ENGIN. LIBRARY UC-NRLF B 3 HE Mechanics Department Engineering Library ' FORMULAS IN GEAR ING THIRD EDITION. WITH PRACTICAL SUGGESTIONS. PROVIDENCE, R. I. BROWN & SHARPE MANUFACTURING COMPANY 1900. Engineering- Library , ":/; V ': DEPT. Entered according to Act of Congress, in the year 1900 by BROWN & SHARPE MF(r. CO., In the Office of the Librarian of Congress at Washington. Registered at Stationers' Hall, London, Eng. All rights reserved. .PREFACE. It is the aim, in the following pages, to condense as much as possible the solution of all problems in gearing which in the ordinary practice may be met with, to the exclusion of prob- lems dealing with transmission of power and strength of gearing. The simplest and briefest being the symbolical expression, it has, whenever available, been resorted to. The mathematics employed are of a simple kind, and will present no difficulty to anyone familiar with ordinary Algebra and the elements of Trigonometry. 735767 CONTENTS. FORMULAS IN GEARING. CHAPTER I. PAGB Systems of Gearing ... . . i CHAPTER II. Spur Gearing Formulas Table of Tooth Parts Comparative Sizes of Gear Teeth 4 CHAPTER III. Bevel Gears, Axes at Right Angles Formulas Bevel Gears, Axes at any Angle Formulas Undercut in Bevel Gears Diameter Incre- ment Tables for Angles of Edge and Angles of Face Tables of Natural Lines 1 1 CHAPTER IV. Worm and Worm Wheel, Formulas Undercut in Worm Wheels Table for gashing- Worm Wheels 34 CHAPTER V. Spiral or Screw Gearing Axes Parallel Axes at Right Angles Axes at any Angle General Formulas Table of Prime Num- bers and Factors 4 CHAPTER VI. Internal Gearing Internal Spur Gearing Internal Bevel Gears 58 CHAPTER VII. Gear Patterns 64 CHAPTER VIII. Dimensions and Form for Bevel Gear Cutters 67 CHAPTER IX. Directions for cutting Bevel Gears with Rotary Cutter 70 CHAPTER X. The Indexing of any Whole or Fractional Number 73 CHAPTER XL The Gearing of Lathes for Screw Cutting Simple Gearing Compound Gearing Cutting a Multiple Screw 77 FORMULAS IN GEARING. I. SYSTEMS OF GEARING. (Figs, i, 2.) There are in common use two systems of gearing, viz.: the involute and the epicycloidal. In the involute system the-outlines of the working parts of a tooth are single curves, which may be traced by a point in a flexible, inextensible cord being unwound from a circular disk the circumference of which is called the base circle, the disk being concentric with the pitch circle of the gear. In Fig. i the two base circles are represented as tangent to the line P P. This line (P P) is variously called " the line of pressure," '" the line of contact," or " the line of action." BROWN & SHARPE MFG. CO. In our practice this is drawn so as to make with a normal to the center line (O O') 14/4, or with the center line 75%. The rack of this system has teeth with straight sides, the two sides of a tooth making, together, an angle of 29 (twice This applies to gears having 30 teeth or more. For gears having less than 30 teeth special rules are followed, which are explained in our " Practical Treatise on Gearing." Fig. 2. In epicycloidal, or double-curve teeth, the formation of the curve changes at the pitch circle. The outline of the faces of epicycloidal teeth may be traced by a point in a circle rolling on the outside of pitch circle of a gear, and the flanks by a point in a circle rolling on the inside of the pitch circle. The faces of one gear must be traced by the same circle that traces the flanks of the engaging gear. In our practice the diameter of the rolling or describing circle is equal to the radius of a i5-tooth gear of the pitch required ; this is the base of the system. The same describing circle being used for all gears of the same pitch. PROVIDENCE, R. I. 3 The teeth of the rack of this system have double curves, which may be traced by the base circle rolling alternately on each side of the pitch line. An advantage of the involute over the epicycloidal tooth is, that in action gears having involute teeth may be separated a little from their normal positions without interfering with the angular velocity, which is not possible in any other kind of tooth. The obliquity of action is sometimes urged as an objection to involute teeth, but a full consideration of the subject will show that the importance of this has been greatly over-esti- mated. The tooth dimensions for both the involute and epicycloidal gears may be calculated from the formulas in Chapter II. BROWN & SHARPE MFG. CO. n. SPUR GEARING. (Figs. *, 4.) Two spur gears in action are comparable to two correspond- ing plain rollers whose surfaces are in contact, these surfaces representing the pitch circles of the gears. PITCH OF GEARS. For convenience of expression the pitch of gears may be stated as follows : Circular pitch is the distance from the center of one tooth to the center of the next tooth, measured on the pitch line. Diametral pitch is the number of teeth in a gear per inch of pitch diameter. That is, a gear that has, say, six teeth for each inch in pitch diameter is six diametral pitch, or, as the expres- sion is universally abbreviated, it is " six pitch." This is by far the most convenient way of expressing the relation of diameter to number of teeth. Module is the pitch diameter of a gear divided by the number of teeth. Chordal pitch is a term but little employed. It is the dis- tance from center to center of two adjacent teeth measured in a straight line. Gear Tooth i F>. Ctiordal Thickness of Teetn for Gears on a Basis of i Diametral Pitch. S=Distance from pitch line to top- of teeth. S Corrected=H+S. N= Number of teeth in gear. T=Chordal thickness of Tooth. T=D' sin. ft' H = Height of Arc. H = R ( i cos. ft') D'= Pitch Diameter. R= Pitch Radius. ^'=90 divided by the number of teeth. NOTE When tin 1 tooth of H Rear is measured, add the height of arc to iSi. Chordal Thickness OF GEAR TEETH. The dimensions of Tooth Parts as given in the tables, pages 6 to 9, are correct according to the definition of Tooth Parts ; but, as the pitch line of gears is curved, the thickness of a tooth will not be measured on the pitch line if the Caliper is set to the figures given in Tables of Tooth Parts. To measure the tooth accurately the Caliper must be set to the Chorclal See Formula on reverse page Gear Tooth Calipei PROVIDENCE, R. I. FORMULAS. N = number of teeth. s = addendum and module. / = thickness of tooth on pitch line. /= clearance at bottom of tooth. D" = working depth of tooth. D" + / = whole depth of tocJi. d pitch diameter. (f = outside diameter. P' = circular pitch. P^ = chord pitch. P = diametral pitch, C = center distance. P _N P' = - N N + 2 2 2 P 10 D" = 2 S p-I^lf * P' = dn where sin d d' - d + 2 s BROWN & SHARPE MFG. CO. GEAR WHEELS. TABLE OF TOOTH PARTS CIRCULAR PITCH IN FIRST COLUMN. Circular Pitch. Threads or Teeth per inch Linear . Diametral Pitch. Thickness of Tooth on Pitch Line. Addendum and Module. Working Depth of Tooth. & o5 213 121 < Whole Depth of Tooth. =L fiw Fj. PI oS a is T3 TJ *l P' i" f P t s D" +/ D"+/ P'X.31 P'X.335 2 i 2 1.5708 1.0000 .6366 1.2732 .7366 1.3732 .6200 .6700 If 8 IB" 1.6755 .9375 .5968 1.1937 .6906 1.2874 .5813 .6281 H 4 T 1.7952 .8750 .5570 1.1141 .6445 1.2016 .5425 .5863 H 8 laT 1.9333 .8125 .5173 1.0345 .5985 1.1158 .5038 .5444 11 2 3 2.0944 .7500 .4775 .9549 .5525 1.0299 .4650 .5025 Ifr 16 23 2.1855 .7187 .4576 .9151 .5294 .9870 .4456 .4816 11 JL 11 2.2848 .6875 4377 .8754 .5064 .9441 .4262 .4606 11 3 4 2.3562 .6666 .4244 .8488 .4910 .9154 .4133 .4466 1* 16 21 2.3936 .6562 4178 .8356 .4834 .9012 .4069 .4397 H 4 5 2.5133 .6250 .3979 .7958 .4604 .8583 .3875 .4188 i* 16 19 2.6456 .5937 .3780 .7560 .4374 .8156 .3681 .3978 il 8 9 2.7925 .5625 3581 .7162 .4143 .7724 .3488 .3769 i* if 2.9568 .5312 3382 .6764 .3913 .7295 .3294 .3559 i 1 3.1416 .5000 3183 .6366 .3683 .6866 .3100 .3350 15 10 1* 3.3510 .4687 2984 .5968 .3453 .6437 .2906 .3141 7 8 1 1 AT 3.5904 .4375 2785 .5570 .3223 .6007 2713 .2931 ia 3.8666 .4062 2586 -.5173 .2993 .5579 .2519 .2722 f 11 3.9270 .4000 2546 .5092 2946 .5492 2480 .2680 _L 4 n 4.1888 .3750 2387 .4775 2762 .5150 2325 .2513 11 16 if 4.5696 .3437 2189 .4377 .2532 .4720 2131 .2303 2 3 il 4.7124 .3333 2122 .4244 2455 .4577 2066 .2233 5 8 il 5.0265 .3125 1989 .3979 2301 .4291 1938 .2094 3 ' 5 il 5.2360 .3000 1910 .3820 2210 .4120 1860 .2010 JL. 7 if 5.4978 .2857 1819 .3638 2105 .3923 1771 .1914 J_ 16 11 5.5851 .2812 1790 .3581 2071 .3862 1744 .1884 PROVIDENCE, R. I. TABLE OF TOOTH PARTS. Continued. CIRCULAR PITCH IN FIRST COLUMN. Circular Pitch. Threads or Teeth per inch Linear. Diametral Pitch. Thickness of Tooth on Pitch Line. Addendum and Module. l~ fil bo o |H fo o3 $ i*'\ <~ J2 ^ ^ A -d r J* 1 3* *!