NATURE'S TEACHINGS HUMAN INVENTION ANTICIPATED BY NATURE BY THE LATE REV. J. G. WOOD, M.A., F.L.S., ETC. AUTHOR OF " HOMES WITHOUT HANDS," "MAN AND BEAST, HERE AND HEREAFTER," ETC. NEW AND.REVISED EDITION LONDON J. S. VIRTUE & CO., LIMITED, 26, IVY LANE PATERNOSTER ROW LONDON : MLISTE1) BY J. g. Vli'.TUK AMD 00., LDHTKD. CITY BOAD. PKEFACE, A GLANCE at almost any page of this work will denote its object. It is to show the close connection between Nature and human inventions, and that there is scarcely an invention of man that has not its prototype in Nature. And it is worthy of notice that the greatest results have been obtained from means apparently the most insignificant. There are two inventions, for example, which have changed the face of the earth, and which yet sprang from sources that were despised by men, and thought only fit for the passing sport of childhood. I allude, of course, to Steam and Elec- tricity, both of which had been child's toys for centuries before the one gave us the fixed engine, the locomotive, and the steamboat, and the other supplied us with the compass and the electric telegraph. In the course of this work I have placed side by side a great number of parallels of Nature and Art, making the descriptions as terse and simple as possible, and illustrating them with more than seven hundred and fifty figures. The corollary which I hope will be drawn from the work is evident enough. It is, that as existing human inventions have been anticipated by Nature, so it will surely be found that in Nature lie the prototypes of inventions not yet revealed to man. The great discorerers of the future will, therefore, be those 2090879 Vlll PREFACE. who will look to Nature for Art, Science, or Mechanics, instead of taking pride in some new invention, and then finding that it has existed in Nature for countless centuries. I ought to mention that the illustrations are not intended to be finished drawings, but merely charts or maps, calling attention to the salient points. CONTENTS. NAUTICAL. CHA*. P10 I. THE RAFT . 1 II. THE OAR, THE PADDLE, AND THE SCREW ..... 12 III. SUBSIDIARY APPLIANCES. PART I. 23 IV. SUBSIDIARY APPLIANCES. PART II 34 V. SUBSIDIARY APPLIANCES. PART III. THE BOAT-HOOK AND PUNT-POLE. THE LIFE-BUOY AND PONTOON-RAFT . 44 WAE AND HUNTING. I. THE PITFALL, THE CLUB, THE SWORD, THE SPEAR AND DAGGER . 50 II. POISON, ANIMAL AND VEGETABLE. PRINCIPLE OF THE BARB . 62 III. PROJECTILE WEAPONS AND THE SHEATH 74 IV. THE NET .85 V. REVERTED SPIKES 102 VI. THE HOOK. DEFENSIVE ARMOUR. THE FORT . . . .115 VII. SCALING INSTRUMENTS. DEFENCE OF FORT. IMITATION. THE FALL-TRAP 132 VIII. CONCEALMENT. DISGUISE. THE TRENCH. POWER OF GRAVITY. MISCELLANEA ... . 144 AECHITEOTUEE. I. THE HUT, TROPIC AND POLAR. PILLARS AND FLOORING. TUNNEL ENTRANCE OF THE IGLOO. DOORS AND HINGES. SELF-CLOSING TRAP-DOORS 159 II. WALLS, DOUBLE AND SINGLE. PORCHES, EAVES, AND WINDOWS. THATCH, SLATES, AND TILES 177 in. THE WINDOW. GIRDERS, TIES, AND BUTTRESSES. THE TUNNEL. THE SUSPENSION-BRIDGE 190 IV. LIGHTHOUSES. THE DOVETAIL. THE DAM. SUBTERRANEAN DWELLINGS. THE PYRAMIDS. MORTAR, PAINT, AND VARNISH . 207 b X CONTENTS. TOOLS CHAP. f. ~ PAGB I. THE DIGGING-STICK. SPADE. SHEARS AND bcissoRS. CHISEL AND ADZE. THE PLANE AND SPOKESHAVE 222 II. THE SAW AND ITS VARIETIES 239 in. BORING TOOLS. STRIKING TOOLS. GRASPING TOOLS . . .249 IV. POLISHING TOOLS. MEASURING TOOLS 263 OPTICS. I. THE MISSIONS OF HISTORY. THE CAMERA OBSCURA. LONG AND SHORT SIGHT. STEREOSCOPE AND PSBUDOSCOPE. MULTIPLYING-GLASSES 276 II. THE WATER-TELESCOPE. IRIS OF THE EYE. MAGIC LANTERN. THE SPECTROSCOPE. THE THAUMATROPE 291 USEFUL AETS. I. PRIMITIVE MAN AND His NEEDS. EARTHENWARE. BALL-AND- SOCKET JOINT. TOGGLE OR KNEE JOINT 308 II. CRUSHING INSTRUMENTS. THE NUT-CRACKERS, ROLLING-MILL, AND GRINDSTONE. PRESSURE OF ATMOSPHERE. SEED DIBBLES AND DRILLS 320 III. CLOTH-DRESSING. BRUSHES AND COMBS. BUTTONS, HOOKS AND EYES, AND CLASP 339 IV. THE STOPPER, OR CORK. THE FILTER 350 V. THE PRINCIPLE OF THE SPRING. THE ELASTIC SPRING. ACCUMULATORS. THE SPIRAL SPRING 360 VI. SPIRAL AND RINGED TISSUES. VARIOUS SPRINGS m NATURE AND ART i ..... 375 VII. FOOD AND COMFORT 390 VIII. DOMESTIC COMFORT . . . . ' 400 IX. ARTIFICIAL WARMTH. RING AND STAPLE. THE FAN . . . 412 X. WATER, AND MEANS OF PROCURING IT . . . . . . 422 XI. AEROSTATICS. WEIGHT OF AIR. EXPANSION BY HEAT . . 436 XII. DITTO CONTINUED 447 XIII. TELESCOPIC TUBES. DIRECT ACTION. DISTRIBUTION OF WEIGHT. TREE-CLIMBING. THE WHEEL 460 XIV. PAPER AND MOULDING 472 XV. ELECTRICITY AND GALVANISM .'.'.*. . . . 482 XVI. TILLAGE. DRAINAGE. SPIRAL PRINCIPLE. CENTRIFUGAL FORCE 492 XVII. OSCILLATION. UNITED STRENGTH. THE DOME .... 504 ACOUSTICS. I. PERCUSSION. THE STRING AND REED. THE TRUMPET. EAR- TRUMPET. STETHOSCOPE ... . 513 NAUTICAL. CHAPTER I. Poetry and Science. The Papei Nautilu? and the Sail. Montgomery's " Pelican Island." The Nautilus replaced by theVelella. The SailingRaft of Nature and Art. Description of a Velella Fleet off Tenhy. The Natural Kaft and its Sail. The Boats of Nature and Art. Man's first Idea of a Boat. The Kruman's Canoe and the Great Eastern. Gradual Development of the Boat. The Outrigger Canoe a Mixture of Baft and Boat. Natural Boats. The Water-enails. The Sea-anemones. The Egg-boat of the Gnat. The Skin-boat of the same Insect. Shape and Properties of the Life-boat anti- cipated in Nature. Natural Boat of the Stratiomys. THE RAFT. IT lias been frequently said that the modern developments of science are gradually destroying many of the poetical elements of our daily lives, and in consequence are reducing us to a dead level of prosaic commonplace, in which existence is scarcely worth having. The first part of this rather sweeping assertion is perfectly true, but, as we shall presently see, the second portion is absolutely untrue. Science has certainly destroyed, and is destroying, many of the poetic fancies which made a part of daily life. It must have been a considerable shock to the mind of an ancient philosopher when he found himself deprived of the semi- spiritual, semi-human beings with which the earth and water were thought to be peopled. And even in our own time and country there is in many places a still lingering belief in the existence of good and bad fairies inhabiting lake, wood, and glen, the successors of the Naiads and Dryads, the Fauns and Satyrs, of the former time. Many persons will doubtless be surprised, even in these days, to hear that the dreaded Mael- strom is quite as fabulous as the Symplegades or Scylla and F 2 NATURE'S TEACHINGS. Oharybdis, and that the well-known tale of Edgar Poe is absolutely without foundation. Perhaps one of the prettiest legends in natural history is that of the Paper Nautilus, with which so much poetry is associated. We have all been accustomed from childhood to Pope's well-known lines beginning " Learn of the little Nautilus to sail," and some of us may be acquainted with those graceful verses of James Montgomery, in his " Pelican Island : " " Light as a flake of foam upon the wind, Keel upward, from the deep emerged a shell, Shaped like the moon ere half her horn is filled. Fraught with young life it righted as it rose, And moved at will along the yielding water. The native pilot of this little bark Put out a tier of oars on either side, Spread to the wafting hreeze a two-fold sail, And mounted up and glided down the billow In happy freedom, pleased to feel the air, And wander in the luxury of light. * * * It closed, sank, dwindled to a point, then nothing, While the last bubble crowned the dimpling eddy Through which mine eye still giddily pursued it." So deeply ingrained is the poetical notion of the sailing powers attributed to the nautilus, that many people are quite incredulous when they are told that there is just as much likelihood of seeing a mermaid curl her hair as of witnessing a nautilus under sail. How the creature in question does propel itself will be described in the course of the present chapter; and the reader will see that although one parallel between Nature and Art in the nautilus does not exist, there are several others which until later days have not even been suspected. It is, therefore, partially true that science does destroy romance. But, though she destroys, she creates, and she gives infinitely more than she takes away, as is shown in the many late discoveries which have transformed the whole system of civilised life. Sometimes, as in the present instance, she discovers one analogy while destroying another, and though she shatters the legend of the sailing nautilus, she produces a marine animal which really does sail, and does not appear to be able to do anything else. This is the VELELLA, a THE VELELLA AND SAILING RAFT. 3 figure of which, taken from a specimen in my collection, is given in the illustration, and drawn of the natural size. It is one of that vast army of marine creatures known familiarly by the name of "jelly-fishes," just as lobsters, crabs, shrimps, oysters, whelks, periwinkles, and the like, are lumped together under the title of "shell-fish." As a rule, these creatures are soft, gelatinous, and, in fact, are very little more than sea- water entangled in the finest imaginable mesh- work of animal matter ; so fine, indeed, that scarcely any definite organs can be discovered. The Velella, however, is VELELLA (NATURAL SIZE). SAILING RAPT. remarkable for having a sort of skeleton, if it may be so called, consisting of two very thin and horny plates, disposed, as shown in the illustration, so as to form an exact imitation (or perhaps I should say a precursor) of a raft propelled by a sail. Indeed, the Latin name Velella signifies a little sail. How well deserved is the name may be seen by the follow- ing graphic account of a Velella fleet sent to me by a lady who takes great interest in practical zoology : " The specimens which I send came from Tenby, a very rough sea having driven a large living fleet of them on that coast. ""When in life, they are semi-transparent, and radiant in many rainbow-tinted colours. They came floating towards me in all their fragile beauty on the rough sea waves. I succeeded in capturing some of them, and preserved the only portion available for my collection. " They are extremely tender, and by no means with which I am acquainted can be preserved more than these skeleton- like cartilaginous plates. They soon dissolve in either spirits of wine or water, and lose every vestige of their shape and 4 NATURE S TEACHINGS. substance. The upright, thin, pellucid plate has the appear- ance of a fairy-like miniature sail, and apparently acted as such when the creature was floating with its long and many- tinted tentacles pendent from its lower surface. " Although widely distributed, they are seldom seen on our own coast, although sometimes driven there from the warmer regions by stress of wind and waves. " These little creatures had never before been seen at Tenby, but when I asked a native bathing -woman whether she knew their name, she immediately replied, ' Sea-butterflies/ Although the name was evidently of her own invention, it was most appropriate and poetical. I have always found the Welsh people abound more than any other nation in pretty and characteristic synonyms."