GIFT OF BIOLOGY LIBRARY G STATISTICAL METHODS WITH SPECIAL REFERENCE TO BIOLOGICAL VARIATION. BY C. B. DAVENPORT, Head of Department of Experimental Biology and Director of Station for Experimental Evolution of the Carnegie Institution. SECOND, REVISED EDITION. FIRST THOUSAND. NEW YORK : JOHN WILEY & SONS. LONDON : CHAPMAN & HALL, LIMITED. 1904. Copyright, 1889, 1904, BY C. B. DAVENPORT. | i > 3 BIOLOGY LIBRARY G ROBERT DRUMMOND, PRINTER, NEW YORK. PREFACE. THIS book has been issued in answer to a repeated call fora simple presentation of the newer statistical methods in their application to biology. The immediate need which has called it forth is that of a handbook containing the working formulae for use at summer laboratories where material for variation - study abounds. In order that the book should not be too bulky the text has been condensed as much as is consistent with clearness. This book was already in rough draft when the work of Duncker appeared in Roux's Archiv. I have made much use of Duncker's paper, especially in Chapter IV. I am indebted to Dr. Frederick H. Safford, Assistant Professor of Mathe- matics at the University of Cincinnati and formerly Instructor at Harvard University, for kindly reading the proofs and for valuable advice. To Messrs. Keuffel and Esser, of New York, I am indebted for the use of the electrotypes of Figures 1 and 2. Finally, I cannot fail to acknowledge the cordial cooperation which the publishers have given in making the book ser- viceable. C. B. DAVENPORT. BIOLOGICAL LABORATORY OF THE BROOKLYN INSTITUTE, COLD SPRING HARBOR, LONG ISLAND, June 29, 1899. iii 250822 PREFACE TO THE SECOND EDITION. THE first edition of this book having been favorably re- ceived, the publishers have authorized a revised edition embodying many of the new statistical methods elaborated chiefly by Professor Karl Pearson and his students and associates, and presenting a summary of the results gained by these methods. These, while increasing somewhat the bulk of the book, have, it is hoped, rendered it more service- able to investigators. Too much emphasis can hardly be laid on the debt that Biometricians owe to Professor Pear- son's indefatigable researches in the new science of Biome- try especially in the development of Statistical Theory. The publishers, also, of this book are deserving of credit for the courage they have shown in reproducing expensive tables for the use of a still very limited body of statistical workers. Especial attention is called to Table IV, which is an extension of Table IV of the first edition that was cal- culated by Professor Frederick H. Safford, and appears to have been the first published table of the normal probability integrals based on the standard deviation. More recently Mr. W. F. Sheppard has published in Biometrika a similar table in which, however, the tabular entries are given to seven places of decimals, while the arguments are given to two decimal places only. In the present table the argu- ments are subdivided to three places of decimals and with the aid of the table of proportional parts interpolation is easily effected. Especial acknowledgment must be made of assistance received from my friend Mr. F. E. Lutz, who read over the entire manuscript and contributed certain of the numerical examples. STATION FOR EXPERIMENTAL, EVOLUTION OP THE CARNEGIE INSTITUTION, COLD SPRING HARBOR, March 27, 1904. iv CONTENTS. CHAPTER I. ON METHODS OF MEASURING ORGANISMS. PAGE Preliminary definitions 1 Methods of collecting individuals for measurement 2 Processes preliminary to measuring characters 2 The determination of integral variates Methods of counting 3 The determination of graduated variates Method of measurement . 4 Straight lines on a plane surface 4 Distances through solid bodies or cavities 4 Area of plane surfaces 4 Area of a curved surface 5 Characters occupying three dimensions of space 6 Characters having weight 6 Color characters 6 Marking-characters 7 Aids in calculating 7 Precautions in arithmetical work 8 CHAPTER II. ON THE SERIATION AND PLOTTING OF DATA AND THE FREQUENCY POLYGON. Seriation 10 Plotting 11 Method of rectangles 11 Method of loaded ordinates 12 The rejection of extreme variates . . . 12 Certain constants of the frequency polygon 13 The average or mean ^ 13 The mode 13 The median magnitude 14 The probable error of the determination 14 The probable difference between two averages 15 , The probable error of the mean 15 The probable error of the median 15 The geometric mean 15 The index of variability 15 The probable error of the standard deviation 16 Average deviation and probable departure 16 V VI CONTENTS. PAGE Coefficient of variability 16 The probable error of the coefficient of variability 16 Quick methods of roughly determining average and variability ... 17 CHAPTER III. THE CLASSES OF FREQUENCY POLYGONS. Classification 19 To classify a simple frequency polygon 19 The normal curve 22 To compare any observed curve with the theoretical normal curve 23 The index of abmodality 23 To determine the closeness of fit of a theoretical polygon to the observed polygon 24 To determine the probability of a given distribution being normal 24 The probable range of abscissae 25 The normal curve as a binomial curve 25 Example of a normal curve 26 To find the average difference between the pth and the (p-fl)th individual in any seriation 27 To find the best fitting normal frequency distribution when only a portion of an empirical distribution is given 28 Other unimodal frequency polygons 30 The range of the curve 30 Asymmetry or skewness 30 To compare any observed frequency polygon of Type I with its corresponding theoretical curve 31 To compare any observed frequency polygon of Type II with its corresponding theoretical curve 32 To compare any observed frequency polygon of Type III with its corresponding theoretical curve 33 To compare any observed frequency curve of Type IV with its corresponding theoretical curve 33 To compare any observed frequency polygon of Type V with its corresponding theoretical curve 34 To compare any observed frequency polygon of Type VI with its corresponding theoretical curve 34 Example of calculating the theoretical curve corresponding with observed data 35 The use of logarithms in curve fitting 36 General 38 Type IV 39 Multimodal curves 39 CHAPTER IV. CORRELATED VARIABILITY. General principles . . . . 42 Methods of determining coefficient of correlation 44 CONTENTS. Vii PAGE Gallon's graphic method 44 Pearson's method. . 44 Brief method 45 Probable error of r 45 Example 45 Coefficient of regression 47 The quantitative treatment of characters not quantitatively meas- urable 47 The correlation of non-quantitative qualities 49 Example 51 Quick methods of roughly determining the coefficient of correlation. 54 Spurious correlation in indices 54 Heredity 55 Uniparental inheritance 55 Biparental inheritance 55 To find the coefficient of correlation between brethren from the means of the arrays 56 Gallon's law of ancestral heredity . . 57 Mendel's law of inheritance in hybrids 57 A dissymmetry index 60 CHAPTER V. SOME RESULTS OF STATISTICAL BIOLOGICAL STUDY. General 62 Variability 62 General 62 Man 63 Mammalia 65 Aves 65 Amphibia 66 Pisces 66 Tracheata. . 66 Crustacea 66 Annelida 67 Brachiopoda 67 Bryozoa 67 Mollusca 67 Echinodermata 68 Coelenterata 68 Protista 69 Plants 69 Some types of biological distributions 71 Type 1 71 Type IV 72 Type V 72 Normal 72 Skewness 72 Complex distributions 73 Vlll CONTENTS. PAGE Correlation 73 General 73 Man 73 Lower animals 76 Plants 78 Heredity 78 General 78 Parental 79 Grandparental 80 Fraternal 80 Theoretical coefficient of heredity between relatives 81 Homotyposis 81 Mendelism 82 Telegony 82 Fertility 82 Selection 82 Dissymmetry 82 Direct effect of environment 83 Local races 83 Useful tables 84 BIBLIOGRAPHY 85 EXPLANATION OF TABLES 105 LIST OF TABLES. The Greek alphabet 114 Index to the principal letters used in the formulae of this book. . . 115 Table I. Formulas 116 II. Certain constants and their logarithms 117 ** III. Table of ordinates of normal curve, or values of 2/o corresponding to values of -. 118 o " IV. Table of half-class index values (a) or the values of the normal probability integral corresponding to values of : or the fraction of the area of the curve a between the limits and -\ or and 119 a >a V. Table of Log r functions of p 126 VI. Tat>le of reduction of linear dimensions* from common to metric system 128 '* VII. Minutes and seconds in decimals of a degree 128 *' VIII. First to sixth powers of integers from 1 to 30 129 ' ' IX. Probable errors of the coefficient of correlation 130 " X. Squares, cubes, square-roots, cube-roots, and recip- rocals , 131 " XI. Logarithms of numbers 148 ** XII. Logarithmic sines, cosines, tangents, and cotangents. 175 STATISTICAL METHODS WITH SPECIAL REFERENCE TO BIOLOGICAL VAKIATION, CHAPTER I. ON METHODS OF MEASURING ORGANISMS. Preliminary Definitions. An individual is a segregated mass of living matter, capable of independent existence. Individuals are either simple or compound, i.e., stocks or corms. In the case of a compound individual the morphological unit may be called a person. A multiple organ is one that is repeated many times on the same individual. Example, the leaves on a tree, the scales on a fish. A character is any quality common to a number of indi- viduals or to a number of multiple organs of one individual. A variate is a single magnitude-determination of a character. Integral variates are magnitude-determinations of charac- ters which from their nature are expressed in integers. Such magnitudes are expressed by counting; e.g., the number of teeth in the porpoise. These are also called discontinuous. Graduated variates are magnitude-determinations of char- acters which do not exist as integers and which may conse- quently differ in different variates by any degree of magni- tude however small; e.g., the stature of man. A variant, among integral variates, is a single number-con- dition, e.g., 5 (flowers), 13 (ray-flowers), etc. A class, among graduated variates, includes variates of the same or nearly the same magnitude. The class range gives the limits between which the variates of any class fall. Individual variation deals with diversity in the characters of individuals. Organ variation, or partial variation, deals with diversity in multiple organs in single individuals. 1 2 STATISTICAL METHODS. Methods of Collecting Individuals for Meas- urement. In collecting a lot of individuals for the study of the varia- bility of any character undue selection must be avoided. The rule is: Having settled upon the general conditions, of race, sex, locality, age, which the individuals to be measured must fulfil, take the individuals methodically at random and without possible selection of individuals on the basis of the magnitude of the character to be measured. If the individuals are simply not consciously selected on the basis of magnitude of the character they will often be taken sufficiently at random. The number of variates to be obtained should be large; if possible from 200 to 2000, depending on abundance and variability of the material. Processes Preliminary to Measuring Characters. Some characters can best be measured directly; e.g., the stature of a race of men. Often the character can be better studied by reproducing it on paper. The two principal methods of reproducing are by photography and by camera drawings. For photographic reproductions the organs to be measured will be differently treated according as they are opaque or transparent. Opaque organs should be arranged if possible in large series on a suitable opaque or transparent back- ground. The prints should be made on a rough paper so that they can be written on ; blue-print paper is excellent. This method is applicable to hard parts which may be studied dry; e.g., mollusc shells, echinoderms, various large arthro- pods, epidermal markings of vertebrates and parts of the vertebrate skeleton. Shadow photographs may be made of the outlines of opaque objects, such as birds' bills, birds' eggs, and butterfly wings, by using parallel rays of light and inter- posing the object between the source of light* and the photo- * A Welsbach burner or an electric light are especially good. Minute MEASUREMENT OF ORGANISMS. 3 graphic paper. More or less transparent organs, such as leaves, petals, insect-wings, and appendages of the smaller Crustacea, may be reproduced either directly on blue-print paper or by "solar prints," either of natural size or greatly enlarged. For solar printing the objects should be mounted in series on glass plates. They may be fixed on the plate by means of balsam or albumen and mounted between plates either dry or in Canada balsam or other permanent mounting media. Wings of flies, orthoptera, neuroptera, etc., may be prepared for study in this way; twenty-five to one hundred sets of wings being photographed on one sheet of paper, say 16 X 20 inches in size. Microphotographs will sometimes be found service- able in studying small organisms or organs, such as shells of Protozoa or cytological details. Camera drawings are a convenient although slow method of reproducing on paper greatly enlarged outlines of microscopic characters, such as the form and markings of worms and lower Crustacea, sponge spicules, bristles, scales and scutes, plant- hairs, cells and other microscopic objects. In making such camera drawings a low-power objective, such as Zeiss A*, will often be found very useful. The Determination of Integral Variates. Methods of Counting. While the counting of small numbers offers no special diffi- culty, the counting becomes more difficult with an increase of numbers. To count large numbers the general rule is to di- vide the field occupied by the numerous organs into many snail fields each containing only a few organs. Counting under the microscope, e.g., the number of spines, scales or plant-hairs per square millimetre, may be aided by cross-hair rectangles in the eyepiece. The number of blood-corpuscles in a drop of blood, or of organisms in a cubic centimetre of water, have long been counted on glass slides ruled in small squares. electric lamps such as are fed by a single cell give sharp shadows of small objects. STATISTICAL METHODS. The Determination of Graduated Variates, Methods of Measurement. Straight lines on a plane surface are easily meas- ured by means of a measuring-scale of some sort. The meas- urement should always be metric because this is the universal scientific system. Vari- ous kinds of scales may be obtained of optical companies and hardware dealers, such as steel measuring tapes, graduated to millimetres (about $1.00), and steel rules (6 cm. to 15 cm. ) graduated to of a milli- metre. Steel "spring-bow" dividers with milled-head screw are useful for getting distances which may be laid off on a scale. Tortuous lines, e.g., the contour of the serrated margin of a leaf or the outer margin of the wing of a sphinx moth, may be measured by a map-measurer ("Entfer- nungsmesser," Fig. 1), supplied at artist's and engineer's supply stores at about $3.50. Distances through solid bodies or cavities are measured by calipers of some sort. Calipers for measuring diameters of solid bodies are made in various styles. Micrometer screw calipers (" speeded") reading to one-hundredths of a millimetre and sold by dealers in physical apparatus for about $5.00 are excellent for determining diameters of bones, birds' eggs, gastropod shells, etc. Leg calipers for rougher work can be obtained for from 30 cents to $4.00. The micrometer " caliper-square," available for inside or outside measurements and measuring to hundredths of a millimetre, is a useful instrument.* The area of plane surfaces, as, e.g., of a wing or leaf, is easily determined by means of a sheet of colloidin scratched in millimetre squares. By rubbing in a little carmine the * Many of the instruments described in this section are made by the Starrett Co., Athol, Mass., and by Brown and Sharpe, Providence, tool cutters. FIG. 1. MEASUREMENT OF ORGANISMS. 5 scratches may be made clearer. The number of squares covered by the surface is counted (fractional squares being mentally summated) and the required area is at once obtained. If the area has been traced on paper it may be measured by the planimeter (Fig. 2). This instrument may be obtained at FIG. 2. engineer's supply shops. It consists of two steel arms hinged together at one end; the other end of one arm is fixed by a pin into the paper, the end of the second arm is provided with a tracer. By merely tracing the periphery of the figure whose area is to be determined the area may be read off from a drum which moves with the second arm. This method is less wearisome than the method of counting squares. The area of a curved surface, like that of the elytra of a beetle or the shell of a clam, is not always easy to find. To get the area approximately, project the curved surface on a plane by making a camera drawing or photograph of its outline. By means of parallel lines divide the outline draw- ing into strips such that the corresponding parts of the curved surface are only slightly curved across the strips, but greatly curved lengthwise of the strips. Measure the length of each plane strip and divide the magnitude by the magnification of the drawing. Measure also, with a flexible scale, the length of the corresponding strip on the curved surface. Then, the area of any strip of the object is to the area of the projection as the length of the strip on the object is to the length of its projection. The sum of the areas of the strips will give the total area of the surface. 6 STATISTICAL METHODS. Characters occupying three dimensions of space may be quantitatively expressed by volume. The volume of water or sand displaced may be used to measure volume in the case of solids. The volume of water or sand con- tained will measure a cavity. Irregular form is best measured by getting, either by means of photography or drawings, pro- jections of the object on one or more of the three rectangular fundamental planes of the organ, and then measuring these plane figures as already described. Or two or more axes may be measured and their ratio found. Characters having weight are easily measured ; the only precautions being those observed by physicists and chemists. Color Characters. Color may be qualitatively ex- pressed by reference to named standard color samples. Sucl} standard color samples are given in Ridgeway's book, " Nomenclature of Color," and also in a set of samples manu- factured by the Milton Bradley Co., Springfield, Mass., costing 6 cents. The best way of designating a color character is by means of the color wheel, a cheap form of which (costing 6 cents) is made by the Milton Bradley Co. The colors of this "top" are standard and are of known wave-length as follows: Red, 656 to 661 Green, 514 to 519 Orange, 606 to 611 Blue, 467 to 472 Yellow, 577 to 582 Violet, 419 to 424. It is desirable to use Milton Bradley's color top as a standard. Any color character can be matched by using the elementary colors and white and black in certain proportions. The pro- portions are given in percents. In practice the fewest possible colors necessary to give the color character should be employed and two or three independent determinations of each should be made at different times and the results averaged. So far as my experience goes any color character is given by only one least combination of elementary colors. (See Science, July 16, 1897.) When there is a complex color pattern the color of the different patches must be determined separately. In case of a close intermingling of colors, the colored area may be rapidly rotated on a turntable so that the colors blend and the result- MEASUREMENT OF ORGANISMS. 7 ant may then be compared with the color wheel. By this means also the total melanism or albinism, viridescence, etc., may be measured. Marking-Characters. The quantitative expression of markings or color patterns will often call for the greatest ingenuity of the naturalist. Only the most general rules can here be laid down. Study the markings comparatively in a large number of the individuals, reduce the pattern to its simplest elements, and find the law of the qualitative variation of these elements. The variation of the elements can usually be treated under one of the preceding categories. Find in how far the variation of the color pattern is due to the variation of some number or other magnitude, and express the variation in terms of that magnitude. Remember that it is rarely a ques- tion whether the variation of the character can be expressed quantitatively but rather what is the best method of express- ing it quantitatively. Aids in Calculating 1 . An indispensable aid in multi- plying and dividing is a book of reckoning tables of which Crelle's Rechnungstafeln (Berlin: Geo. Reimer) is the best. This work enables us to get directly any product to 999 X 999 and indirectly, but with great rapidity, any higher product or any quotient. The tables of Barlow (" Tables of Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of all Integer Numbers up to 10,000") are like our Table X, but more extended. The tedious work of adding columns of numbers is greatly simplified by the use of some one of the better adding ma- chines. There are many forms, of which the best are made in the United States. The author has used the " Comp- tometer" made by the Felt and Tarrent Manufacturing Co., Chicago ($125), and found it perfectly satisfactory. This machine is manipulated by touching keys, as in a typewriter, but it does not print the numbers touched off. In this respect it is inferior to the Burroughs Adding Machine of the Ameri- can Arithometer Co., St. Louis, Mo., which costs $250 to $350, or to the Standard Adding Machine, St. Louis ($185). For the multiplication and division of large numbers the Baldwin Calculator is well spoken of (Science, xvn, 706). It is sold by the Spectator Company, 95 William Street, New York, price $250. The same firm is agent for Tate's Im- 8 STATISTICAL METHODS. proved Arithometer ($300 to $400). The "Brunsviga" cal- culating machine (Herrn Grimme, Natalis & Co., Brunswick, Germany, Manufacturers; price $140 to & 75) is highly recom- mended by Pearson. To draw logarithmic curves and for the mechanical solu- tion of arithmetical problems the instrument of Brooks (Science, xvn, 690, not yet marketed) should be found useful. Precautions in Arithmetical Work. Even the most careful computers make mistakes in arithmetical work. It is absolutely necessary to take such precautions that errors may be detected. The best method is for statistical workers to compute in pairs, but absolutely independently, comparing results as the work progresses, so that time shall not be wasted by elaborate work done with erroneous values. In case of disagreement both workers should recompute, start- ing from that point of the work where their results check. In cases where it is not feasible for the work to be done by two people, it should be calculated on distinct pages of the note- book proceeding through several steps on the one page and then independently through the same steps on another page; checking the work as it progresses. It will be found useful as the work progresses to make rough checks by comparing the results with the original data to see that the results are probable. Neatness in arrangement of work and in the making of figures is essential. It is best to make all calculations in a book with pages about 20 cm. by 30 cm., quadruple ruled, with about three squares to the centimetre, so that each figure may occupy a distinct square. I like to work with a pencil, of 2H grade, so that slight errors may be erased and rectified. In case of larger errors running through several steps of the work, the erroneous calculations should not be erased but cancelled. In using logarithms with the six-place table given in this book, it is ordinarily necessary to write the entire mantissa to six places, and to determine the number corresponding to any logarithm to at least six places by use of the table of proportional parts given at the bottom of the page. Upon the completion of the calculation the number of decimal places cO be recorded will depend upon the probable* error of MEASUREMENT OF ORGANISMS. 9 each constant. It will ordinarily suffice if the probable error contain two significant figures, e.g., 0.17 or 0.0089; then the constant will be carried out to the same number of places and not farther. 10 STATISTICAL METHODS. CHAPTER II. ON THE SERIATION AND PLOTTING OP DATA ANJD THE FREQUENCY POLYGON. The data obtained by measuring any character in a lot of individuals consists either of amass of numbers for the charac- ter in each individual ; or, perhaps, two numbers which are to be united to form a ratio ; or, finally, a series of numbers such as are obtained by the color wheel, of the order : TF40#, N (Black) 38#, 7 12$, Q 101 The first operation is the simplifi- cation of data. Each variate must be represented by one number only. Consequently, quotients of ratios must be de- termined and that single color of a series of colors which shows most variability in the species must be selected, e.g.,N. The process of seriation, which comes next, consists of the grouping of similar magnitudes into the same magnitude class. The classes being arranged in order of magnitude, the number of variates occurring in each class is determined. The number of variates in the class determines the frequency of the class. Each class has a central value, an inner and an outer limiting value, and a certain range of values. The method of seriation may be illustrated by two examples ; one of integral variates, and the other of graduated variates. Example 1. The magnitude of 21 integral variates are found to be as follows : 12, 14, 11, 13, 12, 12, 14, 13, 12, 11, 12, 12, 11, 12, 10, 11, 12, 13, 12, 13, 12, 12. In seriation they are arranged as follows : Classes: 10,11,12,13,14. Frequency : 1, 4, 11, 4, 2. Example 2. In the more frequent case of graduated variates our mag- nitudes might be more as follows : 3.2 4.5 5.2 5.6 6.0 3.8 4.7 5.2 5.7 6.2 4.1 4.9 5.3 5.8 6.4 4.3 5.0 5.3 5.8 6.7 4.3 5.1 5.4 5.9 7.3 In this case it is clear that our magnitudes are not exact, but are merely approximations of the real (forever unknowable) value. The question SERIATIO^ AND PLOTTING OF DATA. 11 arises concerning the inclusivencss of a class the cZa.ss range. An approximate rule is : Make the classes oni}- just large enough to have no or very few vacant classes in the series. Following this rule we get Classes Frequency Classes.... Frequency The classes are named from their middle value, or better, for ease of subsequent calculations, by a series of small integers (1 to 9). In case the data show a tendency of the observer towards estimating to the nearest round number, like 5 or 10, each class should include one and only one of these round numbers. As Fechuer ('97) has pointed out, the frequency of the classes and all the data to be calculated from the series will vary according to the point at which we begin our seriation. Thus if, instead of beginning the series with 3.0 as in our example, we begin with 3.1 we get the series : 3.0-3.4; 3.5-3.9; 4.0-4.4; 4.5-4.9; 5.0-5.4; 3.2 3.7 4.2 4.7 5.2 1 Q 3 4 5 1 1 3 3 7 5.5-5.9; 6.0-6.4; 6.5-6.9; V.0-7.4; 5.7 6.2 6.7 7.2 6 7 8 9 5 3 1 1 Classes ( 3.1-3.5; "j 3.3 3.6-4.0; 3.8 4.1-4.5; 4.3 4.6-5.0; 4.8 5.1-5. 3.5 Frequency 1 1 4 3 6 Classes ( 5.6-6.0; 6.1-6.5; 6.6-7.0; 7.1-7.5; ( 5.8 6.3 6.8 7.3 Frequency 6 2 1 1 which is quite a different series. Fechner suggests the rule: Choose such a position of the classes as will give a most normal distribution of fre- quencies. According to this rule the first distribution proposed above is to be preferred to the second. In order to give a more vivid picture of the frequency of the classes it is important to plot the frequency polygon. This is done on coordinate paper.* The best method, especially when the number of classes is less than 20, is to represent the frequencies by rectangles of equal base and of altitude proportional to the frequencies. Lay off along a horizontal line equal contiguous spaces each of which shall represent one class, number the spaces in order from left to right with the class magnitudes in succession, and erect upon these bases rectangles proportionate in height to the frequency of the respective classes (Fig. 3). * This paper may be obtained at any artists' supply store. 12 STATISTICAL METHODS. This method of drawing the frequency polygon is known as the method of rectangles. When the number of classes is large the frequencies may be represented by ordinates as follows : At equal intervals along 1 , , 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 FIG. 3. a horizontal line (axis of -X") draw a series of (vertical) ordi- nates whose successive heights shall be proportional to the frequency of the classes. Join the tops of the ordinates as shown in Fig. 4. This method of drawing the frequency polygon is known as the method of loaded ordinates. 2600 LEAVES -NORMAL CURVE Q280 HI E NUMBER OF V!NS FIG. 4. VEINS IN BEECH LEAVES, AFTER PEARSON, '02*'. The rejection of extreme variates in calculating the constants of a distribution polygon is to be done only rarely and with caution. In many physical measurements Chauvenet's criterion is used to test the suspicion that a single extreme variant should be rejected. A limiting devia- tion (KG) is calculated. K is the argument in Table IV cor- responding to a tabular entry equal to - SERIATION AND PLOTTING OF DATA. 13 EXAMPLE. In 1000 minnows from one lake there are found the following frequencies of anal fin-rays: 7 1 8 2 9 10 11 15 279 554 A = 10.835 ; o = .728 fin-rays. 1999 ._ n __ "= 77^ =.49975. 12 144 13 5 Looking in Table IV we find 3.48 corresponding to the entry 49975. Then the limiting deviation = 3. 48 X. 728 = 2.5334 and the limiting class is 10.835 2.533=8.302; hence the observation at 7 might be excluded in calculating the constants of the seriation ; but it should not be sup- pressed in publishing the data. CERTAIN CONSTANTS OF THE FREQUENCY POLYGON. After the data have been gathered and arranged it is neces- sary to determine the law of distribution of the variates. To get at this law we must first determine certain constants. The average or mean (A) is the abscissa of the centre of gravity of the frequency polygon. It is found by the formula in which V is the magnitude of any class; / its frequency; I indicates that the sum of the products for all classes into frequency is to be got, and n is the number of variates. Thus in the example on p. 10: A =(3.2X1+3.7X1+4.2X3-1-4.7X3 + 5.2X7+5.7X5+6.2X3 + 6.7 XI +7.2 XI) -^25 = 5.24, or AI = (IX 1+2 XI +3X3 +4X3 +5X7 +6X5 +7X3+8X1+ 9X1) -*- 25=5.08, A =5.2* + .08(5.7 -5.2) =5.24. ' A still shorter method of finding A is given on page 20. The mode (M) is the class with the greatest frequency. It is necessary to distinguish sharply between the empirical and the theoretical mode. The empirical mode is that mode which is found on inspection of the seriated data. In the example, the empirical mode is 5.2. The theoretical mode is the mode of the theoretical curve most closely agreeing with the observed distribution. Pearson 1902 b , p. 261) gives this * 5.2 is the true class magnitude corresponding to the integer 5, 14 STATISTICAL METHODS. rule for roughly determining the theoretical mode. The mode lies on the opposite side of the median from the mean ; and the abscissal distance from the median to the mode is double the distance from the median to the mean; or, mode=mean 3 X (mean median). More precise directions for finding the mode in the different types of frequency poly- gons are given in the discussion of the types. The median magnitude is one above which and below which 50% of the variates occur. It is such a point on the axis of X of the frequency polygon that an ordinate drawn from it bisects the polygon of rectangles or the continuous curve, but not the polygon of loaded ordinates. To find its position: Divide the variates into three lots: those less than the middle class, i.e., the one that contains the median magnitude, of which the total number is a; those of the middle class, b; and those greater, c. Then a + b + c = n the total number of variates: Let V = the lower limiting value of the middle class, and I" = the upper limiting value, and let x = the abscissal distance of the median ordinate above the lower limit or below the upper limit of the median class according as x is positive or negative. Then \n a : b = x : I" I' when x is positive, or \n c : b = x : I" V when x is negative. Thus in the last example: (12.5-8): 7=x : 0.5; #=.32; the median magnitude = 5.0 + .32 = 5. 32. Or (12.5-10): 7 = -x : 0.5; x=-.18\ the median magnitude =5. 5 -.18 = 5. 32. (Cf. p. 10.) The probable error (E) of the determination of any value gives the measure of unreliability of the determina- tion; and it should always be found. For, any determination of a constant of a frequency polygon is only an approximation to the truth. The probable error (E) is a pair of values lying one above and the other below the value determined. We can say that there is an even chance that the true value lies between these limits. The chances that the true value lies within :* 2#are 4.5:1 5E are 1,310:1 3Eare21 :1 6E are 19,200:1 4E are 142 : 1 7E are 420,000 : 1 iCEare 17,000,000:1 are about a billion to 1. The probable error should be found to two significant * These values are easily deduced from Table IV. SERIATIOK AND PLOTTING OF DATA. 15 figures. The determination of which it is the error should be carried out to the same number of places as the probable error and no more. The probable difference between two averages (A 1 and A 2 ) of which the probable errors (E l and E 2 ) are known is the square root of the sum of the squared probable errors, or (Pearson, '02): Probable Difference ot A,-A 2 is \/E* + E*. The probable error of the menu is given by the formula + 0.fi74Sv stal ^ rd action [see below] = +aH .56 .55 .21223 .20884 Therefore = .555. Similarly = .5 44 71! = . 2278, h 2 =2122. Mean is at 1.78 + .2278 =2.01. THE CLASSES OF FREQUENCY POLYGONS. 19 CHAPTER III. THE CLASSES OF FREQUENCY POLYGONS. The plotted curve may fall into one of the following classes : A. Unimodal. I. Simple. 1. Range unlimited in both directions: a. Symmetrical. The normal curve. b. Unsym metrical (Pearson's Type IV). 2. Range limited in one direction, together with skewness (Types III, V, and VI). 3. Range limited in both directions : a. Symmetrical, Type II. b. Unsymmetrical, Type I. II. Complex. B. Multimodal. The classification of any given curve is not always an easy task. Whether the curve is unimodal or multimodal can be told by inspection. Whether any unimodal curve is simple or complex cannot be told by any existing methods without great labor and uncertainty in the result. Complex curves may be classified as follows : 1. Composed of two curves, whose modes are different but so near that the component curves blend into one ; such curves are usually unsym- metrical. 2. The sum of two curves having the same mode but differing varia- bility. 3. The difference of two curves having the same mode but differing variability. If the material is believed to be homogeneous and the curve is unimodal it is probably simple and its classification may be carried further. For classification the rule is as follows : Determine the mean of the magnitudes. Take a class near the mean (call it F ) 20 STATISTICAL METHODS. as a zero point ; then the departure of all the other classes will be - 1, - 2, - 3, etc., and + 1, -f 2, -f 3, etc. Add the products of all these departures multiplied by the frequency of tbe corresponding class and divide by n; call the quotient r t . Add the products of the squares of all the departures multi- plied by the f-requency of the corresponding class and divide by n\ call the quotient v^. Add the products of the cubes of all the departures multiplied by the frequency of the corresponding class and divide by n\ call the quotient r 3 . Add the products of ih&fourtfi powers of all the departures multiplied by the frequency of the corresponding class and divide by ?i; call the quotient r 4 . Or, 2(y V ) ', = = departure of V Q from mean. V being known, A may be found [A = 1 The values r lf r 9t r a , v 4 , are called respectively the first, second, third, and fourth moments of the curve about Fo. To get the moments of the curve about the mean, either of two methods (A or B) will be employed. Method A is used when integral variates are under consideration ; method B when we deal with graduated variates. (A) To find moments in case of integral variates: * This is the short method of finding A referred to on page 13. THE CLASSES OF FREQUEKCY POLYGONS. 21 Q,,, / 3 V 3 cSv 1 v 2 (B) To find moments in case of graduated variates: in which A is the class range expressed in the same unit as the average. The probable error of the preceding constants in the special case of the normal curve is as follows: fi 2 = .67449 the following critical function was given by Pearson and has been 22 STATISTICAL METHODS. Value of F. Corresponding Frequency Curve. F>1 and 0and <1 ^=0,ft = 0,ft=3 =0, ft = 0, /? 2 not Type III. Transitional between Type I and Type VI. Type VI. Type V. Transitional between Type IV and Type II. Type IV. Normal curve. Type II. Type I. An important relation to be referred to later is M A 5^3210 Fio. 5. THE NORMAL CURVE. The normal curve is symmetrical about the mode; con- sequently the mode and the median and mean coincide. The mathematical formula of the normal curve, a formula much used. jFi = 2/? 2 3ft 6. The classification was given as follows: /?i>0, curve is of Type I. Pi =0, /?2<3, curve is of Type II. /?i> 0, /? 2 > 3, curve is of Type III. ft =0, ,5 2 = 3, curve is normal. When F is positive and ft > 0, 3 2 > 3, curve is of Type IV. When F is negative and When F = Q and THE CLASSES OF FREQUENCY POLYGONS. 23 of which one does not have to understand the development in order to make use of it, is This formula gives the value of any ordinate y (or any class) at any distance x (measured along the base, X, X', of Fig. 5) from the mode, e is a constant number, 2.71828, the base of the Naperian system of logarithms, n is the total area of the curve or number of variates, and a is the Standard Deviation, which is constant for any curve and measures the variability of the curve, or the steepness of its slope. To compare any observed curve with the theo- retical normal curve we can make use of tables. For the case of a polygon of loaded ordinates the theoretical fre- x quency of any class at a deviation from the mean can be taken directly from Table III. Here is the actual devia- tion from the mean expressed in units of the standard devia- tion, and the corresponding ordinate, y being taken as 2/o equal to 1, and a is the standard deviation. For the case of a polygon built up of rectangles represent- ing the relative frequency of the variates, Table IV gives immediately the theoretical number of individuals occurring between the values x=Q and x= . By looking up the given values of the corresponding theoretical percentage of variates between the limits x=0 and x= db will be found a directly. The ratio may be called the Index of Abmodality. The normal curve may preferably be employed even when & is not exactly equal to 0, nor /? 2 exactly equal to 3, nor F exactly equal to 0. Use the normal curve when and 24 STATISTICAL METHODS. also the skewness (p. 30) should be less than twice the value .67449 4~. V 2n To determine the closeness of fit of a theoreti- cal polygon to the observed polygon. Find for each class the difference (<^) between the theoretical value (y} and the observed frequency (/). Divide the square of this difference in each case by y. The square root of the sum of the /~fl~2 quotients is the index of closeness of fit (J). Or, J= y I- The probability (P:l) that the observed distribution is truly represented by the theoretical polygon may be calculated from the following formula, to use which the number of classes (A) must be odd or must be made odd by the addition of a class with frequency. This is the method of Pearson, 1900 & . To determine the probability of a given dis- tribution being normal. Having found, in units of the standard deviation, the deviation (7) of the inner limiting value (L) of each class from the average, look up the corresponding class-index a from Table IV. Or, better, find a directly for each class by dividing the half of the total num- ber of variates minus all those lying beyond the inner limit- ing value of the class in question by the half of the total I x f number of variates; or, in a formula, -p, where Jf x / means $n add all the frequencies from the median value to , and n is the number of variates. Next find for each class the sum of A+a%. This should equal L. The difference is the actual discrepancy. The probable discrepancy should next be calculated for all but the extreme values. It is calculated by use of the formula THE CLASSES OF FREQUENCY POLYGONS. where the value of z corresponding to % is got from Table II I, or from the formula The ratio of actual to probable discrepancy is next to be calculated for each class. The probable limit (P.L.) of the ratios varies with the number (A) of ratios found, according to the following table : Ai P.L. A\ P.L. Ai P.L Ai P.L. 1 2 3 4 5 1.000 1.559 1.874 2.088 2.248 6 7 8 9 10 2.375 2.481 2.570 2.648 2.716 11 12 13 14 15 2.777 2.832 2.882 2 928 2 970 16 17 18 19 20 3.009 3.046 3.080 3.112 3.142 The foregoing method is from Sheppard (1898). The probable range of abscissae (2x t ) of a normal dis- tribution, or that beyond which the theoretical frequency (y) is less than 1, varies with the number of variates (n) as well as with a, in accordance with the following formula derived by the transposition of y= by putting y=l: 2^=2*7 Example. For the ventricosity of 1000 shells of Lit- tornea littorea from Tenby, Wales, A = 90.964% and a= 2.3775%. What is the probable range of ventricosity expressed in per cent.? 2zj=2X2.3775|/ .46051 7 X log x-^; 1000 = 15.2. '2.506628X2.3775 The observed range was 15 (Duncker, '98). See also the criterion of Chauvenet (' variates (page 12). for the rejection of extreme THE NORMAL CURVE OF FREQUENCY AS A BINOMIAL CURVE. The normal curve may also be expressed by the binomial formula (pXgH where p=i, #=i, and A is the number of 26 STATISTICAL METHODS. terms, less 1, in the expansion of the binomial; hence approx- imately the number of classes into which the magnitudes of the variates should fall. If the standard deviation be known, A may be found by the equation A=4X (Standard Deviation) 2 =4<7 2 . Example of Normal Curve. Number of rays in lower valve of Pecten opercularis from Firth of Forth: V } F-Fo /(F-F ) /(F-F ) 2 /(F-F ) 3 /(F-F ) 4 14 1-3-3 9 -27 81 15 8 -2 -16 32 -64 128 16 63 -1 -63 63 63 63 17 154 18 164 1 164 164 164 164 19 96 2 192 384 768 1536 20 20 3 60 180 540 1620 21 2 4 8 32 128 512 n = 508 342 864 1446 4104 .4 = Fo+ vi = 17 +.6732 = 17. 6732. / 2 = 1.7008 -0.7059 2 - 1.2475; 1 ); also, = = - To find m arrange the frequencies in the usual manner (p. 26) and find the logarithm of each; their sum is equal to ra . Making the class situated at the middle of the range 0, find the deviation of each of the other classes frcm this class. The algebraic sum of the product of the loga- rithms by the deviations gives m r The second moment about the same zero point gives m 2 . Or, Substituting in (1) we get a numerical quadratic equation which can be put in the form _ If the normal curve be y=z e 22 3 same as that of p 9 . " " IV, a= ,, P since p 4 is the positive root of the quadratic: p is readily found. in Type VI, a= , where (1 qj and (q 2 +l) are tlie two roots of the equation s 2 2 _ o I . " h To compare any observed frequency polygon of Type I with its corresponding theoretical curve. 32 STATISTICAL METHODS. To find 1 19 1 2 , m l9 m 2 , y Q . The total range, /, of the curve (along the abscissa axis) is found by the equation / t and 1 2 are the ranges to the one side and the other of jfo; 1 =(s 2); m 1 + m 2 =5 2; To solve this equation it will be necessary to determine the value of each parenthetical quantity following the F sign and find the corresponding value of F from Table V. It is, however, sometimes easier to calculate the value of y Q from the following approximate formula: _n 2/o I ' With these data the theoretical curve of Type I maybe drawn. Frequency polygons of Type I are often found in biological measurements. To compare any observed frequency polygon of Type II with its corresponding theoretical curve, y == 2/0 \ * 172 \ > This equation is only a special form of the equation of Type I in which Z 1 = Z 2 and m 1 = m 2 . As from page 22, ^ = in Type II, Z=2cr\/s+l; since the curve is symmetrical, Z) = 0, and if _ov _n r(m+1.5) yVfriXm+l)' The F values will be found from Table V. THE CLASSES OF FREQUENCY POLYGONS. 