(1886) = 84.9966
Z> (1500)== 83^9359,
log 1.0607 =: 0.02560
log 6^ = 0.74473
log D = 0.77033
/>=5°.89 = 3°-'>
.-. ??= - 2°.89
(b) By Table 1. :
7(1500)= 0.07173
/(i886) = 0.03477
log 0.03696 = 8.56773
log?= 145709
log (7 = 0.74473
log 7^ = 0.76955
D = 5°.88
.-. ^= -2°.88
CHAPTER VI.
TRAJECTORIES— HIGH-ANGLE FIRE.
As we have seen, the differential equations for x,y^ t, and
s do not generally admit of integration in finite terms for
any law of resistance pertaining to our atmosphere ; that
is, for any recognized value of ?i. It is true that Professor
Greenhill has recently* succeeded, by a profound analysis,
in deducing exact finite expressions for x and y by means of
elliptic functions, when ?^ = 3 ; but these results, though of
great interest to the mathematician, are far too complicated
for the practical use of the artillerist. When /^ = 2 the ex-
pression for ds can be integrated and useful results deduced
therefrom, as will be seen further on.
For low velocities, such as are generally employed in
high-angle and curved fire, the effect of the resistance of
the air upon heavy projectiles is comparatively slight; and
for a first (though rough) approximation we may, in such
cases, omit the resistance altogether, or, better still, we may
suppose the projectile subject to a mean constarit resistance.
A still closer approximation may be obtained by taking a
resistance proportional to the first power of the velocity.
As the differential equations for the co-ordinates and time
are susceptible of exact integration upon each one of these
hypotheses, we will consider them in turn.
TRAJECTORY IN VACUO.
Making p = o, (9) becomes
duzuzo
and therefore, in vacuo, the horizontal velocity is constant, or
/^= U
Integrating (21), (22), (23), and (24) between the limits
(p and d- gives, \i ti ^ U,
* " Proceedings of the Roj^al Artillery Institution," Vol. XI.
10
78 EXTERIOR BALLISTICS.
and
/ = —(tan f — tan d) (4O
;ir = — (tan ip — tan d) (42)
772
7 = — '(tan' ip ~ tan' />) (43)
((^) - ('>)) (44)
Equation of Trajectory in Vacuo. — Eliminating
tan d- from (42) and (43) gives
y ^=L X tan (p
2W
which is the equation of a parabola whose axis is vertical
A parabola, therefore, is the curve a projectile would de-
scribe in vacuo.
Since a parabola is symmetrical with respect to its axis,
the ascending branch is similar in every respect to the de-
scending branch, the angle of fall being equal to the angle
of projection ; and generally, for the same value of j, tan d^
has numerically the same value, but with contrary signs, in
both branches; being positive in the ascending branch,
negative in the descending branch, and zero at the vertex.
If we make ?^ = — ^ in (42) it becomes
^- 2 C/' V sin 2ip
X = tan
whence ^
log u = m log tan 1 - -] I -f- ^.
Let v^ be the velocity when ?> = o, that is, at the summit
of the trajectory ; then C — log v^, and we have
(f+4) <«)
r= 2/„ tan
4
Substituting this value oi u in equations (21) to (24), and
integrating so that /, x, y, and s shall all be zero at the
origin, that is, when -& =npy we have, making the necessary
reductions,
TT sm w — m sin i^ — m
j^2 COS (p (sin ^ — 2m) ^ cos ?^ (sin d — 2m)
~ g{i — 4^') "" ^ <^ (i - 4^^')
j^2 I + sin ^ (sin (p — 2m) ^9 1 + sin d- (sin ?^ — 2/;?)
^ ~ 4^(1 -Iff) "" 4^(1 -f^)
,j, cos^ (f -{-2m (sin ip — in) ^ ^ cos'' d- ~\-2m (sin z? — ??/)
4w^(i — ^^z'') 4^«^(i — ^^^)
When 2?;^ = i, the differential expression for x becomes
logarithmic, as do those for /, y, and s when in — \. The
integrations are easily obtained for these values of m^ but
are omitted on account of their length, and as being of no
great practical importance. In the application of these for-
mulae it will be necessary, since the resistance of the air is
not constant, but varies with the velocity, to determine a
proper mean value for m between the limits of integration ;
and this we may do as follows : After having computed the
horizontal velocities u^ and u^ by means of (33), corre-
sponding to the inclinations a and /9, the value of in may be
determined by the following equation deduced from the
above expression for 71 :
EXTERIOR BALLISTICS. 8 1
^jj^ ^ log u^ - log U^
logta„(^ + f)-logta„(^+4)
Example. — Compute the values of t, .r, y, and s, from
(p = 30° to ?? = o, with the data given on pag-e 6y. We have
,,, _ log 75 1 + log cos 30" - log 525.9 1 _^^.^_
'"^ - log tan 60° - ^-^^^^^
Substituting in the above formulae, we find
^ = 3-I073 + 7.4295 = 10^537
X = 16908 — 10557 = 6351 ft.
y = 4446 — 2526 = 1920 ft.
^=: III55 — 4578 = 6577 ft.
Bashforth gets, by dividing the arc into 8 parts,
t = io''.4i3, X = 6074 ft., and 7 = 1882 ft.
It is easy to see how by suitable tables, the construction
of which offers no difficulty, the time and co-ordinates ma}^
by this method be readily, and for arcs of limited extent
accurately, computed. For example, we have
x = A V~A' v'
A being a function of m and ^, and A^ the same function of
m and d^.
RESISTANCE PROPORTIONAL TO THE FIRST POWER OF THE
VELOCITY.
Differential Equations. — When ;/ = i, the differential
equations (13), (17), (18), and (19) become respectively, since
tiA
CO^ ^^
dt=-
k du
g u
dx =
k
du
dy = -
k
tan -& du
82 EXTERIOR BALLISTICS.
Time and Co-ordinates. — The integration of the first
three of these equations between the limits {cp, d) and {[/, 7i)
gives (supposing k constant)
tan
The projectile is still 1882 — 1856 — 26 ft. above the level
of the gun = Ay. If Ax and At are the corresponding addi-
tions to the range and time of flight, we shall have approxi-
mately
Ax
Ax = 26 cot 37° =r 35 ft. ; and At = = o''.o8o.
We therefore have
^=6069 + 5284 -f- 35 = 11388 ft.
r=i 10.412 -[- II. 103 + 0.080 = 2i'^595
These values agree almost exactly with those deduced
by interpolation from the table on page 117 of Bashforth's
work.
Example 2. — The 8-inch howitzer is fired with a quad-
rant elevation of 23°. Muzzle velocity, 920 f. s. ; weight of
shell, 180 lbs. ; diameter, 8 inches. Find the range and
time of flight. (Mackinlay's "Text-Book of Gunnery,"
page 107.)
Assuming the angle of fall to be — 27° 54', we find by the
above method
X=z 7886 + 7108— 13 = 14981 ft.
T = 10.183 + 10.801 — 0.022 = 20^^.962
Mackinlay gets, using Niven's method,
X— 14787 ft, and r=2o".8i3
He states that "the published range-table gives 15000ft.
as the range, and 2i'^5 for the time of flight."
EXTERIOR BALLISTICS. 89
Example 3. — Let V =. 2g% m. = 977.71 ft., d ^= \^ cm.,
w = io k.g-., f = 35° 21', o — 1.270 k.g-., and 0,= 1.206 kg.
Find Xand T. (Krupp's Bulletin, No. 55, December, 1884.)
For the Krupp projectiles and low velocities we will
take for c the ratio of the coefficients of resistance deduced
from the Krupp and Bashforth experiments respectively,
and which are given in Chapter II. Let these coefficients
be represented by A and A' . Then for velocities less than
790 f s. we have
10^^ = 5.6698755- 10
log ^'=5.7703827 — 10
log c = 9.8994928
.•.^=0.7934
To find cT, expressed in English units, when w and d are
given in kilogrammes and centimetres respectively, we have
^ _ loooo k w
~ \^m^ c d'
in which k is the number of pounds in one kilogramme, and
in the number of feet in one metre. Reducing, we have
C-= [1.2534887] J
As the initial velocity in this example is considerable,
we will take into account the density of the air at the time
the shots were fired, and also the diminution of density due
to the altitude attained by the projectile; and for this pur-
pose we will assume the mean value of y for the whole tra-
jectory to be 2000 ft.
The complete expression for (7 is (Chapter VII.),
from which we determine log 6" as follows:
log w =: 1.4771213
^ log ^^ = 7.6478175
constant log = 1.2534887
log 0, = 0.0813473
^ log ^ = 9.8961963
z
log eh =1:0.0312468
log (7=0.3872179
90 EXTEklOR BALLISTICS.
Assuming the angle of fall to be — 44° 40', and proceed-
ing as in the first example, we find
X= 10408 + 8736 + 104 = 19248 ft.
7^r=: 15.088 + 16.324 + 0.221 == 3i''.633
Krupp gives the ranges of three shots fired with the
initial velocity and angle of departure of this example, and
the ranges reduced to the level of the mortar, as follows:
NO. OF SHOT.
RANGE IN FEET.
18
19039
19
19265
20
19364
Mean of the three shots = 19223 ft.
Computed — mean = 25 ft.
Example 4. — Given F= 206.6 m. — 677.834 ft., d = 21
cm., w = gi k.g., and (f = 60°, to find Jfand T. (Krupp's
Bulletin, No. 31, Dec. 30, 1881.)
It will be found that (assuming the angle of fall to be
— 63° 30', and taking no account of atmospheric conditions)
^ = 5390 + 4945 + 67 = 10402 ft.
T= 17.016+17.543+0.250 = 34''.8o9
Krupp gives the observed ranges of five shots, with the
above data, as follows :
NO. OF SHOT. OBSERVED RANGE.
22 10332 ft.
23 10305 "
24 10384 "
25 10463 "
26 10440 **
Mean of the five shots = 10385 ft.
Computed — mean = 17 ft.
Example 5. — Given F=: 204.1 m. = 669.63 ft., = 21 cm.,
z£/ = 91 k.g., and (p — 45°, to find X and T. (Krupp's Bul-
letin, No. 31, January 19, 1882.)
Assuming the angle of fall to be — 49°, we find as fol-
lows:
^=6152 + 5678 + 56 = 1 1886 ft.
r= 13.817 + 14.238 + 0.147 = 28^202
EXTERIOR BALLISTICS. 9 1
The following ranges were measured at Meppen :
NO. OF SHOT. OBSERVED RANGE.
71 11923 ft.
72 I 1920 "
73 11841 "
74 1 1 808 ''
75 11749 *'
Mean of the five shots = 11 848 ft.
Computed— mean = 38 ft.
Example 6. — Compute JTand 2" with the data of the pre-
ceding example, except that ^ — 30°.
Assuming the angle of fall to be — 33°, we find as follows :
X= 5478 + 5 143 + 26 = 10647 ft.
r= 9.908 -)- 10.183 -f 0.054 = 20". 145
Krupp gives as the mean of five measured ranges,
Jf = 10779 ft.
Computed — mean = — 132 ft.
euler's method.
Expression for s. — If we make nz=z2, that is, suppose
the resistance of the air proportional to the square of the
velocity, we shall have from (20)
C du
^ — ~ 'aH.
whence, integrating and supposing j = o when u =z U, we
have
therefore (page 52)
s = CiS{u)-S{U)^ (54)
which gives the length of any arc of a trajectory when the
resistance is proportional to the sqiiare of the velocity, by
means of the table of space functions.
We may also obtain another expression for s, better
suited to our purpose, as follows:
92 EXTERIOR BALLISTICS.
Since
' J c
COS'
we have, when n=^2,
d(d) = -^^ = sec ?^ ^ tan &
^ ^ cos ?7
and this substituted in (28) gives
in which
(?^) = i I tan?? sec ^? + log tan ^- + ^^ I
whence, integrating between the limits ip and ??, we have
or, if we use common logarithms,
in which J/= 2.30259.
Expressions for a? and t/.— Equation (55) gives the
value of s from the origin. If / is the length of an arc of
the trajectory from the origin to where the inclination is d-\
and s" the length to some other point further on where the
inclination is d-" (??'> W), we shall have from (55)
/=i:^— log ^ ^ -
and
whence
s" — s' — As—'M — los-
If??'' differs but little from ??' (say one degree), the cor-
responding values of Ax and Ay can be calculated with sufli-
«■
-(f)
«-
-(*")
w-
-(f)
(0-
- (^")
EXTERIOR BALLISTICS. 93
cient accuracy by multiplying Js by cos ^ {d-' -\- d-") for the
former, and sin ^ {&' -\~ &") for the latter; or,
Ax^M— log ^f^.^ ~ ^/2 cos I (ir + ^^'0 = M—J^ (sav)
Jj/ = M J log ll^^j sin i {^r + &") = M^A: (say)
For the entire range we evidently have
X= y Jx =r M~ I A^=M-^
K g
the summation extending from ^ = ^ to ^ = w, w being the
angle of fall.
To determine the value of co we have, since the sum of
the positive increments of ^'^ in the ascending branch is equal
(numerically) to the sum of the negative increments in the
descending: branch,
Expression for the Time.— For the time of flight we
have, when dx is small,
u
in which u is the mean horizontal velocity corresponding
to Ax ; but, from (15), when n = 2,
__ k
whence
\{i)-{^)\
I Ax ^ ( '^^ — ^^^'^ ^ ^
At =
k
or, substituting for Ax its value given above,
M = ^AZS,.. ,.A\
If we put
je=Jf{(0-w[*
12
94 EXTERIOR BALLISTICS.
we may have
log J0=log J^ + i log [(0 - i^)]
The two values of log [{i) — (^)] corresponding to the
extremities of the arc Js, are
log [ (0 -(')]. and log [(0 -(#")]
the first of which is too small and the second too great;
whence, taking their arithmetical mean,
log Je=\og J?+ilog[{i)-{d')] + i\og[{i)-{9")l
by means of which may be computed, and we then have
Tables. — General Otto, of the Prussian Artillery, has
published extensive tables* of the values of {&), q, C, and 6 ■—
the last three double entry tables with i and (p for the argu-
ments — by means of which it is easy to solve many of the
problems of high-angle fire.
Determination of k^, — General Otto, in the work
above cited, gives the following method for determining k"" :
We have
and
whence
an equation independent o{ P.
independent of X and T, being functions of the angle i and
the angle of projection cp ; and their ratio -^ may be tabu-
lated with these angles for arguments. General Otto has
inserted such a table in his work calculated for angles of
* " Tafeln fiir den Bombenwurf." Translated into French by Rieffel with the title " Tables
Balistiqucs Generales pourie tir eleve." Paris, 1844.
X^
g
/
T'z=.
MX
e
gT^"
6'
dent oiU
\ Moreover
e
and 6"
are
both
EXTERIOR BALLISTICS. 95
projection beginning at 30° and proceeding by intervals of
5° up to 75°.
Now, suppose a certain projectile is fired with a known
angle of projection (p, and its horizontal range X, and time
of flight 7", are carefully measured. With this data we
compute-^ by means of the above equation; and entering
Otto's Table III. with the argument ^5 find in the proper
column the computed value of -^, and take out the corre-
sponding value oil. Next, with (p and ? as arguments, take
from Table IF. the value of ?^, from which k^ can be computed
by the following formula, derived from the expression for X
given above :
^ ~ M e
bashforth's method.
For all values of n greater than unity the differential
equations of motion take their simplest form when ?/ = 3.
For this reason Professor Bash forth assumes the cubic law
of resistance throughout the whole extent of the trajectory,
and employs variable coefficients to make the results con-
form to the actual resistance.
Making ;/ == 3, equation (25) becomes
- k d tan d-
at =^
g
{ « - W j *
in which
{&) = tan &-\-^ tan^ ^
From (14) we have, when ;2 = 3 and ?? = o,
... k'
W = -3
and this substituted in the above expression for dt gives, by
a slight reduction,
96 EXTERIOR BALLISTICS.
^^ _ _ 3 d tan d^
^ {1-^^(3 tan .^ + tan^^)p
Introducint^ Bashfortli's coefficient K, making
g %v Viooo/
to correspond with his notation, and integrating between
the limits (^, d) and (o, /), we have
<^/ I i_;k(3 tan/^ + tan^^)i * ^ "
Operating in the same way upon (26) and {2^)^ we obtain
1~7 ^^
z;,' /^-^ d tan />
S j I I _ -^ (3 tan /> + tan^ if) \
v'' r^ tan d- d tan d-
y-irf T^ — — T;T* = T^n
and ^.. ^ tan d- d tan ^ _ t^^
-y{2> tan ,> + tan^ (>) U' ^
Professor Bashforth has published extensive tables of the
definite integrals ''*7^,*X:J,and '^F^^ for values of ^ extending
from +60° to — 60°, and of y from o to 100, calculated by
quadratures; by means of which the principal elements of a
trajectory may be accurately determined as follows:
As the coefficient of resistance K generally varies with
the velocity, the trajectory must be divided into arcs of such
limited extent that the value of K for each arc may be con-
sidered constant ; and it should be so taken as to give, as
nearly as possible, its mean value for the arc under con-
sideration.
In the equation given on page 65, viz.:
/loooX-' /iooo\' . K d" { ^ , ♦ . I
suppose U and ^ to be the initial horizontal velocity and
angle of projection respectively, and both known ; and let
&, also known, be the inclination of the forward extremity
\a^.
— *• » TJ J. X
EXTERIOR BALLISTICS. 97
of the first arc into which the trajectory is divided. Now,
assuming a mean velocity for this arc, take out the corre-
sponding value of K from the proper table and compute
(I ooo\ ^
- — 1 ; then, in the same equation, changing (p to />, 17 be-
comes tlie horizontal velocit}^ at the forward extremity ot
the arc, which can also be computed.