* In answer to a letter in which I asked the writer for some further information concerning the Velella, sending also an outline sketch of the animal, which I asked the writer to fill in with the proper colours, I received the following reply : " I will do my best to answer your questions, and to give you what information I can concerning the creatures. " When seen at Tenby, they were all floating on the surface of the sea, the tentacles only being submerged. My specimens floated for a very short time after capture, death following so quickly that I was obliged to set to work at once with camel' s- hair brush and penknife to take away the gelatinous part. Indeed, decomposition took place so rapidly, that Velellas and myself were simultaneously threatened with extermination. "Both raft and sail were equally enveloped in a soft, gelatinous covering, certainly not more than the sixteenth of an inch in thickness, except under the centre of the raft, where it became slightly thicker. The covering of the sail was exceedingly thin, and like a transparent and almost invisible soft skin. The sail is very firmly attached to the raft, as they did not separate when decomposition began. " The tentacles were entirely composed of the same soft, jelly-like substance as that of the envelope, and every part was iridescent in a sort of vapoury transparent cloud of many- tinted colours, blue and pale crimson predominating. I have * By sailors tbe Velella is popularly known by the name of " Sally-man ; " .. Sallee-man. THE BOAT. filled up to the best of my memory the little sketch, and only wish you could have seen the Velellas as I did, in their full life and beauty." Two of the specimens here mentioned are in my collection, and beautiful little things they are. The two plates are not thicker than ordinary silver paper, but are wonderfully strong, tough, and elastic. The oval horizontal plate, or raft, if it may be so called, is strengthened by being corrugated in con- centric lines, and having a multitude of very fine ribs radiating from the centre to the circumference. It is slightly thickened on the edges, evidently for the attachment of the tentacles. The perpendicular plate, or sail, does not occupy the larger diameter of the raft, but stretches across it diagonally from edge to edge, rising highest in the centre and diminishing towards the edges, so that it presents an outline singularly like that of a lateen sail. It is rather curious that the magnifying glass gives but little, if any, assistance to the observer, the naked eye answering every purpose. Even the microscope is useless, detecting no peculiarity of structure. I tried it with the polariscope, scarcely expecting, but rather hoping, to find that it was sensitive to polarised light. But no such result took place, the Velella being quite unaffected by it. The corresponding illustration is a sketch of a raft to which a sail is attached. Such rafts as this are in use in many parts of the world, the sail saving manual labour, and the large steering oar answering the double purpose of keel and rudder. In the Velella, the tentacles, though they may not act in the latter capacity, certainly do act in that of the former, and serve to prevent the little creature from being capsized in a gale of wind. THE BOAT. THERE is no doubt that the first idea of locomotion in the water, independently of swimming, was the raft ; nor is it difficult to trace the gradual development of the raft into a Boat. The development of the Kruman's canoe into the Great Eastern, or a modern ironclad vessel, is simply a matter of time. It is tolerably evident that the first raft was nothing more than a tree-trunk. Finding that the single trunk was apt to 6 NATURE'S TEACHINGS. turn over with the weight of the occupant, the next move was evidently to lash two trunks side by side. Next would come the great advance of putting the trunks at some distance apart, and connecting them with cross-bars. This plan would obviate even the chance of the upsetting of the raft, and it still survives in that curious mixture of the raft and canoe, the outrigger boat of the Polynesians, which no gale of wind can upset. It may be torn to pieces by the storm, but nothing can capsize it as long as it holds together. Laying a number of smaller logs or branches upon the bars which connect the larger logs is an evident mode of forming a continuous platform, and thus the raft is completed. It would not be long before the superior buoyancy of a hollow over a solid log would be discovered, and so, when the savage could not find a log ready hollowed to his hand, he would hollow one for himself, mostly using fire in lieu of tools. The pro- gress from a hollowed log, or "dug-out," as it is popularly called, to the bark canoe, and then the built boat, naturally followed, the boats increasing in size until they were developed into ships. Such, then, is a slight sketch of the gradual construction of the Boat, based, though perhaps ignorantly, on the theory of displacement. Now, let us ask ourselves whether, in creation, there are any natural boats which existed before man came upon the earth, and from which he might have taken the idea if he had been able to reason on the subject. The Paper Nautilus is, of course, the first example that comes before the mind ; but although, as we have seen, the delicate shell of the nautilus is not used as a boat, and its sailing and rowing powers are alike fabulous, there is, as is the case with most fables, a substratum of truth, and there are aquatic molluscs which form themselves into boats, although they do not propel themselves with sails or oars. Many species of molluscs possess this art, but we will select one as an example of them all, because it is very plentiful in our own country, and may be found in almost any number. It is the common WATER-SNAIL (Limnceastagnalis), which abounds in our streams where the current is not very strong. Even in tolerably swift streams the Limnaea may be found plentifully in any bay or sudden curve where a reverse current is generated, NATURAL AND ARTIFICIAL BOATS. and therefore the force of the stream is partially neutralised. These molluscs absolutely swarm in the Cherwell, and in the multitudinous ditches which drain the flat country about Oxford into that river as well as the Isis. Belonging to the Gasteropods, the Water-snail can crawl over the stones or aquatic vegetation, just as the common garden snail or slug does on land. But it has another mode of progression, which it very often employs in warm weather. It ascends to the surface of the water, reverses its position so "DUO-OUT" BOAT OP VARIOUS PABTS OP TUB WOULD. WATEtt- SNAIL ACTING AS BOAT. BIBCH-BABK CANOE. PUPA SKIN OP GNAT ACTING AS BOAT. that the shell is downward, spreads out the foot as widely as possible, and then contracts it in the centre, so as to form it into a shallow boat. The carrying capacity of this boat is necessarily small, but as the shell and nearly the whole of the animal are submerged, and therefore mostly sustained by the water, a very small amount of flotative power is sufficient for the purpose. Some- NATURE S TEACHINGS. times, on a fine day, whole fleets of these natural boats may be seen floating down the stream, thus obtaining a change of locality without any personal exertion. In perfectly still water, where no current can waft the Limnaea on its easy voyage, it still is able to convey itself from one place to another. By means of extending and contracting the foot, it actually contrives to crawl along the surface of the water almost as readily as if it were upon the under side of some solid body, and, although its progress is slow, it is very steady. Another very common British water-snail, the Pouch - shell (Physa fontinalis), has almost exactly the same habits. Jleference will be made to the Pouch-shell on another page. The capacity for converting the body into a boat is not con- fined to the molluscs, but is shared by many other animals. Take, for example, the well-known marine animals, called popularly SEA- ANEMONES. As they appear when planted on the rocks, they look as incapable of motion as the flowers whose names they bear. Yet, by means of the flattened base, which they use just as a snail uses its feet, they can manage to glide along the rocks in any direction, though very slowly. The base is capable of extension and contraction, and by elongating one side of it, fixing the elongated portion, and then raising the remainder of the base towards it, the animal makes practically a series of very slow steps. This mode of progression may often be seen in operation on the glass front of an aquarium. The same property of expansion and contraction enables the Sea-anemones to convert their bodies into boats, and float on the surface of the water. When one of these animals wishes to swim, it ascends the object to which it is clinging say the glass of the aquarium until it has reached the air. It then very slowly, and bit by bit, detaches the upper part of the base from the glass, allowing itself to hang with its tentacles downward. These, by the way, are almost wholly withdrawn when the animal is engaged in this business. By degrees the whole of the base is detached from the glass except a very tiny portion of the edge. The base is next contracted in the middle into the form of a shallow cup, and, when this is done, the last hold of the glass is released, and the animal floats away, supported by its hollowed base. EGG-BOAT OF THE