^ k THE INDIAN CALENDAR THE INDIAN CALENDAR WITH TABLES FOR THE CONVERSION OF HINDU AND MUHAMMADAN INTO A.D. DATES, AND VICE VERSA ROBERT SEWELL Late of Her Majesty's Indian Civil Service, SANKARA BALKRISHNA DIKSHIT Traitiing College, Poona. WITH TABLES OF ECLIPSES VISIBLE IN INDIA BY Dr. ROBERT SCHRAM Of Vienna. LONDON SWAN SONNENSCHEIN & Co., Ltd. Paternoster Square ^ENTlt.'X Printed al the Motley J^ess, Amsterdam. PREFACE. This Volume is designed for the use, not only of those engaged in the decypherment of Indian inscriptions and the compilation of Indian history, but also of Judicial Courts and Government Ofifices in India. Documents bearing dates prior to those given in any existing almanack are often produced before Courts of Justice as evidence of title ; and since forgeries, many of them of great antiquity, abound, it is necessary to have at hand means for testing and verifying the authenticity of these exhibits. Within the last ten years much light has been thrown on the subject of the Indian methods of time-reckoning by the pubHcations of Professor Jacobi, Dr. Schram, Professor Kielhorn, Dr. Fleet, Pandit Sahkara Balkrishna Dikshit, and others ; but these, having appeared only in scientific periodicals, are not readily accessible to officials in India. The Government of Madras, therefore, desiring to have a summary of the subject with Tables for ready reference, requested me to undertake the work. In process of time the scheme was widened, and in its present shape it embraces the whole of British India, receiving in that capacity the recognition of the Secretary of State for India. Besides containing a full explanation of the Indian chronological system, with the necessary tables, the volume is enriched by a set of Tables of Eclipses most kindly sent to me by Dr. Robert Schram of Vienna. In the earher stages of my labours I had the advantage of receiving much support and assistance from Dr. J. Burgess (late Director-General of the Arch.-eological Survey of India) to whom I desire to express my sincere thanks. After completing a large part of the calculations necessary for determining the elements of Table I., and drawing up the draft of an introductory treatise, I entered into correspondence with Mr. Sankara Balkrishna Dikshit, with the result that, after^a short interval, we agreed to complete the work as joint authors. The introductory treatise is mainly his, but I have added to it several explanatory paragraphs, amongst others those relating to astronomical phenomena. Tables XIV. and XV. were prepared by Mr. T. Lakshmiah Naidu of Madras. It is impossible to over-estimate the value of the work done by Dr. Schram, which renders it now for the first time easy for anyone to ascertain the incidence, in time and place, of every solar eclipse occurring in India during the past 1600 years, but while thus briefly noting his services in the cause of science, I cannot neglect this opportunity of expressing to him my gratitude for his kindness to myself. S38499 I must also tender my warm thanks for much invaluable help to Mr. 11. 11. Turner, Savilian Professor of Astronomy at Oxford, to Professor Kiclhorn, CLE., of Gottingen, and to Professor Jacobi. The Tables have been tested and re-tested, and we believe that they may be safely relied on for accuracy. No pains have been spared to secure this object. R. SEWELL. II. It was only in September, 1893, that I became acquainted with Mr. R. Sewell, after he had already made much progress in the calculations necessary for the principal articles of Table I. of this work, and had almost finished a large portion of them. The idea then occurred to me that by inserting the a, h, c figures (cols. 23, 24, and 25 of Table I.) which Mr. Sewell had already worked out for the initial days of the luni-solar years, but had not proposed to print in full, and by adding some of Professor Jacobi's Tables published in the Indian Antiquary, not only could the exact moment of the beginning and end of all luni- solar tithis be calculated, but also the beginning and ending moments of the nakshatra, yoga, and karana for any day of any year; and again, that by giving the exact moment of the Mesha sankranti for each solar year the exact European equivalent for every solar date could also be determined. I therefore proceeded to work out the details for the Mesha sankrantis, and then framed rules and examples for the exact calculation of the required dates, for this purpose extending and modifying Professor Jacobi's Tables to suit my methods. Full explanation of the mode of calculation is given in the Text. The general scheme was originally propounded by M. Largeteau, but we have to thank Professor Jacobi for his publications which have formed the foundation on which we have built. My calculation for the moments of Mesha sankrantis, of mean intercalations of months (Mr. Sewell worked out the true intercalations), and of the samvatsaras of the cycle of Jupiter were carried out by simple methods of my own. Mr. Sewell had prepared the rough draft of a treatise giving an account of the Hindu and Muhammadan systems of reckoning, and collecting much of the information now embodied in the Text. But I found it necessary to re-write this, and to add a quantity of new matter. I am responsible for all information given in this work which is either new to European scholars, or which differs from that generally received by them. All points regarding which any difference of opinion seems possible are printed in footnotes, and not in the Text. They are not, of course, fully discussed as this is not a controversial work. Every precaution has been taken to avoid error, but all corrections of mistakes which may have crept in, as well as all suggestions for improvement in the future, will be gladly and thankfully received. S. BALKRISHNA DIKSHIT. TABLE OF CONTENTS. PART I. The Hindu Calendar. Art. I. Introductory I Elciitents and Definitions. Art. 4. The panchahga 2 „ 5. The vara, or week day 2 Days of the week 2 ,, 6. Time divisions 2 Subdivisions of the day 2 „ 7. The tithi, amavasya, purnima 3 „ 8. The nakshatra 3 „ 9. The yoga 3 ,, 10. The karana 3 „ II. The paksha • 4 „ 12. Lunar months 4 „ 13. Amanta and purnimanta systems 4 ,, 14. Luni-solar month names 5 „ 15. The solar year, tropical, sidereal, and anomalistic 5 „ 16. The Kalpa. Mahayuga. Yuga. Julian Period 6 ,, 17. Siddlianta year-measurement 6 „ 1 8. Siddhantas now used for the same 7 The Siddhantas a7id other Astronomical Works. Art. 19. Siddhantas, Karanas, bija, Hindu schools of astronomers ... 7 „ 20. Note on the Siddhantas, and their authors and dates .... 7 ,, 21. Authorities at present accepted by Hindus 9 Further details. Contents of the Pahchaiiga. Art. 22. The Indian Zodiac, rasi, ariisa 9 ,, 23. The Sankrantis. Names given to solar months 9 ,, 24. Length of months .10 Duration of solar months. Table 10 ,, 25. Adhika masas. Calendar used il ,, 26. True and mean sankrantis. Sodhya 11 TABLE OF CONTENTS. Page Art. 28. The beginning of a solar month 12 Rule I. (a) The midnight Rule (Bengal). ,, 1. (li) The any-time Rule (Orissa). „ II. (a) The sunset Rule (Tamil). „ II. (l>) The afternoon Rule (Malabar). „ 29. Paiichangs, tithis 13 „ 30. Extract from an actual pafichanga 13 The Ahargana 16 „ 31. Correspondence of tithis and solar days 16 Performance of religious ceremonies, sraddhas, vratas 17 „ 32. Adhika and kshaya tithis 17 „ 34. Variation on account of longitude 18 „ 35. Examples of the same 19 „ 36. True and mean time 19 Mean sun, mean moon, true and mean sunrise 19 „ 37. Basis of calculation for the Tables 20 Elements of uncertainty 20 „ 38. Nakshatras 21 Yoga-taras. Equal and unequal space systems. Garga and Brahma Siddlianta systems 21 Table. Longitude of Ending-points of Nakshatras 22 ,, 39. Auspicious Yogas 22 „ 40. Karanas 23 ,, 40fl. Eclipses 23 Oppolzer's Canon. Note by Professor Jacobi 23 „ 41 Lunar months and their names 24 Season-names, star-names 24 „ 42 — 44. Modern names of, derived from the nakshatras 24 Table shewing this derivation 25 ,, 45. Adhika and kshaya masas. Rules 25 Table 26 ,, 46. Their names. Rules 26 ,, 47. Their determination according to true and mean systems .... 27 Change of practice about A.U. 1 100 .......... 27 Sripati. Bhaskaracharya 28 „ 48. Rules given in another form . • 28 „ 49. Different results by different Siddkantas 29 ,, 50. Some peculiarities in the occurrence of adhika and kshaya masas . 29 ,, 51. Intercalation of months by purnimiinta scheme 30 Years and Cycles. „ 52. The Hindu New Year's Day in solar and luni-solar reckoning . 31 When the first month is intercalary 32 Differs in different tracts 32 ,, 53. The si.\ty-year cycle of Jupiter 32 TABLE OF CONTENTS. Page Art. 54 — 55. Kshaya samvatsaras 33 56 — 57. Variations in expunction of samvatsaras 33 Jyotislia-tattva Rule 33 „ 58. To find the current samvatsara 34 ,, 59. Rules for the same 34 (a) By the Siirya Siddhanta 34 (b) By the Arya Siddhhita 34 (c) By the Siirya Siddhanta with the bija 35 (d) Brihatsamhita and Jyotishatattva Rules 35 60. List of Expunged Samvatsaras by different authorities. Table . . 36 „ 61. Earliest use of Jupiter's cycle 30 „ 62. The southern (luni-solar) sixty-year cycle 3° „ 63. The twelve-year cycle of Jupiter 37 Two kinds of Do 37 „ 64. The Graha-paravritti and Onko cycles 37 PART II. The Various Eras. Art. 65. General remarks 39 „ 66. Importation of eras into different tracts 39 ,. 67. Examples of Do 39 „ 68. Eras differently treated by the same author 39 „ 69. Only one safe deduction 4° „ 70. Current and expired years. Explanation 4° „ 71. Description of the several eras 4° The Kali-Yuga 4° The Saptarshi Kala Era 4i The Vikrama Era 4i The Christian Era 42 The Saka Era 42 The Chedi or Kalachuri Era 42 The Gupta Era 43 The Valabhi Era 43 The Bengali San 43 The Vilayati Year 43 The Amli Era of Orissa 43 The Fasali Year 44 The Luni-solar Fasali Year 44 The Mahratta Sur San, or Shahur San 45 The Harsha Kala 45 The Magi San ^^ The Kollam Era, or Era of Parasurama 45 The Nevar Era ^5 The Chalukya Era 46 The Siiiiha Samvat 46 TAHI.E OK CONTENTS. I'age The Lakshmana Sena Era 46 The Ilahi Era 46 The Mahratta Raja Saka Era 47 Art. 72. Names of Hindi and N. W. Fasali months 47 PART III. Description and Explanation of the Tables. Art. 73 — 102. Table I. (general) 47 Art. 80. "Lunation-parts" or "tithi indices", or"/." explained . 49 81. Relation of " tithi-index " and "tithi-part" .... 50 82. To convert "/. " into solar time 50 83 — 86. Lunar conditions requisite for tlie intercalation or suppression of a month 50 87. Reasons for adopting tithi-index notation 51 90. Method for arriving at correct intercalated and suppressed months S- 91. Plan of work adopted for Table 1 52 96. Moments of Mesha-sankranti differ according to Ar_ya and Surya Siddliantas 54 Table shewing difference 55 „ 102. a, b, c, (cols. 23, 24, 25) fully explained 56 Table. Increase of a, b, c. in a year and in a day . 57 103. Table II., Parts i. and ii. Correspondence ofamantaand purnimanta months, and of months in different eras 57 104. Table II., Part iii. Do. of years of different eras 58 Rules for conversion of a year of one era into that of another . 58 105. Table III. (Collective duration of months) ■ • • ■ 59 106. Tables IV., V. {w. a, b. c for every day in a year, and for hours and minutes) 59 107 — no. Tables VI., VII. (Lunar and solar equations of the centre 60 Equation of the centre explained 60 III. Tables VIII., VIIlA., VIIlB 62 112— 117. Tables IX. to XVI G2 PART IV. Use of the Tables. Purposes for which the Tables may be used 62 To find the corresponding year and month of other eras ... 63 To find the samvatsara 63 To find the added or suppressed month 63 -129. To convert a Hindu date into a date A.D. and vice versa . 63 By methods A, B, or C 63 -133. To find the nakshatra, yoga, and karana current on any date 64 Explanation of work for nakshatras and yogas 64 To convert a solar date into a luni-solar date, and vice versa . 65 Art. 118. „ 119. „' 120. » 121. „ 122- .. 131- M '34- TABLE 0¥ CONTENTS. Page Art. 135 — 136. Details for work by Method A 65 Art. 135. (a) Conversion of a Hindu solar date into a date A. D. 65 (b) Do. of a date A.D. into a Hindu solar date . 66 „ 136. (a) Do. of a Hindu luni-solar date into a date A.D. 67 (b) Do. of a date A.D. into a Hindu luni-solar date 68 „ 137 — 138. Details for work by Method B 69 Art. 137. (a) Conversion of Hindu dates into dates A.D. . . 69 (a) Luni-solar Dates 70 (d) Solar Dates 73 „ 138. (b) Conversion of dates A.D. into Hindu dates . 74 (aj Luni-solar Dates 75 0) Solar Dates 76 „ 139—160. Details for work by Method C 77 Art. 139. (a) Conversion of Hindu luni-solar dates into dates A.D. 77 ,, 142. A clue for finding when a tithi is probably repeated or expunged 78 144. To find the moment of the ending of a tithi ... 78 145. Do. of its beginning 78 149. (b) Conversion of Hindu solar dates into dates A.D. 86 150. (c) Conversion into dates A.D. of tithis which are coupled with solar months 89 151. (d) Conversion of dates A.D. into Hindu luni-solar dates 90 152. (e) Conversion of dates A.D. into Hindu solar dates . 93 153. (f) Determination of Karanas 96 156. (G) Do. of Nakshatras 97 159. (h) Do. of Yogas 97 160. (i) Verification of Indian dates 98 PART V. The Muhamtnadan Calendar. Art. 161. 162. 163. 164. 165. 166. 167. 168. 169. 170. Dr. Burgess's Perpetual Muhammadan Calendar Epoch of the Hijra loi Leap-years 102 The months. Table 102 A month begins with the heliacal rising of the moon .... 102 Occurrence of this under certain conditions 103 Difference in, — caused by difference in longitude 103 Days of the Week. Table 103 Compensation for New Style in Europe 103 Rules for conversion of a date A.H. into a date A.D. . . . 104 Rules for conversion of a date A.D. into a date A.H. . . . 105 /io6i TABLE OF CONTENTS. Table I. II. III. IV. V. VI. vir. VIII. VIII A. VIII B. IX. X. XI. XII. XIII. XIV. XV. XVI. Page i to cii. ciii to cvi. cvii. cviii to ex. cxi. cxii. cxii. cxiii. cxiv. cxiv, cxv. cxvi, cxvii. cxviii. cxix, cxx. cxxi. cxxii. cxxiii. cxxiv, cxxivrt. cxxv, cxxxvi. APPENDIX. Eclipses of the Sun in India by Dr. Robert Schram. Table A „ B „ C „ D 1 09 to 116. 1 17 to 127. 128 to 137. 138. 139 to 148. Additions and Corrections Index . . . . 149 to 161. 163 to 169. THE INDIAN CALENDAR. PART I. THE HINDU CALENDAR. 1. In articles ii8 to 134 below are detailed the various uses to which this work may be applied. Briefly speaking our chief objects are three; firstly, to provide simple methods for converting any Indian date — luni-solar or solar — faUing between the years A.D. 300 and 1900 into its equivalent date A.D., and vice versa, and for finding the week-day corresponding to any such date; secondly, to enable a speedy calculation to be made for the determination of the re- maining three of the five principal elements of an Indian /rt«r/^r?;>_f a (calendar), viz., th& Jiakskatra, yoga, and karana, at any moment of any given date during the same period, whether that date be given in Indian or European style; and thirdly, to provide an easy process for the verification of Indian dates falling in the period of which we treat. 2. For securing these objects several Tables are given. Table I. is the principal Table, the others are auxiliary. They are described in Part III. below. Three separate methods are given for securing the first of the above objects, and these are detailed in Part IV. All these three methods are simple and easy, the first two being remarkably so, and it is these which we have designed for the use of courts and offices in India. The first method (A) {Arts. 135, 136) is of the utmost simplicity, consisting solely in the use of an eye-table in conjunction with Table I., no calculation whatever being required. The second (B) is a method for obtaining approximate results by a very brief calculation [Arts. 137, 138) by the use of Tables I., III. and IX. The result by both these methods is often correct, and it is always within one or two days of the truth, the latter rarely. Standing by itself, that is, it can always, provided that the era and the original bases of calculation of the given date are known, be depended on as being within two days of the truth, and is often only one day out, while as often it is correct. When the week-day happens to be mentioned in the given date its equivalent, always under the above proviso, can be fixed correctly by either of these methods. ^ The third method (C) 1 See Art. 126 below. THE INDIAN CALENDAR. is a melliod by vliich cntiiely correct results may be obtained by the use of Tables 1. to XI. {Arts. 1 39 to 1 60), and tlicugh a little more complicated is perfectly simple and easy when once studied and upde.'st^'jod. From these results the nakshatra, yoga, and karana can be easily calculated. 3. Calculation of a date may be at once begun by using Part IV. below, but the process will be more intelligible to the reader if the nature of the Indian calendar is carefully explained to him beforehand, for this is much more intricate than any other known system in use. Elements and Definitiotts. 4. The pancJidiiga. The paiichaitga (calendar), ///. that which has five {panchd) limbs (aiigas). concerns chiefly five elements of time-division, viz., the vara, tithi, nakshatra, yoga and karana. 5. The vara or week-day. The natural or solar day is called a savana divasa in Hindu Astronomy. The days are named as in Europe after the sun, moon, and five principal planets, ' and are called varus (week-days), seven of which compose the week, or cycle of varas. A vara begins at sunrise. The week-days, with their serial numbers as used in this work and their various Sanskrit synonyms, are given in the following list. The more common names are given in italics. The list is fairly exhaustive but does not pretend to be absolutely so. Days of the Week. 1. Sunday. Adi, - Aditya, Ravi, Ahaskara, Arka, Aruna, Bhattaraka, Aharpati, Bhaskara, Bradhna, Bhanu etc. 2. Monday. J)(?;«rt, Abja, Chandramas, Chandra, Indu, Nishpati, Kshapakara, etc. 3. Tuesday. Mangala, Aiigaraka, Bhauma, Mahisuta, Rohitanga. 4. Wednesday. Budha, Baudha, Rauhineya, Saumya. 5. Thursday. Guru, Angirasa, Brihaspati, Dhishana, Suracharya, Vachaspati, etc. 6. Friday. Sukra, Bhargava, Bhrigu, Daityaguru, Kavya, Usanas, Kavi. 7. ' Saturday. Sani, Sauri, Manda. Time-Divisions. 6. The Indian time-divisions. The subdivisions of a solar day (sa'i'ana divasa) are as follow : A prativipala (sura) is equal to 0.006 of a second. 60 prativipalas make i vipala (para, kashtha-kala) — 0.4 of a second. 60 vipalas do. 1 pala (vighati, vinadi) = 24 seconds. 60 palas do. 1 ghatika (ghati, danda, nadi, nadika) = 24 minutes. 60 ghatikas do. i divasa (dina, vara, vasara) = i solar day. Again 10 vipalas do. i prana =. 4 seconds. 6 pranas do. i pala = 24 seconds. 1 It 8i-cm» iilmiist iTi-liiiii thai Ijotli sj^tciiisi lind » ramiiKm origin iu (JhuUo'ii. The lirsl is tin- day of till- siiu, Ibe swoiul of thi- moon, the third of Mars, the fourth of Miiciirv, the fifth of Jupiter, thf sixth of \cuiiii, Ihi- sinnth of Solum [R. S] - Thr word rar/i is to he affixed to eaeli of these namea; 7J/7pi=Sun, Jiavir^ra ^ Snuday . • In the Table, for conveuicnov of addition, Saturday is styled 0. THE HINDU CALENDAR. 3 7. Tlic titlii, aDiavasya, purniind. Tlic nionieiit of new moon, or that point of time when the longitudes of the sun and moon are equal, is called aniavasya (lit. the "dwelling together" of the sun and moon). A titlii is the time occupied by the moon in increasing her distance from the sun by 12 degrees; in other words, at the exact point of time when the moon (whose apparent motion is much faster than that of the sun), moving eastwards from the sun after the aniavasya, leaves the sun behind by 12 degrees, the first tithi, which is called/^-^/i'/rtf/ff or pratipad, ends; and so with the rest, the complete synodic revolution of the moon or one lunation occupying 30 tithis for the 360 degrees. Since, however, the motions of the sun and moon are always varying in speed ^ the length of a tithi constantly alters. The variations in the length of a tithi are as follow, according to Hindu calculations: gh. pa. vipa. h. m. s. Average or mean length 59 3 40.23 23 37 28.092 Greatest length 65 16 26 6 24 Least length 53 56 21 34 24 The moment of full moon, or that point of time when the moon is furthest from the sun, — astronomically speaking when the difference between the longitudes of the sun and moon amounts to 180 degrees — is called piirnima. The tithi which ends with the moment of amavasya is itself called "amavasya", and similarly the tithi which ends with the moment of full moon is called "purnima." {For further details see Arts, sg, ji, J2.) 8. T/ie nakshatra. The 27th part of the ecliptic is called a nakshatra, and therefore each nakshatra occupies (^^=- =) 1 3° 20'. The time which the moon (whose motion continually varies in speed) or any other heavenly body requires to travel over the 27th part of the ecliptic is also called a nakshatra. The length of the moon's nakshatra is : gh. pa. vipa. h. III. s. Mean 60 42 534 24 17 9-36 Greatest 66 21 26 32 24 Least 55 56 22 22 24 It will be seen from this that the moon travels nearly one nakshatra daily. The daily nakshatra of the moon is given in every panchaiig (native almanack) and forms one of its five articles. The names of the 27 nakshatras will be found in Table VIIL, column 7. (See Arts. jS. ^2.) 9. The yoga. The period of time during which thejoint motion in longitude, or the sum of the mo- tions, of the sun and moon is increasedby i3°2o',iscalledajY'^«, lit. "addition". Its length varies thus : gh. pa. vipa. h. m. s. Mean 56 29 21.75 22 35 44-7 Greatest 61 3' 24 36 24 Least 52 12 20 52 48 The names of the 27 yogas will be found in Table VIIL, col. 12. (See Art. jp.J 10. The karana. A karana is half a tithi, or the time during which the difference of the longitudes of the sun and moon is increased by 6 degrees. The names of the karanas are given in Table VIIL, cols. 4 and 5. (See Art. .f.0.) 1 The variation is of coiu-st- really iu the motions of the earth and the moon. It is cansed by aetual alterations in rate of rapidity of motion in consequence of the elliptical form of the orbits and the moon's actual perturbations; and by apparent irregularities of motion in consequence of the plane of the moon's orbit being at an angle to the plane of the ecliptic. [R. S.] 4 THE INDIAN CALENDAR. 11. The paksha. The next natural division of time greater than a solar day is the />tf/^.y//<7 (lit. a wing ') or moon's fortnight. The fortnight during which the moon is waxing has several names, the commonest of which are sukla or iwrt'^/^rt (lit. " bright ", that during which the period of the night following sunset is illuminated in consequence of the moon being above the horizon). The fortnight during which the moon is waning \s c-aA&<\ Tao?X con\mov\y krishna o\ baltula ox vady a (lit. " black", "dark", or the fortnight during which the portion of the night following sunset is dark in consequence of the moon being below the horizon). The first fortnight begins with the end of amavasya and lasts up to the end of piirnima ; the second lasts from the end of purnima to the end of amavasya. The words "piarva" (former or first) and "apara" (latter or second) are sometimes used for sukla and krishna respectively. "Sudi" (or "sudi") is sometimes used for sukla, and "vadi" or " badi " for krishna. They are popular corruptions of the words " suddha " and " vadya " respectively. 12. Lunar months. The next natural division of time is the lunation, or lunar month of two lunar fortnights, viz., the period of time between two successive new or full moons. It is called a chandra niasa, or lunar month, and is the time of the moon's synodic revolution. - The names of the lunar months will be found in Table II., Parts i. and ii., and Table III., col. 2, and a complete discussion on the luni-solar month system of the Hindus in Arts. 41 to 5 I . (For the solar months sec Arts. 22 to 2^.) 13. Amanta and piirnimanta systems. Since either the amavasya or purnima, the new moon or the full moon, may be taken as the natural end of a lunar month, there are in use in India two schemes of such beginning and ending. By one, called the amanta system, a month ends with the moment of amavasya or new moon ; by the other it ends with the purnima or full moon, and this latter is called a purnimanta month. The purnimanta scheme is now in use in Northern India, and the amanta scheme in Southern India. There is epigraphical evidence to show that the purnimanta scheme was also in use in at least some parts of Southern India 1 An apt title. The full moon stauiis as it neve with the waxiu? half on oue side and the waning half on the other. The week is an arbitrary division. - The "synodic revolution" of the moon is the period during which the moon completes one series of her snccessive phases, roughly 291/3 days. The period of her exact orbital revolution is called her "sidereal revolution". The term "synodic" was given because of the sun and moon being then together in the heavens (<•/■ " synod"). The sidereal revolution of the moon is less by about two days than her synodic revolution in consequence of the forward movement of the earth on the ecliptic. This will be best seen by the accompanying figure, where ST is a fixed star, S the sun, E the earth, C the ecliptic, M M' the moon. (A) the po- sition at one new moon, (B) the position at the next new moon. The circle M to Ml representing the sidereal revolution, its synodic revolution is M to Ml plus Ml to N. [R. S.] 57^- S ST Q- C. A. Vouug (^"General Jalroiiomi)", Edit, of 1889, p 528) gives the following as the length in days of the various lunations: d. h. m. .V. Mean synodic month (new moon to new moon) 29 12 41 2 684 Sidereal month 27 7 43 ll..'i46 Tropical month (equinox to equinox) .... 27 7 43 4.68 Anomalistic month (perigee to perigee) ... 27 13 18 37.44 Nodical month (node to node) 27 5 5 85.SI THE HINDU CALENDAR. S up to about the beginning of the 9''' century A.D. ' The Marvadis of Northern India who, originally from Marwar, have come to or have settled in Southern India still use their purniminta arrangement of months and fortnights; and on the other hand the Dakhanis in Northern India use the scheme of amanta fortnights and months common in their own country. 14. Lnni-solar motith 7iames. The general rule of naming the lunar months so as to correspond with the solar year is that the amanta month in which the Mesha saiikranti or entrance of the sun into the sign of the zodiac Mesha, or Aries, occurs in each year, is to be called Chaitra, and so on in succession. For the list and succession see the Tables. (See Arts, ^i — ^j^ 15. The solar year — tropical, sidereal, and anomalistic. Next we come to the solar year, or pe- riod of the earth's orbital revolution, i.e., the time during which the annual seasons complete their course. In Indian astronomy this is generally called a varsha, lit. " shower of rain", or " measured by a rainy season ". The period during which the earth makes one revolution round the sun with reference to the fixed stars, " is called a sidereal year. The period during which the earth in its revolution round the sun passes from one equi- nox or tropic to the same again is called a tropical year. It marks the return of the same season to any given part of the earth's surface. It is shorter than a sidereal year because the equinoxes have a retrograde motion among the stars, which motion is called the precession of the equinoxes. Its present annual rate is about 5o".264.^ Again, the line of apsides has an eastward motion of about 1 1".5 in a year; and the period during which the earth in its revolution round the sun comes from one end of the apsides to the same again, /'. c., from aphelion to aphelion, or from perihelion to perihelion, is called an anomalistic year. * The length of the year varies owing to various causes, one of which is the obliquity of the ecliptic, ° or the slightly varying relative position of the planes of the ecliptic and the equator. Leverrier gives the obliquity in A.D. 1700 as 23° 28' 43".22, in A.D. i8ooas23°27' 55".63,and 1 See Fleet's Corpus Inscrip. Indic, vol HI., Introduction, p. 79 note; Ind. Ant., XVII., p. 141 /. i Compare the note oa p. 4 on the moon's motion. [R. S] 3 This rate of annual precessioQ is that fixed by modern European Astronomy, but since the exact occurrence of the equinoxes can never become a matter for obser»ation, we have, in dealing with Hindu Astronomy, to be guided by Hindu calculations alone. It must therefore be borne in mind that almost all practical Hindu works (Karatias) fix the annual precession at one minute, or -Lth of a degree, while the SHrya-Siddhdnta fixes it as 54" or i degrees, (see Art. 160a. given in the Addenda sheet.) 4 The anomaly of a planet is its angular distance from its perihelion, or an angle contained between a line drawn from the sun to the planet, called the radius vector, and a line drawn from the sun to the perihelion point of its orbit. In the case in point, the earth, after completing its sidereal revolulion, has not arrived quite at its perihelion because the apsidal point has shifted slightly eastwards. Hence the year occupied in travelling from the old perihelion to the new perihelion is called the anomalistic year. A planet's true anomaly is the actual angle as above whatever may be the variations in the planet's velocity at different periods of its orbit. Its mean anomalij is the angle which would be obtained were its motion between perihelion and aphelion uniform in time, and subject to no variation of velucity— in other words the angle described by a uniformly revolving radius vector. The angle between the true and mean anomalies is called the equation of the centre. True ano/n.-^mean anom. ■\- equation of tlie centre. The equation of the centre is zero at perihelion and aphelion, and a maximum midway between them. In the case of the sun its greatest value is nearly 1°.55' for the present, the sun getting alternately that amount ahead of, and behind, the position it would occupy if its motion were uniform. (C. A. Young, General Astronomy. Edit, of 1889, p. 125.) Prof. Jacobi's, and our, a, 6, c, (Table 1., cols. 23, 24, 25) give a. the distance of the noon from the sun, expressed in lO.OOOths of the unit of 360°; 6. the moon's mean anomaly; c. the sun's mean anomaly; the two last expressed in lOOOths of the unit of 360°. The respective equations of the centre are given in Tables VI. and VII. [R. S.] 5 "The ecliptic slightly and vei^ si iwly shifts its position among the stars, thus altering the latitudes of the stars and the angle between the ecliptic and equator, i.e., the obliquity of the ecliptic. This obliquity is at present about 24' less than it was 2000 years ago, and it is still decreasing about half a second a year. It is computed that this diminution will continue for about 15,000 years, reducing the obliquity to 221/4°, when it will begin to increase. The whole change, according to Lagrange, can never exceed about 1" 2' on each side of the mean." (C. A. Young, General Astronomy, p. 128.) THE INDIAN CAIENDAR. h. m. s. 6 5 6 9 48 13 9.29 45-37 48.61 in A.D. 1900 as 23° 17' o8".03. The various year-lengths for A.D. 1900, as calculated by present standard authorities, are as follow : d. Mean Sidereal solar year 365 Do. Tropical do. 365 Do. Anomalistic do. 365 16. Kalpa. Mahdyiiga. Yiiga. Julian Period. A kalpa is the greatest Indian division of time. It consists of looo maliayugas. A niahayuga is composed of four j'/c^a.r of different lengths, named Krita, Treta, Dvapara, and Kali. The Kali-yuga consists of 43 2,000 solar years. The Dva- para yuga is double the length of the Kali. The Treta-yuga is triple, and the Krita-yuga quadruple of the Kali. A mahayuga therefore contains ten times the years of a Kali-yuga, viz., 4,320,000. According to Indian tradition a kalpa is one day of Brahman, the god of creation. The Kali- yuga is current at present; and from the beginning of the present kalpa up to the beginning of the present Kali-yuga 4567 times the years of a Kali-yuga have passed. The present Kali- yuga commenced, according to the Siirya Siddhanta, an authoritative Sanskrit work on Hindu astronomy, at midnight on a Thursday corresponding to 17th — i8th F"ebruary, 3102 B.C., old style; by others it is calculated to have commenced on the following sunrise, viz., Friday, 18th February. According to the Siirya and some other SiddhUntas both the sun and moon were, with reference to their mean longitude, precisely on the beginning point of the zodiacal sign Aries, the Hindu sign Mesha, when the Kali-yuga began. * European chronologists often use for purposes of comparison the 'Julian Period' of 7980 years, beginning Tuesday 1st January, 4713 B- C. The i8th February, 3102 B.C., coincided with the 588,466th day of the Julian Period. 17. Siddhanta year-measurevicnt. The length of the year according to different Hindu authorities is as follows: .SiddhStitas. Thp VciMnga .Ijotisha The Paitimaha Siddhanta 1 The R(>maka ,, The Paulisa - ,, The original Surva Siddh&nta Thi' Pi-fscnt Surya, Vfisishtha, Sfikalya-i Brahma, Romaka,& Soma Siddhilntas I ■ • • The first Arya Siddhanta ■'■ (.\. D. 499) The Brahma SIddhilnta hy Brahma-gupta (A. 1).628) The sei-ond Ai^a Siddhanta The ParAsara Siddhlnta ■< Rajamritraiika ■'• „ (A. D. 1042) • Generally speaking an astronomical Sanskrit work, called a S'lddhdnla, treats of the subject theoretically. A practical work on astro- nomy based ona Siddhilnta is called in Sanskrit a A'arn/m ThcPa/Wwrt/zcand following three Siddhdntas are not now cxiaul.but are alluded to and described in the Pahchasiddhdnlikd, a Karana by VarAhamihira, composed in or about the Saka year 427 (A. P. 505). [S. B 11 J 2 Two other Vauliia Siddhdntas were known to Ulpala (.^.U. 9fi6), a well-known comnuntalor of \arAhamihini. The length of the year in tbcm was the same as that in the original Surya Siddh&uta. [S. B. D ] •• The duration of the year bv the First Arya-Siddh&nta is noted in the interesting chronogram mukhyah kdlomaiiamd(nUih. 5 1 1 3 6 1 B 6 3 These figures are to be read from right to left; thus— 365, 15, 31, 15 in Hindu notation of days. ghatikAs, etc. (I obtained this from Dr Burgess — H S.) * The Vard'nara Siddhdnla is not now eitant. It is described in the second Armt SiddhAnUi. The date of this latter is not given, but in my opinion it is about A.D. 950. [S. B. D] •■' The Rdjamtigdhka it a Karana by King Bhoja. It is dated in the Saka year 964 expired, A.D. 1012. [S. B 1>.' Hindu reckoning . European reckoning. daTfl- eh. p» Tips. r>. Ti. days. h. niiis. aee. 366 366 365 21 25 365 8 34 365 14 48 365 5 55 12 365 15 30 365 6 12 365 15 31 30 365 6 12 36 365 15 31 31 24 365 6 12 36.56 365 15 31 15 365 6 12 30 365 15 30 22 30 365 6 12 y 365 15 31 17 6 365 6 12 30.84 365 15 31 18 30 365 6 12 31.6 365 15 81 17 17.8 365 6 12 30.915 THE HINDU CALENDAR. 7 It will be seen that the duration of the year in all the above works except the first three approximates closely to the anomalistic year; and is a little greater than that of the sidereal year. In some of these works theoretically the year is sidereal; in the case of some of the others it cannot be said definitely what year is meant ; while in none is it to be found how the calculations were made. It may, however, be stated roughly that the Hindu year is sidereal for the last 2000 years. 18. The year as given in each of the above works must have been in use somewhere or another in India at some period; but at present, so far as our information goes, the year of only three works is in use, viz., that of the present Siirya Siddha>ita,t\\G first Arya Siddhanta. and the Rajamfigahka. The Siddhantas ami other astronomical luor/cs. 19. It will not be out of place here to devote .some consideration to these various astronomical works; indeed it is almost necessary to do so for a thorough comprehension of the subject. Many other Siddhantas and Karanas are extant besides those mentioned in the above list. We know of at least thirty such works, and some of them are actually used at the present day in making calculations for preparing almanacks. ' Many other similar works must, it is safe to suppose, have fallen into oblivion, and that this is so is proved by allusions found in the existing books. Some of these works merely follow others, but some contain original matter. The Karanas give the length of the year, and the motions and places at a given time of the sun, moon, and planets, and their apogees and nodes, according to the standard Siddhanta. They often add corrections of their own, necessitated by actual observation, in order to make the calculations agree. Such a correction is termed a bija. Generally, however, the length of the year is not altered, but the motions and places are corrected to meet requirements As before stated, each of these numerous works, and consequently the year-duration and other elements contained in them, must have been in use somewhere or another and at some period or another in India. At the present time, however, there are only three schools of astronomers known; one is called the Sanra-paksha, consisting of followers of the present Siirya Siddhanta: another is called the Arya-paksha, and follows the first Arya Siddlianta: and the third is called the Brahnia-pa/csha, following the Rajainrigaii/ca, a work based on Brahma- gupta's Brahma Siddhanta, with a certain bija. The distinctive feature of each of these schools is that the length of the year accepted in all the works of that school is the same, though with respect to other elements they may possibly disagree between themselves. The name Rajamri- gahka is not now generally known, the work being superseded by others; but the year adopted by the present Brahma-school is first found, so far as our information goes, in the Rajamrigaiika, and the three schools exist from at least A. D. 1042, the date of that work. 20. It is most important to know what Siddhantas or Karanas were, or are now, regarded as standard authorities, or were, or are, actually used for the calculations of panchai'igs (almanacks) during particular periods or in particular tracts of country. - for unless this is borne in mind we shall often go wrong when we attempt to convert Indian into European dates. The sketch which follows must not, however, be considered as exhaustive. The original Siirya- 1 KaraiMs and other practical works, containing tables based on one or otlicr of the Siddlidntas, are used for these calculations. [S. B. D.] 2 The positions and motions of the sun and moon and their apogees must necessarily be fixed and known for the con-ect calcu- lation of a tithi, nakslialra, yoga or karaua. The length of the year is also an important clement, and in the samvatsara is governed by the movement of the planet Jupiter. In the present work we are conrerncd chiefly with these six elements, viz., the sun, moon, their apogees, the length of the year, and Jupiter. The sketch in the text is given chiefly keeping in view these elcmeuts. When one authority differs from another in any of the first five of llicsc six elements the tithi as calculated by one will differ from that derived from anotlier. [S. B. D.] 8 THE INDIAN CALENDAR. Siddlinnta was a standard work in early times, but it was .superseded by the present Surya-Siddliania at some period not yet known, probably not later than A.D. looo. The first Arya-Siddhanta. which was composed at Kusumapura (supposed to be Patna in Bengal), came into use from A.D. 499. ' Varahamihira in his Pahchasiddliantika (A.D. 505) introduced a bija to Jupiter's motion as given in the original Surya-Sidd/tanta, but did not take it into account in his rule [see Art. 62 hcloiv) for calculating a samvatsara. Brahmagupta composed his Bralima-Siddliaiila in A. D. 628. He was a native of Bhillamala (the present Bhinmal), 40 miles to tlie north-west of the Abu mountains. Lalla, in his work named Dhi-vriddhida, intro- duced a hija to three of the elements of the first Arya-Siddlianta, namely, the moon, her apogee, and Jupiter, i.e., three out of the six elements with which we are concerned. Lalla's place and date are not known, but there is reason to believe that he flourished about A.D. 638. The date and place of the second Arya-Siddhanta are also not known, but the date would appear to have been about A.D. 950. It is alluded to by Bhaskaracharya (A.D. 11 50), but does not seem to have been anywhere in use for a long time. The Rajamrigahka (A.D. 1042) follows the Brahma-Siddhattta, ^ but gives a correction to almost all its mean motions and places, and even to the length of the year. The three schools — Saura, Arya and Brahma — seem to have been established from this date if not earlier, and the Brahma-Siddhanta in its orginal form must have then dropped out of use. The Karaiia-prakasa, a work based on the first Arya- Siddhanta as corrected by Lalla"s bija, was composed in A.D. 1092, and is considered an authority even to the present day among many Vaishnavas of the central parts of Southern India, who are followers of the Arya-Siddhanta. Bhaskaracharya's works, the .S'/rtV/Z^rfw/rt iV/-cw<7«/(A.D. 1 150) and the Karana-Kutiihala {A.Y>. 1 183) are the same as the Rajamrigahka in the matter of the calculation of a paiichahg. The Vakkya-Karana, a work of the Arya school, seems to have been accepted as the guide for the preparation of solar panchangs in the Tamil and Malayalam countries of Southern India from very ancient times, and even to the present day either that or some similar work of the Arya school is so used. A Karana named iSZ/fbr'^?// was com- posed in A.D. 1099, its birthplace according to a commentator being Jagannatha (or Puri) on the east coast. The mean places and motions given in it are from the original Siirya-Siddhanta as corrected by Varahamihira's bija, ' and it was an authority for a time in some parts of Northern India. Vavilala Kochchanna, who resided somewhere in Telingana, composed a Karana in 1298 A.D. He was a strict follower of the present Sitrya-Siddhanta, and since his day the latter Sidd- hanta has governed the preparation of all Telugu luni-solar calendars. The Makaranda, another Karana, was composed at Benares in A.D. 1478, its author following the present 5/?rjv?-5;V/rt'//rt«/rt, but introducing a bija. The work is extensively used in Northern India in the present day for panchaiiga calculations. Bengalis of the present day are followers of the Saura school, while in the western parts of Northern India and in some parts of Gujarat the Brahma school is followed. T\\c Graha-laghava, a Karana of the Saura school, was composed by Ganesa Daivjiia of Nandigrama (Nandgam), a village to the South of Bombay, in A.D. 1520. The same author also produced the Brihat and Laghntitliichintanianis in A.D. 1525, which may be considered as appendices to the Graha-laghava. Gane.sa adopted the present Sitrya Siddhanta determinations for the length of 1 It is not to be understood that as soon as a standard work comes into use \\» predecessors go out of use from all parts of the country. There is direct evidence to show that the origiua) Silri/a-Siddli^nta was in use till A.D. 665, the date of the A'^om^o- thMi/a of Brahmagupta, though cvidenll_? not iu all parts of the country. [S. B. D.] 2 Whenever we allude simply to the 'Bralmia Sidilli/inta" by name, we mean Ihc Bralitxa-SiddhdHla of Brahmagupta. ' Out of the six elements alluded lo in niitc 1 ou the last ])age, only Jupiter has this bija. The present Stlr^a-Siddhdnta had undoubtedly come into use before the date of the B/umati. [S. B. D.] THE HINDU CALENDAR. 9 the year and the motions and places of the sun and moon and their apogees, with a small correction for the moon's place and the sun's apogee; but he adopted from the Arya Siddhanta as corrected by Lalla the figures relating to the motion and position of Jupiter. The Graha-laghava and the Laghiitithichintaniani were used, and are so at the present day, in preparing panchangs wherever the Mahrathi language was or is spoken, as well as in some parts of Gujarat, in the Kanarese Districts of the Bombay and Madras Presidencies, and in parts of Haidarabad, Maisur, the Berars, and the Central Provinces. Mahratha residents in Northern India and even at Benares follow these works. 21. It may be stated briefly that in the present day the first Arya-Siddhanta is the authority in the Tamil and Malayalani countries of Southern India; ' the Brahma-paksha obtains in parts of Gujarat and in Rajputana and other western parts of Northern India; while in almost all other parts of India the present Sitrya-Siddlianta is the standard authority. Thus it appears that the present Siirya-Siddknnta has been the prevailing authority in India for many centuries past down to the present day, and since this is so, we have chiefly followed it in this work. - The bija as given in the Makaranda (A. D. 1478) to be applied to the elements of the Surya-Siddkanta is generally taken into account by the later followers of the Siiry a- Siddhanta, but is not met with in any earlier work so far as our information goes. We have, therefore, introduced it into our tables after A.D. 1500 for all calculations which admit of it. The bija of the Makaranda only applies to the moon's apogee and Jupiter, leaving the other four elements unaffected. Further details. Contents of the Paiichaiiga. 22. The Indian Zodiac. The Indian Zodiac is divided, as in Europe, into 1 2 parts, each of which is called arrtw or "sign". Each sign contains 30 degrees, a degree being called an ^wirt. Each arhsa is divided into 60 kalas (minutes), and each kala into 60 vikalas (seconds). This sexagesimal division of circle measurement is, it will be observed, precisely similar to that in use in Europe. ■'' 23. TJie Saiikrajiti. The point of time when the sun leaves one zodiacal sign and enters another is called a sahkranti. The period between one saiikranti and another, or the time required for the sun to pass completely through one sign of the zodiac, is called a saura inasa, or solar month. Twelve solar months make one solar year. The names of the solar months will be found in Table II., Part ii., and Table III., col. 5. A sankranti on which a solar month commences takes its name from the sign-name of that month. The Mesha sankranti marks the vernal equinox, the moment of the sun's passing the first point of Aries. The Karka sankranti, three solar months later, is also called the dakshinayana ("southward-going") sankranti: it is the point of the summer solstice, and marks the moment when the sun turns southward. The Tula sankranti, three solar months later, marks the autumnal equinox, or the moment of the sun's passing the first point of Libra. The Makara sahkranti, three solar months later still, is also called the uttarayana saiikranti ("northward-going"). It is the other solstitial point, the point or moment when the sun turns northward. When we speak of " sahkrantis " in this volume we refer always to the nirayana sahkrantis, i.e., the moments of the sun's entering the zodiacal signs, as calculated in sidereal longitude — longitude measured from the fixed point in Aries — taking no account of the annual precession of the equino.xes — {nirayana — "without movement", excluding the precession of the solstitial — ay ana — points). But there is also in Hindu chronology the say ana saiikranti [sa-ayana — " with 1 It is probable that the first .iri/a-Siddlidnta was the standard authority for South Indian solar reckoning from the earliest times. In Bengal the Siiri/a-Siddhdnia is the authority since about A.D. 1100, but in earlier times the first Arya-Siddhdnta was apparently the standard. [S. B. D.] - When we allude simply to the Surya or Ari/a Siddhdnla, it must be borne in mind that we mean the Present Stlrya and the First Ari/a-Siddhdntas. S See note 1, p. 2 above. [R. S] 1 THE INDIAN CALENDAR. movement", including the movement of the ayana points), i.e., a sankranti calculated according to tropical longitude — ^longitude measured from the vernal equinox, the precession being taken into account. According to the present Siirya-Siddhanta the sidereal coincided with the tropical signs inK. Y. 3600 expired, Saka 421 expired, and the annual precession is 54". By almost all other authori- ties the coincidence took place in K. Y. 3623 expired, Saka 444 expired, and the annual precession is (i') one minute. (The Siddhanta J)V/-<7W«j'a««) sign. Professor Jacobi {Epig. Ind., Vol. 1, p. 422, Art. ji(rya-Sirfrf/j«'n^a, which is wrong. He seems also to have taken into account the chara. * (See his Kdia Sahkalita, p. 11, art. 3, p. 22, explanation of Table III., line 4; and p. 3 of the Tables). He has used the ayandmsa (the uniformly increasing arc between the point of the vernal equinox each year and the fixed point in Aries) which is required for finding the chara in calculating the lengths of months. The chara is uot the same at the begiuning of any given solai' mouth for all places or for all years. Ueuce it is wrong to use it for general rules and tables. The inaccuracy of Warren's lengths of solar months according to the S«r//a-SiV;?rf/;i/«/« requires no elaborate proof, for they are practically the same as those given by him according to the Ari/a-Siddhdnta, and that this cannot be the ease is self-evident to all who have any experience of the two Siddhdntas. [S. B. D.] * The chara: — "The time of rising of a heavenly body is assumed to take place six hours before it comes to the meridian. Actually this is not the case for any locality not on the equator, and the chara is the correction required in consequence, i.e., the excess or defect from six hours of the time between rising and reaching the meridian The name is also applied to the celestial arc described in this time." ■ The Sanskrit word for "mean" is ;«(K///ya»w, and that for 'true' or 'appareut' \» .■tpashta.'VhtviMii ' madhiiama' ani ' spashta' arc applied to many varieties of time and space; as, for instance, ^a/i (motion). M()^« (longtitude), .fa/U-ru'«hn, and consequently his solar dates are often wrong b_v one day for those tracts where the 'I li rule is in use. ■I I deduced the Bengal rule from a Calcutta I'afichfiug for Saka 1776 (A.D. 1854 — 55) in my posssession. Afterwards it was THE HINDU CALENDAR. ij 29. Panchangs. Before proceeding we revert to the five principal articles of the paiichang. There are 30 tithis in a lunar month, i 5 to each fortnight. The latter are generally denoted by the ordinary numerals in Sanskrit, and these are used for the fifteen tithis of each fortnight. Some tithis are, however, often called by special names. In pafichangs the tithis are generally particularized by their appropriate numerals, but sometimes by letters. The Sanskrit names are here given. ' 1 Sanskrit Names. Vulgar Names. s Sanskrit Names. Vulgar Names. 1 2 3 4 5 6 7 8 Pratipad, Pratipada, Prathama . . . ■. Dvitiyfi Tritiy-a Ciiatiirthi Panchami Shashthi Saptami Ashtami Padvi, Padvami Bija, Vidiyi Tija, Tadiya Chauth, Chauthi Sath 9 10 11 12 13 14 15 30 Navami Uasami Ek&das! Dvadasi Trayfidasi Chaturdasi Puroimfi, Pauroima . Purpamasi, Paiichadasi AmSvasya, Darsa, Paiichadasi BUras Teres Punava, Punnami The numeral 30 is generally applied to the amavasya (new moon day) in pafichangs, even in Northern India where according to the purnimanta system the dark fortnight is the first fortnight of the month and the month ends with the moment of full moon, the amavasya being really the i 5th tithi. 30. That our readers may understand clearly how a Hindu paiichang is prepared and what information it contains, we append an extract from an actual panchaiig for Saka 18 16, expired, A. D. 1894—95, published at Poona in the Bombay Presidency. ^ corroborated by infonnatiun kindly sent to me from Howrah by llr. G. A. Grierson through Dr. Fleet. It was also amply corroborated by a set of Bengal Chronological Tables for A.D. 1882, published under the authority of the Calcutta High Court, a copy of which was sent to rac by Mr. Scwell. I owe the Orissa Rule to the Chronological Tables published by Girishchandra Tai'kalaukar, who follows the Orissa Court Tables with regard to the Amli and Vilayati years in Orissa. Dr. J. Burgess, in a note in Mr. Krishnasrumi Naidu's "South Indian Chronological Tables" edited by Mr. Sewell. gives the i (a) Rule as in use in the North Malayalam country, but I do not know what his autliority is. I ascerta ned from Tamil and Tinnevelly panchangs that the 2 (a) rule is in use there, and the fact is corroborated by WaiTen's KMa Sankalita ; 1 ascertained also from some South Malaya]am paiichangs published at Cochin and Trevandruni, and from a North Malaydjam paiichang published at Calicut, that the 2 {b) rule is followed there [S. B. D] Notwithstanding all this I have no certain guarantee that these arc the onli/ rules, or that they are invariably followed in the tracts mentioned. Thus I find from a Tamil solar pafichSng for Saka 1815 current, published at Madras, and from a Telu^u luni-solar paiichung for Saka 1109 espireJ, also published .it Madras, in which the solar months also are given, that the rule observed is that "when a sankranti occurs bciween sunrise and midnight the montli begins on the same day, otherwise on the following day", thus differing from all the four rules given above. This varying fifth rule again is followed for all solar months of the Vilavati year as given in the above-mentioned Bengal Chronological Tables for 1882, and by its use the month regularly begins one day i a advance of the Bengali month. I find a sixth rule in some Bombay and Benares lunar panchaiigs, viz., that at whatever time the sankrSnti may occur, the month begins on the next day; but (his is not found in any solar panchang. The rules may be furlhcr classified as (1. a) the midnight rule (Bengal), (1. *) any time rule (Orissa), (2. n) the stinsft rule (Tamil), (3.4) the afternoon rule {^iaX&hat). The fifth rule is a variety of the midnight rule, and the sixth a variety of the any time rule. I cannot say for how many years past the rules now in use in the several provinces have been in force and effect. An inscription at Kannanur, a village 5 miles north of Srirarigam near Trichinojjoly (see 'Epigraph. Indic, vol. III., p. 10, date No. V., note 3, and p. ij, is dated Tuesday the thirtceuth tithi of the bright fortnight of Sravana in the year Prajapati, which corresponded with the 24th day of the (solar) month Adi (karka.) From other sources the year of this date is k-nown to be A.D. 1271 ; and on carefully calculating I find that the day corresponds with the 21st July, and that the Karka saiikrAnti took place, by the Arga-Siddh£nta, on the 27th June, Saturday, shortly before midnight. From this it follows that the month Adi began civilly on the 28th June, and that one or the other of the two rules at present in use in Southern India was in use in Trichinopoly in A.D. 1271. [S. B. D.] 1 We cannot enumerate the vulgar or popular names which obtain in all parts of India, and it is not necessary that we should do so. 2 This is an ordinary paiichang in daily use. It was prepared by myself from Ganesa Daivjna's Grahaldghava and Laghu- tithichintdmam. [S. B. D.] Extract from an Suia 1816 expired (iSiy current) (A. D. iSg^) amanta Bhadrapada, iukla-pakslia. Solar month. " Sn'iika 1 Vfira. Fri. gl-. !»■ Kalisliatra. b'!"- jia. Yoga. gh. l-a. Karaua. b'l'- pa. i 1 s "3 S i S 1 43 59 Pui-TaPhalguni: 40 16 Siddha 31 22 Kiiiistagbna 16 30 Sii!iha*15 gh. pa. 30 59 16 29 31 2 Sat. 39 47 Uttara Phalguni : 37 57 Sidhya 25 23 Baiava 11 53 Kauj-a 30 57 17 30 1 3 Sun. 36 31 Hasta 36 29 Subha 19 31 Taitila 8 9 Kanya 30 54 18 1 2 4 >Ion. 34 23 Chitra 36 7 Sukla 14 50 Vauij 5 27 Kanya 6 30 52 19 2 3 5 Tues. 33 26 Svati 36 52 Brahman 11 7 Bava 3 54 Tula 30 49 20 3 4 6 ■Wed. 33 58 Vis&kha 38 58 Aindra .8 24 Kaulava 3 42 Tula 23 30 45 21 4 5 7 Thurs. 35 29 Anuradia 42 19 Vaidhriti 6 36 Gara 4 44 Vrischi: 30 44 22 5 6 8 Fri. 38 16 Jyeshthu 46 48 Visbkambha 5 49 Visbti 6 53 Vris:47 30 41 23 6 7 9 Sat. 42 9 MOla 52 13 Priti 6 3 Baiava 10 13 Dbanus 30 38 24 7 8 10 Sun. 46 48 Pflrva Ashudha 58 11 Ayushmat 6 53 Taitila 14 28 Dbanus 30 36 25 8 9 11 Mon. 51. 43 Uttara AshSdha 60 Saubhfigya 8 1 Vanij 19 16 Uba:15 30 33 26 9 10 12 Tues. 56 44 Uttara Ashadhu 4 35 Sobbana 9 29 Bava 24 14 Makara 30 30 27 10 11 13 Wed. 60 Sravaua 10 59 Atiganila 10 58 Kaulava 29 3 Maka ; 44 30 28 28 11 12 13 Thurs. 1 23 Dhanishthu 16 45 Sukavman 11 54 Taitila 1 23 Kumbha 30 25 1 29 12 13 U Fri. 5 18 Satabhishaj 21 52 Dbriti 12 26 Vanij 5 18 Kumbha 30 22 1 30 13 14 15 Sal. 8 11 Pfirva Hhudru: 26 4 Sula 12 7 Bava 8 11 Kum:10 30 20 1 31 14 15 Aiitanta Bhadrapada krisltnapaksha. Thurs. Fri. 26 17 Bbarani Robiui Mrigasiras Ardra Mugha Uttara I'bniguni Vyaghttta Vajra Vyatipaia Vanvas Parigha Siva 50 54 52 5 24 52 31 44 35 \\ tirre iKt numbers arc inserted ulumn it mn»t l» 38 IC nnJer^t. Vauij Vauy NAga 7 26 26 17 Mitlm:l Karka: Siiiiha Siiii: 14 30 17 29 47 the i-in" during ihe whole ilri actual Panch&nga. ,f and Kanya; Muhamniadan months Safar and Ra/'i-ii/a-H'ival. Rtii^lisli months Aus^tsl and Septcnihcr. UTllKR 1'A1M'I('1]LAU.S I'ositiuiis of I'laucU at sunrise Sukla 15tli Saturjav. Mood'b node. C'liandi'a-dai>aua (union's heliaral rising) Scptuinbcr begins. Ararita Siddhiyoga 36.29. ♦ llai-itaiilia. ManvMi: Varft- hajajauti. Vaidhriti So.lOto ■14.42. Rabi-ulawwal begins. Gapcsha clialurthi. Rishipanchanii. Amrita Siddhiyogii after 39. Venus enters Leo 45.44. GaunSvilhana. Gauri pilja. Dlrvu ashtaini. Ganri visarjana. Aduhkba navanii. Padma Ekudasi. Mrityu-yoga 60. Mercury enters Virgo 14.5. V&mana dvfidasi. Pradosha. Sun enters Utiara Plialguui 8.26. Anantacbaturdasi. Mars retrogade. Proshtliap, Pui'iii ; Sun enters Virgo 33.42. Begrccs. Ahargapa 34-227. Horoscope for tbe above time. (Punmnanta Asvina krishuapaksha.) Posiliuus uf Planets a suuris Amavasya, Sal irdav. 16 17 18 19 20 VyatipMat from 7 to 16.32. Saukasbti chaturthi. Signs. 5 1) 6 4 6 11 Degrees. 13 9 2 13 28 5 8 Minutes. 10 13 27 49 31 17 31 Seconds. 7 30 1 4 4 7 35 "o j^ a 1 mins. 59 8 95 5 73 7 3 21 22 Bhadra (Visbti) ends at 27.55. « "^ 1 ( sees. 1 4 retro 56 54 44 2 11 Ahargapa 34—241. 23 24 ATidbavft navami. Heliacal rising of Mercury. Horoscope for llif above time. \ Mercury .»^/'^\ 5 Venoa s. 7 ^y^ \. ^ y 25 Indira ekftdasi. Sun enters HasU 46.37. 8 ^.^'^N^ 6 Moon ^/'^^\,^ 4 26 Pradosha. y ^^ ^^ a \ 27 Sivaratri. Mercury in Libra 29.18. \ ^^^^ Jupiter y 28 Pitri-amavasya. Vaidhriti 20.47 to 30.21. 10 ^!>\. "oJc ° ^/>-<.:> \ These tiijures show iihatikui uqJ of a peculiar voga, the derliDatiou of sun and nioou beiuir then idi-Dtica). r6 THE INDIAN CALENDAR. The above extract is for the amanta month Bhadrapada or August 31st to September 29th, 1894. The montli is divided into its two fortniglits. The uppermost horizontal column shews that the first tithi, "pratipada", was current at sunrise on Friday, and that it ended at 43 gh. 59 p. after sunrise. The moon was 12 degrees to the east of the sun at that moment, and after that the second tithi, "dvitlya", commenced. The nakshatra Purva-Phalguni ended and Uttara-Phalguni commenced at 40 gh. 16 p. after sunrise. The yoga Siddha ended, and Sadhya began, at 31 gh. 22 p. after sunrise; and the karana Kiriistughna ended, and Bava began, at 16 gh. 30 p. after sunrise. The moon was in the sign Sirhha up to 15 gh. after sunrise and then entered the sign Kanya. The length of the day was 30 gh. 59 pa. (and consequently the length of the night was 29 gh. 1 pa.). The solar day was the i6th of Sirhha. ' The Muhammadan day was the 29th of Safar, and the European day was the 31st of August. This will explain the bulk of the table and the manner of using it. Under the heading "other particulars" certain festival days, and some other information useful for religious and other purposes, are given. To the right, read vertically, are given the places of the sun and the principal planets at sunrise of the last day of each fortnight in signs degrees, minutes, and seconds, with their daily motions in minutes and seconds. Thus the figures under "sun" shew that the sun had, up to the moment in question, travelled through 4 signs, 29 degrees, 27 minutes, and 9 seconds; i.e., had completed 4 signs and stood in the 5th, Sirhha, — had completed 29 degrees and stood in the 30th, and so on ; and that the rate of his daily motion for that moment was 58 minutes and 30 seconds. Below are shown the same in signs in the horoscope. The ahargana, here 34 — 227, means that since the epoch of the Cnz/i'tf/rt^/iiar'fl,^ i.e., sunrise on amanta Phalguna krishna 30th of Saka 1441 expired, or Monday 19th March, A.D. 1520, 34 cycles of 4016 days each, and 227 days, had elapsed at sunrise on Saturday the 15th of the bright half of Bhadrapada. The horoscope entries are almost always given in panchai'igs as they are considered excessively important by the Hindus. 3 1 . Titliis and solar days. Solar or civil days are always named after the week-days, and where solar reckoning is in use are also counted by numbers, e.g., the 1st, 2nd, etc., of a named solar month. But where solar reckoning does not prevail they bear the names and numerals of the corresponding tithis. The tithis, however, beginning as they do at any hour of the day, do not exactly coincide with solar days, and this gives rise to some little difficulty. The general rule for civil purposes, as well as for some ordinary religious purposes for which no particular time of day happens to be prescribed, is that the tithi current at sunrise of the solar day gives its name and numeral to that day, and is coupled with its week-day. Thus Bhadrapada sukla chaturdasl Sukravara (Friday the 14th of the first or bright fortnight of Bhadrapada) is that civil day at whose sunrise the tithi called the 14th sukla is current, and its week-day is F"riday. Suppose a written agreement to have been executed between two parties, or an ordinary religious act to have been performed, at noon on that Friday at whose sunrise Bhadrapada Sukla chatur- dasi of Saka 18 16 expired was current, and which ended (sec the table) 5 gh. iSp., (about 2 h. 7 m.) after sunrise, or at about 8.7 a.m. Then these two acts were actually done after the chaturdasi had ended and the purnima was current, but they would be generally noted as having been done on Friday sukla chaturdasi. It is, however, permissible, though such instances would be 1 Solar Uay« are not given in Honiljay pafichilngs, but I ba\'c entered them berc to complct* the calendar. Some entries actually printed in the paneh&i'ig arc not very useful and ariNconsequcntly omitted in the extract. [S. B. D,] * The sura total of days that have elapsed since any other standard epoch is also called the ahnriiana. For inslaniT, tbi- (i/wr- i/ana from the beginning of the present kaliyuga is in constant use. The word means '• coUetTtion of days." THE HINDU CALENDAR. 17 rare, to state the date of these actions as "Friday purnima;" and sometimes for religious pur- poses the date would be expressed as "chaturdasi yukta purnima" (the 14th joined with the pur- nima). Where, however, successive regular dating is kept up, as, for instance, in daily transactions and accounts, a civil day can only bear the name of the tithi current at its sunrise. Some religious ceremonies are ordered to be performed on stated tithis and at fixed times of the day. For example, the worship of the god Ganesa is directed to take place on the Bhadra- pada sukla chaturthi during the third part (madhyakna) of the five parts of the day. A sraddha, a ceremony in honour of the pitris (manes), must be performed during the 4th (aparalina) of these five periods. Take the case of a Brahmana, whose father is dead, and who has to perform a sraddha on every amavasya. In the month covered by our extract above the amavasya is current at sunrise on Saturday. It expired at 1 1 gh. 40 p. after sunrise on Saturday, or at about 1O.40 a.m. Now the aparahna period of that Saturday began, of course, later than that hour, and so the amavasya of this Bhadrapada was current during the aparahna, not of Saturday, but of the previous day, Friday. The sraddha ordered to be performed on the amavasya must be performed, not on Saturday, but on Friday in this case. Again, suppose a member of the family to have died on this same Friday before the end of the tithi krishna chaturdasi, and another on the same day but after the end of the tithi. A sraddha must be performed in the family every year, according to invariable Hindu custom, on the tithi on which each person died. Therefore in the present instance the sraddha of the first man must be performed every year on the day on which Bhadrapada krishna chaturdasi is current, during the aparahna; while that of the second must take place on the day on which the amavasya of that month is current during the aparahna, and this may be separated by a whole day from the first. Lengthy treatises have been written on this subject, laying down what should be done under all such circumstances. > At the time of the performance of religious ceremonies the current tithi, vara, and all other particulars have to be pronounced; and consequently the tithi, nakshatra, etc., so declared may difiler from the tithi, etc., current at sunrise. There is a vrata (observance, vow) called Sahkashta- nasana-chatiirthi, by which a man binds himself to observe a fast on every krishna chaturthi up to moonrise, which takes place about 9 p.m. on that tithi, but is allowed to break the fast afterwards. And this has of course to be done on the day on which the chaturthi is current at moonrise. From the above extract the evening of the 1 8th September, Tuesday, is the day of this chaturthi, for though the 3rd tithi, tritiya, of the krishna paksha was current at sunrise on Tuesday it expired at 9 gh. 35 pa. after sunrise, or about 9.50 a.m. If we suppose that this man made a grant of land at the time of breaking his fast on this occasion, we should find him dating his grant "krishna chaturthi, Tuesday," though for civil purposes the date is krishna tritiya, Tuesday. The general rule may be given briefly that for all practical and civil purposes, as well as for some ordinary religious purposes, the tithi is connected with that week-day or solar day at whose sunrise it is current, while for other religious purposes, and sometimes, though rarely, even for practical purposes also, the tithi which is current at any particular moment of a solar day or week-day is connected with that day. 32. Adhika and kshaya tithis. Twelve lunar months are equal to about 354 solar days (see Art. 2^ above), but there are 360 tithis during that time and it is thus evident that six tithis must somehow be expunged in civil (solar^ reckoning. Ordinarily a tithi begins on one day and 1 The Nmiaijasimihu is cm<- of these authnrative works, and is in geueral use at tlic present time in most parts of India. i.S THE INDIAN CALENDAR. ends on the following clay, that is it touches two successive civil days. It will be seen, however, from its length (Art. j abovcj that a tithi may sometimes begin and end within the limits of the same natural day; while sometimes on the contrary it touches three natural days, occupying the whole of one and parts of the two on each side of it. .\ tithi on which the sun does not rise is expunged. It has sustained a diminution or loss (kshaya), and is called a Icshaya tithi. On the other hand, a tithi on which the sun rises twice is repeated. It has sustained an increase (vriddhi), and is called an adhika, or added, tithi. Thus, for example, in the paiichang extract given above {Art. jo) there is no sunrise during krishna saptami (7th), and it is therefore expunged. Krishna shashthi (6th) was current at sunrise on Friday, for it ended 16 palas after sunrise ; while krishna saptami began 16 palas after that sunrise and ended before the next sunrise ; and krishna ashtami (8th) is current at sunrise on the Saturday. The first day is therefore named civilly the (6th) shashthi, Friday, and the second is named (8th) ashtami, Saturday ; while no day is left for the saptami, and it has necessarily to be expunged altogether, though, strictly speaking, it was current for a large portion of that Friday. On the other hand, there are two sunrises on Bhadrapada sukla trayodasi (sukla 13th), and that tithi is therefore repeated. It commenced after 56 gh. 44 pa. on Tuesday, i e., in European reckoning about 4.20 a.m. on the Wednesday morning, was current on the whole of Wednesday, and ended on Thursday at i gh. 23 pa. after sunrise, or about 6.33 a m. It therefore touched the Tuesday (reckoned from sunrise to sunrise) the Wednesday and the Thursday; two natural civil days began on it ; two civil days, Wednesday and Thursday, bear its numeral (13); and therefore it is said to be repeated. ' In the case of an expunged tithi the day on which it begins and ends is its week-day. In the case of a repeated tithi both the days at whose sunrise it is current are its week-days. A clue for finding when a tithi is probably repeated or e.xpunged is given in Art. 142. Generally there are thirteen expunctions (ksliayas) and seven repetitions (vriddhis) of tithis in twelve lunar months. The day on which no tithi ends, or on which two tithis end, is regarded as inauspicious. In the panchang extract above (Art. ^0) Bhadrapada sukla trayodasi Wednesday, and Bhadrapada krishna shashthi, Friday (on which the saptami was expunged), were therefore inauspicious. 33. It will be seen from the above that it is an important problem with regard to the Indian mode of reckoning time to ascertain what tithi, nakshatra, yoga, or karana was current at sunrise on any day, and when it began and ended. Our work solves this problem in all cases. 34. \'ariatio)i on account of longitude. The moment of time when the distance between the sun and moon amounts to 12, or any multiple of I2, degrees,> or, in other words, the moment of time when a tithi ends, is the same for all places on the earth's surface; and this also applies to nakshatras, yogas, and karanas. But the moment of sunrise of course varies with the locality, and therefore the ending moments of tlivisions of time such as tithis, when referred to sun- rise, differ at different places. For instance, the tithi Bhadrapada sukla purnima (jas "pcnoucc", "mortification", "pain", "fire". Tnpasya, "produced by heat", "pain". All are Vedic words. 2 In my opinion the sidereal names "Chaitra" and the rest, came into use about 2000 U. C They are certainly not later than 1500 B.C., and not earlier than 4000 B.C. [S. B D.] THE HfNDU CALENDAR. 25 VcdaUga-jyotisha; and from the time when the zodiacal-sign-names, "Mesha" and the rest, came into use till the present day, the general rule has been that that amanta lunar month in which the Mesha sankranti occurs, is called Chaitra, and the rest in succession. Derivation of the Names of the Lunar Months from the Nakshatras. Names and Grouping of the Nakshatras. Names of the .Months. Krittiki; Rohiui Kftrttika. M&rgasirsba. Pansba. Magba. Phalguna. Chaitra. Vaisukha. Pflrva-Phalguni; Uttara-Phalguni ; JIasta ChitrS; Sv6ti . ... Visakhfi; Anuradhfi Jyeshtha; Mula Jyeshtha. Asbfidha. Sravaoa. Bh4drapada Asvina. Pui-va-AshWha; Uttara-Ashadhu; (Abhijit) (Abhijit); Sravapa' Dhanishthfi . SatatArakd; Pilrva-13hadnipad4; Uttara-Bhadi-apada Revati; Asvim; Bharaoi 45. Adiiika and' kshaya mdsas. It will be seen from Art. 24 that the mean length of a solar month is 'greater by about nine-tenths of a day than that of a lunar month, and that the true length of a solar month, according to the Sitrya-Siddhanta, varies from 29 d. 7 h. 38 m. to 31 d. I5h. 28 m. Now the moon's synodic motion, viz., her motion relative to the sun, is also irregular, and consequently all the lunar months vary in length. The variation is approximately from 29 d. 7 h. 20 m. to 29 d. 19 h. 30 m., and thus it is clear that in a lunar month there will often be no solar sankranti, and occasionally, though rarely, two. This will be best understood by the following table and explanation. (See p. 26.) We will suppose (see the left side of the diagram, cols. 1,2.) that the sun entered the sign Mesha, — that is, that the Mesha sankranti took place, and therefore the solar month Mesha commenced, — shortly before the end of an amanta lunar month, which was accordingly named " Chaitra " in con- formity with the above rule (Art. 14. or ^.f) ; that the length of the solar month Mesha was greater than that of the following lunar month; and that the sun therefore stood in the same sign during the whole of that lunar month, entering the sign Vrishabha shortly after the beginning of the third lunar month, which was consequently named Vaisakha because the Vrishabha sankranti took place, and the solar month Vrishabha commenced, in it, — the Vrishabha sankranti being the one next following the Mesha sankranti. Ordinarily there is one sankranti in each lunar month, but in the present instance there was no sankranti whatever in the second lunar month lying between Chaitra and Vai.sakha. The lunar month in which there is no saiikranti is called an (?()'/i'//('rt (added or intercalated) month ; while the month which is not adhika, but is a natural month because a sankranti actuall>- occurred in it, is called iiija, i.e., true or regular month. ' We thus have an added month between natural Chaitra and natural Vai.sakha. 1 Professor Kielhorn is satisfied that the terms adhika and nija are quite modern, the nomenclature usually adopted in docu- ment3 and inscriptions earlier then the present century being prathama (first) and dvitii/d (second). He alluded to this in hid. Ant., XX., p. 411. [R. S] 26 THE INDIAN CALENDAR. The next peculiarity is that when there are two saiikrantis in a lunar month there is a kshaya masa, or a complete expunction of a month. Suppose, for instance, that the Vrischika sankranti took place shortly after the beginning of the amanta lunar month Karttika {see the lower half of the diagram col. 2) ; that in the next lunar month the Dhanus-saiikranti took place Amdnla lunar months. Solar months; sahltrdnti to sankranti. Fortnights. Purnimdnla lunar months. ' By one system. 1 By anot/ter 1 system. 1 2 3 4 5 Chaitra. ■' — Mesha sankranti ■2 ^ — Vrishabha saiikranli (Several mout — Vrischika sankrSnti — Uhaniis sankranti — Jlakara sankranti ' \ 1 \ — Kumbha sankranti ' j Sukla 1/2 Chaitra 1/2 Chaitra 1 Krishna Vaisakha i First Vaisakha Adhika , Vaisakha ' Sukla Adhika Vaisikha Krishna 1 Second Vaisakha Nija Vaisftkha Sukla , Vaisakha Krishna 1 1/2 Jycshtha 1/3 Jyeshtha Karttika ' Its are omitted here.) Sukla f 1/0 Kfirttika 1/2 Karttika Krishna ) MSrgasirsha MSrgasirsha Mai'gasirsha i (Vauslia I suppressed) 1 Sukla Krishna ) (I'ausha ^ suppressed) 1 Mflgha CPaiisha suppressed) MAgba .Magha 1 Sukla Krishna i 1'2 Phfilguna 1 I'o Phalguna shortly after it began, and the Makara-sankranti shortly before it ended, so that there were two saiikrantis in it; and that in the third month the Kumbha-sankranti took place before the end of it. The lunar month in which the Kumbha-sankranti occurred is naturally the month Magha. Thus between the natural Karttika and the natural Magha there was only one lunar month iiistead of two, and consequently one is said to be expunged. 46. Thcr'r itai/tcs. It will be seen that the general brief rule (.-Irt. ././) for naming lunar months is altogether wanting in many respects, and therefore rules had to be framed to meet the emergency. But different rules were framed by different teachers, and so arose a difference in practice. The rule followed at present is given in the following verse. Mniadistho Ravir ycshaiii arai'iibha-prathatnc kshane \ bhavct tc 'Mc Chandra iiiasii.i chaitradya dvadasa smritah." 1 The scheme of pirnim&nta months and t!ie rule for naming the intcrciilnted months knonn lo have been in osi- from the 12th century A.D., arc followed in this diogi-am. THE iriNnu calendar. 27 "The twelve lunar months, at whose first moment the sun stands in Mina and the following [signs], are called Chaitra, and the others (in succession]." According to this rule the added month in the above example (,Art. /j) will be named Vaisakha, since the sun was in Mesha when it began; and in the example of the expunged month the month between the natural Karttika and the natural Magha will be named Margasirsha, because the sun was in Vrischika when it commenced, and Pausha will be considered as expunged. This rule is given in a work named Kalatatva-vlvechana, and is attributed to the sage Vyasa. The celebrated astronomer Bhaskaracharya (A. D. 1 1 50) seems to have followed the same rule, ' and it must thersfore have been in use at least as early as the 1 2th century A. D. As it is the general rule obtaining through most part of India in the present day we have followed it in this work. There is another rule which is referred to in some astronomical and other works, and is attributed to the Brahma-Siddhanta. - It is as follows : " Meshadisthe Savitari yo yo niasah prapuryate chandrak \ Chaitradyah sa jiieyah picrtid- vitve 'dhimaso 'ntyah." \\ "That lunar month which is completed when the sun is in [the sign] Mesha etc., is to be known as Chaitra, etc. [respectively] ; when there are two completions, the latter (of them] is an added month." It will be seen from the Table given above (p. 26) that for the names of ordinary months both rules are the same, but that they differ in the case of added and suppressed months. The added month between natural Chaitra and natural Vaisakha, in the example in Art. ./j, having ended when the sun was in Mesha, would be named "Chaitra" by this second rule, but "Vai- sakha" by the first rule, because it commenced when the sun was in Mesha. Again, the month between natural Karttika and natural Magha, in the example of an expunged month, having ended when the sun was in Makara, would be named "Pausha" by this second rule, and conse- quently Margasirsha would be expunged; while by the first rule it would be named " Margasirsha " since it commenced when the sun was in Vrischika, and Pausha would be the expunged month. It will be noticed, of course, that the difference is only in name and not in the period added or suppressed. ^ Both these rules should be carefully borne in mind when studying inscriptions or records earlier than i lOO A. D. 47. Their determination according to true an d inea?i systems. It must be noted with regard to the intercalation and suppression of months, that whereas at present these are regulated by the sun's and moon's apparent motion, — in other words, by the apparent length of the solar and lunar months — and though this practice has been in use at least from A. D. 1 100 and was followed by Bhaskaracharya, there is evidence to show that in earlier times they were regulated by the mean length of months. It was at the epoch of the celebrated astronomer Sripati, * or about A. D. 1040, that the change of practice took place, as evidenced by the following passage in his Siddhanta Sekhara, (quoted in the Jyotisha-darpaiia, in A. D. 1557-) 1 Sec his Siddlidnta-Siromani, madhyamddhihara, adhimdsanirtiatja, verse 6, and his own commentan' on it. [S. B. D.] 2 It is not to be found in either of the Brahma-Siddhdntas referred to above, but there is a third Brahma-Siddhftnta which I have not seen as yet. [S. B. D.j 3 In Prof. Chattre's list of added and suppressed mouths, in th()^c published in Mr. Cowasjcc Patells' Chronology, and in Genei'al Sir A. Cunningham's Indian Eras it is often noted that the same mouth is both added and suppressed. But it is clear from the above rules and definitions that this is impossible. K month cannot be both added and suppressed at the same time. The mistake arose probably from resort being made to the firet rule for naming adhika months, and to the second for the suppressed months. * Thanks are due to Mr. Mahadco Chiiiipiji Apte. B.A., L.L.B., very recently deceased, the founder of the Anand&srama at Poona, for his discovery of a part of Sripati's Karaiia named the Bhikoiida, from which I got Sripati's date. I find that it was written in Saka 961 expired (A.D. 1039-40). [S. B. D.] 28 THE INDIAN CALENDAR. Madhyama-Ravi-sahkranti-pravesa-rahito bhaved adkikak Madhyas Chandra maso madhyadhika-lakshanani cliaitat\ Vidvaihsas-ti'-acharya tiirasya madhyadhikam masani Kuryiih sphuta-manena hi yato 'dliikah spashta eva syat. || "The lunar month which has no mean sun's entrance into a sign shall be a mean intercal- ated month. This is the definition of a mean added month. The learned Acharyas should leave off I using] the mean added months, and should go by apparent reckoning, by which the added month would be apparent (true)." It is clear, therefore, that mean intercalations were in use up to Sripatis time. In the Vc- dahga Jyotisha only the mean motions of the sun and moon are taken into account, and it may therefore be assumed that at that time the practice of regulating added and suppressed months by apparent motions was unknown. These apparent motions of the sun and moon are treated of in the astronomical Siddhantas at present in use, and so far as is known the present system of astronomy came into force in India not later than 400 A. D. ' But on the other hand, the method of calculating the ahargana (a most important matter), and of calculating the places of planets, given in the Surya and other Siddhantas, is of such a nature that it seems only natural to suppose that the system of mean intercalations obtained for many centuries after the present system of astronomy came into force, and thus we find Sripati's utterance quoted in an astronomical work of the 1 5th century. There can be no suppression of the month by the mean system, for the mean length of a solar month is longer than that of a mean lunar month, and therefore two mean sahkrantis cannot take place in a mean lunar month. The date of the adoption of the true (apparent) system of calculating added and suppressed months is not definitely known. Bhaskaracharya speaks of suppressed months, and it seems from his work that mean intercalations were not known in his time (A. D. 11 50.) We have therefore in our Tables given mean added months up to A. U. iioo. and true added and sup- pressed months for the whole period covered by our Tables. - 48. For students more familiar with solar reckoning we will give the rules for the intercala- tion and suppression of months in another form. Ordinarily one lunar month ends in each solar month. When two lunar months end in a solar month the latter of the two is said to be an adhika (added or intercalated) month, and by the present practice it receives the name of the following natural lunar month, but with the prefix adhika. Thus in the Table on p. 25, two lunar months end during the solar month Mesha, the second of which is adhika and receives, by the present practice, the name of the following natural lunar month. V'ai.sakha. When no lunar month ends in a solar month there is a kshaya niasa, or expunged or suppressed month; i.e., the name of one lunar month is altogether dropped, viz., by the present practice, the one following that which would be derived from the solar month. Thus, in the Table above, no lunar month ends in the solar month Dhanus. IMarga.sirsha is the name of the month in which the Dhanus saiikranti occurs; the name Pausha is therefore expunged. The rule for naming natural lunar months, and the definition of, and rule for naming, added ' Up to rcccntlj tlie diitc was (•(insidcred to be iibuul llii- fith icnlurj- A.D. l)r TUibaut, oni- of the highest living authorities on Indian Astronomy, fixes it at 400 A.D. (Sc« his edition of the Pa/ur/ia Siddhdntikii Introd., p LX.). My own opinion is that it came into existence not later than the 2nd oentiiry 13 C. [S. B. D ] * I am inclined to believe that of the two rules for naming lunar mouths the second was connected with the mean system of added months, and that the first came into existcnee with the adoption of the tni<' system But I am nut as yet in possession of any cvidcuec on the point. See, however, the note to Art. 61 below. [S. B. D.] THE HINDU CALENDAR. 29 and suppressed months, may be summed up as follows. That amanta lunar month in whicii the Mesha sankranti occurs is called Chaitra, and the rest in succession. That amanta lunar month in which there is no sankranti is adhika and receives the name (i) of the preceding natural lunar month by the old Brahma-Siddhanta rule, (2) of the following natural lunar month by the present rule. When there are two sahkrantis in one amanta lunar month, the name which would be derived from the first is dropped by the old Brahma-Siddhanta rule, the name which would be derived from the second is dropped by the present rule. 49. Different results by different Siddhantas. The use of different Siddhantas will some- times create a difference in the month to be intercalated or suppressed, but only when a san- kranti takes place very close ' to the end of the amavasya. Such cases will be rare. Our calculations for added and suppressed months have been made by the Siirya-Siddhanta, and to assist investigation we have been at the pains to ascertain and particularize the exact moments (given in tithi-indices, and tithis and decimals) of the sankrantis preceding and succeeding an added or suppressed month, from which it can be readily seen if there be a probability of any divergence in results if a different Siddhanta be used. The Special Tables published by Professor Jacobi in the Epigraphia Indica (Vol., II., pp. 403 ff. ) must not be relied on for calculations of added and suppressed months of Siddhantas other than the Snrya-Siddkanta. If a different Siddhanta happened to have been used by the original computor of the given Hindu date, and if such date is near to or actually in an added or suppressed month according to our Table I., it is possible that the result as worked out by our Tables may be a whole month wrong. Our mean intercalations from A. D. 300 to 11 00 are the same by the original Surya- Siddhanta, the present Siirya-Siddlianta, and the first Arya-Siddhanta. 