33 An approximate formula for y is given by Duncker as fol- lows: n s-1 - 1 2/o = - . \/(* +!)(*- 2) To compare any observed frequency polygon of Type III with its corresponding theoretical curve. _ iP -*/d -T-] e The range at one side of the mode is infinite; at the other is found by the formula (for Type III). p p+l I, I, n T>-Tai *-^ The value of F corresponding to p+l can be got from Table V, Appendix. To compare any observed frequency polygon of Type IV with its corresponding theoretical curve. This is the commonest type of biological skew curves. is a variable, dependent upon x as shown in the equation x=l tan0. The factor (cos 0) 2m following y indicates that the curve is not calculated from the mean ordinate (A), or the mode (A D), but that the zero ordinate is at A mD; or at a dis- tance mXD from the mean. -l)-A(s-2) 2 ; m=i(H-2); T' ^ S ~ ? t with the opposite sign to u~; 34 STATISTICAL METHODS. 6 (arc of circle) = rr^,* f ^_l^ a eo c TH o o o I I I I ~ a-e, O'E 44 STATISTICAL METHODS. In studying correlation one (either one) of the characters is regarded as subject and the other as relative. A correlation table is then arranged as in the example on page 43, which gives data for determining the correlation between the num- ber of Miillerian glands on the right (subject) and left (rela- tive) legs of male swine. The selected subject class is called the type; the corresponding distribution of the relative mag- nitudes is called the array. METHODS OP DETERMINING COEFFICIENT OF CORRELATION. Gallon's graphic method. On co-ordinate paper draw perpendicular axes JTand T\ locate a series of points from the pairs of indices of abmodality of the relative and sub- ject corresponding to each subject class. The indices of the subjects are laid off as abscissae ; the indices of the relatives as ordinates, regarding signs. Get another set of points by mak- ing a second correlation table, regarding character B as subject and character A as relative. Then draw a straight line through these points so as to divide the region occupied by them into halves. The tangent of the angle made by the last line with the horizontal axis XX (any distance yp t divided by xp) is the index of correlation. A more precise method is given by Pearson as follows: Sum of products (deviation subj. class X deviation each iissoc. rel. class X no. of cases in both) total no. oFludivs. X Stand. Dey. of subject x Stand. Dev. of relative ; or, expressed in a formula : ^(dev. x X dev. y X /) n. r}< CO tN I I I O O CO O O CO III! CORRELATED VARIABILITY. 47 i V ) = (2.5625 - .4535 X .4605) 1. 7195+1. 73J r \/2000 The average variability of an array is =o\/lr 2 . The coefficient of regression marks the proportional change of the relative organ for a unit's change of the sub- ject organ. It is given by the equation p=r , where a l is 2 the standard deviation of the subject, cr 2 that of the relative. THE QUANTITATIVE TREATMENT OF CHARACTERS NOT QUAN- TITATIVELY MEASURABLE. Even qualities that do not lend themselves to a quanti- tative expression may be expressed in a roughly quantitative fashion. The fundamental assumption is made that the frequencies would obey the normal law of frequency more or less closely, provided a quantitative scale could be found. This assumption will not, in most biological data, lead us far astray. Divide the data into three classes (e.g., in eye-color we may have black, brown and gray, and blue), and let the frequency of these classes be n,, n 2 , n 3 , in which ra t and n 3 are each less than %n, so that n 2 contains the median. Let L lt L.+ be the (unknown) distances of the mean from the two boundaries of n 2 . Call L i /a=h t and L s /a=/i 3 , then n, n. 2 n , AT'-" 1 * r 7T "0 and 48 STATISTICAL METHODS. Now the left-hand side in these equations is known ; it is \a of Table IV. From this table the right-hand value of the FIG. 11. equations is found; it is the entry corresponding to the argu- ment Ja. Thus /ij and 7t 3 I = J are found, and hence L^/a and L z /a and the entire range of the middle class, in terms of a, is known. Call the range in absolute units I. Then Z=Z/ 3 + I/ 1 and I/ 'a is known and for a second series I/ a* can be similarly determined. Hence a/a', the ratio of the variabilities of the two series, is determined. Again, since LJa and - 1 are known, ^/(Z/g + Z/j) is known, and this gives us the ratio in which the mean divides the true range of the central class. (Pearson and Lee, 1900.) The foregoing method may sometimes be advantageously employed where the data are quantitative. In this case the numerical value of I is known. (Macdonell, 1902.) Consequently \ 4- h 2 = is known and hence -=J r 2 "-i ~\~n 3 , the standard deviation, is found. Since L, = h^ = the distance of the mean from the left-hand boundary of n 2 , the position of the mean is known. The probable error of a is E. =t fV7^o A + 8 Wn-Q , n 3 (n-n 3 ) where - V 2* an d CORRELATED VARIABILITY. 49 The values of the last two equations may be obtained directly from Table III. The probable error of L lt or of the mean, is where 6 ( E \ * r - V67749/ and ? _ ' a * 2 ~ n,(n-n,) THE CORRELATION OF NON-QUANTITATIVE QUALITIES. Pearson (1900 C ) has ingeniously discovered a method of ex- pressing correlation quantitatively when the variables cannot be so expressed, as, for example, in the case of effectiveness of vaccination. Strictly, this method assumes normal vari- ation in variables, but it can be employed generally, in default of a better method, with fairly accurate results. The prime requisite is that the qualities to be compared shall be separable into two grades, an upper and a lower. For example, in the case of the result of vaccination: on the one hand, either presence or absence of a scar; on the other, either recovery or death. As either of the second pair may occur with either of the first pair, four classes, a, b, c, d, will be formed altogether and a correlation surface like the following may be made: a b a + b c d c + d a + c b + d n The axes y, y and x 1 x probably do not coincide with the axes y and 2 -passing through the "origin" of the correlation 50 STATISTICAL METHODS. surface, but may be regarded as situated from those axes at the respective distances h and k. These values may be found from the formulae _ e _ tlf TT /() a, b, c, and d being known, h and k are found from Table IV. Then and -= - V27T V27T of which the values may be looked up in Table III, or, better, their product may be calculated by logarithms as follows: Find also log hk, h 2 , and k 2 . To find r solve the following equation to as many terms as may be necessary: (/i 4 - 67i 2 + 3) (A; 4 - GF + 3)r 5 + -_Lhk(h*- lOh 2 + "15) (k 4 - lOfc 2 + 15)r 6 + etc. This gives us a numerical equation of the nth degree which can be solved by ordinary algebraic methods, using Sturm's functions and Horner's method. Or it can be solved by successive approximations as follows: The first approxima- tion is made by neglecting all powers of r above the second and solving the quadratic (remembering, that if ax 2 + bx + c = 0, CORRELATED VARIABILITY. 51 n I , and taking the positive root. Substi- tute this value in the whole equation to the 4th power for /(r), and in the first derivative of the same equation for /'(r) (remembering that the first derivative of /(#) is obtained by multiplying each term in /(x) by the exponent of x in that term and diminishing the exponent of x by 1). The correc- tion 7774 should be added to the value of r used in substi- f (r) tuting. Repeat this process as often as the correction affects the fourth place of decimals, and go to r 5 if necessary. The probable error of r as thus determined is found as follows: First calculate the relations &= '- fr rh and /? 2 = ^=. Also find V 1 r 2 7= f l e 2^ /0 and ^ 2 = 7= from Table IV. Moreover, l 2(1 -r)' 7T V l_ r Then, A744Q Prob. error of r=,?te(a which can be easily solved by substitution. In using the foregoing formula, it must be noted that "a is the quadrant in which the mean falls, so that h and k are both positive." In other words, a + c > b + d and a + b > c + d. (Pearson, J 00 C .) Example. The eye-colors of a certain set of people (see Bio- metrika, II, 2, pp. 237-240) and of their great -grandparents were found to be distributed as follows. STATISTICAL METHODS. Offspring. 1 2 3 4 5 6 7 8 g 3 >> rown. d PQ r^'c) PQ PQ II >> 44 * -g * i 44 44 J2 3 3 O W ^ PQ 1 1 1. Light blue 4 3 8 5 1 21 2 Blue dark blue . . 8 177 95 76 5 39 31 17 448 3 Gray blue-green. 1 69 85 52 2 20 26 1 256 4. Dark gray hazel. 6 30 21 27 2 7 15 1 109 5 Light brown. 4 4 6. Brown 2 37 27 17 3 30 20 4 140 7. Dark brown 15 20 24 3 4 9 9 84 8. Black 10 13 12 2 2 7 5 51 Totals 21 345 269 213 17 103 108 37 1113 It was desired to determine the correlation between the eye-color of the offspring and that of their great-grandparents Clearly the ranges of the classes given above are not quantitatively equal nor determinable Consequently a fourfold table was formed by dividing the population into those having eyes whose color was gray blue-green, or lighter, and those having dark gray, hazel, or darker eyes. This gives a good basis for calculation If the dark gray and hazel eyes had been grouped with the lighter eyes it would have made quadrant a entirely too large; and there is nothing in the nature of the data that strongly favors one division more than another 1113 From the tables. Offspring Great -grand- parents. 1-3 4-8 Totals. 1-3 4-8 450 185 275 203 725 388 Totals. 635 478 1113 .31 .30 .01 . 39886 .38532 01354 .15 .14 01 .18912 . 17637 .01275 h - .38532 + ( 1 354 X .002785) = .389091 A; -. 17637 4- (1. 275 X. 001060) = .177722 CORRELATED VARIABILITY. 53 Log ^=9.5900512 Log A2 = 9.1801024 /i 2 -. 151392 Log A;=9.2497412 Log A; 2 = 8. 4994824 & 2 = .031585 Log fcfc =8.8397924 A 2 +fc 2 .182977 fc 2 +fc 2 hk = . 069150 }Afc = .034575 J =.091489 Log (450 X 203 - 275 X 185) = 4.607 1869 Log HK = - log 2 TT - .091489 log e = 9.2018201 -M8.9613689 + 9.63778428] = 9.2018201-0.0397332 = 9.1620869 log 11 13) = 9.3521096 Solving .03457 5r 2 +r-. 224962 = 0, 1 V/l +40034575 X .224962) -^034575)- 2 _ x = _ .848608 fc 2 - 1 = - .968415 Coeff . r 3 = .136967 Coeff. 24 .024363r 4 + . 136967r 3 + .03457 5r 2 + r - .224962 = 0. Applying Newton's approximation, we reach the result r = .2217. fi744.Q E. r = ^^(75095 + 303530& 5 2 + 2813000 1 2 n 5 w Log w = l -Iog(l-r2)-log2] } l 2 + j c 2-2rhk =0.152315, l-r 2 = 0.950850. Log ^o =9.20182 - 9.989056 - M9.637784 + 9.18274 - 9.978112 - 0.30103] = 9.1779797 . Log ^^ = 9.828975 -4.569743 -9.177980 =4.081253. n'a>o ^=0.358614 ^2=0.093794 From Table IV: 2 .358 .13983 .093 .03705 22.2 27.3 .4 3.5 i = .14006 ^2 - .03736 Log E. r = 4. 0812530 + ilog 74426. 858 E. r = 0.03289 54 STATISTICAL METHODS. QUICK METHODS OF ROUGHLY DETERMINING THE COEFFI- CIENT OF CORRELATION. The method just described may be used in lieu of the rela- 2x y tion r= 1 l whenever the distributions of frequencies of fUFjtfj the two correlated organs are normal. An exceedingly sim- ple relation that is independent of the assumption of a normal distribution has been given by Yule ('00 b ) as ad be and this may be used as a rough approximation to the coeffi- cient of correlation. But Pearson ('00 C ) has shown that this simple relation is not nearly as close to the true r as the following: where The superiority of the value r s as an approximation to r, justifies the additional work its determination demands. SPURIOUS CORRELATION IN INDICES. When two characters a and b are measured in each indi- vidual of a series of individuals, and each absolute magnitude is transformed into an index by dividing it by the magnitude of a third character c as found in the same individuals, a spurious correlation will be found to exist between the indices of and (Pearson, J 97). c c Let C 1 = the coefficient of variability of a; C 2 = " " " " " b; ri _ (t (( (t (t tf r . U 3 c, r = " " " SDurious correlation. CORRELATED VARIABILITY. 55 The precise method of using r in modifying any determi- nation of r is uncertain. Pearson recommends using r r as the true measure of " organic correlation" in the case of indices. HEREDITY. Heredity is a certain degree of correlation between the abmodality of parent and offspring. The statistical laws of heredity deal not with relations between one descendant and its parent or parents, but only with mean progeny of parents. Any group of selected parents is called a parentage, the progeny of a parentage is called a fraternity. Three categories of inheritance have long been recognized (Galton, 1888, p. 12). These are: (1) blending heritage illus- trated by stature in man; (2) alternative heritage, illustrated by human eye-color; and (3) mixed heritage, illustrated by the piebald condition of the progeny of mice of different colors. The immediately following statistical laws of inherit- ance hold especially for blending heritage. In miiparental inheritance, as in budding or asexual generation, heredity of any character is measured by the coef- ficient of correlation between the abmodality in a parentage and the abmodality of the corresponding fraternity. More strictly, since the variability of the character in the second generation, . Variability independent of sexual reproduction: Warren, '99, '02; Pearson and others, '01', pp. 359-362. Relative variability of the sexes: in man, Pearson, '97 C ; Brewster, '99; Pearl, '03; in crabs, Schuster, '03. Relative variability of primitive and modern races: in man, primitive races less variable: Pearson, '96, p. 281; Pearson (and others), '01 c , p. 362. Man. Stature. Seriation for adults of different races: Bavari- ans, Ammon, '99; United States, recruits, Baxter, '75, Pear- son, '95, p. 385; various, Macdonell, '02; English middle upper classes, Galton, '89, Pearson, '96, p. 270; Germans, Pearson, '96, p. 278; French, Pearson, '96, p. 281; Cam- bridge University students, Pearson, '99. Lot. Engl. upper middle class 1 do. husbands . Cambridge Univ. students English fathers. n 683 200 1078 A 69.215" .066 5 69. 135" .126 2 68 .863" .054 I cm. 171.95 a 5.592" .047 5.628" .089 2 522" .048 cm. 6.81 C 3.66 3.99 English sons 1078 174.40 6.94 3.98 U S recruits . ... 25878 170.94 6.56 3.84 N. S. Wales, criminals.. . . Frenchmen 2862 284 169.88 166 . 80 6.58 6.47 3.80 3.88 English criminals 3000 166 . 46 6.45 3.88 166. 26 .53 5.50 .37 Germans 390 156 . 93 6.68 4.02 Engl . upper middle class ? do. wives. . . . Cambridge Un. students ? French. Lvons S . . 652 200 in. 64.043 .061 63.869 .110 63. 883 .130 154.02 cm. .52 in. 2.325 .043 2. 303 .078 2.361 .092 5. 45 .37 3.69 Seriation at different ages: British infant at birth, Pearson, '99; school children, Bowditch, '91; St. Louis schoolgirls, Porter, '94, Pearson, '95, p. 336; Australian adult whites, Powys, '01. 64 STATISTICAL METHODS. Lot. Average. a C New-born infant , British 3 . 20 . 503 . 028 in . 1 . 332 . 020 6 . 500 ?. 20.124.025 " 1.117.018 5.849 St. Louis schoolgirls 118.271 cm. 2.776 Australian whites: Average. a C Year's * ? * ? * ? 20-25 66.95 62.50 2.475 2.365 3.70 3.79 25-30 67.30 62.76 2.562 2.432 3.81 3.87 30-40 67.15 62.44 2.587 2.303 3.86 3.69 40-50 66.91 62.96 2.618 2.555 3.91 4.06 50-60 66.74 62.22 2.633 2.591 3.95 4.16 60 & over 66.26 61.31 2.682 2.300 4.04 3.75 Weight. Seriations at different ages, British: Infants, Pearson, '99; University students, Pearson, '99; 5552 Eng- lishmen, Sheppard, '98. Lot. Average. a C New-born infants, $ 7 .301 .0241b. 1.144.017 15.66% ? 7.073.021 1.006.015 14.23 Cambridge Univ. students, $ 152 . 783 . 35 16 . 547 . 25 10 . 83 ?125.605.77 14.030.57 11.17 Skull Cephalic index: Bavarians, Ranke, '83; 6800 20- year old Badeners, working class, Ammon, '99, p. 85; various races, Pearson, '96, p. 280, Macdonell, '02. Lot. n A a C Bavarian peasants . . , 100 83. 41 3 ,58 4. 29 Baden recruits . 6748 81 .15 3.63 4 .48 Modern Parisians 79 .82 3 .79 4 .74 French peasants .... . 56 79. 79 3 .84 4. 81 Cambridge students . . . 1000 78 .33 2 .90 3 .70 Criminals (British) . .. . 100 76 .86 3 .65 4.75 Brahmans of Bengal , . 100 75. ,77 3, ,37 4, ,44 Whitechapel English. . 107 74.73 3 .31 4 .43 Maquada race 72.94 2 .98 3 .95 Skull capacity: coefficients of variability. Fawcett and Lee, '02. Lot. 5 ? Lot. i \ ? Andamanese 5 .04 5.59 7.72 6. .92 Ainos 6.89 6 .82 Germans . . . 7. 74 8 .19 Negroes 7 .07 G .90 Egyptian mummies. . 8. 13 8 .29 Low-caste Pun jabs . . 7 .24 8 .99 Polynesians . 8. 20 5 .55 Parisian French 7 .36 7 .10 Italians .... 8. 34 8 .99 Kanakas 7 .37 6 .68 Modern Egyptians. . . 8. 59 7 .17 17th Century English. 7 .68 8 .15 9.58 8.54 STATISTICAL BIOLOGICAL STUDY. 65 Various cranial dimensions, Lee and Pearson, '01. Other Organs. Coefficient of variability of bones of skele- ton of French and Naquada (C. of limb-bones, 4.58-5.57), Warren, '97; appendicular skeleton, Pearson, '96; finger- bones, Lewenz and Whiteley, '02; seriation of position of spinal nerves, Bardeen and Elting, '01; various organs in diverse races, Brewster, '97, '99. Mammalia. Relative variability of specific and generic characters in various mammals the former being greater, Brewster, '97; seriation of number of Miillerian glands in Sus scrofa, n, 2000; A, 3.501 .025; a, 1.680.018; C, 48.0, Davenport and Bui- lard, '96. Aves. Seriations of various proportions of N. A. birds, Allen, '71 ; characters of Lanius (''shrike") and its races, Strong, '01; Lot. n Shrike, length L. wing $ ......... 168 " ? ......... 112 tail length $ ............. 141 " bill length, $ ? 95 164 112 ............ " depth, $ ............ 126 ? ............ 85 melanism of crown, $ ..... 144 " " ? ..... 99 " upper tail-coverts $ 142 " ? 104 Curvature of culmen .............. Eggs, proportions: Passer domesticus, Bumpus, '97, Pear- son, '02 e ; various species, Latter, '02. A a C 99.06mm. 2.74mm. 2.81 97.98 2.64 2.69 101.57 3.48 3.43 99.55 3.63 3.65 12.01 0.71 5.89 11.71 0.63 5.35 9.27 0.42 4.57 8.95 0.41 4.61 83.57% 3.0% 3.58 83.66 3.19 3.81 53.13 15.42 29.02 47.98 18.99 39.58 29.94 2.74 9.15 Species. Cuckoo Av. Length, Bird, in. 14 243 Blackbird Song-thrush . . . Starling ... . 10 . 9 . 8-8.5 114 151 ?7 Yellowhammer. Tree-pipit 7 6.5 32 ?7 Meadow-pipet . House-sparrow (English) .... House-sparrow (American) . . Hedge-sparrow . Robin Linnet . . . 6 6 6 6 . 6 . 5.5-6 74 687 868 26 57 65 Length, mm. Breadth, mm A a C A a C 22 .40 29.44 27.44 29.78 21.55 20.01 19.72 21.82 1.195 5.47 15.51 .525 3.38 1 1 1 1 .059 .357 .999 .097 .682 .698 .250 4.72 4.61 3.64 3.68 3.17 3.49 6.37 Ifi 21 20 21 1(3 15 14 .54 .73 .69 .76 .04 .09 .56 .650 .787 .516 .423 .405 .449 .561 3 3 2 1 2 2 3 .93 .62 .50 .94 .53 97 .84 21.32 20.12 20.22 17.14 1.05 0.810 0.857 0.598 4.92 4.02 4.24 3.49 15.34 14.73 15.43 13.33 .415 2.81 .477 3.09 .358 2.69 66 STATISTICAL METHODS. Amphibia. Seriations of variations in position of pelvic girdle in Necturus, Bumpus, '97. Pisces. Geographical races: in Leuciscus, Eigenmann, '95; in adjacent lakes, Moenkhaus, '96; in schools of herring, Heincke, '97; in flounders, Bumpus, '98; in mackerel, Williamson, '00. See under Local Races. Various species: Pimephales fin-rays and scales of lateral line, Voris, '99; Zeus faber, an ancestral Pleuronectid, has its plates symmetrical in only 23.6% of the individuals, Byrne, '02; dimensions of 141 Petromyzon, Lonnberg, '93. Tracheata. Lepidoptera. Seriations of wing dimensions of Thyreus abbotti. Field, '98; number of "eye-spots" on wing of Epi- nephele, Bachmetjew, '03; number of spots on different species of the genus Papilio, Mayer, '02; breadth of wing, 98 * Strenia clathrata C=4.57, Warren, '02. Aphidce. Asexually produced offspring show an average variability of 60% that of the race, Warren, '02, p. 144; seriation of fertility, empirical mode=7 young, Warren, '02, p. 133; reduced variability of the earlier generations, because they include only such as can produce fertile offsprmg,War- ren, '02. Dimension. Grandmothers. Children. a C a C Frontal breadth 2.28mm. 6.07% 2.96mm. 8.26 Length R. antenna 7.36 8.77 10.94 12.97 . Lengthantenna x 23% 5 . 67 1>84 7 . 82 Frontal breadth Myriapoda. Lithobius: seriations of length of adults, C, for <$'s= 10.97; ?'s= 11. 25; number of prosternal teeth; of antennal joints; of coxal pores in which C varies from 9.9 to 15.4, Williams, '03. Crustacea. Podophihalmata. Seriations of 12 dimensions of right- handed and left-handed " fiddler-crabs," Gelasimus pugilator, C varies from 7.0 to 11.1, Yerkes, '01; relative variability of male and female Eupagurus prideauxi from deep and from shallow water, Schuster, '03; forehead breadths of Carcinus STATISTICAL BIOLOGICAL STUDY. 67 moenas, Weldon, '93, Pearson, '94; various dimensions, Cran- gon, Weldon, '90; length of rostrum, Palsemon serratus, Thompson, '94, Pearson, '94; number of rostral teeth of Pakemonetes, Weldon, '92 b , Pearson, '95, Duncker, '00. Lot. A, mm. a, mm. C,% Eupagurus, short edge of R. chela: $ deep water 9.708.085 2.76 28.5 t shallow water 10.272.075 2.59 25.2 ? deep water 7.400.033 1.06 14.3 5 shallow water 7.485.029 1.02 13.6 Eupagurus, long edge of R. chela: t deep water 17. 97 .14 4.73 27.8 * shallow water 18. 68+. 13 4.38 23.5 9 deep water 14.14.06 1.67 11.9 ? shallow water 13.97.05 1.82 13.0 Eupagurus, carapace length: $ deep water 8.59db.05 1.67 19.4 t shallow water 7.54.03 0.94 12.5 $ deep water 7. 12 .03 0.86 12.1 PalsBmonetes vulgaris, dorsal spines . 8.28 0.81 9.83 " " ventral spines. 2.98 0.45 15.03 Palaemonetes, varians, dorsal spines . 4.31 0.86 20.00 ventral spines. 1.70 0.48 28.26 Amphipoda. Seriations of lengths of body, of second antennae, and of ratio of second antennae to body-length, Smallwood, '03. Annelida. Chcetopoda. Teeth on jaws of Nereis virens. Right: A = 10.055.045, a= 1.339 . 032, C=13.3%; Left: A=10.00 .044, o= 1.306 .031, C=13.1%, Hefferan, '00. Bracliiopoda. Seriation of widths breadth, width of sinus -f- depth, num- ber of plications on ventral and dorsal valves in sinus and on fold, Cummings and Mauck, '02. Bryozoa. Number of spines on statoblasts of Pectinatella magnifica. A = 13.782 .031, ). . . .43 44 " " " short-winged chinch-bug " ...+ .44 Length horns rhinoceros-beetle, long-horned (Davenport, 'Ol b ). . .03 44 " " '* short-horned 4 * .. + .48 Complex Distributions. Bimodal Polygons. Discontinuity in hairiness of Biscu- tella, Saunders, '97; of Lychnis, Bateson and Saunders, '02, Weldon, '02 C . Length of cephalic horns of rhinoceros-beetle, and forceps length of male earwigs, Bateson, '94; explanation of di- morphism, Giard, '94. Multimodal Polygons. Modes fall in Fibonacci series, Lud- wig, '96, '96 b , '96 C , '97, '97 b , '97 C Modes of Chrysanthemum segetum at 13, 21, de Vries, '95. Opposed to Fibonacci series, complex polygon due to lack of homogeneity, Lucas, '98, Shull, '02, Pearson, '02**, Lee, '02, Reinohl, '03, Vogler, '03. CORRELATION. General and Method. Galton, '88, '89, Pearson, '96, Yule, '97, '97 b ; spurious correlation, Pearson,'97; non- quantitative characters, Pearson, '00 C , Pearson and Lee, '00, Yule, '00, '00 b , '02; index not constant in related races, Weldon, '92, Pearson, '96, '98 b p. 175, '02 n p. 2, Daven- port, '03 b . Man. General. Galton, '88; British criminals, various dimen- sions, r=.13 to .84, Macdonell, '02. Skull. Correlated with cranial capacity in living persons, Lee and Pearson, '01 ; breadth and length, Naquada, Bavari- ans, French, Pearson, '96, p. 2SO; N. A. Indians, Boas, '99; 74 STATISTICAL METHODS. various dimensions, Aino and German, Lee and Pearson, '01; Naquadas, Fawoett and Lee, '02. With civilization woman's correlation tends to gain on man's, Lee and Pearson, '01, Pearson, '02 n . Lot. r Breadth and Length: German, ? 49 .05 Smith Sound Eskimo 47 Aino, $ 43 .06 Aino, 37.07 German, * 29.06 Modern Bavarian peasants 28 .06 Naquada race 27 Sioux Indians 24 Modern French peasants 13 .09 British Columbian Indians * 08 Modern French (Parisians) 05 .06 Shuswap Indians 04 Lot. r& r? Aino: Capacity and length 89 . 01 . 66 . 05 " breadth 56 .05 .50 .07 " height 54.05 .52.07 Length and height 50 .05 .35 .07 Breadth and height 35 . 06 . 18 . 08 Cap. and ceph. index -.31.07 -.25.09 German : Capacity and breadth 67 db . 04 . 70 . 03 " length 51.05 .69.04 " " height 24.06 .45.05 Cap. and ceph. index 20 .06 - .03 .07 Breadth and height 07 . 06 . 28 . 06 Length and height - . 10 .07 .31 .06 Skeletal RoUet, '89; stature correlated with length of long bones, reconstruction of stature of extinct races, Pear- son, '98 b ; various coefficients of correlation, Pearson, '99, '00, p. 402; in hand-bones, Whiteley and Pearson, '99, Lewenz and Whitelev, '02. STATISTICAL BIOLOGICAL STUDY. 75 Lot. r Right and left femur 96 Metacarpals, ii and iii digits right 94 First joints, iv digit, R. and L. hands 93 First joints, ii and iii, right 90 Metacarpals, ii and v digits, right 89 Femur and humerus 84 to . 87 Femur and tibia 81 to .89 First joints, ii and v, right 82 Stature and femur S0(*) to .81(5) Stature and humerus 77 ( ? ) to . 81( * ) Stature and tibia 78() to .80() Humerus and ulna 75 to .86 Humerus and radius 74 to .84 Radius and stature 67 (?) to 70(a) Clavicle and humerus*. 44 to . 63 Forearm and stature 37 Clavicle and scapula 12 to . 16 Stature and cephalic index . 08 Various: Pearson, '99; intelligence not correlated with size or shape of head, Pearson, '02. Weight and length of new-born infant 3 644 . 012 ' " " " 9 622.013 Weight and stature of Cambridge (Engl.) students, $ . . . .486 .016 ? 721 .026 Breadth of head (reduced to* 12th yr.) and intelligence, youth 084 .024 Length of head (reduced to 12th yr.) and intelligence, youth 044 .024 Cephalic index and intelligence, youth 005 .024 Breadth of head and ability, adults 045 .032 Cephalic index and ability, University men 031 .035 41 " " length of head, University men .086 .033 Vaccination and Recovery. Pearson, '00 C ; Macdonell, '02, '03. r=. 23 to .91. Assortative Mating. Pearson, '96, '99 b , '00, Pearson and Lee, '00. Stature of husbands and wives r= .093 .047 ditto, another determination r .28 .02 Eye-color, husbands and wives r= . 100 .038 Age at death of consorts r= . 22 76 STATISTICAL METHODS. Lower Animals. ANTIMERTCALLY SYMMETRICAL ORGANS: Paired organs. Number of Miillerian glands on R. and L. fore legs of swine, Davenport and Bullard, '96; R. and L. fins of fishes, Duncker, '97, '00; number of coxal pores on R. and L. legs of the centipede Lithobius, Williams, '03; R. and L. dimensions of Gelasimus, Yerkes, '01, Duncker, '03; num- ber of teeth on R. and L. jaws of Nereis, Hefferan, '00; breadth of R. and L. valves of Pecten, Davenport, '03 b ; skeletal spicules on R. and L. half of Echinus larva. Subject and Relative. r Length R. and L. sides of carapace, Gelasimus 947 .003 " " " * meropodite, first walking leg 918 .005 Breadth R. and L. valve of Pecten opercularis, Irish Sea. . . .858 .006 Num. of teeth R. and L jaws of Nereis 820 . 008 " " fin-rays R. and L. pectoral, Acerina 710 " coxal pores R. and L. 14th pair legs, Lithobius 69 . 02 44 4> 4< " " " 13th pair legs, Lithobius 686 .029 44 * 4 " " " " 12th pair legs, Lithobius 58 .04 44 44 " " " " anal pair legs, Lithobius 575.039 Other antimeric organs: r Num. of dorsal and ventral spines, Palsemonetes vulgaris (Duncker, '00*>) 380 . 019 Num. of lips and canals of the medusa, Pseudoclytia (Mayer, '01 ; Davenport, '02) 325 . 019 SECONDARILY ANTIMERIC ORGANS. (Median organs in animals that lie on one side.) r Num. of dorsaLand anal fin-rays in flounder, $ 651 " " " " " ? 690 Length antero-posterior and dorso- ventral diameters, Pecten . 970 .001 Unsymmetrical paired organs. Pleuronectes, Duncker, '00; Gelasimus, the fiddler-crab, Yerkes, '01, Duncker, '03. Length of meropodite, R. and L. chelae of Galasimus 7 54 .014 44 '* carpopodite, R. and L. chelae of Gelasimus 698 .017 44 4< propodite, R. and L. chelae of Gelasimus 473 .026 Num. rays R. and L. pectoral fin, flounder, Pleuronectes, $ . .594 44 " " " " " " " ?. .582 44 of dorsal fin-rays at which lateral line ends, R. and L. Pleuronectes, $ 467 Num. rays R. and L. ventral fin, Pleuronectes, $ 243 STATISTICAL BIOLOGICAL STUDY. 77 METAMERICALLY REPEATED ORGANS. Fin-rays of fishes, Duncker, '97; coxal pores centipede, Williams, '03; seg- ments of shrimp Crangon, Weldon, '92. Num. dorsal spines and soft fin-rays, Acerina .379 " " " Cottus 110 " coxal pores R. anal and 14th segment, Lithobius 440 R. 13th and 14th segments, Lithobius 722 R. 13th and 12th segments, Lithobius 464 Length carapace and post-spinous portion rostrum, Crangon 81 " tergum VI abd. seg., Crangon 09 tergum VI and telson, Crangon . 11 MIXED AND CROSS CORRELATION. Length of wing and tail of Lanius " shrike," Strong, '01; in fishes, Duncker, '97, '99; pro- portions of aphids, "plant-lice," Warren, '02; coxal pores of centipede, Williams, '03; length of carapace and of chelae in Eupagurus, "hermit-crab," Schuster, '02; diameter of cell and body length, Daphnia, Warren, '03; cross correla- tion in teeth on jaws of Nereis, Hefferan, '00; various char- acters of the mud-snail, Nassa, Dimon, '02; 'circumference to number of spines, statoblast of Bryozoa, Davenport, '00*. diameter of body of the Heliozoan Actinosphserium Echorni and the number of cysts and of nuclei, Smith, '03; inner and outer diameters and color of the shell of Arcella, Pearl and Dunbar, '03. Organs. r Carapace length and chela length, Eupagurus, 9389 0036 " 9 .8626.0080 Diameter of body of Actinospherian and num. of nuclei .854 . 017 Inner and outer diameter shell of Arc'ella 836 .007 Diam. of body of Actinosphaerium and num. of cysts. . .769 .026 Wing length and tail length, Lanius 569 Diam. of cell and body length, Daphnia, hatching to 3d molt 551 Diaro. of cell an/1 body length, Daphnia, 3d to 4th molt 393 Diam. of cell and body length, Daphnia, after 4th molt.. . 248 Num. coxal pores, R. anal and L. 12th seg. , Lithobius. . . . 427 . 046 Frontal breadth and antennal length (Warren, '02) 320 .032 Ccxal pores, R. 14th leg and body length, Lithobius.. . .308 .059 Num. rays dorsal fin and end-point of L. lateral line, Pleuronectes, $ 208 Outer diameter and color Arcella 012 Num. dorsal spines and L. pectoral rays, Pleuronectes. .001 78 STATISTICAL METHODS. Organs . r Body length and number antennal joints - .013 .067 Circumference of statoblast and number spines. Pectinatella . , - .092 .006 Num. R. definite teeth and L. indefinite. Nereis .524 .023 Carapace length and chela index, Eupagurus . 522 . 022 Num. of cysts and their diam., Actinosphserium .669 .040 Plants. Between various parts of flowers, Ludwig, '01. Floral parts. Stamens and pistils of Ficaria, MacLeod, '98, '99, Ludwig, '01, Weldon, '01, Lee, '02; rays and bracts and rays and disc florets of Aster, Shull, '02; various organs on Lesser Celandine, Pearson and others, '03. Organs. r Num. rays and bracts Aster 856 to .799 " stamens and pistils Ficaria ranunculoides, early. . . . 507 . 031 late 749 .015 rays and disc florets, Aster 574 to . 353 " petals and sepals Ficaria verna + . 34 to . 18 ' stamens and pistils, Celandine 43 to .75 " " " petals, Celandine 38 to .22 " pistils and petals, Celandine 35 to .19 sepals, Celandine 25 to .03 " stamens and sepals, Celandine 06 to .02 Other parts. Size of leaves of same rosette of Bellis peren- nis, Verschaffelt, '99; various pairs of dimensions of fruits and leaves, Harshberger, '01; parts of desmid, Syndesmon, KeUeraian, '01. HEREDITY. General. Treatises. Galton, '89, Pearson, '00. Classification. Galton, '89, pp. 7, 12, Pearson and Lee, '00, pp. 89, 91, 98. Law of ancestral heredity. Galton, '97, Pearson, '98; esti- mate of heredity from a single ancestral generation, Pearson, '96, p. 306. Inequality in parental transmission. Father prepotent in sons; mother in daughters, Pearson and Lee, '00, p. 115; heredity weakened by change of sex, Pearson and Lee, '00, p. 115, Lutz, '03 t STATISTICAL BIOLOGICAL STUDY. Inheritance of Eye-color, Homo. , son; d, daughter? /.father; m, mother. Parental I AV r ge ?f^ and ;^ - I r sm andr df .. r df r sjjr anc * r dmm r s/m' r d& r dmf> r smm ' r m/' r dfm Great-grand-parental inheritance, average , . . Grand- parental No. of Changes of Sex. .530 .370 .347 .459 .300 .222 .296 .145 .038 Parental. Exceptional fathers produce exceptional sons at a rate three to six times that of non-exceptional fathers and ex- ceptional pairs at ten times the rate of non-exceptional pairs, Pearson, '00 C , pp. 38, 47. x y Cor. -Reg. Longevity: r p xy Father and son (Beeton and Pearson, '99) .12 " ** adult son (Beeton and Pearson, '01) . 135 . 10 " adult dau. " " " " .130 .08 Mother and adult son " " " " .131 .12 " dau. " " " " 149 .12 Eye-color (Pearson and Lee, '00) 55 to .44 Stature, English middle class: Father and son (Pearson, '96, p. 270) .396 .352 " dau. " " " .360 .419 Mother anjd son " " " .302 .269 " dau. " " " 284 .275 Head index. N. Amer. Indian: Mother and son (Pearson, '00, p. 458) .370 " dau. " .300 Coat-color, thoroughbred horses: Sire, foal (Pearson, '00, p. 458) .517 Dam, foal " -527 Fertility : Mother and daughter, British upper class .042 . 010 Father and son , . . 05 1 . 009 Mother and daughter, British peerage .210 Father and son, -066 Mother and daughter, landed gentry . 105 Father and son -116 r f> Frontal breadth, Hyalopterus (Warren, '02) .335 .359 Length R. antenna, Hyalopterus " .427 .507 Ratio: R. antenna -^frontal breadth (Warren, ''02) . . . .439 .539 Ratio: Length protopodite -*- length body, Daphnia (Warren, '02) , 466 .619 80 STATISTICAL METHODS. Graiidparental. Coat color, thoroughbred race-horses " " Basset hounds Frontal breadth, Hyalopterus, Aphidse (Warren, '02) Length, R. antenna, Aphidae (Warren, '02) Ratio R. antenna -s- frontal breadth, Aphidse (Warren, '02) Ratio Length protopodite -r- length body, Daphnia (War- ren. '02) [. Stature . Gr'dson and gr'df.. homo male line (Pearson, '96) female line (Pearson, '96).. Ortgr'dson and grtgr'df. . homo $ 1; ~ 339 113 321 177 231 .269 .192 .295 27 .5] line Eye-color, homo, f., grandfather, and son (Blanchard, '03) Coat horse. *' " ' " " " .199 .089 .105 .031 Coat Eye Coat Eye Coat Eye Coat Eye Coat Eye Coat Eye Coat Eye Coat horse, homo, " ' dau. horse, " homo, m., horse, " homo, " ' dau. horse, " homo, f ., grandmother, and son horse, " homo, " ' dau. horse, " homo, m., horse, " homo, " ' dau. horse, '* .421 .324 .380 .360 .372 .359 .297 .311 .272 .309 .221 .204 .262 .261 .318 .239 Fraternal. r Daphnia, length of spine (Warren, '99; Pearson, 'Ol c ) 693 Aphis, antennal length (Warren, '02) 679 frontal breadth (Warren, '02) 666 Paramecium, index of just separated fission pairs (Simpson, '02). .664 Horse, coat-color (Pearson, Lee, and Moore), average of 3 sets. . .633 Man, forearm, English (Pearson, 'Ol c ) 542 Hound, coat-color, Bassett (Pearson and Lee, '00) 526 Man, eye-color, English (Pearson, 'Ol c ). Average of 2 sets. 475 Pectinatella, statoblast hooks (Pearson, '01) 430 Man, stature " Average of 3 sets. . .403 cephalic index, N. A. Ind. " " Average of 3 sets. . .403 longevity, Quakers (Beeton and Pearson, '01) 332 temper, British (Pearson, 'Ol c ) 317 " longevity, British peerage (Pearson, '01) 260 Quakers " " 197 Average of 23 sets *. 476 Mean of 42 fraternal correlations (Pearson, '02 k ) 495 Some mental characteristics, inherited exactly like physical characters (Pearson, 'Ol e ): 'Consciousness 593 Popularity 504 Self -consciousness 592 Vivacity 470 Shyness 528 Intelligence 456 Average of 6 507 STATISTICAL BIOLOGICAL STUDY. 81 Theoretical coefficient of correlation be- tween relatives. Pearson, '00, Pearson and Lee, '00. Blended Alternative Inherit- Inherit- ance, ance. Offspring and Parent 3000 . 5000 " " grandparent 1500 .250 " great-grandparent 0750 .123 " " gt.-gt.-grandparent. . . .0375 " " nth order grandparent . 6X(i) n Brothers 4000 .4 to 1 .0 Half-brothers 2000 .2 to 0.5 Uncle and nephew 1500 .250 First cousins 0750 First cousins once removed 0344 Second cousins 0172 Third cousins 0041 Homoty posts. Correlation in non-sexual reproduction, as in production of homologous undifferentiated physiologically independent parts, Pearson, 'Ol c ; criticism, Bateson, '01; reply, Pearson, '02* ; rejoinder, Bateson, '03; correlation between differen- tiated homologous organs, Pearson, '02 e . Lot. Ceteract Somersetshire %^ Character. V Lobes on fronds . /ar. to ar. of Race. . 78 78 79 79 80 81 82 83 84 85 85 89 91 91 92 92 93 93 96 98 98 98 Corre- lation. .631 .630 .615 .611 .599 .591 .570 .562 .549 .533 .524 .466 .416 .405 .400 .396 .374 .355 .273 .190 .183 .173 Hartstongue, Somersetshire Shirley poppy Chelsea . ... .Sori on fronds Stigmatic bands English onion. Hampden Holly Dorsetshire .Veins in tunics Prickles on leaves . Spanish chestnut, mixed Boech Buckinghamshire . . Veins in leaves Veins in leaves . Papaver rhoeas, Hampden Mushroom Hampden . . . . Stigmatic bands .... Gill indices . Papaver rhoras, Quantocks Shirley poppy. Hampden Spanish chestnut, Buckinghamshire Broom Yorkshire . Stigmatic bands .... .Stigmatic bands. . . . Veins in leaves ..... Seeds in pods Ash, Monmouthshire Papaver rhoeas. Lower Chilterns. . . Ash, Dorsetshire Ash Buckinghamshire Holly. Somersetshire Wild ivy, mixed localities Nigella hispanica, Slough .Leaflets on leaves. . . .Stigmatic bands . Leaflets on leaves. . . . Leaflets on leaves . Prickles on leaves. . . . . Leaf indices. Seg of seed -capsules Malva rotundi folia, Hampden. . . . Woodruff, Buckinghamshire . Seg. of seed-vessels. . . . Members of whorls . . Mean of 22 cases 87 .4 .457 Bands of capsules of Shirley poppies, mean of 8 crops (Pear- son, and others, '02) 498 Mean of 39 cases of homotyposis (Pearson, '02* ) 499 82 STATISTICAL METHODS. Mendelism. General Statement. Mendel, '66, de Vries, '00, '00 b , '00 C , '03, Correns, '00, Davenport, '01, Bateson, '02, Castle, '03; critical, Weldon, '02, '03, Pearson, '03 1 '. Plants. Correns, '00, '00 b , '01, '02-' 02, '03-'03 C , de Vries, '02, '01-'03, Bateson and Saunders, '02. Animals. Echinoids, Doncaster, '03; poultry, Bateson and Saunders, '02; mice, Darbishire, '02, '03, '03 b , Castle, '03 b , Bateson, '03 b ; rabbits, Woods, '03. Telegoiiy. No evidence of, in human statures, Pearson and Lee, '96. Fertility. Inherited in man and race-horses, Pearson, Lee, and Bram- ley-Moore, '99; greater fertility in poppy of seeds from cap- sules with a high number of stigmatic bands, Pearson, '02; fertility of medusae with symmetrical bands exceeds that of the unsymmetrical as 3 to 4, Mayer, '01. SELECTION. General. Intensity of selection connotes a lessening of correlation, Pearson, '02 d , p. 23; mediocre individuals not the fittest to survive, Pearson, '02 n , p. 50. Man. 50% to 80% of human death-rate selective, Beeton and Pearson, '01. Other Animals. Annihilation of the extremes in the spar- row, Bumpus, '99; percentage death-rate of families of Aphids has inverse correlation with length of antenna of mother (r= .201 .084), with frontal breadth of mother (r= .184 .084), and with number in newly born brood ( r = -.188 .084); in Carcinus moenas, Weldon, '95, '99; in Clausilia, Weldon, '01. Plants. Transformation of skew frequency curve to a sym- metrical one by selection, de Vries, '94, '98; shifting of the mode by selection, de Vries, '99. Sexual. Pearson, '96: A a Stature of husbands, inches 69 . 136 . 126 2 . 628 . 089 44 males in general 69.215.066 2.592.047 "wives 63.869.110 2.303.078 " adult females in general .. 64. 043 ^.061 2. 325 .043 See also Correlation Assortative mating (p. 75). DISSYMMETRY. The following values for & have been determined by Duncker, '00 and '03; STATISTICAL BIOLOGICAL STUDY. 83 Pleuronectes flesus L., 1060 R.-eyed and 60 L.-eyed: Right- Left- eyed, eyed. Num. of pectoral divided rays 997 .983 Total num. pectoral rays. 604 .583 Num. of ventral divided rays 326 .374 Total num. of ventral fin-rays 019 .083 Gelasimus pugilator Latr. (fiddler-crt,b). Right- Left- handed, handed. Lateral edge of carapace 838 .793 Length of meropodite, first ambulacral appendage. .813 .872 Length of meropodite, of carpopodite, and of pro- podite of chelae, all 1 .00 1 .00 Num. of rays on R. and L. pectoral fins, Acerina 0.111 " " glands on wrists of swine .0053 DIRECT EFFECT OF ENVIRONMENT. Animals. Aphids reared in successive generations in in- creasingly unfavorable conditions have reduced dimensions, Warren, '02: Grandmother. Grandchildren. Frontal breadth, Aphid. . A = 37 . 56 33 . 93 Length of R. antenna. ... A = 83 . 91 76 . 59 Ratio -5: A = 22.46 22.57 .TV. A. Depauperization of mud-snail, Nassa, in diluted sea-water, Dimon, '02. Plants. Conditions of life affect number of floral parts in poppy, de Vries, '99, MacLeod, '00, Pearson and others, '03; number of ray-flowers of Primula farinosa increases with moisture, Vogler, '01 ; empirical mode in number of anthers in Stellaria in poor environment is 3; in good environment 5, Reinohl, '03; leaf -blade smaller in light than in shade, MacLeod, '98. LOCAL RACES. General. Davenport and Blankenship, '98, Davenport, '99. Pisces. Leuciscus from different altitudes, Eigenmann, '95; herring from different sea-areas distinguishable, Heincke, '97, 98; mackerel from three Scotch localities differ, Wil- liamson, '00; fin-rays of Pleuronectes from New England shore, Bumpus, '98: Wood Holl. Waquoit. Brfstol, R. I. Dorsal fin-iays. . . A = 66 , 1 65 . 2 64 . 9 Anal " ... 4 = 49.7 48.6 48.7 84 STATISTICAL METHODS. Number of fin-rays of Pleuronectes flesus from Western Baltic, Af'=39, southern North Sea 41, Plymouth 44, Duncker, '99. Fish in similar and adjacent lakes belonging to different drainage-basins have marked difference in scales on nape, number of fin-rays and of dorsal spines, Moenkhaus, '96. Invertebrata. Mean and variability of deep- and shallow- water Eupagurus differ, Schuster, '03; proportions, variability, and correlation coefficients of Pecten opercularis differ at Eddy stone, Irish Sea, and Firth of Forth, Davenport, '03 b . Plants. Lesser celandine, Pearson and others, '03. USEFUL TABLES. Probability Integral. Area and ordinate of normal curve in terms of abscissa, Sheppard, '98, '03; abscissa of normal curve in terms of ordinate, Sheppard, '93; abscissa and ordi- nate in terms of difference of area, Sheppard, '03; abscissa of normal curve in terms of class index, Sheppard, '98. Probability of fitted curve being the true one: Elderton, '02. Values of log ] ^i/ e~^ 2 [ for various values of f. Elderton, '02. Table of log . - ^ -. - . Elderton, '02. & n(n 2)(n 4) . . . /2 7*00 i o Table of A/ I e ~ * x d%, for different values of 7, Elder- ton, '02. Table of Iog 10 (l+x) x log, e for various values of x, for use with curves of Type III. Tables for calculating probable error, Sheppard, 7 98. Table of values of 1 r 2 and \/l r 2 for all values of r from to 1 proceeding by hundredths, Yule, '97. Probable errors of r for all values of n, Yule, '97. BIBLIOGKAPHY. 85 BIBLIOGRAPHY. Note. An effort has been made to include all recent works containing usable quantitative data in botany and zoology; but the literature on the mathematical treatment of statistics and that affording data in anthropology are by no means completely listed. ABBREVIATIONS. The following names of journals often referred to have been much abbreviated: Amer. Nat. = American Naturalist. Ber. d. deutsch. bot. Ges. = Berichte der deutschen botanischen Gesellschaft. Biom. = Biometrika. Bot. Centralbl. = Botanisches Centralblatt. Phil. Trans. = Philosophical Transactions of the Royal Society of London. Proc. Roy. Soc. = Proceedings of the Royal Society of Lon- don. The references are scattered through fifty-seven periodi- cals. ADAMS, C. C. '00. Variation in lo. Proc. Amer. Assoc. for the Adv. of Sci., XLIX, 18 pp., 27 plates. AGASSIZ, A., and W. McM. WOODWORTH, '96. Some varia- tions in the Genus Eucope. Bull. Mus. Comp. ZooL, XXX, 123-150. Plates I-IX. Nov. ALLEN, J. A., '71. On the Mammals and Winter Birds of East Florida, etc. Bull. Mus. Comp. Zool., II, 161-450. Plates IV-VIII. AMANN, J., '96. Application du calcul des probability a 1'etude de la variation d'un type vegetal. Bull, de 1'Herb. Bossier. IV, 578-590. AMMON, OTTO, '99. Zur Anthropologie der Badener. Jena: G. Fischer, 707 pp, 15 Tab. BACHMETJEW, P., '03. Ueber die Anzahl der Augen auf der Unterseite der Hinterfliigel von Epinephele jurtina L. Allgemeine Zeitschr. f. Entomologie, VIII, 253-256. BAKER, F. C., '03. Rib Variation in Cardium. Amer Nat., XXXVII, 481-43S, July. BALLOWITZ, E., '99. Ueber Hypomerie und Hypermerie bei Aurelia aurita. Arch. f. Entw. Mech. d. Organis- men, VIII, 239-252. 