GNAT. 9 Entomologists are familiar with the following facts, and were this work addressed to them alone, a simple mention of the insect would be sufficient. But as this work is intended for the general public, it will be necessary to give a descrip- tion, though a brief one, of the wonderful manner in which an insect, which we are apt to think is only too common, plays the part of a boat at its entrance to life and just before its departure from this world, not to mention its intermediate state, to which reference will be made under another heading. The insect in question is the common GNAT (Culex pipiem], which makes such ravages upon those who are afflicted, like myself, with delicate skins, and can have a limb rendered useless for days by a single gnat-bite. In this insect, the beginning and the end of life are so closely interwoven, that it is not easy to determine which has the prior claim to description, but we will begin with the egg. With very few exceptions, such as the Earwig, which watches over its eggs and young like a hen over her nest and chickens, the insects merely deposit their eggs upon or close to the food of the future young, and leave them to their fate. The eggs of the Gnat, however, require different treatment. The young larvae, when hatched, immediately pass into the water in which they have to live, and yet the eggs are so consti- tuted that they need the warmth of the sun in order to hatch them. The machinery by which both these objects are attained is singularly beautiful. The shape of the egg very much resembles that of a common ninepin, and the structure is such that it must be kept upright, so that the top shall be exposed to the air and sun, and the bottom be immersed in the water. It would be almost im- possible that these conditions should be attained if the eggs were either dropped separately into the water or fixed to aquatic plants, as is the case with many creatures whose eggs are hatched solely in or on the water. As is the case with many insects, each egg when laid is enveloped with a slight coating of a glutinous character, so that they adhere together. And, in the case of the Gnat, this material is insoluble in water, and hardens almost immediately after the egg is deposited. Taking advantage of these pecu- liarities, the female Gnat places herself on the edge of a floating 10 NATURE'S TEACHINGS. leaf or similar object, so that her long and slender hind-legs rest on the water. In some mysterious way, the eggs, as they are successively produced, are passed along the hind-legs, and are arranged side by side in such a manner that they are formed into the figure of a boat, being fixed to each other by the glutinous substance which has already been mentioned. It is a very remarkable fact, which assists in strengthening the theory on which this book is written, that the lines of the best modern life-boats are almost identical with those of the Gnat- boat, and that both possess the power of righting themselves if capsized. In all trials of a new life-boat, one of the most important is that which tests her capability of self-righting ; and any one who has witnessed such experiments, and has tried to upset a Gnat-boat, cannot but be struck with the singular similitude between the boat made by the hand of man and that constructed by the legs of an insect, without even the aid of eyes. Push the Gnat-boat under water, and it shoots to the surface like a cork, righting itself as it rises. Pour water on it, and exactly the same result occurs, so that nothing can prevent it from floating. Then, when the warm air has done its work in hatching the enclosed young, a little trap- door opens at the bottom of the egg, lets the young larvae into the water, and away they swim. Now we come to another phase of existence in which the Gnat forms a boat. Every one knows the little active Gnat larvae, with their large heads and slender bodies, much like tadpoles in miniature. When they have reached their full growth, and assume the pupal form, their shape is much changed. The iore part of the body is still more enlarged, as it has to contain the wings and legs, which have so great a proportion to the body of the perfect Gnat. And, instead of floating with its head downwards, and breathing through its tail as it did when a larva, it now floats with the head upper- most, and breathes through two little tubes. Even in its iormer state the creature had something almost grotesque in its aspect, the head, when magnified, looking almost as like a human face as does that of a skate. But in its pupal state it looks as if it had put on a large comical mask much too large for it, very much like those paper masks which SKIN -BO AT OF THE GNAT. 11 are enclosed in crackers, and have to be worn by those who draw them. In process of time the pupa changes to a perfect Gnat within this shelly case, able to move, but unable to eat. The body shrinks in size, and the wings and legs are formed, both being pressed closely to the body. "When the Gnat is fully developed, the pupal skin splits along the back, and opens out into a curiously boat-like shape, the front, which contains the heavier part of the insect, being much the largest, and consequently being able to bear the greatest weight. By degrees, the Gnat draws itself out of the split pupal skin, xesting its legs on it as fast as they are released. It then shakes out its wings to dry, and finally takes to the air. It is a really wonderful fact that the insect which, for three stages in life namely, an egg, larva, and pupa lived in the water, should in the fourth not only be incapable of aquatic life, but should employ its old skin to protect it from that very element in which it was living only a minute or two before. Should the reader wish to examine for himself either the egg or skin boat of the Gnat, he can easily procure them by search- ing any quiet pond, or even an uncovered water-butt. They are, of course, very small, averaging about the tenth of an inch in length, and are nearly always to be found close to the side either of pond or tub, being drawn there by the power of attraction. I may here mention that there are other dipterous insects belonging to the genus Stratiomys, which undergo their meta- morphosis in a very similar fashion. In these insects, the larva breathes through the tail, and when it attains its pupal condition, the actual insect is very much smaller than the pupal skin, only occupying the anterior and enlarged part. Indeed, the difference of size is so great, that several entomo- logists believed the future Stratiomys to be but a parasite on the original larva. The beautiful Chameleon-fly (Stratiomys cha- mcekori) is a familiar example of these insects. NAUTICAL. CHAPTER II. THE OAR, THE PADDLE, AND THB SCBEW. Propulsion by the Oar. Parallels in the Insect World. The " Water-boatman." Its Boat-like Shape. The Oar-like Legs. Exact mechanical Analogy between the Legs of the Insect and the Oars of the human Rower. "Feathering" Oars in Nature and Art. The Water-boatman and the Water-beetles. The Feet of the Swan, Goose, and other aquatic Birds. The Cydippe, or Beroe. The Self-feathering Paddle-wheel. Indirect Force. The Wedge, Screw, and Inclined Plane. " Sculling" a Boat. The " Tanka " Girls of China. Mechanical Principle of the Screw, and ita Adaptation to Vessels. Gradual Development of the Nautical Screw. Mechanical Principle of the Tail of the Fish, the Otter, and the sinuous Body of the Eel and Lampern. The Coracle and the Whirl wig-beetle. Boat naturally reminds us of the Boatman. In the two -*- gnat- boats which have been described there is no propel- ling power used or needed, the little vessel floating about at random, and its only object being to keep afloat. But there are many cases where the propelling power is absolutely essential, and where its absence would mean death, as much as it would to a ship which was becalmed in mid ocean without any means of progress or escape. There are, for example, hundreds of creatures, belonging to every order of animals, which are absolutely dependent for their very existence on their power of propulsion, and I believe that there is not a single mode of aquatic progression employed by man which has not been previously carried out in the animal world. There are so many examples of this fact that I am obliged to select a very few typical instances in proof of the assertion. Taking the Oar as the natural type of progression in the water, we have in the insect world numerous examples of the very same principle on which our modern boats are propelled. THE WATER- BOATMAN. 13 And it is worthy of notice, that the greater the improvement in rowing, the nearer do we approach the original insect model. The first which we shall notice is the insect which, from its singular resemblance to a boat propelled by a pair of oars, has received the popular name of WATER-BOATMAN. Its scientific name is Notonecta glauca, the meaning of which we shall presently see. It belongs to the order of Heteroptera, and is one of a numerous group, all bearing some resemblance to each other in form, and being almost identical in habits. Though they can fly well, and walk tolerably, they pass the greater part of their existence in the water, in which element they find their food. Predacious to a high degree, and armed with powerful weapons of offence, it is one of the pirates of the fresh water, and may be found in almost every pond and stream, plying its deadly vocation. Its large and powerful wings seem only to be employed in carrying it from one piece of water to another, while its first and second pairs of legs are hardly ever used at all for progres- sion. The last pair of legs are of very great length, and furnished at their tips with a curiously constructed fringe of stiff hairs. The body is shaped in a manner that greatly resembles a boat turned upside down, the edge of the elytra forming a sort of ridge very much like the keel of the boat. "When the creature is engaged in swimming, it turns itself on its back, so as to bring the keel downwards, and to be able to cut the water with the sharp edge. From this habit it has derived the name of Notonecta, which signifies an animal which swims on its back. The first and second pairs of legs are clasped to the body, and the last pair are stretched out as shown in the illustration, not only looking