50. Sotne pcadiarities. Certain points are worth noticing in connection with our calcula- tions of the added and suppressed months for the 1600 years from A. D. 300 to 1900 according to the SHrya-Siddhaftta. {a) Intercalations occur generally in the 3rd, 5th, 8th, 1 ith. 14th, i6th and 19th years of a cycle of 1 9 years, [b) A month becomes intercalary at an interval of 1 9 years over a certain period, and afterwards gives way generally to one of the months preceding it, but sometimes, though rarely, to the following one. (c) Out of the seven intercalary months of a cycle one or two are always changed in the ne.xt succeeding cycle, so that after a number of cycles the whole are replaced by others, [d) During our period of 1600 years the months Margasirsha, Pausha, and Magha are never intercalary, [e) The interval between years where a suppression of the month occurs is worth noticing. In the period covered by our Tables the first suppressed month is in A.D. 404, and the intervals are thus: 19,65, 38, 19, 19,46,19,141,122,19,141,141,65,19,19,19,19,46, 76, 46, 141, 141, and an unfinished period of 78 years. At first sight there seems no regularity, but closer examination shews that the periods group themselves into three classes, viz., (i.) 19, 38, 76; (ii.) 141; and (iii.) 122,65 a"|>reii.scd niunths. ^ I have micctrlaincd that Gauesa has adopted in his Oralialdyhava sonic of the elements of the Ari/a-Siddhdnta as corrected br Lalla's bijii, and by |>ulling to test one of the years noted I lind that in these caleulalions also the Aryn-Siddhdnta as corrected by Ijtila's b!ja nas used. Onvesa was a most areurate calculator, and I feel certniu thai his resull.o can be depended u|>on. [S. B. D.] THE HTXDU CALENDAR. .V Vaisaklia. Thus it liippens that half of natural puniinianta Vaisakha comes before, and half after, the intercalated month. ' Of the four fortnights thus having the name of the same month the first two fortnights are sometimes called the "■First Vaiiak/ia," and the last two the "Second Vaisaklia." It will be seen from Table II., Part i., that amanta Phalguna krishna is purnimanta Chaitra krishna. The year, however, does not begin then, but on the same day as the amanta month, i.e., with the new moon, or the beginning of the next bright fortnight. Having discussed the lesser divisions of time, we now revert to the Hindu year. And, first, its beginning. Years and Cycles. 52. The Hindu Nezv-year's Day. — In Indian astronomical works the year is considered to begin, if luni-solar, invariably with amanta Chaitra Sukla ist, — if solar with the Mesha saiikranti; and in almost all works mean Mesha sankranti is taken for convenience of calculations, very few works adopting the apparent or true one. At present in Bengal and the Tamil country, where solar reckoning is in use, the year, for religious and astronomical purposes, com- mences with the apparent Mesha-saiikranti, and the civil year with the first day of the month Mesha, as determined by the practice of the country (See above Art. 28). But since mean Mesha- saiikranti is taken as the commencement of the solar year in astronomical works, it is only reason- able to suppose that the year actually began with it in practice in earlier times, and we have to consider how long ago the practice ceased. In a Karana named Bhasvati (A. D. 1099) the year commences with apparent Mesha saiikranti, and though it is dangerous to theorize from one work, we may at least quote it as shewing that the present practice was known as early as A. D. i lOO. This date coinciding fairly well with Sripati's injunction quoted above (Art. ^y) we think it fair to assume for the present that the practice of employing the mean Mesha sankranti for fi.xing the beginning of the year ceased about the same time as the practice of mean intercalary months. The luni-solar Chaitradi ^ year commences, for certain religious and astrological purposes, with the first moment of the first tithi of Chaitra, or Chaitra sukla pratipada and this, of course, may fall at any time of the day or night, since it depends on the moment of new moon. But for the religious ceremonies connected with the beginning of a samvatsara (year), the sunrise of the day on which Chaitra sukla pratipada is current at sunrise is taken as the first or opening day of the year. When this tithi is current at sunrise on two days, as sometimes happens, the first, and when it is not current at any sunrise {i.e., when it is expunged) then the day on which it ends, is taken as the opening day. For astronomical purpo.ses the learned take any convenient 1 Such an anomaly with regard to the pftrpimfinta scheme could not occur if the two rules were applied, one that "that purpimant!) month in which the Mesha sankrilnti occurs is always called Chaitra, and so on in succession," and the other that " that pAruim&nta month in which no sankr&nti occuis is called an intercalated month." The rules were, I believe, in use in the sixth century AD. (Si'e mij remarh Ind. -Int., XX., p. iO f) But the added month under such rules would never agree with the amfinta added months. There would he from 14 to 17 months' diderence in the intercalated months between the two, and much inconvcuicuce would arise thereby. It is for this reason probably that the purpim&nta scheme is not recognised in naming months, and that pflr^i- manta months are named arbitrarily, as described in the first para, of Art. 51. This arbitrary rule was certainly in use in the 11th century A.D. (See Ind. Ant., rol. VI., p. 53, where the Makara-saiikrSnti is said to have taken place in Xldgha.^ After this arbitrary rule of naming the purnim&nta months once came into general use. it was iuipossible in Northern India to continue using the second, or Brahma-Siddhdnta, rule for naming the months. For in the example in ,/r<. 45 above the intercalated month would by that rule be named Chaitra, but if its preceding fortnight be a fortnight of VaisSkha it is obvious that the inter- calated month cannot be named Chaitra. In Southern India the pi"actice may have continued in use a little longer. [S. B. D.] 2 Chaitrddi, "beginning with Chaitra"; Kiirttikudi, '-beginning with KSrttika ; Meshudi, with Mesha; and so on. 32 THE INDIAN CALENDAR. moment, — such as mean sunrise, noon, sunset, or midnight, but generally the sunrise, — on or before Chaitra sukla pratipada, as their starting-point. ' Sometimes the beginning of the mean Chaitra sukla pratipada is so taken. When Chaitra is intercalary there seems to be a difference of opinion whether the year in that case is to begin with the intercalated {adhika) or natural [nijd) Chaitra. For the purposes of our Table I. (cols. 19 to 25) we have taken the adhika Chaitra of the true system as the first month of the year. But the year does not begin with Chaitra all over India. In Southern India and especially in Gujarat the years of the Vikrama era commence in the present day with Karttika sukla pratipada. In some parts of Kathiavad and Gujarat the Vikrama year commences with Ashadha sukla pratipada. - In a part of Ganjam and Orissa, the year begins on Bhadrapada sukla 1 2th. {Sec jmder Ohko reckoning, Art. 64.) The Amli year in Orissa begins on Bhadrapada sukla 12th. the Vilayati year, also in general use in Orissa, begins with the Kanya sahkranti ; and the Fasli year, which is luni-solar in Bengal, commences on purnimanta Asvina kri. ist (viz., 4 days later than the Vilayati). In the South Malayajam country (Travancore and Cochin), and in Tinnevelly, the solar year of the KoUam era, or Kollam andu, begins with the month Chingam (Siriiha), and in the North Malayajam tract it begins with the month Kanni (Kanya). In parts of the Madras Presidency the Fasli year originally commenced on the ist of the solar month Adi (Karka), but by Govern- ment order about A.D. 1800 it was made to begin on the 1 3th of July, and recently it was altered again, so that now it begins on ist July. In parts of the Bombay Presidency the Fasli year begins when the sun enters the nakshatra Mrigasirsha, which takes place at present about the Sth or 6th o0une. Alberuni mentions (A.D. 1030) a year commencing with Margasirsha as having been in use in Sindh, Multan, and Kanouj, as well as at Lahore and in that neighbourhood; also a year commencing with Bhadrapada in the vicinity of Kashmir. ' In the MaliabJiarata the names of the months are given in some places, commencing with Margasirsha. {Anusasana pama adhyayas 106 and locf). In the Vcdaiiga Jyotisha the year commences with Magha sukla pratipada. 53. The Sixty-year cycle of Jupiter. * In this reckoning the years are not known by numbers, but are named in succession from a list of 60 names, often known as the " Brihaspati samvatsara chakra," " the wheel or cycle of the years of Jupiter. Each of these years is called a "samvatsara." The word " samvatsara " generally means a year, but in the case of this cycle the year is not equal to a solar year. It is regulated by Jupiter's mean motion; and a Jovian year is the period during which the planet Jupiter enters one sign of the zodiac and passes completel)' through it 1 Sec Ind. Ant., XIX., p. 45, second paragraph of my article on the Original Siiri/a-Siddhdnttt. [S. B. D.] 2 I have myself seen a panehui'ig which mentions this beginning of the year, and have also found some instances of the use of it in the present day. 1 am told that at Idar in Gujarat the Vikrama samvat begins on Ash&clha krishpa dritiyft. [S. B. D.] 3 The passage, as Iranslatcd by Sachau (Vol. II., |i. 8 f), is as follows. "Those who use the Saka era, the astronomers, begin the year with the month Chaitra, whilst the inhabilunts of Kaiiir. which is conterminous with Kashmir, begin it with the month Bhftilnipada . . . All the people who inhabit the country bitwein Bardari iinil JUrigala bcjjin the year with the mouth Kilrttika . . . The people living in the country of Nirahara, behind Mftrigaln, ns far as the utmost frontiers of Tfikcshar and lAihilvar, begin the year with the month MflrBasii-sha . . . The people of I,anbaga, «'.(?., Lamghfln, follow ihcir etample. I have been told bv the people of .Multiln that this system is peculiar to the people of Sindh and Knnoj, and that they used to begin the year with the new moon of MArgasirsha, hut that the people of MultAn only a few years ago had given up this system, and had ado|)tcd the system of the people of Ka.shinir, and followed their example in beginning the year with the new moon of Chaitra." • Articles 53 to 61 arc applicable to Northern India only (See Art. 62^. ■'' The term is one not n-cognized in Sanskrit works. [S. B. D.l THE HINDU CALENDAR. 33 with reference to his mean motion. The cycle commences with Prabhava. See Table I., cols. 6, 7, and Table XII. 54. The duration of a Barhaspatya samvatsara, according to the Surya-Siddhanta, is about 361.026721 days, that is about 4.232 days less than a solar year. If, then, a samvatsara begins exactly with the solar year the following samvatsara will commence 4.232 days before the end of it. So that in each successive year the commencement of a samvatsara will be 4.232 days in advance, and a time will of course come when two samvatsaras will begin during the same solar year. For example, by the Surya-Siddhanta with the bija, Prabhava (No. i) was current at the beginning of the solar year*Saka 1779. Vibhava (No. 2) commenced 3.3 days after the beginning of that year, that is after the Mesha sankranti; and Sukla (No. 3) began 361.03 days after Vibhava, that is 364.3 days after the beginning of the year. Thus Vibhava and Sukla both began in the same solar year. Now as Prabhava was current at the beginning of Saka 1779, and Sukla was current at the beginning of 6aka 1780, Vibhava was expunged in the regular method followed in the North. Thus the rule is that when two Barhaspatya samvatsaras begin during one solar year the first is said to be expunged, or to have become kskaya; and it is clear that when a samvatsara begins within a period of about 4.232 days after a Mesha sankranti it will be expunged. By the Surya Siddhanta 85^^ solar years are equal to 86|^^ Jovian years. So that one expunction is due in every period of 85^^ solar years. But since it really takes place according to the rule explained above, the interval between two expunctions is sometimes 85 and sometimes 86 years. 55. Generally speaking the samvatsara which is current at the beginning of a year is in practice coupled with all the days of that year, notwithstanding that another samvatsara may have begun during the course of the year. Indeed if there were no such practice there would be no occasion for an expunction. Epigraphical and other instances, however, have been found in which the actual samvatsara for the time is quoted with dates, notwithstanding that another sam- vatsara was current at the beginning of the year. ^ 56. Variations. As the length of the solar year and year of Jupiter differs with different Siddhantas it follows that the expunction of samvatsaras similarly varies. 57. Further, since a samvatsara is expunged when two samvatsaras begin in the same year, these expunctions will differ with the different kinds of year. Where luni-solar years are in use it is only natural to suppose that the rule will be made applicable to that kind of year, an expunction occurring when two samvatsaras begin in such a year; and there is evidence to show that in some places at least, such was actually the case for a time. Now the length of an ordinary luni-solar year (354 days) is less than that of a Jovian year (361 days), and therefore the beginning of two consecutive samvatsaras can only occur in those luni-solar years in which there is an intercalary month. Again, the solar year sometimes commences with the mean Mesha-sankranti, and this again gives rise to a difference. "' The Jyotislia-tattva rule (given below Art. spj gives the samvatsara current at the time of the mean, not of the apparent, Mesha-sankranti, and hence all expunctions calculated thereby must be held to refer to the solar year only when it is taken to commence with the mean Mesha- sankranti. ' It is important that this should be remembered. 1 See Ind. Jut., Vol. XIX., pp. 27, 33, 187. 2 These points have not yet heen noticed by any European writer on Indian Astronomy. [S. B. D.] * As to the mean Mesba-sai'ikrilnti, see Art. 26 above. 34 THE INDIAN CALENDAR. 58. To find the current samratsara. The samvatsaras in our Table I., col. 7, are calculated by the Sitrya-Sidd/Kinta without the bija up to A.D. 1 500, and with the bija from AD. 1 501 to 1900 ; and are calculated from the apparent Mesha-.sankranti If the samvatsara current on a particular day by some other authority is required, calculations must be made direct for that day according to that authority, and we therefore proceed to give some rules for this process. 59. Rules for finding the Barliaspatya samvatsara current on a particular day. ' a. By the Siirya-Siddhanta. ' Multiply the expired Kali year by 211. Subtract 108 from the product. Divide the result by 18000. To the quotient, excluding fractions, add the numeral of the expired Kali year plus 27. Divide the sum by 60. The remainder, counting from Prabhava as I, is the samvatsara current at the beginning of the given solar year, that is at its apparent Mesha-sankranti. Subtract from 18000 the remainder previously left after dividing by 18000. Multiply the result by 361, and divide the product by 18000. Calculate for days, ghatikas, and palas. Add 1 5 palas to the result. The result is then the number of days, etc., elapsed between the apparent Mesha-sahkranti and the end of the samvatsara current thereon. By this process can be found the samvatsara current on any date. Example I. — Wanted the samvatsara current at the beginning of Saka 233 expired and the date on which it ended. Saka 233 expired = (Table I.) Kali 3412 expired, "'-".'j.'^^'" — 39H55^ 39 + 3412+27 = 3478. ?i^ =: 57^!. The remainder is 58; and wehaveitthat No. 58 Raktakshini^Zizi^/^ AY/.^ was the samvatsara current at the beginning (apparent Mesha-safikranti) of the given year. Again ; 18000 — 17824 = 176. '""x^si _ 3 d. 31 gh. 47.2 p. Adding 15 pa. we have 3 d. 32 gh. 2.2 pa. This shews that Raktakshin will end and Krodhana (No. 59) begin 3 d. 32 gh. 2.2 pa. after the apparent Meska satikranti. This last, by the Surya Siddhanta, occurred on 17th March, A.D. 31 1, at 27 gh. 23 pa. [see Table /., col. ij, and the Table in Art. p6), and therefore Krodhana began on the 20th March at 59 gh. 25.2 pa., or 34.8 palas before mean sunrise on 2 1st March. We also know that since Krodhana commences within four days after Mesha it will he expunged (Art. j;.faboz'e.) b. By the Arya Siddhanta. Multiply the expired Kali year by 22. Subtract 1 1 from the product. Divide the result by 1875. To the quotient excluding fractions add the expired Kali year + 27. Divide the sum by 60. The remainder, counted from Prabhava as i, is the samvatsara current at the beginning of the given solar year. Subtract from 1875 the remainder previously left after dividing by 1875. Multiply the result by 361. Divide the product by 1875. Add i gh. 45 pa. to the quotient. The result gives the number of days, etc., that have elapsed between the apparent Mesha-sankranti and the end of the samvatsara current thereon. Example 2.— Required the samvatsara current at the beginning of Saka 230 expired, and the time when it ended. Saka 230 e.xpired = KaH 3409 expired. ill''^i??zli — 391!??. 39 + 3409 + 271= 3475, which, divided by 60, gives the remainder 55. Then No. 55 Durmati (Table XII.) was current at the beginning of the given year. Again; 1875— 1862 — 13. ^^' = 2 d. 30 gh. 10.56 pa. Adding i gh. 1 By all these rules the results will be correct witliin two ghatikfts where the nioiucut ol' the Mcshn-saukninti iiccording to the authority used is kuown. ' The rule for the present Vamhtha, the SdkaUja Brahma, the Romaka, and the Soma Sidd/nUlas is eiactly the same. That by the original Stlri/a-Sidithdnla is also similar, but in that case the result will be incorrect by about 2 ghatik&s (48 minutes). For all these authorities take the time of the Mesha-sankrAnti by the present Silrya-Sidd/nUla or by the Jri/a-Siddlidnta, whichever may be available. The moment of the Mesha-sankrlntri according to the Silrya-Siddtninla is given in our Tabic I. only for the years A.D. 1100 to 1900. The same moment for all years between A.D. 300 and 1100 can be found by the Table in Art. 96. If the Jrya- Siddhanta saiikrHnti is used for years A.D. 300 to 1100 the result will never be incorrect by more than 2 ghatikfls 46 jmlas (1 hour and 6 minutes). The Tabic should be referred to. THE HINDU CALENDAR. 35 45 pa., we get 2d. 31 gh. 55.5693. Add this to the moment of the Mesha sankranti as given in Table I., cols. 13—16, viz., i6th March, 308 A.D., Tuesday, at 41 gh. 40 p., and we have 19th March, Friday, 13 gh. 35.56 p. after mean sunrise as the moment when Durmati ends and Dundubhi begins. Here again, since Dundubhi commences within four days of the Mesha sankranti, it will be expunged. c. By the Surya-Siddhanta with the bija (to be used for years after about 1500 A.D.). Multiply the expired Kali year by 117. Subtract 60 from the product. Divide the result by icx)00. To the figures of the quotient, excluding fractions, add the number of the expired Kali year plus 27. Divide the sum by 60. And the remainder, counted from Prabhava as i, is the samvatsara current at the beginning of tlie given solar year. Subtract from loooothe remainder left after the previous division by loooo. Multiply the difference by 361, and divide the product by 1 0000. Add 1 5 pa. The result is the number of days, etc., that have elapsed between the apparent Mesha sankranti and the end of the samvatsara current thereon. ' Example. — Required the samvatsara current at the beginning of Saka 1436 expired, and the moment when it ends. Saka 1436 expired =: Kali 4615 expired (Table I.), lii^iilli::^ — 53^- M-H615+27 _ -gi5 -pj^g remainder 1 5 shews that Vrisha was current at the Mesha-sankranti. (10000-9896) 361 _|_ jj p. — 3 d. 47 gh. 25.8 p. + 1 5 p. = 3 d. 47 gh. 40.8 p. Table I. gives the Mesha- sankranti as March 27th, 44 gh. 25 p., Monday. 27 d. 44 gh. 25 p. + 3 d. 47 gh. 40.8 p. = 31 d. 32 gh. 5.8 p.; and this means that Vrisha ended at 32 gh. 5.8 p. after mean sunrise at Ujjain on Friday, 31st March. At that moment Chitrabhanu begins, and since it began within four days of the Mesha-saiikranti. it is expunged. d. Brihatsamhita and Jyotishatath'a Rules. The rules given in the Brihatsamhita and the Jyotishatattoa seem to be much in use, and therefore we give them here. 'Y\\s. Jyotishatattva rule is the same as that for the Arya-Siddhanta given above, except that it yields the year current at the time of mean Mesha-sankranti, and that it is adapted to Saka years. The latter difference is merely nominal of course, as the moment of the beginning of a samvatsara is evidently the same by both. - We have slightly modified the rules, but in words only and not in sense. The Jyotishatattva rule is this. Multiply the current Saka year by 22. Add 4291. Divide the sum by 1875. To the quotient excluding fractions add the number of the current Saka year. Divide the sum by 60. The remainder, counted from Prabhava as i, is the samvatsara current at the beginning of the given year. Subtract the remainder left after previously dividing by 1875 from 1875. Multiply the result by 361. And divide the product by 1875. The result gives the number of days by which, according to the Arya-Siddhanta, the samvatsara ends after mean Mesha- sankranti. The mean ^ Mesha-sankranti will be obtained by adding 2d. 8 gh. 51 pa. 1 5 vipa. to the time given in Table I., cols. 13 to 18. Work out by this rule the example given above under the Arya-Siddhanta rule, and the result will be found to be the same by both. The Brihatsamhita rule. Multiply the expired Saka year by 44. Add 8589. Divide the sum by 3750. To the quotient, excluding fractions, add the number of the expired Saka year 1 In these three rules the apparent Mesha-sankr&nti is taken. If we omit the subtraction of 108, 11, and 60, and do not add 15 p., 1 gh. 45 p., and 15 p. respectively, the result will be correct with respect to the mean Mesha-sankranli. 2 I have not seen the Jt/oiiskatattm (or "Jyotishtava" as Warren calls it, but which seems to be a mistake), but I find the rule in the Rainamdld ofSripati (A.D. 1039). It must be as old as that by the Arya-Siddhdnta, since both are the same. [S. B. D.] 8 If we add 4280 instead of 4291, and add 1 gh. 45 pa. to the final result, the time so arrived at will be the period elapsed since apparent Mesha-sankranti. Those who interpret the J yotiahaiallm rule in any different way have failed to grasp its proper meaning [S. B. D.] .-,6 THE INDIAN CALENDAR. plus I. Divide the sum by 60. The remainder, counted from Prabhava as i, is the samvatsara current at thebeginnini^ of the year. Subtract from 3750 the remainder obtained after the previous division b\' 3750. Multiply the result by 361, and divide the product by 3750. This gives the number of days by which the samvatsara current at the beginning of the year will end after the Mesha sankranti. ' 60. List of Expunged Samvatsaras. The following is a comparative list of expunged samvatsaras as found by different authorities, taking the year to begin at the mean Mesha sankranti. List of Expunged Samvatsaras.- Firsl Arya-Siddluinla, Brihal- Siiri/a-Siddlidnia Rule without First Arya'Siddhiinta . Brihai- Sitrya-SiddlidnU Rule without j samhitd, Ratnamdld, Jt/otis- bija up to 1500 A.D., and saiiihild, Ratnamdld, Ji/olu- bij a up tu 1 500 A.D., and hatattava Rules. with blja afterwards. hatatlava Rules. with bija afterwards. A.D. Eipunged Samvatsara. is 3 -co " A.D. Expunged Samvatsara. 'is A. 1). Expunged Samvatsara. -en " A.D. Expunged Samvatsara. 232 309-10 57 RudMrodg&rin 234 311-12 59 Krodhana 1084 1161-62 19 Parthiva 1087 1164-65 22 Sai-vadhariu 317 394-95 23 Virodhin 319* 396-97 25 Khara 1169 1246-47 45 Virodhakrit 1172* 1249-50 48 Ananda 402 479-80 49 Rakshasa 404* 481-82 51 Pingala 1254 1331-32 1 1 Isvara 1258 1335-36 15 Vrisha 487 564-65 15 Vrisha 490 567-68 18 TSraija 1340 1417-18 38 Krodhin 1343 1420-21 41 Plavanga 572 649-50 41 Plavaiiga 575* 662-53 44 Sadharaiia 1425 1502-03 4 Pramoda 14.37 1514-15 16 Chitrabhanu 658 735-86 8 BMva 660* 737-38 10 Dhatri 1510 1587-88 30 Dunuukha 1522* 1599- 42 Kilaka 743 820-21 34 sarvari 746 823-24 37 .Sobhaiiii 1600 828 905-06 60 Kshaya 831 908-09 3 Sukla 1595 1672-73 56 Duudubhi 1608 1685-86 9 Yuvau 913 990-91 26 Nandana 916* 993-94 29 Manmatha 1680 1757-58 22 Sarvudharin 1693* 1770-71 35 Plava 999 1076-77 53 Siddharthin 1002 1079-80 56 Duudubhi 1766 1843-44 49 Rttkshasa 1779 1856-57 2 Vibhava If we take the years to commence with the apparent Mesha-sahkranti the sam- vatsaras expunged by Siirya Siddliania calculation will be found in Table I., col. 7 ; and those by the Arya Siddhanta can be found by the rule for that Siddhtmta given in Art. sg above. 61. The years of Jupiter's cycle are not mentioned in very early inscriptions. They are mentioned in the Siirya-Siddhanta. Dr. J. Burgess states that he has reason to think that they were first introduced about A.D. 349, and that they were certainly in use in A.D. 530. We have therefore given them throughout in Table I. 62. The southern (luni-solar) sixty-year cycle. The sixty-year cycle is at present in daily use in Southern India (south of the Narmada), but there the samvatsaras are made to correspond with the luni-solar year as well as the .solar ; and we therefore term it the luni-solar 60-year cycle in contradistinction to the more .scientific Barhaspatya cycle of the North. 1 It is not stated what Me..sha-saukruHti is meant, whether mean or apparcut. The rule is here given as giMurallj interpreted by writers both Indian and Piuropean, but in this form its origin eannot be explained. I am strongly inclined to think that Varahamihira, the author of the Bnlialsamhitu, meant the rule to run thus: Multijily the eurrcut Saka year by 44 Add 8582 (or 8581 or 8583). Divide the sum by 3750. To the integei-s of the quotient add the given eurrent Saka year ; (and the rest aa above). Tlie result ie for the mean Mesha-saukranti." In this fonn it is the same as the Arya-Siddhdnia or the Jyotii/iafallva rule, and can be easily explained. (S. fi. D.) 2 In this Table the Bnhalaainliild rule is worked as I interpret it. But as interpreted by othirs the ixpuuetions will differ, the differences being in .Saka (current) 231, the 56th; 998, the 52nd; 1889, the 37th. By the Surya Siddlidnta the years marked with an asterisk in the Saka column of this Table differ from those given in Table I., col. 7, being in each case one earlier; the rest arc the same. (S. B. D.) THE HINDU CALENDAR. 37 There is evidence ' to show that the cycle of Jupiter was in use in Southern India before Saka 828 (A.D. 905-6); but from that year, according to the Arya Siddlianta, or from Saka 831 (A.D. 908-9) according to the .SVJr;'«-AV^d%(5«/rt, the expunction of the samvatsaras was altogether neglected, with the result that the 60-year cycle in the south became luni-solar from that year. At present the northern samvatsara has advanced by 12 on the southern! There is an easy rule for finding the samvatsara according to the luni-solar cycle, viz., add 1 1 to the current Saka year, and divide by 60; the remainder is the corresponding luni-solar cycle year. It must not be forgotten that the samvatsaras of Jupiter's and the southern cycle, are always to betaken as current years, not expired. 63. The twelve-year cycle of Jupiter. There is another cycle of Jupiter consisting of twelve samvatsaras named after the lunar months. It is of two kinds. In one, the samvatsara begins with the heliacal rising - of Jupiter and consists of about 400 solar days, one samvatsara being expunged every 12 years or so.' In the other, which we have named the "twelve-year cycle of Jupiter of the mean-sign system", the years are similar in length to those of the sixty-year cycle of Jupiter just described, and begin at the same moment. Both kinds, though chiefly the former, were in use in early times, and the latter is often employed in modern dates, especially in those of the KoUam era. The samvatsaras of this heliacal rising system can only be found by direct calculations according to some Sidd/ianta. The correspondence of the samvatsaras of the mean-sign system with those of the sixty-year cycle are given in Table XII. They proceed regularly. 64. T/ie Graha-parivritti and Ohko cycles. There are two other cycles, but they are limited to small tracts of country and would perhaps be better considered as eras. We however give them here. The southern inhabitants of the peninsula of India (chiefly of the Madura district) use a cycle of 90 solar years which is called the Graha-parivritti. Warren has described the cycle, deriving his information from the celebrated Portuguese missionary Beschi, who lived for over forty years in Madura. The cycle consists of 90 solar years, the lengtli of one year being 365 d. 15 gh. 31 pa. 30 vi., and the year commences with Mesha. Warren was informed by native astronomers at Madras that the cycle consisted of the sum in days of i revolution of the sun, 15 of Mars, 22 of Mercury, il of Jupiter, 5 of Venus and 29 of Saturn, .though this appears to us quite meaningless. The length of this year is that ascertained by using the original Sitrya-Siddhanta ; but from the method given by Warren for finding the beginning of the years of this cycle it appears that astronomers have tried to keep it as nearly as possible in agreement with calculations by the Arya-Siddlianta, and in fact the year may be said to belong to the Arya-Siddhanta. The cycle commenced with Kali 3079 current (B. C. 24) and its epoch, i.e., the Graha-parivritti year o current* is Kali 3078 current (B.C. 25). 1 See Corpus Inscrip. Indie, Vol. III., p. 80, note; Ind. Anliq., XVII., p. 142. - The heliacal rising of a superior planet is its first vuible rising after its conjnnctions with the sun, i.e , when it is at a sufficient distance from the sun to be first sefn on the horizon at its rising in the morning before sunrise, or, in the case of an inferior planet (Mercury or Venus), at its setting in the evening after sunset. For Jupiter to be visible the sun must be about 11° below the horizon. [R. S.] 3 It is fully described by me in the Indian Antiquary, vol. XVII. [S. B. D.] ■• In practice of course the word "current" cannot be applied to the year 0, but it is applied here (o distinguish it from the year complete or expired, which means year 1 cuiTent. We use the word "epoch" to mean the year cun-ent. The epoch of an era given in a year of another era is useful for turning years of one into years of another era. Thus, by adding 3078 (thenimiber of the Kali year coiTesponding to the Gralia-pari\Titti cycle epoch) to a Graha-parivritti year, we can get the equivalent Kali year; and by subtracting the same from a Kali year we get the corresponding Graha-parivritti year. 38 THE INDIAN CALENDAR. To find the year of the Graha-parivritti cycle, add 72 to the current Kali-year, \ i to the current Saka year, or 24 or 23 to the A.D. year, viz., 24 from Mesha to December 31st, and 23 from January 1st to Mesha; divide by 90 and the remainder is the current year of the cycle. The Ohko ' cycle of 59 luni-solar years is in use in part of the Ganjam district of the Madras Presidency. Its months are purnimanta, but it begins the year on the 12th of Bhadrapada-suddha," calling that day the 12th not the 1st. In other words, the year changes its numerical designation every 12th day of Bhadrapada-suddha. It is impossible as yet to say decidedly when the Onko reckoning commenced. Some records in the temple of Jagannatha at Purl (perfectly valueless from an historical point of view) show that it commenced with the reign of Subhanideva in 319 A.D., but the absurdity of this is proved by the chronicler's statement that the great Mughal invasion took place in 327 A.D. in the reign of that king's successor. ' Some say that the reckoning commenced with the reign of Chodaganga or Chorgahga, the founder of the Gangavarhsa, whose date is assigned usually to 1 131-32 A.D., while Sutton in his History of Orissa states that it was introduced in 1580 A.D. In the zamindari tracts of Parlakimedi, Peddakimedi and Chinnakimedi the Oiiko Calendar is followed, but the people there also observe each a special style, only differing from the parent style and from one another in that they name their years after their own zamindars. A singular feature common to all these four kinds of regnal years is that, in their notation, the years whose nunjeral is 6, or whose numerals end with 6 or o (except 10), are dropped.* For instance, the years succeeding the 5th and 19th Ohkos of a prince or zamindar are called the 7th and 21st Onkos respectively. It is difficult to account for this mode of reckoning ; it may be, as the people themselves allege, that these numerals are avoided because, according to their traditions and irt^/r^j, they forebode evil, or it may possibly be, as some might be inclined to suppose, that the system emanated from a desire to exaggerate the length of each reign. There is also another unique convention according to which the Ohko years are not counted above 59, but the years succeed- ing 59 begin with a second series, thus "second i ", " second 2", and so on. It is also important to note that when a prince dies in the middle of an Ohko year, his successor's ist Ohko which commences on his accession to the throne, does not run its full term of a year, but ends on the nth day of Bhadrapada-suddha following; consequently the last regnal year of the one and the first of the other together occupy only one year, and one year is dropped in effect. To find, therefore, the English equivalent of a given Ohko year, it will be necessary first to ascertain the style to which it relates, i.e., whether it is a Jagannatha Ohko or a Parlakimedi Ohko, and so on ; and secondly to value the given year by excluding the years dropped (namely, the ist— possibly, the 6th, 1 6th, 20th, 26th, 30th, 36th, 40th, 46th, 50th, 56th). There are lists of Orissa princes available, but up to 1797 A.D. they would appear to be perfectly inauthentic. '■> The list from » Or Akka. - On the 11th according to some, but all the evidence tends to shew that the year begins on the 12th. 3 The real date of the Muhammndan invasion seems to be 1568 A.D. (J. A. S. B. for 1883, LII., p. 233, no/;). The invasion alluded to is evidently that of the " Yavanas", but as to these dates these temple chronicles must never be believed. [R. S.] < Some say that the first year is also dropped, similarly; but this appeai-s to be the result of a misunderstanding, this year being dropped only to fit in with the system described lower down in this article. Mr. J. Beames states that "the first two years and every year that has a 6 or a in it are omitted", so that the 87th Oiiko of the reign of Kamaehandra is really his 28th year, since the years 1, 2, 6, 10, 16, 20, 26, 30 and 86 are omitted. (J. A. S. B. 1883, LII., p. 234, note. He appears to have been misled about the first two years. 1> Scwell's Hketch of the Dynasties of Souihrrn India, p. 64, Arch.toloi/ical Survey of Southern India, vol. II.. p. 204. THE HINDU CALENDAR. 39 that date forwards is reliable, and below are given the names of those after whom the later Ofiko years have been numbered, with the English dates corresponding to the commencement of the 2nd Oiikos of their respective reigns. Onko 2 of Mukundadeva .... September 2, 1797. (lihadrapada sukla 12th.) Do. Ramachandradcva . . . September 22, 18 17. Do. Do. Do. Virakesvaradeva . . . September 4, 1854. Do. Do. Do. Divyasiiiihadeva . . . September 8, 1859. Do. Do. PART 11. THE VARIOUS ERAS. 65. General remarks. Different eras have, from remote antiquity, been in use in different parts of India, having their years luni-solar or solar, commencing according to varying practice with a given month or day; and in the case of luni-solar years, having the months calculated variously according to the amanta or purnimanta system of pakshas. (Art. 12 above). The origin of some eras is well known, but that of others has fallen into obscurity. It should never be forgotten, as explaining at once the differences of practice we observe, that when considering " Indian " science we are considering the science of a number of different tribes or nationalities, not of one empire or of the inhabitants generally of one continent. 66. If a number of persons belonging to one of these nationalities, who have been in the habit for many years of using a certain era with all its peculiarities, leave their original country and settle in another, it is natural that they should continue to use their own era, not- withstanding that another era may be in use in the country of their adoption ; or perhaps, while adopting the new era, that they should apply to it the peculiarities of their own. And vice versa it is only natural that the inhabitants of the country adopted should, when considering the peculiarities of the imported era, treat it from their own stand-point. 6"]. And thus we actually find in the panchaiigs of some provinces a number of other eras embodied, side by side with the era in ordinary use there, while the calendar-makers have treated them by mistake in the same or nearly the same manner as that of their own reckoning. For instance, there are extant solar panchangs of the Tamil country in which the year of the Vikrama era is represented as a solar Meshadi year. And so again Saka years are solar in Bengal and in the Tamil country, and luni-solar in other parts of the country. So also we sometimes find that the framers of important documents have mentioned therein the years of several eras, but have made mistakes regarding them. In such a case we might depend on the dates in the document if we knew exactly the nationality of the authors, but very often this cannot be discovered, and then it is obviously unsafe to rely on it in any sense as a guide. This point should never be lost sight of 68. Another point to be always borne in mind is that, for the sake of convenience in calculation a year of an era is sometimes treated differently by different authors in the same province, or indeed even by the same author. Thus, Ganesa Daivajna makes Saka years begin 40 THE INDIAN CALENDAR. with Chaitra sukla pratipada in his Grahalaghava (A.D. 1520), but with mean Mesha saiikranti in his Tithichintamani (A.D. 1525.) 69. It is evident therefore that a certain kind of year, e.g., the solar or luni-solar year, or a certain opening month or day, or a certain arrangement of months and fortnights and the like, cannot be strictly defined as belonging exclusively to a particular era or to a particular part of India. We can distinctly affirm that the eras whose luni-solar years are Chaitradi {i.e., begin- ning with Chaitra sukla pratipada) are always Meshadi (beginning with the Mesha sankranti) in their corresponding solar reckoning, but beyond this it is unsafe to go. 70. Current and expired years. It is, we believe, now generally known what an " expired " or "current" year is, but for the benefit of the uninitiated we think it desirable to explain the matter fully. Thus; the same Saka year (A.D. 1894) which is numbered 18 17 z'«/-/'rtwrt««, or astronomically current, in the paiichangs of the Tamil countries of the Madras Presidency, is numbered 1 8 i6_i,'-rt/a (" expired") in other parts of India. This is not so unreasonable as Europeans may imagine, for they themselves talk of the third furlong after the fourth mile on a road as "four miles three furlongs" which means three furlongs after the expiry of the fourth mile, and the same in the matter of a person's age ; and so September, A.D. 1894, (Saka 1817 current) would be styled in India " Saka 18 16 expired, Sep- tember", equivalent to "September after the end of Saka 1816" or "after the end of 1893 A.D". Moreover, Indian reckoning is based on careful calculations of astronomical phenomena, and to calculate the planetary conditions of September, 1894, it is necessary first to take the planftary conditions of the end of 1893, and then add to them the data for the following nine months. That is, the end of 1893 is the basis of calculation. It is always necessary to bear this in mind because often the word gata is omitted in practice, and it is therefore doubtful whether the real year in which an inscription was written was the one mentioned therein, or that number decreased by one. ' In this work we have given the corresponding years of the Kali and Saka eras actually current, and not the expired years. This is the case with all eras, including the year of the Vikravia ^ era at present in use in Northern India. 71. Description of the several eras. In Table II., Part iii., below we give several eras, chiefly those whose epoch is known or can be fixed with certainty, and we now proceed to describe them in detail. Tlie Kali-Yiiga. — The moment of its commencement has been already given {Art. 16 above'). Its years are both Chaitradi (luni-solar) and Meshadi (solar.) It is used both in astro- 1 Sec 'Calculations of Hindu datf-i', by Dr. Fleet, in the hid. Ant., vols. XFl. to XIX.; and my notes on the date of a Jain Purdiia in Dr. Bhandilrkar's "Report on the search for Sankrit manuscript*" for 1883 — 1884 A. D., p.p. 429—30 §$ 36, 37. [S. B. D.] '- The Vikrama era is never used by Indian astronomers. Out of 160 Vikrama dates examined by Dr. Kielhorn (/« 1556 (O. S.), Saka 1478 current. It was employed extensively, though not exclusively on the coins of Akbar and Jahangir, and appears to have fallen into disuse early in the reign of Shah-Jahan. According to Abul Fazal, the days and months are both natural solar, without any intercalations. The names of tlie months and days correspond with the ancient Persian. The months have from 29 to 30 days each. ' General Sir A. Cunuingham's Indian Ertu, j>. 74. « Ind Ant., Vol. XVU., p. 246 ff. * This much information is from General Cunningham's "Indian Eras" * Ind. Ant., XIX., p. 1 ff. * General Cunningham, iu his "Indian Eras", gives it an 15th February; but that day wn» 11 Saturday.. I Farwardin 5 2 Ardi-behisht 6 3 Khurdiid 7 4 Tir 8 THE HINDU CALENDAR. 47 There are no weeks, the whole 30 days being distinguished by different names, and in those months which have 32 days the two last are named roz o j/trti^ (day and night), and to distinguish one from another are called "first" and " second ". 1 Here the lengths of the months are said to be "from 29 to 30 days each", but in the old Persian calendar of Yazdajird they had 30 days each, the same as amongst the Parsees of the present day. The names of the twelve months are as follow. — Mirdad 9 Ader Shariur 10 Dei Mihir 1 1 Bahman Aban 1 2 Isfandarmaz The Mahratta Raja Saka era. — This is also called the " Rajyabhisheka Saka". The word "Saka" is used here in the sense of an era. It was established by Sivaji, the founder of the Mahratta kingdom, and commenced on the day of his accession to the throne, i.e., Jyeshtha sukla trayodasi (13th) of Saka 1596 expired, 1597 current, the Ananda samvatsara. The number of the year changes every Jyeshtha sukla trayodasi ; the years are current ; in other respects it is the same as the Southern luni-solar amanta Saka years. Its epoch is Saka 1596 — 97 current, A.D. 1673 — 74. It is not now in use. 72. Names of Hindi and N. W. Fasali months. — Some of the months in the North of India and Bengal are named differently from those in the Peninsula. Names which are manifestly corruptions need not be noticed, though "BhadCm" for Bhadrapada is rather obscure. But " Kuar" for Asvina, and "Aghan", or "Aghran", for Margasirsha deserve notice. The former seems to be a corruption of Kumari, a synonym of Kanya (=:Virgo, the damsel), the solar sign-name. If so, it is a peculiar instance of applying a solar sign-name to a lunar month. " Aghan " (or " Aghran ") is a corrupt form of Agrahayana, which is another name of Margasirsha. PART III. DESCRIPTION AND EXPLANATION OF THE TABLES. 73. Table I. — Table I. is our principal and general Table, and it forms the basis for all calculations. It will be found divided into three sections, (i) Table of concurrent years ; (2) inter- calated and suppressed months; (3) moments of commencement of the solar and luni solar years. All the figures refer to mean solar time at the meridian of (Jjjain. The calculations are based on the Siirya-Siddlianta, without the bija up to 1500 A.D. and with it afterwards, with the exception of cols. 13 to 17 inclusive for which the Arya-Siddhanta has been used. Throughout the table the solar year is taken to commence at the moment of the apparent Mesha saiikranti or first point of Aries, and the luni-solar year with amanta Chaitra sukla pratipada. The months are taken as amanta. 74. Cols. I to J. — In these columns the concurrent years of the six principal eras are 1 Prinsep's Indian Antiquities, 11., Vseful Tables, p. 171. 48 THE INDIAN CALENDAR. given. (As to current and expired years see Art. 70 above.) A short description of eras is given in Art. 71. The years in the first three columns are used ahke as solar and luni-solar, commenc- ing respectively with Mesha or Chaitra. (For the beginning point of the year see Art. 52 above.) The Vikrama year given in col. 3 is the Chaitradi Vikrama year, or, when treated as a solar year which is very rarely the case, the Meshadi year. The Ashadhadi and Karttikadi Vikrama years are not given, as they can be regularly calculated from the Chaitradi year, remembering that the number of the former year is one less than that of the Chaitradi year from Chaitra to Jyeshtha or A.svina (both inclusive), as the case may be, and the same as the Chaitradi year from Ashadha or Karttika to the end of Phalguna. Cols. ^ atid J. The eras in cols. 4 and 5 are described above (Art. 71.) The double number is entered in col. 4 so that it may not be forgotten that the Kollam year is non-Chaitradi or non-Meshadi, since it commences with either Kanni (Kanya) or Chingam (Sirhha). In the case of the Christian era of course the first year entered corresponds to the Kali, Saka or Chaitradi Vikrama year for about three-quarters of the latter's course, and for about the last quarter the second Christian year entered must be taken. The corresponding parts of the years of all these eras as well as of several others will be found in Table II., Parts ii. and iii. 75. Co/s. 6 and 7. — These columns give the number and name of the current samvatsara of the sijrty-year cycle. There is reason to believe that the sixty-year luni-solar cycle (in use mostly in Southern India) came into existence only from about A. D. 909; and that before that the cycle of Jupiter was in use all over India. That is to say, before A. D'. 909 the samvat- saras in Southern India were the same as those of the Jupiter cycle in the North. If, however, it is found in any case that in a year previous to A.D. 908 the samvatsara given does not agree with our Tables, the rule in Art. 62 should be applied, in order to ascertain whether it was a luni-solar samvatsara. The samvatsara given in col. 7 is that which was current at the time of the Mesha safi- kranti of the year mentioned in cols, i to 3. To find the samvatsara current on any particular day of the year the rules given in Art. 59 should be applied. For other facts regarding the samvatsaras, see Arts. 53 to 63 above. 76. Cols. 8 to 12, and 8a to 12a. These concern the adiiika (intercalated) and kshaya (suppressed) months. For full particulars see Arts. 45 to 51. V>y the mean system of interca- lations there can be no suppressed months, and by the true system only a few. We have given the suppressed months in italics with the sufifix '' Ksh'" for "kshaya." As mean added months were only in use up to A.D. 1 100 (Art. ^y) we have not given them after that year. JJ. The name of the month entered in col. 8 or 8« is fixed according to the first rule for naming a lunar month {Art. y<5), which is in use at the present day. Thus, the name As/uid/ia, in cols. 8 or 8rt, shows that there was an intercalated month between natural Jyeshtha and natural Ashadha, and by the first rule its name is " Adhika Ashadha", natural Ashadha being " Nija Ashadha." By the second rule it might have been called Jyeshtha, but the intercalated period is the same in either case. In the case of expunged months the word "Pausha", for instance, in col. 8 shows that in the lunar month between natural Karttika and natural Magha tl;ere were two safikrantis; and according to the rule adopted by us that lunar month is called Marga^irsha, Pausha being expunged. 78. Lists of intercalary and expunged months are given by the late Prof K. L. Chhatre in a h.st published in Vol. I., No. 12 (March 185 1) of a Mahrathi monthly magazine called Jhihiaprasaraka, formerly published in Bombay, but now discontinued ; as well as in Cowasjee THE HINDU CALENDAR. 49 Patell's ''Chronology", and in the late Gen. Sir A. Cunningham's " Indian Eras,"' ' But in none of these three works is a single word said as to how, or following what authority, the calculations were made, so that we have no guide to aid us in checking the correctness of their results. 79. An added lunar month being one in which no saiikranti of the sun occurs, it is evident that a sankranti must fall shortly before the beginning, and another one shortly after the end, of such a month, or in other words, a solar month must begin shortly before and must end shortly after the added lunar month. It is further evident that, since such is the case, calculation made by some other Siddhanta may yield a different result, even though the difference in the astronomical data which form the basis of calculation is but slight. Hence we have deemed it essential, not only to make our own calculations afresh throughout, but to publish the actual resulting figures which fix the months to be added and suppressed, so that the reader may judge in each case how far it is likely that the use of a different authority would cause a difference in the months affected. Our columns fix the moment of the sankranti before and the sankranti after the added month, as well as the sankranti after the beginning, and the sankranti before the end, of the suppressed month ; or in other words, determine the limits of the adhika and kshaya masas. The accuracy of our calculation can be easily tested by the plan shewn in Art. 90 below. (See also Art. 88 below.) The moments of time are expressed in two ways, viz., in lunation- parts and tithis, the former following Prof. Jacobi's system as given in Ind. Ant., Vol. XVII. 80. Lunation-parts or, as we elsewhere call them, " tithi-indices " (or "/") are extensively used throughout this work and require full explanation. Shortly stated a lunation-part is iWo*'^ of an apparent synodic revolution of the moon {see Note 2, Art. 12 above'). It will be well to put this more clearly. When the difference between the longitude of the sun and moon, or in other words, the eastward distance between them, is nil, the sun and moon are said to be in conjunction ; and at that moment of time occurs (the end ot) amavasya, or new moon. {Arts. 7.29 abcc'e) Since the moon travels faster than the sun, the difference between their longitudes, or their distance from one another, daily increases during one half and decreases during the other half of the month till another conjunction takes place. The time between two conjunctions is a synodic lunar month or a lunation, during which the moon goes through all its phases. The lunation may thus be taken to represent not only time but space. We could of course have expressed parts of a lunation by time-measure, such as by hours and minutes, or ghatikas and palas, or by space-measure, such as degrees, minutes, or seconds, but we prefer to express it in lunation-parts, because then the same number does for either time or space [see Art. S^ belozv). A lunation consists of 30 tithis. -!-th of a lunation consequently represents the time-duration of a tithi or the space-measurement of 12 degrees. Our lunation is divided into 10,000 parts, and about 333 lunation-parts (-!-ths) go to one tithi, 667 to two tithis, looo to three and so on. Lunation- parts are therefore styled "tithi-indices", and by abbreviation simply "/". Further, a lunation or its parts may be taken as apparent or mean. Our tithi-, nakshatra-, and yoga-indices are apparent and not mean, except in the case of mean added months, where the index, like the whole lunation, is mean. 1 Gen. Cunningliam admittedly (p. 91) follows Cowasjee Patell's "C4ro»o/cyy"in this respect, and on eiamination I find that the added and suppressed months in these two works (setting aside some few mistakes of their own) agree throughout with Prof. Chhatre's list, even so far as to include certain instances where the latter was incorrect. Patell's " Chronoloi/ij" was published fifteen years after the publication of Prof. Chhatre's list, and it is not improbable that the former was a copy of the latter. It is odd that not a single word is said in Cowasjee Patell's work to shew how his calculations were made, though in those days he would hare required months or even years of intricate calculation before he could arrive at his results. [S B. D.] 50 THE INDIAN CALENDAR. Our tithi-index, or "/", therefore shows in the case of true added months as well as elsewhere, the space-difference between the apparent, and in the case of mean intercalations between the mean, longitudes of the sun and moon, or the time required for the motions of the sun and moon to create that difference, expressed in io,oooths of a unit, which is a circle in the case of space, and a lunation or synodic revolution of the moon in the case of time. Briefly the tithi- index "/" shews the position of the moon in her orbit with respect to the sun, or the time necessary for her to gain that position., <'.^^., "o" is new moon, " 5CX)0" full moon, " 10,000" or "o" new moon; "50" shews that the moon has recently [i.e., by ,-;^„ths, or 3 hours n minutes — Table X.. col. 3) passed the point or moment of conjunction (new moon) ; 9950 shews that she is approaching new-moon phase, which will occur in another 3 hours and 33 minutes. 81. A lunation being equal to 30 tithis, the tithi-index, which expresses the io,OOOth part of a lunation, can easily be converted into tithi-notation, for the index multiplied by 30 (practically by 3), gives, with the decimal figures marked off, the required figure in tithis and decimals. Thus if the tithi-index is 9950, which is really 0.9950, it is equal to (0.9950 X 30=) 29.850 tithis, and the meaning is that ^/hs of the lunation, or 29.850 tithis have expired. Conversely a figure given in tithis and decimals divided by 30 expresses the same in io,oooths parts of a lunation. 82. The tithi-index or tithi is often required to be converted into a measure of solar time, such as hours or ghatikas. Now the length of an apparent lunation, or of an apparent tithi, perpetually varies, indeed it is varying at every moment, and consequently it is practically im- possible to ascertain it except by elaborate and special calculations; but the length of a mean lunation, or of a mean tithi, remains permanently unchanged. Ignoring, therefore, the difference between apparent and mean lunations, the tithi-index or tithi can be readily converted into time by our Table X.. which shews the time-value of the mean lunation-part (~th of the mean lunation), and of the mean tithi-part (J^th of the mean tithi). Thus, if / = 50, Table X. gives the duration as 3 hours 33 minutes; and if the tithi-part ^ is given as 0.150 we have by Table X. (2 h. 22 m. -f I h. 1 1 min. = ) 3 h. 33 m. It must be understood of course that the time thus given is not very accurate, because the tithi-index (/) is an apparent index, while the values in Table X. are for the mean index. The same remark applies to the nakshatra («) or yoga (y) indices, and if accuracy is desired the process of calculation must be somewhat lengthened. This is fully explained in example i in Art. 148 below. In the case of mean added months the value of (/) the tithi-index is at once absolutely accurate. 83. The sankrantis preceding and succeeding an added month, as given in our Table I., of course take place respectively in the lunar month preceding and succeeding thzi added mon\h. 84. To make the general remarks in Arts. 80, 81, 82 quite clear for tlie intercalation of months we will take an actual example. Thus, for the Kali year 3403 the entries in cols. 9 and 1 1 are 9950 and 287, again.st the true added month Asvina in col. 8. This shews us that the saiikranti preceding the true added, or Adhika, Asvina took place when 9950 lunation-parts of the natural month Bhadrapada (preceding Adhika Asvina) had elapsed, or when (10,000 — 9950=) 50 parts had to elapse before the end of Bhadrapada, or again when 50 parts had to elapse 1 A thuunandth part of n tithi is equal to 1.42 minutes, which is sufficiently minute for our purposes, but a Ihuusaudlh of n lunation is equivalent to 7 hours & minutes, and this is too large j so that nc have to tiike the lOOOOth of a lunation as our unit, which is equal to 4,25 minutes, and this suffices for all practical purposes In this work therefore a lunation is treated of as haviui; 10,000 parts, and a tithi 1000 parts THE HINDU CALENDAR. 5' before the beginning of the added month ; and that the sankranti succeeding true Adhika Asvina took place when 287 parts of the natural month Nija Asvina had elapsed, or when 287 parts had elapsed after the end of the added month Adhika Asvina. 85. The moments of the sankrantis are further given in tithis and decimals in cols. 10, 12, \0a and \2a. Thus, in the above example we find that the preceding sankranti took place when 29-850 tithis of the preceding month lihadrapada had elapsed, i.e., when (30 — 29-850 =) 0-150 tithis had still to elapse before the end of Bhadrapada ; and that the succeeding sankranti took place when o-86i of a tithi of the succeeding month, Asvina, had passed. To turn these figures into time is rendered easy by Table X. We learn from it that the preceding sankranti took place (50 lunation parts or 0-150 tithi parts) about 3 h. 33 m. before the beginning of Adhika Asvina; and that the succeeding sankranti took place (287 lunation parts, or -861 tithi parts) about 20 h. 20 m. after the end of Adhika Asvina. This time is approximate. For exact time see Arts. 82 and 90. The tithi-indices here shew (see Art. SS] that there is no probability of a different month being intercalated if the calculation be made according to a different authority. 86. To constitute an expunged month we have shewn that two sankrantis must occur in one lunar month, one shortly after the beginning and the other shortly before the end of the month; and in cols. 9 and 10 the moment of the first sankranti, and in cols. 11 and 12 that of the second sankranti, is given. For example see the entries against Kali 35^^ 't* Table I. As already stated, there can never be an expunged month by the mean system 87. In the case of an added month the moon must be waning at the time of the pre- ceding, and waxing at the time of the succeeding sankranti, and therefore the figure ofthetithi- index must be approaching 10,000 at the preceding, and over 10,000, or beginning a new term of 10,000, at the succeeding, sankranti. In the case of expunged months the case is " reversed, and the moon must be waxing at the first, and waning at the second sankranti ; and therefore the tithi-index must be near the beginning of a period of 10,000 at the first, and approaching 10,000 at the second, sankranti. 88. When by the Siirya-Siddhanta a new moon (the end of the amavasya) takes place within about 6 ghatikas, or 33 lunation-parts, of the sankranti, or beginning and end of a solar month, there may be a difference in the added or suppressed month if the calculation be made according to another Siddlumta. Hence when, in the case of an added month, the figure in col. 9 or ga. is more than (10,000 — 33 =) 9967, or when that in col. 11 or iirt is less than 33; and in the case of an expunged month when the figure in col. 9 is less than 33, or when that in col. 1 1 is more than 9967, it is possible that calculation by another Siddhanta will yield a different month as intercalated or expunged ; or possibly there will be no e.xpunction of a month at all. In such cases fresh calculations should be made by Prof. Jacobi's Special Tables {Epig. hid., Vol. II.) or direct from the Sidd/uhita in question. In all other cases it may be regarded as certain that our months are correct for all Sidd/uhitas. The limit of 33 lunation-parts here given is generally sufficient, but it must not be forgotten that where Siddkantas are used with a bija correction the difference may amount to as much as 20 ghatikas, or 113 lunation-parts (See above, note to Art. 4.^). In the case of the Surya-Siddltanta it may be noted that the added and suppressed months are the same in almost all cases, whether the blja is applied or not. 89. We have spared no pains to secure accuracy in the calculation of the figures entered in cols. 9 to 12 and 9a to I2fl, and we believe that they may be accepted as finally correct, 52 THE INDIAN CALENDAR. but it should be remembered that their time-equivalent as obtained from Table X. is only approxi- mate for the reason given above [Art. S2.) Since Indian readers are more familiar with tithis than with lunation-parts, and since the expression of time in tithis may be considered desirable by some European workers, we have given the times of all the required sankrantis in tithis and decimals in our columns, as well as in lunation-parts ; but for turning our figures into time-figures it is easier to work with lunation-parts than with tithi-parts. It may be thought by some readers that instead of recording the phenomena in lunation-parts and tithis it would have been better to have given at once the solar time corresponding to the moments of the sankrantis in hours and minutes. But there are several reasons which induced us, after careful consideration, to select the plan we have finally adopted. First, great labour is saved in calculation ; for to fix the exact moments in solar time at least five processes must be gone through in each case, as shewn in our Example I. below {^Art. 14.8) It is true that, by the single process used by us, the time-equivalents of the given lunation-parts are only approximate, but the lunation-parts and tithis are in themselves exact. Secondly, the time shewn by our figures in the case of the mean added months is the same by the Original Sitrya, the Present Siirya, and the Arya-Siddhanta, as well as by the Present Surya-Siddhanta with the b'ija, whereas, if converted into solar time, all of these would vary and require separate columns. Thirdly, the notation used by us serves one important purpose. It shews in one simple figure the distance in time of the sankrantis from the beginning and end of the added or suppressed month, and points at a glance to the probability or otherwise of there being a difference in the added or suppressed month in the case of the use of another authority. Fourthly, there is a special convenience in our method for working out such problems as are noticed in the following articles. 90. Supposing it is desired to prove the correctness of our added and suppressed months, or to work them out independently, this can easily be done by the following method : The moment of the Mesha saiikranti according to the Surya-Siddhanta is given in cols. 13, 14 and 15^ to ija for all years from A.D. 1 100 to 1900, and for other years it can be calculated by the aid of Table D. in Art. g6 below. Now we wish to ascertain the moment of two consecutive new moons connected with the month in question, and we proceed thus. The interval of time between the beginning of the solar year and the beginning or end of any solar month according to the Surya-Siddhanta, is given in Table III., cols. 8 or 9; and by it we can obtain by the rules in Art. 151 below, the tithi-index for the moment of beginning and end of the required solar month, i.e., the moments of the solar sankrantis, whose position with reference to the new moon determines the addition or suppression of the luni-solar month. The exact interval also in solar time between those respective sankrantis and the new moons (remembering that at new moon "/" = lo.ooo) can be calculated by the same rules. This process will at once shew whether the moon was waning or waxing at the preceding and succeeding sankrantis, and this of course determines the addition or suppression of the month. The above, however, applies only to the apparent or true intercalations and suppressions. For mean added months the Sodhya (2 d. 8 gh. 5 i p. 15 vi.) must be added {see Art. 26) to the Mesha-sarikranti time according to the Arya-Siddhanta {Tabic /., col. 15), and the result will be the time of the mean Mesha sahkranti. For the required sub- sequent sankrantis all that is necessary is to add the proper figures of duration as given in Art. 24, which shews the mean length of solar months, and to find the "a" for the results so obtained by Art. 151. Then add 200 to the totals and the result will be the required tithi-indices. 91. It will of course be asked how our figures in Table I. were obtained, and what guarantee we can give for their accuracy. It is therefore desirable to explain these points. Our calcula- THE HINDU CALENDAR. 53 tions for true intercalated and suppressed months were first made according to the method and Tables published by Prof. Jacobi {in the hid. Ant., Fc/. .\'/'7/.,/V- /^J /c /liV; as corrected by the errata list printed in the same volume. We based our calculations on his Tables i to lo, and the method given in his example 4 on pp. 152 — 53,' but with certain differences, the necessity of which must now be explain- ed. Prof Jacobi's Tables 1 to 4, which give the dates of the commencement of the solar months, and the hour and minute, were based on the Arya-Siddhanta, while Tables 5 to 10 followed the Surya- Siddhanta, and these two Siddhantas differ. In con.sequence several points had to be attended to. First, in Prof. Jacobi's Tables l to 4 the solar months are supposed to begin exactly at Ujjain mean sunset, while in fact they begin (as explained by himself at p. \ \'])?X or shortly after m&Vin sunset. This state of things is harmless as regards calculations made for the purpose for which the Professor designed and chiefly uses these Tables, but such is not the case when the task is to determine an intercalary month, where a mere fraction may make all the difference, and where the exact moment of a safikranti must positively be ascertained. Secondly, the beginning of the solar year, i.e., the moment of the Mesha-sankranti, differs when calculated according to those two Siddhantas, as will be seen by comparing cols. 15 to 17 with cols. 15^ to \ja of our Table 1., the difference being nil in A.D. 496 and 6 gh 23 pa. 41.4 pra. vi. in 1900 A.D. Thirdly, even if we suppose the year to begin simultaneously by both Siddhantas, still the collective duration of the months from the beginning of the year to the end of the required solar month is not the same, " as will be seen by comparing cols. 6 or 7 with cols. 8 or 9 of our Table III. We have applied all the corrections necessitated by these three differences to the figures obtained from Prof Jacobi's Tables and have given the final results in cols. 9 and 11. We know of no independent test which can be applied to determine the accuracy of the results of our calculations for true added and suppressed months; but the first calculations were made exceedingly carefully and were checked and rechecked. They were made quite independently of any previously existing lists of added and suppressed months, and the results were afterwards compared with Prof. Chhatre's list ; and whenever a difference appeared the calculations were completely re-examined. In some cases of e.xpunged months the difference between the two lists is only nominal, but in other cases of difference it can be said with certainty that Prof. Chhatre's list is wrong. [See note to Art. 46.) Moreover, since the greatest possible error in the value of the tithi-index that can result by use of Prof. Jacobi's Table is 7 {see his Table p. 16^), whenever the tithi-inde.x for added and sup- pressed months obtained by our computation fell within 7 of 10,000, i.e., whenever the resulting index was below 7 or over 9993, the results were again tested direct by the Siirya-Siddhanta. ' As regards mean intercalations every figure in our cols, ga to I2« was found correct by independent test. The months and the times of the sahkrantis expressed in tithi-indices and tithis were calculated by the present Siirya-Siddhanta, and the results are the same whether 1 For finding the initial date of the luni-sohir years Prof, Jacobi's Tables I. to XI. were used, and in the course of the ealou- Utions it was necessary lo introdace a few alterations, and to correct some misprints which had crept in in addition lo those noted in the alre-ady published eiTata-list. Thus, the eai'liest date noted in Tables I. to IV., being A.D. 354, these Tables had to be extended backwards by adding two lines more of figures above those already given. In Table VI., as corrected by the errata, the bija is taken into account only from A.D fiOl, whereas we consi ler that it should be introduced from A.D. 1501 (see Art. 21). In Table VI. the century correction is given for the New (Gregorian) Style from A.D 1600 according to the pi"actice iu the most part of Europe. I have preferred, however, to introduce the New Style into our Tables from Sept. A.D. 1752 to suit English readers, and this necessi- tated an alteration in the centuiy data for two centuries [R. S.] 2 It is the same according to Warren, but iu this respect he is in error. (See note to AH. 2i.J ^ 42 calculations were thus made direct by the Siirija-Sidd/idnta with and without the bija, with the satisfactory result that the error in the final figure of the tithi-index originally arrived at was generally only of 1 or 2 units, while in some cases it was nil It was rarely 3, and only once 4. It never e.xceeded 4. It may therefore he fairly assumed that our results are accurate. [S.BD.] 54 THE INDIAN CALENDAR. worked by that or by the Original Surya-Siddkanta, the First Arya-Siddhanta, or the Present SuryaSiddhanta with the bija. We think, therefore, that the list of true added and suppressed months and that of the mean added months as given by us is finally reliable. 92. Cols. /? to ij or to 17a. The solar year begins from the moment of the Mesha sankranti and this is taken as apparent and not mean. We give the exact moment for all years from A.D. 300 to 1900 by the Arya-Siddhanta, and in addition for years between A.D. 1 1 00 and 1900 by the Siirya-Siddhantas as well. {See also Art. g6). Every figure has been independently tested, and found correct. The week-day and day of the month A.D. as given in cols. 13 and 14 are applicable to both the Siddhantas, but particular attention must be paid to the footnote in Table I., annexed to A.D. 11 17 — 18 and some other subsequent years. The entries in cols. 15 and iSa for Indian reckoning in ghatikas and palas, and in cols. 17 and ija for hours and minutes, imply that at the instant of the sankranti so much time has elapsed since mean sunrise at Ujjain on the day in question. Ujjain mean sunrise is generally assumed to be 6.0 a.m. 93. The alteration of week-day and day of the month alluded to inthe footnote mentioned in the last paragraph (Table I., A.D. 11 17 — 18) is due to the difference resulting from calculations made by the two Siddhantas, the day fixed by the Sicrya-Siddhanta being sometimes one later than that found by the Arya-Siddhanta. It must be remembered, however, that the day in question runs from sun- rise to sunrise, and therefore a moment of time fixed as falling between midnight and sunrise belongs to the preceding day in Indian reckoning, though to the succeeding day by European nomenclature. For example, the Mesha sankranti in Saka 1039 expired (A.D. 1 1 1 7) took place, according to the Arya-Sidd- hanta on Friday 23rd March at 58 gh. i p. after Ujjain mean sunrise (23 h. 12 m. after sunrise on Friday, or 5.12 a.m. on Saturday morning, 24th); while by the 5«rj'rt-.SVrt'a'/<'(7;//rt it fell on Saturday 24th at o gh. 51 pa. (=0 h. 20 m. after sunrise or 6.20 a.m.). This only happens of course when the sankranti according to the Arya-Siddhanta falls nearly at the end of a day, or near mean sunrise. 94. In calculating the instant of the apparent Mesha-saiikrantis, we have taken the sodhya at 2 d. 8 gh. 51 pa. 15 vipa. according to the Arya-Siddhanta, and 2d. 10 gh. 14 pa. 30 vipa. according to the Sftrya-Siddhanta. {See Art. 26.) 95. The figure given in brackets after the day and month in cols. 13 and 19 is the number of that day in the P2nglish common year, reckoning from January 1st. For instance, 75 against i6th March shows that i6th March is the 7Sth day from January 1st inclusive. This figure is called the "date indicator", or shortly {d), in the methods of computation " B " and "C " given below {Part IV.), and is intended as a guide with reference to Table IX., in which the collective duration of days is given in the English common year. 96. The fixture of the moments of the 1600 Mesha-sankrantis noted in this volume will be found advantageous for many purposes, but we have designed it chiefly to facilitate the conversion of solar dates as they are used in Bengal and Southern India. ^ We have not given the moments of Mesha-sankrantis according to the Surya-Siddhanta prior to A.D. 1 1 00, so that the Arya-Siddhanta computation must be used for dates earlier than that, even those occurring in Bengal. There is little danger in so doing, since the difference between the times of the Mesha- sankrantis according to the two Siddhantas during that period is very slight, being ////in A.D. 496, and only increasing to i h. 6 m. at the most in 1 100 A.D. It is, however, advisable to give a correction Table so as to ensure accuracy, and consequently we append the Table which follows, by which the difference for any year lying between A.D. 496 and 1 100 A.D. can be found. It is 1 Sec Art. 21, and the first foutnote ap|>ende(l tu it. THE HINDU CALENDAR. 55 used in the following manner. F"irst find the interval in years between the given year and A.D. 496. Then take the difference given for that number of years in the Table, and subtract or add it to the moment of the Mesha-saiikranti fixed by us in Table 1. by the Arya-Siddkanta, according as the given year is prior or subsequent to A.U. 496. The quotient gives the moment of the Mesha-sahkranti by the Surya-Siddlumta. TABLE Shewing the difference between the moments of the Mesha-sankranti as calculated by the Present Surya and the first Arya-Siddhantas; the difference in AD. 496 (Saka 496 current) being o. No. of years. Difference No. of years. Difference No. of vears. Difference Eipressed in Expressed in Expressed in gh- pa. minutes. gh- pa. minutes. gh. pa. minntes. 1 0.3 0.1 10 2.7 1.1 100 27.3 10.9 2 0.5 0.2 30 5.5 2.2 200 54.6 21.9 3 0.8 0.3 HO 8.2 3.3 300 1 22.0 32.8 \ 1.1 ' 0.4 40 10.9 4.4 400 1 49.3 43.7 5 1.4 : 0..5 50 13.7 5.5 500 2 16.6 54.7 C 1.6 7 00 16.4 6.6 600 2 44.0 65.6 7 1.9 1 0.8 70 19.1 7.7 700 3 11.3 76.5 8 •l.i ! 0.9 80 21.9 8.7 800 3 38.6 87.5 9 ..5 ^ 1.0 90 24.6 9.8 900 4 6.0 98.4 Example. Find the time of the Mesha sankranti by the Surya-Siddhanta in A.D. lOOO. The difference for (1000—496=:) 504 years is (2 gh. 16. 6 pa. -|- i • i pa. =) 2 gh. 17.7 pa. Adding this to Friday, 22nd March, 42gh. 5pa., i.e., the time fixed by the Arya-Siddhanta {Table I., cols, i^, ij), we have 44 gh. 22.7 pa. from sunrise on that Friday as the actual time by the STirya-StddMnla. 97. Cols, ip to 2^. The entries in these columns enable us to convert and verify Indian luni-solar dates. They were first calculated, as already stated, according to the Tables published by Prof. Jacobi in the Indian Antiquary ^ (Vol. XVII.). The calculations were not only most carefully made, but every figure was found to be correct by independent test. As now finally issued, however, the figures are those obtained from calculations direct from the Surya-Siddhanta, specially made by Mr. S. Balkrishna D'ikshit. The articles a. b, c, in cols. 23 to 25 are very important as they form the basis for all calculations of dates demanding an exact result. Their meaning is fully described below {Art. 102.). The meaning of the phrase "moon's age" (heading of cols. 21, 22) in the Nautical Almanack is the mean time in days elapsed since the moon's conjunction with the sun {amavasya, new moon). For our purposes the moon's age is its age in lunation-parts and tithis, and these have been fully explained above. 98. The week-day and day of the month A.D. given in cols. 19 and 20 shew the civil day on which Chaitra sukla pratipada of each year, as an apparent tithi, ends. - The figures given in cols. 21 to 25 relate to Ujjain mean sunrise on that day. 1 See note 1 to Art. 91 • We have seen before (Arts. 45 etc. above) how months and tithis are sometimes added or expunged. Now in case of Chaitra sukla pratipad& being current at sunrise on two successive days, as sometimes happens, the first of these civil days, i.e., the Aiy preeioiu to that given by us, is taken as the 8rst day of the Indian luni-solar year (see Art. 52/ This does not, however, create any con- fusion in our method C since the quantities given in cols. 23 to 25 are correct for the day and lime for which they are gi ven ; while as for our methods A and B, the day noted by us is more convenient. 56 THE INDIAN CALENDAR. 99 When an intercalary Chaitra occurs by the true system (Arts, ./j etc. above) it must be remembered that the entries in cols. 19 to 25 are for the sukla-pratipada of the intercalated^ not the true, Chaitra. lOO. The first tithi of the year (Chaitra sukla pratipada) in Table I., cols. 19 to 25, is taken as an apparent, not mean, tithi, which practice conforms to that of the ordinary native panchaiigs. By this system, as worked out according to our methods A and B, the English equivalents of all subsequent tithis will be found as often correct as if the first had been taken as a mean tithi ; — probably more often. lOi. The figures given in cols. 21 and 22, except in those cases where a minus sign is found prefixed {e.g., Kali 4074 current), constitute a fir.st approximation showing how much of chaitra sukla pratipada had expired on the occurrence of mean sunrise at Ujjain on the day given in cols. 19 and 20. Col. 21 gives the expired lunation-parts or tithi-index, and col. 22 shews the same period in tithi-parts, i.e., decimals of a tithi. The meaning of both of these is explained above (Arts. So and Si). We differ from the ordinary panchahgs in one respect, viz., that while they give the portion of the tithi which has to run after mean sunrise, we have given, as in some ways more convenient, the portion already elapsed at sunrise. Thus, the entry 286 in col. 21 means that 286 lunation-parts of Chaitra sukla isthad expired at mean sunrise. The new moon therefore took place 286 lunation-parts before mean sunrise, and by Table X., col. 3, 286 lunation-parts are equal to (14 h. 10 m. -{-6 h. 6 m. =) 20 h. 16 m. The new moon therefore took place 20 h. 16 m. before sunrise, or at 9.44 a.m. on the previous day by European reckoning. The ending-moment of Chaitra sukla pratipada can be calculated in the same way, remembering that there are 333 lunation-parts to a tithi. We allude in the last paragraph to those entries in cols. 21 and 22 which stand with a minus sign prefixed. Their meaning is as follows: — Just as other tithis have sometimes to be expunged so it occasionally happens that Chaitra sukla ist has to be expunged. In other words, the last tithi of Phalguna, or the tithi called amavasya, is current at sunrise on one civil day and the 2nd tithi of Chaitra (Chaitra sukla dvitiya) at sunrise on the following civil day. In such a case the first of these is the civil day corresponding to Chaitra sukla ist; and accordingly we give this civil day in cols. 19 and 20. But since the amavasya-tithi (the last tithi of Phalguna) was actually current at sunrise on that civU day we give in cols. 21 and 22 the lunation-parts and tithi- parts of the amavasya-tithi which have to run after sunrise with a minus sign prefixed to them. Thus, " — 12" in col. 21 means that the tithi-index at sunrise was 10,000 — 12 = or 9988, and that the amavasya-tithi (Phalguna Krishna 15 or 30) (Table VIII., col. j) will end 12 lunation-parts after sunrise, while the next tithi will end 333 lunation-parts after that. 102. {a, b. c, cols. 2j, 24, 2j). The moment of any new moon, or that moment in each lunation when the sun and moon are nearest together, in other words when the longitudes of the sun and moon are equal, cannot be ascertained without fixing the following three elements, — {a) The eastward distance of the moon from the sun in mean longitude, (/;) the moon's mean anomaly (Art. ij and note), which is here taken to be her distance from her perigee in mean longitude, {c) the sun's mean anomaly, or his distance from his perigee in mean longitude. And thus our "a", "■b", "c", have the above meanings; "a" being expressed in io,oooths of a circle reduced by 200.6 for purposes of convenience of use, all calculations being then additive, "/;" and "c" being given in loooths of the circle. To take an example. At Ujjain mean sunrise on Chaitra sukla pratipada of the Kali year 3402 (Friday. 8th March, A.D. 300), tlie mean long- itudes calculated direct from the Siirya-Siddhanta were as follow: The sun, 349° 22' 27". 92. THE HINDU CALENDAR. 57 The sun's perigee, 257" 14' 22 ".86. The 1110011,355 " 55' 35".32. The moon's perigee, 33" 39' 58". 03. The moon's distance from the sun therefore was (355" 55' 35"- 32 — 349° 22' 27". 92 =) 6° 33' 7". 4 =.0182 of the orbit of 360". This (1.0182) reduced by 0.0200,6 comes to 0.998 14; and consequently "«" for that moment 139981-41. The moon's mean anomaly " b" was (355° 55' 35"- 3- — 33° 39' 58"o3 =:) 322° 15' 37". 29 := 895 • 17. And the sun's mean anomaly "r " was (349" 22' 27". 92 — 257° 14' 22". 86=) 92" 8' 5".o6=: 25593. ' We therefore give rt:^998i, ^-^895, c = 256. The figures for any other year can if necessary be calculated from the following Table, which represents the motion. The increase in a, />, c, for the several lengths of the luni-solar year and for i day, is given under their respective heads; the figures in brackets in the first column representing the day of the week, and the first figures the number of days in the year. Increase of a, b, c, in one year, and in one day. Number of days b. b. in the year. leithoul bija. with bija. 354(4) 9875.703337 847.2197487 847.220646 969.1758567 355(5) 214.335267 8835113299 883.5122f0 971.9136416 383(5) 9696.029305 899.675604 899.676575 48.57161909 384(8) 34661235 935.967185 935.968158 51.3094039 385(0) 373.293166 972.258766 972.2597-12 54.04789 1(1) 338.i)319303:i 36.291581211 36.291583746 2.737784906 103. Table II., Part i., of this table will speak for itself {see also Art. ji above). In the second part is given, in the first five columns, the correspondence of a cycle of twelve lunar months of a number of different eras with the twelve lunar months of the Saka year looo, - which itself corresponds exactly with Kali 4179, Chaitradi Vikrama 1135, and Gupta 738. Cols. 8 to 13 give a similar concurrence of months of the solar year Saka lOOO. The concurrence of parts of solar months and of parts of the European months with the luni-solar months is given in cols. 6 and 7, and of the same parts with the solar months in cols. 14 and 15. Thu.s, the luni-solar amanta month Ashadha of the Chaitradi Saka year 1000 corresponds with amanta Ashadha of Kali 4179, of Chaitradi Vikrama 1135, and of the Gupta era 758; of the Ashadhadi Vikrama year 11 35, and of the Chedi or Kalachuri 828; of the Karttikadi Vikrama year 11 34, and of the Nevar year 198. Parts of the solar months Mithuna and Karka, and parts of June and July of 1077 A.D. correspond with it; in some years parts of the other 1 Calculating by Prof. Jacobi's T.ibles, a, b, c, are 9980, 896 and 255, each of which is wrong by 1. The above figures were submitted by me to Dr. Downing of ihe Nautical Almanack office, with a request that he would test the results by scientific European methods. In reply he gave me the following quantities, for the sun from Leven'ier's Tables, and and for the moon from Hansen's Tables (for the epoch A.D. 300, March 8th, 6 am., for the meridian of Ujjain). Mean long of sun 345° 5r47"-7, Do. of sun's perigee 253° 54' 58" 5, Do. of moon 353° 0' 36"-0, Do. of moon's peri-ee 36° 9' 48"-4 He also verified the statement that the sunrise on the morning of March 8th was that immediately following new moon. The diflerence in result is partly caused by the fact that Leverrier's and Hansen's longitudes are tropical, and those of the S«>y«-St(/rMi/nfe sidereal. Comparing the two results we find a difference of 0° 35' 40"-9 in "a". 5° 24' 49"-69 in "b", 0° 11' 15"-87 in "c". The closeness of the results obtained from the use of (1) purely Hindu (2) purely European methods is remarkable. Our Tables being for Indian documents and inscriptions we of course work by the former, [R. S.] 4 This year Saka 1000 is chosen for convenience of addition or snbstraction when ealcu.ating other years, and therefore wc have not taken into account the fact that S 1000 was really an intercalary year, having 'joth an Adhika Jyeshtha and a Nija Jyeshtha month. That peculiarity affects only that one year and not the concurrence of other months of previous or subsequent veal's in other eras. 58 THE INDIAN CAIENDAR. two Christian months noted in col. 7 will correspond with it. In the year Saka 1000, taken as a Meshadi solar year, the month Siriiha corresponds with the Bengali Bhadrapada and the Tamil Avani of the Meshadi Kali 4179, and Meshadi Vikrama 1 135 ; with Avani of the Sirhhadi Tinnevelly year 253; with Chingam of the South Malayalam Siitihadi KoUam andu 253, and of the North Malayajani Kanyadi Kollam andu 252. Parts of the lunar months .Sravana and Bhadrapada correspond with it, as well as parts of July and August of the European year 1077 A. D ; in some years parts of August and September will correspond with it. All the years in this Table are current years, and all the lunar months are amanta. It will be noticed that the Tuju names of lunar months and the Tamil and Tinnevelly names of solar months are corruptions of the original Sanskrit names of lunar months ; while the north and south Malayajam names of solar months are corruptions of the original Sanskrit sign-names. Corruptions differing from these are likely to be found in use in many parts of India. In the Tamil Districts and the district of Tinnevelly the solar sign-names are also in use in some places. 