UC-NRLF B 3 13b 37M ^ . J. lt 1, 1 iLli Miii ii i jW. I 2 3 4 5' 5 7 8 9 S-S 30 25 30 36 30 47 30.58 30.69 30 80 30 91 31.02 31- 14 31 25 5.6 31 36 31 47 31 58 31.70 31.81 31 92 32 04 32.15 32.26 32 38 5-7 32 49 32 60 32 72 32.83 32-95 33 06 33 18 33-29 33.41 33 52 5.8 33 64 33 76 33 87 33-99 34-11 34 22 34 34 34.46 34.57 34 69 5.9 34 81 34 93 35 05 35.16 35.28 35 40 35 52 35 64 35.76 35 88 6.0 36 00 36 12 36 24 36.36 36.48 36 60 36 72 36.84 36-97 31 09 6.1 37 21 37 33 37 45 37.58 37.7° 37 82 37 95 38. 07 38.19 38 32 6.2 38 44 38.56 38.69 38.81 38-94 39 06 39 19 39-31 39-44 39 56 6.3 39 69 39 82 39 94 40.07 40. 20 40 32 40 45 40.58 40.70 40 83 6.4 40 96 41 09 41 22 41.34 41.47 41 60 41 73 41.86 41.99 42 12 6.5 42 25 42 38 42 51 42.64 42-77 42 90 43 03 43.16 43.30 43 43 6.6 43 56 43 69 43 82 43.96 44.09 44 22 44 36 44.49 44.62 44 76 6.7 44 89 45 02 45 16 45-29 45-43 45 56 45 70 45.83 45-97 46 10 6.8 46 24 46.38 46 51 46.65 46.79 46 92 47 06 47.20 47.33 47 47 6.9 47 61 47 75 47 89 48.02 48.16 48 30 48 44 48.58 48.72 48 86 7.0 49 00 49 14 49 28 4942 49 •?6 49 70 49 84 49.98 50.13 50 27 7.1 50 41 SO 55 50 69 50.84 50.98 SI 12 51 27 51.41 51.55 51 70 7.2 SI 84 51 98 52 13 52.27 52-42 52 56 52 71 52.85 53-00 53 14 7.3 53 29 53 44 53 58 53.73 .53-88 54 02 54 17 S4-r32 54-46 54 61 7.4 54 76 54 91 55 06 5S-20 55-35 55 50 55 65 55-80 55-95 56 10 7.5 56 25 56 40 56 55 56.70 56.85 57 00 57 15 57-30 57.46 57 61 7.6 57 76 57 91 58 06 58-22 58.37 58 52 58 68 58.83 58.98 59 14 7.7 59 29 59 44 59 60 59.75 59.91 60 06 60 22 60.37 60.53 60 68 7.8 60 84 61 00 61 15 61.31 61.47 61 62 61 78 61.94 62.09 62 25 7.9 62 41 62 57 62 73 62.88 63.04 63 20 63 36 63.52 63.68 63 84 8.0 64 00 64 16 64 32 64.48 64. 64 64 80 64. 96 65.12 65-29 65 45 8.1 65 61 65 77 65 93 66. 10 66.26 66 42 66 59 66.75 66.91 67 08 8.2 67 24 67 40 67 57 67.73 67.90 68 06 68 23 68.39 68.56 68 72 8.3 68 89 69 06 69 22 6939 69-56 69 72 69.89 70.06 70. 22 70 39 8.4 70 56 70 73 70 90 71.06 71.23 71 40 71 57 71.74 71.91 72 08 8.5 72 25 72 42 72 59 72.76 72.93 73 10 73 27 73.44 73.62 73 79 8.6 73 96 74 13 74 30 74.48 74.65 74 82 75 00 75.17 75. '34 75- 52 8.7 75 69 75 86 76 04 76.21 76.39 76 56 76 74 76-91 77.09 77 26 8.8 77 44 77 62 77 79 77.97 78.15 78 32 78 SO 78.68 78.85 79 03 8.9 79 21 79 39 79 57 79.74 79-92 80 10 80 28 80.46 80.64 80. 82 9.0 81 00 81 18 81 36 81.54 81.72 81 90 82 08 82.26 82.45 82. 63 9.1 82 81 82 99 83 1.7 83.36 83.54 83 72 83 91 84.09 84.27 84.46] 9-2 84.64 84 82 85 01 85.19 85.38 85 56 85 75 85.93 86.12 86. 3° 9.3 86 49 86 68 86 86 87.05 87.24 87 42 87 61 87.80 87.98 88. 17 9.4 88 36 88 55 88 74 88.92 89.11 89 30 89 49 89.68 89.87 90. 06 9.5 90 25 90 44 90 63 90.82 91.01 91 20 91 39 91.58 91.78 91. 97 9.6 92 16 92 35 92 S4 92.74 92.93 93 12 93 32 93.51 93.70 93. 90 9.7 94 09 94 28 94 48 94.67 94.87 95. 06 95. 26 95.45 95.65 95- 84 9-8 96 04 96 24 96 43 96.63 96.83 97 02 97 22 97.42 97.61 97- 81 9.9 98. 01 98 21 98. 41 98.60 98.80 99- 00 99 20 99.40 99.60 99. 80 n I 2 345678 < J 16 Arithmetical Tables 8. Square Roots of rt I.O I 2 3 4 5 6 7 8 9 1. 000 1.005 1.010 1.015 1 .020 1.025 1.030 1-034 1-039 1.044 I.l 1.049 I -054' 1.05S 1.063 1.068 1.072 1.077 1.0S2 1.086 1. 091 1.2 I.095 1. 100 1. 105 I. 109 1 . 114 1.118 1. 122 1. 127 1.131 1.136 1-3 1. 140 I -145 1.149 I. 153 1.158 1. 162 1.166 1. 170 1.175 1.179 1.4 1. 183 1.187 1. 192 1.196 1 . 200 1 . 204 1.208 1.212 1.217 1.221 1.5 1.225 1.229 1.233 1.237 1.241 1.245 1.249 1.253 1.257 1. 261 1.6 1.265 1.269 1.273 1.277 1.281 1.285 1.288 1.292 1.296 1.300 1.7 1.304 1.308 1.3" 1.315 1.319 1.323 1.327 1.330 1-334 1.338 1.8 1.342 1.345 1.349 1-353 1.356 1.360 1.364 1.367 1-371 1.37s 1.9 1.378 1.382 1-386 1.^89 1.393 1-396 1.400 1.404 1.407 1.411 2.0 1.414 1. 418 1. 421 1-425 1.428 1-432 1.435 1.439 1.442 1.446 2.1 1.449 1-453 1.456 1-459 1.463 1.466 1.470 1.473 1.476 1.480 2.2 1.483 1-487 1.490 1-493 1-497 1.500 1.503 1.507 1 . 510 1.513 2.3 1-517 1.520 1.523 1.526 1-530 1-533 1.536 1.539 1-543 1-546 2.4 1-549 1-552 1-556 1-559 1.562 1.565 1.568 1.572 1-575 1-578 2.5 I. 581 1-584 1-587 I -591 1-594 1.597 1.600 1.603 1.606 1.609 2.6 I. 612 1. 616 1 .619 1.622 1.625 1.628 1. 631 1.634 1-637 1 .640 2.7 1.643 1.646 1.649 1.652 1-655 1.658 i.66i 1.664 1.667 1.670 2.8 1-673 1.676 1.679 1.682 1.685 1.688 1.691 1.694 1-697 1.700 2.9 i-7°3 1.706 1.709 1 . 712 1-715 1.71S I. 720 1.723 1.726 1.729 3.0 1-732 1-735 1.738 1.741 1-744 1.746 1.749 1.752 I-75S 1-758 3.1 I. 761 1-764 1.766 1.769 1.772 1-775 1.778 1.780 1.783 1.786 3-2 1.789 1.792 1-794 1.797 1. 800 1.803 I. 806 1.808 1.811 1.814 3-3 I. 817 I. 819 1.822 1.825 1.828 1.830 1-833 1.836 1.838 1.841 3.4 1.844 1.847 1.849 1.852 1.855 1.857 1.860 1.863 1.865 1.868 3-5 1. 871 1.873 1.876 1.879 1.881 1.884 1.887 1.889 1.892 1.89s 3.6 1.897 1.900 1-903 1.905 1.90S 1. 910 1. 913 1. 916 1.918 1.921 3.7 1.924 1.926 1.929 1. 931 1-934 1.936 1.939 1.942 1.944 1.947 3.8 1.949 1-952 1-954 1-957 1.960 1.962 1.965 1.967 1.970 1.972 3.9 1-975 1-977 1.980 1.982 1-985 1.987 1.990 1.992 1.995 1.997 4.0 2.000 2.002 2.005 2.007 2.010 2.012 2.015 2.017 2.020 2.022 4.1 2.025 2.027 2.030 2.032 2-035 2.037 2.040 2.042 2.045 2.047 4.2 2.049 2.052 2.054 2.057 2.059 2.062 2.064 2.066 2.069 2.071 4-3 2.074 2.076 2.078 2.081 2.083 2.086 2.088 2.090 2.093 2.09s 4.4 2.098 2. 100 2. 102 2.105 2. 107 2. 110 2. 112 2. 114 2.117 2. 119 4.5 2. 121 2. 124 2. 126 2.128 2. 131 2.133 2-135 2.138 2. 140 2. 142 4.6 2. 145 2.147 2.149 2.152 2.154 2. 156 2.159 2. 161 2.163 2. 166 4.7 2.168 2. 170 2-173 2.175 2.177 2.179 2.182 2.184 2.186 2.189 4.8 2. 191 2-193 2.195 2.198 2. 200 2.202 2. 205 2.207 2. 209 -2.211 4.9 2.214 2.216 2.218 2.220 2.223 2.225 2. 227 2.229 2.232 2.234 5.0 2.236 2.238 2.241 2 . 243 2.245 2.247 2.249 2.252 2.254 2.256 5.1 2.258 2.261 2.263 2.265 2.267 2. 269 2.272 2.274 2.276 2.278 5-2 2.280 2.283 2.2S5 2.287 2.2S9 2. 291 2.293 2.296 2.298 2.300 53 2.302 2.3°4 2.307 2.309 2. 311 2.313 2.315 2.317 2.319 2.322 5-4 11 2.324 2.326 2.328 2.330 2.332 2.33s 2.337 2.339 2.341 2.343 I 2 3 4 5 6 7 8 9 Arithmetical Tables Numbers from 1.00 to 99.9 17 Continued on p. 18 n 01 23456789 5.5 2.345 2-347 2-349 2-352 2-354 2-356 2.358 2.360 2.362 2-364 5.6 2.366 2.369 2.371 2-373 2-375 2-377 2.379 2.381 2-383 2-385 5.7 2.387 2.390 2.392 2-394 2.396 2.398 2. 400 2.402 2.404 2.406 5.8 2 . 408 2.410 2.412 2.415 2.417 2.419 2. 421 2.423 2.425 2.427 5-9 2.429 2.431 2.433 2.435 2-437 2.439 2.441 2.443 2.445 2.447 6.0 2.449 2.452 2-454 2.456 2.458 2. 460 2. 462 2.464 2.466 2.468 6.1 2.470 2.472 2.474 2.476 2.478 2 . 4S0 2.482 2.484 2.486 2.488 6.2 2.490 2.492 2.494 2.496 2.498 2. 500 2. 502 2.504 2. 506 2 . 508 6.3 2.510 2.512 2.514 2.516 2.518 2.520 2. 522 2.524 2.526 2.528 6.4 2-530 2.532 2.534 2.536 2.538 2.540 2.542 2.544 2.546 2.548 6.5 2.550 2.551 2.553 2.555 2.557 2.559 2.561 2-563 2.565 2.567 6.6 2.569 2.571 2.573 2-575 2.577 2-579 2.581 2.583 2.585 2-587 6.7 2.588 2.590 2.592 2.594 2.596 2-598 2.600 2.602 2.604 2.606 6.8 2.608 2.610 2.612 2.613 2.615 2.617 2.619 2.621 2.623 2.625 6.9 2.627 2.629 2.631 2.632 2.634 2.636 2.638 2. 640 2.642 2.644 7.0 2. 646 2.648 2.650 2.651 2.653 2-655 2.657 2.659 2.661 2.663 7-1 2. 665 2.666 2.668 2. 670 2.672 2.674 2.676 2.678 2.680 2.681 7.2 2.683 2.685 2.687 2.689 2. 691 2.693 2.694 2. 696 2.698 2. 700 7-3 2. 702 2.704 2. 706 2.707 2. 709 2.711 2.713 2-715 2.717 2.718 7.4 2. 720 2.722 2.724 2.726 2.728 2.729 2-731 2-733 2-735 2.737 7.5 2.739 2.740 2.742 2.744 2.746 2.748 2.750 2-751 2.753 2.755 7.6 2.757 2.759 2. 760 2.762 2.764 2.766 2.768 2. 769 2.771 2-773 7-7 2-775 2.777 2.77S 2.780 2.782 2.784 2.786 2.787 2.789 2.791 7.8 2-793 2-795 2.796 2.79S 2. 800 2.802 2.804 2.805 2.807 2.809 7.9 2. 811 2.S12 2.814 2.816 2.818 2.820 2.821 2.823 2.825 2.827 8.0 2.828 2.830 2.832 2.834 2.835 2.837 2.839 2.841 2.843 2.844 8.1 2.846 2.848 2.850 2.851 2.853 2.855 2-857 2.858 2.860 2.862 8.2 2.864 2.865 2.867 2,869 2.871 2.872 2.874 2.876 2.877 2.879 8.3 2.881 2.883 2.884 2.886 2.888 2.890 2.891 2.893 2.895 2.897 8.4 2.898 2. 900 2. 902 2.903 2.905 2.907 2.909 2.910 2 . 912 2.914 8.5 2.915 2.917 2.919 2.921 2. 922 2.924 2.926 2.927 2.929 2.931 8.6 2.933 2-934 2.936 2.938 2.939 2.941' 2.943 2.944 2.946 2.948 8.7 2.950 2.951 2.953 2.955 2.956 2.958 2. 960 2.961 2.963 2.965 8.8 2. 966 2.96S 2.970 2.972 2.973 2-975 2-977 2.978 2 . 9S0 2.982 8.9 2.983 2.985 2.987 2. 988 2. 990 2. 992 2-993 2-995 2.997 2.998 9.0 3.000 3.002 3.003 3 . 005 3-007 3-008 3.010 3.012 3.013 3-oiS 9.1 3-017 3.01S 3.020 3.022 3-023 3-025 3-027 3.028 3-030 3.032 9.2 3-033 3-035 3-03S 3.038 3.040 3-041 3 -043 3 - 045 3.046 3.048 9-3 3-050 3-051 3-053 3-055 3-056 3-058 3.059 3.061 3-063 3.064 9-4 3.066 3.068 3.069 3-071 3.072 3-074 3.076 3-077 3-079 3-081 9.5 3.082 3.084 3-085 3-087 3.089 3.090 3-092 3-094 3-095 3-097 9.6 3.098 3.100 3.102 3-103 3-105 3.106 3.108 3.110 3. Ill 3-"3 9-7 3-114 3. 116 3. 118 3-119 3. 121 3.122 3-124 3- 126 3-127 3.129 9-8 3- 130 3-132 3-134 3-135 3-137 3-138 3-140 3-142 3-143 3- 145 9-9 3.146:3.148 3-150 3-151 3-153 3-154 3-156 3-158 3-159 3. 161 n 012 345678 9 18 Continued from p. 17 Arithmetical Tables Square Roots of n 10 .0 .1 .2 .3 -4 -5 -6 .7 -8 .9 3.162 3-178 3-194 3.209 3-225 3.240 3.256 3.271 3.286 3.302 ZI 3-317 3-332 3-347 3.362 3-376 3.391 3.406 3.421 3-435 3.450 12 3-464 3-479 3-493 3.507 3-521 3 536 3.550 3.564 3578 3-592 13 3.606 3-619 3-633 3.647 3-661 3.674 3-688 3.701 3-715 3-728 14 3-742 3-755 3-768 3.782 3.795 3.808 3.821 3.834 3-847 3-860 IS 3-873 3-886 3-899 3.912 3.924 3.937 3-950 3.962 3-975 3-987 i6 4.000 4.012 4-025 4.037 4.050 4.062 4.074 4.087 4-099 4.1H 17 4-123 4.135 4-147 4.159 4. 171 4.183 4-I9S 4.207 4.219 4-231 i8 4-243 4.254 4.266 4.278 4.290 4.301 4.313 4.324 4-336 4-347 19 4-359 4.370 4.382 4.393 4.405 4.416 4.427 4.438 4-450 4.461 20 4-472 4.483 4-494 4.506 4.517 4.528 4.539 4.550 4-561 4.572 21 4-583 4.593 4.604 4-615 4.626 4.637 4.648 4.658 4.669 4.680 22 4.690 4.701 4.712 4.722 4.733 4-743 4.754 4.764 4.775 4.785 23 4.796 4.806 4.817 4.827 4-837 4.848 4.858 4.868 4.879 4.889 24 4.899 4.909 4.919 4-930 4.940 4-950 4.960 4-970 4.980 4.990 25 5 .000 5.010 5 ■ 020 5-030 5.040 5.050 5.060 5-070 5.079 5.089 26 5-°99 5.109 5-II9 5.128 5-138 5.148 5-158 5-167 5.177 5-187 27 5-196 5.206 5-215 S-225 5-235 5-244 5-254 5-263 5.273 5.282 28 5-292 5-301 5-310 5-320 5-329 5-339 5-348 5-357 5.367 5-376 29 5.385 5-394 5-404 5.413 5 -422 5.431 5 -441 5-450 5.459 5.468 30 5-477 5-486 5-495 5.505 5-514 5.523 5-532 5-541 5.550 5-559 31 5-568 5-577 5-586 5-595 5-604 5.612 5-621 5-630 5. 639 5.648 32 5-657 5.666 5-675 5.683 5.692 5.701 5-710 S-718 5.727 5-736 33 5-745 5-753 5.762 5.771 5-779 5.788 5-797 5-805 5.814 5.822 34 5-831 5.840 5-848 5-857 5-865 5.874 5.882 5. .89 1 5.899 5.908 35 5-916 5-925 5 - 933 5-941 5-950 5.958 5-967 5-975 5.983 5-992 36 6.000 6.008 6.017 6.025 6 . 033 6.042 6.050 6.058 6.066 6075 37 5.083 6.091 6.099 6. 107 6. 116 6. 124 6.132 6. 140 6.148 6.156 38 6.164 6-173 6. 181 6.189 6.197 6.20s 6.213 6.221 6.229 6-237 39 6.245 6-253 6.261 6.269 6.277 6.28s 6.293 6.301 6.309 6-317 40 6-325 6-332 6.340 6.348 6.356 6.364 6.372 6.380 6.387 6-395 41 6.403 6. 411 6.419 6.427 6.434 6.442 6.450 6.458 6.465 6.473 42 6.481 6.488 6.496 6.504 6.512 6.519 6.527 6-535 6.542 6.550, 43 6-557 6-565 6-573 6.580 6.588 6.595 6 . 603 6. 611 6.618 6.626" 44 6-633 6.641 6.648 6.656 6.663 6.671 6.67S 6.686 6.693 6.701 45 6.708 6.716 6.723 6.731 6.738 6.745 6.753 6. 760 6.768 6-775 46 6.782 6.790 6-797 6.804 6.812 6.819 6.826 6.834 6.841 6.848 47 6.856 6.863 6.870 6.877 6.885 6.892 6.899 6.907 6.914 6.921 48 6.928 6.935 6.943 6.950 6.957 6.964 6.971 6.979 6.986 6.993 49 7.000 7.007 7.014 7.021 7.029 7.036 7.043 7.050 7.057 7.064 50 7.071 7.078 7-085 7.092 7.099 7.106 7.113 7. 120 7.127 7-134 51 7. 141 7.148 7-155 7. 162 7.169 7.176 7.183 7.190 7.197 7.204 52 7. 211 7.218 7-225 7.232 7.239 7.246 7.253 7-259 7.266 7-273 53 7.280 7.287 7-294 7 -301 7.308 7.314 7.321 7-328 7.335 7-342 54 n 7-348 7-355 7.362 7-369 7.376 7.382 7.389 7-396 7 . 403 7.409 .0 .1 .2 .3 .4 -5 -6 .7 -8 .9 Arithmetical Tables Numbers from 1.00 to 99.9 19 n SS .0 .1 .2 .3 -4 -5 -6 .7 -8 .9 7.416 7-423 7-430 7-436 7-443 7-450 7-457 7-463 7-470 7-477 56 7-483 7-490 7-497 7-503 7-510 7-517 7-523 7-530 7-537 7-543 57 7-550 7-556 7-563 7-570 7-576 7-583 7-589 7-596 7.603 7.609 58 7.616 7.622 7.629 7-635 7.642 7.649 7-655 7.662 7.668 7-675 59 7.681 7.688 7-694 7.701 7-707 7-714 7.720 7-727 7-733 7-740 6o 7-746 7-752 7-759 7-765 7-772 7-778 7.785 7.791 7-797 7.804 6i 7.810 7.817 7-823 7-829 7-836 7-842 7.849 7-855 7.861 7.868 62 7.874 7.880 7-887 7-893 7-899 7.906 7.912 7.918 7-925 7-931 63 7-937 7-944 7-95° 7-956 7.962 7.969 7-975 7-981 7.987 7-994 64 8.000 8.006 8.012 8.019 8.025 8.031 8-037 8.044 8.050 8.056 65 8.062 8.068 8.075 8.081 8.087 8.093 8.099 8.106 8. 112 8. 118 66 8.124 8.130 8.136 8.142 8.149 8.155 8.161 8.167 8-173 8.179 67 8.185 8. 191 8.198 8.204 8.210 8.216 8.222 8.228 8.234 8. 240 68 8.246 8.252 8.258 8.264 8.270 8.276 8.283 8.289 8.29s 8.301 69 8.307 8-313 8-319 8.325 8.331 8.337 8.343 8.349 8-355 8.361 70 8.367 8-373 8-379 8-385 8.390 8.396 8.402 8.408 8.414 8.420 71 8.426 8.432 8.438 8.444 8.450 8.456 8.462 8.468 8.473 8.479 72 8.485 8.491 8.497 8.503 8.509 8.515 8.521 8.526 8-532 8-538 73 8.544 8-550 8.556 8.562 8.567 8.573 8.579 8-585 8.591 8.597 74 8.602 8.608 8.614 8.620 8.626 8.631 8.637 8.643 8.649 8.654 75 8.660 8.666 8.672 8.678 8.683 8.689 8.695 8.701 8.706 8.712 76 8.718 8.724 8.729 8.735 8.741 8.746 8.752 8.758 8.764 8.769 77 8.775 8.781 8.786 8.792 8.798 8.803 8.809 S.815 8.820 8.826 78 8.832 8.837 8.843 8.849 8.854 8.860 8.866 8. 