like oars, but being actually used as oars. Now, I wish especially to call the reader's attention to the curiously exact parallel between the water-boatman and the human oarsman. As the reader may probably know, the oar is a lever of the second order, i.e. the power comes first, then the weight, and then the fulcrum. The arm of the rower furnishes the power, the boat is the weight to be moved, and the water is the fulcrum against which the lever acts. I have more than once heard objections to this definition, the objectors saying that the water was a yielding substance, 14, NATURE'S TEACHINGS. and therefore could not be the fulcrum. This objection, how- ever, was easily refuted by taking a boat up a narrow creek, and rowing with the oar-blades resting on the shore, and not in the water. Now, the swimming legs of the water-boatman are exact analogues of the oars of a human rower. The internal muscles at the juncture of the leg with the body supply the place of the rower's arms, the leg itself takes the office of the oar, and the OAK OF BOAT. WATEB-BOATMAJf BOWING ITSELF. OABSMAX ROWTSO. body of the insect is the weight to be moved, and the water supplies the fulcrum. Even the broad blade at the end of the oar is anticipated by the fringe of bristles at the end of the leg, and its sharpened edge by the shape of the insect's limb. Besides these resemblances, there is another which is worthy of notice. All rowers know that one of their first lessons is to " feather " their oars, i.e. to turn the blade edgewise as soon as it leaves the water. Nothing looks more awkward than for a boatman to row without feathering. (We all must remember the eulogy on the " Jolly Young Waterman," who "feathered his oars with skill and dexterity.") In the first place, he must lift his oar very high out of the water, and, in the second, he will be impeded by any wind that happens to come against the blades. The Water-boatman, however, does not lift its legs out of the water after every stroke, as a human boatman does, and there- fore it has no need to feather in the same way. But there is even greater need for a feathering of some kind in the insect's leg, on account of the greater resistance offered by water than by air, and this feathering is effected by the arrangement of the blade-bristles, which spread themselves against the water as the stroke is made, and collapse afterwards, so as to give as little resistance as possible when the stroke is completed. " FEATHERING " OARS. 15 IN Art we have invented many similar contrivances, but I believe that there is not one in which we have not been antici- pated by Nature. Putting aside the insect which has just been described, we have the whole tribe of water-beetles, in which the same principle is carried out in an almost identical manner. In the accompanying illustration, the oar, the rower, and the boat are placed above one another, and next to them are seen one of the oar-legs of the water-boatman and the insect as it appears when swimming on its back. Then, there is the foot of the duck, goose, swan, and various other aquatic birds, in which the foot presents a broad blade as it strikes against the water, and a narrow edge as it recovers from the strode. Some years ago, a steam yacht was built and propelled by feet made on the model of those of the swan. She was a very pretty vessel, but art could not equal nature, and at present the swan-foot propeller, however perfect in theory, has not succeeded in action. Perhaps, if some nautical engineer were to take it in hand, he would procure the desired result. Almost exactly similar is the mode of propulsion employed by the lobster, the prawns and shrimps, their tails expanding widely into a fan-like shape as they strike against the water, and then collapsing when the stroke is withdrawn, so as to allow them to pass through the water with the least possible resistance. The same principle is to be seen in the lively little Acaleph, for which there is uniortunately no popular name, and which we must therefore call by its scientific title of CYDIPPE, or Beroe, these names being almost indifferently used. When full grown, it is about as large as an acorn, and very much of the same shape. It is as transparent as if made of glass, and, when in the water, is only visible to practised eyes. En passant, I may remark that the familiar term of " water," when applied to diamonds, is owing to their appearance when placed in distilled water. Those which can be at once seen are called stones of the second water. Those which cannot be seen, because their refractive powers are equal to those of the water, are called " diamonds of the first water," and are very much more valuable than the others. As the Cydippe is, in fact, little more than sea-water, 16 NATURE S TEACHINGS. entangled in the slightest imaginable and most transparent tissue of animal fibre, it is evident that the water and the Cydippe must be of almost equal refracting power, and that therefore the acaleph must be as invisible as diamonds of the " first water." Indeed, I have often had specimens in a glass jar which were absolutely invisible to persons to whom I wished to show them. But an experienced eye detects the creature at once. Along its body, at equal distances, are eight narrow bands, over which the colours of the rainbow are, though very faint, per- petually rippling. This appearance is caused by the machinery which impels the body, and which seems never to cease. Each of these bands is composed of a vast number of tiny flaps, which move up and down in regular succession, so as to cause the light to play on their surfaces. And, as they move as if set on hinges, they of course offer no resistance to the water after their stroke is made. Now let us compare these works of nature with those of art. We have already seen the parallels of the oar, and we now come CTDIPPE AND PADDLES. PRAWN SWIMMING. FEET OF DUCK. SKIP-FEATHERING PADDLE-WHEEL. to those of the paddle-wheel. When paddle- steamers were first invented, the blades were fixed and projected from the wheel, as if they had been continuations of its spokes. It was found, however, that a great waste of power, together with much inconvenience, was caused by this arrangement. Not SELF-FEATHERING PADDLE-WHEEL 17 only was a considerable weight of water raised by each blade after it passed the middle of its stroke, but the steam power was given nearly as much to lifting and shaking the vessel as to propulsion. A new kind of paddle-wheel was then invented, in which the blades were ingeniously jointed to the wheel, so that they presented their flat surfaces to the water while propelling, and their edges when the stroke was over. This, which is known by the name of the "Self-feathering Paddle-wheel," was thought to be a very clever invention, and so it was ; but not even the inventors were likely to have known that if they had only looked into the book of Nature, they might have found plenty of self -feathering paddle-wheels, beside the few which my limited space enables me to give. If the reader will look at the illustration, he will see that on one side is represented the self-feathering paddle-wheel of Art, with its ingenious arrangement of rods and hinges. On the other side there comes, first, the common Prawn, shown with its tail expanded in the middle of its stroke. Just below it is a Cydippe of its ordinary size, showing the paddle-bands, one of which is drawn at the side much mag- nified, so as to show the arrangement of the little paddles. As to the tentacles which trail from the body, we shall treat of them when we come to our next division of the subject of the work. Lastly, there is a representation of the self-feathering feet of the Duck, the left foot expanded in striking the water, and the right closed so as to offer no resistance when drawn forward for another stroke. The swan's foot shows this action even more beautifully than does that of the duck. WE now come to another mode of propulsion, namely, that which is not due to direct pressure of a more or less flat body against the water, but to the indirect principle of the screw, wedge, or inclined plane. Space being valuable, I will only take two instances, namely, the well-known mode of propelling a boat by a single oar working in a groove or rowlock in the middle of the stern, and the ordinary screw of modern steamers. Most of my readers must have seen a sailor in the act of c 18 NATURE S TEACHINGS. " sculling " a boat. A tolerably deep notch is sunk in the centre of the stern, and the oar is laid in it, as shown in the central illustration, on the right-hand side. The sailor then takes the handle of the oar, and works it regularly backwards and forwards, without taking the blade out of the water. The boat at once begins to move forward, and, when the oar is TAIL OF FISH. SCREW OF STEAMER. ' SCULLINO " A BOAT. ACTION OF KUDDEB. TAIL OF SEAL. urged by a strong and experienced man, can be propelled with wonderful speed. The well-known " Tanka " boat-girls of China never think of using two oars, a single oar in the stern being all-sufficient for the rapid and intricate evolutions required in their business. The mechanical process which is here employed is nothing more than that of the inclined plane, or rather, the wedge, the oar-blade forming the wedge, and the force being directed against the stern of the boat, and so driving it through the water. The Rudder affords another example of a similar force, although it is used more for directing than propelling a vessel. Still, just as the scull is used not only for propelling, but for steering the boat, the rudder, when moved steadily backwards and forwards, can be used for propulsion as well as steerage. In the absence of oars, this property is most useful, as I can practically testify. PRINCIPLE OF THE SCREW. 