104. Table II.. Part iii. This portion of the Table, when read with the notes printed below would seem to be simple and easy to be understood, but to make it still clearer we give the following rules: — I. Rule for turning into a Chaitradi or Meshadi year (for example, into a luni-solar Saka, or solar Saka, year) a year of another era, whether earlier or later, which is non-Chaitradi or non- Meshadi. (rt) For an earlier era. When the given date falls between the first moment of Chaitra or Mesha and the first moment of the month in which, as shewn by the heading, the year of the given earlier era begins, subtract from the given year the first, otherwise the second, of the double figures given under the heading of the earlier era along the line of the year O of the required Chaitradi or Meshadi era {e.g., the Saka). Examples. (l) To turn Vaisakha Sukla ist of the Ashadhadi Vikrama year 1837, or Sravana sukla ist of the Karttikadi Vikrama year 1837 '"to corresponding Saka reckoning. The year is (1837 — 134=) 1703 Saka. The day and month are the same in each case. (2) To turn Magha sukla ist of the Karttikadi Vikrama samvat 1838 into the corresponding Saka date. The year is (1838 — 135 =) 1703 Saka. The day and month are the same. (3) Given 1st December, 1822 A.D. The year is (1822 — 77 =) 1745 Saka current. (4) Given 2nd January, 1823 A.D. The year is (1823 — 78=) 1745 Saka current. (b) For a later era. When the given day falls between the first moment of Chaitra or Mesha and the first moment of the month in which, as .shewn by the heading, the later era begins, add to the number of the given year the figure in the Table under the heading of tlie required Chaitradi or Meshadi era along the line of the year 01 of the given later era. In the reverse case add that number reduced by one. Examples, (i) To turn the ist day of Mithuna 1061 of the South MalayaUm Kollam Andu into the corresponding Saka date. The year is (1061 -|- 748;^) Saka 1809 current. The day and month are the same. (2) To turn the ist day of Makara 1062 of the South Malayalam Kollum Andu into the corresponding Saka date. The year is (1062 -|- 747=) 1809 Saka current. The day and month are the same. II. Rule for turning a Chaitradi or Meshadi (<.^'-., a Saka) year into a non-Chaitradi or non-Meshadi year of an earlier or later era. (a) For an earlier era. When the given day falls between the first moment of Chaitra or Mesha and the first moment of the month in which, as shown by the heading, the year of the THE HINDU CALENDAR. 59 earlier era begins, add to the given Chaitradi or Mcshatli year the first, otherwise the second, of the double figures given under the heading of the earlier era along the line of the year o of the Chaitradi or Meshadi era given. Examples, (i) To turn Bhadrapada krishna 30th of the Saka year 1699 into the corres- ponding Karttikadi Vikrama year. The year is (1699 + 134=) >'*533 of the Karttikadi Vikrama era. The day and month are the same. (2) To turn the same Bhadrapada krishna 30th, Saka 1699, into the corresponding Ashadhadi Vikrama year. The year is (1699+ 135=) 1834 of the Ashadhadi Vikrama era. The day and month are the same. {b) For a later era. When the given day falls between the first moment of Chaitra or Mesha and the first moment of the month in which, as shown by the heading, the later era begins, subtract from the given year the number under the heading of the given Chaitradi or Meshadi era along the line of the year o/i of the given later era; in the reverse case subtract that number reduced by one. Examples, (i) To turn the 20th day of Sirhha Saka 1727 current into the corresponding North Malayalam Kollam Andu date. The day and month are the same. The era is a Kanyadi era, and therefore the required year is (1727—748 — ) 979 of the required era. (2) To turn the 20th day of Sirhha Saka 1727 current into the corresponding South Malayalam (Tinnevelly) Kollam Andu date. The day and month are the same. The era is Siriihadi, and therefore the required year is (1727 — 747 —) 980 of the required era. Ill Rule for turning a year of one Chaitradi or Meshadi era into one of another Chai- tradi or Meshadi era. This is obviously so simple that no explanations or examples are required. IV. Rule for turning a year of a non-Chaitradi or non-Meshadi era into one of another year equally non-Chaitradi or non-Meshadi These are not required for our methods, but if any reader is curious he can easily do it for himself This Table must be used for all our three methods of conversion of dates. 105. Table III. — The numbers given in columns ^a and 10 are intended for use when cal- culation is made approximately by means of our method " B " [Arts, ijj, 138). It will be observed that the number of days in lunar months given in col. 3^ is alternately 30 and 29 ; but such is not always the case in actual fact. In all the twelve months it occurs that the number of days is sometimes 29 and sometimes 30. Thus Bhadrapada has by our Table 29 days, whereas it will be seen from the parichaiig extract printed in Art. 30 above that in A.D. 1894 (Saka 18 16 expired) it had 30 days. The numbers given in col. 10 also are only approximate, as will be seen by comparing them with those given in cols. 6 to 9. Thus all calculations made by use of cols. 3« and 10 will be sometimes wrong by a day. This is unavoidable, since the condition of things changes every year, so that no single Table can be positively accurate in this respect ; but, other elements of the date being certain, calculations so made will only be wrong by one day, and if the week-day is given in the document or inscription concerned the date may be fi.xed with a fair pretence to accuracy. If entire accuracy is demanded, our method " C " must be followed. (See Arts. 2 and 126.) The details in cols. 3, and 6 to 9, are exactly accurate to the unit of a pala, or 24 seconds. The figure in brackets, or week-day index {id), is the remainder after casting out sevens from the number of days; thus, casting out sevens from 30 the remainder is 2, and this is the {u<) for 30. To guard against mistakes it may be mentioned that the figure " 2 " does not of course mean that the Mesha or Vrishabha sankranti always takes place on (2) Monday. 106. Tables IV. atid V. These tables give the value of (a-) (week-day) and [a) [b) and 6o THE INDIAN CALENDAR. {c) for any required number of civil days, hours, and minutes, according to the Surya Siddhanta. It will be seen that the figures given in these Tables are calculated by the value for one day given in Art. 102. Table IV. is Prof. Jacobi's /W/V?« ^«/;(7«(?;^' (Vol. XVII.) Table 7, slightly modified to suit our purposes; the days being run on instead of being divided into months, and the figures being given for the end of each period of 24 hours, instead of at its commencement. Table V. is Prof. Jacobi's Table 8. 107. Tables VI. and VII. These are Prof. Jacobi's Tables 9 and 10 re-arranged. It will be well that their meaning and use should be understood before the reader undertakes com- putations according to our method "C". It will be observed that the centre column of each column- triplet gives a figure constituting the equation for each figure of the argument from o to looo, the centre figure corresponding to either of the figures to right or left. These last are given only in periods of 10 for convenience, an auxiliary Table being added to enable the proper equation to be determined for all arguments. Table VI. gives the lunar equation of the centre. Table VII. the solar equation of the centre. {Art. 75 note 3 above). The argument-figures are expressed in loooths of the circle, while the equation-figures are expressed in io,oooths to correspond with the figures of our "«," to which they have to be added. Our [b) and [c] give the mean anomaly of the moon and sun for any moment, (a) being the mean longitudinal distance of the moon from the sun. To convert this last (a) into true longitudinal distance the equation of the centre for both moon and sun must be discovered and applied to (a) and these Tables give the requisite quantities. The case may perhaps be better understood if more simply explained. The moon and earth are constantly in motion in their orbits, and for calculation of a tithi we have to ascertain their relative positions with regard to the sun. Now supposing a railway train runs from one station to another twenty miles off in an hour. The average rate of running will be twenty miles an hour, but the actual speed will vary, being slower at starting and stopping than in the middle. Thus at the end of the first quarter of an hour it will not be quite five miles from the start, but some little distance short of this, say m yards. This distance is made up as full speed is acquired, and after three-quarters of an hour the train will be rather more than 1 5 miles from the start, since the speed will be slackened in approaching the station, — say w yards more than the i 5 miles. These distances of m yards and n yards, the one in defect and the other in e.xcess, correspond to the "Equation of the Centre" in planetary motion. The planetary motions are not uniform and a planet is thus sometimes behind, sometimes in front of, its mean or average place. To get the true longitude we must apply to the mean longitude the equation of the centre. And this last for both sun (or earth) and moon is what we give in these two Tables. All the requisite data for calculating the mean anomalies of the sun and moon, and the equations of the centre for each planet, are given in the Indian Siddliantas and Karaitas, the details being obtained from actual observation ; and since our Tables generally are worked according to the Siirya Sidd/iattto, we have given in Tables VI. and VII. the equations of the centre by that authority. Thus, the Tables enable us to ascertain {a) the mean distance of moon from sun at any moment, {b) the correction for the moon's true (or apparent) place with reference to the earth, and {c) the correction for the earth's true (or apparent) place with reference to the sun ; and with these corrections applied to the (a) we have the true(or apparent) distance of the moon from the sun, which marks the occurrence of the true (or apparent) tithi ; and this result is our tithi-index, or (/). From this tithi-index (/i the tithi current at any given moment is found from Table VIII.. and the time equivalent is found by Table X. Full explanation for actual work is given in Part IV. below (.Arts. 139—160). THE HfNDU CALENDAR. 6i The method for calculating a nakshatia or yoga is explained in Art. 133. 108. Since the planet's true motion is sometimes greater and sometimes less than its mean motion it follows that the two equations of the centre found from {b) and (r) by our Tables VI. and VII. have sometimes to be added to and sometimes subtracted from the mean longitu- dinal distance [a], if it is required to find the true (or apparent) longitudinal distance (/). Hut to simplify calculation it is advisable to eliminate this inconvenient element, and to prepare the Tables so that the sum to be worked may always be one of addition. Now it is clear that this can be done by increasing every figure of each equation by its largest amount, and decreasing the figure [a] by the sum of the largest amount of both, and this is what has been done in the Tables. According to the Siirya Siddhanta the greatest possible lunar equation of the centre is 5° 2' 47". 17 (= .0140,2 in our tithi-inde.x computation), and the greatest possible solar equation of the centre is 2" 10' 32".35 (= .0060,4). But the solar equation of the centre, or the equation for the earth, must be introduced into the figure representing the distance of the moon from the sun with reversed sign, because a positive correction to the earth's longitude implies a negative correction to the distance of moon from sun. This will be clear from a diagram. ^' M' ■ JX \p s*- Let S be the sun, M the moon, E the earth, I' the direction of perigee. Then the angle SEM represents the distance of moon from sun. But if we add a positive correction to (i.e., increase) the earth's longitude PSE and make it PSE' (greater than PSE by ESE') we thereby decrease the angle SEM to SE'M', and we decrease it by exactly the same amount, since the angle SEM =r / SE'M' + / ESE', as may be seen if we draw the line EX parallel to E'S; for the angle SEX = / ESE' by Euclid. Every figure of each equation is thus increased in our Tables VI. and VII. by its greatest value, i.e., that of the moon by 140,2 and that of the sun by 60,4, and every figure of (a) is decreased by the sum of both, or (140,2 + 60,4 =) 200,6. ' In conclusion, Table VI. yields the lunar equation of the centre calculated by the Siirya Siddhanta, turned into io,oooths of a circle, and increased by 140.2; and Table VII. yields the solar equation of the centre calculated by the Siirya Siddhanta, with sign reversed, converted into lO.OOOths of a circle, and increased by 60.4.^ This explains why for argument o the equation given is lunar 140 and solar 60. If there were no such alteration made the lunar equation for Arg. o would be ± o, for Arg. 250 (or 90") f 140, for Arg. 500 (180") ± O, and for Arg. 750 (or 270°) — 140, and so on. 109. The lunar and solar equations of the centre for every degree of anomaly are given 1 Prof. Jacobi gives this as 200.5, but after most careful calculation I find it to be 200 6. [S B D.] * Prof. Jacobi bas uot explained these Tables. 62 THE INDIAN CALENDAR. in the Makararida, and from these the figures given by us for every — th of a circle, or lO units of the argument of the Tables, are easily deduced. no. The use of the auxiliary Table is fully explained on the Table itself. 111. Table VIII. This is designed for use with our method C, the rules for which are given in Arts. 139—160. As regards the tithi-index. see Art. 80. The period of a nakshatra or yoga is the 27th part of a circle, that is 13° 20' or ~ — no^~. Thus, the index for the ending point of the first nakshatra or yoga is 370 and so on.' Tables VIII. A. and VIII. B. speak for themselves. They have been inserted for convenience of reference. 112. Tabic IX. is used in both methods B and C. See the rules for work. 113. Table X. {See the rules for work by method C.) The mean values in solar time of the several elements noted herein, as calculated by the Sitrya-Siddhanta. are as follow: — A tithi = 141 7.46822 minutes. A lunation =42524.046642 do. A sidereal month = 39343.21 do. A yoga-chakra =36605.116 do. From these values the time-equivalents noted in this Table ^ have been calculated. {See also note to Art. 82!) 1 14. Table XI. This Table enables calculations to be made for observations at different places in India. {See Art. jd, and the rules for zvorking by our method C.) 115. Table XII. We here give the names and numbers of the samvatsaras. or years of the sixty-year cycle of Jupiter, with those of the twelve-year cycle corresponding thereto. (See the description of these cycles given above, Arts, jj to 6j.) 116. Table XIII. This Table was furnished by Dr. Burgess and is designed to enable the week-day corresponding to any European date to be ascertained. It explains itself Results of calculations made by all our methods may be tested and verified by the use of this Table. 117. Tables XIV. and XV. are for use by our method yi (.y^v ///^ /-//A-.?), and were invented and prepared by Mr. T. Lakshmiah Naidu of Madras. Table XVI. is explained in Part V. P A R T IV. USE OF THE TABLES. 118. The Tables now published may be used for several purposes, of which some are enumerated below. (l) For finding the year and month of the Christian or any Indian era corresponding to a given year and month in any of the eras under consideration. ' This Table coiilniiiB Prof. Jacobi's Table U ylnd. Ant., XVIl.^p. \M) and hia Tabic 17, p. 181, in n moaificd form [S. B. D.] a The Table contains Prof. Jacobi's Table 11 {Ind. Ani., XFIL, p. 172), a» wcUashis Table 17 Part II. (iV/.;). 181) mojified and enlarged. I have also added the c()uivalent3 for tithi parts, and an eiplanalion. [S. B I>.' I T/IE HINDU CALENDAR. 63 (2) For finding the samvatsara of the sixty-year cycle of Jupiter, whether in tiie southern (luni-solar) or northern (mean-sign) scheme, and of the twelve-year cycle of Jupiter, corresponding to the beginning of a solar (Meshadi) year, or for any day of such a year. (3) For finding the added or suppressed months, if any. in any year. But the chief and most important use of them are; (4) The conversion of any Indian date — luni-solar (tithi) or solar — into the corresponding date A.D. and vice versa, from A.D. 300 to 1900, and finding the week-day of any such date; (5) Finding the karana. nakshatra. and yoga for any moment of any Indian or European date, and thereby verifying any given Indian date; (6) Turning a Hindu solar date into a luni-solar date, and vice versa. (7) Conversion of a Muhammadan Hijra date into the corresponding date A.D., and vice versa. This is fully explained in Part V. below. 119. (i) For tlie first purpose Table I., cols, i to 5. or Table II., must be used, with the explanation given in Part III. above. For eras not noted in these two Tables see the description of them given in Art. 71. In the case of obscure eras whose exact nature is not yet well known, the results will only be approximate. (N.B. — It will be observed that in Table II., Part ii., portions of two solar months or of four ' Christian months are made to correspond to a lunar month and vice versa, and therefore that if this Table only be used the results may not be exact). The following note, though not yielding very accurate results, will be found useful for finding tlie corresponding parts of lunar and solar months. The tithi corresponding to the Mesha- saiikranti can be approximately - found by comparing its English date (Table I., col. 13) with that of the luni-solar Chaitra sukla ist (Table I., col. 19); generally the sankrantis from Vnshabha to Tula fall in successive lunar months, either one or two tithis later than the given one. Tula falls about 10 tithis later in the month than Mesha; and the sankrantis from Vrischika to Mina generally fall on the same tithi as that of Tula. Thus, if the Mesha sankranti falls on sukla paiichami (5th) the Vrishabha sankranti will fall on sukla shasthi (6th) or saptami (7th), the Mithuna saiikranti on sukla ashtami (8th) or navami (9th). and so on. 120. (2) For the samvatsara of the southern sixty-year cycle see col. 6 of Table I., or calculate it by the rule given in Art. 62. For that of the si.xty-year cycle of Jupiter of the mean sign system, according to Siirya Siddhaiita calculations, current at the beginning of the solar year, /.<>., at the true (or apparent) Mesha sankranti, see col. 7 of Table I.; and for that current on any day in the year according to either the Siirya or Arya Siddhantas, use the rules in Art. 59. To find the samvatsara of the twelve-year cycle of the mean-sign system corresponding to that of the Jupiter sixty-year cycle see Table XII. F2I. (2) To find the added or suppressed month according to the Siirya Siddhaiita by the true (apparent) system see col. 8 of Table I. throughout; and for an added month of the mean system according to either the Original or Present Siirya Siddhantas, or by the Arya Siddhanta, see col. 8« of Table I. for any year from A. D. 300 to 1 100. 122. (4) For conversion of an Itidian date into a date A.D. and vice versa, and to find the week day of any given date, we give below three methods, with rules and examples for work. 123. The first method A (Arts. 135, 136), the invention of Mr. T. Lakshmiah Naidu of 1 Of course only two in a single case, but four during the entire period of 1600 years covered by our Tables. 2 The exact titbi can be calcalated by Arts. 149 and 151. 64 THE INDIAN CALENDAR. Madras, is a method for obtaining approximate results without any calculation by the careful use of mere eye-tables, viz., Tables XIV. and XV. These, with the proper use of Table I., are alone necessary. But it must never be forgotten that this result may differ by one, or at the utmost two, days from the true one, and that it is not safe to trust to them unless the era and bases of calculation of the given date are clearly known. [See Art. 126 below.) 124. By our second method B (Arts. 137, 138), which follows the system established by Mr. W. S. Krishnasvami Naidu of Madras, author of "South Indian Chrofwlogical Tables'" (Madras 1889), and which is intended to enable an approximation to be made by a very simple calculation, a generally accurate correspondence of dates can be obtained by the use of Tables I., III., and IX. The calculation is so easy that it can be done in the head after a little practice. It is liable to precisely the same inaccuracies as method A, neither more nor less. 125. Tables II. and III. will also be sometimes required for both these methods. 126. The result obtained by either of these methods will thus be correct to within one or two days, and as often as not will be found to be quite correct; but there must always be an element of uncertainty connected with their use. If, however, the era and original bases of calculation of the given date are certainly known, the result arrived at from the use of these eye-Tables may be corrected by the week-day if that has been stated; since the day of the month and year will not be wrong by more than a day, or two at the most, and the day of the week will determine the corresponding civil day. Suppose, for instance, that the given Hindu date is Wednesday, Vaisakha sukla Sth, and it is found by method A or method B that the corresponding day according to European reckoning fell on a Thursday, it may be assumed, presuming that all other calculations for the year and month have been correctly made, that the civil date A.D. corresponding to the Wednesday is the real equivalentof Vaisaklia sukla 5th. But these rough methods should never be trusted to in important cases. For a specimen of a date where the bases of calculation are not known see example xxv., Art. 160 below. 127. When Tables XIV. and XV. are once understood (and they are perfectly simple) it will probably be found advisable to use method A in preference to method B. 128. As already stated, our method'' C" enables the conversion of dates to be made with precise accuracy; the exact moments of the beginning and ending of every tithi can be ascertained ; and the corresponding date is obtained, simultaneously with the week-day, in the required reckoning. 129. The weekday for any European date can be found independently by Table XIII.. which was supplied by Dr. Burgess. 131 ' (5) ^0 find the karana. nakshatra, or yoga citrroit on any Indian or European date; and to verify any Indian date. Method C includes calculations for the karana. nakshatra and yoga current at any given moment of any given day, as well as the instants of their beginnings and endings; but for this purpose, if the given date is other than a tithi or a European date, it must be first turned into one or the other according to our rules (Art. /jp to IJ2.J 132. It is impossible, of course, to verify any tithi or solar date unless the week-day, nakshatra. karana, or yoga, or more than one of these, is also given ; but when this requirement is satisfied our method C will afford proof as to the correctness of the date. To verify a solar date it must first be turned into a tithi or European date. {Art. 13.^ or 14^.) 133. For an explanation of the method of calculating tithis and half-tithis (karanas) see Art. 107 above. Our method of calculation for nakshatras and yogas requires a little ' Art. l.'id hns been "milled TflE HINDU CALENDAR. 65 more explanation. The moon's nakshatra (Arts. 8, 38) is found from lier apparent longi- tude. By our method C we shew how to find / (= the difference of the apparent longitudes of sun and moon), and equation ' c (=: the solar equation of the centre) for any given moment. To obtain (/) the sun's apparent longitude is subtracted from that of the moon, so that if we add the sun's apparent longitude to (/) we shall have the moon's apparent longitude. Our (c) (Table 1., last column) is the sun's mean anomaly, being the mean sun's distance from his perigee. If we add the longitude of the sun's perigee to [c], we have the sun's mean longitude, and if we apply to this the solar equation of tlie centre (+ or — ) we have the sun's apparent longitude." According to the Siirya-Siddkaiita the sun's perigee has only a very slight motion, amounting to 3' 5".8 in 1600 years. Its longitude for A.D. 1 100, the middle of the period covered by our Tables, was 257° l5'S5"-7 or .7146,3 of a circle, and therefore this may be taken as a constant for all the years covered by our Tables. Now, true or apparant sun = mean sun + equation of centre. But we have not tabulated in Table VII., col. 2, the exact equation of the centre ; we have tabulated a quantity (say x) the value of which is expressed thus ; — x — 60,4 — equation of centre {see Art. /08). So that equation of centre — 60.4 — x. Hence, apparent sun = mean sun + 60,4 — x. But mean sun = r + perigee, (which is 7146,3 in tithi-indices.) = f + 7146,3- Hence apparent sun (which we call j) =: f -|- 7146,3 +60,4 — x. = (• + 7206,7 — X ; or, say, = f + 7207 — x where x is, as stated, the quantity tabulated in col. 2, Table VII. ((•) is expressed in lOOOths, while 7207 and the solar equation in Table VII. are given in looooths of the circle, and therefore we must multiply [c) by 10. / + j = apparent moon = « (the index of a nakshatra.) This explains the rule given below for work (Art. ij6). For a yoga, the addition of the apparent longitude of the sun [s) and moon (;/) is required. s+ «=/ (the index of a yoga.) And so the rule in Art. 159. 134. (6) To turn a solar date into its corresponding liini-solar date and vice versa. First turn the given date into its European equivalent by either of our three methods and then turn it into the required one. The problem can be worked direct by anyone who has thoroughly grasped the principle of these methods. Method A. APPROXIMATE COMPUTATION OF DATES BY USE OF THE EYE- TABLE. Thi3 is the method invcnteil by Mr. T. Iiakahmiah Naidu, nephew of the lati- W H. Krishnasvami Naidu of Madras, author of "South Indian Chronological Tables." Results fouud by this method maij be inaceurale by as much as two days, but not mure. If the era and bases of calculatiou of the given Hindu date are elearly known, and if the given date mentions a week-day, the day found by the Tables may be altered to suit it. Thus, if the Table yield result Jan. 10th, Thursday, but the inscription mentions the week-day as "Tuesday", then Tuesday, January 8th, may be assumed to be the correct date A.D. corresponding to the given Hindu date, if the priuei|>le on which the Hindu date was fixed is known. If not, this method must not be trusted to 135. (A.) Conversion of a Hindu solar date into the corresponding date A.D. Work by the following rules, always bearing in mind that when using the Kaliyuga or Saka year Hindus ' Equation c is the equation in Table VII. 2 Reference to the diagram in Art. 108 will make all this plain, if PSE be tjiken as the sun's mean anomaly, and ESE' the equation of the centre, PSE' + longitude of the suu's perigee being the sun's true or appari'nt longitude. 66 THE INDIAN CALENDAR. usually give the number of the expired year, and not that astronomically current, {e.g., Kaliyuga 4904 means in full phrase "after 4904 years of the Kaliyuga had elapsed") — but when using the name of the cyclic year they give that of the one then current. All the years given in Table I. are current years. The Table to work by is Table XIV. Rule I. From Table I., cols, i to 7, and Table II., as the case may be, find the year (current) and its initial date, and week-day (cols. 13, 14, Table I.). But if the given Hindu date belongs to any of the months printed in italics at the head of Table XIV., take the next follow- ing initial date and weekday in cols. 13, 14 of Table I. The months printed in the heading in capitals are the initial months of the years according to the different reckonings. Rule II. For either of the modes of reckoning given at the left of the head-columns of months, find the given month, and under it the given date. Rule III. From the given date so found, run the eye to the left and find the week-day in the same line under the week-day number found by Rule I. This is the required week-day. Rule IV. Note number in brackets in the same line on extreme left. Rule V. In the columns to left of the body of the Table choose that headed by the bracket-number so found, and run the eye down till the initial date found by Rule I. is obtained. Rule VI. From the month and date in the upper columns (found by Rule II.) run the eye down to the point of junction (vertical and horizontal lines) of this with the initial date found by Rule V. This is the required date A. D. Rule VII. If the date A. D. falls on or after ist January in columns to the right, it belongs to the next following year. If such next following year is a leap-year (marked by an asterisk in Table I.) and the date falls after February 28th in the above columns, reduce the date by one day. N.B. — The dates A.D. obtained from this Table for solar years are Old Style dates up to 8th April, 1753, inclusive. Example. Find date A.D. corresponding to 20th Panguni of the Tamil year Rudhirodgari, Kali 4904 e.xpired. Hy Rule I. Kali 4905 current, 2 (Monday), iith y\pril, 1803. ,, ,, II. Tamil Panguni 20. „ „ III. (under "2") Friday. „ „ IV. Bracket-number (5). V. [Under (5)]. Run down to April i ith. ,, „ VI. (Point of junctions) March 31st. „ „ VII. March 30th. (1804 is a leap year.) Atiszver. — Friday, March 30th, 1804 N.S. (See example 11, p. 74.) (B.) Conversion of a date A.D. into the corresponding Hindu solar date. (See Rule V.. method B, Art. 137, p. 70.) Use Table XIV. Rule I. From Tables I., cols, i to 7 and 13, 14, and Tabic II., as the case may be. find the Hindu year, and its initial date and week-day, opposite the given year A. U. If the given date falls before such initial date, take the next previous Hindu year and its initial date and week-day A.D. Rule II. From the columns to the left of the />ody of Tabic .\IV. find that initial date found by Rule I. which is in a line, when carrying the eye horizontally to the right, willi the given A.D. date, and note point of junction. THE HINDU CALENDAR. 67 Rule III. Note the bracket-figure at head of the column on left so selected. Rule IV. From the point of junction (Rule II.) run the eye vertically up to the Hindu date-columns above, and select that date which is in the same horizontal line as the bracket-figure on the extreme left corresponding with that found by Rule III. This is the required date. Rule V. If the given date falls in the columns to the right after the 28th February in a leap-year (marked with an asterisk in Table I.), add i to the resulting date. Rule VI. From the date found by Rule IV. or V., as the case may be, carry the eye horizontally to the weekday columns at the top on the left, and select the day which lies under the week-day number found from Table I. (Rule I.). This is the required week-day. Rule VII. If the Hindu date arrived at falls under any of the months printed in italics in the Hindu month-columns at head of Table, the required year is the one next previous to that given in Table I. (Rule I.). Example. Find the Tamil solar date corresponding to March 30th, 1804 (N.S.). (By Rule I.) Rudhirodgari, Kali 4905 current. 2 (Monday) April i ith. (March 30th precedes April nth.) (By Rules II., III.) The point of junction of March 30th (body of Table), and April nth, (columns on left) is under "(4)." Other entries of April nth do not correspond with any entry of March 30). (By Rule IV.) The date at the junction of the vertical column containing this " March 30th" with "(4)" horizontal is 19th Panguni. (By Rule V.) (1804 is a leap-year) 20th Panguni. (By Rule VI.) Under "2" (Rule I.), Friday. Answer. — Friday, 20th Paiiguni, of Rudhirodgari, Kali 4905 current. (See example 15, p. 76. 1 36. (A.) Conversion of a Hindu luni-solar date into the corresponding date A.D. Work by the following rules, using Tables XV. A., and XV.B. Rule I. From Table I. find the current year and its initial day and week-day in A.D. reckoning, remembering that if the given Hindu date falls in one of the months printed in italics at the head of Table XV. the calculation must be made for the next following A.D. year. (The months printed in capitals are the initial months of the years according to the dift'erent reckonings enumerated in the column to the left.) Rule II. [a.) Find the given month, and under it the given date, in the columns at the head of Table XV., in the same line witli the appropriate mode of reckoning given in the column to the left. The dates printed in black type are krishna, or dark fortnight, dates. (/; ) In intercalary years (cols. 8 to 12, 8« to 12a of Table I.), if the given month is itself an adhika masa (intercalary month), read it, for purpose of this Table, as if it were not so; but if the given month is styled nija, or if it falls after a repeated month, but before an expunged one (if any), work in this Table for the month next following the given one, as if that and not the given month had been given. If the given month is preceded by both an intercalated and a suppressed month, work as if the year were an ordinary one. Rule III. From the date found by Rule II. carry the eye to the left, and find the week- day in the same horizontal line, but directly under the initial week-day found by Rule I. Rule IV. Note the number in brackets on the extreme left opposite the week-day last found. Rule V. In the columns to the left of the body of the Table choose that headed by the 68 THE INDIAN CALENDAR. bracket-number so found, and run the eye down till the initial date found by Rule I. is obtained. Rule VI. From the Hindu date found by Rule II. run the eye down to the point of junction, (vertical and horizontal lines) of this date with the date found by Rule V. The result is the required date A.D. Rule VII (a.) If the date A.D. falls on or after January 1st in the columns to the right, it belongs to the next following year A.D. (/;.) If it is after February 28th in a leap-year (marked by an asterisk in col. 5, Table I.) reduce the date by one day, e.Kcept in a leap-year in which the initial date (found in Table I.) itself falls after February 28th. [c.) The dates obtained up to April 3rd, A.D. 1753, are Old Style dates. Example. To find the date A. D. corresponding to amanta Karttika krishna 2nd of Kali 4923 expired, Saka 1744 expired, Karttikadi Vikrama 1878 expired, Chaitradi Vikrama 1879 expired (1880 current), " Vijaya " in the Brihaspati cycle," Chitrabhanu " in the luni-solar 60-year cycle. (By Rule I.) (Kali 4924 current), i Sunday, March 24th, 1822. (By Rule II.) (Karttika, the 8th month, falls after the repeated month, 7 Asvina, and before the suppressed month, 10 Pausha), Margasirsha krishna 2nd. (By Rule III.) (Under " i "), i Sunday. (By Rule IV.) Bracket-number (i). (By Rule V.) Under (i) run down to March 24th (Rule I.) (By Rule VI.) (Point of junction) December ist. Answer. — Sunday, December ist, 1822. (B.) Conversion of a date A. D. into the corresponding luni-solar Hindu date. (See Rule V. method B, p. 67 below). Use Tables XV.A., XV.B. Rule I. From Table I. find the Hindu year, and its initial date and week-day, using also Table II., Parts ii., iii. If the given date falls before such initial date take the next previous Hindu year, and its initial date and weekday. Rule II. In the columns to the left of the body of Table XV. note the initial date found by Rule I., which is in the same horizontal line with the given date in the body of the Table. Rule III. Carrying the eye upwards, note the bracket-figure at the head of the initial date-column so noted. Rule IV. From the given date found in the body of the Table (Rule 11.) run the eye upwards to the Hindu date-columns above, and select the date which is in the same horizontal line as the bracket-figure in the extreme left found by Rule III. This is the required Hindu date. Rule V. Note in Table I. if the year is an intercalary one (cols. 8 to i2,and8«to 12a). If it is so, note if the Hindu month found by Rule IV. [a) precedes the fir.st intercalary month, (/') follows one intercalated and one suppressed month, (r) follows an intercalated, but precedes a suppressed month, [d^ follows two intercalated months and one suppressed month. In cases {ai) and {b) work as though the year were a common year, i.e., make no alteration in the date found by Rule IV. In cases (r) and {d) if the found month immediatel)- follows the intercalated month, the name of the required Hindu month is to be the name of the intercalated month with the prefix "nija," and not the name of the month actually found; and if the found month docs not immediately follow the intercalated month, then the required 1 lindu month is the month immediately preceding the found month. If the found month is itself intercalary, it retains its name, but with the prefi.x "adhika." If the found month is itself suppressed, the requiretl month is the month immediately preceding the found month. rilE HINDU CALENDAR. (^ Rule VI. If the given date A.D. falls after February 29th in the columns to the right, in a leap-year (marked with an asterisk in Table I.), add i to the resulting Hindu date. Rule VII. From the date found by Rule IV. carry the eye horizontally to the week-day columns on the left, and select the day which lies under the initial week-day number found by Rule I. This is the required week-day. Rule VIII. If the Hindu date arrived at falls under any of the months printed in italics in the I lindu month-columns at head of the table, the required year is the one next previous to that given by Table I. (Rule I. above.) Example. Find the Telugu luni-solar date corresponding to Sunday, December 1st, 1822. (By Rule I.) A.D. 1822 — 23, Sunday, March 24th, Kali 4923 expired, Saka 1744 expired, Chitrabhanu samvatsara in the luni-solar 60-year or southern cycle reckoning, Vijaya in the northern cycle. (By Rules II., III.) (Bracket-figure) i. (By Rule IV.) Margasirsha krishna 2nd. (By Rule Vc.) (Asvina being intercalated and Pausha suppressed in that year), Karttika krishna 2nd. (By Rule VI.) The year was not a leap-year. (By Rule VII.) Sunday. (By Rule VIII.) Does not apply. Answer. — Sunday, Karttika krishna 2nd, Kali 4923 expired, Saka 1744 expired. (This can be applied to all Chaitradi years.) (See example 12 below, p. 75.) Method B. APPROXIMATE COMPUTATION OF DATES BY A SIMPLE PROCESS. This is the system introduced by Mr. W. S. Krishiiasviimi Naidu of Madras into his "South-Indian Chi'onological Tables." 137. (A.) Conversioti of Hindu dates into dates A.D. (See Art. 135 above, para, i.) Rule I. Given a Hindu year, month and date. Convert it if necessary by cols, i to 5 of Table I., and by Table II., into a Chaitradi Kali or Saka year, and the month into an amanta month. (See Art. 104.) Write down in a horizontal line (-i«.STi'ty. — Saturday, November 30th, A.D. 1776. Ex.VMPLE 4. Required the A.D. equivalent of Magha krishna padyami (ist) ofK.Y. 4923 expired (4924 current). This corresponds (Table I., col. 5) to A.D. 1822, the Chitrabhanu sam- vatsara, and col. 8 shews us that the month Asvina was intercalated (aditika), and the month Pausha suppressed (kshaya). We have therefore to add 30 days for the adhika month and subtract 30 days for the kshaya month, since Magha comes after Pausha. Hence the relative place of the month Magha remains unaltered, Table I. gives 24th March (83), (i) Sunday, as the initial day. d. It/. Initial date 83 1 Collective duration (Table III., col. 3a) . 295 295 Given date (i + 15)— i 15 (Rule I.) 15 393 311 ^7. Rem. 3. 3 = Tuesday. 393 —January 28th of the following A.D. year (Table IX.). Answer. — Tuesday, January 28th, A.D. 1823. This is correct by the Tables, but as there happened to be an e.xpunged tithi in Magha .sukla, the first fortnight of Magha, the result is wrong by one day. The corresponding day was really Monday, January 27th, and to this we should have been guided if the given date had included the mention of Monday as the week-day. That is, we should have fi.xed Monday, January 27th, as the required day A.D. because our result gave Tuesday, January 28th, and we knew that the date given fell on a Monday, ■J2 rilE INDIAN CALENDAR. Example 5. Required the A.D. equivalent of Pausha sukla trayodasi (13th) K.Y. 4853 expired, Angiras samvatsara in luni-solar or southern reckoning. This is K. Y. 4854 current. The year (Table I., col. 5) is A.D. 1752, a leap-year. The initial date (cols. 19, 20) is 5th March (65), (5) Thursday. The month Ashadha was intercalated. Therefore the given month (Pausha) must be treated, for collective duration, as if it were the succeeding month Magha. d. 'w. Initial date Collective duration (Table III., col. 3a) Given date (13) — 1 65 5 29s 295 12 12 372 — I (Rule VI) 371 312 -f- 7, Rem. 4. We must add eleven days to the amount 371 to make it a New Style date, because it falls after September 2nd, 1752, and before 4th April, 1753, (after which all dates will be in New Style by the Tables). 371 + 1 1 = 382 = January 17th (Table IX.). 4 ;:^ Wednesday. Answer. — Wednesday, January 17th, A.D. 1753. Example 6. Required the A.D. equivalent of Vikrama samvatsara 1879 Ashadha krishna dvitiya (2nd). If this is a southern Vikrama year, as used in Gujarat, Western India, and countries south of the Narmada, the year is Karttikadi and amanta, i.e., the sequence of fortnights makes the month begin with sukla 1st. The first process is to convert the date by Table 11., Part iii., col. 3, Table II., Part ii., and Table I., into a Chaitradi year and month. Thus— Ashadha isthe ninth month of the year and corresponds to Ashadha of the following Chaitradi Kali year, so that the given month Ashadha of Vikrama 1879 corresponds to Ashadha of Kali 4924. Work as before, using Table I. for Kali 4924. Initial date, 24th March (83), (i) Sunday. d. w. Initial date 83 i Collective duration (Table III., col. la) 89 89 Given date (2 + 15) — i 16 16 188 106^7 Rem. I 188 (Table IX.) =: July 7th. i = Sunday. Answer. — Sunday, July 7th, A.D. 1822.' If the year given be a northern Vikrama year, as used in Malwa, Benares, Ujjain, and countries north of the Narmada, the Vikrama year is Chaitradi and corresponds to the Kali 4923, except that, being purnimanta, the sequence of fortnights differs (see Table II., Part i.). In such a case Ashadha krishna of the Vikrama year corresponds to Jyeshtha krishna in amanta months, and we must work for Kali 4923 Jyeshtha krishna 2nd. By Table I. the initial date is April 3rd (93)> {3) Tuesday. The A.D. year is 1821—22. • This is nduallv wroiij; by one day, owing to the upproximotc oolledivc duration of days (Table III, 3«) being taken as 89. 11 might equally well b(^ taken u» 88. U it is desired to ronvert tilhis into days (p. 7S. note 2) a fifth part should be subtraeted. The collective duration of the last day of Jyeshtha in tithisisQO. 90 4-61 = 1.40. 90— 1 40 = 88 60. If taken as 88 theau»«er would be .Saturday, July Cth, whieh is actually correct. This serves to shew ho» errors may arise in days when calculation it only made approximately. THE HINDU CALENDAR. U d. w. 93 3 Collective duration (Table III., col. 3^) 59 59 Given date (2+ 15) — ! 16 16 168 78-H7, Rem. I. 168^ June 17th. I =: Sunday, y^wjzwr.— Sunday. June 17th, A.D. 182 1. (b) Solar Dates. Example 7. Required the date A.D. corresponding to the Tamil (solar) 1 8th Purattasi of Rudhirodgarin — K.Y. 4904 expired, or 4905 current. Table I., cols. 13 and 14, give (). (c) (cols. 23, 24, 25). Find the number of tithis which have intervened between the initial day of the year (Chaitra sukla pratipada), and the given tithi, by adding together the number of tithis (collective duration) up to the end of the month previous to the given one (col. 3, Table III.), and the number of elapsed tithis of the given month (that is the serial number of the given tithi reduced by one), taking into account the extra 15 days of the sukla paksha if the tithi belongs to the krishna paksha, and also the intervening intercalary month,' if any, given in col. 8 (or Sa) of Table I. This would give the result in tithis. But days, not tithis, are required. To reduce the tithis to days, reduce the sum of the tithis by its 60th part,* taking fractions larger than a half as one, and neglecting half or less The result is the ((/), the approximate number of days which have inter- vened since the initial day of the Hindu year. Write this number under head (), (c) for that number of days from Table IV. Add together the two lines of five quantities, but in the case of (w) divide the result by 7 and write only the remainder, in the case of (a) write only the remainder under lOOOO, and in the case of (d) and (c) only the remainder under 1000.^ Find separately the equations to arguments (/;) and (f) in Tables VI. and VII. respectively, and add them to the total under (a). The sum (/) is the tithi-index, which, by cols. 2 and 3 of Table VIII., will indicate the tithi current at mean sunrise on the week-day found under (te/). If the number of the tithi so indicated is not the same as that of the given one, but is greater or less by one (or by two in rare cases), subtract one (or two) from, or add 1 The initial days in cols 1.? and 19, T.iblc I , beloni; to the first of the double years A.I) given in col 5 2 It will be well for a beginner to take an example at once, and work it out according to the rule After a little jiractice the calculations can be made rapidly. 3 When the intercalary month is Chaitra, count that also. See Art. 99 above. < This number is taken for easy calculation. Properly speaking, to convert tithis into days the C4th part should be subtracted. The difference does not introduce any material error. 5 Generally with regard to (ic), (a), {i), (c) in working addition sums, take only the remainder respectively over 7, 10000, 1000 and 1000; and in subtracting, if the sura to be subtracted be greater, add respectively 7, 10000, 1000 and 1000 to the figure above. 78 THE INDIAN CALENDAR. one (or two) to, both {d) and (w);' subtract from, or add to, the {a) {b) {c) already found, their value for one (or two) days (Table IV.); add to («) the equations for (<5) and (r) (Tables VI. and VII.) and the sum (/) will then indicate the tithi. If this is the same as given (if not, proceed again as before till it corresponds), the («') is its week-day, and the date shewn in the top line and side columns of Table IX. corresponding with the ascertained {d) is its equivalent date A.D. The year A.D. is found on the line of the given Chaitradi year in col. 5, Table I. Double figures are given in that column ; if {d) is not greater than 365 in a common year, or 366 in a leap-year, the first, otherwise the second, of the double figures shows the proper A.D. year. 140. For all practical purposes and for some ordinary religious purposes a tithi is con- nected with that week-day at whose sunrise it is current. For some religious purposes, however, and sometimes even for practical purposes also, a tithi which is current at any particular moment of a week-day is connected with that week-day. {See Art. ,v above.) 141. In the case of an expunged tithi, the day on which it begins and ends is its week- day and equivalent. In the case of a repeated tithi, both the civil days at whose sunrise it is current," are its week-days and equivalents. 142. A clue for finding zvhen a titlii is probably repeated or expunged. When tjie tithi- inde.x corresponding to a sunrise is greater or less, within 40, than the ending index of a tithi, and when the equation for (/;) (Table VI.) is decreasing, a repetition of the same or another tithi takes place shortly after or before that sunrise; and when the equation for (b) is increasing an e-\-punction of a tithi (different from the one in question) takes place shortly before or after it. 143. The identification of the date A.D. with the week-day arrived at by the above method, may be verified by Table XIII. The verification, however, is not in itself proof of the correctness of our results. 144. To find the moment of the ending of a titlii. Find the difference between the (/) on the given day at sunrise and the (?) of the tithi-inde.x which shews the ending point of that tithi (Table VIII.). With this difference as argument find the corresponding time either in ghatikas and palas, or hours and minutes, according to choice, from Table X. The given tithi ends after the given sunrise by the interval of time so found. But this interval is not always absolutely accurate. {See Art. 82). If accuracy is desired add the {a){b){e) for this interval of time (Table V.) to the {a) {b) {c) already obtained for sunrise. Add as before to {a) the equations of (b) and {c) from Tables VI. and VII., and find the difference between the (/) thus arrived at and the (/) of the ending point of the tithi (Table VIII.). The time corresponding to that difference, found from Table X., will show the ending of the tithi before or after the first found time. If still greater accur- acy is desired, proceed until (/) amounts exactly to the (/) of the ending point (Table VIII.) For ordinary purposes, however, the first found time, or at least that arrived at after one more process, is sufficiently accurate. 145. The moment of the beginning of a tithi is the same as the moment of ending of the tithi next preceding it; and this can be found either by calculating backwards from the (/) of the same tithi, or independently from the (/) of the preceding tithi. 146. The moment of beginning or ending of tithis thus found is in mean time, and is applicable to all places on the meridian of Ujjain, which is the same as that of Lanka. If the 1 'I'liuB fui' the process will fjue tlie conLit lesull if (hore be iiii probability by the rule given below of the expunction (,t.iAai/a) or repetition {vridd/ii) of a tithi sborllj jiri-ieding or following'; nud the (itj and (ic) arrived at at this stage will indicate by use of Table IX. the A.B. equivalent, and the week-day of the given tithi. 2 For the definitions of expunged and repealed tilbin see Art .32 above. THE HTNDU CALENDAR. 7Q exact mean time for otlier places is reciuircd, appl)' the correction given in Table XI., according to the rule given under that Table. If after this correction the ending time of a tithi is found to fall on the previous or following day the id) and {iv) .should be altered accordingly. Mean time is used throughout the parts of the Tables used for these rules, and it may sometimes differ from the true, used, at least in theory, in Hindu panchangs or almanacks. The ending time of a tithi arrived at by these Tables may also somewhat differ from the ending time as arrived at from authorities other than the Siirya Siddhanta which is used by us. The results, however, arrived at by the present Tables, may be safely relied on for all ordinary purposes.' 147. N.B. i. Up to 1100 A.D. both mean and true intercalary months are given in Table I. [see Art. 47 aboi'e). When it is not certain whether the given year is an expired or current year, whether it is a Chaitradi year or one of another kind, whether the given month is amanta or purnimanta, and whether the intercalary month, if any, was taken true or mean, the only course is to try all possible years and months. N.B. a. The results are all Old Style dates up to, and New Style dates from, 1753 A.D The New Style was introduced with effect from after 2nd September, 1752. Since only the initial dates of 1752 and 1753 are given, remember to apply the correction (+ 11 days) to any date between 2nd September, 1752, and 9th April, 1753, in calculating by the Hindu solar year, and between 2nd September, 1752, and 4th April, 1753, in calculating by the Hindu luni-solar year, so as to bring out the result in New Style dates A.D. The day of the week requires no alteration. A'.B. Hi. If the date A.D. found above falls after F"ebruary 28th in a leap-year, it must be reduced by i. N.B. iv. The Hindus generally use expired [gatd) years, while current years are given throughout the Tables. For example, for Saka year 1702 "expired" 1703 current is given. 148. Example I. Required the week-day and the A.D. year, month, and day correspond- ing to Jyeshtha sukla paiichami (5th), year Sarvari, Saka year 1702 expired (1703 current), and the ending and beginning time of that tithi. The given year is Chaitradi (see N.B. ii.. Table II., Part iii.). It does not matter whether the month is amanta or purnimanta, because the fortnight belongs to Jyeshtha by both systems (see Table II., Part i.). Looking to Table I. along the given current Saka year 1703, we find that its initial day falls in A.D. 1780 (see note [ to Art. 139), a leap-year, on the 5th April, Wednesday; and that d (col. 19). w (col. 20), a (col. 23). /; (col. 24) and c (col. 25) are 96,4, 1,657 and 267 respectively. We write them in a horizontal line (see the working of the example below). From Table I., col. 8, we find that there is no added month in the year. The number therefore of tithis between Chaitra .s. i and Jyeshtha s. 5 was 64, viz., 60 up to the end of Vaisakha (see Table III., col. 3), the month preceding the given one, and 4 in Jyeshtha. The sixtieth part of 64 (neglecting tlie fraction ^ because it is not more than half) is r. Reduce 64 by one and we have 63 as the approx- imate number of days between Chaitra .s. i and Jyeshtha s. 5. We write this number under {d). Turning to Table IV. with the argument 63 we find under (w) («) (/J) (c) the numbers o, 1334, 286, 172, respectively, and we write them under their respective heads, and add together the two quantities under each head. With the argument (/') (943) we turn to Table VI. for the equation. We do not find exactly the number 943 given, but we have 940 and 950 and must see the difference between the corresponding equation-figures and fix the appropriate figure for 943. The auxiliary table given will fi.x this, but in practice it can be easily calculated in the head. (The 1 See Arts. 36 and 37 in which all the points noted in this article are fully treated of. So THE INDIAN CALENDAR. full numbers are not given so as to avoid cunibrousness in the tables.) Thus the equation for (/') (943) is found to be 90, and from Table VII. the equation for (c) is found to be 38. Adding 90 and 38 to (a) (133s) we get 1463, which is the required tithi-index (/). Turning with this to Table VIII., col. 3, we find by col. 2 that the tithi current was .sukla 5, i.e., the given date. Then (:i') 4, Wednesday, was its week-day; and the tithi was current at mean sunrise on the meridian of Ujjain on that week-day. Turning with [d] 159 to Table IX., we find that the equivalent date A.D. was 8th June; but as this was after 28th February in a leap-year, we fix 7th June, A.D. 1780. (see N.B. iii.. Art. 147) as the equivalent of the given tithi. As (t) is not within 40 of 1667, the (I) of the 5th tithi (Table VIII.), there is no probability of an expunction or repetition shortly preceding or following (Art. 142). The answer therefore is Wednesday, June 7th, A.D. 1780. To find tlie ending time of the tithi. (t) at sunrise is 1463; and Table VIII., col. 3, shews that the tithi will end when (/) amounts to 1667. (1667 — 1463=) 204 = (Table X.) 14 hours, 27 minutes, and this process shews us that the tithi will end 14 hours, 27 minutes, after sunrise on Wednesday, June 7th. This time is, however, approximate. To find the time more accurately we add the increase in (a) {b) {c) for 14 h. 27 m. (Table V.) to the already calculated (a) {/>) (c) at sunrise; and adding to (a) as before the equations of (d) and (c) (Tables VI. and VII.) we find that the resulting (/) amounts to 1686. 1686 — 1667=19 = 1 hour and 2 1 minutes (Table X.). But this is a period beyond the end of the tithi, and the amount must be deducted from the 14 h. 27 m. first found to get the true end. The true end then is 13 h. 6 m. after sunrise on June 7th. This time is accurate for ordinary purposes, but for still further accuracy we proceed again as before. We may either add the increase in (a) (b) (c) for 13 h. 6 m. to the value of (a) (/;) (t) at sunrise, or subtract the increase of {a) (b) (c) for i h. 21 m. from their value at 14 h. 27 m. By either process we obtain (/)= 1665. Proceed again. 1667 — 1665 = 2 = (Table X.) 9 minutes after 13 h. 6 m. or 13 h. 15 m. Work through again for 13 h. 15 m. and we obtain (/) = 1668. Proceed again. 1668 — 1667 = I = (Table X.) 4 minutes before 13 h. 15 m. or 13 h. 1 1 m. Work for 13 h. 1 1 m., and we at last have 1667, the known ending point. It is thus proved that 13 h. 11 m. after sunrise is the absolutely accurate mean ending time of the tithi in question by the Siirya-Siddhanta. To find the beginning time of the given tithi. We may find this independently b>' cal- culating as before the (/) at sunrise for the preceding tithi, (in this case sukla 4th) and thence finding its ending time. But in the example given we calculate it from the (/) of the given tithi. The tithi begins when (/) amounts to 1333 (Table VIll.). or (1463 — 1333) 130 before sunrise on June 7th. 130 is (Table X.) 9 h. 13 m. Proceed as before, but deduct the {a) (b) (c) instead of adding, and (see working below) we eventually find that (/) amounts exactly to 1333 and therefore the tithi begins at 8 h. 26 m. before sunrise on June 7th, that is 1 5 h. 34 m. after sunrise on Tuesday the 6th. The beginning and ending times are by Ujjain or Lanka mean time. If we want the time, for instance, for Benares the difference in longitude in time, 29 minutes, should be added to the above result (See Ta,ble XI.). This, however, does not affect the day. It is often very necessary to know the moments of beginning and ending of a tithi. Thus our result brings out Wednesday, June 7th, but since the Sth tithi began 1 5 h. 34 m. after sunrise on Tuesday, i.e., about 9 h. 34 m. p.m.. it might well happen that an inscription might record a ceremony that took place at 10 p.m., and therefore fix the day as Tuesdaj- the 5th tithi, which, unless the facts were known, would appear incorrect. I-"rom Table XII. we find that 7th June, A.D. 1780, was a Wednesday, and this helps to fix that day as current. We now give the working of Examii.k i. THE HINDU CALENDAR. 81 WORKING OF EXAMPLE I. (a) The day corresponding to Jyeshtha siikla 5th. d. w. a. b. c. Saka 1703 current, Chaitra sukla (st, (Table I., cols. 19, 20, 23, 24. 25) 96 4 I 657 267 Approximate number of days from Chaitra sukla 1st to Jyeslitha suk. 5th, (64 tithis reduced by a 60th part, neglecting fractions, — 62,) with its (if/) («) (/;) (c) (Table IV.) 63 O 1334 286 172 '59 4 1335 943 439 Equation for (/;) (943) (Table VI.) 90 Do. {c) (439) (Table VII.) 38 1463 - 1. {t) gives .sukla 5th (Table VIII., cols. 2, 3) (the same as the given tithi). {d) — I, (N.B. Hi., Art. 147), or the number of days elapsed from January i st, ::r 158 I58=june 7th (Table IX.). A.D. 1780 is the corre.sponding year, and 4 (w) Wednesday is the week-day of the given tithi. Answer. — Wednesday, June 7th, 1780 A.D. (b) The ending of the tithi Jyeshtha mk. 5. (Table VIII.) 1667 — 1463 = 204 = (14 h. 10 m. + oh. I7m.)=i4h. 27 m. (Table X.). Therefore the tithi ends ati4h. 27 m. after mean sunrise on Wednesday. For more accurate time we proceed as follows: a. b. c. At sunrise on Wednesday {see above) 1335 943 439 For 14 hours (Table V.) 198 21 2 For 27 minutes, (Do.) 6 i o 1539 965 441 Equation for {b) (965) (Table VI.) 109 Do. (r) (441) (Do. VII.) 38 1686 = /. 1686 — 1667 (Table VIII.) = 19 := i h. 21m.; and i h. 21m. deducted from 14 h. 27 m. gives 13 h. 6 m. after sunrise on Wednesday as the moment when the tithi ended. This is sufficient for all practical purposes. For absolute accuracy we proceed again. a. b. c. For sunrise {as before') 1335 943 439 For 13 hours (Table V.) 183 20 i For 6 minutes (Do.) i o o 15 19 963 440 Equation for (/;) (963) (Table VI.) 108 Do. {c) (440) (Do. VII.) 38 1665 —t. 6 82 THE INDIAN CALENDAR. 1667 — 1 665 =2 =9111. after 13 h. 6 m. = 13 h. 15 h. a. b. c. Again for sunrise {as before) 1335 943 439 For 13 hours (Table V.) 183 20 i For 1 5 minutes (Do.) 4 o o 1522 963 440 Equation for {b) (963) 108 Do. ic) (440) 38 1668 = /. i668 — 1 667 = I = 4 m. before 13 h. 15 m. = 13 h. 1 1 m. Again for sunrise {as before) 1335 943 439 For 13 hours (Table V.) 183 20 i For 1 1 minutes (Do.) 3 o o 1 52 1 963 440 Equation for (b) (963) 108 Do. (f) (440) 38 Actual end of the tithi 1 667 = /. Thus 1 3 h. 1 1 m. after sunrise is the absolutely accurate ending time of the tithi. {c) The begiimijig of the tithi, Jyeshtha suk. 5. Now for the beginning. 1463 (the original /. as found)— 1333 (beginningofthetithi, (Table VIII.) = 130= (Table X.) (7 h. 5 m. + 2h.8m.) = 9h. 13 m.; and we have this as the point of time before sunrise on Wednesday when the tithi begins. a. b. c. For sunrise {as before) 133S 943 439 a. b. e. For 9 li. (Table V.) 127 14 i For 13 m. (Do.) 3 o o Deduct 130 14 I . . . 130 14 I 1205 929 438 Equation for b. (929) 79 Do. c. (438) 37 1321 —t. (The beginning of the tithi) 1333 — 1321 = 12 = Table X.) 51 m. after the above time (9h 13 m.), and this gives 8 h. 22 m. before sunrise. We proceed again. a. b. c. For 9 h. 13 m. before sunrise {found above) .... 1205 929 43S Plus for 51 minutes (Table V.) 12 i o 1217 930 438 Equation for b. (930) 80 Do. c. (438) 37 1334 = /- THE HINDU CALENDAR. 83 1334 — 1333 = I =4m. before the above time (viz., 8 h. 22 m.) i.e., 8h. 26m. before sun- rise. Proceed again. a. b. c. For 8 h. 22 m. before sunrise {found above) 12 17 930 438 Deduct for 4 m. (Table V.) i o o 1216 930 438 Equation for b. (930) 80 Do. c. (438) 37 1333 -t. The result is precisely the same as the beginning point of the tithi (Table VIII.), and we know that the tithi actually began 8 hours 26 minutes before sunrise on Wednesday, or at 15 h. 34 m. after sunrise on Tuesday, 6th June. Example II. Required the week-day and equivalent A.D. of Jyeshtha suk. dasami (lOth) of the southern Vikrama year 1836 expired, 1837 current. The given year is «f/ Chaitradi. Referring to Table II., Parts ii., and iii., we find, by comparing the non-Chaitradi Vikrama year with the Saka, that the corresponding Saka year is 1703 current, that is the same as in the first example. We know that the months are amanta. d. w. a. b. c. State the figures for the initial day (Table I., cols. 19, 20,23,24,25) 96 4 i 657 267 The number of intervened tithis down to end of Vaisakha, 60, (Table III.) -|- the number of the given date minus 1,1369; reduced by a 60th part = 68, and by Table IV. we have 68 5 3027 468 186 164 2 3028 125 453 Equation for {b) 125 (Table VI.) 239 Do- (0 453 (Table VII.) 42 3309 = ^- {d) (164)— I {N.B. in., Art. 147) =163. The result, 3309, fixes the day as sukla loth (Table VIII., cols. 2, 3), the same as given. Answer. — (By Table IX.) 163 = June 12th, 2 = Monday. The year is A.D. 1780 (Table II., Part ii.). The tithi will end at (3333 — 3309:1; 24, or by Table X.) I h. 42 m. after sunrise, since 3309 represents the state of that tithi at sunrise, and it then had 24 lunation-parts to run. Note that this (/) (3309) is less by 24 than 3333, the ending point of the lOth tithi; that 24 is less than 40 ; and that the equation for {Jj) is increasing. This shows that an expunction of a tithi will shortly occur {Art. 142.) Example in. Required the week-day and equivalent A.D. of Jyeshtha sukla ekadasi (i ith) of the same Saka year as in example 2, i.e., S. 1703 current. 84 THE INDIAN CALENDAR. d. w. a. b. c. See (Table I.) example 2 96 4 '657 267 Intervened days (to end of Vaisakha 59, 4- 11 given days — 1)1=69. By Table IV 69 6 3366 504 189 165 3 3367 "'^' 456 Equation for {h) (161) (Table VI.) 258 Do. [c] (456) (Table VII.) 43 3668 - 1. This figure (/ =:: 3668) by Table VIII., cols. 2, 3, indicates sukla 12th. d — I {N.B. in.. Art. 147) = 164 and Table IX. gives this as June 13th. The (ic) is 3 n: Tuesday. The year (Table II. Part iii.) is 1780 A.D. The figure of (t), 3668, shows that the 12th tithi and not the required tithi (iith) was current at sunrise on Tuesday; but we found in example 2 that the loth tithi was current at sunrise on Monday, June 12th, and we therefore learn that the iith tithi was expunged. It commenced i h. 42 min. after sunrise on Monday and ended 4 minutes before sunrise on Tues- day, 13th June.' The corresponding day answering to sukla lOth is therefore Monday, June 1 2th, and that answering to sukla 12 is Tuesday the 13th June. Ex.VMl'LE IV. Required the week-day and equivalent A.D. of the purnimanta Ashadha krishiia dvitiya (2) of the Northern Vikrama year 1837 expired. 1838 current. The northern Vikrama is a Chaitradi year, and so the year is the same as in the previous example, viz., A.D. 1780 — I (Table II., Part iii.). The corresponding amanta month is Jyeshtha (Table II., Part i.). Work therefore for Jyeshtha krishna 2nd in A.D. 1780 — I (Table I.). d. w. a. b. c. See example I (Table I.) 96 4 1 657 267 60 (coll. dur. to end Vai.s.) + 1 5 (for krishna fortnight) + i (given date minus 1)^76 tithis = 75 days (as before); Table IV. gives . 75 5 5397 722 205 171 2 5398 379 472 Equation for (1^) (379) 237 Do. \c) (472) SO 568s = /. (d)—\ {N.B. Hi., Art. 147) := 170 = (Table IX.) 19th June. (2) = Monday. The year is 1780 A.D. So far we have Monday, 19th June, A.D. 1780. But the figure 5685 for(/) shows that kri. 3rd and not the 2nd was current at sunrise on Monday the 19th June. It commenced (5685 — 5667= 18=) I h. 17 m. before sunrise on Monday. (/) being greater, but within 40, than tlie ending point of kri. 2nd, and the equation for (b) decreasing, it appears that a repetition of a tithi will shortly follow (but not precede). And thus we know that Sunday the i8th June is the equivalent of kri. 2nd. Example v. Required the week-day and equivalent A.D. of the amanta Jyeshtha kri. 3rd of the Saka year 1703 current, the same as in the last 4 examples. • Thie is sliLWii by {() zz 3(108 al sunrise, the end being indicated by 3007. DifTireneo 1 lunation-unit, or \ minutes. THE HINDU CALENDAR, 85 d. w. a. b. c. (See example i) 96 4 ' 657 267 60 (coll. dur. to end Vais.) ^ 15 + 2 = 77 tithis = 76 days. (Table IV.) 76 6 5736 758 208 172 3 5737 415 475 Equation for (i^) (415) 211 Do. (c) (475) S« 5999 This indicates krishna 3rd, the same tithi as given, {d) — i =171= 20th June, 1780 A.D. From these last two examples we learn that krishna 3rd stands at sunrise on Tuesday 20th as well as Monday 19th. It is therefore a repeated or vriddhi tithi, and both days 19th and 20th correspond to it. It ends on Tuesday (6000 — 5999= 1=) 4 minutes after sunrise. Example VI. Required the week-day and A.D. equivalent of Karttika sukla 5th of the Northern Vikrama year 1833 expired (1834 current). (See example 2, page 70.) The given year is Chaitradi. It matters not whether the month is amanta or purnimanta because the given tithi is in the sukla fortnight. The initial day of the given year falls on (Table I., col. 19) 20th March (80), (col. 20) 4 Wednesday; and looking in Table I. along the line of the given year, we find in col. 8 that the month Bhadrapada was intercalated or added (adhika) in it. So the number of months which intervened between the beginning of the year and the given tithi was 8, one more than in ordinary year. d. w. a. b. c. (Table I., cols. 19, 20, 23, 24, 25) 80 4 9841 54 223 (Coll. dur.) 240 + 4=244 = 240 days (Table IV.,) 240 2 1272 710 657 320 6 1 113 764 880 Equation for {b) (764) O Do. (0 (880) 102 1 2 1 5 = /. This indicates, not kri. 5 as given, but kri. 4 (Table VIII.) Adding i to (d) and {iv) (see Rule above. Art. 139) 321 o a—\ (N.B. Hi., Art. 147) 320 = (Table IX.) Nov. i6th, A.D. 1776. o = Saturday. (/) being not within 40 of the ending point of the tithi there is no probability of a repeti- tion or expunction shortly preceding or following, and therefore Saturday the i6th November, 1776 A.D., is the equivalent of the given tithi. E.n:ample VII. Required the week-day and A.D. equivalent of amanta Magha krishna ist of Kali 4923 expired, 4924 current. (See example 4, page 71.) The given year is Chaitradi. Looking in Table I. along the line of the given year, we see that its initial day falls on 24th March (83), 1822 A.D., i Sunday, and that (col. 8) the month (7) Asvina was intercalated and (10) Pausha expunged. So that, in counting, the number of in- tervened months is the same, viz., 10, as in an ordinary year, Magha coming after Pausha. 86 THE INDIAN CALENDAR. d. w. a. b. c. (Table I., cols. 19, 20, 23, 24, 23) 83 i 212 899 229 (Coll. dur.) 300+15 (sukla paksha) + (i — 1=) = 315 tithis = 3io days. By (Table IV.) 310 2 4976 250 849 393 3 5188 149 78 Equation for (3) (149) (Table VI.) 252 Do. {c) (78) (Table VII.) 32 5472=/. The figure 5472 indicates (Table VIII.) kri. 2nd, i.e., not the same as given (ist), but the tithi following. We therefore subtract i from (d) and (zf) (Art. 139) making them 392 and 2. Since (/) is not within 40 of the ending point of the tithi, there is no probability of a kshaya or vriddhi shortly following or preceding, (w) 2 = Monday. 392 = (Table IX.) 27th January. And therefore 27th January, A.D. 1823, Monday, is the equivalent of the given tithi. Example VIII. Required the week-day and the A.D. equivalent of sukla 1 3th of the Tulu month Puntelu, Kali year 4853 expired, 4854 current, " Angiras samvatsara " in the luni-solar or southern 60-year cycle. (See example 5, page 72.) The initial day (Table I.) is Old Style 5th March (65), A.D. 1752, a leap-year, (5) Thursday; and Ashadha was intercalated. The Tulu month Puntelu corresponds to the Sanskrit Pausha (Table II., Part ii.), ordinarily the loth, but now the nth, month on account of the intercalated Ashadha. d. w. a. b. c. (Table I., cols. 19, 20, 23, 24, 25) 65 5 39 ^^^ 213 (Coll. dur.) 300-1-12 (given tithi minus i) = 3l2 tithis = 307 days (Table IV.) 307 6 3960 142 840 372 4 3999 919 53 Equation for (^) (919) 71 Do. {c) (53) 40 4110 = /. The result, 41 10, indicates sukla 13th, i.e., the same tithi as that given. (d)—\ {N.B. Hi., Art. 147) =371 :^ (by Table IX.) January 6th, A.D. 1753. We must add 11 days to this to make it a New Style date, because it falls after Septem- ber 2nd, 1752, and before 4th April, 1753, the week-day remaining unaltered [see N.B. ii.. Art. 14J), and 17th January, 1753 A.D., is therefore the equivalent of the given date. (b.) Conversion of Hindu solar dates into dates A.D. 149. To calculate the week-day and the equivalent date A.D. Turn the given year into a Meshadi Kali, Saka, or Vikrama year, and the name of the given month into a sign-name, if they are not already given as .such, and find the corresponding year A.D. by the aid of columns i to 5, Table I., and Table II., Parts ii., and iii. Looking in Table I. along the line of the Meshadi year so obtained, write down in a horizontal line the following three quantities corresponding to the THE HINDU CALENDAR. 8? commencement of that (Meshadi) year, viz., (9 Equation for {b) (44) (Table IV.) 180 Do. \c) (919) (Do. VII.) 90 The results give us knshna 3, Sunday (i), (Table VIII.) . i 5817 = /. 252 +^ = 256. The number next below 256 in col. 3, Table III., is 240. and shews that Karttika preceded the required month, and the required month would therefore be Marga- THE HINDU CALENDAR. 93 sirsha. But Asvina, which is prior to Margasirsha, was intercalated. Karttika therefore is the required month. Pausha was expunged, but being later than Karttika the result is not affected. Answer. — Sunday, Karttika (Telugu), or Jarde (Tulu) (Table II., Part] ii.), kr. 3rd of the year Chitrabhanu, Saka 1745 (1744 expired). Kali j'ear 4923 expired. Example XVIII. Required the tithi and purnimanta month in the Saka year corresponding to 1 8th January, 1541 A.U. The given date is prior to Chaitra .sukla 1 in the given year. We take therefore the initial day in the previous year, A.D. 1540, which falls on Tuesday the 9th^ March (69). The corresponding Saka year is 1463 current. w. a. b. c. (Table I., cols. 20, 23, 24, 25) 3 108 756 229 1 8th January = . . 383 (Table IX.) Add for leap-year . . i (N.B. ii., latter part.) 384 Deduct 69 (The d. of the initial day.) No. of intervening days. . 3 15 = (by Table IV.) O 6669 432 862 3 6777 188 9J Equation for (/;) (188) (Table VI.) 269 Do. (c) (91) (Do. VII.) 28 3 7074 = t. The result gives us krishna 7th, Tuesday (3) (Table VIII.). 315 + ^ = 320 tithis. The next lower number to 320 in col. 3, Table III., is 300, which shews Pausha as preceding the required month, and the required month would therefore be Magha. Asvina, however, which is prior to Magha, was intercalary in this year; Pausha, therefore, would be the required month ; but it was expunged ; Magha, therefore, becomes again the required month. Adhika Asvina and kshaya Pausha being both prior to Magha, they do not affect the result. By Table II. amanta Magha krishna is purnimanta Phalguna krishna. Therefore purnimanta Phalguna krishna 7th, Tuesday, Saka 1463 current, is the required date. (e.) Conversion of A.D. dates into Hindu solar dates. 152. Given a year, month, and date A.D., write down from Table I. in a horizontal line the {d) {w) and (Ii) (m) (the time) ofthe Meshasankranti, by thcf^r/a or5«r)'a-5?(3W/«««/a ^ as the case may require, of the Hindu Meshadi year, remembering that if the given day A.D. is earlier than the Mesha safikranti day in that year the previous^ Hindu year must be taken. Subtract the date-indicator of the Mesha sankranti day from the date-number of the given date (Table IX.), remembering that if the Mesha sankranti time of the previous Hindu year is taken the number to be taken from Table IX. is that on the right-hand side, and not that on the left [see also Art. iji, N.B. ii.) ; the remainder is the number of days which intervened between the Mesha sankranti and the given day. Find from Table III., cols. 6, 7, 8 or 9, as the case may be, the number next below that number of intervening days. Write its three quantities {d), {iv), and the time of the .sankranti {h. ;«.), under their respective heads, and add together the three quantities separately {See Art. i^p 1 See Art. 21, and notes 1 and 2, and Arts. 93 and 96. 2 See note 4, p. 90. 94 THE INDIAN CALENDAR. above). The sum is the time of the astronomical beginning of the required month, and the month next following that given in col. 5, on the line of the next lowest number, is the month required. Ascertain the day of the civil beginning of the current required month by the rules in Art. 28. When it falls on the same day as the safikranti day, or the following, or the third day, respectively, subtract i from, or add o or i to, both [d) and iw). Subtract () (c) (/) (s) and («) for the given moment as above {Ar/. ijd). Add (s) to («). Call the sum fj'J. This, as index, shews by Table VIII., cols, ii, 12, 13, the yoga current at the given moment. Ex.\MPLE XXIV. Find the yoga at sunrise on Jyeshtha sukla 5th, Saka 1702 e.xpired, 7th June, 1780 A.D. As calculated in example xviii. (•?)= i5S9 («) = 3022 Add («) to (.f) {") — 3022 Required yoga 0')= • • • 458' =('3) Vyaghata (Table VIII.). We find the beginning point of Vyaghata from this. The (j') so found 4581 — 4444 (beginning point of Vyaghata) = 137 := (6 h. 6 m. + 2 h. 15 m. =)8h. 21 m. before .sunri.se on Wednesday (Table X., col. 5). The end of Vyaghata is found thus: (End of Vyaghata) 4815 — 4581 (j) = 234 =(12 h. 12 m. + 2 h. 4 m. =) 14 h. 16 m. after sunrise on Wednesday. (i.) Verification of Indian dates. 1 60. {See Art. ij2.) The following is an example of the facility afforded by the Tables in this volume for verifying Indian dates. Example xxv. Suppose an inscription to contain the following record of its date, — "Saka 666, Karttika krishna amavasya (30), Sunday, nakshatra Hasta." The problem is to verify this date and find its equivalent A.D. There is nothing here to shew whether the given year is current or expired, whether the given month is amanta or purnimanta, and whether, if the year be the current one, the intercalary month in it was taken as true or mean.^ First let us suppose that the year is an expired one (667 current) and the month amanta. There was no intercalary month in that year. The given month would therefore be the eighth, and the number of intervening months from the beginning of the year is 7. d. w. a. b. c. Saka 667 current. (Table I., cols. 19, 20, 23, 24, 25) .... 80 6 324 773 278 210 (7 months) + 15 (sukla) + 14 (kr. amavasya is 15, and i must be substracted by rule) ::= 239 tithis = 235 days 235 4 9578 529 643 315 3 9902 302 921 liquation for (/;) (302) (Table VI.) 271 Do. \c) (921) (Do. VII.) 90 3 263 = A This gives us Tuesday, .sukla ist (Table VIII.). Index, ("=263, proves that 263 parts of the tithi had expired at sunrise on Tuesday, and thence we learn that this .sukla i .st commenced on Monday, and that the preceding tithi kri. 30 would possibly commence on Sunday. If so, can we connect the tithi kri. 30 with the Sunday f Let us see. 1 'I'liia nill illnati-atc- llic daiiKiT uf Inistiii); l.i 'I'ablin XIV. iiiij XV. ill iiniiDi-liiiit casi'.i. THE HINDU CALENDAR. 99 d. w. a. h. c. Already obtained 3153 9902 302 92 1 Subtract value for two days (Table IV.) 22 677 73 5 313 I 9225 229 916 Equation for (b) (229) (Table VI.) 279 Do. (c) (916) (Do. VII.) 91 1 9595 - 1. This index gives us krishna 14th (Table VIII.) as current at sunrise on Sunday (i). The tithi ended and kri. 30 commenced (9667 — 9595 = 72 rr) 5 h. 6 m. after sunrise on Sunday. This kri. 30 therefore can be connected with a Sunday, and if the nakshatra comes right — Hasta — then this would be the given date. We calculate the nakshatra at sunrise on Sunday. t. c. As calculated above 9595 916 {c) multiplied by 10 916X10 = 9160 Add constant 7207 6367 Subtract the equation for (r) (Table VII.) 91 Add {s) to {() 6276 6276 = (j) 5871 =(«) This index («) gives nakshatra No. 16 Visakha (Table VIII., col. 6, 7, 8). Therefore No. 13 Hasta had already passed, and this proves that the date obtained above is incorrect. Now if Karttika in the given record be purnimanta, the amanta month corresponding (Table II., Part i) would be Asvina, the 7th month, and it is possible that Asvina kri. 30, falling back as it does 29 or 30 days from the date calculated, might fall on a Sunday. Let us see if it did so. d. w. a. h. c. Chaitra sukla i, Saka d^i current (as above) 80 6 324 773 278 180 (6 expired months) + 15 (sukla) + 14 {see abo7'e) ■=20g tithis = 206 days 206 3 9758 476 564 286 2 82 249 842 ?:quation for {b) (249) (Table VI.) 280 Do. (r) (842) (Do. VII.) Ill 2 473 = W The result gives us Monday, sukla 2nd. ' 1 Note that this tipproximate calculation, which is the same as that by method B, comes out actually nTong by two days. 100 THE INDIAN CALENDAR. d. zv. a. b. c. State the figures for this 286 2 82 249 842 Subtract value for two days (Table IV.) 22 677 73 5 284 o 9405 176 837 Equation for (b) (176) (Table VI.) 265 Do. (f) (842) (Do. VII.) 112 o 9782 This gives Saturday krishna (30), amavasya. i.e., that tithi had (10,000 — 9782) 218 parts to run at sunrise on Saturday. Therefore it ended on Saturday, and cannot be connected with a Sunday. Here again we have not the correct date. Now let us suppose that the given year 666 is a current amanta year. Then the given month, Karttika, is amanta, and the intercalary month was Bhadrapada. The given month would be the 9th. d. w. a. b. c. Chaitra .sukla 1st, Saka 666 current (Table I.) 61 o 289 837 227 240 (for 8 months) + 15 (sukla) + 14 (as aboz/e) :=.26g tithies — 265 days (Table IV.) 265 6 9737 617 726 326 6 26 454 953 Equation for (/-) (454) (Table VI.) 180 iJo (<•) (953) (Uo. VII.) ■ 78 6 284 = (/) This gives us Friday, sukla ist. The preceding day is krishna amavasya, and this therefore ends on Thursday and can in no way be connected with a Sunday. This date is therefore again wrong. The amavasya of the previous month (29 days back) would end on a Wednesday or perhaps Tuesday, so that cannot help us. If we go back yet a month more, it is possible that the krishna amavasya might fall on a Sunday. That month could only be called Karttika if it were treated according to the purnimanta system and if there were no intercalary month. The given month would then be the 7th in the year. We test this as usual. d. w. ti. b. c. Chaitra .sukla ist, Saka 666 current 61 o 289 837 227 1 80 (6 expired months) + 1 5 sukla + 1 4 [as before) — 209 tithis = 206 days (Table IV.) 206 3 9758 476 564 267 3 47 3'3 791 Equation for {h) (313) (Table VI.) 269 Do. (f) (791) (Do. VII.) 119 3 435=/- This gives Tuesday,' ^ukla 2nd, two tithis in advance of the required one. 1 In this cniu' tlii' I'eaull by the ii|i|ji'ln\s. THE MUHAMMADAN CALENDAR. roi Wc may either subtract the value of (lu) (a) (h) (f) for two days from their value as already obtained, or may add the value for (206—2 =) 204 days to the value at the beginning of the year. We try the latter. d. w. a. b. c. Chaitra sukla 1st, Saka 666 current (Table I.) 61 O 289 837 227 204 days (Table IV.) 204 i 9081 403 559 265 I 9370 240 786 Equation for (/;) (240) (Table VI.) 280 Do. ('■) (786) (Do. VII.) 119 I 9769 = t. This gives us krishna amavasya, (i) Sunday, as required. (^0 = 265 = (Table IX.) 22nd September, 743 A.D. (Table I.). From Table XIII. we see that the week-day is right. If the nakshatra Hasta comes right, then this is the given date. We calculate it according to rule. /. c. As already obtained 97^9 l'^^ (c) multiplied by 10 7860 Add constant 7207 5067 Subtract the equation for (c) (786) (Table VII.) 119 Add (j) to (/) 4948 4948 = (.f) 4717 = («) This result gives No. 13 Hasta (Table VIII.) as required. This therefore is the given date. Its equivalent A.D. is 22nd September, 743 A.D. The data were imaginary. If they had been taken from an actual record they would have proved that mean and not true intercalary months were in use in A.D. 743, because we have found that there was no intercalary month prior to the given month Karttika. The mean intercalary month in that year (Table I.) was the 9th month, Margasirsha, and of course Karttika was unaffected by it. i6o(/J). See page of Addenda and Errata. PART V. THE MUHAMMADAN CALENDAR. 161. The Muhammadan era of the Hijra, or "flight," dates from the flight of Muhammad (Anglice Mahomet) which took place, according to the Hissabi or astronomical reckoning, on the evening of July 15th, A.D. 622. But in the Hela/i, or chronological reckoning, Friday, July i6th, is made the initial date. The era was introduced by the Khalif Umar. I02 THE INDIAN CALENDAR. 162. The year is purely lunar, and the month begins with the first heliacal rising of the moon after the new moon. The year is one of 354 days, and of 355 in intercalary years. The months have alternately 30 and 29 days each (but see below), with an extra day added to the last month eleven times in a cycle of thirty years. These are usually taken as the 2nd, 5th, 7th, lOth, 13th, 15th, i8th, 2ist, 24th, 26th, and 29th in the cycle, but Jervis gives the 8th, i6th, 19th, and 27th as intercalary instead of the 7th, 15th, 18th and 26th, though he mentions the usual list. Ulug Beg mentions the i6th as a leap-year. It may be taken as certain that the practice varies in different countries, and sometimes even at different periods in the same country. 30 years are equal to (354 x 30+ 11=) 10,631 days and the mean length of the year is 354,^ days.i Since each Hijra year begins 10 or 11 civil days earlier than the last, in the course of 33 years the beginning of the Muhammadan year runs through the whole course of the seasons. 163. Table XVI. gives a complete list of the initial dates of the Muhammadan Hijra years from A.D. 300 to A.D. 1 900. The asterisk in col. i shews the leap-years, when the year consists of 355 days, an extra day being added to the last month Zi'1-hijjat. The numbers in brackets following the date in col. 3 refer to Table IX. (see abo've, Art. pij), and are for purposes of cilculaticn as shewn below. Muhammadan Months. Days. Muharram Safar Rabi-ul awwal Rabi-ul akhir, or Rabi-us sani. Jumada'l awwal Jumada'l akhir, or Jumada-s sani 30 29 30 29 30 29 30 59 89 118 148 177 Rajab Sha'ban . Ramazan Shawwal 30 29 30 29 Zi-1-ka'da 1 30 Zi-I-hijja 29 / In leap-years . . . 30 ^ 207 236 266 295 325 354/ 3S5< 164. Since the Muhammadan year invariably begins with the heliacal rising of the moon, or her first observed appearance on the western horizon shortly after the sunset following the new-moon (the amavasya day of the Hindu luni-solar calendar), it follows that this rising is due about the end of the first tithi (sukla pratipada) of every lunar month, and that she is actually seen on the evening of the civil day corresponding to the 1st or 2nd tithi of the sukla (bright) fortnight. As, however, the Muhammadan day — contrary to Hindu practice, which counts the day from sunrise to sunrise — consists of the period from sunset to sunset, the first date of a Muhammadan month is always entered in Hindu almanacks as corresponding with the next following Hindu civil day. For instance, if the heliacal rising of the moon takes place shortly after sunset on a Saturday, the ist day of the Muhammadan month is, in Hindu pafichangs, coupled with tlie ' \ year of the Hijra = 0.970223 of Gregorian year, and a Gregorian ycai-= 1 030C9 ycare of the Hijra. Thus 32Gri^- rian years arc about cic. Hindi. I. Sun. Itwar. Yak-shamba. Yaumu'1-ahad. Rabi-bar. 2. Mon. Somwar, or Pir. Do-shamba. „ -isnain. Som-bar. 3. Tues. Mangal. Sih-shamba. ,, -salasa'. Mangal-bar. 4. Wed. Budh. Chahar-shamba. „ -arba'. Budh-bar. 5. Thurs. Jum'a-rat. Panj-shamba. „ -khamis. Brihaspati-bar. 6. Fri. Jum'a. Adina. „ -Jum'ah. Sukra-bar. 7. Sat. Sanichar. Shamba, or Hafta. Yaumu's-sab't. Sani-bar. Old and New style. 