* li 1-1 O> -M *r *l 3^ 1 2 i P' i" "p 7 P t s s D" +/ D'4-/. PX.31 PX.335 1 2 6.2832 .2500 .1592 .3183 .1842 .3433 .1550 .1675 k e 2| 7.0685 .2222 .1415 .2830 .1637 .3052 .1378 .1489 7 1C 2f 7.1808 .2187 .1393 .2785 .1611 .3003 .1356 .1466 A 7 21 7.3304 .2143 .1364 .2728 .1578 .2942 .1328 .1436 2 T 21 7.8540 .2000 .1273 .2546 .1473 .2746 .1240 .1340 3 8 2f 8.3776 .1875 .1194 .2387 .1381 .2575 .1163 .1256 4 11 2f 8.6394 .1818 .1158 .2316 .1340 .2498 .1127 .1218 1 T 3 9.4248 .1666 .1061 .2122 .1228 .2289 .1033 .1117 5 16 31 10.0531 .1562 .0995 .1989 .1151 .2146 .0969 .1047 To 31 10.4719 .1500 .0955 .1910 .1105 .2060 .0930 .1005 2 7 31 10.9956 .1429 .0909 .1819 .1052 .1962 .0886 .0957 1 i 4 12.5664 .1250 .0796 .1591 .0921 .1716 .0775 .0838 T 41 14.1372 .1111 .0707 .1415 .0818 .1526 .0689 .0744 T 5 15.7080 .1000 .0637 .1273 .0737 .1373 .0620 .0670 3 10 5i 16.7552 .0937 .0597 .1194 .0690 .1287 .0581 .0628 2 11 51 17.2788 .0909 .0579 .1158 .0670 .1249 .0564 .0609 1 T 6 18.8496 .0833 .0531 .1061 .0614 .1144 .0517 .0558 2 13 61 20.4203 .0769 .0489 .0978 .0566 .1055 .0477 .0515 1 7 7 21.9911 .0714 .0455 .0910 .0526 .0981 .0443 .0479 2 15 71 23.5619 .0666 .0425 .0850 .0492 .0917 .0414 .0446 1 T 8 25.1327 .0625 .0398 .0796 .0460 .0858 .0388 .0419 1 9 9 28.2743 .0555 .0354 .0707 .0409 .0763 .0344 .0372 1 10 10 31.4159 .0500 .0318 .0637 .0368 .0687 .0310 .0335 1 10 16 50.2655 .0312 .0199 .0398 .0230 .0429 .0194 .0209 1 20 20 62.8318 .0250 .0159 .0318 .0184 .0343 .0155 .0167 BROWN & SHARPE MFG. CO. GEAR WHEELS. TABLE OF TOOTH PARTS DIAMETRAL PITCH IN FIRST COLUMN. Diametral Pitch. Circular Pitch. Thickness of Tooth on Pitch Line. Addendum and Module. Working Depth of Tooth. 09 fl Q I* P P' t s D" +/. D"+/. i 6.2832 3.1416 2.0000 4.0000 2.3142 4.3142 I 4.1888 2.0944 1.3333 2.6666 1.5428 2.8761 1 3.1416 1.5708. 1.0000 2.0000 1.1571 2.1571 1J 2.5133 1.2566 .8000 1.6000 .9257 1.7257 !i 2.0944 1.0472 .6666 1.3333 .7714 1.4381 If 1.7952 .8976 .5714 1.1429 .6612 1.2326 2 1.5708 .7854 .5000 1.0000 .5785 1.0785 2J 1.3963 .6981 .4444 .8888 .5143 .9587 2i 1.2566 .6283 .4000 .8000 .4628 .8628 2f 1.1424 .5712 .3636 .7273 .4208 .7844 3 1.0472 .5236 .3333 .6666 .3857 .7190 8J .8976 .4488 .2857 .5714 .3306 .6163 4 .7854 .3927 .2500 .5000 .2893 .5393 5 .6283 .3142 .2000 .4000 .2314 .4314 6 .5236 .2618 .1666 .3333 .1928 .3595 7 .4488 .2244 .1429 .2857 .1653 .3081 8 .3927 .1963 .1250 .2500 .1446 .2696 9 .3491 .1745 .1111 .2222 .1286 .2397 10 .3142 .1571 .1000 .2000 .1157 .2157 11 .2856 .1428 .0909 .1818 .1052 .1961 12 .2618 .1309 0833 .1666 .0964 .1798 13 .2417 .1208 .0769 .1538 .0890 .1659 14 .2244 .1122 .0714 .1429 .0826 .1541 PROVIDENCE, R. I. TABLE OF TOOTH PAKTS Continued. DIAMETRAL PITCH IN FIRST COLUMN. M Diametral Pitch. Circular Pitch. Thickness of Tooth on Pitch Line. Addendum and Module. Working Depth of Tooth. rv ^^ & Q tl SI 0^ r 3 P'. t. 8. D". +/. D" + / 15 .2094 .1047 .0866 .1333 .0771 .1438 16 .1963 .0982 .0625 .1250 .0723 .1348 17 .1848 .0924 .0588 .1176 .0681 .1269 18 .1745 .0873 .0555 .1111 .C643 .1198 19 .1653 .0827 .0526 .1053 .0609 .1135 20 .1571 .0785 .0500 .1000 .0579 .1079 22 .1428 .0714 .0455 .0909 .0526 .0980 24 .1309 .0654 .0417 .0833 .0482 .0898 26 .1208 .0604 .0385 .0769 .0445 .0829 28 .1122 .0561 .0357 .0714 .0413 .0770 30 .1047 .0524 .0333 .0666 .0386 .0719 32 .0982 .0491 .0312 .0625 .0362 .0674 34 .0924 .0462 .0294 .0588 .0340 .0634 36 .0873 .0436 .0278 .0555 .0321 .0599 38 .0827 .0413 .0263 .0526 .0304 .0568 40 .0785 .0393 .0250 .0500 .0289 .0539 42 .0748 .0374 .0238 .0476 .0275 .0514 44 .0714 .0357 .0227 .0455 .0263 .0490 46 .0683 .0341 .0217 .0435 .0252 .0469 48 .0654 .0327 .0208 .0417 .0241 .0449 50 .0628 .0314 .0200 .0400 .0231 .0431 56 .0561 .0280 .0178 .0357 .0207 .0385 60 .0524 .0262 .0166 .0333 .0193 .0360 10 BROWN & SHARPE MFG. CO. Comparative Sizes of Gear Teeth. Involute. 8 P Fig. 4. PROVIDENCE, R. I. IT CHAPTER III. BEVEL GEARS. AXES AT RIGHT ANGLES. (Fig. 5.) 12 BROWN & SHARPE MFG. CO. FORMULAS. N-= [Number of teeth j P = diametral pitch. P' = circular pitch. a a = } center angle = angle of edge j gear. a b \ or pitch angle ( pinion. ft = angle of top. fi' angle of bottom. g = [angle of face A = apex distance from pitch circle. A' = apex distance from large bottom of tooth. d = pitch diameter. d' = outside diameter. s = addendum and module. / = thickness of tooth at pitch line. / = clearance at bottom of tooth. D" = working depth of tooth. D" + /= whole depth of tooth. 2 a = diameter increment. b distance from top of tooth to plane of pitch circle, F = width of face. PROVIDENCE, R. I. 13 tan .=-*--; tan . = ;or tan /? = - N A tan /S' = sng2 + T == 2.314 sn . tan ^ = a - 90 - K + ft) \g b = 90 - = a ft' (See Note, page 69.) A= 2 P sin a N A'= ^ A' = cos p' 2 P sin a cos A',= - - * -, cos ft sin ( + /?) P, N 2 A sin a P 7T 2 a = 2 s cos <* (Seepage 20.) a for gear = b for pinion tf for pinion = * for gear p _ ?T_ - J= JL = = .3183?' j = A tan/? P 71 s + / = . 3685 P' s + / = A tan ft' N~ N~ ~A~ F = 1 + _ or = 2 P' to 3 P' P 7 NOTE. Formulas containing notations without the designating letters a and b apply equally to either gear or pinion. If wanted for one or the other, the respective letters are simply attached. BROWN & SHARPE MFG. CO. BEVEL GEARS WITH AXES AT ANY ANGLE. Pinion Fly. 6. PROVIDENCE, R. I, FORMULAS. C = angle formed by axes of gears. N ; = } number of teeth ) ^ on . P = diametral pitch. P' = circular pitch. ' "l=\ an le of ed S e = P itch an S le | pfnior . ft = angle of top. ft angle of bottom. = [angle of face | S^on. = [cutting angle \^ on A = apex distance from pitch circle. A' = apex distance from large bottom of tooth. d= pitch diameter. d' = outside diameter. 2 a = diameter increment. b = distance from top of tooth to plane of pitch circle. NOTE. The formulas for tooth parts as given on page 5 apply equally to these cases. 1 6 BROWN & SHARPE MFG. CO. tan a a = -^ - ; or cot a a = - 4- cot C ^ + cos C Na sm C N a sin C N tan tx b = - ; or cot a b = ^ + cot C N,,, N 6 sm C NOTE. The above formulas are correct only for values of C less than 90 If C is greater than 90, consult page 18. a 2 sm a s tan p - - ; or tan p = ; tan ft' = **+ = 2.314 sn nr . tan ft , = 5+ . 