Next compute y by means of the equation given above,
with which and the known values of ^ and ^ enter the
tables and take out '^T^ , ^X^ , and ^Y^-^ lastly, multiplying
2
the first by — ^, and each of the others by -— , we have the
^ g ^ g
time of describing the first arc of the trajectory and the co-
ordinates of its for vvard extremity. By repeating the process
with the second and following arcs into which the trajectory
may be divided, the whole trajectory becomes known.
Professor Bashforth gives various other tables in his
work, besides those we have mentioned, for facilitating the
calculation of trajectories by his method, with examples of
their application and full directions for their use.
Modiflcatioii of Bashfortli's Method for low Velo-
cities. — When the initial velocity. does not exceed 790 f. s.
the law of resistance is that of the square of the velocity for
the entire trajectory; and even when the initial velocity is
as great as 1000 f. s. examples show that no material error
results if we still retain the law of the square in our calcu-
lations ; and this furnishes a very easy method for calcu-
lating trajectories for high angles of projection and for the
initial velocities usually employed in high-angle fire, and
which, it is believed, gives as accurate results as by any
other method, and with less labor.
Making ;/ =2, equation (25) becomes
k d tan &
dt
in which
6 {(,-)_(^)|4
((?) = !{ tan d sec & + log tan g + |^) |
98 EXTERIOR BALLISTICS.
We also have from (15), when « = 2, and ^ = 0,
k^ I
( = — = — (say)
and this substituted in the above expression for ^/ gives
Vc. d tan />
dt— —
? ji_^(#)|i
whence
tan ^ V,
In the same wa}^ we obtain from (26) and (27) the follow-
ing expressions for x and y :
d tan d- v^
< Pi
r(^>)
"^x,'
^"^ - . ^> tan ^ ^ tan &
It will be seen that this method depends upon tables of
definite integrals which must be calculated by quadratures
as in Bashforth's method, and with the same number of
arguments; but the great advantage of these formulas over
Bashforth's is in the fact that y is constant for a given tra-
jectory, and, therefore, the labor of calculation is the same
for all angles of projection.
To determine the value of k^ for oblong projectiles of
the standard type we have
2A
Taking the value of A derived from the Bashforth experi-
ments for velocities less than 790 f. s., and making ^^=1 32.16,
-« fi"d k' ^ [5.4359033] c
For the Krupp projectiles we should have, taking May-
evski's value of A,
'^' = [5-5367564] c
The numbers between brackets are the logarithms of the
factors by which C is to be multiplied.
EXTERIOR BALLISTICS. 99
For computing- v^ we have from (32), when ^ = 0,
/(t/„)=-J(^)+/(f/) (56)
in which ^ may be the inclination at any point in either
branch, and U the corresponding horizontal velocity. The
values of (^) are given in Table III.
To show the practical working of this method, we will
take the example from Bashforth already given (see
page 6j). The data are: V:^j^\ f. s. ; ^ = 30°; ^ = 6.27
inches, and w:=z'/o lbs.; whence ^=650.385 f. s., and
70
C^^-rp — - == 1.78059. Determine the range, time of flight,
angle of fall, and terminal velocity.
First compute v^. We have from Table III.
(30°) = 0.60799
whence, from (56),
^^^S~ "^ ""(^50.385) = 0.68291 + 0.93354 = I.61645
therefore, from Table I., '
^0 = 525.91 f. s.
Computation of y :
log (7=0.2505630
constant log = 5 -435903 3
log /^'' = 5.6864663
log z/q' = 5.4418228
log r = 97553565
r = 0.56932
As general tables of the definite integrals '^7'^, '^X^ , and
** V^ have not yet been prepared, the following table has
been calculated for this particular example, merely to illus-
trate the method :
lOO
EXTERIOR BALLISTICS.
r =
= 0.56932
T
X
V
30°
0.63676
. 70486
0.21775
24
.47838
.51493
.12039
18
.34169
.35965
.06045
12
.21944
.22662
. 02460
+ 6
+ .10673
+ .10838
+ .00575
.00000
. 00000
. 00000
- 6
- .10358
— . 10208
+ .00531
12
.20647
.20061
.02091
18
.31104
.29793
.04701
24
.41977
. 39620
.08479
30
•53551
.49759
.13656
36
.66179
.60449
.20615
37
.68417
.62303
.21987
The value of ^°°V° by the above table is 0.21775, and as
this must be equal to °F" we see at a glance that co lies
between — 36° and — 37° ; and by interpolation we get
w=r— 36°5i'; and therefore °X'J = 0.62025 and ^T'J 0.68081.
Adding to these the numbers corresponding to the argument
30°, we get "PX- = 1.32511, and *^7:y^ = I.3I757- Lastly,
multiplying the first of these by -^,and the second by — , we
obtain
X= 11396 ft.
and
r= 21^546
which agree with Bashforth's calculations.
The terminal velocity is found from (32), viz.:
and
V... = «,.. sec CO
We find
and
^o. = 434.7 f. s.
^«o = 543-2 f. s.
It will be seen that the inverse problem, namely, Given
EXTERIOR BALLISTICS. lOI
the terminal velocity and angle of fall, to determine the
initial velocity, angle of projection, range, and time, can be
solved by this method with the same ease and accuracy as
the direct problem. We should first compute the summit
velocity by the equation
/W = /(0-|=H (57)
and then all the other elements would be determined, as
already explained.
In calculating trajectories by this method with the help
of tables of the definite integrals '^T^ , etc., it will generally
be necessary, as in Bashforth's method, to interpolate with
reference to y as well as d-, and for this purpose the integrals
must be tabulated for different values of y proceeding by
constant diff'erences, and including the highest and lowest
values of y likely to be needed in practice, which are, ap-
proximately, I and O.2.
13
CHAPTER VII.
TRAJECTORIES CONTINUED — DIRECT FIRE.
Niven's Method. — If a is some mean value of sec d
between the limits of integration ; that is, if we make
a = sec ^? (say)
then equations (17) to (20) may be written as follows:
_ 6; d {a li)
^ A (a uf
C -T-d (a m)
^^=-^cos^-^^^^^ (58)
C . -. d{au)
dy— — -7- smd . .„_\
A {a lif '
C d (a u)
A (auf-'
Making a u=iu\ and integrating so that t, x, y, and s
shall each be zero when u' = U\ we have
t = —£_\_l L_l
C
cos i)^
y =
{n-2)A "-''^^ ( u'^-' — U'""--
c
11 — 2) A \ u"-' U'"^ )
Comparing these equations with those deduced in Chap-
ter IV. for rectilinear motion, it will be evident that we
have as follows:
t = ciT{u^)- r{U')-] (59)
x=Cco?>^[S {u') - S ( U')~j (60)
y=C sin J [S (?/) - S{U'\^x tan 5 (61)
s=ClS{u')-S{U')'] (62)
EXTERIOR BALLISTICS. IO3
The first three of these equations (or their equivalents)
were first published by Mr. Niven in 1877, and in connection
with equation (38), viz.:
D=Ccos.J[D {u') - D ( U')] (63)
constitute what is known as "Niven's Method."
If we use the /-function instead of the Z>-function, equa-
tion (63) becomes
/} = 25_^ cos &U W) - I ( U')-\ (64)
or, better still, for direct fire (see Chapter V.),
D = 25_^ sec (f [/ (u sec f) - I { F)] (65)
in which
log ^=:l. 45 70926*
The values of ^ adopted by Mr. Niven are as follows:
For the /^-integral
-— tan
/-^tan^} -^I{U')x=- \a{u')-A{U')\
From (60) we have
^x = S{u')-S{U')
whence, by division,
^ \y nn<.l nu'\- A{u')-A{U')
_|__tan^}-/(f/)_- ^-(„,)_5(f;,)
aC iA(u')-A(C/') ,,rml iA^\
or
z
X
EXTERIOR BALLISTICS. IO9
Calculation of the ^-Function.— We have (Chap-
ter V.)
and therefore
_ g Q ,
^ l2\n- I) A' u"^'^ + {n-2)Au'^-' + ^'
which becomes, when ;/ = 2,
The constants Q, corresponding to the five different ex-
pressions for the resistance, are given in Chapter V., and
the values of Q' are to be determined as explained in Chapter
IV. Making the necessary substitutions, and using A {v) as
the general functional symbol, we have for standard oblong
projectiles the following expressions for calculating the A-
functions :
2800 f. s. > -t^ > 1330 f. s. :
A {v) = [8 9012292] -^, + [2.6701589] log v - 1714-55
1330 f. s. > z' > II 20 f. s. :
A (7;) = [14.6562945] ^ + [5.1480576] i - 53.13
1 1 20 f. s. > z' > 990 f . s. :
A (v) = [32.2571789] ^„ + [14.4412953] ^ + 126.68
990 f. s. > z^ > 790 f . s. :
A (v) = [14.9781903] — , — [5.9124902] ^ + 449.89
790 f. s. > -z/ > 100 f. s. :
A {v) = [9.6655206] ^ + [4.1438598] log V - 45916.40
The values of A {v) calculated by the above formulae are
given in Table I.
14
no EXTERIOR BALLISTICS.
Equation {66), together with (35), (59), and (60), are the
fundamental equations of *' Siacci's method." This method,
by Major F. Siacci, of the Italian Artillery, was published
in the Revue d' Artillerie for October, 1880. A translation
of this paper by Lieutenant O. B. Mitcham, Ordnance De-
partment, U. S. A., was printed in the report of the Chief
of Ordnance for 1881. Lieutenant Mitcham added to his
translation a ballistic table adapted to English units, and
based upon the coefficients of resistance deduced by Gene-
ral Mayevski from the Russian and English experiments
noticed in Chapter IL In this table he gives for the first
time the values of T{v).
We will, for convenience, collect thesd equations to-
gether and renumber them :
They are :
tan ^ - tan ?? = ^ I / (;/) — I{U') | {^7)
x^^-\s{u')-S{U')\ (68)
: — : I >i 1 1 in — ^
S{u') — i,{U')
t =ClT{u')-T{U')^ (70)
u' — av cos d^ (71)
As the origin of co-ordinates is at the point of departure,
y is zero at the origin and also at the point in the descend-
ing branch where the trajectory pierces the horizontal plane
passing through the muzzle of the gun. Calling the velo-
city at this point v^, we shall have, making — d^ z:z w,
u'o> = « ^ ^ cos CO (72)
From (69) we have
aC \A (u'^)-A (U') .. ^„^ ) ._s
^ 2 [ S {u'^) — S {[/') ^ )
and from {6y)
a C
~ ^ 2 \s{u') — :^{U') ^'^^M ^ ^^
tan
^ =^ "^ I / {ti'^) - 7(^0 I - tan CO (74)
EXTERIOR BALLISTICS. Ill
Eliminating^ tan ^ from these last two equations gives
tan ^^ = — I ^ (^^ ^) - ■5l/?.)-5(^0 ^
From (68) and (70) we have
X=z— \s{2/^)-S{U')\ (76)
and a I ^ ^ ' )
T= C[T(u'^)^T{U')] {77)
By means of equations {67) to {77) all problems of ex-
terior ballistics in the plane of fire may be solved. If we
wish to compute the co-ordinates of the extremities of any
arc of a trajectory having the inclinations (f and d^, we should
make use of equations {67) to (71). If the object is to deter-
mine the elements of a complete trajectory lying above the
horizontal plane passing through the muzzle of the gun, at
one operation, we should employ equations (72) to {77). We
will give an example of each, using Didion's value of a.
Example i. — Given F= 1886 f. s. ; <^= 12 in.; 2£; = 800
lbs., ^ = 10°, and ?? = — 13°; to find z/^, ;ir0, je, and /e. (See
example i, Niven's method.)
We have first
(10°) + (13°)
a = — ^ i \ I o = 1.00723 1
Next ^^" 10° + tan 13° ^ ^
U' = 1886 « cos 10° = 1870.78
From Table I.,
5(^0=-2838.3;zJ (^0=44.06; /(^0=O-O358i; r<^U')^i.2t,o
From {67^ we have
/(^/.) =^ 1 ^"'^^ '""^ + ^""^ '^° 1 +^(^')
= 0.14554 + 0.03581 =0.18135
.-. 2^'=: 1063.42; 5(/0==7Oii<4; -^K)=440.44; 7 V) =4-282.
These values substituted in (68), (69), and (70) give
xq^=. 23017 ft.
yQ = 248.06 ft.
tQ z= i6''.844
112 EXTERIOR BALLISTICS.
From (71) we have
Ve = K = 1083.6 f. s.
a cos a
These results are quite as accurate as those deduced by
Niven's method by two steps.
Example 2. — Required the horizontal range, time ot
flight, and striking velocity, with the data ot Example i.
In computing « we will assume an angle of fall of — 14° 30',
which gives
«== 1.008645
.-. ^'=1873.40
5(^0=2828.5; A{U')=Al-7^\ 7(^/0=0.03563; n^0=i-243-
From (73) we have
^^^^g|i=^^tan, + /(t/') = o.09856
from which to calculate ic'^. As the relation between the
S-function and y^-function does not admit of a direct solu-
tion of this equation, it will be necessary to determine the
value of z/o, by successive approximations; and for this pur-
pose the rule of ** Double Position" is well adapted. This
rule is deduced as follows : Let u^ and u^ be two near values
of?/ (or the quantity to be determined), one greater and the
other less ; and e^ and e^ the errors respectively, when n^ and
u^ are substituted for u in the equation to be solved. Tiien,
upon the hypothesis that the errors in the results are pro-
portional to the errors in the assumed data, we have
e^\ e^W u — //j : u — u^
whence, by division,
e^— e^\ e^W u^ — u^'. u — u^
or
e^ — e^\ e^\ : u^ — u^\ ii — ti^
from which is derived the following rule: As the difference
of the errors is to the difference of the assumed numbers, so
is the lesser of the two errors (numerically) to the correc-
tion to be applied to the corresponding assumed number.
EXTERIOR BALLISTICS. II 3
If 11^ and u^ are selected with judgment, the resulting
value of II will generally be sufficiently correct by a single
application of the rule, or, at most, by two trials.
In our example assume it^ =z 1050, for a first trial ; whence
5 (1050) = 7143.7, and A (1050) =464.94 ; and these in the
above equation give
464.94 — 43.71 ^
^ ^ ^ -to / _ 0.09762
7143.7-2828.5
If we had taken for 71^ the correct value of u^^, the second
member would have been 0.09856, and hence ^, = — 0.00094.
Whenever ^, is negative the assumed value of u' ^ is too
great; we will, therefore, next suppose 2/2= 1040, and pro-
ceeding in the same way we find ^^ = +0-00128. The cor-
rect value of u^^ is, then, between 1050 ft. and 1040 ft. Ap-
plying the rule, we have the following proportion :
222 : 10 :: 94 : 4.23
consequently u'^ = 1050 — 4.23= 1045.77 f- s. : and this satis-
fies the above equation.
We next find
5(?/^) = 7i87.i; ^ (//^)=473.2o; 7(2^'^) =0.1 9 154; T{u'^)=4.44S
We now have from (75)
tan io = j o. 191 54 — 0.09856 i = 0.2605 1
.-..(>= 14" 36^ (By Table III.)
From {26) and (yy)
I 7187.1 — 2828.5 I =24007 ft.
r= c:[ 4.448 - 1.243] = i7".8o6
From (72)
^« = ^=i07i.4f. s.
a cos
Various other problems may be solved by a suitable com-
bination of equations {6y) to (71). Indeed, if a velocity,
a
114 EXTERIOR BALLISTICS.
either initial or terminal, and one other element be given,
all the other elements may be computed, though in certain
cases this can only be accomplished by successive approxi-
mations. Most of these problems, for direct fire, will be
solved further on.
Api>licatioii of Siacci's Equations to Mortar-
Firing. — For low velocities, such as are used in mortar-
firing, we may take for a in all cases the following value :
tan ^
This simplifies the calculations, and gives results sufficiently
accurate for most practical purposes, as the fbllowing ex-
amples will show :
Example i.— Given F=75i f. s. ; ^ = 30°; and log C zizz
0.25056. Required X, T, w, and v^. (See Example i, Chap-
ter VI.)
We have, Table III., {(f) = 0.60799.
log {(f) = 9.78390
log tan
^ cos ^6»
1 A{v)-A(V)l , .
sin 2<. = C- I / (.•) - s{v)-S{V) \ ^^7)
For the larger angles of projection employed in direct
^5
Il8 EXTERIOR BALLISTICS.
fire, if accurate results are desired, we must determine (o by
the equation
tan CO = tan w ^ \ I {v) - I (V) \
^ 2 COS if \ ^ ■' ^ ^ \
using ?/ instead oi v, as already explained.
Practical Applications. — We will now apply Siacci's
equations to the solution of some of the most important
problems of direct fire.
Problem i. — Given the initial velocity and angle of pro-
jection, to determine the range, time of flight, angle of fall, and
terminal velocity.
We have [equation (86)]
A{:v)-A {y) _ sin 2^
S{v)--S{l^) C "T" ^^^
from which to calculate v by '' Double Position," as already
explained. Having found v^ the remaining elements are
computed by the equations
x=c[se.o-5(F)]
r=— ^ I T{v)-T{V)\
COS ^ \ ' ' )
For curved fire we may proceed as follows: We have,
from the origin to the summit,
Now, if we assume tiiat the time from the point of pro-
jection to the summit is one-half the time of flight, we shall
have, from the above expressions for 7' and 4,
r(7;) = 2 T{v^-T{y)
which gives z^ by means of the 7^-functions, v^ being computed
bv the equation
derived from (82).