168. The New Style was introduced into all the Roman Catholic countries in Europe from October 5th, 1582 A.D., the year 1600 remaining a leap-year, while it was ordained that 1700, 1800, and 1900 should be common and not leap-years. This was not introduced into England till September 3rd, A.D. 1752. In the Table of Muhammadan initial dates we have given the comparative dates according to English computation, and if it is desired to assimilate the date to that of any Catholic country, 10 days must be added to the initial dates given by us from Hijra 991 to Hijra iiii inclusive, and 11 days from H. 11 12 to 1165 inclusive. Thus, for Catholic countries H. 1002 must be taken as beginning on September 27th, A.D. 1593. 1 So far as I know no European chronologist of the present century has noticed this point. Tables could be constructed for the heliacal rising of the moon in every month of every year, but it would be too great a work for the present publication. [S. B. D.] 104 THE INDIAN CALENDAR. The Catholic dates will be found in Professor R. Wiistenfeld's " VergleichungsTabellen der Miihainiiiadanisckcn iind Christlichen Zcitrcclumng" {Leipzic 18^4). To convert a date A.H. into a date A.D. 169. Rule I. Given a Muhammadan year, month, and date. Take down {w) the week- day number of the initial day of the given year from Table XVI., col. 2, and {d) the date-indicator in brackets given in col. 3 of the same Table {Art. i6t, and pj above) Add to each the collective duration up to the end of the month preceding the one given, as also the moment of the given date minus i {Table in Art. i6j above). Of the two totals the first gives the day of the week by casting out sevens, and the second gives the day of the month with reference to Table IX. Rule 2. Where the day indicated by the second total falls on or after February 29th in an English leap-year, reduce the total by one day. Rule 3. For Old and New Style between Hijra 991 and 1165 see the preceding article. Example i. Required the English equivalent of 20th Muharram, A.H. 1260. A.H. 1260 begins (Table XVI.) January 22nd, 1844. {w) Col. 2 (d) Col. 3 2 22 Given date minus i rr 19 19 21 41 = (Table IX.) Feb. loth. Cast out sevens = 21 o =: Saturday. Answer. — Saturday, February loth, A.D. 1844. Examplf; 2. Required the English equivalent of 9th Rajab, A.H. 131 1. A.H. 1311 begins July 15th, 1893. w. d. o 196 9th Rajab = (177 -f 8)= 185 185 7 I 185 381 =Jan. 1 6th, 1S94. (26) 3 — Tuesday. Answer. — Tuesday, January i6th, A.D. 1894. This last example has been designedly introduced to prove the point we have insisted on viz., that care must be exercised in dealing with Muhammadan dates. According to Traill's Indian Diary, Comparative Table of Dates, giving the correspondence of English, Bengali, N.W. Fasali, "Samvat", Muhammadan, and Burmese dates, Rajab 1st corresponded with January 9th, and therefore Rajab 9th was Wednesday, January 17th, but Letts and Whitaker give Rajab ist as corresponding with January 8th, and therefore Rajab 9th — Tuesday, January 16th, as by our Tables. THE .MLII.\MM.\n.\X CALENDAR. 105 To convert a date A.D. into a date A.H. 170. Rule I. Take down (w) the week-day number of the initial day of the corresponding Muhammadan year, or the year previous if the given date falls before its initial date, from Table XVI., col. 2, and [d) the corresponding date-indicator in brackets as given in col. 3. Subtract («f) from the collective duration up to the given A.D. date, as given in Table IX., Parts i. or ii. as the case may be. .-Xdd the remainder to (zy). From the same remainder subtract the collective duration given in the Table in Art. 163 above which is next lowest, and add r. Of these two totals (ic) gives, by casting out sevens, the day of the week, and (; in all others 29. Thus AH. 1300 (1290 + 16) had 355 days, the 30th of Zi'l-kuMut being Sunday. TABLES. THE INDIAN CALENDAR. TABLE I. Lunnlion-parls = lO.OOOM.v of a circle. A tithi ^ '/'"''' of the moon's si/nodic retolutiou. I CONCURRENT YTIAR. II. ADDED LUNAR MONTHS True. (Soulhcru.) 6 cjxle (Norllievn) current at Mesha saiikrfinti. Name of month. Time of the preceding sankrflnti espresscd in a \^ Time of the succeeding sai'ikranti expressed in 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 341 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 8434 »300- 301- 302- 303- »304- 305- 306- 307- *308- 309- 310- 311- *312- 313- 314- 315- *316- 317- 318- 319- *320- 321- 322- 323- •324- 325- 326- 327- ♦328- 329- 330- 331- •332- 47 48 49 50 51 52 53 54 56 57 58 60 1 2 3 4 5 G 7 8 9 10 11 12 13 14 15 16 17 18 19 ■-'0 Pramddin . Ananda. . . 7 Asvina , 287 Anala Pingala Kftlayukta. . , Siddharthin . Raudra Durmati . . . . Duudabhi . . . Rudhirodu;firi Raktfikaha 1) . Kshaya Prabhava . . . Vibhava . . . . Sukla Pramoda. . . . Prajapati, . . . Aiigiras Sriraukha . . . Bhiva Yuvaii Dhatri Isvara Bahudbunya . Pramftthin . . Vikrama .... Vrisha Chitrablulnu . Subh&nu. . . . Tflrava PArthiva Vmuu.. , Sravaiia. 28.755 6 Bhadrapada. 9767 3 Jycshtha. 29.757 648 312 9770 8 Jycshtha . 28.227 6 llhildrapada . 848 360 ') Krodhana, No. 59, was suppressed. THE HINDU CALENDAR. TABLE I. {Col. 23) a z= Distance of moon from .tun. (Cot. 24) b zz: moon's mean anomaly. (Col. 25) c = sun's mean anomaly. II ADDED H NAl! MONTHS ' (continiii it ) HI. COMMENCEMKNT HI' Till: Meau. Solar year. Luni-Solar year. (Civil day of Chaitra Sukla Ut.) Name of mouth. Time of the preceding saiikrflnti expressed in 9a 10a Time of the succeediiifc sankri^iiti expressed in 11a Day and Month A. D. 12a 13 (Time of the Mesha saiikrilDti.) Week dov. 14 By the Arya Siddh&nta. Day and Month A. D. 15 17 19 Week day. 20 At Sunrise on meridian of Dijain. 21 22 I 23 24 26 287 6 BhAdrapada. 'A Jyeshtha. 1 1 Magha 9793 29.874 29.380 0.796 0.302 1 Chaitra. 9 Marsaslrsha 9914 9750 29.743 29.249 0.605 0.171 6 Bh&drapada. 29.678 2 Vaisdkha. 11 M&gha. 9728 9871 29.184 29.612 0.106 0.534 7 Asvina. 16 Mar. 76) 16 Mar. 75) 17 Mar. 76) 17 Mar. 76) 16 Mar. 76) 16 Mar. 75) 17 Mai-. 76) 17 Mar. 76) 10 Mar. 76) 16 Mar. 75) 17 Mar. 76) 17 Mar. 76) 16 Mar. 76) 16 Mar. 75) 17 Mar. 76) 17 Mar 76) 16 Mar. 76) 17 Mar. 76) 17 Mar. 76) 17 Mar. 70) 16 Mar. 76) 17xMar. 76) 17 Mar 76) 17 Mar. 76) 16 Mai-. 76) 17 Mar. 76) 17 Mar. 76) 17 Mar 76) 16 Mar. 76) 17 Mar 76) 17 Mar 76) 17 Mar. 76) 16 Mar 76) OSat. 1 Sun. 3 Tues. 4 Wed. Thai-. 6Fri. ISun. 2 Mou. 3 Tues. 4 Wed. 6 Vx\. OSat. ISun. 2 Men. 4 Wed. 5 Thur. 6Fi-i. ISun. 2 Mou. 3 Tues. 4 Wed. 6 Fri. OSat. ISun. 2 Hon. 4 Wed. 5 Thur. 6 Fri. OSat. 2Mon. 3 Tues. 4 Wed 5 Thur 37 30 53 1 8 32 24 4 39 35 55 6 10 37 26 41 40 57 11 12 42 28 14 43 45 59 16 14 47 30 19 45 50 1 21 16 52 32 24 47 55 3 26 18 57 34 29 50 5 31 21 2 36 34 52 7 23 38 39 5-t 10 15 21 12 3 25 9 37 15 50 22 2 4 15 10 27 16 40 22 52 5 5 11 17 17 30 23 42 5 12 7 18 20 32 6 45 12 57 19 10 1 22 7 35 13 47 20 2 12 8 25 14 37 20 50 3 2 9 15 15 27 21 40 8 Mar. 26 Feb. 17 Mar. 6 Mar. 23 Feh. 13 Mar. 2 Mar. 20 Feb. 10 Mar. 27 Feb. 17 Feb. 8 Mar. 25 Feb. 14 Mar. 4 -Mar. 21 Feb. 11 Mar. 1 Mar. 18 Feb 9 Mar. 26 Feb. 16 Mar. 5 Mar. 22 Feb. 12. Mar. 2 Mar. 20 Feb. 11 Mar. 28 Feb. 16 Feb. 7 Mar 24 Feb 14 Mar 6 Fri. 4 Wed. 3 Tues. OSat. 4 Wed. 3 Tues. Sat. 5 Thur. 4 Wed. 1 Sun. 6 Fri. 5 Thur. a Mon. OSat. 5 Thnr 2 Mon. 1 Suu. 6 Fri. 3 Tues. 2 .Mon. 6ri-i. 5 Thnr. 2 Mon. 6 Fri. 5 Thur. 3 Tues ISun. OSat. 4 Wed. 1 Suu. OSat. 4 Wed. 3 Tues 9981 190 230 106 107 141 17 231 266 142 9838 52 9928 9962 177 52 87 9963 9997 9873 9749 9783 9998 212 247 122 9998 33 9908 9943 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 ;!428 3429 3430 3431 3432 3433 3434 THE [NDfAN CALENDAR. TABLE I. Liu afioii'pdrtii — lU.OlMlM s of a cirde. A lithi =r ' juM of the moon's si/nodk revoliilion. I. CONCURRENT YEAR. II. ADDED LUNAR MONTHS. Kali. Saka. 1 Kollam. A. D. Samvatsara. True. (Southeru.) Brihaspati cycle (Northern) current at Mesiia sankr&nti. Name of month. Time of the preceding sankT^nti expressed in Time of the succeeding sanki-Snti expressed in H E^ 1 2 3 3a 4 5 6 7 8 9 10 11 12 343.5 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3461 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3407 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 •.'88 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 - , 333-34 334-35 335-3C *336-37 337-38 338-39 339-40 •340-41 341-42 342-43 343-44 »344-45 345-46 346-47 347-48 •348-49 349-50 350-51 351-52 ♦352-53 353-54 354-55 355-56 •356-57 357-68 358-59 359-60 •360-61 361-62 362-63 363-64 •364-65 365-66 21 Sarv 22 Sarv 23 Viro 24 Vikr 25 Kha adh&rin 4 Ashudha 9718 29.154 474 1.422 ita 3 Jyeshtha 9861 29.583 607 1.821 26 Nau 27 Vija. 28 Java 29 Man 30 Dun 31 Hem 32 Vila 33 A'ika 34 sarv 35 Plav 36 Subb 37 Sob! 38 Krot 39 Visv 40 Pai-a 41 Plav 42 Kila 43 Sauu 44 Sfidl 45 Viro 46 Pari 47 Pran 48 Anai 49 lUkE 50 Alia 51 Piiig 52 K41a 53 SiiW 7 Asviua 9888 29.664 275 0.825 5 Sravaua 9957 29.871 532 1.596 3 Jyeshtha .... 9384 28.152 152 0.456 1 Chaitra 9890 29.670 86 0.258 hin 6 Bhadrapada.. 9998 29.994 438 1.314 4 Ashrxlha .... 9701 29.103 550 1.650 araua 3 Jyeshtha 9956 29.868 60S 1.809 7 Asvina 9983 29.799 266 0.768 4 AshAilha .... 9245 27.736 67 0.201 Bin 3 Jye«hthn .... 9443 23.329 192 0.576 lArtliin THE HfNDU CAfRNDAR. TAHLK I. (Vol. 2!!) (I = Distance of mum from sun. (Col. iV) h r= moons meiin anomaly. (Col. 25) r = sun's mean anomaly ADDED LUNAR MONTHS (continued.) III. f'OMJlENCEMENT OF THE Mean. Solar year. Name uf month. Time of the prioeding sai'ikrfinti expressed in Time of the siuTcedinf; sai'iknlnti expressed in Day and Month A. D. 13 (Time of the Mcsha saiikr4nti.) Week day. 14 By the Arya Siddh&nta. 17 Luni-Solar year. (Civilday of tlaitra.Siikla 1st.) Day and Month A. D. 19 Week day. 20 At Sunrlso on meridian of njjaln. Moon's Age. 21 22 23 24 1 Ash&dha . 9 Mftrgasirsha 9992 9827 6 BhSdrapada. 9970 2 Vais'akha.... 9805 11 Mfigha. 7 Asv 12 Phillguna. 9 Mirgasirsha Srflvaoa. 29.647 29.975 29.481 29.909 29.844 29.350 0.897 277 29.778 29.285 2 Vais&kha... 29.647 0.338 0.766 0.272 0.701 0.207 17 Mar. (76) 17 Mar. (76) 17 Mar. (76) 16 Mar (76) 17 Mar. (76) 17 Mar. (76) 17 -Mar. (76) 16 Mar. (76) 17 Mar. (76) 17 Mar. (76) 17 Mar. (76) 17 Mar. (77) 17 Mar. (76) 17 Mar. (76) 17 iMai-. (76) 17 Mar. (77) 17 Mar. (76) 17 Mar. (76) 17 Mar. (76) 17 Mar. (77) 17 Mar. (76) 17 Mar. (76) 17 Mar. (76) 17 Mar. (77) 17 Mar. (76) 17 Mar. (76) 17 Mar. (76) 17 Mar. (77) 17 Mar. (76) 17 Mar. (76) 17 Mar. (76) 17 Mar. (77) OSat. ISun. 2 Mon. 3 Tuea. 5 Thur fi Fri. OSat. 1 Sun. 3 Tues. 4 Wed. Thur OSat. 1 Sun 2 Mon. 3 Tues. 5 Thur. 6 Fri. OSat. ISun. 3 Tues. 4 Wed. Thur 6 Fri. 1 Sun. 2 Mon. 3 Tues. 4 Wed. 6 Fri. OSat. ISun. 2 Mon. 4 Wed. 17 Mar. (76) 5 Thur 3 52 10 16 17 22 30 4 42 10 55 17 7 23 20 5 32 11 45 17 57 10 6 22 12 35 IS 47 1 7 12 13 25 19 37 1 50 8 2 14 15 20 27 2 40 8 52 15 5 21 17 3 30 9 42 15 55 22 7 4 20 4 Mar, 21 Feb. 12 Mar. 1 Mar. 18 Feb. 9 Mar. 26 Feb. 16 Mar 5 Mar. 22 Feb. 13 Mar. 2 Mar. 20 Feb 10 Mar 28 Feb. 17 Feb. 6 Mar. 24 Feb. 15 Mar, 3 Mar. 21 Feb. 12 Mar, 1 Mar. 18 Feb. 8 Mar. 5 Feb. 16 Mar. 5 Mar. 22 Feb. 13 Mar. 3 Mar 20 Feb. .(63) (52) (71) (61) (49) (68) (57) (76) (64) (53) (72) (62) (51) (69) (59) (48) .(65) (55) .(74) ,(63) (52) (71) (60) (49) (67) (56) (75) (65) (53) ISun, 5 Thur 4 Wed 2 Mon. 6 Fri. Thur 2 Mon. ISun. Thur 2 Mon. ISun. 6 Fri. 4 Wed 2 .Mon OSat. 4 Wed 2 Mon OSat. 6Fi-i. 3 Tues 1 Sun. OSat. 4 Wed. 1 Sun. OSat. 4 Wed. 3 Tues. 1 Sun. Thur. .963 .579 .510 .909 .516 .705 .708 .966 .777 .237 .180 .525 .984 .060 157 33 68 282 158 192 68 103 9979 .186 (72) 4 Wed. (62) 2 .Mon. (51) 6 Fri, 10 32llOM.ar.(69) 5Thur 144 110 148 318 70 52 212 124 .372 202 .606 876 909 192 .561 .558 204 165 432 330 .444 954 210 .156 636 103 318 14 228 104 9800 14 49 9924 139 173 49 925 172 244 20 213 9870 83 9960 9994 209 84 119 956 839 686 622 469 406 253 100 36 920 803 703 586 433 333 217 152 1000 883 819 666 514 450 297 233 116 963 900 783 630 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 .3445 3446 3447 3448 3449 3450 3451 345 2723433 241 3454 213 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 2591.3467 THE INDIAN CALENDAR. TABLE 1. LutKition-jjiirtx =: 10,000//« of u circle. A tiihi = ''•mtli of the moon's si/nodk resolution. I. CONCURRENT YEAR. 11. ADDED LUNAR MONTHS. True. (SoUtllcTIl.) Brihaspati cycle (Northern) current at Mesha sai'iki'anti. Name of niontti. Time of the preceding saiikrunti expressed in Time of the succeeding sankranti expressed in 3468 3469 3470 3471 3472 3473 3474 347 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 349: 3493 3494 349 3496 3497 3498 3499 3500 290 291 292 293 294 295 296 297 29S 299 300 301 302 303 304 30 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 417 448 449 450 451 452 453 454 45.' 450 366-07 367-68 '368-69 369-70 370-71 371-72 •372-73 373-74 374-75 375-76 *376-77 377-78 378-79 379-80 *380-81 381-82 382-83 388-84 *384-85 385-86 386-87 387-88 •388-89 389-90 390-91 391-92 •392-93 393-94 394-95 395-96 •396-97 397-98 398-99 54 Raudra 55 Durmati 56 Dundubhi 57 Rudhirodgririu . 58 Kaktaksha 59 Krudhana 60 Kshaya 1 Prabhava 2 Vibhava 3 Sukla 4 Pramoda 5 Prajapati 6 Aiigiras 7 Srimnkha .... 8 Bhava 9 Yuvan 10 DhStri , 11 {svara . 12 liahudhunya.. , 13 PraTiulthiu . . . . 14 Vikrama . 15 Vrisha . 16 Chitrabhfinu. . . 17 Siibhunu . 18 Tflraya . 19 Parthiva . 20 Vyaya . 21 Sarvajit . 22 SarvadhHrin . . . 23 Virodbin . 24 Vikrita . 25 Kliara •) . 27 Viji.ya., 12 Phulguna , 6 BhiVlrapada. 29.742 28.722 9747 9202 12 Phr.lgu 5 SravSua. 6 Bhildrnpada. 9687 9875 9831 270 .Nnndaiia, No. 20, was supiircswd. THE HINDU CALENDAR. \ TABLE 1. {Col. 23) a ^=. Uinlance of moon from sun. (Cot. 2+) b z:: moon's mean unomuly. [Col. 25) c ^r sun's mean anomaly. II. ADDED LUNAR MONTHS (continued.) III. COMiMENCE.\lENT OF THE Mean. Solar year. Luni-Solar year. (Ciril day of Chaitra Sukla Ut.) Name of month. 8a Time of the preceding aankrftnti eiprcssed in Time of the succeeding sankrtlati expressed in Day and Month A. D. 13 (Time of the Mesha saiikrinti ) Week day. 14 By the Arya Siddhdnta. Day and Month A. D. 15 19 Week day. 20 At Sunrise on meridian uf Ujjaln Moon's Ane. 0.076 7 Asvina 12 Ph&lguna... 0.010 0.439 9 Mftrgasirsha . 0.867 3 SrSrana. 9817 29.879 29.386 0.801 0.308 7 .\svina. 0.736 12 Phaiguna. 9773 9916 29.320 29.748 0.242 0.670 17 Mar. 17 Mar. 17 Mar. 17 Mar. 17 Mar. 17 Mar. 17 Mar. 17 Mar. 17 Mar. 18 Mar. 17 Mar. 17 Mar. 17 Mar. 18 Mar. 17 Mar. 17 Mar. 17 Mar. 18 Mar. 17 Mar. 17 Mar. 17 Mar. 18 Mar. 17 Mar. 17 Mar. 17 Mar. 18 Mar. 17 Mar. 17 Mar. 17 Mar. 18 Mar. 17 Mar. 17 Mar. 17 Mar. erri. OSat. 2 Men. 3 Tues. 4 Wed. 5 Thur. OSat. 1 Sun. 2 Mon. 4 Wed. 5 Thnr. GFri. OSat. 2 Mon. 3 Tues. 4 Wed. .5 Thur. OSat. ISun. 2 Mon. 3 Tues. 5 Thur. 6Fri. OSat. 1 Sun. 3 Tues. 4 Wed. 5 Thur. 6Fri. 1 Sun. 2 Mon 3 Tnes 4 W.d. 41 52 57 24 12 55 28 26 43 57 59 29 15 30 31 46 2 1 34 17 32 36 48 3 39 19 10 34 41 50 12 5 44 21 15 36 4fi 52 17 7 49 23 20 38 51 54 22 9 54 25 40 56 56 27 11 59 27 30 43 1 58 32 27 Feb. 58) 18 Mar. 77) 6 Mar. 66) 24 Feb. 55) 15 Mar. 74) 4 Mar. 83) 22 Feb. 53) 12 Mar. 71) 1 Mar. 60) 18 Feb. 49) 7 Mar. 67) 25 Feb. 56) 16 Mar. 75) 6 Mar. 65) 23 Feb. 54) 13 Mar. 72) 2 Mar. 61) 19 Feb. 50) 9 Mar. 69) 26 Feb. 57) 17 Mar. 76) 7 Mar. 6K) 25 Feb. 56) 15 Mar 74) 4 Mar. 63) 21 Feb. 52) UMar. 71) 28 Feb. 59) 17 Feb 48) 8 Mar. 67) 26 Feb. 57) 16 Mar. 75) 6 Mar. 65) 2 Mon. ISun. Thur. 3 Tuts. 2 Mon. 6 Fri. 4 Wed. 3 Tues. Sat. 4 Wed. 2 Mon. OSat. 6 Fri. 4 Wed. ISuu. OSat. 4 Wed. 1 Sun. OSat. 4 Wed. 3 Tues. ISun. 6 Fri. Thur 2 Mon. 6Fi-i. 5 Thur 2 Mm. fi Fri. 5 Thur 3 Tues. Mon. Sat. 30 9905 120 154 30 244 279 1 30 9726 9941 9975 190 65 100 9976 9851 9886 ,9762 9796 11 225 280 136 11 46 9922 9797 9832 46 81 295 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3486 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 THE INDIAN CALENDAR. TABLE I. Luiiulioii-parts nr: in,(l()ll/^.( of a circle. A tithi ^ '/suM of the mootix synodic retoliiiion. I. CONCURRENT YEAR. II ADDED LUNAR MONTHS. True. (Southern.) Brihaspati eyclc (Northern) current at Mesha sankrilnti. Name of month. Time of the preceding sankrSnti expressed in Time of the succeeding sankrfinti expressed in 3a 10 11 3501 3502 3503 3504 3505 3507 328 463 3508 329 464 3509 330 465 3510 331 466 3511 332 467 3512 333 468 3513 334 469 3514 335 470 3515 336 471 3516 337 472 3517 338 473 3518 339 474 3519 340 475 3520 341 476 3521 342 477 3522 343 478 3523 344 479 3524 345 480 3526 3527 3529 3530 399-400 •400-401 401- 2 402- 3 4,03- 4 405- 6 406- 7 407- 8 *408- 9 409- 10 410- II 411- 12 *412- 13 413- 14 414- 15 415- 16 •416- 17 417- 18 418- 19 419- 20 •420- 21 421- 22 422- 23 423- 24 •424- 25 425- 26 426- 27 427- 28 •428- 29 28 Jaya 29 Manmatha . . 30 Durmukha . 31 Hemalamba. 32 Vilamba ... 3 Jyeshtha . S Kurttika . . . 9 M(!rgas.(Kth. 12 Phalguna... 29.871 0.060 29.577 34 SSrvari 35 Plava 36 Subhakrit . . . 37 Sobhana 38 Krodhin 39 Visvfivasu. . . 40 Parabhava . . 41 Plavaiiga . . . 42 Kilaka 43 Saumya 44 Sadhfirana . . . 45 Virodhakrit, . 46 Paridhfivin . . 47 Pramudin. . , 48 Auanda 49 UiU-shasa 50 Auala 51 Piugala 4 .\shri'lha . . . . 9908 6 BhSdrapada.. 27.882 3 Jyeshtha. 29.847 52 Kfilayukla 53 Siddhfirthin . . . 54 Raudra 55 Burmali 56 Dundubhi 57 liudhimdu'Arin . 7 Asvina. . . 10 Pau3lui(K,h.) 1 Chaitra . . 9920 93 9985 29.760 0.279 29.955 20 9968 154 9955 324 THE HINDU CALENDAR. TABLE I. {Col. 23) a :zz Distance of moon from sun. {Cot. 24) b m moon's mean anomaly. {Col. 25) c := sun's mean annmali/. II. ADDED LUNAK MONTHS (conttnufd.J III. CO.MMENCE.MENT 01' THE Mean. Solar year. Luni-Solar year. (Civil day of Chaitra Sukla Ist.) Name of month. Time of the preccJini; sankr&nti expressed in Time of the succeeding saiikrunti expressed in Day and Month A. D. (Time of the >Iesha sankrfinti.) By the Arya Siddhanta. Day and Month A. D. Week day. At Sunrise on meridian of Ujjain. Moon's Age. 8a 10a 11a 12a 13 14 15 17 19 20 22 23 5 SrAvapa. 9872 29.617 29.552 29.980 0.474 0.902 9829 9972 29.421 257 0.771 6 Bh&drapada. . 0.278 18 Mar. (77 17 Mar. (77 17 Mar. (76 18 Mar. (77 18 Mar. (77; 17 Mar. (77 17 Mar. (76; 18 Mai-. (77 18 Mar. (77: 17 Mar. (77 17 Mar. (76 18 Mar. (77 18 Mar. (77; 17 Mar. (77! 17 Mar. (76; 18 Mar. (77 18 Mar. (77 17 Mar. (77 17 Mar. (76; 18 Mar. (77 18 Mar. (77 17 Mar. (77! 17 Mar. (76; 18 Mar. (77 18 Mar. (77 17 Mar. (77 17 Mar. (76 18 Mar. (77 18 Mar. (77 17 Mar i 77 ePri. OSat. ISun. 3 Tues. 4 Wed. 6 Fri. 1 Sun. 2 Mon. 3 Tues. i Wed. 6 Fri. OSat. ISun. 2 Mod. 4 Wed. 5 Thur. 6 Fri. OSat. 2 Mon. 3 Tues. 4 Wed. Thur. OSat. ISnn. 2 Mon. 3 Tues. 5 Thur 6 Fri. OSat. 14 4 29 35 45 6 3 16 9 47 11 2 42 18 14 33 45 49 16 4 47 20 19 35 50 51 21 6 52 22 14 37 55 53 26 8 57 24 29 40 55 31 11 2 26 34 42 5 57 36 13 7 28 39 \i 10 5 37 11 50 18 2 15 6 27 10 37 16 50 23 2 5 15 11 27 IT -40 23 Feb. (54; 13 Mar. (73 2 Mar. (61 19 Feb. (50; 10 Mar. (69 27 Feb. (58 17 Mar. (76 7 Mar. (66; 24 Feb. (55 14 Mar. (74 4 Mar. (63 21 Feb. (52; 11 Mar. (70 29 Feb. (60 17 Feb. (48 8 Mar. (67 26 Feb. (57 16 Mar. (76 5 Mar. (64 22 Feb. (53; 13 Mar. (72 1 Mar. (61 18 Feb. (49 9 Mar. (68; 27 Feb. (58; 17 Feb. (48; 7 Mar. (66; 24 Feb. (55 15 Mar (74 3 Mar (l'.3 4 Wed. 3 Tues. OSat. 4 Wed. 3 Tnes. 6 Fri. 4 Wed. ISun. OSat. 5 Thur 2 Mon. OSat. 5 Thur 2 Mon. 1 Sun. 6 Fri. Thur 2 Mon. 6Fi-i. 5 Thur. 2 Mon. 6 Fri. 5 Thnr. 3 Tues. ISun. OSat. 4 Wed. 3 Tues, OSat 171 206 82 995 9992 192 ©_, 32 306 313 73 304 104 82 201 202 80 64 153 122 ©■ 0-30 9902 117 9992 27 241 117 9813 27 9903 9938 152 1 63 9938 9973 9849 9724 9759 9973 188 222 98 133 8 3501 3502 3503 3504 3505 3507 3508 35 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 © See Text. Art. 101 above, Lii»(itio)i-parts THE INDIAN CALENDAR. TABLE I. 10,0U0/^4 of a circle. A tiihi =: '/:t"M nf the moon's synodic retotiiiion. I. CONCUKKEXT YEAK. n. ADDED I.UNAK MONTHS, 1 4 5 True. (Southei'u.) 6 Brihaspati cycle (Northern) at Mesha saukr&nti. Name of month. Time of the preceding sankrflnti expressed in Time of the succeeding sunkr&nti expressed in S531 3533 3533 3534 3535 3536 3537 3538 3539 3540 3541 354:; 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3654 3555 3556 355: 355! 3559 3560 3561 3562 3563 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 487 488 489 490 491 492 493 494 495 496 497 49S 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 429- 430- 431- •432- 433- 434- 435- »436- 437- 438- 439- •440- 441- 442- 443- •444- 445- 446- 447- •448- 449- 450- 451- •453- 453- 454- 455- •456- 457- 458- 459- •460- 461- 58 59 60 1 2 3 4 6 7 8 9 10 11 13 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Raktaksba .. Krodhana . . . Kshaya Prabhava . . . Vibhava Sukla Pramoda. . . . Prajapati.. . . Angiras Srimukha . . . Bhava Ynvan DhStri Isvara Kahudhftuja. Pramathin . . Vikrama. . . . Vrisba Chitrabhfinu Subhanu. . . . Taraiia Purtbiva Vyaya Sarvajit . . . . Sarvadhuriu . Virodhin . . . Vikrita Khai'B Nandnna. . . . Vijaya Java Manmatha. . . Durinuklia . . 9870 6 Bhadrapada.. 29.685 6 Bhadrapada. 28.824 .572 6 Uhildrapada.. 6 Uhiidrnpada. THE HINDU CALENDAR. TABLE 1. {Vol. 2.'!) a n; Distance of inoon from fun. (Cot. 24) h ^ moon'.i mean anomalj/. {Col. 25) r = .vtf«'.v mean anomuli/. 11 ADDED LUNAR MONTHS (continued.) III. COMMENCEMENT OK THE Mean. Solar year. Luni-Solar year. (Civil day of Chaitra Sukia 1st.) Name nf month. 8a Time of the preceding saiikr&nti expressed iu 10a Time of thi succeeding saiikr&nti expressed in Day and Month A. D. 12a 13 (Time of the Mesha sankr&nti.) Week dav 14 By the Arya Siddhinta. Day and Month A. D 15 17 19 Week day. 20 At Bonrise on meridian of Ujjaln. Moon's Age. 22 23 24 11 M^ha. 29.784 29.290 0.706 0.212 29.718 9741 9 Margasirsha. 9720 29.653 29.159 0.575 0.081 170 11 Magha. 9698 9841 29.093 29.522 0.016 0.444 0.378 9962 9797 29.885 29.391 0.807 0.313 17 Mar. 18 Mar. 18 Mar. 17 Mar 18 Mar. 18 Mar. 18 Mar. 17 Mar. 18 Mar. 18 Mar. 18 Mar. 17 Mar. 18 Mar. 18 Mar. 18 Mar. 17 Mar. 18 Mar. 18 Mar. 18 Mar. 17 Mar. 18 Mar. 18 Mar. 18 Mar 17 Mar. 18 Mar. 18 Mar. 18 Mar. 17 Mar. 18 Miir. 18 Mar. 18 Mar. 8 Mar. 8 Mar 1 Sun 3 Tucs. 4 Wed. 5 Thur OSat, 1 Sun 2 Mon. 3 Tues 5 Thur. 6 Fri. OSat. 1 Sun. 3 Tues. 4 Wed. Thur. 6 Fri. 1 Sun. 2 Mon. 3 Tues. 4 Wed. 6 Fri. OSat. 1 Sun. 2 Mon. 4 Wed. 5 Thui-. 6 Fri. Sat. 2 Mon. 3 Tucs. 4 Wed. 6 Fri. OSal. 59 41 15 12 30 44 46 15 1 46 17 17 32 49 48 20 3 19 22 34 54 50 25 5 56 21 27 36 59 52 30 8 1 23 32 39 4 54 35 10 6 25 37 41 9 56 40 12 11 27 42 43 14 58 45 14 16 29 47 45 19 50 16 21 20 Feb 11 Mar. 28 Feb. 18 Feb. 8 Mar. 26 Feb. 17 Mar. 5 Mar. 22 Feb. 12 Mar. 2 Mai-. 19 Feb. 10 Mar 27 Feb. 18 Mar. 6 Mar. 23 Feb. 14 Mar 3 Mar. 21 Feb. 11 Mar. 1 Mar 18 Feb. 8 Mar. 25 Feb. 1 6 Mar. 5 Mar. 22 Feb. 12 Mar. 2 Mar. 19 Feb. 9 Mar. 27 Feb. 4 Wed. 3 Tues OSat. 5 Thur 4 Wed 2 Mon 1 Suu. 5 Thur 2 Mon. OSat. 5 Thur 2 Mon. 2 Mon. 6 Fri. 5 Thur 2 Mon. 6 Fri. Thur. 2 Mon. OSat. 6Fi-i 4 Wed. ISun. OSat. 4 Wed. 3 Tucs. OSat 4 Wed. 3 Tnes. 1 Sun. Thur. 4 Wed. 2 Mon. 166 .498 9884 265 192 .576 9919 201 ©-M -.075 9794 48 93 .279 8 932 79 .237 43 868 258 .774 257 751 304 .912 292 687 278 .834 168 534 281 .843 44 381 17 .051 9740 281 214 .642 9954 165 0-16 -.048 9830 12 329 .987 203 984 97 .291 79 832 115 .345 113 767 36 .108 9989 615 39 .117 9865 462 124 .372 9900 398 55 .165 9775 245 232 .696 9989 129 219 .657 24 64 332 .996 238 948 122 .366 114 795 150 .450 149 731 99 .297 24 578 186 .558 59 515 182 .546 9935 361 89 .267 9811 209 96 .288 9845 145 224 .672 60 28 0-21 -.063 9935 875 0-19 -057 9970 812 194 .582 185 695 3531 3532 3533 3534 3535 3536 3537 35 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 See Text. Art. lUl above, para. 2. THE INDIAN CALENDAR. TABLE I. LunatUm-jiarls ^ 10,OOOMs nf a cirrle. A tithi = '/aoM of the moon's si/tiodic revolution. I. CONCURRENT YEAR. a, ADDED LUNAR MONTHS. True. (Southern.) Brihaspati cycle (Northern) current at Mesha sankranti. Name of month Time of the preceding sanln'anti expressed in Time of the succeeding sahkr&nti cipressed in 3 3a 10 3561 3565 3566 3567 3568 3509 3570 357! 3572 3573 3574 357 3570 3577 3578 3579 35 3581 3882 3583 3584 3585 3580 3587 3588 3589 3590 3591 3592 3893 8594 3595 385 386 387 388 389 390 391 392 393 39-1 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 462-63 463-64 '464-65 465-60 466-67 467-68 *468-69 469-70 470-71 471-72 *472-73 473-74 474-75 475-76 *476-77 477-78 478-79 479-80 *480-81 481-82 482-83 483-84 »484-85 485-86 486-87 487-88 *488-89 489-90 ■190-91 491-92 •492-93 493-94 31 Hemalambn ... 32 Vilamba 33 Vikarin 34 sarvari 35 Plava 36 Subhakrit 37 Sobhana 38 Krodhin 39 Vis'vavasu 40 Parabhava 41 Plavanga 42 Kilaka 43 Saumya 44 Siidharai.ia 45 Virodhakrit.. . . 46 Paridhivin 47 Pramfidin 48 Auanda 49 Rakshasa 50 Anala . 51 Piiigala 1) . 53 Siddhftrthin. . . . . 54 Raudra . 55 Dnrmati . 56 Dundubhi . 57 Riidhirodg&rin 6 Bhadrapada. 4 Ashiidha . . . 7 Asviua. 3 Jvcshlha. 58 Raktilksha 59 Krodhana . 60 Kshaya . . . 1 PrabbavB. . 2 Vibhava. . 3 .Sukla 8 KArttika 10 Pimilm(Ksh^ 1 Chailra.. 6 BhAdrapada.. 9953 9476 9928 64 9887 29.811 29.784 0.192 29.661 ') KAlayukta, No. 52, was aujiprcssud. THE HINDU CALENDAR. TABLE I. [Cot. i'X) (I zir Distance of mnoii fro>,i sun. {Cui -M) // iioon'x mean aiiomah/. {Cot. 25) tun s mean an\ oinaty. ADDED LLNAR MONTHS (continued.) 111. COMMENCEMENT OF THE Mean. Solar year. Name of luoiitb. Time of the preceding saiikrfinti expressed in 9a 10a Time of the succeeding sankr&nti expressed in 11a Day and Month A. D. 12a 13 (Time of the Mesha saiikr&nti.) Week day. 14 By the Arya Siddhunta 17 Luni-Solar year. (Civil day of Chaitra Sukia 1st.) Day and Month A. D. 19 Week day. 20 At Sunrise on meridian of UJJaln. 22 23 24 6 Bh&drapada. 29.819 247 0.741 7 Asiina. . 9 Mirgasirsha . 5 Srivana. 9731 9874 9710 0.479 18 Mar. (77) 18 Mar. (77) 18 Mar. (78) 18 Mar. (77) 18 Mar. (77) 18 Mar. (77) 18 Mar. (78) 18 Mar. (77) 18 Mar. (77) 18 Mar. (77) 18 Mar. (78) 18 Mar. (77) 18 Mar. (77) 18 Mar. (77) 18 Mar. (78) 18 Mar. (77) 18 Mar. (77 18 Mar. (77) 18 Mar. (78 18 Mar. (77) 18 Mar. (77 18 Mar. (77) 18 Mar. (78) 18 Mar. (77) 18 Mar. (77) 18 Mar. (77) 18 Mar. (78) 18 Mar. (77) 18 Mar. (77) 19 Mar. (78) 18 Mar. (78) 18 Mar. u 7) 1 Sun. 2 Men. 4 Wed. 5 Thur. 6 Kri. OSat. 2 Mon. 3 Tues. 4 Wed. 5 Thur, OSat. 1 Sun. 2 Mon. 3 Tues. 5 Thur 6Fri. OSat. 1 Sun. 3 Tues. 4 Wed. Thur. 6Fri. 1 Sun. 2 Mon, 3 Tues. 4 Wed. 6 Fri. OSat. 1 Sun. 3 Tues 4 Wed. 5 Thur. 53 9 24 40 55 11 26 42 57 13 28 44 22 59 54 15 25 30 66 46 27 1 59 17 30 33 1 15 21 3 9 16 22 4 10 16 55 23 7 5 20 11 32 17 45 23 57 6 10 12 22 18 35 47 7 13 \i 18 Mar, (77) 7 Mar. (66) 24 Feb. (55) 14 Mar. (73) 3 Mar. (62) 21 Feb. (52) 11 Mar. (71) 28 Feb. (59) 18 Feb. (49) 8 Mar. (67) 26 Feb. (57) 15 Mar. (74) 5 Mar. (64) 22 Feb. (53) 12 Mar. (72) 2 Mar. (61^ 19 Feb. (50) 10 Mar. (69) 27 Feb. (58) 17 Mar. (76) 6 Mar. (65) 23 Feb. (54) 13 Mar. (73) 3 Mar. (62) 21 Feb. (52) 12 Mar. (71) :9 Feb. (60) 17 Feb. (48) 8 Mar. (67) 25 Feb. (56) 15 Mar. (75) 1 Sun. 5 Thur 2 Mon. 1 Sun. Thur 3 Tues. 2 Mon. 6 Fri. 4 Wed. 2 Mon. OSat. 5 Thur 3 Tues. Sat. 6 Fri. 4 Wed. 1 Sun. OSat. 4 Wed. 3 Tues. OSat. Wed. 3 Tues. ISun 6 Fri. 5 Thur. 2 Mon. 6 Fri. 5 Thur. 3 Mon. 1 Sun. 257 255 235 285 110 230 208 7 246 6 321 83 319 120 99 216 44 91 71 164 132 0-7 0-14 102 233 239 144 .771 .765 .703 .855 .330 .690 .624 .021 .738 .018 .963 .249 .957 .360 .297 .648 .132 .273 .213 .492 .396 .021 973 9772 )986 201 235 432 9970 9881 95 130 5 220 9916 130 9826 41 9916 9951 165 41 76 951 9986 9861 4Mar. (63i 5Thur.0. 429 681 531 .621 21 9897 9932 9807 9987 486 3564 3565 3566 3567 3568 3569 3570 .3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 199 3591 250 3592 2193593 2713594 2403595 See Text. Art. 101 above, para. 2. THE INDIAN CALENDAR. TABLE I. Lull n lion-parts =r 10,000Mi of a rirrle. A tithi =r ^'laith of (he moon's synodic rnolution. I. CONCURRENT YEAR. II. ADDED LUNAR MONTHS. % i Trae. (Southern.) Brihaspati cycle (Northern) current at Mesha sankrSnti. Name of month. Time of the preceding sankrSnti eiprcssed in Time of the succeeding sankr&nti 11 3596 3597 3598 3599 3B00 3601 3602 3603 3604 3605 3606 361)7 3608 3609 36111 3()11 3612 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 3613 434 3614 -435 361 3616 3R17 3618 3619 3620 3621 3622 3823 3624 362; 3626 55 553 554 555 556 B57 558 659 560 561 562 563 564 56 560 567 568 569 570 571 572 573 574 575 576 577 57S 579 580 681 496- 97 497- 98 498- 99 499-500 500- 1 5(11- 2 502- 3 503- 4 •504- 5 505- 6 506- 7 507- 8 '508- 9 509- 10 510- 11 511- 12 •512- 13 513- 14 514- 15 515- 16 •516- 17 517- 18 518- 19 519- 20 •520- 21 521- 22 622- 23 523- 24 •524- 25 525- 26 4 Pramoda ... 5 Prajapati . . . 6 Angiras 7 Srimukha . . . 8 Bhiva 9 Yuvan 10 Dhatri 11 Isvara 12 Bahudhfinja 13 Praiufithin . . 14 Vikrama. . . . 15 Vrisha 16 Chiirabhauu. 17 Subhanu 18 Tarana 19 Parthiva 20 Vyaya 21 Siirrajit 22 Sarvadbarin . 23 Vii-odhin . . . 24 Vikrita 25 Khaia 26 Nandaca. . . . 27 Vijayn 28 Jiiya 29 Manmatha. . 30 Durniukha . 31 Hcmalamba. , 32 Vilamba.... . 33 Vikftrin.... . 34 Sftrvari . 35 Plava 3 Jyeshtha . 7 Asvina.. . 12 Phalguna. 6 Bhftdrapada 3 Jyeshtha. 9597 29.949 28.791 9737 THE HINDU CALENDAR. TABLE I. (CoL 23) a = DisUince of moon from sun. (Col. 24) h ■=: moon's mean unnmaly. [Col. 25) r zr: sun's mean rinomtily. II ADDED LUNAR MONTHS (continued ) III. COMMKNCEMENT 01' TIIK Mean. Solar year. Luni-Solar year. (Civil day of Chaitra Sukla Ut.) Name of month. Time of t&e prccidinf: sai'ikrfinti expressed in 9a 10a Time of the succeeding saiikr&nti expressed in 11a Day and Month A. D. 12a 13 (Time of the Mesha saiikr&nti.) Week day. 14 By the Arya Siddhanta. Day and Month A. D. 16 17 19 Week dav. 20 At Sanrlsa on mertdlan of Ujjain. Moon'e Age. 21 23 24 12 Ph&lgUDa. 9973 9809 29 920 29.426 0.842 0.348 9 Mirgasirsha. 29.789 29.295 0.711 0.217 3 Jyeshtha . 12 Phalguna. 29.230 29.658 0.152 0.580 5 Sr&vana 18 Mar. 19 Mar 18 Mar. 18 Mar. 18 Mar. 19 Mar. 18 Mar. 18 Mar. 18 Mar. 1 9 Mar. 18 Mar. 18 Mar. 18 Mar. 19 Mar. 18 Mar. 18 Mar. 18 Mar. 19 Mar. 18 Mar. 18 Mar. 18 Mar. 19 Mar. 18 Mar. 18 Mar. 19 Mar. 19 Mar. 18 Mar. 18 Mar. 19 Mar. 19 Mar. 18 Mar. 18 Mar. 6Fri. ISun. 2Mon 3 Tues. 4 Wed. 6Fri. nsat. 1 Sun. 2 Mon. 4 Wed. D Thur. 6Fri. OSat. 2 Mon. 3 Tues 4 Wed. Thur. I) Sat. 1 Sun. 2 Mon. 3 Tues 5 Thnr. erri. OSat. 2 Mon. 3 Tues. 4 Wed. 5 Thur. OSat. 1 Sun. 2 Men. 3 Tues. 19 35 35 6 50 37 6 9 21 40 37 11 52 42 8 14 23 45 39 16 54 47 10 19 25 50 41 21 56 52 12 24 27 55 43 26 58 57 14 29 30 45 31 1 2 16 34 32 5 47 36 3 7 18 39 34 10 49 41 22 Feb. 13 Mar. 2 Mar. 19 Feb 10 Mar. 27 Feb. 16 Mar. 6 Mar. 23 Feb. 14 Mar. 3 Mar. 21 Feb. 11 Mar 28 Feb 18 Mar. 7 Mar. 25 Feb. 16 Mar. 4 Mar. 22 Feb. 13 Mar. 47 2 Mar, 19 Feb. 12 9 Mar. 26 Feb. 37 17 Mar. 50 6 Mar 2 23 Feb. 15 14 Mar. 27 4 Mar. 40 21 Feb. 2 U Mar. 3 Tues 2 Mon. OSat. 4 Wed. 3 Tues. OSat. 5 Thur 3 Tues OSat. 6Fri. 4 Wed. 2 Mon. OSat. 4 Wed. 3 Tues. OSat. Thur 4 Wed. 1 Sun. 6Fri. 5 Thur, 2 Mon. 6 Fri. 5 Thur 2 Mon 1 Sun 6 Fri 3 Tues. 2 Mon OSat. 4 Wed. 3 Tues 109 96 271 206 287 289 29 229 0-24 112 311 47 48 13 68 248 236 0- 137 162 108 116 192 101 110 0- 0- 204 174 264 22 57 271 147 181 57 9753 9967 9843 9878 92 306 9878 9912 9788 3 37 9913 128 162 38 913 9948 9824 58 73 9949 9983 197 73 108 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 362 3623 3624 3625 3626 3627 © See Teit, Art. 101, para. 2. THE INDIAN CALENDAR. TABLE I. J,unation-]j((rts ^= 10,OOOM.< of u circle. A tithi = ',,ii,M of the moon's nj/iioi/ir rcndufif,!. I. CONCURRENT YEAR. 11. ADDED LUNAR MONTHS. True (Soiithi-i-n.) Brihaspati cycle (.N'orlhern) current at Mesha sankraati. Name of month. 8 Time of the preceding saukrSnti expressed in 9 10 Time of the succeeding saiikranli expressed in 11 362'J 3630 3631 3632 3633 3634 3635 3636 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 469 470 471 472 473 474 475 476 585 5S6 587 58S 589 590 591 592 593 596 597 598 599 600 601 602 604 605 606 607 608 60« 010 611 61i 529 530 531 *532 533 534 535 ♦536 537 538 539 •o40- 541- 542- 543- •544- 546- 547- •548- 549- 550- 551- •552- 553- 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 5S 59 60 1 2 3 Sobhaua Krodhiu .... Vi.^vavasu . . . Parabhava . . . Plavaiiga.. . . Kilaka Saumya Sadharaiia . . . Virodhakrit . Paridhivin. Prarafldin. . Anauda Rflkshasa . . . , Auala Piiigala Kiilayukta Siddhilrthiu . . Rauih'a Dundtibhi Uudhirodgurin . liuklaksha Krodhaua Kshaya Prabhava Vibhava Sukla 1'ramo.ln 8 Karttika. 10 eausha(Ksh) 12 Phiilsuna 6 Bhiidrapada. 3 Jveshtha S Karttika. . 10 Pamha(Ksh) 12 PhiUguna.... 5 SrAvaua. 9878 15 9998 9747 29.634 0.045 29.994 29.727 29.895 0.090 29.874 9824 29.472 55 9961 110 )70 4S2 1.4tfi THE HINDU CALENDAR. x TABLE I. {Col. 23) a ■=!. DisUiiire of moon from sun. [Col. iV) h ■=:z moon's mean anomaly. {Col. 25) r zr sunx mean anomaly. II. ADDED IX'.VAR MONTHS (continued.) III. COMMENCEMENT 01' TilK Mean. Name "f month. Solar year. Time of the prcctdinf; sankriinti expressed in Time of the succeeding saiikr^nti expressed in Day and Month A. ». 13 (Time of the Mesha sankrdnti.) Week dav. By the Arya Siddh&uta, 17 Luni-Solar year. (Civil day of Chaitra Sukla Ist.) Day and Month A. D. Week dav. 20 Moon's Age. 8 Karttika. 0.877 0.384 0.812 0.746 9777 29.759 6 Bhadrapada. 9755 29.693 29.200 0.615 0.122 19 Mar. (7 19 Mar 18 Mar. 18 Mar. 19 Mar 19 Mar. 18 Mar. 18 Mar. 19 Mar. 19 Mar. 18 Mar. 18 Mar. 19 Mar. 19 Mar. 18 Mai-. 18 Mar. 19 Mar. 19 Mai-. 18 Mar. 19 Mar. 19 Mar 18 Mar. 19 Mar 19 Mar. 19 Mar. 18 Mar. 19 Mar. 19 Mar 6 Kri. OSat. 1 Sun. 3 Tues. i Wed. 5 Thur. 6Fi-i. 1 Sun. 2 Mon. 3 Tiies. 4 Wed. 6Fri. OSat. 1 Sun. 2 Mon. 4 Wed. 5 Thur. 6 Fri. 2 Mon. 3 Tues. 4 Wed. 6 Eri. OSal. 1 Sun. 2 Mon. 4 Wed 5 Thur. 20 44 36 15 51 46 7 17 22 49 38 20 53 51 9 22 24 54 40 25 65 11 27 26 59 42 30 58 1 13 32 29 44 35 15 37 31 46 40 2 11 17 42 33 14 48 45 4 1 19 4 28 Feb. (59) 8 17 14 30 20 42 2 55 9 7 15 20 21 32 3 45 9 57 16 10 22 22 4 35 10 47 17 23 12 5 25 11 37 17 50 6 15 12 27 18 40 52 7 13 17 19 30 1 42 19 Mar. (78) 7 Mar. (67) 25 Feb. (56) 16 Mar. (75) 5 Mar. (64) n Feb. (54) 12 Mar. (71) 2 Mar. (61) 19 Feb. (50) 9 Mar. (69) 26 Feb. (57) 17 Mar. (76) 7 Mar. (66) 24 Feb. (55) 14 Mar. (73) 3 Mar. (62) 20 Feb. (51) 10 Mar. l70) 27 Feb. (58) 18 Mar. (77) 8 Mar. (67^ 26 Feb. (57) 16 ilar. (75) 5 Mar. (64) 22 Feb. (53) 12 Mar. (72) 1 Mar. (60) 18 Feb (491 6 Fri. 3 Tues. 1 Sun. OSat. 4 Wed. 2 Mon. OSat. 5 Thur 2 Mon. 1 Sun. 5 Thur 4 Wed 2 Mon. 6 Fri. 5 Thur 2 Mon. 6 Fri. 5 Thur 1 Sun. 6 Fri. 4 Wed. 3 Tues. OSat. 4 Wed. 3 Tues. OSat. 4 Wed. .741 .894 .378 .735 67 .066 .768 .045 .990 .891 .999 .408 .348 .696 .168 .306 .243 .249 .435 1 9894 108 143 19 233 9929 143 19 54 9930 9964 1 54 9840 9876 9751 9785 214 249 124 35 9910 9786 3629 36.30 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3613 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 lunulimi-ifarls THE INDIAN CALENDAR. TABLE 1. 10,000/^* of II i-ii-vlr. A lithi =: ' ;.iM of the moon's synodic retoluth CONCURRENT YEAR. 11. ADDED LUNAR MONTB.'^ 3a 5 True. (Southern.) Brihaspati cycle (Northern) cun'cnt at Mesha sankrSnti Name of month. Time of the preceding saiikr&nti expressed in 9 "^ ►3 '% 10 Time of the succeeding eankr&nti eipi'essed in 11 3657 365S 3659 3660 3661 3662 3663 3664 366 3667 3668 3669 3670 3671 3672 673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3680 3687 555-56 •556-57 557-58 558-59 559-60 *560-61 561-62 562-63 563-64 565-66 566-67 567-68 »568-69 569-70 570-71 571-72 *572-73 573-74 574-75 575-76 *576-77 577-78 578-79 579-80 •580-81 581-82 582-83 588-84 •584-85 585-86 6 7 8 9 10 11 12 13 14 15 16 17 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Arigiras Srimukha. . . Bhava Yuvan Dhatri Isvara Buhudhdnja . Pramdthin . . 6 Bhadrapada. 9967 527 7 Asvina. . . 10 Pausha(Ksh.) 12 Phfikuna. 9921 104 29.763 0.312 29.844 140 9989 70 Vrisha Chitrahh&nn . Subh&nu '). . PSrthiva. . . Vyaya Sarvajit Sarvadhfirin . Virodhin .... Vikrita Khara Nandana. . . . Vijaya Java Manmatha. . . Durmukha . . llcmalamba. . Vilamba .... Vikflrin .SArvari Plnva Subhakrit . . . 6 Bhildrapada. 551 567 2 Vai^Akhn. 6 BhAdrapada. 'j TArapa, No. 18, was supprcsbcil. THE HINDU CALENDAR. x TABLE I. [Col. 23) a ^ IHatance of moon from mn. (Col. 24) A =: moon's mean anomaly. (Col. 25) e = mn't mean anomaly. ADDED LUNAR MONTHS (continued.) 111. COMMENCEMENT OF TllK Meao. Solar year. Luni-Solar year. (Civil day of Chaitra Sukla 1st.) Name of moDth. 8a Time of the priced ing sankrSnti expressed in Oa 10a Time of the succeeding SQi'ikr^iiti cxjjressed in 11a and Month A. D. 12a 13 (Time of the Mesha sankr&nti.) Week day. 14 By the Arya Siddhanta. Day and Month A. D. 15 H. M. 17 19 Week day. 20 At Sunrise on meridian of DJJaln. 22 23 6 Bhidrapada 3 Jyeshtha . . U MSgha ... 8 Karttika 1 Chaitra 9 Mlrgasirsha 9876 9711 9997 29.991 304 9789 9767 29.497 29.925 29.431 29.860 29.794 29.300 0.847 0.710 19 Mar. (78) 18 Mar. (78) 19 Mar. (78) 19 Mar. (78) 19 Mar. (78) 18 Mai-. (78) 19 Mar. (78) 19 Mar. (78) 19 Mar. (78) 18 Mar. (78) 19 Mar. (78) 19 Mar. (78) 19 Mar. (78) 18 Mar. (78) 19 Mar. (78) 19 Mar. (78) 19 Mar. (78) 18 Mar. (78) 19 Mar. (78) 19 Mar. (78) 19 Mar. (78) 19 Mar. (79) 19 Mar. (78) 19 Mar. (78) 19 Mar. (78) 19 Mar. (7 19 Mar. (78) 19 Mar. (78) 19 Mar. (78) 19 Mar. (79) 19 Mar. (78) 6Fri OSat. 2 Mon. 3 Tucs. 4 Wed. 5Thur OSat. 1 Sun. 2 Mon. Thur 6Fri. OSat. 1 Sun. 3 Tues. 4 Wed. .5 Thur e Fri. 1 Sun. 2 Mon. 3 Tues. Thur. 6Fii. OSat. 1 Sun. 3 Tues. 4 Wed. Thur. 6 Fri. 1 Sun. 2 Mon, 3.0 19 50 50 6 21 21 52 37 24 52 55 8 26 23 57 39 29 10 31 26 2 41 34 57 12 36 28 7 43 39 59 10 14 41 30 12 45 44 1 15 16 46 32 17 47 49 3 20 18 51 34 22 49 54 5 25 20 56 14 20 20 2 32 8 45 14 21 10 3 22 9 3 15 4 9 Mar. 27 Feb. 17 Mar. 7 Mar. 24 Feb. 14 Mar. 3 Mar. 20 Feb. 11 Mar. 28 Feb. (59) 4 12 10 25 16 37 22 50 5 2 11 15 17 27 23 40 5 52 12 18 17 30 6 12 19 1 20 7 32 13 45 19 57 2 10 8 22 18 Mar 8 Mar, 26 Feb. 15 Mar 4 Mar 21 Feb 12 Mar. • 1 Mar. 18 Feb. 9 Mar. 27 Feb. 17 Mar. 6 Mar 23 Feb. 14 Mar. 2 Mar. 20 Feb. 11 Mar. 28 Feb. 18 Mar. 8 Mar, (77) (67) (57) (75) (63) (52) (71) (61) (49) (68) (58) (77) (65) (54) (73) (62) (51) (70) (59) (78) (67) 3 Tues. ISun. OSat. 5 Thur. 2 Mon. ISun. 5 Thur. 2 Mon. ISun 5 Thur. 4 Wed. 2 Mon. OSat. Thur 2 Mon. 6 Fri. 5 Thur, 3 Tues. OSat. 6 Fri. 4 Wed. 3 Tues. OSat. 4 Wed. 3 Tues OSat, Thur 4 Wed. ISun. OSat. Thur, 0-6 127 322 58 57 .033 .372 .336 .852 .642 .888 .900 .687 .735 35 70 28-t 160 194 70 9946 262 21 0-2 150 17 118 1 203 114 278 258 9 10 217 174 171 111 246 786 063 —.006 450 .525 .354 .378 .609 .342 ,834 774 027 030 651 891 105 319 16 9891 9767 9802 16 92 9926 141 17 51 9927 9961 9837 51 86 9962 9996 211: 3658 3659 3660 3661 3662 3663 3664 3665 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3634 3685 368G 3687 See Text. Art 101 above THE INDIAN CAIENDAR. TABLE I. Lunation-piirts ^z 10,0O0Mi of a rirclf. A tithi = '/;iuM nf the Moon's synodic revolution. I. CONCURRENT YEAR. II. ADDED LUNAR MONTHS. % I 5> KoUam. True. (Southern.) Brihaspati cvrle (Northern) current at Mesha 8ankr4nti. Name of month. Time of the preceding saiikrilnti expressed in Time of the succeeding saiikrSnti expressed in 3a 6 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 644 645 646 64 648 649 650 651 669 670 671 67 673 674 67 586- 587- *588- 589- 590- 591- »592- 593- 594- 597- 98 599- 600 600- 1 601- 2 602- 3 603- 4 604- 5 605- (i 606- 7 607- 8 60H- y 609- 10 611- 12 612- 13 613- 14 614- 15 615- 16 616- 17 617- 18 37 Sobhana 38 Krodhin 39 Visvavasu 40 Parabhava 41 Plavanga 42 Kilaka 43 Saumya 44 SSdh^rana 45 Virodhakrit . . . 46 Paridhavin . . . . 47 Praraadin 48 Ananda 49 R&kshasa 50 Anala 51 Piiigala 52 Kalayukta 53 Siddhilrthin . . . 54 Raudra 5 5 Durmati 56 Dundubhi 57 Rudhirodgarin . 58 Raktaksha 59 Krodhana 60 Ksluiva 1 Trabhava.. 2 Vibhavn... 3 Sukla 4 Pnimoda.. 5 Prajflpati . 6 Ai'igiras. . . 7 Snmuklia . S Bhfiva Sravava. 3 Jyeshtha. 29.814 6 Bhi'idrapada 527 584 6 Bbrulra])ada. 8 Kllrttika . . . 9 Jturffas(Ksli) 2 Vaisfikha. 9960 30 9954 0.090 29 . 8C2 30 9937 492 6 Bhfldrapada.. 4 .AshA.lha 9819 29.457 476 THE HINDU CALENDAR. > TABLE I. [Vol. iW) u = Distiincf. of monn from suii. {Col. •21-) i zz: mumi's ineun annmalij. (Col. 25) r zn .sun s mean iiHuiiiuli/. ADBED LUNAR MONTHS (cuntitiiied.) III. COMMENCEMENT OP THE Mean. Solar year. Name of month. Time of the preceding sai'ikrfinti expressed in Qa Time of the succeeding; sai'ikri'tnti expressed in 11a and Month A. D. 12a 13 (Time of the Mesha sai'ikr&nti.) Week day. By the Arva Siddhftnta. Gh.Pa H. M 17 Luni-Solaryear. (Civil day of Chaitra Sukla 1st.) Day and Month A. D. 19 Week day. 20 At Sunrise on meridian of Ujjain. Moon's Age. 22 23 25 G Bbfidrapada. U Magha. 29.23 29.663 .1866 9701 9 MArgasirsha 6 BhSdrapada . 11 MiVha. 0.817 19 Mar, 19 Mar. 19 Mar. 19 Mar 19 Mar 19 Mar. 19 Mar. 19 Mar. 19 Mar. 19 Mar. 19 Mar. 19 Mar. 19 Mai-. 19 Mar. 19 Mar. 19 Mar 19 Mar. 20 Mar. 19 Mar. 19 Mar. 19 Mar 20 Mar 19 Mar. 19 Mar (78) 3 Tues. 19 Mar (78) 4 Wed. fi Fri. OSat. ISun. 2 Mon. ■t Wed. Thur 6Fi-i. OSat. 2 Mon. 3 Tues. 4 Wed. 5 Thur OSat. ISun. 2 Mou. 4 Wed. Thur 6 Kri. OSat. i Mon. 3 Tues. 4 Wed. 5 Thur. 20 Mar. (79) 19 Mar. (79) 19 Mar. (78) 19 Mar. (78) 20 Mar. (79), 19 Mar. (79) 6 Fri 19 .Mar. (78^0 Sat OSat. 1 Sun. 2 Mou. 3 Tues. 5 Thur 2.5 40 .56 11 27 42 58 13 29 44 15 31 46 2 17 33 48 57 4 2' 20 35 31 51 2 6 34 22 5 37 36 14 35 20 47 3 9 12 15 25 21 37 3 50 10 2 16 15 22 27 4 40 10 17 23 17 5 30 11 4£ 17 5o 7 6 20 12 32 18 4.= 57 7 10 13 22 19 35 1 47 8 14 12 20 25 2 37 8 50 15 25 Feb. 16 Mar 4 Mar 21 Feb. 12 Mar 2 Mar. 19 Feb. 9 Mar 27 Feb. 17 Mar. 5 JIar. 23 Feb. 13 Mar. 3 Mar 21 Feb. 11 Mar. 28 Feb. 19 Mar. 7 Mar. 24 Feb. 15 Mar. 4 Mar. 22 Feb. 12 Mar. 2 Mar. (61) 19 Feb. (50) 9 Mar. (69) 26 Feb (57) 17 Mar. (76) 6 Mar. (65) 23 Feb. (54) 13 Mar (72) 2 Mon 1 Sun. 5 Thur 2 Mon. ISun 6 Fri. 3 Tues. 2 Mon. OSat. Thur 2 Mon. OSat. Thur 3 Tues. 1 Sun. OSat. 4 Wed. 3 Tues. OSat. 4 Wed. 3 Tues. OSat. 5 Thur. 4 Wed. 2 Mon. 6 Fri. Thur 2 Mon. 1 Sun. Thur. 2 Mon. 1 Sun. 549 819 774 423 423 786 078 10 79: 072 087 924 — .000 456 .810 .747 .201 ,345 273 ,276 471 066 480 401 121 9997 9872 9907 122 9997 32 246 99+2 9817, 32 9728 9943 157 192 67 102 9764 9978 13 227 103 138 13 48 9924 9799 3688 36S9 3690 3691 3692 369:( 3694 3695 3696 3697 369S 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 21o|3718 261 3719 © See Text. Art. 101 above, para 2. THE INDIAN CALENDAR. TABLE I. l.uiintwn-jiiirts nr 10, DOOM.? of a circle. A lithi ^ '/30/A of the moon's synodic revolution. I. CONCURRENT YEAR. II. ADDED LUNAR MONTHS. \3. True. (Southern.) 6 lirihaspati cytic (Northcni) current at Mesha sanki'lnti. Name of month. Time of the preceding sankrAnti expressed in Time of the succeeding saiikrSnti expressed in 11 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3730 37-10 3741 3742 3743 374+ 3745 3746 3747 3748 374 Tluir. 43 51 59 22 14 54 30 25 45 5fi 1 27 16 59 32 30 48 1 3 32 19 4 34 35 50 fi 5 37 21 9 36 40 52 11 7 42 23 14 38 45 .-)4 16 3 Mar. 62) 21 Feb. 52^ 11 Mar. 71) 28 Feb. 59) 19 Mar. 78) 8 Mar. 67) 25 Feb. 56) 15 Mar. 74) 4 Mar. 63) 22 Feb. 53) 12 Mar. 72) 1 JIar. 60) 19 Feb, 50) 9 Mar, 68) 26 Feb. 57) 16 Mar. 75) 6 Mar. 65) 23 Feb. 54) 13 Mar. 73l 3 Mar 62) 20 Feb. 51) 11 Mai- 70) 28 Feb. 59) 18 Mar, 77) 7 Mar. 66) 25 Feb. 56) 15 Mar. 75) 4 Mar. 63) 22 Feb. 53) 13 Mar. 72) 1 Mar. 61) 20 Mar. 79) 6 Fri. 4 Wed. 3 Tues. OSat. 6 Fri. 3 Tues. OSat. 6 Fri. 3 Tues. ISun. OSat. 4 Wed. 2 Mon. OSat. 4 Wed. 3 Tue'i. ISun. 5 Thur, 4 Wed. 2 Mon. 6 Fi-i. Thur, 2 Mon. 1 Sun. 5 Thur. 3 Tues. 2 Mon. 6 Fri. 4 Wed. 3Tnes. OSat. i; Fri. .420 .843 .891 .666 .624 .930 .720 .780 .093 .447 426 .012 .861 .198 .141 .28. .834 .111 .048 .489 .171 .384 .402 .645 .381 .876 .825 .072 .576 .681 .576 48 263 297 173 208 83 )959 9994 9994 208 9904 9780 981.- 29 990 9940 1.54 30 64 r)940 997 98.50 65 99 9975 189 224 100 134 3720 3721 3721 3723 3724 3725 3726 3727 37 37 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 ;i744 i745 3746 3747 3748 ;i749 3750 3751 THE INDIAN CALENDAR. TABLE I. Limalion-parls := 10,OOOM,v of 1 1 2 3 3a True. (Southeru.) Brihaspatl cvclc (Northern) current at Mcsha sankr&nti. Name of mouth. Time of the preccdiDg sai'ikranti expressed in 10 Time of the sucreeding saiikrSnti expressed in 11 SS51 3852 S853 3854 3855 3856 3857 3858 3859 3860 38(11 3K62 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 387 3876 3877 3878 3879 3880 3881 3882 749- 750- 751- *7.52- 7.53- 754- 755- •756- 757- 758- 7.59- •760- 761- 762- 763- •764 765' 766 767 •768 769 771- •772- 773- 774- 775- •776- 777- 778- 779- •780. Sarvadharin . A'irodhiu . . . . Vikrita Khara Nandaua. . . . Vijaya Jaya Manmatha. . Purmukha. . Hemalamba. Vilamba ... Vikarin,. . . Sarvari .... Plava Subhakrit. . Sobhana . . . Krodhin . . . Visvavasu. . I'arabhava. . I'lavanga.. . Kilaka SSdh&ra(ia.. . Virodhakrit . ParidhSvin . . I'ramudhin . . Anauda . . . . lUkshasa.. . . .\uala I'ingala KAlavukta . . SiddhAi'thin . 6 Bhadrap.ida 5 Sravaya 7 A»\ ina. . . 10 Pausha(Ksh) 1 Chaitra . . 5 .Sr&vaoa. 9723 9740 115 9860 29.220 0.345 29.580 9964 86 THE HINDU CALENDAR. x; TABLP] 1. 'ol. 23) (/ =: DisUime of moon from saii. {Col. 21) i z=. moon's mean unomuli/. [Col. 25) r -zz sun's mean tiuomiili/. II. ADDED LUNAR MONTHS (continued.) III. COMMENCEMENT OF THE Mean. Solar year. Luni-Solar year. (Civil day of Chaitra Sukla Ut.) Name iif miinth. 8a Time of tie preceding sai'ikrHnti expressed in 10a Time of the suceeedin^ sai'ikrAnti expressed in 11a Day and Month A. D. (Time of the Mcsha sanknlnti.) 12a 13 Week day. 14 By the Arya Siddh&nta. Day and Month A. D. IS 17 le Week dav. 20 At Sanrlse on meridian of Ujjain. Moon's Age. 21 22 23 26 29 . 608 29.115 0..')30 0.037 9990 9826 29.971 29.477 0.893 0.399 9 M&rgasirsha Sravava . . 9947 7 Asvina.. 29.775 12 Phaiguna. 9760 9903 29.281 29.709 0.203 0.631 20 Mar. 79) 21 Mar 80) 21 Mar. 80l 20 Mar. 80) 20 Mar. 79) 21 Mar. 80) 21 Mar 80) 20 Mar. 80) 20 Mar 79) 21 Mar. 80) 21 Mar. 80) 20 Mar 80) 20 Mar 79) 21 Mar. 80) 21 Mar. 80) 20 Mar. 80) 20 Mar. 79) 21 Mar. 80) 21 Mar. 80) 20 Mar. 80) 20 Mar 79) 21 Mar. 80) 21 Mar. 80) 20 Mar. 80) 20 Mar. 79) 21 Mar. 80) 21 Mar. 80) 20 .Mar. 80) 21 Mar. 80 1 21 Mai-. 80) 21 Mar. 80) 20 Mar. 80) 5 Thur Sat. 1 Sun. 2Mon 3 Tues. 5 Thur. eivi. OSat. 1 Sun. 3 Tues. 4 Wed. Thur. 6Fi-i. 1 Sun. 2 Mon. 3 Tues. 4 Wed. 6 Fri. Sat. 1 Sun. 2 Mon. 4 Wed. 5 Thur. 6 Fri. OSat. 2 Mon. 3 Tues. 4 Wed. 6 Fri. OSat. 1 Sun. 2 Mon. 4B 21 1 52 17 24 32 55 48 26 3 57 19 29 35 .50 31 6 2 21 34 37 5 52 36 8 7 23 39 39 10 54 41 10 12 25 44 41 15 .56 46 12 17 27 49 43 20 58 51 14 22 29 54 45 25 56 16 27 31 .59 47 30 18 32 45 6 57 13 10 19 22 1 35 7 47 14 20 12 2 25 8 37 14 50 21 2 3 15 9 27 15 40 21 52 4 5 10 17 16 30 22 42 4 55 11 7 17 20 23 32 5 45 11 57 18 10 22 6 35 12 -11 lit 22 Feb. 13 Mar. 3 Mar. 20 Feb. 10 Mar. 28 Feb. 18 Mar. 6 Mar 24 Feb. 15 Mar 4 Mai-. 22 Feb. 12 Mar. 1 Mar. 20 Mar. 8 Mar. 25 Feb. 16 Mar. 6 Mar. 23 Feb. 13 Mar. 3 .Mar. 20 Feb. 10 Mar. 27 Feb. 18 Mar. 7 Mar. 24 Feb. 15 Mar. 4 Mar. 22 Feb. 12 Mar OSat. 6 Fri. 4 Wed. 1 Sun. OSat. Thur. 3 Tues. OSat. Thur. 4 Wed. 1 Sun. 6Fi-i. 5 Thur 2 Mon. 1 Sun. 5 Thar. 2 Mon. ISun. 6 Fri. 3 Tues. 2 Mon. OSat. 4 Wed. 3 Tues. OSat. 6 Fri. 3 Tues. OSat. OSat. 4 Wed. 2 Mon. 1 Sun. 84 66 181 0-11 28 305 86 ;o 299 309 68 194 192 77 148 1.52 119 156 323 75 56 219 134 211 217 292 183 ©-34 313 70 254 9861 9896 111 9986 21 235 9931 9807 1 6 9931 146 180 56 91 9966 9842 9877 91 9967 1 216 92 126 2 37 9912 9788 161 37 251 286 97 206 34 257 917 764 700 584 483 331 214 1.50 997 881 817 664 600 447 294 231 114 961 897 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 387 3876 7 3878 3879 3880 3881 3882 See Text. Art. 101 above, para. 2 THE INDIAN CALENDAR. TABLE I. Luiiulioiipurts rz K),OnflMs of a circle. A liihi r=: ' uiM of the mo'iit.^ st/nodir retolulion. I. CONCURRENT YEAR. U. ADDED LUNAR MONTHS. o a 3 3a True. (Southern.) 6 Brihasp.ili cycle (Northern) current at Meshii saiikr&nti. Name of month. Time of the ]irecediDg sai'ikr&nti expressed in 9 10 Time of the succeeding saiikr£nti 11 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3899 3900 3901 3902 3903 3904 3905 3900 3907 3908 3909 3910 3911 .3912 3913 3914 3913 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 73: 73fi 839 188 840 189 841 190 842 191 843 192 844 193 845 194 846 195 847 196 848 197 849 198 850 199 851 200 852 201 853 202 854 203 855 204 856 205 857 206 858 207 859 208 860 209 861 210 862 211 863 212 804 213 865 214 860 215 867 216 808 217 869 218 87( 219 781- 82 782- 83 783- 84 •784- 85 785- 86 786- 87 787- 88 ♦788- 89 789- 90 790- 91 791- 92 »792- 93 793- 94 794- 95 795- 96 •796- 97 797- 98 798- 99 799-800 *800- 1 801- 2 802- 3 803- 4 ♦804- 5 805- 6 806- 7 807- 8 •808- 9 809- 10 810- 11 811- 12 •812- 13 M3- 14 . 54 Raudra . 55 Durmati . 56 Dundubhi . 57 Rudhirodgirin . . 58 Raktaksha . 59 Kroilhana. . . . . 60 Kshaya 1 Prabhava 2 Vibhava 3 Sukla 4 Pramoda . 5 Prajapati . 6 Aiigiras 7 Srimukba .... . 8 Bhava 9 Yuvan . 10 Dhatri . 11 isvai-a . 12 Bahudhauva.. .13 Pramdthin . . . . 14 Vikrama . 15 Vrisha . . 16 (.'hitrabhfiuu . . . . 17 Subliiiuu , . 18 Taraua . . 19 Pai-thiva . . 20 Vya.vB . . 21 Sarvajit . . 22 Sarvadhflriu . . . . 23 VirodUin . . 24 Viknta . . 25 Kharo l'O .\oniliin;i. 6 Bhadrapada. 6 Bhadrapada. 9715 9648 7 Asvina. 434 98 792 29.145 28.944 152 155 (Cot. 23) (/ = Distil lire of moon front THE HINDU CALENDAR. TABLE I. Ml. (Col. i\i) I) =^ moon's mean unomiily. {Cot. 25) r m eun imoiiiiitij . ADDKD LUNAR MONTHS (continued.) III. COMMENCEMENT OF THE Mean. Solar year. Luni-Solar year. (Civil day of Chaitra Sukla let.) Name (if month. Time of tie preceding sankr&nti expressed in Time of the succeeilinj; sankranti expressed in Day and Month A. D. (Time of the Mesha sankranti.) Week dav. By the Arya SiddhSnta. Day and Month A. D. Gh. Pa. H. M Week dav. At Sanrise on meridian of Ujjaln Moon'f Age. 8a 9a 10a 11a 12a 13 14 15 17 10 20 21 23 5 Sravapa. 12 Philguna.. 5 Sr&vava. 9937 29.578 0.137 0.072 0.500 0.007 0.435 0.863 0.798 0.304 0.732 29.316 79 21 Mar. (80 21 Mar (80 21 Mar. (80 20 Mar. (80 21 Mar. (80 21 Mar. (80 21 Mar. (80 20 Mar (80 21 Mar. (80; 21 Mar. (80 21 Mar. (80 20 Mar. (80 2niar.(80 21 Mar. (80 21 Mar. (80 20 Mar (80 21 Mar. (80; 21 Mar 21 Mar. (80; 20 Mar. (80 21 Mar. (80 21 Mar. (80 21 Mar (80 21 Mar. (81 21 Mar. (80 21 Mar. 21 Mar. (80 21 Mar (81 21 Mar (80 21 Mar (80; 21 Mar. (80 21 Mar. (81 21 Mar. fSff 4 Wed. 5 Thnr 6Fri. OSat. 2 Mon. 3 Tnes. 4 Wed. 5 Thur. OSat. ISnn. 2 Mon. 3 Tues. 5 Thur. 6 Fri. OSat. ISun. 3 Tues. 4 Wed. 5 Thur. 6 Fri 1 Sun. 2 Mon. 3 Tues. 5 Thur 6 Fri. OSat. 1 Sun. 3 Tues 4 Wed 5 Thur 6 Fri 1 Sun. 2 Mon 3 1 18 32 34 4 49 35 5 6 20 37 36 9 51 40 7 11 22 42 38 14 53 45 9 16 24 47 40 19 55 50 11 21 26 52 42 24 57 13 26 28 57 44 2 15 31 31 2 46 34 2 17 36 33 7 48 39 4 10 19 41 1 12 7 25 13 37 19 50 2 2 8 15 14 27 20 40 2 52 9 5 15 17 21 30 3 42 9 55 16 7 22 20 4 32 10 45 16 57 23 10 5 22 11 3 17 47 6 12 12 25 18 37 50 7 2 13 15 19 27 1 40 1 Mar. 19 Mar. 8 Mar. 26 Feb. 16 Mar. 6 Mar. 23 Feb. 13 Mar. 2 Mar. 21 Mar. 10 Mar. 27 Feb. 17 Mai-. 7 Mar, 25 Feb. 15 Mar. 4 Mar. 21 Feb. 12 Mar. 29 Feb 19 Mar 8 Mar. 26 Feb. 16 Mar. 6 Mar. 23 Feb. 14 Mar. 2 Mar. 20 Mar. 10 ilar. 27 Feb. 17 Mar. .Mar 5 Thur. 3 Tues OSat. 5 Thnr. 4 Wed Mon. 6 Fri. 5 Thur. 2 Mon 1 Sun. Thur. 2 Mon 1 Sun. 6 Fri. 4 Wed 3 Tues. OSat. 4 Wed. 3 Tues. OSat. 6 Fri. 3 Tues. ISun. OSat. 5 Thur 2 Mon. 1 Sun. 5 Thur. 3 Tues 1 Sun. 5 Thur 4 Wed. 2 Mon 162 9858 9733 9948 9982 197 72 107 9983 1 9893 9769 9804 18 232 267 143 18 572 53 9929 9963 9839 53 88 302 178 213 88 9784 9909 9875 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 .3914 391, i THE INDIAN CALENDAR. TABLE 1. Luiiution-jHirls r= 10,(l(l(lMi' of a(la . . 9849 29.548 157 0.470 3 Jveshtha .... 9992 29.976 299 0.898 11 Mfigha 9828 29.483 135 0.405 8 Karttika 9970 29.911 27H 0.833 21 Mar. (81 21 Mar. (80 21 Mar. (80 4 AshAdha .... 9806 29.417 113 0.339 1 Chaitra 9948 29.845 256 0.767 21 Mar. (81 21 Mar. (80 See Text. Art 101 above, para. THE INDIAN CALENDAR. TABLE I. Liiiiation-ptirts =: 10,000M.« of a rirrle. J tithi ^ ', loM of the moon's synodic retolution. I. CONCURRENT YEAR. 11. ADDED LUNAR MONTHS. 42 c 3a True. (Southern.) 6 Brihaapati cycle (Northern) current at Mesha sauki'ilnti Name of month. Time of the preceding sai'ikrunti expressed in a ^ 10 Time of the succeeding sai'ikrunti expressed in 11 3948 3949 3950 3951 3952 3953 3954 395; 395fi 3957 3958 3959 39C0 39(11 39r,2 39fJ3 39C4 3965 39fill 39(r 39(iK 3909 3970 3971 397:i 3973 3974 3975 3976 3977 397H 3979 769 770 771 772 773 774 775 776 777 778 79 80 81 ■82 83 '84 78.0 786 787 ■88 ■89 ■90 ■91 796 '97 f98 799 HOO 21-22 22-23 23-24 24-25 25-28 26-27 27-28 28-29 29-30 30-31 31-32 32-33 33-34 34-35 35-36 36-37 37-38 38-39 39-40 40-41 41-42 42-43 43-44 44-45 45-46 46-47 47-48 48-49 49-50 60-51 51-52 52-53 846- 847- •848- 849- 850- 851- ♦852- 853- 854- 855- »856- 857- 858- 859- •860- 861- 862- 863- •864- 865- 866- 867- •868- 869- 870- 871- •872- 873- 874- 875- •876- 877- 60 Kshaya .... 1 Prabhava . . . 2 Vibhava 3 Sakla 4 Pramoda. . . . 5 Prajapati . . . 6 Angiras 7 Srimukha . . . 8 Bhava 9 Yuvan 10 Dhatri 11 Isvara 12 Bahudhilnja. 13 Pramathin... 14 Vikrama. . . . 15 Vrisha 10 Chitrabhfinu. 17 Subhanu . . . . 18 TSrava 19 Pftrthiva . . . . 20 Vyaya 21 Sarvajit 22 Sarvadharin . 23 Virodhin.... 24 Vikrita 25 Khnra 26 Nandana . . . . 27 Vyaya 28 Joya 29 Manmatha. . . 80 Durmukha. . . 31 Hcmalambn.. 7 Asvina. 750 9827 5 Sruvana. 9679 6 Bhadrapada. 5 SrAva;ia. 9786 151 170 THE HINDU CALENDAR. xxx TABLE 1. {Col. 23) a Z3 Distance of moon from sun. (Col. 21-) b =: moon's mean anomaly. (Col. 25) e z= tun's mean anomaly. II. ADDED LUNAR MONTHS CcoHlimued.J III. COMMENCEMENT OF THE Mean. Solar year. Luni-Solar year. (Civil day of Chaitra Sukla 1st.) Kali. Name of moutli. Time of the preceding saiikiinti expressed in Time of the succeedini; sankrSnti expressed in Day and Month A. D. (Time of the Mesha saukranti.) Day and Month A. D. Week day. At Sunrise on meridian of Ujlaln. Moon's 6. " Week day. By the Arya SiddhanU. li .2 si ^ ll " Gh. Pa H. M. 8a 9a 10a lla 12a 13 14 15 17 19 20 21 22 23 24 26 1 9 Mirgasirsha. 9784 29.352 91 0.274 21 Mar. (80) 22 Mar. (81) 21 Mar. (81) 21 Mar. (80) 21 Mar. (80) 22 Mar. (81) 21 Mar. (81) 21 Mar. (80) 21 Mai-. (80) 22 Mar. (81) 21 Mar. (81) 21 Mar. (80) 21 ifar. (80) 22 Mar. (81) 21 Mar. (81) 21 Mar. (80) 22 Mar. (81) 22 Mar. (81) 21 Mar. (81) 21 Mar. (80) 22 Mar. (81) 22 Mar. (81) 21 Mar. (81) 21 Mar. (80) 22 Mar. (81) 22 Mar. (81) 21 Mar. (81) 21 Mar. (80) 22 Mar. (81) 22 Mai-. (81) ISun. 3 Tues. 4 Wed. 5 Thur 6 l-'ri. ISon. 2 Mon. 3 Tqcs. 4 Wed. 6Fri. OSat. ISnn. 2 Mon. 4 Wed. 5 Thur. 6Fri. ISun. 2 Mon. 3 Taes. 4 Wed. fiFri. OSat. 1 Sun. 2 Mon. 4 Wed. 5Thnr 6Pi-i. OSat. 2 Mon. 3 Taes. 4 Wed. 5 Thur. 51 7 22 38 53 9 25 40 56 11 m 42 58 13 29 44 15 31 46 2 17 33 48 4 19 35 50 6 21 37 53 52 24 55 26 57 29 31 2 34 5 36 7 39 10 41 12 44 15 46 17 49 20 51 22 54 25 56 27 59 30 1 20 2 9 15 21 3 10 16 22 4 10 17 23 11 17 6 12 18 7 13 19 1 7 14 20 2 8 15 ?^ 45 57 10 22 35 47 12 25 37 50 2 15 27 40 52 5 17 30 42 55 7 20 32 45 57 10 22 35 47 12 2 Mar. (61) 21 Mar. (80) 9 Mar. (69) 27 Feb. (58) 18 Mar. (77) 7 Mar. (66) 24 Feb. (55) 14 Mar. (73) 3 Mar. (62) 21 Feb. (52) 11 Mai-. (71) 28 Feb. (59) 20 Mar. (79) 9 Mar. (68) 26 Feb. (57) 16 Mai-. (75) 5 Mar. (64) 22 Feb. (53) 12 Mar. (72) 2 Mar. (61) 21 Mar. (80) 10 Mar. (69) 28 Feb. (59) 18 Mar. (77) 7 Mar. (66) 24 Feb. (55) 14 Mar. (74) 3 Mar. (62) 21 Feb. (52) 12 Mai-. (71) 29 Feb. (60) 19 Mar. (78) 3 Tues. 2 Mon. 6Fri. 4 Wed. 3 Tues. OSat. 4 Wed. 3 Tues. Sat. 5Thnr. 4 Wed. ISun. ISnn. 5 Thur. 2 Mon. ISun 5 Thur. 2 Mon. 1 Sun. 6 Fri. 5 Thnr. 2 Mon. OSat. 6 Fri. 3 Tues. OSat. ei-ri. 3 Tnes. 1 Sun. OSat. 4 Wed. 3 Tnes. 220 218 0-36 104 120 45 49 135 63 239 225 0-27 325 157 108 196 191 96 101 229 209 0-13 202 266 263 245 292 116 236 213 15 53 .660 .654 —.108 .312 .360 .135 .147 .405 .189 .717 .675 —.081 .975 .471 .324 .588 .573 .288 .303 .687 .627 — .039 .606 .798 .789 .735 .876 .348 .708 .639 .045 .159 9961 9996 9871 86 120 9996 9872 9906 9783 9996 31 9907 280 156 31 66 9942 9818 9852 67 101 9977 191 226 102 9977 12 9888 102 137 12 47 162 98 946 829 765 612 459 395 243 126 62 909 882 729 576 512 359 206 142 26 962 809 693 628 476 323 259 106 990 926 773 709 225 276 246 217 269 238 207 258 228 200 251 220 274 243 212 264 233 202 253 225 277 246 218 269 238 207 259 228 200 251 220 272 3948 3949 3050 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 6 BhSdrapada. 9927 29.780 234 0.702 2 VaUaJdia.... 9762 29.286 69 0.208 11 .\lagha 9905 29.714 212 0.637 7 Aivina 9740 29.221 48 0.143 4 AshiVlha .... 9883 29.649 190 0.571 12-Phalguna.... 9718 29.155 26 0.077 9 Mai-gasirsha. . 9861 29.583 169 0.506 a Sravaiia 9697 29.090 4 0.012 2 Vai^kha.... 9839 29.518 147 0.440 11 MAgha 9982 29.946 289 0.868 7 Asvina 9818 29.453 125 0.875 21 Mar. (81) 21 Mar. (80) Sec Tract Art. 101 above, para 2. THE INDIAN CALENDAR. TABLE I. I.iiiiiition-parls := 10,0O0M.s of a rirrle. J lilhi zr '/ju/// of llir niooii's spiodic recolat'wn . 1. CONCURRENT YEAR. II. ADDED LUNAR MONTHS. 3a True. (Simtlicrn.) Bribaspati cydc (NorthiTu) current at Mesha sai'ikrllnti. Name of montli. Time of the preceding saukr&nti expressed in Time uf the succeeding saiikrunti expressed in 3980 3981 398S 3983 3984 398.- 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 399fi 3997 3998 3999 4000 4001 4002 4003 4004 4005 4000 4007 4008 4009 4010 936 937 938 939 940 941 942 943 944 94: 946 94 948 949 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 54-55 55-56 56-57 57-58 58-59 59-60 60-61 61-62 62-63 63-64 64-65 05-66 66-67 67-68 68-69 69-70 70-71 71-72 72-73 73-74 74-75 75-76 76-77 77-78 78-79 79-80 80-81 81-82 878- 879- •880- 881- 882- 883- »884- 885- 886- 887- *888- 889- 890- 891- 893- 894- 895- •890- 897- 898- 899- •900- 901- 902- 903- •904- 905- 900- 907- •908- 32 Vilaraba 33 VikSrin 34 SSrvari 35 Plava 36 Subhakfit 37 Sobhana 38 Krodhin 39 Visvavasu . . . . 40 Par&bha\ a . . . . 4 1 Plavaiiga . . . . 42 Kilaka 43 Saumya 44 Sadhfirana.. . . 45 Virodhakrit . . 46 Paridh.'vin... 47 Prainfidin 48 Ananda 49 IWkshasa 50 Aiiala 51 Pingala 52 Killayukta 53 Siddhilrthin . . 54 Raudra 55 Durmati 56 DundubUi 57 RudliirddgAriu 38 llaktAksha . . . 59 Krodhana . . . . 60 Kshajii 1 Prabbava 2 Vibhavo 1) ... 6 Bbildrapada. Srilvaiia . 3 Jveshtba . *9.259 8 Karttika, 9 Murijas.{Ksh.) 1 Chiiitra.. 9974 8 9780 29.922 0.024 29 . 340 6 lihadrapada. SrAvatm. 9912 111 iilj|jn>M'd In Ibc nurlli, liul In sup)>ivs.1012-13 1013-14 1014-15 1015-16 ►1016-17 1017-18 1018-19 1019-20 *1020-21 1021-22 1022-23 1023-24 •1024-25 1025-26 1026-27 1027-28 •1028-29 1029-30 1030-31 1031-32 •1032-33 1033-34 1 034-35 1035-36 •1036-37 1037-38 40 Parabha\ a . . . 41 Plavai'i^a 42 Kilaka 43 Saumya 44 Sildharaua 45 Virodhakrit . . 46 Paridhavin.. . 47 Framadiu. . . . 48 Ananda 49 Rakshasa 50 Anala 51 Pingala 52 Kal.nukta. . . . 53 Siddhilrthin. . . 54 Raudra 55 Durmati 56 Uundubhi. . . . 57 Rudhirodgariu 58 RaktAksha.... 59 Krodhana . . . . 60 Kshaja 1 Prabhava . . . . 2 Vibhava 3 Sukla 4 Pramoda 5 Prajupati 6 Aiigiras 7 Snmukha . . . . 8 Bhftvn 9 Yuvau 10 Dhfitri 11 Isvara 42 Kilaka 43 Saoniya .... 44 Sadharaiia . . 45 Virodhakrit. 46 PariiUiaviu . 47 Pramadin . . 48 .\uanda. . . . 49 Rakshasa... Auala 51 Pingala 2 KSlayukla. . . . 53 Siddhrirtliiu . . 4 Raudra 55 Hurniati 56 Duudnbhi 7 Rudhirodgarin 8 Raktaksha . . . . 9 Krodhana . . . . 60 Kshaya 1 Prabhava 2 Vibhava 3 Sukla 4 Pramoda 5 Prajapali 6 Angiras 7 Snmukha . . . . 8 Bhftva 9 Yuvan 10 DUAtri 11 fsvara 1 2 BahudhAnya . . 13"PrftmAthin., . , 6 Bhadrapada. 2 VaiiAkha. 6 Bhadrapada. 1 Chaitra. 5 SrAvavn. 9474 29.694 9859 9438 29.577 28.314 251 253 288 263 215 241 THE HINDU CALENDAR. TABLE 1. {Col. 23) a ^=. IHsUiiue of moon, from sun. [Col. 24) h ^ moon'! meiin anomaly. (Col. 25) xlvii anomaly. ADDKD LUNAR MONTHS (continued.) Ill ((I\I.MI:N( F.MKNT OT TIIK Mean. Liini-Solar year. (Civil day uf Chaitra Sukla Ist.) Name of muntli. Time of the ))rcccdiii^ saiikriinii expressed in 9a Time (if the suceceding sankrunli eijii'esscd in Day and Month A. D. (Time of the Mesha sai'ikr^nti.) 11a 12a 13 Week dav. 14 By the A178 Siddhfinta. Day and Month A. D. 15 17 19 Week dav. 20 Moon's Age. 21 22 23 24 'J Margasirsha .725 9886 9722 0.582 0.088 986; 12 I'hr.li;un;i. 9700 9843 29 100 29 . 529 9 .MArgasirslia 5 SrJvaiia 7 Asvina 29.891 29.398 0.S13 0.320 23 Mar. 23 Mar. 22 Mar. 23 Mar. 23 Mar. 23 Mar. 22 Mar. 23 Mar 23 Mar. 23 Mar. 22 Mar. 23 Mar. 23 Mar. 23 Mar. 22 Mar. 23 Mar. 23 Mar. 23 Mai-. 22 Mar. 23 Mar. 23 Mar. 23 Mar 22 Mar. 23 Mar. 23 Mar. 23 .Mar. 22 Mar 23 Mar. 23 Mar. ; Mar. 23 Mar. r.\ >hr. OSat ISun. 2 Mon. 4 Wed. 5 Thur. 6 Fri. OSat. 2 Mod. 3 Tues. 4 Wed. 5 Thur. Sat. 1 Sun. 2 Mon. 3 Tues. 5 Tliur. 6 Kri. OSat. 1 Sun. 3 Tues, 4 Wed. oThui- 6 Kri. 1 Sun. 2 Mon. 3 Tues. 4 Wed. 6 Fri. OSat. 1 Sun. 3 Tues. 4 Wed 15 12 30 44 46 15 1 46 17 17 32 49 48 20 3 51 19 22 34 54 50 25 5 5t 21 i\ 36 59 52 30 8 1 23 32 39 54 35 10 6 25 37 41 9 56 40 12 11 27 42 43 14 58 45 14 16 29 47 45 19 50 Ifi 21 3 Mar. 22 Mar. U Mar. 28 Feb. 19 Mar. 8 Mar. 25 Feb. 15 Mar. 4 Mar. 22 Feb. 12 Mar. i Mar. 21 Mar. 10 Mar. 27 Feb. 17 Mar. 6 Mar. 23 Feb. 13 Mar. 3 Mar 22 .Mar. 12 Mar. 29 Feb. 19 Mar. 8 Mar. 25 Feb. 15 Mar. 4 Mar. 22 Feb. 13 Mar. 1 Mar. <2 20Mar 1 Sun. OSat. Thur. 2 Mon. ISun. Thur. 2 Jlon. 1 Sun. 5 Thui'. 3 Tues. 2 Mon. OSat. 6 Fri. 3 Tues. OSat. 6 Fri. 3 Tues. OSat. 6 Fri. 4 Wed. 3 Tues. 1 Sun. 5 TUur 4 Wed. ISun. 5 Thur 4 Wed. ISun. 6 Fri. 5 Thur. 2 Mon. 1 Sun. .474 .411 .765 .227 .366 .303 .300 .495 .084 .495 .420 .804 .825 .522 .504 .771 .624 .141 .096 .438 .399 .912 .696 .948 .957 .74-1 .798 .108 .468 .444 .036 .231 199 74 109 998.- 9860 9895 9771 9985 20 234 269 144 9930 9806 9841 55 90 304 180 21 9 9966 1 9876 91 125 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 2.5ll|4137 2194138 270 4139 xlMii ■ THE INDIAN CALENDAR. TABLE 1. [.KiKilioii-jiiirl.s := lO/KIOM.v of a cii-ck. A lilhi zr '/j.p/// of the. nwoiis si/noJir recoliilin,, I. CONCUKKENT YEAR. II. AIJUED LUNAR MONTHf>. ^ bo o s 3a Lmii-Soliir cycle. (Southern.) 6 Brihnsjiuli cjclc (N.ii-theru) cuiTcnt at Meslui sankranli. Time uf the |>i'cceding saiikr&nti expressed in Time of the succeeding sanki'anti exprcsseil in 4140 4141 4U2 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 415a 4159 4160 4161 4162 4163 4164 416 4166 4167 4168 4169 4170 976 977 97K 979 980 981 982 983 984 985 986 987 988 989 990 991 1006 1097 1098 1099 1100 1101 1102 1103 1104 1103 1106 1107 1108 1109 1110 nil 1112 1113 IIU 111 1116 1117 1118 1119 1120 1121 1122 1123 U24 1125 1126 213- 14 214- 15 215- 16 216- 17 217- 18 218- 19 219- 20 220- 21 221- 22 222- 23 223- 24 224- 35 225- 26 226- 27 227- 28 228- 29 229- 30 230- 31 231- 32 232- 33 233- 34 234- 35 235- 36 236- 37 237- 38 238- 39 239- 40 240- 41 241- 42 242- 43 243- 44 1038-39 1039-40 •1040-41 1041-42 1042-43 1043-44 ♦1044-45 1045-46 1046-47 1047-48 •1048-49 1049-50 1050-51 1051-52 •1052-53 1053-54 1054-55 1055-56 •1056-57 1057-58 1058-59 1059-60 •1060-61 1061-62 1062-63 1063-64 •1064-65 1065-66 1066-87 1067-68 •1068-69 Bahudhimya Pramathin . . Vikrama . . . . Vrisha Chitrabh^uu . SnbhSnu . . . . T^raiia Parthiva .. . . ■^'yay Sarvajit Sarvadh^riu . Virodhiu.... Vikrita Khara Vikrama . . . . Vrisha C'hitrabhunu . Subhanu . . . . Tarapa Parthiva Vyaya Sarvajit Survadhfirin,. Virodhiu , . . . Vikrita Kharn Nandana . . . . 9763 6 lihadrapada. 343 465 1.029 1.395 5 Sravava. 17 V Vijaya Jaya Mauniatha. . . Uunnukha . . llemalamba. . Vilamba Vikarin SSrvari Plava Subhakrit. . . Subhana Krodhin .... Visvivasu . , . Paribhava . . . Plavaiiga .... Kilnkn ij='>" Jaya ilaumatha.. Durniukba . llenuilamba. Vilauiba . . . VikSriu .... Sarvari .... Plava Subhakrit . . Sobhana. . . . Krodhin . . . VisvfivasH. . Parflbhavn . . Plavanga . . . Kilaka Saumya .... Sftdhftnuin . 7 Asvina.. . 10 l'amlia(ksh.) 1 Chaiti-a.. 9874 93 9896 29.622 0.279 147 9938 193 0.4411 29. 814 J 0.579 S8.356 28.146 2 Vaisdklia. 9726 29.178 HhAtlnipatlii 316 870 0.948 1.110 9475 THE HINDU CALENDAR. xlix TABLE I. (Col. 23) a :zi JHsUinre of moon from sun. (Col. 24) b = moon's mean anmniily. (Col. 25) r = .?a«'.« /iieaii iiitoiiiali/. II AUDKU li;n.\k months III. COMMKNCKMENT OF TilK Mean. Solar year. Luni-Solar year. (Civil day of Chaitra .Sukla 1st.) Xainc of month. 8a Time of the precedina: sai'ikrAuti expressed in 9a 10a Time of the siiceeedinsi sankrilnti expressed iu Day and Mouth .\. 1). 12a 13 (Time of the Mcsha saiikrunti.) Week day. 14 By the Ai^a SiddhanlJi. Day and Month A. D. 17 19 Week dav. 20 Moon's Age. 23 25 9777 9920 29.332 29.760 0.254 0.682 9756 J.267 0.617 6 BhAdrapadii 9712 12 PhAlguna. 9855 9997 29.564 29.992 0.486 0.914 SrAvaiia 9976 29.927 23 Mar. 82) 23 Mar. 82) 23 Mar. 83) 23 Mar. 82) 23 Mar. 82) 23 Mar. 82) 23 Mar. 83) 23 Mar. 82) 23 Mar. 82) 23 Mar. 82) 23 Mai-. 83) 23 Mar. 82) 23 Mar. 82) 23 Mar. 82) 23 Mar. 83) 23 Mar. 82) 23 Mar. 82) 23 Mar. 82) 23 Mar. 83) 23 Mar. 82) 23 Mar. 82) 23 Mar. 82) 23 Mar. 83) 23 Mar. 82) 23 Mar. 82) 23 Mar. 82) 23 .Mar. 83) 23 Mar. 82) 23 Mar. 82) 24 Mar. 83) 23 Mar. 83) 5Thur 61'>i. 1 Son. 2 Mon. 3 Tues. 4 Wed. 6Fri. OSat. ISun. 2 Mon. 4 Wed. 5 Thur. 6 Fri. OSat. 2Mou. 3 Tues. 4 Wed. Thur OSat. ISun. 2 Mon. 3 Tues. 5 Thur. 6 Fri. OSat. ISun. 3 Tues. 4 Wed. 5 Thur. OSat. 1 Sun. 53 39 9 10 24 41 40 12 55 44 11 1 26 46 42 17 57 49 13 20 28 51 44 22 .59 54 15 25 30 56 46 27 1 59 17 30 9 Mar. 26 Feb. 16 Mar 6 Mar. 23 Feb. 14 Mar. 3 Mar 22 Mar 11 Mar. 28 Feb. 18 Mar 7 Mar 25 Feb. 16 Mar 3 40 9 52 16 5 22 17 4 30 10 42 16 55 23 7 5 20 11 32 17 45 23 57 6 10 12 22 18 35 47 7 4 Mar. (64 Feb. (53; Mar. (72; Mar. (61 Mar. (80; Mar. (68 Feb. (5 Mar. (76; Mar. (66; Feb. (54: Mar. (73: Mar. (63 Mar. (81 -Mar. (69 Feb. (59: Mar. (77: Mar. (67: 5 Thur. 2 Mon. 1 Sun. 6 Fri. 3 Tues. 2 Mon. OSat. 6 Fri. 3 Tues. OSat. 6 Fri 3 Tues. 1 Sun. OSat. 4 Wed. 2 Mon. 1 Sun. 5 Thur. 4 Wed. 1 Snu. 5 Thur. 4 Wed. 2 Mon. 6 Fri. 5 Thur. 3 Tues. 1 Sun. 5 Tliur. 3 Tues. 1 Sun. 6 lYi. 9911 9787 9822 36 9912 9946 161 195 71 994 9981 1857 71 106 9982 196 231 107 141 17 9892 1927 142 17 52 266 9962 9888 52 9748 9963 4140 4I4I 4142 41 43 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 THE INDIAN CALENDAR. TABLE I. I.i(,i(i/w,i-],(irlx = l(),l"l(l///.v of II lifiii: A lithi nth nf Hif moon's fi/iioJic recoliitioii. I. CONOUKUENT YEAR. II. ADDED LUNAR MONTHS. a k >■. Huka. ■a OS «| "^ 1 s 2 3 3a 992 1127 476 993 1128 477 994 1129 478 995 1130 479 996 1131 480 997 1132 481 998 1133 482 999 1134 483 1000 1135 484 1001 1136 485 1002 1137 486 1003 1138 487 100+ 1139 488 100.5 1140 489 1000 1141 490 1007 1142 491 1008 1143 492 1009 1144 493 1010 1145 494 1011 1146 495 1012 1147 496 1013 1148 497 lOU 1149 498 101.5 1150 499 1016 1151 500 1017 1152 501 1018 1153 502 1019 1154 503 1020 1155 504 1021 1156 505 1022 1157 506 1023 1158 507 True. Luui-Solar cycle. (Southeru.) 6 Brihaspali cycle (Northern) ciirrenl at Meslia sanki'anti. Name nf month. Time of the preceding sai'ikrSnti expressed in 10 Time of the succeeding sankrSuti expressed in B :^ 11 4171 4172 4173 4174 4175 4176 41 4178 4179 4180 4181 4182 4183 4184 418 41Sfi 4187 4188 4189 4190 4191 4192 4193 4194 119 4196 419 419K 4199 4200 4201 1202 244-45 245-46 246-47 247-48 248-49 249-50 250-51 251-52 252-53 253-54 254-55 255-56 256-57 257-58 258-59 259-60 260-61 261-62 262-63 263-64 264-65 265-66 266-67 267-68 268-69 269-70 270-71 271-72 272-73 273-74 274-75 275-76 1069- 70 1070- 71 1071- 72 ■1072- 73 1073- 74 1074- 75 1075- 76 ■1076- 77 1077- 78 1078- 79 1079- 80 '1080- 81 1081- 82 1082- 83 1083- 84 ■1084- 85 1085- 86 1086- 87 1087- 88 ■1088- 89 1089- 90 1090- 91 1091- 92 ■1092- 93 1093- 94 1094- 95 1095- 96 '1096- 97 1097- 98 1098- 99 1099-100 ■lion- 1 Saumya SudhArai.ia . . . Virodhakrit . . . Paridhavin . . . Prainadin . . . . Ananda Rakshasa Anala Piiigala Kalayukta . . . . Siddhilrlhin . . Raudra Durmati Uuiidubhi . . . . Rudhirodgarin RaktAksha . . , . Krodhaua . . . . Kshaya Prahhava Vibhava Sukla Pramoda Prajapati .\ngiras Srimukha . . . . Bhi'iva Vuvaii Dhatri I.svara Bahudhloya . . Prainftthin. . . . Vikraraa Virodhakrit. Paridhavia . Pramadiu . . Ananda. . . . Rakshasa... 7 Asvina. , Anala Piiigala Kalayukta.. . . Siddharthin . . Raudra Durmati l). . . . Rudhirodgarin Raktaksha.. . . Krodhana . . . . Kshaya Prabhava. . . . Vibhava Sukla Pramoda PrajSpati AiiL'iras 6 Bliadrapada. 9756 9733 Srimukha . . . IJhAva Yuvau UhAtn iMara UahudhAnya. PramAlhin. . . Vikrania . . . . Vrislia Chit rabhanu . SubliAau . , 7 Asvina.. 5 SrAvaiin.. 9763 612 258 281 329 U7 Dundubhi, .No, M, \\:\- -»y\n\~»A ni tlj< THE HINDU CALF.Xn.lR. TAHliK I. [Vol. 2.'i) II :=: Distunce of moon from xiiii. (Col. i\) h =: moon's mean iinomuli/. [Cot. 25) su» .V menu aiinmiili II ADDED UNAU MONTHS (conCiniieil.) Mean. III. (■OMMENCEMENT OF THE Solar yeur. Luni-Solar year. (Civil day of Cliaim Suklii Ist. Name i>^ mouth. 8a Time of the preceding sai'ikr&nti expressed in 9a 10a Time of the suececdin^ snnkr&nti expressed in 11a Day and Month A. D. 12a 13 (Time of the Mesha saiikrfinti.) Week dav 14 By the .^rya Siddh&nta. Day and Month A. D. 15 17 19 Week day. 20 At Sunrise on meridian of Ujjaln. Age. 21 22 23 24 29.433 29.861 0.355 0.783 fi HhailnipadiK . 3 .lyeshfha . 11 Ma-ha. 9982 976' 29.796 29.302 S Kilrttika... 29 . 730 9745 I Chaitr U MSivaiirsha. 9888 9724 29.665 29.171 0.587 0.093 6 Kl,?,drapa.la 2 VaiJAkha. 11 M%ha.. 9702 9845 29.105 29.. 534 0.028 0.456 23 Mar. 28 Mar. 24 Mar. 23 Mar. 23 Mar. 23 Mar. 24 Mar. 23 Mar. 23 Mar. 23 Mar. 24 Mar. 23 Mai-. 23 Mar. 23 Mar. 24 Mar. 23 Mar. 23 Mar. 23 Mar. 24 Mar. 23 Mar. 23 Mar. 23 Mar. 24 Mar. 23 Mar. 23 Mar. 24 Mar. 24 Mar. 23 Mar. 23 Mar. 24 Mar. 24 Mar. 23 Mar. 2 Mon 3 Tues. 5 Thur 6 Kri. OSat. ISun. 3 Tues. 4 Wed. TUur 6 Fri. 1 Sun. 2 Mon. 3 Tues. 4 Wed. fiFri. OSat. ISun. 2 Mon. 4 Wed. Thur. 6 Fri. OSat. i Mon. 3 Tues. 4 Wed. 6 Fri. OSat. 1 Sun. 2 Mou. 4 Wed. 5 Thur fi Fri, 33 48 32 4 4 19 3;; 35 6 50 37 6 9 21 40 37 11 62 42 8 14 23 45 39 16 54 47 10 19 25 50 41 21 56 52 12 24 27 55 43 26 58 57 14 29 30 45 31 1 2 16 34 32 5 47 36 3 7 18 39 34 10 13 12 19 25 1 37 7 50 14 20 15 2 27 8 40 14 52 21 3 17 9 30 15 42 21 55 4 7 10 20 16 32 22 45 4 57 11 10 17 22 23 35 5 47 12 18 12 25 6 37 12 .50 19 2 1 15 7 27 13 40 25 Feb. 16 Mar. 5 Mar. 23 Mar. 12 Mar. 1 Mar. 20 ilar. 8 Mai-. 26 Feb. 17 Mar. 7 Mar. 24 Feb. 14 Mar. 3 Mar. 22 Mar. 10 Mar. 27 Feb. 18 Mar. 8 Mar. 26 Feb. 16 Mar. 5 Mar. 23 Mar. 12 Mar. 1 Mar. 20 Mar. 9 Mar. 27 Feb. 17 .Mar. 6 Mar. 24 Feb 13 Mar. 4 Wed. 3 Tues. OSat. 6 Fri. 3 Tues. OSat. 6 Fri. 3 Tues. 1 Sun. OSat. 5 Thur. 2 Mon. 1 Sun. 5 Tliur. 4 Wed. 1 Sun. 5 Thur. 4 Wed. 2 Mon. OSat. 6 Fri. 3 Tues. ISun. 6 Fri. 3 Tues. 2 Mon. 6 Fri. 4 Wed. 3 Tues. OSat. 5 Thur. 3 Tues. 177 212 87 122 9998 9874 9908 9784 998 33 247 123 158 33 08 9944 9819 9854 68 283 317 193 9889 103 9979 14 9889 104 138 14 229 9925 4171 4172 4173 4174 417 4176 417 4178 4179 4180 4181 41H2 4183 4184 41«5 418(1 4187 41S8 41S9 4190 4191 4192 4193 4194 419.-. 419(1 U97 U9,S 4199 4200 4201 4202 THE INDIAN CALENDAR. TABLE I. Lii»iitio>i-]wrt.23 1024 102.5 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 10.50 1051 1052 1053 1054 1055 1056 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 117 1178 1179 1180 1181 118 1183 1184 1185 1186 1187 1188 1189 1190 1191 270- 77 277- 78 278- 79 279- 80 280- 81 281- 82 282- 83 283- 84 284- 85 285- 86 286- 87 287- 88 288- 89 289- 90 290- 91 291- 92 292- 93 293- 94 294- 95 295- 96 296- 97 297- 98 298- 99 299-300 300- 1 .301- 2 302- 3 303- 4 304- 5 305- 6 306- 7 307- 8 308- 9 1101- 2 1102- 3 1103- 4 ni04- 5 1105- 6 1106- 7 1107- 8 •1108- 9 1109-10 1110-11 1111-12 •1112-13 1113-14 1114-15 1115-16 *1116-17 1117-18 1118-19 1119-20 ♦1120-21 1121-22 1122-23 1123-24 * 1124-25 1125-26 1126-27 1127-28 •1128-29 1129-30 1130-31 1131-32 •1132-33 1133-34 Vrisha Chitrabhanu . . Subh4nu Tdraoa PSrthiva Vyaya Sarvajit Sarvadharin . . Virodhin Viki-ita Khara Nandana Vijaya Jaya Manmatha.. . . Durmukha . . . Uemalamba.. . Vilamba Vikfirin SSrvari Plava Subhakrit . . . . Sobhann Krodhin Visvilvasu. . . . Parfibhava . . . . Plavaiiga Kilaka Saumya Sadhia-ava . . , . Virodhakrit.. . Paridhftviu . . . I'ramridin . . . . TArana Pfirthiva. . Vyaya Sarvajit Sarvadharin . Virodliini . Vikrita Khara Nandana . . . . Vijaya 6 Bhudrapada. Manmatha.. Durniuklia . Hemahimba Vilamba . . . Vikfirin.... Plava Subhakn-it . . Sobhana. . . . Krodliin.. . . VisvAvasu. . Parabhava . . Plavaiiga . . . Kilaka Saumya .... Sfidhftraiia.. Virodhakrit. Paridhftvin . PrainAdin . . Anandn. . . . RAkshnsa . . . Aniila. 7 .\svina. SrAvava . 28.047 liliAdnipada 3 Jvcshtha. 29.817 563 230 107 78 421 575 223 TlfE HINDU C A LEX PAR. TABLE 1. {(ol. i'.\) (I =: DixtiiiK-e of moon from xiiii. {Col. iV) li -=z mooii'-i mean anomaly. [Col. 25) r mean iiiiomnlj/. III. COMMENCEMENT OF THE Luni-Solar .year. (Civil day of Chaitra Sukla Ut.) Day i.J Month. .\. D. 13 (Time of tlic Mushii sniikrfmti.) Week day. 14 By the .\iya , By the Sftrya Siddhanta Siddhanta. Day and Month A. D. Gh. Pa. 15 17 15a 19 Week day. 20 At Haniise on meridian ot Ujjaln. Moon'i Age. 23 25 23 Mar. 24 Mar. 24 Mar. 23 Mar. 23 Mar. 24 Mar. 24 .Mar. 23 .Mar. 23 Mar. 24 Mar. 24 Mar. -'.! Mar. 23 Mar. 24 Mar. 24 Mar. 23 >Iar. 23 Mar. 24 Mar. 24 Mar. 23 .Mar. 24 Mar. 24 Jlar. 24 Mar. 23 Mar. 24 Mar. 24 Mar. 24 Mar. 23 Mar. 24 Mar. 24 Mar. 24 Mar. 23 Mar. 24 Mar. ;83).. (83).. ;82).. :83).. ;83).. ;83).. (82).. :83). . ;83).. ;83).. ;82). . :83).. ;83).. ;83).. ;82).. ;83).. (83). . (83).. :83).. Sat... 2 Mon. 3 Tues. 4 Wed. 5 Thur. Sat. . . 1 Sun. . 2 Mon. 3 Tnes. 5 Thur. 6 Fri... Sat... 1 Sua.. 3 Tnes. 4 Wed. 5 Thur. 6 Fri... 1 Sun.. 2 Mon.. 3 Tues. .") Thur. fi Fri... Sat.. . 1 Sun.. 3 Tues. 4 Wed.. 5 Thui-. 8 Fri... 1 Sun. . 2 Mon 3 Tues., 4 Wed . fi Fri... 49 41 a 12 20 44 36 1.5 .51 46 7 17 22 49 24 54 40 25 55 56 11 27 26 59 42 30 58 1 13 32 29 4 44 35 n 6 15 31 46 2 17 33 37 9 40 11 42 14 48 45 4 16 2 Mar. (61). 21 Mar. 11 Mar. 28 Feb. 18 Mar 8 Mar. 25 Feb. 15 Mai-. 4 Mar. 23 Mar. 12 Mar. 1 Mar. 20 Mar. 9 Mar. 27 Feb. 17 Mar. 6 Mar. 23 Feb. 14 Mar. 2 Mai-. 21 Mar. 11 Mar. 28 Feb. 18 Mar. 8 Mar. 25 Feb. 15 Mar. 3 Mar. 22 Mar. 12 Mar. 2 Mar. 20 Mar. 9 Mar. Sat.... 6 tVi,... 4 Wed... 1 Snn. . . Sat.... 5 Thur.. 2 Mon... 1 Sun... 5 Thur.. 4 Wed... 1 Sun... 6 Fri 5 Thur.. 2 Mon... Sat 6 Fri 3 Tues..., Sat 6 Fri 3 Tues.... 2 Mon.... Sat 4 Wed... 3 Tues.... 1 Sun 5 Thur... 3 Tues.... Sat 6 Fri 4 Wed. . . . 2 Mon.... 1 .Sun.... 5 Tlnir... 9800 983.- 49 9925 9960 174 50 84 9870 210 244 120 )995 30 9906 9941 155 31 65 280 155 851 9727 9762 9976 190 225 101 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 t Whei-ever these marks occur the day of the month and neek-day in cols 13, 14 should, for Snrya Siddhanta calculations be advanced by 1. Thus in A.)). 1117-18 the .Mcsha sai'ikranti date by the Siii-ya Siddhduta is March 24tb, (0) Saturday. THE INDIAN CALENDAR. TABLE I. I.utuilidii-jKirl^ ^ lO.OOOM,^- of n cinlc. A tithi r= \i,Mi of tlir 1,100ns si/iiodic recolulion 1. CONCURRENT YEAR. 11. ADDED LUNAR MONTHS. Kali. Saka. 1 Kullain. .A. 1). Samvatsai-a. True. l.uni-Siilar cycle. (Soutbern.) Rrihaspati cycle (Northern) current at Mesha saiikrSnti. Name of nitmtb. Time of the preceding saiikranti expressed in Time of the succeeding saiikranti expressed in 3 i £ .2 -^ i i. ^ H 1 2 3 3a 4 5 6 7 8 9 10 11 12 4236 4237 4238 4239 4240 4241 4242 1243 4244 4245 4246 4247 4248 4249 4250 425] 4252 4253 4254 4255 4250 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 426H 1057 1058 1059 1060 1061 1062 1063 1064 1005 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 107H 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 56f 567 568 569 570 571 572 573 309-10 310-11 311-12 312-13 313-14 314-15 315-16 316-17 317-18 318-19 319-20 320-21 321-22 322-23 323-24 324-25 325-20 326-27 327-28 328-29 329-30 330-31 331-32 332-33 333-34 334-35 335-36 336-37 337-38 338-39 339-40 340-41 341-42 1134-35 1135-36 ♦1136-37 1137-38 1138-39 1139-40 •1140-41 1141-42 1142-43 1143-44 •1144-45 1145-46 1146-47 1147-48 •1148-49 1149-50 1150-51 1151-52 •1152-53 1153-54 1154-55 1155-56 •1156-57 1157-58 1158-59 1159-60 •1160-61 1161-62 1162-63 1163-64 •1164-65 1165-66 1160-07 48-Ananda 49 Rakehasa 50 Anala 51 Piiigala 3 Jyesbtha 9422 28.266 92 0.276 54 Raudra 1 Cbaitra 9987 29.961 212 0.630 52 Killayukta. . .. 53 Siddbfirthiu... 56 Diindubhi . . . 57 Rudbirodgarin 5 Sravaya 9547 28.641 182 0.546 56 nundubbi 57 RiidhirodgSrin 58 RaktSksha 59 Krodbaiia .... 60 Kshaya 1 Prabhava 2 Vibhava 3 Sukla 4 Pramoda 5 Praji'ipati 6 Aiigiras 7 Sriinukba 8 Bhilva 9 Yuvan 10 Dhutri 11 Isviira 12 Bahudbanya.. 13 Pramfitbin.... 14 Vikrama 15 Vriaba 16 Chitrabbunu. . 17 Subhfinu 18 Tfiraua 19 Pftrtbiva 20 Vyina 59 Krodhana . . . . 4 Ashfidha .... 9623 28.869 490 1.470 2 Vibhava 3 Sukla 2 Vaisfikha.... 9733 29.199 136 0.408 4 Pramoda 5 Prajfipati ..... 6 Blifulrapailn . 9653 28 . 959 05 0.195 7 Srimukha . . . . 8 Bhilva 4 Ashfidha 9lrt0 27.480 35 0.105 9 Yuvan 10 Dbfitpi 3 .lyeshtba .... 9591 28.773 169 0.507 12 Bahudbfinya . . 13 Pramfitbin 12 Pbulguna. . . . 9851 29.553 0.001 15 Vrisba 5 Srfivaiia 9578 28.734 314 0.942 18 TftnHin 4 Asbildha 9664 28.992 455 1.365 21 Sarvajit 1) 2 Vaisftkba.. . . 9849 29.547 310 0.930 2 i Vikriln 6 BlifiilRi|milu . 9813 29 439 201 0.783 '1 .Sarviidhllriii, Nu iippl-osrd ill llic llolib. THE HINDU CALENDAR. TABLE 1. {Col. 23) u ^ Dislanre of moon from sun. (Vol. i\) It ^ moon's menu unomuly. {Vol. 25) r =: sunn mciDi iinnmali/. III. COMMENCEMENT OF THE Solar year. I.uni-Solar jeai'. (Civil day of Chaitra Sukln Ist.) Day and Month. .\. D 13 (Time of (he Mesha sankranti.) Week day. 14 By the Arya Siddh&nta. Gh. Pa. H. M 15 By the Sflrya SiddMnto. Day and Month. A. D. 17a 19 Week dav. 20 At Sonrlso on meridian of Ujjaln. Moon's Age. I -3 25 24 Mar. 24 Mar. 23 Mar. 24 Mar. 24 Mar. 24 Mar. 23 Mar. 24 Mar. 24 Mar. 24 Mar. 23 Mar. 24 Mar. 24 Mar. 24 Mar. 23 Mar. 24 Mar. 24 Mar. 24 Mar. 24 Mar. 24 Mar. 24 Mar. 24 Mar. 24 Slar. 24 Mor. 24 Mar. 24 Mar. 24 Mar. 24 Mar. 24 Mar. 24 Mar. 24 Mar. 24 Mar. 24 Mar. (83) Sat.. . 1 Sun . . 2 Mon.. 4 Wed. 5 Thar. 6 Fi-i... Sat. . . 2 Mon.. 3 Tues.. 4 Wed.. 5 Thur. Sat... 1 Sun. . 2 Mon.. 3 Tues.. 5 Thar. 6 Fri... Sat... 2 Mon. 3 Tues.. 4 Wed.. 5 Thur. Sat. . . 1 Son. . 2 Mon.. 3 Tues.. 5 Thur. 6 Kri... Sat... 1 Sun.. 3 Tues.. 4 Wed.. 5 Thur. 1 6 13 12 26 18 39 to 51 7 4 13 16 19 29 26 Feb. 17 Mar. 5 Mar. 22 Feb. 13 Mar. 3 Mar. 21 Mar. 11 Mar. 28 Feb. 19 Mar. 7 Mar. 24 Feb. 15 Mar. 4 Mar. 22 Mar. 12 Mar. 2 Mar. 21 Mar. 9 Mar. 26 Feb. 16 Mar. 6 Mar. 24 Mar. 13 Mar. 3 Mar. 22 Mar. 10 Mar. 27 Feb. 18 Mar. 7 Mar. 25 Feb. 15 Mar. 4 Mar 2 Mon. 1 Sun., 5 Thur, 2 Mon. 1 Sun. , 6 Fi-i.., Thur, 3 Tues. Sat... 6 P'ri. ., 3 Tues. Sat. . . 6 Fri.., 3 Tues. 2 Mon. Sat. . , 5 Thur, 4 Wed., 1 Sun., 5 Thur, 3 Tues. 1 Sun. . Sat. . . 4 Wed. 2 Mon. 1 Snn. . 5 Thur. 2 Mon. 1 Sun.. 5 Thur. 3 Tues. 2 Mon., 6 Fri... 9976 11 87 9763 9797 12 46 261 136 171 47 9922 9957 9833 9867 82 296 331 206 82 9778 9992 27 9903 117 152 28 9903 9938 9814 28 63 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 425 4256 1257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 Sec footnote p. liii .ibove. Ivi THE INDIAN CALENDAR TABLE 1. hiDKition-jiinls =r IO.OOOMa of o circle. A titlii =z '/auM of the diooii'x synodic reroliilioii. I CONCLillUENT YEAR, II. ADDED LUNAK .MONTHS. 2 True. Luni-Solar cycle. (Southcni.) 6 Brihaspati cycle (Northern) current at Mcsh!i saukrauti. Name of luontli. Time of the preceding saiikr&nti expressed in 10 Time of the succeeding s«iikranti expressed in 11 4269 4270 4271 4272 4273 4274 4275 4270 42' 427S 4279 4280 4281 4282 4283 4284 428; 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 43(10 1090 1091 1092 1093 1094 1095 1090 1097 1098 1099 1100 1101 1102 1103 1104 1105 llOfi 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 UIH 1119 1120 II 21 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1210 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1 256 342-43 343-44 344-45 345-46 346-47 347-48 348-49 349-50 350-51 351-52 352-53 353-54 354-55 355-56 356-57 357-58 358-59 359-60 360-61 361-62 362-63 363-64 304-65 365-66 366-67 867-68 368-69 369-70 370-71 871-72 372-73 373-74 1107-68 ♦1168-09 1169-70 1170-71 1171-72 *1172-73 1173-74 1174-75 1175-76 »1176-77 1177-78 1178-79 1179-80 ♦1180-81 1181-82 1182-83 1183-84 ♦1184-85 1185-86 1186-87 1187-88 *1188-89 1189-90 1190-91 1191-92 ♦1192-93 1193-94 1194-95 1195-90 ♦1190-97 1 197-98 1198-99 21 Sai'vajit 22 Sarvadharin.. . 23 Virodhin 24 Vikrita 25 Khara 26 Nandana 27 Vijaya 28 Jaya 29 Manmatha . . . 30 Durmukba . . . 31 Hemalainbn.. . 32 Vilamba 33 Vikiirin 34 Sarvari 35 Plava 36 Subhakrit 37 Sobbaua 38 Krodhin 39 Visvavasu . . . . 40 Parubhava . . . . 41 Plavaiiga 42 Kilaka 43 Saumya 44 Sftdhftraua 45 Virodbakrit. , . 46 Paridh&vin . . . 47 Pramfidin . . , 48 Ananda 49 Rukshasa 60 Auala 51 Pingala. . . . . 52 Kulavnkla. . . Khara Nandana . . . Vijaya Jaya Manmatha.. Durmukba.. Hemalamba. Vilaraba . . . Vikarin .... sarvari .... Plava Subhakrit . . Sobhana. . . . Krodhin. . . . Visvavasu . ParSbhava . Plavaiiga . . . Kilaka Saumya .... Sadh&raya.. Virodbakrit Paridbavin . Praniadin . . Ananda. . . . RUkshasa . . . Anala il Piiigala. Kalayukta. . SiddbAnhin. lUudra .... Durraati . . . Unndublii. . 29.979 324 342 6 BhAilrapada. 9866 9875 29.598 29 . 625 414 414 5 Sravaua. 760 3 Jyeshtha. 7 Asvina 10 Paiaha {Ksh. 1 Cliaitra 9906 82 9951 29.718 0.246 29.863 145 9941 282 5 SrAvaya. THR HINDU CAf.fXPAR. Ivii TABLE I. (Vol. 23) II = Distiiiire of moon f mm sun. (Col. 21) h zzi mooii'.i mciin unouiiily. (Vol. i'\) r ^ sun'.i mean iinomiili/. III. COMMENCEMENT OF THE Solar ye Luni-Solar year. (Civil day of Chaitra Sukla 1st.) Day and Month. .\. 1). 13 (Time (if the Mcshn saiikrflnti.) Week Jay. 14 By the Arya SiddhAnta. 15 17 By the Surya Siddhfinta. Day and Month. A D. Gh. Pa. H. M 17a Week day. 20 At Sanrlse on meridian ol Ujjaln. Moon's Age. 24 Mar. 24 Mar. 24 Mar. 24 Mar. 24 Mar. 24 Mar. 24 Mar. 24 Mar. 24 Mar. 24 Mar. 24 Mar. 24 Mar. 2.-) Mar. 24 Mar. 24 Mar. 24 Mar. 25 Mar. 24 Mar. 24 Mar. 24 Mar. 25 Mar. 24 Mar. 24 Mar. 24 Mar. 25 Mar. 24 Mar. 1 24 Mar. 24 Mar. 25 Mar. 24 Mar. 24 Mar. 24 Mar. 6 Fri. . . 1 Sun . . 2 Mou 3 Tues.. 4 Wed . 6 Fri... Sat... 1 Sun.. 2 Mon.. 4 Wed.. 5 Thur. 6 Fri..: 1 Sun. . 2 Mon.. 3 Tnes.. 4 Wed.. 6 Fri... Sat. . . 1 Sun . . 2 Mon.. 4 Wed.. 5 Thur. 6 Fri... Sat. . . 2 Mon.. 3 Tues.. 4 Wed.. 5 Thur. Sat. . . 1 Sun.. 2 Mon.. 3 Tues.. 21 37 57 7 22 51 23 Mar. (82).. 3 50 12 39 5 3 12 Mar. (72), 10 2 28 10 11 16 1 Mar. (60).. Ifi 15 43 42 17 29 20 Mar. (79). . a2 27 59 13 23 41 9 Mar. (68).. 4 40 14 45 5 54 26 Feb. (57).. 10 52 30 16 12 6 16 Mar. (75).. 17 5 45 48 18 19 6 Mar. (65) . . 23 17 +1 19 to 32 23 Feb. (54).. 5 30 16 51 6 44 13 Mar. (73).. U 42 32 22 12 57 3 Mar. (62).. 17 55 47 54 19 10 22 Mar. (81).. 7 3 25 1 22 U Mar. (70).. () 20 18 57 7 35 28 Feb. (59).. 12 32 34 28 13 47 18 Mar. (77).. 18 45 50 2 7 Mar. (66).. 57 5 31 2 13 24 Feb. (55).. 7 10 21 3 8 25 15 Mar. (75).. 13 22 36 35 14 38 4 Mar. (63). . li) 35 52 6 20 50 23 Mar. (82).. 1 47 7 38 3 3 13 Mar. (72).. 8 23 9 9 16 1 Mar. (61).. 14 12 38 41 15 28 19 Mar. (78). . 20 25 54 12 21 41 8 Mar. (67). . 2 37 9 44 3 53 26 Feb. (57).. 8 50 25 15 10 6 16 Mar. (76).. 15 2 40 47 16 19 6 Mar. (65). . 21 15 56 18 22 31 23 Feb. (54).. 3 27 11 50 4 44 14 Mar. (73).. 9 40 27 21 10 57 2 Mar. (62).. 15 52 42 53 17 9 21 Mar. (80). . 22 5 58 24 23 22 10 Mar. (69).. 5 Thur. . . 54 .162 9973 3 Tues. . . 198 .594 187 Sat 85 .255 63 6 Fri 157 .471 98 3 Tues. . . . 161 ,483 9973 Sat 127 .381 9849 6 Fri 163 .489 9884 4 Wed.... 329 .987 98 1 San 81 .243 9974 Sat 61 .183 8 5 Thur. . . 227 .681 223 4 Wed.... 261 .783 257 1 Sun. .. 220 .600 133 5 Thur... 227 .681 9 4 Wed..,. 299 .897 43 1 Sun 190 .570 9919 5 Thur. . . 0-28 — .osj 9795 5 Thur... 318 .954 168 2 Mon. . . . 76 .228 44 1 Snn 84 .252 79 6 Fri 307 .921 293 3 Tues.... 289 .867 169 1 Sun 69 .207 9865 5 Thur... 19 .057 9740 3 Tues.... 213 .639 9955 2 Mon.... 206 .618 9989 Sat 322 .966 204 4 Wed.... 96 .288 79 3 Tues.... 114 .342 114 Sat 44 .132 9990 6 Fri 128 . 384 24 3 Tues. , . . 131 .393 9900 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 428 4290 4291 4292 4293 4294 4295 f Sec fodtnott' [I, Mil above ® See Text, Art. 101 abovt-, para. 2. LioKilioii-parts THE INDIAN CALENDAR TABLE 1. 10,OnO///A of (I cinlc. A litlii = ',.i..M of (he moan's fi/noJic rerolufin I. CONCURRENT YEAR, II. ADDED LUNAR .MONTHS. Kali. True. Luni-Solar cycle. (Southcni.) Brihasputi cycle (Northern) current at Mesha saiikruuti. Name of month. Time of the preceding sankr&nti cvprcsscd in Time of the succeeding sankrtinti expressed in 2 6 10 11 4301 4302 4303 4304 4305 430fi 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 432fi 4327 4328 4329 4330 4331 4332 4333 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1140 1147 1148 1149 1150 1151 1152 lir>3 1154 1257 1258 1259 1260 1261 1262 1263 1264 126.i 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 128; 1286 1287 1288 1289 606 607 608 609 610 611 012 613 614 015 010 017 618 019 620 021 022 023 624 625 026 627 028 629 030 031 632 033 634 035 636 637 638 374- 75 375- 76 376- 77 377- 78 378- 79 379- 80 380- 81 381- 82 382- 83 383- 84 384- 85 385- 86 386- 87 387- 88 388- 89 389- 90 390- 91 391- 92 392- 93 393- 94 394- 95 395- 96 396- 97 397- 98 398- 99 399-400 400- 1 401- 2 402- 3 403- 4 404- 5 405- 6 406- 7 1199-200 ■1200- 1 1201- 2 1202- 3 1203- 4 ■1204- 5 1205- 1206- 7 1207- 8 '1208- 9 1209- 10 1210-11 1211- 12 ■1212- 13 1213- 14 1214- 15 1215- 16 ■1216- 17 1217- 18 1218- 19 1219- 20 '1220- 21 1221- 22 1222- 23 1223- 24 '1224- 25 1225- 20 1226- 27 1227- 28 '1228- 29 1229- 30 1230- 31 1231- 32 3 Siddhai-thin... 54 Raudra 55 Durmati 56 Dundubhi 57 Rndhirodgi'irin 58 Raktuksha... , 59 Krodhana .... 60 Kshaya 1 Prabhava 2 Vibhava 3 Sukla 4 Pramoda 5 PrajSpati 6 Angiras 7 Srimukha .... 8 Bhilva 9 Yuvan 10 Dhatri 11 Isirara 12 BahudhSnya.. 13 Pramfithin . . . 14 Vikrama 15 Vrisha 16 Chitrabhftnu . . 17 Subhfinu 18 Tfiraoa 19 Pfirthiva 20 Vyaya 21 Sarvajit 22 Sarvadhfirin . . 23 Virodhin 24 Vikrita 25 Kliarn 57 Rudhirodgirin 58 Raktaksha.. . . 