9 o (^ tt + /?) for Cases I and II. ga = ft, for Case III. ga 9 o (- /?) for Case IV. 5-6 = 90 (-*,+/?) h a ^ (See page 6 9 . ) N f for Cases I and II, a = a -\- z a \ . . . TTT TTT I and pinions in Cases III and IV. d' = d, for gear in Case III. d' = d 2 a, for gear in Case IV. 2 a -=2s cos a b = s sin # NOTE. Formulas containing notations without the designating letters a and t> apply equally to either gear or pinion. If wanted for one or the other, the respective letters are simply attached. PROVIDENCE, R. I. l8 BROWN & SHARPE MFG. CO. The formulas given for a a and a b (when C, N a and N 6 are known) undergo some modifications for values of C greater than 90. For bevel gears at any angle but 90 we may distinguish four cases ; C, N , N 6 being given. /. Case. See pages 14 and 16. II. Case. C is greater than 90. sin (180 C) sin (180 C tan of a = L- ; tan a b = __ _ 6 -cos(i8o-C) a -cos(iSo-C } N a N 6 ///. Case. (x a = 90 ; a b = C 90 IV. Case. sinE sin E 1ST NT cos E - 1N - & _ a - cos E N a N 6 For an example to apply to Case III., the following condi- tion must be fulfilled : N a sin (C - 90) = N b To distinguish whether a given example belongs to Case II. or case IV., we are guided by the following condition : T ^j /p. \ j smaller than N 6 , we have Case II. iM a sm ({, 90 ) -j ] +v,an XT r^ v,o^^ case IV. PROVIDENCE, R. I. 19 UNDERCUT IN BEVEL GEARS. By undercut in gears is understood a special formation of the tooth, which may be explained by saying that the elements of the tooth below the pitch line are nearer the center line of the tooth than those on the pitch line. Such a tooth outline is to be found only in gears with few teeth. In a pair of bevel gears where the pinion is low-numbered and the ratio high, we are apt to have undercut. For a pair of running gears this condition presents no objection. Should, however, these gears be intended as patterns to cast from, they would be found use- less, from the fact that they would not draw out of the sand. We have stated on page 2 (see Fig. i) that the base of our involute system is the 14^ pressure angle. If a pair of bevel gears with teeth constructed on this basis have undercut, we can nearly eliminate the undercut and for the practical work- ing this is quite sufficient by taking as a basis for the con- struction of the tooth outline a pressure angle of 20. The question now is : When do we, and when do we not have undercut ? Let there be : N = number of teeth in gear. n = number of teeth in pinion. n* = 4 where we have undercut for/ less than 30. This formula is strictly correct for epicycloidal gears only. It is, however, used as a safe and efficient approximation for the involute system. 20 BROWN & SHARPE MFG. CO. DIAMETER INCREMENT. 2 a. RULE. The ratio being given or determined, to find the outside diameter divide figures given in table for large and small gear by pitch (P; and add quotient to pitch diameter. RATIO. GEARS. RATIO. GEARS. RATIO. GEARS. Large Small Large Small Large SmalJ 1 00 1:1 .41 1.41 1 65 1.05 1.70 4.40 .45 1.94 1.05 .37 1.42 1.67 5:3 1.03 1.72 4 50 9:2 .44 1.95 1.07 .36 .43 1.70 1.01 1.73 4.60 .42 1 95 1.10 .35 .44 1.75 7:4 .99 1.74 4.80 .41 1.96 1.11 10:9 .34 .46 1.80 9:5 .97 1.75 5 00 5:1 .39 1.96 1.12 .33 46 1.85 .95 1.76 5.20 .38 | 1.96 1.13 9:8 .33 .47 1 90 .93 1 77 5.40 .37 1.96 1.14 8:7 .32 .49 1 95 .91 1.78 5.60 .36 1.97 1.15 1.31 .50 2 00 2:1 .89 .79 5.80 .34 1.97 1.16 1.30 .51 2.10 .87 .80 6.00 6:1 .33 1.97 .17 7:6 1.30 .52 2.20 .84 .81 6.20 .32 1 97 .18 1.29 1.53 2 25 9:4 .82 .82 6.40 .31 1.97 .19 1.28 1 53 2.30 .80 .83 6.60 .30 1 97 .20 6:5 1.28 1 54 2.33 7:3 .78 .84 6.80 .29 1 98 .23 1.27 1.55 2.40 .76 .85 7 00 7:1 .28 1.98 .25 5:4 1.25 1.56 2.50 5:2 .75 86 7.20 .27 1.98 .27 1.25 1.57 2.60 .73 .86 7.40 .27 1 98 .29 9:7 1.24 1.58 2.67 8:3 .71 .87 7.60 .26 1 98 1.30 1.22 1.59 2.70 .69 .87 7 80 .26 1.98 1.33 4:3 1.20 1.60 2.80 .67 .88 8 00 8:1 .25 1.98 1.35 1.18 1.61 2.90 .65 1.89 8.20 .24 1.98 1 37 1.17 1.61 3.00 3:1 .63 1.91 8 40 .24 1.98 1.40 7:5 1.16 1.62 3.20 .60 1.92 8.60 .23 1.98 1.43 10:7 1.15 1.63 3.33 .58 1 92 8.80 .23 1.98 1.45 1.13 1.65 3.40 .56 1 92 9.00 9:1 .22 1.99 1.50 3:2 1.11 1.66 3.50 7:2 .54 1.93 9.20 .22 1.99 1.53 1.10 1.67 3.60 .52 1 93 9.40 .21 1.99 1 55 1.09 1 67 3 80 .50 1.94 9.60 .21 2.00 1.58 1.08 1.68 4.00 4:1 .49 1.94 9.80 .20 2.00 1.60 8:5 1.07 1.68 4.20 .47 1.94 10.00 10:1 .20 i 2 00 1 NOTE. To be used only for bevel gears with axes at right angle. PROVIDENCE, R. I. 21 TABLES FOR ANGLES OF EDGE AND ANGLES OF FACE. The following four tables have been computed for the convenience in calculating datas for bevel gears with axes at right angle. They do not hold QQQ>& for bevel gears with axes at any other angle. To use the tables the number of teeth in gear and pinion must be known. Having located the number of teeth in the gear on the horizontal line of figures at the top of the table, and the num- ber of teeth in the pinion on the vertical line of figures on the left-hand side, we follow the two columns to the square formed by their intersections. The two angles found in the same square are the respective angles for gear and pinion. The tables are so arranged that the angle belonging to the gear is always placed above the angle for the pinion. 22 BROWN & SHARPE MFG. CO. TABLE i ANGLE OF EDGE. GEAR. 41 40|39 38 37 36 35 34 33 32 31 30 29 28 27 12 734i 73*18 paV 72*38 72"e 7 13* 71 's' 703+ 70' i' 6926 6350' 2lV 68V 2 1 *48 6731 22 M 6648 23*12 66V 23*s 6*19 6V 17V 1732 17 58 1886 18*55 1926 1359 ^034 13 78*25 17*35 71 59 I8*' 71 M 1 8*26 71*7' 18*53' /I) 39 I9*ef 70 9 19*51' 69*37' 20*23' GS's ao'ss 6830 2 1 *3li 6753 22*7' 67'| 6 22*45 66*34 23*86 65"sr 24*9 65*6 24*54 64*17' 25*43 14 71 9 I8*5l' 7043 13*17 70 is 19*45 6946 eoV 69 16 20*44 684S 21*5 68*12' 21*48 6737 22*Z3 6/ o 23o 6623 63*37 6S' 24*m' 64*59 25* T 64K 25*46 63*26 26V 62'36 27*24 15 69*54 2oV 69*e668s8 20*3412 iV 68*88 21 W 67 56 22*4 67*23 22*37' 66*48 23 M 66*12 23*48 65 3 24*27 64*53 esV 64 V 25*so' 63*2t 26*34' 62*39 272i C.I49 28*n' 60*S7 29J1 16 68V 21 V 68V 8148 674! 22*16 67*0 22*5d 6637 23*E3 662' 23*58 6526 24*34 6448 2SI2 64" 8 25*58 63*e& 26M 62V 27* 6l*Sfc' 28*4' 61*7 28 60 a i5 29*45 59*2i' 30*33' 17 6729 66* 23Y 66 27 65V 65' 6*43 64" 6 6326 6245 62%' 61 "is eo'tt 59"37 584* 5748' 2333 U46 244i 25'i7 25 54 2634 27 is 2/59 28*45 29 3z 30 n 31 16 32 iz 18 66"ie 2348 654* 24w 65V 24%6 64*S9 25V fa4 J 4 25*ES fea 1 ?*' 2b*M 6247 27 n b26 87*54 6l't3 28*3?' 60 36 29*22 5951 30*9 59*2' 3058 58'w 3i*w 57 l |6 32*44 56*19 33V 19 65*8 24*si 64*1* 64"e 6326 6849 62' 10 61*30 6048 60'4 59 J m 58"3d 5739 56 55si' 54*52 2S4 B5*S8 26 C7 11 27 so 28*30 29 ti 2956 30V 31*30 32 ei A3 (4 34 9 35'8' PINION. 20 164V 26*o' 63'2 62*51 26*3*' 27V 62"i4 6I"S7 60 U S7 60 U iS 59 J 3' 5847' 58V 57 U K> 56 19 5524 54"28 53*28 3028 JU o 3250 33 41 i436 3b32 3637 21 68*53 27*7' 62*8 6I42 274d 28*18 61*4' 2856 60"es 29*35 sa^' 30*is 59* ' 30*58' 58" 31*42 57 L 32 32*28 56 '43 33*17 55-53 34*7' 55 J o 35*o' 54-5' 35*55 53*7 36*53' 52*8 37sz' 22 61*47 61* ' 60*34 53S6 59 IS 5834 5751 576' 56*13 55 y z9 54*38 53*45 52"43 51*50 50*49' 2fi3 2849 29 ?6 304 30 45 3)26 329 32 S4 3341 3431 3522 36i5 37H 38 10 39)1 23 60V 60V 59*28 5849 58*8 57*25 scV 55*55 5SV 54 e 53*26 52*3.' 51*35 5036 4^34 eg 5 * 29S4J3032 31 ti 31 52 32 35 33 13 34s 3453 3542 363* 37*89 3&8S 3924 4026 24 S9J9 30V 59Y 30 SB 5823 57 '44 57 l e 5619 55 U 33 5447 53*58 53*7 52*15 5I20 SOa 43 24 48 31 37 32 it 32 sa 334i 3427 3bi3 36*2 3653 3745 38*40' 3937 4036 41 3* 25 se 3lV seV 32V 5726 %4o 56*40 33*eo' 55*57 34*a ssV 34*47 54*88 35*32' 53 36*20 52*st 37*3* 52V 38V 51*7' 38*53' 50i2 3948' 49V 40*46 48" 14 4146 47*l 42*4 26 157*37 5658 56" 19 5537 54*54 54 16 53M 52"3fr 51*46 50 J S4 soV 49* & 48 U 7 47 U 7 46*5 3223 33 e 3341 3423 3b6 35so 36 3* 3/24 38)4 396 39 59 4055 4153 4253 43 K 27 56"JS 5559 ss"j 54 U 36 53"S3 53 U 7 52*21 51 ^ SO'in 49 U 5I 48 U 57 4V 473' 42*57 46*2 43*58 4-5* 33 a 34i 344? 3!