871 8.877 8.883 79 8.888 8.894 8.899 8.905 8.911 8.916 8.922 8.927 8.933 8-939 80 8.944 8.950 8.955 8.961 8.967 8.972 8.978 8.983 8.989 8.994 81 9.000 9.006 9.011 9.017 9.022 9.028 9-033 9-039 9.044 9.050 82 9-055 9.061 9.066 9.072 9-077 9.083 9.088 9-094 9.099 9-105 83 9. no 9. 116 9. 121 9.127 9.132 9.138 9-143 9.149 9-154 9. 160 84 9-165 9. 171 9.176 9.182 9.187 9.192 9.198 9.203 9. 209 9.214 85 9. 220 9.225 9.230 9.236 9.241 9-247 9.252 9-257 9-263 9.268 86 9.274 9.279 9-284 9. 290 9-295 9.301 9-306 9-3II 9-317 9.322 87 9-327 9-333 9-338 9-343 9-349 9-354 9-359 9-365 9-370 9-375 88 9-381 9.386 9-391 9-397 9.402 9.407 9-413 9.418 9-423 9.429 89 9-434 9-439 9-445 9-450 9-455 9.460 9.466 9-471 9-476 9.482 90 9-487 9-492 9-497 9-503 9-508 9-513 9-518 9-524 9-529 9-534 91 9-539 9-545 9-550 9-555 9.560 9.566 9-571 9-576 9-581 9-586 92 9-592 9-597 9.602 9.607 9.612 9.618 9-623 9.628 9-633 9-638 93 9-644 9-649 9654 9-659 9.664 9.670 9-675 9.680 9.685 9.690 94 9-695 9.701 9.706 9. 711 9.716 9.721 9.726 9-731 9-737 9.742 95 9-747 9-752 9-757 9.762 9-767 9.772 9-778 9-783 9-788 9.793 96 9-798 9.803 9.808 9-813 9.818 9.823 9.829 9-834 9-839 9.844 97 9.849 9-854 9-859 9.864 9.869 9-874 9.879 9.884 9.889 9.894 98 9.899 9-905 9.910 9-915 9.920 9-925 9-930 9-935 9.940 9.945 99 n 9-950 9-955 9.960 9-965 9.970 9-975 9. 980 9-985 9-990 9-995 .0 .1 .2 .3 .4 -S .6 .7 -8 .9 20 Arithmetical Tables 9. Cuoes of Niun- n 012345678 9 I.O 1 .000 1.030 1. 061 I 093 1. 125 1. 158 1. 191 1.225 1. 260 1.295 I.I 1-331 1.368 1.40=; 1.443 1.482 1.521 1.561 1.602 1.643 1-685 1.2 1.728 1.772 1. 8x6 1. 861 1.907 1-953 2.000 2.048 2.097 2.147 1-3 2.197 2.248 2.300 2.353 2.406 2.460 2.515 2-571 2.628 2.686 1.4 2.744 2.803 2.863 2.924 2.9S6 3-049 3. 112 3-177 3-242 3-308 i-S 3-375 3-443 3.512 3.582 3.- 652 3.724 3-796 3-870 3-944 4.020 1.6 4.096 4.173 4.252 4.331 4. 411 4.492 4-574 4.657 4.742 4.827 1-7 4.913 5.000 5.088 5-178 5.268 5-359 5-452 5.545 5.640 5-735 1.8 S-832 5-93° 6.029 6.128 6.230 6.332 6.435 6.539 6.645 6-751 1-9 6.859 6.968 7.078 7.189 7-3°i 7-415 7-530 7.645 7.762 7.881 2.0 8.000 8. 121 8.242 8.365 8.490 8.615 8.742 8.870 8-999 9.129 2.1 9. 261 9-394 9-528 9.664 9.800 9-938 10.08 10. 22 10.36 10.50 2.2 10.65 10.79 10.94 II .09 11.24 11-39 11.54 11.70 11.85 12.01 2.3 12. 17 12-33 12.49 12.65 12.81 12.98 13-14 ^3-3T^ 13.48 13-65 2.4 13.82 14.00 14.17 14.35 14.53 14.71 14.89 15.07 15-25 15-44 2.5 15.62 15.81 16.00 16. 19 16-39 16.58 16.78 16.97 17.17 17-37 2.6 17-58 17.78 17.98 18.19 18.40 18.61 18.82 19-03 19-25 19-47 2.7 19.68 19.90 20. 12 20.35 20.57 20.80 21.02 21.25 21. 48 21.72 2.8 21-95 22. 19 22.43 22.67 22.91 23.15 23-39 23-64 23-89 24.14 2.9 24.39 24.64 24.90 25-15 25.41 25.67 25.93 26.20 26.46 26.73 3.0 27.00 27-27 27.54 27.82 28.09 28.37 28.65 28.93 29.22 29.50 3-1 29.79 30.08 30.37 30.66 30.96 31 . 26 31.55 31.86 32.16 32.46 3-2 32-77 33-08 33-39 33-70 34-01 34.33 34.65 34.97 35.29 35.61 3-3 35-94 36.26 36.59 36.93 37.26 37.60 37.93 38.27 38.61 38.96 3.4 39-30 39-65 40.00 40.35 40.71 41.06 41.42 41.78 42.14 42.51 35 42.88 43.24 43-61 43.99 44.36 4-4.74 45-12 45.50 45.88 46.27 3.6 46.66 47-05 47-44 47.83 48.23 48.63 49-03 49.43 49.84 50.24 3.7 50-65 51.06 51-48 51-90 52.31 52.73 53-16 53.58 54.01 54.44 3.8 54.87 55-31 55-74 56.18 56.62 57-07 57.51 57-96 58.41 58.86 3-9 59-32 59-78 60.24 60.70 61.16 61.63 62. 10 62.57 63.04 63.52 4.0 64.00 64.48 64.96 65.45 65.94 66.43 66.92 67-42 67.92 68.42 4.1 68. 92 69-43 69-93 70.44 70.96 71.47 71-99 72-51 73-03 73.56 4.2 74.09 74-62 75-15 75-69 76.23 76.77 77-31 77-85 78.40 78.95 4-3 79-51 80.06 80.62 81.18 81.75 82.31 82. 88 83-45 84-03 84.60 4.4 85.18 85-77 86. 35 86.94 87.53 88.12 88.72 89-31 89-92 90.52 4-5 gi. 12 91-73 92.35 92.96 93-58 94.20 94.82 95-44 96.07 96.70 4.6 97-34 97-97 98.61 99.25 99.90 100.5 loi. 2 101.8 102. 5 1.03 . 2 4.7 103.8 104.5 105. 2 105 . 8 106. 5 107. 2 107.9 108.5 109.2 109.9 4.8 no. 6 III 3 1 12.0 112. 7 113. 4 114. 1 114.8 "5-5 116.2 116. 9 4-9 117. 6 118 4 1 19. 1 119.8 120.6 121.3 122.0 122.8 123.5 124.3 S.o 125.0 125 8 126.5 127-3 128.0 128.8 129.6 130.3 131-1 131-9 5-1 132-7 133 4 134.2 135-0 135-8 136.6 137-4 138.2 139-0 139.8 5-2 140.6 141 4 142. 2 I43-I 143-9 144.7 145-5 146.4 147-2 148.0 5-3 148.9 149 7 150.6 151-4 152-3 I53-I 154-0 154-9 155-7 156.6 5-4 I57-S 158 3 159.2 160. 1 161. 161. 9 162.8 163.7 164.6 165.5 ;( 012345678 9 Arithmetical Tables bers from 1.00 to 9.99 21 n 012345678 9 5-5 166.4 167.3 168.2 169. 1 170.0 171. 171. 9 172.8 173-7,174-7 5.6 175-6 176.6 177-5 178.5 179-4 180.4 181. 3 182.3 183-3 184.2 5-7 185.2 186.2 187. 1 188. 1 iSg.i 190. 1 191 . 1 192. 1 193- 1 194. 1 5.8 195. 1 196. 1 197. 1 198.2 199.2 200. 2 201 . 2 202.3 203.3 204.3 5-9 205.4 206.4 207-5 208.5 209.6 210.6 211 . 7 212.8 213.8 214.9 6.0 216.0 217. 1 218.2 219.3 220.3 221.4 222.5 223.6 224.8 225.9 6.1 227.0 228.1 229.2 230.3 231-5 232.6 233 -7 234-9 236.0 237-2 6.2 238.3 239-5' 240.6 241.8 243.0 244.1 245-3 246.5 247.7 248.9 6.3 250.0 251.2 252-4 253-6 254.8 2!;6.o 257-3 258.5 259-7 260.9 6.4 262. 1 263.4 264.6 265.8 267. I 268.3 269.6 270.8 272.1 273-4 6.5 274.6 275.9 277.2 278.4 279-7 281.0 282.3 283.6 284.9 286.2 6.6 287.5 288.8 290. 1 291.4 292.8 294.1 295-4 296.7 298.1 299.4 6.7 300.8 302.1 303-5 304.8 306.2 307-5 308.9 310.3 311-7 313-0 6.8 314.4 315.8 317-2 318.6 320.0 321-4 322.8 324-2 325-7 327-1 6.9 328.5 329-9 331-4 332.8 334.3 335-7 337-2 338.6 340.1 341-5 7.0 343 -o 344.5 345-9 347-4 348.9 350-4 351-9 353-4 354.9 356-4 7.1 357-9 359-4 360.9 362.5 364.0 365-5 367-1 368.6 370.1 371-7 7.2 373-2 374-8 376.4 377-9 379-5 381. 1 382.7 384-2 385-8 387-4 7.3 389.0 390.6 392.2 393-8 395-4 397-1 398.7 400.3 401.9 403.6 7.4 405.2 406.9 408.5 410.2 411-S 413-S 415-2 416.8 418.5 420.2 7.5 421.9 423.6 425-3 427.0 428.7 430-4 432-1 433-8 435.5 437-2 7.6 439-0 440.7 442.5 444-2 445-9 447-7 449-5 451-2 453-0 454-8 7.7 456-5 458.3 460. 1 461.9 463-7 465-5 467-3 469.1 470.9 472-7 7.8 474-6 476-4 478.2 4S0.0 481.9 483-7 485.6 487.4 489.3 491-2 7.9 493-0 494-9 496.8 498-7 500.6 502.5 504-4 506.3 508.2 510. 1 8.0 512.0 513-9 515.8 517-8 519-7 521-7 523-6 525-6 527-S 529-5 8.1 531.4 533-4 535-4 537-4 539-4 541-3 543-3 545-3 547-3 549-4 8.2 551-4 553-4 555-4 557-4 559-5 56I-S 563-6 565-6 567-7 569-7 8.3 571-8 573-9 575-9 578.0 580.1 582.2 584-3 586.4 588.5 590.6 8.4 592.7 594-8 596-9 599-1 601 . 2 603.4 605-5 607.6 609.8 612.0 8.5 614. 1 616.3 618.5 620.7 622.8 625.0 627.2 629.4 631.6 633-8 8.6 636.1 638.3 640.5 642.7 645-0 647.2 649-5 651.7 654.0 656.2 8.7 658.5 660. 8 663.1 665-3 667.6 669. 9 672.2 674.5 676.8 679.2 8.8 681.5 683.8 686.1 688.5 690.8 693.2 695-5 697.9 700.2 702.6 8.9 705.0 707.3 709.7 712. 1 714-5 716.9 719-3 721.7 724-2 726.6 9.0 729.0 731-4 733-9 736.3 738-8 741-2 743-7 746.1 748.6 751-1 9.1 753.6 756.1 758-6 761.0 763-6 766.1 768.6 771. 1 773-6 776.2 9.2 778.7 781.2 783.8 786.3 788.9 791-5 794.0 796.6 799.2 801.8 9-3 804.4 807.0 809.6 812.2 814.8 817-4 820.0 822.7 825.3 827-9 9.4 830.6 833.2 835-9 838.6 841.2 843-9 846.6 849-3 852.0 854-7 9-5 857-4 860.1 862.8 865.5 868.3 871.0 873-7 876.5 879-2 882.0 9.6 884.7 887.5 890-3 893-1 895-8 898.6 901.4 904.2 907.0 909-9 9-7 912.7 915-5 918.3 921 . 2 924.0 926.9 929-7 932-6 935-4 938.3 9.8 941.2 944-1 947.0 949-9 952-8 955-7 958.6 961-5 964.4 967.4 9.9 970.3 973-2 976.2 979-1 982.1 985-1 988.0 991.0 994.0 997-0 n 012345678 9 22 Arithmetical Tables 10. Cube Roots of Numbers n 3 ■ 379 33-772 34.165 II 34-558 34-950 35-343 35-736 36.128 36-521 36-914 37 306 12 37-699 38-092 38-485 38-877 39-270 39 663 40-055 40.448 13 40.841 41.233 41 . 626 42.019 42.412 42. 804 43-197 43-590 14 43-982 44-375 44.768 45. 160 45-553 45-946 46-338 46.731 IS 47.124 47-517 47-909 48.302 48-695 49.087 49.480 49-873 16 50-265 50.658 51-051 51-444 51-836 52.229 52. 622 53-014 17 53-407 53 -800 54-192 54-585 54-978 55-371 55-763 56-156 18 56-549 56-941 57-334 57-727 58.119 58-512 58-905 59-298 19 59.690 60.083 60.476 60.868 61.261 61.654 62.046 62.439 32 Circles axd Spheres 19. Circular Central Length Rise Area Central Length Rise Area Angle of of of Angle of of of Degrees Chord Arc Segment .Degrees Chord Arc Segment I 0.0175 . 0000 0.00000 46 0.7815 0.0795 0.04176 3 0-0349 0.0002 0. 00000 47 0.7975 0.0829 0.04448 3 0.0524 . 0003 0. OOOOI 48 0.8135 0.0865 0.04731 4 0.0698 0. 0006 0.00003 49 0.8294 0.0900 0.05025 5 0.0872 0. 0010 . 00006 50 0.8452 0.0937 0.05331 6 0.1047 0.0014 O.OOOIO 51 0. 8610 0.0974 0.05649 7 0. 1221 0. 0019 0. 00015 52 0.8767 0. 1012 0.05978 8 0.139s 0.0024 0. 00023 53 0.8924 0. 1051 0.06319 9 0. 1569 0.0031 0. 00032 54 0. 9080 0. 1090 0.06673 10 0.1743 0. 0038 . 00044 55 0.9235 0.1130 0.07039 n O.I9I7 0.0046 0.00059 56 0.9389 0. 1171 0.07417 13 0. 2091 0.0055 0.00076 57 0.9543 0. I2I2 0.07808 13 0. 2264 0. 0064 0.00097 58 0.9696 0.1254 0.08212 14 0.2437 0. 0075 0.00121 59 0.9848 0. 1296 0.08629 IS 0. 2611 0.0086 0.00149 60 I . 0000 0.1340 0.09059 i6 0.2783 0.0097 0.00181 61 1.0151 0.1384 0.09502 17 0. 2956 0. 01 10 0.00217 62 I. 0301 0. 1428 0.09958 i8 0.3129 0.0123 0.00257 63 1.0450 0.1474 0. 10428 19 0.3301 0.0137 0.00302 64 I . 0598 0. 1520 0. 10911 20 0.3473 0.0152 0.00352 65 1.0746 0. 1566 0. 1 1408 31 0.3645 0.0167 . 00408 66 1.0893 0.1613 0. 11919 32 0.3816 0. 0184 0.00468 67 I. 1039 0. 1661 0.12443 23 0.3987 0.0201 0.00535 68 I. 1 1 84 0. I7IO 0. 12982 24 0.4I5S 0. 0219 0.00607 69 I. 1328 0.1759 0.1353s 25 0.4329 0.0237 0.00686 70 I. 1472 0.1808 0. 14102 26 0.4499 0.0256 0.00771 71 I . 1614 0. 1859 0. 14683 27 0. 4669 0.0276 0. 00862 72 1. 1756 0. I9IO •0.15279 28 0.4838 0.0297 0. 00961 73 I. 1896 0. 1961 0.15889 29 0. 5008 0.0319 0.01067 74 I. 2036 0. 2014 0. 16514 30 0. 5176 0.0341 . 1 1 80 75 I. 2175 0. 2066 0.17154 31 O.S34S 0.0364 0.01301 76 I. 2313 0. 2120 0.17808 32 0.5312 0.0387 0. 01429 77 1.2450 0.2174 0.18477 33 0. 5680 0. 0412 0.01566 78 I . 2586 0. 2229 0. 19160 34 0.5847 0.0437 0.01711 79 I . 2722 0.2284 0. 19859 35 0. 6014 0.0463 0. 01864 80 1.2856 0.2340 0.20573 36 . 6 1 80 0.0489 0.02027 81 I . 2989 0. 2396 0.-2I30I 37 0. 6346 0.0517 0.02198 82 I.3121 0.2453 0. 22045 38 0. 651 1 0.0545 0.02378 83 1.3252 0.2510 0. 22804 39 0.6676 0.0574 0.02568 84 1.3383 0. 2569 0.23578 40 0.6840 0.0603 0.02767 85 1.3512 0. 2627 0.24367 41 0. 7004 0.0633 0.02976 86 I . 3640 0. 2686 0.25171 42 0.7167 0.0664 0.03195 87 1.3767 0. 2746 0. 25990 43 0.7330 0.0696 0.03425 88 I . 3893 0. 2807 0. 26825 44 0.7492 0.0728 0.03664 89 I. 401 8 0.2867 0.2767s 45 0.7654 0. 0761 0.03915 90 1.4142 0. 2929 0. 28540 Segments Circles and Spheres 33 Central L ength Rise Area Central L ength Rise Area Angle of of Angle of of of Degrees "■ I^hord Arc Segment 0. 29420 Degrees C -hord Arc Segment 91 I 4265 0. 2991 136 I .8544 0. 6254 0.83949 92 I 4387 0-3053 0.30316 137 I .8608 0.633s 0.85455 93 I 4507 0.3116 0. 31226 138 I 8672 0.6416 0.86971 94 I 4627 0.3180 0.32152 139 I 8733 0.6498 0.88497 95 I 4746 0.3244 0.33093 140 I 8794 0. 6580 0.90034 96 I 4863 0.3309 0.34050 141 I 8853 0.6662 0. 91580 97 1 4979 0.3374 0.35021 142 I 8910 0.6744 0.93135 98 I 5094 0.3439 0.36008 143 I 8966 0.6827 0. 94700 99 I 5208 0.3506 0.37009 144 I 9021 0. 6910 0. 96274 100 I 532^ °-3572 0. 38026 145 I 9074 0.6993 0.97858 lOI I 5432 0.3639 0.39058 146 I 9126 0.7076 0.99449 102 I 5543 0.3707 0.40104 147 I 9176 0. 7160 I .01050 103 I 5652 0.3775 0. 41166 148 I 9225 0.7244 1.02658 104 I 5760 0.3843 0.42242 149 I 9273 0.7328 1.04275 los I 5867 0.3912 0-43333 ISO I 9319 0.7412 1.05900 106 I 5973 0.3982 0.44439 iSi I 9363 0.7496 1-07532 107 I 6077 0.4052 0. 45560 152 I 9406 0.7581 1.09171 108 I 6180 0.4122 0. 46695 153 I 9447 0. 7666 1.10818 109 I 6282 0.4193 0.47844 154 I 9487 0.7750 I. 12472 no I 6383 0.4264 0. 49008 155 I 9526 0.7836 1.14132 in I 6483 0.4336 0. 50187 156 I 9563 0. 7921 I .15799 112 I 6581 0.4408 0.51379 157 I 9598 0.8006 I. 17472 113 I 6678 0. 4481 0.52586 158 I 9633 0. 8092 1.19151 114 I 6773 0.4SS4 0.53807 159 I 9665 0.8178 1.20835 115 I 6868 0.4627 0.55041 160 I 9696 0.8264 1.22525 116 I 6961 0.4701 0.56289 161 I 9726 0.8350 I . 24221 117 I 7053 0.4775 0.57551 162 I 9754 0.8436 I. 25921 118 I 7143 0.4850 0.58827 163 I 9780 0. 8522 I. 27626 119 I 7233 0.4925 0. 601 16 164 I 9805 0.8608 1-29335 120 I 7321 0. 5000 0. 61418 165 I 9829 0.8695 I. 31049 121 I 7407 0. 5076 0.62734 166 I 9851 0.8781 1.32766 122 I 7492 0.5152 0.64063 167 I 9871 0.8868 1.34487 123 I 7576 0. 5228 0.65404 168 I 9890 0.8955 I. 362 1 2 124 I 7659 0-5305 0.66759 169 I 9908 0. 9042 1.37940 125 I 7740 0.5383 0.68125 170 I 9924 0.9128 I. 39671 126 I 7820 0. 5460 0.69505 171 I 9938 0.9215 I. 41404 127 I 7899 0.5538 0. 70897 172 I 9951 0.9302 I. 43140 128 I 7976 0. 5616 0.72301 173 I 9963 0.9390 1.44878 129 I 8052 0.5695 0.73716 174 I 9973 0.9477 I. 46617 130 I 8126 0.5774 0.75144 175 I 9981 0.9564 1-48359 131 I 8199 0.5853 0.76584 176 1 9988 0. 9651 1.50101 132 I 8271 0-5933 0. 78034 177 I 9993 0.9738 I-51845 133 I 8341 0.6013 0.79497 178 I 9997 0.9825 1.53589 134 I 8410 0.6093 0. 80970 179 I 9999 0.9913 1-55334 135 I 8478 0.6173 0.82454 180 2 0000 I . 0000 I. 57080 34 Circles and Spheres 20. Volumes of Spheres Diameters in Units and Tenths d .