86 STATISTICAL METHODS. BARDEEN, C. R., and A. W. ELTING, '01. A Statistical Study of the Variations in the Formation and Position of the Lumbo-sacral Plexus in Man. Anatom. Anz., XIX, 124- 135, 209-238, Mar., Apr. BATESON, W., '89. On some Variations of Cardium edule apparently Correlated to the Conditions of Life. Phil. Trans., 1889 B., 297-330, PI. 26. BATESON, W., '94. Materials for the Study of Variation. London and New York, xvi + 593 pp. BATESON., W., '01. Heredity, Differentiation, and Other Conceptions of Biology: a consideration of Professor Karl Pearson's paper "On the Principle of Homoty- posis." Proc. Roy. Soc., LXIX, 193-205. BATESON, W., and E. R. SAUNDERS, '02. Reports to the Evolution Committee Report I. Royal Society. Lon- don: Harrison & Sons. 160 pp. BATESON, W., '02. Mendel's Principles of Heredity. Cam- bridge [Engl.]: Univ. Press. 212 pp. BATESON, W., '03. Variation and Differentiation in Parts and Brethren. Cambridge [Engl.]: J. and C. F. Clay. BATESON, W., '03 b . The Present State of our Knowledge of Colour-heredity in Mice and Rats. Proc. Zool. Soc., London, 1903, II, 71-99, Oct. 1. BAXTER, J. H., '75. Statistics, Medical and Anthropological, of the Provost-Marshal-General's Bureau. 2 vols. Wash- ington: Gov't Printing Office. 568 + 767 pp. BEETON, MARY, and K. PEARSON, '99. Data for the Problem, etc. II. A First Study of the Inheritance of Longevity, and the Selective Death-rate in Man. Proc. Roy. Soc., LXV, 290-305. BEETON, MARY, and KARL PEARSON, '01. On the Inheritance of the Duration of Life, and on the Intensity of Natural Selection in Man. Biom., I, 50-89, Oct. BEETON, M., G. U. YULE, and K. PEARSON, '00. Data for the Problem of Evolution in Man. V. On the Correlation between Duration of Life and the Number of Offspring. Proc. Roy. Soc., LXVII, 159-179, Oct. 31. BIGELOW, R. P., and ELEANOR P. RATHBUN, '03. On the Shell of Littorina littorea as Material for the Study of Variation. Amer. Nat,, XXXVII, 171-183, Mar. BIBLIOGRAPHY. 87 BLANCHARD, N. f '02. On the Inheritance of Coat-colour of Thoroughbred Horses (Grandsire and Grandchildren). Biom., I, 361-364, April. BLANCHARD, NORMAN, '03. On Inheritance (Grandparent and Offspring) in Thoroughbred Horses. Biom., II, 229-234, Feb. BOAZ, FRANZ, '99. The Cephalic Index. American An- thropologist, N. S., I, 448-461, July. BOWDITCH, H. P., '01. The Growth of Children, Studied by Galton's Method of Percentile Grades. Twenty-second Annual Report of the State Board of Health of Massachu- setts (for 1890). BREWSTER, E. T., '97. A Measure of Variability and the Relation of Individual Variations to Specific Differences. Proc. Amer. Acad. Arts and Sc., XXXII, 268-280. BREWSTER, E. T., '99. Variation and Sexual Selection in Man. Proc. Boston Soc. Nat. Hist., XXIX, 45-61, July, '99. BROWNE, E. T., '95. On the Variation of the Tentaculocysts of Aurelia aurita. Quart. Jour. Micros. Soc., XXXVII, 245-251. BROWNE, E. T., '01. Variation in Aurelia aurita. Biom., I, 90-108, Oct. BUMPUS, H. C., '97. The Variations and Mutations of the Introduced Sparrow. Biol. Lect. Woods Holl, 1896, 1-15. BUMPUS, H. C., '97 b . A Contribution to the Study of Varia- tion. Jour, of Morphol., XII, 455-4SO. Pis. A-C. BUMPUS, H. C., '98. The Variations and Mutations of the Introduced Littorina. Zool. Bull., I, 247-259. BUMPUS, H. C., '98 b . On the Identification of Fish Arti- ficially Hatched. Amer. Nat., XXXII, 407-412. BUMPUS, H. C., '99. The Elimination of the Unfit, as Illus- trated by the Introduced Sparrow, Passer domesticus. Biol. Lects. Woods Holl for '97 and '98, pp. 209-226. BURKILL, I. H., '95. On some Variations in the Number of Stamens and Carpels. Proc. Linn. Soc., Botany, XXXI, 216-245. BYRNE, L. W., '02. On the Number and Arrangement of the Bony Plates of the Young John Dory. Biom., II, 113-120. Nov. 88 STATISTICAL METHODS. CAMERANO, L., '00. Lo studio quantitative degli organismi ed il coefficiente somatico. Atti d. R. Accademia delle sci. di Torino, XXXV, 22 pp. CAMERANO, L., '00 b . Lo studio quantitative degli organ- ismi e gli indici di variability, di variazione, di fre- quenza, di deviazione e di isolamento. Atti d. R. Accademia delle sci. di Torino, XXXV, 19 pp. CAMERANO, L., '01. Lo studio quantitative degli organismi e gli indici di mancanza, di correlazione e di asimmetria. Atti d. R. Accademia delle sci. di Torino, XXXVI, 8pp. CAMERANO, L., '02. Ricerche somatometriche in zoologia. Boll, dei Musei de Zool. e Anat. Comp. di Torino, XVII, 18 pp. CASTLE, W. E., '03. Mendel's Law of Heredity. Proc. Amer. Acad. Arts and Sci., XXXVIII, 533-548, Jan. CASTLE, W. E., '03 b . The Heredity of Albinism. Proc. Amer. Acad. Arts and Sci., XXXVIII, 601-622, Apr. CHAUVENET, W., 1888. A Treatise on the Method of Least Squares, etc., being the appendix to the Author's Manual of Spherical and Practical Astronomy. Philadelphia, pp. 469-599. CHODAT, R., '01. Note sur la variation numerique dans TOrchis morio. Bull, de 1'herb. Boissier, (2) I, 682- 686. CORRENS, C., '00. G. Mendel's Regeln iiber das Verhalten der Nachkommenschaft der Rassenbastarde. Ber d. deutsch. bot. Ges., XVIII, 158-168. CORRENS, C., 'OOb. Ueber Levkojenbastarde. Zur Kenntniss der Grenzen der Mendel' schen Regeln. Bot. Centralbl., LXXXIV, 97-113, Oct. 17. CORRENS, C., '01. Bastarde zwischen Maisrassen, mit be- sonderer Beriicksichtigung der Xenien. Bibliotheca Botanica. Bd. X, Hft. 53, xii + 161 pp., 2 Taf. CORRENS, C., '02. Ueber den Modus und den Zeitpunkt der Spaltung der Anlagen bei den Bastarden vom Erbsen- Typus. Bot, Zeitung, LX, 66-82. CORRENS, C., '02b. Die Ergebnisse der neuesten Bastard- forschungen fur die Vererbungslehre. Ber. d. deutsch, Bot. Ges , XIX, 71-94. BIBLIOQEAPHY. 89 CORRENS, C., '02?. Scheinbare Ausnahmen von der Men- del' schen Spaltungsregel fiir Bastarde. Ber d. deutsch. Bot. Ges., XX, 159-172. CORRENS, C., '03. Ueber Bastardirungsversuche mit Mira- bilis-Sippen. Ber. d. deutsch. Bot. Ges., XX, 594-609. CORRENS, C., '03t>. Ueber die dominierenden Merkmale der Bastarde. Ber d. deutsch. Bot. Ges., XXI, 133-147, Mar. 25. CORRENS, C., '03c. Weitere Bcitrage zur Kenntnis der dominierenden Merkmale und der Mosaikbildung der Bastarde. Ber. d. deutsch Bot. Ges., XXI, 195-201, April 23. CUENOT, L., '02. Le loi de Mendel et 1'he're'dite* de la pig- mentation chez les souris. Arch. Zool. exp. et ge*n, '02, p. xxvii. CUENOT, L., '03. L'he're'dite' de la pigmentation chez les Souris (2 me note). Arch, de Zool. exper. et ge*n., (4) I, xxxiii-xli. CUMMINGS, E. R., and A. V. MAUCK, '02. A Quantitative Study of Variation in the Fossil Brachiopod, Platystro- phia lynx. Amer. Jour, of Science, XIV, 9-16, July, '02. DARBISHIRE, A. D., '02. Note on the Results of Crossing Japanese Waltzing Mice with European Albino Races. Biom., II, 101-108, Nov. DARBISHIRE, A. D., '03. Second Report on the Result of Crossing Japanese Waltzing Mice with European Albino Races. Biom., II, 165-173, Feb. DARBISHIRE, A. D., '03 b . Third Report on Hybrids between Waltzing Mice and Albino Races. On the Result of Crossing Japanese Waltzing Mice with "Extracted" Recessive Albinos. Biom., II, 282-285, June. DAVENPORT, C. B., '99. The Importance of Establishing Place Modes. Science, N. S., IX, 415-416, Mar. 17. DAVENPORT, C. B., '00. The Aims of the Quantitative Study of Variation. Biol. Lect. Woods Holl for '99, 267-272. DAVENPORT, C. B., '00 b . Review of von Guaita's Experi- ments in Breeding Mice. Biol. Bull., II, 121-128. DAVENPORT, C. B., '00 C . On the Variation of the Shell of Pecten irradians Lamarck from Long Island. Amer. Nat., XXXIV, 863-877, Nov. 90 STATISTICAL METHODS. DAVENPORT, C. B., '00 d . A History of the Development of the Quantitative Study of Variation. Science, N. S., XII, 864-870, Dec. 7. DAVENPORT, C. B., '00 e . On the Variation of the Stato- blasts of Pectinatella Magnifica from Lake Michigan at Chicago. Amer. Nat., XXXIV, 959-968, Dec. DAVENPORT, C. B., '01. Mendel's Law of Dichotomy in Hybrids. Biol. Bulletin, II, 307-310. DAVENPORT, C. B., 'Ol b . Zoology of the Twentieth Century. Science, XIV, 315-324, Aug. 30. DAVENPORT, C. B., '01. The Statistical Study of Evolu- tion. Popular Science Monthly, LIX, 447-460, Sept. DAVENPORT, C. B., '02. Variability, Symmetry, and Fertility in an Abnormal Species. Biom., I, 255, 256, Jan. DAVENPORT, C. B., '03. A Comparison of the Variability of Some Pectens from the East and West Coasts of the United States. Mark Anniversary Volume. DAVENPORT, C. B., '03 b . Quantitative Studies in the Evolu- tion of Pecten. III. Comparison of Pecten opercularis from three localities of the British Isles. Proc. Amer. Acad. Arts and Sci., XXXIX, 123-159, Nov. DAVENPORT, C. B., and J. W. BLANKTNSHIP, '98. A Precise Criterion of Species. Science, VII, 685-695. DAVENPORT, C. B., and C. BULLARD, '96. Studies in Mor- phogenesis, VI. A Contribution to the Quantitative Study of Correlated Variation and the Comparative Variability of the Sexes. Proc. Amer. Acad. Arts and Sci., XXXII, 85-97. DE VRIES, H., '94.. Ueber halbe Galton-Kurven als Zeichnen diskontinuirlichen Variation. Ber. deutsch. Bot. Ges., XII, 197-207, Taf . X. DE VRIES, H., '95. Eine zweigipfelige Variations-Kurve. Arch. f. Entwickelungsmechanik, II, 52-65, 1 Taf. DE VRIES, H., '98. Over het omkeeren van halve Galton- Curven. [Resume in French.] Bot. Jaarboek, X, 27-61. DE VRIES, H., '99. Alimentation et Selection. Cinquan- tenaire de la Societe de Biologic, Volume jubilaire, 22pp. BIBLIOGRAPHY. 91 DE VRIES, H.. '99. Ueber Curvenselection bei Chrysan- themum segetum. Ber. d. deutsch. Bot Ges., XVII, 86-98. DE VRIES, H., '00. Das Spaltungsgesetz der Bastarde Ber. d. deutsch. Bot. Ges., XVIII, 83-90. DE VRIES, H., '00 b . Sur la loi de disjonction des hybrids. Compt. Rend, de TAcad. des Sci., CXXX, 845-847. DE VRIES, H., '00 C . Ueber erbungleiche Kreuzungen. Ber. d. deutsch. Bot. Ges., XVIII, 435-443. DE VRIES, H., '02. Ueber tricolyte Rassen. Ber. d. deutsch. bot. Ges., XX, 45-54. DE VRIES, H., '01-'03. Die Mutationstheorie. Versucheund Beobochtungen iiber die Entstehung der Arten im Pflanzenreich. 2 Bde. Leipzig: Veit & Comp. DE VRIES, H., '03. La loi de Mendel et les correcteurs con- stantes des hyb rides. C. R. de 1'Acad. des Sci., Feb. 2, 1903. DIMON, ABIGAIL CAMP, '02. Quantitative Study of the Effect of Environment upon the Forms of Nassa obso- leta and Nassa trivittata from Cold Spring Harbor, Long Island. Biom., II, 24-43, Nov. DONCASTER, L., '03. Experiments in Hybridization with Special Reference to the Effect of Conditions on Domi- nance. Phil. Trans., B. CXCVI, 119-173, Oct. 3. DUNCKER, G., '97. Correlation-Studien an den Strahlzahlen einiger Flossen von Acerina cernua L. Biol. Centralbl., XVII, 785-794; 815-831. DUNCKER, G., '98. Bemerkung zu dem Aufsatz von H. C. Bumpus "The Variations and Mutations of the Intro- duced Littorina." Biol. Centralbl., XVIII, 569-573. DUNCKER, G., '99. Die Methode der Variations-Statistik. Arch. f. Entwickelungs-Mechan. d. Organismen, VIII, 112-183. [The most important elementary presentation of the subject; extensive, nearly complete bibliography.] DUNCKER, G., '99 . Wesen und Ergebnisse der Variations- statistischen Methode in der Zoologie Verh. d. deutsch. Zool. Ges., IX, 209-226. DUNCKER, G., '00. Variation und Asymmetrie bei Pleu- ronectes flesus L. Wiss. Meeresuntersuch., N. F., Ill, 335-404, Taf. XI-XIII. 92 STATISTICAL METHODS. DUNCKER, GEORG, '00 b . On Variation of the Rostrum in Palsemonetes vulgaris Herbst. Amer. Nat., XXXIV, 621-633, Aug. DUNCKER, GEORG, '03. Ueber Asymmetrie bei "Gelasimus pugilator" Latr. Biom., II, 307-320, June. EIGENMANN, C. H., '95. Leuciscus balteatus (Richardson): a Study in Variation. Amer. Naturalist, XXIX, 10-25, Pis. 1-5. EIGENMANN, C. H., '96. The Study of Variation. Proc. Indiana Acad. Sci., V. 265-278. [Extensive bibliog- raphy.] ELDERTON, W. PALIN, '02. Tables for Testing the Goodness of Fit of Theory to Observation. Biom., 1, 155-163, Jan. ELDERTON, W. PALIN, '02 b . Graduation and Analysis of a Sickness Table. Biom., II, 260-272, June. ELDERTON, W. PALIN, '02 C . Interpolation by Finite Differ- ences. Biom., II, 105-108, Nov. ENGBERG, CARL C., '03. The Degree of Accuracy of Statis- tical Data. University Studies, University of Nebraska, III, 87-100. FAWCETT, CICELY D., and ALICE LEE, '02. A Second Study of the Variation and Correlation of the Human Skull, with Special Reference to the Naquada. Crania. Biom., I, 408-467, Tables I-VIII, Aug. FAWCETT, CICELY D., and KARL PEARSON, '98. Mathe- matical Contributions to the Theory of Evolution. On the Inheritance of the Cephalic Index. Proc. Roy. Soc., LXII, 413-417. FECHNER, G. T., '97. Kollektivmasslehre. Im Auftrage der Koniglich-Sachsischen Gesellschaft der Wissen- schaften herausgegeben von Gottl. Friedr. Lipps. Leipzig: Engelmann. 483 pp. FIELD, W. L. W., '98. A Contribution to the Study of Individual Variation in the Wings of Lepidoptera. Proc. Amer. Acad. Arts and Sci., XXXIII, 389-395. FRY, AGNES, '02. Note on Variation in Leaves of Mulberry Trees. Biom. I., 258, Jan. GAJ/TON, F., '88. Correlations and their Measurement, chiefly from Anthropometric Data. Proc. Roy. Soc. London, XLV, 136-145. BIBLIOGKAPHY. 93 GALTON, F-, '89. Natural Inheritance. London: Mac- millan. GALTON, F., '97. The Average Contribution of each several Ancestor to the Total Heritage of the Offspring. Proc. Roy. Soc. London. LXI, 401-413. GALTON, FRANCIS, '97. Note to the Memoir by Professor KARL PEARSON, F.R.S., on Spurious Correlation. Proc. Roy. Soc., LX, 498-502. GALTON, FRANCIS, '01. Biometry. Biom., I, 7-10, Oct. GALTON, FRANCIS, '02. The Most Suitable Proportion between the Values of First and Second Prizes. Biom., I, 385-390, Aug. GALLARDO, A., '00. Observaciones morfologicas y esta- disticas sobre algunas anomalias de digitalis purpurea L. Anales del Museo Nac. de Buenos Aires, VII, 37-72, June 12. GALLARDO, A., '00. Les mathematiques et la biologic. Deuxieme Congres internat. des mathematiques. Parisi 395-403. GALLARDO, A., '01. Las mate*maticas y la biologia. Anales de la Sociedad Cientifica Argentina^ LI., 112-122. GALLARDO, A., 'Ol b . Concordancia entre los poligonos empfricos de variation y las correspondientes curvas teoricas. Anales de la Sociedad Cientifica Argentina, LII, 61-68. GIARD, A., '94. Sur certains cas de dedoublement des courbes de Galton dus au parasitisme et sur le dimor- phisme d'origine parasitaire. Compt. Rend, de 1'Acad. des Sci., 16 Apl., '94. GUAITA, GEORG VON, '98-'00. Versuche mit Kreuzungen von verschiedenen Rassen der Hausmaus. Ber. naturf. Ges. Freiburg-i.-B., X, 317-332; XI, 131-138. HARGITT, C. W., '01. Variation among Hydromedusae. Biol. Bull., II, 221-255, Feb. HARSHBERGER, J. W., '01. The Limits of Variation in Plants. Proc. Acad. Nat. Sci., Philadelphia, LIII, 303-319, April. HEFFERAN, MARY, '00. Variation in the Teeth of Nereis Biol. Bulletin, II, 129-143. 94 STATISTICAL METOHDS. --IEINCKE, F., '97. Naturgeschichte des Herings. Teil I. Die Lokalformen und die Wanderungen des Herings in den Europaischen Meeren. Abbandl. des deutschen Seefischerei Vereins, II, 128 pp., 26 Tab. HEINCKE, F., '98. Ditto. Teil II, 223pp. Tabellen + 2(j Tafeln. HENSGEN, C., '02. Biometrische Untersuchungen iiber die Spielarten von Helix nemoralis. Biom., I., 468-492, Aug. HOWE, J. L., '98. Variation in the Shell of Helix nemoralis in the Lexington, Va., Colony. Amer. Nat., XXXII, 913-923, Dec. JACOB, S., A. LEE, and KARL PEARSON, '03. Preliminary Note on Interracial Characters and their Correlation in Man. Biom., II, 347-356, June. JOHANNSEN, W., '03. Ueber Erblichkeit in Populationen und in reinen Linien. Ein Beitrag zur Beleuchtung schwebender Selektionsfragen. Jena: Fischer. 68 pp. KELLERMAN, W. A., '01. Variation in Syndesmon tha- lictroides. Ohio Naturalist, I, 107-111, PI. 9, May. KOROSI, ., '96. An Estimate of the Degrees of Legitimate Natality as derived from a Table of Natality compiled by the Author from his Observations made at Budapest. Phil. Trans., B. CLXXXVI, Pt. II, pp. 781-876. LATTER, OSWALD H, '02. The Egg of Cuculus canorus. An Enquiry into the Dimensions of the Cuckoo's Egg and the Relation of the Variations to the Size of the Eggs of the Foster-parent, with Notes on Coloration, etc. Biom., I, 164-176, Jan. LEE, A., and K. PEARSON, '00. Data for the Problem of Evolution in Man. VI. A First Study of the Correla- tion of the Human Skull (abstract). Proc. Roy. Soc., LXVII, 333-337. LEE, ALICE, and K. PEARSON, '01. Data for the Problem of Evolution in Man. VI. A First Study of the Correla- tion of the Human Skull. Phil. Trans., A. CXCVI, 225- 264, Mar. 29. LEE, ALICE, '02. Dr. Ludwig on Variation and Correlation in Plants. Biom., I, 316-319, April. LEE, ALICE, '03. On Inheritance (Great -grandparents and Great-great-grandparents and Offspring) in Thorough- bred Race-horses. Biom., II, 234-236, Feb. BIBLIOGRAPHY. 95 LEWENZ, M. A., and M. A. WHITELEY, '02. Data for the Problem of Evolution in Man, A Second Study of the Variability and Correlation of the Hand. Biom., I, 345-360, April. LONNBERG, E., '93. Ichthyologische Notizen. Bihangh til K. Svenska Vet. Akad. Handl., XVIII, Afd. IV, No. 2. ' 13 pp. LUCAS, F. C., '98. Variation in the Number of Ray-flowers in the White Daisy. Amer. Naturalist, XXXII, 509- 511, 2 figs. LUDWIG, F., '95. Ueber Variationskurven und Variations- fliichen der Pflanzen. Bot, Centralbl., LXIV, 1-8 et folg, 2 Tafn. LUDWIG, F., '96. Weiteres iiber Fibonacci -Kurven und die numerische Variation der gesammten Bliithenstande der Kompositen. Bot. Centralbl., LXVIII, 1 et folg., 1 Taf. LUDWIG, F., '96 b . Eine fiinfgipfelige Variations-Kurve. Ber. deutsch. bot. Ges., XIV, 204-207, 1 fig. LUDWIG, F., '96 C . Weiteres iiber Fibonacci curven. Bot. Centralbl., LXVIII, 1-8. LUDWIG, F., '97. Das Gesetz der Variabilitat der Zahl der Zungenbliithen von Chiysanthemum leucanthemum. Mitth. des Thiir. bot. Vereins, N. F., X, 20-22. LUDWIG, F., '97 b . Beitrage zur Phytarithmetik. Bot. Centralbl., LXXI, 257-265. LUDWIG, F., '97 C . Nachtragliche Bemerkungen iiber die Multipla der Fibonaccizahlen und die Coexistenz kleiner Bewegungen bei der Variation der Pflanzen. Bot. Cen- tralbl., LXXI, 289-291. LUDWIG, F., '97 d . Variationskurven von Lotus, Trifolium, Medicago. Deutsch. botan. Monatsschrift, Heft 11, 294- 296, Nov. LUDWIG, F., '98. Die pflanzlichen Variationscurven und die Gauss 'sche Wahrscheinlichkeitscurve. Bot. Cen- tralbl., LXXIII, 241-250 et folg., 1 Taf. LUDWIG, F., '98 b . Ueber Variationscurven. Bot. Centralbl., LXXV, 97-107; 178-183, 1 Taf. July 29, Aug. 10. LUDWIG, F., '99. Ein fundamentaler Unterschied in der Variation bei Tier und Pflanze. Botanisch Jaarboek, XI, 108-121. 96 STATISTICAL METHODS. LUDWIG, F., '00. Ueber neuere Ergebnisse der Variations- Statistik. 39. bis 42. Jahresber. Ges. von Freunden der Naturwiss. in Gera (Reuss). 1896-1899. 22 pp. LUDWIG, F., '00 b . Ueber Variationspolygone und Wahr- scheinlichkeitscurven Bot. Centralbl. Beiheft, IX, 24 pp. LUDWIG, F., '01. Variationsstatistische Probleme und Materialien. Biom., I, 11-29, Oct. LUDWIG, F., '03. Neuere Literatur liber das Grenzgebiet der Biometrie. Zeitschr. f. Mathematik u. Physik, XLIX, 269-277. LUTZ, F. E., '00. A Study of the Variation in the Number of Grooves upon the Shells of Pecten irradians Lam. Science, N. F., XII, 372. LUTZ, FRANK E., '03. Note on the Influence of Change in Sex on the Intensity of Heredity. Biom., II, 237-240, Feb. MACDONELL, W. R., '02. On Criminal Anthropometry and the Identification of Criminals. Biom., I, 177-227, Jan. MACDONELL, W. R., '02 b . On the Influence of Previous Vaccination in Cases of Smallpox. Biom., I, 375-383, April. MACDONELL, W. R., '03. A Further Study of Statistics relating to Vaccination and Smallpox. Biom., II, 135- 144, Feb. MACLEOD, J., '98. Over de correlatie tusschen lengte en breedte van licht- en schaduwbladen bij den groenen en den bruinen beuk. Handl II, Vlaamsch Natuur- en Geneesk. Congres, Gent, pp. 29-41. MACLEOD, J., '98. Over correlatieve variatie bij de Rogge en de Gerst. Handl. II, Vlaamsch Natuur- en Geneesk. Congres, Gent, pp. 42-56. MACLEOD, JULIUS, '99. Over de correlatie tusschen het aantal meeldraden en het aantal stampers bij het Speenkruid (Ficaria ranunculoides). Botan. Jaarboek, XI", 91-107. MACLEOD, J., '00. Over de veranderlijkheid van het aantal Stempelstralen bij Papaver. Handl. IV, Vlaamsch Natuur- en Geneesk. Congres. Brussel, 30 Sept. II, pp. 11, 12. BIBLIOGRAPHY. 97 MAYER, A. G. '01. The Variations of a newly-arisen Species of Medusa. Science Bulletin, Museum Brooklyn Inst. Arts and Sci., I, 1-22, 2 pis., April. MAYER, A. G., '02. Effects of Natural Selection and Race Tendency upon the Color-patterns of Lepidoptera. Science Bulletin, Museum Brooklyn Inst. Arts and Sciences, I, 31-86, Pis. I, II, Oct. MENDEL, G., '66. Versuche iiber Pflanzen-Hybriden. Ver- handlungen des Naturforscher-Vereines, Briinn, IV, 47pp. ~ MOENKHAUS, W. J., '96. The Variation of Etheostoma ca- prodes Rafinesque in Turkey Lake and Tippecanoe Lake. Proc, Indiana Acad. Sci., V, 278-296. PEARL, R., '03. On the Mortality Due to Congenital Mal- formations, with Especial Reference to the Problem of the Relative Variability of the Sexes. Medicine, Nov. PEARL, RAYMOND, and FRANCES J. DUNBAR, '03. Variation and Correlation in Arcella. Biom., II, 321-337, June. PEARSON, K., '94 Contributions to the Mathematical Theory of Evolution. [I. On the Dissection of Frequency Curves.] Phil, Trans. Roy. Soc. London, CLXXXV, A, 71-110, Pis. 1-5. PEARSON, K., '95. Contributions, etc., II. Skew Variation in Homogeneous Material Phil Trans. Roy. Soc. London, CLXXXVI, A, 343-414, 10 Pis. PEARSON, K., '96. Mathematical Contributions to the Theory of Evolution, III. Regression, Heredity, and Panmixia. Phil. Trans. Roy. Soc. London, CLXXXVII, A, 253- 318 PEARSON, K., '96 b . On Reproductive Selection. Proc. Roy. Soc., LIX, 30L PEARSON, K., and ALICE LEE, '96 C . Mathematical Contribu- tions to the Theory of Evolution. On Telegony in Man, etc. Proc. Roy. Soc., LX, 273-283. PEARSON, K., '97. Mathematical Contributions, etc. On a Form of Spurious Correlation, which may Arise when Indices are used in the Measurement of Organs. Proc. Roy. Soc- London, LX, 4S9-498 PEARSON, K., '97 b . On the Scientific Measure of Variability. Nat, Science., XI, 115-118. 98 STATISTICAL METHODS. PEARSON, K, '97 C . The Chances of Death and Other Studies in Evolution. 2 vols., London PEARSON, K., '98. Mathematical Contributions, etc. On the Law of Ancestral Heredity. Proc. Roy. Soc London LXII, 386-412. PEARSON, K., and L. N. G. FILON, '98. Mathematical Con- tributions etc., IV. On the Probable Errors of Fre- quency Constants and on the Influence of Random Selection on Variation and Correlation. Phil Trans Roy. Soc. London, CXCI, A, 229-311 PEARSON, K., '98 b . Mathematical Contributions, etc , V On the Reconstruction of the Stature of Prehistoric Races. Phil Trans., A. CXCII, 169-244, Dec 30, '98. PEARSON K., '99. Data for the Problem of Evolution in Man, III. On the Magnitude of Certain Coefficients of Correlation in Man, etc Proc Roy Soc., LXVI, 23-32. PEARSON, K., '99 b . Data, etc., IV. Note on the Effect of Fertility Depending on Homogamy. Proc. Roy. Soc , LXVI, 316-323, May 12, '00. PEARSON, K., ALICE LEE, and L. BRAMLEY MOORE, '99. Mathematical Contributions, etc., VI. Genetic (Re- productive) Selection: Inheritance of Fertility in Man, and of Fecundity in Thorough-bred Race-horses. Phil. Trans., A. CXCII 257-330, Mar 29, '99. PEARSON, K., '00. The Grammar of Science. 2d Edition. London: A. & C. Black, PEARSON, K., '00 b . On the Criterion that a Given System of Deviations from the Probable in the Case of a Corre- lated System of Variables is such that it can be reason- ably supposed to have arisen from Random Sampling. Philosoph. Mag., 157-174, July. PEARSON, K., '00 C . Mathematical Contributions, etc., VII. On the Correlation of Characters not Quantitatively Measurable. Phil. Trans. , A. CXCV, 1-47. Aug. 16. PEARSON, K., and ALICE LEE, '00. Mathematical Contribu- tions, etc., VIII. On the Inheritance of Characters not Capable of Exact Quantitative Measurement. Phil. Trans., A. CXCV, 79-150, Oct. 29. BIBLIOGRAPHY. 99 PEARSON, K., '01. On some Applications of the Theory of Chance to Racial Differentiation. Philosophical Mag., 110-124, Jan., '01. PEARSON, K., 'Ol b . Statoblasts of Pectinatella magnifica. Biom., I, 128, Oct. PEARSON, K., [and others,] '01 c . Mathematical Contribu- tions, etc., IX. On the Principle of Homotyposis and its Relation to Heredity, to the Variability of the Indi- vidual, and to that of the Race. Phil. Trans., A. CXCVII, 285-379 Dec. 12. PEARSON, K., 'Ol d . Mathematical Contributions, etc., X. Supplement to a Memoir on Skew Variation. Phil. Trans., A. CXCVII, 443-459, Dec. 29. PEARSON, K., 'Ol e . On the Inheritance of the Mental Characters of Man. Proc. Roy. Soc., LXIX, 153- 155. PEARSON, K., '02. On the Correlation of Intellectual Abil- ity with the Size and Shape of the Head. Proc. Roy. Soc., LXIX, 333-342. PEARSON, K., '02 b . Variation of the Egg of the Sparrow (Passer domesticus). Biom., I, 256-257, Jan. PEARSON, K., ; 02 C . On the Medal Value of an Organ or Character. Biom , I, 260-261 , Jan, PEARSON, K., '02 d . On the Change in Expectation of 'Life in Man during a period of circa 2000 years, Biom., I, 261-264, Jan. PEARSON, K., '02 e . Mathematical Contributions, etc. On Efomotyposis in Homologous but Differentiated Organs ' Proc. Roy. Soc., LXXI, 288-313. PEARSON, K., '02 f . On the Mathematical Theory of Errors of Judgment, with Special Reference to the Personal Equation. Phil. Trans., A. CXCVIII, 235-299, Mar 14. PEARSON, K., '02*. On the Systematic Fitting of Curves to Observations and Measurements. Biom., I, 265-303, April. PEARSON, K., '02 h . On the Sources of Apparent Polymor- phism in Plants. Biom., I, 304-306, April. PEARSON, K., '02*. On the Fundamental Conceptions of Biology. Biom., I, 320-344, April. 100 STATISTICAL METHODS. PEARSON, K., '02 k . Notes on Francis Galton's Problem. Biom., I, 390-399, Aug. PEARSON, K., '02 1 . Note on Dr. Simpson's Memoir on Para- mcecium caudatum. Biom., I, 404-407, Aug. PEARSON, K., '02 m . On the Systematic Fitting of Curves to Observations and Measurements. Biom., II, 1-23, Nov. PEARSON, K., '02 n . Mathematical Contributions, etc., XI. On the Influence of Natural Selection on the Variability and Correlation of Organs. Phil. Trans., A. CC, 1-66, Dec. 21, '02. PEARSON, K., [and others,] '03. Cooperative Investigations on Plants. I. On Inheritance in the Shirley Poppy. Biom., II, 56-100, Nov. II. Variation and Correlation in Lesser Celandine from Diverse Localities. Biom., II, 145-164, Feb. PEARSON, K., '03 b . The Law of Ancestral Heredity. Biom., II, 211-228, Feb. PEARSON, K., '03 C . On the Probable Errors of Frequency Constants. Biom., II, 273-281, June. PEARSON, K., '03 d . Craniological Notes. I. Professor Aurel von Torok's Attack on the Arithmetical Mean. Biom., II, 339-345. II. Homogeneity and Hetero- ' geneity in Collections of Crania. Biom., II, 345-347, June. PEARSON, K., and G. U. YULE, '02. Variation in Ray- flowers of Chrysanthemum leucanthemum, 1133 heads gathered at Keswick during July, '95. Biom., I, 319, April. PORTER, W. T., '94. The Growth of St. Louis Children. Trans. Acad. Science, St. Louis, VI, 279. POWYS, A. O., '01. Data for the Problem of Evolution in Man. Anthropometric Data from Australia. Biom., I, 30-49, Oct. REDEKE, H. C., '02. Variationsstatistische Untersuchungen iiber Fischrassen. Zool. Centralbl., IX, 645-670. REINOHL, F., '03. Die Variation im Androceum der Stel- laria media Cyr. Bot. Zeitung, LXL ROLLET, E., '89. De la mensuration des Os Longs des mem- bres. Lyons. BIBLIOGRAPHY. 101 SAUNDERS, E. R., '97. On a Discontinuous Variation Occur- ring in Biscutella laevigata. Proc. Roy. Soc., LXII, 11-26. SCHROTER, C., and P. VOGLER, '01. Variationsstatistische Untersuchungen iiber Fragilaria crotonensis (Edw.) Kitton im Plankton des Ziirichsees in den Jahren 1896- 1901. Vieteljahrsschrift der Naturf. Gesellsch. Zurich, XL VI, 185-206. SCHUSTER, E. H. J., '03. Variation in "Eupagurus pri- deauxi" (Heller). Biom., II, 191-210, Feb. SHEPPARD, W. F., '98. On the Application of the Theory of Error to Cases of Normal Distribution and Normal Correlation. Phil. Trans., A. CXCII, 101-167, Dec. 15. SHEPPARD, W. F., '98 b . On the Calculation of the Most Probable Values of the Frequency-constants for Data arranged according to Equidistant Divisions of a Scale. Proc. London Mathematical Soc., XXIX, 353-380, March 10. SHEPPARD, W. F., '03. New Tables of the Probability Inte- gral. Biom., II, 174-190, Feb. SHULL, G. H., '02. A Quantitative Study of Variation in the Bracts, Rays, and Disk Florets of Aster shortii Hook. A. novae-angleae L., A. puniceus L., and A. prenanthoides Muhl., from Yellow Springs, Ohio. Amer. Nat., XXXVI, 111-152. SIMPSON, J. Y., '02. The Relation of Binary Fission to Variation. Biom., I, 400-404, Aug. SMALLWOOD, MABEL E., '03. The Beach Flea: Talorchestia longicornis. Cold Spring Harbor Monographs, I, 27 pp., 3 pis. SMITH, GEOFFREY, '03. Actinosphserium eichorni. A Bio- metrical Study in the Mass Relations of Nucleus and Cytoplasm. Biom., II, 241-254, June. STRONG, R. M., '01. A Quantitative Study of Variation in the Smaller North- American Shrikes. Amer. Nat., XXXV, 271-298, April. THOMPSON, H., '94. On Correlations of Certain External Parts of Palcemon serratus. Proc. Roy. Soc. London, LV, 234-240. 102 STATISTICAL METHODS. TOWER, W. L., '02. Variation in the Ray-flowers of Chry- santhemum leucanthemum L. at Yellow Springs, Green Co., O., with remarks upon the Determination of Modes. Biom., I, 309-315, April. VERSCHAFFELT, E., '04. Ueber graduelle Variabilitat von pflanzlichen Eigenschaften. Ber. d. deutsch. bot. Ges., XII, 350-355. VERSCHAFFELT, E., '95. Ueber Asymmetrische Variations- kurven. Ber. d. deutsch. bot. Ges., XIII, 348-356, 1 Taf. VERSCHAFFELT, E., '99. Galton's Regression to Mediocrity bij ongeslachtelijke verplanting. Livre jubilaire de"die* a Charles Van Bambeke. (Bruxelles: H. Lamerton.) pp. 1-6. VOGLER, P., '01. Ueber die Variationskurven von Primula farinosa L. Vierteljahrsschrift der Naturf. Gesellsch. .Zurich, XLVI, 264-274. VOGLER, P., '03. Variationskurven bei Pflanzen mit tetra- meren Bliiten. Vieteljahrsschr. d. Naturf. Gesellsch. Zurich, XLVII, 429-436, April 11. VORIS, J. H., '99. Material for the Study of the Variation of Pomephales notatus (Raf.) in Turkey Lake and in Shoe and Tippecanoe Lakes. Proc. Indiana Acad. of Sci., 233-239. VOLTERRA, V., '01. Sui tentativi di applicazione delle mate- matiche alle scienze biologiche e sociali. Discorso letto 1 per la solenne inaugurazione dell' anno scolastico '01 '02 nella R. Universita di Roma. Roma, 26 pp. WARREN, E., '96. Variation in Portunus depurator. Proc. Roy. Soc. London, LX, 221-243. WARREN, E., '97 An Investigation on the Variability of the Human Skeleton with Especial Reference to the Naquada Race. Phil. Trans. Roy. Soc. London, CLXXXIX, B. 135-227, PL 22. WARREN, E., '99. An Observation on Inheritance in Par- thenogenesis. Proc. Roy. Soc., LXV, 154-158. WARREN, ERNEST, '02. Variation and inheritance in the Par- thenogenetic Generations of the Aphis ' ' Hyalopterus triphodus" (Walker). Biom., I, 129-154, Jan. WARREN, ERNEST, '03. A Preliminary Attempt to Ascer- tain the Relationship between the Size of Cell and the BIBLIOGRAPHY. 103 Size of Body in Daphnia Magna Straus. Biom., II, 255-259, June. WASTEELS, C. E., '99. Over de Fibonaccigetallen. Hande- lengen van bet derde Vlaamsch Natuur-en Geneeskun- dig Congres geh. ie Antwerpen d. 24 Sept., '99, pp. 25-37. WASTEELS, C. E., '00. De Variatiecurven met betrekbing tot de polynomiale Waarschijnlijk heidswet. Handl. IV, Vlaamsch Natuur-en Geneesk. Congres. Brussel. pp. 33-45. WELDON, W. F. R., '90. The Variations occurring in Certain Decapod Crustacea, I. Crangon vulgaris. Proc. Roy. Soc. London, XLVII, 445-453. WELDON, W. F. R., '92. Certain Correlated Variations in Crangon vulgaris. Proc. Roy. Soc. London, LI, 2-21. WELDON, W. F. R., '92 b . Palaemonetes varians in Plymouth. Jour. Marine Biol. Assoc., U. K. N. S., I, 459-461. WELDON, W. F. R., '93. On Certain Correlated Variations in Carcinus mcenas. Proc. Roy. Soc. London, LIV, 318-329. WELDON, W. F. R., '95. Report of the Committee for Conducting Statistical Inquiries into the measurable Characteristics of Plants and Animals. Part I. An Attempt to Measure the Death-rate due to Selective Destruction of Carcinus mcenas with respect to a Par- ticular Dimension. Proc. Roy. Soc. London, LVII, 360-379. WELDON, W. F. R., '01. A First Study of Natural Selection in Clausilia laminata (Montagu). Biom., I, 109-124, Oct. WELDON, W. F. R., '01. Change in Organic Correlation of Ficaria ranunculoides during the Flowering Season. Biom. I, 125-123, Oct. WELDON, W. F. R., '02. Mendel's Laws of Alternative Inheritance in Peas. Biom., I, 228-254, Jan. WELDON, W. F. R., '02 b . Professor De Vries On the Origin of Species. Biom., I. 365-374, April. WELDON, W. F. R., 'O2. c On the Ambiguity of Mendel's Categories. Biom., II, 44-55, Nov. WELDON, W. F. R., '02 d . Seasonal Change in the Characters of Aster prenanthoides Muhl. Biom., II, 113, 114, Nov. 104 STATISTICAL METHODS. WELDON, W. F. R., '03. Mr. Bateson's Revisions of Mendel's Theory of Heredity. Biom., II, 286-298, June. WHITEHEAD, HENRY, '02. Variation in the Moscatel (Adoxa moschatellina L.) Biom., II, 108-113, Nov. WHITELEY, M. A., and K. PEARSON, '99. Data for the Problem of Evolution in Man, I. A First Study of the Variability and Correlation of the Hand. Proc. Roy. Soc., LXV, 126-151. WILCOX, E. M., '02. Numerical Variation of the Ray- flowers of Compositse. Bot. Gazette, XXXIII, 463- 465, June. WILLIAMS, S. R., '03. Variation in Lithobius forficatus. Amer. Nat., XXXVII, 299-312. WILLIAMSON, H. C., '00. On the Mackerel of the East and West Coasts of Scotland. Report Scottish Fisheries Board, XVIII, 294-329. WOODS, FREDERICK ADAMS, '03. Mendel's Laws and Some Records in Rabbit Breeding. Biom, II, 299-306, June. YERKES, R. M., '01. A Study of Variation in the Fiddler- crab, Gelasimus pugilator Latr. Proc. Amer. Acad. Arts and Sciences, XXXVI, 417-442. March, 1901. YOST, L., '99. Ueber Bliiten-Anomalien bei Linaria spuria. Biol. Centralbl., XIX, 145-153, 185-195, March, 1, 15. YULE, G. U., '97. On the Significance of Bravais' Formulae for Regression, etc. Proc. Roy. Soc., LX, 477-489. YULE, G. U., '97 b . On the Theory of Correlation. Jour. Roy. Statistical Society, LX, 1-44, Dec. YULE, G. U., '00. On the Association of Attributes in Statistics, with Examples from the Material of the Childhood Society, etc. Proc. Roy. Soc., LXVI, 22-23, Feb. 4, 1900. YULE, G. U., '00 b . On the Association of Attributes in Statistics: with Illustrations from the Material of the Childhood Society, etc. Phil. Trans., A. CXCIV, 257-319. YULE, G. U., '02. Variation of the Number of Sepals in Anemone nemorosa, Biom., I, 307-309, April. YULE, G. U., '02 b . Local Death Rates. Biom., I, 384, April. YULE, G. Udny, '03. Notes on the Theory of Association of Attributes in Statistics. Biom., II, 123-134, Febt EXPLANATION OF TABLES. 105 EXPLANATION OF TABLES. I. Formulas. In this table the principal formulas used in the calculation of curves are brought together for con- venient reference. The meanings of the letters are explained in the text. This table is preceded by an index to the prin- cipal letters used in the formulae of this book. II. Certain constants and their logarithms, This table includes the constants most frequently employed in the calculations of this book. III. Table of ordinates of normal curve. Th's table is for comparison of a normal frequency polygon con- sisting of weighted ordinates with the theoretical curve. Example: A = 17.673; o= 1.117; 2/ = 181.4. (See page 26.) Entries in Table V M corresponding to V V-M 7" V-M 2/0 y f a 14 -3.673 3.29 .00449 X181.4 = 0.8 1 15 -2.673 2.39 .05750 X 181.4 = 10.4 8 16 -1.673 1.50 .32465 X 181.4 = 58.9 63 IV. Table of values of probability integral. This table is for comparison of a normal frequency polygon consisting of rectangles with the theoretical curve. Example: A = 17.673; d = 1.1169. (See page 26.) Class. X a Per cent. Class Limits. Deviation from Xi a (*-*a)XK . v less 2 Xl + ( 14 -3.29 .2 .225 14.5 -3.173 -2.841 15 -2.39 1.6 2.364 15.5 -2.173 -1.945 16 -1.50 12.4 12.097 16.5 -1.173 -1.050 17 - .60 30.3 29.155 17.5 -0.173 -0.155 18 .29 32.3 33.194 18.5 0.827 0.740 19 1.19 18.9 17.873 19.5 1.827 1.636 20 2.08 3.9 4.524 20.5 2.827 2.531 21 2.98 0.4 .568 100.0 100.000 106 STATISTICAL METHODS. j . In the example, the data of which are given on p. 26, the frequency between the limits is given in % column. The of G each limit (as an inner class limit) is found and the entries in Table IV corresponding to the limits are taken. Each such entry is subtracted from 0.50000, *Js multiplied by 100, and from the product is subtracted the total theoretical percentage of variates lying between the outer limit of the class and the corresponding extremity of the half curve. This gives the theoretical frequency of the class in question. The closeness of agreement of the last column with the "Percent." column indicates the closeness of the observed frequency to the theoretical. V. Table of log T functions of p. This table will enable one to solve the equations for y Q given on page 32. The table gives the logarithms of the values of F functions only within the range p 1 to 2. As all values of the func- tion within these limits are less than 1, the mantissa of the logarithms is 1; but it is given in the table as 10 1 = 9, as is usually done in logarithmic tables. Supposing the quantity of which we wish to find the value reduced to the form r(4.273). The value cannot be found directly because the value of p is larger than the numbers in the table (1 to 2). The solution is made by aid of the equation r(p + l)=pF(p), thus: log r(1.273) = 9.955185 log 1.273 =0.104828 log T(3.273) = 0.060013 log 2.273 =0.356599 log r(3.273) = 0.416612 log 3.273 =0.514946 log T(4. 273) = 0.931558 or, more briefly, log r(1.273) = 9.955185 log 1.273 = .104828 log 2.273 = .356599 log 3.273 = .514946 log T(4.273) = 0.931558 = log 8.542 EXPLANATION OF TABLES. 107 VI. Table of reduction from the common to the metric system. This is given first for whole inches from 1 to 99 excepting even tens, which may be got from the first line of figures by shifting the decimal point one place to the right. The table may be used for huudredths of an inch by shifting the decimal point two places to the left. Other fractious than decimals are given in the lower tables. . VII. Table of minutes and seconds of arc in decimals of a degree. This table will be found of use in the fitting of curves of Type IV (p. 33). VIII. First to sixth powers of integers from 1 to 3O. This table is useful in calculating moments. IX. Table of the probable errors of the coeffi- cient of correlation for various numbers of ob- servations or variates (n) and for various values of r. The probable error of the coefficient of correlation , . 0.6745(1 -r 2 ) , , . , ^ being -, a table for the varying values of n and r Vn is easily constructed, and for large values of n is accurate with interpolation by inspection to two significant figures, which are all that are required. X. Squares, cubes, square roots, and recip- rocals of numbers from 1 to 1O54. The use of this table can be extended by using the principle that if any number be multiplied by n, its square is multiplied by n 2 , its cube by n 3 , and its reciprocal by . XI. Logarithms of numbers to six places. The following explanation of the use of the logarithmic tables is taken from Searles' Field Engineering, pp. 257-263 [ed. 1887]. The logarithm of a number consists of two parts, a whole number, called the characteristic, and a decimal, called the mantissa. All numbers which consist of the same figures standing in the same order have the same man- tissa, regardless of the position of the decimal point in the number, or of the number of ciphers which precede or follow the significant figures of the number. The value of the char- acteristic depends entirely on the position of the decimal point 108 STATISTICAL METHODS. in the number. It is always one less than the number of figures in the number to the left of the decimal point. The value is therefore diminished by one every time the decimal point of the number is removed one place to the left, and vice versa. Thus Number. Logarithm. 13840. 4.141136 1384.0 3.141136 138.40 2.141136 13.84 1.141136 1.384 0.141136 .1384 1.141136 .01384 2.141136 .001384 3.141136 etc. etc. The mantissa is always positive even when the characteristic is negative. We may avoid the use of a negative characteristic by arbitrarily adding ID, which may be neglected at the closf of the calculation. By this rule we have Number. Logarithm. 1.384 0.141136 .1384 9.141136 .01384 8.141136 .001384 7.141136 etc, etc. No confusion need arise from this method in finding a number from its logarithm; for although the logarithm 6.141136 repre- sents either the number 1,384,000, or the decimal .0001384, yet these are so diverse in their values that we can never be uncer- tain in a given problem which to adopt. TABLE XI, contains the mantissas of logarithms, car- ried to six places of decimals, for numbers between 1 and 9999, inclusive. The first three figures of a number are given in the first column, the fourth at the top of the other columns. The first two figures of the mantissa are given only in the second column, but these are understood to apply to the remaining four figures in either column following, which are comprised between the same horizontal lines with the two. If a number (after cutting off the ciphers at either end) con- sists of not more than four figures, the mantissa may be taken direct from the table ; but by interpolation the logarithm of a number having six figures may be obtained. The last column contains the average difference of consecutive logarithms on EXPLANATION OF TABLES. 109 the same line, but for a given case the difference needs to be verified by actual subtraction, at least so far as the last figure is concerned. The lower part of the page contains a complete list of differences, with their multiples divided by 10. To find the logarithm of a number having six figures : Take out the mantissa for the four superior places directly from the table, and find the difference between this mantissa and the next greater in the table. Add to the man- tissa taken out the quantity found in the table of proportional parts, opposite the difference, and in the column headed by the fifth figure of the number; also add ^ the quantity in the col- umn headed by the sixth figure. The sum is the mantissa required, to which must be prefixed a decimal point and the proper characteristic. Example. Find the log of 23.4275. For 2342 mantissa is 369587 " diff. 185 col. 7 129.5 " " " " 5 9.2 Am. For 23.4275 log is 1.369726 The decimals of the corrections are added together to deter- mine the nearest value of the sixth figure of the mantissa. To find the number corresponding to a given logarithm. If the given mantissa is not in the table find the one next less, and take out the four figures corresponding to it ; divide the difference between the two mantissas by the tabu- lar difference in that part of the table, and annex the figures of the quotient to the four figures already taken out. Finally, place the decimal point according to the rule for characteristics, prefixing or annexing ciphers if necessary. The division re- quired is facilitated by the table of proportional parts, \vhich furnishes by inspection the figures of the quotient. Example. Find the number of which the logarithm is 8.263927 8.263927 First 4 figures 1836 from 263873 Diff. 540 Tabular diff. =236 . - . 5th fig. =2 47. 2 6.80 6th fig. = 3 7.08 Ans. No. = .0183623 or 183,623,000. 110 STATISTICAL METHODS. The number derived from a six-place logarithm is not reliable beyond the sixth figure. At the end of Table XI is a small table of logarithms of numbers from 1 to 100, with the characteristic prefixed, for easy reference when the given number does not -exceed two digits. But the same mantissas may be found in the larger table. TABLE XII. The logarithmic sine, tangent, etc., of an arc is the logarithm of the natural sine, tangent, etc., of the same arc, but with 10 added to the characteristic to avoid negatives. This table gives log sines, tangents, cosines, and cotangents for every minute of the quadrant. With the number of degrees at the left side of the page are to be read the minutes in the left-hand column; with the degrees on the right-hand side are to be read the minutes in the right-hand column. When the degrees appear at the top of the page the top headings must be observed, when at the bottom those at the bottom. Since the values found for arcs in the first quad- rant are duplicated in the second, the degrees are given from to 180. The differences in the logarithms due to a change of one second in the arc are given in adjoining columns. To find the log. sin, cos, tan, or cot of a given arc. : Take out from the proper column of the table the log- arithm corresponding to the given number of degrees and minutes. If there be any seconds multiply them by the ad- joining tabular difference, and apply their product as a cor- rection to the logarithm already taken out. The correction is to be added if the logarithms of the table are increasing with the angle, or subtracted if they are decreasing as the angle in- creases. In the first quadrant the log sines and tangents in- crease, and the log. cosines and cotangents decrease as the angle increases. JSxample.Yind the log sin of 9 28' 20". Log sin of 9 28' is 9.216097 Add correction 20 X 12.62 252 Ans. 9.216349 Mcample."Fm Psi @0fl > Theta IlTt Pi Q, GO Omega EXPLANATION OF TABLES. 