19 So different in appearance are the screw and the inclined plane, that very few people would realise the fact that the screw is nothing but an inclined plane wound round a cylinder, or rather, is a circular inclined plane. The ordinary corkscrew is a good example of this principle, the cylinder being but aa imaginary one. Now, if the screw be turned round, it is evident that force is applied just on the principle of the wedge, and this principle is well shown in the various screw-presses, of which the common linen-press is a familiar example, as was the original printing- press, which still survives as a toy for children. We all know the enormous force exerted by screws when working in wood, and how, when the screw-driver is turned in the reverse direction, the instrument is forced backwards, though the operator is leaning against it with all his weight. In fact, a comparatively small screw, if working in hard wood or metal, so that the threads could not break, could lift a heavy man. Substitute water for wood or metal, and the result would be the same in principle, though the resistance would be less. As the loss of power by friction would prevent a large vessel from being propelled by a stern oar moved like a scull, the idea was invented of applying the same kind of power by a large screw, which should project into the water from the stern of the vessel. This modification, moreover, would have the advantage of forcing the vessel forward when the screw was turned from left to right, and drawing it back when turned in the opposite direction, whereas the sculling oar would only drive it forward. The principle was right enough, but there was at first a great difficulty in carrying it out. Firstly, several turns of a large screw were used, and were found to need power inadequate to the effect. Then the screw was reduced to four separate blades, and now only two are used, as shown in the illustration, these saving friction, being equally powerful for propulsion, and running less risk of fouling by rigging blown overboard or other floating substances. So much for Art. Now for the same principle as shown in Nature, of which I can take but a very few instances. The first and most obvious example is that of the Fish-tail, which any one may observe by watching ordinary gold fish in c2 20 NATURE'S TEACHINGS. a bowl. Their progression is entirely accomplished by the movement of the tail from side to side, exactly like that of the sculling oar, and moreover, like the oar, the tail acts as rudder as well as propeller. The force with which this instrument can be used may be estimated by any one who is an angler, and knows the lightning- like rush of a hooked trout, or who has seen the wonderful spring with which a salmon shoots clear out of the water, and leaps up a fall several feet in height. This is not done, as many writers state, by bending the body into a bow-like form, and then suddenly straightening it, but by the projectile force which is gained by moving the tail backwards and forwards as a sculler moves his oar. Perhaps some of my readers have seen the wonderful speed, ease, and grace with which an Otter propels itself through the water. As the otter feeds on fish, and can capture even the salmon itself, its powers of locomotion must be very great indeed. And these are obtained entirely by means of the tail, which is long, thick, and muscular, and can be swept from side to side with enormous force, considering the size of the animal. The legs have little or nothing to do with the act of swim- ming. The fore-legs are pressed closely against the body, and the hind-legs against each other. The latter act occa- sionally as assistants in steering, but that is all. Then there are the various Seals, whose hind-legs, flattened and pressed together, act exactly like the tail of the fish, that of the otter, the oar of the sculler, or the screw of the steamer. Also, the eel, when swimming, uses exactly the same means, its lithe body forming a succession of inclined planes ; so does the snake, and so does the pretty little lampern, which is so common in several of our rivers, and so totally absent from others. I can only now give a short description of the woodcut which illustrates these points. On the right hand Art is shown by the screw-blades of the modern steamer. In the middle is the ordinary mode of sculling a boat by an oar in the stern, and below it is the rudder, which, like the sculling oar, may be used either for propulsion or direction. On the left hand we have three examples of the same THE WINDMILL AND AERIAL TOP. 21 mechanical powers as shown in Nature. The uppermost figure represents a fish as in the act of swimming, the dotted lines showing the movement of its tail, and the principle of the wedge. In the middle is an otter, just preparing to enter the water, and below is a seal, both of them showing the identity of mechanism between themselves and the art of man. I need not say that the mechanism of art is only a feeble copy of that of nature, but nothing more could be expected. WHILE we are on this subject I may as well mention two more applications of the screw principle. The first is the windmill, the sails of which are constructed on exactly the same principle as the blades of the nautical screw. Only, as they are pressed by the wind, and the mill cannot move, they are forced to revolve by the pressure of the wind, just as the screw of a steamer revolves when the vessel is being towed, and the screw left at liberty. Moreover, just as the modern screws have only two blades, so, many modern windmills have only two sails, the expense and friction being lessened, and the power not injured. Again : some years ago there was a very fashionable toy called the aerial top. It was practically nothing but a windmill in miniature, rapidly turned by a string, after the manner of a humming-top. The edges of the sails being turned down- wards, the instrument naturally screwed itself into the air to a height equivalent to the velocity of the motion. A similar idea has been mooted with regard to the guidance of balloons, or even to aerial voyaging without the assistance of gas, but at present the weight of the needful machinery has proved to be in excess of the required lifting power. In fine, the application of the inclined plane, wedge, or screw as a motive power, is so wide a subject that I must, with much reluctance, close it with these few and obvious examples. IT is worth while, by the way, to remark how curiously similar are such parallels. I have already mentioned the very evident resemblance between the water-boatman, the water- beetles, and the human rower, the body of the insect being shaped very much like the form of the modern boat. I must now draw the attention of the reader to the similitude between 22 NATURE S TEACHINGS. the very primitive boat known by the name of Coracle, and the common Whirl wig-beetle (Gyrinus natator}, which may be found in nearly every puddle. The shape of the insect is almost identical with that of the boat, and the paddle of the WHIBLWIG BEETLE AIJD PADDLES. CORACLE AND PADDLE. coracle is an almost exact imitation of the swimming legs of the whirlwig. And, as if to make the resemblance closer, many coraclers, instead of using a single paddle with two broad ends, employ two short paddles, shaped very much like battledores. NAUTICAL. CHAPTER III. SUBSIDIARY APPLIANCES. PART I. General Sketch of tbe Subject. The Mast of "Wood and Iron. Analogy between the Iron Mast and the Porcupine Quill. The Iron Yard and its Shape pre- figured by the same Quill. Beams of the Steam-engine. Principle of the Hollo\? Tube in place of the Solid Bar. Quills and Bones of Birds. Wheat Straws and Bamboos. Structure of the Boat. The Coracle, the Esquimaux Boat, and the Bark Canoe. Framework of the Ship and Skeleton of the Fish. Compartments of Iron Ship and Skull of Elephant. The Rush, the Cane, and the Sugar-cane. " Stellate" Tissue and its Varieties. HAYING now treated of the raft, the boat, the ship, and their various modes of propulsion and guidance, we come to the subsidiary appliances to navigation, if they may be so called in lack of a better name. First in importance is necessarily the mast ; and the yards, which support the sails, are naturally the next in order. Then there come the various improvements in the building of vessels ; namely, the substitution of planks fastened on a skeleton of beams for a mere hollowed log, and the subsequent invention of iron vessels with their numerous compartments, giving enormous strength and size, with very great comparative lightness. Then we come to the various developments of the ropes or cables, by which a vessel is kept in its place when within reach of ground, whether on shore or at the water-bed. Next come the different forms of anchors which fasten a vessel to the bed of the ocean, of grapnels by which she can be made fast to the shore, or of " drags," which at a pinch can perform either office, and can besides be utilised in searching for and hauling up objects that are lying at the bottom of the sea. 24 NATURE'S TEACHINGS. Next we come to the boat-hook, which is so useful either as a temporary anchor, or as a pole by which a boat can be pro- pelled by pushing it against the shore or the bed of the water ; and then to the " punt-pole," which is only used for the latter purpose. Lastly, we come to the life-belt and life-raft, which are now occupying, and rightly, so much of the public attention. These subjects will be treated in their order in the present chapter, and I hope to be able to show the reader that in all these points nature has anticipated art. i I presume that most, if not all, of my readers are aware of the rapidly extending use of iron in ship-building, not only in the standing rigging, but in the material of the vessel. First there came iron " knees," i.e. the angular pieces of wood which strengthen the junctions of the timbers. Formerly these were made of oak-branches, and, as it was not easy to find a bough which was naturally bent at such an angle as was required for a "knee," such branches were exceedingly valuable. Iron, however, was then employed, and with the best results. It was lighter than the wooden knee, was stronger, could be bent at any angle, and took up much less space. By degrees iron was used more and more, until vessels were wholly made of that material. Then the masts, and even the yards, were made of iron, and, strange as it may appear, were found to be lighter as well as stronger than those made of wood. Of course, the masts and yards were hollow, and it was found by the engineers that in order to combine lightness with great strength, the best plan was to run longitudinal ridges along the inside of the tube. A section of one of these masts is given at Fig. B, and taken from the drawings of one of our largest engineering firms. The reader will see that the mast is composed of rather slight material, and that it is strengthened by four deep though thin ribs, which run throughout its length. "When I first saw this mast I was at once struck with the remarkable resemblance between it and the quill of the Porcu- pine. These quills, as all anglers know, are very light, and of extraordinary strength when compared with their weight. Indeed, they are so light that they are invaluable as penholders to those who are obliged to make much use of their pen. I MASTS, YARDS, AND ENGINE-BEAMS. 