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 0.000 O.OOl 0.004 0.014 0.034 0.065 0.113 0. 180 0.268 0.382 I 0.524 0.697 0.905 1. 150 1-437 1.767 2.145 2.572 3-054 3-591 2 4.189 4.849 5-575 6-371 7-238 8.181 9.203 10.31 11.49 12.77 3 14.14 15.60 17. 16 18.82 20.58 22.45 24.43 26.52 28.73 31.06 4 33-51 36.09 38-79 41.63 44.60 47-71 50-97 54-36 57-91 61.60 5 65-45 69.46 73.62 77-95 82.45 87.11 91-95 96.97 102.2 107-5 6 113. 1 118. 8 124.8 130.9 137-3 143-8 150-5 157-5 164.6 172.0 7 179.6 187.4 195-4 203.7 212. 2 220.9 229.8 239.0 248.5 258.2 8 268.1 278-3 288.7 299.4 310.3 321.6 333 -o 344.8 356.8 369-1 9 381-7 394-6 407-7 421 . 2 434-9 448.9 463.2 477-9 492.8 508.0 lO 523 -6 539-5 555-6 572.2 589.0 606. 1 623.6 641.4 659.6 678.1 II 696.9 716. 1 735-6 755-5 775-7 796.3 817-3 838-6 860.3 882.3 12 904.8 927.6 950.8 974-3 998.3 1023 1047 1073 1098 1124 13 1 1 50 1177 1204 1232 1260 1288 1317 1346 1376 1406 14 1437 1468 1499 1531 1563 1596 1630 1663 1697 1732 15 1767 1803 1839 187s 1912 1950 1988 2026 2065 2105 i6 2145 2185 2226 2268 2310 2352 2395 2439 2483 2527 17 2572 2618 2664 2711 2758 2806 285 s 2903 2953 3003 i8 3054 3i°S 3157 3209 3262 3315 3369 3424 3479 3535 19 3.S9I 3648 3706 3764 3823 3882 3942 4003 4064 4126 21. Volumes of Spheres Diameters in Units and Eighths d 1/8 1/4 3/8 1/2 5/8 3/4 7/8 0.0000 O.OOIO 0.0082 0.0276 0.0654 O.127S 0.2209 0.3508 I 0.5236 0.74S5 1.0227 1.3612 1.7671 2.2468 2 . 8062 3-451S 2 4.1888 5.0243 S-9641 7-0144 8.1812 9.4708 10.S89 12-443 3 14-137 15-979 17.974 20.129 22.449 24.942 27.612 30.466 4 33.510 36.751 40.194 43.846 47.713 51.800 56.115 60.663 5 65-450 70.482 75-766 81.308 87.114 93.189 99-541 106.17 6 113-10 120.31 127.83 135.66 143.79 152.25 161.03 170.14 7 179-59 189.39 199-53 210.03 220.89 232.12 243-73 255-71 8 268.08 280.85 294.01 307. 58 321.56 335-95 350.77 366.02 9 381.70 397-83 414.40 431.43 448.92 466.88 485-30 504.21 10 523-60 543-48 563.86 584.74 606.13 628.04 650.47 673-42 11 696.91 720.94 745-51 770.64 796.33 82 2. 58 849.40 876.80 12 904-78 933-35 962.51 992.28 1022.7 1053-6 1085.2 1117-S 13 1150.3 1183.8 1218.0 1252.8 1288.2 1324-4 1361.2 1398.6 14 1436.8 1475.6 151S-1 1555.3 1596.3 1637-9 1680.3 1723-3 15 1767.1 1811.7 1857.0 1903.0 1949.8 1997.4 204s -7 2094.8 16 2144.7 2195-3 2246.8 2299.0 2352.1 2405.9 2460.6 2516. I 17 2572.4 2629.6 2687.6 2746. s 2806.2 2866.7 2928.2 2990. 5 18 3053-6 3117-7 3182.6 3248. 5 331S-2 3382.9 3451.5 3520.9 19 3591.4 3662.7 3735-0 3808.2 38S2.4 3957.6 4033-7 4110.7 Circles and Spheres 22. Multipliers for Finding Lengths of Circular Arcs 35 I 2 3 4 5 6 7 8 9 Degrees Minutes Seconds 0.017453293 0.034906585 0.052359878 0.069813170 0.087266463 0.104719755 0. 122173048 0.139626340 0.157079633 0.00029088S 0.000581776 0.000872665 0.001163553 0.001454441 0.001745329 0.002036217 0.002327106 0.002617994 0.000004848 . 000009696 0.000014544 0.000019393 0.000024241 0.000029089 0.000033937 0.000038785 0.000043633 Example. Find length of arc for a central angle of 48° 4/ in circle of 12 ft. radius. 40° 0.698132 8° .139626 40' .011636 5' .001454 0.85085 12 Length = 10. 210 ft 23. Explanations Table 15 gives Areas of Circles to four places for three-place diameters. Since the area of a circle varies as the square of its diameter, it follows that the decimal point moves two places in the function when it moves one place in the argument. Thus, for diameters of 4.53 and 45.3 inches the areas of the circles are 16.12 and 1612 square inches; for a diameter of 0.453 inches the area is 0.1612 square inches. Table 16 gives Areas of Circles when the diameters are ex- pressed in imits and eighths-; thus for a diameter of 22| inches, the area is 393.20 square inches. When the diameter is given to sixteenths the area is approximately half-way between the two nearest tabular values; thus, for a diameter of 2^6 inches the area is 3.34 square inches. Tables 17 and IS give Circumferences of Circles for diameters in tenths and eighths of units. For example, circles of 7.2 and 7$ inches in diameter have circumferences of 22.62 and 22.78 inches. Tables 17-18 can also be used for finding a diameter when the area or circumference is given. Examples: when the areas 50.52 and 51.34 are given the corresponding diameters are 8.02 and 8.085; when the circumferences 5.027 and 5.134 are given, the diameters are 1.600 and 1.634. Table 19 gives properties of Segments of a Circle of radius unity. For any other radius r the tabular lengths of chord and 36 Circles and Spheres rise of arc are to be multiplied by r and the tabular area by r^ For example, when the radius is 20 feet and the angle at the cen- ter of the circle is 82°, the length of the chord of the segment is 26.242 feet, the rise of the arc is 4.906 feet, and the area of the segment is 88.18 square feet. Tables 20 and 21 give Volumes of Spheres for diameters in tenths and eighths. Thus, for spheres 9.1 and 9| inches in diam- eter the volumes are 394.G and 397.8 cubic inches. Table 22 gives Multipliers for finding lengths of Circular Arcs of radius unity. Example: to find the length of a railroad curve of 700 feet radius and 60° 8' central angle; here the table gives 1.0472 for C0° and 0.0023 for 8'; adding these and multiplying by 700 gives 734.65 feet for the actual length of the curve. 24. Exercises 1. Find the areas of circles whose diameters are 3.4, 3.42, and 3.421 feet; also for diameters of 340, 342, and 342.1 feet. 2. Find the area for a circle of 19.25 inches dian.cter by inter- polation in Table 15 and comjjare the result with that given in Table 16. 3. Find circumferences of circles 20.3 and 2.03 inches diameter; also of circles 40.6 and 4.06 feet diameter. 4. In a circle of 12 inches diameter the measured chord of a seg- ment was 14.44 inches. What is the chord for a radius unity? By help of Table 19 find the central angle, the rise of the arc, and the area of the segment. 5. For a central angle of 48° 30' find the length of chord, rise of arc, and area of segment in a circle whose radius is 60.5 centimeters. 6. What are the volumes of spheres of 0.34, 3.4, and 34 inches? 7. A cannon ball 8 inches in diameter has a specific gravity of 7.8. If the weight of a cubic foot of water is 62.5 pounds, what is the weight of the cannon ball? 8. Find the length of a railroad curve having a central angle of 3° 15' and a radius of 5730 feet. Chapter 4 NATURAL TRIGONOMETRIC FUNCTIONS 38 Trigonometric Functions 25. Nahiral Sines /' SINE Angl( ; 0' 10' 20' 30' 40' 50' 60' 89 o" 0.00000 0.00291 0.00582 0.00873 0. 01164 0.01454 0.01745 I 0.01745 0.02036 0.02327 0.02618 0.02908 0.03199 0.03490 88 2 0.03490 0.03781 0.04071 0.04362 0.04653 0.04943 0.05234 87 3 0.05234 0.05524 0.05814 0.06105 0.06395 0.06685 0.06976 86 4 0.06976 0.07266 0.07556 0.07846 0.08136 0.08426 0.08716 85° S'' 0.08716 0. 09005 0.0929s 0.09585 0.09874 0. 10164 0.104S3 84 6 0. 10453 0. 10742 0. 1 1 03 1 0. 11320 0. 1 1 609 0.11898 Q. I2187 83 7 0. 12187 0. 12476 0. 12764 0.13053 0.13341 0.13629 O.13917 82 8 0.13917 0. 14205 0.14493 0. 14781 0. 15069 0.15356 0.15643 81 9 0.15643 0.15931 0. 16218 0.16505 0. 16792 0. 17078 0.17365 80° 10° 0.17365 0. 17651 0.17937 0. 18224 0. 18509 0.18795 0.19081 79 II 0. I 908 I 0. 19366 0.19652 0.19937 0. 20222 0.20507 0.20791 78 12 0. 20791 0. 21076 0.21360 0.21644 0.21928 0.22212 0.2249s 77 13 0.2249s 0.22778 0.23062 0.23345 0.23627 0. 23910 0. 24192 76 14 0.24192 0.24474 o.;?4756 0.25038 0.25320 0.25601 0.25882 75° 15° 0.25882 0.26163 0.26443 0. 26724 0. 27004 0.27284 0.27564 74 i6 0.27564 0.27843 0.28123 0. 2S402 0.286S0 0.28959 0.29237 73 17 0.29237 0.29515 0.29793 0.30071 0.30348 0.30625 0.30902 72 i8 0.30902 0.31178 0.31454 0.31730 0.32006 0.32282 0.32557 71 19 0-32557 0.32832 0.33106 0.33381 0.3365s 0.33929 0.34202 70° 20° 0.34202 0.34475 0.34748 0.35041 0.35293 0.35565 0.35837 69 21 0.35837 0.36108 0.36379 0. 36650 0.36921 0.37191 0.37461 68 22 0.37461 0.37730 0.37999 0.38268 0.38537 0.38805 0.39073 67 23 0.39073 0.39341 0.39608 0.39875 0.40142 0.40408 0.40674 66 24 0.40674 0.40939 0.41204 0.41469 0.41734 0.4199S 0.42262 65° 25° 0.42262 0.42525 0.42788 0.43051 0.43313 0. 43575 0.43837 64 26 0-43837 0.44098 0.44359 0.44620 0.44880 0.45140 0.45399 63 27 0.45399 0.45658 0.45917 0.46175 0.46433 0.46690 0.46947 62 28 0.46947 0.47204 0.47460 0.47716 0.47971 0.48226 0.48481 61 29 0.48481 0.4873s 0.48989 0.49242 0.49495 0.49748 0. 50000 60° 30° 0.50000 0.50252 0.50503 0.50754 0.51004 0.51254 0.51504 59 31 0.51504 0.51753 0. 52002 0.52250 0.52498 0.52745 0.52992 58 32 0.52992 0.53238 0.53484 0.53730 0.53975 0. 54220 0.54464 57 33 0.54464 0.54708 0.54951 0.55194 0.55436 0.55678 0.55919 56 34 0.55919 0.56160 0.56401 0. 56641 0.56880 0.57119 0.57358 55° 35° 0.57358 0.57596 0.57833 0. 58070 0.58307 0.58543 0.58779 54 36 0.58779 0. 59014 0. 59248 0.59482 0.59716 0.59949 0. 60182 .53 37 0. 60182 0. 60414 0. 60645 0.60876 0. 61 107 0.61337 0. 61566 52 38 0. 61 566 0.6179s 0. 62024 0.62251 0.62479 0.62706 0.62932 51 39 0.62932 0.63158 0.633S3 0.63608 0.63832 0.64056 0.64279 50° 40° 0.64279 0.64501 0.64723 0.64945 0.65166 0.65386 0. 65606 49 41 0.65606 0.65825 0.66044 0.66262 0.66480 0.66697 0. 66913 48 42 0.66913 0.67129 0.67344 0.67559 0.67773 0.67987 0. 68200 47 43 0. 6S200 0.6S412 0. 686 24 0.6S835 0.69046 0.69256 0. 69466 46 44 0.69466 0.6967s 0.69883 0. 70091 0. 70298 0.70505 0. 70711 45 60' 50' 40' 30' 20' 10' 0' A .ngle COSIMB and Cosines Trigonometric Functions ^INE 39 Angle 0' 10' 20' 30' 40' 50' 60' 44 45" 0.70711 0.70916 0.71121 0.71325 0.71529 0.71732 0.71934 46 0.71934 0.72136 0.72337 0.72537 0.72737 0.72937 0.73135 43 47 0-73135 0.73333 0.73531 0.73728 0.73924 0. 74120 0.74314 42 48 0.74314 0.74509 0.74703 0. 74896 0. 750S8 0. 75280 0.75471 41 49 0-75471 0.75661 0.75851 0. 76041 0. 76229 0.76417 0.76604 40° 50° 0. 76604 0.76791 0.76977 0. 77162 0.77347 0.77531 0.77715 39 51 0.77715 0.77897 0. 78079 0. 78261 0. 78442 0. 78622 0. 78801 38 52 0.78801 0.78980 0.79158 0.79335 0.79512 0.79688 0. 79864 37 S3 0. 79864 0.80038 0.80212 0.80386 0.80558 0. 80730 0.80902 36 54 0.80902 0.81072 0.81242 0.81412 0.81580 0.81748 0. 81915 35° 55° 0.81915 0.82082 0.82248 0.82413 0.82577 0.82741 0.82904 34 56 0.82904 0. 83066 0.83228 0.833S9 0.83549 0.83708 0.83867 33 57 0.83867 0.84025 0.84182 0.84339 0.84495 0.84650 0.84805 32 58 0.84805 0.84959 0.85112 0.85264 0.85416 0.85567 0.85717 31 59 0.85717 0.85866 0.S6015 0.86163 0.S6310 0.86457 0.86603 30° 60° 0.86603 0.86748 0.86892 0.87036 0.87178 0.87321 0.87462 29 61 0.87462 0.87603 0.87743 0.87882 0. SS020 0.88158 0.88295 28 62 0.88295 0.8S431 0.88566 0.88701 0.88S35 0.8896S o.Sgioi 27 63 0.89101 0.89232 0.89363 0.89493 0.S9623 0.89752 0.89879 26 64 0.89879 0.90007 0-90133 0.90259 0.90383 0.90507 0.90631 25° 65° 0.90631 0.90753 0.90875 0. 90996 0. 91116 0.91236 0.91355 24 66 0-91355 0.91472 0.91590 0. 91706 0.91822 0.91936 0.92050 23 67 0.92050 0. 92164 0.92276 0.92388 0.92499 0. 92609 0.92718 22 68 0.92718 0.92827 0.92935 0.93042 0.9314S 0.93253 0.93358 21 69 0.93358 0.93462 0.93565 0.93667 0.93769 0.93869 0.93969 20° 70° 0.93969 0.94068 0.94167 0.94264 0.94361 0. 94457 0.94552 19 71 0.94552 0.94646 0.94740 0.94832 0.94924 0.95015 0. 95106 18 72 0.95106 0.95195 0.95284 0.95372 0.95459 0.95545 0.95630 17 73 0.95630 0.95715 0.95799 0.95882 0.95964 0. 96046 0.96126 16 74 0.96126 0.96206 0.96285 0.96363 0.96440 0.96517 0.96593 15° 75° 0.96593 0.96667 0.96742 0.96815 0.96887 0.96959 0.97030 14 76 0.97030 0. 97100 0. 97169 0.97237 0.97304 0.97371 0.97437 13 77 0-97437 0.97502 0.97566 0.97630 0.97692 0.97754 0.97815 12 78 0.97815 0.97875 0.97934 0.97992 0.98050 0.98107 0.98163 II 79 0.98163 0.98218 0.98272 0.98325 0.98378 0.98430 0.98481 10° 80° 0.98481 0.98531 0.98580 0.98629 0.98676 0.98723 0.98769 9 81 0.98769 0.98814 0.98858 0.98902 0.98944 0.98986 0.99027 8 82 0. 99027 0.99067 0. 99106 0.99144 0. 99182 0.99219 0.99255 7 83 0.99255 0. 99290 0.99324 0.99357 0.99390 0. 99421 0.99452 6 84 0.99452 0. 99482 0.99511 0.99540 0.99567 0.99594 0.99619 S° 85° 0. 99619 0.99644 0.99668 0.99692 0.99714 0.99736 0.99756 4 86 0.99756 0.99776 0.99795 0.99813 0.99831 0.99847 0.99863 3 87 0.99863 0.99878 0.99892 0.99905 0.99917 0.99929 0.99939 2 88 0.99939 0.99949 0.999 58 0. 99966 0.99973 0.99979 0.99985 I 89 0.99985 0.99989 0.99993 0.99996 0.99998 I . 00000 I . 00000 0° 60' 50' 40' 30' 20' 10' 0' A ingle COS£N£ 40 Trigonometric Functions 26. Natural Tangents ( -. TANGENT Angle o' lo' 20' 30' 40' 50' 60' 89 0° 0.00000 0.00291 0.00582I0. 00873 0. 01164 0.0145s 0.01746 I 0.01746 0.02036 0.02328I 0.02619 0.02910 0.03201 0.03492 88 3 0.03492 0.03783 0.04075 0. 04366 0.04658 0.04949 0.05241 87 3 0.05241 0.05533 0.05824 0.061 16 0.06408 0.06700 0.06993 86 4 0.06993 0.07285 0.07578 0.07870 0.08163 0.08456 0.08749 85° 5° 0.08749 0.09042 0.09335 0.09629 0.09923 0. 10216 0. 10510 84 6 0. 10510 0. 10805 0. 11099 0.11394 0.11688 0.1 1983 0.12278 83 7 0. 12278 0.12574 0. 12869 0.13165 0.13461 0.13758 0.14054 82 8 0. 14054 0.1435 1 0. 14648 0.14945 0.15243 0.15540 0.15838 81 9 0.15838 0.16137 0.16435 0.16734 0.17033 0.17333 0.17633 80° 10° 0.17633 0.17933 0.18233 0.18534 0.18835 0.19136 0.19438 79 II 0. 19438 0. 19740 0. 20042 0.20345 0.20648 0.20952 0.21256 78 12 0. 2125 0.21560 0. 21864 0. 22169 0.22475 0.22781 0.23087 77 13 0.23087 0.23393 0.23700 0. 24008 0.24316 0.24624 0.24933 76 14 0.24933 0.25242 0.25552 0. 