I 2 + 10H 2 0. Sol. in 3-64 pts. H 2 at 15 and in dil. alcohol. (Zinno, N. Rep. Pharm. 20. 449.) Does not exist. (Michaelis and Koethe, B. 6. 999.) lodotelluric acid. Caesium iodotellurate, Cs 2 TeI 4 . Insol. in Csl, or HI + Aq. Decomp. slowly by cold, rapidly by hot H 2 0. (Wheeler, Sill. Am. J. 145. 267.) Potassium iodotellurate, K 2 TeI 6 + 2H 2 0. SI. efflorescent. Somewhat sol. in KI + Aq, and dil. HI + Aq. (Wheeler. ) Rubidium iodotellurate, Rb 2 TeI 6 . SI. sol. in HI, or Rbl + Aq. Decomp. by H 2 0. Somewhat sol. in alcohol. (Wheeler.) lodotetramine chromium iodide, ICr(NH 3 ) 4 I 2 + H 2 0. Sol. in H 2 0. Pptd. by alcohol. (Cleve. ) lodotetramine cobaltic sulphate, ICo(NH 3 ) 4 S0 4 . (Vortmann and Blasberg, B. 22. 2652.) lodotungstic acid. See Tungstoiodic acid. lodous acid, I 2 3 . See Iodine frioxide. lodovanadic acid, I 2 6 , V 2 5 +5H 2 0. Very easily sol. in H 2 0. 2V 2 5 , 3I 2 5 + 18H 2 0. (Ditte, C. R. 102. 757.) Irido^ramine Ammonium iodovanadate, 3(NH 4 ) 2 0, 2V 2 5 , 5I 2 5 + 20H 2 0. Sol. in H 2 0. (Ditte, C. R. 102. 1019.) Iridi^'amine compounds, Cl 2 Ir(NH 3 ) 4 X 2 . See Chloriricfo'amine compounds. Iridic acid. Potassium iridate (?). Sol. inH 2 OandHCl + Aq. Iridicyanhydric acid, H 3 Ir(CN) G . Easily sol. in H 2 0, still more easily in alcohol, less in ether. (Martins, A. 117. 369.) Barium iridicyanide, Ba 3 [Ir(CN) 6 ] 2 + 18H 2 0. Efflorescent. Easily sol. in hot or cold H 2 0. Nearly insol. in alcohol. Not decomp. by acids. Potassium iridicyanide, K 3 Ir(CN) 6 . Easily sol. in H 2 0. Iridium, Ir. Insol. in all acids, including aqua regia, except when in finely divided state, as "iridium black," when it is sol. in aqua regia. (Glaus, J. pr. 42. 251.) Iridium ammonia compounds. See Chloriridi^amine comps., C1I(NH 3 ) 2 X. Irido^namine Ir(NH 3 ) 3 X 3 . Ir(NH 3 ) 5 X 3 . Ir(NH 3 ) 4 X 3 . Ir(NH 3 ) 5 (OH 2 )X,. Ir(NH 3 ) 2 X 2 . Ir(NH 3 ) 4 X 2 . Iridium ^'bromide, IrBr 3 + 4H 2 0. Easily sol. in H 2 0. Insol. in alcohol or ether. (Birnbaum.) Iridium ^rabromide, IrBr 4 , or H 2 IrBr 6 . Deliquescent. Sol. in H 2 and alcohol. (Birnbaum.) See Bromiridic acid. Iridium hydrogen sesquibromide, 3HBr, IrBr 3 + H 2 = H 3 IrBr 6 + 3H 2 0. See Bromiridous acid. Iridium sesguibiomide with MBr. See Bromiridite, M. Iridium ^rabromide with MBr. See Bromiridate, M. Iridium phosphorous bromide, IrBr 3 , 3PBr 3 . Partially decomp. by H 2 into a sol., and insol. modification. Sol. in PBr 3 . (Geisen- heimer. ) IrBr 3 , 2PBr 3 . Not easily attacked by H.,0. IrBr 4 , 2PC1 3 . See Iridium phosphorous chlorobromide. Iridium carbide, IrC 4 (?). (Berzelius. ) Iridium trichloride, IrCl 3 . Insol. in acids or alkalies. (Glaus, C. C. 1861. 690.) + 4H 2 0. Sol. inHoO. (Glaus.) Iridosoamine Iridosoefo'amine IRIDOAMINE CHLORONITRATE 193 Iridium ^rachloride, IrCl 4 , or H 2 IrCl 6 (?). Deliquescent, and easily sol. in H 2 0. Iridium trichloride with MCI. See Chloriridite, M. Iridium ^rachloride with MCI. See Chloriridate, M. Iridium chloride with potassium chloride and sulphite. See Chloriridosulphite, potassium. Iridium phosphorus chloride, IrP 2 Cl 9 . Insol. in cold H 2 0. SI. decomp. by hot H 2 0. (Geisenheimer, A. ch. (6) 23. 254.) IrP 2 Cl 10 . Very sol. in chloroform. (G.) IrP 3 Cl 12 . Easily sol. in PC1 3 , or CHC1 3 ; also in CS 2 with gradual decomp. SI. sol. in cold H 2 0. Decomp. by boiling into IrCl 3 , 3H 3 P0 4 . + H 2 0. Insol. in PC1 3 at 100. Very slowly sol. in boiling H 2 0. (Geisenheimer, A. ch. (6) 23. 266.) IrP 3 Cl 15 . Decomp. by H 2 into 2IrCl s , 3H 3 P0 3 , 3H 3 P0 4 . Violently decomp. by alcohol. SI. sol. in cold, more in hot POC1 3 , without decomp. Very sol. in PC1 3 with decomp. into IrP 3 Cl 12 ; similarly in PBr 3 . Sol. in AsCl 3 with combination. Sol. in CS 2 with decomp. Sol. in SC1 2 with combination. Easily sol. in cold C 6 H 6 with decomp. Insol. in CC1 4 . Sol. in CHC1 3 with decomp. (Geisen- heimer, A. ch. (6) 23. 254.) Iridium phosphorus arsenic chloride, 2IrP 3 Cl 15 , 5AsCl 3 . Sol. in H 2 with decomp. into correspond- ing acid. (Geisenheimer, C. R. 110. 1336. ) IrCl 3 , 2PC1 3 , 2AsCl 3 . Very sol. in H 2 with decomp. Sol. in AsCl 3 ; insol. in CC1 4 . (Geisenheimer.) Iridium phosphorus sulphur chloride, IrCL, 2PC1 3 , 2SC1 2 . Very sol. in si. amt. H 2 0, with decomp. into an acid analogous to chlorophosphoiridic acid. Sol. in SC1 2 . (Geisenheimer. ) Iridium phosphorus chlorobromide, IrBr 4 , 2PC1 3 . (Geisenheimer, C. R. 111. 40.) Iridium ^hydroxide, Ir0 9 , 2H.O = Ir0 4 H 4 . Insol. in dil. HN0 3 , or HgS0 4 + Aq. Slowly but completely sol. in HCl + Aq. Sol. in KOH, and NaOH + Aq. (Glaus, J. pr. 39. 104.) Iridium ses^nhydroxide, Ir 2 6 H 6 . Not attacked by acids, except slightly by cone. HCl + Aq. (Clans, C. C. 1861. 690.) Iridium ^'iodide, IrI 3 . Very si. sol. in cold, somewhat more in hot H 2 0. Insol. in alcohol. (Oppler, J. B. 1857. 263.) Iridium tetraiodide, IrI 4 . Insol. in H 2 or acids. (Lassaigne.) Sol. in solutions of iodides. (Oppler.) Iridium ^iodide with MI. See lodiridite, M. Iridium ^raiodide with MI. See lodiridate, M. Iridium dioxide, Ir0 2 . Very si. sol. in acids. See also Iridium cfahydroxide. Iridium sesquioxide, Ir 2 3 . Insol. in acids. Iridium oxybromide, Ir 3 Br 8 2 =2IrBr 4 , Ir0 2 . Not decomp. by H.,0. (Geisenheimer, A. ch. (6) 23. 286.) Iridium phosphide, Ir 2 P. (Clarke and Joslin, Am. Ch. J. 5. 231.) Iridium mowosulphide, IrS. Insol. in HN0 3 + Aq, and very si. sol. if at all in aqua regia. (Berzelius. ) Sol. in KjjS,- and KSH + Aq. + o:H 2 0. SI. sol. in H 2 ; sol. in cold HN0 3 + Aq. Insol. in NH 4 C1 + Aq or dil. acids. More sol. in K 2 S + Aq than PtS 2 . (Berzelius.) Iridium cfo'sulphide, IrS 2 . Not attacked by H 2 0, but decomp. when exposed moist in air. Not attacked by sat. HCl + Aq or by cone. HN0 3 + Aq, but is oxidised by fuming HN0 3 + Aq, and aqua regia. Insol. in NH 4 sulphides, or polysulphides + Aq. Slowly sol. in alkali polysulphides + Aq. (Antony, Gazz. ch. it. 23, 1. 190.) Iridium ses^m'sulphide, Ir 2 S 3 . SI. sol. in H 2 0. Sol. in HN0 3 , or K 2 S + Aq. Irido^'amine chloride, Ir(NH 3 ) 3 Cl 3 . SI. sol. in H 2 0. Not attacked by boiling H 2 S0 4 . (Palmaer, B. 22. 15.) Irido^ramine chloride, Ir(NH 3 ) 4 Cl 3 . Very sol. in H 2 0. (Palmaer, B. 22. 15.) chlorosulphate, [Ir(NH 3 ) 4 Cl 2 ] 2 S0 4 (Palmaer.) Iridopenamine bromide, Ir(NH 3 ) 5 Br 3 . Sol. in 352 pts. H 2 at 12 '5. (Palmaer, B. 23. 3817.) bromochloride, Ir(NH 3 ) 5 ClBr<>. Sol. in H 2 0. (Palmaer, B. 24. 2090.) bromonitrite, Ir(NH 3 ) 5 Br(N0 2 ) 2 . Sol. in 17-9 pts. H 2 at 18. (Palmaer.) bromosulphate, Ir(NH 3 ) 5 BrS0 4 + H 2 0. Sol. inH 2 0. (Palmaer.) carbonate, [Ir(NH 3 ) 5 ] 2 (C0 3 ) 3 + 3H 2 0. Sol. in H 2 0. (Glaus, J. pr. 63. 99.) bichloride, Ir(NH 3 ) 5 Cl 3 . (Palmaer, (Glaus, J. lmaer.) Sol. in 153'1 pts. H 2 at 15 '1. B. 23. 3810.) Sol. in hot H 2 containing HC1. pr. 69. 30.) - chlorobromide, Ir(NH 3 ) 5 ClBr Sol. in 213-6 pts. H 2 at 15. ( - chloroiodide, Ir(NH 3 ) 5 ClI 2 . Sol. in 104-5 pts. H 2 at 15. (Palmaer.) -- chlorooxalate, Ir(NH 3 ) 5 ClC 2 4 . SI. sol. in H 2 0. (Palmaer.) - chloronitrate, Ir(NH 3 ) 5 Cl(N0 3 ) 2 . Sol. in 51-54 pts. H 2 at 15 '4. (Palmaer.) 194 IRIDOAMINE CHLORONITRITE Irido^aminechloronitrite,Ir(NH 3 ) 5 Cl(N0 2 ) 2 . Easily sol. in H 2 0. (Palmaer.) - chloroplatinate, Ir(NH 3 ) 5 Cl 3 , PtCl 4 . Very si. sol. in H 2 0. (Palmaer. ) chlorosulphate, Ir(NH 3 ) 5 ClS0 4 + 2H 2 0. Sol. in 134-5 pts. H 2 at 15. (Palmaer.) hydroxide, Ir(NH 3 ) 5 (OH) 3 . Known only in solution, which decomp. on evaporation. (Glaus. ) - nitrate, Ir(NH 3 ) 5 (N0 3 ) 3 . Moderately sol. in H 2 0. (Glaus.) Sol. in 349 pts. H 2 at 16. (Palmaer.) sulphate, [Ir(NH 3 ) 5 ] 2 (S0 4 ) 3 .. Sol. inH 2 0. (Glaus.) Iridoaquowe^amine bromide, Ir(NH 3 ) 5 (OH 2 )Br 3 . Sol. in 4 pts. H 2 0. Pptd. from aqueous solution by HBr + Aq. (Palmaer, B. 24. 2090. ) - chloride, Ir(NH 3 ) 5 (OH 2 )Cl 3 . Sol. in 1-2 to 1-5 pts. H 2 at ord. temp. Pptd. by HCl + Aq from aqueous solution. (Palmaer, B. 24. 2090.) - nitrate, Ir(NH 3 ) 5 (OH 2 )(N0 3 ) 3 . Sol. in about 10 pts. H 2 at 17. Pptd. from aqueous solution by HN0 3 + Aq. (Pal- maer. ) Iridonitrous acid, H 6 Ir 2 (N0 2 ) 12 . Easily sol. in H 2 0. (Gibbs, B. 4. 281.) Barium iridonitrite iridochloride, Ba 3 Ir 2 (N0 3 ) 12 , Ba 3 Ir 2 Cl 12 . Sol. in H 2 0. (Lang.) Mercuric iridonitrite, Hg 3 Ir 2 (N0 2 ) 12 . Insol. in H 2 0. (Gibbs, B. 4. 280.) Potassium iridonitrite, K 6 Ir 2 (N0 2 ) 12 + 2H 2 0. Moderately sol. in H 2 0. Potassium iridonitrite iridochloride, K 6 Ir 2 (N0 2 ) 12 , K 6 Ir 2 Cl 12 . Sol. in H 2 0. Silver iridonitrite, Ag 6 Ir 2 (N0 2 ) 12 . Difficultly sol. in cold, more easily in hot H 2 0. Sodium iridonitrite, Na 6 Ir 2 (N0 2 ) 12 + 2H 2 0. SI. sol. in H 2 0. - Sodium iridonitrite iridochloride, Na 4 Ir 2 Cl 2 (N0 2 ) 8 + 2H 2 0. SI. sol. inH 2 0. (Gibbs.) Na 6 Ir 2 (N0 2 ) 12 , Na 6 Ir 2 Cl 6 . Insol. in cold, si. sol. in hot H 2 0. (Lang. ) Iridosamine chloride, Ir(NH 3 ) 2 Cl 2 . Nearly insol. in H 2 0. (Skoblikoff, A. 84. 275.) - sulphate, Ir(NH 3 ) 2 S0 4 . Easily sol. in H 2 0. (Skoblikoff.) Iridosocfo'amine chloride, Ir(N 2 H 6 ) 2 Cl 2 . Insol. in cold, decomp. by hot H 0. (Skob- likoff.) Iridoso^'amine nitrate, Ir(N 2 H 6 N0 3 ) 2 . Easily sol. in H 2 0. - sulphate, Ir(N 2 H 6 ) 2 S0 4 . SI. sol. in cold, easily in boiling H 2 0. SI. sol. in alcohol. Iridosulphuric acid. Potassium iridosulphate, K 6 Ir 2 (S0 4 ) 6 . Sol. in H 2 0. (de Boisbaudran, C. R. 96. 1406.) Iridosulphurous acid. Ammonium iridosulphite, (NH 4 ) 6 Ir 2 (S0 3 ) 6 + 6H 2 0. Slightly sol. in H 2 0. (Birnbaum, A. 136. 179.) Potassium iridosulphite, K 6 Ir 2 (S0 3 ) 6 + 6H 2 0. Slightly sol. in H 2 0. Sodium iridosulphite, Na 6 Ir 2 (S0 3 ) 6 + 8H 2 0. Scarcely sol. in H 2 0. Iron, Fe. Permanent in dry air ; oxidises only slowly in moist air, but rapidly when in contact with air and H 2 simultaneously. Fe does not rust in contact with air arid H 2 containing alkalies even in very small amounts. (Payen, A. ch. 50. 305.) Not attacked at ord. temp, by H 2 free from air. More easily oxidised by NH 4 salts + Aq than by H 2 when exposed to air simultane- ously. (Persoz, A. ch. (3) 24. 506.) 100 1. sea water dissolve 27 '37 g. from 1 sq. metre Fe ; 29 '16 g. from 1 sq. metre steel; 1*12 g. from 1 sq. metre galvanised Fe. (Gal- vert and Johnson, C. N. 11. 171.) Iron is slowly attacked by distilled H 2 in presence of air. 100 com. distilled water re- moved 29 mg. from 11 '8 sq. cm. iron in one week, while air free from C0 2 was passed through the solution. In presence of C0 2 , 54 mg. were removed. (Wagner, Dingl. 221. 260.) Iron is most easily oxidised when it is ex- posed to air, and H 2 is deposited on it at the same time in liquid form. Readily sol. in HC1, dil. H 2 S0 4 + Aq, and most other acids. Action of H 2 S0 4 + Aq (1:12) is very much accelerated by a few drops of PtCl 4 + Aq ; the addition of As 2 3 arrests the action completely. Tartar emetic and HgCl 2 diminish the action, but do not arrest it. CuS0 4 + Aq strongly accelerates the action, and Ag 2 S0 4 + Aq also to a less extent. In the case of HCl + Aq, the addition of small amts. of metallic salts also influences the action. Weak HC 2 H 3 2 + Aq has but little action, and the addition of PtCl 4 increases it ; As 2 3 stops it ; other solutions have no effect. With racemic and tartaric acids the phenomena are the same. With oxalic acid PtCl 4 prevents the action. Saline solutions and even distilled H 2 0, when mixed with PtCl 4 , have slight solvent action. (Millon, C. R. 21. 45.) Above phenomena are due to galvanic action IKON 195 from metal deposited on the iron. (Barres- will, C. R. 21. 292.) H 2 S0 4 has only si. action on cast-iron at ord. temp, with exclusion of air. Weak acids have a strong action at higher temperatures. Charcoal pig-iron, and case-hardened cast- iron are much less attacked by weak acids at b. -pt. than other sorts of Fe. Scotch pig-iron is most strongly attacked. 99 '8 % H 2 S0 4 has very si. action on iron at ord. temp, when air is excluded. (Lunge, Dingl. 261. 131.) Resistance against dil. H 2 S0 4 + Aq is greatly increased by increase in amt. of C if chemi- cally combined, less so by P or Si. (Ledebur, Dingl. 223. 326.) Passive Iron. When Fe is treated with pure cone. HN0 3 + Aq of 1 '512-1 '419 sp. gr., it soon becomes coated with a bluish or black coating, apparently FeO, and when thus covered Fe is not attacked by HN0 3 + Aq of any strength at ord. temp, or at the temp, of a freezing mixture ; but action occurs on heating. Nor is Fe attacked at ord. temp, by acid of 1*401 sp. gr. or even some- what weaker acid, though action begins at once on heating. Very dil. HN0 3 + Aq attacks Fe at ord. temp, with formation of NH 4 N0 3 and Fe(N0 3 ) 2 . The action of HN0 3 + Aq is influenced by PtCl 4 . If acid containing 4 '5 equivalents of H 2 is diluted with 2-3 vols. H 2 0, and then poured on Fe turnings, they dissolve at once with evolution of nitrous fumes and formation of ferric salt, but if to the acid one drop of PtCl 4 be added, only H gas is evolved, and NH 4 N0 3 and Fe(N0 3 ) 2 are formed. (Millon, C. R. 21. 47.) The more H 2 the acid contains the lower will be the temp, at which the Fe remains passive. Shaking the wire hastens the pas- sivity. Contact with Pt, Au, or C does not pre- vent it. Fe wire becomes passive by remain- ing 10 min. in HN0 3 vapour. (Renard, C. R. 79. 159.) Iron may be made passive by HC10 3 , HBr0 3 , HI0 3 , H 2 Cr0 4 , in the same way as by HN0 3 . Iron may also be made passive by moderate ignition. Passivity occurs with HN0 3 + Aq of 1 "38 sp. gr. after a short time at 31'; but if temp, is 32, passivity does not occur. Colourless HN0 3 + Aq of 1'42 sp. gr. pro- duces passivity at 55 but not at 56. Red fuming HN0 3 + Aq of 1*42 sp. gr. produces passivity at 82 but not at 83. (Ordway, Sill. Am. J. (2). 40. 316.) The passivity of Fe is destroyed when it is placed in a magnetic field at a much lower temperature than when in normal condition. (Nichols and Franklin, Sill. Am. J. (3) 34. 419.) Passivity depends on a coating of NO which hinders the action of the acid. All operations which remove this layer terminate the pas- sivity, as shaking, rubbing, placing in a vacuum, etc. (Varenne, C. R. 89. 783.) When Fe is plunged in HN0 3 + Aq of 1'42 sp. gr. there is a sudden evolution of gas which ceases after 3 to 20 seconds, and the surface becomes bright. The same phenomena take place with a more dilute acid, if of not less than 1 '32 sp. gr. In the latter case, there is an immediate evolution of gas, which suddenly ceases and the metal becomes bright, but soon the acid begins to act again at a single point, and the action gradually spreads over the whole surface ; this, however, soon ceases again, and we have an ' ' intermittent passivity. ' ' If a part of a piece of iron is immersed in strong acid, the whole of it is made passive. This is explained by the NO spreading over the whole surface by capillarity. The passivity ceases when the Fe is placed in dil. acid, after a longer or shorter time, according to the dilution of the acid, when the acid has sp. gr. =1*30, after 11 days I' 28 5 ,, ,, ,, . ,, 1'26 ,, 32 hours j> 1*16 12 ,, Iron may also be made passive by long standing in NO gas under pressure. (Varenne, C. R. 90. 998.) Fe is made passive by a coating of Fe 3 4 , not by NO. (Schbnbein, Pogg. 39. 342.) (Beetz, Pogg. 67. 286.) (Ramann, B. 14. 1430.) Passivity may also be caused by NH 4 N0 3 + Aq, ammoniacal AgN0 3 + Aq, Fe(N0 3 ) 3 , Fe(N0 3 ) 2 , A1(N0 3 ) 3 , Co(N0 3 ) 2 , Ni(N0 3 ) 2 , etc. + Aq instead of HN0 3 + Aq. (Ramann, B. 14. 1933.) Hardly attacked by either dil. or cone, acids when they are under high pressure. (Cailletet, C. R. 68. 395.) Iron is dissolved by HN0 3 + Aq, even when very cone., but no gas is evolved and the pro- cess is very slow. HN0 3 + Aq of the following sp. gr. dissolves the following amts. from strips of pure Fe. Sp. gr. of acid Diminution of weight in 24 hours 1-28 G'82% 1-34 075 1-38 0'29 1-48 0-34 1-53 5-80 (Gautier and Charpy, C. R. 113. 1451.) Not attacked by alkalies. Sol. in NaOH + Aq (34 %) when air is blown through the liquid. (Zirnite, Ch. Ztg. 12. 355.) NaOH + Aq attacks iron and steel. (Venator, Dingl. 261. 133.) NaOH + Aq has slight action on Fe between 15 and 100. (Lunge, Dingl. 261. 131.) Presence of alkalies prevent rusting entirely, and fats and oils greatly hinder it. (Wagner.) Sol. in alkali hydrogen carbonates + Aq. (Berzelius.) Sat. NaCl + Aq has si. but perceptible action on Fe. NH 4 C1 + Aq has stronger action than NaCl + Aq. (Lunge.) 100 ccm. H 2 containing 0'5 g. NaCl or 196 IRON ARSENIDE KC1 removed 42 ing. from 11 '8 sq. cm. iron in one week, while air free from C0 2 was passed through the solution, and 72 mg. in presence of C0 2 . 100 com. H 2 containing 1 g. NH 4 C1 re- moved 45 mg., and 76 mg. respectively under the above conditions. 100 com. H 2 containing 0'8 g. MgCl 2 re- moved 49 mg., and 65 mg. respectively under the above conditions. Not attacked by 100 ccm. H 2 containing 1 g. Na 2 C0 3 , or by Ca0 2 H 2 + Aq. (Wagner, Dingl. 221. 260.) Action of KC10 3 + Aq. KC10 3 + Aq (6 '3 % KC10 3 ) oxidised H'21 g. cast iron and 20'1 g. pure iron from a surface of 1 sq. metre in 7 hours; KC10 3 + Aq (25 % KC10 3 ) oxidised 24 '59 g. cast, and 44 '90 g. pure Fe under above conditions ; Ca(C10 3 ) 2 , CaCl 2 + Aq (20 Baume) obtained by passing Cl through Ca0 2 H 2 + Aq oxidised 85 '00 g. cast, and 95 g. pure Fe under the above conditions. (Lunge and Deggeler, J. Soc. Chem. Ind. 4. 32.) Easily sol. in organic acids. Comparative action of oils on Fe. Amount Fe dissolved Neatsfoot oil 0*0875 grains Colza 0-0800 Sperm 0-0460 Lard 0-0250 Olive 0-0062 Linseed 0-0050 Seal 0-0050 Castor 0-0048 Paraffine 0-0045 Almond 0-0040 " Lubricating" oil 0-0018 (Watson, C. N. 42. 190.) Fe dissolves in albumen solution to the extent of 1 to 2 per cent. (Buchner, Arch. Pharm. (3) 20. 417.) Attacked by sugar + Aq at 115-120, also by inverted sugar or malt extract, not by glycerine or mannite + Aq. (Klein and Berg, C. R. 102. 1170.) Iron arsenide, FeAs 2 . Min. Lollingite. Sol. in HN0 3 + Aq with separation of As 2 3 . Fe 3 As 4 . Min. Leucopyrite, Iron arsenide sulphide, FeAs 2 , FeS 2 . Min. Arsenopyrite. Sol. in HN0 3 + Aq with separation of S and As 2 3 ; wholly sol. in aqua regia ; not attacked by HC1 + Aq. Iron boride. Decomp. by H 2 0. (Fremy. ) Ferrous bromide, FeBr 2 . Sol. in H 2 0. Decomp. by heating on air. + 6H 2 0. Sol. in H 2 0. (Lowig.) Ferric bromide, FeBr 3 . Deliquescent. Sol. in H 2 0, alcohol, and ether. (Lowig.) Ferrous mercuric bromide. Deliquescent, (v. Bonsdorff.) Ferrous stannic bromide. See Bromostannate, ferrous. Ferric bromochloride, FeCl 2 Br. Very deliquescent, and sol. in H 2 0, alcohol, and ether. Notably sol. in chloroform, ben- zene, and toluene. Insol. in CS 2 . (Lenor- mand, C. R. 116. 820.) Iron carbide, Fe 8 C. (Gurlt, J. B. 1856, 781.) Mixture of Fe and FeC 4 . (Timner, Polyt. Centralbl. 1861. 1227.) Fe 4 C. (Karsten, J. pr. 40. 229.) Fe 2 C 2 . (Rammelsberg, C. C. 1847. 60.) Fe 2 C 3 , FeC 3 , etc., are probably mixtures. Iron carbonyl, Fe(CO) 5 . Slowly decomp. on air. Not attacked by dil. H 2 S0 4 , HN0 3 , or HCl + Aq. Cone. HN0 3 , Cl 2 + Aq, or Br 2 + Aq decomp. easily. Sol. in alcoholic solution of KOH or NaOH with sub- sequent decomp. Sol. in alcohol, ether, benzene, mineral oils, etc. (Mond and Langer, Chem. Soc. 59. 1090.) Fe 2 (CO) 7 . Decomp. on air. Not attacked by H 2 S0 4 or HCl + Aq. Sol. in alcoholic potash. Very much less sol. in organic solvents than Fe(CO) 5 . (Mond and Langer.) Ferrous chloride, FeCl 2 . Deliquescent. Easily sol. in H 2 with evolution of heat, or in alcohol. Insol. in ether. (Jahn.) Sol. in 2 pts. H 2 at 1875. (Abl.) Sol. in 1 pt. strong alcohol. (Wenzel.) + 2H 2 0. (Jonas. ) + 4H 2 0. Deliquescent. Easily sol. in alcohol. Sol. in 0'68 pt. cold H 2 0. (Reimann, Mag. Pharm. 17. 215.) More sol. in water containing NO than in pure H 2 0. (Gay, Bull. Soc. (2) 44. 175.) Ferroferric chloride, Fe 3 Cl 8 + 18H 2 0. Deliquescent. (Lefort, J. Pharm. (4) 10. 85.) Ferric chloride, Fe 2 Cl 6 or FeCl 3 . Very deliquescent, and sol. in H 2 with evolution of great heat. 100 mols. H 2 dissolve mols. anhydrous Fe 2 Cl 6 at t. Mols. Mols. t Fe 2 Cl 6 Fe 2 Cl 6 66 29-20 80 29-20 70 29-42 100 29-75 75 28-92 (Roozeboom, Z. phys. Ch. 10. 477.) Solution in H 2 is decomp. into colloidal Fe 2 3 , #H 2 and HC1, upon heating if cone., and on simple standing if dil. IRON CHLORIDE 197 Krecke (J. pr. (2) 3. 286) gives the following table. % Fe 2 Cl 6 in solution 32 16 8 4 2 1 0-5 0-25 0-125 0-0625 Temp, at which Graham's colloidal hydrate is formed 100-130 100-120 100-110 90-100 87 83 75 64 54 36 Fe 2 Cl 6 re- >- formed on I cooling. I Fe 2 Cl 6 not \- reformed on cooling. Sol. in cone. NH 4 Cl + Aq (Glaus) ; sat. KCl + Aq (Gibbs). Sol. in alcohol ether, acetic ether (Cann, C. R. 102. 363), and acetone (Krugand M'Elroy, J. anal. Ch. 6. 184). Sp. gr. of Fe 2 Cl 6 + Aq at 17 '5. i Sp. gr. -I Sp.gr. JP ^s% Sp. gr. i 1-0073 21 1-1644 41 1-3746 2 1-0146 22 1-1746 42 1-3870 3 1-0219 23 1-1848 43 1-3994 4 1 -0292 24 1-1950 44 1-4118 5 1-0365 25 1-2052 45 1-4242 6 1-0439 26 1-2155 46 1-4367 7 1-0513 27 1-2258 47 1-4492 8 1-0587 28 1-2365 48 1-4617 9 1-0661 29 1-2464 49 1-4742 10 1-0734 30 1-2568 50 1-4867 11 1-0814 31 1-2673 51 1-5010 12 1-0894 32 1-2778 52 1-5153 13 1-0974 33 1-2883 53 1-5296 14 1-1054 34 1-2988 54 1-5439 15 1-1134 35 1-3093 55 1-5582 16 1-1215 36 1-3199 56 1-5729 17 1-1297 37 1-3305 57 1-5876 18 1-1378 38 1-3411 58 1-6023 19 1-1458 39 1-3517 59 1-6170 20 1-1542 40 1-3622 60 1-6317 (Franz, J. pr. (2) 5. 283.) Sp. gr. of Fe 2 Cl 6 + Aq. % Fe 2 Cl 6 Sp. gr. at 4-8 Sp. gr. at 9 -7 Sp. gr. at 14-6 Sp. gr. at 197 49-61 1-5609 1-5575 1-5540 1-5497 41-00 1-4413 1-4387 1-4361 1-4335 36-95 1-3847 1-3824 1-3800 33-25 1-3381 1-3359 1-3339 1-3317 24-60 1-2351 1-2334 1-2318 1-2298 22-54 1-2140 1-2129 1-2107 1-2090 16-79 1-1534 1-1521 1-1507 1-1491 10-45 1-0939 1-0930 1-0918 1-0901 4-65 ... 1-0382 270 1-0221 (Schult, from Gerlach, Z. anal. 27. 278.) Temp, at which Saint Gilles' colloidal hy- drate is formed 100 130 Temp, at w oxychlorides are formed hicli Temp, at which Fe 2 O 3 is formed 100 + 90 87 140 C 120 110 Sp. gr. of Fe 2 Cl 6 + Aq at 17 '5. % Fe 2 Cl 6 Sp. gr. Fe^!l 6 Sp. gr. % Fe 2 Cl 6 Sp. gr. 1 1-008 21 1-191 41 1-428 2 1-016 22 1-202 42 1-441 3 1-025 23 1-212 43 1-454 4 1-033 24 1-223 44 1-469 5 1-042 25 1-234 45 1-481 6 1-051 26 1-245 46 1-494 7 1-060 27 1-256 47 1-507 8 1-069 28 1-268 48 1-520 9 1-078 29 1-280 49 1-533 10 1-087 30 1-292 50 1-547 11 1-095 31 1-304 51 1-560 12 1-104 32 1-316 52 1-573 13 1-113 33 1-328 53 1-587 14 1-123 34 1-340 54 1-600 15 1-131 35 1-352 55 1-612 16 1-140 36 1-364 56 1-624 17 1-150 37 1-376 57 1-636 18 1-160 38 1-390 58 1-648 19 1-170 39 1-403 59 1-659 20 1-180 40 1-415 60 1-670 (Hager, Comm. 1883.) Sp. gr. of Fe 2 Cl 6 + Aq increases or diminishes between 8 and 24 for a decrease or in- crease of temp, of 1 by the following amts. % Fe 2 Cl 6 Corr. % Fe 2 Cl 6 Corr. 50-60 45-49 40-44 0-0008 0-0007 0-0006 30-39 20-29 10-19 0-0005 0-0004 0-0003 (Hager, I.e.) Sp. gr. of cone. Fe 2 Cl 6 + Aq at 20-21' Fe 2 Cl 6 Sp. gr. Fefci 6 Sp. gr. FP 2 C1 6 Sp. gr. 60 61 62 63 64 1-669 1-679 | 1-688 1-697 i 1-706 i 65 66 67 68 69 1-715 1724 1733 1-742 1750 70 71 72 73 74 1758 1766 1-774 1-782 1-790 (Hager, I.e.) 198 IRON HYDROGEN CHLORIDE The salts with different amts. of crystal H 2 have different solubilities. (Roozeboom.) + 4H 2 0. Melts in crystal H 2 at 73 '5. 100 mols. H 2 dissolve mols. Fe 2 Cl 6 from Fe 2 Cl 6 + 4H 2 Oatt. Mols. Mols. Mols. Fe 2 Cl6 Fe 2 Cl 6 Fe 2 Cl 6 50 19-96 69 21-53 72-5 26-15 55 20-32 72-5 23-35 70 27-90 60 2070 73-5 25-00 66 29-20 (Roozeboom, Z. phys. Ch. 10. 477.) + 5H 2 0. Correct formula for + 6H 2 salt. 100 mols. H 2 dissolve mols. Fe 2 Cl 6 from Fe 2 Cl 6 + 5H 2 Oatt. t Mols. FeaClfl t Mols. FeaCle t" Mols. Fe 2 Cl 6 12 12-87 30 15-12 55 19-15 20 13-95 35 15-64 56 20-00 27 14-85 50 17-50 55 20-32 (Roozeboom. ) Melts in crystal H 2 at 31 (Engel, C. R. 104. 1708) ; at 56 (Roozeboom). + 6H 2 0. Very deliquescent. Sol. in alcohol. Ether dissolves out Fe 2 Cl 6 M.-pt. is 31. (Ordway.) Contains only 5H 2 0. (Roozeboom.) + 7H 2 0. Melts in crystal H 2 at 32 '5. 100 mols. H 2 dissolve mols. Fe 2 Cl 6 from Fe 2 Cl 6 + 7H 2 Oatt. f Mols. Fe 2 Cl 6 t Mols. Fe 2 Cl 6 t Mols. 20 27-4 11-35 12-15 32 32-5 13-55 14-99 30 25 15-12 15-54 (Roozeboom.) + 12H 2 0. Less deliquescent than Fe 2 Cl 6 or Fe 2 Cl 6 + 5H 2 0. 100 mols. H 2 dissolve mols. Fe 2 Cl 6 from Fe 2 Cl 6 + 12H 2 Oatt. t Mols. FeaClg t Mols. Fe 2 Cl6 r Mols. Fe 2 Cl 6 -55 275 30 5-93 27'4 11-20 -41 2-81 35 6-78 20 12-15 -27 2-98 36-5 7-93 10 12-83 4-13 37 8-33 8 1370 10 4-54 36 9-29 20 5'10 30 10-45 ... (Roozeboom.) Sol. in alcohol. Ether dissolves out Fe 2 Cl 6 . Melts in crystal H 2 at 37 (Roozeboom) ; at 35-5 (Ordway). Ferric hydrogen chloride, FeCl 3 , HC1 + 2H 2 0. Decomp. by H 2 0. (Sabatier, Bull. Soc. (2) 197.) More sol. in H 2 than FeCl 3 . (Engel, C. R. 104. 1708.) Ferrous lithium chloride, FeCl 2 , LiCl + 3H 2 0. (Chassevant, A. ch. (6) 30. 17.) chloride, FeCl 3 , MgCl 2 + (Neumann, B. 18. 2890.) chloride, FeCl 2 , HgCl 2 + Ferric magnesium H 2 0. Deliquescent. Ferrous mercuric 4H 2 0. Deliquescent, (v. Bonsdorff.) Ferric nitrosyl chloride, FeCl 3 , NOC1. Very deliquescent. (Weber, Pogg. 118. 477.) Ferric phosphoric chloride, FeCl 3 , PC1 5 . Decomp. by H 2 0. (Baudrimont, A. ch. (4) 2. 15.) Ferrous potassium chloride, FeCl 2 , 2KC1 + 2H 2 0. Sol', in H 2 0. (Berzelius.) Ferric potassium chloride, FeCl 3 , 2KC1 + H 2 0. A little H 2 dissolves out FeCl 3 . (Fritzsche, J. pr. 18. 483.) Ferric rubidium chloride, FeCl 3 , 3RbCl. Easily sol. in H 2 0. Insol. in HCl + Aq. (Godeffroy, Arch. Pharm. (3) 9. 343.) FeCl 3 , 2RbCl + H 2 0. Decomp, by H 2 0. (Neumann, A. 244. 329.) Ferric thallium chloride, FeCl 3 , 3T1C1. Decomp. by H 2 0. Can be crystallised from HCl + Aq. (Wohler, A. 144. 250.) Ferrous chloride ammonia, 3FeCl 2 , 2NH 3 . Decomp. by H 2 0. (Rogstadius, J. pr. 86. 310.) FeCl 2 , 6NH 3 . (Rogstadius.) Ferric chloride ammonia, FeCl 3 , NH 3 . Slowly deliquescent. Sol. in H 2 with evolution of heat. (Rose, Pogg, 24. 302.) Ferric chloride cyanhydric acid, FeCl 3 , 2HCN. Deliquescent. (Klein, A. 74. 85.) Ferrous chloride nitric oxide, FeCl 2 , NO. Known only in solution. Ferrous fluoride, FeF 2 . SI. sol. in H 2 ; insol. in alcohol and ether. Partly sol. in hot HC1 + Aq ; slowly sol. in cold, easily in hot HN0 3 ; decomp. by H 2 S0 4 . (Poulenc, C. R. 115. 941.) + 8H 2 0. Difficultly sol. in H 2 ; more easily if it contains HF. (Berzelius.) Ferric fluoride, FeF 3 . SI. sol. in H 2 ; insol. in alcohol or ether. SI. attacked by HN0 3 , HC1, or H 2 S0 4 + Aq. (Poulenc, C. R. 115. 941.) + 4|H 2 0. More sol. in hot than cold H 2 0. Insol. in alcohol. (Scheurer- Kestner, A. ch. (3) 68. 472.) IRON HYDROXIDE 199 Ferrous potassium fluoride, FeF 2 , KF + 2H 2 0. (Wagner, B. 19. 896.) FeF 2 , 2KF. 81. sol. in H 2 0. (Berzelius.) Ferric potassium fluoride, FeF 3 , 2KF. Somewhat sol. in H 2 0, especially if hot. (Berzelius.) + H 2 0. (Christensen, J. pr. (2) 35. 164.) FeF 3 , 3KF. Properties as above. (Ber- zelius. ) Ferric sodium fluoride, FeF 3 , 2NaF + H 2 0. Rather easily sol. in H 2 0. Solution decomp. on heating. Very sol. in FeCl 3 + Aq. (Nickles, J. Pharm. (4) 10. 14.) FeF 3 , 3NaF. (Wagner, B. 19. 896.) Ferrous titanium fluoride. See Fluotitanate, ferrous. Ferrous hydroxide, Fe0 2 H 2 . Sol. in 150,000 pts. H 2 0. (Bineau, C. R. 41. 509.) Insol. in KOH, or NaOH + Aq. Sol. in NH 4 salts + Aq. SI. sol. in NaC 2 H 3 2 + Aq. (Mer- cer.) Not pptd. in presence of Na citrate. Insol. in boiling cane sugar + Aq, but si. sol. when KOH has been added. Not pptd. in presence of much H 2 C 4 H 4 6 . (Rose. ) Ferric hydroxides, Fe 2 3 , #H 2 0. Many indefinite compounds of Fe 2 3 and H 2 are known, and uncertainty exists as to their composition. According to van Bemmelen (R. t. c. 7. 106), there are probably no true definite compounds of Fe 2 3 and H 2 0. According to Tommasi (B. 12. 1924, 2334), there are two series of Fe hydroxides, a or red hydroxides, and p or yellow hydroxides. a Hydroxides. Fe 2 6 H 6 (unstable), Fe 2 3 , 2H20 (loses H 2 at 50), and Fe 2 3 , H 2 (loses H 2 O at 92). J Sol. in dil. acids and in Fe 2 Cl 6 + Aq, and pptd. from the latter solution by Na^SO^ or H2S0 4 + Aq. P Hydroxides. Fe 2 6 H 6 (stable below 70), Fe 2 3 , 2H 2 (loses H 2 at 105), Fe 2 3 , H 2 (loses H 2 at 150). SI. sol. in acids, and insol. in Fe^Clg+Aq. (Tommasi. ) The following more or less uncertain data are given. 2Fe 2 3 , H 2 0. Sol. in HCl-fAq. Very si. sol. in HN0 3 + Aq. (Da vies, Chem. Soc. (2)4. 69.) Min. Turgite. Fe 2 3 , H 2 0. Insol. in cold acids, difficultly sol. in warm HC1 and H 2 S0 4 + Aq, and especi- ally in warm HN0 3 + Aq. (Schiff, A. 114. 199. ) Min. Gothite. 2Fe 2 3 , 3H 2 0. SI. sol. in tartaric, citric, or acetic acids, but easily sol. in HC1 + Aq. (Wittstein.) Scarcely attacked by cone. HN0 3 , or HC1 + Aq. Sol. in acetic acid or dil. HN0 3 , or HC1+ Aq, from which solution it is pptd. by trace of alkali salts. (St. Gffles.) Min. Limonite. 3Fe 2 3 , 5H 2 0. (Muck.) Fe 2 3 , 2H 2 0. Easily sol. in HC1 + Aq. Min. Xanthosiderite. Fe 2 3 , 3H 2 0. 81. sol. in acetic acid of 1 '03 sp. gr., but easily sol. if of 1'076 sp. gr. Sol. in mineral acids. (Limberger, J. B. 1853. 70.) Pptd. Fe 2 3 , a;H 2 = Fe 2 6 H 6 (?). Insol. in H 2 0, or in solutions of the alkalies or NH 4 salts. When recently pptd. is easily sol. in acids. (Fresenius.) 81. sol. in NH 4 OH, and NH 4 salts +Aq. (Odling.) Apparently insol. in NH 4 C1, or (NH 4 ) 2 C0 3 + Aq. (Brett, 1837.) 81. sol. in cone., but insol. in dil. KOH + Aq. (Chodnew, J. pr. 28. 221.) 81. sol. in very cone. KOH + Aq free from C0 2 . (Volcker, A. 59. 34.) Not at all sol. in pure cone. KOH + Aq, solubility noticed by previous observers being caused by the presence of silicic acid. (Sand- rock.) 81. sol. in cone, alkali carbonates + Aq. When freshly pptd., it is not acted upon by Aq. (Grotthaus.) Readily sol. in cone. (NH 4 ) 2 C0 3 + Aq, but pptd. by addition of H 2 0. Sol. in excess of (NH 4 ) 2 C0 3 + Aq when pptd. by that reagent. (Wohler.) Sol. in solutions of the alkali bicarbonates. (Berzelius.) Sol. in aqueous solutions of water - glass. (Ordway.) Insol. in fumaric acid, even when freshly pptd. / When recently pptd., it is easily sol. in / KHC 4 H 4 6 + Aq, but after drying it is dif- ficultly sol. therein. When moist easily sol. in H 2 C 4 H 4 6 + Aq, but after drying is scarcely sol. therein when cold, and only si. sol. when hot. ( Werther. ) Easily sol. in acetic, citric, and other acids. (Wittstein.) Immediately dissolved by HoSO-,, + Aq. / Sol. in NH 4 F + Aq. (Helmholt, Z. anorg. / 3. 124.) Sol. in cone. A^SOJg + Aq. (Schneider, B. 23. 1352.) 81. sol. in a solution of MgC0 3 (?). (Bischof. ) Insol. in ethylamine, or amylamine + Aq. (Wurtz, A. ch. (3) 30. 472.) Sol. in boiling solution of Bi(N0 3 ) 3 , with pptn. of Bi 2 3 . (Persoz.) Easily sol. in aqueous solution of sucrates of Ca, Ba, Sr, K, Na. (Hunton, 1837.) Unacted upon by cane sugar + Aq. (Glad- stone.) 81. sol. in cane sugar + Aq, from which it is pptd. by (NH 4 ) 2 S + Aq, but not by NH 4 OH, or K 4 FeC 6 N 6 + Aq. (Peschier.) Not pptd. from solutions by alkalies or alkali carbonates in presence of many organic substances, as tartaric acid, sugar, etc. Not pptd. by NH 4 OH from solutions con- taining Na 4 P 2 7 . (Rose, Pogg. 76. 19.) Not pptd. by NH 4 OH in presence of Na citrate. (Spiller.) Sol. in ^01^ + Aq ; after 3 months 15 mols. 200 IRON HYDROXIDE Fe 2 6 H 6 were dissolved by 1 mol. Cr 2 Cl 6 . (Bechamp, A. ch. (3) 57. 296.) Soluble, (a) By dialysis. Solutions con- taining 1 % can be concentrated somewhat, whereupon they gelatinise. They also gelatinise by cold, or addition of traces of HoS0 4 , alkalies, alkali carbonates or sulphates, or neutral salts, not, however, by HC1, HN0 3 , alcohol, or sugar. (Graham, A. 121. 46.) When a dil. solution of a solid organic acid, or an alkali, or salt is added to a dialysed solution of Fe 2 6 H 6 , a coagulum sol. in H 2 is formed, but if the solutions are cone, the separating coagulum is no longer sol. in H 2 0. (Athenstadt, C. C. 1871. 822.) (b) Pean St. Gilles 1 hydroxide, or meta-iron hydroxide. Sol. in H 2 0. Pptd. from solution by traces of H 2 S0 4 , HC1, HN0 3 + Aq, and alkalies ; the ppt. is insol. in cold acids, but sol. in pure H 2 0. (Pean St. Gilles, A. ch. (3) 46. 47.) See also table by Krecke in the article on ferric chloride. Ferroferric hydroxide, Fe 3 4 , H 2 (?). Sol. in acids. Fe 3 4 , 4H 2 0. (Lefort.) Ferrous iodide, FeI 2 . Very deliquescent. Sol. in H 2 0. Solution decomp. on evaporating. + 5H 2 0. Deliquescent. Sol. in alcohol. Sol. in sugar + Aq, and solution is much more stable than aqueous solution. Easily sol. in glycerine. Insol. in methylene iodide. (Retgers, Z. anorg. 3. 343.) Ferric iodide, FeI 3 . Has not been isolated. Solution of I in FeI 2 + Aq in the molecular ratio of I : FeI 2 pro- bably contains FeI 3 . Ferrous mercuric iodide. Very deliquescent. Decomp. by H 2 ; sol. in HC 2 H 3 2 or alcohol. Iron molybdenide, FeMo 2 . Attacked by HCl + Aq with difficulty. Sol. in hot cone. H 2 S0 4 . (Steinacker. ) Iron nitride, Fe 2 N. Easily sol. in HN0 3 , HC1, or H 2 S0 4 + Aq. Very slowly decomp. by H 2 0. (Stahlsclimidt, Pogg. 125. 37.) Fe 5 N 2 . Probably the same as the above compound. (Rogstadius, J. pr. 86. 307.) Iron nitrososulphantimonate, Fe 4 S(NO) 6 Sb 2 S 5 . (Low, C. C. 1865. 948.) Does not exist, but was impure sodium fer- ro^ranitrososulphide. (Pawel, B. 15. 2600.) Iron nitrososulphides. See Ferro^ranitrososulphydric acid and Ferro/ie^tanitrososulphide, ammonium. Fe 3 S 5 H 2 (NO) 4 . (Roussin, C. R. 46. 224.) Fe 3 S 3 (NO) 4 + 2H 2 0. (Porczinsky, A. 125. 302.) Fe 6 S 5 (NO) 10 + 4H 2 0. (Rosenberg, B. 3. 312. ) The compound to which the above formulae were given was impure, according to Pawel (B. 12. 1407 and 1949 ; 15. 2600), and contained more or less Na or NH 4 . Pawel considers the substance as NH 4 salt of ferro/ieptanitroso- sulphydric acid, which see. Iron sodium nitrososulphide, 3Na 2 S,Fe 2 S 3 ,2NO. (Roussin.) Na 8 Fe 8 S 9 (NO) 18 . (Rosenberg.) Correct formula is is Na 2 S 2 (NO) 4 Fe 2 , sodium ferrogranitrososulphide. Iron nitrososulphocarbonate, Fe 4 S(NO) 6 CS 2 + 3H 2 0. (Low, C. C. 1865. 948.) Correct formula is NaS 3 (NO) 7 Fe 4 + 2H 2 0, sodium ferro/teptanitrososulphide. (Pawel, B. 16. 2600.) Ferrous oxide, FeO. Insol. in H 2 0. Sol. in acids. Easily sol. in HC1, and HN0 3 + Aq ; nearly insol. in H 2 S0 4 , even when heated. (Tissan- dier, C. R. 74. 531.) Ferric oxide, Fe 2 3 . Attacked by acids with difficulty, the more so the higher it has been heated. HCl + Aq is the best solvent, in which it is more quickly sol. by long digestion at a gentle heat than by boiling. (Fresenius. ) Most easily sol. in 16 pts. of a mixture of 8 pts. H 2 S0 4 and 3 pts. H 2 0. (Mitscherlich, J. pr. 81. 110.) Absolutely insol. in Br 2 + Aq. (Balard.) Insol. in hot NH 4 Cl + Aq. (Rose.) Insol. in KOH + Aq. (Chodnew, J. pr. 28. 222.) Solubility in (calcium sucrate + sugar) + Aq. 1 1. solution containing 418 '6 g. sugar and 34-3 g. CaO dissolves 6 "26 g. Fe 2 3 ; 296 '5 g. sugar and 24 '2 g. CaO dissolves 471 g. Fe 2 3 ; 174-4 g. sugar and 14 '1 g. CaO dissolves 3 '08 g. Fe 2 3 . (Bodenbender, J. B. 1865. 600.) See also Ferric hydroxide. Min. Hematite. Rather easily sol. in HC1 + Aq, but not readily sol. in other acids. Metairon oxide. See Ferric hydroxides. Ferroferric oxide, 6FeO, Fe 2 3 . FeO, Fe 2 3 = Fe 3 4 . With insufficient' HC1 + Aq for complete solution, FeO is dissolved and Fe 2 3 left. (Berzelius.) Insol. in HN0 3 + Aq at the ordinary tem- perature. (Millon.) Min. Magnetite. Insol. in HN0 3 , but sol. in hot HC1 + Aq. Iron sesgm'oxide zinc oxide, Fe 2 3 , ZnO. See Ferrite, zinc. Ferric oxybromide. Basic ferric bromides containing three equiva- lents, or less, of base to one of acid may be obtained dissolved in H 2 0. (Ordway, Am. J. Sci. (2) 26. 202.) The most basic soluble compound obtained by three months' digestion of Fe 2 6 H 6 with Fe 2 Br 6 + Aq, is Fe 2 Br 6 , 14Fe 2 3 . (Bechamp.) Ferric oxychlorides. (a) Soluble. Fe 2 6 H 6 dissolves in Fe 2 Cl 6 + IRON SULPHIDE 201 Aq.- By digesting until the acid reaction of the chloride has disappeared a solution of Fe 2 Cl 6 , 2Fe 2 3 is obtained. (Pettenkofer, Repert. (2) 41. 289.) By digesting for several days in the cold, Fe 2 Cl 6 , 5Fe 2 3 is obtained, and still more basic compounds by further addition of Fe 2 6 H 6 . When the solution contains Fe 2 01 6 , 12Fe 2 3 it gelatinises, but still dissolves completely in H 2 0. The most basic soluble compound is Fe 2 Cl 6 , 20Fe Q 3 . (Bechamp, A. ch. (3) 57. 296.) If the digestion is carried on several weeks, a solution containing Fe 2 Cl 6 , 23Fe 2 3 is ob- tained ; this can be boiled and diluted with- out pptn., but Fe 2 6 He is precipitated by the addition of very many salts. (Ordway, Sill. Am. J. (2) 26. 197.) Solutions containing 10 or less molecules Fe 2 3 to 1 mol. Fe 2 Cl 6 can be dried without the oxycnloride becoming insoluble. (Ordway.) The above solutions do not become cloudy by boiling or diluting. (Phillips.) A very dil. solution of Fe 10Fe 2 3 re- mains clear after protracted boiling, and may be boiled without decomp. even when Fe 2 Cl 6 , 20Fe 2 3 is present. (Bechamp.) HN0 3 , and HCl + Aq form precipitates in the above solutions, which are sol. on addition of more H 2 0. H 2 S0 4 + Aq forms a precipitate insol. in H 2 0. (Bechamp.) Fe 2 Cl 6 , 9Fe 2 3 is easily sol. in H 2 0, weak alcohol, and glycerine ; but solutions are pptd. by small amts. of H 2 S0 4 , M 2 S0 4 , citric or tartaric acids, or a few drops of HC1, or HN0 3 + Aq. (Jeannel, C. R. 46. 799.) Solutions containing 5 mols. Fe 2 3 to 1 mol. Fe 2 Cl 6 are completely precipitated by K 2 S0 4 , Na 2 S0 4 , MgS0 4 , KN0 3 , NaN0 3 , Zn(N0 3 ) 2 , KC1, NaCl, NH 4 C1, CaCl 2 , MgCl 2 , ZnCl 2 , KBr, or KSCN. (Bechamp.) Ba(N0 3 ) 2 does not precipitate solutions of less than 18-20 Fe 2 3 to 1 Fe 2 Cl 6 . Pb(N0 3 ) 2 or Pb(C 2 H 3 2 ) 2 do not precipitate solutions containing the compound Fe 2 Cl 6 , 12Fe 2 3 , but a mixture of the two salts causes complete precipitation. Solution has been obtained containing 116 Fe 2 3 to 1 Fe 2 Cl 6 , probably owing to a forma- tion of soluble colloidal Fe 2 3 . (Magnier de la Source, C. R. 90. 1352.) (/3) Insoluble. Fe 2 Cl 6 , 6Fe 2 3 + 9H 2 0. (1) By exposing FeCl 2 + Aq to air. Insol. in H 2 0, si. sol. in HCl + Aq. (Wittstein.) (2) From FeCl 2 + Aq and HN0 3 . Insol. in H 2 0, and si. sol. in HCl + Aq. (Bechamp.) 2Fe 2 Cl 6 , 25Fe 2 3 + 41H 2 0. Insol. in H 2 0. (Bechamp.) Fe 2 Cl 6 , 2Fe 2 3 +3H 2 0. Decomp. by H 2 with residue of Fe 2 3 ; si. sol. in dil. acids. (Rousseau, C.R. 110. 1032.) Fe 2 Cl 6 , 3Fe 2 3 . As above. (Rousseau, C. R. 113. 542.) Ferric oxyfluoride, 3Fe 2 3 , 2FeF 3 + 4H 2 0. Ppt. (Scheurer-Kestner.) Ferric oxysulphide, Fe 2 3 , 3Fe 2 S 3 . (Rammelsberg.) Iron phosphide, FeP. Very slowly (Freese), not (Hvoslef, A. 100. 99) sol. in hot HC1 + Aq. Still more insol. in dil. H 2 S0 4 + Aq. (Freese.) Slowly sol. in HN0 3 + Aq, and easily sol. in aqua regia. (Struve.) Fe 2 P. Slowly but completely sol. in HC1, or dil. H 2 S0 4 + Aq. Sol. in hot cone. H 2 S0 4 , in HN0 3 , and in aqua regia. (Freese, Pogg. 132. 225.) Fe 3 P 4 . Very slowly sol. in hot cone. HC1 + Aq. O'l g. dissolves by 4 days' heating with HCl + Aq ; 0'3 g. dissolves in hot cone. H 2 S0 4 in 1 hours ; '4 g. in 2 hours in HN0 3 + Aq. Quite easily sol. in aqua regia on warming. (Freese.) Fe 3 P. Nearly insol. in dil. acids ; rapidly sol. in HN0 3 or aqua regia ; decomp. by cone. HC1, or KOH + Aq. (Schneider, J. B. 1886. 2026.) Fe 4 P 3 . Very slowly sol. in boiling HC1 + Aq. Easily sol. in HN0 3 or aqua regia. (Struve, J. B. 1860. 77.) Mixture. (Freese, Pogg. 132. 225.) Ferrous selenide, FeSe + cH 2 0. Sol. in HC1, HN0 3 , or HC 2 H 3 2 + Aq. Insol. in alkalies, or (NH 4 ) 2 S + Aq. (Reeb, J. Pharm. (4) 9. 173.) Ferric selenide, Fe 2 Se 3 . Sol. in dil. HC1, or HN0 3 + Aq with evolution of H 2 Se. Sol. in cone. HN0 3 + Aq. (Little, A. 112. 211.) Iron silicide, Fe 4 Si. Difficultly sol. in HC1 + Aq ; easily sol. even in dil. HF + Aq. (Hahn, A. 129. 57.) Fe 10 Si 9 . Sol. in hot HCl + Aq only when most finely powdered. (Hahn.) FeSi 2 . Not attacked by cone. HF or H 2 S0 4 . (Hahn.) Iron sew^sulphide, Fe 2 S. Sol. in dil. acids with decomposition. (Arf- vedson, Pogg. 1. 72.) Ferrous sulphide, FeS. Decomp. by dil. acids, with evolution of H 2 S and without separation of S, except with HN0 3 + Aq. + #H 2 0. SI. sol. in H 2 0, especially if hot. (Berzelius.) Very violently decomp., even by dil. acids. Sol. in H 2 S0 3 + Aq. Insol. in H 2 S, or (NH 4 ) 2 S + Aq. SI. sol. in Na 2 S, or K 2 S + Aq. Sol. in Na 2 Sa. or K^ + Aq. (de Koninck, Z. angew. Ch. 1891. 204.) Insol. in NH 4 N0 3 , or NH 4 C1 + Aq. (Brett.) Not completely pptd. in presence of Na cit- rate. (Spiller.) Contrary to assertion of Persoz, it can be nearly completely pptd. in presence of Na 4 P 2 7 by (NH 4 ) 2 S + Aq. (Rose, Pogg. 76. 18.) Sol. in alkali sulpho-molybdates, -tungstates, -vanadates, -arsenates, -antimonates, and -stannates. (Storch, B. 16. 2015.) Sol. inKCN + Aq. Colloidal. A very dilute solution has been 202 IRON SULPHIDE obtained which coagulated very readily. (Winssinger, Bull. Soc. (2) 49. 452.) Ferric sulphide, Fe 2 S 3 . Decomp. by dil. HC1, or H 2 S0 4 + Aq with evolution of H 2 S, leaving a residue of FeS 2 . + HH 2 0. Sol. in NH 4 OH + Aq, also in alcoholic ammonia. SI. sol. in (NH 4 ) 2 S + very dil. Na 2 S 2 3 + Aq. (Phipson, C. N. 30. 139.) Iron efo'sulphide, FeS 2 . Insol. in dil. HC1, or H 2 S0 4 + Aq. Decomp. by HN0 3 or aqua regia with separation of S. Insol. in a 10 % solution of alkali sulphide. Min. Pyrite, Marcasite. Sol. in a mixture of Na 2 S and NaOH + Aq, Na 2 S + Aq, or mixture of Na 2 S and NaSH + Aq ; insol. in cold NaSH + Aq. Marcasite is more easily sol. in above than pyrite. (Becker, Sill. Am. J. (3) 33. 199.) Ferroferric sulphide, Fe 8 S 9 or Fe 7 S 8 . Min. Pyrrhotite. Sol. in dil. acids with a residue of S. Extremely slowly sol. in a 10 % solution of alkali sulphides. (Terreil, C. R. 69. 1360.) Ferrous nickel sulphide, 2FeS, NiS. Min. Pentlandite. Ferrous phosphorus sulphide, FeS, P 2 S. (Berzelius. ) 2FeS, P 2 S 3 . Slowly decomp. by H 2 0. In- sol. in boiling HC1 + Aq ; decomp. by aqua regia. (Berzelius, A. 46. 256.) Iron potassium sulphide (potassium sulpho- ferrite), K 2 Fe 2 S 4 = K 2 S, Fe 2 S 3 . Insol. in cold or hot H 2 O. Violently attacked by dil. acids. Not decomp. by boil- ing with alkalies, alkali carbonates, or sul- phides +Aq. Decomp. by KCN, orNa 2 S 2 3 + Aq. (Preis, J. pr. 107. 16.) K 2 S, 2FeS. (Schneider, Pogg. 136. 460.) Iron silver sulphide (silver sulphoferrite), Ag 2 S, Fe 2 S 3 . Not attacked by dil. HC1 + Aq ; decomp. by cone. HCl + Aq. (Schneider.) 2Ag S, FeS 2 . (Schneider, Pogg. 138. 305.) Ag 2 S, 3FeS, FeS 2 . Min. Sternbergite. De- comp. by aqua regia. Iron sodium sulphide (sodium sulphoferrite) Na 2 Fe 2 S 4 + 4H 2 0. Insol. in H 2 0. Decomp. by very dil. acids (Schneider, Pogg. 138. 302.) Ferrous telluride, FeTe. Insol. in H 2 ; sol. in acids. (Fabre, C. R 105. 277.) Kermes. See Antimony bisulphide. " Knallplatin " compounds. See Fulminoplatinum compounds. Lanthanum, La. Slowly decomp. cold, rapidly hot H 2 0. Not attacked by cold cone. H 2 S0 4 , but energetically by cold cone. HN0 3 + Aq. Sol. in dil. acids. (Hillebrand and Norton, Pogg. 165. 633.) Lanthanum bromide, LaBr 3 + 7H 2 0. Easily sol. in H 2 0. Not very sol. in absolute alcohol. Insol. in ether. (Cleve, Sv. V. A. H. Bih. 2. No. 7.) Lanthanum nickel bromide, 2LaBr 3 , 3NiBr 2 + 18H 2 0. Deliquescent. (Frerichs and Smith, A. 191. 355.) Lanthanum zinc bromide, 2LaBr 3 , 3ZnBr 2 + 36H 2 0. Very deliquescent. (F. and S.) Lanthanum chloride, LaCl 3 . Anhydrous. Deliquescent. (Hermann.) + 7|H 2 0. Not deliquescent. (Zschiesche.) Easily sol. in alcohol. (Hermann.) Lanthanum mercuric chloride, 2LaCL, HgCL + fH 2 0. Not deliquescent. Very sol. in H 2 0. (Marignac, Ann. Min. (5) 15. 272.) Lanthanum stannic chloride. See Chlorostannate, lanthanum. Lanthanum fluoride, LaF 3 + H 2 0. Precipitate. SI. sol. in HCl + Aq. (Cleve.) Lanthanum hydrogen fluoride, 2LaF 3 , 3HF. Precipitate. (Frerichs and Smith, A. 191. 355. ) Does not exist. (Cleve, B. 11. 910.) Lanthanum hydride, La 2 H 3 . Decomp. by dil. acids. (Winkler, B. 24. 1966.) Lanthanum hydroxide, La 2 6 H 6 . Insol. in H.,0 ; easily sol. in acids ; insol. in KOH, orNaOH-f Aq. Lanthanum zinc iodide, 2LaI 3 , 3ZnI 2 + 27H 2 0. Very sol. in H 2 0. (Frerichs and Smith, A. 191. 358.) Lanthanum oxide, La 2 3 . Easily sol., even when ignited, in mineral, and acetic acids. (Hermann.) Sol. in boiling cone. NH 4 Cl + Aq. (Mos- ander. ) Sol. in cold cone. NH 4 N0 3 + Aq. (Damour and Deville.) Insol. in (NH 4 ) 2 C0 3 + Aq. (Mosander.) Lanthanum peroxide, La 4 9 . Sol. in HC1, H 2 S0 4 , HN0 3 , and HC 2 H 3 2 + Aq with decomp. (Cleve, Bull. Soc. (2) 43. 359.) Lanthanum oxybromide, LaOBr. Ppt. (Frerichs and Smith.) Lanthanum oxychloride, 3La 2 3 , 2LaCl 3 . Insol. in H 2 0. Difficultly and slowly sol. in HC1, or HN0 3 + Aq. (Hermann.) LaOCl. Boiling H 2 dissolves only traces. (Frerichs and Smith.) Lanthanum sulphide, La 2 S 3 . Decomp. by H 2 and acids. (Didier.) Lead, Pb. Lead, in contact with H 2 O and air free from COo, gives a solution of PbO which turns litmus blue and turmeric red, and is turned brown with H 2 S. LEAD 203 H 2 O which has been boiled does not dissolve Pb if therejis no access of air. When shaken up with air it dissolves O'Ol to O'OOS % PbO in 2 hours. Pure spring water, containing If grains salts in 2 pounds H 2 O and no CO 2 , when conducted through a lead pipe 150 feet long, dissolves so much lead that it turns brown with H 2 S. (Yorke, Phil. Mag. J. 5. 82.) CO 2 or small amts. of salts prevent the solution of Pb. 1 vol. H 2 O with | vol. CO 2 dissolves only a trace of Pb. Spring H 2 O, containing in 10 pounds 1'21 grains NaCl and CaCl 2 , and 6-4 grains CaCO 3 dissolved in CO 2 , does not dissolve lead. (Yorke.) If the amt. of salts in solution equals ^ TTJ the amt. of H 2 O, and especially if they are carbonates, very slight amts. of Pb are dissolved. (Christison, Phil. Mag. J. 21. 158.) CaCOg dissolved in CO 2 water decreases the solubility of Pb more than any other salt. Distilled H 2 O, quietly standing in a closed flask with lead and air free from CO 2 , deposits white flocks of PbO 2 H.7, and dissolves ^fan pt. PbO. The solution has an alkaline reaction, (v. Bonsdorff, Pogg, 41. 305.) Water of 3 hardness does not take up enough Pb to become injurious. (Clarke, J. B. 1856. 608.) Soluble carbonates increase the solubility of Pb in H 2 O (Nevins, C. C. 1851. 608) ; especially (NH^COg. (Bottger.) Presence of H 2 SO 4 decreases the solubility of Pb. (Horsford, Chem. Gaz. 1849. 247.) H 2 O containing K 2 SO 4 takes up only a trace of Pb. (Wetzlar, Schw. J. 54. 324.) Presence of sulphates diminishes (Christison), does not diminish (Graham, Miller, and Hoffmann), the action of H 2 O on Pb. CaS0 4 protects Pb, but it is attacked by much MgSO4- (Nevins.) NaCl+Aq dissolves only a trace of Pb. lA,, pt. of a chloride in H 2 O is not sufficient to pre- vent the solubility of Pb in H 2 Q. (Christison.) Presence of chlorides increases the solubility. (Graham, Miller, arid Hoffmann ; Nevins.) H 2 O containing KNO 3 does not corrode Pb. Nitrates hinder the action of H 2 O. (v. Bonsdorff.) Nitrates increase the action of H 2 O". (Graham, Miller, and Hoffman.) Nitrates have no influence. (Kersting.) 10 Ibs. of H 2 dissolved the following amts. from Pb pipes in 24 hours : if distilled H 2 + 1 % Na 2 C0 3 , 0'38 grain Pb ; if Diina water, 0'19 grain Pb ; if canal water, 0'15 grain Pb ; if distilled H 2 + l % NH 4 NO ? , 0'15 grain Pb ; if hard well water, 0'04 grain Pb ; if distilled H 2 + l % KN0 3 , O'Ol grain Pb. (Kersting, Dingl. 169. 183.) 200 1. Manchester drinking water dissolved 2'094 g. from 1 sq. metre Pb in 8 weeks ; 9 1. well water dissolved 1 '477 g. from 1 sq. metre Pb in 8 weeks ; 11 1. distilled H 2 containing air dissolved 110 '003 g. from 1 "sq. metre Pb in 8 weeks ; distilled H 2 free from air dis- solved 1*829 g. from 1 sq. metre Pb in 8 weeks ; sea water dissolved 0'038 g. from 1 sq. metre Pb in 8 weeks. (Calvert and Johnson, C. N. 16. 171.) A lead pipe taken up in Paris, which had been exposed to action of ordinary H 2 for 200 years, was found perfectly smooth and uncor- roded. (Belgrand, C. R. 77. 1055.) Pb is attacked by all waters, hard or soft ; even highly calcareous water dissolves some lead. (Mayen9on and Bergeret, C. R. 78. 484.) Pure distilled H 2 does not act on Pb, but extremely small quantities of NH 3 , HN0 3 , etc. cause an action ; but for this action on Pb the presence of air and C0 2 is also required. (Stall- man, Dingl. 180. 366.) 100 ccm. distilled H 2 dissolved 3 mg. from 11 '8 sq. cm. lead in one week when air with- out C0 2 was passed through the solution. 8 mg. were dissolved when the air contained C0 2 . (Wagner, Dingl. 221. 260.) Action of dil. salt solutions on lead. In 500 com. of the solutions containing salt, bright sheets of lead of 5600 sq. metres' surface were so suspended that the liquid reached all parts of the metal without hindrance, and the amts. dis- solved determined after 24, 48, and 72 hours of action. Salt Grammes salt per litre Dissolved Pb in mg. per litre after 24 48 72 hrs. NH 4 N0 3 0-020 13-0 25 ? J 0-040 15-0 32 5 j 0-080 15-0 /KN0 3 + \ NaN0 3 / 0-020 \ 0-050 2-0 2-0 /KN0 3 + \ Na 2 S0 4 / 0-040 \ 0-212 0-8 1-0 JKN0 3 + f 0-045 1 K 2 C0 3 /KN0 3 + 1 K 2 S0 4 \0-308 ( 0-070 \0-504 0'3 0-5 CaS0 4 0-252 0-4 ... 0-8 >j 0-408 0-4 1-0 KaCOg 0-310 0-2 ?> 0-516 ... 0-2 CaCl 2 0-250 0-5 0-5 0-5 ?> 0-510 0'3 ... 0-4 Na 2 S0 4 0-200 ... 0-8 0-400 0-5 /NH 4 NO,+ \ CaCl 2 / 0-020 \0-060 1-8 (NH 4 N0 3 + ! 0-020 -1 K 2 C0 3 + o-ioo 0'4 tNa 2 S0 4 0-200 fNa S0 4 + 0-200 1 K 2 C0 3 + 0-040 o-i (CaCl 2 o-ioo Water from L. Katrine i-o i-o 1-5 Distilled water . 2-0 2-0 3-0 (Muir, C. N. 25. 294.) Action of salt solutions on 11 '8 sq. cm. Pb in one week while air either with or without C0 2 was passed through the solution. 100 ccm. solutions containing the given amts. salts dissolve Pb in mg. : Salt g. salt in 100 ccm. mg. Pb dissolved without CO 2 with CO 2 KC1 0-5 21 12 NaCl 0-5 21 12 NH 4 C1 i-o 12 5 MgCl 2 0-83 20 35 K 2 S0 4 i-o KN0 3 i-o 14 20 Na 2 C0 3 i-o NaOH 0-923 430 1 Ca0 2 H 2 Saturated 137 (Wagner, Dingl. 221. 260. ) 204 LEAD Solubility of Pb in salt solutions. 25 sq. cm. were acted upon by a solution containing 0'2 g. salt in a litre for 21 days. Three series of experiments were carried on. I. In corked flasks. II. In beakers covered with porous paper ; diameter of mouth of beaker = 11 '5 cm. III. In basins covered with porous paper ; diameter of mouth of basin = 14 '5 cm. IV. In corked flasks with constant current of air. V. In beakers half filled and covered with porous paper, the lead being suspended so that equal amts. of surface were above and beneath the liquid. The amts. in mgs. of Pb dissolved were as follows : Salt used I. II. III. IV. V. NH 4 N0 3 . OaCL? (NH 4 ) 2 S0 4 . K 2 C0 3 . . Dist. H 2 . 1-8 1-6 3-0 07 0-3 1-5 4-0 0'5 2-8 1-3 0'3 0-8 16'0 6-0 5-5 16-0 07 4-2 1-5 3'5 5-0 0-6 2'0 3-5 2-5 0-3 (Muir, Chem. Soc. 36. 660.) H 2 sat. with C0 2 dissolves 0'012 g. Pb to a litre in 3 days. (Marais, C. R. 77. 1529.) Action of H 2 charged with C0 2 under 760 mm. pressure on Pb. 3 mg. of Pb were dis- solved per litre in 24 hours, and the amt. was not increased by further action. The addition of 100 mg. K 2 C0 3 + 20 mg. NH 4 N0 3 to a litre prevented all action. Action of H 2 charged with C0 2 under 6 atmos. pressure on Pb. 14 '8 mg. were dissolved per 1. in 24 hours, and 24 mg. per 1. in 48 hours. Action of various salt solutions added to above solution of C0 9 was as follows : mg. salt perl. ing. Pb dissolved after 24 hrs. after 48 hrs. K 2 C0 3 . . . K 2 C0 3 . . . CaCl 2 . . . NH 4 N0 3 . . NH 4 NOo . . Distilled H 2 80 160 160 16 40 13-2 32 -0 5-0 10-0 14-8 32-0 6-0 44-0 35 : 24-0 (Muir, C. N. 33. 125.) The corrosion of Pb by ordinary distilled H 2 depends upon the presence of C0 2 and O. If the dissolved C0 2 is double the amt. of the dissolved 0, the action is most energetic. When C0 2 is wholly absent and pre- sent, the action is very slight, and when the H 2 contains 1 or more vo1 - % pp2 with normal amt. of oxygen, there is no visible cor- rosion. Pure distilled H 2 containing neither nor C0 2 has no action on Pb. In the above cases the greater part of the Pb remains in the form of a white ppt. or crust on the Pb, but in the case where and C0 2 are both pre- sent in the ratio of 1 : 2, very small amts. of Pb go into solution in a few days ; the amt., how- ever, diminishes on standing. As the amt. of C0 2 increases, the amt. of Pb dissolved in the H 2 O also increases. NH 4 OH alone does not protect Pb from cor- rosion, but when in combination with C0 2 the action is much diminished. Ca0 2 H 2 , and NaOH + Aq attack Pb much more actively in absence of C0 2 and presence of air. In absence of dissolved neither Ca0 2 H 2 nor NaOH attacks Pb. Na 2 C0 3 + Aq in absence of C0 2 attacks Pb slightly, butNaHC0 3 + Aqhas not the slighest action. CaH 2 (C0 3 ) 2 + Aq also has not the slightest action on Pb, and the presence of CaC0 3 and C0 2 wholly prevents H 2 attacking Pb. CaS0 4 + Aq in presence of air forms a crust on Pb, but no Pb is found in solution, but if air is excluded there is no visible action. Pres- ence of C0 2 causes a strong corrosive action. H 2 containing CaS0 4 and CaH 2 (C0 3 ) 2 does not attack Pb. The above reactions are not in the least altered by the presence of moderate amts. of nitrates, chlorides, or ammonium, or organic compounds ; but ammonium salts in excess have a strong solvent action on Pb. (Miiller, J. pr. (2) 36. 317.) See also an extended report of the action of H 2 on Pb made to the Water Committee of Huddersfield, England, in 1886, by Messrs. Crookes, Odling, and Tidy. Very extended researches are published by Cornelley and Frew (Jour. Soc. Chem. Ind. 7. 15), of which only the general conclusions can be given here. The action of slaked lime, limestone, sand, calcium silicate, mortar, etc., was tested. The results were as follows : 1. In nearly all cases the corrosion is greater with free exposure to the air than when air is excluded. The difference is especially great in those cases where the greatest action on the lead takes place. Aluminum hydroxide and blue clay form exceptions, and exert a greater corrosive action when air is excluded. In the case of CaC0 3 , old mortar, CaSi0 3 , or a mixture of CaCOs and Ca0 2 H 2 , the exclusion or presence of air makes no appreciable difference. KN0 3 + Aq show a peculiar behaviour. In the presence of air it acts nearly as much on the Pb as pure H 2 0, but when air is excluded it exerts nearly as much retarding action as CaSi0 3 . 2. In the presence of air the action of H 2 on Pb is considerably increased by the presence of NH 4 N0 3 or Ca0 2 H 4 ; with exclusion of air, by CaS0 4 , also by a mixture of Ca0 2 H 2 and sand. All the other investigated substances, even KN0 3 , hinder the action of H 2 on Pb either with or without exclusion of air. 3. Ca0 2 H 2 + Aq exerts in all cases a much greater corrosive action than pure H 2 0, and although this action is diminished by sand yet fresh mortar very quickly destroys lead pipes when in contact therewith. Old mortar, on LEAD 205 the other hand, and also CaSi0 3 and CaC0 3 , have a protective action. 4. The fact is very important that sand, CaC0 3 , old mortar, CaSiOs, and a mixture of sand and CaC0 3 afford considerable protection to lead against H 2 0. A mixture of limestone and sandstone has more effect than the two substances separately. 5. CaSi0 3 totally prevents the corrosive action of KN0 3 and NH 4 N0 3 , so that the lead is not attacked by solutions of those salts any more than by H 2 containing CaSi0 3 alone. Sand, and a mixture of sand and CaC0 3 have a similar effect, but not to such a degree. 6. The protective influence of CaC0 3 does not appear to depend on the presence of C02 and the formation of CaH 2 (C0 3 ) 2 . 7. MgC0 3 prevents the corrosion of Pb as much as CaSi0 3 . (Carnelley and Frew, Jour. Soc. Chem. Ind. 7. 15.) Pb in contact with Zn or Fe is protected thereby from the solvent action of H 2 0, and in fact the action is nearly null. Sn, on the other hand, increases the action. This is of import- ance in regard to the use of tin-coated lead pipes. The presence of Ca s:lts does not influence the action of the H 2 on Pb, hard or soft H 2 provided it contains C0 2 having a strong corrosive action. Removal of air from H 2 diminishes the solvent action. Simple filtra- tion will remove all Pb from H 2 if suitable filters are used. (Flbgel, J. B. 1888. 2645.) Pure distilled H 2 has strong corrosive action on Pb, which is very much weakened by ad- dition of a solution of CaC0 3 in carbonic acid water, but the presence of sulphates increase the action. Pb is not appreciably attacked by H 2 in presence of chlorides alone, but very strongly when CaS0 4 is also present. H 2 containing C02 also corrodes Pb. The con- clusion was drawn that the absence of action of H20 on Pb in lead pipes is due to the pres- ence of traces of CaH 2 (C0 3 ) 2 . (Barbaglia and Gucci, C. C. 1888. 934.) Almost insol. in cold HC1 + Aq, and only si. attacked when boiling. Completely sol. in HN0 3 + Aq if not too cone., but presence of H 2 S0 4 or HC1 diminishes the solvent power to a great extent. (Rose.) Granulated Pb is si. sol. in cone. HC1 + Aq ; addition of PtCl 4 makes the action very ener- getic. Dil. HCl + Aq may also be used with PtCl 4 . (Millon, C. R. 21. 49.) Scarcely acted upon by boiling cone. HC1 + Aq. Sol. in aqua regia. HN0 3 + Aq is the best solvent, but Pb is as good as insol. in a mixture of HN0 3 and H 2 S0 4 . (Berzelius. ) Not acted upon by very cone. HN0 3 + Aq. Quickly decomp. by hot HCl + Aq, slowly by cold. (Sharpies, C. N. 50. 126.) Pb is only si. attacked by HN0 3 + Aq of any strength below 15. Above 15 it is most rapidly attacked by a rather weak acid. (Montemartini, Gazz. ch. it. 22. 397.) Action of H 2 S0 4 on Pb. H 2 S0 4 of 1-842 sp. gr. dissolves 201 g. from 1 sq. metre pure lead at ordinary temp, (time ?), and H 2 S0 4 of 1'705 sp. gr. dissolves only 59 g. Slight impurities in the lead lessen this solubility. (Calvert and Johnson, Chem. Soc. (2) 1. 66.) Strongly attacked by 99 '8 % H 2 S0 4 at ord. temp, with exclusion of air. (Lunge, Dingl. 261. 131.) When 0'2 g. pure Pb was heated with 50 ccm. H 2 S0 4 of 66 B. there was no appreciable action below 175. At 230-250 all the Pb was suddenly converted into PbS0 4 , which dis- solved. (Bauer, B. 8. 210.) Lead is slowly attacked by pure cold cone. H 2 S0 4 + Aq (9978%H 2 S0 4 ). Lead vessels which held the HS 2 4 were gradually destroyed by long standing. (Napier and Tatlock, C. N. 42. 314.) HCl + Aq of 1-2 sp. gr., with Pb, gives off H at'ord. temp., more abundantly when heated. Evolution of H is hastened by placing Cu in contact with the Pb. H 2 S0 4 + Aq (20 %) does not evolve H under the same circumstances. (Stolba, J. pr. 94. 113. ) Sol. in HC 2 H 3 2 + Aq when in contact with the air. Somewhat sol. in NaCl + Aq. (Reichelt, Dingl. 172. 155.) NaCl + Aq attacks Pb at high temp. (Lunge, I.e.) Action of KC10 3 . KC10 3 + Aq (6 "3 % KC10 3 ) oxidised 64 '31 g. Pb from 1 sq. metre surface by boiling 7 hours; KC10 3 + Aq (25 % KC10 3 ) oxidised 151 '12 g. under same conditions ; and Ca(C10 3 ) 2 , CaCl 2 + Aq (20 Baume), obtained by passing C1 2 through Ca0 2 H 2 + Aq, oxidised 43770 g. (Lunge and Deggeler, Jour. Soc. Chem. Ind. 4. 31.) Solubility of Pb in petroleum. If b.-pt. is under 230, only slightest trace is dissolved in 4 months ; if 230-300, 0-0026 % in 4 months ; if over 300, 0'0244 % in 4 months. Solubility of Pb in commercial oil of turpentine and resin oil. Temp. % Pb dissolved in 8 days in 14 days Fresh oil of turpentine . Old oil of tur- 15-20 sl. trace 0-0722 pentine . . 15-20 0-0522 0-1435 Fresh oil of turpentine . 100 0-265 0715 Old oil of tur- pentine . . 100 0-982 1-851 Fresh oil of turpentine . 130-150 0-938 2-045 Old oil of tur- pentine . . 130-150 1-738 4-083 Fresh resin oil 15-20 trace 0-024 Old 15-20 0-073 0-185 Fresh 100 0-380 0-880 Old 100 1-190 2711 Fresh , 130-150 1-050 2-065 Old 130-150 2-208 4740 (Engler and Kneis, Dingl. 263. 193.) 206 LEAD AZOIMIDE Pb is strongly attacked by oil of turpentine. (Am. Chem. 4. 289.) The fatty oils dissolve Pb in considerable amt. (Macadam, J. B. 1878. 1169.) Not attacked by sugar + Aq. (Klein and Berg, C. R. 102. 1176.) Lead azoimide, PbN 6 . Insol. in cold H 2 ; much less sol. in boiling H 2 than PbCl 2 . 1 1. H 2 dissolves about g. PbN 6 . Easily sol. in warm HC 2 H 3 2 + Aq. Insol. in cone. NH 4 OH + Aq. (Curtius, B. 24. 3344.) Lead bromide, PbBr 2 . SI. sol. in cold, more easily in hot H 2 0, or in H 2 containing HC1, HN0 3 , or HC 2 H 3 2 . (Lbwig.) 1 1. H 2 dissolves 6 g. PbBr 2 at 10 ; addi- tion of HBr causes a ppt. which redissolves on further addition of HBr. 1000 pts. of a liquid containing 720 pts. HBr dissolve 550 g. PbBr 2 . This solubility increases by heating. (Ditte, C. R. 92. 718.) Slowly sol. in cold, easily in warm NH 4 C1, or NH 4 N0 3 + Aq. (Wittstein.) Not pptd. in presence of Na citrate. (Spiller.) Insol. in benzene. (Franchimont, B. 16. 387.) + 3H 2 0. (Ditte, I.e.) Lead hydrogen bromide, 5PbBr 9 , 2HBr + 10H 2 0. Sol. in HBr + Aq. (Ditte, C. R. 92. 718.) Lead magnesium bromide, PbBr 2 , 2MgBr 2 + 16H 2 0. Very deliquescent. Decomp. immediately by H 2 or alcohol. (Otto and Drewes, Arch. Pharm. 229. 585.) Lead potassium bromide (potassium bromo- plumbite), PbBr 2 , KBr + H 2 0. (Remsen and Herty, Am. Ch. J. 14. 124.) + H 2 0. (Wells, Sill. Am. J. 145. 129.) PbBr 2 , 2KBr. Sol. in a little H 2 without decomp., but decomp. by an excess with separation of PbBr 2 . (Lbwig.) + H 2 0. (Wells, Sill. Am. J. 145. 129.) 2PbBr 2 , KBr. (Wells.) Lead potassium ^erbromide, K 3 Pb 2 Br 8 + 4H 2 0. Decomp. by H 2 and alcohol. (Wells, Z. anorg. 4. 340.) Lead rubidium bromide, PbBr 2 , 2RbBr + ^H 2 0. (Wells, Sill. Am. J. 146. 34.) 2PbBr 2 , RbBr. (Wells.) Lead sodium bromide. Decomp. by H 2 0. (Lowig.) Lead bromochloride, PbBrCl = PbBr 2 , PbCl 2 . Can be recrystallised from H 2 without decomp. (lies, C. N. 43. 216.) Lead bromoiodide, PbBrI = PbBr 2 , PbI 2 . Decomp. by H 2 0. Cryst. from a solution of PbI 2 in HBr. (Grissom and Thorp, Am. Ch. J. 10. 229.) 3PbBr,, PbI 2 . (G. and T. 6PbBr 2 , PbI 2 . (G. and T. Lead bromosulphide, PbBr 2 , PbS. Properties as chlorosulphide. (Parmentier.) Lead chloride, PbCl 2 . Slowly sol. in 135 pts. H 2 O at 12-5, and in a much smaller quantity of hot H 2 O. (Bischof.) Sol. in 30 pts. cold, and 22 pts. hot H 2 O. (Wittstein.) Sol. in 30 pts. H 2 O at 1875. (Abl.) 100 pts. H 2 O dissolve 4*59 pts. PbCl 2 at 15'5. (Ure's Diet.) 100 pts. H 2 dissolve 0'9712 pt. PbCl 2 at 20. (Formanek, C. C. 1887. 270.) 100 pts. H 2 dissolve 0'946 pt. PbCl 2 at 177. (Bell, Chem. Soc. (2) 6. 355.) Sol. in 105-2 pts. H 2 at 16 '5. (Bell, C. N. 16. 69.) 100 pts. H 2 dissolve 0'8 pt. PbCl 2 at ; 1-18 pts. at 20; 17 pts. at 40; 2'1 pts. at 55 ; 3-1 pts. at 80. (Ditte, C. R. 92. 718.) PbCl 2 is sol. in 120 pts. pure H 2 0, but on adding 5 % NaCl 437 pts. are required to effect solution. When PbCl 2 is digested with cone. NaCl + Aq, 1 pt. dissolves in 129 pts. of the liquid. Solubility in H 2 is not much increased by the addition of acids. (Fresenius.) Sol. in cone. HCl + Aq, from which it is pptd. by H 2 0, but less sol. in dil. HCl + Aq than in H 2 0. (Berzelius.) Sol. in 1636 pts. H 2 containing HC1. (Bischof.) Sat. solution of PbCl 2 in HCl + Aq of 1 '116 sp. gr. contains 2 '566 % PbCl 2 at 16 '5. Solubility in HCl + Aq. 100 pts. liquid con- taining pts. HC1 of 1-1162 sp. gr. in 100 pts. H 2 dissolve pts. PbCl 2 at 17 '7. Pts. HC1 Pts. PbCl 2 Pts. HC1 Pts. Pb01 2 Pts. HC1 Pts. PbCl 2 1 0-347 8 0-099 50 0-356 2 0-201 9 0-096 60 0-559 3 0-165 10 0-093 70 0-933 4 0-145 15 0-090 80 1-498 5 0-131 20 0-111 90 2-117 6 0-107 30 0-151 100 2-900 7 o-ioo 40 0-216 ... (Bell, Chem. Soc. 21. 350.) Solubility of PbCl 2 in HC1. Amt. Amount PbCl 2 dissolved in 1000 pts. of HC1 in liquid 100 pts. H 2 O AtO At 20 At 40 At 55 At 80 o-o 8-0 11-8 17-0 21-0 31-0 5-6 2-8 3-0 4-6 6-5 12-4 10-0 1-2 1-4 3-2 5-5 12-0 18-0 2-4 4-8 7-2 9-8 19-8 21-9 4-7 6-2 10-4 12-9 23-8 31-5 11-9 14-1 19-0 24-0 38-0 46-0 29-8 30-0 ... (Ditte, C. R. 92. 718.) LEAD CHLORIDE SULPHIDE 207 Solubility in HCl + Aq at 0. PbCl 2 PbCl 2 in mgs. in 10 ccm. solution ; mols. HC1 in ditto. PbCl 2 2 HC1 PbCI 2 2 HC1 0-42 o- 0-072 5-8 0-22 0-35 0-088 117 0'135 0-675 o-ioo 29-5 0-11 1-125 0-209 467 0-105 1-6 0-95 73-5 0-099 2'3 1-5 89-0 0-090 3-4 1-9 96-0 0-08 4-5 3-01 111-5 It is seen that very little HCl + Aq is sufficient to diminish solubility very consider- ably, and, that on further addition of HC1 + Aq, the solubility is nearly constant, and increases finally very much when large amts. of HC1 + Aq are present. (Engel, A. ch. (6) 17. 359.) Sol. in hot, insol. in cold cone. H 2 S0 4 . (Hayes.) Sol. in dil. HN0 3 + Aq, from which it is pptd. by HCl + Aq. (Gladstone.) Easily and completely decomp. by hot HN0 3 + Aq. (Wurtz.) Sol. inKOH + Aq. (Rose.) Less sol. in dil. salt solutions than in H 2 0, especially CaCl 2 + Aq ; sol. in 534 pts. H 2 containing CaCl 2 . (Bischof.) More sol. in Na 2 S 2 3 + Aq than in H 2 0, but not as sol. as AgCl. (Herschell, 1819.) More sol. in NaC 2 H 3 2 + Aq than in H 2 0. (Anthon.) Easily sol. in NH 4 N0 3 + Aq. Much more sol. in HgCl 2 + Aq than in H 2 0. Grammes HgCl 2 in 100 ccm. Grammes PbCl 2 dissolved After sub- tracting amt. dissolved by H 2 O alone Calculated no. of grammes for 100 g. HgCl 2 0-9712 4 1-8972 0-9350 23-37 2 1-4874 0-5208 26-04 1 1-2272 0-2600 26-00 0'5 1-0808 0-1134 22-68 0-25 1-0192 0-0500 20-00 0-125 0-9926 0-0226 18-08 (Formanek, C. C. 1887. 270.) Insol. in cone, alcohol. (Wittstein.) Insol. in 94 % alcohol ; very si. sol. in cold or hot 76 % alcohol. Insol. in benzene. (Franchimont, B. 16. 387.) Glycerine dissolves 1'995 % PbCl 2 . 1 pt. glycerine + 1 pt. H 2 dissolves 1'32 % PbCl 2 . 1 pt. glycerine + 3 pts. H 2 dissolves 1'0365 % PbCl 2 . Glycerine containing 87 "5 % H 2 dissolves 0-91 % PbCl 2 . (Piesse, B. 7. 599.) Min. Cotunnite. Lead tetrackHori&e, PbCl 4 . Sol. in H 2 with subsequent decomp. (Rivot, Beudant, and Daguin, Ann. Min. (5) 4. 239.) Obtained in a pure state by Friedrich. Sol. in a little cold H 2 0, but is decomp. by warming or diluting. Miscible with cone. HC1 + Aq ; not attacked by cone. H 2 S0 4 even on warming. (Friedrich, W. A. B. 102, 2b. 534.) Lead ^rachloride with MCI. See Chloroplumbate, M. Lead magnesium chloride, PbCl 2 , 2MgCL + 13H 2 0. Deliquescent. Decomp. by H 2 0. (Otto and Drewes, Arch. Pharm. 228. 495.) Lead potassium chloride (potassium chloro- plumbite), PbCl 2 , KC1. (Remsen and Herty, Am. Ch. J. 14. 125. ) Contains J H 2 0. (Wells, Sill. Am. J. 145 130.) 2PbCl 2 , KC1. (Wells.) Lead rhodium chloride. See Chlororhodite, lead. Lead rubidium chloride, PbCl 2 , 2RbCl + |H 2 0. (Wells, Sill. Am. J. 146. 34.) 2PbCl 2 , RbCl. (Wells.) Lead sodium chloride. Decomp. by H 2 0. Lead sodium ^rachloride, 2PbCl 4 , 9NaCl. Very sol. in H 2 0. (Sobrero and Selmi, A. ch. (3) 29. 165.) See also Chloroplumbate, lead. Lead thallous chloride, PbCl 2 , 3T1C1. SI. sol. in cold, more in hot H 2 0. (Noyes, Z. phys. Ch. 9. 622.) Lead chloride ammonia, 2PbCl 2 , 3NH 3 . (Rose, Pogg. 20. 157.) Lead chloride arsenate, 3Pb 3 (As0 4 ) 2 , PbCl 2 . See Arsenate chloride, lead. Lead chloride borate, Pb(B0 2 ) 2 , PbC] 2 + H 2 0. See Borate chloride, lead. Lead chloride carbonate. See Carbonate chloride, lead. Lead chloride chlorite. See Chlorite chloride, lead. Lead chloride with fluoride and iodide. See Lead chlorofluoride and Lead chloro- iodide. Lead chloride phosphate. See Phosphate chloride, lead. Lead chloride phosphite, PbCl 2 , Pb 2 P 2 5 (?). Ppt. (Berzelius.) Does not exist. (Rose.) Lead chloride sulphate. , See Sulphate chloride, lead. Lead chloride sulphide, PbCl 2 , 3PbS. See Lead^chlorosulphide. 208 LEAD CHLOROFLUORIDE Lead chlorofluoride, PbClF = PbCl 2 , PbF 2 . SI. sol. in H 2 without decomp. Easily sol. in HN0 3 + Aq. (Berzelius. ) Lead chloroiodide, 2PbCl 2 , PbI 2 . Sol. in hot NH 4 Cl + Aq. (Poggiale, J. pr. 35. 329.) PbCl 2 , PbI 2 . Sol. in hot HC1 + Aq. (Engel- hardt.) Lead chlorosulphide, PbCl 2 , 3PbS. Partially decomp. by hot H 2 0. Not attacked by dil., but decomp. by cone. HCl + Aq. (Hiinefeld, J. pr. 7. 27.) PbS, PbCl 2 . Decomp. by H 2 0, acids, or alkalies. (Parmentier, C. R. 114. 298.) Lead fluoride, PbF 2 . Yery si. sol. in H 2 0, and not more in HF + Aq. (Berzelius, Pogg. 1. 31.) More sol. in HN0 3 , or HCl + Aq. SI. sol. in KF + Aq. (Herty, Am. Ch. J. 14. 107.) Lead tantalum fluoride. See Fluotantalate, lead. Lead titanium fluoride. See Fluotitanate, lead. Lead fluoride sulphate. See Sulphate fluoride, lead. Lead hydroxide, PbO, Pb0 2 H 2 . (Schaffner, A. 51. 175.) 2PbO, Pb0 2 H 2 =3PbO, H 2 0. Sol. in 10,000 to 12,000 pts. H 2 0. (Yorke.) Sol. in 7000 pts. H 2 0. (v. Bonsdorff, Pogg. 41. 307.) Sol. in acids. Insol. in NH 4 OH + Aq. Sol. in NaOH, or KOH + Aq. Sol. in hot NH 4 C1 + Aq, and repptd. by NH 4 OH + Aq. Solubility in KOH + Aq, according to Ditte (C. R. 94. 130). When KOH + Aq is gradually added to lead hydroxide suspended in H 2 0, the lead hydroxide is at first dissolved proportional to the amount of KOH, until the strength reaches 200 g. KOH to 1 litre H 2 0. The solubility then diminishes and increases again until 400 g. KOH are dissolved in 1 litre H 2 0. The amorphous lead hydroxide is then converted into crystalline 2PbO(Pb0 2 H ? ). By further addition of KOH the solubility is suddenly decreased, and then increases again. (Ditte.) Sol. in triethyl toluenyl ammonium hydrate + Aq. Sol. in sorbine +Aq. (Pelouze.) Sol. in acetates + Aq. (Mercer.) Sol. in Ca, Ba, Sr, K, or Na sucrate + Aq. Not pptd. in presence of Na citrate +Aq. (Spiller.) See also under Lead, and Lead oxide. Lead^rhydroxide, Pb0 2 , H 2 0. See Lead peroxide. Lead iodide, PbI 2 . Sol. in 187 pts. boiling H 2 0. (Berthemot.) Sol. in 1235 pts. H 2 at ord. temp., and 194 pts. at 100. (Denot, J. pr. 1. 425.) Sol. in 2400 pts. H 2 at 1875. (Abl.) Sat. PbL, + Aq at 20 contains 0'0017 pt. ; at 27, 0-002 pt. ; at 100, 0'0039 pt. PbI 2 . (Las- saigne, J. chim. med. 7. 364.) 1 1. H 2 dissolves 0'6 g. PbI 2 at 10. (Ditte, C. R. 92. 718.) Not more sol. in HC 2 H 3 2 + Aq than in H 2 0, contrary to Henry. (Denot, I.e.) Pptd. from aqueous solution by little HI + Aq, but redissolved by the addition of more. (Ditte, C. R. 92. 718.) Insol. in cold, sol. in hot HCl + Aq with decomp. Sol. inKOH + Aq. Sol. in cone. KI, Nal, BaI 2 , SrI 2 , CaI 2 , and MgI 2 + Aq, from which it is pptd. by H 2 0. (Berthemot.) Yery sol. in KI + Aq, 2 mols. PbI 2 being dissolved for 1 mol. KI. (Boullay.) Sol. in NH 4 I + Aq. Easily sol. in Na 2 S 2 3 + Aq. (Werner, C. N. 53. 51.) Not pptd. in presence of Na citrate. (Spiller.) SI. sol. in alcohol. (Henry.) Decomp. by boiling ether. (Yogel.) Lead hydrogen iodide, PbH 2 I 4 =PbI 2 , 2HI. Cold H 2 dissolves out HI. Sol. in hot H 2 0, from which crystallises PbI 2 . (Guyot, J. chim. med. 12. 247.) + 10H 2 0. Decomp. by H 2 0. (Berthelot, C. R. 91. 1024.) Lead magnesium iodide, PbI 2 , 2MgI 2 + 16H 2 0. Yery hygroscopic. Decomp. immediately by H 2 0. (Otto and Drewes, Arch. Pharm. 229. 180.) Lead potassium iodide (Potassium iodoplum- bite), PbI 2 , KI. Permanent. Completely decomp. by H 2 0. Unacted upon by cold, but completely decomp. by hot alcohol. (Boullay, A. ch. (2) 34. 366.) + 2H 2 0. The only salt that could be obtained by Remsen and Herty (Am. Ch. J. 14. 110.) PbI 2 , 2KI + 2HoO. Decomp. by H 2 0. (Berthelot, A. ch. (5) 29. 289.) Does not exist. (R. and H.) + 4H 2 0. (Ditte, C. R. 92. 134.) Does not exist. (R. and H.) PbI 2 , 4KI. Decomp. by H 2 ; insol. in alcohol (Boullay.) Does not exist. (R. and H.) 3PbI 2 , 4KI + 6H 2 0. (Berthelot, I.e.) Does not exist. (R. and H.) Lead potassium ^modide, K 3 Pb 2 I 8 + 4H 2 0. Decomp. by H 2 or alcohol. (Wells, Z. anorg. 4. 346.) Lead rubidium iodide, PbI 2 , RbI + 2H 2 0. (Wells, Sill. Am. J. 146. 34.) Lead sodium iodide, PbI 2 , Nal. Decomp. by H 2 0. (Poggiale, C. R. 20. 1180.) + icH 2 0. (Remsen and Herty, Am. Ch. J. 14. 124.) Lead iodide ammonia, PbI 2 , 2NH 3 . Decomp. by H 2 0. (Rammelsberg, Pogg. 48. 166.) LEAD PHOSPHOSELENIDE 209 Lead iodide carbonate. See Carbonate iodide, lead. Lead m&oxide, Pb 2 0. Decomp. by H 2 into Pb0 2 H 2 . Decomp. by" dil.' H 2 S0 4 , HC1, HN0 3 , HC 2 H 3 2 + Aq, or alkalies, into PbO, which dis- solves, and Pb, which dissolves or not. accord- ing to the reagent. Sol. in dil. Pb(N0 3 ) 2 + Aq. Lead monoxide (Litharge), PbO. Sol. in 7000 pts. H 2 0. (Horsford.) Pure PbO is insol. in H 2 0. (Brandecke, Repert. 53. 155 ; Siebold, Repert, 53. 174 ; Herbergen, Repert. 55. 55.) SI. sol. in H 2 0. (Yorke, Phil. Mag. (3) 5. 82.) Easily sol. in acids. Sol. in KOH, or NaOH + Aq ; also in Ca0 2 H 2 + Aq. Sol. in NH 4 C1 + Aq ; si. sol. in NH 4 N0 3 + Aq. Sol. in CaClo, and SrCl 2 + Aq. (Andre, C. R. 104. 359.) Sol. in MgCLj + Aq. (Voigt, Ch. Ztg. 13. 695.) Sol. in boiling Cu(NO,) 2 with pptn. of CuO. Partially sol. in Cd(N0 3 ) 2 , and Mn(N0 3 ) 2 with pptn. of CdO and MnO respectively. Not acted upon by Mg, Ag, Co, Ni, or Ce nitrates +Aq. (Persoz.) Very sol. in Pb(C 2 H 3 2 ) 2 + Aq. (Rochleder. ) When finely pulverised, sol. in cane sugar + Aq, but less than Pb 3 4 . (Peschier.) SI. sol. in glycerine. Readily sol. in glucose + Aq. (Persoz. ) Sol. in volatile oils. (Schweitzer. ) See also Lead. Min. Massicot. Lead oxide (Eed lead), Pb 3 4 . Insol. in H 2 0. Converted by acids into Pb0 2 and salts of monoxide. Sol. in a large amt. of glacial acetic acid. (Berzelius.) Insol. in acetic acid. (Schonbein, J. pr. 74. 325.) Solution in HC 2 H 3 2 + Aq may decompose or not according to concentration of acid. When treated with an excess of HC 2 H 3 2 + Aq of 8 B, Pb 3 4 is quickly dissolved, but the solution soon deposits Pb0 2 ; this decomposition is facili- tated by dilution. But if Pb 3 4 is treated with a large excess of glacial HC 2 H 3 2 , it dis- solves, and the solution is permanent if atmo- spheric air is excluded, and temp, does not rise above 40. (Jacquelain, J. pr. 53. 152.) Easily sol. in cane sugar +Aq. (Peschier.) Min. Minium. Lead scsquioxide, Pb 2 3 . Insol. in H 2 6 or in KOH + Aq. Decomp. by strong acids into Pb0 2 and cor- responding salt of monoxide. Lead peroxide, Pb0 2 . Insol. in H 2 0. Sol. in acids, also in cone, alkali hydroxides + Aq. The solutions in acids are very unstable, except when concentrated and kept at a low temperature. Decomp. by cold HC1, HCN, HBr, and HI + Aq. Not attacked by other acids when cold, but decomp. thereby when hot. Insol. in moder- ately cone. HN0 3 , H 2 S0 4 , or HC 2 H 3 2 + Aq. Decomp. by NH 4 OH + Aq. Sol. in cone. KOH, orNaOH + Aq. Sol. with decomp. in Hg 2 (N0 3 ) 2 + Aq. (Levol.) Min. Plattnerite. Lead manganese peroxide, Pb0 2 , 4Mn0 2 . Ppt. (Gibbs and Parkmann, Sill. Am. J. (2) 39. 58.) Lead oxybromide, PbBr 2 , PbO. Insol. in H 2 0. + 1, 1|, and3H 2 0. (Andre, C. R. 96. 1502.) Lead oxychloride, 2PbCl 2 , PbO + 2H 2 0. (Andrei, C. R. 96. 435.) PbCl 2 , PbO. Absolutely insol. in hot or cold H 2 0. (Andre, A. ch. (6) 3. 108.) Min. Matlockite. + H 2 0. Sol. in hot NaOH + Aq. (Andre.) PbCl 2 , 2PbO. Insol. in H 2 0. Sol. in dil. KOH + Aq (about 110 g. in 1 1.) (Ditte, C. R. 94. 1180.) Min. Mendipite. Easily sol. in HN0 3 + Aq. + 2H 2 0. (Andre, A. ch. (6) 3. 111.) PbCl 2 , 3PbO. Insol. in H 2 0. (Dobereiner.) + H 2 0. (Wood and Borden, C. N. 52. 43.) + 3H 2 0. Ppt. (Andre, C. R. 104. 359.) + 4H 2 0. Nearly insol. in H 2 0. SI. sol. in NaOH + Aq. (Vauquelin.) PbCl 2 , 5PbO. (Dobereiner.) PbCl 2 , 7PbO. Cassel-yellow. Lad strontium oxychloride, 2PbO, SrCl 2 + 5H 2 0. (Andre, C. R. 104. 359.) Lead oxychloride iodide, PbCl 2 , PbI 2 , 4PbO. Min. Schwartzembergite. Sol. in dil. HN0 3 + Aq. Lead oxyiodide, PbI 2 , PbO. Insol. in boiling H 2 or KI + Aq. (Brandes, A. 10. 269.) + iH 2 0. (Ditte, C. R. 92. 145.) + HoO. Pbl^, 2PbO. Insol. in H 2 0. (Denot, J. Pharm. 20. 1.) + H 2 0. PbL,, 3PbO + 2H 2 0. Ppt. (Kiihn, C. C. 1847. 593.) PbI 2 , 5PbO. Insol. in H 2 0. (Denot.) + 7H 2 0. (Ditte, C. R. 92. 145.) Lead oxyperiodide, PbO, PbI 2 I 3 . Decomp. by boiling H 2 0. Sol. in dil. HC 2 H 3 2 + Aq. (Groger, W. A. B. 100, 2b. 415.) Lead phosphoselenide, PbSe, P 2 Se. Insol. in H 2 or HCl + Aq. Sol. in HN0 3 + Aq. Insol. in cold, slowly decomp. by hot alkalies + Aq. (Hahn, J. pr. (2)93.436.) 2PbSe, P 2 Se 3 . Insol. in H 2 0, HC1, or HN0 3 + Aq. Slowly sol. in red fuming HN0 3 . (Hahn.) 2PbSe, P 2 Se 5 . Decomp. by fuming HNO r (Hahn.) 210 LEAD SELENIDE Lead selenide, PbSe. Cold HNOg + Aq dissolves Pb with separa- tion of Se, which dissolves on warming. (Little, A. 112. 212.) Min. Clausthalite. Sol. in HN"0 3 + Aq with separation of Se, when warmed. Lead mercury selenide, (Pb, Hg)Se. Min. Lehrbachite. Lead sulphide, PbS. Insol. in H 2 0, dilute acids, alkalies, and alkali sulphides + Aq. Decomp. with solution in moderately dil. HN0 3 + Aq. With cone. HN0 3 or aqua regia, PbS0 4 is formed. SoL in hot cone. HC1 + Aq. Insol. in NH 4 C1, or NH 4 N0 3 + Aq. (Brett. ) Somewhat sol. in H 2 S + Aq when heated therewith in a sealed tube. (Senarmont, A. ch. (3) 32. 168.) Insol. in potassium thiocarbonate +Aq. (Rosenbladt, Z. anal. 26. 15.) Sol. in Na 2 S 2 3 + Aq. (Waller, J. Anal. Ch. 5. 646.) Min. Galena, Galenite. Lead platinum sulphide. See Sulphoplatinate, lead. Lead sulphide mercuric chloride, 3 PbS, 4HgCl 2 . Decomp. by H 2 0. (Levallois, C. R. 96. 1666. ) Lead sulphobromide, chloride, or iodide. See Lead bromosulphide, etc. Lead telluride, PbTe. Insol. in H 2 0. Sol. in cold HN0 3 + Aq. (Rose, Pogg. 18. 68.) Min. Altaite. Easily sol. in HN0 3 + Aq. " Leucone." Wohler (A. 127. 268) gives this substance the formula H 10 Si 8 10 , but it is identical with silicoformic anhydride, Si 2 H 2 3 , which see. Lime. Quicklime, CaO. See Calcium oxide. Slaked lime, Ca0 2 H 2 . See Calcium hydrox- ide. Lithium, Li. Decomposes H 2 0. Easily sol. in dil. acids. Slowly attacked by cone. H 2 S0 4 , rapidly by cone. HN0 3 + Aq. Insol. in hydrocarbons. Sol. in liquid NH 3 , but not so easily as K. Lithium bromide, LiBr. Deliquescent. 100 pts. H 2 dissolve at : 34 59 82 103 143 196 222 244 270 pts. LiBr. Sp. gr. of LiBr + Aq at 19 '5 containing : 5 10 15 20 25 30% LiBr, 1-035 1-072 1-113 1-156 1'204 1'254 35 40 45 50 55 % LiBr. 1-309 1-368 1-432 1'500 1'580 (Kremers, Pogg. 103. 65 ; 104. 133 : Gerlach, Z. anal. 8. 285.) Lithium chloride, LiCl. Very deliquescent. Most deliquescent salt known to Berzelius. Very sol. in H 2 0. Sol. in 1-315 pts. H 2 at 15. (Gerlach.) 100 pts. H 2 dissolve t : 20 65 80 96 140 160 63-7 807 104-2 115 129 139 145 pts. LiCl. Sp, gr. of LiCl + Aq at 15 containing : 1 5 10 15 20 % LiCl, 1-006 1-030 1-058 1-086 1-117 25 30 35 40 % LiCl. 1-148 1-182 1-219 1-256 (Gerlach, Z. anal. 8. 281.) Sp. gr. of LiCl + Aq at 18 containing : 5 10 20 30 40 % LiCl. 1-0274 1-0563 1-115 1-181 1-255 (Kohlrausch, W. Ann. 1879. 1.) Sat. LiCl + Aq boils at 171. (Kremers. ) B. -pt. of LiCl + Aq. P = pts. LiCl to 100 pts. H 2 0. B.-pt. P B.-pt. P B.-pt. P 101 3-5 124 48-5 147 87-5 102 7 125 50 148 90 108 10 126 51-5 149 92-5 104 12-5 127 53 150 95 105 15 128 54-5 151 97-5 106 17-5 129 56 152 100 107 20 130 57-5 153 102-5 108 22 131 59 154 105 109 24 132 60-5 155 107-5 110 26 133 62 156 110-5 111 28 134 63-5 157 113-5 112 30 135 65 158 116-5 113 32 136 66-5 158-5 117-96 114 33-5 137 68 159 119-5 115 35 138 6975 160 122-5 116 36-5 139 71-5 161 125-5 117 38 140 73-25 162 128-5 118 39-5 141 75 163 131-5 119 41 142 77 164 135 120 42-5 143 79 165 138-5 121 44 144 81 166 142-5 122 45-5 145 83 167 146-5 123 47 146 85 168 151 (Gerlach, Z. anal. 26. 437.) B.-pt. of LiCl + Aq. %LiCl B.-pt. %LiCl B.-pt. 3-38 6-54 13-04 101 102 105 16-66 19-35 21-8 107 109 111 (Skinner, Chem. Soc. 61. 341.) B.-pt. of alcoholic solution of LiCl. %LiCl B.-pt. %LiCl B.-pt. 2-4 5-39 8-01 78 -43 + 0-70 +2-15 +4-18 9-93 15-94 78-43+ 5-55 +1175 (Skinner. ) LUTEOCHROMIUM IODOSULPHATE 211 Sol. in absolute alcohol, ether, and alcohol- ether. Sol. in 15 pts. fusel oil. (Gooch, Am. Ch. J. 9. 33.) + 2H 2 0. Sol. in acetone. (Krug and M'Elroy, J. Anal. Ch. 6, 184.) Lithium manganous chloride, LiCl, 3H 2 0. Decomp. by H 2 ; stable only in excess of LiCl. (Chassevant, A. ch. (6) 30. 10.) Lithium mercuric chloride. (a) Not deliquescent. (&) Deliquescent, (v. Bonsdorff.) Lithium nickel chloride, LiCl, NiCl 2 + 3H 2 0. Deliquescent. Sol. in H 2 and alcohol. (Chassevant.) Lithium stannic chloride. See Chlorostannate, lithium. Lithium chloroiodide, LiClJ + 4H 2 0. Deliquescent. (Wells and Wheeler, Sill. Am. J. 144. 42.) Lithium fluoride, LiF. Very difficultly sol. in H 2 0. (Berzelius, Pogg. 1. 17.) Lithium hydrogen fluoride, LiHF 2 . Difficultly sol. in H 2 0, but more easily than LiF. (Berzelius.) Lithium stannic fluoride. See Fluostannate, lithium. Lithium uranyl fluoride, U0 2 F 2 , 4LiF. (Ditte.) Lithium hydrosulphide, LiSH (?). Deliquescent. Sol. in H 2 and alcohol. (Berzelius, Pogg. 6. 439.) Lithium hydroxide, LiOH. Not so deliquescent as NaOH, and apparently not more sol. in hot than cold H 2 0. (Gmelin, Gilb. 62. 399.) Not deliquescent. (Arfvedson, A. ch. 10. 82.) The solubility of LiOH in H 2 can be ex- pressed by y = 6-6750 + 0'00346t + 0'0003t 2 , where y = the percentage of Li 2 in a saturated solution. (Dittmar, Jour. Soc. Chem. Ind. 7. 730.) Sp. gr. of LiOH + Aq at 18 containing : 1-25 2-5 5 7'5 % LiOH. 1-0132 1-0276 1-0547 1'0804 (Kohlrausch, W. Ann. 1879. 1.) SI. sol. in alcohol ; insol. in alcohol- ether. (Mayer.) Cryst. also with H 2 0, and JH 2 0. (Gottig, B. 20. 2912.) Lithium iodide, Lil. Deliquescent. Solubility in 100 pts. H 2 at : 19 40 59 75 80 99 120 151 164 179 200 263 435 476 588 pts. Lil. Sp. gr. of Lil + Aq at 19 "5 containing : 5 10 15 20 25 30 % Lil, 1-038 1'079 1-124 1-172 1-224 1-280 35 40 45 50 55 60 % Lil. 1-344 1-414 1-489 1'575 1'670 1777 (Kremers, Pogg. 104. 133 ; 111. 60 : Ger- lach, Z. anal. 8. 295.) Sp. gr. of Lil + Aq at 18 containing : 5 10 15 20 25 %LiI. 1-0361 1-0756 1-1180 1'1643 1-2138 (Kohlrausch, W. Ann. 1879. 1.) + 3H 2 0. (Rammelsberg.) Lithium nitride, Li 3 N. Sol. in H 2 with decomp. (Ouvrard, C. R. 114. 120.) Lithium oxide, Li 2 0. Slowly sol. in H 2 to form LiOH. See Lithium hydroxide. Lithium selenide, Li 2 Se. Sol. in H 2 0. (Fabre, C. R. 103. 269.) + 9H 2 0. Sol. inH 2 0. (Fabre.) Lithium mowosulphide, Li 2 S. More sol. in H 2 or alcohol than LiOH. Luteochromium bromide, Cr(NH 3 ) 6 Br 3 . Less sol. in H 2 than the chloride. (Jorgen- sen, J. pr. (2) 30. 1.) bromoplatinate, [Cr(NH 3 ) 6 ] 2 (PtBr 6 ) 3 + 4H 2 0. SI. sol. in H 2 0. Insol. in alcohol. (Jorgen- sen.) - chloride, Cr(NH 3 ) 6 Cl s + H 2 0. Efflorescent, and very sol. in H 2 0. (Jorgen- sen.) chloroplatinate. (a) [Cr(NH 3 ) 6 ] 2 (PtCl 6 ) 3 + 6H 2 0. Nearly com- pletely insol. in H 2 0. (Jorgensen. ) (6) Cr(NH 3 ) 6 Cl(PtCle) + 2JrH 2 0. Decomp. by H 2 into above ; insol. in alcohol. (Jorgensen. ) (c) [Cr(NH 3 ) 6 ] 2 Cl 4 (PtC] 6 ) + 2H 2 0. Decomp. by H 2 into (a). (Jorgensen. ) - mercuric chloride, Cr(NH 3 ) 6 Cl 3 , HgCl 2 . Decomp. by H 2 ; si. sol. in dil. HC1 + Aq ; insol. in alcohol. Cr(NH 3 ) 6 Cl 3 , 3HgCl 2 + 2H 2 0. Decomp. by dil. HC1 + Aq into above salt. (Jorgensen. ) - chromicyanide, Cr(NH 3 ) 6 Cr(CN) 6 . Precipitate. - cobalticyanide, Cr(NH 3 ) 6 Co(CN) 6 . Nearly insol. in H 2 or in cone. HC1 + Aq. (Jorgensen.) - ferrocyanide, Cr(NH 3 ) 6 Fe(CN) 6 . Very si. sol. in cold H 2 or dil. acids. (Jorgensen. ) - iodide, Cr(NH 3 ) 6 I 3 . SI. sol. in H 2 0. (Jorgensen, I.e.) - iodosulphate, Cr(NH 3 ) 6 S0 4 I. Sol. in H 2 ; nearly insol. in dil. NH 4 OH + Aq or alcohol. (Jorgensen. ) 212 LUTEOCHROMIUM NITRATE Luteochromium nitrate, Cr(NH 3 ) 6 (N0 3 ) 3 . Sol. in 35-40 pts. H 2 0. Insol. in cold dil. HN0 3 + Aq or alcohol. Can be crystallised out of H 2 containing a little HN0 3 . (Jorgensen, J. pr. (2) 30. 1.) nitrate chloroplatinate, Cr(NH 3 ) 6 (N0 3 )PtCl 6 + H 2 0. Insol. in H 2 0. Sol. in dil. H 2 S0 4 + Aq. (Jorgensen. ) - nitratosulphate, Cr(NH 3 ) 6 (N0 3 )S0 4 . Sol. in H 2 ; insol. in alcohol. (Jorgensen. ) oxalate, [Cr(NH 3 ) 6 ] 2 (C 2 4 ) 3 + 4H 2 0. Nearly insol. in cold H 2 0. (Jorgensen. ) - or^ophosphate, Cr(NH 3 ) 6 P0 4 + 4H 2 0. SI. sol. in H 2 ; easily sol. in dil. acids. (Jorgensen.) sodium >2/rophosphate, Cr(NH 3 ) 6 (NaP 2 7 ) + 11^H 2 0. Nearly insol. in cold H 2 ; wholly insol. in dil. NH 4 OH + Aq. (Jorgensen.) - sulphate, [Cr(NH 3 ) 6 ] 2 (S0 4 ) 3 + 5H 2 0. Quite sol. in H 2 ; insol. in alcohol. (Jor- gensen.) sulphate chloroplatinate, [Cr(NH 3 ) 6 (S0 4 )] 2 PtCl 6 . Nearly insol. in H 2 0. (Jorgensen.) Luteocobalt famine chromium sulpho- cyanide. See Diamine chromium luteocobalt sulpho- cyanide. Luteocobaltic bromide, Co(NH 3 ) 6 Br 3 . Sol. in H 2 0. Precipitated from saturated H 2 solution by dil. HBr + Aq. (Jorgensen, J. pr. (2) 35. 417.) bromopermanganate, Co(NH 3 ) 6 Br 2 (Mn0 4 ). Easily sol. in H 2 0. (Klobb, A. ch. (6) 12. 5.) bromoplatinate, Co(NH 3 ) 6 Br 3 , PtBr 4 + H 2 0. SI. sol. in H 2 ; can be recrystallised from hot H 2 containing HBr. (Jorgensen.) - bromosulphate, Co(NH 3 ) 6 Br(S0 4 ). Nearly insol. in H 2 0. Very si. sol. in dil. NH 4 OH + Aq. (Jorgensen. ) - carbonate, [Co(NH 3 ) 6 ] 2 (C0 3 ) 3 + 7H 2 0. Efflorescent ; easily sol. in H.,0. [Co(NH 3 ) 6 ] 2 (C0 3 ) 3 , H 2 C0 3 + 5H 2 0. Less sol. in H 2 than the neutral salt. (Gibbs and Genth. ) - chloride, Co(NH 3 ) 6 Cl 3 . Sol. in 17-09 pts. H 2 at 10 -5 ; 16 '81 pts. at 11 '4 ; 16 '48 pts. at 12 ; and more easily in hotH 2 0. (F. Rose.) 100 pts. H 2 dissolve 4 '26 pts. at 0, and 1274 pts. at "46 '6. (Kurnakotf, J. russ. Soc. 24. 629.) Not appreciably sol. in cone. HCl + Aq. (Jorgensen. ) Insol. in alcohol or solutions of the alkali ;hlorides. (Gibbs and Genth.) Insol. inNH 4 OH + Aq. Aqueous solution is pptd. by alcohol, mineral acids, or alkali chlorides. Luteocobaltic mercuric chloride, Co(NH 3 ) 6 Cl 3 , Sol. in hot H 2 0. (Krok, 1870. ) By recrystallising from hot H 2 containing HC1 is converted into Co(NH 3 ) 6 Cl 3 , 3HgCl 2 + H 2 0. Very si. sol. in cold H 2 0. (Jorgensen.) Co(NH 3 ) 6 Cl 3 , 2HgCl 2 + iH 2 0. Sol. in hot H 2 0, from which it crystallises on cooling. Insol. in cold cone. HC1 + Aq, and is pptd. from H 2 solution by HC1 or alcohol. (Carstanjen.) Does not exist. (Jorgensen.) + 3H 2 0. More easily sol. in cold H 2 and other solvents than the preceding "comp. (Carstanjen, Berlin, 1861.) Does not exist. (Jorgensen. ) stannous chloride, 2Co(NH 3 ) 6 Cl 3 , 3SnCl 2 + 10H 2 0. + 8H 2 0. - chloraurate, Co(NH 3 ) 6 Cl 3 , AuCl 3 . Very si. sol. in cold, more easily in hot H 2 containing HC1. (Gibbs and Genth, Sill. Am. J. (2) 23. 330.) - chloriodate, [Co(NH 3 ) 6 Cl 2 ] 2 I 4 11 + H 2 0. chloriridite, Co(NH 3 ) 6 , IrCl 6 . Insol. in boiling H 2 or dil. HCl + Aq. (Gibbs.) chloriridate, 2Co(NH 3 ) 6 Cl 3 , 3lrCl 4 . Insol. in H 2 0. (Gibbs.) chloropalladite, 2Co(NH 3 ) 6 Cl 3 , 3PdCl 2 . Easily sol. in dil. HCl + Aq. (Gibbs, Sill. Am. J. (2) 37. 58.) - chloropermanganate, Co(NH 3 ) 6 Cl 2 (Mn0 4 ). Can be recrystallised from H 2 0. (Klobb, C. R. 103. 384.) chloropermanganate ammonium chloride, Co(NH 3 ) 6 Cl 2 (Mn0 4 ), NH 4 C1. Easily sol. in H 2 0. (Klobb.) chloropermanganate potassium chloride, Co(NH 3 ) 6 Cl 2 (Mn0 4 ), KC1. Very easily sol. in H 2 0, with decomp. into constituents; sol. inKCl + Aq. (Klobb.) chloropermanganate sodium chloride, Co(NH 3 ) 6 Cl 2 (Mn0 4 ), NaCl. Very sol. in H 2 0. (Klobb.) chloroplatinate, 2Co(NH 3 ) 6 Cl 3 , 3PtCl 4 + 6H 2 0. Can be recrystallised from much hot H 0. (Gibbs and Genth.) + 21H,0. (Gibbs and Genth.) Co(NH 3 ) 6 Cl 3 , PtCl 4 + 4H 2 0. Very si. sol. in cold, decomp. by hot H 9 into 2Co(NH 3 ) 6 Cl 3 , PtCl 4 + 2H 2 0. By recrystal- lising from hot H 2 containing HC1 this salt is converted into the above salt. (Jorgen- sen.) LUTEOCOBALTIC PHOSPHATE 213 * Luteocobaltic chlororhodite. Nearly insol. in boiling H 2 or dil. acids. Sol. in cone. HCl + Aq. (Gibbs, Sill. Am. J. (2) 37. 57.) chloronithenate, 2Co(NH 3 ) 6 Cl 3 , 3RuCl 4 . Sol. in dil. acids. (Gibbs.) chlorosulphate, Co(NH 3 ) 6 Cl(S0 4 ). Sol. in H 2 0. - chlorosulphate chloroplatinate, 2Co(NH 3 ) 6 Cl(S0 4 ), PtCl 4 . Very si. sol. in cold pure H 2 0. Can be re- crystallised out of H 2 containing HC1. (Krok.) - chlorosulphate mercuric chloride, Co(NH 3 ) 6 Cl(S0 4 ), HgCl 2 . Scarcely sol. in pure H 2 0, but can be crys- tallised from warm acidified H 2 0. (Krok.) - chlorosulphite, Co(NH 3 ) 6 (S0 3 )Cl + 3H 2 0. Sol. in H 2 0. (Vortmann and Magdeburg, B. 22. 2637.) - chromate, [Co(NH 3 ) 6 ] 2 (Cr0 4 ) 3 + 5H 2 0. Ppt. Sol. in hot H 2 0. [Co(NH 3 ) 6 ] 2 (Cr 2 7 ) 3 + 5H 2 0. Moderately sol. in hot H 2 0. chromicyanide, Co(NH 3 ) 6 Cr(CN) 6 . Ppt. (Braun.) -- cobalticyanide, Co(NH 3 ) 6 Co(CN) 6 . Ppt. - dithionate, basic, 4[Co(NH 3 ) 6 (S 2 6 )(OH)], Co 2 (S 2 6 ) 2 0. Sol. in H 2 and dil. alcohol. ferricyanide, Co(NH 3 ) 6 Fe(CN) 6 + |H 2 0. Insol. in H 2 0. (Braun.) - hydroxide, Co(NH 3 ) 6 (OH) 3 . Known only in aqueous solution. mercuric hydroxychloride, CoN 6 H 14 (HgCl) 3 (HgOH)Cl 3 . Ppt. Easily decomp. (Vortmann and Morgulis, B. 22. 2644.) CoN 6 H 14 (HgOH) 4 Cl 3 . CoN 6 H 16 (HgOH) 2 Cl 3 . iodide, Co(NH 3 ) 6 I 3 . Ppt. Ppt. (V. andM.) (V. andM.) hot Insol. in cold, but moderately sol. in H 2 0. According to Jorgensen, contains HN0 3 and has the formula Co 2 (NH 3 ) 12 I 4 (N0 3 ) 2 . - iodosulphate, Co(NH 3 ) 6 I(S0 4 ). Can be recrystallised from hot H 2 0. SI. sol. in warm, nearly insol. in cold H 2 0. (Krok, B. 4. 711.) mercuriodide, Co 2 N 12 H 33 (HgI) 3 I 6 . Ppt. (Vortmann and Borsbach. ) CoN 6 H 16 (HgI) 2 I 3 . Ppt. (V. andB.) mercuriodide, basic, CoN 6 H 16 (HgOH) 2 I 2 (OH). Insol. in H 2 0. SI. sol. in H 2 0. (Vortmann and Borsbach, B. 23. 2804.) Luteocobaltic nitrate, Co(NH 3 ) 6 (N0 3 ) 3 . Sol. in H 2 0. Can be recrystallised from boiling H 2 0. Sol. in about 60 pts. H 2 0. Insol. in cone. HNOo + Aq. (Jorgensen, J. pr. (2) 35. 417.) Almost insol. in acids. (Rogojski, A. ch. (3)41. 454.) Insol. in NH 4 OH, HC1, and HN0 3 + Aq; decomp. by H 2 S0 4 + Aq. (Gibbs and Genth.) Co(NH 3 ) 6 (N0 3 ) 3 , HN0 3 . Decomp. by H 2 or dil. alcohol. (Jorgensen, J. pr. (2) 44. 63.) - nitrate chloroplatinate, Co(NH 3 ) 6 (N0 3 )Cl 2 , PtCl 4 + H 2 0. Not decomp. by H 2 0. (Jorgensen.) nitratosulphate, Co(NH 3 ) 6 (N0 3 )(S0 4 ). Sol. in H 2 0. (Jorgensen.) - nitrite cobaltic nitrite, Co 2 (NH 3 ) 12 (N0 2 ) 6 , Co 2 (N0 2 ) 6 = Co(NH 3 ) 6 (N0 2 ) 6 Co. Nearly insol. in H 2 0. (Jorgensen.) Much less sol. in H 2 than the correspond- ing roseo salt. (Gibbs.) - diamine cobaltic nitrite, Co(NH 3 ) 6 [Co(NH 3 ) 2 (N0 2 ) 4 ] 3 . Ppt. (Gibbs.) = Co(NH 3 ) 6 [(N0 2 ) 2 (NH 3 ) 2 Co(N0 2 ) 2 ] 3 . Nearly insol. in cold, si. sol. in boiling H 2 0. (Jor- gensen, Z. anorg. 5. 179.) oxalate, [Co(NH 3 ) 6 ] 2 (C 2 4 ) 3 + 4H 2 0. Insol. in hot or cold H 2 0. Easily sol. in H 2 C 2 4 + Aq. - oxalate chloraurate, 2Co(NH 3 ) 6 (C 2 4 )Cl, AuCl 3 + 4H 2 0. Easily sol. in hot H 2 0. (Gibbs.) - permanganate, [Co(NH 3 ) 6 ] 2 (Mn0 4 ) 3 . Nearly insol. in H 2 0. 100 pts. H 2 at dissolve only 0*072 pt. salt. Moderately sol. in hot H 2 0. (Klobb, A. ch. (6) 12. 5.) - o^Aophosphate, Co(NH 3 ) 6 (P0 4 ) + 4H 2 0. SI. sol. in cold H 2 0. Easily sol. in dil. acids. (Jorgensen. ) [Co(NH 3 ) 6 ] 3 (P0 4 )(P0 4 H) 3 + 5pI 2 (?). Ppt. (Braun. ) [Co(NH 3 ) 6 ] 2 (P0 4 H) 3 + 4H 2 0. Ppt. Easily sol. in very dil. HC1 + Aq. (Jorgensen. ) - wetaphosphate. Ppt. - ^2/rophosphate, [Co(NH 3 ) 6 ] 2 P 4 13 + 6H 2 (Gibbs, Am. Acad. Proc. 11. 29) ; or Co 2 (NH 3 ) 12 P 4 13 (ONa) (Vortmann, B. 11. 2181) ; or Co(NH 3 ) 6 (P 2 7 Na) + lliH 2 0. (Jorgensen, J. pr. (2) 35. 438.) Very nearly insol. in H 2 0. With H 2 at 80 it is decomp. into [Co(NH 3 ) 6 ] 4 (P 2 7 ) 3 + 20H 2 0. Less easily sol. than the preceding salt. ^2/rophosphate, acid, Co(NH 3 ) 6 (P 2 7 H). Wholly insol. in H 2 0. Somewhat sol. in dil. HC 2 H 3 2 + Aq. Easily sol. in HCl + Aq. (Jorgensen. ) 214 LUTEOCOBALTIC SODIUM PHOSPHATE Luteocobaltic sodium ^7/rophosphate, Co(NH 3 ) 6 (P 2 7 Na) + 11JH 2 0. Ppt. Not wholly insol. in cold H 2 0. Decomp. by hot H 2 0. Less sol. in NH 4 OH + Aq than in H 2 0. (Jorgensen. ) [Co(NH 3 ) 6 ] 4 (P 2 7 ) 3 , 2Co(NH 3 ) 6 (NaP 2 7 ) + 39H 2 0. As above. (Jorgensen.) - sulphate, [Co(NH 3 ) 6 ] 2 (S0 4 ) 3 + 5H 2 0. SI. sol. in cold, more easily in hot H 2 0. + 6H 2 0. (Krok, B. 4. 711.) - cerium sulphate, [Co(NH 3 ) 6 ] 2 (S0 4 ) 3 , Very si. sol. in cold, and practically insol. in boiling H 2 0. Sol. in acids. (Gibbs, Am. Ch. J. 15. 560.) [Co(NH 3 ) 6 ] 2 (S0 4 ) 3 , 3Ce(S0 4 ) 2 + H 2 0. As above. (Wing, Sill. Am. J. (2) 49. 363.)] - lanthanum sulphate, [Co(NH 3 ) 6 ] 2 (S0 4 ) 3 , La 2 (S0 4 ) 3 + H 2 0. SI. sol. in H 2 0. (Wing.) - thallic sulphate, [Co(NH 3 ) 6 ] 2 (S0 4 ) 3 , T1 2 0(S0 4 ) 2 + 5H 2 0. Decomp. by cold H 2 0. (Gibbs.) - sulphate bromaurate, Co(NH 3 ) 6 (S0 4 )(AuBr 4 ). Very si. sol. in H 2 with apparent decomp. Insol. in alcohol. (Jorgensen.) - sulphate chloraurate, Co(NH 3 ) 6 (S0 4 )AuCl 4 . SI. sol. in H 2 0. (Jorgensen.) - cobaltic sulphite, [Co(NH 3 ) 6 ] 2 (S0 3 ) 3 , Co 2 (S0 3 ) 3 + H 2 = dichrocobaltic sulphite, [Co(NH 3 ) 3 ] 2 (S0 3 ) 3 + 2H 2 0, which see. [Co(NH 3 ) 6 ] 2 (S0 3 ) 3 , 2Co 2 (S0 3 ) 3 + 15H 2 = di- amine cobaltic sulphite, [Co(NH 3 ) 2 ] 2 (S0 3 ) 3 + 5H 2 0, which see. Luteorhodium bromide, Rh(NH 3 ) 6 Br 3 . Less sol. in H 2 than the chloride. (Jor- gensen, J. pr. (2) 44. 51.) - chloride, Rh(NH 3 ) 6 Cl 3 . Sol. in 7 to 8 pts. H 2 at 8. (J.) + H 2 0. Extremely efflorescent. (J.) - rhodium chloride, Rh(NH 3 ) 6 Cl 3 , RhCl 3 . Sol. in H 2 0. (Jorgensen, Z. anorg. 5. 174.) - chloroplatinate, 2Rh(NH 3 ) 6 Cl 3 , 3PtCl 4 + 6H 2 0. Insol. in H 2 0. Sol. in warm HCl + Aq. (J.) Rh(NH 3 ) 6 Cl 3 , PtCl 4 + |H 2 0. Decomp. by H 2 into chloride and above salt. (J.) - nitrate, Rh(NH 3 ) 6 (N0 3 ) 3 . Sol. in 48 to 49 pts. H 2 at ord. temp. HN0 3 + Aq diluted with 5 vols. H 2 ppts. the salt completely from aqueous solution. (Jor- gensen, J. pr. (2) 44. 51.) Rh(NH 3 ) 6 (N0 3 ) 3 , HN0 3 . Decomp. by H 2 or dil. alcohol. (Jorgensen, J. pr. (2) 44. 63.) or^ophosphate, Rh(NH 3 ) 6 P0 4 + 4H 2 0. SI. sol., in cold H 2 0. (J.) Luteorhodium sodium ^rophosphate, [Rh(NH 3 ) 6 ] 2 (P 2 7 ) 3 Na 2 + 23H 2 0. Nearly wholly insol. in H 2 0. Wholly insol. inNH 4 OH + Aq. (J.) - sulphate, [Rh(NH 3 ) 6 ] 2 (S0 4 ) 3 + 5H 2 0. Sol. in 43 pts. H 2 at 20. (J.) Magnesium, Mg. Does not decomp. H 2 at ord. temp., but decomp. slowly at 100. H 2 containing acids dissolves Mg easily. Sol. in cold dil. HC 2 H 3 2 + Aq. Difficultly sol. in cold H 2 S0 4 + Aq. (Bunsen.) Cold nitrosulphuric acid does not attack. (Bunsen.) Cold NH 4 OH + Aq, KOH + Aq, or NaOH + Aq do not attack. (Maack, Phippson.) Sol. in NH 4 C1, or (NH 4 ) 2 C0 3 + Aq. (Wohler.) Magnesium arsenide, Mg 3 As 2 . Decomp. on air. (Parkinson, Chem. Soc. 5. 127.) Magnesium boride, Mg 9 B 2 . Sol. in HCl + Aq. (Winkler, B. 23. 774.) Magnesium bromide, MgBr 2 + 6H 2 0. Deliquescent. Very sol. in H 2 with evolu- tion of heat. Sp. gr. of MgBr 2 + Aq at 19 '5 containing : 5 10 15 20 25 % MgBr 2 , 1-043 1-087 30 35 1-31 1-377 1-137 40 1-451 1-191 1-247 45 50% 1-535 1-625 (Kremers, Pogg. 108. 118, calculated by Gerlach, Z. anal. 8. 285.) MgBr 2 + Aq is si. decomp. by evaporation. Sol. in alcohol. Magnesium manganous bromide, MgBr 2 , 2MnBr 2 + 12H 2 0. Deliquescent. (Saunders, Am. Ch. J. 14. 150.) Magnesium mercuric bromide, MgBr 2 , HgBr 2 . Deliquescent. MgBr 2 , 2HgBr 2 . Not deliquescent. Magnesium potassium bromide, 2KBr + 6H 2 0. Easily sol. in H 2 0, from which KBr crys- tallises at 75 to 87. Alcohol dissolves out MgBr 2 . (Lowig, Repert. 29. 261.) Formula is MgBr 2 , KBr + 6H 2 0. Deliques- cent. (Lerch, J. pr. (2) 28. 338.) Magnesium stannic bromide. See Bromostannate, magnesium. Magnesium chloride, MgCl 2 . Deliquescent. Very sol. in H 2 with evolution of heat. The solution decomposes on evaporation losing HC1, when less than 6 mols. H 2 are present to 1 mol. MgCl 2 . (Casa- seca, C. R. 37. 350.) Anhydrous. Sol. in 1'857 pts. H 2 at 15. (Gerlach.) MAGNESIUM CHLORIDE 215 Sol. in 1 Sat. senfratz.) 100 pts. HoO at 15-5 dissolve 200 pts. MgClo. Diet.) t. cold H 2 O. (Fourcroy.) +Aq at 12-5 contains 64-8 % MgCl 2 . (Has- (Ure's 100 pts. H 2 dissolve 52 -2 pts. MgCl 2 at and sp. gr. of sat. solution = 1'3619 at 15. (Engel, Bull. Soc. (2) 47. 318.) + 6H 2 0. Deliquescent. Sol. in 0'6 pt. cold, and 0'273 pt. hot H 2 0. (Casaseca, I.e.) Sp. gr. of MgCl 2 + Aq at 19 '5. Pts. MgClo in 100 pts. H 2 O Sp.gr. Pts. MgCl 2 in 100 pts. H 2 O Sp.gr. 107 22-0 1-0826 1-1592 35-3 51-5 1-2388 1-3235 (Kremers, Pogg. 104. 155.) Sp. gr. of Mg01 2 + Aq at 14. 59, as Sp.gr. 1 Sp. gr. l| Sp.gr. i 0-9993 1-0033 17 18 1-0682 1-0724 34 35 1-1407 1-1451 2 1-0073 19 1-0765 36 1-1495 3 1-0113 20 1-0807 37 1-1540 4 1-0154 21 1-0849 38 1-1584 5 1-0194 22 1-0891 39 1-1628 6 1-0234 23 1-0933 40 1-1673 7 1-0274 24 1-0976 41 1-1718 8 1-0314 25 1-1018 42 1-1763 9 1-0355 26 1-1061 43 1-1809 10 1-0395 27 1-1103 44 1-1855 11 1-0435 28 1-1146 45 1-1901 12 1-0476 29 1-1189 46 1-1948 13 1-0517 30 1-1232 47 1-1995 14 1-0558 31 1-1275 48 1-2042 15 1-0599 32 1-1319 ... 16 1-0641 33 1-1363 ... (Oudemans, Z. anal. 7. 420.) Sp. gr. of MgCl 2 + Aq at 24. 59, So Sp. gr. 59, Sp. gr. ~ C W Sp. gr. 2 4 1-0069 1-0138 30 32 1-1062 1-1137 58 60 1-2167 1-2252 6 1-0207 34 1-1212 62 1-2338 8 1-0276 36 1-1288 64 1-2425 10 1-0345 38 1-1364 66 1-2513 12 1-0415 40 1-1441 68 1-2602 14 1-0485 42 1-1519 70 1-2692 16 1-0556 44 1-1598 72 1-2783 18 1-0627 46 1-1677 74 1-2875 20 1-0698 48 1-1756 76 1-2968 22 1-0770 50 1-1836 78 1-3063 24 1-0842 52 1-1918 80 1-3159 26 1-0915 54 1-2000 28 1-0988 56 1-2083 ... ... (Gerlach, Z. anal. 8. 283. Schiff.) Calculated from Sp. gr. of MgCl 2 + Aq at 15. rS* Sp.gr. 1 Sp. gr. 1 Sp. gr. 1 1-0084 13 1-1130 25 1-2274 2 1-0169 14 1-1220 26 1-2378 3 1-0253 15 1-1311 27 1-2482 4 1-0338 16 1-1404 28 1-2586 5 1-0422 17 1-1498 29 1-2690 6 1-0510 18 1-1592 30 1-2794 7 1-0597 19 1-1686 31 1-2903 8 1-0684 20 1-1780 32 1-3012 9 1-0772 21 1-1879 33 1-3121 10 1-0859 22 1-1977 34 1-3230 11 1-0949 23 1-2076 35 1-3340 12 1-1040 24 1-2175 (Gerlach, Z. anal. 8. 281.) Sp. gr. of MgCl 2 + Aq at 18. I-H" I Sp. gr. ! Sp.gr. 5 3 ^ Sp. gr. 5 10 1-0416 1-0859 20 30 1-1764 1-2779 34 1-3210 (Kohlrausch, W. Ann. 1879. 1.) Sp. gr. of MgCl 2 + Aq at 0. S = pts. salt in 100 pts. of solution ; Si = mols. salt in 100 mols. solution. s Si Sp. gr. 29-2056 20-9293 157989 11-3249 6-2008 7-230 4-762 3-423 2-355 1-233 1-2788 1-1927 1-1427 1-1007 1-0545 (Charpy, A. ch. (6) 29. 23.) MgCl 2 + Aq containing 10 % MgCl 2 boils at 101-6 ; containing 20 % MgCl 2 boils at 106 '2 ; containing 30 % MgCl 2 boils at 115 '6. (Ger- lach.) Sat. MgCl 2 + Aq forms a crust at 122 '5, and contains 52 '9 pts. MgCl 2 to 100 pts. H 2 0. (Gerlach, Z. anal. 26. 426.) B.-pt. of MgCl 2 + Aq. P = pts. MgCl 2 to 100 pts. H 2 0. B.-pt. p B.-pt. P B.-pt. P 101 4-9 111 34-6 121 50-8 102 9-2 112 36-6 122 52-2 103 13-2 113 38-4 123 53-6 104 167 114 40-2 124 55-0 105 19-9 115 41-8 125 56-4 106 22-5 116 43-4 126 577 107 25-0 117 44-9 127 59-0 108 27-5 118 46-4 128 60-3 109 29-9 119 47-9 129 61-6 110 32-3 120 49-4 130 62'9 (Gerlach, Z. a 1 A A f\ \ ?%&$ DBRAfti>-N I** Cf THE 216 MAGNESIUM MANGANESE CHLORIDE B.-pt. of MgCls+Aq containing % MgCl 2 . % MgCl 2 B.-pt. % MgCl 2 B.-pt. 103 104 4-6 8'4 101 102 11-6 14-3 (Skinner, Chem. Soc. 61. 341.) Sol. in 7 pts. alcohol at 15. (Bergmann.) ,, 5 ,, moderate heat. (B.) 100 pts. alcohol of given sp. gr. dissolve pts. MgCl 2 : Sp. gr. Pts. MgCl 2 Sp. gr. Pts. MgCl 2 0-900 0-848 21-25 23-75 0-834 0-817 36-25 50-00 (Kirwan.) MgCl 2 +6H 2 O is sol. in 5 pts. alcohol of 0'90 sp. gr. id in 2 pts. alcohol of 0'817 sp. gr. Sol. in 0-1828 pt. strong alcohol at 82-5. (Wenzel.) B. -pt. of an alcoholic solution of Mg01 2 . % MgCl 2 B.-pt. 5-56 8-53 9-62 13-84 78-43 + 073 +1'34 ,, +177 +3-54 (Skinner, Chem. Soc. 61. 341.) Even more sol. in acetic ether than CaCl 2 . (Cann, C. R. 102. 363.) Sol. in boiling amyl alcohol. (Riggs, Sill. Am. J. 144. 103.) Min. Bischqfite. Magnesium manganous chloride, MgCL, i 2MnCl 2 + 12H 2 0. Deliquescent. Yery sol. in H 2 and alcohol. (Saunders, Am. Ch. J. 14. 148.) Magnesium mercuric chloride, MgCl 2 , HgCl 2 + 6H 2 0. Very deliquescent. More sol. than the fol- lowing salt, (v. Bonsdorff, Pogg. 17. 133.) MgCljj, 3HgCl 2 + 5H 2 0. Sol. in H 2 with- out decomp. Easily sol. in alcohol. (v. Bonsdorff. ) Magnesium phosphoryl chloride, MgCl 2 , POC1 3 . Deliquescent. Sol. in H 2 with evolution of heat and decomposition. Very si. sol. in warm POC1 3 . (Casselmann, A. 98. 223.) Magnesium potassium chloride, MgCL, 2KC1 + 6H 2 0. Deliquescent, forming a solution of MgCl 2 , while KC1 remains undissolved. 100 pts. H 2 dissolve 64 '5 pts. at 1875. 20 pts. salt dis- solved in 80 pts. H 2 lower the temp. 175. (Bischof.) Alcohol dissolves out MgCl 2 . De- comp. into the two salts by solution in H 2 0. (Marcet. ) Min. Carnallite. Magnesium rubidium chloride, MgCl 2 , RbCl + 6H 2 0. Not decomp. by a small quantity of H 2 0. (Feit and Kubierscky, Ch. Ztg. 16. 335.) Magnesium sodium chloride, MgCL, NaCl + 2H 2 0. Sol. inH 2 0. (Poggiale.) Magnesium stannic chloride. See Chlorostannate, magnesium. Magnesium zinc chloride, MgCl 2 , ZnCl 2 + 6H 2 0. Deliquescent ; sol. in H 9 0. (Warner, C. N. 27. 271.) Magnesium chloride ammonia, MgCl 2 , 4NH 3 . Easily decomp. (Clark, A. 78. 369.) Magnesium fluoride, MgF 2 . Insol. in H 2 0. Scarcely sol. in acids. (Gay- Lussac and Thenard.) Insol. in excess of HF. When precipitated, is sol. in aqueous solution of ammonium and magnesium salts. Sol. in dil. HN0 3 + Aq, from which it is precipitated by alcohol. - Min. Sellaite. Magnesium sodium fluoride, MgF 2 , NaF. Insol. in H 2 0. (Geuther, J. B. 1865. 173.) Magnesium stannic fluoride. See Fluostannate, magnesium. Magnesium titanium fluoride. See Fluotitanate, magnesium. Magnesium zirconium fluoride. See Fluozirconate, magnesium. Magnesium hydrosulphide, MgS 2 H 2 . Known only in aqueous solution, which decomposes on warming. Solution contain- ing 16 % MgS 2 H 2 has sp. gr. 1-118 at 12. (Divers and Shimidzu, Chem. Soc. 45. 699.) Magnesium hydroxide, Mg0 2 H 2 . MgO is sol. in 55,368 pts. H 2 O at ordinary temp., and also at 100. (Fresenius, A. 59. 117.) MgO is sol. in 5142 pts. H 2 O at 15'5 (Fyfe) ; in 5800 pts. at 15-8 (Henry, J. Pharm. 13. 2) ; in 7900 pts. (Kir- wan); in 16,000 pts. (Dalton); in 100,000-200,000 pts. cold H 2 O (Bineau) ; in 36,000 pts. boiling EUO (Fyfe, Ed. Phil. J. 5. 305.) Calculated from electrical conductivity of Mg0 2 H 2 + Aq, 1 1. H 2 dissolves 9 mg. Mg0 2 H 2 at 18. (Kohlrausch and Rose, Z. phys. Ch. 12. 241.) Presence of Ca0 2 H 2 or CaS0 4 does not de- crease the solubility. (Henry.) Presence of the salts of the alkali metals, especially am- monium salts, increase the solubility. Insol. in cone. Na 2 S0 4 , NaNO 3 , NaCl, or KN0 3 + Aq. (Karsten.) Sol. in NH 4 OH + Aq, but insol. in KOH + Aq. (Odling.) Easily sol. in acids. Sol. in an aqueous solution of sugar. Boiling alcohol dissolves traces. See also Magnesium oxide. Min. Brucite. Sol. in cold citric acid + Aq. (Bolton, C. N. 37. 14.) 2MgO, 3H 2 0. (Bender, B. 3. 932.) Magnesium iodide, MgI 2 . Very deliquescent. MANGANESE CHLORIDE 217 Sp. gr. of MgI 2 + Aq at 19 "5 containing : 5 10 15 20 25 30 % MgI 2 , 1-0431-088 1-139 T194 1'254 1'32 35 40 45 50 55 60 % MgI 2 . 1-395 1-474 1-568 1-668 178 1'915 (Kremers, Pogg. 111. 62, calculated by Gerlach, Z. anal. 8. 285.) MgI 2 + Aq decomp. slightly on evaporation. Sol. in alcohol, ether, and wood-spirit. + 8H 2 0. Magnesium mercuric iodide, MgI 2 , HgI 2 . Known only in solution. MgI 2 , 2HgI 2 . Decomp. by H 2 into HgI 2 and above compound, which remains in solu- tion. (Boullay.) Magnesium potassium iodide, MgI 2 ,KI + 6H 2 0. Deliquescent. (Lerch, J. pr. (2) 28. 338.) Magnesium nitride, Mg 3 N 2 . Decomp. by moist air or H 2 0. Sol. in dil. or cone. HCl + Aq, or HN0 3 + Aq. Sol. in warm H 2 S0 4 . Insol. in alcohol, ethyl iodide, or phosphorus oxy chloride. (Briegleb and Geuther, A. 123. 236.) Magnesium sw&oxide (?). Decomp. H 2 0. Sol. in dil. acids. (Beetz, Pogg. 127. 45.) Magnesium oxide, MgO. Sol. in 50,000-100,000 pts. H 2 O (Bineau, C. R. 41. 510) ; in 55,368 pts. cold or hot HoO (Fresenius, A. 59. 123) ; in 100,000- 200,000 pts. H 2 O (Bunsen) ; in 16,000 pts. H 2 O at ord. temp. (Dalton) ; in 7900 pts. H 2 O at ord. temp. (Kirwan) ; in 5760 pts. H 2 O at 15-5, and 36,000 pts. at 100 (Fyfe). Easily sol. in acids, even in H 2 S0 3 + Aq. Sol. in NH 4 salts, NaCl, or KCl + Aq. (Fre- senius. ) More sol. in K 2 S0 4 , and Na 2 S0 4 + Aq than in H 2 0. (Warrington.) Solubility in (calcium sucrate + sugar) + Aq. 1 1. solution containing 41 8 '6 g. sugar and 34-3 g. CaO dissolves 0'30 g. MgO ; contain- ing 296 '5 g. sugar and 24 "2 g. CaO dissolves 0'24 g. MgO ; containing 174*4 g. sugar and 14-1 g. CaO dissolves 0'22 g. MgO. (Boden- bender, J. B. 1865. 600.) See also Magnesium hydroxide. Min. Periclasite. Magnesium oxychloride, Mg 2 OCl 2 + 16H 2 0. Easily decomp. by H 2 and alcohol. (Andre, A. ch. (6) 3. 80.) + 6H 2 0. (Andre.) Mg 6 5 Cl 2 + 6, 8, 14, or 17H 2 0. Decomp. by H 2 0, which dissolves out MgCl 2 . (Bender, B. 3. 932.) Mg n 10 Cl 2 + 14, or 18H 2 0. (Krause, A. 165. 38.) Mg 10 9 Cl 2 + 24H 2 - 9MgO, MgCl 2 + 24H 2 0. H 2 removes all MgCl 2 by long digesting. (Bender, A. 159. 341.) + 10, and 15H 2 0. (Bender.) Magnesium oxysulphide, Mg 2 OS. (Reichel, J. pr. (2) 12. 55.) Magnesium phosphide, Mg 3 P 2 . Decomp. by H 2 0, dil. HCl + Aq, or HN0 3 + Aq. (Parkinson, Chem. Soc. (2) 5. 125 and 309.) Insol. in moderately dil. cold HCl + Aq, or boiling dil. H 2 S0 4 + Aq. Difficultly and slowly sol. in aqua regia. (Blunt, Chem. Soc. (2) 3. 106.) Magnesium silicide, Mg 5 Si 3 . Slowly decomp. by warm H 2 0. Slowly decomp. by cold, rapidly by hot NH 4 Cl + Aq. Decomp. by cold dil. HCl + Aq. (Geuther, J. pr. 95. 425.) Mg 2 Si. Decomp. by HC1 + Aq with residue of Si. (Wohler, A. 107. 113.) Magnesium sulphide, MgS. Decomp. by H 2 0. (Reichel, J. pr. (2) 12. 55.) SI. sol. in H 2 with rapid decomp. (Fremy. ) Sol. in acids with decomp. Magnesium ^o^sulphide, MgS*. Known only in solution. (Reichel.) Magnus* green salt. See PlatocWamine chloroplatinite. Manganese, Mn. Decomposes H 2 even in the cold, more rapidly when hot. (Regnault. ) Decomposes cold water violently. (Bunsen.) Sol. in all dil. acids. Slowly sol. in cold H 2 S0 4 . (John.) Insol. in cold, but rapidly sol. in hot H 2 S0 4 . Very easily sol. in dil. H 2 S0 4 , or HC1 + Aq, HN0 3 , or HC 2 H 3 2 + Aq. (Brunner.) Pure manganese is unaltered in dry air, even when finely powdered. Slowly attacked by cold, quickly by hot H 2 0. Very si. attacked by cold H 2 S0 4 , rapidly on warming ; rapidly attacked by cold dil. H 2 S0 4 + Aq; violently by cone. HN0 3 + Aq; and rapidly by dil. HN0 3 , HC1, HC 2 H 3 2 + Aq, and also NaOH + Aq. Sol. inNH 4 Cl + Aq. (Prelinger, W. A. B. 102, 2b. 359.) Manganese boride, MnB 2 . Sol. in acids, with evolution of H 2 . (Troost and Hautefeuille, A. ch. (5) 9. 65.) Manganous bromide, MnBr 2 . Anhydrous. Very deliquescent. + 4H 2 0. More deliquescent than MnCl 2 . Melts in crystal water when heated. (Berthe- mot.) Manganous mercuric bromide. Deliquescent. Manganous stannic bromide. See Bromostannate, manganous. Manganese carbide, MnC. (Brown, J. pr. 17. 492.) MnC 2 . Mn 3 C. (Troost and Hautefeuille, A. ch. (5) 9. 60.) Manganous chloride, MnCl 2 . Anhydrous. Deliquescent. 218 MANGANESE CHLORIDE 100 pts. H 2 at t dissolve pts. MnCl 2 : t Pts. Mn01 2 t Pts. MnCl 2 10 31-25 62-5 62-16 8572 122-22 87-5 106-25 122-22 123-81 or, sat. MnCl 2 + Aq at t contains : t % MnCl 2 t % MnCl 2 10 31-25 62-5 38-33 46-15 55-0 87-5 106-25 55-0 55-32 (Brandes, Pogg. 22. 263.) Sp. gr. of MnCl 2 + Aq at 15. a = sp. gr. if % is MnCl 2 ; b = sp. gr. if % is MnCl 2 + 4H 2 0. % a b % a b 5 1-045 1-0285 40 1-443 1-250 10 1-091 1-057 45 1-514 1-290 15 1-138 1-086 50 ... 1-331 20 1-189 1-116 55 1-375 25 1-245 1-147 60 1-419 30 1-306 1-180 65 1-463 35 1-372 1-214 70 1-508 (Gerlach, Z. anal. 28. 476.) Solutions of MnCl 2 in 75 % alcohol saturated at t contain : t % MnCl 2 t % MnCl 2 10 25 23-1 36-1 4375 87-5 (B.-pt.) 37-5 32-2 Solutions of MnCl 2 in absolute alcohol saturated at t contain : t % MnCl 2 t % MnCl 2 11-25 37-5 33-3 33-3 76-25 (B.-pt.) 36-2 (Brandes, I.e.) MnCl 2 crystallises from above solutions on standing. When 15-20 vols. ether are added to 1 vol. absolute alcohol sat. with MnCl 2 , MnCl 2 is completely pptd. (Dobereiner.) Insol. in oil of turpentine. + 4H 2 0. . Deliquescent. 100 pts. H 2 at t dissolve : t Pts. MnCl 2 * +4H 2 t Pts. MnCl 2 +4H 2 8 31-25 62-5 151 265 641 87-5 106-25 641 656 (Brandes, I.e.] Sol. in 0'8 pt. H 2 at 18 75. (Abl.) 100 pts. 75 % alcohol dissolve at t : t Pts. MnCl 2 +4H 2 t Pts. MnCl 2 +4H 2 O 10 25 53 132 43-75 87-5 144 100-1 Insol. in absolute ether, which also does not abstract its crystal H 2 0. Insol. in boiling oil of turpentine. (Brandes. ) Sol. in cone. HN0 3 + Aq. + 2H 2 0. (Remsen and Saunders, Am. Ch. J. 14. 127.) Manganese sesquichloTide, Mn 2 Cl 6 . Known only in solution. Manganese ^rachloride, MnCl 4 . Has not been isolated. Sol. in H 2 0, alcohol, or ether. (Nickles, J. B. 1865. 225.) Composition is Mn 2 Cl 6 . (Christensen, J. pr. (2) 34. 41.) Manganese hydrogen tetrachloTide (chloro- manganic acid), MnCl 4 , 2HC1. Sol. in ether ; decomp. by H 2 0. (Franke, (2) 36. 31.) Manganese heptactiloride, MnCl 7 (?). Decomp. by H 2 0. (Dumas, Berz. J. B. 7. 112.) Has the formula Mn0 3 Cl (?). (Aschoff, J. pr. 81. 29.) Manganous mercuric chloride, MnCl 2 , HgCl 2 + 4H 2 0. Deliquescent in moist air. Easily sol. in H 2 0. (v. Bonsdorff.) Manganous potassium chloride, MnCL, KC1 + 2H 2 0. Deliquescent. Very sol. in H 2 0, but is decomp. thereby. (Remsen and Saunders, Am. Ch. J. 14. 129.) Manganous rubidium chloride, MnCl 2 , 2RbCl. (Godeffroy.) + 3H 2 0. Easily sol. in H 2 0. Insol. in alcohol ; cone. HC1 + Aq ppt. anhydrous salt from aqueous solution. (Godeffroy, Arch. Pharm. (3) 12. 40.) Contains only 2H 2 0. (Saunders, Am. Ch. J. 14. 139.) Manganous stannic chloride. See Chlorostannate, manganous. Manganous fluoride, MnF 2 . Only sol. in H 2 containing HF. (Berzelius. ) Manganomanganic fluoride, Mn 3 F 8 + 10H 2 0. Sol. in a little H 2 0, but decomp. by dilution. (Nickles, C. R. 67. 448.) Manganese ^rafluoride, MnF 4 . Not isolated. Sol. in absolute alcohol or ether ; decomp. by H 2 0. (Nickles, C. R. 65. 107.) MANGANESE OXIDE 219 Probably does not exist. (Christensen, J. pr. (2) 35. 161.) Manganese sesgm'fluoride, Mn 2 F 6 . Completely sol. in a little H 2 0, but decomp. by dilution or boiling. (Berzelius.) + 6H 2 0. Efflorescent. (Christensen, J. pr. (2) 35. 57.) Manganese heptafluoride, MnF 7 (?). * Sol. in H 2 with decomp. (Wb'hler.) Manganese sesqui&uoride with MF. See also Fluomanganate, M. Manganic nickel fluoride, 2NiF 2 , Mn 2 F 6 + 8H 2 0. (Christensen, J. pr. (2) 34. 41.) Manganic potassium fluoride, Mn 2 F 6 , 4KF + 2H 2 0. Decomp. by H 2 0. Sol. in cone. HCl + Aq, dil. HNOo + Aq , cone. H 2 S0 4 + Aq , H 3 P0 4 + Aq , H 2 C 2 4 + Aq, H 2 C 4 H 4 6 + Aq, and dil. HF + Aq. (Christensen, J. pr. (2) 35. 72.) MnF 4 , 2KF. Difficultly sol. in H 2 0. De- comp. by much H 2 0. (Nickles, C. R. 65. 107.) True composition is Mn 2 F 6 , 4KF, also with 2H 2 0. (Christensen, J. pr. (2) 34. 41.) MnF 4 , 4KF. (Nickles.) See also Fluomanganate, potassium. Manganic silver fluoride, 2AgF, Mn 2 F 6 + 14H 2 0. Sol. in HF + Aq. (Christensen, J. pr. (2) 34. 41.) Manganic sodium fluoride, Mn 2 F 6 , 4NaF. Decomp. by much H 2 0. Not as sol. in HF + Aq as the K salt. (Christensen, J. pr. (2) 35. 161.) Manganous stannic fluoride. See Fluostannate, manganous. Manganic zinc fluoride, 2ZnF 2 , Mn 2 F 6 + 8H 2 0. See Fluomanganate, zinc. Manganous zirconium fluoride. See Fluozirconate, manganous. Manganous hydroxide, Mn0 2 H 2 . Insol. in H 2 0. Very si. sol. in H 2 or alkalies. (Fresenius.) Easily sol. in acids. Insol. in NaOH, or KOH + Aq. Sol. in NH 4 salts +Aq. Insol. in NH 4 OH + Aq. Sol. in NaOH + Aq in presence of glycerine. (Donath, Dingl. 229. 542.) Not pptd. by NH 4 OH + Aq in presence of H 2 C 4 H 4 6 ; by KOH + Aq in presence of cane sugar ; by KOH + Aq in presence of Na citrate. Min. Pyrochroite. Manganomanganic hydroxide, Mn 3 4 , a?H 2 0. Not attacked by boiling NH 4 Cl + Aq. Be- haves towards acids as Mn 3 4 . Manganic hydroxide, Mn 2 3 , H 2 0. Insol. in hot or cold dil. H 2 S0 4 + Aq. Sol. in cone. H 2 S0 4 at somewhat over 100. (Carius.) Sol. in tartaric, oxalic, and malic acids, with subsequent decomp. Insol. in formic, acetic, benzoic, or hippuric acids. (Hermann, Pogg. 74. 303.) Insol. in NH 4 C1 + Aq. Insol. in cane sugar + Aq. (Peschier.) Min. Manganite. Sol. in cone. HCl + Aq. SI. sol. in cone. H 2 S0 4 . Manganese ^'hydroxide, Mn0 2 , H 2 0. See Manganous acid. Manganous iodide, MnI 2 + 4H 2 0. Very deliquescent, and sol. in H 2 0. Manganous oxide, MnO. Insol. in H 2 0. Easily sol. in acids. Readily sol. inNH 4 Cl + Aq. Manganic oxide (Manganese ses^'oxide), Mn 2 3 . Decomp. by boiling with HN0 3 + Aq into MnO, which dissolves, and Mn0 2 , which is insol. (Berthier) ; also by boiling with dil. H 2 S0 4 + Aq. (Turner.) Sol. in hot cone. H 2 S0 4 or HCl + Aq. Sol. in cold HCl + Aq without decomp. If perfectly pure, is insol. in dil. H 2 S0 4 + Aq, but if it contains any MnO, it dissolves. (Rose. ) Insol. in boiling NH 4 C1 + Aq. Solubility in (calcium sucrate + sugar) + Aq. 1 1. solution containing 41 8 '6 g. sugar and 34-3 g. CaO dissolves 0'50 g. Mn 2 3 ; contain- ing 296 '5 g. sugar and 24 '2 g. CaO dissolves 0'37 g. Mn 2 3 ; containing 174 '4 g. sugar and 14-1 g. CaO dissolves 0'32 g. Mn 2 3 . (Boden- bender, J. B. 1865. 600.) Min. Colloidal. Solution in H 2 containing "21 g. to a litre is precipitated by KN0 3 + Aq (1 : 1000) ; K 2 S0 4 + Aq(l :1100) ; (NH 4 ) 2 S0 4 + Aq(l :1500) ; NaCl + Aq (1 : 1580) ; MgS0 4 + Aq (1 : 40, 983) ; BaCl 2 + Aq(l:58,823);MnS0 4 + Aq(l:147,929); (NH 4 ) 2 Al 2 (S0 4 ) 4 + Aq(l : 362,318) ; K 2 Cr 2 (S0 4 ) 4 + Aq (1:416,668); HCl + Aq (1:61,350); HC 2 H 3 2 (1:17,262); H 2 S0 4 (1:62,500). (Spring and de Boeck, Bull. Soc. (2) 48. 170.) Manganomanganic oxide, Mn 3 4 . Insol. in H 2 0. Boiling dil. or cone. HN0 3 + Aq dissolves out MnO (Berthier) ; also boiling dil. H 2 S0 4 + Aq. (Turner.) Sol. in hot HC1 + Aq. (Otto.) NH 4 Cl + Aq dissolves out MnO. (Rose.) Sol. without decomp. in hot very cone. H 3 P0 4 + Aq, and cold cone. H 2 S0 4 , HC1, oxalic, and tartaric acids + Aq. Min. Hausmannite. Manganese cfo'oxide, Mn0 2 . Min. Pyrolusite. Insol. in H 2 0. Very slowly sol. in cone. H 2 S0 4 with evolution of 2 . Sol. in cold HC1 + Aq ; decomp. by hot HCl + Aq. Sol. in aqua regia. Sol. in S0 2 + Aq or N 2 3 + Aq. (Karsten. ) Insol. in HN0 3 , or dil. H 2 S0 4 + Aq, except in presence of organic reducing substances. Decomp. by citric acid, and more easily by oxalic acid. (Bolton.) SI. sol. in hot cone. , but insol. in dil. HN0 3 + Aq. (Deville.) When pure it is insol. in cold dil. H 2 S0 4 + Aq, but if a small quantity of MnO is added much Mn0 2 dissolves. (Carius. ) Not decomp. by boiling NH 4 C1 + Aq. 220 MANGANESE OXIDE Easily sol. in a mixture of nitrososulphuric acid and cone. HCl + Aq. (Borntrager, Rep. anal. Ch. 1887. 741.) Manganese oxides, Mn 3 5 , Mn 6 n , etc. See Manganite, manganous. Manganese rzoxide, Mn0 3 . Deliquescent. Sol. in H 2 0, with subsequent decomp. Decomp. by ether. Sol. in cone. H 2 S0 4 . (Franke, J. pr. (2) 36. 31.) Manganese ^roxide, Mn0 4 (?). SI. sol. in H 2 with decomp. Decomp. by H 2 S0 4 or ether. (Franke, J. pr. (2) 36. 166.) Manganese heptoxide, Mn 2 7 . Very unstable ; takes up H 2 from air. Sol. in H 2 with evolution of heat and rapid decomposition. Sol. in cone. H 2 S0 4 without decomp. ( Aschoff. ) Manganese oxychloride, 3Mn 2 3 , MnCl 2 . Insol. in H 2 0. (Saint-Gilles, C. R. 55. 329.) MnCl 2 , MnO (?). (Gorgeu, A. ch. (6) 4. 515.) MnOgCl. See Manganyl chloride. Manganic oxyfluoride, MnOF 2 . Sol. in absolute ether. MnOF 2 , 2HF = fluoxymanganic acid. (Nickles, C. R. 659. 107.) Manganic oxyfluoride potassium fluoride. See Fluoxymanganate, potassium. Manganic sesgmoxyfluoride potassium fluoride. See /S'esgwifluoxymanganate, potassium Manganese oxysulphide, MnO, MnS. Sol. in acids. ( Arf vedson, Pogg. 1. 50. ) Manganese phosphide, Mn 5 P 2 =Mn 3 P 2 , Mn 7 P 2 . HCl + Aq dissolves out Mn 3 P 2 and leaves Mn 7 P 2 , which is sol. in HN0 3 + Aq. (Wohler and Merkel, A. 86. 371.) a;Mn 3 P 2 , ?/Mn 4 P 2 . Easily sol. in aqua regia ; partly sol. in H 2 S0 4 or HC1 + Aq. (Struve, J. pr. 79. 321.) Mn 6 P 2 . Insol. in HCl + Aq. Sol. in HN0 3 + Aq. (Schrotter, W. A. B. 1849, 1. 305.) Manganous phosphoselenide, MnS, P 2 Se. Insol. in H 2 0. Sol. in HC1 + Aq or HN0 3 + Aq. Insol. in cold, si. decomp. by hot alkalies + Aq. (Hahn, J. pr. 93. 436.) 2MnSe, P 2 Se 3 . Insol. in cold, slowly sol. in hot HC1 + Aq. Not decomp. by alkalies. 2MnSe, P 2 Se 5 . Easily decomp. by acids. (Hahn.) Manganese silicide, Mg 5 Si 2 . Sol. in HCl + Aq with evolution of SiH 4 . (Wohler, A. 106. 54.) Manganous sulphide, MnS. Anhydrous. Insol. in H 2 0. Sol. in weak acids, even in acetic acid. Min. Alabandite. Sol. in HCl + Aq. + |H 2 0. Green. Decomp. by boiling with H 2 0. Sol. in weak acids, as acetic or sulphur- ous acid. Very si. sol. in (NH 4 ) 2 S + Aq. (Wackenroder.) Sol. in NH 4 salts + Aq. 100 ccm. of sat. NH 4 Cl + Aq at 12 dissolve 0'43 g. MnS. (Clermont and Guyot, C. R. 85. 37.) + f H 2 0. Flesh-coloured. Less sol. in NH 4 salts, or acetic acid +Aq than the preceding salt. 100 ccm. of sat. NH 4 Cl + Aq at 12 dis- solve "088 g. (Clermont and Guyot. ) Neither green nor flesh-coloured MnS contains HoO. (Antony and Donnini, Gazz. ch. it. 23. 560.) MnS is not pptd. in presence of alkali citrates, tartrates, or grape sugar ; cane or milk sugar do not prevent precipitation. (Spiller.) Not pptd. in presence of Na 4 P 2 7 . (Rose.) Manganese efo'sulphide, MnS 2 . (Senarmont, J. pr. 61. 385.) Min. Hauerite. Decomp. by hot HCl + Aq with separation of S. Manganous phosphorus sulphide, MnS, P 2 S. Sol. in HCl + Aq with decomp. (Berzelius, A. 46. 147.) Manganous potassium sulphide, 3 MnS, K 2 S. Nearly insol. in water, alcohol, or ether. Easily sol. in acids. (Volcker, A. 59. 35.) Manganous sodium sulphide, 3MnS, Na 2 S. Insol. in H 2 0, alcohol, or ether. Sol. in dil. acids, and S0 2 + Aq. (Volcker.) 2MnS, Na 2 S. Decomp. by H 2 0. (Schneider, Pogg. 151. 446.) Manganic acid, H 2 Mn0 4 . Known only in solution, which decomposes rapidly. (Franke, J. pr. (2) 36. 31.) Barium manganate, BaMn0 4 . Insol. in H 2 ; decomp. by acids. (Mit- scherlich. ) Didymium manganate, Di 2 (Mn0 4 ) 3 . Insol. in H 2 0. Sol. in H S0 4 + Aq. (Frerichs and Smith, A. 191. 331.) Does not exist. (Cleve, B. 11. 912.) Lanthanum manganate, La 2 (Mn0 4 ) 3 . Ppt. (Frerichs and Smith, A. 191. 331.) Does not exist. (Cleve, B. 11. 912.) Manganese manganate, Mn 2 3 , Mn0 3 =3Mn0 2 . See Manganese dioxide. Lead manganate, PbMn0 4 + 2H 2 0. Ppt. (Jolles, C. C. 1888. 58.) Potassium manganate, K 2 Mn0 4 . Sol. in water containing alkalies without decomp., but decomp. by pure H 2 0. Can be recrystallised from dil. KOH + Aq. Potassium manganate permanganate, K 2 Mn0 4 , KMn0 4 . Sol. without decomp. in 20 % KOH + Aq. (Gorgeu, A. ch. (3) 61. 355.) Sodium manganate, Na 2 Mn0 4 + 10H 2 0. Sol. in H 2 0, with partial decomp. (Gentele, J. pr. 82. 58.) Strontium manganate, SrMn0 4 . Insol. in H 2 0. (Fromherz.) MANGANITE, STRONTIUM 221 Permanganic acid. See Permanganic acid. Manganicyanhydric acid, H 3 Mn(CN) 6 . Not known in the free state. Barium manganicyanide, Ba 3 [Mn(CN) 6 ] 2 . Sol. in H 2 0. (Fittig and Eaton.) Calcium manganicyanide, Ca 3 [Mn(CN) 6 ] 2 . Sol. in H 2 0. (Fittig and Eaton.) Potassium manganicyanide, K 3 Mn(CN) 6 . Sol. in H 2 0. (Christensen, J. pr. (2) 31. 163.) Sodium manganicyanide, Na 3 Mn(CN) 6 + 2H 2 0. Sol. in H 2 0. (Fittig and Eaton.) Manganocyanhydric acid, H 4 Mn(CN) 6 . Most easily decomp. SI. sol. in alcohol. Insol. in ether. (Descamps, A. ch. (5) 24. 185.) Ammonium manganous manganocyanide, NH 4 CN, Mn(CN) 2 =(NH 4 ) 2 MnMn(CN) 6 . Sol. in NH 4 CN + Aq. (Fittig and Eaton, A. 145. 157.) Barium manganocyanide, Ba 2 Mn(CN) 6 . Sol. in cold H 2 0. (Fittig and Eaton.) Calcium manganocyanide, Ca 2 Mn(CN) 6 . Very deliquescent. Sol. in H 2 ; insol. in alcohol. (Fittig and Eaton. ) Potassium manganocyanide, K 4 Mn(CN) 6 + 3H 2 0. Very efflorescent. Sol. in H 2 ; decomp. by boiling. Potassium manganocyanide chloride, K 4 Mn(CN) 6 , KC1. Easily sol. in H 2 0. (Descamps.) Potassium manganous manganocyanide, KCN, Mn(CN) 2 = K 2 MiiMn(CN) 6 . Ppt. Sol. inKCN + Aq. Sodium manganocyanide, Na 4 Mn(CN) 6 + 8H 2 0. Very efflorescent. Easily sol. in H 2 0. (Fittig and Eaton.) Strontium manganocyanide, Sr 2 Mn(CN) 6 . As the Ba comp. (Descamps.) Manganosulphuric acid. See Sulphate, manganic. Manganous acid, H 2 Mn0 3 =Mn0 2 , H 2 0. Insol. in H 2 0. (Franke, J. pr. (2) 36. 451.) 2Mn0 2 , H 2 (?). Min. Wad. Barium manganite, BaO, 5Mn0 2 . SI. sol. in HCl + Aq, less sol. in HN0 3 + Aq. (Rissler, Bull. Soc. (2) 30. 111.) BaO, 7Mn0 2 . (Rousseau, C. R. 104. 786.) BaO, 2Mn0 2 . Insol. in H 2 0. BaO, Mn0 2 . Insol. in H 2 0. (Rousseau, C. R. 102. 425.) Ba(H 3 Mn 4 Oio) 2 . (Morawski and Stingl, J. pr. (2) 18. 92.) Calcium manganite, CaO, 5Mn0 2 . Easily sol. in HCl + Aq, less in HN0 3 + Aq. (Rissler.) 2CaO, Mn0 2 . Sol. in dil. min. acids. (Rousseau, C. R. 116. 1060.) CaO, 2Mn0 2 . (Rousseau, C. R. 102. 425.) CaO, 3Mn0 2 . CaO, Mn0 2 . Sol. in fuming HCl + Aq, but not in dil. HN0 3 + Aq. (Rousseau, C. R. 116. 1060.) Cobalt copper manganite, CoO, CuO, 2Mn0 2 + 4H 2 0. Min. Asbolite. Sol. in HCl + Aq, with evolu- tion of Cl. Cupric sesgm'manganite, Mn 2 3 , 3 CuO. Sol. in HCl + Aq. (Schneider, Am. Ch. J. 9. 269.) Lead manganite, PbO, 5Mn0 2 . Not attacked by cone, acids ; sol. in aqua regia. (Rissler.) Magnesium manganite, 2MgO, Mn0 2 . (Lemoine, Ann. Min. (7) 3. 5.) + a;H 2 0. (Volhard.) Manganous manganite, Mn 3 5 =MnO, 2Mn0 2 . (Reissig, A. 103. 27.) Mn 6 O n = MnO, 5Mn0 2 . (Veley, Chem. Soc. 38. 581.) 3Mn0 2 , 2MnO. Decomp. by dil. H 2 S0 4 + Aq. (Franke, J. pr. (2) 36. 166.) 3Mn0 2 , MnO + H 2 0. Min. Varwdte. Potassium manganite, K 2 0, 2Mn0 2 . Insol. in H 2 0. K 2 0, 5Mn0 2 . K 2 0, 7Mn0 2 + 3H 2 0. K 2 0, 8Mn0 2 + 3H 2 = KH 3 Mn 4 10 . (Mor- awski and Stingl, J. pr. (2) 18. 91.) Does not exist. (Wright and Menke, Chem. Soc. 37. 22.) K 2 0, 10Mn0 2 . K 2 0, 16Mn0 2 + 6H 2 0. Sol. in cone. HC1 + Aq. (Rousseau, C. R. 114. 72.) Silver manganite, AgH 3 Mn 4 10 . (Morawski and Stingl, J. pr. (2) 18. 92.) Ag 2 Mn0 3 . Ppt. (Gorgeu, C. R. 110. 958.) Argentous manganite, Ag 4 0, Mn 2 3 (?). Insol. in cold dil. HN0 3 + Aq, and separates Mn 2 3 on warming. Insol. in NH 4 OH + Aq. (Rose, Pogg. 101. 229.) Argentoargentic manganite, Ag 4 0, 2Ag 2 0, Mn0 ?. Sodium manganite, Na 2 0, 5Mn0 2 . Insol. in H 2 0. (Rousseau, C. R. 103. 261.) Na 2 0, 12Mn0 2 . Insol. in H 2 0. (Rous- seau. ) + 4H 2 0. (Rousseau, C. R. 112. 525.) Na 2 0, 8Mn0 2 + 5H 2 O. (Rousseau.) Na 2 0, 16Mn0 2 + 8H 2 0. (Rousseau.) Strontium manganite, Mn0 2 , SrO. Insol. in H 2 0. 2Mn0 2 , SrO. Insol. in H 2 0. (Rousseau, C. R. 101. 167.) Mn0 2 , 5SrO. Sol. in HC1, or HN0 3 + Aq. (Rissler, Bull. Soc. (2) 30. 110.) 222 MANGANITE, ZINC Zinc manganite, ZnO, 5Mn0 2 . Insol. in H 2 0. (Rissler.) Manganyl chloride, Mn0 3 Cl. Decomp. by H 2 0. (Aschoff, J. pr. 81. 29.) Melanocobaltic chloride, Co 2 (NH 3 ) 6 Cl 4 NH 2 Cl, or Co 2 (NH 3 ),5Cl 5 NH 2 . Very si. sol. in cold H 2 or very dil. HC1 + Aq. Decomp. by long standing or warming. Cold cone. HC1 or dil. H 2 S0 4 + Aq does not attack, but decomp. on warming. HN0 3 + Aq decomp. on warming. Sol. in cold H 2 S0 4 or NH 4 OH + Aq ; from both solutions it can be precipitated by HC1 + Aq. (Vortmann, B. 10. 1455.) - chloroplatinate, Co 2 (NH 3 ) 6 NH 2 Cl 5 , PtCl 4 . Ppt. (Vortmann, B. 15. 1902.) Co 2 (NH 3 ) 6 NH 2 Cl 3 (OH) 2 , PtCl 4 . Ppt. (Vort- mann. ) - mercuric chloride, Co 2 (NH 3 ) 6 (NH 2 )Cl 3 (OH) 2 , 3HgCl 2 + H 2 0. Ppt. Difficultly sol. in cold H 2 0, quite easily in warm H 2 acidified with HC1. (Vortmann.) - chloride chromate, Co 2 (NH 3 ) 6 NH 2 Cl 3 Cr 2 7 + H 2 0. Sol. in hot H 2 0. (Vortmann.) Mercurammonium comps. See Mercury ammonium comps. Mercuriammonium bromide, Hg(NH 2 )Br. See Z^'mercuriammonium ammonium bro- mide. Mercuriammonium chloride, Hg(NH 2 )Cl. See Z>*mercuriammonium ammonium chlo- ride. Mercuriammonium oxyc^mercuriammonium chloride, 4Hg(NH 2 )Cl, NH 2 (HgOHg)Cl. (Millon.) Correct composition is Z^'mercuriammonium ammonium chloride, NHg 2 Cl, NH 4 C1, which see. (Balestra, Gazz. ch. it. 21, 2. 294.) Hg(NH 2 )Cl, 2NH 2 (HgOHg)Cl. (Millon.) Correct composition is Z^mercuriammonium mercuric chloride, 2NHg 2 Cl, HgCl 2 + H 2 0, or Z>imercuriammonium hydrogen chloride NHg 2 Cl, HC1. (Balestra.) Mercuriammonium nitrate, 2NHo, 2HgO. Easily decomp. by HC1, or alkali sulphides + Aq. SI. sol. in HN0 3 + Aq. Insol. in H. 7 S0 4 , NH 4 OH, or KOH + Aq. (Mitscherlich. ) " Is cwnercuriammonium ammonium nitrate, NHg,N0 3 , NH 4 N0 3 + H 2 0. (Pesci, Gazz. ch. it. 20. 485.) Mercuriammonium oxycfo'mercuriammonium nitrate, 3HgO, 2NH 3 , N 2 5 = NH 2 HgNO,, (NHg 2 OH 2 )N0 3 + H 2 O. Decomp. by boiling with H 2 0, which dis- solves out NH 4 N0 3 . Sol. in NH 4 N0 3 + Aq containing NH 4 OH. (Mitscherlich.) Is e^mercuriammonium ammonium nitrate, 3NHg 2 N0 3 , NH 4 N0 3 ch. it. 20. 485.) (Pesci, Gazz. Mercuriammonium oxycKmercuriammonium sulphate, (NH 2 Hg) 2 S0 4 , 3(NHg 2 OH 2 ) 2 S0 4 . Boiling H 2 dissolves out H 2 S0 4 . Gradu- ally decomp. by boiling KOH + Aq. Com- pletely sol. in NH 4 Cl + Aq. Sol. in cone, or dil. HC1, or very dil. H 2 S0 4 + Aq. Insol. in cone, 'or dil. HN0 3 + Aq or cone. H 2 S0 4 . (Schneider. ) Correct formula is 7(NHg 2 ) 2 S0 4 , (NH 4 ) 2 S0 4 +. 12H 2 0, ^mercuriammonium ammonium sul- phate. (Pesci, Gazz. ch. it. 20. 485.) Mercuricfo'ammonium chloride (fusible white precipitate), Hg(NH 3 ) 2 C! 2 . Is cfo'mercuriammonium ammonium chloride, Hg 2 NCl, 3NH 4 C1, which see. (Rammelsberg J. pr. 38. 558.) Mercuricfo'ammonium mercuric chloride, Hg(NH 3 ) 2 Cl 2 , HgCl 2 . Insol. in H 2 0, but gradually decomp. by boiling therewith. (Rose, Pogg. 20. 158.) Partly sol. in H 2 0. (Kane.) Mercurir^'ammonium iodide, Hg(NH 3 ) 2 I 2 . H 2 extracts all the NH 3 . Partly sol. in little alcohol. Partly sol. 'in ether without decomp. (Nessler. ) Correct composition is cfo'mercuriammonium ammonium iodide, NHg 2 I, 3NH 4 I. (Pesci, Gazz. ch. it. 20. 485.) Mercurifl^'ammonium cupric iodide, 4NHo, CuI 2 , HgI 2 . Decomp. by H 2 0. Sol. in alcohol + HC 2 H 3 2 . (Jorgensen, J. pr. (2) 2. 347.) 2Hg(NH 3 ) 2 I 2 . CuI 2 . Decomp. by H 2 0. (Jorgensen. ) Mercuricfo'ammonium iodide, Hg(NH 3 ) 2 I 2 . Decomp. by H 2 0. Partly sol. in a little alcohol. Partly sol. in ether. (Nessler. ) Correct composition is ^mercuriammonium ammonium iodide, NHg 2 I, 3NH 4 I. (Pesci.) Mercuri^iammonium mercuric iodide, Hg(NH 3 ) 2 I 2 , HgI 2 , or NH 3 , HgI 2 . Decomp. by H 2 or dil. acids. (Caillot and Corriol, J. Pharm. 9. 381.) Correct composition is cfo'mercurianimonium ammonium mercuric iodide, 3NHg 2 I, 8NH 4 I, 4HgI 2 . (Pesci, Gazz. ch. it. 20. 485") Mercuri^'ammonium sulphate, Hg(NH 3 ) 2 S0 4 . Decomp. with H 2 0. Does not exist. (Pesci, Gazz. ch. it. 20. 485.) + H 2 0. Decomp. by H 2 0. Easily sol. in HC1, very dil. H 2 S0 4 + Aq, or HN0 3 + Aq. Insol. in cone. HN0 3 + Aq. Sol. in (NH 4 ) 2 S0 4 + Aq or NH 4 Cl + Aq. Decomp. by KOH + Aq. (Schneider, J. pr. 75. 136.) Correct composition is (NHg 2 ) 2 S0 4 , 3(NH 4 ) 2 S0 4 +12H 2 0, ^'mercuriammonium am- monium sulphate. (Pesci.) ZH'mercuriammonium acetate, NHg 2 C 2 H 3 2 . Insol. in H 2 or alcohol. Sol. in HC1 or MERCURIAMMONIUM AMMONIUM NITRATE 223 NH 4 C 2 H 3 2 + Aq. (Balestra, Gazz. ch. it. 22, 2. 563.) JWmercuriammonium ammonium acetate, NHg 2 C 2 H 3 2 , 3NH 4 C 2 H 3 2 + H 2 0. Deliquescent ; sol. in a little H 2 without decomp., but decomp. into NHg 2 C 2 H 3 O 2 and NH 4 C 2 H 3 2 by excess of H 2 0. (Balestra. ) arsenate, NHg 2 H 2 As0 4 . (Hirzel, Zeit. Pharm. 1853. 3.) bromate, NHg 2 Br0 3 + 1|H 2 0. Ppt. (Rammelsberg, Pogg. 55. 82.) Is oxycfo'mercuriammonium bromate, (NH 2 Hg 2 0)Br0 3 . bromide, NHg 2 Br. Insol. in H 2 or HN0 3 . Sol. in HCl + Aq. (Pesci, Gazz. ch. it. 19. 509.) Sol. in KI, or Na 2 S 2 O 3 + Aq with evolution of NH 3 . (Balestra, Gazz. ch. it. 22, 2. 558.) ammonium bromide, NHg 2 Br, NH 4 Br. Decomp. by H 2 0. (Pesci, Gazz. ch. it. 19. 511.) 4NHg 2 Br, 5NH 4 Br. Decomp. by H 2 0. Insol. in (NH 4 ) 2 C0 3 + Aq. Sol. in cone, or dil. HCl + Aq, Insol. in HN0 3 + Aq. (Pesci.) NHg 2 Br, 3NH 4 Br. Decomp. by H 2 0. Easily sol. in HCl + Aq. Insol. in alcohol. (Pesci.) Sol. in NH 4 Br, NH 4 C1, or NH 4 I + Aq; sol. in KI, or Na 2 S 2 3 + Aq. carbonate, (NHg 2 ) 2 C0 3 + 2H 2 0. Ppt. Not decomp. by KOH + Aq, but easily by K 2 S, or KI + Aq. (Rammelsberg, J. pr. (2) 38. 567.) chloride, NHg 2 Cl. Not attacked by boiling H 2 0. SI. attacked by cold dil. HCl + Aq, but is gradually dis- solved thereby. Decomp. by hot KOH + Aq. (Weyl.) Sol. in KI, or Na 2 S 2 3 + Aq with evolution of NH 3 . + H 2 0. Nearly insol. in H 2 ; easily sol. in HN0 3 , and HCl + Aq. Not decomp. by KOH + Aq. Decomp. by KC1, NaCl, or KI + Aq. (Rammelsberg, Pogg. 48. 181.) hydrogen chloride, NHg 2 Cl, 2HC1. Correct composition of mercuric chloramide chloride. (Balestra, Gazz. ch. it. 21, 2. 299.) Decomp. by H 2 0. NHg 2 Cl, HC1. Decomp. by H 2 0. (Ba- lestra, I.e.) ammonium chloride, NHg 2 Cl, NH 4 C1. (Infusible white precipitate). Correct composition of what has been called mercuric chloramide, Hg(NH 2 )Cl. (Rammels- berg, J. pr. 38. 558.) Insol. in cold, decomp. by hot H 2 0. (Millon, A. ch. (3) 18. 413.) Sol. in 600 pts. H 2 0. (Wittstein.) Sol. in 719 '98 pts. H 2 at 1875. (Abl.) Insol. in alcohol. Sol. in acids, even in HC 2 H 3 2 + Aq, also in NH 4 N0 3 , (NH 4 ) 2 S0 4 , and NH 4 C 2 H 3 2 + Aq. (Pelouze and Fremy. ) Sol. in warm NH 4 C1, or NH 4 N0 3 + Aq. (Brett.) SI. sol. in alkali chlorides + Aq, which par- tially decomp. (Miahle, A. ch. (3) 5. 180.) Decomp. by KOH + Aq. Sol. in KI, or Na 2 S 2 O 3 + Aq, with evolution of NH 3 . (Ba- lestra.) NHg 2 Cl, 3NH 4 C1 (Fusible white precipitate). Correct composition of what has been called mercuriefo'ammonium chloride, Hg(NH 3 ) 2 Cl 2 . (Rammelsberg, J. pr. (2) 38. 558.) Decomp. by hot H 2 0. Sol. in acids, even HC 2 H 3 2 + Aq. Not decomp. by cold, but by boiling KOH + Aq. (Weyl. ) Sol. in warm, less in cold NH 4 OH + Aq. (Mitscherlich. ) Sol. in KI, or Na 2 S 2 3 + Aq, with evolution ofNH 3 . (Balestra.) Z^mercuriammonium mercuric chloride, 2NHg 2 Cl, HgCl 2 . Insol. in, and not decomp. by boiling H 2 0, alkalies, cone. HN0 3 , or dil. H 2 S0 4 + Aq. Sol. in boiling HCl + Aq.' (Mitscherlich, J. pr. 19. 453.) chromate. See Oxycfo'mercuriammonium chromate. hydroxide, NHg 2 OH. Takes up H 2 to form NHg 2 OH + H 2 or (NHg 2 OH 2 )OH, oxycKmercuriammonium hy- droxide, which also see. Sol. in warm HC1 or HN0 3 + Aq. iodate, NHg 2 I0 3 , 2NH 4 I0 3 . Insol. in HN0 3 . (Rammelsberg, J. pr. (2) 38. 568.) iodide, NHg 2 I. Insol. in H 2 0. Sol. in HC1 + Aq. Decomp. by boiling with KOH + Aq or KCl + Aq. (Weyl, Pogg. 121. 601.) Decomp. by hot KI, or Na 2 S 2 3 + Aq. (Balestra. ) + H 2 0. See Oxy^mercuriammonium iodide. ammonium iodide, NHg 2 I, 3NH 4 I. Correct composition of mercuriefo'ammonium iodide, Hg(NH 3 ) 2 I 2 . (Pesci, Gazz. ch. it. 20. 485.) 3NHg 2 I, 8NH 4 I, 4HgI 2 . Correct formula for mercuric^ammonium mercuric iodide, Hg(NH 3 ) 2 I 2 , HgI 2 . (Pesci.) nitrate, NHg 2 N0 3 . Insol. in H 2 0. (Rammelsberg, J. pr. (2) 38. 566.) Sol. in KI, or Na 2 S 2 3 + Aq, with evolution of NH 3 . (Balestra, Gazz. ch. it. 22, 2. 560. ) ammonium nitrate, NHg 2 N0 3 , NH 4 N0 3 + H 2 0. Correct formula for mercuriammonium nitrate, NH 2 HgN0 3 + |H 2 0. (Pesci, Gazz. ch. it. 20. 485.) NHg 2 N0 3 , 2NH 4 N0 3 + 2H 2 0. Correct for- mula for oxycfo'mercuriammonium ammonium nitrate, (NHg 2 OH 2 )N0 3 , 2NH 4 N0 3 + H 2 0. (Pesci.) NHg 2 N0 3 , 3NH 4 N0 3 . Decomp. by cold H 2 ; sol. in NH 4 OH + Aq. (Pesci.) 3NHg 2 N0 3 , NH 4 N0 3 + 2H 2 0. Correct for- mula for mercuriammonium oxyefo'mercuriam- 224 MERCURIAMMONIUM OXIDE monium nitrate, NH 2 HgN0 3 , (NHg 2 OH 2 )N0 3 + H 2 0. (Pesci.) Zfanercuriammonium oxide, (NHg 2 ) 2 0. Slowly decomp. by H 2 0. Sol. in HC1, or HN0 3 + Aq. Decomp. by hot KOH, or KC1 + Aq. (Weyl, Pogg. 121. 601.) phosphate, (NHg 2 ) 2 P0 4 , 2NHg 2 OH + 10H 2 0. (Rammelsberg, J. pr. (2) 38. 567.) See Oxycfo'mercuriammonium phosphate. ammonium salicylate, 2NHg 2 C 6 H 4 OHC0 2 , 5NH 4 C 6 H 4 OHC0 2 . Decomp. by H 2 0. Sol. in NH 4 C 2 H 3 2 , HC1, or KI + Aq. (Balestra. ) selenate, (NHg) 2 Se0 4 + 2H 2 0. Ppt. Insol. in H 2 ; sol. in NH 4 OH + Aq. (Cameron and Davy, C. N. 44. 63.) sulphate, (NHg 2 ) 2 S0 4 + 2H 2 0. Insol. in H 2 0. Easily sol. in HCl + Aq. (Rammelsberg, J. pr. (2) 38. 565.) Sol. (Kane), insol. (Hirzel) in HN0 3 + Aq. Sol. in KI, or Na 9 S 2 3 + Aq with evolution of NH 3 . (Balestra.) ammonium sulphate, (NHg 2 ) 2 S0 4 , 3(NH 4 ) 2 S0 4 + 4H 2 0. Correct formula for mercuricfo'ammonium sulphate, 2NH 3 , HgO, S0 3 + H 2 0. (Pesci, Gazz. ch. it. 20. 485.) 5(NHg 2 ) 2 S0 4 , 14(NH 4 ) 2 S0 4 + 16H 2 0. (Pesci.) 7(NHg 2 ) 2 S0 4 , (NH 4 ) 2 S0 4 + 12H 2 0. Correct formula for mercuriammonium oxycfamer- curiammonium sulphate, (NHg 2 H 2 ) 2 S0 4 , 3(NHg 2 OH 2 ) 2 S0 4 . (Pesci.) tartrate, (NHg 2 ) 2 C 4 H 4 6 + 2iH 2 0. Insol. in H 2 0. Sol. in HC1, KI, Na 2 S 2 3 , NH 4 C 2 H 3 2 , or (NH 4 ) 2 C 4 H 4 6 + Aq. (Balestra, Gazz. ch. it. 22, 2. 563.) ammonium tartrate, 2(NHg 2 ) 2 C 4 H 4 6 , (NH 4 ) 2 C 4 H 4 6 + H 2 0. As above. (B.) ^'mercuriaminonium sulphate, (NHg 2 )(NHgH 2 )S0 4 + 2H 2 0. Decomp. by H 2 0. (Millon.) Does not exist. (Pesci, Gazz. ch. it. 20. 485.) Z^'mercuriarsonium mercuric chloride, AsHg 3 Cl 3 =AsHg 2 Cl, HgCl 2 . Decomp. by H 2 0. Decomp. by warm HNO., + Aq. (Rose, Pogg. 51. 423.) Mercurimidosulphonic acid, (H0 3 S) 4 N 2 Hg. Very unstable. (Berglund, B. 9. 256.) Barium mercurimidosulphonate, Ba 2 (S0 3 ) 4 N 2 Hg + 5H 2 0. (Berglund, B. 9. 256.) Cadmium , Cd 2 HgN 2 (S0 3 ) 4 + 12H 2 0. Unstable ; si. sol. in H 2 0. (Berglund, Bull. Soc. (2)25. 452.) Cobalt , Co 2 HgN 2 (S0 3 ) 4 + 15H 2 0. Sol. inH 2 0. (B.) Copper mercurimidosulphonate, Cu 2 HgN 2 (S0 3 ) 4 + 15H 2 0. Very sol. in H 2 0. (B.) Magnesium - , Mg 2 HgN 2 (S0 3 ) 4 + 15H 2 0. Very sol. in H 2 0. (B.) Manganous -- , Mn 2 HgN 2 (S0 3 ) 4 + 10H 2 0. Unstable. (B.) Mercuric -- , (Hg 2 0) 2 HgN 2 (S0 3 ) 4 . Nearly insol. in H 2 0. (B.) Nickel - , Ni 2 HgN 9 (S0 3 ) 4 + 15H 2 0. (B.) Potassium - , (K0 3 S) 4 N 2 Hg + 4H 2 0. Precipitate. (Raschig, A. 241. 161.) Potassium silver - , (AgS0 3 ) 2 (KS0 3 ) 2 HgNo + 3H 2 0. SI. sol. in H 2 0. (Berglund.) Sodium -- , (NaS0 3 ) 4 HgN 2 + 5H 2 0. More sol. in H 2 than K salt. (Berglund. ) Strontium -- , Sr 2 (S0 3 ) 4 HgN 2 More sol. than Ba salt. (B.) Zinc -- , Zn 2 (S0 3 ) 4 HgN 2 Very sol. in H 2 0. (B.) Z^'mercuriphosphonium mercuric chlor- ide, PHg a Cl, HgCl 2 + liH 2 0. Decomp. by hot, slowly by cold H 2 into Hg, HC1, and H 3 P0 3 . Decomp. by acids or alkalies. (Rose, Pogg. 40. 75.) Z^mercuriphosphonium mercuric nitrate, P 2 Hg 3 , 6HgO, Hg(NO)J, 3HgO. (Rose, Pogg. 40. 75.) Z>imercuriphosphonium P 2 Hg 3 , 6HgO, 4S0 3HgS0 4 , 2HgO + 4H 2 0. Sol. in aqua regia. (Rose, Pogg. 40. 75.) Mercuric acid. Calcium mercurate (?). (Berthollet, A. ch. 1. 61.) Potassium mercurate, K 2 0, 2HgO. Gradually decomp. by H 2 ; less rapidly by absolute alcohol. (St. Meunier, C. R. 60. 557.) Sodium mercurate, Na 2 0, HgO. (Bettekoff, Bull. Soc. (2) 34. 328.) Mercuroammonmm chloride, Hg(NH 3 )Cl. (Rose, Pogg. 20. 158.) Mixture of Hg, HgNH.Cl, and NH 4 C1. (Barfoed, J. pr. (2) 39. 201.)" - nitrate, (NHg 2 H 2 )N0 3 , "Hahnemann's soluble mercury." Sol. in hot HC1, and HC 2 H 3 2 + Aq. De- comp. by NH 4 OH + Aq, or NH 4 "salts +Aq. Probably mixture of mercurous salts and Hg. Mercurocfe'ammonium chloride, H g2 (NH 3 ) 2 Cl 2 . Easily decomp. (Rose, Pogg. 20. 158.) Mixture of Hg, NH 2 HgCl, and NH 4 C1. (Bar- foed, J. pr. (2) 39. 201.) 3N 2 5 = 2[PHg 2 N0 3 , mercuric sulphate, + 4H 2 0-(PH g2 ) 9 S0 4 , MERCURIC CHLORAMIDE 225 Mercuro^'ammonium fluoride, Hg 2 (NH 3 ) 2 F 2 (?). Decomp. by H 2 0. (Finkener, Fogg. 110. 147.) . Mercurosulphonic acid. Mercurosulphonates, Hg(S0 3 M) 2 . Correct composition for the double sulphites, HgS0 3 , M 2 S0 3 . (Divers and Shimidzu, Chem. Soc. 49. 583 ; Earth, Z. phys. Ch. 9. 195.) Mercuroxy- comps. See Oxymercur- comps. Mercury, Hg. Not attacked by H 2 0. Not attacked by boiling cone. HC1 or dil. H 2 S0 4 + Aq. Easily sol. in dil. or cone. HN0 3 + Aq ; also in HBr or HI + Aq. Not attacked by pure HN0 3 unless heated, but readily attacked by cold dil. HN0 3 + Aq containing NO. (Millon. ) Alkali chlorides + Aq in presence of air decomp. Hg ; action is not increased by heat. (Miahle.) Mercury ammonium comps. See Mercuroammonium comps., NH 3 HgR. Z^'mercuToammonium comps., NH 2 Hg 2 R. Mercurous chloramide, Hg(NH 2 )Cl. Z^'mercuriammonium comps., NHg 2 R. Mercuric chlor-, brom-, etc., amide, Hg(NH 2 )R. Mercuricfo'ammonium comps., Hg(NH 3 ) 2 R. Mercuriammonium comps., HgNH 2 R. Z^'mercuriefa'ammonium comps., Hg 2 N 2 H 4 R. Trimercuriammonium comps., N 2 H 2 Hg 3 R. Oxy^'mercuriammonium comps., (NH 2 Hg 2 0)R. Mercurous arsinchloride, AsHgCl. Decomp. by H 2 0. (Capitaine, J. Pharm. 25. 559.) Mercurous arsinchloride chloride, AsHg 2 CL= 2AsHgCl, Hg 2 Cl 2 (?). Decomp. by H 2 0. (Capitaine. ) Mercurous azoimide, HgN 3 . Wholly insol. in H 2 0. (Curtius, B. 24. 3324.) Mercuric bromamide, Hg(NH 2 )Br. Insol. in H 2 and alcohol. SI. sol. in NH 4 OH + Aq. (Mitscherlich, J. pr. 19. 455.) Correct composition is efo'mercuriammonium ammonium bromide, Hg 2 NBr, NH 4 Br, which see. (Pesci, Gazz. ch. it. 19. 511.) Mercurous bromide, Hg 2 Br 2 . Insol. in H 2 and dil. acids. Decomp. by HCl + Aq. Sol. in hot cone. H 2 S0 4 with evolution of S0 2 . SI. sol. in hot HN0 3 + Aq of 1-42 sp. gr. (Stromann, B. 20. 2818.) Decomp. into Hg and HgBr 2 by boiling with NH 4 Br, or NH 4 C1 + Aq ; also by ammonium carbonate or succinate, but not by ammonium sulphate or nitrate. ( Wittstein. ) Sol. in Hg(N0 3 ) 2 + Aq. (Wackenroder, A. 41. 317.) Partially decomp. by alkali chlorides + Aq ; when out of contact of air this decomp. is slight and HgBr 2 is formed, while in the air HgCl 2 is the resulting product. Much more rapidly decomp. in hot than cold solutions. (Miahle, A. ch. (3) 5. 177.) Insol. in alcohol. Mercuric bromide, HgBr 2 . Sol. in 94 pts. H 2 at 9, and in 4-5 pts. at 100. (Lassaigne, J. chim. med. 12. 177.) Sol. in 250 pts. HoO at ordinary temp., and 25 pts. boiling H 2 O. (Wittstein.) Sol. in 240 pts. H 2 O at 1875. (Abl.) Decomp. by warm HN0 3 , or H 9 S0 4 + Aq. Sol. in warm H 2 S0 4 . (Ditte, A. ch. (5) 17. 124.) Easily sol. in alcohol, and more easily in ether. (Balard.) SI. sol. in cold, easily in hot benzene. Sol. in 12 pts. cold, 3 pts. hot alcohol. Easily sol. in acetone. (Oppenheim, B. 2. 572.) + 4H 2 0. (Thomsen.) Mercuric hydrogen bromide (Bromomercuric acid), HgBr 2 , HBr = HHgBr 3 . Decomp. by H 2 0. (Neumann, M. 10. 236.) Mercuric potassium bromide, HgBr 2 , KBr. Sol. in H 2 0, but decomp. by a large amount, with separation of one half of the HgBr 2 . (v. Bonsdorff, Pogg. 19. 339.) 2HgBr 2 , KBr + 2H 2 0. Permanent. Sol. in H 2 and alcohol, (v. Bonsdorff. ) Mercuric sodium bromide, HgBr 2 , NaBr. Deliquescent, (v. Bonsdorff.) 2HgBr 2 , NaBr + 3H 2 0. Sol. in H 2 and alcohol. (Berthemot.) Mercuric strontium bromide, HgBr 2 , SrBr 2 . Sol. in all proportions of H 2 0. (Lowig, Mag. Pharm. 33. 7.) 2HgBr 2 , SrBr 2 . Decomp. by H 2 into HgBr 2 and HgBr 2 , SrBr 2 . (Lbwig.) Mercuric zinc bromide. Deliquescent in moist air. (v. Bonsdorff.) Mercuric zinc bromide cyanide ammonia. See Cyanide zinc bromide ammonia, mer- curic. Mercuric bromoiodide, HgBrl. Sol. in alcohol and ether. Can be recrystal- lised from ether without decomp. (Oppen- heim, B. 2. 571.) Mercurous chloramide, Hg 2 (NH 2 )Cl. Insol. in boiling H 2 or NH 4 OH + Aq. (Kane, A. ch. (2) 72. 215.) Mixture of Hg and HgNH 2 Cl. (Barfoed, J. pr. (2) 39. 201.) Mercuric chloramide, Hg(NH 2 )Cl. Composition is efo'mercuriammonium am- monium chloride, Hg 2 NCl, NH 4 C1, which see. Q 226 MERCURIC CHLORAMIDE OXYMERCURIAMMONIUM CHLORIDE Mercuric chloramide oxymercuriammonium chloride, 4Hg(NH a )Cl, (NHg 2 OH 2 )Cl. (Millon.) Correct composition is ^'mercuriammonium ammonium chloride, NHg a Cl, NH 4 C1, which see. (Balestra, Gazz. ch. it. 21, 2. 294.) Hg(NH 8 )Cl, (NHg a OH a )Cl. (Millon.) True composition is c^mercuriammonium mercuric chloride, 2Hg 2 NCl, HgCl 2 + H 2 ; or Gfo'mercuriammonium hydrogen chloride, NHg 2 Cl, HC1. (Balestra.) Mercuric chloramide chloride, Hg(NH 2 )Cl, HgCl 2 . Properties as mercuric chloramide. Decomp. by cold HC1 + Aq. (Millon. ) True composition is cfo'mercuriammonium hydrogen chloride, NHg 2 Cl, 2HC1. (Balestra, Gazz. ch. it. 21, 2. 294.) Mercuric chloramide chromate, 2Hg(NH 2 )Cl, HgCr0 4 . Decomp. by hot H 2 0. Easily sol. in HN0 3 or HCl + Aq. (Jager and Kriiss, B. 22. 2048.) Mercurous chloride, Hg 2 Cl 2 . Almost absolutely insol. in cold, but gradu- ally si. decomp. by boiling H 2 0. Calculated from electrical conductivity of Hg 2 Cl 2 + Aq, 1 1. H 2 dissolves 3'1 mg. Hg 2 Cl 2 at 18*. (Kohlrausch and Rose, Z. pliys. Ch. 12. 241.) SI. sol. with decomp. in boiling H 2 free from air, 20 ccm. H 2 affording 0'002 g. HgCl 2 after boiling 1 hour with Hg 2 Cl 2 . (Miahle, A. ch. (3) 5. 176.) Hg 2 (N0 3 ) 2 + Aq containing 1 pt. Hg a (N0 3 ) 2 to 250,000 pts. H 2 gives ppt. of Hg 2 Cl 2 with HCl + Aq. Sol. witli decomp. in cone. HC1 + Aq, hot HN0 3 + Aq, aqua rcgia, or Cl 2 + Aq. (Fresenius. ) Insol. in cold dil. acids, but slowly sol. on heating. The solubility of Hg a Cl 2 in HCl + Aq in- creases slowly with time, arid finally reaches a point where it increases very rapidly, which takes place sooner the more dil. the acid. Presence of Hg. 2 (N0 3 ) 2 + Aq helps the solubility. (Why not oxidation to HgCl 2 ?) (Varenne, C. R. 92. 1161.) Sol. in cold HCN + Aq with separation of Hg. Sol. in alkali chlorides + Aq. NH 4 Cl + Aq dissolves out HgCl a at ord. temp., much more at 40-50. Dil. NH 4 Cl + Aq decomposes more slowly than cone. Access of air hastens re- action. (Miahle.) When heated several hoars to 40-50, 100 pts. NH 4 Cl + 833 pts. H 2 form 075 pt. HgCl 2 from 25 pts. Hg,Cl a ; 100 pts. NaCl + 833 pts. H 2 form 0'33 pt. HgCl 2 from 25 pts. Hg 2 Cl 2 ; 100 pts. KC1 + 833 pts. H 2 form 0-25 pt. HgCl 2 from 25 pts. Hg 2 Cl 2 ; 100 pts. BaCl a + 833 pts. H 2 form 0'33 pt. HgCl 2 from 25 pts. Hg 2 Cl 2 . (Miahle, J. Pharm. 26. 108.) Other chlorides act as NH 4 C1, only less vigorously. (Pettenkofer.) By boiling 1 pt. Hg 2 Cl 2 10 times with a solution of 1 pt. NaCl each time, the Hg 2 Cl 2 is finally completely decomp. (Hennel.) Boiling BaCl 2 + Aq or CaCl 2 + Aq dissolve traces. K 2 S0 4 + Aq, KN0 3 + Aq, or KHC 4 H 4 6 + Aq do not dissolve. (Pettenkofer. ) Sol. in (NH 4 ) 2 S0 4 + Aq. Insol. in NH 4 nitrate, or succinate + Aq. ( Wittstein. ) Sol. in hot Hg 2 (N0 3 ) 2 + Aq, and stjjl more in hot Hg(N0 3 ) 2 + Aq ; on cooling it crystal- lises out completely. 25 g. Hg 2 Cl 2 dissolve in 1'5 1. H 2 containing 50 g. Hg(N0 3 ) 2 . (De- bray, C. R. 70. 995.) Sol. in PtCl 2 + Aq. Decomp. by NH 4 OH + Aq. Decomp. by KOH, or NaOH + Aq. Insol. in alcohol or ether. More sol. in H 2 containing pepsin and an acid than in H 2 0, and is not converted thereby into HgCl 2 . (Torsellini, Ann. Chim. farm. (4) 4. 105.) Insol. in acetone. (Krug and M'Elroy.) Mercuric chloride, HgCl 2 . Permanent. Sol. in 18-5 pts. H 2 O at 13- 8, and 2-3 pts. at 100. (J. Davy, 1822.) Sol. in 3 pts. boiling H 2 O. (Wonzel.) Sol. in 18-23 pts. H 2 O at 10, and 3 pts. at 100. (M. R. and P.)i Sol. in 18'46 pts. at 18-75. (Abl.) Sol. in 16 pts. cold, and 3 pts. warm H 2 O. (Durnas.) 100 pts. H 2 dissolve pts. HgCl^ at t : t Pts. HgCl 2 t Pts. HgCl 2 t Pts. HgCl 2 573 40 9-62 80 24-30 10 6-57 50 11-34 90 37-05 20 7'39 60 13-86 100 53-96 30 8'43 70 17-29 (Poggiale, A. ch. (3) 8. 468.) HgCl 2 +Aq sat. at 8 has 1-041 sp. gr. (Anthon, 1837.) Sp. gr. of HgCl 2 + Aq at 20. % HgCla Sp. gr. % HgCl 2 Sp. gr. 1 2 3 1-0072 1-0148 1-0236 4 5 1-0323 1-0411 (Schroder, calculated by Gerlach, Z. anal. 27. 306.) Sp. gr. of HgCl 2 + Aq at 15. % HgCl 2 Sp. gr. %HgC. 2 Sp. gr. 8 1-071 11 1-1035 9 1-0815 12 1-115 10 1-095 13 1-127 (Mendelejeff, calculated by Gerlach, Z. anal. 27. 306.) Sp. gr. of HgCl 2 + Aq. %. Sp. gr. HgCl 2 atO at 10 at 20 at 30 4-72 1-04070 1-04033 1-03856 1-03566 3'57 1 -03050 1-03022 1-02885 1-02577 2-42 1-02035 1-02018 1-01856 1-01585 1-22 1-01008 1-00990 1-00835 1-00575 (Schroder, B. 19. 161 R.) Sat. HgCl 2 +Aq boils at 101-1. (Griffiths.) MERCURIC CHLORIDE 227 B.-pt. of HgCl 2 + Aq containing x % HgCl 2 . % HgCljj B.-pt. % HgCl 2 B.-pt. 4-8 9-0 100-10 100-16 11-04 15-2 100-20 100-275 (Skinner, Chem. Soc. 61. 340.) Solubility in HCl + Aq is greater than in H 2 O. (Dumas.) Sol. in 0-5 pt. HCl+Aq of 1-158 sp. gr. at 23'3, form- ing a solution of 2*412 sp. gr. (Davy, 1822.) Solubility of HgCl 2 in HCl + Aq. Pts. HC1 in 100 pts. H 2 Pts. HgCl 2 dissolved by 100 pts. liquid Pts. HCl in 100 pts. H 2 Pts. HgCl 2 dissolved "Of o-o 5-6 10-1 13-8 6-8 46-8 737 87-8 21-6 31-0 50-0 68-0 127-4 141-9 148-0 154-0 (Ditte, A. ch. (5) 22. 551.) Solubility in HCl + Aq at 0. =i mo l s . HgCl 2 (in mgs.) in 10 ccm. solution; HCl = mols. HCl ditto ; H 2 = grms. H 2 present. HgCl 2 2 HCl Sp.gr. H 2 O 97 4-3 1-117 9-704 19-8 9-9 1-238 9-340 35-5 17-8 1-427 9-816 55-6 26-9 1-665 8-135 68-9 32-25 1-811 7-714 72-37 34-25 1-874 7-679 85-5 41-5 2-023 7-131 88-65 48-1 2-066 6-893 95-675 70-875 2-198 6-431 (Engel, A. ch. (6) 17. 362.) Not decomp. by H 2 S0 4 or HN0 3 + Aq. Sol. in 630 pts. H 2 SO 4 , and in more than 500 pts. hot HNO 3 +Aq of 1-41 sp. gr. without decomp. (J. Davy.) Sol. in H 2 S0 4 , HN0 3 , HI0 3 , or H 2 Cr0 4 with- out decomp. (Millon, A. ch. (3) 18. 373.) Very si. sol. in HN0 3 , but not decomp. thereby. (Wurtz.) Sat. NH 4 Cl + Aq dissolves 17 times as much HgCLj as H 2 dissolves. (J. Davy.) 1 pt. sat. NaCl + Aq dissolves 1*29 pts. HgCl 2 at 14. (Voit, A. 104. 354.) Sat. NaCl+Aq (20 grains H 2 O+7grains NaCl) dissolves 32 grains HgCl 2 at 15-5, and 3 grains more on warming. Sp. gr. of solution = 2-14. (Davy, 1822.) Sat. KCl+Aq (21 grains H 2 O+7 grains KC1) dissolves 8 grains HgCl 2 on boing gently heated. (Davy.) Sat. BaCl a +Aq (20 grains H 2 O+8'7 grains BaCl 2 + 2H 2 O) dissolves 16 grains HgCl 2 at 15-5, and 4 grains more on heating. Sp. gr. of solution =1-9. (Davy.) MgCl 2 +Aq (31 grains HCl+Aq of 1-68 sp. gr. neutral- ised with MgO) dissolves 40 grains HgCl 2 , and 25 grains more on gently heating. Sp. gr. of solution =2'83. (Davy.) Sol. in sat. KC1, NaCl+Aq, and in MnClo, ZnCl 2 , CoCl 2 , FeCl 2 , NiClo, and CuCl 2 +Aq. (v. Bonsdorff, Pogg. 17. 123.) Solubility in NaCl + Aq. 100 pts. containing given % NaCl dissolve g. NaCl + Aq %NaCl g. HgCl 2 at 15 g. HgCl 2 at 05 g. Hg01 2 at 100 26 128 152 208 25 120 142 196 10 58 68 110 5 30 36 64 1 14 18 48 0-5 10 13 44 ( Homey er and Ritsert, Pharm. Ztg. 33. 738.) Sol. in 2-5 pts. cold alcohol (Richter) ; 3 pts. (Karl) ; 2-5 pts. alcohol of 0-833 sp. gr. at ordinary temp., and 1-167 pts. on boiling (Berzelius) ; 2 pts. alcohol of 0*816 sp. gr. at 15'5 (sp. gr. of solution = 1 -08) (J. Davy, Phil. Trans. 1822. 358). At 10, sol. in 2-57 pts. alcohol of 39 (Cartier), in 2'9 pts. alcohol of 38 ; in 3'6 pts. alcohol of 35 ; in 4-2 pts. alcohol of 30 ; in 9 '3 pts. alcohol of 22 ; in 14*6 pts. alcohol of 14. (N. B. Henry.) Sol. in 25 mols. methyl, 13 "1 mols. ethyl, and 20'3 mols. propyl alcohol at 8 '5 ; in 16 "2 mols. methyl, 12*4 mols. ,ethyl, and 18 mols. propyl alcohol at 20 ; in 6 '8 mols. methyl, 10 '6 mols. ethyl, and 14 '6 mols. propyl alcohol at 3 8 '2. (Timofejew, C. R, 112. 1224.) 100 pts. absolute methyl alcohol dissolve 66-9 pts. HgCl 2 at 25 ; 100 pts. absolute ethyl alcohol dissolve 49 '5 pts. HgCl^ at 25. (de Bruyn, Z. phys. Ch. 10. 783.) Sp. gr. of alcoholic solution of HgCl 2 . HgCl 2 Sp. gr. atO at 10 at 20 at 30 o-oo 0-83135 0-82286 0-81435 0-80594 1-22 0-8397 0-8312 0-8228 0-8141 2-38 0-8484 0-8399 0-8314 0-8227 4-42 0-8635 0-8549 0-8463 0-8375 8-56 0-8966 0-8877 0-8789 0-8698 12-43 0-9306 0-9213 0-9119 0-9024 15-91 0-9629 0-9523 0-9425 0-9329 19-32 0-9951 0-9852 0-9753 0-9652 22-46 1-0285 1-0184 1-0083 0-9982 (Schroder, B. 19. 