9 Krodhana . . . . 60 Kshaya 1 Prabhava 2 Vibhava 3 Sukla 4 Pramoda 5 Prajilpati 6 Angiras 7 Srimukha 8 Bhava 9 Yuvan 10 Dhatri 11 isvara 12 Bahudhanya . . 13 Pramfithin . . . 14 Vikrama 15 Vrisha 16 Chitrabhanu . . 17 Sublnnin 18 Tfiraua 19 Pftrthiva 20 Vyaya 21 Sarvajit 22 Sarvadhflrin . . 23 Virodhin 24 Vikrita 25 Khara 26 Nandana 27 Vyaya 28 Jaya 29 Manmatha. . . . 29.478 6 BhAdrapada. 7 Asvina. 5 SrSvaua. 28.704 6 BluVlrapada . 39.776 422 406 667 304 380 435 705 364 THE HINDU CALENDAR. lix TABLE I. {Col. 2li) (/ =: Distance of moon from sun. {Cot. 24) b ■zz moon's mean anomaly. {Vol. 25) r := sun's mean unomulij. III. COMMENCEMENT OF THE 1 Solar year. Luni-Solar year. (Civil day of Chaitra Sukla Ist.) At Sonrtse on meridian uf Ujjaln. Day and .Month A. 1). Day and Month A. D. Week ' day. Moon's Age. a. *. c. Kali. 1 day. By the .\ry Siddh&nla. » By the SiU-y Siddhftnta. a p. . •sl II ll Oh. Pa. H. M. Gh. Pa. H. M. 13 14 15 17 16a 17a 19 20 21 22 23 24 25 25 Mar. (84).. 5 Thur. . 10 44 4 17 13 56 5 34 27 Feb, 58).. Sat... . 58 .174 9776 236 208 4301 24 Mar. (84).. 6 Fri.... 26 15 10 30 29 27 11 47 17 Mar. (77)- • 6 Fri. . . . 74 222 9810 172 259 4302 24 Mar. (83).. Sat.... 41 46 16 42 44 59 18 7 Mar. 66).. 4 Wed... 213 .639 25 55 231 4303 24 Mar. (83).. 1 Sun... 57 17 22 55 to 30 to 12 25 Feb. 56).. 2 Mon... 329 .987 239 939 203 4304 25 Mar. (84).. 3 Tues... 12 49 5 7 16 2 6 25 16 Mar. 75).. 1 Sun... 315 .945 274 875 254 4305 24 Mar. (84). . 4 Wed... 28 20 11 20 31 33 12 37 4 Mar. 64).. 5 Thur. . 153 .459 149 722 223 4306 24 Mar. (83).. 5 Thur. . 43 51 17 32 47 5 18 50 23 Mar. 82).. 4 Wed... 205 .615 184 658 275 4307 21 Mar. (83). . 6 Fri . . . 59 22 23 45 +2 3(i tl 3 12 Mar. 71).. 1 Sun... 196 .588 60 505 244 4308 25 Mar. (84).. 1 Sun. . . 14 54 5 57 18 8 7 13 1 Mar. 60).. 5 Thur. . 189 .567 9935 3.52 213 4809 24 Mar. (84). . 2 Mon... 30 25 12 10 33 40 13 28 19 Mar. 79).. 4 Wed. . . 246 .738 9970 288 264 4310 24 Mar. (83).. 3 Tues... 45 36 18 22 49 10 19 40 8 Mar. 67).. 1 Sun... 92 276 9846 136 233 4311 25 Mar. (84) . . 5 Thur. . 1 27 35 4 43 1 53 26 Feb. 57).. 6 Fri... 220 .660 60 19 205 4312 25 Mar. (84).. 6 Fri.... 16 59 (•) 47 20 14 s 6 17 Mar. 76).. 5 Thur. . 195 .585 95 955 257 4313 24 Mar. (84). . Sat... 32 30 13 35 46 14 18 6 Jlar. 66).. 3 Tues... 330 .990 309 839 228 4314 24 Mar. (83).. 1 Sun. . . 48 1 19 12 51 17 20 31 24 Mai-. 83).. 1 Sun... 6 .018 3 738 277 4315 25 Mar. (84).. 3 Tues... 3 32 1 25 6 49 2 43 14 Mar. 73).. 6 Fri.... 263 .789 220 622 249 4316 f 25 Mar. (84). . 4 Wed... 19 4 7 37 22 20 8 56 3 Mar. 62).. 3 Tues... 260 .780 95 469 218 4317 24 Mar. (84). . 5 Thur.. 34 35 13 50 37 52 15 9 20 Mar. 80).. 1 Sun... 34 .102 9791 369 267 4318 24 Mar. (88). . 6 Fri.... 50 6 20 2 53 23 21 21 10 Mar. 69).. 6 Fri.... 286 .858 6 252 239 4319 25 Mar. (84).. 1 Sun... 5 37 2 15 8 55 3 34 27 Feb. 58).. 3 Tues... 106 .318 9881 99 208 4320 25 Mar. (84). . 2 Mon... 21 9 8 27 24 26 9 46 18 Mar. 77).. 2 Mon... 86 .258 9916 33 259 4321 24 Mar. (84).. 3 Tues... 36 40 14 40 39 58 13 59 7 Mar. 67).. Sat. . . . 201 .603 130 919 231 4322 24 Mar. (83).. 4 Wed... 52 11 20 52 55 29 22 12 24 Feb. 55).. 4 Wed... 10 .030 6 766 200 4323 25 Mar. (84).. 6 Fri.... 7 42 3 5 11 1 4 24 15 Mar: 74).. 3 Tues... 47 .141 41 702 252 4324 25 Mar. (84) . . Sat 23 14 9 17 26 32 10 37 4 Mai-. 63).. Sat. . . . 14 .042 9916 549 221 4325 24 Mar. (84) . . 1 Sun... 38 45 15 30 42 4 16 50 22 Mar. 82).. 6 Fri.... 104 .312 9951 485 272 4326 24 Mar. (83). . 2 Mon... 54 16. 21 42 37 35 23 2 11 Mar. 70).. 3 Tnes... 89 .267 9827 332 241 4327 25 Mar. (84) . . 4 Wed... 9 47 3 55 13 7 5 15 1 Mar. 60).. 1 Sun... 320 .960 41 216 213 4328 25 Mar. (84).. 5 Thur. . 25 19 10 7 28 38 11 27 20 Mar. 79).. Sat.... 330 .990 76 152 264 4329 24 Mar. (84).. 6 Fri. . . . 40 50 16 20 44 10 17 40 8 Mai-. 68).. 4 Wed... 91 .273 9951 999 234 4330 24 Mai-. (83). . Sat.... 56 21 22 32 59 42 23 53 26 Feb. 57).. 2 Mon... 214 .642 166 883 205 4331 25 Mar. (84).. 2 Mon... 11 52 4 45 15 13 6 5 17 Mai-. 76).. 1 Sun... 213 .639 200 819 257 4332 25 Miir. (84). . 3 Tues... 27 24 10 57 30 45 12 18 6 Mar. 63).. 5 Tlmr.. 95 .285 76 666 226 4333 t See footnote p. liii THE INDIAN CALENDAR. TABLE I. Lunalioii-iiurts = lO.OOOM* of a circle. A tithi = ',.wM of the moons synodic rnolulion. I. CONCURRENT YEAR. II. ADDED LUNAR MONTHS. True. Luni-Solai' cycle. (Southern.) Brihaspati cycle (Northern) current at Mesha sahkrSnti. Name of month , Time of the preceding saukranti expressed in Time of the succeeding saiiki'&nti eipresscd in 3a 5 6 10 11 4334 433 4336 4337 4338 4339 4340 4341 4342 4343 4344 434 4346 4347 4348 4349 43.50 43.51 4352 4353 4354 435 4356 4357 ■4358 435'J 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 11C6 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 4361 4362 4363 4364 43(1 1182 1183 1184 1185 1186 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1815 1316 1317 1318 1319 1320 1321 639 640 611 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 407- 8 408- 9 409-10 410-11 411-12 412-13 413-14 414-15 415-16 416-17 417-18 418-19 419-20 420-21 421-22 422-23 423-24 424-25 425-26 426-27 427-28 428-29 429-30 430-31 431-32 432-33 433-34 434-35 435-36 436-37 437-38 ■138-39 '1232-33 1233-34 1234-35 1235-36 •1236-37 1237-38 1238-39 1239-40 * 1240-4 I 1241-42 1242-43 1243-44 ♦1244-45 1245-46 1246-47 1247-48 *1248-49 1249-50 1250-51 1251-52 * 1252-53 1253-.54 12.54-55 1255-,56 ♦1256-57 1257-58 1258-.59 1259-60 •1260-61 1261-62 1262-63 1263-64 26 Nandaua . . . . 27 Vijaya 28 Jaya 29 Manmalha.. . 30 Durraiikha.. . 31 Hcmalamba. , 32 Vilamba . . . 33 Vikarin .... 34 Survari .... Plava 36 .Subhakrit . . 37 Sobhana.. . . 38 Krodhin . . 39 Visvavasu . . 40 ParSbhava . . 41 I'lavanga . . . 42 Kilaka 43 Saumj a .... 44 Sadhilrana . . 45 Virodhakrit. 46 Paridhilviu . 47 Pranifidin . 48 Ananda .... 49 Rakshasa . . . 50 Anala 5 1 Pii'igala .... 30 Durmukha.. . 31 Hcmalamba.. 32 Vilamba .... 33 Vikarin 34 Sarvari 35 Plava 36 Subhakrit . . . 37 Sobhana . . . . 38 Krodhin.... 39 Visvavasu . . . 40 Parabhava . . 41 Plavai'iga . . . . 42 Kilaka 43 Saumj a 44 Sildhiiraua . . . 45 Virodhakrit.. 46 ParldhJvin . . 47 Pramadin. . . 48 Ananda l) . . . 50 Anala 51 Pii'igala 52 KSlayukta... 53 Siddharthin . 54 Haudra 55 Durmati . . . , 56 Dundublii . . Srftvaija . 6 liliadrapada 52 Kalayukta. 53 Siddhartbin . 54 Raudra 55 Durmati .... 56 Duudubhi . . 57 KuJhiriidgurii: 57 Uudiiirodiiar 58 Rjiktaksha.. 59 Krodhaua . . 60 Kshaya 1 Prabhava. . . 2 Vibhava . . . 3 Jyeslitha. 7 .\svina. . . 5 Srivaya. 8 Karttika . . . 10 I'ltiisha (lis/i 1 Chaitra. . . . 6 llhadnipadn. 9746 35 9876 377 406 670 342 29.658 0.105 29.628 51 9930 65 447 ') Kakshaita, .No. 49, nan suppressed iu the uortli. THE If/NDU CALENDAR. TABLE I. Ixi (Col. i:\) 11 - = Dislanii' of moon J rom sun. (Col 24) b = moon's mean onomiili/. {Col. i. r .««» '■» mfan finomti b/. 111. COM.MENCEMENT OV THE 1 Solai year. Luni-Solar year. (Civil day of Chaitra Sukla Ist ) (Time of the Mesha saiikrftnti ) At Sunrise on mertdian of Ujjain. Moon's Age. Day ni«l .Montli A. D. Day and Month A. D. Week day. b. c. Kali. • Week day. By the Ary Siddh&nta. 1 By the Siirj Siddh&nta. a 3 .5 J1 Gh. Pa. H. M. Gh. Pa. H. M. 13 14 15 17 16a 17a 19 20 21 22 23 24 25 1 24 Mar. (84).. 4 Wed.... 42 55 17 10 46 16 18 30 24 Mar. (84).. 4 Wed... 168 504 111 602 277 4334 24 Mar. (83).. 5 Thur. . . 58 26 23 22 tl 48 to 43 13 Mar. (72).. 1 Sun... 172 .516 9987 449 246 4335 25 Mar. (84).. Sat 13 57 5 35 17 19 6 56 2 Mar. (61).. 5 Thur.. 137 .411 9862 296 216 4336 25 Mar. (84).. 1 Sun 29 29 11 47 32 51 13 8 21 Mar. (80). . 4 Wed... 176 .528 9897 232 267 4337 24 Mar. (84).. 2 Mod.... 45 18 48 22 19 21 9 Mar. (69).. 1 Sun... ©-19 -.057 9773 80 236 4338 25 Mar (84).. 4 Wed. . . . 31 12 3 54 1 33 27 Feb. (58).. 6 Fri.... 97 .291 9987 963 208 4339 25 Mar. (84).. 5 Thur. . . 10 2 6 25 19 25 7 46 18 Mar. (77). . 5 Thur. . 78 .234 22 899 2.59 4340 25 Mar. (84).. 6 Fri 31 34 12 37 34 57 13 59 8 Mar. (67).. 3 Tues... 239 .717 236 782 231 4341 24 .Mar. (84).. Sat 47 5 18 50 50 28 20 11 25 Feb. (56).. Sat.... 153 .459 112 630 200 4342 25 Mar. (84). . 2 Mod... . 2 36 1 2 6 2 24 15 Mar. (74).. 6 Fri.... 229 .687 146 566 252 4343 23 Mar. (S4). . 3 Tues.... 18 7 7 15 21 31 8 37 4 Mar. (63).. 3 Tues... 236 .708 22 413 221 4344 25 Mar. (84).. 4 Wed.... 33 39 13 27 37 3 14 49 23 Mar. (82). . 2 Mon... 311 .933 57 349 272 4345 24 Mar. (84).. 5 Thur. . . 49 10 19 40 52 34 21 2 11 Mar. (71).. 6 Fri.... 204 .612 9932 196 241 4346 25 Mar. (84) . . Sat 4 41 1 52 8 6 3 14 28 Feb. (59).. 3 Tues... 0-13 — .036 9808 43 211 4347 25 Mar. (84). . 1 Sun .... 20 12 8 5 23 37 9 27 19 Mar. (78).. 2 Mon... 0-36 -.108 9843 979 262 4348 25 Mar. (84). . 2 Mon.... 35 44 14 17 39 9 15 40 9 Mar. (68).. Sat.... 91 .273 57 863 234 4349 24 x\Iar. (84).. 3 Tues.... 51 15 20 30 54 40 21 52 27 Feb. (58).. 5 Thur. . 273 .819 271 746 206 4350 25 Mar. (84). . 5 Thur. . . C 46 2 42 10 12 4 5 17 Mar. (76).. 4 Wed... 318 .934 306 682 257 4351 25 Mar. (84). . 6 Fri 22 17 8 55 25 44 10 17 6 Mar. (65). . 1 Sun . . . 296 .888 182 530 226 4352 25 Mar. (84).. Sat 37 49 15 7 41 15 16 30 24 Mar. (83).. 6 Fri. . . . 79 .237 9878 429 275 4353 24 .Mar. (84).. 1 Sun. . . . 53 20 21 20 56 47 22 43 12 Mar. (72).. 3 Tues... 32 .096 9754 276 244 4354 25 Mar. (84).. 3 Tues. . . . S 51 3 32 12 18 4 55 2 Mar. (61).. 1 Sun... 227 .681 9968 160 216 4355 25 Mar. (84).. 4 Wed... 24 22 9 45 27 50 11 8 21 Mar. (80).. Sat 233 .699 3 96 267 4356 25 Mar. (84).. 5 Thur. . . 39 54 15 57 43 21 17 20 10 Mar. (69).. 4 Wed... 0-33 —.096 9878 943 236 4357 24 .Mar. (84).. 6 Fri 55 25 22 10 58 53 23 33 28 Feb. (59).. 2 Mon... 111 .333 93 827 208 4358 25 Mar. (84). . 1 Sun 10 56 4 22 14 24 3 46 18 Mai-. (77). . 1 Sun... 127 .381 127 763 260 4359 125 Mar. (84).. 2 Mon... 26 27 10 35 29 56 11 58 7 Mar. (66). . 5 Thur. . 53 .159 3 610 229 4360 25 Mar. (84). . 3 Tues. . . 41 59 16 47 45 27 18 11 24 Feb. (55). . 2 Man... 50 .150 9879 457 198 4361 24 Mar. (84). . 4 Wed. . . . 57 30 23 to 59 to 24 14 Mar. (74). . 1 Suu . . . 141 .423 9913 393 249 4362 25 .Mar. (84).. 6 Fri 13 1 5 12 16 30 6 36 3 Mar. (62).. 5 Thur. . 70 .210 9789 240 218 4363 25 Mar. (84). . Sat 28 32 11 25 32 2 12 49 22 Mar. (81). . 4 Wed... 89 .267 9824 176 270 4364 25 >Iar. (84).. 1 Sun.... 44 4 17 37 47 33 19 1 12 Mar. (71).. 2 Mon... 230 1 .690 38 60J 242 4363 t See footnote p. liii above. © Sec Text Art. 101. para. 2. THE INDIAN CALENDAR. TABLE I. I.uiialioii-jmi-ts r= 10,000M« of a circle. A liihi ^ '/^oM of (he moon's sj/nodic rcmluiwn. I. CONCURRENT YEAR. II. ADDED LUNAR MONTHS True. Luni-Solar cycle. (Southern.) Brihaspati cvdc (Nort liei-n) current at Mesha sankranti. Name of month. Time of the preceiling sankrdnti expressed in Time of the succeeding sankr&nti 6 4366 4367 4368 4369 4370 4371 4372 4373 4374 437.5 4376 4377 4378 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1322 1323 1324 132 1326 1327 1328 1329 1330 1331 133 1333 1334 4380 4381 4382 4383 4384 438 4386 4387 4388 4389 4390 4391 4392 4393 4394 439.') 4396 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1336 1337 1338 1339 1340 1341 1342 1343 1344 134 1346 1347 1348 13-19 13.50 1351 13.52 439-40 ■MO-41 441-42 442-43 443-44 444-45 445-46 446-47 447-48 448-49 449-50 450-51 451-52 453-54 454-55 455-56 466-57 457-58 458-59 459-60 460-61 461-62 462-63 463-64 464-65 465-66 466-67 467-68 468-69 169-70 '1264-65 1265-66 1266-67 1267-68 »1268-69 1269-70 1270-71 1271-72 •1272-73 1273-74 1274-75 1275-76 *1276-77 1277-78 1278-79 1279-80 •1280-81 1281-82 1282-83 1283-84 •1284-85 1285-86 1286-87 1287-88 •1288-89 1289-90 1290-91 1291-92 •1292-93 1293-94 1294-9.5 Raktaksha . Krodhana . Kshaja . . . Prabhava.. Vibhava.. . Sukla Pramoda . . Prajapati.. Angiras . . . Srimukha . Bhava .... Vuvan .. . . Dhatri... 11 Isv Buhudhanya . Pi'ani&thin. . . Vikrama .... Vrisha Cbitrabhanu. Subhauu .... TAi-aua ITirthiva .... Vjaya SarvBJit Sarvadh&rin . Virodhin.. . . Vikrita Khara Nandana. . . . Vyaya J"va Sukla Pramoda . . . Prajapati.. . . Angiras . . . . Srimukha . . . Bhava Yuvan Dhatri Isvara Bahudhanya . Pnimathin.. . Vikrama . . . . Vrisha 17 Subhauu.... 18 Taraiia 19 Parthiva 20 Vyaya 21Sarvajit 22 Sarvadharin . 23 Virodhin . . . . 24 Vikrita 25 Khara 26 Nandana . . . . 27 Vijaya 8 Jaya 29 Maumatha. . . 30 Diirmukha . , 31 Ilemalamba., 32 Vihimba 33 Vik.irin . . . 3 Jveshtlia . 8 Karttika , 10 Paii3ka{Ksh) 12 Phaiguna 5 Sriivana 6 Bhftdrapada 9846 45 9955 9730 4 Aahadha... 9266 27.798 29.277 29.874 643 306 29,538 0.135 25 9982 32 THE HINDU CALENDAR. TABLE I. (CoL 23) (/ in IHsUiHfe of moon from sun. {Col. 24) b =: moon's mean anom/ily. (Col. 25) bdii .iuh'k mean anomaly. III. COMMENCEMENT OF Till. Solar year. Luni-Solar year. (Civil day of Chaitra Sukla Ut.) Day and Month A. U. 13 (Time of the Mesha sankrflnti.) Week day. 14 By the Arya Siddhfinta. 16 By the Sflrya Siddhanta. Day and Month A. D. 16a 17a 18 Week day. 20 At Sunrise on mertdian of CJJaIn Moon's Age. 23 26 24 Mar. 25 Mar. 25 Mar. 25 Mar. 25 Mar. 25 Mar. 25 Mar. 25 Mar. 25 Mar. 25 Mar. 25 Mar. 25 Mar. 25 Mar. 25 Mar. 25 Mar. 25 Mar. 25 Mar. 25 Mar. 25 Mar 25 Mar. 25 Mar. 25 Mar. 25 Mar. 25 Mar. 25 Mar. 25 Mar. 25 Mar. 25 Mar. 25 Mar 25 .Mar. 84). ;84). ;84). ;84). ;85)., 84). ;84). 84). 85). 84). 84). 84). 85). 84). :84). 84). 85). 84). :84). 84). ;85). ;84). 84). 84). 85). 84). 84). :84). ;85). 84). 84) 2 Mon.. 4 Wed . 5 Thur. 6 Fri... 1 Snn. . 2 Mon. . 3 Tues.. 4 Wed.. 6 Fri... Sat. . . 1 Sun.. 2 Mon.. 4 Wed.. 6 Fri Sat 2 Mon.... 3 Tues.... 4 Wed. . . . 5 Thar. . . Sat 1 Sun . . . . 2 Mon.... 3 Tues. . . . 5 Thur. . . 6 Fri Sat 1 Sun 3 Tues... . 4 Wed. . . 5 Thur. . 59 35 15 6 30 37 46 9 1 40 17 11 32 42 48 14 3 45 19 16 34 47 .50 19 18 27 40 6 52 13 5 19 17 1 30 7 42 13 55 20 7 2 20 16 10 22 23 4 36 in 48 1 14 26 39 51 4 6 17 12 29 18 42 to 54 7 7 29 Feb. 20 Mar. 9 Mar. 26 Feb. 16 Mar. 5 Mar. 24 Mar. 13 Mar. 2 Mar. 21 Mar. 10 Mar. 28 Feb 18 Mar. 7 Mar. 25 Mar. 15 Mar. 3 Mar. 22 Mar. 12 Mar. 1 Mar. 19 Mar. 8 Mar. 25 Feb. 16 Mar. 5 Mar. 23 Mar. 13 Mai-. 3 Mar. 21 Mar. 10 Mar. 27 Feb. 60). . 79). . 68). . 57).. 76).. 64).. 83).. 72). . 62). . 80).. 69). . 59).. 78).. 66).. ;84). . 74) . ;63). . ;81).. 71).. (60). . :79). . ;67). . [56).. 75). . [65). . ;82).. :72).. ;62).. ;8l).. (69).. 6 Fri. . . 6 Fri... 3 Tue8.. Sat.. 6 Fri... 3 Tues.. 2 Mon.. 6 Fri... 4 Wed.. 3 Tues.. Sat. . . 5 Thur. 4 Wed.. 6 Fri... 4 Wed.. 1 Sun.. Sat.. . 5 Thur. 2 Mon.. 1 Sun.. 5 Thur. 2 Mon.. 1 Sun.. 6 Fri... 4 Wed.. 2 Mon.. Sat... 6 Fri... 3 Tues.. Sal. . ©-=> 330 165 118 204 200 259 107 235 212 ©-; 210 273 45 299 121 104 217 22 59 22 31 100 332 ©-» 109 228 228 106 91 9914 287 163 38 73 9949 9983 9859 73 108 9984 198 233 9804 19 9894 9929 143 19 54 9930 9805 9840 54 9750 9965 179 214 89 9965 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 t See footnote p. liii above. ® Sec Text. Art. 101, pai-a THE INDIAN CALENDAR. TABLE I. LiiiiutioH-parls =1 W,WUlh s of II i-irrlt: A titlii z=. ^ iuth of thf moon's si/ii oi/ir recoliitioii . I. CONCURRENT YEAR. 11. ADDED LUNAR MONTHS. Kali. Saka. 1 1 -1 KoUain. A. 1). Samvatsara. True. Luni-Solar cycle. (Southern.) Brihaspati cycle (Northern) at Mesha sanki-anti. Name of month. Time of the preceding sankrAnti expressed in Time of the suCT-eeding saukrAnti expressed in P a Q iJ 2 3 S 1 2 3 3a 4 5 6 7 8 9 10 11 12 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 44U' 4413 4U4 Ula 44 IC 4117 4418 4419 4420 4421 4422 4423 4424 4425 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1 246 1353 1354 1355 1356 1357 1358 1359 1360 1361 1302 1363 1.S64 1365 1366 1367 1368 1309 1370 1371 1372 1373 1374 1875 1376 1377 1378 1379 1880 13H1 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 470-71 471-72 472-73 473-74 474-75 475-76 476-77 477-78 478-79 479-80 480-81 481-82 482-83 483-84 484-85 485-86 486-87 487-88 488-89 489-90 490-91 491-92 492-93 493-94 494-95 495-96 496-97 497-98 498-99 129.5- ♦1296- 1297- 1298- 1299- •1300- 1301- 1302- 1303- ♦1304- 1305- 1306- 1307- •1308- 1309- 1310- 1311- •1312- 1313- 1314- 1315- •1316- 1317- 1318- 1319- •1S20- 1821- 1322- 1323- 96 97 98 99 300 1 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 29 Maiimatha . . . 34 .Sarvari 35 Plava | 9 Murgasirsha . 10 I'lius/miKsA.) 12 Phalguna... 9991 1 9964 29.973 0.003 29.892 1 9954 91 0.003| 29 . 862 \ 0.273) 31 Hcmalamba.. . 36 SubhakTit 37 Sobhanu 33 VikSrin 34 Sfirvari 35 Plava 38 Krodhin 5 Sravana 9661 28.983 344 1.032 40 Parabhava 36 Subhakrit 37 Sobhana 38 Krodhin 39 Visvavasu .... 40 ParSbhava... 41 Plavanga 42 Kilaka 43 Sauiiiya 44 Sfidharaua . . . 45 Virodhakrit.. 46 Paridhaviii . . . 47 Praraadin .... 48 Ananda 49 Hilksliasa 50 Anala 41 Plavanga 42 Kilaka 4 Asbadha 9715 29.145 554 1.662 44 Sadhaiana. . . . 45 Virodhakrit.. . 2 \aisakha .... 9889 29.667 310 0.930 46 Paridhavin . . . 6 Bbfulrapada.. 9827 29 481 250 0.750 49 Rakshasa 4 .ishfiilha 9239 27.717 101 0.303 51 Pingiila 52 K&layukta 3 Jycshtha 9776 29.328 328 0.984 54 Raudra < 8 Karttika 9 .Mdri/as.(Ksh.) 12 Phftlguna. . , . 9950 31 9917 29.850 0.093 29.751 31 9996 67 0.093| 29.9881 0.20l| 52 Killayukta .... 53 SiddhArlhin.. . 54 Kaudra 55 Diinnati 56 Uundiibhi.... 57 Hudhirodgfiriu 57 RudhirodgArin 58 llaktaksha 5 Srflvava 9048 28.944 425 1.275 60 Kshnya 4 .\shAdhn 9800 29 . 400 547 1.641 2 Viblmvn THE HINDU CALENDAR. Ixv TABLE I. {Col. 23) a zr Dulanee of moon from sun. (Cot. 2i) b ^ nwon.s mean anomaly. (Col. 25) c ■^ suit't mean anomaly. III. COMMENCEMENT OF THE Solar year. Liini-Solar year. (Civil day of Chaitra Sukia I at.) Day and Moiitii A. D. (Time (if the Mesha sai'iki'fmti.] Week day. 14 By the Arya Siddbanta. Gh. Pa. H. M 15 17 By the Siirya Siddbanta. Day and Month A. D. Gh. Pa. H. M 17a Week day. At Sunilae on meridian of Ujjaln. .Moon's Age. 24 1 43'J7 4398 4399 4400 4401 4402 4403 4404 440.-) 4400 4407 4408 4409 4410 4411 4412 4413 4414 441.5 4416 4418 4419 4420 4421 4422 4423 4424 4425 26 Mar 85).. 25 Mar. 85),. 25 Mar. 84).. 25 Mar. (84).. 26 Mar. (85).. 25 Mar. (85).. 25 Mar. (84). . 25 Mar. (84).. 26 Mar. (85).. 25 Mar. (85).. 25 Mar. (84).. 25 Mar. (84).. 26 Mar. (85). . 25 Mar. (85).. 25 Mar. (84).. 25 Mar (84).. 26 Mar. (85).. 25 Mar. (85).. 25 Mar. (84).. 25 Mar. 84).. 20 Mar. 85).. 25 Mar. (85). 25 Mai-. (84).. 25 Mar. (84).. 26 Mar. (85).. 25 Mar. (85). . 26 Mar. (84).. 25 Mar. (84). . 26 Mar. (85).. 2 Mod .. 3 Tues. . 5 Tbur. . 6 JVi... Sat . . . 1 Sun . . . 3 Tues... 4 Wed... 5 Tbur., 6 Fri... 1 Sun... 2 Men... 3 Tues.. 4 Wed... 6 Fri... Sat. . . 1 Sun . . . 2 Mou.. 5 Thnr. 6 Fri... Sat... 2 Mon.. 3 Tuea . 4 Wed.. 5 Tbur. Sat. . . 26 40 42 11 35 25 50 57 C 28 18 Mar. (77).. ,60). 25 Mar. 14 Mar. 4 Mar. 22 Mar. 12 Mar. 1 Mar. 20 Mar. 8 Mar. 25 Feb. 16 Mar. 5 Mar. 23 Mar. 13 Mar. 3 Mar. 21 Mar. 10 Mar. 27 Feb. 17 Mar. 25 Mar. 14 Mar. 4 Mar. 23 Mar. U Mar 28 Feb. 19 Mar. 8 Mar. 84). 82).. 71).. 60). . 79).. 68). . 56). . 7.5). . 64). . 83).. 72).. ;62).. 80).. 70).. 58).. 76).. 06).. 73).. 63). . :82).. 71).. 59).. 78).. (17).. 2 Men.. 6 Fri... 4 Wed. . 3 Tues.. 1 Sun . . 5 Tbur. 4 Wed.. 1 SUH.. 5 Thur. 4 Wed.. 1 Sun . . Sat. . . 5 Thur. 3 Tues.. 1 Sun.. 6 Fri... 3 Tues.. 1 Sun. . 5 Thur. 2 Mon.. Sat. . . fl Fri. . . 3 Tuis.. Sat. . . 6 Fri . 3 Tues. . 112 95 253 163 239 245 194 219 4 0-18 106 20 — .045 372 423 192 204 453 246 9875 35 249 125 159 35 9911 9946 9821 9856 70 285 9981 195 71 9767 16 9891 106 140 16 9892 9926 9802 f See footuote p. liii above. See Text. Art. 101, para. 2. Ixvi THE rNDfAN CALENDAR. TABLE L l,ii,iulioii-jiiii-ls =: 10,OOOM.« of a rircli\ A tillii r= ',3oM of tlie mooii\i si/nodic revolulioii. I. CONCURRENT YEAR. II. ADDED LUNAR MONTHS. 2 3a Sainvatsara. True. ]>uiii-Sular cycle. (Southern.) 6 Brihaspati cycle (Northeni) cuiTeiit at Mesha sankrSnti. Name of month. Time of the preceding Bankrfinti expressed in 10 Time of the succeeding saiikrdnti expressed in c :^ 11 4+26 4127 4428 4429 4430 4431 4432 4433 4434 4435 4437 4438 4439 4440 4441 4442 4143 4444 4445 444(5 4447 444K 4449 4450 4451 4452 4453 4454 445 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1258 12.59 1260 1261 1262 1263 1264 1265 1 266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1382 1383 1384 138, 1386 1387 1388 1389 1390 1391 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 500- .501- 502- 503- 504- 505- 506- 507- 508- 510- 11 511- 12 512- 13 513- 14 514- 15 515- 16 516- 17 517- IH 518- 19 519- 20 520- 21 521- 22 522- 23 523- 24 524- 25 525- 26 526- 27 627- 28 528- 29 529- 30 •1324-25 1325-26 1326-27 1327-28 ♦1328-29 1329-30 1330-31 1331-32 •1332-33 1333-34 1335-36 •1336-37 1337-38 1338-39 1339-40 •1340-41 1341-42 1342-43 1343-44 •1344-45 1345-46 1346-47 1347-48 •1348-49 1349-50 1350-51 1351-52 •1352-53 1353-54 1354-55 Raktaksha . . . Krodhaua . . , Kshaya Prabhava.. . . Vibhava Sukla Pramoda. . . . AiigU-as... Srimukhii . Yuvan Dhatri Isvara liabudhauyn . . PramStbin . . . Vikrama Vrisba CbitrabbHnu . . Subhduu Tirana PArthiva Vyaya Sarvajit Sarvadhilrin . . Virodhin VikriU khara Naudaua Vijnya .I:iv,-i Sukla Pramoda . . Prajapali.. Angiras.. . Srimukha . Bbava.... Yuvan. . . . Dhatri... Isvara Bahudbauva . Vikrama 1). . . Chitrabbanu . Subhanu . . . . Taraua Parthiva . . . . Vyaya Sarvajit Sarvadbirin . Virodhin. . . . Vikfita Khara Nandana .... Vijaya Java Manmatha . . Durmukba. . Ilcnialaniba. . Vilamba VikArin 6 Bbudrapada 461 433 9297 27.891 7 Asvina. . . 10 I'aitsha (Ksh.) 12 Phalguna. 9 9915 29.727 0.027 29.745 130 9942 33 SrAvapa. 28.827 4 AsliAdha . 627 2 Vaisakba . . . 6 BbAdrapada. 9957 29.871 514 538 4 AsbAdha . 2 Vai.sftkha . . . 6 ItlimhMpada. 9471 'J Vrisba, No. 15, Viia suppressed in the north. THE HINDU CALENDAR. Kvii TAIiliE I. {Col. 2.'i) II zrz Dislinire of moon from xiiii. (Cnl. i\) h = mdoiis meun iniomulj/. (Col. 25) r r= sun'.': menu iiiwaiiiUj. III. COMMENCEMENT OF THE 1 Solar year. Luni-Solar year. (Civil day of Chaitra Sukla Ut.) Kali. Day and Month A. 1). Time of the Mesha sai'ikr&nti.) Day and Month A. D. Week day. At Sunrise on meridian of tJJJaln. Moon's Age. a b. c. Week liny. By the A17 Siddh&nta. a By the Surya Siddhanta. i- J1 Gh. Pa. H. M. Gh. Pa. H. M. E--I 13 14 16 17 15a 17a 19 20 21 22 23 24 26 1 25 Mar. (85).. 1 Sun 30 50 12 20 34 36 13 50 26 Feb. (57).. 1 Son 260 .780 16 128 201 4426 25 Mar. (84).. 2 Mod. ... 46 21 18 32 50 8 20 3 16 Mar. (75).. Sat 246 .738 51 64 252 4427 26 Mar. (85).. 4 Wed. . . . 1 52 45 5 39 2 16 5 Mar. (64).. 4 Wed.... 0-6 -.018 9927 911 222 4428 26 Mar. (85).. 5 Thur. . . 17 24 6 57 21 11 8 28 24 Mar. (83).. 8 Tues.... 0-12 -.036 9962 847 273 4429 25 Mar. (85).. 6 Fri 32 55 13 10 36 42 14 41 13 Mar. (73).. 1 Sun .... 177 .531 176 731 245 4430 25 Mar. (84).. Sat 48 26 19 22 52 14 20 54 2 Mar. (61).. 5 Thur... 128 .384 52 578 214 4431 26 Mar. (85).. 2 Mod.... 3 57 1 35 7 45 3 6 21 Mar. (80). . 4 Wed... 213 .639 86 514 265 4432 26 Mar. (85).. 3 Tucs. . . . 19 29 7 47 23 17 9 19 10 Mar. (69). . 1 Sun ... . 209 .627 9962 361 235 4433 25 Mar. (85).. 4 Wed.... 35 14 38 48 15 31 27 Feb. (58).. 5 Thur . . 116 .348 9838 208 204 4434 25 Mar. (84). . 5 Thur... 50 31 20 12 54 20 21 44 17 Mar. (76). . 4 Wed.... 122 .366 9872 144 255 4435 26 Mar. (85).. Sat fi 2 2 25 9 51 3 57 7 Mar. (66). . 2 Mon. .. . 251 .753 87 28 227 4436 26 Mar. (85).. 1 Sun 21 34 S 37 25 23 10 9 26 Mar. (85). . 1 Sun. . . . 231 .693 121 964 278 4437 25 Mar. (85). . 2 Mon... 37 5 14 50 40 55 16 22 14 Mar. (74). . 5 Thur. . . 7 .021 9997 811 247 4438 25 Mar. (84).. 3 Tues... 52 36 21 2 56 26 22 34 4 Mar. (63) . 3 Tues. . . . 221 .663 211 694 219 4439 26 Mar. (85).. 5 Thur. . . 8 7 3 15 11 58 4 47 23 Mar. (82). . 2 Mon. . . . 284 .852 246 630 271 4440 26 Mar. (85).. 6 Fri 23 39 9 27 27 29 11 12 Mar. (71).. 6 Fri 282 .846 122 478 240 4441 25 Mar. (85).. Sat 39 10 15 40 43 1 17 12 29 Feb. (60).. 3 Tues. . . . 264 .792 9997 325 209 4442 25 Mar. (84). . 1 Sun ... . 54 41 21 52 58 32 23 25 19 Mar. (78).. 2 Mon.... 312 .936 32 261 260 4443 26 Mar. (85). . 3 Tues... 10 12 4 5 14 4 5 37 8 Mar. (67). . 6 Fri 137 .411 9908 109 230 4444 26 Mar. (85).. 4 Wed. . . . 25 44 10 17 29 35 11 50 26 Feb. (57).. 4 Wed... 258 .774 122 992 201 4445 25 Mar. (85).. 5 Thur. . . 41 15 16 30 45 7 18 3 16 Mar. (76).. 3 Tues. . . . 235 .705 157 928 253 4446 25 Mar. (84).. 6 Fri 56 46 22 42 to 38 to 15 5 Mar. (64).. Sat 35 .105 32 775 222 4447 26 Mar. (85). . 1 Sun .... 12 17 4 55 16 10 6 28 24 Mar. (83).. 6 \\\ 71 .213 67 711 273 4448 26 Mar. (85).. 2 Mod.... 27 49 11 7 31 41 12 41 13 Mar. (72).. 3 Tues. . . . 33 .099 9943 558 242 4449 25 Mar. (85).. 3 Tues. . . . 43 20 17 20 47 13 18 53 1 Mar. (61).. Sat 39 .117 9818 405 212 4450 25 Mar. (84).. 4 Wed.... 58 51 23 32 +2 44 tl 6 20 Mar. (79).. 6 Fri 111 .333 9853 341 263 4451 26 Mar. (85).. 6 Fri 14 22 5 45 18 le 7 18 9 Mar. (68).. 3 Taes. . . . ©-S -.006 9729 188 232 4452 26 Mar. (85). . Sat 29 54 11 57 33 47 13 31 27 Feb. (58) . 1 Son 148 .444 9943 72 204 4453 25 Mar. (85). . 1 Sun .... 45 25 18 10 49 19 19 44 17 Mar. (77).. Sat 125 .375 9978 8 255 4454 26 Mar. (85).. 3 Tues.... 56 22 4 50 1 56 7 Mar. (66).. 5 Thnr. . . 243 .729 192 891 227 4455 26 Mar. (85).. 4 Wed.... 16 27 6 35 20 22 8 9 26 Mar. (85).. 4 Wed. . . . 244 .732 227 827 279 4456 f Sec footnote p. liii above. © Sec Text. Art. 101 above, para. "l. Ixviii THE INDIAN CALENDAR. TABLE I. hiiiHition-puTta = 10,000//(.« of ti rirrlf. A lilhi ^ '/muM of the moon's synodic recolatioii. I. CONCURRENT YEAR. 11. ADDED LUNAR MONTHS. 3a True. l.uni-Solar cycle. (Southern.) 6 Brihaspati cycle (Northern) current at Mesha sai'iki'lnli. Name of month. Time of the preceding sai'ikrunti expressed in Time of the succeeding sahkrunti expressed in 4457 4458 4459 4460 4461 4462 4463 4464 446 4466 4467 4468 4469 4470 4471 4472 4473 4474 447 4476 4477 4478 4479 4480 4481 4482 4483 4484 448: 4486 4487 44S8 1278 1279 1280 1281 1282 1283 1284 128; 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 129' 1298 1299 1300 1301 1302 1303 1304 1305 1306 130; 1308 1309 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 143 1436 1437 1438 1439 1440 1441 1442 1443 1444 530-31 531-32 532-33 533-34 534-35 535-36 536-37 537-38 538-39 539-40 540-41 541-42 542-43 543-44 544-45 545-46 546-47 547-48 548-49 549-50 550-51 551-52 552-53 553-54 554-55 555-56 556-57 557-58 558-59 559-60 560-61 561-62 1355-56 *1356-57 1357-58 1358-59 1359-60 •1360-61 1361-62 1362-63 1363-64 *1364-65 1365-66 1366-67 1367-68 •1368-69 1369-70 1370-71 1371-72 » 1372-73 1373-74 1374-75 1375-76 •1376-77 1377-78 1378-79 1379-80 •1380-81 1381-82 1382-83 1383-84 •1384-85 1385-86 1386-87 Manmatha . . Durmukha . . Hemalamba. . Vilamba .... Vikai'in Sfirvari Plava Subhakrit . . . Sobhana Krodhiu .... Visvavasu. . . Parabhava . . . Plavauga .... Kilaka Sauraya Sudharaua.. . Virodhakrit.. Paridhuvin . . Pramadiu . . . Anauda Rakshasa.. . . Aiiala Piiigala KAIayukta. . . Siddharthin.. Plava Subhakrit . . Sobhana. . . . Krodhin . . . Visvfivasu . . ParSbhava . Plavaiiga. . , Kilaka Sauniya. . . SSdhfiraiia . Virodhakrit Paridhavin . Praniadin . Anauda. . . Rakshasa . . Anala Piiigala ... Kalayuktn. , Sidlulrthiu. , Raudra ... Durmati Dundubhi. Rudhirodgtirin Raktaksba Krodhana . 28.872 374 6 Bhadraiiada 490 544 6 BUadrapaJa . 5 SrAvava. 9743 29.229 28.731 Dunnati Dundubhi. . . . KiidhirodgAriii Raktaksha.. . . Krodhana . . . . Kshuva CiO Kshaya . . 1 Prabhava 2 Vibhava. . 3 Suklu . . . 4 Pranioda. 5 PrajApati. 6 Aiiginis.. 8 Kfirttikn. 9 Mdrgai.(Ksh) 2 Vaisakha. 9987 15 9927 29.811 0.045 29.781 15 9927 455 6 Bhadra|)ada. 29.718 29.397 THr. [ff.XDU CAI.EXDAR. Ixix TABLE 1. (Tn/. 23) (I =z Disliiiire of moon from sun. (Col. 21-) li ^ niuonn mean unomalij. [Cot. 25) c m .iiin'.s mean anomaly. III. COMMENCEMENT OF THE Solar year. Luni-Solar year. (Civil day of Chaitra Sukla Ut.) Day and Mmith A. 1). (Time of the Mesha sankrfinti.) W.tk day. By the Arya SiddfaSnta. By the Silrya Siddhauta. Day nod Month A. 1). Week day At Sanrlse on morldiaD of tTjJalD. Moon's Age. 13 14 15 17 15a 17a 19 20 23 24 26 Mai-. (85). . 25 Mar. (85).. 26 Mar. (85). . 26 Mar. (85). . 26 Mar. (85).. 25 Mar. (85). . 26 Mar. (85).. 26 Mar. (85).. 26 Mar. (85).. 25 Mar. (85).. 26 Mar. (85).. 26 Mar. (85).. 26 Mar. (85).. 25 Mar. (85).. 26 Mar. (85). . 26 Mar. (85).. 26 Mar. (85). . 25 Mar. (85).. 26 Mar. 85).. 26 Mar. 85).. 26 Mar. 85).. 25 Mar. 85).. 26 Mar. 85) . 26 Mar. 85).. 26 Mar. 85).. 26 Mar. 86).. 26 Mar. 85).. 26 Mar. 85).. 26 Mar. 85).. 26 Mar. 86).. 26 Mar. 85).. 26 Mar. 85).. 5 Thur. 6 Fri... 1 Sun . . 2 Mon.. 3 Tues.. 4 Wed.. 6 Fri... Sat... 1 Sun. . 2 Mon.. 4 Wed.. 5 Thm-. 6 Fri... Sat. . . 2 Mon.. 3 Tues.. 4 Wed. . 5 Thur. Sat... 1 Sun . . 2 Mon.. 3 Tue9 . 5 Thur. 6 Fri... Sat. . . 2 Mon... 3 Tues... 4 Wed... 5 Thur. . Sat. . . . 1 Sun . . . 2 Mon .. 33 19 35 5 50 36 12 21 IS 34 to 46 6 .-)9 13 11 19 24 15 Mar. (74). 3 Mai-. (63). 22 Mar. (81). 11 Mar. (70). 28 Feb. (59). 18 Mar. (78). 8 Mar. (67). 26 Feb. (57). 17 Mar. (76). 5 Mar. (65). 24 Mar. (83). 13 Mar. (72). 2 Mar. (61).. 20 Mar. (80).. 9 Mar. (68).. 27 Feb. (.58).. 18 Mar. (77).. 7 Mar. (67).. 25 Mai-. (84).. 15 Mar. (74). . 4 Mar. (63). . 21 Mar. (81).. 11 Mar. (70).. 28 Feb. (59).. 19 Mar. (78).. 8 Mar. (68).. 25 Feb. (56). . 16 Mar. (75). . 5 Mar. (64).. 23 Mar. (83). . 12 Mai-. (71). . 2 Mar. (61).. 1 Sun. . 5 Thur. 4 Wed.. 1 Sun . 5 Thur. 4 Wed.. 2 Mon.. Sat. . . 6 Fri... 3 Tues.. 2 Mon.. 6 Fri... 3 Tues.. 2 Men.. 6 Fi-i... 4 Wed.. 3 Tnes.. 1 Sun . . 6 Fri... 4 Wed.. 1 Sun. . 6 Fri. . . 4 Wed.. 1 Sun. . Sat. . 5 Thur. 2 Mon . 1 Sun . . 5 Thur. 4 Wed.. 1 Sun . . 6 Fri... 103 9978 13 9889 9764 9799 13 228 262 138 173 48 9924 9959 83.- 49 83 298 9994 208 84 9780 9994 9870 29 9905 9940 981.- 30 4457 4458 4459 4460 4461 4462 44B3 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 447B 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 f See footnote j). liii above I.vx THE INDIAN CALENDAR. TABLE I. Liaiation-pnrls =^ 10,O00M.v nf n cirrli-. .1 tithi := ';'au//< of the moon's synodic revolution. I. CONCURRENT YEAR II. ADDED LUNAR MONTHS 2 True. I.uni-Solar cycle. (Southern.) 6 cycle (Northern) current at Mesha sankr^nti Name of month. Time of the preceding saiikr^nti expressed in 10 Time of the succeeding sankr9nti cipnssed in 4489 4490 4491 4498 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4500 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 451 4518 4519 4520 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 132i 1326 1327 1328 1329 1330 1331 133: 1333 1334 1335 1336 1337 1338 1339 1 340 1341 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 562-63 563-64 564-65 565-66 566-67 567-68 568-69 569-70 570-71 571-72 572-73 573-74 574-75 575-76 576-77 577-78 578-79 579-80 580-81 581-82 582-83 583-84 584-85 585-86 586-87 587-88 588-89 589-90 590-91 591-92 592-93 593-94 1387- 88 1388- 89 1389- 90 1390- 91 1391- 92 ■1392- 93 1393- 94 1394- 95 1395- 96 ■1396- 97 1397- 98 1398- 99 1399-400 '1400- 1 1401- 2 1402- 3 1403- 4 ■1404- 5 1405- 6 1406- 7 1407- 8 •1408- 9 1409- 10 1410- 11 1411- 12 '1412- 13 1413- 14 1414- 15 1415- 16 '1416- 17 1417- 18 141 S- 19 1 Prabhava.. . . 2 Vikhava 3 Sukla 4 Pramoda .... 5 Praj&pati 6 Ai'igiras 7 Srimukha . . . 8 Bhava 9 Yuvan 10 Dhatri 11 Isvara 12 liahudhanya. 13 Pramfithiu.. . . 14 Vikrama. . . . 15 Vrisha 16 CUitrabhanu. 17 Subhfinu.... 1 8 Tiiratia 19 Pfirthiva 20 Vyaya 21 Sarvajit 22 Sarvadhftrin . 23 Virodhiu 24 Vikrita 25 Kharu 26 Nandana. . . . 27 Vijaya 28 Java 29 Manmatha.. . 30 Durmukha. . . 31 Hemalamba.. 32 Vilamba .... Srimukha . Bhava. . . . Yuvan . . . . Dhatri 6 Bhadrapada Bahudhanya . Pramathin. . . Vikrama . . . . Vrisha Chitrabhanu. Subhunn . . . . Tarava 5 Sravana 3 Jveshtha . Vyaya ....... Sarvajit Sarvadharin . Virodhin.. . . Vikrita Kbara Nandana . . . . Vijaya Jaya Maumatha.. . Durmukha . . lliinnlamba. . Vilamba . . . . Vikariii savvari 8 Kai-ttika. 10 Pau3h/i(Ksh.) 1 Chaitra . . 29.943 0.240 29.586 121 9950 56 6 Bhftdrapada. 29.967 6 Bhadrapada. Plava Subhakrit . Sobbaoa. . . Krodhin . . THE HINDU CALENDAR. Ixxi TABLE 1. yCol. 23) II ^ IHstiinre of moon from sun. (Col. 2I) li ^= nioon'.i mean unomali/. [Col. 25) r := sun's mean iinniiiali/. in. COMMENCEMENT OF THE Solar year. Luni-Solar year. (Civil day of Chaitra Sukla lal.) aud Month. A. D. 13 (Time of the Mesbn sankrunti.) Week day. 14 By the Arya Siddh&nta. 17 By the SOrya Siddh&nta. Day and Month. A. 1). 17a 19 Week day. 20 At SuQTlae on meridian ot UJjaln. Moon's Age. 21 22 23 20 Mar. 85). 26 Mar 86). 26 Mar. 85). 26 Mar 85). 26 Mar. 85). 26 Mar. 86). 26 Mar. 85). 26 Mar. 85). 26 Mar. 85). 26 Mar. 86). 26 Mar. 85). 26 Mar 85). 26 Mar. 85). 26 Mai-. 86). 26 Mar. 85). 26 Mar. 85). 26 Mar. (85). 26 Mar. (86). 26 Mar. (85). 26 Mar. (85). 26 Mar. (85). 26 Mar. (86). 26 Mar. (85). 26 Mar. (85). 27 Mar. (86). 26 Mar. (86). 26 Mar. (85). 26 Mar. (85). 27 Mar. (86). 26 Mar. (86). 26 Mar. (85). 26 Mar (85). 3 Tues. 5 Thui-. 6 Fri... Sat. . . 1 Sun. . 3 Tues. 4 Wed. 5 Thur. 6 Fri... 1 Suu. . 2 Moil. 3 Tues. -t Wed. 6 Fri... Sat. . . 1 Sun . . 2 Men.. 4 Wed., 5 Thur. 6 Fri. . . Sat. . . 2 Mon. 3 Tues., 4 Wed., 6 Fri... Sat. . . 1 Sun.. 2 Mou. 4 Wed. 5 Thur. 6 Fri... Silt. . . to 27 6 39 12 52 I'J 4 fl 17 7 30 13 42 19 55 21 Mar. 9 Mar. 27 Feb. 18 Mar. 7 Mar. 25 Mar. 14 Mar. 3 Mar. 22 Mar. 11 Mar. 28 Feb. 19 Mar. 9 Mar. 26 Feb. 16 Mar. 5 Mar. 24 Mar. 12 Mar. 2 Mar. 21 Mar. 10 Mar. 28 Feb. 17 Mar. 6 Mar. 25 Mar. 13 Mar. 3 Mar. 22 Mar. 12 Mar. 29 Feb. 19 Mai-. 8 Mar. 5 Thur. 2 Mon., Sal... 6 Fri. . . 3 Tues., 2 Mon., 6 Fri... 3 Tues.. 2 Mon., Sat. . . 4 Wed., 3 Tues. 1 Sun . . 5 Thur. 4 Wed., 1 Sun.. Sat. . . 4 Wed.. 2 Mon. 1 Sun.. 5 Thur. 3 Tues. 1 Sun.. 5 Thnr. 4 Wed.. 1 Sim,. 6 Fri. . . 5 Thur. 3 Tues.. Sat... 6 Fri... 3 Tues.. .786 .027 .492 .570 .408 .672 .660 .387 .414 .804 .063 .063 .693 .609 .873 .825 .973 .450 .819 .756 .147 .855 .120 .144 .366 .039 .489 .426 .777 .249 .387 .327 64 9940 1 1 65 99 9975 9851 9886 100 9976 10 224 100 135 11 45 9921 13 170 46 260 9956 9832 9866 9742 9956 9991 205 81 lie 9992 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4.505 4500 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 t Sec footnote p. liii ahoye. Ixxii THE INDIAN CALENDAR TABLE 1. LuiiiilioH-parts ^ 1 U,tJI)U//j.v oj a cinlc. A lillii z^ \.titli of the moon's synodic retoliihn I. CONCURRENT YEAR. II. ADDED LUNAR MONTHS True Limi-Solar cycle. (Southern.) Brihasputi cycle (Norlheni) current at Mesha sankrSnti. N'amc of month. Time of the preceding sankr&nti expressed in Time of the succeeding sankranti 3 3a 6 11 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 50 4551 4552 4553 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1.500 1501 1502 1503 1504 1505 1506 1507 1508 1509 594- 595- 596- 597- 598- 599- 600- 601- 602- 603- G04- 605- 606- 607- 608- 609- 610- 611- 612- 613- 614- 615- 016- 017- 618- 619- 620- 621- 622- 623- 624- 625- 026- 1419- *1420- 1421- 1422- 1423- *U24- 1425- 1426- 1427- '1428- 1429- 1430- 1431- *1432- 1433- 1434- 1435- *1436- 1437- 1438- 1439- *1440- 1441- 1442- 1443- •1444- 1445- 1446- 1447- •1448- 1449- 1450- 1451- Vikilriu . . Sarvari . . Plava.. . . Subhakrit Sobhana. . Krodhin . Visvavasu Parabhava Plavanga Kilaka.. Sauiaya., Sudhilrana Virodhakrit Paridhavin Pramadin Ananda. . Rakshasa . Anala ... Piiigala . . Klllayukta Siddharthi Kaudra . . Durmati . Dundubhi Uudhirodgi Raktaksha Krodhaua Kshaya . . Prabhava. Vibhava. . Sukla.. . . Pramnda . I'n.jn|iati, Visvuvasu .... Parabhava ') . . Kilaka Saumya Sadharapa . . . . Virodhakrit.. . Paridhavin . . . Pramadin . . . . Ananda Rakshasa Anala Piiigala Kalayukta. . . . Siddhiirthin.. . Raudra Durmati Dundubhi. . . . Kudhirodgariu Raktaksha . . . . Ki'odhana . . . . Kshaya Prabhava Vibhava Sukla Pramoda Prajfipati Ai'igiras Srimukha . . . . Bhdva Yuvan Dhfltri Isvara Ualiudhaiivn 28.776 29.487 6 Bhadrapada. 28.887 111 81 173 3 Jveshtha. 28.788 264 90 5 Srftvapa. 297 6 Bhfidrapada. 29.475 '; Plavniiga No. 41 wan suppressed in the .N'orlh. THE HfNDU CALENDAR. TABLE 1. Ixxiii (Col. 23) (1 - = Disliiiire of moon from sun. (Col 24) b = moon's mean unoniiili/. (Col. 25 ) '• = = suns menn 1 n„ma ('/■ III. COMMENCEMENT OF THE Solar ycai'. Luni-Solar year. (Civil da; of Chaitra Sukla 1st.) (Time "f "'" Af—l'n iioiil-i- nti ^ At Sunrise on meridian ol Ujjaln. Day and Month. A. D Day and Month. A. D. Week day. Moon's Age. a. b. c. Kali. Week day. By the A17 Siddh&nta. ly the Surya SiddhJnta. a 1 ■si II Gh. Pa. H. M. Gh. Pa. H. M. 5 ^ 13 14 15 17 15a 17a 19 20 21 22 23 24 26 1 27 Mar. 86).. 2 Mon.. . . 5 19 2 7 9 31 3 48 27 Mar. (86). . 2 Mon... 200 .600 26 462 279 4521 26 Mar. (86).. 3 Tue3.... 20 50 8 20 25 2 10 1 13 Mar. (75). . 6 Fri 172 .516 9902 309 248 4522 26 Mar. (85). . 4 Wed.... 30 21 14 32 40 34 16 14 4 Mar. (63).. 3 Tues.... 35 .105 9778 156 217 4523 26 Slar. (85).. 5 Thar. . . 51 52 20 43 36 6 22 26 23 Mar. (82).. 2 Mon... 29 .087 9812 92 269 4524 27 Mar. (86). . Sat 7 24 2 57 11 37 4 39 13 Mar. (72).. Sat 146 .438 27 976 241 4325 26 Mar. (86).. 1 Sun 22 55 9 10 27 9 10 51 2 Mar. (62).. 5 Thur.. . 275 .823 241 860 213 4526 26 Ma.-. 85).. 2 Mon... 38 26 13 22 42 40 17 4 21 Mar. (80).. 4 Wed ... 282 .846 276 795 264 4527 26 Mar. (85).. 3 Tues.... 33 57 21 35 58 12 23 17 10 Mar. (69).. 1 Sun 182 .546 151 643 233 4528 27 Mar. 86).. 5 Thur. . . 9 29 3 47 13 43 3 29 27 Feb. (38).. 5 Thur. . . 179 .537 27 490 202 4529 26 Mar. 86).. 6 Fri 23 10 29 15 11 42 17 Mar. (77).. 4 Wed. . . . 265 .795 62 426 233 4530 26 Mar. 83).. Sat 40 31 16 12 44 46 17 54 6 Mar. (65).. 1 Sun 216 .648 9937 273 223 4531 26 Mar. 85).. 1 San 56 2 22 25 to 18 to 7 25 Mar. (84).. Sat 248 .744 9972 209 274 4532 27 Mar. 86).. 3 Tues. . . 11 34 4 37 15 49 6 20 14 Mar. (73).. 4 Wed.... 37 .111 9848 56 243 4533 26 Mar. 86).. 4 Wed. . . . 27 5 10 50 31 21 12 32 3 Mar. (63).. 2 Mon 151 .453 62 940 215 4534 26 Mar. 85).. 5 Thar. . . 42 36 17 2 46 52 18 43 22 Mar. (81).. 1 Sun... 139 .417 97 876 266 4533 26 Mar. 85).. 6 Fri 58 7 23 15 t2 24 to 57 12 Mar. (71).. 6 Fri 311 .933 311 759 238 4336 27 Mar. 86).. 1 Sun 13 39 .5 27 17 53 7 10 1 Mar. (60). . 3 Tues. . . . 242 .726 187 606 207 4337 26 Mar. 86).. 2 Mon. . . . 29 10 11 40 33 27 13 23 19 Mar. (79).. 2 Hon.... 324 972 221 542 259 4538 26 Mar. 85).. 3 Tues.... 44 41 17 52 48 58 19 35 8 Mar. (67). 6 Fri 327 .981 97 390 228 4339 27 Mar. 86).. 3 Thui-. . . 12 5 4 30 1 48 26 Mar. (85).. 4 Wed.... 70 .210 9793 289 276 4540 27 Maiv 86).. 6 Fri 15 44 6 17 20 1 8 1 16 Mar. (75).. 2 Mon. . . . 272 .816 8 173 248 4541 26 Mar. 86).. Sat 31 15 12 30 33 33 14 .13 4 Mar. (64).. 6 Fri 42 .126 9883 20 218 4542 26 Mar. 85).. 1 Sun.... 46 46 18 42 51 4 20 26 23 Mar. (82).. 5 Thui-... 19 .057 9918 956 269 4543 27 Mar. 86).. 3 Tues.... 2 17 55 6 36 2 38 13 Mar. (72).. 3 Tues.... 154 .462 132 840 241 4544 27 Mar. 86).. 4 Wed.... 17 49 7 7 22 8 8 51 2 Mar. (61).. Sat 21 .063 8 687 210 4343 26 Mar. 86).. 5 Thur.. . 33 20 13 20 37 39 15 4 20 Mar. (80).. 6 Fri 85 .255 43 623 261 4546 26 Mar. 85).. 6 Fi-i 48 31 19 32 53 11 21 16 9 Mar. (68).. 3 Tues.... 84 .252 9918 470 230 4547 27 Mar. 86).. 1 Sun... 4 22 1 45 8 42 3 29 26 Feb. (57).. Sat 65 .195 9794 317 200 4548 27 Mar. 86).. 2 Mon... . 19 54 7 57 24 14 9 41 17 Mar. (76).. 6 Fri 109 .327 9829 253 251 4549 26 Mar. 86).. 3 Tues... 35 25 14 10 39 45 13 54 fi Mar. (66).. 4 Wed.... 290 .870 43 137 223 4350 26 Mar. 85).. 4 Wed. . . . 50 56 20 22 55 17 22 7 25 Mar. (84).. 3 Tues... 280 .840 78 73 274 4551 27 Mar. 86).. 6 Fri 6 27 2 35 10 48 4 19 14 Mar. (73).. Sat 25 .075 9953 920 243 4552 27 Mar. 86).. Sat 21 39 8 47 26 20 10 32 4 Mar. (63).. 5 Thur. . . 177 .531 168 1 803 215 43531 t See footnote p. liii abov Ixxiv THE INDIAN CALENDAR TABLE 1. •iliaii-jHirl.i =r 10,0UU//i.s of ii rircle. A tillii 3= '/.wM nf the moon's lynodic rerolutii.n. I. CONCURRENT YEAR. 11. ADDED LUNAR MONTHS Kali. Saka. "S 1 1 s Kollam. A. 1). Samvatsara. True. l,uni-Solar cycle. (Southern.) Brihaspati cycle (Northern) current at Mesha sankrAnti. Name of month. Time of the preceding sankrAnti expressed in Time of the succeeding SRiikrinli expressed iu 3 S s ^ P 1 2 3 3a 4 5 6 7 8 9 10 11 12 4.'>,">4 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4.573 4574 4575 4576 4577 4.578 4579 4580 4581 4582 4683 45K4 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1 405 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1.536 1537 1538 1.539 1540 8.59 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 KH!I 627-28 628-29 629-30 630-31 631-32 632-33 633-34 634-35 635-36 636-37 637-38 638-39 639-40 640-41 641-42 642-43 643-44 644-45 645-46 646-47 647-48 648-49 649-50 650-51 051-52 652-53 653-54 654-55 655-56 656-57 657-58 * 1452-53 1453-54 1454-55 1455-56 ♦1456-57 1457-58 1458-59 1459-60 •1460-61 1461-62 1462-63 1463-64 •1464-65 1465-66 1466-67 1467-68 •1468-69 1469-70 1470-71 1471-72 •1472-73 1473-74 1474-75 147.5-76 •1476-77 1477-78 1478-79 1479-80 •1480-81 1481-82 1482-83 6 Aiigiras 7 Srimukba 8 Bhava 9 Yuvan 10 Dhatri 11 Isvava 12 BahudhuDva . . 13 Pramath'm 14 Vikrama. .... 15 Vrisha 16 Chitrabhanu . . 17 Subhanu 18 Tarawa 19 Parthiva 20 Vyaya 21 Sarvajit 22 Sarvadhariu . . 23 Virodhin 24 Vikrita . 13 Pramfithin.. . 14 Vikrama 15 Vri»ha 3 Jyeshtha 9764 29.292 338 1.014 17 Subhanu 8 Karttika 9971 29.913 84 0.252 19 Parthiva 20 Vyaya 21 Sarv.ijit 5 SrSvaua 9750 29 . 250 485 1.455 22 Sarvadbfirin. . . ' 23 Virodhin 24 Vikrita 4 .\shadha .... 9836 29.508 626 1.878 26 Nandana 27 Vijaya 1 Chaitra 9712 29.136 21 0.063 28 Java 6 UhadrapaJa.. 9983 29.949 433 1.299 29 Manmatha. 30 Durmukha. . . . 31 Hemalamba.. . 4 .\$hi'iilba .... 9342 28.026 164 0.492 25 Khara 26 Nandana 27 Vijaya 28 Java 29 Manmntlm.... 30 Burniukha. . . . 31 Hemalamba... 32 Vilamba 33 VikArin 34 Sflrvari 35 Plava 36 Sublmkrit .... 33- VikArin 34 SArvari 35 Plava 3 Jyeshtha 9959 29.877 507 1.521 36 Subhakrit . . . J 7 Asvina 11 M,!(ilia(Ksh.) 12 PhAlgiiaa, . . , 9902 16 9990 29.706 0.048 29.970 121 9990 131 0.3631 29.970 O.393I 39 VisvAvasu 40 Parftbhava.. . . 5 Sravaua 9712 29.136 516 1.548 42 Kilakn 43 Saumva 4 .\8hAaha .... 9974 29.922 661 1.988 iCol. 2:i) ,1 = Distann- of THE HIXDU CALEMhlK. TABLE 1. front .11111. I Co/. •2i) h rr Mooii'.i uieiiii iiiiomiili/. (Col. 25) Ixxv fiati/. 111. COMMENCEMKNT OF TUB Luni-Soliu' year. (Civil day of Chaitra .Siiltla Ist) Day and Monti A. D. (Time of the Mcshii sankrAnli ) Week dav. By the Aiy^i Siddhilntn. By the Surya Siddhanta. Day >d .Month A. I). Wfi'k At Hanriso « aD^Irl^ntl \ At Sunrise on meridian of UJjaln. Day aiu' Mond, i. U. Day and Month A. D. Week day. Moon's Age. 24 25 Kali. Wixk (la.v. By the .\rya Siddhdnta. By the Sui-j Siddh^nfa. a II Gh. Pa. H. M. Gh. Pa. H. M. 13 14 15 17 15a 17a 19 20 21 22 23 1 ■in Mai (86).. 5 Thur. . . 38 39 15 27 43 8 17 15 9 Mar. (68). . 1 Sun... 49 .147 9791 161 228 4585 26 Mai (8G).. 6 Fri .54 10 21 40 58 40 23 28 27 Feb. (58).. 6 Fri.... 187 .561 5 44 200 4586 ■27 Mar (86).. 1 Sun 9 41 3 52 14 12 5 41 17 Mar. (76).. 5 Thur. . 162 .486 40 980 251 4587 27 Mai. (86).. 2 Mou ... 25 12 10 5 29 43 11 53 7 Mar. (66).. 3 Tues... 289 .867 254 864 223 4588 27 Mai. (86).. 3 Tues. . . . 40 44 16 17 45 15 18 6 26 Mar. (85).. 2 Mon... 296 .888 289 800 275 4589 26 Mai (86).. 4 Wed.... 56 15 22 30 to 46 to 18 14 Mar. (74).. 6 Fri.... 194 .582 165 647 244 4590 27 Mai (86).. 6 Kri n 46 4 42 16 18 6 31 3 Mar. (62). . 3 Tnes... 187 .561 40 494 213 4591 27 Mai (86).. Sat 27 17 10 55 31 49 12 44 22 Mar. (81).. 2 Mon... 275 .825 75 430 264 4592 27 Mai (86). . 1 Sun 42 49 17 7 47 21 18 56 11 Mar. (70). . 6 Fri. . . . 229 .687 9951 277 234 4593 26 Mai (86).. 2 Mon.... 58 20 23 20 t2 52 tl 9 28 Feb. (59).. 3 Tues... 68 .204 9826 125 203 4.594 27 Mai (86).. 4 Wed.... 13 51 5 32 18 24 7 21 18 Mar. (77).. 2 Mon... 54 .162 9861 61 254 4595 27 Mai (86).. 5 Thur... 29 22 11 45 33 55 13 34 8 Mar. (67).. Sat. . . . 166 .498 75 944 226 4596 27 Mar. (86). . 6 Fri 44 54 17 57 49 27 19 47 27 Mar. (86).. 6 Fri.... 155 .465 110 880 277 4597 27 Mar. (86). . 1 Sun. . . . 25 n 10 4 58 1 59 16 Mar. (76).. 4 Wed... 324 .972 324 764 249 4598 27 Mar. (86).. 2 Mon.... 15 56 6 22 20 30 8 12 5 Mar. (64).. 1 Sun. . . 250 750 200 611 218 4599 27 Kar. (86). . 3 Tues. . . . 31 27 12 35 36 1 14 25 23 Mar. (82).. 6 Fri. . . . 26 .078 9896 511 267 4600 27 Jiai-. (86).. 4 Wed.... 46 59 18 47 51 33 20 37 12 Mar. (71).. 3 Tues... 21 .063 9772 358 236 4601 27 Itai-. (87).. 6 Fri 2 30 1 7 4 2 50 1 Mar. (61). . 1 Sun... 268 .804 9986 241 208 4602 27 >:ar. (86).. Sat 18 1 7 12 22 36 9 2 20 Mar. (79).. Sat 288 .864 21 181 259 4603 27 Wai-. (86).. 1 Sun . . . . 33 32 13 25 38 7 15 15 9 Mar. (68).. 4 Wed... (il .183 9896 29 228 4604 27 Mar. (86).. 2 Mon. . . . 49 4 19 37 53 39 21 28 27 Feb. (58). . 2 Mon... 180 ..540 111 912 200 4605 27 Mar. (87).. 4 Wed... 4 35 1 50 9 10 3 40 17 Mar. (77). . 1 Sun.. 171 .513 145 848 252 4606 27 Mar. (86).. 5 Thur. . . 20 6 8 2 24 42 9 53 6 Mar. (65).. 5 Thur.. 31 .093 21 695 221 4607 27 Mar. (86).. 6 Fri 35 37 14 15 40 13 16 5 25 Mar. (84).. 4 Wed... 93 .279 56 631 272 4608 27 Mar. (86). . Sat 51 y 20 27 55 45 22 18 14 Mar. (73).. 1 Sun... 90 270 9931 479 241 4609 27 Mar. (87). . 2 Mon.... G 40 2 40 11 17 4 31 2 Mar. (62).. 5 Thur. . 74 .222 9807 326 210 4610 27 Mar. (86). . 3 Tues... 22 11 8 52 26 48 10 43 21 Mar. (80).. 4 Wed... 122 .366 9842 262 262 4611 27 Mar. (86).. 4 Wed.... 37_ 42 15 5 42 20 16 56 11 Mar. (70).. 2 Mon. . . 307 .921 56 145 234 4612 27 Mar. (86). . 5 Thur. . . 53 14 21 17 57 51 23 8 28 Feb. (59).. 6 Fri.... 68 .204 9932 992 203 4613 27 Mar. (87). . Sat 8 45 3 30 13 23 5 21 18 Mar. (78).. 5 Thur.. 45 .135 9967 928 254 4614 27 Mar. (86). . 1 Sun. . . . 24 16 9 42 28 54 11 34 8 Mar. (67).. 3 Tues... 192 .576 181 812 226 4615 27 Mar. (86).. 2 Mon... 39 47 15 55 44 2B 17 46 27 Mar. (86).. 2 Mon. . 217 .651 216 748 277 4616 27 Mar. (SCi.. 3 Turs.... 55 19 22 7 59 57 23 59 16 Mar. (75). . C Fri.... 152 .456 91 595 247 4617 t See footnote p. liii above. Ixxviii THE INDIAN CALENDAR. TAlJliK I. Liiniilio)i-iiUi-ts = lO.OOOMi of a rirele. A tithi = '/aoM of the moon's synodic revotulion. I. CONCURRENT YEAR. II. .\DDED LUNAR MONTHS. 3a Trne. Luni-.Salar oyclc. (Southern.) 6 cycle (Northern) current at Mesha saukrauti. Name of month. Time of the preceding sankrAnti expressed in Time of the succeeding sankrSnfi cxpresscil in 1-^ C. 11 12 4f)18 4fil9 tCc'l Wii 4623 4624 4625 462(1 4627 4628 462!) KiliO 4631 4632 4633 4634 4635 4636 4637 4638 463'J 4640 4641 4642 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 4643 1464 4644 1465 464 4646 4647 464K 1460 1467 1408 1469 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 158, 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 115 1599 1000 1601 1602 1003 1604 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 691- 92 692- 93 693- 94 694- 95 695- 96 696- 97 697- 98 698- 99 699-700 700- 1 701- 2 702- 3 703- 4 704- 5 705- 6 706- 7 707- 8 708- 9 709- 10 710- 11 711- 12 712- 13 713- 14 714- 15 715- 16 716- 17 717- 18 718- 19 719- 20 720- 21 721- 22 •1516-17 1517-18 1518-19 1519-20 •1520-21 1521-22 1522-23 1523-24 »1524-25 1525-26 1526-27 1527-28 *1528-29 1529-30 1530-31 1531-32 *1 532-33 1533-34 1534-35 1535-36 •1536-37 1537-38 1538-39 1539-40 •1540-41 1541-42 1542-43 1543-44 •1544-45 1545-46 1540-47 10 Dhatn 11 Isvara 12 Bahudhanya . 13 Pramathin... 14 Vikrama . . . . 15 Vrisha 16 Chitrabhilim. 17 .SubhAuu 18 Tiiraiia 19 Parthiva 20 Vyaya 21 Sarvajit 22 Sarvadhru'in . 23 Virodhin.... 24 Viknta 25 Khara i& Nandana ... 27 Vijaya 28 Jaya 29 Manmatlm. . 30 Uurmukha. 31 Hemalamba 32 Vilamba . . . 83 Vikfirin 34 SHrvari . 18 Taraua... 19 Parthiva. 20 Vyaya . . . 21 Sarrajit.. 22 Sarvadhar 23 Virodhin.. 4 Vikrita . . . . 25 Khara 6 Nandana . . . 27 Vijaya 28 Jaya 29 Manmatha. . 30 Durnuikha . 31 Hemalainba 32 Vilamba... 33 Vikurin. . . 34 Survari ... Plava 36 Subhaki-it . 37 Sobhana . . 38 Krodhin. . . 39 Visvilvaau . 40 Farabhava. 41 PlaTanga. . 35 Plava 36 Subhakrit . . . 37 Sobhana 38 Krodhin 89 VisvUvasu . . . 40 I'arlibhava .. 3 Jveshtha . 8 KarCtika . 9 Mdrgas.(Ksh.) 2 Vaiiikha. 6 Bliadi'apada . 6 Bhadrapada.. 9756 458 1.374 9961 12 42 Kilaka. 48 Saumya. . . . 44 SildhfiraQa. . 45 Virodhakrit. 46 ParidhJfin . 47 Pnimi'idin . . 48 .\nanda 3 Jveshtlia . 7 A?vina. . . 10 l'ausl,a(Kah.) 1 Chaitra . . 5 Srilvava. 9649 9704 96 9847 9348 29.883 0.036 29.967 12 0.036] 9911 29.733} 558 1.674 616 I 1.848 29.748 J.947 29.112 0.288 29.541 60 9948 65 0.747 0.1801 29.844) 0.195 {Co/. 33) ./ = Dhliiiirc of moon /,■ THE HINDU CALENDAR. TABLP] 1. II. {Cil. 21) /j nr hioon's mean iiHniiiiilj/. {Cut. 25) Ixxix pj'.v iiieiiii II noiniilij . 111. COMMENCEMENT OF THE Solar year. Luni-Solar year. (Civil da; of Chaitra Sukla Ist.) (Tim( «1° the Meoho ooAki-Anti 1 At Sunrise on meridian of tJJJaln. Dav and Month A. D. Day and Month Week day. Moon's As;e. a. b. c. Kali. Week (lay. By the .\r) Siddhftntn. a By the Silrya Siddbanta. Jl li Gh. Pa. H. M. Gh. Pa. H. M. y 13 14 15 17 15a 17a 19 20 21 22 23 24 25 1 27 Mar. 87).. .5 Thur. . . 10 50 4 20 15 29 6 11 4 Mar. (64).. 3 Tues.... 158 .474 9967 442 216 4618 27 Mar. 86).. 6 Fri 2fi 21 10 32 31 12 24 23 Mar. (82).. 2 Mod.... 239 .717 2 378 267 4619 27 Mar. 86).. Sat 41 52 16 45 46 32 18 37 12 .Mar. (71).. 6 Fri 155 .465 9877 226 236 4620 27 Mar. 86).. 1 Sun.... 57 24 22 57 t2 3 to 49 2 Mar. (61).. 4 Wed.... 323 .969 92 109 208 4621 27 Mar. 87).. 3 Tues.... 12 55 5 10 17 35 7 2 20 Mar. (80). . 3 Tues.... 306 .918 126 45 259 4622 27 -Mar. 86).. 4 Wed.... 2S 26 11 22 33 fi 13 15 9 Mar. (68).. Sat 53 .159 2 892 229 4623 27 Mar. 86).. 5 Thur... 43 •57 17 35 48 38 19 27 27 Feb. (58).. 5 Thur... 221 .663 216 776 201 4624 27 Mar. 86).. 6 Fri .59 29 23 47 t4 9 tl 40 18 Mar. (77).. 4 Wed.... 255 .765 251 712 252 4625 27 Mar. 87).. 1 Suu 1.5 6 19 41 7 52 C Mar. (66).. 1 Sun 217 .651 127 5.59 221 4626 27 Mar. 86).. 2 Men.... 30 31 12 12 35 12 14 5 25 Mar. (84).. Sat 306 .918 161 495 272 4627 27 Mar. 86).. 3 Tues... . 46 2 18 25 50 44 20 IH 14 Mar. (73).. 4 Wed.... 294 .882 37 342 241 4628 28 Mar. 87).. 5 Thur... 1 34 37 () 15 2 30 3 Mar. (62).. 1 Suu .... 185 . 555 9913 189 211 4629 27 Mar 87).. 6 Fri 17 5 6 50 21 47 8 43 21 Mar. (81).. Sat 187 .561 9947 125 262 4630 27 Mai-. 86).. Sat 32 36 13 2 37 19 14 55 11 Mar. (70).. 5 Thur. . . 310 .930 162 9 234 4631 27 Mar. 86).. 1 Sun.... 48 7 19 15 52 50 21 8 28 Feb. (59).. 2 Mon... 70 .210 37 856 203 4632 28 Mar. 87).. 3 Tues.... 3 39 1 27 8 22 3 21 19 Mar. (78).. 1 Sun 77 .231 72 792 254 4633 27 Mar. 87).. 4 Wed... 19 10 7 40 23 53 9 33 8 Mar. (68). . 6 Fi-i 301 .903 286 675 226 4634 27 Mar. 86).. 5 Thur. . . 34 41 13 52 39 25 15 46 26 Mar. (85).. 4 Wed.... 58 .174 9982 575 275 4635 27 Mar. 86).. 6 Fri 50 12 20 5 54 56 21 58 15 Mar. (74).. 1 Sun 64 .192 9858 422 244 4636 28 Mar. 87).. 1 Sun 5 44 2 17 10 28 4 11 4 Mar. (63).. 5 Thur... 15 .045 9734 270 213 4637 27 Mar. 87).. 2 Mon.... 21 15 8 30 25 59 10 24 22 Mar. (82).. 4 Wed. . . . 44 .132 9769 206 265 4638 27 Mar. 86).. 3 Tues... 30 46 14 42 41 31 16 36 12 Mar. (71).. 2 Mon.... 197 .591 9983 89 236 4639 27 Mar. 86).. 4 Wed... 52 17 20 55 57 2 22 49 2 Mar. (61).. Sat 315 .945 197 973 208 4640 28 Mar. 87).. 6 Fri 7 49 3 7 12 34 •' 2 21 Mar. (80).. 6 Fri 296 .888 232 909 260 4641 |27 Mar. 87).. Sat 23 20 9 20 28 5 11 14 9 Mar. (69).. 3 Tues. . . . 108 .324 108 756 229 4642 27 Mar. 86).. 1 Sun. . . . 38 51 15 32 43 37 17 27 2(1 Feb. (57). . Sat 41 .123 9983 603 198 4643 27 Mar. 86).. 2 Mou.... 54 22 21 45 59 8 23 39 17 Mar. (76). . 6 Fri 124 .372 18 539 249 4644 28 Mar. 87).. 4 Wed.. . 9 54 3 57 14 4(1 5 52 6 Mar. (65).. 3 Tues. . . . 127 .381 9894 386 218 4645 27 Mar. 87).. 5 Thur... 25 25 10 10 30 11 12 5 24 Mar. (84).. 2 .Mon..,. 194 ..582 9928 322 270 4646 27 Mar. 86).. 6 Fri ... . 40 56 16 22 45 43 18 17 13 .Mar. (72).. 6 Fri 67 .201 9804 169 239 4647 27 Mar. 86).. Sat SC. 27 22 35 tl 14 II 30 3 Mar. ifi2). . 4 Wed.... 206 .filS IS 53 211 41)48 t See footnote )). li Ix.xx THE INDIAN CALENDAR. TABLE I. Lii,i(ilio,i-jjiiiis = Kl.OOflM.v of II ririli: A titlii = ','3oM nf Ihr moon'!' si/,iijJii- ncoliilwii. I. CONCURRENT YEAR. II. ADDED LUNAR MONTHS. g ^ -;^— = 2 '^^ ZJ> 3 3a 1605 954 1606 955 1607 956 1608 957 1609 958 1610 959 1611 960 1612 961 1613 962 IfiU 963 1615 964 1616 965 1617 966 1618 967 16iy 968 1620 969 1621 970 1622 971 1623 972 1621 973 1625 974 1626 975 1627 976 1628 977 1629 978 1630 979 1631 980 1632 981 1633 982 163+ 983 1635 984 1636 985 1637 986 5 True. Liini-Solai' i-yclc. (Southern.) 6 Brihaspati cycle (Northern) current at Mesha sanki'anti. Name of month. Time of the preceding saiikranti expressed in Time of the snccecding saiikraDti expressed in 11 4650 4651 4552 4653 4654 465 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 WlKl 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 M82 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1.500 l.-.Ol 15(12 722-23 723-24 724-25 725-26 726-27 727-28 728-29 729-30 730-31 731-32 732-33 733-34 734-35 735-36 736-37 737-38 738-39 739-40 740-41 741-42 742-43 743-44 744-45 745-46 746-47 747-48 748-49 749-50 750-51 751-52 752-53 753-54 754-55 1547-48 •1548-49 1549-50 1550-51 1551-52 •1552-53 1553-54 1554-55 1555-56 •15.56-57 1557-58 1558-59 1559-60 •1560-61 1.561-62 1562-63 1563-64 •1564-65 1565-66 1566-67 1567-68 '1568-69 1569-70 1570-71 1571-72 •1572-73 1573-74 1574-75 1575-76 •1576-77 1577-78 1578-79 1.579-SO 41 Plavauga 42 Kilaka 43 Saumja 44 Sadharaiia . . . . 45 Virodhakril.. . 46 Paridhavin . . . 47 Pramadin . . . . 48 Ananda 49 Rakshasa 50 Auala 51 Piiigala 52 Kaiayukta 53 SiddhSrthin . . 54 Raudra 55 Durmati 56 Uundubhi. . . . 57 Rudhirodgiifiu 58 Raktuksha.. . . 59 Krudhaua . . . . 60 Kshaya 1 Prabhava 2 Vibhava 3 Sukla 4 Pramoda 5 PiTijapati 6 Ai'igivas 7 Snmukha . . . . 8 lihfiva 9 Yuvan 10 Dhatn 11 l^varu 12 Rahudhfinya . . 13 Pruiuathin . . . Rakshasa Anala Piiigala Kalayukta. . . . SiddhSrthin.. . Raudra Buvmati Dundubhi. . . . Rudhirodgarin Raklaksha.. . . Krodhana Kshaya Prabhava Vibhava Sukla Pramoda Prajapati Aiigiras Srimukha . . . . BhAva Yuvau Dhatfi Isvara Bahudhunya . . PraraSthin. . . . Viki-ama Vrisha Chitrabhiinu . . Subhinu Tilrana Pfirthiva Vyaya .Sarvajit 2 Vaisakha. 6 Bhadrapada. 4 Ashiidha . 3 Jveshtha . 7 Abvina. Sravaya . 6 Bhadrapada. 4 Ashadhn. 28.677 28.431 394 63 753 129 126 THE HINDU CALENDAR. Ixxxi TABLE I. (Col. 2.'{) (/ ^ IHstiimc of moon from snii. (Col. )l\) h :=: moon's menu nnomnli/. iCnI. 25) r =: xun's mean nnomnli/. JII. COMMENCEMENT OF THE Solar year. Luni-Solar year. (Civil day of Chaitra Sukla Ut.) Day ami Month A. D. (Time of the Mesha sankrfinti.) Week day. By the Arya SiddhAnta. By the Siirja SiddbAnta. Day and Montli A. D. Wuck dav. At SanrlM on meridian of UUaln- Moon's Age. 13 17 17a 19 20 23 24 25 28 .Mar. 87).. 27 Mar. 87).. 27 Mar. 86).. 27 Mar. 86).. 28 Mar. 87).. 27 Mar. 87).. 27 Mar. 86).. 28 Mar. 87).. 28 Mar. 87).. 27 Mar. 87).. 27 Mar. 86).. 28 Mar. 87).. 28 Mar. 87).. 27 Mar. 87).. 27 Mar. 86).. 28 Mar. 87).. 28 Mai-. (%1). . 27 Mar. 87).. 27 Mar. (86).. 28 Mar. (87).. 28 Mar. (87).. 27 Mar. (87).. 27 Mar. (86).. 28 Mar. (87).. 28 Mar. (87).. 27 Mar. (87).. 27 Mar. (86). . 28 Mar. (87). . 28 Mar. (87).. 27 Mai-. (87).. 27 Mar. (86).. 28 Mar. (87). . 28 Mar (87). 2 Mon. . . . 11 59 4 47 16 46 6 42 3 Tues. . . . 27 30 11 32 17 12 55 4 Wed.... 43 1 17 12 47 49 19 8 5 Thur... .58 32 23 25 Yi 21 tl 20 Sat 14 4 5 37 18 52 7 33 1 Sun 29 35 11 50 34 24 13 45 2 Mon... 45 f) 18 2 49 55 19 58 4 Wed. .. 37 15 5 27 2 11 5 Thar. . . 16 9 6 27 20 58 8 23 6 Fri 31 40 12 40 36 30 14 36 Sat 47 11 18 52 52 1 20 48 2 Mon.... 2 42 1 5 7 33 3 1 3 Taes... 18 14 7 17 23 4 9 14 4 Wed. . . . 33 45 13 30 38 36 15 26 5 Thm-... 49 16 19 42 54 7 21 39 Sat 4 47 1 55 9 39 3 52 1 Sun 20 19 8 7 25 10 10 4 2 Mon... 35 50 14 20 40 42 16 17 3 Taes. . . . 51 21 20 32 56 13 22 29 5 Thur... 6 52 2 45 11 45 4 42 6 Fri 22 24 8 57 27 16 10 55 Sat 37 55 15 10 42 48 17 7 1 Sun.... 53 26 21 22 58 19 23 20 3 Tues. . . . 8 57 3 35 13 51 5 32 4 Wed... 24 29 9 47 29 23 11 45 5 Thur. . . 40 16 44 54 17 58 6 Fri 55 31 22 12 to 2fi to 10 1 Sun 11 2 4 25 15 57 6 23 2 Mon... 26 34 10 37 31 29 12 35 3 Tues. . . . 42 5 16 50 47 18 48 4 Wed... 57 36 23 2 t2 32 tl 1 6 Fri 13 7 5 15 18 3 7 13 Sat 28 39 11 27 33 35 13 26 22 Mar. (81). 11 Mar. (71). 28 Feb. (59). 19 Mar. (78). 8 Mar. (67). 26 Mar. (86). 15 Mar. (74). 4 Mar. (63). 23 Mar. (82). 12 Mar. (72). 2 Mar. (61). 20 Mar. (79). 10 Mar. (69). 27 Mar. (87). 16 Mar. (75). 6 Mar. (65). 25 Mar. (84). 13 Mar (73). 3 Mar. (62). 22 Mar. (81). 11 Mar. (70). 28 Feb. (59). 18 Mar. (77). 7 Mai-. (66). 26 Mar. (85). 15 Mar. (75). 4 Mar. (63). 23 Mar. (82). 13 Mar. (72). 1 Mar. (61). 20 .Mar. (79). 9 Mar. (68). 28 .Mar. (87). 3 Toes.... 183 .549 53 989 1 Sun .... 306 .918 267 872 5 Thur. . . 149 .447 143 720 4 Wed.... 202 .606 178 656 1 Sun 191 .573 53 503 Sat 281 .843 88 439 4 Wed.... 240 .720 9964 286 1 Sun 86 .258 9840 133 Sat 73 .219 9874 69 5 Thur... 188 ..564 89 953 3 Tues.... 325 .975 303 836 1 Sun 0-1 — .003 9999 736 6 Fri 258 .774 213 619 4 Wed. . . . 33 .099 9909 519 1 Sun.... 29 .087 9785 366 6 Fri 280 .840 9999 2.50 5 Thur. . . 303 .909 34 186 2 Mon. . . . 79 .237 9910 33 Sat 196 .588 124 917 6 Fri 287 .861 159 852 3 Tues. . . . 41 .123 34 700 Sat 12 .036 9910 547 6 Fri 101 .303 9945 483 3 Taes.... 84 .252 9820 330 2 Mon... 134 .402 9855 266 Sat 322 .966 69 150 4 Wed... 84 .252 9945 997 3 Tues.... 02 .186 9980 933 1 Sun.... 206 .618 194 816 5 Thur... 92 .276 70 664 4 Wed. . 162 .486 105 600 1 Sun .... 166 .498 9980 447 Hat 250 .750 15 383 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 t See footnote p. liii See Text. Art. 101 above, pai-a. 2. THE IXDIAN CALENDAR. TABLE 1. I.iiiiiilioii-piiiis =^ V),(UI(l//is of II circli'. A lithi ^ ' nutli itf Ih: mrjim s si/,iudir fticoliiliun . I. CONCUKKENT YEAR. 11. AUDEU LUNAR MONTHS. 3a Triic Ijuni-Solai' I'jcle. (Southern.) 6 Brihaspati rydc (Ncirtheni) fiin'cnl ul Mesha sauki-anti. Name nf innntli. Time of the ])rice(ling sankranti i',\iii-esfed in 9 10 11 Time of the succeeding suiikranti expressed in B ^ 4fi82 4683 4684 468; 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4B99 47(10 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 47 1 4 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1.524 1525 1526 1527 1528 1529 1530 1.531 1532 1533 1534 1535 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1(170 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 755-56 756-57 757-58 758-59 759-60 760-61 761-62 762-63 763-64 764-65 765-66 766-67 767-68 768-69 769-70 770-71 771-72 772-73 773-74 774-75 775-76 776-77 777-78 778-79 779-80 780-81 781-82 782-83 783-84 784-85 785-86 786-87 7W7-KK '1580- 81 1581- 82 1582- 83 1583- 84 •1584- 85 1585- 86 1586- 87 1587- 88 '1588- 89 1589- 90 1590- 91 1591- 92 '1592- 93 1593- 94 1594- 95 1595- 96 '1596- 97 1597- 98 1598- 99 1599-600 '1600- 1 1601- 2 1602- 3 1603- 4 ■1604- 5 1605- 6 1606- 7 1607- 8 '1608- 9 1609- 10 1810- 11 1611- 12 •1612- 13 ) .SuuMlja, .\o Vikrama . . . . Vrisha Chitrabhanu . Siibhi'inu . . . . Tarana I'arthiva . . . . Vyaja Sarvajit Sarvailharin . Virodhin . . . . Vikrita Khara Naudana. . . . Vijava Jaya .Maumatha.. . Durmukha . . llemalamba.. Vilamba . . . . Vikurin Sartari Plava Subhakrit . . . Sobhana Krodhin . . . . Visvuvasu . . . ParAbhava.. . Plavaiiga . . . . Kilaka Sauniya Sildhurava . ■ . \irodhakrit.. I'aiiilhnvin . . nurih. Sarvadhariu. Virodhin.. . Vikrita Khara Nandana . . . Vijaya Java Manmatha.. Durmukha . Hemalamba. Vilamba.. . . Vikarin SSrvari .... Plava Sttbhakrit . . Sobhana. . . . Krodhin ... Visvavasu . . Parabhava . . Plavaiiga . . . Kilaka 1).. . Sadharana . . Virodhakrit. Paridhi'iviu . PramAdiu . . Auanda. ... Rftkshasa.. , Annla Piiigala KAIayuktn. . Siddhilrtbiu Raudrn Diiriiiati 9752 29.256 9894 i 29.682 9894 29.682 6 Bhadrapada 9806 29.418 9443 28.329 9753 7 As 9728 9789 6 BhAdrapada. 9997 280 233 375 21 731 THE /i/XDU CAI.F.XDAR. TABLE I. {Vol. 2:{) (I = Dislanre of moon from sun. (Col. il) Ij =r iiwonx mean atiomuli/. (Col. 25) Ixxxiii ^ .tiin'.i mean anomaly. III. COMMENCEMENT OF THE Solar year. Luni-Solar year. (Civil day of Chaitra Siikla Ist.) D..V niul Miiiit .\. I). (Time of tlic Mesha snnkiAiili ) Week (lay. By the Arya Siddh&nta. By the Sftrya Siddhanta. Day and Month A. D. Week dav. At Snnrise on meridian of UJJaln. Moon's Age. 13 14 15 15a 17a 19 20 21 23 25 il Mar -11 Mar. 28 Mar. 28 Mar. 27 Mar. 28 Mar. 28 Mar. 28 Mar. 27 Mar. 28 Mar. 28 Mar. 28 Mar. 27 Mar. 28 Mar. 28 Mar. 28 Mar. 27 Mar. 28 Mar. 28 Mar. 28 Mar. 27 Mar. 28 Mar. 28 Mar. 28 Mar. 27 Mar. 28 Mar. 28 Mar. 28 Mar. 27 Mar. 28 Mar. 28 Mar. 28 Mar. L>S Mar. ,87).. 86).. :87).. ;87). . :87).. :87).. ;87).. ;87). . (87). . :87).. :87).. (87).. ;87).. :87).. 7).. 7).. ;87).. 7).. 7).. 7).. ;87).. ;87). . 7).. 7).. :87). . (87) . ;87).. :87). . (87). . :87).. ;87).. :87). . 1 Sun.. 2 Mod.. 4 Wed.. 5 Thur. 6 Fri... 1 Sun.. 2 Mon.. 3 Tues.. 4 Wed.. 6 Fri... Sat. . . 1 Sun . . 2 Mon.. 4 Wed.. 5 Thui-. 6 Fri... Sat... 2 Mon.. 3 Tues.. 4 Wed.. 5 Thur. Sat. . . 1 Sun.. 2 Mon . 3 Tues.. 5 Thur. 6 Fri... Sat. . . 1 Sun . . 3 Tues.. 4 Wed.. .5 Thur. Saf... 38 9 41 12 fi 44 22 1.5 37 47 .53 18 8 50 24 21 39 53 55 25 10 56 26 28 41 59 57 13 28 44 59 15 30 46 tl 17 31 2 34 37 8 40 U 43 14 32 46 48 17 t3 49 19 20 34 52 50 23 16 Mar. 5 Mar. 25 Mar. 14 Mar. 8 Mar. 22 Mar. n Mar. 28 Feb. 18 Mar. 7 Mar. 26 Mar. 16 Mar. 4 Mar. 23 Mar. 13 Mar. 2 Mar. 19 Mar. 8 Mar. 27 Mar. 17 Mar. 6 Mar. 25 Mar. 14 Mar. 3 Mar. 21 Mar. 10 Mai-. 27 Feb. 18 Mar. 7 Mar. 26 Mar. 16 Mar. 5 Mar. 23 Mar. 4 Wed.. 1 Sun.. 1 Sun.. 5 Thur. 3 Taes.. 2 Mon.. 6 Fri... 3 Tues.. 2 Mon.. 6 Fri... 5 Thur. 3 Tues.. Sat. . . 6 Fri... 4 Wed.. 1 Sun.. 6 Fri... 3 Tues.. 2 Mon.. Sat. . . 5 Thur. 4 Wed. . 1 Sun.. 5 Thur. 4 Wed.. 1 Sun . . 5 Thur. 4 Wed.. 2 Men.. 1 Sun.. 6 Fri... 3 Tues.. i Mon.. 169 0-27 322 70 235 267 226 233 305 198 203 327 85 91 313 293 73 26 59 214 331 312 121 51 133 136 66 82 223 200 323 160 213 507 9890 -.081 9766 966 139 210 15 705 230 801 264 678 140 699 16 915 50 594 9926 609 9961 981 175 255 51 273 85 939 300 879 175 219 9871 078 9747 177 9782 642 9996 993 210 936 245 363 121 153 9997 399 31 408 9907 198 9783 246 9817 669 32 600 66 969 281 480 156 639 191 46S2 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4C94 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 t See footnote p. liii abov © See Test. Art, 101 nbo para. THE TNDTAN CALENDAR. TABLE I. I.uinitwn-parif ^ 1 (l,O00///.v of ii tirrlt: A lithi r= ';.;oM of tin- moon's si/iiodii- retolution. I. CONCURRENT YEAR. II. ADDED LUNAR MONTHS. C -. >. ^ . Knli .Siika. ^S^ SJ2 -'23 ■■J> 1 2 3 3a True. I.mii-Solar cycle. (Southern.) :tl cycle (Northcru) current at Mesha saiiki'lnti. Name uf month. Time of the preceding sankranti expressed in 10 Time of the succeeding sankranti expressed in 11 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 472' 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 47i 4739 4740 4741 4742 4743 4744 4745 4746 4747 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1.567 1568 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 168, 1686 1687 1 1689 1690 1691 1692 1693 1694 169.= 1696 1697 1698 1020 1021 1022 1023 1024 1025 1026 102' 1028 1029 1030 1031 1032 1033 1034 103 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1699 1048 1700 10-19 1701 10.50 1702 1051 1703 1052 789- 90 790- 91 791- 92 792- 93 793- 94 794- 95 795- 96 796- 97 797- 98 798- 99 799-800 800- 1 801- 2 802- 3 803- 4 804- 5 805- 806- 7 807- 8 808- 9 809- 10 810- 11 811- 12 812- 13 813- 14 814- 15 815- 16 816- 17 817- 18 818- 19 819- 20 820- 21 1613-14 1614-15 1615-16 •1616-17 1617-18 1618-19 1619-20 *1620-21 1621-22 1622-23 1623-24 * 1624-25 1625-26 1626-27 1627-28 *1628-29 1629-30 1630-31 1631-32 •1632-33 1633-34 1634-35 1635-36 * 1636-37 1637-38 1638-39 1639-40 •1640-41 1641-42 1642-43 1643-44 •1644-45 1645-46 47 Pramudin . . 48 Anauda 49 Rakshasa 50 Anala 1 Piugala 52 Kalayukta. . . . 53 Siddharthin . . 54 Raudi'a 55 Durmati 56 Dundubhi .... 57 Rudhirodgfirin 58 Raktaksha... . 59 Kriidhana .... 60 Kshaya 1 Prabliava 2 Vibhava 3 Sukla 4 Pramoda 5 Prajapati 6 Aiigiras 7 Srimukha ... 8 Bhilva 9 Yuvan 10 Dhfitri 11 Isvara 1 2 Bahudhfinya . . 13 PramAthin 14 Vikrama 1 5 Vrislia 16 ChitrabhAnu . . 17 Subhftnu... 18 TAraya 19 PArthiva Dundubhi. . . . Rudliirodgarin RaktAksha.. . . Krodhana . . . . Kshaya Prabliava Vibhava Sukla Pramoda Prajapati Angiras Srimukha . . . . BhAva Yuvan DhAtri Isvara BahudhAnya . PramAtliin . Vikrama .... Vrisha CliitrabhAuu . Subhanu .... TAraya PArthiva Vyaya Sarvajit SarvadhArin . Virodhin .... Vikrita Khara Nandnna .... Vijaya Java 3 Jveshtha . 4 AshAdha . 6 BhAdrapada. 5 Srirapa. 29.829 29.640 29.373 29.247 495 119 720 rffi-: inxnv cAirxDAit \\\ TABLE I. [(til. i'.\] II z= Di.iliinie of iiition J'rviii ■•■■iiii. {Oil. ii) h = moon's menu idkhiiiiIi/. (Col. 25) r :=: .sun'.i meiin iiiioiiinly. in COMMENCEMENT OF THE Solar year. Luni-Solar year. (Civil day of Chaitra Sukia Ut.) At Sanrise on (Tim of Ihc Mc3h!i anki- •inti.) moridian of Cjjain. Day and Month Day and Month Week Moon's Age. Kali. Jv the Arva Uv the Surva "C C" A. D Week day. SiddhSnta SiddhAnta A. I). 11 <*■ Gh. Pa. H. M. Oh. Pa. H. M. 13 14 15 17 15a 17a 19 20 21 22 23 24 26 1 28 Mar. (87).. 1 Sun 16 21 6 32 21 26 s 35 12 Mar. (71).. 6 Fri 201 .603 67 507 2354715] 28 Mar. (87).. 2 .Mon... 31 52 12 45 36 58 14 47 1 Mar. (60).. 3 Tues.... 196 .588 9942 354 204 4716 28 Mar. (87).. 3 Tucs. . . . 47 24 18 57 52 30 21 20 Mar. (79). . 2 Mon.... 253 .759 9977 290 255 4717 28 Mar. (88).. a Thur. . . 2 55 1 10 8 1 3 12 8 Mar. (68).. 6 Fri 101 .303 9853 138 224 4718 28 Mar. (87).. 6 Fri 18 26 7 22 23 33 9 25 27 Mar. (86).. 5 Thur. . . 92 .276 9888 74 276 4719 28 Mar. (87).. Sat 33 57 13 35 39 4 15 38 17 Mar. (76).. 3 Tues.... 204 .612 102 957 248 4720 28 Mar. (87).. 1 Sun... 4!) 211 19 47 54 36 21 50 6 Mar. (65).. Sat 0-n -.042 9977 804 217 4721 28 Mar. (88).. 3 Tues. . . . :> II 2 10 7 4 3 24 Mar. (84).. 6 Fi-i 12 .0.36 12 740 268 4722 28 Mai-. (87).. 4 Wed .... 20 31 S 12 25 39 10 15 14 Mar. (73). . 4 Wed.... 268 .804 226 624 240 4723 28 Mar. (87). . .5 Thur... 36 2 14 25 41 10 16 28 3 Mar. (62). . 1 Sun 269 .807 102 471 209 4724 28 Mar. 87).. 6 Fri .51 34 20 37 56 42 22 41 21 Mar. (80).. 6 Fri 39 .117 9798 371 258 4725 28 Mar. 88).. 1 Sun ... . 7 5 2 50 12 13 4 53 10 Mar. (70).. 4 Wed.... 292 .876 12 254 230 4726 28 Mar. (87).. 2 Mon.... 22 36 9 2 27 45 11 6 27 Feb. (58).. 1 Sun. . . . 115 .345 9888 101 199 4727 28 Mar. 87).. 3 Tues. . . . 38 7 15 15 43 16 17 19 18 Mar. (77).. Sat 95 .285 9923 37 250 4728 28 Mar. 87).. 4 Wed.... 53 39 21 27 58 48 23 31 8 Mar. (67).. 5 Thur. . . 211 .633 137 921 222 4729 28 Mar. 88).. 6 Fri 9 10 3 40 14 19 5 44 26 Mar. (86).. 4 Wed.... 203 .609 172 857 273 4730 28 Mar. 87).. Sat 24 41 9 52 29 51 11 56 15 Mar. (74).. 1 Sun. . . . 54 .162 48 704 242 4731 23 Mar. 87).. 1 Sun 40 12 16 5 45 22 18 9 5 Mar. (64).. 6 Fri 330 .990 262 588 214 4732 28 Mar. 87).. 2 Mon.... .5.5 44 22 17 to 54 to 22 23 Mar. (82).. 4 Wed... 110 .330 9958 487 263 4733 28 Mar. 88).. 4 Wed... 11 15 4 30 16 25 6 34 11 Mar. (71).. 1 Sun 94 .282 9834 335 232 4734 28 Mar. 87).. 5 Thur. . . 2fi 46 10 42 31 57 12 47 1 Mar. (60).. 6 Fri 328 .984 48 218 204 4735 28 Mar. 87).. 6 Fri 42 17 16 55 47 28 18 59 19 Mar. (78). . 4 Wed.... 0-11 -.033 9744 118 253 4736 28 Mar. 87).. Sat 57 49 23 7 t3 tl 12 9 Mar. (68).. 2 Mon.... 100 .300 9958 1 225 4737 28 Mar. 88).. 2 Mon.... 13 20 5 20 18 32 7 25 27 Mai-. (87).. 1 Sun.... 80 .240 9993 937 276 4738 28 Mar. 37).. 3 Tues.... 28 51 11 32 34 3 13 37 17 Mar. (76).. 6 Fri 220 .660 207 821 248 4739 28 Mar. 87).. 4 Wed. . . . 44 22 17 45 49 35 19 50 6 Jlar. (65).. 3 Tucs. . . . 102 .306 83 663 217 4740 28 Mar. 87).. 5 Thnr... 59 54 23 57 t5 6 t2 2 25 Mar. (84).. 2 Mon.... 172 .516 118 604 268 4741 28 Mar. 8';).. Sat 15 25 6 10 20 38 8 15 13 Mar. (73).. 6 Fri 176 ..528 9993 451 237 4742 28 Mar. 87).. 1 Sun.... 30 56 12 22 36 9 14 28 2 Mar. (61).. 3 Tues. . . . 145 .435 9869 298 207 4743 28 Mar. 87).. 2 Mon.... 46 27 18 35 51 41 20 40 21 Mar. (80).. 2 Mon.... 183 .549 9904 234 258 4744 29 Mar. 88).. 4 Wed... 1 59 47 7 12 2 53 10 Mar. (69).. 6 Fri ©-12 —.036 9779 82 227 4745 28 Mar. 88).. 5 Thur.. 17 30 7 22 44 9 5 28 Feb. (59).. 4 Wed.... 107 .321 9994 965 199 4746 28 Mar. 87).. 6 Fri 33 1 13 12 38 15 15 18 18 Mar. (77).. 3 Tues . . . 86 .258 28 901 250 4747 1 t See footnote j). Iiii above. © See Test. Art. 101 above, para 2. Ixxxvi THE INDIAN CALENDAR. TABLE I. f.iiiiiitioii-piirls := lO.OOOM.v nf a rirclf. J lithi zn 'jjot/i of tin' moon's synodic revolution. I. CONCURRENT YEAH. II. ADDED LUNAR MONTHS. C 5 2 -I % 3 3a 5 True. Liini-Solar cycle. (Southern.) 6 Brihaspati cycle (Northern) current at Me8ha sankrunti. Name of month. Time of the preceding saiikranti expressed in o i Time of the succeeding saiikrSnti expressed in 4748 4749 4750 4751 4752 4753 4754 4755 475fi 4757 4758 4759 47fiO 47fil 4702 4703 47fi4 4765 47fi6 47fi 47CH 47fi« 4770 4771 4772 4773 47 47 477fi 4777 4778 4779 47H() 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1.592 1593 1594 1595 1.596 1.59' 1 598 1599 1600 1601 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 171 1716 1717 1718 1719 1720 1721 1722 1723 1724 172 1726 172' 1728 1729 1730 1731 1732 1733 1734 1735 173r' 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 106." 1066 1067 1068 1069 1070 1071 1072 1073 1074 107 1076 107' 1078 1079 1080 1081 1082 1083 1084 108.-) 821-22 822-23 823-24 824-25 825-26 826-27 827-28 828-29 829-30 830-31 831-32 832-33 833-34 834-35 835-36 836-37 837-38 838-39 839-40 840-41 841-42 842-43 843-44 844-45 845-46 846-47 847-48 848-49 849-50 850-51 851-52 852-53 K.i3-54 1646-47 1647-48 * 1648-49 1649-50 1650-51 1651-52 *1652-53 1653-54 1654-55 1655-56 * 1656-57 1657-58 1658-59 1659-60 ♦1660-61 1661-62 1662-63 1663-64 * 1664-65 1665-66 1666-67 1667-68 •1668-69 1669-70 1B70-71 1671-72 ♦1672-73 1673-74 1674-75 1675-76 •1676-77 1677-78 167S-7it 20 Vyaya 21 Sarvajit .... 22 SarradhSrin . . 23 Virodhin 24 Vikrita 25 Khara 26 Nandana .... 27 Vijaja 28 Jaya 29 Manmatha. . . 30 Durnmkha . . 3 1 Hcmalamba . . 32 Vilamba 33 VikArin 34 Sarvari 35 Plava 36 Subhakrit . . . 37 Sobhana 38 Krodbin Visvavasu.. . 40 Parabhava.. . 41 Plavaiiga.. . . 42 Kilaka 43 Saumya 44 SAdhai'ava.. . 45 Virodhakrit.. 46 ParidhAvin . . 47 PramAdiu . . . 48 Ananda 49 RAkshnsa .... 50 Anala, 51 Piiigala 52 KAIavukta... Manmatha. Dunnukiia Hemalamba Vilamba . . VikArin. . . 27.984 Sarva Plava Subhakrit . . Sobhana . . . Krodhin . . . Visvavasu . . Parabhava . . Plavaiiga . . . Kilaka Saumya. . . . SadliAraua. . Virodhakrit ParidhAvin . PiamAdin . .\nanda .... RAkshasa.. Anala Pii'igala ... KAlayukta. SiddliArthin liiiudra . . . Durmati . Duudubbi . RudhirodgAriu RaktAkslia Krodbana . Kshayn . . . Prabhava.. 28.974 6 BliAJrapada . SrAvaiia . SrAvaya . 27.957 6 BhAdraiutda. SrAvaua 216 219 212 262 THE HINDU CALENDAR. TABLE 1. Ixxxvii [f'ol. 2."?) (I := Disltnire of mnon from sun. (Col. 21-) 4 z= mouii'.i mean uiwukiIi/. (Col. 25) r := .tun's mean rniomah/. III. COMMENCEMENT OF THE Solar year. Luni-Solar year. (Civil da; of Chaitra Sukla Ist.) Kali. Day and Month. A. D (Time of t ic Mesha saiikrunti.) Day and Month. A. D. Week day. At Sunrise on meridian ot Cjjain. Moon's Age. a h. c. Week day. By the Ai-y Siddhinta. 1 3y the Sflrj Siddhinta. a a 1 Is n Gh. Pa. H. M. Gh. Pa. H. M. iq ^ 13 14 16 17 16a 17a 19 20 21 22 23 24 26 1 28 Mar. (87).. Sat.... 48 32 19 25 53 47 21 31 8 Mar. (67).. 1 Sun 247 .741 243 784 222 4748 29 Mar. (88).. 2 Mon... 4 4 1 37 9 18 3 43 27 .Mar. (86).. Sat 280 .840 277 721 273 4749 28 Mar. (88).. .3 Tucs... 19 35 7 50 24 50 9 56 15 Mar. (75).. 4 Wed.... 235 .705 1.53 568 243 4750 28 Mar. (87). . 4 Wed. . . 3.5 14 2 40 21 16 9 4 Mar. (63).. a Sun ... 242 .726 29 415 212 4751 28 Mar. (87). . 5 Thui-.. 50 37 20 15 55 53 22 21 23 Mar. (82).. Sat 315 .945 63 351 263 4752 29 Mar. (88). . Sat. . . . fi 9 2 27 11 24 4 34 12 Mar. (71).. 4 Wed.... 211 .633 9939 198 232 4753 28 Mar. (88).. 1 Sun... 21 40 8 40 26 56 10 46 29 Feb. (60).. 1 Sun ... . 0-3 —.(106 9815 45 202 4754 28 Mar. (87).. 2 Mon . 37 11 14 52 42 27 16 59 19 Mar. (78).. Sat 0-37 -.081 98.50 981 253 4755 28 Mar. (87).. 3 Tues... .52 42 21 5 57 59 23 12 9 Mar. (68).. 5 Thur. . . 100 ..300 64 865 225 4756 29 Mar. (88).. 5 Thur. . 8 14 3 17 13 30 5 24 28 Mar. (87).. 4 Wed. . . . 107 .321 99 801 276 4757 28 Mar. (88).. 6 Fri.... 23 45 9 30 29 2 11 37 16 Mar. (76).. 1 Sun 2 .006 9974 648 245 4758 28 Mar. (87).. Sat.... 39 16 15 42 44 34 17 49 6 Mar. (65). . 6 Fri 302 .906 189 532 217 4759 28 Mar. (87).. 1 Sun... 54 47 21 55 to 5 to 2 24 Mar. (83).. 4 Wed.... 84 .252 9885 431 266 4760 29 Mar. (88).. 3 Tues .. 10 19 4 7 15 37 6 15 13 Mar. (72). . 1 Sun 37 .112 9760 278 235 4761 28 Mar. (88). . 4 Wed... 25 50 10 20 31 8 12 27 2 Mar. (62).. 6 Fri 236 .708 9975 162 207 4762 28 Mar. (87). . 5 Thur. . 41 21 16 32 46 40 18 40 21 Mar. (80).. 5 Thur... 230 .690 9 98 258 4763 28 Mai-. (87).. 6 Kri.... 56 52 22 45 t2 11 to 52 10 Mar. (69).. 2 Mon.. . 0-S3 -.009 9885 945 227 4764 29 Mar. (88).. 1 Sat.... 12 24 4 57 17 43 7 5 28 Feb. (.59).. Sat 119 .357 99 829 199 4765 28 Mar. (88). . 2 Mon... 27 55 11 10 33 14 13 18 18 Mar. (78).. 6 Fri 134 .402 134 765 251 4766 28 Mar. (87).. 3 Tues. . . 43 26 17 22 48 46 19 30 7 Mar. (66).. 3 Tues... 60 .180 10 612 220 4767 28 Mar. (87) . . 4 Wed. . . 58 57 23 35 t-i 17 tl 43 26 Mar. (85).. 2 Mon.... 142 .426 44 546 271 4768 29 Mar. (88).. 6 F\-i.... 14 29 5 47 19 49 7 56 15 Mar. (74). 6 Fri 147 .441 9920 395 240 4769 28 Mar. (88).. Sat. . . . 30 12 35 20 14 8 3 Mar. (63).. 3 Tues. . . . 78 .234 9796 242 209 4770 28 Mar. (87).. 1 Sun... 45 31 18 12 50 52 20 21 22 Mar. (81). . 2 Mon.... 97 .293 9831 178 261 4771 29 Mar. (88).. 3 Tues... 1 2 25 6 23 2 33 12 Mar. (71). . Sat. . . . 238 .714 44 62 233 4772 29 Mar. (88).. 4 Wed... 16 34 6 37 21 55 8 46 1 Mar. (60).. 4 Wed.... 0-12 —.036 9921 909 202 4773 28 Mar. (88).. 5 Thur.. 32 5 12 50 37 26 14 59 19 Mar. (80).. 3 Tues. . . . 0-M — .060 9955 845 253 4774 28 Mar. (87).. 6 Fri.... 47 36 19 2 52 58 21 11 9 Mar. (68). . 1 Sun.... 172 .516 170 728 225 4775 29 Mar. (88).. 1 Sun. . . 3 7 1 15 8 29 3 24 28 Mar. (87). . Sat 225 .675 204 664 276 4776 29 Mar. (88).. 2 Mon... 18 39 7 27 24 1 9 36 17 Mar. (76).. 4 Wed.... 209 .627 80 512 245 4777 28 Mar. (88).. 3 Tues.. 34 10 13 40 39 32 15 49 5 Mar. (65).. 1 Sun 205 .615 9956 359 215 477S 28 Mar. (87).. 4 Wed... 49 41 19 52 55 4 22 2 24 Mar. (83).. Sat 265 .795 9990 295 266 4779 29 Mar. (S8) . . fi Kri.... ' 12 2 5 10 36 4 14 13 Mar. (72).. 4 Wed. . . 115 .345 9866 142 235 4780 t See I'ootniile j). liii abo © See Text. Art. 101 above, para. 2. Ixxxviii THE INDIAN CALENDAR TABLE 1. Ijunrilion-jHirix =^ ]U,(JI)U///.v 0/ ti rirrle. A litlii =^ ^jiuth of the moon's stynoilic revolution. I. CONCURRENT YEAR. II. ADDED LUNAR MONTHS. 3a True. Luni -Solar cycle. (Southern.) Brihaspali cjclct (Norlheni) current at Mcsha saiikriiutk Name of month. Time of the preceding sankrSnti espnssed in Time of the succeeding saiikrunti 11 4783 4782 4783 4784 478.5 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 175 1756 1757 1758 1759 1760 1761 1762 1763 1764 176.'; 1766 1767 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 110 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 854-55 855-56 856-57 857-58 858-59 859-60 860-61 861-62 862-63 863-64 864-65 865-06 866-67 867-68 868-69 869-70 870-71 871-72 872-73 873-74 874-75 875-70 876-77 877-78 878-79 879-80 880-81 881-82 882-83 883-84 884-85 1679- 80 1680- 81 1681- 82 1682- 83 1683- 84 1684- 85 1685- 86 1686- 87 1687- 88 1688- 89 1689- 90 1690- 91 1691- 92 ■1692- 93 1693- 94 1694- 95 1695- 96 ■1696- 97 1697- 98 1698- 99 1 699-700 53 Siddfaarthin. 54 Raudra .... 2 Vibhava. 3 Sukla. . . 9755 55 Durniati . 4 Pramoda. ■1700- 1701- 1702- 1703- '1704- 1705- 6 1706J 7 1707- 8 '1708- 9 1709- 10 56 Dundubhi . . . . 57 Rudhirodgfirin 58 Raktakshn. . . . 59 Krodhana . . . . 60 Kshaya 1 PrabhavB 2 Vibhava 3 Sukla 4 Pramoda 5 Prajnpati 6 Aiigiras 7 Srimukha . . . . 8 Bhava 9 Yuvan 10 Dhatri 11 Isvara 12 Bahudh&nya . . 13 Pramdthin . . 14 Vikrama 15 Vriaha 16 Chitrahhfinu.. 17 Subhfinu 18 TArava 19 PArthiva 20 Vyaya 21 Sarv^jit 22 SarvadhArin . . 23 Virodhin 5 PrajSpati.. . . 6 Ai'igiraa 7 Srimukha . . . 8 BhAva 1) . . . . 10 Dhatri 11 Isvara 12 Bahudhunya. 13 Pramathin.. . 14 Vikrama . . . . 1 5 Vrisha 16 ChitrabhSuu . 17 Subhanu . . . . 18 Turana 19 PArthiva 20 Vyaya 21 Sarvajit 22 SarvadhArin.. 23 Virodhin .. . . 24 Vikrita 25 Kliara 26 Nauduna . . . . 27 Vijnya 28 Jaya 29 Manmatlia . . . 30 Durmuklia. . . 31 Ilemahiniba . 32 Vilaniba 33 VikAriu 7 Asvina.. . 10 Pamha{Ksk.) I Chaitra . . 94 9920 29.364 0.282 29.760 no 9936 6 BhAdrapada . 28.827 169 216 7 Asvina. 9772 511 147 SrAvana . <; Yuvnii, Nil. 9. was supprcssril in the imrtli. THE HINDU CALENDAR. TABLE 1. Ixxxix (Cot. 23) a z = Oistiinre n/ moon from V//W. {Col 21) /.. = monn'.i iiieuii unomali/. (Col. 25 ) '• = = suns mean iirioma '.'/■ III. COMMENCEMENT OF THE Solar year. Luni-Solar year. (Civil ds; of Chniti-a Sukla Ist.) (Time "f ""■ l^T nti.) At Sunrise on meridian of UJJaln. Day and Month. A. D Day and Month. A. D. Week day. Moon's Age. o. b. c. Kali. Week day. By the Ary Siddh&nta. Jy the Sttr Siddh&nta. a a I f s tl It S-3 Gh. Pa H. M. Gh. Pa. H. M. 13 14 16 17 16a 17a 19 20 21 22 23 24 26 1 29 Mar. 88).. Sat 20 44 8 17 26 7 10 27 3 Mar. 62).. 2 Mon.... 245 .735 80 26 207 4781 28 Mar 88).. 1 Sun.... 36 15 14 30 41 39 16 39 21 Mar. 81).. 1 Sun. . . . 222 .666 115 962 258 4782 28 Mar 87).. 2 .Moil . . .51 46 20 42 57 10 22 52 10 Mar. 69).. 5 Thur. . . 1 .003 9991 809 228 4783 29 Mar. 88).. 4 Wed.... 7 17 2 55 12 42 5 5 28 Feb. 59).. 3 Tues. . . . 217 .651 205 694 199 4784 29 Mar. 88).. 5 Thur... 22 49 9 7 28 13 11 17 19 Mar. 78).. 2 Mon.... 279 .837 240 628 251 4785 28 Mar. 88).. 6 Fri 38 20 15 20 43 45 17 30 7 Mar. 67).. 6 Fi-i 278 .834 115 475 220 4786 28 Mar 87).. Sat .53 51 21 32 59 16 23 42 25 Mar. 84).. 4 Wed... 50 .150 9811 375 269 4787 29 Mai-. 88).. 2 Mon.... 9 22 3 45 14 48 5 55 15 Mar. 74).. 2 Mon.... 306 .918 26 259 240 4788 29 Mar. 88).. 3 Tues. . . . 24 54 9 57 30 19 12 8 4 Mar. 63).. 6 Fri 130 .390 9901 106 210 4789 28 Mar. 88).. 4 Wed.... 40 25 16 10 45 51 18 20 22 Mar. 82).. 5 Thur... 113 .339 9936 42 261 4790 28 Mar. 87).. 5 Thur. . . 55 56 22 22 tl 22 +0 33 12 Mar. 71).. 3 Tues.... 226 .678 150 925 233 4791 29 Mar. 88).. Sat 11 27 4 35 16 54 6 46 1 Mar. 60).. Sat 31 .093 26 773 202 4792 29 Mai-. 88).. 1 Sun 26 59 10 47 32 25 12 58 20 Mar. 79).. 6 Fri 66 .198 61 708 253 4793 28 Mar. 88).. 2 Mon.... 42 30 17 47 57 19 11 8 Mar. 68).. 3 Tues.... 28 .084 9936 556 222 4794 28 Mar. (87).. 3 Tucs.... 58 1 23 12 t3 28 tl 23 27 Mar. 86).. 2 Mon. . . . 118 .3.54 9971 492 274 4795 29 Mar. 88).. 5 Thnr. . . 13 32 5 25 19 7 36 16 Mar. 75).. 6 Fri 105 .315 9847 339 243 4796 29 Mar. 88).. 6 Fri 29 4 11 37 34 31 13 49 5 Mar. 64).. 3 Tues. . . . 0-6 — .OlS 9723 186 212 4797 28 Mar. 88).. Sat 44 35 17 50 50 3 20 1 23 Mar. 83).. 2 Mon.... 0-6 —.018 9757 122 263 4798 29 Mar. 88).. 2 Mon... 6 2 5 34 2 14 13 Mar. 72).. Sat 117 .351 9972 6 235 4799 29 Mar. 88).. 3 Tues... 15 37 6 15 21 6 8 26 3 Mar. 62).. 5 Thur... 237 .711 186 889 207 4800 29 Mar. 88).. 4 Wed.... 31 9 12 27 36 38 14 39 22 Mar. 81).. 4 Wed.... 236 .708 221 825 259 4801 28 Mar. 88).. .5 Thur... 46 40 18 40 52 9 20 52 10 Mar. 70).. 1 Sun.... 112 .336 96 672 228 4802 29 Mar. 88).. Sat 2 11 52 7 41 3 4 29 Mar. 88).. Sat 183 .549 131 608 279 4803 29 Mar. 88).. 1 Sun.... 17 42 7 5 23 12 9 17 18 Mar. 77).. 4 Wed... 186 .558 7 455 248 4804 29 Mar. 88).. 2 Mon... 33 14 13 17 38 44 15 29 7 Mar. 66).. 1 Sun 155 .465 9882 303 217 4805 28 Mar. 88).. 3 Tues. . . . 48 45 19 30 54 15 21 42 25 Mar. 85).. Sat 197 .591 9917 239 269 4806 29 Mar. 88).. 5 Thur... 4 16 1 42 9 47 3 55 14 Mar. 73).. 4 Wed. . . 5 .015 9793 86 238 4807 29 Mar. 88).. 6 Fri 19 47 7 55 25 18 10 7 4 Mar. 63).. 2 Mon. . . . 122 .366 7 969 210 4808 29 Mar. 88).. Sat 35 19 14 7 40 50 16 20 23 Mar. 82).. 1 Sun 103 .309 42 905 261 4809 28 Mar. 88).. 1 Sun.... 50 50 20 20 56 21 22 32 12 Mar. 72).. 6 Fri 260 .780 256 789 233 4810 29 Mar. 88).. 3 Tues... 6 21 '^ 32 11 53 4 45 1 Mar. 60).. 3 Tues... 169 .507 132 636 202 4811 Set' footnote [) liii above. See Text. Art. 101 above, para. 2. THE INDIAN CALENDAR TABLE 1. Liauilion-jKirts ^ 10,0(IOMi' oj a circle. A lithi ^ ',,'"''' "f '^'' mo(jii's synodic revolution. I. CONCURRENT YEAR. II. ADDED LUNAR MONTHS. 2 3 3a 'i'ruf. Luni-Solar fvde. (Southern.) 6 Brihaspali fvclf (Nortliern) ciuTcnt at Mcsha saiikranti. Name of month. Time of the preceding sai'ikr&nti e\'pr»-ssed in Time of the succeeding soi'ikrunti expressed in 11 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 483H 4839 4840 4841 4842 4843 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 179 1796 1797 1798 1799 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 113 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 114' 114H 8S5- 86 886- 87 887- 88 888- 89 889- 90 890- 91 891- 92 892- 93 893- 94 894- 95 895- 96 896- 97 897- 98 898- 99 899-900 900- 1 901- 2 902- 3 903- 4 904- 5 905- 6 906- 7 907- 8 908- 9 909- 10 910- 11 911- 12 912- 13 913- 14 914- 15 915- 16 916- 17 1710-11 1711-12 •1712-13 1713-14 1714-15 1715-16 •1716-17 1717-18 1718-19 1719-20 •1720-21 1721-22 1722-23 1723-24 •1724-25 1725-26 1726-27 1727-28 •1728-29 1729-30 1730-31 1731-32 •1732-33 1733-34 1734-35 1735-36 •1736-37 1737-38 1738-39 1739-40 •1740-41 1741-42 Vikrita Khara Nandana Vijaya Java Manmatha .... Durmukha . . . Heraalamba . . Vilaraba Vikarin Siirvari Plava Subhakrit ... Subhana Krodhin Visvfivasu .... Pai'fibhava ... Plavariga Kilaka Saumya Siidharatia .... Virodhakrit.. . Pai-idh&vin. . . Pramildin . . . . .\nanda Rnkshasa Auala Pii'igala KAhiyukttt.. . . Siddh&rthin. . . Ksudra Durniati Sfirvari Plava Subhakrit . . . . Sobhana Krodhin Visvavasu ... Parabhava ... Plavaiiga Kilaka Saumja Sadht'iraua .... Virodhakrit . . . Paridhavin . . . Pramadin . . . . A nanda Rilkshasa Anala Pii'igala K&layukta. . . . Siddhjirthin.. . Raudra Dui'mati Dundubhi . . . . Riidhirodgarin Raktaksha . . . . Krodhana . . . . Ksliaya Pn\bhava Vibhava Sukla Praniuda PmjApati 6 Bhadiapada. 7 Asvina. 457 128 6 Bbadrapada. 280 252 9552 7 Asvina. 9763 9754 29.289 29.262 458 96 5 SrAvana 9893 29.676 THE HINDU CALENDAR. TABLE I. iTo/. 23) •! - — nhtiiiiiv of moin/ from >■«//. (r« f. 24) h - : moon's iiicdii a II omul If. (Col. 2." 1 '• : =: .««//'.( Mfdii """'" l,j. III. COMMENCEMENT OF THE Solar year. Iiuni-Solar year. (Civil da; of Chaitra Sukla Ist ) (Tim ■ of the .Mr-l'" .J. ..M-. ■.■."!; N At Sunrise on meridian of UJiain. niul Monlli A. 1). l).iy and Month A. 1). Week day. Moon's Age. a. «. 24 25 Kali. 1 Week day. By the Arj SiddhAnln. " By the Silrya Siddhanta. ll .3~ 'a Gh. I'a. H. M. Gh. Pa. 11. M. 13 14 15 17 15a 17a 19 20 21 22 23 2'J Mar 88).. \ We.l.... 21 52 8 45 27 24 10 58 20 Mar. (79).. 2 Mon. . . . 244 .732 166 572 254 4812 29 M»i-. 88).. .5 Thiir. . . 37 24 14 57 42 56 17 10 9 Mar. (68).. 6 Fri 252 .756 42 419 223 4813 28 Mar. 88).. 6 Fi-i 52 55 21 10 58 27 23 23 27 Mai-. (87).. 5 Thur. . . .327 .981 77 355 274 4814 29 Mar. 88).. 1 Sun 8 26 3 22 13 59 5 36 16 Mar. (75).. 2 Mon... 226 .678]9952 203 243 4815 29 Mar. 88).. 2 Mon. . . . 23 57 9 35 29 30 11 48 5 Mar. 64).. 6 Fri 14 .042 9828 50 212 4816 29 Mar. 88).. 3 Tues.... 39 29 15 47 45 2 18 1 24 .Mar. (83).. 5 Thur. . . 0-1" —.030 9863 986 264 4817 28 Mar. 88).. 4 Wed. . . . 55 22 to 33 +0 13 13 Mar. (73). . 3 Tues.... 114 .342 77 869 236 4818 29 Mar. 88).. 6 Fri 10 31 4 12 16 5 6 26 3 Mar. (62).. 1 Suu.... 294 .882 292 753 207 4819 29 Mar. 88).. Sat 26 2 10 25 31 36 12 38 21 Mai-. 80).. 6 Fri 13 .039 9987 652 2.56 4820 29 Mar. 88).. 1 Sun 41 34 16 37 47 8 18 51 11 .Mar. 70).. 4 Wed.... 311 .933 202 536 228 4821 28 JIar. 88) . 2 Mon.... 57 5 22 50 t2 39 fl 4 28 Mar. 88).. 2 Mon.... 94 .282 9898 436 276 4822 29 Mar. 88) . . 4 Wed.... 12 36 5 2 18 11 7 16 17 Mar. 76).. 6 Fri 51 .153 9774 283 246 4823 29 Mar. 88).. 5 Thur.. 28 7 11 15 33 43 13 29 7 Mar. 66).. 4 Wed. . . . 250 .750 9988 166 218 4824 29 Mar. 88).. 6 Fri 43 39 17 27 49 14 19 42 26 Mar. 85).. 3 Tues.... 247 .741 23 102 269 4825 28 Mar. S8).. Sat 59 10 23 40 -i-4 46 tl 54 14 Mar. 74).. Sat 0-7 —.021 9898 949 238 4826 29 .Mar. 88).. 2 Mon.... 14 41 5 52 20 17 s 7 4 Mar. 63).. 5 Thur... 133 .399 113 833 210 4827 29 Mar. 88).. 3 Tues.... 30 12 12 5 35 49 14 19 23 Mar. 82).. 4 Wed.... 148 .444 147 769 261 4828 29 Mar. 88).. 4 Wed.... 45 44 18 17 51 20 20 32 12 Mar. 71).. 1 Sun. . . . 69 .207 23 616 230 4829 29 Mai-. 89).. 6 Fri 1 15 30 6 52 ~ 45 29 Feb. 60).. 5 Thur... 74 .222 9899 463 200 4830 29 Mar. 88).. Sat in 46 6 42 22 23 8 57 19 Mai-. 78).. 4 Wed... 158 .474 9933 399 251 4831 29 Mar. 88).. 1 Sun 32 17 12 55 37 55 15 10 8 Mar. 67).. 1 Suu.... 90 .270 9809 247 220 4832 29 Mar. 88).. 2 Mon.... 47 49 19 7 53 26 21 22 27 Mar. 86).. Sat 112 .336 9844 183 272 4833 29 Mar. 89).. 4 Wed... . 3 20 1 20 8 58 3 35 16 Mai-. 76).. 5 Thur. . . 255 .765 58 66 243 4834 29 Mar. 88).. .5 Thur. . . 18 51 7 32 24 29 9 48 5 Mar. 64).. 2 Mon. . . . 3 .009 9934 913 213 4835 29 Mar. 88).. 6 Fi-i 34 22 13 45 40 1 16 24 Mai-. 83).. 1 Sun.... 0-s — .015 9968 849 264 4836 29 Mar. 88).. Sat. . . . 49 54 19 57 55 32 22 13 14 Mar. 73).. 6 Fri 184 .552 183 733 236 4837 29 JIar. 89).. 2 Mou.... 5 25 2 10 11 4 4 26 2 Mar. 6-2). . 3 Tues.... 134 .402 59 580 205 4838 29 Mar. 88).. 3 Tues.... 20 56 8 22 26 35 10 38 21 Mar. 80).. 2 Mon... 219 .657 93 516 256 4839 29 Mar. 88).. 4 Wed.... 3fl 27 14 35 42 7 16 51 10 Mar. 69).. 6 Fri 215 .645 9969 363 225 4840 29 Mar. 88).. 5 Thur... 51 59 20 47 57 38 23 3 29 Mar. 88).. 5 Thur... 277 .831 3 299 277 4841 29 Mar. 89).. Sat 7 30 3 13 10 5 16 17 Mar. 77).. 2 Mon... 130 .390 9879 146 246 4842 29 Mai-. 88).. 1 Sun.... 23 1 9 12 28 41 11 28 7 Mar. 66).. Sat 260 .780 93 30 218 4843 f See fuotnote p. liii abuv Sec Text. Ait. 101 :ib

