/I 
 
 IN MEMORIAM 
 FLORIAN CAJORl 
 
 
c^^ 
 
 Oc.i<- ■ — '^ 
 
 ^ 
 
}(?} 
 
 '>^ 
 
Digitized by the Internet Archive 
 
 in 2008 with funding from 
 
 IVIicrosoft Corporation 
 
 http://www.archive.org/details/exercisesinalgebOOrobbrich 
 
EXERCISES IN ALGEBHA 
 
 BY 
 
 EDWARD R. ROBBINS 
 
 M 
 
 AND 
 
 FREDERICK H. SOMERVILLE 
 
 WILLIAM PENN CHARTER SCHOOL, PHILADELPHIA 
 
 NEW YORK •:• CINCINNATI •:• CHICAGO 
 
 AMERICAN BOOK COMPANY 
 
Copyright, 1904, by 
 EDWARD R. BOBBINS and FREDERICK H. SOMERVILLE. 
 
 Enteeed at Stationers' Hall, London. 
 
 K. A 8. EXERCISES IN ALG. 
 W. P. I 
 
Tit. 
 
 PEEFACE 
 
 The present-day teacher of Algebra has little time for the 
 selection, from proper sources, much less for the making, of 
 suitable examples often necessary to supplement those con- 
 tained in the standard text-books. This little book is designed 
 to meet the requirements of those teachers who feel such extra 
 assignments in Algebra essential to thorough familiarity with 
 its processes. The aim has been to provide, as compactly as 
 possible, a series of exercises that conform in arrangement with 
 the order of the leading text-books, and that both in degree 
 of difficulty and in scope shall include the work prescribed by 
 high schools and academies, as well as university and college 
 entrance requirements. 
 
 The plan has been to avoid all examples of more than aver- 
 age difficulty, and to lay particular stress upon those subjects 
 that stand so clearly as the foundations of later work. With 
 this in view, much emphasis has been given to the subjects of 
 Factoring, Fractions, Exponents, Equations, and Logarithms. 
 There has been constant effort to present abundant drill in 
 topics in the mastering of which students seem to have the 
 greatest difficulties. 
 
 Not only must the pupil who is to master the science solve 
 a multitude of exercises differing in degree rather than in 
 
 S 
 
4 PREFACE 
 
 kind, but he must also be taught to select appropriate methods 
 for each of a miscellaneous collection, differing in kind rather 
 than in degree. To this end the book is generously provided 
 with reviews, and the pupil is obliged to discriminate among 
 different kinds of examples — a phase of mathematical train- 
 ing which will be invaluable to him in subsequent study. 
 Furthermore, the reviews are so arranged that they could, if 
 desired, be used independently of the other exercises in final 
 review, or in final preparation for college examinations. 
 
 The authors will welcome and will appreciate any sugges- 
 tions or corrections from other teachers of Algebra. 
 
 EDWARD R. ROBBINS. 
 FREDERICK H. SOMERVILLE. 
 
 Philadelphia, Pa. 
 
CONTENTS 
 
 PAOK 
 
 Substitution 7 
 
 Addition 9 
 
 Subti'action 10 
 
 Use of the Parenthesis 13 
 
 Review 16 
 
 Multiplication 17 
 
 Division 18 
 
 Multiplication by Inspection 20 
 
 Division by Inspection 23 
 
 Use of the Parenthesis with Multiplication 25 
 
 Simple Equations 26 
 
 Problems in Simple Equations 27 
 
 Review 29 
 
 Factoring 31 
 
 Review . 38 
 
 Highest Common Factor and Lowest Common Multiple . . 40 
 Fractions : 
 
 Transformations 42 
 
 Addition and Subtraction .45 
 
 Multiplication and Division 48 
 
 Complex Fractions 50 
 
 Fractional Equations : 
 
 Numerical Equations 55 
 
 Literal Equations 59 
 
 Simultaneous Equations : 
 
 Numerical Equations 61 
 
 Literal Equations 64 
 
 Three or More Unknown Quantities 66 
 
 Problems in Simultaneous Equations 68 
 
 6 
 
6 CONTENTS 
 
 Involution and Evolution : 
 
 Monomials 71 
 
 Involution — Binomials 72 
 
 Evolution — Square Root .72 
 
 Evolution — Cube Root 74 
 
 Evolution — Numerical . . . . . . . .74 
 
 Review 7G 
 
 Exponents : 
 
 Transformations 81 
 
 Miscellaneous Applications . 88 
 
 Radicals : 
 
 Transformations . . .93 
 
 Miscellaneous Applications 99- 
 
 Imaginaries 103 
 
 General Review . . 107 
 
 Quadratic Equations : 
 
 Numerical Quadratics 116 
 
 Literal Quadratics 119 
 
 Equations in Quadratic Form 121 
 
 Simultaneous Quadratics 123 
 
 Properties of Quadratics 126 
 
 Ratio and Proportion . . . 129 
 
 Variation 132 
 
 Arithmetical Progression 134 
 
 Geometrical Progression 138 
 
 Permutations and Combinations 142 
 
 Binomial Theorem 145 
 
 Logarithms 148 
 
 General Review 156 
 
SUBSTITUTION 
 
 Exercise 1 
 
 Find the numerical value of the following : 
 When a = 1, 6 = 2, c = 3, d = 4. 
 
 1. a + b. 10. 7b-(c + d), 
 
 2. a + & + c. 11. a + ab. 
 
 3. a-f26 + 3c. 12. 3a6-c. 
 
 4. a + 36 — d 13. 12a — 3c + cd 
 
 5. 2 a 4- 4 6 — 2d 14. 3a + &(a + c). 
 
 6. 6a — 6 — d 15. ab-}-a{2b — a). 
 
 7. 10c-56 + 2d 16. 4a6c-3(c + d). 
 
 8. 3a + c + d 17. a(a + b + c). 
 
 9. 3a4-(c4-d)- 18. a6(a + 6 + c). 
 
 19. a6(d-a)4-&c(c?-6). 
 
 20. a + ab(b + c)-c(3d-3c), 
 
 21. c2-|-a6. 25. ab^d - a(b^ -^ c). 
 
 22. 62 4.c2 + cZ2. 26. 25d-a62(a + 6 + c). 
 
 23. 2a'b^ + Sb^-G' + d. 27. a + (a + 6)1 
 
 24. &V + 6c2 + d 28. 4 6cd + (2 6 + c)2. 
 
 29. 3(a + 2)2-2(62_l) + 3a26c2. 
 
 30. 2(a-{-by-S(d-by-bc{c-hd). 
 
When a = 5, b =4:, 
 
 31. V6 + Ve. 
 
 32. Vie— V2d. 
 
 SUBSTITUTION 
 c = S, d = 2, e = 9. 
 
 33. 
 34. 
 
 V5 ab + V4 6. 
 V3 ce — V3 6c. 
 
 35. 
 
 •y/abc 4- 6. 
 
 37. 
 
 Va^ 4- 6' + 8. 
 
 38. 
 
 V2c2 + 3d2-a. 
 
 39. 
 
 a + b -Vbcd -f 1. 
 
 40. 
 
 (a + 6)V6cd + l. 
 
 36. -Vabc — Sc — d. 
 
 41. (ad — e) V 3 ac — e. 
 
 42. (a + Ve)-(e- V6). 
 
 When a = 4, 6 = 
 
 = 5, 
 
 m 
 
 = 6, 
 
 n = 10. 
 
 43. ^« 
 
 m 
 
 
 
 
 19 3a + 26 
 n — 1 
 
 44 ^ + ^ 
 
 2a 
 
 
 
 
 3 a + (w — -wi) 
 * 2(n-a) 
 
 45. ^(^^-^). 
 a 
 
 
 
 
 51. ^4-^ + ^. 
 m n 
 
 46. ^(^ + ^) . 
 a6 
 
 b n 2a 
 
 47. 
 
 m-\-n — g 
 m 
 
 / V2a6 + am\ , 
 
 oo. I ; ]-T ^n — m. 
 
 \ m + n J 
 
 48. ^(^-^) . 
 
 Whena; = i 2/ = |, 
 
 55. iC+2/ + ^- 
 
 56. 2x — y — z. 
 
 57. a;(x + ?/). 
 
 58. 2/ (2 a; — 2;). 
 
 54. 
 
 ^m 
 
 ^n—m Via 
 
 + V3 
 
 2; = 
 
 59. {x-[-y){y-z). 
 
 60. aJ2/(a;+?/-2;). 
 
 61. {x + lf-{y^-iyH^ + iy. 
 
 62. aJ + 2/ 
 
 ("J- 
 
 (0^ + ^)^. 
 
ADDITION y 
 
 When a = 4, 6=5, m = 2, w = 3. 
 
 63. or. 68. (a + 6)" — (a + 6)"*. 
 
 64. a'^ + 6". 69. (26-a)~-(36-a)'". 
 
 65. a^' — b'^. 70. (a + 6 — 7)"'. 
 
 66. 2a'' + 3a"'b\ 71. (a'^ + ft"')". 
 
 67. (a + 6)"'. 72. a~ + a'"(6 - a)". 
 
 ADDITION 
 Ii2:ercise 2 
 
 1. Find the sum ofa + 36 + c, 2a4-76 + 2c, and 3 a + 2 6 
 
 + c. 
 
 2. Find the sum of 4a + 36 — c, 2a4-264-4c, and a — 
 3 6 -2 c. 
 
 3. Findthesumof 10a-36-2c-d, -2a + 4:b-\-c + Sd, 
 and c — 3 d + a. 
 
 4. Add 3a + 26-3c, 12a-46-7c, and 4a-86 + 9c. 
 
 5. Add 3a^ + 2a^-2« + ll, 4.a^-2x^-\-3x-S, 4.a^-2x' 
 -\-x-2, -12ar^ + a;2-x-l, and 2 o^ -\- oF - x -\- IS. 
 
 6. Collect 5a-3c + 4/-m + 26-d + 4c-2a-3/+c 
 
 + 2 m + d. 
 
 7. Collect 2 a6 4- 3 6c + 4 cd — 2 6c + 3 a6 — 3 cd — 4 a6 - 
 2 6c-2cd 
 
 8. Collect 2a6cd + 3 6fljH-m — 3a6cc2 4-2 6a; — 3m + 6a6cd 
 — 3 6» + 3 m. 
 
 9. Collect a^-hSa^ + Sa, a^ + a + l, and 2a + 2. 
 
 10. Collect a^ + a'b-\-ab% 3a^ + a'b^-2b% and 4a62-3 6^ 
 
10 SUBTRACTION 
 
 11. Arrange in descending powers of x and collect a:^ — 2 + 
 ^x'-x, -a;4-3a^-2ar*, _4ar' + 5a^-a;4- 10, -a;-f4a^- 
 2 + ic8, and a^ + a;^ _,_ ^ _,_ ^^ 
 
 12. Arrange in ascending powers of a and add a^ — 4 a^4- 
 2a-8, a^ + a-3a2 + 16, a34-a'-2 + 3a, and -^.a' + Qa? 
 + 10 a - 3. 
 
 13. Find the sum ofa^-l+3a;-a^ + 2a;-3a:3 + 44-«^- 
 8a; + 2a.'^ — 4a^ + 10 — ic^, and arrange the answer in descend- 
 ing powers of x. 
 
 14. Add 3(a4-6)4-4(c + d)-5(w4-n), 2(a + &)-2(c + c?) 
 -\-Q{m-\- n), and — 4 (a + 6) — (c + d) — (m + n). 
 
 15. 
 
 16. 
 
 17. 
 
 18. 
 
 O/C 
 
 ac 
 
 mx 
 
 my 
 
 be 
 
 c 
 
 5x 
 
 -Sy 
 
 {a-\-b)c (a + l)c ( )» ( )y 
 
 19. Add ab + cc? and mb + ncZ. 
 
 20. Add ax + by and ca; + dy. 
 
 21. Add 2 a6 + 3 c 4- c? and 3 6 + oc + nd 
 
 22. Add 3a6+2ac+w, 36— 3ac+mw, and 2 nib +4: be— pn. 
 
 23. Add (a + &)c + (6 4- (^)c. 
 
 24. Add (m + 7i) a; + (m — n) a; — mx. 
 
 25. Add (2 + a)a^ + (3a-4)a^+(a-l)ar^-4aar^. 
 
 Subtract : 
 
 1. 2. 3. 
 
 10 a 10 a - 4 a 
 
 3 a —4 a 3 a 
 
 SUBTRACTION 
 
 
 
 
 Exercise 3 
 
 
 
 
 4. 5. 
 -3 a 15a' 
 -a -2a' 
 
 6. 
 
 4a6 
 3a6 
 
 7. 
 
 3a6 
 7a6 
 
 8. 
 
 2 am 
 —6 am 
 

 SUBTRACTIOn 
 
 11 
 
 9. 
 
 10. 11. 
 
 12. 
 
 13. 
 
 3aH-26 
 
 14a + 3c 16a-2 
 
 c 12 aft + 16 
 
 — 5a — 4 c 
 
 a+ h 
 
 7a— c 3a + 5 
 
 c 3 a6 - 10 
 
 -2a-5c 
 
 14. 
 
 15. 
 
 16. 
 
 17. 
 
 a^ - 10 ah 
 
 2 a^ + 12 a?7i 
 
 5a6 
 
 16 am 4- mn 
 
 a^H- 3a6 
 
 3a2+ 3 am 
 
 4a6 + cd 
 
 Sam 
 
 18. 
 
 19. 
 
 
 20. 
 
 4 a^c 4- 3 a6 + 10 15 a? 
 
 10 a^ + 3 
 
 ! a^ 4- 6 a + 7 
 
 -2 ah 
 
 10a2 + 4a 
 
 + 4 
 
 a^ -4 
 
 21. Take a^h + c from 4a + 364-2c. 
 
 22. Take 5 a — 6 4- c from 6 a + 3 6 — 4 c. 
 
 23. Take 2a4-36— 4c from 4a4-36H-8c. , 
 
 24. Take 3 a + 10 6 - 14 c from 4 a 4- 10 6 - 14 c. 
 
 25. Take a- + 3 a6 + 12 from 5 a^ - 8 a6 + 16. 
 
 26. Take 4a2 4- 3a6 4-2a&2_ 10 from 8a2-16a6-3a62_l. 
 
 27. Take 3a2 4-3a + l from 4a3 + 5a2-6a-3. 
 
 28. From 3 a^- 2 a^ + e a2 4-2 a-3 take 2a^-a3-4a2- 
 a + 1. 
 
 29. From a* - 4 a^ft + 6 a^h' - 4 aW+h"^ take a36+3 a%^+ah\ 
 
 30. From -3a2 4-8a + 36 take a2-2a-18. 
 
 31. From -16a3-8a2 4-4a-5 take -2 a^ + a'^ -a-\-l. 
 
 32. Given a minuend a^4-4a- — 3a4-2 and a subtrahend 
 a^ 4- 3 a^ — 4 a 4- 1, find the difference. 
 
 33. Given a subtrahend — 3 ac, a minuend 8 ac, find differ- 
 ence. 
 
12 BUBTRACTION 
 
 34. Given a minuend 3 ahc, a difference 4 ahc, find subtra- 
 hend. 
 
 35. Given a minuend axy, a difference —axy, find subtra- 
 hend. 
 
 36. What must be added to 16 ac to make —Sac? 
 
 37. What must be added to 75 m to make 31 m ? 
 
 38. What must be added to — 3 a^ to make ? 
 
 39. 36 a^ is added to what expression to make 82 a^? 
 
 40. What expression added to 4 a -f- 2 c will give 5 a + 8 c^ ? 
 
 41 . Given a subtrahend 4a'*4-3a^ — 2a^ + a — 7 and a differ- 
 ence — 3 a^ + 2 a^ — a, find the minuend. 
 
 42. Given a minuend 8m^ — 3 mn + 2 n^-f 18 and a differ- 
 ence 2 m^ + 2 mn — n^-\- 16, find the subtrahend. 
 
 43. Take the sum of 4 m^ + 2 mn — r? and — 3 m^ — mn 
 -\-2n^ from the sum of 3 m^ -f 12 mn + 10 n^ and — 2 m^ — 
 11 mn — 11 n^ 
 
 44. Subtract x^-Soc^ -\-0(^ -2 — 3 x from a; + a^-3 + 2aj* 
 — X' — a?, and arrange the result in ascending powers of x. 
 
 45. 
 
 46. 
 
 47. 48. 
 
 49. 
 
 
 50. 
 
 ac 
 
 am 
 
 X 2 ax 
 
 5ahx 
 
 
 am 
 
 he 
 
 m 
 
 ex —3 ex 
 
 3cdx 
 
 
 -2em 
 
 (a-b)c 
 
 (a — 1) m 
 
 (l-e)x (2a + 3c)a; 
 
 
 51. 
 
 52. 
 
 53. 54 
 
 
 
 55. 
 
 3mn 
 
 3aa; + 2 
 
 ax-\-by x-\- 
 
 y 
 
 3 
 
 ax-\- y 
 
 -2pn 
 
 ca;-l 
 
 ex -\-dy ex — 
 
 dy 
 
 
 x-cy 
 
 56. Take 2 6c — 3 ac? from 3 ac + 12 6c?. 
 
 57. From ax -{- 3 ey -\- ^ dz take hx — 2dy — az. 
 
 58. From 3 ax -\- 2 ay -\- 10 take 2x — y-\-l. 
 
USE OF THE PARENTHESIS 13 
 
 USE OF THE PARENTHESIS 
 Exercise 4 
 
 Simplify: 1. a + (3 a + 2). 
 
 2. 4a + (2a-10). 
 
 3. 5a + (3a-2) + l. 
 
 4. 2a; + (4aj-2/) + (3a;-2)+y. 
 
 5. (5m + 7)4-(3m-2). 
 
 6. 2c + (3cH-4)-(c + 2). 
 
 7. 5m-(m4-l)-(2m-l). 
 
 8. 62/-(42/ + 32;)-(22/-42;). 
 
 9. 3a + [a + (4aH-3)]. 
 
 10. 8a + [a-(2a-l)]. 
 
 11. 5 m — J3mH-(2m-l)J. 
 
 12. 2a + {-3 + (2a-l)i. 
 
 13. lla-[4a-f (lOa-6);. 
 
 14. -3a + S2a-(-a + l)S. 
 
 15. -2a-[-a-S-aH-lS]. 
 
 16. 13a + l-4a-(10a-[a-l])J. 
 
 17. a+[a — ;a— (a — 1)J]. 
 
 18. a-[-a-5-a-(-a-l);]. 
 
 19. 5 a - [2 a - (a + 1) - {3 a - (a + 1) - 1 S - 1]. 
 
 20. 6 a - [(3 a + 1) 4- 53 a - 6 - (a + 2) - 3 aj - a]. 
 
 21. (5a-l)-[5(3a-l)-10a + 5J-a]-J-(a-2)j. 
 
 22. (3 -f a - 1) - [- a + (a - 2 a - 3) - 3 a] - {a - 1 + aj 
 
14 USE OF THE PARENTHESIS 
 
 23. (4a2-[3a2-(a4-2)-4]-|a2_^3a-(a-l)|)-a. 
 
 24. l-(-l) + (-l)-|l-[l-(l_lTa) + a]-aj. 
 
 25. l_J-[_(-l)-l]-li-(-J-[-(-l)]J). 
 
 26. Sx-\a-{2a-l3a-{5a-[7a-{Sa-x)J)J)\. 
 
 27. -m-[Sn-{-\2p-Sm-(m-n)l-{-7i-\Sm-{m-{-n)\^. 
 
 28. (4:a-a + 2)-\a-a-^{a-2)-2\-a-a-{-l. 
 
 Simplify and find numerical values of the following when 
 
 a= 5, 6 = 3, c = — 1, d = — 2, and x = 0: 
 
 29. a + 6 + c 4- d + a;. 
 
 30. 2a-\-c-3b-d. 
 
 31. a + 2c-(d + 2)+2(c + l). 
 
 32. a + c — d — 36 + a;. 
 
 33. 4 6 — d + a6 — aa;. 
 
 34. 2a-(c + d)-(a + d). 
 
 35. 4a6a;+(a — d) — (6 — c). 
 
 36. c +3a; — 2(a + 2a;)+4a. 
 
 37. a + 2 6 — [3a + c — S2a — (a; — c)|]. 
 
 38. a + 3c — \b + 2x—(a — c)l-]-2d. 
 
 39. 3 a — [5 6 — (a6 + d) — a-d] — (a6 + a;). 
 
 40. a2-5a;-[3a6 + 462-(a6a; + d)]. 
 
 41. aa;-[-64-(a-d)2 + a]-26. 
 
 42. (a + c)2+(a-c)2-[a6 + (2 6 + a;)2]. 
 
 43. (a-\-c)x — (abx + a)^ — (d + c). 
 
 44. (a + a;) 6 - [ V2 a + c - (d + c)]. 
 
 45. ic-[c+(a + d)2-26]2+(a-V^6^^)l 
 
 46. a62-S3(6 + c)2-[-c+2a(4d+6^]-[6ca;+V3a-c]j. 
 
I 
 
 USE OF THE PARENTHESIS 16 
 
 Exercise 5 
 
 1. Insert the last two terms of a + b — c in a parenthesis 
 preceded by a plus sign. 
 
 2. Insert the last two terms of a — 6 — c in a parenthesis 
 preceded by a minus sign. 
 
 Insert the last three terms of each of the following expres- 
 sions in a parenthesis preceded by a minus sign : 
 
 S. a — b — c — d. e. a-\-b + c-{-d. 
 
 5. a-^b-c-d. 8. 4a*- a^-f- a^- 3a + l. 
 
 9. 6a^-a^-10a*-{-a^-a\ 
 
 Collect the coefficients of a, of b, and of c, in each of the 
 following : 
 
 10. Sa — 2b-\-c — ma — nb — pc. 
 
 11. 5a — Smb-\-2nc — 2a — 6nb—3c — ma, 
 
 12. 10a — 4^b — 2c — ma — nb-{-pc. 
 
 13. —Sa— 4:C — pb — na — mc — b. 
 
 14. —c — a + 4:b — Sc-\-da — 10b, 
 
 15. —4:a — 3mb — 10c—b — ma — nb-\-pc^da. 
 Collect the coefficients of like terms in each of the following : 
 
 16. 4ar^-2ic + 3a^-3a; + 4a^-a^. 
 
 17. -Sx^-2x-\-x*-3x^ + 2x-x\ 
 
 18. aa^ — ba^—cx — cx^ — dx + a^. 
 
 19. a^ + a^ — aa; — ca^ + 3 a^ — 6a;. 
 
 20. — aoi^ — cc^ — x — 4: x^ — ax^ — px — ca:^. 
 
 21. —px^ — cx-\-3xr — mx — nx^ — mx^ — abx + Sdx^ — cu?. 
 
REVIEW 
 Exercise 6 
 
 Find the numerical value of : 
 
 1. (x-\-2y-{x-\-l)-4: when x = S. 
 
 2. (x-2)(x-j-5)-2{x + iy when x = 4:. 
 
 3. (a + 6)2 - 2 (a - 1) (6 - 1) - ab- when a = 5 and 6 = 3. 
 
 4. Vic^ + m^ — (n — myY when a; = 4, y = 0, m = 3, n = 2. 
 
 5. 2 a — [a — (3 a — 2 6)] when a = 3 and 6 = 2. 
 
 6. 3a— [4 6 + 2m — 3c + (a — 6) — 2a] when a = 4, 6 = 3, 
 c = — 2, and m = 1. 
 
 7. Subtract the sum of a^ + a^ — a and 2o?-\-2a — l from 
 the sum of 3 a^ — a^ — a + 1 and 2 a^ + 4 a — 3. 
 
 8. Take m^— 3m^ from the sum. of 2m*— m^ + 2 and 
 m^ — 3 m + 1. 
 
 9. From the sum of a^-{-a^ — a and a^ + 4 take the sum 
 of 4a3-2a2 + 17 and a - 3. 
 
 10. If ^. = 0^ + 0^4-1, -B = 2a;2-.T + 2, and (7=a^-3a; + 6, 
 find the value of ^ + J5 - C. 
 
 11. With values for A, B, and C equal to those in Ex- 
 ample 10, find the value oi A — B-\- C. 
 
 12. To what expression must you add 5 a^ to make ? 
 
 13. What expression added to a;^ + a; — 1 will make ? 
 
 14. — cc^ — a; + 3 is subtracted from 2 a;- — 3 a; + 4, and the 
 remainder is added to — 3a?2 + 2a; — 14. What expression 
 results ? 
 
 16 
 
MULTIPLICATION 17 
 
 MULTIPLICATION 
 
 Exercise 7 
 
 Multiply : 
 
 1. a + 1 by a-f2. 6. a2 + a + 1 by a + L 
 
 2. a — 2 by a — 5. 7. a- + a + 1 by a — 1. 
 
 3. a + 4bya-3. 8. a'^+Sa^+Sa+l by a+L 
 
 4. a- -hi by a2_^2. 9. x'-2x^-{-l by a^ + L 
 
 5. a--{-3 by 2a--5. 10. 4 a;' + 4 a.- + 1 by 2a; + l. 
 
 11 . a- — 3 a — 2 by a- — a + 1. 
 
 12. a''-Sa'--\-3a-l hy cr--2a-\-l, 
 
 13. 12?/2-G?/-f-2 by /-32/-f-L 
 
 14. a4_4^.3_|_(5^^2_4^^^ j^ ^y a^-Sa^ + Sa-L 
 
 15. 5a^-2a2 + 3a-l by 3a2 + a-l. 
 
 16.* m^-2m''-h3m2-2m + l by m'^+2m^+Sm^-\-2m-^l. 
 
 17. m" - nr -\-Sm — 5 by m^ + m^ -f 3 m + 5. 
 
 18. a- + Z>--2a6-46-h4«-f-4 by a-6+2. 
 
 19. x^ + x'^ + l-\-x by 1 + a;2 4- a;. 
 
 20. l-Yx' + x-'-^Bx by _ 4a^+ 1 -f 2a;2. 
 
 21. l-4a'-4.a + Ga'-{-a' by Sa-l+a^-Sa^. 
 
 22. .t^-2.t2 + 3 by l-aj2^if. 
 
 23. or -\-2ab + h" -{- 7n" by a^ + 2a& + 6^ _ -^2^ 
 
 24. a^-a^-^a-1 by 1 -f- a + a^ 4. ^3. 
 
 25. 5x'-2x' + x'-3 by - 3x' -^2x' -2 +x\ 
 
 26. a^ H- 2 a5 -f ?>^ by ct" - 3 a-& + 3 ab'- - h\ 
 
 27. a^ - 4 o&-^ + ^' + T) a7>2 _ 4 a-^& by 52 ^ a- - 2 a6. 
 
 R. & S. EX. IN ALG. — 2 
 
18 DIVISION 
 
 28. 3a^b-2 a^V + 4 a6« by 2 a^h ^V- ah\ 
 
 29. 5 a^m + 4 aW — 3 «%^ — am** by 2 a^m — 3 am^. 
 
 30. (a + 1) (a + 2) (a + 3). 
 ;a + 2)(a-2)(aH-l). 
 a + 1) (a - l)(a + 3)(a - 3). 
 > + 2) (» + 2) (« - 2) (a; - 2). 
 V + m-\-l) {m^ — m -f 1) (m} — m 
 
 ;3 a,.2 _ 5 ^ _l_ 3) (^ _ 4) (^ _ ^ ^ 2), 
 
 31. 
 32. 
 33. 
 34. 
 35. 
 36. 
 
 -1). 
 
 [a -\-h)-\-2 by (a + &) + 3. 
 
 38. (a + 2) + 3 a; by (a + 2) + 4 a;. 
 
 39. (a + c) — 4 by (a + c) + 6. 
 
 40. (a + 6) + (c + d) by (a + 6) +2(c + d). 
 
 Divide : 
 
 1. a^ + 4a by a. 
 
 2. 3a3 + 6a2 by 3a2. 
 
 3. a^ — a^-\-or by a^. 
 
 4. a"* — a^ + a- by —a^ 
 
 DIVISION 
 
 Exercise 8 
 
 5. Sa + lOa^ + loa'^ by 5a. 
 
 6. 12m=^-9m2+3m by 3 m. 
 
 7. — ??i"^ 4- ?yi- + 4 m by —m. 
 
 8. 15a252_75a6 by -5 aft. 
 
 9. 27a^6^ + 36a26^-18a&^ by -9a&^ 
 
 10. a^.^ 4a + 3 by a 4- 1. 
 
 11. l + 8a + 15a2 by l+3a. 
 
 12. a34-3a2 + 3a + l by a + 1. 
 
DIVISION 19 
 
 13. Sa^-{-12a^-\-6a-{-l by 2a + l. 
 
 14. 16-32a + 24:a^-Sa^ + a' by 2-a. 
 
 15. a^-4a3 + 6a2-4a + l by a'-2aH-l. 
 
 16. m^ -\- 5 m^n -{- 5 mn^ -i- n^ by m- + 4m7i + 7t^. 
 
 17. 4m^-9m2 + 6m-l by 2m^-[-3m-l. 
 
 18. a^-10a* + 40a3-80a2 + 80a-32 by a2-4a + 4. 
 
 19. m*-3m3-36m2-71m-21 by m^-Sm-S. 
 
 20. 4a^-15a-^c + 26aV-23ac3 + 8c* by 4a2-7ac + 8c2. 
 
 21. m^-6m^ + 5m2-l by 7/1^ + 2 7/i2_^,t_l. 
 
 22. a^ + 12a2-48 + 52a-17a3 by a-2 + a2. 
 
 23. m'* 4- 4 mV + 16 71* by m^ + 2 mn -f 4 ?r. 
 
 24. 18c* + 82c2h-40-67c-45c3 by 5-4:C + Sc\ 
 
 25. 4a;2-(-13a;-6a:3 + 6 + a^-2a;* by 1 -{-x' + 3x + Sx^. 
 
 26. 25 m - lOm^ + 15 + 14 m*- 41 m^ by -5m — S-{-7m^' 
 
 27. -14c*d + 12c^ + 10c3cZ2_c2d3_g^^^4_^4^^5 ^y 
 
 2cZ3-3cd2-4c2d + 6c^ 
 
 28. m^ — n^—p^ — 2pn by m — n—p. 
 
 29. c^ + d^ + 77i^— 3 cdm by c + cZ 4- m. 
 
 30. a'^4-6^ + c3-3a6cby a^ + fts^c^-ac-ftc- a6. 
 
 31. x'-y^hj x-y. 38. 64 + 27 a*^ by 44- 3 a. 
 
 32. o^-fhj x-y. 39. 16-81 a* by 2 + 3 a. 
 
 33. a;*-2/*by a;-2/. 40. 125 0^-8 by 5 c- 2. 
 
 34. x*-y^hj x + y. 41. 216 771^-27 by 6 m-3. 
 
 35. «3-27bya;-3. 42. 81 a;*- 16/ by 3a; + 2 i/. 
 
 36. a;*-16by a; + 2. 43. 9m*-49 c« by 3 7n,2^7 c*. 
 
 37. 32-m^by2-m. 44. 27 d^ 64 6^ by 3 c^H 4 6'. 
 
20 MULTIPLICATION BY INSPECTION 
 
 MULTIPLICATION BY INSPECTION 
 Exercise 9 
 The square of the sum of two quantities. 
 Expand by inspection : 
 
 1. (a + 6)2. 5. (a + 3)2. 9. (3 a + 0)1 
 
 2. {a + cy. 6. (a + 5)2. lo. (2a + 3a.f. 
 
 3. (a + m)l 7. (a + 10)1 11. (J ax-\-^y. 
 
 4. {a + 2y. 8. {2a^hy, 12. {^a? + dhy. 
 
 The square of the difference of two quantities. 
 Expand by inspection : 
 
 13. {a -by. 17. (a-2cy. 21. {2a-^cdy. 
 
 14. (a -my, 18. (3 a -2)2. 22. (3a2_2a5)2. 
 
 15. (a -4)2. 19. {db — cy, 23. {4.ax-xyy. 
 
 16. (a -6)2. 20. {a?-ahy. 24. (9a2-10c2)2, 
 
 The product of the sum and difference of two quantities. 
 
 Multiply by inspection : 
 
 25. (a + 6)(a-6). 30. (2 a6 + 1)(2 a& - 1). 
 
 26. (rt + c)(a-c). 31. (4a+3)(4a-3). 
 
 27. (a + 2)(a-2). 32. (pa^ -2c)(p 0^ + 2 c). 
 
 28. (a-4)(a + 4). 33. (S> a" -7 ah)(Qa? + 1 ah). 
 
 29. (a2-3)(a2 + 3). 34. (5a;^/-3a^)(5a;^/+3a;;^). 
 
MULTIPLICATION BY INSPECTION 21 
 
 Perform the indicated multiplications: 
 
 35. {a-2c)K 41. (a6c-2)2. 
 
 36. (a-{-Sxy. 42. {arm -\- mn){am — mvi). 
 
 37. (a2-2)(a2 + 2). 43. (4 ac + 7)(4ac-7). 
 
 38. (a^-l)(a^ + l). 44. (6m2-3)l 
 
 39. (a3 + 3)2. 45. (8m-h5)(8m-5). 
 
 40. (a6 + 5c)2. 46. (3 (r' + 5)(3 c*- 5). 
 
 The product of the sum and difference of two quantities obtained 
 by grouping terms. 
 
 Multiply by inspection : 
 
 47. [(a + ?>)+c][(a+6)-c]. 55. (a'+a-irVjipi^-^-a-l), 
 
 48. [(a4-«)+3][(a+a;)-3]. 56. {a-x+y){a-x-y). 
 
 49. [(a-2)+c][(a-2)-c]. 57. (a-x-^y){a-irx+y). 
 
 50. [(a2+l)+a][(a2+l)-a]. 58. (c-d4-3)(c+d+3). 
 
 51. [cH-(a+6)][c— (a+6)]. 59. (a+m— n)(a— m+zi). 
 
 52. [m4-(w-p)][m-(n-i))]. 60. (c+cZ-3)(c-d+3). . 
 
 53. (a + 6 + c)(a + &-c). 61. (x2-l+a;)(ar^-l-ic). 
 
 54. (a+a;+2/)(a+a;— 2/). 62. (o^+a;— l)(a;2_^_j_j^)_ 
 
 63. [(a + &) + (c + ^)][(a + &)-(c + cr)]. 
 
 64. [(m + w) — (a;-2/)][(m + n) + (a;-y)]. 
 
 65. (a — m + n — l)(aH-m+n4-l). 
 
 66. [m«-3m2-m-3][m3-|-3m2 + m-3]. 
 
22 MULTIPLICATION BY INSPECTION 
 
 The square of any polynomial. 
 Expand : 
 
 67. (a + 5 + c)2. 71. (a^ + a - 2)1 
 
 68. (a + 6-2c)2. 72. (2x^ -S xy - 5f)K 
 
 69. (a-\-b-c- df. 73. (a^ + 2 a^ - 2 a - 3)1 
 
 70. (a + 26 -3c + («)'. 74. (2a^-ar^2^+3a;2/'-22/3>)2^ 
 
 The product of the forms {x ±a){x ±b). 
 
 75. (a; + 2)(a; + 3). 82. {x-^){x + 12). 
 
 76. (a; + 3)(a; + 5). ' 83. (a^- 3)(a^ + 7). 
 
 77. (a? + 10)(a; + 7). 84. (a:^ _|_ 4^)(^^ _ i3>)_ 
 
 78. (a; + 3)(a; - 2). 85. (a^ + 2)(a.'3 + 19). 
 
 79. (a; + 4)(a;-5). 86. (y?f ^-l){x'y'' -2). 
 
 80. (a;-4)(a; + l). 87. (aa; + 13) (aa; - 12). 
 
 81. (a7 + 3)(a;-16). 88. {a'cx-ll){a^cx -\-Z). 
 
 The product of the forms {ax ± b)(cx ± d). 
 
 89. (2 a; + 1)(3 a; + 5). 95. (a' - 3 a)(4: a^ -\- 2 a). 
 
 90. (3 a; + 2)(4 x + 3). 96. (4 ac + 7 m)(3ac- 67/1). 
 
 91. (3a-7)(2a + 3). 97. (llx'-3y%5x' -\-f-). 
 
 92. (3m-^Sx){Sm-llx). 98. (mn - 13 1/) (5 mw + y). 
 
 93. (4a + 3c)(3a + 2c). 99. (llm^-37i){3m^-\-nn). 
 
 94. (2c2-7)(3c2-ll). 100. (6cd-3dm)(4:cd-\-Sclm), 
 
DIVISION BY INSPECTION 23 
 
 DIVISION BY INSPECTION 
 Exercise 10 
 The difference of two squares. 
 Divide by inspection : 
 
 1. ^2- 62^ a- 6. 6. 25m2-81-^5m^-9. 
 
 2. a^-9-^a-\-3, 7. 81 ?>i^ - 49 -- 9 m^ - 7. 
 
 3. ci2_16--a-4. 8. 64 a^ - 36 ^ 8 « + 6. 
 
 4. 4a2_l^2a+l. 9. 169 a" -9 -r- 13 a + 3. 
 
 5. 16a2-9-j-4a-3. 10. 4m^ - 225 -^ 2m2- 15. 
 
 The difference of two cubes. 
 Divide by inspection : 
 
 11. m^-ji^-j-m-n. 17. 8 a« - 1 ^ 2 a - 1. 
 
 12. a^-b^-i-a-b. 18. 125 m^ - 27 -- 5 wi - 3. 
 
 13. m^-l-i-m-l. 19. 1 - 512 m«-^ 1 - 8 m^. 
 
 14. C3-8--C-2. 20. 343(^-d^^7c-d^ 
 
 15. 2T-x^-^3-x. 21. 125-216?7i»-r-5-6m3. 
 
 16. l-64a3--l-4a. 22. 1000 - mht^ Sr 10 - mil. 
 
 The sum of two cubes. 
 
 Divide by inspection : 
 
 23. m^ -\- 71^ -i-m + n, 26. 64a3 + 27 ^4 m + 3. 
 
 24. 8 + C3-2 + C. 27. 125a3 + 8--5a + 2. 
 
 25. 27m3 + lH-3m4-l. 28. a^m^ + 27 ^ am + 3. 
 
24 DIVISION BY INSPECTION 
 
 29. a«m« + 64 -r- aW + 4. 31. 216 a^ + 512-f- 6 a + 8. 
 
 30. 8a^-f343^2tt + 7. 32. 1000 a^ + 729 ^10 a + 9. 
 
 The sum or difference of like powers. 
 
 Divide by inspection : 
 
 33. a'^-b^-ha-b. 39. a^ + 32 -j- a + 2. 
 
 34. a^-b^^a-b. 40. 16a^-l-f-2a + l. 
 
 35. a^-b^-^a + b. 41. 32 a^ + 1-1-2 a + 1. 
 
 36. a^-\-b'-i-a-[-b. 42. 81 - 16 a* -J- 3 - 2 a. 
 
 37. a^ — ¥-^a — b. 43. 64 — m« -s- 2 + m. 
 
 38. a^-16H-a-2. 44. 32 + 243 a^^ 2 + 3 a. 
 