161 R.) Sol. in 4 pts. ether (Karls); in4'l pts. (Henry); in 2 "86 pts. ether of 0745 sp. gr. (sp. gr. of solution = 1 "08) ; the solvent power is not in- creased by elevating the temp., and b.-pt. of ether is not raised. (J. Davy. ) Ether extracts HgCl 2 from HgCl 2 + Aq. (Orfila) ; very slightly if HgCl 2 + Aq is dil. (Lassaigne.) Very si. sol. in pure ether. (Polis, B. 20. 717. ) 4 pts. ether dissolve 1 pt. HgCLj, but 4 pts. ether + 1*33 pts. camphor dissolve 1'33 pts. HgCLj ; 4 pts. ether + 4 pts. camphor dis- solve 2 pts. HgC^ ; 4 pts. ether + 8 pts. camphor dissolve 4 pts. HgCLj ; 4 pts. ether + 16 pts. camphor dissolve 8 pts. HgCl 2 . (Karls, Pogg, 10. 608.) 3 pts. alcohol dissolve 1 pt. HgCl 2 , but 3 228 MERCURIC HYDROGEN CHLORIDE pts. alcohol + 1 pt. camphor dissolve 2 pts. HgCl 2 ; 3 pts. alcohol + 3 pts. camphor dissolve 3 pts. HgCl 2 ; 3 pts. alcohol + 6 pts. camphor dissolve 6 pts. HgCl 2 . (Karls, I.e.) Solution can be obtained containing 25 pts. camphor, 16 pts. HgCl 2 , and only 4 pts. alcohol. Sp. gr. of solution = 1 '326. (Simon, Pogg. 37. 553.} Easily sol. in oil of turpentine and other essential oils ; si. sol. in cold benzene, but much more on heating, crystallising on cooling. (Franchimont, B. 16. 387.) Extracted from HgCl 2 + Aq by volatile oils. Easily sol. in glycerine ; sol. in 14 pts. glycerine. (Fairley, Monit. Scient. (3) 9. 685.) Easily sol. in boiling creosote. Insol. in olive oil. 100 pts. acetone dissolve 60 pts. HgCl 2 at 25. (Krug and M'Elroy, J. Anal. Appl. Ch. 184.) Mercuric hydrogen chloride (Chloromercuric acid), HgCl 2 , HCl = HHgCl 3 . Decomp. by H 2 0. (Boullay, A. ch. 34. 243.) Easily decomposed. (Neumann, M. 10. 236. ) HgCl 2 , 2HC1 + 7H 2 0. Decomp. by H 2 0. (Ditte, A. ch. (5) 22. 551.) 3HgCl 2 , 4HC1 + 14H 2 0. As above. 2HgCl 2 , HC1 + 6H 2 0. As above. 4HgCl 2 , 2HC1 + 9H 2 0. As above. 3HgCl 2 , HC1 + 5H 2 0. As above. Mercuric nickel chloride. Deliquescent, (v. Bonsdorff.) Mercuric nitrosyl chloride, HgCl 2 , NOC1. Sol. in H 2 without effervescence. (Sud- borough, Chem. Soc. 59. 659.) Mercuric phosphoric chloride, 3HgCl 2 , 2PC1 5 . Decomp. and dissolved by H 2 0. (Baudri- mont, A. ch. (4) 2. 45.) Mercuric potassium chloride, 2HgCl 2 , KC1 + 2H 2 0. Very easily sol. in warm H 2 0. A clear solution at 18 is filled with crystals at 15. SI. sol. in alcohol, (v. Bonsdorff, Pogg. 17. 122.) HgClo, KC1 + H 2 0. Easily sol. in H 2 ; si. sol. in alcohol, (v. Bonsdorff, Pogg. 19. 336.) HgCl 2 , 2KC1 + H 2 0. As above. Mercurous rhodium chloride. See Chlororhodite, mercurous. Mercuric rubidium chloride, HgCl 2 , RbCl. Sol. in H 2 0. HgCl 2 , 2RbCl. Sol. in H 2 and HCl + Aq. (Godeffroy, Arch. Pharm. (3) 12. 47.) + 2H 2 0. Sol. inH 2 0. (Godeffroy.) 2HgCl 2 , RbCl. Sol. in H 2 0. (Godeffroy.) Mercuric sodium chloride, HgCl 2 , NaCl + HH 2 0. Sol. in 0-33 pt. H 2 at 15. (Schindler, Repert. 36. 240.) Extremely easily sol. in alcohol. (Voit.) Sol. in 275 pts. ether. Ether dissolves the undecomposed salt out of H 2 solution. (Las- saigne, A. ch. 64. 104.) HgCl 2 , 2NaCl. Deliquescent. H 2 0. (Voit, A. 104. 354.) Very sol. in Mercuric strontium chloride, 2HgCl 2 , SrCl 2 + 2H 2 0. Easily sol. in H 2 0. (v. Bonsdorff.) Mercuric strontium chloride, basic, SrCL. HgO + 6H 2 0. Decomp. by H 2 0. (Andre, C. R. 104. 431.) Mercurous sulphur chloride. See Mercurous sulphochloride. Mercuric thallous chloride, HgCl 2 , T1C1. Easily sol. in H 2 0. (Jbrgensen, J. pr. (2) 6. 83.) Mercurous stannous chloride, Hg 2 Cl 2 , SnCl 2 . Decomp. by H 2 0. (Capitaine, J. Pharm. 25. 549.) Mercuric yttrium chloride, 3HgCl 2 , YC1 3 + 9H 2 0. Deliquescent. Very sol. in H 2 0. (Popp, A. 131. 179.) Mercuric zinc chloride. Very deliquescent, (v. Bonsdorff.) Mercuric zinc chloride ammonia, HgCl 2 , 4ZnCl 2 , 10NH 3 + 2H 2 0. Insol. in boiling H 2 0, but decomp. thereby. (Andre, C. R. 112. 995.) HCl, 2ZnCl 2 As above. (Andre.) Mercuric chloroiodide, 2HgCl 2 , HgI 2 . Sol. inH 2 0. (Liebig.) HgCl 2 , HgI 2 . SI. sol. in hot H 2 with partial decomp. More easily sol. in alcohol. (Kohler, B. 12. 1187.) Mercurous fluoride, Hg 2 F 2 . Decomp. by H 2 Avith separation of Hg 2 0. Mercuric fluoride, HgF 2 + 2H 2 0. Decomp. by cold H 2 0, with separation of HgO. Sol. in dil. HN0 3 + Aq, and HF + Aq. (Finkener, Pogg. 110. 628.) Mercurous fluoride ammonia, Hg 2 F 2 , 2NH 3 . Stable on air. (Finkener, Pogg. 110. 142.) Mercurous iodamide, Hg 2 (NH 2 )I. (Rammelsberg, Pogg. 48. 184.) Is a mixture of Hg and Hg(NH 2 )I. (Bar- foed.) Mercurous iodide, Hg 2 I 2 . Sol. in over 2375 pts. H 2 0. (Saladin, J. chim. med. 7. 530.) Sol. in Hg(N0 3 ) 2 + Aq. (Stromann, B. 20. 2815.) Sol. in KI + Aq. Easily sol. in Hg 2 (N0 3 ) 2 + Aq. SI. sol. in NH 4 OH + Aq. Sol. in hot NH 4 C1 + Aq, but less than HgI 2 . Less sol. in NH 4 N0 3 than in NH 4 C1 + Aq. (Brett. ) Partially sol. with separation of Hg and formation of HgI 2 , in cold KI + Aq, hot Nal, CaI 2 , SrI 2 , BaI 2 , MgI 2 , ZnI 2 , and NH 4 I + Aq; in warm NaCl, KC1, and NH 4 Cl + Aq, and slowly in hot HCl + Aq. (Boullay, A. ch. (2) 34. 358.) MERCUROUS OXIDE 229 Decomp. by alkali chlorides + Aq. (Miahle, A. ch. (3) 5. 177.) Not wholly insol. in alcohol, ether, or chloro- form. (Maclagan, Rep. anal. Ch. 1884. 378.) Insol. in methylene iodide. (Retgers, Z. anorg. 3. 345.) Mercuric iodide, HgI 2 . Sol. in 150 (?) pts. H 2 O. (Wiirtz.) 1 1. H 2 at 17-5 dissolves 0'0403 g. HgI 2 . (Bourgoin, A. ch. (6) 3. 429.) Sol. in about 6500 pts. H 2 0. (Hager.) According to calculation from electrical con- ductivity of HgI 2 + Aq, HgI 2 is much less sol., 1 1. H 2 dissolving only 0'5 mg. HgI 2 at 18. (Kohlrausch and Rose, Z. phys. Ch. 12. 241.) Sol. in many acids, especially in HC1, and HI + Aq. Insol. in HC 2 H 3 2 + Aq. (Berthe- mot. ) Scarcely sol. in dil. HN0 3 + Aq. Sol. in hot (NH 4 ) 2 C0 3 , (NH 4 ) 2 S0 4 , cold NH 4 C1, NH 4 N0 3 , or ammonium succinate + Aq. (Wittstein.) Sol. in HgCl 2 , Hg(N0 3 ) 2 , or Hg(C 2 H 3 2 ) 2 + Aq. Easily sol. in Na 2 S 2 3 + Aq. Easily sol. in soluble iodides + Aq. More sol. in hot than in cold Nal or KI + Aq. When cone. 1 mol. KI in hot solution dissolves 3 mols. HgI 2 , but a portion separates on cooling. BaI 2 , SrI 2 , MgI 2 , and CaI 2 act in the same way. Easily sol. in cold, more sol. in hot ZnI 2 + Aq, 2 mols. HgI 2 being dissolved to 1 mol. ZnI 2 . In NH 4 I + Aq, 3 mols. HgI 2 are dissolved to 2 mols. NH 4 I. Abundantly sol. in hot KC1, NaCl, NH 4 C1 + Aq, but separates out on cooling, and the trace remaining may be pptd. by H 2 0, 2 g. KC1 in solution dissolves 1'166 g. HgI 2 . Sol. in HgCl 2 + Aq, and very easily sol. in alcoholic solution of HgCLj. (Boullay, A. ch. (2) 34. 346.) Sol. in Sb(CH 3 ) 4 I + Aq. Very si. sol. in Na citrate + Aq. (Spiller. ) Sol. in Ca(OCl) 2 + Aq; sol. in KOH + Aq. (Melsens, A. ch. (3) 26. 222.) More sol. in alcohol than in H 2 0. 1 1. H 2 containing 10 % of 90 % alcohol dissolves 0'08 g. HgI 2 . 1 1. of alcohol of 80 B. dissolves 2 '851 g. HgI 2 , 1 1. absolute alcohol dissolves 11-86 g. HgI 2 . (Bourgoin, A. ch. (6) 3. 429.) . Sol. in 130 pts. cold, and 15 pts. hot 90 % alcohol. (Hager.) 100 pts. absolute methyl alcohol dissolve 3-16 pts. at 19-5; 100 pts. absolute ethyl alcohol dissolve 2 '09 pts. at 19 '5. (de Bruyn, Z. phys. Ch. 10. 783.) 100 pts. acetone dissolve 2 '09 pts. HgI 2 at 25. (Krug and M'Elroy, J. Anal. Ch. 6. 84.) Sol. in CS 2 , and somewhat in ether. Sol. in 77 pts. ether. (Saladin. ) Sol. in 60 pts. ether. (Hager.) Sol. in 340 pts. glycerine. (Fairley, Monit. Scient. (3) 9. 685.) 1000 pts. oil of bitter almonds dissolve 4 pts. HgI 2 at ord. temp. ; 1000 pts. olive oil, 4 pts. ; 1000 pts. poppy oil, 10 pts. ; 1000 pts. nut oil, 15 pts. ; 1000 pts. castor oil, 20 pts. ; 1000 pts. lard oil, 4 '5 pts. ; 1000 pts. vaseline, 2 '5 pts. ; 1000 pts. benzene, 4 pts. Sol. in phenole. (Mehn, Pharm. J. 3. 327 ; B. 19. 8 R.) Sol. in hot acetic anhydride. (Rosenfeld, B. 13. 1475.) Sol. in hot caoutchine. Sol. in warm caprylene. 100 pts. methylene iodide CH 2 I 2 dissolve 2-5 pts. HgI 2 at 15, 16 '6 pts. at 100, and 58 pts. at 180. (Retgers, Z. anorg. 3. 252.) Min. Coccinite. Mercuromercuric iodide, Hg 4 I 6 =Hg 2 I 2 , 2HgI 2 . Insol. in H 2 or alcohol. Partially sol. in KI + Aq, in hot Nad, and NH 4 Cl + Aq, and in hot HC1 + Aq, though very slowly. (Boullay, A. ch. (2) 34. 345. Mercury periodide, HgI 6 . Sol. in KI + Aq. Decomp. by cold H 2 or alcohol. (Jorgensen, J. pr. (2) 2. 347.) Mercuric hydrogen iodide (lodomercuric acid), HI, HgI 2 =HHgI 3 . Crystallises from HI + Aq. (Boullay.) Easily decomp. (Neumann, M. 10. 236.) Mercuric potassium iodide, HgI 2 , KI + lpI 2 0. Deliquescent (v. Bonsdorff). Permanent ; decomp. by H 2 into 2KI, HgI 2 , and HgI 2 (Boullay) ; sol. in alcohol, ether, and cone. HC 2 H 3 2 , but decomp. by other acids (Berthe- mot, J. Pharm. 14. 186). Sp. gr. of sat. solu- tion in H 2 = 2'4 to 3-1. HgI 2 , 2KI. Sol. in H 2 0. (Thomsen and Bloxam, Chem. Soc. 41. 379.) Mercuric sodium iodide, HgI 2 , Naf. Deliquescent, and decomp. by much H 2 0. (v. Bonsdorff, Pogg. 17. 266.) Sol. in alcohol and ether. HgI 2 , 2NaI. Deliquescent ; sol. in H 2 and alcohol. (Boullay.) Mercuric strontium iodide, HgI 2 , SrI 2 (?). Sol. in H 2 without decomp. (Boullay.) 2HgI 2 , SrI 2 (?). Decomp. by much H 2 into sol. HgI 2 , SrI 2 and insol. HgI 2 . (Boullay.) Mercuric zinc iodide. Deliquescent. Decomp. by H 2 0. (v. Bons- dorff.) Mercuric iodide silver chloride, HgI 2 , 2AgCl. Insol. in H 2 0. (Lea, Sill. Am. J. (3) 7. 34.) Mercury nitride, Hg 3 N 2 . Gradually decomp. by H 2 0. Decomp. by cone. HN0 3 , or HC1 + Aq. (Hirzel, J. B. 1852. 419.) Not attacked by cold, but decomp. by hot dil. H 2 S0 4 . Mercurous oxide, Hg 2 0. Insol. in H 2 0. Insol. in dil. HC1 or HN0 3 + Aq. Sol. in warm cone. HC 2 H 3 2 + Aq. Decomp. by H 2 or weak bases (Rose), (NH 4 ) 2 C0 3 + Aq (Wittstein), KN0 3 + Aq (Rose), KI + Aq (Berthemot), or cone. NH 4 Cl + Aq (Pagenstecher) into HgO and Hg, or HgCl 2 , etc. SI. decomp. by alkali chlorides + Aq with formation of HgCl 2 , which dissolves. (Miahle. ) SI. sol. in alkali" cyanides + Aq. ( Jahn. ) Insol. in KOH, and NaQH + Aq. Insol. in alcohol and ether. 230 MERCURIC OXIDE Mercuric oxide, HgO. Sol. in 20,000 to 30,000 pts. H 2 0. (Bineau, C. R. 41. 509.) Sol. in 200,000 pts. H 2 0. (Wallace, Ch. Gaz. 1858. 345.) Sol. in acids. Insol. in H 3 P0 4 or H 3 As0 4 + Aq. (Haack, A. 262. 190.) Scarcely attacked by H 2 C 2 4 + Aq. (Millon, A. ch. (3) 18. 352.) Sol. in hot NH 4 Cl + Aq, less in NH 4 N0 8 + Aq. (Brett.) Insol. in KOH, or NaOH + Aq. Decomp. by alkali chlorides + Aq into HgCl 2 , which dissolves. (Miahle, A. ch. (3) 5. 177.) Sol. in Fe(N0 3 ) 3 , and Bi(N0 3 ) 3 + Aq with pptn. of oxides. Sol. inKI + Aq. (Persoz.) Insol. in alcohol. Mercuric oxybromide, HgBr 2 , HgO. (Andre, A. ch. (6) 3. 123.)" HgBr 2 , 2HgO. (Andre.) HgBr 2 , 3 HgO. (a) Yellow. Insol. in cold, si. sol. in hot H 2 0. Easily sol. in alcohol. (Lowig.) (b) Brown. Insol. in alcohol. (Rammels- berg, Pogg. 55. 248.) HgBr 2) 4HgO. (Andre.) Mercuric oxychloride, HgO, 2HgCl 2 . Decomp. by warm H 2 or cold alcohol into 2HgO, HgCL,. (Thiimmel, Arch. Pharm. (3) 27. 589.) HgO, HgCl 2 . Less sol. than HgCl 2 , but not isolated. (Thiimmel.) Decomp. by cold H 2 0. (Andre, A. ch. (6) 3. 118.) 2HgO, HgCl 2 . (a) Insol. in H 2 ; decomp. by alkali carbonates, or chlorides + Aq into 4HgO, HgCl 2 . (b) Not decomp. by alkali chlorides, or car- bonates + Aq. (Thiimmel. ) 3HgO, HgCl 2 . Decomp. by warm H 2 0. (Thiimmel.) Not attacked by cold H 2 0. (Andre.) 4HgO, HgCl 2 . (a) Not decomp. by cold, but by much hot H 2 0. (&) Not decomp. by hot H 2 0. 5HgO, HgCl 2 . (Millon.) Does not exist. (Thiimmel.) 6HgO, HgCl 2 . Does not exist. (T.) + H 2 0. Insol. in cold H 2 0. (Roucher, A. ch. (3) 27. 353.) Does not exist. (T.) 7HgO, 4HgCl 2 . (Roucher.) Does not exist. (T.) Mercuric oxyfluoride, HgO, HgF 2 + H 2 0. Decomp. by H 2 0. Sol. in dil. HN0 3 + Aq. (Finkener.) Mercuric strontium oxychloride, HgO, SrCL + 6H 2 0. Decomp. by H 2 0. (Andre, C. R. 104. 431.) Mercuric oxyiodide, 3HgO, HgI 2 . Decomp. by H 2 0. Sol. in HI + Aq. (Weyl, Pogg. 131. 524.) Mercuric oxyselenide, 2HgSe, HgO. Easily sol. in aqua regia. (Uelsmann, A. 116. 122.) Mercury phosphide, Hg 3 P 2 . Insol. in H 2 0, HN0 3 , or HCl + Aq. Easily sol. in aqua regia. (Granger, C. R. 115. 229.) Mercury phosphochloride, P 2 Hg 3 , 3HgCl 2 + 3H 2 0. See Z>*mercuriphosphonium mercuric chloride. Mercury phosphosulphide, 2HgS, P 9 S. HgS, P 2 S. 2HgS, P 2 S 3 . (Berzelius.) 3HgS, P 2 S 3 . (Baudrimont, C. R. 55. 323.) 2HgS, P 2 S 5 . (Berzelius, A. 46. 256.) Mercuric selenide, HgSe. Sol. in cold aqua regia when crystalline. When precipitated shows the same properties towards solvents as mercuric sulphide. (Reeb, J. Pharm. (4) 9. 173.) Min. Tilmannite. Sol. only in aqua regia. Mercuric selenochloride, 2HgSe, HgCl 2 . Insol. in boiling HC1, HN0 3 , or H 2 S0 4 + Aq. Easily sol. in aqua regia and a mixture of H 2 S0 4 and cone. HN0 3 + Aq. (Uelsmann, J. B. 1860. 92.) Mercurous sulphide, Hg 2 S. Insol. in H 2 0, dil. HN0 3 , hot NH 4 OH, or (NH 4 ) 2 S + Aq. Sol. in KOH + Aq with separa- tion of Hg. (Rose.) Does not exist ; only mixtures of Hg and HgS are formed. (Barfoed, J. pr. 93. 230.) Mercuric sulphide, HgS. Insol. in H 2 0. Pptd. as a brown coloration in presence of 20,000 pts. H 2 0, and as a green coloration in presence of 40,000 pts. H 2 0. (Lassaigne.) Sol. in cold cone., and in hot dil. HI + Aq or HBr + Aq. (Kekule, A. Suppl. 2. 101.) Very si. decomp. by hot cone. HCl + Aq. Not at- tacked by hot HN0 3 + Aq. Sol. in cold aqua >1. in K 2 S + Aq, but readily only in presence of free alkali. (Brunner, Pogg. 15. 596.) In- sol. in boiling KOH + Aq. Sol. in KSH or NaSH + Aq. Very si. sol. in cold yellow (NH 4 ) 2 S + Aq. Insol. in KCN or Na 2 S 2 3 + Aq. (Fresenius.) Easily sol. in cone. Na 2 S or K 2 S + Aq, even in absence of KOH or NaOH. Insol. in (NH 4 ) 2 S + Aq. Sol. in CaS, BaS, or SrS + Aq. Insol. in NaSH or KSH + Aq. (de Koninck, Z. angew. Ch. 1891. 51.) Sol. in potassium thiocarbonate + Aq. (Rosen- bladt, Z. anal. 26. 15.) Sol. in alkali sulpho - molybdates, -tung- states, -vanadates, -arsenates, -antimonates, and -stannates. (Storch, B. 16. 2015.) 1 1. BaS 2 H 2 + Aq containing 50 g. Ba dis- solves no HgS in the cold, but 50-60 g. at 40-50. Exists in a colloidal state, sol. in H 2 0. (Winnsinger, Bull. Soc. (2) 49. 452.) Min. Cinnabar. Insol. in H 2 0, alcohol, dil. acids, or alkaline solutions. Decomp. by hot dil. HN0 3 + Aq. Not de- comp. by HCl + Aq, but easily by hot H 2 S0 4 MOLYBDENUM CHLORIDE PHOSPHORUS CHLORIDE 231 or aqua regia. Easily sol. in CuCl 2 + Aq. (Karsten.) Sol. in a mixture of Na 2 S and NaOH when present in the proportion of HgS : 2Na 2 S. Sol. in pure Na 2 S + Aq or in mixtures of Na 2 S and NaSH + Aq. Insol. in cold NaSH + Aq, but sol. on warming with evolution of H 2 S. (Becker, Sill. Am. J. (3) 33. 199.) Insol. in acetone. (Krug and M'Elroy.) Mercuric platinum sulphide. See Sulphoplatinate, mercuric. Mercuric potassium sulphide, K 2 S, 2HgS. Decomp. into its constituents by H 2 ; de- comp. by HC1, and HN0 3 + Aq, and by hot KOH, and NH 4 OH + Aq. (Schneider, Pogg. 127. 488.) K 2 S, HgS + 5H 2 0. Decomp. by H 2 or alkalies. (Weber, Pogg. 97. 76.) + H 2 0. (Ditte.) + 7H 2 0. Sol. in K 2 S + Aq. (Ditte, C. R. 98. 1271.) K 2 S, 5HgS + 5H 2 0. Easily decomp. by H 2 0. (Ditte.) Mercuric sodium sulphide, HgS, Na 2 S + 8H 2 0. Decomp. by H 2 or alkalies. Mercuric sulphobromide, 2HgS, HgBr 2 . Insol. in H 2 0. Not attacked by boiling HN0 3 orH 2 S0 4 . (Rose.) Mercuric sulphochloride, 2HgS, HgCl 2 . Insol. in H 2 0, cold or hot, dil. I or cone. HN0 3 , H 2 S0 4 , or HC1 + Aq. (Rose, Pogg. 13. 59.) Decomp. by hot aqua regia. 3HgS, HgCl 2 . Properties as the above comp. (Poleck and Goercki, B. 21. 2415.) 4HgS, HgCl 2 . As above. (P. and G.) 5HgS, HgCl 2 . As above. (P. andG.) Mercurous sulphoterachloride, Hg 2 SCl 4 . Decomp. by H 2 with separation of S, HgCl 2 going into solution. (Capitaine, J. Pharm. 25. 525.) Mercuric sulphofluoride, 2HgS, HgF 2 . Decomp. by boiling H 2 0. Not decomp. by hot HC1 or HN0 3 + Aq, but gives HF with hot H 2 S0 4 + Aq. (Rose, Pogg, 13. 66.) Mercuric sulphoiodide, HgS, HgI 2 . Ppt. (Rammelsberg, Pogg. 48. 175.) 2HgS, HgI 2 . (Palm, C. C. 1863. 121.) Mercuric telluride, HgTe. Min. Coloradoite. Sol. in boiling HN0 3 + Aq with separation of H 2 Te0 3 . Metastannic acid. See Stannic acid. Molybdatoiodic acid. See Molybdoiodic acid. Molybdenum, Mo. Not attacked by HC1, HF, or dil. H 2 S0 4 + Aq. Sol. in cone. H 2 S0 4 . Very easily sol. in aqua regia. Oxidised by HN0 3 + Aq either to molybdenum oxide, which dissolves in HN0 3 , or, if HN0 3 is in excess, to molybdic acid, which remains undissolved. Attacked by HN0 3 + Aq containing 3-70 % HN0 3 , but only slowly by 70 % acid, with formation of insol. white powder ; much more vigorously by 50 % acid, in which case a clear solution is formed. (Montemartini, Gazz. ch. it. 22. 384.) Not attacked by alkalies + Aq. (Bucholz, Scher. J. 9. 485.) Molybdenum acichloride. See Molybdenyl chloride. Molybdenum amide nitride, Mo 5 N 10 H 4 = 4MoN 2 , Mo(NH 2 ) 2 . Not attacked by HC1, or dil. HNOo + Aq. (Uhrlaub.) Molybdenum ^'bromide, MoBr 2 =Mo 3 Br 4 Br 2 . See Bromomolybdenum bromide. Molybdenum rzbromide, MoBr 3 . Not decomp. by H 2 0. Boiling cone. HC1, and cold dil. HN0 3 + Aq do not attack appre- ciably. Dil. alkalies act slowly, but decomp. with separation of Mo 2 3 on boiling. (Blom- strand, J. pr. 82. 435.) Molybdenum ^rabromide, MoBr 4 . Rapidly deliquescent, and easily sol. in H 2 0. (Blomstrand, J. pr. 82. 433.) Molybdenum bromochloride, etc. See Bromomolybdenum chloride, etc. Molybdenum ^'chloride, MoCl 2 =Mo 3 Cl 4 Cl 2 . See Chloromolybdenum chloride. Molybdenum trichloride, MoCl 3 . Insol. in H 2 or boiling cone. HCl + Aq. Easily sol., especially when heated, in HN0 3 + Aq. Sol. in H 2 S0 4 . Decomp. by NH 4 OH, KOH, orNaOH + Aq. SI. sol. in alcohol. (Liechti and Kempe.) Molybdenum trichloride, MoCl 4 . Deliquescent. Hisses with little H 2 0, but only partly sol. in more H 2 0. Only si. sol. in cone. HC1 + Aq. Sol. in H 2 S0 4 or HN0 3 + Aq. Partly sol. in alcohol and ether. (Liechti and Kempe. ) Molybdenum pentactiloiide, MoCl 5 . Very deliquescent. Sol. in H 2 with ex- treme evolution of heat. Sol. in HC1, HN0 3 , or H 2 S0 4 + Aq. Sol. in absolute alcohol or ether. (Liechti and Kempe.) Molybdenum hydroxyl chloride, Mo(OH) 2 Cl 2 . Easily sol. in H 2 0. (Debray, C. R. 46. 1101.) Molybdenum trichloride potassium chloride. Efflorescent. Decomp. with H 2 0. (Ber- zelius. ) Molybdenum ^rachloride phosphorus penta- chloride, MoCl 4 , PC1 5 . Sol. in H 2 0. MoCl 4 , 2PC1 5 . Sol. in H 2 0. (Cronander, Bull. Soc. (2) 19. 500.) 232 MOLYBDENUM PHOSPHORYL CHLORIDE Molybdenum phosphoryl chloride, MoCl 5 , POC1 3 . Decomp. by H 2 ; insol. in CS 2 ; sol. in C 6 H 6 and CHC1 3 . Molybdenum fluoride. No solid fluoride of molybdenum is known. Molybdenum potassium ^fluoride (?). Precipitate. Sol. in HC1 + Aq. Molybdenum potassium ^rafluoride (?). SI. sol. in H 2 0. (Berzelius.) Molybdenum sesgmhydroxide, Mo 2 6 H 6 . Difficultly sol. in acids. Insol. in KOH, NaOH, NH 4 OH, or K 2 C0 3 + Aq. Somewhat sol. in (NH 4 ) 2 C0 3 + Aq, but pptd. on boiling. (Berzelius.) Molybdenum hydroxide, Mo 3 8 , 5H 2 0. Easily sol. in H 2 0. Insol. in CaCl 2 , NH 4 C1, or NaCl + Aq. SI. sol. in alcohol. (Berzelius.) Molybdenum ^hydroxide, Mo0 2 , xH 2 0. Slowly and not abundantly sol. in H 2 0, from which it is precipitated by NH 4 C1 and other salts. Gelatinises by standing in closed vessels or by evaporating on the air. Sol. in the ordinary acids. Insol. in KOH, or NaOH + Aq. Sol. in alkali carbonates + Aq. Molybdenum ^raiodide (?). Completely sol. in water. (Berzelius.) Molybdenum nitride, Mo 5 N 3 , and Mo 5 N 4 . (Uhrlaub.) See Molybdenum amide. Molybdenum monoxide, MoO. Known only as hydroxide. (Blomstrand, J. pr. 77. 90.) Molybdenum sesquioxide, Mo 2 3 . Insol. in acids or alkalies. See Molybdenum sesgmhydroxide. Molybdenum oxide, Mo 5 12 . Not attacked by ammonia ; easily oxidised by HN0 3 + Aq. Not attacked by HC1 or H 2 S0 4 + Aq. (Wohler, A. 110. 275.) Formula is Mo 3 8 , according to Wohler, but Muthmann (A. 238. 108) has shown that cor- rect formula is Mo 5 12 . Not attacked by boiling alkalies, HC1, or dil. H 2 S0 4 + Aq. Sol. in cone. H 2 S0 4 , with subsequent decomp. Sol. in aqua regia, and C1 2 + Aq. (Muthmann. ) Mo 3 8 . Sol. in H 2 0. (Muthmann, A. 238. 108.) Min. Ilsemannite (?). Mo 5 7 . (v. d. Pfordten, B. 15. 1925.) Molybdenum c^oxide, Mo0 2 . Insol. in HC1 or HF + Aq. SI. sol. in cone. H 2 S0 4 . HN0 3 oxidises to Mo0 3 . Not at- tacked by KOH + Aq. (Ullik, A. 144. 227.) SI. sol. in KHC 4 H 4 6 + Aq. Molybdenum trioxide, Mo0 3 . Sol. in 500 pts. cold, and much less hot H 2 0. (Bucholz.) Sol. in 960 pts. hot H 2 0. (Hatchett.) Sol. in 570 pts. cold, and much less hot H 2 (Dumas.) Sol. in acids before ignition. Insol. in acids, but si. sol. in acid potassium tartrate + Aq after ignition. Sol. in alkalies or alkali car- bonates + Aq. Sol. inNH 4 OH + Aq. See also Molybdic acid. Min." Molybdite. Sol. in HC1 + Aq. Molybdenum oxybromide. See Molybdenyl bromide. Molybdenum oxychloride. See Molybdenyl chloride. Molybdenum oxyfluoride. See Molybdenyl fluoride. Molybdenum oxyfluoride with MF. See Fluoxymolybdate, M, and Fluoxyhypo- molybdate, M. Molybdenum phosphide, Mo 2 P 2 . Gradually sol. in hot HN0 3 + Aq. (Wohler and Rautenberg, A. 109. 374.) Molybdenum selenide, MoSe 3 . Not obtained pure. (Uelsmann, A. 116. 125.) Molybdenum efo'sulphide, MoS 2 . Insol. in H 2 0. Easily sol. in aqua regia. Easily oxidised by HN0 3 . Sol. in boiling H 2 S0 4 . SI. attacked by KOH + Aq. (Ber- zelius.) Min. Molybdenite. Sol. in HN0 3 + Aq, with separation of Mo0 3 ; sol. in aqua regia ; very si. sol. in H 2 S0 4 . Molybdenum r*sulphide, MoS 3 . Somewhat sol. in H 2 0, especially if hot, but pptd. by an acid. Difficultly sol. except when boiled with KOH + Aq. SI. sol. in solutions of alkali sulphides unless heated. (Berzelius.) Easily sol. in alkali sulphides + Aq ; slowly sol. in alkalies or alkali hydrosulphides + Aq. (Atterberg, J. B. 1873. 258.) Molybdenum ^rasulphide, MoS 4 . Not decomp. by hot H 2 or acids. SI. sol. in cold alkali sulphides + Aq, but easily by boiling. (Berzelius.) Molybdenum sulphide with MS. See Sulphomolybdate, M. Molybdenyl bromide, Mo0 2 Br 2 . Deliquescent, and sol. in H 2 with slight evolution of heat. Mo 2 3 Br 4 . Unstable in air. (Smith and Oberholtzer, Z. anorg. 4. 236.) Molydenyl chloride, Mo0 2 Cl 2 . Sol. in H 2 and alcohol. MoOCl 4 . Deliquescent. Sol. in little H 2 with violent action. More H 2 decomposes. (Piittbach, A. 201. 123.) Formula is Mo 9 8 Cl 32 , according to Blom- strand (J. pr. 71. 460). Mo 2 3 Cl 4 . (Piittbach, I.e.) Mo 2 3 Cl 6 . Deliquescent. Sol. in H 2 with MOLYBDATE, AMMONIUM SODIUM 233 very slight evolution of heat and subsequent formation of precipitate. (Blomstrand.) Sol. in acids. (Piittbach, A. 201. 129.) Mo 2 3 Cl 5 . Deliquescent, and sol. in H 2 0. (Blomstrand.) Mo 3 5 Cl 8 . Insol. in HC1 and cold H 2 S0 4 . Sol. in hot-H 2 S0 4 and HN0 3 . (Piittbach, A. 201. 123.) Mo 3 3 Cl 7 . Difficultly sol. in HC1. Easily sol. in HN0 3 , and alkalies + Aq. (Piittbach. ) Molybdenyl fluoride, Mo0 2 F 2 . Decomp. rapidly in moist air. (Schulze, J. pr. (2) 21. 442.) Mo 2 3 F 4 . Deliquescent. Easily sol. in HF + Aq, not in H 2 0. (Smith and Oberholtzer. ) Molybdenyl fluoride with MF. See Fluoxymolybdate, M, and Fluoxyhypo- molybdate, M. Molybdic acid, H 2 Mo0 4 . (Ullik, A. 144. 217.) . Nearly insol. in H 2 0. (Vivier, C. R. 106. 601.) H 4 Mo0 5 . Sol. in H 2 and acids. (Mil- lingk.) H 6 Mo0 6 (?). Known only in solution. H 2 Mo 2 7 . Easily sol. in H 2 0. (Ullik.) H 2 Mo 4 13 . Easily sol. in H 2 0. (U.) H 2 Mo 8 025. Easily sol. in H 2 0. (U.) Molybdic acid also exists in a colloidal modi- fication, sol. in H 2 0. (Graham, C. R. 59. 174. ) Molybdates. The normal molybdates of the alkali metals are easily sol. in H 2 0, while the others are si. sol. or insol. therein. The tfrwnolybdates are si. sol. in cold, but very easily sol. in hot H 2 0. The eramolybdates are easily sol. in H 2 0. Aluminum molybdate, Al 10 Mo 2 21 . Precipitate. (Gentele, J. pr. 81. 414.) Contains aluminum hydroxide and sulphate. (Struve, J. pr. 61. 441.) Aluminum ammonium molybdate, A1 2 3 , 3(NH 4 ) 2 0, 12Mo0 3 + 20H 2 0. More sol. in H 2 than aluminum potassium molybdate. (Struve, Bull. Acad. St. Petersb. 12. 147.) Aluminum potassium molybdate, 3K 2 0, A1 2 3 , 12Mo0 3 + 20H 2 0. 1 pt. of the salt is sol. in 40 '67 pts. H 2 at 17. Very difficultly sol. in acids. (Struve.) H 3 Al(Mo0 4 ) 3 , 2KHMo0 4 . Sol. in H 2 0. (Parmentier, C. R. 94. 1713.) Aluminum sodium molybdate, A1 2 3 , 3Na 2 0, 12Mo0 3 + 22H 2 0. Efflorescent. Easily sol. in H 2 0. (Gentele, J. pr. 81. 413.) Ammonium molybdate, (NH 4 ) 2 Mo0 4 . Efflorescent through loss of NH 3 ; decomp. by H 2 into acid salt. (Svanberg and Struve.) Ammonium efo'molybdate, (NH 4 ) 2 Mo 2 7 . Sol. in H 2 0. + H 2 = NH 4 HMo0 4 . Sol. in H 2 0. Sol. in 2-3 pts. H 2 0. ch. it. 18. 120.) (Brandes ; Mauro, Gazz. Ammonium tfnmolybdate, (NH 4 ) 2 Mo 3 10 + H 2 0. Very difficultly sol. in cold, easily sol. in hot H 2 0. (Berlin, J. pr. 49. 445.) Easily sol. in NH 4 OH + Aq. (Kammerer, J. pr. (2) 6. 358.) Ammonium ^ramolybdate, (NH 4 ) 2 Mo 4 I3 -f- 2H 2 0. Very difficultly sol. in cold, rather easily in hotH 2 0. (Berlin.) Ammonium pentamolylodsAe, (NH 4 ) 4 Mo 5 17 + H 2 0. (Jean, C. R. 78. 436.) Ammonium /^amolybdate, 4H 2 0. Not efflorescent. Sol. in H 2 0. (Delafon- taine, N. Arch. Sc. ph. nat. 23. 17.) According to Struve and Berlin = (NH 4 ) 4 Mo 5 17 + 3H 2 0. According to Marignac and Delffs^ (NH 4 )HMo0 4 . + 12H 2 0. More sol. than the above. (Ram- melsberg, Pogg. 127. 298.) Insol. in acetone. (Krug and M'Elroy, J. Anal. Appl. Ch. 6. 184.) Ammonium chromic molybdate, 3(NH 4 ) 2 0, Cr 2 3 , 12Mo0 3 + 20H 2 = 3(NH 4 ) 2 Mo 2 7 , Cr 2 (Mo 2 7 ) 3 + 20H 2 0. Sol. in H 2 0. (Struve, J. pr. 61. 457.) Ammonium cupric molybdate, (NH 4 ) 2 0, CuO, 5Mo0 3 + 9H 2 0. SI. sol. in cold, sol. in boiling H 2 without decomp. (Struve.) Ammonium ferric molybdate, 3(NH 4 ) 2 Mo 2 7 , Fe 2 (Mo0 4 ) 6 + 20H 2 0. Sol. inH 2 0. (Struve.) Ammonium magnesium molybdate, (NH 4 ) 2 0, MgO, 2Mo0 3 + 2H 2 = (NH 4 ) 2 Mo0 4 , MgMo0 4 + 2H 2 0. Easily sol. in H 2 0. (Ullik, A. 144. 344.) Ammonium manganic molybdate 5(NH 4 ) 2 Mo0 4 , Mn 2 (Mo 2 7 ) 3 +12H 2 0. Permanent ; sol. in 102 pts. H 2 at 17. (Struve, J. pr. 61. 460.) Ammonium mercuric molybdate. Sol. in HCl + Aq. Sol. in boiling NH 4 C1 + Aq, separating out on cooling. Sol. in hot (NH 4 ) 2 S0 3 + Aq. (Hirzel.) Ammonium molybdenum molybdate, (NH 4 ) 2 0, 2Mo0 2 , 4Mo0 3 + 9H 2 0. Easily sol. in H 2 0, but the solution soon becomes cloudy. (Rammelsberg, Pogg. 127. 291.) Ammonium sodium molybdate, 7(NH 4 ) 2 0, 2Na 2 0, 21Mo0 3 + 15H 2 (?). Easily sol. in H 2 0. (Delafontaine, J. pr. 95. 136.) 7(NH 4 ) 2 0, 3Na 2 0, 25Mo0 3 + 30H 2 (?). (De- lafontaine.) (NH 4 Na)0, 3Mo0 3 + H 2 0. Sol. in H 2 0. (Mauro, Gazz. ch. it. 11. 214.) 234 MOLYBDATE, AMMONIUM ZINC Ammonium zinc molybdate. Sol. in H 2 0. (Berzelius.) Ammonium molybdate hydrogen dioxide, 18Mo0 3 , 7(NH 4 ) 2 0, 3H 2 2 + 11H 2 0. Sol. in H 2 0. (Barwald, B. 17. 1206.) Barium molybdate, basic, 2BaO, Mo0 3 + H 2 (?). Insol. in H 2 0. Sol. in dil. HC1 + Aq or HN0 3 + Aq. (Heine, J. pr. 9. 204.) Barium molybdate, BaMo0 4 . Difficultly sol. in H 2 ; sol. in dil. HC1, and HN0 3 + Aq. (Svanberg and Struve. ) Sol. in 17,200 pts. H 2 at 23. More sol. in NH 4 N0 3 + Aq than in H 2 0. (Smith and Brad- bury, B. 24. 2930.) Barium ^nmolybdate, BaMo 3 10 + 3H 2 0. SI. sol. in H 2 0. Barium fteptamolybdate, Appreciably sol. in H 2 0. (Jorgensen.) According to Svanberg and Struve = Ba 2 Mo 5 17 + 6H 2 0. Barium wowomolybdate, BaMo 9 28 + 4H 2 0. Insol. in cold or hot H 2 or HN0 3 + Aq. Extremely slightly decomp. by H 2 S0 4 , or H 2 S0 4 + HN0 3 , or HCl + Aq. (Svanberg and Struve. ) Barium hydrogen Mramolybdate, BaH 2 (Mo 4 13 ) 2 + 17H 2 0. Insol. in cold, apparently decomp. by hot H 2 0, a small part dissolving, and the rest forming an insol. residue. (Ullik, A. 144. 336.) Barium molybdate hydrogen eKoxide, 8BaO, 19Mo0 3 , 2H 2 2 + 13H 2 0. Precipitate. (Barwald.) Bismuth molybdate, Bi 2 3 , 3Mo0 3 . Somewhat sol. in H 2 0. Sol. in 500 pts. H 2 and in the stronger acids. (Richter.) Bromomolybdenum molybdate. See under Bromomolybdenum comps. Cadmium molybdate, CdMo0 4 . Insol. in H 2 ; sol. in NH 4 OH + Aq, KCN + Aq, or acids. (Smith and Bradbury, B. 24. 2390.) Calcium molybdate, CaMo0 4 . Insol. precipitate. (Ullik.) SI. sol. in H 2 ; insol. in alcohol. (Smith and Bradbury, B. 24. 2930.) Calcium ^molybdate, CaMo 3 10 + 6H 2 0. Difficultly sol. in cold, easily in hot H 2 0. (Ullik, A. 144. 231.) Calcium ^ramolybdate, CaMo 4 13 + 9H 2 0. Easily sol. in cold H 2 0. Calcium hydrogen ^ramolybdate, CaH 2 (Mo 4 13 ) 2 + 17H 2 0. - SI. sol. in cold, easily sol. in hot H 2 with decomp. (Ullik.) Cerium molybdate, Ce 2 (Mo0 4 ) 3 . Precipitate. Insol. in H 2 ; sol. in acids. (Cossa, B. 19. 536 R. ) Chromic molybdate. Insol. in H 2 0, but sol. in acids. Sol. in NH 4 molybdate + Aq. (Berzelius.) Chromic potassium molybdate, 3K 2 0, Cr 2 3 , 12Mo0 3 + 20H 2 = 3K 2 Mo 2 7 , Cr 2 (Mo 2 7 ) 3 + 20H 2 0. Sol. in 38-51 pts. H 2 at 17. (Struve.) Chromic sodium molybdate, 3Na 2 0, Cr 2 3 , 12Mo0 3 + 21H 2 0. Efflorescent. Easily sol. in H 2 0. Cobaltous molybdate, CoMo0 4 . Decomp. by alkalies and strong acids. (Ber- zelius. ) + H 2 0. SI. sol. in pure, easily sol. in acidi- fied H 2 0. (Coloriano, Bull. Soc. (2) 50. 451.) Cobaltous ^molybdate, CoMo 3 10 + 10H 2 0. Very si. sol. in cold, but very easily sol. in hot H 2 0. (Ullik, W. A. B. 55, 2. 767.) Cobaltic potassium molybdate, Co 2 3 , 3K 2 0, 12Mo0 3 + 2H 2 0. Sol. in H 2 0. (Kurnakow, Ch. Ztg. 14. 113.) Co 2 3 , 3K 2 0, 10Mo0 3 + 10H 2 0. Sol. in H 2 0. (Kurnakow.) Cobaltous molybdate ammonia, CoMo0 4 , 2NH 3 + H 2 0. Sol. in H 2 0. (Sonnenschein, J. pr. 53. 340.) Cupric molybdate, basic, 4CuO, 3Mo0 3 + 5H 2 0. Insol. in H 2 0. (Struve, J. B. 1854. 350.) Cupric molybdate, CuMo0 4 . SI. sol. in H 2 ; decomp. by acids and alkaline solutions. Cupric ^'molybdate, CuMo 3 10 + 6 JH 2 0. Easily sol. in cold H 2 0. (Ullik, A. 144. 233.) + 9H 2 0. Very si. sol. in cold, and extra- ordinarily easily sol. in hot H 2 0. (Ullik.) Didymium molybdate, Di 2 (Mo0 4 ) 3 . Ppt. Insol. in H 2 0. (Cossa, B. 19. 536R.) Di 2 3 , 6Mo0 3 ! +3H 2 (?). Precipitate. (Smith.) Glucinum molybdate, basic, 2G10, Mo0 3 + 3H 2 0. Nearly insol. in H 2 0. (Atterberg, J. B. 1873. 258.) Glucinum cfo'molybdate, GlMo0 4 , Mo0 3 + a;H 2 0. Easily sol. in H 2 0. (Atterberg. ) Gold (Auric) molybdate (?). SI. sol. in H 2 0. Sol. in HC1, and HN0 3 + Aq. (Richter.) Iron (Ferrous) molybdate, FeMo0 4 . Insol. in H 2 0. (Schultze, A. 126. 55.) Ferric molybdate, Fe 2 3 , 4Mo0 3 + 7H 2 0. MOLYBDATE, SILVER 235 Nearly insol. in H 2 0. Slowly sol. in cold, easily in hot HC1, or HN0 3 + Aq. Dil. acids gradually dissolve out Fe 2 3 in the cold. When ignited, difficultly sol. in all solvents. (Steinacker. ) Fe 2 3 , 5Mo0 3 + 16H 2 0. Very si. sol. in H 2 0. (Struve, J. B. 1854. 346.) Ferric potassium molybdate, Fe 2 3 , 3K 2 0, 12Mo0 3 + 20H 2 = 3K 2 Mo 2 7 , Fe 2 (Mo 2 7 ) 3 + 20H 2 0. Sol. in H 2 0. (Struve.) Lanthanum molybdate, LaH 3 (Mo0 4 ) 3 = La 2 3 , Mo0 3 + 3H 2 (?). Precipitate. (Smith.) Lead molybdate, PbMo0 4 . Insol. in H 2 0. Sol. in warm HN0 3 + Aq; decomp. by H 2 S0 4 ; sol. in cone. HC1 + Aq, or KOH + Aq. Min. Wulfenite. As above. Lithium molybdate, Li 2 Mo0 4 + f H 2 0. Easily sol. in H 2 0. Magnesium molybdate, MgMo0 4 + 5H 2 0. Easily sol. in cold, but still more sol. in hot H 2 0. (Delafontaine.) Sol. in 12-15 pts. cold H 2 0. (Brandes.) + 7H 2 0. Easily sol. in hot or cold H 2 0. (Ullik.) Magnesium ^n'molybdate, MgMo 3 10 + 10H 2 0. Difficultly sol. in cold, very easily in hot H 2 0. (Ullik.) ' Magnesium Tieptamolybdate, MggMo^O^ + 20H 2 0. Quite sol. in cold, more easily in hot H 2 0. (Ullik.) Magnesium hydrogen ^ramolybdate, MgH 2 (Mo 4 13 ) 2 + 19H 2 0. Easily sol. in cold H 2 0. (Ullik, A. 144. 335.) Magnesium hydrogen octamolybdate, MgH 2 (Mo 8 25 ) 2 + 29H 2 0. Very difficultly sol. in cold, very easily sol. in hot H 2 0. (Ullik, W. A. B. 60, 2. 314.) Magnesium potassium molybdate, MgMo0 4 , K 2 Mo0 4 + 2H 2 0. Slowly sol. in cold, easily in hot H 2 0. (Ullik, A. 144. 343.) Manganous molybdate, MnMo0 4 + H 2 0. Insol. in H 2 0. SI. sol. in pure, easily sol. in acidified H 2 0. Decomp. by alkalies or alkali carbonates + Aq. (Coloriano, Bull. Soc. (2)50. 451.) Manganic potassium molybdate, Mn 2 (Mo 2 7 ) 3 , 5K 2 Mo0 4 + 12H 2 0. Sol. in 384 pts. H 2 at 17, and more readily in boiling H 2 0. (Struve, J. pr. 61. 460.) Mercurous molybdate, Hg 2 Mo 2 7 . Decomp. by H 2 0. (Struve, J. B. 1854. 350.) Sol. in 500-600 pts. H 2 ; decomp. by HN0 3 + Aq. (Hatchett.) Molybdenum molybdate. See Molybdenum oxides, Mo 3 7 , Mo 4 9 , etc. Nickel molybdate. SI. sol. in H 2 0. Nickel molybdate ammonia, NiMo0 4 , 2NH 3 + H 2 0. Decomp. by H 2 0. (Sonnenschein, J. pr. 53. 341.) Potassium molybdate, K 2 Mo0 4 . Deliquescent in moist air. Very sol. in H 2 0. Insol. in alcohol. ( Svanberg and Struve, J. pr. 44. 265.) Potassium Zrmiolybdate, K 2 Mo 3 10 + 3H 2 0. Difficultly sol. in cold, but much more easily in hot H 2 0. When ignited is absolutely insol. in H 2 0. (Svanberg and Struve.) Potassium ^ramolybdate, KgMo^g. Precipitate. Potassium pentamolybA&te, K 2 Mo 5 16 . Precipitate. (Svanberg and Struve. ) Potassium Aeptamolybdate, KeMo^O^ + 4H 2 0. Decomp. even by cold H 2 0. (Delafontaine. ) Formula is K 8 Mo 9 31 + 6H 2 0, according to Svanberg and Struve (?). Potassium hydrogen ^ramolybdate, KHMo 4 13 + 6H 2 0. Decomp. by H 2 0. (Ullik.) Potassium sodium molybdate, K 2 Mo0 4 , 2Na 2 Mo0 4 + 14H 2 0. Very easily sol. in cold, still more easily in hot H 2 0. (Delafontaine.) Potassium zinc molybdate. Sol. in H 2 0. (Berzelius.) Potassium molybdate hydrogen dioxide, 6K 2 0, 16Mo0 3 , 4H 2 2 + 13H 2 0. Sol. in H 2 0. (Barwald, C. C. 1885. 424.) Rubidium molybdate, Rb 6 Mo 7 024 + 4H 2 0. Very si. sol. in cold, much more easily sol. in hot H 2 0. (Delafontaine, N. Arch. Sc. phys. nat. 30. 233.) Samarium molybdate, Sm 2 (Mo0 4 ) 3 . Insol. in H 2 0. (Cleve.) Samarium sodium molybdate, Na 2 Sm 2 (Mo0 4 ) 4 . Insol. in H 2 0. Easily sol. in warm dil. HN0 3 + Aq. (Cleve.) Silver (Argentous) molybdate, Ag 4 0, 2Mo0 3 . Sol. in HN0 3 + Aq. KOH + Aq dissolves Mo0 3 and Ag 4 separates out. Not decomp. by dil. NH 4 OH + Aq. (Wohler and Rauten- berg, A. 114. 119.) Does not exist. (Muthmann, B. 20. 983.) Silver molybdate, Ag 2 Mo0 4 . Somewhat sol. in H 2 ; less when HN0 3 is present. (Richter. ) Very si. sol. in pure H 2 ; easily sol. in H 2 acidulated with HN0 3 . (Struve and Svanberg. ) 236 MOLYBDATE AMMONIA, SILVER Sol. in KCN or NaOH + Aq. (Smith and Bradbury. ) 2Ag 2 0, 5Mo0 3 . Somewhat sol. in H 2 0. (Svanberg and Struve, J. B. 1847-48. 412.) Silver molybdate ammonia, Ag 2 Mo0 4 , 4NH 3 . Sol. in H 2 with rapid decomposition. (Widmann, Bull. Soc. (2) 20. 64.) Silver molybdate hydrogen dioxide, 13Ag 2 0, 2H 2 2 , 32Mo0 3 . Ppt. (Barwald, B. 17. 1206.) Sodium molybdate, Na 2 Mo0 4 . Anhydrous. Easily and completely sol. in H 2 0. + 2H 2 0. Sol. inH 2 0. + 10H 2 0. Efflorescent. Sodium ^'molybdate, Na 2 Mo 2 7 . After ignition, very difficultly sol. in cold, and very slowly sol. in hot H 2 0. (Svanberg and Struve.) + H 2 0. Easily sol. in H 2 0. Sodium i(n'molybdate, Na 2 Mo 3 10 . + 4H 2 0. Easily and completely sol. in cold H 2 0. (Ullik.) + 7H 2 0. Difficultly sol. in cold H 2 0, but more easily than the corresponding K salt. 100 pts. H 2 dissolve 3 '878 pts. at 20 and 13'7 pts. at 100. (Ullik, A. 144. 244.) Sodium ^ramolybdate, Na 2 Mo 4 ]3 + 6H 2 0. Difficultly sol. in cold, easily in hot H 2 0. (Ullik.) Sodium /Kjptamolybdate, Na 6 Mo 7 024 + 22H 2 0. Efflorescent. Easily sol. in H 2 0. (Ullik, A. 144. 219.) Sodium ocfamolybdate, Na^jMogO^ + 4H 2 0. Insol. in H 2 0. (Ullik, W. A. B. 60, 2. 312.) Sodium de&amolybdate, Na 2 Mo 10 31 + 12H 2 0. Difficultly sol. in H 2 0. + 21H 2 0. Abundantly but slowly sol. in cold H 2 0. = NaHMo 5 16 + 10H 2 0. (Ullik.) Sodium hydrogen ^ramolybdate, NaHMo 4 13 + 8H 2 0. Very sol. in hot or cold H 2 0. (Ullik, A. 144. 333.) Sodium hydrogen odomolybdate, NaHMogOgg + 4H 2 0. Insol. in H 2 0. (Ullik.) Strontium molybdate, SrMo0 4 . SI. sol. in H 2 0. (Schultze.) Sol. in 9600 pts. H 2 at 17. (Smith and Bradbury, B. 24. 2930.) Thallous molybdate, Tl 2 Mo0 4 . Insol. in H 2 0. Sol. in alkalies. Insol. in alcohol. (Oettinger, J. B. 1864. 254.) SI. sol. in hot or cold H 2 0. (Ullik, J. B. 1867. 234.) 8T1 2 0, HMo0 3 . Sol. in hot H 2 0. (Hem- ming, J. B. 1868. 250.) 3T1 2 0, 8Mo0 3 . (Flemming.) Stannic molybdate. Insol. in H 2 0. Sol. in dil. or cone. HC1, or in KOH + Aq. (Berzelius.) Not decomp. by HN0 3 + Aq. Uranous molybdate. Precipitate. Sol. in HCl + Aq. Decomp. by KOH + Aq. Uranyl molybdate, 2U0 3 , 3Mo0 3 (?). InsoL in H 2 0. Sol. in strong acids and (NH 4 ) 2 G0 3 + Aq. (Berzelius.) Yttrium molybdate. Insol. in H 2 0. Sol. in HN0 3 + Aq. (Berlin.) Zinc molybdate, ZnMo0 4 . Difficultly sol. in H 2 ; easily in acids. (Schultze, A. 126. 49.) + H 2 0. SI. sol. in H 2 0. Easily sol. in dil. acids. (Coloriano, Bull. Soc. (2) 50. 451.) Zinc ^n'molybdate, ZnMo 3 10 + 10H 2 0. Very difficultly sol. in cold, but extra- ordinarily easily sol. in hot H 2 0. (Ullik, W. A. B. 55, 2. 767.) Zinc ^ramolybdate, ZnMo 4 13 + 8H 2 0. Easily sol. in cold H 2 0. (Ullik.) Zinc molybdate ammonia, ZnMo0 4 , 2NH 3 + H 2 0. (Sonnenschein, J. pr. 53. 339.) Molybdic sulphuric acid, Mo0 3 , S0 3 . Deliquescent. (Schultz-Sellack, B. 4. 14.) Mo0 3 , 3S0 3 + 2H 2 (?). Molybdoiodic acid, HI0 3 , H 2 Mo0 4 + H 2 0. Easily sol. in H 2 0. (Blomstrand, J. pr. (2) 40. 320.) Ammonium molybdoiodate, NH 4 I0 3 , H 2 Mo0 4 . Somewhat more sol. than K salt. (Blom- strand. ) Potassium molybdoiodate, KH0 2 I0 2 Mo0 3 OH, or KI0 3 , Mo0 8 + 2H 2 0. Ppt. SI. sol. in H 2 0. (Blomstrand, J. pr. (2)40. 320.) Molybdoperiodic acid. Ammonium molybdoperiodate, 5(NH 4 ) 2 0, 1 2 7 , 12Mo0 3 + 12H 2 0. Sol. in H 2 0. (Blomstrand, Sv. V. A. H. Bih. 1892. No. 6.) 4(NH 4 ) 2 0, I 2 7 , 8Mo0 3 + 7H 2 0. Very si. sol. in cold H 2 0. (Blomstrand.) Ammonium sodium , 2(NH 4 ) 2 0, Na 2 0, I 2 7 , 2Mo0 3 + 10H 2 0. Very si. sol. in H 2 0. (B.) Barium sodium , 9BaO, Na 2 0, 2I 2 7 , 24Mo0 3 + 28H 2 0. Very si. sol. in H 2 0. (B.) Calcium , 5CaO, I 2 7 , 12Mo0 3 + 26H 2 0. Extremely sol. in H 2 0. (Blomstrand.) 4CaO, I 2 7 , 12Mo0 3 + 21H 2 0. Less sol. in H 2 than above salt. Lithium , 5Li 2 0, I 2 7 , 12Mo0 3 + 30H 2 0. Not so efflorescent as Na salt. Sol. in H 2 0. (B.) + 18H 2 0. (B.) NICKEL CARBONYL 237 Manganous sodium molybdoperiodate, 2MnO, 3Na 2 0, I 2 7 , 12Mo0 3 + 32H 2 0. Sol. in H 2 0. (B.) Potassium , 5K 2 0, I 2 7 , 12Mo0 3 + 12H 2 0. Not efflorescent. (Blomstrand.) Sodium , 5Na 2 O, I 2 7 , 12Mo0 3 + 34H 2 0. Efflorescent. Very sol. in H 2 0. (Blom- strand, Sv. V. A. H. Bih. 1892. No. 6. 24.) + 26H 2 0. Not efflorescent. Very sol. in H 2 0. (Blomstrand.) -, Na 2 0, 4SrO, I 2 7 , Sodium strontium - 12Mo0 3 + 20H 2 0. Sol. in H 2 0. (B.) Molybdoselenious acid. Ammonium molybdoselenite, 4(NH 4 ) 2 0, 3Se0 2 , 10Mo0 3 + 4H 2 0. More sol. in hot than cold H 2 ; insol. in alcohol. (Pechard, A. ch. (6) 30. 403.) Ammonium potassium molybdoselenite, 2(NH 4 ) 2 0, 2^0, 3Se0 2 , 10Mo0 3 + 5H 2 0. Very sol. in H 2 ; insol. in alcohol. (Pechard.) Barium molybdoselenite, 4BaO, 3Se0 2 , 10Mo0 3 + 3H 2 0. SI. sol. in cold, easily in warm H 2 0. (Pechard.) Potassium molybdoselenite, 4K 2 0, 3Se0 2 , 10Mo0 3 + 5H 2 0. Very sol. in H 2 ; insol. in alcohol. (Pechard.) Sodium molybdoselenite, 4Na 2 0, 3SeC>2, 10Mo0 3 + 15H 2 0. Very efflorescent, and sol. in H 2 ; insol. in alcohol. (Pechard.) Molybdosulphurous acid. Ammonium molybdosulphite, 4(NH 4 ) 2 0, 3S0 2 , 10Mo0 3 + 6H 2 0. SI. sol. in cold, more easily in hot H 2 0. Insol. in alcohol. (Pechard, A. ch. (6) 30. 396.) Ammonium potassium molybdosulphite, 2(NH 4 ) 2 0, 2K 2 0, 3S0 2 , 10Mo0 3 + 9H 2 0. SI. sol. in cold H 2 0. Decomp. on warming. (Pechard.) Potassium molybdosulphite, 4^0, 3S0 2 , 10Mo0 3 + 10H 2 0. Very si. sol. in H 2 0, but decomp. on warm- ing. (Pechard.) Sodium molybdosulphite, 4Na 2 0, 3S0 2 , 10Mo0 3 + 12H 2 0. Very sol. in cold H 2 ; insol. in alcohol. (Pechard.) + 16H 2 0. Very efflorescent. (Pechard.) Molybdous acid. Magnesium molybdite, Mg 2 Mo 3 8 =2MgO, 3Mo0 2 . Not attacked by KOH, and HCl + Aq. (Muthmann, A. 238. 108.) Zinc molybdite, Zn 2 Mo 3 8 =2ZnO, 3Mo0 2 . Easily sol. in aqua regia. (Muthmann, A. 238. 108.) Molybdovanadates. See Vanadiomolybdates. Neodidymium. See under Didymium. Neodidymium oxide, Nd 2 3 . Easily sol. in acids, (v. Welsbach, M. 6. 477.) Nickel, Ni. Not attacked by H 2 0. Very slowly sol. in dilute H 3 P0 4 , H 2 S0 4 , or HC1 + Aq. (Tupputi, A. ch. 78. 133.) Very easily attacked by HN0 3 + Aq, and difficultly by hot H 2 S0 4 . When pure, is con- verted into passive condition by cone. HN0 3 . (Nickles, C. R. 38. 284.) Very si. attacked by cold acids, except HN0 3 + Aq. (Tissier, C. R. 50. 106.) Not attacked by NaOH + Aq. (Venator, Dingl. 261. 133.) Nickel antimonide, NiSb. Insol. in HCl + Aq; easily sol. in HN0 3 + Aq. (Christofle, 1863.) Min. Breithauptite. Insol. in acids ; easily sol. in aqua regia. Ni 3 Sb 2 . (Christofle.) Nickel antimonide sulphide, NiSb 2 , NiS 2 = NiSbS. Min. Nickel glance, Ullmannite. Decomp. by HN0 3 + Aq ; completely sol. in aqua regia with separation of S. Nickel arsenide, NiAs. Min. Niccolite. Sol. in cone. HN0 3 + Aq with separation of As 2 3 ; more easily sol. in aqua regia. NiAs 2 . Min. Chloanthite, Eammelsbergite. Sol. in HN0 3 + Aq. Nickel arsenide sulphide, NiAs 2 , NiS 2 . Min. Gcrsdorffite. Partly sol. in HN0 3 + Aq with separation of S and As 2 3 ; not attacked by KOH + Aq. Nickel bromide, NiBr 2 . Deliquescent. Slowly sol. in H 2 0. + 3H 2 0. Deliquescent. Very sol. in H 2 0, HCl + Aq, NH 4 OH + Aq, alcohol, and ether. (Berthemot, A. ch. 44. 389.) Nickel stannic bromide. See Bromostannate, nickel. Nickel bromide ammonia, NiBr 2 , 6NH 3 . Sol. in little H 2 0, but decomp. by more. (Rammelsberg, Pogg. 55. 243.) Nickel carbonyl, Ni(CO) 4 . Insol. in H 2 ; not attacked by dil. acids or alkalies or cone. HCl + Aq. Easily sol. in cone. HN0 3 + Aq and in aqua regia. Sol. in alcohol, benzene, and chloroform. (Mond, Langer, and Quincke, Chem. Soc. 57. 749.) 238 NICKEL CHLORIDE Nickel chloride, NiCl 2 . Anhydrous. Not immediately sol. in H 2 0, but gradually dissolves on boiling or by addi- tion of HCl + Aq. Deliquesces on air, and is then easily sol. in H 2 0. Sol. in NH 4 OH + Aq. Sol. in alcohol. Sol. in hot HCl + Aq only slowly. Sp. gr. of NiCl 2 + Aq containing : 5 10 15 20 25%NiCl 2 . 1-0493 1-0995 1-1578 1-2245 1-3000 (B. Franz, J. pr. (2) 5. 285.) Sp. gr. of NiCl 2 + Aq containing, in 1000 grms. H 2 0, g. NiCl 2 + 7H 2 at 23 '1 : 128 g. ( = imol.) 256 384 512 1-057 1-107 1-149 1-187 640 768 896 1024 1-220 1-249 1-276 1'301 Containing g. NiCl 2 (anhydrous) : 65 g. ( = imol.) 130 195 260 325 390 1-061 1-119 1-176 1-230 1-284 1-335 (Gerlach, Z. anal. 28. 468.) Anhydrous NiCl 2 is insol. in acetone. (Krug and M'Elroy, J. Anal. Ch. 6. 184.) + H 2 0. (Baubigny.) + 2H 2 0. (Sabatier, Bull. Soc. (3) 1. 88.) + 6H 2 0. Deliquescent in moist, efflorescent in dry air ; sol. in H 2 with evolution of heat. Sol. in 1 "5 to 2 pts. H 2 0. Easily sol. in alcohol. (Tupputi.) + 7H 2 0. (Gerlach, I.e.) Nickel rubidium chloride, NiCl 2 , 2RbCl. Easily sol. in H 2 and HC1 + Aq. (Godef- froy, B. 8. 9.) Nickel stannous chloride, NiCl 2 , SnCl 2 + 6H 2 0. Sol. in H 2 0. (Jorgensen.) Nickel stannic chloride. See Chlorostannate, nickel. Nickel chloride ammonia, NiCl 2 , 2NH 3 . Sol. in H 2 0, decomp. on boiling ; insol. in alcohol. NiCl 2 , 6NH 3 . Sol. in cold H 2 "without decomp. Insol. in alcohol. Very si. sol. in cone. NH 4 OH + Aq. Nickel fluoride, NiF 2 . Sol. in about 5000 pts. H 2 ; insol. in alcohol and ether. Not attacked by HC1, HN0 3 , or H 2 S0 4 even when hot. (Poulenc, C. R. 114. 1426.) + 2H 2 0. Decomp. by pure H 2 0. Sol. in H 2 acidulated with HF. (Berzelius.) + 3H 2 0. (Clarke, Sill. Am. J. (3) 13. 291.) Nickel potassium fluoride, NiF 2 , KF. + H 2 0. Sol. in H 2 0. (Wagner, B. 19. 896.) NiF 2 , 2KF. SI. sol. in H 2 0. Scarcely sol. in methyl or ethyl alcohol or benzene. (Poulenc, C. R. 114. 747.) Nickel potassium zirconium fluoride. See Fluozirconate, nickel potassium. Nickel manganic fluoride. See Fluomanganate, nickel. Nickel sodium fluoride, NiF 2 , NaF + H 2 0. Sol. in H 2 0. (Wagner, B. 19. 896.) Nickel stannic fluoride. See Fluostannate, nickel. Nickel titanium fluoride. See Fluotitanate, nickel. Nickel tungstyl fluoride. See Fluoxytungstate, nickel. Nickel vanadium fluoride. See Fluovanadate, nickel. Nickel zirconium fluoride. See Fluozirconate, nickel. Nickelous hydroxide, 4Ni0 2 H 2 , H 2 0. Very si. sol. in H 2 0. Sol. in acids. Insol. in KOH or NaOH + Aq. Somewhat difficultly sol. in(NH 4 ) 2 C0 3 or NH 4 OH + Aq, but easily sol. in presence of NH 4 salts. Sol in NH 4 salts + Aq. Sol. in KCN + Aq. (Rodgers, 1834.) Sol. in boiling NH 4 Cl + Aq. Insol. in methyl or amyl amine. (Wurtz.) Not pptd. in presence of Na citrate. (Spiller.) Not pptd. in presence of a large number of non-volatile organic substances, particularly H 2 C 4 H 4 6 . (Rose.) Nickelic hydroxide, Ni 2 3 , 2H 2 (?). (Wernicke, Pogg. 141. 122.) Ni 2 3 , 3H 2 (?). Sol. in acids as nickelous salt. Not attacked by boiling KOH or NaOH + Aq. Slowly sol. in HC 2 H 3 2 + Aq. Sol. in NH 4 OH, and NH 4 salts + Aq. (Odling. ) Nickel iodide, NiI 2 . Deliquescent and sol. in H 2 0. (Erdmann, J. pr. 7. 254.) + 6H 2 0. Deliquescent. Easily sol. in H 2 0. (Erdmann.) Nickel iodide ammonia, NiI 2 , 4NH 3 . (Rammelsberg, Pogg. 48. 119.) NiI 2 , 6NH 3 . Decomp. by H 2 0. Sol. in warm dil. NH 4 OH + Aq. Very si. sol. in cone. NH 4 OH + Aq. (Erdmann.) Nickelous oxide, NiO. Insol. in H 2 0. Sol. in cone, acids, except when crystalline, when it is scarcely attacked by acids. (Ebelmen, C. R. 33. 256.) Very si. sol. in boiling NH 4 Cl + Aq. (De- Very slowly sol. in NH 4 OH + Aq. Insol. in KOH, and NaOH + Aq. Sol. in min. acids, especially HCl + Aq, when warmed ; insol. in HC 2 H 3 2 , NH 4 C1, and NH 4 SCN + Aq. Insol. in cone. NaOH + Aq. (Zimmerman, A. 232. 324.) 1 1. solution containing 41 8 '6 g. sugar and 34-3 g. CaO dissolves 0'29 g. NiO. (Boden- bender, J. B. 1865. 600.) Min. Bunsenite. Nickelic oxide, Ni 2 3 . Sol. in HN0 3 , H 2 S0 4 , or HCl + Aq with decomp., also in NH 4 OH and (NH 4 ) 2 C0 3 + Aq. (Winkelblech, A. 13. 259.) NITRATOPLATINAMINE NITRATE 239 Nickelonickelic oxide, 6NiO, Ni 2 3 + H 2 0. (Schonbein, J. pr. 93. 35.) Ni 3 4 . Sol. in acids. (Baubigny, C. R. 87. 1082.) Nickel peroxide, Ni 3 5 (?). (Bayley, C. N. 39. 81.) Correct composition is Ni 2 3 . (Carnot, C. R. 108. 610.) Ni 4 7 (?). (Wicke, Zeit. Ch. 1865. 303.) Nickel oxychloride. SI. sol. in H 2 0. (Berzelius.) NiCl 2 , 8NiO + 13H 2 0. (Raoult, C. R. 69. 826.) Nickel oxyiodide, NiI 2 , 9MO + 15H 2 0. Insol. in H 2 0. Sol. in HN0 3 + Aq or acetic acid. Insol. in NH 4 OH + Aq. Alcohol dis- solves out NiI 2 . (Erdmann.) Nickel phosphide, Ni 2 P. Sol. in HN0 3 + Aq and aqua regia ; insol. in HCl + Aq. (Struve, J. pr. 79. 321.) Ni 3 P 2 . (Rose, Pogg. 24. 332.) Ni 5 P 2 . (Gm. K. 6th ed. 3. 542.) Nickel selenide, NiSe. Insol. in H 2 0, dil. or cone. HCl + Aq; slowly sol. in HN0 3 + Aq ; easily in aqua regia. (Little, A. 112. 211.) Nickel semi'sulphide, Ni 2 S; Sol. in HN0 3 + Aq, with residue of S. Difficultly sol. in cone. HC1 + Aq ; insol. in dil. HCl + Aq. (Arfvedson, Pogg. 1. 65; Gautier, C. R. 108. 1111.) Nickel Mowosulphide, NiS. Anhydrous. Insol. in H 2 0, HC1, or H 2 S0 4 + Aq. SoL in HN0 3 + Aq or aqua regia. Min. Millerite. + a?H 2 0. Insol. in H 2 0, but decomp. by H 2 in contact with the air (Clermont and Guiot, C. R. 84. 714), or by boiling with H 2 0. (Geitner, A. 139. 354.) Very si. sol. in dil. HCl + Aq, and still less in HC 2 H 3 2 + Aq. (Fresenius.) More sol. in HN0 3 + Aq, and easily in aqua regia. Somewhat sol. inNH 4 OH + Aq or solutions of alkali sulphides. Insol. in NH 4 SH + Aq. (Fresenius.) Sol. while yet moist in H 2 S0 3 + Aq. (Ber- thier.) When recently pptd. sol. in KCN + Aq. (Haidlen.) Pptd. in presence of non-volatile organic substances as tartaric acid, etc. (Rose.) Sol. in potassium thiocarbonate + Aq. (Rosen- bladt, Z. anal. 26. 15.) Exists in a colloidal form in a very dil. solution. (Winnsinger, Bull. Soc. (2) 49. 452.) Nickel sulphide, Ni 3 S 4 . Ni 4 S 8 . Min. Polydymite. Insol. in HC1 + Aq. Sol. in HN0 3 + Aq with separation of S. Ni 5 S 7 . Min. Beyrichite. Sol. in HCl + Aq. Nickel bisulphide, NiS 2 . (Fellenberg, Pogg. 60. 75.) Nickel potassium sulphide, 3NiS, KaS. Insol. in H 2 0. (Schneider, J. pr. (2) 9. 209.) Nickel telluride, Ni 2 Te 3 . Min. Melonite. Sol. in HN0 3 NiTe. (Fabre, C. R. 105. 277.) Niobium, Nb. For niobium and its compounds, see colum- bium, Cb, and the corresponding compounds. Nitratochloroplatinamine comps. See Chloronitratoplatinamine comps. Nitratocobalt octamine comps. See Nitratooctamine cobaltic comps. Nitratooctamine cobaltic carbonate, (N0 3 ) 2 Co 2 (NH 3 ) 8 (C0 3 ) 2 + H 2 0. Less sol. than other octamine carbonates. (Vortmann and Blasberg, B. 22. 2650.) - chloride, (N0 3 ) 2 Co 2 (NH 3 ) 8 Cl 4 + 4H 2 0. (Vortmann and Blasberg, B. 22. 2652.) - iodide, (N0 3 ) 2 Co 2 (NH 3 ) 8 I 4 + 2H 2 0. (Vortmann and Blasberg. ) - nitrate. See Octamine cobaltic nitrate. - sulphate, (N0 3 ) 2 Co 2 (NH 3 ) 8 (S0 4 ) 2 + 2H 2 0. + 4H 2 0. (Vortmann and Blasberg, B. 22. 2652.) Nitratophosphatoplatincfo'amine phos- phate, N0 3 Pt(N 2 H 6 ) 2 + H 2 0. \ / P0 4 Very si. sol. in H 2 0. (Cleve.) Nitratoplatinamine nitrate, (N0 3 ) 2 Pt(NH 3 N0 3 ) 2 . SI. sol. in cold, more easily in hot H 2 ; easily sol. in dil. HN0 3 + Aq. (Cleve.) - nitrite, (N0 3 ) 2 Pt(NH 3 N0 2 ) 2 . Easily sol. in H 2 0. (Cleve.) Nitratoplatin^'amine chloride, (N0 3 ) 2 Pt(N 2 H 6 Cl) 2 + H 2 0. Moderately sol. in cold, very easily in hot H 2 0. - chloroplatinate, (N0 3 ) 2 Pt(N 2 H 6 Cl) 2 , PtCl 4 + 2H 2 0. Ppt. - chromate, (N0 3 ) 2 Pt(N 2 H 6 ) 2 Cr0 4 . Nearly insol. in H 2 0. (Cleve.) - ^chromate, (N0 3 ) 2 Pt(N 2 H 6 ) 2 Cr 2 7 . SI. sol. in H 2 0. - nitrate, (N0 3 ) 2 Pt(N 2 H 6 N0 3 ) 2 . Sol. in H 2 0. Insol. in HN0 3 Nitrato^'platin^'amine nitrate, (N0 3 ) 2 Pt 2 (N 2 H 6 ) 4 (N0 3 ) 4 . Sol. in H 2 with decomp. 240 NITRATOPURPUREOCOBALTIC BROMIDE Nitratopurpureocobaltic bromide, Co(N0 3 )(NH 3 ) 6 Br 2 . ^ Resembles the chloride in its properties. (Jorgensen, J. pr. (2) 23. 227.) carbonate, Co(N0 3 XNH 3 ) 5 (C0 3 ) + H 2 0. Less sol. in H 2 than other purpureocar- bonates. (Vortmann and Blasberg, B. 22. 2648.) - chloride, Co(N0 3 )(NH 3 ) 5 Cl 2 . SI. sol. in cold H 2 0, but more than nitrate ; more easily sol. in hot H 2 0, but is converted into roseo salt. Insol. in HC1 + Aq or alcohol. (Jorgensen, J. pr. (2) 23. 227.) mercuric chloride, Co(N0 3 )(NH 3 ) 5 Cl 2 , HgCl 2 . Not wholly insol. in H 2 0. (Jorgensen.) - chloroplatinate, Co(N0 3 )(NH 3 ) 5 Cl 2 ,PtCl 4 . Ppt. Nearly insol. in cold H 2 0. (Jorgen- sen.) - chromate, Co(N0 3 )(NH 3 ) 5 Cr0 4 . Nearly insol. in H 2 0. (Jorgensen. ) efo'chromate. SI. sol. in H 2 0, but more easily than the neutral salt. (Jorgensen.) - dithionate, Co(N0 3 )(NH 3 ) 5 S 2 6 . Very si. sol. in cold, more easily in hot H 2 0. (Jorgensen. ) - nitrate, Co(N0 3 )(NH 3 ) 5 (N0 3 ) 2 . Sol. in 273 pts. H 2 at 16. Much more sol. in hot H 2 containing HN0 3 . (Jorgensen, J. pr. (2) 23. 227.) cobaltic nitrite, 3Co(N0 3 )(NH 3 ) 5 , 2Co(N0 2 ) 6 + 2H 2 0. Very si. sol. in H 2 0. (Jorgensen, Z. anorg. 5. 176.) diamine cobaltic nitrite, Co(N0 3 )(NH 3 ) 5 , (N0 2 ) 4 Co(NH 3 ) 2 . Ppt. (Jorgensen. ) - oxalate, Co(N0 3 )(NH 3 ) 5 C 2 4 . Ppt. - sulphate, Co(N0 3 )(NH 3 ) 5 S0 4 + H 2 0. Rather difficultly sol. in cold H 2 0. (Jor- gensen. ) Nitratopurpureorhodium chloride, (N0 3 )Rh(NH 3 ) 5 Cl 2 . SI. sol. in cold H 2 0, but more easily than the nitrate. (Jorgensen, J. pr. (2) 34. 394.) - dithionate, (N0 3 )Rh(NH 3 ) 5 S 2 6 + H 2 0. Nearly insol. in cold H 2 0. (Jorgensen.) - nitrate, (N0 3 )Rh(NH 3 ) 5 (N0 3 ) 2 . Very si. sol. in cold H 2 0. Insol. in alcohol. (Jorgensen. ) Nitric acid, HN0 3 . Miscible with H 2 0. When HN0 3 + Aq is distilled at 760 mm. pressure, an acid contain- ing 68 % HN0 3 is formed, which boils at 120 '5 under 735 mm. pressure. By distilling at 150 mm. pressure the acid contains 67 '6 % HN0 3 ; at 70 mm. (b.-pt. 65-70) the acid contains 66 '7 % HN0 3 . The percentage of HN0 3 in the liquid obtained by passing dry air into HN0 3 + Aq containing 64-68 % HN0 3 varies with the temp. ; the higher the temp, the greater the percentage of HN0 3 . (Roscoe, Chem. Soc. 13. 150.) HNO 3 +Aq of 1-51 sp. gr. contains 67 % N 2 O 5 . 1-42 54 1-35 ,, 44-4 1-315 38-6 (Dalton.) HNO 3 + Aq of 1-54 sp. gr. contains 88'82 % NoO 5 . 1-522 86-17 ,; 1*4 ,, 44 (Mitscherlich.) HNO 3 +Aq of 1-298 sp. gr. contains 36 '75 % (Kirwan.) HNO 3 +Aq of 1-298 sp. gr contains 48 %. (Davy.) HNO 3 +Aq of 1-298 sp. gr. contains 32-33 %. (Ber- tliollet.) For lire's table of sp. gr. of HN0 3 + Aq, see Watt's Diet., 1st ed. Sp. gr. of HN0 3 + Aq at and 15. HNO 3 N 2 S Sp. gr. atO Sp. gr. at 15 100-00 8571 1-559 1-530 99-84 85-57 1-559 1-530 9972 85-47 1-558 1-530 99-52 85-30 1-557 1-529 97-89 83-90 1-551 1-523 97-00 83-14 1-548 1-520 96-00 82-28 1-544 1-516 95-27 81-66 1-542 1-514 94-00 80-57 1-537 1-509 93-01 79-72 1-533 1-506 92-00 78-85 1-529 1-503 91-00 ' 78-00 1-526 ! 1-499 90-00 77-15 1-522 1-495 89-56 76-77 1-521 1-494 88-00 75-43 1-514 1-488 87-45 74-95 1-513 1-486 86-17 73-86 1-507 1-482 85-00 ' 72-86 1-503 1-478 84-00 72-00 1-499 1-474 83-00 71-14 1-495 1-470 82-00 70-28 1-492 1-467 80-96 69-39 1-488 1-463 80-00 68-57 1-484 1-460 79-00 67-71 1-481 1-456 77-66 66-56 1-476 1-451 76-00 65-14 1-469 1-445 75-00 64-28 1-465 1-442 74-01 63-44 1-462 1-438 73-00 62-57 1-457 1-435 72-39 62-05 1-455 1-432 71-24 61-06 1-450 1-429 69-96 60-00 1-444 1-423 69-20 59-31 1-441 1-419 68-00 i 58-29 1-435 1-414 67-00 57-43 1-430 1-410 66-00 56-57 1-425 1-405 65-07 5577 1-420 1-400 64-00 54-84 1-415 1-395 63-59 54-50 1-413 1-393 62-00 53-14 1-404 1-386 NITRIC ACID 241 Sp. gr. of HN0 3 , etc. Continued. % HN0 3 N&. Sp. gr. at Sp. gr. at 15 61-21 52-46 1-400 1-381 60-00 51-43 1-393 1-374 59-59 51-08 1-391 1-372 58-88 50-47 1-387 1-368 58-00 49-71 1-382 1 -363 57-00 48-86 1-376 1-358 56-10 48-08 1-371 1-353 55-00 47-14 1-365 1-346 54-00 46-29 1-359 1-341 53-81 46-12 1-358 1-339 53-00 45-40 1-353 1-335 52-33 44-85 1-349 1-331 50-99 43-70 1-341 1-323 49-97 42-83 1-334 1-317 49-00 42-00 1-328 1-312 48-00 41-14 1-321 1-307 47-18 40-44 1-315 1-398 46-64 39-97 1-312 1-295 45-00 38-57 1-300 1-284 43-53 37-31 1-291 1-274 42-00 36-00 1-280 1-264 41-00 35-14 1-274 1-257 40-00 34-28 1-267 1-251 39-00 33-43 1-260 1-244 37-95 32-53 1-253 1-237 36-00 30-86 1-240 1-225 35-00 29-99 1-234 1-218 33 "86 29-02 1-226 1-211 32-00 27-43 1-214 1-198 31-00 26-57 1-207 1-192 30-00 25-71 1-200 1-185 29-00 24-85 1-194 1-179 28-00 24-00 1-187 1-172 27-00 23-14 1-180 1-166 2571 22-04 1-171 1-157 23-00 19-71 1-153 1-138 20-00 17-14 1-132 1-120 17-47 14-97 1-115 1-105 15-00 12-85 1-099 1-089 13 -00 11-14 1-085 1-077 11-41 977 1-075 1-067 7-72 6-62 1-050 1-045 4-00 3-42 1-026 1-022 2-00 1-71 1-013 1-010 o-oo o-oo 1-000 0-999 (Kolb, A. ch. (4) 10. 140.) Sp. gr. of HN0 3 + Aq at 15. a = % ; b = sp. gr. if % is N 2 5 ; c = sp. gr. if % is HN0 3 . a b c a b c 1 1-007 1-006 11 1-076 1-064 2 1-014 1-012 12 1-083 1-070 3 1-021 1-018 13 1-091 1-077 4 1-027 1-024 14 1-098 1-083 5 1-034 1-029 15 1-104 1-089 6 1-040 1-035 16 1-112 1-095 7 1-047 1-040 17 1-120 1-100 8 1-053 1-045 18 1-126 1-106 9 1-061 1-051 19 1-134 1-112 10 1-069 1-057 20 1-141 1-120 Sp. gr. of HN0 3 + Aqat 15, etc. Continued. a b c a b c 21 1-149 1-126 61 1-427 1-380 22 1-156 1-132 62 1-432 1-386 23 1-165 1-138 63 1 -436 1-390 24 1-172 1-145 64 1-440 1-395 25 1-180 1-151 65 1-445 1-400 26 1-187 1-159 66 1-449 1-405 27 1-195 1-166 67 1-452 1-410 28 1-202 1-172 68 1-457 1-414 29 1-211 1-179 69 1-461 1-419 30 1-218 1-185 70 1-466 1-422 31 1-225 1-192 71 1-470 1-427 32 1-232 1-198 72 1-474 1-430 33 1-240 1-204 73 1-478 1-435 34 1-248 1-210 74 1-482 1-439 35 1-255 1-218 75 1-486 1-442 36 1-264 1-225 76 1-490 1-445 37 1-271 1-230 77 1-494 1-449 38 1-280 1-236 78 1-499 1-452 39 1-286 1-244 79 1-503 1-456 40 1-295 1-251 80 1-507 1-460 41 1-304 1-257 81 1-511 1-463 42 1-312 1-264 82 1-515 1-467 43 1-318 1-270 83 1-519 1-470 44 1-325 1-276 84 1 -523 1-474 45 1-332 1-284 85 1-527 1-478 46 1-340 1-290 86 1-530 1-481 47 1-346 1-298 87 1-484 48 1-352 1-304 88 1-488 49 1-360 1-312 89 1-491 50 1-366 1-316 90 1-495 51 1-372 1-323 91 1-499 52 1-378 1-329 92 1-503 53 1-385 1 -335 93 1-506 54 1-390 1-341 94 1-509 55 1-396 1-346 95 1-512 56 1-401 1-356 96 1-516 57 1-407 1-358 97 1-520 58 1-413 1-363 98 1 -523 59 1-418 1-369 99 1-526 60 1-423 1-374 100 1-530 (Kolb, calculated by Gerlach, Z. anal. 8. 292.) Sp. gr. HN0 3 at 17 '5. N 2 5 Sp. gr. N20 5 Sp. gr. N?0 5 Sp. gr. 10 15 20 30 1-068 1-104 1-140 1-217 40 ! 50 60 1 -293 1-361 1-417 70 80 85 1 -465 1-500 1-514 (Hager, Adjumenta varia, Leipzig, 1876.) Sp. gr. of HN0 3 + Aq at 17 '5. N?0 5 Sp. gr. % N 2 5 Sp. gr. % N 2 5 Sp. gr. 5 1-032 9 1-060 13 1-089 6 1-038 10 1-068 14 1-096 7 1-045 11 1-075 15 1-104 8 1-053 12 1-082 16 1-111 242 NITRIC ACID Sp. gr. of HN0 3 , etc. Continued. % N 2 5 Sp. gr. % N 2 5 Sp. gr. N 2 5 Sp. gr. 17 1-118 40 1-294 63 1-434 18 1-125 41 1-301 64 1-438 19 1-132 42 1-308 65 1-442 20 1-140 43 1-315 66 1-447 21 1-147 44 1-323 67 1-451 22 1-155 45 1-330 68 1-456 23 1-163 46 1-338 69 1-460 24 1-170 47 1-345 70 1-465 25 1-178 48 1-352 71 1-469 26 1-186 49 1-358 72 1-472 27 1-194 50 1-364 73 1-476 28 1-201 51 1-371 74 1-480 29 1-209 52 1-377 75 1-484 30 1-217 53 1-383 76 1-488 31 1-224 54 1-389 77 1-492 32 1-232 55 1-394 78 1-496 33 1-239 56 1-400 79 1-500 34 1-247 57 1-406 80 1-504 35 1-255 58 1-412 81 1-508 36 1-263 59 1-416 82 1-512 37 1-271 60 1-421 83 1-516 38 1-279 61 1-426 84 1-519 39 1-287 62 1-430 85 1-523 (Hager, Comm. 1883.) Sp. gr. of HN0 3 + Aq at 15. %HN0 3 Sp. gr. % HN0 3 Sp. gr. 1 1-00581 26 1-15869 2 1-01136 27 1-16660 3 1-01713 28 1-17371 4 1-02286 29 1-18073 5 1-02851 30 1-18830 6 1-03439 31 1-19552 7 1-04019 32 1-20276 8 1-04592 33 1-20635 9 1-05234 34 1-21300 10 1-05746 35 1-22013 11 1-06330 36 1-22675 12 1-06951 37 23347 13 1-07581 38 23980 14 1-08126 39 24510 15 1-08843 40 25235 16 1-09500 41 25850 17 1-10102 42 26475 18 1-10725 43 27125 19 1-11321 44 27785 20 1-12024 45 28450 21 1-12714 46 29110 22 1-13349 47 29780 23 1-13890 48 30443 24 1-14460 49 31101 25 1-15164 50 31722 (Squires, Pharm. Era, Jan. 1891.) Most accurate table. Sp. gr. of HN0 3 + Aq at 15 ; H 2 at 4 Sp.gr. % N 2 5 %HN0 3 Kg. HNO 3 in 1 1. i-ooo 0-08 o-io o-ooi 1-005 0-85 i-oo o-oio 1-010 1-62 1-90 0-019 1-015 2-39 2-80 0-028 1-020 3-17 370 0-038 1-025 3-94 4-60 0-047 1-030 4-71 5-50 0-057 1-035 5-47 6-38 0-066 1-040 6-22 7-26 0-075 1-045 6-97 8-13 0-085 1-050 7-71 8-99 0-094 1-055 8-43 9-84 0-104 1-060 9-15 10-68 0-113 1-065 9-87 11-51 0-123 1-070 10-57 12-33 0-132 1-075 11-27 13-15 0-141 1-080 11-96 13-95 0-151 1-085 12-64 14-74 0-160 1-090 13-31 15-53 0-169 1-095 13-99 16-32 0-179 1-100 14-67 17*11 0-188 1-105 15-34 17-89 0-198 1-110 16-00 18-67 0-207 1-115 16-67 19-45 0-217 1-120 17-34 20-23 0-227 1-125 18-00 21-00 0-236 1-130 18-66 21-77 0-246 1-135 19-32 22-54 0'256 1-140 19-98 23-31 0-266 1-145 20-64 24-08 0-276 1-150 21-29 24-84 0-286 1-155 21-94 25-60 0-296 1-160 22-60 26-36 0-306 1-165 23-25 27-12 0-316 1-170 23-90 27-88 0-326 1-175 24-54 28-63 0-336 1-180 25-18 29-38 0-347 1-185 25-83 30-13 0-357 1-190 26-47 30-88 0-367 1-195 27-10 31-62 0-378 1-200 27-74 32-36 0-388 1-205 28-36 33-09 0-399 1-210 28-99 33-82 0-409 1-215 29-61 34-55 0-420 1-220 30-24 35-28 0-430 1-225 30-88 36-03 0-441 1-230 31-53 3678 0-452 1-235 32-17 37-53 0-463 1-240 32-82 38-29 0-475 1-245 33-47 39-05 0-486 1-250 34-13 39-82 0-498 1-255 3478 40-58 0-509 1-260 35-44 41-34 0-521 1-265 36-09 42-10 0-533 1-270 36-75 42-87 0-544 1-275 37-41 43-64 0-556 1-280 38-07 44-41 0-568 1-285 3873 45-18 0-581 1-290 39-39 45-95 0-593 1-295 40-05 4672 0-605 NITRATE, AMMONIUM 243 > Sp. gr. of HN0 3 , etc. Continued. Dinitiic acid, H 2 N 4 O n = 2N 2 5 , H 2 0. FUIIIGS on iir ^MiscifolG witli H wit Sp. gr. %N 2 5 %HN0 3 Kg.HN0 3 in 11. evolution of much heat. (Weber, J. pr. (2) 6 342.) 1-300 4071 47-49 0-617 Nitrates. 1-305 41-37 48-26 0-630 All nitrates are sol. in H 2 except a fe^ 1-310 42-06 49-07 0-643 basic compounds. Most nitrates are insol. i 1-315 42-76 49-89 0-656 cone. HN0 3 + Aq ; many are sol. in alcohol 1-320 43-47 50-71 0-669 some are sol. in glycerine. 1-325 1-330 44-17 44-89 51-53 52-37 0-683 0-697 Aluminum nitrate, basic, 2A1 2 3 , 3N 2 5 H 3H 2 0. 1-335 1-340 45-62 46-35 53-22 54-07 0710 0725 Sol. in H 2 0. (Ordway, Sill. Am. J. (2) 26 203.) 1-345 1-350 1-355 1-360 1-365 1-370 1-375 47-08 47-82 48-57 49-35 50-13 50-91 51-69 54-93 5579 56-66 57-57 58-48 59-39 60-30 0-739 0753 0768 0-783 0798 0-814 0-829 Basic aluminum nitrates containing 2 mols or less of A1 2 3 to one of N 2 5 may be obtaine sol. in H 2 0, but the compounds containin more than 2 mols. A1 2 3 are insol. in H 2 C (Ordway, I.e.) 2A1 2 3 , N 2 5 + 10H 2 0. (Ditte, C. R. 11C 782.) 1-380 52-52 61-27 0-846 1-385 53-35 62-24 0-862 Aluminum nitrate, A1(N0 3 ) 3 + 9H 2 0. 1-390 54-20 63-23 0-879 Deliquescent. Very sol. in H 2 0, HN0 3 H 1-395 55-07 64-25 0-896 Aq, or alcohol. (Berzelius.) 1-400 55-97 65-30 0-914 Melts in its crystal H 2 at 72*7. (Ordway 1-405 56-92 66-40 0-933 Sol. in 1 pt. strong alcohol. (Wenzel.) 1-410 1-415 1-420 57-86 58-83 59-83 67-50 68-63 69-80 0-952 0-971 0-991 Ammonium nitrate, NH 4 N0 3 . Deliquescent. 1-425 1-430 60-84 61-86 70-98 72-17 1-011 1-032 Sol. in 0-502 pt. H 2 O at 18. (Karsten.) Sol. in 0-54 pt. H 2 O at 10. (Harris, C. R. 24. 816.) Much more sol. in hot than cold H 2 O. (Harris.) 1-435 62-91 73-39 1-053 Sol. in 2 pts. H 2 O at 15-5 and 0'5 pt. boiling H 2 ( 1-440 1-445 64-01 65-13 74-68 75-98 1-075 1-098 (Fourcroy.) Sol. in 1 pt. cold, and 0'5 pt. boiling H 2 O. (Fou frnv ^ 1-450 66-24 77-28 1-121 uruy* j Sol. in 0-5 pt. H 2 at 18. (Berzelius.) 1-455 1-460 67-38 68-56 78-60 79-98 1-144 1-168 Sol. in 2 pts. H 2 O at 18. (Abl.) Decornp. by boiling H 2 O. 1-465 69-79 n'(\R 81-42 1-193 Solubility in 100 pts. H 2 at t. 1-475 1-480 UO 72-39 73-76 82*90 84-45 86-05 1-246 1-274 t Pts. NH 4 N0 3 t Pts. NH 4 N0 3 t Pts. NH 4 NO 3 1-485 1-490 1-495 1-500 1-501 1-502 1-503 1-504 1-505 1-506 1-507 1-508 1-509 1-510 1-511 1-512 1-513 1-514 1-515 1-516 1-517 1-518 1-519 1-520 75-18 76-80 78-57 80-65 81-09 81-50 81-91 82-29 82-63 82-94 83-26 83-58 83-87 84-09 84-28 84-46 84-63 84-78 84-92 85-04 85-15 85-26 85-35 85-44 87-70 89-60 91-60 94-09 94-60 95-08 95-55 96-00 96*39 9676 97-13 97-50 97-84 98-10 98-32 98-53 98-73 98-90 99-07 99-21 99-34 99-46 99-57 99-67 1-302 1-335 1-369 1-411 1-420 1-428 1-436 1-444 1-451 1-457 1-464 1-470 1-476 1-481 1-486 1-490 1-494 1-497 1-501 1-504 1-507 1-510 1-512 1-515 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 97 101 105 109 113 117 121 125 130 134 139 143 148 152 157 161 166 170 175 180 185 190 195 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 205 210 216 221 226 232 238 244 250 256 262 268 274 280 286 292 298 304 311 317 324 331 337 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 351 358 365 372 379 387 395 402 410 418 425 433 441 449 457 465 473 481 490 499 508 517 526 Sp. gr. Ba/NCMi Sp. gr. 5'00 52*11 17.07 Jja '\- L ^ ^3/2 -Dd^-PI v^ 3 ^2 14-95 8-18 73*75 Jl / V t 25*01 1 1*009 6 1-050 17-62 8-54 86*21 29*57 2 1-017 7 1-060 37-87 13-67 101*65 35*18 3 1-025 8 1-069 49-22 17-07 4 1-034 9 1-078 (Gay-Lussac, A. ch. (2) 11. 313.) 5 1*042 10 1"087 Solubility in 100 pts. H 2 at t. (Calculated by Gerlach, Z. anal. 8. 286, from t Pts. Ba(N0 3 > 2 t Pts Ba(N0 3 > 2 Kremers, Fogg. 95. 110.) 5-0 52 17*7 Sp. gr. of Ba(N0 3 ) 2 + Aq at 18". 1 2 5*1 5-3 53 54 18*4 % Ba(N0 3 >2 Sp. gr 3 5-5 55 18*7 4*2 1*0340 4 5-7 56 19*0 8*4 1*0712 5 6-0 57 19*3 6 7 6-2 6-4 58 59 19*6 20*0 (Kohlrausch, W. Ann. 1879. 1.) 8 9 6-6 6-8 60 61 20*3 20*6 Sp. gr. of Ba(N0 3 ) 2 + Aq at 17*5. 10 7-0 62 20-9 7 7 11 7-3 63 21*0 21 *6 Ba(N0 3 ) 2 S P- & r - Ba(N0 3 > 2 Sp. gr. 13 77 65 21*9 1 1*0085 6 1-0510 14 7*9 66 22-3 2 1*0170 7 1-0600 15 8-1 67 22-6 3 1*0255 8 1-0690 16 8-3 68 22-9 4 1*0340 Sat. sol. 1-0690 17 8-5 69 23-3 5 1*0425 18 8"8 70 23 '6 19 9-0 71 23-9 (Gerlach, Z. anal. 27. 283.) 20 9'2 72 24*3 21 22 9-5 9-7 73 74 24*9 25-0 Saturated BaN0 3 + Aq contains : 36-18 pts. Ba(N0 3 ) 2 to 100 pts. H 2 0, and 23 9-9 75 25-4 boils at 101*1. (Griffiths.) 24 25 10-1 10-4 76 77 25-7 26-0 35*2 pts. Ba(N0 3 ) 2 to 100 pts. H 2 0, boils at 101*65. (Gay-Lussac.) and 26 27 10-6 10-8 78 79 26-4 26-7 34*8 pts. Ba(N0 3 ) 2 to 100 pts. H 2 0, boils at 101 -9. (Mulder.) and 28 11-1 80 27*0 34-8 pts. Ba(N0 3 ) 2 to 100 pts. H 2 0, and 29 11 '8 81 27*4 boils at 102-5. (Kremers.) 30 11-6 82 27*7 Sat. Ba(N0 3 ) 2 + Aq forms a crust at 101 '1 ; 31 11*8 83 28*1 highest temp, observed was 101" 5. (Gerlach, 32 12-1 84 28*4 Z. anal. 26. 427.) qq 10-Q QK 28*8 oo 34 35 iZi O 12-6 12-8 OJ 86 87 29-1 29-5 B.-pt. of Ba(N0 3 ) 2 + Aq containing pts. Ba(N0 3 ) 2 to 100 pts. H 2 0. 36 13 "1 88 29'8 37 13*4 89 30*2 B.-pt. Pts. Ba(NO 3 > 2 38 13*7 90 30*6 o 39 14'0 91 30-9 100*5 12*5 40 14-2 92 31*3 101*0 26*0 41 14-5 93 31*7 101*1 27'5 42 43 14-8 15-1 94 95 32*0 32*4 (Gerlach, Z. anal. 26. 440.) 44 15-4 96 32-7 Insol. in cone. HN0 3 + Aq, and much less 45 46 15-6 15-9 97 98 33'1 33'5 sol. in dil. HN0 3 + Aq or HCl + Aq than in H 2 0. 47 48 16-2 16-5 99 100 33-8 34-2 Less sol. in dil. HCoHo0 9 + Aq HCl + Aq. than in dil. 49 50 16-8 17-1 101 101-9 34-5 34-8 Solubility in NH 4 C1 + Aq is the same as in H 2 0. (M 51 17-4 ... ... Less sol. inNH 4 OH + Aq, NH 4 C 2 H 3 2 + Aq, or NH 4 N0 3 + Aq than in H 2 0. (Pearson, Zeit. ulder, calculated from his own and othei experiments, Scheik. Yerhandel. 1864. 50.) Ch. (2) 5. 662. NITRATE, BISMUTH 247 Ba,(N0 3 ) 2 is sol. in about : 13-33 pts. H 2 at ord. temp., and 4 '67 pts. at 100. 14-67 pts. H 4 OH + Aq (cone.) at ord. temp., and 5'67 pts. at 100. 16-50 pts. NH 4 OH + Aq (1 vol. cone. +3 vols. H 2 0) at ord. temp. 28-00 pts. HCl + Aq (1 vol. cone. HC1 + 4 vols. H 2 0) at ord. temp. 29-00 pts. HC 2 H 3 2 + Aq (1 vol. commercial HC 2 H 3 2 + 1 vol. H 2 0) at ord. temp. 13-67 pts. NH 4 Cl + Aq (1 pt. NH 4 C1 + 10 pts. H 2 0) at ord. temp., and 4 '67 pts. at 100. 24-00 pts. NH 4 N0 3 + Aq (1 pt. NH 4 N0 3 + 10 pts. H 2 0) at ord. temp. 17-33 pts. NH 4 C 2 H 3 2 + Aq (dil. NH 4 OH H 4 C 2 H 3 2 neutralised by dil. HC2H 3 2 ) at ord. temp., and 4-33 pts. at 100. 14-67 pts. NagCHgOa+Aq (dil. HC 2 H 3 2 neutralised by Na 2 C0 3 and dil. with 4 vols. H 2 0) at ord. temp., and 5 '33 pts. at 100. 17-33 pts. Cu(C 2 H 3 2 ) 2 + Aq (see Stolba, Z. anal. 2. 390) at ord. temp., and 6 '00 pts. at 100. 18 "67 pts. grape sugar (1 pt. grape sugar + 10 pts. H 2 0) at ord. temp. (Pearson, Zeit. Ch. 1869. $62.) Sol. in sat. NH 4 Cl + Aq without pptn. at first, but finally NH 4 C1 is pptd. until a certain state of equilibrium is reached. (Karsten.) Very si. sol. in sat. Pb(N0 3 ) 2 + Aq. (Kar- sten.) 100 pts. sat. Ba(N0 3 ) 2 + Pb(N0 3 ) 2 + Aq con- tain 33-95 pts. of the two salts at 19-20. (v. Hauer, J. pr. 98. 137.) 100 pts. sat. Ba(N0 3 ) 2 + Sr(N0 3 ) 2 + Aq con- tain 45'96 pts. of the two salts at 19-20. (v. Hauer, I.e.) 100 pts. sat. Ba(N0 3 ) 2 + Pb(N0 3 ) 2 + Sr(N0 3 ) 2 + Aq contain 45 "90 pts. of the three salts at 19-20. (v. Hauer, I.e.) Ba(N0 3 ) 2 + KN0 3 . 100 pts. H 2 dissolve : (Mulder) (1) KN0 3 .... Ba(N0 3 ) 2 . . . 29 '7 28-8 5-4 8-9 34-2 (Karsten) (Kopp) (2) (3) (4) (5) KN0 8 Ba(N0 3 ) 2 . . 13-31 6-91 29-03 i-oo 5-7 33-1 3-5 36-3 20-22 30-03 38-8 39-8 1. Sat. Ba(N0 3 ) 2 + Aq sat. with KN0 3 at 18 '5. 2. To sat. KN0 3 + Aq, Ba(N0 3 ) 2 + Aq was added. 3. To sat. Ba(N0 8 ) 2 +Aq, KN0 3 was added. 4. Both salts in excess +Aq at 21 '5. 5. Both salts in excess +Aq at 23. Ba(N0 3 ) 2 + NaN0 3 . Ba(N0 3 ) 2 is sol. in sat. NaN0 3 + Aq without separation. 100 pts. H 2 dissolve : NaN0 3 . . . Ba(N0 3 ) 2 . . (Karsten) At 18-75 86-6 88-14 3-77 8'9 NaN0 3 . . . Ba(N0 3 ) 2 . . (Kopp) At 20-2 877 88-6 3-6 9-2 Insol. in absolute alcohol. Solubility in dilute alcohol increases with the temp. (Gerardin, A. ch. (4) 5. 145.) Completely insol. in boiling amyl alcohol. (Browning, Sill. Am. J. 143. 314.) Insol. in acetone. (Krug and M'Elroy, J. Anal. Ch. 6. 184.) Barium mercurous nitrate, 2BaO, 2Hg 2 0, 3N 2 5 . Decomp. by H 2 0. Sol. in hot dil. HN0 3 + Aq and hot Hg 2 (N0 3 ) 2 + Aq, from which it crystallises on cooling. (Stadeler, A. 87. 129.) Barium nitrate wetotungstate, 2Ba(N0 3 ) 2 , BaW 4 13 + 6H 2 0. Efflorescent. Sol. in warm H 2 0. (Pechard, A. ch. (6) 22. 198.) Bismuth nitrate, basic, Bi 2 3 , N 2 5 + 2H 2 0. Sol. in a large amount of H 2 0. Sol. in HN0 3 + Aq. (Heintz.) Sol. in 135 pts. H 2 at 90-93. (Ruge, J. B. 1862. 163.) + |H 2 0. Sol. in much H 2 0. (Yvon, C. R. 84. 1161.) + H 2 0. (Ruge.) 2Bi 2 3 , N 2 5 . Not acted upon by H 2 0. (Ditte, C. R. 84. 1317.) + H 2 0. (Yvon.) Bi 2 3 , 2N 2 5 + H 2 0. (Ruge.) HBi 2 3 , 5N a 5 +16H 2 0. Not decomp. by H 2 0. (Yvon.)" Bismuth nitrate, Bi(N0 3 ) 3 + 10H 2 0. Permanent. Decomp. by little H 2 with separation of a basic salt. This decomposition is prevented by slight excess of HN0 3 , and then the salt is completely sol. in a large amount of H 2 0. (Rose. ) Sol. in dil. HN0 3 + Aq. Not decomp. by H 2 in presence of HC 2 H 3 2 or -^ pt. NH 4 N0 3 . (Lowe, J. pr. 74. 341.) Melts in crystal H 2 with decomp. at 74. (Ord way.) Insol. in acetone. (Krug and M'Elroy.) + HH 2 0. (Ditte.) + 5|H 2 0. (Yvon, C. R. 84. 1161.) 248 NITRATE, CADMIUM, BASIC Cadmium nitrate, basic, Cd(OH)N0 3 + H 2 0. Decomp. by H 2 0, or ordinary alcohol. (Klinger, B. 16. 997.) 12CdO, N 2 5 + 11H 2 0. SI. sol. in H 2 ; more sol. in H 2 than basic sulphate. (Haber- mann, 5. 432.) 5CdO, 2N 2 5 + 8H 2 0. Decomp. by cold H 2 0. (Rousseau and Tite, C. R. 114. 1184.) Cadmium nitrate, Cd(N0 3 ) 2 + 4H 2 0. Deliquescent, and very sol. in H 2 0. Sp. gr. of aqueous solution containing : 5 10 15 20 25%Cd(N0 3 ) 2 , 1-0528 1-0978 1'1516 1'2134 1'2842 30 35 40 45 50 % Cd(N0 3 ) 2 . 1-3566 1-4372 1-5372 1*6474 17608 (Franz, J. pr. (2) 5. 274.) Sat. Cd(N0 3 ) 2 + Aq boils at 132. Almost entirely insol. in cone. HN0 3 + Aq. (Wurtz.) M.-pt. of Cd(N0 3 ) 2 + 4H 2 = 59-5. (Ord- way ; Tilden, Chem. Soc. 45. 409. ) Sol. in alcohol. Cadmium nitrate ammonia, Cd(N0 3 ) 2 , 6NH 3 + H 2 0. (Andre, C. R. 104. 987.) Caesium nitrate, CsN0 3 . 100 pts. H 2 dissolve 10 '58 pts. CsN0 3 at 3 "2. SI. sol. in absolute alcohol. (Bunsen.) Csesium silver nitrate, CsNO :3 , AgN0 3 . Sol. in H 2 0. (Russell and Maskelyne, Roy. Soc. Proc. 26. 357.) Calcium nitrate, basic, Ca(N0 3 ) 2 , Ca0 2 H 2 + 2|H 2 0. Decomp. by H 2 0. (Werner, A. ch. (6) 27. 570.) + H 2 0. As above. (Rousseau and Tite, C. R. 114. 1184.) Calcium nitrate, Ca(N0 3 ) 2 . Deliquescent. Very sol. in H 2 with evolu- tion of much heat. 100 pts. H 2 at dissolve 84 '2 pts. Ca(N0 3 ) 2 . (Poggiale.) 100 pts. H 2 at dissolve 93 '1 pts. Ca(NO,) 2 . (Mulder.) + 4H 2 0. Sol. in 0-25 pt. cold H 2 O with reduction of temp. Sol. in all proportions in boiling H 2 O. (Berzelius.) Sol. in 2 pts. cold, and 0-66b7 pt. boiling H 2 O. (Fourcroy.) Sat. Ca(NO-}>>+Aq at 12'5 contains 33'8 %. (Hassen- fratz, A. ch. 28. 29.) Sp. gr. of Ca(N0 3 ) 2 + Aq at 17 '5. Ca(N0 3 ) 2 Sp. gr. Ca(N0 3 )o Sp. gr. 1 1-009 35 1-328 5 1-045 40 1-385 10 1-086 45 1-447 15 1-129 50 1-515 20 1-174 55 1-588 25 1-222 60 1-666 30 1-272 (Franz, J. pr. (2) 5. 274.) Sp. gr. of Ca(N0 at 17 '5. Ca(N0 3 ) 2 Sp. gr. Ca(N0 3 > 2 ^Sp. gr. 10 1-076 40 1-368 20 1-163 50 1 -483 30 1-261 60 1-605 (Gerlach, Z. anal. 27. 283.) Sp. gr. of Ca(N0 3 ) 2 + Aq at 18. % Ca(N0 3 ) 2 Sp. gr. Ca(N0 3 ) 2 Sp. gr. 6-25 1-0487 37-5 1-3546 12-5 1-1016 50-0 1-5102 25-0 1-2198 (Kohlrausch, W. Ann. 1879. 1.) Sp. gr. of Ca(N0 3 ) 2 + Aq at 24 '65. a = no. of g. x \ mol. \vt. dissolved in 1000 g. H 2 0; b = sp. gr. if a is Ca(N0 3 ) 2 , 4H 2 0, \ mol. wt. =118; c = sp. gr. if a is Ca(N0 3 ) 2 , \ mol. wt. = 82. a b c a b c 1 1-056 1-059 6 1-243 1-286 2 1-104 1-112 7 1-270 1-323 3 1-145 1-160 8 1-294 4 1-181 1-205 9 1-316 5 1-213 1-246 10 1-336 (Favre and Valson, C.R. 79. 968.) Saturated Ca(N0 3 ) 2 + Aq containing 351 "2 pts. Ca(N0 3 ) 2 to 100 pts. H 2 boils at 151 ; (Legrand) 152 (Kremers.) Forms a crust at 141, and contains 333 "5 pts. Ca(N0 3 ) 2 to 100 pts. H 2 ; highest temp, observed, 151. (Gerlach, Z. anal. 26. 427.) B.-pt. of Ca(N0 3 ) 2 + Aq containing pts. Ca(N0 3 ) 2 to 100 pts. H 2 0. G = accord- ing to Gerlach (Z. anal. 26. 447) ; L = according to Legrand (A. ch. (2) 59. 436). B.-pt. G L B.-pt. G L 101 10 15 118 157 136-1 102 20 25-3 119 163-5 142-1 103 30 34-4 120 170 148-1 104 40 42-6 121 176 105 50 50-4 122 182-5 160-1 106 60 57-8 123 189 107 70 64-9 124 195-5 172-2 108 80 71-8 125 202 109 89 78-6 126 208-5 184-5 110 98 85-3 127 215-5 ... 111 106-5 91-9 128 222-5 197-0 112 114-5 98-4 129 230 113 122-5 104-8 130 237-5 209-5 114 130 111-2 131 245 115 137-5 117-5 132 253 222-2 116 144 123*8 133 261-5 117 150-5 130 134 270 235-1 NITRATE, COBALTOUS DIDYMIUM 249 B.-pt. of Ca(N0 3 ) 2 , etc. Continued. B.-pt. G L ! B.-pt. G L 135 278-5 ... 144 364-5 302-6 136 287 248-1 ' 145 375 137 296 > 146 386 317-4 138 305 261-3 147 397-5 139 314-5 _ , 148 409 333-2 140 324 274-7 , 149 420-5 141 333-5 150 432-5 351-2 142 343-5 288-4 151 444-5 362-2 143 354 151-97 455-68 Sat. Ca(N0 3 ) 2 + Aq boils at 132. (Ordway, Sill. Am. J. (2) 27. 14.) Ca(N0 3 ) 2 + 4H 2 melts in its crystal H 2 at 44. (Tilden, Chem. Soc. 45. 409.) Cone. HN0 3 precipitates Ca(N0 3 ) 2 from its aqueous solution. (Mitscherlich, Pogg. 18. 159.) Sol. in glacial HC 2 H 3 2 . (Persoz.) Sol. in sat. KN0 3 + Aq with elevation of temp, and pptn. of a portion of KN0 3 . (Four- croy and Vauquelin, A. ch. 11. 135.) Sol. in 0'8 pt. alcohol (Macquer) ; 1 pt. boiling alcohol. (Bergmann.) Dry Ca(N0 3 ) 2 is sol. in 7 pts. alcohol at 15 and 1 pt. boiling alcohol. (Bergmann.) Sol. in 1-87 pts. ether - alcohol (1:1). (Fresenius, Z. anal. 32. 191.) Ether ppts. Ca(N0 3 ) 2 from its alcoholic solu- tion. Easily sol. in boiling amyl alcohol. (Browning, Sill. Am. J. 143. 53.) Min. Nitrocalcite. Cerous nitrate, Ce(N0 3 ) 3 + 6H 2 0. Not very deliquescent. (Jolin.) Very sol. in H 2 ; sol. in 2 pts. alcohol. (Vauquelin.) Ceric nitrate, Ce(N0 3 ) 4 . Deliquescent. Decomp. by hot H 2 0. (Ber- zelius.) Sol. in alcohol. (Dumas.) Basic compounds containing 12 mols. or less 30 2 to 1 mol. are sol. in H 2 0. (Ordway.) Cerous cobaltous nitrate, 2Ce(N0 3 ) 3 , 3Co(N0 3 ) 2 + 24H 2 0. Deliquescent. Easily forms supersaturated solutions. (Lange, J. pr. 82. 129.) Cerous magnesium nitrate, 2Ce(N0 3 ) 3 , 3Mg(N0 3 ) 2 + 24H 2 0. Slightly deliquescent. Easily sol. in H 2 or alcohol, and easily forms supersaturated solutions. (Holzmann, J. pr. 75. 330.) Cerous manganous nitrate, 2Ce(N0 3 ) 3 , 3Mn(N0 3 ) 2 + 24H 2 0. Sol. in H 2 0. (Lange, J. pr. 82. 129.) Cerous nickel nitrate, 2Ce(N0 3 ) 3 , 3Ni(N0 3 ) 2 + 24H 2 0. Easily sol. in H 2 0. (Holzmann, J. pr. 75. 321.) Cerous potassium nitrate, Ce(N0 3 ) 3 , 2KNOo + 2H 2 0. Sol. in H 2 0. (Lange, J. pr. 82. 136. ) Ceric potassium nitrate, Ce(N0 3 ) 4 , 2KN0 3 + HH 2 0. Efflorescent. (Holzmann, J. pr. 75. 324.) Ceric sodium nitrate. Deliquescent. Decomp. by recrystallisation. (Holzmann. ) Cerous zinc nitrate, 2Ce(N0 3 ) 3 , 3Zn(N0 3 ) 2 + 24H 2 0. Sol. in H 2 0. Easily forms supersat. solu- tions. (Lange, J. pr. 82. 129.) Ceroceric zinc nitrate (?), Ce 3 4 , 2ZnO, 6N 2 5 + 18H 2 (?). Easily sol. in H 2 0. (Holzmann, J. pr. 75. 321.) ' Chromic nitrate, basic, Cr 2 0(N0 3 ) 4 . Sol. in H 2 0. (Lowel.) + 12H 2 0. Sol. in H 2 0. (Ordway.) Chromic nitrate, Cr(N0 3 ) 3 + 9H 2 0. Very sol. in H 2 and alcohol. (Lowel.) Melts in its crystal H 2 at 36 '5. Sat. Cr(N0 3 ) 3 + Aq boils at 125 '6. (Ordway. ) Chromium nitrate chloride, CrCl 2 (N0 3 ). Sol. in H 2 and alcohol. (Schiff, A. 124. 177.) Cr(N0 3 ) 2 Cl. (Schiff.) Chromium nitrate sulphate, Cr 2 (S0 4 )(N0 3 ) 4 . Hygroscopic. Completely sol. in H 2 0. Cr 2 (S0 4 ) 2 (N0 3 ) 2 . Sol. in H 2 0. (Schiff, A. 124. 174.) Cobaltous nitrate, basic, 6CoO, N 2 5 + 5H 2 0. Ppt. Gradually sol. in H 2 with deposition of CoO. (Winkelblech, A. 13. 155.) Sol. in cold HC1, and HN0 3 + Aq. Decomp. by hot KOH + Aq. 4CoO, N 2 5 + 6H 2 0. Ppt. (Habermann, M. 5. 432.) Cobaltous nitrate, Co(N0 3 ) 2 + 6H 2 0. Deliquescent in moist air. Very sol. in H 2 0. Sp. gr. of aqueous solution at 17 '5 containing : 5 10 15 20 % Co(N0 3 ) 2 , 1-0462 1-0906 1-1378 1'1936 25 30 35 40 % Co(N0 3 ) 2 . 1-2538 1-3190 1-3896 1'4662 Sp. gr. of sat. solution = 1-5382. (Franz, J. pr. (2) 5. 274.) Melts in its crystal H 2 at 56 (Ordway) ; 38 (Tilden). Easily sol. in alcohol. Sol. in 1 pt. strong alcohol at 12-5. (Wenzel.) Easily sol. in acetone. (Krug and M'Elroy, J. Anal. Ch. 6. 184.) Cobaltous didymium nitrate, 3Co(N0 3 ) 2 , 2Di(N0 3 ) 3 + 48H 2 0. Very deliquescent. (Frerichs and Smith, A. 191. 331.) 250 NITRATE AMMONIA, COBALTOUS Cobaltous nitrate ammonia, Co(N0 3 ) 2 , 6NH,+ 2H 2 0. Decomp. by H 2 with separation of basic nitrate. (Fremy. ) Sol. inNH 4 OH + Aq. (Hess.) Cupric nitrate, basic, 4CuO, N 2 5 + 3H 2 0. Insol. in H 2 0. Easily sol. in acids. (Graham, A. 29. 13.) + 3^H 2 0. Insol. in H 2 and decomp. by heat. (Casselman, Z. anal. 4. 24.) Cupric nitrate, Cu(N0 3 ) 2 + 3H 2 0. Deliquescent. Very easily sol. in H 2 or alcohol ; also in moderately cone. HN0 3 + Aq, but is precipitated from cone, aqueous solution by HNO-5 + Aq of 1'522 sp. gr. (Mitscherlich, Pogg. 18. 159.) Melts in crystal H 2 at 114 '5. (Ordway ; Tilden, Chem. Soc. 45. 409.) Sol. in 1 pt. strong alcohol at 12 '5. (Wenzel.) + 6H 2 0. Efflorescent. Melts in crystal H 2 at 38. (Ordway.) Sp. gr. of Cu(N0 3 ) 2 + Aq at 17 '5 containing : 5 10 15 % anhydrous salt, 1-0452 1-0942 1-1442 20 25 30 % anhydrous salt, 1-2036 1-2644 1'3298 35 40 45 % anhydrous salt. 1-3974 1-4724 1-5576 (B. Franz, J. pr. (2) 5. 274.) Sat. Cu(N0 3 ) 2 + Aq boils at about 173. (Griffiths.) Cupric nitrate ammonia (Cuprammonium nitrate), Cu(N0 3 ) 2 , 4NH 3 . Easily sol. in H 2 0, from which it can be recrystallised. Sol. in alcohol. (Berzelius.) Didymium nitrate, basic, 4Di 2 3 , 3N 2 5 + 15H 2 0. Insol. in H 2 0. (Marignac.) 2Di 2 3 , 3N 2 5 . (Becquerel, A. ch. (6) 14. 257.) Didymium nitrate, Di(N0 3 ) 3 . Anhydrous. Very sol. in H 2 0. As sol. in 96 % alcohol as in H 2 0, and the solution is not precipitated by much ether. Insol. in pure ether. (Marignac, A. ch. (3) 36. 161.) + 6H 2 0. Very deliquescent. (Cleve, Bull. Soc. (2) 43. 361.) Didymium nickel nitrate, 2Di(N0 3 ) 3 , 3Ni(N0 3 ) 2 + 36H 2 0. Very deliquescent. (Frerichs and Smith, A. 191. 355.) Didymium zinc nitrate, 2Di(N0 3 ) 3 , 3Zn(N0 3 ) 2 + 69H 2 0. Very deliquescent. (F. and S.) Didymium nitrate oxalate, Di 2 H 2 (N0 3 ) 2 (C 2 4 ) 3 Insol. in HN0 3 + Aq. (Cleve, Bull. Soc. (2) 43. 259.) Erbium nitrate, basic, 2Er 2 3 , 3N 2 5 + 9H 2 0. Decomp. by H 2 0. SI. sol. in HN0 3 . (Bahr and Bunsen.) 3Er 2 3 , 4N 2 5 + 20H 2 0. (Cleve, Bull. Soc. (2) 21. 344.) Erbium nitrate, Er(N0 3 ) 3 + 6H 2 0. Easily sol. in H 2 0, alcohol, and ether. (Hoglund.) Gallium nitrate, Ga(N0 3 ) 3 . Very deliquescent, and sol. in H 2 0. (Dupre. ) Glucinum nitrate, basic, 2G10, N 2 5 + 3H 2 (?). Sol. in H 2 0. 3G10, N 2 5 . Sol. in H 2 0. (Ordway, Sill. Am. J. (2) 26. 205.) Compounds more basic than this are insol. in H 2 0. (Ordway. ) Glucinum nitrate, G1(N0 3 ) 2 + 3H 2 0. Very deliquescent. (Joy, Sill. Am. J. (2) 36. 90.) Easily sol. in H 2 and alcohol. (Vauquelin.) Melts in its crystal H 2 at 29 '4. (Ordway.) Sat. G1(N0 3 ) 2 + Aq boils at 140 '5. (Ordway. ) Gold (Auric) nitrate, basic, Au 2 s , N 2 5 + f H 2 0, or Auryl nitrate, ( AuO)N0 3 + iH 2 0. (Schottlander, A. 217. 364.) 2Au 2 3 , N 2 5 + 2H 2 = Au 4 5 (N0 3 ) 2 + 2H 2 0. Slowly sol. in HN0 3 + Aq at 100. (Schott- lander, A. 217. 356.) Auric hydrogen nitrate, Au(N0 3 ) 3 , HN0 3 + 3H 2 0. Decomp. by H 2 0. Sol. in HN0 3 + Aq. (Schottlander, A. 217. 356.) Auric potassium nitrate, KAu(N0 3 ) 4 . Easily sol. in H 2 0. HK 2 Au(N0 3 ) 6 . Decomp. immediately by H 2 0. 2KAu(NO,) 4 , K 2 HAu(N0 3 ) 6 . (Schottlander, J. B. 1884. 453.) Auric rubidium nitrate, RbAu(N0 3 ) 4 . Easily sol. in H 2 0. HRb 2 Au(N0 3 ) 6 . As above. (Schottlander.) Auric thallium nitrate, TlAu(N0 3 ) 4 . Easily sol. in H 2 0. 6Au 2 3 , 2T1 2 3 , 3N 2 5 + 15H 2 0. Ppt. (Schottlander. ) Indium nitrate, In(N0 3 ) 3 + 4JH 2 0. Very deliquescent. Easily sol. in H 2 and absolute alcohol. ( Winkler. ) Iron (Ferrous) nitrate, Fe(N0 3 ) 2 + 6H 2 0. 100 pts. of crystals dissolve in 50 pts. H 2 at 0, sp. gr. of solution = 1-44 ; 40 '8 pts. H 2 at 15, sp. gr. of solution = 1-48 ; 33 '3 pts. H 2 at 25, sp. gr. of solution =1 "50. (Ordway, Sill. Am. J. (2) 40. 325.) Fe(N0 3 ) 2 + Aq decomposes on heating; less rapidly when dil., more readily in presence of excess of acid. (Ordway. ) NITRATE, LEAD 251 Ferric nitrate, basic, 36Fe 2 3 , N 2 5 + 48H 2 (?). Easily sol. in H 2 0. SI. sol. in dil. HN0 3 + Aq ; very si. sol. in alcohol. (Hausmann, A. 89. 111.) 8Fe 2 3 , N 2 5 + 12H 2 0. SI. sol. in H 2 ; very si. sol. in cold or warm dil. HN0 3 + Aq ; more easily sol. in hot HCl + Aq. (Haus- mann. ) + ceH 2 0. Sol. in H 2 ; completely pptd. from aqueous solution by Nad, NH 4 C1, KI, KC10 3 , Na 2 S0 4 , CaS0 4 , ZnS0 4 , CuS0 4 , KN0 3 , NaN0 3 , Ba(C 2 H 3 2 ) 2 , or Zn(C 2 H 3 2 ) 2 + Aq. More slowly pptd. by NH 4 N0 3 , Mg(N0 3 ) 2 , Ba(N0 3 ) 2 , or Pb(N0 3 ) 2 + Aq. Not pptd. by alcohol, Pb(C 2 H 3 2 ) 2 , Cu(C 2 H 3 2 ) 2 , Hg(CN) 2 , AgN0 3 , or As 2 3 + Aq. (Ordway, Sill. Am. J. (2) 9. 30.) 4Fe 2 3 , N 2 5 + HH 2 0. Easily sol. in H 2 ; si. sol. in dil. HN0 3 + Aq, and in alcohol. (Hausmann.) + 3H 2 0. Insol. in H 2 or HN0 3 + Aq ; sol. in HCl + Aq. (Scheurer-Kestner, C. R. 87. 927.) + 9H 2 0. Not deliquescent ; easily sol. in H 2 0. (Ordway.) 3Fe 2 3 , N 2 5 + 2H 2 0. Insol. in H 2 0. (Scheurer-Kestner. ) 2Fe 2 3 , N 2 5 + H 2 0. Decomp. by H 2 0. (Scheurer-Kestner. ) + 8H 2 0. (S.-K.) Fe 2 3 , N 2 5 . Decomp. by H 2 0. (S.-K.) Fe 2 3 , 21 Sol. in H or alcohol in all proportions. Insol. in HN0 3 + Aq. N 2 5 with 1, 2, 3, 4, 5, 6, and 8Fe 2 3 forms compounds, sol. in H 2 0. (Ordway.) Ferric nitrate, Fe(N0 3 ) 3 . + H 2 0. (Scheurer-Kestner, A. ch. (3) 65. 113.) + 6H 2 0. Deliquescent, and sol. in any amount of H 2 0. (Schonbein, Fogg. 39. 141.) + 9H 2 0. Deliquescent. Sol. in H 2 and alcohol. SI. sol. in HN0 3 + Aq. 2 pts. salt with 1 pt. H 2 lower the temperature 18 '5. (Scheurer-Kestner. ) Sp. gr. of solution at 17*5 containing : 5 10 15 20 25 % Fe(N0 3 ) 3 , 1-0398 1-0770 1-1182 1-1612 1'2110 30 35 40 45 50 % Fe(N0 3 ) 3 , 1-2622 1-3164 1*3746 1'4338 1'4972 '55 60 65 % Fe(N0 3 ) 3 . 1-5722 1-6572 17532 (Franz, J. pr. (2) 5. 274.) Nearly insol. in cone. HN0 3 + Aq at temp, below 15'5. Easily sol. in alcohol. Melts, in crystal H 2 at 47 '2. (Ordway.) Sat. Fe(N0 3 ) 3 + Aq boils at 125. (Ordway. ) Lanthanum nitrate, La(N0 3 ) 3 + 6H 2 0. Very deliquescent ; easily sol. in H 2 and alcohol. (Mosander.) Melts in its crystal H 2 at 40 ; boils at 124 '5. (Ordway.) Lanthanum magnesium nitrate, 2La(N0 3 ) 3 , 3Mg(N0 3 ) 2 + 24H 2 0. Deliquescent in moist air. (Holzmann, J. pr. 75. 350.) Lanthanum manganous nitrate, 2La(N0 3 ) 3 , 3Mn(N0 3 ) 2 + 24H 2 0. Sol. in H 2 0. (Damour and Deville.) Lanthanum nickel nitrate, 2La(N0 3 ) 3 , 3Ni(N0 3 ) 2 + 36H 2 0. Very sol. in H 2 0. (Frerichs and Smith, A. 191. 355.) Lanthanum zinc nitrate, 2La(NO. ? ). 5 , 3Zn(N0 3 ) 2 + 24H 2 0. Very sol. in H 2 0. (Damour and Deville, J. B. 1858. 135.) + 69H 2 0. (Frerichs and Smith, A. 191. 355. ) Lead nitrate, basic, 2PbO, N 2 5 + H 2 = Pb(OH)N0 3 . Sol. in 5-15 pts.fH 2 at 19 '2. (Pohl, W. A. B. 6. 597.) Very si. sol. in cold, much more inhotH 2 0. (Berzelius.) Sol. in Pb(C 2 H 3 2 ) 2 + Aq. (Guignet, C. R. 56. 358.) + 2H 2 0. (Andre, C. R. 100. 639.) 3PbO, N 2 5 + HH 2 0. SI. sol. in pure H 2 0. Insol. in H 2 containing HC1. (Berzelius. ) + 3H 2 0. Sol. in 119-2 pts. cold, and 10 "5 pts. boiling H 2 0. Sol. in Pb(C 2 H s 2 ) 2 + Aq, but si. sol. in KN0 3 + Aq. (Vogel,'jr. A. 94. 97.) = 10PbO, 3N 2 5 + 5H 2 0. (Wakemann and Wells, Am. Ch. J. 9. 299.) + 4H 2 0. (Andre, C. R. 100. 639.) 6PbO, N 2 5 + H 2 0. Nearly insol. in H 2 0. (Lowe, J. pr. 98. 385.) lOPbO, 3N 2 5 + 4H 2 0. Less sol. in H 2 than Pb(N0 3 )OH, and not decomp. by boiling H 2 0. (Wakemann and Wells, Am. Ch. J. 9. 299.) Lead nitrate, Pb(N0 3 ) 2 . Sol. in H 2 with absorption of much heat. (Rose.) 1 pt. Pb(NO 3 > 2 dissolves in 1% pts. cold HoO. (Mitscherlich.) 1 pt. Pb(NO 3 > 2 dissolves in 1-989 pts. H 2 O at 17 '5 and forms a liquid of 1'3978 sp. gr. (Karsten.) 1 pt. Pb(NO 3 >2 dissolves in 1-707 pts. HoO at 22 '3; in 1-585 pts. HoO at 24 '7. (Kopp.) Sol. in 1-87 pts. H 2 O at 17'5. (Schiff, A. 109. 326.) 100 pts. Pb(NO 3 ) 2 +Aq sat. at 102-2 contain 52'5 pts. Pb(NO 3 )2, or 100 pts. HoO dissolve 110-526 pts. Pb(NO s >> at 102-2. (Griffiths.) Sol. in 7-5 pts. cold H 2 O and much less hot H 2 O. (Wittstein.) 100 pts. boiling H 2 O dissolve 13 pts. Pb(NO 3 ) 2 . (Ure's Diet.) 100 pts. Pb(N0 3 ) 2 + Aq sat. at 19-20 contain 35-80 pts. salt. (v. Hauer, W. A. B. 53, 2. 221.) 1 pt. dissolves : at 10 25 45 65 85 100 in 2-58 2-07 1'65 1'25 0'99 0'83 072 pts. H 2 0. (Kremers, Pogg. 92. 497.) 1 1. Pb(N0 3 ) 2 + Aq sat. at 15 contains 461-49 g. Pb(NO :? ) 2 and 928 '58 g. H 2 0, and has sp. gr. 1-39. (Michel and Krafft, A. ch. (3) 41. 471.) 252 NITRATE, LEAD Solubility in 100 pts. H 2 at t. t Pts. Pb(N0 3 )2 t Pts. PXN0 3 )2 t Pts. Pb(N0 3 ) 2 36-5 36 65-9 72 997 1 37-4 37 667 73 1007 2 38-3 38 67-6 74 1017 3 39-1 39 68'5 75 102-6 4 39-8 40 69-4 76 103-6 5 40'5 41 70-3 77 104-6 6 41-2 42 71-2 78 105-6 7 42-0 43 72-1 79 106-6 8 42-8 44 73-0 80 107-6 9 43-6 45 74-0 81 108-6 10 44-4 46 74-9 82 109-6 11 45'2 47 75-9 83 110-6 12 46'0 48 76'8 84 111-5 13 46'8 49 777 85 112-5 14 47-5 50 787 86 113-5 15 48-3 51 79-6 87 114-5 16 49-1 52 80-5 88 115-4 17 49-9 53 81-5 89 116-4 18 507 54 82-4 90 117-4 19 51'5 55 83-3 91 118-4 20 52-3 56 84-3 92 119-4 21 53-1 57 85'2 93 120-3 22 53'9 58 86-1 94 121-3 23 547 59 87-1 95 122-3 24 55'6 60 88-0 96 123-2 25 56-4 61 89-0 97 124-2 26 57'3 62 90'0 98 125-2 27 58-1 63 90-9 99 126-1 28 59'0 64 91*9 100 127-0 29 59-8 65 92-8 101 128-0 30 607 66 93-8 102 128-9 31 61-6 67 94'8 103 129-9 32 62-4 68 957 104 130-9 33 63'3 69 967 1047 131-5 34 64-1 70 977 35 65-0 71 987 ... (Mulder, Scheik. Verhandel. 1864. 66.) Sp. gr. of Pb(N0 3 ) 2 + Aq sat. at 8 = 1'372 (Anthon. ) Sp. gr. of Pb(N0 3 ) 2 + Aq at 17 "5. Pb(N0 3 ) 2 Sp. gr. % Pb(N0 3 ) 2 Sp. gr. 1 1-0080 20 1-1902 2 1-0163 21 1-2016 3 1-0247 22 1-2132 4 1-0331 23 1-2251 5 1-0416 24 1-2372 6 1-0502 25 1-2495 7 1-0591 26 1-2620 8 1-0682 27 1-2747 9 1-0775 28 1-2876 10 1-0869 29 1-3907 11 1-0963 30 1-3140 12 1-1059 31 1-3276 13 1-1157 32 1-3416 14 1-1257 33 1-3558 15 1-1359 34 1-3702 16 1-1463 35 1-3848 17 1-1569 36 1-3996 18 1-1677 37 1-4146 19 1-1788 ... (Schitf, calculated by Gerlach, Z. anal. 8. 286.) Sp. gr. of Pb(N0 3 at 19'5. Pb(N0 3 ) 2 Sp. gr. Pb(N0 3 > 2 Sp. gr. 5 10 15 20 1-045 1-093 1-144 1-203 25 30 35 1-266 1-334 1-414 (Kremers, calculated by Gerlach, Z. anal 8 286.) Sp. gr. of Pb(N0 3 at 17 '5. Pb(N0 3 ) 2 Sp. gr. Pb(N0 3 ) 2 Sp. gr. 5 1-044 25 1-263 10 1-092 30 1-333 15 1-144 35 1-409 20 1-200 sat. sol. 1-433 (Gerlach, Z. anal. 27. 283.) Sat. Pb(N0 3 ) 2 + Aqboilsatl03-5. (Kremers.) Sat. Pb(N"0 3 ) 2 + Aq boils at 102 '2, and con- tains 140 pts. Pb(N0 3 ) 2 to 100 pts. HoO. (Griffiths.) Sat. Pb(N0 3 ) 2 + Aq boils at 103 '5. (Gerlach, Z. anal. 26. 427.) B.-pt. of Pb(N0 3 ) 2 + Aq containing pts. Pb(N0 3 ) 2 to 100 pts. H 2 0, according to Gerlach (Z. anal. 26. 449.) B.-pt. Pts. Pb(N0 3 ) 2 B.-pt. Pts. Pb(N0 3 ), 100-5 11 102-5 87 101 26 103 111 101-5 44 103-5 137 102 65 ... ... Insol. in cone. HN0 3 + Aq. Sol. in sat. KN0 3 + Aq without pptn., 100 pts. H 2 at 18'75 dissolving 114 pts. mixed salt, viz. 84-1 pts. Pb(N0 3 ) 2 and 29 '9 pts. KN0 3 . (Karsten.) Sol. in sat. NaN0 3 + Aq without pptn., 100 pts. H 2 at 18'75 dissolving 121 '9 pts. mixed salt, viz. 87'8 pts. Pb(N0 3 ) 2 and 34 '1 pts. NaN0 3 . (Karsten.) Also sol. in KNOg + NaNOg + Aq. Sol. in sat. Ba(N0 3 ) 2 + Aq with pptn. of Ba(N0 3 ) 2 . 100 pts. H 2 dissolve 119 '6 pts. Pb(NOo) 2 and 67-1 pts. KN0 3 at 21 '2. (Riidorff, B. 6. 484.) 100 pts. sat. Pb(N0 3 ) 2 + Sr(NO,) 2 + Aq contain 45-98 pts. of the two salts at 19 '20. (v. Hauer, J. pr. 98. 137.) 100 pts. alcohol of 0-9282 sp. gr. dissolve : at 4 8 22 40 50 4-96 5-82 877 12'8 14'9 pts. Pb(N0 3 ) 2 . (Gerardin, A. ch. (4) 5. 129.) NITRATE, MAGNESIUM 253 100 pts. absolute methyl alcohol dissolve 1-37 pts. at 20 '5. 100 pts. absolute ethyl alcohol dissolve 0'04 pt. at 20-5. (de Bruyn. Z. phys. Ch. 10. 783.) Very si. sol. in acetone. (Krug and M'Elroy, J. Anal. Ch. 6. 184.) Lead mercurous nitrate, 2PbO, 2Hg 2 0, 3N 2 5 . Decomp. by H 2 0. Sol. in warm dil. HN0 3 , or Hg 2 (N0 3 ) 2 + Aq without decomp. (Stadeler, A. 87. 129.) Lead silver nitrate, Pb(N0 3 ) 2 , 2AgN0 3 . Sol. in H 2 0. (Stiirenberg, Pogg. 74. 115.) Lead silver nitrate iodide, Pb(N0 3 ) 2 , 8AgN0 3 , 4AgI. Decomp. by H 2 0. (Sturenberg.) Pb(N0 3 ) 2 , 2AgN0 3 , 2AgI. Decomp. by H 2 0. (Sturenberg. ) Lead nitrate nitrite, basic, 4PbO, N 2 5 , N 2 3 + 2H 2 = Pb(OH)N0 3 , Pb(OH)N0 2 . SI. sol. in cold, easily in hot H 2 0. Sol. in 80 pts. H 2 at 23 (Chevreuil) ; 85 pts. at ord. temp. (Bromeis, A. 72. 38) ; 10 '6 pts. at 100 (Chevreuil). Formula is 3Pb(OH)N0 3 , 5Pb(OH)N0 2 + H 2 0. (v. Lorenz, W. A. B. 84, 2. 1133.) + 3H 2 0. (v. Lorenz.) 4PbO, N 2 5 , 3N 2 3 + 4H 2 0. Sol. in H 2 0. (Bromeis.) 6PbO, N 2 5 , 2NA + 3fH 2 = Pb(OH)N0 3 , 2Pb(OH)N0 2 + JH 2 0. (v. Lorenz.) 6PbO, 2N 2 5 , N 2 3 + 3fH 2 = 2Pb(OH)N0 3 , Pb(OH)N0 2 + JH 2 0. (v. Lorenz.) 7PbO, N 2 3 , N 2 5 + 3H 2 0. Less sol. in H 2 than 4PbO, N 2 5 , N 2 3 + 2H 2 ; sol. in cold cone. HN0 3 + Aq. (Peligot, A. 39. 338.) 8PbO, N 2 5 , 3N 2 3 + 4H 2 = Pb(OH)N0 3 , 3Pb(OH)N0 2 + JH 2 0. (v. Lorenz.) lOPbO, N 2 5 > 4N 2 3 + 5H 2 = Pb(OH)N0 3 , 4Pb(OH)N0 2 . (v. Lorenz.) 12PbO, N 2 5 , 5N 2 3 + 6H 2 = Pb(OH)N0 3 , 5Pb(OH)N0 2 . (v. Lorenz.) lOPbO, N 2 5 , 2N 2 3 + 4H 2 = Pb(OH)N0 3 , 2Pb(OH)NOo, 2PbO + |H 2 0. (v. Lorenz.) 14PbO, N 2 5 , 3N 2 3 + 6H 2 = Pb(OH)N0 3 , 3Pb(OH)N0 2 , 3PbO + H 2 0. (Bromeis. ) 14PbO, 3N 2 5 > N 2 O 3 + 6H 2 = 3Pb(OH)N0 3 , Pb(OH)N0 2 , 3PbO + H 2 0. (Bromeis.) 16PbO, 2N 2 5 > 3N 2 3 -l r 6H 2 = 4Pb(OH)N0 3 , 6Pb(OH)N0 2 , 5PbO, Pb(OH) 2 . (v. Lorenz.) 16PbO,3N 2 5 ,5N 2 3 + 10H 2 = 3Pb(OH)N0 3 , 5Pb(OH)N0 2 + H 2 0. (v. Lorenz.) 26PbO,6NA,7N 2 3 + 2lH 2 = 6Pb(OH)N0 3 , 7Pb(OH)N0 2 + 4H 2 0. (v. Lorenz.) Lead nitrate phosphate, Pb(N0 3 ) 2 , Pb 3 (P0 4 ) 2 + 2H 2 0. Completely insol. in cold H 2 0. Decomp. by boiling H 2 into its constituents. Sol. in a little cone. HN0 3 + Aq without decomp. (Ger- hardt, A. 72. 83.) Lead nitrate phosphite, Pb(N0 3 ) 2 , PbHP0 3 . Decomp. by H 2 0. Sol. in Pb(N0 3 ) 2 + Aq. Pb(N0 3 ) 2 + Aq (33-3 g. per litre) dissolves 1 g. salt at 15. If less than 31 g. per litre of Pb(N0 3 ) 2 are present the salt is decomp. (Amat, A. ch. (6) 24. 317.) Lead nitrate potassium nitrite, Pb(N0 3 ) 2 , 2KNO 2 + H 2 0. Difficultly sol. in H 2 0. (Lang, J. B. 1862. 102.) 3PbO, 3K 2 0, 4N 2 3 , 2N 2 5 + 3H 2 0. Sol. in H 2 0. (Hayes, Sill. Am. J. (2) 31. 226.) Lithium nitrate, LiN0 3 . Very deliquescent, and sol. in H 2 0. 100 pts. H 2 dissolve : at 20 40 70 100 110 48-3 757 169-4 196'1 227 '3 256'4 pts. LiN0 3 . (Kremers, Pogg. 99. 47.) Forms supersaturated solutions with ease, which crystallise when temp, is lowered to + 1. (Kremers, Pogg. 92. 520.) Sat. solution boils at over 200. (Kremers, Pogg. 99. 43.) Sp. gr. of LiN0 3 + Aq at 19 '5 containing pts. LiN0 3 in 100 pts. H 2 : 127 14-2 26'4 41 -8 pts. LiN0 3 , 1-069 1-077 1-134 1-197 54-8 57'5 77*4 79 '4 pts. LiNOo. 1-245 1-255 1-315 1'319 (Kremers, Pogg. 114. 45.) 1 pt. LiN0 3 dissolves in 200 pts. HN0 3 . (Schultz, Zeit. Ch. (2) 5. 531.) Sol. in strong alcohol. + 5H 2 (?). (Troost, A. ch. (3) 51. 134.) Magnesium nitrate, basic, Mg 3 N 2 8 . Insol. in H 2 and alcohol. Sol. in acids. (Chodnew, A. 71. 241.) Magnesium nitrate, Mg(N0 3 ) 2 . Anhydrous. Deliquescent. Sol. in 1 pt. H 2 O at 15 '6. Sol. in 4 pts. abs. alcohol at 15-6, and 2 pts. at boiling temp. More sol. in alcohol of 0-817 sp. gr. than in that of 0'900. (Kirwan.) Sol. in 0-3458 pt. strong alcohol at 82 -5. (Wenzel.) Sol. in 10 pts. strong alcohol at 15. (Bergmann.) Sol. in 9 pts. strong alcohol on heating. (Bergmann.) + 6H 2 0. Deliquescent. Sol. in H 2 and alcohol. Sol. in 0'5 pt. cold H 2 0, and 9 pts. cold alcohol of 0'84 sp. gr. ; very si. sol. in abs. alcohol. (Graham.) Sp. gr. of Mg(N0 3 ) 2 + Aq at 14. % ^o 3)2 ' Sp.gr. *Xo 3 >" Sp. gr. 1 1-0034 30 1-1347 5 1-0202 35 1-1649 10 1-0418 40 1-1909 15 1-0639 45 1-2176 20 1-0869 49 1-2397 25 1-1103 (Oudemans, Z. anal. 7. 419.) 254 NITRATE, MANGANOUS, BASIC Sp. gr. of Mg(N0 3 ) 2 + Aq at 21. % Mg(N0 3 )2 +6H 2 0. Sp.gr. % Mg(N0 3 )2 +6H 2 0. Sp. gr. 2 1-0078 28 1-1216 4 1-0158 30 1-1312 6 1-0239 32 1-1410 - 8 1-0321 34 1-1508 10 1-0405 36 1-1608 12 1-0490 38 1-1709 14 1-0577 40 1-1811 . 16 1-0663 42 1-1914 18 1-0752 44 1-2019 20 1-0843 46 1-2124 22 1-0934 48 1-2231 24 1-1026 50 1-2340 26 1-1120 (Schiff, calculated by Gerlach, Z. anal. 8. 286.) Sp. gr. of Mg(N0 3 ) 2 + Aq at 18. % Mg(N0 3 >> Sp. gr. / M g (N0 3 )o. Sp. gr. 5 10 1-0378 1-0763 15 17 1-1181 1-1372 (Kohlrausch, W. Ann. 1879. 1.) Melts in its crystal H 2 at 90, and the re- sulting liquid boils at 143 "4. (Ordway, Sill. Am. J. (2) 27. 14.) Less sol. in Ca(N0 3 ) 2 + Aq than in H 2 0. (Dijonval.) Min. Nitromagnesite. Manganous nitrate, basic, 2MnO, N 2 5 + 3H 2 0. Sol. in H 2 0. (Gorgeu.) Manganous nitrate, Mn(N0 3 ) 2 + 6H 2 0. Deliquescent. Easily sol. in H 2 and alcohol. Sp. gr. of Mn(N0 3 ) 2 + Aq at 8. % Mn(N0 3 )2 +6H 2 O Sp. gr. % Mn(N0 3 )2 +6H 2 O Sp. gr. 5 1-0253 45 1-2705 10 1-0517 50 1-3074 15 1-0792 55 1-3459 20 1-1078 60 1-3861 25 1-1137 65 1-4281 30 1-1688 70 1-4721 35 1-2012 71 1-4811 40 1-2352 ... (Oudemans, Z. anal. 7. 421.) Sp. gr. of aqueous solutions containing : 10 20 30 40 %Mn(N0 3 ) 2 + 6H 2 0, 6-237 12-474 18711 24'948%Mn(N0 3 ) 2 , 1-052 1-107 1-165 1-230 50 60 70 80 %Mn(N0 3 ) 2 + 6H 2 0. 31*185 37-422 43 '659 49'896%Mn(N0 3 ) 2 . 1-302 1-381 1-466 1'558 (Gerlach, Z. anal. 28. 477.) Melts in its crystal H at 25 '8 and boils at 129-4. (Ordway.) + 3H 2 O. From solution in HN0 3 . (Schultz- Sellack, Zeit. Ch. 1870. 646.) Mercurous nitrate, basic, 2Hg 2 0, N 2 5 + H 2 0. Ppt. Decomp. by boiling with H 2 0. (Marignac, A. ch. (3) 27. 332.) Slowly sol. in cold, rapidly in hot HC1 + Aq ; insol. in NH 4 C1, and NH 4 N0 3 + Aq. 5Hg 2 0, 3N 2 5 + 2H 9 0. (Marignac.) Is 2Hg 2 O, N 2 5 + H 2 0. (Lefort, A. 56. 247.) Sol. in boiling, less sol. in cold H 2 0. (Marignac, I.e. ) 4Hg 2 0, 3N 2 5 + H 2 0. Sol. in a small quan- tity of H 2 ; decomp. by a large amt. of H 2 or by warm H 2 0. (Rose, Pogg. 83. 154.) Is 3HgO, 2N 2 5 + H 2 according to Ger- hardt. Mercurous nitrate, Hg (N0 3 ) 9 + 2H 2 0, or Completely sol. in a little warm H 2 0, but decomp. by more H 2 0. Completely "sol. as acid salt in H 2 O containing HNO> (Marig- nac, A. ch. (3) 27. 332.) Mercuric nitrate, basic, 6HgO, N 2 5 (?). Insol. in hot H 2 0. (Kane. ) 3HgO, N 2 5 + H 2 0. Decomp. to oxide by washing with cold H 2 0. Sol. in dil. HN0 3 + Aq. (Millon, A. ch. (3) 18. 361.) 2HgO, N 2 5 + H 2 0. SI. deliquescent. De- comp. by H 2 ; sol. in dil. HN0 3 + Aq. (Millon.) + 2H 2 0. Decomp. by cold H 2 0. Deli- quescent. Sol. in H 2 containing HN0 3 . (Marignac.) + 3H 2 0. (Ditte, J. B. 1854. 366.) Mercuric nitrate, Hg(N0 3 ) 2 + iH 2 0. Deliquescent. Very sol. in a little H 0. H 2 precipitates basic salt from cone. Hg(NO 3 ) 2 + Aq. Insol. in alcohol. Decomp. by ether. (Millon.) + 8H 2 0. Melts at 6 in crystal H 0. (Ditte.) Mercurosomercuric nitrate, Hg 2 0, 2HgO, N 2 5 . Boiling H 2 gradually dissolves out Hg 2 (N0 3 ) 2 , and leaves residue of HgO and Hg. (Brooks, Pogg. 66. 63.) Mercuric silver nitrate, Hg(N0 3 ) 2 , 2AgN0 3 . Easily sol. in H 2 without decomp. (Ber- zelius.) Mercurous strontium nitrate, 2SrO, 2Hg 2 0, 3.N 2 05. Decomp. by H 2 0. Much more sol. in H 2 than the corresponding Ba compound. Readily sol. in warm dil. HN0 3 + Aq or Hg 2 (N0 3 ) 2 + Aq without decomposition. (Stadeler, A. 87. 131.) Mercuric nitrate iodide, Hg(N0 3 ) 2 , 2HgI 2 . Decomp. by long boiling with EL,0. (Riegel Jahrb. Pharm. 11. 396.) 2Hg(N0 3 ) 2 , 3HgI 2 . Easily decomp. by H 2 ; less easily by alcohol or ether. (Riegel.) NITRATE, POTASSIUM 255 (Haack, Hg(N0 3 ) 2 , HgI 2 . Decomp. very quickly by HNO. ? + Aq or alcohol of '81 4 sp. gr. (Souville, J. Pharm. 26. 474.) Mercurous nitrate phosphate, HgN0 3 , H g3 P0 4 + H 2 0. Insol. in H 2 0, but decomp. by boiling there- with. Insol. in H 3 P0 4 + Aq or alcohol. Com- pletely sol. in hot NH 4 Cl + Aq. Decomp. by cold KOH + Aq, and warm K 2 C0 3 + Aq. (Wittstein.) 2HgN0 3 , Hg. 2 0, 5Hg 3 P0 4 A. 262. 192.) Mercuric nitrate silver iodide, Hg(N0 3 ) 2 , 2AgI + |H 2 0. Decomp. by H 2 0. (Preuss, A. 29. 328. ) Molybdenum nitrate, Mo 2 3 , N 2 5 (?). Sol. indil. HN0 3 + Aq. (Berzelius.) Mo0 2 , 2N 2 5 (?). Sol. in dil. HN0 3 + Aq. (Berzelius.) Mercuric nitrate sulphide, Hg(N0 3 ) 2 , 2HgS. Very si. sol. in hot H 2 0. Insol. in HN0 3 + Aq. Decomp. by hot H 2 S0 4 or aqua regia, also by hot HCl + Aq. (Barfoed, J. pr. 93. 230.) 2Hg(N0 3 ) 2 , HgO, 6HgS + 12H 2 0. Insol. in H 2 0, and HN0 3 + Aq of 1'2 sp. gr. (Gramp, J. pr. (2) 14. 299.) Nickel nitrate, basic. Insol. in H 2 0. (Proust.) 8NiO, 2N 2 5 + 5H 2 0. Insol. in cold or hot H 2 0. (Habermann, M. 5. 432.) 5NiO, N 2 5 + 4EUO. Not decomp. by boiling H 2 0. (Rousseau and Tite, C. R. 114. 1184.) Nickel nitrate, Ni(N0 3 ) 2 + 6H 2 0. Not deliquescent in dry air. Sol. in 2 pts. cold H 2 and in alcohol. (Tupputi. ) Sp. gr. of aqueous solution at 17*5 contain- ing : 5 10 15 20 %Ni(N0 3 ) 2 , 1-0463 1-0903 1-1375 1'1935 25 30 35 40 % Ni(N0 3 ) 2 . 1-2534 1-3193 1-3896 1'4667 (Franz, J. pr. (2) 5. 295.) M. -pt. of Ni(N0 3 ) 2 + 6H 2 = 56 7. (Ord way ; Tilden, Chem. Soc. 45. 409.) Sat. solution boils at 136 '7. (Ord way.) Sp. gr. of Ni(N0 3 ) 2 + Aq containing in 1000 g. H 2 at 24-4, x g.~Ni(N0 3 ) 2 + 6H 2 0. 145-5 g. ( = 4mol.) 291 436 '5 582 1-069 1-128 1-179 1-224 727-5 873 1018-5 1164 1-264 1-299 1-329 1'357 Containing g. Ni(N0 3 ) 2 (anhydrous) : 91-5 g. ( = imol.) 183 274'5 369 460'5 549 1-073 1-141 1-205 1-266 1'324 1'378 (Gerlach, Z. anal. 28. 468.) Sol. inNH 4 OH + Aq. Insol. in absolute alcohol, acetone. (Krug and M'Elroy.) Nickel nitrate ammonia, Ni(NOo).,, 2H 2 0. Efflorescent. Easily sol. in cold SI. sol. n 4NH 3 + H 2 ; decomp. by boiling. Insol. in alcohol. (Erdmann, J. pr. 97. 395.) Ni(N0 3 ) 2 , 6NH 3 + HH 2 0. (Andre, C. R. 106. 936.) Nickel nitrate chloride ammonia, 6Ni(NOo) 2 , NiCl 2 , 30NH 3 + 16H 2 0. Sol. in H 2 with decomp. (Schwarz, W. A. B. 1850. 272.) Palladium nitrate, basic, Pd(N0 3 ) 2 , .3PdO, + 4H 2 0. Ppt. Insol. in H 2 0. (Kane.) Palladium nitrate, Pd(N0 3 ) 2 + a;H 2 0. Very deliquescent, and sol. in H 2 0. De- comp. by much H 2 or alcohol. (Kane.) Decomp. by cold or hot H 2 0. (Rose, A. 83. 143.) Platinic nitrate, Pt(N0 3 ) 4 (?). Known only in solution, which is decomp. on evaporating. (Berzelius.) Pt(N0 3 ) 2 , 3Pt0 2 + 5H 2 0. Insol. in H 2 0. (Prost, Bull. Soc. (2) 46. 156.) Potassium nitrate, KN0 3 . Not deliquescent, but, according to Mulder, 100 pts. KN0 3 under a bell jar with H 2 take up 339 pts. H 2 in 22 days, and small amounts finally deliquesce completely. Sol. in H 2 with absorption of heat. 16 pts. KN0 3 + 100 pts. H 2 at 13 '2 lower the temperature 10 '2. If the initial temp, is 23 it falls to 12-8, if it does not fall below -2" 7, which is the freezing-point of the mixture. (Riidorff, Pogg. 136. 276.) KNO 3 +Aq sat. at 18-1 has TlGOl sp. gr. and contains 2272 % KNO 3 , or 100 pts. H 2 O at 181 dissolve 29*45 pts. KN0 3 . (Karsten, 1840.) Sol. in 3745 pts. HoO at 15. (Gerlach.) Sol. in 3 pts. H 2 O at 21 (Schiff, A. 109. 326), and solu- tion has 1-1683 sp. gr. Sol. in 3 pts. cold, and 0*5 pt. boiling H 2 O. (Four- croy.) KNO 3 +Aq sat. at 18 has sp. gr. 1-151, and contains 21-63 % KNO 3 , or 100 pts. H 2 O dissolve 27 '60 pts. KNO 3 at 18. (Longchamp.) Sol. in 4 pts. H 2 O at 16, and 0'25 pt. at b.-pt. (Rif- fault.) 100 pts. H 2 O at 114-5 dissolve 284-61 pts. (Griffiths.) Sol. in 7 pts. cold, and 1 pt. boiling;H 2 O. (Bergmann.) Sol. in 6-15 pts. cold H 2 O at 18 -75. (Abl.) 100 pts. H 2 O at 15-5 dissolve 26'6 pts. ; at 100, 100 pts. (Ure's Dictionary.) KNO 3 +Aq sat. at 10 contains 33-3 %. (Eller.) KNO 3 +Aq sat. in the cold contains 25 %. (Fourcroy.) KNO 3 +Aq sat. at 12'5 contains 24-8 %. (Hassenfratz.) Solubility of KNO 3 in 100 pts. H 2 O at t. t Pts. KN0 3 t Pts. KNO 3 5 11-67 17-91 24-94 13-2 16-7 22-2 29-3 38-4 45-10 54-72 65-45 79-72 97-66 74-7 97-1 125-5 169-2 236-4 (Gay-Lussac, A. ch. 11. 314.) Solubility of KNO 3 in 100 pts. H 2 O at t. t Pts. KNO 3 16-0 29 44-2 26-7 43-5 71-4 (Nordenskjold, Pogg. 136. 312.) 149 fte. HUP *** a* : 14* ir sr *r ar s-* 27 -* 4?yi -2 33-2 pc A. dt. (4') * 134- , - JL saz, * 14~ pea. 1% pea. . 'A 27-2 132-1 pea. J. pr. 2' a. 45*. fa. 100 ea. H*O ai if, at X5*= ITieiiei tod Erafc ap. ?r- f rfutiiii Scfti&tt. /. pr- 91. #&.] s^, gr, *f Mbnsaa. vsz. eaaeaua 25-45 ^ . -it* am i^ n. 4*71 I-<5307 7-^5 1-112* 14-044 1-09-2J} ' S6. 120. ^ *x-*5 i" M *>! 172 15^ 42 vi Jl 175 i 14-4 4^ 70 *" 17* r -rf " 7"" 44 ~^> *3 1*2 ,? ~ 7~* 45 74 4 1*5 - 1 * "5 4-: 74 *5 1*9 ; v > ^7 T4 i^? *^ r> J 20-5 4i i' i- I5i it? ? s r 2^ --> S-o s-r ^ 20K J 24 -0 5'" ff H 210 1 HI 54 9^ S5 214 J! 2^'T I .01 $5 2>5 ^"4 57 M J7 IS 2l t>2 1? ';'? 243 22 33-5 ^_ 13 L4Q 247 -v> 34-7 2 !! : ..(51 2S2 24 3*5-0 -3 1^ 02 2&S ^ 37"^ <54 -">" .'03 2il 2>> 3-* -5 55 24 H 2*5 -- 4* J - 1 j VI - 1-5 272 s 414 T7 30 (K 27t 22 42 * fj,i . 07 2S4 2*7 44^ $s ^5 Oft 2*> 21 4i5U 71 -21J ?i 2&5 22 4* " 42 10 301 25 5*j 72 4^ ii 307 52 - ^> 43* 12 313 35 54 * - 5'* - .> 31* 3o 5*5 75 55 14 3->; 27 r i 74 -5 J > i.14'1 y-'X"' - _ ' r " US 1<00 pc*. H/> 4i*aGtT* 43@ pea. E TGdta *ai sluftastaaft, PidL Traaa. " '. - '" -"VjiSSi- Mild 4^il~ tCir*tai aocxzuxfca. Traak*2Ll - I-5I7* I* 20 21 22 I-I23Q I -1444 .Siiir. A. 114. so. ST. or K3Ta, - A.-. 12 1 -*17*05 I -->l2fj7 :^S>70 I -045.24 I -OS 1*7 I -OS.-41 l->^24 1-07215 I* 1* 20 21 1-II42U - s. zr. or 10 1-0*55 : 17 1-112 11 1-072 1 I -120 12 1-07^ ; I* 1-127 NITRATE, POTASSIUM 257 Sp. gr. of KNX) 3 -r Aq at 18. KNO, Sp. gr. % KNOs Sp.gr. 5 10 15 1-0305 1-0632 1-097 20 22 1-133 1-148 (Kohlrausch, W. Ann. 1879. 1.) Sp. gr. of KN0 3 + Aq at 20, containing mols. in 100 niols. H 2 O. Mols. KNOs Sp.gr. Mols. KNO S Sp.gr. 0-5 1 2 1-01730 1-03373 1-06524 4 5 1-12264 1-14888 (Nicol, Phil. Mag. (5) 16. 122.) The saturated solution boils at 114-1 (Mul- der); 114 -5 (Griffiths); 115-9(Legrand,Gerar- din); 117 (Magnus); 118 (Kremers) ; 126 (Le Page). The saturated solution forms a crust at 111, and boils at 115 ; highest temp, observed, 115-3. (Gerlach, Z. anal. 26. 426.) B.-pt. of KN0 3 + Aq containing pts. KN0 3 to 100 pts. H 2 0. G = according to Gerlach (Z. anal. 26. 444) ; L = according to Legrand (A. ch. (2) 52. 426). R-pt. G L B.- P t. G L 100-5 7*5 107 120-5 119-0 101 15-2 12-2 108 141-5 140-6 101-5 23 ... 109 164 | 163-0 102 31 26-4 110 188-5 ! 185*9 102-5 39 ... 111 215 209-2 103 47-5 42-2 112 243 233-0 103-5 56 113 274 257-6 104 64-5 59-6 114 306 ! 283-3 104-5 73 115 338-5 310-2 105 82 78-3 115-9 335-1 106 101 98-2 ... ... 1 pt. KN0 3 dissolves in 1 '4 pts. UN 3 ; at 20 in 3'8 pts., and at 123 in 1 pt. H3s0 3 4-Aq of 1-423 sp. gr. (Composition 2HN0 3 , 3H.,0.) (Schultz, Zeit. Ch. (2) 5. 531.) Sol. in 20 % KC2H 3 2 + Aq. (Stromeyer.) Sol. in sat. NH 4 N0 3 + Aq, at first without pptn., but afterwards NH 4 N0 3 is pptd. (Kar- sten.) Sol. in XH 4 iSr0 3 + Aq with pptn. of NH 4 X0 3 . (Riidortf, B. 6. 485.) (See also NH 4 N0 3 .) Sol. in sat. Ba(N0 3 ) 2 + Aq, but soon a double salt separates. (Karsten.) Sol. inCa(N0 3 ) 2 + Aq. (Longchamp.) Sol. in sat. Pb(X0 3 ) 2 + Aq without pptn. 100 pts. HoO dissolve 119 '6 pts. Pb(N0 3 ) 2 and 67'1 pts. ~KX0 3 at 21 '2. (Riidorff, B. 6. 484.) (See also Pb(N0 3 ) 2 .) KN0 3 and KaX0 3 . 100 pts. HoO dissolve 34 '53 pts. KN0 3 and 91'16 pts. NaN0 3 at 15 '6, and solution has sp. gr. = 1-478. (Page and Keightley.) 100 pts. KN0 3 + NaNO 3 + Aq sat. at 14 con- tain 52-17 pts. of the two salts ; sat. at 13 con- tain 53-15 pts. of the two salts, (v. Hauer.) 100 pts. H 2 O dissolve at 1875 29'45 pts KNO 3 and 89 '53 pts. NaNOg, if sat. KNO 3 + Aq is treated with NaN0 3 , and 35 79 pts. KNO 3 and 88'00 pts. NaN0 3 by the opposite process. 134-38 pts. of the two salts are dissolved if a mixture of the salts is treated with H 2 at 1875. (Karsten.) 100 pts. H 2 dissolve 39 "34 pts. KN0 3 and 94*60 pts. NaN0 3 , or 133*94 pts. of the two salts at 20. (Nicol, Phil. Mag. (5) 13. 385.) Solubility of mixtures of KN0 3 and NaNO 3 . NViNi.V. in mixture before solution Total amt. mixed salts dis- solved iu 100 pts. H 2 Oat20 Pts. NaNO 3 dis- solved Pts. KXa 3 dis- solved 7 NaNOs in mixture after solu- tion and evap. to dryness 100 86'8 86-8 100 90 109-6 96-4 13-2 88 80 136-5 98-0 38-5 71-8 70 136-3 ... ... 60 137-6 90-0 47-6 65-4 50 106-1 66-0 40-1 62-2 45-7* 88-0 53-3 34-7 60-6 40 81-1 45-6 35-6 56-2 30 73*5 ... 20 54-1 20-8 33-3 38-5 10 40-9 9-4 31-5 22-9 33-6 33-6 * NaXO 3 +KXO 3 . (Carnelley and Thomson, Chern. Soc. 53. 782.) 100 pts. H 2 dissolve 28 "92 pts. KX0 3 , 53'68 pts. JsTa~X0 3 , and 26 '44 pts. NaCl at 15 "6, and solution has sp. gr. = 1'44. (Page and Keightley, Chern. Soc. (2) 10. 566.) KX0 3 and KC1. 100 pts. H 2 dissolve pts. of the two salts : 1 At 12-9 At 15-3 KX0 3 . . ! 18-8 18-9 KC1. . . 1 28-5 29-8 (Kopp.) 100 pts. H 2 dissolve 315 '2 pts. KC1 and 19-1 pts. KX0 3 at 20-0. (Riidortf, B. 6. 484.) 100 pts. HoO dissolve 18 '95 pts. KX0 3 + 32-84 pts. KC1, or 51 79 pts. of the mixed salts at 20. (Nicol, Phil. Mag. (5) 31. 385.) Solubility of KC1 with addition of KX0 3 at 17-5. Sp.gr. 100 ccm. of solution contain g. KC1 H 2 O KX0 3 1-1730 29-39 87*85 1-1980 27-50 85-68 6-58 1-2100 27-34 8476 8-83 1-2250 26-53 83*58 12-48 1-2360 25-98 82-84 14-83 1-2390 25-96 82-65 15-22 1-2388 25-95 82-43 15-49 1-2410 26-24 82-63 15-33 KN"0 3 separated out in last four solutions. 258 NITRATE, POTASSIUM Solubility of KN0 3 with addition of KC1 at 20-5. Sp. gr. 100 ccm. of solution contain g. KNO 3 H 2 O KC1 1-1625 27-68 88-51 1-1700 24-39 87-89 4-72 1-1765 22-44 87-47 774 1-1895 20-23 86-48 12-23 1-1983 18-96 85-69 15-15 1-2150 17-67 84-23 19-61 1-2265 17-11 83-40 22-17 1-2400 1679 82-24 24-96 (Bodlander, Z. phys. Ch. 7. 359.) Sol. in sat. NH 4 Cl + Aq. Solution thus obtained contains 43 '07 pts. mixed salts, or 100 pts. H 2 dissolve 75 '66 pts. mixed salts, viz. 38-62 pts. KN0 3 and 39 '84 pts. NH 4 C1. (Karsten.) (See also NH 4 C1. ) Sol. in sat. BaCl 2 + Aq with pptn. of Ba(N0 3 ) 2 . KN0 3 and NaCl. NaCl is sol. in sat. KN0 3 + Aq, and the mixed solution is capable of dissolving more KN0 3 . An amount of H 2 0, which, when pure, could only dissolve 100 pts. KN0 3 , can in this way be made to take up 152 '64 pts. (Long- champ, A. ch. (2) 9. 8.) Sol. in sat. NaCl + Aq. 100 pts. H 2 dissolve : Longchamp 4 (1) Rudorff Page and Keightley 15-6 (4) 14 18 (2) (3) NaCl KN0 3 35-96 26-01 38-5 38-9 287 36-1 39-57 32-32 61-97 67-2 75-0 71-89 NaCl KN0 3 Karsten 18-75 Mulder At b.-pt. (8) "(5) (6) (7) 36-53 38-25 39'19 33-12 29-45 38'53 37-9 306-7 69-65 6770 7772 344-6 1, 2, 3, 4, and 8. Both salts in excess. 5. Sat. NaCl + Aq treated with KN0 3 . e'. Sat. KN0 3 + Aq treated with NaCl. 7. The two salts simultaneously treated with HoO. 100 pts. H 2 dissolve 31 '44 pts. KN0 3 , 139 pts. KC1, and 38 "58 pts. NaCl at 15 '6, and solution has sp. gr.-l'33. (Page and Keightley.) KN0 3 and K 2 S0 4 . Sat. KN0 3 + Aq dissolves some K 2 S0 4 , and sat. K 2 S0 4 + Aq slowly dissolves some KN0 3 without pptn., but K 2 S0 4 is afterwards pptd. (Karsten.) 100 pts. H 2 dissolve : Mulder Karsten Kopp Mulder 18-75 18-75 20 40 18-7&" (1) (2) (3) (4) (5) KN0 3 29-90 29-42 26-9 59-35 K 2 S0 4 4-0 6'6 575 10-8 2. H 2 sat. with KN0 3 and K 2 S0 4 simul- taneously, or to a sat. solution of one salt the other was added. 3 and 4. H 2 sat. with both salts simultane- ously. Mulder doubts the results of 3 and 4. Slowly sol. in sat. Na 2 S0 4 at first without pptn., but afterwards K 2 S0 4 or NaS0 4 separates out. Sol. in sat. CuS0 4 + Aq, forming a double salt, which soon separates out. Very slowly and slightly sol. in MgS0 4 + Aq with pptn. of MgS0 4 . Sol. in sat. ZnS0 4 + Aq with pptn. of double salt. (Karsten.) Sol. in sat. KC10 3 + Aq, from which solution it is not pptd. by salts which would ppt. it from aqueous solution. (Karsten.) Insol. in absolute alcohol ; in dilute alcohol it dissolves proportional to the amount of H 2 present, but always less is dissolved than the H 2 would dissolve by itself. (Gerardin.) 100 pts. alcohol containing % by weight of alcohol dissolve pts. KN0 3 at 15. 10 20 30 40 50 60 80 % alcohol 13-2 8-5 5-6 4-3 2'8 17 0'4 pts. KNO> (Schiff, A. 118. 365.) Solubility in 100 pts. alcohol at t. D = sp. gr. of alcohol ; S = solubility. D = 0-9904 D = 0-9848 D = 0-9793 D = 0'9726 t S t S t 10 10 13 18 20 31 34 40 41 50 53 61 62 S t S 12 21 33 43 53 61 62 18-1 25-0 40-4 58-6 79-1 94-5 957 12 21 36 41 56 14-6 217 37-8 45-0 72-9 10-20 10-19 1174 14-52 16-35 25-81 28-63 36-66 37-20 50-14 56-01 72-24 73-36 14 25 34 44 47 60 8-8 13-6 20-3 31-3 34-2 52-3 D = 0-9573 D = 0-9390 D = 0-8967 D = 0-8429 t" S t" S t S t S 14 25 33 44 57 65 5-4 9-0 13-2 19-1 29-1 36-2 16 24 40 51 60 64 4-13 6-00 10-94 16-51 21-54 24-22 12 1-61 33 3-62 47 577 57 6-97 15 22 40 54 60 0-29 0-39 0-62 078 1-10 (Qerardin, A. ch. (4) 5. 151.; NITRATE, SILVER 259 Solubility of KN0 3 in alcohol at 18. Sp. gr. 100 ccm. contain g. Alcohol Water KN0 3 1-1475 89-63 25-12 1-1085 3-30 87-44 20-11 1-1010 5-24 86-26 18-60 1-0805 8-69 83-18 16-18 1-0655 14-08 77-93 14-54 1-0490 16-27 76-36 12-27 1-0375 19-97 72-93 10-85 0-9935 28-11 64-74 6-50 0-9585 37-53 54-21 4-11 0-9456 42-98 48-15 3-37 0-9050 51-23 27-32 1-95 0-8722 61-65 2474 0-83 0-8375 69-60 13-95 0-20 (Bodlander, Z. phys. Ch. 7. 316.) Almost insol. in ether. (Braconnot.) 100 pts. glycerine (sp. gr. 1'225) dissolve 10 pts. KN0 3 . (Vogel, N. Rep. Ph. 16. 557.) Very si. sol. in acetone. (Krug and M'Elroy.) Potassium ^hydrogen nitrate, KN0 3 , 2HN0 3 . Decomp. by H 2 0. (Ditte, A. ch. (5) 18. 320.) Potassium silver nitrate, KN0 3 , AgN0 3 . Sol. in H 2 0. (Russell and Maskelyne, Roy. Soc. Proc. 26. 357.) 3KN0 3 , AgN0 3 . Sol. in H 2 0. (Rose, Pogg. 106. 320.) Potassium nitrate phosphomolybdate. See Phosphomolybdate nitrate, potassium. Potassium thorium nitrate, 4KN0 3 , Th(N0 3 ) 4 . Very sol. in H 2 and alcohol. (Berzelius.) Potassium nitrate sulphate, KN0 3 , KHS0 4 . Decomp. by H 2 and alcohol. ( Jacquelain. ) Potassium nitrate sulphotungstate, 2KN"0 3 , K 2 WS 4 (?). Very sol. in hot or cold H 2 0. Insol. in alcohol. (Berzelius.) Potassium nitrate tungstate (?). 100 pts. boiling H 2 dissolve 5 pts. salt. (Storer's Diet. p. 393.) Potassium nitrate zinc iodide. Permanent. Easily sol. in H 2 0. Insol. in alcohol. ( Anthon. ) Rhodium nitrate, Rh(N0 3 ) 3 + 2H 2 (?). Deliquescent. Sol. in H 2 0. Insol. in alcohol. (Glaus. ) Rubidium nitrate, RbN0 3 . 100 pts. H 2 dissolve 20 '1 pts. at ; 43 '5 pts. at 10. (Bunsen.) Easily sol. in HN0 3 . (Schultz, Zeit. Ch. (2) 5. 531.) Rubidium hydrogen nitrate, 2RbN0 3 , 5HN0 3 . Decomp. by H 2 0. Known only in solution in HN0 3 + Aq. (Ditte, A. ch. (5) 18. 320.) Rubidium silver nitrate, RbN0 3 , AgN0 3 . Sol. in H 2 0. (Russell and Maskelyne, Roy. Soc. Proc. 26. 357.) Samarium nitrate, Sm(N0 3 ) 3 + 6H 2 0. Easily sol. in H 2 0. (Cleve, C. N. 48. 74.) Scandium nitrate, basic. Sol. in H 2 0. (Nilson, B. 13. 1444.) Scandium nitrate, Sc(N0 3 ) 3 (?). Very sol. in H 2 0. Silver nitrate, AgN0 3 . 100 pts. H 2 at 11 dissolve 127 '7 pts. (Schnauss, Arch. Pharm. (2) 82. 260.) 100 pts. H 2 dissolve at : 19-5 54 85 110 121-9 227-3 500 714 1111 pts. AgN0 8 . (Kremers, Pogg. 92. 497.) 100 pts. H 2 dissolve 1622 '5 pts. at 125, and 1941*4 pts. at 133. (Tilden and Shen- stone, Phil. Trans. 1884. 23.) Sat. solution boils at 125. (Kremers.) Sp. gr. of aqueous solution, according to C. K. = Chemiker Kalender ; K. M. = Kohl- rausch by Mendelejeff (Z. anal. 27. 284) ; and K = Kohlrausch (W. Ann. 1879. 1), containing : 5 10 15 20 25%AgN0 3 , O.K. 1-041 1-080 1-125 1-160 1-206 K.M.I -0440 1-0901 ... 1-1969 ... K. 1-0422 1-0893 1-1404 1-1958 1'2555 30 35 40 45 50 %AgN0 3 . C.K. 1-251 K.M 1-4791 K. 1-3213 1-3945 1-4773 1'5705 1*6745 Sol. in 500 pts. HN0 3 ; 30 pts. 2HN0 3 , 3H 2 at 20 ; and 6 pts. 2HN0 3 , 3H 2 at 100. (Schultz, Zeit. Ch. 1869. 531.) Sol. in 4 pts. boiling alcohol. Sol. in 10 pts. alcohol. (Dumas.) Sol. in 11 pts. alcohol of 90 %. (Hager.) Solubility in 100 pts. alcohol of given vol. % att. t 95% 80 % 70% 60% 15 3-8 10-3 22-1 30-5 50 7-3 58-1 75 18-3 42-0 89-0 t 50% 40% 30% 20% 10% 15 35-8 56-4 73-7 107 158 50 98-3 214 75 160 ... 340 (Eder, J. pr. (2) 17. 44.) 100 pts. absolute methyl alcohol dissolve 3-72 pts. at 19 ; 100 pts. absolute ethyl alcohol dissolve 3'1 pts. at 19. (de Bruyn, Z. phys. Ch. 10. 783.) Only traces are sol. in absolute alcohol or ether. 100 pts. of a mixture of 1 vol. alcohol (95 vol. %) + 1 vol. pure ether dissolve 1 '6 pts. 260 NITRATE AMMONIA, SILVER AgN0 3 at 15 ; 100 pts. of 2 vols. alcohol + 1 vol. ether dissolve 2 '3 pts. AgN0 3 . 100 pts. H 2 sat. with ether dissolve 88 '4 pts. AgN0 3 at 15. (Eder, I.e.) Sol. in ether. Sol. in glycerine. Sol. in acetone. (Krug and M'Elroy, J. Anal. Ch. 6. 184.) Silver nitrate ammonia, AgN0 3 , NH 3 . Partly sol. in H 2 ; rather sol. in alcohol. SI. sol. in ether. (Reychler, B. 16. 990.) AgN0 3 , 2NH 3 . Easily sol. in H 2 0. (Mit- scheiiich.) AgN0 3 , 3NH 3 . Completely sol. in H 2 0. (Rose, Pogg. 20. 153.) Silver nitrate antimonide, AgN0 3 , Ag 3 Sb. Decomp. at once by H 0. (Poleck and Thiimmei, B. 16. 2435.) Silver nitrate arsenide, AgN0 3 , Ag 3 As. Decomp. at once by H 2 0. (Poleck and Thiimmei. ) Silver nitrate bromide, AgN0 3 , AgBr. Decomp. immediately by H 2 or alcohol, with separation of AgBr. (Risse, A. 111. 39.) Silver nitrate chloride, AgN0 3 , AgCL Quickly decomp. with H 2 ; more slowly with absolute alcohol ; not decomp. by ether- alcohol. (Reichert, J. pr. 92. 237.) Silver nitrate iodide, AgN0 3 , Agl. Cold H 2 separates Agl, which redissolves on heating. (Stiirenberg, Arch. Pharm. (2) 143. 12.) Sol. in little H 2 without decomp. ; more H 2 separates Agl. (Kremers, J. pr. 71. 54.) Insol. in absolute alcohol. Sol. in cone. AgN0 3 + Aq. 2AgN0 3 , Agl. Sol. in little but decomp. by more boiling H 2 0. (Risse, A. 111. 39.) Silver nitrate phosphide, 3AgN0 3 , Ag 3 P. (Warren, C. N. 56. 113.) Silver nitrate silicide, 4AgN0 3 , Ag 4 Si. (Buchner, Ch. Ztg. 9. 484.) Silver nitrate silicate, 2AgN0 3 , 3Ag 4 Si0 4 . Sol. in dil. HN0 3 + Aq, but Si0 2 separates out after heating. (Rousseau and Tite, C. R. 114. 294.) Silver nitrate sulphide, AgN0 3 , Ag 2 S. Decomp. by H 2 0. (Poleck and Thiimmei, B. 16. 2435.) Sodium nitrate, NaN0 3 . Deliquescent in moist air. Sol. in H 2 with absorption of heat. 75 pts. NaNO 3 mixed with 100 pts. H 2 at 13 "2 lower the temperature 18-5. (Riidorff, B. 2. 68.) Sol. in 1-58 pts. H 2 O at - 6. \ 0-46 +119. / 2-89 2. ) 1-12 28. I 0-79 47.) 1-14 18-5. 1-136 18-75. 1-16 20. ( 2 18-75. (Marx.) (Osann.) (Kopp.) (Karsten.) (Schiff, A. 109. 326.) (Abl.) 100 pts. H 2 O at t dissolve pts. NaNO 3 . t Pts. NaNO 3 t Pts. NaNO 3 -6 10 16 20 30 40 68-80 79-75 84-30 87-63 89-55 95-37 102-31 50 60 70 80 90 100 120 111-13 119-94 129-63 140-72 153-63 168-20 225-30 (Poggiale, A. ch. (3) 8. 469.) 100 pts. H 2 O at 119 dissolve 150 pts. NaNO 3 , (Grif- fiths.) NaNO 3 +Aq sat. at 18'75 has 1-3769 sp. gr., and 100 pts. H 2 O have dissolved 88'001 pts. NaNO 3 . (Kar- sten.) NaNO 3 +Aq sat. in cold contains 33 '3 % NaN0 3 . (Four- croy.) NaNO 3 +Aq sat. at 12'5 contains 34 % NaNO 3 . (Has- senfratz.) 100 pts. H 2 O at 15-5 dissolve 33 pts. ; at 52, 100 pts. NaNO 3 . (Ure's Diet.) 100 pts. H 2 O dissolve pts. NaNO 3 at t. t Pts. NaN0 3 t Pts. NaNO 3 13-9 44-65 73-0 81-6 110-5 60-65 99-9 119-7 125-5 173-6 211-4 (Nordenskjold, Pogg. 136. 312.) 100 pts. H 2 dissolve pts. NaN0 3 at t. t Pts. NaN0 3 t Pts. NaNO 3 70-94 70 142-31 10 78-57 80 153-72 20 87-97 90 165-55 30 98-26 100 178-18 40 109-01 110 194-26 50 120-00 119-4 213-43 60 131-11 (Maumene, C. R. 58. 81.) 100 pts. NaN0 3 + Aq sat. at 14 contain 43 -88 pts. NaN0 3 ; at 15, 44 '53 pts. NaN0 3 . (v. Hauer, J. pr. 98. 137.) 100 pts. H 2 dissolve 84 -21 -84 '69 pts. NaN0 3 at 15 '6, and sat. solution has sp. gr. 1 '337-1 "378. (Page and Keightley, Chem. Soc. (2) 10. 556). 100 pts. H 2 dissolve pts. NaN0 3 at t. t Pts. NaNO 3 t Pts. NaNO 3 66-69 18 83-62 2 70-97 21 85*73 4 71-04 26 90-33 8 75-65 29 92-93 10 76-31 36 99-39 13 79-00 51 113-63 15 80-60 68 125-07 Solubility is constant from to -157, when NaN0 3 + 7H 2 separates out. (Ditte, C. R. 80. 1164.) NITRATE, SODIUM 261 Solubility in 100 pts. H 2 at t. (Maumene); 211-4 pts. NaNO 3 (Nordenskjold); 224' pts. NaNO 3 (Legrand) ; 150 pts. NaNO 3 (Griffiths). if Pts. NaNO 3 t Pts. NaNO 3 Sp. gr. of NaN0 3 + Aq at 19 '5. i 72'9 74-7 60 61 122 124 % NaN0 3 Sp. gr. % NaNO 3 Sp. gr. 2 75-4 62 125 12-057 1-0844 39-860 1-3176 3 76-0 63 126 22-726 1-1667 46-251 1-3805 4 76-7 64 127 31-987 1-2450 5 77-4 65 128 6 7 78-1 787 66 67 130 131 (Kremers, Pogg. 95. 120.) 8 79-4 68 132 Sp. gr. of NaN0 3 + Aq at 20 '2. 9 80'1 69 133 10 80-8 70 134 % NaNO 3 Sp. gr. % NaN0 3 Sp. gr. 11 81 "4 1 ^fi 12 Ol 4: 82-0 . 72 loo 137 1 1-0065 26 1-1904 13 827 73 138 2 1-0131 27 1-1987 14 83-4 74 139 3 1-0197 28 1-2070 15 84-0 75 140 4 1-0264 29 1-2154 16 847 76 142 5 1-0332 30 1-2239 17 85-4 77 143 6 1-0399 31 1-2325 18 86-1 78 145 7 1-0468 32 1-2412 19 86-8 79 146 8 1-0537 33 1-2500 20 87'5 80 148 9 1-0606 34 1-2589 21 88-3 81 149 10 1-0676 35 1-2679 22 89'0 82 151 11 1-0746 36 1-2770 23 897 83 152 12 1-0817 37 1-2863 24 90-3 84 153 13 1-0889 38 1-2958 25 91-0 85 155 14 1-0962 39 1-3055 26 91-8 86 156 15 1-1035 40 1-3155 27 92-5 87 158 16 1-1109 41 1-3225 28 93'2 88 159 17 1-1184 42 1-3355 29 94-0 89 161 18 1-1260 43 1-3456 30 94-9 90 162 19 1-1338 44 1-3557 31 96-0 91 164 20 1-1418 45 1-3659 32 96 92 166 21 1-1498 46 1-3761 33 97 93 168 22 1-1578 47 1-3864 34 98 94 169 23 1-1659 48 1-3968 35 99 95 171 24 1-1740 49 1-4074 36 100 96 173 25 1-1822 50 1-4180 37 100 97 175 38 101 98 177 (SchifF, calculated by Gerlach, Z. anal. 39 102 99 178 8. 280.) 40 41 102 103 100 101 180 182 Sp. gr. of NaN0 3 + Aq at 18. 42 43 104 105 102 103 184 186 % NaNO 3 Sp. gr. % NaNOg Sp. gr. 44 45 46 106 107 108 104 105 106 188 190 192 5 10 1-0327 1-0681 20 30 1-1435 1-2278 47 48 109 110 107 108 194 196 (Kohlrausch, W. Ann. 1879. 1.) 49 50 51 111 112 113 109 110 111 198 200 202 Sp. gr. of NaN0 3 + Aq at 20, containing mols NaN"0 3 in 100 mols. H 2 0. 52 53 114 115 112 113 204 207 Mols. NaN0 3 Sp. gr. 54 116 114 209 2 5 1-05980 1-13813 55 117 115 211 56 118 116 213 57 58 119 120 117 117-5 215 216-4 (Nicol, Phil. Mag. (5) 16. 122.) 59 121 The saturated solution boils at 117'5. (Mulder.) 118-9. (Griffiths.) (Mulder, Scheik. Verhandel. 1864. 83.) 119. (Marx.) 119-4. (Maumene.) Sat. solution at b.-pt. contains 216-4 pts. NaNO } Mulder); 218 '5 pts. NaNO 3 (Marx); 213'4 pts. NaNO 3 119-7. (Nordenskjold. 121. (Legrand.) 122-123. (Kremers.) 262 NITRATE, SODIUM Forms a crust at 118, and contains 194 pts. NaN0 3 to 100 pts. H 2 ; highest temp, observed, 120-5. (Gerlach, Z. anal. 26. 427.) B.-pt. of NaN0 3 + Aq containing pts. NaN0 3 to 100 pts.H 2 0. G = according to Gerlach (Z. anal. 26. 443) ; L = according to Legrand (A. ch. (2) 59. 431). B-.pt. G L B.-pt. G L 101 9 9-3 112 121-5 120-3 102 18-5 187 113 133 131-3 103 28 28-2 114 144-5 142-4 104 38 37-9 115 156 153-7 105 48 477 116 168-5 165-2 106 58 57-6 117 181 176-8 107 68 677 118 194 188-6 108 78-5 77-9 119 207-5 200-5 109 89 88-3 120 222 212-6 110 99-5 98-8 121 224-8 111 110-5 109-5 50 pts. NaN0 3 mixed with 100 pts. snow at - 1 give a temp, of - 17 '5. (Riidorff, Pogg. 122. 337.) Sol. in 66 pts. HN0 3 ; in 32 pts. 2HN0 3 , 3H 2 at 32 ; in 4 pts. 2HN0 3 , 3H 2 at 123. (Schultz, Zeit. Ch. (2) 5. 531.) Solubility in NaOH + Aq at 0. NaN0 3 = mols. NaN0 3 (in nig.) in 10 ccm. of solution ; Na 2 = mols. Na 2 (in nig.) in 10 ccm. of solution. NaN0 3 Na 2 NaNOg +Na 2 Sp. gr. 66-4 66-4 1-341 62-5 2-875 65-375 1-338 57-15 6-1 63-25 1-333 47-5 1275 60-25 1-327 29-5 26 55-5 1-326 17-5 39 56-5 1-332 13-19 45-875 59-065 1-356 6-05 60-875 66-925 1-401 (Engel, Bull. Soc. (3) 6. 16.) Sol. in sat. KN0 3 + Aq ; solution thus made at 18 contains 54 "33 % mixed salt, or 100 pts. H 2 dissolve 118 '98 pts. mixed salt, viz. 89 '53 pts. NaN0 3 and 29 '45 pts. KN0 3 . (See KN0 3 .) Sol. in sat. NH 4 N0 3 + Aq. (See NH 4 N0 3 . ) Sol. in sat. Ba(N0 8 ) 2 + Aq, with partial pptn. ofBa(N0 3 ) 2 . (See Ba(N0 3 ) 2 .) Sol. in sat. Pb(N0 3 ) 2 + Aq, with subsequent pptn. of Pb(N0 3 ) 2 . Sol. in sat. KC1 + Aq, with formation of KN0 3 . Sol. in sat. NH 4 Cl + Aq. Very rapidly sol. in sat. BaCl 2 + Aq with pptn. of Ba(N0 3 ) 2 . Easily sol. in K 2 S0 4 + Aq without pptn. Easily sol. in Na 2 S0 4 + Aq without pptn. Sol. in MgS0 4 + Aq, at first to a clear solu- tion, but afterwards NaN0 3 is pptd. Very sol. in sat. CuS0 4 + Aq, but double sul- phate separates out. Very sol. in ZnS0 4 + Aq with pptn. of double sulphate. (Karsten.) NaN0 3 + Sr(N0 3 ) 2 . If Sr(N0 3 ) 2 + Aq sat. at 14-5 is sat. with NaN0 3 , 100 pts. H 2 dissolve : NaN0 3 . Sr(N0 3 ) 2 . 837 66'4 51-0 62 : 117-4 (Mulder.) NaCl + NaN0 3 . 100 pts. H 2 dissolve 24 '91 pts. NaCl + 54'55 pts. NaN0 3 = 79-46 pts. of the two salts at 20. (Nicol, Phil. Mag. (5) 31. 386.) 100 pts. H 2 dissolve at 18 75: l 2 3 4 5 6 NaCl . 36 25-22 24-96 24-98 24-6 NaN0 3 ... 52-89 52-84 52-82 86-6 56-8 2. Sat. NaCl + Aq treated with NaN0 3 . 3. Sat. NaN0 3 + Aq treated with NaCl. 4. Simultaneous treatment of the two salts by H 2 0. (Karsten.) 6. Excess of both salts + Aq warmed and cooled to 20. (RiidorfF, B. 6. 484.) Solubility of NaCl with addition of NaN0 3 at 15 '5. Sp. gr. 100 ccm. contain in g. NaCl H 2 NaN0 3 1-2025 3178 88-47 o-oo 1-2305 27-89 87-63 7-53 1-2580 26-31 86-25 13-24 1-2810 23-98 82-66 21-58 1-3090 22-30 80-42 28-18 1-3345 20-40 79-25 33-80 1-3465 19-40 77-37 37-88 1-3465 19-67 77-34 37-64 NaN0 3 separated in last two solutions. Solubility of NaN0 3 with addition of NaCl at 15. Sn sr 100 ccm. contain in g. NaN0 3 H 2 NaCl 1-3720 62-38 74-82 1-3645 56-56 75-69 4-00 1-3585 52-09 75-71 7-24 1-3530 47-08 76-86 11-36 1-3495 42-66 76-96 15-33 1-3485 39-90 77-14 17-81 1-3485 38-73 77-15 18-97 1-3485 38-02 77-49 19-34 NaCl separated in last two solutions. (Bodlander, Z. phys. Ch. 7. 360.) NITRATE, STRONTIUM 263 dissolve 10-5 pts. NaNO 3 ; gr., 0*38 pt. ; insol. in 100 pts. alcohol of 0-9 sp. gr. d 0-872 sp. gr., 6 pts.; 0'834 sp. alcohol of 0-817 sp. gr. (Kirwan.) 100 pts. alcohol of 61 '4 % by weight dissolve 21 -2 pts. NaNO 3 at 26. (Pohl, W. A. B. 6. 600.) 100 pts. alcohol of 62 Tr. dissolve 7'4 pts. NaNO 3 at 19-5. 100 pts. alcohol of 93 Tr. dissolve 0'93 pt. NaNO 3 at 19-5. (Wittstein.) 100 pts. alcohol containing % alcohol by weight dissolve pts. NaN0 3 at 15, or 100 pts. solution contain % NaN0 3 : 10 20 30 40 60 80 % alcohol. 65-3 48-8 35-5 25 "8 11 "4 2 "8 pts. NaN0 3 . 39-5 32-8 26-2 20-5 10-2 27 % NaN0 3 . (Schiff.) 100 pts. wood-spirit of 40 % dissolve 32 P 3 pts. NaN0 3 . (Schiff, A. 118. 365.) Solubility in alcohol at 16 '5. Sp. gr. 100 ccm. contain in g. Alcohol Water ]SaNO 3 1-3745 75-25 62-20 1-3162 6-16 70-82 54-64 1-2576 11-60 68-10 46-06 1-2140 16-49 65-04 39-87 1-1615 22-17 61-67 32-31 1-0855 32-22 52-92 23-41 1-0558 37-23 48-50 19-85 1-0050 43-98 4278 1374 0-9420 52-60 32-13 9-47 0-9030 60-00 25-65 4-65 0-8610 63-16 21-31 1-63 (Bodlander, Z. phys. Ch. 7. 317.) 100 pts. absolute methyl alcohol dissolve 0-41 pt. at 25. 100 pts. absolute ethyl alcohol dissolve '036 pt. at 25. (de Bruyn, Z. phys. Ch. 10. 783.) Very si. sol. in acetone. (Krug and M'Elroy, J. Anal. Ch. 6. 184.) Sol. in glycerine. Sodium nitrate sulphate, NaN0 3 , Na 2 S0 4 + |H 2 0. Sol. in H 2 0. (Marignac, Ann. Min. (5) 12. 44.) Strontium nitrate, Sr(N0 3 ) 2 . Sol. in 5 pts. cold, and 0'5 pt. boiling H 2 O. (Dumas.) 2 0-5 (Wittstein.) 2 ,, at 18-75. (Abl.) 100 pts. sat. S^NOs^+Aq at 19-20 contain 45-49 pts. Sr(NO 3 > 2 . (v. Hauer, J. pr. 98. 137.) 1 pt. S^NOs^ dissolves in pts. H 2 O at t. t Pts. H 2 t Pts. H 2 O t Pts. H 2 10 2-32 1-73 25 50 1-10 1-02 75 100 0-99 0-94 (Kremers, Pogg. 92. 499.) 100 pts. H 2 dissolve at 0, 39 '5 pts. Sr(N0 3 ) 2 (Mulder) ; atO, 40'16pts. Sr(N0 3 ) 2 (Poggiale) ; atO, 43-1 pts. Sr(N0 3 ) 2 (Kremers) ; at 100, 101 '1 pts. Sr(N0 3 ) 2 (Mulder) ; at 100, 106 '5 pts. Sr(N0 3 ) 2 (Kremers, Pogg. 92. 499) ; at 100, 119-25 pts. Sr(N0 3 ) 2 (Poggiale). Solubility in 100 pts. H 2 at t. to Pts. o Pts. f Pts. Sr(N0 3 ) 2 t Sr(N0 3 ) 2 li Sr(N0 3 )2 39'5 36 907 73 96-0 1 41-2 37 90-8 74 96-2 2 42-8 38 91-0 75 96-4 3 44-3 39 91-1 76 96-5 4 45-8 40 91-3 77 967 5 47-3 41 91-4 78 96-8 6 48-8 42 91-5 79 97-0 7 50-3 43 91-6 80 97-2 8 51-8 44 91-8 81 97-4 9 53-4 45 91-9 82 97-5 10 54-9 46 92-1 83 97-7 11 56-5 47 92-2 84 97-9 12 58-0 48 92-3 85 98-0 13 59-6 49 92-5 86 98-2 14 61-2 50 92-6 87 98-4 15 62-8 51 92-8 88 98-6 16 64-4 52 92-9 89 98-8 17 66-0 53 93-1 90 99'0 18 67-6 54 93-2 91 99-2 19 69'2 55 93'4 92 99-4 20 70-8 56 93-5 93 99'6 21 72-5 57 93-6 94 99-8 22 74-1 58 93-8 95 lOO'O 23 75-8 59 93-9 96 100-2 24 77'4 60 94-0 97 100-4 25 79-0 61 94-2 98 100-6 26 80'7 62 94-3 99 100-9 27 82-4 63 94-5 100 101-1 28 84-1 64 94-6 101 101-3 29 85-8 65 94-8 102 101-6 30 87-6 66 94-9 103 101-8 31 89-5 67 95-1 104 102-0 31-3 90-0 68 95-2 105 102-3 32 90-2 69 95-4 106 102-5 33 90-3 70 95-6 107 102-7 34 90'5 71 957 107'9 102-9 35 90-6 72 95-9 (Mulder, Sc heik. Verhandel. 1864. 114.) Sp. gr. of Sr(N0 3 ) 2 + Aq at 19 '5. Sr(N0 3 )2 Sp. gr. Sr(N0 3 ) 2 Sp. gr. 1 1-009 21 1-192 2 1-017 22 1-202 3 1-025 23 1-213 4 1-034 24 1-223 5 1-041 25 1 -233 6 1-049 26 1-246 7 1-059 27 1-257 8 1-068 28 1-268 9 1-076 29 1-280 10 1-085 30 1-292 11 1-095 31 1-304 12 1-103 32 1-316 13 1-113 33 1-330 14 1-122 34 1-340 15 1-131 35 1-354 16 1-140 36 1-367 17 1-150 37 1-381 18 1-160 38 1-395 19 1-170 39 1-410 20 1-181 40 1-422 (Kremers, calculated by Gerlach, Z. anal. 8. 286.) 264 NITRATE, TELLURIUM Sp. gr. of Sr(N0 3 ) 2 + Aq at 23 "4. a = no. of grms. x | mol. wt. dissolved in 1000 grins. H 2 0; b = sp. gr. if a is Sr(N0 3 ) 2 , 4H 2 0, ^ mol. wt. =142 ; c = sp. gr. if a is Sr(N0 3 ) 2 , I mol. wt. = 106. a b c a b c 1 1-078 1-081 5 1-303 1-350 2 1-146 1-155 6 1-345 1-407 3 1-205 1-224 7 1-383 4 1-257 1-284 ... ... ... (Favre and Valson, C. R. 79. 968.; Sp. gr. of Sr(N0 3 ) 2 + Aq at 17 '5. Sr(N0 3 ) 2 Sp. gr. Sr(N0 3 ) 2 Sp. gr. 10 20 30 1-083 1-180 1-294 40 Sat. sol. 1-422 1-52 (Gerlacli, Z. anal. 27. 283.) B.-pt. of Sr(N0 3 ) 2 + Aq, containing pts. Sr(N0 3 ) 2 to 100 pts. H 2 0. B.-pt. Pts. Sr(NO 3 > 2 B.-pt. Pts. Sr(N0 3 ) 2 100-5 12 104 81-4 101 24 104'5 89-6 101-5 34-8 105 97-6 102 45 105-5 105 102-5 54-4 106 112-2 103 63-6 106-3 116-5 103*5 72-6 (Gerlach, Z. anal. 26. 448.) Sat. Sr(N0 3 ) 2 + Aq boils at 106 '8, and con- tains 112-9 pts. salt to 100 pts. H 2 0. (Grif- fiths.) Sat. Sr(N0 3 ) + Aq boils at 107 '5-108 (Kre- mers) ; 107 '9 ("Mulder). Sat. Sr(N0 3 ) 2 + Aq forms a crust at 106 '3, and contains 116 '5 pts. Sr(N0 3 ) 2 to 100 pts. H ; highest temp, observed was 107. (G~erlach, Z. anal. 26. 427.) Very si. sol. in cone. HN0 3 or HCl + Aq. (Wurtz.) Insol. in HN0 3 + Aq. (Schultz, Zeit. Ch. (2) 5. 537.) Sol. in 8500 pts. absolute alcohol. Sol. in 60,000 pts. of a mixture of 1 pt. ether and 1 pt. alcohol. (Rose, Fogg. 110. 296.) Not completely insol. in boiling amyl alcohol, 30 com. dissolving about 1 mg. (Browning, Sill. Am. J. 143. 52.) Perfectly anhydrous Sr(N0 3 ) 2 is sol. in 83044 pts. absolute ether - alcohol (1:1). (Fresenius, Z. anal. 32. 190.) + 4H 2 0. Efflorescent. Tellurium nitrate, 4Te0 2 , N 2 Very hygroscopic. Easily decomp. by H 2 0. Sol. in HNO ;? + Aq, but more sol. when oil. than cone. (Klein and Morel, Bull. Soc. (2) 43. 205.) Terbium nitrate (?). SI. deliquescent. Thallous nitrate, T1N0 3 . 1 pt. T1N0 3 dissolves, Crookes ; L = Lamy : at 15 18 58 in 9-4 10-3 2'3 C L L Insol. in alcohol. according to C = 107 0-17 pts. H 2 0. L (Lamy.) Thallous nitrate, acid, T1N0 3 , 3HN0 3 . (Ditte.) Thallic nitrate, T1(N0 3 ) 3 + 6H 2 0, or 8H 2 0. Deliquescent. Sol. in H 2 0. Thorium nitrate, Th(N0 3 ) 4 + 12H 2 0. Very deliquescent, and sol. in H 2 and alcohol. Tin (Stannous) nitrate, basic, 2SnO, N 2 5 . Difficultly sol. with partial decomp. in H 2 0. (Weber, J. pr. (2) 26. 121.) Stannous nitrate, Sn(N0 3 ) 2 + 20H 2 0. Deliquescent, and easily decomp. (Weber, J. pr. (2) 26. 121.) Stannic nitrate, Sn(N0 3 ) 4 . Sol. in H 2 0, but decomp. very soon on standing. Stable in presence of cone. HN0 3 + Aq at 90, but decomp. at 100. (Monte- martini, Gazz. ch. it. 22. 384.) Titanium nitrate, 5Ti0 2 , N 2 5 + 6H 2 0. Sol. to a slight milkiness in cold H 2 0. Decomp. on boiling. (Merz, J. pr. 99. 157.) Uranyl nitrate, basic. Sol. in H 2 0. (Ordway, Sill. Am. J. (2) 26. 209.) Uranyl nitrate, U0 2 (N0 3 ) 2 . + 3H 2 0. Cryst. out of hot HN0 3 + Aq. (Ditte.) + 6H 2 0. Deliquescent in moist, and efflores- cent in dry air. Sol. in 0*5 pt. cold H 2 0, in 0"3 pt. absolute alcohol, and in 4'0 pts. ether. (Bucholz.) Melts in crystal H 2 at 59 '4. (Ordway.) Uranyl nitrate phosphate, U0 2 H 4 (P0 4 ) 2 , U0 2 (N0 3 ) 2 + 14H 2 0. Easily sol. in warm H 2 0, with gradual decomp. Easily sol. in HN0 3 , HC1, or H 2 S0 4 + Aq. Sol. in acetic acid with decomp. (Heintz, A. 151. 216.) Z>i'vanadyl nitrate (?). Known only in solution. Decomp. on evaporation. Ytterbium nitrate, basic. Easily sol. in H 2 0. Ytterbium nitrate (?). Very sol. in H 2 0. Yttrium nitrate, basic, 2Y 2 3 , 3N 2 5 + 9H 2 0. Deliquescent in moist air. Decomp. by cold or boiling H 2 0. Sol. in a solution of NITRILOSULPHONATE, POTASSIUM 265 yttrium nitrate without decomp. (Balir and Bunsen, A. 137. 1.) Yttrium nitrate, Y(N0 3 ) 3 + 6H 2 0. Easily sol. in H 2 0, alcohol, or ether. (Cleve.) Zinc nitrate, basic, 8ZnO, N 2 5 + 2H 2 0. Insol. in H 2 0. (Grouvelle, A. cli. 19. 137.) 6ZnO, N 2 5 + 8H 2 = Zn(N0. 5 ) 2 , 5Zn(OH) 2 + 3H 2 0. (Bertels, J. B. 1874. 274.) 5ZnO, N 2 5 + 5iH 2 0. Insol. in cold, some- what sol. in hot H 2 0. (Habermann. ) + 6H 2 0. Slowly decomp. by cold H 2 0. (Rousseau and Tite.) 9ZnO, 2N 2 5 . Decomp. by H 2 0. (Vogel and Reischauer, N. Jahrb. Pharm. 11. 137.) 4ZnO, N 2 5 + 2H 2 0. (Schindler. ) + 3H 2 0. (Ordway, Sill. Am. J. (2) 32. 14 ; Gerhardt, J. Pharm. (3) 12. 61.) 2ZnO, N 2 5 + 3H 2 0. Decomp. by H 2 0, and slowly by alcohol. (Wells, Am. Ch. J. 9. 304.) 7ZnO, 4N 2 5 + 14H 2 = 4Zn(N0 3 ) 2 ,' 3Zn(OH) 2 + 11H 2 0. (Bertels.) Zinc nitrate, Zn(N0 3 ) 2 + 6H 2 0. Very deliquescent. Easily sol. in H 2 or alcohol. Sp. gr. of Zn(N0 3 ) 2 + Aq. F.= according to Franz (J. pr. (2) 5. 274) at 17 '5 ; 0. = accord- ing to Oudemans (Z. anal. 7. 410) at 14 : 5 10 15 20 25%Zn(N0 3 ) 2 , F. 1-0496 1-0968 1-1476 1'2024 1-2640 0. 1-0425 1-087 1-1355 1-1875 1'245 30 35 40 45 50 %Zn(N0 3 ) 2 . F. 1-3268 1-3906 1-4572 1'5258 1'5984 0. 1-305 ............ Calculated for Zri(N0 3 ) 2 + 6H 2 : 10 20 30 40 50% salt. 1-05361 1-1131 1-1782 1-2496 1'3292 (Oudemans.) Melts in its crystal H 2 at 36 '4 (Ordway), 50 (Pierre) ; boils at 131 (Ordway). Zn(N0 3 ) 2 + Aq when heated soon decomposes, with formation of an insol. basic salt. (Ordway. ) Zinc nitrate ammonia, Zn(N0 3 ) 2 , 4NH 3 + H 2 0. Deliquescent. Sol. in H 2 0. (Andre, C. R. 100. 639.) 13ZnO, 3N 2 5 , 4NH 3 + 18H 2 0. Zirconium nitrate, basic, 3Zr0 2 , 2N 2 5 . Insol. in H 2 0. Zr0 2 , N 2 6 . Easily sol. in H 2 and alcohol. + H 2 0. As above. Zirconium nitrate, Zr(N0 3 ) 4 + 5H 2 (?). Deliquescent, and sol. in H 2 0. Nitric oxide, NO. See Nitrogen dioxide. Nitrilo^'metophosphoric acid, H 2 NP 3 7 = Known only in solution. (Mente, A. 248. 260.) Aluminum nitrilo^nraetaphosphate. Insol. in H 2 0, cone. HC1, or HN0 3 + Aq. Slowly sol. in boiling cone. H 2 S0 4 . Sol. in warm NaOH + Aq or Na 2 C0 3 + Aq without de- comp. Insol. in NH 4 OH + Aq. (Mente.) Barium , BaNP 3 7 . Insol. in dil. or cone, acids. Decomp. by boil- ing NaOH or Na 2 C0 3 + Aq. Insol. in NH 4 OH + Aq. (Mente.) Cadmium . Easily sol. in NH 4 OH + Aq, or boiling (NH 4 ) 2 C0 3 , or NaOH + Aq. (Mente. ) Calcium , CaNP 3 7 + H 2 0. Sol. in cone. HCl + Aq by long boiling, and more easily in fuming HN0 3 + Aq. Insol. in NH 4 OH or NaOH + Aq. (Mente. ) Chromium . Slowly sol. in dil. acids. Easily sol. in ammonia. Sol. in cold NaOH + Aq. (Mente.) Cobalt , CoNP 3 7 + H 2 0. Insol. in H 2 0. SI. sol. in dil. acids. Easily sol. in NH 4 OH + Aq. Decomp. by NaOH or Na 2 C0 3 + Aq. (Mente.) Copper . Sol. in NH 4 OH + Aq. Decomp. by NaOH + Aq. (Mente.) Ferric , Fe 2 (NPA) 3 - Insol. in cone, acids. Easily sol. inNH 4 OH + Aq or (NH 4 ) 2 C0 3 + Aq. Decomp. by NaOH or Na 2 C0 3 + Aq. (Mente.) Lead . Insol. in dil. acids. Sol. in fuming HN0 3 . Insol. in NH 4 OH + Aq. Sol. in NaOH + Aq. (Mente.) Magnesium , MgNP 3 7 + H 2 0. Slowly sol. in HCl + Aq. Sol. in H 2 S0 4 or fuming HN0 3 with addition of Br 2 . Insol. in NH 4 OH or (NH 4 ) 2 C0 3 + Aq. (Mente, ) Manganous , MnNP 3 7 + H 2 0. Insol. in dil. acids. Very si. sol. in NaOH + Aq. Insol. in Na 2 C0 3 or (NH 4 ) 2 C0 3 + Aq. Easily sol. in NH 4 OH + Aq. (Mente. ) Mercurous , Hg 2 NP 3 7 . Insol. in dil. acids, NH 4 OH, NaOH, or (NH 4 ) 2 C0 3 + Aq. Easily sol. in fuming HN0 3 . (Mente.) Nickel , NiNP 3 7 + H 2 0. Insol. in dil. acids, NH 4 OH, or (NH 4 ) 2 C0 3 + Aq. (Mente.) Zinc . Easily sol. in NH 4 OH, NaOH, or (NH 4 ) 2 C0 3 + Aq. (Mente.) Nitrilosulphonic acid, N(S0 3 H) 3 . Not known in free state. (Raschig, A. 241. 161.) Potassium nitrilosulphonate, N(S0 3 K) 3 + 2H 2 0. Soluble in H 2 0. (Raschig, A. 241. 161.) Is identical with "potassium ammon^n'sul- phonate " of Glaus. 266 NITRILOSULPHONATE, POTASSIUM SODIUM Insol. in cold H 2 (Glaus) ; sol. in 50 pts. H 2 at 23 (Fremy) ; in H 2 at scarcely 40 without change. Decomp. by boiling. (Glaus. ) Potassium sodium nitrilosulplionate, N(S0 3 K) 2 (S0 3 Na). Nearly insol. in cold H 2 0. (Raschig, A. 241. 161.) Sodium nitrilosulphonate, N(S0 3 Na) 3 . Not isolated on account of its extreme solubility in H 2 0. (Raschig, A. 241. 161.) Nitritocobaltic chloride. Sol. in 200 pts. cold H 2 0. (Jorgensen, Z. anorg. 5. 172.) Nitritoplatincfo'amine nitrate, (N0 2 ) 2 Pt(N 2 H 6 N0 3 ) 2 . Sol. in cold H 2 with decomp. ; violently decomp. on warming. (Hadow, Chem. Soc. (2) 4. 345.) Nitritopurpureocobaltic comps. See Xanthocobaltic comps. Nitritopurpureorhodium comps. See Xanthorhodium comps. Nitro cobalt, Co 2 N0 2 . Decomp. by H 2 0. (Sabatier and Senderens, C. R. 115. 236.) Nitro copper, CuN0 2 . Violently decomp. by H 2 0. (Sabatier and Senderens, C. R. 116. 756.) Nitroferricyanhydric acid. See Nitroprussic acid. Nitrogen, N 2 . Nearly insol. in all known solvents. 1 vol. recently boiled HoO absorbs 0'0147 vol. N at 15-5. (Henry, 1803.) 1 vol. recently boiled H 2 O absorbs 0'025 vol. N. (Dalton.) 1 vol. recently boiled H 2 O absorbs 0-0156 vol. N at ord. temp. (Dalton.) 1 vol. H 2 at t and 760 mm. absorbs Y vols. N gas reduced to and 760 mm. t V t V t V 0-02035 7 0-01713 14 0-01500 1 0-01981 8 0-01675 15 0-01478 2 0-01932 9 0-01640 16 0-01458 3 0-01884 10 0-01607 17 0-01441 4 0-01838 11 0-01577 18 0-01426 5 0-01794 12 0-01549 19 0-01413 6 0-01752 13 0-01523 20 0-01403 (Bunsen.) Coefficient of absorption = '020346 - 0-00053887t + 0-000011156t 2 . (Bunsen.) 1 1. H 2 absorbs ccm. N from atmospheric air at 760 mm. pressure and t. t ccm. N t ccm. N 19-29 15 13-95 5 17-09 20 12-80 10 15-36 25 11-81 (Dittmar, Challenger Exped. Report, vol. i.) t ccm. N ' x t *-,'ccm. N 19-14 15 13-73 5 16-93 20 12-63 10 15-14 25 11-80 (Hamberg, 1885.) Absorption of N by H 2 at t and 760 mm. j3 = coefficient of absorption. f ft V ft t ft 0-02388 18 0-01696 36 0-01252 1 2337 19 1667 37 1233 2 2288 20 1639 38 1215 3 2241 21 1611 39 1198 4 2196 22 1584 40 1182 5 2153 23 1557 41 1166 6 2111 24 1530 42 1151 7 2070 25 1504 43 1137 8 2031 26 1478 44 1124 9 1993 27 1453 45 1111 10 1956 28 1428 46 1099 11 1920 29 1404 47 1088 12 1885 30 1380 48 1078 13 1851 31 1357 49 1069 14 1818 32 1334 50 1061 15 1786 33 1312 60 1000 16 1755 34 1291 100 1000 17 1725 35 1271 (Bohr and Bock, W. Ann. 44. 318.) Absorption of N by H 2 at t and 760 mm. j8 = coefficient of absorption ; ^= " Solubility" (see under Oxygen). t ft ft 0-02348 0-02334 1 2291 2276 2 2236 2220 3 2182 2166 4 2130 2113 5 2081 2063 6 2032 2013 7 1986 1966 8 1941 1920 9 1898 1877 10 1857 1834 11 1819 1795 12 1782 1758 13 1747 1722 14 1714 1687 15 1682 1654 16 1651 1622 17 1622 1591 18 1594 1562 19 1567 1534 20 1542 1507 21 1519 1482 22 1496 1457 23 1473 1433 24 1452 1410 25 1432 1387 26 1411 1365 27 1392 1344 NITROGEN IODIDE 267 Absorption of N by H 2 O, etc. Continued. t ft A 28 0-01374 0-01323 29 1356 1303 30 1340 1284 31 1321 1263 32 1304 1243 33 1287 1224 34 1270 1204 35 1254 1185 36 1239 1167 37 1224 1149 38 1210 1131 39 1196 1114 40 1183 1097 41 1171 1082 42 1160 1067 43 1149 1052 44 1139 1037 45 1129 1023 46 1120 1009 47 1111 0995 48 1102 0982 49 1094 0968 50 1087 0955 52 1072 0929 54 1058 0902 56 1045 0876 58 1033 0849 60 1022 0822 62 1011 0794 64 1001 0765 66 0992 0736 68 0983 0707 70 0976 0676 72 0970 0645 74 0965 0614 76 0961 0581 78 0959 0546 80 0957 0510 82 0956 0472 84 0955 0432 86 0954 0388 88 0953 0343 90 0952 0294 92 0951 0242 94 0950 0187 96 0949 0128 98 0948 0066 100 0947 0000 (Winkler, B. 24. 3606.) 1 1. sea water (sp. gr. 1'027) absorbs ccm. N from atmosphere at t and 760 mm. pressure t According to Tornoe According to Dittmar According to Hamberg 14-40 15-60 14-85 5 13-25 13-86 13-32 10 12-10 12-47 12-06 15 10-95 11-34 11-04 20 10-41 10-25 25 9-62 9-62 At 18 and 760 mm. 100 vols. H 2 O or alcohol of 0'84 sp. gr. absorb 4-2 vols. N gas. (de Saussure, 1814.) 1 vol. alcohol at t and 760 mm. dissolves V vols. N gas reduced to and 760 mm. t V t V 0-12634 13 0-12192 1 0-12593 14 0-12166 2 0-12553 15 0-12142 3 0-12514 16 0-12119 4 0-12476 17 0-12097 5 0-12440 18 0-12076 6 0-12405 19 0-12056 7 0-12371 20 0-12038 8 0-12338 21 0-12021 9 0-12306 22 0-12005 10 0-12276 23 0-11990 11 1 0-12247 24 0-11976 12 0-12219 (Bunsen's Gasometry.) 1 vol. alcohol absorbs 0'126338-0'000418t + 0'0000060t 2 vols. N gas. (Carius, A. 94. 136.) 1 vol. ether absorbs 0'15 vol. N (Db'bereiner) ; 1 vol. caoutchine absorbs 5 vols. N in 5 weeks (Himly). Coefficient of absorption for petroleum = '11 7 at 20 ; 0-135, at 10. (Gniewasz and Walfisz, Z. phys. Ch. 1. 70.) Nitrogen bromide, NBr 3 . Decomp. under H 2 0. Nitrogen bromophosphide, PBr 2 N. Insol. in H 2 0. Sol. in ether, less sol. in CS 2 or CHClg. (Besson, C. R. 114. 1479.) Nitrogen chloride, NC1 3 . Very unstable. Explodes when heated to 93 or by contact with other substances. Insol. in H 2 0, but is decomp. thereby (in 24 hours by cold H 2 0). Sol. in CS 2 , PC1 3 , and S 2 C1 2 . (H. Davy, Phil. Trans. 1813, 1. 242.) Nitrogen chlorophosphide, N 3 P 3 C1 6 . Insol. in H 2 0, but slowly decomp. thereby. Insol. in hot H 2 S0 4 , HC1, or HN0 3 + Aq. Decomp. by hot fuming HN0 3 . Sol. in alco- hol ; very sol. in ether, but these solutions gradually decompose. Sol. in CS 2 , CHC1 3 , C 6 H 6 , and oil of turpentine. Sol. in POC1 3 . (Gladstone, Chem. Soc. 3. 138.) Nitrogen chlorosulphide. See Nitrogen sulphochloride. Nitrogen fluoride. Very explosive. (Warren, C. N. 55. 289.) Nitrogen moTioiodamine, NH 2 I. Very rapidly decomp. by H 2 into N 2 H 3 I 3 . (Raschig, A. 230. 212.) Nitrogen cfo'iodamine, NHI 2 . Properties as tfraodcfo'amine. Nitrogen niockfc'axnine, NH 3 , NI 3 . Decomp. by H 2 0. (Raschig, A. 230. 212.) Insol. in absolute alcohol. Sol. with de- comp. in HCl + Aq. (Bunsen.) Nitrogen iodide, NI 3 . Insol. in H 2 0, but slowly decomp. thereby. Sol. in HCl + Aq. Sol. in KCN + Aq. (Millon, J. pr. 17. 1.) Sol. in Na 2 S 2 3 + Aq. (Guyard, C. R. 97. 526.) 268 NITROGEN OXIDE Sol. in KSCN + Aq. (Raschig, A. 230. 212.) Nitrogen monoxide, N 2 0. (a. ) Liquid. Miscible with alcohol or ether. (b.) Gas. 1 vol. HoO absorbs '78-0 '86 vol. N 2 O at ordinary temp. (Henry) ; O'SO vol. at ordinary temp. (Dalton) ; 0-76 vol. at ordinary temp, (de Saussure) ; 0'708 vol. at 18 (Pleisch) ; 0'54 vol. (Davy). 1 vol. H 2 at t and 760 mm. absorbs V vols. N 2 0, reduced to and 760 mm. t V t V 1-3052 13 0-8304 1 1-2605 14 0-8034 2 1-2172 15 0-7778 3 1-1752 16 0-7535 4 1-1346 17 0*7306 5 1-0954 18 07090 6 1-0575 19 0-6888 7 1-0210 20 0-6700 8 0-9858 21 0-6525 9 0-9520 22 0-6364 10 0-9196 23 0-6216 11 0-8885 24 0-6082 12 0-8588 ... (Bunsen's Gasometry.) 1 vol. H 2 absorbs 1 '30521 - 0'0453620t + 0'00068430t 2 vols. N 2 at t and 760 mm. (Bunsen.) 100 vols. KOH + Aq (sp. gr.=l'12) absorb 18-7 vols. N 2 ; 100 vols. KOH + Aq sat. with pyrogallol absorb 18 "1 vols. N 2 ; 100 vols. NaOH + Aq (sp. gr.=l'l) (7 % NaOH) absorb 23-1 vols. N 2 ; 100 vols. NaOH + Aq sat. with pyrogallol absorb 28 "0 vols. N 2 0. 100 vols. cone. FeS0 4 + Aq absorb 19 "5 vols. N 2 0. 100 vols. H 2 S0 4 (sp. gr.=l-84) absorb 75 7 vols. N 2 0; 100 vols. H 2 S0 4 + Aq (sp. gr.=l'80) absorb 66 '0 vols. N 2 ; 100 vols. H 2 S0 4 + Aq (sp. gr. = 1'705) absorb 39 '1 vols. N 2 ; 100 vols. H 2 S0 4 + Aq (sp. gr. = l'45) absorb 41 '6 vols. N 2 ; 100 vols. H 2 S0 4 + Aq (sp. gr. = 1-25) absorb 33 '0 vols. N 2 0. CaCl 2 + Aq, and NaCI + Aq absorb considerable amounts of N 2 0. (Lunge, B. 14. 2188.) 1 vol. alcohol at t and 760 mm. absorbs V vols. N 2 gas reduced to and 760 mm. t V t V 4-1780 13 3-3734 1 4-1088 14 3-3200 2 4-0409 15 3-2678 3 3-9741 16 3-2169 4 3-9085 17 3-1672 5 3-8442 18 3-1187 6 3-7811 19 3-0714 7 3-7192 20 3-0253 8 3-6585 21 2-9805 9 3-5990 22 2-9368 10 3-5408 23 2-8944 11 3-4838 24 2-8532 12 3-4279 (Bunsen's Gasometry.) Coefficient of absorption = 4*17805 - -0698160t + '0006090t 2 . (Carius. ) At 18 and 760 mm., 100 vols. HoO absorb 76 vols. NoO ; 100 vols. alcohol of 0*840 sp. gr. absorb 153 vols. ; 100 vols. rectified naphtha of 0'784 sp. gr. absorb 254 vols. ; 100 vols. oil of lavender of 0'880 sp. gr. absorb 275 vols. ; 100 vols. olive oil of 0'915 sp. gr. absorb 150 vols. ; 100 vols. sat. KCl+Aq (26 % KC1) of T212 sp. gr. absorb 29 vols. (de Saussure, 1814.) 1 vol. "oil of turpentine absorbs 2 '5-2 '7 vols. NoO. (de Saussure.) Coefficient of absorption for petroleum = 2 "11 at 20; 2-49 at 10. (Gniewasz and Walfisz, Z. phys. Ch. 1. 70.) Nitrogen dioxide, NO. 1 vol. H 2 O absorbs O'l vol. NO gas at ordinary temp. (Davy); 1 vol. absorbs 0'05 vol. (Henry); 1 vol. absorbs A vol. (Dalton). Sol. in cone. HN0 3 + Aq. 100 vols. HN0 3 + Aq of 1 '3 sp. gr. agitated with NO gas take up 20 vols. NO. If acid is twice as strong or one half as strong, the quantity NO is proportional to the amount of HN0 3 . Very dil. HN0 3 + Aq absorbs scarcely more NO than pure H 2 O. (Dalton.) 100 pts. HNO 3 +Aq of 1'4 sp. gr. absorb 90 pts. NO (Dalton) ; sol. in Br 2 , and very si. sol. in cone. HoSO 4 (Berthelot). 1 ccm. cone. H 2 S0 4 of 1 '84 sp. gr. absorbs 0-035 ccm. NO; of 1'50 sp. gr., 0'017 ccm. NO. (Lunge, B. 18. 1391.) Absorbed by glacial HC 2 H 3 2 , and by cone. H 2 C 4 H 4 6 + Aq. Very sol. in aqueous solutions of ferrous salts, especially the sulphate. (Priestley.) 1 vol. FeS0 4 + Aq of 1 '081 sp. gr., containing 1 grain FeS0 4 to 6 grains H 2 0, absorbs 6 vols. NO. (Dalton.) Also sol. in stannous and chromous salts + Aq. (Peligot.) Not absorbed by Fe 2 (S0 4 ) 3 + Aq. (Dalton. ) Absorption by ferrous salts + Aq is propor- tional to the amount of Fe present, irrespective of the acid or concentration of the solution. Between and 10, about 2 mols. NO are absorbed for each atom of Fe ; between 10 and 15, 1 mol. NO for 2 atoms of Fe ; and at 25, only 1 mol. NO for 2 to 3 atoms of Fe. The amount of NO absorbed also varies with the pressure. The sp. gr. of the ferrous salt solu- tion is greater after the absorption of NO than before. The solutions are decomp. by heat, and at 100 all NO is given off. (Gay, A. ch. (6) 6. 145.) 1 vol. absolute alcohol absorbs '31606- 0-003487t + 0'000049t 2 vols. NO between and 25. (Bunsen.) 1 vol. alcohol at t and 760 mm. absorbs V vols. NO gas reduced to and 760 mm. V V t V 0-31606 7 0-29405 1 0-31262 8 0-29130 2 0-30928 9 0-28865 3 0-30604 10 0-28609 4 0-30290 11 0-28363 5 0-29985 12 0-28127 6 0-29690 13 0-27901 NITROPRUSSIDE, COPPER 269 1 vol. alcohol at t, etc. Continued, t v t V 14 0-27685 20 0-26592 15 0-27478 21 0-26444 16 0-27281 22 0-26306 17 0-27094 23 0-26178 18 0-26917 24 0-26060 19 0-26750 ... (Bunsen's Gasometry.) Abundantly absorbed by CS 2 . (Friedburg, C. N. 48. 97.) Nitrogen trioxiAe, N 2 3 . Sol. in H 2 at 0. If large amt. of H 2 is present, the solution is quite stable at ordinary temp. (Fremy, C. R. 79. 61.) Sol. inHN0 3 + Aq. Sol. in cone. H 2 S0 4 to form HNOS0 4 . Sol. in ether. Nitrogen trioxide stannic chloride, N 2 3 , SnCl 4 . Decomp. by H 2 0. (Weber, Pogg. 118. 471.) Nitrogen tetroxide, N0 2 or N 2 4 . Sol. in H 2 at with decomp. Miscible with very cone HN0 3 . Absorbed abundantly by CS 2 , CHC1 3 , and C 6 H 5 C1. (Friedburg, C. N. 47. 52.) Sol. in C 6 H 5 N0 2 . SI. sol. inH 2 S + Aq. Sol. in H 2 S0 4 or cone. HN0 3 + Aq. Nitrogen pentoxide, N 2 5 . Very deliquescent. Combines with H 2 to form HN0 3 with evolution of heat. Nitrogen hexoxi&e, N0 3 . Decomposes upon air or with H 2 0. (Haute- feuille and Chappins, C. R. 92. 80, 134 ; 94. 1111, 1306.) Nitrogen phosphochloride, P 3 N 3 C1 6 . See Nitrogen chlorophosphide. Nitrogen selenide, N 2 Se 2 or N 2 Se. Very explosive. Insol. in H 2 0. Sol. in HN0 3 + Aq, and NaClO + Aq. (Espenschied, A. 113. 101.) Insol. in H 2 0, ether, absolute alcohol ; very si. sol. in CS 2 , C 6 H 6 , and glacial acetic acid. Decomp. by HC1 or KOH + Aq. (Verneuil, Bull. Soc. (2) 38. 548.) Nitrogen sulphide, N 2 S 2 . Insol. in H 2 0. Decomp. by hot H 2 0. SI. sol. in alcohol, ether, wood alcohol, oil of tur- pentine. Easily sol. in CS 2 . Slowly decomp. by HC1 + Aq or KOH + Aq, rapidly by HN0 3 + Aq. 15 grammes dissolve in 1 kilo, of CS 2 . (Fordos and Gelis, C. R. 31. 702.) Sol. in CHC1 3 . (Demar9ay, C. R. 91. 854.) Nitrogen sulphochloride, NSC1. Unstable on air. Sol. in warm CHC1 3 ; crystallises out on cooling. (Dema^ay, C. R. 91. 854, 1066.) Demar9ay calls this comp. thiazyl chloride. N 4 S 6 C1 2 . Partly sol. in H 2 O. (Demarcay, C. R. 92. 726.) Demar9ay calls this compound diihiotetra- thiazyl ^'chloride. N 2 S 3 C1 2 = N 2 S 2 , SC1 2 . Decomp. on air. (Fordos and Gelis.) Demar9ay (C. R. 92. 726) calls this comp. thio^'thiazyl efo'chloride. N 2 S 4 C1 2 . Sol. in H 2 with subsequent de- comp. More sol. than S in CS 2 . (Soubeiran, A. ch. 67. 71.) Is a mixture of S C1 2 and N 2 S 2 . (Fordos and Gelis, C. R. 31. 702".) NgSgd. SI. sol. in warm, insol. in cold CHCL. (Demar9ay, C. R. 92. 726.) ' ' Tliiotri&zyl chloride. " (Demar9ay. ) N 3 S 4 C1. Sol. in H 2 0. Insol. in most solvents. SI. sol. in CHC1 3 . Easily sol. in thionyl chloride. (Dema^ay, C. R. 91. 854, 1066.) Demar9ay calls the compound thio^rzthiazyl chloride = (NS) 3 =S 01. N 4 S 5 C1 2 =:2N 2 S 2 , SC1 2 . Decomp. on air. (Michaelis.) N 6 S 7 C1 2 = 3N 2 S 2 , SCljj. Not decomp. on air. Decomp. by H 2 containing ammonia. Nitrogen oxybromide. See Nitrosyl and Nitroxyl bromide. Nitrogen oxychloride. See Nitrosyl and Nitroxyl chloride. Nitroiodic acid, I 2 4 (NO) 2 . See Nitrosoiodic acid. Nitroplatinous acid. See Platonitrous acid. Nitroprussic acid, H 2 FeC 5 N c O + H 2 = H 2 Fe(CN) 5 NO + H 2 0. Deliquescent. Easily sol. in H 2 0, alcohol, or ether. (Playfair, A. 74. 317.) Nitroprussides. The alkali and alkali -earth nitroprussides are sol. in H 2 0, and the solutions are not pptd. by alcohol. The others are mostly insol. in H 2 0. Ammonium nitroprusside, (NH 4 ) 2 Fe(CN) 5 (NO). Deliquescent. Very sol. in H 2 ; not pptd. therefrom by alcohol. (Playfair.) Barium, nitroprusside, BaFe(CN) 5 NO + 4H 2 0. Very sol. in H 2 0. + 6H 2 0. Cadmium nitroprusside, CdFe(CN) 5 NO. Insol. in H 2 0. Sol. in HC1 + Aq. Insol. in dil. or cone. HN0 3 + Aq even when boiling. Not attacked by NH 4 OH or KOH + Aq. (Norton, Am. Ch. J. 10. 222.) Calcium nitroprusside, CaFe(CN) 5 NO + 4H 2 0. Very sol. in H 2 0. (Playfair.) Cobalt nitroprusside, CoFe(CN) 5 NO. Ppt. (Norton, Am. Ch. J. 10. 222.) + 4H 2 0. Copper nitroprusside, CuFe(CN) 5 NO + 2H 2 0. Insol. in H 2 O or alcohol. 