//ioi/if recnliilio I. CONCURRENT YEAR. II. ADDED LUNAR iMONTHS. True. I.uiii-Solai' cydc. (Southern.) 6 Brihiispati cjclc (Northern) current at Meslia sankrrinti. Name of mouth. Time of the preceding sankr&nti expressed in c .*^ Time of the succeeding sankr&nti expressed in 10 11 •1939 •1910 I9il 4942 4943 4944 494.5 494(! 494* 494S 4949 4950 49.51 495i2 4953 4954 4955 49.56 4957 4958 4959 4960 4961 4962 4963 4961 4965 49(;fi 496 496S 4969 4970 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 190 1906 190 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1201 1262 1263 1264 1265 1260 1267 1268 1209 1270 1271 1272 1273 1274 1275 1012-13 1013-14 1014-15 1015-16 1016-17 1017-18 1018-19 1019-20 1020-21 1021-22 1022-23 1023-24 1024-25 1025-26 1026-27 1027-28 1028-29 1029-30 1030-31 1031-32 1032-33 1033-34 1034-35 1035-36 1036-37 1037-38 1038-39 1039-40 1040-41 1041-42 1042-43 1043-44 1837-38 1838-39 1839-40 •1840-41 1841-42 1842-43 1843-44 *1844-45 1845-46 1846-47 1847-48 ♦1848-49 1849-50 1850-51 1851-52 *1852-53 18.53-54 1854-55 1855-56 •1856-57 1857-58 1858-59 1859-60 •1860-61 1861-62 1862-63 1863-04 •1864-65 1865-06 1866-67 1867-68 •1868-69 31 Uenialamba. . . 32 Vilamba 33 Vikfirin 34 Sarvari 35 Plava 36 Subhakril 37 Sobhana 38 Krodhin 39 Visvuvasu . . . . 40 Parubhava 41 Plavanga Kilaka 43 ISaumya 44 Sadhilrana.. . . 45 Virodhakrit.. . 46 Paridhuvin . . . 47 Pramfidiu . . . . 48 .^nauda 49 Uukshasa 50 Anala 51 Piii^ala KAlayukt.'i. . . . 53 Siddhilrthin.. . 54 Raudra 5 Durmati .... 56 Dundubhi. . . . i7 RudhirodgAriu >8 RiikliUsha.... 59 Krodhaua . . . . CO Ksliaya 1 Prabhnva 2 Vibliava Kilaka Saumya SSdliSraua .... Virodhakrit.. . Paridhiivin . . , Pramadin . . . . Ananda Rakshasa Anala Piiigala Kiilayukta .... Siddharthin. . . Raudra Durmati Duudubhi .... Rudhirodgarin Raktaksha.. . . Krodhaua . . . . Kshaya Prabhava 1) . . . Sukla Pramoda PrajSpuli Ai'iginis Srimukha .... lihilva Vuvan DhStri 7 Asviua. 9876 6 Bhi'idrapada 7 Asviua. 5 Sravana. BalmdliAnya . PrauiAthin. . . Vikrama , . ') Vibhava, No. 2, Mas auppresscd in the niutli. THE HINDU CALENDAR. TABLE 1. {(•f.l. 2.'!) n = nUlmice nf iiirtnn from xini. {Co . 24 b = I iiiooii's met/It anomali/. (Col. 2:' )^- — xiiH's mean ttnomt /y. in. COMMENCEMENT OF THE Solar year. Luni-Solar year. (Civil day of Chaitra .Sukia 1st.) Kali. Day and .Month (Time of the Mesha sankranti ) Day and Month Week day At Sunrise on meridian of Ujjain. Moon's Age. By the .\rya By the Surya r "^ A. 1). Week day. Siddhttnta. Siddiinta. A. D. s ^ a. b. .. Gh. Pa. H M. Gh. Pa. H. M. 1 S. ^-1 13 14 15 17 16a 17a 19 20 21 22 23 24 25 1 11 April (101) 3 Tues.... 13 1 .-, 12 19 8 7 39 6 April (96). . 5 Thnr. . . 255 .765 9979 212 264 4939 11 April (101). 4 Wed.... 28 32 11 25 34 39 13 52 26 Mar. (85).. 2 Mon. . . . 46 .138 9855 59 233 4940 11 April (101). 5 Thur... 44 4 17 37 50 11 20 4 16 Mar. (75). . Sat 161 .483 69 942 205 4941 10 April (101). 6 PYi 59 35 23 50 1-5 42 t2 17 3 April (94). . 6 Fri 147 .441 104 878 256 4942 11 April (101). 1 Sun 1.5 f. 6 2 21 14 8 29 24 Mar. (83). . 4 Wed. . . . 318 .954 318 761 228 4943 11 April (101). 2 Mod... SO 37 12 15 36 45 14 42 11 April (101). 2 Mon.... 36 .108 14 661 277 4944 U April (101). 3 Tucs . . 46 9 18 27 52 17 20 55 31 Mar. (90).. 6 Fi-i 23 .069 9890 508 246 4945 11 April (102). 5 Thur... 1 40 40 7 48 3 7 19 Mar. (79).. 3 Tues. . . . 16 .048 9765 350 215 4946 11 April (101). 6 Fri 17 11 6 52 23 20 9 20 7 AprU(97).. 2 Mon.... 75 .225 9800 292 266 4947 11 April (101). Sat 32 42 13 5 38 51 15 33 28 Mai-. (87).. Sat 279 .837 14 175 238 4948 11 April (101) 1 Sun 48 14 19 17 54 23 21 45 17 Mar. (76).. 4 Wed.... 52 .156 9890 22 208 4949 11 April (102). 3 Tues... 3 45 1 30 9 54 3 58 4 April (95).. 3 Tues.... 28 .084 9925 958 259 4950 11 April (101). 4 Wed. . . . 19 IR 7 42 25 26 10 10 25 Mar. (84).. 1 Sun 162 .486 139 842 231 4951 11 April (101). 5 Thur. . . 34 47 13 55 40 58 16 23 14 Mar. (73).. 5 Thur. . . 28 .084 15 689 200 4952 U April (101). 6 lYi •50 19 20 7 56 29 22 36 2 April (92). . 4 Wed.... 90 .270 49 625 251 4953 11 April (102). 1 Sun.... 5 50 2 20 12 1 4 48 21 Mar. (81).. 1 Son 90 .270 9925 472 220 4954 11 April (101). 2 Mon. ... 21 21 8 32 27 32 11 1 9 April (99). . Sat 177 .531 9960 408 272 4955 11 April (101). 3 Tues.... 3fi 52 14 45 43 4 17 13 29 Mar. (88).. 4 Wed.... 115 .345 9835 255 241 4956 n April (101). 4 Wed . .. 52 24 20 57 58 35 23 26 19 Mar. (78).. 2 Mon.... 299 .897 50 139 213 4957 11 April (102). 6 Fri 7 55 3 10 14 7 5 39 6 AprU(97).. 1 Sun 288 .864 84 75 264 4958 11 April (101). Sat 23 26 9 22 29 38 11 51 26 .Mar. (85).. 5 Thur... 34 .102 9960 922 233 4959 11 AprU(lOl). 1 Sun.... 38 57 15 35 45 10 18 4 16 Mar. (75).. 3 Tues.... 186 .558 175 806 205 4960 11 April (101). 2 Mon .... 54 29 21 47 to 41 to 16 4 April (94).. 2 Mon... 209 .627 209 741 257 4961 11 April (102). 4 Wed 10 4 16 13 6 29 23 Mar. (83).. 6 Fri 151 .453 85 589 226 4962 11 April (101). .5 Thur... 25 31 10 12 31 44 12 42 11 April (101). 5 Thur. . . 239 .717 120 525 277 4963 11 April (101). 6 Fri 41 2 16 25 47 16 18 54 31 Mar. (90).. 2 Men.... 236 .708 9995 372 246 4964 11 April (101). Sat 5fi 34 22 37 +2 47 tl 7 20 Mar. (79).. 6 i'Vi 149 .447 9871 219 215 4965 11 April (102). 2 Mon. . . 12 5 4 50 18 19 7 20 7 AprU (98). . 5 Thur... 161 .483 9906 155 267 4966 11 April (101) 3 Tues.... 27 3fi 11 2 33 50 13 32 28 Mar. (87).. 3 Tuea.... 294 .882 120 39 239 4967 11 April (101). 4 Wed... 43 7 17 15 49 22 19 45 17 Mar. (76).. Sat 46 .138 9996 886 208 4968 11 April (101). 5 Thur... 58 39 23 27 +4 53 tl 57 5 .\pril(95).. 6 Fi-i. . . . . 44 .132 30 822 259 4969 11 April (102). Sat 14 10 ^ 40 20 25 8 10 25 Mar. (85).. 4 Wed... 250 .7.50 245 705 231 4970 Sec footnote p. liii above. THE INDIAN CALENDAR. TABLE I. Liincitimi-jmrls ^: 10,000M.s of ii rirrle. .1 lithi = ^jiM of the moon's synodic revolution. I. CONCURRENT YEAR. II. ADDED LUNAR MONTHS. 2 3a True. I.mii-Solar cycle. (Soutlieni.) 6 Brihaspati cycle (Northern) current at Mesha sai'ikranti. Name of mouth. Time of the preceding sanki'uuti cipreased in 10 Time of the succeeding bai'ikranti csjiressed in 11 4971 4972 4973 4974 4975 4976 49 4978 4979 4980 4981 4982 4983 4984 498 4986 498 4988 4989 4990 4991 4992 4993 4994 499 499B 499 4998' 4999 .-)000 5001 5002 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1H17 1818 1819 1820 1821 1822 1823 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 129 1296 129 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1044-45 1045-46 1046-47 1047-48 1048-49 1049-50 1050-51 1051-52 1052-53 1053-54 1054-55 1055-56 1056-57 1057-58 1058-59 1059-60 1060-61 1061-62 1062-63 1063-64 1064-65 1065-66 1066-67 1067-68 1068-69 1069-70 1070-71 1071-72 1072-73 1073-74 1074-75 1075-76 1869- 70 1870- 71 1871- 72 '1872- 73 1873- 74 1874- 75 1875- 76 '1876- 77 1877- 78 1878- 79 1879- 80 •1880- 81 1881- 82 1882- 83 1883- 84 ►1884- 85 1885- 86 1886- 87 1887- 88 »1888- 89 1889- 90 1890- 91 1891- 92 •1892- 93 1893- 94 1894- 95 1895- 96 •1896- 97 1897- 98 1898- 99 1899-900 1900J- 1 3 Sakla 4 Pramoda . . . 5 Prajapati 6 Ai'igiras .... 7 Srimutha . . 8 Bhilfa 9 Yuvan 10 Dhatri 11 Jsvara 12 Bahudhanja 13 Pramfithin . 14 Vikrama. . . 15 Vrisha 16 Chitrabhfinu 17 Subhiluu . . . 18 Tarann 19 Parthiva... 20 Vyaya 21 Sarvajit.... 22 Sarf adharin. . . 23 Virodhin . . . 24 Vikrita 25 Khara 6 Nandaua . . . 27 Vijaya 28 Java 29 .Manniatha.. 30 Durmukha . 31 Hcmalaniba. 32 Vilamba... 33 Vikftrin.... 34 Sarvari Vrisha Chitrabhauu . Subhanu . . . . Tai-ana Parthiva. . . . Vyaya Sarvajit Sarvadharin. . Virodhin . . . . Vikrita Khara Nandana . . . . Vijaya Jaya Manuiatha.. . Durmukha . . Hemalamba . . Vilamba . . . . Vikurin Sarvari Plava Subhakrit . . . Sobhuna . . . . Krodhin . . . . Visvavasu . . . Parabhava . . . Plavaugii . . . Kilaka Saumya Sadharaua . . Virodhakrit. Paridhavin . 2 A'aisakha.. . 6 Bhadrapada . 7 Asviua. . . 527 194 Sravaua. 29.763 6 Blu'idnipada. 62 402 7 Asvina. 544 189 i The year 1900 A 1) «ill not l,r :, leap-year. THE HINDU CALENDAR. TABLE 1. [Cnl. 2.'i) a :=: Distance of moon from siiii. (Col. i\) h ^ /iwoii'x nieini ininmuli/. [Col. 25) r := sun'.i mean iiiiomuli/. III. COMMENCEMENT OF THE Solar year. Day and Month A. D. (Time of the Mesha sankraiiti .) Week (lav. By the Arya Siddhunta. By the Sunn Siddhliuta. I.uui-Solar year. (Civil day of Chaitra Sukia Ut.) Day and Month A. D. Week dnv . At Saurlae or, meridian of UJJaln. Moon's Age. 13 14 16 17 15a 17a le 20 21 22 23 25 11 April (101) 11 April (101) 12 April (102) 11 April (102). 11 April (101). 11 April (101). 12 April (102). 11 April (102). 11 April (101). 11 April (101). 12 April (102). 11 April (102). 11 April (101). 11 April (101). April (102). 11 April (102). 11 April (101). U April (101). 12 April (102). 11 April (102). 11 April (101). 11 April (101). April (102). 11 April (102). 11 April (101). U April (101). April (102). 11 April (102). 11 April (101). 11 April (101). April (102). 12 April (102). 1 Sun. . 2 Mon. . 4 Wed.. .5 Thiir. 6 Fri... Sat... 2 Mon.. 3 Tues.. 4 Wed.. 5 Thur. Sat... 1 Siin.. 2 Mon.. 3 Toes.. a Thur. f. Fri... Sat. . . 1 Sun.. 3 Tues.. 4 Wed.. 5 Thur. 6 Fri... 1 Sun.. 2 Mon.. 3 Tues.. 4 Wed.. 6 Fri... Sat... 1 Sun.. 2 Mon.., 4 Wed.. 5 Thur. , .59 15 24 .30 5.5 46 27 tl 58 17 30 33 2 48 33 t4 5 19 36 35 8 50 39 14 Mar. (73). . 2 April (92).. 22 Mar. (81)., 8 April (99). . 29 Mar. (88).. 19 Mar. (78).. 7 April (97)., 26 Mar. (86).. 16 Mar. (75).. 3 April (93). . 23 Mar. (82).. 10 April (101). 30 Mar. (89).. 20 Mar. (79).. 8 April (98).. 28 Mar. (88).. 17 Mar. (76).. 5 April (95). . 25 Mar. (84).. 13 Mar. (73).. 1 April (91).. 21 Mar. (SO). . 9 April (99). . 29 Mar. (89).. 19 Mar. (78).. 7 April (97).. 27 Mar. (86).. 15 Mar. (75).. 3 April (93).. 23 Mar. (82).. 11 April (101). 31 Mar. (90).. 1 Sun . . . Sat.... 4 Wed... 2 Mon... Sat.... 5 Thur.. 4 Wed... 1 Sun... 6 Fri.... 4 Wed... 1 Sun... Sat. . . . 4 Wed. . . 2 Mon. . . 1 Sun... C Fri.... 3 Tues... 2 Mon... 6 Fri.... 3 Tues... 2 Mon... 6 Fri.... 5 Thur.. 3 Tues... 1 Snn . . . Sat 4 Wed... 1 Sun . . . Sat 4 Wed..., 3 Tues.... Sat .651 .918 .876 .021 .528 .897 .828 .210 .900 .171 .189 .417 .10: .564 .504 .855 .309 .441 .369 .378 .570 .147 .162 .513 .897 .912 .594 .582 .840 .70; .810 .186 120 155 31 9727 9941 155 190 66 280 9976 11 226 101 136 12 1887 9922 9798 9832 47 261 296 171 47 82 9957 9992 1971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 001 5002 Si-f footnotr p. liii above. THE HINDU CALENDAR. TABLE 11. PART 1. CORRESPONDENCE OP AMANTA AND PtjUNIMANTA MONTHS (See Arl. 51 J Amantn iiumllis. rrm.iimfiuta monllis 4 Ashitdha. 7 Asvina. 1 1 MAaha . Sukla. 5 Sruvaya (i Bhailrapaila . . . s I Krishna . . I Sukla. . . . t Krishna . . I Sukla I Krishua . . I Sukla I Krishna . . I Sukla ^ Krishiia . . I Sukla I Krishua . . I Sukla t Krishna . . I Sukla . . . . / Krishna . . I Sukla. . . . I Krishna . . I Sukla. . . . ( Krishria . . I Sukla / Krishna . . I Sukla. . . , I Krishiia . . Jycshtha. BhaJrapada Phalgnna. Sukla ::: Suddha and other synonyms. Krishpa z^ Bahula, Vadya, and other synonyms. THE INDIAN CALENDAR. TABLE II. PART II. CORKESPONDENCE OP MONTHS IX DIFFERENT ERAS. (\,v .Irl. lli:i uf the 'JWl.) LUNI-SOLAR YEAR. Other months corresponding to Luuar months. Chaitradi. Ashadhadi. Asvinadi. KArttikAdi. Sanskrit names of months. Tulu names. Sanskrit names of mc nths. Solar mouths. Mouths A. D. 1 2 3 4 5 6 7 Kidi 417'J. Saka 1000. Vikrama Samvat Chedi (Kalaelmri) Vikrama 113-1. A. D. 1077. Vikrama 113.5. Gupta 758. 1134. 829. NevAr 198. 1 Chaitra. Paggu. Chaitra. Chailra Chaitra. Mina, Mcsha. Feb.. March, April. .May. a Vaisukha. BesS. Vaisakha. Vaisakha. Vaisakha. Mesha, Vrishahha. March, April, Slay, June. S Jyeshtha. Kartehi. Jyeshtha. 1135. Jyeshtha. Jyeshtha. Vrishahha, Mithuna. April, May, June, July. 4 AshAdlia. Ati. Ashadha. Asha.lha. AshAdha. Mithuna, Karka. May, June, July. Aug. 5 Si-avana. Sui.ia. Sravana. Sravana. SrAvana. Kark.a, Siiiilia. June. July, Aug., Sept. 6 Bhadrapaila. Nirvilla Bhi'idrapada. Bhadrapada. 830. BhAdrapada. Siiiiha, KanyA. July, Aug., Sept , Oct. 7 .\sviua. Hontclu. Asvina. Asvina. Asvina. 1135; 199. KanyA, Tula. Aug., Sept., Oct., Nov. H KHrttika. Jardc. KArttika. KarKika. Karttika. TulA, Vri.^chika Sept., Oct., Nov., Pec. 1078. '.) Margasii'sha. Pcrarde. Margasirsha. Margasirsha. M argasirslia. Vrischika, Dhanus. Oct., Nov , Dec, Jan. 10 Pausha. Pl'iutflll. Pausha. Pausha. Pausha. Dhanus, llakai-n. Nov . Dec, Jan , Feb. 11 Mugha. Mflyi. Magha. MAgha. MAgha. Makara, Kumbha. Dec., Jan., Feb., March. 12 Phdiguna. Suggi. Phfilgmia. PhAlgnna. PliAlguna. Kumbha, M5ua. Jan., Feb., March, April. N.B. i. All the years are current, and the lunar-mouths arc umAula. N.B. ii. Cliailrildi ■^ "heginuiug with Chaitra"; Meshddi n "beginuiug with Mesha" and so uu. THE HINDU CALENDAR. TARLE II. PART 11. (continuer) coin: KSI'ON DEN CE OF MONTHS IN DIFFERENT ERAS. (See Art 103 of the Text. J SOLAR YEAR. Other montl s corresponding MeshJdi. Siiiihadi. Kanyadi. to Solai months. Sign names. Bengali names. Tamil names. TiiinevcUy names. Snutb Malayalam uames. Nortb Malayalam names Orissa names. Lunar months. Months A. D 8 9 10 11 12 13 14 15 Knli 4179. Vita-ama 113.5. Saka HIOO. Bengali San 484. TiunevcUy 252. Kollam 252. Kollam 252. Vilayati 484. A. 0, 1077 1 Mcsha. Vaisakha (Baisiik). C'bittirai (Sittirai). Chittirai (Sittirai). Medam. MEdam. Baisak. Chait., Vais. Mar., Apr., May. 2 Vrishabba Jyeshlha (Joistho). Vaigusi, Vaiyasi. Vaigasi (Vaiyusi). Edavam. Edavam. Joistho. Vais., Jyesh. Apr, May, June. 3 Mithnna. AsbAi.lha (Assar). Ani. Ani. Midunam. Midunam. Assar. Jyesh.jAsha. May, June, July. 4 Karka. Sruvaua (ShrSban) A.li. .\)- 3694-5 3668-9 660-1 650-1 649-50 592-3 515-6 344-5 273-4 273-4 2-3 Bengali. 3695 3669 651 650-1 593-4 516 345-6 274-5 274 2-3 0-1 Sflr-San (June). 3701-2 3675-6 657-8 656-7 599-600 522-3 351-2 280-1 280-1 8-9 6-7 6-7 Harsha. 3708 3682 664 663-4 606-7 529 S58-9 287-8 287 16-6 13-4 13 6-7 MSg!. 3740 3714 696 695-6 638-9 661 390-1 319-20 319 47-8 46-6 45 38-9 32 Kollam (Simha, Kanyi). 3926-7 3900-1 882-3 882-3 881-2 824-5 747-8 576-7 605-6 ;605-6 284-5 231-2 232 231-2 225-6 218-9 186-7 Nevar (Ktottika). 3980-1 3954-5 936-7 935-6 936 878-9 801-2 631-2 560 !i.69-60 288-9 286-7 286-6 279-80 272-3 240-1 54-5 Chilukya (initial month doubtful). 4177-8 4151-2 1133-4 1133-4 1075-6 998-9 828-9 767-8 756-7 486-6 463-4 482-3 476-7 469-70 437-8 261-2 197-S Simh. (Ashadha). 4215-6 4189-90 1171-2 1171 1170-1 1113-4 1036-7 865-6 794-5 794-5 522-3 623-4 620-1 520-1 514-5 613-4 507-8 475-6 288-9 284-5 37-8 I^kshmana Sena (K«rttik»). 4220-1 4194-5 1176-7 1176-7 1176 1118-9 1041-2 871-2 800 799-600 528-9 626-7 626-6 619-20 512-3 480-1 294-5 240 42-8 5-6 nuii. 4656-7 4630-1 1612-3 1612-3 1655-6 1477-8 1307-8 1236-7 ]| 235-6 964-5 962-3 961-2 966-6 948-9 916-7 730-1 676-7 479-80 441-2 *S6-7 Rj^fasaka (Jwshtk.'. 4T::,-« 4749-60 1731-2 1730-1 1673-4 1596-7 1425-6 1364-6 1364-5 1082-3 1081-2 1080-1 1073-4 1067-8 1035-6 84S-9 794-5 597-8 559-60 554-J ; ;>--> THE HINDU CALENDAR. TABLE 111. COLLEC'I'lVE DURATION OF MONTHS 1' V K T i. Pakt 11 Lur i-Solar year (Chaitradi). Solar year (MesMdi). Collective doratloQ from the beginning of ttie year to the end of each month. 1 1 Name of Mont h. SaiikrSnti at end of month in cul. 5. Collective duration (in days) from the beginning of the year to the end of the month in col. 5, or to the saiikranti in col. 5 a. ■J. Name ..f M n 1 h. Exact. a 1 < By the Anja Siddhdnia. By the Siiri/a Hiddhdula. 1 ~ % S < Hindu reckoning. European reckoning. Hindu reckoning. European reckoning. D. GH. P. D. H. M. D. GH. P. D. H. M 1 1 :i l! s 9 10 11 12 2 3 3a 4 6 6a 6 7 8 9 10 Cliaitra .... Vaisakha . . . Jyeshtha . . . .\sha.lha . . . .Snivaiia .... Bhadrapada. .Vsvina Karttika .Margasirsha Pausha .... Magha Phalguna .. In interca- lary years. 30 BO 90 120 150 ISO 210 240 270 •!00 330 160 390 30 59 89 lis US 177 207 236 266 295 325 354 3S4 1 2 3 4 fi 7 8 9 10 11 12 Mesha Vrishabha.. Mithuna.. . Karka Siiiiha Kanyil .... Tula Vrischika . . Dhauus . . . .\lakara . . . Kumbha.. . Mina Vrisliabha.. Mithuna. . . Karka Siiiiha Kanya Tula Vrischika.. . Dhanus. . . . Makara Kumbha . . . MSna Mesha (of the follow. ingycar)t. 30(2) 62(6) 93(2) 125(6) 156(2) 186(4) 216(6) 246(1) 275(2) 305(4) 334(5) 365(1) 55 19 56 24 26 53 47 18 39 6 55 15 30 34 4 9 33 45 16 18 42 12 31 30(2) 62(6) 93(2) 125(6) 156(2) 186(4) 216(6) 246(1) 275(2) 305(4) 334(5) 365(1) 22 7 22 9 10 21 19 7 15 2 22 6 12 49 24 38 28 6 18 43 41 5 12 30(2) 62(6) 94(3) 125(6) 156(21 186(4) 216(6) 246(1) 275(2) 305(4) 334(5) 365(1) 56 21 28 29 56 49 19 38 54 15 7 20 1 32 39 8 44 9 13 6 19 32 30(2) 62(6) 94(3) 125(6) 156(2) 186(4) 216(6) 246(1) 275(2) 305(4) 334(5) 365(1) 22 8 11 11 22 19 7 15 2 21 6 27 32 25 52 27 54 40 17 44 13 31 62 94 125 156 187 217 246 276 305 335 365 The figures in brackets in columns 6, 7, S, 9 give the (ir) or weekday iiidcN. The moment of the Mesha sankriinti coincides with the exact beginning of the solar yea THE HINDU CALENDAR. TABLE ill. COLLKCTIVK DURATION OF MdNTllS I'.virr II. Luni-Solar year (Chaitrudi). Solar year (McshMi). Collective duration from the beginning of the yeai to the end of each month. 3a X il 111 c of Mont h. Sai'ikrAnti at end of mouth iu col. 5. 6a Collective duration (iu days) from the bcgiuning of the year to the end of the month in col. 5, or to the saiikrfmti in col. 3 a. By the Arya Siddhdnta. Hindu reckoning. European reckoning. By the Siirija Siddhiiuta. Hindu reckoning. D. GH. P European reckouing. D. H. M 10 Cliaitra Vaisukha... Jyeshtha. . . ,\shailha . . . Sravaiia . . . . BhAdrapada. .\5vi11a Karttika. . . . Margasirsha Pausha . . . , Matrha Phalguna . . In interca- lary years. Mesha. . . . Vrishablia. Mithuna.. Karka. . . Siiiiha. . . . KanvH . . . Tula Vrischika . Dhanus . . .Makara . . Kumbha . . Mma ... Vrisliabha . . Mithuna . . . Karka Siiiiha Kanya Tula Vrischika... Dhanus. . . . Makara .... Kumbha . . . Mina 3n(2) 62(6) 93(2) 125(6) 156(2) 186(4) 216i6) 246(1) 275(2) 305(4) 334(5) Mesha (of the follow- ing ycar)t. 365(1) 30(2) 22 62(6) 7 93(2) 22 125(6) 9 156(2) 10 186(4) 21 216(6) 19 246(1) 7 275(2) 15 305(4) 2 334(5) 22 365(1) 6 30(2) 56 62(6) 21 94(3) 125(6) 28 156(2) 29 186(4) 56 216(6) 49 246(1) 19 275(2) 38 305(4) 5 334(5) 54 365(1) 13 7 30(2) 22 20 62(6) 8 1 94(3) 32 125(6) 11 39 156(2) 11 8 186(4) 22 44 216(6) 19 9 246(1) 7 13 275(2) 15 6 305(4) 2 19 334(5) 21 32 365(1) 6 31 62 94 125 156 187 17 246 276 305 335 The figures in brackets in columns fi, 7, S, 9 givi- the («■) or weckihi) index. The moment of the Mesha saiikranti coincides with the esact beginning of the solar year. THE INDIAN CALENDAR. TABLE IV. (//■) {.t) (B) (C) FOR EATIRY DAY IN THE YEAK. {Prof. Ja cobt's Table 7 in Ind. Ant., Vol xrii , modified and corrected . No. No. No. of {«,.) {"■) ffi) (<••) of (w) («•) (4.) {<■) of (-..) (a) (*.) (<•) days. days. days. 1 1 339 36 3 43 1 4561 561 118 85 1 8784 85 233 i 2 fi77 73 5 44 2 4900 597 120 86 2 9122 121 235 ;! 3 1010 109 8 45 3 5238 633 123 87 3 9461 157 238 I 4 1355 145 11 46 4 5577 669 126 88 4 9800 194 241 5 5 1693 181 14 47 5 5916 706 129 89 5 138 230 244 (i 6 2032 218 16 48 6 6254 742 131 90 C 477 266 246 7 2370 254 19 49 6593 778 134 91 816 303 249 s 1 2709 290 22 50 1 6932 815 137 92 1 1154 339 252 9 2 3048 327 25 51 2 7270 851 140 93 2 1493 375 255 111 3 3386 363 27 52 3 7609 887 142 94 3 1831 411 257 11 4 3725 399 30 53 4 7947 923 145 95 4 2170 448 260 U 5 4064 435 33 54 5 8286 960 148 96 5 2509 484 263 i:i 6 4402 472 36 55 6 8625 996 151 97 6 2847 520 266 It 4741 508 38 56 8963 32 153 98 3186 557 268 lo 1 5079 544 41 57 1 9302 69 1.56 99 1 3525 593 271 16 •> 5418 581 44 58 2 9641 105 159 100 2 3863 629 274 17 3 5757 017 47 59 3 9979 141 162 101 3 4202 665 277 18 4 6095 653 49 60 4 318 177 104 102 4 4540 702 279 1!) 5 6434 690 52 61 5 657 214 167 103 5 4879 738 282 20 6 6773 726 55 62 995 250 170 104 6 5218 774 285 21 7111 762 57 63 1334 286 172 105 5556 811 287 22 1 7450 798 60 64 1 1672 323 175 106 1 5895 847 290 23 2 7789 835 63 65 2 2011 359 178 107 2 6234 883 293 24 3 8127 871 66 66 3 2350 395 181 108 3 6572 919 296 25 4 8466 907 68 67 4 2688 432 183 109 4 6911 956 298 2(i 5 8804 944 71 68 5 3027 468 186 110 5 7250 992 301 27 6 9143 9 SO 74 09 3300 504 189 111 7588 28 304 28 9482 16 77 70 3704 540 192 112 7927 65 307 29 1 9820 52 79 71 1 4043 577 194 113 1 8265 101 309 :io 2 159 89 82 72 2 4381 613 197 114 2 8604 137 312 :il 3 498 125 85 73 3 4720 649 200 115 3 8943 174 315 32 4 836 161 88 74 4 5059 686 203 116 4 9281 210 318 33 5 1175 198 90 75 5 5397 722 205 117 5 9620 240 320 34 fi 1513 234 93 76 6 5736 758 208 118 9959 282 323 3.'-) (1 1852 270 96 77 6075 794 211 119 297 319 326 3C 1 2191 306 99 78 1 6413 831 214 120 1 636 355 329 37 2 2529 343 101 79 2 6752 867 216 121 2 974 391 331 38 3 2868 379 104 80 3 7091 903 219 122 3 1313 428 334 39 4 3207 415 107 81 4 7429 940 222 123 4 1652 464 337 4(1 .5 3545 452 110 82 5 7768 976 224 124 5 1990 500 889 41 r, 3884 488 112 83 6 8106 12 227 125 6 2329 530 342 I J II 4223 524 115 84 8445 48 230 126 266S 573 345 THE HINDU CALENDAR. T A B L E IV. (CONTINUED). N.. No. No. of (*'•) (") {«.) Kc) of (K-) («) (*) (<■) of («;.) («.) (*) (<•) ,bjs. ilavs. daj-9. 127 1 8006 609 348 171 3 7906 206 468 215 5 2806 803 589 128 2 3345 645 350 172 4 8245 242 471 216 6 3144 839 591 12'J 3 3684 682 353 173 5 8583 278 474 217 3483 875 594 130 4 4022 718 356 174 6 8922 315 4i76 218 1 3822 912 597 131 5 4361 754 359 175 9261 351 479 219 2 4160 948 600 132 6 4699 790 361 176 1 9599 387 482 220 3 4499 984 602 133 5038 827 364 177 2 9938 424 485 221 4 4838 20 605 134 1 5377 863 367 178 3 276 460 487 222- 5 5176 57 608 135 2 5715 899 370 179 4 615 496 490 223 6 5515 93 fill 136 3 6054 936 372 180 5 954 532 493 224 5854 129 613 137 4 6393 972 375 181 6 1292 569 496 225 1 6192 166 616 13S 5 6731 8 378 182 1631 605 498 226 2 6531 202 619 139 6 7070 45 381 183 1 1970 641 501 227 3 6869 238 621 liO 7408 81 383 184 2 2308 678 504 228 4 7208 274 624 in 1 7747 117 386 185 3 2647 ■ 714 506 229 5 7547 311 627 142 2 8086 153 389 186 4 2986 750 509 230 6 7885 347 630 143 3 8424 190 392 187 5 3324 787 512 231 8224 383 632 144 4 8763 226 394 188 6 3663 823 515 232 1 8563 420 635 145 5 9102 262 397 189 4001 859 517 233 2 8901 456 638 146 6 9440 299 400 190 1 4340 895 520 234 3 9240 492 641 147 9779 335 402 191 2 4679 932 523 235 4 9579 529 643 148 1 118 371 405 192 3 5017 968 526 236 5 9917 565 646 149 2 456 407 408 193 4 5356 4 528 237 6 256 601 649 150 3 795 444 411 194 5 5695 41 531 238 594 637 652 151 4 1133 480 413 195 6 6033 77 534 239 1 933 674 6.54 152 5 1472 516 416 196 6372 113 537 240 2 1272 710 657 153 6 1811 553 419 197 1 6710 149 539 241 3 1610 746 660 154 2149 589 422 198 2 7049 186 542 242 4 1949 783 663 155 1 2488 625 424 199 3 7388 222 545 243 5 2288 819 665 156 2 2827 661 427 200 4 7726 258 548 244 6 2626 855 668 157 3 3165 698 430 201 3 8065 295 550 245 2965 891 671 158 4 3504 734 433 202 6 8404 331 553 246 1 3303 928 673 159 5 3842 770 435 203 8742 367 556 247 2 3642 964 676 160 6 4181 807 438 204 1 9081 403 559 248 3 3981 679 161 4520 843 441 205 2 9420 440 561 249 4 4319 37 682 162 1 4858 879 444 206 3 9758 476 564 250 5 4658 73 684 163 2 5197 916 446 207 4 97 512 567 251 6 4997 109 687 164 3 5536 952 449 208 5 435 549 569 252 5335 145 690 165 4 5874 988 452 209 6 774 585 572 253 1 5674 182 693 166 5 6213 24 454 210 1113 621 575 254 2 6013 218 695 167 6 6552 61 457 211 1 1451 658 578 255 3 6351 254 698 108 6890 97 460 212 2 1790 694 580 256 4 6690 291 701 169 1 7229 133 463 213 3 2129 730 583 257 5 7028 327 704 170 2 7567 170 465 214 4 2467 766 586 258 6 7367 363 706 THE INDIAN CALENDAR. TABLE IV. (CONTINUED) X.I. No. No. of (-) (") (<) (c.) of ('") («,) («) ('■) of (■"•) («.) («.) (<^) ll»)S. (Inj's. days. 259 7706 400 709 302 1 2267 960 827 344 1 6489 484 942 260 1 8044 436 712 303 2 2605 996 830 345 2 6828 521 945 2G1 2 8383 472 715 304 3 2944 33 832 346 3 7167 557 947 262 3 8722 508 717 305 4 3283 69 835 347 4 7505 593 950 263 4 9060 545 720 306 5 3621 105 838 348 5 7844 629 953 264 5 9399 581 723 307 6 3960 142 840 349 6 8183 666 955 265 6 9737 617 726 308 4299 178 843 350 8521 702 958 266 76 654 728 309 1 4637 214 846 351 1 8860 738 961 267 1 415 690 731 310 3 4976 250 849 352 2 9198 775 964 268 2 753 726 734 311 3 5315 287 851 353 3 9537 811 966 269 3 1092 762 736 312 4 5653 323 854 354 4 9876 847 969 270 4 1431 799 739 313 5 5992 359 857 355 5 214 884 972 271 1769 835 742 314 6 6330 396 860 356 6 553 920 975 272 6 2108 871 745 315 6669 432 862 357 892 956 977 273 2447 908 747 316 1 7008 468 865 358 1 1230 992 980 274 1 2785 944 750 317 2 7346 504 868 359 2 1569 29 983 275 2 3124 980 753 318 3 7685 541 871 360 3 1907 65 986 276 3 3462 16 756 319 4 8024 577 873 361 4 2246 101 988 277 4 3801 53 758 320 5 8362 613 876 362 5 2585 138 991 278 5 4140 89 761 321 6 8701 650 879 363 6 2923 174 994 279 G 4478 125 764 322 9039 686 882 364 3262 210 997 280 4817 162 767 323 1 9378 722 884 365 1 3601 246 999 281 1 5156 198 769 324 2 9717 758 887 366 2 3939 283 2 282 2 5494 234 772 325 3 55 795 890 367 3 4278 319 5 283 3 5833 271 775 326 4 394 831 893 368 4 4617 355 8 284 4 6171 307 778 327 5 733 867 895 369 5 4955 392 10 285 5 6510 343 780 328 6 1071 904 898 370 6 5294 428 13 286 6 6849 379 783 329 1410 940 901 371 5632 464 16 287 7187 416 786 330 1 1749 976 903 372 1 5971 500 18 288 1 7526 452 788 331 2 2087 13 906 373 2 6310 537 21 289 2 7865 488 791 332 3 2426 49 909 374 3 6648 573 24 290 3 8203 525 794 333 4 2764 85 912 375 4 6987 609 27 291 4 8542 561 797 334 5 3103 121 914 376 5 7326 646 29 292 5 8881 597 799 335 6 3442 158 917 377 6 7664 682 32 293 6 9219 633 802 336 3780 194 920 378 8003 718 35 294 9558 670 805 337 1 4119 230 923 379 1 8342 755 38 295 1 9896 706 808 338 2 4458 267 925 380 8680 791 40 296 2 235 742 810 339 3 4796 303 928 381 3 9019 827 43 297 3 574 779 813 340 4 5135 339 931 382 4 9357 863 46 298 4 912 815 816 341 5 5473 375 934 383 5 9696 900 49 299 5 1251 851 819 342 6 5812 412 936 384 6 35 936 51 300 6 1590 887 821 343 6151 448 939 385 373 972 54 301 1928 924 824 THE HINDU CALENDAR. TABLE V. M) (B) (C) KOI! IIOUKS AND MINUTES. (Trof. Jaculns Ind. Ant., Table 8). Hours. (a.) {''■) ('•) Minu- tes. ("■) {'•■) (<■) Miuu- tes. («) ('') (..) 1 U 1 31 7 28 3 2 32 8 3 42 5 3 33 8 4 50 6 4 34 8 5 71 8 5 35 8 6 85 9 6 36 8 7 99 11 7 37 9 8 113 12 8 38 9 9 127 14 9 39 9 10 141 15 10 40 9 11 155 17 11 41 10 12 169 18 12 42 10 13 183 20 13 43 10 n 14 198 21 14 44 10 15 212 23 15 45 11 16 226 24 16 46 11 17 240 26 17 47 11 18 254 27 18 48 11 19 268 29 19 49 12 20 282 30 20 50 12 21 296 32 21 51 12 22 310 33 22 52 12 23 325 35 3 23 5 53 12 (1 24 339 36 3 24 6 54 13 — _ — 25 6 55 13 _ _ _ 26 6 56 13 _ _ _ 27 6 57 13 _" __ — 28 7 58 14 _ 29 7 59 14 - - - - 30 7 60 14 2 THE INDIAN CALENDAR. TAJiLE VI. LUNAR EQUATION. (ArU. 107,108). Akovuk.nt (i). N.B. The equation in col. 2 corresponds lu either of the ai-gumcnts in cols. 1 and 3. (This u Prof. Jamil's Ind. Ant., Vol. XFII., Table 9, re-arrariged.) TABLE Vll. SOLAK EQUATION. (Aria. 107,108). AUGUUENT (c). N.B. The equation in rol. 2 coiTesponds to either of the arguments in cols. 1 and 3. (Thix is Prof, .lacohi's Ind. Aid., Vol. XVII., Table 10, re-arranged.) Argn. Equ. Argu. Argu. Equ. Argu. Argu. 1 Equ. 2 Argu 3 Argu. Equ Argu. 1 2 3 1 2 3 1 2 3 140 500 500 140 1000 60 500 500 60 1000 10 149 490 510 131 990 10 57 490 510 64 990 20 158 480 520 122 980 20 53 ■ts(l 520 68 980 .30 166 470 530 114 970 30 49 170 530 72 970 40 175 460 540 105 960 40 45 460 540 76 960 50 1S4 450 550 96 950 50 41 450 550 79 950 fiO 192 440 560 88 940 60 38 440 560 83 940 70 200 430 570 80 930 70 34 430 570 86 930 80 208 420 580 72 920 80 31 420 580 90 920 90 215 410 590 65 910 90 28 110 590 93 910 100 223 400 liOO 57 900 100 25 400 600 96 900 III! 230 390 fiUI 50 89(1 110 22 39(1 610 99 890 120 236 380 (i20 44 8S0 120 19 3S0 620 102 880 130 242 370 63(1 38 870 130 16 370 630 105 870 140 248 360 filO 32 860 140 14 360 640 107 860 150 253 350 1150 27 850 1.50 11 350 6.50 109 850 IfiO 258 340 (iliO 22 840 160 9 340 660 112 840 1711 263 330 I'lTO 17 83(1 170 7 33(1 670 113 830 IKO 267 320 r,80 13 820 180 6 32(1 680 115 820 190 270 310 (i'.)O 10 810 190 4 310 690 117 810 200 273 300 7110 7 8011 200 3 300 700 118 800 210 276 290 710 4 790 210 2 290 710 119 790 220 277 280 720 3 780 220 1 2SII 720 120 780 230 279 270 73(1 1 77(1 230 27(1 730 120- 770 240 280 260 740 760 240 260 740 121 760 250 280 250 750 750 250 25(1 750 121 7.50 Dim-rtnci- e()Uution. Last Eigiiik of .\iigi .mk.nt. | 9 « 7 1 6 1 5 4 1 3 2 A All!) Olt SUBTRArT. | 9 8 7 6 5 4or5 4 3 8 7 6 6 5 4 3 2 7 6 6 5 4 3 or 4 3 2 6 5 5 4 4 3 2 2 5 4 or 5 4 3 or 4 3 2 or 3 2 lor 2 Ourl 4 4 3 3 2 2 2 1 3 3 2 2 2 lor 2 1 1 2 2 2 1 1 1 1 I 1 1 1 1 1 Oorl (I (1 Al MLIAHV TABLE TO TABLES VI. .VND VII Not the difference iu the (Tables VI., VII.) equation-figures for the nearest figures of the argument. Take this ditTcreucc in the left-hand column of this Tabic, and run the eye to the right till it reaches the figure standing under the last figure of the given ai'gumcnt. The result is to be added to or sub- tracted from the cc|Uiit ion-figure for the lower of the two argu- ment figures, according as the scale is increasing or decreasing. Thus; Table VI., argument 334. Difference between equations for 330 and 340 is (263 — 258) 5, decreasing. The figure in the AuxiliaiT Table opposite 5 and under 4 is 2 The proper equation therefore is 263 — 2 or 261. Argument 837. DiflVreucc between 830 and 840 is (22 — 17) 5. increasing. The figure opposite 5 and under 7 is 3 or 4. The cipialion therefore is 17 -f 3 = 20, or 17 + 4 zz 21. THE HINDU CALENDAR. TABLE VI 11. INDICES OF TITIllS, NAKSHATRAS, AND YOGAS; AND THE KARANAS OF TITHIS. TITHI AND KARANA. ia S Index KaraQos. For the 1st half of the tithi. For the 2nd half of the tithi. NAKSHATRA. Index («) (Ordinal")' system). 8 Index for the coding point of tlie Nakahatra accordic); to tlie unequal space system of Garga firulimi Sidd- hflnta. 10 11 Index 13 §akla. 1 5 7 8 9 10 11 12 13 U 1.5 Krish. 1 0- 333- 667- 1000- 1333- 1667- 2000- 2333- 2667- 3000- 3333- 3667- 4000- 4333- 4667- 5000- .5333- 5667- 6000- 6333- 6667- 333 667 1000 1333 1667 2000 2333 2667 3000 3333 3667 4000 4333 4667 5000 5333 5667 6000 6333 06C7 7000 Kiiiistaghna 2 Biilava . . . 4 Taitila... 6 Vaiiij.. . . 1 Bava.... 3 Kaulava.. 5 Gara . . . 7 Vishti f.. 2 Balava... 4 Taitila... 6 Vaiiij.. . . 1 Bava.... 3 Kaulava.. 5 Gara 7 Vishti . . . 2 Bilava... 4 Taitila . . . 6 A'aiiij . . . 1 Bava . . . . 3 Kaulava.. 5 Gara . . . . 7000- 7333 7333- 7667 7667- 8000 8000- 8333 8333- 8667 8667- 9000 9000- 9333 9333- 9667 9667-10000 7 Vishti . . . 2 Balava... 4 Taitila. . . 6 Va(iij .... 1 Bava .... 3 Kaulava . . 5 Gara .... 7 Vishti . . . Chatashpada 1 Bava. 3 Kaulava. 5 Gara. 7 Vishti t. 2 Bulava. 4 Taitila. 6 Vavij. 1 Bava. 3 Kaulava. 5 Gara. 7 Vishti. 2 Balava. 4 Taitila. 6 Vaijij. 1 Bava. 3 Kaulava. 5 Gara. 7 Vishti. 2 Balava. 4 Taitila. 6 Vaoij. 1 Bava. 3 Kaulava. 5 Gara. 7 Vishti. 2 BAlava. 4 Taitila. 6 Vaoij. Sakuni. N5ga. Asvini Bharan! Krittika Rohiiii Mrigasiras Ardra Punarvasu Pnshja .\sleshi Magha Purva Phalsuni. Uttara Phalguni . Hasta Chitra Svati 0- 370- 741- Ull- 1481- 1852- 2222- 2593- 2963- 3333- 3704- 4074- 4444- 4815- 5185- Visakha Anurddha Jjeshtha Mula I'llrva Asliadha. . . Uttara Ashadha. . Ahhijit Sravana DhanishthS *♦ . . . Satabhishaj \^. . . . Pilrva Bhadrapada Uttara Bhadrapadu Rcvali 5556- 5926- 6296- 6667- 7037- 7407- (7685- 7778- 8148- 8519- 8889- 9259- 9630- 370 741 1111 1481 1852 2222 2.593 2963 3333 3704 4074 4444 4815 5185 5556 5926 6296 6667 7037 7407 7778 7802) 8148 8519 8889 9259 9630 10000 370 556 926 1481 1852 2037 2593 2963 3148 3518 3888 4444 4815 5185 5370 6481 6852 7222 7778 8148 8519 8704 9074 9630 10000 366 549 915 1464 18,30 2013 2562 2928 3111 3477 3843 4392 4758 5124 5307 6222 6405 6771 7137 7686 7804 8170 8536 8719 9085 9634 10000 Vishkambha Priti Ayuahmat . . Saubhagya . . Sobhana. . . . Atigatida. . . Snkaiiiiau . . Dhriti Sula Gatxla Vriddhi , . . Dhruva . . . . VySghata.. . Harshatia. . . Vajra 0- 370 370- 741 741- nil nil- 1481 1481- 1852 1852- 2222 2222- 2593 2593- 2963 2963- 3333 3333- 3704 3704- 4074 4074- 4444 4444- 4815 481.5- 5185 5185- 5556 5556- 5926 5926- 6296 6296- 6667 6667- 7037 7037- 7407 7407- 7778 7778- 8148 8148- 8519 85 19- 8889 Brahman... 8889- 9259 Indra 9259- 96.30 Vaidhriti... 9630-10000 Siddhi§.... Vyatipata. . . Variyas . . . . Parigha . . . . Siva Siddha Sadhya , Subha . . Sukla.. . ' in- KiiiilUiilma. t Vishti is also called Bhadra, Kal_\;"u,ii ** or Sravishtha. tt or Satataraka. $ or Asrij. THE INDIAN CALENDAR. TABLE VII1\ LONGITUDES OF KNDING-POINTS OF TITHIS. TABLE VIIIB. LONGITUDES OF PARTS OK TITHIS, NAKSHATRAS AND YOGAS. Tithi-Indes (Lunation- parts) (0 Tithi. Degrees. 1 2 3 333 1 12° 0' 667 2 24° 0' 1000 3 36° 0' 1333 4 48° 0' 1667 5 60° 0' 2000 6 72° 0' 2333 7 84° 0' 2667 8 96° 0' 3000 9 108° 0' 3333 10 120° 0' 3667 11 132° 0' 4000 12 144° 0' 4333 13 156° 0' 4667 14 168° 0' 5000 15 180° 0' 5333 16 192° 0' 5667 17 204° 0' 6000 18 216° 0' 6333 19 228° 0' 6667 20 240° 0' 7000 21 252° 0' 7333 22 264° 0' 7667 23 276° 0' 8000 24 288° 0' 8333 25 300° 0' 8667 26 312° 0' 9000 27 324° 0' 9333 28 336° 0' 9667 29 348° 0' 10000 30 360° 0' For longitudes uf endiiig-jmijits nf Nakshatras and Yogas, text, Table Art. 38. 1 TITHI- NAKSHATKA and YOGA. Tithi-Index (Lunation parts) (/.) 2" .2 S ja 'S ^1 Ok.—, "^ -rt at-, « a 1 §> ^ •S ;S s Nakshatras and Yogas (and decimals). i 1 5 1 2 3 4 5 e 33 0.1 1° 12' 33 0.09 1° 12' (16 0.2 2° 24' 66 0.18 2° 24' 100 0.3 3° 36' 100 0.27 3° 36' 200 0.6 7° 12' 200 0.54 7° 12' 300 0.9 10° 48' 300 0.81 10° 48' 400 1.2 14° 24' 400 1.08 14° 24' 500 1.5 18° 0' 500 1.35 18° 0' 600 1.8 21° 36' fiOO 1.62 21° 36' 700 2 1 25° 12' 700 1.89 25° 12' 800 2,4 28° 48' 800 2.16 28° 48' 900 2.7 32° 24' 900 2.43 82° 24' 1000 3.0 36° 0' 1000 2.70 36° 0' 1100 3.3 39° 36' 1100 2.97 39° 36' 1200 3.6 43° 12' 1200 3.24 43° 12' 1300 3.9 46° 48' 1300 3.51 46° 48' 1400 4.2 50° 24' 1400 3.78 50° 24' 1.500 4.5 54° 0' 1500 4.05 54° 0' 1600 4.8 57° 36' 1600 4.32 57° 36' 1700 5.1 61° 12' 1700 4.59 61° 12' 1800 5.4 64° 48' 1800 4.86 64° 48' 1900 5.7 68° 24' 1900 5.13 68° 24' 2000 6.0 72° 0' 2000 5.40 72° 0' 2100 6.3 75° 36' 2100 5.67 75° 36' 2200 6.6 79° 12' 2200 5.94 79° 12' 2300 6.9 82° 48' 2300 6.21 82° 48' 2400 7.2 86° 24' 2400 6.48 86° 24' 2500 7.5 90° 0' 2500 6.75 90° 0' 2600 7.8 93° 36' 2600 7.02 93° 36' 2700 8.1 97° 12' 2700 7.29 97° 12' 2800 8.4 100° 48' 2800 7.56 100° 48' 2900 8.7 104° 24' 2900 7.83 104° 24' 3000 9.0 108° 0' 3000 8.10 108° 0' 3100 9.3 111° 36' 3100 8.87 111° 36' 3200 9.6 115° 12' 3200 8.64 115° 12' 3300 9.9 118° 48' 3300 8.91 118° 48' HKKl 10. L' 122^ 2f litOO 9. IS VI-1-' -iv THE HINDU CALENDAR. cxv T A B L P] V I I 1 «. (coNTiMiED.) T ABLE V J 1 1 ». (continued) TITIU. NAk.SII.VTHA A.Mi VDCA. 2 'S 1 i S a §= 1 Q -3 z Nakshatras and Y'ogas (and decimals). p .i 1 2 3 4 6 6 3500 10.5 126° 0' 3500 9.45 126° 0' 3600 10.8 129° 36' 3600 9.72 129° 36' 3700 n.i 133° 12' 3700 9.99 133° 12' 3800 11.4 136° 48' 3800 10.26 136° 48' 3900 11.7 140° 24' 3900 10.53 140° 24' 4000 12.0 144° 0' 4000 10.80 144° 0' 4100 12.3 147° 36' 4100 11.07 147° 36' 4200 12.6 151° 12' 4200 11.34 151° 12' 4300 12.9 154° 48' 4300 11.61 154° 4S' 4400 13.2 158° 24' 4400 11.88 158° 24' 4500 13.5 162° 0' 4500 12.15 162° 0' 4C00 13.8 165° 36' 4600 12.42 165° 36' 47110 14.1 169° 12' 4700 12.69 169° 12' 4800 14.4 172° 48' 4800 12.96 172° 48' 4900 14.7 176° 24' 4900 13.23 176° 24' 5000 15.0 180° 0' 5000 13.50 180° 0' 5100 15.3 183° 36' 5100 13.77 183° 36' 5200 15.6 187° 12' 5200 14.04 187° 12' 5300 15.9 190° 48' 5300 14.31 190° 48' 5400 16.2 194° 24' 5400 14.58 194° 24' 5500 16.5 198° 0' 5500 14.85 198° 0' 5600 16.8 201° 36' 5600 15.12 201° 36' 5700 17.1 205° 12' 5700 15.39 205° 12' 5S00 17.4 208° 48' 5800 15.66 208° 48' 5900 17.7 212° 24' 5900 15.93 212° 24' COOO 18.0 216° 0' 6000 16.20 216° 0' 6100 18.3 219° 36' 6100 16.47 219° 36' 62011 18.6 223° 12' 6200 16.74 223° 12' 630(1 18.9 226° 48' 6300 17.01 226° 48' 6400 19.2 230° 24' 6400 17.28 230° 24' 6500 19.5 234° 0' 6500 17.55 234° 0' 6600 19.8 237° 36' 6600 17.82 237° 36' 6700 20.1 241° 12' 6700 18.09 241° 12' 6800 20.4 244° 48' 6800 18.36 244° 48' 6900 20.7 248° 24' 6900 18.63 248° 24' 7000 21.0 252° C 7000 18.90 252° 0' 7100 21.3 255° 36' 7100 19.17 255° 36' 7200 21.6 259° 12' 7200 19 44 259° 12' iriiii. NAKMiATUA A.N] ^•JCA. 3" •i i is.-. and als). 8 ^ B -^ •2 .= % 3 si,- e 3| 2 3 I'ithi- iiiatio ^ 13 t a a 1^: •3 >• — 1 % a hJ z z & ~ — 1 2 3 4 6 6 7300 21.9 262° 48' 7300 19.71 262° 48' 7400 22.2 266° 24' 7400 19.98 266° 24' 7500 22.5 270° 0' 7500 20.25 270° 0' 7600 22.8 273° 36' 7600 20.52 273° 36' 7700 23.1 277° 12' 7700 20.79 277° 12' 7800 23.4 280° 48' 7800 21.06 280° 48' 7900 23.7 284° 24' 7900 21.33 284° 24' 8000 24.0 288° 0' 8000 21.60 288° 0' 8100 24.3 291° 36' 8100 21.87 291° 36' 8200 24.6 295° 12' 8200 22.14 295° 12' 8300 24.9 298° 48' 8300 22.41 298° 48' 8400 25.2 302° 24' 8400 22.68 302° 24' 8500 25.5 306° 0' 8500 22.95 306° 0' 8600 25.8 309° 36' 8600 23.22 309° 36' 8700 26.1 313° 12' 8700 23.49 313° 12' 8800 26.4 316° 48' 8800 23.76 316° 48' 8900 26.7 320° 24' 8900 24.03 320° 24' 9000 27.0 324° 0' 9000 24.30 324° 0' 9100 27.3 327° 36' 9100 24.57 327° 36' 9200 27.6 331° 12' 9200 24.84 331° 12' 9300 27.9 334° 48' 9300 25.11 334° 48' 9400 28.2 338° 24' 9400 25.38 338° 24' 9500 28.5 342° 0' 9500 25.65 342° 0' 9600 28.8 345° 36' 9600 25.92 345° 36' 9700 29.1 349° 12' 9700 26.19 349° 12' 9800 29.4 352° 48' 9800 26.46 352° 48' 9900 29.7 356° 24' 9900 26.73 356° 24' 10000 30.0 360° 0' 10000 27.00 360° 0' THE INDIAN CALENDAR. TABLE IX. TABLE GIVING THE SERIAL NUMBER 01' DAVS FROM THE END OF A YEAR AD. FOR TWO CONSECUTIVE AD. YEARS. Pakt I. Number of days reckoned from the 1st of January of the same year. Jan. Feb. March. April. May. Juuc. July. Aug. Sep. Oct. Nov. Dec. 1 1 32 fiO 91 121 152 182 213 244 274 305 335 1 2 2 33 f.l 93 122 153 183 314 245 275 300 336 2 3 3 3-t fi2 93 123 154 184 215 246 276 307 337 3 4 ■1 3.5 (13 94 124 155 185 316 247 277 308 338 4 5 r. 38 Ii4 95 125 156 186 217 248 278 309 339 5 6 c 37 C5 96 126 157 187 218 249 279 310 340 6 7 7 38 fifi 97 127 158 188 219 250 280 311 341 7 8 s 39 07 98 128 159 189 220 251 281 312 342 8 9 9 40 BS 99 129 160 190 221 252 282 313 343 9 10 10 41 C9 100 130 161 191 222 253 283 314 344 10 11 11 42 70 101 131 162 193 223 254 284 315 345 11 12 12 43 71 102 133 163 193 224 255 285 316 346 12 13 13 44 73 103 133 164 194 225 256 286 317 347 13 14 U 45 73 104 134 165 195 226 257 287 318 348 14 15 l.-> 4fi 74 105 135 166 196 227 258 288 319 349 15 16 IB 47 75 106 136 167 197 228 259 289 320 350 16 17 17 48 7fi 107 137 168 198 229 260 290 321 351 17 18 18 49 77 108 13S 169 199 230 261 291 322 352 18 19 lU 50 78 109 139 170 200 231 262 292 323 353 19 20 20 51 79 110 140 171 301 333 263 293 324 354 20 21 21 52 SO 111 141 173 302 233 264 294 325 355 21 22 22 53 81 112 142 173 203 234 265 295 326 356 22 23 23 54 82 US 143 174 204 235 266 296 327 357 23 24 24 55 S3 114 144 175 305 236 267 297 328 358 24 25 2."i 50 84 115 145 176 306 237 208 298 329 359 26 26 2fi 57 85 UB UB 177 307 238 269 299 330 360 26 27 27 58 SO 117 147 178 208 239 270 300 331 361 27 28 28 59 87 US 148 179 309 240 271 301 332 362 28 29 2'.) CO 88 119 149 180 310 241 272 302 833 303 29 30 30 - 89 120 150 181 211 242 273 303 334 364 30 31 31 - 90 - 151 - 213 243 - 304 - 365 31 Jim. 1-cb. Mnrrh. April. May. June July. Auic. S,p. Oct. Nov. Dec. THE HINDU CALENDAR. TABLE IX. (CONTIMJKD.) I'ABI.K GIVINT, Till'. SKIUAI. NUMHEK OF DAYS FIIOM TllK END OK A VEAK AD. KOI! TWO CONSEClil'lVE A.B. YEARS. !■ \ u 1 1 1. Number of days reckoned from the 1st of January of the prec ding year. 1 Jnn. Feb. March. April. May. Jiinr. July. Aug. Sep. Oct. Nov. Dec 1 Sfifi 397 425 456 486 517 547 578 009 039 670 700 2 H(i7 398 426 457 487 518 548 579 610 640 071 701 2 3 HCiS 399 427 458 488 519 549 580 611 641 672 702 3 4 ;«iu K)(l 428 459 489 520 550 581 612 642 673 703 4 5 37(1 ■Kll 429 4G0 490 521 551 582 013 643 074 704 5 6 371 Wi 430 401 491 522 552 583 614 044 075 705 6 7 •x\i 403 431 462 492 523 553 584 015 645 070 706 7 8 373 ■tot 432 463 493 524 554 585 016 646 077 707 8 9 374 405 433 464 494 525 555 586 017 647 678 708 9 10 375 406 434 465 495 526 556 587 018 648 679 709 10 11 37fi 407 435 400 490 527 557 588 019 649 080 710 11 12 377 408 436 407 497 528 558 589 620 650 681 711 12 13 37S 409 437 468 498 529 559 590 621 651 682 712 13 14 371) 410 438 469 499 530 500 591 622 652 083 713 14 15 3S(I 411 439 470 500 531 501 592 623 653 684 714 15 16 381 412 440 471 501 532 562 593 624 654 685 715 16 17 3S2 413 441 472 502 533 563 594 625 055 080 716 17 18 3S3 414 442 473 503 534 564 595 626 656 687 717 18 19 38t 415 443 474 504 535 565 596 627 657 088 718 19 20 3S.-) 410 444 475 505 536 500 597 628 658 089 719 20 21 380 417 445 470 500 537 567 598 029 059 090 720 21 22 387 418 446 477 507 538 508 599 030 000 091 721 22 23 3SS 419 447 47S .508 539 509 600 631 601 092 722 23 24 389 420 448 479 509 540 570 601 032 602 093 723 24 25 390 421 449 480 510 541 571 602 033 603 094 724 25 26 391 422 450 481 511 542 572 003 634 004 (;95 725 26 27 392 423 451 482 512 543 573 004 635 605 090 720 27 28 393 424 452 483 513 544 574 605 630 000 097 727 28 29 39 \ 425 453 484 514 545 575 006 637 607 698 728 29 30 39.^> - 454 485 515 540 576 007 038 608 699 729 30 31 39fi - 455 - 510 - 577 608 - 069 - 730 31 Jan. Feb. Marcli. A,,vil. May. June. .Inly. An-. Sop. Oct. Nov. Dec i THE INDIAN CALENDAR. TABLE X. FOR CONVERTING TITHI-PARTS, AND INDICES OF TITHIS, NAKSHATRAS, AND YOGAS INTO TIJIE [N.B. In this Table a tithi is supposed to eontain 1,000 parts. In this Table a tithi ., „ „ ,, lunation „ „ „ „ sidereal month » i> » ., yoga ehakra Therefore : In the case of Titbi-parts „ „ „ „ Tithi-index (t) „ „ ,, ,, Nakshatra-indes («) . ,, „ ,, ., Ydgn-index (//) 10,000 10,000 10,000 the argument shews l,000ths of a tithi. „ lO.OOOths „ „ lunation. 10,000ths „ „ sidereal month. , lO.OOOths „ „ yoga-i-halvra]. 1 Tim.- .'quivnleiit of £ < Time equivalent of a 1 < Time equivalent of 1 =3 1 1 s g ^ a •r <=■ •5 " is. 1 ■7 !» >• H. M. H. M. H. M. H. M. H. M. li. M. H. M. H. M. H. M. H. M. H. M. H. M. 1 1 4 4 4 41 68 2 54 2 41 2 30 81 1 55 5 44 5 19 4 57 2 3 9 8 7 42 2 59 2 45 2 34 82 1 56 5 49 5 23 5 .•i 4 13 12 11 43 1 3 3 2 49 2 37 83 1 58 5 53 5 27 5 4 4 6 17 16 15 44 2 3 7 2 53 2 41 84 1 59 5 57 5 30 5 7 •' 7 21 20 18 45 4 3 11 2 57 2 45 85 2 6 1 34 5 11 (> 9 26 24 22 46 5 3 16 3 1 2 48 86 2 2 6 6 5 38 5 15 7 10 30 28 26 47 7 3 20 3 5 2 52 87 2 3 6 10 5 42 5 18 s 11 34 31 29 48 8 3 24 3 9 2 56 88 2 5 6 14 5 46 5 22 9 13 38 35 33 49 9 3 28 3 13 2 59 89 2 6 6 18 5 50 5 26 10 14 43 n 39 37 50 11 3 33 3 17 3 3 90 2 8 6 23 5 54 5 29 11 16 47 43 40 51 12 3 37 3 21 3 7 91 2 9 6 27 5 58 5 33 12 17 51 47 44 52 14 3 41 3 25 3 10 92 2 10 6 31 6 2 5 37 13 18 55 51 48 53 15 3 45 3 29 3 14 93 2 12 6 35 6 6 5 40 14 20 55 51 54 17 3 50 3 32 3 18 94 2 13 6 40 6 10 5 44 15 21 4 59 55 55 18 3 54 3 36 3 21 95 2 15 6 44 6 14 5 48 IC 23 8 3 59 56 19 3 58 3 40 3 25 96 2 16 6 48 6 18 5 51 17 24 12 7 1 2 57 21 4 2 3 44 3 29 97 2 17 6 52 6 22 5 55 18 26 17 11 1 6 58 22 4 7 3 48 3 32 98 2 19 6 57 C 26 5 59 19 27 21 15 10 59 24 4 11 3 52 3 36 99 2 20 7 1 6 29 6 2 20 28 25 19 13 fiO 25 4 15 3 56 3 40 100 3 22 7 5 6 33 6 6 21 30 29 23 17 61 2(i 4 19 4 3 43 200 4 43 14 10 13 7 12 12 22 31 34 27 21 62 28 4 24 4 4 3 47 300 7 5 21 16 19 40 18 18 23 33 38 30 24 63 29 4 28 4 8 3 51 400 9 27 28 21 _ 24 34 42 34 28 64 31 4 32 4 12 3 54 500 11 49 35 26 25 35 46 38 32 65 32 4 36 4 16 3 58 600 14 10 42 31 — — — — 26 37 51 42 35 66 34 4 41 4 20 4 2 700 16 32 49 37 _ _ _ 27 38 55 46 39 67 35 4 45 4 24 4 5 800 18 54 56 42 28 40 59 50 42 68 36 4 49 4 28 4 9 900 21 16 63 47 29 41 2 3 54 46 69 38 4 53 4 31 4 13 1000 23 37 70 52 30 43 2 8 58 50 70 39 4 58 4 35 4 16 31 44 2 12 2 2 53 71 41 5 2 4 39 4 20 32 u 45 2 16 2 6 57 72 42 5 6 4 43 4 24 83 47 2 20 2 10 2 1 73 43 5 10 4 47 4 27 34 48 2 25 2 14 2 4 74 45 5 15 4 51 4 31 35 50 2 29 2 18 2 8 75 46 5 19 4 55 4 35 36 51 2 33 2 22 2 12 76 48 5 23 4 59 4 38 37 52 2 37 2 26 2 15 77 49 5 27 5 3 4 42 38 54 2 42 2 30 2 19 78 51 5 32 5 7 4 46 89 55 2 46 2 33 2 23 79 52 5 36 5 11 4 49 40 57 2 50 2 37 2 26 80 — 5 40 '" 15 4 53 THE HINDU CALENDAR. cxi TABLE XL LATITUDES AND LONGITUDES OF PRINCIPAL PLACES. (Latitudes and lonc/itudes in degrees and minutes; Longitudes in minutes of time, being the difference in time beticeen Ujjain and the place in question.) [N.B. This Table is based on the maps of the Great Trigonometrical Survey of India, but all longitudes require a correction III' — ;!' 39" to bring thcni to the latest corrected longitude of the Madras Observatory, namely, 80° 14' 51"]. To convert Ujjain mean time, as found by the previous Tables, into local mean time, add to or subtract from the former the minutes of longitude of the place in question, as indicated by the sign of plus or minus in this Table. NAxME OF PLACE. N. Latitude. Long. E from Greenwich. Long. from njjain In minutes of time. NAME OF PLACE. N. Latitude. Long. E from Greenwich. from Ujjain in minates of time. Abrt (Arbuda) .isi-a (Fort) Ahmadubad Ahmaduagar Ajanta Ajna-r Aligadh (Allyghnr. Coel) Allahabiul (Prayfuja) .Aniaravati (on the Krishna)* •• Amaruvati (Amraoti, Oomra- wnttee, in Berar) Amritsar Anhilvad (Patan) Arcot (.irkUdu) I Aurangabad Ayodhya (see Oudc) B'ldami Balagavi, or Balagaiiivc Bauavasi Bai'dhvun (Burdnan) Bai-oda (Badoda) Barsi Bclgaum . . Iknares HhAgalpur (Bengal) liharatpur (Bhurtpoor) Blulsa Blinpill Bihar (Birhar. in Bengal) Bijapur (Becjapoor) Hijuagar (see Vijayanagai-) Hikauer 24" 36' 27° 10' 23° 1' 19° 4' 20° 32' 20° 30' 27° 52' 25° 26' 16° 34' 20° 55' 31° 37' 23° 51' 12° 54' 19° 54' 15° 55' 14° 23' 14° 32' 23° 14' 22° 18' 18° 13' 15° 51' 25° 19' 25° 15' 27° 13' 23° 32' 23° 15' 25° 11' 16° 50' 72° 50' 78° 5' 72° 39' 74° 48' 75° 49' 74° 45' 78° 8' 81° 54' 80° 25' 77° 49' 74° 56' 72° 11' 79° 24' 75° 24' 75° 45' 75° 18' 75° 5' 87° 55' 73° 16' 75° 46' 74° 35' 83° 4' 87° 2' 77° 33' 77° 52' 77° 28' 85° 35' 75° 47' - - 4 + 9 + 24 + 18 + 8 - 4 - 15 + 14 - 2 - - 2 - 3 + 48 - 10 - - 5 + 29 + 45 + 7 + 8 + + 39 - Bombay (Gt. Trig. Station) . . . Broach (Bhrigukachha) Bundi BurhSnpur Calcutta (Foi-t William) Calingapatam (see Kalii'igapatam] Cambay (Khambat, Sthambarati) Cannpore (Kahupar, Old City) Cochin Congeeveram (see Klnchi). . . . Cuttack (see Katak) Dacca (Dhaka) Debli (Delhi, Old City) Devagiri (Daulatabad) DhSra (Dhar) DharvSd (Dharwar) Dholpur (City) Dhnlia Dvaraka Ellora (Velapura) Farukhabad (Furruck°.) Gaya GhSzipur Gimir Goa (G6pakapattana) Gorakhapur (Goruckpoor) .... Gurkha Gwalior Haidarabad (l)i:khan) Haidarubad (Sindh) Harda (in Gwalior) Ilardwilr 18° 54' 21° 42' 25° 26' 21° 19' 22° 33' 22° 18' 26° 29' 9° 58' 23° 43' 28° 39' 19° 57' 22° 36' 15° 27' 26° 41' 20° 54' 22° 14' 20° 2' 27° 23' 24° 47' 25° 35' 21° 32' 15° 30' 26° 45' 26° 14' 17° 22' 25° 23' 22° 20' 29° 57' 72° 52' 73° 2' 75° 42' 76° 18' 88° 24' 72° 41' 80° 22' 76° 18' 90° 27' 77° 18' 75° 17' 7.5° 22' 75° 5' 77° 58' 74° 50' 69° 2' 75° 14' 79° 37' 85° 4' 83° 39' 70° 36' 73° 57' 83° 25' 84° 30' 78° 14' 78° 32' 68° 26' 77° 9' 78° 14' - 12 - 11 - 1 + + 50 - 13 4- 18 + 58 + - 2 - 2 - 3 + 9 - 4 - 27 - 2 + 15 + 37 + 31 - 21 - 8 + 30 + 35 + 10 + 11 - 30 + 5 + 10 THE INDIAN CALENDAR. T A B L E X I. (CONTIM El) ) NAME OF PLACE. N. Latitude. Luug. E from Greenwich. from Cjjain in minutes of time. NAME oy PLACE N. Latitude. Lon;;. E from Greenwich. HoshangAbad Indorc Jabalinir (Jubbulpore) Jaganathapuri Jalgaum Jaypur (Jeypore, in Rajputilna) JhAnsi Jcidlipur JunagiuIIi Kalii'igapatam (Calingapatam) . Kalvan (Bombaj) Kalyan (Kalliannce, Nizam's Dominions) Kanauj Kai'ichi (or Congceveram) . . Katak (Cuttack) Khatmaniju Kfllapnr (Kolhapur) Labor (Lahore) Lakhnau (Lucknow) Madhura (Jladura, Madras Prcs.) Madras (Observatory) 1 Maisfir (Mysore) .Malkhcil (Manvaklif-ta) Maudavi (in Catch) Maiigalur (Mangalort) Mathura (Muttra N.W.P.) . . Mongir (or Muriger) MultSn (Mooltau) NSgpur (Nagpore) Nfisik Oomrawuttee (.iw Amaravati 22° 45' 22° 43' 23° 11' 19° 48' 21° 1' 26° 55' 25° 28' 26° 18' 21° 31' 18° 20' 19° 15' 17° 53' 27° 3' 12° 50' 20° 28' 27° 39' 16° 41' 31° 35' 26° 51' 9° 55' 13° 4' 12° 18' 17° 12' 22° 50' 12° 52' 27° 30' 25° 23' 30° 12' 21° y 20° 0' 77° 47' 75° 55' 80° 0' 85° 53' 75° 38' 75° 53' 78° 38' 73° 5' 70° 31' 84° 11' 73° 11' 77° 1' 79° 59' 79° 46' 85° 56' 85° 19' 74° 17' 74° 23' 80° 58' 78° 11' 80° ISVs 76° 43' 77° 13' 69° 25' 74° 54' 77° 45' 86° 32' 71° 32' 79° 10' 73° 51' + 8 - + 17 + 40 - 1 - + 11 - 11 - 21 + 33 - 11 + 17 + 16 + 40 + 38 - 6 - 6 + 21 + 9 + IS + 4 + 6 - 26 - 4 + 8 + 43 - 17 + 13 ■- 8 Oude (Oudh, Ayodhya) Paithan Pandhapiir Pfitan {see Ai.ibilwad) Patau {see Somnathpatan) . . Patiahl Patpa Peshawur Poona (Puijem) Pooree (Pari, see Jagannathapurl) Puriiiya (Poomeah) Ramesvara (Rameshwur) Batnagiri RevS (Rewa, Riwiiui) Sigar (Saugor) Sahet Mahet (Sravasti) 2 Sambhalpur (Sumbulpore) .... Satilra Seringapatam (Srirangapattana) Sholapur Sironj .Somnathpatan Srinagar (in Kashmir) Surat Taujore (Tanjiivi'ir) Thi'uia (Tannah) Travancore (Tirnvai'ikudu) . . . . Trichinopoly Trivandrum Udaipur (Oodeypore) I'jjain ■' Vijayanagar 26° 48' 19° 29' 17° 41' 30° 19' 25° 36' 34° 0' 18° 30' 25° 48' 9° 17' 17° 0' 24° 31' 23° 50' 27° 31' 21° 28' 17° 41' 12° 25' 17° 41' 24° 6' 20° 53' 34° 6' 21° 12' 10° 47' 19° 12' 8° 14' 10° 49' 8° 29' 24° 34' 23° 11' 15° 19' 82° 16' 75° 27' 75° 24' 76° 28' 85° 16' 71° 40' 73° 55' 87° 34' 79° 23' 73° 21' 81° 21' 78° 48' 82° 5' 84° 2' 74° 3' 76° 44' 75° 58' 77° 45' 70° 28' 74° 52' 72° 53' 79° 12' 73° 1' 77° 19' 78° 45' 77° C 73° 45' 75° 50' 76° 32' 1 The longitude of the .Madras Observatory, wliieh forms llic basis of the Indian tieo-i-apliieal surveys, has been lalel\ corrected to 80° 14' 51". ' •i Sahet Mahet is not on the Survey of India map. The particulars are taken from the Imperial Gazetteer. '■'• With the curiwtion noted in note 1 above (— 3' 39") the longitude of Ujjaiu comes to 75° 46' 6". THE HINDU CALENDAR. TABLE XII. (See Arts. 53 to 03.; Sam vatsaras <.f the CO-year cycle of Jupiti-r. SaiuvaUisra uf tbc twelve-year cycle of the meau-sign system. Mian-sign of Jupiter by his mean longitude. .Samvatsaras of the 60-year cycle of Jupiter. Samvatsara of the twelve-year cycle of the mean-sign system. Mean-sign of Jupiter by his mean longitude. Corresponding to the samvatsara of the siity-year cycle of the mean-sign system. Corresponding to the samvatsara of the siity-ycar cycle of the mean-sign system. 1 2 3 1 2 3 1 Prabhava 5 SrSvaiia 11 Kumbha. 31 Hemalamba.. . . 11 .Magha 5 Simha. - Vibhava Bhadrapada 12 Miua. 32 Vilamba 12 Phalguna 6 KanvA. 3 Sukla 7 Asvina 1 Mcsha. 33 Vikarin 1 Chaitra 7 Tula. •I Pramoda 8 Kurttika 2 Vrishabha. 34 Sarvari 2 Vaisakha 8 Vrischika. ") Prajapati fi Ai'igiras 9 Margasirsha . . . 10 Pausha 3 .Mithuna. 35 Plava 3 Jveshtha 9 Dhanus. 4 Karka. 36 Subhakrit 4 Ashailha 10 Makara. 7 Sniniikba 11 MagUa 5 Siihha. 37 Sobhana 5 Sruvaua 11 Kumbha. 8 Bhava 12 Phalguna Kanyu. 38 Krodhin 6 Bhadrapada 12 Mina. "J Yuvan 1 Chaitra 7 Tula. 39 Visvavasu 7 Asvina 1 ilesha. 10 Dhfttri 2 Vaisakha 8 Vrischika. 40 Parabhava 8 KSrttika 2 Vrishabha. 1 1 tsvara 3 Jveshtha 9 Dhanus. 41 Plavaiiga 9 Margasirsha . . . 3 Mithuna. 12 Rihuilhauva. . . . 4 Ashadha 10 Makara. 42 Kllaka 10 Pausha 4 Karka. 13 Pramathin 5 Sravaua 11 Kumbha. 43 Saumya 11 Magha 5 Siiiiha. 14 Vikrama 6 Bhudrapada 12 Mina. 44 Sadhiiraua 12 Phalguna 6 Kanvil. 13 Vrisha 7 Asviua 1 Mesha. 45 Virodhakrit 1 Chaitra 7 Tula. 10 Chitrabhanu . . . 8 Karttika 2 Vrishabha. 46 Paridhavin .... 2 Vaisakha 8 Vrischika. 17 Sublianu 9 Margasirsha . . . 3 Mithuna. 47 Pramadiu 3 Jyeshtha 9 Dhanns. 18 THravia 10 Pausha 4 Karka. 48 Ananda 4 Ashadha 10 Makara. 19 Parthiva 11 Magha 5 Simba. 49 Rakshasa 5 Sravaoa 11 Kumbha. 20 Vvava 12 Phalguna 50 Anala 6 Bhadrapada .... 7 Asvina 12 Mina. 21 Sarvajit 1 Chaitra 7 Tula. 51 Phigala 1 Mesha. 22 Sarvadharin. . . . 2 VaLsakha 8 Vrischika. 52 Kulayukta 8 Karttika 2 Vrishabha. 23 Virodhin 3 Jveshtha 9 Dhanus. 53 Siddhlrtin 9 Margasirsha . . . 3 Mithuna. 24 VikTita 4 Ashadha 10 Mak.-vra. 54 Kaudra 10 Pausha 4 Karka. 25 Khara 5 Sravaua 11 Kumbha. 35 Durmati 11 Magha 5 Simha. 20 Nandana 6 Bhildi-apada .... 12 Mina. 56 Dundubhi 12 Phalguna 6 Kanya. 27 Vijaya 7 Asvina 1 Mesha. 57 Rudhirodgarin.. 1 Chaitra 7 Tula. 28 Jaya . . 8 Karttika 2 Vrishabha 58 Raktaksha 2 Vaisakha 8 Vrischika 29 Manmatha 9 Mirgaslrsha 3 Mithuna. 59 Krodhana 3 Jveshtha 9 Dhanus. 30 Dumiukha 10 Pausha 4 Karka. 4 Ashadha 10 Makara. N.B. i. The samvatsara and sign (cols. 2. 3.) correspond to the samvatsara in col. 1 only when the latter is taken as the samvatsara of the mean-siyn (Northern) GO-ycar cycle (Table J , col. 7). N.B. ii. Jupiter's sign by his apparent longitude is either the same, as or tbc next preceding, or the next sncceetling his mean-sign. Thus, in Prabhava Jupiter stands in mean Kumbha, when be may have been cither in apparent Makara, Kumbha, or Mina. ;xii THE INDIAN CALENDAR. TABLE XI 11. (Tlie foUow'wq Table fur fiiidiwi thi- ilai/ of Hit- ireek for anij date from A. J). 300 lo 2300 has been sujijjiied bi/ Dr. Burgess) CAIENnAK FOl! THE YEARS FROM A.I). :500 TO 2'MW. 300 400 500 Olio 700 800 900 CO 1000 1100 1200 1300 1400 1500 1600 1700 1800 — — — ~ — 1500 1600 1700 1800 ^.^■ 1900 2000 2100 2200 G * C E Odd Years of the Centuries. 28 56 84 CF AG BA CB DC ED FE 1 29 57 85 E F G A B c 1) 2 30 58 86 11 E F G A B C 3 31 59 87 C I) E F G A B 4 32 60 88 BA CB DC ED FE GF AG 5 33 fil 89 G A B C I) E F (; 34 02 90 F G A B C D K 7 35 (13 91 E F G A B C 11 ■s 3(! 04 92 lie ED FK GF AG BA Cll 9 37 65 93 H C D E F G A 10 38 66 94 A B (■ D E F G 11 39 67 95 G A H C D E F 12 40 68 90 FE GF AG BA CB DC ED 13 41 09 97 1) E F G A B C 14 42 70 98 c; D E 1' G A B 15 43 71 99 B V. 1) E F (i A 1(1 44 72 AG BA CB DC ED I'E GF 17 45 73 F G A B C 1) E IS 40 74 E F G A B V, D 19 47 75 — D E F G A B C 20 48 76 _ CB DC ED FE GF AG BA 21 49 77 A B C D E F G 22 50 78 G A B C 1) E F 23 51 79 — F G A B C D E 24 52 so __ ED FE GF AG BA CB DC 25 53 81 C D E F G A B 20 54 82 B C D E F G A 27 55 S3 — A B C D E ]• G the years 1500, 1700, \c. (N.8.) wliu'li nrc not liap A D G C F B E A D G C F B E February, March Novembei April May luly G F E D C B A li E C F A D B E G C A D F B G C E A F B 1) G E A C F D G September December 1 8 15 22 29 1 Sun. 2 Mon. 3 Tues. 4 W.d. 5 Thur. 6 Fri. Sat. 2 9 16 23 30 2 Mon. 3 Tues. 4 Wed. 5 Thur. 6 Fri. Sat. 1 Sun. 3 10 17 24 31 3 Tues. 4 Wed. 5 Thur. 6 Fri. Sat. 1 Sun. 2 Mon. 4 11 18 25 4 Wed. 5 Thur. Fri. Sat. 1 Sun. 2 Mon. 3 Tues. 12 19 26 B Thur. B IVi. Sat. 1 Sum. 2 .Miiu. 3 Tu.8. 4 W,-.l. 13 20 27 6 Fri. Sat. 1 Sun. 2 Men. 3 Tues. 4 Wed. 5 Thur. 14 21 28 — Sat. 1 Sun. 2 Mt)u. 3 T,„s. 4 We.1. 5 Thur. Fri. I.oc.k out fur (he century in the \\n\A ui the Talile. ami the o.l.l u'liis in the left hand eoluinns; ami in (he eorrespondiuj; culninn and line is the Domini'eal letter. Thus for 1893 .N.S. (he Dominical letter is found to be A. In the 2nd Tabic find the month, ami in line with it the same Dominical Idler, in the same column with which arc the days of the week corrcspouding to the days of the month on the left. Thus, for July 1893, we fiud, in line with July. A (ill the last c(duinn). and in the column below Saturday corresponds to the Isl, 8th, 15lh. &c. of the monlli, Sun lay lo 2ud, 9ih. &c. When there arc two letters together it is a Icnji year and the first letter serves for January and I'cbinary, tlie second for the rest of the year. Thus, for A.I). 600, the Domiuicul leltcre are CB, and 29tU February is found with C to be Monday 1st .March is found with U to be Tuesday. cx.xiii t-iiihte. Where iib.ioliite ' iii-i-erliiess is reijuired, proreeil hi/ Art. 119.7 », I'auska in. Makurn. Mftghn 11. Kumbha. PhAlgunn 2. Mina, Cliait ■u |{Tam.) Tai (Tarn.) MAsi (Tarn.) Pangun Clam.) MArgaH. 0. Mnkai'aiii, Tni. 7. Kumbhain, .MA;i. 8 Miuain , Paiigii ui. IlKllU. 5. Makaram. t). KuiiiWiam. 7. .\ !„a,n. 1 21 28 6 12 19 26 — 4 11 •18 25 2 9 16 23 30 (1) 5 22 29 6 13 20 27 — 5 12 19 26 — 3 1(1 17 24 i2) 6 23 30 _ 7 14 21 28 i - 6 13 20 27 — 4 11 18 25 <3i 7 24 1 S 15 22 29 — 7 14 21 28 3 12 19 26 (4. % 25 2 9 16 23 — 1 8 15 22 29 — 6 13 20 27 (5) 9 26 3 10 17 24 — 2 9 16 23 30 7 14 21 28 (6) 27 — 4 11 18 25 — 1 3 10 17 24 — 1 8 15 22 29 — (7) .27 Dec. 4 Dec. 1 1 Dec. 11 1 Dec. 18 Dec. 25 Jan. 1 Jan. 8 Jan. 8 Jan. 15 Jan. 22 Jan. 29 Feb. 5 Feb. 5 Feb. 12 Feb. 19 Feb. 26 -Mar. 5 Mai-. 12 Marl 3 28 5 12 12 19 26 2 9 9 16 23 30 6 6 13 20 27 6 13 14 2S) 6 13 13 20 27 3 10 10 17 24 31 7 7 14 21 28 7 14 15 30 7 14 14 21 28 4 11 11 IS 25 Feb. 1 8 8 15 22 Mar. 1 8 15 16 . 1 8 15 15 22 29 5 12 12 19 26 2 9 9 16 23 2 9 16 17 2 9 16 16 23 30 6 13 13 20 27 3 10 10 17 24 3 10 17 18 3 10 17 17 24 31 7 14 14 21 28 4 11 11 18 25 4 11 18 19 4 11 18 18 25 Jan. 1 8 15 15 22 29 5 12 12 19 26 5 12 19 20 6 12 19 19 26 2 9 16 16 23 30 6 13 13 20 27 6 13 20 21 6 13 20 20 27 3 10 17 17 24 31 7 14 14 21 28 7 14 21 22 7 14 21 21 28 4 11 18 18 25 Feb. 1 8 1.5 15 22 Mar. 1 8 15 22 23 8 15 22 22 29 5 12 19 19 26 2 9 16 16 23 2 9 16 23 24 9 16 23 23 30 6 13 20 20 27 3 10 17 17 24 3 10 17 24 25 10 17 24 24 31 7 14 21 21 28 4 11 18 l.S 25 4 11 18 25 26 11 18 25 25 Jan. 1 8 15 22 22 29 5 12 19 19 26 5 12 19 26 27 12 19 26 26 2 9 16 23 23 30 B 13 20 20 27 6 13 20 27 28 13 20 27 27 3 10 17 24 24 31 7 14 21 21 28 7 14 21 28 29 U 21 28 28 4 11 18 25 25 Feb. 1 8 15 22 22 Mai-. 1 8 15 22 29 30 15 22 29 29 5 12 19 26 26 2 9 16 23 23 2 9 16 23 30 31 16 23 30 30 6 13 20 27 27 3 10 17 24 24 3 10 17 24 31 Apr. 1 17 24 31 31 7 14 21 28 28 4 11 18 25 25 4 11 18 25 Apr. 1 2 18 25 Jan. 1 Jan. 1 8 15 22 29 29 5 12 19 26 26 5 12 19 26 2 3 19 26 2 2 9 16 23 30 30 6 13 20 27 27 6 13 20 27 3 4 20 27 3 3 10 17 24 31 31 7 14 21 28 28 7 14 21 28 4 5 21 28 4 4 11 18 25 Feb. 1 Feb. 1 8 15 22 Mar. 1 Mar. 1 8 15 22 29 5 6 22 29 5 5 12 19 26 2 2 9 16 23 2 2 9 16 23 30 6 7 23 30 6 6 13 20 27 3 3 10 17 24 3 3 10 17 24 31 7 8 24 31 7 7 14 21 28 4 4 11 IS 25 4 4 11 18 25 Apr. 1 8 9 25 Jan. 1 8 8 15 22 29 5 5 12 19 26 5 5 12 19 26 2 9 10 26 2 9 9 16 23 30 6 C 13 20 27 6 6 13 20 27 3 10 11 27 3 10 10 17 24 31 7 7 14 21 28 7 7 14 21 28 4 11 12 28 4 11 11 18 25 Feb. 1 8 8 15 22 .Mar. 1 8 8 15 22 29 5 12 13 29 5 12 12 19 26 2 9 i» 16 23 2 9 9 16 23 30 6 13 14 30 6 l.S 18 20 27 3 10 10 17 24 3 10 10 17 24 11" 7 14 15 31 7 14 14 21 28 4 11 11 18 25 4 11 11 18 25 Apr. 1 8 15 16 . 1 8 15 15 22 29 5 12 12 19 26 5 12 12 19 26 2 9 16 17 2 9 16 16 23 30 6 13 13 20 27 6 13 13 20 27 3 10 17 18 3 10 17 17 24 31 7 14 14 21 28 7 14 14 21 28 4 11 18 19 4 11 18 18 25 Feb. 1 8 15 15 22LMar. 1 8 15 15 22 29 5 12 19 20 5l 12 19 19 26 2 9 16 16 23 2' <) in If) 23 .SO f. 13 20 21 THE HINDU CALENDAR. TABLE XIV. /Wm r. (r^d .„„.» (. ^ ../». .««, /„,<../««,./ .. /"' IMu DaU „ *.,„ »> "y rr*,. -, M -1.J ™^ -w/ w * „W,. „/... Hi::. ifc r. J/r, «. Vl ./to nrr- „, i. /to .» -s il ...A y. «. ,...«, (, to Jy- Hi, .Mi, ■4.^ ,.,« v-i. Ir. B to, .4 .(.tr ,„, ,M. „«,,i 'j.f . l«.j llESuiM VEAILH ai»BA. VAn'^m. J Vn Ulilu, J^»litb« J Mc.b,,,,.. A.bk »• 4 kirk.. Sr .... 5. diiiiba. Bhnjnipul> 8. K.nj», Aiti.n 7. T.II. Klnl,l. 8. YriwhilB. Mftrgailr.Ii 9. Dl...... P,..b, 10. SLkflm. Mfl^h. 11 K.nbb.. Pbilg... "■ ' ■'"'.''?':"■ ■';'„' " ' ■' >,™««| ,1W,) ,1.1 (T.n ) A.. (T...1 A« rr.,. 1 A..,i (Tm.l P^ttAdi (T,.,.) Aipprii (Tarn.) KArdlgui ini.) MArgBli (Tarn) T.1 ,Tml Mli fr.m) P..j,.l T... IX'W'! ,''""" u. jri£i«, jy;»ua. foi^^ii. 11 j;,rf»r.a«. .I«., .,A-„W.>..,..V„ ~2.K...,.P.„„,«. ~~"- ..Vr...,„.„,K.r.„.,. 6. DtoO, Mllpll. ...,.>.,..,.,>,. 7K..bb..,.„.. ,„-,..„. P..,„,. KAM^I.r us ^ (l(,..„„ ; ■ *:b».iWi.iu 7. Mlu.. rrritl ,umi„, /o»i ftam Jhih 1. ;.; 1 ) 2 1 3 4 6 16 10 »;;■ ;;:; w<^ Th^r. 1'liur, S^l Hun > 8 »5 !» 3 » M M - 5 9 I« »3 so - B 19 aa ~ 1 1? 1« »3 30 - 6 13 20 27 -■ 3 10 \I 21 16 22 29 - 7 u SS 23 ~ 5 12 19 26 ~^ "T n •19 26 - V 1? 'i? 23 SO :i; 1 HiS" S 1 1; 1 i I 'i i i z ] i i i - 1 If 1! Z ] i i i = i \ i' : j i 1; i i ^ 5 i! i i IS 1 1 ii i z 2 i ii ii z 7 1 ii i IS E ; ii i 23 E !* - iiS Moo. Tu- W.,l. Tliuf- Kfi, ' " " IJ ~ * " " ~ ' " " m ~ ' ^' -" "■ ' " " 20 - ' 12 " 20 - ' ' 18 28 SO SI 2S - " IS so " - ' " 18 " - 10 17 21 - ' " IJ 1 8! 29 - 17. • laj-U'JJ (41 (D) ~ior 171 ""IS M.,.10 "•'U Apr. > Apr. 11 Apr. 10 April April M.r 1 M., 1 M., 1 M. "■'S M.JM j..,i. J.. IS Ja«.19 ...i. * W.10 J,„. ,0 "^ 3.1. SI 3.1. .1 A.,. 7 A.g,U A.S.14 '"'il ■'"'i; S.,. 4 S.|., 11 s.p. n S.p IS Srp.SS " Or, . 0...18 0.,.23 ^ ^ ^ ^> SO..20 in^ ^ nTi^ iJ^ 1 J... 1 ~ ^ im IZli IZl, ^ ^ ^ p.b.i,L.s. ii3^ >1=1S ^3 ""- &I>f.- "•'■- ssr^ (1 iJ z - ]l Uk! le 11 10 io g 10 10 17 31 14 Ij SI ss IS gg Aug- 1 18 Ifl 23 13 tJoi- *1 g 16 as ■iS ii }i so \ Jl 3. ai }' 3? a J; 1* 1! 1; i! ~ i! !: Apr. 1 !: ! ! ; ii ii !! i! Juo. 1 i! 1; i! % «■; \ 14 1 I ll ii ii SS S., 1 1* 2S ! ; U 17 ""1 ii ii \ i ii F.b. I ii 1"" ; jf 1? i! 1? afl }j 10 21 »8 * 11 ifl fi* »., 1 16 IE Si 6 12 ijj 10 SO 10 IT 81 7 u 21 81 28 4 11 18 SS i 9 t 13 20 4 It 18 31 )... 1 f 11 81 ! li !! ii ij 1! 20 la ^i n !0 1! i! z J la r. i ; 11 \l 1> M J.n" \ 11 11 Si ii 18 BO \ i! 1; ii i! ii ii i! ».,.'! \ 18 ii ; „ ii i! li ! m'i 1 1; ! S7 1 1 I al '° i I i « 1 A|.r, 1 j ii 1 J\ ? 'i 1! i ; i 11 K "1 i! i \ Is 10 i i Sr, 1 15 I Ort.'? \ u \ 11 II Dtc. 1 ,' ii i 30 il ii i i; ii ^ i 1' { % II II 1 i :: 13 « " ; li 1! i i i 1! f, i i ! ii i IJ A.e. 1 • 1« i so I ii i; i 1" > 10 is N.. "i J li Is so ; 11 19 1! i i; S( ' 11 ii ii li • ji ji 11 i A,,'i 3i a! 20 3! «,.,. ) ; IJ i Ii i 1; !o s; i i 10 ii E •; ,.1.*! si '! 1! 11 IS i S.,, 1 S.p. 1 J i; S3 sS il • I i? 18 11 »"1 D,.'? • li I SI is 20 F.b. 1 1 10 1! 93 il Mar, ] ll 17 't il if.- 1 a*'"" J Al-t 1 ai tu ul 1 ,1 }! "i " '■ j J " SB < 11 1' £i • 30 30 13 so ST lu 17 'l""- ' 8 22 13 IB SO 3 10 17 24 ,..'] 31 al 4 li is 25 4 11 IS S3 Apr. 1 3 1 I Apt, 1 Apr 1 *|.r 1 i ii I i; : 1; ;; il '■"'! .Ji 1; \ li 1 \ \ Aug. 1 A«B. 1 1( ss S.,. 1 9 1' : i 1, 21 j\ I; i Br. 'l \ is 28 S7 ; 11 -; SO , ii ii J\ 37 ? II M 30 1 • Ill .. , • {1 I >!., 1 ! 11 > Ii 5 ji li \ ii \ H A., : i li I OrL : ii I 31 ii ii 4 ;; ii IS J... 'i i ii ii ii \ ii ii ii so 27 Apr- 1 li 1? 1; 1 ;? J! >i., 1 ii f ? li i; i ..1." ii \ i i i; |i Srp, ; l, I oJ. J r " -i 1 i l! ii ;: II i '' J i ""1 i! i! i ii 1 25 Apr 1 1 121 13 A.8 ■ Itj i 1? lli 18 23 181 19 — al a — 1«] — n -i _ii _ii _! _!i L _i» _2 ^ ]i 1 J _jo ___ _!; 2: \ _i ill i* s...' _l _J !■ _J —1 " 1.,, " !' ^! 1': il .1 11 if " "•" \ ; II 9 It! 18 ia II \ il er% JThire (ibaolute correctness is required, proceed by Art. i;!'J.7 10. Pnuaha (Tel. Can ) 11. .MAgha (Tel. Can.) 12. PhAlguna (Tel. Can ) 10. Pflntelu (Tulu.) 11. Ma>i (Tulu) 12. Suggi (Tuhi.) • PaDsha ukla. 11. MAgha krishpa. 11. Mftgha 12. PhUguna aukla. krishoa. )2. Ph&lsaaa ankla. 1. Chaitra irislipa. \ 13tl Month in intercalary year». 3. Paasha 5. Mfigha 5. Phi'ilguna I (S. Vikraraa. Ncvilr.) (S. Vikrama. Nevftr.) (S. Vikrama. Nevfir.) I Sukla. Kris W^. Sukla. Krisbva. Sukla. Krishpa. Mikla. Krishna. 8 15 7 14or30 7 14 6 13 5 12 4 11 4 11 3 10 9 Kr.l 8 Sii.l 8 15 7 14 — 6 13 5 12 5 12 4 11 10 2 9 — 2 9 Kr.l 8 30 — 7 14 6 13 6 13 6 12 11 S 10 — 3 10 2 9 — Su. 1 8 15 7 14...30 — 7 14 6 13 12 4 11 4 11 3 10 2 9 Kr.l 8 Su. 1 8 15 7 14 13 6 12 — 5 12 4 11 — 3 10 2 9 — 2 9 Kr.l 8 30 14 6 13 — 6 13 6 12 — 4 11 3 10 — 3 10 2 9 — 9 Nov.16 Nov. 23 Nov. 30 Dec. 7 Dec. 7 Dec. 14 Dec. 21 Dec. 28 Jan. 4 Jan. 4 Jan. 11 Jan. 18 Jan. 25 Feb. 1 Feb. 1 Feb 8 Feb. 15 Feb. 22 Mar. 1 D 17 24 Dec. 1 8 8 15 22 29 6 5 12 19 26 2 2 9 16 23 2 1 18 25 2 9 9 16 23 30 6 6 13 20 27 3 3 10 17 24 3 i 19 26 3 10 10 17 24 31 7 7 14 21 28 4 4 11 18 25 4 3 20 27 4 11 11 18 25 Jan. 1 8 8 15 22 29 5 5 12 19 26 5 I 21 28 5 12 12 19 26 9 9 16 23 30 6 13 20 27 fi 5 22 29 6 13 13 20 27 3 10 10 17 24 31 7 7 14 21 28 7 5 23 30 7 14 14 21 28 4 11 11 18 25 Feb. 1 8 8 15 22 Mar. 1 s ? 24 Dec. 1 8 15 15 22 29 5 12 12 19 26 2 9 9 16 23 2 y 3 25 2 9 16 16 23 30 6 13 13 20 27 3 10 10 17 24 3 10 } 26 3 10 17 17 24 31 7 14 14 21 28 4 11 11 18 25 4 11 ) 27 4 11 18 18 25 Jan. 1 8 15 15 22 29 5 12 12 19 26 5 12 I 28 5 12 19 19 26 2 9 16 16 23 30 6 13 13 20 27 6 13 } 29 6 13 20 20 27 3 10 17 17 24 31 7 14 14 21 28 7 14 i 30 7 U 21 21 28 4 11 18 18 25 Feb. 1 8 15 15 22 Mar. 1 8 15 I Dec. 1 8 15 22 22 29 5 12 19 19 26 2 9 IB 16 23 2 9 16 i 2 9 16 23 23 30 6 13 20 20 27 3 10 17 17 24 3 10 17 i 3 10 17 24 24 31 7 14 21 21 28 4 11 IS 18 25 4 11 18 r 4 11 18 25 25 Jan. 1 8 15 23 22 29 5 12 19 19 26 » 12 19 5 12 19 26 26 2 9 16 23 23 30 6 13 20 20 27 6 13 20 6 13 20 27 27 3 10 17 24 24 31 7 14 21 21 28 7 14 21 7 14 21 28 28 4 11 18 25 25 Feb. 1 8 15 22 22 Mar. 1 8 15 22 8 15 22 29 29 5 12 19 26 26 2 9 16 23 23 2 9 16 23 9 16 23 30 30 6 13 20 27 27 3 10 17 24 24 3 10 17 24 10 17 24 31 31 7 14 21 28 28 4 11 18 25 25 4 11 18 25 11 18 25 Jan. 1 Jan, 1 8 15 22 29 29 5 12 19 26 26 5 12 19 26 12 19 26 2 2 9 16 23 30 30 6 13 20 27 27 6 13 20 27 13 20 27 3 3 10 17 24 31 31 7 14 21 28 28 7 14 21 28 14 21 28 4 4 11 18 25 Feb. 1 Feb. 1 b 15 22 .Mar. 1 Mar. 1 8 15 22 29 I 15 22 29 5 5 12 19 26 9 16 23 2 2 9 If. 23 30 1 16 23 30 6 6 13 20 27 3 3 10 17 24 3 3 10 17 24 31 1 17 U 31 7 7 14 21 28 4 4 u 18 25 4 4 11 IS 2B .\pr. 1 Where absolute correctnes 1 is required, proceed hi/ Art. i:?y.7 10. Pausha (Tel. Can ) 11. Mftghii (Tel. Can.) 12. Phfilgunn C 'el. Can.) j 10. I'ftntelu (Tulu.) 11. M(l)i (Tuju.) 12. Suggi (Tuju.) 1 . Paasha U. Mfigha 11. MSgha 12. PMlguna 12. Phftlgnna 1. Chaitra f \ 13th .Month ill intercalary year*. 1 eukla. krishQa, sukla. kTis}l^a. 8nkU. ■ Srisilma. 3. Pausha 5. MAgha 5. Phf.lgi na (S. Vikrama. Nevfii-.) (S. Vikrama. Nevftr.) (S. Vikrama. VevSr.) Sukla. Krislniii. Sukla. Krishna. Sukla. Krishpa. Mikln. Kri>bua. 8 15 7 14.. 30 7 14 6 13 _ 5 12 4 11 4 11 3 10 9 Kr.l 8 - Su. 1 8 15 7 14 — 6 13 5 12 — 5 12 4 11 10 2 9 - 2 9 Kr.l 8 30 7 14 e 13 6 13 5 12 11 8 10 - 3 10 2 9 — Su. 1 8 15 7 14or30 7 14 6 13 12 4 11 - 4 11 3 10 — 2 9 Kr.l 8 — Su. 1 8 15 7 14 18 6 12 - 5 12 4 11 3 10 2 9 2 9 Kr.l 8 30 U 6 13 - 6 13 6 12 — 4 11 3 10 — 3 10 2 9 — 9 Nov. 16 Nov. 23 Nov. 30 Dec 7 Dec. 7 Dec. 14 Dec. 21 Dec. 28 Jan. 4 Jan. 4 Jan. 11 Jan. 18 Jan. 25 Feb. 1 Feb. 1 Feb 8 Feb. 15 Feb. 22 Mar. 1 a 17 24 Dec. 1 8 8 15 22 29 6 5 12 19 26 2 2 9 16 23 ■I 1 18 25 2 9 9 16 23 30 6 6 13 20 27 3 3 10 17 24 3 i 19 26 3 10 10 17 24 31 7 7 14 21 28 4 4 11 18 25 4 5 20 27 4 11 11 18 25 Jan. 1 8 8 15 22 29 5 = 12 19 26 5 I 21 28 5 12 12 19 26 2 9 9 16 23 30 C 6 13 20 27 f. 5 22 29 G 13 13 20 27 3 10 10 17 24 31 7 7 14 21 28 7 3 23 30 7 14 14 21 28 4 11 11 18 25 Feb. 1 8 8 15 22 Mar. i 8 1 24 Dec. 1 8 15 15 22 29 5 12 12 19 26 2 9 9 16 23 2 9 5 25 2 9 16 16 23 30 6 13 13 20 27 3 10 10 17 24 3 111 J 26 3 10 17 17 24 31 7 14 14 21 28 4 11 11 18 25 4 11 ) 27 4 11 18 18 25 Jan. 1 8 15 15 22 29 5 12 12 19 26 5 12 I 28 5 12 19 19 26 2 9 16 16 23 30 6 13 13 20 27 6 13 i 29 6 IS 20 20 27 3 10 17 17 24 31 7 14 14 21 28 7 14 ) 30 7 14 21 21 28 4 11 18 18 25 Feb. 1 8 15 15 22 Mar. 1 8 15 t Dec. 1 8 15 22 22 29 5 12 19 19 26 2 9 16 16 23 2 9 16 . 2 9 16 23 23 30 6 13 20 20 27 3 10 17 17 24 3 10 17 ) 3 10 17 24 24 31 7 14 21 21 28 4 11 lb 18 25 4 11 18 r 4 11 18 25 25 Jan. 1 8 15 23 22 29 5 12 19 19 26 5 12 19 i 5 12 19 26 26 2 9 16 23 23 30 6 13 20 20 27 6 13 2(1 1 R 13 20 27 27 3 10 17 24 24 31 7 14 21 21 28 7 14 21 ) 7 14 21 28 28 4 11 18 25 25 Feb. 1 8 15 22 22 Mar. 1 8 15 22 8 15 22 29 29 5 12 19 26 26 2 9 16 23 23 2 9 16 23 ! y 16 23 30 30 6 13 20 27 27 3 10 17 24 24 3 10 17 24 1 10 17 24 31 31 7 14 21 28 28 4 11 18 25 25 4 11 18 25 h 11 18 25 Jan . 1 Jau. 1 8 15 22 29 29 5 12 19 26 26 5 12 19 26 i 12 19 26 2 2 9 16 23 30 30 6 13 20 27 27 6 13 20 27 \ 13 20 27 3 3 10 17 24 31 31 7 14 21 28 28 7 14 21 28 ' 14 21 28 4 4 11 18 25 Feb. 1 Feb. 1 8 15 22 .Mar. 1 .Mar. 1 8 15 22 29 I IB 22 29 5 5 12 19 26 2 ■2 9 16 23 2 2 9 16 23 30 • 16 23 30 6 6 13 20 27 3 3 10 17 24 3 3 10 17 24 31 t 17 24 311 7 7 14 21 28 4 4| 11 18 25 4 4 11 18 25 .\pr. 1 THE HINDU CALENDAR. TABLE XV. /;< .. . .< ../. /O KM Hi. r. Ji, »J «,lt fcta ./« laMn ./ H SUtn Hi.^. 0.^, „h. ,. , to Wn, .,. » .»,. rjfe "j™ ns "utT"! ,a,f W/r »"iil «.' f^;4 ./(» ZT ,,/!, HTOOJF i, •« i.j, . 1',™. «, 1, I«W. „ ™m.. ^ ^,e,. .-.....*.. n.. „., .,.A.„r„ /««« ,».ir. erf, pf« «rf*, ^rti 8.7 (Mshrfibi Trf- CdJ, Qf P.KK« rl'u|u ) 1. P..01, (T.1..J « V.LaU. |T.l Cu) I i^ cr.J..| 8 JjHbtlu (T(I Cio) 4 ...bWh. ira. c..,i 4 At, (T.I..) I S,l..,. (T,l. C.) 6. Bb»dr.p«di. IT<1. Cn 1 8 Niroflli (Tuln.) 7. BoDlelu IThIu) 8. Klrltik. IT,I. C. ) 8 JlrJ. |T,.l..l 9 Mflrxwlnlii iTtL Cm) VZZZ' 11. Migh.cr»i CiD) 11. Mir tr*.l 12. PbUgDsi rT<]. C«o 1 U. Sogg. (Talo-t 1 bt^^DDUg «iU, Chiilra SdU. 1r.b. kr,.bu. 9. Milrg«lr.h. 10, Pau.ho — Pnosh. 11. MighB 11. Mlgb. 12. PUUgoiu iniU. 1 kTi.bo.. : .,-ia:.pUIgnu '>. Chiitn |,.,.._„ (S V.knm^ Vr.it.) „ viri.,, (3, Viknroi, N«Jr.) 8 Jylihlka (S V.knn... Ncvflf ) ,. J^LT"!, It. MJJr-pada ,2.1:72., (S Vikrama. Nf.lr) 2. Mlrgaiitril.. s v'k^""" S. Sllgb. (S. Vikramx JJevtt.) (5 ViknmL Nntr.) I . 1 >| s|4| a| a|o S.IU. K^.„, s.kU. 1 Kri.b.. S""-^ 1 K - S.kU. K„,L,.. •.M, 1 kn.l.. iM,. 1 Kr..l.«=. S.kl. -- S.kl. Kn.b... Sukh. j Kri.boj- Sukb. Xr.b... SokU- 1 lin,h^ Sokli 1 Kiiiisi I iC' s,. Mo,^ 1 wS Thar. S..1 iS "'a i so S./I i; ^'l 10 fcrSO i 10 l' Kll »l SuH ; Kil t 4'^ I ^ i I 13 1 Sii.l i ^1 1 4»a) 1 i 1 10 30 3ii 1 ; '"a I £0 5«ri \ 15 J a l 1; Kt.l 4 12 ^"S ii 1 J 14 i 10 Kr.l i ■|"J \ J 1 1 ; r »p.. :: 28 2B »pr, 1 Apt.lJ 20 M., 1 S 4 »pt.l! i[.r 1 A,r20 18 M., i 26 >1.,11 M.jlB :; : Jul "' 21 2. 8 'i Aug. : 20 2i A»B. 1 Aug. 1 81 A.g. 1 11 B.p, 1 A.S.10 S.p. 1 A.,.;. 14 It S.p. 1 A.gli % 1 Aug." i 5.p. 1 ii ; ti J 80 S.p. 7 Ii 2.,. 2. if ii ,! li I ] "•'1 1( sS ■ 3 li S li 8 li e 11 16 31 as ai s 10 \ so a 3 4 i s JO IM. 1 ii D«.28 :: i 9 28 90 i S « 19 SO -'i < i 9 ! 30 iO S3 S3 38 35 11 >i«1 L — ' ' J 1 :: 1""! iJ 11 1 - su ( l *i " Ap 1 laa i s., M :; j lr*2 cxxivrt •re abiolttte correctness is required, proceed hi/ Art. l.'?!)./ Pausha (\\-\. Can 11. MAghu CIVI Can.) 1 2. rhi'dguna (Til. Can.) 1 Pdntelu (Tolu.) 11. M4)i (Tu!u.) 12. Snggi (Tula.) isha 11. MAgha 11. Mftgha 12. I'hnlguna 12 Phfclguna 1 . CUailra \ 13lh Month in intercalarr years. kriahoa. sukla. krishna. ukla. krishua. j 3. Pausha 5. MAgha 5. Phftlguna Vikraiiia. Ncvfir.) (S. Vikrama. Xevfir.) (S. Vikrama. Ncvflr.) la. Krisluui. Sukla. Krisbpa. Sukla. Krishna. Sukla. Kri boa. i 15 7 14or30 7 14 6 13 5 12 4 11 4 11 3 10 1 Kr.l 8 — Sn 1 8 15 7 14 — 6 13 5 12 5 12 4 11 D 2 9 — 2 9 Kr.l 8 30 — 7 14 6 13 6 13 5 12 I 3 10 — 3 10 2 9 — Sii. 1 8 15 7 14or30 7 14 6 13 2 4 11 — 4 11 3 10 — 2 9 Kr.l 8 Su. 1 8 15 7 14 5 5 12 — 5 12 4 11 — 3 10 2 9 2 9 Kr.l 8 30 % 6 13 — 6 13 6 1 12 — 4 11 3 10 — 3 10 2 e .11 Dec. 18 Dec. 25 Jan. 1 Jan. 1 Jan. 8 Jan. 15 Jan. 22 Jan. 29 Jan. 29 Feb. 5 Feb. 12 Feb. 19 Feb. 26 Feb. 26 Mar. 5 Mar.l2 Mar.l9 Mar.26 12 19 26 2 2 9 16 23 30 30 6 13 20 27 27 6 13 20 27 13 20 27 3 3 10 17 24 31 31 7 14 21 28 28 7 14 21 28 14 21 28 4 4 11 18 25 Feb. 1 Feb 1 8 15 22 Mar. 1 Mar. 1 8 15 22 29 15 22 29 5 5 12 19 26 2 2 9 16 23 2 2 9 16 23 30 16 23 30 6 6 13 20 27 3 3 10 17 24 3 3 10 17 24 81 17 24 31 7 7 14 21 28 4 4 11 18 25 4 4 11 18 25 Apr. 1 18 25 Jan. 1 8 8 15 22 29 5 5 12 19 26 5 5 12 19 26 2 19 26 2 9 9 16 23 30 6 6 13 20 27 6 6 13 20 27 8 20 27 3 10 10 17 24 31 7 7 14 21 28 7 7 14 21 28 4 21 28 4 11 11 18 25 Feb. 1 8 8 15 22 Mar. 1 8 8 15 22 29 5 22 29 5 12 12 19 26 2 9 9 16 23 2 9 9 16 23 30 6 23 30 6 13 13 20 27 3 10 10 17 24 3 10 10 17 24 31 7 24 31 7 14 14 21 28 4 11 11 18 25 4 11 11 18 25 Apr. 1 8 25 Jan. 1 8 15 15 22 29 5 12 12 19 26 5 12 12 19 26 2 9 26 2 9 16 16 23 30 6 13 13 20 27 6 13 13 20 27 3 10 27 3 10 17 17 24 31 7 14 14 21 28 7 14 14 21 28 4 11 28 4 n 18 18 25 Feb. 1 8 15 15 22 Mar. 1 8 15 15 22 29 5 12 29 5 12 19 19 26 2 9 Ifi 16 23 2 9 16 16 23 30 6 13 30 6 13 20 20 27 3 10 17 17 24 3 10 17 17 24 31 7 14 31 7 14 21 21 28 4 11 18 18 25 4 11 18 18 25 Apr. 1 8 15 1 8 15 22 22 29 5 12 19 19 26 5 12 19 19 26 2 9 16 2 9 16 23 23 30 6 13 20 20 27 6 13 20 20 27 3 10 17 3 10 17 24 24 31 7 14 21 21 28 7 14 21 21 28 4 11 18 4 11 18 25 25 Feb. 1 8 15 22 22 Mar. 1 8 15 22 22 29 5 12 19 5 12 19 26 26 2 9 16 23 23 2 9 16 23 23 30 6 13 20 6 13 20 27 27 3 10 17 24 24 3 10 17 24 24 31 7 14 21 7 14 21 28 2S 4 11 18 25 25 4 11 18 25 25 Apr. 1 8 15 22 81 15 22 29 29 5 12 19 26 26 5 12 19 26 26 2 9 16 23 9 16 23 30 30 6 13 20 27 27 6 13 20 27 27 3 10 17 24 10 17 24 31 31 7 14 21 28 28 7 14 21 28 28 4 n 18 25 11 18 25 Feb. 1 Feb. 1 8 15 22 .Mar. 1 .Mar 1 8 15 22 29 29 5 12 19 26 12 19 26 2 9 16 23 i 2 9 16 23 30 30 6 13 20 27 13 20 27 3 3 10 17 24 3 3 10 17 24 31 31 7 14 21 28 14 21 28 4 4 11 18 25 4 4 11 18 25 Apr. 1 .\pr. 1 8 15 22 29 15 22 29 5 5 12 19 26 5 5 12 19 20 2 -' 9 Ifi 23 :w cxxiv« tre abiolule eorreclnes i> required, proceed hi/ Art. 139./ Paiisha (Ti-1. ton i a. .Miigha (Ttl. Can.) 12. Phalguna (Tel. Can ) J Pflntclu (Tuju.) 11. M4>i (Tula.) 12. Suggi (Tulu.) 1 isha 11. MSgba 11. Jia^'hu 12. Phal^unn 12 Phalguna 1 . Cliaitra [ \ 13th Mont)' in interonlarv viar-i krishpa. sukla. krishpa. iikla. krishaa. 8. Pausha 5. .MAgha 5. PhAlguna Vikrama. Nevfir.) (S. Vikrama. Neviir.) (S. A'ikrama. NevSr.) la. Krishna. Sukla. Krishna. Sukla. Krishna. Sukla. Kr. hna. 5 15 7 14or30 7 14 1 6 13 _ 5 12 4 11 4 11 3 10 > Kr.l 8 — Sn 1 8 15 1 7 14 — 6 13 6 12 _ 5 12 4 11 ) 2 9 — - 2 9 Kr.l 8 30 — 7 14 6 13 — 6 13 5 12 1 3 10 — - 3 10 2 9 — Su. 1 8 15 7 14"r30 7 14 6 13 e 4 11 - - 4 11 3 10 — 2 9 Kr.l 8 - ,Su. 1 8 15 7 14 3 5 12 — - 5 12 4 11 — 3 10 2 9 — 2 9 Krl 8 30 t 6 13 - - 6 13 5 I 12 — 4 11 3 10 — 3 10 2 9 .11 Dec. 18 Dec. 25 Jnn 1 Jan 1 Jan. 8 Jan. 15 Jan. 22 Jan. 29 Jan 29 Feb 5 Feb. 12 Feb. 19 Feb. 26 Feb. 26 Mar. 5 Mar.l2 Mar.l9 Mar.26 12 19 26 2 9 16 23 30 30 6 13 20 27 27 6 13 20 27 13 20 27 3 3 10 17 24 31 31 7 14 21 28 28 7 14 21 28 14 21 28 4 4 11 18 25 Feb. 1 Feb 1 8 15 22 Mar. 1 Mar. 1 8 15 22 29 16 22 29 5 5 12 19 26 2 2 9 16 23 2 2 9 16 23 30 16 23 30 6 6 13 20 27 3 3 10 17 24 3 3 10 17 24 31 17 24 31 7 7 14 21 28 4 4 11 18 25 4 4 11 18 25 Apr. 1 18 25 Jan. 1 8 8 15 22 29 5 5 12 19 26 5 5 12 19 26 2 19 26 2 9 9 16 23 30 6 6 13 20 27 6 6 13 20 27 3 20 27 3 10 10 17 24 31 7 7 14 21 28 7 7 14 21 28 4 21 28 4 11 11 18 25 Feb. 1 8 8 15 22 Mar. 1 8 8 15 22 29 5 22 29 5 12 12 19 26 2 9 9 16 23 2 9 9 16 23 30 6 23 30 6 13 13 20 27 3 10 10 17 24 3 10 10 17 24 31 7 24 31 7 14 14 21 28 4 11 11 18 25 4 11 11 18 25 Apr. 1 8 25 Jan. 1 8 15 15 22 29 5 12 12 19 26 5 12 12 19 26 2 9 26 2 9 16 16 23 30 6 13 13 20 27 6 13 13 20 27 3 10 27 3 10 17 17 24 31 7 14 14 21 28 7 14 14 21 28 4 11 28 4 11 18 18 25 Feb. 1 8 15 15 22 Mar. 1 8 15 15 22 29 5 12 29 5 12 19 19 26 2 9 16 16 23 2 9 16 16 23 30 6 13 30 6 13 20 20 27 3 10 17 17 24 3 10 17 17 24 31 7 14 31 7 14 21 21 28 4 11 18 18 25 4 11 18 18 25 Apr. 1 8 15 1 8 15 22 22 29 5 12 19 19 26 5 12 19 19 26 2 9 16 i 2 9 16 23 23 30 6 13 20 20 27 6 13 20 20 27 3 10 17 1 81 10 17 24 24 31 7 14 21 21 28 7 14 21 21 28 4 11 18 ' 4 11 18 25 25 Feb. 1 8 15 22 22 iMar. 1 8 15 22 22 29 5 12 19 5 12 19 26 26 2 9 16 23 23 2 9 16 23 23 30 6 13 20 6 13 20 27 27 3 10 17 24 24 3 10 17 24 24 31 7 14 21 7 14 21 28 28 4 11 18 25 25 4 11 18 25 25 Apr. 1 8 15 22 8 15 22 29 29 5 12 19 26 26 5 12 19 26 26 2 9 16 23 9 16 23 30 30 6 13 20 27 27 6 13 20 27 27 3 10 17 24 10 17 24 31 31 7 14 21 28 28 7 14 21 28 28 4 11 18 25 11 18 25 Feb 1 Feb. 1 8 15 22 Mar. 1 .Mar 1 8 15 22 29 29 5 12 19 26 12 19 26 2 2 9 16 23 2 2 9 16 23 30 30 6 13 20 27 18 20 27 3 3 10 17 24 3 3 10 17 24 31 31 7 14 21 28 14 21 28 4 4 11 18 23 4 4 11 18 25 Apr. 1 .\pr. 1 8 15 22 29 15 22 29 5 12 19 26 5 5 12 19 20 2 2 9 Ifi 23 30 THE HINDU CALENDAR. TABLE XV. (coNTiNUBn.) /7, „ . «../, « MU i^T, fc .1^,11 tto. ./™ .fik, .,^. H^. D.U. .,W r in lu. «., .«.^„,. „«„ r^pUrtJ. pro^ .»- *r „M, »^; (Milirtii Td- C« >. or Phku (Tula ) 1. P...01I (Tnru.) !. V.iau,. (T>1. C.P.) ','r:,"ir;' 4 isbfl^h. (Td- CD.) 1 At, (TlI. ) S SI.. (T.I..) 6. llhMrap.dn (T.l. t^n.) « N,r.ll. (T.I..) 7. AW.. (T.l C.) ' rz (T.l. a.) (Tulu.) 9 ,MllT¥lv.1rih« (Trl. Cad.) 10 Pau.lu lT(l. Can.) 10. PttDttU fToK) n. Miji iToln) 13. Philpuu iTd. 1.1- 13. Suss. iT'^^. 1 (CUiRiil) VilrainiJ (Bcng. Suiiil ) ■■ ^^ kr..hol. ' .ir" S. JjeJjUu iiitl., 1 kri»Lliil ' ^r 'jrr" 6. M..(. ft. i)hndi.p.ii. kri.h.. 6, llhOJ™p.d. 7. Airina '■..:;r S. KW„l. 8 KMlik. 0. MArgdlnh. 9. MUrgulnlu 10. P...1,. 10. Puuba 11. MIgh. krilbsA. n, Mijjh* 12. PUIgiu I J PhUgltf - 9 87 97 e S* SS 7 Mu. 1 U«. 1 i- 3 3 10 4 4 11 SSI* « a IS 5 6 15 9 « It 10 10 i; \i U 19 IS IS a IC II S3 17 IT 34 i il i li s s a « 30 £ S&F- 1 a M s *7 87 » 3S SS 4 31 31 5 Apr 1 IfT 1 il lb 90 ^ li "l I'j il \ % w < 13 90 7 14 11 • li S3 \i » r. ipt. 1 ipr. ; .„.^ »,r. : i 1 21 Apr. . «p li ip ii ,. ;; S.p. 11 i iS S.p i ». !1 1. i! u. 1 ^ THE MLHAMMADAN CALENDAR. TABLE XVI. INITIAL DAYS OF MUHAMMADAN YEAKS OK TlIK III.IKA. N.U. i. Asteritkt indicate Leap-yfara. ii. lj> U, llijra 11G5 iiielusire, Ihr .1.1). daU.i are Old Sl,,le. llijra year. C'uiniDcnccnient u r the year. Hijra year. CommcDceinent o f the year. Hijra year. CoiumencemcDt o f the year. Weekday Date i.D. Weekday. Da c AD. Weekday. Date A.D. 1 2 3 1 2 3 1 2 3 1 6 iVi. 16 July 622 (197) 38 Sat. 9 June 658 (160) 75 Sun, 2 May 694 (122, •2 3 Tuc». 5 July 623 (186) 39 4 Wed. 29 .May 6.59 (149) •76 4 Wed 21 Apr. 695 (111) 3 1 Sun. 24 June 624* (176) •40 1 Sun. 17 May 660* (138) 77 2 Mon. 10 Apr. 696^ (101) i 5 Thurs. 13 Juuc 625 (164) 41 6 Fri. 7 May 661 (127) •78 6 Fri. 30 Mar. 697 (89) •5 2 .\lon. 2 June 626 (153) 42 3 Tucs. 26 Apr, 662 (116) 79 4 Wed. 20 Mar. 698 (79) 6 Sal. 23 May 627 (143) •43 Sal. 15 Apr. 663 (105) 80 1 Sun. 9 Mar, 699 (68) •7 4 Wid. 11 May 628* (132) 44 5 Thurs. 4 Apr, 664* (9.5) *81 5 Thurs, 26 Feb, 700* (57) 8 2 Mon. 1 May 629 (121) 45 2 Mou. 24 .Mar. 665 (83) 82 3 Tucs. 15 Feb. 701 (46) y 6 Fri. 20 Apr. 630 (110) »46 6 Fri. 13 Mar. 666 (72) 83 Sat. 4 Feb, 702 (35) •1(1 3 Tues. 9 Apr. 631 (99) 47 4 Wed. 3 Mar. 667 (62) *84 4 Wed. 24 Jau. 703 (24) 11 1 Sun. 29 Mar. 632* (89) »48 1 Sun. 20 Feb. 668* (51) 85 2 Mon. 14 Jan. 704^ (14) 12 5 Thurs. 18 Mar. 633 (77) 49 6 Fri. 9 Feb. 669 (40) *86 6 Fri. 2 Jau. 705 (2) •13 2 Mon. 7 Mar. 634 (66) 50 3 Tucs. 29 Jau. 670 (29) 87 4 Wed. 23 Dec. 705 (357) U Sat. 23 Feb. 635 (56) *51 Sat. 18 Jan. 671 (18) 88 1 Suu. 12 Dec. 706 (346) 15 4 Wed 14 Feb. 636* (45) 52 5 Thurs. 8 Jau. 672* (8) *89 5 Thurs, 1 Dec, 707 (335) »lfi 1 Suu. 2 Feb. 637 (33) 53 2 Mou. 27 Dec. 672* (362) 90 3 Tues. 20 Nov. 708* (325) 17 6 Fri. 23 Jan. 638 (23) *54 6 Fri. 16 Dec. 673 (350) 91 Sat. 9 Nov. 709 (313) •IS 3 Tucs. 12 Jau. 639 (12) 55 4 Wed. 6 Dec. 674 (340) •92 4 Wed, 29 Oct. 710 (302) 19 1 Sun. 2 Jan. 040» (2) •56 1 Sun. 25 Nov. 675 (329) 93 2 Mon. 19 Oct. 711 (292) 20 5 Thurs. 21 Dec. 640* (356) 57 6 Fri. 14 Nov. 676* (319) 94 6 Fri. 7 Oct. 712^ (281) •21 2 Mon. 10 Dec. 641 (344) 58 3 Tues. 3 Nov, 677 (307) •95 3 Tues. 26 Sep. 713 (269) 22 Sat. 30 Nov. 642 (334) *59 Sat. 23 Oct. 678 (296) 96 1 Sun. 16 Sep, 714 (259) 23 4 Wed. 19 Nov. 643 (323) 60 5 Thurs. 13 Oct. 679 (286) •97 5 Thurs. 5 Sep. 715 (248) '24 1 Sun. 7 Nov. 644* (312) 61 2 Mon. 1 Oct. 680* (275) 98 3 Tues. 25 Aug. 716^ (238) 25 6 Fri. 28 Oct. 645 (301) *62 6 Fri. 20 Sep. 681 (263) 99 Sat, 14 Aug, 717 (226) ♦26 3 Tues. 17 Oct. 646 (290) 63 4 Wed. 10 Sep. 682 (253) •100 4 Wed. 3 Aug. 718 (215) 27 1 Sun. 7 Oct. 647 (280) 64 1 Sun. 30 Aug. 683 (242) 101 2 Mon. 24 July 719 (205) 28 5 Thurs. 25 Sep. 648* (269) *65 5 Thurs. 18 Aug. 684* (231) 102 6 Fri. 12 July 720^ (194) •29 2 Mon. 14 Sep. 649 (257) 06 3 Tues. 8 Aug. 685 (220) •103 3 Tucs. 1 July 721 (182) 30 Sat. 4 Sep, 650 (247) •67 Sat. 28 July 686 (209) 104 1 Sun. 21 June 722 (172) 31 4 Wed. 24 Aug. 651 (236) 68 5 Thurs. 18 July 687 (199) 105 5 Thurs. 10 June 723 (161) •32 1 Suu. 12 Aug. 652* (225) 69 2 Mon. 6 July 688* (188) •106 2 Mon. 29 Jlay 724* (150) 33 6 Fri. 2 Aug. 653 (214) •70 6 Fri. 25 June 689 (176) 107 Sat. 19 May 725 (139) 31 3 Tues. 22 July 654 (203) 71 4 Wed. 15 June 690 (166) •108 4 Wed. 8 May 726 (128) *35 Sat. 11 July 655 (192) 72 1 Suu. 4 June 691 (155) 109 2 Mon. 28 Apr. 727 (118) 36 5 Thurs. 30 June 656* (182) •73 5 Thurs. 23 May 692* (144) 110 6 Fri. 16 Apr. 728* (107) •37 2 Mon. 19 June 657 (170^ 74 3 Tucs, 13 .May 693 (133'i •111 3 Tucs. 5 Apr. 729 (95) THE MUHAMMAD AN CALENDAR. TABLE XVI. INITIAI, DAYS OK MUHAMMADAN YEARS OF TIIK III.IKA. N'.li. i. Axlrriaks imiicale Leap-ijeara. ii. //. In Ilijra 11(15 inclusive, llir .1.1). dal,:i ar^ Old Sl,,lf. Ilijra yonr. Coinmi'iiiTiiifnt u f tlie year. Ilijra year. Cuminencement c f the year. Ilijra year. Counnencenicut a f the year. Weekday. Date A. 11. Weekday. Date AD. Weekday. Di. e A.D. 1 2 3 1 2 3 1 2 3 1 1 G Fri. 16 July 622 (197) 38 Sat. 9 June 658 (160) 75 Sun. 2 .May 694 (122) 'i 3 Tui-9. 5 July 623 (186) 39 4 Weil. 29 May 059 (149) ♦76 4 Wed. 21 Apr. 095 (111) i 1 Sun. 24 June 624» (176) •40 1 Sun. 17 May 660' (138) 77 2 Mou. 11) Apr. OUO* (101) I 5 Thurs. 13 June 025 (164) 41 6 Fri. 7 May 601 (127) •78 Fri. 30 Mar. 097 (89) •5 2 M.in. 2 June 626 (153) 42 3 Tues. 26 Apr. 602 (ill)) 79 4 Wed. 20 Mar. 698 (79) 6 Sat. 23 May 627 (143) •43 Sat. 15 Apr. 663 (105) 80 1 Sun. 9 Mar. 699 (68) •7 4 W.il. 11 May 628* (132) 44 5 Thurs. 4 Apr. 004' (95) •81 5 Thurs. 26 Feb. 700' (57) 8 2 Mon. 1 May 629 (121) 45 2 Mon. 24 .Mar. 605 (83) 82 3 Tues. 15 Feb. 701 (40) U 6 I'ri. 20 Apr. 630 (110) •46 6 Fri. 13 Mar. 0G6 (72) 83 Sat. 4 Feb. 702 (35) •10 3 Tuos. 9 Apr. 631 (99) 47 4 Wed. 3 Mar. 067 (62) •84 4 Wed. 24 Jan. 703 (24) n 1 Sun. 29 Mar. 632" (89) •48 1 Sun. 20 Feb. 068* (51) 85 2 Mon. 14 Jan. 704^ (14) li 5 Thurs. 18 Mar. 633 (77) 49 6 Fri. 9 Feb. 669 (40) *86 6 Fri. 2 Jan. 705 (2) •13 2 -Mon. 7 Mar. 634 (66) 50 3 Tues. 29 Jan. 670 (29) 87 4 Wed. 23 Dec. 705 (357) u Sat. 25 F.b. 635 (56) •51 Sat. 18 Jan. 671 (18) 88 1 Sun. 12 Dec. 700 (346) 15 4 Wed. 14 Feh. 636* (45) 52 a Thurs. 8 Jan. 672* (8) *89 5 Thurs. 1 Dec. 707 (335) •Hi 1 Sun. 2 Feb. 637 (33) 53 2 Mon. 27 Dec. 672* (362) 90 3 Tufs. 20 Nov. 708» (325) 17 6 Fri. 23 Jan. 638 (23) •54 6 Fi-i. 16 Dec. 673 (350) 91 Sat. 9 Nov. 709 (313) •18 3 Tues. 12 Jan. 639 (12) 55 4 Wed. 6 Dec. 674 (340) *92 4 Wed. 29 Oct. 710 (302) 19 1 Sun. 2 Jan. 640* (2) •50 1 Sun. 25 Nov. 675 (329) 93 2 Jlon. 19 Oct. 711 (292) i In llijra nf)5 iiictiisiie, the A.I), ilolfs are Old Style. Ilijn. jcnr. Commenceiuent of thi- ,\ ear llijra year. Commencement of the year. Uijra year. CommeDcement of the year. Weekday. Date A. I). Weekday. Date AD. Weekday. Date A.D. 1 2 3 1 2 3 1 2 3 445 6 Fri. 23 Apr. 1053 (113) *482 6 Fri. Hi .Mar. lOSl) (75) 519 Sat. 7 Feb. 1125 (38) ..uo 3 Tucs. 12 Apr. 1054 (102) 483 4 Wed. (i M.ir. 1(19(1 (65) •520 4 Wed. 27 Jan. 1126 (27) 447 1 Sun, 2 Apr. 1055 (92) 484 1 Sun. 23 leb. 1091 (54) 521 2 Mon. 17 Jan. 1127 (17) 448 5 Thurs. 21 Mar. 1056* (81) *485 5 Thurs. 12 I'cb. 1092* (43) 522 6 Fri. 6 Jan. 112S» (fi) •449 2 Mou. . lOJMar. 1057 (69) 486 3 Tues. 1 Feb.' 1093 (32) •523 3 Tucs. 25 Dec. 1128^ (360) 450 Sat. 28 Feb. 1058 (59) ♦487 Sat. 21 .Jan. 1094 (21) 524 1 Suu. 15 Dec. 1129 (349) 451 4 Wed. 17 Feb. 1059 (48) 488 5 Thurs. 11 Jan. 1095 (11) 525 5 Thurs. 4 Dec. 1130 (338) •452 1 Sun. 6 Feb. 1060^ (37) 489 2 Mon. 31 Dec. 1095 (365) •526 2 Mon. 23 Nov. 1131 (327) 453 6 Fri. 26. Jan. 1061 (26) ♦490 6 ft-i. 19 Dec. 1096* (354) 527 Sat. 12 Nov. 1132* (317) 454 3 Tues. 15 Jan. 1062 (15) 491 4 Wed. « Dec. 1097 (343) •528 4 Wed. 1 Nov. 1133 (305) •455 Sat. 4 Jan. 1063 (♦) 492 1 Sun. 28 Nov. 1098 (332) 529 •I .Mon. 22 Oct. 1134 (295) 456 5 Thurs. 25 Dec. 1063 (359) *493 5 Thurs. 17 -Nov. 1099 (321) 530 6 I'ri. 11 Oct. 1135 (2S.I) ♦457 2 Moil. 13 Dec 1064^ (348) 494 3 Tucs. 6 Nov. UOO^ (311) *531 3 Tues. 29 Sep. 1136* (273) 458 Sat. 3 De.-. 1065 (337) 495 Sat. 2fi Oct. 1101 (299) 532 1 Suu. 19 Sep. 1137 (262) 459 4 Wed. 22 Nov. 1066 (326) •496 4 Wed. 15 Oct. 1102 (288) 533 5 Thurs. 8 Sep. 1138 (251) •Kid 1 Sun. 11 Nov. 1067 (315) 497 2 Mon. 5 Oct. 1103 (278) ♦534 2 Mon. 28 Aug. 1139 (240) 461 6 Fri. 31 Oct. 1068* (305) •498 6 »i. 23 Sep. 1104* (267) 535 Sat. 17 Aug. 1140* (230) 462 3 Tues. 20 Oct. 1069 (293) 499 4 Wed. 13 Sep 1105 (256) *536 4 Wed. 6 Aug. 1141 (218) •463 Sat. 9 Oct. 1070 (282) 300 1 Sun. 2 Sep. 1106 (245) 537 2 Mon. 27 July 1142 (208) 464 5 Thurs. 29 Sep. 1071 (272) •501 5 Thurs. 22 Aug. 1107 (234) 538 6 Fri. 16 July 1143 (197) 465 2 Mon. 17 Sep. 1072* (261) 502 3 Tues. 11 Aug. 1108* (224) •539 3 Tucs. 4 July 1144" (ISfi) •466 6 Fri 6 Sep. 1073 ^(249) (239) 503 Sat. 31 July 1109 (212) 540 1 Sun. 24 June 1145 (17.5) 467 4 Wed. 27 Aug. 1074 •504 4 Wed. 20 July 1110 (201) 541 5 Thui-s. 13 June 1146 (164) •468 1 Sun. 16 Aug. 1075 (228) 505 2 Mon. 10 July 1111 (191) *542 2 Mon. 2 June 1147 (153) | 469 6 Fri. 5 Aug. 1076* (218) •506 6 Fri. 28 June 1112* (180) 543 Sat. 22 May 1148* (143) 470 3 Tues. 25 July 1077 (206) 507 4 Wed. 18 June 1113 (169) 544 4 Wed. 11 M.ay 1149 (131) •471 Sat. 14 July 1078 (195) 508 1 Sun. 7 June 1114 (158) *545 1 Sun. 30 Apr 1150 (120) 472 5 Thui-s. 4 July 1079 (185) *509 5 Thurs. 27 May 1115 (147) 546 6 Fri. 20 Apr. 1151 (110) 473 2 Mon. 22 June 1080* (174) 510 3 Tues. 16 May 1116 (137) *547 3 Tucs. 8 Apr. 1152* (99) ♦474 6 Fri. 11 June 1081 (162) 511 Sat. 5 May 1117 (125) 548 1 Sun. 29 Mar 1153 (88) 475 4 Wed. 1 June 1082 (152) *512 4 Wed. 24 Apr. 1118 (114) 549 5 Thurs. 18 Mar 1154 (77) •47G 1 Sun. 21 May 1083 (141) 513 2 Mon. 14 Apr. 1119 (104) ♦550 2 Mon. 7 Mar 1155 (66) 477 6 Fri. 10 May 1084* (131) 514 6 Fri. 2 Apr. 1120* (93) 551 Sat. 25 Feb. 1156* (.56) 478 3 Tucs. 29 Apr. 1085 (119) •515 3 Tues. 22 Mar. 1121 (81) 552 4 Wed. 13 Feb. 1157 (44) •479 Sat. 18 Apr. 1086 (108) 516 1 Sun. 12 Mar. 1122 (71) *553 1 Sun. 2 Feb. 1158 (33) 480 5 Thurs. 8 Apr. 1087 (98) •517 5 Thurs. 1 Mar. 1123 (60) .554 6 Fri. 23 Jan. 1159 (23) iSl 2 Mon. 27 Mar. lOSS* (S7) 518 3 Tues. 19 Feb. 1124* (50) 555 3 Tucs. 12 Jan. IICO* (12) THE INDIAN CALENDAR. TABLE XV I. (CONTINUED.) INITIAL DAYS OK MUHAMMADAN YEAUS OK THE HI.IRA. N,B. i. Asterisks ii/dicate Lf/ip-ifears. ii. 1 1, to llijr.i llfiS iiiclusivi; the .I.IJ. 77//!: MUHAMMADAN CALENDAR. TABLE XVI. (CONTINUED.) INITIAI, DAYS OF MUIIAMMADAN YEARS OK THE IlIJKA. N li i. .hirrixk.i iiii/i,;,/,- Lfaji-yi-ars. ii //. 1,1 IHjni \U\:> inc/iisiiv, the A.D. dales are Old Sli/I,-. Ilijra .vonr. Cominencenicnl uf the yrnr. Ilijra year. Cammeucement of the year. Hijra year. (.'omuieucemenl of the \ear. 1 Weekday Dale A.J). Weekday. Date AD. Wrakday. Date A.D. 1 •667 2 3 1 2 3 1 2 3 2 Mim. 10 Sep. 1268* (254) 704 3 Tues. 4 Aug. 1304* (217) *74l 3 Tues. 27 June 1340' (179) G68 Sal. 31 Aug. 1209 (243) 705 Sat. 24 July 1305 (205) 742 1 Sun. 17 June 1341 (168) 66'J 4 Wed. 20 Aug. 1270 (232) •706 4 Wed. 13 July 1306 (194) 743 5 Thurs. 6 June 1342 (157) •670 1 Sun. 9 Aug. 1271 (221) 707 2 Mon. 3 July 1307 (184) •744 2 Mon. 26 May 1343 (146) 671 6 Vxx. 29 Jnly 1272* (211) *708 6 Fri. 21 Juue 1308* (173) 745 Sat. 15 May 1344' (13fi) 672 3 Tiies. IS July 1273 (199) 709 4 Wed. 11 June 1309 (162) •746 4 Wed. 4 May 1345 (124) •673 Sat. 7 July 1274 (188) 710 1 Sun. 31 May 1310 (151) 747 2 Mon 24 Apr 1346 (114) 674 5 Thurs. 27 June 1275 (178) •711 5 Tlmrs. 20 May 1311 (140) 748 6 Fri. 13 Apr. 1347 (103) 675 2 Mon. 15 June 1276* (167) 712 3 Tues. 9 May 1312* (130) *749 3 Tues. 1 Apr. 1348^ (92) •676 6 Fri. 4 June 1277 (155) 713 Sat. 28 Apr. 1313 (118) 750 1 Sun. 22 Mar. 1349 (81) 677 4 \Ved. 25 May 1278 (145) *714 4 Wed. 17 Apr. 1314 (107) 751 5 Thurs. 