115 INDEX TO THE PRINCIPAL LETTERS USED IN THE FORMULA OF THIS BOOK. A, average, mean, a, class index (p. 24); also upper left-hand quadrant (p. 49). a, skewness index. b, the frequency of the upper right quadrant (p. 49). /?, ratio of moments. C, coefficient of variability. c, the frequency of the lower left quadrant (p. 49). D, distance from mean to mode. d, a difference; differential; the frequency of lower right quad- rant (p. 49). J, index of closeness of fit. 8, difference between y and /. E, pfobable error. e, base of Naperian logarithms, = 2.718282. F, critical function. /, class frequency. G, geometric mean. H , a function of h. h, a fixed value of x\ also, index of heredity. 7, interval between the p'th and p"th individual, i, interval between the pth and (p + l)th individual (p. 27). K, a function of k. k, a fixed value of x. L, limiting value of class. I, range of curve along x. li, lz, portions of the curve range. A , number of classes. A, class range. M, abscissal value of the mode (theoretical). M r , abscissal value of the mode (empirical). /t, moment about A. N, the number corresponding to a log. n, number of variates; area of polygon; any, not specified, number. \n, .product of all integers from ~~1 to n. v, average moment about VQ. H, index of dissymmetry. P, probability. p, ordinal rank of a particular individual or case (p. 27); a root or power. TT, circumference in units of diame- ter, 2.14159. q, a root or power. r, coefficient of correlation. P, coefficient of regression. s, a relation of /?'s (p. 22). I, summation sign. a, standard deviation; index of variability. T, transmuting factor, a into E, .67449. T, in Type IV. ' j- angles. , ) V, magnitude of any class. V , magnitude of central class. v, any variate or value. w; = 5/?2-6/?i-9(p. 31). X, the horizontal axis or base of polygon. .x, a varying abscissal value. x\, x 2 , etc., definite values of x. Y, the vertical axis of polygons* also the log of / (p. 29). y, a varying ordinate value. yo, value of the ordinate at the origin. z, ordinate value. 116 STATISTICAL METHODS. ! I. FORMULAS. . = 0.6745^=. x = V-A V n .=L =0.7979*7. W -0.6745*. n ^4. D. 2(J) , Jl&J) , _7_t n t 2n 240 * = D = o.A. 4(402- 30i)(2& * 3ft-6) || (Types I, IV). a== p~ 3 C^ 6 V >- 0.6745o ( TT (1-a 2 ) /, , X 2 \ )t Probable discrepancy, - j . 3 - ( 1 + ^ } V 3 . r _ J(dev. x X dev. y X /) = ^(xiX 2 /) ^ ^0.6745(l-r 2 ) n. 01.02 noia-2 \/~n r (spurious correlation) = 02 o 2 03 , 6745oi A / 1 ri 2 2 h ~ o 2 n To solve any equation of the second degree, -bVb 2 -4ac 2a CERTAIN CONSTANTS AND THEIR LOGARITHMS. 117 II. CERTAIN CONSTANTS AND THEIR LOGARITHMS. Title. Symbol. Number. Log. Ratio of circumference to diameter . K 1 x VT i VT \/2ic 1 \/2~n 1 2* VT i V2~ VI * e 1 vT ra 1 m T 3.1415927 0.3183099 1.7724538 0.5641896 2.506628 . 3989422 0.159155 1.4142136 0.707106 0.797816 2.7182818 0.606530 0.4342945 2.3025851 0.67449 0.4971499 9.502S5C1 0.2485749 9.7514251 0.399090 9.6009100 9.201820 0.150515 9.8494849 9.9019401 0.4342945 9.78285281 9.6377843 0.3622157 9.828976 Reciprocal of same Souare root of same Reciprocal of souare root of same Square root of 2?r Reciprocal of same Reciprocal of 2?r . . Reciprocal of same .. 2 Scruare root of 7T Reciprocal of square root of same Modulus of common system of logs = log e Reciprocal of same = hyp. log 10 Factor to reduce a to probable error Com. logz = raXhyp. logo;, or Com. log (com. log x) = 9.6377843 + com. log (hyp. logs) Hyp. log x = com. log xX , or w Com. log(hyp. log x) =com. log (com. log) x + 0.3622157 Circumference of circle 2nr nr* y*ir a > 360^ ivhere a = semi-n = semi-major unor axis of axis : b = ellipse. Area of circle Area of sector (length of arc =Z) Area of sector (angle of arc =a) Eccentricity of an ellipse c ^v -\ o 2 ' 118 STATISTICAL METHODS. TABLE III. TABLE OF ORDINATES (2) OF NORMAL CURVE, OR VALUES OF -^ CORRESPONDING TO VALUES OF . 2/0 a x = deviation from mean. o = standard deviation. y = frequency. 2/o = 7= = maximum frequency. X/a 1 2 3 4 99920 99025 97161 94387 90774 5 6 7 8 9 0.0 0.1 0.2 0.3 0.4 1000QO 99501 98020 95600 92312 99995 99396 97819 95309 91939 99980 99283 97609 95010 91558 99955 99158 97390 94702 91169 99875 98881 96923 94055 90371 99820 199755 98728 [ 98565 96676 96420 9372393382 89961 89543 99685 98393 96156 93034 89119 99596 98211 95882 92677 88688 0.5 0.6 0.7 0.8 0.9 88250 83527 78270 72615 66698 87805 83023 77721 72033 66097 87353 82514 77167 71448 65494 86896 82010 76610 70861 64891 86432 81481 76048 70272 64287 85962 80957 75484 69681 63683 85488 85006 80429 79896 74916 74342 69087 68493 63077 62472 84519 79359 73769 67896 61865 84060 78817 73193 67298 61259 1.0 1.1 1.2 1.3 1.4 60653 54607 48675 42956 37531 60047 54007 48092 42399 37007 59440 53409 47511 41845 36487 58834 52812 46933 41294 35971 58228 52214 46857 40747 35459 57623 51620 45783 40202 34950 57017 51027 45212 39661 34445 56414 50437 44644 39123 33944 55810 55209 49848'49260 4407863516 3858938058 33447 j 32954 1.5 1.6 1.7 1.8 1.9 32465 27804 23575 19790 16448 31980 27361 23176 19436 16137 31500 26923 22782 19086 15831 31023 26489 22392 18741 15530 30550 26059 22008 18400 15232 30082 25634 21627 18064 14939 29618 25213 21251 17732 14650 29158 24797 20879 17404 14364 28702 28251 24385 23978 20511:20148 17081J16762 14083 13806 2.0 2.1 2.2 2.3 2.4 13534 11025 08892 07100 05614 13265 10795 08698 06939 05481 13000 10570 08507 06780 05350 12740 10347 08320 06624 05222 12483 10129 08136 06471 05096 12230 09914 07956 06321 04973 11981 09702 07778 06174 04852 11737 09495 07604 06029 04734 11496 11259 09290 09090 07433 07265 05888 05750 04618 04505 2.5 2.6 2.7 2.8 2.9 04394 03405 02612 01984 01492 04285 03317 02542 01929 01449 04179 03232 02474 01876 01408 04074 03148 02408 01823 01367 03972 03066 02343 01772 01328 03873 02986 02280 01723 01289 03775 02908 02218 01674 01252 03680 02831 02157 01627 01215 03586 03494 02757 02684 02098 02040 0158101536 01179,01145 3 4 5 01111 00034 00000 00819 00022 00598 00015 00432 00010 00309 00006 00219 00004 00153 00003 00106 00002 00073 00001 00050 00001 VALUES OF NORMAL PROBABILITY INTEGRAL. 119 TABLE IV. TABLE OF THE HALF CLASS INDEX (*a) VALUES OR THE NORMAL PROBABILITY INTEGRAL CORRESPOND- ING TO VALUES OF ; OR THE FRACTION OF THE AREA a OF THE CURVE BETWEEN THE LIMITS AND + , OR AND - . a Total area of curve assumed to be 100,000. x = deviation from mean. a = standard deviation. X/a 1 2 3 4 5 6 7 8 9 J 0.00 00000 40 80 120 159 199 239 279 319 259 40 0.01 03991 439 479 519 559 598 638 678 718 758 0.02 0798J 838 878 917 957 997 1037 1077 1117 1157 0.03 1197 1237 1276 1316 1356 1396 1436 1476 1516 1555 0.04 1595 1635 1675 1715 1755 1795 1834 1874 1914 1954 0.05 1994 2034 2074 2113 2153 2193 2233 2273 2313 2352 0.06 2392 2432 2472 2512 2551 2591 2631 2671 2711 2751 0.07 2790 2830 2870 2910 2949 2989 3029 3069 3109 3148 0.08 3188 3228 3268 3307 3347 3387 3427 3466 3506 3546 0.09 3586 3625 3665 3705 3744 3784 3824 3864 3903 3943 0.10 3983 4022 4062 4102 4141 4181 4221 4261 4300 4340 0.11 4380 4419 4459 4498 45381 4578 4617 4657 4697 4736 0.12 4776 4815 4855 4895 4934 4974 5013 5053 5093 5132 0.13 5172 5211 5251 5290 5330 5369 5409 5448 5488 5527 0.14 5567 5606 5646 5685 5725 5764 6804 5843 5883 5922 0.15 5962 6001 6041 6080 6119 6159 6198 6238 6277 6317 0.16 6356 6395 6435 6474 6513 6553 6592 6631 6671 6710 0.17 6750 6789 6828 6867 6907 6946 6985 7025 7064 7103 0.18 7142 7182 7221 7260 7299 7338 7378 7417 7456 7495 0.19 7535 7574 7613 7652 7691 7730 7769 7809 7848 7887, 0.20 7926 7965 8004 8043 8082 8121 8160 8199 8238 8278 1 0.21 8317 8356 8395 8434 8473 8512 8551 8590 8628 8667, 39 0.22 8706 8745 8784 8823 8862 8901 8940 8979 9018 9057! 0.23 9095 9134 9173 9212 9250 9289 9328 9367 9406 9445 0.24 9483 9522 9561 9600 9638 9677 9716 9754 9793 9832; 0.25 9871 9909 9948 9986 10025 10064 10102 10141 10180 10218 1 0.26 10257 10295 10334 10372 10411 10449 10488 10526 10565 10603 0.27 10642 10680 10719 10757 10796 10834 10872 10911 10949 10988 0.28 11026 11064 11103 11141 11179 11217 11256 11294 11333 11371 0.29 11409 11447 11485 11524 11562 11600 11638 11676 11715 11753 0.30 11791 11829 11867 11905 11943 11981 12019 12058 12096 12134 0.31 12172 12210 12248 12286 12324 12362 12400 12438 12476 12514 38 0.32 12552 12589 12627 12665 12703 12741 12778 12816 12854 12892 0.33 12930 12968113005 13043 13081 13118 13156 13194 13232 13269 0.34 13307 13344 13382 13420 13457 13495 13533 13570 13608 13645 0.35 13683 13720 13758 13795 13833 13870 13908 13945 13983 14020 PROPORTIONAL PARTS. A 1 23 4 5 6 789 40 4.0 8.0 12.0 16.0 20.0 24.0 28 . 32 . 36 . 39 3.9 7.8 11.7 15.6 19.5 23.4 27.3 31.2 35.1 38 3.8 7.6 11.4 15.2 19.0 22.8 26.6 30.4 34.2 37 3.7 7.4 11.1 14.8, 18.5 22.2 25.9 29.6 33.3 120 STATISTICAL METHODS. TABLE IV. Continued. x/a 1 2 3 4 5 6 7 8 9 J 0.36 14058 14095 14132 14169 14207 14244 14281 14319 14356 14393 0.37 14431 14468 14505 145 IL' 1457 9 14617 14654 14691 1' 1728 147 '65 0.38 14803 14840 14877| 14914 14951 14988 15025 15062 15099 15136 37 0.39 15173 15210 15247 152 84 1532 1 15357 15394 15431 1, 3468 1 >05 0.40 15542 15579 15616 156 52 1568 9 15726 15763 15799 1, 3836 15* 573 0.41 15910 15946 15983 16019 16056 16093 16129 16166 16202 16239 0.42 16276 16312 16348 163 85 1642 1 16458 16494 16531 1( 3567 16( ,i)l 0.43 16640 16676 16713 16749 16785 16821 16858 16894 16930 16967 0.44 17003 17039 17075 171 11 1714 7 17184 17220 17256 r ^292 17^ 528 0.45 17364 17400 17436 17472 17508 17544 17580 17616 17652 17688 36 0.46 17724 17760 17796 178 31 1786 7 17903 17939 17975 1* 3011 18( )46 0.47 18082 18118 18153 181 89 1822 5 18260 18296 18332 1* 3367 1# HI:; 0.48 18439 18474 18509 18545 18580 18616 18651 18687 18722 18758 0.49 18793 18829 18864 188 99 1893 4 18969 19005 19040 1< 3075 19 ill 0.50 19146 19181 19216 19251 19287 19322 19357 19392 19427 19462 0.51" 0.52 19497 19847 19532 19881 19567 19916 19602 19637 1995 ij 19986 19672 20020 19707 20055 19742 20090 19777 20125 19812 20160 35 0.53 20194 20229 20263 202 98 2033 20367 20402 20436 2( 3471 20, 305 0.54 20540 20574 20609 20643 20678 20712 20746 20781 20815 20850 0.55 20884 20918 20952 20986 21021 21055 21089 21123 21158 21192 0.56 21226 21260 21294 213 28 2136 2 21396 21430 21464 2 1498 21, 332 34 0.57 21566 21600 21634 216 67 2170 1 21735 21769 21803 2 1836 21* 370 0.58 21904 21938 21971 22005 22039 22072 22106 22139 22173 22207 0.59 22240 22274 22307 223 41 2237 4 22407 22441 22474 2 2508 22, 341 0.60 22575 22608 22641 22674 22707 22741 22774 22807 22840 22874 0.61 22907 22940 22973 230 06 2303 9 23072 23105 23138 2 3171 23. 204 33 0.62 23237 23270 23303 23335 23368 23401 23434 23467 23499 23532 0.63 23565 23598 23630 236 63 2369 5 23728 23761 23793 2 3826 23* 359 0.64 23891 23924 23956 23988 24021 24053 24085 24118 24150 24183 0.65 24215 24247 24280 243 12 2434 4 24376 24408 24441 2 4473 24, 305 0.66 24537 24569 24601 246 33 2466 5 24697 24729 24761 2 4793 24* 325 32 0.67 24857 24889 24920 24952 24984 2501625048 25079 25111 25143 0.68 25175 25206 25238 252 G9 2530 1 25332 25364 25395 2 5427 25< 459 0.69 25490 25521 25553 25584 25615 25647 25678 25709 25741 25772 0.70 25804 25835 25866 258 97 2592 s 25959 25990 26021 2 5052 26( 384 0.71 26115 26146 26176 26207 26238 26269 26300 26331 26362 26393 31 0.72 26424 26454 26485 265 16 2654 6 26577 26608 26638 2 5669 26 roo 0.73 26730 26761 26791 268 22 2685 2 26883 26913 26943 2 5974 27( 304 0.74 27035 27065 27095 27125 27156 27186 27216 27246 27277 27307 0.75 27337 27367 27397 274 27 2745 7 27437 27517 27547 2 7577 27 307 30 0.76 27637 27667 1 27697 27726 27756 27786 27816 27845 27875 27905 0.77 27935 27964 27994 280 23 2805 3 28082 28112 28142 2 8171 28 201 0.78 28230 28260 28289 283 18 2834 7 28377 28406 28435 2 8465 28 494 0.79 28524 28553 28582 286 11 2864 28669 28698 28727 2 8756 28 785 0.80 28814 28843 28872 28901 28930 28958 28987 29016 29045 29074 29 PROPORTIONAL PARTS. J 1 2 3 4 5 6 7 8 9 37 3.7 7.4 11.1 14.8 18.5 22.2 25.9 29.6 33.3 36 3.6 7.2 10.8 14.4 18.0 21.6 25.2 28.8 32.4 35 3.5 7.0 10.5 14.0 17.5 21.0 24.5 28.0 31.5 34 3.4 6.8 10.2 13.6 17.0 20.4 23.8 27.2 30.6 33 3.3 6.6 9.9 13.2 16.5 19.8 23.1 26.4 29.7 32 3.2 6.4 9.6 12.8 16.0 19.2 22.4 25.6 28.8 31 3.1 6.2 9.3 12.4 15.5 18.6 21.7 24.8 27.9 30 3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0 27.0 29 2.9 5.8 8.7 11.6 14.5 17.4 20.3 23.2 26.1 VALUES OF NORMAL PROBABILITY INTEGRAL. TABLE IV. Continued. X/a 0. 1 2 3 4 5 6 7 8 9 4 0.81 29103 29132 29160 29189 29217 29246 29274 29303 29332 29360 0.82 29389 29417 29446 294 74 29502 29531 29559 29588 2C 1616 296 >4/5 0.83 0.84 29673 29954 29701 J'.MISL' 29729 30010 29757 30038 29785 30066 29814129842 30094 30122 29870 30150 29898 30178 29926 30206 28 0.85 30234 30261 30289 303 17 30344 30372 30400 30427 3C )455 304 US3 0.86 30510 30538 30565 30593 30620 30648 30675 30702 30730 30757 0.87 30785 30812 30839 30866 30894 30921 30948 30975 31002 31030 0.88 31057 31084 31111 311 ;s 31165 31192 31219 31246 31 273 31C 500 27 0.89 31327 31353 31380 314 )7 31433 31460 31487 31514 31 540 3U >67 0.90 31594 31620 31647 31673 31700 31726 31753 31780 31806 31832 0.91 31859 31885 31911 319 57 31964 31990 32016 32042 32 5069 32C )95 0.92 32121 32147 32173 32199 32225 32251 32277 32303 32329 32355 26 0.93 0.94 32381 32639 32407 32665 32433 32690 32459 32715 32484 32741 32510 32766 32536 32792 32562132587 3281832843 32613 32869 0.95 32894 32919 32945 329 70 32995 33021 33046 3307] 31 5096 331 22 0.96 3314733172 33197 33222 33247 33272 33297 33322 33347 33373 25 0.97 3339833422 33447 334 72 33497 33521 33546 33571 3C 5596 33( 521 0.98 33646 '33670 33695 33719 33744 S 33768 33793 33817 33842 33867 0.99 33891 33915 33940 339 (H 33988 34013 34037 34061 3^ L086 34] L10 1.00 34134 34158(34182 342 06 34230 34255 34279 34303 3^ L327 341 551 24 1.01 34375 34399 34423 34446 34470 34494 34518 34542 34566 34590 1.02 34613 34637 34661 346 M 34708 34731 34755 34778 3^ 1802 34* >26 1.03 34849 34873 34896 34919 34943 34966 34989 35013 35036 35059 1.04 35083 35106 35129 351 52 35175 35198 35221 35245 3, 5268 35S 291 23 1.05 35314 35337 35360 353 SL> 35405 35428 35451 35474 3^ 5497 35, 520 1.06 35543 35565 35588 35610 35633 35656 35678 35701 35724 35746 1.07 35769 35791 35814 35836 35858 35881 35903 35926 35948 35970 1 .08 35993 m K 037 Q nsi 1 n^ 1 or 1 Aft no 'I'.OQ' 36214 236 258 280 UoJ 302 lUo 324 1ZO 345 14o 367 389 1U4 411 22 1.10 433 455 477 4 98 520 541 563 585 607 ( 328 1.11 650: 671 693 714 735 757 778 800 821 843 1.12 864 885 906 C] 28 94C 970 991 ^c r 1.13 37176 097 118 139 160 181 202 012 223 Oo4 244 Ooo 265 21 1.14 286 306 327 348 368 389 410 430 451 472 1.15 493 513 534 5 54 574 595 615 636 656 ( 377 1.16 697 718 738 758 778 798 819 839 859 880 1. 17 900 920 940 c 60 98C 000 ft9O flAO n/n i \or\ 1.18 38100 120 139 159 179 199 \jZ\J 218 U4U 238 uou 258 Uou 278 20 1.19 298 317 337 3 50 376 395 415 434 454 173 1.20 493 512 531 551 57G 589 609 628 647 667 PROPORTIONAL PARTS. A 1 2 3 4 5 6 7 8 9 29 2.9 5.8 8.7 11.6 14.5 17.4 20.3 23.2 26.1 28 2.8 5.6 8.4 11.2 14.0 16.8 19.6 22.4 25.2 27 2.7 5.4 8.1 10.8 13.5 16.2 18.9 21.6 24.3 26 2.6 5.2 7.8 10.4 13.0 15.6 18.2 20.8 23.4 25 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 24 2.4 4.8 7.2 9.6 12.0 14.4 16.8 19.2 21.6 23 2.3 4.6 6.9 9.2 11.5 13.8 16.1 18.4 20.7 22 2.2 4.4 6.6 8.8 11.0 13.2 15.4 17.6 19.8 21 2.1 4.2 6.3 8.4 10.5 12.6 14.7 16.8 18.9 20 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 19 1.9 3.8 5.7 7.6 9.5 11.4 13.3 15.2 17.1 122 STATISTICAL METHODS. TABLE IV. Continued X/a 1 2 3 4 5 6 7 8 9 857 d 1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28 1.29 1.30 1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.39 1.40 1.41 1.42 1.43 1.44 1.45 1.46 1.47 .48 .49 .50 .51 .52 .53 .54 1.55 1.56 1.57 1.58 1.59 38686 877 705 895 724 914 743 933 762 952 781 971 800 990 819 838 19 18 17 16 15 14 13 12 008 195 380 562 742 920 027 214 398 580 760 937 046 232 417 598 778 955 39065 251 435 617 796 973 084 270 453 634 813 990 102 288 471 652 831 121 306 489 670 849 139 324 507 688 866 158 343 525 706 884 177 361 544 724 902 008 182 354 524 692 857 025 199 371 540 709 873 042 216 388 557 725 899 060 233 405 574 742 906 077 251 422 591 758 922 095 268 439 608 775 938 112 285 456 625 792 955 130 303 473 641 808 971 40147 320 490 658 825 987 41149 308 466 621 774 924 165 337 507 676 840 004 165 324 481 637 789 939 020 181 340 497 652 804 954 036 197 355 512 667 819 969 052 213 371 527 683 834 984 068 229 387 543 698 849 998 084 245 403 558 713 864 101 261 418 574 728 879 117 277 434 590 744 894 133 292 450 605 759 909 013 161 306 449 591 730 867 028 175 321 464 605 744 881 016 149 280 409 536 662 785 906 043 190 335 478 619 758 895 058 205 350 492 633 772 908 42073 220 364 507 647 785 922 088 234 378 521 661 799 935 102 248 393 535 675 813 949 117 263 407 549 688 826 962 131 277 421 563 702 840 975 146 292 435 577 716 854 989 002 136 267 396 524 649 773 894 029 162 293 422 549 674 797 919 043 175 306 435 562 687 810 931 43056 189 319 448 574 699 822 943 069 202 332 460 587 711 834 955 083 215 345 473 599 724 846 967 096 228 358 486 612 736 858 978 109 241 371 498 624 748 870 990 122 254 383 511 637 760 882 002 120 237 351 464 014 132 248 363 475 026 144 260 374 486 038 156 271 385 498 050 167 283 397 509 44062 179 295 408 074 191 306 419 085 202 317 430 097 214 329 442 109 225 340 453 PROPORTIONAL PARTS. J 19 18 17 16 15 14 13 12 11 1 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 234 5 6 7 8 9 3.8 5.7 7.6 3.6 5.4 7.2 3.4 5.1 6.8 3.2 4.8 6.4 3.0 4.5 6.0 2:$ 4.2 5.6 2.6 3.9 5.2 2.4 3.6 4.8 2.2 3.3 4.4 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 11.4 10.8 10.2 9.6 9.0 8.4 7.8 7.2 6.6 13.3 12.6 11.9 11.2 10.5 9.8 9.1 8.4 7.7 15.2 17.1 14.4 16.2 13.6 15.3 12.8 14.4 12.0 13.5 11.2 12.6 10.4 11.7 9.6 10.8 8.8 9.9 VALUES OF NORMAL PROBABILITY INTEGRAL. 123 TABLE IV Continued. X'O 1 2 3 4 5 6 7 8 9 J 1.60 ; 44520 531 542 553 564 575 586 597 608 619 11 1.61 630 641 652 662 673 684 695 706 717 727 1.62 738 749 760 770 781 791 802 813 823 834 1.63 845 855 866 876 887 897 908 918 929 939 1 64 Q^n Qfin Q7n osn QO1 I you you y/u yoLi yy i nni ol 1 f\99 r\00 njo 1.65 45053 063 073 083 093 UU 1 103 U-l 1 114 \J 124 UoZ 134 {.)** 144 1.06 154 164 174 184 194 204 214 224 234 244 10 1.67 254 264 274 283 293 303 313 323 332 342 1.68 352 362 371 381 391 400 410 419 429 439 1.69 449 458 467 477 486 496 505 515 524 534 1.70 543 553 562 571 581 593 599 609 6181 627 1.71 637 646 655 664 673 682 692 701 710 7i9 1.72 728 737 746 755 764 773 782 791 800 809 9 1.73 818 827 836 845 854 863 871 880 889 898 1.74 9071 916 924 933 942 950 959 968 977 985 1 75 QQJL ' 003 on 020 028 037 045 054 062 071 1.76 46080 088 096 105 113 121 130 138 147 155 1.77 164 172 180 188 196 205 213 221 230 238 .78 246 254 262 270 279 287 295 303 311 319 .79 327 335 343 351 359 367 375 383 391 399 8 .80 407 415 423 430 438 446 454 462 469 477 .81 485 493 500 508 516 523 531! 539 547 554 .82 562 570 577 585 592 600 607 615 622 630 .83 638 645 652 660 667 674 682 689 697 704 1.84 712 719 726 733 741 748 755 762 770 777 1.85 784 791 798 806 813 820 827 834 841 849 1.86 856 863 870 877 884 891 898 905 912 919 7 1.87 1 .88 926 QQC 933 939 946 953 960 967 974 981 988 yyo 001 008 015 021 028 035 042 049 055 1.89 47062 069 075 " 082 088 095 102 108 115 122 1.90 128 135 141 148 154 161 167 174 180 187 .91 193 200 206 212 219 225 231 238 244 251 .92 257 263 270 276 282 288 294 301 -307 313 .93 320 326 332 338 344 350 356 362 369 375 .94 381 387 393 399 405 411 417 423 429 435 6 .95 441 447 453 459 465 471 476 482 488 494 .96 500 506 512 517 523 529 535 541 546 552 .97 558 564 569 575 581 586 592 598 603 609 1.98 615 620 626 631 637 643 648 654 659 665 1.99 670 676 681 687 692 698 703 709 714 719 2.00 725 730 735 741 746 752 757 762 768 772 2.01 778 784 789 794 799 804 810 815 820 826 2.02 831 836 841 846 851 856 862 867 872 877 2.03 882 . 887 892 897 902 907 912 917 922 927 5 2.04 932 * 937 942 947 952 957 962 967 97,2 977 PROPORTIONAL, PARTS. J 1 2345 6 7 8 9 11 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 9 0.9 1.8 2.7 3.6 4.5 5.4 6.3 7.2 8.1 8 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 7 0.7 1.4 2.1 2.8 3.5 4.2 4.9 5.6 6.3 6 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4 124 STATISTICAL METHODS. TABLE IV. Continued. x/a 1 2 3 4 5 6 7 8 9 4 2 05 47982 987 99] 996 nm nnf m i me non 2.06 48030 035 039 044 UUJ 049 uuo 054 UA l 058 o 063 \jt\j 068 02o 073 2.07 077 082 087 091 096 100 105 110 114 119 2.08 124 128 133 137 142 146 151 155 160 165 2.09 169 173 178 182 187 191 196 200 205 209 2.10 214 218 222 227 231 235 240 244 248 253 2.11 257 261 266 270 274 278 283 287 291 295 2.12 300 304 308 312 316 320 325 329 333 337 2.13 341 345 350 354 358 362 366 370 374 378 2.14 382 386 390 394 398 204 406 410 414 418 4 2.15 422 426 430 434 438 442 446 450 453 457 2.16 461 465 469 473 477 480 484 488 492 496 2.17 500 503 507 511 515 518 522 526 530 533 2.18 537 541 544 548 552 555 559 563 566 570 2.19 574 577 581 584 588 592 595 599 602 606 2.20 610 613 617 620 624 627 631 634 638 641 2.21 645 648 652 855 658 662 665 669 672 676 2.22 679 682 686 689 692 696 699 702 706 709 2.23 713 716 719 722 726 729 732 736 739 742 2.24 745 749 752 755 758 761 765 768 771 774 2.25 778 781 784 787 790 793 796 799 803 806 2.26 809 812 815 818 821 824 827 830 833 837 2.27 840 843 846 849 852 855 858 861 864 867 3 2.28 870 872 875 878 881 884 887 890 893 896 2.29 899 902 905 907 910 913 916 919 922 925 2.30 828 930 933 936 939 942 944 947 950 953 2.31 956 958 961 964 966 969 972 975 977 980 200 983 986 988 991 994 996 999 . O4 On9 f\f\A on 7 2.33 49010 012 015 017 020 023 025 uu* 028 uu^ 031 uu 033 2.34 036 038 041 043 046 048 051 054 056 059 2.35 061 064 066 069 071 074 076 079 081 084 2.36 086 089 092 094 096 098 101 103 106 108 2.37 111 113 115 118 120 122 125 127 130 132 2.38 134 137 139 141 144 146 148 151 153 155 2.39 158 160 162 164 167 169 171 173 176 178 2.40 180 182 185 187 189 191 193 196 198 200 2.41 202 205 207 209 211 213 215 217 220 222 2.42 224 226 228 230 232 234 237 239 241 243 2.43 245 247 249 251 253 255 257 259 261 264 2.44 266 268 270 272 274 276 278 280 282 284 2 2.45 286 288 290 292 294 295 297 299 301 303 2.46 305 307 309 311 313 315 317 319 321 323 2.47 324 326 328 330 332 334 336 337 339 341 2.48 343 345 347 349 350 352 354 356 358 359 2.49 361 363 365 367 368 370 372 374 375 377 2.5 379 396 413 430 446 461 477 489 506 520 16 2.6 534 547 560 573 585 598 609 621 632 643 12 2.7 653 664 674 683 693 702 711 720 728 736 9 2.8 744 752 760 767 774 781 788 795 801 807 7 PROPORTIONAL PARTS. A 1 2 345 6 7 9 9 16 1 .6 3.2 4.8 6.4 8.0 9.6 11.2 12.8 14.4 12 1.2 2.4 3.6 4.8 6.0 7.2 8.4 9.6 10.8 9 0.9 1.8 2.7 3.6 4.5 5.4 6.3 7.2 8.1 7 0.7 1.4 2.1 2.8 3.5 4.2 4.9 5.6 6.3 VALUES OF NORMAL PROBABILITY INTEGRAL. 125 TABLE IV. Continued. x/a 1 2 3 4 5 6 7 8 9 A 2.9 49813 819 825 831 836 841 846 851 856 861 5 3.0 865 869 873 878 882 886 889 893 897 900 4 3.1 903 906 910 913 916 918 921 924 926 929 3 3.2 931 934 936 938 940 942 944 946 948 950 2 3.3 952 953 955 957 958 960 961 962 964 965 1 3.4 966 968 969 970 971 972 973 974 975 976 1 3.5 977 978 978 979 980 981 981 982 982 983 1 3.6 984 985 985 986 986 987 987 988 98 989 1 3.7 989 990 990 990 991 991 992 992 991 992 3.8 993 993 993 994 994 994 994 995 99f, 995 3.9 995 995 996 996 996 996 996 996 99. 997 4 997 998 999 999 999 000 000 000 00 000 PROPORTIONAL PARTS. J 1 234 5 6 7 8 9 5 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 4 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 J .6 3 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2 .7 2 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1 .8 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 126 STATISTICAL METHODS. V. TABLE OF LOG T FUNCTIONS OF p (see pages 32-34). p 1 2 3 4 5 6 7 8 9 1.00 9750 9500 9251 9003 8755 8^09 8263 8017 7773 1.01 9.997529 7285 7043 6801 6560 0320 6080 5841 5602 5365 1 .0:2 5128 4892 4656 4421 4187 3953 3721 3489 3257 3026 1.03 2796 2567 2338 2110 1883 1G5G 1430 1205 0981 0757 1.04 0533 0311 0089 9868 647 427 208 989 8-T2 554 1.05 9.988338 8122 7907 7692 7478 7265 7052 6841 6629 6419 1.06 6209 6000 5791 5583 5376 5169 4963 4758 4553 4349 1.07 4145 3943 3741 3539 3338 3138 2939 2740 2541 2344 1.08 2147 1951 1755 1560 1365 1172 0978 0786 0594 0403 1.09 0212 0022 833 644 456 269 082 8896 710 525 1.10 9.978341 8157 7974 7791 7610 7428 7248 7068 6888 6709 1.11 6531 6354 6177 6000 5825 5650 5475 5301 5128 4955 1.12 4783 4612 4441 4271 4101 3932 3764 3596 3429 3262 1.13 3096 2931 2766 2602 2438 2275 2113 1951 1790 1629 1.14 1469 1309 1150 0992 0835 0677 0521 0365 0210 0055 1.15 9.969901 9747 9594 9442 9290 9139 8988 8838 8688 8539 1.16 8390 8243 8096 7949 7803 7658 7513 7369 7225 7082 1.17 6939 6797 6655 6514 6374 6234 6095 5957 5818 5681 1.18 5544 5408 5272 5137 5002 4868 4734 4601 4469 4337 1.19 4205 4075 3944 3815 3686 3557 3429 3302 3175 3048 1.20 2922 2797 2672 2548 2425 2302 2179 2057 1936 1815 1.21 1695 1575 1456 1337 1219 1101 0984 0867 0751 0636 1.22 0521 0407 0293 0180 0067 9955 8843 9732 9621 9511 1.23 9.959401 9292 9184 9076 8968 8861 8755 8649 8544 8439 1.24 8335 8231 8128 8025 7923 7821 7720 7620 7520 7420 1.25 7321 7223 7125 7027 6930 6834 6738 6642 6547 6453 1.26 6359 6267 6173 6081 5989 5898 5807 5716 5627 5537 1.27 5449 5360 5273 5185 5099 5013 4927 4842 4757 4673 1.28 4589 4506 4423 4341 4259 4178 4097 4017 3938 3858 1.29 3780 3702 3624 3547 3470 3394 3318 3243 3168 3094 1.30 3020 2947 2874 2802 2730 2659 2588 2518 2448 2379 1.31 2310 2242 2174 2106 2040 1973 1907 1842 1777 1712 1.32 1648 1585 1522 1459 1397 1336 1275 1214 1154 1094 1.33 1035 0977 0918 0861 0803 0747 0690 0634 0579 0524 1.34 0470 0416 0362 0309 0257 0205 0153 0102 0051 0001 1.35 9.949951 9902 9853 9805 9757 9710 9663 9617 9571 9525 1.36 9480 9435 9391 9348 9304 9262 9219 9178 9136 9095 1.37 9054 9015 8975 8936 8898 8859 8822 8785 8748 8711 1.38 8676 8640 8605 8571 8537 8503 8470 8437 8405 8373 1.39 8342 8311 8280 8250 8221 8192 8163 8135 8107 8080 1.40 8053 8026 8000 7975 7950 7925 7901 7877 7854 7831 1.41 7808 7786 7765 7744 7723 7703 7683 7664 7645 7626 1.42 7608 7590 7573 7556 7540 7524 7509 7494 7479 7465 1.43 7451 7438 7425 7413 7401 7389 7378 7368 7358 7348 1.44 7338 7329 7321 7312 7305 7298 7291 7284 7278 7273 1.45 7268 7263 7259 7255 7251 7248 7246 7244 7242 7241 1.46 7240 7239 7239 7240 7241 7242 7243 7245 7248 7251 1.47 7254 7258 7262 7266 7271 7277 7282 7289 7295 7302 1.48 7310 7317 7326 7334 7343 7353 7363 7373 7384 7395 1.49 7407 7419 7431 7444 7457 7471 7485 7499 7515 7529 TABLE OF LOG r FUXCTIOKS. 127 V. TABLE OF LOG r FUNCTIONS OP p (see pages 32-34). P 1 2 3 4 5 6 7 8 9 1.50 9.947545 7561 7577 7594 7612 7629 7647 7666 76S5 7704 1.51 7724 7744 7764 7785 7806 7828 7850 7873 7896 7919 1.52 7943 7967 7991 8016 8041 8067 8093 8120 8146 8174 1.53 8201 8229 8258 8287 8316 8346 8376 8406 8437 8-168 1.54 8500 8532 8564 8597 8630 8664 8698 8732 8767 8802 1.55 8837 8873 8910 8946 8983 9021 9059 9097 9135 9174 1.56 9-214 9254 9294 9334 9375 9417 9458 9500 9543 9586 1.57 93 .'9 9672 9716 9761 9806 9851 9896 9942 9989 5035 1.58 9.950082 0130 0177 0225 0274 0323 0372 0422 0472 0522 1.59 0573 0624 0676 0728 0780 0833 0886 0939 0993 1047 1.60 1102 1157 1212 1268 1324 1380 1437 1494 1552 1610 1.61 1668 1727 1786 1845 1905 1965 2025 2086 2147 2209 1.62 2271 2333 2396 2459 2522 2586 2650 2715 2780 2845 1.63 2911 2977 3043 3110 3177 3244 3312 3380 3449 3517 1.64 3587 3656 3726 3797 3867 3938 4010 4081 4154 4226 1.66 4299 4372 4446 4519 4594 4668 4743 4819 4894 4970 1.66 5047 5124 5201 5278 5356 5434 5513 5592 5671 5740 1.67 5830 5911 5991 6072 6154 6235 6317 6400 6482 6566 1.68 6649 6733 6817 6901 6986 7072 7157 7243 7322 7416 1.69 7503 7590 7678 7766 7854 7943 8032 8122 8211 8301 1.70 8391 8482 8573 8664 8756 8848 8941 9034 9127 9220 1.71 9314 9409 9502 9598 993 9788 9884 9980 5077 5174 1.72 9.960271 0369 0467 0565 0664 0763 0862 0961 1061 1162 1.73 1262 1363 14G4 1566 1668 1770 1873 1976 2079 2183 1.74 2287 2391 2496 2601 2706 2812 2918 3024 3131 3238 1.75 3345 3453 3561 3669 3778 3887 3996 4105 4215 4326 1.76 4436 4547 4659 4770 4882 4994 5107 5220 5333 5447 1.77 5561 5675 5789 5904 6019 6135 6251 6367 6484 6600 1.78 6718 6835 6953 7071 7189 7308 7427 7547 7666 7787 1.79 7907 8028 8149 8270 8392 8514 8636 8759 8882 9005 1.80 9129 9253 9377 9501 9626 9751 9877 5003 5129 5255 1.81 9.970383 0509 0637 0765 0893 1021 1150 1279 1408 1538 1.82 1668 1798 1929 2060 2191 2322 2454 2586 2719 2852 1.83 2985 3118 3252 3386 3520 3655 3790 3925 4061 4197 1.84 4333 4470 4606 4744 4881 5019 5157 5295 5434 5573 1.85 5712 5852 5992 6132 6273 6414 6555 6697 6838 6980 1.86 7123 7266 7408 7552 7696 7840 7984 8128 8273 8419 1.87 8564 8710 8856 9002 9149 9296 9443 9591 9739 9887 1.88 9.980036 0184 0333 0483 0633 0783 0933 1084 1234 1386 1.89 1537 1689 1841 1994 2147 2299 2453 2607 2761 2915 1.90 3069 3224 3379 3535 3690 3846 4003 4159 4316 4474 1.91 4631 4789 4947 5105 5264 5423 5582 5742 5902 6062 1.92 6223 6383 6544 6706 6867 7029 7192 7354 7517 7680 1.93 7844 8007 8171 8336 8500 8665 8830 8996 9161 9327 1.94 9494 9660 9827 9995 5162 5330 5498 5666 5835 1004 1.95 9.991173 1343 1512 1683 1853 2024 2195 2366 2537 2709 1.96 2881 3054 3227 3399 3573 3746 3920 4094 4269 4443 1.97 4618 4794 4969 5145 5321 5498 5674 5851 6029 6206 1.98 6384 6562 6740 6919 7078 7277 7457 7637 7817 7997 1.99 8178 8359 8540 8722 8903 9085 9268 9450 9633 9816 128 STATISTICAL METHODS. VI. TABLE OF REDUCTION FROM COMMON TO METRIC SYSTEM. Inches to Millimeters. 1 2 3 4 5 6 7 8 9 25.40 50. 80 76.20 lor.eo 127.00 152.40 177 .RO 2( )3.20 228.60 10 279.40 304. 80 330.19 355.59 380.99 406.39 431 .79 457.19 482.59 20 533.3$ 558. 79 584.19 6 09.59 634.99 660.39 685 .79 7 1.19 736.59 30 787.39 812. 79 838 19 863.59 888.99 914.39 939 .78 965.18 990.58 40 1041.4 1066. 8 1092.2 1117.6 1143.0 1168.4 1193 .8 1219.2 1244.6 50 1295.4 132J). 8 1346.2 1371.6 1397.0 1422.4 1447 .8 14 ?3.2 1498.6 (i() 1549.4 1574. 8 1600.2 16 . 8537209 8.2864928 .001757469 570 324900 185193000 23.8746728 8.2913444 .001754386 571 320041 180169411 23.8956063 8.2961903 .001751313 572 327184 187149248 23.9165215 8.3010304 .001748252 573 328329 188132517 23.9374184 8.3058651 .001745201 574 329476 189119224 23.9582971 8.3106941 .001742160 575 330625 190109375 23.9791576 8.3155175 .001739130 576 331776 191102976 24.0000000 8.3203353 .001736111 577 332929 192100033 24.0208243 8.3251475 .001733102 578 334084 193100552 24.0416306 8.3299542 .001730104 579 335241 194104539 24.0024188 8.3347553 .001727116 580 336400 195112000 24.0831891 8.3395509 .001724138 581 337561 196122941 24.1039416 8.3443410 .001721170 582 338724 197137368 24.1246702 8.3491256 .001718213 583 339889 198155287 24.1453929 8.3539047 .001715266 584 341056 199176704 24.1000919 8.3586784 .001712329 585 342225 200201625 24.1807732 8.3634466 .001709402 586 343396 201230056 24.2074309 8.3682095 001706485 587 344569 202262003 24.2280829 8.3729008 .001703578 588 345744 203297472 24.2487113 8.3777188 .001700680 589 346921 204336409 24.2693222 8.3824653 .001697793 590 348100 205379000 24.2899156 8.3872065 .001694915 591 349281 206425071 24.3104916 8.3919423 .001692047 592 350464 207474688 24.3310501 8.3966729 .001689189 593 351649 208527857 24.3515913 8.4013981 .001686341 594 352836 209584584 24.3721152 8.4061180 .001683502 595 a54025 210644875 24.3926218 8.4108326 001680672 596 355216 211708736 24.4131112 8.4155419 .001677852 597 356409 212776173 24.4335834 8.4202460 .001675042 598 357604 213847192 24.4540385 8.4249448 .001072241 599 358801 214921799 24.4744765 8.4296383 .001669449 600 360000 216000000 24.4948974 8.4348267 .001666667 601 361201 217081801 24.5153013 8.4390098 .001663894 602 362404 218167203 24.5356883 8.4436877 .001661130 603 363009 219256227 24.5560583 8.4483605 .001658375 604 304816 220348864 24.5764115 8.4530281 .001C55629 605 360025 221445125 24.5967478 8.4576906 .001652893 606 307236 222545016 24.6170673 8.4623479 .001650165 607 308449 223648543 24.6373/00 8.4670001 .001047446 608 309004 224755712 24.6576560 8.4716471 .001644737 609 310881 225866529 24.6779254 8.4762892 .001642036 610 37'2100 226981000 24.6981781 8.4809261 .001639344 611 373321 228099131 24.7184142 8.4855579 .001036061 612 374544 229220928 24.7386338 8.4901848 001033987 613 375709 230346397 24.7588368 8.4948065 001031321 614 370996 231475544 24.7790234 8.4994233 .001628664 615 378225 23200&375 24.7991935 8.5040350 .001626016 616 379456 233744896 24.8193473 8.5086417 .001623377 617 380689 234885113 24.8394847 8.5132435 .001020746 618 381924 230029032 24.&596058 8.5178403 .001618123 619 383161 237176659 ! 24.8797106 8.5224321 .001015509 620 384400 238328000 24.8!)97r;92 8.5270189 .001612903 140 CUBE HOOTS, AND HKCIPHOCALS. No. Squares. Cubes. Square Hoots. Cube Hoots. Reciprocals. 621 622 623 624 625 626 627 628 629 385641 386884 388129 389376 390625 391876 393129 394384 395641 239483061 240641848 241804867 242970624 244140625 245314376 246491883 247673152 248858189 24.9198716 24.9399278 24.9599679 24.9799920 25.0000000 25.0199920 25.03iK)681 20 '.0798724 8.5316009 8.5361780 8.5407501 8.5453173 8.5498797 8.^544372 8.5589899 8.5635377 8.5680807 .001610306 .001607717 .001605136 .001602564 .001600000 .001597444 .001594896 .001592357 .001589825 630 631 632 633 634 635 636 637 638 639 396900 398161 399424 41)0689 401956 403225 404496 405769 407044 408321 250047000 251239591 252435968 253636137 254840104 256047875 257259456 258474853 259694072 260917119 25.0998008 25.1197134 25.1396102 25.1594913 25.1793566 25.1992063 25.2190404 25.2388589 25.2586619 25.2784493 8.5726189 8.5771523 8.5816809 8.5862047 8.5907238 8.5952380 8.5997476 8.6042525 8.6087526 8.6132480 .001587302 .001584786 .001582278 .001579779 .001577287 .001574803 .001572327 .001569859 .001567398 .001564945 640 641 642 643 644 645 646 647 648 649 409600 410881 412164 413449 414736 416025 417316 418609 419904 421201 262144000 263374721 264609288 265847707 267089984 268336125 269586136 270840023 272097792 273359449 25.2982213 25.3179778 25.3377189 25.3574447 25.3771551 25.3968502 25.4165301 25.4361947 25.4558441 25.4754784 8.6177388 8.6222248 8.6267063 8.6311830 8.6356551 8.6401226 8.6445855 8.6490437 8.6534974 8.6579465 .001562500 .001560062 .001557632 .001555210 .001552795 .001550388 .001547988 .001545595 .001543210 .001540832 650 651 652 653 654 655 657 658 659 422500 423801 425104 426409 427716 429025 430336 431649 432964 434281 274625000 275894451 277167808 278445077 279726264 281011375 282800416 283593393 284890312 286191179 25.4950976 25.5147016 25.5342907 25.5538647 25.5734237 25.5929678 25.6124969 25.6320112 25.6515107 25.6709953 8.6623911 8.6668310 8.6712665 8.6756974 8.6801237 8.6845456 8.6889630 8.6933759 8.6977843 8.7021882 .001538462 .001536098 .001533742 .001531394 .001529052 .001526718 .001524390 .001522070 .001519757 .001517451 660 661 662 663 664 665 666 667 668 669 4&5600 436921 438244 439569 440896 442225 443556 444889 446224 447561 287496000 288804781 290117528 291434247 292754944 294079625 295408296 296740963 298077632 299418309 25.6904652 25.7099203 25.7293607 25.7487864 25.7681975 25.7875939 25.8069758 25.8263431 25.8456960 25.8650343 8.7065877 8.7109827 8.7153734 8.7197596 8.7241414 8.7285187 8.7328918 8.7372604 8.7416246 8.7459846 .001515152 .001512859 .001510574 .001508296 .001506024 .001503759 .001501502 .001499250 .001497006 .001494768 670 671 672 673 674 675 676 677 678 679 448900 450241 451584 452929 454276 455625 456976 458329 459684 461041 300763000 302111711 303464448 304821217 306182024 307546875 308915776 310288733 311665752 313046839 25.8843582 25.9036677 25.9229628 25.9422435 25.9615100 25.9807621 26.0000000 26.0192237 26.0384331 6. 0576284 8.7503401 8.7546913 8.7590383 8.7633809 8.7677192 8.7720532 8.7763830 8.7807084 8.7a50296 8.7893466 .001492537 .001490313 .001488095 .001485884 .001483680 .001481481 .001479290 .001477105 .001474926 .001472754 680 681 682 462400 463761 465124 314432000 315821241 317214568 26.0768096 26.0959767 26.1151297 8.7936593 8.7979679 8.8022721 .001470588 .001468429 .001466276 141 TABLE X. SQUARES, CUBES, SQUAttK ROOTS, No. Squares. Cubes. Square Roots. Cube Roots. Reciprocals. 683 466489 318611987 26.1342667 8.8065722 .001464129 684 467856 320013504 26.1533937 8.8108681 .001401988 685 469225 321419125 26.1725047 8.8151598 .001459854 686 470596 322828856 26.1916017 8.8194474 .001457720 687 471969 324242703 26.2106848 8.8237307 .001455604 688 473344 325660672 26.2297541 8.8280099 .001453488 689 474721 327082769 26.2488095 8.8322850 .001451379 690 476100 328509000 26.2678511 8.8365559 .001449275 691 477481 329939371 26.2868789 8.8408227 .001447178 692 478864 331373888 26.3058929 8.8450854 .001445087 693 480249 332812557 26.3248932 8.8493440 .001443001 694 481636 334255384 26.3438797 8.8535985 .001440922 695 483025 335702375 26.3628527 8.8578489 .001438849 696 484416 337153536 26.3818119 8.8620952 .001436782 697 485809 338608873 26.4007576 8.8663375 .001434720 698 487204 340068392 26.4196896 8.8705757 .001432665 699 488601 341532099 26.4386081 8.8748099 .001430615 700 490000 343000000 26.4575131 8.8790400 .001428571 701 491401 344472101 26.4764046 8.8832661 .001426534 702 492804 345948408 26.4952826 8.8874882 .001424501 703 494209 347428927 26.5141472 8.8917063 .001422475 704 495616 348913664 26.5329983 8.8959204 .001420455 705 497025 350402625 26.5518361 8.9001304 .001418440 706 498436 351895816 26.5706605 8.9043306 .001416431 707 499849 353393243 26.5894716 8.9085387 .001414427 708 501264 354894912 26.0082694 8.9127369 .001412429 709 502681 356400829 26 6270539 8.9169311 .001410437 710 504100 357911000 26.6458252 8.9211214 .001408451 711 505521 359425431 26.6645833 8.9253078 .001406470 712 506944 360944128 26.6833281 8.9294902 .001404494 713 508369 362467097 26.7020598 8.9336687 .001402525 714 509796 363994344 26.7207784 8.9378433 .001400560 715 511225 365525875 26.7394839 8.9420140 .001398601 716 512656 367061696 26.7581763 8.9461809 .001396648 717 514089 368601813 26.7768557 8.9503438 .001394700 718 515524 370146232 26.7955220 8.9545029 .001392758 719 516961 371694959 26.8141754 8.9586581 .001390821 720 518400 373248000 26.8328157 8.9628095 .001388889 721 519841 374805361 26.8514432 8.9009570 001386903 722 521284 376367048 26.870057: 8.9711007 .001385042 723 522729 37793:3067 26.8886593 8.9752406 001383126 724 524176 379503424 26.9072481 8.9793766 .001381215 725 525625 381078125 26.9258240 8.9835089 .001379310 726 527076 382657176 26.9443872 8.9870373 .001377410 727 528529 384240583 26.9629375 8.9917020 .001375516 728 529984 385828352 26.9814751 8.9958829 .001373026 729 531441 387420489 27.0000000 9.0000000 .001371742 730 532900 389017000 27.0185122 9.0041134 .001369803 731 534361 390617891 27.0370117 9.0082229 .001307989 732 535824 392223168 27.05549&5 9.0123288 .001306120 733 537'289 393832837 27.0739727 9.0164309 .001364256 734 538756 395446904 27.0924344 9.0205293 .001302398 735 540225 397065375 27.1108834 9.0246239 .001360544 736 541696 398688256 27.1293199 9.0287149 .001358696 737 543169 400315553 27.1477439 9.0328021 .001356852 738 544644 401947272 27.1601554 9.0368857 .001355014 739 546121 403583419 27.1845544 9.0409655 .001353180 740 547600 405224000 27.2029410 9.0450419 .001351351 741 549081 4068(39021 27.2213152 9.0491142 .001349528 742 550564 408518488 27.2390709 9.0531831 .001347709 743 552049 410172407 27.2580203 9.0572482 .001345895 744 553536 411830784 27.27'63034 | 9-0613098 .001344086 142 CUBE HOOTS, AKD No. Squares. Cubes. Square Hoots. Cube Roots. Reciprocals. 745 555025 413493625 27.2946881 9.0653677 .001342282 746 556516 415160936 27.3130006 9.0694220 .001340483 747 558009 416832723 27.3313007 9.0734726 .001338688 748 559504 418508992 27.3495887 9.0775197 .001336898 749 561001 450189749 27.3678644 9.0815631 .001335113 750 562500 421875000 27.3861279 9.0856030 .001333333 751 564001 423564751 27.4043792 9.0896392 .Oi 1331558 752 565504 425259008 27.4226184 9.0936719 -.001329787 753 567009 426957777 27.4408455 9.0977010 .001328021 754 568516 428661064 27.4590604 9.1017265 .001326260 755 570025 430368875 27.4772633 9.1057485 .001324503 756 571536 432081216 27.4954542 9.1097669 .001322751 757 573049 433798093 27.5136330 9.1137818 .001321004 758 574564 435519512 27.5317998 9.1177931 .001319261 759 576081 437245479 27.5499546 9.1218010 .001317523 7GO 577600 438976000 27.5680975 9.1258053 .001315789 761 579121 440711081 27.5862284 9.1298061 .001314060 762 580644 442450728 27.6043475 9.1338034 .001312336 763 582169 444194947 27.62^4546 9.1377971 .001310616 764 583696 445943744 27.6405499 9.1417874 .001308901 765 585225 447697125 27.6586334 9.1457742 .001307190 766 586756 449455096 27.6767050 9.1497576 .001305483 767 588289 451217663 27.6947648 9.1537375 .001303781 768 589824 452984832 27.7128129 9.1577139 .001302083 769 591361 454756609 27.7308492 9.1616869 .001300390 770 592900 456533000 27.7488739 9.1656565 .001298701 771 594441 458314011 27.7668868 9.1696225 .001297017 772 595984 460099648 27.7848880 9.1735852 .001295337 773 597529 461889917 27.8028775 9.1775445 .001293661 774 599076 463684824 27.8208555 9.1815003 .001291990 775 600625 465484375 27.8388218 9.1854527 .001290323 776 602176 467288576 27.8567766 9.1894018 .001288660 777 603729 469097433 27.8747197 9.1933474 .001287001 778 605284 47'0910952 27.8926514 9.1972897 .001285347 779 606841 472729139 27.9105715 9.2012286 .001283697 780 608400 474552000 27.9284801 9.2051641 .001282051 781 609961 476379541 27.9463772 9.2090962 .001280410 782 611524 478211768 27.9642629 9.2130250 .001278772 783 613089 480048687 27.9821372 9.2169505 .001277139 784 614656 481890304 28.0000000 9.2208726 .001275510 785 616225 483736625 28.0178515 9.2247914 .001273885 786 617796 485587656 28.0356915 9.2287068 .001272265 787 619369 487443403 28.0535203 9.2326189 .001270648 788 620944 489303872 28.0713377 9.2365277 .001269036 789 622521 491169069 28.0891438 9.2404333 .001267427 790 624100 493039000 28.1069386 9.2443355 .001265823 791 625681 494913671 28.1247222 9.2482344 .001264223 792 627264 496793088 28.1424946 9.2521300 .001262626 793 628849 498677257 28.1602557 9.2560224 .001261034 794 630436 500566184 28.1780056 9.2599114 .001259446 795 632025 502459875 28.1957444 9.2637973 .001257862 796 633616 504358336 28.2134720 9.2676798 .001256281 797 635209 506261573 28.2311884 9.2715592 .001254705 798 636804 508169592 28.2488938 9.2754352 .001253133 799 638401 510082399 28.2665881 9.2793081 .001251564 800 640000 512000000 28.2842712 9.2831777 .001250000 801 641601 513922401 28.3019434 9.2870440 .001248439 802 643204 515849608 28.3196045 9.2909072 .001246883 803 644809 517781627 28.3372546 9.2947671 .001245330 804 646416 519718464 28.3548938 9.2986239 .001243781 805 648025 521660125 28.3725219 9.3024775 .001242236 806 649636 523606616 28.3901391 9.3063278 .001240695 143 TABLE X. SQUARES, CUBES, SQUARE ROOTS, No. Squares. Cubes. Square Roots. Cube Boots. Reciprocals. 807 651249 525557943 28.4077454 9.3101750 .001239157 808 652864 527514112 28.4253408 9.3140190 .001237624 809 654481 529475129 28.4429253 9.3178599 .001236094 810 656100 531441000 28.4604989 9.3216975 .001234568 811 657721 533411731 28.4780617 9.3255320 .001233046 813 659344 535387328 28.4956137 9.3293634 .001231527 813 660969 537367797 28.5131549 9.3331916 .001230012 814 662596 539353144 28.5306852 9.3370167 .001228501 815 664225 541343375 28.5482048 9.3408386 .001226994 816 665856 i 543338496 28.5657137 9.3446575 .001225490 817 667489 545338513 28.5832119 9.3484731 .001223990 818 669124 547343432 28.6006993 9.3522857 .001222494 819 670761 549353259 28.6181760 9.360952 .001221001 820 672400 551368000 28.6356421 9.3599016 .001219512 821 674041 553387661 28.6530976 9.3637049 .001218027 822 675684 555412248 28.6705424 9.3675051 .001216545 823 677329 557441767 28.6879766 9.3713022 .001215067 824 678976 559476224 28.7054002 9.3750963 .001213592 825 680625 561515625 28.7228132 9.3788873 .001212121 826 682276 563559976 28.7402157 9.3826752 .001210654 827 683929 565609283 28.7576077 9.3864600 .001209190 828 685584 567663552 28.7749891 9.3902419 .001207729 829 687241 569722789 28.7923601 9.3940206 .001206273 830 688900 571787000 28.8097206 9.3977964 .001204819 831 690561 573856191 28.8270706 9.4015691 .001203369 832 692224 5759303G8 28.8444102 9.4053387 .001201923 833 693889 578009537 28.8617394 9.4091054 .001200480 834 695556 580093704 28.8790582 9.4128690 .001199041 835 697225 582182875 28.8963666 9.4166297 .001197605 836 698896 584277056 28.9136646 9.4203873 .001196172 837 700569 586376253 28.9309523 9.4241420 .001194743 838 702244 588480472 28.9482297 9.4278936 .001193317 839 703921 590589719 28.9654967 9.4316423 .001191895 840 705600 592704000 28.9827535 9.4353880 .001190476 841 707281 594823321 29.0000000 9.4391307 .001189061 842 708964 596947688 29.0172363 9.4428704 .001187648 843 710649 599077107 29.0344623 9.4466072 .001186240 844 712336 601211584 29.0516781 9.4503410 .001184834 845 714025 603351125 29.0688837 9.4540719 .001183432 846 715716 605495736 29.0860791 9.4577999 .001182033 847 717409 607645423 29.1032644 9.4615249 .001180638 848 719104 609800192 29.1204396 9.4652470 .001179245 849 720801 611960049 29.1376046 9.4689661 .001177856 850 722500 614125000 29.1547595 9.4726824 .001176471 851 724201 616295051 29.1719043 9.4763957 .001175088 852 725904 618470208 29.1890390 9.4801061 .001173709 853 727609 620650477 29.2061637 9.4838136 .001172333 854 729316 622835864 29.2232784 9.4875182 .001170960 855 731025 625026375 29.2403830 9.4912200 .001169591 856 732736 627222016 29.2574777 9.4949188 .001168224 857 734449 629422793 29.2745623 9.4986147 .001166861 858 736164 631628712 29.2916370 9.5023078 .001165501 859 737881 633839779 29.3087018 9.5059980 .001164144 860 739600 636056000 29.3257566 9.5096854 .001162791 861 741321 638277381 29.3428015 9.5ia3699 .001161440 862 743044 640503928 29.3598365 9.5170515 .001160093 863 744769 642735647 29.3768616 9.5207303 .001158749 864 746496 644972544 29.3938709 9. 