270 NITROPRUSSIDE, FERROUS Ferrous nitroprusside, FeFe(CN) 5 NO + xH 2 (?). Insol. in H 2 0. Mercurous nitroprusside, Hg 2 Fe(CN) 5 NO. Insol. in H 2 0. Unstable. (Norton, Am. Ch. J. 10. 222.) Nickel nitroprusside, NiFe(CN) 5 NO. As the Co salt. (Norton.) Potassiumnitroprusside,K 2 Fe(CN) 5 NO + 2H 2 0. SI. deliquescent. Sol. in 1 pt. H 2 at 16. K 2 Fe(CN) 5 NO, 2KOH. Very sol. in H 2 0. Silver nitroprusside, Ag 2 Fe(CN) 5 NO. Insol. in H 2 0, alcohol, or HN0 3 + Aq. Sol. inNH 4 OH + Aq. Sodium nitroprusside, Na 2 Fe(CN) 5 NO + 2H 2 0. Sol. in 2| pts. H 2 at 16, and in less hot H 2 0. Zinc nitroprusside, ZnFe(CN) 5 NO. Very si. sol. in cold, more in hot H 2 0. Nitrosochloroplatinic acid. Potassium nitrosochloroplatinate, K 2 PtCl 5 (NO). Sol. in H 2 0. (Vezes, C. R. 110. 757.) Nitrosochlororuthenic acid. Ammonium nitrosochlororuthenate, (NH 4 ) 2 Ru(NO)Cl 5 . Sol. in H 2 0. (Joly, C. R. 107. 991.) Potassium nitrosochlororuthenate, K 2 Ru(NO)Cl 5 . Sol. inH a O. (Joly.) Nitrosoiodic acid, I 2 4 (NO) 2 (?). Decomp. with H 2 0, alcohol, ether, or acetic ether. Slowly sol. in H 2 S0 4 . (Kammerer, J. pr. 83. 65.) jPmitrososulphuric acid, H 2 N 2 S0 5 = H 2 S0 3 (NO) 2 . Not known in free state. Ammonium c^nitrososulphate, (NH 4 ) 2 (NO) 2 S0 3 . Sol. in H 2 0. Insol. in hot alcohol. (Pelouze, A. 15. 240.) Barium , Ba(NO) 2 S0 3 . Sol. in H 2 0. (Divers and Haga, Chem. Soc. 47. 364.) Lead . Insol. in H 2 0. (Divers and Haga, Chem. Soc. 47. 364.) Potassium , K^NO^SOg. Decomp. by H 2 at ordinary temp. Insol. in alcohol. (Pelouze, A. ch. 60. 160.) Sodium , Na 2 (NO) 2 S0 3 . More sol. than K salt. (Pelouze.) Nitrosulphide of iron. See Ferroeranitrososulphonic acid. 2?initrosulphide of iron. Roussin's comp. is ammonium ferrohepta- nitrososulphonate, which see. Nitrosulphonic acid, HNS0 6 =^ S0 2 . (Lead chamber crystals.} Rapidly sol. in H 2 with decomp. When brought into large amount of H 2 0, no gas is evolved. (Fremv, C. R. 70. 61.) Sol. in H 2 S0 4 without decomp. Sol. in cold H 2 S0 4 + Aq of sp. gr. 17-1 "55. (Weber, J. pr. 100. 37.) SI. sol. in H 2 S0 4 + Aq of 1 '6 sp. gr. (Dana. ) More difficultly sol. in dil. than cone. H 2 S0 4 + Aq. (Miiller.) Potassium nitrosulphonate, KOS0 2 N0 2 (?). Decomp. by H 2 0. (Schultz-Sellack, B. 4. 113.) Nitrosulphonic anhydride (?), N 2 3 , 2SO,= S 2 5 (N0 2 ) 2 . Rapidly sol. in H 2 with decomp. Abund- antly sol. in cold H 2 S0 4 . (Rose, Pogg. 47. 605.) Insol. in cold, slowly sol. in warm H 2 S0 4 . (Prevostaye, A. ch. 73. 362.) Nitrosulphonic chloride,N0 4 SCl = N0 2 S0 2 C1 ( ?). Decomp. by H 2 0. Sol. in fuming H 2 S0 4 without decomp. Decomp. by cone. H 2 S0 4 . (Weber, Pogg. 123. 333.) Dmitrosulphuric acid. See Dmitrososulphuric acid. Nitrosyl bromide, NOBr. Decomp. with cold H 2 0. (Landolt, A. 116. 177.) Nitrosyl Znbromide, NOBr 3 . Decomp. by H 2 or cold alcohol. Miscible with ether. (Landolt, A. 116. 177.) Mixture of NOBr and Br 2 . (Frbhlich, A. 224. 270.) Nitrosyl platinic bromide, 2NOBr, PtBr 4 . Deliquescent. Decomp. by H 2 0. (Topsoe, J. B. 1868. 274.) Nitrosyl chloride, NOC1. Decomp. by H 2 0. Absorbed by fuming H 2 S0 4 without decomp. Nitrosyl boron chloride, NOC1, BC1 3 . See Boron nitrosyl chloride. Nitrosyl platinic chloride, 2NOC1, PtCl 4 . Very deliquescent, and sol. in H 2 with evolution of NO. (Rogers and Boye, Phil. Mag. J. 17. 397.) Nitrosyl thallium chloride, 2NOC1, T1C1, T1C1 3 . Very deliquescent, and sol. in H 2 with decomp. (Sudborough, Chem. Soc. 59. 657.) Nitrosyl stannic chloride, 2NOC1, SnCl 4 . Decomp. by H 2 0, chloroform, or benzene, not by carbon disulphide. (Jorgensen. ) Nitrosyl titanium chloride, 2NOC1, TiCl 4 . Decomp. by H 2 0. (Weber, Pogg. 118. 476.) Nitrosyl zinc chloride, NOC1, ZnCl 2 . Very deliquescent, and sol. in H 2 O with NITRITE, COBALTIC POTASSIUM 271 evolution of NO. (Sudborough, Chem. Soc. 59. 656.) Nitrosyl chloride sulphur Znoxide, NOC1, S0 3 . Decomp. by H 2 0. Sol. in cone. H 2 S0 4 with evolution of HC1. (Weber, Pogg. 123. 233.) Nitrosyl sulphate, acid, H(NO)S0 4 . See Nitrosulphonic acid. Nitrosyl sulphate, anhydro, (NO) 2 S 2 7 . See Nitrosulphonic anhydride. Nitrosyl sulphuric acid, H(NO)S0 4 . See Nitrosulphonic acid. Nitrous acid, HN0 2 . Known only in aqueous solution. See Nitrogen ^rzoxide. Nitrites. Normal nitrites, except AgN0 2 , are sol. in H 2 and alcohol ; but, as a rule, they are less sol. than the corresponding nitrates. Ammonium nitrite, NH 4 N0 2 . Very deliquescent, and sol. in H 2 0. H 2 solution decomp. at 50. (Berzelius.) Very dil. solution can be evaporated on water bath without decomp. (Bohlig, A. 125. 25.) Solution containing nnnnnr pt. NH 4 N0 2 can be evaporated to | its vol. without decomp. Solution containing -5-^ pt. gives a distillate containing 8 "6 % of NH 4 N0 2 , while residue contains 82 % of original quantity, 9 '4 % being lost. (Schoyen. ) Ammonium cadmium nitrite ammonia, basic, 2NH 4 N0 2 , Cd(N0 2 ) 2) Cd(OH) 2 , 2NH 3 . Decomp. by H 2 0. (Morin, C. R. 100. 1497.) Ammonium cobaltic nitrite, Co 2 3 , 3(NH 4 ) 2 0, 6N 2 3 + 3H 2 = Co 2 (N0 2 ) 6 , 6NH 4 N0 2 + 3H 2 0. Somewhat sol. in cold H 2 ; decomp. by boiling. Decomp. by cone. H 2 S0 4 , not by acetic or dil. mineral acids. (Erdmann, J. pr. 97. 405.) Ammonium rhodium nitrite. See Ehodonitrite, ammonium. Barium nitrite, Ba(N0 2 ) 2 + H 2 0. Permanent. Very sol. in H 2 0. Sol. in 64 pts. 94 % alcohol ; nearly insol. in absolute alcohol. (Lang, Pogg. 118. 285.) Barium cobaltous potassium nitrite, Ba(N0 2 ) 2 , Co(N0 2 ) 2 , 2KN0 2 . Decomp. by H 2 0. (Erdmann, J. pr. 97. 385.) Barium iridium nitrite. See Iridonitrite, barium. Barium nickel nitrite, 2Ba(N0 2 ) 2 , Ni(N0 2 ) 2 . Somewhat more easily sol. in H 2 than nickel potassium nitrite. (Lang.) Barium nickel potassium nitrite, Ba(N0 2 ) 2 , Ni(N0 2 ) 2 , 2KN0 2 . SI. sol. in cold, easily in hot H 2 without apparent decomp. (Lang. ) Barium potassium nitrite, Ba(N0 2 ) 2 , 2KN0 2 + H 2 0. Easily sol. in H 2 ; insol. in alcohol. (Lang Pogg, 118. 293.) Barium rhodium nitrite, 3Ba(N0 2 ) 2 , Rh 2 (N0 2 ) 6 . See Rhodonitrite, barium. Barium silver nitrite. Resemble the potassium salt. (Fischer.) Cadmium nitrite, basic, 2CdO, N 2 3 . Insol. in H 2 0. (Hampe, A. 125. 334.) Cadmium nitrite, Cd(N0 2 ) 2 + H 2 0. Deliquescent. Sol. in H 2 0. (Lang, J. B. 1862. 99.) Cadmium potassium nitrite, Cd(N0 2 ) 2 , KN0 2 . Easily sol. in H 2 0. Very difficultly sol. in absolute alcohol, and only si. sol. in 90 % alcohol. (Hampe, A. 125. 334.) Cd(N0 2 ) 2 , 2KN0 2 . Easily sol. in H 2 0. Insol. in alcohol. (Lang, J. B. 1862. 99.) Cd(N0 2 ) 2 , 4KN0 2 . More sol. in H 2 than the above salt. (Lang.) Caesium cobaltic nitrite, Cs 3 Co(N0 2 ) 6 + H 2 0. Sol. in 20,100 pts. H 2 at 17. (Rosenbladt, B. 19. 2531.) Calcium nitrite, Ca(N0 2 ) 2 + H 2 0. Very deliquescent. Insol. in dil. alcohol. (Fischer, Pogg. 74. 115.) Calcium cobaltous potassium nitrite, Caf N0o)o Co(N0 2 ) 2 , 2KN0 2 . Decomp. by H 2 0. (Erdmann.) Calcium nickel potassium nitrite, Ca(N0 2 ) 2 , Ni(N0 2 ) 2 , 2KN0 2 . Very si. sol. in cold, easily in hot H 2 0. Insol. in alcohol. SI. sol. in dil. HC 2 H 3 2 + Aq. (Erdmann.) Calcium potassium nitrite, CaK(N0 2 ) 3 + 3H 2 0. Sol. in H 2 0. (Topsoe, W. A. B. 73, 2. 112.) Deliquescent. (Lang.) Cobaltous nitrite. Known only in solution. Cobaltic lead potassium nitrite, 3K 2 0, 3PbO 2Co 2 3 , 10N 2 3 + 4H 2 0. Sol. by boiling in much H 2 0. Sol. in hot acids with evolution of N 2 0o. (Stromeyer A 96. 228.) Cobaltous potassium nitrite, 2Co(N0 2 ) 2 , 2KN0 2 + H 2 0. Ppt. (Sadtler.) Co(N0 2 ) 2 , 2KNO 2 + H 2 0. Ppt. (Sadtler.) 3Co(N0 2 ) 2 , 6KN0 2 + H 2 0. Insol. in cold, sol. in hot H 2 0. SI. sol. in KC 2 H 3 2 + Aq. (Erdmann, J. pr. 97. 397.) Cobaltic potassium nitrite (cobalt yellow) Co 2 (N0 2 ) 6 , 6KN0 2 + 3H 2 0. Very si. sol. in cold H 2 0. Insol. in alcohol and ether. Sol. in traces in CS 2 . (St. Evre, C. R. 35. 552.) Insol. in boiling cone. K SO, KC1, KN0 3 , orKC 2 H 3 2 + Aq. 272 NITRITE, COBALTOUS POTASSIUM STRONTIUM More sol. in NH 4 C1 or NaCl + Aq than in H 2 0. (Stromeyer.) SI. decomp. by KOH + Aq, except when very cone. ; easily decomp. by NaOH or Ba(OH) 2 + Aq. Very si. sol. in KC 2 H 3 2 + Aq, or KN0 2 + Aq. (Fresenius.) Sol. in HCl + Aq. Sol. in HC 2 H 3 2 , or H 2 C 2 4 + Aq. (Stro- meyer. ) Small quantity of HC 2 H 3 2 + Aq does not dissolve. (Fresenius.) Cobaltous potassium strontium nitrite, Co(N0 2 ) 2 , 2KN0 2 , Sr(N0 2 ) 2 . Decomp. by H 2 0. (Erdmann, J. pr. 97. 385.) Cobaltic rubidium nitrite, Rb 3 Co(N0 2 ) 6 + H 2 0. Sol. in 19,800 pts. H 2 0. (Rosenbladt, B. 19. 2531.) Cobaltic silver nitrite ammonia, Co 9 0.>, Ag 9 0, 4N 2 3 , 4NH 3 . See Cobalt ammonium comps. Cobaltic sodium nitrite, Co 2 (N0 2 ) 6 , 4NaN0 2 + H 2 0. Ppt. (Sadtler, Sill. Am. J. (2) 49. 196.) Co 2 (N0 2 ) 6 , 6NaN0 2 + H 2 0. Cobaltous thallium nitrite, Co 2 (N0 2 ) 6 , 6T1N0 2 . Sol. in 23,810 pts. H 2 at 17. (Rosen- bladt, B. 19. 2531.) Cupric nitrite, basic, 2CuO, N 2 3 . (Hampe, A. 125. 345.) Cu(N0 2 ) 2 , 3Cu(OH) 2 . Very si. sol. in H 2 or alcohol. Easily sol. in oil. acids or am- monia, (van der Meulen, B. 12. 758.) Cupric nitrite. Known only in solution. Cupric lead potassium nitrite, CuPbK 2 (N0 2 ) 6 . (van Lessen, R. t. c. 10. 13.) Cupric nitrite ammonia, Cu(N0 2 ) 2 , 2NH 3 + 2H 2 0. Sol. in little H 2 O with absorption of much heat. Decomp. by much H 2 0. (Peligot, C. R. 53. 209.) 3CuO, N 2 3 , 2NH 3 + H 2 0. As above. (Peligot.) Iridium hydrogen nitrite, Ir 2 H 6 (N0 2 ) 12 . See Iridonitrous acid. Iridium nitrite with MN0 2 . See Iridonitrite, M. Lead nitrite, basic, 4PbO, N 2 3 + H 2 = Pb(OH)N0 2 , PbO. Sol. in 143 pts. H 2 at 23, and 33 pts. at 100. (Chevreul.) Sol. in 1250 pts. cold H 2 0, and 34 '5 pts. at 100. (Peligot.) Sol. in cold HN0 3 or HC 2 H 3 2 + Aq. Composition is 3PbO, N 2 3 + H 2 0. (Meiss- ner, J. B. 1876. 194.) Composition is as above, (v. Lorenz, W. A. B. 84, 2. 1133.) 3PbO, N 2 3 = Pb(N0 2 ) 2 , 2PbO. Sol. in H 2 0. (Bromeis, A. 72. 38 ; v. Lorenz.) 2PbO, N 2 3 + H 2 0. SI, sol. in H 2 0. (Bromeis.) + 3H 2 0. (Meissner.) 4PbO, 3N 2 3 + 2H 2 0. Sol. in H 2 0. (Meiss- ner, J. B. 1876. 195.) Lead nitrite, Pb(N0 2 ) 2 + H 2 0. Easily sol. in H 2 0. (Peligot, A. ch. 77. 87.) Lead nickel potassium nitrite, Pb(N0 2 ) 2 , KN0 2 , Ni(N0 2 ) 2 (?). Insol. in H 2 0. (Baubigny, A. ch. (6) 17. 111.) Lead potassium nitrite, 4Pb(N0 2 ) 2 , 6KN0 2 + 3H 2 0. Easily sol. in H 2 and in absolute alcohol. (Hampe, A. 125. 334.) Pb(NO 2 ) 2 , 2KN0 2 + H 2 0. Easily sol. in H 2 0. Insol. in alcohol. (Lang, J. B. 1862. 102.) Lead nitrite nitrate. See Nitrate nitrite, lead. Lithium nitrite, LiN0 2 + JH 2 0. Deliquescent. Easily sol. in alcohol and H 2 0. Magnesium nitrite, Mg(N0 2 ) 2 + 2H 2 0. Deliquescent, and sol. in H 2 0. Solution decomp. by boiling. Easily sol. in absolute alcohol. (Hampe, A. 125. 334.) Insol. in absolute alcohol. (Fischer.) Magnesium potassium nitrite. Deliquescent, and easily sol. in H 2 0. Insol. in alcohol. (Lang.) Manganous nitrite. Deliquescent, and sol. in H 2 0. (Mitscherlich.) Not obtained in a solid state, as the solution decomp. on evaporation. (Lang, Pogg. 118. 290.) Mercuric nitrite, basic, Hg(N0 2 ) 2 , 2HgO + H 2 0. Ppt. (Lang.) Mercuric potassium nitrite, Hg(N0 2 ) 2 , 2KN0 2 . Easily sol. in H 2 0. Insol. in alcohol. (Lang, 1860.) Nickel nitrite, basic, 2NiO, N 2 3 . Ppt. (Hampe, A. 125. 343.) Nickel nitrite, Ni(N0 2 ) 2 . Sol. in H 2 and alcohol. (Lang, J. B. 1862. 100.) Nickel potassium nitrite, Ni(N0 2 ) 2 , 4KN0 2 . Moderately sol. in H 2 0. (Fischer, Pogg. 74. 115.) Extremely sol. in H 2 0. (Hampe, A. 125. 346.) Insol. in absolute alcohol. Nickel potassium strontium nitrite, Ni(N0 2 ) 2 , 2KN0 2 , Sr(N0 2 ) 2 . SI. sol. in cold, easily sol. in hot H 2 0. Nickel nitrite ammonia, Ni(N0 2 ) 2 , 4NH 3 . Sol. in cold H 2 0. Decomp. on standing or by heating. Insol. in alcohol. Can be re- crystallised by dissolving in NH 4 OH + Aq, and adding much absolute alcohol. (Erdmann, J. pr. 97. 395.) OCTAMINE COBALTIC CHLOROSULPHITE 273 Palladious nitrite with MN0 2 . See Palladonitrite, M. Platinous hydrogen nitrite, H 2 Pt(N0 2 ) 4 . See Platonitrous acid. Platinous nitrite with MN0 2 . See Platonitrite, M. Potassium nitrite, KN"0 2 . Deliquescent. Sol. in H 2 0. Deliquesces in 90 % alcohol ; insol. in cold 94 % alcohol. More sol. in H 2 than KN0 3 , but less sol. in alcohol. (Fischer. ) Very si. sol. in acetone. (Krug and M'Elroy, J. Anal. Ch. 6. 184.) + PI 2 (?). (Lang, J. pr. 86. 295.) Potassium rhodium nitrite, 6KN0 2 , Rh 2 (N0 2 ) 6 . See Rhodonitrite, potassium. Potassium ruthenium nitrite. See Ruthenonitrite, potassium. Potassium silver nitrite, KN0 2 , AgN0 2 + H 2 0. Completely sol. in a little H 2 0, but decomp. by more H 2 0. Sol. in KN0 2 + Aq without decomp. Insol. in alcohol. (Lang.) Potassium strontium nitrite, 2KN0 2 , Ba(N0 2 ) 2 . Sol. in H 2 ; insol. in alcohol. (Lang, Pogg. 118. 293.) Potassium zinc nitrite, 2KN0 2 , Zn(N0 2 ) 2 + H 2 0. Deliquescent. Easily sol. in H 2 0. (Lang, J. B. 1862. 101.) Rhodium sodium nitrite, 6NaN0 2 , Rh 2 (N0 2 ) 6 . See Rhodonitrite, sodium. Silver nitrite, AgN0 2 . Sol. in 120 pts. cold H 2 (Mitscherlich), in 300 pts. (Fischer), and more abundantly in hot H 2 0. Insol. in alcohol. Silver sodium nitrite, AgN0 2 , NaN0 2 . Completely sol. in a little H 2 0, but decomp. by more H 2 0. (Fischer. ) Silver nitrite ammonia, AgN0 2 , NH 3 . SI. sol. in H 2 ; less sol. in alcohol ; nearly insol. in ether. (Reychler, B. 16. 2425.) AgN0 2 , 2NH 3 . (Reychler.) AgN0 2 , 3NH 3 . Deliquescent. Sol. in H 2 0. (Reychler.) Sodium nitrite, NaN0 2 . Not deliquescent. Very sol. in H 2 0. Insol. in absolute alcohol. Sol. in warm 90 % alcohol. (Hampe, A. 125. 336.) More sol. in H 2 than NaN0 3 , but less in alcohol. 100 pts. absolute methyl alcohol dissolve 4-43 pts. at 19'5 ; 100 pts. absolute ethyl alcohol dissolve 0'31 pt. at 19 '5. (de Bruyn, Z. phys. Ch. 10. 783.) Strontium nitrite, Sr(N0 2 ) 2 . Very sol. in H 2 0, and very si. sol. in boiling alcohol. (Lang, Pogg. 118. 287.) Easily sol. in 90 % alcohol. (Hampe. A. 125. 340.) + H 2 0. Zinc nitrite, basic, 2ZnO, N 2 3 . (Hampe, A. 125. 334.) Zinc nitrite, Zn(N0 2 ) 2 + 3H 2 0. Deliquescent. Sol. in H 2 and alcohol. (Lang, J. B. 1862. 99.) Nitrous oxide, N 2 0. See Nitrogen monoxide. Nitroxyl bromide, N0 2 Br. Decomp. spontaneously or with H 2 0. (Hasenbach, J. pr. (2) 4. 1.) Does not exist. (Frohlich, A. 224. 270.) Nitroxyl chloride, N0 2 C1. Decomp. by H 2 without evolution of gas. Probably does not exist. (Geuther, A. 245. 98.) Nitroxypyrosulphuric acid, (HO)S 2 5 (N0 3 ), H 2 0. Very deliquescent. Sol. in H 2 with de- comp. (Weber, Pogg. 142. 602.) Nitryl chloride, N0 2 C1. See Nitroxyl chloride. Norwegium (?). Element not been isolated, and existence very doubtful. Norwegium hydroxide (?). Sol. in KOH + Aq, or in large excess of (NH 4 ) 2 C0 3 + Aq or Na 2 C0 3 + Aq. (Dahl, C. R. 89. 47.) Octamine cobaltic compounds. The formulae of the following octamine cobaltic compounds should be reduced one half, and they should be classed with the tetramine cobaltic compounds. (Jorgensen, Z. anorg. 2. 279.) Octamine cobaltic carbonate,Co 2 (NH 3 ) 8 (C0 3 ) 6 + 3H 2 0. Easily sol. in H 2 0. (Vortmann and Bias- berg, B. 22. 2654.) See Carbonatotetramine carbonate. Co 2 (NH 3 ) 8 3 (C0 3 ) 4 + 3H 2 0. Rather difficultly sol. in H 2 0. - chloride (?), Co 2 (NH 3 ) 8 (OH) 2 C1 4 + 2H 2 0. Ppt. Co 2 (NH 3 ) 8 (OH) 2 Cl 4 , 2HgCl 2 . Co 2 (NH 3 ) 8 (OH) 2 Cl 4 , PtCl 4 + H 2 0. (Vort- mann and Blasberg, B. 22. 2654.) mercuric chloride, Co 2 (NH 3 ) 8 CL, 3HgCl 2 + H 2 0. Co 2 (NH 3 ) 8 Cl 6 , HgCl 2 . Difficultly sol. in cold H 2 0, decomp. on warming. (Vortmann.) chlorosulphite, Co.,(NH 3 ) 8 (S0 3 ) 2 Clo + 4H 2 0. Sol. in H 2 0. (Vortmann and Magdeburg, B. 22. 2635.) 274 OCTAMINE COBALTIC CHROMATE Octamine cobaltic chromate, Co ? (NH 3 ) 8 (Cr0 4 ) 3 (H 2 0) 2 + 2H 2 0. Sol. in H 2 or acetic acid. + 8H 2 0. Sol. in warm H 2 or acetic acid. Co 2 (NH 3 ) 8 (Cr0 4 ) 2 Cr 2 7 (H 2 0) 2 + H 2 0. Easily sol. in H 2 0, from which it is precipitated by dil. HN0 3 + Aq. (Vortmann, B. 15. 5895.) -- nitrate, Co 2 (NH 3 ) a (N0 3 ) 6 + 2H 2 0. Sol. in H 2 ; precipitated by cone. HN0 3 + A.q. (Vortmann.) -- nitratocarbonate, Co 2 (NH 3 ) 8 (N0 3 ) 2 (C0 3 ) 2 + H 2 0. Less sol. than other octamine carbonates. (Vortmann and Blasberg, B. 22. 2650. ) See Carbonatotetramine cobaltic nitrate. purpureochloride, Co 2 (NH 3 ) 8 Cl 6 (H 2 0) 2 . Easily sol. in H 2 ; partly precipitated from aqueous solution by cone. HCl + Aq. (Vort- mann, B. 10. 1451.) = Chlorotetramine cobaltic chloride, ClCo(NH 3 ) 4 (OH 2 )Cl2, which see. (Jorgensen, J. pr. (2) 42. 211.) purpureomercuric chloride, Co 2 (NH 3 ) 8 Cl 6 (H 2 0) 2 , 6HgCl 2 . SI. sol. in cold, easily in hot H 2 0. (Vort- mann. ) = Chlorotetramine cobaltic mercuric chlor- ide. (Jorgensen, J. pr. (2) 42. 211.) -- purpureomercuric hydroxychloride, Co 2 N 8 H 16 (HgCl) 4 (HgOH) 4 Cl 6 . Ppt. (Vortmann and Morgulis, B. 22. 2647.) Co 2 N 8 H 16 (HgOH) 8 Cl 6 . (V. and M.) Co 2 N 8 H 16 (HgOH) 8 Cl 4 (OH) 2 . (V. and M.) -- purpureomercuriodide, basic, Co 2 N 8 H 18 (HgOH) 6 I 6 . (Vortmann and Borsbach, B. 23. 2805.) -- purpureochloroplatinate. Very si. sol. in H 2 0. (Vortmann.) Chlorotetramine cobaltic chloroplatinate, ClCo(NH 3 ) 4 (OH 2 )PtCl 6 + 2H 2 0. (Jorgensen, J. pr. (2)42. 215.) -- roseochloride, Co 2 (NH 3 ) 8 Cl 6 (H 2 0) 2 + 2H 2 0, or 4H 2 0. Sol. in H 2 0. (Vortmann, B. 15. 1891.) See Eoseotetramine cobaltic chloride. - roseomercuric chloride, Co 2 (NH 3 ) 8 Cl 6 (H 2 0) 2 , 6HgCl 2 + 3H 2 0. Ppt. (Vortmann. ) roseomercuric hydroxychloride, Co 2 N 8 H 16 (HgCl) 6 (HgOH) 2 Cl e (Vortmann and Morgulis, B. 22. 2647.) Co 2 N 8 H 16 (HgOH) 8 Cl 6 . (V. and M.) Co 2 N 8 H 16 (HgOH) 8 Cl 4 (OH) 2 . (V. and M.) roseomercuriodide, Co 2 N 8 H 21 (HgI) 3 I 6 . Ppt. Sol. in HC1 or HN0 3 . (Vortmann and Borsbach, B. 23. 2806. ) Co 2 N 8 H 20 (HgI) 4 I 6 . Ppt. (V. and B.) Co 2 N 8 H 20 (HgI) 4 I 4 (OH) 2 . Ppt. (V. andB.) - sulphate, Co 2 (NH 3 ) 8 (OH) 2 (S0 4 ) 2 + 3H 2 0(?). Insol. in H 2 or dil. H 2 S0 4 + Aq. Sol. -in moderately cone. HCl + Aq. (Vortmann and Blasberg, B. 22. 2653.) Co 2 (NH 3 ) 8 (S0 4 ) 3 + 6H 2 0. Sol. inH 2 0. (Vort- mann.) + 4H 2 0. Easily sol. in H 2 0. See Boseotetramine cobaltic sulphate. sulphatocarbonate, Co 2 (NH 3 ) 8 S0 4 (C0 3 ) 2 + 3H 2 0. Sol. inH 2 0. (Vortmann, B. 10. 1458.) See Carbonatotetramine cobaltic sulphate. Co 2 (NH 3 ) 8 (S0 4 ) 2 C0 3 + 4H 2 0. Sol. in H 2 0. (Vortmann and Blasberg, B. 22. 2650.) ammonium sulphite, Co 2 (NH 3 ) 8 (S0 3 NH 4 ) 6 + 10H 2 0. See Octamine cobaltisulphite, ammonium. Octamine cobaltisulphurous acid. Ammonium octamine cobaltisulphite, Co 2 (NH 3 ) 8 (S0 3 NH 4 ) 6 + 10H 2 0. Sol. in H 2 0. (Vortmann and Magdeburg, B. 22. 2632.) Co 2 (NH 3 ) 8 (S0 3 ) 2 (S0 3 NH 4 ) 2 + 4H 2 0. Ammonium barium , Co 2 (NH 3 ) 8 (S0 3 ) 6 Ba 2 (NH 4 ) 2 + 7H 2 0. Ppt. (V. and M.) Barium , Co 2 (NH 3 ) 8 (S0 3 ) 6 Ba 3 + 7H 2 0. Ppt. (V. andM.) Cobaltic , Co 2 (NH 3 ) 8 (S0 3 ) 6 Co 2 + 36H 2 0, and 24H 2 0. Luteocobaltic , Co 2 (NH 3 ) 8 (S0 3 ) 6 (NH 3 ) 12 Co 2 + 8H 2 0. Ppt. (V. andM.) Octamine iridium chloride, Ir 2 (NH 3 ) 8 Cl 6 . Very sol. in H 2 0. (Palmaer, B. 22. 16.) Octamine iridium chlorosulphate, Ir 2 (NH 3 ) 8 Cl 4 S0 4 + 4H 2 0. (Palmaer.) Osmiamic acid, H 2 N 2 Os 2 6 or H 2 N 2 Os 2 5 (?). Known only in aqueous solution, which is unstable. Ammonium osmiamate. Easily sol. in H 2 or alcohol. (Fritzsche and Struve, J. pr. 41. 97.) Barium osmiamate, BaN 2 Os 2 5 . Moderately sol. in H 2 0. Lead osmiamate. Ppt. Sol. in acids without decomp. Lead osmiamate chloride. Ppt. Mercurous osmiamate. Ppt. Mercuric osmiamate. Ppt. Potassium osmiamate, K 2 N 2 Os 2 5 or K 2 N 2 Os 2 6 . SI. sol. in cold, much more easily in hot H 2 0. SI. sol. in alcohol. Insol. in ether. OSMOCYANIDE, BARIUM 275 Silver osmiamate, Ag 2 N 2 Os 2 5 . Extremely si. sol. in H 2 or cold HN0 3 + Aq. Sol. inNH 4 OH + Aq. Sodium osmiamate. Easily sol. in H 2 or alcohol. Zinc osmiamate, ZnN 2 Os 2 5 . Decomp. by H 2 0. Nearly insol. in NH 4 OH + Aq. Osmic acid, H 2 0s0 4 . Stable in H 2 containing alcohol. Sol. in HN0 3 or HC1 + Aq. Not attacked by H 2 S0 4 + Aq. (Moraht and Wischin, Z. anorg. 3. 153.) Barium osmate, BaOs0 4 + H 2 0. Insol. in H 2 0. (Glaus, Pogg. 65. 205. ) Calcium osmate, CaOs0 4 . Insol. in H 2 0. (Fremy, J. pr. 33. 411.) Lead osmate. Insol. in H 2 0. (Fremy. ) Potassium osmate, K 2 0s0 4 -f 2H 2 0. SI. sol. in cold, much more sol. in hot H 2 0, but is decomp. thereby. SI. sol. in KN0 2 + Aq. Insol. in dil. or cone, alcohol and ether. (Fremy, A. ch. (3) 12. 516.) Insol. in cone, saline solutions. (Gibbs, Am. J. Sci. (2) 31. 70.) . Sodium osmate, Na 2 0s0 4 . Sol. in H 2 ; insol. in alcohol and ether. (Fremy, I.e.) Perosmic acid. See Perosmic acid. Osmium, Os. When finely divided and not ignited to a very high temperature, it is sol. in HN0 3 + Aq or aqua regia. When ignited it is not attacked by any acid. Osmium ammonium comps. See Oxyosmiumamine comps., OsO(NH 3 ) 2 X. Oxyosmiumefoamine comps., Os0 2 (NH 3 ) 4 X 2 . Osmium ^'chloride, OsCl 2 . Deliquescent. Sol. in little, but decomp. by more H 2 0, with pptn. of Os. Sol. in cone, alkali chlorides + Aq with combination and partial decomp. (Berzelius.) Sol. in alcohol and ether. Osmium rfnchloride, OsCl 3 + 3H 2 0. Sol. in H 2 0. (Moraht and Wischin, Z. anorg. 3. 153.) Osmium ^rachloride, OsCl 4 . Sol. in a little H 2 0, but decomp. by further addition of that solvent. Sol. in cone. HC1 + Aq. Osmium Zn'chloride with MCI. See Chlorosmite, M. Osmium ^rachloride with MCI. See Chlorosmate, M. Osmium mowohydroxide, OsO, cH 2 0. Insol. in H 2 0. SI. sol. in KOH + Aq. Slowly but completely sol. in acids. (Ber- zelius.) Osmium ^'hydroxide, Os0 2 , H 2 0. Sol. in HCl + Aq while still moist. Insol. inH 2 S0 4 orHN0 3 + Aq. + 2H 2 0. Sol. in HC1, HN0 3 , or H 2 S0 4 + Aq while still moist. (Glaus and Jacoby.) Osmium sesgm'hydroxide, Os 2 6 H 6 . Sol. in acids, and partly sol. in KOH + Aq. (Glaus and Jacoby.) Osmium iodide, OsI 4 . Extremely deliquescent. Sol. ' in H 2 of alcohol, but solution is unstable. (Moraht and Wischin, Z. anorg. 3. 153.) Osmium monoxide, OsO. Insol. in H 2 or acids. (Glaus and Jacoby. ) Osmium dioxide, Os0 2 . Insol. in H 2 or acids. Osmium sesquioxide, Os 2 3 . Insol. in acids. (Glaus and Jacoby. ) Osmium ^'oxide, Os0 3 , "Osmic acid." Known only in the salts of osmic acid. Osmium ^roxide, Os0 4 , "Perosmic acid." Slowly but abundantly sol. in H 2 0. Sol. in alcohol and ether with gradual decomposition. Sol. in NH 4 OH + Aq, the solution undergoing decomposition on heating. Osmium oxide ammonia, Os0 2 , 2NH 3 + H 2 0. See Oxyosmiumamine hydroxide. Osmium oxysulphide, Os 3 S 7 5 + 2H 2 0. Unstable. OsS0 3 + HH 2 0. Insol. in H 2 0. (v. Meyer, J. pr. (2) 16. 77.) Os 2 2 S 2 + H 2 0. Decomp. and dissolved by HN0 3 , HC1, or H 2 S0 4 + Aq. (Moraht and Wischin, Z. anorg. 3. 153.) Osmium sulphide, Os 2 S 3 (?). (Berzelius.) Min. Laurite. Insol. in all acids, even in aqua regia. Osmium ^'sulphide, OsS 2 . SI. sol. in H 2 ; not more sol. in alkali hydrates or carbonates + A q. Insol. in alkalies after drying. (Fremy, A. ch. (3) 12. 521.) Osmium ^rasulphide, OsS 4 + a?H 2 0. Insol. in alkali sulphides, carbonates, or hydroxides + Aq. Sol. in cold dil. HN0 3 + Aq. (Glaus. ) Osmocyanhydric acid, H 4 Os(CN) 6 . Easily sol. in H 2 and alcohol. Insol. in ether. (Martius, A. 117. 361.) Barium osmocyanide, Ba 2 Os(CN) 6 + 6H 2 0. Easily sol. in H 2 and dil. alcohol. (M.) 276 OSMOCYANIDE, BARIUM POTASSIUM Barium potassium osmocyanide, BaK 2 Os(CN) 6 + 3H 2 0. Efflorescent. SI. sol. in cold, easily in hot H 2 0. Ferric osmocyanide, Fe 4 [Os(CN) 6 ] 3 + a;H 2 0. Insol. in H 2 0. Potassium osmocyanide, K 4 Os(CN) 6 + 3H 2 0. Moderately sol. in boiling, less in cold H 2 0. Insol. in alcohol and ether. Osmosyl ammonium comps. See Oxyosmium amine comps. Osmyl cfo'tetramine comps. See Oxyosmium examine comps. Oxamidosulphonic acid. See Hydroxylamine wowosulphonic acid. Oximidosulphonic acid. See Hydroxylamine cfo'sulphonic acid. Oxyamidosulphonic acid. See Hydroxylamine sulphonic acid. Oxyammonium salts. See Hydroxylamine salts. Oxycobaltamines, acid comps. (Maquenne, C. R. 96. 344.) Are anhydrooxycobaltamine comps., which see. (Vortmann, M. ch. 6. 404.) Oxycobaltamine chloride, OTT Co 2 (NH 3 ) lo0 ( OH) Cl 4 . (Vortmann, M. ch. 6. 404.) Co 2 (NH 3 ) 10 p 2 Cl 4 , HC1 + 3H 2 0. Is anhydro- oxycobaltamine chloride, which see. chloronitrate hydrochloride, Co 2 (NH 3 ) 10 (OH)(0 . OH)(N0 3 ) 2 CLj, 4HC1 + 3H 2 0. Is anhydrooxycobaltamine chloronitrate, which see. chlorosulphate, 4HC1. I 4 . SI. sol. in H 2 0. Decomp. by much H 2 0. (Vortmann. ) nitrate, Co 2 (NH 3 ) ]0 (OH)(O.OH)(N0 3 ) 4 + H 2 0. Decomp. by H 2 0. Co 2 (NH 3 ) 10 (OH)(0. OH)(N0 3 ) 4 , HN0 3 + 2H 2 0. Decomp. by H 2 0. nitratosulphate, Co 2 (NH 3 ) 10 (OH)(0 . OH)(S0 4 )(N0 3 ) 2 , 4HN0 3 . Decomp. at once by H 2 0. Easily decomp. Oxycobaltamine sulphate, Co 2 (NH 3 ) 10 2 (S0 4 ) 2 , H 2 S0 4 + H 2 0. Very si. sol. in H 2 with decomp. ; more easily sol. in acidified H 2 0. Sol. in acids. (Maquenne, C. R. 96. 344.) Co 2 (NH 3 ) 10 ( ^ } ) (S0 4 ) 2 + 3H 2 0. Co 2 (NH 3 ) 10 ( ^ } )(HS0 4 ) 4 . Decomp. vio- lently by H 2 0. Oxygen, 2 . 100 vols. H 2 O absorb 4-6 vols. O gas at ord. temp. (Otto-Graham.) Sol. in 27 pts. H 2 at ord. temp. (Pelouze and Fremy.) 100 vols. H 2 dissolve 0'925 vol. O. (Gay-Lussac.) 1 vol. H 2 at t and 760 mm. absorbs V vols. gas, reduced to and 760 mm. t V t V t V 0-04114 7 0-03465 14 0-03034 1 0-04007 8 0-03389 15 0-02989 2 0-03907 9 0-03317 16 0-02949 3 0-03810 10 0-03250 17 0-02914 4 0-03717 11 0-03189 18 0-02884 5 0-03628 12 0-03133 19 0-02858 6 0-03544 13 0-03082 20 0-02838 (Bunsen's Gasometry.) Coefficient of absorption of by H 2 = -04115 - -0010899t + '000022563t 2 . (Bunsen and Pauli, A. 93. 21.) Coefficient of absorption of in H 2 at 6 "4 = 0-041408 ; at 12 '6 = '036011. (Timofejew, Z. phys. Ch. 6. 148.) Absorption of by H 2 0. ft = " solubility ," i.e. the amount of gas (reduced to and 760 mm.) which is absorbed by 1 vol. of the liquid when the barometer indicates 760 mm. pressure ; /3 = coefficient of absorption, i.e. amount absorbed by the liquid when the pressure of the gas itself without the tension of the liquid amounts to 760 mm. ; ftrr^S , when f= vapour tension of solvent at t. t P Pi 0-04890 0-04860 1 4759 4728 2 4633 4601 3 4512 4479 4 4397 4362 5 4286 4250 6 4181 4142 7 4080 4040 8 3983 3941 9 3891 3847 10 3802 3756 11 3718 3670 12 3637 3587 13 3560 3507 OXYGEN 277 Absorption of by H 2 0, etc. Continued. t (3 ft 14 0-03486 0-03431 15 3415 3358 16 3347 3288 17 3283 3220 18 3220 3155 19 3161 3093 20 3102 3031 21 3044 2970 22 2988 2911 23 2934 2853 24 2881 2797 25 2831 2743 26 2783 2691 27 2736 2641 28 2691 2592 29 2649 2545 30 2608 2500 31 2572 2459 32 2537 2419 33 2503 2380 34 2471 2342 35 2440 2306 36 2410 2270 37 2382 2236 38 2355 2203 36 2330 2171 40 2306 2140 41 2280 2107 42 2256 2075 43 2232 2043 44 2209 2012 45 2187 1981 46 2166 1952 47 2145 1922 48 2126 1894 49 2108 1865 50 2090 1837 52 2057 1782 54 2026 1728 56 1998 1674 58 1971 1619 60 1946 1565 62 1921 1508 64 1897 1450 66 1874 1392 68 1853 1332 70 1833 1270 72 1815 1208 74 1799 1144 76 1785 1078 78 1772 1010 80 1761 0939 82 1752 0865 84 1743 0788 86 1736 0707 88 1729 0622 90 1723 0532 92 1717 0437 94 1712 0337 96 1708 0231 98 1704 0119 100 1700 0000 (Winkler, B. 24.3609.) Absorption of by H 2 at t and 760 mm. /3 = coefficient of absorption. t 13 t (3 t 0-04961 23 0-03006 46 0-02163 1 4838 24 2956 47 2139 2 4720 25 2904 48 2115 3 4606 26 2855 49 2092 4 4496 27 2808 ' 50 2070 5 4389 28 2762 51 2049 6 4286 29 2718 52 2029 7 4186 30 2676 53 2009 8 4089 31 2635 54 1990 9 3994 32 2596 55 1972 10 3903 33 2558 56 1955 11 3816 34 2521 57 1938 12 3732 35 2486 58 1922 13 3651 36 2452 59 1907 14 3573 37 2419 60 1893 15 3497 38 2387 65 1832 16 3425 39 2356 70 1787 17 3357 40 2326 75 1752 18 3292 41 2297 80 1726 19 3230 42 2269 85 1707 20 3171 43 2241 90 1693 21 3114 44 2214 95 1684 22 3059 45 2188 100 1679 (Bahr and Bock, W. Ann. (2) 44. 318.) For absorbed from the air, see also air, atmospheric, p. 1. 1 vol. alcohol absorbs '28397 vol. at all temperatures between and 24. (Bunsen.) Absorption by alcohol (99 7 %) at t. /3 = coefficient of absorption ; p! = solubility. (See p. 276.) t /3 ft 0-23370 0-22978 1 0-23296 0-22878 2 0-23222 0-22777 3 0-23149 0-22675 4 0-23077 0-22^72 5 0-23005 0-22469 6 0-22934 0-22365 7 0-22863 0-22260 8 0-22793 0-22155 9 0-22724 0-22047 10 0-22656 0-21937 11 0-22588 0-21827 12 0-22521 0-21715 13 0-22455 0-21601 14 0-22389 0-21484 15 0-22324 0-21365 16 0-22259 0-21245 17 0-22195 0-21122 18 0-22132 0-20994 19 0-22069 0-20862 20 0-22007 0-20733 21 0-21946 0-20600 22 0-21886 0-20459 23 0-21826 0-20317 24 0-21767 0-20172 (Timofejew, Z. phys. Ch. 6. 151.) 278 OXYMERCURIAMMONIUM BROMATE Insol. in ether. Abundantly absorbed by oil of turpentine. Oil of turpentine absorbs its own vol. when exposed two weeks to the air, but does not give it off on boiling. (Brandes.) Absorbed by other oils, but this is decom- position rather than absorption, as the oils are oxidised. (See Storer's Diet.) 100 vols. arterial blood dissolve 10-13 vols. 0. (Magnus. ) Coefficient of absorption for petroleum = 0*202 at 20; 0'229 at 10. (Gniewasz and Walfisz, Z. phys. Ch. 1. 70.) Oxyc&mercuriammonium bromate, (NHg 2 OH 2 )Br0 3 . ' (Rammelsberg, Pogg. 55. 82.) - carbonate, (NHg 2 OH 2 ) 2 C0 3 + |H 2 0. Insol. in H 2 0. Deconip. by HCl + Aq only when cone. Not decomp. by boiling KOH + Aq. Decomp. by KI or K 2 S + Aq. (Hirzel.) + H 2 0. As above. (Hirzel. ) - chloride, (NHg 2 OH 2 )Cl. Is efo'mercuriammonium chloride, NHg 2 Cl + H 2 0, which see. oxyr^mercuriammonium chloride, (NHg 2 OH 2 )Cl, (NHg 3 2 H 2 )Cl(?). Insol. in H 2 0. Easily sol. in dil. HC1 + Aq. More difficultly sol. in very dil. H 2 S0 4 or HN0 3 + Aq. Insol. in cone. H 2 S0 4 . Sol. in boiling NH 4 Cl + Aq, or (NH 4 ) 2 S0 4 + Aq. De- comp. by KOH + Aq. (Schmieder.) chromate, (NHg 2 OH 2 ) 2 Cr0 4 . Not decomp. by KOH + Aq. (Hirzel, J. B. 1852. 421.) mercuric chromate, (NHg 2 OH 2 ) 2 Cr0 4 , 4HgO, 3Cr0 3 . Decomp. by HN0 3 without going into solu- tion. Easily sol. in HC1. (Hirzel. ) Composition is (NHg 2 OH 2 ) 2 0, 2Cr0 3 , 3[(NH 4 ) 2 0, 2Cr 2 3 ] = (NHg 2 OH 2 ) 2 Cr 2 7 , 3(NH 4 ) 2 Cr 2 Oj. (Hensgen, R. t. c. 5. 187.) Probably (NHg 2 ) 2 Cr 2 7 , 3(NH 4 ) 2 Cr 2 7 + 2H 2 0. fluoride, acid, (NHg 2 OH 2 )F, HF. (Finkener, Pogg. 110. 632.) Probably NHg 2 F, HF + H 2 0. hydroxide, (NHg 2 OH 2 )OH = NHg 2 OH + H 2 0. (Millon's base.) SI. sol. in H 2 0, especially if warm. Sol. in 13,000 pts. H 2 at 17, and 1700 pts. at 80. Insol. in alcohol or ether. (Gerresheim, A. 195. 373.) + H 2 0. Insol. in H 2 or alcohol. Sol. in traces in NH 4 OH + Aq. Not decomp. by cold KOH + Aq; si. decomp. if hot. (Millon.) ammonium iodate, (NHg 2 OH 2 )I0 3 , 2NH 4 I0 3 . Insol. in H 2 0. (Millon, A. ch. (3) 18. 410.) - iodide, (NHg 2 OH 2 )I. Sol. in warm HCl + Aq. Not decomp. by boiling KOH + Aq. Sol. in warm KI + Aq. (Rammelsberg, Pogg. 48. 170.) Correct formula is NHg 2 I + H 2 0. (Rammels- berg.) OxycKmercuriammonium nitrate, (NHg 2 OH 2 )N0 3 . Insol. in H 2 ; not decomp. by boiling KOH + Aq. Sol. in cold HC1 + Aq, from which it is .precipitated by H 2 0. SI. sol. without decomp. in HN0 3 or H 2 S0 4 + Aq. Easily sol. in NH 4 OH + Aq. (Soubeiran. ) Is dwnercuriammonium nitrate, NHg 2 N0 3 . (Pesci, Gazz. ch. it. 20. 485.) ammonium nitrate, (NHg 2 OH 2 )N0 3 , 2NH 4 N0 3 + H 2 0. Decomp. by H 2 0. (Kane, A. ch. 72. 242.) Is c^mercuriammonium ammonium nitrate, NHg 2 N0 3 , 2NH 4 N0 3 + 2H 2 0. (Pesci.) - oxide, (NHg 2 OH 2 ) 2 0. Insol. in H 2 or alcohol ; not attacked by boiling cone. KOH + Aq. Sol. in hot NH 4 N0 3 + Aq, NH 4 Cl + Aq, (NH 4 ) 2 S0 4 + Aq, NH 4 C 2 H 3 2 + Aq, (NH 4 ) 2 C 2 4 + Aq. (Millon, A. ch. (3) 18. 397.) - mercuric phosphate, Hg(NHg 2 OH 2 )P0 4 . Insol. in H 2 0. Slowly sol. in hot HN0 3 + Aq ; not decomp. by boiling with KOH + Aq, but by KI or K 2 S + Aq. Sol. in HCl + Aq or much hot (NH 4 ) 2 HP0 4 + Aq. (Hirzel. ) mercuric sulphite, (NHg 2 OH 2 ) 2 S0 3 , HgS0 3 . Insol. in H 2 0. Sol. in much (NH 4 ) 2 S0 3 + Aq. Sol. in HCl + Aq with decomposition. Insol. in boiling KOH + Aq. (Hirzel.) - sulphate, (NHg 2 OH 2 ) 2 S0 4 . Sol. in traces in H 2 0. Easily sol. in HC1 or HN0 3 + Aq. (Kane.) Insol. in HN0 3 + Aq. (Hirzel.) Slowly sol. in boiling cone. H 2 S0 4 . (Hirzel.) Insol. in cone., easily sol. in dil. H 2 S0 4 + Aq. (Schmieder, J. pr. 75. 147.) Moderately sol. in much (NH 4 ) 2 S0 4 or boil- ing NH 4 Cl + Aq. Not decomp. by boiling KOH + Aq. (Hirzel.) Easily decomp. by boiling with dil. KOH + Aq. (Schmieder. ) Does not exist. (Pesci.) 2NH 3 , 2HgO, S0 3 . See Z^'mercuriammonium sulphate. Oxy^'mercuriammonium chloride, (NHg 3 2 H 2 )Cl (?). Insol. in H 2 0. - nitrate, (NHg 3 2 H 2 )N0 3 . Sol. in cold HCl + Aq, from which it is pre- cipitated by N H 4 OH + Aq. Sol. in NH 4 OH + Aq without decomp. Not decomp. by H 2 S0 4 or warm KOH + Aq. (Pagenstecher. ) Does not exist. (Pesci, Gazz. ch. it. 20. 485.) Oxymercuric&ammonmm sulphate, 2NH 3 , 3HgO, S0 3 . See Trimercurammonium sulphate. PALLADIUM AMMONIUM COMPOUNDS 279 Oxy^'mercurioxy<^'mercuriammonium sulphate, Completely sol.inNH 4 Cl + Aq,or (NH 4 ) 2 S0 4 + Aq. Sol. in dil. or cone. HCl + Aq, and very dil. H 2 S0 4 + Aq. Insol. in HN0 3 + Aqor cone. H 2 S0 4 . (Schmieder.) Does not exist. (Pesci.) Oxy^ramercuriammonium mercuric nitrate (?), 2(NHg 4 2 )N0 3 , HgN0 3 (?). Completely insol. in HN0 3 + Aq. Sol. in warm HCl + Aq. Slowly decomp. by boiling KOH + Aq. Gradually sol. in hot cone. NH 4 N0 3 + Aq. (Hirzel.) Does not exist. (Pesci, Gazz. ch. it. 20. 485.) Oxynitrosulphonic anhydride, Sol. in H 2 with decomp. (Weber, Pogg. 123. 339.) Oxyosmiumamine hydroxide (Osmo- sylcftamine hydroxide), OsO(NH 3 OH) 2 . Insol. in H 2 0. SI. sol. in acids. Sol. in KOH + Aq. When moist, sol. in NH 4 OH + Aq. Oxyosmium^'amine chloride (Osmyltetr- amine chloride), Os0 2 (N 2 H 6 Cl) 2 . SI. sol. in cold, more easily in hot H 2 0. Insol. in NH 4 Cl + Aq. (Gibbs, Am. Ch. J. 3. 233.) - chloroplatinate, Os0 2 (N 2 H 6 Cl) 2 , PtCl 4 . SI. sol. in H 2 0. (Gibbs.) - hydroxide, Os0 2 (N 2 H 6 OH) 2 . Known only in solution. nitrate, Os0 2 (N 2 H 6 N0 3 ) 2 . sulphate, Os0 2 (N 2 H 6 ) 2 S0 4 + H 2 0. (Gibbs, Am. Ch. J. 3. 233. ] Oxyphosphuretted hydrogen(?), P 4 H(OH). P 4 of Leverrier, and Goldschmidt has this formula according to Franke (J. pr. (2) 35. 341). Decomp. slowly by H 2 or alkalies. Forms potassium salt, P 4 H(OK), sol. in H 2 0. - hydroiodide, P 4 H(OH), HI. Decomp. at 80. Oxysulpharsenic acid. See Sulphoxyarsenic acid. Oxysulphazotic acid, H 4 S 4 N 2 14 = (S0 3 H) 3 =N NO-S0 3 H. Known only in its salts. (Glaus, A. 158. 52, 194.) Has formula (S0 3 H) 2 N N(S0 3 H) 2 . (Raschig, A. 241. 161.) Potassium oxysulphazotate, NO(S0 3 K) 2 . Insol. in alcohol. (Fremy, A. ch. (3) 15. 451.) According to Raschig the formula is Very sol. in water, with rapid decomposi- tion. (Raschig. ) Oxysulphotungstates. See Sulphotungstates. Oxysulphovanadic acid. See Sulphoxyvanadic acid. Ozone, 3 . Not appreciably sol. in H 2 0. (Schonbein.) Imparts its taste and properties to H 2 0. (Williamson.) Later, Carius (B. 5. 520) found that 1000 vols. H 2 at 1-2-5 absorb 5 '11 vols. 3 (red. to and 760 mm.). He also still later (A. 174. 1) found, by conducting the gas for 9-12 hours through H 2 0, that 1000 vols. H 2 absorb a maximum of 28 '160 vols. 3 . The ozonised oxygen used contained 3 '44 vols. 3 in 100 vols. 2 . Since gases are absorbed in proportion to their partial pressure, which is very small for the 3 , the amount of absorption of water for the gas is very considerable. Carius calculated the coefficient of absorption at +1 to be 0-834. Ozone is not at all absorbed by H 2 ; the H 2 through which ozone had been passed five no reactions for ozone. (Rammelsberg, . 6. 603.) Schone (B. 6. 1224) corroborates Carius, and finds 8-81 vols. to 1000 vols. H 2 as a maxi- mum amount absorbed. Sol. in H 2 0. (Leeds, B. 12. 1831.) Sol. in H 2 C 2 4 + Aq. (Jeremin, B. 11. 988.) Completely absorbed by oil of turpentine and oil of cinnamon. (Soret, A. ch. (4) 17. 113.) ZH'palladamine chloride, Cl 2 Pd 2 (NH 3 ) 4 Cl 4 = C1 pd< NH 3 Cl d< NH 3 Cl C1 L.NH 3 C1 d< NH 3 Cl. SI. sol. in H 2 0. (Deville and Debray, C. R. 86. 296.) Palladium, Pd. Not attacked by H 2 0. SI. attacked by HCl + Aq, but Pd sponge or filings are easily dissolved in warm HCl + Aq, with access of air. HN0 3 + Aq of 1'2 sp. gr. dissolves Pd slightly, but it is easily sol. in HN0 3 + Aq of 1-35 sp. gr. (Rose.) Easily sol. in aqua regia. SI. sol. in cone., but insol. in dil. HI + Aq. Sol. in cone, boil- ing H 2 S0 4 . Sol. in boiling FeCl 3 + Aq. Sol. in HBr + Aq with a little HN0 3 . Palladium ammonium compounds. See Z^palladamine comps., Cl 2 Pd 2 (NH 3 ) 4 Cl 4 . Pallado^amine ,, Pd(NH 3 ) 4 Cl 2 . Palladosamine Pd(NH 3 ) 2 Cl 2 . 280 PALLADIUM BROMIDE Palladium ^"bromide. Not known in pure state. Palladium bromide with MBr. See Bromopalladite, M. Palladium sw&chloride, Pd 2 Cl 2 . Deliquescent. Decomp. b; H 2 0, NH 4 C1, Dy KI, or NH 4 OH + Aq. (Kane. ) Palladium cfo'chloride, PdCl 2 . Slowly but completely sol. in H 2 0. + 2H 2 0. Not deliquescent when pure. Slowly sol. in H 2 0. Much more sol. in H 2 containing HC1. Palladium cfo'chloride with MCI. See Chloropalladite, M. Palladium tetracblori&e with MCI. See Chloropalladate, M. Palladious phosphorus chloride, PdCl 2 , PC1 3 . Decomp. by H 2 into deliquescent P(OH) 3 , PdCl 2 . Decomp. by alcohol. (Fink, C. R. 115. 176.) PdCl 2 , 2PC1 3 . Sol. in C 6 H 6 , and decomp. byH 2 0. (Fink.) Palladium ^fluoride, PdF 2 . SI. sol. in H 2 or HF + Aq. SI. sol. while moist in NH 4 OH + Aq ; insol. after drying in NH 4 OH + Aq. Insol. in boiling NaF or NaHF 2 + Aq. (Berzelius.) Palladium hydride, Pd 2 H (?). Palladious hydroxide, PdO, #H 2 (?). Easily sol. in acids or excess of alkali hydrates, and carbonates + Aq. Sol. in hot NH 4 Ci + Aq. (Rose.) Insol. in Na 2 B 4 7 , and Na 2 HP0 4 + Aq. (Glaus.) Palladia hydroxide, Pd0 2 , ccH 2 0. Slowly sol. in acids. Sol. in cone. HC1 + Aq without decomp. With dil. HC1 + Aq, C1 2 is evolved. (Berzelius.) Palladious iodide, PdI 2 . Insol. in H 2 0. Can be detected as a brown coloration in presence of 400,000 pts. H 2 0. (Lassaigne.) SI. sol. in HI + Aq. Easily sol. in KI + Aq. (Lassaigne, J. ch. med. 11. 57.) Insol. in dil. HCl + Aq, but slightly sol. in saline solutions. (Fresenius.) SI. sol. in hot cone. HN0 3 + Aq. Sol. in H 2 S0 3 + Aq, Cl 2 + Aq, Br 2 + Aq, I 2 + Aq, and ON + Aq ; also in HCN, and MCN + Aq. Insol. in dil. H 2 S0 4 , HC1, H 3 P0 4 , HN0 3 , or HC 2 H 3 2 + Aq, or in the K, Na, or NH 4 salts of those acids. Insol. in CuCl 2 , ZnCl 2 , or Pb(C 2 H 3 2 ) 2 + Aq. Insol. in KBr + Aq except in presence of a free mineral acid, but not HC 2 H 3 2 . Insol. in sugar or starch + Aq, uric acid, alcohol, ether, or oil of lemon. Some- what sol. in urine. Easily sol. in NH 4 OH + Aq, even when dil., with evolution of heat and decomposition. (Kersten, A. 87. 28.) Insol. in alcohol or ether. Palladious potassium iodide. See lodopalladite, potassium. Palladium sw&oxide, Pd 2 0. Decomp. by acids into palladious salt and Pd. (Kane, Phil. Trans. 1842, 1. 276.) Insol. in acids, even boiling aqua regia. (Willm. B. 25. 220.) Palladious oxide, PdO. Slowly sol. in acids by boiling. (Wohler, A. 174. 160.) Palladia oxide, Pd0 2 . Very si. attacked by acids. Palladiopalladic oxide, 4PdO, Pd0 2 . Not attacked by aqua regia. (Schneider, Pogg. 141. 528.) Palladious oxychloride, 3PdO, PdCl 2 + 4H 2 0(?). Sol. in dil. acids. (Kane.) Palladious oxychloride ammonia, PdO, PdCl 2 , 6NH 3 (?). Sol. in HCl + Aq. 3 PdO, PdCl 2 , 2NH 3 + 3H 2 (?). Ppt. (Kane.) Palladium selenide, PdSe. Insol. in HN0 3 and aqua regia. (Rossler, A. 180. 240.) Palladium m&sulphide, Pd 2 S. Not attacked by acids except aqua regia, which attacks slightly. (Schneider, Pogg. 141. 530.) Palladium mowosulphide, PdS. Insol. in H 2 or (NH 4 ) 2 S + Aq. Sol. in HCl + Aq. Pptd. in presence of 10,000 pts. H 2 0. (Fellenberg, Pogg. 50. 65.) Sol. in potassium thiocarbonate + Aq. (Ro- senbladt, Z. anal. 26. 15.) A sol. colloidal form was obtained in very dilute solution. (Winnsinger, Bull. Soc. (2) 49. 452.) Does not exist. (Kritschenko, Z. anorg. 4. 247.) Palladium cfo'sulphide, PdS 2 . HN0 3 dissolves out part of the S. Easily sol. in aqua regia without separation of S. (Schneider.) Palladium sulphide with M 2 S. See Sulphopalladate, M. Palladocftamine bromide, Pd(N 2 H 6 Br) 2 . Easily sol. in H 2 0. - bromopalladite, Pd(N 2 H 6 Br) 2 , PdBr 2 . Properties as the corresponding Chloropal- ladite. carbonate. Sol. in H 2 0. chloride, Pd(N 2 H 6 Cl) 2 . Easily sol. in H 2 0. - Chloropalladite, Pd(N 2 H 6 Cl) 2 , PdCl 2 . " Vauquelin's red salt." Insol. in cold H 2 0. (Fischer.) PENTAMINE COBALTIC COMPOUNDS 281 Sol. in boiling H 2 with decomp. Sol. in HClor HN0 3 + Aq. Pallado^iamine fluoride. Easily sol. in H 2 0. (Miiller.) fluosilicate. SI. sol. in cold, easily in warm H 2 0. Insol. in alcohol. hydroxide, Pd(N 2 H 6 OH) 2 . Sol. in H 2 0. iodide, Pd(N 2 H 6 I) 2 . Sol. in H 2 0. nitrate, Pd(N 2 H 6 N0 3 ) 2 . Easily sol. in H 2 0, HN0 3 , or NH 4 OH + Aq. Insol. in alcohol. palladious nitrite, Pd(N 2 H 6 N0 2 ) 2 , Pd(N0 2 ) 2 . Easily sol. in H 2 0. - sulphate, Pd(N 2 H 6 ) 2 S0 4 + H 2 0. Easily sol. in H 2 0. Insol. in alcohol. - sulphite, Pd(N 2 H 6 ) 2 S0 3 . SI. sol. in H 2 0. Palladochloronitrous acid. Potassium palladochloronitrite, Pd(N0 2 ) 2 Cl 2 K 2 . Sol. in 2 pts. hot, and 3 pts. cold H 2 0. (Vezes, C. R. 116. 111.) Palladocyanhydric acid. Ammonium palladocyanide, (NH 4 ) 2 Pd(CN) 4 (?). Sol. in hot H 2 0. (Rossler, Z. Ch. 1866. 175.) Barium , BaPd(CN) 4 + 4H 2 0. Not efflorescent. Sol. in H 2 0. Calcium , CaPd(CN) 4 + 4H 2 0. Sol. in H 2 0. Cupric , CuPd(CN) 4 . Ppt. Lead , PbPd(CN) 4 . Ppt. Magnesium , MgPd(CN) 4 . Very sol. in H 2 0. Magnesium platinocyanide, MgPd(CN) 4 , MgPt(CN) 4 + 14H 2 0. Extremely sol. in H 2 0. Potassium , K 2 Pd(CN) 4 + 3H 2 0. Efflorescent. Sol. in H 2 0. + H 2 0. Not efflorescent. Silver , Ag 2 Pd(CN) 4 . Ppt. Sodium, Na 2 Pd(CN) 4 . Not efflorescent. Sol. in H 2 0. + H 2 0. Palladonitrous acid. Potassium palladonitrite, K 2 Pd(N0 2 ) 4 + 2H 2 0. Efflorescent ; sol. in H 2 0. (Lang, J. pr. 83. 415.) Silver palladonitrite, Ag 2 Pd(N0 2 ) 4 . Easily sol. in hot H 2 0. (Lang. ) Sodium , Na 2 Pd(N0 2 ) 4 . (Fischer.) Palladosamine bromide, Pd(NH 3 Br) 2 . Insol. in cold, si. sol. in hot H 2 0. Easily sol. in HC 2 H 3 2 , H 2 S0 3 , KOH, NH 4 OH, or alkali carbonates +Aq. (Miiller, A. 86. 341.) - carbonate, Pd(NH 3 ) 2 C0 3 . Moderately sol. in H 2 0. - chloride, Pd(NH 3 Cl) 2 . Insol. in H 2 0, but very gradually decomp. by boiling therewith. Sol. in warm HC1 or HN0 3 *Aq. Sol. in cold NH 4 OH + Aq. Sol. in KOH + Aq without evolution of NH 3 . + 2H 2 0. Efflorescent. Insol. in H 2 0. (Baubigny, A. Suppl. 4. 253.) - cyanide, Pd(NH 3 CN) 2 . Sol. inNH 4 OH + Aq. fluoride. Known only in solution. - hydroxide, Pd(NH 3 OH) 2 . Easily sol. in H 2 0. Slowly decomp. by boiling with H 2 0. (Miiller, A. 86. 341.) - iodide, Pd(NH 3 I) 2 . Insol. in H 2 0. Sol. in boiling HN0 3 with evolution of I 2 . (Fehling, A. 39. 116.) nitrate. Known only in solution, which decomp. on evaporation. - nitrite, Pd(NH 3 N0 2 ) 2 . Moderately sol. in H 2 0. (Lang.) palladious nitrite, Pd(NH 3 N0 2 ) 2 , Pd(N0 2 ) 2 . Slowly sol. in cold, easily in hot H 2 0. (Lang.) - sulphate, Pd(NH 3 ) 2 S0 4 . Moderately sol. in H 2 0. (Miiller.) - sulphite, Pd(NH 3 ) 2 S0 3 . Easily sol. in H 2 0. (Miiller.) Pentamine chromium compounds. See Bromopurpureochromium compounds. Chloropurpureochromium compounds, lodopurpureochromium compounds. Xanthochromium compounds. Roseochromium compounds. Pentamine cobaltic compounds. See Bromopurpureocobaltic compounds. Chloropurpureocobaltic compounds. Nitratopurpureocobaltic compounds. Nitritocobaltic compounds. Purpureocobaltic compounds. Roseocobaltic compounds. Sulphatopurpureocobaltic compounds. Xanthocobaltic compounds. 282 PENTAMINE COBALTIC SULPHITE Pentamine cfo'cobaltic sulphite, 2Co 2 (NH 3 ) 5 (S0 3 ) 3 + 9H 2 = Co 2 (NH 3 ) 10 (S0 3 ) 3 , Co 2 (S0 3 ) 3 + 9H 2 0. See Roseocobaltic cobaltic sulphite. Pentamine iridium compounds. See Iridqpe^amine, and amine compounds. Pentamine rhodium compounds. See Bromopurpureorhodium compounds. Chloropurpureorhodium compounds, lodopurpureorhodium compounds. Nitratopurpureorhodium compounds. Roseorhodium compounds. Xanthorhodium compounds. Pentathionic acid, H 2 S 5 6 . Known only in aqueous solution. Cone, solution is decomp. by boiling, but made stable by addition of acids. Sp. gr. of aqueous solution of pentathionic acid at 22 : Sp. gr. 1-233 1-320 1-474 1'506 %H 2 S 5 6 32-1 417 56 597 (Kessler, Pogg. 74. 279.) Does not exist. (Spring, Bull. Acad. roy. Belg.) Existence proven by Smith (Chem. Soc. 43. 355). Barium pentathionate, BaS 5 6 + 2H 2 0. Easily sol. in .H 2 0. Aqueous solution is precipitated by alcohol. Contains 3H 2 0. (Lewes, C. N. 43. 41.) Barium pentathionate tetrathionate, BaS 5 6 , BaS 4 6 + 6H 2 0. Easily sol. in H 2 0. Not precipitated from aqueous solution by two vols. alcohol. (Lud- wig, Arch. Pharm. (2) 51. 264.) Cupric pentathionate, CuS 5 6 + 4H 2 0. Easily sol. in H 2 0. (Debus, Chem. Soc. 53. 360.) Lead pentathionate, PbS 5 6 + 4H 2 0. Ppt. Potassium pentathionate, K 2 S 5 6 . Sol. in H 2 0. (Rammelsberg, J. B. 1857. 136.) Solution decomposes very quickly when neutral, but is more stable in presence of salts or acids. Sol. in about 2 pts. H 2 0. Insol. in alcohol. (Debus, Chem. Soc. 53. 295.) + H 2 0. (Shaw, Chem. Soc. 43. 351.) + 1PI 2 0. (Debus, A. 244. 76.) + 2H 2 0. (Lewes, C. N. 43. 41.) Perbromic acid, HBr0 4 . Known only in aqueous solution, which can be concentrated to a thick liquid on water bath. Not decomp. by HC1, S0 2 , or H 2 S. (Kammerer, J. pr. 85. 452 ; 90. 190.) Does not exist. (Muir, C. N. 33. 256 ; Macivor, C. N. 33. 35.) Barium perbromate, Ba(Br0 4 ) 2 . Very si. sol. in boiling H 2 0. (Kammerer, J. pr. 90. 190.) Does not exist. (Wolfram, A. 198. 95.) Potassium perbromate, KBr0 4 . Less sol. in H 2 than KBr0 3 , but more sol. than KC10 4 . (Kammerer, J. pr. 90. 190.) Does not exist. (Wolfram, A. 198. 95.) Silver perbromate, AgBr0 4 . SI. sol. in cold, more abundantly in hot H 2 0. (Kammerer, J. pr. 90. 190.) Does not exist. (Wolfram, A. 198. 95. ) Perbromoplatinocyanhydric acid, H 2 Pt(CN) 4 Br 2 + a;H 2 0. Deliquescent. Easily sol. in H 2 0, alcohol, and ether. (Hoist, Bull. Soc. (2) 22. 347.) Aluminum perbromoplatinocyanide, Al 2 [Pt(CN) 4 Br 2 ] 3 + 22H 2 0. Deliquescent. Very sol. in H 2 0. Ammonium , (NH 4 ) 2 Pt(CN) 4 Br 2 . Sol. in H 2 0. Barium , BaPt(CN) 4 Br 2 + 5H 2 0. Very sol. in H 2 or alcohol. Cadmium , CdPt(CN) 4 Br 2 + xH 2 0. Very sol. in H 2 0. Calcium , CaPt(CN) 4 Br 2 + 7H 2 0. Sol. in H 2 0. Cobaltous , CoPt(CN) 4 Br 2 + 5H 2 0. Sol. in H 2 0. SI. sol. in alcohol. Glucinum , GlPt(CN) 4 Br 2 . Deliquescent. Sol. in H 2 0. Ferrous . Very si. sol. in H 2 0. Lead , PbPt(CN) 4 Br 2 + 2H 2 0. SI. sol. in H 2 0. Lithium , Li 2 Pt(CN) 4 Br 2 . Deliquescent. Sol. in H 2 0. Magnesium , MgPt(CN) 4 Br 2 + xH 2 0. Sol. in H 2 0. Nickel , NiPt(CN) 4 Br 2 + a;H 2 0. SI. sol. in H 2 0. Sol. in NH 4 OH + Aq. Potassium , K 2 Pt(CN) 4 Br 2 . Sol. in H 2 0. + 2H 2 0. Efflorescent. Sodium , Na 2 Pt(CN) 4 Br 2 . Deliquescent. Sol. in H 2 0. Strontium , SrPt(CN) 4 Br 2 + 7H 2 0. Sol. in H 2 0. Zinc , ZnPt(CN) 4 Br 2 + 5H 2 0. Not very sol. in H 2 0. Perchloric acid, HC10 4 . Combines with H 2 with a hissing sound and evolution of much heat. Solution in H 2 is very stable. When dil. HC10 4 + Aq is distilled, H 2 and HC10 4 distil off until a temp, of 203 is PERCHLORATE, POTASSIUM 283 reached, when an acid of constant composition containing 71 '6-72 '2 % HC10 4 ( = HC1O 4 + 2H 2 0) is obtained. Forms hydrate HC10 4 + H 2 0, which is deliquescent, and dissolves in H 2 O with evolution of much heat. HC10 4 is very unstable, HC10 4 + H 2 more stable, and HC10 4 + 2H 2 is very stable. (Roscoe, A. 121. 346.) HC10 4 + 2H 2 has 1'65 sp. gr. and boils at 200 (Serullas) ; has 172-1 '82 sp. gr. and boils at 200 (Nativelle, J. pr. 26. 405). Sol. in alcohol with decomp. , often explosive. Perchlorates. All perchlorates are sol. in H 2 0, KC10 4 , RbC10 4 , and CsC10 4 somewhat difficultly. They are all deliquescent, and sol. in alcohol, excepting NH 4 C10 4 , KC10 4 , Pb(C10 4 ) 2 , and Hg 2 (C10 4 ) 2 . (Serullas, A. ch. (2) 46. 296.) Aluminum perchlorate. Deliquescent ; sol. in H 2 and alcohol. (Serullas.) Ammonium perchlorate, NH 4 C10 4 . Permanent. Sol. in 5 pts. H 2 ; somewhat sol. in alcohol. (Mitscherlich, Pogg. 25. 300.) Insol. in cone. HC10 4 + Aq. Barium perchlorate, Ba(C10 4 ) 2 + 4H 2 0. Deliquescent. Easily sol. in H 2 and alcohol. Bismuth perchlorate, (BiO)C10 4 . Insol. in H 2 0. Easily sol. in HC1 or HN0 3 + Aq, less easily in H 2 S0 4 + Aq. (Muir, C. N. 33. 15.) Cadmium perchlorate, Cd(C10 4 ) 2 . Very deliquescent. Sol. in H 2 and alcohol. (Serullas, A. ch. 46. 305.) Caesium perchlorate, CsC10 4 . Very si. sol. in H 2 0. (Retgers, Z. phys. Ch. 8. 17.) Calcium perchlorate, Ca(C10 4 ) 2 . Very deliquescent. Very sol. in H 2 and alcohol. (Serullas, A. ch. 46. 304.) Cerous perchlorate, Ce(C10 4 ) 3 + 8H 2 0. Very deliquescent. ( Jolin. ) Cupric perchlorate, Cu(C10 4 ) 2 . Deliquescent. Sol. in H 2 and alcohol. (Serullas, A. ch. 46. 306.) Cupric perchlorate ammonia, Cu(C10 4 ) 2 , 4NH 3 + 2H 2 0. Not deliquescent. Sol. in NH 4 OH + Aq. (Roscoe, A. 121. 346.) Didymium perchlorate, Di(C10 4 ) 3 + 9H 2 0. Very deliquescent. Very sol. in H 2 and alcohol. (Cleve.) Erbium perchlorate, Er(C10 4 ) 3 + 8H 2 0. Very deliquescent. Glucinum perchlorate, G1(C10 4 ) 2 + 4H 2 0. Very deliquescent, and sol. in H 2 0. (Atter- berg.) Ferrous perchlorate, Fe(C10 4 ) 2 . Tolerably permanent ; sol. in H 2 0. (Serullas, I.e.] Ferric perchlorate, Fe(C10 4 ) 3 . Sol. inH 2 0. (Serullas.) Lanthanum perchlorate, La(C10 4 ) 3 + 9H 2 0. Extremely deliquescent. Sol. in H 2 and absolute alcohol. (Cleve.) Lead perchlorate, basic, 2PbO, C1 2 7 + 2H 2 0. Decomp. by H 2 into an insol. more basic salt, and sol. Pb(C10 4 ) 2 . (Marignac.) Lead perchlorate, Pb(C10 4 ) 2 + 3H 2 0. Permanent ; extremely easily sol. in H 2 0. (Roscoe, A. 121. 356.) Sol. in about 1 pt. H 2 0. (Serullas.) Lithium perchlorate, LiC10 4 . Deliquescent. Sol. in H 2 and alcohol. (Serullas.) + 3H 2 O. (Wyrouboff, Zeit. Kryst. 10. 626. Magnesium perchlorate, Mg(C10 4 ) 2 . Deliquescent, and sol. in H 2 and alcohol. (Serullas.) Manganous perchlorate, Mn(C10 4 ) 2 . Very deliquescent. Sol. in H 2 and alcohol. (Serullas, A. ch. 46. 335.) Mercurous perchlorate, Hg 2 (C10 4 ) 2 + 6H 2 0. Very deliquescent. (Roscoe, A. 121. 356.) Permanent. (Serullas.) Mercuric perchlorate, Hg(C10 4 ) 2 . Very deliquescent. Sol. in H 2 ; si. sol. with decomp. in alcohol. (Serullas, A. ch. 34. 243.) Nickel perchlorate. Deliquescent ; easily sol. in alcohol and H 2 0. (Groth, Pogg. 133. 226.) Platinum perchlorate, Pt 6 C10 9 + 15H 2 0. Insol. in H 2 0. (Frost, Bull. Soc. (2) 46. 156.) Potassium perchlorate, KC10 4 . Sol. in 57-9 pts. H 2 O at 21-3 (Longuinine, A. 121. 23) ; in 65 pts. H 2 O at 15 (Serullas, A. ch. (2) 46. 297) ; in 88 pts. H 2 O at 10; in 55 pts. H 2 O at 100 (Hutstein, Solubility in H 2 0. 1 pt. KC10 4 dissolves in 142 '9 pts. H 2 at 6, and solution has sp. gr. = 1'0005 ; in 52 '5 pts. H 2 at 25, and solution has sp. gr. = 1-0123 ; in 15 '5 pts. H 2 at 50, and solution has sp. gr. = l-0181 ; in 5 '04 pts. H 2 at 100, and solution has sp. gr. = 1 '0660. (Muir, C. N. 33. 15.) KC10 4 is sol. in 22'0 pts. H 2 0atord. temp., and 4 '00 pts. at 100 ; in 29 '6 pts. NH 4 OH + Aq (cone.) atord. temp. ; in 30 '4 pts. NH 4 OH + Aq (1 vol. cone. +3 vols. H 2 0) at ord. temp. ; in 22-4 pts. HN0 3 + Aq (1 vol. cone. +5 vols. H 2 0) at ord. temp., and 5 '00 pts. at 100 ; in 30-4 pts. HCl + Aq (1 vol. cone. +4 vols. H 2 0) at ord. temp. ; 45 '2 pts. HC 2 H 3 2 + Aq (1 vol. commercial acid + 1 vol. H 2 0) at ord. temp. ; in 24-4 pts. NH 4 C 2 H 3 2 + Aq. (dil. HC 2 H 3 2 284 PERCHLORATE, RUBIDIUM NH 4 OH + Aq) at ord. temp., and 6 '00 pts. at 100 ; in 25-6 pts. NH 4 Cl + Aq (1 pt. NH 4 C1 + 10 pts. H 2 0) at ord. temp., and 6 '00 pts. at 100 ; in 16-0 pts. NH 4 N0 3 + Aq (1 pt. NH 4 N0 3 + 10 pts. H 2 0) at ord. temp., and 4 -00 pts. at 100; in 25 '6 pts. NaC 2 H 3 2 + Aq (cone. HC 2 H 3 2 + Na 2 C0 3 + 4 vols. H 2 0) at ord. temp., and 7 '00 pts. at 100 ; in 29 '2 pts. Cu(C 2 H 3 2 ) 2 + Aq (Stolba, Z. anal. 2. 390) at ord. temp., and 7*00 pts. at 100 ; in 27 '2 pts. cane sugar (1 pt. +10 pts. H 2 0) at ord. temp. ; in 36 '8 pts. grape sugar (1 pt. + 10 pts. H 2 0) at ord. temp. (Approximate.) (Pearson, Zeit. Chem. 1869. 662.) Very si. sol. in abs. alcohol, and insol. if alcohol contains trace of an acetate. (Roscoe. ) Insol. in alcohol of 0'835 sp. gr. (Schlosing, C. R. 73. 1269.) Sol. in 6400 pts. 97 '2 % alcohol ; in 5000 pts. 95 '8 % alcohol; in 2500-3000 pts. 90 % alcohol; in 25,000 pts. alcohol - ether (2 pts. 97 % alcohol : 1 pt. ether). Practically insol. in an alcoholic solution of HC10 4 . (Wenze, Z. angew. Ch. 1891. 691.) Rubidium perchlorate, RbC10 4 . Sol. in 92-1 pts. H 2 at 21 '3. (Longuinine, A. 121. 123.) Silver perchlorate, AgC10 4 . Deliquescent. Sol. in H 2 and alcohol. (Serullas, A. ch. 46. 307.) Sodium perchlorate, NaC10 4 . Deliquescent, and very sol. in H 2 and alcohol. (Serullas.) Not deliquescent. (Potilitzin, J. russ. Soc. 1889, 1. 258.) + H 2 0. Not deliquescent. (Potilitzin.) Strontium perchlorate, Sr(C10 4 ) 2 . Very deliquescent. Sol. in H 2 and alcohol. (Serullas, A. ch. 46. 304.) Thallous perchlorate, T1C10 4 . 1 pt. salt dissolves in 10 pts. H 2 at 15, and 0'6 pt. at 100. (Roscoe, Chem. Soc. (2) 4. 504.) SI. sol. in alcohol. (Roscoe.) Yttrium perchlorate, Y(C10 4 ) 3 + 8H 2 0. Very deliquescent. Sol. in H 2 and alcohol. (Cleve.) Zinc perchlorate, Zn(C10 4 ) 2 . Deliquescent. Sol. in H 2 and alcohol. (Serullas, A. ch. 46. 302.) Perchromic acid. Sodium perchromate, Na 6 Cr 2 15 + 28H 2 0. Efflorescent. SI. sol. in cold, easily in hot H 2 0, with decomp. Not decomp. by NaOH + Aq. (Haussermann, J. pr. (2) 48. 70.) Perchloroplatinocyanhydric acid, H 2 Pt(CN) 4 Cl 2 + 4H 2 0. Very sol. in H 2 and alcohol. Ammonium perchloroplatinocyanide, (NH 4 ) 2 Pt(CN) 4 Cl 2 + 2H 2 0. Barium perchloroplatinocyanide, BaPt(CN) 4 Cl 2 + 5H 2 0. Very sol. in H 2 0. Calcium , CaPt(CN) 4 01 2 . Sol. in H 2 0. Magnesium , MgPt(CN) 4 Cl 2 Sol. in H 2 0. Manganous , MnPt(CN) 4 Cl 2 Sol. in H 2 and alcohol. Potassium , K 2 Pt(CN) 4 Cl 2 + 2H 2 0. Very efflorescent, and sol. in H 2 and alcohol. Perferricyanhydric acid. Potassium perferricyanide, K 2 Fe(CN) 6 + H 2 (?). Very hygroscopic, and sol. in H 2 0. Nearly insol. in absolute alcohol. Decomp. by hot H 2 0. (Skraup, A. 189. 368.) Periodic acid, H 6 I0 6 . Deliquescent in moist air ; very sol. in H 2 0. (Bengieser, A. 17. 254.) Rather easily sol. in alcohol and ether. (Bengieser.) Rather easily sol. in alcohol, less in ether. (Langtoch.) SI. sol. in alcohol, still less in ether. (Langlois, J. pr. 56. 36.) Sp. gr. of H 5 I0 6 + Aq. H 5 I0 6 + 20H 2 = 1-4008. H 5 I0 6 + 40H 2 = 1-2165. H 5 I0 6 + 80H 2 = 1-1121. H 5 I0 6 + 160H 2 = 1-0570. H 5 I0 6 + 320H 2 = 1-0288. (Thomson, B. 7. 71.) Periodates. Most periodates are insol. or si. sol. in H 2 ; all are insol. or very si. sol. in alcohol, but they all dissolve in dil. HN0 3 + Aq. (Ben- gieser. ) Ammonium meteperiodate, NH 4 I0 4 . SI. sol. in H 2 0. Cryst. with 3H 2 (Ihre, B. 3. 316), 2H 2 (Langlois, A. ch. (3) 34. 257). cfo'wesoperiodate, (NH 4 ) 4 I 2 9 + (Rammelsberg, Pogg. 134. Ammonium 3H 2 0. Sol. in H 2 0. 379.) Ammonium lithium cfo'mesoperiodate, (NH 4 ) 2 Li 2 I 2 9 + 7H 2 0. Sol. inH 2 0. (Ihre.) Ammonium magnesium ?ncsoperiodate, NH 4 MgI0 5 + 3H 2 0. Precipitate. (Rammelsberg, Pogg. 134. 510.) Barium mgtoperiodate, Ba(I0 4 ) 2 . Known only in solution. Barium cfo'mesoperiodate, Ba 2 I 2 9 . SI. sol. in H 2 ; easily sol. in dil. HN0 3 + Aq. (Rammelsberg, Pogg. 134. 391.) Cryst. also with 3H 2 0, 5H 2 0, and 7H 2 0. PERIODATE, NICKEL 285 Barium raesoperiodate, Ba 3 (I0 5 ) 2 + 6H 2 0. (Ihre.) Barium or^operiodate, Ba 5 (I0 6 ) 2 . Insol. inH 2 0. Sol. in HN0 3 + Aq. (Ram- melsberg. ) Barium dimesodipeTiod&te, Ba 5 I 4 19 + 5H 2 0. Precipitate. Sol. in dil. HN0 3 + Aq. (Ram- melsberg, Pogg. 134. 395.) Cadmium wetaperiodate, Cd(I0 4 ) 2 . Ppt. (Rammelsberg, Pogg. 134. 516.) Cadmium c^mesoperiodate, Cd 2 I 2 9 + 9H 2 0. Insol. in H 2 0. (Rammelsberg.) Cadmium 7/iesoperiodate, Cd 3 (I0 5 ) 2 + 5H 2 0. Ppt. CdHIOg. (Kimmins, Chem. Soc. 55. 151.) Cadmium cfo'periodate, Cd 4 I 2 O u + 3H 2 0. Insol. in H 2 0. (Rammelsberg.) Cadmium periodate, Cd 10 I 6 31 + 15H 2 0. Insol. in H 2 0. (Rammelsberg.) Calcium weteperiodate, Ca(I0 4 ) 2 . Sol. in H 5 I0 6 + Aq and acids. (Rammels- berg, Pogg. 134. 405.) Calcium cfo'mesoperiodate, Ca 2 I 2 9 + 7H 2 0, and 9H 2 0. SI. sol. in H 2 0. (Rammelsberg.) + 3H 2 0. (Langlois.) Calcium or^/toperiodate, Ca 5 (I0 6 ) 2 . Insol. in H 2 0. Sol. in HN0 3 + Aq. (Ram- melsberg, Pogg. 44. 577.) Cobaltous periodate, 7CoO, 2I 2 7 + 18H 2 0. Attacked by HC1, and sol. on warming. ch, pr. 100. 89.) Could not be obtained by Rammelsberg. Slowly but completely sol. in HN0 3 . (Lautsc J. pr. 100. 89.) Cupric dimesoperiodsiiQ, Cu 2 I 2 9 + 6H 2 0. Decomp. by H 2 without dissolving. (Ram- melsberg. ) Cupric or^operiodate, Cu 2 HI0 6 . Very sol. in HN0 3 + Aq. (Kimmins, Chem. Soc. 55. 150.) Cupric ^periodate, Cu 4 I 2 O n + H 2 0. Insol. in H 2 ; sol. in dil. HN0 3 + Aq. (Rammelsberg.) + 7H 2 0. (R.) Cupric periodate, 5CuO, I 2 5 + 5H 2 0. Wholly insol. in H 2 0. (Rammelsberg, B. 1. 73.) Didymium periodate, Di 2 2 (I0 4 ) 2 . Precipitate. DiI0 5 + 4H 2 0. Ppt. (Cleve, Bull. Soc. (2) 43. 362.) Erbium periodate. Sol. in H 2 0. (Hoglund.) Glucinum periodate, G1 3 (I0 5 ) 2 + 11H 2 0. Decomp. by H 2 without dissolving. Easily sol. in HN0 3 + Aq. + 13H 2 0. Nearly insol. in H 2 0. (Atter- berg, B. 7. 474.) Ferrous or^operiodate, Fe 5 (I0 6 ) 2 . (Kimmins, Chem. Soc. 55. 150.) FeH 3 I0 6 . (Kimmins.) Ferric periodate, 2Fe 2 3 , I 2 7 + 21H 2 0. Ppt. (Rammelsberg. ) Ferric cfo'mesoperiodate, FeHI 2 9 . Insol. in dil. HN0 3 + Aq. (Kimmins, Chem. Soc. 55. 149.) Ferric wetaperiodate, Fe(I0 4 ) 3 . (Kimmins. ) Lanthanum periodate, La(I0 4 ) 3 + 2H 2 0. Precipitate. (Cleve.) Lead metaperiodate, Pb(I0 4 ) 2 . Sol. in HN0 3 + Aq. (Kimmins.) Lead or^operiodate, Pb 3 H 4 (I0 6 ) 2 . Sol. in HN0 3 + Aq. (Kimmins, Chem. Soc. 55. 149.) Lead ?/igsoperiodate, Pb 3 (I0 5 ) 2 + 2H 2 0. Insol. in H 2 or excess of periodic acid + Aq. Decomp. by dil. H 2 S0 4 + Aq. (Bengieser, A. 17. 254.) Lithium wetoperiodate, LiI0 4 . Difficultly sol. in H 2 0. (Rammelsberg, B. 1. 132.) Lithium cfo'mesoperiodate, Li 4 I 2 9 + 3H 2 0. Very si. sol. in H 2 0. (Rammelsberg, Pogg. 134. 387.) Lithium or^operiodate, Li 5 I0 6 . H 2 dissolves out a slight amount of Lil. Easily sol. in HN0 3 + Aq. (Rammelsberg, Pogg. 137. 313.) Magnesium metaperiodate, Mg(I0 4 ) 2 + 10H 2 0. Easily sol. in H 2 0. (Rammelsberg.) Magnesium ^'periodate, Mg 4 I 2 11 + 6H 2 0, or 9H 2 0. SI. efflorescent. Insol. in H 2 0. (Rammels- berg.) Magnesium dimesoperiodsite, Mg 2 I 2 9 + 3H 2 0. (Rammelsberg, Pogg. 134. 499.) + 15H 2 0. Insol. in H 2 0. Sol. in periodic acid + Aq. (Langlois. ) Mercurous ^periodate, 5Hg 2 0, I 2 7 , or 4Hg 2 0, I 2 7 = Hg 8 I 2 O n . Insol. in H 2 0. Easily sol. in HN0 3 + Aq and in HC] + Aq. (Lautsch, J. pr. 100. 86.) Mercuric or^operiodate, Hg 5 (I0 6 ) 2 . Insol. in H 2 0. Easily sol. in HCL SI. sol. in HN0 3 . (Lautsch.) Mercuric potassium periodate, lOHgO, 5K 2 0, 6I 2 7 . Insol. in H 2 0. Difficultly sol. in warm HN0 3 without decomp. (Rammelsberg, Pogg. 134. 526.) Nickel efawesoperiodate, Ni 2 I 2 9 . (Kimmins, Chem. Soc. 55. 151.) 286 PERIODATE, NICKEL Nickel wesoperiodate, Ni 3 (I0 5 ) 2 . (Kimmins.) Nickel periodate, 7NiO, 4I 2 7 + 63H 2 0. Insol. in H 2 0. Easily sol. in H 5 I0 6 + Aq. (Rammelsberg, Pogg. 134. 514.) Potassium raetaperiodate, KI0 4 . SI. sol. in H 2 0. Sol. in 290 pts. cold H 2 0. (Rammelsberg, Pogg. 134. 320.) Almost insol. in KOH + Aq. Potassium wesoperiodate, K 3 I0 5 + 4H 2 0. Deliquescent. Easily sol. in H 2 0. (Ihre.) Potassium cfo'wesoperiodate, K 4 I 2 9 + 9H 2 0. Sol. in 97 pts. cold H 2 0. (Rammelsberg, Pogg. 134. 320.) Sol. in KOH + Aq. + 3H 2 0. Potassium hydrogen eKmesoperiodate, K 3 HI 2 9 . Less sol. in H 2 than KI0 4 . (Kimmins, Chem. Soc. 51. 356.) Potassium zinc periodate, K 2 0, 4ZnO, 2I 2 7 + 4H 2 0. Ppt. (Rammelsberg, Pogg. 134. 368.) Samarium periodate, Sm(I0 5 ) + 4H 2 0. Precipitate. (Cleve.) Silver metoperiodate, AgI0 4 . Decomp. by cold H 2 into Ag 4 I 2 9 + 3H 2 0, and by warm H 2 into Ag 4 I 2 9 + H 2 0. (Am- mermiiller and Magnus, Pogg. 28. 516.) + H 2 0. Insol. ppt. (Kimmins.) Silver mesoperiodate, Ag 3 I0 5 . (Fernlunds, J. pr. 100. 99.) Ag 2 HI0 5 . Insol. ppt. (Kimmins, Chem. Soc. 51. 358.) Silver cfo'mesoperiodate, Ag 4 I 2 9 + H 2 0, or 3H 2 0. Insol. ppt. (Kimmins.) Decomp. by boiling H 2 into Ag 5 I0 6 . (Rammelsberg.) Silver or^operiodate, Ag 5 I0 6 . Sol. in HN0 3 or NH 4 OH + Aq. (Rammels- berg, Pogg. 134. 386.) Ag 3 H 2 I0 6 . Insol. ppt. (Kimmins, Chem. Soc. 51. 358.) Ag 2 H 3 I0 6 . As above. (Kimmins.) Silver ^periodate, Ag 8 I 2 O n . SI. sol. in HN0 3 + Aq; insol. in NH 4 OH + Aq. (Lautsch, J. pr. 100. 75.) Silver dimesodiperioPO-OH. (Mente, A. 248. 232.) Barium ^rophosphamate, Ba 3 (P 2 lSrH 2 6 ) 2 . Sol. in HC1 or HN0 3 + Aq, not in HC 2 H 3 2 + Aq. (Gladstone and Holmes, Chem. Soc. (2) 2. 233.) Cupric ^2/rophosphamate, 2H 0. Cu 3 (P 2 NH 2 6 ) 2 + (Glad- Ppt. Decomp. by cold KOH + Aq. stone, Chem. Soc. 3. 135.) Ferric , Fe 2 (P 2 NH 2 6 ) 2 + 2H 2 0. Insol. in dil. acids. Sol. in cone. H 2 S0 4 , and decomp. by warming. Easily sol. in KE 4 OH + Aq. Decomp. by KOH + Aq. (Glad- stone, Chem. Soc. 3. 142.) Lead , Pb 3 (P 2 NH 2 6 ) 2 + 4H 2 0. Insol. inNH 4 OH + Aq. Potassium , K 3 P 2 NH 2 6 . Deliquescent. Sol. in H 2 0. Insol. in alcohol. (Gladstone, A. 76. 85.) Silver , Ag 3 P 2 NH 2 6 + 5H 2 0. Ppt. Zinc , Zn 3 (P 2 NH 2 6 ) 2 . (Gladstone and Holmes, Chem. Soc. (2) 2. 225.) Phosphamide, PON. See Phosphoryl nitride. PN 2 H 3 0. See Phosphoryl imidoamide. Tnphosphamide, PON 2 H 6 . See Phosphoryl ^n'amide. Phosphine. See Hydrogen phosphide. Pyrophosphocfo'amic acid, P 2 N 2 H 6 5 = P 2 3 (OH) 2 (NH 2 ) 2 . Deliquescent. Easily sol. in H 2 0, alcohol, or ether. Sol. in cold cone. H 2 S0 4 without decomp. (Gladstone, Chem. Soc. 3. 353.) Correct composition is e^imidoe^phosphoric acid, P 2 N 2 H 4 4 + H 2 - HO PO = (NH) 2 = PO OH. (Mente.) Aluminum >?/rophosphocfo'amate. Precipitate. Sol. in NH 4 OH + Aq. Insol. in acids. (Gladstone, A. 76. 82.) /rATTT N Ammonium P 2 ( Very deliquescent in moist air. Sol. in H 2 0. (Schiff, A. 103. 168.) Barium , BaP 2 5 (NH 2 ) 2 . Precipitate. SI. sol. in H 2 0. Sol. in NH 4 OH + Aq. (Gladstone.) Calcium , CaP 2 5 (NH 2 ) 2 . Insol. in NH 4 OH + Aq. Sol. in NH 4 C1 + Aq and acids. (Gladstone and Holmes.) Lead . Ppt. Decomp. by H 2 0. Magnesium . Ppt. (Gladstone and Holmes.) Silver , Ag 2 P 2 5 (NH 2 ) 2 . SI. sol. in H 2 0. Sol. in HN0 3 + Aq. (Glad- stone and Holmes.) Strontium . Sol. in acids and NH 4 Cl + Aq. Insol. in PHOSPHOIRIDIC ACID 289 NH 4 OH + Aq. (Gladstone and Holmes, Chem. Soc. (2) 4. 295.) Zinc ^7/rophosphot^'amate, ZnP 2 5 (NH 2 ) 2 . Ppt. (Gladstone and Holmes.) P?/rophospho^amic acid, P 2 N 3 H 7 4 = OH Decomp. by boiling H 2 or HC1. Sol. in cone. H 2 S0 4 upon heating. (Gladstone and Holmes. ) Correct formula is HO PO<>PO NH 2 =efo'imidoefo'phospho?ft0?tamic acid. A. 248. 241.) Ammonium ^?/rophospho n'amate, (Mente, Insol. in H 2 0. (Gladstone and Holmes.) Barium , BaP 2 N 3 H 5 4 . BaH 2 (P 2 N 3 H 5 4 ) 2 . Decomp. by HCl + Aq. (Gladstone, Chem. Soc. 4. 6.) Cobaltous , CoP 2 N 3 H 5 4 . Slowly decomp. by dil. H 2 S0 4 + Aq, not by HCl + Aq. (Gladstone and Holmes, Chem. Soc. (2) 4. 1.) Cupric , CuP 2 N 3 H 5 4 . Insol. in H 2 or NH 4 OH + Aq. (Gladstone and Holmes, Chem. Soc. (2) 4. 1.) Ferrous , FeH 6 (P 2 N 3 H 3 4 ) 2 . Insol. in dil. acids. (Gladstone, Chem. Soc. (2) 4. 1.) Lead , H 2 Pb 3 (P 2 N 3 H 3 4 ) 2 . Ppt. (Gladstone and Holmes, Chem. Soc. (2)4. 1.) H 4 Pb 2 (P 2 N 3 H 3 4 ) 2 . Ppt. (G. and H.) H 6 Pb(P 2 N 3 H 3 4 ) 2 . (G. and H.) Mercuric , Hg 2 P 2 N 3 H 3 4 . Insol. in H 2 or dil. HC1 or HN0 3 + Aq. (Gladstone and Holmes, Chem. Soc. (2) 4. 1.) Platinum , Pt 2 P 2 N 3 H 3 4 . Decomp. by H 2 when freshly pptd. (G. and H.) Potassium , KP 2 N 3 H 6 4 . Almost insol. in H 2 0. (Gladstone, Chem. Soc. 4. 10.) Silver , Ag 3 P 2 N 3 H 4 4 . Ppt. SI. attacked by HC 2 H 3 2 ; decomp. by HN0 3 or NH 4 OH + Aq into AgH 2 P 2 N 3 H 4 4 . Insol. in H 2 0. Decomp. by HC1. (Gladstone, Chem. Soc. (2) 4. 1.) Zinc . Insol. in H 2 0. (Gladstone and Holmes.) jTe^raphosphoGfoamic acid, P 4 N 2 H 8 O n = p ( H )4 ^7(NH 2 ) 2 . Known only as NH 4 salt. Ammonium ^raphosphocfo'amate, 4 H(NH 4 ) 3 p 4 o; (NH 2 ) 2 . Very deliquescent, and sol. in H 2 0. (Glad- stone. ) Ammonium ^hydrogen ^raphosphocfo'amate, P "NT TT O P O O 4 H 2 (.NH 4 ) 2 r 4 iM 4 J 16 u 12 I 4 u 7 /NH ) \ >' Insol. in cold, easily sol. in hot H 2 and dil. acids. (Gladstone.) Tetraj*hos$hotetra,mic acid, P 4 N 4 H 10 9 = Sol. in H 2 0. Insol. in alcohol. (Gladstone.) Ammonium ^raphospho^ramate, p Q (0 2 HNH 4 ) ^ (NH 2 ) 4 . Sol. in H 2 0, and precipitated from solution by alcohol. (Gladstone.) Silver -- , Ag 6 P 4 N 4 H 4 9 . Ppt. Ag 2 H 4 P 4 N 4 H 4 9 . Ppt. Tetra-phosjjhopent&zotic acid, P 4 N 5 H 9 7 = p ( NH 2)4 P ^7 NH. Insol. in H 2 0. Decomp. gradually by boil- ing with H 2 0. (Gladstone.) Ammonioeraphospho^e7^azotic acid (?), Decomp. by H 2 0. (Gladstone.) Cupric ^e^raphospho^c%/!azotate. (Gladstone, Chem. Soc. (2) 6. 261.) Lead -- . (Gladstone, Chem. Soc. (2) 6. 261.) Potassium -- , KOP 4 N 5 H 8 6 . Insol. in H 2 0. (Gladstone, Chem. Soc. (2) 6. 268.) Phosphoboric acid, H 3 B0 3 , H 3 P0 4 = BP0 4 + 3H 2 0. Not decomp. by boiling H 2 or cone, acids. Sol. in boiling solution of caustic alkalies. (Vogel, N. Repert. Pharm. 18. 611.) Phosphochloroplatinous acid, P(OH) 3 , PtCl 2 . See Chloroplatinophosphoric acid. Phosphohypophosphotungstic acid. Potassium sodium phosphohypophosphotung- state, 9K 2 0, Na 2 0, 4P 2 5 , 2P0 2 H 3 , 26W0 3 + 23H 2 0. Precipitate. Easily sol. in hot H 2 0. (Gibbs, Am. Ch. J. 7. 313.) Tetra-phosjplLOtetrimidic acid, P 4 N 4 H 6 7 = Known only in its salts. (Gladstone.) Silver ^raphospho^rimidate. Ppt. (Gladstone.) Phosphoiridic acid. See Chlorophosphoiridic acid. 290 PHOSPHOLUTEOTUNGSTIC ACID Phospholuteotungstic acid, H 6 PW 8 29 . < See under Phosphotungstic acid. Phosphomolybdic acid, 3H 2 0, P 2 5 , 20Mo0 3 . + 21H 2 0. Very sol. in H 2 0. Sol. in ether. By evaporation of H 2 solution crystals with 44H 2 0, or from a strong solution in cone. HNO 3 + Aq with 19H 2 0, are obtained; also crystals with 38, and 48H 2 are known. (Debray, C. R. 66. 704.) According to Rammelsberg (B. 10. 1776) for- mula is 3H 2 0, P 2 5 , 22Mo0 3 . According to Gibbs (Am. Ch. J. 3. 317) formula is 3H 2 0, P 2 5 , 24Mo0 3 + 59H 2 0. Finkener (B. 11. 1638) gives the formula as 3H 2 0, P 2 5 , 24Mo0 3 + 58H 2 0, also with 29H 2 0. P 2 5 , 20Mo0 3 + 52H 2 0. Sol. in dry ether with evolution of heat, and subsequent separa- tion into two layers, the upper consisting of pure ether, and lower of a solution of acid in ether. Sp. gr. of lower layer, when sat. at 13, is 1*3. On warming lower layer, ether separates out and forms an upper layer. This redissolves on cooling and shaking. The lower layer is insol. in H 2 and miscible with alcohol. 100 pts. ether thus dissolve 80 '6 pts. acid at ; 847 pts. at 8*1 ; 967 pts. at 19 "3 ; 103 '9 pts. at 27*4 ; 107*9 pts. at 32 '9. (Parmentier, C. R. 104. 688.) acid, H 6 P 2 Mo B 23 =3H a O J P 2 5 , 5Mo0 3 . Not known in free state. Ammonium phosphomolybdate, (NH 4 ) 3 P0 4 , HMo0 3 + 6H 2 0. Formula is (NH 4 ) 3 P0 4 , 10Mo0 3 +lpI 2 0, according to the older authorities. Scarcely sol. in H 2 or aqueous acid solu- tions. Easily sol. in ammonia, and alkalies + Aq. (Svanberg and Struve, J. pr. 44. 291.) It is almost completely insol. in a mixture of (NH 4 ) 2 Mo0 4 + Aq, and dil. HN0 3 + Aq. Absolutely insol. in a dil. nitric acid solution of ammonium nitrate. (Richters, Z. anal. 10. 471.) Solubility is increased even in presence of ammonium molybdate and free HN0 3 by HC1, ammonium, and other chlorides, tartaric acid, or large quantities of ammonium oxalate or citrate. Not precipitated in presence of excess of H 3 P0 4 . (Fresenius, Z. anal. 3. 446. ) Sol. in 10,000 pts. H 2 at 16 ; in 6600 pts. H 2 containing 1 vol. % HN0 3 ; in 550 pts. HC1 + Aq of 1 -12 sp. gr. ; in 620 pts. alcohol of 0-80 sp. gr. ; in 190 pts. HN0 3 + Aq (sp. gr. =1-2) at 50 ; in 5 pts. cone. H 2 S0 4 at 100 ; in 3 pts. NH 4 OH + Aq of 0'95 sp. gr. (Eggertz, J. pr. 79. 496.) Sol. in 21,186 pts. H 2 0, 38,117 pts. dil. alcohol, and 13,513 pts. strong alcohol. (Hehner, Analyst, 1879. 23.) According to Sonnenschein, the solubility is increased by much H 2 or alcohol, alkaline hydroxides, carbonates, ortho-, pyro-, and meta phosphates ; sodium borate, hyposulphate, thiosulphate, acetate, arsenate, and arsenite ; potassium sodium tartrate, ammonium oxalate, orthophosphoric acid, and sulphuric acid. It is not increased by ammonium molybdate or sulphate, potassium sulphate, acid tartrate, acid oxalate, nitrate, or chlorate, iodide, chloride, or bromide ; sodium bromide or ni- trate ; nitric, hydrochloric, ^boric, tartaric, oxalic, and dilute sulphuric acids. (Sonnen- schein, J. pr. 53. 342.) Sol. in hot H 2 0. Sol. in cold caustic alkalies, alkali carbonates, and phosphates, NH 4 C1, and (NH 4 ) 2 C 2 4 + Aq ; si. sol. in (NH 4 ) 2 S0 4 , KN0 3 , and KCl + Aq ; very si. sol. in NH 4 N0 3 + Aq. Sol. in K>S0 4 , Na 2 S0 4 , NaCl, MgCl 2 , H 2 S0 4 , HC1, and cone, or dil. HN0 3 + Aq. Presence of (NH 4 ) 2 Mo0 4 totally changes the effect of acid liquids ; insol. in dil. HN0 3 or H 2 S0 4 + Aq containing (NH 4 ) 2 Mo0 4 , but some- what sol. in HCl + Aq, even in presence of that salt. Tartaric acid and similar organic substances totally prevent the precipitation of this salt. (Eggertz in Fresenius' Quant, anal.) 5(NH 4 ) 2 0, 48Mo0 3 , 2P 2 5 + 17H 2 = 3(NH 4 ) 2 0, 24Mo0 3 , P 2 5 + 2(NH 4 ) 2 0, H 2 0, 24Mo0 3 , P 2 5 + 16H 2 0. Formula of above salt according to Gibbs. 3(NH 4 ) 2 0, 22Mo0 3 , P 2 5 + 9H 2 0, or 12H 2 0. 8(NH 4 ) 2 0, H 2 0, 60Mo0 3 ', 3P 2 5 + 11H 2 0. SI. sol. in H 2 0. 3(NH 4 ) 2 0, 16Mo0 3 , P 2 5 + 14H 2 0. Insol. in cold, sol. with decomp. in hot H 2 0. Sol. in NH 4 OH + Aq. (Gibbs, Am. Ch. J. 3. 317.) Ammonium diphosphopentamolylad.3ite, 2(NH 4 ) 3 P0 4 , 5Mo0 3 + 7H 2 = 3(NH 4 ) 2 0, 5Mo0 3 , P 2 5 + 7H 2 0. Easily sol. in hot, less in cold H 2 0. (Zenkner, J. pr. 58. 256.) 5(NH 4 ) 2 0, H 2 0, 10Mo0 3 , 2P 2 5 + 6H 2 = 3(NH 4 ) 2 0, 5MoO,, P 2 5 + 2(NH 4 ) 2 0, H 2 0, 5Mo0 3 , P 2 5 + 6H 2 6. Sol. in H 2 0. (Gibbs, Am. Ch. J.) Ammonium barium phosphomolybdate, 3(NH 4 ) 2 0, 30BaO, P 2 5 , 30Mo0 3 . Insol. precipitate. (Seligsohn, J. pr. 67. 478.) Ammonium potassium phosphomolybdate, 6(NH 4 ) 2 0, 15K 2 0, 2P 2 5 , 60Mo0 3 + 12H 2 0. Sol. in H 2 0. Insol. in alcohol. (Seligsohn, J. pr. 67. 477.) Ammonium sodium phosphomolybdate, 6(NH 4 ) 2 0, 15Na 2 0, 2P 2 5 , 60Mo0 3 + 18H 2 0. Sol. in much boiling H 2 0. Insol. in alcohol. (Seligsohn, J. pr. 67. 474.) Croceocobaltic phosphomolybdate, 24Mo0 3 , P 2 5 , [Co(NH 3 ) 4 (N0 2 ) 2 ] 2 0, 2H 2 + 21H 2 0. SI. sol. in cold, easily in hot H 2 0. (Gibbs, Am. Ch. J. 3. 317.) Lead phosphomolybdate, 23PbMo0 4 , P 2 5 , 2PbP0 4 + 7H 2 0. Sol. in 500,000 pts. H 2 0. Insol. in NH 4 OH + Aq. Easily sol. in KOH, NaOH, PHOSPHORIC ACID 291 or HN0 3 + Aq ; somewhat less sol. in HC 2 H 3 2 + Aq. (Beuf, Bull. Soc. (3) 3. 852.) Potassium phosphomolybdate,K 3 P0 4 , 1 !Mo0 3 + , P 2 5 , 22Mo0 3 + 3H 2 0. Insol. in H 2 0. Easily sol. in alkalies. (Svanberg and Struve.) According to older authorities the formula isK 3 P0 4 , 10Mo0 3 + l$H 2 0. + 6H 2 0. (Rammelsberg. ) 2K 2 0, H 2 0, 24Mo0 3 , P 2 5 + 3H 2 0. SI. sol. in cold H 2 0. 5K 2 O, H 2 0, 44Mo0 3 , 2P 2 5 + 21H 2 0. (Gibbs, Am. Ch. J. 3. 317.) 4K 2 0, 2H 2 0, 9Mo0 3 , P 2 5 + 18H 2 0. (Zenkner.) 5K 2 O, H 2 0, 10Mo0 3 , P 2 5 + 19H 2 0. Easily sol. in H 2 0. (Rammelsberg, B. 10. 1776.) 6K 2 0, 15Mo0 3 , P 2 5 . ' inKOH + Aq. (Rammelsberg.) K 2 0, P 2 5 , 2Mo0 3 + 13H 2 0. Very sol. in H 2 0. (Friedheim, Z. anorg. 4. 287.) 2K 2 0, P 2 5 , 4Mo0 3 + 8H 2 0. Sol. in H 2 0. (Friedheim.) Potassium ^'phosphqpe?itomolybdate, 3K 2 0, P 2 5 , 5Mo0 3 + 7H 2 0. Sol. in H 2 ; precipitated by HN0 3 or HC1 + Aq. (Zenkner, J. pr. 58. 261.) 2K 2 0, P 2 S , 5Mo0 3 + 6H 2 0. (Friedheim.) Potassium (fo'phosphqpewtamolybdate nitrate, 2K 3 P0 4 , 5Mo0 3 , 6KN0 3 + 9H 2 0. (Debray, C. R. 66. 706.) Silver phosphomolybdate, 7Ag 2 0, P 2 5 , 20Mo0 3 + 24H 2 0. Ppt. Sol. in dil. HN0 3 + Aq, forming 2Ag 2 0, P 2 5 , 20Mo0 3 + 7H 2 0. SI. sol. in H 2 0. (Rammelsberg. ) Formula of first salt is 7Ag 2 0, 22Mo0 3 , P 2 5 + 14H 2 0. Sol. in hot H 2 0, but solution is quickly decomp. (Gibbs, Am. Ch. J. 3. 317.) Silver Ag 6 Mo 5 P 2 23 + 7H 2 0. Easily sol. in H 2 0. (Debray, C. R. 66. 705.) Sodium phosphomolybdate. Sol. in H 2 and HN0 3 + Aq. (Sonnenschein, A. 104. 45.) Na 2 0, 5H 2 0, P 2 5 , 18Mo0 3 + xH 2 0. 2Na 2 0, 4H 2 0, P 2 6 5 , 18Mo0 3 + zH 2 0. 3Na 2 0, P 2 5 , 18Mo0 3 + 26H 2 0. (Friedheim.) Sodium diphosphopentamoly'bda.ie, 3Na 2 0, P 2 S , 5Mo0 3 + 14H 2 0. Easily sol. in H 2 0. (Debray.) J/e^aphosphomolybdic acid. Ammonium woTiowetophosphomolybdate, 3(NH 4 ) 2 0, 4NH 4 P0 3 , 10Mo0 3 + 9H 2 0. Very sol. in H 2 0. (Gibbs, Am. Ch. J. 7. 392. ) BaO, Barium Ba 3 (P0 3 ) 6 , 14Mo0 3 + 55H 2 0. Sol. in H 2 0. (Gibbs. ) Pyrophosphonitrylic OH acid, P 2 NH0 4 = Not known in free state. Ammonium ?j?/rophosphonitrylate, ^>?/rop H 4 Insol. but gradually decomp. by H 2 0. (Gladstone.) Potassium , KP 2 N0 4 . Insol. in H 2 0. (Gladstone. ) Silver , AgP 2 N0 4 . Ppt. Phosphonium bromide, PH 4 Br. Decomp. violently by H 2 0. Phosphonium chloride, PH 4 C1. (Ogier, Bull. Soc. (2) 32. 483.) Phosphonium titanium chloride, 2PH 4 C1, 3TiCl 4 . Decomp. by H 2 0, HC1, or alkalies + Aq. (Rose.) Phosphonium iodide, PHJ. Decomp. by H 2 0, alkalies, alcohol, etc (Rose, Pogg. 46. 636.) Decomp. by PC1 3 . (Wilde, B. 16. 217.) Phosphonium sulphate (?). Deliquescent ; very unstable. (Besson, C. R. 109. 644.) Phosphor^'amide, PON 3 H C . See Phosphoryl ^n'amide. Phosphoric acid, anhydrous, P 2 5 . See Phosphorus pentoxide. J/etaphosphoric acid, HP0 3 . Sol. in H 2 0. Not isolated. (Fleitinann, Pogg. 78. 362.) Z^'wetaphosphoric acid, H 2 P 2 6 . Not isolated. (Fleitmann.) Trimetajphosphoiic acid, H 3 P 3 9 . Sol. in H 2 ; the solution is permanent in the cold, but on evaporation it is quickly de- comp. to H 3 P0 4 . Tetrametafihosphoiic acid, H 4 P 4 12 . Not isolated. acid, H 6 P 18 . (Glacial phosphoric acid.) Deliquescent ; easily sol. in H 2 with evolu- tion of heat and conversion into H 3 P0 4 . Not easily sol. in presence of slight impurities. OrtfAophosphoric acid, H 3 P0 4 . Very sol. in H 2 0. Sp. gr. of H 3 PO 4 +Aq containing : 10 20 30 40 50 %P a 5 , 1-23 1-39 1-6 (Dalton.) 1-85 292 PHOSPHORIC ACID Sp. gr. ofH 3 P0 4 + Aq. Sp. gr. %P 2 5 Sp. gr. %P 2 5 Sp. gr. %P 2 5 1-508 49-60 1-328 36-15 1-144 17-89 1-492 48-41 1-315 34-82 1-136 16-95 1-476 47-10 1-302 33-49 1-124 15-64 1-464 45-63 1-293 3271 1-113 14-33 1-453 45-38 1-285 31-94 1-109 13-25 1-442 44-13 1-276 31-03 1-095 12-18 1-434 43-95 1-268 30-13 1-081 10-44 1-426 43-28 1-257 29-16 1-073 9-53 1-418 42-61 1-247 28-24 1-066 8-62 1-401 41-60 1-236 27-30 1-056 7-39 1-392 40-86 1-226 26-36 1-047 6-17 1-384 40-12 1-211 24-79 1-031 4-15 1-376 39-66 1-197 23-23 1-022 3-03 1-369 39-21 1-185 22-07 1-014 1-91 1-356 38-00 1-173 20-91 1-006 0-79 1-347 37-37 1-162 1973 ... 1-339 36-74 1-153 18-81 (Watts, C. N. 12. 160.) Specific gravity of H 3 P0 4 + Aq containing : 6 12 18 % H 3 P0 4 , 1-0333 1-0688 1'1065 24 36 54 % H 3 P0 4 . 1-1463 1-2338 T3840 (Schiff, A. 113. 183.) Sp. gr. of H 3 P0 4 + Aq at 15. a = sp. gr. if is P 2 5 ; b = sp. gr. if % is H 3 P0 4 . % a b % a b 1 1-009 1-0054 31 1-288 1-1962 2 1-017 1-0109 32 1-299 1-2036 3 1-025 1-0164 33 1-310 1-2111 4 1-032 1-0220 34 1-321 1-2186 5 1-039 1-0276 35 1-333 1-2262 6 1-047 1-0333 36 1-345 1-2338 7 1-055 1-0390 37 1-357 1-2415 8 1-063 1-0449 38 1-369 1-2493 9 1-071 1-0508 39 1-381 1-2572 10 1-080 1-0567 40 1-393 1-2651 11 1-089 1-0627 41 1-407 1-2731 12 1-098 1-0688 42 1-420 1-2812 13 1-106 1-0749 43 1-432 1-2894 14 1-115 1-0811 44 1-445 1-2976 15 1-124 1-0874 45 1-3059 16 1-133 1-0937 46 1-3143 17 1-142 1-1001 47 1-3227 18 1-151 1-1065 48 1-3313 19 1-161 1-1130 49 ... 1-3399 20 1-171 1-1196 50 1-3486 21 1-182 1-1262 51 1-3573 22 1-192 1-1329 52 1-3661 23 1-202 1-1397 53 1-3750 24 1-212 1-1465 54 ... 1-3840 25 1 -223 1-1534 55 1-3931 26 1-233 1-1604 56 ... 1-4022 27 1-244 1-1674 57 1-4114 28 1-254 1-1745 58 1-4207 29 1-265 1-1817 59 1-4301 30 1-277 1-1889 60 1-4395 (Schitf, calculated by Gerlach, Z. anal. 8. 292.) Sp. gr. of H 3 P0 4 + Aq at 17 '5. %P 2 5 Sp. gr. %P 2 5 Sp. gr. %P 2 5 Sp. gr. 1 1-007 24 1-208 47 1-476 2 1-014 25 1-219 48 1-491 3 1-021 26 1-229 49 1-505 4 1-028 27 1-240 50 1-521 5 1-036 28 1-250 51 1-536 6 1-044 29 1-261 52 1-551 7 1-053 30 1-272 53 1-566 8 1-061 31 1-282 54 1-581 9 1-070 32 1-293 55 1-597 10 1-078 33 1-304 56 1-613 11 1-086 34 1-315 57 1-629 12 1-095 35 1-326 58 1-645 13 1-103 36 1-338 59 1-661 14 1-112 37 1-350 60 1-677 15 1-120 38 1-362 61 1-693 16 1-129 39 1-374 62 1-709 17 1-139 40 1-386 63 1-725 18 1-148 41 1-398 64 1-741 19 1-158 42 1-410 65 1-758 20 1-168 43 1-423 66 1-775 21 1-178 44 1-436 67 1-792 22 1-188 45 1-448 68 1-809 23 1-198 46 1-462 (Hager, Adjumenta varia, Leipzig, 1876.) Table for correction to be added or subtracted for 1 change in temperature. %P 2 5 Corr. %P 2 5 Corr. 10-14 15-25 26-35 0-00035 0-0004 0-00052 36-45 46-55 56-68 0-00068 0-00082 o-ooi (Hager.) Miscible with cone. HC 2 H 3 2 + Aq. Sol. in 30 pts. warm creosote. Pyrophosphoric acid (/^'phosphoric acid), H 4 P 2 7 . Very sol. in H 2 0. The solution may be kept without change, but on heating it is converted into H 3 P0 4 . Phosphoric acid, H 8 P 2 9 (?). Sol. in H 2 0. (Joly, C. R. 100. 447.) Phosphates. The phosphates of NH 4 , K, Na, Li, Cs, and Rb are sol. in H 2 0, with the exception of certain metaphosphates ; the other phosphates, excepting neutral Tl salts, are nearly insol. in H 2 0, excepting when an excess of H 3 P0 4 is present. The latter are all sol. in HN0 3 + Aq. (a) Metaphosphates. Jf2/ropnosphate, (NH 4 ) 4 P 2 7 . Easily sol. in H 2 0. Alcohol precipitates it from the aqueous solution. (Schwarzenberg, A. 65. 141.) Ammonium hydrogen ^yrophosphate, (NH 4 ) 2 H 2 P 2 7 . Very sol. in H 2 0. Insol. in alcohol. (Schwarzenberg, A. 65. 141.) Ammonium barium ZHmetaphosphate, (NH 4 )BaP 3 9 + H 2 0. Easily sol. in H 2 0. (Lindbom.) Ammonium cadmium eKmetaphosphate, (NH 4 ) 2 0, CdO, 2P 2 5 + 3H 2 = (NH 4 ) 2 Cd(P 2 6 ) 2 . Efflorescent. (Fleitmann, Pogg. 78. 347.) Ammonium cadmium or^Aophosphate, Easily sol. in NH 4 OH + Aq and acids. (Drewson, Gm. K. Handb. 6 te Aufl. III. 74.) Ammonium calcium cimeaphosphate, (NH 4 ) 2 Ca(P 2 6 ) 2 + 2H 2 0. Very si. sol. in H 2 0. Not decomp. by acids. (Fleitmann, Pogg. 78. 344.) Ammonium calcium phosphate, NH 4 CaP0 4 + aH 2 0. Ppt. (Herzfeld and Feuerlein, Z. anal. 20. 191.) Ammonium cobaltous metaphosphate. Extremely sol. in H 2 and in NH 4 OH + Aq. (Persoz, J. pr. 3. 215.) Ammonium cobaltous or^ophosphate, NH 4 CoP0 4 + H 2 0. Not decomp. by boiling H 2 0. (Debray, J. Pharm. (3) 46. 121.) + 12H 2 0. Ppt. (Chancel, 1862.) Co(NH 4 ) 2 H 2 (P0 4 ) 2 + 4H 2 0. Insol. in H 2 0. (Debray. ) Ammonium copper e^metaphosphate, (NH 4 ) 2 P 2 6 , CuP 2 6 + 2H 2 0. Very si. sol. in H 2 ; insol. in alcohol. (Fleitmann, Pogg. 78. 345.) + 4H 2 0. Efflorescent. Very si. sol. in H 2 ; insol. in alcohol. (F. ) Ammonium glucinum or^ophosphate, NH 4 G1P0 4 . Insol. in cold, si. sol. in hot H 2 0. (Rb'ssler, Z. anal. 17. 148.) Ammonium glucinum sodium or^ophosphate, (NH 4 ) 2 GlNa 2 (P0 4 ) 2 + 7H 2 0. (Scheffer, A. 109. 146.) Ammonium ferrous or^ophosphate, NH 4 FeP0 4 + H 2 0. Insol. even in boiling H 2 0. When still moist easily sol. in dil. acids, but sparingly and slowly sol. after drying, even in cone. acids. Decomp. by NH 4 OH, KOH, and NaOH + Aq. Insol. in alcohol. (Otto, J. pr. 2. 409.) (NH 4 ) 2 FeH 2 (P0 4 ) 2 + 4H 2 0. (Debray. ) Ammonium lead (NH 4 ) 2 Pb(P 2 6 ) 2 . Very difficultly sol. in H 2 and acids. (Fleitmann, Pogg. 78. 343.) Ammonium lithium phosphate, (NH 4 ) 2 LiP0 4 . SI. sol. in H 2 0. (Berzelius.) Ammonium magnesium w ^phosphate, (NH 4 ) 2 0, 2MgO, 2P 2 O 5 + 9H 2 (?). Sol. with difficulty in H 2 or acids when PHOSPHATE, AMMONIUM POTASSIUM 295 heated. Easily sol. in H 2 before heating. (Wach, Schw. J. 59. 29.) Precipitated from aqueous solution by alcohol. Ammonium magnesium efa'wetaphosphate, (NH 4 ) 2 Mg(P 2 6 ) 2 + 6H 2 0. Efflorescent. (Fleitmann, Pogg. 78. 346.) Ammonium magnesium phosphate, NH 4 MgP0 4 , and +6H 2 0. 1 1. H dissolves 66 mg. anhydrous NH 4 MgP0 4 at 15. (Fresenius, A. 55. 109.) 1 1. H 2 dissolves 74 '1 mg. anhydrous NH 4 MgP0 4 at 20 -5-22 -5. (Ebermayer.) 1 1. H 2 dissolves 106 mg. anhydrous NH 4 MgP0 4 . (Liebig.) Aqueous solution is precipitated by NH 4 OH, but not by Na 2 HP0 4 + Aq. (Fresenius.) Sol. in 44,600 pts. H 2 containing ammonia. More sol. in H 2 containing NH 4 C1, and is sol. in 7548 pts. of a solution containing 1 pt. NH 4 C1 to 5 pts. H 2 and ammonia, and in 15,627 pts. of a solution containing 1 pt. of NH 4 C1 to 7 pts. H 2 and ammonia. (Fre- senius. ) According to Kremers (J. pr. 55. 190), a solution of 3 pts. H 2 to 1 pt. NH 4 OH + Aq of 0'96 sp. gr. is best suited for washing the precipitated NH 4 MgP0 4 . According to Ebermayer (J. pr. 60. 41), 1 pt. anhydrous salt is sol. in 13,497 pts. H 2 at 23; in 31,098 pts. NH 4 OH + Aq (4 pts. H 2 :1 pt. NH 4 OH + Aq of 0'961 sp. gr.) at 21-25 ; in 36,764 pts. NH 4 OH + Aq (3 pts. H 2 : 1 pt. NH 4 OH + Aq) at 20 '6 ; in 43,089 pts. NH 4 OH + Aq (1 pt. H 2 : 1 pt. NH 4 OH + Aq) at 22-5; in 45,206 pts. NH 4 OH + Aq (1 pt. H 2 0:2 pts. NH 4 OH + Aq) at 22'5 ; in 52,412 pts. NH 4 OH + Aq (1 pt. H 2 : 3 pts. NH 4 OH + Aq) at 22 '5 ; in 60,883 pts. pure NH 4 OH + Aq (sp. gr. 0'961) at 22 '5. Almost absolutely insol. in H 2 containing i vol. NH 4 OH + Aq (sp. gr. 0'96) and NH 4 C1, i.e. much more insol. than given by Fresenius. (Kubel, Z. anal. 8. 125.) According to Kissel (Z. anal. 8. 173), 1 1. NH 4 OH + Aq (3 pts. H 2 : 1 pt. NH 4 OH + Aq of 0'96 sp. gr.) dissolves 4 '98 mg. in 24 hours, while 13'9 mg. are dissolved if 18 g. NH 4 C1 to a litre of H 2 are also present. (NH 4 ) 2 S0 4 + Aq containing 2 '2 g. per litre dissolves 71 '7 mg. ; 3'0 g., 113 mg. ; 10 g., 147 mg. ; NaCl + Aq containing 2 g. NaCl per 1. dissolves 123 '4 mg. ; NaN0 3 + Aq containing 3 g. NaN0 3 per 1. dissolves 93 '1 mg. (Liebig, A. 106. 196.) Completely insol. in water containing am- monium phosphate or ammonium sodium phos- phate. (Berzelius.) 800 ccm. H 2 0, sat. with C0 2 , dissolve 1'425 g. (Liebig.) Easily sol. in H 2 S0 3 + Aq, acetic and other acids, also in boiling solution of ammonium citrate. (Millot, Bull. Soc. (2) 18. 20.) When in presence of Fe or Al salts it is sol. to a considerable extent in H 2 C 4 H 4 6 + Aq. 6 g. NH 4 C1 in 100 ccm. H 2 containing 10 ccm. 6 '34 % ]$TH 4 OH + Aq dissolve pptd. salt = 0-0029 g. Mg 2 P 2 7 . 1 g. (NH 4 ) 2 C 2 4 in 100 ccm. H 2 0, and NH 4 OH + Aq dissolve = 0*0061 g. Mg 2 P 2 7 . 2 g. citric acid in excess of NH 4 OH + Aq dissolve = '0147 g. Mg 2 P 2 7 . Solubility prevented by excess of magnesia mixture. (Lindo, C. N. 48. 217.) About 3 times as sol. in Ca(C 2 H 3 2 ) 2 + Aq as in NaC 2 H 3 2 + Aq, but solubility is pre- vented by excess of MgCl 2 . (Ville, Bull. Soc. (2) 18. 316. Min. Struvite. + H 2 0. Insol. in H 2 or citric acid + Aq. (Millot and Maquenne, Bull. Soc. (2) 23. 238.) Ammonium magnesium hydrogen or^ophos- phate, (NH 4 ) 2 MgH 2 (P0 4 ) 2 + 3H 2 (?). (Graham. ) Ammonium magnesium phosphate, 5MgO, (NH 4 ) 2 0, 2P 2 5 + 24H 2 0. (Gawalovsky, C. C. 1885. 721.) Ammonium manganous efametaphosphate, (NH 4 ) 2 Mn(P 2 6 ) 2 + 6H 2 0. Efflorescent. (Fleitmann, Pogg. 78. 346.) Ammonium manganous phosphate, NH 4 MnP0 4 + H 2 0. Sol. in 32,092 pts. cold, and 20,122 pts. boiling H 2 0, and in 17,755 pts. NH 4 Cl + Aq (1-4 % NH 4 C1). (Fresenius.) Easily sol. in dil. acids. Decomp. by KOH + Aq, but not by NH 4 OH + Aq or K 2 C0 3 + Aq. Insol. in NH 4 OH or NH 4 salts + Aq. (Gibbs.) Insol. in alcohol. Ammonium manganous sodium^?/rophosphate, NH 4 NaMnP 2 7 + 3H 2 0. Insol. in H 2 or alcohol. Easily sol. in very dil. acids. (Otto, J. pr. 2. 418.) Formula is Na 4 (NH 4 ) 4 Mn 2 (P 2 7 ) 3 + 12H 2 0, according to Berzelius. Ammonium mercuric mctophosphate. Sol. in H 2 0, or at least in NH 4 OH + Aq. (Persoz, J. pr. 3. 216.) Ammonium nickel metophosphate. Insol. in H 2 0. Sol. in NH 4 OH + Aq, from which it is repptd. on evaporation of the NH 3 . (Persoz, J. pr. 3. 215.) Ammonium nickel phosphate, NH 4 NiP0 4 + 2H 2 0. Ppt. (Debray, C. R. 59. 40.) + 6H 2 0. Decomp. by boiling H 2 0. (De- bray.) Ammonium potassium dinietapho8pha.ie, (NH 4 ) 10 K 4 (PA) 7 . More sol. in H 2 than following salt. (Fleitmann, Pogg. 78. 341.) NH 4 K 3 P 4 12 + 2H 2 0. Difficultly sol. in H 2 0. (Fleitmann.) Ammonium potassium |??/rophosphate, Deliquescent. Sol. in H 2 0. Decomp. on boiling. (Schwarzenberg.) 296 PHOSPHATE, AMMONIUM SODIUM Ammonium sodium efo'wetaphosphate, NH 4 NaP 2 6 + H 2 0. More sol. in H 2 than Na 2 P 2 6 , but less than (NH 4 ) 2 P 2 6 . Less sol. in alcohol than in H 2 0. (Fleitmann, Pogg. 78. 340.) Ammonium sodium phosphate, (NH 4 ) 2 NaP0 4 + 4H 2 0. Decomp. by H 2 0. Cryst. from NH 4 OH + Aq of 0'96 sp. gr. From H 2 solution, NaNH 4 HP0 4 + 4H 2 separates out. (Uels- mann, Arch. Pharm. (2) 99. 138.) + 5H 2 0. NH 4 Na 2 P0 4 + 12H 2 0. (Herzfeld, Z. anal. 20. 191.) (NH 4 ) 5 Na(P0 4 ) 2 + 6H 2 0. Sol. in H 2 with decomp. Cryst. from hot cone. NH 4 OH + Aq. (Uelsmann, Arch. Pharm. (2) 99. 138.) Ammonium sodium hydrogen phosphate (Mi- crocosmic salt), NH 4 NaHP0 4 + 4H 2 0. Efflorescent. Easily sol. in H 2 0. Sol. in 6 pts. cold, and 1 pt. boiling H 2 0. Insol. in alcohol. Aqueous solution gives off NH 3 , especially if hot. Min. Stercorite. + 5H 2 0. (Uelsmann.) Ammonium sodium phosphate, (NH 4 ) 3 Na 3 H 6 (P0 4 ) 4 + 3H 2 0. Decomp. by H 2 0. (Filhol and Senderens, C. R. 93. 388.) Ammonium sodium ^rophosphate, (NH 4 ) 2 Na 2 P 2 7 + 5H 2 0. Easily sol. in H 2 0. Aqueous solution de- comp. by boiling. (Schwarzenberg, A. 65. 142.) + 6H 2 0. (Rammelsberg. ) Ammonium sodium glucinum or^ophosphate, (NH 4 ) 2 Na 2 Gl(P0 4 ) 2 + 7H 2 0. Precipitate. (Scheffer. ) Ammonium thallous or//ophosphate, (NH 4 ) 3 P0 4 , (NH 4 ) 2 T1P0 4 , or H 2 NH 4 PO,, HT1 2 P0 4 . Sol. in H 2 0. (Lamy ; Rammelsberg.) Ammonium uranyl phosphate, Insol. in H 2 and HC 2 H 3 p 2 + Aq. Sol. in mineral acids, from which it is precipitated by NH 4 C 2 H 3 2 + Aq, in which it is insol. (Knop.) Ammonium vanadium phosphate, NH 4 H(V0 2 )P0 4 ; (NH 4 ) 2 0, V 2 5 , 2(V0 2 )H 2 P0 4 + 5H 2 0; and 2(NH 4 ) HP0 4 , 5(NH 4 ) 2 0, 12V 2 5 + 25H 2 0. See Phosphovanadate, ammonium. Ammonium zinc di- (NH 4 ) 2 Zn(P 2 6 ) 2 Efflorescent. (Fleitmann, Pogg. 78. 347.) Ammonium zinc o^/tophosphate, NH 4 ZnP0 4 + H 2 0. Insol. in H 2 0. Sol. in acids, and caustic alkalies. (Bette, A. 15. 129.) Ammonium zinc hydrogen phosphate, NH 4 H 2 P0 4 , ZnHP0 4 + H 2 0. Insol. in H 2 0. (Debray.) 4(NH 4 ) 2 0, 6ZnO, 3P 2 5 . (Schweikert, A. 145. 57.) 3(NH 4 ) 2 0, 4ZnO, 2P 2 5 + 13H 2 0. (Rother, A. 143. 356.) Barium wetophosphate, Ba(P0 3 ) 2 . Insol. in H 2 or dil. acids. (Maddrell, A. 61. 61.) Not decomp. by boiling with acids or alkali carbonates + Aq. (Fleitmann, Pogg. 78. 352.) Barium e^metaphosphate, BaP 2 6 + 2H 2 0. More difficultly sol. in H 2 than Ba 3 (P 3 9 ) 2 . Slightly attacked by boiling cone. HCl + Aq or HN0 3 + Aq. Easily decomp. by H 2 S0 4 . (Fleitmann, Pogg. 78. 254.) Barium ^rimetophosphate, Ba 3 (P 3 9 ) 2 + 2H 2 0. Somewhat sol. in H 2 0. (Fleitmann, A. 65. 313.) + 6H 2 0. Easily sol. in HCl + Aq. (Lind- bom.) Barium hcxametaphosph&ie, Ba 3 P 6 18 (?). Sol. in H 2 only after boiling several hours. Nearly insol. in H 2 0. (Liidert, Z. anorg. 5. 15.) Insol. in NH 4 C1 + Aq. ( Wackenroder. ) Sol. in Na 6 Pe0 18 + Aq. Sol. in HN0 3 + Aq. After ignition it is nearly insol in HN0 3 + Aq. Barium or^ophosphate, Ba 3 (P0 4 ) 2 . Precipitate. Very si. sol. or insol. in H 2 0. (Graham, Pogg. 32. 49.) Sol. in HCl + Aq. Decomp. by S0 2 + Aq. Barium hydrogen phosphate, BaHP0 4 . Sol. in 10,000 pts. H 2 0. (Malaguti, A. ch. (3) 51. 346.) Sol. in 20,570 pts. H 2 at 20. (Bischof, 1833.) Not completely soluble in water containing C0 2 , but BaCl 2 causes no ppt. in Na 2 HP0 4 + Aq containing 7 '16 g. or less Na 2 HP0 4 in a litre after it has been saturated with C0 2 . (Setschenow, C. C. 1875. 97.) Easily sol. in H 3 P0 4 + Aq, and dil. HC1 + Aq. HN0 3 + Aq of 1-275 sp. gr. if not diluted has scarcely any solvent action, but more dissolves on dilution until a maximum is reached, when 10 vols. of H 2 have been added. (Bischof, Schw. J. 67. 39.) Sol. in 367-403 pts. acetic acid (I '032 sp. gr.) at 22-5. (Bischof, I.e.) Easily sol. in H 2 containing NH 4 C1, NH 4 N0 3 , or NH 4 succinate, from which solu- tions it is completely pptd. by NH 4 OH + Aq. (Rose.) Insol. in Na 2 HP0 4 or BaCl 2 + Aq. (Rose, Pogg. 76. 23.) More sol. in BaCl 2 or NaCl + Aq than in H 2 0, 1 pt. BaHP0 4 being sol. in 4362 pts. H 2 containing 1*2 % NaCl and O'S % BaCl 2 . (Ludwig, Arch. Pharm. (2) 56. 265.) Sol. in Na citrate + Aq. (Spiller. ) Barium i^rahydrogen phosphate, BaH 4 (P0 4 ) 2 . Sol. in H 2 0. (Mitscherlich, 1821.) PHOSPHATE, CADMIUM POTASSIUM 297 Decomp. by much H 2 into BaHP0 4 . Sol. in phosphoric, and certain other acids. (Ber- zelius, A. ch. 2. 153.) Barium pyrophosph&ie, Ba 2 P 2 7 + xH z O. Somewhat sol. in H 2 0, in much H 4 P 2 7 + Aq, also in HCl + Aq or HN0 3 + Aq. Insol. in HC 2 H 3 2 + Aq or Na 4 P 2 7 + Aq. (Schwarzen- berg.) Insol. inNH 4 Cl + Aq. ( Wackenroder. ) Barium hydrogen ^rophosphate, BaH 2 P 2 7 , Ba 2 P 2 7 + 3H 2 0. Ppt. (Knorre and Oppelt, B. 21. 773.) Barium ^raphosphate, Ba 3 P 4 13 . Insol. in H 2 or acids when strongly heated. (Fleitmann and Henneberg, A. 65. 331.) Barium potassium trimetaphQ8pha,te, BaKP 3 9 + H 2 0. Much less sol. in H 2 than NH 4 BaP 3 9 or NaBaP 3 9 . (Lindbom.) Sol. in HC1 + Aq after ignition. Barium potassium or^ophosphate, BaKP0 4 . Insol. in H 2 0. (Ouvrard, A. ch. (6) 16. 297.) + 10H 2 0. (de Schulten, C. K. 96. 706.) Barium sodium ^metaphosphate, BaNaP 3 9 + 4H 2 0. More easily sol. in H 2 than Ba 3 (P 3 9 ) 2 . Sol. in acids, unless ignited. (Fleitmann and Henneberg, A. 65. 314.) Efflorescent. Sol. in HC1 + Aq after ignition only by long boiling. When fused it is easily sol. in HCl + Aq. (Lindbom, Acta Lund. 1873. 21.) Barium sodium or^tophosphate, BaNaP0 4 + 10H 2 0. (de Schulten, C. R. 96. 706.) Not attacked by cold, but decomp. by hot H 2 0. (Villiers, C. R. 104. 1103.) Barium sodium ^7/rophosphate, 6Ba 2 P 2 7 , Na 4 P 2 7 + 6H 2 0. Completely insol. in Na 4 P 2 7 + Aq, but not insol. in H 2 O or NH 4 OH + Aq. Easily sol. in HN0 3 or HC1 + Aq. Insol. in alcohol. (Baer, Pogg. 75. 164.) Barium uranyl phosphate, Ba(U0 2 ) 2 (P0 4 ) 2 + 8H 2 0. Min. Uranocircitc. Barium phosphate chloride, 3Ba 3 (P0 4 ) 2 , BaCl 2 . Min. Barytapatite. (Deville and Caron, A. ch. (3) 67. 451.) 4BaH 4 (P0 4 ) 2 , BaCl 2 . (Erlenmeyer, J. B. 1857. 145.) 15BaO, 6 PA, BaCl 2 + 6H 2 (?). Sol. in 18,000 pts. cold'H 2 0. Much more sol. in H 2 containing BaCl 2 , NH 4 C1, and NH 4 OH. (Lud- wig, Arch. Pharni. (2) 56. 271.) Bismuth or/^ophosphate, basic, 2BiP0 4 , 3Bi 2 3 . Insol. in H 2 0. Sol. in HCl + Aq. (Cavazzi, Gazz. ch. it. 14. 289.) Bismuth or^ophosphate, BiP0 4 . 1 Insol. in H 2 or HN0 3 + Aq. SI. sol. in NH 4 salts + Aq. (Chancel, C. R. 50. 416.) More sol. in HCl + Aq than in HNOo + Aq. (Rose.) Sol. in U0 2 (N0 3 ) 2 + Aq. (M 'Curdy, Am. J. Sci. (2) 31. 282.) Insol. in MN0 3 + Aq. Insol. in Bi salts + Aq. (Rose, Pogg. 76 26.) Sol. in NH 4 Cl + Aq, but insol. in NH 4 N0 3 + Aq. (Brett, 1837.) + 1|H 2 0. (Kiihn.) Bismuth ^/rophosphate, basic, 2Bi 2 3 , P 2 5 . Insol. in H 2 and HC 2 H 3 2 + Aq ; sol. in hot HC1 and HN0 3 + Aq. Insol. in Na 4 P 2 7 + Aq, and NH 4 citrate + Aq. (Passerini, Cim. 9. 84.) Bismuth ^7/rophosphate, Bi 4 (P 2 7 ) 3 . Insol. in H 2 or HN0 3 + Aq. (Chancel, C. R. 50. 416.) Decomp. by H 2 0. (Wallroth, Bull. Soc. (2) 39. 316.) Sol. in Na 4 P 2 7 + Aq. (Stromeyer. ) Boron phosphate, BP0 4 . Insol. in H 2 0. Not attacked by boiling alkalies. (Meyer, B. 22. 2919.) Bromomolybdenum phosphate. See under Bromomolybdenum comps. Cadmium metophosphate. Very sol. in NH 4 OH + Aq. (Persoz, A. ch. 56. 334.) Cadmium tetrametaphosph&te. Insol. in H 2 0. Easily decomp. by Na 2 S + Aq. (Fleitmann, Pogg. 78. 358.) Cadmium or^Aophosphate, Cd 3 (P0 4 ) 2 . Ppt. Insol. in H 2 0. Sol. in Cd salts + Aq. (Stromeyer. ) Easily sol. in NH 4 sulphate, chloride, nitrate, or succinate + Aq. ( Wittstein, Repert. 57. 32.) H 2 Cd 5 (P0 4 ) 4 + 4H 2 0. Sol. in dil. H 3 P0 4 + Aq. (de Schulten, Bull. Soc. (3) 1. 473.) Cadmium ^rahydrogen phosphate, CdH 4 (P0 4 ) 2 + 2H 2 0. Decomp. by great excess of H 2 0. (de Schulten.) Cadmium ^?/rophosphate, Cd 2 P 2 7 + 2H 2 0. Insol. in H 2 0. Sol. in NH 4 OH, Na 4 P 2 7 + Aq, or acids. Insol. in KOH + Aq. Sol. in S0 2 + Aq. (Schwarzenberg, A. 65. 183.) Cadmium potassium or^ophosphate, CdKP0 4 . Insol. in H 2 ; sol. in dil. HC1 + Aq. (Ouvrard, A. ch. (6) 16. 321.) Cadmium potassium ^7/rophosphate, CdK 2 P 2 7 . Insol. in H 2 ; sol. in dil. HCl + Aq. (Ouvrard.) 5Cd 2 P 2 7 , 4K 4 P 2 7 + 30H 2 0. Much more easily sol. in H 2 than the CdNa salt. (Pahl, Sv. V. A. F. 30, 7. 39.) 298 PHOSPHATE, CADMIUM SODIUM Cadmium sodium or^ophosphate, CdNa 4 (P0 4 ) 2 . Insol. in H 2 ; very sol. in dil. acids. CdNaP0 4 . As above. (Ouvrard.) Cadmium sodium ^yrophosphate, CdNa^O?. Sol. in dil. acids, even acetic acid. (Wall- roth.) + 4H 2 0. Insol. in H 2 0. (Pahl, Sv. V. A. F. 30, 7. 39.) Cadmium phosphate bromide, 3Cd 3 (P0 4 ) 2 , CdBr 2 . Sol. in cold very dil. HN0 3 + Aq. (de Schulten, Bull. Soc. (3) 1. 472.) Cadmium phosphate chloride, 3Cd 3 (P0 4 ) 2 , Sol. in dil. HN0 3 + Aq. (de Schulten.) Calcium monometaphosph&te, Ca(P0 3 ) 2 . Insol. in H 2 and dil. acids. (Maddrell, A. 61. 61.) Not decomp. by digestion with alkali car- bonates + Aq. (Fleitmann. ) Calcium dimetaphosphsAe, Ca 2 (P 2 6 ) 2 + 4H 2 0. Insol. in H 2 0. Decomp. by warm H 2 S0 4 , but not appreciably by cone. HC1 or HNO. ? + Aq. (Fleitmann, Pogg. 78. 255.) Calcium hexametap'hospha.ie (?). Insol. in H 2 0. Sol. in Na 6 P 6 18 + Aq and in HCl + Aq. (Rose, Pogg. 76. 3.) Ca 3 P 6 18 . Nearly insol. in H 2 ; sol. in dil. acids. (Liidert, Z. anorg. 5. 15.) Calcium cr^ophosphate, basic, 3Ca 3 (P0 4 ) 2 + Ca0 2 H 2 . (Warington, J. B. 1873. 253.) 4CaO, P 2 5 . (Hilgenstock.) Calcium phosphate, Ca 3 (P0 4 ) 2 . Decomp. by long boiling with H 2 into basic salt, 3Ca s (P0 4 ) 2 , Ca0 2 H 2 . This decomp. begins with cold H 2 O, so that the solubility at 6-8 varies from 9 '9 to 28*6 mg. in a litre. (Warington, Chem. Soc. (2) 11. 983.) 1 1. cold H 2 dissolves in 7 days 31 mg. ignited, and 79 mg. freshly precipitated Ca 3 (P0 4 ) 2 . (Volcker, J. B. 1862. 131.) 100,000 pts. H 2 dissolve 2 '36 pts. gelatin- ous Ca phosphate ; 2 '56 pts. ignited Ca phos- phate ; 3 '00 pts. Ca phosphate from bone dust. (Maly and Donath, J. pr. (2) 7. 416.) Solubility of bones in various solvents is given by Maly and Donath, I.e. Sol. inC0 2 + Aq. 1 1. H 2 containing 1 vol. C0 2 dissolves in 12 hours at 10 075 g. precipitated Ca 3 (P0 4 ) 2 ; 0'166 g. Ca 3 (P0 4 ) 2 from bone ash; 0'300 g. Ca 3 (P0 4 ) 2 from bones which had been buried 20 years. (Lassaigne, J. ch. med. (3) 3. 11.) 1 1. H 2 containing 0'8 vol. C0 2 dissolves 0-61 g. Ca 3 (P0 4 ) 2 . (Liebig, A. 106. 196.) H 2 sat. with C0 2 at 5^10 and 760 mm. pressure dissolves '527-0 '60 g. Ca 3 (P0 4 ) 2 , or, if containing 1 % NH 4 C1, 0739 g. Ca 3 (P0 4 ) 2 . (Warington, Chem. Soc. (2) 9. 80.) Solubility varies according to form of Ca 3 (P0 4 ) 2 . In apatite, 1 pt. Ca 3 (P0 4 ) 2 dissolves in 222,222 pts. H 2 sat. with C0 2 ; in raw bones, in 5698 pts. ; in bone ash, " in 8029 pts. ; in So. Carolina phosphate, in 6983 pts. ; in phos- phatic guano from Orchilla Id., in 8009 pts. (Williams, C. N. 24. 306.) A1 2 6 H 6 and Fe 2 6 H 6 prevent the solubility of Ca 3 (P0 4 ) 2 in H 2 containing C0 2 . (War- ington, I.e.) Sol. "in S0 2 + Aq, forming a liquid of 1'3 sp. gr. at 9 from freshly precipitated Ca 3 (P0 4 ) 2 , and of 1 '188 sp. gr. from bone ash. Sol. in H 2 S + Aq. 1 1. H 2 sat. with H 2 S dissolves 190-240 mg. Ca 3 (P0 4 ) 2 . (Bechamp, A. ch. (4) 16. 241.) Easily sol. in HN0 3 or HCl + Aq. 100 pts. very dil. HCl + Aq dissolve 198-225 pts. Ca 3 (P0 4 ) 2 . (Crum, A. 63. 294.) 100 pts. HC1 of 1-153 sp. gr. (containing 31 % HC1) dissolve at 17 when diluted with : 1 25-3 45-0 10 13 68-0 71-9 4 62-3 16 69-5 7 pts. H 2 0, 64-7 pts. Ca 3 (P0 4 ) 2 , 19 pts. H 2 0. 69-7 pts. Ca 3 (P0 4 ) 2 . (Bischof, Schw. J. 67. 39.) Decomp. by H 2 S0 4 . Completely decomp. to CaS0 4 and H 3 P0 4 by a mixture of H 2 S0 4 and alcohol. Solubility in HN0 3 + Aq. pt. of Ca 3 (P0 4 ) 2 dissolves at 16 '25-17 '5 pts. HNO s + Aq which contain pts. H, to 1 pt. HN0 3 (sp. gr.=l-23). Pts. HNO 3 +Aq Pts. H 2 O Pts. HN0 3 +Aq Pts. H 2 O 2-72 4-23 10-25 15-45 20-34 20-82 0-827 3-309 5-791 8-273 10 30-64 26-48 32-14 36-06 127-81 10754 13 13'236 15718 40 (Bischof, 1833.) More sol. in acetic, lactic, malic, and tartaric acids than in HC1 or HN0 3 + Aq. (Crum.) Sol. inH 3 P0 4 + Aq. Very small quantities of the salts of the alkali metals increase the solubility in H 2 0. (Lassaigne, J. chim. med. (3) 3. 11.) 1 litre cold H 2 with 2 g. NaCl dissolves 45-7 mg. Ca 3 (P0 4 ) 2 ; with 3 g. NaN0 3 , 33 mg. Ca 3 (P0 4 ) 2 . (Liebig.) 1 litre H 2 containing 8 '75 % NaCI dissolves 317'5 mg. Ca(P0 4 ) 2 . (Lassaigne.) NH 4 salts have even more effect, especially NH 4 Cl + Aq, which dissolves Ca 3 (P0 4 ) 2 in the cold ; also ammonium nitrate and succinate. (Wittstein.) (NH 4 ) 2 S0 4 + Aq dissolves Ca 3 (P0 4 ) 2 as easily as CaS0 4 . (Liebig, A. 61. 128.) 1 litre H 2 containing 2 g. NaCl dissolves at 7-12-3 45-7 mg. Ca,(P0 4 ) 2 ; 3 g. NaN0 3 at 17-3, 33 mg. Ca 3 (P0 4 ) 2 ; 2 -2 g. (NH 4 ) 2 S0 4 ', 76-7 mg. Ca 3 (P0 4 ) 2 . (Liebig, A. 106. 185.) Dry Ca 3 (P0 4 ) 2 also dissolves by long boiling with solutions of ammonium chloride, nitrate, PHOSPHATE, CALCIUM HYDROGEN , 299 succinate (Wittstein), or sulphate (Delkes- kamp). Sol. in 89,448 pts. H 2 (boiled) at 7; 19,628 pts. H 2 (boiled) containing 1 % NH 4 C1 at 10 ; 4324 pts. H 2 (boiled) containing 10 % NH 4 C1 at 17 ; 1788 pts. H 2 sat. with C0 2 and containing 10 % NH 4 C1 at 10 and 751 mm. pressure ; 1351 pts. H 2 sat. with C0 2 and con- taining 1 % NH 4 C1 at 12 and 745 mm. pres- sure ; 42,313 pts. H 2 sat. with C0 2 and con- taining CaC0 3 at 21 and 756 "3 mm. pressure ; 18,551 pts. H 2 sat. with C0 2 and containing CaC0 3 and 1 % NH 4 C1 at 16 and 746 '1 mm. pressure. (Warington, Chem. Soc. (2) 4. 296.) Aqueous solutions of the following NH4 salts dissolve the given amts. of Ca 3 (P0 4 ) 2 , calculated for 100 pts. of the corresponding acid : NH 4 C1, 0-655 pt. ; NH 4 N0 3 , 0'306 pt. ; (NH 4 ) 2 S0 4 , 1-050 pts.; NH 4 C 2 H 3 2 , 0'255 pt. ; NH 4 tartrate, 4 '56 pts. ; NH 4 citrate, 7 '01 5 pts. ; NH 4 malate, 1-125 pts. Ca 3 (P0 4 ) 2 . (Terreil, Bull. Soc. (2) 35. 578.) Sol. in sodium citrate + Aq. (Spiller. ) Ammonium citrate solution of 1*09 sp. gr. at 30-35 dissolves precipitated Ca 3 (P0 4 ) 2 com- pletely, but not phosphorite. (Fresenius. ) Dried on the air, with 2|H 2 0. Sol. in 40 min. in diammonium citrate + Aq (sp. gr. = 1 -09) ; triammonium citrate + Aq (sp. gr = 1 '09) dissolves 55 '3 % of the P 2 5 ; citric acid + Aq (i %) dissolves 83 '8 % of the P 2 5 . (Erlen- meyer, B. 14. 1253.) Dried at 50, with 1|H 2 0. Sol. in 45 min. in diammonium citrate + Aq (sp. gr. = 1'09) ; triammonium citrate + Aq dissolves 52 ' the P 2 5 . (Erlenmeyer.) % of Ignited. Diammonium citrate + Aq (sp. gr. 1'09) dissolves 93 % of the P 2 5 ; triammonium citrate + Aq (sp. gr. 1'09) dissolves 32% of the P 2 5 ; citric acid (J %) dissolves 53 '4 % of the P 2 5 . (Erlenmeyer. ) Ca 3 (P0 4 ) 2 is sol. in K 2 C 2 4 + Aq. 100 ccm. K 2 C 2 4 + Aq (H % K 2 C 2 4 ) dissolves 57 '1 % of the P 2 5 from phosphorite, 71 % from guano by boiling 25 min. At ord. temp, bone meal gives up 50-80 % of its P 2 5 to K 2 C 2 4 + Aq in 36 hours. (Liebig, Landw. J. B. 1881. 603.) Sol. in Ca sucrate + Aq. (Bobierre, C. R. 32. 859.) More sol. in H 2 containing starch, glue, or other animal substances than in pure H 2 0. (Vauquelin, Pogg. 85. 126.) Sol. in H 2 containing organic matter, there- fore when bones decay under H 2 0, Ca 3 (P0 4 ) 2 is dissolved in considerable quantity. (Hayes, Edin. Phil. J. 5. 378.) Insol. in alcohol and ether. Calcium hydrogen phosphate, CaHP0 4 , and + 2H 2 0. Insol. or nearly so in H 2 0. Gradually decoinp. by cold, more quickly by hot H 2 0. 1000 pts. H 2 dissolve 0'135-0'152 pt. CaHP0 4 + 2H 2 0. Solution clouds up on boil- ing. (Birnbaum.) 1000 pts. H 2 dissolve 0'28 pt., and if sat. with C0 2 , '0-66 pt. CaHP0 4 + 2H 2 0. (Dusart and Pelouze.) 1 1. H 2 O containing 2 -2 g. (NH 4 ) 2 S0 4 , 2 g. NaCl, or 3 g. NaN0 3 dissolves 79 -2, 66 '3, or 78 '9 mg. CaP 2 7 , which is present in form of CaHP0 4 . (Liebig, A. 106. 185.) Slowly but completely sol in boiling NH 4 Cl + Aq. (Kraut, Arch. Pharm. (2) 111. 102.) Easily sol. in H 2 S0 3 + Aq. (Gerland, J. pr. (2) 4. 123.) Very sol. in HC1 or HN0 3 + Aq. Less sol. in HC 2 H 3 2 . (Berzelius.) More sol. in dil. than cone. HC 2 H 3 2 + Aq, but 60 pts. HC 2 H 3 2 (1 mol.) dissolve at most 23 '1 pts. P 2 5 (1 mol. = 142 pts.) from this compound. Aqueous solu- tion of sodium acetate dissolves more easily than H 2 0, and becomes turbid on boiling. (Birnbaum.) Completely sol. in K 2 C 2 4 + Aq. (Liebig, Landw. J. B. 1881. 603.) Insol. in alcohol. Sol. in many organic substances, as starch or gelatine + Aq. + JH 2 0. (Vorbringer, Z. anal. 9. 457.) + H 2 0. (Gerlach, J. pr. (2) 4. 104.) + 2H 2 O. Min. Brushite. + 3H 2 O. Min. Metabrushite. + 5H 2 0. (Dusart, C. R. 66. 327.) Calcium ^rahydrogen or^ophosphate, CaH 4 (P0 4 ) 2 + H 2 0. Very deliquescent. Crystals take up 97*7 pts. H 2 in 16 days, and 226 pts. H 2 in 28 days from air saturated with moisture. (Birn- baum, Zeit. Ch. (2) 7. 131.) Not hygroscopic when pure. (Stocklasa, B. 23. 626 R.) Completely sol. in 100 pts. H 2 0, but de- comp. by 10-40 pts. H 2 with separation of CaHP0 4 , which slowly L dissolves. (Erlen- meyer, J. B. 1873. 254.) Later (B. 9. 1839) Erlenmeyer says CaH 4 (P0 4 ) 2 + H 2 is sol. in 700 pts. H 2 and decomp. into CaHP0 4 by a less amount of H 2 0. Wattenberg (Z. anal. 19. 243) says that the decomposition by small amts. of H 2 down to 144 pts. H 2 to 1 pt. salt is inappreciable. Completely sol. in 200 pts. H 2 if pure, and in less H 2 in presence of H 3 P0 4 . (Stocklasa.) Sol. in 25 pts. H 2 at 15. Solution begins to decompose when warmed to 50. (Otto, C. C. 1887. 1563.) Glacial HC 2 H 3 2 ppts. it completely from aqueous solution even in presence of HN0 3 . (Persoz.) Decomp. by 50 pts. absolute alcohol at b.-pt. in 1 hour ; by 30 pts. in 2 hours. Sol. in absolute ether. (Erlenmeyer, I.e.] Calcium _p?/rophosphate, Ca 2 P 2 7 + 4H 2 0. Somewhat sol. in H 2 0, completely sol. in mineral acids, less sol. in acetic acid, and in- sol. in Na 4 P 2 7 + Aq. (Schwarzenberg, A. 65. 145.) Less sol. in warm than in cold acetic acid. (Baer, Pogg. 75. 155.) Insol. in NH 4 Cl + Aq. (Wackenroder, A. 41. 316.) Insol. in CaCl 2 + Aq. Min. Pyrophosphorite. Calcium hydrogen j??/rophosphate, CaH 2 P 2 7 + 2H 2 0. Sol. in H 2 0. (Pahl, B. 7. 478.) 300 PHOSPHATE, CALCIUM HYDROGEN 2CaH 2 P 2 7 , Ca 2 P 2 7 + 6H 2 0. Decomp. by boiling with H 2 into CaH 2 P 2 7 , Ca 2 P 2 7 + 3H 2 0. Insol. in hot H 2 0. (Knorre and Oppelt, B. 21. 771.) Tetracalcium hydrogen phosphate, Ca 4 H(P0 4 ) 3 + H 2 0. Ppt. Insol. in H 2 0, but decomp. by boiling therewith. Sol. in acids. (Warington, Chem. Soc. (2) 4. 296.) + 2H 2 0. Calcium ^raphosphate, Ca 3 P 4 13 . Insol. in acids when ignited. (Fleitmann and Henneberg, A. 65. 331.) Calcium lithium phosphate, CaLiP0 4 . Insol. in H 2 0. (Rose, Pogg. 77. 298.) Calcium potassium or^ophosphate, CaKP0 4 . Insol. in H 2 0. (Rose, Pogg. 77. 291.) Easily sol. in acids. (Ouvrard, A. ch. (6) 16. 308.) Calcium potassium ^rophosphate, CaK 2 P 2 7 . Insol. in H 2 ; easily sol. in dil. acids. (Ouvrard, C. R. 106. 1599.) Calcium sodium ^rimetaphosphate, CaNaP 3 9 + 3H 2 0. SI. sol. in H 2 0. (Fleitmann, A. 65. 315.) Easily sol. in H 2 0. Difficultly sol. in HC1 + Aq when heated to redness. Easily sol. in boiling HCl + Aq after being fused. (Lind- bom.) Calcium sodium or^/iophosphate, CaNaP0 4 . Insol. in H 2 0. (Rose, Pogg. 77. 292.) Easily sol. in dil. acids. (Ouvrard, A. ch. (6) 16. 308.) Calcium sodium ^7/rophosphate, CaNa 2 P 2 7 + 4H 2 0. Insol. in Na 4 P 2 7 + Aq. Easily sol. in HCl + Aq, HN0 3 + Aq, and also in HC 2 H 3 2 + Aq. (Baer, Pogg. 75. 159.) Calcium sodium jpT/rophosphate, Ca 10 Na 16 (P 2 7 ) 9 . Sol. in acids. (Wallroth, Bull. Soc. (2) 39. 316.) 3CaO, 3Na 2 0, 2P 2 5 . Easily sol. in acids. (Ouvrard, A. ch. (6) 16. 307.) Calcium uranyl phosphate, Ca(U0 2 )H 2 (P0 4 ) 2 + 2, 3, or 4H 2 0. Sol. in HN0 3 + Aq. (Debray. ) Ca(U0 2 ) 2 (P0 4 ) 2 + 8H 2 0. Min. Uranite. Sol. inHN0 3 + Aq. Calcium phosphate chloride, Ca 3 (P0 4 ) 2 , CaCl 2 . (Devillc and Caron, A. ch. (3) 67. 458.) Calcium phosphate chloride, 3Ca 3 (P0 4 ) 2 CaCl 2 . Chlorapatite, Insol. in H 2 0. (Daubree, Ann. Min. (4) 19. 684.) Calcium phosphate chloride, 7CaH 4 (P0 4 ) 2 , CaCl 2 + 14H 2 0. Sol. in HCl + Aq. 4CaH 4 (P0 4 ) 2 , CaCl 2 + 8H 2 0. CaH 4 (P0 4 ) 2 , CaCl 2 + 2H 2 0. Partly sol. in H 2 with decomp. Also with 8H 2 0. (Erlen- meyer, J. B. 1857. 145.) Calcium phosphate chloride fluoride, 3Ca 3 (P0 4 ) 2 , CaClF. Min. Apatite. Boiling H 2 dissolves out CaCl 2 ; dil. mineral acids dissolve easily, acetic acid with more difficulty. Easily soluble in molten Nad, crystallising on cooling. (Forch- hammer. ) Calcium phosphate silicate, Ca 3 (P0 4 ) 2 , Ca 2 Si0 4 . Insol. in H 2 ; decomp. by HC1 + Aq. (Carnot and Richard, C. R. 97. 316.) 4Ca 3 (P0 4 ) 2 , Ca 3 Si0 5 . (Bucking and Linck, C. C. 1887. 562.) 4Ca 3 (P0 4 ) 2 , 3Ca 3 Si0 5 . (B. and L.) Ca(P0 3 ) 2 , CaSi0 3 . (Stead and Ridsdate, Chem. Soc. 51. 601.) Calcium cfo'hydrogen phosphate sulphite, CaH 2 (P0 4 ) 2 , CaS0 3 + H 2 0. Not decomp. by cold, slowly by boiling H 2 0. Slightly sol. in NH 4 OH + Aq. Sol. in mineral acids. Insol. in cold, slowly sol. in boiling acetic acid. More sol. in a solution of oxalic acid. (Gerland, C. N. 20. 268.) Cerous metaphosphate, Ce(P0 3 ) 3 . (Rammelsberg. ) Ce 2 3 , 5P 2 5 . Insol. in H 2 or acids. (Johnsson, B. 22. 976.) Cerous or^ophosphate, CeP0 4 . Insol. in H 2 0. Easily sol. in acids. (Grandeau, A. ch. (6) 8. 193.) Insol. in acids. (Hartley, Proc. Roy. Soc. 41. 202.) + 2H 2 0. Insol. in H 2 0. Sol. in acids. (Jolin.) Insol. in H 3 P0 4 + Aq ; si. sol. in HC1 or HN0 3 + Aq. (Hisinger.) Insol. in HN0 3 + Aq. (Boussingault, A. ch. (5)5. 178.) Min. Cryptolite. Completely decomp. by H 2 S0 4 when finely powdered. Insol. in dil. HN0 3 + Aq. Ceric or^ophosphate, 4Ce0 2 , 6P 2 5 + 26H 2 0. Ppt. (Hartley, Proc. Roy. Soc. 41. 202.) Cerous ^7/rophosphate, Ce 2 H 2 (P 2 7 ) 6 + 6H 2 0. Sol. in cerous nitrate + Aq. Cerous lanthanum thorium phosphate, (Ce, La, Th) 2 (P0 4 ) 2 . Min. Monazite. Sol. in HCl + Aq with white residue. Cerous potassium or^ophosphate, 2Ce 2 3 , 3K 2 0, 3P 2 5 = 2CeP0 4 , K 3 P0 4 . Insol. in H 2 ; sol. in acids. (Ouvrard, C. R. 107. 37.) Cerous sodium or^Aophosphate, Ce 2 3 , 3Na 2 0, 2P 2 5 = CeP0 4 , Na 3 P0 4 . Insol. in H 2 0. (Ouvrard, C. R. 107. 37.) Cerous sodium jw?/?'ophosphate, CeNaP 2 7 . Insol. in acetic, and cold dil. mineral acids. Sol. in warm acids. (Wallroth.) PHOSPHATE, CUPRIC 301 Chromous phosphate, Cr 3 (P0 4 ) 2 + H 2 0. Precipitate. Easily sol. in acids. (Moberg ; Moissan, A. ch. (5) 21. 199.) Chromic raetaphosphate, Cr 2 (P0 3 ) 6 . Insol. in H 2 or cone, acids. (Maddrell, A. .61. 53.) Chromic phosphate, Cr 2 (P0 4 ) 2 + 12H 2 0. Violet modification. Precipitate. (Ram- melsberg, Pogg. 68. 383.) + 6H 2 O. Green modification. Very si. sol. in H 2 and still less in NH 4 N0 3 or NH 4 C 2 H 3 2 + Aq. (Carnot, C. R. 94. 1313.) Insol. in acetic, but easily sol. in mineral acids. Easily sol. in cold KOH or NaOH + Aq, from which it is separated on boiling. (Bowling and Plunkett, Chem. Gaz. 1858. 220.) Chromic hydrogen phosphate, O 2 H 6 (P0 4 ) 4 + 16H 2 0. Sol. inH 2 0. (Haushofer.) Chromic ^7/rophosphate, Cr 4 (P 2 7 ) 3 . Anhydrous. Insol. in H 2 or acids. (Ouv- rard, A. ch. (6) 16. 344.) + 7H 2 0. Precipitate. Sol. in strong mineral acids, SO 2 + Aq, KOH + Aq, and Na 4 P 2 7 + Aq. (Schwarzenberg, A. 65. 149.) Insol. in Na 4 P 2 7 + Aq. (Stromeyer. ) Chromic potassium phosphate, Cr 2 3 , K 2 0, 2P 2 5 . Insol. in H 2 and in acids. (Ouvrard, A. ch. (6) 16. 289.) Chromic potassium ^rophosphate, Cr 2 K 2 H 4 (P 2 7 ) 3 . Insol. in H 2 0, acids, or alkalies. SI. decomp. by boiling cone. H 2 S0 4 . (Schjerning, J. pr. (2)45. 515.) Chromic silver phosphate, 2O 2 3 , 2Ag 2 0, 5PA- (Hautefeuille and Margottet, C. R. 96. 1142.) Chromium sodium |>?/rophosphate, Cr 2 Na 2 (P 2 7 ) 2 . Insol. in acids. (Wallroth, Bull. Soc. (2) 39. 316.) Cobaltous woworaetaphosphate, Co(P0 3 ) 2 (?). Insol. in H 2 and dil. acids. Sol. in cone. HCl + Aq. (Maddrell, A. 58. 61.) Cobaltous e^wetophosphate, Co 2 (P 2 6 ) 2 . Insol. in cold cone. H 2 S0 4 ; si. sol. on warming, but sol. in H 2 after treating with H 2 S0 4 . Sol. in cone. NH 4 OH + Aq. Scarcely attacked by boiling Na 2 S + Aq. (Fleitmann. ) Cobaltous hexametaphosph&ie (?). Ppt. Sol. in sodium hexametaphosphate + Aq. (Rose, Pogg. 76. 4.) Cobaltous or^ophosphate, Co 3 (P0 4 ) 2 + asH 2 0. Sol. in H 3 P0 4 + Aq or NH 4 OH + Aq ; si. sol. in NH 4 C1 or NH 4 N0 3 + Aq. (Salvetat, C. R. 48. 295.) Sol. in Co salts + Aq. + 2H 2 0. (Debray, A. ch. (3) 61. 438.) + 8H 2 0. (Reynoso, C. R. 34. 795.) Cobaltous hydrogen or^ophosphate, Ppt. (Debray.) + 2^H 2 0. Ppt. Insol. in H 2 0. Sol. in H 3 P0 4 + Aq. (Bodeker, A. 94. 357.) Cobaltous ^rahydrogen o^/iophosphate, CoH 4 (P0 4 ) 2 . Sol. in H 2 0. (Reynoso.) Cobaltous >?/rophosphate. Ppt. Sol. in Na 4 P 2 7 + Aq. (Stromeyer.) Sol. in NH 4 OH + Aq. (Schwarzenberg.) Cobaltous j?7/rometophosphate, 3CoO, 2P 2 5 . (Braun.) 6CoO, 5P 2 5 . (Braun.) Cobaltous potassium phosphate, CoKP0 4 . Insol. in H 2 ; easily sol. in dil. acids. (Ouvrard, C. R. 106. 1729.) 3CoO, 3K 2 0, 2P 2 5 . As above. Cobaltous sodium metaphosphate, Co 3 Na 2 (P0 3 ) 8 . Insol. in H 2 or acids, even cone. H 2 S0 4 . (Watts' Diet.) Cobaltous sodium monometaphosph&te, 6Co(P0 3 ) 2 , 2NaP0 3 . Insol. in H 2 and dil. acids. Sol. in cone. H 2 S0 4 . (Maddrell, A. 61. 57.) Cobaltous sodium trimetaphosph&ie, CoNa 4 (P0 3 ) 3 + 8H 2 0. Sol. in H 2 0. (Fleitmann and Henneberg, A. 65. 315.) Cobaltous sodium or^ophosphate, CoNaP0 4 . Insol. in H 2 0. (Ouvrard, C. R. 106. 1729.) Co 3 (P0 4 ) 2 , 2Na 2 HP0 4 + 8H 2 0. (Debray, J. Pharm. (3)46. 119.) Cobaltous sodium ^7/rophosphate, Co 10 Na 16 (P 2 7 ) 9 . Insol. in H 2 0. Sol. in acids. (Wallroth.) + cH 2 0. Sol. in H 2 0. (Stromeyer.) Cobaltous zinc phosphate, Co 3 (P0 4 ) 2 , 3Zn 3 (P0 4 ) 2 + 12H 2 0. Ppt. Sol. in acids. (Gentele.) CoZn 2 (P0 4 ) 2 + 6H 2 0. Insol. in H 2 0. Columbium phosphate (?). Insol. in H 2 0. (Blomstrand.) Cupric dimetaphosphsite, Cu 2 (P 2 6 ) 2 . Insol. in H 2 0. Sol. in cone. H 2 S0 4 . (Mad- drell, A. 61. 62.) Insol. in most cone, acids and in alkalies, except hot NH 4 OH + Aq or cone. H 2 S0 4 , in which it is moderately sol. Not decomp. by H 2 S, but by (NH 4 ) 2 S + Aq, less easily by Na 2 S, and K 2 S + Aq. (Fleitmann, Pogg. 78. 242.) + 8H 2 0. Completely insol. in H 2 0. (Fleit- mann. ) Cupric hexametaphospha.ie (?). Sol. in Na 6 P 6 18 + Aq or CuCl 2 + Aq. (Rose, Pogg. 76. 4.) Cu 3 P 6 18 . Easily sol. in H 2 or acids, especially when freshly pptd. (Liidert, Z. anorg. 5. 15.) 302 PHOSPHATE, CUPRIC, BASIC Cupric or^ophosphate, basic, 6CuO, P 2 5 + 3H 2 0. Min. Phosphocalcite. 5CuO, P 2 5 + 2H 2 0. Min. Dihydrite. + 3H 2 0. Min. Ehlite. Easily sol. in NH 4 OH + Aq, and HN0 3 + Aq. 4CuO, P 2 5 + H 2 0. Slowly sol. in NH 4 OH or (NH 4 ) 2 C0 3 + Aq ; insol. in cold Na 2 S 2 3 + Aq. (Steinsclmeider, C. C. 1891, 2. 51.) Min. Libethenite. Sol. in acids and NH 4 OH + Aq. + 2H 2 0. Min. Pseudolibethenite. Sol. in acids and NH 4 OH + Aq. + 3H 2 0. Min. Tagilite. Sol. in acids and NH 4 OH + Aq. Cupric or^ophosphate, Cu 3 (P0 4 Insol. in H 2 ; easily sol. in acids, even H 3 P0 4 , HC 2 H 3 2 , or H 2 S0 3 + Aq. Sol. in NH 4 OH + Aq. SI. sol. in NH 4 salts + Aq. SI. sol. in Cu salts + Aq. (Rose, Pogg. 76. 25.) Sol. in cold Na 2 S 2 3 + Aq. (Steinschneider, C. C. 1891, 2. 51.) Cupric hydrogen phosphate, CuHP0 4 + Insol. in H 2 ; sol. in H 3 P0 4 + Aq, and HC 2 H 3 2 + Aq. Insol. in NH 4 C1, and NH 4 N0 3 + Aq. (Brett, Phil. Mag. (3) 10. 98.) Cupric _>7/rophosphate, basic, Cu 2 P 2 7 , 2CuO, H 2 + 3H 2 0. Insol. in H 2 0. (Pahl, J. B. 1873. 229.) Cupric ^7/rophosphate, Cu 2 P 2 7 . Anhydrous. Insol. in H 2 0, and very si. sol. in cone, acids. (Fleitmann, Pogg. 78. 244.) As insol. as Cu metaphosphate, but decomp. byH 2 S. (Rose, Pogg. 76. 14.) + 2H 2 0. Sol. in mineral acids, and NH 4 OH + Aq ; also in Na 4 P 2 7 + Aq. (Schwarzenberg, A. 65. 156.) Sol. in cold H 2 S0 3 + Aq without decomp., crystallising out on boiling. Decomp. by boiling KOH + Aq. Sol. in large excess of CuS0 4 + Aq. + 2^, and 5H 2 0. (Pahl, Sv. V. A. F. 30, 7. 40.) Cupric potassium phosphate, 4CuO, K 2 0, 3P 2 5 . Insol. in H 2 0. (Ouvrard, C. R. 111. 177.) CuKP0 4 . As above. Cupric potassium ^rophosphate, CuK 2 P 2 7 . Extremely easily sol. in H 2 0. (Persoz, A. ch. (3) 20. 315.) Cu 2 P 2 7 , 3K 4 P 2 7 + 4H 2 0. Insol. in H 2 0. (Pahl, Sv. V. A. F. 30, 7. 44.) Cupric sodium phosphate, Cu 3 Na 6 (P0 4 ) 4 . Insol. in HC 2 H 3 2 + Aq. Sol. in cone, acids. (Wallroth, Bull. Soc. (2) 39. 316.) Cupric sodium ^rametaphosphate, CuNa 2 P 4 12 . As insol. in H 2 as Cu dimetaphosphate. Difficultly decomp. by digestion with Na 2 S + Aq. (Fleitmann, Pogg. 78. 355.) Cupric sodium phosphate, 3Cu 3 (P0 4 ) 2 , NaH 2 P0 4 . Decomp. by H 2 to 4CuO, P 2 5 . (Stein- schneider, C. C. 1891, 2. 52.) 2Cu 3 (P0 4 ) 2 , Na 2 HP0 4 . Decomp. by H 2 into 3Cu 3 (P0 4 ) 2 , Na 2 HP0 4 . Decomp. by H 2 0. Cu 3 (P0 4 ) 2 , NaH 2 P0 4 . Decomp. by H 2 0. 6Cu 3 (P0 4 ) 2 , 2Na 3 P0 4 . Decomp. by H 2 0. (S.) Cupric sodium ^^/rophosphate, CuNa 2 P 2 7 . Insol. in H 2 0. (Fleitmann and Henneberg, A. 65. 387.) + H 2 0. (F. and H.) Much more sol. than the next salt. (Pahl. ) + 6H 2 0. (Persoz, A. ch. (3) 20. 315.) Cu 2 P 2 7 , CuNa 2 P 2 7 + 3|H 2 0. Very efflor- escent ; insol. in H 2 0. (F. and H.) + 10PI 2 0. (Pahl, Sv. V. A. F. 30, 7. 42.) CuNa 2 P 2 7 , Na 4 P 2 7 . Sol. in H 2 0. (F. and H. ) + 2H 2 0. (F. andH.) + 12, and 16H 2 0. Very efflorescent, and sol. in H 2 0. (Pahl.) Cupric uranyl 8H 2 0. phosphate, (U0 2 ) 2 Cu(P0 4 ) 2 + Insol. in H 2 ; easily sol. in acids. (Debray. ) Min. Chalcolite. Sol. in HN0 3 + Aq. Cupric or^ophosphate ammonia, Cu 3 (P0 4 ) 2 , 4JN -tio. SI. sol. in H 2 0. Easily sol. in H 2 contain- ing NH 4 OH. (Schiff, A. 123. 41.) 2CuO, 3P 2 5 , 20NH 3 + 21H 2 0. Easily sol. in cold H 2 0, with subsequent decomp. (Metz- ner, A. 149. 66.) 2CuO, P 2 5 , 6NH 3 . (Maumene.) Cupric ^7/rophosphate ammonia, 8CuO, 3P 2 5 , 4NH 3 + 4H 2 0. SI. sol. in H 2 0. (Schwarzenberg, A. 65. 133.) Cu 2 P 2 7 , 4NH 3 + H 2 0. SI. sol. in H 2 0. (Schiff, A. 123. 1.) Didymium metaphosphate, Di(P0 3 ) 3 . Precipitate. (Smith.) Di 2 3 , 5P 2 5 . Insol. in H 2 0. (Clove. ) Didymium phosphate, 2Di 2 3 , 3P 2 5 . Insol. in H 2 0. (Ouvrard, C. R. 107. 37.) Didymium or^Aophosphate, DiP0 4 . Insol. in H 2 0. Very si. sol. in dil., easily sol. in cone, acids. (Marignac.) Insol. in H 2 0. (Wallroth, Bull. Soc. (2) 39. 316.) + H 2 0. (Frerichs and Smith, A. 191. 355.) Didymium triTaydrogen phosphate, Di 2 H 3 (P0 4 ) 3 . Precipitate. (Frerichs and Smith. ) Existence is doubtful. (Cleve, B. 12. 910.) Didymium hexahydrogen phosphate, DiH 3 (P0 4 ) 2 + H 2 0. Precipitate, (Hermann.) PHOSPHATE, FERRIC 303 Didymium ^T/rophosphate, Di 4 (P 2 7 ) 3 + 6H 2 0. i Precipitate. (Cleve.) Didymium hydrogen ^>?/rophosphate, Di 2 H 6 (P 2 7 ) 3 . Precipitate. Sol. in disodium pyrophos- phate + Aq. (Frerichs and Smith, A. 191. 355. ) Does not exist. ' (Cleve. ) Didymium potassium phosphate, 2Di 2 3 , 3K 2 0, 3P 2 5 = 2DiP0 4 , K 3 P0 4 . Insol. in H 2 0. (Ouvrard, C. R. 107. 37.) Didymium sodium or^ophosphate, Di 2 3 , 3Na 2 0, 2P 2 5 = DiP0 4 , Na 3 P0 4 . Insol. in H 2 0. (Ouvrard. ) Didymium sodium ^rophosphate, Di 2 3 , Na 2 0, 2P 2 5 = DiNaP 2 7 . Insol. in H 2 0. (Ouvrard, C. R. 107. 37.) Erbium phosphate, ErP0 4 + H 2 0. Precipitate. Erbium ^yrophosphate, ErHP 2 7 + 3JH 2 0. Scarcely sol. in boiling H 2 0. Slowly sol. in acide. Erbium sodium ^yrophosphate, ErNaP 2 7 . Precipitate. (Wallroth.) Glucinum phosphate, G1 3 (P0 4 ) 2 + 6H 2 0. Precipitate. Insol. in H 2 0. Sol. in acids. (Atterberg, Sv. V. A. Handl. 12, 5. 33.) 1 1.2 % HC 2 H 3 2 + Aq dissolves 0'55 g. of the anhydrous salt; 1 1. 10 % HC 2 H 3 2 + Aq dissolves 1'725 g. (Sestini, Gazz. ch. it. 20. 313.) + 7H 2 0. (Atterberg. ) Glucinum hydrogen phosphate, G1HP0 4 + 3H 2 0. Precipitated by alcohol. (Atterberg. ) Glucinum phosphate, 5G10, 2P 2 5 + 8H 2 0. Ppt. Sol. in H 2 with decomp. (Scheffer. ) 3G10, P 2 5 , 3H 2 + H 2 0. (Sestini, Gazz. ch. it. 20. 313.) Glucinum ^?/rophosphate, G1 2 P 2 7 + 5H 2 0. Precipitate. (Scheffer.) Sol. in Na 4 P 2 7 + Aq. (Stromeyer. ) Glucinum potassium phosphate, G1KP0 4 . Insol. in H 2 0. (Ouvrard, C. R. 110. 1333.) Glucinum sodium phosphate, GlNaP0 4 . SI. sol. in cold, easily sol. in hot acids. (Wallroth.) Insol. in acetic acid. Min. jBeryllonite. G10, 2Na 2 0, P 2 5 . Insol. in H 2 0. (Ouv- rard, C. R. 110. 1333.) Gold (Auric) sodium ^rophosphate (?), Au 4 (P 2 7 ) 3 , 2Na 4 P 2 7 + H 2 0. Sol. inH 2 0. (Persoz.) Iron (Ferrous) trimetaphosphate, Fe(P 3 9 ) 3 + 12H 2 0. Rather si. sol. in cold, more easily in hot H 2 0. After ignition sol. in HCl + Aq only after long boiling. (Lindbom. Acta Lund. 1873. 17.) Ferrous hexametaphosphsAe, Fe 3 P 6 18 . When freshly pptd. is sol. in H 2 0, and very sol. in least traces of acids, or Na 6 P 6 18 + Aq. (Liidert, Z. anorg. 5. 15.) Ferrous phosphate, basic, 7FeO, 2P 2 5 + 9H 2 0. Min. Ludlamite.. Sol. in dil. H 2 S0 4 or HCl + Aq. Decomp. by boiling KOH or NaOH + Aq. Ferrous phosphate, Fe 3 (P0 4 ) 2 . Insol. in H 2 ; sol. in acids. Sol. in 1000 pts. H 2 containing more than 1 vol. C0 2 . (Pierre.) Sol. in an excess of ferrous salts + Aq. Sol. in 560 pts. H 2 containing ^ pt. HC 2 H 3 2 . Sol. in 1666 pts. H 2 containing 150 pts. NH 4 C 2 H 3 2 . (Pierre, A. ch. (3) 36. 78.) Sol. in NH 4 salts + Aq. Sol. in NH 4 OH + Aq. Not pptd. in pres- ence of Na citrate. + H 2 0. (Debray, A. ch. (3) 61. 437.) + 8H 2 0. Min. Vimanite. Easily sol. in HC1 or HN0 3 + Aq. Boiling KOH + Aq dis- solves out phosphoric acid. Sol. in cold citric acid + Aq. (Bolton, C. N. 37. 14.) Ferrous hydrogen phosphate, FeHP0 4 + H 2 0. Ppt. (Debray, A. ch. (3) 61. 437.) Is impure Fe 3 (P0 4 ) 2 . (Erlenmeyer and Heinrichs, A. 194. 176.) Ferrous ^rahydrogen phosphate, FeH 4 (P0 4 ) 2 + H 2 0. Easily sol. in H 2 0. Not changed by alcohol. (Erlenmeyer and Heinrichs, A. 194. 176.) Ferrous ^yrophosphate. Ppt. Sol. in an excess of Na 4 P 2 7 or FeS0 4 + Aq. (Schwarzenberg, A. 65. 153.) Ferric mctophosphate, Fe 2 (P0 3 ) 6 or Fe(P0 3 ) 3 . Insol. in H 2 or dil. acids. Sol. in cone. H 2 S0 4 . (Maddrell, Phil. Mag. (3) 30. 322.) Ferric or^ophosphate, basic, 2Fe 2 3 , P 2 5 + a:H 2 0. Insol. in NH 4 citrate, sol. in NH 4 tartrate + Aq. (Wittstein.) + 3H 2 0. Min. Kraurite. Easily sol in HCl + Aq. + 4H 2 0. Ppt. (Millot, C. R. 82. 89.) + 5H 2 0. Min. Dufrenite. + 1 2H 2 0. Min. Cacoxene. Sol. in HC1 + Aq. + 18, or 24H 2 0. Min. Dclvauxitc. 5Fe 2 3 , 3P 2 5 + 14H 2 0. Min. Beraunite. Sol. in HCl + Aq. 3Fe 2 3 , 2P 2 5 + 8H 2 0. Min. Eleonorite. Sol. in HC1 + Aq. Ferric or^ophosphate, Fe 2 (P0 4 ) 2 + a;H 2 0, or + 4 or 8H 2 0. (Pptd. ferric phosphate.) Insol. in H 2 0. Sol. in 1500 pts. boiling H 2 O. (Bergmann, 1815.) Sol. in pure H 2 when all traces of soluble salts are absent. (Fresenius. ) Very si. sol. in, but decomp. by H 2 0. (Lacho- wicz, W. A. B. 101, 2b. 374.) Easily sol. in dil. mineral acids, excepting H 3 P0 4 + Aq. In- sol. in cold HC 2 H 3 2 + Aq. (Wittstein.) 100 ccm. cold H 2 containing 10 % HC 2 H 3 2 dis- 304 PHOSPHATE, FERRIC, ACID solve 0'007 g. salt. (Sestini, Gazz. ch. it. 5. 252.) When freshly pptd. easily sol. in H 2 S0 3 + Aq, or (NH 4 ) 2 S0 3 + Aq. (Berthier. ) Easily sol. in tartaric or citric acid + Aq, also in NH4 salts of those acids, and Na citrate + Aq. (Heydenreich, C. N. 4. 158.) See below. Sol. in 12,500 pts. H 2 sat. with C0 2 . (Pierre, A. ch. (3) 36. 78.) Insol. in NH 4 salts + Aq. ( Wittstein. ) Sol. in NH 4 OH + Aq in presence of Na 2 HP0 4 ; insol. in hot Na 2 HP0 4 + Aq ; sol. in (NH 4 ) 2 C0 3 + Aq (Berzelius). NH 4 OH, KOH, or NaOH + Aq dissolve out H 3 P0 4 . Sol. in ferric salts + Aq, even ferric acetate, but insol. in ferrous acetate + Aq. Partially sol. in large amt. of Na 2 C0 3 + Aq. Not pptd. in presence of Na citrate. (Spiller. ) Arth (Bull. Soc. (3) 2. 324) obtained a modification of Fe 2 (P0 4 ) 2 , insol. in HN0 3 + Aq, but sol. in hot cone. HCl + Aq. + 4H 2 0. Min. Strengite. Easily sol. in HCl + Aq; insol. inHN0 3 + Aq. + 5H 2 0. Diammonium citrate + Aq dis- solves 4 '8 % of the P 2 5 ; triammonium citrate, 5'8 % P 2 5 ; and with an excess of NH 4 OH, 21 '2 % P 2 5 is dissolved. (Erlemneyer, B. 14. 1253.) + 9H 2 0. Dissolves in 35 min. in diam- monium citrate + Aq (sp. gr. 1 '09) ; in 55 min. in triammonium citrate +Aq (sp. gr. Vq (i L citric acid) dis- % of the PA- 1-09) ; citric acid +Aq (| % citric acid) solves 17-5 % of the P,0 5 . (Erlenmeyer, I.e.) Ferric phosphate, acid, 8Fe 2 3 , 9P 2 5 + 3H 2 0. Insol. in H 2 0. (Riimpler, Z. anal. 12. 151.) 6Fe 2 3 , 7P 2 5 + 3H 2 0. 4Fe 2 3 , 5P 2 5 + 3H 2 0. 2Fe ? 3 , 3P 2 6 5 + 8H 2 0. Ppt. Decornp. by H 2 finally into Fe 2 (P0 4 ) 2 . (Erlenmeyer and Heinrich, A. 194. 176.) 8Fe 2 3 , 11P 2 5 + 9H 2 0. As above. (E. and H.) 4Fe 2 3 , 7P 2 5 + 9H 2 0. As above. (E. and H.) Fe 2 3 , 2P 2 5 + 8H 2 0. Insol. in H 2 or HC 2 H 3 2 + Aq; sol. in NH 4 citrate, alkali hydrates, or carbonates + Aq. (Winkler.) Slowly decomp. by H 2 0. (E. and H. ) + 10H 2 0. (Waine, C. N. 36. 132.) 2Fe 2 3 , 5P 2 5 + 17H 2 0. Fe 2 3 , 3P 2 5 + 6H 2 = FeH 6 (P0 4 ) 3 . Deli- quescent. Insol. in H 2 0, but decomp. into Fe 2 (P0 4 ) 2 . (E. and H.) + 4H 2 0. (Hautefeuille and Margottet, C. R. 106. 135.) Ferric ^?/rophosphate, Fe 4 (P 2 7 ) 3 . Two modifications. (a) Sol. in acids, Na 4 P 2 7 + Aq, FeCl 3 + Aq, NH 4 OH + Aq, and in (NH 4 ) 2 C0 3 + Aq. Insol. in acetic, sulphurous acid, or NH 4 C1 + Aq. Sol. in NH 4 citrate +Aq. (Schwarzen- berg, A. 65. 153.) (b) Insol. indil. acids, Na 4 P 2 7 + Aq, FeCl 3 + Aq. Sol. inNH 4 OH + Aq. (Gladstone, Chem. Soc. (2) 5. 435.) Insol. in acetone. (Krug and M'Elroy, J. Anal. Appl. Ch. 6. 184.) Ferroferric or^ophosphate, 2Fe 3 (P0 4 ) 2 , 3(Fe 2 3 , 2P 2 5 ) + 16H 2 0. Ppt. Sol. in HCl + Aq. (Rammelsberg. ) 4Fe 2 3 , 6FeO, 5P 2 5 + 40H 2 0. Sol. in 40 min. in diammonium citrate + Aq (sp. gr. = 1'09); triammonium citrate + Aq (sp. gr. 1-09) dissolves 557 % of the P 2 5 . (Erlen- meyer, B. 14. 1253.) Ferrous lithium phosphate, Li 3 P0 4 , Fe 3 (P0 4 ) 2 . Min. Triphylline. Easily sol. in acids ; not wholly decomp. by KOH + Aq. Ferrous manganous phosphate, Fe 3 (P0 4 ) 2 , Mn 3 (P0 4 ) 2 . Min. Triplite. Easily sol. in HCl + Aq. 5(Mn, Fe)0, 2P 2 5 + 5H 2 0. Min. Hureaulitc. Sol. in acids. Ferric manganous sodium phosphate, FeP0 4 , (Na 2 , Mn) 3 P0 4 + H 2 0. Min. (?). Ferrous manganous phosphate chloride, 3(Mn, Fe) 3 (P0 4 ) 2 , MnCl 2 . (Deville and Caron.) Ferrous manganous phosphate fluoride, (Mn, Fe) 3 (P0 4 ) 2 , (Mn, Fe)F 2 . Min. Triplite, Zwielcsite. Sol. in HCl + Aq. 3(Mn, Fe) 3 (P0 4 ) 2 , MnF 2 . (Deville and Caron, C. R. 47. 985.) Ferric potassium phosphate, 2Fe 2 3 , 3K 2 0, 3P 2 5 . Not attacked by boiling H 2 0. (Ouvrard, A. ch. (6) 16. 289.) Fe 2 3 , K 2 0, 2P 2 5 . Insol. in H 2 ; very si. attacked by acids. (Ouvrard.) Ferric silver wetophosphate, 2Fe 2 3 , '2Ag 2 0, 5P 2 5 . (Hautefeuille and Margottet, C. R. 96. 1142.) Ferric sodium phosphate, 2Fe 2 3 , 3Na 2 0, 3P 2 5 . Decomp. by H 2 0. (Ouvrard.) Ferric sodium ^7/rophosphate, Fe 4 (P 2 7 ) 3 , 2Na 4 P 2 7 + 7H 2 0. Slowly but completely sol. in H 2 0. Pptd. by alcohol. (Milck, J. B. 1865. 263.) Very sol. in H 2 0. (Fleitmann and Henne- berg.) + 5, and 6H 2 0. Easily sol. in H 2 0, especi- ally if warm. (Pahl, J. B. 1873. 229.) FeNaP 2 7 . Insol. in H 2 0, dil. HC1, or HN0 3 + Aq; si. sol. in cone. HCl + Aq; de- comp. by cone, hot H 2 S0 4 without solution. (Jorgensen, J. pr. (2) 16. 342.) Fe 4 (P 2 7 ) 3 , 5Na 4 P 2 7 + 7H 2 0. (Pahl, J. B. 1873. 229.) Ferric phosphate sulphate, 3Fe 2 (P0 4 ) 2 , 2Fe 2 (S0 4 ) 3 , 2Fe 2 6 H 6 . Min. Diadochite. Lanthanum wetaphosphate, La 2 (P0 3 ) 6 . Precipitate. (Frerichs and Smith.) La 2 3 , 5P 2 5 . Insol. in H 2 0, dil., or cone. acids. (Johnsson, B. 22. 976.) PHOSPHATE, LITHIUM 305 Lanthanum or^ophosphate, LaP0 4 . Precipitate. (Hermann.) Insol. in H 2 and acids. (Ouvrard, C. R. 107. 37.) Lanthanum hydrogen phosphate, La 2 H 3 (P0 4 )3. Precipitate. (Frerichs, B. 7. 799.) Existence is doubtful. (Cleve, B. 11. 910.) Lanthanum phosphate, acid, La 2 3 , 2P 2 5 . Precipitate. (Hermann.) Lanthanum j??/rophosphate, LaHP 2 7 + 3H 2 0. (Cleve.) La 2 H 6 (P 2 7 ) 3 . Precipitate. (Frerichs and Smith.) Does not exist. (Cleve.) Lanthanum potassium 07^/iophosphate, 2La 2 3 , 3K 2 0, 3P 2 5 = 2LaP0 4 , K 3 P0 4 . Insol. in H 2 0. (Ouvrard, C. R. 107. 37.) Lanthanum sodium or^ophosphate, La 2 3 , 3Na 2 0, 2P 2 5 . Insol. in H 2 0. (Ouvrard.) Lanthanum sodium ^7/rophosphate, LaNaP 2 7 . Insol. in acetic, and dil. cold mineral acids. Sol. in warm dil. acids. ( Wallroth. ) Lead c^wetaphosphate, PbP 2 6 . Ppt. Almost insol. in H 2 0. Sol. in HN0 3 + Aq. (Fleitmann, Pogg. 78. 253.) Lead trimetaphosph&ie, Pb 3 (P 3 9 ) 2 + 3H 2 0. Nearly insol. in H 2 0. Less sol. in H 2 than the corresponding Ag salt. (Fleitmann and Henneberg, A. 65. 304.) Most insol. of the r^metaphosphates. (Lind- bom, Acta Lund. 1873. 12.) Anhydrous salt is insol. in H 2 ; easily sol. inHN0 3 + Aq. (Lindbom.) Lead ^rawetophosphate, Pb 2 P 4 12 . Insol. in H 2 0. More easily decomp. by acids than the other insol. metaphosphates. Easily decomp. by alkali hydrosulphides + Aq in the cold. (Fleitmann, Pogg. 78. 353.) Lead hexametaphosph&te, Pb 3 P 6 18 . Nearly insol. in H 2 ; sol. in acids. (Liidert, Z. anorg. 5. 15.) Lead or^ophosphate, basic, 4PbO, P 2 5 . (Gerhardt, A. 72. 85.) Lead or^ophosphate, Pb 3 (P0 4 ) 2 . Insol. in H 2 ; sol. in HN0 3 + Aq. Insol. inHC 2 H 3 2 + Aq. Sol. in 782-9 pts. HC 2 H 3 2 + Aq containing 38'94 pts. pure HC 2 H 3 2 . (Bertrand, Monit. Scient. (3) 10. 477.) Sol. in KOH + Aq. Insol. in NH 4 OH + Aq. Lead hydrogen phosphate, PbHP0 4 . Insol. in H 2 0. Decomp. by H 2 S0 4 , or HC1 + Aq. Sol. in HN0 3 , or in KOH or NaOH + Aq. Insol. in HC 2 H 3 2 + Aq. Sol. in cold NH 4 Cl + Aq (Brett), from which it can be completely precipitated by a great excess of NH 4 OH + Aq. More sol. in NH 4 C 2 H 3 2 + Aq at 18 '8-25 than in pure H 2 0. (Wappen.) Sol. in sat. NaCl + Aq, but less than PbS0 4 . (Becquerel, C. R. 20. 1524.) Insol. in Pb salts + Aq. Not pptd. in presence of Na citrate (Spiller.) Lead ^t/rophosphate, Pb 2 P 2 7 + H 2 0. Insol. in H 2 0. Sol. in HN0 3 , or KOH + Aq. Insol. in NH 4 OH + Aq, HC 2 H 3 2 , or S0 2 + Aq. (Schwarzenberg, A. 65. 133.) Sol. in Na 4 P 2 7 + Aq. (Stromeyer. ) Lead potassium phosphate, PbKP0 4 . Decomp. by hot H 2 0. (Ouvrard, C. R. 110. 1333.) Lead sodium phosphate, PbNaP0 4 . Very sol. in dil. acids. (Ouvrard, C. R. 110. 1333.) lOPbO, 8Na 2 0, 9P 2 5 . (Ouvrard.) Lead sodium j07/rophosphate, PbNa 2 P 2 7 . Insol. in hot H 2 0. (Gerhardt, A. ch. (3) 22. 506.) Lead phosphate chloride, 2PbHP0 4 , PbCl 2 . Insol. in boiling H 2 ; sol. in dil. HN0 3 + Aq. (Gerhardt, A. ch. (3) 22. 505.) 2Pb 3 (P0 4 ) 2 , PbCl 2 . Ppt. (Heintz, Pogg. 73. 119.) 3Pb 3 (P0 4 ) 2 , PbCl 2 . Min. PyromorpUte. Sol. inHN0 3 , and KOH + Aq. SI. sol. in cold citric acid + Aq. (Bolton, C. N. 37. 14.) + H 2 0. Insol. in H 2 O. Sol. in dil. HN0 3 + Aq. (Heintz.) Lithium or^ophosphate, Li 3 P0 4 . Very slightly sol. in H 2 0. Sol. in 2539 pts. pure H 2 and 3920 pts. ammoniacal H 2 ; much more readily in H 2 containing NH 4 salts. Easily sol. in HC1 + Aq or HN0 3 + Aq. (Mayer, A. 98. 193.) Easily sol. in carbonic acid water. (Troost.) Sol. in dil. acids or acetic acid, (de Schulten, Bull. Soc. (3) 1. 479.) Lithium hydrogen phosphate, Li 2 HP0 4 . Nearly insol. in H 2 0. (Gmelin.) Sol. in 833 pts. H 2 at 12. (Rammelsberg.) Li 5 H(P0 4 ) 2 + H 2 0. Sol. in 200 pts. H 2 0. (Rammelsberg. ) Lithium efo'hydrogen phosphate, LiH 2 P0 4 . Deliquescent, and very sol. in H 2 0. (Ram- melsberg. ) Heptaliihium dibydrogen phosphate, Li 7 H 2 (P0 4 ) 3 . + 1H 2 0, or 2H 2 0. Sol. in H 2 0. (Rammels- Lithium pentahydrogen phosphate, LiH 5 (P0 4 ) 2 + H 2 0. Deliquescent, and sol. in H 2 0. Lithium ^?/rophosphate, Li 4 P 2 7 + 2H 2 0. (Rammelsberg, B. A. B. 1883. 21.) 306 PHOSPHATE, LITHIUM MANGANOUS Lithium manganous phosphate, Li 3 P0 4 , Mn 3 (P0 4 ) 2 . Min. LitMopMlite. Lithium sodium phosphate, 3Li 2 0, Na 2 0, P 2 5 - Insol. in H 2 0. Sol. in dil. acids. (Ouvrard, C. R. 110. 1333.) 2Li 2 0, Na 2 0, 2P 2 5 . As above. (Ouvrard.) Magnesium metaphosphate, Mg(P0 3 ) 2 . Insol. in H 2 or dil. acids, but sol. in H 2 S0 4 + Aq. (Maddrell, A. 61. 62.) Not decomp. by very long digestion with alkali carbonates, or orthophosphates + Aq. (Fleitmann.) Magnesium dimetaphosphsAe, Mg 2 (P 2 6 ) 2 + 9H 2 0. Insol. in H 2 ; decomp. by acids. (Fleit- mann, Pogg. 78. 259.) Magnesium tfnwetaphosphate, Mg 3 (P 3 9 ) 2 . SI. sol. in cold H 2 0, more easily in hot H 2 0. When ignited, insol. in boiling HCl + Aq. (Lindbom. ) Cryst. 'with 12, or 15H 2 0. Magnesium or^ophosphate, Mg 3 (P0 4 ) 2 , and + 5, or 7H 2 0. 1 litre H 2 dissolves O'l g. ignited Mg 3 (P0 4 ) 2 in 7 days, but 0'205 g. if freshly precipitated. (Volcker, J. B. 1862. 131.) 1 1. H 2 with 2 g. NaCl dissolves 75 '8 mg. ; 1 1. H 2 with 3 g. NaN0 3 dissolves 61 '9 mg. Mg 3 (P0 4 ) 2 . (Liebig, A. 106. 185.) Easily sol. in acids, except in acetic acid. (Schaffner, A. 50. 145.) Easily sol. in H 2 in presence of alkali salts. + 6|H 2 0. Sol. in 30 min. in diammonium citrate + Aq (sp. gr. = 1 '09) ; triammonium citrate + Aq (sp. gr. = 1'09) dissolves 37 '5 % of the P 2 5 . (Erlenmeyer, B. 14. 1253.) + 20H 2 0. Sol. in 10 min. in diammonium citrate + Aq (sp. gr. =1*09); triammonium citrate + Aq (sp. gr. = 1'09) dissolves 23 '2 % of the P 2 5 ; sol. in 15 min. in | % citric acid + Aq. (Erlenmeyer, I.e.) Magnesium hydrogen phosphate, MgHP0 4 + 7H 2 0. Sol. in 322 pts. cold H 2 in several days. If heated to 40 becomes milky, and separates a precipitate out at 100 of same salt, so that solution at 100 contains only 1 pt. salt in 498 pts. H 2 0. Much more sol. in H 2 containing traces of acids, even dil. oxalic or acetic acids, (Graham, Phil. Mag. Ann. 2. 20.) Easily sol. in H 2 S0 3 + Aq. (Gerland, J. pr. (2) 4. 127.) Sol. in aqueous solution of Mg salts, but insol. in Na 2 HP0 4 + Aq. (Rose.) Sol. in sodium citrate + Aq. (Spiller. ) When freshly precipitated it is sol. in hot NH 4 Cl + Aq, and NH 4 OH + Aq does not completely reprecipitate it; less sol. in NH 4 N0 3 + Aq. (Brett, Phil. Mag. (3) 10. 96.) Insol. in alcohol. (Ber- . ) (Debray.) + H 2 0. Easily sol. in dil. acids. (de Schulten, C. R. 100. 263.) + 3H 2 0. SI. sol. in H 2 0, easily in acids. (Stoklasa, Z. anorg. 3. 67.) + 4H 2 0. (Bergmann.) + 6H 2 0. (Debray.) Magnesium tetrahy&rogen phosphate, MgH 4 (P0 4 ) 2 . ' Not hygroscopic. Sol. in 5 pts. H 2 with- out decomp. (Stoklasa, Z. anorg. 3. 67.) + 2H 2 0. Not hygroscopic. Sol. in H 2 without decomp. (Stoklasa, Z. anorg. 1. 307.) Decomp. by alcohol into MgHP0 4 + 3H 2 0. Magnesium pyrophosph&ie, Mg 2 P 2 7 . Nearly insol. in H 2 ; readily sol. in HC1 orHN0 3 + Aq. (Fresenius.) + 3H 2 0. SI. sol. in H 2 0, easily in HC1 or HN0 3 + Aq ; sol. in H 2 S0 3 + Aq, and Na 4 P 2 7 + Aq. (Schwarzenberg. ) Sol. in MgS0 4 + Aq, and (NH 4 ) 2 C0 3 + Aq. Magnesium ifc^aphosphate, Mg 3 P 4 13 . Insol. in H 2 0. (Fleitmann and Henneberg, A. 65. 331.) Magnesium potassium phosphate, MgKP0 4 . SI. sol. in H 2 0. Decomp. by H 2 0. Easily sol. in acids. + 6H 2 0. 2MgO, K 2 0, 3P 2 5 . Insol. in H 2 ; sol. in dil. HCl + Aq. (Ouvrard, C. R. 106. 1729.) Mg 2 HK(P0 4 ) 2 + 15H 2 0. (Haushofer.) Magnesium sodium metaphosphate, 3MgO, Na 2 0, 4P 2 5 . Insol. in H 2 or H 3 P0 4 + Aq. Scarcely sol. in HC1 + Aq, or aqua regia. Not decomp. by j (NH 4 ) 2 C0 3 + Aq. Sol. in cone. H 2 S0 4 . (Mad- drell, A. 61. 53.) Magnesium sodium ^'wetaphosphate, MgNa 4 (P 3 9 ) 2 + 5H 2 0. SI. sol. in H 2 0. After ignition is insol. in H 2 0. (Lindbom.) Magnesium sodium phosphate, lOMgO, 8Na 2 0, 9PA. Insol. in H 2 ; easily sol. in dil. acids. (Ouvrard, C. R. 106. 1729.) Magnesium sodium or^ophosphate, MgNaP0 4 . Insol. in H 2 0. (Rose.) + 9H 2 0. (Schoecker and Violet, A. 140. 232.) MgO, 2Na 2 0, P 2 5 . Insol. in H 2 0. (Ouvrard. ) 3MgO, 3Na 2 0, 2P 2 5 . Insol. in H 2 0. (Ouvrard. ) Magnesium sodium ^rophosphate, basic (?). Precipitate ; si. sol. in H 2 0. Easily in HCl + Aq, HN0 3 + Aq, and Na 4 P 2 7 + Aq. (Baer, Pogg. 75. 168.) Sol. in (NH 4 ) 2 C0 3 + Aq, and in MgS0 4 + Aq. Insol. in alcohol. Magnesium phosphate chloride, Mg 3 (P0 4 ) 2 , MgCl 2 . (Deville and Caron, A. ch. (3) 67. 455.) PHOSPHATE, MANGA NOUS SODIUM 307 Magnesium p^/rophosphate nitrogen cfo'oxide, Mg 2 P 2 7 , H 2 0, N0 2 . Scarcely sol. in water. (Luck, Z. anal. 13. 255.) Magnesium phosphate fluoride, Mg 3 (P0 4 ) 2 , MgF 2 . Min. Wagnerite. Slowly sol. in hot HN0 3 , and H 2 S0 4 . Magnesium phosphate calcium fluoride, 2Mg 3 (P0 4 ) 2 , CaF 2 . Min. Kjerulfite. Manganous dimetaphosph&ie, Mn 2 (P 2 6 ) 2 . Anhydrous. Insol. in H 2 and dil. acids. (Fleitmann.) Sol. in cone. H 2 S0 4 . (Mad- drell. ) Scarcely attacked by warm Na 2 S + Aq, and not much more by (NH 4 ) 2 S + Aq. De- comp, by Na 2 C0 3 + Aq. + 8H 2 0. Insol. ' (Fleitmann, Pogg. 78. 257.) Manganous n'metaphosphate, Mn 3 (P 3 9 ) 2 + 11H 2 0. Difficultly sol. in cold or warm H 2 0. More easily sol. in cold, very easily in warm HC1 + Aq. When ignited, is insol. in acids, even aqua regia. (Lindbom. ) Manganous hexametaphospliaite. Sol. in sodium hexametaphosphate + Aq. (Kose, Pogg. 76. 4.) Mn 3 P 6 18 . Nearly insol. in H 2 ; easily sol. in acids. (Liidert, Z. anorg. 5. 15.) Manganic wetophosphate, Mn(P0 3 ) 3 . Insol. in H 2 or acids ; decomp. by alkalies. (Schjerning, J. pr. (2) 45. 515.) + H 2 0. Insol. in H 2 or acids, except HC1 + Aq. SI. decomp. by boiling with H 2 S0 4 . (Hermann, Pogg. 74. 303.) Manganous or^ophosphate, Mn 3 (P0 4 ) 2 . + H 2 0. (Debray.) + 3H 2 0. Sol. in 20 min. in diammonium citrate + Aq (sp. gr. = 1 '09) ; triammonium citrate + Aq (sp. gr. = l'09) dissolves 30 '2 % of the P 2 5 . (Erlenmeyer, B. 14. 1253.) + 4|-5JH 2 0. Efflorescent. (Erlenmeyer andHeinrich, A. 190. 208.) + 7H 2 0. Very si. sol. in H 2 0. (Berzelius.) Easily sol. in mineral acids ; sol. in HC 2 H 3 2 + Aq. Easily sol. in S0 2 + Aq. (Gerland, J. pr. (2) 4. 97.) Somewhat sol. in boiling (NH 4 ) 2 C0 3 + Aq, but deposited on cooling. (Berzelius. ) Partly sol. in cold NH 4 C1, or NH 4 N0 3 + Aq. (Brett. \ Sol. in cold or hot solutions of ammonium sulphate or succinate. (Wittstein.) SI. sol. in Mn salts + Aq. (Rose, Pogg. 76. 25.) Insol. in alcohol. Sol. in 10 min. in diammonium citrate + Aq (sp. gr. = 1 '09) ; triammonium citrate + Aq (sp. gr. = l-09) dissolves 53 % of the P 2 5 . (Erlenmeyer, B. 14. 1253.) Manganous cfo'hydrogen or^ophosphate, MnHP0 4 + 3H 2 0. SI. sol. in H 2 0. Solution decomp. at 100. (Debray.) Slowly decomp. by cold H 2 into Mn 3 (P0 4 ) 2 . (Erlenmeyer and Heinrich, A. 190. 208.) Easily sol. in H 2 S0 3 + Aq. (Gerland.) SI. sol. in HC 2 H 3 2 , easily in cone, mineral acids. (Heintz.) Sol. in (NH 4 ) 2 C0 3 + Aq, from which it is repptd. on boiling. Decomp. by boiling KOH + Aq. Insol. in alcohol. Manganous ^rahydrogen phosphate, MnH 4 (P0 4 ) 2 + 2H 2 0. Deliquescent. Easily sol. in ' H 2 0, with decomp. to MnHP0 4 . (Erlenmeyer and Hein- rich, A. 190. 208.) Not decomp. by H 2 0. (Otto, C. C. 1887. 1563.) Alcohol dissolves out H 3 P0 4 . (Heintz.) Pewtomanganous ^hydrogen phosphate, Mn 5 H 2 (P0 4 ) 4 + 4H 2 0. Not decomp. by boiling H 2 0. (Erlenmeyer and Heinrich, A. 190. 208.) Manganic or^ophosphate, basic, Mn 2 P 3 9 + H 2 0. SI. sol. in H 2 0. Manganic or^ophosphate, MnP0 4 + H 2 0. Sol. in acids. (Christensen, J. pr. (2) 28. 1.) Manganous ^rophosphate, Mn 2 P 2 7 . Anhydrous. (Lewis, Sill. Am. J. (3) 14. 281.) + H 2 0. + 3H 2 0. Insol. in H 2 0. Insol. in MnS0 4 + Aq, but sol. in Na 4 P 2 7 + Aq. (Rose.) Difficultly sol. in Na 4 P 2 7 + Aq, but easily sol. in K 4 P 2 7 + Aq. (Pahl.) Decomp. by KOH + Aq. Sol. in H 2 S0 3 + Aq. (Schwarzen- berg.) Manganous hydrogen pyrophosph&ie, MnH 2 P 2 7 + 4H 2 0. Sol. in H 2 0. (Pahl.) Manganic pyrophosph&ie, MnHP 2 7 . Insol. in H 2 ; very si. attacked by dil. HC1 + Aq, easily by cone. Sol. in cone. H 2 S0 4 . (Schjerning, J. pr. (2) 45. 515.) Manganous potassium phosphate, MnK 2 P 2 7 . Insol. in H 2 ; sol. in dil. acids. (Ouvrard, C. R. 106. 1729.) + 8H 2 0. SI. sol. in H 2 0. (Pahl.) Mn 2 P 2 7 , 2K 4 P 2 7 + 10H 2 0. Difficultly sol. inH 2 0. (Pahl.) MnKP0 4 . Insol. in H 2 ; easily sol. in dil. acids. (Ouvrard. ) Manganic potassium j9?/rophosphate, MnKP 2 7 . Insol. in H 2 0. Decomp. by acids and bases. (Schjerning.) Manganous sodium Sol. in H 2 0. (Fleitmann and Henneberg.) MnNa(P0 3 ) 3 . Insol. in H 2 0, dil. acids, or alkalies. (Schjerning, J. pr. (2) 45. 515.) 308 PHOSPHATE, MANGANOUS SODIUM Manganous sodium phosphate, MnNaP0 4 . Insol. in H 2 0. (Ouvrard, C. R. 106. 1729.) MnO, 2Na20, P 2 5 . As above. Manganous sodium _p?/rophosphate, MnNa 2 P 2 7 . Insol. in H 2 ; easily sol. in dil. acids. (Wallroth.) + 4H 2 0. Very si. sol. in H 2 0. (Pahl.) 3Mn 2 P 2 7 , 2Na 4 P 2 7 + 24H 2 0. Very si. sol. in H 2 0. (Pahl.) Manganic sodium jp^/rophosphate, MnNaP 2 7 + H 2 0. (Christensen, J. pr. (2) 28. 1.) Manganous phosphate chloride, Mn 3 (P0 4 ) 2 , MnCLj. Insol. in H 2 0. (Deville and Caron, A. ch. (3) 67. 459.) 3Mn 3 (P0 4 ) 2 , MnCl 2 . Insol. in H 2 0. (Deville and Caron.) Mercurous hexametaphosp'ha.te (?). Ppt. Sol. in sodium hexametaphosphate + Aq. (Rose.) Hg 6 P 6 18 . Insol. in H 2 ; very si. sol. in acids. (Liidert, Z. anorg. 5. 15.) Mercuric /teasowietaphosphate, Hg 3 P 6 18 . Moderately sol. in H 2 when freshly pptd. More sol. in acids than the mercurous salt. (Liidert.) Mercurous or^ophosphate, (Hg 3 ) 2 (P0 4 ) 2 . Ppt. Decomp. by boiling with H 2 0. (Ger- hardt.) Sol. in HN0 3 + Aq. Sol. in Hg 2 (N0 3 ) 2 + Aq. Insol. in H 3 P0 4 + Aq. Mercuric or^ophosphate, Hg 3 (P0 4 ) 2 . Insol. in H 2 0. SI. sol. in hot H 2 0, crystal- lising out on cooling. (Haack, A. 262. 185.) Slowly sol. in cold dil., quickly in hot dil. or cold cone. HC1 + Aq. Less easily sol. in HN0 3 + Aq. Sol. in H 3 P0 4 + Aq. (Berzelius.) Insol. in H 3 P0 4 + Aq. (Haack.) Decomp. by NaCl + Aq into insol. HgCl 2 , 3HgO, but sol. in NaCl + Aq, containing HN0 3 . (Haack. ) Sol. in 6 pts. NH 4 C1 in aqueous solution by heating. (Trommsdorff.) Sol. in (NH 4 ) 2 C0 3 , (NH 4 ) 2 S0 4 , or NH 4 N0 3 + Aq. (Wittstein.) Insol. in alcohol. Mercuromercuric or^ophosphate, 7Hg 2 0, 14HgO, 2P 2 5 + 20H 2 0. (Brooks, Pogg. 66. 63.) Mercurous >7/rophosphate, Hg 4 P 2 7 + H 2 0. Sol. in Na 4 P 2 7 + Aq, when recently pptd. Insol. in Na 4 P 2 7 + Aq, when heated to 100. Sol. in HN0 3 + Aq. Decomp. by HCl + Aq. (Schwarzenberg, A. 65. 133.) Mercuric >t/rophosphate, Hg 2 P 2 7 . Sol. in acids; insol. in Na 4 P 2 7 + Aq, after being heated to 100. Sol. in NaCl + Aq ; quickly decomp. by NaOH + Aq, and Na 2 HP0 4 + Aq. Sol. in 6 pts. NH 4 C1 + Aq. (Trommsdorff.) Sol. in NH 4 N0 3 ,(NH 4 ) 2 S0 4 , and (NH 4 ) 2 C0 3 + Aq ; also in KI + Aq. Molybdenum phosphate, Mo 2 (P0 4 ) 2 (?). Insol. in H 2 O. Sol. in MoCl 2 + Aq. Nickel <^wetaphosphate, NiP 2 6 . Insol. in H 2 or dil. acids. Sol. in cone. H 2 S0 4 . Not decomp. by boiling alkali car- bonates or sulphides +Aq. (Maddrell, A. 61. 58.) Nickel or^ophosphate, Ni 3 (P0 4 ) 2 + 7H 2 0. Insol. in H 2 0. Sol. in acids. (Rammels- berg, Pogg. 68. 383.) Sol. in Ni salts + Aq. (Rose, Pogg. 76. 25.) Insol. inNa 2 HP0 4 + Aq. (Tupputi, 1811.) Very si. sol. in hot (NH 4 ) 2 HP0 4 + Aq. Nickel ^i/rophosphate, Ni 2 P 2 7 + 6H 2 0. Insol. in H 2 ; sol. in mineral acids, Na 4 P 2 7 + Aq, and NH 4 OH + Aq. Not pptd. from Ni 2 P 2 7 + Aq by alcohol. (Schwarzenberg, A. 65. 158.) Nickel potassium phosphate, NiKP0 4 . Insol. in H 2 ; sol. in dil. acids. (Ouvrard, C. R. 106. 1729.) 3NiO, 3K 2 0, 2P 2 5 . As above. Nickel sodium ?>ietophosphate, 3Ni(P0 3 ) 2 , NaP0 3 . Insol. in H 2 and dil. acids. Sol. in cone. H 2 S0 4 . (Maddrell, A. 61.56.) NiNa 4 (P0 3 ) 3 + 8H 2 0. Easily sol. in H 2 0. (Lindbom.) Nickel sodium or^ophosphate, NiNaP0 4 + 7H 2 0. Ppt. (Debray, C. R. 59. 40. ) NiO, 2Na 2 0, P 2 5 . Insol. in H 2 0. Easily sol. in dil. acids. (Ouvrard.) Nickel sodium >2/rophosphate, Ni 10 Nai 6 (P 2 7 ) 9 . Insol. in H 2 0. Moderately sol. in acids. (Wallroth.) Osmium phosphate (?). SI. sol. in H 2 0; sol. in HN0 3 + Aq. (Ber- zelius. ) Palladium or^ophosphate (?). Ppt. Phosphorous phosphate, 4P 4 0, 3P 2 5 (?). Decomp. spontaneously. Sol. in H 2 and alcohol when fresh ; insol. in ether, (le Verrier, A. 27. 167 ; Reinitzer, B. 14. 1884.) Potassium monometaphosphsite, KP0 3 . Nearly insol. in H 2 ; sol. in weak acids, even in acetic acid. (Maddrell, A. 61. 62.) Insol. in H 2 and weak acids. (Fleitmann, Pogg. 78. 250.) Potassium cfo'metaphosphate, K 2 P 2 6 + H 2 0. Sol. in 1'2 pts. cold H 2 0, but not more inl hot H 2 0. (Fleitmann, Pogg. 78. 250.) Potassium trimetaphospha.ie, K 3 P 3 9 . Very sol. in cold H 2 before it is fused. (Lindbom, Acta Lund. 1873. 14.) PHOSPHATE, SILVER 309 Potassium or^ophosphate, K 3 P0 4 . Not deliquescent. Very sol. in H 2 0. (Graham, Pogg. 32. 47.) Very si. sol. in cold, easily in hot H 2 0. (Darracq.) Insol. in alcohol. Potassium hydrogen phosphate, K 2 HP0 4 . Deliquescent. Very sol. in H 2 and alcohol. Potassium c^hydrogen phosphate, KH 2 P0 4 . Deliquescent. Easily sol. in H 2 0. (Vau- quelin, A. ch. 74. 96.) Sol. in 20 % KC 2 H 3 2 + Aq. (Stromeyer.) Sp. gr. of KH 2 P0 4 + Aq at 18 containing : 5 10 15 % KH 2 P0 4 . 1-0341 1-0691 1-1092 (Kohlrausch, W. Ann. 1879. 1.) Melts in crystal H 2 at 96. (Tilden, Chem. Soc. 45. 409.) Insol. in alcohol. Potassium j^rophosphate, K 4 P 2 7 + 3H 2 0. Very deliquescent, and sol. in H 2 0. Precipitated from aqueous solution by al- cohol. (Schwarzenberg, A. 65. 136.) Potassium hydrogen^T/rophosphate, K 2 H 2 P 2 7 . Very deliquescent, and sol. in H 2 0. Insol. in alcohol. (Schwarzenberg.) Potassium sodium dzmetaphosphate, KNaP 2 6 + H 2 0. Sol. in 24 pts. H 2 0. (Fleitmann, Pogg. 78. 339.) Potassium sodium phosphate, KNaHP0 4 + 7H 2 0. Not efflorescent. Sol. in H 2 0. Tnpotassium ^'sodium hexahydrogen phos- phate, H 6 Na 3 K 3 (P0 4 ) 4 + 22H 2 0. Sol. in H 2 0. (Filhol and Senderens, 0. R. 93. 388.) Potassium sodium j^rophosphate, K 2 Na2P 2 7 + 12H 2 0. Sol. in H 2 0. (Schwarzenberg, A. 65. 140.) Potassium strontium phosphate, KSrP0 4 . Insol. in H 2 ; sol. in dil. acids. (Grandeau, A. ch. (6) 8. 193.) Potassium strontium ^^/rophosphate, Insol. in H 2 ; sol. in dil. acids. (Ouvrard, C. R. 106. 1599.) Potassium thorium phosphate, K 2 0, 4Th0 2 , SPA- Insol. in HC1, HN0 3 , or aqua regia. (Troost and Ouvrard, C. R. 102. 1422.) KaO, Th0 2 , P 2 5 . Insol. in H 2 ; sol. in HN0 3 + Aq. (Troost and Ouvrard. ) 6K 2 0, 3Th0 2 , 4P 2 5 . Sol. in acids. (Troost and Ouvrard.) Potassium stannic phosphate, K 2 0, 4Sn0 2 , 3P 2 5 . (Ouvrard, C. R. 111. 177.) ILjO, 2Sn0 2 , P 2 5 . (Ouvrard.) Potassium titanium phosphate, K^O, 4Ti0 2 , 3P 2 5 . (Ouvrard, C. R. 111. 177.) KP, 2Ti0 2 , P 2 5 . (Ouvrard.) Potassium uranyl phosphate, K 2 0, U0 3 , P 2 5 . (Ouvrard, C. R. 110. 1333.) 2K 2 0, U0 3 , P 2 5 . (Ouvrard.) K 2 0, 2U0 3 , P 2 5 . (Ouvrard.) Potassium vanadium phosphate, 2(V0 2 )H 2 P0 4 + K 2 0, V 2 5 + 5H 2 0, and 2K2HP0 4 , 5K 2 0, 12V 2 5 . See Phosphovanadate, potassium. Potassium yttrium phosphate, 3K 2 0, Y 2 3 , 2P 2 5 . K 2 0, Y 2 3 , 2P 2 5 . 3K 2 0, 5Y 2 3 , 6P 2 5 . (Duboin, C. R. 107. 622.) Potassium zinc phosphate, KZnP0 4 . Insol. in H 2 0. Sol. in dil. acids. (Ouvrard, C. R. 106. 1729.) K 2 ZnP 2 7 . As above. Potassium zirconium phosphate, K 2 0, 4Zr0 2 , 3P 2 5 . Insol. in acids or aqua regia. (Troost and Ouvrard, C. R. 102. 1422.) K 2 0, Zr0 2 , P 2 5 . Insol. in H 2 0, HN0 3 , HC1, or aqua regia. Sol. in hot cone. H 2 S0 4 . (Troost and Ouvrard. ) Potassium hydrogen phosphate sulphate, KH 2 P0 4 , KHS0 4 . Decomp. by H 2 and alcohol. ( Jacquelain. ) Rhodium phosphate, basic, 4Rh 2 3 , 3P 2 5 + 32H 2 0. Insol. in H 2 or acids. (Claus. ) Rh 2 3 , P 2 5 + 6H 2 = RhP0 4 + 3H 2 0. Sol. inH 2 0. (Claus.) Samarium anhydrometap'hosp'ha.te, Srn 2 3 , 5P 2 5 . Insol. in H 2 or HN0 3 + Aq. (Cleve. ) Samarium or^ophosphate, SmP0 4 . Scarcely attacked by boiling HN0 3 + Aq. (Cleve.) + 2H 2 0. Samarium ^t/rophosphate, SmHP 2 7 + lp! 2 0. (Cleve.) Silicon phosphate. See Silicophosphoric acid. Silver f^metaphosphate, Ag 2 P 2 6 . Very si. sol. in H 2 0. (Fleitmanu, Pogg. 78. 253.) Sol. in cold aniline metaphosphate + Aq. (Nicholson. ) Silver ^Hmetaphosphate, Ag 3 P 3 9 . Sol. in 60 pts. cold H 2 0. Can be crystal- lised from cone. HN0 3 + Aq. (Fleitmann and Henneberg. ) + H 2 0. (Lindbom.) 310 PHOSPHATE, SILVER Silver hexametaphosph&te, Ag 6 P 6 18 . Insol. in H 2 0. Sol. in HN0 3 or NH 4 OH + Aq, and in a large excess of sodium hexa- metaphosphate + Aq. ( Rose. ) Easily decomp. by Na 2 S + Aq. Decomp. gradually by hot H 2 into Ag 6 P 4 13 . When freshly pptd. easily sol. in H 2 0. Easily sol. in dil. acids. (Liidert, Z. anorg. 5. 15.) Silver or^ophosphate, Ag 3 P0 4 . Insol. in H 2 0. Sol. in H 3 P0 4 , HN0 3 , or HC 2 H 3 2 + Aq, in NH 4 OH or (NH 4 ) 2 C0 3 + Aq. Less easily in ammonium nitrate or succinate, and incompletely in (NH 4 ) 2 S0 4 + Aq. (Las- saigne, J. Pharm. (3) 16. 289.) Insol. in Na 2 HP0 4 + Aq. (Stromeyer. ) Not pptd. in presence of Na citrate. (Spiller.) If 1 mol. Ag 3 P0 4 is boiled with 1 mol. Na 2 C0 3 , 44 % of it is decomp. (Malaguti.) Readily sol. in soluble hyposulphites + Aq with decomp. (Herschel.) Insol. in Ag salts + Aq. (Rose.) Silver hydrogen phosphate, Ag 2 HP0 4 . Decomp. by H 2 or alcohol into H 3 P0 4 and Ag 3 P0 4 . (Joly, C. R. 103. 1071.) Sol. in H 3 P0 4 + Aq ; insol. in ether. (Schwarzenberg, A. 65. 162.) Silver ^rophosphate, Ag 4 P 2 7 . Insol. in hot or cold H 2 0. Sol. in cold HN0 3 + Aq without decomp. Decomp. by hot HN0 3 or H 2 S0 4 into orthophosphate. Decomp. by HCl + Aq into AgCl and H 3 P0 4 . Insol. in HC 2 H 3 2 + Aq. Sol. in NH 4 OH + Aq without decomp. (Stromeyer, Schw. J. 58. 126.) Insol. in Na 4 P 2 7 + Aq. Yery si. sol. in AgN0 3 + Aq. (Schwarzenberg, A. 65. 161.) Not completely insol. in Na 4 P 2 7 + Aq. (Rose.) Silver hydrogen ^rophosphate, Ag 2 H 2 P 2 7 . Decomp. by H 2 into Ag 4 P 2 7 . (Hurtzig and Geuther, A. 111. 160.) Silver hydrogen pyrophosph&ie raetaphosphate, 2Ag 2 HP 2 7 , HP0 3 . Decomp. by H 2 0. Easily sol. in HN0 3 + Aq. (H. andG.) Silver ^raphosphate, 6Ag 2 0, 4P 2 5 = Ag 6 P 4 13 . Insol. in, but gradually decomp. by boiling H 2 0. (Berzelius.) Sol. in large excess of the corresponding Na salt + Aq. Silver efc&aphosphate, Ag 12 P 10 31 . Easily sol. in sodium dekaphosphate -f Aq. (Fleitmann and Henneberg, A. 65. 330. ) Silver sodium c^metaphosphate, AgNaP 2 6 . Sol. in H 2 0. (Fleitmann and Henneberg, Pogg. 65. 310.) Silver sodium ^?/rophosphate, 6Ag 4 P 2 7 , Na 4 P 2 7 + 4H 2 0. Not completely sol. in Na 4 P 2 7 + Aq. Easily sol. in HN0 3 + Aq. (Baer, Pogg. 75. 152.) Easily sol. in H 2 0. (Stromeyer. ) Silver phosphate ammonia, Ag 3 P0 4 , 4NH 3 . (Widmann, B. 17. 2284.) Sodium moTiometaphosphate, NaP0 3 . Insol. in H 2 0. Sol. in dil. and cone, acids. (Maddrell, A. 61. 