Example i. — The 8-inch rifle (converted) fires an ogival-
EXTERIOR BALLISTICS. II9
headed shot weig-hing 183 lbs. If the angle of projection
is 10°, and the initial velocity 1404 f. s., find the range, time
of flight, angle of fall, and terminal velocity.
We have F^ 1404 f. s. ; ^=zio°; ze; = 183 lbs.; d=Z
inches, whence log C — 0.45627 : to find X, T, od, and v.
From Table I. we find
5(F) = 4878.6 -0.8 X 25.1 =4858.5
A {V) = 163.96 — 0.8 X 2.16 = 162.23
/ (F) = 0.08661 — 0.8 X 0.00082 = 0.08599
T{V) = 2.514—0.8 X 0.018=2.500.
Next compute v:
log sin 2^ = 9.53405
log (7=0.45627
log o. II 96 1 = 9.07778
/(F) = 0.08599
0.20560
The value of v satisfying this equation is found to be
V = 873.8 ft., whence
5 {v) = 9641.8 A (z/^) = 1 145.65
/ (v) = 0.36668 T {v'^) = 7.030
X, T, (0, and z' are now computed as follows :
log C = 0.45627
log[S(2.)- 5(F)] = 3^7973
log X= 4.13600'
X= 13677 ft. ==4559 yc^s.
\og[T{vy- r(F)] = 0.65610
log sec
-r -F777V = 0.26807
11633.6 — ^ (F) ^
For the first trial assume V ^z 1500, and, substituting in
the first member of the above equation, it reduces it to
0.26691, which is too small by 0.00116 = ^j. Next make
F= 1480, and we shall find that the first member now be-
comes too great by 0.00140 =: e^; then
256 : 20 : : 116 : 9.1
The correct value of Fis therefore 1500 — 9,1 =: 1490.9 f. s.,
from which are easily found
^ = 9° 51^ X= 12440 ft. ; T=i2".72.
Example 2. — " In attacking a place with curved fire it
was required to drop shell into the place with an angle of
122 EXTERIOR BALLISTICS.
descent of 12°, and terminal velocity of 600 f. s., using the
8-inch howitzer and a projectile of 180 lbs.; find the requi-
site position of the battery, and the requisite elevation and
charg-e of powder."'^
Here <3f=8 inches; zv =: iSo lbs.; 7^=600 f. s., and
co^ 12°; to find X, V, and (p. We have
log sin 2C0 = 9.60931
log (7 = 0.44909
log 0.14462 = 9.16022
/ (7;) = 1. 15929
I{v^ = 1. 01467 v^ = 630.85 f. s.
whence we find
T{V) = 2X 14-396— 15779 = 13-012
F:= 665.1 f. S.
5 (v) = 15926.6
5(F) 3^ 141 78.9
log 1747.7 = 3-24247
log A"=: 3.69156
X=49i5 ft. = 1638 yds.
I{z'o)= 1. 01 467
/(F) = 0.87708
log 0.13759 = 9.13859
log sin 2(p = 9.58768
2
to obtain the correct striking velocities.
In our example the results are as follows:
yds
a,
T
500
o°44'
o°47'
1303
I^IO
1000
i°33'
i°43'
I2I3
2^30
1500
2° 2/
2° 50^
II35
3''-59
2000
3° 2/
4° 08'
1070
4^96
2500
4° 32'
5° 38'
I02I
6^40
3000
5° 43'
7° 14'
982
7^92
3500
6° 59'
9° 01^
947
9^52
4000
8° 21^
10° 58^
916
11^19
4500
9° 49'
13° 06'
888
12^94
5000
11° 24'
15° 25'
862
14^78
By interpolation, using first and second differences, the
interval between successive values of the argument {X) may
be reduced from 500 yards to 100 yards.
Example 3. — Given d — 20 93 cm. ; if> = 140 kg. ; V = 521
m. s. ; d^ = 1.206; d= 1.233 ; X=4097 m.; angle o( jump = 8';
required the angle of elevation == ^ — 8', the angle of fall,
the striking velocity, and the time of flight.^
Making the ballistic coefficient {c) =0.907, we have for
* '■ Ballistische Formeln-von Mayevski nach Siacci. Fur Elevationen unter 15 Grad," Essen,
Fried. Krupp'sche Buchdruckerei, 1883, page 22. Also quoted by Siacci in " Rivista di Artiglieria
e Genio," vol. ii. page 414, who solves the example, using Mayevski's table.
EXTERIOR BALLISTrcS.
125
computing C in English units, when <^ is expressed in centi-
metres and w in kil(3grarames, the following expression :
C-[i..953743]f ^
The following are the results obtained by experiment,
by Mayevski's calculations, by Siacci's calculations, and by
Table I. of this work :
T
Angle of
Elevation.
Angle of
Fall.
Striking Velocity,
f. s.
By experiment
Mayevski...
Siacci
Table I
9"-7
9".6
9".675
9".66
5° 30'
5° 32'
5° 31'
5° 29' 30"
7° 16'
I 176
I 169
Example 4. — Given ^=24 cm.; 7e/ = 2i5 kg.; F= 529
m. s. = 1735.6 f. s. ; required the angle of departure for each
of the horizontal ranges contained in the first column of the
followintr table :
Horizontal
Range.
in
5/
J
Computed by
Table I.
Observed
value of
Values of computed by
Mayevski's
Table.
Hojel's
Table.
2026
0.9569
2°.;'
2° .9'
2° 18'
2° 14'
3000
0.9407
3° 36'
3° 41'
3° 37^
3° 35'
4000
0.9756
5° 5'
5° 10'
5° 6'
5° 5'
5964
0.9560
8" 41'
8° 35'
8° 44^
8° 44'
7600
0.9461
12° 31'
12° 5'
12° 31'
12° 32'
The data in the first, second, and fourth columns are
taken from Krupp's Bulletin, No. 56 (February, 1885), page
4. The values of s{v)-s(y)S
sm 2(«
X=C[5(^)-5(F)]
7-=-^ I T{v)- T{V)\
cos ] log ^
A (v) = [9.6655206] -^ -f [4.1438598] log V - 45916.40
/(^) = [5.7369333] ^ - 0.356474
T{v) = [4.2296173] ^ - 12.4999
Example i.— Let (^=8 in., w = 180 lbs., F= 700 f. s., and
^ = 60°. Find V when ^ = — 60°.
We have from (33)
and U ^=. joo cos 60° = 350, which is below the limit of
2 BALLISTIC TABLES.
the table. The operation may be concisely arranged as
follows :
const. log=:: 57369333
2 log f/= 5.0881360
0.6487973 = log 445448
(60) = 2.39053
log 4 (60°) = 0.9805542
log C= 0.4490925
0.5314617 = log 3.39987
0.895 1103 = log 7-85435
2)4.8418230
2 42091 15 =: log 263.6
. • . 7/ =: 263.6 X 2 = 527.2 f. S.
Example 2. — Given 5 {v) = 25496.8, to find v.
We proceed as follows:
1 24466.4
25496.8
log 98969.6 = 4.9954886
const, log = 4.5918330
log (log z/) = 0.4036556
.-. log 7;=2.533i2
£^=341.3
Table II. is the ballistic table for spherical projectiles,
and extends from z^= 2000 to ^^ = 450. It is based upon the
Russian experiments discussed in Chapter II., and is be-
lieved to be the only ballistic table for spherical projectiles
yet published.
Table III. is abridged from Didion's " Traite de Bal-
istique."
Forniulse for Interpolation. — To find the value of
f{z^ when V lies between v^ and v^, two consecutive values
of V, in Tables I. and II. Let v^ — v^r=^ h. Then, if d^ and d^
BALLISTIC TABLES.
are the first and second diflferences of the function, we shall
have, since y(?7) increases while v decreases,
2
by means of which f{v) can be computed. Conversely, if
f{7>) is given, and our object is to find v, we have
7\ — v\ d^
2
In using this last formula, first compute —^ — by omit-
Ti
ting the second term of the second member (which is usually
very small), and then supply this term, using the approxi-
mate value of-^-^^ — already found.
Ii ^
If the second differences are too small to be taken into
account, the above formulae become
/(z,)=/(t;,) + ^S-^rf,
and
which expresses the ordinary rules of proportional parts.
Example i. — Find from Table I. S{v) when z/= 1432.6.
We have v, = 1435, f{v^ = 4704.8, h — 5, and d, = 24.6.
.•.S{v) = 4704.8 + 1 435 - 1432.6 ^ ^^^^ ^ ^^j^^^
Example 2. — Given A (7/) = 229.89, to find v. Here 7/^ =
1274, /(7/,) = 229.29, ,= 1.25, and /^= 2.
2
. • . 7; = 1 274 (229.89 — 229.29) = 1 273.04
1.25
Example 3. — Find from Table II. A {v) when 77 = 517.8.
4 BALLISTIC TABLES.
We have e^, = 520, ^(^0 = 3755-9. >^^ = 5» ^, = 158.2, and
^,= 7.8.
2.2 2.2 / 2.2X7.8
.-. ^ (^) = 3755.9+ -X 158.2 ---(i--)^
= 3755-9 + 69-60 — 0.96 = 3824.5
Example 4.— Find from Table HI. the value of (^) when
^ = 54° 32'. Here ?^, == 54° 2o\ (^,) = 17619 1» h=z2o',d,z^
.02971, d^ = .00074.
.-. (^)z= 1.76191 +0.6X 0.02971 —0.6 X 0.4 X 0.00037
= 1.76191 +0.01783 —0.00009= 1.77965
TABLE I.
Ballistic Tabic for Ogival-Hcaded Projectiles.
V
6- (7')
Diflf.
A iv)
Diff.
1
Diff.
T{v)
Diff.
2800
2750
2700
j 000.0
126.8
[ 256.0
1268
1292
1315
0.00
0.07
0.28
7
21
36
0.00000
0.00106
0.00218
106
112
118
0.000
0.046
0.093
46
47
49
2650
2600
2550
387.5
521.6
658.3
1341
1367
1393
0.64
1. 18
1.89
54
71
93
0.00336
0.00461
0.00594
125
140
0.142
0.193
0.246
51
53
56
2500
2450
2400
797.6
939.8
1085.0
1422
1452
1481
2.82
3.97
5.37
115
140
166
0.00734
0.00883
0.01043
149
160
169
0.302
0.359
0.419
57
60
62
2350
2300
2250
I233.I
IJ84.5
1539.2
'514
1547
1582
7.03
9.00
11.31
197
231
266
O.OI2I2
0.01392
0.01584
180
192
205
0.481
0.546
0.614
65
. 68
72
2200
2190
2180
1697.4
1729.5
I76I.7
321
322
323
13.97
14.55
15.15
58
60
62
0.01789
0.01832
0.01876
43
44
44
0.686
0.700
0.715
14
^5
15
2170
2160
2150
1794.0
1826.5
1859.2
325
327
328
15.77
16.40
17.05
65
67
0.01920
0.01964
0.02010
44
46
46
0.730
0.745
0.760
15
15
15
2140
2130
2120
1892.0
1924.9
1958.0
329
331
17.72
18.40
19.10
70
73
0.02056
0.02102
0.02149
46
47
48
0.775
0.791
0.806
16
15
16
2IIO
2100
2090
I99I.3
2024.8
2058.4
335
336
337
19.83
20.57
21.33
74
76
79
0.02197
0.02246
0.02295
49
49
50
0.822
0.838
0.854
16
16
16
2080
2070
2060
2092.1
2126.0
2I60.I
339
341
343 >
22.12
22.92
23.74
80
82
85
0.02345
0.02396
0.02447
51
51
52
0.870
0.886
0.903
16
17
17
2050
2040
2030
2194.4
2228.8
2263.4
344
346
348
24.59
25.46
26.35
[
87
89
91
0.02499
0.02552
0.02606
53
54
54
0.920
0.937
0.954
17
17
17
2020
2010
2000
2298.2
2333.1
2368.2
349
351
353
27.26
28.20
29.16
94
96
98
0.02660
0.02715
0.02772
55
57
57 1
0.971
0.988
1.005
17
17
18
TABLE L— Continued.
V
S{v)
Diff.
A {V)
Diff.
7(7')
Diff.
T{v)
Diff.
1990
1980
1970
2403-5
2439.0
2474.6
355
^ 356
358
30.14
31-15
32.19
lOI
104
107
0.02829
0.02886
0.02945
57
59
60
1.023
1. 041
1-059
18
18
18
i960
1950
1940
2510.4
2546.4
2582.6
360
362
363
33-26
34-35
35-48
109
113
115
0.03005
0.03066
0.03127
61
61
62
1.077
1.096
1. 114
19
18
19
1930
1920
I9I0
2618.9
2655.5
2692.2
306
367
370
36.63
37-81
39.02
118
121
124
0.03189
0.03253
0.03318
64
65
65
I-I33
1. 152
1. 171
19
19
20
1900
1890
1880
2729.2
2766.3
2803.7
371
374
375
40.26
41-53
42.83
127
130
0.03383
0.03450
0.03517
67
69
1. 191
1. 210
1.230
19
20
20
1870
i860
1850
2841.2
2878.9
2916.9
377
380
382
44.16
1 45-53
46.93
137
140
143
0.03586
0.03656
; 0.03727
70
71
72
1.250
1.270
1. 291
20
21
20
1840
1830
1820
2955-1
2993-4
3032.0
386
388
48.36
49-83
51-34
147
151
155
0.03799
0.03872
0.03946
73 1
74
76
1. 311
1-332
1-353
21
21
22
I8I0
1800
1790
3070.8
3109.8
3149.0
390
392
394
52.89
54-47
56.09
158
162
167
' 0.04022
0.04099
10.04177
77
78
80
1-375
1.396
1.418
21
22
22
1780
1770
1760
3188.4
3228.0
3267.9
396
399
401
1 57-76
1 59-47
61.21
171
174
179
i
0.04257
0.04338
0.044.20
81 1
821
84!
1.440
1.463
1-485
23
22
23
1750
1740
1730
3308.0
3348.3
3388.9
403
406
409
63.00
64-83
66.71
183
188
193
0.04504
0.04589
0.04676
85 1
87
88!
1.508
1-531
1-555
23
24
23
1720
I7I0
1700
3429.8
3470-8
3512. 1
410
413
415
! 68.64
: 70.61
72.63
1
197
202
207
0.04764
0.04854
0.04945
90
9r\
1-578
1.602
1.626
24
24
25
1690
1680
1670
3553-6
3595-4
36374
418
420
423
1
74-70
76.83
79.01
213
218
223
0.05038
0.05133
0.05229
95
96 1
98 1
1. 651
1.676
1. 701
25
25
25
1660
1650
1640
3679-7
3722.2
3765-0
425
428
430
81.24
83-52
85.86
228
234
241
6
0.05327
0.05427
,0.05529
100
102
103 1
1.726
1-752
1.778
26
26
26
TABLE I.— Continued.
3808.0
3851-3
3894.9
3938.7
3960.7
3982.8
4005.0
4027.3
4049.6
4072.0
4094.4
4116.9
4139-5
4162.2
4185.0
4207.8
4230.7
4253-6
4276.7
4299.8
4323-0
4346.2
4369.6
4393-0
4416.5
4440.1
4463-8
4487-5
4511-3
I 4535-2
4559-2
4583.2
4607.4
4631.6
4655-9
4680.3
Diff. I
I
433 I
436 I
4381
220 1
221 j
222 I
223
223
224
224
225
226
227
228
228
229
229
231
231
232
232
234
234
235
236
237
237
238
239
240
240
242
242
243
244
245
A {7')
88.27
90-73
93-25
95-84
97.16
98.49
99.84
IOI.2I
102.60
104.00
105.42
106.86
108.32
109.79
111.29
112.80
114-33
115.88
117-45
119.04
120.65
123-93
125.60
127.29
129.01
130.75
132.50
134.28
136.09
137.92
139-77
141.65
T43-54
T45-47
147.42
Diff.
246
252
259
132
133
135 I
137
139
140
142
144
146
147
150
151
153
155
157
159
i6i
163
165
167
169
172
174
175
178
181
183
185
188
193
195
197
7
/{v)
0.05632
0.05738
0.05845
0.05955
0.06010
0.06066
0.06123
0.06180
0.06238
0.06296
0.06355
0.06414
0.06474
0.06534
0.06595
0.06657
0.06719
0,06782
0.06846
0.06910
0.06975
0.07040
0.07106
0.07173
0.07241
0.07309
0.07378
0.07447
0.07517
0.07588
0.07660
0.07732
0.07805
0.07879
0.07954
0.08029
Diff.
106
107
55
56
57
57
58
58
59
59
60
60
61
62
62
63
64
64
65
65
66
67
68
68
69
69
70
71
72
72
73
74
75
75
76
T{v)'
Diff.
1.804
1-831
1.858
27
27
27
1.885
1.899
14
14
1.913
14
1.927
14
1. 941
14
1-955
14
1.969
1.983
1.998
14
15
14
2.012
15
2.027
15
2.042
15
2.057
15
2.072
2.086
14
15
2.101
16
2. 117
15
2.132
15
2.147
2.162
15
16
2.J78
16
2.194
16
2.210
16
2.226
16
2.242
16
2.258
16
2.274
16
2.290
17
2.307
16
2.323
17
2-340
17
2-357
17
2.374
17
TABLE I. -Continued.
V
S{v)
Diff.
A {j^
Diff.
7(7.)
Diff.
r{v)
Diff.