25862 0.26172 0.26483 0.26795 75° 15° 0.26795 0.27107 0.27419 0.27732 0. 28046 0.28360 0.28675 74 16 0.28675 0. 28990 0.29305 0. 29621 0.29938 0.3025s 0.30573 73 17 0.30573 0.30S91 0.31210 0.31530 0.31850 0.32171 0.32492 72 18 0.32492 0.32814 0.33136 0.33460 0.33783 0. 34108 0.34433 7X 19 0.34433 0.34758 0.35085 0.35412 0.35740 0.36068 0.36397 70° 20° 0.36397 0.36727 0.37057 0.373S8 0.37720 0.38053 0.38386 69 21 0.38386 0.38721 0.3905s 0.39391 0.39727 0. 40065 0.40403 68 22 0.40403 0.40741 0. 41081 0.41421 0.41763 0.42105 0.42447 67 23 0.42447 0.42791 0.43136 0.43481 0.43828 0.44175 0.44523 66 24 0.44523 0.44872 0.45222 0.45573 0.45924 0.46277 0.46631 65° 25° 0. 46631 0.46985 0.47341 0.47698 0.48055 0.48414 0.48773 64 26 0.48773 0.49134 0.49495 0.49858 0.50222 0.50587 0.50953 63 27 0.50953 0.51320 0.51688 0.52057 0.52427 0.52798 0.53171 62 28 0.53171 0-53545 0.53920 0. 54296 0.54673 0.55051 0.55431 61 29 0.55431 0.55812 0.56194 0.56577 0. 56962 0.57348 0.57735 60° 30° 0.5773s 0.58124 0.58513 0.58905 0.59297 0. 59691 0.60086 59 31 0. 600S6 0.60483 0.60881 0.612S0 0.61681 0.62083 0.62487 58 32 0.62487 0.62892 0.63299 0.63707 0.64117 0.64528 0.64941 57 33 0. 64941 0.65355 0.65771 0. 661 89 0.66608 0.67028 0.67451 56 34 0.67451 0.67875 0.68301 0.68728 0.69157 0.69588 0.70021 55° 35° 0. 70021 0.70455 0. 70891 0.71329 0.71769 0. 72211 0.72654 54 36 0.72654 0.73100 0.73547 0.73996 0.74447 0. 74900 0.7535s. 53 37 0.7535s 0.75812 0.76272 0.76733 0.77196 0. 77661 0. 78129 52' 38 0.78129 0.78598 0. 79070 0.79544 0.80020 0.80498 0.80978 51 39 0.80978 0.81461 0.81946 0.82434 0.82923 0.83415 0.83910 50° 40° 0.83910 0.84407 0. ■?49o6 0.85408 0.85912 0.86419 0.86929 49 41 0.86929 0.87441 0.87955 0.88473 0.88992 0.89515 0.90040 48 42 0.90040 0.90569 0.91099 0.91633 0.92170 0.92709 0.93252 47 43 0.93252 0.93797 0.94345 0. 94896 0.95451 0.96008 0.96569 46 44 0. 96569 0.97133 0.97700 0.98270 0.98843 0.99420 1 . 00000 45° ingle 60' 50' 40' 30' 20' 10' 0' / COTANG£NT Trigonometric Fdnctions 41 and Cotangents TANGENT Angle ; 0' 10' 20' 30' 40' 50' 60' 45"! I. 00000' 1.00583 1.01170 1.01761 1-02355 1 .02952 1-03553 44 46 11.03553 I. 04158 I .04766 1.05378 1.05994 1 .06613 1.07237 43 47 1.07237 1.07S64 I .0S496 , 1.09131, 1.09770 1 . 10414 1 . 11061 42 48 I. iio6i 1.11713 I. 12369 1.13029 1.13694 1-14363 1-15037 41 49 1.15037 I-15715 I. 16398 I. 17085 1.17777 1.18474 1-19175 40° 50° I. "^175 I. 19882 1.20593 1 . 21310 1.22031 1.22758 1-23490 39 51 4.23490 1.24227 I . 24969 1.25717 1.26471 1.27230 1-27994 38 52 1.27994 1.28764 I. 29541 1-30323 1.31110 1.31904 1-32704 37 53 1.32704 I. 3351 1 1.34323 I-35142 1.35968 1 . 36800 1-37638 36 54 1.37638 1.38484 1.39336 I. 40195 I .41061 1.41934 I. 42815 35° 55°ii.428is 1.43703 1.44598 I. 45501 I . 46411 1-47330 1.48256 34 56 1.48256 1.49190 I. 50133 1.510S4 1.52043 1.53010 1.53987 33 57 1.53987 1.54972 1.55966 1.56969 1-57981 I . 59002 1 . 60033 32 58 I . 60033 I. 61074 I. 62125 I. 63185 1.64256 1-65337 1.66428 31 59 1.66428 1.67530 1.68643 1 . 69766 I. 70901 1.72047 1.73205 30° 60° 1.73205 1.74375 1.75556 r. 76749 1.77955 I. 79174 I . 80405 29 61 1.80405 I . 81649 1.82906 I. 84177 1.85462 1.86760 1.88073 28 62 1.8S073 I . 89400 I. 90741 1.9209S 1.93470 1.94858 1.96261 27 63 I .96261 1.97680 I .99116 2.00569 2. 02039 2.03526 2.05030 26 64 2.05030 2.06553 2.08094 2.09654 2. 11233 2. 12832 2.14451 25° 65° 2.14451 2. 16090 2.17749 2.19430 2.21132 2.22857 2. 24604 24 66 2.24604 2.26374 2. 28167 2 . 29984 2.31826 2.33693 2.35585 23 67 68 2.35585 2.47509 2.37504 2.49597_ 2.39449 2.5171S 2.41421 2.53865 2.43422 2.45451 2.47509 2.60509 22 21 2. 56046 2.58261 69 2.60509 2.62791 2.65109 2.67462 2.69853 2.72281 2.74748 20° 70° 2.747.4' '2.77254 2.79802 2.82391 2.85023 2.87700 2.90421 19 71 2.90^:- J. 93189 2.96004 2.98869 3-01783 3.04749 3.0776S 18 72 3-0776' ;i . 10842 3-13972 3-17159 3.20406 3-23714 3-27085 17 73 3-2708; 3.30521 3-34023 3-37594 3-41236 3-44951 3-48741 16 74 3-48741 3.52609 3-56557 3.60588 3.64705 3.68909 3-73205 15° 75° 3-73205 3-77595 3-82083 3.86671 3-91364 3-96165 4.01078 14 76 4.01078 4.06107 4. 11256 4.16530 4-21933 4.27471 4.33148 13 77 4.33148 4.38969 4.44942 4.51071 4-57363 4.63825 4.70463 12 78 4.70463 4.77286 4.84300 4.91516 4.98940 5.06584 5-14455 II 79 5-14455 5.22566 5-30928 5-39552 5-48451 S-57638 5.67128 10° 80° 5.67128 5. 76937 5.87080 5-97576 6.08444 6.19703 6.31375 9 81 6.31375 6.43484 6.56055 6. 69116 6.82694 6.96823 7.11537 8 82 7. "537 7.26873 7.42871 7-59575 7-77035 7-95302 8.14435 7 83 84 8.14435 9-51436 8.34496 9.78817 8.55555 10.0780 8.77689 10.3854 9.00983 10.7119 9-25530 9-51436 6 5° 11.0594 11.4301 8S° II. 4301 11.8262 12.2505 12.7062 13.1969 13.7267 14.3007 4 86 14.3007 14.9244 15.6048 16.3499 17.1693 18.0750 19.0811 3 87 19.0811 20. 2056 21.4704 22.9038 24.5418 26.4316 28.6363 2 88 28.6363 31.2416 34.3678 38.1885 42,9641 49.1039 57.2900 I 69 57.2900 OS. 7501 85.9398 ,114.589 171.885 343- 774 1 ~ 0° 60' 50' 40' 30' 20' 10' 0' ; ^ngle COTANGENT 42 Trigonometric Functions 27. Natural Trigonometric Functions Angle Arc Sin Tan Sec Cosec Cot Cos 1° 0.017s 0.017s 0.0175 I . ooos 57.299 57.290 0.9998 1-5533 89 2 0.0349 0.0349 0.0349 I .0006 28. 654 28.636 0.9994 1-5359 88 3 1 0.0524 0.0523 0.0524 I . 0014 19.107 19. 081 0. 99S6 1.5184 87 4 0.0698 0.0698 0.0699 I .0024 14.336 14.301 0.9976 1.5010 86 5 0.0873 0.0872 0.0875 1.0038 11.474 11.430 0. 9962 1-4835 8s° 6° 0. 1047 0.1045 0. 1051 1.0055 9.5668 9.5144 0.9945 I. 4661 84 7 0. 1222 0. 1219 0. 1228 1.0075 8.205s 8.1443 0.9925 1 . 4486 83 8 0.1396 0.1392 0. 1405 I .0098 7.1853 7.1154 0.9903 1.4312 8a 9 0.1571 0. 1564 0. 1584 I. 0125 6.3925 6.3138 0.9877 1.4137 81 10 0.1745 0.1736 0.1763 I. 0154 5.7588 5.6713 0.9848 1-3963 80° 11° 0. 1920 0. 1908 0.1944 I. 0187 5. 2408 5.1446 0.9816 1.3788 79 12 0.2094 0.2079 0. 2126 1.0223 4.8097 4.7046 0.9781 1.3614 78 13 0. 2269 0. 2250 0.2309 1.0263 4.4454 4.331s 0.9744 1.3439 77 14 0.2443 0.2419 0.2493 1.0306 4.1336 4.0108 0.9703 1.3265 76 15 0.2618 0.2588 0.2679 1-0353 3 8637 3.7321 0.9659 1 . 3090 75° 16° 0.2793 0.2756 0.2867 I . 0403 3.6280 3.4874 0.9613 I. 2915 74 17 0. 2967 0.2924 0.3057 1.0457 3.4203 3.2709 0.9563 1.2741 73 18 0.3142 0.3090 0.3249 1. 05 1 5 3.2361 3.0777 0.9511 1.2566 72 19 0.3316 0.3256 0.3443 1.0576 3.0716 2.9042 0.9455 1.239? 71 20 0.3491 0.3420 0.3640 1.0642 2.9238 2.7475 0.9397 1. 2217 70° 21° 0.3665 0.3584 0.3839 1.0711 2.7904 2.6051 0.9336 I . 2043 69 22 0.3840 0.3746 0. 4040 1.0785 2.669s 2.4751 0.9272 1.1868 68 23 0.4014 0.3907 0.4245 1.0864 2.5593,2.3559 0.9205 1.1694 67 34 0.4189 0.4067 0.4452 1.0946 2.4586 2. 2460 0.9135 1-1519 66 25 0.4363 0.4226 0.4663 I. 1034 2.3662 2. 1445 0.9063 1-1345 65° 26° 0.4538 0.4384 0.4877 I. 1126 2.2812 2.0503 0.8988 1. 1 1 70 64 27 0.4712 0.4540 0.5095 I. 1223 2. 2027 1.9626 0. 8910 1.0996 63 28 0.4887 0.4695 0.5317 1.1326 2.1301 1.8807 0.8829 1.0821 6a 29 0. 5061 0.4848 0.5543 I. 1434 2.0627 I . 8040 0.8746 1.0647 61 30 0.5236 0. 5000 0.5774 1.1547 2 . 0000 1.7321 0.8660 1.0472 60° 31° 0.5411 0.5150 0,6009 I. 1666 I. 9416 I . 6643 0.8572 1.0297 59 32 0.5585 0.5299 0.6249 1.1792 I. 8871 I . 6003 0.8480 1:0123 58 33 0. 5760 0.5446 0.6494 1-1924 I. 8361 1.5399 0.8387 0.9948 57 34 0.5934 0.5592 0.6745 I . 2062 1.7883 1.4826 0. 8290 0.9774 56 35 0.6109 0.5736 0.7002 1.2208 1-7434 I. 4281 0.8192 0.9599 55° 36° 0.6283 O.587S 0.7265 I. 2361 1.7013 1.3764 0.8090 0.9425 54 37 0.6458 0.6018 0.7536 1.2521 I. 6616 1.3270 0.7986 0.9250 53 38 0.6632 0.6157 0.7813 I. 2690 1.6243 I. 2799 0.7880 0. 9076 52 39 0.6807 0.6293 0.8098 I . 2868 I . 5890 I . 2349 0.7771 0.S901 51 40 0.6981 0.6428 0.S391 1.3054 1-5557 I. 1918 0.7660 0.8727 50° 41° 0.7156 0.6561 0.8693 1.3250 1-5243 1.1504 0.7547 0.8552 49 42 0.7330 0.6691 0. 9004 1.3456 1.4945 1. 1106 0.7431 0.8378 48 43 0.7505 0.6820 0.9325 1.3673 1 . 4663 1.0724 0.7314 0.8203 47 44 0.7679 0.6947 0.9657 1.3902 I . 4396 1.0355 0.7193 0.8029 46 45 0.7854 0.7071 I .0000 I. 4142 1-4142 I . 0000 0.7071 0.7854 45° Cos Cot Cosec Sec Tan Sin Arc Angle Trigonometric Functions 7"% 43 28. Explanations Table 25 gives Natural Sines and Cosines of angles for every 10 minutes from 0° 0' to 90° 0'. When the sine is sought, the angle, or argument, is to be looked for at the left-hand side and at the top of the page; when the cosine is sought, the angle is to looked for at the right-hand side and at the foot of the page. Thus the sine of 64° 50' is 0.90507, but the cosine of 64° 50' is 0.42525. Again, the number 0.36108 is seen to be the sine of 21° 10' or the cosine of 68° 50'. Table 26, which is arranged like table 25, gives Natural Tan- gents and Cotangents of angles. Interpolation in these tables can be made for a given angle like 13° 27' as explained in Art. 3, but the last figure of the function may be sometimes one unit in error for the sine and cosine, and more than one unit for a tangent of an angle greater than 60° or for a cotangent of an angle less than 30°. For example the table gives sin 14° 12' =0.24530 and cot 14° 12' =3.95205, the former being in error one unit in the last place and the latter nine units. Table 27 gives all common Trigonometric Functions to four places. Here Arc is the length of the arc of the angle in a circle of radius unity; thus arc 25° =0.4363, as may be otherwise found from Table 22. The secant is the reciprocal of the cosine and the cosecant of the sine. Interpolation need rarely be made in this table. When the angle is less than 45° look for it at the left- hand side of the table and for the name of the functions at the top; for angles between 45° and 90° look for the angle at right-hand side and for the name of the function at the foot. Thus, sin 41° = 0.6561, cos 50° =0.6428, sec 75° =3.8637. Inverse Interpolation is the process of finding an argument from a given value of a function. If the sine be given as 0.70916, the corresponding angle is seen from Table 25 to be 45° 10', and here no interpolation is necessary. But let the sine 0.70987 be given, then the angle is seen to lie between 45° 10' and 45° 20'; the difference of the sines of these angles is 0.00205, hence the 44 Trigonometric Functions difference for 1' is 0.000205; now the given sine is greater than the sine of 45° 10' by 0.00071, then 71/20.7 =3.5, so that the required angle is 45° 13. '5. It is important to note whether or not the values of the function increase with the argument; thus, if the cosine 0.94698 be given, the angle is seen to be less than 18° 50' and more than 18° 40', so that the computed difference is to be sub- tracted; here the angle will be found to be 18° 47' closely. 29. Exercises 1. Find the values of the following functions to five decimal places: sin 25° 20'= cos 25° 20' = sin 85° 40'= cos 85° 40' = sin 77° 34'= cos 77° 34' = 2. Find the angle whose sine is 0.39700. Also the angle whose tangent is 1.24312. 3. Find the values of the following functions to four decimal places: sin 30° = cos 30° = tan 30° = sin 60° = cos 60° = tan 60° = sec 30° = cosec 60° = arc 60° = 4. Multiply the tangent of 11° 20' by the cotangent of the same angle. 5. Find sin 45° and cos 45° by Table 27, and then multiply them together. 6. Find the sine and cosine of 17°, square each by help of Table 7, and then add these squares. 7. Find the value of arc 78° by Table 22 and also by Table 27. 8. Find the values of the following functions to five decimal places: cos 32° 33'= cot 32° 33' = sin 57° 27'= tan 57° 27' = cot 40° 15'= cot 49° 45' = 0. Test the equation cos- — sin- 9 = cos 20 by assuming'a value of e, taking the functions from Table 27, and the squares from Table 7. 10. A vertical post 3.64 foot high casts a shadow 10.0 feet long on level ground. IIow high is the sun above the hori/on? 11. Find thefangles whose sines ^re 0.5000, 0.8660, and 0.9979; also the angles whose tangents are 0.1, 0.3, 0.5, 0.7, and 0.9; also the angles whose tangents are 1.0, 2.0, 3.0, and 4.0. Chapter 5 LOGARITHMIC TABLES 46 Logarithmic Tables 30. Common Logarithms « lO 0123456789 00000 00432 00860 01284 01703 02 1 1^ 02531 02938 03342 03743 II 04139 04532 04922 05308 05690 06070 ^446 06819 07188 07555 12 07918 08279 08636 o§99i 09342 09691 10037 10380 10721 11059 13 "394 11727 12057 123S5 12710 13033 13354 13672 13988 14301 . 