63.) Insol. in acids. (Graham. ) Gradually decomp. by alkalies. Sodium efaraetaphosphate, Na 2 P 2 6 + 2H 2 0. Deliquescent. Sol. in 7 '2 pts. of cold or hot H 2 0. Very sol. in cone. HCl + Aq. Sol. in NaOH + Aq. Insol. in strong, very si. sol. in dilute alcohol. (Fleitmann, Pogg. 78. 246.) Sodium ^metophosphate, Na 3 P 3 9 + 6H 2 0. Sol. in 4 '5 pts. cold H 2 0. Insol. in strong, very si. sol. in dil. alcohol. (Fleitmann and Henneberg, A. 65. 307.) Decomp. by boiling H 2 0. (Lindbom.) Sodium ^rametaphosphate, Na 4 P 4 12 . Sol. in H 2 ; cryst. with about 4H 2 0. sol. in alcohol than in H 2 0. (Fleitmann, Pogg. 78. 854.) Sodium hexametaphosp}ia.ie, Na 6 P 6 18 . Deliquescent. Very sol. in H 2 0. Insol. in alcohol. (Graham, Pogg. 32. 56.) Sodium or^ophosphate, Na 3 P0 4 + 12H 2 0. Not deliquescent in dry air. 100 pts. H 2 O dissolve 19 '6 pts. crystals at 15 '5. (Graham.) 100 pts. H 2 dissolve 28 '3 pts. Na 3 P0 4 + 12H 2 at 15. (Schiff.) Melts in crystal water at 76 '6. (Graham.) Sp. gr. of Na 3 P0 4 + Aq at 15. % = %Na 3 P0 4 + 12H 2 0. % Sp. gr. % Sp. gr. % Sp. gr. 1 1-0043 9 1-0399 17 1-0778 2 1-0086 10 1-0455 18 1-0827 3 1-0130 11 1-0492 19 1-0876 4 1-0174 12 1-0539 20 1-0925 5 1-0218 13 1-0586 21 1-0975 6 1-0263 14 1-0633 22 1-1025 7 1-0308 15 1-0681 23 1-1076 8 1-0353 16 1-0729 24 1-1127 (Schiff, calculated by Gerlach, Z. anal. 8. 280.) + 10H 2 0. Sodium hydrogen phosphate, Na 2 HP0 4 . Sol. in H 2 with evolution of heat. 100 pts. H 2 O dissolve at t : t $ t gw t if & BB f * 5 & 1-55 40 30-88 80 81-29 10 4-10 50 43-31 90 95-02 20 11-08 60 55-29 100 108-20 30 19-95 70 68-72 106-2 114-43 (Poggiale, J. Pharm. (3) 44. 273.) 100 pts. H 2 O at 13 dissolve 3'4 pts. Na 2 HP0 4 (Ferein, Ph. Viertelj. 7. 244) fat 15, 5'9 pts. (Neese) ; at 16, 6'3 PHOSPHATE, SODIUM HYDROGEN 311 pts. (Mulder) ; at 16, 8-4 pts. (Miiller, J. pr. 95. 52) ; at 20, 6-8 pts. (Neese, Russ. Z. Pharm. 1. 101) ; at 25, 12-5 pts. (ibid). Solubility in 100 pts. H 2 at t. t Pts. Na 2 HPO 4 t *$ 1 t M I 2-5 35 39-3 69 94-8 1 2-6 36 43-6 70 95-0 2 2-6 37 49-5 71 95-1 3 2-7 38 55'5 72 95'2 4 2-7 39 60-6 73 95-4 5 2-8 40 63-9 74 95-6 6 3-0 41 66-2 75 95-8 7 3-2 42 68-6 76 96-0 8 3-4 43 70-8 77 96-1 9 3-6 44 72-9 78 96-3 10 3-9 45 74-8 79 96-5 11 4-2 46 76-5 80 96-6 12 4-5 47 78-2 81 96-8 13 4-9 48 79-7 82 96-9 14 5-3 49 81-2 83 97-0 15 5-8 50 82-5 84 97'1 16 6-3 51 83-7 85 97-2 17 6'9 52 84-8 86 97-4 18 7-6 53 85-8 87 97-5 19 8-4 54 86-7 . 88 97-6 20 9-3 55 877 89 977 21 10-3 56 88-6 90 97-8 22 11-4 57 89-4 91 97-9 23 12-6 58 90-2 92 98-0 24 14-0 59 90-9 93 98-1 25 15-4 60 91-6 94 98-2 26 16-9 61 92-2 95 98-4 27 18-5 62 927 96 98-5 28 20-2 63 93-1 97 98-6 29 22-0 64 93-5 98 987 30 24-1 65 93-8 99 98-8 31 26-4 66 94-1 105 82-5 32 29-1 67 94-4 105-57 807 33 32-1 68 94-6 106-4 79-2 34 35-5 ... (Mulder, Scheik. Verhandel. 1864. 103.) + 7H 2 0. Not efflorescent. Sol. in H 2 with absorption of heat. Sol. in 8 pts. H 2 at 23. (Neese, J. B. 1863. 181.) + 12H 2 0. Efflorescent. Sol. in H 2 with absorption of heat. 14 pts. Na2HP0 4 +12H 2 mixed with 100 pts. H 2 at 10-8 lower the temperature 37. (Riidorff, B. 2. 68.) Sol. in 8-48 pts. H 2 O at 17, or 100 pts. H 2 O dissolve 11-8 pts. at 17, and solution has sp. gr. = 1'0422. (Schiff.) Sol. in 4 pts. cold, and 2 pts. boiling HoO. (Pagens ) Sol. in 4 pts. H 2 O at 18 '75. (Abl.) 100 pts. H 2 O dissolve 12735 pts. Na 2 HP0 4 +12H 2 O. (Michel and Krafflb.) 100 pts. H 2 dissolve 6 '5 pts. 12H 2 at ; 27 '5 pts. at 30. (Tilden, Chem. Soc. 45. 409.) Na2HP0 4 + Aq saturated at 15 has 1 '0469 sp. gr. (Michel and Krafft) ; saturated at 16, 1-0511 (Stolba). Sp. gr. of Na 2 HP0 4 + Aq at 19. ^ PH 01 Sp.gr. tcW* Sp.gr. Sp. gr. A-S rt'S ^(M s fe 1 1-0041 5 1-0208 9 1-0376 2 1-0083 6 1-0250 10 1-0418 3 1-0125 7 1-0292 11 1-0460 4 1-0166 8 1-0332 12 1-0503 (Schiff, A. 110. 70.) Saturated solution freezes at - 0'45 (Riidorff, Pogg. 122. 337), and boils at 105 (Griffiths), 105-106-4 (Mulder), 106 '5 (Legrand). Sat. Na2HP0 4 + Aq boils at 105 '5 (Griffiths) ; at 106-5, and contains 113 '2 pts. Na 2 HP0 4 to 100 pts. H 2 (Legrand) ; forms a crust at 106-4, and contains 108 '8 pts. Na 2 HP0 4 to 100 pts. H 2 ; highest temp, observed, 106 '8. (Gerlach, Z. anal. 26. 427.) Na 2 HP0 4 + Aq containing pts. Na 2 HP0 4 to 100 pts. H0. B. -pt. of Na 2 HP0 4 to 100 pts. H 2 0. G = according to Gerlach (Z. anal. 26. 450) ; L = accord- ing to Legrand (A. ch. (2) 59. 426). B.-pt. G L i B.-pt. G L 100-5 8-6 11-0 104 68-4 76-4 101 17-2 21-0 104-5 76-9 84-2 101-5 25-8 31-0 105 85-3 91-5 102 34-4 40-8 105-5 937 98-4 102-5 42-9 50-3 106 102-1 105-0 103 51-4 59-4 106-5 110-5 111-4 103-5 59-9 68-1 106-6 ... 112-6 Melts in crystal H 2 at 34 '6 (Persoz), 35 (Kopp), 40-41 (Mulder). Melts in crystal water below 100, and easily forms supersaturated solutions. (Gay-Lussac.) Melts in crystal H 2 at 35. (Tilden, Chem. Soc. 45. 409.) Supersaturated solutions are brought to crystallisation by addition of a crystal of Na 2 HP0 4 + 12H 2 or an isomorphous substance as Na2HAs0 4 + 12H 2 0. (Thomson, Chem. Soc. 35. 200.) Insol. in alcohol. Sodium c^hydrogen phosphate, NaH 2 P0 4 + H ? 0. Very sol. in H 2 0. Insol. in alcohol. (Graham. ) 2H 2 0. Unchanged on air. Very sol. in H 2 0, and solubility increase^ rapidly with the C. R. 1391.) temperature. (Joly and Dufet, C. R. 102. 91.) + 4H 2 0. (J. andD.) Tnsodium hydrogen phosphate, Na 3 H 3 (P0 4 ) 2 +HH 2 0. Sol. in H 2 0. (Filhol and Senderens, C. R. 93. 388.) + 15H 2 0. 312 PHOSPHATE, SODIUM Sodium j97/rophosphate, Na 4 P 2 7 , and +10H 2 0. Less sol. in HoO than sodium hydrogen phosphate. (Clark, Ed. J. Scf. 7. 298.) 100 pts. H 2 dissolve (a) pts. Na 4 P 2 7 , (6) pts. Na 4 P 2 7 + 10H 2 at : 10 20 30 40 50 a. 3-16 3-95 6 "23 9'95 13'50 17'45 6. 5-41 6-81 10-92 IS'll 24'97 33'25 60 70 80 90 100 a. 21-83 25-62 30'04 35'11 40'26 6. 44-07 52-11 63-40 77 '47 93 '11 (Poggiale.) Crystallises unchanged from NH 4 Cl + Aq (Winkler), or cone. NH 4 OH + Aq (Uelsmann.) Decomp. into orthophosphate by heating with H 2 S0 4 , HC1, HC 2 H 3 2 , or H 3 P0 4 + Aq. Insol. in alcohol. Sodium hydrogen >7/r0phosphate, Na 2 H 2 P 2 7 . Decomp. by H 2 0. Sol. in H 2 containing HC 2 H 3 2 without decomp. (Bayer, J. pr. 106. 501.) SI. sol. in alcohol. Much more sol. in H 2 than NaH 2 P0 4 . + 6H 2 0. (Kammelsberg, B. A. B. 1883. 21.) Na 6 H 2 (P 2 7 ) 2 + 2H 2 0. (Eammelsberg. ) Sodium ^raphosphate, Na 6 P 4 13 . Slowly sol. in 2 pts. cold H 2 0. Easily decomp. + 18H 2 0. (Uelsmann.) Sodium hydrogen eraphosphate, Na 4 H 2 P 4 13 . Sol. in H 2 0. Sodium c?efcaphosphate, Na 12 P 10 31 . Sol. in H 2 0. (Fleitmann and Henneberg, A. 65. 333.) Sodium strontium trimetaphosph&te, NaSrP0 Easily sol. in H 2 and acids. (Fleitmann, A. 65. 315.) Sodium strontium phosphate, NaSr(P0 4 ) + H 2 0. Scarcely sol. in H 2 ; sol. in acids. + 9H 2 0. (Joly, C. R. 104. 905.) Sodium strontium ^rophosphate (?). SI. sol. in H 2 0. Insol. in Na 4 P 2 7 + Aq. (Baer, Pogg. 75. 166.) Easily sol. in HC1 + Aq, or HN0 3 + Aq. Sol. inNH 4 OH + Aq. Sodium thorium o?*^ophosphate, NaTh 2 (P0 4 ) 3 . Insol. in acids. (Wallroth, Bull. Soc. (2) 39. 316.) Sodium thorium phosphate, Na 2 0, 4Th0 2 , 3P 2 5 . Insol. in HN0 3 , HC1, or aqua regia. (Troost and Ouvrard, C. 'R. 105. 30.) 5Na 2 0, 2Th0 2 , 3P 2 5 . Sol. in HN0 3 + Aq. (T. and 0.) Na 2 0, Th0 2 , P 2 5 . (T. and 0.) Sodium thorium jp?/r0phosphate, Na 4 P 2 7 , ThP 2 7 + 2H 2 0. (Cleve.) Sodium stannic phosphate, NaSn 2 (P0 4 ) 3 . (Ouvrard, C. R. 111. 177.) Na 2 Sn(P0 4 ) 2 . (Wunder, J. pr. (2) 4. 339.) 6Na 2 0, 3Sn0 2 , 4P 2 5 . (Ouvrard.) Sodium titanium phosphate, NaTi 2 (P0 4 ) 3 . Insol. in acids. (Rose, J. B. 1867. 9.) 6Na 2 0, Ti0 2 , 4P 2 5 . (Ouvrard, C. R. 111. 177.) Sodium uranyl phosphate, Na 2 0, U0 3 , P 2 5 . (Ouvrard, C. R. 110. 1333.) 2Na 2 0, U0 3 , P 2 5 . (Ouvrard.) Na 2 0, 5U0 3 , 2P 2 5 + 3H 2 0. Insol. in H 2 ; decomp. by acetic acid. (Werther, A. 68. 312.) Sodium uranyl ^T/rophosphate. Very sol. in H 2 0. (Persoz, A. ch. (3) 20. 322.) Sodium ytterbium pyrophospha,ie, NaYbP 2 7 . Easily sol. in the strong acids. (Wallroth. ) Sodium yttrium >?/rophosphate, NaYP 2 7 . Sol. in H 2 0. (Stromeyer.) Insol. in H 2 0. Easily sol. in strong acids. (Wallroth.) Sodium zinc ^Hmetaphosphate, Na 2 0, 2ZnO, 3P 2 5 . Ppt. Sol. in H 2 0. (Fleitmann and Henne- berg, A. 65. 304.) Sodium zinc phosphate, NaZnP0 4 . Difficultly sol. in H 2 or acetic acid. Easily sol. in dil. mineral acids. (Scheffer, A. 145. 53.) 2Na 2 0, ZnO, P 2 5 . Insol. in H 2 ; sol. in dil. acids. (Ouvrard, C. R. 106. 1796.) Sodium zinc ^yrophosphate, Na 2 ZnP 2 7 . Insol. in H 2 ; sol. in dil. acids. (Wall- roth.) 3Na 4 P 2 7 , Zn 2 Po0 7 + 24H 2 0. Very efflores- cent. (Pahl.) Na 4 P 2 7 , Zn 2 P 2 7 + 2|, 3, 3J, and 8H 2 0. Insol. in H 2 ; sol. in Na 4 P 2 7 + Aq. (Pahl, Sv. V. A. F. 30, 7. 35.) 4Na 4 P 2 7 , 5Zn 2 P 2 7 + 20H 2 0. Insol. in H 2 0. (Pahl.) Na 4 P 2 7 , 4Zn 2 P 2 7 + 12H 2 0. SI. sol. in H 2 0. (Pahl.) Sodium zirconium phosphate, Na 2 0, 4Zr0 2 , 3P 2 5 = NaZr 2 (P0 4 ) 3 . Insol. in acids or aqua regia. (Troost and Ouvrard, C. R. 105. 30.) 6Na 2 0, 3Zr0 2 , 4P 2 5 . Sol. in acids. (T. and 0.) 4Na 2 0, Zr0 2 , 2P 2 5 . Sol. in acids. (T. and 0.) Sodium phosphate fluoride, Na 3 P0 4 , NaF + 12H 2 0. 100 pts. H 2 dissolve, at 25, 12 pts. salt and form solution of 1'0329 sp. gr. ; at 70, 57'5 pts. salt and form solution of 1*1091 sp. gr. (Briegleb, A. 97. 95.) 2Na 3 P0 4 , NaF + 19HoO, and 22H 2 0. Sol. in H 2 0. (Baumgarten, J. B. 1865. 219.) PHOSPHATE, TITANIUM 313 Sodium phosphate vanadate. See Phosphovanadate, sodium. Strontium wowowetaphosphate, Sr(P0 3 ) 2 . Insol. in H 2 and acids. Not decomp. by alkali carbonates + Aq. (Maddrell, A. 61. 61.) Strontium hexametaphospha,ie. Nearly insol. in H 2 ; easily sol. in acids. (Llidert, Z. anorg. 5. 15.) Strontium or^ophosphate, Sr 3 (P0 4 ) 2 . Insol. in H 2 0. Sol. in HCl + Aq. (Erlen- meyer, J. B. 1857. 145.) Strontium hydrogen phosphate, SrHP0 4 . Insol. in H 2 0. Sol. in H 3 P0 4 , HC1, or HN0 3 + Aq. ( Vauquelin. ) Easily sol. in cold ammonium nitrate, chloride, or succinate + Aq, but is partly precipitated by a little NH 4 OH + Aq. (Brett.) Sol. in boiling NH 4 Cl + Aq. (Fuchs, 1834.) Sol. in Na citrate + Aq. (Spiller. ) Partly decomp. by boiling Na 2 C0 3 , and K 2 C0 3 + Aq. (Dulong.) SrH 4 (P0 4 ) 2 + 2H 2 0. Decomp. by treating with H 2 0, leaving 4 '29 % SrHP0 4 . (Barthe.) Strontium phosphate, acid, H 2 0, 2SrO, Entirely sol. in H 2 0. (Barthe, C. R. 114. 1267.) Strontium ^rophosphate, Sr 2 P 2 7 + H 2 0. Somewhat sol. in H 2 0. Easily sol. in HC1 or HN0 3 + Aq. Insol. in HC 2 H 3 2 or Na 4 P 2 7 + Aq. (Schwarzenberg, A. 65. 144.) + 2|H 2 0. (Knorre and Oppelt, B. 21. 773.) Strontium hydrogen ^7/rophosphate, SrH 2 P 2 7 , 2Sr 2 P 2 7 + 6H 2 0. Ppt. (Knorre and Oppelt, B. 21. 772.) SrH 2 P 2 7 , 3Sr 2 P 2 7 + H 2 0, and + 2H 2 0. (Knorre and Oppelt.) Strontium phosphate chloride, 3Sr 3 (P0 4 ) 2 , SrCl 2 . Strontium apatite. Insol. in H 2 0. (Deville and Caron.) Tellurium phosphate (?). Insol. in H 2 0. (Berzelius.) Thallous metaphosphate, T1P0 3 . Two modifications : a. Difficultly sol. in H 2 0. j8. Extremely easily sol. in H 2 0. (Lamy.) Thallous or^ophosphate, T1 3 P0 4 . 1 pt. is sol. in 201-2 pts. H 2 at 15, and 149 pts. boiling H 2 ; sol. in HN0 3 + Aq. (Crookes. ) SI. sol. in HC 2 H 3 2 + Aq. Very easily sol. in solutions of NH 4 salts. (Carstanjen.) Insol. in alcohol. (Lamy.) Thallous hydrogen phosphate, T1 2 HP0 4 . Anhydrous. Much less sol. in H 2 than the hydrous salt, but easily sol. in a solution of the hydrous salt. (Lamy. ) + iH 2 0. Easily sol. in H 2 0. Insol. in alcohol. (Lamy.) Composition is HT1 2 P0 4 , 2H 2 T1P0 4 . (Ram- melsberg, W. Ann. 16. 694.) Thallous ^hydrogen phosphate, T1H 2 P0 4 . Very easily sol. in H 2 0. Insol. in alcohol. (Rammelsberg, B. 3. 278.) Thallous phosphate, T1 2 HP0 4 , 2T1H 2 P0 4 . True composition of T1 2 HP0 4 of Lamy. (Rammelsberg.) Thallous ^rophosphate, T1 4 P 2 7 . Sol. in 2-5 pts. H 2 with slight decomposi- tion. (Lamy.) + 2H 2 0. More sol. in H 2 than the above salt, with partial decomp. (Lamy.) Thallous hydrogen^T/rophosphate, H 2 T1 2 P 2 7 + H 2 0. Very sol. in H 2 0. (Lamy.) Thallic phosphate, basic, 2T1 2 3 , P 2 5 + 5H 2 0. Insol. in H 2 0. Thallic phosphate, basic, T1 8 P 6 27 + 13H 2 0. (Rammelsberg, W. Ann. 16. 694.) T1 6 P 4 19 + 12H 2 0. (R.) Thallic phosphate, T1P0 4 + 2H 2 0. Completely insol. in H 2 0. Sol. in cone. HN0 3 , and dil. HC1 + Aq. ( Willm. ) Thorium metophosphate, Th(P0 3 ) 4 . Insol. in H 2 0. (Troost, C. R. 101. 210.) Thorium wetaphosphate, Th0 2 , 2P 2 5 . Insol. in acids. (Johnsson, B. 22. 976.) Thorium ortAophosphate, Th 3 (P0 4 ) 4 + 4H 2 0. Insol. in H 2 and phosphoric acid (Ber- zelius) ; also acetic acid (Cleve). Sol. in HC1, and HN0 3 + Aq. (Cleve.) Thorium hydrogen phosphate, ThH 2 (P0 4 ) 2 + H 2 0. Precipitate. Thorium j^rophosphate, ThP 2 7 + 2H 2 0. Precipitate. Insol. in H 2 0. Sol. in great excess of pyrophosphoric acid or sodium pyro- phosphate + Aq. (Cleve.) Stannous phosphate, 5SnO, 4P 2 5 + 4H 2 0. Insol. in H 2 0. (Lenssen, A. 114. 113.) Sn 3 (P0 4 ) 2 . Insol. in H 2 0. Sol. in mineral acids. (Kiihn.) Insol. in NH 4 C1 or NH 4 N0 3 + Aq. Sol. in KOH + Aq. Stannic phosphate, 2Sn0 2 , P 2 5 + 10H 2 0. Insol. in H 2 or HN0 3 + Aq. (Reynoso, J. pr. 54. 261.) Anhydrous. Insol. in acids. (Hautefeuille and Margottet, C. R. 102. 1017.) Stannic phosphate, SnP 2 7 . Insol. in acids. (Hautefeuille and Margottet, C. R. 102. 1017.) Stannous phosphate chloride, 3SnO, P 2 5 , Not decomp. by hot H 2 0. (Lenssen, A. 114. 113.) Titanium phosphate, Ti 2 P 2 9 = 2Ti0 2 , P 2 5 . Insol. in acids. (Hautefeuille and Margottet. C. R. 102. 1017.) 314 PHOSPHATE, URANOUS HYDROGEN (Ouvrard, C. R. 111. 177.) + 3H 2 0. Ppt. Insol. in H 2 0. (Merz.) Ti0 2 , P 2 5 . (Knop.) (Wunder, J. B. 1871. 324.) Uranous hydrogen or^ophosphate, UHP0 4 + H 2 0. Insol. in H 2 0. Insol. in dil., si. sol. in cone. HCl + Aq. Decomp. by KOH + Aq, not by NH 4 OH + Aq. (Rammelsberg, Pogg. 59. 1.) Uranic metaphosphaie, U 2 (P0 3 ) 6 . Insol. in H 2 and acids. (Hautefeuille and Margottet, C. R. 96. 849.) Uranous jpT/rophosphate, UP 2 7 + 3H 2 (?). Precipitate. Uranyl metophosphate, U0 2 (P0 3 ) 2 . (Rammelsberg, B. A. B. 1872. 447.) U0 3 , 2P 2 5 . Insol. in acids. (Johnsson, B. 22. 976.) Uranyl or^ophosphate, U0 2 HP0 4 + 1|H 2 0. Insol. in H 2 0. + 3H 2 0. + 4H 2 0. + 4^H 2 0. Insol. in H 2 0. Sol. in 67,000 pts. HC 2 H 3 2 + Aq, 50,000 pts. NH 4 C 2 H 3 2 + Aq, and 300,000 pts. of a mixture of the above two solutions. Sol. in K 2 C0 3 or Na 2 C0 3 + Aq. (Kitschin, C. N. 27. 199.) Uranyl ^hydrogen phosphate, U0 2 H 4 (P0 4 ) 2 + 3H 2 0. Decomp. by H 2 0. Sol. in H 3 P0 4 + Aq. (Werther, J. pr. 43. 322.) Uranyl ^7/rophosphate, (U0 2 ) 2 P 2 7 + 5H 2 0. Efflorescent. Insol. in H 2 0. Sol. in HN0 3 + Aq, and Na 4 P 2 7 + Aq. Insol. in Na 2 HP0 4 + Aq. Insol. in alcohol or ether. (Girard, C. R. 34. 22.) + 4H 2 0. (Casteing, Bull. Soc. (2) 34. 20.) Uranyl ^raphosphate (?), U0 2 P 4 U . (Johnsson, B. 22. 978.) Divanadyl phosphate. Very deliquescent, and sol. in H 2 0. Insol. in alcohol, jj \ (Berzelius.) Vanadium phosphate, (V0 2 )H 2 P0 4 + 4|H 2 0. Sol. in H 2 0. See Phosphovanadic acid. Yttrium metaphosphate, Y(P0 3 ) 3 . Insol. in H 2 or acids. (Cleve.) Yttrium or^ophosphate, YP0 4 . Anhydrous. Insol. in H 2 or acids after ignition. Min. Xenotime. Insol. in cone, acids. SI. sol. in much cone. HCl + Aq, but easily sol. therein when first heated with a little HC1 + Aq. (Wartha, A. 139. 237.) Yttrium hydrogen or^ophosphate, Y 2 (HP0 4 ) 3 . Decomp. by boiling with H 2 into insol. YP0 4 and sol. acid salt. Yttrium p^/rophosphate, YHP 2 7 + 3H 2 0. Difficultly sol. in acids. Decomp. by H 2 S0 4 . Sol. inNa 4 P 2 7 + Aq. (Cleve.) 2Y 2 3 , 3P 2 5 . Insol. in acids. B. 22. 976.) (Johnsson, Zinc wetaphosphate. Sol. in H 2 0. (Berzelius.) Zinc cfo'wetophosphate, ZnP 2 6 . Sol. only in boiling H 2 S0 4 . (Fleitmann, Pogg.' 78. 350.) Not decomp. by boiling Na S or (NH 4 ) 2 S + Aq. + 4H 2 0. Insol. in H 2 0, but decomp. by boiling therewith. (Fleitmann, Pogg. 78. 258.) Difficultly decomp. by boiling acids. Zinc or^ophosphate, Zn 3 (P0 4 ) 2 + 4H 2 0. Insol. in H 2 0. Easily sol. in acids, NH 4 OH, (NH 4 ) 2 C0 3 , (NH 4 ) 2 S0 4 , or NH 4 N0 3 + Aq. (Heintz, A. 143. 356.) Sol. in NH 4 C1 + Aq. (Fuchs. ) Easily sol. in Zn salts + Aq. (Rose.) Min. Hopeite. + 6H 2 0. (Reynoso.) Zinc hydrogen phosphate, ZnHP0 4 + H 2 0. Insol. in H 2 ; sol. in H 3 P0 4 + Aq. (Graham.) Zinc ^rahydrogen phosphate, ZnH 4 (P0 4 ) 2 + 2H 2 0. Nearly insol. in H 2 0, but decomp. thereby into H 3 P0 4 and lOZnO, 4P 2 5 + 10H 2 0. (Demel, B. 12. 1171.) Zinc phosphate, lOZnO, 4P 2 5 + 10H 2 0. Insol. in H 2 0. (Demel, B. 12. 1171.) Zinc ^7/rophosphate, Zn 2 P 2 7 + 1 H 2 0. Ppt. Sol. in H 2 S0 3 + Aq. Sol. in acids, KOH + Aq, NH 4 OH + Aq. (Schwarzenberg, A. 65. 151.) Sol. in Na 4 P 2 7 + Aq (Gladstone), and in ZnS0 4 + Aq. (Rose.) + 5H 2 0. Insol. in H 2 0. (Pahl, J. B. 1873. 229.) Zinc hydrogen ^7/rophosphate. Sol. in H 2 0. (Pahl, Sv. V. A. F. 30, 7. 45.) Zinc metaphosphate ammonia. Ppt. (Bette.) Zinc or^ophosphate ammonia, 2ZnO, P 2 g , 3NH 3 + 8H 2 0. (Rother, A. 143. 356.) 6ZnO, 3P 2 5 , 8NH 3 + 4H 2 0. , (Schweikert, A. 145. 517.) Zinc ^?/rophosphate 4NH 3 + 9H 2 0. Insol. in H 2 0. ammonia, 3Zn 2 P 2 7 , Ppt. Insol. in H 2 0. (Bette.) Zirconium or^ophosphate, 5Zr0 2 , 4P 2 5 -t- 8H 2 0. Somewhat sol. in acids. (Hermann, J. pr. 97. 321.) Insol. in acids. (Paykull, Bull. Soc. (2) 20. 65.) 2Zr0 2 , P 2 5 . Not attacked by acids. (Hautefeuille and Margottet, C. R. 102. 1017.) Zirconium j^T/rophosphate, Zr(P0 3 ) 2 . (Knop, A. 159. 36.) PHOSPHITE, LEAD, BASIC 315 Phosphor nitryl, PON. See Phosphoryl nitride. Phosphorosomolybdic acid. Ammonium phosphorosomolybdate, 2(NH 4 ) 2 0, 2H 3 P0 3 , 12Mo0 3 + 12pI 2 0. Insol. in cold, slightly sol. in hot H 2 0. (Gibbs, Am. Ch. J. 5. 361.) Phosphorosophosphomolybdic acid. Ammonium phosphorosophosphomolybdate, 9(NH 4 ) 2 0, 2H 3 P0 3 , 3P 2 5 , 72Mo0 3 + 38H 2 0. Nearly insol. in H 2 0. (Gibbs.) Phosphorosophosphotungstic acid. Potassium phosphorosophosphotungstate, 5KP, 2H 3 P0 3 , P 2 5 , 24W0 3 + 13H 2 0. Sol. in much boiling H 2 0. (Gibbs, Am. Ch. J. 7. 313.) Phosphorosotungstic acid. Ammonium phosphorosotungstate, 6(NH 4 ) 2 0, 4H 3 P0 3 , 22W0 3 + 25H 2 0. SI. sol. in cold H 2 0. Potassium , 5K 2 0, 16H 3 P0 3 , 32W0 3 + 46H 2 0. SI. sol. in hot H 2 0. Sodium , 2Na 2 0, 8H 3 P0 3 , 22W0 3 + 35H 2 0. Nearly insol. in cold, si. sol. in hot H 2 0. (Gibbs, Am. Ch. J. 7. 313.) Phosphorous anhydride, P 2 3 . See Phosphorus dioxide. Phosphorous acid, H 3 P0 3 . Deliquescent. Very sol. in H 2 0. Phosphites. The neutral alkali phosphites are sol. in H 2 ; most of the others are si. sol. in H 2 0, but sol. in H 3 P0 3 + Aq ; all are insol. in alcohol. Aluminum phosphite. Precipitate. (Rose, Pogg. 9. 39.) SI. sol. in H 2 0. Ammonium phosphite, (NH 4 ) 2 HP0 3 + H 2 0. Very deliquescent, and sol. in H 2 0. (Rose, Pogg. 9. 28.) Sol. in 2 pts. cold, and less hot H 2 0. Insol. in alcohol. (Berzelius.) Ammonium hydrogen phosphite (NH 4 H)HP0 3 . Very deliquescent, and sol. in H 2 0. 1 pt. H 2 dissolves 171 pts. salt at ; 1'9 pts. at 14-5, and 2'60 pts. at 31. (Amat, C. R. 105. 809.) Ammonium magnesium phosphite, (NH 4 ) 2 Mg 3 (PH0 3 ) 4 +16H 2 0. Slightly sol. in H 2 0. (Rammelsberg, Pogg. 131. 367.) Barium phosphite, BaHP0 3 . 100 pts. H 2 dissolve 0'25 pt. (Ure.) Very slightly sol. in H 2 0, and decomp. by boiling H 2 O. (Dulong.) Easily sol. in H 2 containing NH 4 C1. (Wackenroder, A. 41. 315.) Sol. in H 3 P0 3 + Aq or HC1 + Aq. (Railton. ) Barium hydrogen phosphite, Ba2H 2 (PH0 3 ) 3 + 8H 2 0. Easily sol. in H 2 0, but decomp. by boiling therewith. Insol. in alcohol. (Rammelsberg, Pogg. 132. 496.) -. Barium ^hydrogen phosphite, BaH 2 (PH0 3 ) 2 + iH 2 0. Easily sol. in H 2 0. (Rose, Pogg. 9. 215.) + H 2 0. Sol. in H 2 ; decomp. by boiling H 2 into a neutral insol., and an acid sol. salt. (Wurtz, A. 58. 66.) + 2H 2 0. Easily sol. in H 2 0. (Rammels- berg, Pogg. 132. 496.) Insol. in alcohol. (Wurtz.) Bismuth phosphite, 2Bi 2 3 , 3P 2 3 . Insol. in H 2 0. Cadmium phosphite, CdPH0 3 + 3H 2 0. Ppt. (Rose, Pogg. 9. 41.) Calcium phosphite, CaHP0 3 + |H 2 0. SI. sol. in H 2 ; the aqueous solution is decomp. by boiling. + H 2 0. Sol. in NH 4 Cl + Aq. (Wacken- roder, A. 41. 315.) Insol. in alcohol. Calcium hydrogen phosphite, CaH 2 (PH0 3 ) 2 + H 2 0. Sol. in H 2 0. Aqueous solution is decomp. by alcohol. (Wurtz, A. ch. (3) 7. 212.) Chromic phosphite. Precipitate. Almost insol. in H 2 0. (Rose Pogg. 9. 40.) Cobaltous phosphite, CoPH0 3 + 2H 2 0. Ppt. SI. sol. in H 2 0. (Rose.) Cupric phosphite, CuPH0 3 + 2H 2 0. Ppt. Insol. in H 2 0. (Wurtz, A. ch. (3) 16. 213.) Didymium phosphite, Di 2 (PH0 3 ) 3 . Precipitate. (Frerichs and Smith, A. 191. 331.) Glucinum phosphite. Precipitate. Insol. in H 2 0. (Rose, Pogg. 9. 39.) Ferrous phosphite, FeHP0 3 + a;H 2 0. Ppt. Nearly insol. in H 2 0. (Rose, Pogg. 9. 35.) Ferric phosphite, Fe 2 (HP0 3 ) 3 + 9H 2 0. Ppt. Sol. in iron alum + Aq. (Rose.) Lanthanum phosphite, La 2 (HP0 3 ) 3 . Precipitate. (Smith. ) Lead phosphite, basic, 4PbO, P 2 3 + 2H 2 0. Ppt. (Rose, Pogg. 9. 222.) 3PbO, P 2 3 + H 2 0. Insol. in H 2 0. Sol. in warm dil. H 3 P0 3 + Aq, from which it is pptd. by NH 4 OH + Aq. (Wurtz, A. ch. (3) 16. 214.) 316 PHOSPHITE, LEAD Lead phosphite, PbHP0 3 . Insol. in H 2 0. Very si. sol. in a solution of phosphorous acid ; easily sol. in cold HN0 3 + Aq. (Wurtz.) Lead hydrogen phosphite, PbH 4 (P0 3 ) 2 . Decomp. by H 2 0. (Amat, C. R. 110. 901.) Lead ^rophosphite, PbH 2 P 2 5 . Gradually decornp. by H 2 into H 3 P0 3 and PbHP0 3 . (Amat, C. R. 110. 903.) Lithium hydrogen phosphite, LiH 2 P0 3 . Very sol. in H 2 0. (Amat, A. ch. (6) 24. 309.) Lithium pyrophosphite, Li 2 H 2 P 2 5 . Very sol. in H 2 0. (Amat.) Magnesium phosphite, MgHP0 3 + 3H 2 0. SI. sol. in H 2 0. (Rose, Pogg. 9. 28.) Sol. in 400 pts. H 2 0. (Berzelius.) + 4H 2 0. Manganous phosphite, MnHP0 3 + |H 2 0. Difficultly sol. in H 2 0, easily in MnCl 2 or MnS0 4 + Aq. (Rose, Pogg. 9. 33.) Nickel phosphite, MHP0 3 + 3|H 2 0. Ppt. SI. sol. in H 2 0. Potassium phosphite, K 2 HP0 3 . Very deliquescent. Very sol. in H 2 0. Insol. in alcohol. (Dulong.) Potassium hydrogen phosphite, (KH)HP0 3 . 1 pt. H 2 dissolves about 1'72 pts. salt at 20. (Amat, C. R. 106. 1351.) K2HP0 3 , 2H 3 P0 3 . Very sol. in H 2 0. (Wurtz, A. 58. 63.) Sol. in 3 pts. cold, and in less hot H 2 0. (Fourcroy and Vauquelin.) Potassium _p?/rophosphite, K 2 H 2 P 2 5 . Very sol. in H 2 0. (Amat, A. ch. (6) 24. 351. ) Sodium phosphite, basic, Na 2 HP0 3 , NaOH (?). Not obtained in pure state (Zimmerman, B. 7. 290) ; = Na 3 P0 3 (Wislicenus). Does not exist. (Amat.) Sodium phosphite, Na 2 HP0 3 + 5H 2 0. Deliquescent, and very sol. in H 2 0. Insol. in alcohol. Correct formula for Na 3 P0 3 of Rose and Dulong. Sodium hydrogen phosphite, (NaH)HP0 3 + 0'56 pt. salt dissolves in 1 pt. H 2 at ; 0-66 pt. at 10; T93 pts. at 42. (Amat, C. R. 106. 1351.) Na 2 H 4 (HP0 3 ) 3 + H 2 0. Deliquescent in moist air. Sol. in 2 pts. cold, and about the same amt. hot H 2 0. SI. sol. in spirit. (Fourcroy and Vauquelin.) Sodium ^i/rophosphite, Na 2 H 2 P 2 5 . Very sol. in H 2 with gradual decomp. into Na 2 HP0 3 . (Amat.) Strontium phosphite, SrHP0 3 + l|H 2 0. Difficultly sol. in H 2 0. Aqueous solution decomp. on heating into a sol. acid salt and an insol. basic salt. Strontium hydrogen phosphite, SrH 4 (P0 3 ) 2 . Very sol. in H 2 0. (Amat, A. ch. (6) 24. 312.) Thallous hydrogen phosphite, T1H 2 P0 3 . Very sol. in H 2 0. (Amat, A. ch. (6) 24. 310.) Thallous ^7/rophosphite, T1 2 H 2 P 2 5 . Deliquescent. Very sol. in H 2 0. (Amat.) Stannous phosphite, SnHP0 3 . Ppt. Sol. in HCl + Aq. (Rose, Pogg. 9. 45.) Stannic phosphite, 2Sn0 2 , P 2 3 . Ppt. (Rose, Pogg. 9. 47.) Titanium phosphite (?). Precipitate. (Rose, Pogg. 9. 47.) Uranyl phosphite, (U0 2 ) 3 H 2 (HP0 3 ) 4 + 12H 2 0. Precipitate. (Rammelsberg, Pogg. 132. 500.) Zinc phosphite, ZnHP0 3 . Sol. in H 2 0. (Rammelsberg, Pogg. 132. 481.) + 2JH 2 0. More easily sol. in cold than warm H 2 0. (Rammelsberg.) Zinc phosphite, acid, Zn 2 H 3 P 3 8 . Sol. in H 2 0. + 2H 2 0. Sol. in H 2 0. (Rammelsberg, Pogg. 132. 498.) Zn 3 H B P 6 13 . Sol. in H 2 0. + 3H 2 0. SoLinHgO. (Rammelsberg.) Zn 2 H 9 P 5 14 . Sol. in H 2 0. + H 2 0. Sol. in H 2 0. (Rammelsberg.) Phosphorus, P 4 . (a) Ordinary phosphorus. Insol. in H 2 0, but slowly decomp. thereby (G. K.) ; very si. sol. in H 2 (Berzelius and others). Easily sol. in SC1 2 , especially if hot. (Wohler.) Sol. in sulphur phosphides. Largely sol. in PC1 3 . Easily sol. in PC1 5 . Sol. with decomp. in hot cone. HN0 3 + Aq. Decomp. by boiling caustic alkalies + Aq, Sol. in 320 pts. cold alcohol of 0799 sp. gr., and in 240 pts. of the same when warm. Pptd. from alcoholic solution by H 2 0. (Buchner. ) One grain P dissolves in 1 ounce abs. alcohol. (Schacht.) Sol. in 20 pts. absolute ether at 20 and 240 pts. ordinary ether at 20. (Bucholz.) Sol. in 80 pts. absolute ether at 15 '5, and 240 pts. ordinary ether at 15 '5. (Brugnatelli, A. ch. 24. 73.) Sol. in 0-05 pt. CS 2 (Bottger) ; 0125 pt. (Trommsdorf). Alcohol ppts. P from CS 2 solution. 1 pt. CS 2 dissolves 17-18 pts. P. (Vogel, J. B. 1868. 149.) SI. sol. in "liquid paraffine." (Crismer, B. 17. 649.) PHOSPHORUS PLATINIC CHLORIDE 317 Very sol. in methylene iodide. (Retgers, Z. anorg. 3. 343.) HC 2 H 3 2 dissolves about 1 % P. Strong vinegar dissolves P. (Beudet.) Sol. in considerable amount in stearic acid. (Vulpius, Arch. Pharm. (3) 13. 38.) Sol. in ethyl chloride, benzoyl chloride, stannic chloride, and in liquid cyanogen. SI. sol. in ethyl nitrite, and wood-spirit. SI. sol. in acetone, with gradual decomposi- tion. Insol. in nicotine, and coniine. SI. sol. in cold, more sol. in hot benzene. (Mansfield.) Sol. in 14 pts. hot, and less in cold petroleum from Amiano. (Saussure.) SI. sol. in warm essential oils, as oil of tur- pentine, and in the fatty oils. Sol. in hot oil of copaiba, separating out on cooling. Sol. in hot oil of caraway, and mandarin oil. (Luca. ) SI. sol. in cold, more sol. in hot caoutchin, depositing on cooling. Readily sol. in warm, less in cold styrene. Sol. in aniline, and chinoline. (Hofmann. ) SI. sol. in cold creosote. Somewhat sol. in fusel oil. Easily sol. in valerianic acid, and amyl valerate. Sol. in hexylic alcohol, ethylene chloride, allyl sulphocyanide, mercury methyl, chloro- form, bromoform, warm chloral, acetic ether, aldehyde, hot cacodyl sulphide, and in cacodyl oxide. (b) Amorphous phosphorus. Insol. in H 2 0. Insol. in NH 4 OH + Aq. (Fliickiger. ) Sol. in boiling KOH + Aq. Insol. in CS 2 , alcohol, ether, naphtha, ligroine, PC1 3 , etc. SI. sol. in boiling oil of turpentine and other high-boiling liquids, with conversion into ordinary phosphorus. Insol. in KOH + Aq. Cone. H 2 S0 4 does not act upon it in the cold, but dissolves easily when hot. Insol. in dil., easily sol. in cone. HN0 3 + Aq with decomposition. Much more sol. in HN0 3 + Aq than ordinary P. (Personne, C. R. 45. 115.) Insol. in methylene iodide. (Retgers.) (c) Crystalline. Insol. in, and not attacked by, dil. HN0 3 + Aq. Sol. in CS 2 . Phosphorus /!Hbromide, PBr 3 . Decomposed by H 2 0, slowly at 8, but very rapidly at 25. (Lowig, Pogg. 14. 485.) Sol. in CS 2 . Dissolves phosphorus. Phosphorus ^e?itabromide, PBr 5 . Fumes on air, and is violently decomp. by H 2 0. Phosphorus ^bromide ammonia, 3PBr 3 , 5NH 3 . Slowly but completely sol. with decomp. in H 2 0. (Storer'sDict.) Phosphorus pentabiomide ammonia, PBr 5 , 9NH 3 . (Besson, C. R. 111. 972.) Phosphorus thiophosphoryl bromide, PBr 3 , PSBr 3 . Decomp. by H 2 into PSBr 3 . (Michaelis.) Phosphorus mcw0bromoerachloride, PBrCl 4 . Decomp. by H 2 0. (Prinvault, C. R. 74. 868.) Phosphorus c^bromo^richloride, PCl 3 Br 2 . Very unstable. (Michaelis, B. 5. 9.) Phosphorus ^rabromo^'chloride, PCl 3 Br 4 . Decomp. with H 2 0. (Geuther.) Phosphorus heptabTomodictiloxide, PCl 2 Br 7 . Very unstable. (Prinvault, C. R. 74. 868.) Phosphorus oc^bromoz!richloride, PCl 3 Br 8 . Very easily decomp. (Michaelis, B. 5. 9.) Phosphorus bromofluoride, PF 3 Br 2 . Decomp. violently with H 2 0. (Moissan, Bull. Soc. (2) 43. 2.) Phosphorus bromonitride. See Nitrogen bromophosphide. Phosphorus trichloride, PC1 3 . Gradually decomp. by H 2 0. Miscible with CS 2 , C 6 H 6 , CHC1 3 , and ether. Decomp. with alcohol. Phosphorus ^eTitochloride, PC1 5 . Very deliquescent, and sol. in H 2 with violent decomp. and evolution of heat. Sol. in liquid HC1. Somewhat sol. without de- comp. in CS 2 . (Schiff, A. 102. 118.) Sol. without decomp. in benzoyl chloride. (Gerhardt. ) Sol. in oil of turpentine with evolution of heat. Jfowophosphorus platinous chloride, PC1 3 , PtCl 2 . Deliquescent. Sol. in H 2 with formation of chloroplatinophosphoric acid. Similarly decomp. by alcohol. Abundantly sol. in hot benzene, toluene, chloroform, or carbon tetra- chloride, and crystallises on cooling. (Schut- zenberger, Bull. Soc. (2) 17. 482.) Z>iphosphorus platinous chloride, 2PC1 3 , PtCl 2 . Decomp. by H 2 with formation of chloro- platinoe^phosphoric acid. Similarly decomp. by alcohol. Sol. without decomp. in PC1 3 , CC1 4 , CHC1 3 , C 6 H 6 , or C 7 H 8 . (Schutzenberger.) Sol. in propyl alcohol with formation of the propyl ether of platinochlorophosphorous acid and HC1. (Pomey, C. R. 104. 364.) Phosphorus ^platinous chloride, PC1 3 , 2PtCl 2 . Sol. in alcohol, with formation of ether (PtCl 2 ) 2 P(OC 2 H 5 ) 3 . (Cochin, C. R. 86. 1402.) Phosphorus platinic chloride, PC1 3 , PtCl 4 . (Schutzenberger. ) Phosphorus pentachloriAe platinic chloride, PC1 5 , PtCl 4 or (PCl 4 ) 2 PtCl 6 . Decomp. at once by H 2 0. (Baudriinont, A. ch. (4) 2. 47.) 318 PHOSPHORUS SELENIUM CHLORIDE Phosphorus pentacbloride selenium tetractiloT- ide, 2PC1 5 , SeCl 4 . Sol. in H 2 with decomp. (Baudrimont, A. ch. (4) 2. 5.) Phosphorus ^ewtochloride stannic chloride, PC1 5 , SnCl 4 . Very deliquescent. Sol. in much H 2 with evolution of heat, forming SnCl 4 , HC1, and H 3 P0 4 , and soon separates out stannic phos- phate. (Casselmann, A. 83. 257.) Phosphorus trichloride titanium chloride, PC1 8 , TiCl 4 . (Bertrand, Bull. Soc. (2) 33. 565.) Phosphorus pentachloiide titanium chloride, PC1 5 , TiCl 4 . Deliquescent. Decomp. by H 2 and alcohol. Sol. in ether. SI. sol. in PC1 3 . (Tiittschew, A. 141. 111.) Completely sol. in dil. acids. (Weber.) Phosphorus pentactiloride tungsten dioxide, 2PC1 5 , W0 3 (?). (Persoz and Bloch, C. R. 28. 389.) Phosphorus uranium pentacbloTide, PC1 5 , UC1 5 . Decomp. with H 2 0. Phosphorus pentacbloTide zirconium chloride, PC1 5 , ZrCl 4 . Decomp. byH 2 Owith pptn. ofZr phosphate. (Paykull.) Phosphorus trichloride ammonia, PC1 3 , 5NH 3 . Insol. as such in H 2 0, but slowly decomp. by boiling H 2 0. More easily sol. with decomp. in acids. Sol. with decomp. by boiling with KOH or NaOH + Aq. (Berzelius. ) Phosphorus ^ewtachloride ammonia, PC1 5 , 5NH 3 . Properties as PC1 3 , 5NH 3 . (Berzelius.) PC1 5 , 8NH 3 . SI. decomp. on air. (Besson, C. R. 111. 972.) Phosphorus chlorobromide. See Phosphorus bromochloride. Phosphorus chlorofluoride, PC1 2 F 3 . Absorbed by H 2 with decomp. Absorbed by alcohol or ether. (Poulenc, A. ch. (6) 24. 555.) Phosphorus chloroiodide, PC1 3 I 2 . Decomp. by moist air or H 2 0. Sol in CS 2 . (Most, B. 13. 2029.) Phosphorus chloronitride. See Nitrogen chlorophosphide. Phosphorus ^fluoride, PF 3 . Decomp. slowly by H 2 0. (Moissan, Bull. Soc. (2) 43. 2.) Rapidly absorbed by KOH or NaOH + Aq, slowly by Ba0 2 H 2 , and K 2 C0 3 + Aq. Absorbed by absolute alcohol with decomp. (Moissan, C. R. 99. 655.) Phosphorus penta&aoTide, PF 5 . Fumes on air. (Thorpe, A. 182. 20.) Phosphorus pentafLvLoxide ammonia, 2PF 5 , 5NH 3 . (Moissan, C. R. 101. 1490.) Phosphorus pentafLuoride nitrogen peroxide. Decomp. by H 2 0. (Tassel, C. R. 110. 1264.) Phosphorus fluobromide. See Phosphorus bromonuoride. Phosphorus fluochloride. See Phosphorus chlorofluoride. Phosphorus diiodide, P 2 I 4 . Decomp. by H 2 0. Sol. in CS 2 . (Coren- winder, A. ch. (3) 30. 242.) Phosphorus ^'iodide, PI 3 . Very deliquescent. Decomp. in moist air and by H 2 0. (Corenwinder, A. ch. (3) 30. 242.) Very sol. in CS 2 . Phosphorus pentaiodide, PI 5 (?). (Hampton, C. N. 42. 180.) Phosphorus sw&oxide, P 4 0. Unchanged in dry, gradually oxidised in moist air. Insol. in H 2 0, alcohol, ether, and oils ; not acted on by HC1 + Aq ; oxidised by HN0 3 or H 2 S0 4 . (Marchand, J. pr. 13. 442.) SI. sol. in H 2 0. (le Verrier, A. 27. 167.) Forms hydrate P 4 0, 2H 2 0, which gives up its H 2 when dried. Two modifications : (a) decomp. slowly by H 2 or alkalies, (&) not decomp. by H 2 or alkalies. (Reinitzer and Goldschmidt, B. 13. 847.) Is oxyphosphuretted hydrogen (?), P 4 H(OH). (Franke, J. pr. (2) 35. 341.) H 3 P 5 0. Insol. in all solvents. Decomp. by H 2 0. Not attacked by non-oxidising acids. Decomp. by dil. alkalies. (Gautier, C. R. 76. 173.) - P 4 HO. Insol. in nearly all substances. Not attacked by dilute acids ; oxidised by ordinary HN0 3 , and cone. H 2 S0 4 at 200 Attacked by very dil. alkaline solutions. Perhaps identical with phosphorus sw&oxide P 4 0. (Gautier, C. R. 76. 49.) Phosphorus trioxide, P 4 6 (formerly P 2 3 ). Deliquescent, but very slowly dissolved by cold H 2 to form H 3 P0 3 . Violently decomp. by hot H 2 or alcohol. Sol. without decomp. in ether, carbon disul- phide, benzene, or chloroform. (Thorpe and Tutton, Chem. Soc. 57. 545.) Phosphorus ^roxide, P 2 4 . Very deliquescent. Sol. with evolution of heat in H 2 0. (Thorpe and Fulton, Chem. Soc. 49. 833.) Phosphorus pentoxide, P 2 5 . Very deliquescent. Sol. in H 2 with great evolution of heat, forming H 3 P0 4 . PHOSPHOBYL AMIDE 319 Phosphorus sulphur oxide, P 2 g , 3S0 3 = (PO) 2 (S0 4 ) 3 (phosphoryl sulphate) (?). Decomp. by H 2 0. Sol. in cold, more sol. in warm S0 3 . (Weber, B. 20. 86.) Phosphorus oxy- compounds. See under Phosphoryl compounds. Phosphorus oxysulphide. See Phosphorus sulphoxide. Phosphorus semiselenide, P 4 Se. Decomp. with H 2 0. Insol. in cold, decomp. by boiling KOH + Aq. Insol. in, but apparently decomp. by alcohol and ether. Easily sol. in CS 2 . (Hahn, J. pr. 93. 430.) Phosphorus monoselemde, P 2 Se. Stable in dry, decomp. in moist air and by H 2 0. Insol. in alcohol and ether. Decomp. by boiling KOH + Aq. CS 2 dissolves out P. (Hahn, J. pr. 93. 430.) SI. sol. in CS 2 . (Gore, Phil. Mag. (4) 30. 414.) Phosphorus triselemde, P 2 Se 3 . Decomp. by boiling H 2 and slowly in moist air. Easily sol. in cold KOH + Aq, less easily in M 2 C0 3 + Aq. Insol. in alcohol, ether, and CS 2 . (Hahn, J. pr. 93. 430.) Phosphorus pentaselenide, P 2 Se 5 . Slowly decomp. in moist air or by H 2 0, easily by KOH + Aq or alcohol. Insol. in CS 2 . Sol. in CC1 4 . (Hahn, J. pr. 93. 430.) Phosphorus selenides with M 2 Se. See M phosphoseleuide, under M. Phosphorus serazsulphide, P 4 S (?). 1. Liquid. Not decomp. by, and insol. in boiled H 2 0. Insol. in alcohol and ether. SI. sol. in fats and volatile oils ; decomp. by alkalies. Dissolves P on warming, with separ- ation on cooling. Sol. in CS 2 . 2. Red modification. Not attacked at first by HN0 3 + Aq (sp. gr. 1'22), but after a time is attacked with the greatest violence. Weak acids attack only when hot. (Berzelius, A. 46. 129.) Existence is doubtful. (Schulze, B. 13. 1862 ; Isambert, C. R. 96. 1628.) Phosphorus mowosulphide, P 2 S (?). 1. Ordinary. Same properties as phosphorus semisulphide 1. 2. Red modification. Unchanged by air, H 2 0, or alcohol. Decomp. by cone. KOH + Aq, not by dilute. SI. sol. m NH 4 OH + Aq. (Ber- zelius, A. 46. 129.) Existence is doubtful. (Schulze ; Isambert. ) Does not exist. (Helff, Z. phys. Ch. 12. 206.) Phosphorus sesquisulphide, P 4 S 3 . Not attacked by cold, slowly by hot H 2 0. Cold KOH + Aq dissolves with decomp. Oxidised by HN0 3 and aqua regia. Sol. in alcohol and ether with decomp. Sol. in CS 2 (100 pts. CS 2 dissolve 60 pts. P 4 S 3 ), PC1 3 , and PSC1 3 , and in K 2 S or Na 2 S + Aq. (Lemoine, Bull. Soc. (2) 1. 407.) Very sol. in CS 2 . (Rebs, A. 246. 367.) Phosphorus ^'sulphide, P 2 S 3 . Decomp. by water. (Kekule", A. 90. 310. ) Sol. in M 2 C0 3 + Aq with separation of S. Easily sol. in KOH, NaOH, NH 4 OH + Aq. (Berzelius, A. 46. 129.) Sol. in alcohol and ether. (Lemoine.) Correct formula is P 4 S 6 . (Isambert, C. R. 102. 1386.) Extremely si. sol. in CS 2 . (Rebs, A. 246. 368.) Existence doubtful. (Helff, Z. phys. Ch. 12. 210.) Phosphorus sulphide, P 4 S 7 . SI. sol. in CS 2 . (Mai, A. 265. 192.) Phosphorus ^'sulphide, P 3 S 6 (formerly P 2 S 4 ). Almost insol. in CS 2 . (Helff.) Phosphorus pentasulpbide, P 2 S 5 . Very deliquescent. Decomp. by H 2 0. Very sol. in KOH, NaOH, NH 4 OH + Aq. Sol. in M 2 C0 3 + Aq with separation of S at low temp. Decomposes alcohol, acetic acid, etc. (Kekule, A. 106. 331.) Sol. in CS 2 . (Isambert, C. R. 102. 1386.) Not very sol. in CS 2 . (Rebs, A. 246. 367.) Phosphorus ^ersulphide, P 2 S 12 (?). Decomp. by H 2 0, alkalies, etc. Consists of S, and mechanically united P. (Ramme, B. 12. 941.) Phosphorus sulphides with M 2 S. See M Phosphosulphide, under M. Phosphorus zinc sulphide, ZnP 3 S 2 . Sol. in HCl + Aq with separation of P 3 S (?). (Berzelius, A. 46. 150.) Phosphorus bisulphide ammonia, P 2 S 3 , 2NH 3 . Decomp. by H 2 0. (Bineau.) Phosphorus sulphobromide. See Thiophosphoryl bromide. Phosphorus sulphochloride. See Thiophosphoryl chloride. Phosphorus sulphoiodide, P 2 S 3 I. SI. attacked by cold, rapidly by hot H 2 ; violently decomp. by fuming HN0 3 . Easily sol. in CS 2 . SI. sol. in C 6 H 6 or CHC1 3 , and still less in ether or absolute alcohol. (Ouvrard, C. R. 115. 1301.) Phosphorus sulphoxide, P 4 6 S 4 . Deliquescent. Easily sol. in H 2 with de- comp. Sol. in 2 pts. CS 2 without decomp. Sol. in benzene with decomp. (Thorpe and Tutton, Chem. Soc. 59. 1019.) Phosphoryl ^'amide, PO(NH 2 ) 3 . Insol. in boiling H 2 0, KOH + Aq, or dil. acids. Decomp. by long boiling with HC1 or HN0 3 + Aq. More easily decomp. with aqua regia. Easily sol. in warm H 2 S0 4 or nitro- sulphuric acid. (Schiff, A. 101. 300.) (UNIVERSITY 320 PHOSPHORYL BROMIDE Does not exist. (Gladstone ; Mente, A. 248. 238.) Phosphoryl bromide, POBr 3 . Not raiscible with H 2 0, but gradually de- comp. in contact with it. Sol. in H 2 S0 4 , ether, oil of turpentine (Gladstone, Phil. Mag. (3) 35. 345) ; in CHC1 3 , CS 2 (Baudrimont, Bull. Soc. 1861. 118). Phosphoryl bromide sulphide. See Thiophosphoryl bromide. Phosphoryl bromochloride, POCl 2 Br. Decomp. by H 2 0. (Menschutkin, A. 139. 343.) Phosphoryl dibromochloride, POClBr 2 . Decomp. by H 2 0. (Geuther, Jena. Zeit. 10. 130.) Phosphoryl chloride, POC1 3 . Decomp. by H 2 0. Not acted on by liquid C0 2 , P, PH 3 , CS 2 , I, Br, Cl, etc. Phosphoryl boron chloride, POC1 3 , BC1 3 . See Boron phosphoryl chloride. Phosphoryl stannous chloride, POC1 3 , SnCl 2 . Deliquescent. Decomp. by H 2 0. (Cassel- mann, A. 91. 242.) Phosphoryl stannic chloride, POC1 3 , SnCl 4 . Deliquescent. Decomp. by H 2 0. (Cassel- mann. ) Phosphoryl titanium chloride, POC1 3 , Ti01 4 . Deliquescent, and decomp. by H 2 0. (Weber, Pogg. 132. 453.) PT/rophosphoryl chloride, P 2 3 C1 4 . Decomp. violently with H 2 0. (Geuther and Michaelis, B. 4. 766.) Metaphosphoryl chloride, P0 2 C1. Decomp. by H 2 0. (Gustavson.) Does not exist. (Michaelis.) Phosphoryl fluoride, POF 3 . Absorbed and decomp. at once by H 2 or alcohol. (Moissan, C. R. 102. 1245.) Phosphoryl imidoamide, PN 2 H 3 = PO(NH)NH 2 . Insol. in H 2 ; gradually decomp. by boiling with H 2 0, more rapidly in presence of KOH. Insol. in boiling cone. HCl + Aq. Insol. in cold, decomp. by hot H 2 S0 4 . Moderately dil. H 2 S0 4 + Aq dissolves without evolution of gas. Insol. in boiling nitric or nitrosulphuric acid. (Gerhardt, A. ch. (3) 20. 255.) Insol. in alcohol, oil of turpentine, etc. Phosphoryl iodide, P 3 I 6 8 (?). Sol. in H 2 0, alcohol, and ether. (Burton, Am. Ch. J. 3. 280.) P0 2 I 2 . (Burton.) Phosphoryl nitride, PON. Insol. in H 2 0, acids, or alkalies. (Gladstone, Chem. Soc. 2. 121.) Phosphoryl thio- compounds. See Thiophosphoryl compounds. Phosphoselenide, M. See under M. Phosphosilicic acid. See Silicophosphoric acid. Phosphosilicovanadic acid, 3Si0 2 , 2V 2 6 , 2P 2 5 + 6H 2 0. Sol. in H 2 0. (Berzelius.) Phosphosulphide, M. See under M. Phosphosulphuric anhydride, P 2 6 , 3S0 3 . Very easily decomp. (Weber, B. 19. 3190.) Phosphotungstic acid, P 2 5 , 12W0 3 + 42H 2 0. Not efflorescent. Sol. in H 2 0, alcohol, and ether. (Pechard, C. R. 110. 754.) P 2 5 , 16W0 3 + 69H 2 0. Very efflorescent. Sol. in H 2 0, alcohol, and ether. (Pechard, C. R. 109. 301.) + ccH 2 = H 5 PW 8 29 + H 2 (a - phospho- luteotungstic acid). Known only in aqueous solution. (Kehrmann, B. 20. 1808.) + 48H 2 = H 3 PW 8 28 + 16H 2 (a - anhydro- phospholuteotungstic acid). Sol. in its crystal H 2 by warmth of the hand ; sol. in less than fcpt. H 2 0. (Kehrmann.) Correct composition is represented by H 3 PW 9 31 + 9H 2 0. (Kehrmann, Z. anorg. 1. 422.) P 2 5 , 20W0 3 + 8H 2 0. Very efflorescent. (Gibbs, B. 10. 1386.) + 1 9H 2 = H U PW 10 38 + 8H 2 0. Sol. in H 2 0. (Scheibler, B. 5. 801.) + 50, and 62H 2 0. Very efflorescent. (Pechard, C. R. 109. 301.) 3H 2 0, P 2 5 , 21W0 3 + 30H 2 0. Efflorescent. Sol. in H 2 in nearly every proportion. P 2 5 , 22W0 3 + 28H 2 = H 5 PW n 43 + 18H 2 0. Efflorescent. (Scheibler, B. 5. 801.) Composition is 6H 2 0, 22W0 3 , P 2 5 + 45H 2 0. (Gibbs.) P 2 5 , 24W0 3 + 40H 2 = 6H 2 0, P 2 5 , 24W0 3 + 34H 2 0. Very efflorescent. Sol. in H 2 0. (Gibbs.) + 61H 2 0. Sol. in H 2 0. (Gibbs, Proc. Am. Acad. 16. 116.) + 53H 2 = 6H 2 0, P 2 5 , 24W0 3 + 47H 2 0. Sol. in H 2 0. (Gibbs.) Sol. in ether. If an equal vol. of ether is placed above a layer of cone, aqueous solution of acid, oily drops form between the two layers, which sink to bottom* forming a third layer. The sp. gr. of the latter is 1 '525. The crys- tallised acid dissolved in smallest amt. ether forms an oil of sp. gr. = 2 '083. Ethereal solu- tion is miscible with alcohol, and also with a large quantity of H 2 0. (Drechsel, B. 20. 1452.) Ammonium phosphotungstate, 2(NH 4 ) 2 0, P 2 5 , 12W0 3 + 5H 2 0. Insol. in cold H 2 0. (Pechard, C. R. 110. 754.) 6(NH 4 ) 2 0, P 2 5 , 16W0 3 + 10H 2 0. Easily sol. in hot H 2 0. (Pechard.) PHOSPHOTUNGSTATE, POTASSIUM 321 5(NH 4 ) 2 0, P 2 5 , (NHJgPWgO^ + zHaO (Ammonium a-phos- pholuteotungstate). SI. sol. in H 2 0. (Kehr- mann. ) 3(NH 4 ) 2 0, P 2 5 , 16W0 3 + 16H 2 = (NH 4 ) 3 PW 8 28 + 8H 2 (Ammonium a-anhydro- phospholuteotungstate). Efflorescent. Easily sol. in H 2 0. (Kehrmann.) 3(NH 4 ) 2 0, PA, 21W0 3 + a;H 2 0. Rather si. sol. in cold, easily in hot H 2 and alcohol. Insol. in sat. NH 4 Cl + Aq. (Kehrmann and Freinkel, B. 25. 1972.) 3(NH 4 ) 2 0, 3H 2 0, P 2 5 , 22W0 3 +18H 2 0. SI. sol. in cold H 2 0. (Gibbs.) 3(NH 4 ) 2 0, 3H 2 0, P 2 5 , 24W0 3 + 26H 2 0. Very si. sol. even in hot H 2 0. (Gibbs, Proc. Am. Acad. 16. 122.) Ammonium barium a-anhydrophoapholuteo- tungstate, NH 4 BaPW 8 028+ccH 2 = (NH 4 ) 2 0, 2BaO, P 2 5 , 16W0 3 +aH 2 0. Sol. inH 2 0. (Kehrmann.) Barium phosphotungstate, 2BaO, P 2 5 , 12W0 3 + 15H 2 0. Very efflorescent. Sol. in H 2 ; insol. in alcohol. (Pechard, C. R. 110. 754.) 3BaO, P 2 5 , 16 jH 2 (Barium a-anhydroluteotungstate). Not efflorescent. Quite difficultly sol. in H 2 0. (Kehrmann.) 2BaO, P 2 5 , 16W0 3 + 10H 2 0. Efflorescent. (Pechard, A. ch. (6) 22. 240.) 2BaO, 6H 2 0, P 2 5 , 20W0 3 + 24H 2 0. Sol. in H 2 0. (Gibbs, B. 10. 1386.) 6BaO, 2H 2 0, P 2 5 , 20W0 3 + 46H 2 0. Sol. in H 2 0. (Gibbs, Proc. Am. Acad. 16. 126.) 7BaO, P 2 5 , 22W0 3 + 59H 2 0. Sol. in H 2 0. (Sprenger, J. pr. (2) 22. 418.) + 53H 2 0. (Kehrmann, B. 24. 2335.) 4BaO, 2H 2 0, P 2 5 , 22W0 3 + 39H 2 0. Sol. in H 2 without decomp. (Gibbs.) BaO, P 2 5 , 24W0 3 + 59H 2 0. Sol. in H 2 0. (Sprenger. ) 2BaO, P 2 5 , 24W0 3 + 59H 2 0. Sol. in H 2 0. (Sprenger. ) 3BaO, P 2 5 , 24W0 3 + 46H 2 = 3BaO, 3H 2 0, PA, 24W0 3 + 43H 2 0. Easily sol. in hot H 2 0. (Gibbs.) + 58H 2 0. Sol. inH 2 0. (Sprenger.) Efflorescent. SI. sol. in dil. BaCl 2 + Aq. (Kehrmann, Z. anorg. 1. 423.) Barium potassium phosphotungstate, 5 BaO, 2K 2 0, P 2 5 , 22W0 3 + 48H 2 0. Sol. in H 2 0. (Kehrmann and Freinkel, B. 25. 1968.) Barium silver phosphotungstate, 4BaO, 3Ag 2 0, P 2 5 , 22W0 3 + 34H 2 0. Very si. sol. in H 2 0. (Kehrmann and Freinkel, B. 25. 1966.) Barium sodium phosphotungstate, 2BaO, Na 2 0, P 2 5 , 24W0 3 + 46H 2 0. Sol. in H 2 0, forming cloudy liquid, which clears up. Solution in HC1 is not cloudy. (Brandhorst and Kraut, A. 249. 380.) Calcium phosphotungstate, CaO, 5H 16W0 3 , P 2 5 + 3H 2 0. Readily sol. in H 2 0. (Gibbs, Proc. Am. Acad. 16. 130.) 2CaO, P 2 5 , 12W0 3 + 19H 2 0. Efflorescent. Insol. in alcohol. (Pechard, C. R. 110. 754.) 2CaO, P 2 5 , 20W0 3 + 22H 2 0. Efflorescent. (Pechard, A. ch. (6) 22. 233.) Cadmium phosphotungstate, 2CdO, PA, 12W0 3 + 13H 2 0. SI. efflorescent. Very sol. in H 2 0. (Pechard, C. R. 110. 754.) Cupric phosphotungstate, 3CuO, 24W0 3 , P 2 5 + 58H 2 0. Sol. in H 2 0. (Sprenger, J. pr. (2) 22. 418.) 2CuO, P 2 5 , 12W0 3 +11H 2 0. Very efflores- cent. (Pechard, C. R. 110. 754.) 2CuO, P 2 5 , 20W0 3 + 13H 2 0. Efflorescent. (Pechard, A. ch. (6) 22. 235.) Lead phosphotungstate, 2PbO, P 2 5 , 12W0 3 + 6H 2 0. Insol. in cold, sol. in boiling H 2 0. (Pechard, C. R. 110. 754.) 2PbO, P 2 5 , 20W0 3 + 6H 2 0. Sol. in boiling H 2 0. (Pechard, A. ch. (6) 22. 236.) Lithium phosphotungstate, Li 2 0, P 2 O 5 , 12W0 3 + 21H 2 0. Sol. in H 2 0. (Pechard, C. R. 110. 754.) Magnesium phosphotungstate, 2MgO, P 2 5 , 12W0 3 . SI. efflorescent. (Pechard, C. R. 110. 754.) 2MgO, P 2 5 , 20W0 3 + 19H 2 0. SI. efflores- cent. (Pechard, A. ch. (6) 22. 234.) Mercurous phosphotungstate. Insol. in dil. HN0 3 + Aq. (Pechard, C. R. 110. 754.) Potassium phosphotungstate, K 2 0, P 2 5 , 12W0 3 + 9H 2 0. Insol. in cold, si. sol. in hot H 2 0. (Pechard, C. R. 110. 754.) 5K 2 0, PA, 16W0 8 + ajH 2 = K 5 PW 8 O a9 + a;H 2 (Potassium a-phospholuteotungstate). Very si. sol. in cold, more easily in hot H 2 0. Sol. in cold dil. HN0 3 + Aq. (Kehrmann.) 3K 2 0, P 2 5 , 16W0 3 + 16H 2 = K 3 PW 8 28 + 8H 2 (Potassium a-anhydrophospholuteo- tungstate). Efflorescent. Easily sol. in H 2 0. (Kehrmann.) K 2 0, 5H 2 0, P 2 5 , 18W0 3 + 14H 2 0. Very si. sol. in H 2 0. (Gibbs.) 6KP, P 2 5 , 18W0 3 + 30H 2 0, and 23H 2 0. The 23H 2 salt is more sol. in H 2 than the 30H 2 Osalt. (Gibbs.) 7^0, H 2 0, P 2 5 , 20W0 3 + 27H 2 0. Sol. in H 2 0. (Gibbs, B. 10. 1386.) K 2 0, P 2 5 , 20WOo + 5H 2 0. Nearly insol. in H 2 0. (Pechard, A. ch. (6) 22. 231.) 8K 2 0, P 2 5 , 20W0 3 + 18H 2 0. SI. sol. in H 2 0. (Gibbs.) 3K 2 0, P 2 5 , 21W0 3 + 31H 2 0. Easily sol. in cold H 2 or alcohol. Much less sol. in very 322 PHOSPHOTUNGSTATE, POTASSIUM LEAD dil. HCl+AqorKCl + Aq. Decomp. by boiling H 2 0. (Kehrmann and Freinkel, B. 25. 1971.) 2K 2 0, 4H 2 0, P 2 5 , 22W0 3 + 2H 2 0. Very si. sol. in H 2 0. (Gibbs.) 7K 2 0, P 2 5 , 22W0 3 + 31H 2 0. Easily sol. in cold or hot H 2 0. Insol. in alcohol. (Kehr- mann, B. 25. 1966.) 3K 2 0, 3H 2 0, P 2 5 , 24W0 3 + 8, and 14H 2 0. Sol. in a large amount of H 2 with partial de- comp. (Gibbs, Proc. Am. Acad. 16. 120.) Practically insol. in H 2 0. Easily sol. in NH 4 OH, alkalies, or alkali carbonates + Aq. (Kehrmann, B. 24. 2329.) 6K 2 0, P 2 5 , 24W0 3 + 18H 2 0. Sol. in H 2 0. (Gibbs, Proc. Am. Acad. 15. 1.) Potassium lead a-phosphofo^eotungstate. SI. sol. in H 2 0. (Kehrmann.) Silver phosphotungstate, Ag 2 O, P 2 5 , 12W0 3 + 8H 2 0. Ppt. Insol. in H 2 0. (Pechard, C. R. 110. 754.) 5Ag 2 0, P 2 5 , 16W0 3 +a;H 2 = Ag 5 PW 8 29 + eH 2 (Silver a-phospholuteotungstate). Ppt. (Kehrmann. ) 3Ag 2 0, P 2 5 , 2 , 25 , 3 2 = 3828 8H 2 (Silver a-anhydrophospholuteotung- state). Easily sol. in H 2 0. (Kehrmann.) Ag 2 0, 24W0 3 , P 2 5 + 60H 2 0. Insol. in H 2 0. 3Ag 2 0, 24W0 3 , P 2 5 + 58H 2 0. Insol. in H 2 0. (Sprenger, J. pr. (2) 22. 418.) Sodium phosphotungstate, 3Na 2 0, P 2 5 , 7W0 3 +Aq. Sol. in H 2 0. (Kehrmann, Z. anorg. 1. 437.) 5Na 2 0, 11H 2 0, 2P 2 5 , 12W0 3 + 26H 2 = Na 5 H n P 2 W 6 3 i + 13H 2 (?). (Scheibler, B. 5. 801.) 2Na 2 0, P 2 5 , 12W0 3 + 18H 2 0. Sol. in H 2 0. Insol. in alcohol. (Pechard, C. R. 110. 754.) 5Na 2 0, 14W0 3 , 2P 2 5 + 42H 2 0. Easily sol. in H 2 0. (Gibbs.) Na 2 0, P 2 5 , 20W0 3 + 23H 2 = Na 2 0, 7H 2 0, P 2 5 , 20W0 3 + 16H 2 0. Easily sol. in H 2 0. (Gibbs.) + 25H 2 0. SI. efflorescent ; very sol. in H 2 ; insol. in alcohol. (Pechard, A. ch. (6) 22. 227.) 2Na ? 0, P 2 5 , 20W0 3 + 10H 2 0. Sol. in H 2 ; insol. in alcohol. (Pechard.) + 30H 2 0. (P.) 3Na 2 0, Po0 5 , 20W0 3 + 32H 2 0. As above. (P.) 2Na 2 0, P 2 5 , 22W0 3 + 9H 2 0. Very si. sol. inH 2 0. (Gibbs.) 3Na 2 0, P 2 5 , 24W0 3 + 22H 2 0. Sol. in H 2 0. (Brandhorst and Kraut, A. 249. 379.) 2Na 2 0, 4H 2 0, 24W0 3 , P 2 5 + 23H 2 0. Readily sol. in H 2 0. (Gibbs, Proc. Am. Acad. 16. 118.) Sp. gr. at 20 of solutions of 2Na 2 0, 4H 2 0, P 2 5 , 24W0 3 + 23H 2 containing: 10-22 20-94 31 -14% salt, 1-085 1-190 1-316 42-61 52-92 64-11 % salt. 1-496 1702 2-001 or, by calculation, a = ; lised salt, /3=sp. gr. if . gr. if % is crystal- is anhydrous salt : 25 % salt, 1-237 1-262 50 % salt, 1-640 1-734 20 1-181 1-199 45 1-538 1-613 5 10 15 a 1-040 1-084 1-131 /3 1-044 1-092 1-143 30 35 40 a 1-299 1-370 1*449 |8 1-333 1-414 1-507 55 60 64 % salt, a 1-754 1-884 1-998 /3 1-872 (Brandhorst and Kraut, A. 249. 377.) Strontium phosphotungstate, 2SrO, P 2 5 , (Pechard, T1 2 0, P 2 5 , Sol. in H 2 0. Insol. in alcohol. C. R. 110. 754.) Thallium phosphotungstate, 12W0 3 + 4H 2 0. Ppt. (Pechard, C. R. 110. 754.) Zinc phosphotungstate, 2ZnO, P 2 5 , 12W0 3 + 7H 2 0. Efflorescent. (Pechard, C. R. 110. 754.) Monometaphosphot\mgstic acid. Ammonium wofiowetaphosphotungstate, (NH 4 ) 2 0, 2NH 4 P0 3 , 18W0 3 + 11H 2 0. SI. sol. in cold H 2 0. Potassium mowom^aphosphotungstate, 3K 2 0, 2KP0 3 , 24W0 3 + 20H 2 0. Very si. sol. in H 2 0. (Gibbs, Am. Ch. J. 7. 319.) O^owetophosphotungstic acid. Potassium sodium or^oraetaphosphotungstate, 2K 2 0, 4Na 2 0, 6NaP0 3 , 6K 3 P0 4 , 22W0 3 + 42H 2 0. SI. sol. in H 2 0. (Gibbs, Am. Ch. J. 7. 319.) /fyrophosphotungstic acid. Ammonium sodium ^rophosphotungstate, 6(NH 4 ) 4 P 2 7 , 3Na 4 P 2 7 , 2(NH 4 ) 2 0, 22W0 3 +31H 2 0. Nearly insol. in cold H 2 or NH 4 OH + Aq. Sol. in a large amount of hot H 2 0. Potassium ^rophosphotungstate, 9K 4 P 2 7 , 22W0 3 + 49H 2 0. Very si. sol. in cold H 2 0. 6K 4 P 2 7 , 3H 4 P 2 7 , 22W0 3 , K 2 0, H 2 + 42H 2 0. SI. sol. in cold. Sol. in much boiling H 2 0. (Gibbs, Am. Ch. J. 7. 392.) Phosphovanadic acid, P 2 5 , V 2 6 , 2H 2 + 9H 2 0. Sol. in H 2 0. is vanadium phosphate : 2 0. (Friedheim, B. 23. Composition (V0 2 )H 2 P0 4 + 1531.) This is the only "acid" which exists. (F.) P 2 5 , V 2 5 + 14H 2 0. Sol. in H 2 ; can be recryst. from dil. H 3 P0 4 + Aq. (Ditte, C. R. 102. 757.) 3P 2 5 , 2V 2 6 + 9H 2 0. Sol. in H 2 0. (Ditte.) P 2 5 , 3Vo0 5 . (Berzelius.) PLATINAMINE COMPOUNDS 323 3H 2 0, 7P 2 5 , 6V 2 5 + 34H 2 0. Sol. in H 2 0. Decomp. by much H 2 into 6H 2 0, P 2 5 , 20V 2 5 + 53H 2 0. Sol. in H 2 0. (Gibbs, Am. Ch. J. 7. 209.) Ammonium phosphovanadate, (NH 4 ) 2 0, P 2 5 , V 2 5 + H 2 0. SI. sol. in cold H 2 0. (Gibbs, Am. Ch. J. 7. 209.) + 3H 2 0. Composition is ( V0 2 )(NH 4 )HP0 4 + H 2 0. (Friedheim.) (NH 4 ) 2 0, P 2 5 , 2V 2 5 + 7H 2 0. Easily sol. in H 2 0. (Gibbs.) SI. sol. in H 2 0. (Fried- heim.) Composition is (NH 4 ) 2 0, V 2 5 , + 2( V0 2 )H 2 P0 4 + 5H 2 0. (Friedheim. ) 5(NH 4 ) 2 0, 2P 2 5 , 3V 2 5 + 24H 2 0. Easily sol. in H 2 0. (Ditte, C. R. 102. 1019.) Could not be obtained. (Friedheim.) 5(NH 4 ) 2 0, 4P 2 5 , 2V 2 5 + 24H 2 0. As above. (Ditte.) Could not be obtained. (Friedheim.) 7(NH 4 ) 2 0, P 2 5 , 12V 2 5 + 26H 2 0. Easily sol. in H 2 0. Composition is 2(NH 4 ) 2 HP0 4 + 5(NH 4 ) 2 0, 12V 2 5 + 25H 2 0. (Friedheim.) Potassium phosphovanadate. K 2 0. PoO*. 2V 2 5 + 7H 2 0. SI. sol. in H 2 ; decomp. thereby to 7K 2 0, 12V 2 5 , P 2 5 + 26H 2 0. Composition is K 2 0, V 2 5 + 2( V0 2 )H 2 P0 4 + 5H 2 0. (Friedheim.) 3K 2 0, 4P 2 5 , 6V 2 5 + 21H 2 0. SI. sol. in H 2 0. (Gibbs.) 7K 2 0, P 2 5 , 12V 2 5 + 26H 2 0. Easily sol. in H 2 0. Composition is 2K 2 HP0 4 + 5K 2 0, 12V 2 5 + 25H 2 0. (Friedheim.) Silver phosphovanadate, 2Ag 2 0, P 2 5 , V 2 5 + 5H 2 0. SI. sol. in cold or hot H 2 0. (Gibbs.) Phosphovanadicovanadic acid. Ammonium phosphovanadicovanadate, 7(NH 4 ) 2 0, 2P 2 5 , V0 2 , 18V 2 5 + 50H 2 0. Sol. in H 2 0. (Gibbs, Am. Ch. J. 7. 209.) 7(NH 4 ) 2 0, 14P 2 5 , 16V0 2 , 6V 2 5 + 65H 2 0. Decomp. by boiling with H 2 into 5(NH 4 ) 2 0, 10P 2 5 , 11V0 8 , V 2 5 + 41H 2 0. Sol. inH 2 0. (Gibbs.) Potassium , 5K 2 0, 12P 2 5 , 12Y0 2 , 6V 2 5 + 40H 2 0. Decomp. by hot H 2 into 7K 2 0, 12P 2 5 , 14V0 2 , 6V 2 5 + 52H 2 0. Sol. inH 2 0. (Gibbs.) Sodium , 4^0, 5P 2 5 , V0 2 , 4V 2 5 + 37H 2 0. Insol. inH 2 0. (Gibbs.) Phosphovanadiomolybdic acid. Ammonium phosphovanadiomolybdate, 7(NH 4 ) 2 0, 2P 2 5 , V 2 5 , 48Mo0 3 + 30H 2 0. SI. sol. in cold, somewhat more in hot H 2 with partial decomp. (Gibbs, Am. Ch. J. 5. 391.) 8(NH 4 ) 2 0, P 2 5 , 8V 2 O g , 14Mo0 3 + 50H 2 0. Easily sol. in hot H 2 6 without decomp. (Gibbs.) Phosphovanadiotungstic acid. Ammonium phosphovanadiotungstate, 10(NH 4 ) 2 0, 3P 2 5 , V 2 5 , 60W0 3 + 60H 2 0. Nearly insol. in cold, si. sol. in hot H 2 Sol. in (NH 4 ) 2 HP0 4 + Aq, and in NH 4 OH + Aq. 5(NH 4 ) 2 0, P 2 5 , 3V 2 5 , 16W0 3 + 37H 2 0. Easily sol. in H 2 0. (Gibbs, Am. Ch. J. 5. 391.) Barium , ISBaO, 3P 2 5 , 2V 2 5 , 60W0 3 + 144H 2 0. Easily sol. in hot H 2 with decomp. (Gibbs, Am. Ch. J. 5. 391.) Potassium , 3K 2 0, P 2 5 , V 2 5 , 7W0 3 + 11H 2 0. Sol. in H 2 0. 8^0, 3P 2 5 , 4V 2 5 , 18W0 3 + 23H 2 0. Sol. in hot H 2 with decomp. into preceding salt. (Gibbs, Am. Ch. J. 5. 391.) Phosphovanadiovanadicotungstic acid. Barium phosphovanadiovanadicotungstate, ISBaO, 3P 2 5 , V 2 5 , V0 2 , 60W0 3 + 150H 2 0. SI. sol. in cold, easily sol. in hot H 2 0. (Gibbs, Am. Ch. J. 5. 391.) Phosphuretted hydrogen. See Hydrogen phosphide. Platibromonitrous acid. Potassium platibromonitrite, K 2 Pt(N0 2 ) 4 Br 2 . Rather si. sol. in H 2 0. (Blomstrand, J. pr. (2) 3. 214.) Sol. in about 40 pts. cold, and 20 pts. boiling H 2 0. Insol. in alcohol. SI. sol. in KBr or KN0 2 + Aq. (Vezes, A. ch. (6) 29. 198.) K 2 Pt(N0 2 ) 3 Br 3 . Sol. in about 5 pts. warm H 2 O with decomp. (Vezes.) K 2 Pt(N0 2 ) 2 Br 4 . Sol. in less than 5 pts. H 2 with decomp. (Vezes.) Platichloronitrous acid. Potassium platichloronitrite, K 2 Pt(N0 2 ) 4 Cl 2 . Rather si. sol. in H 2 0. (Blomstrand, J. pr. (2) 3. 214.) Sol. in 40 pts. cold, and 20 pts. boiling H 2 0. Insol. in alcohol. SI. sol. in KC1 or KN0 2 + Aq. (Vezes, A. ch. (6) 29. 183.) K 2 Pt(N0 2 ) 3 Cl 3 . Very sol. in H 2 0. ( Vezes. ) K 2 Pt(N0 2 )Cl 5 . Sol. in H 2 with decomp. (Vezes.) Platiiodonitrous acid. Potassium platiiodonitrite, K 2 Pt(N0 2 ) 2 I 4 . SI. sol. in cold, more easily in hot H 2 ; de- comp. by boiling. (Vezes, A. ch. (6) 29. 207.) K 2 Pt(N0 2 )I 5 . As above. (Vezes.) Platin-. See also Platino-, plato-, plat-, and platos-. Platin^'amine compounds. See Chloro-, bromo-, hydroxylo-, iodo-, ni- trato-, nitrito-, sulphato-, etc., platinc?*- amine compounds. 324 PLATINAMINE CARBONATE Platin^'amine carbonate, Pt(NH 3 ) e (C0 3 ) 2 . Ppt. Sol. in NaOH + Aq. (Gerdes, J. pr. (2)26. 257.) chloride, Pt(NH 3 ) 6 Cl 4 . Sol. in hot H 2 0. (Gerdes.) chloroplatinate, Pt(NH 3 ) 6 Cl 4 , PtCl 4 + 2H 2 0. Very si. sol. in H 2 0. (Gerdes.) nitrate, Pt(NH 3 ) 6 (N0 3 ) 4 . Easily sol. in H 2 ; si. sol. in HN0 3 + Aq. (Gerdes.) sulphate, Pt(NH 3 ) 6 (S0 4 ) 2 +H 2 0. Nearly insol. in H 2 0. (Gerdes.) :ZWraplatinamine iodide, Pt 4 (NH 3 ) 8 I 10 . (Blomstrand, B. 16. 1469.) Ocfoplatinamine iodide, Pt 8 (NH 3 ) 16 I 18 . (Blomstrand. ) Platinic acid. Barium platinate, basic (?), 3BaO, 2Pt0 2 . Insol. in HC 2 H 3 2 + Aq ; easily sol. in HC1 + Aq. (Rousseau. ) Barium platinate, BaPt0 3 . (Rousseau, C. R. 109. 144.) + H 2 0. Insol. in dil. HN0 3 + Aq ; sol. in warm HCl + Aq. (Topsoe, B. 3. 464.) + 4H 2 0. Very si. sol. in H 2 0, Ba0 2 H 2 , or NaOH + Aq. Easily sol. in dil. acids, except HC 2 H 3 2 , in which it is insol. in the cold, but decomp. on heating. (Topsoe, I.e.) Composition is 3BaPt0 3 , BaCl 2 , PtCl 2 + 4H 2 (?). (Johannsen, A. 155. 204.) Calcium platinate chloride (?), 2Ca 2 Pt 2 5 Cl 2 + 7H 2 (?). "Herschel's precipitate." Easily sol. in HCl + Aq, and in HN0 3 + Aq, if freshly pptd. (Herschel.) Very sol. in HN0 3 + Aq. (Weiss and Dobereiner, A. 14. 252.) Composition is CaPt0 3 , PtCl 2 0, CaO + 7H 2 (?). (Johannsen, A. 155. 204.) Potassium platinate. Sol. inH 2 0. (Berzelius.) Sodium platinate, Na 2 0, 3Pt0 2 + 6H 2 0. Dil. acids dissolve out Na 2 and leave Pt0 2 . Sol. in HN0 3 + Aq. (Dobereiner, Pogg. 28. 180.) Platinimolybdic acid, 4H 2 0, Pt0 2 , iOMo0 3 . (Gibbs.) Silver platinimolybdate. Sodium , 4Na 2 0, Pt0 2 , 10Mo0 3 + 29H 2 0. Sol. in H 2 0. (Gibbs, Sill. Am. J. (3) 14. 61.) Platinitungstic acid. Ammonium platinitungstate, 4(NH 4 ) 2 0, Pt0 2 , 10W0 3 + 12H 2 0. Sol. in H 2 0. (Gibbs, B. 10. 1384.) Potassium platinitungstate, 4K 2 0, Pt0 2 , 10W0 3 + 9H 2 0. Sol. in H 2 0. (Gibbs.) Sodium , 4Na 2 0, Pt0 2 , 10W0 3 + 25H 2 0. Sol. inH 2 0. (Gibbs.) 5Na 2 0, 7W0 3 , 2Pt0 2 +35H 2 0. Sol. in H 2 0. (Gibbs.) Is double salt 3Na 2 0, 7W0 3 + 2Na2Pt0 3 . (Rosenheim, B. 24. 2397.) Platino-. See also Plato-. Platinochlorophosphoric acid. See Chloroplatinophosphoric acid. Platinocyanhydric acid, H 2 Pt(CN) 4 . Deliquescent. Very sol. in H 2 0, alcohol, and ether. Ammonium platinocyanide, (NH 4 ) 2 Pt(CN) 4 + 3H 2 0. Very sol. in H 2 0. + 2H 2 0. Sol. in 1 pt. H 2 0, and still more easily in alcohol. + H 2 0. Ammonium hydroxylamine platinocyanide NH 4 (NH 4 0)Pt(CN) 4 + 3iH 2 0. Sol. in H 2 0. (Scholz, M. Ch. 1. 900.) Ammonium magnesium platinocyanide (NH 4 ) 2 Mg[Pt(CN) 4 ] 2 + 6H 2 0. Barium platinocyanide, BaPt(CN) 4 + 4H 2 0. Sol. in 33 pts. H 2 at 16, and in much les at 100. Sol. in alcohol. Barium potassium platinocyanide, BaK 2 [Pt(CN) 4 ] 2 . Sol. in H 2 0. Barium rubidium platinocyanide, BaRb 2 [Pt(CN) 4 ] 2 . Sol. in H 2 0. Cadmium platinocyanide, CdPt(CN) 4 . Ppt. Sol. in NH 4 OH + Aq. (Martius, A 117. 376.) CdPt(CN) 4 , 2NH 3 + H 2 0. (M.) Calcium platinocyanide, CaPt(CN) 4 + 5H 2 0. Very sol. in H 2 0. Calcium potassium platinocyanide, CaK 2 [Pt(CN) 4 ] 2 . Sol. in H 2 0. Cerium platinocyanide, Ce 2 [Pt(CN) 4 ] 3 + 18H 2 Sol. in H 2 0. Cobaltous platinocyanide ammonia, CoPt(CN) 4 , 2NH 3 . Insol. in H 2 0, but sol. in hot NH 4 OH + Aq. Cupric platinocyanide, CuPt(CN) 4 + H 2 0. Ppt. Cupric platinocyanide ammonia, CuPt(CN) 4 2NH 3 + H 2 0. CuPt(CN) 4 , 4NH 3 . Sol. in H 2 0, alcoho and ether. PLATINOSULPHOCYANIDE, SODIUM 325 Didymium platinocyanide, Di 2 [Pt(CN) 4 ] 3 + 18H 2 0. Efflorescent in dry air. Sol. in H 2 0. (Cleve.) Erbium platinocyanide, Er 2 [Pt(CN 4 )] 3 + 21H 2 0. Sol. inH 2 0. (Cleve.) Hydroxylamine platinocyanide, (NH 4 0) 2 Pt(CN) 4 + 2H 2 0. Deliquescent. Very sol. in H 2 0. (Scholz.) Hydroxylamine lithium platinocyanide, (NH 4 0)LiPt(CN) 4 + 3H 2 0. Sol. in H 2 0. Lanthanum platinocyanide, La 2 [Pt(CN) 4 ] 3 + 18H 2 0. Easily sol. in H 2 0. (Cleve.) Magnesium platinocyanide, MgPt(CN) 4 +- 7H 2 0. Sol. in 3-4 pts. H 2 at 16. Easily sol. in alcohol and ether. + 2H 2 0. + 5H 2 0. Magnesium potassium platinocyanide, MgK 2 [Pt(CN) 4 ] 2 + 7H 2 0. Sol. in H 2 0. Mercuric platinocyanide, HgPt(CN) 4 . Ppt. Mercuric platinocyanide nitrate, 5HgPt(CN) 4 , Hg(N0 3 ) 2 + 10H 2 0. Ppt. Nickel platinocyanide ammonia, NiPt(CN) 4 , 2NH 3 + H 2 0. Potassium platinocyanide, K 2 Pt(CN) 4 + 3H 2 0. Extremely efflorescent. SI. sol. in cold, easily in hot H 2 0. (Willm, B. 19. 950.) Sol. in alcohol and ether. Potassium sodium platinocyanide, K 2 Pt(CN) 4 , Na 2 Pt(CN) 4 + 6H 2 0. Sol. in H 2 0. (Willm, B. 19. 950.) Samarium platinocyanide, Sm 2 [Pt(CN 4 )] 3 + 18H 2 0. Sol. in H 2 0. (Cleve.) Silver platinocyanide, Ag 2 Pt(CN) 4 . Insol. in H 2 0. Sol. in NH 4 OH + Aq. Silver platinocyanide ammonia, Ag 2 Pt(CN) 4 , 2NH 3 . Sol. inNH 4 OH + Aq. Sodium platinocyanide, Na 2 Pt(CN) 4 -f 3H 2 0. Easily sol. in H 2 0. (Willm, Z. anorg. 4. 298.) ' Sol. in alcohol. Strontium platinocyanide, SrPt(CN) 4 + 5H 2 0. Sol. in H 2 0. Thallous platinocyanide, Tl 2 Pt(CN) 4 . Nearly insol. in cold, si. sol. in hot H 2 0. (Friswell, Chem. Soc. 24. 461.) Thallous platinocyanide carbonate, 2Tl 2 Pt(CN) 4 , T1 2 C0 3 . Nearly insol. in cold H 2 0. (F.) Thorium platinocyanide, Th[Pt(CN) 4 ] 2 -f 16H 2 0. Somewhat difficultly sol. in cold, easily in hot H 2 0. (Cleve, Sv. V. A. H. Bih. 2. No. 6.) Yttrium platinocyanide, Y 2 [Pt(CN) 4 ] 3 + 21H 2 0. Easily sol. in H 2 0. Insol. in absolute alcohol. (Cleve and Hoglund.) ammonia, ZnPt(CN) 4 , Zinc platinocyanide 2NH 3 + H 2 0. Platinonitrous acid. See Platonitrous acid. Platinoselenostannic acid. See under Selenostannate, platinum. Platinososulphocyanhydric acid, H 2 Pt(SCN) 4 . Known only in aqueous solution. Potassium platinososulphocyanide, K 2 Pt(SCN) 4 . Permanent. Sol. in 2 '5 pts. H 2 at 15, and more readily at higher temp. Very sol. in warm alcohol. Silver , Ag 2 Pt(SCN) 4 . Insol. in H 2 0. Sol. in KSCN + Aq, and partly sol. in NH 4 OH + Aq. Platinosulphocyanhydric acid, H 2 Pt(SCN) 6 . Known only in aqueous, and alcoholic solu- tions. Ammonium platinosulphocyanide, (NH 4 ) 2 Pt(SCN) 6 . Sol. in H 2 and alcohol. Barium , BaPt(SCN) 6 . Sol. in H 2 and alcohol. Ferrous , FePt(SCN) 6 . Insol. in H 2 or alcohol. Not attacked by dil. H 2 S0 4 , HC1, or HN0 3 + Aq. Lead , PbPt(SCN) 6 . SI. sol. in cold, decomp. by hot H 2 0. Sol. in alcohol. PbPt(SCN) 6 ,PbO. hoi. Insol. in H 2 or alco- Sol. in acetic or nitric acids. Mercurous , Hg 2 Pt(SCN) 6 . Ppt. Insol. in H 2 0. Potassium , K 2 Pt(SCN) 6 . Sol. in 12 pts. H 2 at 15. Much more easily in hot H 2 0, and still more easily in hot alcohol. Silver , Ag 2 Pt(SCN) 6 . Insol. inH 2 or K 2 Pt(SCN) 6 + Aq. Sol. in cold NH 4 OH + Aq and in KCNS + Aq. Sodium , Na 2 Pt(SCN) 6 . Sol. in H 2 and alcohol. 326 PLATINOSULPHOSTANNIC ACID Platinosulphostannic acid. See under Sulphostannate, platinum. Platinosulphurous acid. See Platosulphurous acid. Platinum, Pt. Not attacked by H 2 0, H 2 S0 4 , HC1, or HN0 3 + Aq. Slowly sol. in aqua regia, or a mixture of HBr and HN0 3 , but much less easily than Au. HC1 + HN0 3 , so long as they are sufficiently dil. or the temperature is so low that they cannot react on each other, have no action on Pt. Addition of Cl does not bring about re- action, but a few drops of KN0 2 or N 2 3 + Aq bring about an immediate reaction. (Millon.) Slowly sol. in HI + Aq. (Deville, C. R. 42. 896.) Slowly sol. in boiling FeCl 3 + Aq. (Saint- Pierre, C. R. 54. 1077.) SI. sol. in cone. H 2 S0 4 containing small amounts of nitrogen oxides. (Scheurer- Kestner, C. R. 86. 1082.) Platinum ammonium compounds. See Platosamine comps., Pt< ATt r 3 'r> JN ri 3 . jt. PlsAosemidiamine comps., p NH 3 .NH 3 .R R. PlBkomonodiaxnine comps., p NH 3 .NH 3 .R Pt< NH 3 .R. Platosamine comps. , Platososcm*'amine comps., comps., Pt NH 3 . NH 3 . R Pt NH 3 .NH 3 .R. latinamine comps. Chloroplatinamine comps., p NH 3 .R 1 2 Pt< NH 3 .R. Chloronitratoplatinamine comps., lodoplatinamine comps., Hydroxyloplatinamine comps., 3 ' ^ Nitratoplatinamine comps., Sulphatoplatinamine comps. , BromoplatinsemiSamine comps. , Br 3 PtKH 3 .NH 3 .R. Bromonitritoplatinsemicfo'amine comps. , Br 2 (N0 2 )PtNH 3 .NH 3 .R. Chloroplatinse?;i^c?iamine comps. , Cl 3 PtNH 3 .NH 3 .R. ChlorohydroxylonitritosemiSamine comps. , Cl(OH)(N0 2 )PtNH 3 . NH 3 . R. ChloronitritoplatinsemtSamine comps. , Cl 2 (N0 2 )PtNH 3 . NH 3 . R. lodoplatinser/ii'Samine comps., I 3 PtNH 3 .NH 3 .R. Hydroxylose7/iic?iamine comps. , (OH) 3 PtNH 3 .NH 3 .R. Bromoplatin?/io?toSamine comps., H.NH.R BromohydroxyloplatinwoTtocKamine comps. , Chloroplatin?o?ioSamine comps. , - NEI . R Iodonitratoplatin^io?ioSamine comps. , comps. , R Bromoplatin'/v'aniine comps., B p NH 3 .NH 3 .R Br 2 Pt< NH 3 .NH 3 .R. Bromocarbonatoplatin^/amine comps. , Bromochloroplatin^mmine comps., BrClPt(NH 3 ) 4 R2. Bromohydroxyloplatincfo'amine comps. , Br(OH)Pt(NH 3 ) 4 R 2 . Bromonitratoplatin^amine comps. , Br(N0 3 )Pt(NH 3 ) 4 R 2 . Bromosulphatoplatin^amine comps., Br 2 (S0 4 )[Pt(NH 3 ) 4 R 2 ] 2 . Carbonatochloroplatin^mmine comps. , (C0 3 )Cl 2 [Pt(NH 3 ) 4 R 2 ] 2 . Carbonatonitratoplatino^amine comps. , (C0 3 )(N0 3 ) 2 [Pt(NH 3 ) 4 R 2 ] 2 . ChloroplatinSamine comps., Cl 2 Pt(NH 3 ) 4 R2. Chlorohydroxyloplatinc^^'amine comps. , C1(OH)(NH 3 ) 4 R 2 . Chloroiodoplatint?^amine comps. , Chloronitratoplatincfo'amine comps. , Cl(N0 3 )Pt(NH 3 ) 4 R 2 . HydroxyloplatinSamine comps., (OH) 2 Pt(NH 3 ) 4 R 2 . Hydroxylonitratoo^'amine comps. , (OH)(N0 3 )Pt(NH 3 ) 4 R2. Hydroxylosulphatocfo'amine comps. , (OH) 2 S0 4 [Pt(NH 3 ) 4 R^] 2 . lodoplatinefoamine comps. , I 2 Pt(NH 3 ) 4 R2. lodonitritoplatinSamine comps., I(N9 2 )Pt(NH 3 ) 4 R ? . Nitratoplatm^^'amine comps., (N0 3 ) 2 Pt(NH 3 ) 4 R 2 . Nitritoplatinefo'amine comps. , (N0 2 ) 2 Pt(NH 3 ) 4 R 2 . Sulpha to plat iiv//amine comps. , (S0 4 )Pt(NH 3 ) 4 R 2 . /platinamine comps. , " .R 0.^1 Ji 3 . R r pt ,NH 3 .R L Pt< NH R> PLATINOUS HYDROXIDE 327 BroniO'/ /platin"' /amine comps. , Br ^" Br Hydroxyloe^platindiamine comps., (OH) 2 Pt 2 (NH 3 ) 8 R 4 . lodo'/ /platin^' /aiuine comps. , I 2 Pt 2 (NH 3 ) 8 R 4 . Nitratoc^platincfo'amine comps., (N0 3 ) 2 Pt 2 (NH 3 ) 8 R 4 . Platin^rt'amine comps. , pp NH 3 .NH 3 .NH 3 .R ^ rt< NH 3 .NH 3 .NH 3 .R. 2Wraplatinamine comps., Pt 4 (NH 3 ) 8 R 10 . Ocfoplatinamine comps., Pt 8 (NH 3 ) 16 R 18 . Platinum antimonide, PtSb 2 . (Christofle, 1863.) Platinum arsenide, (Tivoli, Gazz. ch. it. 14. 487.) PtAs 2 . Min. Sperrylite. SI. attacked by aqua regia. (Wells, Sill. Am. J. (3) 37. 67.) Platinum arsenic hydroxide (?), PtAsOH. Insol. in, and slowly decomp. by H 2 and alcohol. Easily decomp. by HC1 + Aq ; not attacked by HN0 3 + Aq. Sol. in aqua regia ; not attacked by cold cone. H 2 S0 4 , but decomp. on heating. (Tivoli, Gazz. ch. it. 14. 487.) Platinum boride, Pt 2 B 2 . Very slowly sol. in aqua regia. (Martius, A. 109. 79.) Platinous bromide, PtBr 2 . Insol. in H 2 0. Sol. in HBr + Aq. SI. sol. in KBr + Aq. (Topsoe, J. B. 1868. 274.) Platinic bromide, PtBr 4 . Not deliquescent ; sol. in H 2 0. (Meyer and Ziiblin, B. 13. 404.) SI. sol. in H 2 0. 100 g. PtBr 4 + Aq sat. at 20 contain 0'41 g. PtBr 4 . (Halberstadt, B. 17. 2962.) Easily sol. in HBr + Aq ; si. sol. in HC 2 H 3 2 + Aq. Sol. in considerable amount in K or NH 4 oxalate +Aq. Very si. sol. in alcohol or ether, also in glycerine. (Halberstadt. ) Platinic hydrogen bromide. See Bromoplatinic acid. Platinous bromide carbonyl. See Carbonyl platinous bromide. Platinic bromide with MBr. Sec, Bromoplatinate, M. Platinum carbide, PtC 2 . Hot aqua regia dissolves out nearly all the Pt. (Zeise, J. pr. 20 209.) Platinum carbon bisulphide, PtCS 2 . See Platinum sulphocarbide. Platinous chloride, PtCl 2 . Insol. in H 2 0, cone. H 2 S0 4 , or HN0 3 . Sol. in hot HC1 + Aq with exclusion of air. (Ber- zelius. ) Insol. in alcohol or ether ; sol. in NH 4 OH + Aq. (Raewsky, A. ch. (3) 22. 280.) Sol. in aqua regia with formation of Pt01 4 . Insol. in cold cone. KI + Aq, but sol. when heated. (Lassaigne, A. ch. (2) 51. 117.) Platinic chloride, Pt01 4 . Not deliquescent. Very sol. in H 2 0. (Pul- linger, Chem. Soc. 61. 420.) + 5H 2 0. Not deliquescent. Sol. in H 9 or HCl + Aq. Composition is probably H 2 PtCl 4 + 4H 2 0. (Norton, J. pr. 110. 469.) Sp. gr. of aqueous solution containing : 5 10 15 20 25 %PtCl 4 , 1-046 1-097 1'153 1-214 1'285 30 35 40 45 50 % PtCl 4 . 1-362 1-450 1-546 1'666 1785 (Precht, Z. anal. 18. 512.) Sol. in alcohol and ether ; sol. in anhydrous acetone. (Zeise, A. 33. 34.) Insol. in cone. H 2 S0 4 . (Dumas.) + 4H 2 0. (Engel, Bull. Soc. (2) 60. 102.) Platinous hydrogen chloride. See Chloroplatinous acid. Platinic hydrogen chloride. See Chloroplatinic acid. Platinous chloride with MCI. See Chloroplatinite, M. Platinic chloride with MCI. See Chloroplatinate. M. Platinous phosphorus chloride. See Phosphorus platinous chloride. Platinic phosphorus chloride. See Phosphorus platinic chloride. Platinous chloride carbonyl. See Carbonyl platinous chloride. Platinum chloroiodide, PtCl 2 I 2 . Very deliquescent. (Kammerer, A. 148. 329.) PtCLjI. Insol. in H 2 0. SI. sol. in alcohol. Sol. in KOH + Aq, from which it is pptd. by H 2 S0 4 . (Mather, Sill. Am. J. 27. 257.) Platinum chloronitride, PtNCl. (Alexander, C. C. 1887. 1254.) Platinous cyanide with MCN. See Platinocyanide, M. Platinous fluoride, PtF 2 (?). Insol. in H 2 0. (Moissan, A. ch. (6) 24. 287.) Platinic fluoride, PtF 4 . Deliquescent. Sol. in H 2 0, with immediate decomp. into Pt0 4 H 4 and HF. (Moissan, C. R. 109. 807.) Platinous hydroxide, Pt0 2 H 2 . Sol. in HC1, HBr, and H 2 S0 3 + Aq, but not in other oxygen acids. Decomp. by boiling KOH + Aq. (Thomsen, J. pr. (2) 16. 344.) 328 PLATINIC HYDROXIDE Platinic hydroxide, Pt(OH) 4 . Easily sol. in dil. acids and in NaOH + Aq. (Topsoe, J. B. 1870. 386.) Nearly insol. in acetic acid. (Dobereiner. ) + H 2 0. Ppt. (Frost, Bull. Soc. (2) 44. 256.) + 2H 2 0. Easily sol. in dil. acids, even acetic acid, and in NaOH + Aq. (Topsoe.) Platinoplatinic hydroxide, Pt 3 4 , 9H 2 0. Ppt. (Prost, Bull. Soc. (2) 46. 156.) Pt 5 n , 11H 2 0. Ppt. (Prost.) Platinum hydroxylamine comps. See Plato^oxamine comps., Pt(NH 3 0) 4 R2. Platosoxamine comps., Pt(NH 3 0) 2 R 2 . Platosoxamine-amine comps. , Pt(NH 3 0) 3 NH 3 R 2 . Platinous iodide, PtI 2 . Insol. in H 2 0, acids, or alcohol. (Lassaigne, A. ch. (2) 51. 113.) Difficultly sol. in Na 2 S0 3 + Aq. (Topsoe.) Gradually decomp. by hot HI + Aq of 1-038 sp. gr., also by hot KI + Aq, PtI 4 being dis- solved out and Pt left behind. Not attacked by cone. H 2 S0 4 , HC1, or HN0 3 + Aq, but gradually decomp. by KOH or NaOH + Aq. (Lassaigne.) Platinic iodide, PtI 4 . Insol. in H 2 0. Sol. in NaOH or Na 2 C0 3 + Aq, H 2 S0 3 , or Na 2 S0 3 + Aq. Sol. in HI + Aq or alkali iodides +Aq. Sol. in alcohol, with partial decomp. Not attacked by acids. (Las- saigne, A. ch. (2) 51. 122.) Not obtained in a pure state. (Topsoe, C. C. 1870. 683.) Platinic iodide with MI. See lodoplatinate, M. Platinum nitride chloride, PtNCl. See Platinum chloronitride. Platinous oxide, PtO. Sol. in H 2 S0 3 + Aq. Insol. in other acids. (Dobereiner, Pogg. 28. 183.) Sol. in cone. H 2 S0 4 ; easily in cone. HC1 + Aq. (Storer's Diet.) Platinic oxide, Pt0 2 . Insol. in acids. Platinoplatinic oxide, Pt 3 4 . Not attacked by long boiling with HC1, HN0 3 , or aqua regia. (Jorgensen, J. pr. (2) 16. 344.) Platinum oxychloride, 3PtO, Pt01 2 (?). Sol. in HC1, and in KOH + Aq. (Kane, Phil. Trans. 1842. 298.) PtCl 2 (OH) 2 = H 2 PtCl 2 2 . (Jorgensen, J. pr. (2) 16. 345.) Platinum oxysulphide, PtOS. See Platinum sulphydroxide. Platinum phosphide, PtP 2 . Insol. in HCl + Aq. Sol. in aqua regia. (Schrotter, W. A. B. 1849. 303.) PtP 2 H 2 . Sol. in H 2 0, and HCl + Aq. (Cavazzi, Gazz. ch. it. 13. 324.) Pt 3 P 5 . Partially sol. in aqua regia. (Clark and Joslin, C. N. 48. 385.) PtP. Insol. in aqua regia. (Clark and Joslin.) Pt 2 P. Sol. in aqua regia. (Clark and Joslin. ) Platinum sulphydroxide, PtOS + H 2 = PtS(OH) 2 . Decomp. easily into Pt 2 S 2 3 H 2 = j| gg = PtOS + |H 2 0. H 2 cannot be removed without decomposing the compound, (v. Meyer, J. pr. (2) 15. 1.) Platinous sulphide, PtS. Not attacked by boiling acids, aqua regia, or KOH + Aq. (Bbttger, J. pr. 2. 274.) Sol. in large excess of (NH 4 ) 2 S + Aq. Platinoplatinic sulphide, Pt 2 S 3 . Not attacked by HC1 or HN0 3 + Aq, and only slowly by aqua regia. (Schneider, Pogg. 138. 607.) Platinic sulphide, PtS 2 . Anhydrous. Aqua regia attacks si., other acids not at all. (Davy.) Hydrated. Insol. in HC1 + Aq ; si. sol. in boiling HN0 3 + Aq. Sol. in aqua regia. (Fresenius. ) Sol. in alkali sulphides, hydrates and carbonates +Aq. (Bcrzelius.) Very si. sol. in (NH 4 ) 2 S + Aq. (Glaus. ) Insol. in NH 4 C1, or NH 4 N0 3 + Aq. 1 pt. PtCl 4 in 100 pts. H 2 + 25 pts. HC1 is not pptd. by H 2 S. (Reinsch.) Difficultly sol. in alkali sulphydroxides + Aq, but more easily in presence of SnS, Sb 2 S 3 , As 2 S 3 , or SnS 2 . (Riban, C. R. 85. 283. Platinum sulphide, Pt 5 S 6 , or ^Wraplatinum sulphoplatinate, 4 PtS, PtS 2 . Decomp. on moist air, but not attacked by acids. (Schneider, J. pr. (2) 7. 214.) Platinum sulphides with M 2 S. See Sulphoplatinate, M. Platinum sulphocarbide, PtCS 2 . Attacked by hot HC1, HN0 3 + Aq, or aqua regia. (Schiitzenberger, C. R. 111. 391.) Plato-. See also Platino-. Platocfo'amine bromide, Pt[(NH 3 ) 2 Br] 2 + 3H 2 0. Easily sol. in H 2 0. (Cleve.) - carbonate, Pt(N 2 H 6 ) 2 C0 3 + H 2 0. Sol. in H 2 0. (Peyrone, A. 51. 14.) Pt(N 2 H 6 C0 3 H) 2 . SI. sol. in, but decomp. by boiling with H 2 into sesgm'carbonate. More sol. than preceding salt. (Reiset. C R. 11. 711.) - chloride, Pt[(NH 3 ) 2 Cl] 2 + H 2 0. "Reiset's first chloride." Sol. in 4 pts PLATOAMINE CHLORIDE 329 H 2 at 16 '5, and in less hot H 2 0. Insol. in alcohol or ether. (Reiset, A. ch. (3) 11. 419.) As sol. in NH 4 C1 + Aq as in H 2 ; insol. in absolute alcohol ; si. sol. in dil. alcohol ; very sol. indil. HC1 + Aq. (Peyrone, A. ch. (3) 12. ,196.) PlatotWamine cuprous chloride, *= Pt(NH 3 ) 4 Cl 2 , Cu 2 01 2 . Sol. in H 2 0, and pptd. from H 2 solution by alcohol. (Buckton.) cupric chloride, Pt(NH 3 ) 4 CL2, CuCl 2 . SI. sol. in cold, decomp. by hot H 2 into Pt(NH 3 ) 4 Cl 2 , Cu 2 01 2 . (Buckton, Chem. Soc. 5. 218.) Nearly insol. in H 2 ; easily sol. in warm HC1 + Aq ; insol. in alcohol. (Millon and Commaille, C. R. 57. 822.) Millon and Commaille's salt is Cu(NH 3 ) 4 Cl 2 , PtCl 2 , cuprammonium chloroplatinite. lead chloride, Pt(NH 3 ) 4 Cl 2 , PbCl 2 . Sol. in hot, much less in cold H 2 0. Insol. in HCl + Aq or alcohol. (Buckton, Chem. Soc. 5. 213.) mercuric chloride, Pt(NH 3 ) 4 Cl 2 , HgCl 2 . Easily sol. in hot H 2 0, much less in cold. Insol. in HCl + Aq. (Buckton.) zinc chloride, Pt(NH 3 ) 4 Cl 2 , ZnCl 2 . Easily sol. in hot H 2 0. Insol. in alcohol. (Buckton.) chloroplatinate, Pt(NH 3 ) 4 Cl 2 , PtCl 4 . Ppt. Insol. in H 2 0. (Cossa, Gazz. ch. it. 17. 1.) chloroplatinite, Pt(NH 3 ) 4 Cl 2 , PtCl 2 . (Magnus' green salt.) Insol. in, and not de- comp. by H 2 0, HC1 + Aq, or alcohol. (Magnus. ) Slowly sol. in boiling NH 4 OH + Aq and in cone. NH 4 salts + Aq. (Reiset, A. ch. (3) 11. 427.) Almost as sol. in (NH 4 ) 2 C0 3 + Aq as in NH 4 OH + Aq. Sol. in hot PtCl 4 + Aq. (Reiset.) Not decomp. by boiling KOH, dil. HC1, or H 2 S0 4 + Aq, but easily by HN0 3 + Aq. (Gros, A. 27. 245.) - chromate, Pt(NH 3 ) 4 Cr0 4 . Scarcely sol. in H 2 0. (Cleve.) ^chromate, Pt(NH 3 ) 4 Cr 2 7 . SI. sol. in H 2 0. Insol. in alcohol. Sol. in KOH + Aq. (Buckton, Chem. Soc. 5. 213.) platinous cyanide, Pt(NH 3 ) 4 (CN) 2 , Pt(CN) 2 . SI. sol. in cold, easily in boiling H 2 ; sol. in KOH, HC1, and dil. H 2 S0 4 + Aq without de- comp., but cone. H 2 S0 4 decomposes. potassium ferrocyanide, Pt(NH 3 ) 4 K2[Fe(CN) 6 ] 2 + 3H 2 0. - hydroxide, Pt[(NH 3 ) 2 OH] 2 . "Reiset's first base." Easily sol. in H 2 0. SI. sol. in alcohol. - iodide, Pt[(NH 3 ) 2 I] 2 . SI. sol. in cold, more easily in hot H 2 0, but slowly decomp. on boiling. (Reiset.) Plato^'amine nitrate, Pt[(NH 3 ) 2 N0 3 ] 2 . Sol. in about 10 pts. boiling H 2 0. Insol. or but si. sol. in alcohol. (Peyrone, A. ch. (3) 12. 203.) [Pt(NH 3 ) 4 N0 3 ] 2 S0 4 , (Carlgren, Sv. V. nitrate sulphate, Pt(NH 3 ) 4 S0 4 . Very easily sol. in H 2 0. A. F. 47. 310.) nitrite, Pt[(NH 3 ) 2 N0 2 ] 2 + 2H 2 0. Efflorescent. Very sol. in hot or cold H 2 0. Insol. in 90 % alcohol. (Lang.) platinous nitrite, Pt[(NH 3 ) 2 N0 2 ] 2 , Pt(N0 2 ) 2 . Scarcely sol. in cold, somewhat more easily in hot H 2 0. Not attacked by cold dil. acids. More sol. in NH 4 OH + Aq than in H 2 0. (Lang.) phosphate, Pt(N 2 H 6 ) 2 HP0 4 + H 2 0. Rather difficultly sol. in cold, and very easily in hot H 2 0. (Cleve.) ammonium phosphate, Pt[(N 2 H 6 )P0 4 (NH 4 ) 2 ] 2 , 4NH 4 H 2 P0 4 + H 2 0. Very easily sol. in H 2 with decomp. into Pt(N 2 H 6 H 2 P0 4 ) 2 , 2NH 4 H 2 P0 4 + 9H 2 0. Much more sol. in H 2 than the preceding comp. (Cleve.) sulphate, Pt(NH 3 ) 4 S0 4 . Sol. in 32 pts. H 2 at 16 '5; more easily when heated. (Reiset.) Sol. in 50-60 pts. boiling H 2 ; less in cold H 2 ; insol. in alcohol. (Cleve.) sulphate, acid, Pt[(NH 3 ) 2 S0 4 H] 2 + H 2 0. Decomp. by H 2 or alcohol into neutral salt. 3Pt(NH 3 ) 4 S0 4 , H 2 S0 4 + H 2 0. Sol. in H 2 0. (Cleve.) sulphite, Pt(NH 3 ) 4 S0 3 . Nearly insol. in cold H 2 0. (Birnbaum, A. 152. 143.) Pt[(NH 3 ) 2 S0 3 H] 2 + 2H 2 0. Ppt. Sol. in HCl + Aq. (Cleve.) platinous sulphite, 3Pt(NH 3 ) 4 S0 3 , PtS0 3 + 2H 2 0. Scarcely sol. in cold H 2 ; sol. in 190 pts. H 2 at 100. Easily sol. in warm HCl + Aq with decomp. (Peyrone.) + 4H 2 0. (Carlgren, Sv. V. A. F. 47. 308.) 2Pt(NH 3 ) 4 S0 3 , PtS0 3 , H 2 S0 3 Insol. in cold H 2 or alcohol. Scarcely sol. in hot H 2 0. (Peyrone. ) - sulphocyanide, Pt(NH 3 ) 4 (CNS) 2 + H 2 0. Very sol. in H 2 0. Solution is decomp. on boiling. (Cleve, Sv. V. A. H. 10, 9. 7.) platinous sulphocyanide, Pt(NH 3 ) 4 (CNS) 2 , Pt(CNS) 2 . Insol. in H 2 and alcohol ; sol. in dil. HC1 + Aq. (Buckton, Chem. Soc. 13. 122.) Platowcwoc&amine chloride, Easily sol. in H 2 0. (Cleve. ) 330 PLATOAMINE CHLOROPLATINITE PlatowcwocKamine chloroplatinite 2pt (NH s 2rt NH 3 ( PtCL Moderately sol. in cold, but more easily in hot H 2 0. (Cleve.) (Cleve.) - nitrate, Easily sol. in H 2 0. - sulphate, Easily sol. in cold, but much more in hot H 2 0. Platosem^'amine bromide, Easily sol. in NH 4 OH + Aq. Sol. in H 2 0. (Cleve.) chloride, Pt<^ H ^ 2C1 (Peyrone's chloride.) Sol. in 387 pts. H 2 at 0, and 26 pts. at 100 (Cleve) ; in 33 pts. at 100 (Peyrone). Sol. in NH 4 OH + Aq ; very si. sol. in HC1 or H 2 S0 4 + Aq; more easily in HN0 3 + Aq; sol. in alkali carbonates + Aq. (Peyrone, A. ch. (3) 12. 193.) Platosem^amine chlorosulplmrous acid, Pt< (NH 3 ) 2 S0 3 H Cl. Easily sol. in H 2 0. (Cleve.) Ammonium platosemwfo'amine chlorosulphite platosewzcfaamine sulphite, Easily sol. in H 2 0. Insol. in alcohol. (Cleve.) Platosera^'amine cyanide, Pt(CN)(NH 3 ) 2 CN. Easily sol. in H 2 0. (Cleve.) - platinous cyanide, Pt(CN)(NH 3 ) 2 CN, Pt(CN) 2 (?). Ppt. - hydroxide, Not known. iodide, Pt< SI. sol. in boiling H 2 0. (Cleve.) - nitrate, Ft Moderately sol. in H 2 0. (Cleve.) - nitrite, Ft** Very si. sol. in cold, more easily in hot H 2 0. - oxalate, Pt(NH 3 ) 2 C 2 4 . (Cleve.) + 2H 2 0. (Cleve.) - sulphate, PtS0 4 . Very si. sol. even in hot H 2 0. (Cleve. ) - sulphocyanide, Pt(SCN)(NH 3 ) 2 SCN. Easily sol. in warm H 2 0, but solution soon decomposes. Platosem^'amine sulphurous acid. Ammonium platoserazcKamine sulphite, Pf^A-^-"- 3 ) 2 S0 3 (NH 4 ) /"vr-rr \ qrv Ft< S0 3 (NH 4 ) ' (-N H 4) 2 aU 3 . Very sol. in H 2 0. (Cleve. ) Barium , Pt(S0 3 )[(NH 3 ) 2 S0 3 ]Ba, BaS0 3 . Ppt. (Cleve.) Silver , Pt(S0 3 Ag)[(NH 3 ) 2 S0 3 Ag], Ag 2 S0 3 . Ppt. (Cleve.) Insol. in H 2 0. hydroxide, Pt 2 (NH 3 ) 4 (OH) 2 +H 2 0. Insol. in H 2 0. nitrate, Pt 2 (NH 3 ) 4 (N0 3 ) 2 . Insol. in H 2 0. (Cleve.) sulphate, Pt^NH^SOv Insol. in H 2 0. (Cleve.) Platobromonitrous acid. Potassium platobromonitrite, K 2 Pt(N0 2 ) 3 Br + 2H 2 0. Sol. in about 3 pts. cold, and 2 pts. boiling H 2 0. (Vezes, A. ch. (6) 29. 194.) K 2 Pt(N0 2 ) 2 Br 2 + H 2 0. Sol. in 1 pt. cold, and still less hot H 2 0. Insol. in alcohol. (Vezes.) Platochloronitrous acid. Potassium chloronitrite, K 2 Pt(N0 2 ) 3 Cl + 2H 2 0. Sol. in about 3 pts. cold, and 2 pts. boiling H 2 0. (Vezes, A. ch. (6) 29. 178.) K 2 Pt(N0 2 ) 2 Cl 2 . Sol. in about 3 pts. cold, and 2 pts. boiling H 2 0. (Vezes.) Platochlorosulphurous acid. See Chloroplatosulphurous acid. Platoiodonitrous acid, H 2 Pt(N0 2 ) 2 I 2 . Known only in solution. (Nilson, J. pr. (2) 21. 172.) Aluminum platoiodonitrite, Al 2 [Pt(N0 2 ) 2 I 2 ] 3 + 27H 2 0. Easily sol. in H 2 0. (Nilson.) Ammonium , (NH 4 ) 2 Pt(N0 2 ) 2 I 2 + 2H 2 0. Sol. in H 2 ; decomp. on heating. Barium , BaPt(N0 2 ) 2 I 2 + 4H 2 0. Very sol. in H 2 0. Cadmium , CdPt(N0 2 ) 2 I 2 +2H 2 0. Easily sol. in H 2 0. Csesium , Cs 2 Pt(N0 2 ) 2 I 2 + 2H 2 0. Easily sol. in H 2 0. Calcium , CaPt(N0 2 ) 2 I 2 + 6H 2 0. Very easily sol. in H 2 0. Cerium , Ce 2 [Pt(N0 2 ) 2 I 2 ] 3 + 18H 2 0. Easily sol. in H 2 0. Cobalt , CoPt(N0 2 ) 2 I 2 +8H 2 0. Sol. in H 2 0. Didymium , Di 2 [Pt(N0 2 ) 2 I 2 ] 3 + 24H 2 0. Sol. in H 2 0. PLATONITRITE, POTASSIUM Erbium platoiodonitrite, Er 2 [Pt(N0 2 ) 2 I 2 ] 3 + 18H 2 0. Sol. in H 2 0. Ferrous , FePt(N0 2 ) 2 I 2 + 8H 2 0. Sol. in H 2 0. Ferric , Fe 2 [Pt(N0 2 ) 2 I 2 ] 3 + 6H 2 0. Sol. in H 2 0. Lanthanum , La 2 [Pt(N0 2 ) 2 I 2 ] 3 + 24H 2 0. Sol. in H 2 0. Lead , basic, PbPt(N0 2 ) 2 I 2 , Pb(OH) 2 . Insol. in H 2 0. Lithium , Li 2 Pt(N0 2 ) 2 I 2 +6H 2 0. Very sol. in H 2 0. Magnesium , MgPt(N0 2 ) 2 I 2 +8H 2 0. Sol. in H 2 0. Manganese , MnPt(N0 2 ) 2 I 2 +8H 2 0. Sol. in H 2 0. Mercurous , basic, 2Hg 2 Pt(N0 2 ) 2 I 2 , Hg 2 + 9H 2 0. Insol, in H 2 0. Nickel , NiPt(N0 2 ) 2 I 2 + 8H 2 0. Sol. in H 2 0. Potassium , K 2 Pt(N0 2 ) 2 I 2 + 2H 2 0. Sol. in H 2 0. Rubidium , Rb 2 Pt(N0 2 ) 2 I 2 + 2H 2 0. Sol. in H 2 0. Silver , Ag 2 Pt(N0 2 ) 2 I 2 . Insol. in H 2 0. Sodium , Na 2 Pt(N0 2 ) 2 I 2 + 4H 2 0. Very sol. in H 2 0. Strontium , SrPt(N0 2 ) 2 I 2 + 8H 2 0. Sol. in H 2 0. Thallium , Tl 2 Pt(N0 2 ) 2 I 2 . Insol. in H 2 0. Yttrium , Y 2 [Pt(N0 2 ) 2 I 2 ] 3 +27H 2 0. Sol. in H 2 0. Zinc , ZnPt(N0 2 ) 2 I 2 + 8H 2 0. Sol. in H 2 0. ^'platoocfonitrosylic acid, H 4 Pt 3 0(N0 2 ) 8 . (Nilson, J. pr. (2) 16. 241.) Potassium riplato0cfonitrosylate. See under Platonitrite, potassium. Platonitrous acid, H 2 Pt(N0 2 ) 4 . Sol. in H 2 or alcohol. (Lang, J. pr. 83. 419.) Is called " Plato^ranitrosylic acid" by Nilson. Aluminum platonitrite, Al 2 [Pt(N0 2 ) 4 ] 3 + 14H 2 0. Sol. in H 2 0. Al 2 (OH) 2 [Pt(N0 2 ) 2 ] 4 2 + 10H 2 0. SI. sol. in cold, easily in hot H 2 and alcohol. (Nilson, B. 9. 1727.) Ammonium platonitrite, (NH 4 ) 2 Pt(N0 2 ) 4 + 2H 2 0. Moderately sol. in cold H 2 0. (Nilson, B. 9. 1724.) Barium platonitrite, BaPt(N0 2 ) 4 + 3H 2 0. SI. sol. in cold, very sol. in hot H 2 0. (Lang. ) Cadmium platonitrite, CdPt(N0 2 ) 4 +3H 2 0. Easily sol. in H 2 0. (Nilson.) Caesium platonitrite, Cs 2 Pt(N0 2 ) 4 . Resembles K salt. Calcium platonitrite, CaPt(N0 2 ) 4 +5H 2 0. Very sol. in H 2 0. (Nilson.) Cerium platonitrite, Ce 2 [Pt(N0 2 ) 4 ] 3 + 18H 2 0. Sol. in H 2 0. (Nilson.) Chromium ^platonitrite, Cr 2 (OH)2[Pt(N0 2 ) 2 ] 4 2 + 24H 2 0. Sol. in H 2 0. (Nilson.) Cobalt platonitrite, CoPt(N0 2 ) 4 + 8H 2 0. Easily sol. in H 2 0. (Nilson.) Copper platonitrite, CuPt(N0 2 ) 4 + 3H 2 0. Sol. in H 2 0. (Nilson.) 3CuPt(N0 2 ) 4 , CuO + 18H 2 0. Decomp. by H 2 0. (Nilson.) Didymium platonitrite, Di 2 [Pt(N0 2 ) 4 ] 3 + 18H 2 0. Deliquescent ; sol. in H 2 0. Erbium platonitrite, Er 2 [Pt(N0 2 ) 4 ] 3 + 9, and 21H 2 0. Deliquescent ; sol. in H 2 0. Glucinum ^platonitrite, Gl[Pt(N0 2 ) 2 ] 2 + 9H 2 0. SI. sol. in cold H 2 0. Indium ^platonitrite, In(OH) 2 [Pt(N0 2 ) 2 ] 4 2 + 10H 2 0. SI. sol. in H 2 0. Ferric ^platonitrite, Fe 2 [Pt(N0 2 ) 2 ] 6 3 + 30H 2 0. SI. sol. in cold, easily in hot H 2 0. Lanthanum platonitrite, La2[Pt(N0 2 ) 4 ] 3 + 18H 2 0. Deliquescent ; sol. in H 2 0. Lead platonitrite, PbPt(N0 2 ) 4 + 3H 2 0. SI. sol. in H 2 0. (Nilson.) Lithium platonitrite, Li 2 Pt(N0 2 ) 4 + 3H 2 0. SI. deliquescent ; easily sol. in H 2 0. Magnesium platonitrite, MgPt(N0 2 ) 4 + 5H 2 0. Easily sol. in H 2 0. Manganese platonitrite, MnPt(N0 2 ) 4 + 8H 2 0. Sol. in H 2 0. Mercurous platonitrite, Hg 2 Pt(N0 2 ) 4 , Hg 2 0. Nearly insol. in H 2 0. (Lang, J. pr. 83. 415.) + H 2 0. Nearly insol. in H 2 0. (Nilson.) Nickel platonitrite, NiPt(N0 2 ) 4 + 8H 2 0. Easily sol. in H 2 0. (Nilson.) Potassium platonitrite, K 2 Pt(N0 2 ) 4 . Sol. in 27 pts. H 2 at 15 ; more easily sol. in warm H 2 0. (Lang, J. pr. 83. 415.) + 2H 2 0. Efflorescent. (Lang.) K 2 H 4 Pt 3 0(N0 2 ) 6 + 3H 2 0. Very si. sol. in cold, but very easily in hot H 2 0. (Vezes, A. ch. (6) 29. 162.) 332 PLATONITRITE BROMIDE, POTASSIUM K 4 Pt 3 0(lSr0 2 ) 8 + 2H 2 0. SI. sol. in warm H 2 0. (Nilson.) Potassium platonitrite bromide. See Platibromonitriteawd platobromonitrite, potassium. Potassium platonitrite chloride. See Plati- and platochloronitrite, potassium. Potassium platonitrite iodide. See Plati- and platoiodonitrite, potassium. Rubidium platonitrite, Rb 2 (Pt)(N0 2 ) 4 , and + 2H 2 0. Resembles K salt. Silver platonitrite, Ag 2 Pt(N0 2 ) 4 . Very si. sol. in cold, easily in hot H 2 0. Silver ^platonitrite, Ag 2 Pt2(N0 2 ) 4 0. Insol. inH 2 0. (Nilson.) Sodium platonitrite, Na 2 Pt(N0 2 ) 4 . Easily sol. in H 2 0. Strontium platonitrite, SrPt(N0 2 ) 4 + 3H 2 0. Somewhat si. sol. in cold H 2 0, but easily sol. in warm H 2 0. Thallium platonitrite, Tl 2 Pt(N0 2 ) 4 . Very si. sol. in H 2 0. (Nilson.) Yttrium platonitrite, Y 2 [Pt(N0 2 ) 4 ] 3 + 9, or 21H 2 0. Sol. in H 2 0. Zinc platonitrite, ZnPt(N0 2 ) 4 + 8H 2 0. Sol. in H 2 0. Platocfo'oxamine chloride. Pt(NH 3 O.NH 3 OCl) 2 . Easily sol. in H 2 0. (Alexander, A. 246. 239.) - chloroplatinite, Pt(NH 3 . NH 3 OC1) 2 , Sol. in warm HCl + Aq. Insol. in cold H 2 or alcohol ; very si. sol. in hot H 2 0. (Alex- ander. ) - hydroxide, Pt(NH 3 O.NH 3 0) 2 (OH) 2 . Insol. in H 2 or alcohol. Easily sol. in HC1 or HN0 3 + Aq. Difficultly sol. in hot dil. H 2 S0 4 + Aq. (Alexander.) - oxalate, Pt(NH 3 O.NH 3 0) 2 C 2 4 . Insol. in cold H 2 0, alcohol, or organic acids. (Alexander.) - phosphate, Pt 3 (NH 3 O.NH 3 0) 12 (P0 4 ) 2 + 3H 2 0. Ppt. (Alexander.) - sulphate, Pt(NH 3 . NH 3 0)S0 4 + H 2 0. SI. sol. in H 2 0. (Alexander.) Platosamine bromide, Pt(NH 3 Br) 2 . SI. sol. even in hot H 2 0. (Cleve.) - chloride, Pt(NH 3 Cl) 2 . "Reiset's second chloride." Sol. in 140 pts. H 2 at 100. (Peyrone, A. 61. 180.) Sol. in 130 pts. H 2 at 100, and 4472 pts. at 0. (Cleve.) Easily sol. in NH 4 OH + Aq, HN0 3 , or aqua regia, with decomp. Sol. in KCN + Aq with evolution of NH 3 . (Cleve.) ammonium chloride, Pt(NH 3 Cl) 2 , 2NH 4 C1. SI. sol. in cold, easily in hot H 2 ; insol. in alcohol; sol. in NH 4 OH or (NH 4 ) 2 C0 3 + Aq. (Grimm, A. 99. 75.) Platosamine chlorosulphurous acid, p ,NH 3 Cl rt NH 3 S0 3 H. Easily sol. in H 2 without decomp. (Cleve. ) Ammonium platosamine chlorosulphite, Pt(NH 3 Cl)NH 3 S0 3 NH 4 + H 2 0. Sol. in H 2 0. (Peyrone, A. 61. 180.) Platosamine cyanide, Pt(NH 3 CN) 2 . Quite easily sol. in H 2 or NH 4 OH + Aq. (Buckton.) hydroxide, Pt(NH 3 OH) 2 . "Reiset's second base." Very sol. in H 2 0. (Odling, B. 3. 685.) - iodide, Pt(NH 3 I) 2 . Very si. sol. in H 2 0. Sol. in cold NH 4 OH + Aq to form platodiamine iodide. (Cleve.) nitrate, Pt(NH 3 N0 3 ) 2 . Moderately sol. in hot H 2 0. Sol. in NH 4 OH + Aq with combination. (Reiset, A. ch. (3) 11. 26.) - nitrite, Pt(NH 3 N0 2 ) 2 . Very si. sol. in cold, easily in hot H 2 0. Insol. in alcohol. (Lang.) - platinous nitrite, Pt(NH 3 N0 2 ) 2 , Pt(N0 2 ) 2 . Slowly and si. sol. in cold, more easily sol. in hot H 2 0. Extremely si. sol. even in cone, acids ; more sol. in NH 4 OH + Aq than in H 2 0. (Lang.) oxide, Pt(NH 3 ) 2 0. Insol. in H 2 or NH 4 OH + Aq. (Reiset.) oxalate, Pt(NH 3 ) 2 H 2 (C 2 4 ) 2 + 2H 2 0. Ppt. (Cleve.) - sulphate, Pt(NH 3 ) 2 S0 4 + H 2 0. SI. sol. in cold, more easily in hot H 2 0. sulphite, Pt(NH 3 ) 2 S0 3 + H 2 0. Easily sol. in H 2 0. (Cleve.) - sulphocyanide, Pt(NH 3 SCN) 2 . Insol. in H 2 ; can be cryst. from alcohol ; not attacked by HC1 or H 2 S0 4 + Aq. (Buck- ton.) Very sol. in hot H 2 0. (Cleve.) silver sulphocyanide, Pt(NH 3 ) 2 Ag 4 (SCN) 6 . (Cleve.) Platosamine sulphurous acid, Pt(NH 3 S0 3 H) 2 . Exists only in its salts. See Platosamine sulphite. Ammonium platosamine sulphite, Pt(NH 3 S0 3 NH 4 ) 2 . Sol. in H 2 0. Insol. in alcohol. PLUMBITE, SODIUM 333 Barium platosamine sulphite, Pt(NH 3 ) 2 (S0 3 ) 2 Ba + 3H 2 0. Ppt. (Cleve.) Cobalt -- , Pt(NH 3 ) 2 (S0 3 ) 2 Co + 6H 2 0. Very si. sol. in H 2 0. Sol. in HCl + Aq. Copper -- , Pt(NH 3 ) 2 (S0 3 ) 2 Cu + 5H 2 0. Very si. sol. in H 2 ; sol. in HCl + Aq. Lead -- , Pt(NH 3 ) 2 (S0 3 ) 2 Pb + H 2 0. Ppt. Manganese -- , Pt(NH 3 ) 2 (S0 3 ) 2 Mn + 4H 2 0. Ppt. SI. sol. in H 2 0. Nickel -- , Pt(NH 3 ) 2 (S0 3 ) 2 Ni + 7H 2 0. SI. sol. in H 2 0. Sodium -- , Pt(NH 3 S0 3 Na) 2 + 5pI 2 0. Sol. in H 2 0. 100 ccm. sat. solution at 20 contains 5*52 g. cryst. salt. (Haberland and Hanekop, A. 245. 235.) Silver --- , Pt(NH 3 S0 3 Ag) 2 +H 2 0. Ppt. Uranyl -- , Pt(NH 3 ) 2 (S0 3 ) 2 U0 2 +H 2 0. Ppt. Zinc -- , Pt(NH 3 ) 2 (S0 3 ) 2 Zn + 6H 2 0. Ppt. Very si. sol. in H 2 0. (Cleve.) Platososemz'amine potassium chloride, Very sol. in H 2 ; insol. in alcohol. (Cossa, B. 23. 2507.) Platosoxamine chloride, Pt 3 ^} Sol. in H 2 0. Much less sol. in H 2 6 than plato^oxamine chloride. (Alexander, A. 246. 239.) Flatosoxamine amine chloride, p ,NH 3 O.NH 3 Cl rt NH 3 .NH 3 OCl Easily sol. in H 2 0. Insol. in alcohol and cone. HCl + Aq. (Alexander, A. 246. 239.) - chloroplatinite, p, PtCl, Ppt. Platosulphurous acid. Ammonium platosulphite, (NH 4 ) 6 Pt(S0 3 ) 4 + 3H 2 0. Sol. in H 2 0. (Birnbaum, A. 139. 170.) (NH 4 ) 2 Pt(S0 3 ) 2 + H 2 0. Sol. inH 2 0. (Liebig, Pogg. 17. 108.) Ammonium platosulphite chloride, (NH 4 ) 2 Pt(S0 3 ) 2 , 2NH 4 C1. Sol. in H 2 0. (Birnbaum.) See also Chloroplatosulphite, ammonium. PtClS0 3 H, 2NH 4 C1. Deliquescent; sol. in H 2 0. (Birnbaum, A. 152. 143.) See also Chloroplatosulphite, ammonium. Potassium platosulphite, K 6 Pt(S0 3 ) 4 + 4H 2 0. SI. sol. in cold, easily in hot H 2 0. Much more sol. than the Na salt. (Birnbaum, A. 139. 168.) + 3H 2 0. (Lang, J. pr. 83. 415.) 6K 2 0, 2PtO, 10S0 2 . SI. sol. in H 2 0. (Glaus, J. B. 1847-48. 453.) Does not exist. (Lang.) K 2 Pt(S0 3 ) 2 . Sol. in H 2 0. Silver platosulphite, Ag 6 Pt(S0 3 ) 4 . Ppt. Very sol. in cold NH 4 OH + Aq. (Lang, J. pr. 83. 415.) Sodium platosulphite, Na 6 Pt(S0 3 ) 4 . Very si. sol. in cold, somewhat more easily in hot H 2 0. Not decomp. by boiling KOH or NaOH + Aq. Gradually sol. in (NH 4 ) 2 S or K 2 S + Aq. Insol. in NaCl + Aq or alcohol. (Litton and Schnedermann, A. 42. 316.) + HH 2 0. + 7H 2 0. Na2Pt(S0 3 H) 4 . Moderately sol. in H 2 0. (Litton and Schnedermann.) Platothiosulphuric acid. Sodium platothiosulphate, Na 6 Pt(S 2 3 ) 4 + 10H 2 0. Very sol. in H 2 0. (Schottlander, A. 140. 200.) PtS 2 3 , 4Na 2 S 2 3 + 10H 2 0. PtS 2 3 , 6Na 2 S 2 3 + 19H 2 0. 2Pt2S 2 3 , 7Na2S 2 3 + 18H 2 0. (Jochum, C. C. 1885. 642.) Plumbic acid. Barium plumbate, Ba^bO^ Insol. in H 2 0. Sol. in HCl + Aq with evolution of 01. Sol. in acids in presence of a reducing substance. (Kassner, Arch. Pharm. 228. 109.) Calcium plumbate. Insol. in H 2 0. HN0 3 + Aq dissolves out CaO. (Crum, A. 55. 218.) Ca 2 Pb0 4 . Properties as Ba 2 Pb0 4 . (Kass- ner, Arch. Pharm. 228. 109.) Potassium plumbate, K 2 Pb0 3 + 3H 2 0. Very deliquescent. Decomp. by pure H 2 into Pb0 2 and KOH. Sol. in KOH + Aq with- out decomp. (Fremy, J. Pharm. (3) 3. 32.) Sodium plumbate. Sol. in H 2 with decomposition. SI. sol. in alkalies + Aq. (Fremy, A. ch. (3) 12. 490.) Strontium plumbate, Sr 2 Pb0 4 . Properties as Ba 2 Pb0 4 . (Kassner, Arch. Pharm. 228. 109.) Plumbous acid. Calcium plumbite. SI. sol. in H 2 0. (Karsten, Scher. J. 5. 575. Potassium plumbite, PbO, #K 2 0. Known only in solution. Silver plumbite, Ag 2 Pb0 2 +2H 2 0. Insol. in H 2 0. Decomp. on air. (Kratwig, B. 15. 264.) Sodium plumbite. Known only in solution. 334 POTASSIUM Potassium, K 2 . Violently decomposes H 2 or alcohol. Insol. in hydrocarbons. Sol. with violent action in acids. Sol. in liquid NH 3 . (Seely, C. N. 23. 169.) Potassium amide, KH 2 N. Decomp. by water or alcohol. Insol. in hydrocarbons. Potassium bromide, KBr. Solubility of KBr in 100 pts. H 2 at t. t Pts. KBr t Pts. KBr 53-48 60 85-35 20 64-52 80 93-46 40 74-63 100 102-0 (Kremers, Pogg. 97. 151.) Solubility of KBr in 100 pts. H 2 at t. t Pts. KBr t Pts. KBr -13-4 46-17 43-15 77-0 -6-2 49-57 45-45 7773 53-32 50-5 80-33 + 3-4 55-60 54-8 82-78 5-2 56-63 60-15 85-37 12-65 61-03 6675 88-22 13-0 61-17 71-45 90-69 13-3 61-45 74-85 92-25 18-3 64-11 86-5 97-28 26-05 68-31 97-9 102-9 30-0 70-35 no -d 110-3 37-9 74-46 Solubility is represented by a straight line of the formula 54'43 + 0'5128t. (Coppet, A. ch. (5) 30. 416.) If solubility S = pts. KBr in 100 pts. solution, S = 34-5 + 0'2420t from to, 40, S = 41'5 + 0'1378t from 30 to 120. (Etard, C. R. 98. 1432.) Solubility of KBr in 100 pts. H 2 at high temp. t Pts. KBr 140 120-9 181 145-6 (Tilden and Shenstone, Phil. Trans. 1884. 23.) Sat. solution boils at 112. (Kremers.) Sp. gr. of KBr + Aq at 19. %KBr Sp. gr. %KBr Sp. gr. 5 10 15 20 25 1-037 1-075 1-116 1-159 1-207 30 35 40 45 1-256 1-309 1-366 1-432 (Gerlach, Z. anal. 8. 285.) Sp. gr. of KBr + Aq at 15 containing : 5 10 20 30 36% KBr. 1-0357 1-074 1-1583 1-2553 1-3198 (Kohlrausch, W. Ann. 1879. 1.) 100 pts. KBr + Aq sat. at 15-16 contain 39-06 pts. KBr. (v. Hauer, J. pr. 98. 137.) 100 pts. KBr + KCl + Aq sat. at 15-16 con- tain 37-55 pts. of the two salts ; 100 pts. KBr + KI + Aq sat. at 15-16 contain 57 '96 pts. of the two salts; 100 pts. KBr + KCl + KI + Aq sat. at 15-16 contain 57 "88 pts. of the three salts, (v. Hauer, I.e.) By repeatedly heating KBr + Aq sat. at 15-16 with KI and cooling to 15, nearly all the KBr can be separated, (v. Hauer.) 100 pts. H 2 sat. with KBr at 16 dissolve 13 -15 pts KI, but on addition of more KI, KBr is pptd. (van Melckebeke, C. C. 1872. 586.) SI. sol. in alcohol. (Ballard.) Sol. in 200 pts. cold, and 16 pts. boiling 80 % alcohol. Sol. in 180 pts 90 % alcohol. (Hager.) Sol. in 750 pts. abs. alcohol at 15. (Eder, Dingl. 221. 89.) Sol. in 5000 pts. ether (sp. gr. 0729) at 15. (Eder, I.e.) Sol. in 1700 pts. alcohol-ether (1 : 1) at 15. (Eder, I.e.) 100 pts. absolute methyl alcohol dissolve 1-51 pts. at 25 ; 100 pts. absolute ethyl alcohol dissolve 0'13 pt. at 25. (de Bruyn, Z. phys. Ch. 10. 783.) 100 pts. acetone dissolve 0'023 pt. KBr at 25. (Krug and M'Elroy, J. Anal. Ch. 6.184.) Potassium selenium bromide. See Bromoselenate, potassium. Potassium tellurium bromide. See Bromotellurate, potassium. Potassium thallic bromide, KBr, TlBr 3 + 2H 2 0. Sol. in H 2 0. 3 KBr, 2TlBr 3 + 3H 2 0. Sol. in H 2 0. (Ram- melsberg. ) Potassium thorium bromide. Sol. inH 2 0. (Berzelius.) Potassium stannous bromide, KBr, SnBr 2 + H 2 0. Sol. in H 2 0. (Benas, C. C. 1884. 958.) Can be recryst. from HBr or KBr + Aq. (Richardson, Am. Ch. J. 14. 95.) 2KBr, SnBr 2 + 2H 2 0. Cannot be recryst. from HBr + Aq. (Richardson.) Potassium stannic bromide, 2KBr, SnBr 4 . See Bromostannate, potassium. Potassium uranyl bromide, 2KBr, U0 2 Br 2 + 2H 2 0. Very easily sol. in H 2 0. (Sendtner.) Potassium bromoiodide, KBr 2 I. Decomp. rapidly on air. (Wells and Wheeler, Sill. Am. J. 143. 475.) Potassium carbonyl, K2C 2 2 . Decomp. by H 2 with explosion. (Joannis, C. R. 116. 158.) POTASSIUM CHLORIDE 335 Potassium chloride, KC1. Sol. in H 2 with absorption of heat. 30 pts. KC1 + 100 pts. H 2 at 13 '2 lower the temp. 12 '6. (Riidorff, B. 2. 68.) 100 pts. H 2 dissolve 29 '31 pts. KC1 at (Gay-Lussac) j 28 '5 pts. KC1 at (Mulder; Gerardin). The saturated solution contains 58 '5 %, and boils at 107-6 (Mulder) ; contains 59 '40 %, and boils at 108-3 (Legrand) ; contains 59 '26 %, and boils at 109 '6 (Gay-Lussac) ; boils at 110 (Kremers). Sol. in 3-016 pts. H 2 at 15 (Gerlach) ; in 3-03 pts. at 17-5, or 100 pts. H 2 at 17 '5 dis- solve 33 pts. KC1 (Schiff). 100 pts. H 2 O at t dissolve pts. KC1 : t Pts. KC1 t Pts. KC1 t Pts. KC1 19-35 29-21 34-53 52-39 79-58 43-59 50-93 109-60 59-26 (Gay-Lussac, A. ch. (2) 11. 308.) 100 pts. H 2 O dissolve 34-6 pts. KC1 at 11-8 ; 34'9 pts. at 33-8 ; 35 pts. at 15'6. (Kopp.) 100 pts. H 2 O at 17-5 dissolve 33-24 pts. KC1, and sp. gr. of solution is 1 -1635. (Karsten.) 100 pts. H 2 O at 12 dissolve 32 pts., and at 100, 59'4 pts. (Otto-Graham.) Sol. in 3 pts. H 2 O at ord. temp., and 3 pts. boiling H 2 O (Bergmann) ; in 3 '33 pts. hot or cold H 2 O (Four- croy) ; in 3:pts. at 15, and 1'68 pts. at 110 (M. E. and P-) Sol. in 3-5 pts. HoO at 0, and in less than 1 pt. hot HoO (Schubarth); 100 pts. H 2 O at 17'5 dissolve 30'7- 33-0 pts. KC1 (Ure's Diet.). 100 pts. H 2 O dissolve 35-405 pts. KC1 at 15, and solu- tion has sp. gr. =1-1809. (Michel and Krafft, A. ch. (3) 41. 478.) 100 pts. H 2 dissolve at : 18 30 40 57 33-6 37-8 40-1 45 -Opts. KC1. (Gerardin, A. ch. (4) 5. 139.) 100 pts. H 2 dissolve 33 '06-32 '08 pts. KC1 at 15 '6 and sp. gr. of solution = 1 '171. (Page and Keightley, Chem. Soc. (2) 10. 566.) Solubility in 100 pts. H 2 at t. t Pts. . KC1 t Pts. KC1 t Pts. KC1 28-5 17 33-9 34 38-5 1 287 18 34-2 35 38-7 2 29-0 19 34-4 36 39-0 3 29-3 20 347 37 39-3 4 29-5 21 35-0 38 39-6 5 30-0 22 35-3 39 39-9 6 30-5 23 35-5 40 40-1 7 31-0 24 35-8 41 40-3 8 31-5 25 36-1 42 40-6 9 317 26 36-4 43 40-9 10 32-0 27 36-6 44 41-2 11 32-3 28 36-9 45 41-5 12 32-5 29 37-2 46 417 13 32-8 30 37-4 47 42-0 14 33-1 31 377 48 42-3 15 33*4 32 38-0 49 42-5 16 33-6 33 38-2 50 42-8 Solubility in 100 pts., etc. Continued. t" Pts. KC1 t Pts. KC1 t Pts. KC1 51 43-1 71 48-5 91 54-1 52 43-4 72 48-8 92 54-4 53 43-6 73 49-1 93 54-6 54 43-9 74 49-4 94 54-9 55 44-2 75 49-6 95 55-2 56 44-4 76 49-9 96 55-5 57 44-7 77 50-2 97 55-7 58 44-9 78 50-5 98 56-0 59 45'2 79 50-8 99 56-3 60 45-5 80 51-0 100 56-6 61 45-8 81 51-3 101 56-9 62 46-1 82 51-5 102 57-2 63 46-3 83 51-8 103 57-4 64 46-6 84 52-1 104 57-7 65 46-9 85 52-4 105 58-0 66 47-2 86 52-6 106 58-2 67 47-5 87 52-9 107 58-5 68 47-7 88 53-2 107-65 58-5 69 48-0 89 53-5 70 48-3 90 53-8 ... ... (Mulder, calculated from his own and other [observations, Scheik. Verhandel. 1864. 41.) Solubility in 100 pts. H 2 at t. t Pts. KC1 t Pts. KC1 t Pts. KC1 -11 24-46 25-7 36-10 64-95 47-17 -6-4 25-78 29-25 37'31 71-65 48-76 27-9 38-0 39-71 74-25 49-27 + 3-9 29-37 41-45 40-67 80-75 51-24 9-4 30-84 46-15 42-34 86-6 52-53 11 '4 32-19 48-8 42-86 91-4 53-49 14-95 32-66 55'1 44-51 19-0 34-32 60-55 45-90 (Coppet, A. ch. (5) 30. 414.) Solubility is represented by a straight line, of which the formula is 28'51 + 0'2837t. (Coppet.) 100 pts. H 2 dissolve 29 '33 pts. KC1 at 4, 45-5 pts. at 60. (Andreae, J. pr. (2) 29. 456.) 100 pts. H 2 dissolve at : 100 130 180 29-2 56-5 66 78 pts. KC1. (Tilden and Shenstone, Lond. R. Soc. Proc. 35. 345.) Solubility of KC1 in 100 pts. H 2 at high temp. t Pts. KC1 t Pts. KC1 t Pts. KC1 125 59-6 147 70-8 180 77-5 133 69-3 175 75-2 (Tilden and Shenstone, Phil. Trans. 1884, 23.) If solubility S = pts. KC1 in 100 pts. solution, S = 20-5 + 0'1445t from -90 to 110. (Etard, C. R. 98. 1432.) 336 POTASSIUM CHLORIDE KCl + Aq sat. at 16 has sp. gr.=l'077. (Stolba, J. pr. 97. 503.) Sp. gr. of KCl + Aq at 17 '5. y T/Pl HOI Sp. gr. KCl Sp.gr. KCl Sp. gr. 1 1-0062 9 1-0586 17 1-1152 2 1-0125 10 1-0655 18 1-1225 3 1-0189 11 1-0725 19 1-1298 4 1-0254 12 1-0795 20 1-1372 5 1-0319 13 1-0866 21 1-1446 6 1-0385 14 1-0937 22 1-1521 7 1-0451 15 1-1008 23 1-1596 8 1-0518 16 1-1080 24 1-1673 (Schiff, A. 110. 76.) Sp. gr. of KCl + Aq at 19 -5. %KC1 Sp.gr. %KC1 Sp. gr. 5-98 11-27 16-27 1-0382 1-0733 1-1075 21-31 25-133 1-1436 1-1720 (Kremers, Pogg. 95. 119.) Sp. gr. of KCl + Aq at 15. KC1- Sp. gr. KCl Sp. gr. KCl Sp. gr. 1 1-00650 10 1-06580 19 1-12894 2 1-01300 11 1-07271 20 1-13608 3 1-01950 12 1-07962 21 1-14348 4 1-02600 13 1-08654 22 1-15088 5 1-03250 14 1-09345 23 1-15828 6 1-03916, 15 1-10036 24 1-16568 7 1-04582 16 1-10750 24-9* 1-17234 8 1-05248 17 1-11465 9 1-05914 18 1-12179 * Mother liquor. (Gerlach, Z. anal. 8. 281.) Sp. gr. of KCl + Aq at 20, containing mols. KCl to 100 mols. H 2 0. Mols. KCl Sp. gr. Mols. KCl Sp. gr. 0-5 1-0 2-0 1-01310 1-02568 1-04959 4-0 5-0 1-09415 1-11445 (Nicol, Phil. Mag. (5) 16. 122.) Sp. gr. of KCl + Aq at 18. K/-11 01 Sp. gr. 7 KCl Sp. gr. % KCl Sp. gr. 5 1-0308 15 1-0978 25 1-1408 10 1-0638 20 1-1335 ... (Kohlrausch, W. Ann. 1879. 1.) Sp. gr. of KCl + Aq at 0. S = pts. salt in 100 pts. of solution ; Si = mols. salt in 100 mols. solution. 8 Si Sp. gr. 20-7840 177214 14-4707 11-0757 7-5440 4-4968 5-954 4-940 3-922 2-918 1-931 1-123 1-1489 1-1258 1-1018 1-0769 1-0521 1-0308 (Charpy, A. ch. (6) 29. 23.) KCl + Aq containing 10 % KCl boils at 101-1 ; containing 20 %, at 103 '4. (Gerlach.) Sat. KCl + Aq containing 52 '7 pts. KCl to 100 pts. H 2 forms a crust at 107 '7 ; highest temp, observed, 108 '5. (Gerlach, Z. anal. 26. 426.) B.-pt. of KCl + Aq containing pts. KCl to 100 pts. H 2 0. G = according to Gerlach (Z. anal. 26. 438) ; L = according to Legrand (A. ch. (2) 59. 426). B.-pt. G L B.-pt. G L 100-5 4-9 47 105 36-2 37-8 101-0 9-2 9-0 105-5 39-3 41-0 101-5 13-1 13-2 106 42-4 44-2 102 167 17-1 106-5 45-5 47-4 102-5 20-1 20-9 107 48-4 50-5 103 23-4 24-5 107-5 51-5 53-7 103-5 267 28-0 108 54-5 56-9 104 29'9 31-4 108-3 ... 59-4 104-5 33-1 34-6 108-5, 57-4 Precipitated from aqueous solution by HC1 + Aq. Much less sol. in very dil. HC1 + Aq than in H 2 0. (Fresenius.) Nearly insol. in cone. HC1 + Aq. Solubility in KOH + Aq. KCl = mols. KCl (in rugs.) in 10 com. of solution at ; K 2 = mols. K 2 (in mgs.) in 10 ccm. of solution atO. KCl K 2 O KC1+K 2 O Sp. gr. 34-5 34-5 1-159 31 2-375 33-375 1-146 28-3 47 33 1-153 23 9-9 32-9 1-172 18-375 15-06 33-435 1-195 14-425 20 34-425 1-216 11-425 24-625 36-050 1-239 8-975 29-25 38-225 1-261 6-275 35-125 41-400 1-294 Sol. in NH 4 C1. (Engel, Bull. Soc. (3) 6. 16.) NH 4 Cl + Aq with pptn. of POTASSIUM CHLORIDE 337 When action has ceased, the solution at 1875 contains 31 '6 % of the mixed salt; or 100 pts. H 2 dissolve 46 '1 pts. of the mixed salt, viz. 16-27 pts. KC1 and 29 '83 pts. NH 4 C1. (Karsten.) (See NH 4 C1.) Sol. in sat. BaCl 2 + Aq with pptn. of BaCl 2 until a state of equilibrium is reached, when 100 pts. H 2 at 16-8 dissolve 45 '9 pts. mixed salts, viz. 18-2 pts. BaCl 2 and 277 pts. KC1. (See BaCl 2 .) Sol. in sat. KN0 3 + Aq with pptn. of KN0 3 . (See KN0 3 .) Sol. in sat. NaN0 3 + Aq without causing pptn. (SeeNaN0 3 .) Sol. in sat. Ba(N0 3 ) 2 + Aq without causing pptn. 100 pts. H 2 dissolve 133 '2 pts. KI and 10 '4 pts. KC1 at 21 '5, no matter how prepared. (Riidorff, B. 6. 484.) 100 pts. KCl + Aq sat. at 15-16 contain 25-26-25-37 pts. KC1. 100 pts. KCl + KI + Aq sat. at 15-16 contain 57 '80 pts. of the two salts. KC1 is pptd. by KI. (v. Hauer, J. pr. 98. 137.) Solubility of KC1 in MgCl 2 + Aq of given per- centage composition. t 30% 21-2% 15% 11% 10 1-9% 5-3% 9-9% 14-3% 20 2-6 6-5 11 '8 15-9 30 3-4 7-6 127 17'5 40 4-2 8-8 14-2 19-0 50 5-0 10-0 15-6 20-5 60 5-8 11-2 17-0 21-9 70 6-5 12-4 18-3 23-2 80 7-3 13-6 19-5 24-5 90 8-1 147 20-8 25-8 100 8-9 15-9 22-1 27-1 (Precht and Wittgen.) Solubility of KCl + NaCl in 20 % MgCl 2 + Aq. t %KC1 %NaCl t e %KC1 %NaCl 10 4-2 57 60 8-9 6-3 20 5-1 5-8 70 9-9 6-4 30 6-0 5-9 80 10-9 6-6 40 6-9 6-0 90 11-9 67 50 7-9 6-1 100 13-0 6-9 (P. and W.) KCl + NaCl. 100 pts. KCl + NaCl + Aq sat. at 13-16 con- tain 30-18 pts. of the two salts, (v. Hauer.) 100 pts. H 2 dissolve 13 '92 pts. KC1 and 30*65 pts. NaCl at 15 '6, and solution has sp. gr. = 1 -233. (Page and Keightley. ) 100 pts. H 2 dissolve lO'll pts. KC1, 32'15 pts. NaCl, and 4 '69 pts. K 2 S0 4 , and solution has sp. gr. = 1 '250. (P. and K. ) 100 pts. H 2 dissolve 29 '9 pts. NaCl and 157 pts. KC1 at 18-8. (Riidorff.) Solubility of KCl + NaCl in H 2 at t. 100 pts. H 2 dissolve pts. KC1 and pts. NaCl. t Pts. KC1 Pts. NaCl t Pts. KC1 Pts. NaCl 10 12-5 297 60 24'6 27-2 20 147 29-2 70 27-3 26-8 30 17-2 287 80 30-0 26-4 40 19-5 28-2 90 32-9 26-1 50 22-0 277 100 347 25-8 (Precht and Wittgen, B. 14. 1667.) 100 pts. H 2 dissolve 13 '99 pts. KCl + 30'54 pts. NaCl = 44 -53 pts. mixed salts at 20. (Nicol, Phil. Mag. (5) 31. 385.) KCl + SrCl 2 . 100 pts. H 2 dissolve 11 '2 pts. KC1 and 48-6 pts. SrCl 2 at 14 '5. (v. Hauer.) If SrCl 2 + Aq sat. at 14 '5 is sat. with KC1 at same temp., 100 pts. H 2 dissolve : KC1 . . . SrCl 2 . . 33-2 11-2 48'6 507 59-8 (Mulder, Scheik. Verhandel. 1864.) KC1 + (NH 4 ) 2 S0 4 . Sat. solution of KC1 + (NH 4 ) 2 S0 4 at b.-pt. when cooled to 14 has different composition from sat. solution of (NH 4 )C1 and K 2 S0 4 , and its composition is changed by warming it with either KC1 or (NH 4 ) 2 S0 4 . (Riidorff.) KC1 + K 2 S0 4 . 100 pts. H 2 contain the following amounts salt at 18-75 : (1) sat. with KC1 alone ; (2) sat. first with KC1 then with K 2 S0 4 ; (3) sat. with K 2 S0 4 and KC1 together; (4) sat. first with K 2 S0 4 then with KC1 ; (5) sat. with K 2 S0 4 alone. KC1 K 2 S0 4 . 1 2 3 4 5 34-5 32-96 179 33-12 175 33-12 1-83 10-8 (Karsten.) 100 pts. H 2 sat. with both K,jS0 4 and KC1 contain the following amounts. At 14-8 KC1 , K 2 S0 4 . 33-5 28-2 2-0 10-3 At 15-8 KC1 . . K 2 S0 4 . 33-6 27-9 2-3 10-4 At 16-1 KC1 . . K 2 S0 4 . 33-6 27-1 3-3 10-4 (Kopp, A. 34. 264.) 338 POTASSIUM RHODIUlt CHLORIDE Sat. K 2 S0 4 + Aq dissolves KC1 only with pptn. of K 2 S0 4 , but sat. KCl + Aq dissolves some K 2 S0 4 without any separation. (Karsten. ) Solubility of KC1 + K 2 S0 4 . 100 pts. H 2 dissolve at t : t Pts. KC1 Pts. K 2 S0 4 t Pts. KC1 Pts. K 2 SO 4 10 30-9 1-32 60 43-8 1-94 20 33-4 1-43 70 46-5 2-06 30 36-1 1-57 80 49-2 2-21 40 38-7 1-68 90 52-0 2-38 50 41-3 1-82 100 54-5 2-53 (Prechtand Wittgen.) Sol. in 20 % KC 2 H 3 2 + Aq. (Stromeyer. ) 100 pts. alcohol of O'OOO sp. gr. dissolve 4-62 pts. ; 0*872, 1-66 pts. ; 0*834, 0'38 pt. ; 0'817, O'OO pt. KC1. (Kirwan.) Sol. in 48 pts. boiling alcohol. (Wenzel.) Insol in absolute alcohol containing LiCl. (Mitscher- lich.) At 15, 100 pts. alcohol of p percentage by volume (S = sp. gr. ) dissolve pts. KC1 as follows : p 10 20 30 40 50 60 80 S 0-984 0-972 0-958 0'940 0'918 0'896 0'848 KC1 19-8 14-7 107 77 5'0 2'8 0'45 (Schiff, A. 118. 365.) 100 pts. of a mixture of 40 % alcohol with 60 % H 2 dissolve 9 '2 pts. KC1 at 15. (Schiff.) Insol. in absolute alcohol or in 96 % alcohol at 15 or below. At 20, 100 pts. of the latter dissolve 0'04 pt. ; at 25, 0'06 pt. ; at 30, 0'20 pt. KC1. Dilute alcohol dissolves less KC1 than the contained itself. H 2 would dissolve by Solubility in dil. alcohol. D = sp. gr. of alco- hol ; S = solubility in 100 pts. alcohol at t. D = 0-9904 D = 0-9848 D = 0-9793 D=0'9726 t S t 8 t S t S 4 22 25 34 52 23-2 24-8 29-4 30-2 32-8 37-5 4 20 27 30 37 60 20-9 25-5 26-6 27-5 29-0 35-2 4 21 28 43 16-4 20-3 22-0 25-6 3 5 16 20 25 34 12-2 127 15-4 16-1 17-3 19-0 D = 0-9573 D = 0-9390 D=0-8967 D = 0-8244 t 10 11 17 30 40 60 1 S t S t 12 31 47 65 S t S 8-8 9-0 10-3 12-5 13-9 167 2 7 16 30 38 57 4-2 5-1 6-4 8-5 9-6 11-3 2-87 4-35 4-88 5-65 4 15 20 25 32 o-oo o-oo 0-04 0-06 0-20 (Gerardin, A. oh. (4) 5. 140. Solubility of KC1 in dil. alcohol at 14 '5. Sp. gr. 100 ccm. containing Alcohol Water KC1 1-1720 88-10 29-10 1-1542 279 8578 26-85 1-1365 4-98 84-00 24-67 1-1075 10-56 79-63 20-56 1-1085 15-57 75-24 17-24 1-0545 20-66 70-52 14-27 1-0455 24-25 67-05 13-25 0-9695 40-42 50-18 6-35 0-9315 4873 40-60 3-82 0-8448 68-63 15-55 0-30 (Bodlander, Z. phys. Ch. 7. 316.) 100 pts. absolute methyl alcohol dissolve 0" pt. at 18-5 ; 100 pts. absolute ethyl alcoho dissolve 0'034 pt. at 18 '5. (de Bruyn, Z phys. Ch. 10. 783.) 100 pts. 40 % wood alcohol dissolve 9 "2 pts KC1. (Schiff.) Very si. sol. in mixture of equal pts absolute alcohol and ether. (Berzelius.) 500 mg. KC1 treated with 10 g. of abov mixture yield only 0'3 mg. to the liquid (Law T rence Smith, Am. J. Sci. 16. 56.) Sol. in glycerine. (Pelouze. ) Insol. in CS 2 . (Baeyer.) Insol. in fusel-oil. (Gooch, Am. Ch. J. 9 53.) Insol. in acetone. (Krug and M'Elroy, J Anal. Ch. 6. 184.) Potassium rhodium chloride, 6KC1, Rh 2 CL + 6H 2 0. See Chlororhodite, potassium. Potassium ruthenium sesgm'chloride. See Chlororuthenite, potassium. Potassium ruthenium Z^rachloride. See Chlororuthenate, potassium. Potassium tellurium chloride. See Chlorotellurate, potassium. Potassium thallic chloride, 3KC1, T1CL + 2H 2 0. Sol. in H 2 0. Not decomp. by boiling H 2 (Rammelsberg.) Potassium thorium chloride, KC1, 2ThCl 4 + 18H 2 0. Deliquescent : sol. in H 2 and alcohol (Berzelius.) Potassium stannous chloride (Potassium chlorostannite), KC1, SnCl 2 + H 2 0. Decomp. by H 2 ; sol. in hot HC1 or KC1 + Aq. (Remsen and Richardson, Am. Ch. J. 14 90.) 2KC1, SnCl 2 + H 2 0. Partially decomp. by dissolving in H 2 0. (Rammelsberg, Pogg. 94 507.) + 2H 2 0. Very sol. in hot, and but slightly in cold HCl + Aq or KCl + Aq. (Remsen and Richardson. ) ss POTASSIUM HYDROXIDE 339 4KC1, SnCl 2 + 3H 2 0. (Poggiale, C. R. 20. 1182.) Does not exist. (Remsen and Richardson. ) Potassium stannic chloride, 2KC1, SnCl 4 . See Chlorostannate, potassium. Potassium uranyl chloride, 2KC1, U0 2 C1 2 + ' 2H 2 0. Very sol. in H 2 and alcohol. (Arfvedson.) Sol. in H 2 0, with decomp. and separation of KC1, unless H 2 is acidulated with HC1. (Peligot, A. ch. (3) 5. 37.) Potassium yttrium chloride. Sol. in H 2 with evolution of heat. Potassium zinc chloride, 2KC1, ZnCl 2 . Very deliquescent. Sol. in 1 pt. cold, and in all proportions of hot H 2 0. (Pierre, A. ch. (3) 16. 248.) Potassium chloroiodide, KC1 2 I. Very unstable. (Wells and Wheeler, Sill. Am. J. 143. 475.) KC1 4 I. Sol. in H 2 with decomp. Ether dissolves out IC1 3 . (Filhol, J. Pharm. 25. 433.) Potassium fluoride, KF or K 2 F 2 . Very deliquescent. Very sol. in H 2 0. SI. sol. in HF + Aq. Easily sol. in cone. KC 2 H 3 2 + Aq. Insol. in alcohol. (Berzelius.) Sol. in dilute alcohol. (Stromeyer, A. 100. 83.) Sp. gr. of aqueous solution of KF at 18 containing 5 10 20 30 40 % KF. 1-041 1-084 1-117 1-272 1-378 (Kohlrausch, W. Ann. 1879. 1.) + 2H 2 0. Very deliquescent. (Guntz, A. ch. (6) 3. 20.) Potassium hydrogen fluoride, KF, HF=KHF 2 . Easily sol. in H 2 0. SI. sol. in H 2 O con- taining HF. Easily sol. in cone. KC 2 H 3 2 + Aq. Sol. in dil. alcohol, but insol. in absolute alcohol. KF, 2HF. Deliquescent. Decomp. by H 2 with absorption of heat. (Moissan, C. R. 106. 547.) KF, 3HF. As above. (Moissan.) Potassium tantalum fluoride. See Fluotantalate, potassium. Potassium tellurium fluoride, KF, TeF 4 . Decomp. by H 2 0. (Hogbom, Bull. Soc. (2) 35. 60.) Potassium thorium fluoride, 2KF, ThF 4 + 4H 2 0. Nearly insol. in H 2 0. Sol. in HF + Aq. KF, ThF 4 . Precipitate. (Chydenius.) Potassium stannous fluoride, 2KF, 3SnF 2 + H 2 0. Sol. in H 2 0. (Wagner, B. 19. 896.) Potassium stannic fluoride. See Fluostannate, potassium. Potassium titanium ^rafluoride. See Fluotitanate, potassium. Potassium titanium sesquifLuoride, 4KF, Ti 2 F 6 . Precipitate. Very si. sol. in H 2 0. Sol. in dil. acids. (Piccini, C. R. 97. 1064.) See also Fluosesgmtitanate, potassium. Potassium titanyl fluoride. See Fluoxypertitanate, potassium. Potassium tungstyl fluoride. See Fluoxytungstate, potassium. Potassium uranium fluoride, KF, UF 4 . Insol. in H 2 and dil. acids. Difficultly sol. in cone. HCl + Aq. Sol. in cone. H 2 S0 4 . (Bolton, J. B. 1866. 212.) Potassium uranyl fluoride. See Fluoxyuranate, potassium. Potassium vanadium sesquifiuoride. See Fluovanadate, potassium. Potassium vanadium ^rafluoride (?). Easily sol. in H 2 0. Insol. in alcohol. (Berzelius.) Potassium zinc fluoride, KF, ZnF 2 . Sol. inH 2 0. (R. Wagner.) 2KF, ZnF 2 . Sol. in H 2 0. (Berzelius.) Potassium zirconium fluoride. See Fluozirconate, potassium. Potassium fluoride vanadic acid. See Fluoxyvanadate, potassium. Potassium hydrogenide, K 2 H 4 . Ignites on air* Potassium hydrosulphide, KSH. Very deliquescent, and sol. in H 2 with gradual decomp. Crystallises with AH 9 0. rJi'iii & Sol. in alcohol. Potassium hydroxide, KOH. Very deliquescent, and sol. in H 2 with evolution of much heat. 100 pts. KOH, ex- posed over H 2 at 16-20, take up 460 pts. H 2 0in56days. (Mulder.) 1 pt. KOH dissolves in 0'5 pt. cold H 2 O (Lowitz); in 0-47 pt. cold H 2 O (Bineau, C. R. 41. 509) ; in 1 pt. H 2 (Abl) Sp. gr. and b.-pt. of KOH+Aq according to Dalton. %K 2 Sp. gr. B.-pt. %K 2 Sp. gr. B.-pt. 4-7 1-06 100-56 36-8 1-44 123-89 9-5 I'll 101-11 39-6 1-47 129-44 13-0 1-15 101-66 42-9 1-52 135-56 16-2 1-19 103-33 46-7 1-60 143-33 19-5 1-23 104-44 51-2 1-68 160-00 23-4 1-28 106-66 56-8 1-78 188-22 26-3 1-33 109-44 63-6 1-88 215-56 29-4 1-36 112-22 72-4 2-00 315-56 32-4 1-39 115-56 84-0 2-2 red heat 34-4 1-42 118-89 100 2-4 340 POTASSIUM HYDROXIDE Sp. gr. of KOH+Aq at 15. Sp. gr. of KOH + Aq at 15. %K 2 3p- gr- %K 2 Sp. gr. %K 2 Sp. gr. , %KOH Sp. gr. %KOH Sp.gr. 0-568 1-697 2-829 1-0050 1-0153 1-0560 10-750 11-882 13-013 1-1059 1-1182 1-1308 20-935 21-500 22-632 1-2268 1-2342 1-2493 4-2 8'4 1-0382 1-0776 21-0 25-2 1-2008 1-2439 3-961 1-0369 14-145 1-1437 23-764 1-2648 12-6 1-1177 29-4 1-2880 5-002 1-0478 15-277 1-1568 24-895 1-2805 16'8 1-1588 6-224 1-0589 16-408 1-1702 26-027 1-2966 7-355 8-487 1-0703 1-0819 17-540 18-671 1-1839 1-1979 27-158 28-290 1-3131 1-3300 (Kohlrausch, W. Ann. 1879. 1.) 9-619 1-0938 19-803 1-2122 Sr> err nf TTOTT 4- A n af 1^ (Zimmermann, N. J. Pharni. 18, 2. 5.) r- & M %KOH Sp. gr. %KOH Sp.gr. Sp. gr. of KOH+Aq. 10 1-077 50 1-539 %K 2 Sp. gr. %K 2 Sp.gr. %K 2 Sp. gr. 20 30 1-175 1*288 60 70 1-667 1*790 2-44 1-02 23-14 1-22 37-97 1-42 40 1-411 4-77 1-04 24-77 1-24 40-17 1-44 7-02 9-20 1-06 1-08 26-34 27-86 1-26 1-28 42-31 44-40 1-46 1-48 (Gerlach, Z. anal. 27. 275, calculated from 11-28 rio 29-34 1-30 46-45 1-50 SchifF, A. 107. 300.) 13-30 1-12 30-74 1-32 48-46 1-52 15-38 17-40 1-14 1-16 32-14 33-46 1-34 1-36 50-09 51-58 1-54 1-56 Sp. gr. of K 2 + Aq at 15. 19-34 21-25 1-18 1-20 34-74 35-99 1-38 1-40 53-06 1-58 %K 2 Sp.gr. %K 2 Sp.gr. (Richter.) 5 1-054 30 1-358 10 1-111 35 1-428 Sp. gr. of KOH + Aq at 15. a K 2 0; b = sp. gr. if %i i = sp.gr. if % is s KOH. 15 20 25 1-171 1-231 1-294 40 45 1-500 1-576 % a b % a b (Hager, Adjumenta varia, Leipsic, 1876.) 1 2 1-010 1-020 1-009 1-017 31 32 1-370 1-385 1-300 1-311 Sp. gr. of KOH + Aq at 20 containing 2 mols. KOH to 100 mols. H 2 = 1 -05325. (Nicol, 3 1-030 1-025 33 1-403 1-324 Phil. Mag. (5) 16. 122.) 4 1-039 1-033 34 1-418 1-336 Sat. KOH + Aq boils at 1577 (Griffiths); 5 1-048 1-041 35 1-431 1-349 340 (Gerlach). 6 7 1-058 1-068 1-049 1-058 36 37 1-445 1-460 1-361 1-37*4 B.-pt. of KOH + Aq containing pts. KOH to 100 8 1-078 1-065 38 " 1-475 1-387 pts. H 2 0. 9 10 1-089 1-099 1-074 1-083 39 40 1-490 1-504 1-400 1-411 B.-pt. Pts. KOH B.-pt. Pts. KOH 11 1-110 1-092 41 1-522 1-425 105 20 '5 215 21Q-5 12 1-121 1-110 42 1-539 1-438 110 34-5 220 219'8 13 14 1-132 1-143 1-111 1-119 43 44 1-564 1-570 1-450 1-462 115 120 46-25 57*5 225 230 230-0 240 "9 15 16 17 18 19 1-154 1-166 1-178 1-190 1-202 1-128 1-137 1-146 1-155 1-166 45 46 47 48 49 1-584 1-600 1-615 1-630 1-645 1-472 1-488 1-499 1-511 1-527 125 130 135 140 145 67-5 76-8 85-0 92-5 99'8 235 240 245 250 255 251*9 263*1 274-4 285-7 298*5 20 21 22 23 24 25 26 27 28 29 30 1-215 1-230 1-242 1-256 1-270 1-285 1-300 1-312 1-326 1-340 1-355 1-177 1-188 1-198 1-209 1-220 1-230 1-241 1-252 1-264 1-278 1-288 50 51 52 53 54 55 56 57 58 59 60 1-660 1-676 1-690 1-705 1-720 1-733 1-746 1-762 1-780 1-795 1-810 1-539 1-552 1-565 1-578 1-590 1-604 1-618 1-630 1-641 1-655 1-667 150 155 160 165 170 175 180 185 190 195 200 106-5 114-05 121-7 129-35 137-0 144-8 152-6 160-4 168-2 176-5 185-0 260 265 270 275 280 285 290 295 300 310 320 312*5 328*0 343*5 359*0 375-0 391-0 408*2 425-5 444-4 484-0 526-3 (Calculated by Gerlach, Z. anal. 8. 279, after 205 210 193*5 202-0 330 340 571 5 623-6 Zimmerman.!! N J Pliarm 18 2 5 and Scliiff A. 107. 300.) (Gerlach, Z. anal. 26. 464.) POTASSIUM IODIDE 341 Abundantly sol. in strong alcohol or wood- spirit. Readily sol. in glycerine. Sol. in not less than 25 pts. of ether. (Boullay.) Sol. in much more than 25 pts. of ether. (Connell.) Sol. in aqueous solution of mannite. (Favre, A. ch. (3) 11. 76.) Insol. in acetone. Readily sol. in fusel oil. + 1H 2 0. + 2H 2 0. Very deliquescent, and sol. in H 2 with absorption of much heat. Potassium iodide, KI. Deliquescent only in very moist air. Very sol. in H 2 with absorption of heat. The temp, of H 2 can be lowered 24 by dissolving KI. (Baup.) 140 pts. KI dissolved in 100 pts. H 2 at 10'8 lower the temp. 22 '5. (Riidorff, Pogg. 136. 276.) 100 pts. H 2 dissolve 126 '6 pts. KI at (Kremers); 127 '8 pts. KI at (Mulder); 127*9 pts. KI at (Gerardin). By boiling, 100 pts. H 2 dissolve 221 pts. KI at 120 (Baup) ; 222 '2 pts. KI at 120 (Gay- Lussac) ; 222 '6 pts. KI at 118 '4 (Mulder) ; 223-58 pts. Klat 117 (Legrand) ; 223'6 pts. KI at 117 (Gerardin). Between these temps, the solubility increases proportional to temp. Sol. in 0-735 pt. H 2 O at 12'5 ; in 0'7G9 pt. H 2 O at 16 ; in 0'7 pt. H 2 O at 18 ; in 0'45 pt. H 2 O at 120. (Graham-Otto.) 100 pts. KI+Aq sat. at 15-16 contain 58*07 pts. KI. (v. Hauer, J. pr. 98. 137.) 100 pts. H^O at 12-5 dissolve 136 pts. ; at 16, 141 pts. KI. CBaup.") 100 pts. H 2 O at 18 dissolve 143 pts. KI ; at 120, 271 pts. (Gay-Lussac.) Sol. in 0-79 pt. H 2 O at ; in 0'70 pt. HoO at 20 ; in 0-63 pt. H 2 O at 48 ; in 0'57 pt. H 2 O at 60 ; in 0'53 ' H 2 O at 80 ; in 0'51 pt. H 2 O at 100. (Kremers, 7. 15.) Sol. in 0-71 pt. H 2 at 15. 221. 89.) (Eder, Dingl. Solubility of KI in 100 pts. H 2 at t t Pts. KI t Pts. KI t Pts. KI 127-9 19 143-4 38 159 1 128-7 20 144-2 39 160 2 129-6 21 145-1 40 160 3 130-4 22 145-9 41 161 4 131-2 23 146-7 42 162 5 132-1 24 147-5 43 163 6 132-9 25 148-3 44 164 7 133-7 26 149-1 45 164 8 134-5 27 149-9 46 165 9 135-3 28 1507 47 166 10 136-1 29 151-5 48 167 11 137-0 30 152-3 49 168 12 137-8 31 153 50 168 13 138-6 32 154 51 169 14 139-4 33 155 52 170 15 140-2 34 156 53 171 16 141-0 35 156 54 172 17 141-8 36 157 55 172 18 142-6 37 158 56 173 Solubility of KI in 100 pts., etc. Continued. t Pts. KI t Pts. KI t Pts. KI 57 174 78 191 99 208 58 175 79 192 100 209 59 175 80 192 101 210 60 176 81 193 102 211 61 177 82 194 103 212 62 178 83 195 104 213 63 179 84 196 105 213 64 180 85 197 106 214 65 180 86 197 107 215 66 181 87 198 108 216 67 182 88 199 109 217 68 183 89 200 110 218 69 184 90 201 111 219 70 184 91 202 112 220 71 185 92 202 113 220 72 186 93 203 114 221 73 187 94 204 115 222 74 188 95 205 116 223 75 188 96 206 117 223-6 76 189 97 207 ... ... 77 190 98 208 ... (Mulder, calculated from his own and other observations, Scheik. Verhandel. 1864. 63.) Solubility of KI in 100 pts. H 2 at t. t Pts. KI t Pts. KI t Pts. KI -22-65 107-2 21 -05 143-3 71-1 183-5 -22-35 106-6 25-6 146-6 74-75 185-6 -16-8 111-1 29-1 149-6 81-6 192-0 -11-35 116-3 37-3 1567 86-35 194-6 - 5-9 120-4 42-3 160-3 93-5 200-3 126-1 4575 163-6 1007 205-6 -f 3-25 130-1 51-8 167-6 110-2 216-1 9-55 134-0 55-05 169-1 113-7 218-8 12-75 137-1 60-55 173-4 12-9 137-9 65-0 178-3 ... (Coppet, A. ch. (5) 30. 417.) Solubility is represented by a straight line of the formula 126 '23 + '8088t. (Coppet. ) Solubility of KI in 100 pts. H 2 at high temp. t Pts. KI t Pts. KI 124 233*9 144 264-6 133 249-3 175 310-4 (Tilden and Shenstone, Phil. Trans. 1884. 23.) If solubility S = pts. KI in 100 pts. solution, S = 55 -8 + -122t from to 165. (Etard, C. R 98. 1432.) Sp. gr. of KI + Aq at 21. %KI Sp. gr. %KI Sp. gr. %KI Sp. gr. 1 1-0075 6 1-0464 11 1-0877 2 1-0151 7 1-0545 12 1-0962 3 1-0227 8 1-0627 13 1-1048 4 1-0305 9 1-0710 14 1-1136 5 1-0384 10 1-0793 15 1-1226 342 POTASSIUM IODIDE Sp. gr. of KI, etc. Continued. contains 137 '6 pts. KI and I'O pt. K 2 S0 4 to 100 pts. HoO. (Mulder, Rotterdam, 1864.) %KI Sp.gr. %KI Sp. gr. %KI Sp. gr. 100 pts. H 2 dissolve 86 '3 pts. KI and 2'1 pts. Na 2 S0 4 at 14 -5. (Mulder, J. B. 1866. 16 1-1318 31 1-2899 46 1-4982 67.) 17 18 1-1412 1-1508 32 33 1-3017 1-3138 47 48 1-5142 1-5305 100 pts. alcohol of 0'85 sp. gr. dissolve 18 pts. KI at 12-5. 100 pts. absolute alcohol dissolve 2-5 pts. KI 19 1-1605 34 1-3262 49 1-5471 at 13'5, Much more sol. in hot alcohol. (Baup.) 20 1-1705 35 1-3389 50 1-5640 21 1-1807 36 1-3519 51 1-5810 100 pts. alcohol of D sp. gr. at dissolve 22 1-1911 37 1-3653 52 1-5984 at 18- 23 1-2016 38 1-3791 53 1-6162 D 0-9904 0-9851 0'9726 0'9665 0'9528 24 1-2122 39 1-3933 54 1-6343 130-5 119-4 100-1 89-9 76'9 pts. KI, 25 1-2229 40 1-4079 55 1-6528 D 0-9390 0-9088 0'8464 0'8322 26 1-2336 41 1-4224 56 1-6717 66-4 48-2 11-4 6 "2 pts. KI. 27 28 29 30 1-2445 1-2556 1-2699 1-2784 42 43 44 45 1-4371 1-4520 1-4671 1-4825 57 58 59 60 1-6911 1-7109 1-7311 1-7517 That is, aqueous alcohol dissolves approxi- mately the same amount of KI that the water present in the alcohol would dissolve, and it is therefore probable that KI is insol. in strictly CSnliiff A lin 7K ^ absolute alcohol. (Gerardin.) Sp. gr. of KI + Aq. S = according to Schiff (A. 108. 340) at 21 ; K = according to Kremers (Pogg. 96. 62), interpolated by Gerlach (Z. anal.' 8. 285). 20 1-171 5 10 15 S 1-038 1-079 1-123 K 1-038 1-078 1-120 1-166 35 40 45 50 S 1-483 ... K 1-331 1-396 1-469 25 30 % KI, ... 1-279 1-218 1-271 55 60 % KI. 1-546 1-636 1-734 Sp. gr. of KI + Aq at 18. %KI Sp. gr. %KI Sp. gr. *KI Sp. gr. 5 1-0363 30 1-273 55 1-630 10 1-0762 40 1-3966 20 1-1679 50 1-545 (Kohlrausch, W. Ann. 1879. 1.) B.-pt. of KI + Aq containing pts. KI to 100 pts. H 2 0. B.-pt. Pts. KI B.-pt. Pts. KI B.-pt. Pts. KI 101 15 108 111-5 115 185 102 30 109 123 116 195 103 45 110 134 117 205 104 60 111 145 118 215 105 74 112 155 118-5 220 106 87 113 165 107 99-5 114 175 (Gerlach, Z. anal. 26. 439.) Sat. KI + Aq boils at 119. (Kremers. ) Sat. KI + Aq forms a crust at 117'5, and contains 210 pts. KI to 100 pts. H 2 ; highest temp, observed, 118 "5. (Gerlach, Z. anal. 26. 426.) 100 pts. H 2 dissolve 133 '2 pts. KI and 10 '4 pts. KC1. (Riidorff, B. 6. 484.) KI + Aq sat. at 14*5 containing 139 '8 pts. KI to 100 pts. H 2 dissolves I'O pt. K 2 S0 4 with separation of 2 '2 pts. KI, so that solution Solubility in 100 pts. alcohol of 0'9496 sp. gr. at : 8 13 25 46 55 62 67-4 69-2 75-1 847 87 '5 90 '2 pts. KI. (Gerardin, A. ch. (4) 5. 155.) Sol. in 68 "3 pts. absolute alcohol (Eder, Dingl. 221. 89) ; in 370 pts. ether (sp. gr. 0-729), (Eder, I.e.}', in 120 pts. alcohol-ether (1 :1), (Eder, I.e.) Sol. in 10-12 pts. 90 % alcohol, and 40 pts. absolute alcohol. (Hager, Comm. 1883.) Alcoholic solution can be mixed with vol. ether without pptn. 100 pts. absolute methyl alcohol dissolve 16-5 pts. at 20-5; 100 pts. absolute ethyl alcohol dissolve 1"75 pts. at 20 "5. (de Bruyn, Z. phys. Ch. 10. 783.) 100 pts. acetone dissolve 2 '930 pts. KI at 25. (Krug and M'Elroy, J. Anal. Ch. 6. 184.) Sol. in ethyl acetate. (Casaseca, C. R. 30. 821.) Freely sol. in glycerine. Insol. in acetic acid. (Berthemot.) Sol. in 3 pts. glycerine ; insol. in olive oil. (Cap and Garot. ) Potassium Zmodide, KI 3 . Very deliquescent ; very sol. in H 2 and alcohol. (Johnson, Chem. Soc. 1877, 1. 249.) Solution of I in KI contains this salt (see Iodine). Deconip. by heat or shaking with CS 2 , ether, chloroform. Sol. in alcohol, from which CS 2 does not remove I. (Jorgensen, J. pr. (2) 2. 347.) Potassium silver iodide, KI, Agl. Sol. in KI + Aq. Sol. in hot alcohol. (Boullay, A. ch. 34. 377.) 2KI, Agl. Sol. in KI + Aq. Deconip. by H 2 0. (Boullay.) Potassium silver ^o/7/iodide, AgK 3 I 12 , 3KI + 5H 2 0. Very deliquescent. (Johnson, Chem. Soc. 33. 183.) Potassium tellurium iodide. See lodotellurate. potassium. PRASEOCOBALTIC CHLORIDE CHROMATE 51 3 Potassium thallic iodide, KI, T1I 3 . Decomp. by H 2 0. Can be crystallised from alcohol. (Willm.) SKI, 2T1I 3 + 3H 2 0. Partially decomp. by H 2 0. (Rammelsberg.) Potassium stannous iodide, KI, SnI 2 + HH 2 0. When treated with a small quantity of H 2 0, KI dissolves out ; but when more H 2 is added, the substance is completely dissolved. More sol. in warm than cold alcohol. (Boul- lay.) Potassium zinc iodide, KI, ZnI 2 . Very deliquescent. (Rammelsberg, Pogg. 43. 665.) Potassium nitride, K 2 N. Decomp. violently by H 2 0. (H. Davy. ) Potassium sw&oxide. Decomposes H 2 0. Does not exist. (Lupton, Chem. Soc. 1876, 2. 565.) Potassium oxide, K 2 0. Very sol. in H 2 with much heat. See Potassium hydroxide. Potassium dioxide, K 2 2 . Deliquescent. Sol. in H 2 0. Forms compound K 2 2 , 2H 2 2 . (Schbne, A. 193. 241.) Potassium peroxide, K 2 4 . Deliquescent. Very sol. with decomp. in H 2 0. Potassium silicon oxyfluoride, SiF 2 (OK) 2 and SiO(F)OK. (Schiff and Bechi, A. Suppl. 4. 33.) Potassium tantalum oxyfluoride, K 4 Ta 4 5 F 14 . Insol. in boiling water. Easily sol. in HF + Aq. (Marignac, A. ch. (4) 9. 268.) Potassium phosphide. Decomposes H 2 0. Potassium phosphoselenide, KSeP=K 2 Se, P 2 Se. Sol. in cold H 2 O with rapid decomp. Sol. in alcohol with slight decomp. (Hahn, J. pr. 93. 430.) Potassium phospho^riselenide, 2K 2 Se, P 2 Se 3 . Deliquescent. Decomp. violently with H 2 0. Sol. in alcohol or ether, or in a mixture of the two, with slight decomp., but decomp. gradu- ally on the air. (Hahn, J. pr. 93. 430.) Potassium phosphppe?itaselenide, K 4 P 2 Se 7 = 2K 2 Se, P 2 Se 5 . Deliquescent ; immediately decomp. by H 2 0, alcohol, or ether. (Hahn. ) Potassium phosphosulphide, 4K 2 S 2 , P 2 S 3 . Deliquescent. Sol. in H 2 with decomp. Potassium selenide, K 2 Se. Sol. in H 2 with subsequent decomp. on the air. + 9, 14, or 19H 2 0. (Fabre, C.R. 102. 613.) Potassium woTiosulphide, K 2 S. Deliquescent. Sol. in H 2 and alcohol. H 2 solution decomp. on air. Sol. in 10 pts. glycerine. (Cap and Garot, J. Pharm. (3) 26. 81.) + 5H 2 0. (Schone, Pogg. 131. 380.) All potassium sulphides are sol. in glycerine ; insol. in ether and ethyl acetate. Potassium ^'sulphide, K 2 S 2 . Sol. in H 2 and alcohol, with gradual de- comp. Potassium ^'sulphide, K 2 S 3 . Sol. in H 2 and alcohol, with gradual de- comp. on the air. Potassium tetrasalphide, K 2 S 4 . Sol. in H 2 and alcohol. + 2H 2 0. Sol. in H 2 0. SI. sol. in alcohol. + 8H 2 0. Sol. in H 2 0. Alcohol takes out water. (Schone.) Potassium pentaBulphide, K 2 S 5 . Sol. in H 2 and alcohol. Potassium palladium sulphide. See Sulphopalladate, potassium. Potassium platinum sulphide. See Sulphoplatinate, potassium. Potassium rhodium sulphide, 3K 2 S, Rh 2 S 3 . Decomp. by H 2 0. (Leidie.) Potassium tellurium sulphide. See Sulphotellurate, potassium. Potassium thallium sulphide, K 2 S, T1 2 S 3 . Not decomposed by H 2 0, or hot NH 4 OH, or KOH + Aq. Decomp. by HC1 or moderately cone. H 2 S0 4 + Aq. Hot HN0 3 + Aq decomp. with separation of S. (Schneider, J. pr. 110. 168.) Potassium stannic sulphide. See Sulphostannate, potassium. Potassium zinc sulphide, K 2 S, 3ZnS. Not attacked by H 2 0, but easily decomp. by the most dil. acids. (Schneider, J. pr. (2) 8. 29.) Potassium telluride, K 2 Te. Sol. in H 2 0. (Demar9ay, Bull. Soc. (2) 40. 99.) Praseocobaltic chloride, Co(NH 3 ) 4 Cl 3 + H 2 0. Easily sol. in H 2 0. Dil. HC1 + Aq dissolves traces ; cone. HC1 + Aq dissolves more. Sol. in NH 4 OH + Aq with decomp. Sol. in cone. H 2 S0 4 without decomp. SI. sol. in dil. H 2 S0 4 + Aq. (Rose.) - mercuric chloride, Co(NH 3 ) 4 Cl 3 , HgCl 2 . SI. sol. in cold H 2 ; insol. in HgCl 2 + Aq. (Vortmann, B. 15. 1892.) chloride chromate, [CoCl 2 (NH 3 ) 4 ] 2 Cr 2 7 + H 2 0. Scarcely sol. in cold, easily sol. in warm H 2 0. (Vortmann, B. 15. 1897.) 344 PRASEOCOBALTIC CHLORIDE NITRATE Praseocobaltic chloride nitrate, CoCl 2 (NH 3 ) 4 N0 3 + H 2 0. Much less sol. in H 2 than the chloride. Precipitated from aqueous solution by dil. HN0 3 + Aq. (Vortmann, B. 15. 1896..) Praseodymium. See under Didymium. Praseodymium oxide, Pr 2 3 . Easily sol. in H 2 0. (v. Welsbach, M. 6. 477.) Praseodymium peroxide, Pr 4 7 . Sol. in acids with evolution of 0. (v. Welsbach.) Purpureocobaltic salts. For other purpureocobaltic salts, see Chloropurpureocobaltic salts. Bromopurpureocobaltic salts. Nitratopurpureocobaltic salts. Sulphatopurpureocobaltic salts. Purpureocobaltic cobalticyanide, Co(NH 3 ) 5 Co(CN) 6 + liH 2 0. Insol. in H 2 0. - ferricyanide, Co(NH 3 ) 5 Fe(CN) 6 . Insol. in cold H 2 0. Probably belongs to roseo series. mercuric hydroxychloride, CoN 5 H 11 (HgCl) 3 (HgOH)Cl 3 . Ppt. (Vortmann and Morgulis, B. 22. 2645.) CoN 6 H u (HgOH) 4 Cl3. Ppt. (V. and M.) mercuriodide, basic, CoN 5 H n (HgI 2 ) 2 (HgOH) 3 I 3 . Ppt. SI. sol. in acids. Sol. in KI + Aq. (Vortmann and Borsbach, B. 23. 2804.) molybdate, Co 2 3 (NH 3 ) 10 , 7Mo0 3 + 3H 2 (?). Insol. in H 2 or dil. HC 2 H 3 2 + Aq. (Carnot, C. R. 109. 109.) sulphate. See Sulphatopurpureocobaltic salts. - tungstate, Co(NH 3 ) 6 0(W0 4 ). Scarcely sol. in cold or hot H 2 0. (Gibbs.) Co 2 3 (NH 3 ) 10 , 10W0 3 + 9H 2 0(?). Insol. in H 2 0, or dil. HC 2 H 3 2 + Aq, or NH 4 OH + Aq. (Carnot, C. R. 109. 147.) vanadate, Co 2 3 (NH 3 ) 10 ,5V 2 5 + 9H 2 0(?). Ppt. Insol. in H 2 0. (Carnot, C. R. 109. 147.) Purpureocobaltic octamine salts. See Octamine cobaltic purpureo salts. Pyrosulphuric acid, H 2 S 2 7 . See ./^sulphuric acid. Rhodicyanhydric acid, H 3 Rh(CN) 6 . Not known in the free state. Potassium rhodicyanide, K 3 Rh(CN) 6 . Sol. in H 2 0. Easily decomp. by acids. Rhodium, Rh. Insol. in all acids, including aqua regia. Rhodium "sponge" is sol. in HN0 3 + Aq, and somewhat in HCl + Aq when exposed to air. Rhodium ammonia compounds. See Bromopurpureorhodium comps., BrRh(NH 3 ) 5 X 2 . Chloropurpureorhodium comps. , ClRh(NH 3 ) 5 X 2 . lodopurpureorhodium comps. , IRh(NH 3 ) 5 X 2 . Luteorhodium comps., Rh(NH 3 ) 6 X 3 . Nitratopurpureorhodium comps. , (N0 3 )Rh(NH 3 ) 5 X 2 . Roseorhodium comps., Rh(NH 3 ) 5 (OH 2 )X 3 . Xanthorhodium comps., (N0 2 )Rh(NH 3 ) 5 X 2 . Rhodium c^chloride, RhCl 2 (?). Insol. in H 2 0, HC1, or HN0 3 + Aq. Not attacked by boiling KOH or K 2 C0 3 + Aq. (Fellenberg.) Decomp. by boiling KOH + Aq. (Berzelius.) Does not exist. (Leidie, C. R. 106. 1076.) Rhodium Inchloride, RhCl 3 . Insol. in acids, even aqua regia. When boiled for a long time with KOH + Aq, it be- comes si. sol. in HCl + Aq. + 4H 2 0. Very si. deliquescent. Easily sol. in H 2 0, HC1 + Aq, or alcohol. Insol. in ether. Decomp. by H 2 S0 4 only when boiling. (Glaus, J. pr. 80. 282.) No definite amount of crystal H 2 0. (Leidie, A. ch. (6) 17. 271.) Rhodium chloride with MCI. See Chlororhodite, M. Rhodium cKhydroxide, Rh0 2 , 2H 2 0, or Rhodium rhodate, Rh 2 3 , Rh0 3 + 6H 2 0. Sol. in HCl + Aq. Rhodium sesgmhydroxide, Rh 2 6 H 6 . Only si. sol. in cone. HCl + Aq. (Glaus.) + 2H 2 0. Easily sol. in HC1, H 2 S0 4 , H 2 S0 3 , HN0 3 , or HSCN + Aq; also when moist, in HC 2 H 3 2 + Aq. Sol. in cone. KOH + Aq; very si. sol. in H 3 B0 3 , H 3 P0 4 , H 2 C 4 H 4 6 , and HCN + Aq. Sol. in acid alkali oxalates + Aq. (Leidie, C. R. 107. 234.) Rhodium monoxide, RhO. Not attacked by acids. (Deville and Debray, A. ch. (3) 61. 83.) Rhodium sesquioxide, Rh 2 3 . Insol. in H 2 0, boiling KOH + Aq, or any acid, even aqua regia. (Glaus.) Rhodium dioxide, Rh0 2 . Insol. in all acids or alkalies. Rhodium trioxide, Rh0 3 . "Rhodic acid." Known only in solution of "Potassium rhodate," which is very easil decomp. (Glaus. ) Rhodium monosnlphide, RhS. Insol. in aqua regia. RHODOSOCHROMIUM OXALATE 345 Rhodium sesquisulphide, Rh 2 S 3 . Sol. in alkali sulphides + Aq. (Debray, C. R. 97. 1332.) Insol. in alkali sulphides + Aq. Not at- tacked by HN0 3 , aqua regia, or Br 2 + Aq. (Leidie, Bull. Soc. (2) 50, 664.) Rhodium sodium sulphide, SNagS, Rh 2 S 3 . Decomp. by H 2 0. (Leidie.) Rhodium sgsgwtsulphydroxide, Rh 2 S 6 H 6 . Easily sol. in aqua regia or Br 2 + Aq. Insol. in alkali sulphides + Aq or acids. (Leidie, Bull. Soc. (2) 50. 664.) Rhodochromium bromide, HOCr 2 (NH 3 ) 10 Br 5 + H 2 0. Rather difficultly sol. in H 2 0. Decomp. by boiling or standing. Sol. in NH 4 OH + Aq or NaOH + Aq. Insol. in dil. HBr + Aq, KBr + Aq, or alcohol. (Jorgensen, J. pr. (2) 25. 321.) bromide, basic, HOCr 2 (NH 3 ) 10 (OH)Br 4 + H 2 0. SI. sol. in H 2 0. Sol. in NH 4 OH or NaOH + Aq. Insol. in alcohol. (Jorgensen.) bromoplatinate, HOCr 2 (NH 3 ) 10 Br 3 PtBr 6 , HOCr 2 (NH 3 ) 10 Br(PtBr 6 ) 2 + 4H 2 0. Ppt. (Jorgensen.) chloraurate, HOCr 2 (NH 3 ) 10 Cl 3 ( AuCL) 2 + 2H 2 0. Difficultly sol. but not insol. in H 2 0. (Jor- gensen). chloride, HOCr 2 (NH 3 ) 10 Cl 5 + H 2 0. Sol. in about 40 pts. of cold H 2 0. Insol. in cold dil. HCl + Aq, NH 4 Cl + Aq, or alcohol. Sol. in NH 4 OH + Aq. (Jorgensen, J. pr. (2) 25. 321.) chloroiodide, basic, HOCr 2 (NH 3 ) 10 (OH)Cl 2 I 2 . SI. sol. in cold H 2 ; insol. in alcohol. (Jorgensen. ) chloroplatinate, HOCr 2 (NH 3 ) 10 Cl 3 PtCL, HOCr 2 (NH 3 ) 10 Cl(PtCl 6 ) 2 + 4H 2 0. Precipitate. (Jorgensen. ) dithionate, [HOCr 2 (NH 3 ) 10 ] 2 (S 2 6 ) B + 2H 2 0. Nearly insol. in H 2 0. - dithionate, basic, HOCr 2 (NH 3 ) 10 OH(S 2 6 ) 2 + H 2 0. Insol. in NaOH + Aq. iodide, HOCr 2 (NH 3 ) 10 I 5 + H 2 0. Very difficultly sol. in H 2 0. Insol. in very dil. HI + Aq or alcohol. SI. sol. in NH 4 OH or KOH + Aq. (Jorgensen.) - nitrate, HOCr 2 (NH 3 ) 10 (N0 3 ) 5 . Rather difficultly sol. in H 2 0, from which it is precipitated by a few drops of HNOo + Aq. Sol. in hot dil. NH 4 OH + Aq. nitrate chloroplatinate, HOCr 2 (NH 3 ) 10 (N0 3 )(PtCl 6 ) 2 + 4H 2 0. Precipitate. (Jorgensen.) H 2 0, cold NH 4 OH + Aq, Rhodochromium sulphate, [HOCr 2 (NH 3 ) 10 ] 2 (S0 4 ) 5 + 2H 2 0. Very si. sol. in cold H 2 0. Easily sol. in cold dil. H 2 S0 4 + Aq. Almost insol. in a mixture of 3 vols. H 2 0, 1 vol. alcohol, and vol. dil. H 2 S0 4 + Aq. (Jorgensen. ) Rhodonitrous acid. Ammonium rhodonitrite, (NH 4 ) 6 Rh 2 (N0 2 ) 12 . Nearly insol. in cold, si. sol. in hot H 2 0. Insol. in cone. NH 4 C1 or NH 4 C 2 H 3 2 + Aq. Insol. in alcohol. (Leidie, C. R. 111. 108.) Barium rhodonitrite, Ba 3 Rh 2 (N0 2 ) 12 . SI. sol. in cold, more easily in hot H 2 0. (Lamy.) + 12H 2 0. Sol. in 50 pts. H 2 at 16, and 6-5 pts. at 100. (Leidie, C. R. 111. 108.) Potassium rhodonitrite, K 6 Rh 2 (N0 2 ) 12 . Nearly insol. in cold, very si. sol. in boiling H 2 0. Completely insol. in KN0 2 +Aq, and in KCl + Aq (30 % KC1), or KC 2 H 3 2 + Aq (50 % KC 2 H 3 2 ). Insol. in alcohol. (Leidie, C. R. 111. 106.) Sodium rhodonitrite, Na 6 Rh 2 (N0 2 ) 12 . Sol. in 2J pts. H 2 at 17, and 1 pt. at 100. Insol. in alcohol. Decomp. by HCl + Aq. (Leidie, C. R. 111. 107.) Rhodosochromium bromide. Sol. in H 2 0; insol. in dil. HBr + Aq (1:1). (Jorgensen, J. pr. (2) 45. 260.) - chloraurate, Cr 2 (NH 3 ) 6 (HO) 3 Cl 3 , 2AuCl 3 + 2H 2 0. Not insol. in cold H 2 0. (Jorgensen.) - chloride, Cr 2 (NH 3 ) 6 (HO) 3 Cl 3 + 2H 2 0. Sol. in 10'6 pts. H 2 at 18 ; decomp. by boiling. Pptd. by J to 1 vol. dil. HCl + Aq. Sol. in cold dil. NH 4 OH + Aq. (Jorgensen, J. pr. (2) 45. 260.) - chloroplatinate, 2Cr (NH 3 ) 6 (OH) 3 CL, 3PtCl 4 + 6H 2 0. Insol. in H 2 0. (Jorgensen.) Cr 2 (NH 3 ) 6 (OH) 3 Cl 3 , 2PtCl 4 + 2H 2 0. Insol. in 95 % alcohol. (Jorgensen.) - chromate, [Cr 2 (NH 3 ) 6 (OH) 3 ] 2 (Cr0 4 ) 3 + 7H 2 0. (Jorgensen. ) Very si. sol. in H 2 0. (Jorgensen. ) iodide, Cr 2 (NH 3 ) 6 (OH) 3 I 3 + 2H 2 0. Sol. in H 2 0. Insol. in dil. HI + Aq. (Jor- gensen. ) - nitrate, Cr 2 (NH 3 ) 6 (OH) 3 (N0 3 Much less sol. in cold H 2 than the chloride. Insol. in dil. HN0 3 + Aq. (Jorgensen.) - oxalate, [Cr 2 (NH 3 ) 6 (OH) 3 ] 2 (C 2 4 )(HC 2 4 ) 4 + 2H 2 0. Sol. in cold H 2 0, but not very easily. (Jor- gensen. ) 346 RHODOSOCHROMIUM SULPHATE Rbodosochromimn sulphate, [Cr 2 (NH 3 ) 6 (OH) 3 ] 2 (S0 4 ) 3 + 5H 2 0. Very si. sol. in cold H 2 0. Easily sol. Jin dil. NH 4 C1 + Aq. ( Jorgensen. ) [Cr 2 (NH 3 ) 6 (OH) 3 ]S0 4 , HS0 4 +liH 2 0. De- comp. by H 2 into H 2 S0 4 and above compound. (Jorgensen. ) - ^sulphide, [Cr 2 (NH 3 ) 6 (OH) 3 ] 2 S n + 4H 2 0. Ppt. Insol. in H 2 0. (Jorgensen.) Rhodosulphuric acid. Potassium rhodosulphate, K 6 Rli 2 (S0 4 ) 6 . Two modifications : (a) Slowly sol. in cold, easily in hot H 2 0. (6) Insol. in H 2 0. Does not exist. (Leidie, C. R. 107. 234.) Sodium rhodosulphate. Insol. in H 2 O, HC1, HN0 3 , or aqua regia. (Claus.) Does not exist. (Leidie.) Na 2 Rh 2 (S0 4 ) 4 . Insol. in H 2 0. (Seubert and Kobbe, B. 23. 2560. ) Rhodosulphurous acid. Potassium rhodosulphite, K 6 Rh 2 (S0 3 ) 5 + 6H 2 0. Nearly insol. in H 2 0. Slowly sol. in acids. Not decomp. by boiling KOH + Aq. (Claus.) Sodium rhodosulphite, Na 6 Rh 2 (S0 3 ) 5 + 4iH 2 = 3Na 2 S0 3 , 2RhSO> Insol. in cold, very si. sol. in hot H 2 0. Easily sol. in HN0 3 + Aq. (Seubert and Kobbe, B. 23. 2558.) Roseochromium bromide, Cr(NH 3 ) 5 Br 3 + H 2 0. Easily sol. in H 2 0. Insol. in HBr + Aq. (Christensen, J. pr. (2) 23. 26.) bromochromate, Cr(NH 3 ) 5 Br(Cr0 4 ). Somewhat sol. in H 2 0, but decomp. on standing. (Jorgensen, J. pr. (2) 25. 398.) bromoplatinate, Cr(NH 3 ) 5 Br(PtBr 6 ) + 2H 2 0. Precipitate. Difficultly sol. in H 2 0. (Chris- tensen, I.e.] - chloride, Cr(NH 3 ) 6 Cl 3 + H 2 0. Easily sol. in H 2 with subsequent decomp. Insol. in alcohol. (Christensen, J. pr. (2) 23. 26.) mercuric chloride, Cr(NH 3 ) 5 Cl 3) 3HgCl 2 + 2H 2 0. SI. sol. in H 2 0. Sol. in dil. HCl + Aq with decomposition. (Christensen, I.e.] dithionate, basic, Cr(NH 3 ) 5 (OH) 2 S 2 6 + H 2 0. Easily sol. in very dil. HC1 + Aq. (Jorgen- sen, J. pr. (2) 25. 398.) - iodide, Cr(NH 3 ) 5 I 3 . Easily sol. in 'H 2 ; decomp. by boiling. (Christensen, I.e.] Roseochromium nitrate, Cr(NH 3 ) 5 (N0 3 ) 3 + H 2 0. Rather easily sol. in HgO. (Christensen, I.e.) Cr(NH 3 ) 5 (N0 3 ) 3 (OH 2 ) 2 , HN0 3 . Decomp. by H 2 or alcohol. (Jorgensen, J. pr. (2) 44. 63.) - sulphate, [Cr(NH 3 ) 5 ] 2 (S0 4 ) 3 + 5H 2 0. Easily sol. in H 2 0. Precipitated by alcohol. (Christensen, I.e.) sulphate bromoplatinate, [Cr(NH 3 ) 5 (S0 4 )] 2 PtBr 6 . Difficultly sol. in H 2 0. (Christensen, Z.c.) sulphate chloroplatinate, [Cr(NH 3 ) 5 (S0 4 )] 2 PtCl 6 . Difficultly sol. in H 2 0. (Christensen, I.e.) Roseocobaltic bromide, Co(NH 3 ) 5 (OH 2 )Br 3 . Sol. in H 2 ; insol. in HBr + Aq. (Jorgen- sen, J. pr. (2) 31. 49.) bromoplatinate, Co(NH 3 ) 5 (OH 2 )Br 3 , PtBr 4 + H 2 0. Somewhat sol. in H 2 or dil. alcohol. Insol. in strong alcohol. (Jorgensen.) 2Co(NH 3 ) 5 (OH 2 )Br 3 , 3PtBr 4 + 4H 2 0. Ppt. (Jorgensen.) - bromosulphate, Co(NH 3 ) 5 (OH 2 )Br(S0 4 ). Sol. inH 2 0. (Krok.) bromosulphate bromaurate, Co(NH 3 ) 5 (OH 2 )(S0 4 )Br, AuBr 3 . carbonate. Very sol. in H 2 0. - chloraurate, Co(NH 3 ) 5 (OH 2 )Cl 3 , AuCl s . Moderately sol. in cold H 2 0. - chloride, Co(NH 3 ) 5 (OH 2 )Cl 3 . Sol. in '4 -8 pts. H 2 at 10 '1, but decomp. on heating. 100 pts. H 2 dissolve;' 16 -12 pts. at 0, and 24-87 pts. at 16-19. (Kurnakoif, J. russ. Soc. 24. 269.) SI. sol. in 1000 pts. fuming HCl + Aq, more easily in 20 % HC1 + Aq. (Rose. ) mercuric chloride, Co(NH 3 ) 5 (OH 2 )Cl 3 , 3HgCl 2 + H 2 0. More easily sol. in solvents than the anhydrous purpureo salt. (Carstanjen.) Co(NH 3 ) 5 (OH 2 )Cl 3 , HgCl 2 . Sol. in HC1 + Aq with decomp. into above salt. (Jorgensen. ) chloroplatinate, Co(NH 3 ) 5 (OH 2 )Cl 3 , PtCl 4 + H 2 0. Decomp. by H 2 0. (Jorgensen.) 2Co(NH 3 ) 5 (OH 2 )Cl 3 , PtCl 4 + 2H 2 0. Decomp. byH 2 0. 2Co(NH 3 ) 5 (OH 2 )Cl 3 , 3PtCl 4 + 6H 2 0. Not diffi- cultly sol. in warm H 2 0. (Gibbs. ) Co(NH 3 ) 5 Cl 3 , PtCl 4 + H 2 0. (Gibbs. ) - chlorosulphate, Co(NH 3 ) 5 Cl(S0 4 ). Easily sol. in H 2 0. chlorosulphate mercuric chloride, Co(NH 3 )Cl 5 (S0 4 ), HgCl 2 + 3H 2 0. Sol. in hot H 2 0, and can be recrystallised without decomp. (Krok.) ROSEORHODIUM BROMIDE 347 Roseocobaltic cfo'chromate, [Co(NH 3 ) 5 ] 2 (Cr 2 ( Can be recrystallised out of weak acetic acid. - cobalticyanide, Co(NH 3 ) 5 (OH 2 )Co(CN) 6 . Nearly absolutely insol. in cold H 2 0. (Jor- gensen. ) + H 2 0. (Gibbs and Gentele.) - dithionate, Co(NH 3 ) 5 (S 2 6 )(OH). Decomp. by H 2 0. (Rammelsberg, Pogg. 58. 296.) Co(NH 3 ) 5 (OH 2 )(S 2 6 ) + 2H 2 0. Ppt. (Jor- gensen. ) hydroxide, Co(NH 3 ) 5 (OH) 3 . Known only in aqueous solution.' mercuric hydroxychloride, CoN 5 H 12 (HgOH) 3 Cl 3 . Ppt. Sol. in dil. acids. (Vortmann and Morgulis, B. 22. 2646.) CoN 5 H 12 (HgOH) 3 Cl 2 (OH). Ppt. Sol. in dil. acids. (Vortmann and Morgulis.) iodide, Co(NH 3 ) 5 (OH 2 )I 3 . Less sol. in H 2 than bromide. Insol. in HI + Aq. (Jorgensen. ) - iodosulphate, Co(NH 3 ) 5 (OH 2 )I(S0 4 ). Easily sol. in H 2 0. (Krok.) mercuriodide, [CoN 5 H 13 ] 2 (HgI) 3 I 6 . Ppt. (Vortmann and Borsbach, B. 23. 2805. ) CoN 5 H 13 (HgI) 2 I 3 . Ppt. (Vortmann and Borsbach. ) CoN 5 H 13 (HgI) 2 I 2 (OH). Ppt. - nitrate, Co(NH 3 ) 5 (OH 2 )(N0 3 ) 3 . Three modifications : a. Sol. in 20 pts. H 2 at 15. (Jorgensen. ) j8. Known only in solution. Insol. in cold HN0 3 + Aq. (Gibbs.) y. Easily sol. in hot H 2 0. (Gibbs.; (Pur- pureo salt ?) Co(NH 3 ) 5 (OH 2 )(N0 3 ) 3 , HN0 3 . Decomp. by H 2 or alcohol. (Jorgensen, J. pr. (2) 44. 63.) nitrate chloroplatinate, Co(NH 3 ) 5 (OH 2 )(N0 3 )Cl 2 , PtCl 4 + H 2 0. Ppt. (Jorgensen. ) nitratosulphate, Co(NH 3 ) 5 (OH 2 )(N0 3 )(S0 4 ). SI. sol. in cold, easily in hot H 2 0. - oxalate, [Co(NH 3 ) 5 (OH 2 )] 2 (C 2 4 ) 3 + 2H 2 0. Nearly insol. in H 2 0. [Co(NH 3 ) 5 ] 2 (C 2 4 ) 3 , 4H 2 C 2 4 . oxalochloroplatinate, [Co(NH 3 ) 5 ] 2 C 2 4 Cl 2 , PtCl 4 . Sol. in hot H 2 0. oxalosulphate, [Co(NH 3 ) 5 ] 2 (S0 4 ) 2 C 2 4 , H 2 C 2 4 + 2H 2 0. Sol. in hot H 2 0. [Co(NH 3 ) 5 ] 2 (S0 4 ) 2 (C 2 4 )(OH) 2 + 6H 2 0. SI. sol. in H 2 0. or^ophosphate, Co(NH 3 ) 5 (OH 2 )(P0 4 H)(OH) + a;H 2 0. Nearly insol. in H 2 0. [Co(NH 3 ) 5 (OH 2 )] 2 (P0 4 H) 3 + 4H 2 0. Very si. sol. in cold H 2 O ; easily in H 2 containing HC1 . (Jorgensen. ) Roseocobaltic ^rophosphate, [Co(NH 3 ) 5 (OH 2 )] 4 (P 2 7 ) 3 + 12H 2 0. Insol. in H 2 0. (Jorgensen.) Co(NH 3 ) 5 (OH 2 )(P 2 7 Na) + 12H 2 0. Nearly'in- sol. in cold, easily sol. in hot H 2 containing NH 4 OH. (Jorgensen, J. pr. (2) 23. 252.) - sulphate, [Co(NH 3 ) 5 (OH 2 )] 2 (S0 4 ) 3 + 3H 2 0. Three modifications : a. SI. sol. in cold H 2 0. Sol. in 58 pts. at 27 (Gibbs); 83 '5 pts. at 20 '2, and 94 "6 pts. at 17*2 (Jorgensen) ; more easily sol. in hot H 2 0, and still more easily in NH 4 OH + Aq. /3. Sol. in 1-2 pts. H 2 0. (Gibbs.) y. Less sol. than luteosulphate. (Jorgen- sen.) + 2H 2 0. Easily sol. in H 2 0. (Vortmann. ) sulphate, acid, [Co(NH 3 ) 5 ] 2 (S0 4 ) 3 , 2H 2 S0 4 + 3H 2 (Fremy), or 4[Co(NH 3 ) 5 ] 2 (S0 4 ) 3 , 9H 2 S0 4 + 11H 2 (Jorgensen). More easily sol. in H 2 than neutral sul- phate, into which it is converted by recrystal- lisation. Sol. in about 13 pts. H 2 0. (Jorgen- sen.) cerium sulphate, [Co(NH 3 ) 5 (OH 2 )] 2 (S0 4 ) 3 , Ce 2 (S0 4 ) 3 + 2iH 2 0. SI. sol. in cold, practically insol. in boiling H 2 0. Sol. in acids. (Gibbs, Am. Ch. J. 15. 560.) [Co(NH 3 ) 5 (OH 2 )] 2 (S0 4 ) 3 ,Ce(S0 4 ) 2 + 2iH 2 0. As above. (Gibbs. ) sulphate chloraurate. Three modifications : a. Co(NH 3 ) 5 (OH 2 )(S0 4 )Cl, AuCl 3 . Ppt. (Jor- gensen.) p. Co(NH 3 ) 5 (S0 4 ), AuCl 3 + 2H 2 0. SI. sol. in coldH 2 0. (Gibbs.) y. As above. Can be recrystallised from hot H 2 0. sulphate chloroplatinate, 2Co(NH 3 ) 5 (OH 2 )(S0 4 )Cl 2 , PtCl 4 . Three modifications, all difficultly sol. in hot or cold H 2 0. (Jorgensen. ) - sulphite, [Co(NH 3 ) 5 (OH 2 )] 2 (S0 3 ) 3 + H 2 0. SI. sol. in cold, decomp. by hot H 2 0. (Gibbs.) cobaltic sulphite [Co(NH 3 ) 5 ] 2 (S0 3 ) 3 , Co 2 (S0 3 ) 3 + 9H 2 0. Insol. in cold, decomp. by hot H 2 0. (Kiinzel. ) Roseocobaltic octamine compounds. See Roseotetramine cobaltic compounds. Eoseoiridium compounds. See Iridoaquopentamine compounds. Roseorhodium bromide, Rh(NH 3 ) 5 (OH 2 )Br 3 . Sol. in cold H 2 0. (Jorgensen, J. pr. (2) 34. 394.) 348 ROSEORHODIUM COBALTICYANIDE Roseorhodium cobalticyanide, Rh(NH 3 ) 5 (OH 2 )Co(CN) 6 . Scarcely sol. in H 2 0. iodosulphate, Rh(NH 3 ) 5 (OH 2 )I(S0 4 ). Very si. sol. in H 2 ; easily sol. in NH 4 OH + Aq. ( Jb'rgensen. ) - nitrate, Rh(NH 3 ) 5 (OH 2 )(N0 3 ) 3 . Moderately sol. in cold H 2 0. (Jorgensen.) Rh(NH 3 ) 5 (OH 2 )(N0 3 ) 3 , HN0 3 . Decomp. by H 2 or alcohol. (Jorgensen, J. pr. (2) 44. 63.) nitrate chloroplatinate, [Rh(NH 3 ) 5 (OH 2 )(N0 3 )] 2 PtCl 6 + 2H 2 0. Ppt. (Jorgensen.) or^ophosphate, [Rh(NH 3 ) 5 (OH 2 )] 2 (HP0 4 ) 3 + 4H 2 0. Very si. sol. in H 2 0. sodium jpyrophosphate, [Rh(NH 3 ) 5 (OH 2 )] 2 NaP 2 7 + 23H 2 0. Ppt. Very si. sol. in cold H 2 0. Easily sol. in very dil. acids. sulphate, [Rh(NH 3 ) 5 (OH 2 )] 2 (S0 4 ) 3 + 3H 2 0. Very si. sol. in cold, much more in hot H 2 0. sulphate chloroplatinate, Rh(NH 3 ) 5 (OH 2 )(S0 4 )PtCl 6 . Ppt. Nearly insol. in H 2 or alcohol. Eoseotetramine cobaltic bromide, Co(NH 3 ) 4 (OH 2 ) 2 Br 3 . Sol. in H 2 ; insol. in HBr + Aq. Nearly in- sol. in alcohol. (Jorgensen, Z. anorg. 2. 295.) - chloride, Co(NH 3 ) 4 (OH 2 ) 2 Cl 3 . Easily sol. in H 2 ; insol. in cone. HC1 + Aq ; sol. in sat. HgCl 2 + Aq. (Jorgensen.) cobalticyanide, Co(NH 3 ) 4 (OH 2 ) 2 Co(CN) 6 . (Jorgensen.) oxalate sulphate, [Co(NH 3 ) 4 (OH 2 ) 2 ] 2 (S0 4 ) 2 C 2 4 . Ppt. (Jorgensen. ) ^2/rophosphate, [Co(NH 3 ) 4 (OH 2 ) 2 ] 4 (P 2 7 ) 3 + 6H 2 0. Nearly insol. in H 2 0, but easily sol. in very dil. acids + Aq. (Jorgensen.) sulphate, [Co(NH 3 ) 4 (OH 2 ) 2 ] 2 (S0 4 ) 3 + 3H 2 0. Sol. in about 35 pts. H 2 0, and more easily by addition of dil. HC1 or H 2 S0 4 + Aq. (J5r- gensen. ) sulphate bromaurate, [Co(NH 3 ) 4 (OH 2 ) 2 ] 2 (S0 4 ) 2 AuBr 4 . SI. sol. in cold H 2 ; insol. in alcohol. (Jorgensen.) sulphate chloroplatinate, [Co(NH 3 ) 4 (OH 2 ) 2 ] 2 (S0 4 ) 2 PtCl 6 . As the bromaurate. (Jorgensen.) Rubidium, Rb 2 . Decomp. H 2 with violence. Insol. in hydrocarbons. Sol. in liquid NHo. (Seelv, C. N. 23. 169.) Rubidium bromide, RbBr. 100 pts. H 2 dissolve 98 pts. at 5 ; 104-8 pts. at 16. (Reissig, A. 127. 33.) Rubidium ^Hbromide, RbBr 3 . Very sol. in H 2 ; decomp. by alcohol and ether. (Wells and Wheeler, Sill. Am. J. 143. 475.) Rubidium tellurium bromide. See Bromotellurate, rubidium. Rubidium stannic bromide. See Bromostannate, rubidium. Rubidium bromochloride, RbBr 2 Cl. Easily decomp., even by H^O. (Wells and Wheeler.) RbBrCl 2 . Sol. in H 2 ; decomp. by alcohol and ether. (Wells and Wheeler.) Rubidium bromochloroiodide, RbBrClI. Sol. in H 2 and alcohol. Decomp. by ether. (Wells and Wheeler.) Rubidium bromoiodide, RbBr 2 I. Very sol. in H 2 0. Sat. solution contains about 44 % RbBr 2 I, and sp. gr. = 3 '84. (Wells and Wheeler.) Rubidium chloride, RbCl. 100 pts. H 2 dissolve 76 '38 pts. at 1 ; 82-89 pts. at 7. (Bunsen.) Sp. gr. of RbCl + Aq containing in 100 pts. H 2 0: 13-14 25-88 33-13 pts. RbCl. 1-1066 1-2156 l-2675sp.gr. (Tammann, W. Ann. 24. 1885.) Sol. in alcohol. Rubidium tellurium chloride. See Chlorotellurate, rubidium. Rubidium thallic chloride, SRbCl, T1C1 3 . Crystallises from HC1 solution. (Neumann, A. 244. 348.) + 2H 2 0. Efflorescent in dry air. Sol. in 7 '5 pts. H 2 at 18, and 1 '6 pts. at 100. (Godef- froy, Zeitschr. d. allgem. b'sterr. Apothekerv. 1880. No. 9.) Rubidium stannic chloride. See Chlorostannate, rubidium. Rubidium zinc chloride, 2RbCl, ZnCl 2 . Easily sol. in H 2 and HC1 + Aq. (Godeffroy, B. 8. 9.) Rubidium chloroiodide, RbCl 2 I. Properties are similar to those of RbBrClI. (Wells.) RbCl 4 I. Sol. in alcohol, not attacked by ether. (Wells and Wheeler, Sill. Am. J. 144. 42.) Rubidium uranyl fluoride, 4RbF, U0 2 F 2 + 6H 2 0. (Ditte, C. R. 91. 115.) RUTHENODIAMINE CARBONATE 349 Rubidium hydroxide, RbOH. Deliquescent, and very sol. in H 2 0. Sol. in alcohol. (Bimsen.) Rubidium iodide, Rbl. 100 pts. H 2 dissolve 137 '5 pts. at 6'9 ; 152 pts. at 17*4. (Reissig, A. 127. 33.) Rubidium ^'iodide, RbI 3 . Very sol. in H 2 0. Sol. in about J pt. H 2 at 20 ; sol. in alcohol. Decomp. by ether. (Wells and Wheeler, Sill. Am. J. 143. 475.) Rubidium silver iodide, 2RbI, Agl. Easily decomp. by H 2 0. (Wells and Wheeler, Sill. Am. J. 144. 155.) Rubidium tellurium iodide. See lodotellurate, rubidium. Ruthenic acid. Barium ruthenate, BaRu0 4 + H 2 0. Ppt. (Debray and Joly, C. R. 106. 1494.) Calcium ruthenate, CaRu0 4 . Ppt. Magnesium ruthenate, MgRu0 4 . Ppt. Potassium ruthenate, K 2 Ru0 4 + H 2 O. Very sol. in H 2 0. Perruthenic acid. Potassium ^erruthenate, KRu0 4 . SI. sol. in H 2 0. (Debray and Joly, C.R. 106. 1494.) Sodium ^erruthenate, NaRu0 4 + H 2 0. SI. sol. in H 2 0. Ruthenium, Ru. Not attacked by acids, except aqua regia, which dissolves it only very slightly. (Glaus, Pogg. 65. 218.) Ruthenium ammonium comps. See Ruthenocfo'amine comps, etc. Ruthenium bichloride, RuCl 2 . Insol. in acids, even in aqua regia. SI. attacked by acids. Traces are dissolved by boiling with cone. KOH + Aq. + H 2 0. Known only in aqueous solution. (Claus, A. 59. 238.) Ruthenium trichloride, RuCl 3 . Deliquescent. Sol. in H 2 and alcohol, but solution is decomp. by heating into Ru 2 3 and HC1. (Claus.) Pure RuCl 3 is insol. in cold H 2 0, mineral, or organic acids. Slowly decomp. by boiling H 2 0. Insol. in CC1 4 , CS 2 , CHC1 3 , PC1 3 , or ether. Slowly sol. in hot absolute alcohol, but decomp. into Ru(OH)Cl 2 by 95 % alcohol. (Joly, C. R. 114. 292.) See also Ruthenium nitrosochloride. Ruthenium tetrachloride, RuCl 4 . Sol. in H 2 and alcohol. (Claus.) Ruthenium sesquichloiide with MCI. See Chlororuthenite, M. Ruthenium ^mchloride with MCI. See Chlororuthenate, M. Ruthenium sesgmhydroxide, Ru 2 6 H 6 . Sol. in acids ; insol. in alkalies. Less sol. in NH 4 OH + Aq than any other oxide of the Pt metals. (Claus. ) Ruthenium ^hydroxide, Ru0 4 H 4 + 3H 2 0. Sol. in acids and alkalies. (Claus, A. 59. 237.) Contains NO. (Joly, C. R. 107. 994.) Ruthenium sesquiiodide, Ru 2 I 6 (?). Ppt. (Claus.) Ruthenium nitrosochloride, RuCl 3 (NO) + H 2 0, and 5H 2 0. Slowly sol. in cold, easily in hot H 2 (Joly, C. R. 108. 855.) Ruthenium nitrososesgmoxide, Ru 2 3 (NO) 2 + 2H 2 0. Ppt. (Joly, C. R. 108. 854.) Ruthenium monoxide, RuO. Insol. in acids. (Claus, A. 59. 236.) Ruthenium sesquioxide, Ru 2 3 . Insol. in acids. Mixture of Ru and Ru0 2 . (Debray and Joly, C. R. 106. 1494.) See Ruthenium nitrososesgw'oxide. Ruthenium dioxide, Ru0 2 . Insol. in acids. (Debray and Joly.) Ruthenium dioxide, Ru0 3 . " Ruthenic acid." Known only in its salts. Ruthenium ^roxide, Ru0 4 . Rather difficultly and slowly sol. in H 2 0. (Claus.) Decomp. in aqueous solution into Ru 2 5 + 2H 2 0. (Debray and Joly.) Ruthenium pentoxide, Ru 2 5 . (Debray and Joly, C. R. 106. 