 Give the binomial divisors possible for each of the following : 
 
 45. a^-8. 48. a* -81. 51. 9a*-16. 54. a«-9. 
 
 46. a* -16. 49. a^-64. 52. 81 - a\ 55. a^-\-b^. 
 
 47. a^ + 32. 50. a^-b\ 53. 16 - a^ 56. a^^ _ 512 
 
 Give the quotients of the following : 
 
 57. a2-16--a + 4. 62. 125 a^ - 8 -^ 5 a- 2. 
 
 58. a^-16--a-2. 63. 100 c^ - a^ -f- 10 c^ + a^ 
 
 59. 4a*-25--2a2+5. 64. 36 m*- 1 ^ 6 m^-f 1. 
 
 60. 81 a* - 36 c^ -f- 9 a^- 6 c. 65. 64a«- 27c^2^4a2-3c^ 
 
 61. lOOm^-l-^lOm^-l. 66. 1 - 81 ««-^^ 1 + 3 al 
 
 67. 100(a4-l)'-9^10(a + l) + 3. 
 
 68. 27(a + l)^-8c-^--3(a + l)-2c. 
 
PARENTHESIS WITH MULTIPLICATION 25 
 
 USE OF THE PARENTHESIS WITH 
 MULTIPLICATIOK 
 
 Exercise 11 
 
 Simplify : 
 
 1. a4-(a + l). 9. (a + 4)(a-2). 
 
 2. a+(2a-3). 10. 2a-\-S(a-3). 
 
 3. a + 2(a + l). 11. {a-{-l)(a + 2)-a\ 
 
 4. a + 2(a-4). 12. (a + 2)^ + (a + 1)2. 
 
 5. a2+(a + l)'. 13. (a + 4)^ - (a + 2)2. 
 
 6. a + 2(a-l). 14. 7 a^ - 2 (a^ + 1). 
 
 7. (a+2)(a-l). 15. 2(a4- 1)'- a(a + l). 
 
 8. 5a + S(a + 2). 16. 4(a - l)2-3(a + 1)1 
 
 17. 4a + (a 4- 1) (a -1) -(«-!)'« 
 
 18. 2(a + l)(a4-2)-(a + l)(a-2). 
 
 19. (a + l)2-(a + l)(a-l)-2a. 
 
 20., 3 a^ + (a + 3) (a - 1) - (a - 3) (a + 1) - 2 (a^ - 2 a). 
 
 21. 2 (a + 1)' - 2 (a + 1) (a - 1) +3 (a - 2)\ 
 
 22. (a + 3)2-2(a + l)2 + 3(a + 2)2. 
 
 23. (m + n)^ — m{m-\-nf — n (in + n)^. 
 
 24. m (m + n)2 -|- n (m — ?i)2 — (m + n)^ 
 
 25. (a — m)(a — w) —(a — m)(a — p) — (m — a) (n — i?). 
 
 26. (m -{- n 4- p)^ — m (n + j9 — m) — n {m + p — n) . 
 
 27. (3m4-l)(3m-l) + [mn - Jl-m (2w-9m)J]. 
 
 28. 3 a - [2 a + 3 (a - 1) - 2 (3 - 2 a)] - 4. 
 
 29. 2[3a-4(2a-l) -3(-2a-^r:^)]. 
 
 30. 116-5[3-2 J8 + 3(4-2[8-3T^])|]. 
 
26 SIMPLE EQUATIONS 
 
 SIMPLE EQUATIONS 
 Exercise 12 
 
 Solve the following equations : 
 
 1. 3x + 4: = 2x + 5. 6. 2(x-\-S) = A + (x-2). 
 
 2. 5aj + 9 = 2a;+.15. 7. 5 (x-2) = 3 (a;+l)-l;i 
 Z. Sx-4: = x + 12. 8. 7aj-(;^j-3)-12 = 2a-. 
 
 4. 4a.' + 3 = a; + 6. 9. 3 (x + 2) +x^ = 5 -\- x\ 
 
 5. 5a; + 7 = 2 0^4-9. 10. (a^+l) (a:+2) =a;(a;+l). 
 
 11. 4 + 5 (a; + 2) - 9 a; = (a; 4- 2)2 - x\ 
 
 12. (x + 2)(x-5) = (x + 4) (x - 1). 
 
 13. (a;-l)(a;H-3)-2(a;4-l)(aJ-5)+a;2^0^ 
 
 14. 2(a;2 + 2a; + l) - (a; + 2) =2a;2 + 6. 
 
 15. (x + 4:y + (x + iy= (a; + 3)2+2a;(a;+l)-a^. 
 
 16. 3 (a; 4- 5) (a; + 2) - (« + 3) (a; - 1) = 2 ar^ - (a; + 7). 
 
 17. (4a;-l)(a; + 3)-4a;2_(_i0^_^3)_^(3^Q ^ 
 
 18. 2[a; + a^(ic-3)H-l]=(2a; + 5)(a;-l). 
 
 19. 5S2(a; + l) -(a; + 3)S =3[a; + 2Sa;-5(3-a;)S]. 
 
 20. 2 [3 a^ 4- (aJ - 2) (a; - 1)] = 3 [2 a^ + (a; - 3)] + 2 a^. 
 
 21. 3[5a;-(a;4-3 4-2a;-l)] = 3a;-4 53a; + 2(a;-l4-3a;)J. 
 
 22. [(a;-2)(a;4-l) + (a; + 3)(x4-2)] = [(a^4-3)(aj-5) 
 
 ^(x-5)(x + l)l 
 
 23 . (a; 4- 2) (2 aj 4- 1) (3 a; 4- 3) = (6 a; - 3) (a; 4- 1) (a? + 3). 
 
 24. aa; + a = 4a. 27. 2cx + d = 4:G^-\-d. 
 
 25. 2ax-{-c = 5c. 28. ax — (a-\-b) = 3a+b. 
 
 26. 4aa; — 5c = 5a — 5c. 29. 2(a — a;)=8a. 
 
PROBLEMS IN SIMPLE EQUATIONS 27 
 
 30. 3(x-{-a)-\-2{x — a) = 6(a — x). 
 
 31. (a + b)x-^(a — b)x = a^b, 
 
 32. 5 a -\- (a -^ bx) c = ac — bcx. 
 
 33. 10(a + b) -\-3x=a-\-b — 5x. 
 
 34. S(a + b)x — 2(a — b)x = a-\-5b. 
 
 35. (x — m)(x — n) = {x — m — iif. 
 
 PROBLEMS IN SIMPLE EQUATIONS 
 
 Exercise 13 
 
 1. What number is that which, when doubled, equals 24 ? 
 
 2. What is the number that, increased by 12, equals 27 ? 
 
 3. If a certain number is increased by 12, twice the sum 
 will be 28. What is the number? 
 
 4. Four times a certain number when diminished by 6 is 
 equal to 12 more than the number. What is the number ? 
 
 5. There are two numbers whose sum is 77, and the greater 
 is 13 more than the smaller. Find them. 
 
 6. A man is 13 years older than his brother, and the sum 
 of their ages is 49 years. Find the age of each. 
 
 7. A father is 4 times as old as his son, and the sum of 
 their ages is 55 years. Find the age of each. 
 
 8. The sum of the ages of three brothers is 85 years. The 
 oldest is twice the age of the youngest and 5 years older than 
 the second. Find the age of each. 
 
 9. A child is 3 years older than his brother, and 5 times 
 his age is 3 years more than 6 times his brother's age. Find 
 the age of each. 
 
28 PROBLEMS IN SIMPLE EQUATIONS 
 
 10. Five years ago a man was 4 times as old as his son, but 
 now he is only 3 times as old. Find the present age of each. 
 
 11. A man bought the same number each of 2-cent, 5-cent, 
 and 6-cent stamps, paying ^ 0.91 for the lot. How many of 
 each kind did he buy ? 
 
 12. Find three consecutive numbers whose sum is 39. 
 
 13. Find three consecutive odd numbers whose sum is 33. 
 
 14. Find two consecutive even numbers, the difference of 
 whose squares is 52. 
 
 15. A man bought a number of horses at $ 150 each, twice 
 as many cows at ^40 each, and 3 times as many sheep at 
 $ 5 each. The lot cost $ 1225. How many of each kind did 
 he buy ? 
 
 16. How can you pay a bill of $ 80 so as to use the same 
 number each of 1-dollar, 5-dollar, and 10-dollar bills ? 
 
 17. A man asked a farmer how many cows he had, and was 
 answered, '' If you gave me 18 more, I should then have twice 
 as many as I now have." How many had he ? 
 
 18. A man sold 15 hens, receiving 80 cents each for a part 
 and 50 cents each for the remainder. He got ^ 9.60 for all. 
 How many were sold at each price ? 
 
 19. Three dollars in nickels and dimes were distributed 
 among 42 boys, and each boy received one coin. How many 
 boys received dimes ? 
 
 20. Into what two amounts must $ 1700 be divided so that 
 the income of one part at 5 per cent interest shall be double 
 the income of the other part at 6 per cent interest ? 
 
REVIEW 
 £zercise 14 
 
 1. If a = 3, 6 = 1, c = 0, and cl = l, find the value of 
 
 a — (a — b) + \a — {b + c)l — [a — (b — c — d)]. 
 
 2. From what expression must you subtract the sum of 
 5 a^ 4- 8, 3 a 4- 2 a^, and a^ -\-a—l, to produce the expression 
 4a2-8a + 3? 
 
 3. If a = 7n-\-n — 2p, b = m — 2n-{-p, and c = ?i+p — 2m, 
 show that a -j- 6 4- c = 0. 
 
 4. What must be added to a^ + a^ — 2 a 4- 3 that the sum 
 may be — a^ — a^ 4- 2 a — 3. 
 
 5. To what expression must x* — 3x^ + 2a^ — x-\-5 be 
 added to produce a^ — x — 1? 
 
 6. What is the numerical value of the remainder when 
 3a4-2c — d is subtracted from 4a4-3c — 2d if a-\-c = d 
 and d = 7? 
 
 7. If A = a^-l-^4:0^, B = -x-2x'-\-l, and C=2a^-i- 
 2 0)2 + a; + 1, find the value of - A-[B- (2 A- C)-\- C^ 
 
 8. Simplify 
 
 4a- [- 6c- (- 54-26-3 (^) -4 a] -5- (4c -3 cQ. 
 9. Simplify 
 
 i-[-i+!-i-(-i+?-i+(-i)s-i)n- 
 
 10. What is the coefficient of x in the reduced form of the 
 expression (x — 4a) — [2a — Six — 2 (x — a)j]? 
 
 29 
 
30 BEVIEW 
 
 11. Multiply m^ — 2m» + 2m- — 2m + l by m* + 2m^ + 
 3 m^ -{-2m-\- 1. 
 
 12. Multiply a*b - a^b' -\- a^b^ - ab^ by a^b - d'b^ -\- ab^ 
 
 13. Multiply ^a^ — I tt2 + a — 1 by i a — 1. 
 
 14. Multiply 0.1 aj2 + . 04 0^4-0.5 by 0.1 x-^ + 4 ic + .05. 
 
 15. Divide Gm^ + ^/i^ — 29m2 + 27m — 9 by 3m^ + 5wr — 
 7 m + 3. 
 
 16. Divide 1.2 aj^ - 2.9 a^ + -9 a;^ + a; by .3 a; -.5. 
 
 17. Multiply by inspection (a -{-b — 2)((i—b — 2). 
 
 18. Multiply by inspection (a -\- b — c) (a — b -{• c). 
 
 19. Expand by inspection (a — 2b-\-Sc — d)\ 
 
 20. Divide 1 by 1 — 3 m to 5 terms. 
 
 21. Divide m'^ by m + 2 to 4 terms. 
 
 22. Simplify (5 a + 1) (a - 3) - (2 a - 3/ _ (a - 5) (a + 3). 
 
 23. Simplify (2a-l){a-{-4:)-2a'-\3a-{-(2 a-l){a-6)l. 
 
 24. Simplify 5 a + (4 a - 1) + « + 3 (« + 1) - (a + 3) (a + 1). 
 
 25. Simplify 4 a^ - 3 a [a^ + a^ - (a - 2)] - 3 (a + 1) (a - 7). 
 
 26. Find the value of (a + bf — (a + c)^— 2 (a + 6 + c) when 
 a = l, b = 2, and c = 0. 
 
 27. Find value of -^ + V6^-4ac ^ ^j^^^ ^^5^ 5^_11^ 
 and c — Z. 
 
 28. Find value of -?>-V&^-4ac ^ ^^^^^^ ^^^^ & = -ll, 
 and c = — 3. 
 
 29. [(a; + a)2 4- 5(a; + a) + 4] -- [(a? + «) + !] = ? 
 
 30. [5(a; + m)4-3][5(a;4-m)-3] = ? 
 
 31. Solve 2a — 3a;(a + c) = 5a + 3c. 
 
FACTORING 31 
 
 32. Solve x'-(x-\- af = (a + If. 
 
 33. Solve a'-\-{x-l){x-2) = x' + (a-l){a + l). 
 
 34. Solve 4(a; + 4)(a;-3)-2(a^-2) = 3(a; + l)(x-4)-cc2. 
 
 FACTORING 
 
 Ezercise 15 
 Factor : 
 
 1. a^^a^ + a. 10. Ga-^-Qa^ + Sa. 
 
 2. m^ — m^H-m. 11. 5 m — 10 7)i^ + 15 m\ 
 
 3. 2m + 4m2 + 6m». 12. 12 m' - 18 m^ + 24 m«. 
 
 4. 5c2+10cH-15. 13. 5ac— 10 6c + 5 cd. 
 
 5. a24-4a^ + 6a*. 14. 4 a^c _ 10 ftc^ + 6 ac. 
 
 6. 3a^ + 9aj^-6a^. 15. 6 a^y -\- S xy^ - 9 x^. 
 
 7. 10 a.-3 - 12 ar^ + 13 £c. 16. m^ -S m' + 4.m^-m^ 
 
 8. 8a:^-12x»-16ar2. 17. a^c - aV + aV + ac^ 
 
 9. 4a3-f 8a2 + 12a. 18. S a'-\-^a^-2 a^ -{-6 a^ 
 
 19. a'b-a%^-{-a^b^-ab\ 
 
 20. 4a*6-12a^62-16a^63 + 8a*6^ 
 
 21 . 15 ay + 150 ay - 225 a/ + 15 a/. 
 
 22 . 48 7n^n^ - 144 mhi^ - 192 m«ri^ + 240 m'^'n^K 
 
 Exercise 16 
 
 Factor : 
 
 1. a2 + 4a + 4. 4. a^-20a; + 100. 
 
 2. a2 + 6a + 9. 5. a2-18a + 81. 
 
 3. a2-8a4-16. 6. 4m2H-4m + l. 
 
32 FACTORING 
 
 7. 0,2 _^ 22 a + 121. 18. 25 a' - SO a -}- 9. 
 
 8. 16c2 + 8c + l. 19. 9a2-30a + 25. 
 
 9. a2-36a + 324. 20. 49c2-84c + 36. 
 
 10. 36a2-12a + l. 21. 16 a^b^ + S abc -^ c". 
 
 11. 9-6a + a2. 22. a^ + lSa^ + Sla. 
 
 12. m2 + 42m + 441. 23. 36 a^ + 60 a'c -\- 25 a^c^. 
 
 13. a-^>--14a6 + 49. 24. 144 m^ - 240 m/i + 100 w^. 
 
 14. ify + 32a'2/ + 256. 25. 121 x^ - 374 a.-^ + 289. 
 
 15. cv'cH^- 10 acd-\- 25. 26. 625 m^ - 50 ?7i + 1. 
 
 16. 64-16m?z + mV. 27. (a + 6)2 + 2(a + 5) +1. 
 
 17. 4a2+12aH-9. 28. (a + by -^6(a + b) + 9. 
 
 29. (a-c)2-6(a-c)H-9. 
 
 30. 25(a-m)2-70(a-m)+49. 
 
 Exercise 17 
 
 Factor : 
 
 1. a'-b\ 11. 64a;2-25. 21. 81a^-49a. 
 
 2. a2-4. 12. a*-l. 22. 81mV-16. 
 
 3. a2-4m2. 13. a^-Slc^. 23. 324- 256 a^/. 
 
 4. c2-9fZ2. 14. aV-25. 24. 289 - 16 m^. 
 
 5. 0^2-16. 15. 9a*-4a«. 25. (a + 6)^-1. 
 
 6. m2-49. 16. 6a^-24a. 26. (m-ri)2-4. 
 
 7. 9 0^-16. 17. 3 ar^- 75 X. 27. 7ri'-(n-^py. 
 
 8. 25 a^b^ -9. 18. a^6^-81. 28. 9a''-(b-cy. 
 
 9. 36c2-25. 19. 121 a^- 49. 29. 4(a + &)2-c2. 
 10. 36c2d2_9^ 20. 64a*-a8. 30. 16(x-yy-9. 
 
FACTORING 33 
 
 31. 4a2_9(a + l)2. 34. 36 (a + &)' - 49 (m - w)^. 
 
 32. 9 a^- 16 (a + 2)2. 35. {a? - Wf - 4. {o? -{- Wf 
 
 33. 2^{a-hf-{c-\-df. 36. 100 - (a -f- 6 + c)^. 
 
 37. 81(a + 6)2-4(a + 6 + l)2. 
 
 38. 9(a2 + & + c)2-16(a2_&_c)2. 
 
 Exercise 18 
 
 Factor : 
 
 1. a^ + 2ah-\-h'^-c\ 11. (? -^ cd-\-^dr -lQ>m\ 
 
 2. m2-2mn + n2-p2^ 12. 4«6-4 a^-f- 1 - 61 
 
 3. x'^ — h'^-[-y'^ — 2xy. 13. in^ — A mn - 9 7n-n^ + 4: n\ 
 
 4. m2 + ?i2-j92^2mn. 14. 9 a^-2522 + 16/ + 24 a-?/. 
 
 5. m2+n2-^2_2y^n. 15. 4a2 + 12a6-9c2 + 9&l 
 
 6. 2m + n2-m2-l. 16. 20 mn -^ p^ - 4: m^ - 25 n\ 
 
 7. l_a^-2a;y-2/^. 17. 4a2 + a*- 4a3-l. 
 
 8. ar^_4a2-4a-l. 18. 5 ar'-S-Sa^-lOa^. 
 
 9. 2mn + mV + l— p2. 19. 8ac — 4 a2_4c2 + 4. 
 10. ci--c2-l-2c. 20. m^ + 16n^-16-\-Smn. 
 
 21. a--^2ab + b- — 7nr — 2 mn — n\ 
 
 22. 4a2-4a + l-9a.'2-|-6a;2/-/. 
 
 23. 9a'-30a + 25-4.b'-4:b-l. 
 
 24. a2-c2 + 62_^2_2a&_2cd 
 
 25. a%^ ^ 10 a'mhj - n^ - 1 _ 2 n + 25 /. 
 
 26. 711^ — n'^ — x^-\-if — 2 (my — wic). 
 
 27. 25 a^ + 1 - 1 6 a^ _ 9 c^ - 10 a2 _ 24 a^c. 
 
 R. & 8. EX. IN ALG, — 3 
 
34 
 
 FACTORING 
 
 28. 5a2 + 562_5m2-10(a6 + m7i)-5w«. 
 
 29. -12a6 + 2 + 24a25_i862_^18a262_8a*. 
 
 30. 3a2 + 1262_l2a4_i47 52_34^2^_-|_2«5. 
 
 Factor : 
 
 1. m^ + m^n^ + n*. 
 
 2. x^-lx^y'^-\-y\ 
 
 3. iB*-5a^3/2^4^^ 
 
 4. m*-23m2 + l. 
 
 5. a^-79a2 + l. 
 
 6. m*-171m2 + l. 
 
 Exercise 19 
 
 7. 25a^ + 66a262 + 496^ 
 
 8. 49 X*- 11 a;22^2_^ 25 2/^ 
 
 9. 16a;*-73a^ + 36. 
 
 10. 49a^-74a262^25 6*. 
 
 11. 289m^-42mV + 169w^ 
 
 12. 16a*-145a262 + 9 6*. 
 
 Factor : 
 
 1. a2 + 3a + 2. 
 
 2. a2-a-12. 
 
 3. a2-9a + 20. 
 
 4. ar' + 5a;-24. 
 
 5. a2 + 18a + 17. 
 
 6. c2-llc + 24. 
 
 7. m2-19m + 88. 
 
 8. c2-9c-22. 
 
 9. a;2^5a._14. 
 
 10. a2-3a-28. 
 
 11. iB2^9a.^i4^ 
 
 Exercise 20 
 
 12. 2/'-ll2/ + 28. 
 
 13. ar^-9a; + 14/ 
 
 14. c2 + 42c--43. 
 
 15. m2-4m-165. 
 
 16. 2/' + 12 2/ -108. 
 
 17. aV-21aa;-46. 
 
 18. a262 + 13a6+40. 
 
 19. aW + 21 am -130. 
 
 20. c2d2 + 9cd-52. 
 
 21. mV-2??i2n-35. 
 
 22. ic2«2_20fl;;2-69. 
 
FACTORING 36 
 
 23. x^f-xy-12. 34. m* — m*-156m^ 
 
 24. a;^-13ic2 + 36. 36. a^+ (a + &)a; + a6. 
 
 25. ic^ — 9 a^ — 22 ic. 36. a;^ + (m + n) a; + mw. 
 
 26. a;* — Sar' — 9. 37. a^ -\- {c + d) a -{- cd. 
 
 27. a^ — 7a^ — 78 a. 38. x^ — {m-\-n)x-{-mn. 
 
 28. a262_6a6-187. 39. a;^^ (a4- 26)a; + 2a6. 
 
 29. 16-6a-a2. 40. a^+ (3a + 2 6)a;+.6a6. 
 
 30. 18-19c+c2. 41. iB2_(a-6)a;-a6. 
 
 31. 147 - 46 a--^ - a;«. 42. x^-ax-hx + ah. 
 
 32. 90m24-13m^-m«. 43. a^- (3m-2)a- 6m. 
 
 33. a:3_^i0a:2_963.^ 44^ a^-\-{m-2m7?)ay-2m?ii?y\ 
 
 Ibcercise 21 
 
 Factor : 
 
 1. 2a2 + 5a + 3. 14. 8a2-30a-8. 
 
 2. 6ar'-a;-2. 15. 24m2-14m-49. 
 
 3. 2ar^-3a;-9. 16. 2 a;^ -f 7 a; - 15. 
 
 4. 2a2 + 7« + 3. 17. 18a2-f-9a-2. 
 
 5. 8a^+^a;-3. 18. 40 ar^ - 61 a; + 7. 
 
 6. 6m2+^m-5. 19. 8m2 + 2m-3. 
 
 7. 15ar^ + lla; + 2. 20. ^b a" - IS a - 12, 
 
 8. 7ar^-41a;-6. 21. 6a2 + 25a-9. 
 
 9. 6a2-29a + 28. 22. 8m2 + 5m-3. 
 
 10. 3a2-19a + 6. 23. 4.2 x" - 11 x - 20. 
 
 11. 12c2 + 17c-5. 24. 16m2-67n-27. 
 
 12. 6/-y-12. 25. 12y^-y-20. 
 
 13. 3m2-llm + 6. 26. 2x'-4.x-12^, 
 
36 FACTORING 
 
 27. 12 m^ - 7 m^n- 12 m?il 36. 20 a^^^ - 9 a^ft^ - 20 a&. 
 
 28. 6m3 + 29m2-22m. 37. 16 0^^2 + 2 ccZ- 3. 
 
 29. 8x^-26^^2 + 18. 38. 75 a - 210 aa; + 147 ax^ 
 
 30. aW-9aW + 20a2m. 39. 48 a;^ - 176 x* + 65 aj^. 
 
 31. 26a34-197a2 + l5a. 40. 55x-«-x^-2x3 
 
 32. 52a2-153a-52. 41. 2(a + l)2 + 3(a4-l) + 1. 
 
 33. 3m2-30m + 63. 42. 3(a + 1)^- 8(a + 1) + 4. 
 
 34. 12x^-25x2 + 12. 43. 2(a + l)2 + 5(a + 1) + 2. 
 
 35. x«-x*-42x3. 44. 2(a-2)2-5(a-2)-3. 
 
 45. 3 (m - 1)2 - 11 (m - 1) ri + 6 nl 
 
 46. 10 (a + 6)2 - 11 (a2_ 62) + 3 (a -6)2. 
 
 Exercise 22 
 Factor : 
 
 1. m^-n\ 8. a365-8. 15. 343 «%« - 729 7i«. 
 
 2. m3-27. 9. 27- 8 c^c^^^ 16. {m^nf + 3?. 
 
 3. 8a3 + l. 10. 7MV-343. 17. (c + d)»-8. 
 
 4. 27-8c3. 11. 64a3 + 125. 18. (a + 1)^ + 64. 
 
 5. 27a3 + 8. 12. 8a«-27. 19. 27-8(a + 2)3. 
 
 6. 64- 125 c^. 13. 64a» + c^ 20. 64 (a + 6)^ - 27 a^ 
 
 7. 125a3+2763. 14. 125mi2_^i5^ gl. (a + 1)^ - 8 (a + 2)^. 
 
 22. a^-h\ 26. a}''-2^. 30. (a -6)^-1. 
 
 23. a^-16. 27. 4m^-81. 31. (a-6)«-8. 
 
 24. 81 -m^ 28. a^^'-w}''. 32. (a + 6)^ -256. 
 
 25. a«-64. 29. m^^-'n}^ 33. (2a+l)^-16(2a-l)^ 
 
FACTORING B7 
 
 34. m^ + 8. 38. x^'^-^y^^ 42. x^^ + 1. 
 
 35. m^ + 1. 39. x^ — y^ 43. m« + 27. 
 
 36. a^ — l. 40. a;^ + 2/^ 44. 64a« + l. 
 
 37. 3^ -{-32, 41. i»8-^. 45. a}^ + 7n^. 
 
 Exercise 23 
 Factor : 
 
 1. m^ + mn + mp -{- n2). 13. m^ + 5m2 + 2m + 10. 
 
 2. ab-\-a-\-7b-\-T. 14. m^w —p^mn -f- mic — p^a;. 
 
 3. 2c7n-3dm-\-2c-Sd. 15. a^- 1 + 2(a2- 1). 
 
 4. ay-ab-bx-\-xy, 16. a^ (a^ - 9) - a (a + S)^. 
 
 5. a:3_^^_^a.^l^ 17. 5(a^ + 8)-15(ic + 2). 
 
 6. xy-2y-x^-{-2x. 18. a;^4-2a^-8a;- 16. 
 
 7. a^-a^ + a-l. 19. 2a2(a + 3) -Sa^-Sa + S. 
 
 8. m^-n^-m-n. 20. c^-\-4:C^-S. 
 
 9. a^-a^-a + l. 21. m^-lOm-SO. 
 
 10. 6a3 + 4:a2_9a-6. 22. 4a3-39a + 45. 
 
 11. m^ + m^-m-l. 23. a3 + 9a2 + ll a_21. 
 
 12. 15 ax-2llay+9bx-12 by. 24. a'^ + 3a2+ 3a + 2. 
 
 25 . am -{- an -\- ap -{- bm -\-bn-]- bp. 
 
 26. m^ {n — x) -{- m{n — X) —2 (n — x), 
 
 27. m^ + ?/^ + m — 2m2/ — 2/-^6. 
 
 28. (a-l)(a + l) + (a;-l)(a-l). 
 
 29. (a + l)(aj + 2)-(a + l)(y + 2). 
 
 30. a^-l-xia-l). 
 
 31. m^ + l — ^>(m + l). 
 
 32. (m + l)(m2-4)-(m + l)(m + 2)-m-2. 
 
REVIEW 
 
 Exercise 24 
 Factor : 
 
 1. 6a2-fl9a + 10. 18. 24: a^b^ - 36 b* - SO ab\ 
 
 2. 2x'-6xy-U0y\ 19. 7a;^-7a;. 
 
 3. a*-\-a. 20. m^~m'^-2m^ 
 
 4. c*-^(^d^ + d', 21. m* + n*-23mV. 
 
 5. m^ — m^ — SOm. 22. 42/ + a;2 — 1 — 4^2 
 
 6. c* + cc?8. 23. (2m-5n)2-(m-27i)2. 
 
 7. a^ + 2xy-ix^-y\ 24. 4a%2_4ci2^4^8^3^3_3^^6^ 
 
 8. a;4_iB3a + iK2;3_^2^^ 25. 25a^b^c'-9, 
 
 9. a^-oc^y + xy^-y\ 26. a^-Sa-a^ + S. 
 
 10. 1 — m^ — 2 mTi — n^. 27. a;^ — /. 
 
 11. c^ + (^4_-|^8g2^2^ 28. m^-rn?n-\-mn^-n\ 
 
 12. m2wy_^2p_^?p_^j 29. 81m«-16m7i^ 
 
 13. 6(?-c{d-V)-{d-Vf, 30. 72aH5a2_i2a. 
 
 14. a2-c2-4c-4. 31. l + aa;-(c2 4-ac)aj2. 
 
 15. d2 + 3cf-d^-3ci. 32. 54-16mW 
 
 16. 8a^4-27a;2^ 33. 4.^f-(^^y^-zy. 
 
 17. JK« + 2/3, 34. 49a^ + 34a^2^H-25y. 
 
 35. (a; — m) (2/ — n) — (a; — n) (y — m). 
 
 36. 15m'-14m^-8m3. 
 
 38 
 
REVIEW 39 
 
 37. (m-n)(2a2-2a6) + (n-m)(2a6-262). 
 
 38. (a-l)(a-2)(a-3)-(a-l) + (a-l)(ci-2). 
 
 39. (2c2 + 3d2)a + (2a2 + 3c2)d. 
 
 40. d^ + d^-d-^l, 62. 2m3n-16ni^ 
 
 41. x^-64:. 63. 64a;^-a;. 
 
 42. 1000 + 27 c«. 64. (a^+a -l)2-(a3-a-l)l 
 
 43. 5a3-20a2-300a. 65. a;^-27ar^ + l. 
 
 44. mn— pr+j97i — mr. 66. Slx'^—y^z^^. 
 
 45. c2-2cd + d2-l. 67. 5cd-12d' + 2c'. 
 
 46. 4-9(a;-32/)'. 68. 72 ic^ _|. gg ^ _ 40 ^.^ 
 
 47. a'i»^-a^-a^-2ax. 69. 3iB*4-192a;/. 
 
 48. ISf-^Sy^-lSy. 70. 3c3-12c3d2_4^2_^l^ 
 
 49. m* — 2mw«-n* + 2m»w. 71. pY-277^. 
 
 50. a;^ + 125a;/. 72. mV-a^^-m^ + l. 
 
 51. m3 + m2w + 2mn2 + 2?i3. 73. aj^ - 25 (a; - 3)2. 
 
 52. 24a^-5a;-36. 74. a^-c^ 
 
 53. 72a^ + ^x — 4:5. 75. 5m^ — 5mhi~5mn — 5m. 
 
 54. (a2-6y-(a2-a6)2. 76. m^-27m2 + 162. 
 
 55. ac2 + 7ac-30a. 77. 9 a;^ + 68 a.-^ - 32. 
 
 56. x^y^ — a^ — 2/^ + 1. 78. 1 — m^n^ — ph-^ + 2 mnpr. 
 
 57. a;* + 4a^-8a;-32. 79. m^-5m2 + 4. 
 
 58. 5cV + 35ca^-90a^. 80. m^ - m^x - m -\- x. 
 
 59. ac + cd-ab-bd. 81. 24 a.-^ + 43 a;^ - 56 a;. 
 
 60. a^ — m^ -f- a; — m. 82. m*—(m — 6y. 
 
 61. 9 a;^- 66*2 + 25. 83. Sa}^ + a7n}'. 
 
40 //. C. F, AND L. C. M. 
 
 84. 24:€rd'-A7cd-75. 87. a^c + 3ac'-3a^-(^. 
 
 85. 16a^-/-9 + 6y. 88. c^ - 64 c^ + 64 a^ - a^. 
 
 86. 12a3 + 69a2 + 45a. 89. a^ _ a^ft^ _ 52 _ ^^ 
 
 90. 2a;3^3^_3^^3 
 
 91. 10 (??i + c)2 + 7 a(m + c)- 6 a^. 
 
 92. 100 + 10a;^-25x«-ic2. 
 
 93. (m+py-l-2(m+p-\-l). 
 
 94. a2 + 2a-c2 + 4c-3. 
 
 95. (2m-3)2-6(2m-3)?i-7w2. 
 ' 96. x'6-13a^4-12. 
 
 97. m2 + 7i2_(l + 2mn). 
 
 98. (c-2d)^-9-3(c-2d + 3). 
 
 99. 6c3_25c2 + 8c-16. 
 
 100. x^y + y^z-{- xz^ — x^z — xif- — 2/2^. 
 
 HIGHEST COMxMON FACTOR AND LOWEST 
 COMMON MULTIPLE 
 
 Rzercise 25 
 By factoring find the H. C. F. and L. C. M. of: 
 
 1. a^-fe^ a^-h\ o>-h\ 
 
 2. a^-ab', 2a*-2a'b% a^-2a^b + ab\ 
 
 3. a^-16, a'-a-2, a2-4a + 4. 
 
 4. m2-3m + 2, m2-m-2, m2 + m-6. 
 
 5. «2 + a;-12, cc2-4a; + 3, ar^ + 2a;-15. 
 
H. C. F, AND L, C. M. 41 
 
 6. o?-^2o?-l^a, a?-6a?-\-Qa, o?-2a^-Sa. 
 
 7. x^'-^x' + l, 2it? + 2x'-2x, a^H-2a^-l. 
 
 8. a;4 + a^_6, 3a^H-6a^-24, aj^-lOx^ + lG. 
 
 9. 2x'-nx-^0, 3a^-25a; + 8, x'-x-m. 
 
 10. 5m3-5n^ 15(m-7i)^ 10 m^ - 20 m?i + 10 nl 
 
 11. m* — n*, m^ + m?n — mn^ — n^j m* — 2mV-f n*. 
 
 12. 5a3 + 406^ 7 a« + 28 a^d + 28 aft^ ^ a' -12 a?h\ 
 
 13. c^-d^ c^ + d^ c^ + d^^ (? + 2cd-\-d\ 
 
 14. 12a^-30a;-18, 27 a^ - 90 a; + 27, 15 ar' - 42 a; - 9. 
 
 15. mn — mp + 2n — 2p, m^H-6m^4-12m + 8. 
 
 16. a;'' H- a^2/^ 4- 2/^, 3?z -\- x^v -\- xyz -{- ocyv -{■ yh -\- yH. 
 
 17. 12(m«-n«), 18(m*-n^), 24 (m^ - mn + n'^). 
 
 18. a^-h^-.o?h^ab, a? -\-W -a?h -al)", a" - ab^ + b* - a^b. 
 
 19. a^-3a'-^a-\-12, a'-lSa' + Se, a^ + ^a^- 9a -^18. 
 
 20. a^ + 3a^-\-3a + 2, a'-Sa-S, a^ -{-Sa^ + a-2. 
 
 21. a3-22a + 15, a3 + 6a2_25, a^ + 13a2 + 36a-20. 
 
 f 
 
 Exercise 26 
 Find the H. C. F. and the L. C. M. of; 
 
 1. a:3 + 4a;2 + 7a; + 6, a^ + 4ar^ + a;-6. 
 
 2. a:^ + 6x^-\-llx + 12, x^ ^2a^ -6x-\-S. 
 
 3. 2a;*-a^ + a:^-a;-l, 2x^ + Sa^ -x^-^x + 1. 
 
 4. 3a;^4-3a^-3a;-3, 4a;*-4a^-8a^ + 4a; + 4. 
 
 5. 6ar' + 19ar^ + 19a; + 6, 4. x^ -{- S a^ -\- 5 x -\- 3. 
 
 6. a;^ + 3«3 + 5a^4-4a; + 2, a;^ + 3a.-34- 6a^ + 5a; + 3. 
 
 7. 2m*-{-m^-9m'-\-S7n-2, 2m^- Tm^H- 11 m^- 8m + 2. 
 
42 FRACTIONS 
 
 8. 2a* + 5a3 + 2a2_a-2, 6a« + 3a^ + 6a»-3. 
 
 9. 3a3 + 14a2-5a-56, 6 o? + 10 a" + 11 a -\-^^. 
 
 10. 4m* + 3m3-6m2-29m + 30, A m* - 7n^ - IS m^ 
 
 + 14 m - 5. 
 
 11. 4a« + 14a^4-20a3 + 70a2, 6 a« + 21 a^-12a4-42a3. 
 
 12. a^-^a^b-\-6a%^-ah^-6b\ a^ -S a^b-\-3 al/ -2b\ 
 
 13. c^-2c3-7c2-|-8c-10, c^ + c^-9c2 + 10c-8. 
 
 14. 2 m'' — m^n — 11 mV + 17 mw^ — 7 n'^, m* — 2 m^/i — m^n^ 
 
 + 4 mn^ — 2n\ 
 
 15. a;'^4-2a;--10ic-21, «34.4a^_2a;-15, a^4-2cc2_7 3._-{^2. 
 
 16. 2aXa'-2a^-7a'-\-16a + 7), 5 a\a^- 5 a'- 23 a -S), 
 6a(a3-6a2-26a-9). 
 
 FRACTIONS 
 
 I. TRANSFORMATIONS 
 
 Rsercise 27 
 
 Reduce to lowest terms : 
 V a^ + 27 ^ r2a^-x-6 ^ a;^-81 
 
 0^2-9 12i»2-13a; + 3 aj^+lSic^+Sl 
 
 Ax' + ^x + l 3?^ -6 16 - (m + ny 
 
 5a;^4-5 ' ' 6m^-24* * {m-Af-n' 
 
 2a^- 2a -12 a44.ft3^^2_^q_|_]^ 
 
 • a'j^2d'-a-2' ' a'-l 
 
 ^ y? + m.r 4- »-« + 'nin -- 7j^^— 64 ^ 
 
 a;2-h3mx + 2m2 * * m^+2m3-8m-16* 
 
 4m^— 8mnH-4n^ 12 m^ — m^^^ 4- m^n — ti^ 
 
FRACTIONS 43 
 
 
 14. 
 
 15. 
 
 16. 
 
 6 ac — 2 ad — 3 ?)c + hd 
 9 ac — 3 ad H- 3 5c - hd 
 
 (m 4- ^)^ + 7 m + 7 n + 10 
 w?-\-2mn + 'n?- 4(m + n) — 12* 
 
 ,^ 10a^ + 5a;^-105a:3 ^, a^4_7 ar^4.12 a; + 4 
 
 24 a;^ 
 
 -64a;3- 
 
 -24iB2 
 
 m'- 
 
 in^ — ^m 
 
 + 3 
 
 2' 
 
 m^ — m — 
 
 1 
 
 :^- 
 
 lla; + 6 
 
 
 18. """^ » 22. 
 