14 14613 14922 15229 15534 15836 16137 16435 16732 17026 17319 IS 17609 17898 18184 18469 18752 19033 19312 19590 19866 20140 i6 20412 20683 209'52 21219 214S4 21748 22011 22272 22531 22789 17 2304s 23300 23553 23805 2405s 24304 24551 24797 25042 25285 i8 25527 25768 26007 26245 26482 26717 26951 271S4 27416 27646 19 27875 28103 28330 28556 28780 29003 29226 29447 29667 29885 20 30103 30320 30535 30750 30963 31175 31387 31597 31806 32015 21 32222 32428 32634 3283S 33041 33244 33445 33646 33846 34044 22 34242 34439 3463 s 34830 35025 35218 3S4II 35603 35793 359S4 33 36173 36361 36549 36736 36922 37107 37291 37475 37658 37840 24 38021 38202 38382 38561 38739 38917 39094 39270 39445 39620 25 39794 39967 40140 40312 40483 40654 40824 40993 41162 41330 26 41497 41664 41830 41996 42160 42325 42488 42651 42813 42975 27 43136 43297 43457 43616 43775 43933 44091 44248 44404 44560 28 44716 44871 45025 45179 45332 45484 45637 45788 45939 46090 29 46240 46389 46538 46687 46S35 46982 47129 47276 47422 47567 30 47712 47857 48001 48144 48287 48430 4S572 48714 4885s 48996 31 49136 49276 49415 49554 49693 49S31 49969 50106 50243 50379 32 50515 50651 50786 50920 5105s 51188 51322 5145s 51587 51720 33 51851 51983 52114 52244 52375 52504 52634 52763 52892 53020 34 53148 53275 53403 53529 53656 53782 53908 54033 54158 54283 35 54407 54531 54654 54777 54900 55023 55145 55267 55388 55509 36 55630 55751 55871 55991 56110 56229 56348 56467 56585 56703 37 56820 56937 57054 57171 57287 57403 57519 57634 57749 57S64 38 57978 58092 58206 58320 58433 58546 58659 58771 58883 58995 39 59106 59218 59329 59439 59550 59660 59770 59879 5998S 60097 40 60206 60314 60423 60531 60638 60746 60853 60959 61066 61172 41 61278 613S4 61490 61595 61700 61805 61909 62014 62118 62221 42 62325 62428 62531 62634 62737 62839 62941 63043 63144 63246 43 63347 63448 63548 63649 63749 63849 63949 6404S 64147 64246 44 64345 64444 64542 64640 64738 64836 64933 65031 65128 65225 45 65321 65418 65514 65610 65706 65801 65S96 65992 66087 661S1 46 66276 66370 66464 66558 66652 66745 66839 66932 67025 67117 47 67210 67302 67394 67486 67578 67669 67761 67852 67943 68034 48 68124 68215 6S305 68395 68485 68574 68664 68753 68842 68931 49 69020 69108 69197 69285 693*73 69461 69548 69636 69723 69810 50 6989^ 69984 70070 70157 70243 70329 70415 70501 70586 70672 51 70757 70842 70927 71012 71096 7 II 81 71265 71349 71433 71517 52 71600 71684 71767 71850 71933 72016 72099 72x81 72263 72346 53 72428 72509 72591 72673 72754 72835 72916 72997 73078 73159 54 73239 73320 73400 73480 73560 73640 73719 73799 73878 73957 0123456789 Logarithmic Tables of Numbers from 000 to 999 47 n 01 2 34 56789J 55 74036 74115 74194 74273 743SI 74429 74507 74586 74663 74741 56 74819 74896 74974 75051 75128 75205 75282 75358 75435 755" 57 75^87 75664 7 5 740 75815 75891 75967 76042 76118 76193 76268 58 76343 7641S 76492 76567 76641 76716 76790 76S64 76938 77012 59 77085 77159 77232 77305 77379 77452 77525, 77597 77670 77743 6o 77815 77887 77960 78032 78104 78176 78247 78319 78390 78462 6i 78533 78604 78675 78746 78817 78888 78958 79029 79099 79169 62 79239 79309 79379 79449 79518 7958S 79657 79727 79796 79865 63 79934 80003 S0072 80140 80209 80277 80346 80414 80482 8oS5'ii 64 80618 S06S6 80754 80821 80889 80956 81023 81090 81158 8122J; 65 812^1 81358 81425 81491 S1558 81624 81690 81757 81823 81889 66 81954 82020 82086 82151 82217 82282 82347 82413 82478 82543 67 82607 82672 82737 82802 82866 82930 82995 83059 83123 83187 68 83251 83315 83378 83442 83506 83569 83632 83696 83759 S3822 69 83885 83948 8401 1 84073 84136 84198 84261 84323 84386 84448 70 84510 84572 84634 84696 84757 84819 84880 84942 85003 85065 71 85126 85187 85248 85309 85370 85431 85491 85552 85612 S5673 72 85733 85794 85854 85914 85974 86034 86094 86153 86213 86273 73 86332 86392 86451 86510 86570 86629 86688 86747 86806 86864 74 86923 86982 87040 87099 87157 87216 87274 87332 87390 87448 75 87506 87564 87622 87679 87737 87795 87852 87910 87967 88024 76 88081 88138 88195 88252 88309 88366 88423 88480 88536 88593 77 88649 88705 88762 88818 88874 88930 88986 89042 89098 89154 78 89209 89265 89321 89376 89432 89487 S9542 89597 89653 89708 79 89763 89818 89873 89927 89982 90037 90091 90146 90200 90255 80 90309 90363 90417 90472 90526 90580 90634 90687 90741 9079s 81 90S49 90903 90956 91009 91062 91116 91169 91222 91275 91328 82 91381 91434 91487 91540 91593 91645 91698 91751 91803 91855 83 91908 91960 92012 92065 92117 92169 92221 92273 92324 92376 84 92428 92480 92531 92583 92634 92686 92737 92788 92840 92891 85 92942 92993 93044 93095 93146 93197 93247 93298 93349 93399 86 93450 93500 93551 93601 93651 93702 93752 93802 93852 93902 87 93952 94002 94052 94101 941,51 94201 94250 94300 94349 94399 88 9444S 94498 94547 94596 94645 94694 94743 94792 94841 94S90 89 94939 94988 95036 95085 95134 95182 95231 95279 95328 95376 90 95424 95472 95521 95569 95617 95665 95713 95761 95809 95856 91 95904 95952 95999 96047 9609s 96142 96190 96237 96284 96332 92 96379 96426 96473 96520 96567 96614 96661 96708 96755 96S02 93 96848 96895 96942 96988 97035 97081 97128 97174 97220 97267 94 97313 97359 97405 97451 97497 97543 97589 97635 97681 97727 95 97772 97818 97864 97909 97955 98000 98046 98091 98137 98182 96 98227 98272 98318 98363 98408 98453 98498 98543 98588 98632 97 98677 98722 98767 98811 98856 98900 98945 98989 99034 99078 98 99123 99167 99211 99255 99300 99344 99388 99432 99476 99520 99 99564 99607 99651 99695 99739 99782 99826 99870 99913 99957 01 234 56 f 89 J 48 Logarithmic Tables 31. Common Logarithms tOG SINE Angle o' lo' 20' 30' 40' 50' 60' 0° . — 00 3-46373 3-76475 3.94084 2.06578 2.16268 2. 24186 89 I 2.24186 2.30879 2.36678 2.41792 2 .46366 2.50504 2.54282 88 2 3 2.54282 2.71880 2-57757 2.74226 5.60973 2.76451 2.63968 2.78568 2 . 66769 2.80585 2 . 69400 2.82513 2.71880 87 2.84358 86 4 2.84358 2.86128 2.87829 2.89464 »2.9i040 2.92561 2.94030 85° 84 83 S 6 7 2.94030 T. 01923 T.0S589 2.95450 I. 03109 1.09606 2.96825 T. 04262 T. 10599 2.98157 - 2 • 994J0 1.00704 T. 07548 I. 01923 1.08589 1.05386 1.11570 1. 0648 1 1. 12519 I. 13447 I- 14356 82 8 9 I. 14356 1 .19433: 1-15245 1.20223 I . 16116 T. 20999 I . 16970 I . 21761 T. 17807 1.22509 I. 18628 I -19433 81 80° 1.23244 1.23967 10° II 12 T. 23967 1.28060 T. 31788 T. 24677 1.28705 1-32378 1-25376 1.29340 T. 26063 I . 29966 X 26739 T. 27405 T. 28060 79 78 77 1.30582 'T. 34100 I. 31189 T- 34658 I. 31788 r-35209 1.32960 1-33534 13 1.35209 1-35752 1.36289 T. 36819 I. 37341 1-37858 1.38368 76 14 T. 38368 T. 38871 1.39369 I.39S60 1.40346 1.40825 1.41300 75° 15° T. 41300 T. 41768 1.42232 I . 42690 1-43143 1-43591 1.44034 74 16 1.44034 1.44472 1.44905 1-45334 1-45758 1.4617S 1.46594 73 17 T. 46594 1.47005 1.47411 I. 47814 I. 48213 T. 48607 1 .48998 72 18 1.48998 1.49385 1.49768 I . 50148 1-50523 T. 50896 T. 51264 71 19 T. 51264 I. 51629 T.51991 1-52350 1-52705 1-53056 1-53405 70° 20° 1-53405 1.53751 1-54093 T- 54433 T- 54769 T. 55102 1-55433 69 21 1-55433 1-55761 1.56085 1.56408 1.56727 1-57044 1-57358 68 22 1-57358 1.57669 1-57978 1.582S4 T. 58588 T. 58889 I . 591S8 67 23 T. 59188 1.59484 1-59778 I . 60070 1.60359 I . 60646 T. 60931 66 24 I. 6093 I 1.61214 I. 61494 T. 61773 1.62049 1.62323 1-62595 65° 25° 1-62595 1.62865 I -63133 T. 63398 T. 63662 T. 63924 T. 64184 64 26 I. 64184 1.64442 T. 64698 1-64953 1.65205 1.65456 1-65705 63 37 1-65705 1-65952 I. 66197 I . 66441 1.66682 I .66922 1.67161 62 28 1.67161 T.6739S 1-67633 1.67866 1.68098 T. 68328 1-68557 61 29 1-68557 1.68784 I . 69010 T. 69234 1.69456 1.69677 1.69897 60° 30° T. 69897 1.70115 1-70332 1-70547 I. 70761 T. 70973 1.71184 59 31 T. 71184 1-71393 I. 71602 I . 71809 T. 72014 T. 72218 1.72421 58 32 T. 72421 1.72622 1.72823 T. 73022 T. 73219 T. 73416 T. 73611 57 33 1.73611 1-73805 1-73997 I. 74189 1.74379 1.74568 1.74756 56 34 1-74756 I - 74943 I. 75128 1-75313 1.75496 1.75678 1.75859 55° 35° 1-75859 T. 76039 T. 76218 1-76395 T. 76572 1.76747 1.76922 54 36 1.76922 1.77095 1.77268 1-77439 1.77609 I- 77778 1-77946 53 37 T. 77946 I. 78113 I. 78280 I ■ 78445 I. 78609 1.78772 1-78934 52 38 1-78934 T. 79095 T. 79256 1-79415 1.79573 1-79731 1.79887 ■51 39 1.79887 I . 80043 T. 80197 1-80351 1.80504 T. 80656 T. 80807 50° 40° 1.80807 1.80957 T. 81106 T. 81254 T. 81402 T. 81549 I . 81694 49 41 T. 81694 T. 81839 I. 81983 I . 82126 T. 82269 T. 82410 1-82551 48 42 1-82551 T. 82691 1.82830 T.8296S T. 83106 T. 83242 1-83378 47 43 1-83378 I -83513 T. 83648 1.83781 T. 83914 1 . 84046 I. 84177 46 44 I. 84177 1.84308 1.84437 T. 84566 T. 84694 1.84822 1.84949 45° 60' 50' 4°' 30' 20' 10' 0' 1 \nglc I.OG COSIMi: 11 90--»" Logarithmic Tables 49 of Sines and Cosines LOG SINE Angl( 45" i 0' 10' 20' 30' 40' 50' 60' 1.84949 1.85074 I . 85200 1-85324 T. 85448 1-85571 1-85693 44 46 1.85693 I. 85815 1-^5936 T. 86056 T. 86176 1.86295 1.86413 43 47 I. 86413 1.86530 T. 86647 1.86763 T. 86879 T. 86993 T.S7107 42 48 f. 87107 I. 87221 1-87334 1.87446 1-87557 1.87668 T. 87778 41 49 1.87778 1.87887 1.87996 I. 88105 I. 88212 1.88319 T. 88425 40° 50° 1.88425 T. 88531 1.88636 T. 88741 1.88844 T. 88948 I. 89050 39 51 1.89050 I. 89152 T. 89254 T- 89354 1-89455 1-S9554 1.89653 38 52 1-89653 1.89752 T. 89849 1.89947 I . 90043 1.90139 1-90235 37 53 1-90235 1-90330 1.90424 I . 9051S I . 90611 1.90704 1.90796 36 54 1.90796 T. 90887 1.90978 I. 91069 1.91158 I. 91248 1-91336 35° 55° 1-91336 I. 91425 T . 9 1 5 1 2 I -91599 T. 91686 1.91772 1-91857 34 56 1-91857 I . 91942 I . 92027 1 . 921 1 1 T. 92194 1.92277 1-92359 33 57 1-92359 T. 92441 I . 92522 T. 92603 1.92683 1.92763 I. 92842 32 58 1.92842 T. 92921 T. 92999 1.93077 I-93154 1.93230 1-93307 31 59 1-93307 1.93382 1-93457 1-93532 1.93606 1.93680 1-93753 30° 60° I-937S3 T. 93826 T. 93898 1.93970 I. 9404 I I . 94112 T. 94182 29 61 I. 94182 1.94252 1-9432-1 1.94390 T. 94458 T. 94526 1-94593 28 62 1-94593 I. 94660 1.94727 1-94793 T. 94858 T. 94923 1 . 94988 27 63 T. 94988 1-95052 1.95116 1-95179 T. 95242 1-95304 T. 95366 26 64 1-95366 1-95427 T.954S8 1-95549 1.95609 T. 95668 1-95728 25° 65° 1.95728 T. 95786 1-95844 T. 95902 T. 95960 T. 96017 1.96073 24 66 1.96073 I . 96129 I. 96 1 85 T. 96240 T. 96294 1.96349 I . 96403 23 67 I . 96403 T. 96456 T. 96509 T. 96562 T. 96614 I . 96665 1,96717 22 68 T. 96717 1.96767 T. 96818 T. 96868 T. 96917 1.96966 1.97015 21 69 I-97015 1.97063 1.97111 1-97159 1.97206 T. 97252 1.97299 20 ' 70° 1,97299 1-97344 1.97390 1-97435 T. 97479 1-97523 1-97567 19 71 1-97567 I. 97610 1-97653 I . 97696 1-97738 1.97779 1.97S21 18 72 I. 97821 1.97861 1.97902 T. 97942 1.97982 1.98021 1.98060 17 73 1 . 98060 1.98098 I. 98136 I. 98174 1. 982 1 1 T. 98248 T. 98284 16 74 1.982S4 T. 98320 1-98356 I -98391 1.98426 1.98460 1.98494 15° 75° T. 98494 1.98528 I. 98561 1-98594 1.98627 T. 98659 T. 98690 14 76 T. 98690 I. 98722 1-98753 T. 98783 I. 98813 1.98843 T. 98872 13 77 T.98S72 T. 98901 1.98930 T. 98958 T. 98986 I. 99013 T. 99040 12 78 T. 99040 1 . 99067 1.99093 T.99119 1-99145 1.99170 I-99195 II 79 I-99195 I. 99219 1-99243 1.99267 1.99290 1-99313 1-99335 10° 80° 1-99335 1-99357 T-99379 1.99400 T. 99421 T. 99442 T. 99462 9 81 1.99462 1.99482 1.99501 1.99520 1-99539 1-99557 1-99575 8 82 1-99575 1-99593 I .99610 1.99627 1.99643 1.99659 1.99675 7 83 1-99675 1.99690 1-99705 1.99720 1-99734 1.99748^ 1.99761 6 84 I. 99761 T-99775 1.99787 X . 99800 1.99812 1.99823 1.99834 5° 85° 1.99834 1-99845 T. 99856 T. 99866 T. 99876 T. 99885 T. 99894 4 86 1.99894 1.99903 T.99911 I. 99919 I . 99926 1-99934 1.99940 3 87 1.99940 1.99947 1-99953 1-99959 T. 99964 1.99969 1.99974 2 88 T. 99974 1.99978 1.99982 1.99985 T. 99988 1.99991 1-99993 I 89 1-99993 1-99995 1.99997 1-99998, 1-99999 . 00000 0.00000 0° 60' 50' 40' 30' 20' 10' 0' / "ingle r,OG coscNs: 50 Logarithmic Tables 32. Common Logarithms LOG TANGENT fl- i^ Ang e 0' 10' 20' 30' 40' 50' 60' 89 0° — CO 3-46373 3.76476 3 • 94086 1 2.06581 2.16273 2.24192 I 2. 24192 2.30888 2.366S9 2.41807 2.46385 2-50527 2.54308 88 2 2.54308 2.57788 2 . 61009 2 . 64009 2.66816 2.69453 2.71940 87 3 2.71940 2.74292 2.76525 2. 78649 2 . 80674 2.82610 2.84464 86 4 2.84464 2.86243 2-87953 2.89598 2-91185 2.92716 2-94195 85° 5° 2-94195 2.95627 2.97013 2-98358 2 .99662 T. 00930 r. 02162 84 6 I. 02162 1-03361 I .04528 1 .05666 T. 06775 1-07858 T. 08914 83 7 T. 08914 1.09947 T. 10956 1-11943 I . 12909 1-13854 T. 14780 82 8 T. 14780 I. 15688 1-16577 I- 17450 T. 18306 1. 19146 1. 19971 81 9 J0° T.19971 1.207S2 1.21578 T. 22361 I-23130 1.23887 T. 24632 80° T. 24632 1-25365 T. 26086 T. 26797 1-27496 T. 28186 1.28865 79 II T. 28865 1-29535 1-30195 1.30846 1.31489 1.32122 1-32747 78 12 1-32747 1-33365 1-33974 1-34576 1-35170 I-3S757 1-36336 77 13 1-36336 1.36909 1-37476 1-38035 1-38589 1-39136 1-39677 76 14 1-39677 T. 40212 1.40742 1.41266 1-41784 1-42297 1.42805 75° 15° T. 42805 T- 43308 T. 43806 T. 44299 1-44787 1-45271 1-45750 74 i6 1-45750 1.46224 1.46694 I. 47160 1.47622 I . 48080 1-48534 73 17 1-48534 T. 48984 T. 49430 1.49872 1-50311 T- 50746 I. 51178 72 i8 1.51178 1.51606 1.52031 1-52452 1.52870 1-53285 1-53697 71 19 1-53697 1.54106 1-54512 1-54915 1-55315 1-55712 I. 56107 70° 20° T. 56107 T. 56498 T. 56887 1-57274 1-57658 1-58039 T. 58418 69 21 T. 58418 1-58794 1.59168 1 • 59540 1 ■ 59909 T. 60276 I. 60641 68 22 1 . 6064 1 I . 61004 T. 61364 1 . 61722 T. 62079 1-62433 1-62785 67 23 1.62785 1-63135 T. 63484 1.63S30 1-64175 T. 645 1 7 T. 64858 66 24 T.6485S I-65197 1-65535 T. 65870 1.66204 1-66537 T. 66867 65° 25° T. 66867 T. 67196 1.67524 T. 67850 T. 68174 1.68497 T. 68818 64 26 T. 68818 1.69138 1-69457 1-69774 T. 70089 T. 70404 T. 70717 63 27 1.70717 I. 71028 I-71339 1.71648 1-71955 1.72262 1.72567 62 28 1.72567 T. 72872 1-73175 1-73476 1-73777 1-74077 1-74375 61 29 1-74375 1.74673 T. 74969 1.75264 1-75558 1-75852 1.76144 60° 30° I. 76144 1-76435 T. 76725 1.77015 T- 77303 1-77591 1-77877 59 31 T. 77877 T. 78163 1. 7844S 1.78732 1.79015 1-79297 1-79579 58 32 1-79579 T. 79860 T. 80140 I . 80419 T. 80697 1.80975 I. 81252 57 33 I . 81252 T. 81528 T.S1803 T. 82078 T. 82352 T. 82626 1.82899 56 34 T. 82899 T. 83171 1-83442 1-83713: T. 83984 T. 84254 1-S4523 55° 35° i-f'4S23 r. 84791 1-85059 T- 85327' 1-85594 1.85860 T. 86126 54 36 T. 86126 1.86392 T. 86656 1.S6921 T. 87185 T.S7448 T. 87711 53 37 T.87711 1. 87974 1.88236 T. 88498' T. 88759 T. 89020 T. 89281 52 38 T. 89281 1.89541 T. 89801 1.90061 1.90320 T. 90578 1-90837 51 39 1.90837 T. 91095 1-91353 T. 91610 T.9186S T. 92125 1-92381 50° 40° 1.92381 T. 92638 T. 92894 I-93150 T. 93406 T. 93661 T. 93916 49 41 I. 93916 1.94171 T. 94426 I. 9468 1 1-94935 1 95190 1-95444 48 42 I -95444 1.95698 1-95952 1-96205; .1-96459 1.96712 T. 96966 47 43 I . 