>24 367 3bs3 3/39 38e? 3317 409 41 3 42o 28 55*w 34* 55> 35 o' 54*19 3SV 53"37 52"w 52 J 8 5l*zo 5032 494l 48"48 47 U 5S 46^58 46*0 45* 3623 3/7 3/sz 3S40 &<* 40 19 41 12 42 S 43a 44" o 29 54V 54*3 53a S2 1 39 5l55 51*9 soV 43 J 32 40*28 484i 4I* 4749 42* ' 46V 43*6' 45^8 44*z' 45* 35 16 35*57 36*38 37 ei 38 s 38 s> 3339 30 153*4* 36*,2 S3*7|S2*t6 36S3]37V 5142' 50S8 SO'e 4924 483S 47 465I 45"56 45 38)8 39 ddw 40 M 4(25 4217 439 44*4 31 5254 37V 52i3]5lV 5048 50Y 49",6 4828 47 4647 45 J S4 45* 3747 3*W 39 w 39 58 4044 4-1 '32 4221 43)3 446 32 52'z 5 1'wSO'w 49*54 49" 9 48H 4734 46*44 4S J 5J 45* 37 ss 384039*88 40 si 41*38 42 26 43 16 447 X 51*10 50*E9l4946 492 48 16 47* 4641 45si 44*9 45* s\ 38so 393i 40*4 40 z 41 44 42zi 43i 34 50*20 49~48SS 48*' 47*25 "3 4S"so 45* 3940 40'4lV 4I49 4V>35 43 6 22 44)0' 35 49*3i 48%8|4e*s 47"n 46"35 45 < 4S 45" 4023 4lie 41 55 4239 4345 44 12 36 48*43 41*17 48" 42 o 47 U (7 4243 46*33 43*27 4547 44* 45 37 47 42*4 47*14 42*44 463 433Q 454* 44V 45 38 47'io 42*55 46'w 43-3S 45"*s 44-*is 45* 39 46*26 4334 4543 44*7 45* 40 |45*4z 44*, 8 45 4 45' PROVIDENCE, R. I. TABLE i. (Continued^ ANGLE OF EDGE. GEAR. 2625242322 21 20l9 18 17 16 5 I4 I3 I2 12 si 64*22 6326 6227 27*33 60.s 2837 2945 30 sal 32 16 537 36*53 51 80492447 17 38*40 403C 45 \f* 63 ee 6231 56*561 5 5 37 33 34 23 35 so s 4055 47 7 42*53 45 594S 30*5 5840 31*20 7 x 56 19 55 o 32 28 33 41 5337 35"ol36*z3' 52 8 3752 43 e' 45 59*2 30*58 50V 32o 3532 38 18 3848 45 53 SB 58 42' 51 EO 43*5* 48Z2 43 16 45* I7 5649 I/ 33 ii - 5547 5441 5332 36*28 51*0* 3742 38 o' 49 3* 48 ii 40"zj 41*43 18 *I5 35*4s SVv 51*57 4036 4633 42"|4327 53SI 36*9 5I38 38E2 SOX 49n 4043 4? 8 20 SO R 45 2 I 1 38 se 4958 40* z' 4848' 473*1 46*i 4340 41*21 42*3i 43V 4-5 48 30 47 23 47 " 17 46'io 43*so' 45 45* BROWN & SHARPE MFG. CO. TABLE 2. ANGLE OF EDGE. GEAR. 7271 686766656463 61 60595857 12 8033 9*? 80* 9*36 79* I0*| 79 6t 73 79 3Z 79 23 79 13 0*37 10*47 78*52 70*1 78 3d 78 19 78 7 II 53 77V I2*5i' 13 794* 10*14 7937 .0*23 7929 79zo 10*31 10*40 79*11 10*49 79 I 1851 784 IOW 78 31 78*20 il*JMll*4< 775 7746 77 12 2 14 79o 11*0 78*si 11*9 7641 7632 78*22 It* 38 77*51 II 59 77-40 77*28 12*20 12*32 76* 13*2/1 13*3* 76*26 76 ti. 348 rs^i ]445 74 i< 15*4 78% 77V 12*6 77 44 77 3* 7723 12*37 77*12 12*48 76*48 76 e 7S58 7S*44]7S'3i 75*15 14* * 1430 16 77* 77*7 76S7 '2 S3 13 3 1315 763* 13*26 76*22 13*38 76 10 I3SO 75*58 75% 7449 74*35 74 19 I5"|||1S2S 73*56| 73*40 17 76*43 13V 76* I3* 76*2i']76*id I3*39'| 13*50 7S* 14" z 7S4S 75 33 758 74*5* 74..' 18 7558 14 Z 7546 14*14 75 I4*2i'| I4~37 75 M 75*io 74*56 15*2 7445 15*15 74*31 74 17 74*3 15431 15*58 73*ie 16*58 72*29 12 7 I 1826 7040 19*20 19 75*13 4*47 75 r 14*59 74*49 74 3* 74* 2 3 15 II ! 15 24 74* to 15*50 73*56 16*4 73*42 16*18 73 as) 73*t: 16*32 16*47 72*si 7242 17 16 7220 17*3* 72*9 71*52 I7*5l1 18*8 |74*t| 15*3 7416 IS 44 74*3 I5*S7| 16" 10 73sd 73*37 16*23 73*9 I6si 72*5* 17*6 72^72*23 17*21 17*37 72*7 7I5! 1753 71*16 7059 18*4* I9 f 21 73 .8 734' I656 72*sp 17* K) 72 72 21 17 J* 17 is 726 17*5* 71 I 71 o 18 10 1826 18 43 19 o 7O43 19* ,7 70z*'|70 6 |73*T 16-59 72*47 17*3 72 19 17*41 72*4 175 71*49 71*34 1826 TIM 18*43 71* i 70*45 70*28 70*10 6952 69" 33 i 69 13 18 yj \9 is 1934 1950 68*54 20'27|2047|2I*6 68*4e68*t2|68*2 72a I7*$7 I8n 71*9 18'si 70V 70 JO I9* 70*14^ 69*57 I946l20*3 63 39 692C 202! 2040 . 18 tt 71*19 I8*4l' 71*5 70*49 70 e 34 70 17 I943 70* I959 89V 20*16 20*3*1 20s 68 50 68 3 2lid 2l*N 68 iz 67 52 67 3i 21 48 22 8 \ZZZ9 22 50 70*51' 19*9 70*36 70 ti' 70*5' I9*W 19*55 69 49 69 J2 69>5i 68V 68 20(1 202B204S2I 3 40 68 zi 2l'*20 1 21*39 33' 67 43 67*23 67 Z 66* 21 57 22 17 22 37 2258 23 19 2341 709 19V 693769V 69*4-' 207 20*0 20*39 20* 63 46 68*30 68 iz 21*30 2146 22*6 22* 67 34 67 is 6655 663*' 66 13 6Ss 2245 23 5 2326 2347 249 6529 24*31 27 V 69*10 66 54|68 e 38 6620 68*3 67 4i 67t6 67*8 664i 20*50 21*6 21*22' 21 57 22 IS 22*34 22*52 66*28 66*7 65*46 65*25 65 2 23*53 24*14 24*35 1 24*58 25*11 68 45 68*29 21*15 21*31 68*11 67*55' 21*4822*5' 67V 22Z3 22 67*19 67" | 22*59 MM 23*18 23 fc& Zi 64 53 24 63*sb 252i|25*46 26*io 6,747 67* ti 66*s* 66*36 66*17 6SS7 65*37 65*16 64 55 6434 64*iz 63*SO 63T26 Sfz 22*48 23*6 z 2343 243 25*5 2S 26 25 4 26io 26*3* 2658 6fe4 66*30 fetfit 65*51 65*33 6SV 64*si 6432 64* to 63*45 63 es'a' 22 S7 22V 23*12 23*SO J4 24* 2446 85 7 25*28 25*50 26 I 2634 26*57 27*21 2744 31 6*4Z 66' 23t8 23*35 666 23*1* 65466596510 24* li 24*31 64 SO 6430 64 9 1 63 48 63 63 3 24*6i 25*10 2S3(i 25*51 26* 62**b 16*3* Zb'si 27*20' 62 18 6I* 6544 6S* 65* 7 ' 235i 24*16 24*34 24*53 25V 64*46 64*2* ftt 25322SS2 6V*7 63 26*13 26*34|26*56 27I8 27*41 62*19 6I*M 61* 28V 617 28*53 60*4 29,9 5S6 6!>Z} 65V 24*37 62^43 6Z2i 61 st 6l*3&|6ru 24*56 25*isl2S*4l 25*53 26*13 26 S4|26S5 27*7 27 64*26 64*7 6347 63 26 63 S 6047|602i 3 28492913 2939304- 34 6443 fe425 25*.7 63*46' 2555 26*>4 265527 6245 62*13 62*,'6. 27 59 60 52 60 88 60 3 Z*w 2845 29*8 59V 57 30*23' 59*u 30*49' 58*27 31*33 63*4563' 26*3426*54 6246 6?. 25 62 4.' 6I4Z M 27*14 27* JS 27*56 28* 18 2841 29*3 t057 60T33 60 9 59 *5 59 i9 58 si 2927 2951 30 IS 3041 31 7 t*A*1i*rd 27*3 27 33 62*6 6145 6f *ri 27S* 28*<5 2837 28*59 i|60 is 59 si 30*9 30*33 - S837 . 3058 31*23 31*50 32* ri 4 6228 62 8 61*48 6) 27 6) s 2833 26S^ 604*60ti 29.6 293 59 S% S9 is 59 10 5&4b 58 20 57 5*167 28 57 39302 3025 3050 31 14314032 3259 **> 428 Si G048 602( 60*4 5941 29*i 59 18 58 S4 Stf 2934 295630i9 30 58S 3 Tad 3 1*55 57^39 32*21 57 is 1 56 46 56 19 32*47! 33*14 aiV 39 603I 6010 59*48 59*25 59 z 29 7 29 29 29 So 30 tt 30 35 30 58 39) 58%4) 57 so) 57 24 32>6 56 58 56 34 56 6 5537 40 60 57 6056 60 15 5953 29*3 93Z 59io 58*47 58 * 58 o 29V 2945 30 7 30283050 31 13 1 57 35 57jio 32*25 32*50 564*156 19 5552|5S2*|54S7 35*3 33*,6 34*8 3 ' A I 41 29*40 5939 59JI7 30*Zi 30*43* 31 5 57*45 32*5 57^ 32*39 33" 3 33 2 3354-3421 55, -t. 5444- 34*4U5 P I6 54-J6 35*44 53*37 30 e ,i S9*a*| 59*3 1 58*40 58ie 57;s5|5732 57" 8 32*5t 3141 3228 56*3)56 19 33*17 33*4i' 55 53 55 27 PROVIDENCE, R. I. TABLE 2. (Continued.) ANGLE OF EDGE. GEAR. 5655545352515049484746454443 42 12 77 54 77 42 77*5 I245 77V I3*o' 7646|763o 76V 75 se 13*36 75*4 14*19 14*37 743 IS57 13 76*w 13*4 13 18 13 32 76'l3 13*47 756e 7^46 75*2* 7Se 14 18 74*5i' IS*9' 74 15*28 74 15*47 (67 16 28 7246 17V 14 75*58 75*43 14*4 4I7' 75*28 I4*3i 75V 74*56 74*39 74"z 15*4 is'e IS39 16*87 73*44173*25 16*45 17*39 15 75V 7A44 lS*lfa 74V 74*12 73S5 8 72 S3 7239 72*18 71 7lV 71*10 70 46 70V 1531 1742 19 14 \99 16 74-3 15*57 7347 6*.3 73V 73i 16V 72*54 7235 72 71" 12 1745 te's 70*49 TOV 9V 9*3S 69V >9'59|2oV 20*51 17 737 7249 16 53 17 . 1729 T2"\i 17*47 71*54 71 70 52 7030 707 18*6 1826 930 1953 6943 69 17 2O*I7 20*43 68*5268 0,67*5* 18 749 71 53 18*7 71*34 7lis I84S 70*54 19*6 70*33 19*27 70*2 69'so 69V 69 3 6838 68 iz 67 V 67 17 203* 2057 21 2148 22 2243 19 7l w is 18*4S 7057 19 I 70*17 69 34 69' 684868 1943 20 20 2048 2135 67 S9 67 34 67 6 22*2^ 22*54 663866 10 23*22 23*50 65*39 24*2,' 20 70*2 19V 69*4 20*.9 69 19 68*57 67 4d 67V 6657 66 V 6C2 21 25 2148 22 V 23 3 23 23V 65*33 65*3 64*32 25 21 69V 69* 2OV 20V 6737 67* 3 66*4B 66* 6Ssi 65*t8 64*59 64* 63*S8 22 2S 2247 23 12 2338 24 S 2432 25* 25*3 26 63*26 26*34 22 S 68 33 68 12 67 50 67 27 674 66*40 S 6549 65 13 64 55 22io 2233 22*56 23*20 24J7 25*5 64t6 63*57 25V 26*3 63* 62*54 26*3* 27*6 62*21 27V 67*18 22*42 23 S 65*44 65*18 64*51 24*16 24*42 25*9 64*34 63 55 63 26 62*56 25*36 26* s 26V 27*A 62V 6l*St 61* 23*12 23 V 6S|4 64*48 64*22 63V 63V 62*57 62*27 6l*s 61*2) 60 V 60is 2358 2422 25 12 2538 266 263* 27*3 65*57 6533 243 2*27 65*9 24*5.' 25*, 5 63*53(63*161 6ZVJ62V 61*59 61*29 6O*S7 28%i 39*3' 26*34 27*2 273l 28 29 ) 30 io G5 6 6442 64*ie 63*52 63* 62* 62*34 27* . 62*3 60 31 59V 59*B 58 so 27 29 27 57 28 57 29 30 i 30V 3l'io se 3I*4 ?Z 28 29 30 3] 32 33 34 35 36 37 38 39 40 41 64' ib 63V 25*4426*9' 62*34 61*3 61* ' 60V 60*7 26 3* 27 27 26 27 50 28 22 2V 29ti 29*! S9V 59*a soV 3oV 5e*i _. l*32 32*7 S7i4 63*6 63*1 62*3* 62*9 26*34 26*S9 27V 27*si 61*42 28*8 6045 60*i5 594S 59*i3 SCT4t 58*7 57 S6*W 28*46 29*15 29*45 30i5 3047 3I*2 31*53 32* 33*4 33V 62V 62*iz 61*45 6) 27*23 27*48 28*15 29*9 60*23 59 53| 59 23 58 52 58* 57*46 57 e i2 56*37 56* SI* 6 3l*4i 324: 32*48 29*37 30*7 3037 33 34*o 5523 34*7 5T27 se'ss 28)1 28 37 29 3 293.' 