5244063 .001157407 865 748225 647214625 29.4108823 9 5280794 .001156069 866 749956 649461896 29.4278779 9.5317497 .001154734 867 751689 651714363 29.4448637 9.5354172 .001153403 868 753424 653972032 29.4618397 9.5390818 ,001152074 144 CUBE ROOTS, AN!) RECIPROCALS. No. Squares. Cubes. Square Roots. Cube Roots. Reciprocals. 869 755161 656234909 29.4788059 9.5427437 .001150748 870 756900 658503000 29.4957624 9.5464027 .001149425 871 758641 660776311 1 29.5127091 9.5500589 .001148106 872 760384 663054848 29.5296461 9.5537123 .001146789 873 762129 665338617 29.5465734 9.5573630 .001145475 874 763876 667627624 29.5634910 9.5610108 .001144165 875 765625 669921875 29.5803989 9.5646559 .001142857 876 767376 672221376 29.5972972 9.5682982 .001141553 877 769129 674526133 29.6141858 9.5719377 .001140251 878 770884 676836152 29.6310648 9.5755745 .001138952 879 772641 679151439 29.6479342 9.5792085 .001137656 880 774400 681472000 29.6647939 9.5828397 .001136364 881 776161 683797841 29.6816442 9.5864682 .001135074 882 777924 686128968 29.6984848 9.5900939 .001133787 883 779689 688465387 29.7153159 9.5937169 .001132503 884 781456 690807104 29.7321375 9.5973373 .001131222 885 783225 693154125 29.7489496 9.6009548 .001129944 886 784996 695506456 29.7657521 9.6045696 .001128668 887 786769 697864103 29.7825452 9.6081817 .001127396 888 788544 700227072 29.7993289 9.6117911 .001126126 889 790321 702595369 29.8161030 9.6153977 .001124859 890 792100 704969000 29.8328678 9.6190017 .001123596 891 793881 707347971 29.8496231 9.6226030 .001122334 892 795664 709732288 29.8663690 9.6262016 .001121076 893 797449 712121957 29.8831056 9.6297975 .001119821 894 799236 714516984 29.8998328 9.6333907 .001118568 895 801025 716917375 29.9165506 9.6369812 .001117318 896 802816 719323136 29.9332591 9.6405690 .001116071 897 804609 721734273 29.9499583 9.6441542 .001114827 898 806404 724150792 29.9666481 9.6477367 .001113586 899 808201 726572699 29.9833287 9.6513166 .001112347 900 810000 729000000 30.0000000 9.6548938 .001111111 901 811801 731432701 30.0166620 9.6584684 .001109878 902 813604 733870808 30.0333148 9.6620403 .001108647 903 815409 736314327 30.0499584 9.6656096 .001107420 904 817216 738763264 30.0665928 9.6691762 .001106195 905 819025 741217625 30.0832179 9.6727403 .001104972 906 820836 743677416 30.0998339 9.6763017 .001103753 907 822649 746142643 30.1164407 9.6798604 .001102536 908 824464 748613312 30.1330383 9.6834166 .001101322 909 826281 751089429 30.1496269 9.6869701 .001100110 910 828100 753571000 30.1662063 9.6905211 .001098901 911 829921 756058031 30.1827765 9.6940694 .001097695 912 831744 758550528 30.1993377 9.6976151 .001096491 913 833569 761048497 30.2158899 9.7011583 .001095290 914 835396 763551944 30.2324329 9.7046989 .001094092 915 837225 766060875 30.2489669 9.7082369 .001092896 916 839056 768575296 30.2654919 9.7117723 .001091703 917 840889 771095213 30.2820079 9.7153051 .001090513 918 842724 773620632 30.2985148 9.7188354 .001089336 919 844561 776151559 30.3150128 9.7223631 .001088139 920 846400 778688000 30.3315018 9.7258883 .001086957 921 848241 781229961 30.3479818 9.7294109 .001085776 922 850084 783777448 30.3644529 9.7329309 .001084599 923 851929 786330467 30.3809151 9.7364484 .001083423 924 853776 788889024 30.3973683 9.7399634 .001082251 925 855625 791453125 30.4138127 9.7434758 .001081081 926 857476 794022776 30.4302481 9.7469857 .001079914 927 859329 796597983 30.4466747 9.7504930 .001078749 928 861184 799178752 30.4630924 9.7539979 .001077586 929 863041 801765089 30.4795013 9.7575002 .001076426 930 864900 804357000 30.4959014 9.7610001 .001075269 145 TABLE X. SQUARES, CUBES, SQUARE ROOTS, No. Squares. Cubes. Square Roots. Cube Roots. Reciprocals. 931 866761 806954491 30.5122926 9.7644974 .001074114 932 868624 809557568 30.5286750 9.7679922 .001072961 933 870489 812166237 30.5450487 9.7714845 .001071811 934 872356 814780504 30.5614136 9.7749743 .001070664 935 874225 817400375 30.5777697 9.7784616 ! .001069519 936 876096 820025856 30.5941171 9.7819466 .001068376 937 877969 822656953 30.6104557 9.7854288 I .001067236 938 879844 825293672 30.6267857 9.7889087 ! .001060)98 839 881721 827936019 30.6431069 9.7923861 .001064963 940 883600 830584000 30.6594194 9.7958611 .001063830 941 885481 833237621 30.6757233 9.7993336 .001062699 942 887364 835896888 30.6920185 9.8028036 .001061571 943 889249 838561807 30.7083051 9.8062711 .001060445 944 891136 841232384 tt). 7245830 9.8097362 .001059322 945 893025 843908625 30.7408523 9.8131989 .001058201 946 894916 846590536 30.7571130 9.8166591 .001057082 947 896809 849278123 30.7733651 9.8201169 .001055966 948 898704 851971392 30.7896086 9.8235723 .001054852 949 900601 854670349 30.8058436 9.8270252 .001053741 950 602500 857375000 30.8220700 9.8304757 1001052632 951 904401 860085351 30.8382879 9.8339238 .001051525 952 906304 862801408 30.8544972 9.8373695 .001050420 953 908209 865523177 30.8706981 9.8408127 .001049318 954 910116 868250664 30.8868904 9.8442536 .001048218 955 912025 870983875 80.9030743 9.8476920 .001047120 956 913936 873722816 30.9192497 9.8511280 .001046025 957 915849 876467493 30.9354166 9.8545617 .001044932 958 917764 879217912 30.9515751 9.8579929 .001043841 959 919681 881974079 30.9677251 9.8614218 .001042753 960 921600 884736000 30.9838668 9.8648483 .001041667 961 923521 887503681 31.0000000 9.8682724 .001040583 962 925444 890277128 31.0161248 9.8716941 .001039501 963 927369 893056347 31.0322413 9.8751135 .001038422 964 929296 695841344 31.0483494 9.8785305 .001037344 965 931225 898632125 31.0644491 9.8819451 .001036269 966 933156 901428696 31.0805405 9.8853574 .001035197 967 935089 904231063 31.0966236 9.8887673 .001034126 968 937024 907039232 31.1126984 9.8921749 .001033058 969 938961 909853209 31.1287648 9.8955801 .001031992 970 940900 912673000 31.1448230 6. 8989830 .001030928 971 942841 915498611 31.1608729 9.9023835 .001029866 972 944784 918330048 31.1769145 9.9057817 . .001028807 973 946729 921167317 31.1929479 9.9091776 .001027749 974 948676 924010424 31.2089731 9.9125712 .001026694 97'5 950625 926859375 31.2249900 9.9159624 .001025641 976 952576 929714176 31.2409987 9.9193513 .001024590 977 954529 932574833 31.2569992 9.9227379 .001023541 978 956484 935441352 31.2729915 9.9261222 .001022495 979 958441 938313739 31.2889757 9.9295042 .001021450 980 960400 941192000 31.3049517 9.9328839 .001020408 981 962361 944076141 31.3209195 9.9362613 .001019368 982 964324 946966168 31.3368792 9.9396363 .001018330 983 966289 9498G2087 31.3528308 9.9430092 .001017294 984 968256 952763904 31.3687743 9.9463797 .001016260 985 970225 955671625 31.3847097 9.9497479 .001015228 986 972196 958585256 31.4006369 9.9531138 .001014199 987 974169 961504803 31.4165561 9.9564775 .001013171 988 976144 964430272 31.4324673 9.9598389 .001012146 989 978121 967361669 31.4483704 9.9631981 .001011122 900 980100 970299000 31.4642654 9.9665549 .001010101 991 982081 973242271 31.4801525 9.9699095 .001009082 992 984064 976191488 31.4960315 9.9732619 .001008065 I 146 CUBE ROOTS, AND RECIPROCALS. No. Squares. Cubes. Square Roots. Cube Roots. Reciprocals. 993 986049 979146657 31.5119025 9.9766120 .001007049 994 988036 982107784 31.5277655 9.9799599 .001006036 995 990025 985074875 31.5436206 9.9833055 .001005025 996 992016 988047936 31.5594677 9.9866488 .001004016 997 994009 991026973 31.5753068 9.9899900 .001003009 998 996004 994011992 31.5911380 9.9933289 .001002004 999 998001 997002999 31 .6069613 9.9966656 .001001001 1000 1000000 1000000000 31.6227766 10.0000000 .001000000 1001 1002001 1003003001 31.6385840 10.0033322 .0009990010 1002 1004004 1006012008 31.6543836 10.0066622 .0009980040 1003 1006009 1009027027 31.6701752 10.0099899 .0009970090 1004 1008016 101248064 31.6859590 10.0133155 .0009960159 1005 1010025 1015075125 31.7017349 10.0166389 .0009950249 1006 1012036 1018108216 31.7175030 10.0199601 .0009940358 1007 1014049 1021147'343 31.7332633 10.0232791 .0009930487 1003 1016064 1024192512 j 31.7490157 10.0265958 - .0009920635 1009 1018081 1 027243729 31 . 7647603 10.0299104 .0009910803 1010 1020100 1030301COO 31.7804972 10.0332228 .0009900990 1011 , 1022121 1033364331 31.7962262 10.0365330 .0009891197 1012 1024144 1036433728 31.8119474 10.0398410 .0009881423 1013 1026169 1039509197 31.8276609 10.0431469 .0009871668 1014 1028196 1042590744 31.8433666 10.0464506 .0009861933 1015 1030225 1045678375 31.8590646 10.0497521 .0009852217 1016 1032256 1048772096 31.8747549 10.0530514 .0009842520 1017 1034289 1051871913 31.8904374 10.0563485 .0009832842 1018 1036324 1054977832 31.9061123 10.0596435 .0009823183 1019 1038361 1058089859 31.9217794 10.0629364 .0009813543 1020 1040400 1061208000 31.9374388 10.0662271 .0009803922 1021 1042441 1064332261 31.9530906 10.0695156 .0009794319 1022 1044484 1067462648 31.9687347 10.0728020 .0009784736 1023 1046529 1070599167 31.9843712 10.0760863 .0009775171 1024 1048576 1073741824 32.0000000 10.0793684 .0009765625 1025 1050625 1076890625 32.0156212 10.0826484 .0009756098 1026 1052676 1080045576 32.0312348 10.0859262 .0009746589 1027 1054729 1083206683 32.0468407 10.0892019 .0009737098 1028 1056784 1086373952 32.0624391 10.0924755 .0009727626 1029 1058841 10S9547389 32.0780298 10.0957469 .0009718173 1030 1060900 1092727000 32.0936131 10.0990163 .0009708738 1031 1062961 1095912791 32.1091887 10.1022835 .0009699321 1032 1065024 1099104768 32.1247568 10.1055487 .00 9689922 1033 1067089 1102302937 32.1403173 10.1088117 .0009680542 1034 1069156 1105507304 32.1558704 10.1120726 .0009671180 1035 1071225 1108717875 32.1714159 10.1153314 .0009661836 1036 1073296 1111934656 32.1869539 10.1185882 .0009652510 1037 1075369 1115157653 32.2024844 10.1218428 .0009643202 1038 1077444 1118386872 32.2180074 10.1250953 .0009633911 1039 1079521 1121622319 32.2335229 10 .1283457 .0009624639 1040 1081600 1124864000 32.2490310 10.1315941 .0009615385 1041 108:3681 1128111921 32.2645316 10.1348403 .0009606148 1042 1085764 1131366088 32.2800248 10.1380845 .0009596929 1043 1087849 1134626507 32.2955105 10.1413266 .0009587738 1044 1089936 1137893184 32.3109888 10.1445667 .0009578544 1045 1092025 1141166125 32.3264598 10.1478047 .0009569378 1046 1094116 1144445336 32.3419233 10.1510406 .0009560229 1047 1096209 1147730823 32.3573794 10.1542744 .0009551098 1048 1098304 1151022592 32.3728281 10.1575062 .0009541985 1049 1100401 1154320649 32.3882695 10.1607359 .0009532888 1050 1102500 1157625000 32.4037035 10.1639636 .0009523810 1051 1104601 11609:35651 32.4191301 10.1671893 .0009514748 1052 1106704 1164252608 32.4345495 10.1704129 .0009505703 1053 1108809 1167575877 32.4499615 10.1736344 .0009496676 1054 1110916 i 1170905464 32.4653662 10.1768539 .0009487666 147 TABLE XI. LOGARITHMS OF NUMBERS. No. 100 L. 000.] .No. 109 L. 040. N. 1 2 8 4 6 6 7 8 9 Diff. 100 000000 0434 0868 1301 1734 2166 2598 3029 3461 3891 432 1 4321 4751 5181 5609 6038 6466 6894 7321 7748 8174 426 2 8600 9026 9451 9876 0300 0724 1147 1570 1993 2415 A>A 3 012837 3259 3680 4100 4521 4940 5360 5779 6197 6616 420 4 7033 7451 7868 8284 8700 9116 9532 9947 0361 0775 416 5 021189 1603 2016 2428 2841 3252 3664 4075 4486 4896 412 6 5306 5715 6125 6533 6942 7350 7757 ,8164 8571 8978 408 9384 9789 0195 0600 1004 1408 1812 2216 2619 3021 404 8 033424 3826 4227 4628 5029 5430 5830 6230 6629 7028 400 7426 7825 8223 8620 9017 9414 981 1 04 0207 0602 0998 397 PROPORTIONAL PARTS. Diff. 1 2 3 4 5 6 7 8 9 434 43.4 86.8 130.2 173.6 217.0 260 4 3C )3.8 347.2 390.6 433 43.3 86.6 12 9.9 173.2 216.5 259 8 H )3.1 346.4 389.7 432 43.2 86.4 14 9.6 172.8 216.0 259 2 ft )2.4 345.6 388.8 431 43.1 86.2 129.3 172.4 215.5 258 6 301.7 344.8 387.9 430 43.0 86.0 12 9.0 172.0 215.0 258 3( )1.0 344.0 387.0 429 42.9 85.8 128.7 171.6 214.5 257 4 300.3 343.2 386.1 428 42.8 85.6 128.4 171.2 214.0 256 8 2i )9.6 342.4 385.2 427 42.7 85.4 12 8.1 170.8 213.5 256 2 21 )8.9 341.6 384.3 426 42.6 85.2 127.8 170.4 213.0 255.6 298.2 340.8 383.4 425 42.5 85.0 127:5 170.0 212.5 255.0 297.5 340.0 382.5 424 42.4 84.8 127.2 169.6 212.0 254.4 2< J6.8 339.2 381.6 423 42.3 84.6 12 6.9 169.2 211.5 253 8 2< )6.1 338.4 380.7 422 42.2 84.4 126.6 168.8 211*0 253 2 295.4 337.6 379.8 421 42.1 84.2 12 6.3 168.4 210.5 252 6 2< W.7 336.8 378.9 420 42.0 84.0 126.0 168.0 210.0 252.0 294.0 336.0 378.0 419 41.9 83.8 12 5.7 167.6 209.5 251 4 2< )3.3 335.2 377.1 418 41.8 83.6 125.4 167.2 209.0 250.8 292.6 334.4 376.2 417 41.7 83.4 12 5.1 166.8 208.5 250 2 2< W.9 333.6 375.3 416 41.6 83.2 "124.8 166.4 208.0 249.6 2< W.2 332.8 374.4 415 41.5 83.0 124.5 166.0 207.5 249.0 290.5 332.0 373.5 414 41.4 82.8 124.2 165.6 207.0 248.4 2\ 39.8 331.2 372.6 413 41.3 82.6 12 3.9 165.2 206.5 247 8 2 39.1 330.4 371.7 412 1 41.2 82.4 123.6 164.8 206.0 247 2 a 38.4 329.6 370.8 411 41.1 82.2 12 3.3 164.4 205.5 246 6 2! 37.7 328.8 369.9 410 41.0 82.0 123.0 164.0 205.0 246 287.0 328.0 369.0 409 40.9 81.8 12 2.7 163.6 204.5 245 4 2! 36.3 327.2 368.1 408 40 8 81.6 122.4 163.2 204.0 244 8 2! 35.6 326.4 367.2 407 40.7 81.4 12 2.1 162.8 203.5 244 2 21 34.9 325.6 366.3 406 40.6 81.2 121.8 162.4 203.0 243 6 21 34.2 324.8 365.4 405 i 40.5 81.0 121.5 162.0 202.5 243 283.5 324.0 | 364.5 404 40.4 80.8 121.2 161.6 202.0 242.4 2! 32.8 323.2 363.6 40? 40.3 80.6 12 SO. 9 161.2 201.5 241 8 23 32.1 322.4 362.7 402 40.2 80.4 120.6 160.8 201.0 241 2 281.4 321.6 i 361.8 401 40.1 80.2 IS X).3 160.4 200.5 240 6 a 30.7 320.8 ! 360.9 40( ) i 40.0 80-C IS 0.0 160.0 200.0 240 .0 21 30.0 320.0 360.0 391 ) 39.9 79.8 119.7 159.6 199.5 239 4 279.3 319.2 359.1 39* 5 39. H ! 79. C 11 9.4 159.2 199.0 238 8 g 78.6 318.4 ! 358.2 397 39.7 79.4 119.1 158.8 198.5 238.2 277.9 317.6 - 357.3 39( > 3. 36.6 73.2 1( )9.8 146.4 183.0 219 .6 256.2 292.8 329.4 365 36.5 73.0 109.5 146.0 182.5 219.0 255.7 292.0 328.5 364 ( 36.4 72.8 109.2 145.6 182.0 218.4 254.8 291.2 327.6 36 5 36.3 72. e 1( )8.9 145.2 181.5 217 .8 254.1 290.4 326.7 362 36.2 72.4 108.6 144.8 181.0 217.2 253.4 289.6 325.8 361 36.1 72.2 1( )8.3 144.4 180.5 216 .6 252.7 288.8 324.9 360 36.0 72.0 108.0 144.0 180.0 216 .0 252.0 288.0 324.0 35* ) 35.9 71. e 1 1( )7.7 143.6 179.5 215 .4 251.3 287.2 j23 1 35? ] 35.8 71. e 1( W.4 143.2 179.0 214 .8 250.6 286.4 322^2 357 35.7 71.4 107.1 ! 142 8 178.5 214 .2 249.9 285.6 321.3 35( ) 35.6 71.2 106.8 142.4 178.0 213 .6 249.2 284.8 320.4 149 TABLE XI. LOGARITHMS OF NUMBERS. No. 120 L. 079.] [No. 134 L. 130. N. 1 2 3 4 5 6 7 8 9 Diff. 120 079181 9543 9904 2067 1 0266 0626 I 0987 1347 1707 2426 360 1 082785 3144 3503 3861 4219 ! 4576 4934 5291 5647 6004 357 2 g 6360 9905 6716 7071 7426 7781 8136 8490 8845 9198 9552 355 0258 0611 0963 1315 ! 1667 2018 2370 2721 son 352 4 093422 3772 4122 4471 4820 5169 5518 5866 6215 6562 349 5 6910 7257 7'604 7951 8298 8644 8990 9335 9681 0026 346 6 100371 0715 1059 1403 1747 2091 2434 2777 3119 3462 343 7 3804 4146 4487 4828 5169 5510 5851 6191 6531 6871 341 8 7210 7549 7888 8227 8565 8903 9241 957'9 9916 0253 338 9 110590 0926 1363 1599 1934 2270 2605 2940 3275 3009 335 130 3943 4277 4611 4944 5278 5611 5943 6276 6608 6940 333 7271 7603 7934 8265 8595 8926 9256 9586 9915 0245 330 2 120574 0903 1231 1560 1888 2216 2544 2871 3198 3525 328 3 3852 4178 4504 4830 5156 5481 5806 6131 6456 6781 325 4 7105 7429 7753 8076 8399 8722 9045 93G8 9690 13 0012 323 PROPORTIONAL PARTS. Diff. 1 2 3 4 5 6 7 8 9 355 35.5 71.0 106.5 142.0 177.5 213.0 248.5 284.0 319.5 354 a5.4 70.8 ioe .2 141.6 177.0 212.4 24 7.8 283.2 318.6 353 35.3 70.6 105 .9 14}. j 176.5 211.8 24 7.1 282.4 317.7 35.2 70.4 105.6 140.8 176.0 211.2 246.4 281.6 316.8 351 35.1 70.2 105 .3 140.4 175.5 210.6 24 5.7 280.8 315.9 a r >o 35.0 70.0 105.0 140.0 175.0 210.0 245.0 280.0 315.0 349 34.9 69.8 104 .7 139.6 174.5 209.4 24 4.3 279.2 314.1 348 34.8 69.6 104.4 139.2 174.0 208.8 243.6 278.4 313.2 347 34.7 69.4 104 .1 138.8 173.5 208.2 24 277.6 312.3 346 34.6 69.2 103.8 138.4 173.0 207.6 242.2 276.8 311.4 345 34.5 69.0 103.5 138.0 172.5 207.0 i 241.5 276.0 310.5 344 34.4 68.8 103.2 137.6 172.0 206.4 240.8 275.2 309.6 343 34.3 68.6 102 .9 137.2 171.5 205.8 24 [).l 274.4 308.7 342 34.2 68.4 102.6 136.8 171.0 205.2 239.4 -273.6 307.8 341 34.1 68.2 102 .3 136.4 170.5 204.6 3.7 272.8 306.9 310 34.0 68.0 102.0 136.0 170.0 204.0 2a 3.0 272.0 300. 339 as. 9 67.8 101 .7 135.6 169.5 203.4 23 r.3 271.2 305.1 888 33.8 67.6 101 .4 135.2 169.0 202.8 236.6 270.4 304.2 337 33.7 67.4 101 .1 134.8 168.5 202.2 23 3.9 269.6 303.3 ase 33.6 67.2 100.8 134.4 168.0 201.6 235.2 268.8 302.4 ass 83.5 67.0 100.5 134.0 167.5 201.0 234.5 268.0 301.5 334 as. 4 66.8 100.2 LS3.6 167.0 200.4 233.8 267.2 300.6 333 33.3 66.6 99 .9 133.2 166.5 199.8 2a 5.1 266.4 299.7 332 33.2 66.4 99 .6 132.8 166.0 199.2 23, 2.4 265.6 298.8 asi 33.1 66.2 99.3 132.4 165.5 198.6 231.7 264.8 297.9 330 33.0 66.0 99 .0 132.0 165.0 198.0 23 1.0 264.0 297.0 329 32.9 65.8 98.7 131.6 164.5 197.4 230.3 263.2 296.1 328 32.8 65.6 98 .4 131.2 164.0 196.8 221 ).6 262.4 295.2 327 32.7 65.4 98 .1 130.8 163.5 196.2 22* 261.6 294.3 326 32.6 65.2 97 .8 130.4 163.0 195.6 228.2 260.8 293.4 325 32.5 65.0 97.5 130.0 162.5 195.0 227.5 260.0 292.5 324 32.4 64.8 97.2 129.6 162.0 194.4 226.8 259.2 291.6 323 32.3 64.6 96 .9 129.2 161.5 193.8 22( 1. 1 s 258.4 290.7 322 32.2 64.4 96 .6 128.8 161.0 193.2 225.4 257.6 289.8 150 TAtfLK XI. LOGARITHMS OF NUMBERS. No. 135 L. 130.] [No. 149 I,. 175. N. 1 2 8 4 5 6 7 8 9 Diff. 135 130.334 0655 0977 1298 1619 1939 i 2260 2580 2900 3219 321 6 3539 3858 4177 4190 4814 5133 j 5451 5709 0080 6403 318 7 6721 7037 7354 7671 7987 8303 1 8018 8934 9249 9564 316 g 9879 0194 | 0508 0822 1136 1450 1703 2076 2389 2702 314 9 143015 3327 3039 3951 4263 4574 4885 5196 5507 5818 311 140 6128 6438 6748 7058 7367 7676 7985 8294 8003 8911 309 j 9219 9527 9835 0142 0449 0756 1063 1370 1076 1982 307 152288 2594 2900 3205 3510 3815 4120 4424 4728 5032 305 3 5336 5640 5943 6246 6549 6853 7154 7457 7759 8001 303 4 8362 8664 8965 9266 9567 9868 0168 0469 0769 1068 OA1 5 161368 1667 1967 2266 2564 2863 3161 3460 3758 4055 oul 299 6 4353 4650 4947 5244 5541 5838 6134 6430 6726 7022 297 7 7317 7613 7908 8203 8497 8792 9086 9380 9674 9968 295 8 170262 0555 0848 1141 1434 1726 2019 2311 2603 2895 293 9 3186 3478 3769 4060 4351 4641 4932 5222 5512 5802 291 PROPORTIONAL, PARTS. Diff. 1 2 3 4 5 6 7 8 9 an | 33.1 64. a 96.3 128.4 160.5 192. 6 224.7 256.8 288.9 ;;-'>> 3-j.o 64.0 96 128.0 160.0 192. 224.0 256.0 288.0 319 31.9 63.8 95 7 ] 27.6 159.5 191. 4 22 3.3 255.2 287.1 31R 31.8 ! 63.6 95 4 127.2 159.0 190. 8 22 2.6 251.4 286.2 317 31.7 63.4 95 1 126.8 158.5 190. 2 221.9 253.6 285.3 316 31.6 63.2 94 8 ] 126.4 158.0 189. 22 1.2 252.8 284.4 315 I 31.5 63.0 94 5 126.0 157.5 189. 220.5 252.0 283.5 314 31.4 62.8 94 2 ] [25.6 157.0 188. 4 21 9.8 251.2 282.6 313 31.3 62.6 93 9 125.2 156.5 187. 8 219.1 250.4 281.7 312 31.2 62.4 93 6 124.8 156.0 187.2 218.4 249.6 280.8 311 * 31.1 i 62.2 93 3 124.4 155.5 186. 6 217.7 248.8. 279 9 310 31.0 62.0 93 ] 24.0 155.0 186. 21 7.0 248.0 279 !o 309 30.9 61.8 92 7 123.6 154.5 185. 4 216.3 247.2 278.1 308 j 30.8 61.6 92.4 123.2 154.0 184. 8 215.6 240,4 277.2 307 l 30.7 61.4 92 1 ] 122.8 153.5 184. 2 21 4.9 245.6 276.3 306 30.6 ! 61.2 91 8 ] 22.4 153.0 183. 6 21 4.2 244.8 275.4 305 30.5 61.0 91 5 122.0 152.5 183. 213.5 244.0 274 ,5 304 30.4 60.8 91 2 ] 21.6 152.0 182. 4 21 2.8 243.2 273.6 303 30.3 j ,60.6 i 90 9 121.2 151.5 181. 8 212.1 242.4 27\J 7 302 30.2 60.4 ! 90 6 120.8 151.0 181. 2 211.4 241.0 271.8 301 30.1 60.2 90.3 120.4 150.5 180. 6 210.7 j 240.8 270.9 300 30.0 60.0 90.0 120.0 150.0 180. 210.0 240.0 270.0 299 29.9 59.8 89 7 ] [19.6 149.5 179. 4 2f 9.3 239.2 269.1 298 29.8 59.6 89.4 119.2 149.0 178. 8 208.6 238.4 268.2 297 29.7 59.4 89 1 1 18.8 148.5 178. 2C 7.9 237.6 207.3 296 29.6 59.2 88 8 ] 18.4 148.0 177. 6 2C 7.2 236.8 200.4 295 29.5 59.0 I 88 5 118.0 147.5 177. 206.5 236.0 205.5 294 29.4 , 58.8 88 2 17.6 147.0 176. 4 2C 5.8 235.2 264.6 293 29.3 58.6 i 87 9 117.2 146.5 175. 8 205.1 234.4 263.7 292 29.2 : 58.4 87 6 116.8 146.0 175. 24.4 233.6 262.8 291 29.1 58.2 87 3 116.4 145.5 174. 6 203.7 232.8 261.9 290 29.0 58.0 i 87 116.0 145.0 174. 203.0 232.0 261.0 289 2S 9 57.8 . 86 7 15.6 144.5 173. 4 2( 2.3 231.2 260.1 288 28.8 57.6 8fi 4 ] 15.2 144.0 172. 8 2(1 1.6 2M0.4 259.2 287 28.7 57.4 86 1 114.8 143.5 172. 2 200.9 229.6 258.3 286 28.6 57.2 85 8 114.4 143.0 171. 6 200.2 228.8 257.4 J51 TABLE XI. LOGAKITHMS OF NUMBERS. No. 150 L. 176.] [No. 169 L. 230. N. * 2 3 4 5 6 7 8 9 Diff. 150 176091 6381 6G70 6959 7248 7536 7825 8113 8401 8689 289 8977 9264 9552 9839 0126 0413 0699 no 1272 1 ViS 007 2 181844 2129 2415 2700 2985 3270 3555 ! 3839 4123 4407 mot 285 3 4691 4975 5259 5542 5825 6108 6391 6674 6956 1 7239 283 7521 7803 8084 8366 8647 8928 9209 9490 9771 0051 9Q1 5 '190332 0612 0892 1171 1451 1730 2010 2289 2567 ! 2846 279 6 3125 3403 3681 3959 4237 4514 4792 5069 5346 5623 378 r< 5900 6176 6453 6729 7005 7281 7556 7832 8107 8382 276 g 8657 8932 9206 9481 9755 0029 0303 fW"""' nOfrA 9 201397 1670 1943 2216 2488 2761 3033 3305 UOOU 3577 i 11*4 3848 #74 272 160 4120 4391 4663 4934 5204 5475 5746 6016 6286 6556 271 1 6826 7096 7365 7634 7904 8173 | 8441 8710 8979 9247 269 2 9515 9783 0051 0319 0586 0853 1 ! 00 201 7 6460 6660 6860 7060 7260 7459 7059 7858 8058 8257 200 8 8456 8656 8855 9054 9253 9451 9650 9849 0047 0246 199 9 340444 0642 0841 1039 1237 J ,:>5 1632 1830 2028 2225 198 220 2423 2620 2817 3014 321.3 3^09 3606 3802 3999 4196 197 1 4392 4589 4785 4981 5118 53',4 5570 6766 5962 61"57 196 2 6353 6549 6744 6939 7135 jaao 7525 7720 7915 8110 195 3 8305 8500 8694 8889 9083 9278 9472 9666 9860 0054 194 4 350248 0442 0636 0829 1023 1216 1410 1603 1796 1989 193 5 2183 2375 2568 2761 2954 3147 3339 3532 3724 3916 193 6 4108 4301 4493 4685 4876 5068 5260 5452 5643 5834 192 7 6026 6217 6408 6599 6790 6981 7172 7363 7554 7744 191 8 7935 8125 8316 8506 8696 8886 9076 9266 9456 9646 190 g 9835 0025 0215 0404 0593 0783 0972 1161 1350 1539 1GQ 230 361728 1917 2105 2294 2482 2671 2859 3048 3236 3424 ioy 188 1 3612 3800 3988 4176 4363 4551 4739 4926 6113 5301 188 2 5488 5675 5862 6049 6236 6423 6610 6796 6983 7169 187 3 7356 7542 7729 7915 8101 8287 8473 8659 8845 9030 186 4 9216 9401 9587 9772 9958 0143 0328 0513 0698 0883 185 5 371068 1253 1437 1622 1806 11)91 2175 2360 2544 2728 184 6 2912 3096 3280 3404 3047 3831 4015 4198 4382 4565 184 7 4748 4932 5115 5298 5481 5664 5846 6029 6212 6394 183 8 6577 6759 6942 7124 7306 7488 7670 7852 8034 8216 182 9 8398 8580 8761 8943 9124 9306 9487 9668 9849 38 0030 181 PROPORTIONAL PARTS. * Diff. 1 2 3 4 5 6 7 8 9 202 201 20.2 20.1 40.4 40.2 60.6 60.3 80.8 80.4 101.0 100.5 121.2 120.6 141.4 140.7 161.6 160.8 181.8 180.9 200 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0 199 19.9 39.8 59.7 79.6 99.5 119.4 139.3 159.2 179.1 198 19 8 39.6 59.4 79.2 99.0 118.8 138.6 158.4 178.2 197 19.7 39.4 59.1 78.8 98.5 118.2 137.9 157.6 177.3 196 19 6 39.2 58.8 78.4 98 117.6 137.2 156.8 176 4 195 19.5 39.0 58.5 78.0 97.5 117.0 136.5 156.0 175.5 194 19.4 38.8 58.2 77.6 97.0 116.4 135.8 155.2 174.6 193 19 3 38.6 57.9 77.2 96.5 115.8 135.1 154.4 173.7 192 19 2 38.4 57.6 76.8 96.0 115.2 134.4 153.6 172.8 191 19.1 38.2 57.3 76.4 95.5 114.6 133.7 152.8 171.9 190 19.0 38.0 57 76.0 95.0 114 133.0 152.0 171.0 189 18.9 37.8 56.7 75.6 94 5 113.4 132.3 151.2 170.1 188 18 8 37.6 56.4 75.2 94.0 112.8 131.6 150.4 169.2 187 18.7 37 4 56.1 74.8 93.5 112.2 130.9 149.6 168.3 186 18.6 37.2 55.8 74.4 93.0 111.6 130.2 148.8 167.4 185 185 37 55 5 74.0 92.5 111.0 129.5 148.0 166.5 184 18 4 36 8 55 2 73.6 92 110 4 128.8 147.2 165.6 183 18 3 36 6 54.9 73.2 91 5 109.8 128.1 146 4 164.7 182 18 2 36 4 54 6 72 8 91 109 2 127.4 145.6 163.8 181 18 1 36 2 54 3 724 90.5 1086 126 7 144.8 102.9 180 18 36 54 72 90 108 126.0 144.0 162.0 179 17 9 35 8 53.7 71.6 89 5 107.4 125.3 143.2 101 1 155 TABLE XX. LOGARITHMS OK NUMBERS. No. 240 L. 380.] LNo. 269 L. 431. N. 1 2 3 4 5 6 7 8 9 Diff. 240 1 2 3 4 5 6 8 9 250 1 2 3 4 5 6 7 8 9 260 1 2 3 4 5 6 7 8 9 380211 2017 3815 5606 7390 9166 0392 2197 3995 5785 7568 9343 0573 2377 4174 5964 7746 9520 0754 2557 4353 6142 7924 9698 0934 2737 4533 6321 8101 9875 1115 2917 4712 6499 8279 1296 3097 4891 6677 8456 1476 3277 5070 6856 8634 1656 3456 5249 7034 8811 1837 3636 5428 7212 8989 181 180 179 178 178 177 176 176 175 174 173 173 172 171 171 170 169 169 168 167 167 166 165 165 164 164 163 102 102 161 0051 1817 3575 5326 7071 8808 0228 1993 3751 5501 7245 8981 0405 2169 3926 5676 7419 9154 0582 2345 4101 5850 7592 9328 0759 2521 4277 6025 7766 9501 390935 2697 4452 6199 7940 9674 1112 2873 4627 6374 8114 9847 1288 3048 4802 6548 8287 1464 3224 4977 6722 8461 1641 3400 5152 6896 8634 0020 1745 3464 5176 6881 8579 0192 1917 3635 5346 7051 8749 0365 2089 .3807 5517 7221 8918 0538 2261 3978 5688 7391 9087 0711 2433 4149 5858 7561 9257 0883 2605 4320 6029 7731 9426 1056 2777 4493 6199 7901 9595 1228 2949 4663 6370 8070 9764 401401 3121 4834 6540 8240 9933 411620 3300 4973 6641 8301 9956 1573 3292 5005 6710 8410 0102 1788 3467 5140 6807 8467 0271 1956 3635 5307 6973 8633 0440 2124 3803 5474 7139 8798 0609 2293 3970 5641 7306 8964 \ 0777 : 2461 4137 5808 7472 9129 0946 2629 4305 5974 7638 9295 1114 2796 4472 6141 7804 9460 1283 2964 4639 6308 7970 9625 1451 3132 4806 6474 8135 9791 0121 1768 3410 5045 6674 8297 9914 0286 1933 3574 5208 6836 8459 0451 2097 3737 5371 6999 8621 0616 2261 3901 5534 7161 8783 0781 i 2426 4065 5697 7324 1 8944 0945 2590 4228 5860 7486 9106 1110 2754 4392 6023 7648 9268 1275 2918 4555 6186 7811 9429 1439 3082 4718 6349 7973 9591 421604 3246 4882 6511 8135 9752 43 0075 0236 0398 0559 0720 0881 | 1042 | 1203 PROPORTIONAL PARTS. Diff. 1 2 3 4 5 6 7 8 9 78 76 75 74 73 71 ro 109 168 167 166 1G5 164 163 162 161 17.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 16.9 16.8 16.7 16.6 16.5 16.4 16.3 16.2 16.1 a5.6 53.4 35.4 53.1 .35.2 52.8 35.0 52.5 34.8 52.2 34.6 51.9 34.4 51.6 34.2 51.3 34.0 51.0 33.8 50.7 33.6 50.4 33.4 50.1 33.2 49.8 33.0 49.5 32.8 49.2 32.6 48.9 32.4 48.5 32.2 48.3 71.2 70.8 70.4 70.0 69.6 69.2 68.8 68.4 68.0 67.6 67.2 66.8 66.4 66.0 65.6 65.2 64.8 64.4 89.0 as. 5 88.0 87.5 87.0 86.5 86 85.5 85.0 84.5 84.0 83.5 83.0 82.5 82.0 81.5 81.0 80.5 106.8 106.2 105.6 105.0 104.4 103.8 103.2 102.6 102.0 101.4 100.8 100.2 99.6 99.0 98.4 97.8 97.2 96.6 124.6 142.4 123.9 141.6 123.2 140.8 122.5 140.0 121.8 139.2 121.1 138.4 120.4 137.6 119.7 136.8 119.0 136.0 118.3 135.2 117.6 134.4 116.9 133.6 116.2 132.8 115.5 132.0 114.8 131.2 114.1 130.4 113.4 129.6 112.7 128.8 160.2 159.3 158.4 157.o 156.6 155.7 154.8 153.9 153.0 152.1 151.2 150.3 149.4 148.5 147.6 146.7 145.8 144.9 156 TABLE XI. LOGARITHMS OF NUMBERS. No. 270 L. 431.] [No. 209 L. 476. N. 1 2 3 4 5 6 7 8 9 Diff. 270 431364 1525 1685 1846 2007 2167 2328 2488 2619 2809 161 1 2969 3130 8290 3450 3610 3770 3930 4090 4249 4409 160 2 4569 4729 4888 5048 5207 5367 5526 5685 5844 6004 159 3 6163 6322 6481 6640 6799 6957 7116 7275 7433 7592 159 4 7751 7909 8067 8226 8384 8542 8701 8859 9017 9175 158 5 9333 9491 9648 9806 9964 0122 0279 0437 0594 flTKo 158 6 440909 1066 1224 1381 1538 1695 1852 2009 2166 2323 157 7 2480 2637 2793 2950 3106 3263 3419 3576 3732 3889 157 8 4045 4201 4357 4513 4669 4825 4981 5137 5293 5449 156 9 5604 5760 5915 6071 6226 6382 6537 6692 6848 7003 155 280 7158 7313 7468 7623 7778 7933 8088 8242 8397 8552 155 j 8706 8861 9015 9170 9324 9478 9633 9787 9941 0095 154 2 450249 0403 0557 0711 0865 1018 1172 1326 1479 1633 154 3 1786 1940 2093 2247 2400 2553 2706 2859 3012 3165 153 4 3318 3471 3624 3777 3930 4082 4235 4387 4540 4692 153 5 4845 4997 5150 5302 5454 5606 5758 5910 6062 6214 152 6 6366 6518 6670 6821 6973 7125 7276 7428 757? 7731 152 7 7882 8033 8184 8336 8487 8638 8789 8940 9091 9242 151 g 9392 9543 9694 9845 9995 0146 0296 0447 0597 0748 151 9 460898 1048 1198 1348 1499 1649 1799 1948 2098 2248 150 290 2398 2548 2697 2847 2997 3146 3296 3445 3594 3744 150 1 3893 4042 4191 4340 4490 4639 4788 4936 5085 5234 149 2 5383 5532 5680 5829 5977 6126 6274 6423 6571 6719 149 3 6868 7016 7164 7312 7460 7608 7756 7904 8052 8200 148 4 g 8347 9822 8495 9969 8643 8790 8938 9085 9233 9380 9527 9675 148 0116 Of63 0410 0557 0704 0851 0998 1145 147 6 471292 1438 1585 1732 1878 2025 2171 2318 2464 2610 146 7 2756 2903 3049 3195 as4i 3487 3633 3779 3925 4071 146 8 4216 4362 4508 4653 4799 4944 5090 5235 5381 5526 146 9 5671 5816 5962 6107 6252 6397 6542 6687 6832 6976 145 PROPORTIONAL PARTS. Diff. 1 2 3 4 5 6 7 8 9 161 16.1 32.2 48.3 64.4 80.5 96.6 112.7 128.8 144.9 160 16.0 32.0 48.0 64.0 80.0 96.0 112.0 128.0 144.0 159 15.9 31.8 47.7 63.6 79.5 95.4 111.3 127.2 143.1 158 15.8 31.6 47.4 63.2 79.0 94.8 110.6 126.4 142.2 157 15.7 31.4 47.1 62.8 78.5 94.2 109.9 125.6 141.3 156 15.6 31.2 46.8 62.4 78.0 93.6 109.2 124.8 140.4 155 15.5 31.0 46.5 62.0 77.5 93.0 108.5 124.0 139.5 154 15.4 30.8 46.2 61.6 77.0 92.4 107.8 123.2 138.6 153 15.3 30.6 45.9 61.2 76.5 91.8 107.1 122.4 137.7 152 15.2 30.4 45.6 60.8 76.0 91.2 106.4 121.6 136.8 151 15.1 30.2 45.3 60.4 75.5 90.6 105.7 120.8 135.9 150 15.0 30.0 45.0 60.0 75.0 90.0 105.0 120.0 135.0 149 14.9 29.8 44.7 59.6 74.5 80.4 104.3 119.2 134.1 148 14.8 29.6 44.4 59.2 74.0 88.8 103.6 118.4 ias.2 147 14.7 29.4 44.1 58.8 73.5 88.2 102.9 117.6 132.3 146 14.6 29 2 43.8 58.4 73.0 87.6 102.2 116.8 131.4 145 14.5 29^0 43.5 58.0 72.5 87.0 101.5 116.0 130.5 144 14.4 28.8 43.2 57.6 72.0 86.4 100.8 115.2 129.6 143 14.3 28.6 42.9 57.2 71.5 85.8 100.1 114.4 128.7 142 14.2 28.4 42.6 56.8 71.0 85 2 99.4 113.6 127.8 141 14.1 28 2 42.3 56.4 70.5 84.6 98.7 112.8 126.9 140 14.0 2s!o 42.0 56.0 70.0 84.0 98.0 112.0 126.0 157 TABLE XI. LOGARITHMS OF NUMBERS. No. 300 L. 477.1 [No. 339 L. 5C1. K. 1 2 S 4 5 6 7 8 9 Diff. 800 1 2 3 4 5 6 8 9 310 1 2 3 4 5 6 7 8 9 320 1 2 3 4 5 6 8 9 330 1 2 3 4 5 6 8 9 477121 8566 7266 8711 7411 8855 0294 1729 3159 4585 6005 7421 8833 7555 8999 7700 9143 7844 9287 7989 9431 8133 9575 8278 9719 1156 2588 4015 5437 C855 6269 9677 8422 9663 145 144 144 143 143 142 142 141 141 140 140 139 139 139 138 138 137 137 136 136 136 135 135 134 134 133 133 133 132 132 131 131 131 130 130 129 129 129 128 128 480007 1443 2874 4300 5721 7138 8551 9958 491362 2760 4155 5544 6930 8311 9687 0151 1586 3016 4442 5863 7280 8692 0438 1872 330;J 4727 6147 7563 8974 0582 2016 3445 4869 6289 7704 9114 0725 2159 3587 5011 6430 7845 9255 0869 2:302 3730 5153 6572 7986 9396 1012 2445 3872 5295 (5714 8127 9537 1299 2731 4157 5579 6997 8410 9818 0099 1502 2900 4294 5683 7068 8448 9824 0239 1642 3040 4433 5822 7206 8586 9962 0380 1782 3179 4572 5960 7344 8724 0099 1470 2837 4109 5557 6911 8260 9606 0520 1922 3319 4711 6099 7483 8862 0236 1607 2973 4335 5693 7046 8395 9740 1081 2418 P.750 5079 6403 7724 9040 0661 2062 j 3458 4850 6238 7621 1 8999 0374 1744 8109 4471 5828 I 7181 1 8530 9874 0801 2201 3597 4989 6376 7759 9137 0511 1880 3246 4C07 5964 7316 8G64 0941 2341 3737 5128 6545 7897 9275 0648 2017 3382 4743 6009 7451 8799 1061 2481 3876 5267 6653 6035 9412 0785 2154 3518 4878 6234 7586 6934 1222 2621 4015 5406 C791 6173 C550 C922 2291 655 C014 6370 7721 S068 501059 2427 3791 5150 6505 7856 9203 510545 1883 3218 4548 5874 7196 8514 9828 1196 2564 3927 5286 6640 7991 9&37 1333 2700 4063 5421 6776 8126 9471 0009 1349 2084 40*6 6344 6C68 7987 9303 0615 1922 3226 4526 5822 7114 8402 9687 0968 0143 1462 2818 4149 5476 6800 8119 9434 0745 2053 3356 4656 5951 7243 8531 9815 1096 0277 1616 2951 4282 5609 6932 8251 9566 0876 2163 3486 4765 608* 7372 8GGO 9943 1223 0411 1750 084 4415 5741 7064 6S82 9697 1C07 2314 3616 4915 6210 7:01 6768 0679 2017 3351 4681 6006 7328 8646 9959 0813 2151 3484 4813 6139 7460 8777 0947 2284 3617 4946 6271 7592 8909 I 1215 2551 3883 5211 6535 7855 9171 0484 1792 3096 ! 4396 : 5693 ; 69a5 8274 9559 0840 0090 1400 2705 400(5 5304 f>598 7H88 9174 0221 1530 2835 4136 5434 6727 6016 <):X)2 0353 1661 2966 4266 5563 6856 8145 9430 521138 2444 3746 5045 6a39 7630 8917 1269 2575 3876 5174 6469 7759 9045 0072 1351 530200 ! 0328 0456 0584 0712 PROPORTIONAL PARTS. Biff. 1 2 3 4 5 6 7 8 9 139 13.9 138 13.8 137 13.7 136 13.6 135 13.5 134 13.4 133 13.3 132 13.2 131 13.1 130 13.0 129 12.9 128 12.8 127 12 7 27.8 41.7 27.6 41.4 27.4 41.1 27.2 40.8 27.0 40.5 26.8 40.2 26.6 39.9 26.4 39.6 26.2 89.3 26.0 89.0 25.8 38.7 25.6 38.4 25.4 38.1 55.6 55.2 54.8 54.4 54.0 53.6 53.2 52.8 52.4 52.0 51.6 51.2 50.8 69.5 69.0 68.5 68.0 67.5 67.0 66.5 66.0 65.5 65.0 64.5 64.0 63.5 83.4 82.8 82.2 81.6 81.0 80.4 79.8 79.2 78.6 78.0 77.4 76.8 76 2 97.3 111.2 96.6 110.4 95.9 109.6 95.2 108.8 94.5 108.0 93.8 107.2 93.1 106.4 92.4 105.6 91.7 104.8 91.0 104.0 90.3 103.2 89.6 1 102.4 88.9 101.6 | 125.1 124.2 123.3 122.4 121.5 120.6 119.7 118.8 117.9 317.0 116.1 115.2 114.3 TABLE XI.- LOGARITHMS OF NUMBERS. No. 34 j L. L:A.] [No. 379 L. 579. N. 1 o 3 4 5 6 7 8 9 Diff. 340 1 2 3 4 5 6 8 9 350 1 2 3 4 5 6 7 8 9 360 1 2 3 4 5 6 7 8 9 370 1 2 3 4 5 6 7 8 9 531479 2754 4026 5294 6558 7819 9076 1607 2bb2 4153 5421 6685 7945 9202 1734 3009 4280 5547 6811 8071 9327 1S02 3130 4407 5074 6937 8197 9452 1990 3204 4534 5800 7003 8322 9578 2117 3391 4001 5927 7189 8448 9703 2245 3518 47'87 6053 7315 8574 9829 2372 3645 4914 6180 7441 8699 9954 1205 2452 3096 4936 6172 7405 86:35 9861 2500 3772 5041 0306 7567 8825 2627 3899 5167 6432 7693 8951 128 127 127 126 120 126 125 125 125 124 124 124 123 123 123 122 122 121 121 121 120 120 120 119 119 119 119 118 118 118 117 117 117 116 116 116 115 115 115 114 0079 1330 2576 3820 5060 6296 7529 8758 9984 0204 1454 2701 3944 5183 6419 7652 8881 540329 1579 2825 4068 5307 6543 7775 9003 0455 1704 2950 4192 5431 6666 7898 9126 0580 1829 3074 4316 5555 6789 8021 9249 0705 1953 3199 4440 5078 6913 8144 9371 0830 20,78 3323 4504 5802 7036 8207 9494 0955 2203 1 3447 I 4688 ! 5925 ! 7159 ! 8389 9016 1080 2327 3571 4812 0049 7282 8512 97'39 0106 1328 2547 3762 4973 6182 7387 8589 9787 550228 1450 2668 3883 5094 6303 7507 8709 9907 01551 1572 2790 4004 5215 6423 7627 8829 0473 1694 2911 4126 5336 6544 7748 8948 0595 1816 3033 4247 5457 6664 7'808 9008 0717 1938 3155 4308 5578 6785 7988 9188 0&40 2060 3276 4489 i 5099 6905 8108 9308 0962 2181 3398 4010 6820 7026 8228 9428 1084 2303 3519 4731 5940 7146 8349 9548 1206 2425 3640 4852 6061 7267 8469 9067 0026 1221 2412 3600 4784 5966 7144 8319 9491 0146 1340 2531 3718 4903 6084 7262 8436 9008 0205 1459 2050 3837 5021 6202 7379 8554 9725 0385 1578 2709 3955 5139 6320 7497 8671 9S42 i 0504 1098 2887 4074 5257 6437 7014 8788 9959/ 0024 1817 3006 4192 5376 6555 7732 8905 0743 1936 3125 4311 5494 6673 7849 9023 0863 2055 3244 4429 5612 6791 7967 9140 0982 2174 3362 4548 5730 6909 8084 9257 561101 2293 3481 4606 5848 7026 8202 9374 0076 1243 2407 3568 4726 5880 7032 8181 9326 0193 1359 2523 3684 4841 5996 7147 8295 9441 0309 1476 .2639 3800 4957 6111 7262 8410 9555 0426 1592 2755 3915 5072 6226 7377 8525 9669 570543 1709 2872 4031 5188 6341 7492 8639 0660 1825 2988 4147 5303 6457 7607 8754 0776 1942 3104 4263 5419 6572 7722 8868 0893 2058 3220 4379 5534 6687 7836 8983 1010 2174 3336 4494 5650 6802 7951 9097 1126 2291 3452 4610 5765 6917 8066 9212 PROPORTIONAL PARTS. Diff. 1 2 3 4 5 6 7 8 9 128 12.8 127 12 7 126 12 6 125 12.5 124 12.4 123 12.3 122 12.2 121 12.1 120 12.0 119 11 9 25.6 38.4 25 4 38 . 1 25.2 37.8 25.0 37.5 21.8 37.2 24.6 36.9 24 4 30.0 24.2 36.3 24 30 23 8 35.7 51.2 50.8 50.4 50.0 49,6 49.2 48.8 48 4 48.0 47.6 64.0 63.5 63.0 62.5 62.0 61.5 61.0 60.5 60.0 59.5 76.8 89.6 76.2 88.9 75.6 88.2 75.0 87.5 74.4 86 8 73.8 86.1 73.2 &5.4 72.6 84.7 72.0 84.0 71.4 83.3 102.4 101.6 100.8 100.0 99.2 98.4 97.6 96.8 96.0 95.2 115.2 114.3 113.4 112.5 111.6 110.7 109.8 108.9 108.0 107.1 159 TABLE XI. LOGARITHMS OF NUMBERS. No. 380. L. 579.] [No. 414 L. 617. N. 1 2 3 4 5 G 7 8 9 Diff. 380 579784 9898 0012 0126 0241 0355 0469 0583 0697 0811 114 1 580925 1039 1153 1267 1381 1495 1608 1' 22 1836 1950 2, 2063 2177 2291 2404 2518 [ 2031 2745 2858 2972 3085 3 3199 3312 3426 9 3052 ! 3705 3879 3< >92 4105 4218 4 4331 4444 4557 46' 4783 4896 5009 5 122 5235 5348 113 5 5461 5574 5080 5799 5912 6024 6137 6250 6302 6475 6 6587 6700 0812 69X 5 7037 7149 7262 7 JT4 7480 7599 7 7711 7823 7935 8047 8160 8272 8384 8490 8008 8720 112 8 8832 8944 9050 91C 7 9279 9391 9503 9 $15 9720 9838 g 9950 0061 0173 0284 0396 0507 0619 0730 0812 0953 390 591065 1176 1287 1399 1510 1621 1732 1843 1955 2060 1 2177 2288 2399 25] 2021 2732 2843 2* )54 3004 3175 111 2 3286 3397 3508 3618 3729 3840 3950 4001 4171 4282 3 4393 4503 4014 47i ^4 4834 4945 5055 5 105 5270 5380 4 5496 5000 5717 5& 5937 6047 0157 6 ,67 6377 6187 5 6 6597 7695 6707 7805 6817 7914 6927 8024 7037 8134 7146 8243 8853 ,7306 8402 7470 8572 7580 8081 110 7 8791 8900 9009 91] 9 9228 9337 9446 9 350 9005 9774 g 9883 9992 0101 0210 0319 0428 0537 1 0640 0755 0804 109 9 600973 1082 1191 1.299 1408 1517 1025 1 734 1843 1951 400 2060 2169 2277 2386 2494 2603 2711 2819 2928 3036 1 3144 3253 3301 3469 3577 3086 3794 3902 4010 4118 108 4226 4334 4442 45. >0 4058 4766 4874 4 J82 SON) 5197 3 5305 5413 5521 5028 5730 5844 5951 6059 6100 0274 4 6381 6489 6596 67( )4 6811 6919 7026 7 133 7241 7348 5 7455 7562 7009 77 7 i 7884 7991 8098 8205 8312 8419 107 6 8526 8633 8740 88- 17 ' 8954 9001 9107 9 474 9381 9188 7 9594 9701 9808 9014 , nnoi 0128 0234 O } 11 n,i i<7 0554 8 610660 0767 0873 0979 1080 1192 1298 1405 1511 1017 9 1723 1829 1936 2042 2148 2254 2300 2 'Go 2572 2078 106 410 2784 2890 2996 31( >2 3207 3313 3419 3525 3(330 3736 1 3842 3947 4053 41 )9 4264 4370 4475 4 581 4080 4792 2 4897 5003 5108 52 3 5319 5424 5529 5 >34 5740 5845 3 5950 6055 6100 6265 0370 6476 6581 6080 6790 0895 105 4 7000 7105 7210 7315 7420 7525 7029 7 734 783J 7943 PROPORTIONAL PARTS. Diff. 1 2 3 4 5 6 7 8 9 118 11.8 23.6 35.4 47.2 59.0 70.8 82.6 1 94.4 106.2 117 11.7 23.4 35.1 46.8 58.5 70.2 81.9 93.6 105.3 110 11.0 23.2 34.8 46.4 58.0 69.6 81.2 92.8 104.4 115 11.5 23.0 34.5 46.0 57.5 69.0 80.5 92.0 103.5 114 11.4 22.8 34.2 45.6 57.0 68.4 79.8 91.2 102.0 113 11.3 22 .6 33.9 45.2 56.5 67.8 79.1 90.4 101.7 112 11.2 22.4 33.6 44.8 56.0 67.2 78.4 89.6 100.8 111 11.1 22 2 33.3 44 . 4 55.5 66.0 77.7 88.8 99.9 110 11.0 ao 33.0 44.0 ! 55.0 66.0 77.0 88.0 99.0 109 10.9 21.8 32.7 43.6 ! 54.5 G5.4 70.3 87.2 98.1 108 10.8 21.6 32.4 43.2 54.0 64.8 75.0 80.4 97.2 107 10.7 21.4 32.1 42.8 53.5 64.2 74.9 85.6 96.3 106 10.6 21.2 31.8 42.4 53.0 63.6 74 2 84.8 95.4 105 10.5 21 .0 31.5 42.0 52.5 63.0 73.5 84.0 94.5 105 1 10.5 21.0 31.5 42.0 5X1.5 03.0 73.5 84.0 94.5 104 1 10.4 20.8 31.2 41.6 52.0 62.4 72.8 83.2 93.6 TABLE XT. LOGARITHMS OF NUMBERS. No. 415 L. 618.] [No. 459 L. 662 N. 1 2 3 4 6 6 7 8 9 Diff. 415 6 8 9 420 1 2 3 4 5 6 8 9 430 1 2 3 4 5 6 7 8 9 440 1 4 5 6 7 8 9 450 1 2 3 4 5 6 7 8 9 618048 9093 020130 1176 2214 3249 4282 5312 0340 7306 8389 9410 6:30428 1414 2457 3468 4477 5484 6488 7490 8489 9486 8153 9198 8257 9302 8302 9406 8466 9511 8571 9615 8676 9719 8780 9824 8884 9928 8989 0032 1072 2110 3146 4179 5210 G238 7203 8287 9308 105 104 103 102 101 100 99 98 97 96 95 0240 1280 2318 3353 4385 5415 6443 7468 8491 9512 0530 1545 2559 3569 4578 5584 6588 7590 8589 9586 0344 1384 2421 3456 4488 5518 6546 7571 8593 9013 0631 1647 2660 3670 4679 5685 6688 7690 8689 9686 0448 1488 2525 3559 4591 5021 OG48 7073 8695 9715 0733 1748 2701 3771 4779 5785 0789 7790 8789^ 9785 0552 1592 2028 3003 4095 5724 0751 7775 8797 9817 0&35 18-19 2862 3872 4880 5886 0889 7890 8888 9885 0656 1695 2732 3766 4798 5827 6853 7878 8900 9919 ~0936~ 1951 2963 3973 4981 5986 6989 7990 8988 9984 0760 1799 2835 3869 4901 5929 6956 7980 9002 0021 1038 2052 3064 4074 5081 6087 7089 8090 9088 0864 1903 2939 3973 5004 6032 7058 8082 9104 0968 2007 3042 4076 5107 6135 7161 8185 9206 0123 1139 2153 3165 4175 5182 6187 7189 8190 9188 0224 1241 2255 3266 4276 5283 6287 7290 8290 9287 0326 1342 2356 3367 4376 5383 6388 7390 8389 9387 0084 1077 2069 3058 4044 5029 6011 6992 7969 8945 9919 0890 1859 2826 3791 4754 5715 6673 7629 8584 9536 0486 1434 2380 0183 1177 2168 3156 4143 5127 6110 7089 8067 9043 0016 0987 1956 2923 3888 4850 5810 6769 7725 8679 9631 0581 1529 2475 0283 1276 2UI7 3255 4242 5226 6208 7187 8165 9140 0113 1084 2053 3019 3984 4946 5906 6864 7820 8774 9726 0076 1623 2509 0382 1375 2366 3354 4340 5324 6306 7285 8262 9237 0210 1181 2150 3116 4080 5042 6002 6960 7916 8870 9821 0771 1718 2663 640481 1474 2405 3453 4439 5422 0404 7383 8300 9335 0581 1573 2563 3551 4537 5521 6502 7481 8458 9432 0405 1375 2343 3309 4273 5235 6194 7152 8107 9000 0011 0900 1907 0680 1672 2602 3050 4030 5619 6000 7579 8555 9530 0502 147'2 2440 3405 4369 5331 6290 7247 8202 9155 0106 1055 2002 0779 1771 27G1 3749 4734 5717 6698 7'676 8653 9627 0879 1871 2860 3847 4832 5815 6796 7774 8750 9724 0096 1666 2033 3598 4562 5523 6482 7438 8393 9346 0978 1970 2959 3946 4931 5913 6894 7872 8848 9821 0793 1762 2730 3695 4658 5619 6577 7534 8488 9441 G50308 1278 2246 3213 4177 5138 6098 7056 8011 8965 9916 600805 1813 0599 1509 2536 3502 4465 5427 6386 7343 8298 9250 0201 1150 2096 0296 1245 2191 0391 1339 2286 PROPORTIONAL PARTS. Diff 1 234 5 6 7 8 9 105 10 5 1<>4 10 4 103 10 3 102 10 2 101 10 1 100 10.0 99 99 21.0 315. 42.0 20 8 31 2 1 41 6 20 6 30 9 41.2 20 4 30 i 40.8 20 2 ?!0 3 40.4 20 30.0 40 19 8 29 7 39 6 52 5 52.0 51 5 51 50 5 50 49 5 63 73.5 84 62 4 72 8 83 2 61 8 72 1 82.4 61 2 71 4 81 6 60 6 70 7 80 8 60.0 70 80 59 4 69 3 79 2 94.5 93.0 92 7 91 8 90.9 90 89.1 161 TABLE XI. LOGAKITHMS OF NUMBERS. No. 460 L. 662.] [No. 499 L. 698. N 1 2 8 4 5 6 7 8 9 Diff. 460 662758 2852 2947 3041 3135 3230 3324 3418 3512 3607 1 3701 3795 3889 39 S3 4078 4172 4206 ; 4300 445 4 4548 2 4642 4736 4830 4924 5018 5112 5206 i 5299 5393 5487 94 3 5581 5675 5769 58 32 5956 6050 6143 ! 6237 j 633 1 6424 4 6518 ; 6612 6705 6799 6892 6986 7079 1 7173 7200 7360 5 7453 i 7546 7640 77 33 7826 7920 8013 ' 8106 | 819 9 8293 6 8386 8479 8572 86 35 8759 8852 8945 9038 ! 913 1 9224 9317 9410 9503 95 30 9689 9782 9875 9967 006 n 0153 93 8 670246 0339 0431 0524 0617 0710 0802 0895 0988 1080 9 1173 1265 1358 1451 1543 1636 1728 1821 1913 2005 470 2098 2190 2283 2375 2467 2560 2652 2744 i 2836 2929 1 3021 3113 3205 32 97 3390 3482 3574 3666 ! 375 8 385C 2 3942 4034 4126 4218 4310 4402 4494 4586 467 7 4769 92 3 4861 49.53 5045 51 37 5228 5320 5412 5503 559 5 5687 4 5778 5870 5962 60 53 6145 6236 6328 6419 651 1 6002 5 6694 6785 6876 69 6S 7059 7151 7242 7333 7424 7516 6 7607 7698 7789 78 SI 7972 i 8063 8154 8245 833 8427 7 8518 8609 8700 8791 8882 8973 9064 9155 9246 9337 91 8 9428 9519 9610 97 00 9791 : 9882 9973 ! ! 0063 OlS-i i 0245 9 680336 0426 0517 0607 0698 0789 0879 0970 1060 1151 480 1241 1332 1422 1513 1603 1693 1784 1874 1964 2055 1 2145 2235 2326 24 16 2506 i 2596 2686 2777 28t 7 2957 2 3047 3137 3227 3317 3407 3497 3587 3677 3767 3857 90 3 3947 4037 4127 42 17 4307 4396 4486 4576 466 6 4756 4 4845 49:35 5025 5114 5204 5294 5383 5473 5563 5652 5 5742 5831 5921 60 10 6100 6189 6279 6368 645 8 6547 6 6636 6726 6815 6904 6994 7083 7172 7261 7351 7440 7 7529 7618 7707 77 JO 7886 7975 8064 8153 824 2 8331 89 8 8420 8509 8598 8B 37 8776 8865 8953 9042 9131 9220 9 ! Q2HQ 9398 9486 95 75 9664 9753 9841 9930 001 n 0107 490 690196 0285 0373 0462 0550 0639 0728 0816 0905 0993 1 1081 1170 1258 1347 1435 1524 1612 1700 178 9 1877 2 1965 2053 2142 22 30 2318 2406 2494 2583 267 1 2759 3 2847 2935 3023 3111 3199 3287 3375 3463 3551 3039 88 4 3727 3815 3903 39 31 4078 4166 4254 4342 443 4517 5 4605 4693 4781 48 38 4956 5044 5131 5219 5307 5394 6 5482 5569 5657 57 14 5832 5919 6007 6094 618 2 6269 7 6356 6444 6531 66 18 6706 6793 6880 6968 705 5 7142 8 7229 7317 7404 74 n 7578 7665 7752 7839 792 6 8014 9 8100 8188 8275 8362 8449 8535 8622 8709 8796 8883 87 PROPORTIONAL PARTS. Diff 1 2 3 4 5 6 7 8 9 98 9.8 19.6 29.4 39.2 49.0 58.8 68.6 78.4 88.2 97 9.7 19.4 29.1 38.8 48.5 58.2 67.9 77.6 87.3 96 9.6 19.2 28.8 38.4 48.0 57.6 67.2 76.8 86.4 95 9.5 19.0 28.5 38.0 47.5 57.0 66.5 76.0 85-. 