96966 T. 97219 1.97472 1-97725 1. 97978 T. 98231 T.984S4 46 44 T. 98484 1-98737 T. 98989 1.99242 1 I -99495 1.99747 0.00000 45° 60' 50' 40' 30' 20' 10' 0' / Ingle LOG COTA^GJiNT 5 Z, -^ . ^;. Logarithmic Tables of Tangents and Cotangents L,OG TANGENT 51 Ang e 0' 10' 20' 30' 40' 50' 60' 45° 0.00000 0.00253 0.00505 0.00758 O.OIOI I 0. 01263 0. 01516 44 46 0.01516 0.01769 0. 02022 0.02275 0.02528 0. 02781 0.03034 43 47 0.03034 0.03288 0.03541 0.03795 0.0404S 0.04302 0.04556 42 48 0.04556 0.04810 0.05065 0.05319 0.05574 0. 05829 0.06084 41 49 0.06084 0.06339 0.06594 0. 06850 0.07106 0.07362 0.07619 40° 50° 0.07619 0.07875 0.08132 0.08390 0.08647 0.08905 0.09163 39 51 0.09163 0.09422 0.09680 0.09939 0. IOI99 0. 10459 0. 10719 38 52 0. 10719 0. 10980 0. 11241 0. 11502 0. 11764 0. 12026 0. 12289 37 53 0. 12289 0. 12552 0. 12815 0.13079 0.13344 0. 13608 0.13874 36 54 0.13874 0. 14140 0. 14406 0.14673 0. 14941 0.15209 0.15477 35° 55° 0.15477 0.15746 0. 16016 0. 16287 0. 1655S 0. 16829 0. 17101 34 56 0. 17101 0.17374 0. 17648 0. 17922 0. 18197 0. 18472 0.18748 33 57 0.18748 0. 19025 0.19303 0. 19581 0. 19860 0. 20140 . 20421 32 58 0. 20421 0.20703 2. 209S5 0.21268 0.21552 0.21837 0. 22123 31 59 0.22123 0. 22409 0. 22697 0. 229S5 0.23275 0.23565 0.23856 30° 60° 0.23S56 0.24148 0.24442 0.24736 0.25031 0.25327 0.25625 29 61 0.25625 0.25923 0. 26223 0. 26524 0.26825 0.27128 0-27433 28 62 0-27433 0.27738 0. 28045 0.2S352 0.28661 0.28972 0.29283 27 63 0.292S3 0. 29596 0.29911 0. 30226 0.30543 0.30862 0. 31 182 26 64 0. 31182 0.31503 0.31826 0.32150 0.32476 0.32804 0.33133 25° 65° o-33^33 0.33463 0.33796 0.34130 0.34465 0.34803 0.35142 24 66 0.35142 0.35483 0.35825 0.36170 0.36516 0.36865 0-37215 23 67 0.37215 0.37567 0.37921 0.38278 0.38636 0.38996 0-39359 22 68 0-39359 0.39724 0.40091 0. 40460 0.40832 0.41206 0. 41582 21 69 0.41582 0.41961 0.42342 0.42726 0.43II3 0.43502 0.43893 20° 70° 0.43893 0.44288 0.44685 0.45085 0. 45488 0.45894 0.46303 19 71 0.46303 0.46715 0.47130 0.47548 0.47969 0.48394 0.48822 18 72 0.48822 0.49254 0.49689 0.50128 0.50570 0. 51016 0.51466 17 73 0.51466 0. 51920 0.52378 0. 52840 0.53306 0.53776 0.54250 16 74 0.54250 0.54729 0.55213 0.55701 0.56194 0. 56692 0.57195 15° 75° 0.57195 0.57703 0.58216 0.58734 0.59258 0.59788 0.60323 14 76 0.60323 0. 60864 0. 61411 0. 61965 0.62524 0.63091 0.63664 13 77 0.63664 0.64243 0. 64S30 0.65424 0.66026 0.66635 0.67253 12 78 0.67253 0.67878 0.68511 0. 69154 0.69805 0.70465 0-71135 II 79 0.7113s 0. 71814 0.72504 0.73203 0.73914 0.74635 0.75368 10° 80° 0.75368 0.76113 0.76S70 0.77639 0.7S422 0. 79218 0.80029 9 81 0.80029 0.80854 0. 81694 0. S2550 0.83423 0.84312 0.85220 8 82 0.85220 0.86146 0. 87091 0.S8057 0. 89044 0.90053 0.91086 7 83 0.91086 0.92142 0.93225 0.94334 0.95472 0.96639 0.97838 6 84 0.97838 0.99070 1.00338 I .01642 1.02987 I -043 73 1.05805 5° 85° 1.05805 1.07284 1.08S15 1. 10402 1. 12047 I. 13757 1-15536 4 86' 1-15536 1.17390 I. 19326 1.21351 1-23475 1.2570S I . 28060 3 87 I .^28060 1.30547 I. 33184 1.35991 1.38991 1 .42212 1.45692 2 88 1.45692 r. 49473 1.53615 1.58193 I. 63311 1.69112 1.75808 I 89 1.75808 1-83727 1.93419 2.05914 2.23524 2/53627 00 °° 60' 50' 40' 30' 20' 10' 0' / Lngle LOG COTANGENT J l/^ 52 Logarithmic Tables 33. Logarithms of Trigonometric Functions Angle 1° Log Arc 2 . 2419 Log Sin Log Tan 1 Log Sec Log Csc Log Cot Log Cos 2.2419 2. 2419 0. 0001 1.7581 1.7581 1-9999 0.1913 89 3 2.5429 2.5428 2.5431 0.0003 1-4572 1.4569 1-9997 0.1864 88 3 2. 7190 2.7188 2.7194 0.0006 1.2812 1.2806 1-9994 0. 1814 87 4 2.8439 2.8436 2 . 8446 ' O.OOII 1.1564 1-1554 1 . 99S9 0.1764 86 5 2 . 9408 2 . 9403 2.9420 0.0017 1-0597 1.0580 1-9983 0.1713 85° 6° 1.0200 I. 0192 T. 0216 0.0024 0.9808 0.9784 1-9976 0. 1662 84 7 1.0870 1.0859 T. 0891 0. 0032 0.9141 0. 9109 1.9968 0.1610 83 8 1.145° T.1436 T.1478 0. 0042 0.8564 0. 8522 1.9958 0.1557 82 9 T. 1961 I. 1943 I . 1997 ' 0. 0054 0.8057 0.8003 1.9946 0.1504 81 lO T.2419 1-2397 1.2463 0. 0066 0. 7603 0-7537 1-9934 0.1450 80° 11° 1.2833 1.2806 T.2887 0.0081 0.7194 0.7113 1-9919 0.1395 79 12 1.3211 I-3179 I . 3275 ' 0.0096 0.6821 0.6725 1.9904 0.1340 78 13 1.3558 I-3521 T.3634 0.0113 0.6479 0.6366 T.9887 0. 1284 77 14 1.3880 1-3837 1.3968 0.0131 0.6163 0. 6032 1.9869 0. 1227 76 15 I. 4180 1.4130 1.4281 0.0151 0.5870 0.5719 1-9849 0. 1169 75° i6° T.4460 1.4403 1.4575 0.0172 0.5S97 0.5425 T.9828 0. iiii 74 17 1.4723 1-4659 1.4853 0.0194 0.5341 0.5147 T. 9806 0. 1052 73 i8 I. 4971 T. 4900 1.5118 0.0218 0. 5100 0.4882 1.9782 0.0992 72 19 1.5206 I. 5126 1.5370 0.0243 0.4874 0.4630 1-9757 0.0931 71 20 1.5429 I -5341 1.5611 0.0270 0.4659 0.4389 1-9730 0.087a 70° 21° 1.5641 1-5543 1.5842 0.0298 0.44S7 0.4158 T.9702 0.0807 69 22 I • 5843 1-5736 1 . 6064 0.0328 0. 4264 0.3936 1-9672 0.0744I 68 23 1 . 6036 1-5919 T.6279 0.0360 0. 4081 0.3721 I . 9640 0.0G80 67 24 1 . 6221 1.6093 1.6486 0-0393 0.3907 0.3514 I . 9607 0.0614 66 25 1.6398 1.6259 T.6687 0.0427 0.3741 0-3313 1-9573 0.0548 6s° 26° 1.6569 T.6418 T.6882 0.0463 0.3582 0.3118 T-9537 0. 0481 64 27 T.6732 1.6570 1.7072 0. 0501 0.3430 0. 292S 1-9499 0. 0412 ^3 28 1.6890 1.6716 1.7257 0.0541 0.3284 0.2743 1-9459 0.0343 62 29 T.7042 1.6856 1.7438 0.0582 0.3144 0. 2562 1.9418 0.0272 61 30 1.7190 I . 6990 1.7614 0.0625 0. 3010 0.2386 I -9375 0.0200 60° 31° 1.7332 T.7118 T.7788 0.0669 0.2882 0. 2212 1-9331 0. 0127 59 32 I . 7470 1.7242 1.7958 0.0716 0.2758 0.2042 1.92S4 0.0053 58 33 T. 7604 1.-361 1.8125 0.0764 0.2639 0.1875 1.9236 1-9978 57 34 1-7734 1.7476 T. 8290 0. 0814 0.2524 0. 1710 T.91S6 I .9901 56 35 1-7859 T.7586 T.8452 0.0S66 0. 2414 0.1548 1-9134 T.9822 55° 36° 1.7982 T.7692 T.8613 0. 0920 0. 2308 0.1387 1.90S0 1.9743 54 37 1.8101 1.7795 T.8771 0.0977 0. 2205 0. 1229 1-9023 I .9G62 53 38 I. 8217 1-7893 T.8928 0.1035 0. 2107 0. 1072 1-8965 I -9579 52 39 1.8329 1-7989 T.90S4 0. 1095 0.2011 0. 0916 1.8905 1-9494 51 40 I. -8439 T.8081 1.9238 0.1157 0. 1919 0.0762 1-8843 X . 9408 50° 41° 1-8547 T.8169 1-9392 0. 1222 0.1831 0.0608 1-8778 1-9321 49 42 T.8651 1-8255 1-9544 0. 1289 0.1745 0.0456 I.8711 19231 48 43 T-8753 1-8338 1.9697 0.1359 0. 1662 0.0303 T.8641 T.9140 47 44 1.8853 T.8418 T.984S 0.1431 0. 1582 0. 0152 1-8569 I . 9046 46 45 I. 895 1 1-8495 0.0000 0-1505 0.1505 0. 0000 1-8495 1-8951 45° Log Cos Log Cot Log Csc Log Sec Log Tan Log Sin Log Arc Angle Logarithmic Tables 53 34. Explanations Table 30 gives five-place Logarithms of three-place numbers. The word logarithm and its abbreviation log, when used without qualification, refer to a common logarithm which is defined by the equation 10'°^ "=n. The table gives the decimal part, or mantissa, of a logarithm, while the integral part, or characteristic, is to be supplied by the follo^\ing rules: When the number is greater than 1 , the characteristic of its log is positive and is one less than the number of figures preceding the decimal point; thus, log 6.54=0.81558 log 65.4 =1.81558 log 654 =2.81858 • When the number is less than 1, the characteristic of its log is negative and is numerically one greater than the number of ciphers immediately following the decimal point, thus the four-place log of 6 is 0.77S2, and log 0.6 =T.77S2 log 0.06 = 2.7782 log 0.006 =3.7782 Here the characteristic is negative and the mantissa is positive, so that 2.7782 is the same as —2+0.7782. When the given number is an integral power of 10, the mantissa is zero, so that log 1000 =3, log 0.1 = - 1, log 0.01 = -2, and log 1 =0. Multiplication and Division may be performed by the help of logarithms and the use of the following rules: To multiply a by 6, log a+log b =log ab To divide a by b, log a —log b =log a/b Here log a and log b are obtained from Table 30 and the above rules for the characteristic; then the numbers corresponding to log cb and log a/b are found from the Table. For example, to mAil- tiply 68.31 by 0.2754, the sum of the logs is 1.27444 and its corre- sponding number is 18.812, the last decim.al being in error. Roots and Powers of numbers are m.ost conveniently computed by logarithms and the use of the following rules: To extract the nth root of a, -log a =log a'* n To raise a to the mth power, m log a =Iog a^ For example, to raise 0.8831 to the 1.53 power: 1.53X1.83448 52 Logarithmic Tables 33. Logarithms of Trigonometric Functions Angle 1° 'Log Arc 2. 2419 Log Sin Log Tan 1 Log Sec Log Csc Log Cot Log Cos 2.2419 1 2.2419 O.OOOI 1.7581 1.7581 1.9999 0.1913' 89 2 2.5429 2.5428 2.5431 0.0003 1-4572 1.4569 1.9997 0.1864 88 3 2.7190 2.7188 2.7194 0.0006 I. 2812 1 . 2806 1-9994 0.1814 87 4 2.8439 2.8436 2.8446 o.ooii I. 1564 1.1554 1.99S9 0.1764 86 5 2 . 9408 2 . 9403 2.9420 0. 0017 1-0597 1 .05S0 1 ■ 9983 0.1713, 85° 6° 1.0200 T.0192 I. 0216 0.0024 0.9808 0.9784 1-9976 0. 1662 84 7 T.0870 1.0859 I . 0891 0.0032 0.9141 0.9109 1.996S 0.1610' 83 8 T.1450 I. 1436 I. 1478 0.0042 0.S564 0.8522 1-995S 0.1557, 82 9 I. 1961 I. 1943 I. 1997 0. 0054 0.8057 0.8003 1.9946 0.1504 81 lO I. 2419 1.2397 I . 2463 0.0066 0.7603 0.7537 1-9934 0. 1450 80° 11° 1.2833 1.2806 T.2887 0.0081 0.7194 0.7113 1-9919 0.1395 79 12 T.3211 I. 3179 1.3275 0.0096 0.6821 0.6725 1 . 9904 0.1340 78 13 1.3558 I. 3521 T. 3634 0.0113 0.6479 0.6366 T.9887 0. 1284 77 14 T.3880 1.3837 i.3968j0.oi3i 0. 6163 0.6032 1.9869 0. 1227 76 15 T.4180 T.4130 1.4281 0.0151 0.5870 0.5719 1.9849 0.1169J 75° i6° T . 4460 1.4403 1.4575 0.0172 0.5597 0.5425 1.9828 0. iiii 74 17 1-4723 1.4659 1-4853 o.oi94;o.534i 0.5147 T.9806 0. 1052 73 i8 I. 4971 T.4900 1.51181 o.o2i8|o.5ioo 0.4882 1.9782 0.0992 72 19 T. 5206 I. 5126 T-5370 0.0243 0.4874 0.4630 1.9757 0.0931 71 20 1.5429 I. 5341 1.5611 0.0270 0.4659 0.4389 1.9730 0.087QJ 70° 21° T.5641 1.5543 1.5842 0.0298I0.4457 0.4158 T.9702 0.0807 1 69 22 15843 1.5736 I . 6064 0.0328 0.4264 0.3936 T.9672 0.0744 68 23 1 . 6036 I. 5919 T. 6279 0.0360 0.4081 0.3721 1 . 9640 0.0680 67 24 T. 6221 1.6093 T.6486 0.0393 0.3907 0.3514 T.9607 0.0614 66 25 1.6398 1.6259 1.6687 0.0427 0.3741 0.3313 1-9573 0.0548 65° 26° 1.6569 T.6418 1.6S82 0.0463 0.3582 0.3118 T-9537 0.0481 64 27 1.6732 1.6570 1.7072 0.0501 0-3430 0. 2928 1.9499 0.0412 03 28 1.6890 I. 6716 1-7257 0.0541 0.3284 0.2743 1-9459 0.0343 62 29 T.7042 T.6856 I - 7438 0.0582 0.3144 0.2562 I. 9418 0.0272 61 30 I. 7190 T.6990 I. 7614 0.0625 0.3010 0.2386 1-9375 0.0200 60° 31° 1.7332 T.7118 1.7788 0.0669 0.2882 0.2212 1-9331 0. 0127 59 32 T.7470 1.7242 1.7958 0.0716 0.2758 0.2042 1.9284 0.0053 58 33 1 . 7604 I. -361 1.8125 0.0764 0.2639 0.1875 1-9236 1.9978 57 34 1-7734 1.7476 T.8290 0.0814 0.2524 0. 1710 1.9 1 86 T.9901 56 35 1.7859 T.75S6 1.8452 0.0S66 0.2414 0. 1548 1-9134 T.9S22 55° 36° T.7982 T.7692 I. 8613 0.0920 0.2308 0.1387 T.9080 1-9743 54 37 1.8101 1-7795 T.8771 0.0977 0.2205 0. 1229 1.9023 I .9662 53 38 T.8217 1.7893 T.8928 0.1035 0. 2107 0. 1072 1-8965 1-9579 52 39 T.8329 1-7989 1.90S4 0. 1095 0. 2011 0.0916 1 - 8905 1.9494 51 40 1.8439 1.80S1 T.9238 0-1157 0. 1919 0.0762 1.8843 1.9408 50° 41° 1-8547 T.8169 1.9392 0. 1222 0.1831 0.0608 T.877S T.9321 49 42 T.86S1 1-8255 1.9544 0. 1289 0.1745 0.0456 T.8711 1. 923 1 48 43 7-8753 1-833S 1.9697 0.1359 0. 1662 0.0303 T.8641 I. 9 140 47 44 T-S853 T.8418 T.9848 0.1431 0. 1582 0.0152 T.8569 T.9046 46 45 I. 895 1 1-8495 . 0000 0-1505 0.1505 0.0000 1-8495 1.8951 45° Angle L.og Cos -og Cot Log Csc Log See, Log Tan Log Sin Log Arc Logarithmic Tables 53 34. Explanations Table 30 gives five-place Logarithms of three-place numbers. The word logarithm and its abbreviation log, when used without qualification, refer to a common logarithm which is defined by the equation 10'°^ "=n. The table gives the decimal part, or mantissa, of a logarithm, while the integral part, or characteristic, is to be supplied by the follo^ving rules: When the number is greater than 1, the characteristic of its log is positive and is one less than the number of figures preceding the decimal point ; thus, log 6.54 =0.81558 log 65.4 = L81558 log 654 =2.81858 When the number is less than 1, the characteristic of its log is negative and is numerically one greater than the number of ciphers immediately follo^^■ing the decimal point, thus the four-place log of 6 is 0.7782, and log 0.6 =T.77S2 log 0.06 = 2.7782 log 0.006 =3.7782 Here the characteristic is negative and the mantissa is positive, so that 2.7782 is the same as —2+0.7782. When the given number is an integral power of 10, the mantissa is zero, so that log lOCO = 3, log 0.1= -1, log 0.01 = -2, and log 1=0. ^Multiplication and Division may be performed by the help of logarithms and the use of the following rules : To multiply a by b, log «+log b =log ab To divide a bj' b, log a —log b =log a/b Here log a and log b are obtained from Table 30 and the above rules for the characteristic; then the numbers corresponding to log ab and log a/b are found from the Table. For example, to m.ul- tiply 68.31 by 0.2754, the sum of the logs is 1.27444 and its corre- sponding number is 18.812, the last decim.al being in error. Roots and Powers of numbers are most conveniently computed by logarithms and the use of the following rules : To extract the nth root of a, -log a =log a" n To raise a to the mth. power, m log a =log a^ For example, to raise 0.G831 to the 1.53 power: 1.53X1.83448 54 Logarithmic Tables = -1.53+1.27675 = 2.47+1.27675=1.74675, which is log of 0.55815. To find the fifth root of 0.6831: one-fifth of I.S3448 is i (-5+4.83448) =1.96690, which is log of 0.9262; or it is per- haps better to multiply bj' 0.2 instead of diWding by 5, thus 0.2 (I.S3448) = 0.2 (- 1 + 0.83448) = - 0.2 + 0.16690 = -1 + 0.8 +0.16690=1.96690. Tables 31 and 32 give logarithms of trigonometric functions to five decimal places at intervals of 10', the characteristics being given. For log sin and log tan look for the degree at the left-hand side and for the minutes at the top; for log cos and log cot look for the degree at the right-hand side and for the minutes at the foot. In many books these functions arc called logarithmic sines, logarithmic tangents, etc., while the characteristics are WTitten 8 and 9 instead of 2 and T, thus requiring some power of 10 to be subtracted later. Here the final logarithm of a computation is correct without such subtraction. Table 33 gives four-place logarithms of trigonometric func- tions, and its arrangement is the same as that of Table 29. 