1435
1430
1425
4704.8
1 4729-4
i 4754-1
246
247
247
149-39
151-39
153-42
200
203
205
0.08105
0.08182
0.08260
77
78
78
2.391
2.408
2.425
18
1420
I4I5
I4I0
1 4778.8
1 4803.6
, 4828.5
248
249
250
155-47
T57-55
159.66
208
211
214
0.08338
0.08418
0.08498
80
81
81
2.443
2.460
2.478
1
17
18
18
1405
1400
1395.
!
J 4853-5
i 4878.6
49P3-8
251
252
253
1 161.80
1 163.96
j 166.15
216
219
222
0.08579
0.08661
0.08744
82
83
84
2.496
2.514
2^-532
18
18
18
1390
1385
1380
4929-1
4954-5
j 4979-9
254
254
256
168.37
170.62
172.90
225
228
231
0.08828
0.08913
0.08999
85
86
87
2.550
2.568
2-587
18
19
18
1375
1370
'365
5005.5
■ 5031-1
5056.8
256
257
258
175.21
177-55
179.92
234
237
241
0.09086
0.09173
0.09262
87
89
89
2.605
2.624
2.643
19
19
19
1360
1355
1350
5082.6
! 5108.6
5134.6
260
260
261
182.33
184.76
187.23
243
247
250
0.09351
c. 09442
0-09533
91
91
93
2.662
2.681
2.700
19
19
.19
1345
1340
1335
5160.7
5186.9
5213-2
262 i
263'
263 ,
1
189.73
192.27
194.84
254
257
260
0.09626
0.09719
0.09813
94
94
95
2.719
2-739
2-758
20
•9
20
1330
1325
1320
5239-5
5265.8
5292.0
263!
262 j
106 ,
197.44
200.06
202.69
262
263
107
0.09908
0.10004
o.idioi
96 1
97
39
2-778
2.798
2.818
20
20
8
I3I8
I3I6
I3I4
5302.6
53^3-2
5323-8
106 :
106
107
203.76
204.84
205.92
108
108
109
0.10140
0.10179
0.10219
39 1
40 1
40'
2.826
2.834
2.842
8
8
8
I3I2
I3I0
.1308
5334-5
5345-2
5355-9
107
107
108
207.01
208.11
209.22
I 10
I r I
III!
1
0.10259
0.10299
0.10339
40
40
41
2.850
2.858
2.866
8
8
9
1306
1304
1302
5366.7
5377-5
108
108
109
210.33
211.45
•212.58
1
112
113
114
0.10380
0.10421
0.10462
41
41
41
2.875
2.883
2.892
8
9
8
1300
1298
1296
5399-2
5410.1
5421.0
109
109
no
213.72
214.87
216.02 1
115
115
117
0.10503
0.10544
0.10586
41
42
42
2.900
2.908
2.917
8
9
8
TABLE I.— Continued.
V
Six,)
1
Diff.
1
A{v)
Diff.
I{v)
Diff.
I
: T{v)
Diff.
1294
I 292
1290
5432.0
5443-0
5454.0
no
no
III
1
1 217.19
1 218.36
! 219.54
1
117
118
119
0.10628
0.10670
0.10713
42
43
43
1 2.925
2.934
1 2.942
9
8
8
1288
1286
T284
5465.1
5476.2
5487.3
III
III
112
220.73
221.93
223.13
120
120
122
0.10756
0.10799
0.10842
43
43
44
! 2.950
1 2.959
2.968
9
9
9
1282
1280
1278
549«-5
5509-7
5521.0
112
113
113;
224.35
225.57
226.80
122
123
124
0.10886
0.10930
0.10974
44
44
45
2.977
2.985
2.994
8
9
9
1276
1274
1272
5532.3
5543-6
5554-9
113 i
113!
114
228.04
229.29
230.54
125;
125
127 !
0.I10I9
0.11064
0.11109
45
45
45
3.003
3.012
3.021
9
9
9
1270
1268
1266
i 5566.3
5589-1
114
114
115
231.81
234.37
127
129
J29
0.11154
0.11200
0.11246
46
46
46
3-030
3-039
3.048
9
9
9
1264
J262
1260
5600.6
5612.1
5623.7
115
116
116!
1
235-66
236.97
238.28
13.1 1
131 1
132 1
0.11292
0.11338
O.I 1385
46
47
47
3-057
3.066
3-075
9
9
9
1258
1256
•1254
5635-3
5647.0
5658.6
117
116
117
239.60
240.94
242.28
134:
134 i
136!
0.11432
O.II479
0.11527
47
48
48
3.084
3-094
3-103
10
9
10
1252
1250
1248
5670.3
5682.1
5693-9
118
118
118
1
243-64
245.00
246.37
136 1
1371
139'
O.II575
O.I1623
0.11671
48
48
49
3-1^3
3.122
9
9
10
1246
1244
1242
5705-7
5717-6
5729-5
119
119
119
247.76
249-15
250-55
139;
140 i
142
O.II72O
O.II769
0.11819
49
50
50
3-141
3-150
3.160
9
10
9
1240
1238
1236
5741.4
5753-4
5765.4
120
120
121
251.97
253-39
254.83
142
144 j
144
0.11869
O.II919
0.11969
50
50
5^
3.169
3-179
3-189
10
10
9
1234
1232 ;
1230
5777-5
5789.6
5801.7
121
121
122
256.27
257.73
259.20
146!
147 1
148 ■
0.12020
O.T2071
0.12123
51
52
52
3-198
3.208
3.218
10
10
10
TABLE L— Continued.
V
S{v)
Diff. j
1228
1226
1224
5813.9
5826.1
5838.4
i
122
123
123!
1222
1220
I218
5850.7
5863.0
5875-4
123
124
124
I216
I 2 14
I2I2
5887.8
5900.3
1 5912.8
125 i
125 1
125
I2IO
1208
1206
5925.3
5937-9
1 5950.5
126
126
127
I 204
1202
1200
5963.2
5975-9
5988.6
127I
127
128
1
II98
II96
II94
6001.4
6014.2
6027.1
128
129
129
1
II92
I 1 90
I188
6040.0
6053.0
6066.0
130
130
131
I 186
I 184
I182
6079.1
6092.2
6105.3
131
131
132 !
1
I180
II78
II76
6118.5
6131-7
6145.0
132
II74
II72
II70
6158.3
6171.7
6185. I
134
134!
135 !
I168
I166
1 164
6198.6
6212. 1
6225.6
135
135
136'
A{v)
260.68
262.17
263.67
265.18
266.71
268.24
269.79
271-35
272.92
274.51
276.11
277.72
279.34
280.97
282.62
284.28
285.95
287.63
289.33
291.04
292.76
294.50
296.25
298.02
299.80
301.59
303-40
305.22
307.06
308.91
310.77
312.65
314-55
Diff.
i
149
150
151
I{v)
Diff.
r(z/)
O.I2I75
0.12227
0.12280
52
53
53
!
3.228
3-238
3-M8
'53
153
155
0.12333
0.12386
0.12439
53
53
54
3-258
3.268
3-278
156
\ 157
159
0.12493
0.12547
O.T2602
54
55
55
3.288
1 3-299
3-309
1 160
i 161
1 162
0.12657
O.I 27 I 2
0.12768
55
56
56
1 3-319
i 3-329
3-340
163
165
166
0.12824
0.12881
0.12938
57
57
57
3-350
3-361
3-371
167
168
170
0.12995
O.T3053
O.I3III
58
58
58
3-382
3-393
3.404
171
172
1.74
O.I3169
0.13228
0.13287
59
59
60
3.415
3.426
3.437
175
177
178
0.13347
0.13407
0.13467
60
60
61
3.448
3.459
3.470
179
181
182
0.13528
0.13589
0.13651
61
62
62
3.481
3.492
3.504
i
184
185
186
O.I3713
0.13776
0.13839
63
63
63
3.515
3-527
3-538 !
188
190
191
0.13902
0.13966
O.T403O
64
64
65
3-550
3-561
3-573'
Diff.
TABLE 1.— Continued.
S{v)
Diff.
162
160
159
158
157
156
1531
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
6239.2
6252.8
6259.7
6266.6
6273.4
6280.3
6287.2
6294.1
6301.0
6307.9
6314.8
6321.8
6328.8
6335-7
6342.7
63497
6356.7
63637
6370.7
6377.8
6384.8
6391.9
6399.0
6406. T
6413.2
6420.3
6427.4
6434.6
6441.7
6448.9
6456.1
6463.3
6470.4
136
69
69
68
69
69
69
69
69
69
70
70
69
70
70
70
70
70
71
70
71
71
7T
71
72
71
72
72
72
71
72
A {7')
316.46
318.39
31936
320.34
321.32
322.30
323.28
324.27
325.26
326.26
327.26
328.27
329.28
330.29
331-31
33^-33
333-3^
334-39
335-43
336.47
337-51
338.56
339-61
340.67
341.73
342.79
343-^6
344-94
346.02
347.10
348.19
349.28
350.38
)iff.
1(7')
1
Diff.
193
97
98
i
I
0.14095
O.I4160
O.I4I92
65
33
98
98
98
0.14225
0.14258
O.I429I
33
33
33
99
99
1 0.14324
1 0.14358
34
33 !
T(v)
Diff.
100
lOI
lOI
lOI
102
102
103
103
104
104
104
105
105
106
106
106
107
108
108
108
109
109
1 10
109
II
-.--too-!
10.14391
0.14425
0.14458
\ 0.14492
i 0.14526
1 0.14560
1 0.14594
i O.T4628
; 0.14662
0.14697
0.14731
0.14766
0.1 480 1
0.14836
0.14871
i 0.14906
0.14942
0.14977
0.15013
0.15049
0.15085
0.15121
^0.15157
io.15193
' 0.15229
34
33
34
34
34
34
34
34
35
34
35
35
35
35
35
36
35
36
36
36
36
36
36
36
3-584
3-596
3.602
3.608
3.614
3.62c
3.626
3-632
3-^3^
3-644
3-650
3656
3.662
3.668
3-674
3-680
3.686
3-693
3-699
3-705
3. 711
3-717
3-723
3-730
3-736
3-742
3-748
3-755
3-761
3-767
3-774
3-780
3.786
TABLE I.— Continued.
V
S{v)
Diff.
Ah)
Diff.
I{z)
Diff.
T (7')
Diff.
II28
1.27
II26
6477-6
6484.8
6492.1
72
73
72
351 47
352-57
353-68
no
III
111
0.15265
0.15302
0.15338
37
36
37
3-793
3-799
3.806
6
7
6
II25
II24
6499.3
6506.6
73
73
354-79
355-90
II I j
113
0.15375
O.I54I2
^7
37
3.812
3-818
6
7
II23
65139
73
357-03
113 1
0.15449
38 1
3-825
6
II22 i
II2I 1
II20
6521.2
6528.6
6536.0
74
74
74
358.16
35930
36045
114
115
115
0.15487
0.15524
15562
37 1
38;
38 1
3.831
3-838
3-844
7
6
7
III9
II18
I I 17
6543-4
6550-8
6558-3
74
75
75
361.60
362.76
36392
116
116
117
0.15600
0.15638
0.15676
38
38
39
3-851
3.858
3.864
7
6
7
II16
11 14
6565.8
^573-3
6580.8
75
75
76
365-09
366.28
367-47
119
119
120
0.15715
0.15754
0.15793
39
39
39
1 3.871
3.878
3-885
7
7
7
III3
II12
6588.4
6596.0
76
77
368.67
369.88
121
121
0.15832
0.15872
40
40
3.892
3.898
6
7
IIII
6603.7
77
37109
123
0.15912
40
3905
•
7
TIIO
6611.4
77
372.32
123
0.15952
41
3912
7
1 109
1108
6619. 1
6626.9
78
78
373-55
374-79
124
125
O.T5993
0.16033
40
41
3.919
3926
1
7
7
ITO7
I 106
1 105
6634.7
6642.5
6650.3
78
78
79
376.04
377-30
i 37857
126
127
128
0.16074
0.16115
0.16157
41
42
41
3-933
3940
3-947
7
7
8
1 104
I 103
II02
6658.2
6666.2
6674.1
80
79
80
379-85
381.14
382.44
129
130
131
0.16198
0.16240
0.16282
42
42
43
3-955
3-962
3-969
7
7
7
IIOI
I 100
1099
6682.1
6690.2
6698.3
81
81
81
j 383-75
38506
T31
132
0.16325
0.16367
0.16410
42
43
43
3-976
3-983
3-991
7
8
7
1098
1097
1096
6706.4
6714-5
6722.7
81
82
83
387-71
389.06
' 39041
135
135
137
0.16453
0.16497
0.16541
44
44
44
3-998
4.006
4013
8
7
8
TABLE I.— Continued.
V
S{v)
Diff.
A^zi)
Difif.
nv)
Diff.
T{v)
Diff.
1094 1
1093 i
6731.0
6739.2
6747-5
82
83
84
391-78
393-15
394-53
137
138
140
0.16585
0.16629
0.16674
44
45
45
4.021
4.029
4-036
8
7
8
1092
I09I
1090 1
6755-9
6764.3
6772.7
84
84
85
395-93
397.34
398.75
141
141
142
0.16719
0.16764
0.16810
45
46
46
4-044
4.051
4.059
7
8
8
1089
1088
1087
6781.2
6789.7
6798.2
85
85
86
400.17
401.60
403-05
143
145
145
0.16856
0.16902
0.16948
46.
46
47
4.067
4.075
4.083
8
8
8
1086
1085 j
1084
6806.8
6815.4
6824.1
86 1
87
87
1 404-50
405.97
407-45
147
148
149
0.16995
0.17042
0.17089
47
47
48
' 4.091
4.098
4.106
7
8
8
1083
T082
I08I
6832.8
6841.5
6850.3
87
88
88
408.94
410.44
411.95
150
151
152
0.17137
0.17185
0.17233
48
48
49
4.114
4.122
4.130
8
8
8
1080
1079
1078
6859.1
6867.9
6876.8
88
89
90
413-47
415.00
416.54
153
154
156
0.17282
0.17331
0.17380
49
49
49
4.138
4.146
4.155
8
9
8
1077
1076
1075
6885.8
6894.7
6903.7
89
90
91
418.10
419.66
421.24
156
158
159
0.17429
0.17479
0.17529
50
50
51
4.163
4.172
4.180
9
8
9
1074
ro73
1072
6912.8
6921.9
6931. 1
91
92
92
422.83
424.44
426.06
161
162
163
0.17580
0.17631
0.17682
51
51
51
4.189
4.197
4.206
8
9
8
1071
1070
1069
6940.3
6949.5
6958.8
92
93
93
427.69
429.33
430.98
164
165
166
0.17733
0.17785
0.17837
52
52
53
4.214
4.223
4.232
9
9
9
1068
1067
1066
6968.1
6977-5
6986.9
94
94
94
432.64
434.32
436.01
168
169
171
0.17890
0.17943
0.17996
53
53
53
4.241
4.250
i 4.259
9
9
9
1065
1064
1063
6996.3
7005.8
7015-4
95
96
96
437.72
439-44
441.17
172
173
175
0.18049
0.18103
0.18158
54
55
55
4.268
4.277
. 4.286
9
9
9
^3
TABLE I.— Continued.
V
S{v)
Diff.
A (v)
Diff.
I{v)
Diff.
1 T{v)
1
Diff.
1062
1061
1060
7025.0
7034.6
7044-3
96
97
97
442.92
444-68
446.45
176
177
178
0.18213
0.18268
0.18323
55
55
56
1
1 4-295
i 4-304
4-313
1
1
9
9
i 9
1059
1058
1057
7054.0
7063.8
7073.6
98
98
99
448.23
450-03
451.84
180
181
182
0.18379
0-18435
0.1 849 1
56
56
57
'] 4-322
4-332
4.341
10
9
9
1056
1055
1054
1 7083.5
7093-4
7103.4
99
100
100
453.66
455.50
457-36
184
186
187
0.18548
0.18605
0.18663
57
58
58
4-350
4-360
4-369
10
9
9
1053
1052
105 1
7113-4
7123.4
7133-5
100
lOI
I02
459.23
461.12
463.02
189
190
192
O.18721
0.18779
0.18838
58
59
59
4.378
4.387
4.397
9
10
9
1050
I049
1048
7143.7
7153-9
7164.1
102
I02
103
464-94
466.87
468.81
193
194
196
0.18897
0.18956
O.I 90 1 6
59
60
61
4.406
4.416
4.426
10
10
10
1047
1046
1045
7174-4
7184.7
7195-I
I03
104
105
470-77
472-74
474-73
197
199
201
0.19077
0.19138
0.19199
61
61
61
4.436
4.446
4-455
10
9
10
1044
1043
1042
7205.6
7216.1
7226.6
105
105
106
476.74
478.77
480.81
203
204
206
0.19260
0.19322
0.19385
62
63
4-465
4-475
4-485
10
10
10
1041
1040
1039
7237.2
7247.9
7258.6
107
107
107
482.87
484.95
487.04
208
209
211
0.19448
0.19511
0-19575
^3
64
64
4-495
4-505
4-516
10
II
10
1038
1037
1036
7269.3
7280.1
7291.0
108
109
109
489-15
491.28
493.42
213
214
216
0-19639
0.19703
0.19768
64
65
66
4-526
4.537
4.547
II
10
II
1035
1034
7301.9
7312.9
73239
no
no
III
495.58
497.76
499-95
218
219
222
0.19834
0.19900
0.19966
66
66
67
4.558
4-569
4-579
II
10
II
1032
1031
1030
7335.0
7346.1
7357.3
III
112
112
502.17
504.40
506.65 '
223
225
226 1
0.20033
0.20100
0.20168
67
68
68
4-590
4.600
4.611
10
II
II
14
TABLE I.— Continued.
V
S{v)
Diff.
A{v)
Diff.