 8m-3 
 
 19. ^^ ' Jl ' 23. 
 
 a^_l_2aj2_7a;_2 
 
 x3_20a>+33 a;*-14ar^ + l 
 
 2-5a-4a^+3a^ 2^ 5m^-5mV 
 
 4-|.4^+9a2+4a«-5a** ' 2m«-2m2w + 2mn2* 
 
 Exercise 28 
 
 Change tci mixed expressions : 
 
 x-\-2 ' ' x^-^x-S 
 
 B2_12a;-47 ^ 4 a^+12 a;3_^^4 
 
 2. 
 
 a; + 3 2a;3 + 7 
 
 a^_2a^4-4a;-l ^ fl^-a^ + 3a; + 2 
 
 iC- 
 
 -3 
 
 3a3 
 a — b 
 
 9. 
 
 m^-\-2 
 
 10. 
 
 m^ + m — 1 
 
 x'-\-3 
 
 x'-^x-l ' x'-{-2x + 2 
 
 12 
 
 2 + a;-a^ 
 
 7. .^. 9. „ ^ .. 11. "^ 
 
 19 1 
 
 12. — =— to 4 terms. 
 
44 FRACTIONS 
 
 Exercise 29 
 Change to improper fractions : 
 
 , ^ x — 1 e 2 2 I in^nHm + n) 
 
 2. a — Sc-\ — • 6. (c-\-d)^—^ ^* 
 
 a + c c-\-d 
 
 4. 1 
 
 a^ + ft^ 
 
 
 
 
 
 •• ^ ^ ' ^ a + 1 
 
 (a-^by 
 
 
 
 
 
 8. ^^(^' + 3) 2. 
 
 9. m^ — 
 
 2 
 
 mn 
 
 +2 
 
 m 
 
 - 71^) 4- m V 
 
 2m?2+7i^— »^ ,„ -, , / 9 I I 1 \ 
 
 10. m-{-n—p — ^- 13. l + (ar + a;H • 
 
 m + wH-p \ x^lj 
 
 !b2+3x-2 L V ^ /- 
 
 12. a+2-^+6^+a'. 15. (''-^-A+^ + 2. 
 
 a + 4 V=" + l / 
 
 ie.l-[.-{2..^-^i)i--.)]. 
 
 17. 3m-r("^ + 2X'^-^)-(-»^ + ^)1-(«t + 2). 
 
 m + 3 ^ ^ 
 
 18. a'+r-'»6-a'+(-a' + «6)-&n I „ ^, 
 
 a — 6 
 
 19. (a-6)»-r(a + 6) + 3«H&-a)+a(«'-a)-n 
 
Collect : 
 
 FRACTIONS 45 
 
 11. ADDITION AND SUBTRACTION 
 Exercise 30 
 
 1. 5^4-3^ + ?. 12. ? + -^+ ^ 
 
 3 4 2 a a+1 a-1 
 2 4a;4-l . 2a; — 1 ^^^ __a ^ _^ 1 
 
 4 3 a-1 a + 1 a'-l 
 
 2a; + l a?-l 14 3 5 2 m- 3 
 
 ' 3a;2 2a;3 ' * m m-1 m^-l* 
 
 ,1.1 ,,^ 2 3.1 
 
 a; (a; 4-1) a; (a; — 1) 3 — 3 a- 5 — 5a l + a 
 
 2 , 1 1 ^^m — n.n—p.p — m 
 
 5. -H -— r -• lb. 1 i 
 
 a; — 1 a; + l ar — 1 mn np mp 
 
 g + l ' g- 1 --, 4a — 6 18 a6 . 4a+ft 
 * a-1 a + l' ' a+2 6 a2-4 62 a-2 6' 
 
 7. a + 2 a-2 18. "^ "^ ^ ^ 
 
 a-2 a-\-2 a^-1 a;-l 
 
 „ 5a + l 2a + l ,« c^ + c?^ c^ d^ 
 
 o. — -— • ly. 
 
 aH-3 a-3 cd cd + (P cd + c^ 
 
 9. ,^±4_ . ^^. 20. -^-^^+-^ + . 1 
 
 (a-c)2 a'-c' a^^x-\-l x-1 sc^-l 
 
 6 
 
 ^Q (m + ny _ (m-n)\ ^^ 1 1__^ 
 
 m — n m-\-n a^+2x-{-4: x—2 oc^—S 
 
 11. -A_ + ^_ + ^. 22. 2^2m _^ m+l 1 
 
 m + 1 m — 1 m — 2 (m— 1)^ (m— 1)^ m—1 
 
46 FRACTIONS 
 
 23 a+r. a-m ^^_ a^^_a_^ 
 
 ar-{-am-\-7rr ar—am+mr a -^2 a — 2 
 
 25. -^ + 2--i-. 28. 3c--^ + -i-. 
 
 x+1 x—1 c+1 c— 1 
 
 30. (ra+-J^\-U+-J^\ 32. 2-^+^+^ 
 \^ m—nj \ m+nj \^—y ^+y) x^—y^ 
 
 33^ K + ny _/m_^7i_^^ 
 mn{m — nf \n m 
 
 31. ^±1_24-^^- 
 a;4-2 a;-4 
 
 34 a? — 3a , 9aa; , 1 
 
 ic2_3aa; + 9a2 a^ + 27a3 a;4-3a 
 35. 4J^ + ^ + J^. 36. ^+ 3 1 
 
 a^-1 1-a a + 1 2-a a-\-2 a^-4: 
 
 3^ g + l 4 g-l 
 
 a + 3 9-a2 3-tt* 
 
 38. 1 + -J^+ 2 2 3 
 
 X a; — 1 l—a^ x-\-l x-\-7? 
 
 39. _A___1__^+ -8 
 
 3m4-15 125-5m=^ 7m-35 
 40 ^ — 5 I ^ + 5 . 21m 
 
 5 + ^1 5 — m m^ — 25 
 ., 1 , 20a , 2 1 
 
 a l-lGa'' 8a-2 a + 4a2 
 
42. 
 
 1 +6-^ + 
 
 FRACTIONS 
 1 
 
 47 
 
 a^3 ' S-a ' 9-a2 
 2 Sx' 4 
 
 43. 3x + 
 
 44. 
 
 45. 
 
 46. 
 
 47. 
 
 48. 
 
 49. 
 
 50. 
 
 51. 
 
 52. 
 
 53. 
 
 54. 
 
 x-S x-\-S 9-«2 
 m + 1 1 m^ H- m — 2 
 
 m^ + m + l m — 1 1 — m* 
 
 c — a? c + <? _ • (d — c)^ 
 c + c? c — a; {c — x)(c — d) 
 
 x — Sa 
 
 3ax~2y? 1 
 
 ar^_3aa; + 9ci2 a^ + 27a« 3a + a; 
 a+1 , a+4 
 
 (a-4)(2-c) (a-l)(2-c) 
 
 
 (m — n) (m — p) (n — p) (n — m) (p — m)(p — n) 
 
 x" 
 
 + 
 
 2/^ 
 
 + 
 
 (a; -2/) (a; -2;) (y-z){y-x) (z-x)(z^y) 
 
 m + 1 
 
 m-1 2 
 
 + 
 
 m^ — m + 1 m* + m^ + l m^ + m + 1 
 
 -1— f-i L_l 
 
 _^ [o 1 ( 1 , ^ \\ 
 
 x + b \ x-n \a?-25 x-5)] 
 
 \2x + 2-(^ l_^1_-2^_ (1_^__A_2^ 
 
 -J— f-J— (^ ( 1 +^-M1 
 
 1-x [x-2 \&-x-i? \2-Zx + ii? x-X)]_ 
 
48 FRACTIONS 
 
 III. MULTIPLICATION AND DIVISION 
 
 Exercise 31 
 Simplify : 
 
 1. 
 
 m^ — n^ m^ 
 
 w? (m — Tif 
 
 
 ^2-144 a + 3 
 a2_9 ^_^i2 
 
 
 w? — n^ m^ — mn-{- n^ 
 
 m-{-n 
 
 m^ + n^ m—n 
 
 7nf-\- mn + n^ 
 
 (c 4- df ^ c'-cd + dj' 
 c3 + (Z3 * c2-f-2cd + c«'* 
 
 m2-2m + l 
 
 (m 4- 2) (m - 1) (m + 3) (m - 2) 
 ' m-\-n \n m) 
 
 mn /m + ^^ j 
 
 7n-{-n\. n m 
 
 — > 
 
 c-d ' c^-d^' (? + df 
 10. (^^/-^j(^^2(^2/2_^i) + i)- 
 
 a^-{- {m +p)a + mp a^ — n^ 
 12. fg-Sm + mAfl+i + i-T— — 4^— — l- 
 
FRACTIONS 
 
 49 
 
 13. 
 14. 
 15. 
 16. 
 17. 
 18. 
 19. 
 20. 
 21. 
 22. 
 23. 
 24. 
 25. 
 26. 
 
 3 (m — yi) m^— {p — 5)m — 5p ' m-\-p 
 m(m^-\-5m) m^ -{- mp — mn — np m—p 
 
 a^ + ac + ab + he ^ g? + «/+ «cg + df 
 (J? -\- ac -^ ad -^ d/: c? -\- od -\- ab -^hd 
 
 m-\-n .m 
 
 A _^ fm-^n _ m — rb \ 
 i) ' \m — n m-\-nJ 
 
 + d c-(A /6 3 S y 
 
 — d c + (ZyVc c — d c-\-d) 
 
 m — n m-\-n^ 
 
 'c + d c — 
 c 
 
 m^-9 ^ (m-4)^ . |^ m^-7m + 12 7/i + 4^ 
 
 * m + 3, 
 
 6 a2-2a-3 
 
 a^-g 
 
 + d c — d\ 
 — d c-^dj 
 
 a^^a-2 a^-2a + l 
 c2 + d2 1^- 
 
 4 m^ — n^ —p^ — 2np_^ 2m — n—p 
 A 7n^ + n^ — p^ -^ 4: mn 2m-\-n-{-p 
 
 a^-5a;-f 6 ^ a^4-a;-2 . a;^-4a; + 3 
 a^^Sx + 2' x' + x-e ' arH-4a; + 3* 
 
 (-•D(S-')H'-?> 
 
 3 cd(d -c) + (^-d^ r dF\ . c^(c-cg)^ 
 
 (a_cy-&2 (g + & + c)' (g + cf - b^ 
 (5 + c)2-a2* la-i-by-c"' a^-(b-^cy' 
 
 Tin} — 2 w^v? -\-n^ m^ — r^ , in 
 
 m^ + ri" tti^-mH^^-n'' ' (m^ + w«) (m^ + n^) 
 
 4 
 
 R. & S. EX. IK ALG 
 
 x{x — 1) + 1 
 
50 
 
 FRACTIONS 
 
 27. f£_Ji-^-2Yl 2^Y 
 
 \yz xz xy xj\ x + y + zj 
 
 28. f™-i2iY^r('-+— -4Y-+— +4\ 
 
 \n mj [\n m J\n m j 
 
 29 (c + d)^-4 d'-{c-2)^ . c^d-2 
 ' 4 - (c - d)2 (^-{d-\-2f c-d-2 
 
 "■ [e-'-'-?)-e-'-^)]*[('-^)fe)} 
 
 [_\xy xz yzj xy J 
 
 Simplify : 
 1 
 
 1. 
 
 — X 
 
 + 1 
 
 lY. COMPLEX FRACTIONS 
 Exercise 32 
 
 a4-2 
 
 4. 
 
 a-3 "^ 
 
 16 ^ 
 a? 
 
 8 10_3 
 X* a^ sc^ 
 
 m + 2 
 
 2. 
 
 3. 
 
 
 m 
 
 m-3 + - 
 m 
 
 a + l 
 
 4 
 
 a; 
 
 a^+l 
 
 1 
 
 1 
 
 ajH-1 
 
 x-\-l — 
 
 5. 
 
 a; + 4 — 
 
 « + 
 
 a; + 2 . 
 
 X — 
 
 x-^1 
 
 8. 
 
 d' c" 
 i + i+1 
 
 m n p 
 n p 771 
 
FRACTIONS 51 
 
 x^ — x — 6 
 10. -o — 71 ?r- 11 
 
 12. 
 
 13. 
 
 a^-x-6 
 
 • a.'2-6a;-7 
 
 c—d c+d 
 c+c? c — d 
 
 c'-d' ^ 
 
 ic-df 
 2 3 
 
 a; -14 
 
 a & a 6 
 
 16. 1- 
 
 4a 
 
 ^ 2m , , _J__\ 
 Vl+J- 2m + V 
 
 18. 
 
 2m 
 
 2 
 
 1 — a; 
 
 (f-')-(f-') 
 
 I4.I i_l 20. a + =— . 
 
 a h a h a-\- 
 
 1 4 . • 1 
 
 & , a h a a + - 
 
 a 
 
 ft^ + a-2 3fa4.2)-2(a + l) 
 
 a2_2a-3 . 
 
 15- 2 ■ Q^_i_9 ~^' 21. 
 
 tt2_4a4-3 
 
 10 10 2^- 
 
 
 a? 
 
 a3 + 64 
 
 a^- 
 
 .4a« + 16a2 
 m + 1 
 
 m + 1 
 
 1 
 
 5 5 m + l 
 
 v2 
 
 ^^' a? , g^c + Z * ^ + ^-^ 
 
 ^z-c+(^:r^2 100^+9^-63 
 
52 
 
 FRACTIONS 
 
 24. 2a + 
 
 3a + 
 
 4a-l 
 
 26. 
 
 1 + 
 
 1 + 
 
 l-x 
 
 25. 
 
 1 + 
 
 4 wn 
 
 (m-2nV 
 4?nri 
 
 1_^ 
 
 
 27. 
 
 1 
 
 1 
 
 
 1 
 
 
 a-?> 
 
 aH-6 
 
 b' 
 
 — 
 
 a^ 
 
 
 264-1 
 
 
 
 
 a — b 
 
 28. 
 
 29. 
 
 m^ — 71^ (711 -\- 7i)(m — p) 
 m? + 7i^ m^ — mp — mn 4- np 
 
 \n'' m?i my \7r mn my 
 
 l+3a l-3a 
 l-3a l+3a 
 
 3a 1 
 
 3a 
 
 l+3a l-3a 
 
 30. 
 
 np 
 
 mp 
 
 1 
 
 mn 
 
 (m- 
 
 -P)^- 
 
 -ii^ 
 
 1^_ 
 
 np 
 
 1 
 mp 
 
 1 
 
 mn 
 
 31. 
 
 a/*^ + mx + nx-\- mn 
 x^-\-nx — px — np 
 a? + mx — nx — mn 
 x^—nx -\-px — 7ip 
 
 32. 
 
 14- c3 
 
 1- 
 
 1-f 
 
 8c3 
 
 1-c 
 
 1 + 
 
 2c 
 
 2c 
 
 14-2C 
 
 33. 
 
 rx + yV ^ /x-yy 
 x-y V / 'x + y V 
 
 34. 
 
 m4-n ■ m^ + n^ ' 
 
 m — n 
 
 m' 
 
 m^ 4- ^i^ 
 
 + n 
 
 m' 
 
FRACTIONS 
 
 53 
 
 35. 
 
 36. 
 
 (m — n) (m + p) (m -f- n) (m — p) 
 
 {m — n)(m -\- p) {m + n){m — p) 
 
 37. 
 
 3a; — 1 X 
 
 3 "^4 
 
 ^-l(x+^^-)-\-2x 
 
 38. 
 
 1 _ ^ + ^ ' I _ c^ + ( ?" 
 
 39. 
 
 2mn 
 4:mn 
 m^ — 4 wm + n^ 
 
 -r- 14 m?i . 
 
 \ mn J 
 
 40. 
 
 i_i i_jL,i 
 
 ' ah a"- 
 
 a b 
 
 X 
 
 + 
 
 11 
 
 62 a6"^a2 
 
 62 -a^ 
 
 a'b^ 
 
 41. 
 
 r46(a + 26) J (a3-86V 1 
 
 |_ ft-26 JLa^-8q262_^l()6^J 
 
 a2 4- 2 ty6 + 4 6^ 
 a + 26 
 
 (m^ -\- n^)(m — n) 
 
 m^ — mn + 71^ m^ — 2 mr? 
 
 (m — ny m^ H- mw + n' 
 
 
54 
 
 FB ACTIONS 
 
 43. 
 
 44. 
 
 - (»--)f'+-y 
 
 
 ^ 
 
 
 1+ 
 
 a 
 
 45. Find the value of 1 when a = x-\-l. 
 
 a 
 
 a^ — b^ 
 
 46. Find the value of — when a = ic + 1 and b = x — l. 
 
 47. Find the value of (m-iy-(m^-l) ^hen m = a + l. 
 
 (1 — my 
 
 48. Find the value of 
 
 a-\-m , a — m Sam _. „^ _ 3a 
 
 1 when 7n = — • 
 
 a — m a-\-m cr — iiw 2 
 
 49. When m = - and n = ^ find value of ^>^' + mn - 2 7i^ ^ 
 
 50. Ifa = ^^and6 = ^^,findvalueof ^i^ + 1 ^~^ 
 
 iC + l 
 
 x-\ 
 
 a — h 
 
 a + h 
 
 x-\- 
 
 51. If a; = a — 2, find value of 
 
 x^l 
 
 -1 
 
 a; + 
 
 + 1 
 
 52. If a = m and 6 = w, show that 
 
 x-1 
 
 a + h a — h 4 mn 
 
 a — h a + h w? — r^ 
 
 53. If a = -T-^ and c = . "^^ , find value of a in terms of m 
 
 1— c 1— m 
 
 and reduce to simplest form. 
 
 64. If a; = -^ and y = -^; show that ^"^ 
 
 2a6 
 
 a-f-6 
 
 a — h 
 
 y? + f (x^+^ 
 
FRACTIONAL EQUATIONS 56 
 
 FRACTIONAL EQUATIONS 
 
 I. NUMERICAL 
 
 Exercise 33 
 
 Solve: 
 
 2 a; a; a; 1 
 
 8. ^--l + 5-^- + 2. 
 
 3 5 2 6 
 
 3 2 
 
 2 ^_? = ^ + ?. « 4a; + l , 2a;-l 3^ + 3 
 
 * 3 3 5^5 ^' '~S~^~~~2~~'~2~' 
 
 3. 1 + 1 = ^-1. -^ 5a; + l , 3a;-2 _ l + 8a; . 
 
 5 3 15 10. —^--^-^ — ^— . 
 
 * 3 2~4 3* „ a;4-l a;-l _ 3-a; 
 
 ^ 2 a; , a; a; 11 /^ 
 
 6 ^+l4.^±^ = 2. 
 • 2^4 
 
 11 
 
 12. 2(a; + 3) 3(a; + l) ^o^ 
 5 2 
 
 13. i.(a; + 2) = i(a;-3). 
 
 2a; + 3 a;-l_o 
 
 11 ^ 3 14. ^(a;-l)-|(a;4-l) = 0. 
 
 15. |(a; + l)-f(aJ + 2)=i(a; + l). 
 
 16. (a; + l)(a;-i) = a^. . 
 
 17. |(2a;H-l) + 2 = ^(3a;-2). 
 
 18. ^-i(. + 3) = ^-3. 
 
 19. a;-J3a;-i(a;-h 1)1=0. 
 
 20. i[a;-(2a; + i)] = i(a; + i). 
 
56 FRACTIONAL EQUATIONS 
 
 23. 2__ 3 
 
 24. fe^V(£=31^=.(5.^-l). 
 
 25. 2i-|(a^ + 3) = l|^+l-2^. 
 o o 
 
 26 fe±D-i(^±ll = 31 ^^'-1 ^ 3a; + l 
 
 3 2 ' * 4a; + 3 6a; + l 
 
 27 -A_ = _3_. 32 3a;4-2 l^o;-! 
 ic + l x-{-2 ' 4.x 4 ic + 1* 
 
 28. _i- + 2 = ^^. 33. 3a^-l _ 2a;-3 
 a; + l x-1 ^x + 2 Qx-\-5 
 
 29. ^±1 = ^^. 34. _L-+-i- = l ^ 
 
 a; + l a; + l x-l x^-1 
 
 30. ?^-l = ^Zl3. 35. ^_+ 3 0. 
 
 ic + 2 a;-2 x-2 x + 2 3^-4 
 
 36. 3_^— A_ + i= 9a- 
 
 3a; + l l-3aj 9iB2_-L 
 
 37. ~i- = -J^ ^ 38. ? + — ^L_ = 
 
 a-'^ + l x+1 x'-x + l ar^ + 3a;H-2 (a; + 2)2 
 
 39 a;^ + a;4-l ^ a:^ — a;4-l . x 
 
 x + 1 x-1 "^l-ar^* . 
 
40. 
 
 FRACTIONAL EQUATIONS 67 
 
 X 5 a?^ X 
 
 3a;4-6 6^^-24. 2ic-4 
 
 41. „ ,^ ,+ 2 1 
 
 
 2a;2 + a;-l a!2-x-2 2ar'-5a! + 2 
 
 43. ^ l- = ^i 1-. 
 
 a; + 2 x-\-3 .t + 4 a;-f-5 
 
 44. -1,+ 2 3 
 
 45. 
 
 46. 
 
 47. 
 
 48. 
 
 x-\-l a^ — 1 1—x 
 2 03*^ 3 a; x 
 
 a^ — 1 1 — x x-{-l 
 3 4.2 
 
 2a; + l 4a;2_-i^ l-2x 
 
 xj-3___2_^a^--l 
 a;_2 ic2_4 2 + a;* 
 
 3 2 5 
 
 x-S l-2a; 2af-7a;4-3 
 
 4a; + l ^ 3 _ 1 +4a; ^ 
 x-^2 ~a^-4 2-a; * 
 
 a;+5 5 — X 25 — a^ 
 
 51. ^ 4 3_^o 
 
 2(2a; + 5) 2a;= + 9a;+10 3a; + 6 
 
 52. -^- + 5^ = ^-+1. 
 
 x-32(a?'-»-6) a; + 2 
 
58 FRACTIONAL EQUATIONS 
 
 53. ^ + ^^ = ^_ 
 
 6a;-6 3-3a; 2a; + 2* 
 
 64. 2a;-l 4a;-l .^ ^ -18ar» 
 
 3a; + 4 6a;-l 21a;-4 + 18ic2 
 
 55. 2 _ 3__^ . 1 
 
 a; + 3 2(aj + 3) 3(a; + 3) 4 
 
 _ 4a^-2a ;4-l . 4a^ + 2a; + l . 
 2x-l ^ 2x^1 
 
 ^^ Sx-2 , 2x-l X 
 
 58. 
 
 6 2iB + 3 2 
 
 3aj + 5 2a;-l 2ic 
 
 18 x-\-5 12 
 
 59 a^ 4a; + 5 _ 2a; — 1 
 3 2a; + 4~ 6 
 
 60 ^^ + 13 6a;-1 ^ 3a; + 2 
 
 8 3 a;- 9 12 ' 
 
 6 9 a; - 36 6 
 62. ^+^i- ^-2 -^J-l 
 
 63. 
 
 64. 
 
 66. 
 
 9 
 
 3 a; + 11 
 
 9 
 
 li 
 
 a;-l 
 
 a;-3 
 
 X - 
 
 -4 a; 
 
 -2 
 
 a;-2 
 
 a;-4 
 
 X - 
 
 -3 X 
 
 -1 
 
 2a;-3 
 
 3a;- 
 
 1 
 
 x-^1 
 
 
 2 
 
 4 
 
 
 5 
 4 
 
 1 
 
 5 
 
 3 
 
 
 3 
 
 2 a; -3 
 
 3a;- 
 
 J._ 
 
 a; 4-1 
 
 1 
 
 = — 
 
^BACnonAL EQUATIONS 6^ 
 
 II. LITERAL 
 
 Exercise 34 
 
 Solve: 
 
 1. 3a; + 5a = ic + 8a. 6. ^ax = h{x-\-a). 
 
 2. 2a'4-4a = 3a; + 3a. 7. 2(x^a)=^{x-a). 
 
 3. 3x + 2a = 4a; + a. 8. (x + a)^ = (a; — a)^ + 4 a. 
 
 4. 3aa; + 4a = aa; + 10a. 9. (a; — a)^ = (a; — 6/ + al 
 
 5. 3aa; = a(a; + a). 10. {a — h)x + {a + h)x = a?. 
 
 11. (a + 6)a; + (a — &)ic = «^ + ca;. 
 
 12. (aj + a) (a; — m) = (a; — a) (a; 4- m). 
 
 13. mx (x + m) + 7ia; (a; — m) = (m + ?i) ar' + w — n. 
 
 14. a6 — (a — 2 6)a;=(2a — 6)a; — 1. 
 
 15. (x + 2a+by-(x-h2ay = b(Sa-^5b). 
 
 16. ^ + ^ = 3. 
 
 a 2a 
 
 17 ^_?^ = 1. ^ 
 * a 3a 2 
 
 18. 'i^' + !^ = m^ + n^ 
 
 19. i + l = l_l. 
 m a? 71 aj 
 
 20. ca; + a + - = -- 
 c a 
 
 2\a J S\a 
 
 1 . 
 
 22. 
 
 x-\-m 3 
 a; — 71 4 
 
 23. 
 
 4 3 
 
 m + a; tti — a. 
 
 24. 
 
 aj + d^ g 
 a; + c2 d 
 
 25. 
 
 771 + 1 7/1 + a; 
 
 771 — 1 m — X 
 
 26. 
 
 n(a — x) t\ 
 
 m — -^ ^ — a = 0. 
 
 2a-a; 
 
 OT 
 
 9 5 
 
 m4-7i — a; 77i — Te + a; 
 
60 FRACTIONAL EQUATIONS 
 
 28. nk+Jl^^LlzJl. 30. 
 
 X — 1 X -\-l 
 
 '" ^ 31. 
 
 ««7. 
 
 m m- 
 
 -n m-\-n 
 30 a; + n _ 
 
 
 a; + 2m 
 
 33. 
 
 2a;-a 
 X — a 
 
 
 34. 
 
 2x-a 
 x+b 
 
 m-\-x 
 
 0? — 6 
 
 35. 
 
 2 
 
 m — x 
 
 2 
 
 1^ 
 
 36. 
 
 1-^ 
 
 1+^ 
 
 1+^ 
 
 m 
 
 1-5 
 
 
 m 
 
 m 
 
 37. 
 
 m-f 1 
 
 m — 1 
 
 2 ~ 
 
 ' 4 
 
 m + a; 
 
 a? 
 
 m — x 
 
 m^ — x^ 
 
 ab -{-X 
 
 ^ 
 
 ab — X y? — a^l^ 
 3m 
 
 3a; + 4mH-2n 
 
 x-{-l 
 
 41. t^Lzl^ = 4^Hhl^. 
 i«H-faJ -ia-fa; 
 
 42. a; + a _. a^ + « + l . 
 ic — a a; — a — 2 
 
 43. ^ — 2'^ m + 4a; ^^p 
 m+a; m — x 
 
 . x + a _ x 4- c 
 a; + c a; + a 
 
 45. E±^_^LL^ = o. 
 a; — 5 a — 6 
 
 c+2aj 4a^ 
 
 46. 
 
 c — 2a; 4a;^ — c^ 
 x 
 
 m 
 
 m — n . m 
 47. 1= — 
 
 OQ ^x — a _o b — x m-\ ^— ^ 
 
 5a;-a ^ a-10a; 43. ^ !L_ = '?Lz: 
 
 • 2x-a a-4a;* * a;-m a;-n x 
 
 .f. X . a nx ._ 2a;— m x-\-2m , 5m ^ 
 
 40. 1 = • 49. ' 1 = U. 
 
 m + n n — m w^-v? 2x-\-m x—2m x 
 
SIMULTANEOUS EQUATIONS 61 
 
 SIMULTANEOUS EQUATIONS 
 
 I. NUMERICAL 
 
 Exercise 35 
 
 Solve: 
 
 
 
 
 
 1. 5x-{- y = ll, 
 
 5. 
 
 x + 3y = 5, 
 
 9. 
 
 5x — y==16, 
 
 3x + 2y = l. 
 
 
 3x-{-4:y = 0. 
 
 
 x = y. 
 
 2. x-{-2y = S, 
 
 6. 
 
 x-4.y = 7, 
 
 10. 
 
 a; + 82/ = -20, 
 
 3x- y = 3. 
 
 
 4.x- y = 13. 
 
 
 3 aj + 4 2/ = 0. 
 
 3. 2x-\-3y = 16, 
 
 7. 
 
 2x-13y = l, 
 
 11. 
 
 aJ-2^=0, 
 
 3x + 2y = U. 
 
 
 3x-21y = <d. 
 
 
 4a;-5y-h2=0. 
 
 4. x-\-2y = 3, 
 
 8. 
 
 2x + 3y = 4, 
 
 12. 
 
 4a;- 2/ = 10, 
 
 3x~ y = 16. 
 
 
 6x- y = l. 
 
 
 72/-2x = 12. 
 
 13. y — x — l = 
 
 3, 
 
 15. 5 
 
 x-3 
 
 :2/-72 = 5y, 
 
 x—5=-y 
 
 
 X 
 
 -1 = 
 
 = 15y. 
 
 14. 3x = -2y, 
 
 
 16. 5 
 
 x + 3 
 
 2/ = 102, 
 
 x = 35-{-lly. 
 
 7 
 
 2/ + 3 
 
 ia; = 104. 
 
 - M=^' 
 
 19. 
 
 1-!=^' 
 
 21. 
 
 x^y 
 2 3' 
 
 M=^- 
 
 
 | + . = 9. 
 
 
 i+i-»- 
 
 - M=-^' 
 
 20. 
 
 X y_7 
 3 4 4' 
 
 22. 
 
 hh-^ 
 
 X y 5 . 
 3 2~ 6* 
 
 
 5 3 5 
 
 - 
 
 3 2 9 
 
62 SIMULTANEOUS EQUATIONS 
 
 ''■l+t'' -1-1=^' -T-H' 
 
 3 4 4 2^3 2 3 ~ ^' 
 
 26. ^ + f = -3A, 32. .-^ = 2 + 2(.-,), 
 
 33. 
 
 2x y 
 3 3 
 
 1 
 3' 
 
 
 14 ^ 
 
 a; 
 
 = 7' 
 
 
 32/ a^ 
 5 8 
 
 -k- 
 
 
 2a;4-3 
 
 5y-S 
 
 -2, 
 
 7 
 
 4 
 
 i(142/- 
 
 ox 160^- 
 
 23 
 
 * 2 
 
 3 -^' 
 
 
 3a; + l 
 
 .2/ + l_i 
 
 
 4 
 
 3 
 
 
 a; y 
 
 .3(0^ + 2/4-1) 
 
 
 3 2~ 
 
 4 
 
 
 
 !-«= 
 
 = 1 + 12, 
 
 
 
 aj+2/ 
 5 
 
 35-2^ 
 
 a; 
 
 a; 
 "3* 
 
 x + Sy 
 3 
 
 -2 42/- 
 
 — x + 5 
 5' ' 
 
 3a;-2/ 
 
 + 7 2a; 
 
 + 32/ 
 
 ' + 1 
 
 10 
 
 
 12 
 
 
 5 
 
 
 2 
 
 
 34. 
 
 35. -, 
 
 4a;+82/+l 7a:-22/-l 
 
 2x+4:y 5x-^6y Ay 
 
 se. ^-^t.=(2.-|) 
 
 <?o 6 2/-1 , 3a; + l _5 
 30. — - — + — ^ — -^, 
 
 3^+1^14 
 5a;-l 2/ + 3 , I^a -22/ 5* 
 
 4 7 "^3 ' 
 
 a;+2 y-2 Sjy^Ax) ^^- x-y'^' 
 ^^' ~S 2- = — 4 ' 
 
 y X X y 
 4 2 5 3 _41 
 2 ^3 ^^^ -' 3 5 ~60' 
 
 ^_5=^-3(2/-a.) 
 
SIMULTANEOUS EQUATIONS 63 
 
 38. -^_=_-^_, 
 
 4a;-3(a;-?/) _^ ., x-2(x-\-y) 
 
 39. (a; + 3)(2/-l) = (aj-3)(2/ + l), 
 
 a^-^ + i^ = (.-3)(, + l) + llf 
 
 .^ 4aj-3 . 2x-3 Qx-l 
 40. 
 
 2 
 
 r 
 
 Sx-2y 
 
 " 3 ' 
 
 
 52/- 
 
 1 
 
 x + 1 
 
 15^-10 
 
 
 3 
 
 
 3x-y 
 
 9 
 
 
 2x 
 3 
 
 Sy 
 
 5 
 
 x-h2y 
 4 
 
 =3--7 
 
 6y 
 
 > 
 
 1+^ 
 
 ,_S 
 
 \x-y 
 5 
 
 -^+t 
 
 
 41. 
 
 2a5-2/ + 3 05-2^ + 3 
 
 3a;-4y + 3 _ 4a;-2y — 9 
 4 ~^ 3 ' 
 
 43. 
 
 (K 2/ 
 
 45. 
 
 5+5=2, 
 
 a; y 
 
 47. 
 
 X y 
 
 
 a; y 
 
 
 a; y 
 
 
 i-l=o. 
 
 a; 2/ 
 
 44. 
 
 13 5 
 
 25 2/ 2' 
 
 46. 
 
 3 2 31 
 
 a; 2/ 40' 
 
 48. 
 
 1 1 _ 5 
 2x^Sy 12' 
 
 
 ? + l- = -2. 
 
 a; y 
 
 
 5_10_11^ 
 X y S' 
 
 
 111 
 3a; 2y 12* 
 
64 SIMULTANEOUS EQUATIONS 
 
 49. ^ + ^=1, 51. A + X = _2, 53. 1^-A = _A, 
 2x Sy ' 2x 3y ' 3x 2y 36' 
 
 X 2/6 4:X Qy ' ■ 8x62/ 24 
 
 50. A + A = _??, 52. ?_5 = _4, 54. Ah_A = 8, 
 3a; 22/ 3 a; 2/ 2a; 42/ ' 
 
 2a; 32/ 3* x y ^* 3x 2y 3* 
 
 4a; dy 3a; 22/ 
 
 ^ ?_ = 22 -62/ + 4a; = 26a;2/. 
 
 3a; 32/ ^' 
 
 3a;-5 , y-1 /3a;-l\ , ^ 
 
 — 2 — + 3" ^^-y- 2/f— 3 — \ = xy-x-\-6. 
 
 II. LITERAL 
 
 Exercise 36 
 Solve: 
 
 1. a; + 32/ = 7a, 5. x-\-y = m, 
 5a; — 22/ = 18 a. 2a;— 32/ = w. 
 
 2. 3x-\-2y = 5a, 6. a; + 2/ = '^ + ^> 
 5a;-f32/ = 8a. 3a; — 22/ = m — ?j. ^ 
 
 3. aa; + 62/ = l> 7. x — y = m — n, 
 ax — 6y = 3. nx-\- my = 2 mn. 
 
 4. 2aa; + 3&?/=l, 8. ax-\-hy —ntj 
 3 ax-]- 2 by = 2. ex -{- dy = n 
 
SIMULTANEOUS EQUATIONS 65 
 
 9. x-{-my = -l, ^^ (7n + n)x-\-(m-n)y ^^ 
 
 y = n{x-\-l). ' m'^ + 7i^ 
 
 10. mx = ny, 
 
 x-\-y = a. 
 
 11. {c-{-d)x=(c — d)y, 
 
 x — a = y. 
 
 x — y = 0. 
 
 13. (711 + n) X -{- cy = 1, 
 ex -\- (m-\- n) 2/ = 1. 
 
 14. ^ + ^ = c, 
 
 a; 2/ 
 
 X y 
 X y _ 3cd — c^ 
 
 ' c-\-d c — d c^ — d^' 
 x + y = c. 
 
 16. i^ + - = a + &, 
 ox ay 
 
 X y 
 
 ^ • y ^ ^ 25. (g + ^>-(^-^)y -i^ 
 
 
 ma; — ny = m'-^ + w^- 
 
 20. 
 
 
 
 (a + 6)x+(a-6)2 
 
 21. 
 
 a c 
 
 
 x-\-l 7/H-l ^ 
 
 
 n — J- 
 c a 
 
 22. 
 
 aU-^a-,-^^ 
 
 
 ah 
 
 23. 
 
 x-\-y , x-y ^ 
 
 
 
 i»-?/ « + ?/_n 
 
 
 m n 
 
 24. 
 
 
 
 2' + »-« = 3a. 
 
 17. -^ + - 
 
 4ccZ 
 
 X . ^ ^ 2 (£zi^' = l.. 
 
 + 
 
 m — n m-\-n m^ — n^ (c + c?)2/ 
 
 18 ^+^ ^ ^-^« 26. ^-^ I y-'^ =i 
 
 ' y + a y—2a ' p—m p — 7i 
 
 x — a __ x-\-Sa x + m . y— m _ m 
 
 y—a y+a ' p m—n p 
 
 R. & S. EX. IN ALG. — 5 
 
66 SIMULTANEOUS EQUATIONS 
 
 III. THREE OR MORE UNKNOWN QUANTITIES 
 
 Zizercise 37 
 
 Solve : 
 
 1. Zx-\- y—2z = l, 9. x-\-y = 2a, 
 2x-3y-{- z = -l, x + z=3a, 
 
 4:X—2y-\-3z = 14:. , ^ 
 
 ^ y + z =2a. 
 
 2. x + 3y+ 2 = 1, 
 
 2x+ y-3z = l, ^^' ^ + 2y+ z = a, 
 
 3x-^2y-2z = -2. x+ y-^2z = b, 
 
 3. 2x + 3y-5z = 0, 2/+ z + 2x = c. 
 3x-4:y-2z = -3, 
 
 2y-3x + Sz = 7. '^' o^ + 20 = 2(, - .), 
 
 4. 2. + 3, + 4. = 12, y + 20 = 3iz-x)^ 
 3a.-42/ + 5. = 2, . + 20 = 2(.. - 2,). 
 4:X + 5y-\-6z==24.. 12. x + y-^z = a-\-h, 
 
 5. 3a;- y-{-2z = -ll, x-^y-z = a-b, 
 3y + 2x- . = -12, 2/ + ^-^ = c-a. 
 32!+ x + 2y = -20. 
 
 6. 2a;4-2/-10;2 = 20, 13 ^4.^ + ^ = ^ 
 
 ^ , Q 1K 3^2^4 12* 
 — y — oz-\-3x = lbj 
 
 ^ 4^3 2 12' 
 
 7. x + y = z + 3y 
 
 X y . z _ 5 
 
 y = Sx-8, 2~4 + 3 2 
 2 — a? = 4. 
 
 8. x + 2y = 25, ^^' 1^; + J2/ + J. = 23, 
 
 2/-22; = 0, icc + iy + i2 = 28, 
 
 a; + 30 = 2O. ix-\-iy + ^z = 27. 
 
SIMULTANEOUS EQUATIONS 67 
 
 ''• 2 + 2/ 5' 
 
 S+z f 
 
 z 2 
 4 + a; 3' 
 
 16. ay + hx = l, 
 
 ex + az= 1, 
 
 bz + cy=l. 
 
 "• A+ft-^ 
 
 X 
 
 x + y-\-u = SAf 
 2/ + z + w = 36. 
 
 20. 
 