1494.) + 2H 2 0. Ppt. (Debray and Joly.) Ruthenium heptoxide, Ru 2 7 . "Perruthenic acid." Known only in its salts. Ruthenium oxide, Ru 4 9 . (Debray and Joly.) Ruthenium oxychloride, Ru(OH)Cl 2 . Very sol. in H 2 0, but decomp. by an excess. (Joly, C. R. 114. 293.) Ruthenium sulphides. Not isolated in a pure state. Ruthenomcwamine hydroxide, Ru(OH) 2 (NH 3 ) 2 +4H 2 0. See Ruthenosamine hydroxide. Ruthenotfo'amine carbonate, Ru(N 2 H 6 ) 2 C0 3 + 5H 2 0. Easily sol. in H 2 0. Insol. in alcohol. (Claus.) 350 RUTHENODIAMINE CHLORIDE Ruthen&'selenotrithionic acid, H 2 SSe 2 6 . Exceedingly unstable. (Schulze.) Selenyl bromide, SeOBr 2 (?). (Schneider, Pogg. 129. 450.) 360 SELENYL CHLORIDE Selenyl chloride, Se0 2 Cl 2 . Easily decomp. by H 2 0. (Weber, Pogg. 118. 615.) Selenyl sulphur chloride. See Sulphoselenyl chloride. Selenyl stannic chloride, 2SeOCl, SnCl 4 . Extremely deliquescent. Completely sol. in H 2 0. (Weber, B. A. B. 1865. 154.) Selenyl titanium chloride, 2SeOCl 2 , TiCl 4 . Decomp. by H 2 with separation of an insol. residue. Decomp. by NH 4 OH + Aq. (Weber, B. A. B. 1885. 154.) Sesquiauramine. See $esgm'aiiraniine. Sesquihydraurylamine, (HOAu) 3 N, NH 3 . See tfesgrnhydraurylamine. Silicic acid, Si0 2 , a-H 2 0. See also Silicon e^oxide. Silicic acid is sol. in 1000 pts. pure H 2 O. (Kirwan.) When pptd. from alkali silicates + Aq by C0 2 , 0'021 pt. Si0 2 remains dissolved in 100 pts. H 2 0. (Struckmann, A. 94. 341.) When pptd. as above, 100 pts. H 2 dissolve 0-09 pt. Si0 2 in 3 days ; 100 pts. H 2 C0 3 + Aq dissolve 0'078 pt. Si0 2 in 3 days. But if heated much more dissolves, the jelly itself becoming liquid, such jelly containing 2 '49 pts. Si0 2 to 100 pts. H 2 0. This solution is not pptd. by considerable quantities of alcohol, but cone. (NH 4 ) 2 C0 3 , NaCl, or CaCl 2 + Aq, etc., cause gelatinisation. (Maschke, J. pr. 68. 234.) Solubility in H 2 depends on the amt. of H 2 0, in presence of which the silicic acid is set free by dil. acids, C0 2 , or alkali salts + Aq. If H 2 is present in sufficient quantity to retain the silicic acid, much more will remain in solution than can be dissolved by digesting the gelatinous acid with H 2 after- wards. 1 pt. Si0 2 can thus be held in solution by 500 pts. H 2 0. Presence of NH 4 OH, (NH 4 ) 2 C0 3 , or NH 4 C1 (in solutions of which Si0 2 is remark- ably insol.) diminishes the power of H 2 to retain Si0 2 in solution. Si0 2 is always more sol. in dil. than cone. NH 4 OH + Aq. (Liebig, A. 94. 373.) Silicic acid from the coagulation of the col- loidal form (see p. 361) is sol. in about 5000 pts. H 2 when formed from a 1 % solution, and 10,000 pts. when formed from a 5 % solution, but is insol. after being dried. (Graham, A. 121. 36.) Silicic acid is more sol. in dil. acids than in H 2 0, because, when acid is added in excess to moderately dil. K 2 Si0 3 + Aq, the solution remains clear, but if only enough acid is added to neutralise the base present, silicic acid will gradually separate out. If acid is added to cone. K 2 Si0 3 + Aq, silicic acid separates out insol. in excess of acid, but if 20-30 pts. H 2 are present to 1 pt. K 2 Si0 3 , and an excess of acid added at once, the silicic acid will remain in solution. This result is obtained with HC1, HN0 3 , H 2 S0 4 , or HC 2 H 3 2 + Aq. These solutions may dissolve a neutral salt until saturated and no silicic acid will separate out. Therefore it is the acid that holds the Si0 2 in solution, and not the H 2 0. (C. J. B. Karsten, (1826) Pogg. 6. 353.) Even C0 2 has the power of holding Si0 2 in solution. (Karsten, I.e.) Solubility in acids of silicic acid of Struck- mann (see above): 100 pts. dil. HCl + Aq of 1-088 sp. gr. dissolve 0'0172 g. Si0 2 in 11 days ; 100 pts. H 2 sat. with C0 2 dissolve 0*0136 g. Si0 2 in 7 days. Silicic acid obtained by passing SiF 4 into H 2 is sol. while still moist in 11,000 pts. cold, and 5500 pts. boiling HCl + Aq of 1'115 sp. gr. (Fuchs, A. 82. 119.) Silicic acid at the moment of separation (as in dissolving cast-iron, steel, etc.) is abun- dantly sol. in aqua regia (3 pts. HCl + Aq of sp. gr. 1*13 and 1 pt. HN0 3 + Aq of sp. gr. 1-33). (Wittstein, Z. anal. 7. 433.) NH 4 OH + Aq dissolves considerable freshly precipitated silicic acid, (NH 4 ) 2 C0 3 only a very little. (Karsten, Pogg. 6. 357.) Dry or ignited SiO 2 is sol. in NH 4 OH + Aq. 100 pts. NH 4 OH + Aq containing 10 % NH 3 dissolve : 0*714 pt. Si0 2 from gelatinous silicic acid ; 0'303 pt. from artificially dried silicic acid; 0*377 pt. from amorphous Si0 2 ; 0'017 pt. from quartz. (Pribram, Z. anal. 6. 119.) NH 4 C-H + Aq dissolves 0'382 pt. Si0 2 from dry silicic acid : 0'357 pt. from ignited Si0 2 ; 0*00827 pt. from quartz. (Souchay, Z. anal. 11. 182.) Silicic acid precipitated from alkali silicates + Aq with C0 2 is sol. as follows: 100 pts. pure H 2 dissolve 0*021 pt. Si0 2 ; 100 pts. (NH 4 ) 2 C0 3 + Aq containing 5 % (NH 4 ) 2 C0 3 , 0*020 pt. ; 100 pts. containing 1 % (NH 4 ) 2 C0 3 , 0*062 pt. ; 100 pts. NH 4 OH + Aq containing 19*2 % NH 3 , 0*071 pt. ; 100 pts. containing 1*6 %, 0*0986 pt. (Strnckmann, A. 94. 341.) 100 pts. NH 4 OH + Aq (10% NH 3 ) dissolve of: crystallised Si0 2 , 0*017 pt. ; amorphous Si0 2 , ignited, 0*38 pt. ; amorphous 3Si0 2 , 4H 2 0, 0*21 pt. ; amorphous silicic acid in form of jelly, 0*71 pt. Upon evaporation no ppt. is formed, even when 80 rnols. Si0 2 are present to 1 mol. NH 3 . (Wittstein, J. B. 1866. 192.) Sol. in KOH or NaOH + Aq, especially if warm. (Dumas. ) Sol. in K 2 Si0 3 or Na 2 Si0 3 + Aq. (Fuchs.) Easily sol. in boiling Na 2 C0 3 + Aq, separat- ing as a jelly on cooling. (Pfaff.) NH 4 C1 or other NH 4 salts ppt. Si0 2 from solution in Na 2 C0 3 + Aq. 100 pts. T1 2 in H 2 dissolve 4*17 pts. amorphous Si0 2 in 24 hours' boiling. (Flem- ming, Jena. Zeit. 4. 36.) Sol. in butyl amine. (Wurtz, A. ch. (3) 42. 166.) Not more sol. in H 2 containing sugar than in pure H 2 0. (Petzholdt, J. pr. 60. 368.) Soluble silicic acid. Colloidal form by dialysis. Solutions con- SILICATE, ALUMINUM 361 taining 4 '9 % Si0 2 may be evaporated until they contain 14 % Si0 2 . The Si0 2 is separated from its solution thus made in many ways (1) By standing. This happens the more easily the more cone, the solution is, and is hastened by heat. A 10-12 % solution gelatin- ises at ordinary temp, in a few hours, and immediately upon heating. A 5-6 % solution maybe kept5-6 days, a 2 % solution, 2-3 months, and a 1 % solution may be kept 2 or more years without gelatinising. (2) When the solution is evaporated to dry- ness in vacuo at 15 a transparent glass is left which is insol. in H 2 0. (3) The coagulation of colloidal silicic acid is accelerated by powdered graphite and other indifferent bodies, and it is brought about in a few minutes by a solution of the alkali car- bonates, even when only TO-OTTO pt- of the carbonate is present. (Graham, A. 121. 36.) (4) Coagulation is also brought about by passing C0 2 through the solution. (Liebig.) C0 2 does not cause coagulation. (Maschke. ) Coagulation is not caused by H 2 S0 4 , HC1, HN0 3 , HC 2 H 3 2 , H 2 C 4 H 4 6 , or NH 4 OH + Aq, or by neutral or acid salts + Aq. (Graham. ) Nad and Na^SO^Aq coagulate the solu- tion. (Maschke. ) Alcohol, sugar, glycerine, or caramel do not coagulate. Soluble A1 2 6 H 6 , Fe 2 6 H 6 , albumen, and casein precipitate soluble Si0 2 . (Graham, A. 121. 36.) The jelly from colloidal Si0 2 is very sol. in slightly alkaline H 2 0. 1 pt. NaOH in 10,000 pts. H 2 dissolves in an hour at 100 an amt. of the jelly corresponding to 200 pts. Si0 2 . (Graham.) Other colloidal forms. Various solutions of silicic acid may be obtained as follows : The jelly formed when SiF 4 is passed through H 2 dissolves in a large amt. of H 2 0, and Si0 2 separates out on evaporation. This is still sol. in H 2 0, but is made insol. by evapor- ation with HC1 or H 2 S0 4 . (Berzelius.) When SiF 4 is absorbed by crystallised H 3 B0 3 , and the HF and H 3 B0 3 removed by a large excess of NH 4 OH + Aq, a silicic acid is obtained which is very sol., in H 2 0. The solution is not decomp. by boiling, but on evaporation an insol. powder remains. (Ber- zelius, A. ch. 14. 366.) WhenK 2 Si0 3 + Aqis precipitated by CuCl 2 ,the precipitate washed and dissolved in HC1 + Aq, the solution treated with H 2 S filtered and boiled, a solution of silicic acid is obtained which gelatinises with KOH or NH 4 OH + Aq. (Doveri, A. ch. (3) 21. 40.) When Na 2 Si0 3 + Aq containing at most 3 % Si0 2 is saturated with HC1 + Aq of I'lO sp. gr., and Na 2 Si0 3 added until the solution is slightly opalescent and carefully warmed to 30, a gelatinous mass is obtained which will dissolve in H 2 by 12-16 hours' boiling if treated before being exposed to the air. The solution is slightly opalescent. The solution can be evaporated by heat until it contains 6 % Si0 2 . In a vacuum or over H 2 S0 4 , solu- tions containing 10 % may be obtained. The electric current, freezing, alcohol, or H 2 S0 4 precipitate or coagulate the solution. (Kiihn, J. pr. 59. 1.) SiS 2 with H 2 gives off H 2 S, and forms a solution of Si0 2 which, after dilution, can be kept for months. But when boiled or evapo- rated, or when a sol. silicate is added, it becomes gelatinous. It leaves an insol. residue when evaporated to dryness. (Fremy, A. ch. (3) 38. 314.) Various forms of silicic acid have been de- scribed as definite compounds of Si0 2 with varying amounts of H 2 0, but it is doubtful if any true definite compounds exist, as the per- centage of H 2 varies with the moisture of the air to which it is exposed. (See Ebelmen, A. ch. (3) 16. 129; Doveri, A. ch. (3) 21. 40; Fuchs, A. 82. 19 ; Merz, J. pr. 99. 177 ; van Bemmelen, B. 11. 2232, etc.) Silicates. The silicates are insol. in H 2 with the ex- ception of the alkali salts, and these are sol. only when the ratio of the base to the acid is above a certain limit. Aluminum silicate, 2A1 2 3 , Si0 2 + 10H 2 0. Min. Collyrite. Sol. in acids, with formation of Si0 2 , a?H 2 O. Becomes transparent in H 2 O and is decomp. 4A1 2 3 , 3Si0 2 . Min. Dillnite. A1 2 3 , Si0 2 . Min. Andalusite, Chiastolite, Sillimannite, Disthene or Cyanite. Insol. in acids. + 5-7H 2 0. Min. Allophane. Completely sol. in dil. acids ; decomp. by cone, acids with separation of Si0 2 , ocH 2 0. 2Al20 3 , 3SiO 2 + 4H 2 0. Min. Pholerite. In- sol. in HN0 3 + Aq. + 6H 2 0. Min. Glagerite. A1 2 3 , 2Si0 2 + 2H 2 O. Min. Kaolin, Clay. Insol. in dil. HC1 or HN0 3 + Aq ; moderately dil. H 2 S0 4 + Aq, when heated to evaporation, extracts A1 2 3 and some Si0 2 , and leaves the rest of the Si0 2 , sol. in boiling Na 2 C0 3 + Aq. All the A1 2 3 is dissolved by heating with 5-6 pts. H 2 S0 4 + 1 pt. H 2 until H 4 S0 4 evaporates, and then treating with H 2 0. Quickly attacked by H 2 SiF 6 + Aq. Decomp. by boiling KOH + Aq, with residue of Si0 2 . (Rammelsberg. ) KOH + Aq extracts J of the Si0 2 (Malaguti) ; is converted thereby into double silicates of K and Al, which are sol. in HC1 + Aq. (Lemberg. ) Colloidal clay. (Schlosing, C. R. 79. 473.) + 4H 2 0. Halloysite. Decomp. by acids. 4A1 2 3 , 9Si0 2 +12H 2 0. Min. Porcelain clay from Passau. A1 2 3 , 3Si0 2 + 3H 2 0. Min. RazoumoffsTcine. A1 2 3 , 4Si0 2 + 7H 2 0. Min. Montmorillonite. Not decomp. by HCl + Aq, but by hot H 2 S0 4 . + H 2 0. Min. Pyrophyllite. Not decomp. by H 2 S0 4 . + 3H 2 0. Min. Anauxite. 2A1 2 3 ; 9Si0 2 + 6H 2 0. Min. Cimolite. 362 SILICATE, ALUMINUM BARIUM Aluminum barium silicate, A1 2 3 , BaO, 2Si0 2 + H 2 (?). Min. Edingtonite. Decomp. by HCl + Aq with separation of Si0 2 , o?H 2 0. 5A1 2 3 , 4BaO, 10Si0 2 . (Fremy and Feil, C. R. 85. 1033.) 2A1 2 3 , 4BaO, 7Si0 2 . Min. Barylite. Very si. decomp. by alkali carbonates +Aq. (Blom- strand. ) Aluminum barium potassium silicate, A1 2 3 , (Ba,K 2 )0, 5Si0 2 + 2H 2 0. Min. Harmotome. When finely powdered, difficultly decomp. by HCl + Aq with separa- tion of pulverulent Si0 2 , a?H 2 0. A1 2 3 , (Ba,K 2 )0, 4Si0 2 . Min. Hagalophane. Scarcely attacked by acids. Aluminum caesium silicate, H 2 Cs 2 Al 2 Si 5 15 (?). Min. Pollucite. Very si. decomp. by HC1 + Aq. Aluminum calcium silicate, A1 2 3 , CaO, 2Si0 2 . Min. Anorthite. Completely decomp. by HC1 + Aq with separation of pulverulent Si0 2 , a;H 2 0. Min. Barsowite. Instantaneously decomp. by HCl + Aq, with separation of gelatinous Si0 2 , a;H 2 0. + 4H 2 0. Min. Gismondite. Gelatinises with HCl + Aq. A1 2 3 , CaO, 3Si0 2 + 3H 2 0. Min. Scolezite. Easily sol. in HCl + Aq, without formation of gelatinous Si0 2 . Sol. in H 2 C 2 4 + Aq with pptn. of CaC 2 4 . Decomp. by, and sol. to a certain extent in H 2 C0 3 + Aq, and decomp. also even by pure H 2 0. (Rogers, Am. J. Sci. (2) 5. 408.) + 5H 2 0. Min. Levyn. Decomp. by acids without gelatinising. A1 2 3 , CaO, 4Si0 2 + 3H 2 0. Min. Oaporcian- ite. Leonhardite. Efflorescent. Easily sol. in acids, with pptn. of gelatinous Si0 2 , a?H 2 0. A1 2 3 , CaO, 4Si0 2 + 4H 2 0. Min. Laumontite. Easily gelatinises with HC1 or HN0 3 + Aq, but is not affected by H 2 S0 4 unless hot. A1 2 3 , CaO, 6Si0 2 + 5H 2 0. Min. Epistilbite. Gelatinises with cone. HCl + Aq. (Gold- schmidt, Z. anal. 17. 267.) Scarcely decomp. by boiling cone. HC1 + Aq. (Jannasch and Tenne, Miner. Jahrb. 1880, 1. 43.) + 6H 2 0. Stilbite. Heulandite. Slowly but completely gelatinised by HC1 + Aq. A1 2 3 , 2CaO, 3Si0 2 + H 2 0. Min. Prehnite. Imperfectly decomp. by acids before ignition, but easily afterwards. Al^Og, 3CaO, 3Si0 2 . Lime, alumina garnet. Grossularite. Partially decomp. by acids before ignition, but easily afterwards. 2A1 2 3 , CaO, 2Si0 2 + H 2 0. Margarite. Not attacked by acids. SAlgOg, 4CaO, 6Si0 2 + H 2 0. Zoisite. Par- tially decomp. by HCl + Aq. 4A1 2 3 , 6CaO, 9SiO 2 . Min. Meionite. Com- pletely sol. in HC1 + Aq. Aluminum calcium ferric silicate, 2A1 2 3 , 4CaO, Fe 2 3 , 6Si0 2 + H 2 0. Min. Epidote. Only si. attacked by HC1 + Aq before ignition. Aluminum calcium ferric magnesium silicate, H 14 (Ca,Mg) 40 (Al 2 ,Fe 2 ) 10 Si 35 147 . Min. Vesuvianite, Idiocrase. Only partially decomp. by HCl + Aq before ignition. Aluminum calcium iron, etc., silicate borate, H 2 R 1 6 I (Al 2 ,B 2 ) 3 Si 8 32 . Min. Axinite. Not attacked by HCl + Aq before ignition. Aluminum calcium magnesium silicate, 4H 4 Ca 2 Mg 8 Si 6 24 , 5H 2 CaMgAl 6 12 = 15A1 2 3 , 13CaO, 37MgO, 24SiO 2 +13H 2 0. Min. Glintonite. Completely decomp. by HC1 + Aq without gelatinisation. 3H 4 Ca 2 Mg 8 Si 6 24 , 4H 2 CaMgAl 6 12 . Min. Brandisite. Not attacked by HC1 + Aq. Slowly decomp. by boiling cone. H 2 S0 4 . SH^MgsSieO^, 8H 2 CaMgAl 6 12 . Min. Xanthophyllite. Very si. decomp. by hot HCl + Aq. 3(Ca,Mg)0, A1 2 3 , 2Si0 2 . Min. Gehlenite. Easily decomp. by acids. Aluminum calcium potassium silicate, (H, K) 2 CaAl 2 Si 5 15 + 6H 2 0. Min. Chabasite. Decomp. by HC1 + Aq. (K 2 , Ca)Al 2 Si 3 10 + 4H 2 0. Min. Zeagonite. Completely sol. in HC1 + Aq. Aluminum calcium sodium silicate, 3A1 2 3 , 8CaO, Na 2 0, 9Si0 2 . Min. Sarcolite. Decomp. by acids. 2A1 2 3 , 12(Ca, Na 2 )0, 9Si0 2 (?). Min. Mel- lilite. Gelatinised by acids. Na 2 CaAl 4 Si 2 12 (?). Min. Margarite. NaaCaALSijoOag. Min. FaujasUe. Decomp. by HCl + Aq. (Na 2 ,Ca)Al 2 Si 4 12 . Min. Gmelinite. De- comp. by HCl + Aq. (Ca,Na 2 )Al 2 Si 6 19 + 6H 2 0. Min. Foresite. Difficultly decomp. by HC1 + Aq. (Ca,Na 2 )Al 2 Si 2 8 + 2pI 2 0. Min. Thomson- ite. Gelatinises with HCl + Aq. a?Na 2 Al 2 Si 6 16 , 7/CaAl 2 Si 2 8 . Min. Labradorite. SI. decomp. by acids, more easily the larger the amt. of Ca present. Aluminum calcium sodium silicate sulphate, 2(Na 2 , Ca) Al 2 (Si0 4 ) 2 , (Na 2 , Ca)S0 4 . Min. Hauyn. Gelatinises with HCl + Aq. Aluminum glucinum silicate, A1 2 3 , 3G10, 6Si0 2 . Min. Beryl. Emerald. Not decomp. by acids, excepting partially by H 2 S0 4 after being ignited. A1 2 3 , 2G10, 2Si0 2 + H 2 0. Min. Euclase. Not attacked by acids. Aluminum ferrous silicate, Al 2 Fe(S0 4 ) 3 . Min. Garnet. SI. decomp. by HCl + Aq. H 2 FeAl 2 Si0 7 . Min. Chloritoid. Not at- tacked by HCl + Aq. Completely decomp. by H 2 S0 4 . A1 2 3 , 3FeO, 3Si0 2 + 3H 2 0. Min. Voigtite. Aluminum iron lithium potassium silicate, Min. Zinnwaldite. SI. decomp. by acids. SILICATE, CADMIUM 363 Aluminum ferrous magnesium silicate, 6A1 2 3 , 3(Mg,Fe)0, 6Si0 2 + H 2 0. Min. Staurolite. Not attacked by acids. Aluminum ferric magnesium silicate, 2(Al 2 ,Fe 2 )0 3 , 2MgO, 5Si0 2 . Min. Cordierite. SI. attacked by acids. + #H 2 0. Min. Esmarkite, Chlorophyllite. Aluminum ferrous manganous silicate, A1 2 3 , FeO, 2MnO, 3Si0 2 . Min. Partschinite. Aluminum ferrous sodium, etc. , silicate borate, R& Al 2 ) 2 (B 2 )Si 4 20 + R^ALj^BaJSiAo, etc. Min. Tourmaline. Not decorap. by HC1 + Aq ; very si. decomp. by H 2 S0 4 . Aluminum lithium silicate, A1 2 3 , Li 2 0, 5Si0 2 . Not attacked by acids. (Hautefeuille, C. R. 90. 541.) A1 2 3 , Li 2 0, 6Si0 2 . A1 2 3 , Li 2 0, 4Si0 2 . Min. Spodumene. Not attacked by acids. 4A1 2 3 , 3Li 2 0, 30Si0 2 . Min. Petalite. Not attacked by acids. Aluminum lithium potassium silicate, (Li,K) 10 Al 10 Si 16 52 . Min. Lepidolite. SI. decomp. by acids. Aluminum magnesium silicate, 5A1 2 3 , 4MgO, 2Si0 2 . Min. SappMrine. Aluminum magnesium potassium silicate, a^KaAlflSiA* 2/Mg 12 Si 6 21 . Min. Lepidomelane. Easily decomp. by HC1 or HNOo + Aq, with residue of a skeleton of Si0 2 . 3A1 2 3 , 12MgO, 2K 2 0, 12Si0 2 + H 2 0. Min. Anomite. 7A1 2 3 , 35MgO, 7K 2 0, 36Si0 2 . Min. Phlogo- pite. Aluminum manganous silicate, 2A1 2 3 , 6MnO, 6Si0 2 . Not decomp. by very dil. HC1 + Aq. (Gor- geu, C. R. 97. 1303.) Aluminum potassium silicate, A1 2 3 , K 2 0, Si0 2 . Very slowly decomp. by cold H 2 ; 12 % is dissolved by hot H 2 0. Sol. in alkali hydrox- ides + Aq, but insol. in carbonates + Aq. K 2 0, A1 2 3 , 2Si0 2 . Insol. in cold H 2 0, but 6 % dissolves on boiling. Sol. in dil. acids. Insol. in alkali hydroxides or carbonates + Aq. (Gorgeu, A. ch. (6) 10. 45.) K 2 0, A1 2 3 , 3Si0 2 + 3H 2 0. Easily sol. in HN0 3 + Aq. (Deville, A. ch. (3) 61. 313.) K 2 0, A1 2 3 , 4Si0 2 . Min. Leucite. Decomp. by HCl + Aq with separation of pulverulent Si0 2 . + 4H 2 0. Ppt. (Deville, C. R. 64. 324.) H 4 K 2 Al 6 Si 6 024. Min. Muscovite, "Mica." Not attacked by HC1 or H 2 S0 4 + Aq. K 2 Al 4 Si 5 17 + 3H 2 0. Min. Finite. Partly decomp. by HCl + Aq. K 2 Al 2 Si 6 ]6 . Min. Orthoclase Feldspar. Scarcely attacked by acids. Slowly sol. in H 2 S0 4 or HCl + Aq when finely powdered. (Rogers.) Aluminum potassium sodium silicate, KaAl^SiOgk, 5Na 2 Al 2 (Si0 4 ) 2 (?). Min. Nepheline. Decomp. by HC1 + Aq. Aluminum silver silicate, Al2Ag 4 Si 2 9 . Insol. in NH 4 OH + Aq. (Silber, B. 14. 941.) Al 6 Ag 2 Na 4 Si 6 4 . As above. (Silber.) Aluminum sodium silicate, A1 2 3 , Na^O, Si0 2 . Insol. in cold H 2 0, but 38-40 % dissolves in hot H 2 0. (Gorgeu.) A1 2 3 , Na 2 0, 2Si0 2 . Insol. in cold H 2 ; boiling H 2 dissolves 1-2 %. Sol. in HC1 or HN0 3 diluted with 10-20 vols. H 2 0. Insol. in alkali hydroxides or carbonates + Aq. (Gorgeu, A. ch. (6) 10. 145.) Not attacked by H 2 0. (Silber, B. 14. 941.) + 3H 2 0. Easily sol. in HCl + Aq. (v. Ammon. ) A1 2 3 , Na^, 3Si0 2 + 3H 2 0. Decomp. by acids. (Deville, A. ch. (3) 61. 326.) A1 2 3 , Na 2 0, 4Si0 2 + 3H 2 0. Easily sol. in HCl + Aq. (v. Ammon.) 2A1 2 3 , SNa^O, 3Si0 2 . Insol. in cold H 2 0, but 27-30 % dissolves on boiling. (Gorgeu.) H 4 Na 2 Al 6 Si 6 024. Min. Paragonite. Decomp. by cone. Na2Al 2 Si 4 12 + 2H 2 0. Min. Analcite. Readily decomp. by HC1 + Aq. Na 2 Al 2 Si 3 10 + 2H 2 p. Min. Natrolite. Sol. in H 2 with separation of Si0 2 . Also sol. in H 2 C 2 4 + Aq. Na 2 Al 2 Si 6 16 . Min. AlUte. Not attacked by acids. Aluminum sodium silicate chloride, 3Na 2 Al 2 (Si0 4 ) 2 , 2NaCl. Min. Sodalite. Easily decomp. by HC1, and HN0 3 + Aq. Aluminum sodium silicate sulphate, 3Na2Al 2 (Si0 4 ) 2 , Na 2 S0 4 . Min. Noscan. Easily decomp. by HC1 + Aq. Aluminum sodium silicate sulphide. See Ultramarine. Barium silicate, BaSi0 3 . Somewhat sol. in boiling H 2 0. Completely sol. in dil. HCl + Aq. (v. Ammon.) + 6H 2 0, or 7H 2 O. Boiling H 2 decomposes, and dissolves about \ the weight of this sub- stance, (le Chatelier, C. R. 92. 931.) 2BaO, Si0 2 . Decomp. by H 2 into BaSi0 3 + 6H 2 0. (Laudrin.) Bismuth silicate, 2Bi 2 3 , 3Si0 2 . Min. Eulytite. Decomp. by HCl + Aq. Bismuth ferric silicate, Bi 2 Fe 4 Si 4 O l7 . Min. Bismuthoferrite. Boron calcium silicate. See Borate silicate, calcium, and Silicate borate, calcium. Cadmium silicate, CdSi0 3 + HH 2 0. Sol. in HCl + Aq with deposition of pul- 364 SILICATE, CALCIUM verulent Si0 2 , #H 2 0. (Rousseau and Tite, C. R. 114. 1262.) Calcium silicate, CaSi0 3 . Slowly sol. in H 2 ; sol. in HCl + Aq. 4CaO, 3Si0 2 . (Laudrin.) 5CaO, 3Si0 2 + 5H 2 0. When freshly precipi- tated is somewhat sol. in H 2 and easily de- comp. by HCl + Aq. (v. Ammon.) CaO, 3Si0 2 + 2H 2 0. (Hjeldt, J. pr. 94. 129.) 2CaO, 9Si0 2 + 3H 2 0. Ppt. CaSi0 3 . Min. Wollastonite. Gelatinises with HCl + Aq. CaSi 2 5 + 2H 2 0. Min. Okenite. Easily de- comp. by cold HC1 + Aq when powdered. Calcium glucinum silicate sodium fluoride, (Ca, Gl) 15 Si 14 43 , 6NaF. Min. Leucophane. 7(Ca, Gl) 3 Si 2 7 , 6NaF. Min. Melinophane. Calcium ferrous silicate, CaSi0 3 , FeSi0 3 . Min. Hedenbergite, Pyroxene. SI. decomp. by acids. Calcium ferric silicate, Ca 3 Fe 2 (Si0 4 ) 3 . Min. Garnet. SI. decomp. by HCl + Aq. 2CaSi0 3 , HFe 2 (Si0 3 ) 3 . Min. Szaboite. SI. attacked by HCl + Aq, and still less by H 2 S0 4 + Aq. Calcium ferroferric silicate, 2CaO, 4FeO, Fe^, 4Si0 2 + H 2 = H 2 Ca 2 Fe 4 Fe 2 Si 4 18 . Min. Lievrite, Ilvaite. Easily gelatinises with HCl + Aq. Calcium ferrous magnesium silicate, (Ca, Fe, Mg)Si0 3 . Min. Amphibole, Hornblende, Asbestos, Actinolite, Tremolite. Only si. attacked by acids. Calcium ferroferric sodium silicate, CaSi0 3 , FeSi0 3 , Fe 2 (Si0 3 ) 3 , Na.SiO,. Min. Aegirite. Calcium magnesium silicate, CaO, MgO, 4Si0 2 . (Mutschler, A. 176. 86.) Ca 2 Si0 4 , Mg 2 Si0 4 . Min. Monticellite. Com- pletely sol. in dil. HCl + Aq. (Ca, Mg)Si0 3 . Min. Diopside, Pyroxene. Very si. attacked by acids. Calcium manganous silicate, CaSi0 3 , 2MnSi0 3 . Min. Bustamite. Calcium potassium silicate. See under Glass, Calcium sodium silicate, (Ca, Na 2 , H 2 )Si0 3 . Min. Pedolite. Decomp. by HCl + Aq. See under Glass. Calcium sodium silicate zirconate, Na 4 Ca(Si, Zr) 9 21 + 9H 2 0. Min. Wohlerite. Decomp. by HCl + Aq. Calcium uranyl silicate, 3CaO, 5U0 3 , 6Si0 2 + 18H 2 0. Min. Uranophane. Gelatinises with acids. CaO, 3U0 3 , 3Si0 2 + 9H 2 0. Min. Uranotile. Calcium silicate chloride, 2CaO, Si0 2 , CaCl 2 . Insol. in H 2 or alcohol. Sol. in HC1 + Aq. (le Chatelier, C. R. 97. 1510.) Calcium silicate fluoride, 2CaO, 3Si0 2 , 6CaF 2 . (Deville, C. R. 52. 110.) Calcium silicate potassium fluoride, 4H 2 CaSi 2 6 , KF + 4H 2 0. Min. Apophyllite. Decomp. by HCl + Aq. Calcium silicate stannate. See Silicostannate, calcium. Calcium silicate titanate, CaO, Si0 2 , Ti0 2 . (Hautefeuille, A. ch. (4) 4. 154.) Min. Titanite. Incompletely decomp. by HCl + Aq, wholly by H 2 S0 4 + Aq. Cerous silicate, Ce 2 (Si0 3 ) 3 . More or less attacked by HC1, HN0 3 , or H 2 S0 4 + Aq, according to the concentration. (Didier, C. R. 101. 882.) Cerium didymium lanthanum silicate, 2(Ce, La, Di) 2 3 , 3Si0 2 . Min. Cerite. Gelatinises with HCl + Aq. Cerium glucinum yttrium silicate, (Y, Ce, Gl) 2 Si0 5 . Min. Gadolinite. Easily gelatinised by HCl + Aq. Cerous silicate chloride, 2Ce 2 3 , 3Si0 2 , 4CeCl 3 = Ce 4 (Si0 4 ) 3 , 4CeCl 3 . Insol. in H 2 0, but slowly decomp. thereby. (Didier, C. R. 101. 882.) Cobaltous silicate, Co 2 Si0 4 . Gelatinises with HCl + Aq. (Bourgeois, C. R. 108. 1077.) Cupric silicate, CuH 2 Si0 4 . Min. Dioptase. Sol. in HC1, HN0 3 , or NH 4 OH + Aq with separation of Si0 2 . Not attacked by KOH + Aq. CuSi0 3 + 2H 2 0. Min. Chrysocolla. De- comp. by HCl + Aq. + 3H 2 0. Min. Asperolite. Easily decomp. by HCl + Aq. Cupric silicate ammonia, CuSi 2 5 , 2NH 3 . Ppt. (Schiff, A. 123. 38.) Glucinum silicate, Gl 2 Si0 4 . Min. Phenacite. Not attacked by acids. Glucinum ferrous manganous silicate ferrous manganous sulphide, 3(Gl,Fe,Mn) 9 SiO,, (Mn, Fe)S. Min. Helvine. Decomp. by HCl + Aq. Ferrous silicate, Fe 2 Si0 4 . Min. Fayalite. Gelatinises with HC1 + Aq. FeSi0 3 . Min. Grunerite. + 6H 2 0. Min. Chlorophite. 4FeO, Si0 2 . (Zobel, Dingl. 154. 111.) Ferric silicate, Fe 2 Si 3 9 + 5H 2 0. Min. Nontronite. Gelatinises with hot acids. 4Fe 2 O 3 , 9Si0 2 + 18H 2 0. Min. Hisingerite. 2Fe 2 3 , 9Si0 2 + 2H 2 O. Min. Anthosidcrite. SILICATE, SODIUM 365 Ferroferric magnesium silicate, (Fe, Mg) 3 F e2 Si 2 10 + 4H 2 0. Min. Oronstadtite. Gelatinises with acids. Ferroferric sodium silicate, SNa^SiOg, 2FeSi0 3 , 4Fe 2 (Si0 3 ) 3 . Min. Akmite. SI. decomp. by acids. Ferrous magnesium silicate, Fe 2 Si0 4 , Mg 2 Si0 4 . Min. Olivene, Chrysolite, Peridote. Gelat- inises with HC1 or H 2 S0 4 + Aq. (Fe, Mg)Si0 3 + fH 2 0. Min. Picrophyll. + H 2 0. Min. Monradite. (Fe, Mg)Si0 3 . Min. Bronzite, Hypersthene. Not attacked by acids. ccMgSi0 3 , 2/FeSi0 3 . Min. Anthophyllite. Not attacked by acids. Ferrous manganous silicate, Fe 2 Si0 4 , Mn 2 Si0 4 . Min. Knebelite. Gelatinises with HC1 + Aq. Ferrous manganous silicate chloride, 7(Fe, Mn)Si0 3 , (Fe, Mn)Cl 2 + 5H 2 0. Min. Pyrosmalite. Completely decomp. by cone. HN0 3 + Aq. Ferric potassium silicate, Fe(Si0 3 ) 3 , K 2 Si0 3 . (Hautefeuille and Perrey, C. R. 107. 1150.) Ferric sodium silicate, Na2Fe 2 Si 4 12 . Min. Crokydolite. Not attacked by acids. Lead silicate. See under Glass. Lithium silicate, Li 2 Si 5 O n . Li 4 Si0 4 . Li 2 Si0 3 . Magnesium silicate, Mg 3 Si 2 7 + 2H 2 O. Min. Serpentine. Decomp. by HCl + Aq, more easily by H 2 S0 4 . Min. Ghrysotile. Mg 4 Si 3 10 + 6H 2 O. Min. Gymnite, Soap- stone. Decomp. by H 2 S0 4 . MgSi0 3 . Not completely decomp. by HC1 + Aq. + JH 2 0. Min. Aphrodite. Decomp. by hot acids. + |H 2 0. Min. Picrosmine. + 1H 2 0. Sol. in dil. acids, (v. Ammon.) Min. Forsterite. 3MgO, 4Si0 2 + H 2 or 4MgO, 5Si0 2 + |H 2 0. Min. Talc or Steatite. Not attacked by HC1 or H 2 S0 4 + Aq. Mg 5 Si 6 O l7 + 4H 2 0. Min. Spadaite. Decomp. by cone. HC1 + Aq. Mg 2 Si 3 8 + 4H 2 0. Min. Meerschaum. De- comp. by HCl + Aq. Magnesium silicate fluosilicate, Mg 5 Si 2 9 , Mg 5 Si 2 F 18 . Min. ffumite, Chondrodite. Gelatinises with HClorH 2 S0 4 + Aq. Manganous silicate, Mn 2 Si0 4 . Min. Tephroite. Decomp. by HC1 + Aq with formation of a stiff jelly. MnSi0 3 . Min. Rhodonite, Hermannite. Not attacked by HCl + Aq. Mn 4 Si 3 10 + 2H 2 0. Min. Friedelite. Easily gelatinised by HC1 + Aq. Manganous zinc silicate, (Mn, Zn) 2 Si0 4 . Min. Troostite. Manganous silicate chloride, MnSi0 3 , MnO, MnCl 2 . Decomp. by H 2 0. (Gorgeu.) Nickel silicate, Ni 2 Si0 4 . Easily decomp. by acids. (Bourgeois, C. R. 108. 1077.) Potassium silicate, K 2 Si0 3 . Completely sol. in H 2 0. (Ordway, Sill. Am. J. (2) 33. 34.) K 2 Si 4 5 . Sol. in H 2 0. Cone. K 2 Si 4 5 + Aq contains 28 % of the salt, and has sp. gr. 1-25. (Fuchs.) K 2 Si 8 17 . Partially sol. in H 2 as K 2 Si0 3 . KaSi^O^ + lGHgO. Insol. in H 2 0. (Forch- hammer. ) The K silicates are pptd. from their aqueous solution by alcohol with partial decomp., but less readily than Na silicates. More sol. in H 2 than the corresponding Na salts. (Ordway, Sill. Am. J. (2) 32. 155.) Solution can be obtained which is perfectly clear when 4|Si0 2 are present to 1K 2 0, if there are no impurities present. (Ordway.) The K silicates resemble the Na salts, which see for further data. Potassium zinc silicate. Sol. in KOH + Aq. (Schindler.) Potassium zirconium silicate, K 2 0, Zr0 2 , 2Si0 2 . Decomp. by HCl + Aq. (Melliss.) Silver silicate, Ag 2 Si0 3 . Decomp. by all acids ; sol. in NH 4 OH + Aq. (Hawkins, Sill. Am. J. 139. 311.) Sodium silicate, Na^SiOg. + 5, 6, 8, and 9H 2 0. Easily sol. in H 2 0. Na^Og. Sol. in H 2 0. Na 4 Si 5 12 . Na 2 Si 4 9 . Slowly sol. in H 2 0. + 12H 2 0. Above compounds are all more or less indefinite. Water glass. ^ xNs^O, 7/Si0 2 + zH 2 0. Sol. in H 2 0, but solution is decomposed by all weak acids, even C0 2 . Fused water glass is but little acted on by cold H 2 0, but when pure, easily dissolves in H 2 by long boiling. (Ordway, Am. J. Sci. (2) 32. 337.) When the Si0 2 is present in greater propor- tion than in Na 2 0, 3Si0 2 , it is very difficult to dissolve in H 2 0. Na silicate is less easily sol. in H 2 than the corresponding K compound. Solubility of water glass in H 2 is much impaired by earthy impurities, so that traces have great effect in preventing the solubility. NH 4 salts decomp. water glass solutions. A solution containing | % Na^SiOg is scarcely precipitated by NH 4 C1, but easily by NH 4 N0 3 . (Fliickinger. ) Precipitated by NH 4 OH + Aq as Na^SiOg. Many sodium and potassium salts, especially SILICATE, SODIUM ZIRCONIUM the chlorides and acetates, form precipitates in solutions of water glass ; these precipitates are larger the more concentrated the solution is, and the greater amount of Si0 2 it contains. Heating hastens the precipitation by chlorides, nitrates, and sulphates, but delays that by ace- tates. KOH + Aq does not precipitate. Cold sat. Na 2 S0 4 + Aq does not precipitate even on heating, but 1 pt. anhydrous Na 2 S0 4 dissolved in 2 pts. H 2 precipitates a hot solu- tion of Na 2 Si0 3 . NaN0 3 dissolved in 1 pt. H 2 precipitates Na 2 Si0 3 + Aq of 1 '392 sp. gr. ; NaN0 3 in 2 pts. H 2 when mixed with a solution of Na 2 Si0 3 , as above, if the two are present in equal vols., causes no ppt. in the cold, but solidifies when warmed to 54, and redissolves on cooling rapidly, but if 2 vols. NaN0 3 + Aq are present to 1 vol. Na 2 Si0 3 + Aq, the precipitate does not disappear on cooling. If 1 pt. NH 4 OH + Aq (0'921 sp. gr.) is added to 10 pts. Na 2 Si0 3 + Aq, no ppt. forms, but by increasing the amt. of NH 4 OH + Aq to 2 pts. , the greater pt. of the Na 2 Si0 3 is pptd., but redissolves on heating to 90, separating again on cooling. When 1 pt. NH 4 OH + Aq is added to 6-8 pts. Na 2 Si0 3 + Aq and heated to 30, a clear liquid is formed which separates into two layers at ordinary temp. The most sol. K, Na, Li, and NH 4 salts separate Si0 2 from cone. Na 2 Si0 3 + Aq. Most of these salts lose this power by dilution, but the NH 4 salts and KSCN keep this power until the solution is very dil. This is especially the case with NH 4 C1 and NH 4 N0 3 . Bromine, chlorine, propyl amine, creosote, phenole dissolved in glycerine, chloral hydrate, dil. albumen solution, and glue solution ppt. Si0 2 from Na 2 Si0 3 + Aq ; but sugar, dextrine, glycerine, urea, si. alkaline solution of urea nitrate, coniine, nicotine, saponine, convol- vuline, jalappine, and colophonium dissolved in KOH + Aq do not ppt. Si0 2 . (Fliickinger, Arch. Pharm. (2) 144. 97.) Alcohol ppts. water glass as such from its aqueous solution, even when this is very dil., but there is some decomposition, the alcohol tending to hold in solution a portion of a silicate more alkaline than that previously dissolved in H 2 0, while the ppt. formed con- tains more Si0 2 than the original silicate. Many neutral K or Na salts ppt. water glass as such when added to aqueous solutions. Like alcohol, these solutions exert a decompos- ing action, the ppt. being always more siliceous than the original silicate. Na silicate yields a larger deposit than K silicate ; when a silicate of one base is pptd. by a salt of the other, both bases enter into the composition of the ppt, and the relative proportion of Na and K is very nearly the same as in the average of the liquids mixed. Different salts have very unequal pptg. power, the acetates and chlorides being parti- cularly efficient. Heat increases the pptg. power of the chlorides, sulphates, and nitrates, and diminishes that of the acetates. The alkali acetates are somewhat more efficient than the chlorides, but NaC 2 H 3 2 gives only a slight ppt. with Na 2 0, 2JSi0 2 , even after some time. NaN0 3 has but little effect on the more alkaline silicates. Na 2 S0 4 has still less power than NaN0 3 . Na 2 C0 3 has no pptg. power, and Na 3 As0 4 or Na 3 P0 4 have very little effect. MHS0 4 , MHC0 3 , M 2 HP0 4 , M 2 HAs0 4 ppt. Si0 2 . NH 4 salts also have that effect. Pptd. water glass, as mentioned above, is much more sol. in H 2 than ordinary water glass, and dissolves in H 2 without decomp. For numerous further details, see articles by Ordway in Sill. Am. J. Sci. vols. 32 and 33 ; also Storer's Diet. Sp. gr. of water glass solution containing 14-15 % Si0 2 , 13-14 % Na 2 0, and 70-72 % H 2 is 1-30-1-35. (Hager, Comm. 1883.) Sp. gr. of sat. Na 2 Si0 3 + Aq freshly prepared at 18 is 1-2600, and 1 litre contains 4 '5 gramme-equivalents |Na 2 Si0 3 . Sp. gr. of sat. solution of Na 2 0, 3'4Si0 2 is 1'366, and 1 litre contains 3 '7 gramme-equi- valents ^(Na 2 0, 3'4Si0 2 ). (Kohlrausch, Z. phys. Ch. 12. 773.) Sodium zirconium silicate, Na 2 0, Zr0 2 , Si0 2 . Decomp. by hot H 2 or HC1 + Aq. (Gibbs, Pogg. 71. 559.) Na 2 0, 8Zr0 2 , Si0 2 + llH 2 0. Decomp. by H 2 S0 4 . (Melliss.) Strontium silicate, 3SrO, Si0 2 . SI. sol. in H 2 0. Sol. in acids. (Vauquelin.) Thallous silicate, 3T1 2 0, 10Si0 2 . 100 pts. of a solution of T1 2 dissolve 4 -17 pts. Si0 2 by 24 hours' boiling. Sol. in H 2 0. (Flemming, J. B. 1868. 251.) Thorium silicate, Th0 2 , Si0 2 . Insol. in acids. Attacked by KHS0 4 . (Troost and Ouvrard, C. R. 105. 255.) + 1$H 2 0. Min. Thorite. Decomp. by HCl + Aq. Th0 2 , 2Si0 2 . Insol. in acids or KHS0 4 . (T. and 0.) Yttrium silicate, Y 2 3 , Si0 2 . Attacked by HC1, HN0 3 , or H 2 S0 4 + Aq. (Duboin, C. R. 107. 99.) Zinc silicate, Zn 2 Si0 4 . Min. Wittemite. Gelatinises with HC1 + Aq ; sol. in KOH + Aq. Zinc silicate, Zn 2 Si0 4 + H 2 0. Min. Calamine. Sol. in HCl + Aq with separation of gelatinous Si0 2 , a;H 2 0. Sol. in HC 2 H 3 2 + Aq, and KOH + Aq. Zirconium silicate, Si0 2 , Zr0 2 . Min. Zircon. Insol. in acids, except H 2 S0 4 , in which it is very slowly and si. sol. 3Si0 2 , 2Zr0 2 . Min. Auerlachite. "Silicium oxide," Si 3 H 2 5 . (Geuther, J. pr. 95. 430.) This substance is identical with silicoformic anhydride accord- ing to Otto-Graham's Handb anorgan. Chem. 7te Aufl. 2. 953. SILICON FLUORIDE 367 Siliciuretted hydrogen. See Silicon hydride. Silicobromoform, HSiBr 3 . Fumes on air ; decomp. by H 2 0. Silicochloroform, HSiCl 3 . Decomp. by H 2 and alcohol. Silicoformic anhydride, H 2 Si 2 3 = (HSiO) 2 0. Somewhat sol. in H 2 0. Acids, even cone. HN0 3 + Aq, have no action, except HF, which dissolves it easily with evolution of hydrogen. Solutions of alkali hydrates, ammonium hy- drate, and alkali carbonates + Aq also dissolve with evolution of hydrogen. (Buff and Wb'hler, A. 104. 101.) Silicoiodoform, HSiI 3 . Decomp. by H 2 0. Sol. in CS 2 . (Friedel, A. 149. 96.) Silicomethane, SiH 4 . See Silicon hydride. Silicomolybdic acid, Si0 2 , !2Mo0 3 + 26H 2 0. Very easily sol. in H 2 and dil. acids. (Parmentier, C. R. 94. 213.) Forms a solution with a little ether, which separates into two layers by addition of H 2 or more ether. (Parmentier, C. R. 104. 686.) Ammonium silicomolybdate. Sol. in H 2 0. (Parmentier, C. R. 94. 213.) Csesium silicomolybdate. SI. sol. in H 2 ; insol. in silicomolybdic acid + Aq. Potassium silicomolybdate. Sol. in H 2 0. Rubidium silicomolybdate. SI. sol. in H 2 0. Silicon, Si. Amorphous. Insol. in H 2 0. Sol. before igniting in cold HF. Insol. in other mineral acids and aqua regia. Sol. in cone. KOH + Aq. When amorphous'Si is ignited, it becomes insol. inHFandKOH + Aq. Graphitic. Sol. in HN0 3 + HF. (Ber- zelius, A. 49. 247.) Crystalline. Insol. in all acids, except a mixture of HF and HN0 3 . Sol. in moderately cone. KOH + Aq even when cold. (Deville.) Silicon ^bromide, Si 2 Br 6 . Decomp. by KOH + Aq. (Friedel and Lad- enburg, A. 203. 253.) HSiBr 3 . See Silicobromoform. Silicon i^rabromide, SiBr 4 . Rapidly decomp. by H 2 ; decomp. in several days by H 2 S0 4 . (Friedel and Ladenburg, A. 147. 362.) ^silicon hydrogen #e?^abromide, HSi 2 Br 5 or Si 2 Br 5 (?). Decomp. by H 2 0. (Malm, Zeit. Chem. (2) 5. 279.) Silicon bromide ammonia, SiBr 4 , 7NH 3 . Decomp. by H 2 0. (Besson, C.R. 110. 240.) Silicon bromoiodide, SiIBr 3 . Decomp. by H 2 0. Sol. in CS 2 . (Friedel, B. 2. 60.) SiBr 2 I 2 . As above. (F.) SiBrI 3 . As above. (F.) Silicon sw&chloride, SiCl 2 (?). Decomp. by H 2 0. (Troost and Hautefeuille, A. ch. (5) 7. 463.) Silicon bichloride, Si 2 Cl 6 . Decomp. by H 2 and alkalies. (Troost and Hautefeuille, A. ch. (5) 7. 459.) SiHCl 3 . See Silicochloroform. Silicon ^rachloride, SiCl 4 . Decomp. by H 2 and alcohol. Silicon chloride ammonia, SiCl 4 , 6NH 3 . Decomp. by H 2 0. (Persoz, A. ch. 44. 319.) Silicon bichloride ammonia, Si 2 Cl 6 , 5NH 3 . Slowly decomp. by H 2 0. (Besson, C. R. 110. 516.) Silicon chlorobromide, SiCl 3 Br. Decomp. by H 2 0. (Friedel and Ladenburg, A. 145. 187.) SiCl 2 Br 2 . As above. (Friedel and Laden- burg. ) SiBr 3 01. Decomp. by H 2 0. (Reynolds, Chem. Soc. 51. 590.) Silicon chlorobromide ammonia, 2SiCl 3 Br, Decomp. by H 2 0. (Besson, C. R. 112. 788.) SiCl 2 Br 2 , 5NH 3 . As above. (B.) 2SiClBr 3 , 11NH 3 . As above. (B.) Silicon chlorohydrosulphide, SiCl 3 SH. Decomp. by H 2 or alcohol. (Pierre, A. ch. (3) 24. 286.) Silicon>hloroiodide, SiCl 3 I. Decomp. by H 2 0. (Besson, C. R. 112. 611.) SiCl 2 I 2 . As above. (B.) SiClI 3 . As above. (B.) Silver chloroiodide ammonia, 2SiCl 3 I, 11NH 3 . (Besson.) SiCl 2 I 2 , 5NH 3 . Silicon chloronitride, Si 5 lSr 6 Cl 2 . (Schiitzenberger, C. R. 92. 1508.) Silicon chlorosulphide, Si 2 Cl 2 S 2 . Decomp. violently by H 2 0. Sol. in CC1 4 . (Besson, C. R. 113. 1040.) Silicon ^'fluoride, SiF 2 (?). Decomp. by H 2 or NH 4 OH + Aq. (Troost and Hautefeuille, A. ch. (5) 7. 464.) Silicon ^rafluoride, SiF 4 . Abundantly absorbed by H 2 with decomp. 100 pts. H 2 absorb 140 '6 pts. SiF 4 in 24 hours (Berzelius) ; 124 '1 pts. SiF 4 in 24 hours (Davy). Absorbed abundantly by HN0 3 + Aq. (Kuhl- maim, A. 39. 319.) 368 SILICON HYDROGEN FLUORIDE Absorbed abundantly by alcohol, without separation of silicic acid, if the alcohol contains less than 8 % of water. Sol. in cone. HF + Aq. Absorbed by ether. SI. sol. in naphtha, and oil of turpentine. Silicon hydrogen fluoride, H 2 SiF 6 . See Fluosilicic acid. Silicon fluoride with MF. See Fluosilicate, M. Silicon fluoride ammonia, SiF 4 , 2NH 3 . Decomp. by H 2 0. (Davy.) Silicon hydride, SiH 4 . Insol. in H 2 0. Decomp. by KOH + Aq. Not changed byNH 4 OH + Aq, H 2 S0 4 + Aq, or HCl + Aq. Silicon ^iodide, SiI 2 . Insol. in CS 2 , CHC1 3 , C 6 H 6 , and SiCl 4 . (Friedel and Ladenburg, A. 203. 247.) Silicon ^iodide, Si 2 I 6 . Decomp. with H 2 even at 0. 100 pts. CS 2 dissolve 19 pts. Si 2 I 6 at 19; 26 pts. Si 2 I 6 at 27. (Friedel and Laderiburg, Bull. Soc. (2) 12. 92.) HSiI 3 . See Silicoiodoform. Silicon ^raiodide, SiI 4 . Decomp. by H 2 0. Acts on alcohol and ether. 1 pt. CS 2 dissolves 2 '2 pts. SiI 4 at 27. (Friedel, A. 149. 96.) Silicon hydroxide, Si0 2 , #H 2 0. See Silicic acid. Si 2 H 2 4 . See Silicooxalic acid. Si 2 H 2 3 . See Silicoformic anhydride. Si 4 H 4 3 . See Silicone. Silicon nitride, Si 2 N 3 . Insol. in all acids except HF. HSi 2 N 3 . Sol. in HF, and rapidly in KOH + Aq. (Schiitzenberger, C. R. 92. 1508. ) Silicon o^'oxide, Si0 2 . See also Silicic acid. (a) Crystalline. Min. Quartz, Tridymite. Insol. in H 2 0, and acids, except HF. SI. sol. in boiling K 2 C0 3 + Aq, and KOH + Aq ; see below. Insol. in cold KOH + Aq ; extremely slowly sol. in boiling KOH + Aq. (Fuchs.) Sol. in HF with formation of SiF 4 and H 2 0. Insol. in sugar + Aq, contrary to assertion of Verdeil and Rissler. (Petzholdt, J. pr. 60. 368.) (&) Amorphous. Min. Opal, etc. Insol. in H 2 0, and acids except HF. 100 pts. H 2 containing C0 2 dissolve 0'078 pt. amorphous Si0 2 (Maschke) ; 0'0136 pt. (Struckmann). 100 pts. cold HC1 + Aq of 1 '088 sp. gr. dis- solve 0'017 pt. Si0 2 . (Struckmann.) 100 pts. HCl + Aq of 1-115 sp. gr. dissolve in the cold 0-009 pt. Si0 2 , and 0'018 pt. on boiling. 100 pts. NH 4 OH + Aq (containing 10 % NH 3 ) dissolve 0'017 pt. quartz and 0"38 pt. ignited Si0 2 . (Pribram, Z. anal. 6. 119.) Sol. in boiling K 2 C0 3 or Na 2 C0 3 + Aq, separ- ating out on cooling as a gelatinous mass. (Pfaff, Schw. J. 29. 383.) The different forms of Si0 2 have different degrees of solubility in K 2 C0 3 + Aq. Unignited amorphous Si0 2 from SiF 4 dissolves most readily, then come opal, ignited amorphous Si0 2 , fused Si0 2 , and tridy- mite ; quartz powder is the most difficultly soluble. (Rose.) A similar behaviour is shown to KOH + Aq. Opal is much more sol. in KOH + Aq than quartz, and hyalite is the least sol. of the varieties of opal. (Fuchs.) Opal is easily sol. in KOH + Aq, even after ignition. (Schaffgotsch, Pogg. 68. 147.) Rammelsberg (Pogg. 112. 177) made the following experiments on the solubility of Si0 2 in KOH + Aq. The KOH + Aq used contained 1 pt. KOH to 3 pts. H 2 0. 1 pt. of the powdered mineral was boiled half an hour in a silver dish with such an amount of the KOH + Aq that 20 pts. KOH were present. 7 "75 % of milky white quartz was dissolved by repeating the above process three times. 12*8-15 % of gray hornstone was dissolved by twice boiling ; 2 "43 % of moderately finely powdered agate of 2 '661 sp. gr. was dissolved by once boiling ; 9 '7 % of unignited hyalite remained undissolved after thrice boiling ; 21 % of ignited hyalite remained undissolved after thrice boiling ; 7 '21 % of semi-opal of 2 '101 sp. gr. remained undissolved after thrice boiling; 18'5-19'2 % of impure semi-opal of 2 '101 sp. gr. remained undissolved after thrice boiling ; 79 '9 % of chalcedony of 2 '624 sp. gr. remained undissolved after thrice boiling ; 6'12 % of chalcedony of 2'567 sp. gr. remained undissolved after fourth boiling ; 14 '4 % chrysophrase of 2 '623 sp. gr. remained undis- solved after once boiling ; 49 '41 % of chryso- phrase of 2 '635 sp. gr. remained undissolved after thrice boiling; 6 "62 % of flint of 2 "606 sp. gr. remained undissolved after twice boil- ing ; 38-1 % of fire-opal of 2 '625 sp. gr. re- mained undissolved after fourth boiling ; 26 '6 % of fire-opal of 2 '625 sp. gr. remained undissolved after fifth boiling. Silicon thorium oxide. See Silicate, thorium. Silicon zirconium oxide. See Silicate, zirconium. Silicon oxychloride, Si 2 OCl 6 . Decomp. by H 2 and alcohol. Miscible with CS 2 , SiCl 4 , CC1 4 , CHC1 3 , or ether. (Friedel and Ladenburg, A. 147. 355.) Si 4 8 Cl 10 ; Si 4 4 Cl 8 ; Si 8 ]0 Cl 12 ; (Si 2 3 Cl 2 ) n . Si 4 7 Cl 2 . Sol. in above oxychlorides. (Troost and Hautefeuille, Bull. Soc. (2) 35. 360. ) Silicon oxyfluorhydrin, Si 2 3 p (Landolt, A. Suppl. 4. 27.) Silicon selenide, SiSe 2 . Decomp. by H 2 or KOH + Aq. (Sabatier, C. R. 113. 132.) SILICOTUNGSTATE, POTASSIUM Silicon sulphide, SiS 2 . Sol. in H 2 with decomp. Acts on alcohol or ether in the cold. (Fremy, A. ch. (3) 38. 314.) SiS. Decomp. * by H 2 ; easily sol. in dil. alkalies. (Schiitzenberger, Bull. Soc. (2) 38. 56.) Silicone, Si 4 H 4 3 . Insol. in H 2 0, but gives off hydrogen when warmed therewith. Not attacked by chlorine or nitric or sulphuric acids even on heating, but is gradually sol. in HF. Decomp. by alkalies, even by the most dil. NH 4 OH + Aq, with greatest violence and evolution of heat and hydrogen gas. Insol. in alcohol, SiCl 4 , PC1 3 , or CS 2 . (Wohler, A. 127. 257.) Silicooxalic acid, Si 2 H 2 4 = Si 2 2 (OH) 2 . Decomp. by bases with evolution of hydrogen. Takes up HN0 3 to form compound, but not HC1 or H 2 S0 4 . (Troost and Hautefeuille, A. ch. (5) 7. 463.) Silicophosphoric acid, Si0 2 , P 2 6 . Slowly decomp. by H 2 0. Unchanged by alcohol. Exists also in two modifications which are not attacked by H 2 0. (Hautefeuille and Margottet, C. R. 99. 789.) Si0 2 , 2P 2 5 + 4H 2 0. Decomp. by moist air. Sol. in H 2 at 0, but decomp. by warming to ordinary temp. (Hautefeuille and Margottet, C. R. 104. 56.) Calcium silicophosphate. Sec Phosphate silicate, calcium. Silicostannic acid. Calcium silicostannate, Ca(Si,Sn)0 3 . Not attacked by acids, KHS0 4 , or alkalies + Aq. (Bourgeois, Bull. Soc. (2) 47. 297.) Silicofe'tungstic acid, H 8 W 10 Si0 36 + 3H 2 = 4H 2 0, Si0 2 , 10W0 3 + 3H 2 0. Sometimes sol. in H 2 0, but usually separates out gelatinous silica. (Marignac, A. ch. (4) 3. 55.) See also Silicoduodeciiungsiic acid. Ammonium silicodecitungstate, (NH 4 ) 8 W 10 Si0 36 + 8H 2 0. Sol. in 4-5 pts. H 2 at 18. Very sol. in hot H 2 0. (Marignac, A. ch. (4) 3. 59'.) (NH 4 ) 6 H 2 W 10 Si0 36 + 9H 2 0. (Marignac. ) Ammonium potassium , (NH 4 ) 3 K 4 HSiW 10 36 + 15H 2 0. (Marignac.) Barium , Ba 4 Si W 10 36 + 22H 2 0. Precipitate. Insol. in H 2 0. (Marignac.) Potassium , K 8 SiW 10 36 + 17H 2 0. Sol. in H 2 0. (Marignac.) K 4 H 4 SiW 10 36 + 8H 2 0. Sol. inH 2 0. (Marig- nac.) Potassium silicotungstate (?), K 8 SiW u 39 + 14H 2 0. K 4 H 4 SiW u 39 + 10H 2 0. (Marignac. ) Silver silieodecftungstate, Ag^^SiO^ + 3H 2 O. Not appreciably sol. in cold H 2 0. (Marig- nac, A. ch. (4) 3. 65.) Silicotungstic acid or Bi\icoduodeci- tungstic acid, H 8 SiW 12 42 . + 29H 2 0. Efflorescent. Sol. in H 2 0. Sat urated solution at 18 contains 1 pt. crystallised acid to 0'104 pt. H 2 0, and has 2 '843 sp. gr. Melts in crystal H 2 0. Easily sol. in absolute alcohol and anhydrous ether. + 22H 2 0. Solubility as above. 100 pts. deliquesce with 13 pts. ether. To this mixture 20-25 pts. of ether can be added, but a further quantity no longer mixes with, but floats above the mixture. Ethereal solu- tion is miscible with H 2 0. Ether is taken up by a saturated aqueous solution with evolu- tion of heat, until the volume has become doubled ; more ether floats on the mixture. By warming the latter a liquid separates out which forms a layer between the two original layers. Alcoholic solution of the acid mixes with an equal vol. of ether, but on adding more ether a, cone, ethereal solution separates as a syrupy layer. (Marignac, A. ch. (4) 3. 10.) See also Tungstosilicic acid. Aluminum silicotungstate, Al 4 H 10 (SiW 12 42 ) 3 + 87H 2 0. Very sol. in H 2 0. (Marignac.) Aluminum ammonium , Al 4 (NH 4 ) 18 (Si W 12 43 ) 3 + 75H 2 0. Sol. in H 2 0. (Marignac.) Ammonium , (NH 4 ) 8 SiW 12 42 +16H 2 0. Very sol. in hot H 2 0. (Marignac, A. ch. (4) 3. 17.) (NH 4 ) 4 H 4 SiW 12 42 + 6H 2 0. Less soluble in H 2 than the preceding salt. (Marignac.) Barium , Ba 2 H 4 SiW 12 42 + 14H 2 0. Sol. in H 2 0. + 22H 2 0. Gradually efflorescent. (Marig- nac. ) Barium sodium , Na 4 Ba 3 SiW 12 42 + 28H 2 0. H 2 gradually dissolves out sodium silico- tungstate. Caesium , Cs 8 SiW 12 42 . 100 pts. H 2 dissolve only 0'005 pt. at 20 ; 0-52 pt. at 100. Completely insol. in alcohol, and HCl + Aq. Somewhat sol. in dil. NH 4 OH + Aq. (Godef- froy, B. 9. 1363.) Calcium , Ca2H 4 SiW 12 42 + 22H 2 0. Very sol in H 2 0. (Marignac.) Magnesium , Mg 2 H 4 SiW 12 42 +16H 2 0. Stable on the air. (Marignac. ) Mercurous , Hg 8 SiW 12 42 . Insol. in H 2 0. Scarcely sol. in dil. HNO,+ Aq. (Marignac, A. ch. (4) 3. 43.) Potassium , K 8 SiW 12 42 + 14H 2 0. Sol. in 10 pts. H 2 at 18, and less than 3 pts. at 100. (Marignac.) 370 SILICOTUNGSTATE, RUBIDIUM K 4 H 4 SiW 12 42 + 16H 2 0. at 20. Sol. in 3 pts. H 2 O Decomp. by dis- dis- K6H 10 (SiW 12 42 solving in H 2 0. (Marignac.) Rubidium , Rb 8 SiW 12 42 . Sol. in 145-150 pts. H 2 at 20 and in 19-20 pts. at 100. Insol. in alcohol ; difficultly sol. in acidified, but extremely easily in ammoniacal H 2 0. (Godeffroy, B. 9. 1363.) Silver , Ag 4 H 4 SiW 12 42 + 7H 2 0. Very si. sol. in H 2 ; sol. in dil. HN0 3 + Aq. (Marignac. ) Sodium , Na 8 SiW 12 42 + 7H 2 0. The saturated solution at 19 contains 0'21 pt. H 2 to 1 pt. of the salt dried at 100, and has sp. gr. =3 '05. (Marignac.) Na 4 H 4 SiW 12 42 + 11H 2 0. Stable on air. + 18H 2 0. Efflorescent. (Marignac.) Na 2 H 6 SiW 12 42 + 14H 2 0. Decomp. by solving in H 2 0. (Marignac.) Sodium nitrate, 3Na 4 H 4 SiW 12 42 , 4NaN0 3 + 39H 2 0. Slightly deliquescent. (Marignac.) Silver, Ag. Not attacked by H 2 0. Absolvitely insol. in HC1 or HC 2 H 3 2 + Aq. (Lea, Sill. Am. J. 144. 444.) Easily sol. in HN0 3 + Aq on warming, if not too cone. Only a minute trace is dis- solved in an hour by cold dil. HN0 3 + Aq (1 pt. HN0 3 + Aq of sp. gr. 1 '40 : 10 pts. H 2 0). (Lea. ) Sol. in hot cone. H 2 S0 4 with evolution of S0 2 . SI. sol. in dil. H 2 S0 4 + Aq (1 : 4), but with more dil. H 2 S0 4 + Aq the different forms of Ag be- have differently. (Lea.) Sol. in HI + Aq at ordinary temperature. Sol. in KI + Aq with access of air. Sol. in hot KCN + Aq. (Christomanos, Z. anal. 7. 301.) Slowly decomp. into AgCl by alkali chlorides + Aq ; also by CuCl 2 , etc. + Aq. Somewhat sol. in NH 4 OH + Aq in presence of 0. (Lea, Sill. Am. J. 144. 444.) Sol. in KMn0 4 + dil. H 2 S0 4 + Aq. (Fried- heim, B. 20. 2554.) Sol. in Fe 2 (S0 4 ) 3 + Aq, especially on heating, but completely insol. in FeS0 4 + Aq. (Vogel.) Allotropic forms (a). Very sol. in H 2 0. Solution is pptd. by saline solutions or almost any neutral substance. Alkali sulphates, nitrates, and citrates ppt. it in a sol. form, while MgS0 4 , CuS0 4 , FeS0 4 , NiS0 4 , K 2 Cr 2 7 , K 4 Fe(CN) 6 , Ba(N0 3 ) 2 , and even AgN0 3 + Aq ppt. it in an insol. form, which, however, may be made sol. again by treatment with many substances, as Na 2 B 4 7 , K 2 S0 4 , orN^SO^Aq. NaN0 2 + Aq ppts. the Ag from its solution in a perfectly insol. form. (/3). The ppt. from aqueous solution by salts is sol. in NH 4 OH + Aq. (Lea, Sill. Am. J. 137. 476.) Many other allotropic forms exist. (Lea.) Pure colloidal silver is also sol. in alcohol. Schneider, B. 25. 1164.) Silver antimonide, Ag 2 Sb or Ag 4 Sb. Min. Discrasite. Sol. in HN0 3 + Aq. Ag 3 Sb. Insol. in HCl + Aq ; decomp. by HN0 3 + Aq. (Christofle.) Silver azoimide, AgN 3 . Insol. in hot or cold H 2 or dil. acids ; sol. in cone, mineral acids. Sol. in NH 4 OH + Aq. (Curtius, B. 23. 3023.) Silver bromide, AgBr. Insol. in H 2 0, or H 2 acidulated with HN0 3 , H 2 S0 4 , or HC 2 H 3 2 between and 33. If flocculent or pulverulent, it is sensibly sol. therein above 33, but if granular only above 50, and then very slightly. (Stas, A.' ch. (5) 3. 289.) Ag can be detected as AgBr in 10,000,000 pts. H 2 0. (Stas.) Calculated from the electrical conductivity of AgBr + Aq, AgBr is sol. in 1,971,658 pts. H 2 at 20-2, and 775,400 pts. at 38. (Holle- man, Z. phys. Ch. 12. 133.) By same method Kohlrausch and Rose cal- culate that 1 1. H 2 dissolves 0'4 mg. AgBr at 18. (Z. phys. Ch. 12. 240.) Boiling H 2 dissolves 0*000003502 of its weight of AgBr. HN0 3 + Aq (1 % HN0 3 ) dis- solves 0-00000543 of its weight of AgBr at 100 with si. decomposition. The solution is pptd. by AgN0 3 + Aq or HBr (or MBr) + Aq, but not completely. 1 pt. of AgBr in solution requires 3 pts. of Br as MBr (or HBr), or of Ag as AgN0 3 in order to be wholly precipitated. (Stas.) Not attacked by boiling HN0 3 + Aq ; si. sol. in cone. HBr or HCl + Aq (Lowig). Boiling cone. H 2 S0 4 decomposes it (Balard), hardly acts on it (Dumas), dissolves a small quantity, which is repptd. by H 2 (Berzelius). Very si. sol. in dil., easily in cone. NH 4 OH + Aq. 100 pts. NH 4 OH + Aq (0'986 sp. gr.) dissolve 0'051 pt. AgBr (dried at 100) at 80, and about double that amount of freshly pptd. AgBr. (Pohl, W. A. B. 41. 267.) 1 g. freshly pptd. AgBr is sol. in 250 ccm. 10 % NH 4 OH + Aq, but insol. in an ammonia- cal solution of AgCl. (Seiner, Pharm. J. Trans. (3)14. 1.) 1 g. AgBr dissolves in 8779 '4 g. 5 % NH 4 OH + Aq (sp. gr. = 0-998) at 12, and in 288 '5 g. 10 % NH 4 OH + Aq (sp. gr.=0'96) at 12 U . (Longi, Gazz. ch. it. 13. 87.) Abundantly sol. in Hg(N0 3 ) 2 + Aq. 100 ccm. H 2 containing 10 ccm. normal Hg(N0 3 ) 2 + Aq dissolve 0'0383 g. AgBr. (Stas.) Sol. in cone. KBr or NaBr + Aq (Lowig), but less than Agl in KI + Aq (Field). 100 g. NaCl in cone. NaCl + Aq dissolve 474 mg. AgBr at 15 ; 100 g. NaCl in 21 % NaCl + Aq dissolve 188 mg. AgBr at 15 ; 100 g. KBr in cone. KBr + Aq dissolve 3019 mg. AgBr at 15 ; 95 g. NaCl + 10 g. KBr dissolve only 75 mg. AgBr at 15. (Schierholz, W. A. B. 101, 2b. 4.) Sol. in hot NH 4 Cl + Aq. Very si. sol. in NH 4 carbonate, sulphate, or succinate +Aq, and still less in nitrate. (Wittstein.) Not very easily sol. in Na 2 S 2 3 + Aq when sus- pended in much H 2 0, and is separated out again by KBr + Aq. (Field, C. N. 3. 17.) Difficultly sol. in hot cone. AgN0 3 + Aq. (Risse, A. 111. 39.) SILVER CHLORIDE 371 Sol. in KCN + Aq. SI. sol. in cone. KC1, KBr, NaCl, NaBr, NH 4 C1, or NH 4 Br + Aq ; but insol. when dilute. Traces only dissolve in alkali nitrates + Aq. (Fresenius, Quant. Anal.) In a solution of NaC 2 H 3 2 + Aq, containing 10 ccm. of sat. NaC 2 H 3 2 + Aq at 15 and 20 ccni. normal HC 2 H 3 O 2 + Aq mixed with 970 ccm. H 2 0, about double the amt. of floc- culent AgBr is dissolved in the cold that is dissolved by boiling H 2 from granular AgBr. This solution required 3 pts. of Ag or Br to ppt. the AgBr in solution. Pulverulent or granular AgBr are wholly insol. in dil. or cone, acetates +Aq. (Stas.) Sol. inHg(C 2 H 3 2 ) 2 + Aq. 100 ccm. H 2 containing 10 % of normal Hg(C 2 H 3 2 ) 2 + Aq dissolves 0'0122 g. AgBr at 20. Min. JBromyrite, Bromite. Silver bromide ammonia. Known only in solution in NH 4 OH + Aq, which becomes turbid on addition of H 2 or on evaporation, with pptn. of AgBr. Silver carbide, Ag 4 C. (Gay-Lussac. ) Ag 2 C (?). Sol. in HN0 3 + Aq with residue of C. (Liebig, A. 38. 129.) Ag 2 C 2 . Sol. in HN0 3 + Aq with residue of C. (Regnault, A. 19. 153.) Argentous chloride, Ag 2 Cl. Obtained in a pure state by Guntz (C. R. 112. 861). Dil. HN0 3 + Aq does not attack; but warm cone. HN0 3 + Aq decomp. Easily sol. in KCN + Aq. (Guntz, C. R. 112. 1212.) The following data are for a more or less impure Ag 2 Cl. Boiling cone. HCl+Aq, NaCl+Aq, or NH 4 OH4 Aq dissolve out AgCl, and leave Ag. (Scheele, Wetzlar. Dulk, Wohler.) According to Berthollet, wholly sol. in NH 4 OH+Aq. Sol. for the most part in NH 4 OH+Aq, and the residue is sol. in HN0 3 +Aq (=Ag+AgCl). (v. Bibra, B. 7. 741.) Silver chloride, AgCl. Nearly insol. in H 2 0. When AgCl is left in contact for some hours with pure H 2 at 20-22, and especially at 75, traces go into solution ; more Cl is dissolved than Ag. When 1 pt. Ag is pptd. as AgCl in presence of 1 million pts. H 2 a slight bluish milkiness is observed ; but in order to have a distinct ppt. 4 pts. Ag should be present. Dil. HNO 3 + Aqdoes not increase the solu- bility of AgCl, but AgCl is not absolutely insol. in stronger HN0 3 + Aq. (Mulder.) 1 pt. AgN0 3 , when mixed with HC1 + Aq in presence of 120,000 (Pfaff), 240,000 (Halting), pts. H 2 0, causes an opalescence. 1 pt. Ag gives a slight turbidity with HC1 + Aq in presence of 200,000 pts. H 2 0, a scarcely opalescent cloudiness with 400,000 pts. H 2 0, and the same after the lapse of 15 minutes in presence of 800,000 pts. H 2 0. (Lassaigne.) 1 pt. Ag can be detected as AgCl in 1 million parts H 2 at ordinary temp., but not in 2 million parts. In NaN0 3 + Aq containing 079 pt. NaN0 3 in 200,000 pts. H 2 1 pt. Ag can be detected as AgCl. This dissolves at 75, and is visible again on cooling. If the same liquid contains 1574 pts. NaN0 3 , the AgCl remains in solution after cooling. In 100 ccm. H 2 containing 0787 g. NaN0 3 , 13 drops of NaCl and silver solution, each drop of which contains '05 nig. Ag, cause a preci- pitate at 5, 20 drops at 15-17, 60 drops at 45-55. AgCl is somewhat less sol. in HN0 3 + Aq than in NaN0 3 + Aq when the amount of H 2 remains the same. Therefore, if HC1 is used instead of NaCl, about f less AgCl remains in solution. In 100,000 pts. of H 2 0, which contain HN0 3 and an amount of HC1 corresponding to the amount of Ag salt, 1 '596 pts. AgCl dissolve at 25. The solution is precipitated by either AgN0 3 or HC1. (Mulder, Silber Probirmethode, Leipzig, 1859. 62.) (For further older data, see Storer's Dic- tionary. ) White flaky AgCl is appreciably sol. in hot H 2 0, 1000 ccm. boiling H 2 dissolving about 2 mg. AgCl. Far less sol. in H 2 containing AgN0 3 , being practically insol. in H 2 con- taining O'l g. AgN0 3 in a litre. Solubility is also diminished one-half by addition of HC1. (Cooke, Sill. Am. J. (3) 21. 220.) Solubility in H 2 rapidly diminishes as the temp, falls. (Cooke, I.e.) Not completely insol. in H 2 0. According to Stas (C. R. 73. 998) there are four modifica- tions : (1) gelatinous ; (2) cheesy-flocculent ; (3) pulverulent ; (4) granular, crystalline, or fused. (4) is almost absolutely insol. in H 2 at the ordinary temp. , but the solubility increases with the temp., and is considerable at 100 ; (2), which is formed by the precipitation of a cold dilute Ag solution, has the greatest solubility in pure H 2 0, and it changes its solubility by stand- ing, or if made pulverulent by shaking with H 2 ; (3) is also sol. in H 2 ; the solution of (2) or (3) in pure H 2 0, or H 2 acidified with HN0 3 , is precipitated by AgNO 3 or NaCl + Aq. In order to ppt. 1 pt. AgCl in above solution 3 pts. of Cl as chloride or Ag as nitrate are necessary ; the pptn. is then complete. Solubility of granular variety in boiling H 2 O is proportionately large, and pptn. is brought about by 3 pts. Cl or Ag as above, but the pptn. in this case is not complete. The salts formed simultaneously with the AgCl have no influence on the solubility of the AgCl. Presence of HN0 3 does not increase the solubility of (2), but has that effect on (3) in proportion to the amt. of HN0 3 pre- sent. (Stas, C. R. 73. 998.) Further determinations by Stas are as follows : Between and 30 granular AgCl is insol. in pure H 2 0, or H 2 acidulated with HN0 3 . Between and 30 the flocculent and pul- verulent forms of AgCl dissolve without altera- tion in pure H 2 0, in acidulated H 2 0, in alkali acetates + Aq, and in Hg(C 2 H 3 2 ) 2 -f Aq contain- ing an alkali acetate. Their degree of solubility 372 SILVER CHLORIDE is a function of the state of the chloride, of the temp., and of the nature and quantity of the solvent within these limits of temp. (0-30). These solvents, if they contain either Ag in the state of an Ag salt, or Cl as chloride or HC1 in an amount three times that which they can dissolve as AgCl, exercise no solvent action on any of the modifications of AgCl. And reciprocally sat. AgCl + Aq is pptd. in- stantly by a decinormal solution of AgN0 3 or MCI (or HC1). The AgCl is wholly pptd. when the quantity of the Ag or Cl thus added is equal to three times the quantity of the Ag or Cl dissolved as AgCl. Between 50 and 100, however, decinormal solutions of Ag or chlorides which cause instant ppts. in solutions sat. with any of the modifi- cations of AgCl, do not eliminate all the dis- solved AgCl. At 100, they only ppt. 60 % of the amt. dissolved. (Stas, A. ch. (5) 3. 323.) Calculated from electrical conductivity of AgCl + Aq, AgCl is sol. in 715,800 pts. H 2 at 13-8, and 384, 100 pts. at 26 '5. (Holleman, Z. phys. Ch. 12. 132.) Calculated in the same way, 1 1. H 2 dissolves '76 mg. at 2 ; '97 mg. at 10; 1 '52 mg. at 18 ; 2-24 mg. at 26 ; 3 '03 mg. at 34 ; 4 '05 mg. at 42. (Kohlrausch and Rose, Z. phys. Ch. 12. 242. ) Sol. in cone. HCl + Aq, and also when not very cone. ; thus the solution of 1 pt. AgN0 3 + Aq in 15,000 pts. H 2 is clouded by a little HCl + Aq, but clears up by the addition of more. (Reinsch, J. pr. 13. 133.) 1 pt. AgCl dissolves in 200 pts. cone. HC1 + Aq and in 600 pts. HCl + Aq diluted with 2 pts. H 2 0. (Pierre, J. Pharm. (3) 12. 237.) Somewhat sol. in hot alcohol, to which HC1 has been added, but is precipitated on cooling. (Erdmann, J. pr. 19. 341.) 100 pts. sat. HCl + Aq (sp. gr. 1-165) dis- solve 0-2980 pt. AgCl, or AgCl is sol. in 336 pts. HCl + Aq at ord. temp. ; 100 pts. HCl + Aq (sp. gr. 1-165) at b.-pt. dissolve 0'56 g. AgCl, or AgCl is sol. in 178 pts. HCl + Aq. Solubility of AgCl in dil. HCl + Aq. 100 ccm. HCl + Aq (sp. gr. 1-165), to which the given amt. H 2 has been added, dissolve g. AgCl. ccm. HC1. ccm. H 2 0. g. AgCl. Pts. HC1 which dissolve 1 pt. AgCl. 100 10 0-056 1785 100 20 0-018 5555 100 30 0-0089 11,235 100 50 0-0035 18,571 (Vogel, N. Rep. Pharm. 23. 335.) If HC1 is added to a solution in which TOOOOOO pt. Ag is suspended, the milkiness disappears. Solubility in HCl + Aq increases with the temp., the AgCl separating out on cooling. (Mulder. ) SI. sol. in cone. HBr + Aq. (Lowig.) Insol. in HNOg + Aq. ( Wackenroder. ) Entirely unacted upon by HN0 3 of 1 '43 sp. gr. (Wurtz, Am. J. Sci. (2) 25. 382.) Solubility in dil. HN0 3 + Aq is the same as solubility in H 2 0, i.e. Tmfanns pt. of Ag can- not be detected in H 2 with or without HN0 3 , but Yrfffonnr pt. can be detected in both cases. (Mulder.) 1 pt. Ag in the form of AgCl dissolves at 25 in 83,000 pts. H 2 containing free HN0 3 and 0-33 pt. of HC1. (Mulder, p. 87.) 100,000 pts. cone. HN0 3 + Aq dissolve about 2 pts. AgCl, and solubility is not sensibly affected by lower nitrogen oxides. (Thorpe, Chem. Soc. (2) 10. 453.) Insol. i;i cold cone. H 2 S0 4 , but on boiling is in part decomp. and in part dissolved, and does not separate on cooling. AgCl is not more sol. in dil. H 2 S0 4 + Aq than in dil. HN0 3 + Aq. Unacted upon by cold H 2 S0 3 + Aq, and but slightly decomp. on heating. (Vogel.) Abundantly sol. in H 2 PtCl 4 + Aq without decomp. (Birnbaum, Z. Ch. 1867. 520.) Insol. in cold dil. caustic alkalies + Aq, but decomp. by hot cone, solutions. (Gregory. ) Decomp. by K 2 C0 3 + Aq. SI. sol. in cold K 2 C0 3 + Aq. Easily sol. even in dil. NH 4 OH + Aq. 1 pt. AgCl dissolves in 1288 pts. NH 4 OH + Aq of 0'89 sp. gr. (Wallace and Lament, Chem. Gaz. 1859. 137.) 100 pts. NH 4 OH + Aq of 0'986 sp. gr. dis- solve at 80 1-492 pts. AgCl, dried at 100. (Pohl, W. A. B. 41. 627.) 1 1. NH 4 OH + Aq of 0'949 sp. gr. dissolves 51'6 g. Ag as freshly precipitated AgCl, and 47 '6 g. when diluted with 1 1. H 2 0. 1 1. NH 4 OH + Aq of 0*924 sp. gr. dissolves 58 g. Ag as freshly precipitated AgCl ; 1 1. NH 4 OH + Aq of '899 sp. gr. dissolves 49 '6 g. ; 0-5 1. NH 4 OH + Aq (of '049 sp. gr.) + 0'5 1. saturated NaCl + Aq dissolves 20 '8 g. ; 0'5 1. NH 4 OH + Aq (of '949 sp. gr. ) + '5 1. saturated KCl + Aq dissolves 20 '4 g. ; 0'5 1. NH 4 OH + Aq (of 0-949 sp. gr.) + 0'5 1. saturated NH 4 Cl + Aq dissolves 22 '4 g. Ag as freshly pptd. AgCl. (Millon and Commaille, C. R. 56. 309.) 1 g. AgCl dissolves in 428 '64 g. 5 NH 4 OH + Aq (sp. gr. 0'998) at 12 ; 1 g. Ag( dissolves in 12 76 g. 10 % NH 4 OH + Aq (sp. gr. 0-96) at 18. (Longi, Gazz. ch. it. 13. 87.) 1 g. freshly pptd. AgCl is sol. in 17 ccm. 10 % NH 4 OH + Aq. Solubility is diminished by presence of AgBr. (Senier, Pharm. J. Trans. (3) 14. 1.) Sol. in NaN0 3 , KN0 3 , Ca(N0 3 ) 2 , Mg(N0 3 ) 2 , and NH 4 N0 3 + Aq; si. sol. at ord. temp., but solubility is much increased by heat. Solubility in NaN0 3 + Aq at 15-20. ccm. H 2 O g. NaNOg mg. AgCl dissolved 100 200 300 100 0-787 0-787 2-361 2-787 1-33 1-93 3-99 2-53 SILVER CHLORIDE 373 Solubility increases with ascending temp. Temp. ccm. H 2 NaN0 3 mg. AgCl dissolved 5 100 0787 0-86 15-17 100 0787 1-33 18 100 0-787 1-46 30 100 0-787 2-33 45-55 100 0787 3-99 (Mulder.) At 25 100,000 pts. H 2 containing a little free HN0 3 and 0787 g. NaN0 3 dissolve 2 -128 mg. AgCl. By adding 2 g. more NaN0 3 to above solution 2 '5269 mg. ( more) AgCl are dis- solved. (Mulder.) Hg(N0 3 ) 2 + Aq dissolves considerable quanti- ties of AgCl, but the other nitrates do not. (Mulder.) Much more sol. in hot than in cold Hg(N0 3 ) 2 + Aq, and much more sol. therein than in NH 4 N0 3 + Aq. NaCl ppts. AgCl from this solution ; much less sol. therein in pres- ence of NaC 2 H 3 2 or NH 4 OH + Aq. AgCl is pptd. from above solution by NaC 2 H 3 2 + Aq. (Mulder.) Sol. in Hg(N0 3 ) 2 + Aq (Wackenroder, A. 41. 317) ; in considerable amount (Liebig, A. 81. 128) ; and is precipitated by HC1, NH 4 C1, NaCl, KC 2 H 3 2 (Debray, C. R. 70. 849) ; in- completely precipitated by AgN0 3 and not by HN0 3 (Wackenroder). Imperfectly sol. in AgN0 3 + Aq. (Wacken- roder. ) Cone. AgN0 3 + Aq dissolves AgCl per- ceptibly. Less sol. in AgN0 3 + Aq than AgBr. (Risse, A. 111. 39.) Insol. in moderately dil. Pb(C 2 H 3 2 ) 2 + Aq. Not sol. to appreciable extent in Cu(N0 3 ) 2 , Fe 2 (N0 3 ) 6 , Mn(N0 3 ) 2 , Co(N0 3 ) 2 , Zn(N0 3 ) 2 , or Ni(N0 3 ) 2 + Aq ; insol. or exceedingly si. sol. in Pb(N0 3 ) 2 + Aq. (Mulder.) Insol. in Na 2 S0 4 + Aq. Easily sol. in Na 2 S 2 3 or KCN + Aq. When freshly pptd. very sol. in solutions of soluble thiosulphates, and especially in cone. Na 2 S 2 3 + Aq, which dissolves AgCl almost as readily as H 2 dissolves sugar. |K 2 S 2 3 + Aq, even when very dil., also dissolves AgCl, also SrS 2 3 + Aq. (Herschel, 1819.) Sol. in KAs0 2 + Aq. (Reynoso. ) Easily (Brett), difficultly (Wittstein), sol. in NH 4 Cl + Aq, but not in other NH 4 salts. SI. sol. in cone. KCl + Aq, NaCl + Aq, and certain other chlorides. NaCl, KC1, NH 4 C1, CaCl 2 , ZnCl 2 + Aq, etc., dissolve appreciable quantities of AgCl, especi- ally if hot and concentrated, but it separates out for the most part on cooling. Sol. in solutions of all the metallic chlorides which are sol. in H 2 0, thus NaCl, KC1, CaCl ? , SrCl 2 , and BaCl 2 + Aq all dissolve AgCl, especi- ally if hot. MgCl 2 , NH 4 C1, and HgCl 2 (least) also dissolve AgCl. (Mulder.) Sol. in cone. CaCl 2 + Aq. (Wetzlar.) Sol. in roseocobaltic chloride + Aq. (Gibbs and Genth.) Insol. in SnCl 4 , HgCl 2 , CuCl 2 , ZnCl 2 , CdCL, NiCl 2 , or CoCl 2 + Aq. ( Vogel. ) Solubility of AgCl in sat. solutions of chlorides at ordinary temperatures. Salt 100 pts. sat. solution dissolve pts. AgCl Pts. solution required to dis- solve 1 pt. AgCl BaCl 2 0-0143 6993 SrCL . . . 0-0884 1185 CaCl 2 . . . 0-0930 1075 NaCl . . . 0-0950 1050 KC1. . . . 0-0475 2122 NH 4 C1 . . 0-1575 634 MgCl 2 . . . 0-1710 584 HC1 , . . 0-2980 336 (Vogel, N. Rep. Pharm. 23. 335.) Experiments by Hahn give different results from those of Vogel as follows : Solubility in various salts + Aq. Salt %salt Sat. at t %AgCl KC1. 24-95 19-6 0-0776 NaCl . . . 25-96 fj 0*1053 NH 4 C1 . . . CaCl 2 . . . 28-45 41-26 24-5 0-3397 0-5713 MgC) 2 . . . 36-35 ?? 0-5313 BaCl 2 . . . 27-32 i) 0-0570 Fed, . . . 0-1686 FeCl^; . . . 0-0058 MnCl 2 . . . 24-5 0-1996 ZnCl 2 . . . 0-0134 CuCL, . . . 24-5 0-0532 PbClo . . . o-oooo (Hahn, Wyandotte Silver Smelting Works, 1877.) Solubility of AgCl in alkali chlorides + Aq. At 15, 100 g. NaCl in 280 ccm. H 2 dissolve 485 mg. AgCl ; 100 g. KC1 in 300 ccm. H 2 O dis- solve 334 mg. ; 100 g. NH 4 C1 in 280 ccm. H 2 dissolve 1051 mg. The solubility decreases with dilution rapidly at first until about an equal vol. of H 2 has been added, and then much more slowly to a minimum quantity, when the dilution is 1 : 10 for NaCl and KC1, and 1 : 20 for NH 4 C1. 100 g. NaCl in 280 ccm. H 2 dissolve 2170 mg. AgCl at 109 ; 100 g. NH 4 C1 in 280 ccm. H 2 dissolve 4000 mg. AgCl at 110 ; 100 g. NaCl in 620 ccm. H 2 (14 % solution) dissolve 15 mg. AgCl at 15, and 774 mg. at 104. (Schierholz, W. A. B. 101, 2b. 4.) 10 ccm. normal Hg(C 2 H 3 2 ) 2 + Aq containing 0-1 g. Hg dissolve 0*01892 g. AgCl at 15. (Stas.) 100 ccm. of a solution of a mixture of Na and Hg acetates dissolve '00175 g. AgCl. (Stas, A. ch. (5) 3. 145.) Perceptibly sol. on warming with solution of tartaric acid, but nearly the whole is deposited on cooling. 374 SILVER CHLORIDE AMMONIA As sol. in coniine + Aq as in NH 4 OH + Aq. (Blyth, Chem. Soc. 1. 350.) Sol. in methylamine + Aq. (Wurtz, A. ch. (3) 30. 453.) Sol. in amylamine + Aq, but less than in NH 4 OH + Aq. Sol. in caprylamine + Aq. Sol. in sinamine, and thiosinamine + Aq. Min. Cerargyrite. Silver chloride ammonia, AgCl, 3NH 3 . More easily decomp. than 2AgCl, 3NH 3 . AgCl, 2NH 3 . Decomp. by H 2 0. (Terreil, A. Phys. Beibl. 7. 149.) 2AgCl, 3NH 3 . Decomp. on air and in H 2 to AgCl. Sol. in cone. NH 4 OH + Aq, from which it can be crystallised. (Rose.) Insol. in alcohol. (Bodlander, Z. phys. Ch. 9. 730.) Silver chlorobromoiodides. (Rodwell, Proc. Roy. Soc. 25. 292.) Silver m&fluoride (Argentous fluoride), Ag 2 F. Decomp. by H 2 into Ag and AgF. (Guntz, C. R. 110. 1337.) Silver fluoride, AgF. Extremely deliquescent. (Gore.) Sol. in 0'55 pt. H 2 at 15*5 with evolution of heat. Sp. gr. of sat. solution at 15'5 = 2'61. (Gore.) + H 2 0. (Marignac.) + 2H 2 0. Extremely deliquescent. (Pfaund- ler, J. B. 1862. 86.) Silver hydrogen fluoride. Deliquescent, and very sol. in H 2 0. (Gore.) Silver stannic fluoride. See Fluostannate, silver. Silver tungstyl fluoride. See Fluoxytungstate, silver. Silver, fulminating. See Silver nitride. Argentous hydroxide, Ag 4 2 H 2 . Sol. in H 2 0. Known only in solution. (Weltzien, A. 142. 105.) Silver hydroxide, AgOH. Decomp. into Ag 2 and H 2 above - 40. Argentous iodide, Ag 2 I. (Guntz, C. R. 112. 861.) Silver iodide, Agl. Insol. in H 2 0. Calculated from electrical conductivity of Agl + Aq, Agl is sol. in 1,074,040 pts. H 2 at 28-4, and 420,260 pts. at 40. (Holleman, Z. phys. Ch. 12. 130.) 1 1. H 2 dissolves O'l mg. Agl at 18. (Kohlrausch and Rose, Z. phys. Ch. 12. 241.) Insol. in dil. HN0 3 + Aq or H 3 P0 4 + Aq. Decomp. by hot. cone. HN0 3 + Aq or H 2 S0 4 . Easily sol. in cone. HI + Aq. 1 pt. Agl dissolves in 2510 pts. NH 4 OH + Aq of 0'96 sp. gr. (Martini, Schw. J. 56. 154) ; in 2493 pts. of 0-89 sp. gr. (Wallace and Lamont, Ch. Gaz. 1859. 137). 1 g. Agl dissolves in 26,300 g. 10 % NH 4 OH + Aq (sp. gr. = 0'96) at 12. Insol. in 5 % NH 4 OH + Aq. (Longi, Gazz. ch. it. 13. 87.) Sol. in cone. KI + Aq, from which it is pre- cipitated by H 2 0. (Field, C. N. 3. 17.) According to Field, insol. in cold cone. KC1 or NaCl + Aq, and only in traces on boiling, and separates out on cooling. 100 g. NaCl in cone. NaCl + Aq dissolve 0'95 mg. Agl at 15 ; 100 g. NH 4 C1 in cone. NH 4 C1 + Aq dissolve 2'9 mg. Agl at 15 ; 95 g. NaCl + 10 g. KBr in cone, solution dissolve 1*2 mg. Agl at 15 ; 100 g. KBr + 225 g. H 2 dis- solve 430 mg. Agl at 15 ; 100 g. KBr in cone. KBr + Aq dissolve 525 mg. Agl at 15 ; 100 g. KI + 69 g. H 2 dissolve 89 -8 g. Agl at 15; 100 g. KI + 92 g. H 2 dissolve 54 '0 g. Agl at 15; 100 g. KI + 366 g. H 2 dissolve 7'25 g. Agl at 15. (Schierholz, W. A. B. 101, 2b. 4.J SI. sol. in Na 2 S 2 3 + Aq when suspended in much H 2 0, but separates again on addition of KI + Aq. (Field.) 100 pts. of AgN0 3 + Aq sat. at 11 dissolve 2'3 pts. Agl in the cold, and 12 '3 pts. on boil- ing. (Schnauss. ) Sol. in hot Hg(N0 3 ) 2 + Aq, from which it crystallises on cooling. Sol. inKCN + Aq. Traces are dissolved by alkali nitrates + Aq. Easily sol. in hot KOH + Aq, from which it is pptd. by H 2 or alcohol. Not decomp. by boiling KOH + Aq. (Vogel, N. Rep. Pharm. 20. 129.) KI gives a ppt. with AgN0 3 in presence of 30,000 pts. H 2 0. (Halting.) Min. lodyrite. Silver hydrogen iodide, 3AgI, HI + 7H 2 0. (Berthelot, C. R. 91. 1024.) Silver iodide ammonia, Agl, 2NH 3 . (Terreil, C. R. 98. 1279.) 2AgI, NH 3 . (Rammelsberg, Pogg. 48. 170.) Composition is Agl, NH 3 . (Longi, Gazz. ch. it. 13. 86.) Silver nitride, Ag 3 N. Berthollet's "knallsilber." Very explosive. Insol. in H 2 0. Sol. in KCN + Aq. Slowly sol. in NH 4 OH + Aq. (Raschig, A. 233. 93.) Argentous oxide, Ag 4 0. Insol. in H 2 0. Decomp. by acids into argentic oxide and silver. Insol. in NH 4 OH + Aq or HC 2 H 3 2 . (v. der Pfordten, B. 20. 1458.) Contains H, and is a hydroxide Ag 4 ,H0. (v. der Pfordten, B. 21. 2288.) The above siibstance is a mixture, according to Friedheim (B. 20. 2557.) Silver oxide, Ag 2 0. Somewhat sol. in H 2 0. (Bucholz.) Sol. in 3000 pts. HoO (Bineau, C. R. 41. 509) ; sol. in 96 pts. H 2 O (Abl). Sol. in acids, NH 4 OH, and (NH 4 ) 2 C0 3 + Aq. Decomp. by alkali chlorides, bromides, and iodides + Aq. Sol. in alkali cyanides, and SODIUM BROMIDE 375 thiosulphates + Aq. SI. sol. in nitrates + Aq ; insol. in sulphates + Aq. When freshly pptd., sol. inNH 4 SCN + Aq. SI. sol. inNH 4 N0 3 + Aq. Abundantly sol. in Ba(N0 3 ) 2 + Aq without pptn. of Ba0 2 H 2 . Sol. in boiling Mn(N0 3 ) 2 , Ni(N0 3 ) 2 , Co(N0 3 ) 2 , Cu(N0 3 ) 2 , and Ce 2 (N0 3 ) 6 + Aq with pptn. of oxides. (Persoz.) Insol. in KOH, and NaOH + Aq. SI. sol. in Ba0 2 H 2 + Aq. (Berzelius ( ?). ) SI. sol. in amylamine + Aq, easily in methylamine + Aq (Wurtz, A. ch. 30. 453); also in ethylamine, and thiosinamine + Aq. Silver peroxide, Ag 2 2 . Sol. in cone. H 2 S0 4 (Rose), and in pure HN0 3 + Aq without decomp. Sol. in NH 4 OH + Aq. (Schbnbein, J. pr. 41. 321.) Silver oxide ammonia. See Silver nitride. Silver oxyfluoride, AgF, AgOH. Decomp. by H 2 with separation of Ag 2 0. (Pfaundler.) Silver phosphide, Ag 4 P 6 . Insol. in HC1 + Aq ; easily sol. in HN0 3 + Aq. (Schrotter, J. B. 1849. 247.) Ag 3 P (?). (Fresenius and Neubauer, Z. anal. 1. 340.) Silver phosphoselenide, Ag 2 Se, P 2 Se. Insol. in H 2 or HCl + Aq. Sol. in HN0 3 + Aq. Insol. in cold, decomp. by hot alkalies + Aq. (Hahn, J. pr. 93. 436.) 2Ag2Se, P 2 Se 3 . Insol. in H 2 0, HC1, or HN0 3 + Aq ; slowly sol. in red fuming HN0 3 . (Hahn, J. pr. 93. 440.) 2Ag 2 Se, P 2 Se 5 . Sol. only in fuming HN0 3 . (Hahn.) Silver phosphosulphide, 2Ag 2 S, P 2 S. Ag 2 S, P 2 S. (Berzelius, A. 46. 254.) 2Ag 2 S, P 2 S 3 . Easily sol. in HN0 3 + Aq without separation of P. (Berzelius.) Ag 4 P 2 S 7 . (Berzelius.) Silver selenide, Ag 2 Se. Sol. in boiling HN0 3 + Aq as Ag 2 Se0 3 , which separates out by dilution with H 2 0. (Ber- zelius. ) Insol. in Hg 2 (N0 3 ) 2 + Aq. (Wackenroder, A. 41. 327.) Min. Naumannite. Insol. in dil., but sol. in cone. HN0 3 + Aq. Argentous sulphide, Ag 4 S. Easily sol. in warm dil. HN0 3 + Aq, and in cone. H 2 S0 4 without separation of S. Sol. in cone. KCN + Aq. (v. der Pfordten, B. 20. 1458; Guntz, C. R. 112. 861.) Silver sulphide, Ag 2 S. Insol. in H 2 0. Sol. in cone. HN0 3 + Aq with separation of S. Sol. in hot cone. HC1 + Aq. Not decomp. by CuCl 2 + Aq, but by CuCl 2 + NaCl + Aq. Insol. in NH 4 OH + Aq. Insol. in H 2 S0 3 + Aq, or in Hg(N0 3 ) 2 + Aq. Insol. in H 2 0, dil. acids, alkalies, and alkali sulphides + Aq. (Fresenius.) Sol. in KCN + Aq. (Hahn, C. C. 1870, 240.) Difficultly sol. in KCN + Aq ; less difficultly if Ag 2 S is pptd. from a very dil. solution. Amt. of KCN present also has influence on the solubility. Ag 2 S dissolved in cone. KCN + Aq separates out on dilution. (Bechamp. J. pr. 60. 64.) Insol. in NH 4 C1 or NH 4 N0 3 + Aq. (Brett.) Min. Argentite. Acanthite. Sol. in cone. HN0 3 + Aq with separation of S. Sol. in citric acid + Aq with addition of KN0 3 . (Bolton, C. N. 37. 48.) Silver zinc sulphide, Ag 2 S, 3ZnS. (Schneider, J. pr. (2) 8. 29.) Silver telluride, Ag 2 Te. Min. Hessite. Sol. in warm HN0 3 + Aq. Sodium, Na 2 . Violently decomposes H 2 0, alcohol, etc. Insol. in hydrocarbons. Easily sol. in acids with violent action. Sol. in liquid NH 3 . Sodium amide, NaNH 2 . Decomp. by H 2 and alcohol. Sodium amidochloride, Na 2 NH 2 Cl. Sol. in H 2 with decomp. (Joannis, C. R. 112. 392.) Sodium azoimide, NaN 3 . Not hygroscopic. Sol. in H 2 0. Insol. in alcohol and ether. (Curtius, B. 24. 3344.) Sodium bromide, NaBr, and + 2H 2 0. Not deliquescent. Solubility in H 2 differs according as NaBr or NaBr + 2H 2 is used. The following data for anhydrous NaBr were found. Pts. NaBr dissolved by 100 pts. H 2 at t. t w t s t w % PH A m OH 44-1 115-6 74-5 118-4 97-2 119-9 51-5 116-2 80-5 118-6 100-3 120-6 55-1 116-8 86-0 118-8 110-6 1227 60-3 64'5 117-0 117-3 90-5 1197 114-3 124-0 Solubility is represented by a straight line of the formula S = 110'34 + 0-1075t. Below 50 the salt usually crystallises with 2H 2 0, of which the solubility in 100 pts. H 2 was found to be as follows : t Pts. NaBr t Pts. NaBr t Pts. NaBr -21 -20 -15 -10 - 5 o 71-1 71-4 73-1 75-1 77-1 79-5 + 5 + 10 + 15 + 20 + 25 82-0 84-5 87-3 90-3 93-8 30 35 40 45 50 97-3 101-3 105-8 110-6 116-0 (Coppet, A. ch. (5) 30. 420.) If solubility S = pts. NaBr in 100 pts. solu- tion, S = 40'0 + 0-1746t from -20 to +40: 376 SODIUM STANNIC BROMIDE S = 52 -3 + 0-01251 from 50 to 150. (Etard, C. R. 98. 1432.) 100 pts. H 2 dissolve : at 0, 77 '5 pts. NaBr ; at 20, 88-4 pts.; at 40, 104 '2 pts.; at 60, 111-1 pts.; at 80, 112 '4 pts. ; at 100, 114 '9 pts. (Kremers.) Sat. solution boils at 121. (Kremers, Pogg. 97. 14.) Sp. gr. of NaBr + Aq at 19 '5 containing : 5 10 15 20 25 %NaBr, 1-040 1-080 1-125 1-174 1'226 30 35 40 45 50 % NaBr. 1-281 1-344 1-410 1-483 1'565 (Gerlach, Z. anal. 8. 285.) 100 pts. NaBr + Aq sat. at 18-19 contain 46-05 pts. NaBr; 100 pts. NaBr + NaCl + Aq sat. at 18-19 contain 46 '59 pts. of the two salts ; 100 pts. NaBr + NaI + Aq sat. at 18-19 contain 63-15 pts. of the two salts ; 100 pts. NaBr + NaCl + Nal + Aq sat. at 18-19 contain 63 '20 pts. of the three salts, (v. Hauer, J. pr. 98. 137.) Very si. sol. in alcohol. NaBr + 2H 2 is sol. in I'lO pts. H 2 at 15 ; in 159 pts. absolute alcohol at 15 ; in 1200 pts. absolute ether at 15. (Eder, Dingl. 221. 89.) NaBr + 2H 2 is sol. in 2 '25 pts. 60 % alcohol, and 7 pts. 90 % alcohol. NaBr is sol. in 3 pts. 60 % alcohol, and 10 pts. 90 % alcohol. (Eager.) 100 pts. absolute methyl alcohol dissolve 17-35 pts. at 19-5. (de Bruyn, Z. phys. Ch. 10. 783.) SI. sol. in acetone. (Krug and M'Elroy, J. Anal. Ch. 6. 184.) Sodium stannic bromide. See Bromostannate, sodium. Sodium carbonyl, Na 2 C 2 2 . Decomp. by H 2 with explosion. (Joannis, C. R. 116. 1518.) Sodium chloride, NaCl. Sol. in H 2 0. If NaCl is dissolved in 15 pts. H 2 0, heat is absorbed if the temp, is 15, but much less if temp, is 86 ; at 100 there is neither absorption nor evolution of heat. (Berthelot, C. R. 78. 1722.) 36 pts. NaCl mixed with 100 pts. H 2 at 12-6 lower the temp. 2 '5. (Riidorff, B. 2. 68.) 33 pts. NaCl with 100 pts. snow at - 1 give a temp, of - 21 '3. (Riidorff, Pogg. 122. 337.) 100 pts. H 2 O at t dissolve pts. NaCl. t Pts. NaCl Authority. 13-89 16-90 59-93 109-73 More than at 13-89 35-81 35-88 37-14 40'38 Gay-Lussac, A. ch. (2) 11. 310. 12 100 35-91 39-92 Fehling, A. 77. 382. 18-75 37-741 Bischof. 100 pts. H 2 O at t, etc. Continued. t Pts. NaCl Authority. 10-15 35-42 Bergmann. 106+ 42-86 Griffiths, 1825. 20 35-9 Schiff, A. 109. 326. All temps. 25 37 Fuchs and Reichenbach, 1826. 35-7 Kopp, A. 34. 262. 1875 36-53 C. J. B. Karsten, 1840. 1 18-75 100 36-121 36-724 41-076 G. Karsten. 1-25 Boiling 36-119 39-324 linger, J. pr. 8. 285. 18-75 100 35-40 36-95 Karsten (?), cited by Unger, I.e. 15-56 100 34-2-35-42 36-16 Ure's Diet. 15 35-837 Michel and Krafft. 1 pt. NaCl is sol. in 2'789 pts. HoO at 15 (Gerlach) ; in 3 pts. H 2 O at 18'75 (Abl) ; in 2-8235 pts. H 2 O at ord. temp. (Bergmann) ; in 2 '7647 pts. boiling H 2 O (Berg- mann); in 2-857 pts. hot or cold H 2 O (Fourcroy). Not deposited from boiling aqueous solution unless the vessel containing it is open to the air. (Unger, I.e.) Solubility in 100 pts. H 2 O at t. t Pts. NaCl 1 * ~^~ 108-5 Pts. NaCl 38-1 39-4 1-5 13-75 33-6 35-8 (Nordenskjold, Pogg. 136. 315.) Solubility in 100 pts. H 2 O at t. t Pts. NaCl t 59-93 109-73 Pts. NaCl 13-89 16-90 35-8 35-9 37-1 40-4 (Gay-Lussac, A. ch. 11. 296.) Solubility of NaCl in H 2 O at various pressures. The figures represent pts. NaCl in 100 pts. sat. NaCl+Aq at t and A pressure in atmospheres. A 9 12 15 20 25 30 1 26-25 26-32 26-35 26-30 26-35 26-37 26-47 20 26-35 26-38 26-39 26-37 26-47 26-53 40 26-44 26-40 (Miiller, Pogg. 117. 386.) 100 pts. H 2 dissolve at t. t Pts. NaCl t Pts. NaCl -15 3273 40 36-64 -10 33-49 50 36-98 - 5 34-22 60 37-25 35-52 70 37-88 5 35-63 80 38-22 9 3574 90 38-87 14 35-87 100 39-61 25 36-13 1097 40-35 (Poggiale, A. ch. (3) 8. 649.) SODIUM CHLORIDE 377 100 pts. H 2 dissolve at : 9 12 15 35-59 3572 3577 35 '68 pts. Nad, 20 25 30 35-77 35-81 36 '00 pts. NaCl. (Miiller, Pogg. 122. 337.) 100 pts. H 2 dissolve 35 76-36 '26 pts. NaCl at 15 '6, and the sp. gr. of sat. solution =1*204. (Page and Keightley, Chem. Soc. (2) 10. 566.) 100 pts. NaCl + Aq sat. at 18-19 contain 26-47 pts. NaCl. (v. Hauer, J. pr. 98. 137.) Solubility of NaCl in 100 pts. H 2 at t. t Pts. NaCl f Pts. NaCl V Pts. NaCl 357 37 36-5 74 38-1 1 35-7 38 36-5 75 38-2 2 35-7 39 36-6 76 38-2 3 357 40 36-6 77 38-2 4 357 41 36-6 78 38-2 5 35-7 42 36-7 79 38-3 6 357 43 36-7 80 38-4 7 35-7 44 36-8 81 38-4 8 35-7 45 36-8 82 38-5 9 357 46 36-8 83 38-6 10 35-8 47 36-9 84 38-6 11 35-8 48 36-9 85 38-7 12 35-8 49 36-9 86 38-7 13 35-8 50 37-0 87 38-8 14 35-8 51 37-0 88 38-9 15 35-9 52 37-0 89 39-0 16 35-9 53 37-1 90 39-1 17 35-9 54 37-1 91 39-1 18 35-9 55 37-1 92 39-2 19 36-0 56 37-2 93 39-3 20 36-0 57 37-2 94 39-3 21 36-0 58 37-2 95 39-4 22 36-0 59 37-3 96 39-4 23 36-1 60 37-3 97 39-5 24 36-1 61 37-3 98 39-6 25 36-1 62 37-4 99 397 26 36-1 63 37-4 100 39-8 27 36-2 64 37'5 101 39-8 28 36-2 65 37-5 102 39-9 29 36-2 66 37-6 103 40-0 30 36-3 67 377 104 40-0 31 36-3 68 377 105 40-1 32 36-3 69 37-8 106 40-1 33 36-4 70 37-9 107 40-2 34 36-4 71 37-9 108 40-3 35 36-4 72 38-0 109 40-3 36 36-5 73 38-0 109-7 40-4 (Calculated by Mulder from his own and other observations, Scheik. Verhandel. 1864. 37.) Solubility in 100 pts. H 2 at : 0-4 20 40 60 80 35-630 35-825 36 '32 37 '06 38 '00 (Andreae, J. pr. (2) 29. 456.) Solubility in 100 pts. H 2 from most careful experiments. 20 60 80 35-571 35-853 37 '091 38 '046 (Raupenstrauch, M. Ch. 6. 563.) Solubility of NaCl in 100 pts. H 2 at t t Pts. NaCl 1 t Pts. NaCl -14-0 32-5 44-75 36-64 -13-8 32-15 52-5 37-04 - 6-25 34-22 55-0 36-99 - 5-95 34-15 59-75 37-31 35-7 71-3 37-96 3-6 3579 74-45 37-96 5-3 35-8 82-05 38-41 14-45 35-94 867 38-47 20-85 35-63 93-65 38-90 25-45 35-90 101-7 4076 38-55 36-52 ... Solubility above 20 is represented by the formula S = 34'359 + 0'0527t. (Coppet, A. ch. (5) 30. 426.) Solubility of NaCl in 100 pts. H 2 at high temp. f Pts. NaCl t Pts. NaCl 118 39-8 160 43'6 140 42-1 180 44-9 (Tilden and Shenstone, Phil. Trans. 1884. 23.) Sp. gr. of NaCl+Aq containing 15 % NaCl is 1-109 at 15 (Francoeur) ; 1-116 at 15 (Soubeiran) ; 1-1107 at 15 (Coulier) ; 1-111 at 15 (Baudin, C. R. 68. 932). Sp. gr. of NaCl+Aq saturated at 15" is 1-20715 (Michel and Krafft); at 17'5 is 1-2046 (Karsten) ; at 8 is 1-205 (Anthoii). Sp. gr. of NaCl+Aq. %NaCl Sp. gr. %NaCl Sp. gr. | % NaCl Sp. gr. 5 10 1-037 1-074 15 20 1-112 1-154 25 26-43 1-192 1-204 (Dahlmann, J. B. 7. 323.) ). gr. of NaCl + Aq at 20. %NaCl Sp. gr. %NaCl Sp. gr. 1 1-0066 15 1-1090 2 1-0133 16 1-1168 3 1-0201 17 1-1247 4 1-0270 18 1-1327 5 1-0340 19 1-1408 6 1-0411 20 1-1490 7 1-0483 21 1-1572 8 1-0556 22 1-1655 9 1-0630 23 1-1738 10 1-0705 24 1-1822 11 1-0781 25 1-1906 12 1-0857 26 1-1990 13 1-0934 27 1-2075 14 1-1012 ... (Schiff, A. 110. 76.) Sp. gr. of NaCl + Aq at 19 "5. %NaCl Sp. gr. %NaCl Sp. gr. 6-402 12-265 17-533 1-0460 1-0895 1-1303 22-631 26-530 1-1712 1-2036 (Kremers, Pogg. 95. 120.) 378 SODIUM CHLORIDE Sp. gr. of NaCl + Aq at 15. %NaCl Sp. gr. %NaCl Sp. gr. 1 1-00725 15 1-11146 2 1-01450 16 1-11938 3 1-02174 17 1-12730 4 1-02899 18 1-13523 5 1-03624 19 1-14315 6 1-04366 20 1-15107 7 1-05108 21 1-15931 8 1-05851 22 1-16755 9 1-06593 23 1-17580 10 1-07335 24 1-18404 11 1-08097 25 1-19228 12 1-08859 26 1-20098 13 1-09622 26-395 1 -20433 14 1-10384 ... (Gerlach, Z. anal. 8. 279.) Sp. gr. of NaCl + Aq at 18. %NaCl Sp. gr. %NaCl Sp. gr. 5 1-0345 25 1-1898 10 1-0707 26 1-1982 15 1-1087 26-4 1-2014 20 1-1477 ... (Kohlrausch, W. Ann. 1879. 1.) Sp. gr. of NaCl + Aq at 20, containing n mols. H 2 to 1 mol. NaCl. n Sp. gr. n Sp. gr. 12-5 1-15292 100 1-02069 25 1-08207 200 1-00965 50 1-04227 ... (Marignac, J. B. 1870. 110.) Sp. gr. of NaCl + Aq at 0. NaCl = g. NaCl to 100 g. H 2 ; d = sp. gr. at ; d T = maxim umsp. gr. ; T^temp. of maximum. g. NaCl do dT T 1-00000 1-000130 + 4 0-5 1-003925 1-003988 + 3 1 1-007634 1-007666 + 1-77 2 1-015366 1-015367 - 0-58 3 1 -023530 1-923583 - 3-24 4 1-030669 1-030890 - 5-63 6 1-045975 1-046952 -11-07 (Rosetti, A. ch. (4) 17. 382.) Sp. gr. of NaCl + Aq at 20. x = mols. NaCl to 100 mols. H 2 0. X Sp. gr. X Sp. gr. 0-5 1-01145 4-0 1-08408 i-o 1-02255 5-0 1-10276 2-0 1-04393 ... Sp. gr. of NaCl-f Aq at 0. S = weight of salt in 100 g. of solution of the given sp. gr. ; Si = No. mols. of salt contained in 100 mols. of the solution. s Si Sp. gr. 23-0821 8-627 1-1821 19-1932 6769 1-1502 14-3415 4-898 1-1111 9-4120 3-097 1-0722 5-1536 1-644 1-0394 (Charpy, A. ch. (6) 29. 23.) The saturated solution boils at 109. (Kremers.) NaCl + Aq containing 42 '9 pts. NaCl to 100 pts. H 2 boils at 106 '8 (Griffiths) ; containing 41-2 pts. NaCl to 100 pts. H 2 boils at 108 "2 (Legrand) ; containing 40 '38 pts. NaCl to 100 pts. H 2 boils at 109 73 (Gay-Lussac) ; con- taining 38-7 pts. NaCl to 100 pts. H 2 forms a crust at 108 '3 ; highest point observed, 108 "8 (Gerlach, Z. anal. 26. 426). Boiling-point of NaCl + Aq. (Nicol, Phil. Mag. (5) 16. 122.) / NaCl B.-pt. according to Bischof G. Karsten 5 101-50 101-10 10 103-03 102-38 15 104-63 103-83 20 106-26 105-46 25 107-93 107-27 29-4 107-9-108-99 ... / TCnTI B.-pt. according to Legrand Gerlach 5 100-80 100-9 10 10175 101-9 15 103-00 103-3 20 104-60 105-3 25 106-60 107-6 B.-pt. of NaCl + Aq containing pts. NaCl to 100 pts. H 2 0. G = according to Gerlach (Z. anal. 26. 438) ; L = according to Le- grand (A. ch. (2) 59. 431). B.-pt. G L B.-pt. G L 100-5 3-4 4-4 105-5 27-5 29-8 101 6-6 77 106 29-5 31-8 101-5 9-6 10-8 106-5 31-5 33-9 102 12-4 13-4 107 33-5 35-8 102-5 14-9 15-9 107-5 35-5 37-7 103 17-2 18-3 108 37-5 39-7 103-5 19-4 20-7 108-4 41-2 104 21-5 23-1 108-5 39-5 104-5 23-5 25-5 108-8 40-7 105 25-5 277 The freezing-point of NaCl + Aq is lowered 0'60 for every gramme NaCl up to 10 g. When more cone, the freezing-point sinks pro- SODIUM CHLORIDE 379 portional to NaCl, 2H 2 0, 0'342 for every gramme of that salt. (Riidorff, Pogg. 113. 163.) Insol. in cone. HCl + Aq. Solubility of NaCl in HC1 + Aq at 0. NaCl = mols. NaCl (in milligrammes) dissolved in 10 com. of liquid ; HCl = mols. HC1 (in milligrammes) dissolved in 10 com. of liquid. NaCl HC1 Sum of mols. Sp. gr. 53-5 1 54-5 1 -2045 52-2 1-85 54-05 1-2025 48-5 5-1 53-6 1-196 44-0 9-275 53-275 1-185 37-95 15-05 53-00 1-1725 23-5 3075 54-95 1-141 6-1 56-35 62-45 1-1195 (Engel, Bull. Soc. (2) 45. 654.) Moderately dil. H 2 S0 4 or HN0 3 + Aq precipi- tate NaCl from NaCl + Aq. (Karsten. ) Solubility in NaOH + Aq. NaCl = mols. NaCl (in milligrammes) in 10 ccm. solution ; Na 2 = mols. Na 2 (in milligrammes) in 10 ccm. solution. NaCl Na 2 O Na 9 O+ NaCl Sp. gr. 54-7 54-7 1-207 49-375 4-8 54-175 1-221 47-212 6-725 53-937 1-225 42-375 10-406 52-781 1-236 39-55 1478 54-33 1-249 24-95 30-5 55-45 1-295 19-3 37-875 57-175 1-314 9-408 53-25 62-66 1-362 (Engel, C. R. 112. 1130.) The presence of other salts increases the solubility of NaCl in H 2 0. Sol. in sat. NH 4 C1 + Aq with pptn. of NH 4 C1. When the reaction is complete, the solution has sp. gr. 1-1788, and contains 32 '62 % mixed salts ; or 100 pts. H 2 O dissolve 48 '42 pts. mixed salts, viz., 26 '36 pts. NaCl and 22-06 pts. NH 4 C1. (Karsten.) (See under NH 4 C1.) Sol. in sat. BaCl 2 + Aq with pptn. of BaCl 2 until a state of equilibrium is reached, when 100 pts. H 2 at 17 dissolve 38 '6 pts. of mixed salts, of which 4"! pts. are BaCl 2 . (Karsten.) (See under BaCl 2 .) 100 pts. NaCl + Nal + Aq sat. at 18-19 con- tain 62-33 pts. of the two salts, (v. Hauer.) Insol. in sat. CaCl 2 + Aq. (Vauquelin, Ann. de Chim. 13. 95.) Much more sol. in hot than in cold H 2 containing MgCl 2 or CaCl 2 ; but NaCl is pptd. from sat. NaCl + Aq when that solution is mixed with MgCl 2 or CaCl 2 + Aq. (Fuchs and G. Reichenbach, 1826.) (See under MgCl 2 .) Less sol. in cone. CaCl 2 + Aq than in H 2 0. (Hermann.) Sol. in sat. KC1 + Aq with elevation of temp. ( Vauquelin. ) (See under KC1. ) Sol. in sat. NH 4 N0 3 + Aq, without causing pptn. (Karsten.) Sol. in sat. NH 4 N0 3 + Aq, from which solu- tion it is not pptd. by salts which would cause its pptn. in aqueous solution. (Margueritte, C. R. 38. 307.) Sol. in sat. NaN0 3 + Aq with pptn. of NaN0 3 . Sol. in sat. KN0 3 + Aq, the mixed solution having the power to dissolve more KN0 3 , and the solubility of the KN0 3 apparently increas- ing in the same ratio as the amount of NaCl present. (Fourcroy and Vauquelin, Ann. de Chim. 11. 130.) (See under KN0 3 .) Sol. in sat. KN0 3 + Aq ; the solution thus obtained at 18 '13 contains 40 '34 % of the mixed salts, or 100 pts. H 2 dissolve 67 '72 pts. of the mixed salts, viz., 3 8 '25 pts. NaCl and 29-45 pts. KN0 3 . (Karsten.) Sol. in sat. Ba(N0 3 ) 2 + Aq without causing pptn. Insol. in Ca(N0 3 ) 2 + Aq. Sol. in Mg(N0 3 ) 2 + Aq with pptn. of small portion of Mg(N0 3 ) 2 . Sol. in sat. (NH 4 ) 2 S0 4 + Aq with pptn. of considerable amt. of (NH 4 ) 2 S0 4 + Aq. (Vau- quelin. ) Sol. in cold sat. NaS0 4 + Aq at first without pptn., afterwards Na 2 S0 4 separates out. (Kar- sten.) 100 pts. H 2 dissolve 36 '71 pts. NaCl and 7 '19 pts. K 2 S0 4 at 15, and solution has sp. gr. 1-24. (Page and Keightley.) NaCl is sol. in K 2 S0 4 + Aq, and vice versa, without separation of a salt. 100 pts. H 2 dissolve 7 '03 pts. K 2 S0 4 and 37 '60 pts. NaCl, when warmed and cooled to 14. (Riidorff.) Solubility of NaCl and K 2 S0 4 in H 2 at t. 100 pts. H 2 contain pts. NaCl, K 2 S0 4 , and KC1. t Pts. NaCl Pts. K 2 S0 4 Pts. KC1 10 33-43 8-10 3-18 20 34-01 8-90 3-06 30 34-56 9-56 2-95 40 35-16 10-38 2-81 50 3577 11-07 2-84 60 36-40 11-93 272 70 36-64 12-82 3-20 80 36-04 12-26 5-06 90 35-86 12-42 6-98 100 35-63 12-56 8-79 (Precht and Wittgen, B. 15. 1666.) Sol. in sat. CuS0 4 + Aq. Sol. in sat. ZnS0 4 + Aq with separation of Na 2 S0 4 , ZnS0 4 . (Karsten.) Sol. in sat. A1 2 (S0 4 ) 3 + Aq with no pptn. (Vauquelin.) Sol. in sat. KC10 3 + Aq|; the solution can then dissolve more KC10 3 . (Margueritte, C. R. 38. 305.) 380 SODIUM CHLORIDE Solubility in alcohol. 100 pts. alcohol of 0-900 sp. gr. dissolve 5-8 pts. NaCl ; of 0-872 sp. gr. dissolve 3'67 pts. NaCl ; of 0'834 sp. gr. dissolve 0'5 pt. NaCl. (Kirwan.) 100 pts. alcohol containing given % by weight of absolute alcohol dissolve pts. NaCl at 25. % alcohol o-o 8-4 16-r 25-1 Pts. NaCl % alcohol Pts. NaCl % alcohol Pts. NaCl 35-70 30-49 24-84 19-30 33-4 41-8 50-2 58-5 16-08 13-28 11-28 7-96 66-9 75-2 83-6 5-95 3-75 1-59 (Kopp, A. 40. 206.) 100 pts. alcohol of 75 % by weight dissolve at : 14 15-2 38 71-5 0-661 0-700 0-736 1'033 pts. NaCl. 100 pts. alcohol of 95-5 % by weight dissolve at : 15 77-2 0-174 0-171 pts. NaCl. (Wagner, A. 64. 293.) 100 pts. alcohol containing % alcohol by weight dissolve pts. NaCl at 15, or 100 pts. solution contain % NaCl. 10 20 30 28-53 22-55 17 '51 22-2 18-4 14-9 80 40 % alcohol, 13-25 pts. NaCl, 117 %NaCl, % alcohol, 1-22 pts. NaCl, "" % NaCl. 50 60 977 5-93 8-9 5-6 1-2 (Schiff, A. 118. 365.) Solubility of NaCl in alcohol increases with the temperature. 100 pts. (by weight) of alcohol of 0'9282 sp. gr. (50 "5 % by weight) dissolve at : 4 10 13 23 32 10-9 ll'l 11-43 11-9 12-3 pts. NaCl, 33 44 51 60 12-5 13-1 13-8 14-1 pts. NaCl. (Gerardin, A. cli. (4) 5. 146.) Solubility in alcohol at 13. Sp. gr. 100 ccm. contain in g. Alcohol Water Salt 1-2030 8870 31-60 1-1348 11-81 78-41 23 -26 1-1144 15-99 74-64 20-81 1-0970 19-39 71-45 18-86 1-0698 24-95 65-80 16-23 1-0295 32-33 57-96 12-66 0-9880 40-33 49-34 9-13 0-9445 49-28 38-54 5-93 0-9075 57-91 29-37 3-47 0-8700 63-86 21-62 1-52 0-8400 72-26 11-24 0-50 (Bodlander, Z. phys. Ch. 7. 317.) 100 pts. absolute methyl alcohol dissolve 1'41 pts. at 18'5; 100 pts. absolute ethyl alcohol dissolve 0*065 pt. at 18'5. (de Bruyn, Z. phys. Ch. 10. 782.) 100 pts. wood- spirit of 40 % (by weight) dissolve 13 '0 pts. NaCL (Schiff, A. 118. 365.) Ether ppts. NaCl from NaCl + Aq. (Gmelin. ) Very si. sol. in a mixture of equal pts. of absolute alcohol and ether. (Berzelius.) 500 mg. NaCl treated with above mixture yielded only 0*5 mg. to thejliquid. (Lawrence Smith, Am. J. Sci. (2) 16. 57.) 100 pts. of a mixture of 1 pt. 96 % alcohol and 1 pt. 98 % ether dissolve O'll pt. NaCl. (Mayer, A. 98. 205.) Insol. in oil of turpentine. (T. S. Hunt, Am. J. Sci. (2) 19. 417.) Sol. in glycerine. (Pelouze.) Insol. in fusel oil. (Gooch, Am. Ch. J. 9. 53.) Insol. in acetone. (Krug and M'Elroy, J. Anal. Ch. 6. 184.) Min. Halite. + 2H 2 0. Efflorescent below 0; si. deli- quescent at temps, above 0. (Fuchs, 1826. ) + 10H 2 0. (Naumann.) Sodium sit&chloride, Na 4 Cl 2 . Decomp. by H 2 into NaCl and NaOH + Aq. Sodium stannic chloride, 2NaCl, SnCl 4 + 6H 2 0. See Chlorostannate, sodium. Sodium zinc chloride, 2NaCl, ZnCl 2 + 3H 2 0. Deliquescent. Easily sol. in H 2 0. (Schind- ler, Mag. Pharm. 36. 48.) Sodium zirconium chloride, 2NaCl, ZrCl 4 . (Paykull.) Sodium chloroiodide, NaCl 4 I + 2H 2 0. Easily decomp. by alcohol or ether. (Wells and Wheeler, Sill. Am. J. 143. 42. ) Sodium fluoride, NaF. Very si. sol. in cold, and not more abundantly in boiling H 2 0. (Rose.) 100 pts. H 2 dissolve 4 '78 pts. at 16. (Ber- zelius.) 100 pts. H 2 dissolve 4 pts. at 15. (Fremy, A. ch. (3) 47. 32.) SI. sol. in cone. KC 2 H 3 2 + Aq. (Stromeyer.) Sp. gr. of aqueous solutions containing in 100 pts. H 2 : 1-1081 2-2162 3-3243 pts. NaF. 1-0110 1-0221 1-0333 Sat. solutionhassp.gr. 1'0486. (Gerlach, 7.. anal. 27. 277.) Almost insol. in alcohol. (Berzelius, Pogg. 1. 13.) Sodium hydrogen fluoride, NaHF 2 . Rather difficultly sol. in cold, more easily in hot H 2 0. (Berzelius, Pogg. 1. 13.) Sodium stannous fluoride, 2NaF, 3SnF 2 . Sol. in H 2 0. (Wagner, B. 19. 896.) Sodium stannic fluoride. See Fluostannate, sodium. Sodium tantalum fluoride. See Fluotantalate, sodium. Sodium tellurium fluoride, NaF, TeF 4 . Decomp. by H 2 0. (Berzelius.) SODIUM HYDROXIDE 381 Sodium titanium fluoride. See Fluotitanate, sodium. Sodium tungstyl fluoride. See Fluoxytungstate, sodium. Sodium uranium fluoride, NaF, UF 4 (?). Somewhat soluble in H 2 0. (Bolton.) Sodium uranyl fluoride. See Fluoxyuranate, sodium. Sodium vanadium sesquifLviOTide. See Fluovanadate, sodium. Sodium zinc fluoride, NaF, ZnF 2 . Sol. inH 2 0. (R. Wagner.) Sodium zirconium fluoride, 5NaF, 2ZrF 4 . See Fluozirconate, sodium. Sodium fluoride vanadium ^mtoxide. See Fluoxyvanadate, sodium. Sodium hydrogenide, Na 2 H 4 . Decomp. violently by H 2 0. Sodium hydrosulphide, NaSH. Deliquescent. Sol. in H 2 and alcohol. + 3H 2 0. Difficultly sol. in H 2 0. (Damoi- seau, C. C. 1885. 36.) Sodium hydroxide, NaOH. Very deliquescent. 100 pts. NaOH under a bell jar with H 2 at 16-20 absorb 552 pts. in 56 days. (Mulder.) Very sol. in H 2 with evolution of much heat. Sol. in 0'47 pt. H 2 0. (Bineau, C. R. 41. 509.) Sp. gr. and b.-pt. of NaOH+Aq. 9, LJ 9, & CS te &D ^ B.-pt. cS ft A B.-pt. ^? 02 ^? 02 4-7 1-06 100-56 31-0 1-44 120-00 9-0 1-12 101-11 34-0 1-47 12S-S9 13-0 1-18 102-78 36-8 1-50 129-44 160 1-23 104-44 41-2 1-56 137-78 19'0 1-29 106-66 46-6 1-63 148-89 23-0 1-32 108-89 53-8 1-72 204-44 26-0 1-36 112-78 63-6 1-85 315-56 29-0 1-40 116-66 77-8 2-00 red heat. (Dalton.) Sp. gr. of NaOH+Aq at 15. %Na 2 Sp. gr. % Na 2 O Sp.gr. i% Na 2 Sp. gr. 0-302 1-0040 10-879 1-1630 21-154 1-3053 0-601 1-0081 11-484 1-1734 21-758 1-3125 1-209 1-0163 12-088 1-1841 21-894 1-3143 1-813 1-0246 12-692 1-1948 22-363 1-3198 2-418 1-0330 13-297 1-2058 22-967 1-3273 3-022 1-0414 13-901 1-2178 23-572 1-3349 3-626 1-0500 14-506 1-2280 24-176 1-3426 4-231 1-0587 15-110 1-2392 24-780 1-3505 4-835 1-0675 15-714 1-2453 25-385 1-3586 5-440 1-0764 16-319 1-2515 25-989 1-3668 6-044 1-0855 16-923 1-2578 26-594 1 -3751 6-648 1-0948 17-528 1-2642 27-200 1-3836 7-253 1-1042 18-132 1-2708 27-802 1-3923 7-857 1-1137 18-730 1-2775 28-407 1-4011 8-462 1-1233 19-341 1-2843 29-011 1-4101 9-060 1-1330 19-954 1-2912 29-616 1-4193 9-670 1-1428 20-550 1-2982 30-220 1-4285 10-275 1-1528 (Tunnermann, N. J. Pharm. 18. 2.) Sp. gr. of NaOH+Aq. %Na 2 Sp. gr. %Na 2 14-73 16-73 18-71 20-66 22-58 24-47 26-33 Sp.gr. 1-16 1-18 1-20 1-22 1-24 1-26 1-28 %Na 2 28-16 29-96 31-67 32-40 33-08 34-41 Sp.gr. 2-07 4-02 5-89 7-69 9-43 11-10 12-81 1-02 1-04 1-06 1-08 1-10 1-12 1-14 1-30 1-32 1-34 1-35 1-36 1-38 (Richter.) Sp. gr. of NaOH + Aq at 15. % Sp. gr. if%is Na 2 O Sp.gr. if%is NaOH % Sp. gr. if%is Na 2 O Sp.gr. if %is NaOH 1 1-015 1-012 32 1-450 1-351 2 1-020 1-023 33 1-462 1-363 3 1-043 1-035 34 1-475 1-374 4 1-058 1-046 35 1-488 1-384 5 1-074 1-059 36 1-500 1-395 6 1-089 1-070 37 1-515 1-405 7 1-104 1-081 38 1-530 1-415 8 1-119 1-092 39 1-543 1-426 9 1-132 1-103 40 1-558 1-437 10 1-145 1-115 41 1-570 1-447 11 1-160 1-126 42 1-583 1-456 12 1-175 1-137 43 1-597 1-468 13 1-190 1-148 44 1-610 1-478 14 1-203 1-159 45 1-623 1-488 15 1-219 1-170 46 1-637 1-499 16 1-233 1-181 47 1-650 1-508 17 1-245 1-192 48 1-663 1-519 18 1-258 1-202 49 1-678 1-529 19 1-270 1-213 50 1-690 1-540 20 1-285 1-225 51 1-705 1-550 21 1-300 1-236 52 1-719 1-560 22 1-315 1-247 53 1-730 1-570 23 1-329 1-258 54 1-745 1-580 24 1-341 1-269 55 1-760 1-591 25 1-355 1-279 56 1-770 1-601 26 1-369 1-290 57 1-785 1-611 27 1-381 1-300 58 1-800 1-622 28 1-395 1-310 59 1-815 1-633 29 1-410 1-321 60 1-830 1-643 30 1-422 1-332 70 ... 1-748 31 1-438 1-343 (Gerlach, Z. anal. 8. 279, calculated from Schiff, A. 107. 300.) Sp. gr. of NaOH + Aq at 15. %NaOH Sp. gr. %NaOH Sp. gr. 0-61 1-0070 4-96 1-0549 0-9 1-0105 5-29 1-0588 i-o 1-0107 5-58 1-0627 1-2 1-0141 5-87 1-0667 1-6 1-0177 6-21 1-0706 2-0 1-0213 6-55 1-0746 2-36 1-0249 676 1-0787 271 1-0286 7-31 1-0827 3-0 1-0318 7-66 1-0868 3-35 1-0360 8-0 1-0909 3-67 1-0397 8-34 1-0951 4-0 1-0435 8-68 1-0992 4-32 1-0473 9-0 1-1030 4-64 1-0511 9-42 1-1077 382 SODIUM IODIDE Sp. gr. of NaOH + Aq at 15 Continued. %NaOH Sp. gr. %NaOH Sp. gr. 974 1-1120 26-31 1-2905 10-0 1-1158 26-83 1-2973 10-5 1-1195 27-31 1-3032 10-97 1-1250 27-8 1-3091 11-42 1-1294 28-31 1-3151 11-84 1-1339 28-83 1-3211 12-24 1-1383 29-38 1-3272 12-64 1-1423 30-0 1-3339 13-0 1-1474 30-57 1-3395 13-55 1-1520 31-22 1-3458 13-86 1-1566 31-85 1-3521 14'5 1-1631 32-47 1-3585 14-75 1-1662 33*0 1-3642 15-0 1-1697 33-69 1-3714 15-5 1-1755 34-38 1-3780 15-91 1-1803 35-0 1-3858 16-38 1-1852 35-65 1-3913 1677 1-1901 36-25 1-3981 17-22 1-1950 36-86 4049 17-67 1-2000 37-47 4118 17'12 1 -2050 38-13 4187 18-58 1-2101 38-8 4267 19-0 1-2148 39-39 4328 19-58 1-2202 40-0 4410 20-0 1-2250 40-75 4472 20-59 1-2308 41-41 4545 21-0 1-2361 42-12 4619 21 -42 1-2414 42-83 4694 22-0 1-2462 43-66 4769 22-64 1-2522 44-38 4845 23-15 1-2576 45-27 1-4922 23-67 1-2632 46-15 1-5000 24-24 1-2687 ; 46-87 1-5079 24-81 1-2748 47-60 1-5158 25-3 1-2800 48-81 1-5238 25-8 1-2857 49-02 1-5319 Sp. gr. of NaOH + Aq at 15. (Eager, Comm. 1883.) The sp. gr. increases or diminishes for each degree as follows : % NaOH Corr. 40-50 0-00045 30-39 0-0004 20-29 0-0003 10-19 0-0002 (Hager, Comm. 1883.) Sp. gr. of NaOH + Aq at 15. % NaOH Sp. gr. %NaOH Sp. gr. 2-5 1-0280 20 1-2262 5 1-0568 25 1-2823 10 1-1131 30 1-3374 15 1-1790 (Kohlrausch, W. Ann. 1879. 1.) Sp. gr. of NaOH + Aq at 20 containing 2 mols. NaOH to 100 mols. H 2 = l '04712. (Nicol, Phil. Mag. (5) 16. 122.) %Na 2 Sp. gr. %Na 2 Sp. gr. 5 1-069 25 1-353 10 1-139 30 1-426 15 1-210 35 1-500 20 1-281 ... (Hager, Adjumenta Varia, Leipsic, 1876.) Sat. NaOH + Aq boils at 215 '5 (Griffiths.) Sat. NaOH + Aq boils at 310. (Gerlach, Z. anal. 26. 427.) NaOH + Aq of 1'500 sp. gr. contains 36 '8 % NaOH and boils at 130. B.-pt. of NaOH + Aq containing pts. NaOH to 100 pts. H 2 0. B.-pt. Pts. NaOH B.-pt. Pts. NaOH 105 17 210 425-5 110 30 215 475-5 115 41 220 526-3 120 51 225 583-3 125 60-1 230 645-2 130 70'1 235 714-3 135 81'1 240 800 140 93-5 245 888-8 145 106-5 250 1000 150 120-4 255 1142-8 155 134-5 260 1333-3 160 150-8 265 1534 165 168-8 270 1739-1 170 187 275 2000 175 208-3 280 2353 180 230 285 2857 185 254-5 290 3571-4 190 281-7 300 4651-1 195 312-3 305 6451-6 200 345 310 10526-3 205 380-9 314 22222-2 (Gerlach, Z. anal. 26. 463.) Easily sol. in alcohol or wood spirit ; sol. in fusel-oil. Sol. in an aqueous solution of mannite. (Favre, A. ch. (3) 11. 76.) Easily sol. in glycerine. Sol. to a certain extent in ether. + 1 JH 2 0. (Cripps, Pharm. J. Trans. (3) 14. 833.) + 3PI 2 0. Deliquescent. Sol. in H 2 with absorption of much heat. Melts at 6. (Hermes. ) Sodium iodide, Nal, and J + 2H 2 0. Solubility of Nal and of Nal + 2H 2 in H 2 differ. Below 65 Nal + 2H 2 usually separates out, and above that temp. Nal separates. Solubility of Nal in 100 pts. H 2 at t. Pts. Pts. Pts. t Nal Nal Nal 71-3 294'4 92-4 300-2 124-7 317-5 74-1 295-3 97-1 300-3 132-5 317-3 81-6 296-8 1017 302-5 138-1 319-2 86-4 298-3 110-7 306-2 ... STANNIC ACID 383 Solubility is represented by a straight line of the formula S = 264-19 + 0'3978t. Solubility of NaI + 2H 2 in 100 pts. at t. t Pts. Nal t Pts. Nal V Pts. Nal -17 149-4 15 173-7 45 215-6 -15 150-3 20 1787 50 227-8 - 5 155-4 25 184-2 55 241-2 1587 30 190-3 60 256-8 5 163-6 35 197-0 65 278-4 10 168-6 40 205-1 ... . (Coppet, A. ch. (5) 30. 424.) If solubility S = pts. Nal in 100 pts. solution, S = 61'3 + 0-1712t from to 80; S = 75 + 0'0258t from 80 to 160. (Etard, C. R. 98. 1432.) NaI + 2H 2 is sol. in 0'55 pt. H 2 at 15. (Eder, Dingl. 221. 89.) TOO pts. Nal + Aq sat. at 18-19 contain 62-98 pts. Nal. (v. Hauer, J. pr. 98. 137.) 100 pts. H 2 dissolve at : 20 40 60 158-7 178-6 208-4 256 '4 pts. Nal, 80 100 120 140 303 312-5 322-5 333 '3 pts. Nal. (Kremers, Fogg. 97. 14.) Sat. solution boils at 141. Sp. gr. of Nal + Aq at 19 "5 containing : 5 1-040 35 1-360 10 15 20 1-082 1-128 1-179 40 45 50 1-432 1-510 1-60 25 30 % Nal, 1-234 1-294 .55 60 % Nal. 1-70 1-81 (Gerlach, Z. anal. 8. 285.) + 2H 2 0. Sol. in 12'0 pts. absolute alcohol ; in 360 pts. ether. (Eder, Dingl. 221. 89. ) Sol. in 3 pts. 90 % alcohol. (Hager.) 100 pts. absolute methyl alcohol dissolve 77'7 pts. Nal at 22 '5 ; ethyl alcohol, 43 '1 pts. (de Bruyn, Z. phys. Ch. 10. 783.) Sol. in ethyl acetate. (Casaseca, C. R. 30. 821.) Sodium stannous iodide, Nal, SnI 2 . Very sol. in H 2 0. When treated with little H 2 0, Nal is dissolved out, but a larger amt. of H 2 dissolves it completely. (Boullay, A. ch. (2) 34. 375.) Sodium zinc iodide, 2NaI, ZnI 2 + 3H 2 0. Deliquescent. Sodium oxide, Na.jO. Very deliquescent, and sol. in H 2 with evolution of heat. See Sodium hydroxide. Sodium peroxide, Na 2 2 . Deliquescent, and very sol. in H 2 with partial decomp. Solution decomp. on boiling. Cryst. with 2H 2 0, and 8H 2 0. (Fairley, Chem. Soc. 1877. 125.) Forms hydrate Na 2 2 (OH) 4 + 4H 2 0. Easily sol. in H 2 or dil. acids without decomp. (Schone, A. 193. 241.) Sodium selenide, Na 2 Se. Very deliquescent. Decomp. by H 2 0. (Uelsmann, A. 116. 127.) Cryst. with 16H 2 0, 9H 2 0, and f H 2 0. (Fabre, C. R. 102. 613.) Sodium diselenide, Na 2 Se 2 . (Jackson, B. 7. 1277.) Sodium mo?iosulphide, Na 2 S. Sol. in H 2 0. Much less sol. in alcohol than in H 2 0. Insol. in ether. (Roussin.) + 6H 2 0. Less efflorescent than with 9H 2 0. Sol. in H 2 and alcohol. + 9H 2 0. Efflorescent. Much less sol. in alcohol than H 2 0. When dissolved in H 2 0, temp, sinks from + 22 to-6'l. (Finger, Pogg. 128. 635.) + 5H 2 0. (Gottig, J. pr. (2) 34. 229.) Sodium bisulphide, Na 2 S 2 . Sol. in H 2 and alcohol. + 5H 2 0. Not efflorescent. Sodium ^'sulphide, Na 2 S 3 . Sol. in H 2 with decomp. Cryst. with 3H 2 from an alcoholic solution. (Bbttger, A. 223. 355.) Sodium Z^rasulphide, Na 2 S 4 + 6H 2 0. Very deliquescent, and sol. in H 2 0. Diffi- cultly sol. in absolute alcohol. Insol. in ether. (Schone.) + 8H 2 0. Efflorescent. (Bottger. ) Sodium pentaaMlphide, Na 2 S 5 + 6H 2 0. Sol. in H 2 0. (Schone.) Sol. in alcohol. + 8H 2 0. (Bottger.) Solution is easily decomp. by warming. (Jones, Chem. Soc. 37. 461.) Sodium tellurium sulphide. See Sulphotellurate, sodium. Sodium stannic sulphide. See Sulphostannate, sodium. Sodium yttrium sulphide, Na 2 S, Y 2 S 3 . Decomp. by dil. acids, even by HC 2 H 3 2 + Aq. (Duboin, C. R. 107. 243.) Sodium zinc sulphide, Na 2 S, 3ZnS. Not so stable as the corresponding K salt. (Schneider, J. pr. (2) 8. 29.) Sodium telluride, Na 2 Te. Sol. in H 2 0. (Demar9ay, Bull. Soc. (2) 40. 99.) Stannic acid, H 2 Sn0 3 . Insol. in H 2 0. Sol. in HC1, and H 2 S0 4 + Aq, even when dil. (Freniy. ) Easily sol. in acids, from which solution it may be pptd. by dilu- tion or boiling. While moist it is sol. in HN0 3 + Aq, but gradually separates on stand- ing, and coagulates at once when heated to 50. If NH 4 N0 3 be added to the solution, it remains clear at ord. temp. (Berzelius.) 384 STAGNATES Easily sol. in HN0 3 + Aq, when previously treated with NH 4 OH + Aq. (Thenard. ) Easily sol. in KOH + Aq, but addition of large excess ppts. K 2 Sn0 3 , insol. in KOH + Aq. Easily sol. in NaOH + Aq, and not pptd. by an excess of that reagent. (Barfoed, J. B. 1867. 267.) SI. sol. in NH 4 OH + Aq or (NH 4 ) 2 C0 3 + Aq. Completely sol. in K 2 C0 3 + Aq, but not in Na 2 C0 3 + Aq. Insol. in alkali hydrogen carbonates or NH 4 Cl + Aq. Sol. in alkali sulphides + Aq. (Berzelius.) Sol. in triethyltoluenyl ammonium hydrate + Aq. Not pptd. by NH 4 OH + Aq in presence of Na citrate + Aq. Sn0 2 , 2H 2 0. (Weber, Pogg. 122. 358.) " a-Orthostannic acid." Easily sol. in HC1 + Aq. (Neumann, M. 12. 515.) H 10 Sn 5 15 (?). Metastannic acid. Insol. in H 2 0, HN0 3 , or H 2 S0 4 + Aq. Insol. in HCl + Aq, but converted thereby into metastannic chloride, which dissolves after excess of HC1 has been removed. (Fresenius.) Insol. in HCl + Aq of sp. gr. 1*1. (Barfoed.) Sol. in large amount of cone. HC1 + Aq. (Allen, Chem. Soc. (2) 10. 274.) In contact with HC1 + Aq metastannic acid is converted into stannic acid. (Barfoed. ) Insol. in HN0 3 + Aq even after treatment withNH 4 OH + Aq. Insol. inNH 4 OH + Aq. Sol. in KOH or NaOH + Aq with formation of metastannates, which are insol. in dil. NaOH + Aq, but sol. in H 2 or KOH + Aq, therefore KOH + Aq dissolves metastannic acid, while NaOH + Aq does not, but if the clear solution in KOH + Aq is treated with a large excess of that reagent, a further pptn. occurs. (Barfoed, J. pr. 101. 368.) Insol. in K 2 C0 3 + Aq (Rose) ; alkali car- bonates + Aq. (Fremy. ) Insol. in NH 4 C1 + Aq even after long boiling. Sol. in Fe(N0 3 ) 3 + Aq containing HN0 3 . (Lepez and Storch, W. A. B. 98, 2b. 270. ) Also in Cr(N0 3 ) 3 + Aq, but not in Ce(N0 3 ) 3 , A1(N0 3 ) 3 , Co(N0 3 ) 2 + Aq, etc. (L. and S.) A colloidal metastannic acid sol. in H 2 can be obtained. (Lepez and Storch.) According to Weber (Pogg. 122. 358), stannic and metastannic acids are only different hy- drates of same oxide, and it is not a case of allotropic modification. Colloidal. H 2 Sn0 3 in colloidal state can be obtained in aqueous solution containing 5 '164 g. Sn0 2 in a litre. This solution is coagulated by HN0 3 + Aq only when in great excess ; easily by dil. H 2 S0 4 + Aq, but not by cone. HCl + Aq. NH 4 OH + Aq in large excess causes coagula- tion ; also NH 4 C1, NaOH, NaCl, Na-jSO^ etc. (Schneider, Z. anorg. 5. 83.) Stannates. Stannates of alkali metals are sol. in H 2 ; others are insol. All metastannates, excepting Na, K, and NH 4 salts, are insol. in H 2 0. (Fremy, A. ch. (3) 12. 474.) Ammonium stannate, (NH 4 ) 2 0, 2Sn0 2 . Sol. in H 2 0. Insol. in dil. NH 4 OH + Aq. (Berzelius.) + a;H 2 0. (Moberg, 1838.) Ammonium cupric stannate, (NH 4 ) 2 0, CuSn0 3 + 2H 2 0. Insol. in H 2 0. Sol. in acids. (Ditte, C. R. 96. 701.) Barium stannate, BaSn0 3 + 6H 2 0. Ppt. Sol. in HCl + Aq. (Moberg.) Ba 2 Sn0 4 + 10H 2 0. Insol. in H 2 0. Sol. in acids. (Ditte, C. R. 95. 641.) Calcium stannate, CaSn0 3 + 4H 2 0. Ppt. (Moberg. ) + 5H 2 0. Insol. in H 2 0. Sol. in acids. (Ditte, C. R. 96. 701.) Cobaltous stannate, CoSn0 3 + 6H 2 0. Insol. in H 2 0. Sol. in acids. (Ditte.) Cupric stannate, CuSn0 3 + 3H 2 0. (Moberg.) + 4H 2 0, Insol. in H 2 0. (Ditte.) Cuprous stannous stannate, Cu 2 0, 3SnO, Sn0 2 + 5H 2 0. Slowly decomp. by dil. acids, and NH 4 OH + Aq ; completely decomp. by cone, acids. (Lenssen, J. pr. 79. 90.) Aurous stannate. See Gold purple. Lithium stannate /ierratungstate, 2Li 2 0, Sn0 2 , 6W0 3 = Li 2 SnO,, Li 2 W 6 19 . Insol. in H 2 0. (Kiiorre, J. pr. (2) 27. 49.) Magnesium stannate. Ppt. (Moberg.) Manganous stannate. Ppt. (Moberg.) Mercurous stannate, HgoSn0 3 + 5H 2 0. Ppt. Mercuric stannate, HgSn0 3 + 6H 2 0. Ppt. (Moberg, J. pr. 28. 231.) Nickel stannate, NiSn0 3 + 5H 2 0. Insol. in H 2 0. Sol. in acids. (Ditte, C. R. 96. 701.) Platinous sodium stannous stannate, 2PtO, Na 2 0, SnO, Sn0 2 (?). (Schneider, Pogg. 136. 105.) Platinous stannous stannate, PtO, 2SnO, Sn0 2 . Decomp. by cone, alkalies. (Schneider, Pogg. 136. 105.) Potassium stannate, K 2 Sn0 3 + 3H 2 0. 100 pts. H 2 dissolve 106 '6 pts. at 10, solution has sp. gr. = 1-618; 100 pts. dissolve HO'5 pts. at 20, solution has sp. gr. =1'627. (Ordway, Sill. Am. J. (2) 40. 173.) Very si. sol. in cone. KOH + Aq. STRONTIUM CHLOEIDE 385 Insol. in KC1 + Aq. (Fremy.) Insol. in alcohol. Pptd. from aqueous solution by the addition of any soluble salt, especially those of K, Na, and NH 4 (Fremy) ; by NH 4 C1, but not by KC1 or NaCl (Ordway). Potassium w^astannate, K 2 0, 10Sn0 2 . K 2 0, 7SnO t + 3H t O. Sol. in H 2 0. Solution gelatinises on heating. (Rose.) K 2 0, 6Sn0 2 + 5H 2 0. Sol. in H 2 0, but loses its solubility by drying. (Fremy, A. ch. (3) 12. 475.) K 2 0, 5Sn0 2 + 4H 2 0. Completely sol. in H 2 0. Insol. in alcohol. (Fremy, A. ch. (3) 23. 396.) K 2 0, 3Sn0 2 + 3H 2 0. Deliquescent. (Fremy.) Silver stannate, Ag 2 Sn0 3 . Insol. in H 2 0. Unacted upon by NH 4 OH or HCl + Aq. (Ditte.) Argentous stannous stannate (?), Ag 4 0, SnO, 3Sn0 2 + 3H 2 (?). Cold dil. HN0 3 + Aq slowly dissolves all Ag, hot HN0 3 + Aq rapidly. Easily sol. in boiling cone. H 2 S0 4 . (Schulze, J. B. 1857. 257.) Sodium stannate, Na 2 Sn0 3 + 3H 2 0. More easily sol. in cold than in hot H 2 0. (Fremy.) Sol. in 2 pts. H 2 at 20 and 100. (Marig- nac.) 100 pts. H 2 dissolve 67 '4 pts. at 0, 61 '3 pts. at 20, and solutions have sp. gr. =1'472 and 1-438 at 15 '5. (Ordway, Sill. Am. J. (2) 40. 173.) Pptd. from Na 2 Sn0 3 + Aq by salts of K, Na, and NH 4 . + 8H 2 0. (Haeffely, J. B. 1857. 650.) + 9H 2 0. (Jones, C. C. 1865. 607.) flOHjjO. Very efflorescent. (Scheurer- Kestner, Bull. Soc. (2) 8. 389.) Sodium wetostannate, Na 2 0, 9Sn0 2 + 8H 2 0. Sol. in H 2 0. Insol. in NaOH + Aq or alcohol. (Barfoed, J. B. 1867. 267.) Na 2 0, 5Sn0 2 . Very difficultly sol. in H 2 0. (Fremy, A. ch. (3) 23. 399.) Insol. in KOH + Aq. + 8H 2 0. (Haeffely, Chem. Gaz. 1855. 59.) Strontium stannate, 3SrO, 2Sn0 2 + 10H 2 0. Ppt. Insol. in H 2 0. Sol. in acids. (Ditte, C. R. 95. 641.) Stannous stannate, SnO, 6Sn0 2 + 5H 2 0. Insol. in H 2 0. Decomp. by HN0 3 + Aq into metastannic acid. (Schiff, A. 120. 53.) Sol. in HCl + Aq, and in KOH + Aq. Stannous we^astannate, SnO, 7Sn0 2 . SnO, 6Sn0 2 + 9H 2 0. Sol. in KOH + Aq or in HCl + Aq. (Fremy.) + 4H 2 0. (Schiff.) Zinc stannate, ZnSn0 3 + 2H 2 0. Ppt. (Moberg, 1838.) 3ZnO, 2Sn0 2 + 10H 2 0. Insol. in H 2 0. Sol. in acids. (Ditte.) Perst&nmc acid, H 2 Sn 2 7 . See Perstannic acid. Stannophosphomolybdic acid. Ammonium stannophosphomolybdate, 3(NH 4 ) 2 0, 4Sn0 2 , 3P 2 5 , 16Mo0 3 + 28H 2 0. Quite insol. even in boiling H 2 0. (Gibbs, Am. Ch. J. 7. 392.) Stannophosphotungstic acid. Ammonium stannophosphotungstate, 2(NH 4 ) 2 0, 2Sn0 2 , P 2 5 , 22W0 3 + 15H 2 0. Precipitate. SI. sol. in boiling H 2 0. (Gibbs, Am. Ch. J. 7. 3m) Stannosulphuric acid. See Sulphate, stannic. Stibine. See Hydrogen antimonide. Strontium, Sr. Decomp. by H 2 with violence. Dil. H 2 S0 4 , and HCl + Aq decomp. and dissolve; cold H 2 S0 4 attacks slowly. Fuming HN0 3 has scarcely any action even when boiling. (Franz, J. pr. 107. 253.) Strontium bromide, SrBr 2 , and + 6H 2 0. 100 pts. H 2 dissolve at : 20 38 59 83 110 877 99 112 133 182 250 pts. SrBr 2 . (Kremers, Pogg. 103. 65.) Sp. gr. of SrBr 2 + Aq at 19*5 containing : 5 10 15 20 25 % SrBr 2 , 1-046 1-094 1-146 1'204 1'266 30 35 40 45 50 % SrBr 2 . 1-332 1-41 1-492 1'59 1'694 (Kremers, Pogg. 99. 444 ; calculated by Gerlach, Z. anal. 8. 285.) Somewhat sol. in absolute alcohol. (Lowig.) Much more sol. than BaBr 2 in boiling amyl alcohol. Strontium stannic bromide. See Bromostannate, strontium. Strontium bromide ammonia, 2SrBr 2 , NH 3 . Sol. in H 2 0. (Rammelsberg, Pogg. 55. 238.) Strontium chloride, SrCl 2 , and + 6H 2 0. Deliquescent in moist air. Sol. in 1-5 pts. H 2 O at 15, and 0-8 pt. at boiling (Dumas) ; in 1'996 pts. H 2 O at 15 (Gerlacb). 1 pt. anhydrous SrCl 2 is sol. in 2-2? pts. H 2 O at ; in 1-88 pts. at 20; in 1'54 pts. at 40; in 1-18 pts. at 60; in 1-08 pts. at 80; in 0"98 pt. at 100. (Kremers, Pogg. 103. 66.) 100 pts. H 2 dissolve 106'2 pts. SrCl 2 + 6H 2 at 0, and 205 '8 pts. at 40. (Tilden, Chem. Soc. 45. 409.) 2 C STRONTIUM CHLORIDE Solubility in 100 pts. H 2 at t. t Pts. SrCl 2 V Pts. SrCl 2 t Pts. SrCl a 44-2 41 67'4 81 92-7 1 44-5 42 68-2 82 93-1 2 44-8 43 68-9 83 93-4 3 45-2 44 697 84 937 4 45-6 45 70-4 85 94-1 5 46-0 46 71-2 86 94-5 6 46'5 47 72-0 87 94-9 7 46-9 48 72-8 88 95-4 8 47'4 49 73-6 89 95-8 9 47-8 50 74-4 90 96-2 10 48-3 51 75-3 91 967 11 48-8 52 76-1 92 97-2 12 49-4 53 77-0 93 977 13 49-9 54 77-9 94 98-2 14 50-4 55 787' 95 98-8 15 51-0 56 79-6 96 99'4 16 51-5 57 80-4 97 100-0 17 52-1 58 81-3 98 100-6 18 52-7 59 82-2 99 101-3 19 53-3 60 83-1 100 101-9 20 53-9 61 84-0 101 102-6 21 54-5 62 84-9 102 103-3 22 55-1 63 85'8 103 104-0 23 557 64 86-6 104 104-7 24 56-3 65 87-5 105 105-4 25 56-9 66 88-4 106 106-1 26 57-5 66'5 88-8 107 106-9 27 58-1 67 88'9 108 107-6 28 587 68 89-1 109 108-4 29 59-3 69 89-3 110 109-1 30 60-0 70 89-6 111 109-9 31 60-6 71 89-8 112 110-7 32 61-3 72 90-1 113 111-4 33 61-9 73 90-3 114 112-2 34 62-5 74 90-6 115 113-0 35 63-2 75 90-9 116 113-8 36 63-9 76 91-2 117 114-6 37 64-6 77 91-5 118 115-5 38 65-3 78 91-8 118-8 116-4 39 66-0 79 92-1 40 667 80 92-4 (Mulder, Scheik. Verhandel. 1864. 118.) 100 pts. H 2 dissolve 52 '4 pts. SrCl 2 at 18. (Gerardin. ) SrClo+Aq sat. at 8 has sp. gr. = 1'379. (Anthon. A. 24. 211.) Sp. gr. of SrClo+Aq. Pts. SrCl 2 to 100 pts. H..O Sp. gr. Pts. SrCl 2 to 100 pts. H 2 O Sp. gr. 9-81 20-12 30-57 1-0823 1-1632 1-2401 41-04 51-69 1-3114 1-3816 (Kremers, Pogg. 99. 444.) Sp. gr. of Sr01 2 + Aq at 15 C % SrCl 2 Sp. gr. % SrCl 2 Sp. gr. 5 1-0453 25 1-2580 10 1-0929 30 1-3220 15 1-1439 33 1-3633 20 1-1989 ... ... (Gerlach, Z. anal. 8. 283.) Sp. gr. of SrCl 2 + Aq at 24 7. a = No. of molecules . ,. . , . = in grms. dissolved in 1000 g. H 2 0; b = sp. gr. when a = SrCl 2 + 6H 2 0, | mol. SrCl 2 + 6H 2 = 133-5 g. ; c = sp. gr. when a = SrC! 2 , mol. =79 '5 g. a b c a b c 1 1 -063 1-067 7 1-304 1-401 2 1-118 1-130 8 1-330 3 1-166 1-190 9 1-354 4 1-207 1-247 10 1-376 5 1-243 1-301 11 1-396 6 1-275 1-352 ... (Favre and Yalson, C. R. 79. 968.) Sp. gr. of SrCl 2 + Aq at 18. % SrCl 2 Sp. gr. %SrCl 2 Sp.gr. 5 1 -0443 20 1 -2023 10 1-0932 22 1-2259 15 1-1456 ... (Kohlrausch, W. Ann. 1879. 1.) Sp. gr. of SrCl 2 + Aq at 0. S = pts. SrCl 2 in 100 pts. solution. s Sp. gr. S Sp. gr. 31-8193 27-7170 23-2300 1-3609 1-3086 1-2515 18-2629 12-9997 6-7243 1-1915 1-1284 1-0637 (Charpy, A. cli. (6) 29. 24.) Sat. SrCl 2 + Aq boils at 114 (Kremers) ; 118-8 (Mulder); 117 '45, and contains 117 '5 pts. SrCl 2 to 100 pts. H 2 (Legrand) ; forms a crust at 115-5, and contains 1027 pts. SrCl 2 to 100 pts. H 2 ; highest temp, observed, 119. (Gerlach, Z. anal. 26. 426.) B.-pt. of SrCl 2 + Aq containing pts. SrCl 2 to 100 pts. H 2 0. G = according to Gerlach (Z. anal. 26. 442) ; L = according to Le- grand (A. ch. (2) 59. 436.) B.-pt. G L B.-pt. G L 101 11 167 110 71-4 68-9 102 20-5 25-2 111 76-5 74-1 103 28-9 32-1 112 81-6 79-6 104 36-2 37-9 113 87 85-3 105 43-2 43-4 114 93-1 91-2 106 49-6 48-8 115 99-5 97-5 107 55-4 54-0 116 105-9 104-0 108 60-8 59-0 117 112-3 110-9 109 66-2 63-9 117-5 117-5 Melts in its crystal H 2 at 112. (Tilden, Chem. Soc. 45. 409.) Cone. HC1 + Aq ppts. part of the SrCl 2 from SrCl 2 + Aq. (Hope.) STRONTIUM NITRIDE 387 Solubility of SrCl 2 in HC1 + Aq at 0. SrCl 2 = \ mols. SrCl 2 (in milligrammes) dissolved in 10 ccm. of liquid; HCl = mols. HC1 (in milligrammes) dissolved in 10 ccm. of liquid. SrCl 2 HC1 Sum of mols. Sp. gr. 55 55-0 1-334 48'2 6-1 54-3 1-3045 41-25 1275 54-00 1-2695 30'6 23-3 53-9 1-220 (Engel, Bull. Soc. (2) 45. 655.) Anhydrous SrCl 2 is sol. in 111 '6-116 '4 pts. alcohol of 99-3 % at 14 '5, and in 26 '2 pts. of the same alcohol at boiling. (Fresenius, A. 59. 127.) Sol. in 6 pts. alcohol of 0-833 sp. gr. at 15. (Vau- quelin.) Sol. in 24 pts. absolute alcohol at 15, and in 19 pts. at boiling. (Bucholz.) Sol. in 2 -5 pts. of boiling alcohol. 100 pts. alcohol of given sp. gr. at dissolve pts. SrCL, at 18. 0-990 0-985 0-973 0'966 0'953 sp. gr. 49-81 47'0 39-6 35-9 30 '4 pts. SrCl 2 , 0-939 0-909 0-846 0'832 sp. gr. 26-8 19-2 4-9 3 '2 pts. SrCl 2 . Insol. in absolute alcohol. (Gerardin, A. ch. (4) 5. 156.) 100 pts. absolute methyl alcohol dissolve 63-3 pts. SrCl 2 + 6H 2 at 6 ; ethyl alcohol, 3 '8 pts. (de Bruyn, Z. phys. Ch. 10. 787.) SI. sol. in boiling amyl alcohol. (Browning, Sill. Am. J. 144. 459.) Absolutely insol. in acetic ether. (Cann, 0. R. 102. 363.) Very si. sol. in acetone. (Krug and M'Elroy.) + 2H 2 0. + 6H 2 0. See above. Strontium stannous chloride, SrCL, SnCl 2 + 4H 2 0. Sol. in H 2 0. (Poggiale, C. R. 20. 1183.) Strontium stannic chloride. See Chlorostannate, strontium. Strontium chloride ammonia, SrCl 2 , 8NH 3 . Decomp. by H 2 0. (Rose, Pogg. 20. 155.) Strontium fluoride, SrF 2 . Somewhat sol. in H 2 0. (Fr. Rb'der.) Insol. in HF + Aq. (Berzelius. ) Insol. in cold, scarcely sol. in hot H 2 0. Boiling HC1 + Aq dissolves ; si. attacked by boiling HN0 3 + Aq; decomp. by hot H 2 S0 4 . (Poulenc, C. R. 116. 987.) Strontium stannic fluoride. See Fluostannate, strontium. Strontium titanium fluoride. See Fluotitanate, strontium. Strontium hydride, SrH. Decomp. by H 2 or HCl + Aq. (Winkler, B. 24. 1976.) Strontium hydroselenide. Sol. in H 2 0. Strontium hydrosulphide, SrS 2 H 2 . Sol. in H 2 ; decomp. by boiling. Strontium hydroxide, Sr0 2 H 2 + 8H 2 0. Deliquescent. Sol. in 50 pts. cold, and 2'4 pts. boiling H 2 (Bucholz) ; in 50 pts. H 2 O at 15-56 (Dalton); in 51'4 pts. H 2 O at 15-56, and 2 pts. at 100 (Hope) ; in 52 pts. HoO at 15, and 2-4 pts. at 100 (Berzelius) ; in 48 pts. H 2 at 18'75 (Abl). 100 pts. H 2 O at 20 dissolve 1'49 pts. SrO. (Bineau, C. R. 41. 509.) 100 pts. aqueous solution of Sr0 2 H 2 contain pts. SrO and pts. Sr0 2 H 2 + 8H 2 at t. t Pts. SrO. Pts. SrO.,H 2 +8H a O. t Pts. SrO. Pts. SrOgfLg +8H 2 O. 0-35 0-90 55 2-54 6-52 5 0-41 1-05 60 3-03 7-77 10 0-48 1-23 65 3-62 9-29 15 0-57 1-46 70 4-35 11-16 20 0-68 1-74 75 5-30 13-60 25 0-82 2-10 80 6-56 16-83 30 1-00 2-57 85 9-00 23-09 35 1-22 3-13 90 12-00 30-78 40 1-48 3-80 95 15-15 38-86 45 1-78 4-57 100 18-60 4771 50 2-13 5-46 (Scheibler and Sidersky. ) Sol. in cold NH 4 C1 + Aq. (Rose. ) Sol. in an aqueous solution of cane sugar. (Hunton, Phil. Mag. (3) 11. 156.) Solubility in H 2 containing 10 g. sugar at t. t SrO 2 H 2 +8H 2 O t- SrO 2 H 2 +8H 2 O 3 15 3-10 3-79 24 40 479 9-70 (Sidersky, C. C. 1886. 57.) Strontium iodide, SrI 2 . 100 pts. H 2 dissolve at : 20 40 70 100 164 179 196 250 370 pts. SrI 2 . (Kremers, Pogg. 103. 65.) Sp. gr. of SrI 2 + Aq at 19 '5 containing : 5 10 20' 30 % SrI 2 , 1-045 1-091 1-200 1-330 40 50 60 65 % SrI 2 . 1-491 1-695 1-955 2'150 (Kremers, Pogg. 103. 67 ; calculated by Gerlach, Z. anal. 8. 285.) Strontium stannous iodide. Very sol. in H 2 0. (Boullay.) Strontium nitride, Sr 2 N 3 . Decomp. H 2 violently, but not alcohol. (Maquenne, A. ch. (6) 29. 225.) 388 STRONTIUM OXIDE Strontium oxide, SrO. Decomp. by H 2 to Sr0 2 H 2 , which see. Sol. in 160 pts. H 2 O at 15'56 (Dalton) ; in 50 pts. at 100 (Dalton) ; in 130 pts. at 20 (Bineau) ; in 40 pts. cold, and 20 pts. hot H 2 O (Dumas). Very si. sol. in alcohol. Insol. in ether. Sol. in cane sugar + Aq. Solubility in H 2 containing 10 g. sugar at t. t g. SrO t g. SrO 8 1-21 24 1-87 15 1-48 40 3-55 (Sidersky, C. C. 1886. 57.) Strontium peroxide, Sr0 2 . SI. sol. in H 2 0. Easily sol. in acids and NH 4 Cl + Aq. Insol. in NH 4 OH + Aq. (Con- roy, Chem. Soc. (2) 11. 812.) Cryst. with 8H 2 0, 10H 2 0, and 12H 2 0. Strontium oxy chloride, SrCl 2 , SrO + 9H 2 0. Very easily decomp. by H 2 and alcohol. (Andre, A. ch. (6) 3. 76.) Strontium oxysulphide, Sr 2 OS 4 + 12H 2 0. Decomp. by H 2 0. Insol. in alcohol, ether, and CS 2 . (Schone. ) Mixture of SrS 2 3 and SrS 2 . (Geuther, A. 224. 178.) Strontium phosphide. Decomp. by H 2 0. Strontium selenide, SrSe. SI. sol. in H 2 0. (Fabre, C. R. 102. 1469.) Strontium sulphide, SrS. Sol. in H 2 with decomp. into Sr0 2 H 2 and SrS 2 H 2 . Strontium tetrasnligihi&e, SrS 4 . Yery deliquescent, and sol. in H 2 and alcohol. Aqueous solution decomp. on air. Cryst. with 2, or 6H 2 0. (Schone, Pogg. 117. 58.) Strontium pentasnlphide, SrS 5 . Known only in solution. Strontium stannic sulphide. See Sulphostannate, strontium. Sulphamic acid, HOS0 2 NH 2 . See Amidosulphonic acid. Ammonium sulphamate, 2NH 3 , S0 3 . ( Woronin. ) Is ammonium imidosulphonate, which see. (Berglund.) Ammonium sulphamate, acid, 3NH 3 , 2S0 3 . (Woronin.) Is basic ammonium imidosulphonate, which see. (Berglund.) Barium sulphamate, basic, 2BaO, 3S0 3 , 2NH 3 . Somewhat sol. in H 2 0, easily in HCl4-Aq. (Jacquelain, A. ch. (3) 8. 304.) BaS 2 6 (NH 2 ) 2 . SI. sol. in H 2 0. Decomp. by heating with H 2 0. (Woronin, J. B. 1860. 80.) Is barium imidosulphonate. (Berglund.) Sulphamide, S0 2 <2 See Thionyl amide. 3NH 3 , 2S0 3 . (Jacquelain.) Is basic ammonium imidosulphonate, which see. (Berglund.) Sulphamidic acid. (Fremy. ) See Imidosulphonic acid. Sulphammonic, and J/easulphammonic acids. (Fremy. ) See Nitrilosulphonic acid. J/cwosulphammonic acid. (Glaus.) See Amidosulphonic acid. Z^'sulphammonic acid. (Glaus. ) See Imidosulphonic acid. ^mulphammonic acid. (Glaus.) See Nitrilosulphonic acid. ^rasulphammonic acid. (Glaus.) Does not exist. See Nitrilosulphonic acid. Sulphantimonic acid. Sulphantimonates. The alkali sulphantimonates are sol. in H 2 0, but the solutions decomp. on the air ; most of the other sulphantimonates are insol. in H 2 ; all sulphantimonates are insol. in alcohol. (Rammelsberg.) Ammonium sulphantimonate, (NH 4 ) 3 SbS 4 . Known only in solution. Barium sulphantimonate, Ba 3 (SbS 4 ) 2 + 3H 2 0. Sol. in H 2 0. Insol. in alcohol. Bismuth sulphantimonate. Ppt. Cadmium sulphantimonate. Ppt. (Rammelsberg, Pogg. 52. 236.) Calcium sulphantimonate, Ca 3 (SbS 4 ) 2 . Partially sol. in H 2 0. Insol. in alcohol. Cobaltous sulphantimonate, Co 3 (SbS 4 ) 2 . Ppt. Decomp. by HC1 + Aq. (Rammelsberg, Pogg. 52. 236.) Cupric sulphantimonate, Gu 3 (SbS 4 ) 2 . Ppt. (Rammelsberg, Pogg. 52. 226.) Ferrous sulphantimonate. Ppt. Ferric sulphantimonate, Fe 2 (SbS 4 ) 2 . (Rammelsberg, Pogg. 52. 234.) SULPHARSENATE, AMMONIUM SODIUM 389 Lead sulphantimonate, Pb 3 (SbS 4 ) 2 . Ppt. Decomp. by KOH + Aq. (Rammels- berg, Pogg. 52. 223.) Magnesium sulphantimonate, Mg 3 (Sb0 4 ) 2 . Deliquescent. Sol. in H 2 0. Decomp. by alcohol. Mercurous sulphantimonate, (Hg 2 ) 3 (SbS 4 ) 2 . Ppt. Mercuric sulphantimonate, Hg 3 (SbS 4 ) 2 . Ppt. (Rammelsberg, Pogg. 52. 229.) Mercuric sulphantimonate chloride, Hg 3 (SbS 4 ) 2 , 3HgCl 2 , 3HgO. Insol. in acids, except aqua regia. (Ram- melsberg.) Nickel sulphantimonate, Ni 3 (SbS 4 ) 2 . Ppt. Decomp. by hot HCl + Aq. (Ram- melsberg, Pogg. 52. 226.) Potassium sulphantimonate, K 3 SbS 4 . Sol. in H 2 0. + 4^H 2 0. Deliquescent. Sol. in H 2 ; more sol. than the Na salt. 2K 2 S, Sb 2 S 3 . Decomp. by cold H 2 0. (Ditte, C. R. 102. 168.) K 2 S, 2Sb 2 S 3 + 3H 2 0. SI. sol. in H 2 0. (Ditte.) K 2 S, Sb 2 S 3 . Decomp. by H 2 0. (Ditte.) K 2 S, 2Sb 2 S 3 . (Ditte.) Silver sulphantimonate, Ag 3 SbS 4 . Insol. in H 2 or acids. Decomp. by KOH + Aq. (Rammelsberg, Pogg. 52. 218.) Sodium sulphantimonate, Na 3 SbS 4 + 9H 2 0. (Schlippe's salt.) Sol. in 2 '9 pts. H 2 at 15. Aqueous solution is precipitated by alcohol. (Rammelsberg.) Sol. in 3 pts. cold H 2 0. (van den Corput. ) Sol. in 4 pts. cold H 2 0. (Duflos.) Sol. in 1 pt. boiling H 2 0. (Duflos.) Sodium sulphantimonate thiosulphate, Na 3 SbS 4 , 2Na 2 S 2 3 + 20H 2 0. Efflorescent, and decomp. by H 2 0. (Unger, Arch. Pharm. (2) 147. 193.) Strontium sulphantimonate. Sol. in H 2 ; pptd. by alcohol. Uranium sulphantimonate. Ppt. Zinc sulphantimonate, Zn 3 (SbS 4 ) 2 . Ppt. Sol. in hot Na 3 SbS 4 + Aq ; insol. in ZnS0 4 + Aq. Partially sol. in KOH + Aq ; sol. in hot HCl + Aq. (Rammelsberg, Pogg. 52. 233.) Sulphantimonous acid. Cuprous sulphantimonite, Cu 2 Sb 4 S 7 . Min. Guejarite. CuSbS 2 . Min. Wolfsbergite. Sol. inHN0 3 + Aq with separation of S and Sb 2 3 . Cuprous lead sulphantimonite, Cu 3 SbS 3 , 2Pb 3 SbS 3 . Min. Bournonite. Decomp. by HN0 3 + Aq, and aqua regia. Ferrous sulphantimonite, Fe(SbS 2 ) 2 . Min. Berthierite. SI. sol. in HC1 + Aq ; easily sol. in aqua regia. Lead sulphantimonite. Sol. in boiling cone. HN0 3 + Aq. (Fournet. ) Pb(SbS 2 ) 2 . Min. Zinckenite. Decomp. by hot HCl + Aq. 4PbS, 3Sb 2 S 3 . Min. Plagionite. 2PbS, Sb 2 S 3 . Min. Jamesonite. Decomp. by hot HCl + Aq. 3PbS, Sb 2 S 3 . Min. Boulangerite. Com- pletely sol. in hot HCl + Aq : decomp. by HN0 3 + Aq. 4PbS, Sb 2 S 3 . Min. MenegUnite. 5PbS, Sb 2 S 3 . Min. Geokronite. 6PbS, Sb 2 S 3 . Min. Kibrickenite (?). Lead silver sulphantimonite, (Ag 2 , Pb) 5 Sb 4 S n . Min. Freieslebenite. Potassium sulphantimonite, 2K 2 S, Sb 2 S 3 . Sol. in H 2 0. (Ditte, C. R. 102. 68.) K 2 S, 2Sb 2 S 3 + 3H 2 0. Sol. in H 2 0, but de- comp. quickly. K 2 S, 7/Sb 2 S 3 . Deliquescent. When K 2 S is in excess, sol. in H 2 ; when Sb 2 S 3 is in excess, partially sol. Aqueous solution is decomp. by all acids, even C0 2 , and by K 2 C0 3 , Na 2 C0 3 , NaHC0 3 , KHC0 3 , NH 4 HC0 3 + Aq. Insol. in absolute alcohol. (Kohl.) Silver sulphantimonite, Ag 3 SbS 8 . Min. Pyrargyrite. Sol. in HN0 3 + Aq with residue of S and Sb 2 3 . KOH + Aq dissolves out Sb 2 S 3 . AgSbS 2 . Min. Miargyrite. 5Ag 2 S, Sb 2 S 3 . Min. titephanite. Easily de- comp. by warm HN0 3 + Aq. 12Ag 2 S, Sb 2 S 3 . Min. Polyargyrite. Sodium sulphantimonite, NaSbS 2 . Deliquescent. Decomp. by hot H 2 0. When Na 2 S is in excess, sol. in H 2 0, but partially sol. if Sb 2 S 3 is in excess. (Unger, Arch. Pharm. (2) 148. 1.) 4Na 2 S, 3Sb 2 S 3 + 3H 2 0. Permanent; sol. in H 2 0. Insol. in alcohol and ether. (Kohl. ) OtfAosulpharsenic acid, H 3 AsS 4 . Ppt. Loses H 2 S by prolonged boiling with H 2 0. (Nilson, J. pr. (2) 14. 145.) See also Sulphoxyarsenic acid. Ammonium sulpharsenate, (NH 4 ) 4 As 2 S 7 . Known only in solution in H 2 0. Decomp. on boiling into NH 4 AsS 3 . Sol. in alcohol. (NH 4 ) 3 AsS 4 . Sol. in H 2 0. Precipitated by alcohol. (NH 4 ) 2 S, 12As 2 S 5 . Ppt. Insol. in H 2 0. Ammonium magnesium sulpharsenate, (NH 4 ) 2 S, MgS, As 2 S 5 . Ammonium sodium sulpharsenate, (NH 4 ) 3 AsS 4 , Na 3 AsS 4 . Much more sol. in H 2 than Na 3 AsS 4 ; si. sol. in cold, more sol. in hot alcohol. (Ber- zelius. ) 390 SULPHARSENATE, BARIUM Barium sulpharsenate, Ba(AsS 3 ) 2 . Sol. in H 2 and alcohol. Decomp. by evaporation. Ba 2 As 2 S 7 . Sol. in H 2 in all proportions with decomp. Decomp. by alcohol. Ba 3 (AsS 4 ) 2 . Sol. in H 2 0. Insol. in alcohol. BaS, 3As 2 S 5 . Ppt. Insol. in H 2 0. Barium sulpharsenate sulpharsenite, Ba 3 (AsS 4 ) 2 , Ba 2 As 2 S 5 + 4H 2 0. SI. sol. in cold, more easily in hot H 2 0. (Nilson.) Bismuth sulpharsenate, 2Bi 2 S 3 , 3As 2 S 5 . Sol. in Na 3 AsS 4 + Aq. Bi 2 S 3 , 3As 2 S g . As above. (Berzelius.) Cadmium sulpharsenate. Ppt. (Berzelius, Pogg. 7. 88.) Calcium sulpharsenate, Ca 2 As 2 S 7 . Sol. in H 2 and alcohol. .Ca 3 (AsS 4 ) 2 . Easily sol. in H 2 0. Insol. in alcohol. + 10H 2 0. Easily sol. in H 2 0. (Nilson, J. pr. (2) 14. 169.) 5CaS, 2As 2 S 5 + 6H 2 0. Easily sol. in H 2 0. (Nilson, J. pr. (2) 14. 163.) Cerous sulpharsenate, Ce 2 As 2 S 7 . Ppt. Ce 3 (AsS 4 ) 2 . Ppt. Ce 4 (As 2 S 7 ) 3 . Ppt. Cobaltous sulpharsenate, Co 2 As 2 S 7 . Ppt. Sol. in excess of sodium sulpharsen- ate +Aq. Cuprous sulpharsenate, Cu 3 AsS 4 . Ppt. (Preis, A. 257. 201.) Min. Enargite. Clarite. Not wholly de- comp. by HCl + Aq. Sol. in HCl + Aq with residue of As 2 3 . Not attacked by KOH + Aq. Cupric sulpharsenate, Cu 2 As 2 S 7 . Ppt. Sol. in (NH 4 ) 2 S + Aq. Decomp. by NH 4 OH + Aq. (Berzelius.) Cu 3 (AsS 4 ) 2 . Ppt. (Preis, A, 257. 201.) Glucinum sulpharsenate. SI. sol. in H 2 0. Gold sulpharsenate, AuAsS 4 . Sol. in pure H 2 0. Insol. in Na 3 AsS 4 + Aq. 2Au 2 S 3 , 3As 2 S 5 . Sol. in H 2 0. (Berzelius.) Ferrous sulpharsenate, Fe 2 As 2 S 7 . Ppt. Sol. inNa 3 AsS 4 + Aq. (Berzelius.) Ferric sulpharsenate, Fe 4 (As 2 S 7 ) 3 . Ppt. Sol. in Na 3 AsS 4 + Aq. (Berzelius.) Lead sulpharsenate, Pb 2 As 2 S 7 . Ppt. (Berzelius.) Pb 3 (AsS 4 ) 2 . Ppt. Lithium sulpharsenate, Li 3 AsS 4 . Easily sol. in hot, less sol. in cold H 2 0. Insol. in alcohol. Li 4 As 2 S 7 . Completely sol. in H 2 0. Decomp. by alcohol. LiAsS 3 . Known only in acid solution. Magnesium sulpharsenate, Mg 2 As 2 S 7 . Sol. in all proportions of H 2 0, and in alcohol. Mg 3 (AsS 4 ) 2 . Sol. in H 2 0. Decomp. by alcohol. 3MgS, As 2 S 5 . Nearly insol. in H 2 0. 5MgS, 2As 2 S 5 + 15H 2 0. Very sol. in H 2 0. (Nilson. ) Manganous sulpharsenate, Mn 2 As 2 S 7 . SI. sol. in H 2 0. Mn 3 (AsS 4 ) 2 . Permanent. SI. sol. in H 2 0. 6MnS, As 2 S 5 . SI. sol. in H 2 0. Mercurous sulpharsenate, (Hg 2 ) 2 As 2 S 7 . Ppt. Mercuric sulpharsenate, Hg 2 As 2 S 7 . Ppt. (Berzelius, Pogg. 7. 29.) Hg 3 (AsS 4 ) 2 . Ppt. (Preis, A. 257. 200.) Nickel sulpharsenate, Ni 3 (AsS 4 ) 2 . Ppt. Not decomp. by HCl + Aq. Sol. in Na 3 AsS 4 + Aq. (Berzelius.) 2NiS, As 2 S 5 . As above. Potassium sulpharsenate, KAsS 3 . Known only in alcoholic solution. K 4 As 2 S 7 . Deliquescent. Sol. in H 2 0, from which alcohol ppts. K 3 AsS 4 . K 3 AsS 4 . Deliquescent. Very sol. in H 2 0, from which it is precipitated by alcohol. + H 2 0. Very deliquescent. (Nilson, J. pr. (2) 14. 159.) Potassium sodium sulpharsenate. Sol. in H 2 0. Silver sulpharsenate, Ag 3 AsS 4 . Ppt. (Berzelius, Pogg. 7. 29.) Ag 2 As 2 S 7 . Ppt. Sodium sulpharsenate, NaAsS 3 . Known only in alcoholic solution. Na 4 As 2 S 7 . Sol. in H 2 0. Alcohol ppts. Na 3 AsS 4 from H 2 solution. Na 3 AsS 4 +7iH a O. Easily sol. in H 2 0, from which it is precipitated by alcohol. + 9H 2 0. (Nilson, J. pr. (2) 14. 160.) Na 2 S, 12As 2 S 5 (?). Insol. in H 2 0. Sodium zinc sulpharsenate, NaZnAsS 4 + 4H 2 0. Sol. in hot H 2 with decomp. (Preis, A. 257. 202.) Strontium sulpharsenate, Sr 3 (AsS 4 ) 2 . Easily sol. in H 2 ; insol. in alcohol. Sr 2 As 2 S 7 . Easily sol. in H 2 0, from which alcohol ppts. Sr 3 (AsS 4 ) 2 . Strontium sulpharsenate sulpharsenite, Sr 3 (AsS 4 ) 2 , Sr 2 As 2 S 5 + 4H 2 0. Easily sol. in H 2 0. (Nilson, J. pr. (2) 14. 162.) Stannous sulpharsenate. Ppt. Stannic sulpharsenate. Ppt. Uranic sulpharsenate, 2U 2 S 3 , As 2 S 5 . Ppt. Sol. inNa 3 AsS 4 Zinc sulpharsenate, Zn 3 (AsS 4 ) 2 . Ppt. (Berzelius.) 2ZnS, AsgSg. Ppt. (Berzelius.) ZnS, AsoS B . (Wohler.) SULPHARSENITE, SODIUM 391 ZHsulpharsenic acid. See Z^sulphoxyarsenic acid. Sulpharsenious acid. Ammonium sulpharsenite, NH 4 As 3 S 5 + 2H 2 0. Insol. in H 2 0. Ppt. Sol. in KOH or NH 4 OH + Aq. SI. attacked by boiling HC1 + Aq. (Nilson, J. pr. (2) 14. 42.) (NH 4 ) 4 As 2 S 5 = 2(NH 4 ) 2 S, As 2 S 3 . Sol. in H 2 0, from which alcohol ppts. (NH 4 ) 3 AsS 3 . (NH 4 ) 3 AsS 3 = 3(NH 4 ) 2 S, As 2 S 3 . Decomp. on air ; sol. in H 2 0. Insol. in alcohol. (NH 4 ) 5 As 3 S 10 . Sol. in H 2 0. (Nilson, J. pr. (2) 14. 160.) Barium sulpharsenite, Ba 2 As 2 S 5 . SI. sol. in H 2 0. Decomp. by alcohol. + 5H 2 0. SI. sol. in H 2 0. (Nilson, J. pr. (2) 14. 46.) + 15H 2 0. SI. sol. in cold H 2 0. (Nilson.) Ba 3 (AsS 3 ) 2 . SI. sol. in H 2 0. Precipitated by alcohol. + 14H 2 0. SI. sol. in cold, easily in hot H 2 0. (Nilson.) Ba(AsS 2 ) 2 + 2H 2 0. Insol. in H 2 0. (Nilson, J. pr. (2) 14. 44.) BaAs 12 S 19 . Insol. in HCl + Aq. (Nilson.) Bismuth sulpharsenite, 2Bi 2 S 3 , As 2 S 3 . Ppt. Cadmium sulpharsenite. Ppt. (Berzelius, Pogg. 7. 146.) Calcium sulpharsenite, Ca 2 As 2 S 5 . Sol. in H 2 0, from which alcohol ppts. Ca 3 (AsS 3 ) 2 . Ca 3 (AsS 3 ) 2 . Sol. in H 2 0. + 15H 2 0. Precipitated by alcohol. Ca(AsS 2 ) 2 + 10H 2 0. Sol. in H 2 0. (Nilson, J. pr. (2) 14. 54.) CaAs 8 S 13 + 10H 2 0(?). Insol. in cold H 2 0. Decomp. by hot H 2 0. (Nilson.) CaAs 18 S 28 + 10H 2 (?). SI. sol. in hot H 2 0. (Nilson.) Ca 7 As 2 S 10 + 25H 2 0. SI. sol. in cold or hot H 2 0. (Nilson.) Cerous sulpharsenite, Ce 2 As 2 S 5 . Ppt. Chromic sulpharsenite, 2Cr 2 S 3 , 3As 2 S 3 . Ppt. Insol. in Na 2 S + Aq. Cobaltous sulpharsenite, 2CoS, As 2 S 3 . Ppt. Sol. in excess of sodium sulpharseu- ite + Aq. Cuprous sulpharsenite, 3Cu 2 S, 2As 2 S 3 = Cu 6 As 4 S 9 . Min. Binnite. Decomp. by hot acids and KOH + Aq. Cupric sulpharsenite, Cu 3 AsS 3 . Insol. in H 2 or HC1 + Aq. Sol. in Na 3 AsS 3 + Aq. Cu 2 As 2 S 5 . Ppt. (Berzelius. ) Glucinum sulpharsenite, 2G1S, As 2 S 3 . Ppt. Sol. in acids ; partly sol. in NH 4 OH + Aq. Gold sulpharsenite, 2Au 2 S 3 , 3As 2 S 3 . Ppt. (Berzelius.) Ferrous sulpharsenite. Ppt. Sol. in Na 3 AsS 3 + Aq. (Berzelius.) Ferric sulpharsenite. Ppt. Sol. in excess of a ferric salt, or Na 3 AsS 3 + Aq. (Berzelius.) Lead sulpharsenite, Pb 2 As 2 S 5 . Ppt. Min. Dufreynosite. Pb(AsS 2 ) 2 = PbS, As 2 S 3 . Min. Sartvrite. Pb 4 As 2 S 7 . Min. Jordanite. Lithium sulpharsenites. Resemble K salts. Magnesium sulpharsenite, Mg 2 As 2 S 5 . Almost completely sol. in H 2 0. Easily sol. in alcohol. (Berzelius.) + 8H 2 0. SI. sol. in H 2 0. (Nilson. ) Mg(AsS 2 ) 2 + 5H 2 0. Slowly sol. in both cold and hot H 2 0. (Nilson, J. pr. (2) 14. 59.) Mg 3 ( AsS 3 ) 2 + 9H 2 0. (Nilson. ) Manganous sulpharsenite, Mn 2 As 2 S 5 . Ppt. Decomp. by HCl + Aq. Mercurous sulpharsenite, (Hg 2 ) 2 As 2 S 5 . Ppt. (Berzelius.) Mercuric sulpharsenite, Hg 2 As 2 S 5 . Ppt. Hg(AsS 2 ) 2 . Ppt. (Berzelius, Pogg. 7. 149.) Nickel sulpharsenite, Ni 3 (AsS 3 ) 2 . Ppt. (Berzelius.) Platinum sulpharsenite, Pt 2 As 2 S 5 . Ppt. Potassium sulpharsenite, K 4 As 2 S 5 . Decomp. by H 2 or alcohol. (Berzelius.) K 3 AsS 3 . Sol. in H 2 0. Insol. in alcohol. (Berzelius.) K 2 As 4 S 7 . Sol. in H 2 and alcohol. (Ber- zelius. ) K 2 AsS 2 . Decomp. by H 2 0. (Berzelius. ) + 2^H 2 0. Not wholly sol. in H 2 0. (Nilson, J. pr. (2) 14. 30.) K 6 As 4 S 9 + 8H 2 0. (Nilson.) KAs 3 S 5 + H 2 0. Insol. in H 2 0. Slowly at- tacked by hot HCl + Aq. Sol. in KOH + Aq. (Nilson.) Silver sulpharsenite, 12Ag 2 S, As 2 S 3 . Ag 3 AsS 3 . Min. Proustite. Sol. in HN0 3 + Aq. KOH + Aq dissolves out Sb 2 S 3 . (Senar- mont, A. ch. (3) 32. 129 ; Wohler, A. 27. 159.) 2Ag 2 S, As 2 S 3 . Partially sol. in HN0 3 + Aq. (Berzelius. ) AgAsS 2 . (Berzelius, Pogg. 7. 150.) Sodium sulpharsenite, NaAsS 2 + |H 2 0. Attacked by HCl + Aq with difficulty. (Nilson, J. pr. (2) 14. 37.) + 1^H 2 0. Forms coagulum with cold, sol. inhotHoO. (Nilson.) Na 2 As 4 S 7 + 6H 2 0. Sol. in much H 2 ; not easily decomp. by HCl + Aq. (Nilson.) NaAs 3 S 5 + 4H 2 0. Ppt. (Nilson, J. pr. (2) 14. 3.) 392 SULPHARSENITE, STRONTIUM Strontium sulpharsenite, 3SrS, As 2 S 3 +15H 2 0. Sol. in H 2 + Aq ; insol. in alcohol. ( Voigt and Gottling.) 2SrS, As 2 S 3 . Sol. in H 2 ; decomp. by alcohol. + 15H 2 0. (Nilson, J. pr. (2) 14. 53.) Sr(AsS 2 ) 2 + 2iH 2 0. SI. sol. in H 2 0. (Nil- son.) Thallous sulpharsenite, TlAsS 2 . Ppt. Decomp. by KOH+Aq. (Gunning, J.B. 1868. 247.) Stannous sulpharsenite, Sn 2 As 2 S 5 . Ppt. Stannic sulpharsenite, SnAs 2 S 5 . Ppt. (Berzelius, Pogg. 7. 147.) Uranic sulpharsenite, 2U 2 S 3 , As 2 S 3 . Ppt. Zinc sulpharsenite. Ppt. (Berzelius, Pogg. 7. 145.) Zirconium sulpharsenite, 2Zr 2 S 3 , As 2 S 3 . Ppt. Insol. in solutions of alkali sulph- arsenites. SI. sol. in Na 2 S + Aq. Not decomp. by acids. (Berzelius.) "Sulphatammon," 2NH 3 , S0 3 . (Rose.) Is ammonium imidosulphonate, which see. (Berglund.) "Parasulphatammon," 3NH 3 , 2S0 3 . (Rose.) Is basic ammonium imidosulphonate, which see. (Berglund.) Sulphatoiodic acid. Potassium sulphatoiodate, K 2 HOoSI0 4 or KI0 3 , KHS0 4 . Decomp. by H 2 0. (Blomstrand, J. pr. (2) 40. 317.) See lodate sulphate, potassium. Sulphatooctamine cobaltic carbonate, (S0 4 ) 2 Co 2 (NH 3 ) 8 C0 3 + 4H 2 0. Sol. in H 2 0. (Vortmann and Blasberg, B. 22. 2650.) (S0 4 )Co 2 (NH 3 ) 8 (C0 3 ) 2 + 3H 2 0. Sol. in H 2 0. (V. and B.) See Carbonatotetramine cobaltic sulphate. (Jorgensen.) Sulphatoplatinamine sulphate, S0 4 Pt(NH 3 ) 2 S0 4 + 3H 2 0. Easily sol. in H 2 0. Sol. in H 2 S0 4 + Aq. Sulphatoplatincfcamine sulphate, S0 4 Pt(N 2 H 6 ) 2 S0 4 + H 2 0. Insol. in H 2 0. Sulphatopurpureocobaltic bromide, Co(S0 4 )(NH 3 ) 5 Br. Sol. in H 2 0, from which it is precipitated by cone. HBr + Aq. (Jorgensen, J. pr. (2) 25. 94.) - carbonate, [(S0 4 )Co(NH 3 ) 5 ] 2 C0 3 + 4H 2 0. Sol. in H 2 0. (Vortmann and Blasberg, B. 22. 2648.) Sulphatopurpureocobaltic chloroplatinate. 2Co(S0 4 )(NH 3 ) 5 Cl, PtCl 4 + 2H 2 0. SI. sol. in cold H 2 0. (Jorgensen.) - nitrate, Co(S0 4 )(NH 3 ) 5 (N0 3 ). Somewhat si. sol. in cold H 2 0. (Jorgensen.) - sulphate, [Co(S0 4 )(NH 3 ) 5 ] 2 S0 4 + H 2 0. Very easily sol. in H 2 0. (Jorgensen, J. pr. (2) 25. 94.) Co(S0 4 )(NH 3 ) 5 (HS0 4 ) + 2H 2 0. Sol. in about 25 pts. of cold H 2 0. Sol. in dil., insol. in cone. NH 4 OH + Aq. (Jorgensen.) Sulphazic acid, H 4 S 2 N 2 9 = S0 3 H N(QH) N (OH)S0 3 H. Known only in its salts. (Raschig, A. 241. Potassium sulphazate, K S HS 2 N 2 9 = (S0 3 K)(OK)N-0-N(OH)-(S0 3 K). Sol. in H 2 0, but decomp. on standing. (Raschig, A. 241. 161.) Sulphazidic acid. (Fremy. ) See Hydroxylamine wowosulphonic acid. Sulphazilinic acid. See Oxysulphazotic acid. Jf^asulphazilinic acid. See Wsulphoxyazotic acid. Sulphazinous acid. (Fremy.) See Dihydroxylamine sulphonic acid. Sulphazotic acid, H 6 N 2 S 4 14 =(S0 3 H) 3 = NH-NO=OH(S0 3 H). Known only in its salts. (Glaus, A. 158. 52 and 194). Has the formula (S0 3 H) 2 NH<>NH(S0 3 H) 2 . (Raschig, A. 241. 161.) Lead potassium sulphazotate. Insol. in cold, decomp. by hot H 2 0. Insol. in alcohol and ether. (Fremy, A. ch. (3) 15. 439.) Potassium sulphazotate, K 5 HN 2 S 4 14 + H 2 = (S0 3 K) 2 NKNH(S0 3 K) 2 . Very sol. in hot, less in cold H 2 0. (Raschig, A. 241. 161.) Decomp. gradually by boiling. (Glaus.) Insol. in alcohol or ether. (Fremy, A. ch. (3) 15. 428.) Forms basic salt (S0 3 K) 2 NKNK(S0 3 K) 2 , which is easily sol. and decomp. by H 2 0. (Raschig.) Potassium sodium sulphazotate, K 4 NaHN 2 S 4 14 + 2H 2 0. Quite easily sol. in H 2 0. (Raschig, A. 241. 161.) Z^'sulphhydroxyazotic acid, ONH(S0 3 H) 2 . Known only in its salts. (Glaus, A. 158. 52 SULPHOCYANIDE, CHROMIC 393 and 194.) Correct composition is hydroxy- lamine sulphonic acid HON(S0 3 H) 2 , which see. (Raschig, A. 241. 161.) Sulphhydroxylamic acid. (Glaus.) See Hydroxylamine ?/io?iosulphonic acid. Z^'sulphhydroxyazotic acid. (Clans. ) See Hydroxylamine ^'sulphonic acid. Sulphides. The sulphides of the alkali metals are sol. in H 2 ; those of the alkali -earth metals are much less sol., and are decornp. upon solution into hydrosulphide and hydroxide. The other sulphides are insol. in H 2 0. For each sulphide, see under the respective element. Sulphimide, S0 2 NH. See Thionyl imide. "Sulphitammon,"NH 3 , S0 2 . See Thionamic acid. Sulphobismuthous acid. Cuprous sulphobismuthite, CuBiS 2 . Min. Emplectite. Sol. in HN0 3 + Aq. Cu 6 Bi 4 S 9 . Min. Klaprothite. Completely sol. in HCl + Aq. Cu 3 BiS 8 . Min. Wittichenite. Sol. in HC1 + Aq and in HN0 3 + Aq. Cuprous lead , Cu 2 S, 2PbS, Bi 2 S 3 . Min. Patrinite. Sol. in HNOo + Aq with residue of S and PbS0 4 . Lead , 2PbS, Bi 2 S 3 . Min. Cosalite. 2PbS, 3Bi 2 S 3 . Min. Chiviatite. Sulphochromic acid, H 2 Cr0 4 ,S0 3 (?). Sol. in H 2 0. (Bolley, A. 56. 113.) Sulphochromous acid. Ferrous sulphochromite, FeCr 2 S 4 . Insol. in H 2 0, and nearly so in HCl + Aq. (Groger, W. A. B. 81, 2. 531.) Manganous , MnCr 2 S 4 . Insol. in H 2 and HCl + Aq. (Groger.) Sodium , Na 2 Cr 2 S 4 . Insol. in H 2 0. SI. attacked by dil. HC1 or H 2 S0 4 + Aq. Sol. in cold cone. HN0 3 or aqua regia. Sol. in hot dil. HN0 3 + Aq. (Groger. ) Zinc , ZnCr 2 S 4 . Insol. in H 2 ; sol. in traces in boiling cone. HC1 or dil. H 2 S0 4 + Aq; sol. in HN0 3 + Aq. (Groger, W. A. B. 81, 2. 531.) Sulphocyanhydric acid, HSCN. Sol. in H 2 0. Sat. HSCN + Aq has sp. gr. = l'022. (Por- rett, 1814.) HSCN + Aq containing 127 % HSCN has sp. gr. 1-040 at 127. (Hermes, Z. Ch. 1866. 417.) Sulphocyanides. Most sulphocyanides are sol. in H 2 0, but Cu, Pb, Hg, and Ag sulphocyanides are insol. Aluminum sulphocyanide, A1(SCN) S . Known only in solution. A1(SCN) 2 (OH) 4 . Known only in solution. (Suida.) Ammonium sulphocyanide, NH 4 SCN. Deliquescent, and very sol. in H 2 0. 100 pts. H 2 dissolve 128 '1 pts. at and 162-2 pts. at 20. By dissolving 90 g. NH 4 SCN in 90 g. H 2 at 17, the temp, falls to - 12. (Clowes, Z. Ch. 1866. 190.) 133 pts. NH 4 SCN + 100 pts. H 2 at 13 '2 lower the temp. 31 '2. (Riidorff, B. 2. 68.) Easily sol. in alcohol. Easily sol. in acetone. (Krug and M'Elroy.) Ammonium ferric sulphocyanide, 9NH 4 SCN, Fe(SCN) 3 + 4H 2 0. Deliquescent, and sol. in H 2 0. (Kriiss and Moraht, A. 260. 207.) 3NH 4 SCN, Fe(SCN) 3 . Extremely deliques- cent. Ammonium mercuric sulphocyanide, 2NH 4 SCN, Hg(SCN) 2 Easily sol. in H 2 0. (Fleischer, A. 179. 228.) Ammonium silver sulphocyanide, NH 4 SCN, AgSCN. Decomp. by H 2 0. Arsenic sulphocyanide, As(SCN) 3 . Decomp, by H 2 0. Insol. in all ordinary solvents. (Miguel, A. ch. (5) 11.341.) Barium sulphocyanide, Ba(SCN) 2 + 2H 2 0. Deliquescent. Easily sol. in H 2 and alcohol. Boiling solution in alcohol contains 32-8 % anhydrous salt. Solution sat. at 20 contains 30 %. (Tscherniak, B. 16. 349.) Cryst. with 3H 2 0. (Tscherniak, B. 25. 2627.) Bismuth sulphocyanide, Bi(SCN) 3 . Insol. or si. sol. in H 2 0. Sol. in HN0 3 , HC1, and HSCN + Aq. (Meitzendorf, Pogg. 56. 83.) Decomp. by cold H 2 0. (Bender, B. 20. 723.) Bi(SCN) 3 , 2Bi 2 3 . Insol. in H 2 0, but when recently pptd. decomp. by boiling therewith. Insol. in HSCN + Aq. (M.) Cadmium sulphocyanide, Cd(SCN) 2 . SI. sol. in H 2 0. Sol. in NH 4 OH + Aq with combination. Calcium sulphocyanide, Ca(SCN) 2 + 3H 2 0. Deliquescent. Very sol. in H 2 and alcohol. Cerous sulphocyanide, Ce(SCN) 3 + 7H 2 0. Deliquescent. Sol. in H 2 and alcohol. (Jolin, Bull. Soc. (2) 21. 534.) Chromic sulphocyanide, Cr(SCN) 3 . Deliquescent, and sol. in H 2 0. See also Chromisulphocyanhydric acid. 394 SULPHOCYANIDE, COBALTOUS Cobaltous sulphocyanide, Co(SCN) 2 + pI 2 0. Sol. in H 2 and alcohol ; also in ether. Sol. in acetone. (Krug and M'Elroy.) Cobaltous mercuric sulphocyanide, Co(SCN) 2 , Hg(SCN) 2 . Yery si. sol. in H 2 and dil. HCl + Aq. Easily sol. in HN0 3 + Aq. (Cleve, J. pr. 91. 227.) Cuprous sulphocyanide, Cu 2 (SCN) 2 . Insol. in H 2 or dil. acids. SI. sol. in cold, easily in warm cone. HCl + Aq. Decomp. by cone. H 2 S0 4 or HN0 3 + Aq. Sol. with com- bination in NH 4 OH + Aq. Insol. in KSCN + Aq. Cupric sulphocyanide, Cu(SCN) 2 . Decomp. by H 2 to cuprous salt. Sol. in warm HC1, H 2 S0 4 , or HN0 3 + Aq. Sol. in MSCN + Aq, but solutions decomp. by dilution. Sol. inNH 4 OH + Aq. Cuprocupric sulphocyanide, Cu(SCN) 2 , Cu 2 (SCN) 2 . Not attacked by hot HCl + Aq. Insol. in KSCN + Aq. Cuprous potassium sulphocyanide, Cu 2 (SCN) 2 , 12KSCN. Sol. in H 2 0. (Thurnauer, B. 23. 770.) Cupric sulphocyanide ammonia, Cu(SCN) , 2NH 3 . Sol. in little H 2 0, but decomp. by dilution with pptn. of basic salt. Sol. in NH 4 OH + Aq. Didymium sulphocyanide, Di(SCN) 3 + 6H 2 0. Deliquescent, and sol. in H 2 0. Erbium sulphocyanide, Er(SCN) 3 + 6H 2 0. Deliquescent. Sol. in H 2 0. (Hoglund.) Glucinum sulphocyanide, G1(SCN) 2 (?). Sol. in H 2 0. (Hermes, J. pr. 97. 465. ) Aurous potassium sulphocyanide, AuSCN, KSCN. Easily sol. in H 2 0, less in absolute alcohol. (Cleve, J. pr. 94. 16.) Aurous silver sulphocyanide, AuSCN, AgSCN. Insol. in H 2 0. Sol. in NH 4 OH + Aq. Auric potassium sulphocyanide. Sol. in H 2 0, alcohol, and ether. (Cleve.) Aurous sulphocyanide ammonia, AuSCN, jNH 3 . Yery si. sol. in cold, decomp. by hot H 2 0. Ferrous sulphocyanide, Fe(SC]Sr) 2 + 3H 2 0. Yery sol. in H 2 0, alcohol, or ether. Sol. in acetone. (Krug and M'Elroy.) Ferric sulphocyanide, Fe(SCN) 3 + 3H 2 0. Deliquescent. Yery sol. in H 2 0, alcohol, or ether. Ether extracts the salt from Fe(SCN) 3 + Aq. Decomp. by much H 2 if pure. Not decomp. by monobasic acids, but cone. H 2 S0 4 , and H 3 P0 4 , also oxalic, tartaric, malic, etc., acids destroy the colour. Ferric lithium sulphocyanide, Fe(SCN)o, 9LiSCN + 4H 2 0. More deliquescent than the other ferric sulphocyanides. (Krtiss and Moraht.) Ferrous mercuric sulphocyanide, Fe(SCN) 2 , Hg(SCN) 2 + 2H 2 0. Moderately sol. in hot H 2 0. (Cleve, J. pr. 91. 227.) Ferric potassium sulphocyanide, Fe(SCN)o, Extremely deliquescent, and sol. in H 2 0. (Kriiss and Moraht.) Fe(SCN) 3 , 9KSCN + 4H 2 0. Hygroscopic. Sol. in H 2 without decomp. Insol. in pure anhydrous ether, but decomp. by ether con- taining traces of H 2 into Fe(SCN) 3 and KSCN. (Kriiss and Moraht, A. 260. 204.) Ferric sodium sulphocyanide, Fe(SCN) 3 , 9NaSCN + 4H 2 0. Less deliquescent than the corresponding NH 4 or K salt. (Kriiss and Moraht. ) Lanthanum sulphocyanide, La(SCN) 3 + 7H 2 0. Deliquescent; sol. in H 2 0. (Cleve.) Lithium sulphocyanide, LiSCN. Yery deliquescent. Sol. in H 2 and alcohol. (Hermes, Z. Ch. 1866. 417.) Lead sulphocyanide, Pb(SCN) 2 . Nearly insol. in cold, decomp. by boiling H 2 0. (Liebig.) Pt(SCN) 2 , PbO + H 2 0. Insol. in H 2 0. Lead sulphocyanide bromide, Pb(SCN) 2 , 8PbBr 2 . (Grissom and Thorp, Am. Ch. J. 10. 219.) Lead sulphocyanide chloride, Pb 2 Cl 2 (CNS) 2 . Sol. in H 2 0. (Grissom and Thorp, Am. Ch. J. 10. 229.) Lead sulphocyanide iodide, 3Pb(SCN) 2 , PbI 2 . Sol. in H 2 0. (Grissom and Thorp, Am. Ch. J. 10. 229.) Magnesium sulphocyanide, Mg(SCN) 2 + 4H 2 0. Deliquescent. Easily sol. in H 2 and alcohol. Manganous sulphocyanide, Mn(SCN) 2 + 3H 2 0. Deliquescent. Easily sol. in H 2 and alcohol. Mercurous sulphocyanide, Hg 2 (SCN) 2 . Insol. in H 2 0. Sol. in hot HCl + Aq. Slowly decomp. by hot aqua regia. Sol. in hotKSCN + Aq. Mercuric sulphocyanide, basic, Hg(SCN) 2 , 3HgO. Insol. in H 2 0. Easily sol. in HCl + Aq. Insol. in H 2 S0 4 or HN0 3 + Aq. (Fleischer.) Hg(SCN) 2 , 2HgO. Insol. in H 2 0. SI. attacked by acids. (Glaus, J. pr. 15. 401.) Mercuric sulphocyanide, Hg(SCN) 2 . Yery si. sol. in cold, much more easily in hot H 2 0. Easily sol. in dil. HCl + Aq. (Crookes, Chem. Soc. 4. 18.) SULPHOMOLYBDATE, LEAD 395 Sol. in Hg(N0 3 ) 2> or KSCN + Aq, also in NH 4 Cl + Aq. Sol. in many sulphocyanides + Aq. Lead sulphocyanide chloride, PbSCNCl. SI. sol. in cold, easily sol. in hot H 2 0. (Murtry, Chem. Soc. 65. 50.) Mercuric nickel sulphocyanide, Hg(SCN) 2 , Ni(SCN) 2 + 2H 2 0. Moderately sol. in hot H 2 0. (Cleve, J. pr. 91. 227.) Mercuric potassium sulphocyanide, Hg(SCN)o, KSCN. Sol. in cold, more easily in hot H 2 0. Sol. in alcohol and ether. Very sol. in NH 4 C1 or KCl + Aq. (Glaus.) Mercuric zinc sulphocyanide, Hg(SCN) 2 , Zn(SCN) 2 . Scarcely sol. in cold H 2 0. Easily sol. in HCl + Aq. (Cleve.) Mercuric sulphocyanide ammonia, 2Hg(SCN) 2 , Decomp. by H 2 and alcohol. Molybdenum sulphocyanide, Mo(SCN) 3 (?). Sol. in H 2 and ether. (Braun, Z. anal. 6. 86.) Nickel sulphocyanide, Ni(SCN) 2 + iH 2 0. Sol. in H 2 and alcohol. Insol. in acetone. (Krug and M'Elroy.) Nickel sulphocyanide ammonia, Ni(SCN) 2 , 4NH 3 . Decomp. by H 2 0. Platinous sulphocyanide, Pt(SCN) 2 (?). Insol. in H 2 0. See Platinosulphocyanides, and Platinoso- sulphocyanides. Potassium sulphocyanide, KSCN. Deliquescent. Very sol. in H 2 0. 100 pts. H 2 dissolve 177 '2 pts. at 0, and 217 '0 pts. at 20. 150 pts. KSCN + 100 pts. H 2 at 10 '8 lower the temp. 34 '5. (Rudorff, B. 2. 68.) Sol. in alcohol, especially easily if boiling. Sol. in acetone. (Krug and M'Elroy.) Potassium silver sulphocyanide, KSCN, AgSCN. Decomp. by H 2 0. Silver sulphocyanide, AgSCN. Insol. in H 2 or acids, excepting cone. H 2 S0 4 or HN0 3 . Insol. in dil., sol. in cone. NH 4 OH + Aq. Sol. in KSCN + Aq. Insol. in AgN0 3 or NH 4 SCN + Aq. Sol. in Hg 2 (N0 3 ) 2 + Aq. Silver sulphocyanide ammonia, AgSCN, 2NH 3 . Decomp. by H 2 0. Samarium sulphocyanide, Sm(SCN) 3 + 6H 2 0. Very deliquescent. (Cleve. ) Sodium sulphocyanide, NaSCN. Very deliquescent. Very sol. in H 2 and alcohol. Strontium sulphocyanide, Sr(SCN) 2 + 3H 2 0. Very deliquescent, and sol. in H 2 and alcohol. Thallous sulphocyanide, T1SCN. SI. sol. in cold H 2 0. Insol. in alcohol. Stannous sulphocyanide, Sn(SCN) 2 . Sol. in H 2 and alcohol. (Clasen, J. pr. 96. 349.) Yttrium sulphocyanide, Y(SCN) 3 + 6H 2 0. Not deliquescent. Very sol. in H 2 0, alcohol, or ether. Zinc sulphocyanide, Zn(SCN) 2 . Less sol. in H 2 and alcohol than most other cyanides. Zinc sulphocyanide ammonia, Zn(SCN) 2 , 12NH 3 . Decomp. by H 2 0. Sol. in NH 4 OH + Aq. Sulphocyanoplatinic acid. See Platinosulphocyanhydric acid. Sulphocyanoplatinous acid. See Platinososulphocyanhydric acid. Sulphomolybdic acid, Ammonium sulphomolybdate, (NH 4 ) 2 MoS 4 . Easily sol. in H 2 ; very si. sol. in alcohol. (Berzelius, Fogg. 83. 261.) Ammonium cupric sulphomolybdate. SI. sol. in H 2 0. (Debray, C. R. 96. 1616.) Barium sulphomolybdate, BaMoS 4 . More sol. in H 2 than BaMo 3 S ]0 . Known only in solution. (Berzelius. ) BaS, 3MoS 3 = BaMo 3 S 10 . SI. sol. in cold, easily sol. in hot H 2 0. Not decomp. by cone, cold HNOg + Aq, but more easily by dil. HN0 3 + Aq. (Berzelius. ) Cadmium sulphomolybdate. Insol. in H 2 0. (Berzelius.) Caesium sulphomolybdate. Easily sol. in H 2 0. (Kriiss, B. 19. 2733.) Calcium sulphomolybdate, CaS, 3MoS 3 . Sol. in H 2 0. (Berzelius. ) CaMoS 4 . More sol. in H 2 than CaS, 3MoS 3 . Known only in solution. (Berzelius.) Cerium sulphomolybdate. Precipitate. (Berzelius.) Cobalt sulphomolybdate, CoMoS 4 . Sol. in K 2 MoS 4 + Aq. (Berzelius.) Cupric sulphomolybdate. (Debray, C. R. 96. 