11 Mar. 1350 (70) '678 1 Sun. 14 May 1279 (134) 715 2 JIou. 7 Apr. 1315 (97) *752 2 Mon. 28 Feb. 1351 (59) 679 6 Fri. 3 May 1280* (124) *716 6 Fri. 26 Mar. 1316* (86) 753 Sat. 18 Feb. 1352^ (49) 680 3 Tues. 22 Apr. 1281 (112) 717 4 AVed. 16 Mar. 1317 (75) 754 4 Wed. 6 Feb. 1353 (37) •681 Sat. 11 Apr. 1282 (101) 718 1 Sun. 5 Mar. 1318 (64) *753 1 Sun. 26 Jan. 1354 (26) 682 5 Thurs. 1 Apr. 1283 (91) *719 5 Thurs. 22 Feb. 1319 (53) 756 6 Fri. 16 Jan. 1355 (Ui) 683 2 Mon. 20 Mar. 1284* (80) 720 3 Tues. 12 Feb, 1320* (43) *757 3 Tues. 5 Jan. 1356* (5) ♦684 6 Fri. 9 Mar. 1285 (68) 721 Sat. 31 Jan. 1321 (31) 758 1 Sun. 25 Dec. 1350^ (360) 685 i Wed. 27 Feb. 1286 (58) •722 4 Wed. 20 Jan. 1322 (20) 759 5 Thurs. 14 Dec. 1357 (348) •686 1 Sun. 16 Feb. 1287 (47) 723 2 Mon. 10 Jiin. 1323 (10) ♦760 2 Mon. 3 Dec. 1358 (337) 687 6 Fi-i. 6 Feb. 1288* (37) 724 6 Fri. 30 Dec. 1323 (364) 761 Sat. 23 Nov. 1359 (327) 688 3 Tucs. 25 Jan. 1289 (25) *725 3 Tues. 18 Dec. 1324* (353) I 762 4 Wed. 11 Nov. 1360* (3161 •689 Sat. 14 Jan. 1290 (14) 726 1 Sun. 8 Dec. 1325 (342) *763 1 Sun. 31 Oct. 1361 (304) 690 5 TUurs. 4 Jan. 1291 (4) *727 5 Thurs. 27 Nov. 1326 (331) 764 6 Fri. 21 Oct. 1362 (294) 691 2 Mon. 24 Dec. 1291 (358) 728 3 Tues. 17 Nov. 1327 (321) 765 3 Tues. 10 Oct. 13C3 (283) •692 6 Fri. 12 Dee. 1292* (347) 729 Sat. 5 Nov. 1328* (310) •706 Sat. 28 Sep. 1364* (272) 693 4 Wed. 2 Dec. 1293 (336) •730 4 Wed. 23 Oct. 1329 (298) 767 5 Thurs. 18 Sep. 1365 (261) 694 I Sun. 21 Nov. 1294 (325) 731 2 Mon. 15 Oct. 1330 (288) •768 2 Mon. 7 Sep. 1366 (250) •695 5 Thurs. 10 Nov. 1295 (314) 732 6 Fri. 4 Oct. 1331 (277) 769 Sat. 28 Aug. 1367 (240) 696 3 Tuci. 30 Oct. 1296* (304) '733 3 Tues. 22 Sep. 1332* (266) 770 4 Wed. 16 Aug. 1368* (229) •697 Sat. 19 Oct. 1297 (292) 734 1 Sun. 12 Sep. 1333 (255) *771 1 Sun. 5 Aug. 1369 (217) 698 5 Thurs. 9 Oct. 1298 (282) 735 5 Thurs. 1 Sep. 1334 (244) 772 6 Fri. 26 July 1370 (207) 699 2 Mon. 28 Sep. 1299 (271) •736 2 Mon. 21 Aug. 1335 (233) 773 3 Tucs. 15 July 1371 (196) •700 1 Fri. Hi Sep. 1300* (260) 737 Sat. 10 Aug. 1336* (223) •774 Sat. 3 July 1372* (185) 701 t Wed. fi Sep. 1301 (249) •738 4 Wed. 30 July 1337 (211) 775 5 Thurs. 23 June 1373 (174) 702 1 Sun. 26 Aug. 1302 (238) 739 2 Mon. 20 July 1338 (201) •776 2 Jlon. { 12 June 1374 (163) '703 -) Thurs. 15 Aug. 1303 (227) 740 Fri. 'J July 1339 (190) 777 1 .-^at. 2 .tunc 137.-> (153) Till-: INDIAN CALENDAR. TABLE XVI. (CONTINIED.) INITIAL DAYS OF MCIIAMMADAN YEAliS OF TIIK lllJRA. N B. i. Asteruks indicate Leai>-;tears. ii. Vp to Hijra 1105 inclusie,; the A.l). dales are Old Style. Uijra jciir. C'omincnoemeul of the year. Hijra year. Coinmeneement af the year. Hijra year. Commencemeut of the year. WcckJaj. Date A IJ. Weekday. Date AD. Weekday. Date AD. 1 2 3 1 2 3 1 2 3 778 4 Wcl. 21 May 1376» (142) •815 4 Wed. 13 Apr 1412* (104) 852 5 Thurs. 7 Mar 1448* (67) *77'J I Sun. 10 May 1377 (130) 816 2 Mon. 3 .\i)r. Hi:! (93) ♦853 2 Mon. 24 Feb. 1449 (55) 780 fi I'ri. 30 Apr. 1378 (120) •817 6 Fri. 23 Mar. 1414 (,S2) 854 Sat. 14 Feb. 1450 (4.5) 781 3 Tucs. 19 Apr. 1379 (109) 81S 4 Wed. 13 Mar. 141,-i (72) 855 4 Wed. 3 Feb. 1451 (34) •782 Sal. 7 Apr. 1380* (98) 819 1 Sun. 1 Mar. 1410* (01) *850 1 Sun. 23 Jan. 1452* (23) 783 .1 Thiii-s. 28 M«r. 1381 (87) •820 5 Thurs. 18 Feb. 1417 (49) 857 6 Fri. 12 Jan. 1453 (12) 78-t 2 Mon. 17 Mar. 1382 (76) 821 3 Tucs. 8 Feb. 1418 (39) *858 3 Tues. 1 Jan. 1454 (1) *785 ti Fri. 6 Mar. 1383 (6r,) 822 Sat. 28 Jan. 1419 (28) 859 1 Sun. 22 Dec. 1454 (356) 786 4 Wed. 24 Feb. 1384* (55) •823 4 Wed. 17 Jan. 1420* (17) 860 5 Thurs 11 Dec. 1455 (345) *787 I Sun. 12 Feb. 1385 (43) 824 2 Mon. 6 Jan. 1421 (6) *861 2 .Mon. 29 Nov. 1456* (334) 788 6 Fri. 2 Feb. 1386 (33) 825 6 Fri. 26 Dee. 1421 (300) 862 Sat. 19 Nov. 1457 (323) 789 3 Tues. 22 Jan. 1387 (22) •826 3 Tues. 15 Dec. 1422 (349) 863 4 Wed. 8 Nov. 1458 (312) •790 Sat. 11 Jan. 1388* (11) 827 1 Sun. 5 Dec. 1423 (339) •864 1 Snu. 28 Get. 1459 (301) 791 .5 Tluirs. 31 Dec. 1388* (366) •828 5 Thurs. 23 Nov. 1424^ (328) 865 6 Fri. 17 del. 1400» (291) 792 2 Mon. 20 Dec. 1389 (354) 829 3 Tues. 13 Nov. 1425 (317) •866 3 Tucs. (i Oet. 1461 (279) »79S (! Fi-i. 9 Dec. 1390 (343) 830 Sat. 2 Nov. 1426 (306) 867 1 Sun. 26 Sep. 1462 (269) 791 4 WeJ. 29 Nov. 1391 (333) *831 4 Wed. 22 Oct. 1427 (295) 868 5 Thurs. 15 Sep. 1463 (258) 79". 1 Sun. 17 Nov. 1392* (322) 832 2 Mon. 11 Oct. 1428^ (285) •869 2 Mou. 3 Sep. 1464* (247) •79C. .1 Thui-s. 6 Nov. 1393 (310) 833 6 Fri. 31) Sep. 1429 (273) 870 Sat. 24 Aug. 1465 (236) 797 3 Tues. 27 Oct. 1394 (300) *834 3 Tues. 19 Sep. 1430 (262) 871 4 Wed. 13 Aug. 1466 (225) *798 Sat. 16 Oet. 1395 (289) 835 1 Sun 9 Sep. 1431 (252) •872 1 Suu. i Aug. 1467 (214) 799 5 Tliiirs. 5 Oet. 1396* (279) *836 5 Thurs. 28 Aug 1432^ (241) 873 Fri. 22 July 1468* (204) SCO 2 .Mon. 24 Sep. 1397 (267) 837 3 Tues. 18 Aug. 1433 (230) 874 3 Tucs 11 July 1469 (192) *801 6 Fri. 13 Sep. 1398 (256) 838 Sat. 7 Aug. 1434 (219) •875 Sat. 30 June 1470 (181) 802 4 Wed. 3 Sep. 1399 (240) •839 4 Wed. 27 July 1435 (20S) 876 5 Thurs. 20 June 1471 (171) 803 I Sun. 22 Aug. 1400* (235) 840 2 Mou. 10 July 1430* (198) *877 2 Mon. 8 June 1472* (160) | •804 5 Thurs. 11 Aug. 1401 (223) 841 6 Fri. 5 July 1437 (186) 878 Sat. 29 M.y 1473 (149) 805 3 Tues. 1 Aug. 1402 (213) •842 3 Tucs. 24 June 1438 (175) 879 4 Wed. 18 May 1474 (138) •800 Sat. 21 July 1403 (202) 843 1 Sun. 14 June 1439 (105) •880 1 Sun. 7 May 1475 (127) 807 Thurs. 10 July 1404* (192) 844 5 Thurs. 2 June 1440* (154) 881 6 Fri. 26 Apr. 1476* (117) 808 2 Mon. 29 June 1405 (180) •845 2 Mon. 22 May 1441 (142) 882 3 Tucs. 15 Apr. 1477 (105) •809 Fri. 18 June 1406 (169) 846 Sat. 12 May 1442 (132) •883 Sat. 4 Apr. 1478 (94) 810 4 Wed. 8 June 1407 (159) •847 4 Wed. 1 May 1443 (121) 884 5 Thurs. 25 .Mar. 1479 (84) 811 1 Sun. 27 May 1408* (14S) 848 2 JIou. 20 Apr. 1444* (111) 885 2 Mon. 13 Mar. 1480* (73> •812 5 Thurs. 16 May 1409 (136) 849 6 Thurs. 9 Apr. 1445 (99) •886 Fri. 2 .Mar. 1481 (01) 813 3 Tues. Ma> 1 HO (126) •850 3 Tucs. 29 Mar 1446 (88) 887 4 Wed. 20 Feb. 1482 (51) 811 Sal. 2.-. A|.,-. 1111 (115) 851 1 Sun. 19 Mar 1417 (7S) •888 1 Sun 9 Feb. 1483 (40) '/'///■; mihammadan calendar. TABLE XVI. (CONTINUKD.) INITIAI, IIAVS OF MLllAMMADAN VKAKS OF TllK IIIJKA N.B. i Asterisks indicate Leap-ijears. ii. Up to llijra 1165 inrlusive, the A.D. dales are Old Sti/lf llijrn vcar Cominciicimcnl of the year. llijrn year. C'omni nccmcnt of the year. Flijra year. Coinmeneenicut .f the year Weekday. Date A.D. Weekday. Date A.D. Weekday. Date A.I). 1 2 3 . 1 2 3 1 2 3 889 6 Fri. 30 Jan. 1484» (30) •926 6 Fri. 23 Dec. 1519 (357) 963 Sat. 16 Nov. 1555 (320) 890 3 Toes. 18 Jan. 1485 (18) 927 4 Wed. 12 Dee. 1520* (347) 964 4 Wed. 4 Nov. 1556* (309) •891 Sat. 7 Jan. 1486 (7) 928 1 Sun. 1 Dec. 1521 (335) *965 1 Sun. 24 Oct. 1557 (297) 892 5 Thurs. 28 Dec. 1486 (362) •929 5 Thurs. 20 Nov. 1522 (324) 966 6 fti. 14 Oct. 1558 (287) 893 2 Moil. 17 D«-. 1487 (351) 930 3 Tues. 10 Nov. 1523 (314) •967 8 Tues. 3 Oct. 1559 (276) •894 6 Fri. 5 Dee. 1488^ (340) 931 Sat. 29 Oct. 1524* (303) 968 1 Sun. 22 Sep. 1560* (266) 895 4 Wed. 25 Nov. 1489 (329) •932 4 Wed. 18 Oct. 1525 (291) 969 5 Thurs. 11 Sep. 1561 (254) •896 1 Sun. 14 Nov. 1490 (318) 933 2 Mon. 8 Oct. 1526 (281) •970 2 Mon. 31 Aug. 1562 (243) 897 6 Fri. 4 Nov. 1491 (308) 934 6 Fri. 27 Sep. 1527 (270) 971 Sat. 21 Aug. 1563 (233) 898 3 Toes. 23 Oct. 1492» (297) •935 3 Tues. 15 Sep. 1528* (259) 972 4 Wed. 9 Aug. 1564* (222) •899 Sat. 12 Oct. 1493 (285) 936 1 Sun. 5 Sep. 1529 (248) •973 1 Sun. 29 July 1565 (210) 900 5 Tliurs. 2 Oct. 1494 (275) *937 5 Thurs. 25 Aug. 1530 (237) 974 6 Fri. 19 July 1566 (200) 901 2 Mon. 21 Sep. 1495 (264) 938 3 Tlles. 15 Aug. 1531 (227) 975 3 Tues. 8 July 1567 (189) •902 6 Fri. 9 Sep. 1496* (253) 939 Sat. 3 Aug. 1532* (216) •976 Sat. 26 June 1568^ (178) 903 4 Wed. 30 Aug. 1497 (242) •940 4 Wed. 23 July 1533 (204) 977 5 TTiurs. 16 June 1569 (167) 904 1 Sun. 19 Aug. 1498 (231) 941 2 Mon. 13 July 1534 (194) •978 2 Mon. 5 June 1570 (156) | •905 5 Thui-s. 8 Aug. 1499 (220) 942 6 Fri. 2 July 1535 (183) 979 Sat. 26 May 1571 (146) 906 3 Tues. 28 July 1500* (210) •943 3 Tues. 20 June 1536* (172) 980 4 Wed. 14 May 1572* (135) •907 Sat. 17 July 1501 (198) 944 1 Sun. 10 June 1537 (161) •981 1 Sun. 3 May 1573 (123) 908 5 Tliurs. 7 July 1502 (188) 945 5 Thurs. 30 May 1538 (150) 982 6 Fri. 23 Apr. 1574 (113) 909 2 Mon. 26 June 1503 (177) •946 2 Mon. 19 May 1539 (139) 983 3 Tues. 12 Apr. 1575 (102) •910 6 Fri. 14 June 1504* (16C) 947 Sat. 8 May 1540* (129) *984 Sat. 31 Mar. 1576' (91) 911 4 Wed. 4 June 1505 (155) •948 4 Wed. 27 Apr. 1541 (117) 985 5 Thurs. 21 Mar. 1577 (80) 912 1 Sun. 24 May 1506 (144) 949 2 Mon. 17 Apr. 1542 (107) *986 2 Mon. 10 Mar. 1578 (69) •913 5 Tliurs. 13 May 1507 (133) 950 6 Fri. 6 Apr. 1543 (96) 987 Sat. 28 Feb. 1579 (59) 914 3 Tues. 2 May 1508* (123) •951 3 Tues. 25 Mar. 1544* (85) 988 4 Wed. 17 Feb. 1580^ (48) 915 Sat. 21 Apr. 1.509 (111) 952 1 Sun. 15 Mar. 1545 (74) *989 1 Sun. 5 Feb. 1581 (36) •916 4 Wed. 10 Apr. 1510 (100) 953 5 Thurs. 4 .Mar. 1546 (63) 990 6 Fri. 26 Jan. 1582 1) 26) 917 2 Mon. 31 Mar. 1511 (90) •954 2 Mon. 21 \\h. 1547 (52) 991 3 Tues. 15 Jan. 1583 (15) •918 6 Fri. 19 Mar. 1512* (79) 955 Sat. 11 F,-b. 1548* (42) •992 Sat, 4 Jan. 1584* (4) 919 4 Wed. 9 Mar. 1513 (68) ♦956 4 Wed. 30 Jan. 1549 (30) 993 5 Thurs. 24 Dee. 1584* (359) 920 1 Sun. 26 Feb. 1514 (57) 957 2 Mon. 20 Jan. 1550 (20) 994 2 Mon. 13 Dec. 1585 (347) •921 5 Thurs. 15 Feb. 1515 (46) 958 6 Fri. 9 Jan. 1551 (9) •995 6 Fri. 2 Dec. 1586 (336) 922 3 Tues. 5 Feb. 1516* (36) *959 3 Tues. 29 Dec. 1551 (363) 996 4 Wed. 22 Nov. 1587 (326) 923 Sat. 24 Jan. 1517 (24) 960 1 Sun. 18 Dec. 1552* (353) •997 1 Sun. 10 Nov. 1588* (315) •924 4 Wed. 13 Jan. 1518 (13) 961 5 Thurs. 7 Dec. 1553 (341) 998 8 Fri. 31 Oct. 1589 (304) 925 2 Mon. 3 Jan. 1519 (3) •962 3 Mon. 26 Nov. 1554 (330) 999 S Tues. 20 Oct. 1590 (293) 1) In the Roman Catholii- rauutries of F.urop,- tlic New Styli' iva.s introdueid from Oetober 5th 1582 A.D. and the year 1700 was ordered to be a rominon, not a Loap-year. Dales in the above Table arc however for English reckoning, where the New Style was not introduced till Sept. 3rd 1752 A.I) For the initial dates of the llijra years, therefore, in the former oountries. add 10 days to the date given in the Table from Hijra 991 to llijra 1111 inclusive, and 11 d.nys from Hijra 1112 to Hijra 1165 inclusive. THE INDIAN CALENDAR. TABLE XVI. (CONTINUED) INITIAL DAYS OF MUUAMMAUAX YEARS OF THE HIJKA N.H. i. Asterisks indicate Leap-years. ii l']j to Ilijra UG.') inclusive, the A.D. dates are Old Sti/le. llijra year. Cummenccment d1' the year. nijra year. Commencement of the year. Hijra year. Commeucemcut 01 the year. Weekday. Date A.D. Weekday. Date A.D. Weekday. Date A.I). 1 2 3 1 2 3 1 2 3 •1000 Sat. 9 Oct. I.i91 (282) 1037 1 Sun. 2 Sep. 1627 (245) ♦1074 1 Sun. 26 July 1063 (207) 1001 5 Thurs. 28 Sep. 1592* (272) *1038 5 Thurs. 21 Aug. 1628* (234) 1075 6 Fri. 15 July 1664* (197) 1002 2 Mon. 17 Sep. 1593 (260) 1039 3 Tues. 11 Aug. 1629 (223) ♦1076 3 Tues. 4 July 1665 (185) ♦1003 6 Fri. 6 Sep. 1594 (249) 1040 Sat. 31 July 1630 (212) 1077 1 Sun. 24 June 1666 (175) 1004 4 Wed. 27 Aug. 1595 (239) ♦1041 4 Wed. 20 July 1631 (201) 1778 5 Thurs. 13 June 1667 (164) 1005 1 Sun. 15 Aug. 1596* (228) 1042 2 Mon. y July 1632* (191) *1079 2 Mon. 1 June 1668* (153) ♦1006 5 Thurs. 4 Aug. 1597 (216) 1043 6 Fri. 28 June 1633 (179) 1080 Sat. 22 May 1669 (142) 1007 3 Tues. 25 July 1598 (206) *1044 3 Tues. 17 June 1634 (168) 1081 4 Wed. 11 May 1670 (131) •1008 Sat. 14 July 1599 (195) 1045 1 Sun. 7 June 1635 (158) *1082 1 Sun. 30 Apr. 1671 (120) 1009 5 Thurs. 3 July 1600* (185) *1046 5 Thurs. 26 May 1636* (147) 1083 6 Pi-i. 19 Apr. 1672* (110) 1010 2 Jlon. 22 June 1601 (173) 1047 3 Tues. 16 May 1637 (136) 1084 3 Tues. 8 Apr. 1673 (98) *1011 fi Fri. 11 June 1602 (162) 1048 Sat. 5 May 1638 (125) *1085 Sat. 28 Mar. 1674 ■ (87) 1012 4 Wed. 1 June 1603 (152) •1049 4 Wed. 24 Apr. 1639 (114) 1086 5 Thui-s. 18 Mar. 1675 (77) 1013 1 Sun. 20 May 1604* (141) 1050 2 Mon. 13 Apr. 1640* (104) •1087 2 Mon. 6 Mar. 1676* (66) •1014 5 Thurs. 9 May 1605 (129) 1051 6 Fri. 2 Apr. 1641 (92') 1088 Sat. 24 Feb. 1677 (55) 1015 3 Tues. 29 Apr. 1606 (119) *1052 3 Tues. 22 Mar. 1642 (81) 1089 4 Wed. 13 Feb. 1678 (44) •lOUi Sat. 18 Apr. 1607 (108) 1053 1 Sun. 12 Mar. 1643 (71) *1090 1 Sun. 2 Feb. 1679 (33) 1017 5 Thurs. 7 .\pr. 1608* (98) 1054 5 Thurs. 29 Feb. 1644* (60) 1091 6 Fri. 23 Jan. 1680* (23) 1018 2 Mon. 27 Mar. 1609 (86) ♦1055 2 Mon. 17 Feb. 1645 (48) 1092 3 Tnes. 11 Jan. 1681 (11) •1019 6 Fri. 16 Mar. 1610 (75) 1056 Sat. 7 Feb. 1646 (38) *1093 Sat. 31 Dec. 1681 (365) 1020 4 Wed. 6 Mar. 1611 (65) *1057 4 Wed. 27 Jan. 1647 (27) 1094 5 Thurs. 21 Dec. 1682 (355) 1021 1 Sun. 23 Feb. 1612* (54) 1058 2 Mon. 17 Jan. 1648* (17) 1095 2 Mon. 10 Dec. 1683 (344) •1022 5 Thurs. 11 Feb. 1613 (42) 1059 6 Fri. 5 Jan. 1649 (.5) •1096 B Fri. 28 Nov. 1684* (333) 1023 3 Tues. 1 Feb. ir.lt (32) *l()(i0 3 Tues. 25 Dec. 1649 (359) 1097 4 Wed. 18 Nov. 1685 (322) 1021 Sat. 21 Jan. 1615 (21) 1001 1 Sun. 15 Dec. 1650 (349) *1098 1 Sun. 7 Nov. 1686 (311) •1025 4 Wed. 10 Jan. 1616* (10) 1062 5 Thurs, 4 Dec. 1651 (338) 1099 6 Fri. 28 Oct. 1687 (301) 1026 2 Mon. 30 Dec. 1616* (365) •1063 2 Mon. 22 Nov. 1652* (327) 1100 3 Tues. 16 Oct. 1688* (290) •1027 6 Fri. 19 Dec. 1617 (353) 1064 Sat. 12 Nov. 1653 (316) *1101 Sat. 5 Oct. 1689 (278) 1028 4 Wed. 9 Dec. 1618 (343) 1065 4 Wed. 1 Nov. 1654 (305) 1102 5 Tliurs. 25 Sep. 1690 (268) 1029 1 Sun. 28 Nov, 1619 (332) •1066 1 Sun. 21 Oct. 1655 (294) 1103 2 Mon. 14 Sep. 1691 (257) •1030 5 Thurs. 16 Nov. 1620* (321) 1067 6 Fri. 10 Oct. 1656* (284) •1104 6 IVi. 2 Sep. 1692* (246) 1031 3 Tues. 6 Nov. 1621 (310) •1068 3 Tues. 29 Sep. 1657 (272) 1105 4 Wed. 23 Aug. 1693 (235) 1032 Sat. 26 Oct. 1622 (299) 1069 1 Sun. 19 Sep. 1658 (262) ♦1106 1 Suu. 12 Aug. 1694 (224) •1033 4 Wed. IS Oct. 1623 (288) 1070 5 Thurs. 8 Sep. 1659 (251) 1107 6 Fri. 2 Aug. 1695 (214) 1034 2 Mon. 4 Oct. 1624* (278) •1071 2 Mon. 27 Aug. 1660* (240) 1108 3 Tues. 21 July 1696* (203) 1035 Fri. 23 Sep. 1626 (266) 1072 Sat. 17 Aug. 1661 (229) ♦1109 Sat. 10 July 1697 (191) •1036 3 Tuc«. 12 Sep. 1626 (255) 1073 4 Wed. 6 Ang. 1062 (218) 1110 5 Thurs. 30 June 1698 (181) THE MUHAMMADAN CALENDAR. TABLE XV I. (CONTINUED) INITIAL DAYS OF MUHAMMADAN YEARS OF THE IIIJRA. N B i AileriiLi indiealf Leap-ijfars. ii. i] tu llijra 1165 incluaive. the A.D. dates tir f Old .Slyl Iliji-a ;«ir Commencement of the year. Hijra year. CommencemeDt of the year. Hijra year. Commencement of the year. Wefkclav Dale A.D. Weekday. Date A.D. Weekday. Dale A.D. 1 2 3 1 2 3 1 2 3 Ull 2 Mon. 19 June 1699 (170) 1148 3 Tuejs. 13 May 1735 (133) 1185 3 Tues. 16 Apr. 1771 (106) •1112 6 Fri. 7 June 1700* (159) 1149 Sat. 1 May 1736* (122) *1186 Sat. 4 Apr. 1772* (95) 1113 4 Wed. 28 May 1701 (148) •11.50 4 Wed. 20 Apr. 1737 (110) 1187 5 Thurs. 25 Mar. 1773 (84) IlK 1 Sun. 17 May 1702 (137) 1151 2 Mon. 10 Apr. 1738 (100) *1188 2 Mon. 14 .Mar. 1774 (73) • 1 1 1 .-1 5 Thurs. 6 May 1703 (126) 1152 6 Fri. 30 Mar. 1739 (89) 1189 Sat. 4 Mar. 1775 (63) inc. 3 Tues. 25 Apr. 1704* (116) *1153 3 Tues. 18 Mar. 1740* (78) 1190 4 Wed. 21 Feb. 1776* (52) MU? Sat. 14 Apr. 1705 (104) 1154 1 Sun. 8 Mar. 1741 (67) *1191 1 Sun. 9 Feb. 1777 (40) ins 5 Thurs. 4 Apr. 1706 (94) 1155 5 Thurs. 25 Feb 1742 (56) 1192 6 Fri. 30 Jan. 1778 (30) 11 lU 2 Mon. 24 Mar. 1707 (83) *1156 2 Mon. 14 Feb. 1743 (45) 1193 3 Tues. 19 Jan. 1779 (19) •1120 6 Fri. 12 Mar. 1708* (72) 1157 Sat. 4 Feb. 1744* (35) *1194 Sat. 8 Jan. 1780* (8) 1121 4 Wed. 2 Mar. 1709 (61) *11.58 4 Wed. 23 Jan. 1745 (23) 1195 5 Thurs. 28 Dec. 1780* (363) 1122 1 Sun. 19 Feb. 1710 (50) 1159 2 Mon. 13 Jan. 1746 (13) *1196 2 Mon. 17 Dec. 1781 (351) •1123 5 Thurs. 8 Feb. 1711 (39) 1160 Fri. 2 Jan. 1747 (2) 1197 Sat. 7 Dec. 1782 (341) 112+ 3 Tues. 29 Jan. 1712* (29) *1161 3 Tues. 22 Dec. 1747 (356) 1198 4 Wed. 26 Nov. 1783 (330) 1125 Sat. 17 Jan. 1713 (17) 1162 1 Sun. 11 Dec. 1748* (346) *1199 1 Sun. 14 Nov. 1784* (319) •1126 4 Wed. 6 Jan. 1714 (6) 1163 5 Thurs. 30 Nov. 1749 (334) 1200 6 Fri. 4 Nov. 1785 (308) 1127 2 Mon. 27 Due. 1714 (361) *1164 2 Mon. 19 Nov. 1750 (323) 1201 3 Tues. 24 Oct. 1786 (297) ■1128 6 Fri. 16 Dec. 1715 (350) 1165 Sat. 9 Nov. 1751t (313) •1202 Sat. 13 Oct. 1787 (286) 112U 4 Wed. 5 Dec. 1116* (340) *116G 4 Wed. 8 Nov. 1752* (313) 1203 5 Thurs. 2 Oct. 1788* (276) 1130 1 Sun. 24 Nov. 1717 (328) 1167 2 Mon. 29 Oct. 1753 (302) 1204 2 Mon. 21 Sep. 1789 (264) •1131 5 Thurs. 13 Nov. 1718 (317) 1168 fl Fri. 18 Oct. 1754 (291) *1205 6 Fri. 10 Sep. 1790 (253) 1132 3 Tues. 3 Nov. 1719 (307) *1169 3 Tues. 7 Oct. 1755 (280) 1206 4 Wed. 31 Aug. 1791 (243) 1133 Sat. 22 Oct. 1720* (296) 1170 1 Sun. 26 Sep. 1756* (270) *1207 1 Sun. 19 Aug. 1792* (232) •1134 4 Wed. 11 Oct. 1721 (284) 1171 5 Thurs. 15 Sep. 1757 (258) 1208 6 Fri. 9 Aug. 1793 (221) 1135 2 Mon. 1 Oct. 1722 (274) *1172 i Mon. 4 Sep. 1758 (247) 1209 3 Tues. 29 July 1794 (210) ♦1136 6 Fri. 20 Sep. 1723 (263) 1173 Sat. 25 Aug. 1759 (237) •1210 Sat. 18 July 1795 (199) 1137 4 Wed. 9 Sep. 1724* (253) 1174 4 Wed. 13 Aug. 1760* (226) 1211 5 Thurs. 7 July 1796* (189) 1138 1 Sun. 29 Aug. 1725 (241) *1175 1 Suu. 2 Aug. 1761 (214) 1212 2 Mon. 26 June 1797 (177) •1139 5 Thurs. 18 Aug. 1726 (230) 1176 6 Wi. 23 July 1762 (204) *1213 6 Fri. 15 June 1798 (166) 1110 3 Tues. 8 Aug. 1727 (220) *1177 3 Tues. 12 July 1763 (193) 1214 4 Wed. 5 June 1799 (156) 1141 Sat. 27 July 1728* (209) 1178 1 Sun. 1 July 1764* (183) 1215 1 Sun. 25 .May 1800 (145) •1142 4 Wed. 16 July 1729 (197) 1179 5 Thurs. 20 June 1765 (171) *1216 5 Thurs. 14 May 1801 (134) 1143 2 Mon. 6 July 1730 (187) •1180 2 Mon. 9 June 1766 (160) 1217 3 Tues. 4 May 1802 (124) 1144 6 Fri. 25 June 1731 (176) 1181 Sat. 30 May 1767 (150) *1218 Sat. 23 Apr. 1803 (113) •1145 3 Tues. 13 June 1732* (165) 1182 4 Wed. 18 May 1768* (139) 1219 5 Thurs. 12 Apr. 1804* (103) 1146 1 Sun. 3 June 1733 (154) •1183 1 Sun. 7 May 1769 (127) 1220 2 Mon. 1 Apr. 1805 (91) '1147 5 Thurs. 23 May 1734 (143) 1184 6 Fri. 27 Apr. 1770 (117) *1221 6 Fri. 21 Mar. 1806 (80) ; The Nivv Style was introduced into England from 3rd Scptimbc-r, 1752. The 9th November, 1751, is therefore an Old Slyh- date, and the Stii November, 1752, is a New Slyle one (see above, Note 2. p. 11, Sotf 1, p. 88). THE INDIAN CALENDAR. TABLE XVI. (coNTiNiEir) INITIAL DAYS OF MUHAMMADAN YEARS OF THE IIIJKA. N.B. i. Asterisk! indicitr Leap-years. ii. Vji to nijra 116.') Inclusive, the A.B. dates are Old Sli/le. Hijra year. Commencement of the year. Hijra year. Commencement ol the year. Hijra year. Commencement of the year. Weekday. Bate A.D. Weekday. Date A.D. Weekday Dale A.D. 1 2 3 1 2 3 1 2 3 1222 4 Wed. 11 Mar. 1807 (70) 1255 1 Sun. 17 Mar. 839 (76) 1288 5 Thurs. 23 Mar. 1871 (82) 1223 1 Sun. 28 Feb. 1808* (59) •1256 5 Thurs. 5 Mar. 1840^ (65) •1289 2 Mon. U Mar. 1872* (71) ♦1224 5 Thurs. 16 Feb. 1809 (47) 1257 3 Tues. 23 Feb. L841 (54) 1290 Sat. 1 Mar. 1873 (60) 1225 3 Tues. 6 r,b. 1810 (37) 1258 Sat. 12 Feb. 1842 (43) 1291 4 Wed. 18 Feb. 1874 (49) *1226 Sat. 26 Jan. 1811 (26) •1259 4 Wed. 1 Keb. 1843 (32) •1292 1 Sun. 7 Feb. 1875 (38) 1227 5 Thurs. 16 Jan. 1812* (16) 1260 2 Mon. 22 Jan. 1844* (22) 1293 6 Fri. 28 Jan. 1876^ (28) 1228 2 Men. i Jan. 1813 (4) 1261 6 Fri. 10 Jan. 845 (10) 1294 3 Tues. 10 Jan. 1877 (16) •1229 6 Fri. 24 Dec. 1813 (358) •1262 3 Tues. 30 Dec. 1845 (364) •1295 Sat. 5 Jan. 1878 (5) 1230 4 Wed. 14 Dec. 1814 (348) 1263 1 Sun. 20 Dec. 846 (354) 1296 5 Thurs. 20 Dec. 1878 (360) 1231 1 Sun. 3 Dec. 1815 (337) 1264 5 Thurs. 9 Dec. 847 (343) •1297 2 Mon. 15 Dec. 1879 (349) *1232 5 Thurs. 21 Nov. 1816* (326) •1265 2 Mon. 27 Nov. 848* (332) 1298 Sat. 4 Dec. 1880* (339) 1233 3 Tues. 11 Nov. 1817 (315) 1266 Sat. 17 Nov. 849 (321) 1299 4 Wed. 23 Nov. 1881 (327) 1234 Sat. 31 Oct. 1818 (304) •1267 4 Wed. 6 Nov. 1850 (310) ♦1300 1 Sun. 12 Nov. 1882 (316) *1235 4 Wed. 20 Oct. 1819 (293) 1268 2 Mon. 27 Oct. 851 (300) 1301 6 Fri. 2 Nov. 1883 (306) 1236 2 Mon. 9 Oct. 1820* (283) 1269 6 Fri. 15 Oct. 852* (289) 1302 3 Tues. 21 Oct. 1884* (295) ♦1237 6 Fri. 28 Sep. 1821 (271) •1270 3 Tues. 4 Oct. 853 (277) ♦1303 Sat. 10 Oct. 1885 (283) 1238 4 Wed. 18 Sep. 1822 (261) 1271 1 Sun. 24 Sep. 1854 (267) 1304 5 Thurs. 30 Sep. 1886 (273) 1239 1 Sun. 7 Sep. 1823 (250) 1272 5 Thurs. 13 Sep. 855 (256) 1305 2 Mon. 19 Sep. 1887 (262) •1240 5 Thurs. 26 Aug. 1824* (239) •1273 2 Mon. 1 Sep. 1856* (245) *1306 6 Fri. 7 Sep. 1888* (251) 1241 3 Tues. 16 Aug. 1825 (228) 1274 Sat. 22 Aug. 1857 (234) 1307 4 Wed. 28 Aug. 1889 (240) 1242 Sat. 5 Aug. 1826 (217) 1275 4 Wed. 11 Aug.~~ 858 (223) •1308 1 Sun. 17 Aug. 1890 (229) •1243 4 Wed. 25 July 1827 (206) •1276 1 Sun. 31 July 859 (212) 1309 6 Fri. 7 Aug. 1891 (219) 1244 2 Mon. 14 July 1828* (196) 1277 6 Fri. 20 July 860* (202) 1310 3 Tues. 26 July 1892^ (208) 1245 6 Fri. 3 July 1829 (184) •1278 3 Tues. 9 July 861 (190) •1311 Sat. 15 July 1893 (196) •1246 3 Tues. 22 June 1830 (173) 1279 1 Sun. 29 June 862 (180) 1312 5 Thurs. 5 July 1894 (186) 1247 1 Sun. 12 June 1831 (163) 1280 5 Thurs. 18 June 863 (169) 1313 2 Mon. 24 June 1895 (175) •1248 5 Thurs. 31 May 1832* (152) •1281 2 Mon. June 864* (158) •1314 6 Fri. 12 June 1896* (164) 1249 3 Tues. 21 May 1833 (141) 1282 Sat. 27 .May 805 (147) 1315 4 Wed. 2 June 1897 (153) 1250 Sat. 10 May 1834 (130) 1283 4 Wed. 16 May 866 (136) •1316 1 Sun. 22 May 1898 (142) •1251 4 Wed. 29 Apr. 1835 (119) ♦1284 I SUD. 5 Jlay ] 867 (125) 1317 6 Fri. 12 May 1899 (132) 1252 2 Mon. 18 Apr. 1830* (109) 1285 6 Pi-i. 24 Apr. 868^ (115) 1318 3 Tues. 1 May 1900 (121) 1253 6 Fri. 7 Apr. 1837 (97) •1286 3 Tues. 13 Apr. 869 (103) •1254 3 Toes. 27 Mar. 1838 (86) 1287 1 Sun. 8 Apr. 870 (93) APPENDIX. ECLIPSES OF THE SUN IN INDIA.' By Dr. Robert Schram. A complete list of all eclipses of the sun for any part of the globe between the years 1 200 B.C. and 2160 A.D. has been published by Oppolzer in his "Canon der Finsternisse", (Denkschriften der mathematisch naturwissenscliaftliclien Classe der Kais. Akademie der Wissen- schaftcti in Wieji, Vol. LII. 1887). In this work are given for every eclipse all the data necessary for the calculation of the path of the shadow on the earth's surface, and of its beginning, greatest phase, and end for any particular place. But inasmuch as the problem is a complicated one tlie calculations required are also unavoidably complicated. It takes considerable time to work out by the exact formula; the time of the greatest phase of a given eclipse for a particular place, and when, as is often the case with Indian inscriptions, we are not sure of the year in which a reported eclipse has taken place, and it is therefore necessary to calculate for a large number of eclipses, the work becomes almost impossible. The use, however, of the exact formulae is seldom necessary. In most cases it is sufficient to make use of a close approximation, or still better of tables based on approximate formuhe. Such tables I have published under the title " Tafeln zur Berechnung der naheren Umstande der Sonnenfinsternisse", (Denkschriften der mathematisch 7iatunvissenschaftlichen Classe der Kais. Akademie der Wisscnschaften in Wien, Vol. LI. 1886) and the Tables B, C, and D, now given are based on those. That is to say. they contain extracts from those tables, somewhat modified and containing only what is of interest for the continent of India. Table A is a modified extract from Oppolzer's Canon, containing only eclipses visible in India and the immediate neighbourhood. All others are eliminated, and thus the work of calculation is greatly diminished, as no other eclipses need be examined to ascertain their visibility at the given place. Oppolzer's Canon gives the following elements : Date of eclipse and Greenwich mean civil time of conjunction in longitude. L' = longitude of Sun and Moon, which is of course identical at the middle of the eclipse. Z n Equation of time in degrees, f = Obliquity of the ecliptic. , p sinP beinc equal to ^'" ^''~^\ where b and b' denote the moon's and sun's log pi "^ fa "1 s,Q (T— 5r') latitude, i? and iv' their respective parallaxes. 1 ~ , q cosQ being the hourly motion of p sinP. log AL = the hourly motion of "'"' '.' '''" '^T'''^ where L denotes the moon's, L' the sun's longitude. ° ' sm (t — t') 1 I propose to publish, ritlier in a second edition of this work, if such should be called for, or in one of the scientific periodicals, tables of lunar eclipses, compiled from Oppolzer's Canon der Fimtemitae, and containing those visible in India during the period comprised in the present volume. [R. S.] no ECLIPSES OF THE SUN IN INDIA. u', =: radius of shadow. f, = angle of shadow's cone. y = shortest distance of shadow's centre from earth's centre. (I, = Sun's hour-angle at Greenwich at the moment of this shortest distance. log n = hourly motion of shadow's centre. log sin S'j „ , , ,. ^. , ° . ' Sun s declination, log cos 5 \ N' ■=. angle of moon's orbit with declination circle (N' — N — h, where N is the angle of the moon's orbit with latitude circle, and tan h ^ cos L' cos f. G sin g sin G rz sin V sin N'. K sin g cos G = cos N'. sin g cos g zz cos V sin N'. sin k sin k sin K == sin N'. cos g sin k cos K =: sin §' cos N'. cos k J cos k = cos S' cos N'. With these elements the calculation of the moment of greatest phase of eclipse at a given place, whose longitude from Greenwich is A, and whose latitude is ^, is found by the formula: : log cpi ■= 0,9966 log (p. m sinM ~ 7 — 0,9966 cos g sin 0i + cos , sin k sin (K + tj. ti = t„- 15 1^, cos (M + M'). Making firstly t„ = A + (/., this formuhe gives the value of t,. This value is put in the formulae instead of t„ and the calculation repeated, and thus we get a closer value for t; which, again put in the place of t„, gives a second corrected value of t. Calculation by these formulje must be repeated as long as the new value of t differs from the former one, but, as a general rule, three or four times suffices. The last value of t is then the hour-angle of the sun at the given place for the moment of greatest phase at that place. With the last value of m we find the magnitude of the greatest phase at the given place in digits = 6 , _^ — —r- These calculations are, as will be seen, very complicated, and for other than astronomical problems it is hardly ever necessary to attain to so great a degree of accuracy. For ordinary purposes they may be greatly simplified, as it suffices to merely fix the hour-angle to the nearest degree. The angle N is very nearly constant, its mean value being N = 84°3 or N = 95°7 according as the moon is in the a.scending or descending node. Which of these is the case is always shown by the value of P, as P is always near o" when the moon is in the ascending, and near 180° when she is in the descending node. Taking also for f a mean value, say fzz 23°6o, and making the calculations separately for the cases of the ascending and descending node, we find that S', h, N', sin g, cos g, sin k, cos k, G and K are all dependents of L', and can therefore be tabulated for single values of L', say from 10 to 10 degrees. The second of the above formulae m cos M = (t,, — A — /!*) ^ — 0,9966 sin (?), cos k -|- cos (p, sin k cos (K -f t„) will give for t the value ECLIPSES OE THE SUN /N INDIA. 1 1 1 t =(;. + jc*) + ^ X 0,9966 sin . + {^ = 2$". . . . y" — 0,76 , ' ' ^ ^^^^° (0.80 and 0.72) 7' + / = 36,10 "4 ECLIPSES OF THE SUN IN INDIA. Table C gives, with 7' + y"=36,io, the magnitude of the greatest phase as exactly lo digits. Table D. L=490 gives, with 4) = 30° and A + /^ = 25°, for the moment of the greatest phase, 24,0 ghatikas, or 24 gh. o pa. after true sunrise at Multan. Example 3. Was the eclipse of the 7th June, A.D. 913, visible at Trivandrum, whose latitude, (p, is 8° 30' N., and longitude. A, 76°56'E.? Table A gives: 913 VI 7, 8 h.35 m. L = 48o /■•^ = 323° 7' = 44,98 Trivandrum has, ($) ;= 8° and A. = ^^° A + iM = 40° Table B. L = 480 gives, with 4) = 8° and A + /.4 = 40", y" = i ,02 7' -)- y" = 46,00 Table C shews, with y' + y" = 46,00, that the eclipse was total at Tri\?andrum. Table D. L = 480 gives, with cp = 8° and A + ;tt — 40, for the moment of totality 26,2 ghatikas or 26 gh. 12 pa. after true sunrise at Trivandrum. ExAMi'LE 4. Was the same eclipse visible at Lahore whose latitude, cp, is 3i''33'N., and longitude, A, 74° 16' E..? Table A gives: 913 VI 7, 8 h. 35 m. L = 48o A^ = 323° y'=: 44,98 Lahore has ($ = 32° and A= 74° Table B. L =: 480 gives, with (p = 32° and A -f ^a = 37°, •/' = 0,69 r' + r"=: 45 ,67 Table C gives, with 7' + 7" = 45,67, the magnitude of the greatest phase 4,8 digits. Table D. L = 48o gives, with 0=332° and A + ^ = 37°, for the moment of the greatest phase 26,9 ghatikas, or 26 gh. 54 pa. after true sunrise at Lahore. In all these examples the value of L (Table A) was divisible by 10, and therefore a special table for this value was found in Table B. When the value of L is not divisible by 10, as will mostly be the case, there is no special table exactly fitting the given value. In such a case we may take the small table in Table B for the value of L nearest to that given. Thus for instance, if L is 233 we may work by the table L — 230, or when L is 487 we may work by the Table L = 490 and proceed as before, but the result will not be very accurate. The better course is to take the value of y" from both the table next preceding and the table nex-t following the given value of L, and to fix a value of y" between the two. ^ Thus for L = 233 we take the value of y" both from Table 230 and from Table 240 and fix its truer value from the two. But where the only question is whether an eclipse was visible at a given place and there is no necessity to ascertain its magnitude, the first process is sufificient. Example 5. Was the eclipse of the 15 January, A.D. 1032, visible at Karachi, whose latitude, Cp, is 24° 53' N., and longitude. A, 66°57'E.? Table A gives 1032 I 15, loh.im. L = 70i ((4 = 342° 7'=:45,46 Karachi has

!• = 344". 7" = °'72 / q^ for L 1 5 5 7" = o 7 1 TableB. Li 60 7" = 0,69 V ' " '— 7' + 7" = 55.33 7' + 7" is less than the values contained in Table C. This indicates that Srinagar is too much to the north to see the eclipse. It was intended that these tables should be accompanied by maps shewing the centre-lines, across the continent of India, of all eclipses of the sun between A.D. 300 and 1900, but it has not been found possible to complete them in time, owing to the numerous calculations that have to be made in order that the path of the shadow may be exactly marked in each case. Such maps would plainly be of considerable value as a first approximation, and I hope to be able soon to publish them separately. Vienna, November, 1895. R- SCHRAM. ECL/PSF.S OF rifF. RUN IN INDIA. TABLE A. Lanlf » tlmo I.UII ta tlmo hunV 11 time D.itr A. 1). c-onjunctlon measared from sunrise. L. fi- >'■ Diitf A D ■.) incliiiii isured irise. /,. !■' "'' Dale .V. D. conjunction measured from sunrise. 1. !'■■ r'- 301 IV 25 Oh. 6 m. 434 288 45.46 I* SOI VIII 17 4h 12 m. 144 254 60.00 n 415 IX 19 2h. 27 m. 176 230 65.85 I S04 II -li 7 12 733 301 76.10 V 303 I 1 23 52 082 191 75.38 a. 418 VII 19 10 8 116 344 45.35 (• 305 VIll 7 4 19 134 259 04.72 o* 304 VI 10 11 58 85 13 45 . 57 I 419 XII 3 1 29 652 221 46.15 P 30G I 31 2 4 712 220 44.02 (0 305 VI 6 40 75 203 56.38 h') 421 XI 11 6 41 030 297 54.81 (a, 300 VII 27 c, 26 123 288 75.47 a 367 X 10 5 15 597 275 54.77 t 425 111 7 29 347 302 55.29 a' 307 VI 5 4 30 74 265 44.27 I 368 IV 3 22 27 15 168 55.90 a 425 VIII 29 9 45 556 340 44.84 (0 30S XI 'iy 23 27 649 189 75.36 («) 370 VIII 8 40 535 205 05.45 a 420 VIII 19 I 43 546 217 34.14 t 310 XI 8 12 626 198 74.01 (a) 371 II 2 7 32 314 302 55.38 a* 427 VII 10 9 10 508 335 45.98 I 313 IX 7 4 44 564 265 44.69 I 372 VII 17 2 23 514 227 33.96 (P) 429 XII 12 3 23 262 243 45.87 t 31t III 2 23 49 343 185 50.06 V 373 VI 7 11 32 476 10 45.75 t 432 IV 16 10 44 427 355 31.91 I 31(1 VII (1 3 48 503 252 65.24 a* 374 XI 20 '.) (i 239 333 45.21 I 432 X 10 8 28 198 324 75.12 a 310 XII 31 18 281 285 55.41 a* 375 XI 10 38 228 205 45.87 I 433 IX 29 10 12 187 347 65.82 a* 320 IV 25 1 40 435 219 54.70 a 378 IX 8 10 166 346 75.23 a 434 II 25 4 24 738 200 60.15 (/" 320 X 18 6 57 206 301 45.23 i 379 VIII 28 U 27 155 3 65.94 a 435 II 14 7 8 727 298 75.40 o* 32 1 II 11 10 32 723 347 44.64 t 380 I 24 4 28 705 260 60.07 V 435 VIll 10 1 37 137 219 34.55 t 325 XII 22 3 18 071 246 66.03 P 381 I 12 7 52 694 310 75.39 a* 436 II 3 6 45 715 290 74.70 326 XII 11 7 37 660 310 75.37 381 VII 8 2 32 100 232 34.74 t 438 XII 3 2 10 652 229 45.49 f 327 VI 4 2 74 256 34.90 t* 382 1 1 7 082 298 74.71 a 440 V 17 3 20 57 245 45.61 i 329 X U 5 38 596 284 46.12 P 383 XI 11 7 43 030 316 46.15 P 442 IX 20 6 40 578 298 65.64 a 331 III 25 2 16 4 226 75.29 a 385 IV 25 22 52 30 178 05.08 a 446 I 13 7 45 295 308 54.49 a 332 m 13 7 29 353 301 50.01 (P) 386 IV 15 5 47 25 279 55.83 t 446 VII 10 1 30 508 217 05.32 a' 333 U I 9 41 313 338 44.02 w 387 III 6 10 47 346 355 43.94 U') 447 VI 29 3 48 497 2.50 74.55 a 333 VII 28 8 18 525 321 76.09 p 388 VIII 18 7 55 540 314 05.51 a* 449 V 8 2 24 448 233 45.73 t 334 I 22 1 47 303 218 44.70 {0 392 VI 7 5 14 476 274 55.07 a* 454 VIII 10 1 11 138 210 ■45.23 t' 334 VII 17 10 38 514 354 65.31 a 393 V 27 S 38 466 323 74.29 («) 455 VII 30 11 31 127 3 66.03 P 338 V 6 8 41 445 325 54.83 a* 393 XI 20 9 30 239 337 45.87 t 457 VI 8 I 32 78 219 64.75 a 33i) X 19 7 4 206 301 45.89 t 395 IV 6 4 12 416 258 45.54 t* 457 XII 2 23 55 653 194 54.81 a 341 III 4 5 U 744 209 55.40 t* 399 VII 19 10 9 116 340 34 68 (0 458 V 28 10 35 67 353 45.53 t 346 VI 4 38 75 203 45.64 I 400 VII 8 2 43 100 233 45.42 I* 459 V 18 1 48 57 220 36.24 0" 348 IV 15 8 33 26 324 74.47 a 402 V 18 4 5 57 259 74.23 (a) 459 X 12 10 42 600 2 76.42 ip^ 348 X 9 6 16 597 292 4a. 45 t* 402 XI 11 8 20 630 325 45.49 t 460 IV 7 11 11 19 3 44.44 it) 349 IV 4 9 14 15 331 05.22 a* 403 V 7 5 34 46 279 65.00 a* 401 III 27 22 30 8 171 55.19 « 352 II 2 10 22 314 340 44.68 t* 407 11 23 23 40 336 184 55.32 a ■ 461 IX 20 1 54 578 224 44.92 f 353 Vll 17 3 13 514 241 44.61 t 407 VIII 19 1 54 546 222 44.79 i* 462 III 17 2 52 358 232 75.96 a 354 1 11 5 9 292 265 76.14 P 408 II 13 4 44 325 258 70.09 P 464 VII 20 8 18 518 319 65.40 a' 355 V 28 4 15 460 261 45 . 08 i 409 VI 29 2 1 497 227 45.91 (t) 465 I 13 5 10 295 269 45.19 I 356 XI 9 I) 18 228 201 45.22 I 410 VI 18 11 59 487 15 65. If a 405 VII 9 10 14 507 346 74 63 {'• Dale A. 1). L /•t- y' Date A. D. /, l^' y'- 618 X 24 7h 21m 213 304 70.39 (/-) 663 V 12 22 h 21 m. 54 171 34.72 (0 714 VIII 14 231 . 4 m. 144 180 74.86 a (•>2() III 10 2 10 752 224 64.96 a 665 IV 21 3 1 33 237 56.28 (;-) 715 VIII 4 1 57 134 221 65.61 a (WO IX 2 5 48 162 282 44.93 I* 667 VIII 25 4 25 554 260 55.05 I* 716 VII 23 12 2 123 10 46.32 (J') fi2:i XII 27 8 y 678 315 45.02 t 670 VI 23 2 20 493 231 55 58 a 719 V 23 23 57 65 192 56.07 P 6.;4 XII 15 23 58 668 192 44.35 t 670 XII 18 3 46 270 250 64.97 a 721 IX 26 3 55 586 256 55.18 f 628 X 26 2 18 615 235 75.83 a 671 XII 7 7 58 258 313 75.68 a* 724 VII 24 23 13 525 183 55.80 a 627 IV 21 7 8 33 302 34.86 t* 672 VI 1 5 36 473 277 34.05 w 725 1 19 5 303 266 64.94 a 627 X 15 1 42 604 223 75.14 a* 672 XI 25 7 13 247 301 86.36 p 725 Vll 14 11 19 514 3 45.01 t 628 IV 9 23 54 23 191 45.60 t 674 IV 12 13 424 198 65.12 a 726 I 8 8 17 292 313 75.66 a 628 X 3 4 39 593 265 64.43 a 674 X 5 6 28 195 294 44.83 t 726 VII 4 4 3 504 253 34.27 I 630Vnn3 22 3 543 166 35.67 t 678 I 28 10 25 712 346 45.04 t 726 'XII 28 7 28 280 300 rC 33 (P) 63 1 II 7 17 321 194 74.99 a 678 VII 24 9 38 123 337 75.01 a* 727 V 25 12 9 466 21 46.09 (.P) 632 I 27 5 47 310 275 55.69 a* 679 VII 13 12 4 113 12 65.76 a 728 XI 6 8 19 228 323 44.79 t 633 VI 12 9 42 483 344 76.21 {/>) 680 XI 27 2 17 649 233 85.87 a 729 X 27 17 217 201 45.46 t 634 XI 26 10 40 247 356 64.97 {a) 681 V 23 5 52 64 284 34.65 t 732 VIII 25 6 155 285 74.80 a 637 III 31 23 7 414 182 45.74 I 681 XI 16 1 28 637 220 75.19 a* 733 VIII 14 9 7 144 329 65.55 a* 637 IX 24 1 32 183 222 54.13 C) 682 V 12 22 27 54 171 45.40 t 734 XII 30 2 29 682 232 85.89 a 638 III 21 9 41 403 338 65.00 a* 682 XI 5 5 10 626 274 64.49 («) 735 VI 25 4 17 96 260 34.43 t 63'J IX 3 6 14 162 287 35.59 I 686 11 28 6 8 343 281 55.61 I 735 XII 19 1 54 671 223 75.20 a* 611 I 17 3 12 700 241 55.73 a* 688 VII 3 9 12 504 334 55.66 a 737 X 28 7 17 619 311 46.54 (P) 642 XII 27 8 50 679 324 44.35 (0 692 IV 22 7 15 435 304 65.19 a* 740 IV 1 5 25 15 273 45.47 I* 643 VI 21 22 36 92 171 65.93 a 693 IV 11 9 48 424 339 74.43 a 742 Vni 5 6 25 535 292 55.86 a 643 XI 17 7 15 638 310 66.48 iP) 693 X 5 7 6 195 302 45.50 t* 746 V 25 3 39 466 251 65.43 a 644 XI 5 10 14 626 354 75.85 a* 695 II 19 4 13 733 255 55.78 i* 747 V 14 5 32 456 277 74.66 a 645 X 25 9 30 615 341 75.16 a 697 I 28 11 4 712 354 44.37 I 747 XI 7 9 1 228 332 45.45 I* 646 IV 21 7 32 33 306 45.54 t 698 XII 8 10 23 660 353 85.87 (.a) 749 III 23 4 11 406 258 45.89 I 648 II 29 7 38 343 307 74.24 a 699 XI 27 9 34 648 340 75.19 a 753 I 9 10 28 693 351 85.90 {") 648 VIII 24 5 57 553 285 35.72 t 700 V 23 5 47 65 281 45.33 (t) 753 XII 29 10 3 682 344 75.21 a 649 11 17 7 58 332 310 74.96 a* 702 IV 2 4 52 15 269 74.07 a 754 VI 25 3 31 96 247 45.10 f 650 VIII 3 5 38 533 275 64.21 («) 702 IX 26 6 21 586 294 45.84 t 756 X 28 7 51 619 318 45.91 t 651 I 27 2 48 310 229 46.32 P 703 III 22 6 16 4 287 64.83 a 757 IV 23 3 30 36 249 64.63 a 651 XII 18 7 30 269 308 44.29 e 704 IX 4 3 3 565 239 64.38 a 758 X 7 1 35 597 219 74.50 a 653 VI 1 6 5 473 286 44.71 t* 705 II 28 4 4 343 249 46.24 P 759 IV 2 4 14 15 254 36.11 (P) 653 XI 25 23 48 247 191 75.68 {") 705 VII 25 11 40 525 12 76.53 (P) 760 II 21 11 5 336 359 44.20 (0 655 IV 12 6 46 424 298 45.80 t 706 I 19 9 46 303 339 44.27 I 761 VIII 5 2 25 535 230 45.14 I* 658 IX 3 5 51 163 279 46.29 p 707 VII 4 3 56 504 252 44.94 t* 762 i 30 4 314 189 75.63 a 659 VII 25 1 57 124 224 64.33 a 707 XII 29 14 281 194 75.67 a 763 I 18 23 27 303 178 76.31 (P) 660 I 18 1 45 701 217 45 . 03 t 709 V 14 4 57 456 272 46.01 iP) 764 VI 4 10 17 477 351 65.51 a' 660 VII IS 3 5 113 239 75.09 a* 710 X 26 28 35 217 192 44.80 I 764 XI 28 2 2.50 227 44.78/ 661 VII 2 5 18 102 271 65.84 a 712 X 5 6 3 195 285 56.20 P 766 XI 7 7 13 229 303 56.17 J9 602 V 23 '" 31 64 281 43.97 i/)) 714 11 19 3 -' 734 242 45.09 t* 767 IV 3 11 56 417 15 45.94(0 ECLIPSES OF THE SUN IN INDIA. TABLE A. Laiiku time of Lanka time of Lauka time of — Date A. 1). conjunction measured from sunrise. /,. t'-- "''■ Dak A. D. conjunction measured from sunrise. I. l^-- >'■ Date A. D. conjunction measured from sunrise. L. 1^- ''■ 7fi8 HI 23 4h 2 m. 406 254 35.20 I* 815 IX 7 Ih 59 m 568 226 45.29 ( 861 III 15 7h 50 m. 759 313 76.08 Cp^ 709 IX 4 23 55 166 192 65.44 a 816 III 2 22 42 347 170 75.53 i") 862 III 4 9 21 748 832 65.34 o* 770 VIII 25 10 53 155 354 46.14 V 817 n 19 22 41 336 167 76.23 IP) 862 VIII 28 23 40 159 190 54.71 t 772 VU 5 10 45 106 855 45.03 t 818 VII 7 6 1 508 286 65.77 a 863 Vni 18 23 149 288 65.47 a' 772 XII 28 23 44 682 187 64.52 a 818 XII 31 4 41 284 263 44.77 (0 864 VIII 6 7 20 138 300 76.22 (f' 775 V 4 10 25 46 353 64.56 («) 819 VI 26 7 4 497 300 75.01 a' 866 VI 16 9 5 88 331 44.97 (* 775 X 29 4 27 619 265 65.25 a* 820 XII 9 8 57 262 326 66.17 P 866 XII 11 1 25 664 215 74.58 a 779 11 21 5 11 336 268 64.88 a 821 V 5 10 39 448 358 46.11 (J>) 867 VI 6 1 57 78 222 35.71 t 779 VI1116 10 8 546 346 45.20 t 822 IV 25 3 31 438 249 35.37 t* 869 X 9 2 49 600 241 45.39 e 7S0 11 10 7 45 325 305 75.61 a 823 X 7 23 22 198 187 65.33 a 873 11 1 56 317 295 44.74 I 7S() VIII 5 2 57 536 236 34.47 t 824 IX 26 11 2 187 359 46.01 P 873 VII 28 2 35 529 233 75.26 a" 781 VI 26 9 28 498 339 56.33 (P) 826 VIII 7 8 40 138 324 54.82 t 874 VII 17 6 9 518 284 54.50 a 782 XII 9 10 54 262 359 44.78 (0 829 VI 5 6 58 78 301 54.33 a 876 V 27 2 12 470 230 35.58 I 783 XI 29 2 41 251 235 45 45 (* 829 XI 30 5 41 653 282 65.27 a 877 XI 9 12 231 200 65.28 a 786 IV 3 11 58 417 14 85.25 (0 831 V 15 10 57 57 357 35.86 t 878 V 6 4 22 449 258 64.02 K«' 786 IX 27 3 46 187 254 74.66 a 833 III 25 3 53 8 252 64.74 a 880 IX 8 7 20 170 306 54.66 I'* 787 III 24 4 20 407 256 44.52 t 833 IX 17 10 7 578 348 45.33 t 883 VII 8 3 42 109 251 54.10 i"' 787 IX 16 7 34 176 308 05.39 a* 834 III 14 5 55 358 279 75.49 a* 884 1 2 7 1 686 298 65.28 a 789 1 31 2 8 716 225 75.93 a 8.34 IX 7 2 42 568 234 44.63 W* 884 XII 21 9 31 675 335 74.58 a 789 VII 27 2 55 127 239 34.22 i 835 III 3 12 346 280 76.19 (?) 885 VI 16 9 24 89 334 85.64 I 790 I 20 2 12 704 224 75.23 a* 836 VII 17 12 39 518 25 65.85 {a) 888 IV 16 2 40 30 234 75.30 a' 791 1 9 8 14 693 313 54.52 C) 837 XII 31 5 16 284 270 45.44 I* 888 X 9 3 33 601 250 44.72 ( 791 VII 6 2 57 106 236 65.75 a 840 V 5 11 9 449 4 35.43 t* 889 IV 4 3 54 19 249 66.03 P 792 XI 19 1 17 641 218 45.93 I 840 X 29 2 57 220 243 74.59 a 890 VIII lU 8 58 550 331 76.07 P 791 V 4 3 49 47 252 45.27 I* 841 IV 25 3 22 439 245 44.69 t 891 VIII 8 9 18 539 334 75.84 a' 79G IX 6 4 53 567 271 56.02 V 841 X 18 7 31 209 310 65.30 a 892 II 2 7 19 318 299 45.41 <• S(K) \1 25 23 27 498 188 65.69 a 843 III 5 38 748 204 76.03 P 894 VI 7 9 40 480 341 35.65 I 801 VI 15 42 487 205 74.92 a 843 VIII 29 2 16 159 231 44.05 {t) 894 XII 1 3 14 254 246 74.56 {„\ 802 VI 4 3 3 476 238 64.16 a 844 II 22 1 45 737 217 65.30 a* 895 V 28 1 23 470 216 44.90 t H02 XI 29 21 251 198 56.17 ip) 845 II 10 9 20 726 329 54.57 t 895 XI 20 8 42 243 327 65.27 a* 803 IV 25 3 10 438 245 46.05 (P) 845 VIII 6 23 23 13S 182 65.53 a 897 IV 5 21 46 420 164 76.19 (J'< 800 IX Ifi 2 50 177 235 46.05 (P) 846 XII 22 3 42 675 251 55.94 i 898 III 26 11 410 197 65.43 a 807 11 11 9 47 727 340 75.96 (a) 848 VI 5 1 47 78 221 45.05 t* 899 III 15 9 28 759 333 54.67 t 808 I 31 10 10 715 343 75.25 a* 850 X 9 4 50 600 273 56.11 P 901 I 23 5 46 708 279 55.97 t 808 VII 27 1 18 127 213 44.89 I* 851 IV 5 11 6 19 1 64.68 (a) 902 VII 7 23 49 109 191 44.82 t 809 VII 10 9 42 117 337 05.68 a 853 IX 7 1 31 568 215 53.92 iP) 904 XI 10 6 4 633 291 56.14 P HIO XI 30 10 5 652 849 45.93 w 854 11 1 7 23 317 303 54.05 t 905 V 7 7 62 51 315 64.47 a H12 V 14 11 10 57 2 45.20 I* 856 VII 5 23 Hi 508 181 64.42 (a) 906 IV 26 9 20 40 334 75.22 a' HI 2 XI H 1 11 630 214 74.55 a 856 XII 31 2 5 285 220 66.17 P 907 X 10 1 34 601 218 54.01 ("1 813 V 4 3 24 47 244 35.93 t 859 V 6 10 48 449 357 44.76 t 908 III 5 8 9 350 816 43.08 (/. hll III 25 11 4 S 1 44.07 {!) 860 X 8 3 52 209 253 45 . 96 1 911 II 2 3 10 318 234 66.15 P ECLIPSES OF THE SUN IN INDIA. TA r. liK A. I.iin ku time Lill ka time Lanka llmo of Date A 1) i-oujuiicHon measured from sunrise. L. fi- t'- Dale A 1) eunjlinctlon measured from sunrise. /,. f* y'- Date A n. conjunction meuured from 3nnrl8«. /, K >'• '.)l:i VI 7 8h 35 m. 480 323 44.98 I* 960 V 28 4 h. 45 m. 71 267 74.97 a* 1005 I 13 2h 14m. 299 222 45.90 . 911 XI 20 5 58 243 284 45.93 I 961 V 17 7 27 61 305 65.73 a 1007 V 19 65 463 299 45 . 03 f Die IV 5 7 26 420 307 63.48 a 965 III 6 3 351 233 66.07 P 1012 VIII 20 5 32 152 274 55.95 t 9ir, ix 29 23 192 183 54.58 (a) 967 VII 10 6 2 512 284 55.21 I* 1014 I 4 1 12 690 211 45.45 t* 917 IX 19 4 181 255 75.32 a* 968 XII 22 8 34 277 319 43 92 I 1014 VI 29 23 58 103 194 74.71 («) 918 IX 8 4 7 170 234 76.04 (P) 970 V 8 4 38 452 267 55.68 a 1015 VI 19 3 46 92 249 33.48 a 920 I 23 23 34 709 185 65.30 («) 970 XI 1 23 21 225 190 64.52 a 1019 IV 8 1 20 23 212 65.93 a 920 VII 18 7 17 120 303 44.75 t 971 X 22 2 49 214 239 75.22 a* 1021 VIII 11 3 44 543 2.30 35.42 t 921 I 12 1 34 697 213 74.60 {«) 972 IV 16 8 23 431 318 34.17 (') 1024 VI 9 1 27 483 219 55.91 a 921 VII 8 23 110 198 35.49 t* 972 X 10 2 19 202 229 75.92 a 1024 XII 4 24 258 203 64.49 a 923 XI 11 4 47 633 270 43 . 43 t* 974 II 24 23 24 742 183 65.38 («) 1025 XI 23 2 36 247 235 75.18 a' 927 III fi 8 14 350 316 44.66 t 974 VIII 20 6 IS 152 289 44.57 t 1026 V 19 7 15 463 303 34.37 t 927 VIII 29 23 9 5fi0 183 75.46 a 975 II 14 52 730 202 74.66 a 1026 XI 12 1 50 235 222 75.86 a 928 II 24 7 340 191 45.37 t 975 VIII 9 23 17 141 182 35 . 30 I 1027 XI 1 5 37 234 278 66.50 (P) 92S VIII 18 3 34 550 246 54.70 a* 977 XII 13 7 25 667 307 45.44 t* 1028 IX 21 6 27 184 294 44.44 (t) 930 VI 29 34 501 204 33,80 I 978 VI 8 11 9 82 2 74.88 a 1029 IX 10 23 2 173 181 45.15 (0 931 XII 12 1 53 265 222 55.26 a* 978 XII 2 23 2 656 180 44.77 (t) 1032 I 15 10 1 701 342 45 . 40 i* 935 IV f. 58 420 208 44.77 I 980 V 17 14 61 195 46.37 ip) 1032 VII 10 6 26 113 291 74.62 a 935 IX 30 11 29 192 8 75.28 (a) 981 IV 7 8 20 22 320 34.52 t 1033 I 4 1 29 690 213 44.78 t 93f) IX IH 11 20 180 3 73.99 a 982 111 28 11 12 195 45.25 I 1033 VI 29 10 37 102 351 53.40 a* 937 II 13 22 37 731 172 56.01 (P) 982 IX 20 2 22 582 231 54.85 a* 1034 VI 18 22 92 161 46.13 P 938 11 3 7 39 720 306 65.32 a* 984 VII 30 23 9 533 183 36.01 (0 1035 V 10 7 25 54 308 34.32 t 939 I 23 9 27 708 331 74.61 a 986 I 13 3 41 299 245 55.25 t 1036 IV 28 22 56 44 179 45.07 I 939 VII 19 7 57 120 311 35.42 t* 988 V 18 11 35 462 11 55.76 a 1036 X 22 2 38 615 237 54.93 a* 940 VII 7 23 54 no 189 46.19 (P) 988 XI 12 7 39 236 313 64.51 {") 1039 VIII 22 11 7 354 2 55.48 I 9t3 V 17 22 21 61 170 75.06 a 989 V 7 23 32 452 188 44.96 I 1040 II 15 4 54 332 263 55.20 t 912 XI 11 5 26 634 278 44.77 I 989 XI 1 10 39 225 337 75.21 («) 1042 VI 20 8 25 494 323 55.98 a 943 V 7 40 50 203 65.81 o* 990 X 21 10 1 213 345 75.^9 a 1042 XII 15 8 47 269 327 64.49 a 9U n. 20 6 21 582 295 76.23 P 991 III 18 22 47 403 177 56.12 P 1043 VI 9 21 39 483 160 45.18 t 945 IX 9 6 19 571 292 75.52 a* 992 III 7 7 1 752 298 65.42 a* 1043 XII 4 10 39 258 355 85.18 a 946 III 6 8 17 351 315 45.34 I 993 II 24 8 21 741 315 74.70 a 1044 XI 22 9 53 247 342 75.85 a 948 VII 9 8 2 511 316 35 . 87 i 993 VIII 20 7 5 152 299 33.24 I* 1045 IV 19 21 32 435 161 56.29 (/') 949 VI 28 22 53 501 177 45.13 I 995 I 4 1 32 689 218 36.14 P 1046 IV 9 4 50 425 268 65.38 a 949 XII 22 10 30 276 350 55.26 a 996 XII 13 7 53 668 312 44.78 I 1047 III 29 5 54 414 281 74.84 a 950 VI 18 7 21 491 302 64.33 a 998 X 23 5 615 277 76.33 (P) 1047 IX 22 7 11 184 304 45.11 I 952 IV 2fi 21 39 441 161 55.61 («) 999 X 12 4 50 604 272 75.63 a 1048 III 17 7 12 403 298 64.12 («) 953 IV 16 8 34 431 323 44.83 I* 1000 IV 7 7 54 23 312 45.20 t* 1049 II 5 3 17 723 242 46.17 f 955 II 25 6 49 741 296 56.04 P 1000 IX 30 10 18 593 351 54.89 (a) 1051 I 15 10 12 701 343 44.79 t 95S VII 19 7 13 121 298 46.13 P 1001 IX 19 22 57 582 178 44 18 it) 1052 XI 24 4 41 648 271 86 . 37 P 958 XII 13 8 B 667 319 56.14 U') 1002 VIII 11 6 48 543 298 46.07 P 1053 XI 13 4 41 637 270 75 . B8 "' 959 VI 9 3 42 82 252 64.21 " 1004 i Vll 20 3 18 522 241 64.58 a 1054 V 10 6 16 55 289 45.00 1' ECLIPSES OF THE SUN IN INDIA. TABLE A. Lar ka time L» ika time Lanka time Dale A. D. conjunction measured from Bonrlse. I. y- "/'• Date A U (Mjnjunctton measured from sunrise. L 1^- y' Date A. D. conjunction measured from sunrise. L. {'■ '■' 105i XI 2 11 h . Ore. 626 3 54.95 (a) 1107 XII 16 51 . 22 m 671 276 75.69 a* 1161 I 28 4h . 34 m. 715 263 76.43 (7') 1055 X 23 9 615 198 44.26 (I) 1108 VI 11 3 46 86 252 44.77 I 1162 I 17 6 8 704 284 65.71 a' 1056 IX 12 6 24 575 295 46.23 (P) 1109 V 31 11 41 75 8 65.57 a 1162 VII 14 58 117 209 54.53 t 1058 VIII 21 23 48 554 190 74.79 a 1109 XI 24 2 21 648 230 44.30 (0 1163 VII 3 7 25 107 303 65.31 fl* 1059 II 15 * 8 332 250 45 86 t 1110 X 15 7 3 608 307 46.32 p 1164 VI 21 8 29 96 318 76.08 (/" 1059 VIII 11 16 543 194 74.04 {a) 1113 III 19 4 58 5 265 35.75 t 1164 XI 16 8 39 641 330 56.87 ;' 1061 VI 20 5 494 270 35.26 l* 1115 VII 23 3 23 525 245 35.47 I 1166 V 1 11 53 47 14 44.87 (/) lOCii IV 19 11 47 435 13 65.65 (a) 1118 V 22 7 54 467 316 65.89 a 1167 IV 21 4 40 37 263 35.60 I 1064 X 12 23 15 206 188 44.39 I 1118 XI 15 1 18 239 218 44.35 w 1168 IX 3 11 39 567 13 56.41 p 10G6 IX 22 4 44 185 265 55.82 a 1119 V 11 8 43 456 326 75.13 a* 1169 VIII 24 2 32 557 234 35.65 i 1068 II 6 3 25 723 242 45.48 i* 1120 X 24 4 58 218 270 65.75 a* 1172 I 27 1 32 314 209 56.42 V 1069 VII 21 31 123 200 55.24 a* 1122 III 10 4 37 756 262 45.57 t* 1173 VI 12 4 4 487 256 65.39 a lOTO VII 10 12 40 113 20 45.98 I 1123 VIII 22 22 17 155 168 55.05 (t) 1174 VI 1 8 22 477 319 54.61 a 1073 V 9 22 17 55 167 65.73 a 1124 VIII 11 11 16 145 45.78 I* 1174 XI 26 6 251 284 65.73 a' 1074 IV 29 20 44 196 76.50 (P) 1126 VI 22 10 51 96 357 54.69 (t) 1176 IV 11 4 37 428 265 35.71 I 1075 III 19 10 59 4 359 64.37 {a) 1129 IV 20 8 55 36 331 54.21 a 1178 III 21 4 47 407 262 64.21 («) 1075 IX 13 2 12 575 230 55.59 a 1129 X 15 1 42 608 225 65.69 a 1178 IX 13 10 59 177 359 45.62 (* 1076 IX 1 6 51 565 297 74.85 a 1130 X 4 4 47 597 269 74.98 a* 1180 VII 24 8 5 128 315 54.46 w 1079 VII 1 12 24 504 20 35.33 I 1131 IX 23 4 32 586 262 74.27 (a) 1181 I 16 23 19 704 180 54.99 C' 1079 Xn 26 2 47 280 234 85.16 a 1133 VIII 2 11 536 359 35.54 t* 1183 V 23 6 9 68 290 54.00 0-) 1080 VI 20 5 41 494 278 34.59 t 1134 I 27 2 34 314 22S 75.12 a 1183 XI 17 2 9 641 231 65.74 a 1080 XII 14 2 11 269 224 75 . 83 a 1134 VII 23 4 12 526 255 34.80 I' 1184 XI 5 3 54 630 256 75.06 a' 1081 XII 3 6 56 258 295 66 . 47 (P) 1135 I 16 2 35 302 227 75.81 a* 1185 V 1 12 22 47 19 35.53 (0 1083 X 13 23 52 206 196 45.06 I 1137 XI 15 1 41 240 222 45.02 i* 1185 X 25 3 25 619 247 74.37 a 1086 VIII 12 2 27 145 232 74.39 a 1140 IX 12 23 45 177 194 74.22 a 1187 IX 4 10 30 568 354 35.70 f 1087 II 6 3 21 723 240 44.81 t 1141 III 10 4 3 756 252 44.90 I 1188 II 29 1 20 847 211 75.04 a 1087 VIII 1 7 39 134 307 55.17 t* 1141 IX 2 5 50 166 282 54.99 t* 1188 VIII 24 3 18 558 244 44.99 f 10S9 VI 11 5 50 86 284 34.11 t 1143 VIII 12 11 52 145 8 36.41 ip) 1189 II 17 2 22 336 224 75.74 a' 1090 XI 24 4 4 648 257 54.96 a 1144 XII 26 6 3 682 283 54.97 t 1190 VII 4 9 47 508 343 66.23 P lO'Jl V 21 5 1 65 269 65 65 a 1145 VI 22 51 96 205 65.40 a* 1191 VI 23 10 30 498 353 65.48 a' 1093 l.\ 23 9 55 586 347 65.63 a' 1146 VI 11 2 7 86 223 76.17 ip) 1191 XII 18 4 273 254 55.01 I 1094 111 19 5 8 4 269 45.09 t* 1147 X 26 9 46 619 348 65.71 a* 1193 VI 1 3 8 477 239 43.95 (f> 1097 I 16 9 40 303 337 74.47 a 1148 IV 20 4 20 36 260 44.93 t* 1195 IV 12 3 23 428 245 45.04 / 1098 I 5 10 47 292 353 85.15 a 1151 11 18 9 36 336 336 74.40 a 1195 X 6 5 28 198 280 54.88 t 1100 V 11 1 18 456 217 65.80 a 1152 II 7 10 18 325 344 75.10 a* 1197 IX 13 11 42 177 8 46.27 0-^ 1101 IV 30 2 10 445 228 75 05 a* 1153 I 26 10 37 314 347 75.79 {a) 1198 11 7 22 20 726 167 65.74 w 1101 X 24 8 23 217 324 45.04 I 1153 VII 23 2 35 526 229 44.09 t 1199 I 28 7 51 715 308 55.00 t 1102 IV 19 4 48 435 263 64.30 (a) 1165 VI 1 21 38 477 160 65.30 a 1201 XI 27 10 26 653 355 75.75 (") 1103 III 10 4 7 755 257 46.24 iP) 1155 XI 26 10 26 251 353 45.01 I 1202 V 23 2 48 68 238 34.72 t iioovni I 3 38 134 245 45 . 84 I 1156 V 21 1 30 466 216 54.53 a 1202 XI 16 11 49 641 14 85.07 w) 1106 \ii -r, 4 47 682 268 SR.40 1 1160 IX 2 2 56 166 CI 45.67 t 1205 III 22 8 ' 9 317 74.27 " KCfJ/'SFS OF '/HE S(W IN INDIA. T.\ IM.K A. '2.3 Lon) a time Lanka tlmo Lanka timu of Dat.- A I). conjiini-tion from sunriso. I. F y' Date A D. coiOUDutlon mouHurcd from suurlse. I. V- y' Dale A I). coujunotlon moasarod from uunrlao. L. 1^ y' I2lir, HI 11 8h. 38 111. 358 321 74.99 a* 1253 III 1 8li 51m. 748 324 45.07 I* 1300 VIII 15 9li 47 m. 550 341 55.14 U'UC IX 4 11 12 568 3 45.04 I 1255 I 10 4 697 255 56.41 (P) 1301 VIII 4 23 38 540 186 44.39 1207 11 28 10 4 846 340 65.71 (o) 1256 VI 24 1 1 99 210 34.50 t 1302 VI 26 9 15 501 335 .36.20 p 1207 VIII 25 43 558 203 54.28 I 1258 VI 3 9 53 79 340 46.03 iP) 1303 VI 15 22 40 491 175 55.48 1211 XII 7 1 40 262 216 76.45 (P) 1260 IV 12 5 40 30 280 74.82 a 1303 XII 9 8 22 265 321 54.81 1213 IV 22 10 52 439 358 45.10 t* 1260 X 6 11 38 601 12 45.15 (0 1304 VI 4 5 5 481 270 64.70 a' 12U X 5 3 28 199 248 45.56 I* 1261 IV 1 8 26 19 319 65.56 a 1304 XI 27 22 48 254 177 45.49 (0 1210 II 19 6 16 737 287 65.76 a* 1261 IX 25 23 44 590 191 54.41 a 1307 IV 3 8 49 421 326 45.19 f 1217 Vlll 4 3 19 138 243 75.08 a* 1262 VIII 16 12 10 550 21 76.54 iP) 1310 VII 26 23 31 131 187 34.29 (0 1218 I 2S 7 23 716 299 44.33 {') 1265 I 18 23 55 307 187 65.71 a 1312 VII 5 7 19 111 301 45.81 121S VII 24 3 53 127 249 75.83 a* 1266 I 8 1 51 295 215 86.44 U>) 1314 V 15 1 38 61 221 74.59 « 122U VI 2 10 12 78 349 34.65 t 1267 V 25 8 36 470 325 55.32 I* 1315 V 4 5 51 51 282 55.36 «• 1221 V 23 3 29 68 246 35.39 t* 1268 XI 6 .5 11 232 274 45.50 f 1315 X 28 23 47 623 193 64.48 a 1223 IX 26 2 49 589 241 45.78 i 1270 III 23 5 24 410 276 55.87 a 1317 IX 6 10 2 571 348 65.98 a 1226 II 28 2 15 347 221 56.34 P 1271 IX 6 1 170 196 74.88 a 1319 II 20 23 59 340 189 65.66 a 1227 I 19 6 31 306 290 44.33 t 1272 III 1 8 55 749 323 44.40 t 1319 Vm 16 7 20 550 302 44.46 (0 1227 VII 14 23 32 518 188 65.64 a 1272 VIII 25 11 159 195 75.61 a 1320 II 10 1 22 329 207 76.39 P 1228 VII 3 5 4 508 269 54.85 t* 1274 VII 5 8 28 110 321 34.43 t 1321 VI 26 5 39 502 280 55.56 I 1228 XII 28 7 18 284 300 65.73 a* 1275 VI 25 1 51 100 221 35.17 t* 1322 XII 9 7 41 265 309 45.48 i* 1230 V 14 3 34 460 251 35.90 I 1277 X 28 4 17 622 264 45.85 t 1324 IV 24 3 31 442 251 56.03 P 1232 IV 22 2 16 439 227 64.38 {a) 1280 IV 1 1 57 19 220 46.21 P 1325 X 7 21 55 202 167 74.75 («) 1233 X 5 4 13 199 257 46.21 ip) 1281 II 20 8 20 339 317 44.27 t 1326 IV 3 9 17 421 332 34.52 t 1234 VIII 26 5 47 159 283 54.26 («) 1282 II 9 23 7 329 177 54.96 w 1328 VIII 6 7 11 141 303 34.23 (') 1235 II 19 38 737 200 45.04 t 1282 VIII 5 2 25 539 230 55.07 I* 1329 VII 27 18 131 197 34.96 r 1235 Mil 15 10 fi 149 345 75.00 a 1283 I 30 8 5 318 309 65.70 a 1331 XI 30 6 38 656 297 45.87 (• 1236 VIII 3 10 31 138 349 75.75 a* 1284 VI 15 1 53 491 225 36.12 (P) 1332 V 25 8 9 72 318 64.50 1237 XII 19 3 3 675 241 75.77 a* 1285 XI 27 23 40 254 191 54.81 t 1334 V 4 42 51 203 46.02 p 1238 XII 8 3 50 664 252 85.09 a 1287 XI 7 5 4U 232 282 46.17 P 1335 111 25 9 12 330 44.16 t 1239 VI 3 10 58 79 358 35.32 I* 1289 111 23 56 410 207 45.14 1 1336 IX 6 57 571 210 55.25 1 1239 XI 27 3 29 652 247 74.41 W 1289 IX 16 7 11 ISl 304 74.83 a 1337 III 3 7 42 351 305 65.62 - 1240 V 23 2 40 69 232 46.10 V 1290 IX 5 7 15 170 302 75.55 a* 1339 VII 7 12 37 512 24 55.64 t 1241 X 6 11 11 600 7 45.81 (0 1291 VIII 25 11 59 159 11 56.26 P 1339 XII 31 1 49 287 220 54.80 t 1242 IX 26 3 22 590 248 45.12 I* 1292 I 21 3 39 708 248 75.80 a* 1341 XII 9 8 8 266 314 46.15 1' 1243 III 22 1 6 8 208 65.62 a* 1293 I 9 3 53 697 250 85.12 a 1342 V 5 10 44 452 359 56.09 (p) 1245 VII 25 6 10 529 287 65. 72 a 1293 VII 5 9 18 110 332 35.10 I 1343 IV 25 6 14 442 199 45. 3C t* 1246 I 19 6 9 307 283 54.99 I 1293 Xll 29 4 7 68r 252 74.44 a 1343 X 18 5 30 213 281 74.72 a 1247 VII 4 1 8 508 208 44.18 (0 1294 VI 25 12 loo 194 45.88 I 1344 X 7 5 26 202 278 75.42 a' 1248 V 24 11 4 470 a 35.97 I 1296 X 28 4 30 62; 266 45.19 t* 1345 IX 26 10 58 191 358 56.11 P 1249 V 14 1 27 460 218 55.24 t* 1297 IV 22 22 48 4(] I7r 65.43 a 1346 11 25 3 17 741 243 75.87 " 1249 XI 6 6 27 231 295 54.82 t 1299 VIII 2' 2 50 561 239 65.93 (a) 1347 II 11 3 19 730 241 75.17 " 1250 V 3 9 8 449 331 G4.45 a 1300 II 21 7 25 ;!t( 3U- 54.94 r 1347 VIII " Jl 54 142 31-- U.Sll I ECLIPSES OF THE SUN IN INDIA. TABLE A. Lauka time Lanka timo of conjunction from sunrise. Lanka time ll.iU' A 1), coDJunetion moa.sured from sunrise. /, \'- '' Dale A. D /, I'- >■'■ Date A. I) conj nnction asured nrise. L. !'■ ■)'■ 1318 VII 26 211. 38 ni. 131 155 55.67 (0 1391 IV ,r, 5 1. 5(1 ni. 23 280 05.48 a 1447 IX 10 7h 29 m 576 311 66.05 /' 1H50 XI 30 6 26 656 293 55.22 t 1393 VIII 8 y 42 544 341 55.87 a 1448 III 5 4 45 354 264 44.71 t i:!54 III 25 7 22 12 304 54.82 I* 1394 II 1 3 42 321 246 44.78 (0 1448 VIII 29 10 1 565 346 75.33 a 1354 IX 17 8 46 582 328 55.29 t 1397 V 26 22 48 473 178 35.51 t 1451 XII 23 5 280 269 84.64 {«• 1355 IX 6 23 7 572 181 44.56 (0 1398 XI 9 5 1 235 272 75.33 a* 1452 XII 11 3 35 269 277 75.33 a 1358 I 10 10 30 299 349 54.80 I 1400 111 26 1 29 414 218 76.00 a 1453 VI 7 3 3 485 268 44.20 i 1358 VII 7 36 512 202 64.95 a* 1401 III 15 I 36 403 217 75.28 a 1454 IV 27 22 14 446 172 76.20 P 1358 XII 31 1 28 2S8 213 45.48 t 1401 IX 8 7 14 174 305 44.73 t 1455 IV 16 22 38 435 175 75.46 a 1359 VI 2G 1 21 501 211 64.19 («) 1402 III 4 4 8 752 252 64.55 (a) 1456 IV 5 2 40 424 233 64.70 a 1361 V 5 7 49 452 313 35.37 t 1405 I 1 8 36 690 321 55 . 23 l* 1459 II 3 10 17 723 345 55.26 t* 1362 IV 25 54 442 208 34.63 (Q 1406 VI 16 6 15 93 286 35.72 t 1460 VII 18 4 31 124 259 35.50 i 1364 III 4 10 51 752 357 75.90 («) 1407 VI 5 23 27 83 183 36.43 UA 1461 VII 7 21 50 114 157 36.22 (yl 1365 II 21 10 53 741 355 75.20 a 1408 IV 26 5 55 44 285 54.65 t 1461 XII 2 I 14 639 217 66.16 /' 1366 VIII 7 4 52 142 264 55.60 I 1408 X 19 9 9 615 336 55.38 I 1462 V 29 3 20 76 246 54.42 t 1367 VII 27 U 17 181 358 66.41 (i>) 1409 X 8 23 47 604 194 44.67 I 1462 XI 21 10 44 648 359 55.41 (n 1367 XII 22 25 678 202 45.88 (0 1412 II 12 12 10 332 13 44.76 (0 1463 V 18 9 10 65 332 65.19 a" 1369 VI 5 2 46 82 235 55.13 t* 1413 II 1 3 48 321 246 45.45 t* 1463 XI 11 1 35 637 220 44.73 t 1369 XI 30 37 656 204 64.51 a 1415 VI 7 6 14 484 289 35.58 t 1464 V 6 9 57 55 342 73.95 {") 1371 X 9 8 38 604 330 66.09 P 1416 V 26 23 37 474 189 34.84 I 1467 III 6 5 14 354 269 43.37 1' 1373 III 24 22 37 12 171 65.54 a 1419 III 26 8 45 414 325 75.34 a* 1469 VII 9 4 35 515 263 35.80 1 1373 IX 17 7 12 582 303 44.60 it) 1420 IX 8 3 4 174 240 55.43 a* 1470 VI 28 21 53 505 162 35.06 t 1374 III 13 23 40 1 183 76.28 P 1421 VIII 28 7 50 163 309 76.21 ip) 1473 IV 27 5 24 446 278 75.53 a 1375 II 1 8 42 321 323 64.05 w 1422 I 23 2 54 712 236 45.90 e 1474 IV 16 9 57 435 343 54.76 a 1375 VII 29 2 37 533 234 55.79 a 1423 VII 7 23 46 113 190 54.89 I 1474 X 11 2 15 207 231 65.32 «♦ 1376 VII 17 7 8 522 300 65.04 a* 1424 I 2 1 40 690 215 74.52 («) 1475 IX 30 5 27 195 276 76.07 1' 1377 I 10 10 19 299 345 45.47 t 1493 XI 10 8 39 637 330 06.15 p 1476 II 25 4 36 745 262 45.96 I 1377 VII 6 7 48 512 308 64.28 (a) 1428 X 9 25 605 201 44.00 t 1478 VII 29 12 4 135 13 35.43 t 1377 XII 31 1 44 288 215 46.15 P 1429 III 5 8 40 354 324 63.98 (p) 1479 XII 13 9 37 670 342 66.16 (/.I 1378 V 27 1 1 473 213 56.23 ip) 1430 VIII 19 3 9 554 242 73.27 a* 1480 VI 8 10 18 86 350 54.34 ((^ 1 380 V 5 8 34 453 323 34.70 I 1431 VIII 8 3 37 543 246 64.52 a I48I XI 21 10 23 649 352 44.73 t 1381 X 18 3 7 213 242 ,56.05 P 1432 11 2 3 44 322 243 56.14 P 1482 XI 11 1 58 638 225 44.05 (1) 1383 VIII 28 23 21 163 185 44 . 78 I 1434 VI 7 7 4 484 300 34.91 I* 1484 IX 20 12 586 201 75.44 a 1384 VIII 17 12 10 153 15 55.54 i 1435 XI 20 4 19 240 259 56.00 P 1485 IX 9 37 575 204 74.71 „• 1386 I 1 9 18 690 334 45.88 I 1437 IX 29 23 21 195 188 44.65 t 1486 HI 6 4 40 355 259 56.07 /» 1386 VI 27 3 37 103 250 64.25 a 1438 IX 19 10 40 185 355 63 . 39 a 1487 VII 20 12 7 526 16 33.87 ('^ 1386 XII 21 23 54 679 192 55.23 a 1441 I 23 I 49 712 218 55.25 t* 1488 VII 9 5 19 516 273 33.13 1 1387 VI 16 9 43 92 340 55.05 l* 1441 VII 18 6 53 124 296 54 81 t* 1489 XII 22 6 15 280 284 33.98 a 1387 XII 11 8 59 668 328 64.51 (a) 1442 1 12 9 5« 701 338 74.52 a 1491 V 8 12 5 456 18 65.60 {„) 1388 VI 4 22 53 82 176 46.80 t 1444 XI 10 2 6 637 230 53.41 I* 1491 XI 2 23 228 205 64.58 1 1389 IV 26 8 29 44 325 .33.99 I 1445 V 7 2 31 55 232 65.27 «• 1492 X 21 10 IS 218 350 65.30 ,' 1 3'.)0 X 9 52 6(14 212 55 36 t 1446 IV 26 3 20 41 242 76.(13 y 1493 IV 16 5 19 435 272 44.09 1 ECLIPSES OF THE SUN IN INDIA. TA HliK A. La ika tjuii' La. kii lime Lu nku timo \Mv A. 1). coujuiirtton nieasurod ftom sunrise. i. !'■■ >' Dale .\. U. coiijuni-tloii moitsurod from sunrLso. L F y'- Dale A. D. COIlJUIlctioll mea-sarod from sanrlso. I. (' "'' ll'J5 II 25 2h. 49 m. 745 234 55,31 t' 1545 VI 9 7h . 48 111. 487 313 65.85 rt 1595 IX 23 11 h. 14 m. 590 8 40.19 (/') Uy5 VIII 20 4 55 155 269 54.62 I 1545 XII 4 2 12 262 229 54.56 (') 1596 IX 12 3 4 579 243 45.51 I 1190 II 14 10 4 734 340 74.57 a 1546 XI 23 10 40 251 356 75.20 {a) 1597 III 7 22 27 357 108 05.19 a 14'J7 VII 29 12 S3 135 23 36.09 (rt 1547 V 19 3 57 467 252 44.29 t 1599 II 15 55 336 201 46.54 ip) 1498 XII 18 4 11 671 258 55.42 t* 1549 III 29 2 27 418 231 55.43 I* 1000 VI 30 11 35 508 8 45.28 1 U99 VI 8 22 14 86 107 65.02 a 1549 IX 21 4 11 188 261 54.48 I 1600 XII 25 11 30 284 4 75.24 (") lr.00 V 27 22 58 75 177 75.79 a 1550 III 18 8 53 407 325 74.68 a 1001 VI 20 2 11 498 225 34.51 I 1501 X 12 6 17 008 295 66.17 P 1551 VIII 31 12 3 167 13 45.92 (t) 1603 V 1 41 450 207 55.01 I' 1502 IV 7 4 46 26 267 44.58 I 1553 I 14 25 704 288 45.43 t* 1604 IV 19 6 12 439 287 74.85 a* 1502 X 1 7 30 597 311 75.49 a* 1555 VI 18 23 22 96 181 56.20 P 1605 IV 8 39 428 291 74.11 {") 1503 III 27 21 32 10 156 35.29 (0 1555 XI 14 641 292 76.24 {!') 1607 II 16 8 9 737 314 45.47 t* 1503 IX 20 7 55 586 315 74.76 (a) 1556 V 9 3 49 58 254 34.39 I 1608 11 6 8 727 192 44.78 t 1500 I 24 4 53 314 265 74.61 {") 1556 XI 2 6 10 630 294 75.58 a* 1009 XII 16 6 31 675 295 76.28 P 1500 VII 20 12 45 526 24 45.21 t 1557 X 22 6 62 619 301 74.87 («) 1010 VI 11 2 18 89 230 34.18 (0 1507 I 13 6 23 302 286 65.31 a* 1558 IV 18 11 50 38 10 55.90 (0 1010 XII 5 6 2 603 287 85.62 a* 1507 VII 10 2 13 516 224 54.43 t 1560 II 20 3 57 347 252 74.53 (a) 1611 XI 24 7 7 652 803 74.92 1509 XI 12 8 56 240 332 54.57 (0 1500 VIII 21 U 28 558 7 45.40 t 1612 V 20 9 45 69 339 55.70 t 1510 V 8 17 456 199 54.89 I 1561 II 14 6 44 336 291 65.25 a* 1614 IX 23 11 1 590 4 45.55 t 1513 III 7 10 51 756 356 55.34 it) 1561 VIII 10 23 32 547 185 54.04 a 1015 III 19 6 8 8 284 65.15 o* 1514 VIII 20 3 28 156 245 35.31 I* 1563 XII 15 10 52 273 358 54.55 (0 1610 IX 1 58 569 207 74.05 " 1516 I 4 2 26 693 231 06.16 p 1504 VI 8 21 27 487 156 55.12 I 1017 VII 22 10 19 529 351 66.17 P 1517 VI 19 4 40 97 264 64.94 a* 1567 IV 9 10 I 429 346 55.48 a 1019 VII 1 9 37 509 336 34.59 (0 1517 XII 13 4 7 671 255 44.74 (0 1568 IX 21 3 28 188 248 45.16 t* 1021 V 11 7 49 460 314 55.68 a 1518 VI 8 5 24 86 273 05.70 a* 1570 II 5 3 23 726 244 00.18 P 1022 X 24 4 38 221 207 45.08 I 1521 IV 7 5 29 27 276 35.24 t* 1571 VII 22 4 128 195 74.68 a 1024 III 9 3 30 759 248 56.25 ip) 1523 VIII 11 3 23 547 247 35.99 (0 1572 I 15 6 43 705 291 44.70 I* 1626 U 16 8 43 738 321 44.80 I 1520 I 12 23 33 302 181 55.97 (0 1572 VII 10 49 117 204 05.44 a 1627 VIII 1 3 30 138 243 55.94 i") 1527 V 30 1 16 477 216 65.76 « 1575 V 10 4 38 58 264 35.06 t* 1629 VI 11 3 90 239 34. S4 I* 1528 V 18 7 22 406 305 54.97 /* 1578 III 8 11 22 358 4 74.49 {a-) 1630 XI 23 23 50 652 192 54.24 I 1528 XI 12 2 27 240 233 65.27 «* 1579 VIII 22 46 558 295 54.70 a 1631 V 20 23 46 69 187 66.45 (P) 1529 XI 1 4 17 228 259 75.99 a 1580 II 15 1 3 336 204 45.92 I* 1631 X 15 3 55 612 260 46.25 iP) 1530 III 29 5 7 418 273 46.07 (P) 1582 VI 20 4 30 498 262 55.20 t* 1632 IV 9 8 50 30 329 74.33 1 1532 VIII 30 11 20 166 4 35.25 t 1582 XII 15 3 13 273 241 75.25 a 1633 IX 23 5 5 590 273 64.86 a* 1533 VIII 20 4 14 156 255 45.97 (0 1583 XII 4 4 2 262 253 85.95 a 1034 III 19 1 37 8 215 45 . 82 t 1535 VI 30 11 7 107 64.85 a 1687 IX 22 4 1 188 255 45.84 t 1030 VII 22 1 57 529 223 45.43 t 1530 VI 18 11 51 96 9 65.61 a* 1589 II 4 23 39 726 186 45 . 45 1 1037 I 16 3 54 307 248 75.23 a 1539 X 11 23 4 608 183 74.84 (") 1589 VIII 1 6 38 138 294 74.00 a 1638 I 5 4 6 295 250 85.93 a 1540 IV 7 4 10 27 256 55.95 t 1590 VII 21 7 24 128 303 65 . 35 a* 1641 X 24 4 51 221 269 45.76 1* 1541 VIII 21 11 10 557 4 30.05 P 1593 V 20 12 9 69 17 34.99 V) 1643 lU 10 46 759 205 45.52 t* 1542 VIII 11 3 49 547 251 45.34 t 1593 XI 12 22 55 641 181 74.91 («) 1643 IX 3 2 50 170 241 74.39 a 1544 I 24 8 8 314 310 55.96 t 1.594 V 10 - 33 59 231 55.77 t 1644 VIII 22 3 50 159 251 65.13 "_ 126 ECLIPSES OF THE SUN IN INDIA. TABLE A. Lauka tinu- of conjunction measured from sunrise. Lanka time uf Lanka time of Date A. 1). /,. !'■ >'• Date A. D. conjunction moasnred from sunrise. I. !'■ "/'• Date A D conjunction from simrise. L f- y' 1C45 Vlll 11 10 h 47 m. 149 353 55.87 t 1B93 VI 23 nil 27 m. 502 8 56.00 P 1741 XI 27 4h 43 III. 656 267 75.00 a lr,47 VI 22 10 23 100 350 34.77 (0 1695 XI 26 6 35 255 293 55.73 I* 1742 V 22 23 50 72 191 35.46 r UU7 XII 15 23 43 674 189 74.93 a 1697 IV 11 47 432 208 35.65 I* 1744 IX 24 23 48 593 196 45.75 iO 1648 VI 10 23 53 90 190 55.55 I* 1697 X 5 29 202 207 74.24 a 1745 III 22 2 15 12 227 75.05 a 1650 X 15 3 19 612 249 55.61 t 1698 IX 24 1 36 191 221 64.97 a* 1746 III 11 2 16 1 224 75.78 a* 1652 III 29 9 34 19 335 45.77 (t) 1699 III 21 8 2 411 311 54.19 a 1747 VIII 26 7 52 533 314 66.25 (/-l 1653 III 19 1 55 9 218 36.45 (?) 1699 IX 13 9 27 181 330 55.70 I* 1748 VII 14 10 25 523 350 75.52 a' 165-1 II 7 5 35 329 276 54.50 a 1701 VII 24 8 32 132 322 44.55 t 1749 XII 28 8 42 288 321 55.72 I 1651. VIII 2 9 16 540 333 45 . 49 t* 1702 I 17 43 708 201 64.95 a 1751 V 13 23 52 463 195 35.84 I 1655 I 27 11 58 318 9 75.22 (a) 1703 1 6 10 37 697 349 54.26 (t) New Style. 1655 VII 23 35 529 201 34.74 I* 1704 XI 16 4 32 645 267 55.67 t* 1752 XI 6 52 224 211 64.88 «• 1657 VI I 21 46 481 163 55.84 a 1706 V 1 8 46 51 325 45.60 I 1753 V 3 6 52 443 296 54.34 « 1658 V 22 2 15 471 229 65.08 a* 1707 IV 21 I 46 41 218 36.31 W) 1753 X 26 9 32 213 339 55.59 1' 1659 V 11 2 51 460 236 74.32 a 1708 III 11 5 50 2 281 54.41 a 1755 IX 6 7 8 163 303 44 35 (') 1661 III 20 8 54 410 328 45.56 I 1708 IX 3 7 58 572 316 45.67 i* 1756 III 1 1 12 741 209 65.00 « 1662 III 10 I 28 760 214 44.86 t 1709 II 28 11 24 351 2 75.14 («) 1758 XII 30 6 17 679 289 55.69 a* 1G62 IX 2 10 55 170 359 65.07 a 1709 VIII 23 23 38 561 189 34.93 I 1760 VI 13 7 17 83 302 35 . 39 / 1664 I 18 6 51 708 297 76.31 (J») I7I1 XII 28 8 57 287 328 44.36 t 1761 VI 3 38 73 201 36.12 P 1665 I 6 6 8 697 285 85.64 a* 1712 VI 22 21 35 502 158 75.34 {") 1762 IV 24 4 39 34 266 54.26 {") 1665 XII 26 8 4 685 313 64.94 a 1712 XII 17 31 277 201 45.04 i 1762 X 17 7 57 604 819 45.78 I* 1666 VI 22 6 52 100 295 55.47 t 1715 IV 22 8 35 442 325 35.71 t 1763 IV 13 9 25 23 335 75.00 a' 1667 VI 11 12 55 90 24 66.29 P 1716 IV 11 1 34 432 218 44.99 t 1763 X 6 23 42 593 193 45.07 1 1669 IV 20 4 30 40 262 54.98 t* 1716 X 4 9 11 202 336 64.93 a 1764 IV 1 9 31 12 334 75.73 (") 1671 VIII 24 7 12 561 306 66.37 (J") 1718 IX 13 7 51 181 310 46.33 ip) 1766 II 9 11 8 321 359 44.34 (0 1673 VIII 2 8 10 540 315 34.80 I 1719 II 8 5 50 730 280 75.68 a* 1767 I 30 3 2 310 236 45.02 1 1674, VII 23 1 21 530 211 34.07 I 1720 I 28 8 58 719 325 64.96 a* 1768 VII 14 55 512 204 54.08 u:» 1675 VI 18 4 38 492 266 55.92 («) 1720 VII 24 3 46 132 248 55.24 a* 1769 I 8 1 47 288 215 76.47 (p) 1676 VI 1 8 44 481 326 65.17 a* 1721 VII 13 8 24 121 316 66.04 P 1769 VI 4 7 24 474 308 35.90 1 1676 XI 25 6 46 254 298 45.05 I 1723 V 23 2 7 72 227 54.78 t 1770 V 25 33 464 204 45.17 r 1677 V 21 9 25 470 334 04.41 a 1727 IX 4 7 32 572 308 34.98 t 1770 XI 17 8 55 235 332 04 . 86 a 1680 III 20 9 38 411 337 44.89 I* 1728 VIII 24 12 562 195 44.25 t 1772 X 26 8 37 214 324 46 . 23 I' 1681 IX 2 1 45 170 219 55.75 i 1730 VII 4 3 59 512 254 75.43 a 1773 III 23 4 32 403 263 75.78 .< 1683 VII 14 1 7 121 210 44.62 I 1730 XII 28 9 23 288 333 45.03 I* 1774 III 12 9 10 752 329 65.03 a- 1685 XI 16 5 46 645 287 46.30 V 1731 VI 23 4 55 50!. 266 64.68 a* 1774 IX 6 1 2 163 210 65.04 ,r 1686 V 12 5 16 61 276 64.12 a 1731 XII 17 23 59 277 191 55.72 t 1775 VIII 26 4 14 163 255 75.81 a 1687 V 1 11 46 61 12 54.92 a 1734 IV 22 9 21 443 335 45.05 I* 1776 I 21 1 55 701 223 46 . 33 (/'1 1687 X 26 4 27 623 265 64.95 a 1733 X 6 1 22 202 216 55.62 I 1777 VII 4 23 30 103 187 44.55 U^ 1688 IV 20 1 8 41 210 45.66 I* 1737VIin4 23 81 153 188 44.41 I 1781 X 17 7 59 604 318 45.10 / 1690 VIII 24 16 561 200 45.62 t 1738 VIII 4 10 47 142 354 55.17 a 1782 X 6 23 54 694 194 44.39 t 1691 II 18 8 45 340 246 75.17 a 1739 XII It 8 15 678 320 46.32 (P) 1784 VIII 15 23 28 644 187 75.68 a IC'j:.' 11 7 3 42 329 243 75.88 " 1741 VI 2 9 15 8i. 334 44.71 t 1785 11 9 11 46 321 ' 45.01 ('1 ECLIPSES OF THE SUN IN INDIA. T A P.li K A. 127 Dote A. I). Lanku thiio of coujunction lut'aMired from snnrlse. i. V- y' Dale A B Luuka time of CODjUDCtlOD measured from sunrl.se. L. F- y'- Dole A. U. LuDka time of eolOuDCtiOQ measured f^om aunrlHO. L. 1^ y'- 17H5 VII 5 Oh 43 m. 633 203 64.92 «• 1817 XI 9 h. 57 m 626 213 45.15 I* 1850 IV 5 41 . 57 m. 10 270 44.21 (0 17S6 I 30 1 58 310 218 55.71 t* 1818 V 5 27 44 290 75.54 a 1856 IX 29 2 53 586 242 75.94 (") 1788 VI 4 8 1 474 316 45.25 f 1819 IX 19 11 51 576 17 66.53 {]>) 1857 IX 18 4 38 575 260 65.19 a* 178« XI 17 2 19 235 231 55.55 f 1821 111 4 4 55 343 265 44.97 t 1858 III 15 11 17 355 359 55 . 05 («) 17'JI IV 3 11 50 414 13 75.82 (0) 1823 II 11 2 24 322 222 76.46 (I') 1801 I 11 2 32 291 230 64.82 («) 1791 IX 27 22 39 185 178 44.25 (0 1824 VI 26 22 47 495 176 45.40 I 1801 VII H 1 17 506 212 54.78 a 1792 IX 16 8 18 174 320 04.98 a 1824 XII 20 9 44 209 341 64.83 a 1862 XII 21 4 8 209 254 46.16 P 1793 III 12 5 11 752 268 44.35 (0 1825 VI 16 11 28 485 5 54.62 (0 1864 V 5 23 18 440 185 55.20 t 1793 IX 5 11 2 103 358 75.74 a* 1827 IV 26 2 5 435 228 65.93 a 1867 III 6 8 42 745 324 65.77 a 1794 VIII 25 11 31 152 2 66.46 (P) 1828 IV 14 8 22 424 320 55.15 I* 1868 VIII 18 4 16 145 257 34.95 /• 1795 I 20 23 26 701 185 55.71 (") 1828 X 8 23 11 196 185 64.89 a 1871 VI 18 1 34 86 219 74.54 a 1795 VII 16 40 114 294 44.47 t 1829 IX 28 1 185 209 75.62 a 1871 XII 12 3 6 600 243 45.19 I' 1790 I 10 5 20 690 172 75.02 a 1830 11 23 3 56 734 253 40.37 (P) 1872 VI 6 2 28 70 230 65.31 a* 179f. VII 4 22 9 104 265 35.24 t 1832 VII 27 13 6 124 29 35.09 (t) 1874 X 10 10 6 597 352 75.99 a 1798 XI 8 40 620 210 45.83 (D 1833 VII 17 6 21 114 286 35.83 t 1875 IV 6 5 40 16 279 44.87 I* 1799 V 4 23 17 44 184 74.87 («) 1835 XI 20 9 35 637 342 45.17 I 1875 IX 29 11 59 586 17 05.24 («) ISOO IV 23 23 36 34 187 75.61 a 1836 XI 9 39 627 206 54.47 I 1877 III 15 1 58 355 217 76 . 39 P 1801 IV 13 3 27 23 242 66.32 iP) 1840 III 4 3 10 344 237 55.07 I* 1879 I 22 10 50 302 350 64.82 (") 18U2 VIII 28 6 8 554 288 75.76 a 1840 VIII 27 5 49 554 279 54.38 (D 1879 VII 19 8 10 516 314 54.86 a 1S03 V11117 7 29 543 305 05.00 a* 1842 VII 8 7 506 286 45.47 t 1881 V 27 •2 40 467 178 66.14 P 1804 II 11 10 29 322 346 55.71 (t) 1843 XII 21 4 14 269 257 55.52 t* 1882 V 17 6 38 456 295 55.33 I* 1805 VI 26 22 22 495 172 36.05 P 1845 V 6 9 1 446 333 60.00 («) 1887 VIII 19 4 43 146 202 45 . 63 t 1806 XII 10 1 22 257 217 04.84 a 1846 X 20 6 48 207 300 64.85 a 1889 VI 28 7 5S 97 314 74.40 a 1807 VI fi 4 28 475 260 54.54 t 1847 IV 15 5 26 425 274 44.47 t 1890 VI 17 9 2 86 329 65.22 a* 1807 XI 29 10 53 246 359 55.54 if) 1847 X 9 8 12 195 318 75.58 a* 1890 XII 12 2 15 600 228 54.50 t 1808 XI 18 1 46 230 221 46.19 ip) 1848 IX 27 8 40 184 323 76.28 P 1894 IV 6 3 5 10 238 55.57 t* 1810 IV 4 45 414 205 55.10 a 1849 11 23 34 734 201 65.75 a* 1894 IX 29 4 47 580 267 44.54 t 1813 II 1 7 55 712 311 65.72 a* 1849 VIII 18 4 37 145 264 44.20 t 1895 VIII 20 12 547 17 36.39 iP) 1814 VII 17 5 37 114 276 35.16 t* 1850 II 12 5 33 723 274 75.05 a 1896 VIII 9 4 6 537 256 45.70 I 1815 VII 6 22 57 104 175 35.91 t 1852 XII 11 2 36 659 237 45.86 t 1898 I 22 6 28 302 287 45.51 I* 1816 XI 19 9 13 037 338 45.84 I* 1855 V 16 1 17 55 211 50.12 P 1900 XI 22 6 21 240 293 74.77 («) 1817 V 16 6 55 286 74.79 a* 128 ECLIPSES OF THE SUN IN INDIA. TABLE B. A + F. 2G0° 270° 280° 290° 300° 310° 320° 330° 310° 350° 0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 100° L. = 0° * = = 40° ).080.07( ).080.10 ).13( ).18 3.25 3.33 3.430.53 3.610.69 3.74 3.78 3.81 3.82 3.82 30° 0.14 ).140.16 3.19 3.24 3.32 3.41 3.53 0.65 3.75 3.84 0.90 3.95 3.98 3.99 3.99 20° 0.24 1.240.25 3.28 3.34 3.41 ).51 3.630.77 3.89 3.99 1.07 1.12 1.15 1.16 1.16 10° 3.37 3.38 3.40 3.44 3.51 3.62 3.73 3.88 1.02 1.13 1.23 1.28 1.31 1.33 1.33 0° 3.51 3.51 3.53 3.57 0.64 3.74 3.85 1.00 1.15 1.26 1.36 1.43 1.47 1.49 1.49 L.= 10°* = = 40° 0.06 ).06 0.08 3.11 0.15 0.21 0.28 0.36 0.46 3.55 0.64 0.72 0.76 0.80 0.81 0.82 0.81 30° 3.14 0.15 3.18 0.22 0.28 0.36 0.45 0.57 3.68 0.78 0.87 0.93 0.97 0.99 0.99 0.98 20° 0.25 0.26 0.27 0.31 0.37 0.45 0.55 0.67 0.81 0.93 1.03 1.10 1.14 1.16 1.16 1.15 10° 0.37 0.37 0.39 0.42 0.48 0.55 ).66 0.78 0.93 1.06 1.17 1.25 1.30 1.33 1.33 1.32 1° 0.51 0.52 0.55 0.60 0.68 0.78 0.90 1.04 1.19 1.31 1.39 1.45 1.48 1.49 1.48 L. = 20° 4.= = 40° 0.07 0.08 0.10 0.14 0.18 0.25 0.32 0.41 0.50 0.59 0.67 0.74 0.78 0.81 0.81 0.81 0.79 0.76 30° 0.15 0.16 0.17 0.21 0.25 0.32 0.40 0.50 0.61 0.72 0.82 0.90 0.95 0.98 0.99 0.98 0.96 20° 0.25 0.27 0.30 0.34 0.41 0.50 0.60 0.72 0.85 0.96 1.06 1.12 1.15 1.16 1.16 1.14 10° 0.38 0.40 0.44 0.51 0.60 0.70 0.83 0.97 1.09 1.20 1.27 1.31 1.32 1.32 1.30 0° 0.52 0.54 0.58 0.64 0.72 0.82 0.95 1.09 1.22 1.34 1.42 1.46 1.48 1.48 1.46 L.= 30°4< = = 40° 0.08 0.09 0.12 0.16 0.21 0.27 0.35 0.44 0.54 0.63 0.69 0.75 0.79 0.80 0.80 0.79 0.77 0.73 30° 0.15 0.16 0.19 0.23 0.29 0.36 0.44 0.54 0.65 0.75 0.85 0.92 0.96 0.98 0.98 0.97 0.94 0.89 20° 0.26 0.29 0.33 0.38 0.44 0.53 0.65 0.77 0.89 1.00 1.08 1.14 1.15 1.15 1.15 1.11 10° 0.39 0.41 0.44 0.49 0.56 0.65 0.77 0.88 1.02 1.14 1.24 1.29 1.32 1.32 1.30 1.28 0° 0.54 0.57 0.63 0.69 0.77 0.88 1.01 1.15 1.28 1.38 1.44 1.48 1.48 1.46 1.43 L. = 40° (J. = 40° 0.08 0.09 0.11 0.15 0.19 0.24 32 0.40 0.48 0.57 0.65 0.71 0.76 0.79 0.79 0.78 0.75 0.72 0.69 30° 0.17 0.19 0.23 0.27 0.32 0.40 0.48 0.59 0.09 0.80 0.88 0.94 0.96 0.97 0.95 0.92 0.89 0.84 20° 0.29 0.32 0.37 0.43 0.50 0.59 0.69 0.82 0.93 1.04 1.10 1.14 1.15 1.13 1.10 1.06 10° 0.40 0.44 0.48 0.53 0.62 0.70 0.81 0.94 1.06 1.18 1.27 1.30 1.31 1.29 1.27 1.22 0° 0.58 0.61 0.67 0.74 0.82 0.93 1.07 1.19 1.32 1.41 1.45 1.48 1.47 1.43 1.39 L.= 50° 4. = 40° 0.09 0.11 0.14 0.17 0.22 0.29 0.35 0.43 0.51 0.60 0.68 0.73 0.77 0.78 0.78 0.76 0.72 0.69 0.64 0.59 30° O.l'J 0.21 0.25 0.3( 0.37 0.44 0.53 0.63 0.73 0.82 0.90 0.94 0.96 0.95 0.93 0.89 0.84 0.79 20° 0.32 0.35 0.40 0.47 0.54 0.64 0.74 0.85 0.97 1.06 1.12 1.14 1.13 1.10 1.06 1.01 10° 0.44 0.47 0.52 0.58 0.07 0.77 0.87 0.98 1.11 1.21 1.28 1.30 1.30 1.27 1.22 1.17 0° 0.61 0.R6 0.71 0.8( 0.89 1.00 1.12 1.24 1.35 1.43 1.46 1.45 1.43 1.39 1.33 L.= 60° 4< = 40° 0.11 0.14 0.17 0.21 0.28 0.33 0.40 0.48 0.55 0.63 o.7( 0.75 0.78 0.78 0.75 0.73 0.69 0.64 0.59 0.54 30° 0.22 0.25 0.30 0.36 0.42 0.50 0.58 0.68 0.77 0.86 0.92 0.95 0.95 0.93 0.89 0.84 0.79 0.73 20° 0.35 0.40 0.45 0.52 0.60 0.69 0.80 0.91 1.01 1.08 1.10 1.11 1.09 1.05 1.00 0.94 0.88 10° 0.49 0.52 0.57 0.65 0.73 0.82 0.94 1.06 1.16 1.24 1.29 1.30 1.27 1.24 1.18 1.11 0° 0.66 0.72 0.79 0.87 0.96 1.07 1.18 1.30 1.39 1.44 1.45 1.44 1.39 1.34 1.27 L.= 70° *■ = 40° 0.15 0.17 0.21 0.25 0.82 0.38 0.44 0.52 0.59 0.65 0.72 0.75 0.77 0.76 0.73 0.69 0.65 0.59 0.54 0.49 80° 0.25 0.29 0.34 0.4c 0.47 0.54 0.63 0.71 0.79 0.87 0.92 0.93 0.92 0.89 0.84 0.79 0.78 0.67 20° 0.4C 0.45 0.51 0.57 o.or 0.75 O.8.- 0.94 1.03 1.09 1.11 1.09 1.0.- 1.00 0.94 0.89 0.82 10° 0.58 0.04 0.71 0.79 0.88 0.98 1.09 1.19 1.2f 1.28 1.26 1.22 1.16 1.10 1.04 0° 0.72 0.78 0.84 0.93 1.02 1.13 1.24 1.34 1.41 1.44 1.42 1.38 1.33 1.27 1.2( ECLIPSES OF THE SUN IN INDIA. TABLE B. 1 29 X + y.. 2U0° •270° 280° 2i)0° 300° 310° :!20° ;wo° 310° 3.50° 0° 10° 20° 30° 10° .W" «0° 70° 80° 90° 10()° L = 80°(p=40° 0.17 0.21 0.26 0.30 0.36 0.42 0.49 0.55 0.62 0.68 0.72 0.74 0.74 0.72 0.68 0.64 0.59 0.53 0.49 0.43 80° 0.29 0.33 0.39 0.45 0.52 0.59 0.67 0.75 0.82 0.88 0.91 0.91 0.88 0.83 0.78 0.72 0.68 0.60 20° 0.45 0.51 0.57 0.64 0.71 0.81 0.90 0.99 1.05 1.09 1.08 1.05 1.00 0.94 0.87 0.81 0.75 10° 0.63 0.70 0.76 0.86 95 1.04 1.14 1.22 1.26 1.25 1.22 1.10 1.10 1.03 0.96 0° 0.78 0.85 0.92 1.01 1.10 1.20 1.30 1.38 1.42 1.42 1.38 1.33 1.27 1.20 1.13 L. = 90° 41= 40° 0.21 0.25 0.29 0.35 0.40 0.46 0.52 0.58 0.65 0.69 0.72 0.73 0.72 0.68 0.63 0.58 0.53 0.48 0.43 0.38 0.33 30° 0.34 0.39 0.45 0.51 0.57 0.65 0.72 0.80 0.85 0.89 0.90 0.88 0.84 0.78 0.72 0.66 0.60 0.55 0.49 20° 0.51 0.5C 0.62 0.70 0.77 0.86 0.94 1.01 1.06 1.07 1.05 1.00 0.94 0.86 0.80 0.73 0.67 10° 0.71 0.77 0.85 0.93 1.02 1.10 1.18 1.23 1.25 1.23 1.17 1.10 1.03 0.96 0.89 0° 0.85 0.92 0.99 1.08 1.16 1:25 1.34 1.39 1.41 1.39 1.34 1.27 1.19 1.12 1.05 L. = 100° 4. = 40° 0.25 0.29 0.34 0.38 0.44 0.50 0.55 0.61 0.66 0.69 0.71 0.70 0.68 0.64 0.58 0.53 0.47 0.42 0.37 0.32 0.28 30° 0.39 0.44 0.49 0.56 0.62 0.09 0.76 0.82 0.87 0.89 0.88 0.84 0.79 0.73 0.67 0.60 0..54 0.48 0.44 20° 0.57 0.63 0.69 0.77 0.84 0.91 0.98 1.03 1.06 1.06 1.01 0.95 0.89 0.81 0.74 0.68 0.62 10° 0.77 0.83 0.90 0.99 1.07 1.14 1.20 1.23 1.22 1.17 1.11 1.04 0.96 0.89 0.82 0° 0.92 0.98 1.05 1.14 1.22 1.30 1.36 1.39 1.38 1.33 1.26 1.19 1.11 1.04 0.97 L. = 110°i?)=40° 0.34 0.39 0.44 0.49 0.54 0.59 0.63 0.67 0.70 0.70 0.68 0.64 0.59 0.54 0.49 0,43 0.38 0.32 0.27 0.24 30° 0.45 0.50 0.56 0.61 0.67 0.73 0.78 0.83 0.86 0.87 0.84 0.79 0.73 0.67 0.61 0.54 0.48 0.43 0.39 20° 0.64 0.70 0.70 0.82 0.89 . 95 1.00 1.04 1.04 1.01 0.95 0.89 0.81 0.74 0.67 0.62 0.56 10° 0.84 o.yi 0.97 1.04 1.11 1.17 1.21 1.21 1.18 1.12 1.05 0.96 0.88 0.82 0.75 0° 1.00 1.07 1.13 1.20 1.28 1..34 1.37 1.38 1.34 1.28 1.20 1.12 1.04 0.98 0.91 L. = 120°<}i = 40° 0.39 0.43 0.4S 0.52 0.57 0.61 0.65 0.68 0.68 0.67 0.64 0.59 0..54 0.49 0.43 0,37 0.32 0.28 0.24 0.21 30° 0.55 0.60 0.66 0.71 0.76 0.80 0.84 0.85 0.84 0.79 0.74 0.67 0.61 0.54 0.48 0.43 0.38 0.34 20° 0.70 0.75 0.81 0.86 0.92 0.97 1.01 1.02 1.00 0.95 0.89 0.82 0.75 0.67 0.61 0.55 0.51 10° 0.91 0.97 1.02 1.08 1.14 1.18 1.19 1.17 1.12 1.04 0.96 0.89 0.82 0.75 0.69 0° 1.07 1.13 1.19 1.25 1.31 1.35 1.36 1.34 1.29 1.20 1.12 1.04 0.97 0.91 0.85 L. ^130° 4. =40° . 44 . 48 0.52 0.56 0.60 0.63 0.66 0.67 0.67 0.65 0.60 0.55 0.49 0.43 0.37 0.33 0.28 0.24 0.21 30° 0.62 0.06 0.71 0.75 0.79 0.82 0.84 0.83 0.81 0.75 0.69 0.62 0,55 0.48 0.43 0.38 0.34 0.31 20° 0.76 0.81 0.80 0.91 0.95 0.99 1.01 1.00 0.97 0.90 0.83 0.75 0.67 0.01 0.55 0.50 0.40 10° 0.97 1.02 1.07 1.11 1.16 1.18 1.17 1.13 1.06 0.97 0.89 0.81 0.74 0.68 0.63 0° 1.14 1.19 1.24 1.28 1.32 1.35 1.34 1.29 1.22 1.13 1.05 0.97 0.88 0.84 0.79 L. = 140° 4. = 40° 0.52 0.55 0.58 0.61 0.64 0.65 0.65 0.64 0.60 0.56 0.50 0.43 0.38 0.33 0.28 0.24 0.21 O.IS 30° 0.65 0.69 0.73 0.77 0.80 0.82 0.82 0.80 0.76 0.70 0.62 0.55 0.49 0.43 0.38 0.34 0.30 20° 0.86 0.90 0.94 0.97 0.99 1.00 0.97 0.92 0.85 0.77 0.69 0.62 0.56 0.51 0.46 0.43 10° 1.02 1.07 1.10 1.14 1.16 1.17 1.14 1.08 1.00 0.92 0.84 0.77 0.71 0.65 0.61 0° 1.19 1.24 1.27 1.31 1.33 1.33 1.30 1,24 1.16 1.07 0.99 0.91 0.85 0.79 0.75 L = 150° 4 = 40° 0.55 0.58 0.61 0.63 0.64 0.64 0.63 0.61 0.56 0.51 0.45 0.39 0.33 0.28 0.24 0.21 0.18 0.17 30° 0.70 0.73 0.70 0.79 0.80 0.81 0.80 0.77 0.72 0.65 0.57 0.50 0.44 0.39 0.35 0.31 0.29 20° 0.89 0.92 0.96 0.97 0.98 0.97 0.93 0.87 0.79 0.70 0.62 0.55 0.50 0.46 0.43 0.40 10° 1.07 1.10 1.13 1.15 1.16 1.15 1.10 1.03 0.94 0.85 0.77 0.70 0.65 0.60 0.57 0° 1,24 1.2s 1.30 1.32 1.33 1.31 1.26 1.19 1.09 1 . 00 0.92 0.86 0.80 0.76 73 I30 ECLIPSES OF THE SUN IN INDIA. TABLE B. A + ,x. 2G0° 270° 280° 290° 300° 310° 320° 330° 340° 350° 0° 10° 20° 30° 40° 50° G0° 70° 80° 90° 100° L. = 160° 1^=40° 0.58 O.flO 0.02 0.63 0.64 0.63 0.61 0.57 0.52 0.46 0.40 0.34 0.29 0.25 0.22 0.19 0.17 0.16 30° 0.76 0.78 0.79 0.80 0.79 0.77 0.72 0.66 0.59 0.52 0.45 0.39 0.34 0.31 0.28 0.27 20° 0.92 0.95 0.90 0.97 0.96 0.93 0.88 0.81 0.73 0.64 0.57 0.51 0.46 0.43 0.40 0.39 10° 1.10 1.13 1.14 1.15 1.14 1.11 1.05 0.97 0.88 0.79 0.71 0.65 0.60 0.57 0.55 0° 1.27 1.30 1.31 1.32 1.31 1.27 1.21 1.13 1.03 0.94 0.86 0.81 0.70 0.73 0.71 L. = 170° $ = 40° 0.62 0.63 0.63 0.62 0.60 0.57 0.52 0.47 0.39 0.33 0.29 0.24 0.21 0.18 0.16 0.15 30° 0.78 0.79 0.79 0.79 0.77 0.73 0.67 0.61 0.53 0.46 0.40 0.34 0.31 0.28 0.27 0.20 20° 0.95 0.96 0.97 0.96 0.94 0.90 0.83 0.76 0.67 0.59 0.52 0.47 0.43 0.41 0.40 10° 1.12 1.13 1.14 1.13 1.11 1.06 0.99 0.91 0.82 0.73 0.66 0.61 0.57 0.54 0.53 0° 1.30 1.30 1.31 1..30 1.27 1.22 1.15 1.06 0.97 0.88 0.81 0.76 0.72 0.70 0.69 L. = 180° 1^=40° 0.63 0.63 0.62 0.60 0.57 0.54 0.49 0.42 0.36 0.30 0.25 0.21 0.18 0.17 0.16 0.16 30° 0.79 0.79 0.79 0.77 0.73 0.69 0.63 0.56 0.48 0.41 0.35 0.31 0.28 0.27 0.26 0.26 20° 0.96 0.96 0.96 0.94 0.90 0.85 0.78 0.70 0.61 0.53 0.47 0.43 0.40 0.39 0.38 10° 1.14 1.14 1.13 1.11 1.07 1.02 0.94 0.85 0.76 0.67 0.61 0.57 0.55 0.53 0.53 0° 1.31 1.31 1.30 1.28 1.24 1.18 1.09 1.00 0.91 0.82 0.77 0.73 0.71 0.69 0.69 L. = 190°(fi=40° 0.63 0.62 0.60 0.57 0.54 0.49 0.44 0.38 0.31 0.26 0.21 0.18 0.16 0.15 0.15 0.10 30° 0,79 0.78 0.77 0.74 0.70 0.65 0.68 0.51 0.43 0.37 0.32 0.28 0.26 0.26 0.26 20° 0.97 0.96 0.94 0.91 0.87 0.81 0.73 0.65 0.56 0.49 0.44 0.41 0.39 0.39 0.40 10° 1.14 1.13 1.11 1.08 1.03 0.97 0.88 0.79 0.70 0.62 0.57 0.54 0.53 0.63 0.54 0° 1.31 1.30 1.28 1.24 1.19 1.12 1.03 0.94 0.85 0.78 0.73 0.70 0.69 0.69 0.70 L. = 200°4i = 40° o.on 0.58 0.54 0.60 0.45 0.39 0.33 0.27 0.22 0.18 0.16 0.15 0.16 0.17 30° 0.77 0.74 0.70 0.66 0.60 0.52 0.45 0.38 0.32 0.28 0.26 0.26 o.2r 0.28 20° 0.96 0.94 0.91 0.87 0.82 0.75 0.66 0.58 0.50 0.44 0.40 0.38 0.38 0.39 0.41 10° 1.14 1.11 1.08 1.04 0.98 0.91 0.82 0.73 0.65 0.58 0.54 0.53 0.53 0.55 0.57 0° 1.30 1.28 1.26 1.20 1.14 1.07 0.98 0.88 0.80 0.73 0.70 0.69 0.69 0.71 0.73 L. = 210°<})=40° 0.58 0.55 0.50 0.40 0.40 0.34 0.28 0.22 0.18 0.15 0.15 0.15 0.17 0.19 30° 0.74 0.71 0.66 0.61 0.54 0.47 0.40 0.33 0.29 0.26 0.25 0.26 0.28 0.31 20° 0.91 0.87 0.82 0.7( 0.69 0.61 0.52 0.45 0.40 0.38 0.37 0.38 0.41 0.44 10° 1.11 1.08 1.04 0.99 0.93 0.85 0.76 0.67 0.60 0.55 0.52 0.52 0.54 0.57 0.60 0° 1.28 1.25 1.20 1.15 1.08 1.00 0.91 0.82 0.75 0.70 0.68 0.69 0.71 0.73 0.77 L. = 220°4>=40° 0.55 0.51 0.46 0.41 0.34 0.28 0.23 0.18 0.15 0.14 0.15 0.16 0.19 0.22 30° 0.71 0.66 0.61 0.55 0.48 0.40 0.34 0.28 0.25 0.24 0.25 0.27 0.30 84 20° 0.88 0.S3 0.77 0.70 0.63 0.55 0.47 0.41 0.38 0.37 0.38 0.41 0.45 0.49 10° 1.05 1.0( 0.94 0.86 0.78 0.70 0.61 0.54 0.51 0.51 0.53 0.!>6 0.6( 0.64 0° i.2r 1.21 i.ir 1.10 1.02 0.93 0,85 0.76 0.70 0.67 0.67 0.69 0.78 0.77 0.81 L. = 230°4' = 40° 0.51 0.47 0.42 0.35 0.29 0.24 0.19 0.16 0.14 0.14 0.16 0.19 0.22 30° 0.67 11.62 o.sr 0.49 0.42 0.35 0.30 0.25 0.24 0.24 0.27 0.30 0.35 20° i).8: 0.78 0.71 0.04 0..50 0.48 0.41 0.37 0.35 0.37 0.40 0.44 0.49 10° . 99 0.94 0.87 0.79 0.71 0.62 . 55 . 5t 0.49 0.51 0.54 0.59 64 0.69 0" 1.21 l.K l.K 1,02 0.95 0.80 0.78 70 0.6C . 65 . 67 0.71 0.75 0.81 0.S6 ECLIPSES OF THE SUN IN INDIA. TAHIiK. 1}. '31 A + /i. •2(5(1° 270° 280° 290° 3(K)° :{10° 320° 330° 310° 3.-iO° 0° 10° 20° 30° W° 50° 60° 70° 80° ao° 1(KI° L = 240° 4. =40° 0.46 0.41 0.35 0.29 0.24 0.19 0.15 0.13 0,13 0.15 0.18 0.22 0.26 30° 0.61 0.55 0,49 0.43 0.35 0.30 0.25 0.22 0,23 0.25 0.29 0.34 0.39 20° 0.78 0.72 0.65 0,57 0.49 0.43 0.37 0.34 0,35 0.38 0.43 0.49 54 1U° 0.94 0.87 0.81 0,73 0.64 0.57 0.51 0.48 0.49 0,53 0.58 0.64 0.70 0.76 0° 1.16 1.10 1.04 0.96 0.88 0,79 0.72 0.66 0.64 0.65 0.69 0.74 0.80 0.86 0.93 L = 250°* = 40° 0.35 0.29 0.24 0.18 0.14 O.IS 0.12 0.14 0,18 0,22 0.27 0.32 30° 0.55 0.49 . 42 0.36 0.29 0.24 0.22 0.22 0.24 0.28 0.34 0.40 0,45 20° 0.71 0.65 0.57 0.50 0.43 0.37 0.34 0.34 0.37 0.42 0,48 0.55 0.61 10° 0.87 0.81 0,73 0.65 0.57 0.50 0.47 0.48 0.51 0.57 0.64 0.71 0.77 0° 1 09 1.03 0.97 0,89 0,81 0.73 0.66 0.63 0.63 0.67 0,73 0.80 0.87 0,94 1.00 L = 260° 4. = 40° 0.34 0.29 0,23 0.18 0.13 0.11 0.10 0.12 0.17 0.22 0.27 0.32 30° 0.48 0.42 0.35 0.29 0.24 0.21 0.20 0.23 0.28 0.33 0.40 0.47 0,53 20° 0.64 0.57 . 50 . 43 0.37 0.33 0.32 0.35 0.40 0.47 0.54 0.62 0,69 10° 0.80 0.72 0.65 0,58 0,52 0.47 0.45 0.49 0.55 0.62 0.70 0.78 0.85 0° 1.02 0.96 0.S8 0.81 0.73 0.67 0.62 0.60 0.63 0,70 0.78 0.86 0.93 1.01 1.08 h = 270° 4. =40° 0.28 0.23 0.18 0.14 0.11 0.10 0.11 0.15 0.21 0.27 0.33 0.40 30° 0.41 0.36 0.29 0.24 0.21 0.19 0.21 0.26 0.32 0.39 0.47 0.54 0.61 20° 0.56 0,49 0.42 0.37 0.32 0..30 0,32 0.37 0.45 0,53 0.61 0.69 0.76 10° 0.80 0.72 0,65 0.58 0.52 0.47 0.44 0,4(i 0.51 0.59 0.68 0.76 0.85 0.93 0° 0.95 0.88 0.81 0.74 0.67 0.62 0.59 0.01 0.66 0.74 0.83 0.92 1.01 1,08 1.15 L. = 280° 4. = 40° 0.23 0.18 0,13 0.11 0.10 0.10 0,14 0.19 0.26 0.33 0.40 0.46 30° 0.35 0,29 0,24 0,20 0.18 0.18 0,23 0.29 0.38 0.46 0..53 0.60 0.67 20° 0.49 0.43 0.37 0.31 0.29 0.30 ),35 0.42 0.51 ).60 0.68 0.76 , 83 10° 0.71 0.65 0.57 0.51 0.46 ).42 0.43 0.48 0,55 0.65 0.75 0.84 0.92 1,00 0° 0.87 0.81 0,74 0.67 0.62 0.58 0.58 0.63 0,71 0.81 0,91 1.00 1.09 1.16 1.22 L. = 290°G0° •270° i80° 290° 300° 310° 320° 330° 340° 350° 0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 100° L. = 320°4> = '10° 0.10 0.08 0.07 0.09 0.12 0.17 0.24 0.33 0.42 0.50 0.58 0.64 0.69 0.73 30° O.IU 0.17 0.15 0.16 0.19 0.25 0.34 0.44 0.54 0.64 0.72 0.80 0.86 0.90 20° 0.32 0.29 0.26 0.26 0.29 0.35 0.44 0.55 0.08 ).79 0.87 0.96 1.03 1.07 10° 0.46 0.42 0.39 0.38 0.40 0.46 0.56 0.67 0.81 0.93 1.03 1.12 1.19 1.24 1.28 0° 0.62 1.57 0.54 0.53 0.54 0.59 0.68 0.80 0.93 1.06 1.18 1.27 1.33 1.39 1.43 L. = 330° ^ = 40° 0.08 0.07 0.08 0.10 0.15 0.21 0.29 0.38 0.47 0.56 0.63 0.69 0.74 0.77 30° 0.17 0.15 0.15 0.17 0.22 0.29 0.39 0.50 0.60 0.70 0.79 0.85 0.90 0.94 20° 0.28 0.26 0.25 0.27 0.31 0.39 0.49 0.62 0.74 1.85 0.95 1.02 1.07 1.11 10° 0.42 0.39 0.38 0.39 0.42 0.49 0.60 0.74 0.87 0.99 1.10 1.17 1.23 1.28 1.30 0° 0.57 0.54 0.52 0.52 0.56 0.62 0.72 0.86 0.99 1.12 1.23 1.32 1.38 1.43 1.46 L. = 340° 4, = -10° ).08 0.07 0.07 0.09 0.13 0.18 0.26 0.34 0.44 0.53 0.61 0.68 0.73 0.78 0.80 30° 0.17 0.15 0.15 0.16 0.20 0.26 0.34 0.44 0.55 0.66 0.76 0.84 0.90 0.95 0.97 20° 0.26 0.25 0.26 0.29 0.34 0.43 0.54 0.68 0.80 0.90 1.00 1.06 1.11 1.14 1.16 10° 0.39 0.37 0.37 0.39 0.44 0.53 0.65 0.79 0.93 1.04 1.15 1.22 1.27 1.30 1.32 0° 0.53 0.51 0.51 0.53 0.57 0.66 0.77 0.90 1.04 1.18 1.28 1.36 1.41 1.45 1.47 L. = 350° 4* = 40° 0.06 0.06 0.08 0.10 0.15 0.21 0.29 0.39 0.48 0.57 0.65 0.72 0.76 0.79 0.81 0.81 30° 0.15 0.14 0.15 0,17 0.22 0.29 0.36 0.48 0.60 0.71 0.80 0.88 0.93 0.96 0.98 0.99 20° 0.26 0.25 0.25 0.26 0.31 0.38 0.46 0.59 0.72 0.84 0.95 1.04 1.09 1.13 1.15 1.16 10° 0.37 0.37 0.38 0.42 0.49 0.57 0.70 0.84 0.98 1.09 1.19 1.25 1.29 1.32 1.33 0° 0.52 0.51 0.52 0.55 0.61 0.70 0.82 0.96 1.10 1.23 1.33 1.40 1.45 1.48 1.49 L. = 360° 4, = 40° 0.08 0.07 0.08 0.10 0.13 0.18 0.25 0.33 0.43 0.53 0.61 0.69 0.74 0.78 0.81 0.82 0.82 30° 0.14 0.14 0.16 0.19 0.24 0.32 0.41 0.53 0.65 0.75 0.84 0.90 0.95 0.98 0.99 0.99 20° 0.24 0.24 0.25 0.28 0.34 0.41 0.51 0.63 0.77 0.S9 0.99 1.07 1.12 1.15 1.16 1.16 10° 0.37 0.38 0.40 0.44 0.51 0.62 0.73 0.88 1.02 1.13 1.23 1.28 1.31 1.33 1.33 0° 0.51 0.51 0.53 0.57 0.64 0.74 0.85 1.00 1.15 1.26 1.36 1.43 1.47 1.49 1.49 L = 400° 4- = 10° 0.15 0.15 0.16 0.18 0.21 0.25 0.30 0.36 0.42 0.48 0.54 0.57 0.60 0.62 0.62 0.02 30° 0.26 0.26 0.26 0.28 0.31 0.35 0.41 0.48 0.56 0.63 0.69 0,73 0.76 0.78 0.79 0.79 20° 39 0.39 0.41 0.44 0.48 0.54 0.62 0.70 0.79 0.86 0.90 0.94 0.96 0.97 0.97 10° 0.53 . 53 0.54 0.57 0.61 0.68 0.7f 0.85 0.94 1.02 1.07 1.11 1.13 1.14 1.14 0° 0.69 0.69 0.70 0.72 0.76 0.82 0.91 1.00 1.09 1.18 1.23 1.27 1.29 1.31 1.31 L. = 410° 4, =40° 0.15 0.16 0.18 0.21 0.24 0.29 0.34 0.40 0.47 0.53 0.57 0.60 0.62 0.63 0.63 0.62 30° 0.2f 0.26 0.28 0.30 0.34 0.40 0.45 0.53 0.6( 0.67 0.73 0.77 0.79 0.79 0.79 0.78 20° . 39 0.41 0.43 0.47 0.52 0.59 0.67 0.70 U.83 0.90 0.94 0.96 0.97 0.96 0.95 10° 0.53 0.54 0.57 . 