 1.2 1_^ 
 
 X y z 
 
 
 2_4 + 3^_3_ 
 
 
 X y z 
 
 
 ?_l+?=i 
 
 X y z 2' 
 
 21. 
 
 _ + - = w, 
 a? 2/ 
 
 
 a; z 
 
 
 2, z 
 
 2|, 
 
 2* 32/ 2 
 
 1+1+ i=r. 22. i5+§_§=4, 
 
 X y 2z X y z 
 
 9 4 4. 
 
 18. a; + 2/ + 2; = 33, -"7, + ^"=^' 
 
 X y z 
 
 + z+u = S5, . 
 
 ? +5-1 = 2. 
 
 352/ - 
 
 .o 1^1 ^ 23. ^^ = 7i, 
 
 19. _ + _ = -, x — y 
 X y Q 
 
 1_^1_7 -^==li 
 ^ + ^"12' 
 
 1 + 1 = 1 -^^=^i- 
 
 a; 2 
 
 4 2/-^ 
 
68 SIMULTANEOUS EQUATIONS 
 
 24. " + -^ + 5 = 1 
 
 X y z 2 
 
 
 25. 
 
 mx + ny = a(m-{- n), 
 mx -\-az = n{a-\- m), 
 
 a . b c 1 
 
 
 26. 
 
 ny -\-az = m(a + n). 
 x + y=22, 
 
 ^_^_£— _ 
 
 1 
 
 
 2/ + ^ = 18, 
 
 X y z 
 
 2 
 
 • 
 
 2; -j- W = 14, 
 W-\-U = 10f 
 
 w + a? = 16. 
 
 IV. PROBLEMS IN SIMULTANEOUS EQUATIONS 
 Exercise 38 
 
 1. A man purchased 20 acres of land for $1640. Part of 
 it was bought for $ 90 an acre and the remainder for $ 50 an 
 acre. How many acres were there in each portion ? 
 
 2. A man and a boy together weigh 230 pounds, and twice 
 the man's weight is 60 pounds more than 3 times the boy's 
 weight. Find the weight of each. 
 
 3. Three horses and 4 cows can be bought for $610, but 
 at the same rates it takes $720 to purchase 4 horses and 3 
 cows. Find the price of each per head. 
 
 4. If half of A's money is added to B's money, the sum is 
 $ 170 ; but if half of B's is added to A's money, the sum is 
 $ 160. How much money has each ? 
 
 5. In 10 hours A walks 1 mile more than B walks in 8 
 hours. In 5 hours B walks 5^ miles less than A walks in 7 
 hours. How many miles does each walk per hour ? 
 
 6. If the numerator of a certain fraction is subtracted from 
 the denominator, the remainder is 21 ; but if the denominator 
 is subtracted from 8 times the numerator, the remainder is — 7^ 
 Find the fraction, 
 
SIMULTANEOUS EQUATIONS 69 
 
 7. In a certain town meeting 312 voters were present, and 
 a motion was carried by a majority of 8 votes. How many 
 voted for and against the motion ? 
 
 8. Two men had together $ 100, and if the first had given 
 $ 10 to the second, each would then have had the same amount. 
 How much had each originally ? 
 
 9. If 2 is added to both numerator and denominator of a 
 certain fraction, the resulting fraction is |. If 1 is subtracted 
 from both numerator and denominator, the new fraction is ^. 
 Find the original fraction. 
 
 10. A boatman can row 20 miles down a stream and back in 
 10 hours, the current being uniform. He can row 2 miles up- 
 stream in the same time that he can row 3 miles downstream. 
 Find his rate per hour both down and upstream. 
 
 11. If the width of a field were increased 1 rod and the 
 length 2 rods, the area would be 34 square rods greater ; but if 
 the width were decreased 2 rods and the length increased 3 
 rods, the area would be unchanged. Find the length and width 
 of the field. 
 
 12. Find a fraction such that if you double the numerator 
 and add 3 to the denominator the result is f ; but if you add 3 
 to the numerator and double the denominator the result is |^. 
 
 13. Two sheep-owners met. A said, " Sell me 4 of your 
 sheep, and I shall have twice as many as you have." B said, 
 "No; sell me 1 of yours, and we shall each have the same 
 number." How many had each ? 
 
 14. When a certain number of two digits is doubled and in- 
 creased by 4, the result is the same as if the digits had been 
 reversed and this number decreased by 22. The number is 2 
 less than 3 times the sum of its digits. Find the number. 
 
70 SIMULTANEOUS EQUATIONS 
 
 15. If I divide a certain number by 3 more than the sum of 
 its two digits, I get a quotient of 3 and a remainder of 8. But 
 if I reverse the order of the digits and divide by twice the 
 sum of the digits in the same reversed order, my quotient is 
 3 and remainder 11. Mnd the number. 
 
 16. A boy bought 5 apples and 3 oranges for 25 cents, 4 
 oranges and 5 pears for 35 cents, 2 pears and 7 apples for 20 
 cents. Find the prices paid for each apple, orange, and pear. 
 
 17. Find 3 numbers such that if each be added to | the sum 
 of the others, the results will be 32, 28, and 30 respectively. 
 
 18. The sum of the three digits of a number is 12. The 
 hundreds' digit is one half the sum of the other two, and the 
 units' digit is ^ the number composed of the other two in 
 the original order. Find the number. 
 
 19. Three boys together weigh 300 pounds. Half the sum 
 of the weights of the first and the third equals the weight of 
 the second. The sum of the weights of the second and the 
 third divided by the difference between the weights of the third 
 and the first gives a quotient of 5 and a remainder of 20. 
 Find the weight of each. 
 
 20. A and B together can do a certain piece of work in 3 
 days, A and C the same work in 4 days, B and C the same 
 work in 6 days. How long will it take each alone to do the 
 work ? How long will it take all working together ? 
 
 21. Some books were divided among 3 boys, so that the first 
 had 12 less than half of all, the second 1 less than half the 
 remainder, and the third 17. Find the number each received. 
 
 22. A boy has 100 pieces of silver. The value of the quar- 
 ters is 3 times the value of the dimes, and the sum of the 
 values of the half dollars and dimes divided by the difference 
 of the values of the quarters and half dollars is f. Find the 
 number of dimes, quarters, and half dollars. 
 
INVOLUTION AND EVOLUTION 71 
 
 INVOLUTION AND EVOLUTION 
 
 L MONOMIALS 
 
 Exercise 39 
 
 Write the value of : 
 
 1. (2a)l 9. {-2mn)\ ^^ (Sa^\ ^1. p^^V. 
 
 2. (3 ay. 10. (-2 ay. ^ ^ ^ 
 
 ^- ^^'*^'- 12. (^m'ny)\ ^g. ^-^^^Y. 23. ^^^'^'^* 
 
 / 2 am V 
 
 V 3cdy 
 
 ®- ^~-^")- 13. aaO^ 
 7. (Say. ' \S 
 
 20. -f-^X 25. r^^^Y. 
 
 40. 
 
 ^S2a'' 
 
 8. (-2a2)^ 15. (-^aby. 
 
 26. V4m^ 34. -y/lQ m*n\ 
 
 27. Vl6mV. 35. ^Wm^n"^. 
 
 28. ^8?d^. 3e. ^/4^. ^1- \'^K^J 
 
 29. ^27?. 
 
 30. V64mV. 
 
 ^ 
 
 42. A^/-32'''''^''" 
 
 31. ^327^. ^^ ^/25^ 43. V-27(a + 6)^. 
 
 32. VlOOa^y. 44. ^Sl (m-ny. 
 
 33. ■v/-64a^c^ ' >'343ci2 45. V-32(a + l)' 
 
72 INVOLUTION AND EVOLUTION 
 
 n. INVOLUTION — BINOMIALS 
 Exercise 40 
 
 Expand : 
 
 
 
 
 
 
 
 1. 
 
 (a + by. 
 
 12. 
 
 (d^- 
 
 -4 c)*. 
 
 20. 
 
 (- 
 
 -!)• 
 
 2. 
 
 (a + by. 
 
 13. 
 
 (d^- 
 
 -3 c)'. 
 
 
 3. 
 
 (a + m)^ 
 
 14. 
 
 (c^-\-2cy. 
 
 21. 
 
 (aH 
 
 -a^-l)^ 
 
 4. 
 5. 
 
 (a + 2y 
 
 (a-sy 
 
 15. 
 
 
 22. 
 
 i^- 
 
 3 a; + 2/. 
 
 6. 
 
 (2a + 3y. 
 
 16. 
 
 (2 a 
 
 -I)'- 
 
 23. 
 
 (m*- 
 
 -7l2_3^^\ 
 
 7. 
 
 iSa-2y, 
 
 17. 
 
 fab \' 
 
 24. 
 
 K + 
 
 ■ a + 1)^ 
 
 8. 
 
 (2a2 + 5)^ 
 
 
 25. 
 
 («=- 
 
 ■a + lf- 
 
 9. 
 
 (ab - ly 
 
 18. 
 
 V2"' 
 
 -')■ 
 
 
 
 
 
 
 
 26. 
 
 (a + 
 
 c-i)'- 
 
 10. 
 11. 
 
 (a-2y. 
 (a'b'-{-2cy. 
 
 19. 
 
 (i- 
 
 -11- 
 
 27. 
 
 (2(1- 
 
 -a'-\-iy 
 
 HI. EVOLUTION — SQUARE ROOT 
 Exercise 41 
 
 Extract the square root of : 
 
 1. aj* + 2a^ + 5aj2-t-4aj + 4. 
 
 2. x*-6x--{-17x'-24:X-\-16. 
 
 3. aj« + 2ar^ + aj'-2a^-2a;2 + l. 
 
 4. a;^_2a;3 + lla^-10a; + 25. 
 
 5. a^ + 4:a;*-8ar' + 4ar^-16a; + 16. 
 
 6. 4a;*-20x3_,_37 3^_3Q^_,_9 
 
INVOLUTION AND EVOLUTION 73 
 
 7. ^-12x-2x'-\-4.s?-\-Q^. 
 
 8. a^ — 2 a^x + 5 aV — 6 aV + 6 aV — 4 aa^ + a;«. 
 
 9. 12a;3-30a; + 4a;^4-25-llar^. 
 
 10. 25 a;2y _^ 2 a;y H- x« - 8 ary- 12 a^?/^ + 36^^- 4 ar*?/. 
 
 11. ar'-2ar^-14a; + 49 + 14x^4-a^. 
 
 12. - + X^+ 3 +T+9 
 
 13 ^'_i^4.??^ + a; + i. . 
 ^^' 9 3^6 ^"^^16 
 
 14. ^ + i^+2-i^ + 4 
 
 15. 4 + 4a-a^ + -+ — -- + -. 
 
 16. f + 4 + 6_i_2a. 
 9 Of a 3 
 
 17. c«-| + ^*-f-^' + <^ + f^-- + Ti-,- 
 
 2 16 2a 4aa4a^ 
 
 Extract, to three terms, the square root of : 
 
 18. 1 4- 3a. 20. a^ + 9 &. 
 
 19. l-5a. 21. a^+4a;. 
 
 Extract the fourth root of : 
 
 22. 81a:4-216a^ + 216a^-96a; + 16. 
 
 23. a^-12a362_^54a26*-108a6« + 8168. 
 
 24. 16a^ + 16a»a; + 6a2a^ + aa^ + — . 
 
 ■ 16 
 
74 
 
 INVOLUTION AND EVOLUTION 
 
 IV. EVOLUTION — CUBE ROOT 
 Exercise 42 
 
 Extract the cube root of : 
 
 1. a3 + 9a2 + 27a + 27. 
 
 2. a«-15a^ + 75a^-125a» 
 
 3. a« + 6a^ + 15a^ + 20a3 + 15a2 + 6a + l. 
 
 4. 1 - 9 a + 33 a^ - 63 a^ 4- 66 a^ - 36 a^ + 8 a«. 
 
 5. 60 a^ 4- 1 + 240 a;^ + 64 cc« - 192 ar^ - 160 aj^ - 12 jb. 
 
 6. m® — 3m* + 5m^ — 3 m — 1. 
 
 7. 18 a* + 90 a^ + 125 - 3 a« - 31 a^ - 75 a + a\ 
 
 8. m3 + m2+^+ ^ 
 
 9. a« + ^V^^''^' 
 
 a^ 
 
 3 27 
 
 4- 
 
 a^ 
 
 10. a^-.^"'^ ■ ^^^' ^' 
 
 2c "*" 4c2 
 
 8c^ 
 
 11. a^-3a:5 + 2a^-a:3^2^_«_l.. 
 
 3 3 27 
 Extract the sixth root of : 
 
 12. 1 - 6 ?ri + 15 m2 - 20 m^ + 15 m< - 6 m« + m«. 
 
 13. a« + 60 a^62 ^240 a^b* + 64 6« - 12 a'b - 160 a^b^- 192 ab^ 
 
 V. EVOLUTION— NUMERICAL 
 Exercise 43 
 Find the square root of : 
 
 1. 3969. 5. 15129. 
 
 2. 6561. 6. 93636. 
 
 3. 8464. 7. 1772.41. 
 
 4. 10404. 8i 2672.89. 
 
 9. .986049. 
 
 10. .01449616. 
 
 11. .01018081. 
 
 12. .000104101209. 
 
INVOLUTION AND EVOLUTION 
 
 16 
 
 Find, to four decimal places, the square root of: 
 
 13. 8. 16. 2.5. 
 
 14. 14. 17. 37.561. 20. 1.0405. 
 
 15. 175. 18. .375, 21. .0035. 
 
 19. |. 
 
 Find the cube root of : 
 
 22. 42875. 25. 12977875. 28. .001481544. 
 
 23. 250047. 26. 28652616. 29. 34328.125. 
 
 24. 1860867. 27. 74.618461. 30. 20.570824. 
 
 Find, to two decimal places, the cube root of: 
 
 31. 9. 33. 7.3. 35. |. 
 
 32. 67. 34. 2J. 36. .0042. 
 
 Find, to two decimal places, the value of : 
 37. V5. 38. Vi5. 39. ViO. 
 
 41. V^. 
 
 42. v:oo7. 
 
 43. VIl2. 
 
 44. a/IO. 
 
 45. V.0017. 
 
 46. V2V2. 
 
 47. V5 -f V3. 
 
 48. V5-f-V3. 
 
 49. ^10-fV7. 
 
 50. Vl5-3^i8: 
 
 51. 
 
 40. V.9. 
 
 ^ 5 + V5 
 
 52. J 10+4V3 . 
 ^ V2 
 
 53. V.038 4-V.009. 
 
 54. Vv:5+\/A 
 
 55. vio+Vio+^10. 
 
REVIEW 
 
 Exercise 44 
 
 1. Find the H. C. F. of 5 a* - 4 a^ - 64 and a' + a^ - 20. 
 
 2. Take ic^+3 from a^ — 2.x^-^Xj and multiply the re- 
 mainder by a; (a? + 3). 
 
 3. Find four terms of a^ -^ (a — 2). 
 
 4. Prove that (''+^)'-<"-^)' = a6. 
 
 4 
 
 5. Find the value of Va^ + 2/^ + 2;^ — (ic — 2/ — zy, when 
 a; = 3, 2/ = — 3, and z = 0. 
 
 6. What is the remainder if (a — 2) (a — 3) (a- — a + 5) is 
 divided by (a - l)(a + 2) ? 
 
 7. A certain divisor is a^ -{-x — 2 and the corresponding 
 quotient is ay^ — x— 1. Find the corresponding dividend. 
 
 8. What quotient will result if the sum of x^ — 5x^ -{-Sx 
 and 2qi^ — 5x — 1 is divided by the sum of 3 i»^ — 2 a; — 3 and 
 -2i»2-h4? 
 
 9. Solve ^^-^ + ^-=^=2. 
 
 x-\-2 X — 5 
 
 10. Prove that 
 
 ("-fe?)^fe?)+(4ef)'=-- 
 
 76 
 
REVIEW 77 
 
 11. If m= r, ^ = n^ P — 
 
 a + 1' a + 2'^ a + 3 
 find the value of z hi h 
 
 1 — m 1 — n 1— i> 
 
 12. What value of x will make the expression 
 
 3(a; + 2)-4(a;-3) 
 equal to twice the value of a; ? 
 
 13. If -Ti = 9, find the value of — ' 
 
 Sa—x x—a 
 
 14. Show that 
 
 5a; 
 
 -2a:-[4-i(a.- + 4)-21a;-3-(a; + 2)S-4]-^ = a 
 
 15. Show that 
 
 a(h-\-c — a) h(c-\-a — h) c(a-{-b — c) _^ 
 (a _ 6) (c - a) "•" (6 - c) (a - 6) "^ (c - a) (b - c) ~ ' 
 
 a-{-4:b 2 46 — g 
 
 .. .Q- r^ a-46 46 + a /2 IN 
 
 16. Simplify -^— X^--2^} 
 
 17 Ifg- 2findvalucof (^~^^^^~^^> (l+a)(l+2a) 
 
 17. It a- ^tmdvalueot jf^^^ (r=2^) 
 
 18. Solve ^-^^-1-^ + ^ + ^=0. 
 
 2g — a; a; + 2a 
 
 19. Simplify 
 
 6 («-!)(« -2) 
 
 a — 1 a + l 
 
 .O.Add4[^-l(ao-l)]a„<i3[^_l(c + l)-2]. 
 
78 REVIEW 
 
 21. Solve — ; ; — = m-\-n. 
 
 x-\-n x-\-m 
 
 22. Show that (a-\-b)(a+b-l)=a(a-'l)-\-2ab-\-h(b-l). 
 
 23. Find the value of — — a(x-^l) ^^ ^ 
 
 IX X 
 
 when X 
 
 24. If a = ^^^ and c=^^, findcwhen 6 = -l. 
 62 a 4- 3 
 
 26. Simplify a-lb-o-\2a-2,-U3o-m, 
 
 a— J 
 
 when a = 1, 5 = 2, c = 3. 
 
 4a; .4 
 
 3i» + l T 3 5x + 2 
 
 26. Solve ic- 
 
 5 2 10 11 a; + 6 
 
 27. What must be the value of m in order that 
 
 6a^- a^- 11 a^-lOa-m 
 may be exactly divisible by 2 a^ — 3a — 1? 
 
 28. Show that ^(^-'^) _^JP±^^a when a = x-c. 
 
 29. Given that m = - r and ti = — - — -, 
 
 1 + a^ 1 + a^ 
 
 prove that m^ + n^ = l. 
 
 30. Prove that — satisfies the equation 
 
 3 
 
 4a; — m x-^m __^ 
 2x — m x^m~ 
 
REVIEW 79 
 
 31. Solve (a;-f3)(2/-2) = (a;-5)(2/ + 4) + 16, 
 
 {x — y){x + l) = l — x{y-x). 
 
 32. If x = ^^ and a = ^~^^ find x in terms of m. 
 
 33. Solve a(a — x) = b(x-^y — a), 
 
 a(j/ — b — x) = b(y — b). 
 
 34. When x = 2, find the value of 
 
 "-[-K''-^i)-|f-i)-<-8}-f]- 
 
 35. Solve (a-26)aj + a2 + 52 = (2a-&)a;-2a6. 
 
 36. What must be added to 2[l-3a;fl-2a;(l-5a;)j] to 
 produce -5-3x{l-2xy? 
 
 37. li x = — ^^ and m = ^ T" , find value of a; in terms of n. 
 
 w 2 ' 
 
 38. What must be the value of m in order that x = 2 may- 
 be the solution of m{x — m)—S(x — S)? 
 
 39. Arrange (m — 2)* — (m — 1)^ + 3 (2 — m)^ in ascending 
 powers of m. 
 
 40. Solve ^-^= ^ + ^. 
 
 a; + 2?i a; — 2m 
 
 41. Expand [m- 3 n-f3(m-n) -n}]*. 
 
 42. Find the square root of 
 
 (m - nyi(m -ny-2 (m^ + n^)] + 2 (m^ + n^. 
 
 43. Solve ^-:=i^ + ^-ii^ + ^:::i-^ = l + ? + ?. 
 
 en cm mn m n c 
 
80 REVIEW 
 
 44. What expression multiplied by itself will give tlie ex- 
 pression 4^rc6_i2a^ + 5x'-hl4.a^-llx'-4:X-{-4.? 
 
 45. Expand (a^ — 8cy and extract square root of the result. 
 
 46. Divide 1 ^^„ by 1 — —^ — — and extract square 
 
 (a-\-by -^ d'-ab + y' 
 
 root of the quotient. 
 
 47. Simplify V(a-2c)«. 
 
 48. Show that the difference between the squares of any 
 two consecutive numbers is 1 more than double the smaller 
 number. ^ 
 
 49. Prove that q r is a perfect square. 
 
 a a^ — a- 4- a 
 
 50. Compute ^0.4 -f- V.004 to three decimal places. 
 
 51. Find the cube root of [2 a - (a + l-(a-2))J. 
 
 52. If a; = ^L+1, find the value of 
 
 a — 1 
 
 ^(x + 4:){x-2)-2(x - 4). 
 
 53. Simplify \VlO — V5 to two decimal places. 
 
 -- oi a — 3a; b — 2x -, 
 
 54. Solve = 1. 
 
 64-a; a + x 
 
 55. Find the square root of 
 
 (a^_4a;4-3)(a^-9)(a^ + 2a;-3) 
 x^-^ex-{-9 
 
 56. Find, to two decimal places : ^ / "^ . 
 
 A/ V150 
 
 57. Solve 15y — 14:X = — 4:xy', SOy — IS x = 17 ocy. 
 
EXPONENTS 81 
 
 EXPONENTS 
 
 I. TRANSFORMATIONS 
 
 Exercise 45 
 
 Express with fractional exponents : 
 
 1. 
 
 2. 
 
 Va. 
 
 <ra. 
 
 2V^. 
 
 5. 
 6. 
 
 7. 
 8. 
 
 
 9.' 
 10. 
 11. 
 12. 
 
 3 Va-". 
 V4al 
 
 13. 
 14. 
 15. 
 16. 
 
 ^27 a^. 
 
 3. 
 
 ^/a6Vd*. 
 
 4. 
 
 ^32a:^2/'V^ 
 
 Express with radical signs: 
 
 17. 
 
 aK 
 
 22. 
 
 abK 
 
 27. 
 
 ahl 
 
 32. 
 
 2 c^dl 
 
 18. 
 
 aK 
 
 23. 
 
 abc^. 
 
 28. 
 
 (ab)l 
 
 33. 
 
 a^^y. 
 
 19. 
 
 aK 
 
 24. 
 
 3 abhi 
 
 29. 
 
 1 
 
 34. 
 
 2ahhK 
 
 20. 
 
 «l 
 
 25. 
 
 ahl 
 
 30. 
 
 3 c^d^. 
 
 35. 
 
 4 c^d-. 
 
 21. 
 
 5aK 
 
 26. 
 
 ahK 
 
 31. 
 
 7cd\ 
 
 36. 
 
 m » 
 
 5 a"6«. 
 
 In the following, transfer to denominators all factors having 
 negative exponents : 
 
 37. 
 
 ab-\ 
 
 42. 
 
 3 a-^b-\ 
 
 47. 
 
 4 a ^x. 
 
 38. 
 
 ah-'c-\ 
 
 43. 
 
 a-'bc-\ 
 
 48. 
 
 3-^m. 
 
 39. 
 
 2 abc-\ 
 
 44. 
 
 a'b-'c-K 
 
 49. 
 
 9-kd. 
 
 40. 
 
 abh-\ 
 
 45. 
 
 2-'a-\ 
 
 50. 
 
 - 2-^a-^bc 
 
 41. 
 
 1 a~\ 
 
 46. 
 
 3a'b-K 
 
 51. 
 
 -|a-'6c. 
 
 
 R. & 8. EX. IN ALG, - 
 
 -6 
 
 
 
82 
 
 52 
 
 53. — 
 
 } 
 
 
 EXPONENTS 
 
 
 Write the 
 
 following without denominators : 
 
 
 a' 
 b' 
 
 54. 2^. 
 
 mn 
 
 ^6 ^^' 
 
 KG 2 mri 
 
 2k, 
 
 c 
 
 66- !|- 
 cd 
 
 57. 2« . 
 
 59. ^«" 
 
 60. 
 
 4.C 
 
 61. 
 
 3a-^ 
 
 a-'x-i ^ „^. 
 
 Express the following -vrith positive exponents : 
 
 62. 3a-\ _3_. 4VFJ 
 
 63. 2 am-*. ^ ^ «"' 
 
 64. a'^b-'c. 72 i^. 77 ^~'^~' 
 
 65. mn~^. 
 
 66. 2a-^6V^ 73. ^^=^- 78 
 
 67. om~^6"^c. 
 
 68. ab~^xy-\ 
 
 tA, 
 
 (xZ-^ 
 
 73. 
 
 2a6-^ 
 
 Sm-^n 
 
 74. 
 
 1 
 
 75. 
 
 2-V 
 
 0-^6 
 
 2Va-2c- 
 
 79. 
 
 3 mn~- 
 4 a-icd-3 
 
 69. mn-V^^. ^_,^ ^^ ^-'ab' 
 
 70. a-^6-V\ ' a-^ SVa;"^ 
 
 Find the numerical value of the following : 
 
 81. 4i. 85. 16^ 89. 125i 93. 4"^. 
 
 82. 9i 86. 27*. 90. (-27)i 94. 9~^. 
 
 83. 4l 87. 27*. 91. (-64)1 95. 16"^. 
 
 84. 9I 88. 8li 92. (-125)1 96. (-27)"i 
 97. 36"*. 98. (-32)-^. 99. -s/^^^. 
 
EXPONENTS 83 
 
 100. ^J/(=:27p. 109. Sl-i.l;. 117. -(-2i^)-l 
 
 101. (^=:27/. jj^ 2-3-2-- "^- ^*)'*- 
 
 102. ^K ,,,; ,6-i".8i "'■ ^-«^"*- 
 
 103. (^16)'. ^^^ gi. j__ 120. ar^-^(#. 
 
 104. (<^^/. ' 32*' 121. 3-^. A. 
 
 105. 2-^.3->. 113- 9-* -81*. ,-j „j 
 
 122 T 
 
 106. 3-2.2-2. 114. 2-2.32.4.6-1. • 27^ 
 
 107. 9-^.27*. 115. (2J)i 16-^ . 27"^ 
 
 108. 16^.8"*. 116. (l^^^)"^. * 9-^.64-* 
 
 124. (4-3 . 3-" . 23) -^ (16-^ . 27"* • Sl"^). 
 
 Perform the indicated operations in the following : 
 
 125. w 
 
 « . a-\ 
 
 130. 
 
 (i-« • a». 
 
 135. m-^-m^. 
 
 126. 0/ 
 
 ' . a-\ 
 
 131. 
 
 a^.aK 
 
 136. 171^ -m^. 
 
 127. a 
 
 .a-8. 
 
 132. 
 
 a ' ai 
 
 137. a-*-i-a\ 
 
 128. a' 
 
 ^ . a-2. 
 
 133. 
 
 a-i . a-i 
 
 138. a-3-^a-2. 
 
 129. a- 
 
 -' . a-^ 
 
 134. 
 
 aKa-i. 
 
 139. a-^^al 
 
 140. 
 
 a^cc . ax-\ 
 
 
 147. 
 
 8*4-9i 
 
 141. 
 
 amhr^ . a^m" 
 
 -V. 
 
 148. 
 
 8-^-9-i 
 
 142. 
 
 2a62.3a-i6- 
 
 -1^ 
 
 149. 
 
 a'h . a-162 . ah-\ 
 
 143. 
 
 a« + 6«. 
 
 
 150. 
 
 2 a . 3 a^ . a-*. 
 
 144. 
 
 3a«-(3a)«. 
 
 
 151. 
 
 3 a^a^^/ • ohcx-\ 
 
 145. 
 
 (a + &)«. 
 
 
 152. 
 
 o?^fx • a^ic-^ 
 
 146. 
 
 (-2)-3-(- 
 
 -3)-^ 
 
 153. 
 
 2Va-3aV^-a;"^. 
 
84 
 
 EXPONENTS 
 
 157. 
 
 168, 
 
 163. 
 
 164. 
 
 165. 
 
 166. 
 
 167. 
 
 168. 
 
 x-Wx 
 
 154. a^Vx . a^Vx^ h- aV^. 
 
 155. 2a-^V^.3aiVx^^-ax-\ 
 
 156. x'^aVc^-^x-^a^Vcd^. 
 
 159, 
 
 160. 
 
 VaV 
 
 a^\a^Vx 
 
 161 
 
 162. 
 
 3a;-^ 
 
 a^a; 
 
 'VacVac 
 
 3 m ^Vo^ 
 
 mn- 
 
 ^Vm^ 
 
 Sx'^V^ ■ 
 
 a~^^ax~^ 
 xr^-y/a-^x 
 
 2aWx^' 
 
 a'^y/d 
 
 c'Voc^ 
 
 169. 
 
 170. 
 
 171. 
 
 172. 
 
 173. 
 
 174, 
 
 oT^x-' 
 
 2aV9a^ 
 
 3 c-s/21 x--a-' 
 
 4 
 
 'V^TlV^ 
 
 12/- 
 
 V4 a^x- 
 
 Keduce to the simplest form : 
 
 175. {aj. 178. (a3)-2. 
 
 176. (a2)3. 179. (a-^f. 
 
 177. (a2)-i. 180. (2a'y. 
 
 3x^-s/-Ua-^x 
 
 a/-27V64^ 
 -^-125a-«' 
 
 181. (2a-3)-2. 
 
 182. (a-2)-^. 
 
 183. (4a-^i 
 

 (a-^-i 
 
 EX 
 198. ( 
 
 PONENTS 
 
 212. 
 
 85 
 
 184. 
 
 (S/-32c^«)-3. 
 
 185. 
 
 (Sx^)-^ 
 
 199. ( 
 
 2-'a-^y. 
 
 213. 
 
 '\/-81-*a«. 
 
 186. 
 
 {x-'^)-\ 
 
 200. { 
 
 ;8-^)^. 
 
 214. 
 
 (9a-'y-r^. 
 
 187. 
 
 (5aby. 
 
 201. ( 
 
 ;-8-^)^ 
 
 215. 
 
 (16a-V2/2)-l 
 
 188. 
 
 (a'by. 
 
 202. ( 
 
 ;- 27-^1 
 
 216. 
 
 {aV^'y. 
 
 189. 
 
 (a-'b-'y. 
 
 203. ( 
 
 ;-i25)-^. 
 
 217. 
 
 (a-'V^y. 
 
 190. 
 
 (ab-r^ 
 
 204. ( 
 
 ;-8a2)i 
 
 218. 
 
 (a-WaV<)-^. 
 
 191. 
 
 (a*b'c-^^. 
 
 205. ( 
 
 '2a-'c^y. 
 
 219. 
 
 (a-Va-^-l 
 
 192. 
 
 (646c-2)-l 
 
 206. ( 
 
 [2ah-'y)-\ 
 
 220. 
 
 (2a'^V^'y'. 
 
 193. 
 
 (-4a)l 
 (-aby. 
 (-2a'by. 
 
 207. ( 
 
 208. ( 
 
 209. < 
 
 [2m^np-Y\ 
 
 221. 
 222. 
 223. 
 
 (ab-Wa-'by^- 
 
 194. 
 
 :^-sa-^y. 
 
 (aV4a-^)-3. 
 
 195. 
 
 [■y/16a'b')-^ 
 
 (x-^yjxVwy. 
 
 196. 
 
 {-2aby, 
 
 210. 
 
 [2a-^Sa-y\ 
 
 224. 
 
 l(Va-'by\\ 
 
 197. 
 
 {-^a)-\ 
 
 211. 
 
 [8a-2c-3)-l 
 
 225. 
 
 l(^Sa*by\\ 
 
 226. ' l{</27'a-'yy\ 
 
 227. yjie-'x^^. 
 
 228. (^[m^)^. 
 
 3/ ; 
 
 229. y-SVaF^. 
 
 230. (yjVu^y. 
 
 234. [(64ar^.^]- 
 
 235. ^j(16x'y-'Vxy)-^ 
 
 236. 
 
 VV^Vm -\/- 
 
 mx ' m 
 
 231. (a-'yJ27arix^)-\ 
 
 232. l^[(^</^Wr'f. 
 
 233. (^125 a^V^-^ 
 
 237. (V27^)-2-- (V9¥-3)-i. 
 
 238. \m~^n^^mn~^yln^) ' 
 
^6 EXPONENTS 
 
 240. y25a-^bVx-''-r-y9a-'b-^Vs^, 
 
 3 
 
 242. 
 
 
 243. 
 
 
 244. 
 
 245. \xl^^^'\\^^^\~\ 
 
 246. ^ M^;y6 c-3^g^y i^ 
 
 Vc-' Vad- 
 
 1^-^ 
 
 247. \\l- V". J27«V^|-'. 
 
 .48. [^^"^^-.g^^^J 
 
 249. (V •^^"'^'_ . ^332^i^F^r'. 
 I ^25a36-i^c2 J 
 
 252. iVa^ft-W^'c-iaVcVWaSc) 
 
EXPONENTS 87 
 
 Collect; 
 
 253. (|)i+(^V)i + (32)i 
 
 254. (2)-2 4.8^-4-\ 
 
 255. 3-2-27-^4-9"^. 
 
 256. (^?yVl6-f + A+(_2)-». 
 
 257. (3)-i_ 2-3 + (1^)^ + 128-1 
 
 258. 9-^ + 13 a;*' + 1"^ + {^)-\ 
 
 259. ■^2TF'5_:^ + J-_128-*. 
 
 2"^ 8"^ 
 
 260. 7aJ»-(7a;)«-17^ + A. 
 
 2 
 
 261. 8i-*-A- + :^-# 
 
 27-^ V34 9-^ 
 Simplify : 
 
 262. 2". 22-^2". 271. (a^+i) V*)' ' («'"0~^- 
 
 263. 4 "-2 . 82-" . 2». m _n n 
 
 264. (4-. 2-) ^8. '^'- (-'^'^O-. 
 
 265. (af^-^-^i . (a^-r . ar=. 273. (3^+2 _^ 3 • S'*) ^ (9 • 3"+^. 
 
 266. {ahy+y -^ a'fb". 274. (a^^-^^ • a;-^«-*) -^ a;"'*-^. 
 
 267. a'"+" . a^"*-" • a""^. 
 
 275. S[(a)'»-i]-'-i ;""•+». 
 
 276. [K«^-r^r]-[K^m- 
 
 268. ar^^a^"*. 
 
 269. [(a'=+^)^-^ -5- (a^-*)^. 
 
 270. (x"'-^y(xP-''y(oif-^y. 277. (Va'^^-j-Va)'^^^^ 
 
EXPONENTS 
 
 278 
 
 279 
 
 
 2n+iy2 . 2"-3 
 
 1 "*^ 1 
 
 280. KC'""'0'"{ m2-l.^„»+l^ 
 
 3n 
 a+6 g— 6 2a 1 
 
 283. ([ic *= ] . [ic~] -h a;~^)^ 
 
 284 
 
 
 -. [^'{5)•(')(S)r■ 
 
 II. MISCELLANEOUS APPLICATIOJSTS OF EXPONENTS 
 
 Exercise 46 
 
 Multiply : 
 
 1. a-2 - 2 a-^b-^ + &~' by a^ - b-\ 
 
 2. a^ + aM4-2>^ by a^-{-b\ 
 
 3. a-2-2a-^ + 3-a by 3a-^-2-2a. 
 
 4. a^ — aM + 6^ by a^ + ah^ + b\ 
 
 5. a-3-2a-2 + 3a-i + l by a-2-3a-i-l. 
 
 6. 3a^-6a^ + 4 by a^ + 2aJ-3. 
 
 7. sJ-a^-{-2-4.ar^ hy '2a^-S + 2ari 
 
 8. ^-f.l^_-^ + 2-^by ^-2 + ^'. 
 
 V^ Va; Va; Va Va; Va 
 
EXPONENTS %% 
 
 Multiply the following by inspection : ' 
 
 9. 
 
 [a-' + iy. 
 
 
 18. 
 
 (a-2-3)(a-2 + 2). 
 
 10. 
 
 :a- + 3)l 
 
 
 19. 
 
 (a^+4)(a^-h5). 
 
 11. 
 
 [a-^-4.y. 
 
 
 20. 
 
 (5-«-2)(3 + a-^. 
 
 12. ( 
 
 [a-' + h-y. 
 
 
 21. 
 
 (a^ - 6^)(a^ 4- 6^). 
 
 13. 
 
 [a^ + b-')\ 
 
 
 22. 
 
 (a-^-3)(a-^-2). 
 
 14. 
 
 [a-^ + h){a- 
 
 ^-h). 
 
 23. 
 
 (a-^_a-i)(a-^-2a-^). 
 
 15. 
 
 ^a-^ + 3)(a- 
 
 ^-3). 
 
 24. 
 
 (a-^6 + c-i)(2a-i6-c-') 
 
 16. 
 
 ;a-2-4)(a- 
 
 -2-1). 
 
 25. 
 
 (a-i + 6-^ + 1)2. 
 
 17. 
 
 :a^-2)(ai 
 
 + 2). 
 
 26. 
 
 (a-2 + 6-2_c)2. 
 
 Divide : 
 
 27. a-3 + 3a-2 + 3a-^ + l by a-^ + l. 
 
 28. a"^4-2a"^ + l by a"* 4- 1. 
 
 29. a + 6 by a^ H- &^. 
 
 30. a— 125 c"^ by a^ — 5c"i 
 
 31. a*-6a^ + 12a^-8 by a^-2, 
 
 32. x^-\-a~^ by a;^4-«~^. 
 
 33. a'— 3a^ + 3a"^-a"^ by a^ — cC^. 
 
 34. 10x-''-27a;-3 4-34a;-2_18a;-i-8 by ^x'"" -Qx'^ -2. 
 
 35 . 12 a"^ - 17 a"^ - 9 -f 13 a^ - 63 aHy 4 a"^ - 3 + 7 al 
 
 36. 
 
 6 a~i + 11 a ^ V » = -^-z + 10 ic^ by 
 
 Va Va 
 
 — + 5 a-^a;^ - 2 a;l 
 
90 EXPONENTS 
 
 Divide the following by inspection : 
 
 37. (a-2 - 9) by (a-^ + 3). 42. (a - 8) by (a^ - 2). 
 
 38. (ci-2-6-2) by (a-i-6-i). 43. {a^ + 27) by {a^ + 3). 
 
 39. (a--* - 16) by (a-^ -f 4). 44. (a-^ - 64) by {a^ - 4). 
 
 40. (a - 81) by (a^ - 9). 45. (a"* - fe-*) by (a-^ - ft-^). 
 
 41. (a-'-b-^)hj (a-^-b-^). 46. (a--* - 16) by (a-^ - 2). 
 
 Factor : 
 
 47. a-2-6-2. 57. aj-* - 9 a;-^ + 8. 
 
 48. a-^-81. 58. x-^-Sx-'^-ASx'K 
 
 49. 4a-2_256-^ 69. 2 x'^ -{- x-^ - 10. 
 
 50. a^-9. 60. 4a;"^ + lla;'^-3. 
 
 51. a^-8. 61. a;^-27. 
 