1616.) Ferrous sulphomolybdate, FeMoS 4 . Sol. in H 2 0. (Berzelius.) Ferric sulphomolybdate, Fe 2 (MoS 4 ) 3 . Sol. in K 2 MoS 4 + Aq. Lead sulphomolybdate. Ppt. (Berzelius.) SULPHOMOLYBDATE, LITHIUM Lithium sulphomolybdate. Not deliquescent, but very easily sol. in H 2 0. (Berzelius.) Magnesium sulphomolybdate, MgMoS 4 . Sol. in K 2 MoS 4 + Aq. (Berzelius.) Manganous sulphomolybdate, MnMoS 4 . Sol. in H 2 0. (Berzelius.) Mercurous sulphomolybdate, Hg 2 MoS 4 (?). Ppt. Mercuric sulphomolybdate, HgMoS 4 . Insol. in K 2 MoS 4 + Aq. Nickel sulphomolybdate, NiMoS 4 . Sol. in K 2 Mo0 4 + Aq. (Berzelius.) Potassium sulphomolybdate, basic, K 6 Mo 2 S 9 . Easily sol. in H 2 0. Insol. in alcohol and ether. (Kriiss, B. 16. 2050.) Potassium sulphomolybdate, K 2 MoS 4 . Sol. in H 2 0, from which it is precipitated by alcohol. (Berzelius.) Silver sulphomolybdate, Ag 2 MoS 4 . Ppt. Sodium sulphomolybdate, Na 2 MoS 4 . Sol. in H 2 0, and not precipitated by alcohol from aqueous solution. (Berzelius.) Strontium sulphomolybdates. Exactly analogous to the Ba salts, which see. (Berzelius.) Zinc sulphomolybdate. Ppt. Insol. in H 2 0. (Berzelius.) Jfcwosulphomolybdic acid. Sodium mcwosulphomolybdate, Na 2 Mo0 3 S. Rather hygroscopic. Sol. in H 2 ; forms deep blue solution with H 2 S0 4 . Sol. in HC 2 H 3 2 + Aq. (Kriiss, A. 225. 1.) Z^'sulphomolybdic acid. Ammonium ^sulphomolybdate, (NH 4 ) 2 Mo0 2 S 2 . SI. sol. in cold, easily in hot H 2 0. Insol. in sat. NH 4 Cl + Aq and absolute alcohol. Aqueous solution is decomp. by boiling. (Bodenstab, J. pr. 78. 186.) Potassium ^sulphomolybdate, K 2 Mo0 2 S 2 . Very sol. in H 2 and alcohol. Sol. in HC 2 H 3 2 + Aq. (Kriiss, B. 16. 2046.) ^'sulphomolybdic acid. Ammonium hydrogen /!'sulphqp2/romolybdate, NH 4 HMo 2 4 S 3 . Precipitate. Insol. in alcohol or CS 2 . (Kriiss, B. 16. 2047.) Potassium hydrogen tfmulphowwomolybdate, KHMo 2 4 S 3 . Very easily sol. in H 0. (Kriiss, B. 16. 2048.) Sodium hydrogen ^'sulphq^T/romolybdate, NaHMo 2 4 S 3 . Precipitate. Much more sol. in H 2 than the NH 4 compound. (Kriiss, B. 16. 2047.) Potassium sulphomolybdate, K 8 Mo 4 S 9 7 . Sol. in H 2 0, HC 2 H 3 2 , and H 2 S0 4 . (Kriiss, B. 17. 1771.) Persulphomolybdic acid, H 2 MoS 5 . Precipitate. Insol. in H 2 0, alcohol, ether, CS 2 , and acetic acid. Decomp. slowly by hot H 2 S0 4 . Sol. in warm KOH + Aq, and cold K 2 S + Aq. Not attacked by cold KSH + Aq, but "dissolves on warming. (Kriiss, B. 17. 1773.) Ammonium ^ersulphomolybdate, (NH 4 ) 2 MoS 5 . Very si. sol. in cold, more easily in hot H 2 0. Insol. in NH 4 OH + Aq. (Berzelius.) Barium , BaMoS 5 . Insol. in boiling H 2 or dil. HCl + Aq. (Berzelius.) Calcium . Difficultly sol. in H 2 0. (Berzelius.) Cerium . Precipitate. (Berzelius.) Ferrous . Insol. in Fe salts + Aq, but sol. in K 2 MoS 5 + Aq. (Berzelius.) Ferric . Ppt. Lithium . SI. sol. in cold, easily sol. in hot H 2 0. (Berzelius.) Magnesium . Insol. precipitate. (Berzelius.) Nickel . Ppt. Sol. in K 2 MoS 5 + Aq, from which it separates in 24 hours. (Berzelius.) Potassium -, K 2 MoS 5 . Almost insol. in cold, more sol. in hot H 2 0. Insol. in cold KOH + Aq. (Berzelius.) Potassium hydrogen , KHMoS 5 . So]. inH 2 0. (Kriiss.) Sodium , Na 2 MoS 5 . SI. sol. in cold, easily in hot H 2 0. (Ber- zelius. ) Sodium hydrogen , NaHMoS 5 . (Kriiss.) Sulphopalladic acid. Potassium palladious sulphopalladate, K 2 S, Pd 2 S, PdS 2 = K 2 Pd 3 S 4 . Insol. in H 2 0. Moderately cone. HCl + Aq dissolves out K without evolution of H 2 S. (Schneider, Pogg. 141. 526.) Silver sulphopalladate, Ag 2 PdS 3 . (Schneider. ) Silver palladious sulphopalladate, Ag 2 S, Pd 2 S, PdS 2 =Ag 2 Pd 3 S 4 . Extraordinarily stable. (Schneider.) Sodium sulphopalladate, Na 2 PdS 3 . Slowly sol. in H 2 0. Insol. in alcohol. (Schneider, Pogg. 141. 520.) SULPHOPLATINATE, SODIUM 397 Sulpha-phosphide of M. See M. phosphosulphide. Sulphophosphamic acid, '. See Thiophosphamic acid. SulphophosphocKamic acid, PS () OH P See Thiophosphocfo'amic acid. Sulphophospho^'amide, PS(NH 2 ) 3 . See Thiophosphoryl (?). Sulphophosphoric acid, H 3 PS0 3 . See Thiophosphoric acid. H 3 PS 4 . Known only in its salts. Antimony sulphophosphate, SbPS 4 . Insol. in H 2 0, alcohol, ether, CS 2 , HCl + Aq, dil. H 2 S0 4 + Aq, C 6 H 6 , or HC 2 H 3 2 . Decomp. by boiling with cone. HN0 3 + Aq, H 2 S0 4 , aqua regia, KOH, NaOH or NH 4 OH + Aq. (Glatzel, B. 24. 3886.) Arsenic sulphophosphate, AsPS 4 . Insol. in H 2 0, alcohol, HCl + Aq, etc. De- comp. by warm HN0 3 , aqua regia, dil. H 2 S0 4 , also sol. in KOH or NH 4 OH + Aq. (Glatzel, Z. anorg. 4. 186.) Bismuth sulphophosphate, BiPS 4 . Insol. in H 2 0, alcohol, ether, CS 2 , benzene, HC 2 H 3 2 , or dil. H 2 S0 4 + Aq. Decomp. by boiling HCl + Aq, cone. H 2 S0 4 , HNO S , or aqua regia ; also by NaOH, KOH, or NH 4 OH + Aq. (Glatzel, Z. anorg. 4. 186.) Cadmium sulphophosphate, Cd 3 (PS 4 ) 2 . Insol. in H 2 0, alcohol, ether, benzene, CS 2 , and HC 2 H 3 Oo. Decomp. by hot HCl + Aq. Very si. attacked by dil. H 2 S0 4 + Aq. Slowly sol. in hot HN0 3 , rapidly in aqua regia, or hot cone. H 2 S0 4 . (Glatzel, Z. anorg. 4. 186.) Cuprous sulphophosphate, Cu 3 PS 4 . Insol. in H 2 0, alcohol, etc. ; also in HC1 or dil. H 2 S0 4 + Aq. Decomp. by HN0 3 , aqua regia, etc., not by KOH or NaOH + Aq. (Glatzel.) Ferrous sulphophosphate, Fe 3 (PS 4 ) 2 . Insol. in H 2 0, alcohol, ether, etc. ; insol. in HC1 or hot dil. H 2 S0 4 + Aq. Decomp. by HN0 3 , aqua regia, or cone. H 2 S0 4 . Not attacked by KOH or NH 4 OH + Aq. (Glatzel. ) Lead sulphophosphate, Pb 3 (PS 4 ) 2 . Insol. in H 2 0, alcohol, etc. Decomp. by warm HCl + Aq, cone. HN0 3 + Aq ; not at- tacked by NH 4 OH + Aq; si. decomp. by KOH + Aq. (Glatzel.) Manganous sulphophosphate, Mn 3 (PS 4 ) 2 . Insol. in -H 2 0, alcohol, ether, benzene, CS 2 , or HC 2 H 3 2 . Not attacked by HCl + Aq. Sol. in HN0 3 or aqua regia, with separation of S. Not attacked by dil. H 2 S0 4 + Aq. (Glatzel, Z. anorg. 4. 186.) Mercuric sulphophosphate, Hg 3 (PS 4 ) 2 . Insol. in H 2 0, alcohol, etc. ; also in HC1, dil. HN0 3 , or H 2 S0 4 + Aq. Not attacked by cone. HN0 3 or aqua regia ; easily sol. in HN0 3 + Br 2 + Aq. (Glatzel.) Nickel sulphophosphate, Ni 3 (PS 4 ) 2 . As the ferrous salt. (Glatzel.) Silver sulphophosphate, Ag 3 PS 4 . Insol. in H 2 0, alcohol, etc. ; also in HC1, HN0 3 , or dil. H 2 S0 4 + Aq. Decomp. by cone. H 2 S0 4 , and aqua regia. (Glatzel. ) Thallous sulphophosphate, T1 3 PS 4 . Insol. in H 2 0, alcohol, etc. Sol. in HC1, dil. H 2 S0 4 + Aq, etc. Not attacked by NH 4 OH + Aq ; si. decomp. by cone. KOH + Aq. (Glatzel. ) Stannous sulphophosphate, Sn 3 (PS 4 ) 2 . Insol. in H 2 0, alcohol, etc. Insol. in dil. H 2 S0 4 or HCl + Aq. Decomp. by HN0 3 + Aq, aqua regia, NH 4 OH, or KOH + Aq. (Glatzel.) Zinc sulphophosphate, Zn 3 (PS 4 ) 2 . Insol. in H 2 0, alcohol, ether, etc. Sol. in HC1 + Aq or dil. H 2 S0 4 + Aq. Easily attacked by KOH + Aq; si. decomp. by NH 4 OH + Aq. (Glatzel.) Sulphophosphorous acid, H H 3 PS0 2 =SPOH (?). OH See Thiophosphorous acid. Sulphoplatinic acid, H 2 Pt 4 S 6 . Insol. in H 2 0, but decomp. on air. (Schneider, Pogg. 138. 604.) H 4 Pt 3 S 6 . Insol. in H 2 0, but decomp. very rapidly on air. (Schneider.) Copper sulphoplatinate, 2CuS, 2PtS, PtS 2 . Insol. in H 2 0. HC1, HN0 3 , or aqua regia dissolve out part of the Cu. (Schneider, Pogg. 139. 661.) Lead sulphoplatinate, 2PbS, 2PtS, PtS 2 . Insol. in hot or cold H 2 or HCl + Aq. HN0 3 + Aq dissolves out Pb partly ; aqua regia dissolves completely with difficulty. (Schneider, Pogg. 139. 662.) Mercuric sulphoplatinate chloride, 2HgS, 2PtS, PtS 2 , 2HgCl 2 . Insol. in H 2 ; not attacked by HCl + Aq, and only partially sol. in boiling aqua regia. (Schneider.) Potassium sulphoplatinate, K 2 Pt 4 S 6 . Insol. in H 2 0. HCl + Aq dissolves out K without evolution of H 2 S. Composition is potassium platinous sulpho- platinate, KoS, 3PtS, PtS 2 . (Schneider, Pogg. 138. 604.) K 2 PtS 2 . Silver sulphoplatinate, 2Ag 2 S, 2PtS, PtS 2 . Insol. in H 2 or HCl + Aq. HN0 3 + Aq dissolves out Ag on warming. Aqua regia decomp. with formation of AgCl. (Schneider, Pogg. 138. 664.) Sodium sulphoplatinate, Na 4 Pt 3 S 6 =2Na 2 S, 2PtS, PtS 2 . Decomp. by hot H 2 0, with residue of PtS 2 . (Schneider.) 398 SULPHOPLATINATE, THALLIUM , PtS, 2PtS 2 . Insol. in H 2 0. (Schneider, J. pr. (2) 48. 418.) Thallium sulphoplatinate, 2T1 2 S, 2PtS, PtS 2 . Insol. in cold H 2 0. Dil. acids dissolve out all the thallium. (Schneider, Pogg. 138. 626.) Sulphoplatinous acid, H 2 PtS 2 . Known only in solution in H 2 0, which soon decomposes. (Schneider, J. pr. (2) 48. 424.) Sodium sulphoplatinite, Na 2 PtS 2 . Sol. in H 2 with decomp. (Schneider, J. pr. (2) 48. 420.) H 4 Na 2 (PtS 2 ) 3 . Sol. in H 2 0, from which it is pptd. by alcohol. (Schneider.) Sulphoselenyl chloride, SSe0 3 Cl 4 . Deliquescent ; decomposed by H 2 0. (Claus- nitzer, B. 11. 2007.) Sulphostannic acid, H 2 SnS 3 . Ppt. (Kiihn, A. 84. 110.) Does not exist. (Storch, W. A. B. 98, 2b. 236.) Ammonium sulphostannate, (NH 4 ) 2 S, 3SnS 2 + 6H 2 0. Easily sol. in H 2 0, and easily decomp. (Ditte, C. E. 95. 641.) Barium sulphostannate, BaSnS 3 + 8H 2 0. Sol. in cold H 2 0. (Ditte, C. R. 95. 641.) Calcium sulphostannate, 2CaS, SnS 2 + 14H 2 0. Sol. in H 2 0. (Ditte, C. R. 95. 641.) r^raplatinous sulphostannate, 4PtS, SnS 2 . Not decomp. by acids. (Schneider, J. pr. (2) 7. 214.) Platinum potassium sulphostannate, 3PtS, K 2 S, SnS 2 . Insol. in cold H 2 0. Dil. HC1 or HC 2 H 3 2 + Aq dissolves out all the potassium. (Schneider, Pogg. 136. 109.) Platinum sodium sulphostannate, 3PtS, Na 2 S, SnS 2 . Insol. in cold H 2 0. (Schneider, Pogg. 136. 109.) Potassium sulphostannate, K 2 SnS 3 . Sol. in H 2 0. (Kiihn, A. 84. 110.) + 3H 2 0. (Ditte, C. R. 95. 641.) Sodium sulphostannate, Na 2 SnS 3 + 2H 2 0. SI. sol. in H 2 0. (Kiihn, A. 84. 110.) + 3H 2 0. (Ditte, C. R. 95. 641.) + 7H 2 0. Sol. in H 2 0. (Horing, Zeitsch. Pharm. 1851. 120.) Na 4 SnS 4 + 12H 2 0. Melts in crystal H 2 on heating. Very sol. in H 2 0. (Kiihn.) Strontium sulphostannate, SrSnS 3 + 12H 2 0. Sol. in H 2 0. (Ditte, C. R. 95. 641.) ZH'sulphopersulplmric acid. Sodium ^sulphopersulphate, Na 2 S 4 8 . Sol. in H 2 0. Cryst. in cold with 2tt>0. (Villiers, C. R. 106. 851, 1354.) Contains 4H more and is sodium tetra- thionate, Na 2 S 4 6 + 2tt>0. (Villiers, C. R. 108. 402.) Sulphotelluric acid. Mercurous sulphotellurate, 3Hg 2 S, TeS 2 . Ppt. Mercuric , 3HgS, TeS 2 . Ppt. (Berzelius.) Potassium , K 2 TeS 4 . Sol. in H 2 0. (Oppenheim, J. pr. 71. 279.) Sodium . Sol. in H 2 0. (Oppenheim.) Sulphotellurous acid. Ammonium sulphotellurite, 3(NH 4 ) 2 S, TeS 2 Decomp. on air. Sol. in H 2 0. Barium . Very slowly sol. in H 2 0. Calcium . Cerium . Insol. ppt. Cobalt , Ppt. Copper , Ppt. Ferrous Ppt. Ferric . Ppt. Lead . Co 3 TeSg. Cu 3 TeS 5 . Ppt. Lithium . Sol. in H 2 0. Magnesium . Sol. in H 2 and alcohol. Manganous . Ppt. Potassium , 3K 2 S, TeS 2 . Sol. in H 2 0. Silver , 3Ag 2 S, TeS 2 . (Berzelius.) Sodium . Sol. in H 2 O. Strontium . Sol. in H 2 0. Zinc , 3ZnS, TeS 2 . Ppt. (Berzelius. ) Sulphotungstic acid. Ammonium sulphotungstate, (NH 4 ) 2 WS 4 . Very deliquescent. Easily sol. in H 2 0, and still more easily in NH 4 OH + Aq. (Corleis, A. 232. 244.) More sol. in pure H 2 than in H 2 acidified with HC1. Decomp. slowly on air. (Ber- zelius. ) Barium . Sol. in BaS + Aq. SULPHOXYARSENATE, SODIUM 399 Cadmium sulphotungstate, CdWS 4 . Ppt. (Berzelius. ) Calcium - . Sol. in H 2 and alcohol. (Berzelius.) Cobalt - , CoWS 4 . SI. sol. in H 2 0. Copper - , CuWS 4 . Ppt. Glucinum - , G1WS 4 . Sol. in H 2 (?). Ferrous -- , FeWS 4 . Sol. in H 2 0. Ferric -- . Ppt. Lead -- , PbWS 4 . Ppt. (Berzelius.) Magnesium -- , MgWS 4 . Easily sol. in H 2 or alcohol. Manganous - , MnWS 4 . Sol. inHj,0. (Berzelius.) Mercurous - . Ppt. (Berzelius.) Mercuric -- , HgWS 4 . Ppt. (Berzelius.) Nickel -- , NiWS 4 . Ppt. (Berzelius.) Potassium Sol. in H 2 0. Alcohol precipitates from aqueous solutions, but is not entirely insol. in alcohol. (Berzelius.) Very sol. in H 2 0. (Corleis, A. 232. 264.) Potassium -- nitrate, K 2 WS 4 , KN0 3 . Very sol. in cold or hot H 2 0, from which it is precipitated by alcohol. (Berzelius.) Potassium - K 2 W0 4 . tungstate, K 2 W0 2 S 2 - K 2 WS 4 , Not precipitated by Easily sol. in H 2 0. alcohol. (Berzelius.) Is potassium ^^sulphotungstate, K 2 WOS 3 , which see. (Corleis, A. 232. 244.) Silver , Ag 2 WS 4 . Ppt. (Berzelius.) Sodium , Na 2 WS 4 . Very sol. in H 2 ; less sol. in alcohol. (Berzelius.) Very deliquescent. (Corleis, A. 232. 264.) Strontium . Sol. in H 2 0, and in SrS + Aq. Stannous , SnWS 4 . Ppt. (Berzelius. ) Stannic sulphotungstate, SnWS 5 . Ppt. (Berzelius. ) Zinc , ZnWS 4 . Sol. in H 2 with subsequent pptn. (Ber- zelius. ) Jt/o^osulphotungstic acid. Potassium wowosulphotungstate, K 2 W0 3 S + H 2 0. Deliquescent in moist air. Very sol. in H 2 0. (Corleis, A. 232. 244.) Z^'sulphotungstic acid. Ammonium ^'sulphotungstate, (NH 4 ) 2 W0 2 S 2 . Sol. in H 2 and alcohol. (Berzelius.) Decomp. easily when moist. (Corleis, A. 232. 264.) ^mulphotungstic acid. Potassium ^mulphotungstate, K 2 WOS 3 + H 2 0. Hygroscopic. Effloresces on dry air and easily decomposed. Easily sol. in H 2 0. (Corleis, A. 232. 244.) Sulphovanadic acid, V 2 5 , 3S0 3 + 3H 2 0. See Vanadiosulphuric acid, and Sulphate, vanadium. Sulphovanadates. Alkali sulphovanadates are sol. in H 2 0. Ca, Sr, and Ba sulphovanadates are si. sol. in H 2 0, and all other sulphovanadates are insol. in H 2 0. (Berzelius.) Ammonium sulphovanadate, (NH 4 ) 3 VS 4 . Easily sol. in H 2 0. Very si. sol. in cone. NH 4 SH + Aq. Insol. in ether, CS 2 , or CHC1 3 . (Kriiss and Ohnmais, A. 263. 46.) See also Sulphoxyvanadic acid. Sulphoxyarsenic acid, H 3 As0 3 S. Known only in aqueous solution. (M'Cay, Am. Ch. J. 10. 459.) Barium wo?iosulphoxyarsenate, BaHAs0 3 + 10H 2 0. (Preis, A. 257. 184.) Barium cfo'sulphoxyarsenate, Ba 3 (AsS<,0 2 ) 9 + 4H 2 0. Ppt. (Preis, A. 257. 185.) Potassium sulphoxyarsenate, KH 2 AsS0 3 . Sol. in H 2 ; solution slowly decomp. on standing. (M'Cay, Am. Ch. J. 10. 459.) Formula given by Bouquet and Cloez (A. ch. (3) 13. 44) was K 2 H 4 As 2 S 3 5 . Sodium wcwosulphoxyarsenate, Na 3 AsS0 3 + 12H 2 0. Easily sol. in H 2 0. (Preis, A. 257. 180.) Na 2 HAsS0 3 + 8HoO. Easily sol. in H 2 0. (Preis.) Sodium ^'sulphoxyarsenate, N"a 3 AsS 2 2 + 10H 2 0. Easily sol. in H 2 0. (Preis.) 400 SULPHOXYARSENATE, SODIUM Sodium Zmulphoxycfo'arsenate, As 2 2 S 3 , 3Na 2 + 24H 2 0. Easily sol. in H 2 0. (Geuther, A. 240. 208.) 2As 2 2 S 3 ,Na 2 + 7H 2 0. Sol.inH 2 0. (Nilson, J. pr. (2) 14. 14.) Correct composition is (Preis.) Sodium sulphoxyarsenate, ,, + 30H 2 0. gS^O? + 30H0. , 6As 2 S 2 , 3As 2 S 4 + 30 Decomp. by H 2 0. Sol. in NH 4 OH or KOH + Aq. (Preis, A. 257. 187.) = Sodium oxyr^sulpharsenate of Nilson. Sodium >e?itosulphoxy^rarsenate, Na 12 As 4 S 5 O n + 48H 2 0. Less sol. in H 2 than other sulphoxy- arsenates. (Preis.) ^Wsulphoxyazotic acid, ON(S0 3 H) 3 . Known only in its salts. (Glaus, 158. 52 and 194.) Has the formula (S0 3 H) 3 NN(S0 3 H) 3 . (Raschig, A. 241. 161.) Potassium iJmulphoxyazotate, ON(S0 3 K) 3 + H 2 - (S0 3 K) 3 N<>N(S0 3 K) 3 . Easily sol. in H 2 B without decomp. , even on boiling. (Claus, A. 157. 210.) Sulphoxyphosphorous acid, H H 3 PS 2 = OPSH (?). SH See Thiophosphorous acid. Sulphoxyvanadic acid. Ammonium ^7/roAeccasulphoxyvanadate, (NH 4 ) 4 V 2 S 6 0. Sol. in H 2 0. (Kriiss and Ohnmais, A. 263. 53.) Potassium ^7/ro/iexasulphoxyvanadate, K 4 V 2 S 6 + 3H 2 0. Melts in crystal H 2 0. (Kriiss and Ohnmais. ) K 8 V 4 S 12 2 + 3H 2 0. More sol. in H 2 than preceding comp. (K. and 0. ) Sodium or^o^Hsulphoxyvanadate, Na 3 VS 3 + 5H 2 0. Very deliquescent, and easily sol. in H 2 0. Somewhat sol. in alcohol. (Kriiss and Ohn- mais. ) Sodium or^0?7ioftOBulphoxyvanadate, Na 3 VS0 3 + 10H 2 0. Less sol. in H 2 than other sulphoxyvana- dates. (K. and 0.) Sulphur, S. The various modifications of sulphur have been classified in many different ways, and there is a difference of opinion as to whether certain forms are true allotropic modifications or not. The data, as far as concerns the solubility, may be arranged as follows : A. Sol. in CS 2 . 1. Rhombic, octahedral, or alpha sulphur, ordinary sulphur. Easily sol. in CS 2 , etc. See below for solubility in various solvents. 2. Prismatic, monoclinic, or beta sulphur. Sol. in CS 2 , but is converted into A, 1. Pris- matic sulphur obtained by melting brimstone is not wholly sol. in CS 2 on account of admix- ture -of gamma sulphur. 3. Soft sulphur, milk of sulphur. 4. Amorphous sol. sulphur is also a separate modification, according to Berthollet. B. Soft sulphur, obtained by strongly heat- ing and quickly cooling, is sol. in CS 2 , but becomes insol. therein by repeatedly dissolving and evaporating. More easily sol. in CS 2 than A, 1. C. Insol. in CS 2 . 1. By action of strong light on S in CS 2 . 2. By heating to b.-pt., cooling suddenly, and allowing to stand until hard. Has been called gamma sulphur, but is a mixture of A, 4 and insol. S. 3. Insol. S in flowers of sulphur. Converted into A. 1 by standing 3 days with alcohol. According to Berthelot (A. ch. (3) 49. 430) there are only two varieties of S. I. "Octa- hedral," II. "Amorphous." I. Octahedral. Sol. in CS 2 . Scarcely acted upon by KHS0 3 + Aq. Converted by oxidising agents into II. II. Amorphous. Insol. in neutral solvents, viz. H 2 0, alcohol, ether, CS 2 , etc. Sol. with tolerable rapidity in KHS0 3 + Aq. By long action of lsTa 2 S + Aq, a portion is dis- solved, and the remainder converted into I. Less easily oxidised by HN0 3 + Aq than I. Some varieties of this modification are sol. to a certain extent in alcohol and ether, and by boiling the rest of the sulphur is converted into I ; also by long - continued contact with cold alcohol. Berthelot holds that the modifica- tion is changed before dissolving. Solutions of the alkalies, alkali salts, and alkali sul- phides all change insol. into sol. sulphur. (Berthelot.) Elastic sulphur obtained by pouring molten sulphur at a temp, of over 260 into H 2 contains 35 % or more of a modification of S which is insol. in CS 2 , hot or cold, but sol. in abso- lute alcohol ; this modification can be converted back into ord. sulphur by heating to 100. (Pelouze and Fremy.) (See C. 2.) This modification can be obtained also by action of HC1 on thiosulphates. (Fordos and Gelis.) The soft pasty sulphur obtained by decom- position of H 2 S by S0 2 forms an almost clear emulsion (pseudo- solution) with H 2 0, from which it is pptd. by various salts and sub- stances which have no chemical affinity for it. 23 pts. S combine in this way with 100 pts. H 2 0. When pptd. by saline solutions, some of the S remains in solution. When solution is exposed to the light, S gradually separates out ; also on boiling the same takes place. The above pseudo-solution is pptd. by mineral acids, and the pptd. S may still be dissolved SULPHUR 401 in fresh water, if not left in contact for some time with the acid. Also pptd. by K salts, with loss of power of forming pseudo-solutions. Pptd. by NH 4 and Na salts without losing that power. Alkali hydrates, carbonates, or sul- phides convert it into insol. S. The solution may be mixed with alcohol without change. Decomp. by long shaking with naphtha or oil of turpentine. The pseudo- solution combines with CS 2 , forming an emul- sion which subsequently decomposes. The S itself is only partially sol. in CS 2 . (Selmi, J. pr. 57. 49.) " Delta" sulphur. Partly sol. in H 2 0. (Debus, Chem. Soc. 53. 18.) A colloidal form wholly sol. in H 2 exists, which, however, decomposes very easily. (Engel, C. R. 112. 866.) Black sulphur. Insol. in alcohol, ether, CS 2 , fatty oils even at 200, cold alkali hydroxides + Aq, H 2 S0 4 , HlSTOg, or aqua regia. (Knapp, J. pr. (2) 43. 305.) The following data relate to octahedral or ordinary sulphur (A. 1) : Sol. in warm liquid H 2 S (Niemann) ; warm P 2 S 3 , SBr 2 , SCla, Br 2 , NC1 3 , BaS + Aq (Dumas) ; in alcoholic solution of K 2 S 5 , but is repptd. by addition of H to sat. solution. Sol. in liquid S0 2 . Sol. in aqueous solution of alkali sulphates, especially when hot. SI. sol. in boiling cone. HSCN + Aq, from which it mostly separates on cooling. NaaCOg + Aq (5 '6 % Na^COg) dissolves no S at 20 ; 0-06775 % at 100. (Pohl, Dingl. 197. 508.) S 2 C1 2 dissolves 6674 % S at ord. temp, to form a liquid of 17 sp. gr. (Rose.) Solubility in SnCl 4 . 100 g. SnCl 4 dissolve at : 99 101 110 110 5-8 6-2 87 9-1 pts. solid S, 112 112 121 9-4 9'9 17'0 pts. liquid S. (Gerardin.) Sol. in alkalies + Aq with decomp. Sol. in 19267 pts. absolute alcohol at 15. (Pohl, W. A. B. 6. 600.) Sol. in 20 pts. hot nearly absolute alcohol, less sol. in weaker alcohol. (Laurogais.) Sol. in 600 pts. boiling alcohol of 40 B. (Chevallier, J. ch. med. 2. 587) ; in 500 pts. alcohol (Meissner) ; 200 pts. alcohol (Pelouze and Fremy). 100 pts. absolute methyl alcohol dissolve 0-048 pt. at 18'5 ; 100 pts. absolute ethyl alcohol dissolve '053 pt. at 18 '5. (Bodliinder, Z. phys. Ch. 7.) Solubility in amyl alcohol. 100 g. amyl alcohol dissolve at : 95 ' 110 110 1-5 2-1 2-2 pts. solid S, 112 112 120 131 2-6 2-7 3-0 5'3 pts. liquid S. (Gerardin, A. ch. (4) 5. 134.) Quickly sol. in 12 '5 pts. ether. (Favre.) CS 2 dissolves 0"35 pt. ordinary sulphur; some varieties of S, however, are not entirely sol. in CS 2 , thus a -H , *t$ Variety of Sulphur I 8 2*3.3 Pn 1 " 1 r^ o.c Octahedral, from Sicily 0-335 o-ooo Crystallised in dry way, re- cently prepared 0-415 0-029 Do., prepared 8 years 0-33 0-004 Do., prepared 9 years 0-020 Do., prepared 15 years . Red needles, recently prepared Soft yellow, do. 0-382 0-051 0-023 0-353 Do., prepared 2 years Soft red, recently prepared . 0-316 0-374 0-157 0-157 Do., prepared 5 years 0-181 Flowers of sulphur 0-351 0-113 Do., another sample Roll brimstone, outside 0-234 0-029 Do., inside 0-073 (Deville, A. ch. (3) 47. 99.) The pt. insol. in CS 2 is sol. in hot absolute alcohol, crystallising on cooling ; less sol. in chloroform or ether. (Deville.) 100 pts. pure CS 2 dissolve pts. S at t. t Pts. S t Pts. S -11 16-54 22 46-05 - 6 1875 38 94-57 23-99 48-5 146-21 + 15 37-15 55 181-34 18-5 41-65 ... (Cossa, B. 1. 138.) When 20 pts. S dissolve in 50 pts. CS 2 at 22 the temp, is lowered 5. (Cossa.) Sat. solution of S in CS 2 boils at 55. (Cossa.) Sp. gr. of S dissolved in CS 2 at 15. Sp. gr. %CS 2 Sp. gr. %CS 2 Sp. gr. %CS 2 1-271 o-o 1-289 4-4 1-307 87 1-272 0-2 1-290 4-6 1-308 8-9 1-273 0-4 1-291 4-8 1-309 9-2 1-274 0-6 1-292 5-1 1-310 9-4 1-275 0-9 1-293 5-3 1-311 97 1-276 1-2 1-294 5-6 1-312 9-9 1-277 1-4 1-295 5-8 1-313 10-2 1-278 1-6 1-296 6-0 1-314 10-4 1-279 1-9 1-297 6-3 1-315 10-6 1-280 2-1 1-298 6-5 1-316 10-9 1-281 2-4 1-299 67 1-317 11-1 1-282 2-6 1-300 7-0 1-318 11-3 1-283 2-9 1-301 7-2 1-319 11-6 1-284 3-1 1-302 7-5 1-320 11-8 1-285 3-4 1-303 7-8 1-321 12-1 1-286 3-6 1-304 8-0 1-322 12-3 1-287 3-9 1-305 8-2 1-323 12-6 1-288 4-1 1-306 8-5 1-324 12-8 2 D 402 SULPHUR Sp. gr. of S dissolved in CS 2 at 15. Continued. Sp. gr. %CS 2 Sp. gr. %CS 2 Sp. gr. %CS 2 1-325 13-1 1-348 18-6 1-370 25-1 1-326 13-3 1-349 18-9 1-371 25-6 1-327 13-5 1-350 19-0 1-372 26-0 1-328 13-8 1-351 19-3 1-373 26-5 1-329 14-0 1-352 19-6 1-374 26-9 1-330 14-2 1-353 19-9 1-375 27-4 1-331 14-5 1-354 20-1 1-376 28-1 1-332 147 1-355 20-4 1-377 28-5 1-333 15-0 1-356 20-6 1-378 29-0 1-334 15-2 1-357 21-0 1-379 29-7 1-335 15-4 1-358 21-2 1-380 30-2 1-336 15-6 1-359 21-5 1-381 30-8 1-337 15-9 1-360 21-8 1-382 31-4 1-338 16-1 1-361 22-1 1-383 31-9 1-339 16-4 1-362 22-3 1-384 32-6 1-340 16-6 1-363 22-7 1-385 33-2 1-341 16-9 1-364 23-0 1-386 33-8 1-342 17-1 1-365 23-2 1-387 34-5 1-343 17-4 1-366 23-6 1-388 35-2 1-344 17-6 1-367 24-0 1-389 36-1 1-345 17'9 1-368 24-3 1-390 36-7 1-346 18-1 1-369 24-8 1-391 37-2 1-347 18-4 (Macagno, C. N. 43. 192.) 100 pts. absolute alcohol dissolve 0'42 pt. at b.-pt., and 0'12 pt. S at 16 ; 100 pts. ether dissolve 0'54 pt. at b.-pt., and 0'19 pt. S at 16; 100 pts. benzene dissolve 17 '04 pts. at b.-pt., and 1'79 pts. S at 16 ; 100 pts. oil of turpentine dissolve 16 '16 pts. at b.-pt., and 1-35 pts. S at 16 ; 100 pts. CS 2 dissolve 73 '46 pts. at b.-pt., and 38 70 pts. S at 16 ; 100 pts. naphtha dissolve 10 '56 pts. at b.-pt., and 2 '77 pts. S at 16; 100 pts. tar-oil dissolve 26 '98 pts. at b.-pt., and 1'51 pts. S at 16. (Payen, C. R. 34. 456.) 100 pts. benzene dissolve 0'965 pt. S at 26 ; 100 pts. benzene dissolve 4 '377 pts. S at 71 ; 100 pts. toluene dissolve 1'479 pts. S at 23 ; 100 pts. ethyl ether dissolve 0'972 pt. S at 23'5; 100 pts. chloroform dissolve 1'205 pts. S at 22; 100 pts. phenol dissolve 16 '35 pts. S at 174 ; 100 pts. aniline dissolve 85 '27 pts. S at 130. (Cossa, B. 1. 139.) Solubility in 100 pts. coal-tar oil at t. Pts. S in t Oil of 0-870 Oil of 0-880 Oil of 0-882 sp. gr. sp. gr. sp. gr. B.-pt. 80-100 B.-pt. 85-120 B.-pt. 120-200 15 2-1 2-3 2-5 30 3-0 4-0 5-3 50 5-2 6-1 8-3 80 11-8 137 15-2 100 15-2 187 23-0 110 23-0 26-2 120 ... 27-0 32-0 130 387 Solubility in 100 pts., etc. Continued. Pts. S in A f Oil of 0-885 Oil of 1-010 Oil of 1-020 sp. gr. B.-pt. 150-200 sp. gr. B.-pt.210-300 sp. gr. B.-pt.220-300 15 2'6 6-0 7-0 30 5-8 8'5 8'5 50 8-7 10-0 12-0 80 21-0 37-0 41-0 100 26-4 52-5 54-0 110 31-0 105-0 115-0 120 38-0 00 oo 130 43-8 GO CO (Pelouze, C. R. 69. 56.) Easily sol. in boiling acetic anhydride. (Rosenfeld, B. 13. 1475.) Sol. in considerable amount in warm cone. HC 2 H 3 2 + Aq, but very si. sol. if dil. (Lieber- mann, B. 10. 866.) Sol. in stearic acid + Aq. (Vulpius, Arch.j Pharm. (3) 13. 38.) Acetic ether dissolves 6 % S. (Favre.) Sol. in 12 pts. hot petroleum from Amiano, but nearly insol. in cold, (de Saussure.) 100 pts. nicotine at 100 dissolve 10 '58 pts. S, but this separates out as the solution cools. Sol. in warm aniline. (Barral, A. ch. (3) 20. 352.) Easily sol. in hot, less sol. in cold aniline. (Fritzsche.) Very sol. in aniline and chinoline, especially when warm. (Hofmann.) Sol. in 2-6 pts. of boiling, si. sol. in cold creosote. Sol. by digestion in 2 pts. oil of turpentine. Sol. in hot oil of copaiba, crystallising on cooling. Sol. in hot oil of mandarin, crystallising oni cooling. Sol. in hot oil of caraway, crystallising on cooling. Somewhat sol. in hot, less in cold wood-l spirit. SI. sol. in lignone, bromoform, cold benzene, but easily in hot benzene. (Mansfield, Chem. Soc. 1. 262.) Sol. in ethyl sulphide, and carbon chloride. (Rathke, A. 152. 187.) Sol. in mercuric methyl. Sol. in 20 pts. ethyl nitrate, from which it; is not pptd. by H 2 0. Very si. sol. in cold acetone. Sol. in naphtha, aldehyde, iodal, bromal, chloroform, warm chloral, sinkaline + Aq, ethyl chloride, warm benzoyl chloride. 100 pts. methylene iodide dissolve 10 pts. S at 10. Melted sulphur is miscible with hot methylene iodide. (Retgers, Z. anorg. 3. 343.) S dissolves in 2000 pts. glycerine. (Cap and Garot, J. Pharm. (3) 26. 81.) Glycerine dissolves '10 % S. (Klever, C. C. 1872. 434.) Sol. in butyl sulphydrate, and warm retmole. Sol. in ethyl sulphydrate. Very sol. in coniine, hexyl alcohol, warm SULPHUR OXIDE 403 allyl salphocyanide, cacodyl oxide. Somewhat sol. in hot styrene, separating out on cooling. Readily sol. in warm, less readily in cold toluene or resin-oil. Sol. in olive oil at 115, from which it mostly separates on cooling. Sol. in hot oil of amber, crystallising upon cooling. Sol. in 2 pts. hot, si. sol. in cold caoutchin. Insol. in valerianic acid, amyl valerate, valeryl hydride. Linseed oil dissolves % S at t. t %s t %s t %s 25 0-630 95 2-587 160 9-129 60 1-852 130 4-935 (Pohl.) Solubility in olive oil (sp. gr. = 0'885). 100 pts. dissolve pts. S at t. t Pts. S f Pts. S t Pts. S 15 2-3 65 20-6 110 30-3 40 5-6 100 25-0 130 43-2 (Pelouze, C. R. 68. 1179.) Sulphur bromide, S 2 Br 2 . Decomp. gradually with H 2 0. Dissolves S on warming, which crystallises out on cooling. Sol. in CS 2 . Decomp. by current of dry air into S and Br. (Hannay, Chem. Soc. 35. 16.) Sulphur wcmochloride, S 2 C1 2 . Slowly decomp. by H 2 0. Miscible with CS 2 and C 6 H 6 . Sol. in alcohol and ether with subsequent decomposition. Sol. in oil of tur- pentine. Sulphur ^chloride, SC1 2 . Decomp. slowly with H 2 0, immediately by alcohol or ether. Sulphur tetrachloride, SC1 4 . Violently decomp. by H 2 0. Decomp. at temperatures above - 22. (Michaelis, A. 170. 1.) Sulphur stannic chloride, 2SC1 4 , SnCl 4 . Decomp. by H 2 0. Sol. in dil. HN0 3 + Aq. Forms a mass with fuming HN0 3 which is sol. inKN"0 3 + Aq. Sol. in POC1 3 . (Casselmann. ) Sulphur titanium chloride, SC1 4 , 2TiCl 4 . Very deliquescent. Easily sol. in dil. HN0 3 + Aq. (Weber, Pogg. 132. 454.) Sulphur chloride ammonia, S 2 C1 2 , 4NH 3 . Insol. in H 2 0, but gradually decomp. thereby ; sol. without decomp. in absolute alcohol, from which it is pptd. by H 2 0. (Mertens. ) Does not exist. (Fordos and Gelis, C. R. 31. 702.) SC1 2 , 2NH 3 . Decomp. by H 2 0. Sol. in alcohol or ether. (Soubeiran, A. ch. 67. 71.) Not a true chemical compound, but a mixture. (Fordos and Gelis, C. R. 31. 702.) SC1 2 , 4NH 3 . Decomp. by H 2 0. SI. sol. in absolute alcohol and ether (Soubeiran, A. ch. 67. 71) ; mixture (Fordos and Gelis). Sulphur chloride nitrogen sulphide. See Nitrogen sulphochloride. Sulphur monoiodide, S 2 I 2 . Insol. in H 2 0. Decomp. by alcohol, which dissolves out I 2 . SI. sol. in cold caoutchin, the solution decomposing when boiled. Freely sol. in glycerine. Sol. in 60 pts. glycerine, and 82 pts. olive oil. (Cap and Garot, J. Pharm. (3) 26. 81.) Sulphur hexiodide, SI 6 . Decomp. on air. Alcohol or alkalies dissolve out iodine, (vom Rath, Pogg. 110. 116.) Does not exist. (M'Leod, Rep. Brit. Assn. Advn. Sci. 1892. 690.) Sulphur stannic iodide. See Tin sulphur iodide. Sulphur sesquioja.de, S 2 3 . Deliquescent. Violently decomp. by H 2 at ordinary temp. Sol. in fuming H 2 S0 4 . Insol. in S0 3 . Decomp. by alcohol or ether. (Weber, 156. 531.) Sulphur dioxide, S0 2 . Liquid. Insol. in H 2 if brought in contact therewith below the b. -pt. of S0 2 . Sol. in 3 vols. CS 2 on warming, separating out on cooling. Dissolves some P, little S, and no sulphuric or phosphoric acids. Dissolves ether, chloroform, P, Br, S, I, CS 2 , colophonium, and other gums ; also benzene when warmed. (Sestini, Bull. Soc. (2) 10. 226.) Miscible with liquid S0 3 , but not with H 2 S0 4 . Gas. 1 vol. H 2 O absorbs 30 vols. SO 2 gas at 18 (Davy) ; 20 vols. at ord. temp. (Dalton) ; 4378 vols. at ord. temp, (de Saussure) ; 50 vols. at 20 and 760 mm. (Pelouze and Fremy) ; 33 vols. at ord. temp. (Thomson). 1 pt. SO 2 (by weight) is sol. in 0-1429 pt. H 2 O at 5, and the solution has 1-020 sp. gr. 1 pt. SO 2 is sol. in 0'0400 pt. H 2 O at ord. temp. (Priestley) ; in 0-0909 pt. H 2 O at 16, and sp. gr. of the solution = 1-0513 (Thomson). Sol. in 2 pts. H 2 O at 10. (Pierre, A. ch. (3) 23. 421.) 100 vols. H 2 O at 18 and 760 mm. absorb 4378 vols. SO 2 gas ; 100 vols. alcohol of 0'84 sp. gr. at 760 min. absorb 11,577 vols. (de Saussure, 1814.) Solubility of S0 2 gas in H 2 0. t = temp. ; V = vols. S0 2 reduced to and 760 mm. con- tained in 1 vol. sat. S0 2 + Aq ; Vj = vols. S0 2 gas reduced to and 760 mm. dis- solved by 1 vol. H 2 under 760 mm. pres- sure. t V Vi t V Vi 68-861 79789 7 56-369 62-973 1 67-003 77-210 8 54-683 60-805 2 65-169 74-691 9 53-021 58-697 3 63-360 72-230 10 51-383 56-647 4 61-576 69-828 11 49770 54-655 5 59-816 67-485 12 48-182 52-723 6 58-080 65-200 13 46-618 50-849 404 SULPHUR OXIDE Solubility of S0 2 gas in H 2 0, etc. Continued. t V Vi t V Vi 14 45-079 49-033 28 27754 29-314 15 43-564 47-276 29 26788 28-210 16 42-073 45-578 30 25-819 27-161 17 40-608 43-939 31 24-873 26-151 18 39-165 42-360 32 23-942 25-178 19 37749 40-838 33 23-025 24-244 20 36-206 39-374 34 22-122 23-347 21 34-986 37-970 35 21-234 22-489 22 33-910 36-617 36 20-361 21-668 23 32-847 35-302 37 19-502 20-886 24 31-800 34-026 38 18-658 20-141 25 30-766 32786 39 17-827 19-435 26 29748 31-584 40 17-013 18766 27 28-744 30-422 1 ... Solubility of S0 2 in H 2 0, etc. Continued. (Schonfeld, A. 95. 5.) This table may be formulated as follows : 1 vol. H 2 absorbs 79 789-2 '6077t+ 0'029349t 2 vols. S0 2 at t at temp, between and 20. 1 vol. sat. solution contains 68 '861 -- l-87025t + 0'01225t 2 vols. S0 2 at t. Coefficient of absorption between 21 and 40 = 75 '182- 2-1716t + 0'01903t 2 , and 1 vol. sat. solution be- tween 21 and 40 contains 60 '952 - l'38898t + 0'00726t 2 vols. S0 2 . Solubility of S0 2 in H 2 at various temps, and 760 mm. t = temp. ; G = grammes S0 2 dissolved in 1 g. H 2 ; V = vols. S0 2 dis- solved in 1 g.. H 2 0. t G V t G V 8 0-168 58-7 30 0-078 27-3 10 0-154 53-9 32 0-073 25-7 12 0-142 49-6 34 0-069 24-3 14 0-130 45-6 36 0-065 22-8 16 0-121 42-2 38 0-062 21-6 18 0-112 39-3 40 0-058 20-4 20 0-104 36-4 42 0-055 19-3 22 0-098 34-2 44 0-053 18-4 24 0-092 32-3 46 0-050 17-4 26 0-087 30-5 48 0-047 16-4 28 0-083 28'9 50 0-045 15-6 (Sims, A. 118. 340.) Solubility of S0 2 in H 2 at various pressures. P=" partial pressure," i.e. the total pres- sure minus the tension of aqueous vapour at given temp. ; G at P = weight S0 2 in grammes, which is dissolved in 1 g. H 2 at pressure P ; G at 760 = calculated weight S0 2 that would be contained in 1 g. H 2 at 760 mm. if the absorption were propor- tional to the pressure ; V = the volume of G grammes of S0 2 at and 760 mm. 7 ^GatP G at 760 VatP V at 760 30 o-oio 0-263 3-634 92-06 40 0-013 0-242 4-451 84-55 50 0-015 0-223 5-129 77-95 60 0-017 0-218 6-024 76-28 7 ^GatP G at 760 VatP V at 760 70 0-020 0-213 6-868 74-55 80 0-022 0-210 7743 73-55 90 0-025 0-208 8-598 72-62 100 0-027 0-205 9-421 71-60 120 0-032 0-201 11-09 70-20 140 0-036 0-197 1271 69-00 160 0-041 0-195 14-34 68-15 180 0-046 0-193 15-97 67-40 200 0-050 0-191 17-59 66-83 220 0-055 0-190 19-19 66-30 240 0-059 0-188 20-79 65-84 260 0-064 0-187 22-40 65-44 280 0-069 0-186 23-99 65-10 300 0-073 0-185 25-59 64-81 350 0-085 0-184 29-55 64-16 400 0-096 0-182 33-51 63-65 450 0-107 0-181 37-44 63-25 500 0-118 0-180 41-42 62-94 550 0-130 0-179 45-31 62-60 600 0-141 0-178 49-20 62-32 650 0-152 0-178 53-10 62-09 700 0-163 0-177 56-98 61-86 750 0-174 0-176 60-88 61-69 760 0-176 0-176 61-65 61-65 800 0-185 0-176 6474 61-50 850 0-196 0-175 68-57 61-30 900 0-207 0-175 72-41 61-15 950 0-218 0-175 76-25 61-00 1000 0-229 0-174 80-01 60-88 1050 0-240 0-174 83-97 60-77 1100 0-251 0-174 87-80 60-65 1200 0-273 0-173 95-45 60-45 1300 0-295 0-172 103-00 60-25 ' 20 GatP G at 760 VatP V at 760 40 0-007 0-143 2-637 50-09 50 0-009 0-138 3-171 48-20 60 0-011 0-135 3718 47-10 70 0-012 0-131 4-205 45-64 80 0-013 0-127 4-663 44-30 90 0-015 0-125 5-169 43-65 100 0-016 0-124 5-692 43-25 120 0-019 0-121 6-683 42-33 140 0-022 0-119 7-690 41-75 160 0-025 0-118 8-666 41-17 180 0-028 0-117 9-652 40-75 200 0-030 0-116 10-62 40-35 220 0-033 0-115 11-59 40-03 240 0-036 0-114 12-54 3970 260 0-038 0-112 13-45 39-30 280 0-041 0-112 14-41 39-10 300 0-044 0-111 15-34 38-87 350 0-050 0-110 17-66 38-35 400 0-059 0-109 20-56 38-10 450 0-064 0-108 22-37 37-77 500 0-071 0-107 24-67 37-50 550 0-077 0-106 26-93 37-20 600 0-083 0-105 29-14 36-90 650 0-090 0-105 31-39 36-70 SULPHUR OXIDE 405 Solubility of S0 2 in H 2 0, etc. Continued. P 20 GatP G at 760 VatP V at 760 700 0-096 0-105 33-62 36-50 750 0-103 0-104 35-94 36-43 760 0-104 0-104 36-43 36-43 800 0-110 0-104 38-32 36-40 1000 0-137 0-104 47-85 36-37 1300 0-178 0-104 62-10 36-31 1600 0-218 0-104 76-35 36-27 1900 0-259 0-104 90-53 36-21 P 39-8 A GatP G at 760 VatP V at 760 200 0-016 0-062 5-675 21-57 300 0-024 0-061 8-368 21-20 400 0-031 0-060 11-03 20-95 500 0-039 0-059 13-67 20-77 600 0-047 0-059 16-29 20-64 760 0-059 0-059 20-50 20-50 800 0-062 0-059 21-58 20-50 1000 0-077 0-058 26-84 20-40 1500 0-113 0-057 39-65 20-09 2000 0-149 0-057 52-11 19-80 50. p j^ ^GatP G at 760 VatP V at 760 200 0-012 0-045 4-156 15-97 400 0-024 0-045 8-275 15-72 600 0-035 0-045 12-36 15-65 760 0-045 0-045 15-62 15-62 800 0-047 0-045 16-43 15-60 1000 0-059 0-045 20-51 15-59 1500 0-088 0-044 3073 15-57 2000 0-012 0-044 39-07 15-55 (Sims, A. 118. 340.) Sp. gr. of sat. solution at 10 20 40 1-06091 1-05472 1-02386 0'95548 (Bunsen and Schonfeld, A. 95. 2.) Sat. S0 2 + Aq has sp. gr. = 1'0040. (Ber- thollet.) Sp. gr. of sat. S0 2 + Aq at t. t Sp. gr. t Sp. gr. t Sp. gr. 1-0609 9 1-0548 17 1-0358 1 1-0596 10 1-0547 18 1-0321 2 1-0585 11 1-0528 19 1-0281 3 1-0576 12 1-0505 20 1-0239 4 1-0569 13 1-0481 21 1-0195 5 1-0562 14 1-0454 22 1-0147 6 1-0557 15 1-0424 23 1-0099 7 1-0552 16 1-0392 24 0-9991 8 1-0549 ... ... (Schiff, A. 107. 312.) Sp. gr. of S0 2 + Aqat 4. % S0 2 Sp. gr. s6 2 Sp.gr. S0 2 Sp. gr. 1 1 '0024 8 1-0217 15 1-0445 2 1-0049 9 1-0247 16 1-0480 3 1-0075 10 1-0278 17 1-0517 4 1-0102 11 1-0311 18 1-0553 5 1-0130 12 1-0343 19 1-0591 6 1-0158 13 '1-0376 20 1-0629 7 1-0187 14 1-0410 21 1-0667 (Schiff, calculated by Gerlach, Z. anal. 8. 292. Sp. gr. ofS0 2 + Aq. %S0 2 Temp. Sp. gr. 0-99 15-5 1-0051 2-05 1-0102 2-87 1-0148 4-04 1-0204 4-99 1-0252 5-89 1-0297 7-01 1-0353 8-08 1-0399 8-68 1-0438 9-80 1-0492 1075 1-0541 11-65 12-5 1-0597 13-09 11-0 1-0668 (Giles and Schearer, Jour. Soc. Ch. Ind. 4. 303. Sp. gr. of S0 2 + Aq. % S0 2 1 2 3 Sp. gr. 1-0052 1-0094 1-0134 S0 2 4 5 6 Sp. gr. % SO 2 Sp. gr. 1-0167 1-0208 1-0242 7 8 9 1-0283 1-0329 1-0402 (Anthon.) Sp. gr. of S0 2 + Aq. % SO 2 Sp. gr. s6 2 Sp. gr. 7 s6 2 Sp. gr. 1 1-0042 5 1-0210 8 1-0348 2 1-0083 6 1-0252 9 1-0392 3 1-0125 7 1-0295 10 1-0438 4 1-0167 ... ... (Hager, Adjumenta varia, Leipzig, 1876. 146.) Sp. gr. of S0 2 + Aq at 15. & Sp. gr. S0 2 Sp. gr. s6 2 Sp. gr. 0-5 1-0028 4-0 1-0221 7-5 1-0401 1-0 1-0056 4-5 1-0248 8-0 1-0426 1'5 1-0085 5-0 1-0275 8-5 1-0450 2-0 1-0113 5-5 1-0302 9-0 1-0474 2-5 1-0141 6-0 1-0328 9-5 1-0497 3-0 1-0168 6-5 1-0353 10-0 1-0520 3-5 1-0194 7-0 1-0377 ... (Scott, Polyt. Centralbl. 1873. 826.) 406 SULPHUR OXIDE Cone. H 2 S0 4 absorbs 0'009 pt. by weight (58 vols.), and S0 2 is more soluble in dilute H 2 S0 4 + Aq, the more H 2 there is present. (Kolb, Dingl. 209. 270.) Solubility in H 2 S0 4 . Sp. gr. of H 2 S0 4 Absorbs S0 2 per kg. Absorbs SO 2 per litJre 1-841 0-009 5-8 1-839 0-014 8-9 1-540 0-021 11-2 1-407 0-032 15-9 1-227 0-068 29-7 1-020 0-135 49-0 (Kolb, Bull. Soc. Ind. Mullhouse, 1872. 224.) Coefficient of absorption for H 2 S0 4 (1'841 sp. gr. at 15 and 760 mm.) is 28 '14 at 17, and 28-86 at 16. (Dunn, C. N. 43. 121.) Coefficient of absorption in H 2 S0 4 (sp. gr. = l-841) = 5-8; (sp. gr. = l-839) = 8'9. (Lunge.) Solubility of S0 2 in alcohol. 1 vol. alcohol at t and 760 mm. dissolves V vols. S0 2 gas at and 760 mm. t V t V t V 328-62 9 201-33 17 130-61 1 311-98 10 190-31 18 124-58 2 295-97 11 179-91 19 119-17 3 280-58 12 170-13 20 114-48 4 265-81 13 160-98 21 110-22 5 251-67 14 152-45 22 106-68 6 238-16 15 144-55 23 103-77 7 225-26 16 137-27 24 101-47 8 212*98 (Bunsen's Gasometry.) 100 pts. absolute methyl alcohol dissolve 247 pts. S0 2 at and 760 mm. ; 47 pts. at 26 and 760 mm. ; 100 pts. absolute ethyl alcohol dissolve 115 pts. S0 2 at and 760 mm. ; 32 '3 pts. at 26 and 760 mm. (de Bruyn, Z. phys. Ch. 10. 783.) Sol. in ether. Absorbed by oil of turpentine. Rapidly absorbed by anhydrous aldehyde in the cold, 11 pts. aldehyde absorbing 19 pts. Absorption coefficient of aldehyde for S0 2 is 1"4 times greater than that of alcohol, and 7 times greater than that of H 2 0. (Geuther and Cartmell, Proc. Roy. Soc. 10. 111.) 1 pt. camphor dissolves 0*880 pt. by weight ( = 308 vols.) S0 2 at and 725 mm. ; 1 pt. glacial HC 2 H 3 2 dissolves 0'961 pt. by weight ( = 318 vols.) S0 2 at and 725 mm. ; 1 pt. formic acid dissolves 0*821 pt. by weight ( = 351 vols.) S0 2 at and 725 mm. ; 1 pt. acetone dissolves 2'07 pts. by weight ( = 589 vols.) S0 2 at and 725 mm. ; 1 pt. sulphuryl chloride dissolves 0'323 pt. by weight ( = 187 vols.) S0 2 at and 725 mm. (Schulze, J. pr. (2) 24. 168.) Sulphur dioxide, S0 3 . Fumes on air. Miscible with H 2 0, with evolution of much heat. Sol. in H 2 S0 4 . De- comp. by alcohol and ether. Exists in two modifications, one of which is liquid and miscible with H 2 S0 4 , while the solid form is only slowly sol. therein. Miscible with CS 2 at 30, but at 15 CS 2 dis- solves only | pt. S0 3 , and S0 3 , pt. CS 2 . (Schultz-Sellack, Pogg. 139. 480.) There is only one modification, the liquid, which absorbs H 2 and becomes solid. (Rebs, A. 246. 356.) Miscible with liquid S0 2 . (Schultz-Sellack.) Sulphur heptoxide, S 2 7 . Fumes on air. Slowly decomp. at 0, in- stantaneously on warming. Sol. in cone. H 2 S0 4 . (Berthelot, J. pr. (2) 17. 48.) Forms compound S 2 7 , 2H 2 2 . Formula is S0 4 , according to Traube (B. 24. 1764), and S 2 7 is S0 3 + S0 4 . See also Marshall (Chem. Soc. 59. 771). Traube (B. 26. 148) denies the existence of : S0 4 . Sulphur oxychloride, SOC1 2 . See Thionyl chloride. Sulphur oxy^rachloride, S 2 3 C1 4 . Violently decomp. by H 2 0, dil. acids, alcohol. (Millon, A. ch. (3) 29. 327.) Sol. in warm S 2 C1 2 . (Carius, A. 106. 295.] Decomp. violently with CS 2 . Sulphur oxychloride, S0 2 C1. See Sulphuryl chloride. HS0 3 C1. See Sulphuryl hydroxyl chloride. S 2 OC1 4 . Decomp. by H 2 and alcohol! (Ogier, C. R. 94. 446.) Probably only a mixture of SOC1 2 and SCLj. | S 2 5 C1 2 . See Z^'sulphuryl chloride. Sulphur ^'phosphide, P 2 S. See Phosphorus mowosulphide. Sulphur eraphosphide, P 4 S. See Phosphorus se?^sulphide. Sulphuretted hydrogen, H 2 S. See Hydrogen sulphide. Sulphuric acid, H 2 S0 4 . Miscible with H 2 in all proportions. Sp. gr. of H 2 SO 4 +Aq. Baume degrees Sp. gr. H 2 S0 4 Baume degrees Sp. gr. % H 2 S0 4 66 1-842 100 66 1-844 100 60 1-725 84-22 60 1-717 82-34 55 1-618 74-32 55 1-618 74-32 50 1-524 66-45 54 1-603 72-70 45 1-466 58-02 53 1-586 71-17 40 1-375 50-41 52 1-566 69-30 35 1-315 43-21 51 1-550 68-03 30 1-260 36-52 50 1-532 66-45 25 1-210 30-12 49 1-515 64-37 20 1-162 24-01 48 1-500 62-80 15 1-114 17-39 47 1-482 61-32 10 1-076 11-73 46 1-466 59-85 5 1-023 6-60 45 1-454 58-02 (Vauquelin, A. ch. 76. 260.) (Darcet, A. ch. (2) 1. 198.) SULPHURIC ACID 407 Sp. gr. of H 2 SO 4 +Aq. H 2 S0 4 Sp. gr. at 15 Sp.gr. at 25 H 2 S0 4 Sp.gr. at 15 Sp. gr. at 25 0-9986 0-9955 50 1-3866 1-3780 2-5 1-0115 55 1-4347 it 5 1-0284 1-0272 60 1-4860 1-4767 10 1-0659 1-0604 65 1-5402 15 1-0998 70 1-5946 1-5863 20 1-1378 1-3311 75 1-6534 25 1-1767 80 1-7092 1-6996 30 1-2154 1-2078 85 1-7602 35 1-2562 >> 90 1-8050 1-7940 40 1-2976 1-2868 95 1-8318 45 1-3409 100 1-8406 1-8286 (Delezenne, 1823.) Sp. gr. at 15-56, and b.-pt. of H 2 SO 4 +Aq. Sp. gr. %S0 3 B.-pt. Sp. gr. %S0 3 B.-pt. 1-850 81 326 1-769 67 217 1-849 80 318 1-757 66 210 1-848 79 310 1-744 65 205 1-847 78 301 1-730 64 200 1-845 77 293 1-715 63 195 1-842 76 285 1-699 62 190 1-838 75 277 1-684 61 186 1-833 74 268 1-670 60 182 1-827 73 260 1-650 58-6 177 1-819 72 253 1-520 50 143 1-810 71 245 1-408 40 127 1-801 70 238 1-300 30 115 1-791 69 230 1-200 20 107 1-780 68 224 1-100 10 103 (Dalton, N. Syst. 2. 210.) Sp. gr. of H 2 SO 4 +Aq at 15. Sp. gr. S0 3 7 H 2 S0 4 Sp. gr. % S0 3 % H 2 S0 4 1-8485 81-54 100 1-3884 40-77 50 1-8460 79-90 98 1-3697 39-14 48 1-8410 78-28 96 1-3530 37-51 46 1-8336 76-65 94 1-3345 35-88 44 1-8233 75-02 92 3165 34-25 42 1-8115 73-39 90 2999 32-61 40 1-7962 71-75 88 2826 30-98 38 1-7774 70-12 86 2654 29-35 36 1-7570 68-49 84 2490 27-72 34 1-7360 66-86 82 2334 26-09 32 1-7120 65-23 80 2184 24-46 30 1-6870 63-60 78 2032 22-83 28 1-6630 61-97 76 1876 21-20 26 1-6415 60-34 74 1706 19-57 24 1-6204 58-71 72 1549 17-94 22 1-5975 57-08 70 1410 16-31 20 1-5760 55-45 68 1246 14-68 18 1-5503 53-82 66 1090 13-05 16 1-5280 5218 64 1-0953 11-41 14 1-5066 50-55 62 1-0809 9-78 12 1-4860 48-92 60 1-0682 8-15 10 1-4660 47-29 58 1-0544 6-52 8 1-4460 45-66 56 1-0405 4-89 6 1-4265 44-03 54 1-0268 3-26 4 1-4073 42-40 52 1-0140 1-63 2 (Ure, Schw. J. 35. 444.) Sp. gr. of H 2 SO 4 +Aq. Degrees Baume Sp. gr. AtO At 15 s 3 % H 2 S0 4 % S0 3 H 2 S0 4 5 10 15 20 25 30 33 1-036 1-075 1-116 1:161 .-209 1-262 1-296 5-1 10-3 15-5 21-2 27-2 33-6 37-6 4-2 8-4 12-7 17-3 22-2 27-4 30-7 5-4 10-9 16-3 22-4 28-3 34-8 38-9 4-5 8-9 13-3 18-3 23-1 28-4 31-8 Sp. gr. of H 2 SO 4 +Aq Continued. Degrees Baume Sp.gr. AtO At 15 % 'S0 3 7 H 2 S0 4 S3 7 H 2 S0 4 35 1-320 40-4 33-0 41-6 34-0 36 1-332 41-7 34-1 43-0 35-1 37 1-345 43-1 35-2 44-3 36-2 38 1-357 44-5 36-3 45-5 37-2 39 1-370 45-9 37-5 46-9 38-3 40 1-383 47-3 38-6 48-4 39-5 41 1-397 48-7 39-7 49-9 40-7 42 1-410 50-0 40-8 51-2 41-8 43 1-424 51-4 41-9 52-5 42-9 44 1-438 52-8 43-1 54-0 44-1 45 1-453 54-3 44-3 55-4 45-2 46 1-468 55-7 45-5 56-9 46-4 47 1-483 57-1 46-6 58-2 47-5 48 1-498 58-5 47-8 59-6 48-7 49 1-514 60-0 49-0 61-1 50-0 50 1-530 61-4 50-1 62-6 51-1 51 1-546 62-9 51-3 63-9 52-2 52 1-563 64-4 52-6 65-4 53-4 53 1-580 65-9 53-8 66-9 54-6 54 1-597 67-4 55-0 68-4 55-8 55 1-615 68-9 56-2 70-0 57-1 56 1-634 70-5 57-5 71-6 58-4 57 1-652 72-1 58-8 73-2 59-7 58 1-671 73-6 60-1 74-7 61-0 59 1-691 75-2 61-4 76-3 62-3 60 1-711 76-9 62-8 78-0 63-6 61 1-732 78-6 64-2 79-8 65-1 62 1-753 80-4 65-7 81-7 66-7 63 1-774 82-4 67-2 83-9 68-5 64 1-796 84-6 69-0 86-3 70-4 65 1-819 87-4 71-3 89-5 73-0 65-5 1-830 89-1 72-2 91-8 74-9 65-8 1-837 90-4 73-8 94-5 77-1 66 1-842 91-3 74-5 100-0 81-6 66-2 1-846 92-5 75-5 66-4 1-852 95-0 77-5 66-6 1-857 lOO'O 81-6 (Bineau, A. ch. (3) 26. 124.) The sp. gr. found at t can be reduced to sp. gr. at by multiplying by , , or by using the follow- ing table. (Bineau.) Correction of sp. gr. for temperature, to be added for a lowering of the temp, of 10, or subtracted for a corresponding increase. Sp. gr. of acid atO Corr. S P- V- of acid atO Corr. Sp. gr. of acid atO Corr. 1-04 1-07 1-10 0-002 0-003 0-004 115 1-20 1-30 0-005 0-006 0-007 1-45 1-70 1-85 0-008 0-009 0-0096 (Bineau.) Sp. gr. of H 2 S0 4 + Aq at 15. a = % ; b = sp. gr. if % is S0 3 ; c = sp. gr. if % is H 2 S0 4 . a b c a b c 1 1-009 1-0064 12 1-104 1-083 2 1-017 1-013 13 1-114 1-091 3 1-025 1-019 14 1-123 1-098 4 1-034 1-0256 15 1-133 1-106 5 1-041 1-032 16 1-142 1-1136 6 1-049 1-039 17 1-150 1-121 7 1-058 1-0464 18 1-160 1-129 8 1-067 1-0536 19 1-170 1-136 9 1-076 1-061 20 1-180 1-144 10 1-085 1-068 21 1-190 1-1516 11 1-095 1-0756 22 1-200 1-159 408 SULPHURIC ACID Sp. gr. of H 2 S0 4 , etc. Continued. a b c a b c 23 1-210 1-167 62 1-689 1-523 24 1-220 1-174 63 1-701 1-534 25 1-229 1-182 64 1-716 1-545 26 1-239 1-190 65 1-730 1-557 27 1-248 1-198 66 1-742 1-578 28 1-258 1-2066 67 1-755 1-580 29 1-268 1-215 68 1-770 1-592 30 1-278 1-223 69 1-781 1-604 31 1-288 1 -231 70 1-792 1-615 32 1-300 1-239 71 1-802 1-627 33 1-310 1-2476 72 1-810 1-639 34 320 1-256 73 1-819 1-651 35 332 1-264 74 1-825 1-663 36 344 1-272 75 1-830 1-675 37 354 1-281 76 1-834 1-686 38 367 1-289 77 1-837 1-698 39 378 1-2976 78 1-839 1-710 40 1-390 1-306 79 1-841 1-722 41 1-401 1-315 80 1-842 1-734 42 1-415 1-324 81 1-745 43 1-427 1-333 82 1-756 44 1-440 1-342 83 1767 45 1-451 1-351 84 1-777 46 1-465 1-361 85 1-786 47 1-478 1-370 86 1-794 48 1-490 1-379 87 1-802 49 1-501 1-3886 88 ... 1-809 50 1-517 1-398 89 1-816 51 1-530 1-408 90 1-822 52 1-545 1-418 91 ... 1-827 53 1-556 1-428 92 1-831 54 1-573 1-438 93 1-834 55 1-585 1-448 94 1-8356 56 1-600 1-4586 95 1-8376 57 1-615 1-469 96 1-8384 58 1-627 1-480 97 1-840 59 1-642 1-490 98 1-8406 60 1-656 1-501 99 ... 1-842 61 1-675 1-512 100 1-8426 (Bineau, calculated by Gerlach, Z. anal. 8. 292.) Sp. gr. of H 2 S0 4 + Aq at 15 ; H 2 at = % H 2 SO 4 Sp. gr. H 2 S0 4 Sp. gr. H 2 S0 4 Sp. gr. 1 1-006 17 1-122 33 1-247 2 1-012 18 1-129 34 1-256 3 1-018 19 1-137 35 1-264 4 1-025 20 1-145 36 1-272 5 1-032 21 1-153 37 1-281 6 1-039 22 1-161 38 1-290 7 1-046 23 1-168 39 1-298 8 1-053 24 1-176 40 1-307 9 1-061 25 1-184 41 1-316 10 1-069 26 1-191 42 1-324 11 1-076 27 1-199 43 1-333 12 1-084 28 1-207 44 1-342 13 1-091 29 1-215 45 1-352 14 1-099 30 1-223 46 1-361 15 1-106 31 1-231 47 1-370 16 1-114 32 1-239 48 1-379 Sp. gr. of H 2 S0 4 , etc. Continued. % H 2 S0 4 Sp. gr. 7 H 2 S0 4 Sp. gr. H 2 S0 4 Sp. gr. 49 1-389 67 1-580 84 1-773 50 1-399 68 1-592 85 1-783 51 1-409 69 1-604 86 1792 52 1-418 70 1-615 87 1-800 53 1-428 71 1-626 88 1-807 54 1-438 72 1-638 89 1-814 55 1-448 73 1-650 90 1-820 56 1-459 74 1-662 91 1-825 57 1-469 75 1-674 92 1-8294 58 1-480 76 1-684 93 1-8339 59 1-491 77 1-697 94 1-8372 60 1-501 78 1-710 95 1-8390 61 1-512 79 1-721 96 1-8406 62 1-523 80 1-732 97 1-8410 63 1-535 81 1-743 98 1-8412 64 1-546 82 1-753 99 1-8403 65 1-558 83 1-763 100 1-8384 66 1-569 (From 1-91 % according to Kolb, calculated by Gerlach ; from 92-100 % according to Lunge and Naef, calculated by Gerlach, Z. anal. 27, 316.) Sp. gr. of H 2 S0 4 at 15 compared with H 2 at 4 and mm. pressure. Sp.gr. & 3 H 2 S0 4 Sp. gr. & % H 2 SO 4 1-000 0-07 0-09 1-175 19-69 24-12 1-005 0-68 0-83 1-180 20-21 24-76 1-010 1-28 1-57 1-185 20-73 25-40 1-015 1-88 2-30 1-190 21-26 26-04 1-020 2-47 3-03 1-195 21-78 26-68 1-025 3-07 3-76 1-200 22-30 27-32 1-030 3-67 4-49 1-205 22-82 27*95 1-035 4'27 5-23 1-210 23-33 28-58 1-040 4-87 5-96 1-215 23-84 29-21 1-045 5-45 6-67 1-220 24-36 29-84 1-050 6-02 7-37 1-225 24-88 30-48 1-055 6-59 8-07 1 -230 25-39 31-11 1-060 7-16 8-77 1-235 25-88 3170 1-065 7-73 9-47 1-240 26-35 32-28 1-070 8-32 10-19 1-245 26-83 32-86 1-075 8-90 10-90 1-250 27-29 33-40 1-080 9-47 11-60 1-255 2776 34-00 1-085 10-04 12-30 1-260 28-22 34-57 1-090 10-60 12-99 1-265 28-69 35-14 1-095 11-16 13-67 1-270 29-15 35-71 1-100 11-71 14-35 1-275 29-62 36-29 1-105 12-27 15-07 1-280 30-10 36-87 1-110 12-82 15-71 1-285 30-57 31-45 1-115 13-36 16-36 1-290 31-04 38-03 1-120 13-89 17 01 1-295 31-52 38-61 1-125 14-42 17-66 1-300 31-99 39-19 1-130 14-95 18-31 1-305 32-46 39-77 1-135 15-48 18-96 1-310 32-94 40-35 1-140 16'01 19-61 1-315 33-41 40-93 1-145 16-54 20-26 1-320 33-88 41-50 1-150 17-07 20-91 1-325 34-35 42-08 1-155 17-59 21-55 1-330 34-80 42-66 1-160 18-11 21-19 1-335 35-27 43-20 1-165 18-64 22-83 1-340 3571 4374 1-170 19-06 23-47 1-345 36-14 44-28 SULPHURIC ACID 409 Sp. gr. of H 2 S0 4 , QIC. Continued. Sp.gr. sX 3 H 2 SO 4 Sp. gr. ^ H 2 io 4 1-350 36-58 44-82 1-660 60-11 73-64 1-355 37-02 45-35 1-665 60-46 74-07 1-360 37-45 45-88 1-670 60-82 74-51 1-365 37-89 46-41 1-675 61-20 74-97 1-370 38-32 46-94 1-680 61-57 75-42 1-375 38-75 47-47 1-685 61-93 75-86 1-380 39-18 48-00 1-690 62-29 76-30 1-385 39-62 48-53 1-695 62-64 76-73 1-390 40-05 49-06 1-700 63-00 77-17 1-395 40-48 49-59 1-705 63-35 77-60 1-400 40-91 50-11 1-710 63-70 78-04 1-405 41-33 50-63 1-715 64-07 78-48 1-410 41-76 51-15 1-720 64-43 78-92 1-415 42-17 51-66 1-725 64-78 79-36 1-420 42-57 52-15 1-730 65-14 79-80 1-425 42-96 52-63 1-735 65-50 80-24 1-430 43-36 53-11 1-740 65-86 80-68 1-435 4375 53*59 1-745 66-22 81-12 1-440 44-14 54-07 1-750 66-58 81-56 1-445 44-53 54-55 1-755 66-94 82-00 1-450 44-92 55-03 1-760 67-30 82-44 1-455 45-31 55-50 1-765 67-65 82-88 1-460 45-69 55-97 1-770 68-02 83-32 1-465 46-07 56-43 1-775 68-49 83-90 1-470 46-45 56-90 1-780 68-98 84-50 1-475 46-83 57-37 1-785 6974 85-10 1-480 47-21 57-83 1-790 69-96 8570 1-485 47-57 58-28 1-795 70-45 86-30 1-490 47-95 5874 1-800 70-94 86-90 1-495 48-34 59-22 1-805 71-50 87-60 1-500 48-73 59-70 1-810 72-08 88-30 1-505 49-12 60-18 1-815 72-69 89-05 1-510 49-51 60*65 1-820 73-51 90-05 1-515 49-89 61-12 1-821 73-63 90-20 1-520 50-28 61-59 1-822 73-80 90-40 1-525 50-66 62-06 1-823 73-96 90-60 1-530 51-04 62-53 1-824 74-12 90-80 1-535 51-43 63-00 1-825 74-29 91-00 1-540 51-78 63-43 1-826 74-49 91-25 1-545 52-12 63-85 1-827 74-69 91-50 1-550 52-46 64-26 1-828 74-86 9170 1-555 5279 64-67 1-829 75-03 91-90 1-560 53-12 65-08 1-830 75-19 92-10 1-565 53-46 65-49 1-831 75-35 92-30 1-570 53-80 65-90 1-832 75-53 92-52 1-575 54-13 66-30 1-833 7572 9275 1-580 54-46 66-71 1-834 75-96 93-05 1-585 54-80 67-13 1-835 76-27 93-43 1-590 55-18 67-59 1-836 76-57 93-80 1-595 55-55 68-05 1-837 76-90 94-20 1-600 55-93 68-51 1-838 77-23 94-60 1-605 56-30 68-97 1-839 77-55 95-00 1-610 56-68 69-43 840 78-04 95-60 1-615 57-05 69-89 8405 78-33 95-95 1-620 57-40 70-32 8415 79-19 97-00 1-625 57-75 70-74 8410 7976 9770 1-630 58-09 71-16 8415 80-16 98-20 1-635 58-43 71-57 8400 80-57 9870 1-640 5874 71-99 8400 80-98 99-20 1-645 59-10 72-40 1-8395 81-18 99-45 1-650 59-45 72-88 1-8390 81-39 9970 1-655 5978 73-23 1-8385 81-59 99-95 (Lunge and Isler, Zeit. angew. Ch. 9. 129.) Sp. gr. of cone. H 2 S0 4 + Aq at 15. % H 2 S0 4 Sp. gr. % H 2 S0 4 Sp.gr. 10Q 1-8384 9574 1-8416 99-98 1-8385 95-67 1-8415 99-96 1-8386 95-61 1-8414 99-94 1-8387 95-55 1-8413 99-92 1-8388 95-50 1-8412 99-90 1-8389 95-45 1-8411 99-88 1-8390 95-40 1-8410 99-86 1-8391 95-35 1-8409 99-84 1-8392 95-30 1-8408 99-81 1-8393 95-25 1-8407 9978 1-8394 95-21 1-8406 9976 1-8395 95-16 1-8405 9973 1-8396 95-12 1-8404 9970 1-8397 95-08 1-8403 99-67 1-8398 95-04 1-8402 99-64 1-8399 95-00 1-8401 99-61 1-8400 94-96 1-8400 99-58 1-8401 94-92 1-8399 99-55 1-8402 94-88 1-8398 99-52 1-8403 94-84 1-8397 99-49 1-8404 94-81 1-8396 99-46 1-8405 9477 1-8395 99-43 1-8406 9473 1-8394 99-40 1-8407 94-69 1-8393 99-37 1-8408 94-65 1-8392 99-33 1-8409 94-61 1-8391 99-29 1-8410 94-57 1-8390 99-25 1-8411 94-53 1-8389 99-22 1-8412 94-49 1-8388 99-19 1-8413 94-46 1-8387 99-16 1-8414 94-42 1-8386 99-11 1-8415 94-38 1-8385 99-06 1-8416 94-34 1-8384 99-02 1-8417 94-31 1-8383 98-98 1-8418 94-27 1-8382 98-94 1-8419 94-24 1-8381 98-84 1-8420 94-20 1-8380 98-84 1-8421 94-17 1-8379 9878 1-8422 94-13 1-8378 9871 1-8423 94-10 1-8377 98-63 1-8424 94-07 1-8376 98-56 1-8425 94-03 1-8375 98-48 1-8426 94-00 1-8374 98-40 1-8427 93-97 1-8373 98-32 1-8428 93-93 1-8372 98-22 1-8429 93-90 1-8371 98-08 1-8430 93-87 1-8370 97-85 1-8431 93-83 1-8369 97-50 1-8432 93-80 1-8368 97-10 1-8431 9377 1-8367 96-93 1-8430 9374 1-8366 9676 1-8429 9371 1-8365 96-65 1-8428 93-68 1-8364 96-55 1-8427 93-65 1-8363 96-46 1-8426 93-62 1-8362 96-39 1-8425 93-59 1-8361 96-31 1-8424 93-56 1-8360 96-24 1-8423 93-53 1-8359 96-16 1-8422 93-50 1-8358 96-09 1-8421 93-47 1-8357 96-02 1-8420 93-44 1-8356 95-95 1-8419 93-41 1-8355 95-88 1-8418 93-38 1-8354 95-81 1-8417 93-35 1-8353 410 SULPHURIC ACID Sp. gr. of cone. H 2 S0 4 , etc. Continued. % H 2 S0 4 Sp. gr. % H 2 S0 4 Sp. gr. 93-32 1-8352 91-68 1-8287 93-29 1-8351 91-65 1-8286 93-26 1-8350 91-63 1-8285 93-23 1-8349 91-61 1-8284 93-20 1-8348 91-59 1-8283 93-17 1-8347 91-56 1-8282 93-14 1-8346 91-54 1-8281 93-12 1-8345 91-52 1-8280 93-09 1 -8344 91-50 1-8279 93-06 1-8343 91-47 1-8278 93-00 1-8342 91-45 1-8277 92-98 1-8341 91-43 1-8276 92-95 1-8339 91-41 1-8275 92-93 1-8338 91-39 1-8274 92-90 8337 91-37 1-8273 92-87 8336 91-35 1-8272 92-84 8335 91-32 1-8271 92-82 8334 91-30 1-8270 92-79 8333 91-28 1-8269 92-77 8332 91-26 1-8268 9273 8331 91-24 1-8267 92-71 8330 91-22 1-8266 92-69 8329 91-20 1-8265 92-66 8328 91-18 1-8264 92-63 8327 91-16 1-8263 92-61 8326 91-14 1-8262 92-59 8325 91-12 1-8261 92-56 8324 91-10 1-8260 92-54 8323 91-08 1-8259 92-52 8322 91-06 1-8258 92-49 8321 91-04 1-8257 92-46 8320 91-02 1-8256 92-44 1-8319 91-00 1-8255 92-41 1-8318 90-98 1-8254 92-39 1-8317 90-96 1-8253 92-37 1-8316 90-94 1-8252 92-34 1-8315 90-92 1-8251 92-32 1-8314 90-90 1-8250 92-29 1-8313 90-88 1-8249 92-27 1-8312 90-86 1-8248 92-24 1-8311 90-84 1-8247 92-22 1-8310 90-82 1-8246 92-19 1-8309 90-80 1-8245 92-17 1-8308 9078 1-8244 92-15 1-8307 90-76 1-8243 92-12 1-8306 9074 1-8242 92-10 1-8305 9072 1-8241 92-07 1-8304 9070 1-8240 92-05 1-8303 90-68 1-8239 92-02 1-8302 90-66 1-8238 92-00 1-8301 90-64 1-8237 91-98 1-8300 90-62 1-8236 91-95 1-8299 90-60 1-8235 91-93 1-8298 90-59 1-8234 91-91 1-8297 90-57 1-8233 91-88 1-8296 90-55 1-8232 91-86 1-8295 90-53 1-8231 91-84 1-8294 90-51 1-8230 91-81 1-8293 90-49 1-8229 91-78 1-8292 90-47 1-8228 9176 1-8291 90-46 1-8227 9174 1-8290 90-44 1-8226 9172 1-8289 90-42 1-8225 91-70 1-8288 90-40 1 -8224 Sp. gr. of cone. H 2 S0 4 , etc. Continued. % H 2 S0 4 Sp. gr. % H 2 S0 4 Sp. gr. 90-38 1-8223 90-17 1-8211 90-37 1-8222 90-15 1-8210 90-35 1-8221 90-13 1-8209 90-33 1-8220 90-11 1-8208 90-31 1-8219 90-10 1-8207 90-29 1-8218 90-08 1-8206 90-28 1-8217 90-06 1-8205 90-26 1-8216 90-04 1-8204 90-24 1-8215 90-02 1-8203 90-23 1-8214 90-01 1-8202 90-20 1-8213 89-99 1-8201 90-18 1-8212 89-97 1-8200 (Richmond [calculated from Pickering, Chem. Soc. 57. 64], Jour. Soc. Ch. Ind. 9. 479.) Sp. gr. of cone. H 2 S0 4 + Aq at 15 % H 2 S0 4 Sp. gr. % H 2 S0 4 Sp. gr. 90 1-8185 96 1-8406 *90'20 1-8195 97 1-8410 91 1-8241 *97'70 1-8413 *91'48 1-8271 98 1-8412 92 1-8294 *98'39 1-8406 *92-83 1-8334 *98'66 1-8409 93 1-8339 99 1-8403 94 1-8372 *99'47 1-8395 *94'84 1-8387 100 1-8384 95 1-8390 *100'35 1-8411 *95'97 1-8406 * Determined by experiment. (Lunge and Naef, Dingl. 248. 91.) Boiling-point of H 2 S0 4 + Aq. % H 2 S0 4 B.-pt. % H 2 S0 4 B.-pt. 5 101-0 70 170-0 10 102-0 72 174-5 15 103-5 74 180-5 20 105-0 76 189-0 25 106-5 78 199-0 30 108-0 80 207-0 35 110-0 82 218-5 40 114-0 84 227-0 45 118-5 86 238-5 50 124-0 88 251-5 53 128-5 90 262-5 56 133-0 91 268-0 60 141-5 92 274-5 62-5 147-0 93 281-5 65 153-5 94 288-5 67-5 161-0 95 295-0 (Lunge, B. 11. 370.) SULPHATE, ALUMINUM 411 Freezing- and melting-points of H 2 S0 4 + Aq. Sp. gr. at 15 F.-pt. M.-pt. 1-671 liq. at - 20 1-691 >} 1712 1-727 -7-5 -7-5 1-732 -8-5 -8-5 1-749 -0-2 + 4-5 1-767 + 1-6 + 6-5 1-790 + 4-5 + 8-0 1-807 -9-0 -6-0 1-822 liq. at - 20 1-842 (Lunge, B. 15. 2644.) Miscible with alcohol, with evolution of heat and formation of ethylsulphuric acid. + H 2 = H 4 S0 5 , also called tetrahydroxyl sulphuric acid. (Marignac, A. ch. (3) 39. 184.) + 2H 2 = H 6 S0 6 , also called perhydroxyl sulphuric acid. Sulphuric acid, anhydrous, S0 3 . See Sulphur tfrzoxide. Z^'sulphuric (Pyrosulphuric) acid, H 2 S 2 O 7 . Very deliquescent. Miscible with H 2 0. Sol. in fuming H 2 S0 4 . Miscible in liquid S0 2 . (Schultz-Sellack.) H 2 S 2 7 , 2H 2 S0 4 . Fumes on air. (Jacque- lain, A. ch. (3) 30. 343.) ^rasulphuric acid, H 2 S 4 13 . Fumes on air. (Weber. Pogg. 159. 313.) Sulphates. Most sulphates are easily sol. in H 2 ; but Ag 2 S0 4 , Hg 2 S0 4 , and CaS0 4 are only si. sol., while BaS0 4 , SrS0 4 , and PbS0 4 are nearly insol. therein. All sulphates are sol. in cone. H 2 S0 4 . Basic sulphates are insol. in H 2 0. Most sulphates are insol. in alcohol. Aluminum sulphate, basic, 2A1 2 3 , S0 3 + 10H 2 0. Insol. in H 2 ; easily sol. in cold dil. mineral acids, and HC 2 H 3 2 + Aq. (Crum, A. 89. 174.) Min. Felsobanyite. + 12H 2 0. + 15H 2 0. Min. Paralutninite. 8A1 2 3 , 5S0 3 + 25H 2 0. Insol. in H 2 ; sol. in dil. acids. (Lowe, J. pr. 79. 428.) 5A1 2 3 , 3S0 3 + 20H 2 0. Easily sol. in acids. (Debray, Bull. Soc. (2) 7. 9.) 3A1 2 3 , 2S0 3 + 9H 2 0. Nearly insol. in cone. H 2 S0 4 . (Bayer, Dingl. 263. 211.) + 20H 2 0. Ppt. 4A1 2 3 , 3S0 3 + 36H 2 0. Easily sol. in dil. mineral acids, and hot HC 2 H 3 2 + Aq. (Debray, Bull. Soc. (2) 7. 1.) A1 2 3 , S0 3 + 6H 2 = ( A10) 2 S0 4 + H 2 0. Insol. in H 2 or HC 2 H 3 2 + Aq. SI. sol. in hot HC1, easily sol. in warm KOH + Aq. (Bottinger, A. 244. 225.) + 9H 2 0. (Athanasesco, C. R. 103. 27.) Min. Aluminite. 3A1 2 3 , 4S0 3 +9H 2 0. (Athanasesco, C. R. 103. 271.) + 30H 2 0. Sol. in 144 pts. cold, and 30 '8 pts. boiling H 2 0. Easily sol. in HC1, and HN0 3 + Aq. (Rammelsberg, Pogg. 43. 583.) 2A1 2 2 , 3S0 3 . Decomp. by H 2 into 3A1 2 3 , S0 3 and A1 2 (S0 4 ) 3 . (Maus. ) A1 2 3 , 2S0 3 = A1 2 0(S0 4 ) 2 . Min. Alumiane. + H 2 0. Sol. in small quantity of H 2 0, but decomp. by a large quantity into (A10)2S0 4 and A1 2 (S0 4 ) 3 . (Maus, Pogg. 11. 80.) + 12H 2 0. Easily sol. in hot or cold H 2 0. Sat. solution contains 45 % salt at 15, which crystallises unchanged on evaporating. (Mar- guerite, C. R. 90. 354.) Above basic compounds are mixtures. (Pickering, C. N. 45. 121, 133, 146.) Aluminum sulphate, A1 2 (S0 4 ) 3 . 100 pts. H 2 dissolve (a) pts. A1 2 (S0 4 ) 3 , and (b) pts. A1 2 (S0 4 ) 3 + 18H 2 at : 10 20 30 40 50 a 31-3 33-5 36'15 40'36 4573 52'13 b 86-85 95-8 107 '35 127 '6 167 '6 201 '4 60 70 80 90 100 a 59-09 66-23 73'14 80'83 89'11 b 262-6 348-2 467'3 678'8 1132. (Poggiale, A. ch. (3) 8. 467.) Hydrous salt is scarcely sol. in alcohol. (Berzelius.) Sp. gr. ofA! 2 (S0 7 Sp. gr. at AS 4)3 15 25 35 45 5 1-0569 1-0503 1-045 1-0356 10 1-1071 1-1022 1-096 1-085 15 1-1574 1-1522 1-146 1-1346 20 1-2074 1-2004 1-192 1-1801 25 1-2572 1-2483 1-2407 1-2295 (Reuss, B. 17. 2888.) Sp. gr. of A1 2 (S0 4 ) 3 + Aq at 15 containing : 10 20 30 % A1 2 (S0 4 ) 3 + 18H 2 0, 1-0535 1-1105 1-1710 40 50 % A1 2 (S0 4 ) 3 +18H 2 0. 1-2355 1-3050 Sp. gr. of sat. solution 1 "34. (Gerlach, Z. anal. 28. 493.) A1 2 (S0 4 ) 3 is completely pptd. from A1 2 (S0 4 ) 3 + Aq by an excess of glacial HC 2 H 3 2 . (Per- soz, A. ch. (2) 63. 444.) + 8H 2 0. (Marguerite - Delarcharbonny, C. R. 112. 229.) + 10H 2 0. Deliquescent, (v. Hauer, W. A. B. 13. 449.) + 16H 2 0. (M.-D., C. R. 96. 844.) + 17H 2 0. (Gawalowski, C. C. 1885. 721.) + 18H 2 0. Permanent. (Berzelius.) Min. Alunogen. + 27H 2 0. Efflorescent. (M.-D., C. R. 99. 800.) 412 SULPHATE, ALUMINUM AMMONIUM Aluminum ammonium sulphate (Ammonia alum), (NH 4 ) 2 A1 2 (S0 4 ) 4 + 24H 2 0. 100 pts. H 2 dissolve 2 '9 pts. anhydrous salt at ; 2077 pts. anhydrous salt at 110'6. (Mulder.) 100 pts. H 2 dissolve 8 '74 pts. anhydrous salt at 17'5. (Pohl, W. A. B. 6. 597.) 100 pts. H 2 dissolve (a) pts. anhydrous alum, and (b) pts. crystallised at t. 10 20 30 40 50 a 2'62 4-50 6'57 9'05 12'35 15'9 b 5-22 9-16 13-66 19'29 27'3 36'5 60 70 80 90 100 a 21-1 26-95 35'2 50'3 70'83 b 51-3 71-97 103-1 187 '8 421'9 (Poggiale, A. ch. (3) 8. 467.) B.-pt. of sat. solution is 110 '6. Insol. in alcohol. (Mulder.) M. -pt. of A1 2 (NH 4 ) 2 (S0 4 ) 4 + 24H 2 = 92. (Til- den, Chem. Soc. 45. 409.) Sp. gr. of aqueous solution at 15 contain- ing : 369 %(NH 4 ) 2 A1 2 (S0 4 ) 4 + 24H 2 0. 1-0141 1-02821-0423 (Gerlach, Z. anal. 28. 495.) Min. T scher migite. Aluminum ammonium chromium sulphate, (NH 4 ) 2 S0 4 , Al a (S0 4 ) 3> (NH 4 ) 2 S0 4 , Cr 2 (S0 4 ) 3 + 48H 2 0. Sol. in H 2 ; decomp. by boiling. (Vohl, A. 94. 71.) Aluminum caesium sulphate, Al 2 Cs 2 (S0 4 ) 4 + 24H 2 0. 100 pts. H 2 at 17 dissolve 0'619 pt. cfesium alum. (Redtenbacher, J. pr. 94. 442.) Melts in crystal H at 105-106. (Tilden, Chem. Soc. 45. 409.) Solubility in 100 pts. H 2 at t (calculated for salt dried at 130). t Pts. alum t Pts. alum t Pts. alum 0-19 25 0-49 65 2-38 10 0-29 35 0-69 80 5-29 17 0-38 50 1-235 ... ... (Setterberg, A. 211. 104.) Aluminum calcium sulphate, basic, A1 2 3 , 6CaO, 3S0 3 + 32H 2 0. Min. Ettringite. Mostly sol. in H 2 ; sol. inHCl + Aq. Aluminum chromium sulphate, A1 2 O 2 (S0 4 ) 6 . Insol. in H 2 0. Al 2 Cr 2 (S0 4 ) 6 , H 2 S0 4 . Insol. in H 2 0. (Etard, C. R. 86. 1400.) Aluminum chromium potassium sulphate, A1 2 (S0 4 ) 3 , 2 (S0 4 ) 3 , 2K 2 S0 4 + 48H 2 0. Sol. in H 2 O, but decomp. on boiling. (Vohl.) Aluminum copper sulphate, 2ALOo, 9CuO, 3S0 3 + 21H 2 0. Min. CyanotricMte. (Percy, Phil. Mag. (3) 36. 103.) Aluminum hydroxylamine sulphate, A1 2 (S0 4 ) 3 , (NH 2 OH) 2 S0 4 + 24H 2 0. Sol. in H 2 0. (Meyeringh, B. 10. 1946.) Aluminum ferrous sulphate, Al 2 (S0 4 )o, FeS0 4 + 24H 2 0. Sol. in H 2 0. (Klauer, A. 14. 261.) Min. Halotrichite. A1 2 (S0 4 ) 3 , 2FeS0 4 + 27H 2 0. Sol. in H 2 0. (Berthier.) A1 2 3 , 2S0 3 , 6FeS0 4 . Easily sol. in H 2 0. (Phillips.) A1 2 (S0 4 ) 3 , 2FeS0 4 , H 2 S0 4 . Insol. in H 2 0. (Etard, C. R. 87. 602.) Aluminum ferric sulphate, A1 2 (S0 4 ) 3 , Fe 2 (S0 4 ) ;{ . Insol. in H 2 0. (Etard, C. R. 86. 1399.) A1 2 (S0 4 ) 3 , Fe 2 (S0 4 ) 3 , H 2 S0 4 . As above. (Etard.) Aluminum ferrous potassium sulphate, A1 2 (S0 4 ) 3 , 12FeS0 4 , 2K 2 S0 4 + 24H 2 0. Permanent. SI. sol. in H 2 0. (Dufrenoy.) Aluminum lead sulphate, Al 2 Pb 2 (S0 4 ) 5 + 20H 2 0. Permanent ; insol. in H 2 0. (G. H. Bailey J. Chem. Soc. Ind. 6. 415.) Aluminum lithium sulphate, Li 2 Al 2 (S0 4 ) 4 + 24H 2 0. Sol. in 24 pts. cold, and 0'87 pt. hot H.,0. (Kralovansky, Schw. J. 54. 349.) Does not exist. (Rammelsberg, J. B. 1847- 48. 394 ; Arfvedson ; Gmelin.) Aluminum lithium potassium sulphate (?). Sol. in H 2 0, from which it crystallises on cooling. (Joss, J. pr. 1. 142.) Aluminum magnesium sulphate, MgS0 4 , A1 2 (S0 4 ) 3 + 22H 2 0. Min. Pickeringite. 2MgS0 4 , A1 2 (S0 4 ) 3 + 22H 2 0. Min. Picral- uminite. 3MgS0 4 , A1 2 (S0 4 ) 3 + 36H 2 0. Very sol. in H 2 0. (Klauer, A. 14. 264.) Aluminum magnesium manganous sulphate, A1 2 (S0 4 ) 3 , MgS0 4 , MnS0 4 + 25H 2 0. As sol. in H 2 as K alum. (Kane.) Very sol. in H 2 0. (Smith, Sill. Am. J. (2) 18. 379.) Min. Bosjemanite. Aluminum manganous sulphate, A1 2 (S0 4 ) S , MnS0 4 + 25H 2 0. Sol. in H 2 0. (Berzelius.) + 24H 2 0. Min. Apjohnite. Aluminum manganic sulphate, 2A1 2 (S0 4 ) 3 , Mn 2 (S0 4 ) 3 . Insol. in H 2 0. (Etard, C. R. 86. 1399.) Aluminum nickel sulphate, A1 2 (S0 4 ) 3 , 2NiS0 4 , H 2 S0 4 . Insol. in H 2 0, but gradually decomp. thereby. (Etard, C. R. 87. 602.) SULPHATE, ALUMINUM POTASSIUM 413 Aluminum potassium sulphate, basic, 3(A1 2 3 > S0 3 ),K 2 S0 4 + 6H 2 = K 2 S0 4 , 3A1 2 (S0 4 )(OH) 4 . Min. Alunite. Insol. in H 2 0. Insol. in cone. HCl + Aq. Sol. in boiling H 2 S0 4 of 1-845 sp. gr., but more easily in a mixture of 12 g. H 2 S0 4 and 1'5 g. H 2 0, and also in weaker acids, if heated to 210. (Mitscheiiich, J. pr. 81. 108.) + 9H 2 0. Min. Lowigite. SI. sol. in boil- ing HCl + Aq. (Mitscherlich, J. pr. 83. 455.) Nearly insol. in HC1 or cone. HN0 3 + Aq, but sol. in a mixture of 1 pt. H 2 S0 4 and 1 pt. H 2 0. (Debray, Bull. Soc. (2) 7. 9.) With varying composition. Precipitates. Insol. in H0. Very si. sol. in cold, gradually (Bley, J. pr. 39. 17.) Very in warm cone. HCl + Aq, but (Naumann, B. 8. Sol. in H 2 0, but de- in hot acids. difficultly sol. easily sol. in KOH + Aq. 1630.) A1 2 0(S0 4 ) 2 , K2 comp. by heating. Aluminum potassium sulphate (Potash alum), KA1(S0 4 ) 2 + 12H 2 or K 2 A1 2 (S0 4 ) 4 = K 2 S0 4 ,A1 2 (S0 4 ) 3 + 24H 2 0. Sol. in H 2 with absorption of heat. When 100 pts. H 2 at 10 '8 are mixed with 14 pts. alum, the temp, is lowered 1*4. (Riidorff, B. 2. 68.) Burnt alum is very slowly sol. in H 2 0. 100 pts. H 2 O at t dissolve P pts. K 2 Al2(S0 4 ) 4 +24H 2 O. t P I s P 12-5 21-25 25-0 37-5 7-6 10-4 22-0 44-1 50-0 62-5 75-0 87-5 46-7 230-0 920-0 1566-6 (Brandes, 1822.) (Probably supersat.) Sol. in 18 pts. cold, and 1-6 pts. boiling H 2 O (Four- croy); in 14-12 pts. cold, and 0'75 pt. boiling H 2 O (Bergmann); in 15 pts. cold, and 0'75 pt. boiling H 2 O (Dumas); in 11'7 pts. H9O at 18-75 (Abl). 100 pts. H 2 O dissolve" 14-79 pts. alum at 15-56, and 133-33 pts. at 100. (Ure's Diet.) K 2 Al2(SO 4 ) 4 +Aq sat. at 15 contains 10-939 pts. alum in every 100 pts. H 2 O. (Michel and Krafft.) K 2 Al 2 (SO 4 ) 4 +Aq sat. in cold contains 5-2 % alum (Fourcroy), 6 '7 % (Boer have). 100 pts. H 2 at t dissolve pts. K 2 A1 2 (S0 4 ) 4 . t Pts. K 2 Al2(S0 4 ) 4 Pts. K 2 Al2(S0 4 ) 4 +24H 2 O 2-10 3-90 10 4-99 9-52 20 774 15-13 30 10-94 22-01 40 14-88 30-92 50 20-09 44-11 60 26-70 66-65 70 35-11 90-67 80 45-66 134-47 90 58-68 209-31 100 74-53 357-48 (Poggiale, A. ch. (3) 8. 467.) 100 pts. H 2 dissolve corresponding to K 2 A1 2 (S0 4 ) 4 . K 2 A1 2 (S0 4 ) 4 + 24H 2 pts. anhydrous Temp. Pts. K 2 Al2(S0 4 ) 4 Temp. Pts. K 2 Al2(S0 4 ) 4 3-0 60 25 5 3'5 70 40 10 4-0 80 71 15 5-0 90 109 20 5'9 92-5 119-5 30 7-9 100 154 40 117 110 200 50 17-0 111-9 210-6 (Mulder, Scheik. Verhandel. 1864. 90.) 100 pts. H 2 at 17 dissolve 13 '5 pts. K 2 A1 2 (S0 4 ) 4 + 24H 2 0, or 7 '36 pts. K 2 A1 2 (S0 4 ) 4 . (Redtenbacher, J. pr. 94. 442.) Forms supersaturated solutions very easily. Supersat. solutions are brought to crystallisa- tion by addition of a crystal of alum or an isomorphous substance, as chrome or iron alum. Other substances as NaCl, etc. have no action. (Thomson, Chem. Soc. 35. 199.) Sp. gr. of sat. K 2 Al 2 (S0 4 ) 4 + Aq at 8 = 1-045 (Anthon) ; at 15 = 1 '0488 (Michel and Krafft) ; at 15 = 1 '0456 (Stolba). Sp. gr. of K 2 A1 2 (S0 4 ) 4 + Aq at 15 containing 5 % K 2 A1 2 (S0 4 ) 4 = 1-0477. (Kohlrausch, W. Ann. 1879. 1.) Sp. gr. of K 2 Al 2 (S0 4 ) 4 + Aq at 15. a = pts. K 2 Al 2 (S0 4 ) 4 + 24H 2 Oin 100 pts. solution; b = pts. K 2 A1 2 (S0 4 ) 4 in 100 pts. solution; c = pts. K 2 A1 2 (S0 4 ) 4 for 100 pts. H 2 0. a b c Sp. gr. 4 2-1792 2-2277 1-0210 8 4-3584 4-5570 1-0420 12 6-5376 6-9950 1-0641 13 7-083 7-622 1-0690 (Gerlach, Z. anal. 27. 280.) Saturated solution boils at 111 '9, and con- tains 210-6 pts. K 9 A1 2 (S0 4 ) 4 + 24H 2 to 100 pts. H 2 0. (Mulder.") 100 pts. H 2 contain 52 pts. K 2 A1 2 (S0 4 ) 4 , and boils at 104-5. (Griffiths.) Crust forms at 106 '3, when the solution contains 114 '2 pts. K 2 A1 2 (S0 4 ) 4 to 100 pts. H 2 0. (Gerlach, Z. anal. 26. 426.) B.-pt. of K 2 A1 2 (S0 4 ) 4 + Aq containing pts. K 2 A1 2 (S0 4 ) 4 to 100 pts. H 2 0. B.-pt. Pts. K 2 A1 2 (S0 4 ) 4 B.-pt. Pts. K 2 Al2(SO 4 ) 4 100-5 17-0 104-0 83-9 101-0 30-2 104-5 907 101-5 41-8 105-0 97-6 102-0 51-6 105-5 103-9 102-5 60-4 106-0 110-5 103-0 687 106-5 116-9 103-5 76-7 1067 120-55 (Gerlach, Z. anal. 26. 435.) 414 SULPHATE, ALUMINUM RUBIDIUM M. -pt. of K 2 A1 2 (S0 4 ) 4 + 24H 2 = 84 '5. (Til- den, Chem. Soc. 45. 409.) K 2 Al2(S0 4 ) 4 + Aq sat at 10, and then sat. with K 2 S0 4 at same temp., contains for 100 pts. H 2 At 10 At 9 Alum (anhydrous) . K 2 S0 4 4-0 0-86 9'16 97 10-02 (Mulder.) K 2 A1 2 (S0 4 ) 4 + Aq sat. at 10, and then sat. with Na 2 S0 4 at 9, contains for 100 pts. H 2 At 10 At 9 Alum (anhydrous) . Na 2 S0 4 4-0 4-1 8'8 8'4 12-9 (Mulder.) K 2 A1 2 (S0 4 ) 4 + Aq sat. at 10, and then sat. with MgS0 4 at 9, contains for 100 pts. H 2 Alum (anhydrous) . MgS0 4 At 10 At 9 4-0 27 31-2 31-1 33-9 (Mulder.) Insol. in sat. Al 2 (S0 4 )o + Aq. (Crum,.A. 89. 156.) Insol. in alcohol of 0'905 sp. gr. or less. (Anthon, J. pr. 14. 125.) Min. Kalinite. Aluminum rubidium sulphate, Al 2 Rb 2 (S0 4 ) 4 + 24H 2 0. 100 pts. H 2 dissolve 2 '27 pts. at 17; very sol. in hot H 2 0. (Redtenbacher, J. pr. 94. 442.) Melts in crystal H 2 at 99. (Tilden, Chem. Soc. 45. 409.) Solubility in 100 pts. H 2 at t (calculated for salt dried at 130). t Pts. alum t Pts. alum t Pts. alum 071 25 1-85 65 9-63 10 1-09 35 2-67 80 21-60 17 1-42 50 4-98 (Setterberg, A. 211. 104.) Aluminum silver sulphate, Al 2 Ag 2 (S0 4 ) 4 + 24H 2 0. Decomp. by H 2 0. (Church and Northcote, C. N. 9. 155.) Aluminum sodium sulphate, Al 2 Na 2 (S0 4 ) 4 + 24H 2 0. Very si. efflorescent. Sol. in 2-14 pts. H 2 O at 13, or 100 pts. H 2 O dissolve 467 pts. soda alum. Sol. in 1 pt. boiling H 2 O. (Zellner, Schw. J. 36. 183.) 100 pts. H 2 O dissolve 110 pts. at 15'5, and form a liquid of 1-296 sp. gr. (Ure.) 100 pts. H 2 dissolve 51 pts. soda alum at 16. (Auge", C. R. 110. 1139.) 100 pts. H 2 dissolve 110 pts. soda alum at 0. (Tilden, Chem. Soc. 45. 409.) Insol. in absolute alcohol. (Zellner.) M.-pt. of Na 2 Al 2 (S0 4 ) 4 + 24H 2 = 61. (Til- den, Chem. Soc. 45. 409.) Min. Mcndozite. Aluminum thallous sulphate, TLA1 2 (S0 4 ) 4 + 24H 2 0. Sol. in H 2 0. (Cossa, C. C. 1870. 470.) 3A1 2 (S0 4 ) 3 , T1 2 S0 4 + 96H 2 0. Sol. in H 2 0. (Lamy.) Aluminum zinc sulphate, Al 2 (S0 4 ) 3 ,ZnS0 4 -f 24H 2 0. Sol. in H 2 0. (Kane.) Aluminum sulphate sodium fluoride. Decomp. by H 2 0. (Weber, Dingl. 263. 112.) Ammonium sulphate, (NH 4 ) 2 S0 4 . Sol. in H 2 with absorption of heat. 75 pts. (NH 4 ) 2 S0 4 mixed with 100 pts. H 2 lower the temperature from 13 '2 to 6 '8, that is, 6-4. (Riidorff, B. 2. 68.) Sol. in 1-31 pts. H 2 at 19. (Schiff, A. 109. 320.) Hoi. in 2 pts. HoO at 1875". (Abl.) Sol. in 2 pts. H 2 O at 15 '6, and in 1 pt. boiling H 2 O. (Fourcroy.) 100 pts. H 2 O at G2-G" dissolve 78 pts. (NHA,S0 4 . (Wenzel.) 100 pts. H 2 O at 15 dissolve 66'739 pts. (NH 4 V>SO 4 . (Michel and Krafft.) Sol. in 1-3 pts. cold H 2 0. (Vogel, N. Rep. Pharm. 10. 9.) Sol. in 1-37 pts. cold H 2 at 10. (Mulder, J. B. 1866. 67.) Sol. in 1-34 pts. H 2 at 16-17. (v. Hauer, W. A. B. 53, 2. 221.) 100 pts. H 2 dissolve at : 10 20 30 71-00 73-65 76-30 78 '95 pts. (NH 4 ) 2 S0 4 , 40 50 60 70 81-60 84-25 86-90 89 '55 pts. (NH 4 ) 2 S0 4 , 80 90 100 92-20 94-85 97 '50 pts. (NH 4 ) 2 S0 4 . (Alluard, C. R. 59. 500.) Solubility in 100 pts. H 2 at t. o t *i t *l t e t 1 70-6 70-9 8 9 72-5 72-8 16 17 74-4 747 2 71-1 10 73-0 18 74-9 3 71-4 11 73-2 19 75-1 4 71-6 12 73-5 20 75-4 5 71-8 13 737 21 757 6 72-1 14 74-0 22 75-9 7 72-3 15 74-2 23 76-2 SULPHATE, AMMONIUM 415 Solubility in 100 pts., etc. Continued. Sp. gr. of (NH 4 )2S0 4 + Aq at 15. 1 if | * 3 Sp.gr. g 3 t - = g| r 2 at |. 1 Hp.gr. 1 Hp.gr. & & j fc 24 76-4 53 85-5 82 96-0 1 A', 76-7 54 85-8 83 96-4 5 1 0292 20 1-1160 31 1-1787 76-9 55 86-2 84 96-8 10 1 0581 30 1-1730 97 77-9 pa Sfi'fi QC Q7'9 At It* 77-5 .}') 57 ,-, >, 86-9 OO 86 vl / 97-6 (Kohlrausch,W. Ann. 1879. 1.) v; ( 77-8 58 87-3 87 98-0 30 q-i 78-0 59 an 87-7 QQ.A 88 98-4 '. - - Sp. gr. of (NH 4 )2S0 4 + Aqat 15. 51 78-6 OU 61 OO U 88-4 90 J7O O 99-2 3 Sp.gr. g g 33 78-9 62 887 91 99-6 "4 103 5 51 i 108*0 1 16 V f g ^ 104 58-0 108-2 115-3 *. *Q ^, 104-5 64-9 ... j 8p.gr. m Sp. gr. M Sp. gr. * s X (Gerlach, Z. anal. 26. 431. > " Sol. with decomn. in HCl-l-Ao. 1 0057 18 1-1035 35 1 *2004 Very easily sol., even in cone. NH 4 OH + 2 0115 19 1-1092 86 1 *2060 Aq. (Girard, Bull. Soc. (2) 43. 522.) 3 0172 20 1-1149 :J7 1*2116 100 pts. H 2 O dissolve 46*5 pts. (NH 4 )2S0 4 4 0230 21 1-1207 38 1-2172 and 26 8 pts. NH 4 Clat21-6. 5 0287 22 1-1265 39 1 -2228 100 1 )ts. (NH 4 ) zSCX-f K-SO, + Aq sat. at 16 '1 7 6 7 8 1-0345 1-0403 1-0460 23 24 25 1-1323 1-1381 1-1439 40 41 42 1-2284 1-2343 2402 contain 38 "41 pts. of the two salts, 5-45 j)ts. are K.2S0 4 , and 32 '96 pts. ( (v. Hauer, J. pr. 28. 137.) of which f) 1-0518 26 1*1496 43 2462 100 pts. IL.O dissolve 50 '6 pts. (NHA-SOj 10 1-0575 27 1-1554 44 2522 and 7 "2 pts. K,;S0 4 at 11. (Mul'der, J. B. 1866. 11 I"06-i2 28 1-1612 45 2583 67.) 12 13 1 -0690 29 1-0747 1 30 1-1670 1-1724 46 47 2644 2705 (NH 4 )5jS0 4 and K/KX replace each other in solution, so that by adding one of these salta 14 1-0805 31 1-1780 48 2766 to a seemingly saturated solution of the other, 15 1-0862 1 32 1-1886 49 2828 it is dissolved with pptn. of the other salt. 1 16 1-0920 j 33 1-1892 50 1-2890 (Riidorff, B. 6. 485.) 17 1-0977 34 1-1948 Insol. in absolute alcohol. Sol. in 500 pts. alcoho a " 0*872 ~ii. i T.. and in 65 '5 T>tS. Ol Schiff, calculated by Gerlach, Z. anal. 8. 280.) 0*905 sp. gr. (Anthon, J. pr. 14. 125.) 418 SULPHATE, AMMONIUM HYDROGEN Sol. in 217 '4 pts. of 66 '8 % alcohol (sp. gr. = 0-88) at 24-3. (Pohl, J. pr. 56. 219.) Tolerably sol. in alcohol, the sp. gr. of which is greater than 0*860. Insol. in alcohol of sp. gr. less than 0'850. Solubility in dil. alcohol. When (NH 4 ) 2 S0 4 is dissolved in dil. alcohol, two layers are formed, the compositions of which are as follows : Sp. gr. Lower layer. 100 ccm. contain in g. A alcohol water salt 1-2240 1-1775 1-1661 1-1655 1-1735 8-85 10-62 11-29 11-42 71-43 68-26 6770 67-34 66-54 74-16 59-54 56-56 56-30 59-20 Sp. gr. Upper layer. 100 ccm. contain in g. alcohol water salt" 0-9530 0-9512 0-9440 0-9098 0-8750 0-8549 0-8308 41-37 44-20 44-27 52-64 62-61 67-04 77-55 48-47 45-95 45-61 3678 24-60 18-36 5-53 5-45 4-97 4-51 1-56 0-30 0-09 o-oo (Bodlander, Z. phys. Ch. 7. 3, 8.) Ammonium hydrogen sulphate, NH 4 HS0 4 . SI. deliquescent. Sol. in 1 pt. cold H 2 0. (Link.) Very si. sol. in alcohol. (Gerhardt, A. ch. (3) 20. 255.) (NH 4 ) S H(S0 4 ) 2 . Not deliquescent. Sol. in H 2 0. (Mitscherlich, Pogg. 39. 198.) Ammonium ^rosulphate, (NH 4 ) 2 S 2 7 . Decomp. by H 2 0. (Schulze.) Ammonium octasulphate, (NH 4 ) 2 S 8 25 . Decomp. by H 2 0. (Weber, B. 17. 2497.) Ammonium bismuth sulphate, NH 4 Bi(S0 4 ) 2 + 4H 2 0. Easily sol. in HC1, and HN0 3 + Aq ; less sol. in cone. H 2 S0 4 , and hot dil. acids. Slowly de- comp. by cold HC 2 H 3 2 , and dil. H 2 S0 4 + Aq. (Liiddecke, A. 140. 277.) Ammonium cadmium sulphate, (NH 4 ) 2 S0 4 , CdS0 4 + 6H 2 0. Can be recrystallised from a little H 2 0. (v. Hauer. ) 3(NH 4 ) 2 S0 4 , CdS0 4 + 10H 2 0. (Andre, C. R. 104. 987.) Ammonium calcium sulphate, (NH 4 ) 2 Ca(S0 4 ) 2 + H 2 0. Decomp. by H 2 0. (Fassbender, B. 11. 1968.) Sol. in (NH 4 ) 2 S0 4 + Aq. (Rose, Pogg. 110. 292.) Ammonium calcium potassium sulphate, NH 4 CaK(S0 4 ) 2 + Decomp. by cold H 2 0. (Fassbender, B. 11. 1968.) Ammonium cerous sulphate, (NH 4 ) 2 Ce 2 (S0 4 ) 4 + 8H 2 0. More sol. in cold than in hot H 2 0. (Czud- nowicz). Ammonium eerie sulphate, 3(NH 4 ) 2 S0 4 , Ce(S0 4 ) 2 + 4H 2 0. Slightly efflorescent. Easily sol. in H 2 0. (Mendelejeff, A. 168. 50.) 3(NH 4 ) 2 S0 4 ,2Ce(S0 4 ) 2 + 3H 2 0. SI. sol. in H 2 0. (Mendelejeff.) Ammonium chromium sulphate, (NH 4 ) 2 S0 4 , Cr 2 (S0 4 ) 3 . Not attacked by boiling H 2 or cone. HC1 + Aq. Very slowly attacked by boiling KOH + Aq (sp. gr. = l'3). Insol. in CrCl 2 + Aq or SnCl 2 + Aq. (Klobb, Bull. Soc. (3) 9. 664.) + 5H 2 0. Is ammonium chromosulphate, which see. (NH 4 ) 2 Cr 2 (S0 4 ) 4 + 24H 2 0. Violet modifica- tion. _ Efflorescent. Sol. in cold H 2 0, but solution is decomp. on heating with formation of green modification. The dil. solution of green modification is gradually converted into violet modification by standing. Alcohol ppts. it from aqueous solution. (Schrotter, Pogg. 53. 526.) Sp. gr. of aqueous solution of violet modifica- tion at 15, containing : 4 8 12 % (NH 4 ) 2 Cr 2 (S0 4 ) 4 + 24H 2 0. 1-020 1-0405 1-0610 Sat. solution at 15 has sp. gr. = 1*070. (Gerlach.) Green modification. Sol. in H 2 and alcohol. When in aqueous solution, it gradually changes to violet modification. Sp. gr. of aqueous solution of green modi- fication at 15, containing : 10 20 30 %(NH 4 ) 2 Cr 2 (S0 4 ) 4 -f24H 2 0, 1-044 1-091 1-142 40 50 1-197 1-255 70 80 1-384 1-456 (Gerlach, Z. anal. 28. 498.) 60 %(NH 4 ) 2 Cr 2 (S0 4 ) 4 1-317 90 %(NH 4 ) 2 Cr 2 (S0 4 ) 4 + 24H 2 0. 3(NH 4 ) 2 S0 4 , Cr 2 (S0 4 ) 3 . HoO. Only si. attacked by boiling H 2 0.~ Not attacked by boiling cone. (NH 4 ) S0 4 + Aq. (Klobb, Bull. Soc. (3) 9. 663.) Ammonium cobaltous sulphate, (NH 4 ) 2 Co(S0 4 ) 2 + 6H 2 0. 100 pts. H 2 dissolve at : 10 18 23 35 8-9 11-6 15-2 17-1 19 -6 pts. anhydrous salt, 40 45 50 60 75 22-3 25 287 34 '5 43 '3 pts. anhydrous salt. (Tobler, A. 95. 193.) SULPHATE, AMMONIUM FERROUS 417 100 pts. saturated solution contain at : 20 40 60 80 14 '9 20 '8 25 '6 33 pts. anhydrous salt. (v. Hauer, J. pr. 74. 433.) Pptd. from aqueous solution by alcohol. Ammonium cobaltic sulphate, (NH 4 ) 2 Co 2 (S0 4 ) 4 + 24H 2 0. Sol. in H 2 with decomp. (Marshall, Chem. Soc. 59. 760.) Ammonium cobaltous cupric sulphate, 2(NH 4 ) 2 S0 4 , CoS0 4 , CuS0 4 + 12H 2 0. Quite easily sol. in hot H 2 0, but on long boiling a basic salt is pptd. (Vohl, A. 94. 58.) Ammonium cobaltous ferrous sulphate, 2(NH 4 ) 2 S0 4 , CoS0 4 , FeS0 4 + 12H 2 0. Sol. in H 2 0. (Vohl, A. 94. 57.) Ammonium cobaltous magnesium sulphate, 2(NH 4 ) 2 S0 4 , CoS0 4 , MgS0 4 + 12H 2 0. Sol. in H 2 0. (Vohl, A. 94. 57.) Ammonium cobaltous manganous sulphate, 2(NH 4 ) 2 S0 4 , CoS0 4 , MnS0 4 + 12H 2 0. Sol. in H 2 0. (Vohl, A. 94. 57.) Ammonium cobaltous nickel sulphate, 2(NH 4 ) 2 S0 4 , CoS0 4 , NiS0 4 +12H 2 0. Sol. inH 2 0. (Vohl, A. 94. 57.) Ammonium cobaltous zinc sulphate, 2(NH 4 ) 2 S0 4 , CoS0 4 , ZnS0 4 + 12H 2 0. Sol. in H 2 0. (Vohl, A. 94. 57.) Ammonium cupric sulphate, (NH4) 2 S0 4 , CuS0 4 + 6H 2 0. Efflorescent in warm air. Sol. in 1*5 pts. boiling H 2 O, and separates almost wholly on cooling. (Vogel, J. pr. 2. 194.) Sol. in 1-55 pts. H 2 at 18-75. (Abl.) 100 pts. H 2 at 19 dissolve 26 '6 pts., and sat. solution las sp. gr. = l'1336. (Schiff, A. 109. 326.) (NH 4 ) 2 S0 4 , 2CuS0 4 . Very sol. in H 2 0. (Klobb, C. R. 115. 230.) Ammonium cupric ferrous sulphate. Sol. in H 2 without decomposition. (Vohl, A. 94. 61.) Ammonium cupric magnesium sulphate, 2(NH 4 ) 2 S0 4 , CuS0 4 , MgS0 4 + 12H 2 0. Sol. in H 2 0. (Vohl, A. 94. 57.) Ammonium cupric magnesium potassium sul- phate, (NH 4 ) 2 S0 4 , CuS0 4 , MgS0 4 , K 2 S0 4 + 12H 2 0. Sol. inH 2 0. (Schiff.) 2(NH 4 ) 2 S0 4 , CuS0 4 , 2MgS0 4 , K 2 S0 4 + 18H 2 0. Sol. in H 2 0. (Schiff.) Ammonium cupric manganous sulphate, 2(NH 4 ) 2 S0 4 , CuS0 4 , MnS0 4 + 12H 2 0. Sol. in H 2 0. (Vohl, A. 94. 57.) Ammonium cupric nickel sulphate, 2(NH 4 ) 2 S0 4 , CuS0 4 , NiS0 4 +12H 2 0. Sol. inH 2 0. (Vohl.) Ammonium cupric potassium sulphate, NH 4 KS0 4 , CuS0 4 + 6H 2 0. Sol. inH 2 0. (Schiff.) Ammonium cupric zinc sulphate, 2(NH 4 ) 2 S0 4 , CuS0 4 , ZnS0 4 + 12H 2 0. Sol. in H 2 0. (Vohl.) Ammonium cupric sulphate ammonia, (NH 4 ) 2 S0 4 , CuO, 2NH 3 . Sol. in 1*5 pts. cold H 2 0, but decomp. on exposure to air or dilution. Insol. in alcohol. (Kiihn.) Ammonium didymium sulphate, (NH 4 ) 2 S0 4 , Di 2 (S0 4 ) 3 + 8H 2 0. Sol. in 18 pts. H 2 0, and less easily in (NH 4 ) 2 S0 4 + Aq. (Marignac.) Moderately sol. in H 2 0. (Cleve, Bull. Soc (2) 43. 362.) Ammonium erbium sulphate, (NH 4 ) 2 S0 4 , Er 2 (S0 4 ) 3 + 8H 2 0. Sol. in H 2 0. (Cleve.) Ammonium gallium sulphate, (NH 4 ) 2 Ga 2 (S0 4 ) 4 + 24H 2 0. Sol. in cold water and dilute alcohol. Cone, solution clouds up on boiling, but clears on cool- ing. Dil. solution separates out a basic salt, insol. in hot or cold H 2 0. (Boisbaudran.) Ammonium glucinum sulphate, (NH 4 ) 9 S0 4 , G1S0 4 + 2H 2 0. Sol. inH 2 0. (Atterberg.) Ammonium indium sulphate, (NH 4 ) 2 In 2 (S0 4 ) 4 + 24H 2 0. 100 pts. H 2 dissolve 200 pts. salt at 16, and 400 pts. at 30. Insol. in alcohol. Melts in crystal H 2 at 36. (Rossler, J. pr. (2) 7. 14.) + 8H 2 0. (Rossler.) Ammonium ferrous sulphate, (NH 4 ) 2 Fe(S0 4 ) 2 + 6H 2 0. Much less sol. in H 2 than FeS0 4 + 7H 2 0. (Vogel, J. pr. 2, 192.) 100 pts. H 2 dissolve at : 12 20 30 36 12-2 17'5 21-6 28-1 31 '8 pts. anhydrous salt, 45 55 60 65 75 36*2 40-3 44-6 49 '8 567 pts. anhydrous salt. (Tobler, A. 95. 193.) 100 pts. H 2 at 16-5 dissolve 35 '9 pts. hydrous salt. Sp. gr. of (NH 4 ) 2 FeS0 4 + Aq at 19 ; % = %(NH 4 ) 2 FeS0 4 + 6H 2 0. % Sp. gr. % Sp. gr. % Sp. gr. 1 1-006 11 1-066 21 1-130 2 1-013 12 1-073 22 1136 3 1-018 13 1-080 23 1-143 4 1-024 14 1-085 24 1-150 5 1-030 15 1-092 25 1-156 6 1-036 16 1-097 26 1-164 7 1-042 17 1-104 27 1-171 8 1-047 18 1-110 28 1-179 9 1-054 19 1-116 29 1-185 10 1-060 20 1-124 30 1-193 (Schiff, calculated by Gerlach, Z. anal. 8. 280. Insol. in acetone. 2E 418 SULPHATE, AMMONIUM FERRIC, BASIC Ammonium ferric sulphate, basic. Extremely difficultly sol. in HCl + Aq. Not decomp. by KOH + Aq. (Berzelius. ) 5(NH 4 ) 2 0, 3Fe 2 3 , 12S0 3 + 18H 2 or 2(NH 4 ) 2 0, Fe 2 3 , 4S0 3 + 4H 2 0. Sol. in 2 "4 pts. cold H 2 0. (Mans, Pogg. 11. 79.) Ammonium ferric sulphate, (NH 4 ) 2 S0 4 , Fe 2 (S0 4 ) 3 . Attacked slowly by cold H 2 0. (Lachaud and Lepierre.) + 24H 2 0. Iron alum. Sol. in 3 pts. H 2 at 15. (Forchhammer, Ann. Phil. 5. 406.) Sp. gr. of aqueous solution at 15 containing : 5 10 15 % (NH 4 ) 2 Fe 2 (S0 4 ) 4 1-023 1-047 1-071 20 25 30%(NH 4 ) 2 Fe 2 (S0 4 ) 4 1-096 1-122 1-148 35 40 % (NH 4 ) 2 Fe 2 (S0 4 ) 4 + 24H 2 0. 1-175 1-203 40 % solution is sat. at 15. (Gerlach, Z. anal. 28. 496.) 3(NH 4 ) 2 S0 4 , Fe 2 (S0 4 ) 3 . Insol. in cold H 2 0. (Lachaud and Lepierre.) Ammonium ferroferric sulphate, 4(NH 4 ) 2 S0 4 , FeS0 4 , Fe 2 (S0 4 ) 3 + 3H 2 0. SI. sol. in cold H 2 ; decomp. into basic salt by hot H 2 ; insol. in alcohol. (Lachaud and Lepierre, C. R. 114. 916.) Ammonium ferrous magnesium sulphate, 4(NH 4 ) 2 S0 4 , 3FeS0 4 , MgS0 4 + 24H 2 0. Sol. in H 2 0. (Schiff, A. 107. 64.) 2(NH 4 ) 2 S0 4 , FeS0 4 , MgS0 4 + 12H 2 0. Sol. in H 2 0. (Vohl, A. 94. 57.) Ammonium ferrous manganous sulphate, 2(NH 4 ) 2 S0 4 , FeS0 4 , MnS0 4 + 12H 2 0. Sol. in H 2 0. (Vohl, A. 94. 57.) Ammonium ferrous nickel sulphate, 2(NH 4 ) 2 S0 4 , FeS0 4 , NiS0 4 + 12H 2 0. Sol. in H 2 0. (Vohl, A. 94. 57.) Ammonium ferrous zinc sulphate, 2(NH 4 ) 2 S0 4 , FeS0 4 , ZnS0 4 + 12H 2 0. Sol. in H 2 0. (Bette, A. 14. 286.) Ammonium lanthanum sulphate, (NH 4 ) 2 S0 4 , La 2 (S0 4 ) 3 + 8H 2 0. SI. sol. in H 2 0. (Marignac.) Quite sol. in H 2 0. (Cleve. ) Ammonium lead sulphate, (NH 4 ) 2 S0 4 , PbS0 4 . Decomp. by H 2 into its constituents. (Wohler and Litton, A. 43. 126.) Ammonium lithium sulphate, NH 4 LiS0 4 . Easily sol. in H 2 0. ( Arfvedson. ) Ammonium magnesium sulphate, (NH 4 ) 2 Mg(S0 4 ) 2 + 6H 2 0. 100 pts. H 2 dissolve 15 '9 pts. anhydrous double salt at 13. (Mulder.) 100 pts. H 2 dissolve at : 10 15 20 30 9'0 14-2i 15'7 17'9 19-1 pts. anhydrous salt, 45 50 55 60 75 25-6 30-0 31-9 36 '1 45 '3 pts. anhydrous salt. (Tobler, A. 96. 193.) More sol. in H 2 than (NH 4 ) 2 S0 4 or MgS0 4 . (Graham.) Min. Cerlolite. Ammonium magnesium nickel sulphate, 2(NH 4 ) 2 S0 4 , MgS0 4 , NiS0 4 + 12H 2 0. Sol. in H 2 0. (Vohl, A. 94. 57.) Ammonium magnesium potassium zinc sul- phate, 2(NH 4 ) 2 S0 4 , 3MgS0 4 , 3K 2 S0 4 , 2ZnS0 4 + 30H 2 0. Sol. in H 2 0. (Schiff, A. 107. 64.) (NH 4 ) 2 S0 4 , 2MgS0 4 , 2K 2 S0 4 , ZnS0 4 + 18H 2 0. Sol. inH 2 0. (Schiff.) (NH 4 ) 2 S0 4 , MgS0 4 , K 2 S0 4 , ZnS0 4 + 12H 2 0. Sol. inH 2 0. (Schiff.) Ammonium magnesium zinc sulphate, 2(NH 4 ) 2 S0 4 , MgS0 4 , ZnS0 4 + 12H 2 0. Sol. in H 2 0. (Vohl, A. 94. 57.) Ammonium manganous sulphate, (NH 4 ) 2 S0 4 MnS0 4 + 6H 2 0. Deliquescent. Easily sol. in H 2 0. ( Jahn. ) Ammonium manganic sulphate, (NH 4 ) 2 Mn 2 (S0 4 ) 4 + 24H 2 0. Decomp. by H 2 0. (Mitscherlich.) Ammonium manganous nickel sulphate, 2(NH 4 ) 2 S0 4 , MnS0 4 , NiS0 4 + 12H 2 0. Sol. in H 2 0. (Vohl, A. 94. 57.) Ammonium manganous zinc sulphate, 2(NH 4 ) 2 S0 4 , MnS0 4 , ZnS0 4 + 12H 2 0. Sol. inH 2 0. (Vohl.) Ammonium mercuric sulphate, (NH 4 ) 2 S0 4 3HgS0 4 + 2H 2 0. (Hirzel, J. B. 1850. 333.) (NH 4 ) 2 S0 4 , HgS0 4 . Difficultly sol. in H 2 Easily sol. in NH 4 OH + Aq. Ammonium nickel sulphate, (NH 4 ) 2 S0 4 , NiS0 4 + 6H 2 0. Sol. in 4 pts. cold H 2 O. (Link, 1796.) 100 pts. H 2 dissolve at : 3-5 10 16 20 30 1-8 3 '2 5'8 5'9 8'3 pts. anhydrous salt, 40 . 50 59 68 85 11-5 14*4 167 18'8 28 -6 pts. anhydrous sal (Tobler, A. 95. 193.) 100 pts. sat. solution contain at 20, 9'4'| at 40, 13-2; at 60, 18 '6 ; at 80, 23 "1 pts. anhydrous salt. (v. Hauer, J. pr. 74. 433.) Nearly insol. in a weak acid solution of, (NH 4 ) 2 S0 4 . (Thompson, C. C. 1863. 957.) Ammonium nickel zinc sulphate, 2(NH 4 ) S0 4 , NiSO-4, ZnS0 4 + 12H 2 0. Sol. in H 2 0. (Vohl, A. 94. 57.) Ammonium nickel sulphate ammonia, (NH 4 ) 2 S0 4 , NiS0 4 , 6NH 3 + 3H 2 0. (Andre, C. R. 106. 936.) Ammonium platinic sulphate, 2(NH 4 ) 2 SO, Pt 3 (S0 4 ) 3 + 25H 2 0. Sol. in H 2 0. (Prost, Bull. Soc. (2) 46. 156. SULPHATE, BARIUM 419 Ammonium potassium sulphate, (NH 4 ) 2 S0 4 , K 2 S0 4 + 4H 2 0. Soluble in H 2 0. 100 pts. H 2 at 16 dissolve 13-68 pts. salt. (Thomson, 1831.) Min. Taylorite. Ammonium samarium sulphate, (NH 4 ) 2 S0 4 , Sm 2 (S0 4 ) 3 + 8H 2 0. SI. sol. in H 2 0. (Cleve, Bull. Soc. (2) 43. 166.) Ammonium scandium sulphate, (NH 4 ) 2 S0 4 , Sc 2 (S0 4 ) 3 . Sol. in H 2 0. (Cleve.) Ammonium sodium sulphate, NH 4 NaS0 4 + 2H 2 0. 100 pts. H 2 dissolve 46 '6 pts. of cryst. salt at 15, and the solution has a sp. gr. of 1'1749. Sp. gr. of aqueous solution containing : 31-8 25-44 15-9 % NH 4 NaS0 4 + 2H 2 0, 1-1749 1-1380 1-0849 12 -72 6 -36 % NH 4 NaS0 4 + 2H 2 0. 1-0679 1-0337 (Schiff, A. 114. 68.) Ammonium strontium sulphate. Insol. in excess of (NH 4 ) 2 S0 4 + Aq. (Rose, Pogg. 110. 296.) Ammonium thorium sulphate, 2(NH 4 ) 2 S0 4 , Th(S0 4 ) 2 . Easily sol. in H 2 and sat. (NH 4 ) 2 S0 4 + Aq. (Cleve.) Ammonium uranous sulphate, 2(NH 4 ) 2 S0 4 , U(S0 4 ) 2 . Easily sol. in H 2 0. (Rammelsberg.) Ammonium uranyl sulphate, (NH 4 ) 2 S0 4 , (U0 2 )S0 4 + 2H 2 0. Quite difficultly sol. in H 2 0. (Arfvedson.) Ammonium yttrium sulphate, 2(NH 4 ) 2 S0 4 , Y 2 (S0 4 ) 3 + 9H 2 0. Sol. inH 2 0. (Cleve.) Ammonium zinc sulphate, (NH 4 ) 2 S0 4 , ZnS0 4 + at: 100 pts. H 2 dissolve pts. (NH 4 ) 2 S0 4 , ZnS0 4 7-3 30 16-5 10 13 15 20 8-8 10-0 12-5 12-6 pts. salt, 45 60 75 85 217 29-7 37-8 46 '2 pts. salt. (Tobler, A. 95. 193.) + 7H 2 0. (Andre, C. R. 104. 987.) Ammonium zirconium sulphate. Sol. in cold or hot H 2 or in acids. (Ber- zelius. ) Ammonium sulphate antimony fluoride. See Antimony fluoride ammonium sulphate. Antimony sulphate, basic, 7Sb 2 3 , 2S0 3 + 3H 2 0. Insol. in, and not decomp. by hot or cold H 2 0. (Adie, Chem. Soc. 57. 540.) 5Sb 2 3 , 2S0 3 + 7H 2 0. Insol. in H 2 0. (Hens- gen, R. t. c. 4. 401.) 2Sb 2 3 , S0 3 + xH 2 0. Not decomp. by cold H 2 0. (Adie.) Sb 2 3 , S0 3 = (SbO) 2 S0 4 . Decomp. by hot H 2 0. (Peligot, J. B. 1847. 426.) + H 2 0. As above. (Adie.) Sb 2 3 , 2S0 3 , and + H 2 0, and + 2H 2 0. Scarcely decomp. by cold, slowly by boiling H 2 0. Slowly sol. in dil. HCl + Aq. (Adie.) Antimony sulphate, Sb 2 (S0 4 ) 3 . Very deliquescent. Combines with H 2 to a hard mass with evolution of heat ; with more H 2 it becomes liquid, and by repeated treat- ment with much boiling H 2 it is wholly decomp. into H 2 S0 4 and Sb 2 3 . (Hensgen, R. t. c. 4. 401.) Antimony sulphate, acid, Sb 2 3 , 4S0 3 , Decomp. by H 2 0. (Adie.) Sb 2 3 , + 8 or 9S0 3 . Decomp. by H 2 0. (Adie.) Arsenic sulphate. See Arsenic sulphur ^'oxide. Barium sulphate, BaS0 4 . Sol. in 43,000 pts. H 2 O (Kirwan) ; in 200,000 pts. H 2 O (Margueritte, C. R. 38. 308). 100 pts. H 2 O dissolve 0'002 pt. BaSO 4 . (Ure's Diet.) BaCl 2 +Aq containing 1 pt. BaO to 71,000 pts. H 2 O, when treated with H2>SO 4 , becomes turbid in J hour. (Harting, J. pr. 22. 52.) Ba(NO 3 ) 2 +Aq containing 1 pt. BaO to 25,000 pts. _5O 4 +Ac slight turbidity 'is H 2 O gives a distinct cloud with H 2 SO 4 or Na 2 SO 4 +Aq with 50,000-100,000 pts. H^O produced ; with 200,000-400,000 pts. H 2 O the mixture becomes turbid in a few minutes ; while with 800,000 pts. H 2 no action is visible. 8. (Lassaigne, J. Chim. Med. 526.) Sol. in 800,000 pts. H 2 (Calvert) ; in 400,000 pts. cold or hot H 2 (Fresenius). Calculated from the electrical conductivity of the solution, BaS0 4 is sol. in 429,700 pts. H 2 at 18-4, and 320,000 pts. at 37 7. (Holle- man, Z. phys. Ch. 12. 131.) 1 1. H 2 dissolves 172 mg. at 2 ; 1'97 mg. at 10; 2-29 mg. at 19'0 ; 2'60 mg. at 26; 2-91 mg. at 34. (Kohlrausch and Rose, Z. phys. Ch. 12. 241.) Not attacked by cold HC1 or HN0 3 + Aq after several hours, and only in traces after several days. On boiling, traces of BaS0 4 dis- solve, and the liquid after cooling can be pre- cipitated by BaCl 2 or H 2 S0 4 + Aq, but not by H 2 alone. (Rose, Pogg. 95. 108.) By washing BaS0 4 long enough with H 2 containing HC1 or HN0 3 [HC 2 H 3 2 (Siegle)], the nitrate can be precipitated by H 2 S0 4 or BaCl 2 . (Piria, J. B. 1856. 334.) 100,000 pts. H 2 dissolve 0'124 pt. BaS0 4 ; 1000 pts. HN0 3 + Aq of 1 '167 sp. gr. dissolve 2 pts. BaS0 4 ; 1000 pts. HN0 3 + Aq of 1 '032 sp. gr. dissolve 0'062 pt. BaS0 4 . (Calvert, Chem. Gaz. 1856. 55.) 1000 pts. 3 % HCl + Aq dissolve 0'06 pt. BaS0 4 in the cold, and still more on boiling. 230 com. HCl + Aq of 1'02 sp. gr. dissolve 0-048 g. BaS0 4 from 0'679 g. of BaS0 4 when boiled hour. 168 com. HCl + Aq of 1'03 sp. gr. dissolve 0'0075g. BaS0 4 from 0'577 g.BaS0 4 when boiled 5 minutes. 420 SULPHATE, BARIUM HYDROGEN When 0-4 g. BaS0 4 is heated J hour with 150 ccm. HN0 3 + Aq of 1'02 sp. gr., 0'165 g. is dissolved. Acetic acid has the least solvent power ; 80 ccm. HC 2 H 3 2 + Aq of 1'02 sp. gr. boiled with 0'4 g. BaS0 4 | hour dissolve 0'002 g. (Siegle, J. pr. 69. 142.) Sol. in boiling cone. H 2 S0 4 . (See BaH 2 (S0 4 ) 2 ). Sol. in fuming H 2 S0 4 . (See BaS 2 7 .) Sol. in 2500 pts. boiling 40 % HBr + Aq ; in 6000 pts. boiling 40 % HI + Aq. (Haslam, C. N. 53. 87.) Not attacked by boiling cone. KOH + Aq if C0 2 is not present. (Rose, Pogg. 95. 104.) Very si. decomp. by standing a long time with cold cone, alkali carbonates +Aq. Decomp. by boiling Na^COg or K 2 C0 3 + Aq, not by (NH 4 ) 2 C0 3 + Aq. (See Storer's Diet, for analytical data.) Very si. sol. in NH 4 Cl + Aq, 1 pt. dissolv- ing in 230,000 pts. sat. NH 4 C1 + Aq. 500 ccm. sat. NH 4 N0 3 + Aq with 50 ccm. sat. NH 4 Cl + Aq dissolve 2 g. BaS0 4 . 100 ccm. sat. NH 4 N0 3 + Aq with 100 ccm. sat. NH 4 C1 + Aq dissolve only 0'08 g. BaS0 4 , there- fore above solubility is due to free chlorine. (Mittentzwey, J. pr. 75. 214.) BaS0 4 cannot be precipitated from solution containing free C1 2 . (Erdmann, J. pr. 75. 215.) Pptn. retarded si. by tartaric and racemic acids. (Spiller.) Na metaphosphate prevents pptn. of BaS0 4 , but not ortho- or pyrophosphate. (Scheerer, J. pr. 75. 114.) Not precipitated in presence of alkali citrates. (Spiller.) Sol. in considerable amount in metaphos- phoric acid +Aq. (Scheerer and Drechsel, J. pr. (2) 7. 68.) Much less sol. in NH 4 Cl + Aq than in NH 4 N0 3 + Aq. Insol. in warm cone. Na 2 S 2 3 + Aq. (Diehl, J. pr. 79. 431.) Not appreciably sol. in H 2 containing ammonium or sodium chloride. (Brett, Witt- stein, Wackenroder. ) Not appreciably sol. in H 2 at 250, or in H 2 containing Na 2 S. (Senarmont.) Solubility is increased by alkali nitrates, but not appreciably by NaCl, KC10 3 , or Ba(N0 3 ) 2 . (Fresenius, Z. anal. 9. 52.) Scarcely sol. in boiling cone. (NH 4 ) 2 S0 4 + Aq. (Fresenius.) Solubility in H 2 increased by presence of MgCl 2 (Fresenius) ; cerium salts (Marignac). Sol. in Fe Cl 6 + Aq. (Lunge, Z. anal. 19. 141.) Min. Barite. Barium hydrogen sulphate, BaH 2 (S0 4 ) 2 . 100 pts. H 2 S0 4 dissolve 2 '22 pts. BaS0 4 (Lies-Bodart and Jacquemin, C. R. 46. 1206) ; dissolve 5'69 pts. BaS0 4 (Struve, Z. anal. 9. 34). Boiling H 2 S0 4 dissolves 10-12 % freshly pre- cipitated BaS0 4 without separating crystals on cooling. H 2 S0 4 at 100 dissolves more than boiling H 2 S0 4 , and becomes cloudy if heated to boiling. (Schultz, Pogg. 133. 146.) 1 g. BaS0 4 pptd. from BaCl 2 is sol. in 3153 g. 91 % H 2 S0 4 ; from Ba(N0 3 ) 2 is sol. in 1519 g. 91 % H 2 S0 4 . (Varenne and Pauleau, C. R. 93 1016.) Decomp. by H 2 0, alcohol, or ether. + 2H 2 0. (Schultz.) Barium ^rosulphate, BaS 2 7 . 100 pts. fuming H 2 S0 4 dissolve 15 '89 pts. BaS0 4 . (Struve, Z. anal. 9. 34.) Very deliquescent. Decomp. with H 2 with hissing. (Schultz- Sellack, B. 4. 111.) Barium calcium sulphate, 3BaS0 4 , CaS0 4 . Min. Dreelite. Barium platinic sulphate (?). Insol. in H 2 O or boiling HC1 or HNO 3 +Aq. Sol. in hot cone. H 2 SO 4 or aqua regia. (B. Davy.) Bismuth sulphate, basic, (BiO) 2 S0 4 . Insol. in H 2 0. Sol. in HN0 3 or H 2 S0 4 + Aq. + 2H 0. (Heintz, Pogg. 63. 55.) 4Bi 2 3 , 3S0 3 + 15H 2 0. Insol. in H 2 0. (Leist.) (BiO)HS0 4 + H 2 0. Insol. in H 0. Sol. in dil. H 2 S0 4 + Aq. + 2HoO. Decomp. by H 2 with separation of (BiO J2S0 4 + 2H 2 0. (Heintz. ) 3Bi 2 3 , 2S0 3 + 2H 2 0. Insol. in H 2 0. (Athanasesco, C. R. 103. 271.) Bismuth sulphate, Bi 2 (S0 4 ) 3 . Very hygroscopic. Takes up H 2 witl strong evolution of heat to form 2Bi 2 (S0 4 ) 3 + 7H 2 0, which becomes Bi 2 (S0 4 ) 3 + 3H 2 at 100. Decomp. by boiling H 2 into Bi 2 3 , S0 3 + H 2 0. (Hensgen, J. B. 1885. 552.) Bismuth sulphate, acid, Bi 2 3 , 4S0 3 + 7, 9H 2 = BiH(S0 4 ) 2 + 3H 2 0. Insol. in H 2 0. Easily sol. in acids, especi- ally HC1, and HN0 3 + Aq. (Leist, A. 160. 29.] Bismuth potassium sulphate, Bi 2 (S0 4 ) 3K 2 S0 4 (?). Decomp. by H 2 ; insol. in sat. K 2 S0 4 + A( (Heintz.) Bi 2 (S0 4 ) 3 , 2K 2 S0 4 . BiK(S0 4 ) 2 = Bi 2 (S0 4 ) 3 , K 2 S0 4 . Insol. in cc H 2 ; decomp. by boiling. (Brigham, Ch. J. 14. 170.) Bismuth sodium sulphate, Bi 4 Na 6 (S0 4 ) 9 . (Liidecke, A. 140. 277.) Boron sulphate. See Borosulphuric acid. Bromomolybdenum sulphate. See under Bromomolybdenum compounds. Cadmium sulphate, basic, 2CdO, S0 3 , + H 2 0. Difficultly sol. in H 2 0. (Stromeyer.) SI sol. in hot H 2 0. (Habermann, M. 5. 432.) Cadmium sulphate, CdS0 4 . + H 2 0. (v. Hauer.) + 2H 2 0. 1 pt. H 2 dissolves 0'59 anhydrous salt at 23, and not much more heating. Sat. solution boils at 102. cipitated by alcohol, (v. Hauer.) SULPHATE, CALCIUM 421 If solubility S = pts. anhydrous CdS0 4 in 100 pts. of solution S = 35 7 + -2166t from to 68 when the line breaks, and S = 50-6-0-3681tfrom 68 to 200. Insol. in H 2 at 215. (Etard, C. R. 106. 741.) Cadmium caesium sulphate, CdS0 4 , Cs 2 S0 4 + 6H 2 0. Sol. in H 2 0. (Tutton, Chem. Soc. 63. 337.) Cadmium cerium sulphate, CdS0 4 , Ce 2 (S0 4 ) 3 + 6H 2 0. Sol. in H 2 0. (Wyrouboff.) Cadmium magnesium sulphate, CdS0 4 , MgS0 4 + 14H 2 0. Very efflorescent. Sol. in H 2 0. (Schiff, A. 104. 325.) Cadmium potassium sulphate, K 2 S0 4 , CdS0 4 + 1|H 2 0. Sol. in H 2 0. (v. Hauer, Pogg. 133. 176.) + 2H 2 0. Slowly efflorescent, (v. Hauer.) + 6H 2 0. Very efflorescent, and easily decomp. (Schiff. ) Cadmium rubidium sulphate, CdS0 4 , Rb 2 S0 4 + 6H 2 0. Efflorescent. Sol. in H 2 0. (Tutton.) Cadmium sodium sulphate, CdS0 4 , Na 2 S0 4 + 2H 2 0. Sol. in H 2 0. . (v. Hauer.) Cadmium sulphate ammonia, CdS0 4 , 6NH 3 . Sol. in H 2 O with separation of CdO. (Rose, Pogg. 20. 152.) CdS0 4 , 4NH 3 + 4H 2 0. Decomp. -by H 2 0. (Malaguti and Sarzeau, A. ch. (3) 9. 431.) + 2H 2 0. Ppt. (Andre, C. R. 104. 987.) + 2^H 2 0. Sol. in H 2 with separation of basic sulphate. (Miiller, A. 149. 70.) Caesium sulphate, Cs 2 S0 4 . Not deliquescent. 100 pts. H 2 dissolve 1587 pts. Cs 2 S0 4 at Insol. in alcohol. (Bunsen.) Caesium hydrogen sulphate, CsHS0 4 . Sol. in H 2 0. Caesium ^rosulphate, Cs 2 S 2 7 . Decomp. by H 2 0. Caesium oc^osulphate, Cs 2 S 8 2g . Decomp. by H 2 0. (Weber, B. 17. 2497.) Caesium cobaltous sulphate, Cs 2 S0 4 , CoS0 4 + 6H 2 0. Sol. in H 2 0. (Tutton, Chem. Soc. 63. 337.) Caesium copper sulphate, Cs 2 S0 4 , CuS0 4 + 6H 2 0. Sol. in H 2 0. (Tutton.) Caesium ferrous sulphate, Cs 2 S0 4 , FeS0 4 + 6H 2 0. Sol. in H 2 0. (Tutton.) Caesium magnesium sulphate, Cs 2 S0 4 , MgS0 4 + 6H 2 0. Sol. in H 2 0. (Tutton.) Caesium manganous sulphate, Cs 2 S0 4 , MnS0 4 + 8H 2 0. Sol. in H 2 0. (Tutton.) Caesium nickel sulphate, Cs 2 S0 4 , NiS0 4 + 6H 2 0. Sol. inH 2 0. (Tutton.) Caesium zinc sulphate, Cs 2 S0 4 , ZnS0 4 + 6H 2 0. Sol. in H 2 0. (Bunsen and Kopp, Pogg. 113. 337.) Calcium sulphate, CaS0 4 , and +2H 2 0. The older determinations of the solubility of CaS0 4 in H 2 have little, but historical, value, as the solutions were usually either non-satur- ated or supersaturated. They may be tabulated as follows. A pts. H required for dissolving 1 pt. CaS0 4 , and'B for 1 pt. CaS0 4 + 2H 2 at t. t A B Authority Hot or cold 500 ... Fourcroy Cold 500 Bergmann Boiling 450 > j All temp. (?) 322 438 ... Lassaigne Anthon (?) 250-300 Dumas Hot or cold 578-5 461-5 Bucholz Cold 481 380 Giese Hot 491 388 15-20 492 388 Tipp 12-5 503 397 Lecoq 100 pts. H 2 at t dissolve pts. CaS0 4 . f Pts. CaS0 4 t Pts. CaS0 4 t Pts. CaSO 4 0-205 35 0-254 70 0-244 5 0-219 40 0-252 80 0-239 12 0-233 50 0-251 90 0-231 20 0-241 60 0-248 100 0-217 30 0-249 ... ... (Poggiale, A. ch. (3) 8. 469.) Poggiale worked with supersat. solutions. (Droeze, B. 10. 330.) H 2 dissolves CaS0 4 most abundantly at 35 (Poggiale) ; at 32-41 (Marignac). 1 pt. CaS0 4 + 2H 2 dissolves at : 18 24 32 38 in 415 386 378 371 368 pts. H 2 0, 41 53 72 86 99 in 370 375 391 417 451 pts. H 2 0, or (by calculation) 1 pt. anhydrous CaS0 4 dis- solves at : in 525 41 in 468 18 488 53 474 24 479 72 495 32 470 86 528 38 466 pts. H 2 0, 99 571 pts. H 2 0. These above nonsat. solutions are obtained by using a large excess of CaS0 4 + 2H 2 0. The un- 422 SULPHATE, CALCIUM dissolved part retains its water of crystallisa- tion. CaS0 4 , dehydrated at 130-140, forms a supersaturated solution with H 2 in 10 minutes containing 1 pt. CaS0 4 to 110 pts. H 2 0, which soon deposits crystals. The undissolved part takes up its water of crystallisation. Ignited CaS0 4 dissolves very slowly in H 2 0, so that in 24 hours the solution contains -^^ to -g^-g- an- hydrous CaS0 4 . By longer contact solution continues with formation of supersaturated solutions, which contain after 10-30 days -^-^ to -j^-g- CaS0 4 , but these become normal as the anhydrous CaS0 4 gradually takes up its water of crystallisation. The mineral anhydrite be- haves similarly, water taking up -5-^ CaS0 4 in 1 day, -S^Y in 40 days, and T | T in 8 months. Supersaturated solutions are also obtained by evaporation of a saturated solution. By evaporation with heat, solutions are obtained containing -^ CaS0 4 , and in the cold with Y^S CaS0 4 , in the solution over the separated CaS0 4 + 2H 2 0. Neutralising dil. H 2 S0 4 + Aq with CaC0 3 gives a solution containing YT* CaS0 4 , which crystallises out partly in 24 hours, leaving -5^ CaS0 4 dissolved. Supersaturated solutions containing T ro to Y^JJ- CaS0 4 deposit crystals rapidly ; those under ^ do not crystallise spontaneously. A solution containing ^-g- shows crystals in 14 days, and contains Tr ^ in 1 month, T * i n 2 months, ^ in 3 months, in spite of repeated shaking. Boiling diminishes the supersaturation with- out however removing it entirely. (Marignac, A. ch. (5) 1. 274.) 1 pt. CaS0 4 + 2H 2 is sol. in 443 pts. H 2 at 13 7 ; in 447 pts. H 2 at 14 '2 ; in 421 pts. H 2 at 20-2 ; in 419 pts. H 2 at 21 '2 ; and in 445 pts. H 2 C0 3 + Aq sat. at 187. (Church, J. B. 1867. 192.) Church's solutions were not sat. (Droeze, B. 10. 330.) 1000 pts. H 2 dissolve 2 '19 pts. CaS0 4 + 2H 2 at 16'5; 2 '352 pts. CaS0 4 + 2H 2 at 22. (Cossa, Gazz. ch. it. 1873. 135.) Cossa's solutions were not saturated. (Droeze. ) CaS0 4 + 2H 2 is sol. in 415 pts. HoO at in 412 pts. H 2 at 5 ; in 407 pts. H 2 6 at 10 in 398 pts. H 2 at 15; in 371 pts. H 2 at 20 in 365 pts. H 2 at 25 ; in 361 pts. H 2 at 80 in 359 pts. H 2 at 35. (Droeze, B. 10. 330.) Sol. in 500 pts. H 2 at 12 '5. (From Marig nac's and his own results, de Boisbaudran, A ch. (5) 3. 477.) CaS0 4 is sol. in 564 '5 pts. H 2 at 0'8 506-27 pts. at 14; 472 '3 pts. at 32 -5-38 '8 49873 pts. at 64; 533 '92 pts. at 79 '6. (Raupenstrauch, M. 6. 563.) According to Goldammer (C. C. 1888. 708) H 2 is fully saturated with CaS0 4 by shaking the finely-powdered substance 5 minutes there- with. The following results were obtained. Figures denote pts. H 2 in which 1 pt. CaS0 4 was dissolved at t (a) from pptd. CaS0 4 "ipse fact.," (b) from pptd. CaS0 4 "gehe," (c) from "glacies mariae pulv.," (d) from "glacies mariae pulv.," containing less than 2H 2 0. t a | c t d 561-5 558 557-5 476-5 7'5 526 526 520 ... 15 497-5 497-5 493 20 436 22-5 481 481-5 479 ... ... 30 475 475 470 37'5 463 469 465-5 40 450 45 473-5 474-5 470-5 60 484 486-5 482 60 476 75 507-5 508 503 80 502-5 90 533-5 530 534 100 556 557 534-5 100 547 Burnt gypsum easily forms supersat. solu- tions containing nearly 1 % CaSO. It forms supersat. solutions more readily at 0, and that tendency decreases with increase of temp. , hence figures in (d) which contained burnt gypsum,. (Goldammer, C. C. 1888. 708.) Calculated from electrical conductivity of CaS0 4 + Aq, 1 1. H 2 dissolves 2 '07 g. CaS0 4 at 18. (Kohlrausch and Rose, Z. phys. Ch. 12. 241.) Solubility of CaS0 4 in 100 pts. H 2 at high temp. t Pts. CaSO 4 t Pts. CaS0 4 t Pts. CaS0 4 140 165 0-078 0-056 175-185 240 0-027 0-018 250 0-016 (Tilden and Shenstone, Phil. Trans. 1884. 31.) Solubility of CaS0 4 in H 2 at various pres-j sures. 100 g. sat. CaS0 4 + Aq at 1 atmos. pressure and 15 contain 0'206 g. CaS0 4 ; at 20 atmos.: pressure and 15 contain 0'227 g. CaS0 4 ; at 1 atmos. pressure and 16 "2 contain 0*213 g; CaS0 4 . (Holler, Pogg. 117. 386.) CaS0 4 is completely insol. in sea water ori pure H 2 at temperatures between 140 and 150. (Couste.) Solubility of CaS0 4 in sea water at temper- atures over 100. t = temp. ; P = pressure in atmospheres ; % = per cent CaS0 4 in sat. solution. t P % t" P / 103 1 0-500 118-5 1-50 0-226 103-8 1 0-477 121-2 1-5 0-183 105-15 1 0-432 124 2 0-140 108-6 1-25 0-395 127-9 2 0-097 111 1-25 0-355 130 2-5 0-060 113-2 1-25 0-310 133-3 2-5 0-023 115-8 1-50 0-267 ... ... (Couste, Ann. Hin. (5) 5. 80.) Pptn. of CaS0 4 which has been started by heating solution to 140-150 continues even after solution has cooled. (Storer. ) Sp. gr. of sat. CaS0 4 + Aq at 15 = 1 '0022. (Stolba, J. pr. 97. 503.) SULPHATE, CALCIUM 423 SI. sol. in cold HC1 + Aq ; completely sol. in boiling dil. HC1 or HN0 3 + Aq. (Rose, Pogg. 95. 108.) Solubility of CaS0 4 in HC1 + Aq. 100 ccm. 100 ccm. t %HC1 dissolve g. of CaS0 4 t %HC1 dissolve g. of CaSO 4 25 0-77 0-6405 25 6-12 1-6539 25 1-56 0-8821 101 0-77 1-1209 25 3-06 1-2639 102 3-06 3-1780 25 4-70 1-5342 103 6-12 4-6902 (Lunge, J. Soc. Chem. Ind. 4. 31.) For solubility in H 2 S0 4 see CaH 2 (S0 4 ) 2 . 1 pt. CaS0 4 is sol. in 218 pts. H 2 contain- ing C0 2 . (Beyer, Arch. Pharm. (2) 150. 193.) Solubility in H 2 is increased by presence of NH 4 C1 (Vogel, J. pr. 1. 196), ammonium suc- cinate (Wittstein, Repert. 57. 18), (NH 4 ) 2 S0 4 , 1. 234). More than 10 times as much CaS0 4 dissolves in sat. Na 2 S 2 3 + Aq as in H 2 0. (Diehl.) Sol. to considerable extent in NH 4 C 2 H 3 2 + Aq, especially if freshly pptd. More sol. in NH 4 C 2 H 3 2 + Aq than in NH 4 C1 + Aq. ( Wep- pen, J. pr. 11. 182.) SI. sol. in MgS0 4 + Aq. (Bergmann.) More sol. in NH 4 C 2 H 3 2 + Aq than in other NH 4 salts. (Cohn, J. pr. (2) 35. 43.) More sol. in Fe 2 Cl 6 , Cr 2 Cl 6 , CuCl 2 , Aq than in H 2 0, but not more sol. in CaCl Aq. (Gladstone.) More sol. in NaC H 3 2 + Aq or KC1 + Aq than inH 2 0. (Mulder.)" * Decomp. by alkali carbonates +Aq. (See Storer's Diet.) 1 g. CaS0 4 is sol. in 162 com. sat. KC1 + Aq at 8 ; in 147 com. sat. NaCl + Aq at 8 '5 ; in 93 com. sat. NH 4 Cl + Aq at 12 '5 ; in 94 ccm. sat. KN0 3 + Aq ; in 92 ccm. sat. NaN0 3 + Aq ; in 320 ccm. sat. NH 4 N0 3 + Aq ; in 54 ccm. sat. NH 4 N0 3 + Aq; in about 2000 ccm. sat. K 2 S0 4 + Aq. (Droeze.) Solubility in sat. (NH 4 ) 2 S0 4 , or Na 2 S0 4 is the same as in H 2 0. (Droeze, B. 10. 330.) NH 4 Cl + Aq. 1 g. CaS0 4 is sol. in 92 ccm. sat. NH 4 C1 + Aq at 13'5; in 94 ccm. i sat. NH 4 Cl + Aq at 13-5-15-5; in 200 ccm. | sat. NH 4 Cl + Aqat 13-5 ; in 183 ccm. | sat. NH 4 Cl + Aq at 100. (Fassbender, B. 9. 1360.) Solubility of CaS0 4 in 25% NH 4 C1 + Aq. t % CaSO 4 t % CaSO 4 8 9 25 39 1-030 1-023 1-096 1-126 60 80 120 1-333 1-026 1-000 (Tilden and Shenstone, Roy. Soc. Proc. 38. 335.) Solubility of CaS0 4 in CaCl 2 + Aq at t. / 100 ccm. 100 ccm. t CaCl 2 dissolve g. of CaS0 4 t CaCl 2 dissolve g. of CaS0 4 23 3-54 0-1225 25 16-91 0-0702 24 6-94 0-0963 101-0 3-54 0-1370 25 10-36 0-0886 102-5 10-36 0-1426 25 15-90 0-0734 103-5 16-91 0-1301 (Lunge, I.e.) Solubility of CaS0 4 in H 2 containing various amts. of CaCl 2 at 20. 100 pts. H 2 con- taining pts. CaCl 2 dissolve pts. CaS0 4 . Pts. Pts. Pts. Pts. CaCl 2 CaSO 4 CaCl 2 CaS0 4 o-oo 0-225 19-80 0-041 11-50 0-078 51-00 o-ooo 14-39 0-063 67-05 o-ooo (Tilden and Shenstone.) Solubility of CaS0 4 in CaCl 2 + Aq at t. t CaCl 2 % CaSO 4 t % CaCl 2 CaS0 4 15 21 39 72 15-00 14-70 15-00 14-90 0-063 0-068 0-091 o-ioo 94 138 170 195 15-16 1470 14-82 14-70 0-110 0-071 0-031 0-022 (Tilden and Shenstone, I.e.) MgCl 2 +Aq. Sol. in 324 pts. MgCl 2 + Aq (34 -1 % MgCl 2 ) at 19. (Karsten.) 1 g. CaS0 4 is sol. in 146 ccm. sat. MgCl 2 + Aqatl3'5. (Fassbender.) 1 1. i sat. MgCLj + Aq dissolves 6 '83 g. CaS0 4 + 2H 2 at 13 '5. (Droeze. ) Solubility of CaS0 4 in MgCl 2 + Aq. t % MgCl 2 % CaS0 4 9 197 0-765 39 11-1 2744 80 9-99 1-038 (Tilden and Shenstone, I.e.) 1 g. CaS'0 4 is sol. in 320 ccm. sat. NH 4 N0 3 + Aq at 8-9 ; in 54 ccm. sat. NH 4 N0 3 + Aq at sat. NH 4 N0 3 at 13-5; in 103 ccm. 13-5. (Fassbender.) KN0 3 + Aq. 1 g. CaS0 4 is sol. in 94 ccm. sat. KN0 3 + Aq at 13'5 ; in 82 ccm. sat. KN0 3 + Aq at 15-5 ; in 68 ccm. nearly sat. KN0 3 + Aq at 20. (Fassbender.) 1 g. CaS0 4 is sol. in 92 ccm. sat. NaN0 3 + Aq at 8-5 ; in 318 ccm. sat. NaN0 3 + Aqatl3'5 . (Fassbender. ) 424 SULPHATE, CALCIUM HYDROGEN 100 ccm. sat. NaN0 3 + Aq dissolve 1-086 g CaS0 4 + 2H 2 ; 100 ccm. & sat. NaN0 3 + Aq dis solve 0*314 g. CaS0 4 + 2H 2 0. (Droeze, B. 10 338.) KCl + Aq. 1 g. CaS0 4 is sol. in 162 ccm. sat. KCl + Aq at 8 ; in 295 ccm. sat. KCl + Aq at 9. NaCl + Aq. Sol. in 122 pts. sat. NaCl + Aq. (Anthpn. ) _ Insol. in sat. NaCl + Aq, but more sol. in dil. NaCl + Aq than in H 2 0. Maximum solubility in NaCl + Aq is when the sp. gr. is 1'033. 1 g. CaS0 4 is sol. in 147 ccm. of sat. NaCl + Aq at 8'5 ; in 150 ccm. of sat. NaCl + Aq at 13-5; in 149 ccm. of sat. NaCl + Aqat 13 '5; in 244 ccm. of sat. NaCl + Aq at 13 '5. (Fass- bender. ) 100 ccm. sat. NaCl + Aq dissolve 0'6785 g. CaS0 4 + 2H 2 at 8 '5; 0'6665 g. CaS0 4 + 2H 2 at 13'5. 100 ccm. sat. NaCl + Aq dissolve 0-671 g. CaS0 4 + 2H 2 at 13 '5 ; i sat. NaCl + Aq dissolve 0'4085 g. CaS0 4 + 2H 2 at 13 '5. (Droeze.) Solubility of CaS0 4 in NaCl + Aq at t. t %NaCl CaS0 4 t %NaCl % CaS0 4 20 19-90 0-823 130 19-92 0-392 44 19-93 0-830 165 20-04 0-250 67 19-95 0-832 169 20-05 0-244 85 19-90 0-823 179 20-10 0-229 101 20-08 0-682 225 21-00 0-178 (Tilden and Shenstone, Roy. Soc. Proc. 38. 331.) Solubility of CaS0 4 in NaCl + Aq at t. 100 ccm. 100 ccm. t %NaCl dissolve g. of t %NaCl dissolve g. of CaSO 4 CaSO 4 21-5 3-53 0-5115 17-5 17-46 0-7369 19-5 7-35 0-6429 101-0 3-53 0-4891 21 11-12 0*7215 102-5 14-18 0-6248 18 14-18 0-7340 103 17-46 0-6299 (Lunge, J. Soc. Chem. Ind. 4. 31.) 100 pts. H 2 containing pts. NaCl dissolve pts. CaS0 4 at 20. Pts. NaCl Pts. CaSO 4 Pts. NaCl Pts. CaS0 4 Pts. NaCl Pts. CaS0 4 o-oo 0-52 2-03 5-02 0-225 0-301 0-441 6'15 5-05 10-00 20-00 6-34 7-38 0-823 24-40 35-10 35-86 0-820 0734 0709 (Tilden and Shenstone. ) (NH 4 ) 2 S0 4 + Aq. Sol. in 287 pts. (NH 4 ) 2 S0 4 + Aq (1 : 4). (Fre- senius, Z. anal. 30. 593.) 1 g. CaS0 4 is sol. in 327 ccm. sat. (NH 4 ) 2 S0 4 + Aq at 9 ; in 369 ccm. f sat. (NH 4 ) 2 S0 4 + Aq at 13 -5. (Fassbender.) MgS0 4 + Aq. Insol. in sat. MgS0 4 + Aq. 1 g. CaS0 4 is sol. in 1162 ccm. -> sat. MgS0 4 + Aq at 13-5. (Fassbender, B. 9. 1360.) Sol. in 635 pts. sat. MgS0 4 + Aq at 19. (Karsten.) Absolutely insol. in sat. MgS0 4 + Aq, and pptd. from aqueous solution by the addition of MgS0 4 . (Droeze, B. 10. 340.) 1 1. & sat. MgS0 4 + Aq dissolves 0'86 g. CaS0 4 + 2H 2 0. (Droeze.) Na 2 S0 4 + Aq. 1 g. CaS0 4 is sol. in 398 ccm. sat. Na 2 S0 4 + Aq at 10-5". K 2 S0 4 + Aq. 1 g. CaS0 4 is sol. in 2325 ccm. sat. K 2 S0 4 + Aq. at 13'5; in 664 ccm. sat. K 2 S0 4 + Aq at J.O "O Insol. in alcohol, of 0*905 sp. gr. or less. (Anthon, J. pr. 14. 125.) Sol. in dil. alcoholic solutions of NH 4 NOo, KN0 3 , NaN0 3 , NH 4 C1, KC1, and NaCl. (Mar- gueritte, C. R. 38. 308.) 100 pts. glycerine dissolve 0'957 pt. CaS0 4 + 2H 2 0, and solubility increases with the temp. (Asselin, C. R. 76. 884.) Min. Anhydrite. + 2H 2 0. Min. Gypsum. + |H 2 0. Plaster of Paris contains |H 2 according to Chatelier (C. C. 1889, 1. 203). Calcium hydrogen sulphate, CaH 2 (S0 4 ) 2 . 100 pts. H 2 S0 4 of 1-82 sp. gr. dissolve about 2 pts. CaS0 4 ; 100 pts. fuming H 2 S0 4 dissolve 10-17 pts. CaS0 4 (Struve, Z. anal. 9. 34) ; 100 pts. H 2 S0 4 dissolve 2 '5 pts. CaS0 4 (Lies- Bodart and Jacquemin, C. R. 46. 1206) ; CaS0 4 is precipitated by H 2 from H 2 S0 4 solution. 100 pts. boiling H 2 S0 4 dissolve 10 pts. CaS0 4 . (Schultz, Pogg. 133. 137.) Decomp. by H 2 0. Calcium hexahydrogen sulphate, CaH 6 (S0 4 ) 4 . Decomp. by H 2 0. (Schultz, Pogg. 133. 137.) Calcium magnesium potassium sulphate, 2CaS0 4 , MgS0 4 , K 2 S0 4 + 2H 2 0. Min. Polyhalite. Sol. in H 2 with residue ofCaS0 4 . 4CaS0 4 , MgS0 4 , K 2 S0 4 + 2H 2 0. Min. Krugite. Decomp. by H 2 0. Calcium potassium sulphate, CaK 2 (S0 4 ) 2 + H 2 0. Min. Syngenite. Sol. in 400 pts. H 2 0. (Zeph- arovitch.) Less sol. than K 2 S0 4 . Decomp. by heating with separation of CaS0 4 . Decomp. by H 2 until 25 g. K 2 S0 4 are -dissolved in a 'itre, after which there is no decomposition. 'Ditte, C. R. 84. 86.) Easily sol. in dil. acids. (Phillips.) Ca 2 K 2 (S0 4 ) 3 + 3H 2 0. Decomp. by cold H 2 0. Ditte, C. R. 84. 867.) Calcium rubidium sulphate, Ca 2 Rb 2 (S0 4 ) 3 + 3H 2 0. Decomp. by H 2 0. (Ditte, C. R. 84. 86.) SULPHATE, CHROMIC, BASIC 425 Calcium sodium sulphate, CaNa 2 (S0 4 ) 2 . Min. Glauberite. Gradually sol. in H 2 0, but crystals of CaS0 4 + 2H 2 soon separate out. (Fritzsche. ) Insol. in alcohol, and cone. NaC 2 H 3 2 + Aq ; decomp. by H 2 0. (Folkhard, C. N. 43. 6.) CaNa 4 (S0 4 ) 3 + 2H 2 0. Decomp. by H 2 0. (Fritzsche.) Calcium uranium sulphate. Min. Uranochalcite. Min. Medjidite. Easily sol. in dil. HC1 + Aq. Cerous sulphate, Ce 2 (S0 4 ) 3 . Anhydrous cerous sulphate is much more sol. in H 2 than the hydrated salt. Easily sol. in cold H 2 if added thereto in small amounts. If large amount of Ce 2 (S0 4 ) 3 is treated with a little H 2 it hardens with evolution of heat, and becomes very difficultly soluble. 100 pts. H 2 dissolve 161 pts. Ce 2 (S0 4 ) 3 at and 17 '86 pts. at 19. Ce 2 (S0 4 ) 3 + Aq sat. in cold deposits Ce 2 (S0 4 ) 3 at 75, and only 2 '25 pts. remain in solution at 100. (Jolin, Bull. Soc. (2) 21. 536.) 100 pts. H 2 dissolve 8 '31 pts. Ce 2 (S0 4 ) 3 at 20; 8-08 pts. at 45; 4 '95 pts. at 60; 0'504 pt. at 100. (Biihrig, J. pr. (2) 12. 240.) 60 pts. anhydrous salt dissolve quickly at 0-3 in 100 pts. H 2 0. At 15 the solution solidifies, and the mother liquor contains only 27*88 % Ce 2 (S0 4 ) 3 . At 15 the maximum attainable strength is 31 '62 % Ce 2 (S0 4 ) 3 . (Brauner, Chem. Soc. 53. 357.) + 5H 2 0. Much less sol. in H 2 than the 8H 2 salt. (Jolin.) + 6H 2 0. As the 5H 2 salt. (Hermann. ) + 8H 2 0. 100 pts. H 2 dissolve 14 '92 pts. Ce 2 (S0 4 ) 3 at 20 from Ce 2 (S0 4 ) 3 + 8H 2 0. (Jolin.) + 9H 2 0. 100 pts. H 2 dissolve 17 '52 pts. Ce 2 (S0 4 ) 3 from Ce 2 (S0 4 ) 3 + 9H 2 0. (Brauner. ) + 12H 2 0. (Marignac.) Sp. gr. of Ce 2 (S0 4 ) 3 + Aq was found to be con- stant whether Ce 2 (S0 4 ) 3 or Ce 2 (S0 4 ) 3 + 8H 2 was used. The following results were obtained at 15. Pts. Pts. C e2 (S0 4 ) 3 to 100 Sp. gr. Ce2(S0 4 )3 to 100 Sp. gr. pts. H 2 pts. H 2 3-17 1-03005 12-66 1-11917 6-11 1-05812 *14'56 1-13665 8-35 1-07910 15-64 1-14623 9'61 1-09085 21-19 1-19640 10-55 1-09939 31-62 1-28778 11-66 1-10987 ... (Brauner, Chem. Soc. 53. 357.) 4'5 pts. Ce 2 (S0 4 ) 3 dissolve in 100 pts. H 2 S0 4 . (Wyrouboff, Bull. Soc. (3) 2. 745.) Ceroceric sulphate, Ce 2 (S0 4 ) 3 , 2Ce(S0 4 ) 2 + 24H 2 0. Decomp. by H 2 0. Sol. in HCl + Aq with decomp. (Mendelejeff, A. 168. 45.) Ce 2 (S0 4 ) 3 ,' 3Ce(S0 4 ) 2 + 31H 2 0. (Jolin. ) Ceric sulphate, basic, Ce0 2 , S0 3 + 2H 2 0. Very si. sol. in H 2 0. Sol. in 2500 pts. H 2 0. (Mosander.) Boiling H 2 gradually dissolves out H 2 S0 4 . (Erk.) Sol. in acids. 8Ce0 2 , 7S0 3 + 12H 2 ; 8Ce0 2 , 7S0 3 + 15H 2 ; 6Ce0 2 , 5S0 3 + 5HoO ; 4Ce0 2 , 3S0 3 + 7H 2 ; and 3Ce(S0 4 ) 2 , 5Ce(OH) 4 . All are insol. ppts. Ceric sulphate, Ce(S0 4 ) 2 + 4H 2 0. Sol. in H 2 with immediate decomp. (Ram- melsberg. ) Cerous hydrogen sulphate, Ce 2 (S0 4 ) 3 , 3H 2 S0 4 . Decomp. by H 2 0. (Wyrouboff, Bull. Soc. (3) 2. 745.) Cerous potassium sulphate, Ce 2 (S0 4 ) 3 , K 2 S0 4 + 2H 2 0. SI. sol. in H 2 ; insol. in sat. K 2 S0 4 + Aq. (Czudnowicz, J. pr. 80. 26.) 2Ce 2 (S0 4 ) 3 , 3K 2 S0 4 . As above. (Hermann, J. pr. 30. 188.) Ce 2 (S0 4 ) 3 , 2K 2 S0 4 + 3H 2 0. As above. (Jolin.) Ce 2 (S0 4 ) 3 , 3K 2 S0 4 . Sol. in about 56 pts. H 2 at 9-20. Easily sol. in acidified H 2 0. Nearly insol. in sat. K 2 S0 4 + Aq. (Jolin.) Ceric potassium sulphate, Ce(S0 4 ) 2 , 2K 2 S0 4 + 2H 2 0. SI. sol. in H 2 with decomp. Insol. in sat. K 2 S0 4 + Aq. Cerous sodium sulphate, Ce 2 (S0 4 ) 3 , Na 2 S0 4 + 2H 2 0. Very si. sol. in H 2 0, and still less in Na 2 S0 4 + Aq. 100 com. sat. Na 2 S0 4 + Aq dissolve an amount corresponding to 6 "2 mg. Ce 2 3 . (Jolin.) SI. sol. in HCl + Aq. (Czudnowicz.) Cerous thallous sulphate, Ce 2 (S0 4 ) 3 , 3T1 2 S0 4 . Ppt. Ce 2 (S0 4 ) 3 , T1 2 S0 4 + 2H 2 0. Sol. in H 2 0. (Zschiesche, J. pr. 107. 98.) + 4H 2 0. Very si. sol. in cold, somewhat more in warm H 2 0. ("Wyrouboff, Bull. Soc. Min. 14. 83.) Chromous sulphate, CrS0 4 + 7H 2 0. 100 pts. H 2 dissolve 12*35 pts. CrS0 4 + 7H 2 0. Aqueous solution can be boiled with- out decomp. SI. sol. in alcohol. + H 2 0. (Moissan, Bull. Soc. 37. 296.) Chromic sulphate, basic, 3Cr 9 3 , 2S0 3 + 12H 2 = 2Cr 2 (S0 4 )(OH) 4 ,Cr 2 (OH) 6 + 5H 2 0. * Insol. in H 2 0. Sol. in acids. Slowly de- comp. by KOH + Aq or K 2 C0 3 + Aq. 5Cr 2 3 , 3S0 3 . Sol. in H 0. (Recoura, C. R. 112. 1439.) Cr 2 3 , S0 3 = Cr 2 2 (S0 4 ). Ppt. (Schiff, A. 124. 167.) 5Cr 2 3 , 8S0 3 (?). (Siewert, A. 126. 97.) Cr 2 3 , 2S0 3 = Cr 2 0(Sp 4 ) 2 . Easily sol. in a little H 2 0, but a precipitate is thrown down 426 SULPHATE, CHROMIC by further addition of H 2 0, which redissolves on evaporation. 5Cr 2 3 , 12S0 3 (?). (Siewert.) Chromic sulphate, Cr 2 (S0 4 ) 3 . Anhydrous. Insol. in H 2 0, HN0 3 , HC1, H 2 S0 4 , aqua regia, and NH 4 OH + Aq. Decomp. by boiling caustic alkalies, and slowly by alkali carbonates + Aq. (Schrotter.) Accord- ing to Traube (A. 71. 92) and Siewert (A. 126. 94), Schrotter's salt is an acid sulphate, Cr 4 (S0 4 ) 5 (OS0 2 OH) 2 = 2Cr 2 (S0 4 ) 3 , H 2 S0 4 . Ac- cording to Etard (Bull. Soc. (2) 31. 200) both salts exist, and formula of above salt is Cr 2 (S0 4 ) 6 Cr 2 . Formula is 2[(Cr 2 3 ) 2 , (S0 3 ) 6 ], 17H 2 S0 4 (?). (Cross and Higgins, Chem. Soc. 41. 113.) + 6H 2 (?). Green modification. Readily sol. in H 2 or alcohol. Sol. in cone. H 2 S0 4 . H 2 solution is converted into the violet modi- fication by standing 3-4 weeks. (Schrotter.) + 11H 2 (?). Extremely deliquescent; be- comes liquid in moist air in 2 minutes. Not pptd. by BaCl 2 + Aq. (Recoura, C. R. 113. 857.) + 18H 2 0. Violet modification. Sol. in '833 pt. H 2 at 20. When the H 2 solution is heated to 65-70 it begins to be converted into the green modification. This conversion is also brought about by cold HN0 3 , H 2 S0 4 , PC1 3 . (Etard, C. R. 84. 1090.) Sp. gr. of aqueous solution of violet modi- fication of Cr 2 (S0 4 ) 3 containing : 5 10 20 % Cr 2 (S0 4 ) 3 + 18H 2 0, 1-0275 1-0560 1-1150 30 40 50 % Cr 2 (S0 4 ) s + 18H 2 0. 1-1785 1-2480 1-3250 Sp. gr. of aqueous solution of green modifica- tion of Cr 2 (S0 4 ) 3 containing : 10 20 30 % Cr 2 (S0 4 ) 3 + 18H 2 0, 1-0510 1-1070 1-1680 40 50 60 % Cr 2 (S0 4 ) 3 + 18H 2 0, 1-2340 1-3055 1-3825 70 80% Cr 2 (S0 4 ) 3 + 18H 2 0. 1-4650 1-5535 (Gerlach, Z. anal. 28. 494.) See also Chromosulphuric acid. Chromic sulphate, acid, 2Cr 2 (S0 4 ) 3 , H 2 S0 4 = r (OS0 2 OH) 2 Lr4 (so 4 ) B . Correct composition of Cr 2 (S0 4 ) 3 (Traube), which see. See also Chromosulphuric acid. Chromic cupric sulphate, Cr 2 (S0 4 ) 3 , 2CuS0 4 , H 2 S0 4 . Insol. in H 2 0, but gradually decomp. there- by. (Etard, C. R. 87. 602.) Chromic ferrous sulphate, Cr 2 (S0 4 ) 3 , 2FeS0 4 , H 2 S0 4 + 2H 2 0. As above. (Etard, I.e.) Chromic ferric sulphate, Cr 2 (S0 4 ) 3 , Fe 2 (S0 4 ) 3 . Insol. in H 2 0. (Etard, C. R. 86. 1399.) Cr 2 (S0 4 ) 3 , Fe a (S0 4 ) 8> H 2 S0 4 . Insol. in H 2 0. (Etard.) Chromic hydroxylamine sulphate, CrJSOA (NH 2 OH) 2 S0 4 + 24H 2 0. Sol. inH 2 0. (Meyeringh.) Chromic lithium sulphate, Cr 2 (S0 4 ) 3 , 3Li 2 S0 4 . Resembles the corresponding K salt. (Wer- nicke.) Chromic manganous sulphate, Cr 2 (S0 4 )o, Cr 2 (S0 4 ^ (Etard, C. R. 86. 1402.) Chromic manganic sulphate, Mn 2 (S0 4 ) 3 . Insol. in H 2 0. (Etard, C. R. 86. 1399.) Cr 2 (S0 4 ) 3 , Mn 2 (S0 4 ) 3 , 2H 2 S0 4 . SI. , deliques- cent. Sol. in H 2 with decomp. (Etard.) Chromic nickel sulphate, Cr 2 (S0 4 ) 3 , 2H 2 S0 4 + 3H 2 0. NiS0 4 , Insol. in H 2 0, but gradually decomp. there- by. (Etard, C. R. 87. 602.) Chromous potassium sulphate, CrS0 4 , K 2 S0 4 + 6H 2 0. Sol. in H 2 ; less sol. in alcohol. (Peligot, A. ch. (3) 12. 546.) Chromic potassium sulphate, K 2 Cr 2 (S0 4 ) 4 . Anhydrous, a. Sol. in H 2 when not heated over 350. |8. Insol. in cold H 2 and cold acids. When ignited is insol. in hot H 2 and acids, except slightly in boiling cone. H 2 S0 4 . (Fischer.) + 2H 2 (?). Insol. in cold H 2 or dil. acids. Sol. by long boiling with H 2 0, and more quickly when HC1 is added. (Hertwig.) + 4H 2 0. Is potassium chromosulphate, which see. + 24H 2 0. Chrome-alum. Violet modification. Efflorescent at 29. Sol. in 6-7 pts. cold H 2 0. When the H 2 solution is heated to 60-70 it is partially decomp. into a green modification, which is more sol. in H 2 0. The green modi- fication on standing in H 2 solution is very slowly converted back into violet modification. The green modification may also be formed by heating dry salt to 100, at which temp, it melts in its crystal H 2 0. When all crystal H 2 has been expelled at 300-350, it still dis- solves in hot H 2 0, but when heated above 350 it becomes insol. in H 2 0. (Lowel, A. ch. (3) 44. 313.) Insol. in alcohol. Melts in crystal H 2 at 89. (Tilden, Chem. Soc. 45. 409.) Sp. gr. of chrome-alum solutions at 15 con- taining : 5 10 15 20 25 % salt, 1-0174 1-0342 1-0524 1-0746 1-1004 30 35 40 -45 50 % salt, 1-1274 1-1572 1-1896 1'2352 1-2894 55 60 65 70 % salt. 1-3704 1-4566 1-5462 1'6362 (Franz, J. pr. (2) 5. 298.) SULPHATE, COBALTOUS 427 Sp. gr. of aqueous solution of violet modi- Solubility in 100 pts. H 2 at t, using fication at 15 containing : CoS0 4 + 7H 2 0. 5 10 15%K 2 Cr 2 (S0 4 ) 4 + 24H 2 0. Pts D4-0 Pts. 1-02725 1-05500 1 '08350 t Cos6 4 t JtuS. CoSO 4 t cos6 4 Sp. gr. of sat. solution at 15 = 1 '0985. 24-6 36 43-5 72 65-0 Sp. gr. of aqueous solution of green modifica- 1 25-0 37 44-0 73 65-6 tion at 15 containing : 2 25-5 38 44-6 74 66-2 10 20 30 % K 2 Cr 2 (S0 4 ) 4 + 24H 2 0, 3 26-0 39 45-2 75 66-8 1-050 1-103 1*161 4 26-5 40 45-8 76 67 '4 40 50 60 % K 2 Cr 2 (S0 4 ) 4 + 24H 2 0, 1-225 1-295 1'371 5 6 27-0 27-5 41 42 46*4 47-0 77 78 68-0 68-6 70 80 90 % K 2 Cr 2 (S0 4 ) 4 + 24H 2 0. 7 8 28-0 28-5 43 44 47-6 48'2 79 80 69-2 69-8 1-453 1-541 1-635 9 29-0 45 48-8 81 70-4 (Gerlach, Z. anal. 28. 497.) 10 29-5 46 49-4 82 71-0 3K 2 S0 4 , O 2 (S0 4 ) 3 . Insol. in H 2 0, acids, or dil. alkalies. Decomp. by boiling with cone. 11 12 30-0 30-5 47 48 50-0 50-6 83 84 71-6 72-2 KOH + Aq. (Wernicke, Pogg. 159. 576.) 13 31-0 49 51-2 85 72-8 14 31-5 50 51-8 86 73-4 Chromic rubidium sulphate, Rb 2 Cr 2 (S0 4 ) 4 + 15 32-0 51 52-4 87 74-0 24H 2 0. 16 32-5 52 53-0 88 74-6 Sol. in H 2 0. (Petersson.) 17 33-0 53 53-6 89 75-2 18 33-5 54 54-2 90 75-9 Chromic sodium sulphate, Na 2 Cr 2 (S0 4 ) 4 + 19 34-0 55 54-8 91 76-6 10H 2 0. 20 34-5 56 55-4 92 77-2 Is sodium chromosulphate, which see. 21 35-1 57 56-0 93 77-9 + 24H 2 0. More efflorescent than K or NH 4 22 35-6 58 56-6 94 78-6 salt. Sol. in H 2 0, and properties resemble the 23 36-2 59 57-2 95 79-2 corresponding K salt. O 2 (S0 4 ) 3 , 3Na 2 S0 4 . Resembles the corre- 24 25 36-8 37-4 60 61 57-8 58-4 96 97 79-9 80-6 sponding K salt. 26 38-0 62 59-0 98 81-3 L O 27 38-5 63 59-6 99 81-9 Chromic thallous sulphate, Tl 2 Cr 2 (S0 4 ) 4 + 28 39-1 64 60-2 100 82-6 24H 2 0. 29 39-6 65 60-8 101 83-3 Properties as chromic potassium sulphate. 30 31 40-2 40-7 66 67 61-4 62-0 102 103 83-9 84-6 Chromic sulphate chloride, Cr 2 (S0 4 ) 2 Cl 2 + 32 41-3 68 62-6 104 85-3 2H 2 0. 33 41-8 69 63-2 105 86-0 Slightly hygroscopic. Sol. in H 2 0. (Schiff, A. 124. 176.) 34 35 42-4 42-9 70 71 63-8 64-4 106 106-4 86-7 86-9 Cobaltous sulphate, basic. Ppt. Insol. in H 2 0. (Berzelius.) 6CoO, S0 3 + 10H 2 0. (Athanasesco, C. R. 103. 271.) 5CoO, S0 3 + 4H 2 0. Ppt. Very si. sol. in H 2 0. (Habermann, M. Ch. 5. 432.) Cobaltous sulphate, CoS0 4 . Anhydrous. (Etard, C. R. 87. 602.) + H 2 0. SI. sol. in cold, and only very slowly sol. in hot H 2 0. (Vortmann, B. 15. 1888.) + 4H 2 0. (Frohde, Arch. Pharm. (2) 127. 92.) + 6H 2 0. + 7H 2 0. in alcohol. (Mulder, calculated from his own and Tobler's determinations, Scheik. Verhandel. 1864. 68.) Sp. gr. of CoS0 4 + Aq at t. S = pts. CoS0 4 in 100 pts. solution; S^mols. CoS0 4 in 100 mols. of solution. (Marignac. ) Sol. in 24 pts. cold H 2 0. (Persoz. ) Insol. s Si Sp. gr. 6-8910 0-852 1-0765 5-8140 0711 1-0641 4-7095 0-570 1-0517 3-5792 0-429 1-0392 2-4273 0-288 1-0263 1-2099 0-141 1-0131 100 pts. H 2 dissolve at : 3 10 20 24 29 26 '2 30'5 36 '4 38 '9 40 pts. anhydrous salt, 35 44 50 60 70 46'3 50 P 4 55'2 60'4 65 '7 pts. anhydrous salt. (Tobler, A. 95. 193.) 100 pts. H 2 at 11-14 dissolve 23 '88 pts. anhydrous salt. (v. Hauer, J. pr. 103. 114. (Charpy, A. ch. (6) 29. 26.) HC 2 H 3 2 ppts. it completely from CoS0 4 + Aq. (Persoz.) M.-pt. of CoS0 4 + 7H 2 = 96-98. (Tilden, Chem. Soc. 45. 409.) 100 pts. sat. solution of CoS0 4 and CuS0 4 con- tain 22 "70 pts. of the two salts. 100 pts. absolute methyl alcohol dissolve 1-04 pts. CoS0 4 at 18. (de Bruyn, Z. phys. Ch. 10. 784.) 428 SULPHATE, COBALTOCOBALTIC 100 pts. absolute methyl alcohol dissolve 54-5 pts. CoS0 4 + 7H 2 at 18 ; 100 pts. absolute methyl alcohol dissolve 42 '8 pts. CoS0 4 + 7H 2 at 3 ; 100 pts. 93 "5 % methyl alcohol dissolve 13-3 pts. CoS0 4 + 7H 2 at 3; 100 pts. 50 % methyl alcohol dissolve 1-8 pts. CoS0 4 + 7H 2 at 3. 100 pts. absolute ethyl alcohol dissolve 2 '5 pts. CoS0 4 + 7H 2 at 3. (de Bruyn, Z. phys. Ch. 10. 786.) Min. Bieberite. Cobaltocobaltic sulphate, Co 2 3 , 6CoO, S0 3 + 15H 2 0. Precipitate. Insol. in boiling CoS0 4 + Aq or NH 4 OH + Aq. (Gentele, J. pr. 69. 130.) Cobaltic sulphate, Co 2 (S0 4 ) 3 + 18H 2 0. Sol, in H 2 with immediate decomp. and liberation of 0. Sol. in dil. H 2 S0 4 + Aq with- out immediate decomp. Sol. in cone. HN0 3 , H 2 S0 4 , or HC 2 H 3 2 + Aq. (Marshall, Chem. Soc. 59. 760.) Cobaltous cupric sulphate, 2CoS0 4 , CuS0 4 + 21H 2 0. Easily sol. in H 2 0. (v. Hauer, Pogg. 125. 637.) + 36H 2 0. (Liebig.) 2CoS0 4 , 2CuS0 4 , H 2 S0 4 . (Etard.) Cobaltous cupric magnesium potassium zinc sulphate, CoS0 4 , CuS0 4 , MgS0 4 , 4^804, ZnS0 4 + 24H 2 0(?). Sol. in H 2 0. (Vohl.) Cobaltous cupric potassium sulphate, CoS0 4 , CuS0 4 , 2K 2 S0 4 + 12H 2 0(?). Sol. inHjjO. (Vohl.) Does not exist. (Aston and Pickering, Chem. Soc. 49. 123.) , Cobaltous ferrous potassium sulphate, CoS0 4 , Fe 2 S0 4 , 2K 2 S0 4 + 12H 2 0. Sol. in H 2 0. (Vohl, A. 94. 57.) 2CoS0 4 , 2FeS0 4 , H 2 S0 4 . (Etard.) Cobaltous magnesium sulphate, 3CoS0 4 , MgS0 4 + 28H 2 0. Easily sol. in H 2 0. (Winkelblech.) Cobaltous magnesium potassium sulphate. CoS0 4 , MgS0 4 , K 2 S0 4 + 12H 2 0. Sol. in H 2 0. (Vohl, A. 94. 57.) Does not exist. (Aston and Pickering, Chem. Soc. 49. 123.) Cobaltous manganous potassium sulphate, CoS0 4 , MnS0 4 , 2K 2 S0 4 + 12H 2 0. Sol. in H 2 0. (Vohl, A. 94. 57.) Cobaltous nickel potassium sulphate, CoS0 4 , NiS0 4 , 2X5864 + 12H 2 0. Sol. in H 2 0. (Vohl, A. 94. 57.) Does not exist. (Thomson, Rep. Brit. Assn. Adv. Sci. 1877. 209.) Cobaltous potassium sulphate, CoS0 4 , K 2 S0 4 + 6H 2 0. Less sol. in H 2 than CoS0 4 . 100 pts. H 2 dissolve at : 12 15 20 25 19'1 30 32-5 39'4 45-3 pts. anhydrous salt, 30 35 40 49 51'9 55'4 64-6 81 '3 pts. anhydrous salt. (Tobler, A. 96. 126.) 100 pts. saturated solution contain at : 20 40 60 80 14 19'5 24-4 31'8 pts. anhydrous salt, (v. Hauer, J. pr. 74. 433.) Cobaltic potassium sulphate, K2Co 2 (S0 4 ) 4 + 24H 2 0. Sol. in H 2 with decomp. (Marshall, Chem. Soc. 59. 760.) Cobaltous potassium zinc sulphate, CoS0 4 , 2K 2 S0 4 , ZnS0 4 + 12H 2 0. Sol. in H 2 0. (Vohl, A. 94. 57.) Cobaltous rubidium sulphate, CoS0 4 , Rb 2 S0 4 + 6H 2 0. Sol. in H 2 0. (Tutton.) Cobaltous zinc sulphate. Efflorescent. Decomp. on air. (Link, Crell. Ann. 1790, 1. 32.) Cobaltous sulphate ammonia, CoS0 4 , 6NH 3 . Sol. in H 2 with separation of ppt. (Rose, Pogg. 20. 152.) Very easily sol. in NH 4 OH + Aq. (Fremy.) Decomp. by alcohol. Columbium sulphate. Sol. inH 2 0. (Blomstrand.) Cupric sulphate, basic, 8CuO, S0 3 + 12H 2 0. Ppt. (Kane, A. ch. 72. 269.) 5CuO, S0 3 + 6H 2 0. Ppt. (Smith, Phil. Mag. J. 23. 196.) 4CuO, S0 3 + 3H 2 0. Insol. in H 2 0. (Rou- her, J. Pharm. (3) 37. 50.) Min. Brochantite. Sol. in acids and NH 4 OH + Aq. + 3p[ 2 0. Insol. in H 2 0. Easily sol. in dil. acids, even HC 2 H 3 2 + Aq. SI. sol. in CuS0 4 + Aq. Insol. in NaC 2 H 3 2 + Aq. (Cas- selmann, Z. anal. 4. 24.) + 4H 2 0. Insol. in H 2 0. (Proust.) Sol. in NH 4 ) 2 S0 4 + Aq, and more easily in NH 4 C1, and NH 4 N0 3 + Aq. (Lea.) + 5H 2 0. Min. Langite. + 16H 2 0. (Andre, C. R. 100. 1138.) 7CuO, 2S0 3 + 5H 2 0. (Reindel, J. pr. 100. 1. ) 4- 6H 2 0. Wholly insol. in cold or hot H 2 0. Habermann, M. Ch. 5. 432.) + 7H 2 0. Insol. in H 2 ; easily sol. in acids, insol. in boiling CuS0 4 + Aq. (Reindel.) 3CuO, S0 3 + 1|H 2 0. Insol. in H 2 ; easily iol. in acids. (Steinmann, B. 15. 1412.) + 2H 2 0. Insol. in H 2 ; sol. in dil. H 2 S0 4 + Aq. (Shenstone, Chem. Soc. 47. 375.) + 2|H 2 0. (Reindel, J. pr. 102. 204.) H,0. Insol. in H 9 0. (Grimbert and T^ J.J. 2 V/. J.11KU1. ill XlfA^. Barre, J. Pharm. (5) 21. 414.; SULPHATE, CUPRIC 429 2CuO, S0 3 . Decomp. by cold H 2 into 100 pts. H 2 dissolve pts. CuS0 4 at t. CuS0 4 and 4CuO, S0 3 . (Roucher.) According to Pickering (C. N. 47. 181) only 3CuO, S0 3 + 2^H 2 and 4CuO, S0 3 + 4H 2 are t Pts. CuS0 4 t Pts. CuSO 4 t Pts. CuSO 4 true chemical compounds. 14-15 40 28-50 80 54-53 Cupric sulphate, CuS0 4 . 10 20 17-50 20-53 50 60 33-31 39-01 90 100 64-35 75-22 Anhydrous. Absorbs H 2 from the air. 30 24-34 70 45-74 Combines with, and dissolves in H 2 with great evolution of heat. + H 2 0. Permanent. Sol. in H 2 0. (Etard, (Patrick and Aubert, Transactions of Kansas Acad. of Sci. 1874. 19.) C. R. 87. 602.) + 2H 2 0(?). (Storer's Diet.) + 3H 2 0. (Etard, C. R. 104. 1614.) Solubility in 100 pts. H 2 at t. Does not exist. (Cross, C. N. 49. 220.) + 5H 2 0. Superficially efflorescent in dry t Pts. CuS0 4 t Pts. CuSO 4 t Pts. CuSO 4 air. Sol. in 2-34 pts. H 2 O at 18, and sat. solution has sp. gr. 1-2147. (Schiff, A. 109. 326.) 1 15-5 16-3 35 36 27-5 27-9 70 71 45-7 46-4 100 pts. CuSO 4 +Aq sat. at b.-pt., 102-2, contain 45 pts. of the dry salt, or 100 pts. H 2 O at 102-2 dissolve 81-82 pts. CuSO 4 . (Griffiths, Q. J. Sci. 18. 90.) Sol. in less than 4 pts. H 2 O at ord. temp., and much 2 3 4 16-6 16-9 17-2 37 38 39 28-3 28-7 29-1 72 73 74 ' 47-2 47-9 48-7 more sol. in boiling H 2 O. (Bergmann.) Sol. in 4 pts. cold, and 2 pts. hot H 2 O. (Schubarth.) 5 Q 17-5 17'8 40 41 29-5 29'9 75 76 49-5 50*3 100 pts. H 2 O dissolve 33'103 pts. CuSO 4 +5H 2 O at 15, and solution has sp. gr. =1-1859. (Michel and 7 18-1 42 30*3 77 51-1 Krafft, A. ch. (3) 41. 478.) 8 18-4 43 30-7 78 51'9 CuSO 4 +Aq sat. at 8 has 1-17 sp. gr. (Anthon, A. 9 18-7 44 31-1 79 52*7 24. 210.) 1 pt. CuSO 4 +5H 2 O dissolves at: 10 11 19-1 19-3 45 46 31-5 31-9 80 81 53-5 54-3 4 19 31 37-5 50 in 3-32 2-71 1'84 1'7 T14 pts. H 2 O, 12 13 19-6 19'9 47 48 32-3 32-7 82 83 55-1 55-9 62-5 75 87-5 100 104 in 1-27 1-07 0'75 0'55 0'47 pts. H 2 O. 14 20-2 49 33-2 84 56-8 15 20 -5 50 33 '6 85 57*8 (Brandes and Gruner, 1826.) 16 20-8 51 34-1 86 58-7 Sol. at 17-5 in 2'412 pts. H 2 O. (Karsten.) 17 21-1 52 34-5 87 59-7 100 pts. H 2 dissolve at : 18 19 21-4 21-7 53 54 35-0 35-5 88 89 607 61-7 9 10 20 30 20 22-0 55 36-0 90 62-7 31-61 36-95 42-31 48 '81 pts. CuS0 4 + 5H 2 0, 21 22-3 56 36-6 91 63-7 22 22-6 57 37-2 92 64-8 40 50 60 70 56-9065-83 77*39 94*60 pts. CuS0 4 + 5H 2 0, 23 24 23-0 23-3 58 59 37-8 38-4 93 94 65-8 66-9 80 90 100 25 237 60 39-0 95 68-0 118-03 156-44 203 -32 pts. CuS0 4 + 5H 2 0. 26 27 24-0 24'4 61 62 39-6 40-2 96 97 69-1 70-2 (Poggiale, A. ch. (3) 8. 463.) 28 24-7 63 40-9 98 71-3 100 pts. H 2 dissolve at : 29 30 25-1 25-5 64 65 41*5 42-2 99 100 72-4 73-5 20 35 54 31 25-9 66 42-9 101 74-6 17 24-3 28-6 36-1 pts. anhydrous CuS0 4 . 32 26-3 67 43-6 102 757 (Tobler, A. 95. 193.) 33 34 267 27-1 68 69 44-3 45-0 103 104 76-8 77-95 inn nfa HiiSO.4-An sa.t. a.t, 11-14 r>rmb>.in 16-23 pts. anhydrous CuS0 4 . (v. Hauer, J. pr. 103. 114.) 100 pts. H 2 dissolve 15 '107 pts. CuS0 4 at 0. (Pfaff, A. 99. 224.) 100 pts. H 2 dissolve pts. CuS0 4 at t. t' Pts. CuSO 4 14-99 17-9 20-16 24-1 22-37 (Diacon, J. B. 1866. 61.) (Mulder, Scheik. Verhandel. 1864. 79.) If solubility S = pts. anhydrous CuS0 4 in 100 pts. solution, S = ll*6 + 0-2614t from -2 to 55; S = 26'5 + 0*3700t from 55 to ,105 ; S = 45-0-0'0293t from 105 to 190. (Etard, C. R. 104. 1614.) Solubility decreases above 120, owing to formation of basic salt. (Tilden and Shenstone, Phil. Trans. 1884. 23.) 100 ccm. H 2 dissolve 14 '92 g. CuS0 4 at 0. (Engel, C. R. 102. 113.) 100 ccm. H 2 dissolve 22 '28-22 '30 g. CuS0 4 at 20. (Trevor, Z. phys. Ch. 7. 468.) 430 SULPHATE, CUPRIC + 6H 2 0. (Boisbaudran, C. R. 66. 487.) + 7H 2 0. (Boisbaudran, C. R. 65. 1249.) Sp. gr. of CuS0 4 + Aq at 18. % = % CuS0 4 5H 2 0. % Sp. gr. % Sp. gr. % Sp. gr. 1 1-0063 11 1-0716 21 1-1427 2 1-0126 12 1-0785 22 1-1501 3 1-0190 13 1-0854 23 1-1585 4 1-0254 14 1-0923 24 1-1659 5 1-0319 15 1-0993 25 1-1738 6 1-0384 16 1-1063 26 1-1817 7 1-0450 17 1-1135 27 1-1898 8 1-0516 18 1-1208 28 1-1980 9 1-0582 19 1-1281 29 1-2063 10 1-0649 20 1-1354 30 1-2146 (Schiff, calculated by Gerlach, Z. anal. 8. 288. ) Sp. gr. of CuS0 4 + Aq at 23 '9. a = No. of | mols. in grms. dissolved in 1000 grms. H 2 0; b = sp. gr. if a is CuS0 4 + 5H 2 (^ mol. wt. = 125) ; c = sp. gr. if a is CuS0 4 (| mol. wt.=80). a b c 1 1-076 1-080 2 1-142 1-154 3 1-200 1-225 (Favre and Valson, C. R. 79. 968.) Sp. gr. of CuS0 4 + Aq at 15. % = % CuS0 4 + 5H 9 0. % Sp. gr. % Sp. gr. 5 1-0335 20 1-1443 10 1-0688 25 1-1848 15 1-1060 mother liquor 1-185 (Gerlach, Dingl. 181. 131.) Sp. gr. of CuS0 4 + Aq at 18. % CuSO 4 Sp. gr. % CuS0 4 Sp. gr. 5 10 1-0513 1-1073 15 17-5 1-1675 1-2003 (Kohlrausch, "W. Ann. 1879. 1.) Sp. gr. of CuS0 4 + Aq at 0. S = pts. CuS0 4 in 100 pts. solution. s Sp.gr. S Sp. gr. 11-9315 9-8159 7-5474 1-1371 1-1108 1-0833 5-2181 2-6460 1-0578 1-0290 (Charpy, A. ch. (6) 29. 26.) Sat. CuS0 4 + Aq boils at 102 '2, and con- tains 81 - 8 pts. CuS0 4 to 100 pts. H 2 0. (Griffiths.) Crust forms at 102 '3, and solution contains 60'3 pts. CuS0 4 to 100 pts. H 2 ; highest temp, observed, 104 '8. (Gerlach, Z. anal. 26. 426.) B.-pt. CuS0 4 + Aq containing pts. CuS0 4 to 100 pts. H 2 0. B.-pt. Pts. CuSO 4 B.-pt. Pts. CuSO 4 100-5 21-3 103-0 69-0 101-0 36-9 J03'5 74-9 101-5 48-0 104-0 80-1 102-0 56-2 104-2 82-2 102-5 63-0 (Gerlach Z. anal. 26. 434.) Sol. in HCl + Aq, causing a reduction of temperature of about 17. Very si. sol. in cone. H 2 S0 4 . (Schulz.) Glacial acetic acid precipitates CuS0 4 com- pletely from CuS0 4 + Aq. Sol. in sat. Na 2 S0 4 + Aq. (Karsten.) Solubility of CuS0 4 in presence of Na 2 S0 4 at 0. 100 pts. H 2 dissolve No. CuS0 4 Na 2 S0 4 No. CuSO 4 Na 2 S0 4 1 4-53 5 15-84 3-55 2 6-01 5-34 6 15-33 1-98 3 9-81 573 7 14-99 4 16-67 6-48 ... In 1, 2, and 3, N"a 2 S0 4 was in excess and given amt. CuS0 4 added ; in 4, both CuS0 4 and Na 2 S0 4 were in excess ; in 5, 6, and 7, CuS0 4 was in excess and Na 2 S0 4 added. (Diacon, J. B. 1866. 61.) 100 pts. H 2 dissolve 8 '038 pts. CuS0 4 and 6-31 pts. Na 2 S0 4 at 0. (Pfaff, A. 99. 224.) 100 pts. H 2 dissolve 20 '7 pts. CuS0 4 and 15-9 pts. Na 2 S0 4 at 15. (Riidorff, B. 6. 484.) 100 pts. H 2 dissolve 10 '85 pts. CuS0 4 , 17-47 pts. MgS0 4 , and 5 78 pts. Na 2 S0 4 at 0. (Diacon.) 100 pts. H 2 dissolve 7 '169 pts. CuS0 4 , 21-319 pts. MgS0 4 , and 6 '830 pts. Na 2 S0 4 at 0. (PfafF. ) Slowly and si. sol. in sat. MgS0 4 + Aq. (Karsten.) Solubility of CuS0 4 in H 2 in presence of MgS0 4 . 100 pts. H 2 dissolve No. CuS0 4 MgS0 4 No. CuSO 4 MgS0 4 1 26-37 5 12-03 15-67 2 2-64 25-91 6 13-61 8-64 3 4-75 25-30 7 14-99 4 9-01 23-54 ... In 1, 2, 3, MgS0 4 was in excess and given amt. CuS0 4 added ; in 4, both CuS0 4 and MgS0 4 were in excess ; in 5, 6, and 7, CuS0 4 was in excess. (Dia6on, I.e.] 100 pts. sat. solution of CuS0 4 and MgS0 4 contain 28 '58 pts. of the salts at 11-14. (v. Hauer, J. pr. 103. 114.) 100 pts. sat. solution of CuS0 4 and NiS0 4 SULPHATE, CUPRIC MANGANOUS POTASSIUM 431 contain 31 '03 pts. of the salts at 11-14. (v. Hauer.) 100 pts. sat. solution of CuS0 4 and MnS0 4 contain 37 '09 pts. of the salts at 11-14. (v. Hauer.) Very slowly sol. in sat. ZnS0 4 + Aq, forming a double salt which separates. (Karsten.) 100 pts. sat. solution of'CuS0 4 and ZnS0 4 contain 3270 pts. of the salts at 11-14. (v. Hauer.) 100 pts. sat. solution of CuS0 4 and FeS0 4 contain 17 '43 pts. of the salts at 11-14. (v. Hauer, J. pr. 103. 114.) More easily sol. in sat. K 2 S0 4 + Aq than in Na 2 S0 4 or MgS0 4 + Aq, forming a double sulphate, which separates out. (Karsten.) K 2 S0 4 and CuS0 4 mutually displace each other in saturated solutions. (Riidorff, Pogg. 148. 555.) When K 2 S0 4 and CuS0 4 , both in excess, are dissolved in H 2 0, a maximum of solubility of 15-61 pts. of the two salts in 100 pts. H 2 at 25 is reached in 30 minutes, after which the solubility decreases. This result is obtained either by treating excess of the two salts with H 2 at 25, or cooling solutions of the two salts sat. at higher temp, to 25. The salts are in the proportion of 5 '2 pts. K 2 S0 4 to 10 '4 pts. CuS0 4 . If present in the same proportion as in their saturated solutions, 5 '41 pts. K 2 S0 4 to 10'13 pts. CuS0 4 would be required. If sat. solution of one salt is added to sat. solution of the other, K 2 Cu(S0 4 ) 2 + 6H 2 separates, as it is less sol. than either simple salt, until a state of equilibrium is reached, after which there is no separation, contrary to Riidorff (see above). (Trevor, Z. phys. Ch. 7. 486.) Insol. in sat. (NH 4 ) 2 S0 4 + Aq. (Engel, C. R. 102. 113.) Sol. in sat. NaCl + Aq. SI. sol. in sat. NH 4 Cl + Aq, with separation of a double sulphate. Slowly sol. in sat. KN0 3 + Aq, with separa- tion of a double sulphate. Very slowly sol. in sat. NaN0 3 + Aq, with separation of a double sulphate. (Karsten, Berl. Abhandl. 1840. 10.) 100 pts. of a sat. solution in 40 % alcohol contains 0'25 pt. CuS0 4 + 5H 2 ; 20 % alcohol, 3-1 pts. ; 10 % alcohol, 13 '3 pts. (Schiff, A. 118. 362.) Anhydrous CuS0 4 is sol. in absolute methyl alcohol, but insol. in absolute ethyl alcohol. CuS0 4 + xH 2 is insol. in methyl or ethyl alcohol. (Klepl, J. pr. (2) 25. 526.) 100 pts. absolute methyl alcohol dissolve 1-05 pts. anhydrous CuS0 4 at 18. 100 pts. absolute methyl alcohol dissolve 15'6 pts. CuS0 4 + 5H 2 at 18 ; 100 pts. 93 '5 % methyl alcohol dissolve 0'93 pt. CuS0 4 + 5H 2 at 18 ; 100 pts. 50 % methyl alcohol dissolve 0-4 pt. r ,CuS0 4 + 5H 2 6 at 18; 100 pts. absolute methyl alcohol dissolve 13 '4 pts. CuS0 4 + 5H 2 at 3. 100 pts. absolute ethyl alcohol dissolve I'l pts. CuS0 4 + 5H 2 at 3. (de Bruyn, Z. phys. Ch. 10. 786.) Sol. in glycerine (Pelouze), picoline (Unver- dorben). Anhydrous CuS0 4 is insol. in acetone. (Krug and M'Elroy, J. Anal. Ch. 6. 184.) Min. Chalcanthite. Cupric glucinum sulphate, CuS0 4 , 4G1S0 4 + 20H 2 0. Sol. in H 2 0. (Klatzo, J. B. 1868. 205.) Does not exist. (Marignac, A. ch. (4) 30. 45.) 9CuS0 4 , G1S0 4 + 50H 2 0. As above. Does not exist. (Marignac, I.e.) Cupric ferrous sulphate, CuS0 4 , FeS0 4 . Insol. in H 2 0. (Etard, C. R. 87. 602.) + 2H 2 0. (Etard.) CuS0 4 , 2FeS0 4 + 2lH 2 0. Sol. in H 2 0. (v. Hauer. ) CuS0 4 , 3FeS0 4 + 28H 2 0. 100 pts. H 2 dis- solve 75 pts. salt at 7. (Lefort.) 4CuS0 4 , FeS0 4 + 34H 2 0. 100 pts. H 2 at 15'5 dissolve 75 '91 pts. (Thomson.) Other salts are sol. in H 2 0. Cupric ferric sulphate, CuS0 4 , Fe 2 (S0 4 ) 3 + 24H 2 0. Sol. in H 2 0. (Bastick.) Cupric ferrous potassium sulphate, CuS0 4 , FeS0 4 , 2K 2 S0 4 +12H 2 0. Sol. inH 2 0. (Vohl.) Cupric lead sulphate, CuO, PbO, S0 3 + H 2 0. Min. Linarite. 3CuO, 7PbO, 5S0 3 + 5H 2 0. Min. Caledonite. Sol. in HN0 3 + Aq. Cupric magnesium sulphate, CuS0 4 , MgS0 4 + 14H 2 0. Efflorescent. Sol. in H 2 0. (Vohl, A. 94. 57.) + 2H 2 0. (Arrot, 1834.) CuS0 4 , 2MgS0 4 + 2lH 2 0. Sol. in H 2 0. (v. Hauer, Pogg. 125. 638.) CuS0 4 , 7MgS0 4 4-56H 2 0. Sol. in H.,0. (Schiff, A. 107. 64.) Cupric magnesium manganous potassium sul- phate, CuS0 4 , MgS0 4 , MnS0 4 , 3K 2 S0 4 + 18H 2 0. Sol. in H 2 0. (Vohl.) Cupric magnesium potassium sulphate, CuS0 4 , MgS0 4 , 2K 2 S0 4 + 6H 2 0. Sol. in H 2 0. (Vohl, A. 94. 57.) Does not exist. (Aston and Pickering, Chem. Soc. 49. 123.) Cupric magnesium potassium zinc sulphate, CuS0 4 , MgS0 4 , 3K 2 S0 4 , ZnS0 4 + 18H 2 0. Sol. in H 2 0. (Vohl.) Cupric manganous sulphate, 5CuS0 4 , 2MnS0 4 + 35H 2 0. Sol. in H 2 O. (Schauffele, J. B. 1852. 340.) 2CuS0 4 , 3MnS0 4 + 25H 2 0. , As above. (S.) CuS0 4 , MnS0 4 + H 2 0. (Etard, C. R. 87. 602.) Cupric manganous potassium sulphate, CuS0 4 , MnS0 4 , 2K 2 S0 4 + 12H 2 0. Sol. inH 2 0. (Vohl.) 432 SULPHATE, CUPRIC NICKEL Cupric nickel sulphate, CuS0 4 , NiS0 4 + 3H 2 0. (Etard, C. R. 87. 602.) CuS0 4 , 2MS0 4 + 21H 2 0. Sol. in H 2 0. (v. Hauer.) + 18H 2 0. Sol. in H 2 0. (Boisbaudran, C. R. 66. 497.) 2CuS0 4 , 2NiS0 4 , 3H 2 S0 4 . (Etard.) Cupric nickel potassium sulphate, CuS0 4 , NiS0 4 , 2K 2 S0 4 +12H 2 0. Sol. in H 2 0. (Vohl.) Sol. in 4 pts. H 2 ; insol. in alcohol. (Bette.) 4CuS0 4 , K 2 S0 4 + 4H 2 0. Very si. sol. in H 2 0. K 2 0, 4CuO, 4S0 3 + 4H 2 0. Insol. in H 2 0, but decomp. by boiling H 2 into 3CuO, S0 3 . Cupric potassium sulphate, K 2 Cu(S0 4 ) 2 + 6H 2 0. 100 pts. H 2 O dissolve 66'666 pts. at 102-8. (Griffiths.) Much more sol. in hot than cold H 2 0. (Pierre.) Easily sol. in H 2 ; by boiling, decomp. into basic salt. (Persoz, A. ch. (3) 25. 272.) 100 pts. H 2 dissolve 11 '14 pts. anhydrous salt at 25. (Trevor, Z. phys. Ch. 7. 470.) See also CuS0 4 and K 2 S0 4 . Min. Cyanochroite. Cupric potassium zinc sulphate, CuS0 4 , 2K 2 S0 4 , ZnS0 4 + 12H 2 0. Sol. inH 2 0. (Vohl.) Cupric rubidium sulphate, CuS0 4 , Rb 2 S0 4 + 6H 2 0. Sol. inH 2 0. (Tutton.) Cupric sodium sulphate (?). Slowly deliquescent, and decomp. by H 2 into its constituents. (Graham, Phil. Mag. J. 4. 420.) Cupric thallium sulphate, CuS0 4 , T1 2 S0 4 + 6H 2 0. Decomp. by recrystallising from H 2 0. (Willm, A. ch. (4) 5. 55.) Cupric zinc sulphate, CuS0 4 , 3ZnS0 4 + 28H 2 0. Efflorescent. 100 pts. H 2 dissolve 80 pts. salt at 8. Sol. in all proportions in boiling H 2 0. (Lefort.) CuS0 4 , 2ZnS0 4 + 21H 2 0. (v. Hauer, Pogg. 125. 637.) CuS0 4 , ZnS0 4 + 12H 2 0. (B9isbaudran.) 2CuS0 4 , 2ZnS0 4 , H 2 S0 4 . (Etard.) Cupric sulphate ammonia, basic, CuS0 4 , 3CuO, 2NH 3 + 5H 2 0. Decomp. by hot H 2 0. (Pickering, Chem. Soc. 43. 336.) Cupric sulphate ammonia (Cuprammonium sulphate), CuS0 4 , NH 3 . Decomp. by H 2 0. (Kane.) CuS0 4 , 2NH 3 [CuS0 4 , 2NH 3 + 3H 2 0. (Men- delejefF, B. 3. 422.)]. Decomp. by excess of H 2 into CuS0 4 , 4NH 3 + H 2 0. Sol. in 1-5 pts. H 2 0, but decomp. by much H 2 0. Insol. in alcohol. Insol. in cone. NH 4 OH + Aq. (Andre, C. R. 100. 1138.) CuS0 4 , 5NH 3 . Completely sol. in H 2 0. (Rose, Pogg. 20. 150.) Decipium sulphate, Dp 2 (S0 4 ) 3 . Sol. in H 2 0. Cryst. with 9H 2 0, and 24H 2 0. (Delafon- taine. ) Didymium sulphate, basic, Di 2 3 , S0 3 = (DiO) 2 S0 4 . Insol. in cold or boiling H 2 0. (Marignac. ) Slowly sol. in hot dil. HC1 + Aq. Easily sol. in cone, acids. + 8H 2 0. Precipitate. (Hermann.) Composition is 2Di 2 3 , 3S0 3 + 3H 2 or Di 2 (S0 4 ) 3 + Di 2 6 H 6 . (Frerichs and Smith.) Composition is 5Di 2 3 , 3S0 3 + zH 2 0. (Cleve. B. 11. 910.) Didymium sulphate, Di 2 (S0 4 ) 3 . Anhydrous. By saturating cold H 2 and warming the solution, the following results were obtained 100 pts. H 2 dissolve at : 12 18 25 38 50 43-1 25-8 20'6 13 '0 ll'O pts. Di 2 (S0 4 ) 3 . + 6H 2 0. H 2 dissolves this salt very slowly ; 100 pts. H 2 dissolve 13 pts. Di 2 (S0 4 ) 3 in 24 hours, and 16 '4 pts. in 2 days. If solution is evap. in vacuo until Di 2 (S0 4 ) 3 + 8H 2 separates out, 34 pts. Di 2 (S0 4 ) 3 remain dissolved in 100 pts. H 2 0. + 5H 2 0. (Cleve.) + 8H 2 0. Solutions of this salt contain at : 19 40 50 100 11-7 8-8 6'5 1-6 pts. Di 2 (S0 4 ) 3 . (Marignac, A. ch. (3) 38. 170.) + 9H 2 0. (Zschiesche, J. pr. 107. 75.) Didymium potassium sulphate, K 2 S0 4 , Di 2 (S0 4 ) 3 + 2H 2 0. Sol. in 63 pts. H 2 0. Insol. in sat. K 2 S0 4 + Aq. (Marignac.) 3K 2 S0 4 , Di 2 (S0 4 ) 3 . Sol. in 83 pts. H 2 at 18. Insol. in cold, si. sol. in boiling sat. K 2 S0 4 + Aq, 100 ccm. of which retain 55 mg. Di 2 3 in solution. (Cleve.) 4K 2 S0 4 , Di 2 (S0 4 ) 3 . (Cleve.) 9K 2 S0 4 , 2Di 2 (S0 4 ) 3 + 3H 2 0. (Cleve.) Didymium sodium sulphate, Di 2 (S0 4 ) 3 , ]STa 2 S0 4 , and + 2H 2 0. Sol. in 200 pts H 2 (Marignac), and still less in sat. Na 2 S0 4 + Aq, 100 ccm. of which dissolve only 70 mg. Di 2 3 at ord. temp. (Cleve.) Didymium thallous sulphate, (Di 2 S0 4 ) 3 , 3T1 2 S0 4 . Ppt. Di 2 (S0 4 ) 3 , T1 2 S0 4 + 2H 2 0. Sol. in H 2 0. (Zschiesche, J. pr. 107. 98.) Erbium sulphate, Er 2 (S0 4 ) 3 . Anhydrous. Easily and rapidly sol. in H 2 0. 100 pts. H 2 dissolve 43 pts. anhydrous salt at 0. + 8H 2 0. Less sol. in H 2 than anhydrous salt. 100 pts. H 2 dissolve 30 pts. Er 2 (S0 4 ) 3 + 8H 2 ( = 23 pts. Er 2 (S0 4 ) 3 ) at about 20; at 100 100 pts. Er 2 (S0 4 ) 3 + 8H 2 remain dissolved. Sat. solution deposits crystals when heated to 55. (Hoglund. ) SULPHATE, FERROUS 433 Erbium potassium sulphate, Er 2 (S0 4 ) 3 , 3K 2 S0 4 . Slowly sol. in H 2 0. (Hoglund.) Erbium sodium sulphate, Er 2 (S0 4 ) 3 , 5Na 2 S0 4 + 7H 2 0. Sol. inH 2 0. (Cleve.) Gallium sulphate, Ga 2 (S0 4 ) 3 . Not deliquescent, but very sol. in H 2 0. Sol. in 60 % alcohol ; insol. in ether. (Bois- baudran. ) Aqueous solution decomp. into basic salt by boiling, which redissolves, however, on cool- ing. Glucinum sulphate, basic, 3G10, S0 3 + 4H 2 0. Sol. in H 2 0, but decomp. by heating or dilution. (Berzelius. ) 2G10, S0 3 + 3H 2 0. Sol. in H 2 0. 9G10, S0 3 + 14H 2 (?). Precipitate. Insol. in H 2 0. (Berzelius.) According to Debray, this salt when care- fully washed is G10 2 H 2 . Glucinum sulphate, G1S0 4 + 4H 2 0. Very sol. in H 2 0. Sol. in its own weight of H 2 at 14, and in every proportion of boiling H 2 0. Less sol. in dil. H 2 S0 4 + Aq than in water. (Debray, A. ch. (3)44. 25.) SI. sol. in dilute, insol. in absolute alcohol. Can be completely pptd. from GlS0 4 by HC 2 H 3 2 . (Persoz.) + 7H 2 0. (Klatzo, J. pr. 106. 233.) Glucinum ferrous sulphate, G1S0 4 , FeS0 4 Sol. in H 2 0. (Klatzo, J. B. 1868. 204.) 3G1S0 4 , FeS0 4 + 28H 2 0. Sol. in H 2 0. (Klatzo.) Do not exist. (Marignac, A. ch. (4) 30. 45.) Glucinum nickel sulphate, (Gl, Ni)S0 4 + 4H 2 or 7H 2 0. (Klatzo, J. B. 1868. 205.) Does not exist. (Atterberg, Sv. V. A. F. 1873, 4. 81.) Glucinum potassium sulphate, G1S0 4 , K 2 S0 4 + 2H 2 0. SI. sol. in cold, slowly but more sol. in hot H 2 0. (Debray.) + 3H 2 0. (Klatzo.) Glucinum potassium hydrogen sulphate, G1H 2 (S0 4 ) 2 , 2K 2 S0 4 + 4H 2 0. Easily sol. in H 2 O. Partly decomp. by re- crystallisation. (Atterberg. ) Glucinum sodium sulphate, 2G1SO., 3Na S0 4 + 18H 2 0. Sol. in H 2 0. (Atterberg.) Glucinum zinc sulphate, 2G1S0 4 , 3ZnS0 4 + 35H 2 0. Sol. in H 2 0. (Klatzo, J. B. 1868. 205.) Does not exist. (Atterberg.) Gold (Auroauric) sulphate, Au 2 (S0 4 ) 2 . Decomp. by moist air, H 2 0, glacial acetic acid, or HN0 3 + Aq (1-42 sp. gr.) Insol. in cone. H 2 S0 4 . (Schottlander, A. 217. 375.) Auric sulphate, Au 2 3 , 2S0 3 + H 2 0, or Auryl hydrogen sulphate, (AuO)HS0 4 . Deliquescent. Decomp. by H 2 0. Sol. in HCl + Aq; not attacked by cone. HN0 3 + Aq. Sol. in 6 pts. cone. H 2 S0 4 . (Schottlander.) Auric potassium sulphate, Au 2 (S0 4 ) 3 , KjSC^. Not decomp. immediately by cold H 2 0. (Schottlander.) Indium sulphate, In 2 (S0 4 ) 3 . Easily sol. in H 2 0. + 9H 2 0. Easily sol. in H 2 0. Indium hydrogen sulphate, InH(S0 4 ) 2 + 4H 2 0. Very deliquescent. (Meyer.) Indium potassium sulphate, InK(S0 4 ) 2 + 4H 2 0. Sol. in H 2 0, but decomp. by boiling. (Rossler, J. pr. (2) 7. 14.) (InO) 3 K(S0 4 ) 2 + 3H 2 0. Insol. in H 2 0. (Ross- ler.) Indium sodium sulphate, InNa(S0 4 ) 2 + 4H 2 0. Sol. in H 2 0. (Rossler, J. pr. (2) 7. 14.) lodyl sulphate, (IO) 2 (S0 4 ) 3 . Possible composition of Weber's (B. 20. 86) LA, 3so 3 . Iridium sulphate. Sol. in H 2 or alcohol. (Berzelius.) Iridium potassium sulphate, Ir 2 (S0 4 ) 3 , 3K 2 S0 4 . Sol. in H 2 or dil. H 2 S0 4 + Aq ; nearly insol. in sat. K 2 S0 4 + Aq. (Boisbaudran, C. R. 96. 1406.) Iron (Ferrous) sulphate, FeS0 4 . + H 2 0. + 2H 2 0. Not more sol. in H 2 than gypsum. (Mitscherlich.) + 3H 2 0. Sol. in H 2 0. (Kane.) + 4H 2 0. Separates from cone. FeS0 4 + Aq at 80. + 7H 2 0. Efflorescent at 33. 1 pt. FeSO 4 +7H 2 O dissolves in T6 pts. cold, and 0'3 pt. boiling H 2 O. 1 pt. FeSO 4 +7H 2 O dissolves at : 10 15 25 33 46 60 - 84 90 100 in 1-64 1-43 0'87 0'66 0'44 0'38 0'37 0'27 0'3 pts. H 2 O. (Brandes and Firnhaber, Br. Arch. 7. 83.) When boiled with insufficient H 2 O for solution a white hydrate is formed which separates out. Solubility increases up to 87 '5, and then diminishes, owing to the above separation. (Brandes, Pogg. 20. 581.) Sol. in 2 pts. cold, and 1 pt. boiling H 2 O (Fourcroy) ; sol. in 2 pts. cold H 2 O at 18'75 (Abl) ; sol. in 6 pts. H 2 O at moderate heat, and 0'75 pt. at 100. (Bergmann.) 100 pts. H 2 O at 15-5 dissolve 45-50 pts. (Ure's Diet.) 100 pts. H 2 O dissolve pts. FeSO 4 at t. t 10 12 20 Pts. FeSO 4 t Pts. FeS0 4 t Pts. FeSO 4 15-8 19-9 21-3 26-0 21 30 37 27-4 32-6 36-5 45 55 70 42-9 47-0 56-5 (Tobler, A. 95. 198.) 100 pts. FeS0 4 + Aq sat. at 11-14 contain 17-02 % FeS0 4 . (v. Hauer, J. pr. 103. 114.) 100 pts. FeS0 4 + Aq. sat at 15 contain 37'2 % FeS0 4 + 7H 2 0; solution has sp. gr. 1-2232. (Schiff, A. 118. 362.) 2F 434 SULPHATE, FERRIC, BASIC Solubility in 100 pts. H 2 at t. Sat. FeS0 4 + Aq boils at 102 '2 (Griffiths and solution contains 64 % FeS0 4 . Crust forn t Pts. FeSO 4 t Pts. FeS0 4 t Pts. FeS0 4 at 102 '3 ; highest temp, observed, 104 '8 (Gerlach, Z. anal. 26. 426.) 1 7'9 87 34 35 37-1 38'0 67 68 65-1 65 '0 B.-pt. of FeS0 4 + Aq containing pts. FeS0 4 2 9-5 36 38-9 69 64'9 to 100 pts. H 2 0. 3 4 10'4 11-2 37 38 39"8 407 70 71 64 '8 647 B.-pt. Pts. FeSO 4 B.-pt. Pts. FeS0 4 5 6 12'0 12'9 39 40 417 42'6 72 73 64 '5 64 '4 100-5 177 101-5 50-4 7 137 41 43'5 74 64-2 101-0 34-4 101-6 53-2 8 14'5 42 44'4 75 64'0 9 15'3 43 45-3 76 637 (Gerlach, Z. anal. 26. 433.) 10 16-2 44 46-2 77 63-4 11 17'0 45 47-1 78 63-1 Sol. in hot HCl + Aq. (Kane.) 12 17-9 46 48-1 79 627 Somewhat sol. in cone. H 2 S0 4 . (Bussy ai 13 187 47 49-0 80 62-3 Lecann. ) 14 19-5 48 50-0 81 61-9 More sol. in water containing NO than 15 20-4 49 51-0 82 61-5 pure H 2 0. (Gay, Bull. Soc. (2) 44. 