60 0.66 0.73 0.82 0.91 0.99 1.06 1.11 1.13 1.14 1.13 1.12 0° 0.69 0.70 0.72 0.76 0.81 0.88 0.97 1.06 1.15 1.22 1.27 1.80 1.31 1.31 1.30 L = 420°4< = 40° O.lfi 0.17 0.19 0.21 0.25 0.29 0.34 0.40 o.4r 0.52 0.57 0.61 0.63 0.64 0.63 . 02 O.fiO 0.58 30° 0.27 0.2H 31 0.34 0.39 0.4.' 0.52 0..59 0.6f 0.72 0,77 0.80 11.80 0.80 0.78 0.76 20° . 3! 0.40 0.43 o.4r 0.51 0.57 0.65 0.7; 0.81 0.88 0.94 0.97 0.97 0.97 0.95 0.9:. 10° 0.54 0.5f . 60 0.65 0.71 0.78 0.87 0.97 1.05 1. 11 1.14 1.14 1.14 1.12 1.0'J 0° 0.7( 0.72 0.75 0.8( o.sr 0.98 1.02 I.IL 1.20 1.27 1.3( 1.31 1.31 1.29 1.27 ECLIPSES OP TIJE SUN IN INDIA. 133 A +M. 260° 270° 280° 290° 300° 310° 320° :530° 340° 3ri0° 0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 1(M)° L. = 430O(fi=40o o.ir. 0.18 0.20 0.24 0.28 0.33 0..39 0.44 0.51 0.56 0.60 0.63 0,64 0.64 0,63 0.61 0.58 0.55 30° 0.28 0.30 34 0.38 0.43 0.50 0.57 0.64 0.71 0.76 0.80 0,81 0.80 0,79 0.76 0.73 0.70 20° 0.40 0.43 0.46 0.50 0.55 0.62 0.70 0.78 0,86 0.92 0.97 0,98 0.97 0.95 0.92 0.89 10° 0.56 0.59 0.64 0.69 0.77 0.85 0.93 1.02 1.09 1.14 1.15 1.14 1.12 1.09 1.06 0° 0.72 0.75 0.80 0.85 0.92 1.00 1.09 1.18 1.25 1.30 1.32 1.31 1.29 1.27 1.23 L. = 440°4> = 40° 0.19 0.21 0.24 0.28 0.33 0.39 0.44 0.50 . 56 0.61 0.64 0.66 0,66 0,64 0.82 0.59 0.56 0.52 30° 0.30 0.34 0.38 0.43 . 49 0.55 0.62 0.70 76 0.80 0.82 0,81 0.80 0.77 0.74 0.70 0.65 20° 0.42 0.46 0.50 0.55 0.61 0,68 0.76 0.85 0.91 0.97 0.99 0,98 0,97 0.93 0.90 0.85 10° 0.60 0.64 0.69 0.75 0.83 0.91 1.00 1.08 1.14 1.16 1.16 1,14 1,10 1.06 1.02 0° 0.75 0.79 0,84 0.90 0.98 1.07 1.15 1.24 1.30 1.33 1.33 1,31 1,27 1,23 1.19 L. = 450° 4. = 40° 0.21 0.24 0.28 0.32 0.37 0.43 0.48 0.54 0.60 0.64 0.67 0.67 0,06 0.63 0.60 0,56 0,52 0.48 0,44 30° 0.30 0.33 0.37 0.42 0.48 0.54 0.61 0.68 0.74 0.80 0.83 0.83 0,82 0.78 0,74 0,70 0,65 0.61 20° 0.46 0.50 0.55 0.61 0.67 0.75 0.82 0.90 0.96 1.00 1.00 0,99 0.95 0.91 0,86 0,81 0.76 10° 0.64 0.69 0.75 0.82 0.89 0,97 1.06 1.13 1.17 1.18 1,16 1,12 1,08 1,02 0.97 0° 0.79 0.84 0.90 0.98 1.05 1.14 1.22 1.30 1.34 1.35 1,33 1.29 1.25 1.19 1,14 L. = 4fi0°4. = 40° 0.21 0.24 0.28 0.32 0.37 0.42 0.48 0.53 0.59 0.64 0.67 Q.68 O.08 0,65 0,62 0.58 0.53 0,48 0.43 0.39 30° 0.34 0.37 0.42 0.47 0.54 0.60 0.67 0.73 0.79 0.84 0.85 0.84 0,81 0,77 0,72 0.66 0,61 0.55 20° 0.50 0.55 0.60 0.66 0.74 0.81 0.89 0.96 1.01 1.03 1.01 0.98 0,93 0,87 0.81 0,75 0,70 10° 0.69 0.75 0.81 0.89 0.96 1.05 1.12 1.18 1.20 1.19 1.15 1,09 1.04 0.98 0,91 0° 0.84 0.90 0.96 1.04 1.12 1.21 1.28 1.34 1,36 1.35 1.31 1,26 1.20 1,14 1,07 L. = 470° 4. =40° 0.24 0.28 0.32 0.37 0.43 0.48 0.53 0.58 0.64 0.68 0.70 0.69 0,67 64 0.59 0.54 0,48 0.43 0.39 0,34 30° 0.39 0.44 0.49 0.55 0.61 0.67 0.73 0.79 0.84 0.87 0.86 0.84 0,79 0.73 0.67 0,61 0.56 0,50 0,45 20° 0.56 0.62 0.68 0.74 0.81 0.88 0.95 1.01 1.05 1.03 1.01 0.95 0.88 0.82 0.76 0.70 0,64 10° 0.75 0.81 0.88 0.96 1.03 1.11 1.18 1.21 1.20 1.17 1.11 1.04 0.97 0,91 0.84 0° 0.91 0.97 1.03 l.li 1.19 1.27 1.34 1.37 1.37 1.33 1,27 1,20 1.13 1,06 1.00 L. = 480° 4, = 40° 0.29 0.33 0.3S 0.43 0.48 0.53 0.59 0.64 0.68 0.71 0.71 0.70 0.66 0,61 0.55 0.50 0.44 0.39 0,34 0.29 0,26 30° 0.44 0.49 0.55 0.61 0.67 0.73 0.79 0,85 0.88 0.89 0.87 0.82 0.76 0,69 0.62 0.57 0.50 0.44 0,40 20° 0.61 0.67 0.74 0.8! 0.88 0.95 1. 01 1.05 1.06 1.03 0.98 0.91 0.84 0.76 0.69 0.62 0.57 10° 0.82 0.89 0.96 1.04 1.11 1.17 1.22 1.23 1.20 1.14 1.07 0.99 0.92 0,84 0.77 0° 0.98 1.04 1.12 1.19 1.27 1.33 1.38 1.40 1.37 1.30 1.22 1.14 1.07 0.99 0.92 L. = 490° 41 =40° 0.33 0.38 0.43 0.48 0.54 0.58 0.64 0.68 0.72 0.73 0.72 0.70 0.65 0.58 0.52 0.46 0.40 0.35 0.29 0,25 0,21 30° 0.49 0.55 0.61 0.66 0.73 0.78 0.84 0.88 0.91 0.90 0.86 0.80 0.72 0.65 0.57 0.51 0.45 0,39 0,34 20° 0.68 0.74 0.81 0.87 0.95 1.00 1.06 1.08 1.07 1.02 0,95 0.86 0.78 0.70 0,63 0.57 0.52 10° 0.89 0.96 1.03 1.10 1.17 1.22 1.25 1.23 1.18 1.10 1.01 0.93 0.84 0,76 0.71 0° 1.05 1.12 1.19 1.26 1.33 1.38 1.41 1.39 1.34 1.26 1.17 1.08 0.99 0.92 0.85 L = 500° (fi = 40° 0.43 0.48 0.53 0.58 0.63 0.68 0.72 0.74 0.74 0.72 0.68 0,62 0.55 0.48 0.41 0,35 0.29 0.25 0,20 0,17 30° 0.61 0.67 0.72 0.78 0.84 0.88 0.91 0.92 0.89 0.83 0,76 0.68 0.60 0.52 0.46 0.40 0.34 0.30 20° 0.75 0.81 0.87 0.94 1.00 1.05 1.08 1.09 1.05 0.99 0.90 0.81 0,71 0.64 0.57 0.51 0,45 10° 0.96 1.03 1.10 1.16 1.22 1.25 1.26 1.22 1.14 1.04 0.95 0,86 0.77 0.70 0.63 0° 1.13 1.19 1.26 1.33 1.38 1.42 1.43 1.37 1.29 1.19 1.09 1,00 0.91 0.84 0.78 ECLIPSES OF THE SUN IN INDIA. TABLE B. A + ft. 260° •270° 280^ 2!K)° 300° 310° 320° 330° 310° 3.50° 0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 100° L= 510° 4. = 40° 0.49 0.54 0.59 0.65 0.69 0.73 0.76 0.77 0.75 0.72 0.67 0.59 0.52 0.44 0.38 0.32 0.26 0.21 0.17 0.14 30° 0.67 0.73 0.79 0.84 0.89 0.92 0.94 0.92 0.88 0.80 0.72 0.63 0.54 0.47 0.41 0.35 0.30 0.20 20° 0.82 0.88 0.94 1.00 1.05 1.09 1.11 1.09 1.03 0.95 0.85 0.75 0.06 0.57 0.50 0.45 0.40 10° 1.05 1.11 1.17 1.23 1.26 1.28 1.26 1.19 1.10 0.99 0.88 0.79 0.71 0.04 0.58 0° 1.21 1.28 1.34 1.39 1.43 1.44 1.42 1.35 1.24 1.14 1.03 0.93 0.85 0.77 0.72 1,. = 520° 4. = 40° 0.54 0.59 0.64 0.69 0.73 0.76 0.78 0.78 0.76 0.70 0.63 0.50 0.49 0.40 0.33 0.27 0.21 0.17 0.14 0.11 30° 0.73 0.79 0.84 0.89 0.93 0.95 0.95 0.92 0.86 0.77 C.68 0.58 0.50 0.42 0.36 0.30 0.26 0.22 20° 0.88 0.94 1.00 1.05 1.10 1.12 1.11 1.08 1.01 0.91 0.80 0.70 0.60 0.52 0.45 0.40 0.36 10° 1.11 1.17 1.22 1.27 1.29 1.29 1.24 1.16 1.05 0.94 0.82 0.72 0.64 0.57 0.52 0.48 0° 1.27 1.33 1.39 1.43 1.45 1.44 1.39 1.30 1.18 1.06 0.95 0.86 0.78 0.71 0.65 L. = 530° ifi = 40° 0.59 0.64 0.69 0.73 0.76 0.78 0.79 0.77 0.74 0.68 0.00 0.52 0.43 0.35 0.29 0.22 0.17 0.14 0.11 0.09 30° 0.79 0.84 0.89 0.93 0.96 0.96 0.95 0.90 0.83 0.73 0.63 0.54 0.44 0.37 0.30 0.26 0.22 0.19 20° 1.00 1.06 1.10 1.13 1.13 1.12 1.07 0.97 0.86 0.74 0.04 0.54 0.47 0.40 0.35 0.31 10° 1 17 1.23 1.27 1.30 1.31 1.28 1.22 1.12 0.99 0.87 0.70 0.07 0.59 0.52 0.48 0.44 0° 1.33 1.39 1.43 1.45 1.46 1.43 1.35 1.25 1.12 1.00 0.89 0.80 0.71 0.00 0.61 1,. = 540°4.=40° 0.69 0.73 0.76 0.78 0.80 0.79 0.77 0.72 0.65 0.58 0.49 0.40 0.32 0.25 0.20 0.16 0.12 0.10 0.09 30° 0.84 0.89 0.93 0.95 0.97 0.96 0.94 0.88 0.79 0.69 0.59 0.48 0.40 0.32 0.27 0.22 0.18 0.16 20° 1.05 1.10 1.12 1.44 1.13 1.10 1.03 0.93 0.81 0.69 0.58 0.49 0.42 0.36 0.32 0.28 10° 1.22 1.27 1.30 1.32 1.31 1.26 1.19 1.07 0.94 0.82 0.70 0.01 0.54 0.48 0.43 0.41 0° 1.38 1.43 1.46 1.47 1.46 1.41 1.32 1.20 1.07 0.94 0.82 0.73 0.67 0.61 0.57 L. = 550°.). = 40° 0.73 0.77 0.80 0.81 0.81 0.80 0.76 0.70 0.63 0.54 0.45 0.36 0.28 0.22 0.16 0.13 0.10 0.08 30° 0.89 0.93 0.96 0.98 0.97 0.92 0.86 0.76 0.65 0.55 0.44 0.30 0.29 0.23 0.19 0.17 0.15 20° 1.10 1.13 1.16 1.16 1.14 1.08 1.00 0.89 0.77 0.65 0.53 0.44 0.38 0.33 0.29 0,26 10° 1.27 1.30 1.32 1.32 1.29 1.24 1.14 1.02 0.89 0.70 0.65 0.50 0.49 0.44 0.41 0.39 0° 1.43 1.46 1.48 1.48 1.44 1.38 1.3^ 1.14 1.01 0.88 0.77 0.68 0.62 0.57 0.54 1,. = 5fiO°4, = 40° 0.7fi 0.79 0.80 0.81 0.80 0.78 0.74 0.67 0.59 0.50 0.41 0.32 0.25 0.18 0.13 0.10 0.08 0.07 30° 0.95 0.97 0.98 0.97 0.95 0.90 0.81 0.72 0.60 0.49 0.39 0.31 0.24 0.20 0.17 0.15 0.14 20° 1.13 1.15 1.16 1.15 1.12 1.06 0.96 0.84 0.72 0.59 0.49 0.40 0.34 0.29 0.26 0.25 10° 1.30 1.32 1.33 1.31 1.28 1.20 1.09 0.97 0.83 0.70 0.60 0.51 0.44 0.41 0.88 0° 1.47 1.49 1.49 1.47 1.43 1.34 1.23 1.10 0.96 0.82 0.72 0.64 0.59 0.55 0.53 I,. = 570° 4. = 4(1° 0.81 0.82 0.82 0.80 0.77 0.72 0.64 0.55 0.46 0.37 0.28 ).21 0.16 0.11 0.08 0.07 0.07 30° 0.98 0.99 . 99 0.97 0.93 0.87 0.79 0.68 0.57 0.46 0.36 ).28 0.22 0.18 0.15 0.14 20° 1.15 1.16 1.16 1.15 1.10 1.03 0.93 0.81 0.68 0.56 0.45 0.37 1.31 0.27 0.26 0.25 10° 1,32 1 . 33 1 . 33 1.30 1 . 25 1.17 1.06 0.93 0.78 0.66 0.55 0.47 0.42 . 39 0.37 0.37 0° 1.48 1.49 1.48 1.45 1 . 39 1.30 1.18 1.04 0.90 ).77 0.07 0.60 0.55 0.52 0.51 L. = 580°3S A + ^. 2(iO° •270° •280" •2!K>° :!0()° 310° 320° ;{3()° 310° :i50° 0° 10° 2(1° ao° 10° no° 60° 70° 80° flO" 100° L. = 590° 41 = 40° 0.«2 0.81 0.79 0.76 0.72 0.65 0.58 0.49 0.39 0.29 0,22 0.15 0.10 0.08 0.07 0.07 30° O.'JO 0.98 0.96 0.93 0.88 0.80 0.71 0.00 0.48 0.37 0.29 0.22 0.18 0.15 0.14 0.15 20° 1.16 l.l.'i 1.13 1.10 1.04 0.95 0,84 0.72 0.59 0.47 0.37 0,31 0.26 0.23 0.25 0.26 10° 1.33 1.32 1.29 1.25 1.19 1.09 0.97 0.84 0.70 0,57 0.48 0.42 0.38 0.37 0,37 0° 1.49 1.48 1.45 1.40 1.32 1.22 1.10 0.96 0.81 0,69 0.01 0.55 0..52 0,51 0.52 I,. = 000° $ = 40° 0.80 0.77 0.73 0.08 0.61 0.53 0.44 0..34 0.20 0.18 0.13 0.C9 0.07 0,07 0.08 30° 0.97 0.94 0.89 0.83 0.75 . 65 0.55 0.44 0.34 0.25 0,19 0.10 0.14 0,14 0.17 20° 1.16 1.14 1.11 1.06 . 99 0.90 0.79 0,07 0.54 0,43 0.34 0.28 0.25 0.25 0.25 10° 1.32 1.30 1.27 1.22 l.U 1.05 0.92 0.79 0.03 0.52 0.44 0.40 0.37 0,37 0,39 0° 1.48 1.40 1.42 1.36 1.28 1.18 1.05 0.91 0.78 0.60 0.58 0.54 0.52 0.52 0,54 L = 610° 4. = 40° 0.78 0.75 0.69 0.63 0.57 0.48 0.39 0,30 0.22 0.16 0.11 0.08 0.08 O.OK 30° 0.94 0.91 0.86 0.79 0.71 0.61 0.5U 0,3'J . 29 0.23 0.18 0.15 0,15 0.17 20° 1.11 1.08 1.02 . 94 0.85 0.74 0,02 0.50 0.39 0.30 0.27 0.20 0,20 0,28 10° 1.30 1.28 1.23 1.17 1.10 0.99 0.87 0.73 0,00 0,49 0.42 0,39 0,38 0,39 0.42 0° 1.46 1.43 1.37 1.31 1.23 1.12 0.99 0.85 0,72 0.02 0.50 0.52 0,52 0,54 0.57 L. = 020° 4. = 40° 0.73 0.70 0.05 0.58 0.51 0.42 0.34 0,25 0.18 0.12 0.09 0.08 0.08 0.10 30° 90 0.86 0.80 0.72 0.04 0.54 0.44 0.34 0.25 0,19 0.16 0.15 0,17 0.19 20° 1.07 1.03 0.96 0.88 0.79 0.07 0.55 0.44 0.34 0,28 0.25 0.25 0.28 0.33 10° 1.28 1.24 1.20 1.12 1.04 0.94 0.81 0.07 0.50 0,40 0,41 0.39 0.40 0.43 0.48 0° 1.42 1.39 1.33 1.26 1.18 1.07 0.93 0.81 0,08 0.59 0.55 0,52 0.53 0.57 0,61 L. = 030° 4 = 40° 0.05 0.59 0.52 0.45 0.30 0.27 0.20 0.14 0.10 0.08 0.08 0.10 0.13 30° 0.87 0.81 0.75 0.67 0.59 0.48 0.38 0.30 0.22 0.18 0.10 0.17 0.19 0.23 20° 1.03 0.97 0.91 0.83 0,73 0.63 0.50 0,39 0.32 0.27 0.26 0.28 0.31 0.36 10° 1.24 1.20 1.14 1.06 0.98 0.87 0.75 0.62 0.51 0.44 0.40 0.40 0.42 0.46 0,51 0° 1.39 1.34 1.29 1.20 l.U 1.00 0.88 0.76 0.65 0.57 0.54 0.55 0.57 0.61 0,67 L. = 640° 4 =40° 0.59 0.53 0.46 0.39 0.31 0.23 0,16 0.11 0.09 0,08 0.10 0.13 30° 0.81 0.76 0.69 0.61 0.52 0.42 0.33 0.25 0.19 0.17 0.18 0,20 0.24 0.29 20° 0.97 0.91 0.83 0.75 0.65 0.54 0,44 0,35 0.29 0.27 0,28 0,31 0.37 0.42 10° 1.13 1.07 0.99 0.90 0.80 0.08 0.57 0.48 0.42 0,40 0..t2 0,46 0.51 0.57 0° 1.34 1.28 1.21 1.13 1.04 0.93 0.82 0,70 0,01 0.56 0.55 0,50 0.61 0.66 0.73 L. = 050° 4 = 40° 0.54 0.47 0.40 0.33 0.20 0.18 0.13 0.10 0.09 0.11 0.13 0.17 30° 0.73 0.69 0.62 0.54 0.45 0.30 0.28 0.22 0.19 0.18 0,20 0.24 0,29 20° 0.91 0.84 0.77 0.68 0.58 0.48 0.39 0.31 0.28 0,29 0.31 0,36 0,42 10° 1.00 1.00 0.92 0.83 0.72 0.02 0.52 0.45 0.41 0,42 0.40 0.51 0.58 0.64 0° 1.28 1.22 1.16 1.07 0.98 0.87 0.76 0.66 0.59 0.56 0.58 0.62 0.67 0.73 0.80 L. = 660° 4 =40° 0.46 0.40 0.33 0.26 0.19 0.15 0.11 0.09 0.11 0.13 0.17 0.22 30° 0.68 0.61 0.54 0.47 0.39 0.30 0.24 0.19 0.19 0.21 0.25 0.30 0.35 20° 0.83 0.77 0.68 0.60 0.51 0.42 0.35 0,30 0.29 0,31 0.37 0.48 0.49 10° 1.00 0.92 0.84 0.75 0.65 0.56 0.47 0,43 0.42 0.40 0.51 0.57 0.65 0.71 0° 1.22 1.15 1.08 0.99 0.90 0.80 0.70 0.62 0.58 0.68 0.62 0.67 0.73 0.80 0.87 "36 ECLIPSES OF THE SUN IN INDIA. TABLE B. >. + 11.. 2li<)° 270° 280° 290° .!(K)° 310° 320° i-M° ;iio° ;J50° 0° 10° 20° 30° 40° 50° G0° 70° 80° 90° 100° L, = 670°if. = 40° . 39 0.33 0.27 0.21 0.15 0.11 0.10 0.11 0.14 0.18 0.23 0.28 30° 0.01 0.54 0.47 . 39 0.32 0.20 0.21 0.20 0.21 0.25 0.29 0.36 0.42 20° 0.77 0.09 0.61 0.53 0.46 0.38 0.32 0.30 0.32 0.37 0.43 0.50 0.57 10° 0.93 0.85 0.7G 0.08 0.59 0.51 0.46 0.44 0.40 0.52 0.58 0.65 0.72 0.79 0° 1.15 1.08 1. 01 0.92 84 0.75 0.66 0.61 0.59 0.61 0.66 0.73 0.81 0.88 0.95 L = 080° 4) = 40° 0.33 0.27 0.22 0.17 0.13 0.11 0.12 0.14 0.18 0.23 0.29 0.34 30° 0.53 0.47 0.40 0.33 0.28 0.23 0.20 0.21 0.25 0.29 0.35 0.42 0.48 20° 0.69 0.62 0.54 0.47 0.40 0.35 0.32 0.32 0.37 0.43 0.49 0.57 0.63 10° 0.86 0.79 0.71 0.02 0.55 0.49 0.40 0.47 0.51 0.58 0.65 0.73 0.80 0° 1.08 1.02 0.95 0.86 0.78 0.70 0.64 0.61 0.02 0.67 0.74 0.81 0.89 0.96 1.03 I,. = 090° 4. = 40° 0.32 0.27 0.22 0.18 0.14 0.12 0.12 0.14 O.IS 0.24 0.29 0.35 30° 0.46 0.40 0.34 0.29 0.24 0.21 0.22 0.25 0.29 0.36 0.42 0.49 0.55 20° 0.02 0.55 0.48 0.42 0.37 0.34 0.34 0.37 0.43 0.51 0.58 0.64 0.71 10° 0.77 0.71 0.64 0.56 0.51 0.47 0.47 0.50 0.57 0.65 0.73 0.80 0.86 0° 1.00 0.93 0.87 0.80 0.72 0.66 0.63 0.62 0.66 0.72 0.80 0.88 0.96 1.02 1.09 I,. = 700° = 40° 0.22 0.19 0.16 0.14 0.14 0.15 0.19 0.24 0.30 0.35 0.41 0.46 0.51 30° 0.34 0.30 0.27 0.24 0.23 0.25 0.29 0.34 0.42 0.48 0.55 0.61 0.00 20° 0.49 0.44 0.40 0.37 0.35 0.37 0.41 0.48 0.58 0.64 0.71 0.78 0.83 10° 0.70 0.65 0.59 0.55 0.51 0.49 0.50 0.56 0.62 0.71 0.80 0.87 0.94 1.00 0° 0.80 0.81 0.76 0.72 0.68 0.65 0.66 0.71 0.78 0.87 0.95 1.03 1.12 1. 10 1.21 L. = 720°4. = 40° 0.22 0.19 0.17 0.15 0.15 0.16 0.19 0.24 0.29 0.35 0.41 0.40 0.51 0.55 30° 0.34 0.30 0.27 0.25 0.24 0.25 0.28 0.34 0.40 0.47 0.55 0.61 0.60 0.70 20° ().4K 0.44 0.41 0.37 0.36 0.37 0.40 0.46 0.54 0.62 0.69 0.77 0.82 0.87 10° 0.0.5 O.Cl 0.57 0.53 0.51 0.52 0.55 0.01 0.69 0.78 0.86 0.94 99 1.05 0° 0.81 0.70 0.73 . 09 0.07 0.67 0.70 0.70 0.84 0.93 1.01 1.09 1.15 1.21 1.25 I,. = 730° 4. = 40° 0.18 0.10 0.15 0.14 0.16 0.18 0.22 0.28 0.34 0.40 0.45 0.50 0.54 0.58 30° 0.30 0.2K 0.26 0.25 0.25 0.28 0.33 0.39 0.47 0.54 0.00 0.66 0.70 0.74 20° 0.41 0.41 0.38 0.37 0.38 0.40 0.45 0.52 0.61 0.69 0.76 0.82 0.87 0.91 10° . 5U 0.50 0.52 0.51 0.51 0.54 0.58 0.06 0.75 0.84 0.92 0.98 1.04 1.07 1.11 0° 0.70 0.72 0.70 0.08 0.67 0.69 0.74 0.81 0.91 1.00 1.08 1.14 1.20 1.24 1.27 1,. = 740° $=40° 0.17 0.15 0.15 0.10 0.18 0.22 0.27 0.33 0.39 0.45 0.50 0.54 0.58 0.60 30° 0.28 0.20 0.20 0.26 0.28 0.32 0.38 0.45 0.52 0.60 0.65 0.70 0.74 0.77 20° 0.40 0.3K 0.37 0.37 0.39 0.43 0.50 0.58 0.60 0.75 0.81 0.87 0.90 0.93 0.90 10° 0.50 0.54 0.52 0.52 0.53 0.5H 0.64 0.72 0.81 0.90 0.97 1.03 1.07 1.10 1.13 0° 0.73 0.70 0.69 0.08 0.69 0.73 0.79 0.87 0.97 1.06 1.14 1.19 1.24 1.27 1.29 ECLIPSES OF THE SUN IN INDIA. TA HLK 15. m A + («. 2G0° 270° 280° 2!H)° 3(M) :!ln :;-in :;:!(1^' aio° 350° 0° 10° 20° 30° 40° 50° eo° 70° 80° 90° 100° L. = 750Oi)> = 40° 0.10 0.15 0.15 0.16 0.18 0.21 0.26 0.31 0.39 0.4-1 0.49 0.54 0.57 0.00 0.02 0.03 30° 0.20 0.26 0.20 0.28 0.32 0.37 0.43 0.51 0.58 0.05 0.70 0.74 0.77 0.78 0.79 20° . 39 39 0.39 0.41 0.44 0.49 0.56 0.65 0.73 0.81 0.87 0.91 0.94 0.96 0.97 10° 0.54 0.53 0.53 0.54 0.57 0.62 0.70 0.79 0.88 0.97 1.03 1.08 1.11 1.13 1.14 0° 0.70 0.70 0.09 0.70 0.73 0.78 0.85 0.94 1.03 1.12 1.19 1.24 1.28 1..30 1.31 L. = 700° $=40° 0.15 0.15 0.16 0.18 0.21 0.25 0.30 0.36 0.42 0.48 0.54 0.57 0.60 0.62 0.62 0.62 80° 0.26 0.26 0.26 0.28 0.31 0.35 0.41 0.48 0.56 0.63 0.69 0.73 0.76 0.78 0.79 0.79 20° 0.39 0.39 0.41 0.44 0.48 0.54 0.62 0.70 0.79 0.86 0.90 0.94 0.96 0.97 0.97 10° 0.53 0.53 0.54 0.57 0.01 0.68 0.70 0.85 0.94 1.02 1.07 1.11 1.13 1.14 1.14 0° 0.69 0.69 0.70 0.72 0.76 . 82 0.91 1.00 1.09 1.18 1.23 1.27 1 29 1.31 1.31 t38 ECLIPSES OF THE SUN IN INDIA. TABLE a - ^ ^ - *" 1 » ° S ® S '^ a ' 1 ° s TS ft.-r' •^ — •?. r' + r". 3 .5P T' + r" ■s 15 y' + y". 3 t^ •s "i 5 y'+y". ZS -I- •sin r'+r". s bo 1 |n y' + r"- 1 IP 3 s> ^1.2 g'|,2 ||.s «5 m; « 3: 35.17 45.46 55.43 65.44 75.43 85.42 33.51 1 45 . 50 1 53.50 1 03 . 49 1 75.48 1 85.47 1 35.56 2 45.55 2 53.34 2 63.54 2 75.53 2 85.52 2 35.fi0 3 45.39 3 55.59 3 65.38 3 75.58 3 85.57 3 35 r, I ^^. 45 , 64 ^^. 65.03 *=5 63.63 *^ 73.63 *Z 85.62 5| 35 . C8 •"> s. 45.68 5| 53.68 5| 65.68 5| 75.68 5| 85.68 cr cr 35.73 6 2. 43.73 6g 53.73 6 5 63.73 6 2. 75.73 62 85.73 65 3.-,. 77 Tg: 45.77 7^ 35.77 7^ 63 77 7=: 75.78 7=; 85.78 ^i^ 35.81 B'' 45.82 8" 55.82 8-" 63.82 8" 75.83 8° 85.83 8" 35.85 9 43 . 86 9 55.86 9 65.87 9 75.87 9 85.83 9 35.90 10 45.90 10 55.91 10 63.92 10 75.92 10 85.93 10 35.94 11 45.95 11 55.96 11 65.97 11 75.97 11 85.98 11 35.98 12 45.99 12 56.00 12 — — — — — — 36.00 Total. 46.00 Total. 56.00 Total. 60.00 Auiiular. 76.00 .\unulai'. 86.00 Annular 36.02 12 46.01 12 36.00 12 — — — — — — 36.06 11 46 , 05 11 56.04 11 66 . 03 11 76.03 11 86.03 11 36 . 10 10 46.10 10 56.09 10 00.08 10 76 . 08 10 86.07 10 36.15 9 46.14 9 56.14 9 66.13 9 76.13 9 86.12 9 36.19 K. ■40.18 8« 50.18 K. 66.18 K. 76.17 8co 86.17 8c« 36.23 _ c 46.23 7| 56.23 7| 66.23 7 = 76.22 7 = 86.22 7| 30.27 6? 46.27 6 5 56 . 27 6? 60.27 6 2 s 76.27 62 86.27 6| 36.32 '' 5^ 46.32 5=; 56 . 32 5=: 66.32 5=r 76.32 a 86.32 5=t 3(! . 36 ■%'■ 46 , 30 4" .'-6 . 37 4^ 60.37 4^ 76.37 4" 86.38 4" 36 . 40 3 46.41 3 36.41 3 66.42 3 70.42 3 86.43 3 36 . \ i 2 46 . 45 2 50.46 2 66 . 40 2 70.47 2 86.48 2 36.4'J 1 40.30 1 36 . 50 1 00 . 3 1 1 76.52 1 86.53 1 36,53 (1 K, . ', i II 56.33 66.50 76.37 86 . 58 ECLIPSES OF THE SUN /N INDIA. TA I5LK I). '39 A + ^. 260° 270° 280° 2!K)" 300° 310° 320° 3:10= 310° 3.W° 0° to° 20° 30° 40° 50° 60° 70° 80° 90° 100° L = 0° =40° S8.3 0.0 1.7 3.6 5.5 7.7 9.8 12.2 14.7 17.2 19.5 21.8 23.8 25.8 27.8 29.5 31.2 30° 59.3 1.0 2.8 4.7 6.8 9.2 11.5 14.2 16.8 19.3 21.7 23.8 26.0 27,8 29.7 31.3 20° 58.7 0.3 2.2 4.0 6.0 8.3 10.8 13.5 16.3 19.0 21.5 23.8 25.8 27.7 29.5 31.2 10° .59.8 1.5 3.3 5.3 7.7 10.2 12.8 15.7 18.5 21.0 23.5 25.7 27.5 29.3 31.0 0° 59,3 1.0 2.8 4.8 7.0 9.5 12.2 15.0 17.8 20.5 23.0 25.2 27.2 29,0 30.7 L.= 10°4( = 40o 59.0 0.5 2.2 4.0 8.0 0.0 10.2 12.5 15.0 17.3 19.8 22.2 24.3 26.3 28.2 30.0 31.7 30° 59.7 1.3 3.0 5.0 7.0 9.3 11.7 14.3 16.8 19.3 21.8 24.2 26.2 28.2 29.8 31.5 20° 59.0 0.7 2.3 4.3 6.3 8.5 11.0 13.7 16.3 19.0 21.7 24.0 2G.0 28,0 29,8 31.5 10° 58.3 0.0 1.7 3.5 5.5 7.7 10.0 12.7 15.5 18.3 21.0 23.5 25.7 27.7 29.5 31.2 0° 59.3 1.0 2.8 4.7 6.8 9.3 11.8 14.7 17.5 20.3 22.8 25.0 27.2 29.0 30.7 L.= 20° = 40° 59.2 0.5 2.2 3.7 5.5 7.3 9.2 11.3 13.7 16.2 18.7 21.2 23.7 26.0 28.0 30.0 32.0 33.7 .35.3 36.8 30° 59.2 0.7 2.2 3.8 5.7 7.7 9.8 12.2 14.7 17.3 20.2 22.7 25.2 27.3 29.5 31.3 33,0 34,7 20° 59.5 1.0 2.7 4.5 6.3 8.5 10.8 13.5 16.3 19.2 22.0 24.5 26.8 28.8 30.7 32.5 10° 58.5 0.0 1.5 3.3 5.2 7.2 9.5 12.2 15.0 18.0 21.0 23.7 25.8 28.0 .30.0 31.7 0° 59.2 0.7 2.3 4.3 6.3 8.7 11.2 14.0 17.0 20.0 22.5 25.2 27.3 29.2 31.0 L.= 60°. A + ^. 2(;(t 27(1 2i!(l 290° 300° 310° :j2o° :i;t() :'.i(i :!.".() o' 10 2(1' 30° 40° 50^ i;(i 711 !;ii !lll 100° L. = 160=>8.8 0.5 2.5 4.7 7,0 9,5 12,3 15.2 17,8 20,3 22,7 24,8 26,7 20° 59.2 1.0 2.8 5,0 7.5 10,2 13.0 16.0 19,0 21.5 23,8 25,8 27,7 10° 0.0 1.8 3.7 5,7 8.2 11,0 14.0 17.2 20.2 22.7 25,0 27,0 28,8 30.5 0° 58.8 0.5 2.2 4.2 6,3 8.7 11.5 14.7 17.8 20.8 23.3 25.7 27.7 29,5 31.2 L = 250° 4. — 40° 59.8 1.8 4,0 6.3 8.8 11.3 14.0 16.5 18.8 21,2 23,2 25,0 S0° .58.7 0.3 2.3 4,5 7.0 9,5 12.3 15.2 17,8 20.3 22.7 24.7 26.5 20° 59.2 0.8 2.8 5,0 7.5 10,2 13.2 16,3 19,0 21.5 23.8 25.8 27,7 10° 59.8 1.5 3.5 5,7 8.2 11,0 14.2 17.3 20,2 22.7 25.0 27,0 28.8 0° 58.8 0.5 2.2 4.2 6.3 8.8 11,7 14.8 18.0 21,0 23.5 25.8 27,8 29,5 31.2 L = 2fi0° 41 — 40° 58.2 0.0 2.0 4.2 6.5 9,0 11.7 14.3 16.8 19,2 21,2 23,2 30° 58.8 0.7 2.7 4,8 7.3 10,0 12.8 15.7 18,3 20,7 22,8 24,8 26,7 20° 59.2 1.0 3.0 5,3 7.8 10,7 13,7 16.7 19,3 21,8 24,0 26,0 27,8 10° 59.8 1.7 3.7 5,8 8.5 11,3 14,5 17.5 20,3 22,8 25,2 27.2 28,8 0° 58.8 0.3 2.2 4.2 6,5 9,0 11,8 15.0 18,2 21,2 23.7 25,8 27.8 29,7 31,2 L. = 270°4i = 40° 58.2 0.0 2,2 4,3 6.7 9.3 12.0 14.5 17.0 19.3 21,3 23,3 30° 58.8 0.7 2.8 5,0 7.5 10.3 13.2 15,8 18.5 20.8 23,0 24,8 26,7 20° 59.3 1.2 3.3 5.7 8.2 11.0 14.0 17.0 19.7 22.0 24,3 26.2 28,0 10° 58 . 2 0.0 1.8 3.8 6.0 8.7 11.7 14.8 17.8 20.7 23.0 25,2 27.2 28.8 (1° 58.8 0.5 2.3 4.3 6.5 9.2 12.2 15,3 18.5 21.3 23.7 25.8 27.8 29.5 31,2 L. = 280° 4 =40° 58.7 0.7 2.7 5.0 7,5 10.0 12,7 15,2 17,5 19,8 21.8 23,7 30° 59.2 1.2 3.3 5.7 8,2 11,0 13.8 16,5 19.0 21.3 23.3 25,2 27.0 20° .59.5 1.5 3.5 6.0 8.5 11.5 14.5 17.3 20,0 22.3 24.3 26.3 28.0 10° 58.3 0.0 2.0 4.0 6.3 9.0 12,0 15.2 18,2 20,8 23.2 25,3 27.2 29.0 0° 58.8 0.5 2.3 4.5 6.8 9,5 12.5 15.7 18.7 21.0 23.8 25,8 27 8 29,5 31.2 L. = 290°4i = 40° 59.3 1.3 3.3 5.5 8,0 10.8 13.3 15.8 18,0 20.3 22,3 24.0 30° .59.5 1.5 3,7 6.0 8,7 11.3 14,2 16.8 19.3 21.5 23,5 25.3 27,0 20° 59.7 1.7 3,8 0.3 8,8 11,8 14.8 17.7 20,2 22,5 24,5 26.3 28,0 10° 58.5 0.2 2.2 4.2 6.7 9,3 12,3 15,5 18.3 21,0 23,3 25,3 27.2 28,8 0° 58.8 0.7 2.5 4.5 6.8 9,5 12.7 15.8 18.8 21.3 23,8 25.8 27.8 29,5 31.0 L. = 300° 4 = 40° 59.7 1.8 4.0 G.S 8,8 11,3 13.8 16.3 18,7 20,7 22.7 24.5 30° 58.2 0.0 2.0 4.2 6,7 9,3 12.0 14.8 17.3 19.8 22.0 24.0 25,8 27,5 20° 58.3 0.2 2.2 4,3 6,7 9.5 12,3 15.2 18.0 20.5 22.7 24.7 26,5 28,2 10° 58.7 0.5 2.5 4.7 7.0 9,8 12,7 15,8 18.7 21.2 23,5 25.5 27,3 29,0 0° 59.0 0.7 2.7 4,7 7.2 9,8 12,8 15.8 18.8 21,5 23,8 25,8 27,7 29,3 31.0 L. = 310° 4. = 40° 58.5 0.3 2.3 4,7 7.0 9,3 12,0 14.6 16.8 19,2 21,2 23.2 25,0 30° 58.7 0,5 2.6 4,7 7.2 9.8 12,5 15.2 17.7 20.2 22,2 24.2 26.0 27,7 20° 58.7 0.5 2.5 4,8 7.2 9,8 12,7 15.7 18,3 20,7 23,0 25.0 26,7 28,3 10° 58.8 0,7 2.7 4,8 7.3 10,0 13,0 IS. 8 18,721,2 23,5 25.5 27.3 29,0 30.5 0' 59.0 0.8 2.7 4.8 7.5 10,0 13,0 16.0 18.821.3 23.7 25.7 27.7 29,3 30.8 ECLIPSES OF THE SUN IN INDIA. TA I{|>K 1). '43 A + iL. 260° 270° 280° 290° 300° 310° 320° 3:10° mo° aso^ 0° 10° 20° ao° 40° 50° G0° 70° 110° 00° 100° L = 320° = 40° 59.2 0.8 2.7 4.7 6.7 8.8 11.3 13.8 16.3 18.8 21.3 23.5 25.5 27.5 29.2 .30.8 30° 58.7 0.2 2.0 4.0 6.0 8.2 10.7 3.5 16.2 18.8 21.3 23.7 25.8 27.'; 29,5 31.2 20° 59.7 1.5 3.3 5.3 7.5 10.2 3.0 15.8 18.7 21.3 23.7 25.8 27.8 29.5 31.2 10° 59.3 1.0 2.8 4,8 7.0 9.7 12,5 15.5 18.3 21.2 23.7 25.8 27,8 29.5 31.2 0° 59.0 0.7 2.5 4.5 6.7 9.2 12,0 15.0 18.0 20.8 23.3 25.5 27.5 29.3 il.O L. = 410° 4, =40° 59.7 1.3 3.2 5.0 7.0 9.3 11.7 4,2 16.7 19.3 21.7 24.0 26.0 27.8 29.7 31.3 30° 59.5 0.5 2.3 4.2 6.2 8.5 10.8 3.5 16.3 19.0 21.7 24.0 26.0 28.0 29.8 31.5 20° 0.0 1.7 3.5 5.5 7.8 10.3 3.2 16.0 18.8 21.5 24.0 26.2 28.2 29.8 31.5 10° 59.5 1.2 2.8 4.8 7,2 9.7 2.5 15.5 18.5 21.2 23.7 26.0 27.8 29.7 31.3 0° 59.0 0.7 2.3 4.3 6.5 9,0 1.8 14.8 17.8 20.7 23.2 25.5 27,5 29.3 31.0 L. = 420° 4. =40° 58.7 0.2 1.8 3.5 5.5 7.5 9.7 12,0 4.3 16.8 19.5 22.0 24.3 26.3 28,3 30.2 31.8 33.5 30° 59.5 1.0 2.7 4.7 6,7 8.8 11.3 3,8 16.7 19.3 22.0 34.3 26.5 28,5 30.3 32.0 20° 58.7 0.2 1.8 3.7 5,7 7.8 10,8 3.0 16.0 18,8 21.7 24.0 26.3 28,3 30.0 31.7 10° 59.3 1.0 2.8 4,8 7.0 9.5 2.3 15.3 18,3 21.2 23.7 25.8 27,8 29.7 31.3 0° 59.0 0.7 2.3 4.3 6.5 9.0] 1.7 14.7 17.8 20.7 23.2 25.5 27,5 29.3 31.0 ECLIPSES OF THE SUN IN INDIA. TABLE D. ?. + il. 260° •270° 280° 29(1° ^0° 310° 320° 330° 310° 3r>o° 0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 100° L. =:-i30°4) = 40° 59.2 0.7 2.3 4.2 6.0 8.0 10.2 12.5 15.0 17.5 20.2 22.5 24.8 27.0 29.030.8 32.5 34.2 sn° 59.7 1.2 3.0 4.8 6.8 9.0 11.3 14.0 16.8 19.5 22.2 24.7 26.8 28.8 30.5 32.2 33.8 20° 58.7 0.2 1.8 3.7 5.7 7.8 10.3 13.0 16.0 18.8 21.7 24.2 26.3 28.3 30.2 31.8 in° 59.5 1.2 3.0 4.8 7.0 9.5 12.3 15.3 18.3 21.2 23.8 26.0 28.0 29.8 31.5 0° 58.8 0.5 2.3 4.2 6.3 8.8 11.5 14.7 17.7 20.5 23.2 25.5 27.5 29.3 31.2 L. =; 440° (J =40° 59.5 1.0 2.7 4.3 6.3 8.3 10.3 12.8 15.3 17.8 20.5 22.8 25.2 27.3 29.3 31.2 32.8 34.5 30° .59.8 1.5 3.2 5.0 7.0 9.0 11.5 14.2 17.0 19.8 22.5 24.8 27.0 29.0 30.8 32.5 34.2 20° 59.0 0.5 2.2 3.8 5.8 8.0 10.5 13.2 16.2 19.2 22.0 24.5 26.7 28.7 30.5 32.2 10° 59.5 1.2 2.8 4.8 7.0 9.3 12.2 15.2 18.3 21.2 23.8 26.0 28.0 29.8 31.5 0° 58.8 0.5 2.3 4.2 6.3 8.7 11.5 14.5 17.7 20.7 28.3 25.5 27.7 29.5 31.2 L. = 450° 4. =40° .59.8 1.3 3.0 4.7 6.5 8.5 10.7 13.0 15.5 18.2 20.7 23.2 25.5 27.7 29.7 31.5 33.3 34.8 36.3 30° 58.7 0.0 1.7 3.3 5.2 7.2 9.3 11.7 14.3 17.2 20.0 22.7 25.0 27.3 29.3 31.2 32.8 34.3 20° 59.0 0.5 2.2 4.0 5.8 8.2 10.5 13.8 16.2 19.2 22.0 24.5 26.8 28.8 30.7 32.3 33.8 10° 59.5 1.2 3.0 4.8 7.0 9.5 12.3 15.3 18.3 21.3 23.8 26.2 28.2 30.0 31.7 0° 58.8 0.5 2.2 4.2 6.3 8.7 11.5 14.5 17.7 20.7 23.2 25.7 27.7 29.6 31.2 L = 460° 4, = 40° 58.7 0.0 1.5 3.2 4.8 6.7 8.7 10.8 13.2 15.7 18.3 21.0 23.5 25.8 28.0 30.0 31.8 33.5 35.2 36.7 30° 58.7 0.0 1.7 3.3 5.2 7.2 9.3 11.7 14.3 17.2 20.0 22.7 25.2 27.3 29.3 31.2 32.8 34.5 20° ,50.0 0.5 2.2 4.0 6.0 8.2 10.7 13.3 16.3 19.3 22.2 24.7 27.0 29.0 30.8 32 . 5 34.0 10° 59.5 1.2 2.8 4.8 7.0 9.5 12.2 15.3 18.5 21.3 24.0 26.2 28.2 30.0 31.7 0° 58.8 0.5 2.2 4.2 6.3 8.7 11.5 14.7 17.8 20.8 23.3 25.7 27.7 29.5 31.2 L. = 470° $ = 40° 58.7 0.2 1.7 3.3 5.0 6.8 8.8 11.0 13.3 15.8 18.3 21.0 23.5 26.0 28.2 30.2 32.0 33.7 35.3 36.8 30° 58.8 0.3 1.8 3.5 5.3 7.3 9.5 11.8 14.5 17.3 20.2 22.8 25.3 27.5 29.5 31.3 33.0 34.7 36.2 20° 59.2 0.7 2.3 4.0 6.0 8.3 10.7 13.5 16.5 19.5 22.3 24.8 27.0 29.0 30.8 32.5 34.0 10° 59.5 1.2 3.0 5.0 7.2 9.7 12.5 15.7 18.7 21.7 24.2 26.3 28.6 30.2 31.8 0° 58.8 0.5 2.2 4.2 6.3 8.8 11.7 14.8 18.0 21.0 23.5 25.8 27.8 29.5 31.2 L. = 480° 4. = 40° 58.7 0.2 1.7 3.2 5.0 6.8 8.8 11.0 13.3 15.8 18.5 21.0 23.7 26.0 28.2 30.0 31.8 33.7 35.2 36.7 38.2 30° .58.7 0.0 1.7 3.3 5.2 7.2 9.3 11.8 14.5 17.3 20.2 22.8 25.2 27.5 29.5 31.2 33.0 34.5 36.0 20° 59.0 0.5 2.2 4.0 6.0 8.2 10.7 13.5 16.5 19.5 22.3 24.8 27.0 29.0 30.8 32.5 34.0 10° 59.5 1.2 3.0 5.0 7.2 9.7 12.7 15.7 18.8 21.8 24.2 26.3 28.3 30.2 31.8 0° 58.8 0.3 2.2 4.2 6.5 9.0 11.8 15.0 18.2 21.2 23.7 25.8 27.8 29.7 31.2 L = 490° 4, = 40° 58. ' 0.2 1.7 3.2 5.0 6.8 8.8 11.0 13.3 15.8 18.5 21.0 23.5 25.8 28.0 30.0 31.8 33.5 35.2 36.7 38.2 30° 58.' 0.2 1.5 3.3 5.2 7.2 9.5 11.8 14.7 17.5 20.2 22.8 25.3 27.5 29.5 31.2 32.8 34.5 36.0 20° 58.8 o.a 2.2 3.8 6.0 8.2 10.8 13.5 16.5 19.5 22.3 24.8 27.0 28.8 30.7 32.3 33.8 10° 59..'- 1.2 3.0 5.0 7.2 9.8 12.7 15.8 19.0 21.7 24.2 26.3 28.3 ,30.2 31.7 0° 58.8 0.5 2.3 4.8 0.5 9.2 12.2 15.3 18.5 21.3 23.7 25.8 27.8 29.5 31.2 L. — 500° 4, - 40° 59.7 1.3 2.8 4.7 6.5 8.5 10.7 13.0 15.5 18.0 20.7 28.2 25.5 27.7 29.7 31.5 33.2 34.8 86.3 37.7 30° 59.8 1.3 3.2 5.0 7.0 9.2 11.7 U.3 17.2 20.0 22.7 25.0 27.2 29.2 30.8 32.5 34.2 35.5 20° 58.8 0.: 2.0 3.8 6.0 8.2 10.8 13.7 16.7 19.5 22.3 24.7 26.8 28.7 30.5 32.2 33.7 10° 59.3 1.2 3.0 5.0 7.3 10.0 12.8 16.0 19.0 21.8 24.2 26.3 28.3 30.0 31.7 0° 58.8 0.5 2.3 4.6 6.8 9.6 12.5 16.7 18.7 21.5 23.8 25.8 27.8 29.5 31.2 ECLIPSES OF THE SUN IN INDIA. T,\ r, LK 1). '45 A + ^. 260° 270° 28()° 29()° to«° 110° 120° :13()° 340° :j.'>0° 0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 100° I,. = 510° ^ = 40° 59.3 1.0 2.5 4.3 6.2 8.2 10.3 12.7 15.2 17.8 20.3 22.8 25.2 27.3 29.2 31.0 32.7 34.3 36.0 37.3 30° 59.7 1.3 3.0 4.8 6.8 9.2 11.7 14.3 17.0 20.0 22.5 24.8 27.0 28.8 80.7 32.3 33.8 35.3 20° .58.7 0.3 2.0 3.8 5.8 8.2 10.8 13.7 16.5 19.5 22.2 24.5 26.7 28.7 30.3 32.0 33.5 10° 59.5 1.2 3.0 5.2 7.5 10.0 13.0 16.2 19.0 21.8 24.2 26.2 28.2 29.8 31.5 0° 58.8 0.7 2.5 4.5 0.8 9.5 12.7 15.8 18.8 21.3 23.8 25.8 27.8 29.5 31.0 L = 520° 4. = 40° 59.0 0.5 2.2 3.8 5.7 7.7 9.8 12.2 14.7 17.3 19.8 22.3 24.5 26.7 28.7 30.5 32.2 .33.8 35.3 36. S 30° .59.2 0.8 2.5 4.5 6.5 8.7 11.2 13.8 16.7 19.3 21.8 24.3 26.3 28.3 30.2 31.8 33.3 34.8 20° 58.5 0.2 1.8 3.8 5.7 8.0 10.7 13.3 16.3 19.2 21.8 24.2 26.3 28.2 30.0 31.7 33.2 10° 59.8 1.0 2.8 5.0 7.3 10.0 13.0 16.0 18.8 21.5 23.8 25.0 27.8 29.7 31.2 32.7 0° 59.0 0.7 2.7 4.7 7.2 9.8 12.8 15.8 18.8 21.5 23.8 25.8 27.7 29.3 31.0 L = 530° ^=40° 58.5 0.0 1.7 3.3 5.3 7.3 9.3 11.7 14.2 16.7 19.2 21.7 24.0 26.2 28.0 29.8 31.7 33.2 34.8 36.2 30° 59.0 0.7 2.3 4.2 6.3 8.5 11.0 13.5 16.3 19.0 21.5 23.8 26.0 28.0 29.8 31.5 33.0 34.5 20° 59.8 1.7 3.5 5.5 7.8 10.3 13.2 16.0 18.8 21.5 23.8 26.0 27.8 29.7 31.3 32.8 10° .59.3 1.0 3.0 5.2 7.8 10.0 13.0 10.0 18.8 21.5 23.8 25.8 27.7 29.5 31.0 32.5 0° 59.0 0.8 2.7 4.8 7.5 10.0 13.0 16.0 18.8 21.3 23.7 25.7 27.7 29.3 30.8 L. = 540° 4> = 40° 59.5 1.2 2.8 4.7 6.7 8.8 11.0 13.5 16.0 18.5 20.8 23.2 25.3 27.3 29.2 30.8 32.5 34.0 35.5 30° 58.7 0.3 2.0 3.8 5.8 8.0 10.5 13.0 15.7 18.3 21.0 23.3 25.5 27.3 29.2 30.8 32.5 34.0 20° 59.8 1.5 3.3 5.3 7.7 10.2 12.8 15.7 18.5 21.2 23.5 25.7 27.6 29.3 31.0 32.5 10° 59.2 1.0 2.8 4.8 7.2 9.8 12.7 15.7 18.5 21.0 23.5 25.5 27.5 29.2 30.8 32.3 0° .59.2 0.8 2.8 4.8 7.3 10.0 12.8 16.0 18.7 21.3 23.7 25.7 27.5 29.2 30.8 L. = 550°4> = 40° 59.0 0.7 2.3 4.0 6.0 8 2 10.3 12.8 15.2 17.7 20.2 22.5 24.7 26.7 28.5 30.2 31.8 33.5 30° 58.3 0.0 1.7 3.5 5.5 7.7 10.0 12.5 15.2 17.8 20.3 22.7 24.8 26.8 28.7 30.3 32.0 33 . 5 20° .59.5 1.2 3.0 5.0 7.2 9.7 12.3 15.2 18.0 20.5 22.8 25.0 27.0 28.8 30.5 32.0 10° 59.3 1.0 2.8 4.8 7.2 9.8 12.5 15.5 18.3 20.8 23.2 25.3 27.2 29.0 30.7 32.2 0° 59.3 1.0 2.8 5.0 7.3 10.0 12.8 15.8 18.5 21.2 23.5 25.5 27.3 29.0 30.7 L. = 560°4> = 40° 58.2 59.8 1.5 3.3 5.3 7.3 9.5 11.8 14.3 16.8 19.2 21.5 23.7 25.7 27.7 29.5 31.2 32.7 30° 59.5 1.3 3.0 5.0 7.2 9.5 12.0 14.5 17.2 19.7 22.0 24.3 26.3 28 2 30.0 31.7 33.2 20° 59.3 1.0 2.8 4.8 7.0 9.3 12.0 14.7 17.5 20.2 22.5 24.7 26.7 28.5 30.3 31.8 10° 59.2 0.8 2.7 4.7 7.0 9.5 12.2 15.0 17.8 20.5 22.8 25.0 27.0 28.8 30.5 0° .59.3 1.0 2.8 5.0 7.3 9.8 12.7 15.5 18.3 21.0 23.3 25.3 27.3 29.0 30.7 L. =::570°<}>=40° 59.3 i!o 2.8 4.7 6.7 8.8 11.2 13.7 16.0 18.5 20.8 23.0 25.0 27.0 28.8 30.5 32.0 30° 59 ."2 0.8 2.5 4.5 6.5 8.8 11.3 13.8 16.3 19.0 21.3 23.7 25.7 27.7 29.3 31.0 20° 59.2 0.8 2.7 4.7 6.7 9.0 11.7 14.3 17.0 19.7 22.2 24. S 26.3 28.3 30.0 31.7 10° 59.2 0.8 2.7 4.7 6.8 9.3 12.0 U.8 17.7 20.3 22.7 24.8 26.8 28.7 30.3 32.0 0° 59.3 1.0 2.8 5.0 7.2 9.7 12.5 15.3 18.2 20.7 23.2 25.3 27.2 29.0 30.7 L = 580° $ = 40° 58.8 0.5 2.2 4.2 6.2 8.2 10.5 12.8 15.3 17.8 20.2 22.3 24.5 26.5 28.3 30.0 31.7 30° 58.7 0.3 2.2 4.0 6.2 8.3 10.7 13.2 15.8 18.5 20.8 23.2 25.8 27.2 29.0 30.7 20° 58.8 0.5 2.3 4.2 6.2 8.5 11.0 13.7 16.5 19.2 21.7 24.0 26.0 27.8 29.7 31.3 10° 59.0 0.7 2.5 4.3 6.5 9.0 11.5 14.8 17.2 19.8 22.3 24.7 20.7 28.5 30.2 0° 59.3 1.0 2.8 4.8 7.0 9.5 12.2 15.0 17.8 20.5 23.0 25.2 27.2 29.0 30.7 146 ECLIPSES OF THE SUN IN INDIA. TABLE D. A ~ /z. •>G0° 270° 280° 290° 300° 310° 320° 330° 340° 350° 0° 10° 20° 30° 40° 50° G0° 70° 80° 90° 100° 1-. = 590° * =40° 58.3 0.0 1.7 3.5 5.5 7.7 9.8 12.2 14.7 17.2 19.5 21.8 24.0 25.8 27.8 29.5 30° 58 . 5 0.2 1.8 3.7 5.7 7.8 10.2 12.7 15.3 18.0 20. r 22.7 24.8 26.8 28.7 30.3 20° 58.5 0.2 1.8 3.7 5.8 8.0 10.5 13.2 15.8 18.7 21.2 23.5 25.7 27.5 29.3 31.0 10° 58.8 0.5 2.3 4.2 0.3 8.7 11.2 13.8 16.7 19.5 22.0 24.3 26.5 28.3 30.0 0° 59.3 1.0 2.8 4.7 0.8 9.3 11.8 14.7 17.5 20.3 22.7 25.0 27.2 29.0 30.7 I.. = 600° 4. = 40° 59.5 1.2 3.0 5.0 7.0 9.3 11.7 14.2 16.5 19.0 21.3 23.5 25.5 27.3 29.0 30° 59.7 1.3 3.2 5.2 7.2 9.7 12.2 14.7 17.3 19.8 22.2 24.3 26.3 28.2 30.0 20° 58.3 0.0 1.7 3.5 5.5 7.7 10.2 12.8 15.7 18.3 21.0 23.3 25.5 27.3 29.2 10° 58,8 0.5 2.2 4.0 0.0 8.3 11.0 13.7 16.5 19.3 22.0 24.3 26.5 28.3 30.2 0° 59.3 1.0 2.7 4.7 0.7 9.0 11.7 14.5 IT. 3 20.2 22.7 25.0 27.2 29.0 30.7 L. = 610°=40° 59.8 1.7 3.5 5.7 8.0 10.3 13.0 15.5 18.0 20.3 22.5 24.5 26.3 28.2 30° 59.3 1.2 3.0 5.2 7.5 10.0 12.7 15.5 18.2 20.7 23.0 23.0 26.8 28.7 20° 59.2 1.0 2.8 4.8 7.2 9.8 12.7 15.5 18.3 21.0 >3.3 25. 5 27.3 29.0 JO. 7 10° 59.0 0.8 2.7 4.7 7.0 9.7 12.5 15.5 18.5 a. 2 23.7 25.7 27.7 39.3 Jl.O 0° 59.0 0.7 2.5 4.5 6.8 9.3 12.2 15.3 18.3 il.O 23.5 25.7 27.7 29.3 il.O 148 ECLIPSES OF THE SUN IN INDIA. TABLE D. >. f y. 260° '270° •280° •290° 300° 310° 3-20° 330° •340° 350° 0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 100° L. = 750° (}. = 40° 58.7 0.3 2.2 4.2 6.2 8.5 19.8 13.3 16.0 18.5 20.8 23.0 25.2 27.0 28.7 30.3 30° .59.8 1.7 3.5 5.7 8.0 10.5 13.2 16.0 18.7 21.2 23.3 25.5 27.3 29.2 30. S 20° 59.3 1.2 3.0 5.0 7.3 10.0 12.7 15.7 18.5 21.2 23.5 25.5 27.5 29.2 30.8 10° 59.2 0.8 2.7 4.7 7.0 9.7 12.5 15.5 18.3 21.2 23.5 25.7 27.7 29.3 31.0 0° 59.0 0.7 2 5 4.5 6.8 9.3 12.2 15.2 18.2 21.0 23.5 25.7 27.7 29.3 31.0 L. = 7BO°4. = -iO° 59.2 0.8 2.7 4.7 6.7 8.8 11.3 13.8 10.3 18.8 21.3 23.5 25.5 27.5 29.2 30.8 30° 58.7 0.2 2.0 4.0 6.0 8,2 10.7 13.5 16.2 18.8 21.3 23.7 25.8 27.7 29.5 31.2 20° 59.7 1.5 3.3 5.3 7.5 10.2 13.0 15,8 18.7 21.3 23.7 25.8 27.8 29.5 31.2 10° 59.3 1.0 2.8 4.8 7.0 9.7 12.5 15.5 18.3 21.2 23.7 25.8 27.8 29.5 31.2 ll» 59.0 0.7 2.5 4.5 fi.7 9.2 12.0 15.0 18.0 20.8 23.3 25.5 27.5 29.3 31.0 ADDITIONS AND CORRECTIONS. Art. 3i. />. p. A better description of the sankrantis may be<^iven thus. The sayana Mesha saiikranti, al.so called a Vishuva sankranti, marks the vernal equinox, or the moment of the sun's passing the first point of Aries. The sayana Karka sankranti, three solar months later, is also called the dakshinayana (soutliward-going) sankranti. It is tlie point of the summer solstice, and marks the moment when the sun turns southward. The sayana Tula sankranti, three solar months later, also called a Vishuva sankranti, marks the autumnal equino.x or the moment of the sun's passing the first point of Libra. The sayana Makara sankranti, three solar months later still, is also called the uttarayana (northward-going) sankranti. It is the other solstitial point, the moment when the sun turns north- ward. The nirayana (or sidereal) Mesha and Tula sankrantis are also called Vishuva sankrantis, and the nirayana Karka and Makara sankrantis are also, though erroneously, called dakshinayana and uttarayana sankrantis. Art. po, p. 52. Line 6. After "we proceed thus" add; — "The interval of time between the initial point of the luni-solar year ( Table /., Cols, ip, 20) and the initial point of the solar year by the Surya Siddhanta {Table /., Cols, ij, i^, and ija, or lya ^) can be easily found. Lijie p. After "Art. 151 " add; — "or according to the process in Example i, Art. 148." Line 16. After "intercalations and suppressions" add;—V^e will give an example. In Professor Chhatre's Table, Karttika is intercalary in Saka 551 expired, A.D. 629 — 30 (see Ind. Ant., XXILL. p. 106); while in our Table Asvina is the intercalary month for that year. Let us work for Asvina. First we want the tithi-index [t) for the moments of the Kanya and Tula sankrantis. In the given year we have {Table /., Col. 19) the initial point of the luni-solar year at sunrise on 1st March, A.D. 629, (=60), and {Cols, ij, 17) the initial point of the solar year by the Ary a- Siddhanta (= 17 h. 32 m. after sunrise on March 19th of the same year). By the Table given below (p. 151) we find that the initial moment of the solar year by the Siirya Siddhanta was I 5 minutes later than that by the Ary a Siddhanta. Thus we have the interval between the initial points of the luni-solar and solar years, according to the Surya Siddhanta, 'as 18 days, 17 hours, and 47 minutes. Adding this to the collective duration up to the moment of the Kanya and Tula sankrantis [Table LIL, Col. p), i.e., 156 days, u hours and 52 minutes, and 186 days, 22 hours and 27 minutes respectively, we get 175 days, 5 hours, 39 minutes, and 205 days, 16 hours, 14 minutes. We work for these moments according to the usual rules (Method C, p. Jj). a. b. c. For the beginning of the luni-solar year ( Table /., Cols. 2j, 24, 25) 9994 692 228 For 175 days {Tabic IV) 9261 351 479 For 5 hours {Tabic T.) 71 8 I For 39 minutes {Do) 9 i o 9335 52 708 ' Our a, b, r, (Table I., Cols. 23, 2-t, ia) arc calculated by the Siiri/a Sidd/idiita, and therefore we give the rule for the Siiri/a Siddhinta. The time of the Mesha saiikrilntis by the Arya Siddhanta from AD. 1101 to 190O is given in Table I. That for years from A.D. 300 to 1100 can be obtained from the Table on p. 151. ISO THE INDIAN CALENDAR. over 9335 52 708 Equation for b (52) [Tabic J 7.) 186 Do. (or c (70S) (Tab/c- 17/.) 119 9640 Aj^'-aifi a. For the beginning of the luni-solar year 9994 For 205 days 9420 For 16 hours 226 For 1 4 'minutes 3 o o 9643 156 791 Equation for (/;) 256 Do. for (c) 119 b. c. 692 228 440 561 24 2 This proves that the moon was waning at the Kanya sankranti, and waxing at the Tula sankranti, and therefore Asvina was intercalary [sec Art. /j). This being so, Karttika could not have been intercalary. The above constitutes an easy method of working out all the intercalations and suppressions of months. To still further simplify matters we give a Table shewing the sankrantis whose moments it is necessary to fix in order to establish these intercalations and suppressions. Equation c is always the same at the moment of the sankrantis and we give its figure here to save further reference. Months. Saiikvantia to be fixed Equation c. 1. 2. 3. 1. Chaitra 2. Vai.s.ikha 3. Jyeshtha 4. Ashadha 5. Sravana 6. Bhadrapada 7. Asvina 8. Karttika 9. Margasirsha 10. Pausha I 1. Magha 12. Phalguna Mina . . Mesha . Vrishabha Mithuna Karka . Siriiha . Kanya . Tula . . Vrischika Dhanus Makara . Kumbha . Mesha . Vrishabha . Mithuna . . Karka . . . Simha . . . Kanya . . Tula . . . Vrischika . Dhanus . . Makara . . Kumbha . . Mina . . . 3 I 15 42 75 103 119 119 104 78 47 20 Art. q6, Table, p. jj. Instead of this Table the following may be used. It shews tlie difference in time between the Mesha- sankrantis as calculated by the Present Siirya and First Arya Sidd/iantas, and will ADDITIONS AND CORRECTIONS. '51 save the trouble of making any calculation according to the Tabic in the text. Uut if great accuracy is required the latter will yield results correct up to 24 seconds, while the new Table gives it in minutes. TABLE Shewing time -difference in minutes between the moments oftheMesha sahkr^nti as calculated by the Present Surya and First Arya Siddhantas. [The sign — shews that the Mesha sahkranti according to the Siirya Siddhc'uita took place before, the sign + that it took place after, that according to the Arya SiddhantaJ . Years Diff. in Years Diff, in Years Diff. Years Diff. A.D. minutes. AI). minutes. AD. minutes. AD. minutes. - + + -i- 300—8 21 501— y 1 703—11 23 904—12 45 309-17 20 510—19 3 712—20 24 913-21 46 318—27 19 520—28 3 721—29 25 922—30 47 328—36 18 529-37 4 730—38 20 931—39 48 337—45 17 538—46 5 739—47 27 940—48 49 348—54 16 547-55 6 748-56 28 949—58 50 355—6.3 15 556-64 7 757-66 29 959—67 51 364—72 14 565—73 8 767-75 30 968—76 52 373—81 13 574—83 9 776—84 31 977—85 53 382—91 12 584—92 10 785—93 32 986—94 54 392 — 100 11 593—601 . 11 794—802 33 995-1003 55 401—9 10 602—10 12 803—11 34 1004—13 56 410—18 9 611—19 13 812-20 35 1014-22 57 419—27 8 620—28 14 821—30 36 1028—31 58 428—36 7 029—38 IS 831—39 37 1032—40 59 437—45 6 039-47 10 840—48 38 1041—49 60 446—55 5 648—56 17 849—57 39 1050—58 61 456—64 4 657-65 18 858—66 40 1059-07 62 465—73 3 666— 7t 19 867-75 41 1068-77 63 474—82 2 675—83 20 876-84 42 1078—86 64 483—91 1 684—92 21 885—94 43 1087-95 65 492—500 693-702 22 . 895—903 44 1096—1104 66 Art. 102, pp. j6, S7- From the initial figures for the zv. a. b. c. of luni-solar Kali 3402, A.D. 300 — i, given in the first entry in Table I., and the figures given in the Table annexed to this article 152 THE INDIAN CALENDAR. (which gives the increase in zc. a. b. c. for the different year-lengths) it is easy to calculate with exactness the initial w. a. b. c. for subsequent luni-solar years. Thus — For Kali 3402 355 days )»i-4> !i4-34 895-17 883-51 255-93 971-91 (Oitr entries in Table I.) b. 9981 89s 256 For Kali 3403 384 days 195-75 34-66 778-68 935-97 •27 84 51-31 196 779 228 For Kali 3404 etc. 230-41 etc. 714-65 I 279-15 etc. I etc. I 3 etc. 230 etc. 715 etc. 279 etc. To ascertain how many days there were in each year it is only necessary to use col. 19 of Table I. with Table IX. Kali 3403 began 26th February. Table IX. gives the figure 57 on left-hand side, and 422 on the right-hand side, the former being entered in our Table I. But since A.D. 300 was a leap-year we must take, not 422, but 423, as the proper figure. Kali 3402 began 8th March (68). 423—68=355, and this in days was the length of Kali 3402. Similarly (17th March) 441 — (26 February) 57 = 384, and this was the length of Kali 3403 ; and so on. It may be interesting to note that in every century there are on an average one year of 385 days, four years of 383 days, twenty-three years of 355 days, thirty-two years of 384 days, and forty years of 354 days. P. 98. To e7id of Art. 160, add the following; — "160(a). To find the tropical (say ana) as well as the sidereal (nirayana) saiikranti. Find the time of the nirayana saiikranti (xiCd' ^r/. 2j) required, by adding to the time of the Mesha sankranti for the y&z.x {Table /., Cols, /j /c 77^?) the collective duration of the nirayana sankranti as given in col. 5 of Table III., under head " sankrantis." Then, roughly, the sayana sankranti took place as many ghatikas before or after the nirayana one as there are years between Saka 445 current, and the year next following or next preceding the given year, respectively. " For more accurate purposes, however, the following calculation must be made. Find the number of years intervening between Saka 445 current, or Saka 422 current in the case of the Siirya Siddhanta, and the given year. Multiply that number by i;, or ^^ in the case of the Surya Siddhanta. Take the product as in ayanamsas, or the amount of precession in degrees. Multiply the length of the solar month [Art. 2./) in which the sayana sankranti occurs (as shewn in the preceding paragraph) by these ayanamsas and divide by 30. Take the result as days ; and by so many days will the sayana sankranti take place before or after the nirayana saiikranti of the same name, according as the given year is after or before Saka 445 (or Saka 422). This will be found sufficiently accurate, though it is liable to a maximum error (in A.D. 1900) of 15 ghatikas. The maximum error by the first rule is one day in A.D. 1900. The smaller the distance of the given date from Saka 445 (or 422) the smaller will be the error. For absolute accuracy special Tables would have to be constructed, and it seems hardly necessary to do this. d. w. //. m. (82) 5 '4 5-' 275 2 '5 43 ADDITIONS AND CORRECTIONS. 153 The following example will shew the method of work. Wanted the moment of occurrence of the nirayana Makara sankranti and of the sayana Makara (or uttarayana) sankranti in the year Saka 1000, current. Moment of Mesha .sankranti (Table I.) March 23 Add collect, duration to beginning of Makara (Table III.) .... Then the moment of the nirayana Makara sankranti is 358 i 635 (One day being added because the hours exceed 24.) 358 =3 December 24th. 1= Sunday. The nirayana Makara sankranti, therefore, occurred on Sunday, December 24th, at 6 h. 35 m. after sunrise. Now for the sayana Makara sankranti. By the Table given above we find that in the given year the sayana sankranti took place 9 days, 6 hours before the nirayana sankranti ; for A.D. 1000 — 445 = 555 ghatikas = 9 days 15 gh. rz 9 days, 6 hours, and it took place in nirayana Dhanus. d. Ti'. //. m. Moment of nirayana Makara sank: 24 Dec. = 358 i 6 35 Deduct 9 9260 15 Dec. 349 6 o 35 This shews that the sayana Makara sankranti took place on Friday. Dec. 15th, at 35 minutes after sunrise. (2) F^or more accurate time we work thus. lOOO — 445 =555. Multiplying by — we have 9-, or 9" 1 5' in ayanamsas. The length of the month Dhanus is 29 d. 8 h. 24 m. 48 s. (Table, p. 10). d. Ii. III. s. 29 d. 8 h. 24 m. 48 s. X 9'/4 30 = 9 1 " 39 We take 11 m. 39 s. as = 12 m., and deduct 9 d. i h. 12 m. from the moment of the nirayana Makara sankranti, which we have above. d. w. //. III. 24 Dec. 358 I 6 35 9 9 2 I 12 15 Dec. 349 6 5 23 This shews that the sayana Makara sankranti took place on Dec. 15th at 5 h. 23 m. after sunrise, the day being Friday. ' " The following Table may be found useful. It may be appended to Table VIII. and called -'Table VIII. C". • Actual calculation by the .\na SidilhSnta proves that the sSyana sankranti in question took place only 1 minute after the time 90 found. [S. B. D.] '54 THE INDIAN CALENDAR. Table of Rasis (signs). [The moments of the sankrantis are indicated by the first of the two entries in cols 2 and 3. Thus the moment of the Simha sankrinti is shewn by s. = 3333, degrees = 120°.] Rilsis (signs.) S. (See Ai-ts. 133 and 156.) Degrees. Nakshatras forming the RSsis. 1 2 3 4 1. Mesha i. Vrishabha 3. Mithuna 4. Karka 5. Siihha C. Kanyl 7. Tula 8. Vrischika 9. Dhanus 10. Makara 11. Kumbha 12. Miua 0—833 833— 1667 16C7— 2500 2500—3333 3333-4167 4167-5000 5000-5833 5833-6667 6667—7500 7500-8333 8333—9167 9107—10000 0°— 30° 30°— 60° 60°— 90° 90°— 120° 120°— 150° 150°— 180° 180°— 210° 210°-240° 240°— 270° 270°— 300° 300°— 330° 330°— 360° 1. Asvinii 2. Bharapi; 3. First quarter of Krittika. 3. Last three quarters of Krittika; 4. Rohini; 5. Firet half of Mrigasiras. 5. Latter half of Mrigasiras; 0. Ardra; 7. First three quarters of Punarvasu. 7. Last quarter of Punarvasu; 8. Pushya; 9. Asleshft. 10. Magha; 11. Pi'irva-Phalguni; 12. First quarter of Uttara-Plialguni. 12. Last tlirec quarters of Uttara-Phalguni; 13. Hasta; 14. First half of Chitra. 14. Second half of Chitra; 15. SvSti; 16. First three quarters of Vi^akha. 16. Last quarter of Visakha; 17. Anuradha; 18 Jyeshtha. 19. Mula; 20. Purva-Ashfidha; 21. First quarter of Uttara-Ashadha. 21. Last three quarters of L'ttara-Ashadha; 22. Sravaoa; 23. First half of Dhauishtha (or Sravishtha.) 24. Second half of Dhanishtha (or Sravishtha) ; 24. Satataraka (or SaUbhishaj), 25. First three quarters of Purva Bhadrapada. 25. Last quarter of Purva Bhadrapada; 25. Uttara-Bhadrapada ; 27. Revati. "i6o(i^). The following is a summary of points to be remembered in calculating and verifying dates. The li.st, however, is not exhaustive. A. A luni-solar date may be interpreted as follows : — (I.) With reference to current and expired years, and to amanta and piirnimanta months, (.v) When the year of the given era is Chaitradi. («)• For dates in bright fortnights, two possible cases ; (i.) expired year, (ii.) current year. [b] For dates in dark fortnights, four possible cases; viz., expired year, or current year, according to both the puriiimanta and amanta system of months, (li) When the year is both Chaitradi and non-Chaitradi. (a) For dates in bright fortnights, three possible cases; viz., (i) Chaitradi year current, (2) Chaitradi year expired i^ non-Chaitradi year current, (3) non-Chaitradi year expired. (/') Dates in dark fortnights, si.x possible cases ; viz. , the same three )-ears according to both the pijri.iim.inta and amanta system of months. For months which are common to Chaitradi and non-Chaitradi years, the cases will be as in (a). (II.) With reference to tlie tithi. All the above cases, supposing the tithi was current, (i) at the given time as well as at sunrise of the given day, {2) for the given time of the da\-, but not at its sunri.se. B. A solar date may be interpreted as follows : — (I.) With reference to current and expired years. (a) When the year of the given era is Meshadi, two possible cases ; [a] expired year, [!>) current year. ADDITIONS AND CORRECTIONS. 155 (b) When the year of tlie given era is both Meshiidi and non-Meshadi, three possible cases ; {a) Meshadi year current, (/') Mcshadi year expired — non-Mcshadi year current, (i) non-Meshadi year expired. (II.) With reference to the civil beginning of the month, all the cases in Art. 28. C. When the era of a date is not known, all known possible eras should be tried. D. (a) According to Hindu Astronomy a tithi of a bright or dark fortnight of a montli never stands at sunrise on the same week-day more than once in three consecutive years. For instance, if Chaitra .sukla pratipada stands at sunrise on a Sunday in one year, it cannot stand at sunrise on Sunday in the year next preceding or next following. (/^) It can only, in one very rare case, end on the same week-day in two consecutive years, and that is when there are thirteen lunar months between the first and second. There are only seven instances ' of it in the 1600 years from A.D. 300 to 1900. (c) It cannot end on the same week-day more than twice in three consecutive years. (d) But a tithi can be connected with the same week-day for two consecutive years if there is a confusion of systems in the naming of the civil day, naming, that is, not only by the tithi current at sunrise, but also by the tithi current during any time of tliat day. Even this, however, can only take place when there are thirteen lunar months between the two. If, for instance, Chaitra sukla ist be current during, though not at sunrise on, a Sunday in one year; next year, if an added month intervenes, it may stand at sunrise on a Sunday, and con- sequently it may be connected with a Sunday in both these (consecutive) years. (1?) A tithi of an amanta month of one year may end on the same week-day as it did in the pijrnimanta month of the same name during the preceding year. (/) The interval between the weekdays connected with a tithi in two consecutive years, when there are 12 months between them, is generally four, and sometimes five ; but when thirteen lunar months intervene, the interval is generally one of six weekdays. For instance, if Chaitra sukla 1st ends on Sunday (=1) in one year, it ends next year generally on (i 4- 4 = 5 =) Thursday. and sometimes on(i +5 = 6 =) Friday, provided there is no added month between the two. If there is an added month it will probably end on(i -f6 = o=) Saturday. {g) According to Hindu Astronomy the minimum length of a lunar month is 29 days, 20 ghatikas, and the maximum 29 days and 43 ghatikas. Hence the interval between the week- days of a tithi in two consecutive months is generally one or two. If, for instance, Chaitra sukla pratipada falls on a Sunday, then Vaisakha sukla pratipada may end on Monday or Tuesday. But by the existence of the two systems of naming a civil day from the tithi current at its sunrise, as well as by that current'at any time in the day, this interval may sometimes be increased to three, and we may find Vai.sakha sukla pratipada, in the above example, connected with a Wednesday. E. {a) A sankranti cannot occur on the same week-day for at least the four years preceding and four following. (/;) See Art. 119, par. 3. 160 (c) To find the apparent longitude of Jupiter. (See Art. 4?, /. .,v, and Table XII.) I. To find, first, the mean longitude of Jupiter and the sun. (i.) Find the mean longitude of Jupiter at the time of the Mesha sankranti by the following Table W. That of the sun is 0" at that moment. (ii.) Add the sodhya (Art. 26, p. n, Art. 90, p. 52) given in the following Table Y to I They arc A.D 440—1; 776—7; 838—9, 857—8; 1183—4; 1264—5; 1581—2. «9 156 THE INDIAN CALENDAR. the time of the apparent Mesha sai'ikranti (as given in Table I., cols. 13 to 17, or i/rf). The sum is the moment of the mean Mesha sankranti. F'ind the interval in days, ghatikas, and palas between this and the given time (for which Jupiter's place is to be calculated). Calculate the mean motion of Jupiter during the interval by Table Y below, and add it to the mean longitude at the moment of mean Mesha sankranti. The sum is the mean place of Jupiter at the given moment. The motion of the sun during the interval (Table Y) is the sun's mean place at the given moment. II. To find, secondly, the apparent longitude. (i.) Subtract the sun's mean longitude from that of Jupiter. Call the remainder the " first commutation". If it be more than six signs, subtract it from twelve signs, and use the remainder. With this argument find the parallax by Table Z below. Parallax is tiihius when the commuta- tion is not more than six signs, plus when it is more than six. Apply half the parallax to the mean longitude of Jupiter, and subtract from the sum the longitude of Jupiter's aphelion, as given at the bottom of Table Z below. The remainder is the anomaly. (If this is more than six signs, subtract it from twelve signs, as before, and use the remainder.) With this argument find the equ ition of the centre ' by Table Z. This is minus or plus according as the anomaly is o to 6, or 6 to 12 signs. Apply it to the mean longitude of Jupiter, and the result is the heliocentric longitude. (ii.) Apply the equation of the centre (plus or minus) to the first commutation ; the sum is the "second commutation". If it is more than six signs, use, as before, the difference between it and twelve signs. With this second commutation as argument find the parallax as before. Apply it (whole) to Jupiter's heliocentric longitude, and the result is Jupiter's apparent longitude. Example. We have a date in an inscription. — "In the year opposite Kollam year 389, Jupiter being in Kumbha, and the sun 18 days old in Mina, Thursday, loth lunar day of Pushya" " Calculating by our method "C" in the Text, we find that the date corresponds to Saka 1 138 current, Chaitra sukla dasami (lOth), Pushya nakshatra, the i8th day of the solar month Mina of Kollam 390 of our Tables, or March 12th, A.D. 1215.^ To find the place of Jupiter on the given day. gh. pa. Apparent Me.sha sank, in Saka 1137 {Table /., Cols. 13 — /j) 25 Mar. (84) Tues. (3) 3 32 Add sodhya {Table Y) 2 2 2 8 51 27 Mar. (86) Tues. (5) 12 23 The given date is -Saka 1138 12 Mar. (436) (350) 350, then, is the interval from mean Mesha sankranti to 12 gh. 23 pa. on the given day. The interval between Saka i current and Saka 1137 current is 1136 years. • Neglecting the minutes and seeonJs of anomaly, the equation mnv be taken for degrees. Thus, if the anomaly is 149° V 49", the equation may be taken for 149'. If it were 149° 31' 12", take the eijuation for 150°. And so in the case of comma- Ution. For greater accuracy the equation and parallax may be found by proportion 2 Indian Antiquary, XXIV., p. 307, date No. XI. ' The year 389 in the original seems to be the etpired year . There are instances in which the word "opposite" is so used and I am inclined to think that the word used for "opposite" is used to denote "expired" (gata). The phrase " 18 days old" is used to shew the 18lh day of the solar month. [S. B. D.) ADDITIONS AND CORRECTIONS. >57 Saka I (Table Wj Years looo lOO , 30 ', 6 At mean Mesha sank : . Days (Table Y) . . . . 300 50 Mean long: on the given day. Deduct Sun's mean longitude from that of Jupiter JUI'ITER. Stga ° 1 II 9 29 3 22 (Nole that there 5 5 12 to a sign, and 0? 6 6 10 2 33 6 36 43 Sun. 9 18 24 52 55 48 44 sign " ' 1" 9 25 40 51 4 9 '7 I 19 16 48 10 1 1 17 14 57 57 49 39 I I 14 57 39 II 3 10 = first commutation. As this is more than six signs we deduct it from 12 signs. Remainder, signs o, 26° 59' 50". Call this 27". Parallax for 27° (see Table Z) ^ \' 20'. sign » ' " Mean longitude of Jupiter (above) 10 17 57 49 Add half the parallax 2 10 10 20 7 49 Subtract longitude of Jupiter's aphelion (bottom of Table 2)i 6 o O O Anomaly 4 20 7 49 4 signs, 20 degrees = 140 degrees. Equation of centre for argument 140° — (Table Z) 3° 25'. Deducting this from Jupiter's mean longitude found above (los. 17° 57' 49") we have los. 14° 32' 49" =: Jupiter's heliocentric longitude; and deducting it from the first commutation (lis. 3° o' 10") we have, as second commutation, los. 29° 35' 10". Remainder from 12 signs, is. 0° 24' 50". Parallax for i sign, or 30°, (Table Zj ^ d^ 49'. Applying this (adding because the commutation is over 6 signs) to the heliocentric longitude of Jupiter we have (los. 14° 32' 49" + 4° 49'=) lOs. 19° 21' 49" as the apparent (true) longitude of Jupiter. From this we know that Jupiter was in the i ith sign, Kumbha, on the given date. IS8 THE INDIAN CALENDAR. TABLE W. [For finding the 7nean place of Jupiter. Argument = number of years between Saka i and the given Saka year.] •5 u « -H Surya SidJhanta . . First Arja Do. . . . Sdrya Siddhauta with bija Signs ° ' " 7 56 54 U 9 29 5 49 4 No. of years. Sili'ja Siddlmnia •"irst Ar)-a Siddhunt i Sun-a Siddhanta with jija Signs Degi-ees Mins. Sees. s^ ° ' " S. ° ' " 1 1 21 6 1 21 7 1 21 4 2 2 42 12 2 42 14 2 42 7 3 3 1 3 18 3 1 3 22 3 1 3 11 4 4 1 24 24 4 1 24 29 4 1 24 14 5 5 1 4.-. 30 5 1 45 36 5 1 45 18 C 3 6 36 6 2 6 43 6 2 6 22 7 7 2 27 42 7 2 27 50 7 2 27 25 8 8 2 48 48 8 2 48 59 8 2 48 29 9 9 3 9 54 9 3 10 5 9 3 9 32 10 10 3 31 1) 10 3 31 12 10 3 30 36 20 8 7 2 8 7 2 24 8 7 1 12 30 6 10 33 6 10 33 36 6 10 31 48 40 4 14 4 4 14 4 48 4 14 2 24 50 2 17 35 2 17 3G 2 17 33 60 21 6 21 7 12 21 3 36 70 10 14 37 10 24 38 24 10 24 34 12 80 8 28 8 8 28 9 36 8 28 4 48 90 7 1 39 7 1 40 48 7 1 35 24 100 5 5 10 5 5 12 5 5 6 200 10 10 20 10 10 24 10 10 12 300 3 15 30 3 15 36 3 15 18 400 8 20 40 8 20 48 8 20 24 500 1 25 50 1 26 1 25 30 600 7 1 7 1 12 7 36 (1 700 6 10 6 24 5 42 800 5 11 20 5 11 36 5 10 48 900 10 16 30 10 16 48 10 15 54 1000 3 21 40 3 22 3 21 u 2000 7 13 20 7 14 7 12 8000 11 5 11 6 11 3 ADDITIONS AND CORRECTIONS. TABLE Y. [Mean motion of Jupiter and Sun. Argument = number of days (ghatikas and palas) between mean Mesha saiikranti and the given moment.] (This is applicable to alt tie Suldhdntat). «59 No. of days. Jupiter. Sun. 1 s. " ' " ^ ' " 1 4 59 59 8 2 U 58 1 58 16 3 14 57 2 57 25 i 19 57 3 56 33 5 24 56 4 55 41 6 29 55 5 54 49 7 34 54 6 53 57 8 39 53 7 53 5 9 44 52 8 52 14 10 49 51 9 51 22 20 1 39 43 19 42 43 30 2 29 34 29 34 5 40 3 19 26 1 9 25 27 50 4 9 17 1 19 16 48 60 4 59 7 1 39 8 10 70 5 49 2 8 59 32 80 C 38 52 2 18 50 54 90 7 28 43 2 28 42 15 100 8 18 35 3 8 33 37 200 16 37 9 6 17 7 14 300 24 55 44 9 25 40 51 ,/. gh. pa. ^ ,, f Sin-R Siddhunta 2 10 14 Sodhva = i . • \ .^na Siddhunta 2 8 51 Motion for ghatikAs iz: as many minutes and seconds as tlierc are degrees and minutes for the same number of days. Motion for palas zz as many secondB as there are degrees for the same number of days. Example. The motion of Jupiter in four ghatikAs is 19^ , or (say) 20 seconds. The motion of the Sun in five palas is 4^5 , or (say) 5 seconds. i6o THE INDIAN CALENDAR. TABLE Z. [For Equation of centre. Argiimetit — Jupiter s anomaly. For Parallax, Argument = commutation.] 1 Equation 1 Equation i Equation .s Parallax. uf _o Parallax. of .2 Parallax. of 1 a centre. a 1 centre. 1 60 < centre. ° ' ° ' ° ' ° ' ° ' 1 10 5 25 4 2 2 7 49 7 33 3 45 2 19 10 26 4 11 2 11 50 7 41 3 48 8 29 15 27 4 20 2 15 51 7 48 3 52 4 38 21 28 4 30 2 20 52 7 56 3 56 5 48 26 29 4 39 2 24 53 8 4 3 59 6 58 31 30 4 49 2 29 54 8 12 4 2 7 8 37 31 4 59 2 33 55 8 20 4 5 8 18 42 32 5 7 2 38 56 8 27 4 8 9 27 47 33 5 17 2 42 57 8 34 4 11 10 37 52 34 5 26 2 47 58 8 41 4 14 11 47 57 35 5 34 2 51 59 8 48 4 17 12 57 2 36 5 43 2 55 60 8 55 4 20 13 2 7 7 37 5 52 2 58 61 9 1 4 22 14 2 16 12 38 6 1 3 4 62 9 8 4 25 15 2 26 17 39 6 9 3 8 63 9 14 4 27 16 2 36 22 40 ' 6 18 3 12 64 9 21 4 80 17 2 46 27 41 6 26 3 16 65 9 28 4 32 18 2 55 32 42 6 35 3 20 66 9 34 4 35 19 3 4 37 48 6 44 3 23 67 9 40 4 87 20 3 14 42 44 6 52 3 27 68 9 45 4 39 21 8 24 47 45 7 3 31 69 9 49 4 41 22 3 33 52 46 7 8 8 36 70 9 54 4 48 23 3 42 57 47 7 17 3 ^38 71 9 59 4 45 24 3 52 2 1 48 7 25 3 42 72 10 4 4 47 Longitude of the Aphelion of Jupiter, by SArya Siddhftnta r= 6 signs 21 degrees Aryu Siddh&nta = 6 „ „ ADDITIONS AND CORRECTIONS. i6i i Eq latioii 1 Bquatinn 1 E,|n Btion a c 1 < Paia ll.a. of centre. C3 3 Pnn Ilai. of ccnlrc. 1 s Pai-allax. ceil f tre. 1 ' ° ° ' ° ' 1 ' ° ' 73 10 9 4 49 109 11 25 4 54 145 7 41 3 4 74 10 11 4 51 110 11 24 4 52 146 7 31 3 75 10 19 4 52 HI 11 22 4 50 147 7 19 2 55 76 10 24 4 54 112 U 19 4 49 148 7 8 2 50 77 10 2S 4 55 113 n 16 4 47 149 6 57 2 46 78 10 33 4 56 114 11 13 4 45 150 6 46 2 41 79 10 37 4 57 115 11 10 4 43 151 6 34 2 36 80 10 41 4 59 116 n 6 4 41 152 6 23 2 31 81 10 46 5 117 11 2 4 38 153 6 11 2 27 82 10 50 5 1 118 10 59 4 36 154 5 59 2 22 88 10 54 5 1 119 10 55 4 34 155 5 47 2 17 84 10 58 5 2 120 10 51 4 31 156 5 34 2 12 85 1 5 3 121 10 46 4 29 157 5 21 2 7 86 4 5 4 122 10 41 4 26 158 5 8 2 2 87 7 5 4 123 10 36 4 23 159 4 55 57 88 10 5 5 124 10 31 4 21 160 4 42 51 89 13 5 5 125 10 25 4 18 161 4 29 46 90 16 5 5 126 10 19 4 15 162 4 16 41 91 19 5 6 127 10 13 4 12 163 4 2 35 92 22 5 6 • 128 10 7 4 9 164 3 48 30 93 25 5 6 129 10 1 4 6 165 3 34 24 91 27 5 6 130 9 54 4 3 166 3 20 19 95 28 5 6 131 9 47 3 59 167 3 6 13 90 29 5 5 132 9 39 3 55 168 2 52 8 97 30 5 5 133 9 32 3 52 169 2 38 2 98 30 5 4 134 9 25 3 49 170 2 24 57 99 30 5 4 135 9 17 3 45 171 2 10 51 100 31 5 3 136 9 9 3 41 172 1 55 45 101 31 5 3 137 9 3 37 173 1 41 40 102 31 5 2 138 8 51 3 33 174 1 27 34 103 30 5 1 139 8 41 3 29 175 1 13 29 104 30 5 140 8 32 3 25 176 59 24 105 29 4 59 141 8 22 3 21 177 44 18 106 28 4 58 142 8 12 3 17 ITS 29 12 107 27 4 57 143 8 2 3 13 179 15 6 108 26 4 55 144 7 52 3 8 ISO INDEX. ~~^aJ \0~* ^~OX .aO^ "(I." "«." "<;." in Table I. ejplained. Art. 102, p. 56. Abul Fazal, on the Lakshmnna Sena Era, Art. 71, p. 46. Adhiks miusas, or interi'alnted months, system cxplaincil, Art. 25, p. 11; adhika tithis, rules governing, Art. 32, p. 17; variation on aecount of longitude, Art. 35, p. 19; detailed rules governing. Arts. 45 to 51, pp. 25 to .31; Arts. 76 to 79, pp. 48, 49; (see also under Intercalation, Lunar month, Tithi). Ahargttua, meaning of. Art. 30, and note 2, p. 16; Art. 47, p. 28. Akbar, established the Fasali Era, Art. 71, p. 44; and the Ililhi Era. Art. 71, p. 46. Jkbarndma, The, of Abul Fazal, Art. 71, p. 46. Alberuni, Sapfarshi Kala Era used in MultAn in his day. Art. 71, p. 41; and the Harsha-KAla Era in Mathura and Kanauj, Art. 71, p. 45, Am^ta system of lunar months, definitiuD, Art. 13, p. 4; compared with piiiTjiimanta system in tabular form. Art. 45, p. 25 ; how it affects intercalation of months in luni-solar system, Art. 51, p. 30. AmavSsya, definition of, Art. 7, p. 3; name of a tithi, id.; ends a paksha or fortnight. Art. 11, p. 4; see also Art. 13, p. 4; Art. 29, p. 13. Amli Era of Orissa, The, Art. 71, p. 43. . Amrita Siddhi Yoga, Art. 39, p. 23; in an actual parichi'iiiga, p. 15. Ariisa, or degree of angular nioasurement. Art. 22, p. 9. Angas= limbs; paiichanga. Art. 4, p. 2. Anomalistic, Length of — lunar month. Art. 12, note 2, p. 4; — solar year, definition and length of. Art. 15, and note 3, p. 5. Anomaly of a planet, true and mean, defined. Art. 15, note 4, p. 5. Apara paksha. (See Pakaha). Apogee, Sun's, longitude of, in A.D. 1137, Art. 24, p 11. Apparent, saiikriinti, defined. Art. 26, p. 11; meaning of word "apparent", Art. 26, note 2, p. 11; "apparent time". Art. 36, p. 19. Apsides, Line of, in reference to length of anomalistic solar year, Art. 15, and note, p. 5. "Arabi-san" The. (See Mahratta Siir tan). Aries, first point of Art. 14, p. 5; sidereal longitude measured from, Art. 23, p. 9. Ai^a-paksha school of astronomers. Arts. 19, 20, p. 7, 8. Aryas, Ancient, were acquainted with the starry nakshati-as. Art. 38, p. 21. Jri/a Siddhdnta, The First, Art. 17, p. 6 ; the Second, id. ; length of year according to First, now in use. Art. 18, p. 7 ; account of the. Arts. 19, 20, 21, pp. 7 to 9, and notes. Basis of solar reckoning in this work. Art 37, p. 20; mean inter- calations according to. Art. 49, p. 29 ; Rule of, for finding the samvatsara current on a particular day. Art. 59, p. 34; List of expunged samvatsaras of the 60-year cycle of Jupiter according to the rule of the. Art. 60, p. 36 ; where used in the Tables as basis of calculation, Art. 73, p. 47; difference between moment of Mesha-sankranti as calculated by the — and the Sdnja Siddhdnta, Art. 96, p. 54, and table. Ayanamsa, Warren's use of the. Art. 24, note 1, p. 11. Badi, or Vadi paksha. (See Vaksha.) Bahula paksha. (See Paksha.) Bilrhaspatya samvatsara. (See Brihasiiati cluikra.) Bengal. Solar reckoning used in. Art. 25, p. 11 ; use of the "Bengali Sau" Era in, Art. 71, p. 43; of the Viiayati Era in, id. ; New Year's Day in, Art. 52, p. 32. Bengalis, followers of the Saura school of astronomy. Art. 20, p. 8. "Bengali San" Era, The, Art. 71, p. 43. Bcrars, Ganesa Daivajna's works followed in. Art. 20, p. 9. Bhilskaracharya (A.D. 1150) mentions the Second .tnja Sidd- hiliila. Art. 20, p. 8 ; follows the rule given in the Kdlatalia- rii-fchana for naming adhika and kshaya mi'isas. Art. 46, p. 27; snpprcjised months according to. Art. 47, p 27 ; Art. 50, p. 30. Bhdsvall, a Karaya, (A.D. 1099), Art. 20, p. 8 ; Art. 52, p. 31. Bija, or correction, Art. 19, p. 7 ; Art. 20 and notes, pp. 7 to 9; Varilhamihira's, Art. 20, p. S; Lalla's, irf. ; intheAyam- fiijaitka, id. \i. 8 ; in the Makaranda, id. p, 8 ; Ga^esa Daivajiia's, id. p. 8. 164 INDEX. Bombay, New year's day in. Art. 52, p. 32. Brahmagupta His Brahma Siddhdnta, Art. 17, p. 6; Art 19, p. 7; Art 30, note 1, p. 8 ; his si stem of naksbatra mea- suremcnl, Art. 38, p. 21: Art. 40, note 1, p. 23. Brahmaiias, The. Art 41. p. 24. Brahnia-paksha school of astronomers, Arts 19. 20. p. 7, 8. Brahma Siddhdnta of Brahmapupta, Art. 17, p. 6; Art. 19. p. 7 ; Art. 20, p. 8 ; system of nakshatra measurement accord- ing to, Art 38, p. 21 ; rule for naming intercalated and expunged months, Art. 46, p. 27; Art. 50, p. 30. Brihaspnti sannatsara-chakra, or siity-year cycle of Jupiter, Arts. 53 to 62. pp 32 to 37 ; duration of a year of the, Art. 54 p. 33; Expuuction of a year of the, Arts. 54 to 60, pp. 33 to 36 ; Rules for finding the year current on any day. Art. 59, p. 34. Bv'kat tamhilu. Rule for finding the samvatsara current on a particular day. Art. 59, p. 35 ; List of expunged samvatsaras of the fiO-yrar cycle of Jupiter according to the — rule. Art. 60. p. 36. Brihat TUhichintdmani, The, by Ganesa Daivajua, (A.D. 1527) Art. 20, p. 8. Buchanan, on the Lakshmana Sena Era, Art. 71, p. 46. Canon der Finsternisse, by Oppolzer, Art. 40ff, p. 23. See Dr. R. Schi'am's Article on Eclipses, pp. 109—116. Central Provinces, Gapcsa Daivajua's works followed in. Art. 20, p. 9. Ceremonies, Religious, performauce of, how regulated with reference to tiihis. Art. 31, p. 17. Chaitiildi Vikrama year The, Art. 71, p. 41. Chaldcfa. Names of Hindu days of week derived from, Art. 5, note 1, p. 2. Chaldceans, were acquainted with the starry nakshatras. Art. 38, p. 21. Chdlukyan Era, The, Art. 71. p. 46. Chiindra milsa. or lunar month. Sec Lunation, Lunar month Chara, The. defined. Art. 24, note 1, p 11. Chcdi Era, The, Art. 71, p. 42. Chhatrc, Professor, list of intercalated and suppressed months. Art. 46. note 3, p. 27, and Art. 78, and note 1, p. 49. Chinna Kimrdi, The Oiiko cycle in. Art. 64. p. 38. Chitlagone, The MUgi-san Era used in. Art. 71, p. 45. Christian Era, The, current or cipind years (?) Art. 70, note 2, p. 40; Use of, in India, Art. 71, p. 42. Civil day. The. (See Solar day). Cochin, New Year's Day in, Art. 52, p. 32. Colcbrooke, on the Lakshmana Sena Era, Art. 71, p. 46. Cowasjec FatcU, List of intercalated and suppressed months in his "Chronologij." Art. 46, note 3, p. 27, and Art. 78, and note 1, p! 49. Ciiuuinghain, General Sir Arthur. Indian Eras. List of inter- calated and suppressed months, Art. 46, ui>te 3, p. 27. and Art. 7S. and note 1, p. 49. On the Lakshmana Sena Era, Art. 71, p. 46. Current year, defined, Art. 70, p. 40. Cycle. Sixty-year — of Jupiier, Arts. 53—62, pp. 32—36; List of expunged sainvatsaras, Art. 60, p. 36, earliest men- lion of, in inscriptions, Art. 61, p. 36; The southern 60-year, or luni-solar, cycle Art. 62, pp. 36, 37; Twelve- year — of Jupiter, Ait. 63, p. 37, and Table XI L; flra/i^i- parirritti — of 90 y. ars, the. Art. 64. p. 37 Onio — the, Art 64. p. 38. Dakhani system of lunar fortnights. Art. 13, p. 5. Dakshinuyana sankr&nti. (See Saiikrdnli). Danda. Length of Art. 6. p. 2. Days of the week. Names of Hindu, Art. 5. p. 2. Definitions and general ei|ilanation of names and Indian divi- sions of time, 4rts. 4 — 17, pp 2 — 7. Bhikotida, a Karana by Sripati, Art. 47, and note 4, p. 27. Bhi-oriddhida, a work by Lalla. Art. 20, p. 8. Dina. or solar day. Art. 6, p. 2. Divasa. Sfivana — = solar day. Art. 6, p. 2. Division of time amongst the Himlus, Art. 6. p. 2. Divyasimhadeva, prince of Orissa, Art. 64, p. 39. DvSpura Yuga. (See Yuga). Eclipses, note on. Art. 40a, p. 23; note by Professor Jacobi on id.; Dr. Schram's paper on, and Tables, pp. 109 — 188. Ecliptic, synodical and sidereal revolutions of moon. Art. 12, note 2, p. 4. Elements and Definitions, Arts. 4 — 17, pp. 2 — 7. "Equal-space-system" of nakshatras. Art. 38, p. 21. "Equation of the centre", defined. Art. 15, note 4, p. 5; term explained. Art. 107, p. 60; greatest possible, according to the Siiri/a-Siddhilnta, Art. 108, p. 61; given for every degree of anomaly in the Makaranda, Art. 109, p. 61. Eras, The various, treated of. Arts. 65—71, pp. 39 — 47; use of, by emigrant races, Arts. 66, 67, p. 39. Expired year, defined, Art. 70, p. 40. Expunctiou. Of tithis, rules governing. Art 32, p. 17; Variation on account of longitude. Arts. 34, 35, pp. 18, 19; — of nakshiitras. Art. 35, p. 19; — of months, Ai-ts. 45 to 51, pp. 25 to :n, and Arts 77 to 79, pp. 48, 49 ; alluded to by Bhfiskara-charja, Arts. 46, 47, p. 27. (See Lunar month); — of a samvatsara. Art. 54, p. 33 ; variations in practice. Art. 55, p. 83 ; List of expunged samvatsuras. Art. 60 and Table p 36; — of samvatsaras in the 1 2-year cycle of Jupiter, Art. 63, p. 37. Fasali year. The, Art. 71, p. 44. Do. luni-solar, id. New War's Day in Madras, Art. 52, p. 32; New Year's Day ia Bengal, id. Fixed piiint in Aries, The, sidereal longitude measured from. Art. ri, p 9. Fleet, Dr. F., Art. 71, p. 40. note 1; on the Chedi Era, Art 71, p. 42, note 4 ; on the Gupta and Valabhi Eras, Art. 71, p. 42. Flight, Muhammad's, Art. 161, p. 101. Ganesa Daivajna, author of the Grnha/dghava, a KaraQa in A.U. Ij2ll, and of the Brihat and Lat/ku Tithichinldmanit (A.D. 1527). Art. 20, p. 8; his bi^a, id.; L st of suppresred mouths according to. Art. 60. p. 30; dilTereut treatment of Snka years by. Art. 08. p. 39. Gaujani, New Year's Day in, Art. 52, p. 32; The Oi'iko cycle. Art B4. p. 37. Garga's system of nakAhatras, Art. 38, p. 21. Gats, a — year defined. Art. 70 p. 40. INDEX. >6S Ghat!. (Soc ghatikd.) Ghatikd, Length of, Art. 6, p. 2. Giriii Chandra, ••Chronological Tables" by, Art. 71, p. 43. GraJiatdghava. The, a Karava, wriiten by Gapesa Duivajfia(A.D. 1520), Art. 20, p. 8; Art. 60, p. 80; Art. 68, p. 40. Gralia-parivritti eycle. The, Art. 64, p. 37 ; equation of, id., and note 4. Gregorian year, Length of, compared with that of the Ilijra. Art. 162, p. 102, note 1. Gujarflt, The Brahma school of astronomy followed in. Arts 20, 21, pp. 8, 9; and the Gralialdyhava and Laghu Tithicliin- tdmatfi of Gapcsa Daivnjna Art. 20, p. 9; New Year's Day in. Art. 52, p: 32; use of the Vikrania Erain, Art. 71, p.41; and by settln-s from — in S. India, id. Gupta Era, The, Art. 71, p. 43. Haiilarfibild, Gapcsa Daiiajno's works followed in, Art. 20, p. 9. Harsha-Kdla Era, The, Art. 71, p. 45. Harshava dfaana of Kanauj, King, establishes the Harsha-Kula Era, .\rt. 71, p. 45. Helali, The, Art. 161, p. 101. Heliacal rising of a planet, defined. Art. 63, note 2, p. 37. Hijra, Ytar of the Its origin. Art. 161, p. 101. Length of — and Gregorian years compared. Art. 162. p. 102 ; begins from heliacal rising of moon. Art. 164, p. 102. Hissabi, The, Art. 161, p. 101. Ilfihi Era, The, Art. 71. p 46. Inauspicious days. Certain, Art 32, p. 17. Indrayumna, R6ja of Orissa, date of his birth is the epoch of the Amli Era. Art. 71. p. 43. Intercalation of months in Hindu calendar, system explained. Art. 25, p. 11; — of tithis. Art. 32, p. 17; variation on account of longitude. Art. 34. p. 18 ; — of nakshatras. Art. 35, p. 19; detailed rules governing the — of months. Art. 45 to 51, pp. 25 to 31 ; order of — of months recnrs in cycles. Art. 50, p. 29 ; according to true and mean systems. Art 47. p. 27: by different SiddhJntas, Art. 49, p. 29; by amSnia and pilrnimSnia systems. Art. 51, p. 30. See also Jr/s. 76—79, pp. 4S 49. Jacobi, Professor, note on eclipses, Art. 40a, p. 23. Jahdngir, used the IlAhi Era, Art. 71, p. 46. Julian period. Art. 16, p. 6. Jupiter. Bija, or correction, applied in A.D. 505 to his motion, by Var8ha-mihira, Art. 20, p. 8, and by Lalla, id ; sixty- year cycle of, Arts. 53-62. pp. 32 ff.; t»clve-year cycle of Art. 63, p. 37, and Table Xll.; heliacal rising of, marks beginning of year in one system of 12-year cycle. Art. 63, p 37. twelve-year cycle of the mean-sigu system, Art. 63, p. 37, and Table XH. Jgotiska-darpiina , The, Rule for mean intercalation of months, Art 47, p. 27. Jijotishatattna rule for eipnnction of a sanivatsara. Arts. 57, 59. pp 33, 34 ; rule for finding the samvatsara current on a particular day, Art. 59, p 35; List of expunged samvatsaras of the 60-year cycle of Jupiter accurdmg to the — rule. Art. 60, p. 36. Kalachun Era, The, Art. 71, p. 42. Kdlatalva-viveciana, The, a work attributed to the Sage Vyita. Art 46, p. 27. Kali-Vuna, The, Era described. Art. 71, p. 40. Kalpa, Length of. Art. 16, p. 6. Kanarese Districts follow the Grahaldghava and Laghu Tithi- chintu'maui of Gaoesa Daivajna, Art. 20, p. 9. Kanauj, Use of Hai-sha-kJla Era in. Art. 71, p. 45. Karana, Art. 1, p. 1; Art. 4, p. 2; definition of. Art. 10, pp. 3, 4; names of. Table Vlll., cols. 4 and 5; data concerning them, in an actual panehiliiga. Art. 30, p. 14; "Karapa index". Art. 37, p. 20; further details concerning. Art. 40, p. 23. Karana, An astronomical treatise. Art 17, note 1, p. 6; the PuMha SiddHdntikd, id.; account of some of the Karanas, Arts. 19 to 21, pp. 7 to 9; Vilviiaia Kochchanna's — , Art. 20, p. 8 ; the Makaranda, id. ; the Grahaldghava, id. ; the Blidsvatt — , Art. 52, p. 31. Karaiiaprt^kdsa, an astronomical work. Art. 20, p. 8. Karttikildi Vikraina year, The, Art. 71, p. 41. Kashmir, Saptarshi-K^la Era, The, used in. Art. 71, p. 41 ; New Year's Day in, according to Alberuni, Art. 52, p. 32. Kaththa-kalil, Length of. Art. 6, p. 2. KiitbiavM, New Year's Day in, Art. 52, p. 32; use of the Vikrama Era in. Art. 71, p, 41; do. of the Valabhi Era, Art. 71, p. 43. Khalif Umar, Art. 161, p. 101. Khand'kliddya of Bralimagupta, The, (A.D. 665), Art. 20, p. 8, note 1. Kielhom, Dr. F, on the Saptarsbi-Kfila Era, Art. 71, p. 41; on the Vikrama Era, id., pp. 40, note 2, 41; on the Chedi or Kalachuri Era, id., p. 42, and note 4; on the Nev&r Era, Art. 71, p. 45; on the Lakshmana Sena Era, Art. 71, p. 46. KoUam Era, Description of the, or Era of Parasurama, Art. 71. p. 45 ; — dtutu, id. Krishna paksha. (See Pakshd). Krita ynga (See Tuya). Kshaya, meaning of word. Art. 32, p. 18. Kshaya tilhis. general rules governing. Art. 32, p. 17 ; variation on account of longitude. Arts. 34, 35, p. 18/ Kshaya m4sas, detailed rules governing, Arts. 45 to 51, pp. 25 to 31, and Arts. 76 to 79, ))p. 48, 49; — samvatsara. Art. 54, p. 33; list of, Art. 60, and Table, p. 36. (Sec Erpunction, Lunar month). Laghu Tithichinttlmani, The, a work by Ganesa Daivajna (A.D. 1527) Art. 20, p. 8. Lahore, New Year's Day in, according to Alberuni, Art. 52, p. 32. Lak.hmana Sena Era, The, Art. 71. p. 46, • lalla, author of the Dhi-vriddhida. Art. 20, p. 8; introduced a bija to First Anja Siddhdnta. id. Liiukfi, latitude and longitude of. Art. 36, and note 2, p. 20. Laukika KSIa Era The. (Sec Saptarshi Kfila ) Longitude, variation in time caused by. Arts 34, 35, pp. 18, 19. Lunar month. (See also Foksha, Amdnta, Piinumdnta, Lunition.) Detini ion of the term. Art. 12a. and note, p. 4; names of the months, Art. 41, p. 24. and note 1; originally derived from i66 INDEX. thr nakshatras, Art. 43, and Table, pp. 24, 25; afterwards from the names of the solar months, Art. 44, p. 24; detailed rules goTerning intercalation and cipunction of, Arts. 45 to 51, pp. 25 to 31; varying lengths of months. Art. 45, p. 25 ; names of intercalated and ciijungcd months how given. Art. 16, p. 26; rule in Wn Kiilatalva-r'tvechana. and in the Brahma-Siddhtinta, id. ; true and mean systems, Art. 47, p. 27 ; suppression of a month impossible under the latter, id. p. 28; intcrealation of months recurs in cycles, Art. 50, p. 29; peculiarities observable in the order, id.; intercalation by amanta and piirnimanta systems, Art. 51, p. 30; Arts. 76 to 79, pp. 48, 49; names of the Hindu lunar months. Table II., Part i., cols. 1 to 3; Part ii.,cols. 1 to 5; Tabic III., col. 2. Lunation, a natural division of time. Art, 12, )). 4; synodical revolution, id. note 2. Lunation-parts. (See Tithi-inde.r.) Luni-sidar month-names, general rule, Art. 14, p. 5; Art. 41, p. 24; season-names, star-names. Art. 14, p. 5; the former first met with in the Tdjur Vedas, id. ; modem names derived from star-names. Arts. 42 to 44, pp. 24, 25. Luni-solar year. Begins with amanta Clhaitra sukla 1st, Art. 52, p. 31; rule when that day is citlier adhika or kshaya, id. p. 31 ; rule when Chaitra is intercalary, id. p. 32; southern or luni-solar cycle of Jupiter, Art. 62, p. 36 ; The — Fasali year. Art. 71, p. 44. Luni-solar reckoning used in most part of India, Art. 25, p, 11. Madhyama, = mean. Art. 26, note 2, p. 11. MSsri-San Era, The, Art. 71, p. 45. Mahdblidrata, Beginning of year mentioned in the, Art. 52, p. 32. llahayuga. Length of. Art. 16, p. 6. MahratU Sur-San Era, The, Art. 71, p. 45. Kiija-Saka Era.IThe, Art. 71, p. 47. Maisur, Gapesa Daivajiia's works followed in, Art, 20, p. 8. Makaranda, The, a Karana (A.D. 1478), Art. 20, p. 8. Equation of the centre for every degree of anomaly given in the, Art. 109, p. 61. Malabar, Use of the Saka era in. Art. 71, p. 42 ; use of KoUara au'.ln in. Art. 71, p. 45. MSlava Era, The, = the Vikrama Era, Art. 71. p. 42. Malayiljani, school of astronomers use the V dkkya-karaiia, Art. 20, p. 8; and <\i<: AryaSiddhdnU, kti.tX.f. 9 ; — countries, solar reckoning used in, Art. 25, p. 11; New Year's Day in the — country. Art. 52, p. 32. Marflthis follow Gayesa Daivajiia's Grahaldghava and Laijhu Titlii- chintamani. Art, 20, p. 9. MfirvUdi system of lunar fortnights. Art. 13, p. 5. Milrvadis of Southern India use the Vikrama era. Art. 71, p. 41. MatliurS, Use of Ilarshakala Era in. Art. 71, p. 45. Mean anomaly, moon's, sun's. Art. 15, note 4, p. 5; Art. 102, p. 56; term explained with reference to Tables VI. and VII., and "A" and -c" in Table I., Art. 107, p. 60. Mean sankninti defined. Art. 20, p. 11; meaning of word "mean". Art. 26, note 2, p. 11; "mean time," Art. 36, p. 19; '• mean solar day," id.; " mean sun," I'rf. ; "niiannoon," id. ; true and mean systems regulating intercalation and sup- pression of months in the luni-solar calendar. Art. 47, p. 27. Mei-idian used in the Tables, Art. 73, p. 47. Mesha saukriinti, the general rule for naming luni-aolar months. Art. 14, p. 5; Art. 44, p. 24; the mean — takes place after the true — at the present day. Art. 26, p. 11; files the beginning of the solar year. Art. 52. p. 31; difference in calculation between the Present Surya and First Arya Sidd/uiuias, Art. 96, Table, p. 55. Methods, three. A, B, C, for calculation of dates by the Tables, preliminary remarks. Art. 2, 3, pp. 1, 2 ; fully detailed. Arts. 135 to 100, pp. 05 to 101. Mithila, Use of the Lakshmana Sena Era in. Art. 71, p. 46. Month, Lunar, lengths of synodical, sidereal, tropical, anoma- listic, nodical. Art. 12, note 2, p. 4 ; names of — in the Uahi Era, Art. 71, p. 46; Muliammadau, Table of, Art. 163 p. 102. Moon, her motion in longitude marks the tithi. Art. 7, p. 3 ; one synodic revolution constitutes 30 tithis, id. ; bija applied to her motion by Lalla, .\rt. 20, p. 8 ; and to her apogee, id.; mean length of her sidereal revolution. Art. 38, p. 21 ; how the moon's motion caused the naming of the lunar months after the nakshatras. Art. 43, p. 24 ; lunar equation of the centre explained. Art. 107, pp. 60 f. "Moon's age," term used in Table I, its meaning. Art. 97, p. 55. Muhammad, date of his flight. Art. 101, p. 101. Muhammadan calendar, perpetual, by Dr. Burgess p. 106. Muhammadan months, Table of, Art. 163. p. 102. Mukundadeva, prince of Orissa, Art. 64, p. 39. Multan, The Saptarshi Kala Era used in. Art. 71, p. 41. New year's day in, according to Alberuni, Art. 52, p. 32. Muttra. (See Mathuril). Nadi, Length of. Art. 6, p. 2. Nadika, Length of, Art. 6, p. 2. Nakshatra, Art. 1, p. 1 ; Art. 4, p. 2 ; Art. 38, p. 21 ; definition of, Art. 8, p. 3; length of, id.; data concerning, in an actual panchaiiga. Art. 30, p. 16; intercalation and expunctiun of. Art. 35, p. 19; — or "nakshatra index," Art. 37, p. 21; equal and unequal space systems of, Art. 38, p. 21 ; longitudes of ending points of, Table shewing. Art. 38, p. 22; gave their names to the lunar months. Arts. 43, 44, and Table, pp. 24, 25; method for calculating fully explained. Art. 133, p. 64. Nepal (or Nevar) Era, The, Art. 71, p. 45; use of Marsha KMa Era in, id.; use of Gupta Era in, Art. 71, p. 43. Ncvflr Era, The, Art. 71, p. 45. "New Style" in Europe, Art. 168, p. 103. New Year's Day, The Hindu, Art. 52, p. 31 ; Varies in various localities, id., and note 3, p. 32. Nija miisas. (See adhika tmisas). Nirayaua Saiiki-Snti. (Sec Saiikrilnli). Nirnaycuindhu, The, Art. 31, note, p. 17. Nodical lunar month, Length of. Art. 12. note 1, p. 4. "Old Style" in Europe, Art. 168, p. 103. Onko cycle. The, Art. 64, p. 37. Oppolzer's "Canon der JimUmiise", Art. 40a, p. 23. Orissa, New Year's Day in, Art. 52, p. 32; the Ouko cycle in. Art. 64, p. 37; use of Amli Era in. Art 71, p. 43. Paitamdha Siddhdnla, The, Art. 17, p. 6. INDEX. 167 Paksha, or niomi'a fortnight, Definition of, Art. 11, p. 4; snkla°-, suJdha^-, krishnn"-, behula°-, pflrva°-, apara°-, id. Pala, Li-iijcth of. Art. 0, p. 2. Pafichili'ign, Art. 1, p. 1; definition of. Art. 4, p. 2; calcu- lated according to one or other of the SiddhaHlas, Art. 19, p. 7; the principal articles of, treated in detail, Art. 29 to 51, pp. 13 to 31; specimen page of a. Art. 30, pp. 14, 15. Faheha Siddh,!ntii,t, The, of Vnruha-Mihira, Art. 20, ]>. 8; Art. 17, note 1, p. 6. Para, Length of. Art. 6, p. 2. Pardiara Siddlulnta, The, Art. 17, p. 26. Parasn KAma Era, The. Art. 71, p. 45. Parla Kimcdi, The Ohko cycle in. Art. 64, p. 37. Pttultia Siddhdnia, The, Art. 17, p. 6. Pedda KiineUi, The Oiiko cycle in. Art. 64, p. 37. Persian, old calendar of Yazdajird, Art 71, p. 47. Fhatteiuhaprakdia, The, Art. 71, p. 42, note 2. Pitri, Ceremony in honour of, proper day for performinsr, Art. 31, p. 17. Prina, I/cngth oi; Art. 6, p. 2. Pratipadil, or first tithi of the month. End of, how determined. Art. 7, p. 3. Prativipala, Length of. Art 6, p. 2. Precession of the equinoxes, in reference t« the length of tropical s saiikr&nti as calculated by the — and the Arya Siddhdnta, Art. 96, p. 54, and Table; greatest possible equation of centre according to the. Art. lOS, p. 01. Synodic, revolution of moon, (see Lunation). Length of mean — lunar month. Art. 12, note 2, p. 4. Tabakdt-i-Akbar,. The, Art. 71, p. 46 Tables, iu this work. Description and explanation of, Arts. 73 to 117, pp, 47 to 62. Tamil countries, solar reckoning used in. Art. 25, p. 11. Tamil school of astronomers use the V dkhja-Karana, Art. 20, p. 8, and the Anja Siddhdnta, Art. 21, p. 9. TMkhi lUlhi, The, Art. 71, p 46. Telugus, The, follow the present Siirija Siddhdnta for astro- nomical calculations since A.D. 1298, Art. 20, p. 8. Time-divisions, Hindu, Art. 6, p. 2. TinncvcUy, the Saka Era used in. Art. 71, p 42; use of Kollam dndu in, Art 71, p. 45. Tirhut. use of the Lakshuiana Sena Era in. Art. 71. p 46. Tithi, one of the elements of a paiichilnga. Art. 4, p 2; definition of. Art. 7, p 3; varying lengths of. Art, 7, p. 3; astronomical reason for varying length of, Art. 7, note 1, p. 3; details concerning the, and names of. Art. 29 p 13; corresiiondeme of, with solar days for purposes of preparing calendar. Art. 31, p. 16; intercalation and expunction of — (adhika and kshaya tithis). Art. 32, p. 17; varies in different localities, Art 35. p. 19 Tithi-indei, Art. 37, p. 20; Art. 80, p. 49; conversion of — into lunation-parts. Art. 81, p. 50; do. into measures of solar time, Art. 82. p. 50. Travancore, New Year's Day in. Art. 52, p. 32. Treta yuga. (See Yuga), Tropical. Length of — lunar month. Art. 12, note2. p. 4; — solar year, definition aud length of. Art. 15, and note, p. 5. True sai'ikianti defini'd, Art. 26, and note 2, p. 11; meaning of word 'true", Art. 26, uote 2. p. 11; "true time", Art. 36, p 19; true and mean systems regulating inter- calatiim and suppression of months in luni-solar calendar, Art. 47, p 27. Ujjain, (see Lauki). "Ujjain mean time", Art. 36, p. 20; longitude of, id., note 2; meridian of, used in the Tables, Art. 73, p. 47. Umar Khalif, Art. Ifil, p. 101. "Unequal-space system'" of nakshatras. Art. 38, p. 21. Utpala, a writer on Astronomy, Art. 17, note 2, p. 6. UttarSyana sankraoti. (See Sarikrd'di). Vadi, or badi, pakslia. (See Paksha). V dkkya karaiia. The, an astronomical work. Art. 20, p. 8. Valabhi Era, The, Art. 71, p. 43. VAra, or week-day. Art. 4, p. 2; names of days of the week, Hindu, Art. 5, p. 2. Varuhamihira, author of the Fahcha Siddhdntikd, Art. 17, notes 1, 2, p. 6; Art. 20, p. 8; Art. 40, note 1, p. 23. Varsha, or solar year, Art. 15, p. 5. Vartamiina, a — year defined. Art. 70, p. 40. Vfisara, =; solar day. Art. 6, p. 2. rdsishtha Siddhdnta, The, Art. 17, p. 6; Art. 59, note 2, p. 34. Vfivilala Kochchanna, author of a Karatw, A.D 1298, Art. 20, •p. 8. Veda, The Ydjur — , Art. 41, p. 24. Veddiiga Jyotisha, The, Art. 17, p. 6; Art 44, p. 25 ; Art. 47, p. 28 ; beginning of year according to. Art. 32, p. 32. Vighati. Length of. Art. 6. p. 2. Vijala Kalaihuri, Defeat of Eastern Chfllukyas by. Art. 71, p. 40. Vikrama, "King-(?), Art. 71, p. 42. Vikraraa Era, sometimes represented by Tamil calendar makers as solar and Mcshadi, Art. 67, p. 39 ; not used by Hindu Astronomers, Art. 70, note 2, p. 40; The — described. Art. 71, p. 41; "Northern — " and Southern — " id., " — .Hamvat", p. 42. Vikramfiditya Tribhuvana Malla, established the C'balukya Era, Art. 71, p. 46 Vilfiyati year. New Year's Day. Art. 52, p. 32; Art. 71, p 43. Vinftdi, Length of. Art. 6, p. 2. Vipaln, Length of. Art. 6. p. 2. Virakesvnradcva, prince of Oiissa, Art. 64. p 39. Vrata. Proper day for performance of a, Art. 31, p. 17. Pfiddhi, meaning of word. Art. 32, p. 18. INDEX. 169 Warren Ilia KdUuankalita, Art. 24, nolo 1, p. 11-. inaccurate lengths of 9olar m^inths recorded in. id , on the Christian Era, Art. 71, p. 40. iioU- 2; on the VilAjaii Era, Art 71, p. 43, note 1; on thn Kollam Kra, Art. 71, p. 45, note 4j on the Qraha-farivritii cycle. Art. 64, p. 37. Week-da\ names, Hindu, An. 5, p. 2. Yiizilajird, Old Persian calendar of. Art. 71. p. 47. Year. The Hindu, solar, Inni-solar, or liiimr. Art. 2.5. p. 11; beginning of, Art. 62, p. 31; GOyear cycle of Jupiter, Arts. 53 to 02, pp. 32 to 37; twelve-year cycle of Jupiter, Art. 63. p 37; current (rarlamdna) and expired igala) year" disiiniiuishcd. Art. 7f, p. 40. Yoga. Art. 1. p. 1; Art. 4, p. 2; definition of, Art. 7. p. 3; length of, id.\ data concerning, in an actual pnnch&n^a, Art. 30, p 13, " — index", Art. 37, p. 20; special yogas, and auspicious and inauspicious onrs. Art. 39, p 22. Yogas, Method for calculating, fully explained. Art. l.'!3, p. 64, Yoga tilrils, or chief siai-s of the nakshatras, Art. 3>i, p. 21. Yuga, Length of. Art. 10, p. 0. Zodiac, The Hindu, An. 22. p. 9. BeOK MUST BE CHAT^aED WITH CASE \ RETURN TO DfI^^^ use l^^r"* "^^ BORROWED lOAN DEPT. 5k IS due on rt,. u.. J ---^^^^^-^^~^m-i!72.,iiM(yJ_ (P6S72glO)476-lA.32 RETURN TO the circulation desl< of any University of California Library or to the NORTHERN REGIONAL LIBRARY FACILITY BIdg. 400, Richmond Field Station University of California Richmond, CA 94804-4698 ALL BOOKS MAY BE RECALLED AFTER 7 DAYS 2-month loans may be renewed by calling (510)642-6753 1-year loans may be recharged by bringing books ^ONRLF .rcu,a.,onO«,k Renewals and recharges may be made 4 days >« prior to due date DUE AS STAMPED BELOW DEC 1 6 1994 M\ 2 m^ Santa Cruz JiT- SEP 1 2 1994 UNIVERSITY OF CALII-URNIA, BERKELEY FORM NO. DD6, 60m, 1 83 BERKELEY, CA 94720 GENERAL LIBRARY U.C. BERKELEY lilliliilill BQDD?07aL7 J