I{v)
Diff.
T{.v)
Diff.
1029
1028
1027
7368.5
7379-8
739I-I
113
113
114
i
508.91
511.20
513-50
229
230
232
1
0.20236
0.20305
0.20374
69
69
69
4.622
4-633
4.645
II
12
II
1026
1025
1024
7402.5
7414.0
7425-5
115
115
116
515-82
518.17
520.54
235
237
238
0.20443
0.20513
0.20584
70
71
71
4.656
4.667
4.678
II
II
II
1023
1022
I02I
7437-1
7448.7
7460.4
116
117
117
522.92
525-32
527-75
240,
243
245
0.20655
0.20726
0.20798
71
72
73
4.689
4.701
4.712
12
II
II
1020
IOI9
IO18
7472.1
7483.9
7495.7
118
118
ii9|
530.20
532.66
535-14
!
246
248
251
0.20871
0.20944
O.21017
73
73
74
4.723
4.735
4-747
12
12
12
ICI7
IO16
IOI5
7507.6
7519-6
7531-6
120
120
121
537-65
540.17
542.72
252
255
258
O.21091
0.2 1 165
0.21240
1
74
75
76
4.759
4.771
4-782
12
II
12
IOI4
IOI3
IOI2
7543-7
7555-8
7568.0
121
122
123
545-30
547-89
550.51
259
262
265
O.21316
0.21392
0.21468
76
76
77
4.794
4.806
4.818
12
12
12
lOII
lOIO
1009
7580.3
7592.6
7605.0
123
124
124
553-i6
555-82
558-51
266
269
272
0.21545
0.21623
O.21701
78
78
79
4.830
4.842
4.855
12
13
12
1008
1007
1006
7617.4
7629.9
7642.5
125
126
1.6
561.23
563.96
566.71
273
275
278
0.21780
0.21859
0.21939
79
80
80
4.867
4.880
4.892
13
12
13
1005
1004
1003
7655-1
7667.8
7680.6
127
128
128
569-49
572.29
575.11
280
282
285
0.22019
0.22100
0.22182
81
82
82
4.905
4.918
4-930
13
12
13
1002
lOOI
1000
7693-4
7706.3
7719-3
129
130
131
577-96
580.83
583-72
287
289
292
0.22264
0.22347
0.22430
83
83
84
4.943
4.955
4.968
12
13
13
999
998
997
7732.4
7745-6
7758.8
132
132
133
586.64
589-59
592.56
295
297
300
0.22514
0.22599
0.22684
85
85
86
4.981
4.995
5.008
14
13
14
15
TABLE I.— Continued.
V
S\v)
Diff.
A{t^
Diff.
/(zO
Diff.
T{v)
Diff.
996
995
994
7772.1
7785.4
7798.7
134
595.56
598.59
601.65
303
306
Z^9
0.22770
0.22857
0.22944
87
87
87
5.022
5.035
5.048
T3
13
14
993
992
991
7812. 1
7825.5
7839.0
134
135
135
604.74
607.85
610.99
311
314
317
0.23031
0.23118
0.23206
87
88
89
5.062
5-075
5.089
13
14
13
990
989
988
7852.5
7866.1
7879.7
136
136
137
614.16
617.33
620.52
317
319
321
0.23295
0.23384
0.23474
89
90
90
5.102
5. 116
5-130
14
14
14
987
986
985
7893.4
7907.1
7920.8
137
^37
137
623.73
626.96
630.21
323
325
327
0.23564
0.23655
0.23746
91
91
91
5-144
5.158
5-171
14
13
14
984
983
982
7934-5
7948.3
7962.1
138
138
138
633-48
636.77
640.08
329
0.23837
0.23929
0.24021
92
92
92
5.185
5.199
5.213
14
14
14
981
980
979
7975-9
7989.8
8003.7
139
139
139
643-41
646.76
650.12
335
339
0.24T13
0.24206
0.24299
93
93
93
5.227
5-241
5-255
14
14
15
978
977
976
8017.6
8031.5
8045.5
139
140
140
653-51
656.92
660.35
341
343
345
0.24392
0.24486
0.24580
94
94
95
5.270
5.284
5-299
14
15
14
975
974
973
8059.5
8073-5
8087.6
140
141
141
663.80
667.26
670.75
346
349
351
0.24675
0.24770
0.24865
95
95
96
5-3^3
5-327
5.342
14
15
14
972
971
970
8101.7
8115.8
8129.9
141
141
142
674.26
677.80
681.35
354
355
357
0.24961
0.25057
0.25154
96
97
97
5.356
5.371
5-385
15
14
15
969
968
967
8144. 1
8158.3
8172.5
142
142
143
684.92
688.51
692.12
359
361
363 1
0.25251
0.25348
0.25446
97
98
98
5.400
5.415
5-429
15
14
15
966
965
964
8i86.8
8201. 1
8215.4
143
143
144
695.75
699.41
703-09
366
368
370
0.25544
0.25643
0.25742
99
99
99
5-444
5-459
5-474
15
15
, 15
16
TABLE 1.— Continued.
V
i
Diff.
A(v)
Diff.
/{v)
Diff.
T(v)
Diff.
963
962
961
: 8229.8
8244.2
8258.6
144
144
144
706.79
710.51
714.26
372
375
377
0.25841
0.25941
0.26041
100
100
lOI
5-489
5-503
j 5-518
1
14
15
15
960
959
958
1
8273.0
\ 8287.4
i 8301.9
144
145
145
718.03
721.81
1 725.62
378
381
384
0.26142
0.26243
0.26344
lOI
101
102
5-533
' 5-548
1 5-564
15
16
15
957
956
955
8316.4
! 8331.0
! 8345.6
146
146
146
729.46
1 733.32
737.20
386
3SS
390
0.26446
0.26549
0.26652
103
103
103
5-579
5-594
5.609
15
15
16
954
953
952
i 8360.2
8374.8
i 8389.5
146
147
J47
741.10
745-03
748.98
393
395
398
0.26755
0.26858
0.26962
103
T04
105
5-625
5-640
5-655
15
15
16
951
950
949
8404.2
i 8419.0
8433.8
148
T48
148
752.96
756.96
760.98
400
402
404
0,27067
0.27172
0.27277
105
105
106
5-671
5.686
5-702
T5
16
948
947
946
8448.6
1 8463.4
, 8478.3
148
149
149
765.02
769.09
773.18
407
409
412
0.27383
0.27489
0.27596
106
107
107
5-718
■5-733
5-749
15
16
16
945
944
943
8493.2
8508.1
! 8523.1
149
150
150
777-30
781.45
785.62
415
417
420
0.27703
0.278II
0.27919
108
108
108
5-765
5-781
5-797
16
16
15
942
941
940
1 8538.1
\ 8553.1
\ 8568.2
1
150
151
151
789.82
794.04
798.29
422
425
427
0.28027
0.28136
0.28246
109
no
no
5-812
5-828
5-844
16
16
16
939
938
937
8583.3
8598.4
8613.6
151
152
152
802.56
806.85
811. 17
429
432 1
435
0.28356
0.28467
0.28578
III
III
III
5.860
5-877
5-893
17
16
16
936
935
934
8628.8
8644.0
8659.2
152
152
153
815-52
819.89
824.30
437
441
443
0.28689
0.28801
0.28913
112
112
113
5-909
5-926
5-942
17
16
16
933
932
931
8674.5
8689.8
8705.2
153
^54
154
. 828.73
837-67
445
449
451
0.29026
0.29140
0.29254
114
114
114
5-958
5-974
•5-991
16
17
16
T7
TABLE I.— Continued.
V
S{v)
Diff.
A{v)
Diff.
/(Z')
Diff.
Tiv)
Diff.
930
929
928
8720.6
8736.0
8751.5
154
155
155
842.18
846.71
851.27
453
456
459
0.29368
0.29483
0.29598
^15
115
116
6.007
6.024
6.041
17
17
16
927
926
925
8767.0
8782.5
8798.0
155
155
156
855.86
860.48
865.13
462 1
465
468
0.29714
0.29830
0.29947
116
117
117
6.057
6.074
6.091
17
17
17
924
923
922
8813.6
8829.2
8844.9
156
157
157
869.81
874-51
879-25
470
474
477
0.30064
0.30T82
30300
118
118
119
6.108
6.125
6. 141
17
16
17
921
920
919
8860.6
8876.3
8892.0
157
157
158
884.02
888.81
479 1
4821
485 j
0.30419
0.30538
0.30658
119
120
120
6.158
6.175
6.192
17
17
18
918
917
916
8907.8
8923.7
8939-5
159
158
159
898.48
903.36
908.27
488
491
494
0.30778
0.30899
0.31020
121
121
122
6.210
6.227
6.245
17
18
17
915
914
913
8955-4
8971-3
8987-3
159
160
160
913.21
918.18
923.19
497
501
503
0.3II42
0.31264
0.31387
122
123
124
6.262
6.279
6.297
17
18
17
912
911
910
9003-3
9019.3
9035-4
160
161
161
928.22
933-28
938.37
506
509
513
0.3I5II
0.31635
0.31760
124
125
125
6.314
6.332
6.349
18
17
18
909
908
907
9051-5
9067.6
9083.8
161
162
162
943-50
948.65
953-84
515
519
522
0.31885
0.320II
0.32137
126
126
127
6.367
6.385
6.403
18
18
18
906
905
904
9100.0
9116.2
9132.5
162
163
163
959.06
964.31
969.60
525
529
532
0.32264
0.32392
0.32520
128
128
129
6.421
6.439
6.457
18
18
18
903
902
901
9148.8
9165.2
9181.6
.64
164
164
974-92
980.27
985-65
535
538
541
0.32649
0.32778
0.32908
129
130
130
6.475
6.493
6. 511
18
18
18
900
899
898
9198.0
9214-5
9231.0
165
165
165
991.06
996.51
1001.99
545
548
552
0.33038
0.33169
0.33300
131
131
132
6.529
6.548
6.566
19
18
19
iS
TABLE I.— Continued.
S(v)
9247-5
9264.1
9280.7
9297.3
9314-0
9330-7
9347.5
9364.3
9381. 1
9398.0
9414.9
9431-9
9448.9
9465.9
9483.0
9500.1
9517.2
9534.4
9551.6
9568.9
9586.2
9603.5
9620.9
9638.3
9655.8
9673.3
9690.8
9708.4
9726.0
9743.7
9761.4
9779.T
9796.9
Diff.
166
166
166
167
167
168
168
168
169
169
170
170
170
171
171
171
172
172
173
173
173
174
174
175
175
175
176
176
177
177
177
178
178
A{v)
007.51
013.06
018.65
024.27
029.92
035-61
041.34
047.10
052.90
058.73
064.60
070.52
076.47
082.45
088.47
094-53
100.62
106.75
112.92
119.13
125-38
131.67
138.00
144-37
150.78
157-23
163.72
170.25
176.82
183.44
190.09
196.79
203.54
Diff.
555
559
562
565
569
573
576
580
583
587
592
595
598
602
606
609
613
617
621
625
629
^33
637
641
645
649
653
657
662
665
670
675
678
I{v)
0.33432
0.33565
0.33698
0.33832
0.33966
0.34101
0.34237
0.34373
0.34510
0.34647
0.34785
0.34924
0.35063
0.35203
0.35344
0.35485
0.35627
0-35770
0.35913
0.36057
0.36202
0.36347
0.36493
0.36639
0.36786
0.36934
0.37083
0.37232
0.37382
0.37532
0.37683
0.37835
0.37988
Diff.
133
^33
134
134
135
136
136
137
137
138
139
139
140
141
141
142
143
143
144
145
145
146
146
147
148
149
149
150
150
151
152
^53
153
T{v)
6.585
6.603
6.622
6.640
6.659
6.677
6.696
6.714
6.733
6.753
6.772
6.791
6.811
6.830
6.849
6.868
6.888
6.907
6.927
6.947
6.966
6.986
7.006
7.026
7.046
7-065
7.085
7.105
7.126
7.146
7.167
7.187
7.208
Diff.
19
TABLE I.— Continued.
864
863
862
861
860
859
858
857
856
855
854
853
852
851
850
849
848
847
846
845
844
843
842
841
840
839
838
837
836
835
834
832
Siv)
9814.7
9832.6
9850-5
•4
9886.4
9904.4
9922.5
9940.6
9958.7
9976.9
9995-2
10013.5
10031.8
10050.2
10068.6
10087. 1
10105.6
10124.1
10142.7
10161.3
10180.0
10198.8
10217.5
T0236.3
10255.2
10274.1
10293.0
10312.0
10331.0
10350.1
10369.2
10388.4
10407.6
Diff.
179
179
1791
I
180
180
181
181
181
182
183
183
183
184
184
185
185
185
186
186
187
188
187
188
189
189
189
190
190
191
191
192
192
193
A{v)
210.32
217.15
224.02
230.93
237.89
244.89
251-94
259.04
266.18
273.36
280.59
287.87
295-19
302.56
309-98
317-44
324.96
332.52
340.13
347.79
355-50
363-26
371.07
378.93
386.84
394.80
402.82
410.89
419.01
427.18
435-41
443.69
452.02
Diff.
683
687
691
696
700
705
710
714
718
723
728
732
737
742
746
752
756
761
766
771
776
781
786
791
796
802
807
812
817
823
828
^33
839
I{v)
I0.38I4T
: 0.38295
; 0.38450
0.38606
0.38762
0.38919
0.39077
0.39235
0.39394
0.39554
0.39715
0.39877
0.40039
0.40202
0.40366
0.40530
0.40695
0.40861
0.41028
0.41196
0.41364
0.41533
0.41703
0.41874
0.42046
0.42218
0.42392
0.42566
0.42741
0.42917
0.43093
0.43271
0.43449
Diff.
154
155
156
156
157
158
158
159
160
161
162
162
163
164
164
165
166
167
168
168
169
170
171
172
172
174
174
175
176
176
178
178
180
T(v)
7.229
7.249
7.270
7.290
7-311
7-332
7-354
7-375
7-396
7.418
7-439
7.460
7.481
7.503
7-524
7-546
7-568
7-590
7.612
7-635
7-657
7-679
7.701
7-723
7-745
7-768
7-790
7-813
7.836
7-858
7.881
7-904
7.928
TABLE I.— Continued.
S{v)
Diff.
0426.9
0446.2
0465.6
[0485.0
[0504.4
0523-9
0543-4
0563.0
0582.7
[ 0602. 4
0622,1
[0641.9
0661.7
0681.6
0701.6
0721.6
0741.6
0761.7
:o78i.8
:o8o2.o
:o822.2
:o842.5
0862.8
: 0883. 2
10903.6
0924.1
0944.6
0965.2
0985.8
1006.5
1027.2
1048.0
1068.8
193
T94
194
194
195
195
196
197
197
197
198
198
199
200
200
200
201
201
202
202
203
203
204
204
205
205
206
206
207
207
208
208
209
Aiv)
460.41
468.85
477.35
485.90
494.51
503-18
511.90
520.69
529-52
538.42
547-38
556.39
565-47
574.61
583-80
593-05
602.37
611.75
621.20
630.70
640.27
649.90
659-60
669.36
679.19
689.08
699.04
709.07
719.16
729.32
739-55
749-84
760.21
Diff.
844
850
855
861
867
872
879
896
901
908
914
919
925
932
938
945
950
957
963
970
976
983
989
996
1003
1009
1016
1023
1029
1037
1043
/{v)
0.43629
0.43809
0.43990
0.44172
0.44354
0.44538
0.44722
0.44908
C.45094
0.45282
0.45470
0.45659
0.45849
0.46040
0.46231
0.46424
0.46618
0.46812
0.47008
0.47205
0.47402
0.47601
0.47800
0.48001
0.48202
0.48404
0.48608
0.48812
0.49018
0.49225
0.49432
0.49641
0.49850
Diff.
180
181
182
182
184
184
186
186
188
189
190
191
191
T93
194
194
196
197
197
199
199
201
201
202
204
204
206
207
207
209
209
211
T(v)
7-95T
7-974
7-997
8.021
8.044
8.068
8.091
8.115
8.139
8.163
8.187
8.211
8.235
8.259
8.284
8.308
^'333
8.357
8.382
8.407
8.432
8.457
8.482
8.507
8.533
8.558
8.584
8.610
8-635
8.661
8.687
8.713
8.739
Diff.
TABLE I.-rCONTINUED.
Siv)
798
797
796
795
794
793
792
791
790
789
788
787
786
785
784
783
782
781
780
779
778
777
776
775
774
773
772
771
770
769
768
767
766
1089.7
1 1 10. 7
1131.7
1152.7
1173.8
1195.0
1216.2
1237.5
1258.8
1280.3
1301.8
1323-4
1345-0
1366.6
1388.2
1409.8
1431-5
1453-3
I475-0
1496.8
1518.6
1540.4
1562.2-
1584.1
1606.0
1627.9
1649.9
1671.9
1693.9
1716.0
1738.0
1760. 1
1782.3
Diff.
210
210
210
211
212
212
213
213
215
215
216
216
216
216
216
217
218
217
218
218
218
218
219
219
219
220
220
220
221
220
221
222
222
A (7')
1770.64
1781.15
1791.72
1802.37
1813.10
1823.89
1834.76
1845.70
1856.71
1867.87
1879.08
1890.36
1901.70
1913.1i
1924.57
1936.10
1947.70
1959.36
1971.08
1982.87
1994.72
2006.64
2018.62
2030.68
2042.80
2054.98
2067.24
2079.56
2091.95
2104.41
2116.94
2129.54
2142.21
Diff.