5 94 9.4 18.8 28.2 37.6 47.0 56.4 65.8 75.2 84.6 93 9.3 18.6 27.9 37.2 46.5 55.8 65.1 74.4 83.7 92 9.2 18.4 27.6 36.8 46.0 55.2 64.4 73.6 82.8 91 9.1 18.2 27.3 36.4 45.5 54.6 63.7 72.8 81.9 90 9.0 18.0 27.0 36.0 45.0 54.0 63.0 72.0 81.0 89 8.9 17.8 26.7 35 6 44.5 53.4 62.3 71.2 80.1 88 8.8 1 17.6 26.4 35.2 44.0 52.8 61.6 70.4 79.2 8.7 1 17.4 26.1 34.8 43.5 i 52.2 00. 9 69.6 78:3 fl 8.6 | 17.2 25.8 34.4 43.0 51.6 I 60.2 68.8 77.4 TABLE XI. LOGARITHMS OF NUMBERS. No. 500 L. 698.] [No. 544 L. 736. N. 1 2 3 4 6 6 7 8 9 Diff. 500 1 2 3 4 5 6 7 8 9 510 1 2 3 4 5 6 7 8 9 520 1 2 3 4 5 6 8 9 530 1 2 3 4 5 6 7 8 9 540 1 2 3 4 698970 9838 700704 1568 2431 3291 4151 5008 5864 6718 7570 8421 9270 9057 9924 9144 9231 9317 1 9404 9491 9578 9664 9751 0011 0877 1741 2603 3463 4322 5179 6035 6888 7740 8591 9440 0098 0963 1827 2689 3549 4408 5265 6120 6974 7826 8676 9524 0184 ! 1050 i 1913 2775 3635 4494 5350 ! 6206 7059 7911 8761 i 9609 ; 0271 1136 1999 2861 3721 4579 5436 6291 7144 7996 8846 9694 0358 1222 2086 2947 3807 4665 5522 6376 7229 8081 8931 9779 0444 1309 2172 3033 3893 4751 5607 6462 7315 8166 9015 9863 0531 1395 2258 3119 3979 4837 5693 6547 7400 8251 9100 9948 0617 1482 2344 3205 4065 4922 5778 6632 7485 8336 9185 86 85 84 83 82 81 80 0790 1654 2517 3377 4236 5094 5949 6803 7655 8506 9355 0033 0879 1723 2566 3407 4246 5084 5920 6754 7587 8419 9248 710117 0963 1807 2650 3491 4330 5167 6003 6838 7671 8502 9:331 720159 0986 1811 2634 3456 4276 5095 5912 6727 7541 8354 9165 9974 0202 1048 1892 2734 3575 4414 5251 6087 6921 7754 8585 9414 0287 1132 1976 2818 3659 4497 5335 6170 7004 7837 8668 9497 0371 1217 2060 2902 3742 4581 5418 6254 7088 7920 8751 9580 0456 ' 1301 I 2144 ! 2986 1 3826 i 4665 5502 6337 7171 | 8003 ! 8834 i 9663 0490 1316 2140 2963 3784 4604 5422 6238 7053 7866 8678 9489 0540 1385 2229 3070 3910 4749 5586 6421 7254 8086 8917 9745 0625 1470 2313 3154 3994 4833 5669 6504 7338 8169 9000 9828 0710 1554 2397 3238 4078 4916 5753 6588 7421 8253 9083 9911 0794 1639 4162 5000 5836 6671 7504 8336 9165 9994 0077 0903 1728 2552 3374 4194 5013 5830 6646 7460 8273 9084 9893 0242 1068 1893 2716 3538 4358 5176 5993 6809 7625 8435 9246 0325 1151 1975 2798 3620 4440 5258 6075 6890 7704 8516 9327 0407 1233 2058 2881 3702 4522 5340 6156 6972 7785 8597 9408 0573 1398 2222 3045 3866 4685 5503 6320 7134 7948 8759 9570 0655 1481 2305 3127 3948 4767 5585 6401 7216 8029 8841 9651 0738 1563 2387 3209 4030 4849 5667 6483 7297 8110 8922 9732 0821 1646 2469 3291 4112 49bl 5748 6564 7379 8191 9003 9813 0055 0863 1669 2474 3278 4079 4880 5679 0136 0944 1750 2555 3358 4160 4960 5759 0217 1024 1830 2635 3438 4240 5040 5838 0298 1105 1911 2715 3518 4320 5120 5918 0378 1186 1991 2796 8598 4400 5200 5998 0459 1266 2072 2876 3679 4480 5279 6078 0540 1347 2152 2956 3759 4560 5359 6157 0621 1428 2233 3037 3839 4640 5439 6237 0702 1508 2313 3117 3919 4720 5519 6317 730782 1589 2394 8197 3999 4800 5599 PROPORTIONAL PARTS. Diff. 1 234 5 678 9 87 8.7 86 8.6 85 ! 8.5 84 | 8.4 17.4 26 1 34 8 17.2 258 34.4 17.0 25 5 34.0 16.8 25 2 33.6 43 5 52 2 60.9 69 6 43 ! 51 6 60 2 i 68 8 425 i 510 59.5 680 42 60.4 58 8 67.2 78 3 77 4 76 5 75 6 163 TABLE XI. LOGARITHMS OF NUMBERS. No. 545 L. 736.] [No. 584 L. 767. N. 1 o 8 4 5 v' 7 8 i 9 Diff. 545 736397 6476 6556 6635 6715 6795 6874 6954 7034 7113 6 i 7193 7272 7352 74C 51 7511 7590 767'0 7749 782< ) 7908 7 ! 7987 8067 8146 82$ {5 8305 8384 8463 8543 862 2 8701 ! 8 I 8781 8860 8939 9018 9097 9177 9256 9335 941< I 9493 9 9572 9651 9731 981 o 9889 ^ w> 8 0047 0126 0205 0284 79 550 740363 0442 0521 0600 0678 0757 0836 0915 0994 1073 1 1152 1230 i 1309 13* ^8 1467 1546 1624 1703 178$ 3 1860 2 1939 2018 1 2096 21" '5 2254 2332 2411 2489 256* 3 2647 3 2725 2804 ' 2882 29f >1 3039 3118 3196 3275 3353 3431 4 3510 3588 ' 3667 374 5 3823 3902 3980 4058 4131 i 4215 5 4293 4371 i 4449 4528 4606 4684 4762 4840 4919 4997 6 5075 5153 | 5231 53( )9 5387 5465 5543 5621 569 1 5777 78 y 5*5 5933 , 6011 60* ) 6167 6245 6323 6401 647 1 6556 8 9 6634 7412 6712 7489 6790 7567 6868 7645 6945 7722 ; 7023 7101 7800 7878 7179 7955 7256 8033 7334 8110 560 8188 8266 8343 8421 8498 1 8576 8653 8731 8808 8885 1 8963 9040 9118 9195 9272 9350 9427 9504 9582 9659 2 9736 9814 9891 99( jg rwxis; 0123 0200 0277 4 fMO-1 3 750508 0586 i 0663 0740 0817 C894 0971 1048 IKXXt 1125 V*'J.l 1202 4 1279 1356 1433 15] 1587 16(J4 1741 1818 189 1972 ^ 5 2048 2125 2202 2279 2356 2433 2509 2586 2663 2740 <7 6 2816 2893 2970 3fr 17 3123 3200 3277 3353 343 ) 3506 7 3583 3660 3736 3813 3889 3966 4042 4119 4195 4272 8 4348 4425 4501 45' '8 4654 4730 4807 4883 496< ) 5036 9 5112 5189 5265 5341 5417 . 5494 , 5570 5646 5722 5799 570 5875 5951 6027 6103 6180 ! 6256 6332 6408 6484 6560 1 6636 6712 6788 68< )4 6940 7016 7092 7168 724 i 7320 76 2 7396 7472 7548 76* .'4 7700 7775 7851 7927 800 3 8079 3 8155 8230 8306 8382 8458 8533 8609 8685 8761 4 8912 8988 9063 91.' K 9214 9290 9366 9441 951 9592 5 9668 9743 9819 98' H QOTft 0045 0121 0196 027 -> 0347 6 760422 0498 0573 0649 0724 0799 0875 0950 1025 1101 7 1176 1251 1326 14( )2 1477 1552 1627 1703 177 J 1853 8 1928 2003 2078 21, >3 2228 2303 2378 2453 252 1 2604 9 2679 2754 2829 2904 | 2978 3053 3128 3203 3278 3353 75 580 3428 3503 3578 3653 3727 3802 3877 3952 402 4101 1 4176 4251 4326 44( X) 4475 4550 4624 4699 477 1 4848 2 4923 4998 5072 5147 5221 5296 5370 5445 5520 5594 3 5669 5743 5818 5892 5966 ! 6041 6115 6190 6264 6338 4 6413 6487 6562 6636 6710 6785 6859 6933 7007 7082 i PROPORTIONAL PARTS. Diff. 1 2 3 4 5 6 7 8 9 83 8.3 16.6 - 24.9 .33.2 41.5 49.8 58.1 66 . 4 74 . 7 82 8.2 16.4 24.6 32.8 41.0 49.2 5' r.4 65.6 73.8 81 8.1 16.2 24.3 32.4 40.5 48.6 56.7 64.8 72.9 80 8.0 16.0 24.0 32.0 40.0 48.0 5( 5.0 64.0 72.0 ; 79 ! -.9 15.8 23.7 31.6 39.5 47.4 5J >.3 63.2 71.1 "88 15.6 23.4 31.2 39.0 46.8 54.6 62.4 70.2 77 '"7 15.4 23.1 30.8 38.5 46.2 5. f 5.9 61.6 69.3 76 ~ 6 15.2 22.8 30.4 38.0 45.6 53.2 60.8 68.4 75 T5 15.0 225 30.0 37.5 45.0 5S 5.5 60.0 67.5 74 "".4 14 8 22.2 29.6 37.0 44.4 51.8 59.2 66.6 164 TABLE XI. LOGARITHMS OF NUMBERS. No. 585 L. 767.] [No. 629 L. 799. N. 1 2 3 4 5 6 7 8 9 Diff. 585 767156 7230 7304 7379 7453 7627 7601 7675 7749 7823 6 7898 7972 8046 8120 8194 8268 8342 8416 8490 8564 74 8638 8712 8786 8860 8934 9008 9082 9156 9230 9303 g 9377 9451 9525 9599 9673 9746 9820 9894 9968 9 0778 770115 0189 0283 0336 0410 0484 0557 0631 0705 590 0852 0926 0999 1073 1146 1220 1293 1367 1440 1514 1 1587 1661 1734 1808 1881 1955 2028 2102 2175 2248 2 2322 2395 2468 2542 2615 2688 2762 2835 2908 2981 3 3055 3128 3201 3274 3348 3421 3494 3567 3640 3713 4 3786 3860 3933 4006 4079 4152 4225 4298 4371 4444 73 5 4517 4590 4663 4736 4809 4882 4955 5028 5100 6 5246 5319 5392 5465 5538 5610 5683 5756 5829 5902 7 5974 6047 6120 6193 6265 6338 6411 6483 6556 6629 8 6701 6774 6846 6919 6992 7064 7137 7209 7282 7354 9 7427 7499 7572 7644 7717 7789 7862 7934 8006 8079 COO 8151 8224 8296 8368 8441 8513 8585 8658 8730 8802 1 8874 8947 9019 9091 9163 9236 9308 9380 9452 9524 2 9596 9669 9741 9813 9885 9957 0029 0101 0173 O94^ 3 780377 0389 0461 0533 0605 0677 0749 0821 0893 0965 72 4 1037 1109 1181 1253 1324 1396 1468 1540 1612 1684 5 1755 1827 1899 1971 2042 2114 2186 2258 2329 2401 6 2473 2544 2616 2688 2759 2831 2902 2974 3046 3117 7 3189 3260 3332 3403 3475 3546 3618 3689 3761 3832 8 3904 3975 4046 4118 4189 4261 4332 4403 4475 4546 9 4617 4689 4760 4831 4902 4974 5045 5116 5187 5259 G10 5330 5401 5472 5543 5615 5686 5757 5828 5899 5970 1 6041 6112 6183 6254 6325 6396 6467 6538 6609 6680 71 2 6751 6822 6893 6964 7035 7106 7177 7248 7319 7390 3 7460 7531 7602 7673 7744 7815 7885 7956 8027 8098 4 8168 8239 8310 8381 8451 8522 8593 8663 8734 8804 5 8875 8946 9016 9087 9157 9228 9299 9369 9440 9510 Q 9581 9651 9722 9792 9863 9933 0004 0074 0144 0215 7 790285 0356 0426 0496 0567 0637 0707 0778 0848 0918 8 0988 1059 i 1129 1199 1269 1340 1410 1480 1550 1620 9 1691 1761 1831 1901 1971 2041 2111 2181 2252 2322 620 2392 2462 2532 2602 2672 2742 2812 2882 2952 3022 70 1 3092 3162 3231 3301 3371 3441 3511 3581 3651 3721 o 3790 3860 3930 4000 4070 I 4139 4209 4279 4349 4418 3 4488 4558 4627 4697 4767 1 4836 4906 4976 5045 5115 4 5185 5254 5324 5393 5463 5532 5602 5672 5741 5811 5 5880 5949 6019 6088 6158 6227 6297 6366 6436 6505 6 6574 6644 6713 6782 6852 6921 6990. 7060 7129 7198 7 7268 7337 7406 7475 7545 7614 7683 7752 7821 7890 8 7960 8029 8098 8167 8236 8305 8374 8443 8513 8582 9 8651 8720 8789 8858 8927 8996 9065 9134 9203 9272 69 PROPORTIONAL PARTS. Diff. 1 224 5 678 9 75 ""5 15.0 22.5 30.0 37.5 45.0 52.5 60.0 67.5 74 ^.4 14.8 22.2 29.6 37.0 44.4 51.8 59.2 66.6 14.6 21.9 29.2 36.5 43.8 51.1 58.4 65.7 72 "'.2 14.4 21.6 28.8 36.0 43.2 50.4 57.6 64.8 71 l ~. 1 14.2 21.3 28.4 35.5 42.6 49.7 56.8 63.9 70 7.0 14.0 21.0 28.0 35.0 42.0 49.0 56.0 63.0 69 6.9 13.8 20.7 27.6 34.5 41.4 48.3 55.2 62.1 165 TABLE XI. LOGARITHMS OF NUMBERS. , I To. G30 L. 799.] [No. 674 L. 829. ? . o 1 2 3 4 6 6 7 8 9 Diff. ! <>30 799341 9409 9478 9547 9616 9685 9754 9823 9892 9961 1 800029 0098 0167 0236 0305 0373 0442 0511 0580 0648 2 0717 0786 0854- 0923 0992 1061 1129 1198 1266 1335 3 1404 1472 1541 1609 1678 1747 1815 1884 1952 2021 4 2089 2158 2226 2295 2363 2432 2500 2568 2637 2705 5 2774 2842 2910 2979 3047 3116 3184 3252 3321 3389 6 3457 3525 3594 3662 3730 3798 3867 3935 4003 4071 7 4139 4208 4276 4344 4412 4480 4548 4616 4685 4753 8 4821 4889 4957 5025 5093 5161 5229 5297 5365 5433 68 9 5501 5569 5637 5705 5773 5841 5908 5976 6044 6112 640 806180 6248 6316 6384 6451 6519 6587 6655 6723 6790 1 6858 6926 6994 7061 7129 7197 7264 7332 7400 7467 2 7535 7603 7670 7738 7806 7873 7941 8008 8076 8143 3 8211 8279 8346 8414 8481 8549 8616 8684 8751 8818 4 8886 8953 9021 9088 9156 9223 9290 9358 9425 9492 5 9560 9627 9694 9762 9829 9896 9964 0031 0098 0165 6 810233 0300 0367 0434 0501 0569 0636 0703 0770 0837 7 0904 0971 1039 1106 1173 1240 1307 1374 1441 1508 67 8 1575 1642 1709 1776 1843 1910 1977 2044 2111 2178 9 2245 2312 2379 2445 2512 2579 2646 2713 2780 2847 650 2913 2980 3047 3114 3181 3247 3314 3381 3448 3514 1 3581 3648 3714 3781 3848 3914 3981 4048 4114 4181 2 4248 4314 4381 4447 4514 4581 4647 4714 4780 4847 3 4913 4980 5046 5113 5179 5246 5312 5378 5445 5511 4 5578 5644 5711 5777 5843 5910 5976 6042 6109 6175 5 6241 6308 6374 6440 6506 6573 6639 6705 6771 6838 6 6904 6970 7036 7102 7169 7235 7301 7367 7433 7499 7 7565 7631 7698 7764 7830 7896 7962 8028 8094 8160 8 8226 8292 8358 8424 8490 8556 8622 8688 8754 8820 (\K 9 8885 8951 9017 9083 9149 9215 9281 9346 9412 9478 DO 660 9544 9610 9676 9741 9807 9873 9939 0004 0070 0136 1 820201 0267 0338 0399 0464 0530 0595 0661 0727 0792 2 0858 0924 0989 1055 1120 1186 1251 1317 1382 1448 3 1514 1579 1645 1710 1775 1841 1906 1972 2037 2103 4 2168 2233 2299 2364 2430 2495 2560 2626 2691 2756 5 2822 2887 2952 3018 3083 3148 3213 3279 3344 3409 6 3474 3539 3605 3670 3735 3800 3865 3930 3996 4061 7 4126 4191 4256 4321 4386 4451 4516 4581 4646 4711 ftR 8 4776 4841 4906 4971 5036 5101 5166 5231 5296 5361 OO 9 5426 5491 5556 5621 5686 5751 5815 5880 5945 6010 670 6075 6140 6204 6269 6334 6399 6464 6528 6593 6658 1 6723 6787 6852 6917 6981 7046 7111 7175 7240 7305 2 7369 7434 7499 7563 7628 7692 7757 7821 7886 7951 3 8015 8080 8144 8209 8273 8338 8402 8467 8531 8595 4 8660 8724 8789 8853 8918 8982 9046 9111 9175 9239 PROPORTIONAL PARTS. !Diff 1 234 5 678 9 68 68 13 6 20 4 27 2 34 40 8 47 6 54 4 61 2 67 67 13 4 20.1 26 8 33 5 40 2 46 9 53 6 60 3 66 66 13.2 19 8 26.4 330 39 6 46 2 52 8 59 4 65 65 130 195 260 32.5 39 45 5 52 58 5 64 6.4 1 8 19.2 25 6 32.0 38.4 44 8 51 2 57 6 166 TABLE XI. LOGARITHMS OF NUMBERS. No. 675 L. 829.] [No. 719 L. 857. N. 1 2 8 4 6 6 7 8 9 Diff. 675 829304 9368 9432 9497 9561 9625 9690 9754 9818 9882 g 9947 0011 0075 0139 0204 0268 0332 0396 0460 0525 7 830589 0653 0717 0781 0845 0909 0973 1037 1102 1166 8 1230 1294 1358 1422 1486 1550 1614 1678 1742 1806 64 9 1870 1934 1998 2062 2126 2189 2253 2317 2381 2445 680 2509 2573 2637 2700 27&4 2828 2892 2956 3020 3083 1 3147 3211 3275 3338 3402 3466 3530 3593 3657 3721 2 3784 3848 3912 3975 4039 4103 4166 4230 4294 4357 3 4421 4484 4548 4611 4675 4739 4802 4866 4929 4993 4 5056 5120 5183 5247 5310 5373 5437 5500 5564 5627 5 5691 5754 5817 5881 5944 6007 6071 6134 6197 6261 6 6324 6387 6451 6514 6577 6641 6704 6767 6830 6894 7 6957 7020 7083 7146 7210 7273 7336 7399 7462 7525 8 7588 7652 7715 7778 7841 7904 7967 8030 8093 8156 9 8219 8282 8345 8408 8471 8534 8597 8660 8723 8786 63 690 8849 8912 8975 9038 9101 9164 9227 9289 9352 9415 1 9478 9541 9604 9667 9729 9792 9855 9918 9981 0043 2 840106 0169 0232 0294 0357 0420 0482 0545 0608 0671 3 0733 0796 0859 0921 0984 1046 1109 1172 1234 1297 4 1359 1422 1485 1547 1610 1672 1735 1797 1860 1922 5 1985 2047 2110 2172 2235 2297 2360 2422 2484 2547 6 2609 2672 2734 2796 2859 2921 2983 3046 3108 3170 7 3233 3295 3357 3420 3482 3544 3606 3669 3731 3793 8 3855 3918 3980 4042 4104 4106 4229 4291 4353 4415 9 4477 4539 4601 4664 4726 4788 4850 4912 4974 5036 700 5098 5160 5222 5284 5346 5408 5470 5532 5594 5656 62 1 5718 5780 5842 5904 5966 6028 6090 6151 6213 6275 2 6337 6399 6461 6523 6585 6646 6708 6770 6832 6894 3 6955 7017 7079 7141 7202 7264 7326 7388 7449 7511 4 7573 7634 7696 7758 7819 7881 7943 8004 8066 8128 5 8189 8251 8312 8374 8435 8497 8559 8620 8682 8743 6 8805 8866 8928 8989 9051 9112 9174 9235 9297 9358 7 9419 9481 9542 9604 9665 9726 9788 9849 9911 9972 8 850033 0095 0156 0217 0279 0340 0401 0462 0524 0585 9 0646 0707 0769 0830 0891 0952 1014 1075 1136 1197 710 1258 1320 1381 1442 1503 i 1564 1625 1686 1747 1809 1 1870 1931 1992 2053 2114 2175 2236 2297 2358 2419 2 2480 2541 2602 2663 2724 2785 2846 2907 ! 2968 3029 61 3 3090 3150 3211 3272 3333 3394 3455 3516 I 3577 3637 4 3698 3759 3820 3881 3941 4002 4063 4124 4185 4245 5 4306 4367 4428 4488 4549 4610 4670 4731 4792 4852 6 4913 4974 5034 5095 5156 5216 5277 5337 5398 5459 7 5519 5580 5640 5701 5761 5822 5882 5943 6t)03 6064 8 6124 6185 6245 6306 6366 6427 6487 6548 6608 6668 9 6729 6789 6850 6910 6970 7031 7091 7152 7212 7272 PROPORTIONAL PARTS. Diff. 1 234 5 678 9 65 6.5 13.0 19.5 26.0 32.5 39.0 45.5 52.0 58.5 64 6.4 12.8 19.2 25.6 32.0 38.4 44.8 51.2 57.6 63 6.3 12.6 18.9 25.2 31.5 37.8 44.1 50.4 56.7 62 6.2 12.4 18.6 24.8 31.0 37.2 43.4 49.6 55.8 61 6.1 12.2 18.3 24.4 30.5 36.6 42.7 ' 48.8 54 9 60 6.0 12.0 18.0 24.0 30.0 36.0 42.0 1 48.0 54.0 167 TABLE XI. LOGARITHMS OF NUMBERS. No. 720 L. 857.] [No. 7fo L. 883. N. 1 2 3 4 6 8 7 S 9 Diff. 720 857332 7393 7453 7513 7574 7634 7694 7755 7815 7875 1 7935 7995 8056 8116 8176 8236 8297 8357 8417 8477 2 8537 8597 8657 8718 8778 8838 8898 8958 9018 9078 3 9138 9198 9258 9318 9379 9439 9499 9559 9619 9679 60 9739 9799 9859 9918 9978 4 0038 0098 0158 0218 0278 5 860338 1 0398 0458 0518 0578 0637 0697 0757 0817 0877 6 0937 0996 1056 1116 1176 123 5769 5822 5875 4 5927 5980 6033 6085 6138 6191 6243 6296 6349 6401 5 6454 6507 6559 6612 6664 6717 6770 C822 6875 6927 6 6980 7033 7085 7138 7190 7243 7295 7348 7400 7453 7 7506 7558 7611 7G63 7716 7768 7820 7873 7925 7978 8 8030 8083 8135 8188 8240 8293 8345 8397 8450 8502 9 8555 8607 8659 8712 8764 8816 8869 8921 8973 9026 830 9078 9130 9183 9235 9287 9340 9392 9444 9496 9549 1 9601 9653 9706 9758 9810 9862 9914 9967 0019 0071 2 920123 0176 0228 0280 0332 0384 0436 0489 i 0541 0593 3 0645 0697 0749 0801 0853 0906 0958 1010 i 1062 1114 g 4 1166 1218 1270 1322 1374 1426 1478 1530 1582 1634 5 1686 1738 1790 1842 1894 1946 1998 2050 2102 2154 6 2206 2258 2310 2362 2414 2466 2518 2570 2622 2674 7 2725 2777 2829 2881 2933 2985 3037 3089 3140 3192 8 3244 3296 3348 3399 3451 3503 3555 3607 3658 3710 9 3762 3814 3865 3917 3969 4021 4072 4124 4176 4228 840 4279 4331 4383 4434 4486 4538 4589 4641 4693 4744 1 4796 4848 4899 4951 5003 5054 5106 5157 5209 5261 2 5312 5364 6415 5467 5518 5570 5621 5673 5725 577'6 3 5828 5879- 5931 5982 6034 6085 6137 6188 ! 6240 6291 4 6342 6394 6445 6497 6548 6600 6651 6702 6754 6805 5 6857 6908 6959 7011 7062 7114 7165 7216 7268 7319 6 7370 7422 7473 7524 7576 7627 7678 7730 7781 7832 7 7883 7935 7986 8037 8088 8140 8191 8242 8293 8345 8 8396 8447 8498 a549 8601 8652 8703 8754 8805 8857 9 8908 8959 9010 9061 9112 9163 9215 9266 9317 9368 850 j 9419 noon 9470 9981 9521 9572 9623 ; 9674 9725 9776 9827 9879 51 0032 0083 0134 0185 0236 0287 0338 0389 2 930440 0491 0542 0592 0643 ! 0694 0745 0796 0847 0898 3 0949 1000 1051 1102 1153 | 1204 1254 1305 1356 1407 4 1458 1509 1560 1610 1661 1712 1763 1814 1865 1915 PROPORTIONAL PARTS. Diff. 1 234 5 678 9 53 5.3 10.6 15.9 21.2 26.5 31.8 37.1 42.4 47.7 52 5.2 10.4 15.6 20.8 26.0 31.2 36.4 41.6 46.8 51 5.1 10.2 15.3 20.4 25.5 30.6 35.7 40.8 45.9 50 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 170 TABLE XI. LOGARITHMS OF NUMBERS. No. 855 L. 931.] [No. 899 L. 954, N 1 . 355 DMT. 931966 2017 2068 2118 2169 2220 2271 2322 2372 2423 6 2474 2524 2575 2626 2677 ! 2727 2778 2829 2879 2930 7 2981 3031 3082 3133 3183 3234 3285 3335 3386 3437 8 3487 3538 3589 3639 3690 i 3740 3791 3841 3892 3943 9 3993 4044 4094 4145 4195 4246 4296 4347 4397 4448 860 4498 4549 4599 4650 4700 ! 4751 4801 4852 4902 4953 1 5003 5054 5104 5154 5205 ; 5255 5306 5356 5406 5457 2 5507 5558 5608 5658 5709 5759 5809 5860 5910 5960 3 601* 6061 6111 6162 6212 6262 6313 6363 6413 6463 4 6514 6564 6614 6665 6715 6765 6815 6865 6916 6966 5 7016 7066 7116 7167 7217 i 7267 7317 7367 7418 7468 6 7518 7568 7618 7668 7718 7769 7819 7869 7919 7969 8019 8069 8119 8169 8219 ! 8269 8320 i 8370 8420 &170 50 8 8520 8570 8620 8670 8720 8770 8820 i 8870 8920 8970 9 9020 9070 9120 9170 92fO 9270 9320 9369 9419 9469 870 9519 9569 9615 9669 9719 9769 9819 9869 9918 9968 1 940018 0068 0118 0168 0218 0267 0317 0367 0417 0467 2 0516 0566 0616 0666 0716 ! 0765 0815 0865 0915 0964 3 1014 1064 1114 1163 1213 1263 1313 1362 1412 1462 4 1511 1561 1611 1660 1710 1760 1809 1859 1909 1958 5 2008 2058 2107 2157 2207 2256 2306 2355 2405 2455 6 2504 2i>54 2603 2653 2702 2752 2301 2851 2901 2950 7 3000 3049 3090 3148 3198 1 3247 3297 3346 3396 3445 8 1 3495 3544 3593 3643 3692 3742 3791 3841 3890 3939 9 3989 4038 4088 4137 4186 4236 4285 4335 4384 4433 880 4483 4532 4581 4631 4680 4729 4779 4828 4877 4927 1 4976 5025 5074 5124 5173 I 5222 5272 5321 5370 5419 2 5469 5518 5567 5616 5665 5715 5764 5813 5862 5912 3 5961 6010 6059 6108 6157 6207 6256 6305 6354 6403 4 6452 6501 6551 6600 6649 6698 6747 6796 6845 6894 5 6 6943 7434 6992 7483 7041 7532 7090 7581 7139 7630 7189 7679 7238 7T28 8 7336 7826 7385 7875 49 7 7924 7973 8022 8070 8119 8168 8217 8266 8315 8364 8 8413 8462 8511 8560 8608 8657 8706 8755 8804 8853 9 8902 8951 8999 9048 9097 9146 9195 9244 9292 9341 890 I 9390 9878 9439 9926 9488 9975 9536 9585 9634 9683 9731 9780 9829 0024 0073 0121 0170 0219 0267 0316 2 950365 0414 0462 0511 0560 0608 0657 0706 0754 0803 3 0851 0900 0949 0997 1046 1095 1143 1192 1240 1289 4 1338 1386 1435 1483 1532 1580 1629 1677 1736 1775 5 1823 1872 1920 1969 2017 2066 2114 2163 2211 2260 6 2308 2356 2405 24o3 2502 2550 2599 2647 2696 2744 7 2792 2841 2889 2938 2986 3034 3083 3131 3180 3228 8 3276 3325 3373 3421 3470 3518 3566 3615 3663 3711 9 3760 3808 3856 3905 3953 4001 4049 4098 4146 4194 PROPORTIONAL PARTS. Diff. 1 2 3 4 5 678 9 51 5.1 10.2 15.3 20.4 25.5 30.6 35.7 40.8 45 50 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45 49 4.y 9.8 14.7 19..6 24.5 29.4 34.3 39.2 44 1 48 4.8 9.6 14.4 19.2 24.0 28.8 33.6 38.4 43.2 171 TABLE XI. LOGARITHMS OF XUMBERS. No 900 L. 954.1 [No. 944 L. 975. N. 1 2 3 4 5 6 7 8 9 Diff. 900 954243 4291 4339 4387 4435 4484 4532 4580 4628 4677 1 4725 4773 4821 4869 4918 4966 5014 5062 5110 | 5158 2 5207 5255 5303 5351 5399 5447 5495 5543 5592 5640 3 5688 5736 5784 5832 5880 5928 5976 6024 6072 6120 4 6168 6216 6265 6313 6361 6409 6457 6505 6553 6601 5 6649 6697 6745 6793 6840 6888 6936 6984 7032 7080 48 6 7128 7176 7224 7272 7320 7368 7416 7464 7512 7559 7 7607 7655 7703 7751 7799 7847 7894 7942 7990 8038 8 8086 8134 8181 8229 8277 8325 8373 8421 8468 8516 9 8564 8612 8659 8707 8755 8803 8850 8898 8946 8994 910 9041 9089 9137 9185 9232 9280 9328 9375 9423 9471 1 2 9518 9995 9566 9614 9661 9709 9757 9804 9852 9900 9947 0042 0090 0138 0185 0233 0280 0328 0376 0423 3 960471 0518 0566 0613 0661 0709 0756 0804 0851 0899 4 0946 0994 1041 1089 1136 1184 1231 1279 1326 1374 5 1421 1469 1516 1563 1611 1658 1706 1753 1801 1848 6 1895 1943 1990 2038 2085 2132 2180 2227 2275 2322 7 2369 2417 2464 2511 2559 2606 2653 2701 2748 2795 8 2843 2890 2937 2985 3032 3079 3126 3174 3221 3268 9 3316 3363 3410 3457 3504 3552 3599 3646 3693 3741 920 3788 3835 3882 3929 3977 4024 4071 4118 4165 4212 1 4260 4307 4354 4401 4448 4495 4542 4590 4637 4684 2 4731 4778 4825 4872 4919 4966 5013 5061 5108 5155 3 5202 5249 5296 5343 5390 5437 5484 5531 5578 5625 4 5672 5719 5766 5813 5860 5907 5954 6001 6048 6095 f" 5 6142 6189 6236 6283 6329 6376 6423 6470 6517 6564 6 6611 6658 6705 6752 6799 6845 6892 6939 6986 7033 7 7080 7127 7173 7220 7267 7314 7361 7408 7454 7501 8 7548 7595 7642 7688 7735 7782 7829 7875 7922 7969 9 8016 8062 8109 8156 8203 8249 8296 8343 8390 8436 930 8483 8530 8576 8623 8670 8716 8763 8810 8856 8903 1 8950 8996 9043 9090 9136 9183 9229 9276 9323 9369 2 3 9416 9882 9463 9928 9509 9975 9556 9602 9649 9695 9742 9789 9835 0021 0068 0114 0161 0207 0254 0300 4 970347 0393 0440 0486 0533 0579 0626 0672 0719 0765 5 0812 0858 0904 0951 0997 1044 1090 1137 1183 1229 6 1276 1322 1369 1415 1461 1508 1554 1601 1647 1693 1740 1786 1832 1879 1925 1971 2018 2064 2110 2157 8 2203 2249 2295 2342 2388 2434 2481 2527 2573 2619 9 2666 2712 2758 2804 2851 2897 2943 2989 3035 3082 940 3128 3174 3220 3266 3313 3359 3405 3451 3497 3543 1 3590 3636 3682 3728 3774 3820 3866 3913 3959 4005 2 4051 4097 4143 4189 4235 4281 4327 4374 4420 4466 3 4512 4558 4604 4650 4696 4742 4788 4834 4880 4926 4 4972 5018 5064 5110 5156 5202 5248 5294 5340 5386 46 PROPORTIONAL PARTS. Diff. 1 234 5 678 9 47 4.7 9.4 14.1 18.8 23.5 28.2 32.9 37.6 42.3 46 4.6 9.2 13.8 18.4 23.0 27.6 32.2 36.8 41.4 172 TABLE XI. LOGARITHMS OF n I' M 15KRS. No. 945 L. 975.] [No. 989 L. 995. N. 1 2 3 4 5 6 7 8 9 Diff. 945 975432 5478 5524 5570 5616 5662 5707 5753 5799 5845 6 5891 937 5983 6029 6075 6121 6167 6212 6258 6304 7 6350 6396 6442 6488 6533 6579 6625 6671 6717 6763 "8 6808 6854 6900 6946 6992 7037 7083 7129 7175 7220 9 7266 7312 7358 7403 7449 7495 7541 7586 7632 7678 950 7724 7769 7815 7861 7906 7952 7998 8043 8089 8135 1 8181 8226 8272 8317 8363 8409 8454 8500 8546 8591 2 8637 8683 8728 8774 8819 8865 8911 8956 9002 9047 3 9093 9138 9184 9230 9275 9321 9366 9412 9457 9503 4 9548 9594 9639 9685 9730 9776 9821 9867 9912 9958 5 980003 0049 0094 0140 0185 0231 0276 0322 0367 0412 6 C458 0503 0549 0594 0640 0685 0730 0776 0821 0867 7 0912. 0957 1003 1048 1093 1139 1184 1229 1275 1320 8 1366 1411 1456 1501 1547 1502 1637 1683 1728 1773 9 1819 1864 1909 1954 2000 2045 2090 2135 2181 2226 960 2271 2316 2362 2407 2452 2497 2543 2588 2633 2678 1 2723 2769 2814 2859 2904 2949 2994 3040 3085 3130 2 3175 3220 3265 3310 3356 3401 3446 3491 3536 3581 3 3626 3671 3716 3762 3807 3852 3897 3942 3987 4032 4 4077 4122 4167 4212 4257 4302 4347 4392 4437 4482 5- 4527 4572 4617 4662 4707 4752 4797 4842 4887 4932 45 6 4977 5022 5067 5112 5157 5202 5247 5292 5337 5382 7 5426 5471 5516 5561 5606 5651 5696 5741 5786 5830 8 5875 5920 5965 6010 6055 6100 6144 6189 6234 6279 9 6324 6369 6413 6458 6503 6548 6593 6637 6682 6727 970 6772 6817 6861 6906 6951 6996 7040 7085 7130 7175 1 7219 7264 7309 7353 7398 7443 7488 7532 7577 7622 2 7666 7711 7756 7800 7845 7890 7934 7979 8024 8068 3 8113 8157 8202 8247 8291 8336 8381 8425 8470 8514 4 8559 8604 8648 8693 8737 8782 8826 8871 8916 8960 5 9005 9049 9094 9138 9183 9227 9272 9316 9361 9405- 6 9450 9895 9494 9939 9539 QQftQ 9583 9628 9672 9717 9761 9806 9850 0028 0072 0117 0161 0206 0250 0294 8 990339 0383 0428 0472 0516 0561 0605 0650 0694 0738 9 0783 0827 0871 0916 0960 1004 1049 1093 1137 1182 980 1226 1270 1315 1359 1403 1448 1492 1536 1580 1625 1 1669 1713 1758 1802 1846 1890 1935 1979 2023 2067 2 2111 2156 2200 2244 2288 2333 2377 2421 2465 2509 3 2554 2598 2642 2686 2730 2774 2819 2863 2907 2951 4 2995 3039 3083 3127 3172 3216 3260 3304 3348 3392 5 3436 3480 &524 3568 3613 3657 3701 3745 3789 3833 6 3877 3921 3965 4009 4053 4097 4141 4185 4229 4273 7 4317 4361 4405 4449 4493 4537 4581 4625 4669 4713 44 8 4757 4801 4845 4889 4933 4977 5021 5065 5108 5152 9 5196 5240 5284 5328 5372 5416 5460 5504 5547 5591 PROPORTIONAL FARTS. Diff . 1 234 5 678 9 46 4.6 9.2 13.8 18.4 23.0 27.6 32.2 36.8 41.4 45 4.5 9.0 13.5 18.0 22.5 27.0 31.5 36.0 40.5 44 4.4 8.8 13.2 17.6 22.0 26.4 30.8 35.2 39.6 43 4.3 8.6 12.9 17.2 21.5 25.8 30.1 34.4 38.7 173 TABLE XI. LOGARITHMS OF NUMBERS. No. 990 L. 995.] [No. 999 L. 999. N. 1 2 3 4 5 6 7 8 9 Diff. 990 995635 5679 5723 5767 5811 5854 5898 5942 5986 6030 1 6074 6117 6161 6205 6249 6 293 6337 638 6424 6468 44 2 6512 6555 6599 6643 6687 6731 6774 6818 6862 6906 3 6949 6993 7037 7080 7124 7 168 7212 725 5 7293 7343 4 7386 7430 7474 7517 7561 7 605 7648 769 2 7736 7779 5 7823 7867 7910 7954 7998 8041 8085 8129 8172 8216 6 8259 8303 8347 8390 8434 8 477 8521 856 4 860* \ 8652 7 8695 8739 8782 8826 8869 8913 8956 9000 904? I 9087 8 9131 9174 9218 9261 9305 9 348 9392 942 9471 > 9522 9 9565 9609 9652 9696 9739 9783 9826 9870 991J J 9957 43 LOGARITHMS OP NUMBERS FROM 1 TO 100. N. Log. N. Log. N. Log. N. Log. N. Log. 1 0.000000 21 1.322219 ! 41 1 .612784 61 1.785330 81 1.908485 2 0.301030 22 1.342423 42 1 .6 23241 ) 62 -95] 392 82 1.913814 3 0.477121 23 1.361728 43 1 .6, 334$ ) 63 -9S 341 as 1.919078 4 0.602060 24 1.380211 44 1 .643453 64 1806180 84 1.924279 5 0.698970 25 1.397940 45 1 .653213 65 .812913 85 1.929419 6 0.778151 26 1,414973 46 1 .662758 66 .819544 86 1.934498 7 0.845098 27 .431364 47 1 .6 7209* J 67 . 321 .075 87 1.939519 8 0.903090 28 .447158 48 1.681241 68 . {-, 509 88 1.944483 9 0.954243 29 .462398 49 ] .6 9011X ) 69 ., 49 89 1.949390 10 1.000000 30 .477121 50 3 .6 9897( ) 70 .845098 IK) 1.954243 11 1.041393 31 .491362 51 1 .707570 71 .851258 91 1.959041 12 1.079181 32 .505150 52 1 leoo; J 72 . 357 332 92 1.963788 13 1.113943 33 .518514 53 1 1724276 73 .86.3323 93 1.968483 14 1.146128 34 .531479 54 1 7 3239^ 1 \ 74 . m 232 94 1.973128 15 1 176091 35 .544068 55 ] 17 403fc i i 75 .875061 95 1.977724 16 1.204120 36 .556303 56 1 .748188 ! 76 .880814 96 1.982271 17 1.230449 37 .568202 57 1 .755875 j 77 .886491 97 1.986772 18 1.255273 38 .579784 58 1 7 6342* i ! 78 . m 095 98 1.991226 19 1.278754 39 .591065 59 1 i- 70851 5 79 .] 627 99 1.995635 20 1.301030 40 .602060 60 M. 778151 I 80 .903090 100 2.000000 Value at 0. Sign in 1st Quad. Value at 90 Quad. Value at 180. Sign in3d Quad. Value at 270 Sign in 4th Quad. Value at 360. Sin ' R 4. o R o Tan r\ oo o i 00 o Sec R oo R 00 R Versin.... O __ R 4- 2R 4- R Cos R o R o R Cot .. . 00 __ o 00 j o Cosec 00 -- R 4- CO - R - 00 R signifies equal to rad; oo signifies infinite ; O signifies evanescent. 174 TABLE XII. LOGARITHMIC SINES, ETC. I " ' Sine. q-l Tang. Cotang. ff + *| Dl" Cosine. / 4.685 15.314J Inf. neg. 575 1 575 Inf. neg. Inf. pos. 425 1 ten 60 60 1 6.463726 575 575 6.463726 13.536274 425 ten 59 120 2 .764756 575 575 .764756 .235244 425 ten 58 180 3 6.940847 575 575 6.940847 13.059153 425 ten 57 240 4 7.065786 575 575! 7.065786 12.934214 425 ten 56 300 5 .162696 575 1575 .162696 .837304 425 ten 55 300 6 .241877 575 575 .241878 .758122 425 .02 9.999999 54 420 7 .308824 575 575 .308825 .691175 425 .00 .999999 53 480 8 .366816 574 '576 .366817 .633183 424 .00 .999999 52 540 9 .417968 574 576 .417970 .582030 424 .00 .999999 51 GOO 10 .463726 574 576 .463727 .536273 424 .02 .999998 50 660 11 7.505118 574 ,576 7.505120 12.494880 424 .00 9.999998 49 720 12 .542906 574 577 .542909 .457091 423 .02 .999997 48 780 13 .577668 574 1 577 .577672 .422328 423 .00 .999997 47 840 14 .609853 574 577 .609857 .390143 423 .02 .999996 46 900 15 .639816 573 !578 .639820 .360180 422 .00 .999996 45 960 16 .667845 573 ;578 .667849 .332151 422 .02 .999995 44 1020 17 .694173 573 ;578 .694179 .305821 422 .00 .999995 43 1080 18 .718997 573 T 579 i .719003 .280997 421 .02 .999994 42 1140 19 .742478 573 '579 .742484 .257516 421 .02 .999993 41 1200 20 .764754 572 | 580 .764761 .235239 420 .00 .999993 40 1260 21 7.785943 572 ! 580: 7.785951 12.214049 420 .02 9.999992 39 1320 22 .806146 572 ; 581 : .800155 .193845 419 .02 .999991 38 1380 23 .825451 572 i 581 .825460 .174540 419 .02 .999990 37 1440 24 .843934 571 582 .843944 .156056 418 .02 .999989 36 1500 25 .861662 571 583 .861674 .138:326 417 .00 .999989 35- 1560 26 .878695 571 583 .878708 .121292 417 .02 .999988 34 1620 27 .895085 570 584 .895099 . 104901 416 .02 .999987 33 1680 28 .910879 570 584 .910894 .089106 416 .02 .999986 32 1740 29 .926119 570 585 .926134 .073866 415 .02 .999985 31 1800 30 .940842 569 W .940858 .059142 414 .03 .999983 30 1860 31 7.955082 569 ! 587 7.955100 12.044900 413 .02 9.999982 29 1920 32 .968870 569 587 .968889 .031111 413 .02 .999981 28 1980 33 .982233 568 588 .982253 .017747 412 .02 .999980 27 2*340 34 7.995198 568 589 7.995219 12.004781 411 .02 .999979 26 2100 35 8.007787 567 590 8.007809 11.992191 410 .03 .999977 25 2160 36 .020021 567 i 591 .020044 .979956 409 .02 .999976 24 2220 37 .031919 566 | 592 .031945 .968055 408 .02 .999975 23 2280 38 .043501 566 593 .043527 .956473 407 .03 .999973 22 2340 39 .054781 566 593 .054809 .945191 407 .02 .999972 21 2400 40 .065776 565 594 .065806 .934194 406 .02 .999971 20 2460 41 8.076500 565 1595 8.076531 11.923469 405 .03 9.999969 19 2520 ! 42 .086965 564 :596 .086997 .913003 404 .02 .999968 18 2580 43 .097183 564 598 .09721J .902783 402 .03 .999966 17 2640 44 .107167 563 !599 .107203 .892797 401 .03 .999964 16 2700 45 .116926 562 1600 .116963 .883037 400 .02 .999963 15 2760 46 .126471 562 || 601 .126510 .873490 399 ,03 .999961 14 2820 47 .135810 561 i 602 .135851 ,864149 398 .03 .999959 13 2880 48 .144953 561 1603 .144996 .855004 397 .02 .999958 12 2940 49 .153907 560 |! 604 .153952 .846048 396 .03 .999956 11 3000 5C .162681 560 j 605 .162727 .837273 395 .03 .999954 10 3060 51 8.171280 559.! 607 8.171328 11.828672 393 .03 9.999952 9 3120 52 .179713 558 608 .179763 .820237 392 .03 rvq .999950 8 3180 53 .187985 558 i 609 .188036 .811964 391 .{JO .999948 7 3240 54 .196102 557 611 .196156 .803844 389 .03 .999946 6 3300 55. .204070 556! 612 .204126 .795874 388 .03 .999944 5 3160 56 .211895 556 1613 .211953 .788047 387 .03 .999942 4 3^0 57 .219581 555 ; 615 .219641 .780359 385 .03 .999940 3 3180 58 .227134 554 !616 .227195 .772805 384 .03 .999938 2 3540 59 .234557 554 618 .234621 .765379 382 .03 .999936 1 3000 60 8.241855 553 1619 8.241921 11.758079 381 .03 9.999934 4.065 15.314 // / Cosine. q-l Cotang. Tang. Sine. q - I Tang. Cotang. q + l Dl" Cosine. t 4.685 15.314 3600 c 8.241855 553 619 8.241921 ! 11.758079 381 9.999934 60 3660 1 .249033 552 620 .249102 .750898 380 i * .999932 59 3720 g .256094 551 622 .256165 .743835 378 ! -J5 .999929 58 3780 3 .263042 551 623 .263115 .736885 377 ! -JS .999927 57 3840 4 .269881 550, 625 .269956 .730044 375 i -J5 .999925 56 3900 5 .276614 549 627 .276691 .723309 373 'JJg . .999922 .55 3960 6 .283243 548 628 .283323 .716677 .999920 54 4020 7 .289773 547 630 .289856 .710144 370 ' .999918 53 4080 8 .296207 546 632 .296292 .703708 368 Q .999915 52 4140 9 .302546 546 633 .302634 .697366 367 'Jg .999913 51 4200 10 .308794 545 635 .308884 .691116 .999910 50 4260 11 8.314954 544 637 8.315046 11.684954 363 -5 9.999907 49 4320 12 .321027 543 638 .321122 .678878 362 I -JS .999905 48 4380 13 .327016 542 640 .327114 .672886 3GO -J5 .999902 47 4440 14 .332924 541 642 .333025 .666975 358 -Xq .999899 46 4500 15 .338753 540 644 .338856 .661144 356 '}S .999897 45 4560 16 .344504 539 646 .344610 .655390 354 'J .999894 44 4620 17 .350181 539 648 .350289 .649711 352 'J2 .999891 43 4680 18 .355783 538 649 .355895 .644105 351 'J2 .999888 42 4740 19 .361315 537 651 .361430 .638570 349 *}5 .999885 41 4800 20 .366777 536 653 .366895 .633105 347 ; - 05 .999882 40 4860 21 8 372171 535 655 8.372292 11.627708 345 9.999879 39 4920 22 .377499 534 657 .377622 .622378 343- -2 .999876 38 4980 23 .382762 533 659 .382889 .617111 341 i ! .999873 37 5040 24 .387962 532 661 .388092 .611908 339 /-vt .999870 36 5100 25 .393101 531 663 .393234 .606766 337 , .uo .999867 35 5160 26 .398179 530 666 .398315 .601685 334 .05 /-it .999864 34 5220 27 .403199 529 668 .403338 .596662 332 1 .UO .999861 33 5280 28 .408161 527' 670 .408304 .591696 330 1 .05 O7 .999858 32 5340 29 .413068 526 ! 672 .413213 .586787 328 .Ul .998854 31 5400 30 .417919 525 674 .418068 .581932 326 \ .05 .999851 i 30 5460 31 8.422717 524 676 8.422869 11.577131 324 .05 9.990848 29 5520 32 .427462 523 679 .427618 .572382 321 *nn .999844 28 5580 33 .432156 522 681 .432315 .567685 319 "/(t .999841 27 5640 34 .436800 521 683 .436962 .563038 317 .05 IY7 .999838 26 5700 35 .441394 520 685 .441560 .558440 315 .Ul .999834 25 5760 36 .445941 518 688 .446110 .553890 312 .05 .999831 24 5820 37 .450440 517 690 .450613 .549387 310 JJs .999827 23 5880 38 .454893 516 693 .455070 .544930 307 .05 .999824 i 22 5940 39 .459301 515 695 .459481 .540519 305 *H7 .999820 21 6000 40 .463665 514 697 .463849 .536151 303 .UY .999816 20 6060 41 8.467985 512 700 8.468172 11.531828 300 .05 9.999813 19 6120 42 .472263 511 702 .472454 .527546 298 .07 O7 .999809 18 6180 43 .476498 510 705 .476693 .523307 295 .Ul O7 .999805 17 6240 44 .480693 509 707 .480892 .519108 293 .Ul O7 .999801 ! 16 6300 45 .484848 50Y : 710 .485050 .514950 290 .Ul .919797 15 6360 46 .488963 506; 713 .489170 .510830 287 g*f .999794 i 14 6420 47 .493040 505 715 .493250 .506750 285 ' r.n .999790 ! 13 &480 48 .49707-8 503 718 .497293 .502707 282 .VI H7 .999786 i 12 6540 49 .501080 502 720 .501298 .498702 280 .Ul 07 .999782 11 6600 50 .505045 501 723 .505267 .494733 277 .Ul .999778 10 6660 51 8.508974 499 726 8.509200 11.490800 274 .07 OS 9.999774 9 6720 52 .512867 498 729 .513098 .486902 271 .Uo .999769 8 6780 53 .516726 497 731 .516961 .483039 269 '07 .999765 7 6840 54 .520551 495 734 .520790 .479210 266 .Ul O7 .999761 6 6900 55 .524343 494 737 524586 .475414 263 .Ul 07 .999757 5 6960 56 .528102 492 740 .528349 .471651 260 'AQ .999753 4 7020 57 .531828 491 743 .532080 .467920 257 .UO CV7 .999748 3 7080 58 .535523 490 745 .535779 .464221 255 .Ul 07 .999744 2 7140 59 ,539186 488 748 .539447 .460553 252 Oft .999740 1 7200 60 8.542819 487' 751 8.543084 11.456916 249 uo 9.999735 4.685 15.314 H ' Cosine. q-l Cotang. Tang. q + l PI" Sine, '.J COSINES, TANGENTS, AND COTANGENTS. ' Sine. D.r. Cosine. D. 1". Tang. D. r. Cotang. ' 1 2 3 4 5 8 54S319 .546422 .549995 .553539 .557054 .560540 60.05 59.55 59.07 58.58 58.10 9.999735 .999731 .999726 .999722 .999717 .999713 .07 .08 .07 .08 .07 AO 8.543084 .546691 .550268 .553817 .557336 .560828 60.12 59.62 59.15 58.65 58.20 11.456916 .453309 .449732 .446183 .442664 .439172 60 59 58 57 56 55 6 7 .563999 .567431 57.65 57.20 .999708 .999704 .Uo .07 AO .564291 .567727 57.72 57.27 .435709 .432273 54 53 8 9 10 .570836 .574214 .577566 56.75 56.30 55.87 55.43 .999699 .999694 .999689 .Uo .08 .08 .07 .571137 .574520 .577877 56 . 83 56.38 55.95 55.52 .428863 .425480 .422123 52 51 50 11 12 8.580892 .584193 55.02 9.999685 .999680 .08 AQ 8.581208 .584514 55.10 11.418792 .415486 49 48 13 14 15 16 17 18 19 20 .587469 .590721 .593948 .597152 .600332 .603489 .606623 .609734 54.60 54.20 53.78 53.40 53.00 52.62 52.23 51.85 51.48 .999675 .999670 .999665 .999660 .999655 .999650 .999645 .999640 .Uo .08 .08 .08 .08 .08 .08 .08 .08 .587795 .591051 .594283 .597492 .600677 .603839 .606978 .610094 54.68 54.27 53.87 53.48 53.08 52.70 2.32 51.93 51.58 .412205 .408949 .405717 .402508 .399323 .396161 .393022 .389906 47 46 45 44 43 42 41 40 21 22 8.612823 .615891 51.13 9.999635 .999629 .10 8.613189 .616262 51.22 11.386811 .383738 39 38 23 24 25 .618937 .621962 .624965 50.77 50.42 50.05 .999624 .999619 .999614 .08 .08 .08 -| A .619313 .622343 .625352 50.85 50.50 50.15 4Q 8fl .380687 .377657 .374648 37 36 35 26 .627948 49.72 .999608 . JU AO .628340 4y .ou 49.47 .371660 34 27 28 29 30 .630911 .633854 .636776 .639680 49.38 49.05 48.7(f 48.40 48.05 .999603 .999597 .999592 .999586 .Uo .10 .08 .10 .08 .631308 .634256 .637184 .640093 49.13 48.80 48.48 48.15 .368692 .365744 .362816 .359907 33 32 31 30 31 32 33 34 35 36 37 38 39 40 8.642563 .645428 .64827*4 .651102 .653911 .656702 .659475 .662230 .664968 .667689 47.75 47.43 47.13 46.82 46.52 46.22 45.92 45.63 45.35 45.07 9.999581 .999575 .999570 .999564 .999558 .999553 .999547 .999541 .999535 .999529 .10 .08 .10 .10 .08 .10 .10 .10 .10 .08 8.642982 .645853 .648704 .651537 .654352 .657149 .659928 .662689 .665433 .668160 47.85 47.52 47.22 46.92 46.62 46.32 46.02 45.73 45.45 45.17 11.357018 .354147 .351296 .348463 .345648 .342851 .340072 .337311 .334567 .331840 29 2S 27 26 25 24 23 22 21 20 41 42 43 44 45 46 47 48 49 8.670393 .673080 .675751 .678405 .681043 .683665 .686272 .688863 .6914^8 44.78 44.52 44.23 43.97 43.70 43.45 43.18 42.92 9.999524 [ .999518 .999512 .999506 .999500 .999493 .999487 .999481 .999475 .10 .10 .10 .10 .12 .10 .10 .10 8.670870 .673563 .676239 .67'8900 .681544 .684172 .686784 .689381 .691963 44.88 44.60 44.35 44.07 43.80 43.53 43.28 43.03 11.329130 .326437 .323761 .321100 .318456 .315828 .313216 .310619 .308037 19 18 17 16 15 14 13 11 50 .693998 42.67 42.42 .999469 .10 .10 .694529 42.77 42.53 .305471 10 51 52 53 54 55 56 57 58 59 60 8.696543 .699073 .701589 .704090 .706577 .709049 .711507 .713952 .716383 8.718800 42.17 41.93 41.68 41.45 41.20 40.97 40.75 40.52 40.28 9.999463 .999456 .999450 .999443 .999437 .999431 .999424 .999418 .999411 9.999404 .12 .10 .12 .10 .10 .12 .10 .12 .12 8.697081 .699617 .702139 .704646 .707140 .709618 .712083 .714534 .716972 8.719396 42.27 42.03 41.78 41.57 41.30 41.08 40.85 40.63 40.40 11.302919 .300383 .297861 .295,354 .292860 .290382 .287917 .285466 .283028 11.280604 9 8 7 6 5 4 3 2 1 ' Cor-e. D r. Sine. D. 1". 1 Cotang. 1 P. 1". i Tang. ' 177 TABLE XII. LOGARITHMIC SINES, ' Sine. D. r. Cosine. D.I". Tang. D.I*. Cotang. ' 1 2 8.718800 .721204 .723595 40.07 39.85 qQ Of) 9.999404 .999398 .999391 .10 .12 8.719396 .721806 .724204 40.17 39.97 11.280604 .278194 .275796 60 59 58 3 4 5 .725972 .728337 .730688 oy .0/6 39.42 39.18 qo QQ .999384 .999378 .999371 .12 .10 .12 19 .726588 .728959 .731317 39.73 39.52 39.30 qQ -if\ .273412 .271041 .2686aS 57 56 55 6 .733027 oo.yo qo rQ .999364 . 1/4 .7aS663 O . 1U qo 00 .266337 54 7 8 .735354 .737667 OO. ~ . 4 1 32. as 32.20 32.05 31.90 31.78 31.63 31.48 .185411 .183471 .181539 .179616 .177702 .175795 .173897 16 15 14 13 12 11 10 51 52 53 54 55 56 57 58 8.827011 .828884 .830749 .832607 .834456 .836297 .838130 .839956 31.22 31.08 30.97 30.82 30.68 30.55 30.43 on qn 9.999019 .999010 .999002 .998993 .998984 .998976 .998967 .998958 .15 .13 .15 .15 .13 .15 .15 JO 8.827092 .829874 .831748 .833613 .835471 .837321 .839163 .840998 31.37 31.23 31.08 30.97 30.83 30.70 30.58 Of) AK. 11.172008 .170126 .168252 .166387 .164529 .162679 .160837 .159002 9 8 7 6 5 4 3 2 59 60 .841774 8.843585 oU . oU 30.18 .998950 9.998941 . Jo .15 .842825 8.844644 OU . 40 30.32 .157175 11.155356 1 ' Cosine. D r. Sine. D. IV Cotang. D. 1*. ! Tang. ' 178 COSINES, TANGENTS, AND COTANGENTS. 175* ' Sine. D. 1". Cosine. D. i". Tang. D. r. Cotang. 8.843585 on no 9.998941 8.844644 11.166866 60 1 2 3 4 5 6 7 8 9 10 .845387 .847183 .848971 .850751 .852525 .854291 .856049 .857801 .859546 .861283 29.93 29.80 29.67 29.57 29.43 29.30 29.20 29.08 28.95 28.85 .998932 .998923 .998914 .998905 .998896 .998887 .998878 .998869 .998860 .998851 .15 .15 .15 .15 .15 .15 .15 .15 .15 .17 .846455 .848260 .850057 .851846 .853628 .855403 .857171 .858932 .860686 .862433 30.08 29.95 29.82 29.70 29.58 29.47 29.35 29.23 29.12 29.00 .153545 .151740 .149943 .148154 .146372 .144597 .142829 .141068 .139314 .137567 59 58 57 56 55 54 53 52 51 50 11 12 13 14 15 16 8.863014 .864738 .866455 .868165 .869868 .871565 28.73 28.62 28.50 28.38 28.28 9.998841 .998832 .998823 .998813 .998804 .998795 .15 .15 .17 .15 .15 8.864173 .865906 .867632 .869351 .871064 .872770 28.88 28.77 28.65 28.55 28.43 11.135827 .134094 . 132368 .130649 .128936 .127230 49 48 47 46 45 44 17 .873255 .998785 .874469 .125531 43 18 19 20 .874938 .876615 .878285 27.95 27,83 87.73 .998776 .998766 .998757 .17 .15 .17 .876162 .877849 .879529 28.12 28.00 27.88 .123838 .122151 .120471 42 41 40 21 22 23 24 8.879949 .881607 .883258 .884903 27.63 27.52 27.42 9.998747 .998738 .998728 .998718 .15 .17 .17 8.881202 .882869 .884530 .886185 27.78 27.68 27.58 11.118798 .117131 .115470 .113815 39 38 37 36 25 26 27 28 29 30 .886542 .888174 .889801 .891421 .893035 .894643 27.20 27.12 27.00 26.90 26.80 26.72 .998708 .998699 .998689 .998679 .998669 .998659 .15 .17 .17 .17 .17 .17 .887833 .889476 .891112 .892742 .894366 .895984 27.38 27.27 27.17 27.07 26.97 26.87 .112167 .110524 .108888 .107258 .105634 .104016 35 34 33 32 31 30 31 32 33 34 35 36 37 38 39 40 8.896246 .897842 .899432 .901017 .902596 .904169 .905736 .907297 .908853 .910404 26.60 26.50 26.42 26.32 26.22 26.12 26.02 25.93 25.85 25.75 9.998649 .998639 .998629 .998619 .998609 .998599 .998589 .998578 .998568 .998558 .17 .17 .17 .17 .17 .17 .18 .17 .17 .17 8.897596 .899203 .900803 .902398 .903987 .905570 .907147 .908719 .910285 .911846 26.78 26.67 26.58 26.48 26.38 26.28 26.20 26.10 26.02 25.92 11.102404 .100797 .099197 .097602 .096013 .094430 .092853 .091281 .089715 .088154 29 28 27 26 25 24 23 22 21 20 41 42 43 44 45 46 47 48 49 50 8.911949 .913488 .915022 .916550 .918073 .919591 .921103 .922610 .924112 .925609 25.65 25.57 25.47 25.38 25.30 25.20 25.12 25.03 24.95 24.85 9.998548 .998537 .998527 .'998506 .998495 .998485 .998474 .998464 .998453 .18 .17 .18 .17 .18 .17 .18 .17 .18 .18 8.913401 .914951 .916495 .918034 .919568 .921096 .922619 .924136 .925649 .927156 25.83 25.73 25.63 25.57 25.47 25.38 25.28 25.22 25.12 25.03 11.086599 .085049 .083505 .081966 .080432 .078904 .077381 .075864 .074351 .072844 19 18 17 16 15 14 13 12 11 10 51 52 53 54 55 56 57 58 59 60 8.927100 .928587 .930068 .931544 .933015 .9:34481 .935942 .937398 .938850 8.940296 24.78 24.68 24.60 24.52 24.43 24.35 24.27 24.20 24.10 9.998442 .998431 .998421 .998410 .998399 .998388 .998377 .99&S66 .99a355 ; 9.998344 .18 .17 .18 .18 .18 .18 .18 .18 .18 8.928658 .930155 .931647 .933134 .934616 .936093 .937565 .939032 .940494 8.941952 24.95 24.87 24.78 24.70 24.62 24.53 24.45 24.37 24.30 11.071342 .069845 .068353 .066866 .065384 .063907 .062435 .060968 .059506 11.058048 9 8 7 6 5 3 2 1 ' Cosine. D. r. s Sine. D. r. Cotang. D. 1". Tang. ' 94- 17Q TABLE XII. LOGARITHMIC SINES, 174 ' Sin*. D. 1'. Cosine. D. 1". Tang. D. 1". Cotang. 1 / 1 2 3 4 5 6 7 8.940296 .941738 .943174 .944606 .946034 .947456 .948874 .950287 24.03 23.93 23.87 23.80 23.70 23.63 23.55 9.998344 .998333 .998322 .998311 .998300 .998289 .998277 .998266 .18 .18 .18 .18 .18 .20 .18 1 n 8.941952 .943404 .944852 .946295 .947734 .949168 .950597 .952021 24.20 24.13 24.05 23.98 23.90 23.82 23.73 11.058048 .056596 .055148 .053705 .052266 .050832 .049403 .047979 60 59 58 57 56 55 54 53 8 9 10 .951696 .953100 .954499 23.40 23.32 23.25 .998255 .998243 .998232 .20 .18 .953441 .954856 .956267 23.58 23.52 23.45 .046559 .045144 .043733 52 51 50 11 12 13 14 15 16 17 18 19 20 8.955894 .957284 .958670 .960052 .961429 .962801 .964170 .965534 .966893 .968249 23.17 23.10 23.03 22.95 22.87 22.82 22.73 22.65 22.60 22.52 9.998220 .998209 .998197 .998186 .998174 .998163 .998151 .998139 .998128 .998116 .18 .20 .18 .20 .18 .20 .20 .18 .20 .20 8.957674 .959075 .960473 .961866 .963255 I .964639 .966019 .967394 1 ,968766 .970133 23.35 23.30 23.22 23.15 23.07 23.00 22.92 22.87 22.78 22.72 11.042326 .040925 .039527 .038134 .036745 .035361 .033981 .032606 .031234 .029867 49 48 47 46 45 44 43 42 41 40 21 22 23 24 25 26 27 8.969600 .970947 .972289 .973628 .974962 .976293 .977619 22.45 22.37 22.32 22.23 22.18 22.10 99 m 9.998104 .998092 .998080 .998068 .998056 .998044 .998032 .20 .20 .20 .20 .20 .20 20 8.971496 .972855 .974209 .975560 .976906 .978248 .979586 22.65 22.57 22.52 22.43 22.37 22.30 22 25 11.028504 .027145 .025791 .024440 .023094 .021752 .020414 39 38 37 36 35 34 33 28 .978941 .998020 .980921 99 1" .019079 32 29 30 .980259 .981573 21.90 21.83 .998008 .997996 .20 .20 .982251 .983577 22.10 22.03 .017749 .016423 31 30 31 32 33 8.982883 .984189 .985491 21.77 21.72 9.997984 .997972 .997959 .20 .22 8.984899 .986217 .987532 21.97 21.92 21 83 11.015101 .013783 .012468 29 28 27 34 .986789 ~**jj? .997947 on .988842 91 ^A .011158 26 35 36 37 38 39 40 .988083 .989374 .990660 .991943 .993222 .994497 21.52 21.43 21.38 21.32 21.25 21.18 .997935 .997922 .997910 .997897 .997885 .997872 .22 .20 .22 .20 .22 .20 .990149 .991451 .992750 .994045 .995337 .996624 21.70 21.65 21.58 21.53 21.45 21.40 .009851 .008549 .007250 .005955 .004663 .003376 25 24 23 22 21 20 41 42 43 44 45 46 47 48 49 50 8.995768 .997036 .998299 8.999560 9.000816 .002069 .003318 .004563 .005805 .007044 21.13 21.05 21.02 20.93 20 88 20.82 20.75 20.70 20.65 20.57 9.997860 .997847 .997835 .997822 .997809 .997797 .997784 .997771 .997758 .997745 .22 .20 .22 .22 .20 .22 '.22 .22 .22 8.997908 8.999188 9.000465 .001738 .003007 .004272 .005534 .006792 .008047 .009298 21. as 21.28 21.22 21.15 21.08 21.03 20.97 20.92 20.85 20.80 11.002092 11.000812 10.999535 .998262 .996993 .995728 .994466 .993208 .991953 .990702 19 18 17 16 15 14 13 12 11 10 51 52 53 54 55 56 57 58 59 60 9.008278 .009510 .010737 .011962 .013182 .014400 .015613 .016824 .018031 9.019235 20 53 20.45 20.42 20.33 20.30 20.22 20.18 20.12 20.07 9.997732 .997719 .997706 .997693 .997680 .P97667 .997654 .997641 .997628 9.997614 .22 .22 .22 .22 .22 .22 .22 .22 .23 9.010546 .011790 .013031 .014268 .015502 .016732 .017959 .0191 as .020403 9.021620 20.73 20.68 20.62 20 57 20.50 20.45 20.40 20. 