25 have used nothing else for a very long time, and the drawing of the Porcupine quill which is here given at Fig. A was made from a small piece cut from the top of the penholder which I have used for some fifteen years, and with which all my largest and most important works were written, including the large " Natural History," " Homes without Hands," " Man and Beast," &c., &c. A portion of the same quill is also shown of its real size. If the reader will cut a Porcupine quill at right angles, make a thin section of it, and place it under the microscope, or even under an ordinary pocket lens, he will see that the exterior is composed of a very thin layer of horny matter, and the interior filled with a vast number of tiny cells, which are formed much on the same plan as the pith of elder and other plants. The analogies of the pith will be treated in another page. But were the quill merely a hollow tube filled with pith, it would be too weak to resist the strain to which it is often PORTION OF POBCUPIXE QUILL. SECTION OF ENGINE BEAK. COMPLETE QUILL. IRON YAED AND YARD-ARM. ENGINE BEAM. SECTION OF PORCUPINE QUILL MAGNIFIED. SECTION OF IRON MAST. liable. Consequently it is strengthened by a number of inter- nal ribs, composed of the same horny material as the outer coat, and arranged in exactly the same way as those of the mast. There are yet other points in the structure of the Porcupine quill which might be imitated with advantage in the mast. In the first place, the internal ribs are much more numerous 26 NATURE'S TEACHINGS. than those of the mast, but they are very much thinner, and taper away from the base, where the greatest strain exists, to the end, where they come to the finest imaginable edge. This modification of structure enables the outer shell of the quill to be exceedingly thin and light, and, moreover, gives to the whole quill an elasticity which is quite wonderful, considering its weight and strength. Then, in the iron mast the exterior is quite smooth, whereas in the Porcupine quill it is regularly indented, exactly on the principle of the corrugated iron, which combines great strength with great lightness. And I cannot but think that our iron masts might be made both lighter and stronger if the shell were thinner, the internal ribs made like those of the Porcu- pine quill, and the shell corrugated instead of being quite smooth. The internal cells of the quill are, of course, not needed in the mast, as they are intended for nutrition, and not for strength. BEING on this subject, we may take the shape of the Porcu- pine quill, and compare it with that of the ship's yard. It will be seen that the two are so exactly similar in form that the outline of one would answer perfectly well for the other. The only perceptible difference is, that in the ship's yard both ends are alike, whereas in the Porcupine quill the end which is inserted in the skin is rounded and slightly bent, while the other end is sharply pointed. The principal point to be noticed in the form of both quill and yard is, that they become thicker in the centre, that being the spot on which the greatest strain comes, and which, in con- sequence, needs to be stronger than any other part. While holding and balancing the pole which Blondin uses to preserve his balance when walking on the high rope, I was struck with the fact that the pole, which is heavily weighted at each end, had to be strengthened in the middle, exactly on the principle of the Porcupine quill and the ship's yard. It could not, of course, be thickened, as the hands could not grasp it, but it had to be furnished with additional strengthening. And the necessity of such strengthening is evident from the fact that on one occasion the pole did break in the middle, so that any one of less nerve and presence of mind must have been killed. QUILLS AND STRAW. 27 Bearing in mind, then, that in a rod or pole the centre is the part which most requires to be strengthened, we can see, in cases too numerous to mention, how art has followed, though perhaps unconsciously, in the footsteps of nature. Take, for example, the beam of a steam-engine, such as is given in the sketch, and for which the great engine at Chatham acted as model. The reader will observe that in this case the beam is gradually thickened towards the centre, the ends, where the strain is slightest, being comparatively small. Another point also must be noticed. Equal strength could have been obtained had the beam been solid, but at the expense of weight, and consequent waste of power. Lightness is there- fore combined with strength by making the beam consist of a comparatively slight centre, but having four bold ridges, as shown in the section given in the accompanying illustration. This plan, as the reader will see, is exactly the same as that which is adopted in the iron mast and porcupine quill, except that the ridges are external instead of internal. The same mode of construction is employed in ordinary cranes, the prin- cipal beam of which is almost identical in form with that of the engine, both being thickest in the centre, and both strengthened with external ridges. There are also other analogies between the hollow mast and natural objects. Keeping still to the animal world, we find the quill feathers of the flying birds to supply examples of the combination of great strength with great lightness and very little expenditure of material. Their wing bones, too, aro hollow, communicating with the lungs, and are consequently light as well as strong. Passing to the vegetable world, we find a familiar example of this structure in the common Wheat Straw. The ripe ear is so heavy, when compared with the amount of material which can be spared to carry it, that if the stalk were solid it would give way under the mere weight of the ear. Moreover, the full-grown corn has to endure much additional weight when wetted with rain, and to resist much additional force when bowed by the wind, so that a slight and solid stalk would be quite inadequate to the task of supporting the ear. The material of the stalk is therefore utilised in a different manner, being formed into a hollow cylinder, the exterior of 28 NATURE'S TEACHINGS. which is coated with a very thin shell of flint, or " silex " as it is scientifically termed. The result of this structure is that the stem possesses strength, lightness, and elasticity, so as to be equal to the burden which is laid upon it. Then there is the common Bamboo, which is little more than a magnified straw, being constructed in much the same manner, and possessing almost the same constituents of vegetable matter and silex. Perhaps the most extraordinary of the tubal system is to be found in the remarkable plant ol Guiana called by the natives Ourah, and scientifically known by the name of Arundinaria Schomburgkii. Like the bamboo, it grows in clusters, and has a feathery top, which waves about in the breeze. But, instead of decreasing gradually in size from the base upwards, the Ourah, although it runs to some fifty feet in height, is nowhere more than half an inch in diameter. The first joint is about sixteen feet in length, and uniform in diameter throughout. It is scarcely thicker than ordinary pasteboard, and yet so strong and elastic is it, that it can sustain with ease the weight and strain of its feathery top as it blows about in the breeze. The natives of certain parts of Guiana use this reed as a blow- gun, and I have a specimen, presented to me by the late Mr. Waterton, which is eleven feet in length. So the reader will see that when engineers found that hollow iron beams were not only lighter, but stronger than solid beams, they were simply copying the hollow beams formed by Nature thousands of years ago. ANOTHER great improvement in ship-building now comes before us. We have already seen that the earliest boats were merely hol- lowed logs, just as Robinson Crusoe is represented to have made. But these had many disadvantages. They were always too heavy. They were liable to split, on account of flaws in the wood, and if a large vessel were needed, it was difficult to find a tree sufficiently large, or to get it down to the water when finished. So the next idea was to build a skeleton, so to speak, of light wooden beams, and to surround it with an outer clothing, or SKELETON OF FISH AND BOAT. 29 skin, if it may be so termed. As far as I know, tlie two original types of this structure are the Coracle of the ancient Briton, and the birch-bark Canoe of the North American Indian, and it is not a little remarkable that both exist to the present day, with scarcely any modification. The Coracle has been already represented on page 22. It is, perhaps, or was in its original form, the simplest boat in exist- ence, next to the " dug-out." In the times of the very ancient Britons, who were content with blue paint by way of dress, and lived by hunting and fishing, the Coracle was a basin- shaped basket of wicker-work, rather longer than wide, and covered with the skin of a wild ox. This was sufficiently light to be carried by one man, and sufficiently buoyant to bear him down rapids, if he were a skilful paddler, and, of course, formed a considerable step in civilisation. The modern Coracle is identical in form, and almost in material. The frame is still oval and basin-shaped, and made of wicker, but the outer covering is not the same. An ox-hide is an expensive article in these days, and, especially when wetted, is very heavy. So the modern Coracle builder covers the wicker skin with a piece of tarpaulin, which is much cheaper than the ox-hide, much lighter, is equally water-tight, and has the great advantage of not absorbing moisture, so that it is as light after use as before. The Esquimaux make a boat on very similar principles. It is simply hideous in form, resembling a huge washing- tub in shape, but, as it