051
057
065
073
079
087
094
lOI
116
121
128
134
141
146
153
160
166
172
179
185
192
198 j
206 i
212 I
1
2l8|
226 I
232 1
239
246
253
260
267
274
7(7.)
I 0.50061
10.50273
I 0.50486
! 0.50700
0-50915
0-51131
0.51348
0.51566
0-5
786
0.52008
0.52231
0.52454
0.52678
0.52904
0.53130
0.53357
0.53585
0.53813
0.54043
0.54273
0.54504
0.54736
0.54969
0.55203
0.55438
0.55674
0.55911
0.56148
0.56387
0.56626
0.56867
0.57108
0.57350
Diff.
212
213
214
215
216
217
218
220
222
223
223
224
226
226
227
228
228
230
230
231
232
233
234
235
236
237
237
239 I
239
241
241
242
244
T(v)
8.765
8.791
8.818
8.844
8.871
8.897
8.924
8.951
8.97.8
9.005
9.032
9.060
9.087
9.114
9.T42
9.170
9.197
9.225 !
9-2531
9.281 !
9-309 I
9-337 I
9365 i
9-394 i
9.422 j
9-450
9-479
9-507
9-536
9-565
9-593
9.622
9-651
TABLE I.— Continued.
S{v)
765
764
763
762
761
760
759
758
757
756
755
754
753
752
751
750
749
748
747
746
745
744
743
742
741
740
739
738
737
736
735
734
733
1804.5
1826.7
1848.9
1871.1
1893.4
1915-7
1938.0
1960.4
2005.3
2027.7
2050.2
2072.8
2095-3
2117.9
2140.5
2163. 1
2185.8
2208.5
2231. 2
2253-9
2276.7
2299.6
2322.4
2345-3
2368.2
2391-1
2414.1
2437-1
2460.1
Diff.
222
222
222
223
223
223
224
224
225
224
225
226
225
226
226
226
227
227
227
227
228
229
228
229
229
229
230
230
230
231
2^1
2483.2
2506.31 231
2529.4' 232
A{v)
Diff.
2154-95
2167.76
2180.64
2193-59
2206.62
2219.7 r
2232.88
2246.12
2259.44
2272.83
2286.30
2299.84
2313-45
2327.14
2340.91
2354-75
2368.67
2382.66
2396.74
2410.89
2425.12
2439-44
2453-83
2468.30
2482.86
2497-49
2512.21
2527.01
2541.89
2556.86
2571.91
2587.04
2602.25
281
288
295
303
309
3^7
324
332
339
347
354
361
369
377
384
392
399
408
415
423
432
439
447
456
463
472
/(v)
480 0.64271
488
497
505
513
521
530
0-57594
0.57838
0.58083
0.58330
0.58577
0-58825
0.59074
0.59324
0-59575
0.59827
0.60080
0.60334
0.60589
0.60845
0.61 103
0.61361
0.61620
0.61880
0.62142
0,62404
0.62667
0.62932
0.63198
0.63464
0.63732
0.64001
0.64542
0164814
0.65087
0.65361
0.65637
0.65913
Diff.
244
245
247
247
248
249
250
251
252
253
254
255
256
258
258
259
260
262
262
263
265
266
266
268
269
270
271
272
273
274
276
276
278
T{v)
9.680
9.709
9-738
9.767
9-797
9.826
9-855
9.885
5.914
9-944
9-973
10.003
10.033
10.063
10.093
10.123
10.153
10.184
10.214
10.244
10.275
10.306
10.336
10.367
10.398
10.429
10.460
10.491
10.522
10.554
10.585
10.616
10.648
Diff.
23
TABLE I.— Continued.
S(v)
732
731
730
729
728
727
726
725
724
723
722
721
720
719
718
717
716
714
713.
712
711
710
709
708
707
706
705
704
703
702
701
700
2552.6
2575-8
2599.0
2622.3
2645.6
2668.9
2692.3
2715.6
2739.0
2762.5
2786.0
2809.5
2833.1
2856.7
2880.3
2903.9
2927,6
2951-3
2975-1
2998.9
3022.7
3046.5
3070.4
3094-3
3118.3
3142.3
3166.3
3190.3
3214.4
3238.5
3262.7
3286.9
3311.I
Diff.
232
232
233
233
233
234
233
234
235
235
235
236
236
236
236
237
237
238
238
238
238
239
239
240
240
240
240
241
241
242
242
242
242
A{v)
2617.55
2632.94
2648.41
2663.97
2679.61
2695.34
2711.16
2727.07
2743-07
2759.16
2775-33
2791.60
2807.96
2824.41
2840.96
2857.60
2874.33
2891.15
2908.07
2925.08
2942.19
2959-39
2976.09
2994.09
3011.58
3029.17
3046.86
3064,66
3082.55
3100.54
3118.64
3136.84
3155-H
Diff,
539
547
556
564
573
582
591
600
609
617
627 ;
636 I
645
6551
664
673
682
692
701
711
720
730
740
749
759
769
780
789
799
810
820
830
841
/{v)
0.66I9I
0.66470
0.66750
0.67031
0.67313
0.67596
0.67881
0,68167
0.68454
0.68742
0,69031
0.69322
0.69614
0.69907
0.70201
0,70496
0.70793
0,71091
0.71390
0.7I69I
0.71993
0.72296
0.72600
0.72905
0.73212
0.73520
0.73830
0.74I4I
0.74453
0.74766
0.75081
0.75397
0.75715
Diff,
279
280
281
282
283
285
286
287
289
291
292
293
294
295
297
298
299
301
302
303
304
305
307
308
310
311
312
313
315
316
318
319
T{v)
0.679
0.711
0.743
0.775
:o.8o7
0.839
0.871
0.903
0.936
:o.968
1. 00 1
1-033
1,066
1.099
1-132
1. 165
1. 198
1.231
1.264
1.297
1-330
1.364
1.398
1-432
1.465
1.499
1-533
1.567
1.60T
1.636
1,670
1,704
1-739
24
TABLE I.— Continued.
S{v)
699
698
697
696
695
694
693
692
691
690
689
688
687
686
685
684
683
682
681
680
679
678
677
676
675
674
673
672
67.
670
669
668
667
3335-3
3359-6
3383-9
3408.3
3432.7
3457-1
3481.6
3506.1
3530.6
3555-2
3579-8
3604.4
3629.1
3653-8
3678.6
3703-4
3728.2
3753-1
3778.0
3802.9
3827.9
3852.9
3877-9
39030
3928.1
3953-3
3978.5
4003.7
4029.0
4054-3
4079.6
4105.0
4130.4
Diff.
243
243
244
244
244
245
245
245
246
246
246
247
247
248
248
248
249
249
249
250
250
250
25'
251
252
252
252
253
253
253
254
254
255
A (v)
3173-55
3192.06
3210.67
3229.39
3248.22
3267.15
3286.19
3305.33
3324.58
3343-95
3363-42
3383-00
3402.70
3422.50
3442.42
3462.45
3482.60
3502.86
3523-24
3543-73
3564.34
3585.07
3605.91
3626.88
3647.96
3669.17
3690.50
3711 94
373351
3755.21
3777.03
3798.98
3821.05
Diff.
1 85 I
1861
1872
1883
1893
1904
1914
1925
1937
1947
1958
1970
1980
1992
2003
2015
2026
2038
2049 !
2061 I
2073 I
1
2084
2097
2108
2121
2133
2144
2157
2170
2182
2195
2207
2219
I{v)
0.76034
0.76354
0.76675
0.76998
0.77322
0.77648
0.77975
0.78304
0.78634
0.78966
0.79299
0.79633
0.79969
0.80306
0.80645
0.80985
0.81327
0.81670
0.82015
0.82362
0.82710
0.83059
0.83410
0.83762
O.84116
0.84472
0.84829
0.85188
0.85549
O.85911
0.86274
0.86639
0.87006
Diff.
320
321
3 3
324
326
327
329
330
332
333
334
336
337
339
340
342
343
345
347
348
349
351
352
354
356
357
359
361
362
363
365
367
369
T{v)
11.774
11.809
11.844
11.879
II. 914
11.949
11.984
12.020
12.055
12.091
12.126
12.162
12.198
12.234
12.270
12.306
12.342
12.379
12.415
12.452
12.489
12.526
12.563
12.600
12.637
12.675
12.712
12.750
12.787
12.825
12.863
12.901
12.939
25
TABLE I.— Continued.
Siv)
666
665
664
663
662
661
660
659
658
657
656
655
654
653
652
65'
650
649
648
647
646
645
644
643
642
641
640
639
638
637
636
635
634
4155-9
4181.4
4206.9
4232.5
4258.1
4283.7
4309-4
4335.1
4360.9
4386.7
4412.6
4438.5
4464.4
4490.4
4516.4
4542.4
4568.5
4594-6
4620.8
4647.0
4673.2
4699.5
4725-9
4752.3
4778.7
4805.1
4831.6
4858.1
4884.7
4911.3
4938.0
4964.7
4991.4
Diff.
255
255
256
256
256
257
257
258
258
j
259
259
259
260
260
260
261
261
262
262
262
263
264.
264
264
264
265
265
266
266
267
267
267
268
A {7^)
3843-24
3865.57
3888.02
3910.60
3933-31
3956.16
3979-13
4002.24
4025.48
4048.86
4072.37
4096.01
4T19.79
4143-71
4167.77
Diff.
4340.12
4365-32
4390.67
4416.16
4441.81
4467.60
4493-55
4519.64
4545-89
4572.30
4598.86
4625.57
2233
2245
2258
2271
2285
2297
2311
2324
2338
2351
2364
2378
2392
2406
2419
4191.96 2434
4216.30 2448
4240.78 2462
4265.40 j 2476
4290.16 I 2491
4315.07 2505
2520
2535
2549
2565
2579
2595
2609
2625
2641
2656
2671
2687
/{v)
0-87375
0.87745
0.88II7
0.88490
0.88866
0.89243
0.89622
0.90002
0.90384
0.90768
0.9II53
0.9I54I
0.91930
0,92321
0.92715
0.931 10
0.93506
0.93904
0.94304
0.94706
0.95IIO
0.95516
0.95923
0.96333
0.96745
0.97158
0.97574
0.97991
0,98410
0.98831
0.99254
0.99680
1.00107
Diff.
370
372
373
376
377
379
380
382
384
385
388
389
391
394
395
396
398
400
402
404
406
407
410
412
413
416
417
419
421
423
426
427
429
T{v)
977
015
053
092
130
169
208
247
286
326
365
404
444
484
524
564
604
644
684
725
766
806
847
929
971
012
053
095
137
4 179
4.221
4-263
Diff.
26
TABLE I.— Continued.
V
S{zi)
Diff.
i
A (7-)
Diff.
I{v)
Diff.
T(v)
Diff.
633
632
63.
15018.2
i5C'45-o
15071.9
268
269
269
4652.44
4679.47
4706.65
2703
2718 '
2735
1.00536
1.00967
1. 01401
431
434
436
14.305
14.348
14.390
43
42
43
6.'?o
629
628
15098.8
15125.8
15152-8
270
2701
270 i
4734.00
4761.51
4789.18
2751
2767
2784
1. 01837
1.02274
I.027I3
437
439
442 i
14.433
14.476
14.519
43
43
43
627
626
625
15179-8
15206.9
15234.0
271
271
272
4817.02
4845.02
4873.18
2800
2816
2833
I 03155
J. 03598
1.04044
443
446
448
14.562
14.605
14.648
43
43
44
624
623
622
15261.2
15288.4
15315-7
272
273
273
4901.51
4930.00
4958.67
2849
2S67
2883
1.04492
1.04943
1.05395
451
452
455
14.692
14.735
14.779
43
44
44
621
620
619
15343.0
15370.3
15397.7
273
274
274
4987.50
1 5016.51
5045-69
2901
2918
2935
1 1.05850
1.06307
1.06766
457
459
461
14.823
14.867
14.91 1
44
44
45
618
617
616
15425. 1
15452.6
15480.1
275
275
276
5075-04
5104.57
5134-27
2953
2970
2988
1.07227
1.07690
1. 08156
463
466
468
,14.956
15.000
15.045
44
45
45
615
614
613
15507.7
15535.3
15563.0
276
277
277
5164.15
5194.21
5224.44
3006
3023
3042
1.08624
1.09095
1.09568
471
473
475
15.090
15-135
15.180
45
45
45
612
611
610
T5590.7
15618.4
15646.2
277
1 278
278
5254-86
i 5285.46
5316.24
3060
3078
3097
1 10043
1. 10520
I.IIOOO
477
48c
482
15-225
15.270
T5-316
45
46
45
609
608
607
1 15674.0
15701.9
15729.8
279
279
280
5347-21
5378.36
5409-71
31^5
3135
3153
1 I.II482
I.II966
1. 12452
484
486
489
15-361
15-407
15.453
46
46
46
606
605
604
15757-8
15785.8
15813-9
280
i 281
1 281
1
! 5441.24
5472.95
5504.86
3171
3191
3210
I.I294I
1. 13433
1 1.13927
492
494
497
■
15-499
15-546
15.592
47
46
46
603
602
601
15842.0
15870. 1
15898.3
281
282
' 283
1553696
i 556926
'5601.75
3230
3249
3268
1. 14424
1. 14923
1-15425
499
502
504
15.638
15.685
15.732
47
47
47
27
TABLE I.— Continued.
V
S{v)
Diff. I
1
1
A (v) Diff.
I{v)
Diff.
T{v)
Diff.
600
599
598
15926.6
15954.9
15983-2
283
283
284
5634.43 I 3288
5667.31 J3309
5700.40 3329
1. 15929
1. 16435
1.16944
506
509
5'2
15.779
15.826
15.873
47
47
48
597
596
595
160IT.6
1 6040. 1
16068.6
285
285
285 1
5733-69
5767.18
5800.87
3349
3369
3389
1. 17456
1. 17970
1. 18487
5H
517
519
15.921
15.968
16.016
47
48
48
594
593
592
16097. 1
16125.7
16154-4
286
287
287
5834-76
5868.85
5903.16
3409
3431
3451
1. 19006
1. 19528
1.20053
522
525
527
16.064
16. 113
16. 16 I
49
48
48
591
590
589
16183.I
16211.8
16240.6
287 1
288
288
5937-67
5972.39
6007.32
3472
3493
3515
T. 20580
I.2IIIO
1. 21643
530
533;
535 ,
16.209
16.258
16.307
49
49
49
588
587
586
16269.4
16298.3
16327.2
289
289
290
6042.47
6077.83
6113.41
3536
3558
3579
I. 22178
I. 22716
1.23257
538
541
544
16.356
16.405
16.454
49
49
50
585
584
583
16356.2
16385.2
16414.3
290
291
291
6149.20
6185.22
6221.46
3602
3624
3646
I. 23801
1.24348
1.24897
547
549
552
16.504
16.553
16.603
49
50
50
582
581
580
16443.4
16472.6
16501.8
292
292
293
6257.92
6294.61
6331-52
3669
3691
3714
1.25449
1.26004
1.26562
555
558
561
16.653
16.704
16.754
51
50
51
579
578
577
16531.1
16560.4
16589.8
293
294
294
6368.66
6406.01
6443-63
3735
3762
3783
1. 27123
1.27687
1.28253
564
566
570
16.805
16.855
16.906
50
51
52
576
575
574
16619.2
16648.7
16678.2
295
295
296
6481.46
65^9.52
6557.82
3806
3830
3854
1.28823
1.29396
I. 29971
573
575
579
16.958
17.009
17.060
51
51
52
573
572
571
16707.8
16737.4
16767. 1
296
297
298
6596.36
6635.14
6674.16
3878
3902
3926
1.30550
I.3II3'
I.31716
581
585
588
17.112
17.164
i 17.216
52
52
52
570
569
568
16796.9
16826.7
16856.6
298
299
299
671342
6752.93
6792.68
3951
3975
4000
1.32304
1-32895
1-33489
591
594
597
17.268
17.320
17-373
52
52
28
TABLE I.— Continued.
S{v)
567
566
565
564
563
562
561
560
559
558
557
556
555
554
553
552
551
550
549
548
547
546
545
544
543
542
541
540
539
538
537
536
535
6886.5
6916.4
6946.4
6976.5
7006.6
7036.8
7067.0
7097.3
7127.6
7158.0
7188.4
7218.9
7249.4
7280.0
7310.7
7341-4
7372.2
7403.0
7433-9
7464.8
7495-8
7526.8
7557.9
7589-1
7620.3
7651.6
7682.9
77H-3
7745-8
7777-3
7808.9
7840-5
7872.2
Diff.
299
300
301
301
302
302
303
303
304
304
305
305
306
307
307
308
308
309
309
310
310
311
312
312
313
313
314
315
315
316
316
317
317
Aiv)
6832.68
6872.93
6913-43
6954.18
6995.19
7036.46
7077.99
7119.78
7161.83
7204.15
7246.73
7289.58
7332.71
7376.11
7419.78
7463.74
7507-97
7552.48
7597.28
7642.36
7687.73
7733-39
7779-34
7825.58
7872.12
7918.96
7966.12
8013-55
8061.30
8109.36
8T57-73
8206.41
8255.41
Diff.
4025
4050
4075
4101
4127
4153
4179
4205
4232
4258
4285
43^3
4340
4367
4396
4423
4451
4480
4508
4537
4566
4595
4624
4654
4684
4716
4743
4775
4806
4837
4868
4900
4932
/{v)
34086
34686
35290
35897
36507
37120
37736
38356
38979
39606
40236
40869
41506
42146
42789
43436
44087
44741
45399
46060
46725
47394
48066
48742
49422
50106
50793
51484
52179
52878
53581
54287
54998
Diff.