29 99 30 ta 30 s* 31 V 32o 32 33*7 33*4,' *C28 34*C5 35*32 28*l 29*24 29V 30*19 50 V 3 59 ia &8 4t 58 >2 57*. 3lV 32* ' 32 57*6 rsci 5526 54V 54 it 53V 33*24 3359 34*34 35*l 5*48 36*26 60 is S9*48 59*i 29*4530", 30*3*3 56V 56 19 55 *s 55' B4 H 32 6 3^37 33 8 33 41 34 IS 34*4935*2536 S3*M 53*2 36V 37ie 592959*2 58*34 58*5 30*31 30*58 31*26 31*55 3lV 57 36 57 6 563 56*2 32 54 33 26 33V 55*30 54*56 54*2 5345 53 8 52*29 5ISO 3430 3SV 35 39 36 is 36V 37 3 38' 5844 58 3*I6 3*4* 3^ 9 5547 55'is 54* 34*13 34*45 35*19 54V 53V 52V 5Z 5 3S S3 36 28 37 8 51* ' 3o' 58*0 32 o S7*3i 57 32283257 3327 3357 5So 35*0 5428 53 54 53 20 36*40 52*44 37*16 37E7 5l3o 50 i 38*30 39*9 39*48 57 it 5648 56*19 5549 55*ia 54 47 54 IB 53V 53*8 32 44 33 w 3341 35*45 36*18 36*52 37*27 38*3 52 33 BIS? Bl*20 50*43 38 4o' 39 >7 49V 39*56 40*3^ 56 3t 56*4.' 55 M 35 s 33 EB 33 56 34 2S 34 sb 35 26 35 363i 37 A 37 37 38 13 38 48 39 2S v. 50ss 49 s* 49 40V 4043 41*23 55si 55i 54*52 5423 53s 35*8 35*37 36*9 51*3 3 42| 37l4| 37481 38*22 50*27 494 38" 57 39*33-40' 49*i 42 * 559 3451 3S2i' 5339 53*7 52*3 52*3 r2i 36'53 37 4 37*57 38"3i 5lt 5054 50*19 434a 49S 396 39V,' 47 48 47*?' 40* 3S32 3* 3734386 3840 39)4 3948402441 SS 433* 5348J53I7 36*12 52)6 3643 37*2 37*44 5l*4s'Sl it SO 39 50 s' 49 30 48 54 48' 47*40 47* 46 22 45V 385 38483921 3955403041 f, 41 43 42 20 42 59 43 44 ,9 52*3* 52*8 'n 37*5Tj38'24|38'6|39'29|40'i 47*36 46*5S 42*z4 43* i' 46*20 41/40 4340 44-20 26 BROWN & SHARPE MFG. CO, TABLE ANGLE OF FACE. GEAR. 1140393837363534 333231 30292827 12 1 3'37113-s 70'ai 70' 14" IB 14*39 70*6' 69^ 15 69*s 15 4- 15 49 67*4 16 67is 1927 5' J633'62-9 13 I53*||6' 68*4 I6"8 67*43 16 51 67' 9 66*33 65, 6 62*i 14 6 /5JI6 a >3. 68*0 16*59 17*4.4 67*2966*5 65*8 9 64*30 63*6 2066 62*20 22*,.T 60*41 15 67*. 66 Va 14654 19 n 653 20 I 63V 23 10 60*2 23 S 59*JS83|S7'4. 16 18 V 19 I9'35 ZO * 64*5i 64*2i 21 ' 63*V iS\ 57*< 17 205< 2lV 63*4 63% t/Vi 62>. 22 6lVo 2353 60*15 24 10 275s 18 >|92I\7 6035 24 , S95l 24 2657 56*39 28z 5449J5350I5247 19 [28 to] 22 4 >i"*t\e>l'\ 352 60*4<4 24t 25i 2537 58*37 4261 2738 28 574 S+, 29561304: 53 2f 51*14 ,23*aJ24 '6I*3060 < 5J 125*6 59^ Ukt 2655 5725 2.71 28 15 28*58 5549 2944 Si"*. 5458 54* 33 ' 50* 21 s 594 26 is 58*26 26 53 574* 28* *|33atj34*a 5O*5J I 254269 2653 272 28* 56*a< 28 6551 SM 23 30 s 54*7 49VJ 2836 55*3 29*4 35 a 544- an 53*6 32' 333i 34-2? 36,*l37^t 4-ft-'5o|47 i7H>-62 275728*3 50 34"i 49*o|49l!i 36 47!, rS 56 523*151 35 , 5pM49j 36*5 7 3 74-H 3 84 j| 3 941 46*i5 30 , \30*s 53e 35'a, 49% 38 46 39*55 40 SI 45 <> ,oU4 6 r|43 3I3 31 39 t/ 54J533 32V) 3331 353 1549 50 34 4 94 s 48*s$ 4^ 37Ss 47% 38 , 46*,o 404 41 i J32"z IssWstM 335 51,, r. \SZii 3338 51 34 n 3539 4750 4f,d 3373436 Slaa 50so 35i5 3 5 56 387 31 |34"S3|353 1504- (149 57 36 49i3 48t 3735 4739 3 6 Si 46*3 74S , 3941 45% 403Z 41 24 45*,7 42l 4t*M 1 354* 36*2 7 50 49 7 376 4049 4138 36 9 37 e 38 e o|38 C 4t 46*46 4558 40 45 45%. 40?; 42 2 e 3752 38" t 48*2 47 z 7 38sj 40"le 458 41 44t| 4149 4319 47lJ46a9 4554 45a 424i ifa 43*34 |4S52J45*8 4248 J4047|4/ >a 145% Jk ID I . u ^4 142 " 41 PROVIDENCE, R. I. TABLE $. (Continued.) ANGLE OF FACE. GEAR. = 90" - (ex b + (See page 13.) 28 TABLE 4 ANGLE OF FACE. GEAR. V 54, 9* Z \9' 9 \y 18 9*26 9 3$ 3 17 si 77*42 rfmtrim if a' ,, . . " 56 12 7 IS 31 75 20 75 7 74 M 74447427 TABLE 4. (Continued.) ANGLE OF FACE. GEAR. 29 56 55 54 53 52 51 50 49 48 47 46 45 44 4.3142 * i * \z W*6' 75 54 & *.Z8 75 4 039 75 9' 0*5Z 4 si 1* 3' 7437 r i 4 IS l"30 358 "4^ 339 *sa r 3zi 2* ii 253 2*23* 7237 2"4i 2.5 3!' |3%9' 1*51 7f 25 13 !"' ri 1*28 T4Z 1*5* Z"8 Z20 2 37 2*51 3*7 3*23' 3"43 6837 7*4 BflS 6& *>; 6729 8*40 67*4' K !& 85 544 08' 5*16 "** 6444 20*53 6415 2;z4ksz' 63 44^63 IP' 20 7*44 tfri lfc"i' 6*3" 16* 19' 6/4V 8*40' 67*I8' 19* 66*54 9 w z6 6630 9*41' els zo'i 65*38' 0*Z5 65* r 0*4^ 44 1 ZflJl 21*33 Z25 63* II' zrazi zar Sa&r*: 21 18*39 6iV I8>r 679' 9*16' 6646 3*37 66*23 1 6^' fW 657 21*3' 64*39 21* Z7 64 ii' 21*52 63*42 22*17 3*13' 2'43 62 4|' ZTlO 6Z8 23*38-^8- 61*34] 61 22 3*3Z 6638 I9'5t 6616 20*1^ 6552 20*33 65*27 1?? SS 64 16 % 63* li 6243 62*,,' >*J*AJ 61*40 61*7' 60*3z]5956 23 20 U 2* 65* Ai- 3 % - 65 23 z c; 6458 1*29 6433 i"5e 64*8' ZZTii 6344 2e-3? 6313 23* e' 6Z44 23* Z7 2*15 23*54 61*44 4ai 61* 13 2f 6044 25*18 606 25'4726*I8 59*31 58*54 24 ar 9 6455 21^39 6431 22*1 64*5' 2?Z4 6340 22*46 63*14 23* JO* 62*46 23*36 62*19 24* 61*48 2426 61*18 * 6047 5"ai 60.5' 25*43 594.' 26"zo 596 26|5I 27*Z3 58*3.15/53' 25 22*11 64s 223* 6339' 22*56 63*14 irnr 6248 234t' 62V 24*7* 61*53' 24*3i 61*24 24*57 60*53 25*^ 60* zz 25*si 59*50 26*ZO 59* IB 26*59 58*44 27*z. Sl*d 27*SZ2B*2( 5/3256*54 26 23" 3' 63*,S w 62 4 234> 62 sa 24*13 61*56 Ki 25*1' 60*59 25*Z8 6030 25*53 5959 0S ft 5821 27> 5747 28*1 5/11 Z8*429z7 56*3455*55 27 23*55' 6j!2J 24*16 6158 24*40 tfr* 25*5' 61' ri zyzs 60*37 25*55 60*7 26*zz STfn 26*48* 595' 27*0 58*33 27*46 58* 2*I6 5726 Z8^ 56*51 Z9*|9 56,5 29*szJ30*7 553854*59 28 2S;7 6*V 6^1 25*56' 6014 26*^ 59-46 2C*4 59*16 27*15 5*4*45 2r 49 z 37"I6 484Z 3738^ 48*I'472Q 37 3t*4S*^ 5443 32*1* 54*20 3*40 5350 33 8' 53 18 33*38 52*4 34" 9 5ZI3 34> 5I40 35*12 51*4- 354% 50* 36" 1 495 36"S 4915 3 V 2 4837 38*4 47S6 38*42 39jzo 4/l6'k35 38 32-E7 549' 3Tss 5338 33^4 53 3 8 S" sl 5238 34*zz 524 3454 51*30 3S V Z4 50*56 3s;si 50Z 36*23 4345 37*3 439 */"38 483 2 38*14 4752 38*5 4f3 39*28 40*7 jgw 39 3V 10' S3 6 2ft 3333 ssi 34'7 51z 34*3^ 51*54 35*7 5I2I *37 50*4 36*9 50* IS* 36 U 4I 4939 37*15 493 37"48 48 ZC 38*24 47*4. *r 47io 39*3 4li 40*i3l40"5J 45*4545-7 40 Ws* Sfc< 34*21 52*17 34'50 51*46 35*18 5f4 3S4 50*4 36> 508 36*53 49*3< 37*Z5 48*5-7 37*5 4^_ 38*3 47*45 39*8 47'6 3944 462 402 454 40*S'|4I*37 45*8'k4*Z5 41 34*3* 529" 35'3 51*37 35-3 51*7 36*1 50*33 36*3 50*1 37*3 49*z 37*35- 4%S_ 5V 7 4-817 38*4 47*41 a 39'5 462 40"n 45*4 4TS 457 41*44 42*Zt 4443'44 42 35*14 51*30 3V43 5s4 36*1* 50*Z 36*42 49*54 37*13 49* a 37 e 44 48*4t 3^17 48*1 38*49 4737 39"z. 47*1 39"5 46 40*34 45'w 4*9 45 T 4l g 4 44*4 44 * 6 L* j 43*46| 43 4 BROWN & SHARPE MFG. CO. NATUKAL SINE. Deg. 0' 10' 20' SO' 40' 50' 60' .00000 .00291 .00581 .00872 .01163 .01454 .01745 89 1 .01745 .02036 .02326 .02617 .02908 .03199 .03489 i 88 2 .03489 .03780 .04071 .04361 .04652 .04943 .05233 87 3 .05233 .05524 .05814 .06104 .06395 .06685 .06975 86 4 .06975 .07265 .07555 .07845 .08135 .08425 .08715 85 5 .08715 .09005 .09295 .09584 .09874 .10163 .10452 84 6 .10452 .10742 .11031 .11320 .11609 .11898 .12186 83 7 .12186 .12475 .12764 . 13052 . 13341 . 13629 .13917 i 82 8 .13917 .14205 .14493 . 14780 .15068 . 15356 .15643 1 81 9 .15643 .15930 .16217 .16504 .16791 .17078 .17364 i 80 10 .17364 .17651 .17937 .18223 .18509 .18795 .19080 ! 79 11 .19080 .19366 .19651 .19936 .20221 .20506 .20791 ! 78 12 .20791 .21075 .21359 .21644 .21927 .22211 .22495 77 13 .22495 .22778 .23061 .23344 .23627 .23909 .24192 ! 76 14 .24192 .24474 .24756 .25038 .25319 .25600 .25881 75 15 .25881 .26162 .26443 .26723 .27004 .27284 .27563 : 74 16 .27563 .27843 .28122 .28401 .28680 .28958 .29237 i 73 17 .29237 .29515 .29793 .30070 .30347 .30624 .30901 72 18 .30901 .31178 .31454 .31730 .32006 .32281 .32556 71 19 .32556 .32831 .33106 .33380 .33654 .33928 .34202 1 70 20 .34202 .34475 .34748 .35020 35293 .35565 .35836 69 21 .35836 .36108 .36379 .36650 .36920 .37190 .37460 ! 68 22 .37460 .37730 .37999 .38268 .38536 .38805 .39073 67 23 .39073 .39340 .39607 .39874 .40141 .40407 .40673 I 66 24 .40673 .40939 .41204 .41469 .41733 .41998 .42261 i 65 25 .42261 .42525 .42788 .43051 .43313 .43575 .43837 ! 