33 20.28 10.989454 .988210 .986969 .985732 .984498 .983268 .982041 .980817 .979597 10.978380 9 8 7 6 1 3 2 1 ' Cosine. D. 1'. Sine. D. 1*. Cotang. D. 1". Tang. ' 180 COSINES, TANGENTS, AND COTANGENTS. 173 Sine. D. 1*. Cosine. D. r. Tang. D. r. Cotang. ' 1 2 9.019235 .0204a5 .021632 20.00 19.95 9.997614 .997601 .997588 .22 22 9.021620 .022834 .024044 20.23 20.17 10.978380 .977166 .975956 60 59 58 3 4 5 6 8 9 10 .022825 .024016 .025203 .026386 .027567 .028744 .029918 .031089 19.88 19.85 19.78 19.72 19.68 19.62 19.57 19 52 I 19.47 I .997574 .997561 .997547 .997534 .997520 .997507 .997493 .997480 !22 .23 .22 .23 .22 .23 .22 .23 .025251 .026455 .027655 .028852 .030046 .031237 .032425 .033609 20. 12 20.07 20.00 19.95 19.90 19.85 19.80 19.73 19.70 .974749 .973545 .972345 .971148 .969954 .968763 .967575 .966391 57 56 55 54 53 52 51 50 11 12 13 14 15 16 17 18 19 20 9.032257 .0&3421 .034582 .035741 .036896 .038048 .039197 .040342 .041485 .042625 19.40 19.35 j 19.32 19.25 19.20 1 19.15 19.08 19.05 19.00 18.95 9.997466 .997452 .997439 .997425 .997411 .997397 .997383 .997369 .997355 .997341 .23 .22 .23 .23 .23 .23 .23 .23 .23 .23 9.034791 .035969 .037144 .038316 .039485 .040651 .041813 .042973 .044130 .045284 19.63 19.58 19.53 19.48 19.43 19.37 19.33 19.28 19.23 19.17 10.965209 .964031 .962856 .961684 .960515 .959349 .958187 .957027 .955870 .954716 49 48 47 46 45 44 43 42 41 40 21 22 23 24 9.043762 .044895 .046026 .047154 18.88 18.85 18.80 ift ^ 9.997327 .997313 .997299 .997285 .23 .23 .23 9.046434 .047582 .048727 .049869 19.13 19.08 19.03 1ft Qft 10.953566 .952418 .951273 .950131 39 38 37 36 25 26 .048279 .049400 Jo. .172767 .173634 14.47 14.45 .827233 .826366 32 31 30 .169702 14.10 14.08 .995203 .0^ .32 .174499 14.42 14.38 .825501 30 31 32 9.170547 .171389 14.03 9.995184 .995165 .32 OO 9.175362 .176224 14.37 14 33 10.824638 .823776 29 28 33 34 .172230 .173070 14.02 14.00 .995146 .995127 .00 .32 .177084 .177942 14. OO 14.30 .822916 .822058 27 26 35 . 173908 13.97 JO Qq .995108 .32 qo .178799 14.28 14 9*7 .821201 25 36 37 38 39 40 .174744 .175578 .176411 .177242 .178072 lo. yd 13.90 13.88 13 85 13.83 13.80 .995089 .995070 .995051 .995032 .995013 .058 .32 .32 .32 .32 .33 .179655 .180508 .181360 .182211 .183059 14 tii 14.22 14.20 14.18 14.13 14.13 .820345 .819492 .818640 .817789 .816941 24 23 22 21 20 41 42 43 44 45 46 9 178900 .179726 .180551 .181374 .182196 .183016 13.77 13.75 13.72 13.70 13.67 9.994993 .994974 .994955 .994935 .994916 .994896 .32 .32 .33 .32 .33 oo 9.183907 .184752 .185597 .186439 .187280 .188120 14.08 14.08 14.03 14.02 14.00 10.816093 .815248 .814403 .813561 .812720 .811880 19 18 17 16 15 14 47 .183834 13.63 13 fiO .994877 .0-6 qq .188958 13.97 13 Q3 .811042 13 48 49 .184651 .185466 Id. O* 13.58 13 W .994857 .994838 .OO .32 qq .189794 .190629 lo.yo 13.92 13 Rft .810206 .809371 12 11 50 .186280 Id. Of 13.53 .994818 .Oo .33 .191462 1O.OO 13.87 .808538 10 51 9.187092 9.994798 qo 9.192294 13 R51 10.807706 9 52 .187903 13.52 .994779 .O<* .193124 10. OO 13 QO .806876 8 53 54 55 56 57 58 59 60 .188712 .189519 .190325 .191130 .191933 .192734 .193534 9.194332 13.48 13.45 13.43 13.42 13.38 13 35 13 33 1330 .994759 .994739 .994720 .994700 .994680 .994660 .994640 9.994620 .33 .33 .32 .33 .33 .33 .as .33 .193953 .194780 .195606 .196430 .197253 .198074 .198894 9.199713 lo.oXJ 13.78 13.77 13.73 13.72 13.68 13.67 13.65 .806047 .805220 .804394 .803570 .802747 .801926 .801106 10.800287 7 6 5 4 3 2 1 / Cosine. D. r. ii Sine. D. r. Cotang. D. r. Tang. i 98 TABLE XII. LOGARITHMIC SINES, 1.70 ' Sine. D. 1\ Cosine. D. 1". Tang. D. r. Cotang. ' 1 2 3 4 5 6 7 8 9 10 9.194332 .195129 .195925 .196719 .197511 .198302 .199091 .199879 .200666 .201451 .202234 13.28 13.27 13.23 13.20 13.18 13.15 13.13 13.12 13.08 13.05 13.05 9.994620 .994600 .994580 .994560 .994540 .994519 .994499 .994479 .994459 .994438 .994418 .33 .33 .33 .33 .35 .33 .33 .33 .35 .33 .33 9.199713 .200529 .201345 .202159 .202971 .203782 .204592 .205400 .206207 .207013 .207817 13.60 13.60 13.57 13.53 13.52 13.50 13.47 13.45 13.43 13.40 13.37 10.800287 .799471 .798655 .797841 .797029 .796218 . .795408 .794600 .703793 .792987 .792183 60 59 58 57 56 55 54 53 52 51 50 11 12 13 14 15 16 17 18 19 20 9.203017 .203797 .204577 .205354 .206131 .206906 .207679 .208452 .209222 .209992 13.00 13.00 12.95 12.95 12.92 12.88 12.88 12.83 12.83 12.80 9.994398 .994377 .994357 .994336 .994316 .994295 .994274 .994254 .994233 1 .994212 .35 .33 .35 .33 .35 .35 .33 .35 .35 .35 9.208619 .209420 .210220 .211018 .211815 1 .212611 .213405 .214198 .214989 .215780 13.35 13.33 13.30 13.28 13.27 13.23 13.22 13.18 13.18 13.13 10.791381 .790580 .789780 .788982 .788185 .787389 .786595 .785802 .785011 .784220 49 48 47 46 45 44 43 42 41 40 21 22 23 24 25 26 27 28 29 30 9.210760 .211526 .212291 .213055 .213818 .214579 .215338 .216097 .216854 .217609 12.77 12.75 12.73 12.72 12.68 12.65 12.65 12.62 12.58 12.57 9.994191 .994171 .994150 .994129 .994108 .994087 .994066 .994045 .994024 .994003 .33 .35 .35 .35 .35 .35 .35 .35 .35 .35 9.216568 .217356 .218142 .218926 .219710 .220492 .221272 .222052 .222830 .223607 13.13 13.10 13.07 13.07 13.03 13.00 13.00 12.97 12.95 12.92 10.783432 .782644 .781858 .781074 .780290 .779508 .778728 .777948 .777170 .776393 39 38 37 36 35 34 33 32 31 30 31 32 33 34 35 36 37 38 39 40 9.218363 .219116 .219868 .220618 .221367 .222115 .222861 .22306 .224349 .225092 12.55 12.53 12.50 12.48 12.47 12.43 12.42 12.38 12.38 12.35 9.993982 .993960 .993939 .993918 .9938&T .993875 .993854 .993832 .993811 .993789 .37 .35 .35 .35 .37 .35 .37 .35 .37 .35 9.224382 .225156 .225929 .226700 .227471 .228239 .229007 .229773 .230539 .231302 12.90 12.88 12.85 12.85 12.80 12.80 12.77 12.77 12.72 12.72 10.775618 .774844 .774071 .773300 .772529 .771761 .770993 .770227 .769461 .768698 29 28 27 26 25 24 23 22 21 20 41 42 43 44 45 46 47 48 49 50 9.225833 .226573 .227311 .228048 .228784 .229518 .230252 .230984 .231715 .232444 12.33 12.30 12.28 12.27 12.23 12.23 12.20 12.18 12.15 12.13 9.993768 .993746 .993725 .993703 .993681 .993660 .993638 .993616 .993594 .993572 .37 .35 .37 .37 .35 .37 .37 .37 .37 .37 9.232065 .232826 .233586 .234345 .235103 .235859 .236614 .237368 .238120 .238872 12.68 12.67 12.65 12.63 12.60 12.58 12.57 12.53 12.53 12.50 10.767935 .767174 .766414 .76565* .764897 .764141 .763386 .762632 .761880 .761128 19 18 17 16 15 14 13 12 11 10 51 52 53 54 55 9.233172 .233899 .234625 .235349 .236073 12.12 12.10 12.07 12.07 9.993550 .993528 .993506 .993484 .993462 .37 .37 .37 .37 9.239622 .240371 .241118 .241865 .242610 12.48 12.45 12.45 12.42 10.760378 .759629 .758882 .758135 .757390 9 8 7 6 5 56 57 58 .236795 .237515 .238235 12.00 12.00 nQ7 .993440 .993418 .993396 .37 .37 q7 .243354 .244097 .244839 12.38 12.37 .756646 .755903 .755161 4 3 2 59 .238953 .993374 qo .245579 .754421 1 60 9.239670 9.993351 9.246319 12.33 10.753681 ' Cosine. D. 1". Sine. D. r. i Cotang. D. 1". Tang. ' 184 80 COSINES, TANGENTS, AND COTANGENTS. 169" Sine. D. r. Cosine. D. 1". Tang. D. r. Cotang. ' 1 9.239670 .240386 11.93 11 .92 9.993351 .99:3329 .37 9.246319 .247057 12.30 10.753681 .752943 60 59 2 .241101 .993307 'net .247794 12. 8 .752206 58 3 4 .241814 .242526 11.88 11.87 .993284 .993262 .38 .37 .248530 .249264 12.27 12.23 .751470 .750736 57 56 5 6 .243237 .243947 11.85 11.83 .993240 .993217 .37 .38 .249998 .250730 12.23 12.20 .750002 .749270 55 54 7 8 .244656 .245363 11 .82 11.78 .993195 .993172 ''< . .251461 .252191 12.18 12.17 .748539 .747809 53 52 9 10 .246069 .246775 11.77 11.77 11.72 .993149 .993127 .38 .37 ! .38 .252920 .253648 12.15 12.13 12.10 .747080 .746352 51 50 11 12 13 14 15 16 17 18 19 9.247478 .248181 .248883 .249583 .250282 .250980 .251677 .252373 .253067 11.72 11.70 11.67 11.65 11.63 11.62 11.60 11.57 9.993104 .993081 .993059 .993036 .993013 .992990 .992967 .992944 .992921 .38 .37 .38 .38 .38 .38 .38 .38 9.254374 .255100 .2f>824 .256547 .257269 .257990 .258710 .259429 .260146 12.10 12.07 12.05 12.03 12.02 12.00 11.98 11.95 10.745626 .744900 .744176 .743453 .742731 .742010 .741290 .740571 .739854 49 48 47 46 45 44 43 42 41 20 .253761 11.57 11.53 .992898 .38 .38 .260863 11.95 11.92 .739137 40 21 22 9.254453 .255144 11.52 9.992875 .992852 .38 9.261578 .262292 11.90 10.738422 .737708 39 38 23 .255834 11 .50 .992829 .38 .263005 11.88 .736995 37 24 .256523 11.48 .992806 .38 .263717 11.87 .736283 36 25 .257211 11 .47 .992783 .38 .264428 11.85 .735572 35 26 .257898 11.45 .992759 .40 .265138 11.83 .734862 34 27 .258583 11.42 .992736 .38 .265847 11.82 .734153 33 28 .259268 11.42 .992713 .38 .266555 11.80 .733445 32 29 30 .259951 .260633 11.38 11.37 .992690 .992666 .38 .40 .267261 .267967 11.77 11.77 .732739 .732033 31 30 11.35 .38 11.73 31 32 9.261314 .261994 11.33 9.992643 .992619 .40 9.268671 .269375 11.73 10.731329 .730625 29 28 33 .262673 11.32 .992596 .38 .270077 11.70 .729923 27 34 .263351 11.30 .992572 .40 .270779 11.70 .729221 26 35 36 37 .264027 .264703 .265377 11.27 11.27 11.23 11 .23 .992549 .992525 .992501 .38 .40 .40 OQ .271479 .272178 .272876 11.67 11.65 11.63 nfiO .728521 .727822 .727124 25 24 23 38 .266051 .992478 .OO .273573 .001 .726427 22 39 40 .266723 .267395 11.20 11.20 11.17 .992454 .992430 .40 .40 .40 .274269 .274964 11 .60 11.58 11.57 .725731 .725036 21 20 41 42 43 44 45 46 47 48 49 50 9.268065 .268734 .269402 .270069 .270735 .271400 .272064 .272726 .273388 .274049 11.15 11.13 11.12 11.10 11.08 11.07 11.03 11.03 11.02 10.98 9.992406 .992382 .992359 .992335 .992311 .992287 .992263 .992239 .992214 .992190 .40 .38 .40 .40 .40 .40 .40 .42 .40 .40 9.275658 .276351 .277043 .277734 .278424 .279113 .279801 .280488 .281174 .281858 11.55 11.53 11.52 11.50 11.48 11.47 11.45 11.43 11.40 11.40 10.724342 .723649 .722957 .722266 .721576 .720887 .720199 .719512 .718826 .718142 19 18 17 16 15 14 13 12 11 10 51 52 53 54 9.274708 .275367 .276025 .276681 10.98 10.97 10.93 9.992166 .992142 .992118 .992093 .40 .40 .42 Af\ 9.282542 .283225 .283907 .284588 11.38 11.37 11.35 10.717458 .716775 .710093 .715412 9 8 6 55 56 57 58 59 .60 .277337 .277991 .278045 .279297 .279948 9.280599 10.93 10.90 10.90 10.87 10.85 10.85 .992069 .992044 .992020 .991996 .991971 9.991947 .40 i .42 .40 .40 .42 .40 .285268 .285947 .286624 .287301 .287977 9.288652 11.33 11.32 11.28 11.28 11.27 11.25 .714732 .714053 .71&376 .712699 .712023 10.711348 5 4 3 2 ' Cosine. D. r. i Sine. D. 1'. Cotang. D.I'. Tang. ' 100 185 11* TABLE XII. LOGARITHMIC SINES, 3G3 ' Sine. D. 1'. Cosine. D. 1*. Tang. D. 1". Cotang. ' 1 2 3 9.280599 .281248 .281897 .282544 10.82 10.82 10.78 9.991947 .991922 .991897 .991873 .42 .42 .40 9.288652 .289326 .289999 .290671 11.23 11.22 11.20 10.711348 .710674 .710001 .709329 60 59 58 57 4 5 6 7 8 9 10 .283190 .283836 .284480 .285124 .285766 .286408 .287048 10.77 10.77 10.73 10.73 10.70 10.70 10.67 10.67 .991848 .991823 .991799 .991774 .991749 .991724 .991699 .42 .42 .40 .42 .42 .42 .42 .42 .2913-12 .292013 .292682 .293350 .294017 .294684 .295349 11.18 11.18 11.15 11.13 11.12 11.12 11.08 11.07 .708658 .707987 .707318 .706650 .705983 .705316 .704651 56 55 54 53 52 51 50 11 12 9.287688 .288326 10.63 1ft A3 9.991674 .991649 .42 9.296013 .296677 11.07 10.703987 .70:3323 49 48 13 .288964 1U.DO .991624 ~* .297339 11 .03 .702661 47 14 15 16 17 18 19 .289600 .290236 .290870 .291504 .292137 .292768 10.60 10.60 10.57 10.57 10.55 10.52 1ft x& .991599 .991574 .991549 .991524 .991498 .991473 .42 .42 .42 .42 .43 .42 A9 .298001 .298662 .299322 .299980 .300638 .301295 11.03 11.02 11.00 10.97 10.97 10.95 1ft QQ .701999 .701338 .700678 .700020 .699362 .698705 46 45 44 43 42 41 20 .293399 1U.O* 10.50 .991448 .4/0 .43 .301951 lu.yo 10.93 .698049 40 21 22 23 24 25 26 27 28 29 30 9.294029 .294658 .295286 .295913 .296539 .297164 .297788 .298412 .299034 .299655 10.48 10.47 10.45 10.43 10.42 10.40 10.40 10.37 10.35 10.35 9.991422 .991397 .991372 .991346 .991321 .991295 .991270 .991244 .991218 .991193 .42 .42 .43 .42 .43 .42 .43 .43 .42 .43 9.302607 .303261 .303914 .304567 .305218 .305869 .306519 .307168 .307816 .308463 10.90 10.88 10.88 10.85 10.85 10.83 10.82 10.80 10.78 10.77 10.697393 .696739 .696086 .6954aS .694782 .694131 .693481 .692832 .692184 .691537 39 38 37 36 35 34 33 32 31 30 31 32 as 34 9.300276 .300895 .301514 .302132 10.32 10.32 10.30 1ft O" 9.991167 .991141 .991115 .991090 .43 .43 .42 9.309109 .309754 .310399 .311042 10.75 10.75 10.72 10.690891 .690246 .689601 .688958 29 28 27 26 35 36 .302748 .303364 1U .tit 10.27 .991064 .991038 !43 .311685 .312327 10. "70 .688315 .687673 25 24 37 38 ! 304593 10.25 10.23 1ft OQ .991012 .990986 .43 .43 xo .312968 .313608 10.68 10.67 ift fifi .687032 .686392 23 22 39 40 .305207 .305819 1U .M 10.20 10.18 .990960 .990934 .**o .43 .43 .314247 .314885 JU. DO 10.63 10.63 .685753 .685115 21 20 41 42 43 44 45 40 47 43 49 50 9.306430 .307041 .307650 .308259 .308867 .309474 .310080 .310685 .311289 .311893 10.18 10.15 10.15 10.13 10.12 10.10 10.08 10.07 10.07 10.03 9.990908 .990882 .990855 .990829 .990803 .990777 .990750 .990724 .990697 .990671 .43 .45 .43 .43 .43 .45 .43 .45 .43 .43 9.315523 .316159 .316795 .317430 .318064 .318697 319330 .319961 .320592 .321222 10.60 10.60 10.58 10.57 10.55 10.55 10.52 10.52 10.50 10.48 10.684477 .683841 .683205 .682570 .681936 .681303 .680670 .680039 .679408 .678778 19 18 17 16 15 14 13 12 11 10 51 9.312495 1ft ftQ 9.990645 9.321851 10.678149 9 52 53 54 65 56 57 58 59 .313097 .313698 .314297 .314897 .315495 .316092 .316689 .317284 IU.UO 10.02 9.98 10.00 9.97 9.95 9.95 9.92 .990618 .990591 .990565 .990538 .990511 .990485 .990458 .990431 .45 .45 .43 .45 .45 .43 .45 : .45 | .322479 .323106 .323733 .324358 .3249&3 .325607 .326231 .326853 10^45 10.45 10.42 10.42 10.40 10.40 10.37 .677521 .676894 .676267 .675642 .675017 .674393 .673769 .673147 8 7 6 5 4 3 2 1 60 9.317879 9.92 9.990404 .45 j 9.327475 10.37 10.672525 1 Cosine. D. r. Sine. D. 1". i Cotang. D. 1'. Tang. ' 101* 186 COSINES, TANGENTS, AND COTANGENTS. 167* Sine. D. r. Cosine. D. r. Tang. D. 1'. Cotang. 1 2 3 4 5 6 9.317879 .318473 .319066 .319658 .320249 .320840 .321430 9.90 9.88 : 9.87 9.85 9.85 9.83 9.990404 .990378 .990351 .990324 .990297 .990270 .990243 .43 .45 .45 .45 .45 .45 9.327475 .328095 .328715 .329334 .329953 .330570 .331187 10.33 10.33 10.32 10.32 10.28 10.28 1ft 97 10.672525 .671905 .671285 .670666 .670047 .669430 .668813 60 59 58 57 56 55 54 .322019 U'JH .990215 .47 .331803 IV. Iff .668197 53 8 9 10 .322607 .323194 .323780 9.80 9.78 9.77 9.77 .990188 .990161 .990134 .45 .45 .45 .45 .332418 .333033 .333646 10 '.25 10.22 10.22 .667582 .666967 .666354 52 51 50 11 12 13 14 9.324366 .324950 .325534 .326117 9.73 9.73 1 9.72 1 979 9.990107 .990079 .990052 .990025 .47 .45 .45 47 9.334259 .334871 .335482 .336093 10.20 10.18 10.18 10 1 ^ 10.665741 .665129 .664518 .663907 49 48 47 46 15 16 .326700 .327281 . < 3 97. .643602 .643018 12 11 50 .346579 9.25 9.25 ! .989014 .47 .48 .357566 . i O 9.72 .642434 10 51 52 53 9.347134 .347687 .348240 9.22 9.22 ! 9.988985 .988956 .988927 .48 .48 9.358149 .358731 .359313 9.70 9.70 9 67 10.641851 .641269 .640687 9 8 7 54 .348792 9.20 .988898 'AO .359893 9fift .640107 6 55 .349343 9.18 .988869 .48 .360474 .DO 9 65 .639526 5 56 .349893 9.17 .988840 *^40 .361053 9CK .638947 4 57 .350443 9.17 .988811 .48 .361632 .DO 9 A . .638368 3 58 59 .350992 .351540 9.15 9.13 .988782 ! .988753 .48 .48 .362210 .362787 .Do 9.62 91-.) .637790 .637213 2 1 60 9.352088 9.13 I 9.988724 .48 9.3C3364 . 0* 10.636636 ' Cosine. D. 1". i Sine, D. 1". Cotang. D. r. Tang. ' IBS' 187 TABLE XII. LOGARITHMIC SINES, 166 ' Sine. D. r. Cosine. D. 1'. Tang. D. 1". Cotang. / 9.352088 919 9.988724 48 9.363364 9rn 10.636636 CO I 3 4 5 6 7 8 9 10 .352635 .353181 .353726 .354271 .354815 .355358 .355901 .356443 .356984 .357524 . 1.-* 9.10 9.08 9.08 9.07 9.05 9.05 9.03 9.02 9.00 9.00 .988695 .988666 .988636 .988607 .988578 .988548 .988519 .988489 .988460 .988430 .48 .48 .50 .48 .48 .50 .48 .50 .48 .50 .48 .363940 .364515 .365090 .365664 .366237 .366810 .367382 .367953 .368524 .369094 .uU 9.58 9.58 9.57 9.55 9.55 9.53 9.55 9.52 9.50 9.48 .G36060 .635485 .634910 .634336 .633763 .033190 .632618 .632047 .631476 .630906 59 58 57 56 55 54 53 52 51 50 11 9.358064 8QQ 9.988401 r A 9.369663 10.630337 49 12 .358603 .7O 8Q7 .988371 .OU .370232 9.48 .629768 48 13 .359141 .ft .988342 " tA .370799 9.45 .629201 47 14 .359678 8.95 8QK .988312 .50 t A .371367 9.47 .628633 46 15 16 17 18 19 .360215 .360752 .361287 .361822 .362356 .yo 8.95 8.92 8.92 8.90 8 88 .988282 .988252 .988223 .988193 .988163 .OU .50 .48 .50 .50 fc/'i .3719&3 .372499 .373064 .373629 .374193 9.43 9.43 9.42 9.42 9.40 9QQ .628067 .627501 .626936 .626371 .625807 45 44 43 42 41 20 .362889 8^88 .988133 .ou .50 .374756 .00 9.38 .625244 40 21 22 23 9.363422 .363954 .364485 8.87 8.85 SDK 9.988103 .988073 .988043 .50 .50 9.375319 .375881 .376442 9.37 9.35 10.624681 .624119 .623558 39 38 37 24 .365016 ,oO 8 QO .988013 .50 tA .377003 9.35 90, .622997 36 25 26 .365546 .366075 .00 8.82 .987983 .987953 .OU .50 iy> .377563 .378122 .00 9.32 .622437 .621878 35 34 27 28 .366604 .367131 8>8 8 DA .987922 .987892 !o5 tA .378681 .379239 9! 30 90A .621319 .620761 33 32 29 .367659 .OU 8r->- .987862 . OU frft .379797 .OU .620203 31 30 .368185 . t 1 8.77 .987832 .OU .52 .380354 9.28 9.27 .619646 30 31 32 9.368711 .369236 8.75 8r*c 9.987801 .987771 .50 9.380910 .381466 9.27 10.619090 .618534 29 28 33 34 .369761 .370285 . < > 8.72 .987740 .987710 !M .382020 .382575 9l25 .617980 .617425 27 26 35 .370808 8f~o .987679 .52 tA .383129 Q 99 .616871 25 36 37 .371&30 .371852 . lO 8.70 SAP, .987649 .987618 .OU .52 tA .383682 .384234 9^20 .616318 .615766 24 23 38 .372373 .Do 8 CO .987588 .OU .384786 918 .615214 22 39 .372894 .Do .987557 .O-v .385337 . 1O .614663 21 40 .373414 8.67 8.65 .987526 .52 .50 .385888 9.18 9.17 .614112 20 41 42 43 . 44 9.373933 .374452 .374970 .375487 8.65 8.63 8.62 9.987496 .987465 .987434 .987403 .52 .52 .52 9.386438 .386987 .387536 .388084 9.15 9.15 9.13 919 10.613562 .613013 .612464 .611916 19 18 17 16 45 .376003 8.60 8 fin .987372 .52 .388631 . lii 919 .611369 15 46 47 .376519 .377035 ,ou 8.60 .987341 .987310 !52 .389178 .389724 . I ~ 9.10 .610822 .610276 14 13 48 .377549 8.57 .987279 .52 .390270 9.10 9AQ .609730 12 49 .378063 8.57 .987248 .52 .390815 .Uo 9 08 .609185 11 50 .378577 8l53 .987217 !52 .391360 9^05 .608640 10 51 52 9-379089 .379601 8.53 9.987186 .987155 .52 9.391903 .392447 9.07 9AO 10.608097 .607553 9 8 53 54 55 56 57 58 59 60 .380113 .380624 .381134 .381643 .382152 .382661 .383168 9.383675 8.53 8.52 8.50 8.48 8.48 8.48 8.45 8.45 .987124 .987092 .987061 .987030 .986998 .986967 .986936 9.986904 .52 .53 .52 .52 .53 .52 .52 .53 .392989 .393531 .394073 .394614 .395154 .395694 .396233 9.396771 .Uo 9.03 9.03 9.02 9.00 9.00 8.98 8.97 .607011 .606469 .005927 .005386 .604846 .604306 .803767 10.603229 6 5 4 3 2 1 ' ! Cosine. D. 1 s . Sine. D. 1*. Cotang. D. r. Tang. ' 188 7.6" 14 COSINES, TANGENTS, AND COTANGENTS. 165 ' Sine. D. r. Cosine. D. r. Tang. D. 1'. Cotang. > 1 2 3 9.383675 .384182 .384687 .385192 8.45 8.42 8.42 849 9.986904 .986873 .986841 .986809 .52 .53 .53 9.396771 .397309 .397846 .398383 8.97 8.95 8.95 10.603229 .602691 .602154 .601617 60 50 58 57 4 .385697 .* 8 40 .986778 53 .398919 8 QO .601081 56 5 .386201 8OQ .986746 KQ .399455 .yo 8Q9 .600545 55 6 .386704 .OO 800 .986714 .Do to .399990 MB Son .600010 54 7 8 9 .387207 .387709 .388210 . OO 8.37 8.35 8 OK .986683 .986651 .986619 tiXg .53 .53 KQ .400524 .401058 .401591 .yu 8.90 8.88 Q 00 .599476 .598942 .598409 53 52 51 10 .388711 .OO 8.33 .986587 .DO .53 .402124 o.OO 8.87 .597876 50 11 12 9.389211 .389711 8.33 8 Of) 9.986555 .986523 .53 to 9.402656 .403187 8.85 10.597344 .596813 49 48 13 14 .390210 .390708 .oa 8.30 8O.fl .986491 .986459 .DO .53 tq .403718 .404249 8.85 8.85 8P.9 .596282 .595751 47 46 15 .391206 .OU 8 28 .986427 .Do KO .404778 .0/6 8QQ .595222 45 16 .391703 897 .986395 .Do to .405308 .Oo Sftrt .594692 44 17 18 19 20 .392199 .392695 .393191 .393685 . <,( 8.27 8.27 8.23 8.23 .986363 .986331 .986299 .986266 .Do .53 .53 .55 .53 .405836 .406364 .406892 .407419 .OU 8.80 8.80 8.78 8.77 .594164 .593636 .593108 .592581 43 42 41 40 21 22 23 9.394179 .394673 .395166 8.23 8.22 9.986234 .986202 .986169 .53 .55 to 9.407945 .408471 .408996 8.77 8.75 8rK 10.592055 .591529 .591004 39 38 37 24 25 26 27 .395658 .396150 .396641 .397132 8^20 8.18 8.18 .986137 .986104 .986072 .986039 .Do .55 .53 .55 .409521 .410045 .410569 .411092 . to 8.73 8.73 8.72 .590479 .589955 .589431 .588908 36 35 34 33 28 .397621 8.15 81 "* .986007 tt .411615 8rvj .588385 32 29 .398111 . \( 8 -1C .985974 .DO KO .412137 . lU SCO .587863 31 30 .398600 . ID 8.13 .985942 .Do .55 .412658 . OO 8.68 .587342 30 31 32 9.399088 .399575 8.12 9.985909 .985876 .55 9.413179 .413699 8.67 10.586821 .586301 29 28 33 34 35 .400062 .400549 .401035 8.12 8.12 8.10 Srtft .985843 .985811 .985778 .55 .53 .55 KK .414219 .414738 .415257 8. '65 8.65 Q CO .585781 .585262 .584743 27 26 25 36 37 38 39 40 .401520 .402005 .402489 .402972 .403455 .Uo 8.08 8.07 8.05 8.05 8.05 .985745 .985712 .985679 .985646 .985613 .DO .55 .55 .55 .55 .55 .415775 .416293 .416810 .417326 .417842 O.OO 8.63 8.62 8.60 8.60 8.60 .584225 .583707 .583190 .582674 .582158 24 23 22 21 20 41 42 43 44 9.403938 .404420 .404901 .405382 8.03 8.02 8.02 9.985580 .985547 .985514 .985480 .55 .55 .57 9.418358 .418873 .419387 .419901 8.58 8.57 8.57 10.581642 .581127 .580613 .580099 19 18 17 16 45 .405862 8.00 7QQ .985447 .55 tt .420415 8.57 Q KK .579585 15 46 .406341 .yo .985414 .DO .420927 O.OO 8tt .579073 14 47 .406820 7.98 7 Qft .985381 .55 .421440 .00 8KO .578560 13 48 .407299 t .yo .985347 .57 .421952 .DO .578048 12 49 .407777 7.97 7Qt .985314 .55 K7 .422463 8.52 .577537 11 50 .408254 .yo 7.95 .985280 .Of .55 .422974 8.50 .577026 10 51 8.408731 9.985247 9.423484 10.576516 9 52 .409207 7.93 .985213 .57 .423993 o.4o 8Krt .576007 8 53 54 55 .409682 .410157 .410632 7.93 7.92 7.92 f on .985180 .985146 .985113 .55 .57 .55 K7 .424503 .425011 .425519 . DU 8.47 8.47 847 .575497 .574989 .574481 7 6 5 56 .411106 i . yu .985079 .O< .426027 .4< 8AK .573973 4 57 58 .411579 .412052 7.88 7.88 .985045 .985011 .57 .57 .426534 .427041 .40 8.45 .573466 .572959 3 2 59 .412524 7.87 .984978 .55 .427547 8.43 840 .572453 1 60 9.412996 7.87 9.984944 .57 9.428052 .4/v 10.571948 'gl Cosine. D. r. Sine. D. r. Cotang. D. 1'. Tang. ' 189 75 15 TABLE XII. LOGARITHMIC SIKES, 164 Sine. D. r. Cosine. D. 1". Tang. D. 1". Cotang. ' 9.412996 7 Of 9.984944 9.428052 10.571948 60 1 .413467 .00 7 8? .984910 R- .428558 8.43 84ft .571442 59 2 3 .413938 .414408 I .oO 7.83 .984876 .984842 91 .57 .429062 .429566 .4U 8.40 .570938 .570434 58 57 4 5 6 8 9 10 .414878 .415347 .415815 .416283 .416751 .417217 .417684 7.83 7.82 7.80 7.80 7.80 7.77 7.78 7.77 .984808 .984774 .984740 .984706 .984672 .984638 .984603 .57 .57 .57 .57 .57 .57 .58 .57 .430070 .430573 .431075 .431577 .432079 .432580 .433080 8.40 8.38 8.37 8.37 8.37 8.35 8.33 8.33 .569930 .569427 .568925 .568423 .567921 .567420 .566920 56 55 54 53 52 51 50 11 12 13 9.418150 .418615 .419079 7.75 7.73 9.984569 .984535 .984500 .57 .58 9.433580 .434080 .434579 8.33 8.32 10.566420 .565920 .565421 49 48 47 14 15 16 .419544 .420007 .420470 7.75 7.72 7.72 .984466 .984432 .984397 .'57 .58 .435078 .435576 .436073 8.32 8.30 8.28 .564922 .564424 .563927 46 45 44 17 18 19 20 .420933 .421395 .421857 .422318 7.72 7.70 7.70 7.68 7.67 .984363 .984328 .984294 .984259 .57 .58 .57 .58 .58 .436570 .437067 .437563 .438059 8.28 8.28 8.27 8.27 8.25 .563430 .562933 .562437 .561941 43 42 41 40 31 22 23 9.422778 .423238 .423697 7.67 7.65 9.984224 .984190 .984155 .57 .58 9.438554 .439048 .439543 8.23 8.25 10.561446 .560952 .560457 39 38 37 24 25 .424156 .424615 7.65 7.65 .984120 .984085 .58 .58 .440036 .440529 8.22 8.22 .559964 .559471 36 35 26 27 .425073 .425530 7.63 7.62 .984050 .984015 .58 .58 .441022 .441514 8.22 8.20 .558978 .558486 34 as 28 29 425987 .426443 7.62 7.60 r (*n .983981 .983946 .57 .58 KO .442006 .442497 8.20 8.18 .557994 .557503 32 31 30 .426899 i . OU 7.58 .983911 .OO .60 .442988 8J8 .557012 30 31 9.427354 9.983875 9.443479 10.556521 29 32 .427809 7.58 .983840 n .443968 8.15 .556032 28 33 .428263 7.57 .983805 .58 .444458 8.17 .555542 27 34 35 .428717 .429170 7.57 7.55 7KK .983770 .983735 '.58 KO .444947- .445435 8.15 8.13 .555053 .354565 26 25 36 .429623 .OO .983700 ,OO .445923 * .554077 24 37 .430075 7.53 .983664 .60 .446411 8.13 .553589 23 38 39 40 .430527 .430978 .431429 7 53 7.52 7.52 7.50 .983629 .983594 .983558 .58 .58 .60 .58 .446898 .447384 .447870 8.12 8.10 8.10 8.10 .553102 .552616 .552130 22 21 20 41 42 43 9.431879 .432329 .432778 7.50 7.48 9.983523 .983487 .983452 .60 .58 9.448356 .448841 .449326 8.08 8.08 10.551644 .551159 .550674 19 18 17 44 45 46 47 48 49 50 .433226 .433675 .434122 .434569 .435016 .435462 .435908 7.47 7.48 7.45 7.45 7.45 7.43 7.43 7.42 .983416 .983381 .983345 .983309 .983273 .983238 .983202 .60 .58 .60 .60 .60 .58 .60 .60 .449810 .450294 .450777 .451260 .451743 .452225 .452706 8.07 8.07 8.05 8.05 8.05 8.03 8.02 8.02 .550190 .549706 .549223 .548740 .548257 .547775 .547294 16 15 14 13 12 11 10 51 9.436353 9.983166 9.453187 10.546813 9 52 53 .436798 .437242 7.42 7.40 .983130 .983094 .60 .60 .453668 .454148 8 02 8.00 .546332 .545852 8 7 54 .437685 7.40 .983058 .60 .454628 8.00 .545372 6 55 .438129 7.38 .983022 .60 .455107 ".98 .544893 5 56 .438572 7.38 .982986 .60 .455586 ".98 .544414 4 57 .439014 7.37 .982950 .60 .456064 f'tft .543936 3 58 .439456 7.37 .982914 .60 .456542 .9 .543458 2 59 60 .439897 9.440338 7.35 7.35 .982878 9.982842 .60 .60 .457019 9.457496 .95 -.95 .542981 10.542504 1 t Cosine. D. 1*. Sine. D. r. Cotang. D. r. Tang. ' 190 74 16" COSINES, TANGENTS, AND COTANGENTS. ' Sine. D. 1". Cosine. D. r. Tang. D.I". Cotang. ' 9.440338 r* OO 9.982842 9.457496 10.542504 60 1 .440778 < .OO r- qq .982805 'fift .457973 r- i o .542027 59 2 .441218 1 .OO 7 qo. .982769 .ou fift .458449 . ;)o ~ QQ .541551 58 3 .441658 i .OO 7 .ft .982733 .ou fi9 .458925 . yo 1" QS) .541075 57 4 .442096 i .OU 7 %> .982696 .0/6 fift .459400 .4MB .540600 56 5 442535 i .& 7OA .982660 .OU fift .459875 r QA .540125 55 6 .442973 .OU 7 28 .982624 .ou 62 .460349 . yu .539651 54 7 .443410 79tt .982587 .460823 i*'JH( 539177 53 8 .443847 .-60 7 9ft .982551 .60 .461297 .90 r QQ .538703 52 9 .444284 i . -6O 7 27 .982514 *62 .461770 .Oo .538230 51 10 .444720 7i25 .982477 !eo .462242 ^88 .537758 50 11 9.445155 r OK. 9.982441 9.462715 fr OK 10.537285 49 12 .445590 -''OR .982404 fi9 .463186 .oO .536814 48 13 14 .446025 .446459 7l23 .982367 .982331 .0/6 .60 .463658 .464128 -\83 rr OK .536342 .535872 47 46 15 .446893 7 22 .982294 *R9 .464599 .oO r- oo .535401 45 16 17 18 .447326 .447759 .448191 7^22 7.20 .982257 .982220 .982183 .'62 .62 .465069 .465539 .466008 .OO 7.83 7.82 7 QO .534931 .534461 .533992 44 43 42 19 .448623 7 18 .982146 '62 .466477 < .0/6 7 80 .533523 41 20 .449054 .982109 .466945 7^80 .533055 40 21 9.449485 7 17 9.982072 fi9 9.467413 7 7fi 10.532587 39 22 .449915 1 .11 .982035 .04 fi9 .467880 i . to 7 '"ft .532120 38 23 .450345 717 .981998 .UM .468347 4 . iO 7 7ft .531653 37 24 .450775 . li r -IK .981961 fi9 .468814 ^ . Q 9.972011 r-o 9.569261 6AK 10.430739 39 23 .541613 .541953 .DO 5.67 .971964 971917 . 40 .78 70 .569648 ' .570035 .40 6.45 6AK .430352 .429965 38 37 24 25 . 542293 .542632 5.67 5.65 971870 .971823 . to .78 70 .570422 .570809 .40 6.45 6AQ .429578 .429191 36 35 26 27 20 29 .542971 .543310 543649 .543987 5.65 5.65 5.65 5.63 5t>n .971776 .971729 .971682 .971635 . .970490 .80 c/n 581528 .cte 6 32 .418472 7 54 ! 552349 ,9m .970442 .oU on 581907 6qo .418093 6 55 .552680 5.52 K KA .970394 .oU QO .582286 .On 6 32 .417714 5 56 .553010 D. DU .970345 .0.* .582665 .417335 4 .553341 5.52 .970297 .80 .583044 6.32 .416956 3 58 .553070 5.48 .970249 .80 .583422 ft tm .416578 2 59 .554000 5 . 50 .970200 .82 .583800 5'2j .416200 1 60 9.554329 5.48 9.970152 .80 9.584177 o.2o 10.415823 ' Cosine. D. 1". Sine. D. r. Cotang. D. r. Tang. ' 110 195 'TABLE XII. LOGARITHMIC SINES, 158 ' Sine. D. 1". Cosine. D. 1". Tang. D. 1". Cotang. ' 1 9.554329 .554658 5.48 t 40 9.97'0152 .970103 .82 9.584177 .584555 r on 1 10.415823 .415445 60 59 2 3 4 5 6 .554987 .555315 .555643 .555971 .556299 O.4o 5.47 5.47 5.47 5.47 5*K .970055 .97'0006 .969957 .969909 .969860 .80 .82 .82 j .80 ! .82 .584932 .585309 .585686 .586062 .586439 t).!5 6.28 6.28 6.27 6.28 .415068 .414691 .414314 .413938 .413561 58 57 56 55 54 .556626 .4D .969811 .82 .586815 6.27 .413185 53 8 9 .556953 .557'280 5.45 5.45 5 An .969762 .969714 .82 .80 .587190 .587566 6.25 6.27 .412810 .412434 52 51 10 .557606 .4o 5.43 .969665 .82 .82 .50,941 6.25 6.25 .412059 50 11 9.557932 5 JO 9.969616 CO 9.588316 6 Of? 10.411684 49 12 .558258 .4o .969567 .0,4 .588691 .<&) .411309 48 13 .558583 5.42 .969518 .82 .589066 6.25 .410934 47 14 15 .558909 .559234 5.43 5.42 .969469 .969420 .82 .82 .589440 .589814 6.23 6.23 .410560 ! 46 .410186 ! 45 16 .559558 5.40 .969370 .83 .590188 6.23 .409812 44 17 18 19 .559883 .560207 .560531 5.42 5.40 5.40 .969321 .969272 .969223 .82 .82 .82 .590562 .5909a5 .591308 6.23 6.22 6.22 .409438 .409065 .408692 43 42 41 20 .560855 5.40 5.38 i .969173 .83 .82 .591681 6.22 6.22 .408319 40 21 9.561178 9.969124 9.592054 10.407946 39 22 .561501 5.o8 5OQ .969075 .82 .592426 6.20 .407574 38 23 .561824 .00 507 .969025 .83 CO .592799 6.22 .407201 37 24 25 26 .562146 .562468 .562790 .01 5.37 5.37 .968976 .968926 .968877 .04 .83 .82 .593171 .593542 .593914 6^18 6.20 .406829 .406458 .406086 36 35 34 27 .563112 5.37 .968827 .83 .594285 6.18 .405715 33 28 .563433 5.35 .968777 .83 .594656 6.18 .4051344 32 29 .563755 5.37 5OO .968728 .82 .595027 6.18 .404973 31 30 .564075 .66 5.35 .968678 .83 .83 .595398 6.18 6.17 .404602 30 31 9.564396 5qq 9.968628 9.595768 10.404232 29 32 .564716 .00 .968578 .83 .596138 6.17 .403862 ! 28 33 .565036 5.33 .968528 .83 .596508 6.17 .40:3492 27 34 35 .565356 .565676 5.33 5.33 .968479 .968429 .82 .83 .596878 .567247 6.17 6.15 .403122 26 .402753 25 36 .565995 5.32 .968379 .83 .597616 6.15 .402384 24 37 38 39 .566314 .566632 .566951 5.32 5.30 5.32 .968329 .968278 .968228 .83 .85 .83 .597985 .598354 .598722 6.15 6.15 6.13 61 K. .402015 .401646 .401278 23 22 21 40 .567269 5.30 5.30 .968178 .83 .83 .599C91 .lO 6.13 .400909 20 41 9.567587 9.968128 9.599459 10.400541 19 42 43 .567904 .568222 5^30 5 Oft .968078 .968027 .83 .85 .599827 .600194 6.13 6.12 .400173 18 .399806 ! 17 44 .568539 .40 .967977 .83 .600562 6.13 .399438 ! 16 45 46 .568856 .569172 5.28 5.27 .967927 .967876 .83 .85 .600929 .601296 6.12 6.12 .399071 15 .398704 i 14 47 .569488 5.27 .967826 .83 .601663 6.12 .398337 13 48 .569804 5.27 .967775 .85 .602029 6.10 .397971 12 49 50 .570120 .570435 5.27 5.25 5.27 .967725 .967674 .83 .85 .83 .602395 .602761 6.10 6.10 6.10 .397605 .397239 11 10 51 52 9.570751 .571066 5.25 9.967624 .967573 .85 9.603127 .603493 6.10 10.396873 .396507 9 8 53 54 .571380 .571695 5.23 5.25 .967522 .967471 .85 .85 .603858 .604223 6.08 6.08 .396142 .395777 6 55 .572009 5.23 .967421 .83 .604588 6.08 .395412 5 56 .572323 5.23 .967370 .85 .604953 6.08 .395047 4 57 .572636 5.22 .967319 .85 .605317 6.07 .394683 3 58 59 60 .572950 .573263 9.573575 5.23 5.22 5.20 .967268 .967217 9.967166 .85 .85 .85 .605682 .606046 9.606410 6.08 6.07 6.07 .394318 .393954 10.393590 2 1 ' Cosine. D. 1". Sine. D. 1". 1 1 Cotang. D. 1". 1 Tang. 111 196 68 COSINES, TANGENTS, AND COTANGENTS. 157* ' Sine. D. 1". Cosine. D. 1'. Tang. D. 1'. Cotang. 9.573575 9.967166 QK 9.606410 10.393590 60 1 2 3 4 5 6 8 .573888 .574200 .574512 .574824 .575136 .575447 .575758 .576069 5^20 5.20 5.20 5.20 5.18 5.18 5.18 517 .967115 .967064 .967013 .966961 .966910 .966859 .966808 .966756 .00 .85 .85 .87 .85 .85 .85 .87 .606773 .607137 .607500 .607803 .608225 .608588 .608950 .609312 6.05 6.07 6.05 6.05 6.03 6.05 6.03 6.03 .393227 .392863 .392500 .392137 .391775 .391412 .391050 .390688 59 58 57 56 55 54 53 52 9 .576379 . li 517 .966705 .85 87 .609674 6.03 6 no .390326 51 10 .576689 . 1 < 5.17 .966653 Ol .85 .610036 .Uo 6.02 .389964 50 11 12 13 14 15 9.576999 .577309 .577618 ,577927 .578236 5.17 5.15 5.15 5 15 9.966602 .966550 .966499 .966447 .966395 .87 .85 .87 .87 9.610397 .610759 .611120 .611480 .611841 6.03 6.02 6.00 6.02 10 389603 .389241 .888880 .388520 .388159 49 48 47 46 45 16 17 18 19 20 .578545 .578853 .579162 .579470 .579777 5.15 5.13 5.15 5.13 5.12 5.13 .966344 .966292 .966240 .966188 .966136 .85 .87 .87 .87 .87 .85 .612201 .612561 .612921 .613281 .613641 6.00 6.00 6.00 6.(-0 6.00 5.98 .387799 .387439 .387079 .386719 .386359 44 43 42 41 40 21 9.580085 519 9.966085 Q.7 9.614000 10.386000 on 22 23 580392 .580699 . IJ 5.12 966033 .965981 .oY 87 .614359 .614718 5.98 5.98 .385641 .385282 38 37 24 25 26 27 28 29 .581005 .581312 581618 .581924 .582229 .582535 5.10 5.12 5 10 5.10 5.08 5.10 .965929 .965876 .965824 .965772 .965720 .965668 .87 .88 .87 87 .87 .87 .615077 .615435 .615793 .616151 .616509 616867 5 98 5.97 5.97 5.97 5.97 5.97 384923 384565 384207 .383849 .383491 .383133 36 5 34 32 il 30 .582840 5.08 5.08 .965615 .88 87 .617224 5 95 5 97 .382776 30 31 32 9.583145 .583449 5.07 K no 9 965563 965511 .87 QQ 9 617582 617939 5.95 10382418 .382061 20 28 33 34 583754 .584058 O.Uo 5.07 5nK 965458 965406 .OO 87 QQ .618295 .618652 5 '.95 .381705 .381348 27 35 .584361 .Uo 965353 .OO 619008 5 'QQ .380992 05 36 .584665 5.07 965301 .87 .619364 .yo .380636 24 37 .584968 5.05 965248 .88 .619720 5.93 5QO .380280 23 38 39 .585272 .585574 5.07 5.03 .965195 .965143 88 .87 QQ .620076 .620432 .yo 5 93 5QO .379924 .379568 22 21 40 .585877 5.05 5.03 .965090 .OO .88 .620787 .WE 5.92 .379213 20 41 9.586179 5AK 9.965037 QQ. 9.621142 K 92 10.378858 19 42 .586482 .UO .964984 .00 .621497 .378503 18 43 44 586783 .587085 5.02 5.03 5 no .964931 .964879 .88 .87 QQ .621852 .622207 5.92 5.92 5 on .378148 .377793 17 16 45 .587386 .UK .964826 .OO QQ .622561 .yu Son .377439 15 46 .587688 5.03 5 no .964773 .OO QQ .622915 .yu Son .377085 14 47 48 .587989 .588289 Us 5.00 5 no .964720 964660 .OO .90 QQ .623269 .623623 .yu 5.90 5QQ .376731 .376377 13 12 49 .588590 .UB 964613 .OO .623976 .Oo .376024 11 50 .588890 5.00 5.00 .964560 .88 .88 .624330 5.90 5.88 .375670 10 51 9.589190 9.964507 QQ 9.624683 500 10.375317 9 52 53 .589489 .589789 5!oo 4QQ .964454 .964400 .OO .90 QQ .625036 .625388 .00 5.87 500 .374964 .374612 8 54 55 56 57 58 .590088 .590387 .590686 590984 591282 .yo 4.98 4.98 4.97 4.97 .964347 .964294 .964240 .964187 .964133 .OO .88 .90 .88 .90 .625741 .626093 .626445 .626797 .627149 .00 5.87 5.87 5.87 5.87 .374259 .373907 .373555 .373203 .372851 6 5 4 8 2 59 60 .591580 9.591878 4.97 4.97 .964080 9.964026 .88 .90 .627501 9.627852 5.87 5.85 .372499 10.372148 1 ' Cosine. D. 1". Sine. D. 1'. Cotang. D. 1*. Tang. | ' 197 TABLE XII. LOGA1UTHMIC SINES, 156* Sine. D. 1". Cosine. D. 1". Tang. D. 1". Cotang. ' 1 2 9.591878 .592176 .592473 4.97 4.95 4 QIC 9.964026 .963972 .963919 on 9.627852 15 .628203 2 ; .628554 5.85 5.85 5 OK 10.372148 .371797 .371446 60 59 58 3 4 5 .592770 .593067 .593363 . yo 4.95 4.93 4QQ .963865 .963811 .963757 .yu .90 .90 00 .628905 .629255 .629606 .OO 5.83 5.85 5QQ .371095 .370745 .370394 57 56 55 6 .593659 .yo 4 no .963704 .00 .629956 .OO 5QO .370044 54 7 .593955 .yo .963650 Qrt .630306 .OO 5 DO .369694 53 8 9 10 .594251 .594547 .594842 4!93 4.92 4.92 .963596 .963542 .963488 .yu .90 .90 .90 .630656 .631005 .631355 .OO 5.82 5.83 5.82 .369344 .368995 .368645 52 51 50 11 9.595137 . 9.963434 9.631704 569 10.368296 49 12 .595432 4Q9 .963379 Qrt .632053 .O/s 50.) .367947 48 13 14 15 .595727 .596021 .596315 . \)6 4.90 4.90 A f\f\ .963325 .963271 .963217 .yu .90 .90 Qrt .632402 .632750 .633099 .o& 5.80 5.82 Son .367598 .367250 .366901 47 46 45 16 17 .596609 |-jg .596903 1 ?-X .963163 .963108 .yu .92 Qrt .633447 .633795 .oU 5.80 5 PA .366553 .366205 44 43 18 .597196 T'SS .963054 .yu no .634143 .oU 57ft .365857 42 19 .597490 1 J'S .962999 ,y* .634490 . 5 .362389 .362044 32 31 30 .600700 .oO 4.83 .962398 .tt/4 .92 .638302 5^75 .361698 30 31 32 9.600990 .601280 4.83 4 DO 9.962343 .962288 .92 9.638647 .638992 5.75 57K 10.361353 .361008 29 28 33 34 .601570 .601860 .OO 4.83 .962233 .962178 '.92 .639337 .639682 . 0 5.70 .355168 .354826 11 10 51 9.606751 9.961235 9.645516 10.354484 9 52 .607036 4.75 .961179 "no .645857 0.08 .354143 8 53 .607322 4.77 .961123 .yo .646199 t oo .353801 7 54 .607607 4.75 .9610(57 .93 .646540 5.68 .353460 6 55 56 57 58 .607892 .608177 .608461 .608745 4.75 4.75 4.73 4.73 .961011 .960955 .960899 .960843 .93 .93 .93 .93 .646881 .647222 1 .647562 .647903 5.68 5.68 5.67 5.68 .353119 .352778 .352438 .352097 5 4 3 2 59 .609029 4.73 .960786 ?5 .648243 5.67 .351757 1 60 9.609313 4.73 9.960730 Jd 1 9.648583 5.67 10.351417 ' ! Cosine. I). 1'. Sine. D. 1'. ll Cotang. D. 1". Tang. ' 198 66" COSINES, TANGENTS, AND COTANGENTS. 155- ' Sine. D. 1". Cosine. D. 1". Tang. D. 1'. Cotang. t 1 9.609313 .609597 4.73 9.960730 .960674 .93 9.648583 .648923 5.67 5 Off 10.351417 .351077 60 59 2 3 4 .609880 .610164 .610447 4 . 72 ' 4.73 4.72 47ft .960618 .960561 .960505 !95 .93 QK .649263 .649602 .649942 .Dl 5.65 5.67 .350737 .350398 .350058 58 57 56 5 .610729 . Cotang. D. r. Tang. ' 201 TABLE XII. LOGAKTTHMEC SINES, 152 ' Sine. D. 1". Cosine. D. r. Tang. D. 1". Cotang. ' 9.657047 4 -JO 9.949881 9.707166 10.292834 60 1 .657295 :. lO .949816 .08 1 .707478 5. 20 .292522 59 2 3 .657542 .657790 4.12 4.13 .949752 .949688 .07 ; : .07 ! .707790 .708102 5.20 5.20 .292210 .291898 58 57 4 5 .658037 .658284 4.12 4.12 .949623 .949558 : .08 ' .08 .708414 .708726 5.20 5.20 .291586 .291274 56 55 6 .658531 4.12 .949494 .07 .709037 5.18 .290963 54 8 .658778 .659025 4.12 4.12 .949429 .949364 .08 .08 .709349 .709660 5.20 5.18 .290651 .290340 53 52 9 .659271 4.10 .949300 .07 .709971 5.18 .290029 51 10 .659517 4.10 .949235 .08 .710282 5.18 .289718 50 4.10 .08 5.18 11 9.659763 4 10 9.949170 AQ 9.710593 5 18 10.289407 49 12 13 .660009 .660255 4^10 .949105 .949040 .UO : .08 .710904 711215 5^18 f 17 .289096 .288785 48 47 14 660501 T'lJJ .948975 '/\0 .711525 0. 1 i 51ft .288475 46 15 16 17 18 19 20 660746 .660991 .661236 .661481 .661726 .661970 4.08 4.08 4.08 4.08 4.08 4.07 4.07 .948910 .948845 .948780 .948715 .948650 .948584 ! .08 .08 .08 1.08 1.08 1.10 1.08 .711836 .712146 .712456 .712766 .713076 .713386 .15 5.17 5.17 5.17 5.17 5.17 5.17 .288164 .287854 .287544 .287234 .286924 .286614 45 44 43 42 41 40 21 22 23 9.662214 .662459 .662703 4.08 4.07 9.948519 .948454 .948388 1.08 1.10 9.713696 .714005 . 714314 5.15 5.15 10.286304 .285995 .285686 39 38 37 24 25 26 27 . .662946 .663190 .663433 .663677 4.05 4.07 4.05 4.07 .948323 .948257 .948192 .948126 1.08 1.10 1.08 1.10 .714624 .714933 .715242 .715551 5.17 5.15 5.15 5.15 285376 .285067 .284758 .284449 36 35 34 33 28 29 30 .663920 .664163 .664406 4.05 4.05 4.05 4.03 .948060 .947995 .947929 1.10 1.08 1.10 1.10 715860 .716168 .716477 5.15 5.13 5.15 5.13 .284140 .283832 .283523 32 31 30 31 32 33 9.664648 .664891 .665133 4.05 4.03 9.947863 .947797 .947731 1 10 1.10 9.716785 .717093 .717401 5 13 5.13 10.283215 .282907 .282599 29 28 27 34 35 36 37 38 39 40 .665375 .665617 .665859 .666100 .666342 .666583 .666824 4.03 4.03 4.03 4.02 4.03 4.02 4.02 4.02 947665 .947600 .947533 .947467 .947401 .947335 .947269 1.10 1.08 1.12 1.10 1.10 1.10 1.10 1.10 717709 .718017 .718325 .718633 .718940 .719248 .719555 5.13 5.13 5.13 5.13 5.12 5.13 5.12 5.12 .282291 281983 .281675 .281367 .281060 280752 .280445 26 25 24 23 22 21 20 41 42 43 44 45 43 49 50 9.667065 .667305 .667546 .667786 .668027 668267 .668506 .668746 .668986 669225 4.00 4.02 4.00 4.02 4.00 3.98 4.00 4.00 3.98 3.98 9.947203 .947136 .947070 .947004 .946937 .946871 946804 .946738 .946671 .946604 1 12 1.10 1.10 1.12 1.10 1.12 1.10 1.12 1.12 1.10 9.719862 .720169 .720476 .720783 .721089 .721396 .721702 .722009 .722315 .722621 5.12 5.12 5.12 5.10 5.12 5.10 5.12 5.10 5.10 5.10 10.280138 .279831 .279524 .279217 .278911 .278604 .278298 .277991 277685 .277379 19 18 17 16 15 14 13 12 11 10 51 52 53 9.669464 669703 669942 3 98 3.98 9.946538 .946471 .946404 1.12 1.12 9.722927 723232 723538 5.08 5.10 10.277073 .276768 276462 9 8 7 54 55 670181 670419 3.98 3.97 C46337 .946270 1.12 1.12 ,7'23844 .724149 5^08 .276156 .275851 6 5 56 57 58 59 60 .670658 670896 .671134 .67137'2 9.671609 3.98 3.97 3.97 3.97 3.95 946203 .946136 .946069 946002 9.945935 1.12 1.12 1.12 1.12 1.12 .724454 724760 725065 725370 9.725674 5.08 5.10 5.08 5.08 5.07 .275546 275240 274935 274630 10.274326 4 3 o 1 1 Cosine. D. r. Sine. D. 1". Cotang. D. 1'. Tang. ' 202 62 28 COSINES, TANGENTS, AND COTANGENTS. 151* ' Sine. D. 1'. Cosine. D. 1'. Tang. D. r. Cotang. ' 1 2 3 4 5 6 7 8 9.671609 .671847 .672084 .67^1 .672558 .672795 .673032 .673268 .673505 3.97 3.95 3.95 3.95 3.95 3.95 3.93 3.95 9.945935 .945868 .945800 .945733 .945666 .945598 .945531 .945464 .945396 1.12 1.13 1.12 1.12 1.13 1.12 1.12 .13 9.725674 .725979 .726284 .726588 .726892 .727197 .727501 .727805 .728109 5.08 5.08 5.07 5.07 5.05 5.07 5.07 5.07 10.274326 .274021 .273716 .273412 .273108 .272803 .2?2499 .272195 .271891 60 59 58 57 56 55 54 53 52 9 .673741 3.93 .945328 .13 .728412 5.05 .271588 51 10 .673977 3.93 .945261 : .12 .728716 5.07 .271284 50 3.93 .13 5.07 11 12 9.674213 .674448 3.92 9.945193 .945125 .13 9.729020 .729323 5.05 10.270980 .270677 49 48 13 .674684 3.93 .945058 .12 .729626 5.05 .270374 47 14 .674919 3.92 .944990 .13 .729929 5.05 .270071 46 15 .675155 3.93 .944922 .13 .730233 5.07 .269767 45 16 17 .675390 .675624 3.92 3.90 .944854 .944786 .13 .13 .730535 .730838 5.03 5.05 .269465 .269162 44 43 18 19 .675859 .676094 3.92 3.92 .944718 .944650 : .13 .13 .731141 .731444 5.05 5.05 .268859 .268556 42 41 20 .676328 3.90 3.90 .944582 .13 .13 .731746 5.03 5.03 .268254 40 21 22 23 9.676562 .676796 .677030 3.90 3.90 9.944514 .944446 .944377 .13 .15 9.732048 .732351 .732653 5.05 5.03 5nn 10.267952 .267649 .267347 39 38 37 24 25 .677264 .677498 3.90 3.90 .944309 .944241 ! .13 .13 .732955 .733257 .Uo 5.03 .267045 .266743 36 35 26 .677731 3.88 .944172 .15 .733558 5.02 .266442 34 27 .677964 3.88 .944104 .13 .733860 5.03 5(\n .266140 33 28 .678197 3.88 .944036 .13 .734162 .UO .265838 32 29 . 678430 3.88 .943967 .15 .734463 5.02 .265537 31 30 .678663 3.88 .943899 : .13 .734764 5.02 5nn .265236 30 3.87 '. .15 .Uo 31 32 33 34 35 36 37 38 9.678895 . 679128 .679360 .679592 .679824 .680056 .680288 .680519 3.88 3.87 3.87 3.87 3.87 3.87 3.85 9.943830 .943761 .943693 .943624 .943555 .943486 .943417 .943348 .15 .13 .15 .15 .15 .15 .15 9.735066 .735367 .735668 .735969 .736269 .736570 .736870 .737171 5.02 5.02 5.02 5.00 5.02 5.00 5.02 10.264934 .264633 .264332 .264031 .263731 .263430 .263130 .262829 29 28 27 26 25 24 23 22 39 40 .680750 .680982 3.85 3.87 3.85 .943279 .943210 1.15 1.15 1.15 .737471 .737771 5!(X) 5.00 .262529 .262229 21 20 41 42 43 44 45 46 47 48 9.681213 .681443 .681674 .681905 .682135 .682365 .682595 .682825 3.83 3.85 3.85 3.83 3.83 3.83 3.83 9.943141 .948072 .943003 .942934 .942864 .942795 .942726 .942656 1.15 ' 1.15 i 1.15 i 1.17 1.15 1.15 1.17 9.738071 .738371 .738671 .738971 .739271 .739570 .739870 .740169 5.00 5.00 5.00 5.00 4.98 5.00 4.98 4 Oft 10.261929 .261629 .261329 .261029 .260729 .260430 .260130 .259831 19 18 17 16 15 14 13 12 49 50 .683055 .683284 3.83 3.82 3.83 .942587 .942517 .15 .17 .15 .740468 . 740767 .yo 4.98 4.98 .259532 .259233 11 10 51 52 9.683514 .683743 3.82 9.942448 .942378 .17 9.741066 .741365 4.98 4 98 10.258934 .258635 9 8 53 54 55 r~ 58 59 60 .683972 .684201 .684430 .684658 .684887 .685115 .685343 9.685571 3.82 3.82 3.82 3.80 3.82 3.80 3.80 3.80 .942308 .942239 .942169 .942099 .942029 .941959 .941889 9.941819 .17 .15 .17 1.17 1.17 1.17 1.17 1.17 .741664 .741962 .742261 .742559 .742858 .743156 .743454 9.743752 4i97 4.98 4.97 4.98 4.97 4.97 4.97 .258336 .258038 .257739 .257441 .257142 .256844 .256546 10.256248 7 6 5 4 3 2 1 ' I Cosine. D. 1'. 1 Sine. D. r. Cotang. D. 1'. Tang. 1 118 29 TABLE XII. LOGAKITHMIC SINES, 150 ' Sine. D. 1". Cosine. D. 1". Tang. D. 1". Cotang. 9.ea557i 3 Of) 9.941819 1 17 9.743752 4 97 10.256248 60^ 1 2 .685799 .686027 .OU 3.80 .941749 .941679 1 . i i 1.17 11" .744050 .744348 4^97 4QK .255950 .255652 59 58 3 4 .686254 .686482 3.78 3.80 3r>o .941609 .941539 . 1 1 1.17 .744645 .744943 .yo 4.97 4QK .255355 .255057 57 56 5 6 7 .686709 .686936 .687163 . <0 3.78 3.78 .941469 .941398 .941328 . 17 .18 .17 17 .745240 .745538 .745835 .yo 4.97 4.95 .254760 .254462 .254165 55 54 53 8 9 .687389 .687616 3.77 3.78 .941258 .941187 ilfl .74ol32 .746429 4^95 4Q^ .253868 .253571 52 51 10 .687843 3.78 3.77 .941117 . 