600
604
607
610
613
616
620
623
627
630
637
640
643
647
651
654
658
661
665
669
672
676
680
684
687
691
695
699
703
706
711
715
Tiv)
7.425
7-478
7-531
7-584
7.638
7.691
7.745
7-799
7.853
7-908
7.962
8.017
8.072
8.127
8.183
8.238
8.294
8.350
8.406
8.462
8.519
8.576
8.633
8.690
8.747
8.805
8.921
8.979
9.038
9.096
9-155
9-215
Diff.
29
TABLE I.— Continued.
S{v)
534
533
532
531
530
529
528
527
526
525
524
523
522
521.
520
519
518
517
516
5^5
514
513
512
511
510
509
508
507
506
505
504
503
502
7903.9
7935-7
7967.6
7999-5
8031.5
8063.5
8095.6
8127.8
8160.0
8192.3
8224.7
8257.1
8289.6
8322.1
8354-7
8387-4
8420.1
8452.9
8485.7
8518.6
8551-6
8584-7
8617.8
8651.0
8684.2
8717-5
8750-9
8784.3
8817.8
8851.4
8885.0
8918.7
8952.5
Diff
318
319
319
320
320
321
322
322
323
324
324
325
325
326
327
327
328
328
329
330
33^
33'^
332
332
333
334
334
335
33^
33^
337
33^
338
A'iv)
8304.73
8354.36
8404.32
8454.61
8505.22
8556.16
8607.44
8659.06
8711.01
8763.30
8815.94
8868.92
8922.25
8975.93
9029.97
9084.36
9139.11
9194.23
9249.71
9305.56
9361.79
9418.39
9475-38
9532.74
9590.49
9648.62
9707.15
9766.06
9825.38
9885.09
9945.21
10005.74
10066.67
Diff.
4963
4996
5029
5061
5094
5128
5162
5195
5229
5264
5298
5333
5368
5404
5439
5475
5512
5548
5585
5623
5660
5699
5736
5775
5813
5853
5891
5932
5971
6012
6053
6093
6134
I{v)
55713
56431
57154
57881
58612
59347
60086
60830
61578
62330
63086
63847
64612
65381
66155
66933
67716
68504
69296
70092
70894
71700
72510
73326
74146
74971
75801
76636
77476
78321
79171
80026
80886
Diff.
718
723
727
731
735
739
744
748
752
756
761
765
769
774
778
783
788
792
796
802
806
810
816
820
825
830
835
840
845
850
855
860
865
T{v)
19.274
J9.334
19-394
^9-454
19.514
19-574
19-635
19.696
19-757
19.819
19.881
19.943
20.005
20.067
20.130
20.193
20.256
20.319
20.383
20.447
20.511
20.575
20.640
20.705
20.770
20.835
20.901
20,967
21.033
21.099
21.166
21.233
21,300
30
TABLE I.— Continued.
501
500
499
498
497
496
495
494
493
492
491
490
489
488
487
486
485
484
483
482
481
480
479
478
477
476
475
474
473
472
471
470
469
■S(v)
3
9020.2
9054.2
9088.2
9122.3
9156.4
9190.6
9224.9
9259-3
9293.8
9328.3
9362.9
9397.6
9432.3
9467.1
9502.0
9536.9
9572.0
9607.1
9642.2
9677-5
9712.8
9748.2
9783.6
9819. 1
9854.7
9890.4
9926.2
9962.0
9997-9
20033.9
20070.0
20106,2
Difif.
339
340
340
341
341
342
343
344
345
345
346
347
347
348
349
349
351
351
351
353
353
354
354
355
356
357
358
358
359
360
361
362
362
A{v)
0128.01
0189.78
0251.9
0314.5
0377.6
0441.0
0504.9
0569-3
0634.1
0699.3
0765.0
0831. 1
0897.6
0964.7
1032.2
1 100. 1
1168.6
1237-5
1307.0
1376.9
1447-2
1518.1
1589.4
1661.3
1733-7
1806.6
1880.0
1953-9
2028.4
2103.4
2178.9
2254.9
2331-5
Diff.
6177
6219
626
631
634
639
644
648
652
657
661
665
671
675
679
685
689
695
699
703
709
•713
719
724
729
734
739
745
750
755
760
766
771
/{v)
.81751
.82622
.83498
•84379
-85265
-86157
•87054
-87957
.88865
.89778
.90697
.91622
•92552
-93488
.94430
•95378
.96332
.97292
.98258
.99230
2.00207
2.0II90
2.02180
2.03176
2.04179
2.05188
2,06203
2.07225
2.08253
2.09288
2.10329
2.II376
2.12430
Diff,
871
876
886
892
897
903
908
913
919
925
930
936
942
948
954
960
966
972
977
983
990
996
T003
1009
1015
1022
1028
1035
1041
1047
1054
1061
T{v)
21.367
21.435
21.503
21.572
21.641
21.710
21.779
21.848
2T.918
21.988
22.058
22.128
22.199
22.270
22.341
22.413
22.485
22.557
22,630
22,703
22.776
22.849
22.923
22.997
23.071
23.146
23.221
23.296
23.372
23.448
23-524
23.601
23.678
Diff.
31
TABLE I.— Continued,
V
S{v)
Diff.
A{v)
Diff.
/{v)
Diff.
T{v)
Diff.
468
467
466
20142.4
20J78.7
20215.0
363
365
12408.6
'12486.3
12564.6
777
783
788
2.13491
2.14559
2.15635
ic68 i
1076 i
1082
23.755
23.833
23.911
78
78
78
465
464
463
20251.5
20288.0
20324.7
365
367
367
12643.4
12722.8
12802.7
794
799
805
2.16717
2.17806
2.18902
1089 1
1096
1 104
23.989
24.068
24.147
79
79
79
462
461
460
20361.4
20398.1
20435.0
367
369
369
12883.2
12964.3
13045-9
811
816
822
2.20006
2.21116
2.22233
i
1110
1117
1124
24.226
24.306
24.386
80
80
80
459
458
457
20471.9
20508.9
20546.0
370
371
371
13128. 1
13211.O
13294.4
829
834
841
2.23357
2.24489
2.25629
1132
1140
1147
24.466
24.547
- 24.628
81
81
82
456
455
454
20583.1
20620.4
20657.7
373
373
374
13378.5
134633
13548.6
848
853
859
2.26776
2.27931
2.29094
1155
1163
1171
24.710
24.792
24.874
82
82
82
453
452
451
20695.1
20732.6
20770.2
375
376
377
13634.5
13721.1
13808.3
866
872
878
2.30265
2.31443
2.32628
1178
1185
1193
24.956
25-039
25.122
^3
83
84
450
449
448
20807.9
20845.6
20883.4
377
378
380
13896.1
13984.6
14073.7
885
891
898
2.33821
2.35022
2.36232
1201
1210
1218
25.206
1 25.290
25.374
84
84
85
447
446
445
20921.4
20959.4
20997.4
380
380
382
'4163.5
14254.0
14345. i
905
911
919
2.37450
2.38676
2.39911
1226
1235
1243
1 25.459
25.544
25.629
85
85
86
444
443
442
21035.6
21073.9
21112.2
385
14437.0
14529.5
14622.7
925
932
939
2.41154
2.42405
2.43665
1251
1260
1268
i 25.715
25.801
25.888
86
87
87
441
440
439
21150.7
21189.2
21227.8
385
386
387
14716.6
14811.2
14906.5
946
953
960
2.44933
2.46209
2.47494
1276
1285
1294
25.975
26.062
26.150
87
88
88
438
437
436
21266.5
213^5-3
2i34'4-2
388
389
389
15002.5
15099.3
15196.8
968
975
982'
2.48788
2.50091
2.51404
1303
1313
1322
26.238
26.327
' 26.416
89
89
89
32
TABLE I.— Continued.
S{v)
21383. 1
21422.2
21461.4
21500.6
21540.0
21579-4
21618.9
21658.5
21698.2
21738.0
21777.9
21817.8
21857.9
21898.1
21938.4
21978.7
22019.1
22059.6
Diff.
22100.2
22140,9
22
81.8
22222.7
22263.7
22304.8
22346.1
^2387.4
22428.8
22470.4
225 12.0
22553-7
22595.6
22637.5
22679.6
391
392
392
394
394
395
396
397
398
399
399
401
402
403
403
404
405
406
407
409
409
410
411
413
413
414
416
416
417
419
419
421
422
A{v)
5295-0
5394.0
5493-7
5594-2
5695-4
5797-3
5900.0
6003.5
6107.9
6213. 1
6319.1
6425.9
6533-5
6641.9
6751.2
6972.2
7084.1
7196.8
7310.5
7425.0
7540.5
7656.8
7774.1
7892.2
8011.3
813^-3
8252.4
8374.4
8497.4
8621.4
8746.4
8872.3
Diff.
990
997
1005
012
019
027
035
044
052
060
068
076
084
093
T09
119
127
137
145
155
163
173
181
191
200
211
220
230
240
250
259
270
I{v)
2.52726
2.54057
2.55397
2.56746
2.58104
2.59471
2.60848
2.62235
2.63632
2.65039
2.66456
2.67883
2.69320
2.70767
2.72225
2.73692
2.75169
2.76658
2.78158
2.79668
2,81190
2,82723
2.84267
2.85822
2.87388
2.88965
2.90554
2.92155
2.93768
2.95393
2.97030
2.98679
3.00341
Diff.
33^
340
349 i
358
367
377
387
397
407
417
427
437
447
458
467
477
489
500
510
522
533
544
555
566
577
589
601
613
625
637
649
662
674
T{v)
26.505
26.595
26.685
26.776
26.867
26.959
27.051
27.143
27.236
27.329
27.423
27.517
27.612
27.707
27.803
27-899
27-995
28.092
28.189
28.287
28.385
28.484
28.583
28.683
28.783
28.884
28.985
29.087
29.189
29.292
29-395-
29.499
29,603
33
TABLE I.— Continued.
V
Siv)
Difif.
A{v)
Diff.
I{v)
Diff.
Tiy)
Diff.
402
401
400
22721.8
22764.0
22806.4
422
424
424
18999.3
19127.3
19256.2
1280
1289
1300
3.02015
I 3-03701
' 3-05399
1686
1698
1710
29.708
29.813
29.919
105
106
106
34
TABLE II.
For Spherical Projectiles.
V
S{v)
Diff.
A(v)
Diff. 1
I{v)
Diff.
T{v)
Diff.
2000
25
0.00
I i
0.00000
40
0.000
12
1990
1980
25
49
24
25
O.OI
0.02
I !
2
00040
00080
40
41
0.012
0.025
13
12
1970
i960
1950
74
99
124
25
25
26
0.04
0.08
0.13
4
5
51
0.00121
00163
00205
42
42
43
0.037
0.050
0.063
13
13
13
1940
1930
1920
150
175
201
25
26
25
0.18
0.25
0.33
7J
8 1
9
0.00248
00292
00336
44
44
45
0.076
0.089
0.102
13
13
14
I9IO
1900
1890
226
252
278
26
26
26
0.42
0.53
0.65
13
0.00381
00427
00473
46
46
47
0.1 16
0.129
0.143
13
14
14
1880
1870
i860
304
357
26
27
26
0.78
0.92
1.07
14
15
17
0.00520
00568
00617
48
49
49
0.157
0.171
0.185
14
14
14
1850
1840
1830
383
409
436
26
27
27
1.24
1.43
1.63
19
20
21
0.00666
00716
00767
50
51
52
0.199
0.214
0.228
15
14
15
1820
181O
1800
463
490
517
27
27
28
1.84
2.07
2.31
23
24
26
0.00819
00872
00926
53
0.243
0.258
0.273
15
15
15
1790
1780
1770
545
572
600
27
28
28
2.57
2.84
3.14
27
30
31
0.00981
01036
01093
55
57
57
0.288
0.304
0.319
16
15
16
1760
1750
1740
628
656
684
28
28
28
3.45
3-78
4-13
35
37
0.01150
01209
01268
59
59
61
0.335
0.351
0.367
16
16
16
1730
1720
I7IO
712
741
769
29
28
29
4.50
4.89
5-30
39
41
43
0.01329
01390
01453
61
(>z
64
0.383
0.400
0.416
17
16
17
35
TABLE IL— Continued.
V
S{v)
Diff.
A{v)
Diff;
I{v)
Diff.
T{v)
Diff.
1700
1690
1680
798
827
856
29
29
30
5-73
6.18
6.65
45
47
50
O.OI5I7
01582
01648
65
66
67
0.433
0.450
0.468
17
18
17
1670
1660
1650
886
915
945
1
29
30
30
7.15
7.67
8.21
52
54
56
O.OI7I5
01783
01853
68
70
71
0.485
0-503
0.521
18
18
t8
1640
1630
1620
975
1005
1036
30
3T
30
8.77
9-35
9-97
58
62
64
0.01924
01996
02070
72
74
75
0.539
0.558
0.576
19
18
19
I6I0
1600
1590
1066
1096
T127
30
31
31
10.61
11.27
11.96
66
69
72
0.02145
02222
02300
79
0.595
0.614
0.633
19
19
20
1580
1570
1560
1158
1189
1220
31
31
32
12.68
1344
14.22
76
78
82
0.02379
02460
02542
81
82
84
0.653
0.673
0.693
20
20
20
1550
1540
1530
1252
1284
1316
32
32
32
15-04
15.90
16.78
86
88
92
0.02626
02712
02799
86
87
89
0.713
0.734
0.755
21
21
21
1520
I5I0
1500
1348
1380
1413
32
17.70
18.65
19.63
95
98
100
0.02888
02979
03072
91
93
94
0.776
0.797
0.819
21
22
22
1490
1480
1470
1446
1479
1512
Z2>
7>Z
34
20.63
21.68
22.77
105
109
114
03166
03262
03360
- 96
98
ICI
0.841
0.863
0.885
22
22
23
1460
1450
1440
1546
1580
1614
34
34
34
23.91
i 25.10
26.34
!
119
124
128
03461
03564
03669
103
105
107
0.908
0931
0.955
23
24
24
1430
T420
I4I0
1648
1682
1717
34
35
35
27.62
1 28.95
133
138
143
0.03776
03885
03997
109
112
114
0.979
T.003
1.028
24
25
25
1400
1390
1380
1752
1787
1823
35
35
31.76
33-25
34-79
149
154
160
0.041 1 1
04227
04346
116
119
122
1.053
1.079
1. 105
26
.6
26
36
TABLE II.— Continued.
V
S{v)
Diff.
A{v)
Diff.
I{v)
Diff.
T{v)
Diff.
1370
1360
1350
1858
1894
1931
36
37
36
36.39
38.03
39-73
164
170
175
0.04468
04592
04719
124
127
129
1. 131
1. 158
1. 185
27
27
27
1340
1330
1320
1967
2004
2041
37
37
37
41.48
43-29
45-14
181
185
191
0.04848
04981
05II7
136
139
1. 212
1.239
1.267
27
28
27
I3I0
1300
1290
j 2078
2Tl6
2T54
38
38
47-05
49.01
51-04
196
203
212
0.05256
05398
05542
142
144
148
1.294
1.322
I-351
28
29
30
1280
1270
1260
2192
2231
2269
39
38
39
53-16
55-37
57.67
221
230
240
0.05690
05842
05998
152
156
160
1.38T
1.411
1.442
30
31
31
1250
1240
1230
2308
2348
1 2388
40
40
40
60.07
62.56
65.14
249
258
267
0.06158
06323
06492
165
169
174
1.473
1-505
1.538
32
33
1220
I2IO
1200
2428
2470
2512
42
42
22
67.81
70.59
73-54
278
295
156
0.06666
06846
07033
180
187
97
1.571
1.605
1.640
34
35
18
I I 90
2534
2556
2578
22
22
22
75-IO
76.70
78.32
t6o
162
165
0.07130
07229
07329
99
100
102
1.658
1.676
1.694
18
18
18
I 180
II75
1170
1 2600
2623
2646
'23
23
23
79-97
81.66
83-39
169
173
177
0.07431
07535
07641
104
106
108
1.712
I-731
I-751
19
20
19
I165
I 160
i'55
j
i 2669
2692
2715
23
23
24
85.16
86.98
88.84
182
186
190
0.07749
07859
07972
no
113
115
1.770
1.790
1. 810
20
20
21
1150
1 145
1 140
2739
2763
2787
24
24
25
90.74
92.69
94.68
195
199
205
0.08087
08204
08324
117
120
122
1.831
1.852
1-873
21
21
22
1130
1125
2812
2837
2861
25
24
25
96.73
98.82
100.97
209
215
221
0.08446
08570
08697
124
127
130
1.895
1-917
1.940
22
23
23
37
TABLE II.— Continued.
V
Si^v)
Diff.
A{v)
Diflf.
I{v)
Diff.
T{v)
Diff.