is only intended for the inferior beings called women, this does not signify. Best, most perfect, and most graceful of all such boats is the Birch-bark Canoe of the North American Indians, whose shape has evidently been borrowed from that of a fish. I have seen many of these canoes, and have now before me several models which are exactly like the originals, except in point of size. Instead of being mere elongated bowls, like the coracle, they are long and slender, swelling out considerably in the middle, and coming to an almost knife-like edge at each end. Both stem and stern are alike, so that the canoe can be paddled in either direction, and, as one of the paddlers always acts as steersman, no rudder is needed. The mode of construction is perfectly simple. The labour is 30 NATURE'S TEACHINGS. divided between the sexes: the women cut large sheets of bark from the birch-trees, scrape and smooth them, and then sew them together, so as to form the outer skin, or " cloak" as it is called, of the canoe. Meanwhile the men are making the skeleton of strips of white cedar-wood, and binding them into shape with thongs made of the inner bark of the same tree, just like the "bass " of our gardeners. The "cloak" is then gradually worked over the skeleton, sewn into its place, and the canoe is finished. A figure of this canoe, as completed, is given in the same illustration as that which represents various forms of boat, page 7. The last improvement is that which was caused by the necessity for large vessels, when planks or iron plates were fastened over the skeleton. But, in all these cases, the vessel is built on the principle of the thorax of a vertebrate animal, that of the whale or a fish being an admirable example. It only needs to take the skeleton of a whale, turn it on its back, and the ribs will be seen to form an almost exact reproduction of those of any ship being built in the nearest dockyard. RIBS OF FISH. KIDS OF SHIP. now before me the spine and ribs of a herring. The fish was over-boiled, and the flesh fell off the bones as it was being lifted out of the dish, leaving most of the ribs in their places. When held with the spine downwards, and viewed from one end, the resemblance to the framework of a ship is absolutely startling, the ribs representing the beams, and the spine taking the place of the keel. I have also before me a sketch representing a section of a Fijian canoe, and it is remarkable that even the very curve of the ribs of the herring is reproduced in those of the canoe. SEPARATE COMPARTMENTS AND THEIR USE. 31 Whether the Fijians derived this peculiar and beautiful curve from the ribs of a fish I cannot say, but think it very likely. A STILL greater improvement in ship-building now comes before us, and this also has been anticipated both in the animal and vegetable kingdoms. There are so many examples of this anticipation that I can only give one or two. The improvement to which I refer is that which is now almost universally employed in the construction of iron ships, namely, the making the outer shell double instead of single, and dividing it into a number of separate compartments. Putting aside the advantage that if the vessel were stove, only one compartment would fill, we have the fact that the ship is at the same time TBAXSVER8E SECTION OF IBON SHIP. Jim fl 1 STELLATE TISSUES. LONGITUDINAL SECTION OP IBON SHIP. enormously strengthened and very light in proportion to her bulk. Perhaps the best, and certainly the most obvious, example of this principle in the animal world is to be found in the skull of the Elephant. The enormous tusks, with their powerful leverage, the massive teeth, and the large and weighty pro- 32 NATURE'S TEACHINGS. boscis, require a corresponding supply of muscles, and conse- quently a large surface of bone for the attachments of these muscles. Now, were the skull solid in proportion to its requisite size, its weight would be too much for the neck to endure, however short and sturdy it might be. The mode of attaining expanse of surface, together with lightness of struc- ture, is singularly beautiful. Perhaps some of my readers may not be aware that the bone of the skull consists of an outer and inner plate, with a variable arrangement of cells between them. In many animals, such, for example, as man, where the jaws are comparatively feeble, and the teeth small and light, the size of the skull is practically that of the brain, to which it affords a covering. The same structure may be observed in the skull of the common sparrow, where, as in man, the two bony plates are set almost in contact. But in the elephant these external and internal plates are set widely apart, and the space between them is filled with bony cells, much resembling those of a honeycomb. They are, in fact, just the same cells as those which exist in the skull of man and sparrow, but they are very much enlarged, and in consequence give a large surface, accompanied with united strength and lightness. There are many other examples in the animal kingdom, but our limited space will not allow them to be even mentioned. As to the vegetable examples of this principle, they are so multitudinous that only a very slight description can be given of them. I suppose that most boys have seen a " cane " (whether they have felt it or not is not to the purpose), and some boys have made sham cigars from pieces of cane. In either case they must have noticed that the cane is not solid, but is pierced with a vast number of holes, passing longitudinally through it, and is, in fact, a collection of little tubes connected and bound together by a common envelope. The Sugar-cane, if cut across, is seen also to consist of mul- titudinous cells, which, however, are not hollow, but filled with the sweet liquid from which sugar is obtained by boiling. Then there are many of our common English plants, like the STELLATE TISSUE. 33 ordinary rush or reed, which are very slight in diameter in comparison with their length, and in which the cells are still further strengthened and lightened by the projection of their sides into a number of points which meet each other, and leave interstices between them. This modification of the cellular system is called " Stellate " (or star-like) Tissue, and two examples of it are given in the illustration, one being taken from the common rush, and the other from the seed- coat of the privet. A very good specimen of stellate tissue may be obtained by cutting a thin section of the white inner peel of the orange. NAUTICAL. CHAPTER IV. SUBSIDIARY APPLIANCES. PART II. The Cable and its Variations. Material of Cables. Hempen and Iron Cables, and Elasticity of the latter. Natural Cables. The " Byssus" of the Pinna and the common Mussel. The Water-snail and its Cable. A similar Cable produced by the common White Slug. The Principle of Elasticity. Elastic CaWe of the Garden Spider. Tendrilous Cables of the Pea and the Bryony. The Vallisneria, and its Development through the Elastic Cable. Proposed Submarine Telegraph Cable. The Anchor, Grapnel, and their Varieties. Natural Anchors. Spicule of Synapta. The Grapnel, natural and artificial. Ice-anchor and Walrus Tusks. The Mushroom Kedge. The Flesh-hook. Eagle-claw. The Grapple-plant of South Africa. The Drag. A MONG the most important accessories to a ship are the **- Cable, by which she can be anchored to the bed of the sea, and the ropes called " warps," by which she can be fastened to the land. Perhaps my readers may not know the old riddle " How many ropes are there on board a man-of-war ? " The non- nautical individual cannot answer, but the initiated replies that there are only three, namely, the man-rope, the tiller- rope, and the rope's-end, all the others being "tacks," "sheets," " haulyards," " stays," " braces," &c. Formerly cables were always made of hemp, enormously thick, and most carefully twisted by hand. Now, even in small vessels, the hempen cable has been superseded by the iron chain, and this for several reasons. In the first place, it is much smaller in bulk, and therefore does not occupy so much room. In the next place, it is even lighter than the hempen cable of corresponding strength ; and, in the third, its specific gravity i.e. its weight when com- THE PINNA AND THE MUSSEL. 35 pared with an equal bulk of water is so great, that when submerged, it falls into a sort of arch-like form, and so attains an elasticity which takes off much of the strain on the anchor, and protects it from dragging. WE will now look to Nature for Cables. The natural cable which will first suggest itself is evidently that of the Pinna Shell (Pinna pectinata), which fixes its shell EGO OF DOG-FI3H. PINNA. WATEB-SNAIL ANCHORED TO WATER-LILY LEAF. ANCHORED BOAT. to some rock or stone with a number of silk-like threads, spun by itself, and protruding from the base, just as a vessel on a lee shore throws out a number of cables. The threads which compose the " byssus," as it is called, are only a few inches in length, and apparently slight. They are, however, really strong, and by acting in unison enable the shell, though some- times two feet in length, to be held firmly to the rock. I may here mention that they have been occasionally woven into gloves, and other articles of apparel, to which their natural soft grey-brown hue gives a very pleasing appearance. A still more familiar instance of a natural marine cable is given by the common Mussel, which can be found in thousands on almost every solid substance which affords it a hold. Even copper-bottomed ships are often covered with Mussels, all clinging by their natural cables, and it is thought that the cases which sometimes occur of being poisoned by eating Mussels, or " musselled," as the malady is called by the sea- faring population, are due to the fact that the Mussels have D 2 t 36 NATURE'S TEACHINGS. anchored themselves to copper, and have in consequence imbibed the verdigris. PASSING from salt to fresh water, we come to a natural cable which is very common, and yet, on account of its practical invisibility, is almost unknown, except by naturalists. I refer to the curious cable which is constructed by the common Water-snail (Limncea stagnalis), which has already been mentioned in its capacity of a boat. This creature has a way of attaching itself to some fixed object, such as a water-lily leaf, by means of a gelatinous thread, which