35. Exercises 1. Find the logarithms of 7.25, 7250, and 0.725. 2. Find the nuinbors whose logarithms are 1.64933, G.64933, 2.64933, 0.70520, 1.70520, and 0.73998. 3. Compute by logarithms the sixth powers of 3.25 and 0.325; also the sixth roots of 3.27 and 0.327. 4. Using logarithms, multiply 32. IG by 0.01555; also divide 1825 by 0.03245. 5. Find log sinos of 44° 22' and 44° 25'; also log cosines and tan- gents of the same angles. 0. r.ivcn a = h sin A /sin B compute the value of a when !> =973 feet, ^=24°40', and/^ = 73° 10'. 7. Compute the value of 0.375 tan 85°; also of sec 7S°Xcos7S°; also of cot 39° lO'Xsin 39° lO'/cos 39° 10'. 8. In a right-angled triangle the hypothcnuse is 505 feet; compute the other two sides when one of the acute angles is 53° 8'. 9. When a vortical post 3.125 feet high casts a shadow 8.275 feet long on a level plane, what is the elevation of the svui above the horizon? Chapter G WEIGHTS AND MEASURES 56 Weights and Measures 36. Length I meter = 10 decimeters =ioo centimeters = looo millimeters=io' microns =o.i deka- meter=o.oi hectometer = o.ooi kilometer = o-oooi myriameter. I U- S. yard = 3600/3937 meters (by definition); log = i.96ii37i. Meters Inches Feet Yards Links R°d^- Chains. P°'^^'°^ Gunter's perches Statute miles U.S. Nautical miles U.S. I 39-37 1.59517* 3.2808 0.51598* 1.0936 0.03886* 4-971 0.69644* 0.1988 0.04971 1.29850* 2.69644* 0.(3)6214 4-79335* 0.(3)5396 4.73207' 0.0254 5.40483* I 0.08333 2.920S2* ■0.02778 2.44370* 0.1263 1.10127* 0.0050S1 3-70333* 0.001263 3.10127* 0.(4)1578 SJ9818* o.(4)i37l S-13690 0.3048 1.48402* 12 I. 07918* 1 0.3333 1.52288* i-SiS 0.18046* 0.06061 2.78252* o.oisis 2. 18046* 0.(3)1894 4-27737* o.(3)i6dS 4.21608' 0.9144 1.96114* 36 I -55630* 3 0.47712* I 4-545 0-65758* 0.1818 1-25964* 0.0454s 2.65758* 0.(3)5682 4-75449* o.(3)4934 4.69320* 0.2012 1.30356* 7-92 0.89S73* 0-66 I-81954* 0.22 1.34242* I O-04 2-60206* O.OI 2.00000* 0.(3)1250 4.09691* o.(3)lo86 4-03564 5.029 0.70150* 198 2. 29667* 16-5 1. 2 1 748* 5-5 0. 74036* 25 1.39794* I 0.25 1-39794* o.(2)3I2S 3.49485* 0.(2)2714 3-43357* 20- 12 1.30356* 792 2.89S73* 66 1.81954* 22 1.34242* 100 2-00000* 4 0-60206* 1 0.0125 2.09691* 0.010S6 2.03564* 1609.3 3.2066s* 63360 4.801S2* 5280 3.72263* 1760 3-245SI* 8000 3-90309* 320 2.50515* 80 1.90309* 1 0. 8684 1.93873 1853-25 3.26753* 72962 4.86310* 6080. 2 3.78392* 2026.73 3-30680* 9212 3-96437* 368- 5 2-56643* 92.12 1.96437* 1. 1516 0.06128* I I nautical mile of the British admiralty = 6080 ft. i furlong = ^3 mile = 660 feet. 1 league = 3 miles = 24 furlongs. 1 fatliom = 2 yards = 6 feet. * Logarithm of the number immediately above. 37. Area I hectare = 100 ares = 10 000 centares or square meters. Square meters Square inches Square feet Square yards Square rods Square chains .\cres Square miles or sections 1 1550 3-19033* 10-764 1-03197* 1. i960 0.07773* 0-03954 2.59700* 0-12)2471 3 -39 288* 0.(3)2471 4.3928S* 0. (6)3861 7- 38670' o.(3)54S3 4.80967* I 0-006944 3.84164* o.C2)77i6 3.88740* (4)2551 5-40667* 0.(0)1594 6-20255' 0.(6)1594 7.20255' 0- (9)2491 10.39637* 0.09290 2.96803* 144 2.15S36* I O.IllI 1.04576* 0.(2)3673 3.56503* 0.(3)2296 4-36091* 0.(4)2296 S. 3609 1* 0. (7)3587 8. 55473* 0.8361 1.92227* 1296 3- 1 1 260* 9 0.95424* I 0-03306 2-51927* o.(2)2o66 3-31515* o.(3)2o66 4.31315* 0. (6)3228 7. S0898' 25.29 1.40300* 39204 4-5933* 272.25 2-43497* 30-23 1-48072* I 0.0625 2.7958S* 0.00625 3-79588* 0. (5)9766 6.98970' 404.69 3.60712* 627264 5-79745* 4356 3-63909* 484 2.6S484* 16 1-20412* 1 O-I I- 00000* 0. (3)IS62 4.19382* 4046.9 3.60712* 6272640 6-79745* 43560 4.63909* 4840 3.6S4S4* 160 2- 20.(I2* 10 1 . 00000* 1 0.001562 3.19382* 2589998 6. 41330* 27878400 7-44527* 3097600 6.49102* 102400 5.01030* 6400 3.80618* 640 3.80618* I * Logarithm of the number immediately above. Weights and Me.^sures 57 38. Speed and Velocity Cm per sec Km per hour Ft per sec Ft per min Miles per hour Knots I 0.036 2-53630* 0.032SI 2.51598* 1.96S5 0.29413* 0.02237 2.34965* 0.01942 2.2S825* 27-777S 1.44370* 1 0.9II34 T.9596S* 54.6806 1.737S3* 0.62137 1-79335* 0.53960 1.73207* 30.4801 1.48402* I-0973 0.04032* 1 60 1-77S1S* 0.6S182 T.83367* 0.59209 1-77238* 0.5080 1.70586* 0.01829 2.26217* 0.01667 2.22IS5* I 0.01136 2-05553* 0.009868 3-99423* ,44-7041 1.63035* 1-6093 0.20670* 1.46667 0.16633* 88 1.9444S* 1 0.86S39 1.93872* SI. 4971 1.71178* 1-8332 0.26793* 1.68894 0.22761* 101.337 2.00577* 1-13155 0.06128* I I knot = I nautical mile per hour. * Logarithm of the number immediately above. 39. Voliime and Capacity I literal cubic decimeter = 1000 cubic centimeters = 10 deciliters = 100 centiliters =" 1000 milliliters = 0.1 dekaliter = 0.01 hectoliter = 0.01 kiloliter = 0.001 cubic meters or steres. Cubic inches Cubic feet Cubic yards U. S. quarts Gallons Bushels U.S. Liters Liquid Dry U.S. liquid U.S. dry I 0.(3)57870 4.76246* 0. ■4^2143 0.017316 5.33109* 2.23845* 0.014881 2.17263* 0.004329 3.63639* 0.003720 3-57057* 0.(3)4650 4-66748* 0.016387 2.21430* 1728 3-23754* I 0.037037 29.922 2.56864*11.47599* 25-714 1.41017* 7-4805 0-87393* 6.4285 0.8081 I* 0.80356 T. 90502* 28.317 1.45205* 46656 4-66891* 27 1-43136* I 807.90 694.28 2.90736* 2.84153* 201.97 2.30330* 173-57 2.2394S* 21.696 1-33638* 764.56 2.88341* 57-75 1.76155* 0.033420 2.52401* 0.001238 3.09026* 1 0-83937 I. 93418* 0.25 1-39794* 0.21484 1.33212* 0.026855 2.42903* 0.94636 T. 97606* 67.201 1.82737* 0.038889 2.589S3* 0.001440 3-15847* 1.1637 0.06582* 1 0.29091 1.46376* 0.25 1-39794* 0.03125 2.49485* I. 1012 0.04188* 231 2.36361* 0.13368 r. 12607* 0.004951 3-69471* 4 0.60206*1 3-4375 0.53624* 1 0-85937 T- 93418* 0.10742 T. 03109* 3-7854 0.57812* 268.80 2.42943* 0-15536 I. 19189* 0.0037C1 4.65^6 3.76o53*,o.66788* 4 0.60201* I. 1637 0.06582* I 0.125 1.09691* 4-4049 0.64394* 2150.4 3-33253* 1-2445 0.09498* 0.046091 37.237 2.66362* 1.57097* 32 1-50515* 9.3092 0.96891* 8 0.90309* I 35-239 1-54703* 61.023 1.78550* 0.035313 2-54793* 0.00130S 1.0567 3.li639*|o.02394*i 0.9080S 1 r.9s8i2*j 0.26417 1.4218S* 0.22702 T. 35606* 0.028377 2-45297* I I U.S. liquid quart = 2 pLnts = 8 gLlls = 32 fluid ounces = 256 fluid drams = 768 fluid scruples, i bushel = 4 piecks. 1 Imperial gallon = 1.201 U. S. gallons = 0.1605 cu ft = 4.3460 liters. I U. S. gallon = 0.8327 Imperial gallons. 1 cubic foot = 6.229 Imperial gallons, 1 British bushel = 1.2837 cubic feet. Shipping Measure: i register ton = 100 cu ft. i U. S. shipping ton = 40 cuft> I British shipping ton = 42 cu ft • Logarithm of the number immediately above. 58 Weights and Measures 40. Weight (Engineers' System) or Mass (Physicists' System) I kilogram = iooo grams = o.ooi metric ton. i gm=io decigrams= too centigTams = looo milligrams = o. I dekagram = o.oi hectogram = o.ooi kilogram = 0.0001 myri igrara. 1 U.S. Avoirdupois pound = 04535924277 kg = (by definition) 7000/5760 troy pounds. Kilo- grams Grains Ounces Pounds Tons Avoir. Troy and apoth. Troy and apoth. Avoir. Short, 2000 lb Long, 2240 lb Metric, 1000 kg I 15432. 4. 18843* 35-274 I-S4745* 32-151 1.50719* 2.6792 0.42801* 2 . 2046 I 0. 34333* 0.001102 3.04230* 0.(3)9842 4-99309* O.OOI 3.00000* 0.W6480 S-81157* I 0.(2)2286 3-3S902* 0.002083 3-31876* 0.(3)1736 4-23958* o.(3)i42 4-15490* 0.028349 2-45255* 437-5 2.6409S* I 0.91146 T-95974* 0-075955 2.88056* 0.0625 2.79588* 0.(4)3"S 5-49485* 0.(4)2790 S.44563* 0. (4) 283s 5-45255* 0.031103 2.49281* 480 2.68124* I. 0971 0.04026* I 0.083333 2.92082* o.o6857i'o. (4)3429 2.83614* 5-53511* o.(3)3o6i 4.56508' 0.(4)3110 S.49281* 0-37324 1.57199* 5760 3.76042* 13. 166 1.11944* 12 I. 07918* 1 0.(3)4114 4.61429* 0.(3)3673 4-56508* 0.(3)3732 4-57199* o-4S3i59 1.65667* 7000 3.84510* 16 I. 20412* 14.583 1.16386* I-2IS3 0.08468* I 0.0005 4.69897* 0.(3)4464 4.6497s* o.(3)4S36 4-65667* 907.18 2-9577°* 32000 4-S0515* 29167. 4-46489* 2430.6 3-38570* 2000 3.30103* I 0.892S6 1.95078* 0.90718 1.95770* 1016. I 3.00691* 35840 4-55437* 32667 4.51410* 2722.2 3.43492* 2240 3-35025* I. 12 0.04922* I I . I 60 0.00691* 1000 3.00000* 35274 4-54745* 32151 4.50719* 2679.2 3.42801* 2204.6 3-34333* 1.1023 0.04230* 0.98421 1.99309* I I quarter = 28 lb avoir, i pennyweight = 24 gr=o.o5 oz troy. 1 oz avoir. = 16 drama avoir. =437.5 gr. 1 stone = 14 pounds. 1 centil = 100 pounds. 1 hundredweight™ T12 pounds. I apothecaries' ounce = 8 apoth. draras = 24 scruples = 48o grains. ♦ Logarithm of the number immediately above. 41. Energy or Work Joules = 10' erg Meter- kilograms Foot-pflunds Kilowatt- hours Chcval- vapeur- hours Horse- power- hours Rritish thermal units o-(3)947S 4.97660* I 0. 10197 1.00848* 0-73756 T.S6780* 0.(6)27778 7-4437°' 2-(6)37767 7.57711* 2-(^)3725l 7-S7II3* 9.80665 0.9915207* I 7-2330 0.85932* 0.(5)27241 6-43522* 0.(5)37937 6.56863* 0.(5)36530 6-56265* 0.009292 3.96812* 1-3558 0.13220* 0.13826 I. 14068* I 0.(6)37662 7-S7S90* 0.(6)51206 7.70932* 0.(6)50505 7.70333* 0.001285 3.108S0* 3.6x10" 6-55630* 3.6710 X 10' S-56478* 2.6552X10 6.42410* I 1-3596 0.13342* 1.3410 0.12743* 3411- 3.53290* 2.6478X10® 6.42288* 270000 S-43136* 1-9529X10® 6.29068* 0.73550 T. 86658* I 0.98631 I.9940I* 2509. 3.39948* 2.6845X10" 6.42887* 2-7375 Xio'' 5-43735* 1.98x10" 6.29667* 0-74571 T-87257* 1.0139 0.00598* I 2544. 3.40547 to5S- 5.02340* 107.6 2.03188* 778.4 2 . 8y 1 2 0* 0.0 293a 4.46710* o.o:>3986 4.60051* 0.033931 4-59453* 1 Logarithm of the namber immediately above. Weights and Measures 42. Pressure 59 KUo- grams per sq cm Pounds Short tons, Atmos- Columns of mercuryt Columns of watert Per sq in Persq ft persq ft pheres Meters Inches Meters Feet I 14-223 1.15300* 2048.2 3-3II37* I. 0241 0.01034* 0.96781 1.98579* 0.73553 1.86660* 28.958 I. 46177* I . 009 1.00038* 32.837 I. 5 1636* 0.070307 2.84700* I 144 2.15836* 0.072 2.85733* 0.06804 2.83279* 0.05 1 71 3 2.71360* 2.0359 0.30876* 0.70368 T.8473S* 2.3087 0.36336* 0.(8)4882 4.68863* 0.006944 3.84164* I 0.0005 4.69897* 0. (3)4725 4.67442* 0.(3)3591 4-55524* 0.014138 2.15040* 0.004887 3.68901* 0.016032 2.20500* 0.97648 T. 98966* 13-889 I. 14267* 2000 3-30103* I 0.94504 1-97545* 0.71823 1.85627* 28.277 1-45143* 9-7734 0.99004* 32.06s 1.50603* I-0333 0.01421* 14.697 I. 16722* 2116.3 3-32558* T.0582 0.02955* I O-76 T.88081* 29.921 1.47598* 10.342 1.01439* 33-929 1.53058* 1.3596 0.13340* 19-338 1.28640* 2784.6 3.44476* 1-3923 0.14373* I. 3158 0. 11919* I 39.37 1.59517* 13.607 1.13378* 44.644 1.64976* 0.034S33 3.53823* 0.49118 I. 69124* 70.729 I . 84960* 0.035365 2.54857* 0.033421 2.52402* 0.025400 2.40484* I 0-34563 T. 53861* 1.1340 0.05460* 0.099913 a. 99962* 1.4211 0. 15262* 204.64 2.31099* 0.10232 T. 00996* 0.096697 2.98541* 0.073489 2.86622* 2.8933 0.46139* I 3.2808 0.51598* 0.030453 3.48364* 0.43315 T. 63664* 62.374 1.79500* 0.031187 2-49397* 0.029473 2.46942* 0.022399 2.35024* 0.88187 T. 94540* 0.30480 T. 48402* I * Logarithm of the number immediately above. t At 15° C. and5 = fo. 43. Power I kilowatt = 1000 watts = 1000 joules per second. 1 horse-power = 550 foot-pounds per second. I cheval-vapeur = 75 kilogram-meters per second. Kilowatts Cheval- vapeur Poncelet Horse- power M-kg per sec Ft-lb per sec Kg cal per sec Btu per sec I 1 . 3600 0.13341* 1.0197 0.00848* 1. 341 0.12743* 101.97 2.00848* 737-5 2.86780* 0.2388 i. 37803* 0.9475 1.97660* 0.7355 1.86659* I 0-75 T. 87506* 0.9863 1.99402* 75 1.87506* 542. 5 2.73438* 0.1756 T. 24456* 0.6969 1-84318 0.980665 I. 99152* 1-333 0.12493* I 1.3151 0.11896* 100 2.00000* 723-3 2.85932* 0-2342 I. 36951* 0.9292 1-96812* 0.7457 r. 87257* 1.0139 0.00598* 0. 7604 T.S8104* I 76.04 I. 88104* 550 2.74036* 0. 1780 T-25055* 0-7066 I- 84916* 0.009807 3-99152* 0-01333 2.12493* O.OI 2.00000* 0.01315 2.11896* 1 7.233 0.85932* 0.002342 3-36951* 0.009292 3-96812* 0.001356 3.13220* 0.001843 3.26562* 0.00138 3.I406S* 0.001818 3-25964* 0.1383 T. 14068* I 0.0003237 4.51016* 0.001285 3.10880* 4.188 0.62201* 5-694 0.75542* 4.271 0.63049* 5.616 0.74945* 427-1 2.63049* 3089 3.48984* 1 3-968 0.59861* I-OS5 0.02340* 1-435 0.15682* 1.076 0.03188* 1.415 0.15084* 107.62 2.0318S* 778.4 2.89120* 0.2520 T. 40139* I * Logarithm of the number immediately above. 