175.) 16 17 21-2 22-1 50 51 51-9 52-9 83 84 61-0 60-4 Completely pptd. from FeS0 4 + Aq by glaci HC 2 H 3 2 . (Persoz.) 18 23-0 52 53-8 85 59-8 100 pts. sat. solution of FeS0 4 in 40 19 23-8 53 54-8 86 59-2 alcohol contains 0'3 % FeS0 4 . (Schiff.) 20 247 54 557 87 58-5 Insol. in alcohol of 0*905 sp. gr. or les 21 25-6 55 567 88 577 (Anthon, J. pr. 14. 125.) 22 26-4 56 577 89 57-0 Alcohol and H 2 S0 4 precipitate FeS0 4 fro 23 24 27-3 28-1 57 58 587 597 90 91 56-2 55-3 FeS0 4 + Aq, also glacial acetic acid. Anhydrous FeS0 4 is insol. in acetone. (Kn 25 29-0 59 607 92 54-3 and M'Elroy, 1893.) 26 29-9 60 617 93 53-3 Min. Melanterite. 27 30-8 61 627 94 52-2 28 29 30 31 32 317 32'6 33-5 34-4 35'3 62 63 63-5 64 65 637 64-8 65-4 65-4 65-3 95 96 97 98 99 51-0 49-6 48-0 46-3 44-5 Ferric sulphate, basic, 10Fe 2 3 , S0 3 + H 2 0. (Athanasesco, C. R. 103. 27.) 6Fe 2 3 ,S0 3 + 10H 2 0. Insol. in H 2 0. SI. sc in warm HCl + Aq. (Scheerer, Pogg. 4 33 36'2 66 65-2 100 42-6 188.) 4Fe 2 3 , S0 3 + 11H 2 0. (Anthon, Repert. 8 (Mulder, Scheik. Verhandel. 1864. 141.) If solubility S = pts. anhydrous FeS0 4 in 100 pts. solution, S = 13'5 + 0'3788t from -2 to + 65; S = 37'5 constant from 65 to 98; S = 37 -5 - -6685t from 98 to 156. Practically insol. at 156. (Etard, C. R. 106. 740.) Sp. gr. of FeS0 4 + Aq at 15. % = %FeS0 4 + 7H 2 0. % Sp. gr. % Sp.gr. % Sp.gr. 1 1-005 15 1-082 28 1-161 2 1-011 16 1-088 29 1-168 3 1-016 17 1*094 30 1-174 4 1-021 18 1-100 31 1-180 5 1-027 19 1-106 32 1-187 6 1-032 20 1-112 33 1-193 7 1-037 21 1-118 34 1-200 8 1-043 22 1-125 35 1-206 9 1-048 23 1-131 36 1-213 10 1-054 24 1-137 37 1-219 11 1-059 25 1-143 38 1-226 12 1-065 26 1-149 39 1-232 13 1-071 27 1-155 40 1-239 14 1-077 (Gerlach, Z. anal. 8. 287.) 237.) 3Fe 2 3 , S0 3 + 4H 2 0. Insol. in H 2 0. Rathe easily sol. in acids. (Scheerer, Pogg. 44. 453 Meister, B. 8. 771.) 2Fe 2 3 , S0 3 + 6H 2 0. When pptd. froi cold solutions, is sol. in Fe 2 (S0 4 ) 3 + Aq, bu insol. therein when pptd. from hot solutions (Maus.) Only basic sulphate which is a true chemica compound. (Pickering, Chem. Soc. 37. 807.) Min. Glockerite. Insol. in H 2 0. Sol. i! cone. H 2 S0 4 . + 7H 2 0. (Meister.) + 8H 2 0. (Miihlhauser. ) + 15H 2 0. Min. Pissophanite. Fe 2 3 , S0 3 = (FeO) 2 S0 4 + 3H 2 0. Insol. il H 2 0. (Soubeiran, A. ch. 44. 329.) 3Fe 2 3 , 4S0 3 + 9H 2 0. (Athanasesco.) 2Fe 2 3 , 3S0 3 + 8H 2 0. Insol. in H 2 0. (Witl stein. ) + 18H 2 0. Min. Fibroferrite. SI. sol. ii cold, more easily in hot H 2 0. Fe 2 3 , 2S0 3 +10H 2 0. Min. Styptidte. + 15H 2 0. Sol. in H 2 ; decomp. by heat o: evaporation. (Muck, J. pr. 99. 103.) 2Fe 2 3 , 5S0 3 + 13H 2 0. Min. Copiapite. According to Pickering (Chem. Soc. 37. 807) all basic ferric sulphates are mixtures except ing 2Fe 2 3 , S0 3 . SULPHATE, FERRIC POTASSIUM 435 Ferric sulphate, Fe 2 (S0 4 ) 3 . Anhydrous. Slowly deliquescent. Nearly insol. in H 2 0, and HCl + Aq. Insol. in cone. H 2 S0 4 . Very rapidly sol. in FeS0 4 + Aq, even when very dil. (Barreswil, C. R. 20. 1366.) Insol. in acetone. + icH 2 0. Very deliquescent, and sol. in H 2 0. Cone. Fe 2 (S0 4 ) 3 + Aq may be boiled without decomp., but dil. solutions are decomp. on heating. A solution containing 1 pt. salt to 100 pts. H 2 becomes turbid at 76 ; 1 pt. to 200 pts., at 56; 1 pt. to 400 pts., at 47; 1 pt. to 800 pts., at 40 ; 1 pt. to 1000 pts., at 38 ; 1 pt, to 10,000 pts., at 14. (Scheerer.) Sp. gr. of Fe 2 (S0 4 ) 3 + Aq. According to F = Franz at 17 '5 (J. pr. (2) 5. 280) ; G = Gerlach at 15 (Z. anal. 28. 494) ; H = Hager at 18 (Z. anal. 27. 280). 5 10 15 20 % Fe 2 (S0 4 ) 3 , F 1-0426 1-0854 1'1324 1'1826 G ... 1-096 ... 1-205 H 1-046 1-097 1-151 1-208 25 30 35 40 % Fe 2 (S0 4 ) 3 , F 1-2426 1-3090 1'3782 1'4506 G ... 1-331 ... 1-478 H 1-271 1-337 1-411 1-490 45 50 55 60 % Fe 2 (S0 4 ) 3 . F 1-5298 1-6148 17050 1'8006 G ... 1-650 Completely pptd. from Fe 2 (S0 4 ) 3 + Aq by HC 2 H 3 2 . Sol. to large extent in alcohol. + 9H 2 0. Min. Coquimbite. + 10H 2 0. Slowly sol. in H 2 0. (Oudemans, R. t. c. 3. 331.) Ferroferric sulphate, 6FeS0 4 , Fe 2 (S0 4 ) 3 + 60H 2 0. Sol. in all proportions in H 2 0. (Poumarede, C. R. 18. 854.) 3FeS0 4 , 2Fe 2 (S0 4 ) 3 + 12H 2 0. Decomp. by H 2 0. Easily sol. in dil. HCl + Aq. Insol. in alcohol. (Abich, 1842.) FeS0 4 , Fe 2 (S0 4 ) 3 + 12H 2 0. Min. Voltaite. Difficultly sol. in H 2 0. FeO, Fe 2 3 , 6S0 3 + 15H 2 0. Deliquescent. (Lefort, J. Pharm. (4) 10. 87.) Ferroferric hydrogen sulphate, Fe 2 (S0 4 ) 3 , FeSO-4, 2H 2 S0 4 . Insol. in H 2 0, but slowly decomp. thereby. Sol. in H 2 S0 4 . (Etard, C. R. 87. 602.) Ferrous ^7/rosulphate, FeS 2 7 . Deliquescent. Decomp. by H 2 0. (Bolas, Chem. Soc. (2) 12. 212.) Ferrous magnesium sulphate, FeS0 4 , MgS0 4 + 4H 2 0. Sol. in H 2 0. (Schiff.) Ferric magnesium sulphate, Fe 2 (S0 4 ) 3 ,MgS0 4 + (Bastick.) Ferrous magnesium potassium sulphate, 2X2804, FeS0 4 , MgS0 4 +12H 2 0. Sol. in H 2 0. (Vohl, A. 94. 57.) Ferric manganous hydrogen sulphate, Fe 2 (S0 4 ) 3 , 2MnS0 4 , H 2 S0 4 . Insol. in cold H 2 0. (Etard.) ,Fe2(S0 4 ) 3 , 2MnS0 4 , 3H 2 S0 4 . Sol. in H 2 0. (Etard, C. R. 86. 1399.) Ferric manganic sulphate, Fe 2 (S0 4 ) 3 , Mn 2 (S0 4 ) 3 . Insol. in cold H 2 ; decomp. by hot H 2 and HCl + Aq. (Etard.) Ferrous manganous potassium sulphate, FeS0 4 , MnS0 4 , 21^804 + 12H 2 0. Sol. in H 2 0. (Vohl, A. 94. 57.) Ferrous nickel sulphate, 2FeS0 4 , 2NiS0 4 , H 2 S0 4 . (Etard, C. R. 87. 602.) Ferric nickel sulphate, Fe 2 (S0 4 ) 2H 2 S0 4 . NiS0 4 , , Insol. in H 2 0, but gradually decomp. thereby. (Etard, C. R. 87. 602.) Ferrous nickel potassium sulphate, FeS0 4 , NiS0 4 , 2^80-4 + 12H 2 0. Sol. in H 2 0. (Vohl, A. 94. 57.) Ferrous potassium sulphate, FeS0 4 , K 2 S0 4 . + 2H 2 0. (Marignac, Ann. Min. (5) 9. 19.) + 6H 2 0. 100 pts. H 2 dissolve at t : 10 14-5 16 25 19'6 24-5 291 30 '9 36 '5 pts. anhydrous salt, 35 40 55 65 70 41 45 56 59-3 64 '2 pts. anhydrous salt. (Tobler, A. 95. 193.) Ferric potassium sulphate, basic, 4Fe 2 3 , K 2 0, 5S0 3 + 9H 2 = 4(Fe 2 3 , 2H 2 0, S0 3 ), K 2 S0 4 + 7H 2 0. Insol. in boiling H 2 0. SI. sol. in HCl + Aq, more readily in aqua regia. (Rammelsberg. ) 3Fe 2 3 , K 2 0, 4S0 3 + 6H 2 = K(FeO) 3 (S0 4 ) 2 + 3H 2 0. Min. Jarosite. Fe 2 3 , H 2 0, 2S0 3 , 2K 2 S0 4 + 5H 2 0. Sol. in 6 pts. cold H 2 0. Solution soon decomposes. (Maus, Pogg. 11. 78.) Sol. in 12-5 pts. H 2 at 10. (Anthon, Re- pert. 76. 361.) Formula is given as 3Fe 2 Oo, 5IL>0, 12SO,+ 18H 2 by Marignac. 3Fe 2 3 , 6S0 3 , 2K 2 S0 4 + 22H 2 0. Sol. when moist in H 2 0. Solution soon decomposes. Insol. in alcohol. (Soubeiran, A. ch. 44. 329.) 3Fe 2 3 , 7S0 3 , 51^804 + 12H 2 0, and +17H 2 0. (Scheerer, Pogg. 87. 81.) 2Fe 2 3 , 5S0 3 , 3^804 + 9H 2 0. (S.) 3Fe 2 3 , 8S0 3 , 4K 2 S0 4 + 20H 2 0, and 24H 2 0. (S.) Ferric potassium sulphate, K 2 S0 4 , 2Fe 2 (S0 4 ) 3 . Insol. in H 2 0, but is gradually decomp. thereby. (Grimm and Ramdohr, A. 98. 127.) K2Fe 2 (S0 4 ) 4 + 24H 2 0. Iron alum. Sol. in 5 pts. H 2 at 12 '5. (Anthon.) 436 SULPHATE, FERROUS POTASSIUM ZINC Aqueous solution is decomp. by heating. Insol. in alcohol. Sp. gr. of aqueous solution. According to G = Gerlach, at 15 (Z. anal. 28. 496); F = Franz, at 17 '5 (J. pr. (2) 5. 288), containing : 5 10 15 % F 1-0268 1-0466 1-0672 G 1-025 1-0507 1-0773 20 25 30 % K 2 Fe 2 (S0 4 ) 4 + 24H 2 0, F 1-0894 1-1136 1-1422 G 1-1050 1-1340 1-1645 35%K 2 Fe 2 (.S0 4 ) 4 + 24H 2 0. G 1-1967. Fe 2 (S0 4 ) 3 , 3K 2 S0 4 . , Insol. in H 2 0, but slowly decomp. thereby. (Etard, C. R. 84. 1089.) Ferrous potassium zinc sulphate, FeS0 4 , 2K 2 S0 4 , ZnS0 4 + 12H 2 0. Sol. in H 2 0. Ferrous rubidium sulphate, FeS0 4 , Rb 2 S0 4 + 6H 2 0. Sol. in H 2 0. (Tutton, Chem. Soc. 63. 337.) Ferrous sodium sulphate, FeS0 4 , Na 2 S0 4 + 4H 2 0. Sol. in H 2 0. (Marignac, Ann. Min. (5) 9. 25.) Ferric sodium sulphate, basic, 4Fe 2 3 , Na 2 0, 5S0 3 + 9H 2 0. Insol. in H 2 ; difficultly sol. in HC1 + Aq. (Scheerer, Pogg. 45. 190.) Fe 2 3 , 2Na 2 0, 4S0 3 + 8H 2 0. Min. Urusite. Insol. in H 2 ; easily sol. in HC1 + Aq. Ferrous thallium sulphate, FeS0 4 , T1 2 S0 4 + 6H 2 0. Easily decomp. by solution in H 2 0. (Willm, A. ch. (4) 5. 56.) Ferric thallium sulphate, Tl 2 Fe 2 (S0 4 ) 4 + 24H 2 0. Not efflorescent. Very easily sol. in H 2 0. Ferrous zinc sulphate, FeS0 4 , ZnS0 4 + 14H 2 0. Sol. in H 9 0. 2FeS0 4 , 2ZnS0 4 , H 2 S0 4 . (Etard, C. R. 87. 602.) Ferric zinc sulphate, Fe 2 (S0 4 ) 3 , ZnS0 4 + 24H 2 0. (Bastick.) Lanthanum sulphate, basic, 2La 2 3 , 3S0 3 + 3H 2 0. Precipitate. (Frericlis and Smith.) Formula is 3La 2 3 , S0 3 + a?H 2 0. (Cleve, B. 11. 910.) Lanthanum sulphate, La 2 (S0 4 ) 3 . Anhydrous. Much less sol. in warm than in cold H 2 0. 1 pt. is sol. in less than 6 pts. H 2 0, if added in small portions thereto at 2-3, and the temperature not allowed to rise to 13 ; but if heated to 30, La 2 (S0 4 ) 3 + 9H 2 separates out until the solution is solid. (Mosander.) + 9H 2 0. Sol. in 42 '5 pts. H 2 0, calculated as anhydrous salt, at 23, and 115 pts. H 2 at 100 (Mosander. ) Less sol. in neutral, and more sol. in aci( solutions than Di 2 (S0 4 ) 3 . (Watts, Chem. Soc 2. 145.) Lanthanum potassium sulphate, La 2 (S0 4 ), Insol. in sat. K 2 S0 4 + Aq SI. sol. in H 2 (Cleve.) La 2 (S0 4 ) 3 , 4K 2 S0 4 . As above. (Cleve.) 2La 2 (S0 4 ) 3 , 9K 2 S0 4 . As above. (Cleve.) Lanthanum sodium sulphate, La 2 (S0 4 ) 3 , Na 2 S0 4 + 2H 2 0. SI. sol. in H 2 0. (Cleve.) Lead sulphate, basic, 2PbO, S0 3 . Not completely insol. in H 2 0. Decomp. b acids, even dil. HC 2 H 3 2 + Aq, with formatio ofPbS0 4 . (Barfoed, 1869.) Min. LanarJcite. 5PbO, 3S0 3 . (Frankland, Proc. Roy. Soi 46. 364.) Pb 3 4 , 2S0 3 . (Frankland.) Lead sulphate, PbS0 4 . Sol. in 22,816 pts. H 2 at 11. A. 59. 125.) Sol. in 31,569 pts. H 2 at 15. C. N. 11. 50.) Sol. in 13,000 pts. H 2 0. (Kremers, Pod 85. 247.) Calculated from electrical conductivity i (Freseniu (Rodwel PbS0 4 + Aq, 1 1. H 2 dissolves 46 mg. PbS< at 18. (Kohlrausch and Rose, Z. phys. 03 12. 241.) Sol. in 36,504 pts. dil. H 2 S0 4 + Aq. (Fr senius.) See also under solubility in alcohol SI. sol. in cone. H 2 S0 4 , from which itl partially pptd. by H 2 or completely 1 alcohol. (Fresenius. ) 100 pts. cone. H 2 S0 4 dissolve 6 pts. PbSO (Schultz, Pogg. 133. 137.) Cone. H 2 S0 4 dissolves 0'005 pt. PbSO (Ure.) More sol. in commercial H 2 S0 4 than in tl more cone. acid. (Hayes.) 100 pts. H 2 S0 4 + Aq of 1 '841 sp. gr. dissoll 0-039 pt. PbS0 4 ; of 1'793 sp. gr. dissoll 0-011 pt. PbS0 4 ; of 1-540 sp. gr. dissolj 0-003 pt. PbS0 4 . Presence of S0 2 does not increase the solf bility ; HN0 3 increases the solubility son| what, i.e., 100 pts. H 2 S0 4 + Aq of 1'841 I gr. with 5 pts. HN0 3 of 1 '352 sp. gr. dissoll 0-044 pt. PbS0 4 ; 100 pts. H 2 S0 4 of 1 749*1 gr. with 5 pts. HN0 3 of 1 '352 sp. gr. dissoll 0-014 pt. PbSQ 4 ; 100 pts. H 2 S0 4 of 1'512 i gr. with 5 pts. HN0 3 of 1'352 sp. gr. dissoh only a trace. Nitrous oxides do not increase the actioji (Kolb, Dingl. 209. 268.) Pptd. from solution in H 2 S0 4 by HO! (Bolley, A. 91. 113.) Sol. in hot cone. HCl + Aq. (Fresenius.) SULPHATE, LITHIUM 437 Solubility of PbS0 4 in HCl + Aq. Sp. gr. of HCl+Aq % HC1 in HCl+Aq Pts. HCl+Aq for 1 pt. PbSO 4 1-0519 10-602 681-89 1-0800 16-310 281-73 1-1070 22-010 105-65 1-1359 27-525 47-30 1-1570 31-602 35-03 (Rod well, Chem. Soc. 15. 59.) Sol. in HN0 3 + Aq, and more sol. in hot or cone, than in cold or dil. HN0 3 + Aq. Sol. in 172 pts. HN0 3 + Aq of 1-144 sp. gr. at 12-5 (Bischof.) Pptd. from HN0 3 solution by dil. H 2 S0 4 + Aq and not by H 2 0. (Bischof, 1827.) Solubility of PbS0 4 in KN"0 3 + Aq. Sp. gr. of HN0 3 +Aq % HNC-3 in HN0 3 +Aq Pts.HNO 3 +Aq for 1 pt. PbSO 4 1-079 11-55 303-10 1-123 17-50 173-75 1-250 34-00 127-48 1-420 60-00 10282-78 (Rodwell, Chem. Soc. 15. 59.) Not more insol. in dil. HC 2 H 3 CX, + Aq than in H 2 0. (Bischof.) Solubility in other acids is prevented by great excess of H 2 S0 4 . ( Wackenroder. ) Sol. in warm NH 4 OH + Aq, separating on cooling. Completely sol. in warm KOH or NaOH + Aq. Decomp. by boiling with K 2 C0 3 , Na 2 C0 3 , and(NH 4 ) 2 C0 3 + Aq. Sol. in NH 4 salts +Aq, but repptd. by H 2 S0 4 + Aq. (Fresenius, A. 59. 125.) The best solvents of the NH 4 salts are the nitrate, citrate, and tartrate ; the two latter should be strongly alkaline with NH 4 OH + Aq. (Wackenroder. ) Sol. in NH 4 Cl + Aq at 12 '5-25. Sol. in 47 pts. NH 4 C 2 H 3 2 + Aq (1-036 sp. gr.), and 969 pts. NH 4 N0 3 + Aq (1-269 sp. gr.) ; from the solution in NH 4 C 2 H 3 2 it is pptd. by H 2 S0 4 or K 2 S0 4 ; from solution in NH 4 N0 3 by K2S0 4 , but not by H 2 S0 4 . (Bischof.) Sol. in (NH 4 ) 2 S0 4 + Aq. (Rose. ) Sol. in acetates of NH 4 , Na, K, Ca, Al, and Mg. (Mercer.) Very easily and abundantly sol. in NH 4 tartrate +Aq. (Wohler, A. 34. 235.) Even when native, easily sol. in NH 4 citrate + Aq. (Smith.) SI. decomp. by NaCl + Aq. (Bley.) 1 1. sat. NaCl + Aq dissolves 0'66 g. PbS0 4 . (Becquerel. ) Sol. in 100 pts. cold cone. NaCl + Aq, and PbCl 2 is deposited after a few hours. (Field.) Sol. in Na 2 S 2 3 + Aq. (Lowe.) Sol. in Fe 2 Cl 6 + Aq. (Fresenius, Z. anal. 19. 419.) 100 pts. H 2 containing a drop of HC 2 H 3 2 and 2-05 pts. NaC 2 H 3 2 dissolve 0'054 pt. PbS0 4 ; containing 8 '2 pts. NaC 2 H 3 2 dissolve 0'900 pt. PbS0 4 ; containing 41 '0 pts. NaC 2 H 3 2 dissolve 11 '200 pts. PbS0 4 . Sol. in Mn(C 2 H 3 2 ) 2 , Zn(C 2 H 3 2 ) , Ni(C 2 H 3 2 ) 2 , and Cu(C 2 H 3 2 ) 2 , but not in Hg(C 2 H 3 2 ) 2 or AgC 2 H 3 2 + Aq. Solubility in KC 2 H 3 2 + Aq is not less than that in NaC 2 H 3 2 + Aq. (Dibbits, Z. anal. 13. 137.) Insol. inPb(C 2 H 3 2 ) 2 + Aq. (Smith.) Sol. in basic lead acetate + Aq, but not in neutral Pb(C 2 H 3 2 ) 2 + Aq. (Stammer, Z. anal. 23. 67.) 12-2 pts. Ca(C 2 H 3 2 ) 2 in very dil. solution dissolve 1 pt. PbS0 4 . (Stadel, Z. anal. 2. 180.) Sol. in A1(C 2 H 3 2 ) 3 + Aq. (Lennsen. ) Insol. in alcohol (18 %) and H 2 S0 4 when NH 4 acetate, K tartrate, or NH 4 succinate are present. Insol. in alcohol (18 %) and H 2 S0 4 or (NH 4 ) 2 S0 4 when Na acetate, Na or NH 4 oxalate are present. Sol. in NH 4 efo'citrate and K ^'citrate in presence of H 2 S0 4 ; in NH 4 succinate and NH 4 acetate in presence of (NH 4 ) 2 S0 4 ; and in NH 4 citrate in presence of H 2 S0 4 or (NH 4 ) 2 S0 4 . (Storer, C. N. 21. 17.) Alcohol (59 %) alone, or with ethylsulphuric acid or sugar, does not dissolve Pb by 3 months action. (Storer.) Min. Anglesite. Sol. in cold citric acid + Aq. (Bolton, C. N. 37. 14.) Lead sulphate, acid, PbS0 4 , H 2 S0 4 + H 2 0. Decomp. by H 2 0. 100 pts. boiling H 2 S0 4 dissolve 6 pts. PbS0 4 . (Schultz, Pogg. 133. 137.) 100 pts. H 2 S0 4 dissolve 0'13pt. PbS0 4 , and 100 pts. fuming H 2 S0 4 dissolve 4 '19 pts. (Struve, Z. anal. 9. 31.) Lead ^rosulphate, PbS 2 7 . Decomp. by H 2 0. (Schultz.) Lead sulphate chloride, PbS0 4 , 2PbCl 2 + H 2 0. Insol. in H 2 or NaCl + Aq. (Becquerel, C. R. 20. 1523.) Lead sulphate fluoride, PbS0 4 , 2PbF 2 . Not decomp. by H 2 S0 4 . (Lonyet, C. R. 24 434.) Lithium sulphate, Li 2 S0 4 . More sol. in cold than in hot H 2 0. 100 pts. H 2 O dissolve 34 '6 pts. Li 2 SO 4 at 18. (Witt- stein.) 100 pts. H 2 dissolve pts. Li 2 S0 4 at t. t Pts. Li 2 SO 4 t Pts. Li 2 S0 4 t Pt3. Li 2 S0 4 35-34 45 32-38 100 29-24 20 34-36 65 30-3 ... (Kremers, Pogg 95 468.) 438 SULPHATE, LITHIUM HYDROGEN Sat. solution boils at 105. (Kremers.) If solubility S = pts. Li 2 S0 4 in 100 pts. solu- tion, S = 18-5 + 0'8421t from -20 to -10 '5; S = 26-5 - 0'0274t from - 10 '5 to 100. (Etard, C. R. 106. 741.) Sp. gr. of Li 2 S0 4 + Aq at 19 '5 containing : 6'5 7'4 12-5 1-05 1'06 1-098 15-3 %Li 2 S0 4 , 1-118 22-6 1-167 24-4 1-178 29-4 % Li 2 S0 4 . 1-208 (Kremers, Pogg. 114. 47.) Sp. gr. of Li 2 S0 4 + Aq at 15 containing 5 % Li 2 S0 4 = 1-0430; 10 % Li 2 S0 4 =l'0877. (Kohl- rausch, W. Ann. 1879. 1.) Insol. in S0 8 . (Weber, B. 17. 2497.) Easily sol. (Kastner), si. sol. (Berzelius) in alcohol. + H 2 0. Very si. efflorescent. (Rammels- berg.) Lithium hydrogen sulphate, LiHS0 4 . Decomp. by H 2 0. Cryst. from H 2 S0 4 . (Gmelin.) LiH 3 (S0 4 ) 2 . Cryst. from H 2 S0 4 . (Schultz, Pogg. 133. 137.) Lithium potassium sulphate, LiKS0 4 . (Rammelsberg.) K 4 Li 2 (S0 4 ) 3 . (Knobloch.) Has the formula K 2 Li 8 (S0 4 ) 5 + 8H 2 0, according to Rammelsberg. Lithium sodium sulphate, JSra 3 Li(S0 4 ) 2 +6H 2 0. Na 4 Li 2 (S0 4 ) 3 + 9H 2 0. Na 2 Li 8 (S0 4 ) 5 + 5H 2 0. Do not exist. (Rammelsberg. (Troost.) Magnesium sulphate, MgS0 4 . Anhydrous. Very slowly sol. in H 2 ; sol. in hot cone. H 2 S0 4 , less in HC1, and HN0 3 + Aq. + H 2 0. Min. Kieserite. Easily sol. in warm, but slowly dissolved by cold H 2 0. + 6H 2 0, and + 7H 2 0. The latter exists in two modifications ; (a) hexagonal, and (b) the ordinary or rhombic salt. MgS0 4 + Aq, which on cooling or keeping in closed vessels has deposited MgS0 4 + 6H 2 0, always contains for 100 pts. H 2 at : 10 20 40-75 42-23 43 '87 pts. MgS0 4 . If only hexagonal MgS0 4 + 7H 2 has been deposited, then the mother liquor contains for 100 pts. H 2 at : 10 20 34'67 38-71 42'84 pts. MgS0 4 . Solutions prepared from rhombic MgS0 4 + 7H 2 contain for 100 pts. H 2 at : 10 20 26-0 30-9 35 -6 pts. MgS0 4 . (Lbwel.) These results may be given in tabular 3 follows : form Temp. A sat. aqueous solution of MgS0 4 +7H 2 O (b) contains for 100 pts. H 2 O Anhydrous MgS0 4 7H 2 (ft) salt 26-0 73-31 10 30-9 93-75 20 35-6 116-54 Temp. A sat. aqueous solution of MgSO 4 +7H 2 O (a) contains for 100 pts. H 2 O Anhydrous MgS0 4 7H 2 (a) salt 34-67 111-74 10 3871 133-67 20 42-84 159-61 Temp. A sat. a MgSO for x Anhy- drous MgS0 4 queous sol t +6H 2 O co 100 pts. H * 6H 2 salt ition of ntains 2 o ^ 7HO salt 40-75 122-22 146-02 10 42-23 129-44 155-53 20 43-87 13772 167-97 It is seen from table that at the same temp, the 6HaO salt is more sol. than the 7H 2 (6) salt, and the latter is more sol. than 7H 2 (a) salt ; that the solubility of the 7H 2 (6) salt increases rapidly from to 20 ; that the 6H 2 salt is not much more sol. at 20 than at ; and at 20 the 7H 2 (6) salt is nearly as sol. as the 6H 2 salt. (Lbwel, A. ch. (3) 43. 405.) 100 pts. H 2 O at t dissolve pts. MgS0 4 . GL=accord- ing to Gay-Lussac (A. ch. (2) 11. 311) ; T=according to Tobler (A. 95. 198). t 10 20 25 30 40 GL 25-8 30-5 35-0 39 : 8 45-2 T t GL T 24-7 37-'l 50 55 60 70 80 90 49-7 55 : 9 60-4 65-1 70-3 52 : 8 100 pts. H 2 O at 105-5 dissolve 135-2 pts. MgS0 4 . (Griffiths.) MgSO 4 +Aq sat. at 17-5 has sp. gr. = 1-2932, and con SO 4 +7H 2 O, or 100 pts tains 55-57 125-06 pts. MgSO 4 +7H 2 O, or 60 pts. (Karsten.) 100 pts. H 2 O at dissolve 53'8 pts., and 125 pts. at ord. temp. (Otto-Graham.) H 2 dissolve 4 , at 17*5*. SULPHATE, MAGNESIUM Sol. in 2 pts. cold, and 0'5 pt. boiling H 2 O. (Four- croy.) The aqueous solution contains for 100 pts. H 2 92*217 pts. MgSO 4 +7H 2 O at 15. (Michel and Krafft.) 1 pt. MgSO 4 +7H 2 O is sol. in 0'933 pt. H 2 O at 15 (Gerlach) ; in 0'92 pt. H 2 O at 23 (Schiff). 100 pts. H 2 O dissolve 28'067 pts. MgSO 4 at 0. (Pfaff, A. 99. 224.) 100 pts. H 2 dissolve pts. MgS0 4 at t. t Pts. MgSO 4 26-37 17-9 33-28 24-1 35-98 (Diacon, J. B. 1866. 62.) 100 pts. MgS0 4 + Aq sat. at 18-20 contain 25-67-26-38 pts. MgS0 4 . (v. Hauer, J. pr. 98. 137.) Solubility in 100 pts. H 2 at t, using MgS0 4 + 7H 2 0. t Pts. MgS0 4 t Pts. MgS0 4 t Pts. MgS0 4 26-9 37 44-2 74 61-4 1 27-4 38 447 75 61-9 2 27-9 39 45-2 76 62-3 3 28-3 40 45-6 77 62-8 4 28-8 41 46-1 78 63-2 5 29-3 42 46-5 79 637 6 297 43 47-0 80 64-2 7 30-2 44 47-5 81 64-6 8 30-6 45 48-0 82 65-1 9 31-1 46 48-4 83 65-6 10 31-5 47 48-9 84 66-0 11 32-0 48 49-3 85 66-5 12 32-4 49 49-8 86 67-0 13 32-9 50 50-3 87 67-5 14 33-4 51 507 88 68-0 15 33-8 52 51-2 89 68-4 16 34-3 53 51-7 90 68-9 17 34-7 54 52-2 91 69-4 18 35-2 55 52-7 92 69-9 19 35-7 56 53-2 93 70'4 20 36-2 57 53-6 94 70-9 21 36-7 58 54-1 95 71-4 22 37-1 59 54-5 96 71-9 23 37-6 60 55-0 97 72-4 24 38-0 61 55-5 98 72-8 25 38-5 62 55-9 99 73-3 26 39-0 63 56-4 100 73-8 27 39-5 64 56-8 101 74-3 28 39'9 65 57-3 102 74-8 29 40-4 66 57-7 103 75-2 30 40-9 67 58-2 104 75-7 31 41-4 68 58-6 105 76-2 32 41-8 69 59-1 106 767 33 42-3 70 59-6 107 77-2 34 42-8 71 60-0 108 777 35 43-3 72 60-5 108-4 77-9 36 437 73 61-0 ... (Mulder, calculated from his own and other observations, Scheik. Verhandel. 1864. 52.) 100 pts. H 2 dissolve 72'4 pts. MgS0 4 + 7H 2 at ; 178 pts. at 40 ; and 212 '6 pts. at 49. (Tilden, Chem. Soc. 45. 409.) If solubility S = pts. anhydrous salt in 100 pts. solution, S = 20'5 + 0-2276t from to 123; S = 48-5-0'4403t from 123 to 190. (Etard, C. R. 106. 741.) Supersat. MgS0 4 + Aq is brought to crystal- lisation by addition of crystal of MgS0 4 + 7H 2 0, or an isomorphous substance as ZnS0 4 + 7H 2 0, NiS0 4 + 7H 2 0, FeS0 4 + 7H 2 0, or CoS0 4 + 7H 2 0. (Thomson, Chem. Soc. 35. 199.) kwith sp. gr. 1-50 contains 44-4 % MgSO 4 ; " ; sp. gr. 1-30, 30 % MgSO 4 . (Dalton.) Sp. gr. of MgS0 4 + Aq sat. at 15 =1 '275 (Michel and Krafft); at 8 = 1'267 (Anthon); at 18 75 =1-293 (Karsten). Sp. gr. of MgS0 4 + Aq at 15. % MgS0 4 Sp. gr. % MgS0 4 Sp. gr. 5 1-054 30 1-326 10 1-108 35 1-384 15 1-161 40 1-446 20 1-215 45 1-511 25 1-269 50 1-580 (Calculated from Anthon by Schiff, A. 107. 303.) Sp. gr. of MgS0 4 + Aq at 23. MgS0 4 +7H 2 Sp.gr. % MgS0 4 +7H 2 Sp. gr. 1 1-0048 28 1-1426 2 1-0096 29 1-1481 3 1-0144 30 1-1536 4 1-0193 31 1-1592 5 1-0242 32 1-1648 6 1-0290 33 1-1704 7 1-0339 34 1-1760 8 1-0387 35 1-1817 9 1-0437 36 1-1875 10 1-0487 37 1-1933 11 1-0537 38 1-1991 12 1-0587 39 1-2049 13 1-0637 40 1-2108 14 1-0688 41 1-2168 15 1-0739 42 1-2228 16 1-0790 43 1-2288 17 1-0842 44 1-2349 18 1-0894 45 1-2410 19 1-0945 46 1-2472 20 1-0997 47 1-2534 21 1-1050 48 1-2596 22 1-1103 49 1-2659 23 1-1156 50 1-2722 24 1-1209 51 1-2786 25 1-1262 52 1-2850 26 1-1316 53 1-2915 27 1-1371 54 1-2980 (Schiff, A. 113. 185.) 440 SULPHATE, MAGNESIUM Sp. gr. of MgS0 4 + Aq at 12. MgS0 4 +7H 2 O Sp. gr. % MgS0 4 +7H 2 Sp. gr. 1 1-0046 21 1-1071 2 1-0096 22 1-1125 3 1-0146 23 1-1179 4 1-0196 24 1-1234 5 1-0246 25 1-1289 6 1-0296 26 1-1344 7 1-0346 27 1-1399 8 1-0396 28 1-1454 9 1-0446 29 1-1510 10 1-0497 30 1-1566 11 1-0548 31 1-1622 12 1-0599 32 1-1679 13 1-0650 33 1-1736 14 1-0702 34 1-1793 15 1-0754 35 1-1850 16 1-0807 36 1-1908 17 1-0859 37 1-1965 18 1-0911 38 1-2023 19 1-0964 39 1-2082 20 1-1018 40 1-2140 (Oudemans, Z. anal. 7. 419.) Sp. gr. of MgS0 4 + Aq at 15. %MgS0 4 Sp.gr. %MgS0 4 Sp.gr. 1 1-01031 14 1-15083 2 1-02062 15 1-16222 3 1-03092 , 16 1-17420 4 1-04123 17 1-18618 5 1-05154 18 1-19816 6 1-06229 19 1-21014 7 1-07304 20 1-22212 8 1-08379 21 1-23465 9 1-09454 22 1-24718 10 1-10529 23 1-25972 11 1-11668 24 1-27225 12 1-12806 25 1-28478 13 1-13945 25-248 1-28802 (Gerlach, Z. anal. 8. 287.) Sp. gr. of MgS0 4 + Aq at 23 '5.- a = no. of J mols. in grms. dissolved in 1000 g. H 2 ; b = sp. gr. if a is MgS0 4 + 7H 2 0, ^ mol. wt. =123 ; c^sp. gr. if a is MgS0 4 , mol. wt. = 60. a b c a b c 1 1-056 1-059 5 1-203 1-260 2 1-103 1-114 6 1-229 3 1-141 1-166 7 1-252 4 1-174 1-214 8 1-273 (Favre and Valson, C. R. 79. 968.) Sp. gr. of MgS0 4 + Aq at 15. %MgS0 4 Sp.gr. %MgS0 4 Sp- gr. 5 10 15 1-0510 1-1052 1-1602 20 25 1 -2200 1-2861 (Kohlrausch, W. Ann. 1879. 1.) Sp. gr. of MgS0 4 + Aq at 0. S = pts. MgS0 4 in 100 pts. solution. s Sp.gr. S Sp. gr. 13-800 117458 9-6218 1-1586 1-1329 1-1072 7-4046 5-0447 2-5907 1-0826 1-0557 1-0284 (Charpy, A. ch. (6) 29. 26.) Sat. MgS0 4 + Aq boils at 105 (Griffiths) ; 108-4 (Mulder). Crust forms at 103 '5 (solution containing 48-4 pts. MgS0 4 to 100 pts. H 2 0) ; highest temp, observed, 105. (Gerlach, Z. anal. 26. 426.) B.-pt. of MgS0 4 + Aq containing pts. MgS0 4 to 100 pts. H 2 0. B.-pt. Pts. MgS0 4 B.-pt. Pts. MgS0 4 B.-pt. Pts. MgS0 4 100-5 8-8 102-5 34-7 104-5 51-3 101-0 16-7 103-0 39-5 105 54-6 101-5 23-5 103-5 43-8 108 75(?) 102-0 29-5 104-0 47-7 (Gerlach Z. anal. 26. 432.) M.-pt. of MgS0 4 + 7H 2 is 70. (Tilden, Chem. Soc. 45. 409.) Completely pptd. from MgS0 4 + Aq by cone. HC 2 H 3 2 + Aq. (Persoz. ) More sol. in HCl + Aq than in H 2 0. (Richter.) In sat. HC1 + Aq anhydrous MgS0 4 is scarcely | sol. ; MgS0 4 + 7H 2 dissolves, but is precipi- tated by a current of HC1 gas. (Hensgen, B. j 10. 259.) Margueritte (C. R. 43. 50) denies the pre- T ] cipitation. Rapidly sol. in sat. CuS0 4 + Aq ; when saturation is reached, a double salt separates out. (Karsten. ) Slowly sol. in sat. ZnS0 4 + Aq without pptn. until saturation, when a double salt separates out. Sol. in sat. NaCl + Aq without pptn. of thel latter. Rapidly sol. in KCl + Aq with separation of? K 2 S0 4 . Somewhat sol. in sat. NH 4 Cl + Aq with! separation of a double sulphate. Easily sol. in sat. KN0 3 + Aq without causJ ing any pptn. Sol. in sat. NaN0 3 + Aq. (Karsten. ) 100 pts. H 2 dissolve 25 '95 pts. MgS0 4 andj 5-21 pts. Na2S0 4 at 0. (Diacon, J. B. 1866. 62.) 100 pts. H 2 dissolve 15 '306 pts. MgS0 4 | and 13-086 pts. Na 2 S0 4 at 0. (Pfaff, A. 99. 224.) 100 pts. sat. MgS0 4 + NiS0 4 + Aq at 18-20| contain 30 '93 pts. of the two salts; 100 pts.j sat. MgS0 4 + ZnS0 4 + Aq at 18-20 contain 35-45 pts.; 100 pts. sat. MgS0 4 + NiS0 4 + ZnS0 4 + Aq at 18-20 contain 35 '62 pts. (v. Hauer, J. pr. 98. 137.) 100 pts. H 2 dissolve 14 '1 pts. MgS0 4 and SULPHATE, MANGANOUS 441 9'8 pts. K 2 S0 4 , if sat. MgS0 4 + Aq is sat. with K5jS0 4 ; 32-4 pts. MgS0 4 and 8 '2 pts. K 2 S0 4 , if sat. K 2 S0 4 + Aq is sat. with MgS0 4 , all at 15. (Mulder, J. B. 1866.) 100 pts. dil. alcohol containing : 10 20 40 % alcohol contain at 15, 39-3 21 "3 1'62 %MgS0 4 + 7H 2 0. (Schiff, A. 118. 365.) At higher temp, the solubility increases proportional to the temp. (Gerardin, A. ch. (4) 5. 145.) 100 pts. absolute methyl alcohol dissolve 1-18 pts. MgS0 4 at 18. (de Bruyn, Z. phys. Ch. 10. 783.) 100 pts. absolute methyl alcohol dissolve 41 pts. MgS0 4 + 7H 2 at 17 ; 100 pts. absolute methyl alcohol dissolve 29 pts. MgS0 4 + 7H 2 at 3-4 ; 100 pts. 93 % methyl alcohol dissolve 97 pts. MgSO + 7H 2 at 17; 100 pts. 50 % methyl alcohol dissolve 4'1 pts. MgS0 4 + 7H 2 at 3-4. (de Bruyn, R. t. c. 11. 112.) 100 pts. absolute ethyl alcohol dissolve 1'3 pts. MgS0 4 + 7H 2 at 3. (de Bruyn. ) Magnesium hydrogen sulphate, MgH 2 (S0 4 ) 2 . Decomp. by H 2 0. Sol. in H 2 S0 4 . MgH 6 (S0 4 ) 4 . Boiling H 2 S0 4 dissolves about 2 % MgS0 4 , from which this compound crystal- lises. (Schultz, Pogg. 133. 137.) Magnesium ^7/rosulphate, MgS 2 7 . Decomp. by H 2 0. Magnesium manganous sulphate, MgS0 4 , 2MnS0 4 + 15H 2 0. Min. Fauserite. Magnesium manganous zinc sulphate, MgS0 4 , MnS0 4 , ZnS0 4 + 21H 2 0. Sol. in H 2 0. (Vohl, A. 99. 124.) Magnesium nickel sulphate, MgS0 4 , 3NiS0 4 + 28H 2 0. Sol. in H 2 0. (Schiff.) Magnesium nickel potassium sulphate, MgS0 4 , NiS0 4 , 2K 2 S0 4 + 12H 2 0. Sol. in H 2 0. (Vohl, A. 94. 57.) Magnesium potassium sulphate, MgK 2 (S0 4 ) 2 + 6H 2 0. 100 pts. H 2 dissolve 22*7 pts. anhydrous salt at 16 '5. (Mulder.) 100 pts. H 2 dissolve at : 10 20 30 35 14-1 19-6 25-0 30-4 33 '2 pts. anhydrous salt, 45 55 60 65 75 40-5 47-0 50-2 53 '0 59 '8 pts. anhydrous salt. (Tobler, A. 95. 193.) Sp. gr. of aqueous solution at 15 contain- ing : 2 4 6 8 % hydrous salt, 1-0129 1-0261 1-0394 1 ! 053 10 12 14 16 % hydrous salt, 1-0668 1-0808 1-095 1-1094 18 20 22 % hydrous salt. 1-124 1-1388 1-1539 (Schiff, A. 113. 183, calculated by Gerlach,' Z. anal. 8. 287.) Min. Picromerite. + 4H 2 0. (van der Heide, B. 26. 414.) Magnesium potassium zinc sulphate, MgS0 4 , 2K 2 S0 4 , ZnS0 4 + 12H 2 0. Sol. in H 2 0. (Vohl, A. 94. 57.) Magnesium potassium sulphate chloride, MgS0 4 , K 2 S0 4 , MgCl 2 +6H 2 0. Min. Kainite. Magnesium rubidium sulphate, MgS0 4 , Rb 2 S0 4 + 6H 2 0. Sol. in H 2 0. (Tutton, Chem. Soc. 63. 337.) Magnesium sodium sulphate, MgS0 4 , Na 2 S0 4 + 4H 2 0. Min. Blodite, Simonyite. Blodite is efflorescent ; Simonyite deli- quescent. + 5H 2 0. Min. Lowite. + 6H 2 0. Decomp. on air. Sol. in 3 pts. cold H 2 0. Magnesium thallous sulphate, MgS0 4 , T1 2 S0 4 + 6H 2 0. Sol. in H 2 0, but decomp. by repeated re- crystallisations. ( Werther. ) Magnesium zinc sulphate, MgS0 4 , ZnS0 4 + 14H 2 0. Sol. in H 2 0. (Pierre, A. ch. (3) 16. 244.) + 10H 2 0. (Pierre.) 3ZnS0 4 , 5MgS0 4 -t56H 2 0. (Schiff.) Magnesium sulphate potassium chloride, MgS0 4 , KC1 + 3H 2 or MgS0 4 , K 2 S0 4 , MgCl 2 + 6H 2 0. Min. Kainite. 100 pts. H 2 dissolve 79 '56 pts. at 18. (Krause, Arch. Pharm. (3) 6. 326.) Not sol. in a mixture of abs. alcohol and ether, which dissolves out MgCl 2 . (Lehmann, J. B. 1867. 416.) Alcohol dissolves out MgCl 2 , also little H 2 0. Much H 2 dissolves completely. (Zincken, Miner. Jahrb. 1865. 310.) Magnesium sulphate potassium chromate, 2MgS0 4 , K 2 Cr0 4 + 9H 2 0. Sol. in H 2 0. (Etard, C. R. 85. 443.) Manganous sulphate, basic, 3MnO, 2S0 3 + 3H 2 0. Insol. in H 2 0, but slowly decomp. thereby. (Gorgeu, C. R. 94. 1425.) Manganous sulphate, MnS0 4 . Anhydrous. Absorbs H 2 O from the air to form MnS0 4 +4H 2 O. 1 pt. MnSO 4 is sol. in pts. H 2 O at t. t Pts. H 2 O t 18-75 37-5 Pts. H 2 t' Pts. H 2 6-25 10 1-77 1-631 1-667 1-457 75 101-25 1-494 2-031 442 SULPHATE, MANGANOUS Or 100 pts. H 2 O dissolve pts. MnSO 4 at t. t Pts. MnSO 4 t Pts. MnS0 4 t Pts. MnS0 4 6-25 10 56-49 61-29 18-75 37-5 60-00 68-63 75 101-25 [66-95 49-33 (Brandes, Pogg. 20. 575.) Sol. in 2-5 pts. H 2 O at 18-75 ; at 62-5 it is difficult to dissolve 1 pt. MnSO 4 in 3 pts. H 2 O, but the sat. solu- tion at 62-5 does not become cloudy on heating to 100. (Jahn.) 100 pts. MnS0 4 + Aq sat. at 11-14 contain 37-5 pts. MnS0 4 . (v. Hauer, J. pr. 103. 114.) Solubility in H 2 increases from 0-55, and decreases from 55-145. The increasing solu- bility is that of MnS0 4 + 5H 2 0, and MnS0 4 + 2H 2 separates out at 35, and is completely insol. at 145. (Etard.) If solubility S = pts. anhydrous MnS0 4 in 100 pts. solution, S = 30'0 + 0'2828t from -8 to 57 ; S = 48'0 - 0'4585t from 57 to 150. Practically insol. in H 2 at 180. (Etard, C. R. 106. 208.) Solubility varies according to the hydrate used. Above results of ^tard show the solu- bility of MnS0 4 + 7H 2 at 0, and MnS0 4 + 3H 2 at 57. Anhydrous MnS0 4 is stable only above 117. (Linebarger.) 100 pts. H 2 dissolve pts. anhydrous MnS0 4 at t. f Pts. MnSO 4 t Pts. MnSO 4 t Pts. MnSO 4 120 67-18 141 41-18 155 26-49 132 63-16 146 38-83 170 16-15 (Linebarger, Am. Ch. J. 15. 225.) + H 2 0. Stable only between 57 and 117. 100 pts. H 2 dissolve pts. MnS0 4 from MnS0 4 + H 2 at t. t Pts. MnSO 4 t Pts. MnS0 4 t Pts. MnS0 4 48 87-98 78 79-13 115 69-78 53 86-10 90 75-63 117 68-81 65 84-33 100 71-27 72 82-73 106 70-14 ... (Linebarger.) Min. Szmikite. + 2H 2 0. Stable between 40 and 57. 100 pts. H 2 dissolve pts. MnS0 4 from MnS0 4 + 2H 2 Oatt. t Pts. MnSO 4 t Pts. MnS0 4 V Pts. MnS0 4 35 68-88 42 77-63 50 83-16 40 75-31 45 80-07 55 86-27 (Linebarger.) + 3H 2 0. Stable between 30 and 40. 100 pts. H 2 dissolve pts. MnS0 4 from MnS0 4 + 3H 2 Oatt. t Pts. MnSO 4 t" Pts. MnSO 4 t Pts. MnSO 4 5 54-68 25 66-85 48 71-89 12 60-56 30 67-38 53 72-81 16 63-41 35 68-31 57 73-17 19 65-12 40 70-63 (Linebarger.) + 4H 2 0. SI. efflorescent. Less sol. in boil- ing than in cold H 2 0. 100 pts. H 2 at 4-4 dissolve 31 pts. MnS0 4 + 4H 2 0. (Jahn.) 100 pts. H 2 O at t dissolve pts. MnSO 4 +4H 2 O. t Pts. MnSO 4 + 4H 2 t Pts. MnS0 4 + 4H 2 O 6-25 10 18-75 113-22 123 122 37-5 75 101-25 149 144 93 (Brandes, Pogg. 20. 575.) Solubility of MnS0 4 in 100 pts. H 2 at t, using MnS0 4 + 4H 2 0. t Pts. MnSO 4 t Pts. MnS0 4 t Pts. MnS0 4 55-4 35 71-9 70 61-5 1 55-9 36 72-2 71 61-5 2 56-5 37 72-4 72 61-5 3 57-1 38 72-7 73 61-5 4 577 39 72-9 74 61-5 5 58-2 40 73-1 75 61-5 6 58-8 41 73-3 76 61-5 7 59-4 42 73-5 77 61-5 8 60-0 43 737 78 61-5 9 60-5 44 73-9 79 61-5 10 61'1 45 74-0 80 61-5 11 61-7 46 74-2 81 61-5 12 62-2 47 74-4 82 61-5 13 62-7 48 74-6 83 61-5 14 63-3 49 74-7 84 61-4 15 63-8 50 74-8 85 61-3 16 64-3 51 74-9 86 61-2 17 64-8 52 75-1 87 61-0 18 65-3 53 75-2 88 60-8 19 65-8 54 75-3 89 60-6 20 66-3 55 747 90 60-3 21 667 56 74-0 91 60-0 22 67-2 57 72-9 92 59-6 23 67-6 58 71-5 93 59-2 24 68-1 59 69-5 94 58-6 25 68-5 60 65-9 95 57-9 26 68-9 96 57-2 27 69-3 63-5 61-3 97 56-3 28 697 64 61-5 98 55-4 29 70-0 65 61-5 99 54-3 30 70-4 66 61-5 100 52-9 31 70-7 67 61-5 101 51-2 32 71-0 68 61-5 102 49-3 33 71-3 69 61-5 102-5 47-4 34 71-6 (Mulder, Scheik. Verhandel. 1864. 137,) SULPHATE, MANGANOUS 443 Stable between 18 and 30 ' 100 pts. H 2 dissolve pts. MnS0 4 from MnS0 4 + 4H 2 Oatt. t Pts. MnSO 4 t Pts. MnSO 4 t Pts. MnSO 4 2'2 7-3 11 15 20 57-88 61-78 64-01 67-12 69-93 25 30 35-5 40 45 72-23 74-67 78-81 79-63 83-06 48 52 56 84-33 86-16 88-19 (Linebarger. ) + 5H 2 0. Sol. in 1 pt. H 2 at 18'75. Jahn, A. 28. 110.) Stable from 8 to 18. 100 pts. H 2 dissolve pts. MnS0 4 from MnS0 4 + 5H 2 at t. t Pts. MnS0 4 t Pts. MnSO 4 t Pt=? MnSO 4 2-5 4 7 10 15 58-05 62-41 64-22 66-83 68-05 72-33 20 25 30 32 34 37 75-16 78-63 79-16 80-38 82-04 83-91 40 42 45 477 53 54 84-63 85-27 86-16 86-95 88-89 89-08 (Linebarger.) + 6H 2 0. Stable from - 5 to + 8. 100 pts. H 2 dissolve pts. MnS0 4 from MnS0 4 + 6H 2 Oatt. t Pts. MnS0 4 t Pts. MnS0 4 t Pts. MnS0 4 -4 3 5 55-87 64-21 66-87 67-49 9 15 20 25 70-88 72-45 74-35 75-38 30 34 35 38 76-24 77-02 77-23 78-41 (Linebarger. ) + 7H 2 0. Efflorescent. Sol. in less than 0'5 pt. H 2 at 18 75. Jahn.) Stable between - 10 and - 5. 100 pts. H 2 dissolve pts. MnS0 4 from MnS0 4 + 7H 2 Oatt. t Pts. MnS0 4 t Pts. MnSO 4 t Pts. MnS0 4 -10 -8 50-11 50-93 51-53 5 7 53-61 54-83 56-62 10 15 59-91 64-34 (Linebarger. M.-pt. of MnS0 4 + 7H 2 is 54. (Tilden, Chem. Soc. 45. 409.) Sp. gr. of MnS0 4 + Aq at 15. % MnS0 4 +4H 2 O Sp.gr. % MnS0 4 +4H 2 O Sp. gr. 1 1-006 29 1-208 2 1-013 30 1-2150 3 1-020 31 1-224 4 1-025 32 ' 1-231 5 1-0320 33 1-244 6 1-038 34 1-250 7 1-044 35 1-2579 8 1-050 36 1-268 9 1-056 37 1-276 10 1-0650 38 1-285 11 1-072 39 1-295 12 1-079 40 1-3038 13 1-085 41 1-313 14 1-093 42 1-322 15 1-1001 43 1-331 16 1-106 44 1-340 17 1-114 45 1-3495 18 1-121 46 1-360 19 1-129 47 1-370 20 1-1363 48 1-380 21 1-144 49 1-389 22 1-150 50 1-3986 23 1-160 51 1-410 24 1-166 52 1-420 25 1-1751 53 1-430 26 1-183 54 1-440 27 1-190 55 1-4514 28 1-200 (Gerlach, Z. anal. 8. 288.) Sp. gr. of MnS0 4 + Aq at 23. a = no. of mols. in grms. dissolved in 1000 g. H 2 ; b = sp. gr. if a is MnS0 4 + 5H 2 0, mol. wt. = 120-5; c = sp. gr. if a is MnS0 4 , | mol. wt. = 75'5. a b c a b c 1 1-068 1-071 6 1-306 1-376 2 1-128 1-139 7 1-341 1-429 3 1-181 1-202 8 1-371 4 1-227 1-262 9 1-399 5 1-269 1-320 10 1-426 (Favre and Valson, C. R. 79. 968.) Above table recalculated by Gerlach (Z. anal. 28. 475.) % MnS0 4 +5H 2 Sp. gr. % MnS0 4 +5H 2 O Sp.gr. 10 20 30 1-0630 1-1325 1-2070 40 50 1-2900 1-3800 444 SULPHATE, MANGANOMANGANIC Sp. gr. of MnS0 4 + Aq at 15. a = % ; b = sp. gr. if a is MnS0 4 ; c = sp. gr. if a is MnS0 4 + 4H 2 ; d = sp. gr. if a is MnS0 4 + 5H 2 ; e = sp. gr. if a is MnS0 4 + 7H 2 0. a b c d e 5 1-0500 1-0340 1-0310 1-0270 10 1-1035 1-0690 1-0630 1-0545 15 1-1605 1-1055 1-0965 1-0830 20 1-2215 1-1435 1-1315 1-1130 25 1-2870 1-1835 1-1685 1-1440 30 1-3575 1-2255 1-2070 1-1765 35 ... 1-2695 1-2470 1-2105 40 1-3155 1-2885 1-2455 45 ... 1-3640 1-3315 1-2815 50 1-3760 1-3185 55 ... 1-3565 (Gerlach, Z. anal. 28. 475.) Sp. gr. of MnS0 4 + Aq at 0. S = pts. MnS0 4 in 100 pts. solution. s Sp. gr. S Sp. gr. 167450 14-0462 11-5804 1-1834 1-1519 1-1239 8-8295 6-0172 3-0865 1-0928 1-0622 1-0315 (Charpy, A. ch. (6) 29. 26.) Sat. MnS0 4 + Aq boils at 102 '4 ; crust forms at 101 "6, and solution contains 48'7 pts. MnS0 4 to 100 pts. H 2 0. B.-pt. of MnS0 4 + Aq containing pts. MnS0 4 to 100 pts. H 2 0. B.-pt. Pts. MnS0 4 B.-pt. Pts. MnS0 4 100-5 17-1 102-0 58-9 101-0 32-1 102-4 68-4 101-5 46-2 (Gerlach, Z. anal. 26. 434.) Sol. in about 20 pts. boiling H 2 S0 4 , and more sol. in boiling H 2 S0 4 + Aq of 1'6 sp. gr. (Schultz, Pogg. 133. 137.) MnS0 4 + Aq sat. at 10, then sat. with K 2 S0 4 at same temp, contains for 100 pts. H 2 16'7 pts. MnS0 4 and 44 '3 pts. K 2 S0 4 . (Mulder.) Completely pptd. from solution by HC 2 H 3 2 . (Persoz.) Anhydrous MnS0 4 is insol. in absolute alcohol. 1000 pts. alcohol of 0'872 sp. gr. dissolve 6'3 pts. MnS0 4 . Insol. in absolute ether or boiling oil of turpentine. Sol. in 50 pts. of 50 % alcohol. Insol. in absolute alcohol. (Brandes, Pogg. 20. 556.) 100 pts. solution saturated at 15 in oil. alcohol containing : 10 50 60 % alcohol, contain 56-25 51-4 2-0 0'66 pts. MnS0 4 + 5H 2 0. (Schiff, A. 118. 365.) Insol. in absolute ether between 5 and 7, and no crystal H 2 is removed thereby. Insol. in boiling oil of turpentine, but 1 mol. crystal H 2 is removed from MnS0 4 + 4H 2 0. (Brandes Pogg. 20. 568.) When MnS0 4 + 7H 2 is boiled with absolute alcohol none is dissolved, but MnS0 4 + 3H 2 is formed. When MnS0 4 + 7H 2 is dissolved in 15-50 % alcohol, the liquid separates into two layers, the lower containing less (12-14 %) alcohol and more (47-49 %) salt ; the upper containing more (50-55%) alcohol and less (l'3-2'2 %) salt. If the alcohol has the above strength (15-50 %) the separation takes place at ordinary temp. , but with 13-14 % or 60 % or more alcohol, warming is necessary to effect the separation. (Schiff, A. 118. 363.) MnS0 4 + 7H 2 occurs as the min. Mallar- dite. Manganfcmanganic sulphate, MnO, Mn0 2 , 4S0 3 + 9H 2 0. Deliquescent. Decomp. by H 2 0. Sol. in little dil. H 2 S0 4 + Aq. (Fremy, C. R. 82. 475.) Manganous hydrogen sulphate. MnS0 4 is sol. in 20 pts. boiling cone. H 2 S0 4 ; more sol. in boiling H 9 SO. + Aq of 1"6 sp. SY (Schultz.) MnH 2 (S0 4 ) 2 , and + H 2 0. Sol. in H 2 with decomp. (Schultz.) MnH 6 (S0 4 ) 4 . Sol. in H 2 with decomp. (Schultz.) Manganic sulphate, Mn 2 (S0 4 ) 3 . Extremely deliquescent. Sol. in H 2 with evolution of heat, and decomposition into a basic sulphate. Behaves similarly with dilute acids. Sol. in traces in cold cone. H 2 S0 4 . Insol. in cold cone. HN0 3 + Aq. Sol. in cone. HCl + Aq. Decomp. by absolute alcohol. (Carius, A. 98. 53.) Manganic hydrogen sulphate, Mn 2 H 2 (S0 4 ) 4 + 8H 2 0. Deliquescent. Decomp. by H 2 0. Sol. in dil. H 2 S0 4 + Aq. (Francke, J. pr. (2) 36. 251.) Manganous nickel potassium sulphate, MnS0 4 , MS0 4 , 2K 2 S0 4 + 12H 2 0. Sol. in H 2 0. (Vohl, A. 94. 57.) Manganous potassium sulphate, KJSCL, MnS0 4 + 2H 2 0. + 4H 2 0. Efflorescent. (Pierre, A. ch. (3) 16. 239.) Manganic potassium sulphate, K 2 Mn 2 (S0 4 ) 4 + 24H 2 0. Decomp. by dissolving in H 2 0. (Mitscher- lich.) Manganomanganic potassium sulphate, Mn 5 (S0 4 ) 3 , 5K 2 S0 4 = 3Mn(S0 4 ) 2 , 2MnS0 4 , 5K 2 S0 4 . Decomp. by much H 2 0. Sol. in dil. or cone. H 2 S0 4 . Insol. in alcohol or ether. (Francke, J. pr. (2) 36. 166.) SULPHATE, NICKEL 44 Manganous potassium zinc sulphate, MnS0 4 , 2K 2 S0 4 , ZnS0 4 +12H 2 0. Sol. inH 2 0. (Vohl.) Manganous rubidium sulphate, MnS0 4 , Rb 2 S0 4 + 6H 2 0. Sol. in H 2 0. (Tutton, Chem. Soc. 63. 337.) Manganous sodium sulphate, MnS0 4 , Na 2 S0 4 . + 2H 2 0. Deliquescent in moist air. (Geiger.) + 4H 2 0. Sol. in 1'2 pts. boiling H 2 0. (Geiger.) Manganous sulphate ammonia, MnS0 4 , 4NH 3 . Decomp. by H 2 0. (Rose, Pogg. 20. 148.) Mercurous sulphate, Hg 2 S0 4 . Sol. in 500 pts. cold, and 300 pts. hot H 2 0. Easily sol. in dil. HN0 3 + Aq, from which solution it is separated by dil. H 2 S0 4 + Aq. (Wackenroder, A. 41. 319.) Abundantly sol. in hot, less sol. in cold dil. 'artially decomp. by hot NH 4 salts + Aq. H 2 S0 4 + Aq. (Berzelius.) Partially decomp. by 1 (Miahle, A. ch. (3) 5. 179.. Mercuric sulphate, basic, 3HgO, S0 3 . (Mineral turpeth}. Sol. in 2000 pts. cold, and 600 pts. boiling H 2 O. (Fourcroy, A. ch. 10. 307.) Sol. in 43,478 pts. H 2 at 16 when pptd. cold, and in 32,258 pts. at 16 when pptd. at 100. (Cameron, Z. anal. 19. 144.) SI. sol. in warm dil. H 2 S0 4 + Aq. (Rose.) Sol. in warm cone. HC1 or HBr + Aq. (Ditte. ) Sol. in alkali chlorides + Aq. (Miahle. ) 4HgO, 3S0 3 . (Hopkins, Sill. Am. J. 18. 364.) 4HgO, S0 3 . (Athanasesco, 0. R. 103. 271.) Mercuric sulphate, HgS0 4 . Decomp. by H 2 into 3HgO, S0 3 , and a sol. acid salt. Sol. in dil. H 2 S0 4 + Aq. Decomp. by all acids. (Berzelius. ) Sol. in warm cone. HC1 or HBr + Aq ; very si. sol. in boiling cone. HI + Aq. (Ditte, A. ch. (5) 17. 124.) Sol. with decomp. in NaCl + Aq. (Miahle.) Insol. in cone, alcohol. + H 2 0. Decomp. by H 2 0. (Eisfeldt, Pharm. Centr. 1853. 812.) Mercuric sulphate, acid, HgH 2 (S0 4 ) 2 . (Braham, C. N. 42. 163.) Mercuromercuric sulphate, Hg 2 0, 2HgO, S0 3 . Insol. in cold H 2 ; not decomp. by boiling H 2 0. Decomp. by HCl + Aq. (Brooke, Pogg. 66. 63.) Mercuric potassium sulphate, 3HgS0 4 , K 2 S0 4 + 2H 2 0. Sol. in H 2 0. (Hirzel, J. B. 1850. 332.) Mercuric sulphate chloride ammonium chloride, 2HgS0 4 , HgCl 2 , 2NH 4 C1. Decomp. with H 2 0. Ether dissolves out HgCl 2 . (Kosmann, A. ch. (3) 27. 238.) Mercuric sulphate hydrobromide, HgS0 4 2HBr. Sol. in H 2 without separation of basic sul phate. (Ditte, A. ch. (5) 17. 122.) 3HgO, S0 3 , 6HBr. Sol. in H 2 0. (Ditte.) Mercuric sulphate hydrochloride, HgSCX, 2HC1. Sol. in H 2 without separation of a basi salt. Very sol. in warm H 2 S0 4 , solidifying o: cooling if very cone., or crystallising if dil (Ditte.) 3HgO, S0 3 , 6HC1. Sol. in H 2 0. (Ditte.) Mercuric sulphate iodide, HgS0 4 , HgI 2 . Decomp. by H 2 0, not by alcohol or ethei (Riegel, J. B. pr. Pharm. 11. 396.) Mercuric sulphate phosphide. See Dimercuriphosphonium mercuric su phate. Mercuric sulphate sulphide, 2HgS0 4 , HgS. SI. sol. in hot HC1, H 2 S0 4 , or HN0 3 + A< Easily sol. in hot aqua regia. (Jacobso: Pogg. 68. 410.) 2HgS0 4 , HgS. (Palm, C. C. 1863. 122.) HgS0 4 , 2HgS. (Barfoed, J. B. 1864. 282. HgS0 4 , 3HgS. Insol. in H 2 0. Easily sc in aqua regia ; decomp. by HN0 3 into 3HgS0 4 , HgS. Insol. in all acids exce aqua regia. (Spring, A. 199. 116.) Molybdenum sesgiasulphate (?). Basic. Insol. in H 2 0. Neutral. Decomp. by H 2 into acid a] basic salts. Acid. Sol. in H 2 0. (Berzelius.) Molybdenum ^'sulphate (?). Sol. in H 2 0. Molybdic sulphate, Mo0 3 , S0 3 . Deliquescent. Sol. in H 2 0. (Schultz-S lack, B. 4. 14.) Mo0 3 , 3S0 3 + 2H 2 0. Deliquescent. Pi tially sol. in H 2 0. (Anderson, Berz. J. B. $ 161.) Does not exist. (Schultz-Sellack. ) Nickel sulphate, basic. Very si. sol. in H 2 0. (Berzelius.) 6MO, 5S0 3 + 4H 2 0. (Athanasesco, C. 103. 271.) 7NiO, 7H 2 0, S0 3 + 3H 2 0. Nearly insol. H 2 0. (Habermann, M. 5. 432.) Nickel sulphate, NiS0 4 , and +H 2 0, 2H 2 6H 2 0, and 7H 2 0. 100 pts. H 2 O dissolve pts. NiS0 4 at t : 2 16 20 23 31 30-4 37-4 39-7 41 45'3 pts. NiSO 4 , 41 50 53 60 70 49-1 52 54-4 57'2 61'9 pte. NiS0 4 . (Tobler, A. 95. 193.) 100 pts. of sat. solution contain : at 11-14, 28'84 ; 18-20, 30-77 pts. anhydrous salt. (v. Hauer, W. A. 53, 2. 221.) i. ...;; 34 . ---- ;; '. ':. ' 42-0 43D 44-0 (57 101 102 :v 105 106 107 -/. : -/. 7 81*3 -.: :, -:* ' -,: : -7 84-3 M P completely from +ZnSO 4 + Aq at 18-20 ltB, (r. Haner.) in aloAol and ether. 100 jptauahaohrte methyl alcohol dissolre 0-5 pt. HiSO 4 at IT. (de Rnyn, Z. phys. Ch. ML 783.) 100 pta. absolute methyl alcohol diasolre 46 pto. KiSO 4 -8'7H a P at ir; 100 pts. absolute methyl alcohol diasolre 24*7 pts. NiSO 4 +7H 2 at 4*; 100 pte. 93-5% methyl akohol dissolve lO'l pte. KiSO 4 -l-7^) at 4 a ; 100 pts. 50 % methyl alcohol dissolve 2 pts. NiSO^TH^O 100 pts. absolute ethyl alcohol dissolve 1-3 pto. ^1804+72^0 at 4*. 100 pts. absolute methyl alcohol dissolve 31 '6 pts. RiSO 4 + ffHJO at ir ; 100 pts. 93'5 % methjl alcohol dissolve 7 '8 pts. KiSO. + dH-O at IT ; 100 pts. &0 % methyl alcohol dissolve I'd pts. KiSO 4 -t-6HjO at 18. (de Bruyn, Z. phyt. Ch. 10. 786.) Very sL sol. in acetone. (Krug and M 'Elroy. ) potassium sulphate, NiSO* fwm hi M'10(f. , <*, 46, 40d.) x, ^ In 1000 g, rf/j. 421 -6 1124 1 '34 & 1 '153 1 '224 1 '26*2 1 '358 1 20, 4S,) 8r*I. in %-6 pta. HgO. 100 pts. H^O dissolve at : 0* 10* 14* 20 30* 5-3 8'fii 10-5 13'8 18-6 pts. anhydrous salt, 30* 49* 55* 60* 75 20'4 27 '7 32'4 35 '4 45 '6 pte. anhydrous salt. (Tobler, A. 95. 193.) Saturated solution contains at : 20* 40* 60* 80* 87 12'3 17'6 22-0 % anhydrous salt. (v. Hauer, J. pr. 74. 433.) Micktl potassium zinc sulphate, NiS0 4 , 2K,^0 4 , /nSO 4 + 12H^O. Sf>l. in H^O. (Vohl, A. 94, 61.) Nickel rubidium sulphate, NiS0 4 , Kb0t+ eH^O. 8ol in H a O. (Tutton, Chera. 8oc. 63. 337.) Wckel thallium sulphate, NiSO^ Kaailv sol. in H,0. Can be recryst. from little H0 without dccomp. (Werthcr, J. pr. 92. 132.f SoLinHJOi (BeraaBm.) - r. : : -.^ --- - >: Sal tar: b m fiyPQ., BOL dl VMfiK.) ::>; ;:-.,. ,V: ; : : . -;-r. c ; V.: >. - Sec. (2) **. 15*.") :vi-; :>.>: : : >.x : 448 SULPHATE, POTASSIUM If solubility S-pts. anhydrous salt in 100 pts. of solution, S = 7'5 + 0'1070t from to 163. Solubility from 163 to 220 is constant at 25. (Etard, C. R. 106. 208.) Solubility of K 2 S0 4 in 100 pts. H 2 at high temp. t Pts. K 2 S0 4 t Pts. K 2 S0 4 t Pts. K 2 S0 4 16 976 39 14-21 120 26-5 20 10-30 54 17-39 143 28-8 28 12-59 98 23-91 170 32-9 36 13-28 ... (Tilden and Shenstone, Phil. Trans. 1884. 23.) Solubility of K 2 S0 4 in H 2 0. 100 pts. H 2 dissolve at : 4-3 18-4 69-9 8-16 10-8 19-7 pts. K 2 S0 4 . (Andreae, J. pr. (2) 29. 456.) 100 com. H 2 dissolve 12 -04 g. KjSC^at 25. (Trevor, Z. phys. Ch. 7. 468.) Solubility of K 2 S0 4 in H 2 at various pressures. Figures denote pts. K 2 S0 4 contained in 100 pts. sat. K 2 S0 4 -l-Aq at t and A pressure in atmospheres. A 15 15-5 16-2 1 6-81 9-14 9-24 9-35 20 7-14 9-44 9-54 30 7-14 (Holier, Pogg. 117. 386.) Sp. gr. of K 2 SO 4 at 19'5. % K 2 S0 4 Sp. gr. % K 2 S0 4 Sp. gr. 2-401 4-744 6-968 1-0193 1-0385 1-0568 9-264 10-945 1-0763 1-0909 (Kremers, Pogg. 95. 120.) Sp. gr. and b.-pt. of K 2 S0 4 +Aq at 12-5. 20 So cTW cJtfl 32 ^ Sp. gr. B.-pt. 1 Sp. gr. B.-pt. 1 2 3 4 1-0079 1-0151 1-0231 1-0305 100-38 100-63 100-75 100-88 6 7 8 9 1-0456 1-0524 1-0599 1-0676 101-12 101-25 101-25 101-38 5 1-0391 101 10 1-0735 101-5 (Brandes and Gruner, 1827.) 8 has 1-072 sp. gr. K 2 S0 4 + Aq sat. at (Anthon, A. 24. 211.) K 2 S0 4 + Aq saturated at 12 contains 10 '3 8 % K 2 S0 4 and has sp. gr. 1-0716 (Struve, Zeit. Ch. (2) 5. 323) ; saturated at 15 contains 11 '01 % K 2 S0 4 and has sp. gr. 1-0831 (Gerlach); saturated at 18 '75 contains 10 '74 % K 2 S0 4 and has sp. gr. 1'0798 (Karsten). Sp. gr. of K 2 S0 4 + Aq at 15. ^8, Sp. gr. o ON00 Sp. gr. *& Sp. gr. W M M 1 1-0082 5 1-0410 8 1-0664 .2 1-0163 6 1-0495 9 1-0750 3 1-0245 7 1-0579 9-92 1-0830 4 1-0328 ... (Gerlach, Z. anal. 8. 287.) Sp. gr. of K 2 S0 4 + Aq at 18. (Kohlrausch, W. Ann. 1879. 1.) Sp. gr. of K 2 S0 4 + Aq at 15/15. a = pts. K 2 S0 4 in 100 pts. of the solution ; b = pts. " "~ in 100 pts. H 2 0. a b Sp.gr. 1 1-010 1-00808 3 3-093 1-02447 5 5-263 1-04091 7 7-527 1-05776 9 9-890 1-07499 9-92 11-013 1-08305 (Gerlach, Z. anal. 28. 493.) Sp. gr. of K 2 S0 4 + Aq at 20 containing 0'5 mol. K 2 S0 4 to 100 mols. H 2 0= 1-03758; con- taining 1 mol. K 2 S0 4 to 100 mols. H 2 = 1-06744. (Nicol, Phil. Mag. (5) 16. 122.) Sat. K 2 S0 4 + Aq boils at 101 '5, and contains 26-33 pts. K 2 S0 4 to 100 pts. H 2 (Gay-Lussac) ; at 101-7, and contains 21 '2 pts. K 2 S0 4 to 100 pts. H 2 (Griffiths) ; at 102 '25, and contains 26-75 pts. K 2 S0 4 to 100 pts. H 2 (Mulder); boils at 103 (Kremers). Crust forms at 101 '7, and solution contains 25-3 pts. K2S0 4 to 100 pts. H 2 ; highest temp, observed, 102 "1. (Gerlach, Z. anal. 26. 426.) B.-pt. o + Aq containing pts. K 2 S0 4 to 100 pts. H 2 0. B.-pt. Pts. K 2 S0 4 B.-pt. Pts. K 2 S0 4 100-5 7 102 30-0 101-0 14-5 102-1 31-6 101-5 22-1 ... (Gerlach, Z. anal. 26. 430.) Sol. in cone, acids ; not pptd. by glacial HC 2 H 3 2 . Insol. in KOH + Aq of 1'35 sp. gr. (Liebig, A. 11. 262.) Pptd. from (Sullivan.) Difficultly sol. in 20 (Stromeyer. ) by NH 4 OH + Aq. SULPHATE, POTASSIUM TERBIUM 449 Solubility of K 2 S0 4 in NH 4 OH + Aq. Wt. NH 3 in 100 ccm. H 2 O Wt. K 2 SO 4 in 100 ccm. H 2 O g. 6-08 g. 15-37 g. 24'69g. 31'02g. 10-804 g. 4-100 g. 0-828 g. 0'140 g. 0-042 g. (Girard, Bull. Soc. (2) 43. 522. ) More sol. in aqueous solutions of other salts, as Na 2 S0 4 , MgS0 4 , CuS0 4 , etc., than in pure H 2 0. (Pfaff, A. 99. 227.) Sol. in sat. Na 2 S0 4 + Aq, MgS0 4 + Aq, NaCl + Aq. 0&eMgS0 4 andNaCl.) SI. sol. in sat. ZnS0 4 or CuS0 4 + Aq with separation of double salt. SI. sol. in sat. KCl + Aq without pptn. (See KCL) Sol. in sat. NH 4 Cl + Aq without pptn. (See NH 4 C1.) SI. sol. in sat. KN0 3 + Aq without causing pptn. (See KN0 3 .) Sol. in sat. NaN0 3 + Aq without causing pptn. at first, but soon KN0 3 is pptd. (Kar- sten.) (SeeNaN0 3 .) Sol. in' (NH 4 ) 2 S0 4 + Aq with pptn. of (NH 4 ) 2 S0 4 . (RiidorfF, B. 6. 485.) 100 pts. H 2 dissolve 8'5 + 0'12t pts. K 2 S0 4 . On addition of a K salt, K2S0 4 is pptd. The amount of K 2 S0 4 remaining in solution plus the ami. of K in the salt added is a constant. (Blarez, C. R. 112. 939.) Insol. in absolute alcohol. Insol. in alcohol, the sp. gr. of which is 0-905. (Anthon.) Solubility in dil. alcohol increases with the temp. 100 pts. alcohol of 0'939 sp. gr. (53 % by vol., 45 % by weight) dissolve at : 4 8 60 0-16 0-21 0-92 pts. (Gerardin, A. ch. (4) 5. 147.) 100 pts. of the sat. solution at 15 in alcohol of: 10 20 30 40 % by weight, contain 3 -9 1'46 0'56 0'21 pts. K 2 S0 4 . (Schiff, A. 118. 362.) Sol. in 76 pts. glycerine of 1'225 sp. gr. at ordinary temp. (Vogel, N. Repert. 16. 557.) Insol. in acetone. (Krug and M'Elroy.) Min. Glaserite. + |H 2 0. 100 pts. H 2 dissolve 9 '82 pts. (Ogier, C. R. 82. 1055.) rn'potassium hydrogen sulphate, K 3 H(S0 4 ) 2 . Sol. in H 2 0. Potassium hydrogen sulphate, KHS0 4 . 1-07 pts. KHS0 4 ( = 1 pt. K 2 S 2 7 ) dissolve : At in 2-95 pts. H 2 0. 20 2-08 40 1-59 ,, 100 ,, 0-88 ,, (Kremers, Pogg. 92. 497.) Sat. solution boils at 105 '5 (Griffiths) ; 108 (Kremers). j Alcohol dissolves out H 2 S0 4 . K 2 S0 4 crystallises from dilute solutions. Sp. gr. of KHS0 4 + Aq at 15 containing : 5 10 15 % KHS0 4 , 1-0354 1-0726 1-1116 20 25 27 % KHS0 4 . 1-1516 1-1920 1-2110 (Kohlrausch, W. Ann. 1879. 1.) Min. Misenite. + 5H 2 0. Deliquescent. (Senderens, Bull. Soc. (3) 2. 278.) Potassium efo'hydrogen sulphate, K 4 H 2 (S0 4 ) 3 . Sol. in H 2 0. (Phillips, Phil. Mag. 1. 429.) Composition is 4K 2 0, 7S0 3 + 3H 2 0, according to Berthelot (A. ch. (4) 30. 442). Potassium ^rihydrogen sulphate, KH 3 (S0 4 ) 2 . Sol. in H 2 with rise of temperature. (Schultz, Pogg. 133. 137.) + HH 2 0. (Lescoeur, C. R. 78. 1044.) Potassium cfo'sulphate (^rosulphate), When dissolved in exactly the necessary amount of hot H 2 for solution, it crystallises on cooling without decomp. Decomp. by excess of H 2 0. (Jacquelain, A. ch. 70. 311.) Potassium hydrogen cKsulphate, Sol. in fuming H 2 S0 4 without decomposi- tion. Potassium ocfosulphate, K 2 S 8 25 . Decomp. by H 2 0. (Weber.) Potassium rhodium sulphate, 3K 2 S0 4 , Rh 2 (S0 4 ) 3 . Does not exist. (Leidie, C. R. 107. 234.) Potassium samarium sulphate, 9K 2 S0 4 , . 2Sm 2 (S0 4 ) 3 + 3H 2 0. SI. sol. in H 2 0. SI. sol. in sat. K 2 S0 4 + Aq. 1 1. sat. K 2 S0 4 + Aq dissolves 0'5 g. Sm 2 3 . (Cleve, Bull. Soc. (2) 43. 166.) Potassium scandium sulphate, 3K 2 S0 4 , Sc 2 (S0 4 ) 3 . Very slowly sol. in cold, more easily sol. in warm H 2 0. Insol. in sat. K 2 S0 4 + Aq. 2K2S0 4 , Sc 2 (S0 4 ) 3 . Sol. in K 2 S0 4 + Aq. (Cleve.) Does not exist. (Nilson.) Potassium sodium sulphate, 3K 2 S0 4 , Na 2 S0 4 . 100 pts. H 2 dissolve 40 '8 pts. at 103 '5. (Penny, Phil. Mag. (4) 10. 401.) 5K 2 S0 4 , Na 2 S0 4 . 100 pts. H 2 at 100 dis- solve 25 pts. ; at 12 7, 10 '1 pts. ; at 4 '4, 9'2 pts. (Gladstone, Chem. Soc. 6. 111.) Potassium strontium sulphate, I Decomp. by (NH 4 ) 2 C0 3 + Aq. (Rose, Pogg. 93. 604.) Potassium terbium sulphate. Easily sol. in H 2 0. SI. sol. in K 2 S0 4 + Aq. (Delafontaine, Zeit. Chem. (2) 2. 230.) 2G 450 SULPHATE, POTASSIUM THALLIC Potassium thallic sulphate, 2K 2 0, T1 2 3 , 4S0 3 . Insol. in H 2 0. Very difficultly sol. in warm dil. H 2 S0 4 + Aq. (Strecker, A. 135. 207.) Potassium thorium sulphate, 2K 2 S0 4 , Th(S0 4 ) 2 + 2H 2 0. Slowly sol. in cold, easily and abundantly in hot H 2 0, and is gradually decomp. by boil- ing. Easily sol. in acids. In sol. in alcohol. (Berzelius. ) 4K 2 S0 4 , Th(S0 4 ) 2 + 2H 2 0. (Chydenius. ) Potassium stannous sulphate, K 2 S0 4 , SnS0 4 . (Marignac.) Potassium stannous sulphate chloride, 4K 2 S0 4 , 4SnS0 4 , SnCl 2 . Can be recrystallised from H 2 0. (Marignac, Ann. Min. (5) 12. 62.) Potassium titanium sulphate, K 2 S0 4 , Ti(S0 4 ) 2 + 3H 2 0. Difficultly sol. in H 2 or HC1 + Aq. Decomp. by much H 2 0. (Wallace, Pogg. 102. 453.) Potassium uranous sulphate, K 2 S0 4 , U(S0 4 ) 2 + H 2 0. Very si. sol. in H 2 0. (Rammelsberg.) Potassium uranyl sulphate, K 2 S0 4 , (U0 2 )S0 4 + 2H 2 0. Sol. in 9 pts. H 2 at 22 and in 0'51 pt. at 100. Insol. in alcohol. (Ebelmen, A. ch. (3) 5. 211.) 2K2S0 4 , 3(U0 2 )S0 4 + H 2 0. Sol. in H 2 0. In- sol. in alcohol. (Berzelius. ) Does not exist. (Ebelmen.) Potassium vanadium sulphate, K 2 0, V 2 5 , 2S0 8 + 6H 2 = K( V0 2 )S0 4 + 3H 2 0. (Friedheim, B. 24. 1183.) = KV0 3 , K 2 S0 4 , V 2 5 , 2S0 3 + 9H 2 of Miinzing (Berlin, Dissert. 1889). Potassium vanadyl sulphate, K 2 S0 4 ,(VO) 2 (S0 4 ) 3 . Very slowly sol. in H 2 0, still less sol. in dil. alcohol. (Gerland.) Potassium yttrium sulphate, 4K 2 S0 4 , Y 2 (S0 4 ) 3 . Sol. in 16 pts. cold H 2 0, and in 10 pts. sat. K 2 S0 4 + Aq, and more abundantly if the latter solution contains ammonium salts or free acid. (Berlin.) 3K 2 S0 4 , 2Y 2 (S0 4 ) 3 . 100 com. cold sat. K 2 S0 4 + Aq dissolve an amount of this salt corresponding to 4 '685 g. Y 2 3 . (Cleve.) Potassium zinc sulphate, K 2 S0 4 ,ZnS0 4 + 6H 2 0. Sol. in 5 pts. cold H 2 O. (Bucholz, N. J. Pharm. 9. 2. 26.) 100 pts. H 2 dissolve at : 10 15 25 36 12-6 187 22-5 28'8 3 9 '9 pts. hydrous salt, 45 50 58 65 70 51-2 54-0 67*6 81 '3 87 '9 pts. hydrous salt. (Tobler, A. 95. 193.) 100 pts. H 2 at 15 dissolve 14 '8 pts. K 2 S0 4 , ZnS0 4 + 6H 2 0; sp. gr. of sat. H 2 solution at 15 = 1-0939. (Schiff, A. 109. 326.) Potassium zirconium sulphate, 2K 2 0, 6Zr0 2 , 7S0 3 + 9H 2 0. Decomp. by H 2 0. 31L>0, 3Zr0 2 , 7S0 3 + 9H 2 0. Insol. in H 2 0. Potassium sulphate vanadate. Very difficultly sol. in H 2 0. Insol. in alcohol. (Berzelius.) Potassium sulphate antimony ^'fluoride. See Antimony ^fluoride potassium sul- phate. Ehodium sulphate, Rh 2 (S0 4 ) 3 + 12H 2 0. Easily sol. in H 2 0. (Berzelius.) SI. sol. in, but not decomp. by H 2 when not more than 16 pts. H 2 are present to 1 pt. salt. Decomp. by hot H 2 to Rh 2 (S0 4 ) 3 ,Rh 2 3 . Insol. in H 2 0. (Leidie, C. R. 107. 234.) Rhodium sodium sulphate, Rh 2 Na 2 (S0 4 ) 4 . Insol. in H 2 S0 4 or aqua regia. (Seubert and Kobbe, B. 23. 2560.) Rubidium sulphate, Rb 2 S0 4 . 100 pts. H 2 dissolve 42 '4 pts. at 10. (Bunsen.) If solubility S = pts. anhydrous Rb 2 S0 4 in 100 pts. solution, S = 26'5 + 0'2959t from 8 to 49; S = 41'0 + 0'0661t from 49 to 170. (Etard, C. R. 106. 741.) Rubidium hydrogen sulphate, RbHS0 4 . Sol. in H 2 0. Rubidium j??/rosulphate, Rb 2 S 2 7 . Decomp. by H 2 0. Rubidium oc^osulphate, Rb 2 S 8 25 . Decomp. by H 2 0. (Weber, B. 17. 2497.) Rubidium zinc sulphate, Rb 2 S0 4 , ZnS0 4 + 6H 2 0. Sol. in H 2 0. (Bunsen and Kopp, Pogg. 113. 337.) Ruthenic sulphate, Ru(S0 4 ) 2 . Deliquescent, and easily sol. in H 2 0. (Glaus, A. 59. 246.) Samarium sulphate, Sm 2 (S0 4 ) 3 + 8H 2 0. Difficultly sol. in H 2 0. Much less sol. than Di 2 (S0 4 ) 3 + 8H 2 0. (Cleve.) Samarium sodium sulphate, Sm 2 (S0 4 ) 3 , SI. sol. in sat. Na 2 S0 4 + Aq. (Cleve, Bull. Soc. (2) 43. 166.) Scandium sulphate, Sc 2 (S0 4 ) 3 . Anhydrous. Easily sol. in H 2 0. + 2H 2 0. + 6H 2 0. Extremely sol. in H 2 0, but not deliquescent. Scandium sodium sulphate, Sc 2 (S0 4 ) 3 , 3Na 2 S0 4 + 12H 2 0. Sol. inH 2 0. (Cleve.) Argentoargentic sulphate, Ag 4 S0 4 , Ag 2 S0 4 + H 2 0. Gradually sol. in cone., but not attacked by dil., HNOg + Aq. Not attacked by hot cone. H 2 S0 4 . (Lea, Sill. Am. J. 144. 322.) SULPHATE, SODIUM 451 Silver sulphate, Ag 2 S0 4 . Sol. in 200 pts. cold, and less than 100 pts. boiling H 2 O. (Wittstein.) Sol. in 88 pts. boiling HoO (Schnaubart) ; in 87 '25 pts. boiling H 2 O (Wenzel); in 68 -85 pts. H 2 O at 100 (Kreraers). 100 pts. H 2 O at 15-5 dissolve 1'15 pts. Ag 2 SO 4 . (Ure's Diet.) Sol. in 160 pts. H 2 O at 18-75. (Abl.) B. -pt. of sat. Ag 2 S0 4 + Aq is 100. (Kremers. ) 100 pts. H 2 dissolve 0'58 pt. at 18. 100 pts. (NH 4 ) 2 S0 4 + Aq (15 %) dissolve 0'85 pt. Ag 2 S0 4 at 18. Other sulphates have little effect. (Eder, J. pr. (2) 17. 44.) More sol. in H 2 S0 4 + Aq than in pure H 2 0. Still more sol. in HN0 3 + Aq and still more in cone. H 2 S0 4 , from which it is pptd. by H 2 0. (Schnaubart.) Very sol. in a hot mixture of H 2 S0 4 and monobrombenzene, less sol. in cold. (Couper, A. ch. (3) 52. 311.) Decomp. by alkali thiosulphates + Aq. (Herschell. ) Sol. in NH 4 OH, and (NH 4 ) 2 C0 3 + Aq. Silver hydrogen sulphate, AgHS0 4 . Decomp. by H 2 ; sol. in H 2 S0 4 . (Stas.) Ag 2 0, 3H 2 0, 4S0 3 + 2H 2 = AgH 3 (S0 4 ) 2 + H 2 0. As above. (Schultz, Pogg. 133. 137.) 2Ag 2 0, 3H 2 0, 5S0 3 + 2H 2 = Ag 4 H 6 (S0 4 ) B + 2H 2 0. As above. (Schultz.) Silver pyrosulph&ie, Ag 2 S 2 07. Decomp. by H 2 0. (Weber, B. 17. 2497.) Silver thallic sulphate, AgTl(S0 4 ) 2 . (Lepsius, Chem. Ztg. 1890. 1327.) Silver sulphate ammonia, Ag 2 S0 4 , 2NH 3 . Completely sol. in H 2 0. (Rose, Pogg. 20, 153.) Ag 2 S0 4 , 4NH 3 . Easily sol. in H 2 or NH 4 OH + Aq without decomp. (Mitscherlich. ) Silver sulphate sulphide, Ag 2 S0 4 , Ag 2 S. Decomp. by hot H 2 or cold HCl + Aq. Sol. in boiling HN0 3 + Aq. (Poleck and Thiimmel, B. 16. 2435.) Sodium sulphate, Na 2 S0 4 . Anhydrous. 1 pt. Na 2 SO 4 is sol. in 7'367 pts. H 2 O at 15 (Gerlach); in 8-52 pts. H 2 O at 13 -3 (Poggendorf ) ; in 10 pts. H 2 O at 13, and in 3 '3 pts. H 2 O at 62-2 (Wenzel). 100 pts. H 2 O at dissolve 5'155 pts. Na 2 SO 4 (Pfaff, A. 99. 226); at 100'6 dissolve 45'985 pts. Na 2 SO 4 (Griffiths). See below for further data. + 7H 2 0. Efflorescent. Insol. in alcohol. See below for further data. + 10H 2 0. Sol. in 2-33 pts. H 2 O at 19, or 100 pts. H 2 O at 19 dis- solve 42-8 pts. Na 2 SO 4 +10H 2 O. (Schiff, A. 109. 326.) 100 pts. H 2 O dissolve a pts. Na 2 SO 4 and b pts. Na 2 SO 4 +10H 2 O at t. t a b t a b 5-02 12-17 33-88 50-04 312-11 11-67 10-12 26-38 40-15 48-78 291-44 13-30 11-74 31-33 45-04 47-81 276-91 17-91 16-73 48-28 50-40 46-82 262-35 25-05 28-11 99-48 59-79 45-42 28-76 37-35 161-53 70-61 44-35 30-75 43-05 215-77 84-42 42-96 31-84 47-37 270-22 103-17 42-65 32-73 50-65 322-12 (Gay-Lussac, A. ch. (2) 11. 312.) Maximum solubility is at 33 from experiment and theoretical considerations. At this temp. Na 2 SO 4 + 10H 2 O is converted into Na 2 SO 4 . (Kopp, A. 34. 271.) 100 pts. H 2 O at t dissolve pts. Na 2 SO 4 +10H 2 O. t Pts. Na 2 S0 4 +10H 2 O t Pts. Na 2 S0 4 +10H 2 O t Pts. Na 2 S0 4 +10H 2 2-5 7-5 12-5 18-75 25 31-25 11-39 16-38 29-03 70-78 143-38 479-97 37-50 43-75 50 56-25 62-5 68-75 294-04 261-04 285-06 248-11 222-22 242-88 75 81-25 87-50 93-75 100 241-68 217-20 220-65 225-46 241-69 (Brandes and Firnhaber, 1824.) 1 pt. Na 2 SO 4 +10H 2 O is sol. in 6'1 pts. H 2 O at 7-5 ; 3-44 pts. at 12-5 ; 2'41 pts. at 18'75 ; and 1-724 pts. at 20. (Karsten.) 1 pt. Na 2 SO 4 +10H 2 O is sol. in 2-86 pts. cold, and 0'8 pt. boiling H 2 O (Bergmann) ; in 3 pts. cold, and 0'5 pt. boiling H 2 O (Wittstein) ; in 4 pts. cold, and 1 pt. boiling H 2 O (Fourcroy) ; in 3 pts. H 2 O at 18-75 (Abl). 100 pts. H 2 O dissolve 12-494 pts. Na 2 SO 4 or 35-492 pts. Na 2 SO 4 +10H 2 O at 15, and sp.gr. of solution = 1-10847 (Michel and Krafft, A. ch. (3) 41. 478.) 100 pts. H 2 O dissolve 39 '4 pts. cryst. salt at 15 '5; 80 pts. cryst. salt at 100. (Ure's Diet.) 100 pts. H 2 dissolve pts. Na 2 S0 4 at t. t Pts. t Pts. Na 2 S0 4 4-53 24-1 25-92 17-9 16-28 33 50-81 (Diacon, J. B. 1866. 61.) Solubility of Na 2 S0 4 in H 2 at various pres- sures and temp. Pts. Na 2 S0 4 contained in 100 pts. sat. Na 2 S0 4 + Aq at A pressure in atmos. and t are given. A 15 15-4 A 15 1 4-40 11-32 11-4 30 10-05 20 4-53 1078 10-74 40 10-33 (Moller, Pogg. 117. 386.) The solubility of Na 2 S0 4 +10H 2 increases with the temperature from to 34. At 34 and above, it is converted into the anhydrous salt, the solubility of which is least at 103 "17, which is the boiling-point of the saturated solu- tion, and increases by cooling from that temp, down to 18-17. Below the latter tempera- ture the anhydrous salt cannot exist in the presence of H 0, but is converted into Na 2 S0 4 + 7H 2 0, or Na 2 S0 4 + 10H 2 0. The solubility of Na 2 S0 4 + 7H 2 increases with the temperature from 0-26, and at 27 it is converted into the anhydrous salt. Thus there are two different rates of solu- bility for Na 2 S0 4 for temperatures from 0-18, three different rates from 18-26, two from 26-34, and only one above 34. 1. By heating Na 2 S0 4 + 10H 2 to fusion and raising the heat until the liquid boils, placing in a closed vessel and cooling, the greater part of the anhydrous salt, which separates out on 452 SULPHATE, SODIUM heating, redissolves on cooling, and the amount increases as the temp, falls until 18 is reached. Below 18 Na^SC^ -f 7H 2 is formed. Saturated Na S0 4 + Aq thus obtained contains for 100 pts. HO at: 18 20 53-25 5276 30 33 34 50'37 49-71 49-53 26 51-31 pts. Na 2 S0 4 , 36 49-27 pts. Na 2 S0 4 . 2. By allowing the boiling saturated solution free from undissolved salt to cool to with ex- clusion of air until crystals of Na 2 S0 4 + 7H 2 are formed, then removing the greater part of the mother liquor with a warm pipette, and warming the rest of the mother liquor with the excess of crystals, the crystals dis- solve in increasing quantity between and 26-27, so that at 27 the solution contains 56 pts. Na 2 S0 4 to 100 pts. H 2 0. The remain- ing undissolved crystals of Na 2 S0 4 + 7H 2 begin to melt very slowly at 27, more quickly at higher temperatures, and cause the separation of anhydrous crusts, and thus the strength of the solution is gradually lowered to the normal. Saturated solutions prepared in this way con- tain for 100 pts. H 2 at : 13 34-27 pts. Na 2 S0 4 , 92-9 pts. Na 2 S0 4 17 39-99 pts. Na 2 S0 4 , 111-0 pts. Na 2 S0 4 + 7H 2 0, 20 44-73 pts. Na 2 S0 4 , 140 -Opts. Na 2 S0 4 + 7H 2 0, 10 19-62 30-49 or 44-89 78'9 15 16 37-43 3873 or 105 -8 117-4 18 19 41-63 43-35 or 124-6 133-0 25 26 52-94 54-97 pts. Na 2 S0 4 . or 188-5 202-6 pts. Na 2 S0 4 + 7H 2 0, 3. Solutions obtained by shaking H 2 with Na 2 S0 4 + 10H 2 contain for 100 pts. H 2 at : 10 15 5-02 9-00 or 12-16 23-04 18 20 16-80 19-40 or 48-41 58-85 26 30 30-00 40-00 pts. Na 2 S0 4 , or 109-81 184-1 pts. Na 2 S0 4 + 10H 2 0, 33 34 50-76 55-0 pts. Na 2 S0 4 . or 323-1 412-2 pts. Na 2 S0 4 + 10H 2 0. 13 -20 pts. Na 2 S0 4 , 35-96 pts. Na 2 S0 4 + 10H 2 0, 25 28-00 pts. Na 2 S0 4 , 98-48 pts. Na 2 S0 4 + 10H 2 0, At 34 Na 2 S0 4 + 10H 2 begins to melt in its crystal H 2 0. As long as there is a considerable quantity of unchanged crystals present, the solution contains 55 pts. Na 2 S0 4 for 100 pts. H 2 0, but as the hydrous salt decreases in amount and becomes converted into the an- hydrous salt, the solution becomes weaker and contains only 49 '53 pts. Na 2 S0 4 for 100 pts. H 2 after warming for 6 or 8 hours at 34. In the same way temporary solutions can be ob- tained at 36-40 with 55-56 pts. Na 2 S0 4 to 100 pts. H 2 0, but this amount sinks to the normal even more quickly than at 34. Na 2 S0 4 dehydrated at 100-150, after the addition of 1 J-l pts. H 2 0, gives a solution be- tween and 32 of the same strength as Na 2 S0 4 + 10H 2 0, but at 34 a solution with 55 pts. . Na 2 S0 4 to 100 pts. H 2 cannot be ob- tained, but one with 49 '53 pts. is formed. (Lowel, A. ch. (3) 49. 32.) 4. Solubility of anhydrous salt. Above 34, 100 pts. H 2 dissolve at : 35 50-2 60 45-3 85 43-3 40 48-8 65 44-8 90 43-1 45 50 55 477 467 45-9 70 75 80 44-4 44-0 437 95 100 103-5 42-8 42-5 42-2 (Mulder.) pts. pts. pts. Na 2 S0 4 , Na 2 S0 4 , Na 2 S0 4 . Solubility in 100 pts. H 2 at t. t Pts. Na 2 S0 4 t Pts. Na 2 S0 4 t Pts. Na 2 SO 4 4-8 35 50-2 70 44-4 1 5-1 36 49-9 71 44-3 2 5-4 37 49-6 72 44-2 3 57 38 49-3 73 44-2 4 6-0 39 49-1 74 44-1 5 6-4 40 48-8 75 44-0 6 6-8 41 48-5 76 44-0 7 7-3 42 48-3 77 43-9 8 7-8 43 48-1 78 43-8 9 8-4 44 47-9 79 437 10 9-0 45 47-7 80 437 11 97 46 47-5 81 43-6 12 10-5 47 47-3 82 43-5 13 11-4 48 47-1 83 43-5 14 12-4 49 46-9 84 43-4 15 13-4 50 467 85 43-3 16 14-5 51 46-6 86 43-3 17 15-7 52 46-4 87 43-2 18 16-9 53 46-2 88 43-2 19 18-2 54 46-1 89 43-1 20 19-5 55 45-9 90 43-1 21 20-9 56 45-8 91 43-0 22 22-5 57 457 92 43-0 23 24-1 58 45-6 93 42-9 24 25-9 59 45-4 94 42-9 25 27-9 60 45-3 95 42-8 26 30-1 61 45-2 96 42-7 27 32-4 62 45-1 97 42-6 28 35-0 63 45-0 98 42-6 29 37'8 64 44-9 99 42-5 30 40-9 65 44-8 100 42-5 31 44-2 66 447 101 42-4 32 47-8 67 44-6 102 42-3 3275 50-65 68 44-5 103 42-2 33 50-6 69 44-5 103-5 42-2 34 50-4 (Mulder, Scheik. Verhandel. 1864. 123.) SULPHATE, SODIUM 453 100 pts. dissolve at : 34 100 5 78-8 (?) 427 140 160 180 42-0 42-9 44-25 120 41 -95 pts. Na 2 S0 4 , 230 46-4 pts. Na2S0 4 . (Tilden and Shenstone, Lond. R. Soc. Proc. 35. 345.) Solubility decreases above 230. (Etard, C. R. 113. 854.) Supersaturated solutions of NaS0 4 are easily formed ; when Na2S0 4 + Aq sat. at its b. -pt. is hermetically sealed, no crystals are de- posited on cooling (Lowel). Supersat. Na 2 S0 4 + Aq may also be obtained by cooling hot sat. Na 2 S0 4 + Aq in flasks loosely stop- pered with cotton wool (Schroeder, A. 109. 45), or by covering the containing vessel with a glass plate, watch-glass, card, etc., or by covering the liquid itself with a layer of oil, and then allowing to cool. Hot Na 2 S0 4 + Aq containing 1 pt. H 2 to 1 pt. Na2S0 4 +10H 2 does not crystallise on slowly cooling or on being quickly cooled by immersion in cold water, if it is contained in a barometer tube freed from air by boiling, or in an exhausted well-closed vessel, or in an open vessel with a layer of oil of turpentine on it (Gay-Lussac) ; or in a vessel containing air, either well stoppered or furnished with a loose cover (Schweigger) ; or in an open vessel under a bell jar full of air and closed at the bottom with a water joint ; or in open bottles placed in a quiet situation ; or in an open glass enclosed in a stoppered vessel, contain- ing air and some KOH for drying ; in this case Na2S0 4 + 10H 2 effloresces from the solution, and when washed down again does not cause instant crystallisation, but redissolves. The crystallisation of a solution cooled in this way may often be brought about instanta- neously, or often again after a short time : (1) by agitation, when the solution has been cooled in an open vessel ; (2) by access of air caused by opening the vessel, the crystallisa- tion taking place the more rapidly the larger the opening. In this case the crystallisation begins at the top, where the solution, the vessel, and the air come in contact ; when a particle of dust falls in the liquid the crystal- lisation begins a little under the surface. When the solution has been cooled in vacuo, a bubble of air, hydrogen, carbonic acid, or nitrous oxide is sufficient to set up the crystal- lisation ; (3) by contact with a solid body. The latter do not cause crystallisation when cooled in contact with the liquid, nor (except- ing a crystal of Na 2 S0 4 + 10H 2 0) when they are moistened or warmed before contact with the solution. Supersat. Na 2 S0 4 + Aq is brought to crystal- lisation by addition of a crystal of Na 2 S0 4 + 10H 2 0, or an isomorphous substance as Na 2 Se0 4 + 10H 2 0, or Na^CrC^ + 10H 2 0. Other crystals, as MgS0 4 + 7H 2 0, etc., have no action. (Thomson, Chem. Soc. 35. 199.) A more extended discussion of the pheno- mena and causes of supersaturation is not considered to be within the scope of this work. Na 2 SO 4 +Aq sat. at 15 has sp. gr. 1-10847 (Michel and Krafll) ; at 15 has sp. gr. 1-119 (Stolba) ; at 16 has sp. gr. 1-1162 (Stolba); at 10 contains*29 pts. Na 2 SO 4 to 100 pts. H 2 O (supersaturated ?), and has sp. gr. 1-1259 (Karsten). Sp. gr. of Na 2 SO 4 +Aq at 19'5. Na 2 S0 4 Sp.gr. % Na 2 S0 4 Sp.gr. 2-894 5-589 7-995 1-0262 1-0509 1-0733 10-538 12-473 1-0977 1-1162 (Kreiners, Pogg. 95. 120.) Sp. gr. of Na2SO 4 +Aq. Na 2 SO 4 Sp.gr. Na 2 SO 4 Sp. gr. +10H 2 O +10H 2 1-262 1-005 13-744 1-055 2-522 1-010 14-975 1-060 3-780 1-015 16-203 1-065 5-035 1-020 17-426 1-070 6-288 1-025 18-645 1-075 7-538 1-030 19-860 1-080 8-786 1-035 21-071 1-085 10-030 1-040 22-277 1-090 11-272 1-045 23-478 1-095 12*510 1-050 24-674 1-100 (Schmidt, Pogg. 132. 132.) Sp. gr. of N^SO^t + Aq at 19. % Na 2 S0 4 +10H 2 O Sp. gr. % Na 2 S0 4 +10H 2 Sp.gr. 1 1-0040 16 1-0642 2 1-0079 17 1-0683 3 1-0118 18 1-0725 4 1-0158 19 1-0766 5 1-0198 20 1-0807 6 1-0232 21 1-0849 7 1-0278 22 1-0890 8 1-0318 23 1-0931 9 1-0358 24 1-0973 10 1-0398 25 1-1015 11 1-0439 26 1-1057 12 1-0479 27 1-1100 13 1-0520 28 1-1142 14 1-0560 29 1-1184 15 1-0601 30 1-1226 (Schiff, A. 110. 70.) Sp. gr. of Na 2 S0 4 + Aq at 15. Sp.gr. Sp.gr. if S P . f gr. sp. fg , % 11 Na 2 SO 4 + A Na 2 S0 4 + /a Na 2 S0 4 + Na2S0 4 10H 2 O 10H 2 O 10H 2 O 1 1-0091 1-004 11 1-044 21 1-086 2 1-0182 1-008 12 1-047 22 1-090 3 1-0274 1-013 13 1-052 23 1-094 4 1-0365 1-016 14 1-056 24 1-098 5 1-0457 1-020 15 1-060 25 1-103 6 1-0550 1-024 16 1-064 26 1-107 7 1-0644 1-028 17 1-069 27 1-111 8 1-0737 1-032 18 1-073 28 1-116 9 1-0832 1-036 19 1-077 29 1-120 10 1-0927 1-040 20 1-082 30 1-125 (Gerlach, Z. anal. 8. 287.) 454 SULPHATE, SODIUM HYDROGEN Sp. gr. of Na 2 S0 4 + Aq at 24 '8. a = No. of g., equivalent to ^ mol. wt., dissolved in 1000 g. H 2 ; b = sp. gr. if a is Na 2 S0 4 + 10H 2 0, i mol. wt.=161 ; c = sp. gr. if a is Na 2 S0 4 , mol. wt. =71. a b c a b e 1 1-054 1-059 4 1-163 1-213 2 1-098 1-114 5 1-188 3 1-134 1-165 6 1-209 (Favre and Valson, C. R. 79. 968.) Sp. gr. of Na 2 S0 4 + Aq at 18. % Na 2 S0 4 Sp. gr. % Na 2 SO 4 Sp. gr. 5 10 1-0450 1-0915 15 1-1426 (Kohlrausch, W. Ann. 1879. 1.) Sp. gr. of Na 2 S0 4 + Aq at 20 containing 0'5 mol. Na 2 S0 4 to 100 mols. H 2 = 1 '03466 ; 1-0 mol. Na 2 S0 4 to 100 mols. H 2 = 1-06744. (Nicol, Phil. Mag. (5) 16. 122.) Na 2 S0 4 + 10H 2 is sol. in H 2 with absorp- tion of heat; 20 pts. Na 2 S0 4 + 10H 2 mixed with 100 pts. H 2 at 12 '5 lower the tempera- ture 6-8. (Rudorff, B. 2. 68.) Sp. gr. and b.-pt. of Na 2 SO 4 +Aq. Na 2 S0 4 +Aq con- taining P pts. Na 2 SO 4 +10H 2 O for every 100 pts. H 2 O has given sp. gr. and b.-pt. P Sp. gr. B.-pt. P Sp. gr. B.-pt. 1 1-005 100-5 16 1-064 101-25 2 1-008 100-62 17 1-067 101-25 3 1-014 100-62 18 1-070 101-37 4 1-020 100-75 19 1-072 101-37 5 1-021 100-75 20 1-074 101-37 6 1-028 100-87 21 1-076 101-37 1-030 100-87 22 1-078 101-5 8 1-032 101-0 23 1-080 101-5 9 1-036 101-0 24 1-082 101-5 10 1-040 101-0 25 1-084 101-5 11 1-043 101-12 26 1-090 101-5 12 1-050 101-12 27 1-092 101-63 13 1-055 101-25 28 1-095 ' 101-63 14 1-060 101-25 29 1-098 101-63 15 1-062 101-25 30 1-100 101-75 (Brandes and Gruner, 1827.) Saturated solution boils at 103 '17 (Lowel), 103-5 (Mulder), 105 (Kremers), 100 '5 (Grif- fiths), 100-8 (Gerlach). Crust forms at 102 '9 ; highest temp., 103 -2 31 , and solution contains 43 '9 pts. Na 2 S0 4 to 100 pts. H 2 0. (Gerlach, Z. anal. 26. 426.) B.-pt. of Na 2 S0 4 + Aq containing pts. Na 2 S0 4 to 100 pts. H 2 0. B.-pt. Pts. Na 2 SO 4 B.-pt. Pts. Na 2 SO 4 100-5 9-5 102-5 39-0 101 -0 18-0 103-0 44-5 101-5 26-0 103-2 467 102-0 33-0 ... (Gerlach, Z. anal. 26. 430.) M.-pt. of Na 2 S0 4 + 10H 2 = 34. (Tilden, Chem. Soc. 45. 409.) Sol. with decomp. in HC1 + Aq. More sol. in K 2 S0 4 , CuS0 4 , MgS0 4 + Aq than in H 2 0. (Pfaff, A. 99. 226.) " 100 pts. H 2 dissolve 20 7 pts. CuS0 4 and 15-9 pts. Na 2 S0 4 . (Rudorff, B. 6. 484.) Sol. in sat. MgS0 4 , K 2 S0 4 , CuS0 4 + Aq, but if more Na 2 S0 4 than can be dissolved is added to the CuS0 4 + Aq, a large quantity of a double sulphate separates out. (Karsten.) See also under CuS0 4 , MgS0 4 , and K 2 S0 4 . Slowly but abundantly sol. in sat. ZnS0 4 + Aq, with separation of a double salt after a few days. Sol. in sat. NH 4 Cl + Aq. Rapidly and abundantly sol. in sat. KC1 + Aq with pptn. of K 2 S0 4 . Na 2 S0 4 + 10H 2 is sol. in sat. NaCl + Aq without pptn. If effloresced Na 2 S0 4 is used, a ppt. of NaCl is caused at first, and subse- quently of Na 2 S0 4 + 10H 2 0. (Karsten. ) Sol. in boiling sat. Nad + Aq with pptn. of NaCl, but from cold solutions the Na 2 S0 4 separates out first. (Vauquelin.) Less sol. in NaCl + Aq than in H 2 0. (Hunt, Am. J. Sci. (2) 25. 368.) Sol. in sat. KN0 3 + Aq with pptn. after several hours. (Karsten.) Na 2 S0 4 +10H 2 is sol. in sat. NaN0 3 + Aq without pptn., but if effloresced Na 2 S0 4 is used, NaN0 3 is pptd. at first, and subsequently Na 2 S0 4 + 7H 2 0. Sol. in sat. NH 4 N0 3 + Aq. (Margueritte, C. R. 38. 307.) Alcohol precipitates Na 2 SO 4 +10H 2 O from the cold saturated aqueous solution. (Brandes and Firnhaber.) Insol. in alcohol of from 0*817 to 0'90 sp. gr. (Kir- wan.) 1000 pts. alcohol of 0'872 sp. gr. dissolve 0'7 pt. Na 2 SO 4 at 12-5-15 ; of 0'905 sp. gr. dissolve 3'S pts. Na 2 SO 4 at 12-5-15. Insol. in alcohol of 0-83-0-85 sp. gr. (Anthon.) From supersaturated solution in alcohol crystals with 7H 2 are formed. (Schiff, A. 106. 11.) 100 pts. 10 % alcohol at 15 contain 14 '35 pts. Na 2 S0 4 + 10H 2 ; 20 % alcohol at 15 con- tain 5-6 pts. Na 2 S0 4 + 10H 2 ; 40 % alcohol at 15 contain 1 '3 % Na 2 S0 4 + 10H 2 0. (Schiff, A. 118. 365.) Very si. sol. in abs. alcohol at ord. temp. ; somewhat more, though still exceedingly spar- ingly, sol. in abs. alcohol acidulated with H 2 S0 4 . (Fresenius.) Alcohol does not affect crystal H 2 of Na 2 S0 4 + 10H 2 0. Sol. in glycerine. SI. sol. in cone. HC 2 H 3 2 . (Ure's Diet.) Not pptd. by addition of glacial HC 2 H 3 2 to Na 2 SO 4 + Aq. (Persoz.) Min. Anhydrous, Thenardite. +10H 2 0, Mirabilite. Sodium hydrogen sulphate, NaHS0 4 . Not deliquescent. Very sol. in H 2 with decomposition. Sol. in 2 pts. H 2 at (Link) ; 1 pt. H 2 SULPHATE, STRONTIUM HYDROGEN 455 at 100 (Schubarth). 100 pts. H 2 at 15 '5 dis- solve 9272 pts. Sol. in 2 pts. H 2 at 1875 (Abl) ; decomp. by alcohol. + H 2 0. Deliquescent, and decomp. by the H 2 which it takes up. NaH 3 (S0 4 ) 2 . Decomp. by H 2 0. (Schultz.) Trisodium hydrogen sulphate, Na 3 H(S0 4 ) 2 . Sol. in H 2 with decomp. + H 2 0. (Rose.) Sodium ^rosulphate, Na 2 S 2 7 . Sol. in fuming H 2 S0 4 without decomp. Sodium thallic sulphate, Na 2 S0 4 , T1 2 (S0 4 ) 3 . Sol. in H 2 0. (Strecker, A. 135. 207.) Sodium thorium sulphate, Na 2 S0 4 , Th(S0 4 ) 2 + 6H 2 0. Sol. in H 2 0. 100 pts. cold sat. Na 2 S0 4 + Aq dissolve 4 pts. of this salt. (Cleve.) Sodium yttrium sulphate, Na 2 S0 4 , Y 2 (S0 4 ) 3 + 2H 2 0. Quite sol. in H 2 0. (Cleve.) Sodium zinc sulphate, NagSO* ZnS0 4 + 4H 2 0. Deliquescent in moist air. Decomp. into constituents on dissolving in H 2 0. (Graham, Phil. Mag. 18. 417.) Sodium sulphate fluoride, Na 2 S0 4 , NaF. Cryst. from H 2 without decomp. (Marig- nac, Ann. Min. (5) 15. 236.) Sodium sulphate antimony ^'fluoride. See Antimony ^n'fluoride sodium sulphate. Strontium sulphate, SrS0 4 . Very si. sol. in cold, and still less in boiling H 2 0. 1 1. H 2 at 11-15 dissolves 0'066 g. SrS0 4 (Brandes and Silber) ; 0145 g. SrS0 4 (Fre- senius); "154-0 '167 g. SrS0 4 (Marignac) ; 0-187 g. SrS0 4 (Kremers) ; 0'278 g. SrS0 4 (Andrews). 1 1. boiling H 2 dissolves 0'104 g. SrS0 4 (Fresenius) ; 0'282 g. SrS0 4 (Brandes and Silber). When a Sr salt is precipitated by H 2 S0 4 , 1 pt. SrS0 4 remains dissolved in 700 pts. H 2 0. (Marignac. ) Calculated from electrical conductivity of the solution, SrS0 4 is sol. in 10,070 pts. H 2 at 16-1 and 10,090 pts. at 201. (Holleman, Z. phys. Ch. 12. 131.) 1 1. H 2 dissolves 107 mg. SrS0 4 at 18 and not much more at higher temp. (Kohlrausch and Rose, Z. phys. Ch. 12. 241.) Sol. in about 8000 pts. H 2 0. (Schweitzer, J. B. 1877. 1054.) Sol. in 6895 pts. cold, and 9638 pts. boiling H>0 ; in 11,000-12,000 pts. H 2 containing H 2 S0 4 ; in 474 pts. HC1 + Aq containing 8 '5 % HC1 ; in 432 pts. HN0 3 + Aq containing 4 '8 % N 2 5 ; in 7843 pts. HC 2 H 3 2 + Aq contain- ing 15'6 % HC 2 H 3 2 . (Fresenius.) Or, 1 1. cold HC1 + Aq of 8 '5 % dissolves 2 '11 g. SrS0 4 ; 1 1. cold HN0 3 + Aq of 4 "8 % N 2 5 dis- solves 2-31 g. SrS0 4 ; 1 1. cold HC 2 H 3 2 + Aq of 15-6 % HC 2 H 3 2 dissolves 01275 g. SrS0 4 . (Fresenius.) Sol. in cone. H 2 S0 4 . See under SrH 2 (S0 4 ) 2 . Insol. in NH 4 Cl + Aq or cone. (NH 4 ) 2 S0 4 + Aq. (Rose.) Slowly but completely sol. in NaCl + Aq. ( Wackenroder. ) H 2 containing Na 2 S0 4 dissolves less SrS0 4 than pure H 2 ; H 2 containing H 2 S0 4 still less. (Andrews, Phil. Mag. Ann. 7. 406.) Insol. inNH 4 Cl + Aq. Insol. in Na 2 S 2 3 + Aq. Insol. in boiling cone. (NH 4 ) 2 S0 4 + Aq. (Rose, Pogg. 110. 292.) Sol. in 16,949 pts. (NH 4 ) 2 S0 4 + Aq (1:4). (Fresenius, Z. anal. 32. 195.) Pptn. is hindered by alkali metaphosphates and citrates, but not by citric acid. Decomp. at ord. temp., and more rapidly on boiling by alkali carbonates + Aq. Sol. in MgCl 2 or KCl + Aq, solubility increas- ing with strength of solution ; sol. in Nad or CaCl 2 + Aq, maximum solubility occurring when the solutions are of a medium concentration. The numerical results are as follows : 100 pts. of the salt solutions containing given pts. salt dissolve pts. SrS0 4 . Salt Pts. salt Pts. SrS0 4 NaCl 22-17 15-54 8-44 0-1811 0-2186 0-1653 KC1 18-08 12-54 8-22 0-2513 0-1933 0-1925 MgCl 2 13-63 4-03 1-59 0-2419 0-2057 0-1986 CaCl 2 3370 16-51 8-67 0-1706 0-1853 0-1756 (Virck, C. C. 1862. 402.) Insol. in absolute alcohol ; scarcely sol. in dil. alcohol. Min. Celestite. Strontium hydrogen sulphate, SrH 2 (S0 4 ) 2 . 100 pts. H 2 S0 4 dissolve 2 '2 pts. SrS0 4 (Lies- Bodart and Jacquemin) ; 100 pts. H S0 4 dissolve 5-68 pts. (Struve, Z. anal. 9. 34) ; 100 pts. fum- ing H 2 S0 4 dissolve 9 77 pts. (Struve). 1 g. SrS0 4 dissolves in 1256 g. 91 % H 2 S0 4 + Aq (Varenne and Pauleau, C. R. 93. 1016) ; boiling H 2 S0 4 dissolves about 15 % SrS0 4 , and still more at 100 (Schultz, Pogg. 133. 147). Sol. in 1519 pts. 91 % H 2 S0 4 . (Varenne and Pauleau, C. R. 93. 1016.) 100 pts. H 2 S0 4 (sp. gr. 1-843) dissolve 14 pts. SrS0 4 at 70. (Garside, C. N. 31. 245.) Decomp. by H 2 0. + H 2 0. Decomp. by H 2 0. 456 SULPHATE, TANTALUM Tantalum sulphate, 3Ta 2 5 , S0 3 + 9H 2 0. (Hermann, J. pr. 70. 201.) Tellurium sulphate, basic, Te0 2 ,S0 3 . Sol. in cold dil. H 2 S0 4 . Decomp. by hot H 2 0. (Klein, C. R, 99. 326.) Terbium sulphate, Tr 2 (S0 4 ) 3 + 8HoO. Sol. in H 2 0. Thallous sulphate, T1 2 S0 4 . 1 pt. dissolves at t in pts. H 2 0, according to C = Crookes ; L = Lamy : 15 18 62 100 101 '2 21-1 20-8 87 5'4 5 -22 pts. H 2 0. C L L C L Thallous hydrogen sulphate, T1HS0 4 + 3H 2 0. Decomp. by H 2 0. (Oettinger.) Thallous ^yrosulphate, T1 2 S 2 7 . Decomp. by H 2 0. (Weber, B. 17. 2502.) Thallous octasulphate, T1 2 S 8 25 . Decomp. by H 2 0. (Weber, B. 17. 2502.) Thallic sulphate, basic, T1 2 3 , 2S0 3 + 3H 2 0. Sol. in H 2 0. + 5H 2 0. As above. (Willm, A. ch. (4) 5. 5.) Thallic sulphate, T1 2 (S0 4 ) 3 + 7H 2 0. Decomp. by cold H 2 with separation of TIO(OH). (Crookes.) Thallothallic sulphate, 2T1 2 0, 3T1 2 3 , 12S0 3 + 25H 2 0. Gradually efflorescent. (Willm. ) T1 2 (S0 4 ) 2 . (Lepsius, Chem. Ztg. 1890. 1327.) T1H(S0 4 ) 2 . (Lepsius.) Thallous zinc sulphate, T1 2 S0 4 , ZnS0 4 + 6H 2 0. Sol. in H 2 0. (Willm.) Thorium sulphate, basic, 3[Th(S0 4 ) 2 + 2H 2 0], Th(S0 4 )0 + 2H 2 0. Insol. in H 2 ; very slowly attacked by dil. acids. (Demar9ay.) Thorium sulphate, Th(S0 4 ) 2 . Anhydrous. Easily sol. if brought into a large amount of H 2 0, but very slowly sol. if only a little H 2 is added to the salt. 100 pts. H 2 dissolve about 4 '86 pts. Th(S0 4 ) 2 at 0. (Cleve.) When heated, a hydrous salt separates out, which redissolves on cooling. (Cleve. ) Solubility of anhydrous salt cannot be determined, as it begins to separate out Th(S0 4 ) 2 + 9H 2 before a saturated solution is reached. At 100 pts. H 2 dissolved 22 '97 pts. Th(S0 4 ) 2 in 15 minutes ; at 25, 27 '00 pts. Th(S0 4 ) 2 were dissolved in 5 minutes. (Rooze- boom, Z. phys. Ch. 5. 198.) + 2H 2 0. Shows same behaviour as anhy- drous salt. 100 pts. H 2 dissolved 35 '50 pts. Th(S0 4 ) 2 from this salt at 1, but this is not the maximum solubility. (Roozeboom. ) + 4H 2 0. Pptd. by alcohol from hot aqueous solution; also formed by heating Th(S0 4 ) 2 + 9H 2 in aqueous solution above 60. 100 pts. H 2 dissolve pts. Th(S0 4 ) 2 + 4H 2 0, calculated as Th(S0 4 ) 2 , at t. D = accord- ing to Demarcay (C. R. 96. 1860) ; R = according to Roozeboom (Z. phvs. Ch. 5. 202). t Pts. Th(S0 4 ) 2 t Pts. Th(S0 4 )2 t Pts. Th(S0 4 )2 17 35 40 9-41 D 4-50 D 4-04 R 50 55 60 2-54 R 1-94 D 1-634 R 70 75 95 1-09R 1-32 D 0-71 D + 6H 2 0. Behaves as the anhydrous salt, but action is much slower. 100 pts. H 2 dissolve pts. Th(S0 4 ) 2 + 6H 0, calculated as Th(S0 4 ) 2 , at t. Pts. Pts. Th(S0 4 > 2 Th(S0 4 )2 1-50 45 3-85 15 1-63 60 6-64 30 2-45 (Roozeboom.) This determination gives too low figures, especially at the higher temperatures. (Rooze- boom. ) + 8H 2 0. 100 pts. H 2 dissolve pts. Th(S0 4 ) 2 + 8H 2 0, calculated as Th(S0 4 ) 2 , at t. t Pts. Th(S0 4 )2 t Pts. Th(S0 4 ) 2 15 i-oo 1-38 25 44 1-85 371 + 9H 2 0. Pptd. by alcohol from cold aqueous solution. Sol. in about 88 pts. H 2 at 0. (Cleve. ) Extremely slowly sol. in H 2 0. 100 pts. H 2 dissolve pts. Th(S0 4 ) 2 + 9H 2 0, calculated as Th(S0 4 ) 2 , at t. t Pts. Th(S0 4 ) 2 t Pts. Th(S0 4 )2 t Pts. Th(SO 4 ) 2 10 20 0-88 1-02 1-25 30 40 1-85 2-83 50 55 4-86 6'5 ... Above 55 Th(S0 4 ) 2 + 4H 2 separates out. (Demar9ay C. R. 96. 1860, calculated by Roozeboom.) 100 pts. H 2 dissolve pts. Th(S0 4 ) 2 + 9H 2 0, calculated as Th(S0 4 ) 2 , at t. t Pts. Th(S0 4 ) 2 t Pts. Th(S0 4 > 2 t Pts. Th(S0 4 ) 2 10 20 0-74 0-98 1*38 30 40 1-995 2-998 50 55 5-22 6-76 Above 60 Th(S0 4 ) 2 + 4H 2 separates out. (Roozeboom, Z. phys. Ch. 6. 201.) SULPHATE, YTTRIUM 457 For further data, see Roozeboom (Z. phys. Ch. 5. 198), where there is a full discussion of the subject. Stannous sulphate, SnS0 4 . Sol. in 5'3 pts. H 2 at 19, and 5 '5 pts. at 100. (Marignac.) Solution soon decomposes with separation of a basic salt. Sol. in H 2 S0 4 + Aq. (Bouquet.) Stannic sulphate, basic, (SnO)S0 4 + H 2 0. Easily sol. in cold H 2 0, but quickly decomp. with separation of stannic hydroxide. (Ditte, C. R. 104. 178.) Stannic sulphate, Sn(S0 4 ) 2 + 2H 2 0. Deliquescent. Easily sol. in H 2 ; deeomp. by much H 2 0. Sol. in dil. H 2 S0 4 + Aq. Slowly sol. in HC1 + Aq. Decomp. by absolute alcohol. (Ditte, C. R. 104. 178.) Titanium sulphate, Ti(S0 4 ) 2 + 3H 2 0. Deliquescent, and sol. in H 2 0. The aqueous solution is decomp. on boiling. (Glatzel, B. 9. 1833.) Titanium ses^m'sulphate, Ti 2 (S0 4 ) 3 . Very deliquescent, and easily sol. in H 2 0. Aqueous solution is decomp. by boiling. (Ebelmen.) + 8H 2 0. Sol. in H 2 0. (Glatzel, B. 9. 1833.) Titanyl sulphate, (TiO)S0 4 . Decomp. by H 2 0. Slowly sol. in cold, rapidly in warm HCl + Aq. (Merz, J. pr. 99. 157.) Uranous sulphate, basic, U(OH) 2 S0 4 + H 2 0. Insol. in H 2 0. H 2 dissolves out H 2 S0 4 . (Ebelmen, A. ch. (3) 5. 217.) Uranous sulphate, U(S0 4 ) 2 + 4H 2 0. Decomp. by H 2 into insol. basic, and sol. acid salts. Sol. in dil. H 2 S0 4 or HCl + Aq. Difficultly sol. in cone, acids. (Ebelmen, A. ch. (3) 5. 215.) + 8H 2 0. As above. (Rammelsberg. ) Min. Johannite. SI. sol. in H 2 0. Uranyl sulphate, basic, 3U0 3 , S0 3 + 2H 2 0. (Athanasesco.) + 14H 2 0. Sol. in H 2 0. (Ordway, Sill. Am. J. (2) 26. 208.) 4U0 3 , S0 3 + 7H 2 0. (Athanasesco, C. R. 103. 271.) Uranyl sulphate, (U0 2 )S0 4 . Anhydrous. + 3 or 3H 2 0. Efflorescent. Very sol. in H 2 and alcohol. 1 pt. is sol. in 0'6 pt. cold H 2 ; in 0'45 pt. boiling H 2 ; in 25 pts. cold absolute alcohol ; in 20 pts. boiling absolute alcohol. (Bucholz.) Sol. in 0-47 pt. H 2 at 21, and 0'28 pt. boiling H 2 0. (Ebelmen.) 100 pts. H 2 at 15'5 dissolve 160 pts., and at 100, 220 pts. (Ure's Diet.) Completely pptd. from (U0 2 )S0 4 + Aq by HC 2 H 3 2 . (Persoz.) Uranyl sulphate, acid, (U0 2 )S0 4 , H 2 S0 4 . Very deliquescent. (Schultz-Sellack. ) Uranyl ^7/rosulphate, (U0 2 )S 2 7 . Very deliquescent. Hisses with H 2 0. Uranouranyl sulphate, US0 4 , (U0 2 )S0 4 . Sol. in H 2 0. (Ebelmen. ) Decomp. by boil- ing. (Berzelius.) Min. Voglianite. Vanadious sulphate, V 2 3 , 4S0 3 + 9H 2 0. Sol. in H 2 0. (Brierley, Chem. Soc. 49. 882.) Vanadium sulphate, V 2 5 , 2S0 3 =(V0 2 ) 2 S 2 7 . Deliquescent. Easily sol. in H 2 0. V 2 5 , 3S0 3 . Deliquescent. Sol. in H 2 and alcohol. + 3H 2 0. Deliquescent. Very sol. in H 2 0, but decomp. by boiling. Sol. in alcohol. (Ditte, C. R. 102. 757.) Z>^vanadyl sulphate, V 2 2 (S0 4 ) 2 . Insol. in H 2 0, HC1, or H 2 S0 4 + Aq, but on heating to 400 becomes sol. in H 2 if heated to 130 therewith. (Gerland. ) + 4H 2 0. Very slowly sol. in H 2 at 10, quickly at 60, and still more rapidly at 100. Deliquesces in warm moist air more quickly than it dissolves in H 2 at 10. Insol. in absolute alcohol. Very sol. in alcohol of '833 sp. gr. (Berzelius.) + 7H 2 0, and 10H 2 0. + 13H 2 0. Efflorescent. (Gerland.) .Dwanadyl hydrogen sulphate, (V 2 2 )H 2 (S0 4 ) 3 =V 2 4 , 3S0 3 + H 2 0. + 2H 2 0. + 3H 2 0. Deliquescent. Very slowly sol. in cold H 2 or alcohol. Easily sol. in hot H 2 0. (Gerland.) + 5H 2 0. Deliquescent. Insol. in ether. Scarcely sol. in alcohol. Slowly sol. in cold, easily in hot H 2 0. (Crow. ) + 14H 2 0. Easily sol. in cold H 2 or dil. alcohol. (Gerland. ) Ytterbium sulphate, Yb 2 (S0 4 ) 3 + 8H 2 0. Quite slowly sol. in H 2 even at 100. Anhydrous salt is easily sol. in much H 2 0, but if little H 2 is used the hydrous salt is formed, which only slowly dissolves. Sol. in K 2 S0 4 + Aq. Yttrium sulphate, basic, Y 2 3 , S0 3 = (YO) 2 S0 4 . Insol. in H 2 0. (Berzelius.) 2Y 2 3 , S0 3 + 10H 2 0. (Cleve. ) Yttrium sulphate, Y 2 (S0 4 ) 3 . Anhydrous. More sol. in H 2 than the hydrous salt, and more sol. in cold than hot H 2 0. Solution sat. at separates Y 2 (S0 4 ) 3 + 8H 2 at 50. 100 pts. H 2 dissolve 15 '2 pts. anhydrous salt, at ord. temp. Easily sol. in large amount of sat. K 2 S0 4 + Aq, from which 3K 2 S0 4 , 2Y(S0 4 ) 3 is pptd. on warming. (Cleve and Hoglund, Sv. V. A. H. Bih. 1. No. 8.) + 8H 2 0. 100 pts. H 2 dissolve 9 '3 pts. of cryst. salt at ord. temp., and 4 '8 pts. at 100. (Cleve, Bull. Soc. (2) 21. 344.) 458 SULPHATE, ZINC, BASIC Less sol. in H 2 containing H 2 S0 4 than in pure H 2 0. (Berzelius.) Completely pptd. by HC 2 H 3 2 + Aq. Insol. in alcohol. Zinc sulphate, basic, 8ZnO, S0 3 + 2H 2 0. Insol. in H 2 0. (Schindler, Mag. Pharm. 31. 181.) 6ZnO, S0 3 + 10H 2 0. Insol. in H a O. (Kane, A. ch. 72. 310.) 4ZnO, S0 3 + 2H 2 0. Scarcely sol. in hot or cold H 2 0. Sol. inZnS0 4 + Aq. (Kiihn, Schw. J. 60. 337.) + 5H 2 0. Nearly insol. in H 2 0. (Haber- mann, M. 5. 432.) + 7H 2 0. (Athanasesco, C. R. 103. 271.) + 10H 2 0. (Schindler.) 3ZnO, S0 3 . Insol. in cold, si. sol. in hot H 2 0. (Vogel.) 2ZnO, S0 3 . (Athanasesco.) Zinc sulphate, ZnS0 4 . Sol. in H 2 with evolution of heat. Sol. in HCl + Aq. + H 2 0. (Etard.) + 2H 2 0. Insol. in alcohol. (Kiihn.) + 3|H 2 0. (Anthon.) + 5H 2 0. Insol. in boiling alcohol of 0'86 sp. gr. (Kiihn.) + 6H 2 0. (Marignac.) + 7H 2 0. Slowly efflorescent. 1 pt. of the crystals dissolves in 0*923 pt. H 2 at 17*5, and forms a solution of 1 '4353 sp. gr. (Karsten. ) 100 pts. ZnS0 4 + Aq sat. at 18-20 contain 35 '36 pts. ZnS0 4 . (v. Hauer, J. B. 1866. 59.) 100 pts. H 2 dissolve at : 20 50 75 41-3 53-0 66-9 80 '4 pts. ZnS0 4 . (Tobler, J. B. 1855. 309.) Sol. in 2+ pts. H 2 O at ord. temp., and in less at 100. (Bergmann.) 100 pts. H 2 O at 104-4 dissolve 81 '81 pts. ZnSO 4 . (Griffiths.) 100 pts. HoO at ord. temp, dissolve 140 pts. ZnSO 4 + 7H 2 0. (Dumas.) Sol. in 2-29 pts. H 2 O at 18-75. (Abl.) 100 pts. H 2 O at 15-56 dissolve 140 pts. ZnSO 4 +7H 2 O. (Ure's Diet.) 100 pts. H 2 O at 15 dissolve 140'53 pts. ZnS0 4 +7H 2 O, and has sp. gr. =1-4442. (Michel and Kraff't.) 100 pts. H 2 at 20'5 dissolve 163 '2 pts. ZnS0 4 + 7H 2 0. (Schiff, A. 109. 336.) 100 pts. H 2 at t dissolve pts. anhydrous ZnS0 4 , and pts. ZnS0 4 + 7H 2 0. t Pts. ZnS0 4 Pts. ZnSO 4 + 7H 2 O t Pts. ZnSO 4 Pts. ZnSO 4 + 7H 2 O 43-02 115-22 60 74-20 313-48 10 48-36 138-21 70 79-25 369-36 20 53-13 161-49 80 84-60 442-62 30 58-40 190-90 90 8978 533-02 40 63-52 224-05 100 95-03 653-59 50 6875 263-84 (Poggiale, A. ch. (3) 8. 467.) Solubility of ZnS0 4 in 100 pts. H 2 at t. t Pts. ZnSO 4 t Pts. ZnSO 4 t Pts. ZnSO 4 44-0 14 52-8 27 62-1 1 44-6 15 53-5 28 62-8 2 45-2 16 54-2 29 63'6 3 45-8 17 54-9 30 64-3 4- 46'4 18 55-6 31 65-1 5 47-0 19 56'3 32 65-8 6 47'6 20 57-0 33 66'6 7 48-3 21 577 34 67'3 8 48'9 22 58-4 35 68-1 9 49-5 23 59-2 36 68-8 10 50-2 24 59-9 37 69'3 11 50-8 25 607 38 70-4 12 51-5 26 61-4 39 71-2 13 52-2 Decomp. into basic salt above 40. (Mulder, Scheik. Verhandel. 1864. 74.) If solubility S represents number of pts. anhydrous salt in 100 pts. of solution, S = 27'6 + 0-2604t from -5 to +81; S = 50'0- 0'2244t from 81 to 175. (Etard, C. R. 106. 207.) Sat. ZnS0 4 + Aq at 8 has sp. gr.=l'421. (Anthon. ) Sp. gr. of ZnS0 4 + 7H 2 at 20 '5. % Sp. gr. % Sp.gr % Sp. gr. 1 1-0057 21 1-1288 41 1-2754 2 1-0115 22 1-1355 42 1-2834 3 1-0173 23 1-1423 43 1-2917 4 1-0231 24 1-1491 44 1-3000 5 1-0289 25 1-1560 45 1-3083 6 1-0348 26 1-1629 46 1-3167 7 1-0407 27 1-1699 47 1-3252 8 1-0467 28 1-1770 48 1-3338 9 1-0527 29 1-1842 49 1-3424 10 1-0588 30 1-1914 50 1-3511 11 1-0649 31 1-1987 51 1-3599 12 1-0710 32 1-2060 52 1-3688 13 1-0772 33 1-2134 53 1-3779 14 1-0835 34 1-2209 54 1-3871 15 1-0899 35 1-2285 55 1-3964 16 1-0962 36 1-2362 56 1-4057 17 1-1026 37 1-2439 57 1-4151 18 1-1091 38 1-2517 58 1-4246 19 1-1156 39 1-2595 59 1-4342 20 1-1222 40 1-2674 60 1-4439 (Schiff, A. 110. 72.) Sp. gr. of ZnS0 4 + Aq at 15. % = % ZnS0 4 + 7H 2 0. Sp. gr. % Sp. gr. % Sp. gr. 1-006 8 1-047 15 1-0905 1-013 9 1-053 16 1-097 1-019 10 1-0593 17 1-103 1-024 11 1-066 18 1-110 1-0288 12 1-073 19 1-116 1-035 13 1-079 20 1-1236 1-041 14 1-085 21 1-130 SULPHATE, ZIRCONIUM, BASIC 459 Sp. gr. ZnS0 4 + Aq etc. Continued. B.-pt. of ZnS0 4 + Aq containing pts. ZnS0 4 to 1 00 nts. TT-O % Sp. gr. % Sp.gr. % Sp. gr. I: & B.-pt. Pts. ZnSO 4 B.-pt. Pts. ZnSO 4 22 23 1-137 1-143 35 36 1-231 1-240 48 49 1-337 1-346 100-5 13-1 103-0 61-0 24 1-150 37 1-246 50 1-3532 101 -0 25'0 103*5 68-0 25 1-1574 38 1-255 51 1-362 101'5 377 104-0 74'9 26 1-164 39 1-263 52 1-370 102-0 45-4 104'5 80'7 27 1-171 40 1-2709 53 1-380 102'5 53'9 105 '0 857 28 29 1-179 1-185 41 42 1-280 1-288 54 55 1-390 1-3986 (Gerlach, Z. anal. 26. 432.) 30 1-1933 43 1-295 56 1-408 Liable to form supersaturated solutions. 31 32 1-200 1-209 44 45 1-304 1-3100 57 58 1-416 1-425 Completely pptd. from ZnS0 4 + Aq I HC 2 H 3 2 . (Persoz.) 33 34 1-216 1-224 46 47 1-320 1-330 59 60 1-435 1-4451 Very rapidly sol. in sat. K 2 S0 4 + Aq, wi1 separation of a double salt. (Karsten.) Very rapidly and abundantly sol. in sa (Gerlach, Z. anal. 8. 288.) Sp. gr. of ZnS0 4 + Aq at 23 '5. a = No. of g., equivalent to \ mol. wt., dissolved in 1000 g. H 2 ; b = sp. gr. if a is ZnS0 4 + 7H 2 0, | mol. wt. =143'5; c = sp. gr. if a is ZnS0 4 , \ mol. wt. =80 '5. a b c a b 1 1-077 1-084 7 1-368 2 1-143 1-162 8 1-400 3 1-199 1-236 9 1-428 4 1-249 1-307 10 1-453 5 1-294 1-376 11 1-476 6 1-333 1-443 ... (Favre and Valson, C. R. 79. 968. Sp. gr. of ZnS0 4 + Aq at 18. I s >? 5 10 Sp. gr. 1-0509 1-1369 8 NJ 5-S Sp.gr. o* a tsq ^ Sp. gr. 15 20 1-1675 1-2313 25 30 1-3045 1-3788 (Kohlrausch, W. Ann. 1879. 1.) Sp. gr. of ZnS0 4 + Aq at t. S = pts. ZnS0 4 in 100 pts. solution. s Sp. gr. 8 Sp. gr. 24-7170 21-4444 177573 1-3152 1-2665 1-2145 14-0307 9-7426 5-1110 1-1645 1-1106 1-0565 (Charpy, A. ch. (6) 29. 27.) M.-pt. of ZnS0 4 + 7H 2 = 50. (Tilden, Chem. Soc. 45. 409.) Sat. ZnS0 4 + Aq boils at 104 '4, and solution contains 45 pts. ZnS0 4 to 100 pts. H 2 0. (Griffiths.) Crust forms at 103 "5, the solution contain- ing 68 pts. ZnS0 4 to 100 pts. H 2 0. Highest temp, observed, 105. (Gerlach, Z. anal. 26. 426.) bundantly sol. in sat. CuS0 4 + Aq. Slowly sol. in sat. MgS0 4 + Aq. Difficultly and slowly sol. in sat. NH 4 C1 + Aq, with separation of a double sulphate. Sol. in considerable quantity in sat. NaCl + Aq, without pptn. at first, but finally Na 2 S0 4 separates out. Sol. in sat. NaN0 3 + Aq as in NaCl + Aq. Sol. in sat. KN0 3 + Aq with immediate pptn. of double sulphate. (Karsten.) Insol. in alcohol of 0'88 sp. gr. ; 1000 pts. alcohol of 0*905 sp. gr. dissolve 2 pts. (Anthon.) 100 pts. of a saturated solution in 40 % alcohol contain 3 '48 pts. ZnS0 4 + 7H 2 ; 20 %, 39 pts.; 10 %, 51-1 pts. (Schiff, J. B. 1861. 87.) 100 pts. absolute methyl alcohol dissolve 0-65 pt. ZnS0 4 at 18. (de Bruyn, Z. phys. Ch. 10. 783.) 100 pts. absolute methyl alcohol dissolve 59 pts. ZnS0 4 + 7H 2 at 17. 100 pts. 50 % methyl alcohol dissolve 15 '7 pts. ZnS0 4 + 7H 2 at 17. (de Bruyn. ) Min. Gosslarite. Zinc sulphate, acid, ZnH 2 (S0 4 ) 2 + 8H 2 0. Somewhat difficultly sol. in cold, easily in hot H 2 0. (v. Kobell, J. pr. 28. 492. ) Zinc sulphate ammonia, basic, 4NH 3 , 4ZnO, S0 3 + 4H 2 0. Ppt. (Schindler.) Zinc sulphate ammonia, ZnS0 4 , 2NH 3 . + H 2 0. Decomp. by H 2 into basic zinc sulphate. ZnS0 4 , 4NH 3 + 4H 2 0. Sol. in H 2 0. (Kane, A. ch. 72. 304.') + 3H 2 0. (Andre, C. R. 100. 241.) ZnS0 4 , 5NH 3 . Sol. in H 2 with partial de- comp. (Rose, Pogg. 20. 149.) Zirconium sulphate, basic, 3Zr0 2 , 2S0 3 . Insol. in H 2 0. Sol. in HC1 + Aq. (Paykull, B. 12. 1719.) 7Zr0 2 , 6S0 3 . Insol. in H 2 0. (Endemann, J. pr. (2) 11. 219.) Zr0 2 , S0 3 . Sol. in very little H 2 0. More H 2 decomp. into 3Zr0 2 , 2S0 3 and Zr(S0 4 ) 2 . (Berzelius. ) 460 SULPHATE, ZIRCONIUM Zirconium sulphate, Zr(S0 4 ) 2 . Anhydrous. Slowly but completely sol. in cold, quickly in hot H 2 0. Sol. in warm H 2 S0 4 , but separates on cool- ing. Precipitated from aqueous solution by alcohol. + 4H 2 0. Easily sol. in H 2 0. 3Zr0 2 , 4S0 3 +15H 2 0. Sol. in H 2 0. (Pay- kull.) 6Zr0 2 , 7S0 3 + 19H 2 0. Sol. in H 2 0. (Pay- kull.) 3Zr0 2 , S0 3 . Insol. in boiling H 2 0. (Franz, B. 3. 58.) Persulphuric acid, HS0 4 . See Persulphuric acid. /V-osulphuric acid and ^rosulphates. See under Sulphuric acid and sulphates. Sulphuric boric acid. See Borosulphuric acid. Sulphuric vanadic acid, V 2 5 , 3S0 3 + 3H0 2 . See Sulphate, vanadium. Sulphurous acid, anhydrous, S0 2 . See Sulphur cfo'oxide. Sulphurous acid, H 2 S0 3 . Known only in aqueous solution, from which S0 2 is given off upon heating. Crystallises in cold, with various amounts of water, forming compounds which approximate H 2 S0 3 + 8H 2 (Pierre, A. 68. 228) ; H 2 S0 3 + 10H 2 (Dopping, Bull. Ac. St. Petersb. 7. 100) ; H 2 S0 3 + 14H 2 (Schonfeld, A. 95. 22) ; H 2 S0 3 + 6H 2 6 (Rooze- boom, R. t. c. 3. 29, 59, 75, 84 ; Geuther, A. 224. 218). Crystals are sol. in 2 pts. H 2 at 10. (Pierre.) For sp. gr. of solutions, etc., see sulphur dioxide. Sulphites. Normal. Only the alkali sulphites are sol. in H 2 0, and they are insol. or only si. sol. in alcohol. Acid. All the acid sulphites are sol. in H 2 0. Aluminum sulphite, basic, A1 2 3 , S0 2 + 4H 2 0. Insol. in H 2 ; sol. in H 2 S0 3 + Aq. (Four- croy and Vauquelin.) Ammonium sulphite, basic, (NH 4 ) 2 S0 3 , NH 3 + |H 2 0. Sol. in H 2 0. Pptd. from aqueous solution by alcohol. (Muspratt.) Does not exist. (Marignac.) Ammonium sulphite, (NH 4 ) 2 S0 3 + H 2 0. Slowly sol. in H 2 0. (Muspratt, A. 50. 268.) Sol. in 1 pt. H 2 at 12. (Fourcroy and Vauquelin, Crell. Ann. 1800, 2. 415.) More sol. in hot H 2 with evolution of NH 3 . SI. sol. in absolute alcohol. (Muspratt. ) Much more sol. in alcohol than K 2 S0 3 . (Pierre.) Ammonium ^t/rosulphite, (NH 4 ) 2 S 2 5 . Deliquescent. Very sol. in H 2 and alcohol. Insol. in ether. (Fock and Kliiss, B. 23. 3149.) Ammonium cadmium sulphite, (NH 4 ) 2 S0 3 , CdS0 3 . Nearly insol. in H 2 0. Partly sol. in excess of H 2 S0 3 + Aq, but separates out on boiling. (Schiiler, A. 87. 34.) Ammonium cobaltous sulphite, (NH 4 Decomp. on air. (Berglund, B. 7. 469.) Ammonium cobaltocobaltic sulphite. See Cobaltisulphite, ammonium cobalt. Ammonium cuprous sulphite, (NH 4 ) 2 S0 3 , 2Cu 2 S0 3 + 2H 2 0. (Bottinger, A. 51, 411.) (NH 4 ) 2 S0 3 , Cu 2 S0 3 . Insol. in cold, decomp. by boiling H 2 0. (Rogojski, J. B. 1851. 366.) + 2H 2 0. (Commaille, J. B. 1867. 300.) t 5(NH 4 ) 2 S0 3 , Cu 2 S0 3 + 2H 2 0. Decomp. on air. Sol. in H 2 with decomp. (Svensson.) _7(NH 4 ) 2 S0 3 , Cu 2 S0 3 + 10H 2 0. Decomp. on air. SI. sol. in warm, less sol. in cold H 2 0. (de Saint-Gilles.) + 14H 2 0. Decomp. on air. Sol. in H 2 0, but solution decomp. Very easily sol. in mother liquor. (Svens- son, Acta Lund. 1869. 13.) Ammonium cuprocupric sulphite, (NH 4 ) 2 SOo, 2Cu 2 S0 3 , CuS0 3 + 5H 2 0. Insol. in H 2 and weak acids. Sol. in NH 4 OH + Aq. (de Saint-Gilles, A. ch. (3) 42. 31.) Ammonium aurous sulphite, 3(NH 4 ) 2 S0 3 , Au 2 S0 3 . Very easily sol. in H 2 0. Insol. in alcohol. (Haase, Z. Ch. 1869. 535.) Ammonium aurous sulphite ammonia, (NH 4 ) 2 S0 3 , 3Au 2 S0 3 , 6NH 3 + H 2 0. Decomp. by H 2 0. Sol. in warm NH 4 OH + Aq, but decomp. by boiling. Ammonium iridium sulphite. See Iridosulphite, ammonium. Ammonium ferrous sulphite, (NH 4 ) 2 S0 3 , FeS0 3 (Berglund. ) Ammonium magnesium sulphite, (NH 4 ) 2 Mg 3 (S0 3 ) 4 + 18H 2 0. Very si. sol. in H 2 0. (Fourcroy and Vau- quelin. ) Sol. in H 2 S0 3 + Aq. + 5H 2 0. Much more sol. in H 2 than MgS0 3 . (Rammelsberg.) Ammonium manganous sulphite, (NH 4 ) 2 S0 3 , MnS0 3 . Relatively easily decomp. by H 2 0. (Berg- lund, Bull. Soc. (2) 21. 213.) Not easily decomp. (Gorgeu, C. R. 96. 376.) Ammonium mercuric sulphite, (NH 4 ) 2 S0 3 , HgS0 3 . Very easily sol. in H 2 0, but H 2 solution gradually decomp., even in the cold. SULPHITE, COBALTIC 461 Ammonium nickel sulphite, (NH 4 ) 2 S0 3 , 3NiS0 3 + 18H 2 0. Sol. in H 2 0. (Berglund, B. 7. 469. ) Ammonium platinous sulphite. See Flatosulphite, ammonium. Ammonium potassium sulphite, 10(NH 4 ) 2 S0 3 , K 2 S0 3 + 11H 2 0. Decomp. by H 2 0, etc. (Hartog, C. R. 109. 221.) Ammonium silver sulphite, (NH 4 ) 2 S0 3 , Ag 2 S0 3 . Insol. in H 2 0, but gradually decomp. thereby. (Svensson, B. 4. 714.) 6(NH 4 ) 2 S0 3 , Ag 2 S0 3 + 19H 2 0. Sol. in H 2 without decomp. (Svensson.) 3(NH 4 ) 2 S0 3 , 4NH 4 HS0 3 , Ag 2 S0 3 + 18H 2 0. Easily sol. in H 2 0, but decomp. by warming. Ammonium sodium hydrogen sulphite, NH 4 Na 2 H(S0 3 ) 2 + 4H 2 0. Not deliquescent. (Marignac, Ann. Min. (5) 12. 29.) 100 pts. H 2 dissolve 42 '3 pts. salt at 12 '4, and 48'5 pts. at 15. (Sch wicker, B. 22. 1732.) + 5H 2 = 2Na 2 S0 3 , (NH 4 ) 2 S 2 5 + H 2 0. (Tau- ber, Techn. J. B. 1888. 444.) Ammonium tellurium sulphite, (NH 4 ) 2 S0 3 , Sol. in H 2 0. (Berglund, B. 7. 469.) Ammonium uranyl sulphite, NH 4 (U0 2 )(OH)S0 3 . Insol. in pure H 2 0. More sol. in H 2 S0 3 + Aq than the K salt, and less than the Na salt. (Scheller, A. 144. 240.) Ammonium zinc sulphite, (NH 4 ) 2 S0 3 , ZnS0 3 . Sol. in H 2 0. (Berglund, B. 7. 469.) Ammonium sulphite mercuric chloride, 2(NH 4 ) 2 S0 3 , HgCl 2 . SI. sol. in cold, decomp. by boiling H 2 0. (de St-Gilles, A. ch. (3) 36. 95.) Antimony sulphite, Sb 2 3 , 3S0 2 (?). Insol. in H 2 0. (Berzelius. ) Could not be obtained. (Rohrig, J. pr. (2) 37. 241.) Barium sulphite, BaS0 3 . Very si. sol. in H 2 0. (Fourcroy and Vau- quelin, A. ch. 24. 301.) Sol. inH 2 S0 3 + Aq. Barium cobaltic sulphite. See Cobaltisulphite, barium. Barium aurous sulphite, 3BaS0 3 , Au 2 S0 3 + H 2 0. Ppt. (Haase.) Barium mercuric sulphite, BaS0 3 , HgS0 3 + H 2 0. Ppt. (Barth, Z. phys. Ch. 9. 196.) Bismuth sulphite, basic, Bi 2 3 , 3S0 2 + 5H 2 0. Insol. in H 2 0, alcohol, or ether. SI. sol. in H 2 S0 3 + Aq. (Rohrig, J. pr. (2) 37. 241.) Bismuth cobaltic sulphite. See Cobaltisulphite, bismuth. Cadmium sulphite, CdS0 3 . Difficultly sol. in H 2 0. Easily sol. in dil. acids. (Rammelsberg, Pogg. 67. 256.) + 2H 2 0. Difficultly sol. in H 2 0. Sol. in H 2 S0 3 + Aq. Sol. in NH 4 OH + Aq. Insol. in alcohol. (Muspratt, Phil. Mag. (3) 30. 414.) Contains 2^H 2 0. (Deniges, Bull. Soc. (3) 7. 569.) Cadmium sodium sulphite, 3CdS0 3 , Na 2 S0 3 . Sol. in H 2 0. (Berglund, B. 7. 469.) Cadmium sulphite, ammonia, CdS0 3 , NH 3 . Decomp. by H 2 0. Sol. without decomp. in hot NH 4 OH + Aq. (Rammelsberg, Pogg. 67. 256.) Calcium sulphite, basic, Ca 6 S 5 16 = 6CaO, 5S0 2 . (Schott, Dingl. 202. 52.) Calcium sulphite, CaS0 3 + 2H 2 0. Slowly effloresces. Sol. in 800 pts. cold H 2 0. (Berzelius.) Insol. in H 2 0. (Rohrig, J. pr. (2) 37. 230.) Very sol. in H 2 S0 3 + Aq. See CaH 2 (S0 3 ) 2 . Insol. in acetone. (Krug and M'Elroy.) + ^H 2 0. (Rammelsberg.) Calcium hydrogen sulphite, CaH 2 (S0 3 ) 2 . Known only in solution. 100 ccm. H 2 containing 9 g. S0 2 dissolve 0-553 g. CaS0 3 to form a solution of 1'06 sp. gr. (Gerland, J. pr. (2) 4. 119.) Calcium cobaltic sulphite. See Cobaltisulphite, calcium. Cerous sulphite, Ce 2 (S0 3 ) 3 + 3H 2 0. More sol. in cold than hot H 2 0. Solution gradually decomposes. (Berthier, A. ch. (3) 7. 77.) Chromous sulphite, CrS0 3 . Precipitate. Insol. in H 2 0. (Moberg.) Chromic sulphite. Known only in aqueous solution, which pre- cipitates a basic salt on boiling. 2Cr 2 3 , 3S0 2 +16H 2 0. Precipitate. (Dan- son, Chem. Soc. 2. 205.) Chromic potassium sulphite, K 2 0, Cr 2 3 , Precipitate. (Berglund, B. 7. 470.) Cobaltous sulphite, basic. Ppt. Decomp. by H 2 0. (Berthier.) Cobaltous sulphite, CoS0 3 . + 3H 2 0. Nearly insol. in H 2 0. Sol. in H 2 S0 3 + Aq. (Rammelsberg.) Partly sol. in NH 4 OH + Aq. + 5H 2 0. Insol. in H 2 0. Sol. in H 2 S0 3 + Aq. (Muspratt, A. 30. 282.) Cobaltocobaltic sulphite. See Cobaltisulphite, cobaltous. Cobaltic sulphite with 3M 2 S0 3 . See Cobaltisulphite, M. 462 SULPHITE, COBALTOUS POTASSIUM Cobaltous potassium sulphite, CoS0 3 , K 2 S0 3 + xH 2 0. Insol. in H 2 ; easily sol. in HCl + Aq. (Schultze, J. B. 1864. 270.) Cobaltic potassium sulphite, Co 2 (S0 3 ) 3 , K 2 S0 3 . SI. sol. in H 2 ; easily sol. in H 2 S0 3 + Aq or HCl + Aq. (Schultze.) Cobaltous sodium sulphite, 3CoO, Na 2 0, 3S0 2 . Insol. in H 2 0. Easily sol. in HCl + Aq. (Schultze.) Cobaltic sodium sulphite, Co 2 3 , Na 2 0, 3S0 2 . SI. sol. in H 2 0. (Schultze.) Cuprous sulphite, Cu 2 S0 3 + H 2 0. (a) Red. SI. sol. in H 2 0. Sol. in NH 4 OH or HCl + Aq. (Rogojski, J. B. 1851. 366.) Could not be obtained by St. Gilles or Svens- son (B. 4. 713). Insol. in H 2 0, alcohol, or ether. (Etard, C. R. 95. 38.) Composition is (Cu 2 ) 8 H 16 (S0 4 ) 8 , "Cuprous isosulphite," according to Etard. (,fl) White. Normal salt. Insol. in H 2 0, alcohol, or ether. (Etard.) Cupric sulphite, basic, 4CuO, S0 2 + 7H 2 0. Insol. in H 2 0, and decomp. by washing therewith. (Millon and Commaille. ) 3CuO, 2S0 2 +liH 2 0. SI. sol. in HjjO. (New- bury, Am. Ch. J. 14. 232.) Cuprocupric sulphite, CuS0 3 , Cu 2 S0 3 + 2H 2 0. Nearly insol. in cold HaO. Decomp. by boiling. Sol. in H 2 S0 3 + Aq, HC1, or NH 4 OH + Aq. (Berthier.) Sol. in very dil. HN0 3 + Aq. (Dopping, J. B. 1851. 365.) Insol. in H 2 S0 3 , HC 2 H 3 2 , or Cu salts + Aq. (deSt. Gilles.) + 5H 2 0. Insol. in H 2 0. Easily sol. in H 2 S0 3 + Aq, HC 2 H 3 2 + Aq, in cupric salts + Aq, NH 4 OH + Aq, or HCl + Aq. (de St. Gilles, A. ch. (3)42. 34.) Composition is (Cu2)CulJH 10 (S0 4 ) 8 + 21H 2 0, "acid cuprosocupric octosulphite." (Etard, C. R. 96. 1475.) Cuprous ferroferric sodium sulphite, Cu 2 0, 2FeO, Fe 2 3 , Na 2 0, 6S0 2 +16H 2 0. Sol. in about 1000 pts. H 2 0. Sol. in cold dil. H 2 S0 4 + Aq ; sol. in cold dil. HCl + Aq with a residue of Cu 2 Cl 2 . (Stro- meyer, A. 109. 237.) Cuprous lithium sulphite, Cu 2 S0 3 , Li 2 S0 3 + 2H 2 0. Insol. in H 2 0, but gradually decomp. there- by. (Etard, C. R. 95. 138.) Cupric mercuric sulphite, CuS0 3 , HgS0 3 . Sol. in H 2 in all proportions, but decomp. on boiling. Cuprous potassium sulphite, Cu 2 S0 3 , K 2 S0 3 (?). (Vohl, J. pr. 95. 219.) + 2H 2 0. (Etard, C. R. 95. 138.) Cu 2 S0 3 , 2K 2 S0 8 . (Chevreul, Graham, etc.) Does not exist. (Svensson.) Cu 2 0, 3K 2 0, 6S0 2 + 7H 2 = 4KHS0 3 , K 2 S0 3 , Cu 2 S0 3 + 5H 2 0. Decomp. by H 2 0. (Svensson, B. 4. 713.) Cu 2 0, 4K 2 0, 8S0 2 + 3H 2 = 6KHS0 3 , K 2 S0 3 , Cu 2 S0 3 . Decomp. by H 2 0. (Svensson. ) Cu 2 S0 3 , 8K 2 S0 3 + 16H 2 0. Sol. in H 2 with decomp. (Rammelsberg, Pogg. 57. 391.) Does not exist, according to Svensson. Cuprous sodium sulphite, Cu 2 S0 3 , ISTa 2 S0 3 . + 2H 2 0. Decomp. by H 2 0. (Svensson, 1870.) + 11H 2 0. Insol. in cold H 2 0, but decomp. by excess. (Etard, C. R. 95. 138.) 2Cu 2 S0 3 , 3Na 2 S0 3 + 29H 2 0. Insol. in H 2 0. Cu 2 S0 3 , 5Na 2 S0 3 + 38H 2 0. Decomp. by H 2 0. Cu 2 S0 3 , 7Na 2 S0 3 + 19H 2 0. Completely sol. in H 2 0, but solutions decomp. on standing. (Svensson.) "Cuprous sodium oc^osulphite," (Cu 2 ) 3 H 10 Na 16 S 8 32 + 43H 2 0. (Etard. ) Cuprocupric potassium sulphite, 3Cu 2 S0 3 , 3CuS0 3 , K 2 S0 3 . Properties as cuprous potassium sulphite. (Rogojski, J. B. 1851. 367.) 2Cu 2 S0 3 , CuS0 3 , K 2 S0 3 + 5H 2 0. Insol. in H 2 and weak acids, (de St-Gilles.) Cuprocupric sodium oc/(osulphite, acid, Na 8 CuJ5(CuDH 2 (S0 4 ) 8 , 6H 4 (S0 4 ) + 5H 2 0. Sol. in H 2 0. (Etard, C. R. 94. 1422.) (Cu^CuSNagH^SOJ,. (Etard.) Didymium sulphite, Di 2 (S0 3 ) 3 + 3H 2 or 6H 2 0. Precipitate. Insol. in H 2 0. Sol. in H 2 S0 3 + Aq, from which it is reprecipitated by heating, redissolving on cooling. (Marignac, A. ch. (3) 38. 167.) Erbium sulphite, Er 2 (S0 3 ) 3 + 3H 2 0. Precipitate. Glucinum sulphite, G1S0 3 . Decomp. by H 2 or alcohol. (Kriiss and Moraht, B. 23. 734.) G1S0 3 , G10. Decomp. by H 2 or alcohol. (K. and M.) 3G1S0 3 , G10. Sol. in alcohol. (K. and M.) Aurous potassium sulphite, Au 2 S0 3 , 3K 2 S0 3 . Very sol. inH 2 ; insol. in alcohol. (Haase.) Auric potassium sulphite, Au 2 3 , 5K 2 0, 8S0 2 + 5H 2 = 5K 2 S0 3 , Au 2 (S0 3 ) 3 + 5H 2 0. Sol. in H 2 with decomp. Decomp. by acids ; insol. in alkalies. (Fremy, A. 79. 46.) Aurous sodium sulphite, Au 2 S0 3 , 3Na 2 S0 3 + 3H 2 0. Sol. in less than 1 pt. H 2 0. Insol. in alcohol. (Haase.) + 5H 2 0. (Himly.) Aurous sulphite ammonia, 3Au 2 0, 4S0 , 8NH 3 + 4H 2 0. SI. sol. in H 2 with decomp. Decomp. by acids. SI. sol. in cold, more easily in hot NH 4 OH + SULPHITE, MERCURIC SODIUM 463 Aq. Decomp. by boiling. (Haase, Zeit. Ch. 1869. 535.) Indium sulphite, 2In 2 3 , 3S0 2 + 8H 2 0. Insol. in H 2 0. (Bayer, A. 158. 372.) Iridium sulphite, Ir 2 (S0 3 ) 3 + 6H 2 0. Scarcely sol. in H 2 ; easily sol. HCl + Aq. (Birnbaum, A. 136. 179.) Iridyl sulphite, (IrO)S0 8 + 4H 2 0. Insol. in H 2 0. Sol. in HC1 or H 2 S0 4 + Aq. (Birnbaum. ) Iridous potassium sulphite, IrO, 3K 2 0, 5S0 2 (?). SI. sol. in H 2 0, more sol. in KOH + Aq. Easily sol. in HC1 + Aq. (Glaus, J. pr. 42. 359. ) Iridous sulphite potassium chloride. See Iridosulphite, potassium. Iridium sulphite with M 2 S0 3 . See Iridosulphite, M. Ferrous sulphite, FeS0 3 + 2|H 2 0. Very si. sol. in H 2 0. Easily sol. in H 2 S0 3 + Aq. Insol. in alcohol, but sol. therein in pres- ence of S0 2 . (Muspratt. ) Ferric sulphite, Fe 2 3 , S0 2 + 6H 2 0. Very si. sol. in H 2 0. Sol. in acids. (Koene.) 2Fe 2 3 , 3S0 2 . Deliquescent ; decomp. by H into S0 2 and the above comp. 3Fe 2 3 , S0 2 + 7H 2 0. Ppt. Ferroferric potassium sulphite, FeS0 3 , (FeO) 2 S0 3 , 2K 2 S0 3 . Ppt. (Berglimd.) Ferric potassium sulphite, K>0, Fe 2 3 , 3S0 2 + 2H 2 0. Sol. in H 2 S0 3 + Aq. (Koene, Pogg. 63. 453.) Fe 2 3 , 2K 2 0, 3S0 2 + 5H 2 0. Ppt. (Mus- pratt, Phil. Mag. (3) 30. 414.) Lanthanum sulphite, La 2 (S0 3 ) 3 + 4H 2 0. Precipitate. (Cleve.) Lead sulphite, PbS0 3 . Insol. in H 2 0. Decomp. by acids. SI. sol. in H 2 S0 3 + Aq. (Rohrig, J. pr. (2) 37. 233.) Lithium sulphite, Li 2 S0 3 + 6H 2 0. Sol. in H 2 ; precipitated from aqueous solu- tion by abs. alcohol. (Danson, Chem. Soc. 2. 205.) Sol. in H 2 S0 3 + Aq. + H 2 0. SI. sol. in alcohol, 'and still less sol. in ether. (Rohrig, J. pr. (2) 37. 225.) + 2H 2 0. (Rohrig.) Lithium potassium sulphite, LiKS0 3 + |H 2 0. Easily sol. in H 2 0. (Rohrig, J. pr. (2) 37. 251.) Lithium sodium sulphite, 6Li S0 3 , Na 2 S0 3 + 8H 2 0. Sol. inH 2 0. (Rohrig.) Magnesium sulphite, MgS0 3 + 6H 2 0. Sol. in 20 pts. cold, and in less hot E^O. (Fourcroy and Vauquelin.) Sol. in 80 pts. cold, and in 120 pts. boiling H 2 0. (Eager, C. C. 1875. 135.) More easily sol. in H 2 S0 3 + Aq. Precipitated from aqueous solution by alcohol. + 3H 2 0. (Rohrig, J. pr. (2) 37. 234.) Manganous sulphite, MnS0 3 + 2H 2 0. Insol. in H 2 0, alcohol, or ether. Easily sol. in acids, also in H 2 S0 3 + Aq. + 2H 2 0. (Rammelsberg. ) + 3H 2 0. Sol. in 10,000 pts. cold, and 5000 pts. hot H 2 ; more sol. in cone. Mn salts + Aq ; sol. in 1000 pts. H 2 C0 3 + Aq. 100 pts. H 2 S0 3 + Aq dissolve 15-17 pts. (Gorgeu, C. R. 96. 341.) Salt with 2|H 2 is the only one which exists. (Rohrig, J. pr. (2) 37. 2.) Manganous potassium sulphite, 2MnS0 3 , K 2 S0 3 . Insol. in H 2 0, even when boiling. (Gorgeu, C. R. 96. 376.) MnS0 3 , K 2 S0 3 . Sol. in H 2 0. (Gorgeu.) Manganous sodium sulphite, MnS0 3 , Na 2 S0 3 + H 2 0. Insol. in hot H 2 0, but decomp. by cold H 2 0. (Gorgeu.) 4MnS0 3 , Na 2 S0 3 . Insol. in H 2 0. (Gorgeu.) Mercuric sulphite, 2HgO, S0 2 . Insol. in H 2 0. Sol. in HC1, alkali sul- phites with subsequent decomp., and in KCN + Aq. (de St-Gilles, A. ch. (3) 36. 80.) HgS0 3 . Decomp. by cold H 2 0. (de St- Gilles. ) Does not exist. (Divers and Shimidzu, Chem. Soc. 49. 553.) HgO, 2S0 2 + H 2 0. Sol. in H 2 0, but de- comp. by boiling, (de St-Gilles. ) Exists only in aqueous solution. (Divers and Shimidzu.) Mercuromercuric sulphite, Hg 3 (S0 3 ) 2 + 2H 2 = Hg 2 S0 3 , HgS0 3 . Very efflorescent. Insol. in H 2 0. Decomp. by hot H 2 0. Insol. in dil. HN0 3 or H 2 S0 4 + Aq. + 4H 2 0. Very efflorescent. ZT^pomercurosic sulphite, Hg 4 (S0 3 ) 2 + H 2 0. Insol. in H 2 0, but easily decomp. on stand- ing therewith. Almost absolutely insol. in dil. HN0 3 or H 2 S0 4 + Aq. (Divers and Shimidzu. ) Mercuric o^sulphite, Hg(S0 2 OHgO) 2 Hg + H 2 0. Insol. in H 2 0. Decomp. by hot H 2 0. In- sol. in dil. HN0 3 or H 2 S0 4 + Aq. Sol. in H 2 S0 3 + Aq. (Divers and Shimidzu.) Mercuric potassium sulphite, HgS0 3 , K 2 S0 3 + H 2 0. SI. sol. in cold H 2 0. Decomp. on boiling, (de St-Gilles, A. ch. (3) 36. 90.) Mercuric silver sulphite, HgS0 3 , Ag 2 S0 3 + 2H 2 0. Decomp. rapidly ; insol. in H 2 0. (Barth, Z. phys. Ch. 9. 195.) Mercuric sodium sulphite, HgS0 3 , Na 2 S0 3 + H 2 0. Sol. inH 2 0. (de St-Gilles.) 464 SULPHITE, MERCURIC STRONTIUM Sol. in 25 pts. cold H 2 0, and decomp. on heating. (Divers and Shimidzu.) + 2H 2 = Na 2 (S0 3 ) a Hg + 2H 2 0. (Earth, Z. phys. Ch. 9. 193.) 2HgS0 3 , Na 2 S0 3 + H 2 0. Much more sol. in H 2 than the above corap. especially on heat- ing. (deSt-Gilles.) Does not exist. (Divers and Shimidzu.) Mercuric strontium sulphite, HgS0 3 , SrS0 3 + 2H 2 0. Ppt. (Earth.) Nickel sulphite, NiS0 3 + 4H 2 0. Insol. in H 2 0. Sol. in HC1 + Aq with evolu- tion of S0 2 . (Muspratt, A. 50. 259.) + 6H 2 0. Insol. in H 2 0. Sol. in H 2 S0 3 + Aq. (Rammelsberg, Pogg. 67. 391.) Nickel sulphite ammonia, NiS0 3 ,3NH 3 + 3H 2 0. Sol. in little H 2 0. Decomp. by much H 2 or heat. (Rammelsberg, Pogg. 67. 245.) Osmious sulphite, OsS0 3 . Insol. in H 2 0. Easily sol. in HCl + Aq without evolution of S0 2 . Very slowly decomp. byKOH + Aq. (Glaus.) Osmious potassium sulphite, OsS0 3 , 2K 2 S0 3 , 2KHS0 3 + 4H 2 0. Nearly insol. in H 2 0. Osmious potassium sulphite chloride, OsO, 2S0 2 , 6KC1. Easily sol. in H 2 0. Palladious sodium sulphite, PdS0 3 , 3Na 2 S0 3 + 2H 2 = Na 6 Pd(S0 3 ) 4 + 2H 2 0. Sol. in hot H 2 0. Sol. in NaOH + Aq or H 2 S0 3 + Aq. (Wohler and Frerichs, A. 174. 199.) Platinous sulphite, Pt0 2 , 2S0 2 . Easily sol. in H 2 or alcohol. (Dobereiner, J. pr. 15. 315.) Formula is PtS0 3 . (Gmelin.) PtS0 3 , H 2 S0 3 . (Birnbaum, A. 139. 172.) Platinous sulphite with M 2 S0 3 . See Platosulphite, M. Platinum sulphite ammonium chloride. See Chloroplatosulphite, ammonium. Platinic potassium sulphite, Pt0 2 , S0 2 , K 2 S0 3 + H 2 0. Sol. in KOH + Aq. (Birnbaum, A. 139. 173.) Platinic sodium sulphite, Pt0 2 , S0 2 , 2Na 2 S0 3 + 2H 2 0. Sol. in H 2 0. (Birnbaum. ) Potassium sulphite, K 2 S0 3 + 2H 2 0. Somewhat deliquescent. Sol. in 1 pt. cold, and still less hot H 2 0. (Fourcroy and Vauque- lin, A. ch. 24. 254.) Very slightly soluble in alcohol. Insol. in ethyl acetate. (Casaseca, C. R. 30. 821.) Potassium hydrogen sulphite, KHS0 3 . Sol. in H 2 0. Insol. in absolute alcohol. Potassium pyroanlphiie, K 2 S 2 5 . Slowly sol. in H 2 0. Very si. sol. in alcohol ; insol. in ether. (Muspratt, A. 50. 259.) Potassium rhodium sulphite, 3K 2 S0 3 . Rh 2 (S0 3 ) 3 + 6H 2 0. See Rhodosulphite, potassium. Potassium sodium sulphite, KNaS0 3 . Sol. in H 2 0. (Spring, B. 7. 1161.) + 1, and 2H 2 0. (Schwicker, B. 22. 1731.) Isomeric salts, KS0 3 Na and NaS0 3 K. (Earth Z. phys. Ch. 9. 176.) Potassium sodium hydrogen sulphite, KNa 2 H(S0 3 ) 2 + 4H 2 0. Easily sol. in H 2 ; 100 pts. H 2 dissolve 69 pts. salt at 15. (Schwicker, B. 22. 1731.) K 2 NaH(S0 3 ) 2 + 3H 2 0. (Schwicker.) Potassium uranyl sulphite, K(U0 2 )(OH)S0 3 . Insol. in H 2 0, but sol. in H 2 S0 3 + Aq. (Scheller.) Potassium zinc sulphite, K 2 S0 3 , 3ZnS0 3 + Sol. in H 2 with decomp. (Berglund, Acta Lund. 1872.) Rhodium sulphite, Rh 2 (S0 3 ) 3 + 6H 2 0. Sol. in H 2 0. Insol. in alcohol. (Glaus. ) Rhodium sodium sulphite. See Rhodosulphite, sodium. Samarium sulphite, Sm 2 (S0 3 ) 3 . Amorphous precipitate. (Cleve. ) Selenium sulphite, SeS0 3 . Correct composition for " selenium sulph- oxide." (Divers, Chem. Soc. 49. 583.) Silver sulphite, Ag 2 S0 3 . Very si. sol. in cold H 2 0. Decomp. on heat- ing. Easily sol. in NH 4 OH + Aq, and alkali sulphites + Aq. Insol. in H 2 S0 3 + Aq. De- comp. by strong acids, but not by acetic acid. (Berthier, A. ch. (3) 7. 82.) Easily sol. in alkali thiosulphates + Aq. (Herschel.) Practically insol. in HN0 3 + Aq or dil. AgN0 3 + Aq, also in H 2 S0 3 + Aq. (Divers, Chem. Soc. 49. 579.) Silver sodium sulphite, Ag 2 S0 3 , Na 2 S0 3 + 4H 2 0. Decomp. by H 2 0. (Svensson, B. 4. 714.) Sodium sulphite Na 2 S0 3 . 100 pts. dissolve at 0, 14'1 pts.; at 20, 25'8 pts. ; at 40, 49*5 pts. Na 2 S0 3 . (Kremers, Pogg. 99. 50.) Maximum solubility is at 33. (Mitscherlich.) Insol. in alcohol. Insol. in ethyl acetate. (Casaseca, C. R. 30. 821.) + 7H 2 0. Decomp. slowly on air. Sol. in 4 pts. H 2 at 15 with absorption of heat (Dumas), and in 1 pt. boiling H 2 (Four- croy). + 10H 2 0. Efflorescent. Somewhat less sol. than above salt. (Muspratt.) Sodium hydrogen sulphite, NaHS0 3 . More difficultly sol. in H 2 than NaHC0 3 , and is precipitated by alcohol from aqueous solution. (Muspratt.) + 4H 2 0. (Clark.) TANTALATE, MAGNESIUM 465 Sodium ^7/rosulphite, Na 2 S 2 5 . Decomp. gradually on the air. Sodium uranyl sulphite, Na(U0 2 )(OH)S0 3 . SI. sol. in H 2 0. More sol. in H 2 S0 3 + Aq than the K salt. (Scheller. ) Sodium zinc sulphite, Na 2 S0 3 , 3ZnS0 3 + Sol. in H 2 with decomp. (Berglund, Acta Lund, 1872.) Sodium sulphite silver chloride, SNa^SOg, AgCl + 21H 2 0. Sol. in H 2 0. (Svensson.) Strontium sulphite, SrS0 3 . Precipitate. Almost insol. in H 2 0. Sol. in H 2 S0 3 + Aq. (Muspratt. ) Abundantly sol. in H 2 S0 3 + Aq. (Rbhrig.) Tellurium sulphite, TeS0 3 . Correct composition of "tellurium sulph- oxide." (Divers, Chem. Soc. 49. 583.) Thallous sulphite, T1 2 S0 3 . SI. sol. in cold, easily in hot H 2 S0 3 + Aq. (Rohrig, J. pr. (2) 37. 229.) 100 pts. H 2 dissolve 3 '34 pts. at 15 '5. Easily sol. in hot H 2 ; insol. in alcohol. (Seubert and Elken, Z. anorg. 2. 434.) Thorium sulphite, Th(S0 3 ) 2 + H 2 0. Precipitate. (Cleve. ) Stannous sulphite, 5SnO, 2S0 2 + a;H 2 0. Ppt. Partly sol. in H 2 S0 3 + Aq. (Rohrig, J. pr. (2) 37. 249.) + 20H 2 0. (Rohrig.) 8SnO, 2S0 2 + 20H 2 0. HSnO, 2S0 2 + 20H 2 0. (Rohrig.) Uranous sulphite, basic, U(OH) 2 S0 3 + H 2 0. Insol. in H 2 0. Easily sol. in acids. Sol. in H 2 S0 3 + Aq, but is soon decomp. (Ram- melsberg. ) Uranyl sulphite, (U0 2 )S0 3 + 4H 2 0. Insol. in H 2 0. Sol. in H 2 S0 3 + Aq or alco- holic solution of S0 2 . (Rohrig, J. pr. (2) 37. 240.) Yttrium sulphite, Y 2 (S0 3 ) 3 + 3H 2 0. SI. sol. in H 2 0. (Cleve.) Zinc sulphite, basic, 2ZnS0 3 , 3Zn(OH) 2 . (Seubert, Arch. Pharm. 229. 321.) ZnS0 3 , Zn(OH) 2 + H 2 0. (Seubert.) Zinc sulphite, ZnS0 3 + 2, and 2^H 2 0. Very si. sol. in H 2 0. 100 pts. H 2 dissolve 0'16 pt. ZnS0 3 + 2H 2 0. (Henston and Tich- borne, Brit. Med. J. 1890. 1063.) Easily sol. in H 2 S0 3 + Aq. (Koene.) Sol. inNH 4 OH + Aq. Insol. in alcohol. Decomp. into basic salt by boiling H 2 0. (Seubert, Arch. Pharm. 229. 1.) Zinc sulphite ammonia, ZnS0 3 , NH 3 . Decomp. by H 2 0. Sol. in NH 4 OH + Aq. (Rammelsberg, Pogg. 67. 255.) Zirconium sulphite. Insol. in H 2 0. Somewhat sol. in H 2 S0 3 + Aq, from which it is repptd. on boiling. Sol. in (NH 4 ) 2 S0 3 + Aq, from which Zr hydroxide is pptd. on boiling. (Berzelius.) Sulphuryl bromide, S0 2 Br 2 . (Odling, Chem. Soc. 7. 2.) Does not exist. (Sestini, Bull. Soc. 10. 226 ; Melsens, C. R. 76. 92; Michaelis.) Sulphuryl chloride, S0 2 C1 2 . Decomp. by H 2 and alcohol. Z>isulphuryl chloride (P^/rosulphuryl chloride), S 2 5 C1 2 . Decomp. slowly with H 2 0. (Rose, Pogg. 44. 291.) Sol. in CC1 4 , CHC1 3 ; miscible with liquid S0 3 . Sulphuryl hydroxyl chloride, Decomp. on moist air, and violently with H 2 0. Not miscible with CS 2 . Decomp. with alcohol. Sulphuryl titanium chloride, S0 3 , TiCl 4 = TiCl 3 OS0 2 Cl. Slowly deliquescent. (Clausnitzer, B. 11. 2011.) .Z^sulphuryl chloride stannic oxychloride, 5S 2 5 C1 2 , 4SnOCl 2 . Sol. in a little H 2 0, but decomp. by more H 2 0. (Rose, Pogg. 44. 320.) Sulphuryl hydroxyl fluoride, HS0 3 F. Violently decomp. by H 2 0. (Thorpe and Kirwan, Z. anorg. 3. 63.) Sulphuryl peroxide, S0 4 . See Sulphur heptoxide. Sulphydroxyl. See Sulphhydroxyl. Tantalic acid, H 4 Ta 2 O r (?). Sol. in HF (Rose), and KH 3 (C 2 4 ) 2 + Aq (Gahn, Schw. J. 16. 437). At the instant of precipitation is sol. in various acids. (Rose.) Aluminum tantalate. Insol. in H 2 0. (Berzelius.) Ammonium /^mtantalate, (NH 4 ) 2 H 6 Ta 6 19 + H 2 0. Somewhat sol. in H 2 0. (Rose, Pogg. 102. 57.) Barium hexata.ntal&ie, Ba 4 Ta 6 19 + 6H 2 0. SI. sol. in H 2 0. (Rose.) Ferrous tantalate, Fe(Ta0 3 ) 3 . Min. Tantalite. 5FeO, 4Ta 2 5 . Min. Tapiolite. Magnesium Aesratantalate, Mg 4 Ta 6 19 + 9H 2 0. Ppt. (Rose, Pogg. 102. 61.) 4MgO, Ta 2 5 . Insol. in H 2 0. (Joly, C. R. 81. 266.) H 466 TANTALATE, MERCUROUS Mercurous tantalate, 5Hg 2 0, 4Ta 2 5 + 5H 2 0. Decomp. by warm HN0 3 + Aq (1'21 sp. gr.) with separation of Ta 2 5 . (Rose, Pogg. 102. 64.) Potassium tantalate, KTa0 3 . Insol. inH 2 0. Sol. in KOH + Aq. (Marig- nac, A. ch. (4) 9. 249.) Potassium Aecmtantalate, K 8 Ta 6 19 + 16H 2 0. Sol. without decomp. in moderately warm H 2 0. Decomp. by boiling. (Marignac, A. ch. (4) 9. 259.) Silver tantalate, 4Ag 2 0, 3Ta 2 5 . Completely sol. in NH 4 OH + Aq. HN0 3 + Aq dissolves Ag 2 0, and Ta 2 5 separates out. (Rose, Pogg. 102. 64.) Sodium tantalate, NaTa0 3 . Insol. in H 2 0. (Rose. ) Sodium hexatanta.la.te, Na 8 Ta 6 19 + 25H 2 0. 1 pt. salt, dissolves in 493 pts. H 2 at 13 '5, and in 162 pts. at 100. Very slightly sol. in alcohol. Insol. in alkaline solutions. (Rose. ) Tantalum, Ta. Probably has not been obtained in an absol- utely pure state. Not attacked by HC1, HN0 3 , aqua regia, or hot cone. H 2 S0 4 . Easily sol. in a mixture of HN0 3 and HF (Berzelius, Pogg. 4. 6 ; Rose). Also sol. in HF alone (Berzelius). Not attacked by alkali hydrates + Aq. Tantalum bromide, TaBr 5 . Decomp. by H 2 0. (Rose. ) Tantalum chloride, TaCl 5 . Takes up H 2 from the air without deli- quescing. Decomp. by H 2 0. Sol. in H 2 S0 4 . Sol. in cold HC1 + Aq to a cloudy liquid, which gelatinises after a time. Not completely sol. in boiling HC1 + Aq, and the solution does not gelatinise by the subsequent addition of water, but all goes into solution. Partly sol. in KOH + Aq. Insol. in K 2 C0 3 + Aq. Sol. in absolute alcohol. Tantalum fluoride, TaF 5 . Known only in solution in HF, which may contain a fluotantalic acid, H 2 TaF 7 . With MF. tfee.Fluotantalate, M. Tantalum nitride, TaN. Not sol. in any acids, except a mixture of HF and HN0 3 . (Rose, Pogg. 100. 146.) Ta 3 N 5 . (Joly, Bull. Soc, (2) 25. 506.) Tantalum hydroxide, Ta 2 5 , ccH 2 0. See Tantalic acid. Tantalum dioxide, Ta 2 2 (?). Sol. in HF with evolution of hydrogen. (Hermann, J. pr. (2) 5. 69.) Tantalum ^roxide, Ta 2 4 . Not attacked by any acid, not even a mixture of HN0 3 and HF. (Berzelius, Pogg. 4. 20.) Tantalum pentoxide, Ta 2 5 . Insol. in any acid, not even boiling H 2 S0 4 or in HF. (Berzelius.) Sol. in fused KHS0 4 , 10 pts. being necessary to dissolve 1 pt. Ta 2 5 . Tantalum sulphide, Ta 2 S 4 . Not attacked by HCl + Aq. Oxidised by boiling with HN0 3 + Aq, more rapidly with aqua regia. Attacked by H 2 S0 4 on heating. Not completely sol. in HF or a mixture of HF and.HN0 3 . Telluretted hydrogen, TeH 2 . See Hydrogen telluride. Telluric acid, H 2 Te0 4 . Insol. in H 2 0, cold cone. HC1, hot HN0 3 , or boiling KOH + Aq, but when heated with H 2 is gradually converted into H 2 Te0 4 + 2H 2 and dissolved. + 2H 2 0. Very slowly sol. in cold H 2 0, but sol. in hot H 2 in every proportion. Insol. in absolute alcohol ; sol. in dil. alcohol according to the amount of H 2 present. Sol. in acids and alkalies. Insol. in alcohol or ether. Tellurates. Neutral alkali salts are sol. in H 2 ; the acid salts are only si. sol. therein, but dissolve in HCl + Aq. Aluminum tellurate. Ppt. Sol. in excess of aluminum salts + Aq. (Berzelius.) Ammonium tellurate, (NH 4 ) 2 Te0 4 . Slowly but completely sol. in H 2 0. SI. sol. in NH 4 OH + Aq or NH 4 Cl + Aq. SI. sol. in alcohol. (Berzelius.) (NH 4 ) 2 0, 2Te0 3 . SI. sol. in H 2 0, but more sol. than the corresponding K salt. (NH 4 ) 2 0, 4Te0 3 . Very si. sol. in H 2 0. Insol. in alcohol. (Berzelius.) Barium tellurate, BaTe0 4 + 3H 2 0. SI. sol. in cold, more in boiling H 2 0. Easily sol. in HN0 3 + Aq. (Berzelius.) BaH 2 (Te0 4 ) 2 + 2H 2 0. More sol. in H 2 than BaTe0 4 . Decomp. by H 2 0. (Berzelius.) BaO, 4Te0 3 . More sol. in H 2 than either BaTe0 4 or BaH 2 (Te0 4 ) 2 . (Berzelius.) Bismuth tellurate, Bi 2 Te0 6 + 2H 2 0. Min. Montanite. Sol. in HCl + Aq with evolution of Cl. Cadmium tellurate, CdTe0 4 . Ppt. Sol. in HCl + Aq. (Oppenheim.) Calcium tellurate, CaTe0 4 . Ppt. Sol. in hot H 2 0. (Berzelius.) Chromic tellurate, Cr 2 (Te0 4 ) 3 . Ppt. Sol. in excess of Cr salts + Aq. Cobaltous tellurate. Ppt. (Berzelius.) Cupric tellurate, CuTe0 4 . Ppt. (Berzelius.) CuO, 2Te0 3 . Ppt. (B.) Glucinum tellurate, GlTe0 4 . Insol. in H 2 0. TELLURIUM OXIDE 467 Ferrous tellurate, FeTe0 4 . Ppt. Min. Ferrotellurate. Ferric tellurate, Fe 2 (Te0 4 ) 3 . Ppt. Sol. in ferric salts + Aq. (Berzelius.) Lead tellurate, basic. Not completely insol. in H 2 0. Lead tellurate, PbTe0 4 . Somewhat sol. in H 2 0. PbO, 2Te0 3 . More sol. than PbTe0 4 . PbO, 4Te0 3 . SI. sol. in H 2 0. Sol. in HN0 3 + Aq, less sol. in HC 2 H 3 2 + Aq. (Ber- zelius.) Lithium tellurates. Resemble K salts. Magnesium tellurate, MgTe0 4 . Ppt. More sol. in H 2 than the Ba, Sr, or Ca salts. MgTe 2 7 . More sol. in H 2 than MgTe0 4 . Manganous tellurate. Ppt. Mercurous tellurate, Hg 2 Te0 4 . Ppt. Min. Magnolite. Mercuric tellurate. Ppt. (Berzelius.) Nickel tellurate. Ppt. Potassium tellurate, K 2 Te0 4 + 5H 2 0. Deliquesces. Sol. in H 2 0. Very si. sol. in H 2 containing KOH. Insol. in alcohol. (Berzelius.) K^O, 2Te0 3 . Insol. in H 2 0, acids, or alkalies. (B.) KHTe0 4 + |H 2 0. SI. sol. in cold, more sol. in hot HoO. (Berzelius.) K 2 0, 4Te0 3 . Insol. in H 2 0, HC1, or HN0 3 + Aq. Sol. by long heating with cone. HN0 3 + q KHTe0 4 , H 2 Te0 4 + iH 2 0. SI. sol. in H 2 0. Silver tellurate, 3Ag 2 0, Te0 3 . Sol. inNH 4 OH + Aq. 3Ag 2 0, 2Te0 3 . Insol. in boiling H 2 0. Ag 2 Te0 4 . Decomp. by H 2 into 3Ag 2 0, Te0 3 . Sol. inNH 4 OH + Aq. Ag 2 Te 2 7 . Ppt. Ag 2 0, 4Te0 3 . Ppt. Sodium tellurate, Na 2 Te0 4 + 2H 2 0. Very si. sol. in hot or cold H 2 0. When heated to drive off 2H 2 becomes insol. in H 2 0, but sol. in dil. HN0 3 + Aq. (Berzelius.) aC 2 H 3 2 + Aq. Insol. in Na 2 0, 4Te0 3 . Insol. in H 2 0, acids, or alkalies, except by long boiling with HN0 3 + Aq. + xH 2 0. (a) Slowly sol. in H 2 0. (/3) Insol. even in boiling H 2 0. j Strontium tellurates. Resemble Ca salts. Thallium tellurate. Ppt. (Clarke, Sill. Am. 3. (3) 16. 401.) Thorium tellurate. Ppt. Insol. in excess of thorium salts + Aq. Uranium tellurate, U 2 (Te0 4 ) 3 (?). Ppt. Insol. in H 2 or U0 2 (N0 3 ) 2 + Aq. Yttrium tellurate. Ppt. Insol. in H 2 or Yt salts + Aq. Zirconium tellurate. Ppt. (Berzelius.) Tellurium, Te. Insol. in H 2 or HCl + Aq. SI. sol. in hot cone. H 2 S0 4 , but separates out on cooling. Sol. in boiling cone. H 2 S0 4 . Easily oxidised by HN0 3 or aqua regia. Sol. in boiling very cone. KOH + Aq, separating out again on cooling. Not attacked by boiling cone. HN0 3 + Aq, according to Hartung - Schwartzkoff (Ann. Min. (4) 19. 345). Sol. in warm cone. KCN + Aq. 100 pts. methylene iodide dissolve O'l pt. Te at 12. (Retgers, Z. anorg. 3. 343.) Tellurium ^bromide, TeBr 2 . Decomp. on air or by H 2 0. (Rose, Pogg. 21. 443.) Tellurium ^rabromide, TeBr 4 . Sol. in a little, but decomp. by much H 2 0. + H 2 0. Very deliquescent. Tellurium ^'chloride, TeCl 2 . Decomp. on air, or by H 2 or HCl + Aq. (Rose, Pogg. 21. 443.) Tellurium ^rachloride, TeCl 4 . Extremely deliquescent. Decomp. by cold H 2 0, with separation of oxychloride and tel- lurous acid. Sol. in hot H 2 with decomp. Sol. in dil. HC1 + Aq without decomp. (Rose, Pogg. 21. 443.) Tellurium chloride with MCI. See Chlorotellurate, M. Tellurium chloride ammonia, TeCl 4 , 4NH 3 . Not deliquescent. Decomp. by H 2 0. (Es- penschied, J. pr. 80. 480.) Tellurium ^rafluoride, TeF 4 + H 2 0. (Hogbom, Bull. Soc. (2) 35. 60.) Tellurium duodide, TeI 2 . Insol. in H 2 0. (Rose, Pogg. 21. 443.) Tellurium ^raiodide, TeI 4 . Insol. in cold, decomp. by hot H 2 or alcohol. Sol. in HI, but only si. sol. in MI + Aq. (Berzelius.) Tellurium monoxide, TeO. SI. sol. in cold dil. HC1 or H 2 S0 4 + Aq. Easily oxidised by HN0 3 + Aq or aqua regia. Decomp. immediately by boiling cone. HC1 + Aq. Slowly decomp. by KOH + Aq. (Divers and Shimose, Chem. Soc. 35. 563.) 468 TELLURIUM OXIDE Tellurium dioxide, Te0 2 . Yery si. sol. in H 2 0. SI. attacked by acids. SI. sol. in NH 4 OH or alkali carbonates + Aq. Easily sol. in NaOH or KOH + Aq. Not sol. in less than 150,000 pts. H 2 0. Easily sol. in warm dil. HN0 3 + Aq. Sol. in warm H 2 S0 4 + Aq. (Klein and Morel, Bull. Soc. (2) 43. 203.) Min. Tellurite. Tellurium dioxide hydrobromic acid, Te0 2 , 3HBr. (Ditte, C. R. 83. 336.) Tellurium dioxide hydrochloric acid, Te0 2 , 2HC1. (Ditte, C. R. 83. 336.) Te0 2 , 3HC1. (Ditte.) Tellurium dioxide, Te0 3 . Insol. in cold or hot H 2 0, cold HC1 + Aq, or cold or hot HN0 3 + Aq. Insol. in moderately cone. KOH + Aq, but, when the KOH + Aq is very cone., is sol. if boiling. Tellurium oxybromide. Insol. in H 2 0. (Ditte, A. ch. (5) 10. 82.) Tellurium oxychloride, TeOCl 2 . Insol. in H 2 0. (Ditte.) Tellurium ^sulphide, TeS 2 . Insol. in H 2 or dil. acids. Sol. in alkali hydrates or sulphides + Aq. CS 2 dissolves out S, so that the substance is probably a mixture. (Becker, A. 180. 257.) Tellurium bisulphide, TeS 3 . Insol. in H 2 0. Sol. in K 2 S + Aq. Tellurium sulphoxide, TeS0 3 . Decomp. by H 0. Sol. in H 2 S0 4 . (Weber, J. pr. (2) 25. 2180 Is tellurium sulphite. (Divers, Chem. Soc. 49. 583.) Tellurous acid, H 2 Te0 3 . Appreciably sol. in H 2 and acids. Sol. in alkali hydrates or carbonates + Aq. Tellurites. The neutral and acid tellurites of the alkali metals are sol. in H 2 0. Ba, Sr, Ca, and Mg tellurites are si. sol., and the other salts insol. in H 2 0. Most tellurites are sol. in HC1 + Aq. Aluminum tellurite. Ppt. Insol. in Al salts + Aq. (Berzelius.) Ammonium tellurite, (NH 4 )HTe0 3 , H 2 Te0 3 + 3^H 2 0. Sol. in H 2 0, from which it is precipitated by NH 4 C1 + Aq or alcohol. (Berzelius. ) Barium tellurite, BaTe0 3 . SI. sol. in H 2 when prepared in the moist way. (Berzelius.) BaO, 4Te0 2 . Cadmium tellurite. Ppt. Sol. inHN0 3 , and HCl+Aq. (Oppen- heim. ) Calcium tellurite, CaTe0 3 . SI. sol. in cold, more sol. in hot H 2 0. (Ber- zelius.) CaO, 4Te0 2 . Chromium tellurite. Ppt. Sol. in excess of chromic salts + Aq. Cobaltous tellurite. Ppt. Cupric tellurite. Insol. in H 2 0. (Berzelius.) Glucinum tellurite. Insol. in H 2 0. Ferrous tellurite. Ppt. Ferric tellurite. Ppt. Lead tellurite, PbTe0 3 . Ppt. Easily sol. in acids. (Berzelius.' Lithium tellurite, Li 2 Te0 3 . Sol. inH 2 0. (Berzelius.) Li 2 0, 2Te0 2 . Decomp. by cold H 2 into Li 2 Te0 3 and Li 2 0, 4Te0 2 . (B.) Li 2 0, 4Te0 2 . Sol. in hot, much less in cold H 2 0. (B.) Magnesium tellurite, MgTe0 3 . Precipitate. Much more sol. in H 2 than the Ba, Sr, or Ca salt. (Berzelius.) Manganous tellurite. Ppt. Mercurous tellurite. Ppt. Mercuric tellurite. Ppt. Nickel tellurite. Ppt. Potassium tellurite, K 2 Te0 3 . Not deliquescent. Slowly sol. in cold, more quickly in boiling H 2 0. (Berzelius.) K 2 0, 2Te0 2 . Completely sol. in boiling H 2 0, from which K 2 0, 4Te0 2 crystallises. (B. ) K 2 0, 4Te0 2 + 4H 2 0. Decomp. by cold H 2 into K 2 0, Te0 2 , and K 2 0, 2Te0 2 , which dissolve, and H 2 Te0 3 , which is insol. (B.) Potassium /i&mteHurite, K 2 0, 6Te0 2 + 2H 2 0. Not decomp. by, but si. sol. in H 2 0. (Klein and Morel, C. R. 100. 1140.) Silver tellurite, Ag 2 Te0 3 . Ppt. Sol. in NH 4 OH + Aq. (Berzelius. ) AgHTe0 3 . Insol. in H 2 0. Sol. in HN0 3 + Aq. (Rose, Pogg. 18. 60.) Sodium tellurite, Na 2 Te0 3 . Slowly sol. in cold, more quickly in hot H 2 0. Precipitated from aqueous solution by alcohol. (Berzelius.) Na 2 0, 2Te0 2 . Decomp. by H 2 as K salt. (B.) Na 2 0, 4Te0 2 + 5H 2 0. As above. (B.) .THALLOTHALLIC BROMIDE 469 Strontium tellurite, SrTe0 3 . Resembles Ba salt. SrH 2 Te 4 10 . Very si. sol. in H 2 0, more easily in HN0 3 + Aq. Thorium tellurite. Precipitate. Insol. in H 2 or Th salts + Aq. Staunous tellurite. Pptd. in presence of 60,000 pts. H 2 0. (Fischer.) Uranium tellurite, U 2 (Te0 3 ) 3 . Ppt. Insol. in U salts + Aq. Yttrium tellurite. Precipitate. Zinc tellurite, ZnTe0 3 . Ppt. Zirconium tellurite. Ppt. Terbium, Tr. * Metal has not been isolated. Has been decomp. into two or more elements by Kriiss (Z. anorg. 4. 27). Terbium hydroxide. Sol. in dilute acids. Decomposes NH 4 salts + Aq. Terbium oxide, Tr 2 3 . Sol. in dil. acids, even after ignition. Tetramine chromium compounds. See Bromotetramine chromium compounds. Chlorotetramine chromium compounds, lodotetramine chromium compounds. Tetramine cobaltic compounds, Co(NH 3 ) 4 X 3 . See Bromotetramine cobaltic compounds. Carbonatotetramine cobaltic compounds. Chlorotetramine cobaltic compounds. Croceocobaltic compounds. Fuscocobaltic compounds. Flavocobaltic compounds, lodotetramine cobaltic compounds. Nitratotetramine cobaltic compounds. Praseocobaltic compounds. Roseotetramine cobaltic compounds. Sulphatotetramine cobaltic compounds. See also under octamine cobaltic salts for many tetramine salts as yet unclassified. Tetramine cobaltic nitrite with MN0 2 , Co 2 (NH 3 ) 4 (N0 2 ) 6 , 2MN0 2 . See Diamine cobaltic nitrite. Tetrathionic acid, H 2 S 4 6 . Known only in aqueous solution. Dil. solution can be boiled without decomp. Cone, solution decomp. by boiling. Addition of H 2 S0 4 or HC1 makes solution more stable. (Fordos and Gelis, C. R. 15. 920.) Tetrathionates. Tetrathionates are all easily sol. in H 2 0, but insol. in alcohol. Barium tetrathionate, BaS 4 6 + 2H 2 0. [ Very sol. in H 2 0, but precipitated by addi- tion of alcohol. Cadmium tetrathionate. Deliquescent. Solution in H 2 gradually decomposes. (Kessler, Pogg. 74. 249.) Copper tetrathionate. Sol. in H 2 0. (Fordos and Gelis.) Lead tetrathionate, PbS 4 6 + 2H 2 0. Sol. in H 2 0. Manganous hydrogen tetrathionate, MnH 2 (S 4 6 ) 2 . Deliquescent. Very sol. in H 2 and alcohol. (Curtius and Henkel, J. pr. (2) 37. 148.) Potassium tetrathionate, K 2 S 4 6 . Soluble in H 2 0. Insol. in alcohol. Sodium tetrathionate, Na 2 S 4 6 . Sol. in H 2 0. Precipitated therefrom by a great excess of alcohol. (Kessler, J. pr. 95. 13.) + 2H 2 0. (Berthelot, A. ch. (6) 17. 450.) Strontium tetrathionate, SrS 4 6 + 6H 2 0. Sol. in H 2 0. (Kessler, Pogg. 74. 255.) More sol. in H 2 than Ba salt. Zinc tetrathionate. Sol. in H 2 0. (Fordos and Gelis.) Zinc hydrogen tetrathionate, ZnH 2 (S 4 6 ) 2 . Extremely sol. in H 2 and alcohol. (Curtius and Henkel, J. pr. (2) 37. 147.) Thallic acid. Potassium thallate. Known only in aqueous solution. (Carstan- jen, J. pr. 101. 55.) Does not exist. (Lepsius, Chem. Ztg. 1890. 1327.) Thallium, Tl. Not attacked by pure H 2 0. Easily sol. in dil. H 2 S0 4 or HN0 3 + Aq. Difficultly sol. in HCl + Aq. Absolute alcohol dissolves con- siderable quantity in a short time, also methyl alcohol, and acetic ether. (Bottger.) Not easily attacked by HF + Aq. (Kuhl- mann.) Thallium arsenide, TIAs. Decomp. by H 2 S0 4 . (Carstanjen.) Thallous bromide, TIBr. Nearly insol. in cold, si. sol. in boiling H 2 0. (Willm, Bull. Soc. (2) 2. 89.) 1 pt. H 2 dissolves '00869 pt. TIBr at 68'5. (Noyes, Z. phys. Ch. 6. 248.) Thallic bromide, TlBr 3 . Deliquescent. Easily sol. in H 2 and alcohol. (Willm.) Thallothallic bromide, STIBr, TlBr 3 . Decomp. by H 2 into TIBr and TlBr 3 . TIBr, TlBr 3 . Decomp. by boiling H 2 0. (Willm.) 470 THALLIC BROMIDE AMMONIA Thallic bromide ammonia, TlBr 3 , 3NH 3 . Decomp. by H 2 0. Thallous chloride, T1C1. Sol. in pts. H 2 at t, according to H = Hebberling; C = Crookes ; L = Lamy. 15 16 16-5 504 283-4 377 359 pts. H 2 0, H C H H 100 100 100 about 50 52-5 63 pts. H 9 0. L C H 1 pt. H 2 dissolves 0'0161 pt. T1C1 at 25. (Noyes, Z. phys. Ch. 6. 249.) Much less sol. in H 2 containing HC1 or HN0 3 . Nearly insol. in NH 4 OH + Aq. Insol. in alcohol. Easily sol. in hot HgCl 2 + Aq. (Carstan- jen.) Solubility in HC1 + Aq. 1 pt. dissolves pts. T1C1. g. HC1 added Pts. T1C1 g. HC1 added 0-1468 i-ooo Pts. T1C1 0-00316 0-00200 0-0283 0-0560 0-01610 0-00836 0-00565 (Noyes, Z. phys. Ch. 6. 249.) Thallic chloride, T1C1 3 + H 2 0. Deliquescent, and very easily sol. in H 2 0. (Werther.) + 7|H 2 0. Deliquescent. (Werther.) Thallothallic chloride, 3T1C1, T1C1 3 . 1 pt. dissolves in pts. H 2 at t, according to C = Crookes ; H = Hebberling ; L = Lamy . 15 17 100 100 380-1 346 52-9 20-25 pts. H 2 0. C H C L SI. decomp. by dissolving. (Lamy.) T1C1, T1C1 3 . SI. deliquescent. (Lamy.) Thallic chloride ammonia, T1C1 3 , 3NH 3 . Decomp. by H 2 0. Sol. in HCl + Aq. (Willm.) Thallous fluoride, T1F. Sol. in 1J pts. H 2 at 15, and in much less hot H 2 0. Difficultly sol. in alcohol. (Buch- ner, W. A. B. 52, 2. 644.) + H 2 0. Deliquescent. (Willm.) Thallous hydrogen fluoride, T1F, HF. Sol. in 1 pt. H 2 0. (Buchner.) Thallic fluoride, T1F 3 . Insol. in H 2 and cold HCl + Aq. (Willm.) Thallous hydroxide, T10H. Sol. in H 2 and alcohol. + H 2 0. (Willm, Bull. Soc. (2) 5. 354.) Thallic hydroxide, T1 2 3 , H 2 = T10(OH). Insol. in H Q 0. Sol. in dil. acids and am- monium salts +Aq. Insol. in caustic alkali solutions. T1(OH) 3 . Easily sol. in dil. HC1 or H 2 S0 4 + Aq. (Carnegie, C. N. 60. 113.) Thallous iodide, Til. Very si. sol. in H 2 0. 1 pt. Til is sol. in pts. H 2 at t. C = accord- ing to Crookes ; H = according to Hebberling ; L = according to Lamy ; W according to Werther. 13-5 15 16 16-17 19-4 20,000 4450 16,000 11,676 14,654 pts. H 2 0, W C L H W 20 23-4 45 11,954 10,482 5407 W W W 100 842 C 100 804 pts. H 2 0. H Sol. in 17,000 pts. H 2 at 20. (Long, Z. anal. 30. 342.) Insol. in dil. KI + Aq (1 % KI). bigny.) Mi (Bau- [uch more insol. in KI + Aq than in H 2 1 pt. dissolves in 75,000 pts. dil. KI + Aq. (Lamy.) Also less sol. in acetic acid than in H 2 0. (Carstanjen.) Not decomp. by dil. H 2 S0 4 , HC1, or alkalies + Aq. Decomp. by hot dil. HN0 3 + Aq, and cold cone. HN0 3 . Sol. in aqua regia. Nearly insol. in Na 2 S 2 3 + Aq, and absolutely insol. therein in presence of Pb salts. (Wer- ner, C. N. 53. 51.) Insol. in NH 4 OH + Aq. (Werther.) Not wholly insol. in NH 4 OH + Aq, and solubility is increased by presence of (NH 4 ) 2 S0 4 01 NH 4 C1. (Baubigny, C. R. 113. 544.) Sol. in 13,000 pts. NH 4 OH + Aq (6 or 2 NH 3 ). Sol. in 17,000 pts. NH 4 OH + Aq (li%NH 3 ). (Long.) Sol. in 56,336 pts. 85 % alcohol at 13. (Werther.) Sol. in 18,934 pts. 98 % alcohol at 19. (Hebberling.) When Til is shaken with alcohol of 78 C (1 vol. H 2 + 3 vols. 98 % alcohol) at 22, and let stand with Til for 24 hours, and then evaporated to vol., there is shown no ppt. by NH 4 SH + Aq. (Baubigny.) Sol. in 260,000 pts. 90 % alcohol, and 37,000 pts. 50 % alcohol at 20. (Long.) Insol. in methylene iodide. (Retgers, Z. anorg. 3. 343.) Thallic iodide, T1I 3 . Sol. in ether. Thallothallic iodide, T1 8 I 4 = 5T1I, T1I 3 . Sol. in H 2 0. (Jorgensen, J. pr. (2) 6. 82.) Thallous oxide, T1 2 0. Deliquescent. Sol. in H 2 0. See Thallous hydroxide. Thallic oxide, T1 2 3 . Insol. in H 2 0. Not attacked by cold H 2 S0 4 . Sol. in hot H 2 S0 4 . Sol. in cold HCl + Aq. Insol. in alkalies + Aq. (Werther, J. pr. 91. 385.) THIOPHOSPHAMATE, ZINC 471 Thallium dioxide, T10 2 . Insol. in H 2 0. (Piccini, Gazz. ch. it. 17. 450.) Thallic oxide ammonia, T1 2 3 , 6NH 3 . Decomp. by much H 2 0. Insol. in alcohol. (Carstanjen.) Thallium phosphide (?). Ppt. (Crookes.) Thallous selenide, Tl 2 Se. Insol. in H 2 0. Scarcely attacked by cold dil. H 2 S0 4 + Aq, but dissolves when heated. (Carstanjen.) Thaliothallic selenide. Not attacked by cold cone, or boiling dil. H 2 S0 4 + Aq. Cone. H 2 S0 4 decomposes. (Car- stanjen.) Thallous sulphide, T1 2 S. Insol. in H 2 0, (NH 4 ) 2 S + Aq, NH 4 OH + Aq, KCN + Aq, and in alkali carbonates, and hydrates + Aq. Difficultly sol. in a solution of oxalic acid or acetic acid. (Crookes. ) Easily sol. in HN0 3 , and H 2 S0 4 + Aq. Difficultly sol. inHCl + Aq. (Willm.) Thallic sulphide, T1 2 S 3 . Insol. in H 2 0. Insol. in cold, sol. in warm dil. H 2 S0 4 + Aq without separation of S. Sol. in other "dilute acids with separation of S. (Carstanjen.) Thaliothallic sulphide, 5T1 2 S, 3T1 2 S 3 . Very slowly decomp. by cold dil. H 2 S0 4 + q fl 2 S, T1 2 S 3 . (Carstanjen.) T1 2 S, 2T1 2 S 3 . Decomp. by dil. acids. (Schneider, J. pr. (2) 10. 55.) Thallium telluride, Tl 2 Te. (Fabre, C. R. 105. 673.) Thio- For acids and salts with prefix thio-, see also under sulpho-. Thioantimonic acid. See Sulphantimonic acid. Thioarsenic acid. See Sulpharsenic acid. Thiomolybdic acid. See Sulphomolybdic acid. Thionamic acid, NH 3 S0 2 =NH 2 SO(OH). Very deliquescent, and sol. in H 2 0. H 2 solution decomp. gradually. (Rose, Pogg. 33. 275; 42. 425.) Ammonium thionamate, NH 2 SO(ONH 4 ). Deliquescent. Sol. in H 2 ; easily decomp. when in solution. (Rose.) ^'thionic acid. See Dithionic acid. TWthionic acid. See Trithionic acid. Tetrafhionic acid. See Tetrathionic acid. PentaiTaiomc acid. See Pentathionic acid. Thionyl amide, S0 2 (NH 2 ) 2 . Very sol. in H 2 0. (Regnault, A. -ch. 69. 170; Mente, A. 248. 267.) Insol. in alcohol, ether, etc. (Traube, B. 26. 607.) Silver thionyl amide, S0 2 (NHAg) 2 . SI. sol. in cold H 2 0. Sol. in HN0 3 , and (NH 4 ) 2 C0 3 + Aq. (Traube, B. 26. 607.) Thionyl chloride, S0 2 C1. Decomp. by moist air, water, or abs. alcohol ; more rapidly by alkalies, HC1, S0 2 , etc. (Schiff, A. 102. 111.) Thionyl imide, S0 2 NH. Sol. in H 2 0. (Traube, B. 26. 607.) Ammonium thionyl imide, S0 2 N(NH 4 ). Sol. in H 2 ; insol. in alcohol. (Traube. ) Barium , (S0 2 N) 2 Ba + 2H 2 0. Sol. in H 2 0. (Traube.) Potassium , S0 2 NK. Not very sol. in H 2 0. Sodium , S0 2 NNa. Very sol. in H 2 0. Thiophosphamic acid, H 2 PNH 2 2 S (?). Known only in its salts. (Gladstone and Holmes, Chem. Soc. (2) 3. 1.) Cadmium thiophosphamate, CdPNH 2 2 S. Sol. in dil. acids, and NH 4 OH + Aq. (G. and H. ) Lead , PbPNH 2 2 S. Ppt. Sol. in dil. HN0 3 + Aq. (Gladstone and Holmes, Chem. Soc. (2) 3. 1.) Thiophosphocftamic acid, H 2 PN 2 H 4 OS. Known only in solution, which soon decom- poses. (G. and H.) Cadmium thiophospho^amate, Cd(PN 2 H 4 OS) 2 . Insol. in H 2 ; sol. in dil. acids, and NH 4 OH + Aq. (G. andH.) Cupric , Cu(PN 2 H 4 OS) 2 . Insol. in H 2 0, dil. HC1, or NH 4 OH + Aq. Sol. in KCN + Aq. (Gladstone and Holmes, Chem. Soc. (2) 3. 1.) Lead , Pb(PN 2 H 4 OS) 2 . Insol. in H 2 0. Sol. in dil. HN0 3 + Aq, Nickel , Ni(PN 2 H 4 OS) 2 . Sol. in dil. acids, and NH 4 OH + Aq. (Glad- stone and Holmes, Chem. Soc. (2) 3. 1.) Zinc , Zn(PN 2 H 4 OS) 2 . Ppt. Sol. in dil. acids, and NH 4 OH + Aq. (Gladstone and Holmes.) 472 THIOPHOSPHORIC ACID Thiophosphoric acid, H 3 PS0 3 = PS(OH) 3 . Known only in its salts. Ammonium magnesium thiophosphate, NH 4 MgPS0 3 + 9H 2 0. SI. sol. in cold H 2 0. (Kubierschky, J. pr. (2) 31. 100.) Barium , Ba 3 (PS0 3 ) 2 . Insol. in H 2 0. (Wurtz, A. oh. (3) 20. 473.) Cobalt . Insol. in H 2 0, but partially decomp. when boiled therewith. (Wurtz.) Cupric . Insol. in H 2 ; very easily decomp. (Wurtz.) Ferric . Insol. in H 2 0. (Wurtz.) Magnesium , Mg 3 (PS0 3 ) 2 + 20H 2 0. SI. sol. in cold H 2 0. (Kubierschky, J. pr. (2) 31. 99.) Nickel . Insol. in H 2 0, but decomp. when boiled therewith. (Wurtz. ) Potassium , K 3 PS0 3 . Very sol. in H 2 0. Known only in aqueous solution. (Wurtz.) Sodium , Na 3 PS0 3 + 12H 2 0. Easily sol. in boiling H 2 0. Cryst. out on cooling. (Wurtz, A. ch. (3) 20. 472.) Insol. in alcohol. Strontium . Insol. in H 2 0. (Wurtz.) Z^'thiophosphoric acid, H 3 PS 2 2 . Known only in its salts. Ammonium dithiophosphate, (NH 4 ) 3 PS 2 2 + 2H 2 0. SI. efflorescent. Sol. in H 2 0. (Kubierschky, J. pr. (2) 31. 93.) Ammonium magnesium , NH 4 MgPS 2 2 + 6H 2 0. SI. sol. in cold H 2 0. (Kubierschky.) Barium , Ba 3 (PS 2 2 ) 2 +8H 2 0. Precipitate. (Kubierschky, J. pr. (2) 31. 103.) Calcium . Very easily decomposed. (Kubierschky.) Sodium , Na 3 PS 2 2 + llH 2 0. Very sol. in H 2 0. (Kubierschky, J. pr. (2) 31. 93.) Thiophosphorous acid. Ammonium thiophosphite (?), (NH 4 ) 4 P 2 S 2 3 + 3H 2 0. Sol. in H 2 0. (Lemoine, C. R. 98. 45.) + 6H 2 0. Sodium thiophosphite (?), Na 4 P 2 S 2 3 P 2 3 , 2Na 2 S + 5H 2 0. Sol. in H 2 0. (Lemoine, C. R. 98. 45.) 2H 2 S + 2H 2 0. Sol. in H 2 0. (Lemoine, I.e.) Thiophosphoryl amide, PS(NH 2 ) 3 . Rapidly decomp. by H 2 0. Scarcely sol. in alcohol, ether, or CS 2 . (Chevrier, C. R. 66. 748.) Jfetathiophosphoryl bromide, PS 2 Br. Decomp. by H 2 0. Insol. in ether. (Michaelis, A. 164. 9.) Or^othiophosphoryl bromide, PSBr 3 . Slowly decomp. by cold, rapidly by hot H 2 0, but volatile with only partial decomp. with steam. Easily sol. in ether, CS 2 , PC1 3 , PBr 3 . Decomp. by cold alcohol. Forms hydrate PSBr 3 + H 2 0. (Michaelis, A. 164. 9.) PT/rothiophosphoryl bromide, P 2 S 3 Br 4 . Decomp. by H 2 and alcohol. Sol. in CS 2 and ether. (Michaelis.) Thiophosphoryl phosphorus bromide, PSBr 3 , PBr 3 . Decomp. by H 2 into PSBr 3 . (Michaelis.) Thiophosphoryl chloride, PSC1 3 . Very slowly decomp. by H 2 0, and may be distilled with steam without much decomp. Decomp. by alcohol. Miscible with CS 2 . (Baudrimont, J. pr. 87. 301.) Thiophosphoryl pentachloride, PS 2 C1 5 (?). Decomp. by H 2 0. Sol. in alkalies with residue of S. Attacked violently by HN0 3 , alcohol, ether, oil of turpentine. Miscible with CS 2 . (Gladstone, Chem. Soc. 3. 5.) Thiophosphoryl fluoride, PSF 3 . Slowly sol. in H 2 with decomp. SI. sol. in ether. Insol. in H 2 S0 4 , CS 2 , or benzene. (Thorpe and Rodger, Chem. Soc. 55. 306. ) More sol. in KOH or NaOH + Aq than in H 2 0. Thiosulphuric (formerly Hyposulphur- ous) acid, H 2 s 2 3 .j Known only in aqueous solution, which is extremely unstable, and decomposes very quickly after its formation. The time before decomposition is exactly proportional to the ratio of the weight of HgO to the weight of H 2 S 2 3 present ; i.e., if one solution contains twice as much H 2 for a given amt. of H 2 S 2 3 as a second solution, the first solution will decompose in twice the length of time. The length of time is about 20 sees, at 10, and 2 sees, at 50 for cone, solutions, to 120 sees, at 10 and 12 sees, at 50 for very dilute solu- tions. See Landolt (B. 16. 2958) for further figures ; also Winkelmann (B. 18. 406). Thiosulphates. The thiosulphates of the alkalies and of Ca and Sr are easily sol. in H 2 ; Ba and Sr salts are si. sol. and the other salts insol. The salts of the metals dissolve in alkali thiosulphates + Aq. All are insol. in alcohol. THIOSULPHATE, COBALTOUS SODIUM 473 Ammonium thiosulphate, (NH 4 ) 2 S 2 3 . Very deliquescent. Very sol. in H 2 0. Crystallises with JH 2 0. (Rammelsberg, Pogg. 56. 298.) Anhydrous. (Arppe, A. 96. 113.) Insol. in alcohol. (Arppe. ) Ammonium cadmium thiosulphate, 3(NH 4 ) 2 S 2 3 , CdS 2 3 + 3H 2 0. Can be recryst. from warm H 2 0. (Fock and Kliiss, B. 23. 1758.) + H 2 0. (F. andK.) (NH 4 ) 2 S 2 3 , CdS 2 3 . (F. and K.) Ammonium lead thiosulphate, 2(NH 4 ) 2 S 2 3 , PbS 2 3 + 3H 2 0. Easily and completely sol. in cold H 2 0, but deposits PbS 2 3 by standing or warming. (Rammelsberg, Pogg. 56. 312.) Ammonium magnesium thiosulphate, (NH 4 ) 2 Mg(S 2 3 ) 2 + 6H 2 0. Very deliquescent, and sol. in H 2 0. (Kess- ler, Pogg. 74. 283.) Not deliquescent. (Fock and Kliiss, B. 23. 540.) Ammonium mercuric thiosulphate, 4(NH 4 ) 2 S 2 3 , HgS 2 3 + 2H 2 0. Sol. in H 2 0, from which it is precipitated by alcohol. Extremely easily decomp. (Ram- melsberg, Pogg. 56. 318.) Ammonium potassium thiosulphate, NH 4 KS 2 3 . Sol. in H 2 0. (Fock and Kliiss, B. 23, 536.) Ammonium silver thiosulphate, 2(NH 4 ) 2 S 2 3 , Easily sol. in H 2 0. Somewhat sol. in alco- hol. (Herschel, Edinb. Phil. J. 1. 398.) (NH 4 ) 2 S 2 3 , Ag 2 S 2 3 + ccH 2 0. Nearly insol. in H 2 ; sol. in NH 4 OH + Aq, from which it is repptd. by an acid. (Herschel.) Barium thiosulphate, BaS 2 3 + H 2 0. SI. sol. in H 2 0. (Rose, Pogg. 21. 437.) Insol. in alcohol. 1 pt. cannot be dissolved in 2000 pts. H 2 0. Sol. in dil. HCl + Aq without decomposition. (Herschel, 1819.) Pptd. from BaS 2 3 + Aq by dil. alcohol. (Sobrero and Selmi, A. ch. (3) 28. 211.) Barium cadmium thiosulphate, 2BaS 2 3 , CdS 2 3 + 8H 2 0. SI. sol. in H 2 0. (Fock and Kliiss, B. 23. 1761.) 3BaS 2 3 , CdS 2 3 + 8H 2 0. SI. sol. in H 2 0. Barium cuprous thiosulphate. Easily sol. in hot, difficultly sol. in cold H 2 0. (Cohen, Chem. Soc. 51. 38.) 2BaS 2 3 , Cu 2 S 2 3 + 7H 2 0. Nearly insol. in H 2 0. (Vortmann, M. 9. 165.) Barium gold thiosulphate. SI. sol. in H 2 0. Insol. in alcohol. (Fordos and Gelis.) Barium lead thiosulphate. Difficultly sol. in H 2 0. (Rammelsberg, Pogg. 56. 313.) Barium thiosulphate chloride, BaS 2 3 , BaCl 2 + 2H 2 0. Sol. in H 2 0. (Fock and Kliiss, B. 23. 3001.) Bismuth potassium thiosulphate, K 3 Bi(S 2 3 ) 2 + H 2 0. Sol. in H 2 0. Insol. in alcohol. (Carnot, C. R. 83. 390.) Bismuth sodium thiosulphate. Very sol. in H 2 0, and also in alcohol. (Carnot, C. R. 83. 338.) Cadmium thiosulphate, CdS 2 3 + 2H 2 0. Sol. in H 2 0. Insol. in alcohol. (Vortmann and Padberg, B. 22. 2638.) Cadmium potassium thiosulphate, 3CdS 2 3 , 5K 2 S 2 3 . Cannot be recryst. without decomp. (Fock and Kliiss, B. 23. 1753.) CdS 2 3 , 3K 2 S 2 3 + 2H 2 0. Can be crystal- lised from H 2 without decomp. (F. and K.) Cadmium sodium thiosulphate, CdS 2 3 , 3Na 2 S 2 3 + 16H 2 0. Not deliquescent. Sol. in H 2 0. (Jochum, C. C. 1885. 642.) + 9H 2 0. (Vortmann and Padberg, B. 22. 2639.) + 3H 2 0. Deliquescent. (Fock and Kliiss, B. 23. 1157.) 2CdS 2 3 , Na 2 S 2 3 + 7H 2 0. (V. and P.) 3CdS 2 3 , Na 2 S 2 3 + 9H 2 0. (V. and P. ) Cadmium strontium thiosulphate, CdS 2 3 , 3SrS 2 3 + 10H 2 0. (Fock and Kliiss, B. 23. 1763.) Calcium thiosulphate, CaS 2 3 + 6H 2 0. Sol. in 1 pt. H 2 at 3. Aqueous solution saturated at 10 has sp. gr. 1-300. Solution with sp. gr. 1 '11437 at 15'5 contains 0'2081 of its weight in CaS 2 3 + 6H 2 0. Decomp. on heating. Insol. in alco- hol (sp. gr. 0-8234). (Herschel, A. ch. 14. 355.) Calcium lead thiosulphate, 2CaS 2 3 , PbS 2 3 + 4H 2 0. Decomp. by H 2 0. (Rammelsberg.) Calcium potassium thiosulphate, CaS 2 3 , 3K 2 S 2 3 + 5H 2 0. Sol. in H 2 0. (Fock and Kliiss, B. 24. 3016.) Calcium silver thiosulphate, 2CaS 2 3 , Ag 2 S 2 3 + a?H 2 0. Easily sol. in H 2 ; less sol. in alcohol. CaS 2 3 , Ag 2 S 2 3 + a;H 2 0. SI. sol. in H 2 0, abundantly in NH 4 OH + Aq. (Herschel, 1819.) Cobaltous thiosulphate, CoS 2 3 + 6H 2 0. Sol. inH 2 0. (Rammelsberg.) Cobaltous sodium thiosulphate, 2CoS 2 3 , 5Na 2 S 2 3 + 25H 2 0. Efflorescent. Sol. in H 2 0. (Jochum.) Could not be obtained by Vortmann and Padberg. CoS 2 3 , 3Na 2 S 2 3 + 15H 2 0. Sol. in H 2 0. (Vortmann and Padberg, B. 22. 2641.) 474 THIOSULPHATE, CUPROUS Cuprous thiosulphate, Cu 2 0, 3S 2 2 + 2H 2 = Cu 2 H 4 (S 2 3 ) 2 . SI. sol. in H 2 0. Abundantly sol. in Na 2 S 2 3 + Aq, NH 4 C1 + Aq, NH 4 OH + Aq, or (NH 4 ) 2 C0 3 + Aq. Sol. in HC1 or HN0 3 + Aq. (v. Hauer, W. A. B. 13. 443.) Cuprous mercurous thiosulphate, 5Cu 2 S 2 3 , Insol. or si. sol. in cold, decomp. by boiling H 2 0. HISTOg + Aq dissolves out Cu. (Ram- melsberg, Pogg. 56. 319.) Cuprous potassium thiosulphate, Cu 2 S 2 3 , K 2 S 2 3 + 2H 2 0. SI. sol. in H 2 ; decomp. on heating with pptn. of CuS. Easily sol. in K 2 S 2 3 + Aq. (Rammelsberg, Pogg. 56. 321.) Cu 2 S 2 3 , 2K 2 S 2 3 . Very sol. in cold H 2 ; insol. in K 2 S 2 3 + Aq. (Cohen, Chem. Soc. 51. 39.) + 3H 2 0. Scarcely sol. in cold, sol. with si. decomp. in hot H 2 0. Sol. in HCl + Aq with evolution of S0 2 . Cu 2 S 2 3 , 3K 2 S 2 3 + 3H 2 0. More sol. in H 2 than Cu 2 S 2 3 , K 2 S 2 3 + 2H 2 0. Solution is not decomp. by boiling. Sol. in excess of NH 4 OH + Aq. (Rammelsberg.) Cuprous sodium thiosulphate, 2Cu 2 S 2 3 , 7Na 2 S 2 3 + 2H 2 0. Pptd. from aqueous solution by alcohol. (Jochum, C. C. 1885. 