17 .18 .746726 . yo 4.95 .253274 50 11 12 13 14 15 9.688069 .688295 .688521 .688747 .688972 3.77 3.77 3.77 3.75 9.941046 .940975 .940905 .940834 .940763 .18 .17 .18 .18 9.747023 .747319 .747616 .747913 .748209 4.93 4.95 4.95 4.93 4 no 10.252977 .252681 .252384 .252087 .251791 49 48 47 46 45 16 17 18 19 20 .689198 .689423 .689648 .689873 .690098 3.77 3.75 3.75 3.75 3.75 3.75 .940693 .940622 .940551 .940480 .940409 . 17 .18 .18 .18 .18 .18 .748505 .748801 .749097 .749393 .749689 .yo 4.93 4.93 4.93 4.93 4.93 .251495 .251199 .250903 .250607 .250311 44 43 42 41 40 21 9.690323 9.940338 9.749985 4QO 10.250015 39 22 .690548 3r>q .940267 JO .750281 . yo .249719 38 23 24 25 26 27 28 29 30 .690772 .690996 .691220 .691444 .691668 .691892 .692115 .692339 . 7 1 9.778774 .779060 .779346 4.77 4.77 10.221226 .220940 .220654 60 59 58 3 4 5 6 7 8 9 10 .712469 .712679 .712889 .713098 .713308 .713517 .713726 .713935 3^50 3.50 3.48 3.50 3.48 3.48 3.48 3.48 .932838 .932762 .932685 .932609 .932533 .932457 .932380 .932304 ,V4 l 1.27 1.28 ! 1.27 1.27 1.27 1.28 1.27 1.27 .779632 .779918 .780203 .780489 .780775 .781060 .781346 .781631 4.77 4.77 4.75 4.77 4.77 4.75 4.77 4.75 4.75 .220368 .220082 .219797 .219511 .219225 .218940 .218654 .218369 57 56 55 54 53 52 51 50 11 12 ' 13 14 9.714144 .714352 .714561 .714769 3.47 3.48 3.47 q AQ 9.932228 .932151 .932075 .931998 1.28 1.27 1.28 1 9ft 9.781916 .782201 .782486 .782771 4.75 4.75 4.75 10.218084 .217799 .217514 .217229 49 48 47 46 15 16 .714978 .715186 O.4O 3.47 3 47 .931921 .931845 1 ./so 1.27 .783056 .783341 4.75 4.75 .216944 .216659 45 44 17 .715394 3 Aft .931768 1 9ft .783626 4.75 .216374 43 18 19 20 .715602 .715809 .716017 .4< 3.45 3.47 3.45 .931691 .931614 .931537 1^28 1.28 1.28 .783910 .784195 .784479 4.73 4.75 4.73 4.75 .216090 .215805 .215521 42 41 40 21 22 9.716224 .716432 3.47 3 45 9.931460 .931383 1.28 19ft 9.784764 .785048 4.73 10.215236 .214952 39 38 23 24 .716639 .716846 3^45 .931306 .931229 .^o 1.28 .785332 .7'85616 4^73 .214668 .214384 37 36 25 .717053 3.45 340 .931152 1 9ft .785900 4.73 .214100 35 26 27 .717259 .717466 .4o 3.45 3AK .931075 .930998 1 . *o 1.28 .786184 .786468 4.73 4.73 .213816 .213532 34 33 28 29 .717673 .717879 .40 3.43 340 .930921 .930843 1^30 .786752 .787036 4.73 4.73 .213248 .212964 32 31 30 .718085 .40 3.43 .930766 l!30 .787319 4.72 4.73 .212681 30 31 32 33 34 35 36 37 9.718291 .718497 .718703 .718909 .719114 .719320 .719525 3.43 3.43 3.43 3.42 3.43 3.42 9.930688 .930611 .930533 .930456 .930378 .930300 .930223 1.28 1.30 1.28 1.30 1.30 1.28 9.787603 .787886 .788170 .788453 .788736 .789019 .789302 4.72 4.73 4.72 4.72 4.72 4.72 10.212397 .212114 .211830 .211547 .211264 .210981 .210698 29 28 27 26 25 24 23 38 39 40 .719730 .719935 .720140 3^42 3.42 3.42 .930145 .930067 .929989 liw 1.30 1.30 .789585 .789868 .790151 4i 72 4.72 4.72 .210415 .210132 .209849 22 21 20 41 9.720345 9.929911 Qfi 9.790434 10.209566 19 42 .720549 A 4 3qq .926911 1 .OO Iqo .801116 4A7 .198884 41 20 .728227 .OO 3.33 .926831 .00 1.33 .801396 . Of 4.65 .198604 40 21 fi. 728427 39.9 9.926751 Iqq 9.801675 4A 1 "* 10.198325 39 22 .728626 23 .728825 24 .729024 25 .729223 26 .729422 .64 3.32 3.32 3.32 3.32 .926671 .926591 .926511 .926431 .926351 .00 1.33 1.33 1.33 1.33 1QK .801955 .802234 .802513 .802792 .803072 .vt 4.65 4.65 4.65 4.67 .198045 .197766 .197487 .197208 .196928 38 37 36 35 34 27 .729621 3.32 3qO 926270 .00 Iqo .803351 4. 65 4c- .196649 33 28 29 30 .729820 .730018 .730217 .OSa 3.30 3.32 3.30 .926190 .926110 .926029 .00 1.33 1.35 1.33 .803630 .803909 .804187 . DO 4.65 4.63 4.65 .196370 .196091 .195813 32 31 30 31 9 730415 3OA 9.925949 19.K 9.804466 10.195534 29 32 .730613 .oO .925868 .00 1 9.9. .804745 4A9. .195255 28 33 34 35 36 .730811 .731009 .731206 .73J404 3.30 3.30 3.28 3.30 .925788 .925707 .925626 .925545 1 .OO 1.35 1.35 1.35 .805023 .805302 .805580 .805859 .OO 4 65 4.63 4.65 4A9. .194977 .194698 .194420 .194141 27 26 25 24 37 .731602 rtO .925465 1'qjr .806137 DO 4A9. .193863 23 38 .731799 3.2o .925384 .OO .806415 _ . Do 4A9. .193585 22 39 40 . 731996 .732193 3.28 3.28 3.28 .925303 .925222 1 .35 1.35 1.35 .806693 .806971 .Do 4.63 4.63 .193307 .193029 21 20 41 42 43 44 45 46 47 48 49 9.732390 .732587 .732784 .732980 .733177 .733373 .733569 .733765 .733961 3.28 3.28 3.27 3.28 3.27 3.27 3.27 3.27 9.925141 .925060 .924979 .924897 .924816 .924735 .924654 .924572 .924491 1.35 1.35 1-3? 1.85 1.35 j 1.35 1.37 1.35 9.807249 .807527 .807805 .808083 .808361 .808638 .808916 .809193 .809471 4.63 4.63 4.'63 4.62 4.63 4.62 4.63 10.192751 .192473 .192195 .191917 .191639 .191362 .191084 .190807 .190529 19 18 17 16 15 14 13 12 11 50 .734157 3.27 3.27 .924403 1 .37 1.35 .809748 4!62 .190252 10 51 52 53 54 55 56 9.734353 .734549 .734744 .734939 .735135 .735330 3.2? 3.25 3.25 3 27 3.25 9.924328 .924246 .924164 .924083 .924001 .923919 1.37 1.37 1.35 1.37 1.37 9.810025 .810302 .810580 .810857 .811134 .811410 4.62 4.63 4.62 4.62 4.60 10.189975 .189698 .189420 .189143 .188866 .188590 9 8 7 6 5 4 57 .735525 3.25 .923837 1.37 .811687 4 62 .188313 3 58 .735719 3.23 .923755 1w .811964 4 62 .188036 2 59 .735914 3.25 .923673 ,01 .812241 .187759 1 60 9.736109 3.25 9 923591 1 .37 9.812517 ' 10.187483 Cosine. D. r. Sine. D. 1'. Cotang. D. i". Tang. ' 307 $7- TABLE XII. LOGARITHMIC SINES, ' Sine. D. r. Cosine. D. r. Tang. D.I". Cotang. ' 1 2 9.736109 .736303 .736498 3.23 3.25 9.923591 .923509 .923427 1.37 .37 9.812517 .812794 .813070 4.62 4.60 10.187483 .187206 .186930 60 59 58 3 4 5 .736692 .736886 .737080 3.23 3.23 3.23 .923345 .923263 .923181 .37 .37 .37 OO .813347 .813623 .813899 4.62 4.60 4.60 4R9 .186653 .186377 .186101 57 56 55 6 7 .737274 .737467 3.23 3.22 .923098 .923016 .OO .37 OO .814176 .814452 .DxJ 4.60 4 fin .185824 .185548 54 53 8 .737661 3.23 .922933 .00 .814728 .ou 4 fin .185272 52 9 .737855 .922851 'no .815004 .ou .184996 51 10 .738048 3.22 3.22 .922768 .08 .37 .815280 4.60 4.58 .184720 50 11 9.738241 9.922686 OQ 9.815555 4 Art 10.184445 49 12 .738434 ctct .922603 .OO .815831 .OU .184169 48 13 14 .738627 .738820 p.9H 3.22 .922520 .922438 .38 .37 oo .816107 .816382 4.60 4.58 4 fin .183893 .183618 47 46 15 .739013 3.22 399 .922355 .00 OQ .816658 . ou 4 CO .183342 45 16 17 .739206 .739398 .& 3.20 .922272 .922189 .OO .38 .816933 .817209 .00 4.60 4KQ .183067 .182791 44 43 18 19 .739590 .739783 3.20 3.22 .922106 .922023 .38 1.38 1QQ .817484 .817759 .00 4.58 .182516 .182241 42 41 20 .739975 3.20 3.20 .921940 .OO 1.38 .818035 4.60 4.58 .181965 40 21 22 9.740167 .740359 3.20 31ft 9.921857 .921774 1.38 100 9.818310 .818585 4.58 4KQ 10.181690 .181415 39 38 23 24 .740550 .740742 . lo 3.20 3 on .921691 .921607 .00 1.40 1 j} .818860 .819135 .Oo 4.58 4 CO .181140 .180865 37 36 25 .740934 .*u 3f .921524 1 .00 1 00 .819410 .Oo .180590 35 26 27 .741125 .741316 .lo 3.18 .921441 .921357 1 .00 1.40 .819684 .819959 4.57 4.58 4 to .180316 .180041 34 33 28 29 .741508 .741699 3.20 3.18 .921274 .921190 l."40 .820234 .820508 .Oo 4.57 .179766 .179492 32 31 30 .741889 3.17 3.18 .921107 1.38 1.40 .820783 4.58 4.57 .179217 30 31 32 33 34 35 36 37 38 39 40 9.742080 .742271 .742462 .742652 .742842 .743033 .743223 .743413 .743602 .743792 3.18 3.18 3.17 3.17 3.18 3.17 3.17 3.15 3.17 3.17 9.921023 .920939 .920856 .920772 .920688 .920604 .920520 r .920436 .920352 .920268 .40 .38 .40 .40 .40 .40 .40 .40 .40 1.40 9.821057 .821332 .821606 .821880 .822154 .822429 .822703 .822977 .823251 .823524 4.58 4.57 4.57 4.57 4.58 4.57 4.57 4.57 4.55 4.57 10.178943 .178668 .178394 .178120 .177846 .177571 .177297 .177023 .176749 .176476 29 28 27 26 25 24 23 22 21 20 41 42 43 44 45 46 47 48 49 50 9.743982 .744171 .744361 .744550 .744739 .744928 .745117 .745306 .745494 .745683 3.15 3.17 3.15 3.15 3.15 3.15 3.15 3.13 3.15 3.13 9.920184 .920099 .920015 .919931 .919846 .919762 .919677 .919593 .919508 .919424 1.42 1.40 1.40 1.42 .40 .42 .40 .42 .40 .42 9.823798 .824072 .824345 .824619 .824893 .825166 .825439 .825713 .825986 .826259 4.57 4.55 4.57 4.57 4.55 4.55 4.57 4.55 4.55 4.55 10.176202 .175928 .175655 .175381 .175107 .174834 .174561 .174287 .174014 .173741 19 18 17 16 15 14 13 12 11 10 51 52 53 9.745871 .746060 .746248 3.15 3.13 9.919339 .919254 .919169 .42 .42 Af\ 9.826532 .826805 .827078 4.55 4.55 4CK 10.173468 .173195 .172922 9 8 7 54 55 56 57 58 59 60 .746436 .746624 .746812 .746999 .747187 .747374 9.747562 3. 13 3.13 3.13 3.12 3.13 3.12 3.13 .919085 .919000 .918915 .918830 .918745 .918659 9.918574 .4U .42 .42 .42 .42 .43 .42 .827351 .827624 .827897 .828170 .828442 .828715 9.828987 .OD 4.55 4.55 4.55 4.53 4.55 4.53 .172649 .172376 .172103 .171830 .171558 .171285 10.171013 6 5 4 3 1 ' Cosine. D. r. Sine. D. r. I ! Cotang. D. 1". Tang. ' 56* 34* COSINES, TANGENTS, AND COTANGENTS. 145- , Sine. D. r. Cosine. D. r. < Tang. D. 1". Cotang. , 1 1 2 3 4 5 6 9.747562 .747749 .747936 .748123 .748310 .748497 .748683 3.12 3.12 3.12 3.12 3.12 3.10 319 9.918574 .918489 .918404 .918318 .918233 .918147 .918062 1.42 1.42 .43 .42 .43 .42 9.828987 .829260 .829532 .829805 .830077 .830349 .830621 4.55 4.58 4.55 4.53 4.53 4.53 10.171013 .170740 .170468 .170195 .169923 .169651 .169379 CO 59 58 57 56 55 54 8 9 10 .748870 .749056 .749243 .749429 .19 3.10 3.12 3.10 3.10 .917976 .917891 .917805 .917719 .43 .42 .43 .43 .42 .830893 .831165 .831437 .831709 4.53 4.53 4.53 4.53 4.53 .169107 .168835 .168563 .168291 53 52 51 50 11 9.749615 31ft 9.917634 9.831981 4 to 10.168019 49 12 13 14 15 16 .749801 .749987 .750172 .750358 .750543 . 1U 3.10 3.08 3.10 3.08 .917548 .917462 .917376 .917290 .917204 !43 .43 .43 .43 .832253 .832525 .832796 .833068 .833339 .Oo 4.53 4.52 4.53 4.52 .167747 .167475 .167204 .166932 .166661 48 47 46 45 44 17 18 .750729 .750914 3. 10 3.08 3 no .917118 .917032 .43 .43 Af> .833611 .833882 4.53 4.52 4 CO .166389 .166118 43 42 19 20 .751099 .751284 .UO 3.08 3.08 .916946 .916859 .<*') .45 .43 .834154 .834425 .Do 4.52 4.52 .165846 .165575 41 40 21 22 9.751469 .751654 3.08 3AQ 9.916773 .916687 .43 AK. 9.834696 .834967 4.52 4 co 10.165304 .165033 39 38 23 24 25 26 27 28 29 30 .751839 .752023 .752208 .752392 .752576 .752760 .752944 .753128 .Uo 3.07 3.08 3.07 3.07 3.07 3.07 3.07 3.07 .916600 .916514 .916427 .916341 .916254 .916167 .916081 .915994 .40 .43 .45 .43 .45 .45 .43 .45 .45 .835238 .835509 .835780 .836051 .836322 .836593 .836864 .837134 ,*M 4.52 4.52 4.52 4.52 4.52 4.52 4.50 4.52 .164762 .164491 .164220 .163949 .163678 .163407 .163136 .162866 37 36 35 34 33 32 31 30 31 32 33 34 9.753312 .753495 .753679 .753862 3.05 3.07 3.07 9.915907. .915820 .915733 .915646 .45 .45 .45 9.837405 .837675 .837946 .838216 4.50 4.52 4.50 10.162595 .162325 .162054 .161784 29 28 27 26 35 36 .754046 .754229 3.07 3.05 .915559 .915472 .45 .45 .838487 .838757 4.52 4.50 .161513 .161243 25 24 37 38 .754412 .754595 3.05 3.05 .915385 .915297 .45 .47 .K39027 .839297 4.50 4.50 .160973 .160703 23 22 39 40 .754778 .754960 3.05 3.03 3.05 .915210 .915123 .45 .45 .47 .839568 .839838 4.52 4.50 4.50 .160432 .160162 21 20 41 42 9.755143 .755326 3.05 9.915035 .914948 1.45 9.840108 .840378 4.50 10.159892 .159622 19 18 43 44 45 46 47 48 49 50 .755508 .755690 .755872 .756054 .756236 .756418 .756600 .756782 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.02 .914860 .914773 .914685 .914598 .914510 .914422 .914334 .914246 1.47 1.45 1.47 1.45 1.47 1.47 1.47 1.47 1.47 .840648 .U0917 .841187 .841457 .841727 .841996 .842266 .842535 4.50 4.48 4.50 4.50 4.50 4.48 4.50 4.48 4.50 .159352 .159083 .158813 .158543 .158273 .158004 .157734 .157465 17 16 15 14 13 12 11 10 51 52 53 54 5 56 57 58 59 60 9.756963 .757144 .757326 .757507 .757688 .757869 .758050 .758230 .758411 9.758591 3.02 303 3.02 3.02 3.02 3.02 3.00 3.02 3.00 9.914158 .914070 .913982 .913894 .913806 .913718 .913630 913541 .913453 9.913365 1.47 1.47 1.47 1.47 1.47 1.47 1.48 1.47 j 1.47 | 9.842805 .843074 .843343 .843612 .843882 .844151 .844420 .844689 .844958 9.845227 4.48 4.48 4.48 4.50 4.48 4.48 4.48 4.48 4.48 10.T7195 156926 .156657 .156388 .156118 .155849 .155580 .155311 .155042 10.154773 9 8 7 6 5 4 3 * 2 1 i Cosine. r>. r. Sine. D. r. * Cotang. D.r. Tang. ' 134 209 35' TABLE XII. LOGARITHMIC SINES, 144* ' Sine. D. r. Cosine. D. 1". Tang. D. I'. Cotang. ' 1 9.758591 .758772 3.02 9.913365 .913276 1.48 9.845227 .$45496 4.48 10.154773 .154504 60 59 2 .758952 3.00 .913187 1 .48 .845764 4.47 .154236 58 3 4 .759132 .759312 3.00 3.00 .913099 .913010 1.47 1.48 .846033 .846302 4.48 4.48 .153967 .153698 57 56 5 6 7 8 9 10 .759492 .759672 .759852 .760031 .760211 .760390 3.00 3.00 3.00 2.98 3.00 2.98 2.98 .912922 .912833 .912744 .912655 .912566 .912477 1.47 1.48 1.48 1.48 1.48 1.48 1.48 .846570 .846&S9 .847108 .847376 .847644 .847913 4.47 4.48 4.48 4.47 4.47 4.48 4.47 .153430 .153161 .152892 .152624 .152356 .152087 55 54 53 52 51 50 11 12 13 14 15 9.760569 .760748 .760927 .761106 .761285 2.98 2.98 2.98 2.98 9.912388 .912299 .912210 .912121 .912031 1.48 1.48 1.48 1.50 9.848181 .848449 .848717 .848986 .849254 4.47 4.47 4.48 4.47 10.151819 .151551 .151283 .151014 .150746 49 48 47 46 45 16 17 .761464 .761642 2.98 2.97 .911942 .911853 1 .48 1.48 ItA .849522 .849790 4.47 4.47 4JK .150478 .150210 44 43 18 .761821 2.98 .911763 .OU .850057 .40 .149943 42 19 20 .761999 .762177 2.97 2.97 2.98 .911674 .911584 1 .48 1.50 1.48 .850325 .850593 4.47 4.47 4.47 .149675 .149407 41 40 21 9.762356 2 97 9.911495 Itrv 9.850861 10.149139 39 22 23 24 25 26 27 28 .762534 .762712 .762889 .763067 .763245 .763422 .763600 2^97 2.95 2.97 2.97 2.95 2.97 2ne .911405 .911315 .911226 .911136 .911046 .910956 .910866 .OU 1.50 1.48 1.50 1.50 1.50 1.50 .851129 .851396 .851664 .851931 .852199 .852466 .852733 4.4< 4.45 4.47 4.45 4.47 4.45 4.45 447 .148871 .148604 .148336 .148069 .147801 .147534 .147267 38 37 36 35 34 33 32 29 30 .763777 .763954 .yo 2.95 2.95 .910776 .910686 i!so 1.50 .853001 .853268 .4< 4.45 4.45 .146999 .146732 31 30 31 32 33 34 35 36 9.764131 .764308 .764485 .764662 .764838 .765015 2.95 2.95 2.95 2.93 2.95 9.910596 .910506 .910415 .910325 .910235 .910144 1.50 1.52 1.50 1.50 1.52 9.853535 .853802 .854069 .854336 .854603 .854870 4.45 4.45 4.45 4.45 4.45 4AK 10.146465 .146198 .145931 .145664 .145397 .145130 29 28 27 26 25 24 37 38 39 40 .765191 .765367 .765544 .765720 2.93 2.93 2.95 2.93 2.93 .910054 .909963 .909873 .909782 l'.52 1.50 1.52 1.52 .855137 .855404 .855671 .855938 .40 4.45 4.45 4.45 4.43 .144863 .144596 .144329 .144062 23 22 21 20 41 42 43 44 45 9.765896 .766072 .766247 .766423 .766598 2.93 2.92 2.93 2.92 9.909691 .909601 .909510 .909419 .909328 1.50 1.52 1/52 1.52 9.856204 .856471 .856737 .857004 .857270 4.45 4.43 4.45 4.43 10.143796 .143529 .143263 .142996 .142730 19 18 17 16 15 46 .766774 4.&6 .909237 1 .52 .857537 4.45 .142463 14 47 48 49 50 .766949 .767124 .767300 .767475 2.92 2.92 2.93 2.92 2.90 .909146 .909055 .908964 .908873 1 .52 1.52 1.52 1.52 1.53 .857803 .&58069 .858336 .858602 4^43 4.45 4.43 4.43 .142197 .141931 .141664 .141398 13 12 11 10 51 52 53 54 55 56 57 58 59 60 9.767649 .767824 .767999 .768173 .768348 .768522 .768697 .768871 .769045 9.769219 2.92 2.92 2.90 2.92 2.90 2.92 2.90 2.90 2.90 9.908781 .908690 .908599 .908507 .908416 .908324 .908233 .908141 .908049 9.907958 1.52 1.52 1.53 1.52 1.53 1.32 1.53 1.53 1.52 9.858868 .859134 .859400 .859666 .859932 .860198 .860464 .860730 .860995 9.861261 4.43 4.43 4.43 4.43 4.43 4.43 4.43 4.42 4.43 10.141132 .140866 .140600 .140334 .140068 .139802 .139536 .139270 . 139005 10.138739 9 8 6 5 4 3 2 1 ' Cosine. D. r. Sine. D. 1". Cotang. D. 1". Tang. ' 36 COSINES, TANGENTS, AND COTANGENTS. ' Sine. D. 1". Cosine. D. 1". Tang. D. 1". Cotang. ' 1 9.769219 .769393 2.90 2QQ 9.907C58 .907866 1.53 Itq 9.861261 .861527 4.43 10.138739 .138473 60 59 2 3 4 5 6 .769566 .769740 .769913 .770087 .770260 .OO 2.90 2.88 2.90 2.88 2QQ .907774 .907682 .907590 .907498 .907406 .Do 1.53 1.53 1.53 1.53 1KO .861792 .862058 .862323 .862589 .862854 4.42 4.43 4.42 4.43 4.42 .138208 .137942 .137677 .137411 .137146 58 57 56 55 54 7 8 9 10 .770433 .770606 .770779 .770952 . Oo 2.88 2.88 2.88 2.88 .907314 .907222 .907129 .907037 .DO 1.53 1.55 1.53 1.53 .863119 .863385 .863650 .863915 4.42 4.43 4.42 4.42 4.42 .136881 .136615 .136350 . 130085 53 52 51 50 11 12 13 14 15 16 17 18 19 20 9.771125 .771298 .771470 .771643 .771815 .771987 .772159 .772331 .772503 .772675 2.88 2.87 2.88 2.87 2.87 2.87 2.87 2.87 2.87 2.87 9.906945 .906852 .906760 .906667 .906575 .906482 .906389 .906296 .906204 .906111 1.55 1.53 1.55 1.53 1.55 1.55 1.55 1.53 1.55 1.55 9.864180 .864445 .864710 .864975 .865240 .865505 .865770 .866035 .866300 .866564 4.42 4.42 4.42 4.42 4.42 4.42 4.42 4.42 4.40 4.42 10.135820 .135555 .135290 .135025 .134760 .134495 .134230 .133965 .133700 .133436 49 48 47 46 45 44 43 42 41 40 21 22 23 24 9.772847 .773018 .773190 .773361 2.85 2.87 2.85 9.906018 .905925 .905832 .905739 1.55 1.55 1.55 9.866829 .867094 .867358 .867623 4.42 4.40 4.42 10.133171 . 132906 .132642 .132377 39 38 37 36 25 26 27 28 29 .773533 .773704 .773875 .774046 .774217 2.87 2.85 2.85 2.85 2.85 .905645 .905552 .905459 .905366 .905272 1.57 1.55 1.55 1.55 1.57 .867887 .868152 .868416 .868680 .868945 4.40 4.42 4.40 4.40 4 42 .132113 . 131848 .131584 . 131320 . 131055 35 34 33 31 30 .774388 2.85 2.83 .905179 1.55 1.57 .869209 4.40 4.40 .130791 30 31 32 9.774558 .774729 2.85 9.905085 .904992 .55 9.809473 .860737 4.40 10.130527 .130263 29 28 33 .774899 2.83 .904898 '. .57 .870001 4.40 4dfi .129999 27 34 .775070 2.85 .904804 .57 j fti .870265 .w .129735 26 35 .775240 2.83 200 .904711 . .DO 5rf .870529 4.40 .129471 25 36 37 38 .775410 .775580 .775750 .00 2.83 2.83 .904617 .904523 .904429 ( .57 .57 .870793 .871057 .871321 4.40 4.40 4.40 .129207 .128943 .128679 24 23 22 39 40 .775920 .776090 2.83 2.83 2.82 .904335 .904241 .57 .57 .57 .871585 .871849 4.40 4.40 4.38 .128415 .128151 21 20 41 9.776259 2QO 9.904147 K(-> 9.872112 10.127888 19 42 .776429 .OO .904053 .Ol .872376 4.40 .127624 18 43 .776598 2.82 20. .903959 '. .57 CO .872640 4.40 400 .127360 17 44 .776768 .00 .903864 . .Do .872903 .00 .127097 16 45 .776937 2.82 .903770 '. .57 .873167 4.40 .126833 15 46 47 48 .777106 .777275 .777444 2.82 2.82 2.82 .903676 .903581 .903487 : '.SB .57 pro .873430 .873694 .873957 4^40 4.38 4QQ .126570 .126306 .126043 14 13 12 49 .777613 2.82 .903392 .Do .874220 .OO .125780 11 50 .777781 2.80 2.82 i .903298 .57 .58 .874484 4.40 4.38 .125516 10 51 52 9.777950 .778119 2.82 9.903203 .903108 : .58 9.874747 .875010 4.38 400 10.125253 .124990 9 8 53 54 .778287 .778455 2.80 2.80 .903014 .902919 .57 .58 KQ .875273 .875537 .00 4.40 400 .124727 .124463 7 6 55 .778624 2.82 .902824 .Do .875800 .00 40Q .124200 5 56 57 .778792 .778960 2.80 2.80 .902729 .902634 .58 .58 .876063 .876326 .00 4.38 400 .123937 .123674 4 3 58 .779128 2.80 .902539 ! .58 KQ .876589 .00 4OQ .123411 2 59 60 .779295 9.779463 2.78 2.80 .902444 9.902349 . Do 1.58 .876852 9.877114 .00 4.37 .123148 10.122886 1 ' Cosine. D. 1". i 1 Sine. D. r. Cotang. v.r. Tang. ' 126 211 TABLE XII. LOGARITHMIC SINES, 142 ' Sine. D. 1". Cosine. D. 1". Tang. D. 1". Cotang. ' 9.779463 9.902349 9.S77114 10.122886 60 2 3 5 6 8 9 .779631 .779798 .779966 .780133 .780300 .780467 .780634 .730801 .780968 2.80 2.78 2.80 2.78 2.78 2.78 2.78 2.78 2.78 277 .902253 .902158 .902063 .901967 .901872 .901776 .901681 .901585 .901490 1.60 1.58 1.58 .60 .58 .60 .58 .60 .58 an .877377 .877640 .877903 .878165 .878428 .878691 .878953 .879216 .879478 4.38 4.38 4.38 4.37 4.38 4.38 4.37 4.38 4.37 4OQ .122623 .122360 .122097 .121835 .121572 .121309 .121047 .120784 .120522 59 58 57 56 55 54 53 52 51 10 .781134 . < i 2.78 .901394 .OU 1.60 .879741 .OO 4.37 .120259 50 11 12 9.781301 .781468 2.78 9.901298 .901202 1.60 9.880003 .880265 4.37 4OQ 10.119997 .119735 49 48 13 14 15 16 17 18 19 20 .781634 .781800 .781966 .782132 .782298 .782464 .782630 .782796 2.77 2.77 2.77 2.77 2.77 2.77 2.77 2.77 2.75 .901106 .901010 .900914 .900818 .900722 .900626 .900529 .900433 i!eo 1.60 1.60 1.60 1.60 1.62 1.60 1.60 .880528 .880790 .881052 .881314 .881577 .881839 .882101 .882363 .OO 4.37 4.37 4.37 4.38 4.37 4.37 4.37 4.37 .119472 .119210 .118948 .118686 .118423 .118161 .117899 .117637 47 46 45 44 43 42 41 40 21 22 23 24 25 26 27 28 29 30 9.782961 .783127 .783292 .783458 .783623 .783788 .783953 .784118 .784282 .784447 2.77 2.75 2.77 2.75 2.75 2.75 2.75 2.73 2.75 2.75 9.900337 .900240 .900144 .900047 .899951 .899854 .899757 .899660 .899564 .899467 1.62 1.60 1.62 1.60 1.62 ' 1.62 1.62 1.60 1.62 1.62 9.882625 .882887 .883148 .883410 .883672 .883934 .884196 .884457 .884719 .884980 4.37 4.35 4.37 4.37 4.37 4.37 4.35 4.37 4.35 4.37 10.117375 .117113 .116852 .116590 .116328 .116066 .115804 .115543 .115281 .115020 39 38 37 36 35 34 as 32 31 30 31 32 33 34 35 36 37 38 39 40 9.784612 .784776 .784941 .785105 .785269 .785433 .785597 .785761 .785925 .786089 2.73 2.75 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.72 9.899370 .899273 .899176 .899078 .898981 .898884 .898787 .898689 .898592 .898494 1.62 1.62 1.63 1.62 1.62 1.62 1.63 1.62 1.63 1.62 9.885242 .885504 .885765 .886026 .886288 .886549 .886811 .887072 .887333 .887594 4.37 4.35 4.35 4.37 4.35 4.37 4.35 4.35 4.35 4.35 10.114758 .114496 .114235 .113974 .113712 .113451 .113189 .112928 .112667 .112406 29 28 27 26 25 24 23 22 21 20 41 42 43 44 45 46 9.786252 .786416 .786579 .786742 .786906 .787069 2.73 2.72 2.72 2.73 2.72 9.898397 .898299 .898202 .898104 .898006 .897908 1.63 1.62 1.63 1.63 1.63 9.887855 .888116 .888378 .888639 .888900 .889161 4.35 4.37 4.35 4.35 4.35 10.112145 .111884 .111622 .111361 .111100 .110839 19 18 17 16 15 14 47 48 .787232 .787395 2.72 2.72 .897810 .897712 1.63 1.63 .889421 .889682 4.33 4.35 .110579 .110318 13 12 49 50 .787557 .787720 2.70 2.72 2.72 .897614 .897516 1.63 1.63 1.63 .889943 .890204 4.35 4.35 4.35 .110057 .109796 11 10 51 52 9.787883 .788045 2.70 9.897418 .897320 1.63 9.890465 .890725 4.33 10.109535 .109275 9 8 53 54 .788208 .788370 2.72 2.70 .897222 .897123 1.63 1.65 .890986 .891247 4.35 4.35 .109014 .108753 7 6 55 56 57 58 .788532 .788694 .788856 .789018 2.70 2.70 2 70 2.70 .897025 .896926 .896828 .896729 1 .63 1.65 1.63 1.65 .891507 .891768 .892028 .892289 4.33 4.35 4. as 4.35 .108493 .108232 .107972 .107711 5 4 3 2 59 60 .789180 9.789342 2.70 2.70 .896631 9.896532 1 .63 1.65 .892549 9.892810 4.33 4.35 .107451 10.107190 1 ' Cosine. D r. Sine. D. 1". Cotang. D. 1". Tang. ' 212 38 COSINES, TANGENTS, AND COTANGENTS. 141- ' Sine. D. 1*. Cosine. D. 1'. Tang. D. 1'. Cotang. 1 9.789342 .789504 2.70 9.896532 .896433 1.65 9.892810 .893070 4.33 10.107190 .106930 60 59 2 3 .789665 .789827 2>0 .896335 .896236 1 .63 1.65 .893331 .893591 4.35 4.33 4qq .106669 .106409 58 57 4 5 6 8 9 10 .789988 .790149 .790310 .790471 .790632 .790793 .790954 2^68 2.68 2.68 2.68 2.68 2.68 2.68 .896137 .896038 .895939 .895840 .895741 .895641 .895542 l'.65 1.65 1.65 1.65 1.67 1.65 1.65 .893851 .894111 .894372 .894632 .894892 .895152 .895412 .00 4.33 4.35 4.33 4.33 4.33 4.33 4.33 .106149 .105889 .105628 .105368 .105108 .104848 .104588 50 55 54 53 52 51 50 11 12 9.791115 .791275 2.67 2 Aft 9.895443 .895343 1.67 9.895672 .895932 4.33 10.104328 .104068 49 48 13 .791436 .Do 2 AT .895244 J*22 .896192 4'qq .103808 47 14 15 16 17 18 .791596 .791757 .791917 .792077 .792237 .Ol 2.68 2.67 2.67 2.67 2 67 .895145 .895045 .894945 .894846 .894746 1^67 1.67 1.65 1.67 1 A7 .896452 .896712 .896971 .897231 .897491 .00 4.33 4.32 4.33 4.33 4OQ .103548 .103288 .103029 .102769 .102509 46 45 44 43 42 19 20 .792397 .792557 2^67 2.65 .894346 .894546 1 .Oi 1.67 1.67 i .897751 .898010 .OO 4.32 4.33 .102249 .101990 41 40 21 9.792716 2R7 9.894446 1 R7 9.898270 A 00 10.101730 39 22 23 24 25 26 27 .792876 .793035 .793195 .793354 .793514 .793673 .O< 2.65 2.67 2.65 2.67 2.65 .894346 .894246 .894146 .894046 .893946 .893846 1 .Ol i 1.67 1.67 1.67 1.67 1.67 IAft .898530 .898789 .899049 .899308 .899568 .899827 Ht.OO 4.32 4.33 4.32 4. as 4.32 4qq .101470 .101211 .100951 .100692 .100432 .100173 38 37 36 35 34 33 28 29 30 .793832 .793991 .794150 2.65 2.65 2.65 2.63 .893745 .893645 .893544 .Oo 1.67 1.68 1.67 .900087 .900346 .900605 .OO 4.32 4.32 4.32 .099913 .099654 .099395 32 31 30 31 9.794308 2 OK 9.893444 1 Aft 9.900864 400 10.099136 29 32 33 34 .794467 .794628 .794784 . OO 2.65 2.63 .893343 .893243 .893142 1 .Oo 1.67 1.68 .901124 .901383 .901642 .00 4.32 4.32 4 mat .098876 .098617 .098358 23 27 26 35 36 37 38 39 40 .794942 .795101 .795259 .795417 .795575 .795733 2^65 2.63 2.63 2.63 2.63 2.63 .893041 .892940 .892839 .892739 .892638 .892536 lies 1.68 1.67 1.68 1.70 1.68 .901901 .902160 .902420 .902679 .902938 .903197 .98 4.32 4.33 4.32 4.32 4.32 4.32 .098099 .097840 .097580 .097321 .097062 .096803 25 24 23 22 21 20 41 42 43 9.795891 .796049 .796206 2.63 2.62 9.892435 .892334 .892233 1.68 1.68 9.903456 .903714 .903973 4.30 4.32 10.096544 .096286 .096027 19 18 17 44 45 .796364 .796521 2.63 2.62 .892132 .892030 1.68 1.70 .904232 .904491 4^32 .095768 .095?09 16 15 46 .796679 2.63 .891929 1.68 .904750 4'qrt .095250 14 47 48 49 50 .796836 .796993 .797150 .797307 2.62 2.62 2.62 2.62 2.62 .891827 .891726 .891624 .891523 1.70 1.68 1.70 1.68 1.70 .905008 .905267 .905526 .905785 .OU 4.32 4.32 4.32 4.30 .094992 .094733 .004474 .094215 13 12 11 10 51 52 53 54 9.797464 .797621 .797777 .797934 2.62 2.60 2.62 9.891421 .891319 .891217 .891115 1.70 1.70 .70 9.906043 .906302 .906560 .906819 4.32 4.30 4.32 10.093957 .093698 .093440 .093181 9 8 7 6 55 56 .798091 .798247 2.62 2.60 .891013 .890911 !70 .907077 .907336 4. '32 4 on .092923 .092664 5 4 57 .798403 2.60 .890809 .70 .907594 .oU .092406 3 58 59 60 .798560 .798716 9.798872 2.62 2.60 2.60 .890707 .890605 9.890503 '.70 i .70 I .907853 .908111 9.9083C9 .4.'30 4.30 .092147 .091889 10.091631 2 1 t Cosine. D. 1'. Sine. D. r. i Cotang. D. r. Tang. ' 128 213 TABLE XII. LOGARITHMIC SINES, 140 ' Sine. D. 1". Cosine. D. r. Tang. D. 1". Cotang. ' 1 2 3 4 5 6 8 9.798872 .799028 .799184 .799339 .799495 .799651 .799806 .799962 .800117 2.60 2.60 2.58 2.60 2.60 2.58 2.60 9.890503 .890400 .890298 .890195 .890093 .889990 .889888 .889785 .889682 1.72 1.70 1.72 1.70 1.72 1.70 1.72 1.72 9.908369 .908628 .908886 .909144 .909402 .909660 .909918 .910177 .910435 4.32 4.30 4.30 4.30 4.30 4.30 4.32 4.30 10.091631 .091372 .091114 .090856 .090598 .090340 .090082 .089823 .089565 60 59 58 57 56 55 54 53 52 9 10 .800272 .800427 2. 58 2.58 .889579 .889477 1.72 1.70 1.72 .910693 .910951 4.30 4.30 4.30 .089307 .089049 51 50 11 12 13 14 15 16 17 18 9.800582 .800737 .800892 .801047 .801201 .801356 .801511 .801665 2.58 2.58 2.58 2.57 2.58 2.58 2.57 9.889374 .889271 .889168 .889064 .888961 .888858 .888755 .888651 1.72 1.72 1.73 .72 .72 .72 : .73 9.911209 .911467 .911725 .911982 .912240 .912498 .912756 .913014 4.30 4.30 4.28 4.30 4.30 4.30 4.30 10.088791 .088533 .088275 .088018 .087760 .087502 .087244 .086986 49 48 47 46 45 44 43 42 19 20 .801819 .801973 2.57 2.57 2.58 .888548 .888444 .72 .73 .913271 .913529 4.28 4.30 4.30 .086729 .086471 41 40 21 22 23 24 25 26 27 9.802128 .802282 .802436 .802589 .802743 .802897 .803050 2.57 2.57 2.55 2.57 2.57 2.55 2K7 9.888341 .888237 .888134 .888030 .887926 .887822 .887718 .73 .72 .73 .73 1.73 1.73 1rO 9.913787 .914044 .914302 .914560 .914817 .915075 .915332 4.28 4.30 4.30 4.28 4.30 4.28 40A 10.086213 .085956 .085698 .085440 .085183 .084925 .084668 39 38 371 36 35 34 33 28 29 .803204 .803357 .Ol 2.55 .887614 .887510 . 1 ) 1.73 1rq .915590 .915847 .OU 4.28 A OQ .084410 .084153 32 31 30 .803511 2.- r '7 .887406 . IO 1.73 .916104 4. 4.30 .083896 30 31 32 33 34 9.803664 .803817 .803970 .804123 2.55 2.55 2.55 2ee 9.887302 .887198 .887093 .886989 1.73 1.75 1.73 170 9.916362 .916619 .916877 .917134 4.28 4.30 4.28 A OQ 10.083638 .083381 .083123 .082866 29 28 27 26 35 36 37 38 39 40 .804276 .804428 .804581 .804734 .804886 .805039 .OO 2.55 2.55 2.55 2.53 2.55 2.53 .886885 .886780 .886676 .886571 .886466 .886362 . 10 1.75 1.73 1.75 1.75 1.73 1.75 .917391 .917648 .917906 .918163 .918420 .918677 1.6O 4.28 4.30 4.28 4.28 4.28 4.28 .082609 .082352 .082094 .081837 .081580 .081323 25 24 23 22 21 20 41 42 43 44 45 46 47 48 49 50 9.805191 .805343 .805495 .805647 .805799 .805951 .806103 .806254 .806406 .806557 2.53 2.53 2.53 2.53 2.53 2.53 2.52 2.53 2.52 2.53 9.886257 .886152 .886047 .885942 .885837 .885732 .885627 .885522 .885416 .885311 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.77 1.75 1.77 9.918934 .919191 .919448 .919705 .919962 .920219 .920476 .920733 .920990 .921247 4.28 4.28 4.28 4.28 4.28 4.28 4.28 4.28 4.28 4.27 10.081066 .080809 .080552 .080295 .080038 .079781 .079524 .079267 .079010 .078753 19 18 17 16 15 14 13 12 11 10 51 9.806709 9.885205 9.921503' 10.078497 9 52 53 .806860 .807011 2.52 2.52 .885100 .884994 '.77 .921760 .922017 4^28 4 no .078240 .077983 8 7 54 55 56 57 58 59 60 .807163 .807314 .807465 .807615 .807766 .807917 9.808067 2.53 2.52 2.52 2.50 2.52 2.52 2.50 .884889 .884783 .884677 .884572 .884466 .884360 9.884254 . 75 .77 .77 .75 .77 1.77 1.77 .922274 .922530 .922787 .923044 .923300 .923557 9.923814 ,4X5 4.27 4.28 4.28 4.27 4.28 4.28 .077726 .077470 .077813 .076956 - .076700 .076443 10.076186 6 5 4 3 2 1 ' Cosine. D. r. Sine. D.I". Cotang. D. r. Tang. ' 40 COSINES, TANGENTS, AND COTANGENTS. 139 > Sine. D. 1". Cosine. D. r. Tang. D. r. Cotang. ' 1 9.808067 .808218 2.52 2 50 9.884254 .884148 .77 77 9.923814 .924070 4.27 10.076186 .075930 60 59 2 3 4 5 6 7 8 .808368 .808519 .808669 .808819 .808960 .809119 .809269 2. 52 2.50 2.50 2.50 2.50 2.50 2 50 .884042 .883936 .883829 .883723 .883617 .883510 .883404 '.77 .78 .77 .77 .78 .77 7ft .924327 .924583 .924840 .925096 .925352 .925609 .925865 4'.27 4.28 4.27 4.27 4.28 4.27 4 Oft .075673 .075417 .075160 .074904 .074648 .074391 .074135 58 57 56 55 54 53 52 9 10 .809419 .809569 2^50 2.48 .883297 .883191 . to .77 .78 .926122 .926378 .40 4.27 4.27 .073878 .073622 51 50 11 12 13 14 15 16 17 18 19 20 9.809718 .809808 .810017 .810167 .810316 .810465 .810614 .810763 .810912 .811061 2.50 2.48 2.50 2.48 2.48 2.48 2.48 2.48 2.48 2.48 9.883084 .882977 .882871 .882764 .882657 .882550 .882443 .882336 .882229 .882121 .78 .77 .78 .78 .78 .78 .78 .78 .80 .78 9.926634 .926890 .927147 .927403 .927659 .927915 .928171 .928427 .928684 .928940 4.27 4.28 4.27 4.27 4.27 4.27 4.27 4.28 4.27 4.27 10.07&366 .073110 .072853 . .072597 .072341 .072085 .071829 .071573 .071316 .071060 49 48 47 46 45 44 43 42 41 40 21 22 9.811210 .811358 2.47 24ft. 9.882014 .881907 .78 Oft 9.929196 .929452 4.27 10.070804 .070548 39 38 23 .811507 .40 O Aff .881799 .O(J r-0 .929708 f'ctrt .070292 37 24 25 26 .811655 .811804 .811952 6 .4< 2.48 2.47 247 .881692 .881584 .881477 . 2SD 4.27 .067990 .067734 28 27 34 35 .813135 .813283 2.45 2.47 .880613 .880505 .04 .80 on .932522 .932778 4.27 4.27 .067478 .067222 26 25 36 37 .813430 .813578 2^47 .880397 .880289 .oU .80 .933033 .933289 4.25 4.27 .066967 .066711 24 23 38 .813725 2.45 .880180 .82 Qf\ .933545 4.27 .066455 22 39 .813872 2.45 2AK .880072 .oU .933800 4.25 .066200 21 40 .814019 .40 2.45 .879963 !so .934056 4.27 4.25 .065944 20 41 9.814166 9.879855 CO 9.934311 10.065689 19 42 43 .814313 .814460 2.45 2.45 .879746 .879637 .(Sis .82 .934567 .934822 4.27 4.25 .065433 .065178 18 17 44 45 .814607 .814753 2.45 2.43 .879529 .879420 .80 .82 .935078 .935333 4.27 4.25 407 .064922 .064667 16 15 46 47 .814900 .815046 2.45 2.43 .879311 .879202 .82 .82 .935589 .935844 .41 4.25 497 .064411 .064156 14 13 48 .815193 2.45 .879093 Ort .936100 .41 .063900 12 49 50 .815339 .815485 2.43 2.43 2.45 .878984 .878875 .82 .82 .82 .936355 .936611 4.25 4.27 4.25 .063645 .063389 11 10 51 9.815632 9.878766 QQ 9.936866 10.063134 9 52 .815778 2.43 .878656 .OO .937121 I'rt^ .062879 8 53 54 .815924 .816069 2.43 2.42 .878547 .878438 .82 .82 .937377 .937632 < .27 .25 .062623 .062368 7 6 55 .816215 2.43 .878328 .83 .937887 ' .25 .062113 5 56 .816361 2.43 .878219 .82 .938142 ' .25 .061858 4 57 .816507 2.43 .878109 .83 .938398 'c\L .061602 3 58 .816652 2.42 .877999 .83 .938653 ' .25 .061347 2 59 60 .816798 9.816943 2.43 2.42 .877890 9.877780 .82 .83 .938908 9.939163 4^25 .061092 10.060837 1 ' Cosine. D. r. Sine. D. r. 1 Cotang. D. r. Tang. ' 130 215 41 TABLE XII. LOGARITHMIC SIXES, 138 ' Sine. D. 1'. Cosine. P.I'. Tang. D. 1". Cotang. ' 1 2 9.81694-5 .817'088 .817233 2.42 2.42 9.877780 .877670 .877560 1.83 .83 9.939163 .939418 .939673 4.25 4.25 10.060837 .060582 .060327 60 59 58 3 4 .817379 .817524 2.43 2.42 .877450 .877340 .83 .83 .939928 .940183 4.25 4.25 .060072 .059817 57 56 5 6 7 8 9 .817668 .817813 .817953 .818103 .818247 2.40 2.42 2.42 2.42 2.40 Q At) .877230 .877120 .877010 .876899 .876789 .83 .83 .83 .85 .83 QK .940439 .940694 .940949 .941204 .941459 4.27 4.25 4.25 4.25 4.25 .059561 .059306 .059051 .058796 .058541 55 54 53 52 51 10 .818392 S5.Ce 2.40 .876678 .00 .83 .941713 4^25 .058287 50 11 12 9.818536 .818681 2.42 9.876568 .876457 .85 9.941968 .942223 4.25 10.058032 .057777 49 48 13 .818825 2.40 .876347 .83 QK .942478 4.25 .057522 47 14 .818969 , 2.40 .876236 .OO .942733 4.25 .057267 46 15 16 17 18 19 .819113 .819257 .819401 .819545 .819689 2.40 2.40 2.40 2.40 2.40 .876125 .876014 .875904 .875793 .875682 .85 .85 .83 .85 .85 1 ft'% .942988 .943243 .943498 .943752 .944007 4.25 4.25 4.25 4.23 4.25 .057012 .056757 .056502 .056248 .055993 45 44 43 42 41 20 .819832 2^40 .875571 1 . oo 1.87 .944262 4.25 4.25 .055738 40 21 22 23 24 25 9.819976 .820120 .820263 .820406 .820550 2.40 2.38 2.38 2.40 9.875459 .875348 .875237 .875126 .875014 1.85 1.85 1.85 1.87 9.944517 .944771 ; .945026 .945281 .945535 4.23 4.25 4.25 4.23 4 OK 10.055483 .055229 .054974 .054719 .054465 39 38 37 36 35 26 27 .820693 .820836 2^38 .874903 .874791 l."87 ; .945790 .946045 ./CO 4.25 .054210 .053955 34 33 28 29 .820979 .82112-3 2^38 2qo .874680 .874568 til? .946299 .946554 4^25 4oq .053701 .058446 32 31 30 .821265 .00 2.37 .874456 l."87 .946808 ,xo 4.25 .053192 30 31 9.821407 9.874344 9.947063 4 OK 10.052937 29 32 33 .821550 .821693 5! 38 o q" .874232 .874121 l!$5 .947318 .947572 ./) 4.23 4 OK .052682 .052428 28 27 34 35 .821835 .821977 /O.OI 2.37 .874009 .873896 l!88 .947827 .948081 .28) 4.23 400 .052173 .051919 26 25 36 37 38 39 .822120 .822262 .822404 .822546 2^37 2.37 2.37 2 37 .873784 .873672 .873560 .873448 1.S7 1.87 1.87 1DQ .9483a r > .948590 .948844 .949099 .Ou 4.25 4.23 4.25 .051665 .051410 .051156 .050901 24 23 22 21 40 .822688 2!37 .873335 .OO 1.87 .949353 4^25 .050647 20 41 9.822830 9.873223 9.949608 10.050392 19 42 43 .822972 .823114 2.3< 2.37 2q>r .873110 .872998 1.88 1.87 .949862 .950116 4.23 4.23 4 OK .050138 .049884 18 17 44 .823255 .OD .872885 i ft .950371 .3D .049629 16 45 .823397 2.37 .872772 1QQ .950625 A OQ .049375 15 46 47 .823539 .823680 2.35 .872659 .872547 . .OB 1.87 Ipo .950879 .951133 4. '23 .049121 .048867 14 13 48 .823831 2.35 .872434 .00 .951388 4.25 .048612 12 49 50 .823963 .824104 2.37 2.35 2.35 .872321 .872208 1.88 1.88 1.88 .951642 .951896 4.23 4.23 4.23 .048358 .048104 11 10 51 52 53 9.824245 .824386 .824527 2.35 2.35 9.872095 .871981 .871868 1.90 1.88 1QQ 9.952150 .952405 .952659 4.25 4.23 10.047850 .047595 .047341 9 8 7 54 55 .824668 .824808 2.35 2.33 .871755 .871641 .00 1.90 1QQ .952913 .953167 4i23 .047087 .046833 6 5 56 57 .824949 .825090 2.35 2.35 .871528 .871414 .OO 1.90 .953421 .953675 4^23 .046579 .046325 4 3 58 59 .825230 .825371 2.33 2.35 .871301 .871187 1.88 1.90 .953929 .954183 4.23 4.23 400 .046071 .045817 2 1 60 9.825511 2.33 9.871073 1 .90 9.954437 .60 10.045563 ' Cosine. D. 1'. Sine. D. 1". Cotang. D. 1". Tang. ' 131 216 48 42 COSINES, TANGENTS, AND COTANGENTS. 137 ' Sine. D. r. Cosine. D. 1'. Tang. D. 1". Cotang. 1 9.825511 .825651 2.33 9.871073 .870960 .88 9.954437 .954691 4.23 10.045503 .045:309 60 59 2 3 .825791 .8251)31 2.33 2.33 .870846 .870732 .1)0 .90 .1)541)1(5 .95521)0 4.25 4.23 .045054 .044800 58 57 4 5 .826071 .826211 2.33 2.33 O OQ .870618 .870504 .1)0 .90 on .956454 .955708 4.23 4.23 499 .044546 .044292 56 55 6 7 .826351 .826491 /v. OO 2.133 .870390 .870276 .j\) .90 QO .955961 .956215 ,iCO 4.23 4OQ .044039 .043785 51 53 8 9 10 .826631 .826770 .826910 2^32 2.33 2.32 .870161 .870047 .869933 . J/w .90 .90 .92 .956409 .956723 .956977 ..OO 4.23 4.23 4.23 .043531 .043277 .043023 53 51 50 11 9.827049 9.869818 9.957231 10.012709 49 12 13 14 15 16 17 18 19 .827189 .827328 .827467 .827606 .827745 ; 827884 .828023 .828162 2.3o 2.32 2.32 2.32 2.32 2.32 2.32 2.32 .809704 .869589 .869474 .869360 .869245 .869130 .869015 .868900 .90 .92 .92 .90 .92 .92 .92 .92 .957485 .957739 .957993 .958247 .958500 .958754 .959008 .959262 4 . 2o 4.23 4.23 4.23 4.22 4.23 4.23 4.23 .042515 .042261 .042007 .041753 .041500 .041246 .040992 .0407.8 48 47 40 45 44 43 42 41 20 .828301 2.32 2.30 .868785 .92 .92 .959516 4^22 .040484 40 21 23 23 24 9.828439 .828573 .828716 .828855 2.32 2.30 2.32 9.868670 .868555 .868440 .868324 .92 .92 .93 9.959769 .900023 .960277 .960530 4.23 4.23 4.22 4 23 10.040231 .039977 .039723 .039470 39 38 37 36 25 26 27 28 29 30 .828993 .829131 .829269 .821)407 .829545 .829683 2.30 2.30 2.30 2.30 2.30 2.30 2.30 .868209 .868093 8G7978 .867862 .867747 .867631 .92 .93 .92 .93 .93 .93 .93 .960784 .961038 .961292 .961545 .96179'J .962052 4. 23 4.23 4.22 4.23 4.23 4.23 .039216 .038962 .038708 .038455 .038201 .037948 35 34 33 32 31 30 31 0.829821 9.867515 9.962306 400 10.037694 29 33 33 .829959 .830097 2.30 2.30 .867399 .867283 .9o .93 .962560 .962813 .Too 4.22 .037440 .037187 28 27 34 35 36 37 38 39 .830234 .830372 .830509 .&30646 .830784 .&30921 2.28 2.30 2.28 2.28 2.30 2.28 .867167 .867051 .866935 .866819 .866703 .866586 .93 .93 .93 .93 .93 .95 .963067 .963320 .963574 .963828 .964081 .964335 4^22 4.23 4.23 4.22 4.23 499 .036933 .036680 .036426 .036172 .035919 .0,35665 26 25 24 23 22 21 40 .831058 2.28 2-. 28 .866470 .93 .95 .964588 :.Ol9 4.23 .035412 20 41 42 '43 44 45 46 47 48 49 00 9.831195 .831332 .831469 .831606 .831742 .831879 .832015 .832152 .832288 .832425 2.28 2.28 2.28 2.27 2.28 2.27 2.28 2.27 2.28 2.27 9.866353 .866237 .866120 .866004 .865887 .865770 .865653 .865536 .865419 .865302 .93 .95 .93 .95 .95 .95 '.95 .95 .95 9.964842 .965095 .965349 .965602 .965855 .966109 .966362 .966616 .966869 .967123 4.22 4.23 4.22 4.22 4.23 4.22 4.23 4.22 4.23 4.22 10.035158 .034905 .094061 .034398 .034145 .033891 .033638 .0333*4 .033131 .032877 19 18 17 16 15 14 18 12 11 10 51 52 53 54 55 56 57 58 59 60 9-832561 .832697 .832833 . 832969 .833105 .833241 .833377 .833512 .833648 9.833783 2.27 2.27 2.27 2.27 2.27 2.27 2.25 2.27 2.25 9.865185 .865068 .864950 .864833 .864716 .864598 .864481 .864363 .864245 9.864127 .95 .97 .95 .95 .97 .95 .97 .97 .97 9.967376 .967629 .967883 .968136 .968:389 .968643 .968896 .969149 .969403 9.969G56 4.22 4.23 4.22 4.22 4.23 4.22 4.22 4.23 4.22 10.032624 .088871 .03&17 .031804 .031011 .031357 .031101 .030851 .030597 10.030344 9 8 7 6 5 4 3 1 ' Cosine. D. 1". Sine. 1 D. r. Cotang. D. r. Tang. ' 132* 217 43 TABLE XII. LOGARITHMIC SINES, 186 Sine. D. 1'. Cosine. D. 1". Tang. D. 1". Cotang. ' 9.833783 o 07 9.864127 9.969656 10.030344 60 1 .833919 . AM 2 25 .864010 07 .969909 4.22 .030091 59 2 3 .834054 .834189 2>>5 9 97 .863892 .863774 . y< .97 .97'0162 .970416 4. 22 4.23 .029838 .029584 58 57 4 .834325 16, K .863538 . VI Oft .970923 A 'rirt .029078 55 6 8 .834595 .834730 .834865 . 2.25 2.25 .863419 .863301 .863183 .yo .97 .97 .971175 .971429 .971682 4.22 4.23 4.22 .028825 .028571 .028318 54 53 52 9 10 .834999 .835134 2. 25 2.25 .863064 .862946 .98 1.97 1.98 .971935 .972188 4.22 4.22 4.22 .028065 .027812 51 50 11 12 9.835269 .835403 2.23 9.862827 .862709 1.97 9.972441 .972695 4.23 10.027559 .027305 49 48 13 .835538 2.25 2 23 .862590 1.98 1 Oft .972948 4.22 4 22 .027052 47 14 .835672 .862471 1 . yo .973201 .026799 46 15 .835807 2.25 2 23 .862353 1.97 1QQ .973454 4.22 499 .026546 45 16 .835941 .862234 .yo .973707 .3BH .026293 44 17 .836075 2.23 .862115 1.98 .973960 4.22 .026040 43 18 .836209 2.23 .861996 .98 .974213 4.22 .025787 42 19 .836343 2.23 .861877 .98 .974466 4.22 .025534 41 20 .836477 2.23 2.23 .861758 .98 2.00 .974720 4.23 4.22 .025280 40 21 9.836611 200 9.861638 QO 9.974973 499 10.025027 39 22 23 24 .836745 .836878 .837012 .AO 2.22 ,2.23 .861519 .861400 .861280 . yo .98 2.00 .975226 .97'5479 .975732 .353 4.22 4.22 .024774 .024521 .024268 38 37 36 25 26 .837146 .837279 2.23 2.22 .861161 .861041 1.98 2.00 .975985 .97(5238 4.22 4.22 .024015 .023762 35 34 27 28 29 30 .837412 .837546 .837679 .837'812 2.22 2.23 2.22 2.22 2.22 .860922 .860802 .860682 .860562 1.98 2.00 2.00 2.00 2.00 .976491 .976744 .976997 .977'250 4.22 4.22 4.22 4.22 4.22 .023509 .023256 .023003 .022750 33 32 31 30 31 32 313 34 35 36 37 38 39 40 9.837945 .838078 .838211 .838344 .838477 .838610 .838742 .838875 .839007 .839140 2.22 2.22 2.22 2.22 9 22 2.20 2.22 2.20 2.22 2.20 9.860442 .860322 .860202 .860082 .859962 .859842 .859721 .859601 .859480 .859360 2.00 2.00 2.00 2.00 2.00 2.02 2.00 2.02 2.00 2.02 9.977'503 .977756 .978009 .978262 .978515 .978768 .979021 .979274 .979527 .979780 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 10.022497 .022244 .021991 .021738 .021485 .021232 .020979 .020726 .020473 .020220 29 28 27 26 25 24 23 22 21 20 41 9.839272 2 on 9.859239 9.980033 10.019967 19 42 43 44 45 46 47 48 49 50 .839404 .839536 .839668 .839&X) .839932 .840064 .840196 .840328 .840459 .u 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.18 2.20 .859119 .858998 .858877 .858756 .858635 .858514 .858393 .858272 .858151 2.00 2.02 2.02 2.02 2.02 2.02 2.02 2.02 2.02 2.03 .980286 .980538 .980791 .981044 .981297 .981550 .981803 .982056 .982309 4.2,4 4.20 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 .019714 .019462 .019209 .018956 .018703 .018450 .018197 .017944 .017691 18 17 16 15 14 13 12 11 10 51 52 53 54 55 56 57 58 59 60 9.840591 .840722 .84085-4 .840985 .841116 .841247 .841378 .841509 .841640 9.841771 2.18 2.20 2.18 2.18 2.18 2.18 2.18 2.18 2.18 9.858029 .857908 '. 857665 .857543 .857422 .857300 .857178 .857056 9.856934 2.02 2.03 2.02 2.03 2.02 2.03 2.03 2.03 2.03 9.982562 .982814 .983067 .983320 .983573 .983826 .984079 .984332 .984584 9.984837 4.20 4.22 4.22 4.22 4.22 4.22 4.22 4.20 4.22 10.017438 .017186 .016933 .016680 .016427 .016174 .015921 .015668 .015416 10.015163 9 8 7 6 5 4 3 2 1 ' Cosine. D. 1". Sine. T^iT Cotang. D. r. Tang. ' 133 218 44 COSINES, TANGENTS, AND COTANGENTS. ' Sine. D. 1". Cosine. D. 1". Tang. D. 1'. Cotang. ' 9.841771 218 9.856934 9.984837 10.015163 60 1 .841902 . JO O -JQ .856812 41 1 kO .985090 4.22 .014910 59 2 3 4 5 6 .842033 .842163 .842294 .842424 .842555 & . Jo 2.17 2.18 2.17 2.18 21'"' .856690 .856568 .856446 .856323 .856201 2 . Oo 2.03 2.03 2.05 2.03 ! 985596 .Q85848 .986101 .986354 4.22 4 22 4^20 .22 .22 .014657 .014404 .014152 .013899 .013646 58 57 56 55 54 7 8 9 .842685 .842815 .842946 2.17 2.18 2 I'"' .856078 .855956 2.05 2.03 2.05 '* 03 .986607 .986860 .987112 '.22 .20 .013393 .013140 .012888 63 52 51 10 .843076 2^17 .'855711 a! 05 .987365 4! 22 .012635 50 11 12 13 14 9.843206 .843338 .843466 .843595 2.17 2.17 2.15 217 9.855588 .a55465 .855342 .855219 2.05 2.05 2.05 9.987618 .987871 .988123 .988376 4.22 4.20 4.22 10.012382 .012129 .011877 .011624 49 48 47 46 15 .843725 . J i 9 17 .855096 2.05 .988629 4.22 .011371 45 16 17 .843855 .843984 6 . I i 2.15 9 17 .854973 .854850 2.05 2.05 .988882 .989134 4.22 4.20 .011118 .010866 44 43 18 .844114 Z. if 2 IK .854727 2.05 .989387 4.22 .010613 42 19 20 .844243 .844372 . ID 2.15 2.17 .854603 .854480 2 07 2 .05 2.07 .989640 .989893 4.22 4 22 4^20 . 010360 .010107 41 40 21 9.844502 9 1ft; 9.854356 9.990145 10.009855 39 22 .844631 16. JD 2 15 .85423:1 2.05 .990398 4.22 .009602 38 23 .844760 21 ^ .854109 2.07 .990651 4 .22 .009349 37 24 25 .844889 .845018 . JD 2.15 2-tK .853986 .853862 2.05 2 07 .990903 .991156 4.20 4.22 .009097 .008844 36 35 26 .845147 . ID .853738 2 O/ .991409 4 22 ooa r }9i .34 27 28 29 30 .845276 .845405 .845533 .845662 2.15 2.15 2.13 2.15 2.13 .853614 .853490 .a53366 .853242 2.07 2.07 2.07 207 2.07 .991662 .991914 .992167 .992420 4 .22 4.20 4 22 4 22 4^20 ! 008338 .008086 .007833 .007580 33 32 31 30 31 9.845790 21 fi 9.853118 9.992672 10.007328 29 32 33 34 35 36 37 38 39 .845919 .846047 .846175 .846304 .846432 .846560 .846688 .846816 . ID 2.13 2.13 2.15 2.13 2.13 2.13 2.13 21. .852994 .852869 .852745 .852620 " .852496 .852371 .852247 .852122 2^08 2.07 2.08 2.07 2.08 2.07 2.08 O Aft .992925 .993178 .993431 .993683 .993936 .994189 .994441 .994694 4.22 4 22 4.22 4.20 4 22 4 22 4.20 4.22 4 2 s * .007075 .006822 .006569 .006317 .006064 .005811 .005559 .005306 28 27 26 25 24 23 22 ST 40 .846944 . Jo 2.12 .851997 s.Uo 2.08 .994947 4^20 .005053 20 41 42 43 44 9.847071 .847199 .847327 .847454 2.13 2.13 2.12 9.851872 .a51747 .851622 .851497 2 08 2.08 2 08 9.995199 .995452 .995705 .995957 4.22 4.22 4.20 10.004801 .004548 .004295 .004043 19 18 17 16 45 46 47 .847582 .847709 .847836 2.13 2.12 2.12 .851372 .851246 .851121 2.08 2 10 2.08 .996210 .996463 .996715 4.22 4.22 4.20 499 .003790 .003537 .003285 15 14 13 48 49 50 .847964 .848091 .848218 2. 13 2.12 2.12 2.12 .850998 .830870 .850745 2.08 2 10 2 .08 2 10 .996968 .997221 .997473 . 4 22 4.20 4.22 .003032 .002779 .002527 12 11 10 51 9.84a345 9.a50619 9 997726 400 10.002274 9 52 53 .848472 .848599 2 12 2 12 .850493 .850368 2 10 2.08 .997979 .998231 . 0116 .849990 849864 2.10 2.10 2 10 .998737 998989 .999242 4"20 4.22 .001263 .001011 .000758 5 4 3 58 .849232 2. 10 2.10 999495 4 .22 .000505 2 59 .849359 2.12 ! 849611 2. 12 .9911747 4.20 40.) .000253 1 60 9.849485 2.10 9 &:>485 2. 10 000000 .