II20
IITO
2886
2912
2938
26
26
26
103.18
J05-44
107.77
226
233
239
0.08827
08959
09094
132
'35
138
1.963
1.986
2.009
23
24
IIO5
IIOO
1095
2964
2991
3017
27
26
27
110.16
1 12,62
115-13
246
251
259
0.09232
09373
09516
141
'43
147
2.033
2.057
2.081
24
24
25
1090
1085
1080
3044
3071
3099
27
28
28
117.72
120.38
123.13
266
■275
283
0.09663
09812
09965
149
153
156
2.106
2.132
2.158
26
26
26
1075
1070
1065
3127
3155
3184
28
29
29
125.96
128.87
131.87
291
300
308
0.10121
10280
10443
159
163
166
2.184
2.210
2.237
26
27
28
io6o
1055
1050
3213
3243
3273
30
30
30
134.95
138.12
141.38
317
326
338
0.10609
10-79
10952
170
173
177
2.265
2.293
2.321
28
28
29
1045
T040
1035
3364
30
31
31
144.76
148.22
151-77
346
355
364
0.11129
11310
1 1495
181
185
189
2.350
2.379
2.409
29
30
31
1030
1025
1020
3395
3427
3459
32
32
32
155-41
159-15
162.99
374
384
394
0.11684
II877
12074
193
197
202
2.440
2.471
2.502
31
31
32
1015
lOIO
1005
3491
3524
3557
Z2>
34
166.93
170.99
175-17
406
418
430
0.12276
12482
12693
206
211
215
2.534
2.566
2.599
32
1000
995
990
3591
3625
3660
34
35
35
179-47
183.90
188.46
443
456
470
0.12908
13128
13354
220
226
231
2.632
2.665
2.699
zz
34
ZS
985
980
975
3695
3731
3767
36
193.16
198.00
202.98
484
498
513
0.13585
13821
14062
236
241
246
2.734
2.770
2.806
36
37
970
965
960
3803
3840
3877
37
37
38
208.1 1
213.40
218.86
529
546
563
0.14308
14560
14818
252
258
264
2.843
2.881
2.920
38
39
39
38
TABLE II.— Continued.
V
S{v)
Diff.
A{v)
Diff.
I{v)
Diff.
T{v)
Diff.
955
950
945
39^5
3953
3992
38
39
39
224.49
230.29
236.29
580
600
620
0.15082
15352
15628
270
276
283
2-959
2.999
3.040
40
41
42
940
935
930
4031
4070
41 10
39
40
41
242.49
248.86
255-43
637
657
676
O.I59II
I620I
16498
290
297
304
3.082
3-125
3.168
43
43
44
925
920
915
4151
4192
4234
41
42
43
262.19
269.17
276.37
698
720
743
0.16802
17113
17432
311
319
327
3-212
3-257
3-303
45
46
47
910
905
900
4277
4320
4363
43
43
44
283.80
291.47
299.40
767
793
819
0.17759
18094
18437
335
343
352
3-350
3-397
3.445
47
48
49
895
890
885
4407
4451
4496
44
45
46
307-59
316.04
324-77
845
873
901
0.18789
I9I49
I95I8
360
369
378
3-494
3.544
3.595
50
51
52
880
875
870
4542
4589
4636
47
47
48
333-78
343-06
352.67
928
961
997
0.19896
20283
20680
387
397
407
3-647
3.700
3-754
53
54
55
865
860
855
4684
4732
4781
48
49
49
362.64
372.96
1032
1064
1099
0.21087
21505
21933
418
428
439
3-809
3.865
3.922
56
57
58
850
845
840
4830
4880
4931
50
5»
52
394.59
405-96
417.71
"37
1175
1216
0.22372
22823
23285
451
462
476
3-980
4.039
4.100
59
61
61
835
830
825
4983
5036
5089
53
53
54
429.87
442.45
455-47
1258
1302
1347
0.23761
24248
24746
487
498
511
4. 161
4.224
4.288
64
820
815
810
5143
5198
5253
55
55
56
468.94
482.89
497-33
1395
1444
1495
0.25257
25783
26323
526
540
553
4-354
4-421
4.489
67
68
70
805
800
795
5309
5366
5424
57
58
59
512.28
527-77
543-81
1549
1604
1661
0.26876
27444
28031
568
587
601
4-559
4.630
4.702
71
72
74
39
TABLE II.— Continued.
V
Siv)
Diff.
A{v)
Diff.
nv)
Diff.
T{v)
Diff.
79Q
785
780
5483
5542
5602
59
60
61
560.42
577-64
595-48
1722
1784
1849
0.28632
29249
29883
617,
634
650;
4.776
4.852
4-929
76
77
79
775
770
765
5663
5725
5788
62
63
64
613-97
653.01
1916
1988
2062
0.30533
31203
31891
670
688
707
5.008
5.088
5-170
80
82
84
760
755
750
5852
5917
5983
65
66
67
673-63
695.01
717 19
2138
2218
2303
0.32-598
33325
34073
727
748
770
5254
5-340
5-427
86
87
90
745
740
735
6050
6118
6187
68
69
69
740.22
764.11
788.91
2389
248c
2574
0.34843
35634
36448
791
814
837
5-517
5-608
S-701
91
93
96
730
725
720
6256
6327
6399
71
72
73
814.65
841.38
869.14
2673
2776
2882
0.37285
38146
39033
861
887
912
5-797
5.894
5-994
97
100
102
715
710
705
6472
6546
6621
74
75
77
897.96
927.92
959.07
2996
3115
3238
0.39945
40885
41853
940
968
995
6.096
6.200
6.306
104
106
109
700
695
690
6698
6776
685s
78
79
80
991.45
1025.2
1060.2
3366
350
364
0.42848
43872
44926
1024
1054
1089
6.415
6.526
6.640
III
ri4
116
685
680
675
6935
7016
7098
81
. 82
84
1196.6
1134.4
1173.8
378
394
409
0.46015
47143
48302
1128
1159
1192
6.756
6.875
6.997
1
119
122
125
670
665
660
7182
7267
7354
85
87
88
1214.7
1257.4
1301.8
427
444
463
0.49494
50722
51989
1228
1267
1307
7.122
7-249
7-380
127
131
134
655
650
645
7442
7531
7622
89
91
92
1348.1
1396.3
1446.5
482
502
523
0.53296
54645
56037
1349
1392
1436
7-5M
7-651
1 7.79T
137
140
143
640
635
630
7714
7808
7903
94
95
97
1498.8
1553.4
1610.2
546
568
592
0.57473
58955
60484
1482
1529
1579
7 934
' 8.081
' 8.231
147
150
154
40
TABLE II.— Continued.
V
Siv)
Diff.
A {v)
Diff.
I{v)
Diff.
T{v)
Diff.
625
620
6.5
8000
8098
8198
98
100
lOI
1669.4
1731.2
1795-6
618
644
673
0.62063
63696
65386
1633
1690
1737
8.885
8-543
8.705
158
162
166
610
605
600
8299
8402
8507
103 1
105
107
1862.9
I933-I
2006.4
702
733
765
0.67123
68922
70781
1799
1859
1923
8.871
9.041
9.215
170
174
179
595
590
585
8614
8722
8833
108
III
1 12
2082.9
2162.9
2246.5
800
836
872
0.72704
74692
76747
1988
2055
2126
9.394
9.577
9-765
183
188
192
580
575
570
8945
9059
9175
114
116
118
2333-7
2424.8
2520.2
911
954
998
0.78873
81072
83348
2199
2276
2356
10.957
10.154
10.357
197
203
208
565
560
555
9293
9413
9535
120
122
124
2620.0
2724.3
2833.4
1043
1091
1142
0.85704
88144
90670
2440
2526
2617
10.565
10.778
10.997
213
219
225
550
545
540
9659
9785
9914
126
129
131
2947.6
3067.2
3192.4
1196
1252
1312
0.93287
95998
98808
2711
2810
2913
11.222
11-453
11.690
231
237
243
535
- 530
525
10045
10178
135
138
3323-6
3461.0
3605.0
1374
1440
1509
I.OI72I
1.04740
1.07873
3019
3247
11-933
12.183
12.440
250
257
264
520
515
510
10451
10591
10734
140
143
146
3755-9
3914.1
4080.1
1582
1660
1743
I.III20
1. 14486
I.I7981
ZZ(^(>
3495
3633
12.704
12.975
13-254
271
279
287
505
500
495
10880
11028
11179
.48
151
'53
4254-4
4437-3
4629.3
1829
1920
2017
I.21614
1.25393
T. 29312
3779
3919
4070
13-541
13.836
14.138
295
302
312
490
485
480
11332
11488
1 1648
156
160
162
4831.0
5042.8
5265-4
2118
2226
2340
1.33382
I.37614
1. 42013
4232
4399
4575
14-450
14.770
15.100
320
330
340
475
470
465
11810
11975
12143
168
172
5499-4
5745-5
6004.3
2461
2588
2724
1.46588
1. 51348
1. 56301
4760
4953
5157
15-440
15-790
16.150
350
360
370
41
TABLE II. —Continued.
V
S(v)
Diff.
A{v)
■
Diff.
I{v)
Diff.
T{v)
Diff.
460
455
450
12315
12490
12668
175
178
6276.7
6865.5
2868
3020
1. 61458
1.66826
! 1. 72419
1
5368
5593
16.520
16.902
17.296
382
394
42
TABLE III.
f)
(^)
Diff.
Tan^
Diff.
e
(^)
Diff.
TanO
Diff.
o° oo'
o 20
40
0.00000
00582
01164
i
582
582
582
0.00000
00582
01164
582
582
582
'
II 00
II 20
II 40
0.19560
20176
20794
616
618
621
0.19438
20042
20648
604
606
608
I 00
I 20
I 40
0.01746
02328
02910
582
582
583
0.01746
02328
02910
582
582
582
12 00
12 20
12 40
0.21415
22038
22663
623
625
627
0.21256
21864
22475
608
611
612
.2 00
2 20
2 40
0.03493
04076
04659
583
583
584
0.03492
04075
04658
583
583
583
13 00
13 20
13 40
0.23290
23920
24553
630
633
636
0.23087
23700
24316
613
616
617
3 00
3 20
3 40
0.05243
05827
06412
584
585
586
0.05241
05824
06408
583
584
585
14 00
14 20
14 40
0.25189
25827
26468
638
641
644
0.24933
25552
26172
619
620
623
4 00
4 20
4 40
0.06998
07585
08172
587
587
58S
0.06993
07578
08163
585
585
586
15 00
15 20
15 40
0.27112
27759
28409
647
650
654
0.26795
27419
28046
624
627
629
5 00
5 20
5 40
0.08760
09349
09939
589
590
591
0.08749
09335
09922
586
587
588
16 00
16 20
16 40
0.29063
29720
30380
657
660
663
0.28675
29305
29938
630
633
635
6 00
6 20
6 40
0.10530
II 122
11715
592
593
594
0.105 10
1 1099
11688
589
589
590
17 00
17. 20
17 40
0.31043
31710
32381
667
671
674
0.30573
31210
31850
637
640
642
7 00
7 20
7 40
0.12309
12905
13502
596
597
598
0.12278
12869
13461
591
592
593
18 00
18 20
18 40
0.33055
33733
34415
678
682
686
0.32492
33^36
33783
644
647
650
8 00
8 20
8 40
0.14100
14700
15301
600
601
603
0.14054
14648
1 15243
594
595
595
19 00
19 20
19 40
0.35101
35791
36486
690
695
699
0.34433
35085
35740
652
655
657
9 00
9 20
9 40
0.15904
16509
17116
605
607
608
0.15838
1 16435
1 17033
j
597
598
600
20 00
20 20
20 40
0.37185
37888
38596
703
708
713
0.36397
37057
37720
660
663
666
10 00
10 20
10 40
0.17724
18334
18946
610
612
614
0.17633
18233
18835
600
602
603
21 00
21 20
21 40
0.39309
40026
40748
717
722
728
0.38386
39055
39727
669
672
676
43
TABLE III.— Continued.
.
m
Diff.
Tan 6/
Diff.
6
(^)
Diff.
TanB
Diff.
22° Oo'
22 20
2 2 40
0.41476
42208
42946
732
738
744
0.40403
41081
41763
678
682
684
33
33
00'
20
40
0.69253
70245
71248
992
roo3
1015
0.64941
65771
66608
830
837
843
23 00
23 20
23 40
0.43690
44439
45193
749
754
760
0.42447
43136
43828
689
692
695
34
34
34
00
20
40
0.72263
73290
74330
1027
1040
1052
0.67451
68301
69157
850
856
864
24 00
24 20
24 40
0-45953
46719
47491
766
772
778
0.44523
45222
45924
699
702
707
35
35
35
00
20
40
0.75382
76447
77525
1065
1078
1092
0.70021
70891
71769
870
878
885
25 00
25 20
25 40
0.48269
49054
49845
785
791
798
0.46631
47341
48055
710
714
718
36
36
36
00
20
40
0.78617
79723
80843
1 106
1 120
1 1 34
0.72654
73547
74447
893
900
908
26 00
26 20
26 40
0.50643
51448
52260
805
812
818
0.48773
49495
50222
722
727
731
37
37
37
00
20
40
0.81977
83126
8429 1
1 149
1 165
1T82
0-75355
76272
77196
917
924
933
27 00
27 20
27 40
0-53078
53904
54738
826
834
842
0.50953
51688
52427
735
739
744
38
38
3^
00
20
40
0.85473
86670
87883
1197
1213
1231
0.78129
79070
80020
941
950
958
28 00
28 20
28 40
0.55580
56429
57286
849
857
865
0.53171
53920
54073
749
753
758
39
39
39
00
20
40
0.89114
90363
91629
1249
1266
1285
0.80978
81946
82923
968
977
^987
29 00
29 20
29 40
0.58151
59025
59907
874
882
892
0.55431
56194
56962
763
768
773
40
40
40
00
20
40
0.92914
94217
95541
1303
1324
1343
0.83910
84906
859'2
996
1006
1017
30 00
30 20
30 40
0.60799
61699
62608
900
909
919
0.57735
58513
59297
778
784
789
41
41
41
00
20
40
0.96884
98247
99632
•363
1385
1407
0.86929
87955
88992
1026
1037
1048
31 00
31 20
31 40
0.63527
64455
65394
928
939
949
0.60086
60881
61681
795
800
806
42
42
42
00
20
40
1.01039
02468
03920
1429
1452
U75
0.90040
91099
92170
1059
1071
T082
32 00
32 20
32 40
0.66343
67302
68272
959
970
981
0.62487
63299
64117
812
818
824'
43
43
43
00
20
40
1.05395
06894
08418
1499
1524
1550
0.93252
94345
95451
1093
1 106
1118
44
TABLE III.— Continued.
44 oo
44 20
44 40
45 00
45 20
45 40
m
1.09968
I-II544
1.13148
1. 14779
1. 16439
1.18129
46 00 1. 19849
46 20
46 40
47 00
47 20
47 40
48 00
48 20
48 40
49 00
49 20
49 40
50 00
50 20
50 40
51 00
51 20
51 40
r. 21600
1.23384
1. 25201
1-27053
1.28940
1.30863
1.32823
1-34823
1.36863
1.38944
1. 41068
1.43236
1.45450
1. 47710
1. 50019
1-52379
I-54791
Diff.
1576
1604
1631
1660
1690
1720
1751
1784
1817,
1852
1887
1923
i960
2000
2040
2081
2124
2168
2214
2260
2309
2360
2412
2466
Tan S
0.96569
97700
98843
1. 00000
1.01170
1-02355
1-03553
1.04766
1.05994
1.07237
1.08496
1.09770
1.II06
1. 12369
1. 13694
1. 15037
r. 16398
1. 17777
1.19175
1-20593
1. 22031
1.23490
1.24969
1. 26471
Diff.
1131
1 143
1157
1170
1185
1213
1228
1243
1259
1274
129
1308
1325
1343
1361
T379
1398
1418
1438
1459
1479
1502
1523
52 00
52 20
52 40
53 00
53 20
53 40
54 00
54 20
54 40
55 00
55 20
55 40
56 00
56 20
56 40
57 00
57 20
57 40
58 00
58 20
58 40
59 00
59 20
59 40
60 00
(^)
Diff.
1-57257
1.59779
1.62357
1.64995
1.67696
1.70460
1. 73291
1.76191
1. 79162
1.82207
1-85329
1.88530
1.91815
1.95186
1.98646
2.02199
2.05849
2.09600
2.13456
2.1742
2.21500
2.25697
2.3001
2.34468
2-39053
Tan^
Diff.
2522
2578
638
2701
2764
2831
2900
2971
3045
3122
3201
3285
3371
3460
3553
3650
3751
3856
3965
4079
4197
4321
4450
4585
4726
1.27994 1547
1. 29541 1569
1.31110 1594
1.32704 1619
1-34323 1645
1.35968 1670
1.37638
1.39336
1.41061
1.42815
1.44598
1.46411
1.48256
1.50133
1.52043
1.53986
1.55966
1.57981
1.60033
1. 62125
1.64256
1.66428
1.68643
1. 70901
1.73205
1698
1725
1754
1783
1813
1845
1877
1910
1943
1980
2015
2052
2092
2131
2172
2215
2258
2304
2351
45
THIS BOOK IS DUE ON THE LAST DATE
STAMPED BELOW
AN INITIAL FINE OF 25 CENTS
WILL BE ASSESSED FOR FAILURE TO RETURN
THIS BOOK ON THE DATE DUE. THE PENALTY
WILL INCREASE TO 50 CENTS ON THE FOURTH
DAY AND TO $1.00 ON THE SEVENTH DAY
OVERDUE.
S"^' '.1
V2^
^2M-
i\oM ST 184S
<'"?vB5lB
Apr'59BBl
V-V
MAR 26 1989
OCT 3.) 1943
FEB 1 1944
S^
^ea
JUL 16 li-40
Ak^m^-^
^■Ttj^ftl
^^
2e3w.»'^ *
"itV
t ^t. 4 db'^
LD 21-100m-7,'40 (6936s)
LIBRARY USE
RETURN TO DESK FROM WHICH BORROWED
LOAN DEPT.
THIS BOOK IS DUE BEFORE CLOSING TIME
ON LAST DATE STAMPED BELOW
JilKf^^' i
4Rfi2 IBo'-
JUN 61984
REC
C1RMAY2 9 1984
SENT ON It I
JUL 1 2 1 9 94
PNI U. C. BERKELEY
LD 62A-20m-9,'63
(E709slO)9412A
General Library
University of California
Berkeley