60 Weights and Measures 44. Explanations The preceding Tables give the numerical relations between different units of measure, all the numbers in one horizontal line being equivalents. For example, in Table 36 the first line shows that 1 meter is 39.37 inches, or 3.2S0S feet, or 1.0936 yards, etc.; also the seventh line from the top shows that 1 yard is 0.9144 meters, or 36 inches, or 3 feet, or 4.545 Unks, or 0.1818 rods, etc. When the notation (^) is seen it means that (^) is to be re- placed by three ciphers; thus in the first line of Table 36 an equivalent of 1 meter is O.OOOG214 statute miles and in Table 37 one square meter is 0.0000003SG1 square miles. Below each equivalent is given its five-place logarithm marked with a *. These are useful in converting quantities of one unit into those of another unit. For example, to find how many feet there are in 69.39 nautical miles: Table 36 gives 60S0.2 as the number of feet in one nautical mile, hence the required result is 69.39X6080.2 which may be found l)y ordinary multiplication;, or by logarithms the log of 69.39 is taken from Table 30 while the log of 6080.2 is found from Ta])le ,36 as 3.78392; the addition of the two logs gives 5.62522 which is the log of 421910, where the fifth significant figure is liable to error; hence the probable result obtained from this table by use of the given logarithm is that 69.39 nautical miles are equivalent to 421910 ± 2.5 feet. By direct multiplication it is found that the number of feet is 421905. Numbers in boldface type jare exact values, while all others in the body of a table are liable to an error of one-fourth of a unit in the last significant figure. The equivalents above a table and many of those below it are also exact by definition. As a general rule results obtained by the use of equivalents or logarithms taken from the body of a table are liable to an error in the fifth significant figure, except when an equivalent in the heavy type is used directly. Table 40 for measures of weight applies also to measures of Weights and Measures 61 force when the engineers' system is used, since the unit of force is the force of gravity which acts on the unit of weight at lati- tude 45° on the surface of the earth. Tables 41 and 43 contain some units which may not be familiar to students who use this book, but the time will come, if they enter on engineering work, when the equivalents of these tables may be of great value to them. Probably all, however, know the mean- ings of energy or work, of a horse-power and a kilowatt, and of a British thermal unit; concerning these a few exercises are given below. 45. Exercises 1. By Table 36 how many feet in one statute mile? how many meters in one kilometer? how many statute miles are equivalent to one nautical mile? 2. By Table 37 how many square feet in one acre? how many square meters are equivalent to one square inch? how many acres are equivalent to one square inch? 3. By Table 38 how many feet per minute are equivalent to one mile per hour? how many statute miles per hour are equivalent to one knot. 4. By Table 39 how many bushels are in one cubic j^ard? how many liquid gallons are in one cubic foot? how many hters are equivalent to 1000 liquid gallons? 5. By Table 40 how many grains in one avoirdupois pound? how many short tons in one long ton? how many kilograms in one metric ton? 6. By Table 41 how many kilowatt-hours are equivalent to 1 foot- pound? how many foot-pounds in one British thermal unit? 7. By Table 42 how many pounds per square inch are equivalent to one kilogram per square centimeter? how many feet of water will balance the pressure of one atmosphere? 8. By Table 43 how many foot-pounds per second make one horse-power? how many kilowatts are equivalent to 100 horse-powers? 9. How many meters are equivalent to 1000 feet? how many meters are equivalent to 300 yards? how many kilometers are equivalent to 62.2 statute miles? 10. How many acres are equivalent to 87,120 square feet? How many square meters are equivalent to 153,900 square inches? 62 Weights and Measures 11. How many U. S. liquid gallons are equivalent to 100,000 Imperial gallons? how many liters are equivalent to 624.3 cubic inches? 12. How many pounds avoirdupois are 1000 kilograms? how many long tons are 37.2 metric tons? 13. How many foot-pounds in 0.01 kilowatt-hours? How many horse-power-hours are equivalent to 6040 foot-pounds? 14. How many atmospheres will balance a column of water 68 feet high? how many inches of mercur)'^ will balance 100 atmospheres? 15. How many foot-pounds per second are equivalent to 100 horse-powers? how many horse-powers are equivalent to 55,000 foot- pounds per second? 16. How many inches in one meter? how many inches in one centi- meter? how many pounds avoirdupois in 100 long tons and how many in one metric ton? 17. What is the definition of a horse-power? of a joule? of a British thermal unit? of a kilowatt-hour? of a horse-power-hour? Chapter 7 MISCELLANEOUS TABLES 64 Miscellaneous Tables 46. Mathematical Constants Symbol Number Logarithm Symbol Number Logarithm 2 Tt 3-I415927 6.2831853 9.4247780 0.4971499 0.7981799 0.9742711 ^n il-^n 1-7724539 0.5641896 0.2485749 1.7514251 4^ 12. 5663706 1.0992099 n-^2 4.4428829 0.6476649 5^ 15-7079633 I. 1961200 ^2n 2.5066282 0.3990899 671 18.8495559 1.2753011 Vnl2 I. 2533141 o.o98o^99 7^ 21.9911486 1.3422479 Va/- S;r 25.1327412 1.4002399 0.7978844 I. 9019401 9;r 28.2743339 I. 4513924 £ 2.7182818 0.4342945 4 7r/3 4.1S77902 0.6220886 £2 7.3890568 0.8685890 7Zl2 1-5707963 0. 1961 199 l/£ 0.3678794 1-5657055 TtiA 0.7853982 T. 8950899 l/£^ 0.1353353 I . 1314110 nib 0.5235988 I. 7189986 /' 0.4342945 1-6377843 ~/3° 0. 1047198 T. 0200286 i/,a 2.3025S51 0.3622157 ;i-/i8o 0.0174533 2.2418774 sin 1° 0.0174524 2-2418553 I/.T 0.3183099 T. 5028501 sin i' 0.0002909 4.4637261 2 In 0.6366198 T. 8038801 sin i" 0.0000048 6.6855749 i8o In 57-2957795 I. 7581226 2 2. 0. 3010300 joSoo In 3437-74677 3-5362739 V2 648000 /;: 206264.806 5-3144251 1.4142136 0.1505150 -2 9. 8696044 0.9942997 VV2 0.7071068 1.8494850 iln^ . 1 1 3 2 1 2 1.0057003 3 3- 0.4771213 n^ 31.0062767 I. 4914496 ^3 1.732050S 0.2385606 1/7:3 0.0322516 2.5085504 s/y-i 0-5773503 1.7614394 47. Decimal Equivalents of Common Fractions Fract. 1/2 Decimal Logarithm Fract Decimal Logarithm Fract. 1/32 Decimal Logarithm 0-5 1.69897 1/8 0.125 I. 09691 0.03125 2.49485 i/3 0.33333 T. 52288 3/8 0-37S 1.57403 3/32 0.09375 2.97197 ■^b 0.66667 I. 82391 5/8 0.625 1.79588 5/32 0. 15625 1.19382 V4 0.25 1-39794 7/8 0.875 I. 94201 7/32 O.21S75 1.3399s a/4 0-75 1.87506 1/12 0.08333 2 . 92082 9/32 0.28125 1.44909 V5 0.2 1-30103 5/12 0.41667 T. 61979 "/32 0.34375 1.53624 2/5 0.4 1 . 60206 7/12 0.58333 T. 76592 1-V32 0.40625 T.60S79 ■•V5 0.6 1-7781S 11/12 0.91667 I. 96211 15/32 0.46S75 1.67094 ^/5 Ve 0.8 0. 16667 1 . 90309 1.22185 T. 92082 Vie 0.0625 2.79588 17/32 0.53125 1.72530 5/6 0.83333 a/16 5/16 0.1875 0.3125 1.27300 1.49485 19/32 21/.-12 0.59375 0. 656''5 1.77360 I. 81707 V? 0. 14286 1.15490 7/18 0.4375 T. 64098 23/32 0.71875 T. 85658 7? •V7 0.28571 0.42857 1-45593 1 .63202 T. 75696 1-85387 7 -9330s 0/16 0.5625 T. 75012 2,5/32 0.78125 T. 89279 ■V7 6/7 0.57143 0.71429 0.85714 11/10 "/lO 15/10 0.6875 0.8125 0.9375 1.83727 1.90982 T. 97197 27/32 29/32 31/32 0.84375 0.90625 0.96S75 T. 92621 1.95725 1. 9862 1 Miscellaneous Tables 48. Natural Hyperbolic Functions 65 u Sinh u Cosh u Tanh u « Sinh H Cosh M Tanh u o.oo 0. 0000 I . 0000 . 0000 2.25 4.6912 4.7966 0.9780 0.05 0.0500 1.0013 0. 0500 2.30 4.9370 5-0372 0. 9801 O.IO 0. 1002 I .0050 0.0997 2.35 5-1951 5-2905 0.9820 0.15 0. 1506 1-0113 0. 1489 2.40 5.4662 5-5569 0.9837 0.20 0.2013 I . 0201 0.1974 2.45 5-75IO 5.8373 0.9853 0.25 0. 2526 I. 0314 0.2449 2.50 6.0502 6-1323 0.9866 0.30 0.3045 I -0453 0.2913 2.55 6-3645 6.4426 0.9879 0.35 0.3572 I .0619 0.3364 2.60 6.6947 6. 7690 0. 9890 0.40 0.4108 1.0811 0.3800 2.65 7.0417 7-1123 0. 9900 0.45 0.4653 I. 1030 0. 4219 2.70 7-4063 7-473S 0.9910 0.50 0.5211 I. 1276 0. 4621 2.75 7-7894 7-8533 0.9918 0.5S 0.5782 1-1551 0. 5005 2.80 8. 1919 8.2527 0.9q26 0.60 0.6367 1-1S55 0.5370 2.85 8.6150 8.6728 0.9933 0.65 0. 6967 I. 2188 0-5717 2.90 9-0596 9. 1146 0.9940 0,70 0.7586 1-2552 0. 6044 2.95 9-5268 9-5791 0.9945 0.7S 0.8223 1.2947 0.6352 3-00 10.018 10.068 0.9950 0.80 0.88S1 1-3374 0. 6640 3.0s 10.534 10.581 0.9955 0.85 0.9561 1-3835 0. 6911 3.10 II . 076 II . 122 0.9959 0.90 1.0265 I-4331 0.7163 3-15 11.647 11.690 0.9963 0.95 1-0995 1.4862 0.7398 3-20 12. 246 12.287 0.9967 1. 00 1-1752 I -5431 0.7616 3-25 12.876 12.915 0.9970 1.05 1-2539 1.6038 0.7818 3-30 13.538 13.575 0.9973 1. 10 1-3356 1.6685 0. 8005 3.35 14.234 14.269' 0.9976 1-15 1.4208 1-7374 0.8178 3-40 14.965 14.999 0.9978 1.20 1-5095 I. 8107 0-8337 3 -4 .=5 15.734 15.766 0.9980 1.25 I . 6019 1.8884 0.8483 3-50 16.543 16.573 0.9982 1.30 1.6984 1.9709 0.8617 3-55 17.392 17.421 0.9984 1-35 I. 7991 2.0583 0.8741 3-6o 18.285 18.313 0.9985 1.40 1-9043 2.1509 0-8854 3.65 19. 224 19.250 0.9987 1-45 2.0143 2.2488 0.8957 3-70 20. 211 20.236 0.9988 1.50 2.1293 2-3524 0. 9052 3.75 21.249 21 . 272 0. 9989 1-55 2. 2496 2.4619 0.9138 3.80 22.339 22.362 0. 9990 1.60 2-3756 2-5775 0. 9217 3.8s 23.486 23.507 0.9991 1.65 2-5075 2.6995 0. 9289 3-90 24. 691 24.711 0.9992 1.70 2.6456 2.8283 0.9354 3-95 25.958 25.977 0.9993 1.75 2.7904 2.9642 0.9414 4.0 27.290 27.308 0.9993 1.80 2.9422 3.107s 0. 9468 4.1 30.162 30.178 0.9995 1.85 3-1013 3.2585 0.9518 4.2 33-336 33.351 0.9996 1.90 3.2682 3.4177 0. 9562 4-3 36.843 36.857 0.9996 1.95 3-4432 3-5855 0.9603 4.4 40.719 40.732 0.9997 2.00 3.6269 3.7622 0.9640 4-5 45.003 45.014 0.9998 2.05 3-8196 3-9483 0.9674 4.6 49.737 49.747 0. 9998 2.10 4.0219 4- 1443 0.9705 4-7 54.969 54.978 0.9999 2.15 4.2342 4.3507 0.9732 4.8 60.751 60.759 0.9999 2.20 4-4571 4.5679 0.97S7 4-9 67.141 67.149 0.9999 Explanation on page 39 66 Miscellaneous Tables 49 . Napierian Logarithms of Numbers from i to 119 n o. I. 2. 3. 4. 5. 6. 7. 8. g. o — 00 0.0000 0-6931 I . 0986 1.3863 1.6094 1.7918 I - 94S9 2-0794 2. 1972 I 2.3026 2-3979 2 - 4849 2-5649 2.6391 2.7081 2.7726 2.8332 2.8904 2.9444 2 2 9957 3 044.5 3-0910 3-1355 3-1781 3-2189 3-2581 3-2958 3-3322 3 3673 3 3.4012 3-4340 3-4657 3-4965 3- 5264 3-SSS3 3-5835 3.6109 3 6376 3-6636 4 3.6889 3-7136 3-7377 3.7612 3-7842 3-8067 3-8286 3.8501 3-8712 3.8918 5 3.9120 3-9318 3-9512 3 9703 3 • 9890 4-0073 4-0254 4-0430 4.0604 4-0775 6 4 094.? 4-I109 4-1271 4-1451 4-1589 4-1744 4. 1S97 4-2047 4.2195 4-2341 7 4.2485 4.2627 4-2767 4-2905 4.3041 4-3175 4- 3307 4- 3438 4-3567 4-3694 8 4.3820 4-3944 4-4067 4.4188 4-4308 4-4427 4-4543 4-4659 4-4773 4-4886 Q 4.4998 4-5109 4-5218 4-5326 4-5433 4-5539 4- 5643 4-5747 4- 5850 4-5951 10 4-6052 4.6151 4.6250 4- 6347 4.6444 4.6540 4-6634 4.6728 4.6821 4.6913 II 4,7005 4.7095 4-7185 4- 7274 4-7362 4-7449 4-7536 4.7622 4-7707 4-7791 50. Multipliers for Transferring Logarithms Common to Napierian 2.302585093 4.605170186 6-907755279 9.210340372 11.512925465 13.815510558 16. 118095651 18.420680744 20.723265837 Example. Find Nap log of 105 Com log 105 = 2.02119 2 4.605170 .02 46052 I 2303 I 230 9 207 Nap log 105 =4.65396 Napierian to Common 0.434294482 0.868588964 I . 302883446 I -737177928 2- I714724IO 2.605766891 3.040061373 3.474355855 3.908650337 E.xample. Find number correspond ing to Nap log 1.6078 .6 07 0.26058 304 35 +0.26397 -0.43429 Com log = 1.8297 Number = 0.6756 61. Explanations Table 46 gives seven-place constants and their logarithms which will often be of use in niathematical computations; tt is the ratio of the circumference of a circle to its diameter, e is the base of the Napierian system of logarithms, and {x is the modulus of the common system of logarithms. In this table the shilling mark / denotes division; thus, tt/SO is the same as ^V 't. Table 47 gives decimal equivalents of some common frac- tions, thus, 7/32=0.21875. The logarithms may be u.«!eful in computations; thus to divide 0.3275 by 13/16 the log of 13/16 is subtracted from the log of 0.3275, or 1.51521 -I.909S2 = 1.60539 which is the log of 0.4031. Miscellaneous Tables ' ' ^ ' ' ^ ' gy Table 48 gives natural hyperbolic sines, cosines and tangents of numbers. These are useful in engineering problems relating to beams, to the catenary, the parabola, and other curves, also in the theory of alternating currents. Hyperbolic functions can be graphically represented in a rectangular hyperbola in the same way as trigonometric functions are represented in a circle. " Sinh" is the abbreviation for the hyperbolic sine, and " cosh " for the hyperbolic cosine; sinh is usually pronounced shin. Table 49 gives a few Napierian logarithms, often called hyper- bolic logarithms. The base of this system is the number 2.71828. Such logarithms arise in many formulas deduced by calculus, and they are widely used in physical and engineering problems. Table 50 shows how to obtain the Napierian logarithm of any number from its common logarithm. 51. Exercises I. Divide 4738 by ir, using logarithms. 2 What is the value of Air^? 3. What is the meaning of ISOVtt? 4. What is the area of a sphere whose radius is 100 feet? 5. What is the volume of a sphere whose diameter is 10 centi- meters? 6. Find the value of 472/V|'. 7. What are the decimal equivalents of 2/7, 11/32, 80/32, 7/12 9/12, 34/64, and 35/64? 8. Given m = 1.25; square sinh u and cosh u and subtract the first square from the second. Also do the same for another value of u. 9. Is tanh u equal to sinh tU>'t»<7 /) (^ ^ iX«v,, ■!:• ■'■,' .J.:.-. .v./' ■ /.• ■■•••, V" .' ; ■/'".. ■■^,f.'!- ' ■'• •■" .• e.". '^*;.■ V . ■,' J.**;' i f!'- P •r::,'' f ...