 52. a-2 + 5a-^ + 6. 62. a;^ + 64. 
 
 53. a-2— 6 (1-^-^ + 5 2/-^ 63. a;^ - 8. 
 
 54. a^ — lOa^ + 25. 64. a; — 4. 
 
 55. a^ + 8a^.4-16. 65. Sa?-\-b\ 
 
 56. m"^-5m"^-36. 66. a-i + 1256-'. 
 
 Simplify : 
 
 67. a-'^b-\ ^4 (a + l)(a-l)-i4-l 
 
 68. a-' + b-\ ' (a -\-l) (a -!)-'-! 
 
 69. a-'b + ab-\ 75. ^-(g + ^)"\ 
 
 l + (c_l)-i 
 
 70. a-^bc + ab-^c + abc-\ 
 
 71. a-\a + b) + (a^b)b-\ 76. ____^--^_^. 
 
 72. (a;-l+rO-^(a5-^-rO• ^^ a(a _ l)-i 4. 6(a + l)-i 
 
 73. (l+mn-i)-7-(l+m-^w). ' a(a+ 1)-^ + 6(a-l)-i* 
 
EXPONENTS 91 
 
 78 mn-^ + nr^n ^^ x(l -[- a;)-^ + x-\l — x) 
 
 m~^ — m~^n~^ + n~^ ' x(l + a;)~^ — a;"^(l — a;) 
 
 80. r a-| + (m + n)-n |-j^ _^ ^^2 ^ ^2 _ a')2-'m-'n-'l 
 
 81. [(m + a)~\m — c)~^ + (m — a)-^(m + c)"^] 
 -s- [(m + a)"\m + c)~^ + (m — a)-\m — c)-^]. 
 
 Expand : 
 
 82. (x-2x-y. 87. (V^-3V^)*. 
 
 83. (2a;-i + 3)^ 
 
 84. (x-^-Sa^*. 
 
 88. 
 
 85. (a.-f2a.-0^ ^^ ^__^ ^^. 
 
 86. (Va;-A/a;)3. 
 
 
 Extract the square root of : 
 
 90. x'^ -10 x-^-\- 25. 
 
 91. a;-8a;* + 18ic^-8a;i + l. 
 
 92. 9a-2-6a-i + 13-4a + 4a2. 
 
 93. 9a;-*-30a;-3 + 67fl;-2-70aj-i4-49. 
 
 94. 4a;^ — 4a;^+13iB^-6a;^ + 9. 
 
 95. 9(B-12a;^ + 34a;~^-20a;~* + 25a;-l 
 
 96. 16a;-^--^7^-7 + 12^/aJ + 4^/a^. 
 
 ■y/x 
 
 ^^ 9 a 24Va 24 V6 , 9 6 , ^^ 
 
 97. -7 ;= ;^H l-o4. 
 
 ^ V6 Va « 
 
92 
 
 I 
 
 
 EXPONENTS 
 
 
 
 
 Solve the following equations : 
 
 
 
 
 98. a;-i = 2. 
 
 
 105. a;~^ = -8. 
 
 
 112. 
 
 X~n = — 2. 
 
 99. ic^ = 3. 
 
 
 106. xi=^. 
 
 
 113. 
 
 --* = A. 
 
 100. x^ = -2. 
 
 
 107. a;"^=-i.. 
 
 
 114. 
 
 »="* = t1t- 
 
 101. x-^ = 2. 
 
 
 108. x~^ = l. 
 
 
 115. 
 
 1 
 
 102. a;~^ = — 3. 
 
 
 109. a;"^ = 16. 
 
 
 116. 
 
 V5="^=iooo 
 
 103. a?* = 8. 
 
 
 110. a;" = 2. 
 
 
 117. 
 
 x^ = </K 
 
 104. a;^ = -27. 
 
 
 111. a;" = 2*". 
 
 
 118. 
 
 xt = V^. 
 
 119. (a; 4-1)' = 
 
 4. 
 
 127. 
 
 (a^ 
 
 -l)-2 
 
 = i- 
 
 120. (a; + 2)3 = 
 
 125. 128. 
 
 (2 
 
 0.-1)- 
 
 •'=.v 
 
 121. (a;-l)^= 
 
 = 3. 
 
 129. 
 
 (X- 
 
 -^ + 1)- 
 
 '' = 9. 
 
 122. (a? -5)^ = 
 
 = 1. 
 
 130. 
 
 (X 
 
 ■^ + 2)- 
 
 ■^=16. 
 
 123. (a; + l)^ = 
 
 :4. 
 
 131. 
 
 (a.- 
 
 ■t-5)- 
 
 -^ = i. 
 
 124. (a;-3)i= 
 
 z8. 
 
 132. 
 
 (a:- 
 
 ■^-i)- 
 
 ■'=h 
 
 125. (a; + 4)-3: 
 
 = 27. 133. 
 
 (X- 
 
 -^ + 3)- 
 
 -" = 1. 
 
 126. (3aj-l)- 
 
 2_ 
 
 :i 134. 
 
 (X 
 
 ■|_7y 
 
 = 1. 
 
 Find the value of 
 
 X in the following : 
 
 
 
 
 135. 4* = 8. 
 
 
 138. 9^ = 27. 
 
 
 141. 
 
 8' = ^T. 
 
 136. 4* = 64. 
 
 
 139. 9^ = ^V 
 
 
 142. 
 
 32- = 9. 
 
 137. 16^ = 8. 
 
 
 140. 27* = 3. 
 
 
 143. 
 
 a)-^=8. 
 
 Find the value of x in the following : 
 
 144. x-^ = y', y^ = 4:. 148. 
 
 145. x-^=y', 2/^ = 2. 149. 
 -^ = -8. 150. 
 -"> 151. 
 
 146. x'^ = y-^', 
 
 147. 
 
 3.-1 =2/* J 2/~^ = -2. 
 «"^ = y-^ ; 2/f = 4. 
 a;"^ = y~^ ; t/ = '^' 
 
BABICALS 93 
 
 Find the value of n in the following ; 
 
 152. 2«-i = 16. 157. 3"+! = ^. 
 
 153. 3'*-i = 27. 158. 4'*-2 = J[^. 
 
 154. 9"-^ = 27. 159. (i)'*-' = ^. 
 
 155. 4"+' = 16. 160. (i)"-' = A- 
 
 156. 16~-^ = 8. 161. (1)"-' = ]^. 
 
 RADICALS 
 
 I. TRANSFORMATIONS 
 lizercise 47 
 
 Reduce to the simplest form : 
 
 1. V8. 14. --v/128. 
 
 2. Vl2. 15. -v^^Si. 
 
 3. V20. 16. \/32. 
 
 4. V28. 17. -^162. 
 
 5. V27. 18. --^96. 
 
 6. V45. 
 
 7. V48. 20. Vo^. 
 
 8. V72. 21. VaFb\ 
 
 9. -Vl25. 22. Va^¥?. 
 
 10. ^16. 23. -Vl8^. 
 
 11. ^24. 24. V27V- 
 
 12. -a/54. 25. ^54^i¥. 
 
 27. 
 28. 
 
 -■v/320a%V. 
 3 V27 a. 
 
 29. 
 
 4V28a«6^ 
 
 30. 
 
 2 V56 m%3^ 
 
 31. 
 
 V20 m^*. 
 
 32. 
 
 -2-v/250a* 
 
 33. 
 
 ^16 a^^«2/^«. 
 
 34. 
 35. 
 36. 
 
 3-V/64 m^n. 
 
 i V54 a^ 
 
 37. 
 
 -^V20 6c^c?. 
 
 38. 
 
 -v/54 ai«6^. 
 
 13. V108. 26. -V128mV. 39. -\Vi25<^', 
 
94 
 
 RADICALS 
 
 40. i/27a''3^. 
 
 41. aV(a + c)^ 
 
 42. -aV3a\a-{-iy. 
 
 43. 5mV(a-l)l 
 
 44. -a^a%a-iy. 
 
 45. Va« + 2a2a;_{_aa;2^ 
 
 46. V36(a2-»^)(a + x). 
 
 128a^ 
 9c2 
 
 48 
 
 ■V 
 
 49. m^ 
 
 50. 
 
 aV 
 
 25 ar^ 
 3^ 
 
 108^ 
 49 c^ 
 
 63 
 
 64. 
 
 65. 
 
 Change to entire surds : 
 
 51. 2V5. 54. 2^/5. 
 
 52. 3V7. 
 
 53. 4V3. 
 
 2 3/9^2 
 
 a' 
 
 a /- 
 
 3 /o- 
 — V2a. 
 
 m 
 
 Keduce : 
 
 73. Vi 
 
 74. V|. 
 
 75. Vi. 
 
 76. VS. 
 
 77. V|. 
 
 78. V|. 
 
 55. 3^4. 
 
 56. 2^7. 
 
 66. 
 
 67. 
 
 3a 
 
 2 
 
 57. 2aVa. 
 
 58. 8a-Va. 
 
 60. 3a2^a2 
 
 61. 2a-\/3aP. 
 
 59. -2a Va. 62. -2aV5a. 
 
 "2^. 
 
 69. -^'^9. 
 
 2_a3/_3_ 
 3\2a 
 
 68. -^V^l 
 
 70. 
 
 71 
 
 72. -(«-l)^5?I• 
 
 79. V|. 
 
 80. Vf. 
 
 81. Vf. 
 
 82.4 
 'a? 
 
 83. Vf- 
 
 84. ^. 
 
 85. -^J. 
 
 86 
 
 87. - 
 
 a4-2> 
 
 a + & 3 
 
 3/ n~ 
 
 88. 
 
 89. 
 
 90. 
 
 
 2Ai^. 
 
BADICALS 
 
 95 
 
 91. -3^^. 
 
 4: ax 
 
 27 * 
 
 92. i^ 
 93. 
 
 95. 
 96. 
 
 _9_ /4_ac 
 2a^' 3 ' 
 
 99 
 
 A/l2a2 
 
 « 3 aV 
 
 3\^- 
 
 94. -AJ/-^ 
 3a ^ 8 
 
 Simplify the indices of : 
 
 2c^ 8 1 27 a* 
 3a\ c2 * 
 
 97. iV^. 
 
 100. V6|(m-n)^ 
 
 101. -y/^ia+iy. 
 
 4/ 9" 
 
 103 
 
 104. -Vc^. 
 
 105. a/9. 
 
 106. -v^. 
 
 107. -^^25"^^. 
 
 108. ^?d^V^. 
 
 102. VW^^^^ 
 
 109. -v^QoV^. 
 
 110. -^/Sl aVd". 
 
 112. V27aV2. 
 
 Change to radicals having 
 
 114. V3 and a/5. 
 
 115. V5 and -y/W. 
 
 116. a/9 and -s/l, 
 
 117. Vl5 and -v/SO. 
 
 122. Vm, 
 
 Which is the greater : 
 
 123. 2V3 or 3V2? 
 
 124. Vil or -\/30? 
 
 125. 2V3 or a/42? 
 
 Which is the greatest : 
 129. V5, a/10, or a/IS? 
 
 111. Vl6a*b'c\ 
 113. a/100. 
 
 the same index : 
 
 118. Vn and A^SO. 
 
 119. a/25 and a/75. 
 
 120. a/6, a/15, and a/35. 
 
 121. A^, a/7, and a/10, 
 a/w?, and a/wi^. 
 
 126. 3a/5 or SVS? 
 
 127. 2a/4 or a/10? 
 
 128. a/| or a/|? 
 
 130. V6, \/16, or a/35? 
 
96 
 
 RADICALS 
 
 Collect : 
 
 131. V50H-V18-V8-V32. 
 
 132. Vl8~V98+V50-V72. 
 
 133. V27-VI2+V75+V3. 
 
 134. Vl2a-V27a-V48a + Vl08a'. 
 
 135. Vow^ — Va%i + VOom^ + V4 a^m. 
 
 136. |Vl2-V50 + ^V48-Vi8. 
 
 137. V20-V| + V| + 4V2-3V5. 
 
 138. Vl24-Vi-V27 4-V|-Vl08. 
 
 139. V50-^-6Vi + 3V|. 
 
 140. -^i-Vi + V98-2V27. 
 
 141. 2-v/| 4- 3-5^ -2^/144. 
 
 142. 2V|-3VS-V}4-Vi000. 
 
 143. 3Vo^ + 4 
 
 25 
 
 4/aV 
 81 
 
 144. V50-v''432+V32 + ^250. 
 
 145. 3^4-^24-^3+A/i6. 
 
 146. 30VJ-fV8 + 9V84l. 
 
 147. VT80-2V5 + 15V|. 
 
 148. |Vl62 + 10V4|-13V2. 
 
 149. -t/36-V|-4V6 + 2VJ. 
 
 150. 10Vl2} + 7V2-3V338 4-5^ + 4Vf. 
 
 151. V24-6Vi + iV96-V66| + |V¥- 
 
RADICALS 97 
 
 152. 6V33j-V96 + V|-|V-^ + 4V6. 
 
 153. 12Vi6j + 5V3-5V432 + 6V^. 
 
 Multiply : 
 
 154. (V20-fV80+V45) by V5. 
 
 155. (V8-2VI2 + V2O) by V6. 
 
 156. (^-1^32 + -J/5) by ^/16. 
 
 157. (2V3-2)(2V3 + 2). 
 
 158. (2V5 + 3V2)(3V5-4V2). 
 
 159. (5V3-2V2)(3V3 + 4V2). 
 
 160. (V2+V3)2. 163. (3V2-5V3)2. 
 
 161. (V3-2V2)2. 164. (V3-V2)^ 
 
 162. (2V3-2V2)2. 165. (2V2-2)^ 
 
 166. (3V2-2V3)3. 
 
 167. (V7-V2 4-V5)(V7+V2-V5). 
 
 168. (3V| + 3Vi-10Vi)(iV24 + iV75 + V20). 
 
 169. ( VlO 4- Vl9) ( VlO - Vl9). 
 
 170. (Vl3 - 2 V22) (Vl3 4- 2V22). 
 
 171. ( V2 -\-x-{-Vx) (V2Tx). 
 
 172. ( Va + 1 - 2)2. 
 
 173. (2 Va^"^^ - 3)2. 
 
 174. ( Vm + 1 - Vm - 1) ( Vm^^). 
 
 175. ( Vm + 2 -f- Vm) ( VmT2 - 2 Vm). 
 
 R. & S. EX. IN ALG. — 7 
 
98 RADICALS 
 
 176. (m2 + mV3 + 3)(mV3-3). 
 
 177. (Vm — Vm — n + Vn) (Vm + Vm — n + Vw). 
 
 178. (Va-l+Va + 1)-. 
 
 179. ( V2I - 6 V3) ( V2I + 6 V3). 
 
 180. (5V?T^-4V?^^2. 
 
 181. (2V^ + V4^^)(2v^-V4"=^). 
 
 182. (Vo+I - V2)(2VaTl + V2)(2a+ V2a + 2). 
 
 183. VS--\^-W- 185. Vi|--v/W- 
 
 184. VS--\^||- 186. (V2-2^/4)(2V2-^/4). 
 
 Divide : 
 
 187. 2V32 by 3Vi20. 193. \V^ by ^V^. 
 
 188. \/8l by V3. 194. (5V18-3V27) by 3V5. 
 
 189. ^J/12 by 4V2. 195. (2V54+iV24) by 3Vi. 
 
 190. VU by ^32. 196. Kk by Ajji. 
 
 5 Vc "^ 10\a 
 
 191. -Wc^ by -ySom^. r- 
 
 192. (^12 + 4VI8) by 6V2. '''• (IV^-^V^ ^^ ^• 
 
 198. (12V5 - 8V15 + 3 V30) by 6VIO. 
 
 199. 10V3 - 15V42 - 9 V2 by 5 V6. 
 
 200. (5^^^ 4- 3^/45 + 6^/30) by 2\/i8. 
 
 201. (</32--v^'48-a/80) by </3 
 
 202. Xi^, by f-^^j:K:Y 
 
RADICALS 99 
 
 n. MISCELLANEOUS APPLICATIONS OF RADICALS 
 Exercise 48 
 
 Extract the square root of : 
 
 1. 6 + 4V2. 7. 44-16V7. 13. 16 + 2V39. 
 
 2. 11 + 6V2. 8. 30-12 V6. 14. 74-6V77. 
 
 3. 28-10V3. 9. 88-16VI0. 15. 77-28V7. 
 
 4. 21 + 8 Vs. 10. 57-f-12Vl5. 16. o?+h + 2a^h. 
 
 5. 45-20V5. 11. 207-40Vli. 17. o? + 2c^-2a^/2~c. 
 
 6. 42 + 12 V6. 12. 82 + 12 V42. 18. m"^ -\- m + 2 m^Vm. 
 19. 2a; + 2V^^^. 20. m^H- (2m-2)V2m-l. 
 
 Rationalize the denominators of : 
 ,1. A.. 29. -1-. 37. 2Va + 3Vc- 
 
 V2 V3-2 2Va-3Vc 
 
 22. A. 30. -^ 38. 5V2^-V6j. 
 
 V3 V2+V3 5V2a; + V6a; 
 
 23. A,. 31. 2 + V3 g^ 4V2^-3V^ , 
 V2 * 2-V3 * 3V2^ + 5V» 
 
 24. 11. 32. ?V|±2 ^^ aVc-ftV^ , 
 ' V6 * 2V2-1 * aVc + 6Va; 
 
 V24 ^, V5-V3 a + V^^^=^ 
 
 25. -^^-^^- 33. 
 
 41. 
 
 V3 V54-V3 * a-^d'-l 
 
 26. ?^. 34. ^^ + ^^ 42. V^-3+V^ . 
 Vi2 * Va-V6 * VaJ-3-V^ 
 
 27. -^. 36. 2V3 + 3V2. ^3 
 2+V2 2V3-3V2 
 
 28. ^. 36. 3^-2^^. 44. 
 
 V3^ 
 
 ; + l+V2a- 
 
 -1 
 
 V3^ 
 
 ' + 1- 
 
 -V2a- 
 
 -1 
 
 Vm^ 
 
 -2- 
 
 -Vm2 + 2 
 
 3-V3 2V5-2Ve Vm2-2 + Vm=^-f-2 
 
100 RADICALS 
 
 Find, to three decimals, the numerical value of: 
 45. ~ 47. -^. 49. 
 
 V3 2V3 2^2 
 
 46. A. 48. A. 50. ^^^±1. 
 
 V5 -v/2 V2-1 
 
 53. ?V|±3^|. ^^^ 
 
 51. 
 
 V3 + 1 
 V3-1 
 
 ^9. 
 
 V3 4-V2 
 
 
 V3-V2 
 
 5V3 4- 
 
 ■2a/2 
 
 2v3-2V2 V2-V3 
 
 Simplify : 
 
 55. Vl5-6V6. 
 
 V8 
 
 (V6-V2)(V3 + 1) 
 
 58 Va; + 2 + Va^-2 
 
 59. 
 
 Va; + 2-V«-2 
 
 1 . 1 
 
 a — Va^ — 4 a 4- V a^ — 4 
 
 60. ^ _ + 1 
 
 (3-V2)2 (3+V2y 
 
 g^ 2V^-i ^ 3V^"=i: 
 
 3Va; + l-2Va;-l ^^x + l+2Vx^^ 
 
 ^^ V26 4-8V3 _ 
 V6- V2 
 
 63. :^^19-8V3, 
 V3 + 4 
 
KADICALS 
 
 101 
 
 64. 
 
 65. 
 
 66. 
 
 67. 
 
 68 
 
 Va 4- V^ Va — Vb 
 
 2-Vb 
 
 2Va 
 
 V3-I-V2-V2 
 V3 + V2 + V2 
 a; + 5 ic — 5 
 
 ( Vll + 6V2) + (^6 + 4 V2) ^ 
 5 - 2 V2 
 
 \ ^ a* a ^ a; ay 
 70. [3V3+(V28-16V3)]2. 
 
 71. 
 
 72. 
 
 73. 
 
 74. 
 
 (a; + V4-^(a;-V4-arO 
 
 V34-2V2-V3-2V2 
 V3 + 2V2+V3-2V2 
 
 3-V2 
 
 Vo; 4- 1 + Va.' — 1 
 Va; + 1 1 
 
 Va;-1 
 34-V2 
 
 V3+V3+V2 V3-V3+V2 
 
 a + Va r a-4 (a4-2)Va "| 
 « (« + 2) LVa - 2 a H- Va J 
 [Hint: a - 4 =( Va + 2)(V^ - 2).] 
 
 75. 
 
102 RALICALS 
 
 76. Show that — - — = 2 + V2. 
 
 2-V2 
 
 77. Show that ^ + ^^~^^ =V5-2V6. 
 
 2_V2 + V6 
 
 78. Show that ( V24 + 16 V2 - Vll + 6^/2)^ = 5.82842 +. 
 
 79. If a; = 4 + 3 V5 and 2/ = 5 + 2 V5, find value of (a^ _ /)2. 
 
 Solve: 
 
 80. V^+T = Vl2. 85. 2(V^-3)(V^ + 3)=3. 
 
 81. V«T3=V2a;-10. 86. Vx^^ - V^^^ = V2. 
 
 82. 3Va;-9 = 2Va; + ll. 87. Va; + 3 + Vx- 2 = 5. 
 
 83. 2V^T3 = 3VlO-a;. 88. V3H-V9i» + 1 = 3V^. 
 
 84. VflJ 4- 13 = 13 — V^. 89. Va; + 9 mw = 3 m + V^. 
 
 90. </10a;-6=V2. 
 
 91. Va; + 3+V9aj-l=V4a;-l. 
 
 92. V2a; + l-V8a;-l=V2a;-l. 
 
 93. ^j7 + ^^S + ■^^ = 3. 95. ViC + 7+V^ = ^. 
 
 94 V^ + 3 _ V^-f-9 __^__ 
 
 V^-2 V^ + l" 96. V2+V^^^ = V^^^. 
 
 97. — Va; — 3 = V^. 
 Va;-3 
 
 98. V^ + V^"^ -5__ = 0. 
 
 99. 2a^ = ^ 4-V4a;-3. 
 
 V4a;-3 
 
IM AGIN ABIES 103 
 
 100. V^^^ + V^ = _6. 
 
 Vx — 5 — Vic • 
 
 VaJ + m — V^ _ 1 
 Va; + m + Va; ^* 
 
 102. 
 
 
 103. V2a;-a2-f-V2a; + a2 = 26. 
 
 104. Va;-2a= ^^ - V^. 
 
 Va; — 2 a 
 
 105. V2^ — Vm = V2a; — Vm(5m + 8a;). 
 
 106. J^- J^ = 0. 
 
 107. 
 
 a; + 4 ^a; — 4 
 3VS + 2 3V^+1 
 
 2V^'-7 2V^-5 
 108. 2-\/x - 2 - 3 Va; + 2 = 5 V^. 
 
 109 
 
 Va , « /- 
 
 Simplify : 
 
 IMAGINARIES 
 Exercise 49 
 
 1. V^=^. 5. 2V-81. 9. -2V-36a«. 
 
 2. V^16. 6. V=^. ^^- V-(aj + 2/)l 
 
 4. V^lii. 8. -V^9^^. ''• -^^-(" + ")^- 
 
104 
 
 IM AGIN ARIES 
 
 Collect: 
 
 13. V 
 
 14. V 
 
 4 + V-94-V' 
 "9 4-V^^^36 
 
 25. 
 
 V-49+a/^64. 
 15. V^^36 + V^=32r-V^^100-V^169. 
 
 16. 2V-9 
 
 17. 3V^=^-V 
 
 3 V^^16 + V-49 - V- 25. 
 V^^144+V^256. 
 
 81 
 
 18. iV 
 
 4 H- 2 V- 36 - \-\/- 25 + iV^^ST 
 19. 2V^ + 3V^ 
 
 v 
 
 2V- 
 
 ^ + 3V-^V 
 
 20 
 
 + 2V-4a2-V-9a2 + V-16a2. 
 
 21. V-4m2-iV-16m2-h2V_i21m'^-V^ 
 
 m'' 
 
 22. aV 
 
 Multiply : 
 
 2 
 
 a 
 
 16 a^ 
 
 23. V^^ by V^T. 
 
 24. V^=^ by V^^. 
 
 25. V^^ by V3. 
 
 26. 2V^^ by V^^. 
 
 27. 3V^^ by V^^. 
 
 28. V^^ by 2^^^. 
 
 29. 3V^^ by 3V2. 
 
 30. _ 2 V^=^ by V5. 
 
 31. 2V^^ by -V6. 
 
 32. 3V^=^ by 2V^^. 
 
 33. 3V-27 by -V^^. 
 
 34. - 2 V5 by 3 V^=^. 
 
 35. a^—a by Va. 
 
 36. — aV— a by — V— a. 
 
 37. -2V-3a by 3V^^. 
 
 38. — 3aV— a by 5V— a^ 
 
 39 
 
 40 
 
 — 2aV— 2(1 by aV277. 
 -3aV"=^by -2aV^=^. 
 
 41. V^^ by V^6 by 2V^=^. 
 
 42. V^=^ - V^^n^ + 2 V^^15 by 2 V^^. 
 
 43. (3+V^ by (3-V^^). 
 
IMAGINAEIE8 
 
 105 
 
 44. (o-V^(5+V^. 
 
 45. (2-V3)(2-V^. 
 
 46. (2+V^(2 + 2V^^). 
 
 47. (5-2V^^)(3-3V^=n[). 
 
 48. (3V2-V"^^)(2V2-3V^2). 
 
 49. (4-3V^=^)(2+V^^). 
 
 50. (Vir3_v^(V^^+V^^). 
 
 51. (2V^5-3V^(3V^=^ + 2V=^). 
 
 52. (3V^=^ + 2V2)(4V^:^-3V2). 
 
 53. (3-V^)^ 54. (2-3 V^'. 55. (2V3-2V^' 
 
 56. (a-l-V^l)(a-l+V^. 
 
 57. (a + &\/^l)(a-6\A=3). 
 
 58. (2 a + 2 6 V^^) (2 a - 2 h^^l). 
 
 59. (V^l+V^2-|-V^^)(V^=i:4-V^=^-V=^). 
 
 60. (V^^-V^=^ + V=T)(V^=^+V^^-V^. 
 
 61. 
 
 62. 
 
 63. 
 
 Rationalize the denominators of 
 3 
 
 12 
 
 V^=:3' 
 
 64. 
 
 65. 
 
 66. 
 
 V-15 
 
 2V3 
 
 3V^=^ 
 2V^ 
 
 67. 
 
 3V-9 
 
 -6V-3 
 
 68. 
 
 Vio 
 
 V-2 
 
 RClk 
 
 Vl5 
 
 2V-3 
 
 70. 
 
 71. 
 
 72. 
 
 -5V12 
 
 Va 
 
 73. 
 
 1-V=2 
 
 74. 
 
 34-V-2 
 
 75. 
 
 V2-Vi:3, 
 V2+V"^ 
 
106 
 
 IMAGINABIES 
 
 76. 
 
 77. 
 
 78. 
 
 V3 4-V^2 
 
 1-V^ * 
 
 vCis + v^ 
 
 79. 
 
 80. 
 
 g + V-l . 
 a-V^l* 
 m + nV— 1 
 
 82. 
 
 83. 
 
 m — n- 
 
 2a-|-6V^ 
 
 3a-26V^^ 
 2a-6V^ri 
 
 2-3V2 e, V2a+2V-2a ^^ a-vT=^ 
 
 ol. ^ — — — — • o4i 
 
 2V-2H-3V2 
 
 Va— V— a 
 
 a — Va — 1 
 
 Simplify : 
 
 85. (V^l)*. 87. (V^*. 89. (V^)-*. 
 
 86. (-V"=3)^ 88. (-V^=^/. 90. (-V^^)-^ 
 
 91. (1_V^'-(1-V^^)^ 
 
 92. (3-V^'-4(5-V^^)'. 
 
 93. (l+V^'-Cl-V^'^. 
 
 94. (1-V^^ 
 
 95. (1_V^^-(1-V^^+(1-V=^). 
 
 96. 2(V^n:)3-2V^(V^=3-l)^ 
 
 97. = (l--\/^^y. 99 
 
 V2-1 ^ 
 
 98. (1 + V^)--(1-V^1)-. 100. 
 
 2V^1 
 
 iC+V — 1 iC— V— 1 
 
 m + ^V— 1 , m — nV— 1 
 
 Find the square root of : 
 
 101. 2-4V^^. 
 
 102. 1-56V^^. 
 
 Kesolve into imaginary factors : 
 
 105. a + b. 107. a + 2 6. 
 
 106. a + 4. 108. a2 + 4. 
 
 m -- 71 V— 1 wi + n V— T 
 
 103. 32-32V^. 
 
 104. -3-12V^^. 
 
 109. a^ + 1. 
 
 110. 2«2 4.3. 
 
GENERAL REVIEW 
 
 Iizerciae 50 
 
 1. 
 
 3. 
 
 Find H. C. F. and L. C. M. of : 
 J m^ + 6 m" 4- 5 m — 12, 
 [m^-3m^-22m-12. 5. 
 6m3-llm2-14mH-24, 
 8m» + 18m2-llm-30. 
 lOa^ + a^-hlSa'-S, 
 16a^-a'-\-2. 
 
 l-8a;-3, 
 
 l + 9x-^-22ar*, 
 
 4. 
 
 rioa^ 
 
 l8a^H-4a*^-2a2»_l. 
 
 1 3 a-1 - 4a~* - 13 + 14a^, 
 
 Simplify : 
 
 2 mn(m -^ n)~^ — m . 2 mn(m -\- n)~" — n 
 n-^ -\- (m — 2 ny^ m^^ -{- (n — 2 m)-^ 
 
 i-1 
 
 9. 
 
 (g - 1) [3 g + (<^ - l)n-^-(l-3 a-{.a^(a^^l)-^-(a-l)-\ 
 
 (I_2g + g2-2a«)(l + 2g + :^g2 + a3)-i 
 
 10. [(m — n)(m + w)-^ — (m + 7i)(m — n)-^] 
 
 11. 1+ K, 
 
 -W-2). 
 
 2- 
 
 1 + 
 
 1 
 
 2 + 
 
 3-2a? 
 a;-l 
 
 12. If - = ±, show that 
 
 n y n y 
 
 107 
 
1^ 'T- 
 
 GENEBAL REVIEW 
 1 1 
 
 
 ^-^^ + 1^-^ 
 
 14. (a-l)(a + 3)-i-l-(a-2)(a-3)-i 
 
 + [5(3-2a)-a2][9^a2]-^ 
 
 15. m^-f 
 
 7M' 
 
 m2 + 
 
 ^/i"" 
 
 ??i^ + m^ 
 
 mr 
 
 16. [a-6(c-a-i)-i]-\ 
 
 17. If « = ^, show that '^^ + ^ = _3m±^. 
 
 6 n 6a-f-36 5m + 3n 
 
 18. Show that 
 
 a^ — 2/^ ' (c — 1 
 
 Solve : 
 
 1 + 
 
 19. 
 
 3ic4-l 
 
 x-\-^ 
 
 x-1 
 
 ir + 4 
 
 1 + 
 
 xy 
 
 ix-yf 
 
 2a^ + a;-3 x-2x' + Q 2-^x^o? 
 
 20 3a;-l a; + l , ^a; + 4 ^ 4a; + 5 
 8 9a;-16 4 6 
 
 21. ^±l-f.(a;-l)(a;-2)-i ^^~^ 
 
 cc + 2 
 
 x-1 
 
 6 
 
 23. 5a; 
 
 = .-[3-{ 
 
 aJ + 
 
 a;-3 
 
 15 * 
 2 
 
 (7 a; -12)-^ [_' [ ' (3-a;)-M_ 
 
 24. [l+a;(l-a;)-i][l-a;(l4-a;)-'][l-a;'+(l-a;'K^]=3. 
 
 25. Show that -^ satisfies «-4a; _ a + 2x ^^ 
 
 5 2a — a; x + 2a 
 
GENERAL REVIEW 
 
 109 
 
 26. Solve (m + x){n-\-x)~m{n-{-p) = '^^ + oi:^. 
 
 X ex 
 
 27. Show that cd + -, = — + « when x = ad. 
 d a 
 
 Solve the following 
 
 28. 
 
 29. 
 
 30. < 
 
 31. 
 
 = 3, 
 
 32. 
 
 x-5 2x-y-l _2y-2 
 4 3 5 ' 
 
 2y-^x — l _x-\-y 
 9 4 * 
 
 x — 2 x-\- y—1 _ 
 3 4 
 
 X -\-S x — 2y—l _^ 
 4 2 
 
 2a; + l 2-Sy ^l 
 
 3 5 6' 
 3y-2 2a; + 3 _3 
 
 4 6 8* 
 
 ( 4:X — Sy±l __x-\-Sy 
 I 2^ T"' 
 
 3a; + 2y j^^ 2a;-3y 
 
 5 3 
 
 I ^x-V±y _ 2 x + 1. 
 3 ^ 2 ' 
 
 14 ^ ^^ 2 
 
 36- -I 
 
 37. 
 
 38. 
 
 39. 
 
 f^ i_^_13 
 2a;"^32^ 3* 
 
 13a; 2y 27* 
 ?/ a; 3a 
 
 1+1=A. 
 
 x y 2a 
 
 Sx-{-4:y — 5z = 2, 
 2x-Sy-Sz = -9, 
 Sx-y-2z = 0. 
 
 (2x-y-\-Sz = -i, 
 40. -! Sx-3y-2z = ^, 
 
 \4.x + 2y-5z = 5i. 
 
 ( cy + bz = 2, 
 ^^ (ax-by = a^-b^-2ab, ^^ I ^,_^,^^2, 
 
 33. 2aj + 32/ = 3a; — 22/ = l. 
 
 35. i 
 
 bx -\- ay = 2 ab -\- a^ — W. 
 a-^b a — b 
 4a6 
 
 bx + ay = 2. 
 [ x-'-y-'-z-' = S, 
 
 I y-^-x- 
 
110 GENERAL REVIEW 
 
 Expand : 
 
 43. {2x-ay. 44. [3a - {2a+ (5a-2^"=l)i]^ 
 
 45. ( "^-^^ Y. 47 ^..--^^Y 
 
 46. {a-^ + 2x-y. 48. ("v^ ^-Y- 
 
 Find the square root of: 
 
 49. a;-'^ + 4a;-3'»-2.'B-2'»-12a;-~-f-9. 
 
 50. a^-2a2»'-ll + 12a-2- + 36a-^. 
 
 51. 4-4a^-lla + 14a^ + 5a2_i2a^^.4aS. 
 
 52. (a;-2 - 4) {x-^ - 3 a;-* + 2) (a;-^ + a;"^ - 2). 
 
 53. (m + m-y-4(m-m-i). 
 
 Find the numerical value of: 
 
 54. V.073 to 5 decimal places. 
 
 55. V.0073 to 5 decimal places. 
 
 56. Vs - 3 VXiM to 3 decimal pla<;es. 
 
 57. V.007 + .3 VlAi to 3 decimal places. 
 
 Simplify : 
 
 58. ^!i^\^/:r2iw. 
 
 59. [-3-v/-27a-2-^(- 8-')-i]-'. 
 
64. f-s/-S(^d- 
 
 65. 64-^-flV'</Sr^^ 
 
 GENERAL REVIEW 111 
 
 67. (SaV^-h27 x^Vcir^yi 
 
 \ 16 ac'VdJ 
 
 68. (a?"*)"-^ . (a^)'»+l(a;'")l-2^ 
 
 r 
 
 n+l 
 
 _ _ 69. Jinh^.x^Va'n 
 
 66. (m^) « (m^) ^ -- (m-y\ \^ '^^ \ A^-v/n' 
 
 70. V25 a-ift V^(27-ia"V^^aa;^6-i)i 
 
 71. [7a;-V^]« • [3a^2/"*2;]-^ "^(s^^^T* 
 
 Collect: 
 
 "■ (1)^3^ 
 
 73. 7-1 + C^y - (7 a;)« - 49"^ - 2-2. 
 
 74. 81-^-5a;« + 9(3)-3+(125-V^ + rt 
 
 75. (^:^J_V3T27^ + (-243)i + (:^J- 
 
 Multiply : 
 
 76. i-l + ft'^by a-2 + l+r^- 
 
 77. a3-3 + 3a-3-a-« by a'---^--- 
 
 a a* 
 
 78. J^_4aj-i + ^-24by ^+4^ + 5. 
 
 Divide : 
 
 79. a-^—b by a"*— &i 
 
 80. 27 m-3 - 8 w2 by 3 m-i - 2 nf 
 
 81. a;^+2a;^-16a;"^--32a;-^ by a;*+4a;'^+4a;"^. 
 
 82. a--^ + a-2'"62n _|_ 54n by 1 _^_j_?,2n 
 
112 GENERAL REVIEW 
 
 Simplify: 83. (oT + 2 a'^^y - {a'^ — 2 a-'^f. 
 
 84. [(a + 6)^ + (a-6)^]2. 
 
 85. [(7/i-l)*+(m + l)^J. 
 
 3x _35 
 
 86. (m'^-m ^)-^(m' -^l-[.m-''). 
 
 Collect: 87. f VlGj + ^ - yV V432 + ^ VIp. 
 
 88. 5V75--jVi47--^ + 2VJ-^81. 
 
 89. Multiply ^ by -^^ by V|. 
 
 Simplify: 90. (3V6-2V3 + 5V2)2. 
 
 91. (2V5-3V3-2V2)(2V3+V5-3V2). 
 
 92. (^9-6V| + V48)2. 
 
 94. (V3-V2)2-2(2-V6)(2-V2). 
 
 95. (3V2-V3)(2V2 + V3)(3V3-V2). 
 
 96. (?^-5^ + iO.V^25-^216). 
 VVlO V6 V2/ ^ 
 
 97. V52-6V35. 
 
 98. V2a + l-2Va2 + a. 
 
 99. (^/2-V5)^. 102. (V2 + ^3--^)2. 
 
 100. (V2-^y. 3^-4^81 
 
 101. (2V2- 3^2)2. ^^^- -^243 
 
GENERAL REVIEW 113 
 
 Kationalize the denominators of the following : 
 104. -^ -• 106. 
 
 3V6-2V3 ' V3-V2 + 1 
 
 105. — ^- -. • 107. '^ + "^ - 
 
 Find the numerical value of: 
 
 ^ V5 + V2 V2 
 
 110. Which is the greater, V5 or -^/\l 9 
 
 111. Which is the greatest, V|> \/f, or \/|? 
 
 112. Show that V| > ^f . 
 
 Simplify : 
 
 115. If m = i ( Vc + d + Vc - 2 d) and 
 
 yi = ^ ( Vc+c? - Vc-2d), find the value of m^ + n\ 
 
 116. Simplify by inspection : 
 
 (Vm 4- 71 H- Vm — Vn) (Vm + ti — Vm — V^). 
 