64 26 .43837 .44098 .44359 .44619 .44879 .45139 .45399 | 63 27 .45399 .45658 .45916 .46174 .46432 .46690 .46947 62 28 .46947 .47203 .47460 .47715 .47971 .48226 .48481 61 29 .48481 .48735 .48989 .49242 .49495 .49747 .50000 ! 60 30 .50000 .50251 .50503 .50753 .51004 .51254 .51503 59 31 .51503 .51752 .52001 .52249 .52497 .52745 .52991 58 32 .52991 .53238 .53484 .53730 .53975 .54219 .54463 57 33 .54463 .54707 .54950 .55193 . 55436 .55677 .55919 56 34 .55919 .56160 .56400 .56640 .56880 .57119 .57357 55 35 .57357 .57595 .57833 .58070 .58306 .58542 .58778 54 36 .58778 .59013 .59248 .59482 .59715 .59948 .60181 53 37 .60181 .60413 .60645 .60876 .61106 .61336 .61566 52 38 .61566 .61795 .62023 .62251 .62478 .62705 .62932 51 39 .62932 .63157 .63383 .63607 .63832 .64055 .64278 . 50 40 .64278 .64501 .64723 .64944 .65165 .65386 .65605 i 49 41 .65605 .65825 .66043 .66262 .66479 .66696 .66913 48 42 .66913 .67128 .67344 .67559 .67773 .67986 .68199 47 43 .68199 .68412 .68624 68835 .69046 .69256 .69465 46 44 .69465 .69674 .69883 .70090 .70298 .70504 .70710 | 45 60' 50' 40' 30' 20' 10' 0' re. NATUBAL COSINE. PROVIDENCE, R. I. NATUBAL SINE. Deg. 0' 10' 20' 30' 40' 50' w 45 .70710 .70916 .71120 .71325 .71528 .71731 .71934 44 46 1 .71934 .72135 .72336 .72537 .72737 .72936 .73135 43 47 .73135 .73333 73530 .73727 .73923 .74119 .74314 42 48 .74314 .74508 .74702 .74895 .75088 .75279 .75471 41 49 .75471 .75661 .75851 .76040 .76229 .76417 .76604 40 50 .76004 .76791 .76977 .77102 .77347 .77531 .77714 39 51 .77714 .77897 .78079 .78260 .78441 .78621 .78801 1 38 53 .78801 .78979 .79157 .79335 .79512 .79688 .79863 37 53 .79863 .80038 .80212 .80385 .80558 .80730 .80901 1 36 54 .80901- .81072 .81242 .81411 .81580 .81748 .81915 35 55 .81915 .82081 .82247 .82412 .82577 .82740 .82903 34 56 .82903 .83066 .83227 .83388 .83548 .83708 .83867 33 57 .83867 .84025 .84182 .84339 .84495 .84650 .84804 32 58 .84804 .84958 .85111 .85264 .85415 .85566 .85716 31 59 .85716 .85866 .86014 .86162 .86310 .86456 .86602 30 60 .86602 .86747 .86892 .87035 .87178 .87320 .87462 29 61 .87462 .87602 .87742 .87881 .88020 .88157 .88294 28 62 .88294 .88430 .88566 .88701 .88835 .88968 .89100 27 63 .89100 .89232 .89363 .89493 .89622 .89751 .89879 26 64 .89879 .90006 .90132 .90258 .90383 .90507 .90630 25 65 .90630 .90753 .90875 .90996 .91116 .91235 .91354 24 66 .91354 .91472 .91589 .91706 .91821 .91936 .92050 23 67 .92050 .92163 .92276 .92388 .92498 .92609 .92718 22 68 .92718 .92827 .92934 .93041 .93148 .93253 .93358 21 69 .93358 .93461 .93565 .93667 .93768 .93869 .93969 20 70 .93969 .94068 .94166 .94264 .94360 .94456 .94551 19 71 .94551 .94646 .94789 .94832 .94924 .95015 .95105 18 '72 .95105 .95195 .95283 .95371 .95458 .95545 .95630 17 73 .95630 .95715 .95799 .95882 .95964 .96045 .96126 16 74 .96126 .96205 . 96284 .96363 .96440 .96516 .96592 15 75 .96592 .96667 .96741 .96814 .96887 .96958 .97029 14 76 .97029 .97099 .97168 .97237 .97304 .97371 .97437 13 77 .97437 .97502 .97566 .9762!) .97692 .97753 .97814 12 78 .97814 .97874 .97934 .97992 .98050 .98106 .98162 11 79 .98162 .98217 . 98272 .98325 .98378 .98429 .98480 10 80 .98480 .98530 .98580 .98628 .98676 .98722 .98768 9 81 .98768 .98813 .98858 .98901 .98944 .98985 .99026 8 82 .99026 .99066 .09106 .99144 .99182 .99218 .99254 7 83 .99254 .99289 .99323 .99357 .99389 .99421 .99452 6 84 .99452 .99482 .99511 .99539 .99567 .99593 .99619 5 85 .99619 .99644 .99668 .99691 .99714 .99735 .99756 4 86 .99756 .99776 .99795 99813 .99830 .99847 .99863 3 87 .99863 .99877 .99891 .99904 .99917 .99928 .99939 2 88 .99939 .99948 .99957 ! .99965 .99972 .99979 .99984 1 89 .99984 .99989 .99993 | .99996 .99998 .99999 1.0000 - 60' 50' 40' 30' 20' 10' 0' Deg. NATUKAL COSINE. BROWN & bHARPE MFG. CO. NATUKAL TANGENT. Deg. 0' 10' 20' 30' 40' 50' 60' .00000 .00290 .00581 .00872 .01163 .01454 .01745 89 1 .01745 .02036 .02327 .02618 .02909 .03200 .03492 88 2 .03492 .03783 .04074 .04366 .04657 .04949 .05240 87 3 .05240 .05532 .05824 .06116 .06408 .06700 .06992 86 4 .06992 .07285 .07577 .07870 .08162 .08455 .08748 85 5 .08748 .09042 .09335 .09628 .09922 .10216 .10510 84 6 .10510 . 10804 .11099 .11393 .11688 .11983 .12278 83 7 .12278 .12573 .12869 .13165 .13461 . 13757 .14054 ! 82 8 .14054 .14350 .14647 . 14945 .15242 .15540 .15838 81 9 .15838 .16136 .16435 .16734 .17033 .17332 M7632 : 80 10 .17632 .17932 .18233 .18533 .18834 .19136 . 19438 79 11 .19438 . 19740 .20042 .20345 .20648 .20951 .21255 78 12 .21255 .21559 .21864 .22169 .22474 .22780 .23086 77 13 .23086 .23393 .23700 .24007 .24315 .24624 .24932 76 14 .24932 .25242 .25551 .25861 .26172 .26483 .26794 75 15 .26794 .27106 .27419 .27732 .28046 .28360 .28674 74 16 .28674 .28989 .29305 .29621 .29938 .30255 .30573 73 17 .30573 .30891 .31210 .31529 .31850 32170 . 32492 72 18 .32492 .32813 .33136 .33459 .33783 .34107 .34432 71 19 .34432 .34758 .35084 .35411 .35739 .36067 .36397 70 20 .36397 .36726 .37057 .37388 .37720 .38053 .38386 69 21 .38386 .38720 .39055 .39391 .39727 .40064 .40402 68 22 .40402 .40741 .41080 .41421 .41762 .42104 .42447 67 23 .42447 .42791 .43135 .43481 .43827 .44174 .44522 66 24 .44522 .44871 .45221 .45572 .45924 .46277 .46630 65 25 .46630 .46985 .47341 .47697 .48055 .48413 .48773 64 26 .48773 .49133 .49495 .49858 .50221 .50586 .50952 63 27 .50952 .51319 .51687 .52056 .52427 .52798 .53170 62 28 .53170 .53544 .53919 .54295 .54672 .55051 .55430 61 29 .55430 .55811 .56193 .56577 .56961 .57847 .57735 60 30 .57735 .58123 .58513 .58904 .59297 .59690 .60086 59 31 .60086 .60482 .60880 .61280 .61680 .62083 .62486 58 32 .62486 .62892 .63298 .63707 .64116 .64528 .64940 57 33 .64940 .65355 .65771 .66188 .66607 .67028 .67450 56 34 .67450 .67874 .68300 .68728 .69157 .69588 .70020 55 35 .70020 .70455 .70891 .71329 .71769 .72210 .72654 54 36 .72654 .73099 .73546 .73996 .74447 .74900 .75355 53 37 .75355 .75812 .76271 .76732 .77195 .77661 .78128 52 38 .78128 .78598 .79069 .79543 .80019 .80497 80978 51 39 .80978 .81461 .81946 .82433 .82923 .83415 .83910 50 .40 .83910 .84406 .84906 .85408 .85912 .86419 . 86928 49 41 .86928 .87440 . 87955 .88472 .88992 .89515 .90040 48 42 .90040 .90568 .91099 .91633 .92169 .92709 .93S51 47 43 .93251 .93796 .94345 .94896 .95450 .96008 .96568 46 44 .96568 .97132 .97699 .98269 .98843 .99419 1.0000 45 - 60' 50' 40' 30' 20' 10' 0' Deg. NATURAL COTANGENT. PROVIDENCE, R. I, 33 NATURAL TANGENT. Deg. 0' 10' 20' 30' 40' * 60 45 1.0000 1.0058 1.0117 1.0176 1.0235 1 0295 1.0355 44 46 1.0355 1.0415 1.0476 .0537 1.0599 1.0661 1.0723 ,43 47 1.0723 1.0786 1.0849 .0913 1.0977 1.1041 1.1106 42 48 1.1106 1.1171 1.1236 .1302 1.1369 1.1436 1.1503 41 49 1.1503 1.1571 1.1639 .1708 1.1777 1.1847 1.1917 40 50 1.1917 1.1988 1.2059 .2131 1.2203 1.2275 1 2349 39 51 1.2349 1.2422 1.2496 .2571 1.2647 1.2723 .2799 38 52 1.2799 1.2876 1.2954 .3032 1.3111 1.3190 .3270 37 53 1.3270 1.3351 1.3432 1.3514 1.3596 1.3680 .3763 36 54 1.3763 1.3848 1.3933 1.4019 1.4106 1.4193 .4281 35 55 1.4281 1.4370 1.4459 1.4550 1.4641 1.4733 .4825 34 56 1.4825 1.4919 1.5013 1.5108 1.5204 1.5301 .5398 33 57 1.5398 1.5497 1.5596 1.5696 1.5798 1.5900 .6003 32 58 1.6003 1.6107 1.6212 1.6318 1.6425 1.6533 1.6642 31 59 1.6642 1.6753 1.6864 1.6976 1.7090 1.7204 1.7320 30 60 1.7320 1.7437 1.7555 1 . 