642.) + 12H 2 0. Sol. in very dil. HCl + Aq. (Jochum. ) Cu 2 S 2 3 , 3Na 2 S 2 3 + 2H 2 0. Sol. in H 2 ; insol. in alcohol. (Rammelsberg.) + 6H 2 0. (Jochum.) 3Cu 2 S 2 3 , 2Na 2 S 2 3 + 8H 2 0. Decomp. by H 2 0. (Vortmann.) + 5H 2 0. (Lenz, A. 40. 99.) Formula ac- cording to Jochum is 5Cu 2 S 2 3 , 4Na 2 S 2 3 + 8H 2 0. Insol. in H 2 or alcohol. Sol. in HC1 + Aq without evolution of S0 2 , also in dil. H 2 S0 4 or HN0 3 + Aq. Sol. in NH 4 OH + Aq. (Jochum. ) + 6H 2 0. As above. (Jochum.) Cu 2 S 2 3 , Na 2 S 2 3 + H 2 0. Insol. in H 2 ; sol. in Na 2 S 2 3 + Aq. (Russel, Ch. Ztg. 9. 233.) + 3H 2 0. Yery sol. in H 2 0. (Vortmann, M. 9. 165.) 5Cu 2 S 2 3 , 3Na 2 S 2 3 , 2Na 2 S0 4 + H 2 0. Sol. in H 2 0. (Jochum.) Cuprocupric sodium thiosulphate ammonia, Cu 2 S 2 3 , CuS 2 3 , 2Na 2 S 2 3 , 4NH 3 . Insol. in, but decomp. by hot H 2 0. Sol. in HC 2 H 3 2 + Aq. Sol. in NH 4 OH + Aq or Na 2 S 2 3 + Aq. (Schiitte, C. R. 42. 1267.) Cuprous sodium thiosulphate cupric sulphide, Cu 2 S 2 3 , Na 2 S 2 3 , CuS + 4H 2 0. SI. sol. in H 2 ; easily sol. in Na 2 S 2 3 + Aq, and NH 4 OH + Aq ; insol. in alcohol. (Lenz, A. 40. 99.) Cu 2 S 2 3 , Na 2 S 2 3 , 2CuS. Sol. in H 2 or dil. HCl + Aq. (Kessel, B. 11. 1585.) Cuprous sodium thiosulphate sodium chloride, 3Cu 2 S 2 3 , 2Na 2 S 2 3 , 4NaCl + 8H 2 0. Sol. in Na 2 S 2 3 + Aq. (Siewert, Zeit. ges. Naturwiss. 26. 486.) Cuprocupric thiosulphate ammonium chloride Cu 2 0, CuO, 3S 2 2 , 2NH 4 C1. Sol. in HN0 3 + Aq with separation of S. (v. Hauer, W. A. B. 13. 447.) Aurous hydrogen thiosulphate, Au 2 S 2 O s , 3H 2 S 2 3 . Known only in solution. (Fordos and Gelis, A. ch. (3) 13. 394.) Aurous sodium thiosulphate, Au 9 S 9 Oo, 3Na 2 S 2 3 + 4H 2 0. Sol. in H 2 ; solution decomp. on heating. Insol. in absolute, si. sol. in dil. alcohol. (Fordos and Gelis. ) Au 2 S 2 3 , 6Na 2 S 2 3 + 10H 2 0. (Jochum, C. C. 1885. 642.) Ferrous thiosulphate, FeS 2 3 + 5H 2 0. Deliquescent. Very sol. in H 2 or alcohol. (Koene, Pogg. 63. 241.) Ferrous sodium thiosulphate, FeS 2 3 , 3Na 2 S 2 3 + 8H 2 0. Very sol. in H 2 0, and easily decomp. (Vortmann and Padberg, B. 22. 2641.) Lead thiosulphate, PbS 2 3 . Sol. in 3266 pts. H 2 0. Sol. in alkali thio- sulphates +Aq. (Rammelsberg, Pogg. 56. 308. ) Lead potassium thiosulphate, PbS 2 3 , 3K 2 S 2 3 + 2H 2 0. Sol. in H 2 with partial separation of PbS 2 3 . Sol. inK 2 S 2 3 + Aq. (Rammelsberg, Pogg. 56. 310.) Lead sodium thiosulphate, PbS 2 3 , 2Na 2 S 2 3 . SI. sol. in H 2 0. Very easily sol. in NaC 2 H 3 2 and Na 2 S 2 3 + Aq. (Lenz, A. 40. 98.) Insol. in alcohol. 2PbS 2 3 , 5Na 2 S 2 3 + 60H 2 0. Easily decomp. (Jochum, C. C. 1885. 642.) PbS 2 3 , 3Na 2 S 2 3 + 12H 2 0. Decomp. by boiling aqueous solution. (Vortmann and Padberg, B. 22. 2637.) Lead strontium thiosulphate. Sol. in H 2 0. Precipitated as a syrup by alcohol. (Rammelsberg. ) Lithium thiosulphate, Li 2 S 2 3 + 3H 2 0. Very deliquescent, and sol. in H 2 and absolute alcohol. (Fock and Kliiss, B. 22. 3099.) Magnesium thiosulphate, MgS 2 3 + 6H 2 0. Very easily sol. in H 2 0. Precipitated from cone, solution by alcohol. (Rammelsberg, Pogg. 56. 303.) Magnesium potassium thiosulphate. MgK 2 (S 2 3 ) 2 + 6H 2 0. Deliquescent, and sol. in H 2 0. Less sol. than K 2 S 2 3 . (Rammelsberg, Pogg. 56. 304.) SUJJ1UM 475 Not deliquescent. (Fock and Kliiss, B. 23. 539.) Manganous thiosulphate, MnS 2 3 . Sol. in H 2 0, from which it is pptd. by alcohol. (Rammelsberg, Pogg. 56. 305.) + 5H 2 0. Decomp. very easily. (Vortmann and Padberg, B. 22. 2641.) Manganous sodium thiosulphate, MnS 2 3 , 2Na 2 S 2 3 +16H 2 0. Sol. in H 2 0. Insol. or but si. sol. in alcohol. (Jochum, C. C. 1885. 642.) Mercuric potassium thiosulphate, 3HgS 2 3 , 5K 2 S 2 3 . Sol. in 10 pts. H 2 at 15, and | pt. at 100. Aqueous solution decomp. on standing or heating. Insol. in alcohol. (Kirchhoff, Scher. J. 2. 30.) HgS 2 3 , 3K2S 2 3 + 3H 2 0. (Fock and Kliiss, B. 24. 1353.) HgS 2 3 , 5K 2 S 2 3 + H 2 0. (F. and K.) Nickel thiosulphate, NiS 2 3 + 6H 2 0. Permanent. Sol. in H 2 0. (Rammelsberg, Pogg. 56. 306.) Nickel sodium thiosulphate, 2NiS 2 3 , 5Na 2 S 2 3 + 25H 2 0. Efflorescent. Sol. in H 2 0. (Jochum.) Nickel thiosulphate ammonia, NiS 2 3 , 4NH 3 + 6H 2 0. Decomp. on air. Sol. in NH 4 OH + Aq. (Rammelsberg, Pogg. 56. 306.) NiS 2 3 , 6NH 3 + 3H 2 0. (Vortmann and Pad- berg, B. 22. 2641.) Platinous sodium thiosulphate. See Platothiosulphate, sodium. Potassium thiosulphate, K 2 S 2 3 + , 1, or 1H 2 0. Very deliquescent. Very sol. in H 2 with absorption of heat. Solution is stable on the air. Insol. in alcohol. Sol. in dil. HC 2 H 3 O 2 + Aq without decomp. (Mathieu-Plessy, C. R. 101. 59.) Insol. in ethyl acetate. (Casaseca, C. R. 30. 821.) Potassium silver thiosulphate, 2K 2 S 2 3 , Ag 2 S 2 3 . Sol. inH 2 0. (Cohen.) K 2 S 2 3 , Ag 2 S 2 3 . SI. sol. in H 2 0. (Her- schel.) Potassium silver thiosulphate ammonia, KAgS 2 3 , 2NH 3 . Very si. sol. in H 2 0. Easily sol. in hot NH 4 OH + Aq. (Sch wicker, B. 22. 1735.) Potassium sodium thiosulphate. (a) KNaS 2 3 + 2H 2 0. Very sol. in H 2 0. 100 pts. H 2 dissolve 2137 pts. salt at 15. (Schwicker, B. 22. 1733.) (b) NaKS 2 3 + 2H 2 0. 100 pts. H 2 dissolve 205-3 pts. salt at 15. (Schwicker.) Potassium strontium thiosulphate, K 9 S 9 Oo, SrS 2 3 + 5H 2 0. Sol. in H 2 0. (Fock and Kliiss, B. 24. 3017.) Potassium thiosulphate sodium chloride, K 2 S 2 3 , NaCl. Sol. in H 2 0. (Pape, Pogg. 139. 238.) Samarium thiosulphate. (Cleve.) Silver thiosulphate, Ag 2 S 2 3 . SI. sol. in H 2 0. Sol. in NH 4 OH or alkali thiosulphates + Aq. (Herschel, Edinb. Phil. J. 1. 26.) Silver sodium thiosulphate, Ag 9 S 9 Oo, SI. sol. in H 2 0. Easily sol. in NH 4 OH + Aq, also in Na 2 S 2 3 + Aq to form A g2S 2 3 , 2Na 2 S 2 3 + 2H 2 0. Easily sol. in H 2 or NH 4 OH + Aq ; somewhat sol. in alcohol, especially if warm or dilute. (Lenz, A. 40. 94.) Ag 2 S 2 3 , 6Na 2 S 2 3 + 21H 2 0. Sol. in H 2 0. (Jochum, C. C. 1885. 642.) Silver sodium thiosulphate ammonia, NaAgS 2 3 , NH 3 . Very unstable. (Schwicker, B. 22. 1736.) Silver strontium thiosulphate, Ag 2 S 2 3 , SrS 2 3 . Nearly insol. in H 2 0. Very si. sol. in SrS 2 3 + Aq; easily sol. in NH 4 OH + Aq. (Herschel.) Sodium thiosulphate, Na 2 S 2 3 + 5H 2 0. Effloresces at 33. 100 pts. H 2 dissolve : At 16 65 pts. Na 2 S 2 3 . 20 vf t- J w 69 25 75 30 82 35 89 40 98 45 109 47 114 (Mulder.) 100 pts. H 2 dissolve at 0, 47 '6 pts. Na 2 S 2 3 ; at 20, 69 '5 pts. ; at 40, 104 pts. ; at 60, 192-3 pts. (Kremers, Pogg. 99. 50.) 100 pts. H 2 dissolve 171 pts. cryst. ( = 108 '9 pts. anhydrous) salt at 19 '5 to form a solution of 1-3875 sp. gr. (Schiff, A. 113. 350.) By supersaturation, 100 pts. H 2 may dis- solve 217-4 pts. Na 2 S 2 3 at 0. (Kremers.) Heat is absorbed by dissolving in H 2 0. 110 pts. Na 2 S 2 3 + 5H 2 + 100pts. H 2 lower temp, from 10 '7 to 8. (Riidorff, B. 2. 68.) M.-pt. of Na 2 S 2 3 + 5H 2 is 45 (Kopp), 48 (Kremers), 50 (Mulder), 48 '5 (Tilden, Chem. Soc. 45. 409). Labile modification melts at 32. (Parmen- tier and Amat, C. R. 98. 735.) UNIVERSITY 476 THIOSULPHATE, SODIUM THALLOUS Sp. gr. of Na 2 S 2 3 % = %Na 2 S 2 3 at 19. % Sp.gr. % Sp. gr. % Sp. gr. 1 1-0052 18 1-0975 35 1-1986 2 1-0105 19 1-1031 36 1-2048 3 1-0158 20 1-1087 37 1-2110 4 1-0211 21 1-1145 38 1-2172 5 1-0264 22 1-1204 39 1-2234 6 1-0317 23 1-1263 40 1-2297 7 1-0370 24 1-1322 41 1-2362 8 1-0423 25 1-1381 42 1-2427 9 1-0476 26 1-1440 43 1-2492 10 1-0529 27 1-1499 44 1-2558 11 1-0584 28 1-1558 45 1-2624 12 1-0639 29 1-1617 46 1-2690 13 1-0695 30 1-1676 47 1-2756 14 1-0751 31 1-1738 48 1-2822 15 1-0807 32 1-1800 49 1-2888 16 1-0863 33 1-1862 50 1-2954 17 1-0919 34 1-1924 (Schiff, A. 113. 188.) B. -pt. of Na 2 S 2 3 + Aq. P = pts. Na 2 S 2 3 to 100 pts. H 2 0. B.-pt. P B.-pt. P B.-pt. P 101 14 110 104 119 201 102. 27 111 113 120 214-5 103 39 112 122 121 229 104 49-5 113 131-5 122 244 105 59 114 141-5 123 262 106 68 115 152 124 283 107 77 116 164 125 311 108 86 117 17575 126 348 109 95 118 188 (Gerlach, Z. anal. 26. 436.) Insol. in alcohol. Sol. in oil of turpentine (Edison, Am. Chemist, 7. 127). Insol. therein (Techn. J. B. 27. 1003). Insol. in ethyl acetate. (Casaseca, C. R. 30. 821.) + 3H 2 0. Easily decomp. in moist air. (Jochum, C. C. 1885. 642.) Sodium thallous thiosulphate, 3Na 2 S 2 3 , 2T1 2 S 2 3 + 10H 2 0. Sol. inH 2 0. (Werther.) + 8H 2 0. (Jochum.) 2Na 2 S 2 3 , T1 2 S 2 3 + 8H 2 0. (Vortmann and Padberg, B. 22. 2638.) Sodium zinc thiosulphate, Na 2 S 2 3 , 2ZnS 2 3 + 23H 2 0. Sol. in H 2 0. (Jochum, C. C. 1885. 642.) 3Na 2 S 2 3 , 2ZnS 2 3 + 10H 2 0. Deliquescent. (Vortmann and Padberg, B. 22. 2640.) Strontium thiosulphate, SrS 2 3 + 5H 2 0. Permanent. Sol. in 6 pts. cold H 2 (Gay- Lussac) ; in 4 pts. H 2 at 13, and 1'75 pts. boiling H 2 (Herschel, 1819). Gradually efflorescent. Insol. in alcohol. (Herschel.) 100 pts. H 2 at 10 dissolve 16 '6 pts. (lire's Diet. ) + H 2 0. (Kessler.) Thallous thiosulphate. Ppt. SI. sol. in cold, easily sol. in hot H 2 0. (Crookes.) Easily sol. in Na 2 S 2 3 + Aq. (Jochum. ) Tin thiosulphate (?). Sol. in H 2 0. Zinc thiosulphate, ZnS 2 3 + xH 2 0. Very deliquescent, and very sol. in H 2 and alcohol. (Rammelsberg. ) Zinc thiosulphate ammonia, ZnS 2 3 , 2NH 3 . Decomp. by H 2 0. Sol. in NH 4 OH + Aq, from which it is pptd. by alcohol. (Rammelsberg, Pogg. 56. 62.) Thiocftthiazyl ^'chloride, S 3 N 2 C1 2 . See Nitrogen sulphochloride. Thio^'thiazyl chloride, S 4 N 8 C1. See Nitrogen sulphochloride. Thio^'thiazyl nitrate, S 4 N 3 N0 3 . Sol. in H 2 with decomp. Sol. in HN0 3 + Aq. (Demar9ay, C. R. 91. 1066.) Thiofrithiazyl sulphate (S 4 N 3 )HS0 4 . Stable on air. Sol. in H 2 with decomp. (Demar9ay, C. R. 91. 854, 1066.) ZMhio^rathiazyl bichloride, S 6 N 4 C1 2 . See Nitrogen sulphochloride. Thorium, Th. Not oxidised by boiling H 2 0. Quickly sol. (Chydenius, Pogg. 119. 43), very slowly sol. by long boiling (Berzelius, Pogg. 16. 385) in HN"0 3 + Aq. Insol. in cold, easily sol. in warm dil. H 2 S0 4 + Aq. Slowly sol. in cold, rapidly in hot HC1 + Aq. Easily oxidised by aqua regia. Insol. in KOH + Aq or HF + Aq. SI. sol. in dil. H 2 S0 4 + Aq; decomp. by cone. H 2 S0 4 . Very si. sol. in dil., and less in cone. HN0 3 + Aq. Easily sol. in cone. HC1 + Aq, and aqua regia. (Mlson, B. 15. 2521.) Thorium ^bromide, ThBr 2 . Sol. in H 2 with partial decomp. (Troost and Ouvrard, A. ch. (6) 17. 227.) Thorium ^rabromide, ThBr 4 . Sol. inH 2 0. (Berzelius.) Very hygroscopic, and sol. in H 2 with partial decomp. (Troost and Ouvrard, A. ch. (6) 17. 229.) Thorium chloride, ThCl 4 . Anhydrous. Extremely deliquescent, and sol. in H 2 with evolution of heat. Sol. in alcohol. + 8H 2 0. Very deliquescent. Very sol. in H 2 0. Less sol. in cone. HCl + Aq. Com- pletely sol. in alcohol. Thorium fluoride, ThF 4 + 4H 2 0. Insol. in H 2 or HF + Aq. TIN BROMIDE 477 Thorium hydride, ThH 2 . Decomp. by dil. HCl + Aq. (Winkler, B. 24. 873.) Thorium hydroxide, Th(OH) 4 . Insol. in H 2 0. Sol. in acids, except oxalic, molybdic, and hydrofluoric acids. Insol. in alkali hydroxides, but easily sol. in alkali carbonates + Aq. More sol. in NH 4 OH + (NH 4 ) 2 C0 3 + Aq than in (NH 4 ) 2 C0 3 + Aq alone. (Berzelius. ) Not pptd. in presence of tartaric and citric acids. (Chydenius, Pogg. 119. 43.) 4Th0 2 , H 2 0. Insol. in water and acids at boiling temp. Thorium iodide. Sol. in H 2 0. Thorium oxide, Th0 2 . When ignited is insol. in HC1, and HN0 3 + Aq. Sol. in H 2 S0 4 by heating to boiling and subsequent addition of H 2 0. Insol. in alkali hydrates or carbonates + Aq. Metathorivaa. oxide. Sol. in H 2 after having been treated with cone. HN0 3 or HCl + Aq, even if previously ignited. Thorium peroxide, Th 2 7 . Precipitate. (Cleve, C. R. 100. 605.) Thorium oxychloride. Decomp. by H 2 into ThCl 4 and Th0 2 . Thorium oxysulphide, ThS 2 , 2Th0 2 . (Chydenius. ) Thorium phosphide. Insol. in H 2 0. (Berzelius.) Thorium sulphide, ThS 2 . Insol. in warm H 2 S0 4 . Very slightly at- tacked by HN0 3 or HCl + Aq. Sol. in hot aqua regia. (Berzelius. ) Thulium, Tm (?). (Cleve, C. R. 89. 251.) Consists of at least two elements, according to Nilson and Kriiss. Thulium oxide, Tm 2 3 (?). (Cleve, C. R. 89. 478.) Tin, Sn. Insol. in H 2 0. Slowly sol. in dil. cold HCl + Aq, but rapidly sol. if hot and cone. Slowly sol. in hot dil. H 2 S0 4 + Aq, but decomp. by hot cone. H 2 S0 4 . Readily sol. in cold aqua regia. Attacked violently by cone. HN0 3 + Aq with pptn. of Sn0 2 . Completely sol. in dil. cold HN0 3 + Aq (1 pt. HN0 3 : 1 pt. H 2 0) at 22. (Hay, C. N. 22. 298.) Not attacked by pure cone. HN0 3 + Aq of 1 '512-1 '419 sp. gr., but violently attacked by less cone. acid. Also attacked by most cone, acid if it contains N0 2 . (Millon, A. ch. (3) 6. 95.) If Sn is placed in dil. HN0 3 + Aq of 1-15 sp. gr. it is si. dissolved, but soon pptd. again as Sn0 2 . If a small amt. of NH 4 C1 is added, the Sn remains permanently in solution ; HC1 + Aq has a similar action. (Ordway, Am. J. Sci. (2) 23. 220.) Easily sol. in the cold in mixture of 1 vol. H 2 S0 4 , 2 vols. HN0 3 , and 3 vols. H 2 0. (Basset, C. N. 53. 172.) ' HN0 3 + Aq containing less than 12 % HN0 3 attacks Sn and forms a stannous salt, which decomposes, giving a turbid solution. HN0 3 + Aq (12-45 % HN0 3 ) completely dissolves Sn, but solution becomes turbid on standing. HN0 3 + Aq containing more than 45 % HN0 3 does not dissolve Sn, but forms a white sub- stance, which is sol. in H 2 if over 70 % acid is used ; this solution soon becomes turbid. (Montemartini, Gazz. ch. it. 22. 384.) Much more sol. in acids when small quanti- ties of metallic salts have been added. This is most noticeable when PtCl 4 or tartar emetic is added to HCl + Aq. HCl + Aq with tartar emetic exerts 11 times, and with PtCl 4 13 times the action exhibited by pure acid. (Millon, C. R. 21. 47.) Sol. in boiling alum + Aq (1 pt. alum to 4 pts. H 2 0). Sol. in KHS0 3 , NH 4 C1 (1 : 4), and KjC^Og + Aq. SI. sol. in KC 2 H 3 2 + Aq, but not at- tacked by MgS0 4 , K 2 S0 4 , KN0 3 , or Na 2 S0 4 + Aq. (Cludius, J. pr. 9. 161.) Sol. in alkalies + Aq. Attacked easily by cone. NaCl, KC1, or NH 4 N0 3 + Aq; not attacked by NH 4 Cl + Aq. (Hallock, Am. Ch. J. 6. 52.) Sol. in Fe(N0 3 ) 3 + Aq in presence of HN0 3 + Aq in proportion of 1 atom Sn to 1 atom Fe. (Lepez and Storch, W. A. B. 98, 2b. 268.) Not attacked by sugar + Aq. (Klein, C. R. 102. 1170.) Tin is not attacked by distilled H 2 when air is passed through it for a week. Solubility in dil. saline solutions. 100 ccm. H 2 containing 0'5 g. NaCl or KC1 dissolve 6 mg. Sn from 11 '8 sq. cm. in one week when air without C0 2 is passed through the solution, but none at all when the air con- tains C0 2 . 100 ccm. H 2 containing 1 g. NH 4 C1 dissolve 5 mg. Sn under above conditions without C0 2 , and none with C0 2 . With 1 g. MgCl 2 , 1 mg. Sn was dissolved without C0 2 , and none with C0 2 . With 1 g. K2S0 4 , 2 mg. Sn were dissolved without C0 2 , and none with C0 2 . With 1 g. KN0 3 , 3 mg. Sn were dissolved without C0 2 , and 1 mg. with C0 2 . With 1 g. Na 2 C0 3 , 7 mg. Sn were dissolved without C0 2 . With 1 g. NaOH/ 220 mg. Sn were dis- solved without C0 2 . Ca0 2 H 2 + Aq did not dissolve. (Wagner, Dingl. 221. 260.) Stannous bromide, SnBr 2 . Sol. in H 2 0. Stannic bromide, SnBr 4 . Deliquescent. Sol. in H 2 without evolu- tion of heat. (Balard.) + 4H 2 0. (Preis and Raymann, C. C. 1882. 773.) 478 TIN HYDROGEN BROMIDE Stannic hydrogen bromide, SnBr 4 , 2HBr. See Bromostannic acid. Stannic bromide with MBr. See Bromostannate, M. Stannous chloride, SnCl 2 , and + 2H 2 0. Not deliquescent. 100 pts. H 2 dissolve 83'9 pts. SnCl 2 at 0. (Engel, A. ch. (6) 17. 347.) 100 pts. H 2 dissolve 269 '8 pts. SnCl 2 at 15, and sat. solution has sp. gr. 1'827. (Michel and Krafft, A. ch. (3) 41. 478.) Sol. in a certain amount of H 2 without decomp., but more H 2 causes pptn. of SnO, SnCl 2 . SnCl 2 + Aq absorbs from air. Melts in crystal H 2 at 46. (Ordway.) Sat. solution boils at 1217. Sp. gr. of SnCl 2 + Aq at 15 containing : 5 10 15 20 % SnCl 2 + 2H 2 0, 1-0331 1-0684 1-1050 1-1442 40 % SnCl 2 + 2H 2 0, 1'3298 60 % SnCl 2 + 2H 2 0, 1-5823 2H 2 0. 25 30 35 1-1855 1-2300 1-2779 45 50 55 1-3850 1-4451 1-5106 65 70 75 %SnCl 1-6598 1-7452 1*8399 (Gerlach, Dingl. 186. 131.) Solubility of SnCl 2 in HCl + Aq. molecules SnCl 2 in milligrammes in 10 com. solution ; HC1 = molecules HC1 in milligrammes in ditto ; H 2 = amt. H 2 present in grammes. SnCl 2 2 HC1 Sum of equiv. Sp. gr. of solu- tion H 2 74 74 1-532 8-33 667 6-6 73-3 1-489 8-35 6375 13-54 77-29 1-472 8-198 68-4 24-8 93-2 1-524 7-869 81-2 34-9 116-1 1-625 7-305 94-2 40-0 134-2 1-724 6-880 117-6 44 161-6 1-883 6-108 147-6 49-4 197-0 2-114 5-387 156-4 66 222-4 2-190 4-715 157 78 235 2-199 4-309 (Engel, A. ch. (6) 17. 347.) Solubility is thus diminished by HCl + Aq, while there are less than 8-10 mols. HC1 for 1 mol. SnCl 2 . When that limit is passed the solubility rapidly increases. (Engel.) Sol. in very dil. HC1 or tartaric acid +Aq. Sol. in KOH + Aq. Sol. in cone. SnOCL + Aq. (Gerlach. ) Sol. in NH 4 C1 + Aq. Sol. in absolute alcohol. Insol. in oil of turpentine. + 4H 2 0. Deliquescent. Does not exist. (Gerlach.) Stannic chloride, SnCl 4 . (a) Ordinary modification. Deliquescent. Sol. in H 2 0. On diluting SnCl 4 + Aq and boil- ing, Sn0 2 separates out. SnCl 4 + Aq is not pptd. by HN0 3 , HC1, or H 2 S0 4 + Aq; H 3 P0 4 + Aq ppts. in a few days, and H 3 As0 4 + Aq in a short time. No ppt. is formed by K 9 SO,, Na 2 S0 4 , KC1, NaCl, NH 4 C1, KN0 3 , etc. +Aq. (Rose.) Very sol. in absolute alcohol, from which it is pptd. by H 2 0. Easily sol. in ether ; de- comp. by oil of turpentine. Miscible with CS 2 and Br 2 . Sp. gr. of SnCl 4 + Aq at 15. 7 SnCl 4 +5H 2 O Sp. gr. % SnCl 4 +5H 2 O Sp. gr. % SnCl 4 +5H 2 O Sp. gr. 2 1-012 34 1-226 66 1-538 4 1-024 36 1-242 68 1-563 6 1-036 38 1-259 70 1-587 8 1-048 40 1-276 72 1-614 10 1-059 42 1-293 74 1-641 12 1-072 44 1-310 76 1-669 14 1-084 46 1-329 78 1-698 16 1-097 48 1-347 80 1-727 18 1-110 50 1-366 82 1-759 20 1-124 52 1-386 84 1-791 22 1-137 54 1-406 86 1-824 24 1-151 56 1-426 88 1-859 26 1-165 58 1-447 90 1-894 28 1-180 60 1-468 92 1-932 30 1-195 62 1-491 94 1-969 32 1-210 64 1-514 95 1-988 (Gerlach, Dingl. 178. 49.) + 2H 2 0. Sol. inHoO. + 3H 2 0. + 5H 2 0. Very deliquescent, and sol. in H 2 0. Decomp. by alcohol. Sol. in HCl + Aq. + 8H 2 0. More deliquescent than the 5H 2 salt. + 9H 2 0. (|8) Metastannic chloride. Sol. in cold H 2 0; solution coagulates on boiling. Cone. HC1 + Aq ppts. from SnCl 4 + Aq. When solution does not contain HC1, the addition of HC1 + Aq causes a ppt., which dissolves in H 2 0. HN0 3 , and H 2 S0 4 + Aq also ppt. K 2 S0 4 , Na 2 S0 4 , and NaCl + Aq produce ppts., insol. in H 2 0, but sol. in HCl + Aq. NH 4 C1 or KCl + Aq do not ppt. KN0 3 + Aq ppts. slowly. (Rose.) Stannous hydrogen chloride, SnCL, HC1 + 3H 2 0. Decomp. by H 2 0. Melts at -25. (Engel, C. R. 106. 1398.) Stannic hydrogen chloride. See Chlorostannic acid. Stannic chloride with MCI. See Chlorostannate, M. Stannous chloride ammonia, SnCl 2 , NH 3 . (Berzelius.) Stannic chloride ammonia, SnCl 4 , 2NH 3 . Sol. in cold H 2 without decomp., but de- composes by heating. Stannous chloride arsenate. See Arsenate chloride, stannous. TIN SELENIDE 479 Stannic chloride cyanhydric acid, SnCl 4 ,2HCN. Decomp. on moist air or with H 2 0. (Klein, A. 74. 85.) Stannic chloride phosphine, 3SnCl 4 , 2PH 3 . Decomp. by H 2 0. (Rose, Pogg. 24. 159.) Stannous chloride potassium stannous sul- phate. See Sulphate, potassium stannous stannous chloride. Stannic chloride sulphide, 2SnCl 4 , SnS 2 . See Stannic sulphochloride. Stannic chlorobromide, SnClBr 3 . Decomp. by H 2 0. (Ladenburg, A. suppl. 8. 60.) SnCl 2 Br 2 . Decomp. by H 2 0. (Ladenburg.) Stannous chloroiodide, SnClI. Decomp. immediately by H 2 0. (Henry, Phil. Trans. 1845. 363.) Stannous fluoride, SnF 2 . Easily sol. in H 2 0. (Berzelius, Pogg. 1. 34.) Stannic fluoride, SnF 4 . Known only in solution. Stannic fluoride with MF. See Fluostannate, M. Stannous hydroxide, 2SnO, H 2 0. Decomp. to SnO when boiled with H 2 0. More easily sol. in acids than Sn or SnO. Sol. in NaOH, and KOH + Aq, even when dil. In- sol. or very si. sol. in NH 4 OH, (NH 4 ) 2 C0 3 , and K 2 C0 3 + Aq ; sol. in cold Ca0 2 H 2 , and Ba0 2 H with decomposition onboiling. (Fremy, A. ch. (3) 12. 460.) Only si. sol. in NH 4 C1 + Aq, hot or cold. (Brett.) SI. sol. in NaC 2 H 3 2 + Aq. (Mercer.) Not pptd. in presence of Na citrate. (Spiller. ) Sol. in water-glass + Aq. (Ordway.) Tin hydroxide, SnO, 6Sn0 2 + 5H 2 0. + 9H 2 0. (Schiff, A. 120. 153.) Tin sesgm'hydroxide, Sn 2 3 , #H 2 0. Insol. inH 2 0. Sol. in NH 4 OH + Aq. (Fuchs, J. pr. 5. 318.) Stannic hydroxide. See Stannic acid. Tin hydroxyl chloride, SnO(OH)Cl. See Chlorostannic acid. Stannous iodide, SnI 2 . SI. sol. in cold, more abundantly in hot H 2 0, without decomp. Sol. inSn01 2 + Aq. Sol. in warm alkali chlorides or iodides + Aq ; also in dil. HCl + Aq. Very si. sol. in CHC1 3 , CS 2 , or C 6 H 6 . (Personne, C. R. 54. 216.) Sol. inKOH + Aq. (Rose.) Stannic iodide, SnI 4 . Decomp. by H 2 into Sn0 2 and HI. Sol. in anhydrous alcohol, ether, and benzene. 1 pt. CS 2 dissolves 1 "45 pts. SnI 4 at ordinary temp. (Schneider, Pogg. 127. 624.) 100 pts. methylene iodide CH 2 I 2 dissolve 22-9 pts. SnI 4 at 10. Sp. gr. of solution = 3-481. (Retgers, Z. anorg. 3. 343.) Stannous iodide ammonia, SnI 2 , 2NH 3 (?). (Rammelsberg, Pogg. 48. 109.) Stannic iodide ammonia, SnI 4 , 3NH 3 . (Personne, C. R. 54. 218.) SnI 4 , 4NH 3 . (Personne.) SnI 4 , 8NH 3 . (Rammelsberg, Pogg. 48. 169.) Tin iodosulphide. See Tin sulphoiodide. Tin monoxide (Stannous oxide), SnO. Insol. in H 2 0. Sol. in acids. Very si. sol. in boiling NH 4 Cl + Aq. (Rose.) Insol. in NaOH or KOH + Aq. Tin cfo'oxide (Stannic oxide), Sn0 2 . Insol. in H 2 or cone, acids except cone. H 2 S0 4 . Insol. in cone, alkalies or NH 4 OH + Aq. Not absolutely insol. in dil. HN0 3 + Aq. (Mulder.) Min. Cassiterite (Tin stone}. Not attacked by acids. Tin sesquioxide, Sn 2 3 . While moist, easily sol. in NH 4 OH + Aq. SI. sol. in dil., more easily in cone. HCl + Aq. (Berzelius. ) Stannic oxybromide, Sn 3 Br 6 + 12H 2 0. Decomp. by H 2 into SnBr 2 and H 2 Sn0 3 . Sn 3 Br 8 2 . As above. (Preis and Raymann, C. C. 1882. 773.) Stannous oxychloride, SnO, SnCl 2 + 3H 2 0. Insol. in H 2 0. Sol. in HC1, HC 2 H 3 2 , and dil. HN0 3 , or H 2 S0 4 + Aq. (J. Davy, Schw. J. 10. 325.) Sn 8 Cl 14 8 + 10H 2 0. Easily sol. in H 2 or alcohol. Can be recrystallised from alcohol but not from H 2 0. (Tschermak, W. A. B. 44, 2. 736.) Stannic oxychloride, Sn0 2 , SnCl 4 . Sol. in H 2 0. (Scheurer-Kestner, A. ch. (3) 47. 6.) Metaaisumic oxychloride, 3Sn0 2 , SnCl 4 + 3H 2 0. Sol. in little, decomp. by much H 2 0. (Weber, Pogg. 122. 368.) 4Sn0 2 , SnCl 4 + 7H 2 0. (Weber.) Stannous oxyiodide, SnO, 3SnI 2 ; 2SnO, 3SnI 2 ; SnO, SnI 2 ; and 2SnO, SnI 2 . Decomp. by much H 2 0. (Personne, C. R. 54. 216.) Tin phosphide, SnP. Sol. in HC1 + Aq. Insol. in HN0 3 + Aq. Sn 3 P 2 . Sn 9 P. Tin phosphochloride, Sn 3 P 2 Cl 6 . (Mahn, Jena. Zeit. 5. 160.) Stannous selenide, SnSe. Decomp. by boiling HCl + Aq. Slowly oxidised by boiling HN0 3 + Aq, and easily dis- solved in aqua regia (Schneider, Pogg. 127. 480 TIN SELENIDE 624). Easily sol. in alkalies + Aq (Uelsmann, A. 116. 122), or scarcely attacked even on boil- ing (Schneider), according to method of pre- paration. Sol. in alkali sulphides or selenides + Aq. Stannic selenide, SnSe 2 . Not attacked by H 2 or dil. acids ; scarcely attacked by boiling cone. HC1 + Aq ; gradually decomp. by hot HN0 3 + Aq ; easily dissolved by warm aqua regia, and hot cone. H 2 S0 4 . Sol. in cold, more easily in warm KOH, NaOH, or NH 4 OH + Aq. (Uelsmann, A. 116. 122.) Stannous sulphide, SnS. Insol. in dil., sol. in cone. HCl + Aq. SI. sol. in hot cone. HN0 3 + Aq. Insol. in KOH + Aq. + H 2 0. Insol. in H 2 0, H 2 S + Aq, or dil. acids ; sol. with decomp. in cone, acids ; easily sol. in hot cone. HCl + Aq. Insol. in H 2 S0 3 + Aq. Insol. in NH 4 OH + Aq. Insol. in NH 4 C1, or NH 4 N0 3 + Aq. Scarcely sol. in (NH 4 ) 2 S + Aq, but easily sol. in the same on addition of S. (Rose.) Sol. in alkali polysulphides + Aq. Stannic sulphide, SnS 2 . Anhydrous. (Mosaic gold. ) Insol. in HC1 or HN0 3 + Aq, but decomp. by aqua regia. Sol. in hotKOH + Aq or K 2 C0 3 + Aq; also in hot K 2 S, Na 2 S + Aq, and (NH 4 ) 2 S + Aq. + a;H 2 0. SI. sol. in NH 4 OH + Aq, but read- ily in KOH, K 2 S, or !S"a 2 S + Aq ; also in hot cone. HCl + Aq. Decomp. by hot HN0 3 + Aq. Insol. in KHS0 3 + Aq. Sol. in K 2 C0 3 + Aq. Insol. in NH 4 C1, and NH 4 N0 3 + Aq. (Brett.) H 2 S ceases to ppt. Sn in presence of 120,000 pts. H 2 0. (Pfatf.) Sol. in boiling cone. H 2 C 2 4 + Aq. (Clarke, C. N. 21. 124.) Tin sulphochloride, SnS 2 , 2SnCl 4 . H 2 dissolves out SnCl 4 . (Dumas, Schw. J. 66. 409.) SnS 2 Cl 12 =SnCl 4 , 2SC1 4 . Sol. in H 2 with separation of S. Gradually sol. in dil. HN0 3 + Aq. Sol. in POC1 3 . (Casselmann, A. 83. 267.) Tin sulphoiodide, SnS 2 I 4 . Decomp. by H 2 into Sn0 2 , S, and HI ; by cold cone. HC1 + Aq with separation of S, also by aqua regia, and HN0 3 + Aq. Cold KOH + Aq separates S and Sn0 2 . Completely sol. in hot KOH + Aq. Sol. in cold, more easily in hot CS 2 or CHC1 3 . Decomp. by alcohol. (Schneider, Pogg. 111. 249.) Stannous telluride, SnTe. Not attacked by cone. HCl + Aq. (Ditte, C. K. 97. 42.) Titanic acid, Ti0 2 , o;H 2 0. a, -Titanic acid. Insol. in H 2 or alcohol. When dried in the cold, is completely sol. in acids, especially HC1, or dil. H 2 S0 4 + Aq, but when the solution in acids is boiled, it is con- verted into /3-titanic acid. Very si. sol. even when moist in H 2 S0 3 + Aq. (Berthier.) SI. sol. in alkali carbonates +Aq. A complete solution in an alkali carbonate +Aq can only be obtained by adding a Ti salt drop by drop to the alkaline solution, and allowing the ppt. to dissolve entirely before adding more Ti salt. On boiling the solution in (NH 4 ) 2 C0 3 + Aq (or in K 2 C0 3 or Na 2 C0 3 + Aq with NH 4 C1) the titanic acid is pptd. /3 - Titanic acid, Metatitanic acid. Insol. in H 2 0, acids except HF, or alkali hydrates or carbonates + Aq. When digested with cone. H 2 S0 4 until acid is evaporated, the residue is sol. in H 2 0. (Berzelius.) 7 - Titanic acid. Sol. in pure H 2 0, but /3-acid is pptd. by boiling. (Knop, A. 123. 351.) Colloidal Ti0 2 , H 2 + Aq has been prepared by Graham (Chem. Soc. 17. 325). Barium titanate, 2BaO, 3Ti0 2 . (Bourgeois, C. R. 103. 141.) Calcium titanate, CaTi0 3 . (Ebelmen, C. R. 32. 711.) Min. Perofskite. Scarcely attacked by HC1 + Aq or other acids, except hot H 2 S0 4 , which decomposes it. CaO, 2Ti0 2 . Min. Titanomorphite. Par- tially decomp. by HCl + Aq, completely by H 2 S0 4 . Ferrous or^otitanate, Fe 2 Ti0 4 . (Hautefeuille, C. R. 59. 733.) Ferroferric titanate, FeTi0 3 , a:Fe 2 3 . Min. Menaccanite. Very si. sol. in HC1 or aqua regia with separation of Ti0 2 . Ferric titanate. Not attacked by boiling H 2 S0 4 or cone. HCl + Aq. (Wohler and Liebig, Pogg. 21. 578.) Magnesium titanate, MgTi0 3 . Insol. in H 2 and acids. (Hautefeuille, A. ch. (4) 4. 169.) Mg 2 Ti0 4 . Slowly decomp. by boiling with HN0 3 + Aq. (Hautefeuille, A. ch. (4) 4. 169.) Potassium titanate, ILjTiOg. Anhydrous. Decomp. with H 2 0. + 4H 2 0. Deliquescent. Very sol. in H 2 0. Precipitated from aqueous solution by alcohol. (Demoly, Compt. chim. 1849. 325.) Potassium titanate, acid, K 2 0, 3Ti0 2 + 2H 2 0. Insol. in H 2 0. (Demoly.) K 2 0, 6Ti0 2 + 2H 2 0. (Demoly.) K 2 0, 3Ti0 2 + 3H 2 0. Insol. in H 2 0. Com- pletely sol. in HCl + Aq if only cold H 2 is used for washing. When heated to 100, no longer completely sol. in HCl + Aq. (Rose, Pogg. 74. 563.) K 2 0, 12Ti0 2 . (Rose, Gilb. Ann. 73. 78.) Sodium titanate, Na 2 Ti0 3 . Anhydrous. Decomp. by H 2 into NaOH, and an acid titanate, insol. in H 2 0. + 4H 2 0. Deliquescent. Very sol. in H 2 0. Precipitated from aqueous solution by alcohol. (Demoly.) TITANIUM NITRIDE 481 Sodium titanate, acid, 2Na 2 0, 9Ti0 2 + 5H 2 0. If not heated to 100, is sol. in cold HC1 + Aq. (Rose, Gilb. Ann. 73. 78.) 2Na 2 0, 3Ti0 2 . Insol. in H 2 ; slowly sol. in cold, easily in hot HCl + Aq. (Cormim- bceuf, C. R. 115. 823.) Na 2 0, 2Ti0 2 . As above. (C.) Na^O, 3Ti0 2 . Insol. in H 2 0, and nearly so in boiling HCl + Aq. (C.) Strontium titanate, 2SrO, 3Ti0 2 . (Bourgeois, C. R. 103. 141.) Zinc titanate, ZnO, TiO a (?). (Levy, A. ch. (6) 24. 456.) 2ZnO, Ti0 2 (?). (Levy.) 3ZnO, 2Ti0 2 . Slowly attacked by warm H 2 S0 4 or HN0 3 + Aq, and by H 2 S0 4 + HF. Wholly sol. in cold HCl + Aq. (Levy.) 4ZnO, 5Ti0 2 . Not attacked by cold cone, acids, but sol. by boiling except in HCl + Aq. (Levy.) ZnO, 3Ti0 2 . Insol. in H 2 0, alcohol, or ether. Dil. HN0 3 , H 2 S0 4 , or HCl + Aq do not attack even on boiling ; boiling H 2 S0 4 dissolves with difficulty ; not attacked by cone, boiling alkalies + Aq. (Levy, A. ch. (6) 25. 471.) Titanium, Ti. Decomp. H 2 even under 100 (Wb'hler) ; not attacked by H 2 under 500 (Kern, C. N. 33. 57). Sol. in HCl + Aq if warmed. Sol. in cold dil. H 2 S0 4 + Aq, HN0 3 + Aq, or HC 2 H 3 2 + Aq. Dissolves almost instantaneously in HF + Aq. (Merz.) Titanium bromide, TiBr 4 . Deliquescent. Decomp. by H 2 0. (Duppa, C. R. 42. 352.) Titanium carbide, TiC. Sol. in HN0 3 + Aq. (Shimer, C. N. 55. 71.) Titanium carbide nitride, Ti 10 C 2 N 8 =Ti(CN) 2 , 3Ti 3 N 2 . Insol. in, and not attacked by boiling HN0 3 or H 2 S0 4 (Wollaston), but sol. in HN0 3 + HF (Berzelius). Titanium ^'chloride, TiCl 2 . Very deliquescent. Decomposes H 2 with violence. Insol. in ether, CS 2 , or CHC1 3 . Decomp. by 99 '5 % alcohol. Titanium trichloride, TiCl 3 . Deliquescent. Sol. in H 2 with evolution of heat. + 4H 2 0. (Glatzel, B. 9. 1829.) Titanium ^rachloride, TiCl 4 . Anhydrous. Sol. in H 2 with evolution of much heat. + 5H 2 0. Deliquescent. Titanium sulphuryl chloride, TiCl 4 S0 3 = TiCl 3 OS0 2 Cl. Deliquesces gradually in moist air. (Claus- nitzer, B. 11. 2011.) Titanium chloride ammonia, TiCl 4 , 4NH 3 . Deliquescent. Solution in H 2 is not quite clear. (Rose.) According to Persoz (A. ch. 46. 315), is TiCl 4 , 6NH 3 . Titanium chloride cyanhydric acid, TiCL, 2HCN. Deliquescent. Sol. in H 2 with evolution of heat. (Wohler, A. 73. 226.) Titanium chloride phosphine. Decomp. by H 2 0, HCl + Aq, KOH + Aq, or K 2 C0 3 + Aq, or (NH 4 ) 2 C0 3 + Aq. (Rose. ) Titanium ^'fluoride. (Hautefeuille, C. R. 57. 151.) Probably sesquiftnoride. Titanium sesgm'fluoride, Ti 2 F 6 . Appears to be two modifications, one sol. in H 2 0, and the other insol. in H 2 0. (Hautefeuille, C. R. 59. 189.) Insol. in H 2 0. (Weber, Pogg. 120. 291.) Titanium ^rafluoride, TiF 4 . Decomp. by H 2 0. (Unverdorben. ) Sol. in H 2 0, but solution decomp. upon evaporation. (Marignac, Ann. Min. (5) 15. 258.) + #H 2 0. Decomp. by H 2 0. (Berzelius.) Titanium hydrogen fluoride, 2HF, TiF 4 = H 2 TiF 6 . Sol. in H 2 with decomposition and separa- tion of a basic salt. Corresponds to fluosilicic acid, and may be considered as fluotitanic acid H 2 TiF 6 . Titanium fluoride with MF. See Fluotitanate, M. Titanium sesgrnhydroxide, Ti 2 3 , a;H 2 0. Decomposes very quickly with H 2 0, forming titanium ^hydroxide. Titanium cKhydroxide. See Titanic acid. Titanium hydroxychloride, TiCl 3 (OH). Deliquescent. Easily sol. in H 2 and alcohol. Sol. in ether. TiCl 2 (OH) 2 + liH 2 0. Deliquescent. Sol. in H 2 0, alcohol, and ether. Aqueous solution decomp. by boiling. TiCl(OH) 3 + H 2 0. Nearly insol. in H 2 0. Insol. in alcohol and ether. (Kb'nig and v. der Pfordten, B. 21. 1708.) See also Titanium oxychloride. Titanium iodide, TiI 4 . Fumes on air, and dissolves rapidly in H 2 with evolution of heat. Solution decomposes on standing. (Weber.) Titanium nitride, Ti 5 N 6 . (Wohler, A. 73. 46.) Ti 3 N 4 . Difficultly sol. in warm HN0 3 + Aq. More easily sol. in aqua regia. (Rose. ) TiN 2 . Insol. in H 2 0. (Wohler.) Is TiN, according to Guerin (C. R. 82. 972). 2i 482 TITANIUM OXIDE Titanium sesquioxide, Ti 2 3 . Insol. in HC1 or HN0 3 + Aq. Difficultly sol. in H 2 S0 4 . (Ebelmen, A. ch. (3) 20. 392.) When moist, insol. in H 2 or NH 4 OH + Aq, but quickly decomp. to Ti0 2 . Sol. in oxygen acids, but quickly decomp. (Berzelius.) Titanium eKoxide, Ti0 2 . Amorphous. Insol. in H 2 0, HC1, or dil. H 2 S0 4 + Aq, even when heated for a long time. Sol. in cone. H 2 S0 4 by long digestion. Crystalline. Min. Rutile, Brookite, and Anatase. Solubility as above. See also Titanic acid. Titanium oxide, Ti 3 5 . (Deville, C. R. 53. 163.) True formula is Ti 7 12 . (v. der Pfordten, A. 237. 201.) Titanium peroxide, Ti0 3 . Sol. in acids. Solution in H 2 S0 4 is very stable, but the HC1 solution decomposes very easily. (Weber, B. 15. 2599 ; Piccini, B. 15. 2221 ; Classen, B. 21. 370.) Titanium oxychloride, Ti0 2 , Ti001 2 + 8H 2 0. Sol. in much H 2 0. (Merz, Bull. Soc. 1867. 401.) Ti 2 2 01 2 . Insol. in H 2 0. Sol. in NH 4 OH + Aq with separation of Ti0 2 . See also Titanium hydroxychloride. Titanium oxyfluoride. Insol. in H 2 0. (Berzelius.) Titanium oxyfluoride with MF. See Fluoxypertitanate, M. Titanium phosphochloride. See Phosphorus titanium chloride. Titanium mowosulphide, TiS. Insol. in alkalies. Difficultly sol. in nitric acid and aqua regia. Insol. in HF. (v. der Pfordten, A. 234. 257.) Titanium ^'sulphide, TiS 2 . Decomp. slowly on moist air. Insol. in HC1 or dil. H 2 S0 4 + Aq. (Ebelmen. ) Sol. in aqua regia or HN0 3 + Aq. Decomp. by KOH + Aq or NaOH + Aq. Insol. in KSH + Aq. (Rose.) Sol. in HF at 100. (v. der Pfordten, A. 234. 257.) Titanium sesgwsulphide, Ti 2 S 3 . Insol. in caustic alkalies + Aq. Sol. in HF at a high temp. Insol. in aqua regia. (v. der Pfordten, A. 234. 257.) Titanoctotungstic acid, H 8 TiW 10 36 + H 2 0. (Lecarme, Bull. Soc. (2) 36. 17.) Titanotungstic acid or Tit&iLoduodeci- tungstic acid, H 8 TiW 12 42 +a;H 2 0. (Lecarme, Bull. Soc. (2) 36. 17.) Titanous acid. Sodium titanite, Na 3 Ti0 3 =3Na 2 0, Ti 2 3 . Sol. in dil. acids. (Koenig and v. der Pfordten, B. 22. 2075.) Titanyl compounds. See Titanium oxy- compounds. Triamine cobaltic compounds. See Dichrocobaltic compounds. Trithionic acid, H 2 S 3 6 . Known only in aqueous solution. Solution in H 2 gradually decomposes in the cold, rapidly at 80. Not decomp. if very dilute or in presence of acids, except HN0 3 , HC10 3 , and HI0 3 . (Fordos and Gelis, A. ch. (3) 28. 451.) Trithionates. The trithionates are all sol. in H 2 0, and very easily decomposed. Barium trithionate, BaS 3 6 + 2H 2 0. Very sol. in H 2 0. Precipitated from aqueous solution by large excess of alcohol. Aqueous solution is very unstable. (Kessler, Pogg. 74. 250.) Lead trithionate, PbS 3 6 . Yery si. sol. in H 2 0. Sol. in Na 2 S 2 3 + Aq. (Fogh, C. R. 110. 524.) Potassium trithionate, K 2 S 3 6 . Sol. in H 2 0. Insol. in alcohol. (Kessler, Pogg. 74. 270.) Sodium trithionate, Na 2 S 3 6 . Very sol. in H 2 0. + 3H 2 0. (Villiers, C. R. 106. 1356.) Thallous trithionate, T1 2 S 3 6 . Sol. in H 2 0. (Bevan, C. N. 38. 294.) Zinc trithionate. Sol. in H 2 0, but decomposes upon warming the solution. (Fordos and Gelis, C. R. 16. 1070.) Tungsten, W. Metallic. Not attacked by heating with fuming HN0 3 , aqua regia, or other acids, or by boiling KOH + Aq. Sol. in KOH + Aq and NaClO + Aq. (v. Uslar, A. 94. 255.) Crystalline. Insol. in H 2 0, HC1, or H 2 S0 4 . Oxidised by HN0 3 or aqua regia. (D'Elhujar. ) Sol. in boiling KOH + Aq. (Riche, A. ch. (3) 50. 5.) Amorphous. Easily oxidised by HN0 3 + Aq. (Zettnow.) Tungsten amide. See Tungsten nitride. Tungsten ^bromide, WBr 2 . Partly sol. in H 2 0, the rest decomposing to W0 2 and HBr. Tungsten pentaloTomide, WBr 5 . Decomp. by moist air or H 2 0. Sol. in caustic alkalies + Aq. TUNGSTATES 483 Tungsten bronze. See Tungstate tungsten oxide, sodium. Tungstate tungsten oxide, potassium. Tungstate tungsten oxide, lithium. Tungsten ^chloride, WCLj. Decomp. on the air or with H 2 0. (Roscoe.) Tungsten ^rachloride, WC1 4 . Deliquescent. Partly sol. in H 2 0, with sub- sequent decomposition. (Roscoe.) Tungsten pentachloxide, WC1 5 . Very deliquescent. Decomp. with H 2 with hissing and evolution of heat and separation of Very si. sol. in CS 2 . (Roscoe.) Tungsten hexachloride, WC1 6 . Not decomp. by moist air or H 2 O. Decomp. by alcohol. Very sol. in CS 2 . (Roscoe.) Easily sol. in POC1 3 . (Teclu, A. 187. 255.) Tungsten ^iodide, WI 2 . Not decomp. by H 2 0. (Roscoe, A. 162. 366.) IWtungsten nitride, W 3 N 2 . (Uhrlaub.) Tungsten nitride amide, W 3 N 6 H 4 = 2WN 2 , W(NH 2 ) 2 . Not attacked by acids or caustic alkalies + Aq. (Wohler, A. 73. 191.) Tungsten nitride amide oxide, W 7 N 8 H 4 4 = 3WN 2 , W 2 (NH 2 ) 2 , 2W0 3 . Not attacked by acids or alkalies. (Wohler. ) Tungsten monoxide, WO. Insol. in H 2 0. Not attacked by HC1, HF, H 2 S0 4 , or KOH + Aq. HN0 3 + Aq or aqua regia convert it into W0 3 . (Headden, Sill. Am. J. 145. 280.) Tungsten dioxide, W0 2 . (a} When prepared in the dry way, is at- tacked only by aqua regia, which oxidises to W0 3 . (b) When moist, is sol. in HC1 or H 2 S0 4 + Aq, also in KOH + Aq. Insol. in NH 4 OH + Aq. (Riche, A. ch. (3) 50. 5.) Tungsten oxide, blue. W 2 5 (Riche, A. ch. (3) 50. 33) ; W 3 8 (v. Uslar) ; W 4 n (Gmelin). All are probably the same substance. Not attacked by boiling HN0 3 or Slowly sol. in boiling KOH + Aq. Tungsten trioxide, W0 3 . Insol. in H 2 or acids. SI. sol. in dil. KOH.+ Aq, NaOH + Aq, Na 2 C0 3 + Aq, or H 2 C0 3 + Aq, but easily sol. in cone, boiling solutions of above. NH 4 OH + Aq when boiling has a solvent action. Min. Tungstite. Insol. in acids. Sol. in NH 4 OH + Aq. Tungsten oxybromide, etc. See Tungstyl bromide, etc. aqua regia. Tungsten phosphide, W 4 P 2 . Not attacked by any acid, not even by aqua regia. (Wohler and Wright, A. 79. 244.) W 3 P 4 . Tungsten tfo'selenide, WSe 2 . (Uelsmann. ) Tungsten Zn'selenide, WSe 3 . Easily sol. in alkalies, alkali sulphides or selenides + Aq. (Uelsmann, Jahrb. f. Ch. 1860. 92.) Tungsten ^'sulphide, WS 2 . Oxidised by HN0 3 + Aq. (Berzelius.) Tungsten ^rzsulphide, WS 3 . Somewhat sol. in cold, abundantly in hot H 2 0, but separated out by the addition of salts, especially NH 4 C1, or acids. Sol. in alkali sulphides, and hydrosulphides + Aq. Sol. in caustic alkalies, and alkali carbonates + Aq. Slowly sol. in NH 4 OH + Aq in the cold. Tungstic acid, H 2 W0 4 . Insol. in H 2 0. Sol. in HF. Insol. in tung- states + Aq. H 4 W0 5 . Precipitate. SI. sol. in H 2 and aqueous solutions -of the tungstates. Sol. in 250-300 pts. H 2 0. When freshly pptd. sol. in alkali hydrates or carbonates + Aq. (Anthon, J. pr. 9. 6.) Jfetotungstic acid, H 2 W 4 13 + 7H 2 0. Sol. in H 2 0. Solution may be boiled and evaporated to a syrupy consistency, when it suddenly gelatinises and ordinary tungstic acid is precipitated. Sp. gr. of solution of metatungstic acid at 17 '5 containing : 279 12-68 27'61 43 '75 % W0 3 . 1-0257 1-1275 1-3274 1-6343 (Scheibler, J. pr. 83. 273.) Sp. gr. of aqueous solution calculated by M Mendelejeff, and G = Gerlach (Z. anal. 27. 300), containing : 5 10 15 20 25 % W0 3 , M 1-047 1-098 1-153 1-214 1'285 G 1-0469 1-0980 1-1544 1-2172 1-2873 30 35 40 45 50 % W0 3 . M 1-366 1-458 1-555 1'581(?) G 1-3660 1-4540 1-5527 1'6630 17860 Colloidal. Sol. in H 2 0. Not precipitated by acids or alcohol. Can be evaporated to dryness and heated to 200, and still remains sol. in H 2 0. Sol. in J pt. of H 2 0. Sp. gr. of aqueous solution containing : 5 20 50 66-5 79'8%W0 3 . 1-0475 1-2168 1-8001 2 '596 3 '243 (Graham, Chem. Soc. 17. 318.) Perhaps ^aratungstic acid, H 10 W 12 41 . (Klein, Bull. Soc. (2) 36. 547.) Tungstates. Few normal tungstates are sol. in H 2 0, even some of the K and NH 4 salts are very si. sol. 484 TUNGSTATE, ALUMINUM Most of the metatungstates, however, are easily sol. in H 2 0. . Tungstates insol. in H 2 are usually insol. in dil. acids. Aluminum tungstate, A1 2 (W0 4 ) 3 + 8H 2 0. Precipitate. Insol. in H 2 and Na 2 W0 4 + Aq. Sol. in (NH 4 ) 2 A1 2 (S0 4 ) 4 + Aq, NaOH + Aq, NH 4 OH + Aq. Easily sol. in H 3 P0 4 , H 2 C 2 4 , and H 2 C 4 H 4 6 + Aq. (Lotz, A. 83. 65.) Sol. in 1500 pts. H 2 at 15. (Lefort, C. R. 87. 748.) A1 2 3 , 4W0 3 + 9H 2 0. Sol. in 400 pts. H 2 at 15. (Lefort, C. R. 87. 748.) ALjOg, 5W0 3 + 6H 2 0. Sol. in H 2 0, from which it is pptd. by alcohol. (Lefort. ) Formula according to Lefort is A^Og, 3W0 3 + 3H 2 0, 2W0 3 . Aluminum ^aratungstate, 5A1 2 3 , 36W0 3 + 46H 2 = A1 2 3 , 7W0 3 + 9H 2 (?). Easily sol. in an alum solution. (Lotz, A. 83. 65.) Ammonium tungstate, (NH 4 ) 2 W0 4 . Known only in solution. (NH 4 ) 4 W 3 O n + 3H 2 - 2(NH 4 ) 2 0, 3 W0 3 + 3H 2 0. Sol. in H 2 with decomp. Decomp. on air with evolution of NH 3 , and formation of ^aratungstate. Sol. in NH 4 OH + Aq. (Marignac, A. ch. (3) 69. 23.) (NH 4 ) 4 W 5 17 + 5H 2 = 2(NH 4 ) 2 0, 5 W0 3 + 5H 2 0. Sol. at ordinary temp, in 26-29 pts. H 2 with partial decomposition. (Marignac.) (NH 4 ) 6 W 8 27 + 8H 2 = 3(NH 4 ) 2 0, 8 W0 3 + 8H 2 0. Sol. inH 2 0. (Marignac.) Ammonium metatungstate, (NH 4 ) 2 W 4 13 . + 6H 2 0. (Marignac, A. ch. (4) 3. 74.) + 8H 2 0. Efflorescent. Very sol. in H 2 0. 1 pt. dissolves at 15 in 0'84 pt. H 2 0. (Lotz.) 1 pt. dissolves at ordinary temp, in 0'35 pt. H 2 0. (Riche.) Solubility increases rapidly with the tem- perature. Saturated solution at 40 is solid on cooling. SI. sol. in ordinary, insol. in absolute alco- hol. (Lotz.) Insol. in ether. (Riche.) [(NH 4 ) 2 W 3 10 + 5H 2 of Margueritte.] (NH 4 ) 6 W 16 51 + 17H 2 = 3(NH 4 ) 2 0, 16W0 3 + 17H 2 0. Very efflorescent. Decomp. by dis- solving in pure H 2 0. (Marignac, A. ch. (4) 3. 75.) Ammonium ^aratungstate, (NH 4 ) 10 W 12 41 = 5(NH 4 ) 2 0, 12W0 3 . (Marignac, A. ch. (3) 69. 25.) According to Lotz (A. 91. 49) and Scheibler (J. pr. 80. 208), formula is (NH 4 ) 6 W 7 24 = 3(NH 4 ) 2 0, 7W0 3 . + 5H 2 0. (Scheibler, J. pr. 48. 232.) + 11H 2 0. Sol. in 25-28 pts. cold H 2 0. (Anthon.) Sol. in 26-1 pts. H 2 at 10 '7, and 5 '8 pts. at 100. (Lotz.) Sol. in 33'3 pts. cold H 2 0, and 9 '6 pts. at 100. (Riche.) Sol. in 22-38 pts. H 2 at 15-18. The solu- tion gradually decomposes, with the formation of a more soluble salt. (Marignac.) Not much more sol. in NH 4 OH + Aq than in H 2 0. Insol. in alcohol. (Anthon.) Ammonium cadmium jparatungstate, 3(NH 4 ) 2 0, 12CdO, 35W0 3 + 35H 2 0. Ppt. Sol. in H 2 acidulated with HN0 3 . (Lotz, A. 91. 49.) Ammonium cobaltous tungstate, 8(NH 4 ) 2 0, 2CoO, 15W0 3 + 3H 2 0. (Carnot, C. R. 109. 147.) Ammonium ferric tungstate, 5(NH 4 ) 2 0, Fe 2 3 , 5W0 3 + 5H 2 0. Sol. inH 2 0. (Borck.) Ammonium magnesium ^?aratungstate, 2(NH 4 ) 2 0, 3MgO, 12W0 3 + 24H 2 0. Very slightly sol. in H 2 0. (Marignac, A. ch. (3) 69. 58.) (NH 4 ) 2 0, 2MgO, 7W0 3 + 10H 2 0. Very si. sol. in H 2 ; sol. in H 2 acidulated with HN0 3 . (Lotz.) Ammonium mercuric tungstate, (NH 4 ) 2 W0 4 , HgW0 4 + H 2 0. Insol. in H 2 0. Decomp. by acids or alkalies. (Anthon. ) Ammonium sodium ^amtungstate, 4(NH 4 ) 2 0, Na 2 0, 12W0 3 + 5H 2 0. Can be crystallised from H 2 without de- comp. (Lotz, A. 91. 57.) + 14H 2 0. (Knorre, B. 19. 822.) 5Na 2 0, 15(NH 4 ) 2 0, 48W0 3 + 48H 2 0. (Marig- nac, A. ch. (3) 69. 53.) 2Na 2 0, 3(NH 4 ) 2 0, 12W0 3 + 15H 2 0. (Marig- nac.) 4Na 2 0, 16(NH 4 ) 2 0, 50W0 3 + 50H 2 0. SI. sol. in cold H 2 0. (Gibbs, Proc. Am. Acad. 15. 12.) 3Na 2 0, 4(NH 4 ) 2 0, 16W0 3 + 18H 2 0. (Gibbs, Am. Ch. J. 7. 236.) Is 2Na 2 0, 3(NH 4 ) 2 0, 12W0 3 + 13H 2 0, ac- cording to Knorre (B. 19. 823). Ammonium potassium sodium ^aratungstate, 5(K, Na, NH 4 ) 2 0, 12W0 3 + 13H 2 0, where K:Na:NH 4 = 3 :3:4. 10(K, Na, NH 4 ) 2 0, 24W0 3 + 26H 2 0, where K : Na : NH 4 = 3 : 3 : 14. (Laurent. ) Ammonium zinc ^aratungstate, (NH 4 ) 2 0, 2ZnO, 7W0 3 +13H 2 0. SI. sol. in boiling H 2 0, but more easily on addition of oxalic, tartaric, phosphoric, or dil. nitric acids, or of ammonium tungstate. (Lotz, A. 91. 49.) Ammonium wetotungstate nitrate. See Nitrate ?ftetatungstate, ammonium. Ammonium tungstate vanadate. See Vanadiotungstate, ammonium. Antimony tungstate, Sb 2 3 , 5W0 3 + 4H 2 0. Sol. in H 2 without decomp. (Lefort.) Sb 2 3 , 6W0 3 + 8H 2 0. Ppt. Barium tungstate, BaW0 4 . Anhydrous. Insol. in H 2 0. Decomp. by TUNGSTATE, CHROMIC 485 boiling HN0 3 + Aq. (Geuther and Forsberg, A. 120. 270.) + H 2 0. Insol. in H 2 or boiling H 3 P0 4 + Aq. Sol. in boiling, less sol. in cold H 2 C 2 4 + Aq. (Anthon.) + 2iH 2 0. Insol. precipitate. (Scheibler.) Pptd. BaW0 4 is attacked by dil. acids. More sol. in NH 4 N0 3 + Aq than in H 2 0. (Smith and Bradbury, B. 24. 2930.) Barium cfttungstate, BaW 2 7 + H 2 (?). Nearly insol. in H 2 0. 100 com. H 2 dis- solve about 0'05 g. at 15. (Lefort, A. ch. (5) 15. 325.) Barium ^tungstate, BaW 3 10 + 4H 2 (?). Sol. in about 300 pts. H 2 at 15. Decomp. by boiling H 2 into an insol. salt. (Lefort, C. R. 88. 798.) + 6H 2 0. (Scheibler.) Barium metatungatate, BaW 4 13 + 9H 2 0. Efflorescent. Quite sol. in hot H 2 0. Partly decomp. by cold H 2 into BaW 3 10 and W0 3 , which recombine on heating. (Scheibler, J. pr. 80. 204.) Barium tungstate, BaWgO^ + 8H 2 0. Insol. in H 2 or HCl + Aq. (Zettnow.) Barium paratungstate, Ba d W 12 41 + 14H 2 0, or Insol. in cold H 2 ; when freshly pptd. is si. sol. in HN0 3 + Aq. (Lotz, A. 91. 60.) Sol. inNH 4 Cl + Aq. ( Wackenroder. ) + 27H 2 = Ba 3 W 7 24 +16H 2 0. Insol. in cold, si. sol. in hot H 2 0. (Knorre, B. 18. 327.) Barium silver metotungstate. (Scheibler.) Barium sodium joaratungstate, 2BaO, 3Na 2 0, 12W0 3 + 24H 2 (Marignac), or BaO, 2Na 2 0, 7W0 3 + 14H 2 (Scheibler). Insol. in H 2 0. Bismuth tungstate, Bi 2 3 , 6W0 3 + 8H 2 0. Very sol. in H 2 with decomp. Pptd. by alcohol from aqueous solution. (Lefort, C. R. 87. 748.) Cadmium tungstate, CdW0 4 . Anhydrous. + H 2 0. Sol. in about 2000 pts. H 2 0. (Lefort.) + 2H 2 0. Insol. in H 2 0. Sol. in hot phos- phoric or oxalic acids, or in NH 4 OH + Aq. (Anthon, J. pr. 9. 341.) Sol. in KCN + Aq. (Smith and Bradbury, B. 24. 2390.) Cadmium ^tungstate, CdW 2 7 + 3H 2 (?). Sol. in about 500 pts. H 2 at 15. (Lefort, A. ch. (5) 15. 346.) Cadmium ^tungstate, CdW 3 10 + 4H 2 (?). (Lefort.) Cadmium metotungstate, CdO, 4W0 3 + 10H 2 0. Not efflorescent. (Scheibler, J. pr. 83. 273.) Cadmium ^aratungstate, CdgWyO^ + 16H 2 0. Ppt. (Gonzalez. ) Insol. in H 2 0. Sol. in NH 4 OH + Aq, and hot H 3 P0 4 , H 2 C 2 4 , or HC 2 H 3 2 Cadmium sodium ^aratungstate, 2CdO, Na 2 7W0 3 + 18H 2 0. Difficultly sol. in cold H 2 0. (Knorre, B. 19. 824.) Calcium tungstate, CaW0 4 . Insol. in H 2 or dil. acids. Sol. in about 500 pts. H 2 0. (Lefort.) Decomp. by KOH + Aq. (Anthon. ) When freshly pptd., sol. in NH 4 Cl + Aq. (Wackenroder. ) Sol. in Mg, and NH 4 salts, also in Na2W0 4 + Aq. (Sonstadt, C. N. 11. 97.) Min. Scheelite. Decomp. by HC1 or HN0 3 + Aq, with separation of W0 3 . Calcium ^tungstate, CaW 2 7 + 3H 2 (?). Sol. in 30 pts. H 2 at 15. (Lefort, A. ch. (5) 15. 328.) Calcium ^tungstate, CaW 3 10 + 6H 2 (?). Sol. in cold H 2 0. (Lefort.) Calcium metatungstate, CaW 4 13 + 10H 2 0. Easily sol. in H 2 0. (Scheibler.) Calcium jmratungstate, CagW^ + lSHoO (or Ca 5 W 12 41 + 30H 2 0). Much more sol. than Sr or Ba salt. (Knorre, B. 18. 328.) Calcium sodium paratungstate, 2CaO, 3Na 2 0, 12W0 3 + 3H 2 0. (Gonzalez, J. pr. (2) 36. 44.) Cerium tungstate, Ce 2 ( W0 4 ) 3 + H 2 0. Precipitate. (Cossa and Zecchino, Gazz. ch. it. 10. 225.) Cerium wetotungstate, Ce 2 3 , 12W0 3 + 30H 2 0. Permanent. Sol. in H 2 0. (Scheibler.) Cerium sodium tungstate, Ce 2 Na 8 (W0 4 ) 7 . Insol. in H 2 0. Slowly sol. in dil. acids, easily in HCl + Aq. (Hbgbom, Bull. Soc. (2) 42. 2.) Ce 2 (W0 4 ) 3 , 3Na 2 W0 4 . (Didier, C. R. 102. 823.) Cerium tungstate chloride, 3Ce 2 (W0 4 ) 3 , 2CeCl s . (Didier, C. R. 102. 823.) Chromic tungstate, basic, Cr 2 3 , 2W0 3 + 5H 2 0. Sol. in 400 pts. H 2 at 15. (Lefort, C. R. 87. 748.) Chromic tungstate, Cr 2 (W0 4 ) 3 + 7, and 13H 2 0. Sol. in CrCl 3 + Aq, and in phosphoric, oxalic, or tartaric acids +Aq. (Lotz.) +3H 2 0. (Lefort, C. R. 87. 748.) Cr 2 3 , 4W0 3 + 6H 2 0. Sol. in about 50 pts. H 2 0atl5. (Lefort.) Cr 2 3 , 5W0 3 . Not attacked by aqua regia. (Smith and Oberholtzer, Z. anorg. 5. 63.) Chromic ^aratungstate, Cr 2 W 7 0^ + 9H 2 0. Insol. in H 2 or NH 4 paratungstate +Aq ; sol. inCrCl 3 + Aq. (Lotz.) 486 TUNGSTATE, COBALTOUS Cobaltous tungstate, CoW0 4 . Anhydrous. Insol. in H 2 and acids. + 2H 2 0. Insol. in H 2 and cold HN0 3 + Aq. SI. sol. in H 2 C 2 4 + Aq. Completely sol. in warm H 3 P0 4 , HC 2 H 3 2 , or NH 4 OH + Aq. (Anthon, J. pr. 9. 344.) Sol. in about 500 pts. H 2 0. (Lefort.) Cobaltous ^tungstate, CoW 2 7 (?). + 3H 2 0. Insol. in H 2 0. 81. sol. in HoC 2 4 + Aq. Completely sol. in H 3 P0 4 , HC 2 H 3 2 , or NH 4 OH + Aq. (Anthon. ) + 5H 2 0. Sol. in about 100 pts. H 2 0. (Le- fort.) + 8H 2 0(?). (Lefort.) Cobaltous ^tungstate, CoW 3 10 + 4H 2 (?). Sol. in H 2 0. (Lefort, C. R. 88. 798.) Cobaltous metatungstate, CoW 4 13 + 9H 2 0. Sol. in H 2 0. (Scheibler, J. pr. 83. 317.) Cobaltous j^aratungstate, CogW^O^ + 25H 2 0. (Gonzalez, J. pr. (2) 36. 44.) Cobaltous sodium ^aratungstate, 2CoO, 3Na 2 0, 12W0 3 + 30H 2 0. (Gonzalez. ) Cupric tungstate, CuW0 4 . + 2H 2 0. Insol. in H 2 0. Sol. in H 3 P0 4 , HC 2 H 3 2 , or NH 4 OH + Aq. Insol. in H 2 C 2 4 + Aq. (Anthon. ) 100 com. H 2 at 15 dissolve O'l g. (Lefort.) Cupric ^tungstate, CuW 2 7 (?). + 4H 2 0. Insol. in H 2 and HN0 3 . Sol. in NH 4 OH + Aq. (Anthon, J. pr. 9. 346.) + 5H 2 0. Sol. in about 300 pts. H 2 0. (Le- fort.) (?). Cupric metatungstate, CuW 4 13 + llH 2 0. Sol. in H 2 0. (Scheibler.) Cupric ^aratungstate, Cu 3 W 7 24 + 19H 2 0. Insol. in H 2 0. (v. Knorre, B. 19. 826.) Cuprocupric tungstate, Cu 2 W0 4 , 2CuW0 4 . Insol. in H 2 0. (Zettnow, Pogg. 130. 255.) Cupric sodium >aratungstate, Cu 3 Na 6 (W 7 24 ) 2 + 32H 2 0. Ppt. (Knorre, B. 19. 826.) CuO, 4Na 2 0, 12W0 3 + 32H 2 0. Ppt. (Gon- zalez, J. pr. (2) 36. 52.) Cupric tungstate ammonia, CuW0 4 , 2NH 3 + H 2 0. (SchifF, A. 123. 39.) Didymium tungstate, Di 2 (W0 4 ) 3 . Precipitate. (Frerichs and Smith, A. 191. 355.) Didymium wetatungstate. Sol. in H 2 0. (Scheibler.) Didymium sodium tungstate, DiNa 3 (W0 4 ) 3 . Insol. in H 2 0. Slowly sol. in dil. acids. Sol. in cone. HC1 + Aq. DiNa(W0 4 ) 2 . As above. (Hogbom, Bull. Soc. (2) 42. 2.) Erbium sodium tungstate, Na 6 Er 4 (W0 4 ) 9 . Insol. in H 2 0. (Hogbom.) Glucinum wetatungstate. Very sol. in H 2 0. Ferrous tungstate, FeW0 4 . Min. Ferberite, Reinite. + 3H 2 0. Insol. in H 2 0. Sol. in cold H 2 S0 4 , HC1, or HN0 3 + Aq. Decomp. by boiling acids with separation of W0 3 . Sol. in boiling H 3 P0 4 + Aq or warm H 2 C 2 4 + Aq. (Anthon, J. pr. 9. 343.) + a;H 2 0. Very unstable. (Lefort, A. ch. (5) 15. 314.) Ferrous ^tungstate, FeW 2 7 (?). Insol. in H 2 0. Sol. in hot H 3 P0 4 + Aq or H 2 C 2 4 + Aq. Decomp. by dil. HC1 + Aq or by KOH + Aq. (Ebelmen, C. R. 17. 1198.) + a;H 2 0. Very unstable. (Lefort.) Ferrous ^tungstate, FeW 3 10 + 4H 2 (?). Ppt. Decomp. by cold, more rapidly by hotH 2 0. (Lefort.) Ferrous metotungstate. Sol. in H 2 0. (Scheibler, J. pr. 83. 315.) Ferric tungstate, basic, Fe 2 3 , 2W0 3 + 4H 2 0. Sol. in about 50 pts. H 0. (Lefort.) 2Fe 2 3 , 3W0 3 + 6H 2 0." Sol. in about 300 pts. H 2 at 15. (Lefort.) Ferric ^tungstate (?), Fe 2 3 , 4W0 3 + 4H 2 = Fe 2 3 , 3W0 3 + W0 3 , 4H 2 (?). Sol. in H 2 without decomp. (Lefort.) Ferric metotungstate. Sol. in H 2 0. (Scheibler, J. pr. 83. 273.) Ferrous manganous tungstate, 7FeW0 4 , MnW0 4 . (Geuther and Forsberg, A. 120. 277.) 4FeW0 4 , MnW0 4 . (G. and F.) 3FeW0 4 , MnW0 4 . Partially sol. in cone. HCl + Aq. (G. and F.) 3FeW0 4 , 2MnW0 4 . (G. and F.) FeW0 4 , MnW0 4 . (Zettnow, Pogg. 130. 250.) FeW0 4 , 2MnW0 4 . (G. and F.) FeW0 4 , 7MnW0 4 . (G. and F.) a;FeW0 4 , 2/MnW0 4 . Min. Wolframite. Sol. in HCl + Aq, and boiling H 3 P0 4 + Aq. Lanthanum tungstate, La 2 (W0 4 ) 3 . Precipitate. Lanthanum meftztungstate. Sol. in H 2 0. (Scheibler.) Lanthanum sodium tungstate, Na 8 La 2 (W0 4 ) 7 . Insol. in H 2 0. Slowly sol. in dil. acids. Sol. in HCl + Aq. La 4 Na e (W0 4 ) 9 . As above. (Hogbom, Bull. Soc. (2) 42. 2.) Lead tungstate, PbW0 4 . Insol. in H 2 or cold HN0 3 + Aq. Sol. in KOH + Aq. Decomp. by hot HN0 3 + Aq. (Anthon, J. pr. 9. 342.) Sol. in about 4000 pts. H 2 0. (Lefort.) Min. Scheelenite, Stolzite. Sol. in KOH + Aq ; decomp. by HN0 3 . Absolutely insol. in NH 4 N0 3 + Aq. (Smith and Bradbury, B. 24. 2930. ) TUNGSTATE, NICKEL 487 Lead ^tungstate, PbW 2 7 + 2H 2 (?). Sol. in about 80 pts. H 2 at 15. (Lefort.) Lead ^tungstate, PbW 3 10 + 2H 2 (?). Ppt. (Lefort.) Lead metotungstate, PbW 4 ]3 + 5H 2 0. SI. sol. in cold, more in hot H 2 0. Sol. in hot HN0 3 + Aq. (Scheibler, J. pr. 83. 318.) Lead parai\mgsia,ie, PbgW^O^. Insol. in H 2 0, dil. HN0 3 + Aq, (NH 4 ) 2 W0 4 + Aq, or Pb(N0 3 ) 2 + Aq. Sol. in NaOH + Aq or boiling H 3 P0 4 + Aq. (Lotz, A. 91. 49.) Lead sodium ^aratungstate, PbO, 4Na 2 0, 12W0 3 + 28H 2 0. (Gonzalez. ) Lithium tungstate, Li 2 W0 4 . Rather easily sol. in H 2 0. (Gmelin.) Lithium raetatungstate, Li 2 W 4 13 . Insol. in H 2 0. (Knorre, J. pr. (2) 27. 94.) + zH 2 0. Syrup. (Scheibler. ) Lithium jpamtungstate, Li 10 W 12 41 + 33H 2 (or According to Scheibler, more sol. than the ^aratungstates of the other alkali metals. Lithium tungstate tungsten oxide, Li 2 W 5 15 . Lithium bronze. Insol. in H 2 0. Lithium potassium tungstate tungsten oxide, Li 2 W 5 ]5 , 3K 2 W 4 12 . Lithium potassium bronze. Insol. in H 2 0. (Feit, B. 21. 135.) Magnesium tungstate, MgW0 4 . Anhydrous. Insol. in H 2 0. Gradually de- comp. by boiling cone. HN0 3 + Aq. (Geuther and Forsberg, A. 120. 272.) + 3H 2 0. Very sol. in H 2 ; nearly insol. in alcohol. (Lefort, A. ch. (5) 15. 329.) + 7H 2 0. Slowly sol. in cold, very easily in hot H 2 0. (Ullik, W. A. B. 56, 2. 152.) Magnesium cKtungstate, MgW 2 7 + 8H 2 (?). Sol. in about 100 pts. H 2 O. (Lefort.) Magnesium ^tungstate, MgW 3 10 + 4H 2 (?). Easily sol. in H 2 with gradual decomp. (Lefort.) Magnesium metatungstate, MgW 4 13 + 8H 2 0. Sol. in H 2 0. (Scheibler.) Magnesium .paratungstate, MggW^O^ + 24H 2 0. Very difficultly sol. in cold, somewhat sol. in hot H 2 0. (Knorre, B. 19. 825.) Magnesium potassium tungstate, MgW0 4 , + 2H 2 0. Very si. sol. in H 2 0. (Ullik.) + 6H 2 0. Precipitate. Magnesium sodium ^aratungstate, 3MgO, 3Na 2 0, 14W0 3 + 33H 2 0. Nearly insol. in H 2 0. (Knorre, B. 19. 825.) Manganous tungstate, MnW0 4 . Min. Hubnerite. Partially sol. in HCl + Aq. + 2H 2 0. Insol. in H 2 ; sol. in warm H 3 P0 4 and H 2 C 2 4 + Aq ; si. sol. in HC 2 H 3 2 + Aq. Insol. in cold HC1 + Aq. (Anthon.) + H 2 0. Sol. in about 2500 pts. H 2 at 15. (Lefort.) Manganous ^tungstate, MnW 2 7 + 3H 2 (?). Sol. in about 450 pts. H 2 at 15. (Lefort, A. ch. (5) 15. 333.) Manganous ^tungstate, MnW 3 10 + 5H 2 (?). Decomp. by H 2 into MnW 2 7 and MnW 4 13 . (Lefort, A. ch. (5) 17. 480.) Manganous ^aratungstate, 5MnO, 12W0 3 + 34H 2 0. (Gonzalez, J. pr. (2) 36. 44.) Mn 3 W 7 024 + llH 2 0. When recently pptd. sol. in a small amt. of H 2 acidulated with HN0 3 . (Lotz.) Manganous sodium ^aratungstate, 3Na 2 0, 3MnO, 14W0 3 + 36H 2 0. Sol. in H 2 0. (Knorre, B. 19. 826.) Mercurous tungstate, Hg 2 W0 4 . Insol. in H 2 0. (Anthon.) Impossible to obtain pure, as it is decomp. into 2Hg 2 0, 3W0 3 + 8H 2 0. Sol. in 100 pts. H 2 at 15. (Lefort.) Mercurous mctotungstate, Hg 2 W 4 13 + 25H 2 0. Ppt. (Scheibler, J. pr. 83. 319.) Mercuric tungstate, HgW0 4 . SI. sol. in H 2 and very unstable. (Lefort, A. ch. (5) 15. 356.) 3HgO, 2W0 3 . Insol. in H 2 0. (Anthon.) 2HgO, 3W0 3 . Insol. in H 2 0. (Anthon.) 3HgO, 5 W0 3 + 5H 2 0. Sol. in about 250 pts. H 2 at 15. (Lefort.) 2HgO, 5W0 3 + 7H 2 0. Decomp. by hot or cold H 2 0. (Lefort, C. R. 88. 798.) Mercuric ^ritungstate, HgW 3 10 + 7H 2 (?). Sol. in about 120 pts. H 2 at 15. (Lefort, A. ch. (5) 15. 360.) Molybdenum tungstate. Easily sol. in H 2 0. Insol. in NH 4 Cl + Aq or in alcohol of 0'87 sp. gr. (Berzelius.) Nickel tungstate, NiW0 4 . + 3H 2 0. Sol. in about 1000 pts. H 2 at 15. (Lefort.) + 6H 2 0. Insol. in H 2 or H 2 C 2 4 + Aq. Sol. in boiling H 3 P0 4 + Aq, HC 2 H 3 2 + Aq, or in warm NH 4 OH + Aq. (Anthon. ) Nickel ^tungstate, NiW 2 7 + 5H 2 (?). Sol. in about 250 pts. H 2 0. (Lefort.) Nickel ntungstate, NiW 3 10 + 4H 2 (?). Sol. in H 2 0. Pptd. by alcohol. Decomp. by cold or warm H 2 after above pptn. (Le- fort.) Nickel wetatungstate, M W 4 13 + 8H 2 0. Sol. in H 2 0. (Scheibler, J. pr. 83. 273.) Nickel ^amtungstate, NigWyO^ + 14H 2 0. Insol. in H 2 0. SI. sol. in H 2 C 2 4 + Aq. Completely sol. in warm H 3 P0 4 or HC 2 H 3 2 + Aq. (Anthon.) 488 TUNGSTATE, POTASSIUM Potassium tungstate, K 2 W0 4 . Anhydrous. Rather deliquescent. Easily sol. in H 2 0. + H 2 0. Easily sol. in H 2 0. Insol. in alcohol. + 2H 2 0. Very sol. in H 2 with absorption of heat. 1 pt. dissolves in 1*94 pts. cold, and 0'66 pt. boiling H 2 0. Alcohol does not mix with cone. H 2 solution, but slowly separates out the salt from it. Acids, even H 2 S0 3 , HC 2 H 3 2 , or H 2 C 2 4 , separate out W0 3 from solution. (Riche, A. ch. (3) 50. 45.) Potassium c^tungstate, K 2 W 2 7 + 2H 2 0. Sol. in about 8 pts. H 2 at 15, but on heat- ing is converted into + 3H 2 0. 100 pts. H 2 dissolve only 2-3 pts. at 15. (Lefort, A. ch. (5) 9. 102.) Potassium ZHtungstate, KjWjAo + 2H 2 0. Sol. in 5-6 pts. H 2 at 15. Can be recryst. from hot H 2 0. (Lefort, A. ch. (5) 9. 105.) Potassium wetatungstate, K 2 W 4 13 + 5H 2 0. Not efflorescent. Easily sol. in H 2 0. (Marig- nac.) (K 2 W 5 17 + 8H 2 of Margueritte. ) + 8H 2 0. Extremely efflorescent. (Scheibler.) Potassium ocfotungstate, Insol. in H 2 0. (Knorre, J. pr. (2) 27. 49.) Potassium tungstate, KgW^O^ + 9H 2 = 4K 2 0, 10W0 3 + 9H 2 0. Properties resemble the jparatungstate. (Gibbs, Proc. Am. Acad. 15. 11.) + 8H 2 = K 4 W 5 1>r + 4H 2 0. Sol. in 15 pts. H 2 at 15, but decomposed by heating into K 2 W 2 7 and K 2 W 3 10 . (Lefort, A. ch. (5) 9. 104.) K 10 W 14 47 . Very difficultly sol. in cold, appreciably sol. in hot H 2 0, probably with decomposition. (Knorre.) Potassium ^aratungstate, K 10 W 12 41 + 11H 2 (or KgWfO^ + GHaO, according to Lotz and Scheibler.) Much more sol. in hot than cold H 2 O. (Anthon.) Sol. in 100 pts. H 2 O at 16, in 8 '5 pts. at 100. (An- thon.) Sol. in 46'5 pts. cold, and 15-15 pts. boiling H 2 O. (Riche.) By shaking the crystals several days at 20, 1 pt. dissolves in 71 pts. H 2 0. If the salt is treated with boiling water, more goes into solution the longer it is boiled, until after several days' boiling 1 pt. of the salt is dis- solved in 5'62 pts. H 2 at 18. Kept in a closed flask, this solution contained after 26 days 1 pt. of salt to 11 '9 pts. H 2 ; after 153 days, 1 pt. of salt to 15 '6 pts. H 2 ; after 334 days, 1 pt. of salt to 15 '6 pts. H 2 0. Insol. in alcohol. (Marignac. ) + 8H 2 0. Potassium sodium tungstate, 2Na 2 W0 4 + 14H 2 0. Easily sol. in hot and cold H 2 0. (Ullik, W. A. B. 56, 2. 150.) Deliquescent. Sol. in 1 pt. cold, and | pt. hot H 2 0. (Anthon.) Potassium sodium ^aratungstate, Na 2 0, 4K 2 0, 12W0 3 + 15H 2 0. Sol. in H 2 0. (Marignac.) T 8 T Na 2 0, T'T&A 12W0 3 + 25H 2 0. Sol. in H 2 0. (Marignac.) Potassium tungstate tungsten oxide, K 2 W0 4 , W 2 5 . Potassium tungsten bronze. (Scheibler, J. pr. 83. 321.) Formula is K 2 W 4 12 . Not attacked by acids, and only very si. by alkalies. (Knorre, J. pr. (2) 27. 49.) K 2 W0 4 , 4W0 2 . Not attacked by acids, even HF, or by alkalies + Aq. Insol. in alcohol. (Zettnow, Pogg, 130. 262.) Does not exist. (Knorre.) Potassium sodium tungstate tungsten oxide, 5K 2 W 4 12 + 2Na 4 W 5 15 . Potassium sodium tungsten bronze. Pro- perties as potassium bronze. 3K2W 4 12 , 2Na 2 W 3 9 . As above. (Knorre, J. pr. (2) 27. 49.) Samarium wetatungstate, Sm 2 3 , 12W0 3 + 35H 2 0. Easily sol. in H 2 0. (Cleve.) Samarium sodium tungstate, Na 6 Sm 4 (W0 4 ) 9 . Insol. in H 2 0. Slowly sol. in dil. acids, easily in cone. HCl + Aq. (Hogbom, Bull. Soc. (2) 42. 2.) Argentous tungstate, Ag 4 0, 2W0 3 . HN0 3 + Aq separates W0 3 . KOH + Aq dis- solves out W0 3 and separates Ag 4 0. (Wbhler and Rautenberg, A. 114. 120.) Does not exist. (Muthmann, B. 20. 983.) Silver tungstate, Ag 2 W0 4 . Sol. in about 2000 pts. H 2 at 15. Easily decomp. by NaCl + Aq or HN0 3 + Aq. (Lefort. ) Ag 2 W 2 7 . Insol. in H 2 0. Nearly insol. in HC 2 H 3 2 or H 3 P0 4 + Aq. More sol. in KOH, NH 4 OH + Aq, or H 2 C 2 4 + Aq. (Anthon, J. pr. 9. 347.) + H 2 0. Sol. in about 5000 pts. H 2 at 15. (Lefort.) Silver wetatungstate, Ag 2 W 4 13 + 3H 2 0. SI. sol. in H 2 0. (Scheibler, J. pr. 83. 318.) Silver ^aratungstate, Ag 10 W 12 41 + 8H 2 0. (Gonzalez, J. pr. (2) 36. 44.) Silver tungstate ammonia, Ag 2 W0 4 , 4NH 3 . Sol. in H 2 with rapid decomp. (Widmann, Bull. Soc. (2) 20. 64.) Sodium tungstate, Na 2 W0 4 + 2H 2 0. Sol. in 4 pts. cold, and 2 pts. boiling H 2 0. (Vauquelin and Hecht.) Sol. in 1*1 pts. cold, and 0*5 pt. boiling H 2 0. (Anthon.) Sol. in 2-44 pts. H at 0; 1'81 pts. at 15; 0'81 pt. at 100. (Riche.) TUNGSTATE, STRONTIUM 489 Sp. gr. of Na 2 W0 4 + Aq at 24 '5 containing : 5 10 15 %Na 2 W0 4 + 2H 2 0, 1-036 1-075 20 25 1-166 1-215 35 40 1-349 1-430 1-119 30 % 1-274 44 %Na 2 W0 4 + 2H 2 0. 1-492 (Franz, J. pr. (2) 4. 238.) Na 2 W0 4 + Aq is pptd. by HC1, HN0 3 , or H 2 S0 4 + Aq, but not by H 2 S0 3 , HI, HCN, oxalic, or tartaric acids + Aq, but pptn. by the former acids is not prevented by presence of the latter, but when heated with HC 2 H 3 2 + Aq, or in presence of H 3 P0 4 + Aq, mineral acids cause no ppt. (Zettnow, Pogg, 130. 16.) Insol. in alcohol. (Riche, A. ch. (3) 50. 52.) Sodium ditungstate, Na 2 W 2 7 . Sol. in H 2 by heating several hours to ISO- ISO . (Knorre, J. pr. (2) 27. 80.) + 6H 2 0. Sol. in 13 pts. H 2 at 15. (Lefort, C. R. 88. 798.) Sodium ^ritungstate, Na 2 W 3 10 + 4H 2 0. Sol. in 1 pt. H 2 0. Decomp. on standing into sol. tetratungsta,te and insol. ditungstate. (Lefort, C. R. 88. 798.) Neither this nor the other tfntungstates of Lefort exist, according to Knorre (J. pr. (2) 27. 49). Sodium metatungstate, Na 2 W 4 13 . Anhydrous. Insol. in H 2 0. + 10H 2 0. Sol. at 13 in OMD935 pt. H 2 to form a solution of 3'02 sp. gr. (Scheibler.) Sol. at 19 in 0'195 pt. H 2 0. (Forcher.) Precipitated by alcohol. Sodium pentatwn.gat&te, Na 2 W 5 16 . SI. sol. in H 2 by heating 3 hours at 150. (Knorre, J. pr. (2) 27. 49.) Sodium tungstate, acid, Na 4 W 3 O n + 7H 2 (?). Sol. in H 2 0. (Scheibler.) Mixture of Na 2 W 4 13 and Na 2 W0 4 . (Knorre, J. pr. (2) 27. 49.) Na 4 W 5 17 + llH 2 0. Efflorescent. Sol. in H 2 0. (Marignac.) 100 pts. H 2 dissolve 16 pts. at 15. (Lefort, A. ch. (5) 9. 97.) Formula is 4Na 2 0, 10W0 3 + 23H 2 0, accord- ing to Gibbs (Proc. Am. Acad. 15. 5). Sodium octatungstate, Na 2 W 8 25 . Insol. in H 2 0. Very difficultly attacked by acids and alkalies. (Knorre.) + 12H 2 0. Easily sol. in cold H 2 0, and can be recryst. without decomp. (Ullik, W. A. B. 56, 2. 157.) Sodium tungstate, NasW^ (?). + 16H 2 (?). (Marignac, A. ch. (3) 69. 51.) + 21H 2 (?). Much more sol. and much more rapidly than the paratungstate. (Ma- rignac.) Sodium paratungstate, Na 10 W 12 41 + 21H 2 0. + 25H 2 0. + 28H 2 = 3Na 6 W 7 24 + 16H 2 0, according to Lotz and Scheibler. Sol. in 8 pts. cold H 2 O (Anthon) ; in 12 '6 pts. at 22 (Forcher). Sol. in about 12 pts. H 2 0. (Marignac.) The aqueous solution saturated at 35-40 contained to 1 pt. of the salt, after : 1 12 ' 77 227 410 days, at 18 18 18 16 20 9-25 11-26 10-92 11'90 1174 pts. H 2 0. The solution saturated by very long boiling, after a part of the salt had crystallised out, contained, after : 1 2 12 days, 0-68 0-91 2-59 pts. H 2 to 1 pt. salt, 72 222 405 days, 6-88 9-75 8-80 pts. H 2 to 1 pt. salt. (Marignac. ) Decomp. by boiling with H 2 0. (Knorre, B. 18. 2362.) Sodium strontium paratungstate, Na 2 0, 4SrO, 12W0 3 + 29H 2 0. (Gonzalez, J. pr. (2) 36. 44.) Sodium thorium tungstate, Na 4 Th(W0 4 ) 4 . Insol. in H 2 0. Slowly sol. in dil. acids, easily in cone. HC1 + Aq. (Hb'gbom, Bull. Soc. (2)42. 2.) Sodium yttrium tungstate, Na 8 Y 2 (W0 4 ) 7 . Insol. in H 2 0, and very slowly attacked by dil. acids. (Hogbom, Bull. Soc. (2) 42. 2.) Sodium zinc paratungstate, Na 2 0, 2ZnO, 7W0 3 + 15H 2 0. Difficultly sol. in cold, more sol. in hot H 2 0. (Knorre, B. 19. 823.) + 21H 2 0. (Knorre.) Sodium tungstate tungsten oxide, Na 2 W0 4 , W 2 5 . Yellow tungsten bronze. Gradually de- liquesces on air. Not decomp. by any acid, even aqua regia, except HF, or by alkalies. (Wohler, Pogg. 2. 350.) Correct formula is Na 5 W 6 18 , according to Phillip (B. 15. 499). Sol. in ammoniacal silver solution with separation of Ag. Easily sol. in boiling alka- line potassium ferricyanide + Aq. (Phillip, B. 12. 2234.) Sodium tungstate tungsten oxide, Na^WO^ 2W 2 5 . Blue tungsten bronze. Not attacked by acids or alkalies. (Scheibler.) Correct formula is Na 2 W 5 15 , according to Phillip (B. 15. 506). Sol. in ammoniacal silver solution with separation of Ag. Na 4 W 5 15 . Properties as above. (Phillip, B. 15. 499.) Na 2 W 3 9 . Properties as above. (Phillip.) Strontium tungstate, SrW0 4 . Precipitate. (Schultze. ) Sol. in about 700 pts. H 2 0. (Lefort.) 490 TUNGSTATE, STRONTIUM Strontium cfttungstate, SrW 2 7 + 3H 2 (?). 100 ccm. H 2 dissolve 0'35 g. at 15. (Lefort, A. ch. (5) 15. 326.) Strontium ^tungstate, SrW 3 10 + 5H 2 (?). Sol. in H 2 with decomp. into SrW 2 7 and SrW 4 13 . (Lefort, A. ch. (5) 17. 477.) Strontium wetatungstate, SrW 4 13 + 8H 2 0. Solubility as calcium metatungstate. (Scheibler.) Strontium jparatungstate, Sr 3 W 7 24 + 16H 2 0, or Sr 5 W 12 41 + 27H 2 0. Insol. in cold, si. sol. in hot H 2 0. (Knorre, B. 18. 327.) Thallous tungstate, T1 2 W0 4 . Very si. sol. in H 2 0. Sol. in hot Na 2 C0 3 + Aq. (Flemming, J. B. 1868. 250.) Thallous hydrogen tungstate, T1HW0 4 . Insol. in H 2 0. Difficultly sol. in NH 4 OH + Aq. Easily sol. in boiling alkali carbonates or hydrates + Aq. (Oettinger, J. B. 1864. 254.) Thorium tungstate. Precipitate. (Berzelius.) Insol. in H 2 0. Stannous tungstate, SnW0 4 + 6H 2 0. Insol. in H 2 0. Sol. in oxalic acid and in KOH + Aq. Slowly sol. in hot H 3 P0 4 + Aq. (Anthon, J. pr. 9. 341.) Stannic tungstate, 9Sn0 2 , 13W0 3 . Insol. in ammonium tungstate + Aq. Sol. in tin salts + Aq, also in phosphoric, oxalic, or tartaric acids + Aq. (Lotz, A. 91. 49.) Tungsten tungstate, W0 2 , W0 3 =W 2 5 . See Tungsten oxide, W 2 5 . Uranous tungstate, U0 2 , 3W0 3 + 6H 2 0. Decomp. by NaOH + Aq or HN0 3 + Aq. Sol. in HCl + Aq, but not in H 2 S0 4 . (Rammels- berg.) Uranyl tungstate, U0 3 , W0 3 + 2H 2 0. Sol. in about 100 pts. H 2 0. (Lefort, C. R. 87. 748.) U0 3 , 3W0 3 + 5H 2 (?). Sol. in about 200 pts. H 2 0. (Lefort.) Vanadium tungstate. SI. sol. in H 2 0. Yttrium tungstate, Y 2 ( W0 4 ) 3 + 6H 2 0. Very si. sol. in H 2 0, but more sol. in Na 2 W0 4 + Aq. (Berlin.) Zinc tungstate, ZnW0 4 . Insol. in H 2 0. (Geuther and Forsberg, A. 120. 270.) + H 2 0. Sol. in 500 pts. H 2 0. Zinc ^tungstate, ZnW 2 7 + 3H 2 (?). Sol. in 10 pts. H 2 at 15, but solution soon decomposes. (Lefort. ) Zinc ^itungstate, ZnW 3 ]0 + 5H 2 0. Insol. in boiling H 2 0. Sol. in ZnS0 4 + Aq, or Na 4 W 5 17 + Aq. (Gibbs. ) Zinc metatungstate, ZnW 4 13 + 10H 2 0. Easily sol. in H 2 0. Loses crystal H 2 by ignition, and becomes insol. in H 2 0. (Scheib- ler, J. pr. 83. 273.) Zinc tungstate, Zn 4 W 10 34 + 18H 2 = 4ZnO, 10W0 3 + 18H 2 0. Insol. in H 2 0. Sol. in excess of zinc sul- phate or of sodic tungstate + Aq. (Gibbs, Proc. Am.'Acad. 15. 14.) + 29H 2 0. (Gibbs.) Zinc ^aratungstate, 5ZnO, 12W0 3 + 37H 2 0. (Gonzalez, J. pr. (2) 36. 44.) Zinc tungstate, Zn 9 W220 75 + 66H 2 = 9ZnO, 22W0 3 + 66H 2 0. Insol. in H 2 0. (Gibbs.) Tungstoboric acid. See BoroTwwotungstic acid. Tungstoiodic acid. Potassium tungstoiodate, K 2 H 3 WI0 8 . (Blomstrand, J. pr. (2) 40. 327.) Tungstosilicic acid, H 8 W 12 Si0 42 + 20H 2 0. Stable or deliquescent, according to the amount of moisture in the air. Melts partly in crystal water below 100. Verjr sol. in alcohol or ether. (Marignac, A. ch. (4) 3. 10.) See also Silicotungstic acid. Aluminum tungstosilicate, Al 4 H 12 (W 12 Si0 42 ) 3 + 75H 2 0. Not deliquescent. Sol. in H 2 0. Barium , Ba 4 W 12 Si0 42 . + 9H 2 0, and 27H 2 0. Nearly insol. in cold, si. sol. in hot H 2 0, separating therefrom on cooling. (Marignac. ) Calcium , Ca 5 H 6 ( W 12 Si0 42 ) 2 + 47H 2 0. Less easily moist than the following salt. Ca 2 H 4 W 12 Si0 42 + 20H 2 0. Not deliquescent, but becomes moist easily. Extremely easily sol. in H 2 0. (Marignac.) Potassium , K 8 W 12 Si0 42 + 20H 2 0. Much less sol. in cold than hot H 2 0. Ex- tremely sol. in hot H 2 0. More sol. than silicotungstate. K 4 H 4 W 12 Si0 42 + 7H 2 0. Solubility as pre- ceding salt. (Marignac.) Sodium , Na 4 H 4 W 12 Si0 42 + 10H 2 0. Stable on air. Extremely sol. in H 2 0. (Marignac.) Tungstens acid. Sodium tungstite, Na 2 W 2 5 . See Tungstate tungsten oxide, sodium. Tungstovanadic acid. See Vanadiotungstic acid. Tungstyl c&bromide, W0 2 Br 2 . Not decomp. by cold H 2 0. (Roscoe.) Tungstyl ^rabromide, WOBr 4 . Extremely deliquescent. Decomposes at once in moist air or with H 2 0. URANIUM CHLORIDE 491 , 4 ) 2 C0 3 , 3 + Tungstyl ^'chloride, W0 2 C1 2 . Not decomp. by cold, and but slowly by boiling H 2 0. Sol. in alkalies and ammonia. Tungstyl ^rachloride, WOC1 4 . Easily decomp. by H 2 or moist air. Ultramarine blue, 2Na 2 Al 2 Si 2 8 , Na 2 S 2 (?). Not attacked by solutions of alkalies or NH 4 OH + Aq. Decomp. by acids or acid salts + Aq. Decomp. by alum + Aq. Ultramarine green, Na 2 Al 2 Si 2 8 , Na 2 S (?). Decomp. by mineral acids. Not attacked by alkalies. Decomp. by alum + Aq. Ultramarine white, 2Na 2 Al 2 Si 2 8 , Na 2 S (?). Uranic acid, H 2 U0 4 . Insol. in H 2 0. Sol. in acids. Very sol. in cold dil. HN0 3 + Aq. SI. sol. in boiling NH 4 Cl + Aq. Insol. in KOH, NaOH, NH 4 OH + Aq. Easily sol. in (NH 4 ) KHC0 3 , and NaHC0 3 + Aq; less in Aq. (Ebelmen.) H 4 U0 5 . Insol. in H 2 ; sol. in acids. (Ebelmen.) Uranates. Insol. in H 2 ; sol. in acids. Ammonium uranate. SI. sol. in pure H 2 ; insol. in H 2 contain- ing NH 4 C1 or NH 4 OH. Sol. in (NH 4 ) 2 C0 3 + Aq. (Peligot, A. ch. (3) 5. 11.) Barium uranate, BaU0 4 . Insol. in H 2 0. Sol. in dil. acids. BaU 2 7 . As above. (Ditte, C. R. 95. 988.) Bismuth uranate, Bi 2 3 , U0 3 + H 2 0. Min. Uranosphcerite. Calcium uranate, CaU0 4 . Insol. in H 2 ; sol. in dil. acids. (Ditte, C. R. 95. 988.) CaU 2 7 . Insol. in H 2 ; sol. in dil. acids. (Ditte.) Cobalt uranate. Insol. in H 2 ; sol. in Pb(C 2 H 3 2 ) 2 + Aq. (Persoz, J. pr. 3. 216.) Sol. in HN0 3 + Aq; insol. in KN0 3 + Aq. (Ebelmen, A. ch. (3) 5. 222.) Cupric uranate, CuU 2 7 . Insol. in H 2 0. (Debray, A. ch. (3) 61. 451.) Lead uranate, PbU0 4 . If ignited, very difficultly sol. in HC 2 H 3 2 + Aq. (Wertheim, J. pr. 29. 228.) Insol. in Pb(C 2 H 3 2 ) 2 + Aq. (Persoz. ) 3PbO, 2U0 3 . Sol. in dil. HN0 3 + Aq. (Ditte, A. ch. (6) 1. 338.) Lithium uranate, Li 2 U0 4 . Insol. in H 2 0, but decomp. thereby. Sol. in dil. acids. Magnesium uranate, MgU0 4 . Insol. in H 2 0. Nearly insol. in cold HC1 + Aq. Slowly sol. in HC1 + Aq on warming, and more rapidly by addition of a little HNO, + Aq. (Ditte.) MgU 2 7 . Ppt. (Berzelius.) Potassium uranate, K 2 U0 4 (?). Insol. in H 2 ; sol. in dil. acids, etc., exactly as Na 2 U0 4 . (Ditte.) K 2 U 2 7 + 6H 2 0. Insol. in H 2 0. Sol. in dil. acids, even acetic acid. (Zimmermann, B. 14. 440.) Insol. in K 2 C0 3 + Aq, but easily sol. in alkali hydrogen carbonates + Aq. Sol. in HC1 + Aq. (Ebelmen, A. ch. (3) 5. 220.) KjO, 6U0 3 + 6H 2 0. Insol. in H 2 0. (Drenck- mann, Zeit. ges. Nat. 17. 113.) Rubidium uranate, RbU0 4 . Insol. in H 2 0. (Ditte, A. ch. (6) 1. 338.) Silver uranate, Ag 2 U 2 7 . Insol. in H 2 0. Easily sol. in acids. (Alibe- goff, A. 233. 117.) Sodium uranate, Na 2 U0 4 (?). Insol. in H 2 ; sol. in dil. acids. Sol. in alkali carbonates +Aq. (Ditte.) Na 2 U 2 7 + 6H 2 0. Insol. in H 2 0. Sol. in dil. acids. (Stolba, Z. anal. 3. 74.) Na 2 0, 3U0 3 . Insol. in H 2 0. Easily sol. in very dil. acids. (Drenckmann. ) Strontium uranate, SrU0 4 . Insol. in H 2 0. Sol. in dil. acids. SrU 2 7 . As above. (Ditte, C. R. 95. 988.) Tnallous uranate. Ppt. (Bolton, Am. Chemist. 1872, 2. 456.) Zinc uranate. Insol. in H 2 ; sol. in Pb(C 2 H 3 2 ) 2 + Aq. (Persoz, J. pr. 3. 216.) Sol. in HN0 3 + Aq; insol. in KN0 3 , and NH 4 N0 3 + Aq. (Ebelmen, A. ch. (3) 5. 221.) Peruranic acid. See Peruranic acid. Uranium, U. Not attacked by H 2 0. Slowly decomp. by cold dil. H 2 S0 4 + Aq, rapidly on warming. Easily sol. in dil. or cone. HCl + Aq. Fused U is slightly attacked by cone, or fuming HN0 3 , or cone. H 2 S0 4 . Amorphous U, how- ever, is easily attacked thereby. Not attacked by acetic acid, KOH, NaOH, or NH 4 OH + Aq. (Zimmermann, B. 15. 849.) Uranium ^bromide, UBr 3 . Very hygroscopic. Sol. in H 2 with hissing. (Alibegoff, A. 233. 117.) Uranium erabromide, UBr 4 . Anhydrous. Very deliquescent. Sol. in H 2 with hissing. (Hermann.) + 8H 2 0. Very deliquescent, and sol. in H 2 0. (Rammelsberg. ) Uranium n'chloride, UC1 3 . Very sol. in H 2 0. (Peligot.) Very unstable. (Zimmermann.) 492 URANIUM CHLORIDE Uranium tetracbloTide, UC1 4 . Anhydrous. Extremely deliquescent. Sol. in H 2 with evolution of heat. Decomp. on boiling. Sol. in NH 4 Cl + Aq without decomp. Uranium pentachloride, UC1 5 . Deliquescent. Sol. in H 2 with evolution of heat and decomposition. (Roscoe, B. 7. 1131.) Uranium ^rafluoride, UF 4 . Insol. in H 2 0. Very si. sol. in dil. acids. Sol. in hot cone. H 2 S0 4 , and slowly in warm cone. HN0 3 + Aq. (Bolton, J. B. 1866. 209.) Uranium Aorafluoride, UF 6 (?). Very sol. in H 2 0. (Ditte, A. ch. (6) 1. 339.) Is U0 2 F 2 . (Smithells, Chem. Soc. 43. 131.) Uranium hydrogen fluoride, UF 6 , 8HF (?). Sol. inH 2 0. (Ditte.) Is U0 2 F 2 , HF + H 2 . (Smithells. ) Uranous hydroxide, U0 2 , xR 2 0. Easily sol. in dil. acids. Insol. in alkali hydrates and carbonates + Aq. (Berzelius.) Sol. in alkali carbonates +Aq. (Rammels- berg.) Uranouranic hydroxide, U 3 8 , 6H 2 (?). Easily sol. in acids. Decomp. by (NH 4 ) 2 C0 3 + Aq, which dissolves outU0 3 . (Berzelius.) Uranic hydroxide. See Uranic acid. Uranium sw&oxide, UO (?). (Guyard, Bull. Soc. (2) 1. 89.) Does not exist. (Zimmermann, A. 213. 301.) U 2 3 (?). Ppt. Decomp. by H 2 and in the air. (Peligot.) Uranium dioxide (Uranous oxide), U0 2 . Insol. in dil. HC1 or H 2 S0 4 + Aq. Sol. in cone. H 2 S0 4 , and easily in HN0 3 + Aq. (Peligot.) Insol. in NH 4 Cl + Aq. (Rose.) Uranium i^roxide, U0 4 . Decomp. by HC1 + Aq. (Fairley, Chem. Soc. 31. 133.) + 2H 2 0. Very hygroscopic. (Zimmer- mann. ) + 3H 2 0. Uranium pentoxide, U 2 5 . Sol. in acids. (Peligot. ) Mixture of U0 3 and U 3 8 . (Rammelsberg, Pogg. 59. 5.) Mixture of U0 2 and U 3 8 . (Zimmermann, A. 232. 273.) Uranouranic oxide, U 3 8 . Green uranium oxide. Very slowly and slightly sol. in dil. HC1 or H 2 S0 4 + Aq ; more easily when cone. Completely sol. in boiling H 2 S0 4 . Easily sol. in HN0 3 + Aq. Min. Uraninite (Uranpecherz). Easily sol. in warm HN0 3 + Aq. Not attacked by HC1 + Aq. Uranium In'oxide (Uranic oxide), U0> Sol. in HN0 3 + Aq. (Peligot.) See Uranic acid. Uranic oxy- compounds, See Uranyl compounds. Uranous oxysulphide, U 3 2 S 4 =U0 2 , 2US 2 . Slightly attacked by dil., easily by cone. HCl + Aq. Sol. in cold HN0 3 + Aq. (Her- mann, J. B. 1861. 258.) Uranium monosulphide, US. (Alibegoff, A. 233. 117.) Uranium sesquisulphide, U 2 S 3 . Not attacked by HC1 or dil. HN0 3 + Aq. Oxidised by fuming H 2 S0 4 or aqua regia. (Alibegoff, A. 233. 117.) Uranium cfo'sulphide, US 2 . Insol. in cold or boiling dil. HCl + Aq. Sol. in cold cone. HCl + Aq. Decomp. by HN0 3 + Aq. (Hermann, J. B. 1861. 258.) Uranyl bromide, U0 2 Br 2 + 7H 2 0. Deliquescent. Sol. in H 2 0. Uranyl chloride, U0 2 C1 2 . Anhydrous. Very deliquescent. Sol. in H 2 0, alcohol, and ether. + H 2 0. Sol. in H 2 0, alcohol, and ether. Uranyl examine chloride, U0 2 (NH 3 C1) 2 . Decomp. by H 2 0. (Regelsberger, A. 227. 119.) Uranyl famine chloride, U0 2 (NH 3 . NH 3 C1)NH 3 C1. Decomp. by H 2 0. (Regelsberger, A. 227. 119.) Uranyl Gramme chloride, U0 2 (NH 3 . NH 3 C1) 2 . Decomp. by H 2 0. (Regelsberger, A. 227. 119.) Uranyl fluoride, U0 2 F 2 . Very sol. in H 2 0. (Smithells, Chem. Soc. 43. 125.) Insol. in H 2 or dil. acids. Very si. sol. in HF + Aq. Sol. in H 2 S0 4 + aqua regia. (Ditte, A. ch. (6) 1. 339.) This compound is UF 4 . (Smithells.) UOF 4 . Very sol. in H 2 0. (Ditte, C. R. 91. 115.) True composition is U0 2 F 2 . (Smithells.) Uranyl hydrogen fluoride, U0 2 F 2 , HF + H 2 0. Very sol. in H 2 0. (Smithells, Chem. Soc. 43. 131.) Uranyl sulphide, U0 2 S. SI. sol. in pure H 2 0. Sol. in dil., insol. in absolute alcohol. Sol. in cone. HCl + Aq, also in dil. acids. Decomp. by caustic alkalies + Aq. Partly sol. in (NH 4 ) 2 S + Aq. VANADATE, CALCIUM POTASSIUM 493 J/etavanadic acid, HV0 3 . Insol. in H 2 ; sol. in acids and alkalies. 2 . See Vanadium pentoxide. Pyrovanadic acid, H 4 V 2 7 . Insol. in H 2 0. Sol. in acids and alkalies. Vanadates. The alkali, Ba, and Pb metavanadates are si. sol. in H 2 0, the others are more easily sol. Insol. in alcohol. Aluminum wetavanadate. Very si. sol. in H 2 0. (Berzelius.) Aluminum cfavanadate. Very si. sol. in H 2 0. (Berzelius.) Ammonium metavanadate, (NH 4 )V0 3 . (a) Very slowly and sparingly sol. in cold H 2 0. Easily sol. in hot H 2 0. (Berzelius.) Easily sol. in H 2 at about 70. Very si. sol. at above and below that temperature. (Guyard, Bull. Soc. (2) 25. 355.) 10 g. dissolve in 1 litre cold, and 63 g. in 1 litre hot H 2 with partial decomp. (Ditte, C. R. 102. 918.) Extremely si. sol. in sat. NH 4 Cl + Aq. (v. Hauer. ) Insol. in sat. NH 4 Cl + Aq. Insol. in alcohol, (v. Hauer.) (&) Sol. in cold H 2 0, from which it is pptd. by alcohol. (Berzelius.) Ammonium ctoranadate, (NH 4 ) 2 V 4 Ou + 4H 2 0. Sol. in H 2 0, from which it is precipitated by sat. NH 4 C1 + Aq or alcohol, (v. Hauer, W. A. B. 21. 337.) Correct formula is (NH 4 ) 3 V 7 10 + 2H 2 0, according to Rammelsberg (B. A. B. 1883. 3). + 3H 2 0. Very sol. in H 2 0. (Ditte, C. R. 102. 918.) Ammonium ^'vanadate, (NH 4 ) 2 V 6 16 . Anhydrous. Nearly insol. in hot or cold H 2 0. (Norblad, B. 8. 126.) 1'5 g. dissolve in 1 litre of boiling H 2 0. (Ditte, C. R. 102. 918.) + 5H 2 0. Very si. sol. in H 2 0. (Ditte.) + 6H 2 (?). Very sol. in H 2 0. (v. Hauer, W. A. B. 39. 455.) Could not be obtained. (Norblad ; also Ram- melsberg, B. A. B. 1883. 3.) Ammonium vanadate, (NH 4 ) 3 V 7 10 + 2H 2 0. Correct formula of v. Hauer's ^vanadate, according to Rammelsberg (B. A. B. 1883. 3). SI. sol. in H 2 0. Ammonium ses^tuvanadate, (NH 4 ) 4 V 6 17 + 4 or 6H 2 0. Very sol. in H 2 0. (Ditte, C. R. 102. 918.) Ammonium ^ewtavanadate, (NH 4 ) 4 V 10 27 + 10H 2 0. Sol. in H 2 0. (Rammelsberg, B. A. B. 1883. 3.) Ammonium potassium vanadate, K2V 4 U , (NH 4 ) 4 V 6 17 + 9H 2 0. Sol. in H 2 0. (Ditte, C. R. 104. 1844.) Ammonium sodium vanadate, Na 2 V 4 O n , (NH 4 ) 4 V 6 17 + 15H 2 0. Sol. in H 2 0. (Ditte, C. R. 104. 1841.) Ammonium uranyl vanadate, (NH 4 ) 2 0, 2UO,, V 2 5 + H 2 0. Insol. in H 2 O, NH 4 OH + Aq, or dil. HC 2 H 3 2 + Aq. (Carnot, C. R. 104. 1850.) Barium wetovanadate, Ba(V0 3 ) 2 + H 2 0. Somewhat sol. in H 2 before ignition. Sol. in cone. H 2 S0 4 . (Berzelius. ) Barium jOT/rovanadate, Ba 2 V 2 7 . Somewhat sol. in H 2 0. (Roscoe.) Barium vanadate, Ba 2 V 6 17 + 14H 2 0. (Ditte, C. R. 104. 1705.) BagVjoO^ + igHaO. 1 pt. is sol. in 5200 pts. H 2 at 20-25. Much more sol. in hot, but decomp. by boiling H 2 0. (v. Hauer, W. A. B. 21. 344.) Sol. in about 5000 pts. H 2 0. (Manasse, C. C. 1886. 773.) Ba 4 V 10 29 + 2H 2 0. (Norblad.) Bismuth vanadate, Bi 2 (V0 4 ) 2 . Min. Pucherite. Sol. in HCl + Aq with evolution of 01. Cadmium vanadate, Cd(V0 3 ) 2 . (Ditte, C. R. 102. 918.) CdV 6 16 + 24H 2 0. SI. sol. in H 2 0. (Ditte, C. R. 104. 1705.)" Cadmium potassium vanadate, CdK2V 6 O l7 + 9H 2 0. (Radau, A. 251. 148.) CdsVjoOjB, 1^028 + 27H 2 0. 1000 pts. H 2 dissolve 5*4 pts. at 18. (Radau.) Calcium wetavanadate, Ca(V0 3 ) 2 + 4H 2 0. Much more sol. than Sr(V0 3 ) 2 , and solution is not precipitated by alcohol. (Berzelius.) Calcium ^t/rovanadate, Ca 2 V 2 7 + 5H 2 0. Precipitate. + 2H 2 0. Very sol. in dil. acids. (Ditte C. R. 104. 1705.) + 2H 2 0. (Roscoe.) Calcium cfavanadate, CaV 4 O n + 9H 2 0. Easily sol. in H 2 0. (v. Hauer.) When fused is nearly insol. in H 2 0. (v. Hauer.) + 6H 2 0. (Manasse, A. 240. 23.) Calcium rzvanadate, CaV 6 O l7 + 12H 2 0. Very sol. in H 2 0. (Ditte, C. R. 104. 1705.) Calcium vanadate, CagVgOag + lSHaO. Sol. in H 2 0. (Manasse, A. 240. 23.) Ca 3 V 14 38 + 7H 2 (?). SI. sol. in H 2 0. Probably a mixture. (Manasse, A. 240. 23.) Ca 3 V 16 43 + 26H 2 0. Sol. in H 2 0. (Manasse, A. 240. 23.) Calcium copper vanadate, (Ca,Cu) 4 V 2 9 + H 2 0. Min. VolbortUte. Sol. in HN0 3 + Aq. Calcium potassium vanadate, CaK fi Vo n O + 22H 2 0. Sol. in H 2 0. (Manasse, A. 240. 23.) 494 VANADATE CHLORIDE, CALCIUM Calcium vanadate chloride, Ca 3 (V0 4 ) 2 , CaCl 2 . (Hautefeuille, C. R. 77. 896.) Chromium vanadate, CrV0 4 . Absolutely insol. in H 2 containing NH 4 C 2 H 3 2 and HC 2 H 3 2 . (Carnot, C. R. 104. 1850.) Cobaltous metavanadate, Co( V0 3 ) 2 + 3H 2 0. Easily sol. in H 2 0. (Ditte, C. R. 104. 1705.) Cobaltous potassium vanadate, CoKV 5 14 + 8H 2 0. 1000 pts. H 2 dissolve 4 '8 pts. of this salt. (Radau, A. 251. 140.) Co 3 K 2 V 14 39 + 21H 2 0. (Radau. ) Cupric wetavanadate. Sol. in H 2 0. (Berzelius.) Cupric pyrova.na.da.ie, Cu 2 V 2 7 + 3H 2 0. Sol. in hot H 2 0. (Ditte, C. R. 104. 1705.) Could not be obtained. (Radau, A. 251. 150.) Cupric lead vanadate, 5(Cu,Pb)0, V 2 5 + 2H 2 0. Min. Mottramite. 3CuO, V 2 5 , 3(3PbO, V 2 5 ), 6Cu0 2 H 2 + 12H0. Min. Psittacinnite. Cupric potassium vanadate, 17H 2 0. Moderately sol. in warm H 2 0. 100 pts, H 2 dissolve 11 '1 pts. at 18. (Radau, A. 251. 151.) Didymium vanadate, Di 2 (V0 4 ) 2 . Precipitate. (Cleve.) Di 2 V 10 30 + 28H 2 0. Precipitate. (Cleve, Bull. Soc. (2) 43. 365.) Glucinum raetavanadate (?). Difficultly sol. in H 2 0. (Berzelius.) Glucinum efo' vanadate (?). Difficultly sol. in H 2 0. (Berzelius.) Ferrous metavanadate. Ppt. Sol. inHCl + Aq. (Berzelius.) Ferric wetavanadate. Somewhat sol. in H 2 0. (Berzelius. ) Lead metavanadate, Pb(V0 3 ) 2 . SI. sol. in H 2 0. Easily sol. in warm dil. HN0 3 + Aq. Not completely decomp. by H 2 S0 4 or by boiling with K 2 C0 3 + Aq. (Ber- zelius.) Min. Dechenite. Easily sol. in dil. HN0 3 + Aq, and decomp. by HC1 + Aq. Lead ^rovanadate, basic, 2Pb 2 V 2 7 , PbO. Insol. in boiling H 2 or HC 2 H 3 2 . Decomp. by HN0 3 + Aq with separation of V 2 5 , which dissolves on warming. (Roscoe. ) Lead ^rovanadate, Pb 2 V 2 7 . Sol. in warm dil. HN0 3 + Aq. (Ditte, C. R. 104. 1705.) Min. Desdoizite. Sol. in cold dil. HN0 3 + Aq. Lead ^vanadate, PbV 4 O n . (Ditte, C. R. 104. 1705.) Lead or^ovanadate, Pb 3 (V0 4 ) 2 . Insol. in H 2 0. (Roscoe, A. suppl. 8. 109.) Lead zinc or^ovanadate, 4Pb q (V(X) 9 , 3Zn 3 (V0 4 ) 2 . Min. Eusynchite. Easily sol. in HN0 3 + Aq. Lead zinc vanadate, (Pb, Zn) 4 Y 2 9 + H 2 0. Min. Desdoizite. Sol. in excess of HN0 3 + Aq. Lead vanadate chloride, 3Pb 3 (V0 4 ) 2 , PbCl 2 . Min. Vanadinite. Easily sol. in HN0 3 + Aq. Lithium metovanadate, LiV0 3 . Easily sol. in H 2 0. (Berzelius.) + 2H 2 0. Quite easily sol. in H 2 0. (Raru- melsberg, B. A. B. 1883. 3.) Lithium cfo'vanadate, Li 2 V 4 O u + 9H 2 0. Very sol. in H 2 0. (Norblad.) Correct formula is Li 3 V 5 14 + 12H 2 0. (Ram- melsberg. ) + 8 or 12H 2 0. (Ditte, C. R. 104. 1168.) Lithium or^ovanadate, Li 3 V0 4 . Insol. in H 2 0. (Rammelsberg, B. A. B. 1883. 3.) Lithium pyrovana.da.ie, Li 4 V 2 7 + 4H 2 0. Very sol. in H 2 0. (Rammelsberg, B. 16. 1676.) + 3H 2 0. (Ditte, C. R. 104. 1168.) Lithium vanadate, basic, Li 6 V 2 8 + 6H 2 0. Sol. in H 2 0. (Ditte, C. R. 104. 1168.) Li 8 V 2 9 + H 2 0, and 14H 9 0. Sol. in H 2 0. (Ditte.) Lithium vanadate, Li 3 V 5 14 + 7H 2 0. Difficultly sol. in H 2 0. (Rammelsberg.) + 12H 2 0. Very efflorescent. Correct for- mula for v. Hauer's cfavanadate. (Rammels- berg.) Li 4 V 6 17 + 16H 2 0. Sol. in H 2 0. (Ditte, C. R. 104. 1168.) + 15H 2 0. (Rammelsberg. ) + 11H 2 0. (R.) + 3H 2 0. (R.) Li 6 V 4 13 + 15H 2 0. Not very easily sol. in H 2 0. (Rammelsberg.) Li 6 V 8 23 + 12H 2 0. Moderately sol. in H 2 0. (Rammelsberg.) Li 10 V 12 35 + 30H 2 0. Efflorescent. Very sol . in H 2 0. (Rammelsberg.) Magnesium metava.na.da.ie, Mg(V0 3 ) 2 . Very easily sol. in H 2 0. (Berzelius.) + 6H 2 0. Very sol. in H 2 0. (Ditte, C. R 104. 1705.) Magnesium efo'vanadate, MgV 4 O n + 8H 2 0. Difficultly sol. in H 2 0, but much more sol . than barium cfo' vanadate. (v. Hauer.) + 9H 2 0. (Ditte, C. R. 104. 1705.) Magnesium fr^vanadate, Mg 2 V 6 ll7 + 4 JH 2 0. Very si. sol. in H 2 0. (Manasse, A. 240. 23.) VANADATE, SODIUM 495 Magnesium vanadate, Mg 3 V 10 28 + 28H 2 0. Sol. in H 2 0. (Suguira and Baker, Chem. Soc. 35. 715.) Manganous wetavanadate, Mn(V0 3 ) 2 + 4H 2 0. Very si. sol. in cold, somewhat more sol. in hot H 2 0. Easily sol. in dil. acids. (Radau, A. 251. 125.) Manganous ^7/rovanadate, Mn 2 V 2 7 . SI. sol. in hot dil. HN0 3 + Aq. (Ditte, C. R. 96. 1048.) Manganous potassium vanadate, MnKV 5 14 + 8H 3 0. 100 pts. H 2 dissolve 1'7 pts. salt at 18. Easily sol. in acids. (Radau, A. 251. 129.) 3Mn 3 V 8 023, K fi V 8 023 + 54H 2 0. (Radau.) 7Mn(V0 3 ) 2 , 2KV0 3 + 25H 2 0. (Radau.) HMn(V0 3 ) 2 , 2KV0 3 + 48H 2 0. (Radau.) Mercuric vanadate. SI. sol. in H 2 0. Nickel vanadate, Ni(V0 3 ) 2 . Sol. in H 2 0. (Ditte, C. R. 104. 1705.) Nickel o^/iovanadate, Ni 3 (V0 4 ) 2 . Insol. in H 2 ; sol. in HN0 3 + Aq. (Ditte, C. R. 96. 1049.) Nickel ^vanadate, NiV 4 O n + 3H 2 0. Sol. in H 2 0. (Ditte, C. R. 104. 1705.) Nickel potassium vanadate, 5Ni(V0 3 ) 2 , 2KV0 3 + 25H 2 0. Nigl^VjoOag + 17H 2 0. Very si. sol. in hot H 2 0. NiKV 5 4 + 8H 2 0. 2Ni 4 V 14 39 , K 8 V 14 39 + 69H 2 0. 1000 pts. H 2 dissolve 1 '7 pts. of salt at 17 '5. (Radau, A. 251. 137.) Potassium metavanadate, KV0 3 . Anhydrous. Slowly sol. in cold, more easily in hot H 2 0. Insol. in alcohol. (Berzelius.) Completely sol. in a little cold H 2 0. (Nor- blad.) + H 2 0. Sol. in H 2 0. (Rammelsberg.) + 2H + 3H 2 0. (Ditte, C. R. 104. 902.) + 7H 2 0. (Rammelsberg.) Potassium divanadate, K2V 4 O n + 4H 2 0. Sol. in cold or lukewarm H 2 0. Decomp. by hot H 2 0. (Rammelsberg.) + 3H 2 0. (Berzelius.) + 3|H 2 0. Sol. in warm H 2 0. (Norblad.) + 8 or 10H 2 0. (Ditte, C. R. 104. 902.) Potassium ^ivanadate, K 2 V 6 16 . Anhydrous. Nearly insol. in H 2 0. (Nor- blad.) + 6H 2 0. Insol. in cold or hot H 2 0. (Nor- blad.) + 1, and 5H 2 0. (Ditte, C. R. 104. 902.) Potassium or^ovanadate, K 3 V0 4 + 4^ or6H 2 0. Deliquescent. Sol. in H 2 0. (Ditte, C. R. 104. 902.) Decomp. by H 2 into K 4 V 2 7 and KOH. (Rammelsberg, B. A. B. 1883. 3.) Potassium ^rovanadate, K 4 V 2 7 + 3H 2 0. Deliquescent. Easily sol. in H 2 0. Insol. in alcohol. (Norblad.) + 4H 2 0. (Ditte, C. R. 104. 902.) Potassium vanadate, K 3 V 5 14 + 5H 2 0. 100 pts. H 2 dissolve 19'2 pts. at 17'5 . (Radau, A. 251. 120.) + 4JH 2 0. (Radau.) K 4 V 6 17 + 2H 2 0. Slowly sol. in H 2 0. (Ram- melsberg. ) + 6H 2 0. (Ditte, C. R. 104. 902.) + 7H 2 0. (Friedheim, B. 23. 1526.) K 4 V 10 27 + 12H 2 0. Very sol. in H 2 0. (Manasse, A. 240. 42.) K 10 V 8 25 + 7H 2 0. Sol. in H 2 0. (Rammels- berg.) Potassium vanadate, basic, K 8 V 2 9 + 20H 2 0. Sol. in H 2 0. (Ditte, C. R. 104. 902.) Potassium strontium vanadate, 20H 2 0. Sol. in H 2 0. (Manasse, A. 240. 23.) K 2 Sr 3 V 14 39 + 30H 2 0. As above. (Manasse.) K 4 Sr 2 V 14 39 + 18H 2 0. As above. (Manasse.) Potassium zinc vanadate, KZnVg0 14 + 8H 2 0. 1000 pts. H 2 dissolve 4'1 pts. of the salt. (Radau, A. 251. 145.) 2K 8 V 14 03j,, 3Zn 4 V 14 39 + 90H 2 0. (Radau. ) Samarium vanadate, Sm 2 3 , 5V 2 5 + 28H 2 0. (Cleve.) + 24H 2 0. (Cleve.) Samarium or^ovanadate. Precipitate. Silver metavanadate, AgV0 3 . Sol. in HN0 3 or dil. NH 4 OH + Aq. (Ber- zelius.) Silver or^ovanadate, Ag 3 V0 4 . Ppt. Easily sol. in HN0 3 or NH 4 OH + Aq. (Roscoe, Proc. Roy. Soc. 18. 316.) Silver ^rovanadate, Ag 4 V 2 7 . Ppt. (Roscoe. ) Sol. in NH 4 OH + Aq. (Ditte, C. R. 104. 1705.) Silver vanadate, Ag 6 V 4 13 . Sol. in 21,414 pts. H 2 at 14, and 13,617 pts. at 100. (Carnelley, A. 166. 155.) Silver vanadate ammonia, 6AgV0 3 , 4NH 3 + 2H 2 0. (Ditte, C. R. 104. 1705.) Sodium metovanadate, NaV0 3 . Anhydrous. Slowly sol. in cold, very easily in hot H 2 0. (Norblad.) + 2H 0. Easily sol. in H 2 0. + |H 2 0. (Ditte, C. R. 104. 1061.) + 3, 4, and 5H 2 0. (Ditte.) Sodium ^vanadate, Na 2 V 4 O n . Anhydrous. SI. sol. even in warm H 2 0, but easily sol. on addition of acids. 496 VANADATE, SODIUM + 9H 2 0. Easily sol. in cold H 2 0. Insol. in alcohol. (Norblad.) + 5H 2 0. (Ditte, C. R. 104. 1061.) Not obtained by Rammelsberg (B. A. B. 1883. 3.) Sodium Znvanadate, Na 2 V 6 16 + 9H 2 0. Insol. in cold or hot H 2 0. (Norblad.) Composition is Na 6 V 16 43 + 24H 2 0. (Ram- melsberg. ) + 3H 2 0. (Ditte, C. R. 104. 1061.) Sodium or^ovanadate, Na 3 Y0 4 + 16H 2 0. Easily sol. in H 2 0, but decomp. into Na 4 V 2 7 and KOH. Precipitated by an excess of alco- hol. (Roscoe, A. suppl. 8. 102.) + 7H 2 0. (Hall, Chem. Soc. 51. 96.) + 10, and 12H 2 0. Less sol. in*dil. NaOH + Aq than in H 2 0. (Baker, A. 229. 286.) Sodium ^t/rovanadate, Na 4 V 2 7 + 18H 2 0. Easily sol. in H 2 0. Insol. in alcohol. (Norblad.) Sol. in alcohol. (Ditte, C. R. 104. 1061.) + 8H 2 0. (Ditte.) Sodium sesgmvanadate, Na 4 V 6 17 . Anhydrous. Insol. in H 2 or NH 4 OH + Aq. (Rammelsberg. ) + 10H 2 0. (Norblad.) + 16H 2 0. Efflorescent. (Rammelsberg.) + 18H 2 0. (Ditte.) Sodium jpewtavanadate, Na 4 V 10 27 + 3|H 2 0. Scarcely sol. in H 2 0. (Rammelsberg.) Sodium vanadate, Na 6 V 4 13 + 6H 2 0. Difficultly sol. in cold H 2 0. (Carnelley, A. 166. 155.) + 2H 2 0. (Carnelley.) Na 6 V 16 43 + 24H 2 0. Correct formula for Norblad's ^vanadate. (Rammelsberg.) Sodium vanadate, basic, Na 8 Y 2 9 +26 or 30H 2 0. Very sol. in H 2 0. (Ditte.) Sodium vanadate fluoride, 2Na 3 V0 4 , NaF + 19H 2 0. Sol. in H 9 0. (Rammelsberg, W. Ann. 20. 928.) Strontium metavanadate, Sr(V0 3 ) 2 + 4H 2 0. Difficultly sol. in cold H 2 0. (Norblad.) Strontium ^vanadate, SrY 4 O n + 9H 2 0. SI. sol. in H 2 0, but much more sol. than barium efa vanadate. (v. Hauer.) Strontium ^vanadate, SrV 6 16 + 14H 2 0. Sol. in H20, but decomposes slowly on boil- ing. Easily sol. in hot H 2 acidified with HC 2 H 3 2 , and crystallises therefrom without decomp. (v. Hauer, J. pr. 76. 156.) Strontium Z^ravanadate, SrV 8 21 + llH 2 0. Sol. in hot H 2 with partial decomposition. (Manasse, A. 240. 34.) Strontium vanadate, Sr 3 V 8 23 + 14H 2 0. Sol. in H 2 O. (Manasse, A. 240. 23.) Sr 4 V 14 39 + 30H 2 0. Sol. inH 2 0. (Norblad.) Thallous wetavanadate, T1V0 3 . Sol. in 11,534 pts. H 2 at 11, and 4756 pts. at 100. (Carnelley.) Thallous orZAovanadate, T1 3 V0 4 . SI. sol. in H 2 0. Sol. in 999 pts. H 2 at 15, and 574 pts. at 100. (Carnelley, Chem. Soc. (2) 11. 323.) Thallous ^rovanadate, T1 4 V 2 7 . Sol. in 4996 pts. H 2 at 14, and 3840 pts. H 2 at 100. (Carnelley.) Thallous vanadate, T1 12 V 8 26 . Sol. in 3406 pts. H 2 at 14, and 3533 pts. at 100. (Carnelley.) Tli 2 V 10 31 . Sol. in 9372 pts. H 2 at 11, and 3366 pts. at 100. (Carnelley.) T1 12 V 14 41 . Ppt. (Carnelley.) Thorium vanadate, Th 3 12 (VO) 4 , 16V 2 5 + 24H 2 0(?). Sol. inH 2 0. (Cleve.) Uranyl vanadate, 2U0 3 , V 2 5 , (U0 2 ) 2 V 2 7 . Insol. in H 2 0. (Carnot, C. R. 104. 1850.) Vanadium vanadate, 2V0 2 , V 2 5 = Y 4 9 . Insol. in H 2 0. Sol. in dil. H 2 S0 4 or HN0 3 + Aq. (Rammelsberg. ) Slowly oxidised by HN0 3 + Aq. Slowly sol. in NH 4 OH + Aq. Easily sol. in HCl + Aq. (Ditte, C. R. 101. 1487.) + 2H 2 0. (Brierley.) 2V0 2 , 2V 2 5 + 8H 2 0. Insol. in H 2 0. (Brier- ley, Chem. Soc. 49. 31.) Yttrium vanadate. Precipitate. (Berzelius.) Zinc vanadate, Zn( V0 3 ) 2 + 2H 2 0. Sol. in H 2 0. (Ditte, C. R. 104. 1705.) Zinc ^yrovanadate, Zi^VgOy. Appreciably sol. in H 2 0. (Ditte, C. R. 96. 1048.) Vanadicovanadic acid. Ammonium vanadicovanadate, (NH 4 ) 2 0, 2V0 2 , 4V 2 5 + 8H 2 0. SI. sol. in cold and warm H 2 0. (Gibbs, Am. Ch. J. 7. 209.) (NH 4 ) 2 0, 2V 2 4 , 2V 2 5 + 14H 2 0. Sol. in H 2 0. (Brierley, Chem. Soc. 49. 30.) 3(NH 4 ) 2 0, 2V 2 4 , 4V 2 5 + 6H 2 0. Insol. in H 2 0. (Brierley. ) Potassium , 2K 2 0, 2V 2 4 , V 2 5 + 6H 2 0. Sol. in hot H 3 0. (Brierley, Chem. Soc. 49. 30.) 5K 2 0, 2V 2 4 , 4V 2 5 + H 2 0. Insol. in H 2 0. (Brierley.) Sodium , 2^0, 2V 2 4 , V 2 5 + 13H 2 0. Easily sol. in H 2 0. Insol. in cone, solutions of salts, especially acetate. (Brierley, Chem. Soc. 49. 30.) Vanadioarsenic acid. See Arseniovanadic acid. Vanadioiodic acid. See lodovanadic acid. VANADIOTUNGSTATE, SODIUM CALIFORNIA- 497 Vanadiomolybdicacid, 8Mo0 3 , V 2 5 + 5H 2 0. Very si. sol. in H 2 0, and si. sol. in boiling HN0 3 + Aq. (Ditte, C. R. 102. 757.) Could not be obtained. (Friedheim, B. 24. 1173.) Ammonium vanadiomolybdate, 3(NH 4 ) 2 0, 2V 2 S , 4Mo0 3 + 7H 2 0. (Milch, Dissert. Berlin, 1887.) + 9H 2 0. Sol. in H 2 0. (Ditte, C. R. 102. 1019.) + 11H 2 0. Easily sol. in H 2 0. Correct com- position of above compounds is = (NH 4 ) 2 0, 2V 2 5 + 2[(NH 4 ) 2 0, 2Mo0 3 ] + 11H 2 0. (Fried- heim, B. 24. 1173.) 2(NH 4 ) 2 O, V 2 5 , 6Mo0 3 + 5H 2 0. Sol. in a large amount of H 2 0. (Gibbs, Am. Ch. J. 5. 361.) + 6H 2 0. Composition is double the above formula, or 4(NH 4 ) 2 0, 2V 2 5 , 12Mo0 3 +12H 2 0. Rather difficultly sol. in H 2 0. Composition is (NH 4 ) 2 0, 2V 2 O g + 3[(NH 4 ) 2 0, 4Mo0 3 J. (Friedheim.) 5(NH 4 ) 2 0, 2V 2 5 , 12Mo0 3 + 10H 2 0. Quite easily sol. in H 2 0. Composition is (NH 4 ) 2 0, 2V 2 5 + 4[(NH 4 ) 2 0, 3Mo0 3 ] + 10H 2 0. 6(NH 4 ) 2 0, 3V 2 5 , 12Mo0 3 + 21H 2 0. Sol. in H 2 0. Composition is (NH 4 ) 2 0," 3V 2 5 + 5(NH 4 ) 2 0, 12Mo0 3 . (F.) 8(NH 4 ) 2 0, V 2 5 , 18Mo0 3 + 15H 2 0. Decomp. by hot H 2 0. (Gibbs.) Could not be obtained. (Friedheim.) 10(NH 4 ) 2 0, 3V 2 5 , 24Mo0 3 + 10H 2 0. Sol. in H 2 0. (Milch.) Could not be obtained. (Friedheim.) Ammonium barium , 5(NH 4 ) 2 0, 15BaO, 6V 2 5 , 36Mo0 3 . (Milch.) Barium , 3BaO, 2V 2 O g , 6Mo0 3 . (Milch.) 3BaO, V 2 5 , 8Mo0 3 + 2BaO, H 2 0, V 2 5 , 8Mo0 3 + 28H 2 0. Sol. in hot H 2 0. (Gibbs, Am. Ch. J. 5. 361.) 7BaO, 3V 2 5 , 18Mo0 3 + 16H 2 = BaO, 3V 2 5 + 6(BaO, 3Mo0 3 ) + 16H 2 0. SI. sol. in H 2 0. (Friedheim.) Potassium , 3K 2 0, 2V 2 5 , 4Mo0 3 + 8H 2 = K 2 0, 2V 2 5 + 2(K 2 0, 2Mo0 3 ) + 8H 2 0. Very sol. in H 2 0. (Friedheim.) 4K 2 0, 2V 2 5 , 12Mo0 3 +12H 2 = K 2 0, 2V 2 5 + 3(K 2 0, 4Mo0 3 ) + 12H 2 0. SI. sol. in H 2 0. (Friedheim.) 5K 2 0, 2V 2 5 , 12Mo0 3 + 12H 2 = K 2 0, 2V 2 O g + 4(K 2 0, 3Mo0 3 ) + 12H 2 0. Rather si. sol. in H 2 0. (Friedheim.) Vanadiophosphoric acid. See Phosphovanaclic acid. Vanadiosulphuric acid, V 2 6 , 3S0 3 + 3H 2 0. Deliquescent. Sol. in H 2 0, but is decomp. by boiling. (Ditte, C. R. 102. 757.) See Sulphate, vanadium. Vanadiotungstic acid, 6H 2 0, V 2 6 , 10W0 3 + 16H 2 0. Very si. sol. in cold, more easily in hot H 2 0. (Gibbs, Am. Ch. J. 5. 361.) - , (NH 4 ) 2 0, 3V 2 5 , W0 3 6H 2 0, V 2 5 , 16W0 3 + 30H 2 0. Readily sol. in H 2 0. (Gibbs.) 17H 2 0, 4V 2 5 , 16W0 3 + 24H 2 0. SI. sol. in cold, easily in hot H 2 0. (Rosenheim, A. 251. 228.) Aluminum sodium vanadiotungstate, 7A1 2 3 , 27Na 2 0, 36V 2 5 , 144W0 3 + 504H 2 0. 3(A1 2 3 , 9Na 2 0, 48W0 3 ), 4(A1 2 3 , 9V 2 5 ) + 504H 2 0. Sol. in H 2 0. (Rothenbach, B. 23. 3055.) Ammonium 6H 2 0. Sol. in H 2 0. (Rammelsberg, B. 1. 158.) 4(NH 4 ) 2 0, 2H 2 0, V 2 5 , 5W0 3 + 11H 2 0. Sol. in H 2 0. (Gibbs, Am. Ch. J. 5. 361.) 2(NH 4 ) 2 0, V 2 5 , 5W0 3 + 10H 2 0. Sol. in H 2 0. (Ditte, C. R. 102. 1019.) 31(NH 4 ) 2 0, 14V 2 5 , 60W0 3 + 58H 2 = 5[5(NH 4 ) 2 0, 12W0 3 ], 2[3(NH 4 ) 2 0, 7V 2 5 )]. Sol. in H 2 0. (Rothenbach, B. 23. 3051.) 7(NH 4 ) 2 0, 4V 2 5 , 14W0 3 + 16H 2 0. Sol. in H 2 0. (Rosenheim, A. 251. 197.) 8(NH 4 ) 2 0, 4V 2 5 , 16W0 3 , 9H 2 + 4H 2 0. Efflorescent. Very sol. in H 2 0. (Rosenheim, A. 251. 216.) Barium - , 19BaO, 10V 2 5 , 36W0 3 + 94H 2 = 3(5BaO, 12W0 3 ), 2(2BaO, 5V 2 5 ) + 94H 2 0. SI. sol. in H 2 0. (Rothenbach, B. 23. 3052.) 8BaO, 4V 2 5 , 16W0 3 , 9H 2 + 44H 2 0. Efflor- escent. Not very sol. in H 2 0. (Rosenheim, A. 251. 218.) Composition is 6BaO, 12W0 3 , 3V 2 5 + 39H 2 0. (Friedheim. ) 4BaO, 4V 2 5 , 12W0 3 + 41H 2 0. Less sol. than preceding salt. Decomp. by boiling or by mineral acids. (Rosenheim.) Composition is 4BaO, 12W0 3 , 3 V 2 5 + 30H 2 0. (Friedheim.) Magnesium sodium - , MgO, 6Na 2 0, 3V 2 5 , 12W0 3 + 42H 2 = 5Na 2 0, 12W0 3 + MgO, Na 2 0, 3V 2 5 + 42H 2 0. Sol. in H 2 0. (Rothenbach, B. 23. 3054.) Potassium -- , 4K 2 0, 3V 2 5 , 12W0 3 + 30H 2 0. Sol. in H 2 0. Composition is potassium metotungstate vanadate, 3(K 2 0, 4W0 3 ) + K 2 0, 3V 2 5 + 30H 2 0. (Friedheim, B. 23. 1515.) 8K 2 0, 4V 2 5 , 16W0 3 , 9H 2 + 24H 2 0. Very efflorescent. Easily sol. in H 2 0. (Rosenheim, A. 251. 214.) Formula is 6K 2 0, 12W0 3 , 3 V 2 5 -f- 24H 2 0, which is a double salt, 5K 2 0, ^WOg + KaO, 3V 2 5 . (Friedheim, B. 23. 1505.) Silver -- , 8Ag 2 0, 4V 2 5 , 16W0 3 , 9H 2 0. Somewhat sol. in cold H 2 0, more easily upon addition of little HN0 3 . Decomp. by warm H 2 0. (Rosenheim, A. 251. 224.) 3Ag 2 0, 2V 2 5 , 6W0 3 + 3H 2 0. Nearly insol. in cold H 2 0. Decomp. by addition of HN0 3 or upon warming. (Rosenheim.) Sodium 3V0, 6W0 + 36H0. Sol. in H 2 0. 2K 498 VANADIOTUNGSTATE, STRONTIUM . Composition is 3(Na 2 0, 2WQ|) -^2{Na a O, 3V 2 5 ) + 36H 2 0. (Friedheim, B. 23. 1527.) 2Na 2 0, 2V 2 5 , 3W0 3 + 20H 2 0. Very sol. in H 2 0. Composition is Na-jO, SWOg + ^O, 2V 2 5 + 20H 2 0, double salt of sodium Zn'tungstate and o^ vanadate. (Friedheim, B. 23. 1523.) 4Na 2 0, 3V 2 5 , 12W0 3 + 38H 2 = 3(Na 2 0, 4W0 3 ) + Na 2 0, 3V 2 5 + 38H 2 0. Sol. in H 2 0. (Rothenbach, B. 23. 3050.) 8Na 2 0, 4V 2 5 , 16W0 3 , 9H 2 + 48H 2 0. Efflor- escent. Easily sol. in H^O. (Rosenheim, A. 251. 210.) Formula is 6Na 2 0, 12W0 3 , 3V 2 5 + 42H 2 0, and is a double salt of sodium j?aratungstate, 5Na 2 0, 12W0 3 , and sodium ?-zvanadate, Na 2 0, 3V 2 5 . (Friedheim, B. 23. 1505.) Strontium vanadiotungstate, 19SrO, 36W0 3 , 10V 2 5 + 122H 2 = 3(5SrO, 12W0 3 ), 2(2SrO, 5V 2 5 ) + 122H 2 0. Sol. in H 2 0. (Rothenbach, B. 23. 3053.) Vanadious acid. See Hypovanadic acid. Vanadiovanadicomolybdic acid. Ammonium vanadiovanaclicomolybdate. 11(NH 4 ) 2 0, 4V 2 5J V0 2 , 28Mo0 3 + 48H 2 0. SI. sol. in cold, sol. in hot H 2 without decomp. (Gibbs, Am. Ch. J. 5. 391.) Barium , 14BaO, 2V 2 5 , 3V0 2 , 30Mo0 3 + 48H 2 0. Precipitate. Very si. sol. in cold, decomp. byhotH 2 0. (Gibbs.) Vanadiovanadicotungstic acid. Ammonium vanadiovanadicotungstate, 6(NH 4 ) 2 0, 2V 2 5 , 3V0 2 , 12W0 3 + 12H 2 0. Sol. in H 2 0. (Gibbs, Am. Ch. J. 5. 391.) Silver , 6Ag 2 0, 2V 2 5 , 3V0 2 , 12W0 3 + 8H 2 0. Precipitate. Very si. sol. in cold, sol. in much warm H 2 0. (Gibbs.) Sodium , 6Na 2 0, 2V 2 5 , 3V0 2 , 12W0 3 . ^ Very sol. in H 2 0. (Gibbs.) Vanadium, V. Insol. in H 2 0, HC1, dil. H 2 S0 4 + Aq, and cold cone. H 2 S0 4 . Sol. in hot cone. H 2 S0 4 . Slowly sol. in HF + Aq. Easily sol. in dil. or cone. HN0 3 + Aq. Not attacked by hot or cold NaOH or KOH + Aq. (Roscoe, A. suppl. 7. 85.) Vanadium Znbromide, VBr 3 . Very deliquescent ; quickly decomposes. (Roscoe, A. suppl. 8. 99.) Vanadium dtchloride, VC1 2 . Very deliquescent. Sol. in H 2 0, alcohol, and ether. (Roscoe, A. suppl. 7. 79.) Vanadium trichloride, VC1 3 . Deliquescent. Sol. in H 2 0, absolute alcohol, and ether. Vanadium ^rachloride, VC1 4 . Sol. with decomp. in H 2 0, alcohol, and ether. (Roscoe.) Vanadium sesgm'fluoride, V 2 F 6 + 6H 2 0. Efflorescent. Easily sol. in cold, extremely sol. in hot H 2 with decomp. Can be recryst. from HF + Aq. Insol. in strong alcohol. (Petersen, J. pr. (2)40. 48.) Vanadium sesquiSuoiide with MF. See Fluovanadate, M. Vanadium ^hydroxide, VO, aH 2 0. Insol. in KOH or NaOH + Aq. Vanadium ^hydroxide, V 2 3 , zH 2 0. Easily sol. in all acids. (Petersen, J. pr. (2)40. 49.) Vanadium ^rahydroxide (Hypovanadic hy- droxide), V 2 2 (OH) 4 + 5H 2 0. Easily sol. in acids or alkalies. (Crow, Chem. Soc. 30. 453.) Vanadium nitride, VN. (Roscoe, A. suppl. 6. 114.) VN 2 . Not attacked by cold HN0 3 + Aq. (Uhrlaub, Pogg. 103. 134.) Vanadium cfo'oxide, VO. Insol. in H 2 0, easily sol. in dil. acids. (Roscoe, A. suppl. 6. 95.) Vanadium dioxide, V 2 3 . Oxidised in H 2 in contact with air and then dissolves. Insol. in acids, except HN0 3 , and in alkalies +Aq. (Roscoe, A. suppl. 6. 99.) Easily sol. in HF. (Petersen, J. pr. (2) 40. 48.) Vanadium tetroxi&e, V0 2 . Sol. in acids and alkalies + Aq. Vanadium pentoia.de, V 2 5 . Sol. in about 1000 pts. H 2 0. (Berzelius.) Sol. in acids, alkali hydrates, and carbonates + Aq. Insol. in absolute, very si. sol. in dil. alcohol. Insol. in glacial HC 2 H 3 2 . Sol. in cone. KF + Aq. (Ditte, C. R. 105. 1067.) Sol. in H 2 C 2 4 + Aq and alkali oxalates + Aq. (Halberstadt, Z. anal. 22. 1.) Three modifications. (a) Forms hydrates with 2, and 5H 2 0. Sol. in H 2 0. 1 1. of sat. solution contains 8 g. V 2 5 . (/3) V 2 5 , 2H 2 0. Very si. sol. in H 2 0. 1 1. of sat. solution contains '5 g. V 2 5 . (7) V 2 5 , 5H 2 0. Less sol. in H 2 than /3. 1 1. H 2 contains 0'05 g. V 2 5 when saturated. (Ditte, C. R. 101. 698.) See Vanadic acid. Vanadium oxide, V 4 9 =2V0 2 , V 2 5 . See Vanadate, vanadium. V 2 4 , V 2 5 + |H 2 0. (Brierley, Chem. Soc. 49. 30.) See also Vanadiovanadic acid. V 2 4 , 2V 2 5 + 8H 2 0. See Vanadate, vanadium. XANTHOCHROMIUM HYDROXIDE 499 Vanadium pentoxide with MF. See Fluoxyvanadate, M. Vanadium oxy- compounds. See Vanadyl compounds. Vanadium bisulphide, V 2 S 2 . Insol. in boiling dil. or cone. HC1, dil. H 2 S0 4 + Aq, or cold cone. H 2 S0 4 . Easily sol. in hot dil. or cone. HN0 3 + Aq, or in boiling cone. H 2 S0 4 . Insol. in alkalies + Aq. SI. sol. in KSH + Aq; sol. in NH 4 SH + Aq. (Kay, Chem. Soc. 37. 728.) Vanadium ^sulphide, V 2 S 3 . Insol. in cold HC1 or dil. H 2 S0 4 + Aq. Very si. sol. in hot HC1 or dil. H 2 S0 4 + Aq. More sol. in HNOg + Aq or cone. H 2 S0 4 . SI. sol. in NaOH or NH 4 OH + Aq. Easily sol. in (NH 4 ) 2 S or NH 4 SH + Aq, also in K 2 S + Aq. (Kay, Chem. Soc. 37. 728.) Vanadium pentasulphide, V 2 S 5 . SI. attacked by hot cone. HC1 or hot dil. H 2 S0 4 + Aq; sol. in hot cone. H 2 S0 4 . Sol. in hot dil. HN0 3 + Aq. SI. sol. in NH 4 OH + Aq, but easily dissolved by NaOH + Aq. SI. sol. in Na 2 S + Aq. Sol. in NH 4 SH + Aq. (Kay.) Vanadous acid. See Hypovanadic acid. Vanadovanadic acid. See Vanadicovanadic acid. Vanadyl cftbromide, VOBr 2 . Very deliquescent, and sol. in H 2 0. (Roscoe. ) Vanadyl Hbromide, VOBr 3 . Very deliquescent, and quickly decomposes in moist air. Sol. in H 2 0. (Roscoe.) Vanadyl bromide, V 2 3 Br 2 , 2HBr + 7H 2 0. Very deliquescent. (Ditte, C. R. 102. 1310.) Vanadyl sewichloride, V 2 2 C1. Insol. in H 2 0. Easily sol. in HN0 3 + Aq. (Roscoe, A. suppl. 6. 114.) Vanadyl wcmochloride, VOC1. Insol. in H 2 0. Easily sol. in HN0 3 + Aq. (Roscoe.) Vanadyl ^chloride, VOC1 2 . Deliquescent. Slowly decomp. by H 2 0. Easily sol. in HN0 3 + Aq. (Roscoe.) Vanadyl trichloride, VOC1 3 . Deliquescent. Sol. in H 2 and alcohol with decomp. (Bedson, A. 180. 235.) Sol. in ether with combination. >i vanadyl chloride, V 2 4 C1 2 + 5H 2 0. Deliquescent, and sol, in H 2 0, fuming HC1, or alcohol. (Crow, Chem. Soc. 30. 457.) Vanadyl chloride, V 2 3 C1 2 + 4H 2 0. Very deliquescent. (Ditte, C. R. 102. 1310.) Vanadyl platinum chloride. See Chloroplatinate, vanadyl. Vanadyl trichloride ammonia, VOC1 3 , a;NH 3 . Decomp. by H 2 0. (Roscoe.) Vanadyl fluoride with MF. See Fluoxyvanadate, and Fluoxyhypovana- date, M. Vanadyl iodide, V 2 3 I 2 , 3HI + 10H 2 0. Very deliquescent, and sol. in H 2 0. (Ditte, C. R. 102. 1310.) V a 3 I a , 2HI + 8H 2 0. As above. Vanadyl sulphide, VOS (?). (a) Insol. in H 2 0, alkalies, alkali sulphides, and acids, except nitric acid and aqua regia. (Berzelius.) (&) Sol. in alkalies, alkali carbonates, and sulphides + Aq. Insol. in acids. (Berzelius.) Water, H 2 0. Water is the most universal solvent. It absorbs all gases, usually with an increase of volume, seldom, as in the case of NH 3 , with a diminution of volume. It dissolves almost all solids in greater or less quantity, and mixes with or dissolves considerable amounts of many liquids. Miscible with alcohol. Sol. in 36 pts. ether. Sol. in 30-33 vols. ethyl acetate. (Becker.) Sol. in 5 vols. iodhydrin. SI. sol. in most of the fatty oils. White precipitate, fusible. See Mer cur i"^' ammonium chloride. White precipitate, infusible. See Mercuric chloramide. Xanthochromium bromide, Cr(N0 2 )(NH 3 ) 5 Br 2 . Sol. in H 2 0. Resembles the chloride. (Christensen, J. pr. (2) 24. 74.) - carbonate, Cr(N0 2 )(NH 3 ) 5 C0 3 . Easily sol. in H 2 0. (Christensen.) - chloride, Cr(N0 2 )(NH 3 ) 5 Cl2. More sol. in H 2 than the roseo, but less than the purpureo salt. Solution decomp. by light or boiling. De- comp. by dil. acids. Sol. in NaOH + Aq and in NH 4 OH + Aq (sp. gr. 0'91). Insol. in alcohol. (Christensen, J. pr. (2) 24. 74.) - Chloroplatinate, Cr(N0 2 )(NH 3 ) 5 PtCl 6 . Insol. in pure H 2 0, but sol. when warmed with H 2 containing HC1, with formation of a new double salt. (Christensen.) - mercuric chloride, Cr(N0 2 )(NH 3 ) 5 Cl 2 , Precipitate. Decomp. by long contact with H 2 0. (Christensen.) chromate, Cr(N0 2 )(NH 3 ) 5 Cr0 4 . Difficultly sol. in H 2 0. (Christensen.) - bichromate, Cr(N0 2 )(NH 3 ) 5 Cr 2 7 . Difficultly sol. in H 2 0. (Christensen.) - dithionate, Cr(N0 2 )(NH 3 ) 5 S 2 6 . Insol. in cold H 2 0. (Christensen. ) - hydroxide, Cr(N0 2 )(NH 3 ) 5 (OH) 2 . Known only in solution. (Christensen.) 500 XANTHOCHROMIUM IODIDE Xanthochromium iodide, Cr(N0 2 )(NH 3 ) 5 I 2 . Quite difficultly sol. in H 2 0. (Christensen. ) nitrate, Cr(N0 2 )(NH 3 ) 5 (N0 3 ) 2 . Sol. in about 150 pts. H 2 0. (Christensen.) sulphate, Cr(N0 2 )(NH 3 ) 5 S0 4 + H 2 0. Sol. in H 2 and (NH 4 ) 2 S0 4 + Aq. (Christen- sen.) Xanthocobaltic bromide, Co(NH 3 ) 6 (N0 2 )Br 2 . Easily sol. in cold H 2 0. (Werner and Miolati, Gazz. ch. it. 23, 2. 140.) bromonitrate, Co(N0 2 )(NH 3 ) 5 (N0 3 )Br. SI. sol. in cold, more easily in hot H 2 0. (Gibbs.) chloride, Co(N0 2 )(NH 3 ) 5 Cl 2 . SI. sol. in cold H 2 0, and decomp. by boiling therewith. Insol. in HCl + Aq, and alkali chlorides + Aq. Easily decomp. by boiling with acids, even dilute. (Gibbs and Genth.) Sol. in 50 pts. cold H 2 0. (Jorgensen, Z. anorg. 5. 172.) mercuric chloride, Co(N0 2 )(NH 3 ) 5 Cl 2 , 2HgCl 2 + H 2 0. Insol. in cold, si. sol. in hot H 2 without decomp. More sol. in acidified H 2 0. (Gibbs and Genth.) chloraurate, Co(N0 2 )(NH 3 ) 5 Cl 2 , AuCl 3 + H 2 0. Can be easily crystallised out of hot H 2 0. (Gibbs and Genth, Sill. Am. J. (2) 24. 90.) chloronitrate, Co(N0 2 )(NH 3 ) 5 (N0 3 )Cl. SI. sol. in cold, more easily in hot H 2 0. chloronitrate gold chloride, Co(N0 2 )(NH 3 ) 5 (N0 3 )Cl, AuCl 3 . chloronitrate platinic chloride, 2Co(N0 2 )(NH 3 ) 5 (N0 3 )Cl, PtCl 4 . chloroplatinate, Co(N0 2 )(NH 3 ) 5 Cl2,PtCl 4 + H 2 0. Scarcely sol. in hot or cold H 2 0. Can be recryst. from dil. HN0 3 + Aq. Sol. in hot dil. HC1 + Aq. (Gibbs and Genth, Sill. Am. J. (2) 24. 91.) -chromate, Co(N0 2 )(NH 3 ) 5 Cr0 4 + H 2 0. Very si. sol. in cold, and but slightly sol. in hotH 2 0. (Gibbs.) ^chromate, Co(N0 2 )(NH 3 ) 5 Cr 2 7 . Easily sol. in hot H 2 0. ferrocyanide, [Co(N0 2 )(NH 3 ) 5 ] 2 Fe(CN) 6 + 7H 2 0. Nearly insol. in cold, decomp. by warm H 2 0. + 6H 2 0. (Braun, A. 132. 47.) iodide, Co(N0 2 )(NH 8 ) 5 I 2 . Sol. inH 2 0. (Gibbs.) Xanthocobaltic iodosulphate, [Co(N0 2 )(NH 3 ) 5 ] 2 (S0 4 )I 2 . Sol. in H 2 0. ^riodosulphate,[Co(N0 2 )(NH 3 )J 2 (S0 4 )I 4 . Easily decomp. by hot H 2 0. nitrate, Co(N0 2 )(NH 3 ) 5 (N0 3 ) 2 . SL. sol. in cold, moderately sol. in hot H 2 0. Decomp. by boiling. Much less sol. than NH 4 C1 or (NH 4 ) 2 S0 4 in cold H 2 0. Insol. in HN0 3 . (Gibbs and Genth.) - nitrite, Co(N0 2 )(NH 3 ) 5 (N0 2 ) 2 + 2H 2 0. Sol. in H 2 0. (Gibbs.) - cobaltic nitrite, Co(N0 2 )(NH 3 ) 5 (N0 3 ) 2 + 2H 2 0. SI. sol. in H 2 0. (Gibbs, Proc. Am. Acad. 11. 8.) Is nitratopurpureocobaltic cobaltic nitrite, [(N0 3 )Co(NH 3 ) 5 ] 3 [Co(N0 2 ) 6 ] 2 + 2H 2 0. (Jorgen- sen, Z. anorg. 5. 175.) [Co(N0 2 )(NH 3 ) 5 ] 3 [Co(N0 2 ) 6 ] 2 . Not so diffi- cultly sol. as the luteo salt. (Jorgensen. cobaltic nitrite, Co 2 (N0 2 ) 2 (NH 3 ) 10 [Co 2 (NH 3 ) 4 (N0 2 ) 8 ] 2 . Can be recryst. from hot H 2 0. (Gibbs, Proc. Am. Acad. 11. 8.) = (N0 2 )Co(NH 3 ) 5 [(N0 2 ) 2 (NH 3 ) 2 Co(N0 2 ) 2 ] 2 . Xanthocobaltic examine cobaltic nitrite. Very si. sol. in cold H 2 0. (Jorgensen, Z. anorg. 5. 180.) - oxalate, Co(N0 2 )(NH 3 ) 5 C 2 4 . Nearly insol. in cold, si. sol. in hot H 2 0. - sulphate, Co(N0 2 )(NH 3 ) 5 S0 4 . Moderately sol. in hot, much less in cold H 2 0. Sol. without decomp. in H 2 S0 4 + Aq. (Gibbs and Genth.) Sol. in 25 pts. hot H 2 acidified with HC 2 H 3 2 . (Jorgensen, Z. anorg. 5. 172.) 4Co(N0 2 )(NH 3 ) 5 S0 4 , 3H 2 S0 4 . Decomp. by H 2 0, not by absolute alcohol. (Jorgensen.) Xanthorhodium bromide, (N0 2 )Rh(NH 3 ) 5 Br 2 . Moderately sol. in H 2 0. (Jorgensen, J. pr. (2) 34. 394.) - chloride, (N0 2 )Rh(NH 3 ) 5 Cl 2 . Much more sol. in H 2 than the nitrate. - chloroplatinate, (N0 2 )Rh(NH 3 ) 5 PtCl 6 . Ppt. Extremely si. sol. in cold H 2 0. - dithionate, (N0 2 )Rh(NH 3 ) 5 S 2 6 + H 2 0. Nearly insol. in H 2 0. - fluosilicate, (N0 2 )Rh(NH 3 ),SiF 6 . Ppt. hydroxide, (N0 2 )Rh(NH 3 ) 5 (OH) 2 . nitrate, (N0 2 )Rh(NH 3 ) 5 (N0 3 ) 2 . Moderately sol. in-eold, easily in hot H 2 0. Insol. in alcohol. Less sol. in cone. NH 4 OH + Aq than in H 2 0. Insol. in dil. HN0 3 + Aq ; sol. in HN0 3 + Aq of 1 '4 sp. gr. ZINC 501 Xanthorhodium oxalate, (N0 2 )Rh(NH 3 ) 5 C 2 0- 4 . Nearly insol. in cold H 2 0. Very si. sol. in warm H 2 0. Easily sol. in dil. HC 2 H 3 2 + Aq. - sulphate, (N0 2 )Rh(NH 3 ) 5 S0 4 . Slowly sol. in cold, quite easily in hot H 2 0. 4(N0 2 )Rh(NH 3 ) 5 S0 4 , 3H 2 S0 4 . SI. sol. in cold, easily in hot H 2 0. Can be recrystallised from dil. H 2 S0 4 + Aq. Ytterbium, Yb. Not isolated. Ytterbium oxide, Yb 2 3 . Slowly attacked by cold or warm acids, but easily sol. at 100. Yttrium, Y. Decomposes H 2 0. (Cleve, Bull. Soc. (2) 21. 344.) Decomp. H 2 slightly at ord. temp., more rapidly by boiling. Easily sol. in dil. acids, even acetic acid. Slightly acted upon by cone. H 2 S0 4 . Decomposes hot KOH + Aq and cold NH 4 Cl + Aq. Not attacked by NH 4 OH + Aq. (Popp, A. 131. 179.) Popp's yttrium contained erbium. Yttrium bromide, YBr 3 . Sol. in H 2 with evolution of heat. (Duboin, C. R. 107. 243.) + 9H 2 0. Deliquescent. Easily sol. in H 2 and alcohol. Insol. in ether. (Cleve. ) Yttrium chloride, YC1 3 . Anhydrous. Sol. in H 2 with evolution of heat. (Cleve. ) + 6H 2 0. Deliquescent. Very sol. in H 2 0. SI. sol. in alcohol. Insol. in ether. (Cleve.) (Cleve.) Yttrium fluoride, Nearly insol. in dil. acids. Yttrium hydroxide, Y 2 3 , 6H 2 or Y 2 6 H 6 + 3H 2 0. Insol. in H 2 0. Insol. in KOH or NaOH + Aq. Easily sol. in acids. Sol. in alkali carbonates + Aq. When freshly pptd., easily sol. in NH 4 C1 + Aq. Yttrium iodide, YI 3 . Very deliquescent. Easily sol. in H 2 and alcohol. SI. sol. in ether. (Cleve.) Yttrium oxide, Y 2 3 . Insol. in H 2 0. SI. sol. in cold HC1, HN0 3 , or dil. H 2 S0 4 + Aq, but gradually completely sol. on warming. Insol. in NH 4 OH and si. sol. in KOH + Aq. Sol. in HC 2 H 3 2 + Aq. Somewhat sol. in KC Yttrium peroxide, Y 4 9 . (Cleve, Bull. Soc. (2) 43. 53.) Yttrium oxychloride, Y 2 2 C1 2 . Insol. in H 2 0. (Popp.) Yttrium sulphide, Y 2 S 3 . Not prepared in pure state. Impure is insol. in H 2 0, and partially decomp. thereby. Easily sol. in acids with decomp. (Popp.) Zinc, Zn. Not attacked by pure cold H 2 0. Slowly oxidised by boiling H 2 0. Pure H 2 free from dissolved nothing from 2500 sq. mm. Zn. Presence of air containing C0 2 caused a solu- tion of 3 '5 mg. Zn, which maximum was reached in 2 days. Air without C0 2 also caused a slight action. (Snyders, B. 11. 936.) 100 ccm. distilled H 2 dissolved 14 mg. Zn from 11 '8 sq. cm. in one week, during which air free from C0 2 was passed through the liquid, and 19 mg. when air containing C0 2 was used. (Wagner, Dingl. 221. 260.) Filtered rain water was found to contain 20 mg, Zn per 1. (Burg, Isis, 1873. 119.) Sol. in all acids. Very slowly sol. in dil. HC1 or H 2 S0 4 + Aq in glass vessels if Zn is pure. According to Jacquelain, 24 hours were necessary to dissolve 6 g. pure zinc. When fused at the lowest possible temperature, it is much more slowly sol. than when heated to a red heat. In both cases it is much more rapidly dissolved if cooled quickly. (Bolley, A. 95. 294 ; Rammelsberg. ) Dil. H 2 S0 4 + Aq dissolves given % zinc in the same length of time (B according to Bolley, R = according to Rammelsberg) : Slowly cooled Rapidly cooled B R B R Cast at the melt- ing point . . 42-5 74-1 13-0 0-9 Cast at a red heat 100-0 69-4 85-5 9'5 50 ccm. H 2 S0 4 + A following amts. q dissolved in 2 hours the from 1 sq. cm. Zn at t. t Strength of acid Grms. dissolved 20 H 2 S0 4 o-ooo 130 i } 0-075 150 0-232 20 H 2 S0 4 + H 2 0-002 130 } . 0-142 150 5 J 0-345 20 H 2 S0 4 + 2H 2 0-002 130 } } 4-916 150 } 5-450 20 H 2 S0 4 f3H 2 0-005 130 j 3-080 20 H 2 S0 4 + 4H 2 0-049 130 } 0-456 20 H 2 S0 4 + 5H 2 0-027 130 t 0-337 20 H 2 S0 4 + 6H 2 0-018 100 ' 3-16 (Calvert and Johnson, Chem. Soc. 19. 437.) C.P. zinc is more quickly sol. in dil. acids in vacuo than under normal pressure, the ratio being about 1 : 6 '5. The rate of solubility in- creases slowly with rise of temp, from to 98, when it amounts to about 4 times that at 0, 502 ZINC AMIDE but from 98-100 the increase is thirteenfold. Thus, as an average of 6 experiments, dil. H 2 S0 4 + Aq (1 : 20) dissolves in 30 minutes 21 mg. Zn at ; 4 '9 mg. at 20 ; 7 '4 mg. at 60 ; 9-3 mg. at 98 ; but 122 '1 mg. at 100. If, how- ever, the acid was prevented from boiling by increasing the pressure, the sudden increase between 98 and 100 does not take place. The rate of solubility in dil. H 2 S0 4 + Aq (1 : 20) is also increased 175 times by the addi- tion of Cr0 3 and 306 times by the addi- tion of H 2 2 . The above phenomena are explained by assuming the formation of a condensed hydrogen atmosphere around the metal, which prevents the further action of the acid. (Weeren, B. 24. 1785.) Not attacked by HN0 3 + Aq of 1-512 to 1-419 sp. gr. at a temp, of -18 or less, but violently attacked if temp, is raised. HN0 3 + Aq of 1-419-1-401 sp. gr. does not attack Znat temp, of a freezing mixture, but violently at 0. More dil. HN0 3 + Aq attacks Zn even at -20. (Millon, A. ch. (3) 6. 99.) Sol. in H 2 C0 3 + Aq. (Berzelius.) Solubility of Zn in acids is very much affected by the presence of small quantities of various metallic salts. Small amts. of PtCl 4 + Aq accelerated the action of H 2 S0 4 + Aq 149 times, and As 2 3 123 times. HgCl 2 has a strong retarding action owing to pptn. of Hg on the Zn. Various saline solutions have a strong solvent power in presence of PtCl 4 , i.e. KC1, NaCl, Na 2 S0 4 , K 2 S0 4 , MgS0 4 + Aq. PtCl 4 also causes Zn to decompose distilled H 2 0. CuS0 4 has a similar but less energetic effect. In all the above cases, the disengagement of hydrogen is slower in the dark than in the light. (Millon, C. R. 21. 37.) According to Barreswill (C. R. 21. 292) the above reactions are all caused by galvanic action due to pptd. metal, and a piece of Pt in contact with the Zn causes the same action as the PtCl 4 in solution. Easily sol. in alkalies + Aq, even NH 4 OH + Aq, especially when the Zn is in contact with Fe. Sol. in NaCl + Aq with pptn. of ZnO. (Siersch, J. B. 1867. 257.) Sol. in sat. alkali and alkali- earth chlorides + Aq. (Post, 1872.) Sol. in NH 4 salts + Aq. (Lorin, J. B. 1865. 124.) Sol. in sat. Na 2 S0 4 , K 2 S0 4 , MgS0 4 , NaN0 3 , KN0 3 , Ba(N0 3 ) 2 , CaCl 2 , MgCl 2 , and NH 4 N0 3 + Aq. Chlorides and sulphates (especially Na 2 S0 4 and MgCl 2 ) have strongest action, MgS0 4 and nitrates the least. The action was greatly increased by heat. (Snyders, B. 11. 936.) Sol. in boiling NH 4 Cl + Aq. Sol. in neutral FeCl 2 + Aq with pptn. of Fe, especially easily at 100. (Capitaine, C. R. 9. 737.) Sol. in NiS0 4 + Aq with pptn. of NiO. (Tupputi.) Sol. in cone, hot ZnCl 2 + Aq, but Zn oxy- chloride is pptd. on diluting. (Ordway, Am. J. Sci. (2) 23. 222.) Sol. in GlS0 4 + Aq. (Debray.) Solubility of Zn in dilute solutions of salts : 100 com. of solutions of the given salts were allowed to act one week on 11 '8 sq. cm. Zn while a current of air with or without C0 2 was passed through the solution. Salt. G. salt in 100 ccm. solution. Mg. Zn dissolved without CO 2 Mg. Zn dissolved with CO 2 Nad) or I 0-5 7 38 KCll NH 4 C1 1-0 51 36 MgCl 2 0-83 18 54 K 2 S0 4 1-0 30 53 KN0 3 Na 2 C0 3 1-0 i-o 9 13 37 NaOH 0-923 60 Ca0 2 H 2 Sat. 3 ... (Wagner, Dingl. 221. 260.) Action of dil. salt solutions (1 %) on Zn. The following amts. of Zn in mg. were dissolved from 2500 sq. mm. Zn in 14 days by 400 ccm. 1 % solution of the given salts : Salt Mg.Zn Salt Mg.Zn NaCl 11-2 NaN0 3 . 6 KC1 . . . 14-8 Ba(N0 3 ) 2 . 8 CaCl 2 . . MgCL . . 15-2 17-2 NH 4 C1 . . (NH 4 ) 2 S0 4 24-0 31-6 BaCl 2 . . 13-2 NH 4 N0 3 . 26-0 K 2 S0 4 . . 12-0 NaHC0 3 . MgS0 4 . . 8'8 K 2 C0 3 . . KN0 3 . . 6-8 Na 2 C0 3 . The presence of hastens the action of salts + Aq, but C0 2 retards it. The action is much increased by increasing the temp. At it is very slight. (Snyders, B. 11. 936.) Attacked by cane sugar + Aq at 115. (Klein and Berg, C. R. 102. 1170.) Zinc amide, Zn(NH 2 ) 2 . Decomp. by H 2 and alcohol. Insol. in ether. (Frankland, Phil. Mag. (4) 15. 149.) Zinc antimonide, ZnSb. Does not decomp. boiling H 2 except slightly. Not attacked by dil. mineral acids, but decomp. by cone. HC1 or HN0 3 + Aq. (Cooke, Proc. Am. Acad. 5. 348.) Zn 3 Sb 2 . Decomp. H 2 rapidly at 100. Violently decomp. by dil. HC1 or H 2 S0 4 + Aq, also by HN0 3 + Aq. Completely sol. in HC1 + Aq mixed with a little HN0 3 . (Cooke.) Zinc bromide, ZnBr 2 . Very deliquescent, and sol. in H 2 0. Sp. gr. of ZnBr 2 + Aq at 19 '5 containing : 18-3 317 43'2%ZnBr 2 , 1-1849 1-3519 1-5276 52-6 59-1 68 % ZnBr 2 . 1-7082 1-8525 21027 (Kremers, Pogg. 108. 117.) ZINC HYDROSULPHIDE 503 Sp. gr. of ZnBr 2 + Aq at 19'5. % ZnBr 2 Sp. gr. % ZnBr 2 Sp. gr. % ZnBr 2 Sp. gr. 5 1-045 25 1-265 45 1-560 10 1-093 30 1-330 50 1-650 15 1-196 35 1-400 55 1755 20 1-204 40 1-475 60 1-875 (Kremers, calculated by Gerlach, Z. anal. 8. 285.) Sol. in cone. HC1 or HC 2 H 3 2 + Aq, also in NH 4 OH + Aq. Sol. in alcohol and ether. (Berthemot, J. Pharm. 14. 610.) Zinc bromide ammonia, ZnBr 2 , 2NH 3 . Decomp. by H 2 0. SI. sol. in cold, more easily in warm NH 4 OH + Aq. (Rammelsberg, Fogg. 55. 240.) + JH 2 0. Decomp. by H 2 with separation ofZnO. (Andre, C. R. 96. 703.) + H 2 0. Above salt of Rammelsberg's has this composition. (Andre.) 3ZnBr 2 , 8NH 3 + 2H 2 0. Decomp. by H 2 0. (Andre.) 3ZnBr 2 , 10NH 3 + H 2 0. Decomp. by H 2 0. (Andre.) 2ZnBr 2 , 10NH 3 . Efflorescent. Decomp. by H 2 0. (Andre.) Zinc chloride, ZnCl 2 . Very deliquescent, and sol. in H 2 0. Sol. in 0-333 pt. H 2 O at 18'75. (Abl.) ZnCl 2 +Aq sat. at 12'5 contains 78'5 % ZnCl 2 . (Has- senfratz, A. ch. 28. 291.) Sp. gr. of ZnCl 2 + Aq at 19*5. % ZnCl 2 Sp. gr. % ZnCl 2 Sp. gr. 13-8 25-8 1-1275 1-2466 37-5 49-2 1-3869 1-5551 (Kremers, Pogg. 105. 360.) Sp. gr. of ZnCl 2 + Aq at 19'5. % ZnCl 2 Sp. gr. 1% ZnCl 2 Sp. gr. % ZnCl 2 Sp. gr. 1 1-010 25 1-238 : 45 1-488 5 1-045 30 1-291 50 1-566 10 1-091 35 1-352 i 55 1-650 15 1-137 40 1-420 1 60 1-740 20 1-186 (Gerlach, Z. anal. 8. 283, calculated from Kremers. ) Easily sol. in hot absolute alcohol, and ether. Sol. in 1 pt. strong alcohol at 12 "5. (Wenzel.) Sol. in 0'35 pt. absolute alcohol. (Graham.) Sol. in butyl (Wurtz), and hexyl (Bouis) alcohol at ord. temp., but decamp, on heating. Very sol. in acetic ether with evolution of heat. (Cann, C. R. 102. 363.) Easily sol. in acetone. (Krug and M'Elroy, J. Anal. Ch. 6. 184.) + H 2 0. Very deliquescent. Contains 1|H 2 0. (Engel, C. R. 102. 1111.) + 2H 2 0. (Engel.) + 3H 2 0. Sol. in 12'5 pts. H 2 at 0. (Engel.) Zinc hydrogen chloride, 2ZnCl 2 , HC1 + 2H 2 0. Deliquescent. (Engel, C. R. 102. 1068.) ZnCl 2 , HC1 + 2H 2 0. (Engel.) Zinc chloride ammonia, ZnCl 2 , 5NH 3 + H 2 0. Easily sol. in little, but decomp. by much H 2 0. Still more sol. in ZnCl 2 + Aq with decomp. (Divers, C. N. 18. 13.) ZnCl 2 , 4NH 3 + H 2 0. (Kane.) ZnCl 2 , 2NH 3 . Not completely sol. in H 2 ; can be recryst. from hot NH 4 Cl + Aq. (Ritt- hausen, J. pr. 60. 473.) Insol. in H 2 0. Sol. in NH 4 C1 or NH 4 OH + Aq. (Thorns, B. 20. 743.) ZnCl 2 , NH 3 . Decomp. by H 2 0. (Kane, A. ch. 72. 290.) Zinc chloride hydroxylamine, ZnCl 2 , 2NH 2 OH. SI. sol. in cold, somewhat more in warm H 2 0. Very sol. in NH 2 OH + Aq. Very si. sol. in alcohol and other organic solvents. (Crismer, Bull. Soc. (3) 3. 116.) Zinc fluoride, ZnF 2 . SI. sol. in cold, more easily in hot H 2 0. Insol. in 95 % alcohol. Sol. in boiling HN0 3 , HC1, or H 2 S0 4 . (Poulenc, C. R. 116. 581.) + 4H 2 0. Difficultly sol. in H 2 0. Some- what more sol. in H 2 containing HF, HC1, or HN0 3 . Easily sol. in NH 4 OH + Aq. (Berze- lius, Pogg. 1. 26.) Zinc hydrogen fluoride. Known only in solution. Zinc zirconium fluoride. See Fluozirconate, zinc. Zinc hydroxide, Zn0 2 H 2 . Insol. in H 2 0. Sol. in acids. Sol. in KOH, NaOH, NH 4 OH, or (NH 4 ) 2 C0 3 + Aq. Freshly pptd. Zn0 2 H 2 is sol. in dil. salt solutions (1 %) as follows. The given amts. in mg. (calculated as Zn) were dissolved per 1. at t. Salt Mg. Zn t NaCl . . 51 18 KC1 . . 43 20 Cad, . . 57-5 16 MgCl 2 . . 65 16 BaCl 2 . . 38 18 K 2 S0 4 . . 37-5 ' 20 MgS0 4 . 27 21 KN0 3 . . NaN0 3 . 17-5 22 15 15 Ba(N0 3 ) 2 . 25 21 K 2 C0 3 . . 15 NH 4 C1 . 95 20 NH 4 N0 3 . (NH 4 ) 2 S0 4 77 88 20 20 (Snyders, B. 11. 936.) + H 2 0. See also Zinc oxide. Zinc hydrosulphide, Zn(SH) 2 . Very unstable. Decomp. by H 2 0. (Zotta, M. 10. 807.) 504 ZINC IODIDE Sol. in NaSH + Aq. (Thomsen, B. 11. 2044.) Zn 3 H 2 S 4 . (Zotta.) Zinc iodide, ZnI 2 . Deliquescent. Easily sol. in H 2 0. Sp. gr. of ZnI 2 + Aq at 19 '5 containing : 23-1 42-6 56-3 63 "5 76 '0 % ZnI 2 . 1-2340 1-5121 17871 1-9746 2 '3976 (Kremers, Pogg. 111. 61.) Sp. gr. of ZnI 2 + Aq at 19 "5 containing : 5 10 15 20 25 % ZnI 2 , 1-045 1-091 1-140 1-196 1'255 30 35 40 45 50 % ZnI , 1-368 1-390 1-420 1'560 1-650 55 60 65 70 75 % ZnI 2 . 1-754 1*875 2-020 2'180 2'360 (Kremers, calculated by Gerlach, Z. anal. 8. 285.) Sol. in (NH 4 ) 2 C0 3 + Aq. Sol. in alcohol. Zinc tetraiodide, ZnI 4 . Known only in aqueous solution. (Baup, Repert. 14. 412.) Zinc iodide ammonia, ZnI 2 , 4NH 3 . Decomp. by cold H 2 0. Easily sol. in acids and NH 4 OH + Aq. (Rammelsberg, Pogg. 48. 152.) ZnI 2 , 5NH 3 . Decomp. by cold H 2 0. Sol. in NH 4 OH + Aq. (Rammelsberg. ) Zinc nitride, Zn 3 N 2 . Decomp. by H 2 with the greatest violence. (Frankland, Phil. Mag. (4) 15. 149.) Zinc oxide, ZnO. Insol. in H 2 0. Some preparations of ZnO are si. sol. in H 2 0, never, however, in less than 1 million pts. H 2 0. (Bineau, C. R. 41. 510.) Easily sol. in acids, even after ignition. Easily sol. in acids, even H 2 S0 3 , or H 2 CO ? , + Aq. When moist is easily sol. in KOH, NaOH, and NH 4 OH + Aq, but only si. sol. therein after ignition. Partially repptd. from solution in NH 4 OH + Aq by dilution with H 2 0. Anhydrous ZnO is insol. in dil., but sol. in cone, alkali hydrates +Aq, but the hydroxide is easily sol., even in dil. alkalies +Aq. (Fremy, A. ch. (3) 23. 390.) Very si. sol. in NH 4 OH + Aq. After igni- tion its solubility is greatly increased by traces of K and NH 4 salts. Phosphates have the strongest action, then, in the following order : arsenates, chlorides, sulphates, nitrates, acetates, carbonates, tartrates, citrates, and sulphates. Succinates and benzoates increase the solubility in NH 4 OH + Aq, only when it is very dil. ; borates, iodides, chlorates, arsenites, gallates, and oxalates do not increase the solubility. (Schindler.) Solubility in KOH, NaOH, and NH 4 OH + Aq. An excess over 4 mols. KQH to 1 mol. ZnO is necessary for solution, but that excess may be neutralised after solution, until only 4 mols. are left, without pptn. of ZnO. Solution is pptd. by addition of 12 vols. H 2 0. KOH + Aq con- taining 16-5 g. KOH to a litre H 2 is the weakest solution which will dissolve ZnO. Three times as much alkali are necessary for solution at 50 as at 16-17. Less excess of NaOH than of KOH is necessary. 3 mols. NH 4 OH will dissolve 1 mol. ZnO, and the temp, and dilution are in this case of little influence. (Prescott.) Sol. in hot NH 4 Cl + Aq, either when moist or dry. Somewhat less sol. in NH 4 N0 3 + Aq. Somewhat sol. in water- glass + Aq. (Ord- way.) Slowly sol. in cold, easily in hot NaCl + Aq. (Siersch, J. B. 1867. 255.) Sol. in methyl amine, but insol. in amyl amine + Aq. ( Wurtz. ) Sol. in boiling KCN + Aq. Sol. in boiling Fe(N0 3 ) 3 , and Pb(N0 3 ) 2 + Aq with pptn. of oxides. Not attacked by Co(N0 3 ) 2 , Ni(N0 3 ) 2 , and Ce(N0 3 ) 3 + Aq. (Per- soz.) Insol. in cane sugar +Aq. (Peschier.) Tartaric acid somewhat hinders the pptn. of Zn0 2 H 2 . 1 1. solution containing 174 "4 g. sugar and 14-1 g. CaO dissolves 0'24 g. ZnO. (Boden- bender, J. B. 1865. 600.) Min. Zincite. Sol. in acids. Zinc peroxide, Zn0 2 (?). Ppt. Decomp. by acids with evolution of H 2 2 . (Haass, B. 17. 2249.) Zn0 2 , Zn0 2 H 2 . Insol. in NH 4 OH + Aq. (Kouriloff, A. ch. (6) 23. 431.) Zinc oxybromide, ZnBr 2 , ZnO + 13H 2 0. All oxybromides are sol. in KOH and NH 4 OH + Aq. (Andre, C. R. 96. 703.) ZnBr 2 , 4ZnO + 10, 13, and 19H 2 0. Decomp. by H 2 into ZnBr , 6ZnO + 35H 2 0. (Andre.) ZnBr 2 , 5ZnO + 6H 2 0. (Andre.) Zinc oxybromide ammonia, ZnBr 2 , 3ZnO, 2NH 3 + 5H 2 0. Decomp. by H 2 0. (Andre, C. R. 96. 703.) Zinc oxychloride, ZnCl 2 , 9ZnO + 3H 2 0. Insol. in H 2 0. Less sol. in NH 4 OH + Aq than ZnCl 2 , 3ZnO + 2H 2 0, but easily sol. in acids. (Schindler.) + 14H 2 0. 2ZnCl 2 , 9ZnO + 12H 2 0. Insol. in hot or cold H 2 0. (Habermann, M. 5. 432.) ZnCl 2 , 8ZnO + 10H 2 0. (Andre.) 2ZnCl 2 , 5ZnO + 26H 2 0. Sol. in KOH or NH 4 OH + Aq. Decomp. by H 2 into ZnCl 2 , 4ZnO + llH 2 0. (Andre, A. ch. (6) 3. 94.) ZnCl 2 , 6ZnO + 6H 2 0. Insol. in H 2 0. (Kane, A. ch. 72. 296.) ZnCl 2 0, 3Zn + 4H 2 0. SI. sol. in H 2 ; more sol. in ZnCl 2 + Aq. Easily sol. in acids, or NH 4 OH, or KOH + Aq. (Schindler, Mag. Pharm. 36. 45.) + 5H 2 and 8H 2 0. (Andre, A. ch. (6) 3. 94.) ZIRCON ATE, SODIUM 505 Zinc oxychloride ammonia, 6ZnCl 2 , ZnO, 12NH 3 + 4H 2 0. Decomp. by H 2 and boiling alcohol. (Andre, A. ch. (6) 3. 90.) ZnCl 2 , 3ZnO, 2NH 3 + 5H 2 0. Decomp. by H 2 0. (Andre.) ZnClo, 2ZnO, 2NH 3 + 3H 2 0. (Andre.) 6ZnCl 2 , 3ZnO, 10NH 3 + 13H 2 0. (Andre.) 4ZnCl 2 , ZnO, 8NH 3 + 2H 2 0. (Andre.) Zinc oxyiodide, ZnI 2 , 3ZnO + 2H 2 0. Insol. in cold, si. sol. in boiling H 2 0. (Miiller, J. pr. 26. 441.) Zinc oxyphosphide, ZnP 2 0. (Renault, A. ch. (4) 9. 162.) Probably is a mixture of zinc phosphate and phosphorus. (Vigier, Bull. Soc. 1861. 5.) Zinc oxysulphide, ZnO, ZnS. Sol. in HCl + Aq. (Arfvedson, Pogg. 1. 59.) 4ZnS, ZnO. Not decomp. by boiling HC 2 H 3 2 + Aq. (Kersten, Schw. J. 57. 186.) Min. Voltzite. Sol. in HCl + Aq. Zinc phosphide, ZnP. Less easily attacked by HCl + Aq than Zn s P 2 . ZnP 2 . Not attacked by hot HCl + Aq. (Hvoslef, A. 100. 99.) ZnP 4 . Insol. in dil. HC1 + Aq. (Renault.) Zn 3 P 2 . Insol. in H 2 0. Sol. in dil. HC1, H 2 S0 4 , or HN0 3 + Aq, with evolution of PH 3 . (Renault, A. ch. (4) 9. 162.) Zn 3 P 4 . Insol. in HCl + Aq. (Renault.) Zinc selenide, ZnSe. Cold dil. HN0 3 + Aq dissolves out Zn, and Se separates out,' which dissolves on warming as H 2 Se0 3 . (Berzelius.) + #H 2 0. Insol. in H 2 0. (Berzelius.) Zinc sulphide, ZnS. Anhydrous. Insol. in H 2 0. Sol. in HC1 + Aq ; insol. in HC 2 H 3 2 + Aq. (Ebelmen, A. ch. (3) 25. 97.) Sol. in H 2 S + Aq under pressure in a sealed tube. (Senarmont, A. ch. (3) 32. 168.) Min. Blende, Sphalerite. SI. attacked by acids, excepting aqua regia. + i, , or 1H 2 0. Pptd. ZnS. Insol. in H 2 0, alkali hydrates, carbonates, and sulphides + Aq. Insol. in NH 4 OH, or (NH 4 ) 2 C0 3 + Aq. Easily sol. in very dil. HC1, and HN0 3 + Aq, but H 2 S ppts. ZnS in presence of very dil. HCl + Aq, or H 2 S0 4 + Aq. (Eliot and Storer. ) More easily sol. in HNO a + Aq t Aq. (Fresenius.) Only si. sol. in acetic acid. ( Wackenroder. ) When still moist is sol. in H 2 S0 3 + Aq. Insol. in NH 4 C1 or NH 4 N0 3 + Aq. , + Aq thaninHCl + ILjS + Aq when added to ZnS0 4 + Aq pro- ices a ppt. in presence of 10,000 pts. H 2 0, and a slight opalescence with 20,000 pts. (Lassaigne.) Slowly sol. in cone. KCN + Aq. (Halm, J. B. 1870. 1008.) SI. sol. in Na 2 S + Aq ; sol. in NaSH + Aq. (Becker, Sill. Am. J. (3) 33. 199.) , ZnS 5 . Sol. in acids, with separation of S. (Schiff, A. 115. 74.) Zinc telluride, ZnTe. Decomp. by acids. Sol. in Br 2 + Aq. (Fabre, C. R. 105. 277.) Zincic acid. Zinc hydroxide shows weak acid properties, and forms the following salts. Ammonium zincate, 3ZnO, 4NH 3 + 12H 2 0, 3ZnO, 2(NH 4 ) 2 + 10H 2 0. Decomp. by much H 2 0. Barium zincate, BaH 2 Zn 2 4 + 7H 2 0. Decomp. by H 2 0. (Bertrand, C. R. 115. 939.) Calcium zincate, CaH 2 Zn 2 4 + 4H 2 0. Decomp. by H 2 0. Sol. in NH 4 OH + Aq. (Bertrand, C. R. 115. 939.) Cobaltous zincate, a?CoO, 7/ZnO. Rinman's green. Sol. in acids. H 2 C0 3 + Aq dissolves out ZnO. (Comey. ) Potassium zincate, ZnO, K 2 0. Easily sol. in H 2 0, but decomp. by boiling. (Laux, A. 9. 183.) 2ZnO, K^O. Decomp. immediately by cold H 2 0. (Fremy, C. R. 15. 1106.) Sodic zincate, Na 2 0, 2ZnO + 8H 2 or 2NaHZn0 2 + 7H 2 0. Decomp. by H 2 or alcohol. (Comey and Jackson, Am. Ch. J. 11. 145.) 2Na 2 0, 3ZnO + 18H 2 or Zn 3 6 Na 4 H 2 + 17H 2 0. Decomp. by H 2 or alcohol. Insol. in ether. (Comey and Jackson. ) Strontium zincate, SrH 2 Zn 2 4 + 7H 2 0. Decomp. by H 2 0. (Bertrand.) Zirconic acid. See Zirconium hydroxide. Barium zirconate, BaZr0 3 . Insol. in acids. (Ouvrard, C. R. 113. 80.) Calcium zirconate, CaZr0 3 . Insol. in acids. (Ouvrard, C. R. 113. 80. ) Calcium zirconate, acid. Insol. in H 2 or HCl + Aq. (Hiordthal, A. 137. 237.) Cupric zirconate. (Berthier, A. ch. 59. 195.) Lithium zirconate, Li 2 Zr0 3 . Easily attacked by acids. (Ouvrard, C. R. 112. 1444.) Magnesium zirconate. Insol. in H 2 or HC1 + Aq. (Hiordthal, C. R. 61. 215.) Potassium zirconate. Decomp. by HCl + Aq. (Knop, A. 159. 44.) Sodium zirconate, Na 2 Zr0 3 . Decomp. by H 2 0. 506 ZIRCONATE, STRONTIUM Na 4 Zr0 4 . Decomp. by HCl + Aq, and is dis- solved by subsequent addition of H 2 0. Na 2 0, 8Zr0 2 + 12H 2 0. (Hiordthal.) Strontium zircouate, SrZr0 3 . As CaZr0 3 . (Ouvrard.) Zirconium, Zr. Crystallised. Attacked by cone. HCl + Aq above 50, but very slowly even at 100 ; rapidly by hot aqua regia. Sol. in cold cone. HF + Aq. (Troost, C. R. 61. 109.) Very violently attacked by a mixture of HN0 3 and HF. (Berzelius, Pogg. 4. 117.) Amorphous. Slowly attacked by boiling aqua regia, H 2 S0 4 , or cone. HCl + Aq. (Ber- zelius. ) Easily sol. in HF or HN0 3 + HF. Zirconium bromide, ZrBr 4 . Very hygroscopic. Violently decomp. by H 2 to form oxybromide. (Melliss, Zeit. Ch. (2) 6. 296.) Zirconium chloride, ZrCl 4 . Sol. in H 2 with evolution of much heat to form ZrOCl 2 . Sol. in alcohol. (Hinsberg, A. 239. 253.) Zirconium chloride ammonia, ZrCl 4 , 4NH 3 . Decomp. by H 2 0. (Paykull.) Zirconium fluoride, ZrF 4 . Anhydrous. Insol. in H 2 and acids. (De- ville, A. ch. (3) 49. 84.) + 3H 2 0. Sol. in H 2 0, but solution decom- poses by diluting, with pptn. of an insol. basic salt. Sol. indil. HF + Aq. (Berzelius.) Zirconium hydride, ZrH 2 . Not attacked by acids. (Winkler, B. 24. 873.) Zirconium hydroxide, Zr(OH) 4 . Insol. in H 2 or alcohol. Sol. in 5000 pts. H 2 0. (Melliss.) Sol. in acids, even oxalic or tartaric acid, when precipitated cold. If precipitated hot, it is slowly dissolved upon heating with cone, acids. SI. sol. in (NH 4 ) 2 C0 3 + Aq. Insol. in K 2 C0 3 and NajjCOg + Aq. Insol. in NaOH, KOH, and NH 4 OH + Aq. Sol. in(NH 4 ) 2 C 4 H 4 6 + NH 4 OH + Aq. Insol. in NH 4 salts + Aq. Zirconium nitride. Scarcely attacked by acids, aqua regia, and caustic alkalies. Slowly decomp. by long contact with H 2 0. (Mallet, Sill. Am. J (2) 28. 346.) Zirconium oxide, Zr0 2 . When ignited, is insol. in all acids except HF and H 2 S0 4 . SI. sol. in HF ; sol. in H 2 S0 4 only when very finely powdered and heated with a mixture of 2 pts. H 2 S0 4 and 1 pt. H 2 until the H 2 S0 4 volatilises. (Berzelius.) Zirconium peroxide, Zr0 3 . (Cleve, Bull. Soc. (2) 43. 53), or Zr 2 5 ac- cording to Bailey (Chem. Soc. 49. 150). Not attacked by cold dil. H 2 S0 4 + An. (Bailey.) Zirconium silicon oxide. Min. Zircon. See Silicate, zirconium. Zirconium oxy- compounds. See Zirconyl compounds. Zirconium sulphide. Insol. in H 2 0. Sol. in HF ; slowly sol. in aqua regia. Insol. in HN0 3 , HC1, H 2 S0 4 , or KOH + Aq. (Berzelius.) Insol. in dil. acids. Sol. in cone. HN0 3 + Aq (perhaps an oxysulphide). (Fremy.) Zirconyl bromide, ZrOBr 2 + 7H 2 0. Sol. in H 2 0. (Melliss.) + 8H 2 0. Sol. in H 2 0. (Weibull, B. 20. 1394.) Zirconyl chloride, ZrOCl 2 + 4|H 2 0, 6iH 2 0, and 8H 2 0. Efflorescent. Easily sol. in H 2 and alcohol. Very si. sol. in cone. HCl + Aq. (Berzelius.) Zr 2 3 Cl 2 . Sol. in H 2 and alcohol. (Ende- mann, J. pr. (2) 11. 219.) 8Zr0 2 , 7HC1. Sol. in H 2 0. (E.) Zr 2 OCl 6 . (Troost and Hautefeuille, C. R. 73. 563.) Zr 3 OCl 4 = ZnCl 4 , 2Zr0 2 . Insol. in H 2 0. (Hermann. ) Zirconyl iodide, ZrI(OH) 3 + 3H 2 0. Easily sol. in H 2 0. (Hinsberg, A. 239. 253.) ' Zirconyl sulphide (?). Decomp. by HN0 3 with separation of S. (Fremy, A. ch. (3) 38. 326.) APPENDIX FORMULAE FOE CONVERTING AREOMETER DEGREES INTO SPECIFIC GRAVITY. n no. of degrees on the areometer scale ; sp. gr. = specific gravity. Areometer Temp. Liquids heavier than H 2 O Liquids lighter than H 2 O 1. Baume. (a) According to Baume's original directions. For liquids heavier than H 2 0. Sp. gr. of a solution of 15 pts. NaCl dissolved in 85 pts. H 2 at 12Wrfj|~=l'1118088) = 15 ; H 2 = 0. For liquids lighter than H 2 0. Sp. gr. of 10 % NaCl + Aq at 12'5 (10.K \ d~- = 1-0737665 )=0;H 2 I/O / = 10. (b) Old Form. Liquids heavier than H 2 0, 10 % NaCl 4- An at 1 ^ i fJ 1 *07^^^n i 15 12-5 15 17'5 15 149-05 145-56 Sp>gr< 149-05 -n 145-88 hp ' gr - 135-56 + Ti 145-88 SP- gi.- 145 . 88 _ w 146-3 feP- gr.- 135 . 88 + w SID ff r 146 ' 3 \ 15 / = 10; H 2 = 0. Liquids lighter than H 2 0, 10 % NaCl + Aq = 0; H 2 = 10. (c) New Form. So-called "Rational Scale." Liquids heavier than H 2 0, H 2 S0 4 + 1 ^ An 1 '84.9 (\(\ TT O rt Sp- gr.- U6 . 3 _ w 14678 bp ' gr --136-3 + 7. . 14678 Sp-gr - 146-78-Ti 144-3 bp ' gr - 18678 + lo P- 81 ' 144 -3 -n 2. Beck. H 2 = 0; liquid of 0'850 / 12 \ __ dnola 12-5 170 170 Sp ' gr - = i7oT^ S P- gr- ^ 12 -5J 30 ' Scale continued above and below. Sp ' gr --170-rc 3. Twaddle. H 2 = 0. Each degree cor- responds to an increase of 0'005 in the sp. gr. Given on the instru- ment Sp. gr.= I'OOO + 0-00571 i 508 APPENDIX TABLES FOR THE CONVERSION OF BAUME DEGREES INTO SP. GR. Since the original directions of Baume there have been many slight modifica- tions suggested, so that there are several varieties of Baume hydrometers with somewhat varying readings, tables for the two principal ones of which are here given. 1. According to Baum6's original directions. For liquids heavier than H 2 0. Sp. gr. of 1 5 % NaCl + = 1-1118988 = H 2 = 0. Calculated according to the formula, sp. gr. = 149-05 149-05-%' Deg. Baume Sp. gr. Deg. Baume Sp. gr. Deg. Baume Sp. gr. Deg. Baume Sp. gr. 1-00000 20 1-15497 39 1-35438 58 1-63701 1 1-00675 21 1-16399 40 1-36680 59 1-65519 2 1-01360 22 1-17316 41 1-37945 60 1-67378 3 1-02054 23 1-18246 42 1-39234 61 1-69279 4 1-02757 24 1-19192 43 1-40547 62 1-71223 5 1-03471 25 1-20153 44 1-41885 63 1-73213 6 1-04194 26 1-21129 45 1-43248 64 175250 7 1-04927 27 1-22122 46 1-44638 65 177335 8 1-05671 28 1-23131 47 1-46056 66 1-79470 9 1-06426 29 1-24156 48 1-47501 67 1-81657 10 1-07191 30 1-25199 49 1-48971 68 1-83899 11 1-07968 31 1-26260 50 1-50479 69 1-86196 12 1-08755 32 1-27338 51 1-52014 70 1-88551 13 1-09555 33 1-28436 52 1-53580 71 1-90967 14 1-10366 34 1-29522 53 1-55179 72 1-93446 15 1-11189 35 1-30688 54 1-56812 73 1-95989 16 1-12025 36 1-31844 55 1-58471 74 1-98601 17 1-12873 37 1-33621 56 1-60182 75 2-01283 18 1-13735 38 1-34218 57 1-61923 76 2-04038 19 1-14609 For liquids lighter than H 2 0. Sp. gr. of 10 % NaCl + 145*56 Calculated according to the formula, sp. gr. = . 135'5o + n Deg. Baume Sp. gr. Deg. Baume Sp. gr. Deg. Baume Sp. gr. Deg. Baume Sp. gr. 10 1-00000 30 0-87919 50 078443 65 0-72577 15 0-96679 35 0-85342 55 076385 70 0-70811 20 0-93571 40 0-82912 60 074432 75 0-69130 25 0-90657 45 0-80616 APPENDIX 509 2. According to the so-called Rational Scale. Sp. gr. of H 2 S0 4 + Calculated according to the formula, sp. gr. i = 1*842 = 66 ; H 2 = 0. 144-3 144-3-w* Deg. Baume Sp. gr. Deg. Baume Sp. gr. Deg. Baume Sp. gr. Deg. Baume Sp.gr. 1 1-007 18 1-142 35 1-320 51 1-547 2 1-014 19 1-152 36 1-332 52 1-563 3 1-021 20 1-161 37 1-345 53 1-580 4 1-029 21 1-170 38 1-357 54 1-598 5 1-036 22 1-180 39 1-370 55 1-616 6 1-043 23 1-190 40 1-384 56 1-634 7 1-051 24 1-200 41 1-397 57 1-653 8 1-059 25 1-210 42 1-411 58 1-672 9 1-066 26 1-220 43 1-424 59 1-692 10 1-074 27 1-230 44 1-439 60 1-712 11 1-082 28 1-241 45 1-453 61 1-732 12 1-091 29 1-251 46 1-468 62 1-753 13 1-099 30 1-262 47 1-483 63 1-775 14 1-107 31 1-274 48 1-498 64 1-797 15 1-116 32 1-285 49 1-514 65 1-820 16 1-125 33 1-296 50 , 1-530 66 1-842 17 1-133 34 1-308 ... ... ... i 510 APPENDIX SYNCHRONISTIC TABLE OF CHEMICAL Year A. A. ch. Am. J. Sci. Ann. Min. Ann. Phil. Arch. Pharm. Ch. Gaz. C. R. Dingl. 1800 (1)32-34 1801 35-39 ... .. . ... ... 1802 ... 40-43 ... ... ... ... 1803 44-47 ... 1804 ... 48-51 1805 ... 52-55 ... ... ... ... 1806 56-60 ... ... 1807 61-64 ... ... 1808 65-68 ... ... 1809 69-72 ... ... ... ... 1810 ... 73-76 1811 77-80 ... 1812 ... 81-84 ... ... 1813 85-88 (1)1,"2 ... ... 1814 89-92 ... ... 3,4 ... 1815 93-96 5,6 ... 1816 (2) 1-3 ... 7,8 .1 . ... 1817 4-6 1, 2 9, 10 1818 7-9 3 11, 12 ... ... 1819 10-12 (1)1 4 13, 14 ... 1820 13-15 2 5 15, 16 i-3 1821 16-18 3 6 (2) 1, 2 ... 4-6 1822 19-21 4,5 7 3,4 i,"2 7-9 1823 22-24 6 8 5, 6 3-6 ... ... 10-12 1824 25-27 7,8 9 7, 8 7-10 13-15 1825 28-30 9 10, 11 9, 10 11-14 ... 16-18 1826 31-33 10, 11 12, 13 11, 12 16-19 ... 19-22 1827 34-36 12 (2) 1, 2 20-23 23-26 1828 37-39 13, 14 3,4 24-26 27-30 1829 40-42 15, 16 5, 6 27-30 31-34 1830 43-45 17, 18 7,8 31-34 35-38 1831 46-48 19, 20 35-39 39-42 1832 1-4 49-51 21, 22 (3) i; - 2 40-43 43-47 1833 5-8 52-55 23, 24 3,4 44-47 48-50 1834 9-12 56-57 25-27 5, 6 48-50 51-54 1835 13-16 58-60 28, 29 7,8 (2) 1-4 l' 55-58 1836 17-20 61-63 30, 31 9, 10 5-8 ... 2,3 59-62 1837 21-24 64-66 32, 33 11, 12 9-12 4, 5 63-66 1838 25-28 67-69 34, 35 13, 14 13-16 6, 7 67-70 1839 29-32 70-72 36, 37 15, 16 17-20 8, 9 71-74 1840 33-36 73-75 38, 39 17, 18 21-24 10, 11 75-78 1841 37-40 (3) 1-3 40, 41 19, 20 25-28 12, 13 79-82 1842 41-44 4-6 42, 43 (4) 1, 2 29-32 14, 15 83-86 1843 45-48 7-9 44, 45 3, 4 33-36 "l 16, 17 87-90 1844 49-52 10-12 46, 47 5, 6 37-40 2 18, 19 91-94 1845 53-56 13-15 48-50 7, 8 41-44 ... 20, 21 95-98 1846 57-60 16-18 (2) 1, 2 9, 10 45-48 3 22, 23 99-102 1847 61-64 19-21 3,4 11, 12 ... 49-52 4 24, 25 103-106 APPENDIX 511 AND OTHER SCIENTIFIC PERIODICALS Part I. Gilb. Ann J. China, med. J. Pharm. J.pr. Phil. Mag. Pogg. Proc. Am. Acad. Proc. Roy. Soc. Q. J. Sci. Scher. J. Schw. J. 4-6 6-8 3,4 7-9 ... 9-11 ... 5, 6 10-12 ... 12-14 7,8 ... 13-15 15-17 ... ... 9, 10 ... 16-18 ... 18-20 11, 12 19-21 ... 21-23 ... .. 13, 14 22-24 24-26 ... ... 15, 16 25-27 ... 27-29 ... 17, 18 ... 28-30 30-32 ... ... ... .. 19, 20 31-33 (1)1 33, 34 21, 22 ... 34-36 ... 2 35, 36 23, 24 37-39 3 37, 38 ... Cont. as (1)1-3 40-42 ... 4 ... 39, 40 Schw. J. 4-6 43-45 5 41, 42 ... ... ... ... 7-9 46-48 ... 6 43, 44 10-12 49-51 (2)1 45, 46 ... ... 13-15 52-54 2 47, 48 1 16-18 55-57 ... 3 ... 49, 50 2,3 19-21 58-60 ... 4 ... 51, 52 ... 4,5 22-24 61-63 5 53, 54 6,7 25-27 64-66 6 55, 56 8, 9 28-30 67-69 7 57, 58 ... 10, 11 (2)1-3 70-72 8 59, 60 ... 12, 13 ... 4-6 73-75 9 ... 61, 62 14, 15 7-9 76 . 10 63, 64 1/2 16, 17 10-12 Gout, as (1)1 11 65, 66 3-5 18, 19 ... 13-15 Pogg. 2 12 ... 67, 68 6-8 20, 21 16-18 3 13 (2) 1, 2 9-11 ... ... 19-21 4 14 3, 4 12-14 22-24 5 15 5, 6 15-17 25-27 ... 6 16 ... 7, 8 18-20 ... 28-30 7 17 9, 10 21-23 ... (3)1-3 8 18 11, (3) 1 24-26 1 ... 4-6 9 19 2,3 27-30 1 2 7-9 10 20 i-3 4,5 31-33 ... Cont. as (2)1 21 4-6 6, 7 34-36 ... ... J. pr. 2 22 7-9 8, 9 37-39 ... ... ... 3 23 10-12 10, 11 40-42 3 ... 4 24 13-15 12, 13 43-45 5 25 16-18 14, 15 46-48 ... ... 6 26 19-21 16, 17 49-51 ... 7 27 22-24 18, 19 52-54 ... ... ... ... 8 3)1,2 25-27 20, 21 55-57 4 ... 9 3, 4 28-30 22, 23 58-60 ... ... ... ... 10 5, 6 31-33 24, 25 61-63 (3)1 7, 8 34-36 26, 27 64-66 ... ... ... 2 9, 10 37-39 28, 29 67-69 2 3 11, 12 40-42 30, 31 70-72 ... ... ... ... 512 APPENDIX SYNCHRONISTIC TABLE OF CHEMICAL AND Year A. A.ch. Ani. Ck. J. Am. J. Sci. Analyst. Ann. Min. Arch. Pharm. A. suppl. B. Bull. Soc. 1848 65-68 22-24 5,6 13, 14 53-56 1849 69-72 25-27 ... 7,8 ... 15, 16 57-60 1850 73-76 28-30 9, 10 17, 18 61-64 ... 1851 77-80 31-33 11, 12 19, 20 65-68 1852 81-84 34-36 13, 14 ... (5)1,2 69-72 1853 85-88 37-39 15, 16 3, 4 73-76 1854 89-92 40-42 17, 18 5, 6 77-80 1855 93-96 43-45 19, 20 7, 8 81-84 ... 1856 97-100 46-48 21, 22 9, 10 85-88 1857 101-104 49-51 23, 24 ... ! 11, 12 89-92 1858 105-108 52-54 25, 26 13, 14 93-96 1859 109-112 55-57 ... 27, 28 15, 16 97-100 ... 1 1860 113-116 58-60 29, 30 17, 18 101-104 ... ... 2 1861 117-120 61-63 31, 32 19, 20 105-108 1 3 1862 121-124 64-66 33, 34 ... (6)1,2 109-112 2 4 1863 125-128 67-69 35, 36 3, 4 113-116 ... 5 1864 129-132 (4)1-3 37, 38 ... 5,6 117-120 3 (2)1,2 1865 133-136 4-6 39, 40 7,8 121-124 4 ... 3,4 1866 137-140 7-9 41, 42 9, 10 125-128 5, 6 1867 141-144 10-12 43, 44 11, 12 129-132 5 7,8 1868 145-148 13-15 45, 46 13, 14 133-136 6 1 9, 10 1869 149-152 16-18 47, 48 ... 15, 16 137-140 ... 2 11, 12 1870 153-156 19-21 ... 49, 50 17, 18 141-144 '7 3 13, 14 1871 157-160 22-24 (3)1,2* ... 19, 20 145-148 4 15, 16 1872 161-164 25-27 3,4 (7)1,2 149, 150 8 5 17, 18 (3) It 1873 165-170 28-30 5,6 ... 3, 4 2,3 6 19, 20 1874 171-174 (5)1-3 ... 7, 8 5, 6 4, 5 7 21, 22 1875 175-179 4-6 9, 10 7,8 6,7 8 23, 24 1876 180-183 7-9 11, 12 1 9, 10 8,9 9 25, 26 1877 184-189 10-12 13, 14 2 11, 12 10, 11 10 27, 28 1878 190-194 13-15 15, 16 3 13, 14 12, 13 11 29, 30 1879 195-199 16-18 1 17, 18 4 15, 16 14, 15 12 31, 32 1880 200-205 19-21 2 19, 20 5 17, 18 16, 17 13 33, 34 1881 206-210 22-24 3 21, 22 6 19, 20 18, 19 14 35, 36 1882 211-215 25-27 4 23, 24 7 (8)1,2 20 15 37, 38 1883 216-221 28-30 5 25, 26 8 3,4 21 ... 16 39, 40 1884 222-226 (6)1-3 6 27, 28 9 5,6 22 17 41, 42 1885 227-231 4-6 7 29, 30 10 7, 8 23 ... 18 43, 44 1886 232-236 7-9 8 31, 32 11 9, 10 24 19 45, 46 1887 237-242 10-12 9 33, 34 12 11, 12 25 20 47, 48 1888 243-249 13-15 10 35, 36 13, 14 13, 14 26 21 49, 50 1889 250-255 16-18 11 37, 38 15, 16 15, 16 27 22 3)1,2 1890 256-260 19-21 12 39, 40 17, 18 17, 18 228 ... 23 3,4 1891 261-266 22-24 13 41, 42 19, 20 19, 20 229 24 5, 6 1892 267-271 25-27 14 43, 44 21, 22 (9)1,2 230 25 7,8 1893 272-277 28-30 15 45, 46 23, 24 3,4 231 26 9, 10 1894 278-283 (7)1-3 16 47, 48 25, 26 5,6 232 27 11, 12 1895 284-289 4-6 17 49, 50 27, 28 7, 8 233 28 ! 13, 14 * Also cited as whole series, 101, 102. 103, etc. t Also cited as 201, 202, etc. APPENDIX 513 OTHER SCIENTIFIC PERIODICALS Part II. c. c. Chem. Ind. Chem. Soc. Ch. Gaz. Ch. Ztg. Cim. C. N. C. R. Dingl. Gazz. ch. it. J. Am. Chem. Soc. J. Anal. Ch. 5 26, 27 107-110 "i 6 ... 28, 29 111-114 ... 2 7 30, 31 115-118 3 8 32, 33 119-122 4 9 ... i; - 2 34, 35 123-126 ... 5 10 3,4 ... 36, 37 127-130 6 11 5, 6 38, 39 131-134 ... 7 12 Cont. ... 40, 41 135-138 ... ... 1 8 13 asN. 42, 43 139-142 2 9 14 Cim. 44, 45 143-146 3 10 15 46, 47 147-150 4 11 16 48, 49 151-154 ... ... 5 12 17 1,2 50, 51 155-158 6 13 Cont. 3,4 52, 53 159-162 7 14, 15 as 5, 6 54, 55 163-166 ... 8 16* C. N. 7,8 56, 57 167-170 ... 9 ... 17 9, 10 58, 59 171-174 10 18 ... ... 11, 12 60, 61 175-178 ... 11 19 13, 14 62, 63 179-182 12 20 15, 16 64, 65 183-186 13 21 17, 18 66, 67 187-190 14 22 19, 20 68, 69 191-194 15 23 . *. 21, 22 70, 71 195-198 16 24 23, 24 72, 73 199-202 i 17 25 25, 26 74, 75 203-206 2 ... 18 26 27, 28 76, 77 207-210 3 19 27 29, 30 78, 79 211-214 4 20 28 ... 31, 32 80, 81 215-218 5 21 29, 30 33, 34 82, 83 219-222 6 22 31, 32 i 35, 36 84, 85 223-226 7 23 1 33, 34 2 37, 38 86, 87 227-230 8 24 2 35, 36 3 39, 40 88, 89 231-234 9 1 25 3 37, 38 4 41, 42 90, 91 235-238 10 2 26 4 39, 40 5 43, 44 92, 93 239-242 11 3 27 5 41, 42 6 45, 46 94, 95 243-246 12 4 28 6 43, 44 7 47, 48 96, 97 247-250 13 5 29 7 45, 46 8 49, 50 98, 99 251-254 14 6 30 8 47, 48 9 ... 51, 52 100, 101 255-258 15 7 31 9 49, 50 10 53, 54 102, 103 259-262 16 8 32 10 51, 52 11 55, 56 104, 105 263-266 17 9 1 33 11 53, 54 12 57, 58 106, 107 267-270 18 10 2 34 12 55, 56 13 59, 60 108, 109 271-274 19 11 3 35 13 57, 58 14 61, 62 110, 111 275-278 20 12 4 36 14 59, 60 15 63, 64 112, 113 279-282 21 13 5 37 15 61, 62 16 65, 66 114, 115 283-286 22 14 6 38 16 63, 64 17 67, 68 116, 117 287-290 23 15 7 39 17 65, 66 18 69, 70 118, 119 291-294 24 16 40 18 67, 68 19 71,72 120, 121 295-298 25 17 Also cited as (2) 1, 2, 3, etc. 2 L APPENDIX SYNCHRONISTIC TABLE OF CHEMICAL AND Year. .Chim. med. Jena. Zeit. J. Pharm. J.pr. J. Russ. Soc. J. Soc. Chem. Ind. M. Ch. Monit. Scient. N. Cim. N. Rep. Pharm. Pharm. J. Trans. Phil. Mag. 1848 4 13, 14 43-45 32, 33 1849 5 15, 16 46-48 34, 35 1850 Q 17, 18 49-51 36, 37 1851 7 19, 20 52-54 ".! ... ... ... (4) 1, 2 1852 3 21, 22 55-57 1 3, 4 1853 9 23, 24 58-60 2 5, 6 1854 10 ... 25, 26 61-63 3 7, 8 1855 A\ 1 27, 28 64-66 1, 2 4 1 j W 9, 10 1856 */ * 2 29, 30 67-69 ... 3,4 5 11, 12 1857 3 31, 32 70-72 ... ... 1)1 5, 6 6 13, 14 1858 4 33, 34 73-75 ... 2 7,8 7 15, 16 1859 5 35, 36 76-78 ... 3 9, 10 8 17, 18 1860 6 ... 37, 38 79-81 4 11, 12 9 19, 20 1861 7 39, 40 82-84 13, 14 10 21, 22 1862 8 41, 42 85-87 11 23, 24 1863 9 43, 44 88-90 5 12 25, 26 1864 10 1 45, 46 91-93 (2)6 13 27, 28 1865 5} 1 (4)1 2 94-96 7 14 29, 30 1866 v j * 2 "2 V / 9 3,4 97-99 8 15 31, 32 1867 3 3 5, 6 100-102 9 16 33, 34 1868 4 4 7,8 103-105 10 17 35, 36 1869 5 ... 9, 10 106-108 i 11 18 37, 38 1870 6 5 11, 12 (2)1, 2 2 12 19 39, 40 1871 7 6 13, 14 3, 4 3 (3)13 20 (3)1 41, 42 1872 8 15, 16 5, 6 4 14 ... 21 2 43, 44 1873 9 7 17, 18 7, 8 5 15 22 3 45, 46 1874 10 8 19, 20 9, 10 6 16 23 4 47, 48 1875 11 9 21, 22 11, 12 7 17 24 5 49, 50 1876 12 10 23, 24 13, 14 8 18 6 (5)1, 2 1877 11 25, 26 15, 16 9 19 7 3,4 1878 12 27, 28 17, 18 10 20 8 5,6 1879 13 29, 30 19, 20 11 21 9 7, 8 1880 14 (5)1, 2 21, 22 12 1 22 ... ... 10 9, 10 1881 15 3,4 23, 24 13 2 23 11 11, 12 1882 5, 6 25, 26 14 "i 3 24 12 13, 14 1883 16 7,8 27, 28 15 2 4 25 13 15, 16 1884 ... 17 9, 10 29, 30 16 3 5 26 14 17, 18 1885 18 11, 12 31, 32 17 4 6 27 15 19, 20 1886 19 13, 14 33, 34 18 5 7 28 16 21, 22 1887 ... 20 15, 16 35, 36 19 6 8 29 ... 17 23, 24 1888 21 17, 18 37, 38 20 7 9 30 18 25, 26 1889 ... 22 19, 20 39, 40 21 8 10 31 19 27, 28 1890 23 21, 22 41, 42 22 9 11 32 20 29, 30 1891 24 23, 24 43, 44 23 10 12 33 21 31, 32 1892 25 25, 26 45, 46 24 11 13 34 22 33, 34 1893 ... 26 27, 28 47, 48 25 12 14 35 23 35, 36 1894 27 29, 30 49, 50 26 13 15 36 24 37, 38 1895 ... 28 (6)1,2 51, 52 27 14 16 37 25 39, 40 APPENDIX OTHER SCIENTIFIC PERIODICALS Part II. Continued. Pogg. Proc. Am. Acad. Proc. Roy. Soc. Rep. Anal. Ch. R. t. c. Techn. J. B. W. A. B. W. Ann. Z. anal. Z. angew. Ch. Z. anorg. Zeit. Ch. z. ( 73-75 3 1 76-78 4 2, 3 79-81 4, 5 82-84 5 *> t/ 6,7 85-87 8 9 88-90 *jj t/ 10, 11 91-93 12-14 94-96 5 (i)"i 15-18 ... 97-99 7 2 19-21 100-102 6 8 3 22-27 103-105 4 28-33 (1)1 106-108 9 5 34-38 \ / 2 109-111 'V 10 6 39-42 3 112-114 8 7 43 4 115-117 ii ... 8 44, 45 1 5 118-120 12 ... 9 46-48 ... 2 ... ' 121-123 13 10 49 3 ... 'i 124-126 14 ... 11 50-52 4 ... ... (2)1 127-129 12 53, 54 5 ... 2 130-132 9 15 13 55, 56 6 3 133-135 10 16 ... 14 57, 58 7 ... 4 136-138 17 15 59, 60 8 5 139-141 18 ... (2)1 61, 62 9 6 142-144 19 2 63, 64 10 7 145-147 20 ... 3 65, 66 11 ... ... 148-150 21 ... 4 67, 68 ... 12 ... ... 151-153 ... 22 ... 5 69, 70 13 ... 154-156 23 6 71, 72 14 157-159 i'i 24 7 73,74 15 ... 160 12 25, 26 8 75, 76 i,'*2 16 Cont. as 13 27 ... 9 77, 78 3-5 17 W. Ann. 14 28, 29 10 79, 80 6-8 18 ... 15 30 11 81, 82 9-11 19 ... 16 31, 32 T 12 83, 84 12-14 20 17 33 2 "i 13 85, 86 15-17 21 18 34, 35 3 2 14 87, 88 18-20 22 ... 19 36, 37 4 3 15 89, 90 21-23 23 ... 20 38, 39 5 4 16 91, 92 24-26 24 21 40, 41 6 5 17 93, 94 27-29 25 22 42, 43 7 6 18 95, 96 30-32 26 1 23 44, 45 Cont. 7 19 97, 98 33-35 27 2 ... 24 46, 47 as Z. 8 20 99, 100 36-38 28 3 ! 25 48, 49 angew. 9 21 101, 102 39-41 29 4 ( 26 50 Ch. 10 22 103, 104 42-44 30 5 ' 27 51, 52 11 23 105, 106 45-47 31 6 1,"2 I 28 53, 54 12 24 107, 108 48-50 32 7 3,4 1] 29 55, 56 13 25 109, 110 61-53 33 8 5.-7 IS 30 57, 58 14 26 111 54-56 34 9 8-10 If Printed by R. & R. CLARK, LIMITED, Edinburgh. RETURN TO the circulation desk of any University of California Library or to the NORTHERN REGIONAL LIBRARY FACILITY Bldg. 400, Richmond Field Station University of California Richmond, CA 94804-4698 ALL BOOKS MAY BE RECALLED AFTER 7 DAYS 2-month loans may be renewed by calling (510)642-6753 1-year loans may be recharged by bringing books to NRLF Renewals and recharges may be made 4 days prior to due date. DUE AS STAMPED BELOW DEC u 6 2000 12,000(11/95)