 117. Change^— J^i-II-^ to an entire surd. 
 
 c — cZ ^ c -f fZ 
 
 118. If a = 11, 6 = — 12, and c = 3, what is the numerical 
 
 value of , /-To A — 
 
 — 0— Vo^ — 4ac ^ 
 
 2a 
 
 119. If 71 = 11, a"=5V2-2V3, d = -(V2+V3), find 
 value of ^[2a + (7i-l)d]. 
 
 R. & S. EX. IN ALG. — 8 
 
114 GENERAL REVIEW 
 
 Simplify : 
 
 ■« X — 1 
 
 x + 1 
 Vx — Vy -y^ + V^ 
 
 122. 
 
 
 123, f^^^ — h — Va + & Va — 6 -f Vg -|- 5 
 
 a + 6/ 
 
 \ Va — 6 + Va + 6 Va — b — V 
 
 Solve the following equations : 
 
 124. V» + V^^^ = V5. '^' »' 
 
 125. V3a;-2 4-V3^-2 = 0. <) ^ '^t^ 
 
 126. Vic + 6 + Va;-4 = 2. ~ U » £> 
 
 127. Va; + 2 + V4« + l = V9a; + 7. 't -^ "^ 
 
 128. VS^+T - V2x + 3 - V2a;-2 = 0. 
 
 129. V2 + V4^+5 = V2¥T3. 
 
 130. -^+ 1 2 
 
 V^^=^ Vx+^ Va^-4 
 
 4 
 
 131. -Va;-V4+^ = 0. 
 V4 + a; 
 
 132. ^ 4- ■'^ 
 
 aj + Va^-3 a;-V^233 3 
 
133. 
 
 134. 
 
 GENERAL REVIEW 
 2-x 
 
 X 
 
 V2 + Va; V2-Vx 
 2 m — n V2m^ + n 
 
 V2 
 
 mx — n 
 
 x + n 
 
 Simplify 
 
 135. (V^ri)3+(V^/. 
 
 136. (V^=^)'-(V^^ 
 
 137. (l_V^2-h(l+V^^)2. 
 
 138. (i-2V^^y + 2(2-^^iy. 
 
 139. (V3 + V^)(V3-2V^). 
 
 140..^(2y3-3V^^ 
 
 141. (-|+iV33)3. 
 
 142. V4 V6 - 11. 
 
 Rationalize the denominators of : 
 V^ _. 2V18 
 
 115 
 
 143. 
 
 144. 
 
 V^18 
 V2 
 
 145. 
 
 146. 
 
 -V28 
 
 147. 
 
 148. 
 
 V5- 
 
 32+2V^ 
 
 What are the conjugate imaginary factors of : 
 
 149. m-{-2n? 150. a^ + T? 151. 3^2 + 2? 
 
116 QUADRATIC EQUATIONS 
 
 QUADRATIC EQUATIONS 
 I. NtBIERICAL QUADRATICS 
 
 Exercise 51 
 
 Solve : 
 
 1. 2x^-7x = W, 11. x'-Q^O. 
 
 2. 2x'2 + a; = 15. 12. x'-4.x = 0. 
 
 3. 3a:2_^7^.^20. 13. a^ + l = 0. 
 
 4. 6x^-19x = S6. 14. 3a^ = 7. 
 
 5. 5x2 + 14aj = 3. 15. 5ar'=llx. 
 
 6. a;2 + 3a;4-l = 0. 16. 2a;- + 3 = 0. 
 
 7. .T2 + 3a;4-3 = 0. 17. 5ar-3x + l = 0. 
 
 8. aj2_5a;_i = o. 18. 3«2_^5^,_^3 ^q 
 
 9. .T2-5ic + 7=0. 19. 5a^ = 2a; + l. 
 10. 3a;2 4-2iK + l = 0. 20. 7ar = 6x-l. 
 
 21. 3ar^ + .^'-5 = a;2-ll + 8a;. 
 
 22. (2x-^S)(x-5) = (x-5)(x + S). 
 
 23. (3aj-7)(2a; + l) = (5a; + 2)(2a;-3). 
 
 24. (2a; - 1) (3a; + 5) - (a; + 5) (3ic - 2) = 5 - (« - 2)1 
 
 25. (3x+ 1) (a; - 5) - (2a; - 1) (3a; + 2) = (a; + 6)^ - 1. 
 
 26. (x -5y-(2x- 3)2 _ (a; + 4)2 = a; (a; - 5). 
 
 27. (2 a; + l) (a;- 5) +2(a;- 3)2- a;(a; -4) = 2(a;-|)2-15|-. 
 
 28. (a; - 5)2 - (3 - 2x)2 - (2a; - 1) (a; + 4) + 5a; = 0. 
 
 29. 2(a; + 2) (3a; - 1) - 3 (a; + 1) (4 - a;) = x(a;- 2) - 17. 
 
QUADRATIC EQUATIONS 117 
 
 30, ^ + -^ = 1. 40.^-1 = ^. 
 
 x — 1 x-^1 x + 2 a; + 4 
 
 31 ^-1 1^ 1 41 2a;-3 a;-! ^ .^ 
 *a;4-la; 6* *3a; — 2 x 
 
 32. ^-4 = _^. 42. 1-1=1 - + 2 
 
 3-a; 5 9-2ic 3 x 2a;-l 
 
 33. ^^±^-^:z2^ii 43. _J ^ + _5_^0. 
 
 a;_2 a;4-2 ^ a;-l cc + l 2-a; 
 
 34. 2^^ + 2^+5 = 2. 44. -5 ^+-A_=0. 
 
 2a; + l a; + 8 2a;-7 a;+4 a;+7 
 
 35. 4^Zli + §-l = 0. 45. _2_= J0_ _^. 
 
 2a; + l 2 a; x-2 x-\-2 x'-4. 
 
 3g _^ fl^-1 ^2 46 ^-3 24-a; ^ (a?+iy+4 
 
 x — S x-\-3 ' ' 1—x 1+x 1—x^ 
 
 2^ a; + 3 3x-2 ^^ ^^ 2x-l x-2 ^ x-S 
 
 *« + 5 aj — 5 ' x — 2 aj — 3 a; — 4 
 
 ^„ 2a;-l a;-2 q ^o 2«-1 a;-7 . 3a;-l 
 
 38. T = o. 48. -=4 — . 
 
 X x-\-l a^H-l a;— 1 x-\-2 
 
 39. ^Zll + ^Z:5 = 3. 49. ^±l-^^±?+^!=5 = 0. 
 
 a;-2 a;-4 a;-3 .t+3 ^9-a^ 
 
 50 2a;4-l -^ x — 4. __ —7x 
 
 2x-8 2a; + 3 9-4ar' 
 
 2 a; — 3 a.' + 13 _ 13 
 
 a; — 5 a; — 3 ~~2a; + 5 
 
 52 5 a;-1^ 2(a;4-3) ^ 
 2a;-l a; + l 2a; + 3 
 
 53 a; + l ^ 2a;-3 ^ 36 
 
 3a; + 2 3a;-2 4-9a^ 
 
QTIADBATIC EQUATIONS 
 
 60. 2V^=Va;-3-f 3. 
 
 61. V2x-l = Vx-\-l. 
 
 118 
 
 54. 3VaJ + 2 = 2a;-5. 
 
 55. a; + 5 = 2V5 oj + l. 
 
 56. V3 a; + 7 — a; = 3. 
 
 57. 2V3 a;-f-4 = VSa^-S a;-4. 63. 2Va; + l - V2a; -f 3 = 1. 
 
 58. 2V^ = a;-3. 64. 2 V3 a; + 7 + 1 = 3 Va? + 3. 
 
 65. 5Va;-l-3V3a;-2=-l. 
 
 62. Va;4-l-l=V2a;-5. 
 
 59. 2 Va? — 1 = a; — 4. 
 
 66. 2V3a;-2-3V^+3 + l = 0. 
 
 67. Va; + l+V3a;-f4 = V5a; + 6. 
 
 68. Va; + 5-V2a;-7= V5. 
 
 69. 2 Va; + 1 + Va; - 2 = V7 a; + 4. 
 
 70. V4a;-3-V2a; + 2=Va;-6. 
 
 71. ■y/Sx-5-{-Vx^^ = 2Vx'^^. 
 
 72. V2-3iB-V7 + a;=V5 + 4a;. 
 
 73. V3a; + 2-V2aj + l=V^Tl. 
 
 74. V2aj + 3-V8a; + 5 = -V4a;-l. 
 
 75. 2V3a; + 2-V6a;-3 = 3V3a;-l. 
 4 
 
 76 
 
 . V3a; + Va; — 2 = 
 
 77. V3a; + 1-V2a; = 
 
 ^/x-2 
 5 
 
 78. V3a; + 3-Vaj-l = 
 
 V3a; + 1 
 2 
 
 79. 
 
 3V^qp4_V2a;-9 = 
 
 8 
 
 V2¥^^' 
 
QUADRATIC EQUATIONS 119 
 
 3 
 
 80. V3a;-5+ ^_ = 2V^^=^. 
 ■Vx — 1 
 
 81. Va;4-2 = 
 
 82. 
 
 83. 
 
 84. 
 
 + Var^ + 7 'aj-V^+T 
 
 II. LITERAL QUADRATICS 
 
 Exercise 52 
 
 Solve: 
 
 1. 2a^-5ax = Sa^ 10. aar' 4-aa; + 2 =2a-a?. 
 
 2. 6aV-7aa; = 20. 11. 2a^ + a2 = a; + 3aa; + l. 
 
 3. Sx^-abx-2a^b'^ = 0. 12. ar'+aaj-2a;+l=2a2+a. 
 44. 5 aV -24 62 = 26 a6a;. 13. 2d'x'-a^x-9ax=a'-9. 
 
 5. 18 6V = 3 6ca; + 10 c^. 14. 6x'+ax+Sx=a'-{-a-2. 
 
 6. (B2-2aa; + a' = 4. 15. a V - a^ + 2 6a; = ft^. 
 
 7. o^-a^ + 6x + 9 = 0. 16. 6 V+a6a;-4 ar'=2 a(3 a;+a). 
 
 8. 4a^ = 4aa; — a^ + l. 17. a^a.'^— a;— aa:^— aa;=(a+l)^. 
 
 9. aa^ = 3a; + 4a-6. 18. 4:af-4.ax = b-a^ + c. 
 
 19. 4:a'x(x + l) + (a-l)(a + l) = 0. 
 
 20. a2a^-62 = aa;2 4-6aj. 22. 4a^-a2 = 2a + l. 
 
 21. a^a^ - (6 -1)=^ = 0. 23. 9aV-c2 + 6c = 9. 
 
il^O QUADRATIC EQUATIONS 
 
 2^. 2aa^—bx = cx. ^^ 1 , 1 a + b 
 
 6o. \- = — 
 
 25. 3ax' + 4.bx + 5c=^0. « + ^ ^ + ^ ^^ 
 
 26. aay^-\-2bx-\-3c = 0. ^q __j^_ = l_i^l. 
 
 „ ' x — a-\-b X a b 
 
 27. arH-pa; + g' = 0. 
 
 28. lx^-mx-lm = 0. 37. ?iL±_? + ^Lul^ = 2|. 
 
 2a-a; a4-2a; ^ 
 
 29. a;2-2aaj-2a;+a2H-l=0. 
 
 30. (a2-6>2^a2(2.'c-l). 
 
 31. (l-a'){x-\-a)=2a(l-x') 
 
 30. (a2-6>2_a2(2.'c-l). 38. ^L_J_ 1^_ 2a = 0. 
 
 a 
 
 39. 
 
 a; a;— 1 
 
 1 111 
 
 32. - — bx = — a. a — x b — x a b 
 
 x — 1 
 
 o^ ^ .^ x — a 2a , 2x-\-3a 
 
 a; g — 1 _ a;H-2 . 18a -. _ x-{-a 
 
 a + 2 X ~x(a-\-2) ' 5a—x—Sb ~ x-^2b' 
 
 42. ax^-^^^^±^ + bx-^ = -^^-bx. 
 a — b a—b 
 
 43. ^ 1^ 3a^-2a ^^ _1- + -J l-=0. 
 
 a; (a — 1) (2 a — 1) a; + a x + b x -{- c 
 
 45. V2ar* — ax — a + 2 = a — 2. 
 
 46. V3 a^ — 4 «.« + 1 = 2 (a; — a). 
 
 47. Va; — a+V3a; — 2a=V2a; + 5a. 
 
 48. V^ + "^ a — Vaa; H- a^ = Va. 
 
 6 a 
 
 49. V^^-^ -^ = — Vx-b. 
 
 ^x — a Va; — b 
 
 50. V6 + a; — V6 — x = V&. 
 
 51. 4a;(Va — «) = a — 6. 
 
QUADRATIC EQUATIONS 
 
 52. Vx -\-a^-\- ^x — 2d^ = V3 x. 
 
 121 
 
 53. V3a^-4aa; + l=2(a-l). 
 
 54. ^/2a^x^ — 6ax — a^-\-5 = a — l. 
 
 55. Va; — a — Vcia; = Va; + a. 
 
 56. Vax —b — -Vax +b = ■\/arx -\-2ax — (ib. 
 
 III. EQUATIONS IN THE QUADRATIC FORM 
 Exercise 53 
 
 Find all of the values of x : 
 1. a5^-13a.-2H-36 = 0. 15. 3a;* + 4a;^ = 4. 
 
 2. 4a;^-29a;2 + 25 = 0. 
 
 3. 9a;^-28a^ + 3 = 0. 
 
 4. 9a;^+29aj2 = 80. 
 
 5. aj4-16 = 0. 
 
 6. 0^4-8 = 0. 
 
 7. a^-a; = 0. 
 
 8. 2«*-a^ = 15. 
 
 9. x^ — x = (}. 
 
 10. a;^ + 64a; = 0. 
 
 11. a;^ = 7a^ + 8. 
 
 12. 8a^ = 27. 
 
 13. a; + 4Va; = 5. 
 
 14. 2 a;^ — 5 a.'^ = 3. 
 
 16. 9a;3_37a;^ + 4 = 0. 
 
 17. 3a;4-5a;* = 12. 
 
 18. 12 a;^- 11 ^ = 15. 
 
 19. a;«-7ar^ = 8. 
 
 20. 4a;^-17A/^ + 4 = 0. 
 
 21. a;'' 4- 26^/^ = 27. 
 
 22. a;^ + a^ + 1 = 0. 
 
 23. a;-i + a;"^ - 6 = 0. 
 
 24. 2x-'-5x-'=:12. 
 
 25. Sx~^-^7x-^ = 6. 
 
 26. 2</x- 
 
 7 a5-3 = 4. 
 
 27. 9x-^ + 4 = 37-J/^l 
 
 28. 2.T~^-5v^^' = 3. 
 
122 QUADRATIC EQUATIONS 
 
 29. 8-s/F^ = 15^^3 + 2. 36. V3^^-3^/3"^^ = 10. 
 
 30. 3x-^ = U-19VsF'\ 37. 2V5a; + l4-^5a;+l = 6. 
 
 31. 4a;-^ + 4a;-^ = 3. 38. ^2^31 4. 3 -^2 a; - 1 = 4. 
 
 32. (x + iy = 3(x + l)-\-A0, 39. 2(a; + l)*-3(a; + 1)^ = 2. 
 
 33. (x'+3xy-2(x'+3x)=S. 40. (4 » + 3)^-^/4^+3 = 6. 
 
 34. (a^-4a;)2-9(a^-4a;)=36. 41. 3 V3^+l + -</3^+l=14. 
 
 35. (a;-l)*-13(a;-l)24-36=0. 42. 2(2a;+3)-6V2a; + 3 = 3. 
 
 43. 2a^ + l-2V2ar^ 4-1 = 3. 
 
 44. ic2-a; + 4-6Va:^-x + 4 + 8 = 0. 
 
 45. (a^-xy-a^-{-x = 30. 
 
 46. 3ic2_4^^3y3ajj_4a._^2 = 2. 
 
 47. 2a? + 3x-\-V2a^-{-3x-\-7 = 5. 
 
 48. i»2 = 8-3a;-4Va^ + 3a;-3. 
 
 49. 3a^-aj = 6V3a^-aj-6 + 22. 
 
 50. a^ = 5x + 10-2V3f-5x-2. 
 
 51. 2a^ + a; + 5 = 5V2a;2 + a; + l. 
 
 52. (a^-x + iy = 3a^-3x-^l. 
 
 53. ic2-a; + 5V2a^-5aj + 6 = |(a;4-ll). 
 
 54. V2^+9^T9+V2^^+7¥+5 = V2. 
 
 55. aj(2a;-3)(2a^H-13aj + 20)=0. 
 
 56. ax(x-l)(x'-{-l)(x'-S) = 0. 
 
 57. (a^-x-12)(x'-hx-90)(a^ + x-110)=0. 
 
SIMULTANEOUS QUADRATICS 123 
 
 SIMULTANEOUS QUADRATICS 
 
 Exercise 54 
 Solve : 
 
 1. 2y-Sx = 7', 3a^-4a^-42/2 = 15. 
 
 2. 0^ + 2/2 = 58; xy = 21. 
 
 3. 3a^-2a^ = 24; 5a^-4/ = 44. 
 
 4. a? — 2 y = 1 ; fl;2/ = 3- 
 
 5. x' + xy + f = lS', a^-xy-hf = T. 
 
 6. 2a;-2/ = 7; &a^-Sy^ = -7. 
 
 7. 3a^-52/2^28; 3 ajy - 4 2/^ ^ g^ 
 
 8. 2a^ + a52/ — 2/^ = ^;^ + ^ — 2/^ = 1' 
 
 9. 3a; + 4?/ = 2; ar^ - oji/ - 5 1/^ = 1. 
 
 10. a;4-3y = -4; 6a^ + 13 a;2/-5/ = 21 2/- 12a? + 18. 
 
 11. a;H-2/ = 7; a^ + 2/^=29. 
 
 12. a^ + f=21S', x-{-y = 2. 
 
 13. a;2/ + 32/^ = 20; a^-3icy = -8. 
 
 14. a;4-32/ + 4 = 0; 2a^-52/^ = 5. 
 
 15. 2a;-32/ = 3; 4:0^-15-7 xy = 0. 
 
 16. a^-a^ + 2/^=21; 3^ + 2/^ = 189. 
 
 17. 3a^-52/2 = 7; 4:Xy-y^ = 7. 
 
 18. 6a;-82/ + 23 = 0; 32/^-5a^-2a; = 26. 
 
 19. a;-2/ = l; a^-2/3^i^ 
 
124 SIMULTANEOUS QUADRATICS 
 
 20. 2x' + 3xy-4.f- = 10; 7x~5y = 9. 
 
 21. ar^_3/ = l|5 2x2-j-/ = 4f. 
 
 22. 1 = ?. l_l = l 
 
 23. a;2_^^_j_^2^3^. ^_^^^^,^ 
 
 24. (^ + 2/)'-5(x-}-?/)=36; 9a;-42/ = 29. 
 
 26. 3a^ + 22/ = 13; a^z/2_^y_30 
 
 27. 3a;2 + 52/- = 17; Aa^-3y'=lS. 
 
 28. 0^ + 2/2=62-3^-2/; a:?/=14. 
 
 29. 2a^-3aJ2/ + 4/=6; x'-^Sf = 7. 
 
 31. a^H2/'=626; x-^y = 6. 
 
 32. 2a;2 + a;y/_32/2 = 8; a;2_2^2_7 
 
 3^ 3x2-5/-3.T-22/ = 9.; 2x~3y = l. 
 
 34. 0.-^ + 2/5 = 1056; a; + 2/ = 6. 
 
 35. a;-i_2/-i = l; a;-3 _ 2/-3 ^ 3 j^ 
 
 36. a; + a^2/ = 2; 2/ + a?2/ = 4i-. 
 
 37. 3x'-{-2xy-2y' = 6', 2x' + xy~3f = 3. 
 --38. 0^-2/2 = 16; a^ + 2aJ2/ = 4-2/2. 
 
 39. xy = l^- 2x-5y = 2. 
 
 40. a;2_|_^2^^^^^20; x + y = 3. 
 
 41. -1 L_ = _44. ? . 4_J^ 
 
 «-2/ 0^4-2/ ^ ' x^y xy 
 
SIMULTANEOUS QUADRATICS 125 
 
 42. --^ = -2|; 2x-^3y = 2. 
 y X 
 
 43. 2x + y + 2xy = 5; x-\-3y + 2xy = l, 
 
 44. 2x + 3y = 10; 23^f + ^5xy = 72. 
 
 45. a?2_^X2/ + / = '^; ^-^2/ + / = 19. 
 
 46. 5a^-2/' = ll; 3a5?/ + / = -9. 
 
 47. a^/ + 14a;2/ + 24 = 0; Sx + y = 5. 
 
 48. a; 4-2/ = 4; aj* + 2/^ = 82. 
 
 49. x^ + f = S7) x'y-{-xy' = -12. 
 
 50. a^ + i/2-5aj + 52/ = 30; a;2/ = 8. 
 
 51. x' + xy + f = 19; x' + xV -]- y' = 931. 
 
 1 1 ^ 1 I 1 fti 
 
 52. i_± = 4; - + - = 8|. 
 
 a; 2/ aj2 2/ 
 
 53. x-V^ + 2/ = 9; ^2 _^ 0^2/ + 2/' = 18^- 
 
 54. a^4-2a^2/ + 32/' = ti' + 262; x + 2/ = «- 
 
 55. o^ + y^-{-x-y = 32', xy = 10. 
 
 56. 0^*4-2/^ = 5; a;*2/^ = 6. 
 
 57. x^y=-117', Vx+-y/y = 3. 
 
 58. aj^-22/^ = l; x-Sy = 19. 
 
 59. x2 4-a;2/4-2/' = '^5 a^' + «'y + 2/' = 91.- 
 
 60. a; 4- 2/ = 3; x^ + y^ = 33. 
 
 61. a;2 4-42/'-x-22/-42 = 0; a;2/ = 12. 
 e2. a^-f = m', x^y-xy^ = 30. 
 
 63. a;-2/ = 2; Vac4-V2/ = 2. 
 
 64. x + y = 13 + V^) a^^f = 273-xy. 
 
126 PBOPERTIES OF QUADRATICS 
 
 65. J^+2Jl = 3; x + y = 5. 
 
 ^y ^x 
 
 66. 2a; + Vi^=12; 2/4-V^=l8. 
 en, x^ + xy-\-y'^ = 3? — xy-\-y'^ = l. 
 
 68. x^ -\- y^ =^ xy = 1. 69. or — y"^ — xy = x-{-y. 
 
 IQ. x^ + y'^ = Zxy-l; x^-^y^ = ll. 
 
 71. ^ + ^ = _26: 1^ + 51^=1. 
 2a 6 X y 
 
 72. (a;-22/)2-a; + 22/ = 6; 3a;-52/ = ll. 
 
 73. a;y + a; + 2/ = 7; o^ (a; + 2/) = 12. 
 
 74. 2a:2_^3y2^8. 2(a;- l)2 + 3(2/ + l)2 = 5. 
 76. x^^^/'^^aj^/^ig. x-\-y = xy-7, 
 
 PROPERTIES OF QUADRATICS 
 
 Exercise 55 
 
 Form the quadratic equations which will have the following 
 roots ; 
 
 1. 
 
 7,5. 
 
 7. 
 
 0, 5. 
 
 2. 
 
 2, ^. 
 
 8. 
 
 -2i, 0. 
 
 3. 
 
 6,-4. 
 
 9. 
 
 a,-l. 
 
 4. 
 
 4, -If 
 
 10. 
 
 7,-7. 
 
 5. 
 
 if 
 
 11. 
 
 V5, -V5. 
 
 6. 
 
 -1, i- 
 
 12. 
 
 V-3, -V 
 
 3. 
 
 13. 
 
 a, a — 1. 
 
 14. 
 
 3+a, -3-2a. 
 
 15. 
 
 2.1-3«. 
 
 16. 
 
 ±10. 
 
 17. 
 
 ±\/a-l. 
 
 18. 
 
 1 + V2, 1-V2. 
 
PROPERTIES OF QUADRATICS 
 
 127 
 
 19. 3±V2. 
 
 20. ±Vll-5. 
 
 7±V70 
 
 21 
 
 22. 
 
 2 
 3±V3 
 
 23. 
 
 24. 
 
 -7± V5 
 
 a± Va'-l 
 
 25. 5±V-1. 
 
 26. 
 
 27. 
 
 28. 
 
 29. 
 
 30. 
 
 5± V^r2 
 
 -7±2V-1 
 
 2 
 5±3V^ 
 
 Without finding the actual values of x, tell what the sum of 
 the roots is ; their product ; their character : 
 
 31. x^-5x-24. = 0. 
 
 32. a^ + 5a;-l = 0. 
 
 33. 2a^-3a;-f 1 = 0. 
 
 34. 3a^H-«-10 = 0. 
 
 35. x^-Sx-^5 = 0. 
 
 36. 5a^-6x-\-2 = 0. 
 
 37. 4a^+4a; + l = 0. 
 
 38. 4ar2 = _a;-f4. 
 
 39. 9x^ + 1 = 6x. 
 
 40. 12af-\-7x = -6. 
 
 41. 4a^-3a; = 0. 
 
 42. 4a^ = 7. 
 
 43. x'^-x = l. 
 
 44. 3x^-i-5x-}-3 = 0. 
 
 45. 25ar^ = 10a;-l. 
 
 46. 3a^4-5a; = 0. 
 
 47. 3a^ + 5 = 0. 
 
 48. 2a^-a; = l. 
 
 49. 16a^-40a; = -25. 
 
 50. 7a^ + 13ic = 5. 
 
 Find the values of k which will make the following equations 
 have equal roots : 
 
 51. 2x^-2x-\-k = 0. 
 
 52. ko(^-4:X-\-S = 0. 
 
 53. x^-\-x = — k. 
 
 54. kx^=:3x-2. 
 
 55. Sx^ + 2x = l-k. 
 
 56. A;a^-A:a; + 1 = 0. 
 
128 PBOPERTIES OF QUADRATICS 
 
 57. 5a^ = 4a;-2A;4-l. 61. 4.x' = kx-k-5. 
 
 58. a:^-kx-^9 = 0. 62. lla:^-\-l = 3x-kx^-\-kx. 
 
 59. kx^-i-kx = -Sx-9. 63. ka^-kx=7 x^-j-9 x-25. 
 
 60. ic2 + 49 = A'x + 3a;. 64. 3feic2+6A;=5a;(A;4-3)-7. 
 
 Resolve into factors : 
 
 65. a^-3a; + l. 68. a^ + 4. 71. a^-Saft + fe^. 
 
 66. x^-x-3. 69. a^ + ic + l. 72. 17-8a; + a^. 
 
 67. Sx^-2x-2. 70. x^-lxy-y\ 73. 5a^ + 8a;-2. 
 
 74. Explain the rules for determining whether the roots of 
 an equation are real or imaginary. Equal or unequal. Rational 
 or irrational. 
 
 75. If the sum of the roots of a quadratic is 3 and their 
 product is 2, find the difference of the roots. Find the differ- 
 ence of the squares of the roots. Find the sum of the recipro- 
 cals of the roots. 
 
 76. Find the condition that one root of ax^ -\-'bx-\-c = 
 shall be the reciprocal of the other. Find the condition that 
 one root shall be double the other. One three times the other. 
 
 77. If m and n stand for the roots of 2 ic^ -f 5 .'c — 3 = 0, find 
 
 the values of : (a) m + n. (c) m — n. (e) — | 
 
 ^ m n 
 
 (b) mn. (d) m^ — n\ (/) m^-\-7i\ 
 
 78. Find the values of the same expressions in the equation 
 3 a:^ = 13 a; + 10. Also in equation 3 .t^ — a^ + 1 = 0. 
 
 79. Form the quadratic whose roots shall be | and |. Form 
 that whose roots shall be | and |. Compare the results. 
 
hatio and propohtion 129 
 
 RATIO AND PROPORTION 
 Exercise 56 
 
 1. Find a mean proportional between 5| and 27. Between 
 
 m and n^. Between -— and ' ^ » 
 
 a a 
 
 2. Find a fourth proportional to 3, 5, 12. To a, a + 1, a^. 
 To 6, 8, lOf To 8, lOi 6. 
 
 3. Find a third proportional to 4 and 10. To 3 and 3|. 
 To a and a; - 1. To i and |. 
 
 4. Solve 2a;-l:3a;-2 = 3(a; + l):5a; + l. 
 
 5. Solve a;-5:3a;-fl = 5-8a;:3(l-2a;). 
 
 6. Solve l:l = -l_:i. 
 
 a 6 a—b or 
 
 7. Solve — : -— ! — - = x:a-\- 
 
 c{a-\-c) a^ — c^ a — c 
 
 8. Solve 
 2x^-3x + l:3x'-3x-^l = Say'-2x-5:4:x'-2x-5. 
 2a^-4:X-l x'-\-x-2 
 
 9. Solve 
 
 2a^-f2a;-l a^+13a;-2 
 
 10. Solve .^ + 3a.-7^a^ + 4a. + 10, 
 
 a^ — 5a;4-6 a:^ — 4a; + 4 
 
 11. Solve ^^-^^-^==^ + ^ + ^. 
 
 12. Solve ^-2.^-4-2 2^ + . ^1 
 
 a^_3ar^ + 2 2x2-x-l 
 
 13. Solve V« + 4 : Va; - 1 = V6 a; + 6 : V5 a; — 9. 
 
 14. Solve V3a;-2:V4a; + l = V7a; + 2:2V5aj-l. 
 
 R. & S. EX. IN ALG. — 9 
 
130 RATIO AND PROPORTION 
 
 15. Two numbers are in the ratio* of 3 : 7 and their sum 
 is 60. Find them. 
 
 16. Three numbers are in the ratio of 2 : 3 : 4 and their sum 
 is 63. Find them. 
 
 17. Find two numbers in the ratio of 2 : 5, the sum of whose 
 squares is 464. 
 
 18. Find three numbers in the ratio of 1:2:3, the sum of 
 whose squares is 126. 
 
 19. What number added to each of the numbers 2, 5, 11, 15 
 will make the sums proportional ? • 
 
 20. Find a mean proportional and a third proportional to 5 
 and 20. Also to 3i and H. 
 
 21. It a: b = c:d, prove the property of " composition '^ by 
 use of the equivalents, a = bx and c = dx. Prove " division " 
 by the same method. 
 
 22. If a:b = c:d = e :f=g : h, prove by the method of 
 example 21 that a-\-c-\-e + g'.h-\-d 4-/4- h = a:b=c: d = etc. 
 
 23. If a: b = c: d, prove that a4-3c: b-^Sd = 2 a-\-c: 2b-\-d. 
 
 24. If m : n=p : q, prove that m-^n : p-\-q = m — 2 n : p—2 q. 
 
 25. It X : y = z : w, prove that 
 
 x^ -\- y^ : z^ + iv^ = (x — nyy : (z — 7iwf. 
 
 26. It p : q = r : s, prove that 
 
 Vi>^ 4- 7^ : Vg^ -\-s^ = ap — br:aq — bs=p:q. 
 
 27. It a:b: :b :c, prove that a-{-Sb:b-\-Sc = a:b by use 
 of the equivalents a = cx^ and b = ex. 
 
 28. If 2/ is a mean proportional between x and Zj prove that 
 
 x-2y:y-2z = 2x-'^y\2y-^z. 
 
RATIO AND PROPORTION 131 
 
 29. If a, b, c, d are in continued proportion, prove by use 
 of the equivalents a = da?, b = daf, G = dx that a + 6 + c : a + & 
 = 6 + cH-cZ:54-c. 
 
 30. If a, b, c, d are in continued proportion, prove that 
 
 a-\-b^:c-\-c^ = b-{-c':d-\-d\ 
 
 31. If a, b, c are in continued proportion, prove that 
 
 a + b :b + c = b^: ac^. 
 
 32. If a, b, c, d are in continued proportion, prove that 
 
 a^^b' -{-(?: b' + c'-\-d'={a + c){a-c):(b-\-d){b-d) = a':b^ 
 
 33. If _^_ = _L=_!_, prove that x-y-{-z = 0. 
 
 b + c a-\-c a — b 
 
 34. If _l_=_!^ = _i!_, prove that l + m + n = 0. 
 
 b — c c — a a — b 
 
 35. If a + 2b-\-c:b-\-c = a-{-b:b, prove that 6 is a mean 
 proportional between a and c. 
 
 36. Find two numbers in the ratio of 2 : 3 such that the 
 sum of their squares is to their product increased by 2, as 2 : 1. 
 
 37. If 1 be added to each of two numbers, their ratio is 1 : 2. 
 The difference of their squares is to 3 more than their product 
 as 5:3. Find them. 
 
 38. There are two numbers such that the ratio of the sum 
 of their cubes and the cube of their sum is 7 : 1 ; and if 6 be 
 added to each, the ratio of these sums is 1 : 4. Find them. 
 
 39. For what value of x will 2 a; — 1 be a mean proportional 
 between x-\-5 and 4 a; — 13 ? 
 
 40. What values must x have in order that 2 a; — 7, 3 a; + 1, 
 4 a; — 3, 5 (a; + 1) may form a true proportion ? 
 
132 VARIATION 
 
 VARIATION 
 
 Exercise 57 
 
 1. li X varies as y and y = 2 when x = 12, find x when y = ^. 
 
 2. It xccy- and x = ^ when y = ^, find ?/ when a; = 18. 
 
 3. If A varies inversely as B and A = — 6 when ^ = — i find 
 ^ when -B = |. 
 
 4. If ^ varies jointly as B and C and ^ = 9 when 5 = = 6, 
 find A when B = 5 and O = — 8. 
 
 5. If 07 varies directly as y and inversely as z, and a; = 2 
 when y = 3 and 2 = 6, find «/ when x = S and 2; = — 3. 
 
 6. li xccy and a; is 3 when y = -|, find an equation between 
 X and y. 
 
 7. If ic X - and ?/ = — 5 when a; = 2, find the equation joining 
 X and ?/. 
 
 2/ 
 
 8. If a; X - and a; = 15 when y = 5 and 2; = 4, find a; in terms 
 
 z 
 
 of 2/ when 2 is — 1. 
 
 9. If a! X (2y + 5) and a; = 3 when ?/ = — 2, find y if x = 6. 
 
 10. Given that ?/- x (a;^ + 1) and a; = 7, when j^ = 10, find x 
 when 2/ = VTO- 
 
 11. If u is equal to the sum of two quantities, one of which 
 varies as x and the other inversely as x, and if u = — l when 
 a; = |, and w = 1 when a; = 1, find the equation between u 
 and X. 
 
 12. If V is equal to the sura of two quantities, one of which 
 varies as a^ and the other inversely as 1/, and v = — 1, when 
 X =^, y = 2', and v = 7 when x = 2, y = 3 ; find the equation 
 for V in terms of x when ?/ = — 1. 
 
VABIATION 133 
 
 13. Given that y = the sum of three quantities which vary- 
 as X, x"^, and x^ respectively. When x=l, ?/=4; when x=2, 
 y = S\ when x = 3, y = IS. Express y in terms of x. 
 
 14. If y varies inversely as ar^ — 1 and y = — 5 when a; = 4, 
 find X when y = — 15. 
 
 15. If y varies inversely as (2 x + 1) (x — 3) and y = — \ 
 when a; = 2, find a; when y — 1\. 
 
 16. If the area of a circle varies as the square of its radius, 
 and the area of a circle whose radius is 7 is 154, find the area 
 of the circle whose radius is 10. 
 
 17. Find the radius of the circle equivalent to the sum of 
 two circles whose radii are 5 and 12 respectively. 
 
 18. The pressure of the wind upon a plane surface varies 
 jointly as the area of the surface and the square of the wind's 
 velocity. The pressure on a square foot is 1 pound when the 
 wind is blowing at the rate of 15 miles per hour. Find the 
 velocity of the wind when the pressure on a square yard is 
 36 pounds. 
 
 19. If w varies as the sum of x, y, and z, and tv = 3 when a; = 3, 
 y = — 4:,z=6, find xiiw = — 3,y = 3^,z = — 9. 
 
 20. If w is equal to the sum of two quantities, one of which 
 varies as x, and the other jointly as y and z, and w = — 3 when 
 a; = 2, 2/ = 6, 2 = — 1; and w = — 2 when a; = 4, ?/ = 2, 2; = — 3 ; 
 find the equation combining the four quantities, w, x, y, and z. 
 
 21. If the square of x varies as the cube of y, and a; = 3 
 when y = 2, find y when x = 24. 
 
 22. The area of a triangle varies jointly as its base and 
 altitude. Find the altitude of a triangle whose base is 23, 
 equivalent to the sum of two triangles whose bases are 15 and 
 22 and whose altitudes are 10 and 12 respectively. 
 
134 ARITHMETICAL PROGRESSION 
 
 ARITHMETICAL PROGRESSION 
 
 Hzercise 58 
 
 In the following 16 examples tell what a is, what d is, what 
 n is. Also find I and s in each. 
 
 1. 5, 7, 9, •••, to 15 terms. 
 
 2. 6, 9, 12, ..., to 10 terms. 
 
 3. — 2, — 31 — 5, •••, to 45 terms. 
 
 4. 3, 3.1, 3.2, ..., to 300 terms. 
 
 5. 8, 7.5, 7, •••, to 60 terms. 
 
 6. 2|, 2^,21, ..., to55terms. 
 
 7. - 3^, - 2f, - 21 .-., to 75 terms. 
 
 8. 1 + a;, 1 + 3 a;, 1 + 5 X, • • •, to 10 terms. 
 
 9. Odd numbers to 37 terms. 
 
 10. Numbers divisible by 7 to 15 terms. 
 
 11. Numbers divisible by 3 to 20 terms. 
 
 12. 5, 10, 15, •••, to r terms. 
 
 13. 1, 2, 3, 4, •••, to X terms. 
 
 14. 2, 6, 10, 14, ..., to w terms. . 
 
 15. The first n odd numbers. 
 
 16. The first 2 71 even numbers. 
 Insert, between 
 
 17. 11 and 32, 5 arithmetical means. 
 
 18. 7^ and 30, 9 arithmetical means. 
 
ARITHMETICAL PROGRESSION 135 
 
 19. 38| aud — 44|, 99 arithmetical means. 
 
 20. 17 and 3, 12 arithmetical means. 
 
 Find d and s if : 
 
 21. a = 5, Z = 25, n = ll. 23. a = 4, Z = 36, n = 24. 
 
 22. a = -13, Z = 26, n = 14. 24. a = 12i, ^ = - 13|, n = 40. 
 
 Find n and s if : 
 
 25. a = 6,d = 2,lz=S0. 27. a = 3J, c? = J, ; = lOf 
 
 26. a = -17, d = 4, ^ = 39. 28. a=9i, d = -i, l = -W^. 
 
 Find a and s if : 
 
 29. d = 3, ^ = 38, n = ll. 31. d=-2,l=-25,n = 27. 
 
 30. (7 = 1|, Z = 69, n = 41. 32. d = -|, Z = 6^, n = 20. 
 
 Find Z and d if : 
 33. a = 5, n = 9, s = 297. 34. a = 3J, n = 15, s = 78|. 
 
 35. a = -l|, n = 30, s = 530. 
 
 Find n and d if : 
 
 36. a = 8, ^ = 41, s = 294. 38. a = 8, Z = 0, s= 100. 
 