7674 1.7795 1.7917 1.8040 29 61 1.8040 1.8164 1.8290 1.8417 1.8546 1.8676 1.8807 28 62 1.8807 1.8940 1.9074 1.9209 1.9347 1.9485 1.9626 27 63 1.9626 1.9768 1.9911 2.0056 2.0203 2.0352 2.0503 26 64 2.0503 2.0655 2.0809 2.0965 2.1123 2.1283 2.1445 25 65 2.1445 2.1609 2.1774 2.1943 2.2113 2.2285 2.2460 24 66 2.2460 2.2637 2.2816 2.2998 2.3183 2.3369 2.3558 23 67 2.3558 2.3750 2.3944 2.4142 2.4342 2.4545 2.4750 22 68 2.4750 2.4959 2.5171 2.5386 2.5604 2.5826 2.6050 21 69 2.6050 2.6279 2.6510 2.6746 2.6985 2.7228 2.7474 20 70 2.7474 2.7725 2.7980 2.8239 2.8502 2.8770 2.9042 19 71 2.9042 2.9318 2.9600 2.9886 3.0178 3.0474 3.0776 18 72 3.0776 3.1084 3.1397 3.1715 3.2040 3.2371 3.2708 17 73 3.2708 3.3052 3.3402 3.3759 3.4123 3.4495 3.4874 16 74 3.4874 3.5260 3.5655 3.6058 3.6470 3.6890 3.7320 15 75 3.7320 3.7759 3.8208 3.8667 3.9136 3.9616 4.0107 14 76 4.0107 4.0610 4.1125 4.1653 4.2193 4.2747 4.3314 13 77 4.3814 4.3896 4.4494 4.5107 4.5736 4.6382 4.7046 12 78 4.7046 4.7728 4.8430 4.9151 4.9894 5.0653 5.1445 11 79 5.1445 5.2256 5.3092 5.3955 5.4845 5.5763 5.6712 10 80 5.6712 5.7693 5.8708 5.9757 6.0844 6.1970 6.3137 9 81 6.3137 6.4348 6.5605 6.6911 6.8269 6.9682 7.1153 8 82 7.1153 7.2687 7.4287 7.5957 7.7703 7.9530 8.1443 7 83 S.1443 8.3449 8.5555 8.7768 9.0098 9.2553 9.5143 6 84 9.5143 9.7881 10.078 10.385 10.711 11 059 11.430 5 85 11.430 11.826 12.250 12.706 13.196 13 726 14.300 4 86 14.300 14.924 15.604 16.349 17.169 18.075 19.081 3 87 19.081 20.205 21.470 22.904 24.541 26.431 28.636 2 88 28.636 31.241 34.367 38.188 42.964 49.103 57.290 1 89 57.290 68.750 85.939 114.58 171.88 343.77 00 60' 50' 40' 30' 20' 10' 0' Deg. NATURAL COTANGENT. 34 BROWN & SHARPE MFG. CO. CHAPTER IV. WORM AND WORM WHEEL (Fig. 8.) PROVIDENCE, R. I. 35 FORMULAS. L = lead of worm. N = number of teeth in gear. m = threads or turns per inch in worm, d= diameter of worm. d' = diameter of hob. T = throat diameter. B = blank diameter (to sharp corners). C = distance between centers. o = thickness of hob-slotting cutter. /= width of lands at bottom. b = pitch circumference of worm. v width of worm thread tool at end. w = width of worm thread at top. P = diametral pitch. P 1 = circular pitch. .$ = addendum and module. / = thickness of tooth at pitch line. t n = normal thickness of tooth. /= clearance at bottom of tooth. D" = working depth of toolh. D" +/ = whole depth of tooth. tf = angle of tooth of worm wheel with its axis, or the angle of thread of worm with a line at right angles to its axis. If the lead is for single, double, triple, etc., thread, then I, = P, 2 P', 3 P, etc. 36 BROWN & SHARPE MFG. CO. a = 60 to 97 815 5x163 726 2x3xll 2 756 2 2 x3 3 x7 786 2x3x131 816 2 4 x3xl7 727 757 787 817 19x43 728 2 3 x7xl3 758 2x379 788 2 2 xl97 818 2x409 729 3 6 759 3x11x23 789 3x263 819 3 2 X7X13 730 2x5x73 700 2 3 x5xl9 790 2x5x79 820 2 2 x5x41 BROWN & SHARPE MFG. CO. 821 851 23x37 881 911 822 2x3x137 852 2 2 x3x71 882 2x3 2 x7 2 912 2 4 x3xl9 823 853 883 913 11x83 824 2 3 xl03 854 2x7x61 884 2 2 xl3xl7 914 2x457 825 3x5 2 xll 855 3 2 x5xl9 885 3x5x59 915 3x5x61 826 2x7x59 856 2 3 xl07 886 2x443 916 2 2 x229 827 857 887 917 7x131 828 2 2 x3 2 x23 858 2x3x11x13 888 2 3 x3x37 918 2x3 3 xl7 829 859 889 7x127 919 830 2 X 5 x 83 860 2 2 x5x43 890 2 x 5 X 89 920 2 3 x5x23 831 3x277 861 3x7x41 891 3 4 xll 921 3x307 832 2 6 xl3 862 2x431 892 2 2 x223 922 2x461 833 7 2 xl7 863 893 19x47 923 13x71 834 2x3x 139 864 2 s X3 3 894 2x3x149 924 2 2 x3X7XH 835 5x167 865 5x173 895 5x179 925 5 2 X37 836 2 2 xllXl9 866 2x433 896 2 7 x7 926 2x463 837 3 3 x31 867 3xl7 2 897 3x13x23 927 3 2 xl03 838 2x419 868 2 2 x7x31 898 2x449 928 2 5 x29 839 869 11X79 899 29x31 929 840 2 3 X3X5X7 870 2X3X5X29 900 2 2 x3 2 x5 2 930 2X3X5X31 841 29 2 871 13x67 901 17x53 931 7 2 X19 842 2x421 872 2 3 X109 902 2x11x41 932 2 2 x233 843 3x281 873 3 2 x97 903 3x7x43 933 3x311 844 2 2 x211 874 2x19x23 904 2 3 Xll3 934 2x467 845 5X13 2 875 5 3 X7 905 5x181 935 5xllXl7 846 2x3 2 x47 876 2 2 x3x73 906 2x3x151 936 2 3 x3 2 X 13 847 7xll 2 877 907 937 848 2 4 X53 878 2x439 908 2 2 X227 938 2x7x67 849 3x283 879 3 x 293 909 3 2 xlOl 939 3x313 850 2x5 2 xl7 880 2 4 xoxll 910 2X5X7X13 940 2 2 x5x47 PROVIDENCE, R. I. 57 941 956 2 2 x239 971 986 2x17x29 942 2x3x157 957 3x11x29 972 2 2 x3 5 987 3x7x47 943 23x41 958 2x479 973 7x139 988 2 2 x 13x19 944 2 4 X59 959 7x137 974 2x487 989 23x43 945 3 3 xox7 960 2x3xo 975 3x5 2 xl3 990 2x3 2 X5Xll 946 2x11 X43 961 31 2 976 2 4 x61 991 947 962 2x13x37 977 992 2 5 x31 948 2 2 x3x79 963 3 2 xl07 978 2x3x163 993 3x331 949 13x73 964 2 2 x241 979 11X89 994 2x7x71 950 2x5 2 xl9 965 5x193 980 2 2 x5x7 2 995 5x199 951 3x317 966 2X3X7X23 981 3 2 xl09 996 2 2 x3x83 952 2 3 x7xl7 967 982 2x491 997 953 968 2 3 xll 2 983 998 2x499 954 2x3 2 x53 969 3x17x19 984 2 3 x3x41 999 3 3 x37 955 5x191 970 2x5x97 985 5x197 1000 2 3 x5 3 58 BROWN & SHARPE MFG. CO. CHAPTER VI. INTERNAL GEARING. PART A. INTERNAL SPUR GEARING. (Figs. 12, 13, 14, 15, 16.) A little consideration will show that a tooth of an internal or annular gear is the same as the space of a spur external gear. We prefer the epicycloidal form of tooth in this class of gearing to the involute form, for the reason that the difficulties in overcoming the interference of gear teeth in the involute system are considerable. Special constructions are required when the difference between the number of teeth in gear and pinion is small. In using the system of epicycloidal form of tooth in which the gear of 15 teeth has radial flanks, this difference must be at least 15 teeth, if the teeth have both faces and flanks. Gears fulfilling this condition present no difficulties. Their pitch diameters are found as in regular spur gears, and the inside diameter is equal to the pitch diameter, less twice the adden- dum. If, however, this difference is less than 15, say 6, or 2, or i, then we may construct the tooth outline (based on the epicy- cloidal system) in two different ways. First Method. To explain this method better, let us sup- pose the case as in Fig. T2, in which the difference between gear and pinion is more than 15 teeth. Here the point o of the describing circle B (the diameter of which in the best practice of the present day is equal to the pitch radius of a 15 tooth gear, of the same pitch as the gears in question) gene- rates the cycloid o, o 1 , o 2 , o 3 , etc., when rolling on pitch circle L L of gear, forming the face of tooth ; and when rolling on the outside of L L the flank of the tooth. In like manner is the face and flank of the pinion tooth produced by B rolling out- side and inside of E E (pitch circle of pinion). A little study PROVIDENCE, R. I. 59 of Fig. 12 (in which the face and flank of a gear tooth are produced) will show the describing circle B divided into 12 equal parts and circles laid through these points (i, 2, 3, etc.), concentric with L L. We now lay off on L L the distances o i, 1-2, 2-3, etc., of the circumference of B, and obtain points 6o BROWN & SHARPK MFG. CO. jl > 2 \ 3\ et c. [Ordinarily it is sufficient to use the chord.] It will now readily be seen that B in rolling on L L will success- ively come in contact with i 1 , 2', 3', etc., c meanwhile moving to c\ 1 c -j- a 1 = i + i 6 5 The fraction |J- is a good approximation; putting therefore a change gear of 25 teeth on worm shaft, we advance (beside the one full turn) 21 teeth to index our unit. Of course, in using any but the correct fraction we have an error every time we index a division ; so that when indexed around the whole circle, we have multiplied this error by the number of divisions. In the present example this error is evidently equal to the difference between the correct and the approximate fraction used. Reducing both common fractions to decimal fractions we have : = .84000006 1*739*3 21 ~ .00000006 = error in each division. 