 37. a = 3i Z = 42|, s = 621. 39. a=-3^,Z=-36,s=-790. 
 
 Find a and /, if : 
 40. d = S, n = 13, s = 260. 41. d = i, n = 20, s = 102|, 
 42. d = -f, n = 8o, s = -306i. 
 
 Find a and d, if : 
 43. Z = 47, n = 23, s = 575. 44. Z = ll|, n = 37, s = 209J. 
 45. / = -16^, n = 43, s = 43. 
 
136 ARITHMETICAL PROGRESSION 
 
 Find n and ?, if : 
 46. a = S, d = 2, s = 80. 47. a = 2, d = -S, s = -328. 
 
 48. a = o, d = — ^, s = 27. 
 Find n and a, if : 
 
 49. d = 5, l = S2, 5 = 119. 51. d = l, 1 = 6, s = 45. 
 
 50. d = -^, / = 5i s = 2o. 52. fZ = -|, / = -3, s = 13. 
 
 53. How many numbers are there between 100 and 1000 
 that are exactly divisible by 7 ? Find their sum. 
 
 54. Find the sum of all the numbers of two figures each 
 that are divisible by 8. 
 
 55. Find the sum of the first 50 odd numbers. 
 
 56. In the series 2, 5, 8, •••, which term is 98 ? 
 
 57. How many terms must be taken from the series 3, 5, 
 7, •••, to make a total of 255 ? 
 
 58. Which term of the series li 2, 21 •••, is 24? How 
 many consecutive terms must be taken from this series to 
 make 84? 
 
 59. The 7th term of an A. P. is 17, and the 12th term is 27. 
 Find the 1st term. The 3d term. 
 
 60. The 10th term of an A. P. is |, and the J 8th is 3f . 
 Find the 1st term. The 100th term. Sum of 20 terms. 
 
 61. How is a single arithmetical mean between 2 numbers 
 found most readily ? How do you determine whether or not 
 3 numbers are in A. P. ? 
 
 62. Find x, so that 3 — 5x,l-\-2x,4:-\-7x, shall form an A. P. 
 
 63. The sum of 4 numbers in A. P. is 46, and the product of 
 the 2d and 3d is 130. Find them. 
 
 64. The sum of 3 numbers in A. P. is 27, and the sum of 
 their squares is 275. Find them. 
 
ARITHMETICAL PROGRESSION 137 
 
 65. A body freely falling from a position of rest will fall 
 16 J^ feet the first second, 48^ feet the second second, SOy^ feet 
 the third, and so on. Find the distance fallen during the 10th 
 second. How far in 10 seconds? How far in 20th second? 
 How far in 20 seconds ? 
 
 66. Find x, so that S -{- 2 x^ 5 -{- 6 x,9 + 5 x, shall form an A. P. 
 
 67. Which term of the series 2^, 3f, 5, •••, is 45 ? 
 
 68. How many consecutive terms in the series 2^, 3|, 5, •••, 
 will make 67^ ? Interpret the negative result. 
 
 69. If the 6th term of an A. P. is 9 and the 16th term is 
 22J, find the 25th term and the sum of 30 terms. 
 
 70. Find the sum of the series x, Sx, 5x, 7 x, ••., to x terms. 
 
 71. Find the sum of all the numbers between 100 and 600 
 that are divisible by 11. 
 
 72. Find x, so that 2a; — 1, 3a; + 2, 6aj + 8, shall be an A. P. 
 
 73. What will x and y each be, if the four terms 2x — y, 
 x-\-2y,3x + y^7x — 10, form an A. P. ? 
 
 74. Find the sum of 15 terms of an A. P. of which the 
 middle one is lOJ. 
 
 75. Find the sum of '1±1 -f- !?i±^ + ^?i±^ . . . to n terms. 
 
 n n n 
 
 76. A boy travels at the rate of 1 mile the first day, 2 the 
 second, 3 the third, and so on; 6 days later a man sets out 
 from the same place to overtake him, traveling 15 miles every 
 day. How many days must elapse after the second starts 
 before they are together? Interpret both results. 
 
 77. The sum of n terms of the series 21, 18, 15, •••, is equal 
 to the sum of the same number of terms of the series 3, 3^, 
 3_6_, .... Find n. 
 
 78. Find the sum of 41 terms of an A. P. whose 21st term is 
 100. 
 
138 GEOMETRICAL PROGRESSION 
 
 GEOMETRICAL PROGRESSION 
 
 Exercise 59 
 
 Find I and s in each : 
 
 1. 3, 6, 12, •.., to 8 terms. 
 
 2. 2, 8, 32, ..., to 5 terms. 
 
 3. 40, 20, 10, ..., to 6 terms. 
 
 4. 2.1, 21, 210, ..., to 5 terms. 
 
 5. 54, 18, 6, ..., to 5 terms. 
 
 6. 3.2, 0.32, .032, ..., to 6 terms. 
 '^' ^j f? \h •••? to 5 terms. 
 
 8. I, 4^2, ..., to 7 terms. 
 
 9. 11 —3, 6, ..., to 9 terms. 
 
 10. - 5, 15, - 45, . . ., to 5 terms. 
 
 11. 34, If, I,..., to 10 terms. 
 
 12. 16J, -111 71 ..., to 5 terms. 
 
 13. l+a; + «2 + a^---, to6 terms. 
 
 14. 32-16 + 8-4 + 2-1..., toTi terms. 
 Find r and s, if : 
 
 15. a = 3, ^ = 48, w = 5. 16. a=^n, 1 = 4.05, n = 5 
 
 17. a = 131 Z = 17, ^::=a 
 Find a and s, if : 
 18. Z=i, 71 = 6, r=i-. 19. / = 85i n = 5, r = lj. 
 
 20. Z = |, 71 = 5, r = -2 
 
GEOMETBICAL PROGRESSION 139 
 
 Find n and s, if : 
 
 21. a = 5, 1 = 160, r = 2. 23. a = 24, /=|, r = f 
 
 22. a=3, Z = 1875, r = 5. 24. a = f, Z = -24, r = -2. 
 
 Find r and r?., if : 
 
 25. a = 2, Z = 486,s = 728. 27. a = 1|, Z = 135, s= 201f. 
 
 26. a = 56, Z = lf, 8 = 1101 28. a = |, Z = - ^^^ ^ s = - 8|f f . 
 
 Insert, between 
 
 29. 4 and 972, 4 geometrical means. 
 
 30. 7 and 896, 6 geometrical means. 
 
 31. 5^ and 40 J, 4 geometrical means. 
 
 32. 20and— yl-g^, 8 geometrical means. 
 
 33. 7^ and ff, 4 geometrical means. 
 
 Find the sum of each series to infinity : 
 
 34. 6,3, H,.... 38. 8|, -6|,5,-... 
 
 35. 1, -|, 1 .... 39. 8.3, 0.83, .083, .... 
 
 36. 15, 5, If, .... 40. .72, .0072, .000072, .... 
 
 37. 18,12,8,.... 41. 1^,0.75,0.5.... 
 
 42. 0.4545, .... 44. 3.8181, .... 46. 2.34848, .... 
 
 43. 0.05454,.... 45. 5.12727,.... 47. 1.026363,.... 
 
 48. If the 3d term of a G. P. is 36 and the 6th term is 972, 
 find the 1st and 2d terms. 
 
 49. If the 4th term is 24 and the 8th term is 384, find the 
 first 2 terms. 
 
 50. The 3d term is 4 and the 7th is 20^. Find the first 
 2 terms. 
 
140 GEOMETRICAL PROGRESSION 
 
 51. In the G. P. 2, 6, 18, .••, which term is 486 ? 
 
 52. How many terms must be taken from the series 9, 18, 
 36, •••, to make a sum of 567 ? 
 
 53. How many consecutive terms in the series 48, 24, 12, •••, 
 are required to make 95 J ? 
 
 54. The 1st term of a G. P. is 8. Its sum to infinity is 32. 
 Find the ratio. 
 
 55. How can a single geometric mean be determined most 
 readily ? How does one test a series to determine whether it 
 is a G. P. or not ? 
 
 56. Find ic, if 2 a; — 4, 5 a; — 7, 10 a; + 4, are in G. P. 
 
 57. There are 3 numbers in A. P. whose common difference 
 is 4. If 2, 3, 9, be added to them respectively, the sums form 
 a G. P. Find the numbers. 
 
 58. The sum of a G. P. to infinity is 18 and the 2d term is 4. 
 Find the 1st term and ratio. 
 
 59. If the series a; -f 1, x-\-S,4:X — 3, is geometric, find x. 
 Find a; if it is an A. P. Find the 4th term of the series in 
 each case. 
 
 60. Tell whether each of the following series is arithmetical 
 or geometrical : 
 
 (a) 3, 6, 12, .... (c) 12, 18, 25, .... 
 
 (6) 6, 12, 18, .... (d) 3i, H, 0.6, .... 
 
 61. The sum of three numbers in G. P. is 65. The sum of 
 the first two is i the sum of the last two. Find them. 
 
 62. Divide 49 into 3 parts in G. P. such that the sum of 
 the 1st and 3d parts is 2i times the middle part. 
 
 63. The sum of 3 numbers in G. P. is 14 and the sum of 
 their reciprocals is f . Find them. 
 
GEOMETRICAL PROGRESSION 141 
 
 64. Insert between 6 and 16 two numbers, such that the 
 first three of the four shall be in A. P. and the last three 
 in G. P. 
 
 65. If the series 3^, 2|^, •••, be an A. P., find the 105th term. 
 If a G. P.J find the sum to infinity. 
 
 66. The sum of $ 240 was divided among 4 men in such^a 
 way that the shares were in G. P., and the difference between 
 the greatest and least shares is to the difference between the 
 other two, as 13 : 3. Find each share. 
 
 67. What number added to each of the numbers 2, 5, 11, 
 will make sums that are in G. P. ? 
 
 68. Find x, so that 5-\-x, 5 — x, 2(1 — 5 a;), shall be in G. P. 
 
 69. If 4 a? — 1, 6 a; + 1 , 5(2 x -f- 1), are in G. P., find x and find 
 the ratio. Also find the next term. 
 
 70. If the first term of a G. P. is 6 and the sum to infinity 
 is 18, find the third term. 
 
 71. If a man ascends a mountain at the rate of 81 yards the 
 first hour, 54 yards the second, 36 yards the third, etc., how 
 many hours will he require to ascend 211 yards ? 
 
 72. There are 4 numbers, the first three of which are in 
 G. P., and the last three are in A. P. The sum of the first and 
 last is 14, and the sum of the second and third is 12. Find 
 the numbers. 
 
 73. A ball thrown vertically into the air 150 feet falls and 
 rebounds 60 feet. It falls again and rebounds 24 feet, and so on 
 until it comes to rest on the ground. Find the entire distance 
 through which the ball has traveled. 
 
 74. Prove that equimultiples of a G. P. are also in G. P., 
 and that alternate terms of a G. P. form another G. P. 
 
142 PERMUTATIONS AND COMBINATIONS 
 
 PERMUTATIONS AND COMBINATIONS 
 Exercise 60 
 
 1. How many numbers of 5 different figures each can be 
 formed from our 9 significant digits ? 
 
 2. How many words of 4 letters each can be formed 
 from the 26 letters in our alphabet, no letter being repeated 
 in the same word ? 
 
 3. Find the number of committees, each containing 5 boys, 
 that can be selected from a room of 20 boys. 
 
 4. Find the number of combinations of 8 objects each that 
 can be formed from 25 objects. 
 
 5. How many different words can be formed from the 
 letters in the word TJiursday, using all its letters each time ? 
 
 6. From the members of a party of 30 people, a board of 
 4 officers is to be chosen. In how many ways can this occur ? 
 
 7. From the letters in the word Repiihlican how many 
 words of 4 letters can be found ? Of 5 letters ? Of 7 letters ? 
 
 8. The prime factors of a certain number are 2, 5, 7, 11, 
 and 17. How many exact divisors (except itself and unity) 
 has this number ? 
 
 9. It is required to place 20 dissimilar bouquets in the form 
 of an arch. In how many ways can they be arranged ? 
 
 10. From the 9 significant digits, how many numbers can 
 be formed each containing 1 digit ? Two different digits ? 
 3? 4? 5? 6? 7? 8? 9? All together? 
 
 11. There are 25 points in a certain plane; these are joined 
 so as to form triangles having the vertices at the points. How 
 many triangles will there be ? 
 
PERMUTATIONS AND COMBINATIONS 143 
 
 12. From the letters in the word handiwork how many 
 words of 5 letters can be formed ? How many of these will 
 contain the h ? the w ? How many will begin with d ? How 
 many will contain both d and i? How many will not con- 
 tain d ? 
 
 13. A man has 5 pairs of trousers, 8 vests, and 6 coats. In 
 how many different costumes can he appear ? 
 
 14. Six persons enter a car in which there are 10 seats. In 
 how many ways can they be seated ? 
 
 15. In how many ways can a baseball nine be arranged 
 provided the pitcher is always the same ? Provided the pitcher 
 and catcher are always the same individuals ? 
 
 16. In how many ways can 10 people arrange themselves 
 around a circular table ? 
 
 17. How many words can be formed from the letters in the 
 word latin, the 2d and 4th being always vowels ? 
 
 18. How many words can be formed from the letters in the 
 word united, the even places being always occupied by con- 
 sonants ? 
 
 19. How many words can be formed from the letters in the 
 word education, provided the 2d, 4th, 6th, and last letters are 
 always consonants ? 
 
 20. From our 9 digits how many numbers can be formed, 
 each containing 6 figures ? How many of these will contain 
 the figure 5 ? How many will not contain a 7 ? How many 
 will contain both 5 and 7 ? How many will begin with 3 ? 
 End with 4 ? How many will be odd ? 
 
 21. From 10 gentlemen and 8 ladies how many committees 
 can be chosen, each containing 3 gentlemen and 2 ladies ? 
 
 22. From 10 consonants and 5 vowels how many words, each 
 containing 4 consonants and 3 vowels, can be formed ? 
 
144 PERMUTATIONS AND COMBINATIONS 
 
 23. There are 8 Democrats and 10 Kepublicans belonging to 
 a certain board. How many committees can be chosen each 
 having 4 Democrats and 5 Kepublicans ? 
 
 24. Out of 4 vowels and 9 consonants there are words to be 
 constructed, each consisting of 2 vowels and 6 consonants. 
 How many can there be ? 
 
 25. From 6 white balls, 4 red balls, and 8 black balls, how 
 many combinations can be made each to contain 3 white, 2 red, 
 and 4 black balls ? 
 
 26. From 4 labials, 6 vowels, 5 palatals, how many words 
 can be made each consisting of 2 labials, 3 vow^els, and 2 
 palatals ? 
 
 27. How many different sums of money can be made from 
 the following coins: cent, 5-cent, dime, quarter, half dollar, 
 and dollar ? 
 
 28. A guard of 5 men must be selected every night out of a 
 detachment of 32 men. For how many nights can a different 
 guard be selected ? How many times will each soldier serve ? 
 
 29. A company of 15 merchants, 12 lawyers, and 8 teachers 
 wish to form a commission from their number, consisting of 4 
 merchants, 3 lawyers, and 2 teachers. How many ways are 
 there in which they can do it ? 
 
 30. Find the number of permutations that can be made from 
 the letters in the following words using all the letters : 
 
 (a) Recess. (c) Bumblebee. (e) Concnn-ence. 
 
 (b) Possess. (d) Tennessee. (/) Unostentatious. 
 
 31. In how many different ways can one mail 4 letters in a 
 village containing 7 letter boxes ? 
 
 32. How many different quantities can be weighed with the 
 following weights: 1 ounce, 3 ounces, 8 ounces, 10 ounces, 
 1 pound, 5 pounds, and 10 pounds? 
 
BINOMIAL THEOHEM 145 
 
 33. With 2 violet, 2 indigo, 3 blue, 4 green, 1 yellow, 1 orange, 
 and 2 red flags, how many signals can be made if all the flags 
 are used and always kept in a vertical column ? 
 
 34. Prom 7 consonants and 5 vowels how many words can 
 be formed, each consisting of 4 consonants and 2 vowels ? 
 
 35. A plane is determined by 3 points, if they are not all 
 in a straight line. How many planes are determined by 100 
 points (no four of them lying in the same plane) ? 
 
 BINOMIAL THEOREM 
 
 Exercise 61 
 Expand : 
 
 1. (a-2y. 6. (2m-\-ny. ' 9. (■</6-2)«. 
 
 2. (2a + l)^ 6. (3a-Va6)*. 10. (V2-h2V6)3. 
 
 3. {l-^a'xy. 7. {a-V^-iy. 11. (Va-Vw)'*'. 
 
 4. (1-2/y. 8. (V2-V3)^ 12. (a^-^a^c/. 
 
 13. (1-3V3)1 20. r^ + ^Y- 
 
 14. (Vi-3V2^)*. 
 
 21. {a</x-'-x^a-y 
 
 22. (2aV2^+-v/4)*. 
 
 15. (V3«-^2a;2/)^ 
 
 16. (2-V^^y. ,_ ,, 
 
 ^ ^ 23. (V2a-</-3ay, 
 
 17. (3V-1 + 2V5)'. r2Va^3V2l^ 
 
 24. ^ -zzz -\ — — 
 
 18. {cix~'^ — •\/a~'^x) • I Vn^ ^a 
 
 ^^' V^-3V^=3^ . 25. -^-^^ 
 V ^ .S « / la V a V c J 
 
 R. & S. EX, IN ALG. — 10 
 
146 BINOMIAL THEOREM 
 
 Find only the term required : 
 
 26. TheTth termof (aj + V^)". 
 
 27. The 5th term of (1 - 2 xf. 
 
 28. The 4th term of (a + 3 ■\/xf\ 
 
 29. The 6th term of (2 n ^/m - 1)". 
 
 30. The 8th term of (a V^ - a; VaP. 
 
 31 . The 7th term of (i - 2 a; ^^)". 
 
 32. The 5th term of (Vox +^?y«. 
 
 33. The4thtermof (V6- V3)«. 
 
 34. TheSth termof (V3 + V-2)». 
 
 35. The 7th term of ( V2 - a V3xy\ 
 
 36. The 9th term of (J^ ^a + 2 V3^)^. 
 
 37. The 4th term of ( V2 - 5 V^^. 
 
 88. The 5th term of [^ + -^^^T- 
 
 39. The term containing o^ in (1 —xVxy^. 
 
 40. The term containing x' in (a;-f 2V^)^. 
 
 41. The term containing x^^ in (■\/x—-^xyy\ 
 
 42. The term containing x^ in (2 \/x— V2xy. 
 
 43. The term containing x-* in f— ^—\ . 
 
 V6a: V^V 
 
BINOMIAL THEOREM 147 
 
 Expand to four terms : 
 
 -I .. 1 
 
 44. (a + 6)-^ 52. (x-2-^/ax^-^, 59 
 
 3. ^ ' Va-\-2¥ 
 
 45. (a-a;)-\ 53. Va^ + Va. o ah 
 
 60. 
 
 46. (a;-2)-^ 54. (l + 5f(2^x)i ^a'^ - aft^ 
 
 47. (a + 2/)i 55. (a6«-36V«)l ^^^ T^^^' 
 
 48. (a2_4)-2^ 56. 5(x-^-\/2xy)-K gg. (a2_3V2)l 
 
 49. (l-2^-x)-\ 57. C-L_y3^y'^ 63. -—4 
 
 Wa J VaVx 
 
 50. (aar« + l)^. 
 58. 64 
 
 ax 
 
 2y 
 
 51. (b^-2by\ a-b^/c (x-2^xyy 
 
 Find only the terra required : 
 
 65. The 3d term of (a + b)'\ 
 
 66. The 4th term of (x — y)-\ 
 
 67. The 4th term of (1 +3Va5)i 
 
 68. The 5th term of (a;- 2 VaJ^) -2. 
 
 69. The 5th term of {l-^/2x)-\ 
 
 70. The 6th term of (a + V-2«)-^ 
 
 71 . The 6th term of (x^y + 3 yVx)^. 
 
 72. The 5th term of (x^ - 3 x-\/y)-\ 
 
 73. The 7th term of \^=.- 
 
 a —'-wax 
 
 74. The 8th term of - ^^ 
 
 Vl-4a26 
 
148 LOGAmTBMS 
 
 75. The 5th term of '^{a-Q,^cy. 
 
 76. The 10th term of — 
 
 77. The 9th term of (V2 - 3 V^^)-\ 
 
 78. The 8th term of (2 + V^^)~^. 
 
 79. The term containing a^ in (1 -\-x)~^. 
 
 80. The term containing ic" in (x'^ — 2 x)~\ 
 
 81. The term containing x~^ in (v^ — 4Va)^. 
 
 82. The term containing a;"'^^ in T^^- ?:^T . 
 
 LOGARITHMS 
 
 Rsercise 62 
 
 Compute by four-place logarithm tables the values of the 
 following : 
 
 1. 55x3.86. 7. 823x756-- 4320. 
 
 2. 7.81 X 9.3 X .568. ^ 7.61 x 53.8 x 4.113 
 
 3. 8.52 X .0917 X 63.4. * 27.5x1.884 
 
 4. .097x63.8x51.14. _ 328x57.42 
 
 <7. 
 
 5. 8.76 X 95.32 -- 614.3. 134.2x3.876 
 
 6. 71.3x5.888-43.18. 10. 123.5x3.586-976.3. 
 
 11. 36.95 X 438.7 - (356.7 X 81.44). 
 
 87.63 X 563.8 x .0075 91.76 x. 00385x2.1 176 
 
 27.51 X 9832 x .0953 ' * 7.143 x .08885 x 11.58 ' 
 
LOGARITHMS 
 
 149 
 
 14. 
 
 75 X .03896 x .4427 
 83 X .008114 X 7.003" 
 
 15. 
 
 876.4 X 3.175 x .6511 
 8.465 x .1973 x 598.6* 
 
 16. 
 
 17. ■v^^9?f6. 
 
 18. V17 X 29. 
 
 19. ^/365.4. 
 
 20. V.0837. 
 
 29 
 
 
 5 X 78.3 
 
 X19.7 
 
 30 
 
 31. 
 
 '■i 
 
 9.02 X 1.762 
 3.117 X .0585' 
 
 5/ 17.44 X .( 
 \zt2 11 V 8 
 
 .0832 
 '42.11x8.104* 
 
 7.663 X 85.12 x .00681 
 43.27 X 95.16 x .007194* 
 
 21. -v/^00302. 25. -J/7.13 x 41.2. 
 
 22. -v/.00075. 26. V10.3^.049. 
 
 23. V93 X 2.78. 27. ^361^5.88. 
 
 24. ^951 X .037. 28. ^8.95 -f- 16.44. 
 
 3^ 853.4 X V:004176 
 627.1 X ■</ .06329 * 
 
 -. ^5/ 57.18 X 3. 876 
 ^^' \7.116x.0 
 
 39 
 
 X .0485 
 
 7/ 5.192 X V63l8 
 ^ 81.32 X .0638 * 
 
 32 
 
 ■41 
 
 382 X 763.5 
 
 .03871 X 8124 
 
 33. 
 
 34, 
 
 35. 
 
 36. 
 
 4 
 
 03765 X 1.448 
 
 37.12 X 5.718 
 
 .4138 X VaiTr 
 3.108 X i/Tmi 
 
 5.167 X V38:27 
 77.38 X ^:09034 
 
 .7563 X -^2:087 
 .5432 X </M15 
 
 40 
 
 41 
 
 3/ .07162 X .00328 , 
 ^1.586 XA/37f77 
 
 ^/ .0913 X \/:07652 
 ' ^ 1.517 X 7.038 
 
 42. 
 
 43. 
 
 V 
 
 3/1.716 X 873.5 
 .0173xV3967 
 
 V 
 
 750 x (.83) 
 
 97 X (.0361)* 
 
 44 
 
 3 / 92.3 
 
 X .08763 
 
 .003151 X 5V30 
 
150 LOGARITHMS 
 
 45 J 9.3I0 X -5^7^ 4g 37.5 6 /440V:0074 
 
 ^10.14 xV:3876 * 583^ 19^600 
 
 47. V8.5I6 X v^9L763 x \/l998. 
 
 48. \/53:34xa/7JI6-V98J[5. 
 
 49. V8.176 X VMM X VTlI^. 
 
 50. -v^l.Tie X 8.513 X VtKM. 
 61. V73.14X 80.37 -^5768. 
 52. ^53.11 X V7:852 - 3 VTT^. 
 63. •v'3V85 X 2^916 x 5^45. 
 
 g4 J 876.3 X 5.173 x V.()08886 
 6.385 X 711.5 X v':0l776 * 
 
 gg J .07138 X V.00885 x ^1:762 
 .08195 X V.00176 x VsM2 
 
 gg^ J 57I.2 X (3.817)' X (.07161)^ ^ 
 88.19 X (2.716)^ X (1.558)* 
 
 Solve, by logarithms, the following equations : 
 
 57. a; = 19V2l. 61. 38a^ = 235. 
 
 oa 62. 3V^ = 17. 
 
 58. x = -^' 
 
 Vll 63. 11^ = 13. 
 
 59. a;ViO = 95. 64. a;V5 = -5^'50. 
 
 60. a^ = 3.47. 65. 97ic2 = V855. 
 

 
 LOGARITHMS 
 
 151 
 
 66. Vl7a; = 
 
 67. a/5.5 a^: 
 
 : 9.74. 
 = V79. 
 
 ' 
 
 72. 
 
 38^/^ a;V55 
 97 79 
 
 68. 30xV7: 
 
 = 6iA/m 
 
 73. 
 
 ^^/ = V190. 
 
 69. 13A/15a 
 
 : = 27V: 
 
 Oil. 
 
 
 70. 26Vx = 
 
 a;V33.7. 
 
 
 74. 
 
 17 a;"^ = 65. 
 
 71. ^'''-. 
 VSx 
 
 ^4l 
 So; 
 
 
 75. 
 
 xVSf ^38 
 75 V^ 
 
 76. 5^ = 30. 
 
 81 
 
 . 65' = 3. 
 
 
 86. 25*-i = ll*. 
 
 77. 6'' = 75. 
 
 82, 
 
 . 40* = 5. 
 
 
 87. 552-- = 21*+^ 
 
 78. 7^ = 15. 
 
 83, 
 
 . 18.6' = 1.86. 
 
 88. (3 + .05)^^=100. 
 
 79. 8^ = 100. 
 
 84, 
 
 . 9*+i = 15. 
 
 
 1 
 89. .9'"^ = 4.7-i 
 
 80. 4.5* = 50. 
 
 85. 
 
 . 3^-1 = 36. 
 
 
 90. (1.025)»«=1.01. 
 
 Calculate : 
 
 
 
 
 
 91. Iog4 20. 
 
 
 95. Iogi6 60. 
 
 
 99. log2jj.68. 
 
 92. logy 500 
 
 
 96. logijS. 
 
 
 100. logi2.3 .0423. 
 
 93. logs 35. 
 
 
 97. loggl.O. 
 
 
 101. log.5.63. 
 
 94. logi3 29. 
 
 
 98. Iog2o.4. 
 
 
 102. log.8.07. 
 
 103. Find the amount of $ 575 in 10 years at 5%, compound 
 interest. 
 
 104. Find the amount of $ 8500 in 12 years at 4%, compound 
 interest. 
 
 105. Find the amount of $3500 in 6 years at 6%, compound 
 interest. 
 
 106. At what rate will* $ 12,000 amount to f 14,587 in 4 years ? 
 
152 LOGARITHMS 
 
 107. At what rate will $ 8250 amount to $ 11,627 in 10 years ? 
 
 108. What sum will amount to $520.75 in 6 years at 5%, 
 compound interest ? 
 
 109. What sum will amount to $817.30 in 8 years at 7%, 
 compound interest ? 
 
 110. In what time will $5000 amount to $8000 at 5%, 
 compound interest ? 
 
 111. In what time will $2750 amount to $5000 at 4%, 
 compound interest? 
 
 The following examples in this exercise are to be done with- 
 out the use of logarithmic tables. 
 
 112. Find the logarithm of 27 to the base 3. 
 
 113. Find the logarithm of 3 to the base 27. 
 
 Find : 
 
 114. log4 8. 118. logai- 122. log^^ 81. 
 
 115. log25l25. 119. logi8. 123. logaayV 
 
 116. log27 81. 120. logioolO. 124. log64 3V 
 
 117. logs 32. 121. log^27. 125. log^ooo .01. 
 
 Find a;, if : 
 
 126. log, 8 = 3. 132. log, 27 =-3. 
 
 127. log, 81 = 4. 133. log, 64 = - If 
 
 128. log, 125 = 3. 134. log, 7 = - i 
 
 129. log,6 = f 135. log, 2V = - 11 
 
 130. log, 27 = IJ. 136. log, 243 = - 2.5. 
 
 131. log,32 = l|. 137. log, J?^ = - .75. 
 
LOGARITHMS 153 
 
 Find x,{f: 
 
 138. log, ic = 4. 142. log49a; = i 146. log27a; = — IJ. 
 
 139. logs a; = 3. 143. \og3QX = — ^. 147. logi x = — .5. 
 
 140. log9a; = |. 144. log64a; = — If. 148. logo a; = — 3. 
 
 141. log8aj = |. 145. logia; = 1.5. 149. logjg a; = — 1.5. 
 
 Write out as a polynomial : 
 
 150. logaV. ,^^ , 11 a;^' 
 
 157. log——' 
 
 151. logafe^ ^^y 
 
 152. log^^l 158. \og4.(x-yy. 
 
 153. log^. ^^^' log 8 «'(«'- ^')- 
 
 c^ 160. log3a(9-n2)i 
 
 154. log3aa;^.^ ^^^ log a (a + 5)>3 _ ^s). 
 
 155. log -2^- 162. log8a6«-\/5a=^6-^c-i 
 
 156. logL^!^. 163. log?^M±^. 
 
 Change to the logarithm of a single term : 
 
 164. log a 4- 3 log 6. 167. log 11 4- i log a. 
 
 165. log 7 — 3 log ». 168. 31oga-21og6. 
 
 166. logm+i^gT. 169. log 2 + log 3 - log 13. 
 
 170. 2 log 3 + 3 log a — log 5 — i log x. 
 
 171. log5 + 31ogaj4-ilog2/— 21og7 — ^loga. 
 
 172. 1 log 2 — J log a; + 2 log a — I log 2/ — log z. 
 
 173. log 7 + 1 log a 4- f log & - log 6 - ^ log c. 
 
 174. log (a + 1) + log (a — 1) — log 2 — J log m. 
 
 175. ilog(i) + g)+ilogO-g)-ilog(a; + ^)-ilog(a; -»!/). 
 
154 LOGARITHMS 
 
 176. log 3 + 2 log 2 + i log 5 - log 7 - log 11 - f log 13. 
 
 177. 31og2 + l+|log7-ilog3-^log(a2 + 62)_iog^^ 
 
 Find a;, if: 
 
 
 
 178. a^ = bc^. 
 
 182. 
 
 3a^-2 = d^ 
 
 179. 3b' = cd'. 
 
 183. 
 
 a6- = cd'-\ 
 
 180. 5m' = ?t2p2*. 
 
 184. 
 
 m^n''-^ = p. 
 
 181. a^-^ = b\ 
 
 185. 
 
 (^d = l^^hn'-\ 
 
 186. If log 365 = 2.5623, write log 3.65. Log .00365. 
 
 187. If log 7.008 = 0.8456, what is log 7008 ? Log 70.08 ? 
 
 188. If log 27.8 = 1.4440, write log 27800. Log .00278. 
 
 189. If log 536 = 2.7292, and log 537 = 2.7300, what is 
 log 5.365 ? What is log .05368 ? 
 
 190. If log 3.71 =0.5694, and log 37.2 = 1.5705, what is 
 log 37140 ? What is log .003717 ? 
 
 191. If log 709 = 2.8506, and log 7100 = 3.8513, find 
 log .07096. Find log 70.94. 
 
 192. If log 627 = 2.7973, and log 628 = 2.7980, find x, if 
 log X = 0.7975. If log X = 8.7978 - 10. If log x = 3.7976. 
 
 193. If log 3.35 = 0.5250, and log 33.6 = 1.5263, find x, if 
 log x = 9.5254 - 10. If log x = 7.5260-10. If log x = 4.5258. 
 
 194. If log 2.357 = 0.37236, log 235.8ii 2.37254, and log x 
 = 3.37243, find x. Also find x, if log x = 7.37251 - 10. 
 
 Given, log 2 = 0.3010 ; find the following logarithms : 
 
 195. log 4; log 40; log 8; log 800; log 32; log 3.2. 
 
 196. logV2; log ^2; logV^; logv'S; log Vi02. 
 
 197. log 5; log 50; log V5; log 2.5; log 12.5; log6J; log f . 
 
LOGARITHMS 155 
 
 Given, log 2 = 0.3010 and log 3 = 0.4771 ; find the following 
 logarithms : 
 
 198. log 6; log 12; log 18; log 15; log 150; log 14.4. 
 
 199. log2V3; log3V2; logVSO; log^iOOS; log 45. 
 
 200. log 540; log .024; logS^; log 4^; log3|. 
 
 201. From log 16 how can one get log 2? Log 4? Log 8? 
 Log 5? Log 25? 
 
 202. From log 2 and log 15 how can one find log3 ? 
 
 203. From log 5 and log 14 how can one find log 7 ? 
 
 204. From log 50 and log 36 how can one find log3 ? 
 
 205. From log 14, log 15, log 16, how can one find the log- 
 arithms of all numbers from 1 to 10 ? 
 
 206. Show that there will be 31 figures in the 100th power 
 of 2. [log 2 = 0.3010.] 
 
 207. How many digits in 49^ ? [log 7 = 0.8451.] 
 
 208. Find a; if a*' = &. 
 
 209. Findajif a2-' = 2&. If2a2-^ = 2*. 
 
 210. Find x, (a) if .6^ = 3, (6) if .08^ = .9, provided it is given 
 that log 2 == 0.3010, log 3 = 0.4771. 
 
 211. What is the base if log .25 = - 1 ? If log ^ = 2.5 ? 
 
 212. Solve 22^-y = 32 and 3^+^ = 81. 
 
 213. Find x and y, if 4^+^^ = 128 and 25^"^ = 125. 
 
 214. If log5 = 0.6990, findxin the equations 2*' = 40 and 
 (2*)' = 40. 
 
 215. Show that log | + log f^ - 2 log .4 = log 3. 
 
GENERAL REVIEW 
 Exercise 63 
 
 1. Solve the equation 12a^ — 17 x = 40 for x. 
 
 2. Tell by inspection the sum, product, and nature of the 
 roots of 3a^-lla; + 15 = 0, and of 3a^ + lla; = -8. 
 
 3. Find the sum of the series 4i, IJ, |, •••, to infinity. 
 
 4. Solve for x and y, x^ — jf = 152, and x = % -\-y. 
 
 5. Define quadratic equation, pure quadratic, symmetrical 
 expression, homogeneous expression, logarithm, arithmetical 
 progression, geometrical progression, alternation, composition, 
 and mean proportional. Give an illustration of each. 
 
 6. Form that quadratic whose roots shall be 1\ and — 2|-. 
 
 Also that one with — = for roots. 
 
 2 
 
 7. In the A. P. 15, 131, 12, ••., find the 55th term and the 
 sum of the first 20 terms. 
 
 8. Solve the equation a^ — 1000 = for its 3 roots. 
 
 9. Solve 2x^ — 3xy -{-y^ = 3, 3x^ — xy = 2, ioi x and y. 
 
 10. Which term in the series 2|, 3, 3|, •••, is 65 ? 
 
 11. Find all the values of ic in x^ = 9x. 
 
 12. When are the roots of la^ -\- mx + n = real ? When 
 equal ? When irrational ? When imaginary ? 
 
 13. From the letters in the word scholar, how many words 
 can be formed, of 4 letters each ? Of 7 letters each ? 
 
 166 
 
Gi:Ni:iiAL review 157 
 
 1 _3 
 
 14. Solve 7 X ^ = 8. Are both the values of x roots ? 
 
 x^ 
 
 15. Find the values of a? and 2/ in ar^— 2a;2/— a;=3, 3ic— 42/=7. 
 
 16. Find the values of x, by inspection, in 
 
 2aa;(ar'-4)(3a^ + 5) = 0. 
 
 17. What is the logarithm of 216 to the base 36? Of 8 to 
 the base 128 ? What is \og„ ^J^ ? 
 
 18. It a:b = c: d, prove that 
 
 19. Write the equation 32^ ^ = 64 in logarithmic form. What 
 is the number? The logarithm? The base? The charac- 
 teristic? The mantissa? Write logs; 243 = 1| as an equation. 
 
 20. How many parties of 7 each can be selected from a 
 school of 25 girls ? 
 
 21. Solve 2-\/x + 3 — Va; — 2 = V3 x — 2. Are both values 
 of X roots of this equation ? Why ? 
 
 22. Find the 6th term and the sum of 7 terms in the series 
 -4,6,-9,.... 
 
 23. Solve 1^=^-2 -^^ = 0. 
 
 S-x x+2 
 
 24. Prove the formula for sum of a G. P. if the first term, 
 last term, and ratio are given. Derive formula for sum of 
 infinite geometrical series. 
 
 25. Solve a (6 a — 13) — 2 ax (n — x) = 5(x-\- 3). 
 
 26. Why cannot a negative number have any logarithm pro- 
 vided the base is always positive ? How are operations with 
 negative numbers performed by aid of logarithms ? 
 
 27. Expand (2-Vx - x^^/yy. 
 
158 GENERAL REVIEW 
 
 28. Find the values of a that will make the equation 
 4:X' — lox—ax-^a-{-20 = have equal roots. Prove your 
 values correct. 
 
 29. In an A. P., Z = 14, w = 40, s = 430 ; find a and d 
 
 30. Solve 2Va;-2 + V2a; + 3 = V8a; + l. 
 
 31. From the letters in the word sweetest, how many arrange- 
 ments can be made, taking all the letters every time ? 
 
 32. Find the middle term of (a^y — ^Vx~'^y^. 
 
 33. Solve a^ -{- xy — y^ = 1, xy-\-2y^ = 3. 
 
 34. Insert 5 geometrical means between 2| and 30f. 
 
 35. Prove the formulas for / in the progressions. Also 
 prove the formulas for sum in arithmetical progression. 
 
 36. Solve for x, 2 V3a;-2 - 3 ^3x^-2 = 2. 
 
 37. Compute by logarithms, Y^^'^ ^ ^-^^ ^ - 
 
 </.0716 X 438.6 
 
 38. Form the quadratic whose roots will be —a and ^-^ — 
 The quadratic whose roots are -^ — ^^— — 
 
 39. Distinguish between mean proportional and third pro- 
 portional. Find the mean and the third proportional to a 
 and 2ab. 
 