76 BROWN & SHARPE MFG. CO. .00000006 X 117.3913 .00000704348 total error in complete circle. This error is expressed in parts of a unit division. (To find this error expressed in inches, multiply it by the distance between two divisions, measured on the circle.) In this case the approximate fraction being smaller than the correct one, in indexing the whole circle we fall short .00000704348 of a division. EXAMPLE VI. Index 15.708 216 _ 11796 15.708 15708 11796 _ 983 15708 1309 983) 1309 (i 983 326) 983 (3 978 5) 326 (65 30 26 I 5 D5(S 5 o 983 =I '309 T^i__ 3+ x _ 65 + 1 5 i 3 65 5 i 3 *9 6 9 8 3 i 4 261 1309 In using the approximation j-J the error for each division (found as above) will be .000002927, for the whole circle .0000460. In this case, the approximation being larger than the correct fraction, we overreach the circle by the error. PROVIDENCE, R. I. 77 CHAPTER XI. THE GEARING OF LATHES FOR SCREW CUTTING. (Figs. 22, 23.) The problem of cutting a screw on a lathe resolves itself into connecting the lathe spindle with the lead screw by a train of gears in such a manner that the carriage (which is actuated by Simple Gearing. Fig. 22. 78 BROWN & SHARPK MFG. CO. the lead screw) advances just one inch, or some definite dis- tance, while the lathe spindle makes a number of revolutions equal to the number of threads to be cut per inch. The lead screw has, with the exception of a very few cases, always a single thread, and to advance the carriage one inch it therefore makes a number of revolutions equal to its number Compound Gearing. Fig. 23. of threads per inch. Should the lead screw have double thread, it will, to accomplish the same result, make a number of revolutions equal to half its number of threads per inch. It follows that we must know in the first place the number of threads per inch on lead screw. PROVIDENCE, R. I. 79 It ought to be clearly understood that one or more inter- mediate gears, which simply transmit the motion received from one gear to another, in no wise alter the ultimate ratio of a train of gearing. An even number of intermediate gears simply change the direction of rotation, an odd number do not alter it. The gearing of a lathe to solve a problem in screw cutting can be accomplished by A. Simple gearing. B. Compound gearing. Referring to the diagrams, Figs. 22 and 23, we have in Fig. 22 a case of simple, and in Fig. 23 a case of compound gear- ing. In simple gearing the motion from gear E is transmitted either directly to gear Ron lead screw or through the interme- diate F. In compound gearing the motion of E is transmitted through two gears (G and H) keyed together, revolving on the same stud , by which we can change the velocity ratio of the motion while transmitting it from E to R. With these four variables E, G, H, R, we are enabled to have a wider range of changes than in simple gearing. B and C, being intermediate gears, are not to be considered. If, as is generally the case, gear A equals gear D, we disregard them both, simply remembering that gear E (being fast on same shaft with D) makes as many revolutions as the spindle. Sometimes gear D is twice as large as gear A, then, still con- sidering gear E as making as many revolutions as the spindle, we deal with the lead screw as having twice as many threads per inch as it measures. SIMPLE GEARING. Let there be : the number of teeth in the different gears expressed by their respective letters, as per Fig. 22, and s = threads per inch to be cut, L threads per inch on lead screw ; then i. s ^R L E 80 BROWN & SHARPE MFG. CO. If now one of the two gears E and R is selected, the other will be : R = lE E = LR L s 2. The two gears may be found by making ~^ ^ > where/ may 'be any number. 3. The above holds good when a fractional thread is to be cut, but if the fraction is expressed in large numbers, as, for instance, s = 2.833 ( 2 T 8 77W)> we fi rst reduce this fraction (yWoO to lower approximate values by the process of continued fraction (see pages 73 and 74). 833) icoo (i 833 i6 S ) 167 (i 165 2) l6 5 (82 16 I 4 i 82 2 I I S 5 6 497 833 1000 L = .833 (nearly) and s = 2?- o 6 If in this case L = 4, and we select E = 48, then, since COMPOUND GEARING. 4. In a lathe geared compound for cutting a screw the product of the drivers (E and H, Fig. 23) multiplied by the num- ber of threads per inch to be cut must equal the product of the driven (G and R) multiplied by the number of threads on lead screw. This is expressed by . L, PROVIDENCE, R. I. 8l If three of the gears E, H, G, R have been selected, the fourth one would be either ..i o, TT G R L H = or G = n " J or = R_G_L ^_ L / R.G \ EH VL.E.H/ If a fractional thread is to be cut, as under " 3," we reduce the fraction to lower approximate values. EXAMPLE. Gear for 5.2327 threads per inch, lead screw is 6 threads. IOOOO 2327) looco (4 9308 692) 2327 (3 2076 "251)692(2 502 190) 251 (i 190 61) 190 (3 183 7) 61 (8 S 6 5)7(i 5_ 4 1)2(2 a o 43213 8 I 2 2 L A _L 15. 37 3 6 343 ^92 2327 4 13 30 43 159 1315 J 474 4263 loooo .2327 (nearly) and 5.2327 = 5 15 43 "43 Selecting E 43, H = 52, R = 50, and * we have G = 4 3 ' 5* 5 = 39 R . L 50 . 6 82 BROWN & SHARPK MFG. CO. 5. The examples so far given all deal with single thread. The pitch of a screw is the distance from center of one thread to the center of the next. The lead of a screw is the advance for each complete revolution. In a single thread screw the pitch is equal to the lead, while in a double thread screw the pitch is equal to one-half the lead ; in a triple thread screw equal to one-third the lead, etc. If we have to gear a lathe for a many-threaded screw (double, triple, quadruple, etc.), we simply ascertain the lead, and deal with the lead as we would with the pitch in a single thread screw, *'. e., we divide one inch by it, to obtain the num- ber of threads for which we have to gear our lathe. EXAMPLE. Gear for double thread screw, lead = .4654. Number of threads per inch to be geared for is : Lead -4654 Lead screw is four threads per inch. As in previous examples, we reduce the fraction .i4%7=itffo to lower approximate values by the process of continued frac- tion. From the different values received in the usual way we select : ^J = .1487 (nearly) and 2.1487 = 2ij-J We have therefore : =74 Selecting -j G = 30 R _ E . H . s _ 74 . 4Q . Hi - -- G . L 30 . 4 NOTE. In using any but the original fraction we commit an error. This error can be found by reducing the approximate fraction used to a decimal fraction, and comparing it with the original fraction. In the above example the original fraction is .1487 and H = . 14864 Error = .00006 inch in lead. In cutting a multiple screw, after having cut one thread, the question arises how to move the thread tool the correct amount for cutting the next thread. PROVIDENCE, R. I. 83 In cutting double, triple, etc., threads, if in simple or com- pound gearing the number of teeth in gear E is divisible by 2, 3, etc., we so divide the teeth ; then leaving the carriage at rest we bring gear E out of mesh and move it forward one division, whereby the spindle will assume the correct position. When E is not divisible we find how many turns (V) of gear R are made to each full turn of the spindle. Dividing this number by 2 for double, by 3 for triple thread, etc., we advance R so many turns and fractions of a turn, being careful to leave the spindle at rest. For compound gearing : V _E.H ~G~R When the gear D is twice as large as the gear A (as ex- plained in fifth paragraph, page 78.) the formula would be y= E. H. 2 G. R. If in simple gearing both E and R are not divisible, one remedy would be to gear the lathe compound ; or the face- plate may be accurately divided in two, three or more slots, and all that is then necessary is to move the dog from one slot to another, the carriage remaining stationary. UNIVERSITY OF CALIFORNIA LIBRARY BERKELEY Return to desk from which borrowed. This book is DUE on the last date stamped below. ENGINEERING LIBRARY 26 Ll> 21-100m-7,'52(A2528sl6)476 YC 33178 35767 Library UNIVERSITY OF CALIFORNIA LIBRARY