 40. From a class of 8 boys and 10 girls, how many groups 
 of 2 boys and 3 girls each can be selected ? 
 
 41. Solve 2^^ -3 = -^ + ^. 
 
 3x + 4: 6a;H-3 
 
 42. Insert 23 arithmetical means between 3 and 63. Also 
 35 means between ^ and 27.5. 
 
 43. Solve x-\-2y = 2, a^ + Sf =26. 
 
GENERAL REVIEW 159 
 
 44. Solve (x^ + x-5y-S(x^-\-x) +4:7 = 0. 
 
 45. From 16 consonants and 4 vowels, how many words can 
 be formed, each consisting of 3 consonants and 2 vowels ? 
 
 46. Compute by logarithms the value of J -8034 x V TO gSTg ^ 
 
 .5138 X ^.00175 
 
 47. A man agreed to dig a well at the rate of 25 cents for 
 the first yard, 50 cents for the second, 7.5 cents for the third, 
 and so on. Upon completion he received $30. How deep 
 was the well ? 
 
 48. Find the value, by logarithms, of 2^ x (i)^ X^/^X VJ. 
 
 49. What is the value of (x - V2y + (a; + V2)* ? 
 
 50. How many figures in Q5^ ? 
 
 51. Solve a^ — a;?/ + 22/ = 4, 2x-\-3y = 5a-}-l. 
 
 52. li a:b = c: d, prove a^ -f 4 6- : c^ + 4 c?^ = a6 : cc?. 
 
 53. Prove the formulas for the number of permutations and 
 the number of combinations of m things taken ?i at a time. 
 
 54. Form the quadratic whose roots are 0, — — . Also the 
 
 one whose roots will be ^ — — — — 
 
 7 
 
 55. Solve (2 a; -3)2 -(a; -1)2 = 5. 
 
 56. Express as a polynomial, log ^ a^^/b ; log J x^s/S y. 
 
 57. Compute by logarithms, — ■T\\h7;:7:' 
 
 ^ -^ ° . ' 101 ^'.SOO 
 
 58. Simplify {-y/l- o^ J^lf - {■y/l-x' -If, 
 
 59. How many combinations, each containing 6 white balls 
 and 5 red balls, can be selected from 14 white and 10 red balls ? 
 
 60. Solve 2a^ + 3a;2/-52/2 = 4, 2a;?/ + 3/ = -3. 
 
160 GENERAL REVIEW 
 
 61. Find x that will make 2x — l, x-^7, 3a;-f-l, in A. P. 
 Find X if they are in G. P. 
 
 62 . Find s that will m ake the roots of 3 sor^ + 2 sa; + 9 a; + 8 = 
 equal to each other. 
 
 63. li a : b = c : d, prove 
 
 Va=* H- b' : Vc' + d' = i/a' - b^ : ^/(^-(j^. 
 
 64. Solve 8a.--3 + llVaP = 54. 
 
 65. Twenty men are going to march four abreast. In how 
 many ways can they place themselves ? 
 
 66. Expand (V2a-Va;)®. 
 
 67. Solve y-l = x-- = -' 
 
 X y 2 
 
 68. Solve 2 a^-aa;-a2 =2 (3 a; -2), for ir. 
 
 69. Find, by logarithms, the value of x, if 7^ = 100. 
 
 70. Without solving the equations, tell what is the sum, 
 product, and character of their roots : (a) 3a^ — 7a; = — 2; 
 (6) 5ar' + 4a; + l = 0. 
 
 71. What is the value of 2.7181818 -. ? 
 
 72. Solve 2a^-5a;-V2a^-5a; + l = l. 
 
 73. Form that quadratic the sum of whose roots is 11 and 
 whose product is 13^. Prove your answer. 
 
 74. If a:b = b:c=c:d, prove that a-{-b:b-{-c=2 a — b:2 b—c. 
 
 75. ^o\Yeabx'-a\x-l) = b\x-\-l). 
 
 76. Find all the values of x and y in the equations (x-\-yy 
 -x-y = Q>, x'y'^ + lxy + 12 = 0. 
 
 77. The sum of 35 terms of an A. P. is 490 and the com- 
 mon difference is J. Find the first and last terms. 
 
GENERAL REVIEW 161 
 
 78. If m and n are the roots of ic^ — 07 + 1 = 0, show that 
 
 m^-{-n^ + 1 = 0. Show that i + ^ = l. That m-n = V^^. 
 
 m n 
 
 79. The sum of five terms of a G. P. is 5|^ and the ratio is 
 |. Find the first and last terms. 
 
 80. Find the four roots of 8 a;^ = 27 x. 
 
 81. Prove that the roots of ax^ -\- 2 bx -{- c = will be equal 
 if 6 is a mean proportional between a and c. When will the 
 roots be rational ? 
 
 82. Expand (1 — 4 x)~^ to 5 terms. 
 
 83. Find the limit of the sum of 1 — | + ^.•. to infinity. 
 
 84. Solve4cc + 4V3a^-7a; + 3 = 3ar^-3a; + 6. 
 
 85. Find two numbers whose difference, sum, and product 
 are to each other as 2:3:5. 
 
 86. There are three numbers in A. P. whose sum is 3. If 
 3, 4, and 21 be added to them, respectively, the sums form a 
 G. P. Find the numbers. 
 
 87. How many terms of the series 32, 48, 72, •.., amount to 
 665? 
 
 88. Form the equation whose roots are double the roots of 
 x'-3x-\-2^ = 0. 
 
 89. The 5th term of an A. P. is — 3 and the 15th term is 17. 
 Find the sum of the first 20 terms. 
 
 90. How many arrangements can be made from the letters 
 in the word holiday, taken all together ? How many, if the 
 three letters lid are never separated ? 
 
 91. If the base of a system of logarithms be 4, tell the loga- 
 rithm of each: 16; 8; 32; 2; J; 1; i; |; ^; Vj; </l', 
 
 
 R. & S. EX. IN ALG. 11 
 
162 GENERAL REVIEW 
 
 92. Solve i + i = l, 1+1 = 13. 
 
 X y 0^ y^ 
 
 93. How many terms of the series 41 4, 3|, •••, amount to 
 21? 
 
 94. Find that G. P. the sum of an infinite number of whose 
 terms is 4 and the second term is \. 
 
 95. Compute the 5th root of 4.281 x V.09m 
 logarithms. 321.7 x •v/.008074 ^ 
 
 96. Find the 10th term of z^ by the binomial 
 
 theorem. (l-2Va^)^ 
 
 97. Find all values of a; in 1+2 a^+3 x=3V2 a^+3 x—\. 
 
 98. If a, 6, c, dy are in continued proportion, prove that 
 lo? + mV + ne : Ih'' -\-m&^ nd? = ac? + &c : 2 cd. 
 
 99. Solve this equation for the value of a;: a; + - = - + -. 
 
 a X h 
 
 100. Find a: and ?/ in a^ + / = 3^, x-^ + 2/"^ = If 
 
 101. Find the sum of all numbers between 10 and 500 
 exactly divisible by 7. 
 
 102. What is meant by " completing the square " ? How is 
 it done ? What is an imaginary ? What are conjugate im- 
 aginaries ? Prove that log PQ = log P + log Q. 
 
 103. From the usual formulas for I and s of an A. P. derive 
 a formula for a not containing s. A formula for I not contain- 
 ing a. A formula for d not containing I. 
 
 104. Out of 15 consonants and 5 vowels how many words 
 can be made each consisting of 4 consonants and 3 vowels ? 
 
 105. Find, to 3 decimal places, the logarithm of 65 in a 
 system whose base is 15. 
 
GENERAL REVIEW 163 
 
 106. Solve Vx + y = Vy-\-2, x — y = 7. 
 
 107. When are 3 quantities in continued proportion ? 
 Prove that if a, h, c, are in continued proportion, then a, a + b^ 
 a + 2 6 + c, are also in continued proportion. 
 
 108. Find a; if (a^ + 2 xf -lSx(x + 2) +45 = 0. 
 
 109. If the base of a system of logarithms is a, what is log a? 
 log-? loga^? logVa? log A/a*? logAZ-i? 
 
 X y ^ a^ y^ 
 
 110. Solve ±-i: = 2, -,--, = 3i 
 
 111. Calculate by logarithms the mean proportional between 
 V5:082 and a/.009116. 
 
 112. In a G. P. the 5th term is 12 and the 11th term is 768. 
 Find the 3d term and sum of 9 terms. 
 
 113. Solve =l-i + i. 
 
 a-^b — x a X b 
 
 114. Find a; if 2.5' = 75. 
 
 115. How many numbers, of 6 different digits each, can be 
 written from our 9 significant digits ? 
 
 116. Find x and y if a^ — a;?/ = 1^- and xy-{-y^ = 1. 
 
 117. Insert 5 geometrical means between 5 and 3645. Also 
 69 arithmetical means between 5 and 3645. 
 
 , , o n ^ ^1, 1 f / - 4.116 X 75.38 X .0567 \^ 
 
 118. Compute the value of ( — — , ^ ^^^. — 7:7^1^ ' 
 
 ^ \S1.24: X ( - 1.909) X .0053; 
 
 11-9. Solve for x and y : x^-{-xy + 2/^ = 13 ; a^ + a^/ + 2/^ = 91. 
 
 120. Find x and y in x^ + y^-{-x-\-y = 26; ccy = — 10. 
 
 ,«-. ai J? a.' — 1 -, 3a!-|-2 ^ 
 
 121. Solve for x : — 1 -!— - = 0. 
 
 a; — 3 a; + 3 
 
164 GENERAL REVIEW 
 
 122. Given log 40 = 1.60206, find log 2; log 5; log 20; log 
 
 50; log V5; log ■y/2.5', log i; log ^ ; log |; log 1.25; log 2i. 
 
 123. li S'.t = u'.v = w:x = y:Zf prove that 
 
 s-\-u-\-w-\-y'.t-\-v-\-x-\-z = s:t — etc. 
 
 124. Find all* the values of a; in : 3 a^x (x + 1) (a;^ - 81) = 0. 
 
 125. Solve for x and y: x^ -\- y'^ -\- x — y = 2Q -^ xy -\-16 = 0. 
 
 126. From a delegation of 15 Protestants and 11 Catholics, 
 there is to be chosen a committee of 6 Protestants and 4 Catho- 
 lics. In how many ways might this be accomplished ? 
 
 127. lix^ -\-y^ = ^ and ic + ?/ = 41, find x and y. 
 
 128. If V3a;-2 + VaJ + 2 -4 = 0, find x and discuss its 
 values as roots. 
 
 129. Given a = 2, Z = ^, s = \2^, find r and w. 
 
 130. Expand (2 - V^^)^ 
 
 131. Solve cc^ — 2/^ = 7, a; — 2/ = 133. 
 
 132. The 5th term of a G. P. is 336 and the 9th term is 
 5376. What is the 2d term ? 
 
 133. Finda::^±^^^^ = :^^^+1. Discuss its values. 
 
 X — V12 a — x -y/a — l 
 
 134. If a certain number is divided by 8, the result will be 
 the same as if 16 were divided by the number and 3J added 
 to the quotient. What is the number ? 
 
 135. If V :x = x:y = y :z, prove that x-^-y is a mean pro- 
 portional between v-\-x and y -\-z. 
 
 136. If aj + 2/4-l = a^-/ + a:2/-l = 0,finda;andy. 
 
GENERAL BEVIEW 165 
 
 137. What are the values of x in the equation 
 ^ — ~ =4? Are these values both roots? 
 
 138. Solve x^ — 2ax — 2bx + (a + b-\-c)(a-\-b — c) = 0. 
 
 139. The sum of the first two terms of a G. P. is 72 and the 
 sum of the next two is 8. What is the 1st term ? The 5th 
 term ? 
 
 140. Expand to 4 terms : (y~^ — 5 a?^ —1)'^. 
 
 141. Find the series in which d = 8, 1 = 147, and s = 1425. 
 
 142. If the ratios I : m, n : p, q : r, are equal, prove that each 
 
 is equal to J ''+/+/, 
 
 m^ -{- p'^ -{- 7^ 
 
 143. Solve (3 a; - 2)2 4- (« - 1) = 84. 
 
 144. Prove the binomial formula for positive integral 
 exponents. 
 
 145. What is the 7th term of (x-^ - ^Vxf)'^ ? 
 
 146. ^olYex^-\-xy-^2y^ = ll = a^-\-§y\ 
 
 147. Find a; if 2^' = 500. 
 
 148. From the figures 1, 2, 3, 4, 5, 6, 7, how many numbers 
 can be formed of 5 different figures each ? How many of these 
 will contain a 3 ? How many will have 3 and 6 together ? 
 How many will be odd ? 
 
 149. Multiply .03716^ by 1.8716^ by logarithms. 
 
 150. If, in an A. P., a = s = — | and n = 20, find d and L 
 
 151. Find that G. P. whose sum to infinity is 1^ and whose 
 2d term is ^. 
 
 152. Solve -^ fl + J_^a; + i + l = 0. 
 
 m -{- n \ mnj m n 
 
166 GENERAL REVIEW 
 
 153. Solve - + i = -^, a;v = 54. 
 
 ic 2/ 18 
 
 154. Insert 6 geometrical means between 5 and —640. 
 
 155. Find x and y if 3* 5^ = 75, 2* 7^ = 98. 
 
 156. How many different sounds can be made by striking 
 16 keys of a piano, 3 at a time ? 
 
 157. If 2(V^-3)2-3 = V^, find x, 
 
 158. Expand (2V3+3V2)^ 
 
 159. Find x and y from x + y = ^, x^y^ — 2^xy = — 192. 
 
 160. Solve 6a^-3a; = 2 + V2a^-a;. 
 
 161. There are two fractions the sum of whose denomina- 
 tors is 5. The numerator of the first is the square of the de- 
 nominator of the second, and the numerator of the second is 
 the square of the denominator of the first. The sum of the 
 fractions is 5|. Find them. 
 
 162. The sum of an infinite number of terms of a certain 
 G. P. is 4i The sum of the first two terms is 2|. Find 
 the series. 
 
 163. If log 13 = 1.1139, what is log a/1300 ? log V.0013? 
 
 164. Find a;: Va^-fl: \/2x = ^ ^ 
 
 x a;-f 4 
 165. Evaluate the decimal 1.4363636—. 
 
 166. Solve 9a;-3x2-4Vaj2-3a;-f 5 = 0. 
 
 167. Out of 7 consonants and 4 vowels how many words 
 can be formed, each consisting of 3 consonants and 2 vowels ? 
 
 168. Solve for x : (x-^ + i)"' = 27 and (a?"? ^ |)-i = - \. 
 
GENERAL BEVIEW 167 
 
 169. Find the numerical value of 
 
 i logs 9-2 log27 3 + log, a? - log, 1. 
 
 170. Show that ma-{-nb: pa-\-qb=7nG+nd: pc-{-qd provided 
 a, b, c, d, are proportional. 
 
 171. Find a; if 4*^-1 = (!)*-«. [Without tables.] 
 
 172. How many games must be played in a league of 10 
 baseball clubs, provided each club plays 10 games with every 
 other club ? 
 
 173. Insert 5 arithmetical means between — 7 and 77. 
 
 174. Find the values of x, correct to two decimal places, in 
 the equation ic^ — 2 a; — 2 = 0. 
 
 175. Solve iJc^ + 5xy + Sf = S, Sx^-^7 xy-{-4:y^ = 5. 
 
 176. If the series 12, 9, •••, is arithmetical, find the sum of 
 20 terms. If geometrical, find the sum of an infinite number 
 of terms. 
 
 177. Solve a;^ + a;^ + 1 = 0. 
 
 178. Tell sum, product, and nature of roots of 3 a^ — 4 a; — 11 
 
 = 0. Also of 2a^ + 3ajH-7 = 0. 
 
 179. Find the sum of all the odd numbers between 20 and 
 220. 
 
 180. Expand (J V3 + W^-^Y and simplify. 
 
 181. If a, b, c, d, are proportional, show that ab + cd is a 
 mean proportional between a^ + c^ and b^ + d\ 
 
 182. Solve the equations — 1--= — , a^+y^=a\ 
 
 X y xy 
 
 183. Find two numbers in ratio of 7:5, the difference 
 between whose squares is 96. 
 
168 GENERAL. BEVIEW 
 
 3/ = 
 
 184. Find the 8th term of the expansion of va — 6Vaa;, by 
 the binomial theorem. 
 
 185. Solvefor?/: l+V8^-32/2 = 22/. 
 
 186. Solve a; 4- 2/ + 2 Va; + 2/ = 24, « - ?/ + 3 Va; — 2/ = 10. 
 
 187. Find the value oiz: o?z-2h^= ah 
 
 188. Solve? + - = 5, ^, + -^-^ = -19. 
 
 X y x- xy y^ 
 
 
 Hint: Let- = w, - = w.1 
 L X y A 
 
 189. Discuss the values of x in the equation, 
 
 V3a; + 1 = V9aj + 4 - V2 a; - 1. 
 
 190. Find, by logarithms, the values of x and y^ if 3"= = 50 ^ 
 and 2^ = b y. 
 
 191. Find the (r + l)th term of (1 - x)^. 
 
 192. Simplify (2 - Vl - xy + (2 + Vl - x)\ 
 
 193. Compute, by logarithms, the value of 
 
 ^moiW^- 
 
 194. Solve Va — a; + V— (a^ + ax) = -^= 
 
 X 
 
 195. If a, 6, and c are in G. P., show that , -, and 
 
 aremA.P. « + *2' 6 + <= 
 
 196. Find the 3 cube roots of unity ; i.e. solve the equa- 
 tion x^ = 1. 
 
GENERAL BEVIEW 169 
 
 197. Solve for x:-\ h - ^ = ^^, — 7^ — 
 
 2 I 1 — a x\ x(a- — 1) 
 
 198. Solve V5a; + l + 2Vaj-2 = 3V2(a;-l). 
 
 199. Solve (m + xy — (m — xy = x. 
 
 200. Of how many terms does an A. P. consist in which 
 d = 'S, 1 = 302, a = 5? 
 
 201. The sum of an infinite number of terms of a G-. P. is 15 
 and the second term is 3^. Find the fourth term. 
 
 202. Solve ^-^ = ^. 
 
 a^ - 1 x' + l 20 
 
 203. Expand (V2«— ^3»)*. 
 
 204. The difference between two numbers is 32 and the 
 arithmetical mean exceeds the geometrical mean by 4. Find 
 the numbers. 
 
 205. By the principles of proportion find x if 
 
 Va; + 2 - Va; - 3 ^ Vr) .c + 1 - 4 V.t - 6 
 ■y/x + 2 + ^x^^ V5a.- + l + 4Va;-6 
 
 206. Find sum of i — 1 — f ••• to 29 terms. 
 
 207. Find sum of 1 + J + !••• to 6 terms. 
 
 208. Solve aV — oi^ — d^x — 5ax = 6a^. 
 
 209. The sum of 10 terms of an A. P. is 100 and the sixth 
 term is 11. Find the second term. 
 
 210. Solve a^_a; + l + -_-l =^. 
 
 ar — a^ + 1 3 
 
170 GENERAL REVIEW 
 
 211. The sides of a right triangle are in A. P. Prove that 
 they are proportional to 3, 4, 5. 
 
 212. Find a; if 
 
 213. How many terms of the series IJ, 1, |, •••, must be 
 taken, that the sum may be zero ? 
 
 214. Solve 2a^-3x + 4 = -— -4 ^• 
 
 2x'-Sx + 2 
 
 215. In an A. P. a = 7, d = — i s = 55. Find n and Z. 
 
 216. If V<x + a; : Va + Va + x = Va — a; : Va — Va — x, 
 find a;. 
 
 Solve the following simultaneous quadratic equations and 
 associate the corresponding values of x and y: 
 
 217. y^ + xy-^y = -6', x'-\-xy-^x = S, 
 
 218. x(x -h 2/) = 10 ; 2/(2/ - x) = 3. 
 
 219. VaH^— Va; — 2/ = 2; 3aj-22/ = 7. 
 
 220. 3,-3-1 = 316; a;-i=4. 
 
 r y 
 
 221. a^ + 2 a^ = - 21 ; y^ ■^2xy=-b. 
 
 222. «2 + 2/2_4aVa^ 4- 2/^ = 5^2; y? - f :=! a\ 
 
 223. a(a; — a) = 6(2/ — 6) ; ax -{- by = xy. 
 
 224. 6a^y^ + 5xy = 6; x -\- SO y = 12. 
 
 o«, i (^-32/)^-8a; + 24^ = -12; 
 
 ''^^' ^2(2a; + 2/)2-22a;-lli/ = ^5. 
 
GENERAL REVIEW 171 
 
 226. x-y-^x — y = 2; a?-f = 20^. 
 
 227. 2:f?-xy = \2', a? -2 xy + Zy'' = ^. 
 
 228. ^x^-{-6xy — 3x — y + 2 = 0'^ 2x-\-5y= — 4:. 
 
 229. One root of the equation a^ — 6ic+29=0is 3— 2V^^. 
 Without solving this quadratic, find the other root and prove 
 your answer correct. 
 
 230. Solve: ^- ^=2£l^. 
 
 a;— 1 aj-f-l a^ — 2a 
 
 231. Find the limit of the sum of the series 5 — 3 + 1 — ^ 
 + ^ — • • • to infinity. 
 
 232. Solve: V3a^-2a; + 4 = 3 0.-2-23;- 8. 
 
 233. If w, X, y, and z are proportional, show that -\/w^ — y^y 
 Vor — z^, w-\- y, X + z, are also proportional. 
 
 234. Find the ninth term of (ia^y-2 ^/xy\ 
 
 235. Divide 9 J into three parts in G. P. such that the sum 
 of the first two is to the sum of the last two as 3 to 2. 
 
 236. For what values of m will the equation 4 ic^ — 15 ic + 36 
 = m(x — 1) have equal roots ? Verify your results. 
 
172 
 
 LOGARITHMS 
 
 No. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 10 
 
 11 
 12 
 13 
 14 
 
 0000 
 0414 
 0792 
 1139 
 1461 
 
 0043 
 0453 
 0828 
 1173 
 1492 
 
 0086 
 0492 
 0864 
 1206 
 1523 
 
 0128 
 0531 
 0899 
 1239 
 1553 
 
 0170 
 0569 
 0934 
 1271 
 1584 
 
 0212 
 0607 
 0969 
 1303 
 1614 
 
 0263 
 0645 
 1004 
 1336 
 1644 
 
 0294 
 0682 
 1038 
 1367 
 1673 
 
 0334 
 0719 
 1072 
 1399 
 1703 
 
 0374 
 0766 
 1106 
 1430 
 1732 
 
 15 
 
 16 
 17 
 18 
 19 
 
 1761 
 2041 
 2304 
 2553 
 
 2788 
 
 1790 
 2068 
 2330 
 2577 
 2810 
 
 1818 
 2095 
 2355 
 2601 
 2833 
 
 1847 
 2122 
 2380 
 2625 
 2856 
 
 1875 
 2148 
 2405 
 2648 
 2878 
 
 1903 
 2175 
 2430 
 2672 
 2900 
 
 1931 
 2201 
 2465 
 2696 
 2923 
 
 1969 
 2227 
 2480 
 2718 
 2945 
 
 1987 
 2263 
 2604 
 2742 
 2967 
 
 2014 
 2279 
 2629 
 2766 
 2989 
 
 20 
 
 21 
 22 
 23 
 24 
 
 3010 
 3222 
 3424 
 3617 
 3802 
 
 3032 
 3243 
 3444 
 3636 
 3820 
 
 3054 
 3263 
 3464 
 8655 
 3838 
 
 3075 
 3284 
 3483 
 3674 
 3856 
 
 3096 
 3304 
 3502 
 3692 
 3874 
 
 3118 
 3324 
 3522 
 3711 
 3892 
 
 3139 
 3345 
 3541 
 3729 
 3909 
 
 3160 
 3365 
 3560 
 3747 
 3927 
 
 3181 
 3385 
 3579 
 3766 
 3945 
 
 3201 
 3404 
 3698 
 3784 
 3962 
 
 25 
 
 26 
 27 
 28 
 29 
 
 3979 
 4150 
 4314 
 4472 
 4624 
 
 3997 
 4166 
 4330 
 4487 
 4639 
 
 4014 
 4183 
 4346 
 4502 
 4654 
 
 4031 
 4200 
 4362 
 4518 
 4669 
 
 4048 
 4216 
 4378 
 4533 
 4683 
 
 4065 
 4232 
 4393 
 4648 
 4698 
 
 4082 
 4249 
 4409 
 4664 
 4713 
 
 4099 
 4265 
 4425 
 4579 
 4728 
 
 4116 
 4281 
 4440 
 4594 
 4742 
 
 4133 
 4298 
 4456 
 4609 
 4767 
 
 30 
 
 31 
 32 
 33 
 34 
 
 4771 
 4914 
 5051 
 5185 
 5315 
 
 4786 
 4928 
 5065 
 5198 
 5328 
 
 4800 
 4942 
 5079 
 5211 
 5340 
 
 4814 
 4955 
 5092 
 5224 
 5353 
 
 4829 
 4969 
 6105 
 5237 
 5366 
 
 4843 
 4983 
 5119 
 5250 
 5378 
 
 4857 
 4997 
 6132 
 5263 
 6391 
 
 4871 
 5011 
 6145 
 5276 
 6403 
 
 4886 
 6024 
 6169 
 6289 
 6416 
 
 4900 
 5038 
 5172 
 5302 
 6428 
 
 35 
 
 36 
 37 
 38 
 39 
 
 5441 
 5563 
 5682 
 5798 
 5911 
 
 5453 
 5575 
 5694 
 5809 
 5922 
 
 5465 
 5587 
 5705 
 5821 
 5933 
 
 5478 
 5599 
 5717 
 5832 
 5944 
 
 5490 
 5611 
 5729 
 5843 
 5955 
 
 5502 
 5623 
 6740 
 6865 
 6966 
 
 5614 
 5635 
 6752 
 5866 
 
 6977 
 
 5527 
 5647 
 6763 
 
 5877 
 6988 
 
 6539 
 5658 
 6776 
 6888 
 6999 
 
 6551 
 5670 
 6786 
 6899 
 6010 
 
 40 
 
 41 
 42 
 43 
 44 
 
 6021 
 6128 
 6232 
 6335 
 6435 
 
 6031 
 6138 
 6243 
 6345 
 6444 
 
 6042 
 6149 
 6253 
 6355 
 6454 
 
 6053 
 6160 
 6263 
 6365 
 6464 
 
 6064 
 6170 
 6274 
 6375 
 6474 
 
 6076 
 6180 
 6284 
 6385 
 6484 
 
 6086 
 6191 
 6294 
 6395 
 6493 
 
 6096 
 6201 
 6304 
 6406 
 6503 
 
 6107 
 6212 
 6314 
 6415 
 6513 
 
 6117 
 6222 
 6325 
 6425 
 6522 
 
 45 
 
 46 
 47 
 48 
 49 
 
 6532 
 6628 
 6721 
 6812 
 6902 
 
 6542 
 6637 
 6730 
 6821 
 6911 
 
 6551 
 6646 
 6739 
 6830 
 6920 
 
 6561 
 6656 
 6749 
 6839 
 6928 
 
 6571 
 6665 
 6758 
 6848 
 6937 
 
 6580 
 6676 
 6767 
 6857 
 6946 
 
 (5590 
 6684 
 6776 
 6866 
 6955 
 
 6599 
 6693 
 6785 
 6876 
 6964 
 
 6609 
 6702 
 6794 
 6884 
 6972 
 
 6618 
 6712 
 6803 
 6893 
 6981 
 
 50 
 51 
 52 
 53 
 
 54 
 
 6990 
 7076 
 7160 
 7243 
 7324 
 
 6998 
 7084 
 7168 
 7251 
 7332 
 
 7007 
 7093 
 7177 
 7259 
 7340 
 
 7016 
 7101 
 7185 
 7267 
 7348 
 
 7024 
 7110 
 7193 
 
 7275 
 7366 
 
 7033 
 7118 
 7202 
 7284 
 7364 
 
 7042 
 7126 
 7210 
 7292 
 7372 
 
 7050 
 7135 
 7218 
 7300 
 7380 
 
 7059 
 7143 
 7226 
 7308 
 7388 
 
 7067 
 7152 
 7235 
 7316 
 7396 
 
LOGARITHMS 
 
 173 
 
 No. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 55 
 
 56 
 67 
 58 
 59 
 
 7404 
 
 7482 
 7559 
 7634 
 7709 
 
 7412 
 7490 
 7566 
 7642 
 7716 
 
 7419 
 7497 
 7574 
 7649 
 7723 
 
 7427 
 7505 
 7582 
 7657 
 7731 
 
 7435 
 7513 
 7589 
 7664 
 7738 
 
 7443 
 7520 
 
 7597 
 7672 
 7745 
 
 7451 
 
 7528 
 7604 
 7679 
 
 7752 
 
 7459 
 7536 
 7612 
 7686 
 7760 
 
 7466 
 7543 
 7619 
 7694 
 
 7767 
 
 7474 
 7551 
 
 7627 
 7701 
 
 7774 
 
 60 
 
 61 
 62 
 63 
 64 
 
 7782 
 7853 
 7924 
 7993 
 8062 
 
 7789 
 7860 
 7931 
 8000 
 8069 
 
 7796 
 7868 
 7938 
 8007 
 8075 
 
 7803 
 7875 
 7945 
 8014 
 8082 
 
 7810 
 7882 
 7952 
 8021 
 8089 
 
 7818 
 7889 
 7959 
 8028 
 8096 
 
 7825 
 7896 
 7966 
 8035 
 8102 
 
 7832 
 7903 
 7973 
 8041 
 8109 
 
 7839 
 7910 
 7980 
 8048 
 8116 
 
 7846 
 7917 
 7987 
 8055 
 8122 
 
 65 
 
 66 
 67 
 68 
 69 
 
 8129 
 8195 
 8261 
 8325 
 8388 
 
 8136 
 8202 
 82(57 
 8331 
 8395 
 
 8142 
 8209 
 8274 
 8338 
 8401 
 
 8149 
 8215 
 8280 
 8344 
 »407 
 
 8156 
 8222 
 8287 
 8351 
 8414 
 
 8162 
 8228 
 8293 
 8357 
 8420 
 
 8109 
 8235 
 8299 
 8363 
 8426 
 
 8176 
 8241 
 8306 
 8370 
 8432 
 
 8182 
 8248 
 8312 
 8376 
 8439 
 
 8189 
 8254 
 8319 
 8382 
 8445 
 
 70 
 71 
 72 
 73 
 74 
 
 8451 
 8513 
 8573 
 8633 
 
 8692 
 
 8457 
 8519 
 8579 
 8639 
 8698 
 
 8463 
 8525 
 8585 
 8645 
 8704 
 
 8470 
 8531 
 8591 
 8651 
 8710 
 
 8476 
 8537 
 8597 
 8657 
 8716 
 
 8482 
 8543 
 8603 
 8663 
 8722 
 
 8488 
 8549 
 8609 
 8669 
 
 8727 
 
 8494 
 8555 
 8615 
 8675 
 8733 
 
 8500 
 8561 
 8621 
 8681 
 8739 
 
 8506 
 8567 
 8627 
 8686 
 8745 
 
 75 
 
 76 
 
 77 
 78 
 79 
 
 8751 
 8808 
 8865 
 8921 
 8976 
 
 8756 
 8814 
 8871 
 8927 
 8982 
 
 8762 
 8820 
 8876 
 8932 
 8987 
 
 8768 
 8825 
 8882 
 8938 
 8993 
 
 8774 
 8831 
 8887 
 8943 
 8998 
 
 8779 
 8837 
 8893 
 8949 
 9004 
 
 8785 
 8842 
 8899 
 8954 
 9009 
 
 8791 
 8848 
 8904 
 8960 
 9015 
 
 8797 
 8854 
 8910 
 8965 
 9020 
 
 8802 
 8859 
 8915 
 8971 
 9025 
 
 80 
 81 
 82 
 83 
 84 
 
 9031 
 9085 
 9138 
 9191 
 9243 
 
 9036 
 9090 
 9143 
 9196 
 9248 
 
 9042 
 9096 
 9149 
 9201 
 9253 
 
 9047 
 9101 
 9154 
 9206 
 9258 
 
 9053 
 9106 
 9159 
 9212 
 9263 
 
 9058 
 9112 
 9165 
 9217 
 9269 
 
 9063 
 9117 
 9170 
 9222 
 9274 
 
 9069 
 9122 
 9175 
 9227 
 9279 
 
 9074 
 9128 
 9180 
 9232 
 
 9284 
 
 9079 
 9133 
 9186 
 9238 
 9289 
 
 85 
 86 
 87 
 88 
 89 
 
 9294 
 9345 
 9395 
 9445 
 9494 
 
 9299 
 9350 
 9100 
 9450 
 9499 
 
 9304 
 9355 
 9405 
 9455 
 9504 
 
 9309 
 9360 
 9410 
 9460 
 9509 
 
 9315 
 9365 
 9415 
 9405 
 9513 
 
 9320 
 9370 
 9420 
 9469 
 9518 
 
 9325 
 9375 
 9425 
 9474 
 9523 
 
 9330 
 9380 
 9430 
 9479 
 9528 
 
 9335 
 9385 
 9435 
 9484 
 9533 
 
 9340 
 9390 
 9440 
 9489 
 9538 
 
 90 
 91 
 92 
 93 
 94 
 
 9542 
 9590 
 9638 
 9685 
 9731 
 
 9547 
 9595 
 9643 
 9689 
 9736 
 
 9552 
 9600 
 9647 
 9694 
 9741 
 
 9557 
 9605 
 9652 
 9699 
 9745 
 
 9562 
 9609 
 9657 
 9703 
 9750 
 
 9566 
 9614 
 9661 
 9708 
 9754 
 
 9571 
 9619 
 9666 
 9713 
 9759 
 
 9576 
 9624 
 9671 
 9717 
 9763 
 
 9581 
 9628 
 9675 
 9722 
 9768 
 
 9586 
 9633 
 9680 
 9727 
 9773 
 
 95 
 
 96 
 97 
 98 
 99 
 
 9777 
 9823 
 9868 
 9912 
 9956 
 
 9782 
 9827 
 9872 
 9917 
 9961 
 
 9786 
 9832 
 9877 
 9921 
 9965 
 
 9791 
 983(3 
 9881 
 9926 
 9969 
 
 9795 
 9841 
 9886 
 9930 
 9974 
 
 9800 
 9845 
 9890 
 9934 
 9978 
 
 9805 
 9850 
 9894 
 9939 
 9983 
 
 9809 
 9854 
 9899 
 9943 
 9987 
 
 9814 
 9859 
 9903 
 9948 
 9991 
 
 9818 
 9863 
 9908 
 9952 
 9996 
 
Phillips and Fisher's Geometry 
 
 By ANDREW W. PHILLIPS, Ph.D. 
 
 and IRVING FISHER, Ph.D. 
 
 Yale University 
 
 PHILLIPS AND FISHER'S ELEMENTS OF PLANE AND SOLID 
 
 GEOMETRY $1.75 
 
 PHILLIPS AND FISHER'S PLANE AND SOLID GEOMETRY. 
 
 Abridged $1.25 
 
 PHILLIPS AND FISHER'S PLANE GEOMETRY— Separate . 80 cents 
 PHILLIPS AND FISHER'S GEOMETRY OF SPACE— Separate $1.25 
 PHILLIPS AND FISHER'S LOGARITHMS OF NUMBERS . 30 cents 
 
 The publication of this text-book marks a new era in the teaching 
 of Geometry. Its distinctive qualities are : (i) clearness of presentation, 
 both in form of statement and in the diagrams ; (2) natural and sym- 
 metrical methods of proof ; (3) abundance and variety of original 
 problems for demonstration and for numerical computation. 
 
 But the feature which more than any other distinguishes it from 
 similar text-books is the use of photo-engravings of geometrical figures 
 arranged side by side with skeleton drawings of the same, whereby the 
 most magnificent collection of geometrical models ever constructed is 
 brought within reach of every preparatory school and college student. 
 By this method of illustration the great problem of educating the 
 student's imagination to a proper comprehension of the figures of solid 
 geometry is practically solved. 
 
 The Abridged Edition is intended for those schools which desire a 
 briefer course than that offered in the complete work. It has all the 
 excellencies and features of the larger book, including the reproductions 
 of the models. 
 
 Copies of any of these books sent, prepaid, on receipt of price. 
 
 American Book Company 
 
 New York ♦ Cincinnati ♦ Chicago 
 
 (69) 
 
Lessons in Physical Geography 
 
 By CHARLES R. DRYER, M.A., F.G.S.A. 
 Professor of Geography in the Indiana State Normal School 
 
 Half leather, 12mo. Illustrated. 430 pages. . . , Price, $1.20 
 
 EASY AS WELL AS FULL AND ACCURATE 
 
 One of the chief merits of this text-book is that it is simpler than 
 any other complete and accurate treatise on the subject now before the 
 public. The treatment, although specially adapted for the high school 
 course, is easily within the comprehension of pupils in the upper grade 
 of the grammar school. 
 
 TREATMENT BY TYPE FORMS 
 
 The physical features of the earth are grouped according to their 
 causal relations and their functions. The characteristics of each group 
 are presented by means of a typical example which is described in unusual 
 detail, so that the pupil has a relatively minute knowledge of the type form. 
 
 INDUCTIVE GENERALIZATIONS 
 
 Only after the detailed discussion of a t5rpe form has given the pupil 
 a clear and vivid concept of that form are explanations and general prin- 
 ciples introduced. Generalizations developed thus inductively rest upon 
 an adequate foundation in the mind of the pupil, and hence cannot 
 appear to him mere formulae of words, as is too often the case. 
 
 REALISTIC EXERCISES 
 
 Throughout the book are many realistic exercises which include both 
 field and laboratory work. In the field, the student is taught to observe 
 those physiographic forces which may be acting, even on a small scale, 
 in his own immediate vicinity. Appendices (with illustrations) give full 
 instructions as to laboratory material and appliances for observation and 
 for teaching. 
 
 SPECIAL ATTENTION TO SUBJECTS OF HUMAN INTEREST 
 
 While due prominence is given to recent developments in the study, 
 this does not exclude any link in the chain which connects the face of the 
 earth with man. The chapters upon life contain a fuller and more 
 adequate treatment of the controls exerted by geographical conditions 
 upon plants, animals, and man than has been given in any other similar 
 book. 
 
 MAPS AND ILLUSTRATIONS 
 
 The book is profusely illustrated by more than 350 maps, diagrams, 
 and reproductions of photographs, but illustrations have been used only 
 \yhere they afford real aid in the elucidation of the text. 
 
 Copies sent, prepaid, on receipt of price, 
 
 American Book Company 
 
 New York ♦ Cincinnati ♦ Chicago 
 
 (112) 
 
Bim™w^ 14 DAY USE 
 
 MTO«N TO DESK FROM WHI^I BORRO^^o 
 
 LOAN OEPT 
 
 Renewed books are subierf »o .„ !■ 
 
 "»resuo,ect to immediate recaU. 
 
 retrtrb 
 
 VUui^ 
 
 
 '~^^imis« 
 
 (A9562slb)476B^ 
 
 fT .^^*"."al Library 
 Umyersity of California 
 Berkeley 
 
<AfL /« ^, <^. 9/ 
 
 f^ 
 
 f-^ 
 
 
 
 <a^^ 
 
 
 THE UNIVERSITY OF CAUFORNIA UBRARY 
 
 k