it can elongate at pleasure, and by means of which it can retain its position in a stream, or in still water can sink itself to the bottom, and ascend to the same spot. This cable seems to be made of the same glairy secretion as that which surrounds the egg-masses which are found so plentifully on leaves and stones in our fresh waters, and, like that substance, is all but invisible in the water, so that an inexperienced eye would not be able to see it, even if it were pointed out. Slight, gelatinous, and almost invisible in the water as is this thread, its strength is very much greater than might be supposed. Not only can a mollusc be safely moored in the water by such a cable, but it can be actually suspended in the air, as may be seen from a letter in Hardwicke's Science Gossip for 1875, p. 190 : "Last summer (September 29) I met with the following unusual fact. In a green-house, from a vine-leaf which was within a few inches of the glass ... a slug was hanging by a thread, which was more than four feet in length, not unlike a spider-web, but evidently much stronger. " The slug was descending by means of this thread, and, as the glutinous matter from the under part of the body was drawn out by the weight of the creature, it was consolidated into a compact thread by the slug twisting itself in the direc- tion of the hands of a clock, the power of twisting being given by the head, and the part of the body nearest the head being turned in the direction of the twist. There was no tendency to turn in the contrary direction. Evidently the thread became hard as soon as it was drawn away from the body. " By wetting the sides of slips of glass, I secured two speci- PRINCIPLE OF ELASTICITY. 37 mens of the thread. In one of these, part was stretched, and part quite loose, the latter appearing flat when seen through a microscope. The thread, which was highly elastic, was increased about three inches in a minute. The slug was white, and about an inch and a half in length." Now we come to the elastic system of the Chain Cable, and find it anticipated in Nature in various ways. One curious example was that of a Spider, which found its wheel-like net in danger from a tempestuous wind. The Spider descended to the ground, a depth of about seven feet, and, instead of attaching its thread to a stone or plant, fastened it to a piece of loose stick, hauled it up a few feet clear of the ground, and then went back to its web. The piece of stick thus left suspended acted in a most admirable manner, giving strength and support, and at the same time yielding partly to the wind. By accident the thread became broken, and the stick, which was about as thick as an ordinary pencil, and not quite three inches in length, fell to the ground. The Spider immediately descended, attached another thread, and hauled it up as before. In a day or two, when the tempestuous weather had ceased, the Spider voluntarily cut the thread, and allowed the then useless stick to drop. A CURIOUS example of the elastic cable is seen in the egg-case of the Dog-fish, which is given on page 35. The egg-case is formed like that of the common skate, and has a projection from each of its angles. But the projections, instead of being mere flattened horns, are lengthened into long elastic strings, tapering towards the ends, and twisted spirally, like the tendrils of a grape-vine. These tendril-like appendages twist themselves round sea- weeds and other objects, and, on account of their spiral form, can hardly ever be torn from their attachments. Sometimes after a storm the egg is thrown on the shore, still clinging to the seaweed, but to find an egg detached is very rarely done. I have already mentioned the tendrils of the vine, and their great strength. The reader may remember the corresponding cases of the Pea and the Bryony, the latter being a most remarkable example of the strength gained by the spiral form. 38 NATURE'S TEACHINGS. It clambers about hedges, is exposed to the fiercest winds, liaa large and broad leaves, and yet such a thing as a Bryony being blown off a hedge is scarcely, if ever, seen. I never saw an example myself, though I have had long experience in hedges. ANOTHER excellent example of this principle is found in the Vallisneria plant, which of late years has become tolerably familiar to us through the means of fresh-water aquaria, though it is not indigenous to this country. In this plant the elastic power of the spiral cable is beauti- fully developed. It is an aquatic plant, mostly found in run- ning waters, and has a most singular mode of development. It is dioecious i.e. the male, or stamen-bearing, and the female, or pistil -bearing flowers, grow upon separate plants. It has to deposit its seeds in the bed of the stream, and yet it is necessary that both sets of flowers should be exposed to the air and sun before they become able to perform their several duties. Add to this the fact that the male flower is quite as small in pro- portion to the female as is the case with the lac and scale insects, and the problem of their reaching each other becomes apparently intricate, though it is solved in a beautifully simple manner. Fertilisation cannot be conducted by means of insects, as is the case with so many dioacious terrestrial plants, and it is absolutely necessary that actual contact should take place between them. This difficult process is effected as follows : The female flowers are attached to a very long spiral and closely coiled footstalk, and, when they are sufficiently developed, the footstalk elongates itself until the flower rests on the surface of the water, where it is safely anchored by its spiral cable, the coils yielding to the wavelets, and keeping the flower in its place. Meanwhile the tiny male flowers are being developed at the bottom of the river, and are attached to very short footstalks. When they are quite ripe they disengage themselves from their footstalks, and rise to the surface of the river. Being carried along by the stream, they are sure to come in contact with the anchored female flowers. This having been done, and the seeds beginning to be developed, the spiral footstalk again coils itself tightly, and brings the seeds close to the bed of the stream, where they can take root. THE ANCHOR. 39 There are other numerous examples, of which any reader, even slightly skilled in botany, need not be reminded, most of them being, in one form or another, modifications of the leaf or the petal, which, after all, are much the same thing. The vine and passion-flower are, however, partial exceptions. I may here mention that soon after the failure of the first Atlantic telegraph cable, an invention was patented of a very much lighter cable, enclosed in a tube of india-rubber, and being coiled spirally at certain distances, so that the coils might give the elasticity which constitutes strength. The cable was never made, its manufacture proving to be too costly ; but the idea of lightness and elasticity, having been evidently taken from the spiral tendrils of the bryony, was certainly a good one, and I should have wished to see it tried on a smaller scale than the Atlantic requires. As a natural consequence, after the cable comes the Anchor, which in almost every form has been anticipated by Nature, whether it be called by the name of anchor, kedge, drag, or grapnel. On the accompanying illustrations are shown a number of corresponding forms of the Anchor, together with a few others, which, although they may not necessarily be used in the water, are nevertheless constructed on the same principle i.e. for the purpose of grappling. ONE of the most startling parallels may be seen on the right ANCIENT AXCHOR. 8PICULES OP SYNAPTA. hand of the illustration, the figure having been drawn from an old Roman coin. On the other side of the same illustration 40 NATURE S TEACHINGS. may be seen an anchor so exactly similar in form, that the outline of the one would almost answer for that of the other. This object is a much-magnified representation of a spicule which is found on the skin of the Synapta, one of the so-called Sea-slugs, which are so extensively sold under the name of Beche de Mer. It forms one of the curious group called the Holothuridae. Each of these anchors is affixed to a sort of open-worked shield, as shown above, and on the left hand ; and it is a curious fact that in the various species of Synapta the anchor is rather different in form, and the shield very different in pattern. They are lovely objects, and I recommend any of my readers who possess a microscope to procure one. They need a power of at least 150 diameters to show their full beauties. An ordinary Grapnel is here shown, and in the corresponding position on the opposite side is an almost exactly similar object, except that it is double, having the grapnel at both ends of the stem. This is a spicule of a species of sponge, and is one of the vast numbers of which the sponge principally consists. LEBNEXTOMA. ECHnrococcus. BPONGE-SPICULE. Next to the sponge-spicule is a still more perfect example of a natural Grapnel. This is the head of an internal parasite called Echinococcus, which holds itself in its position by means of the circle of hooks with which the head is surrounded. These hooks are easily detached, and have a curious resemblance to the claw of the lion or tiger. On the left-hand side is a representation of a parasitic crus- tacean animal called Lernentoma, which adheres to various fishes, and is mostly found upon the sprat, clinging to the gills by means of its grapnel-shaped head. On the right hand of the accompanying illustration is an ice- anchor, copied from one of those which were taken out in the ICE-ANCHORS. 41 Arctic expedition of 1875. Opposite is the skull of tlie Walrus, the tusks of which are said to be used for exactly the same TUSKS OF WALRUS. ICE-ANCHOR AND ICE-HOOKS. purpose. Below are ice-hooks, also used for the same expedi- tion. The next illustration exhibits a butcher's hook and a common porter's hook, by which he lifts sacks on his back ; and oppo- SPONGE-SPICULE8. BUTCHER'S HOOK. PORTER'S HOOK. site them are some sponge- spicules, the similarity of which in form is so remarkable that the former might have been copied from the latter. OUR next sketch shows a remarkable example of similitude in form. There are certain small anchors called Kedges, which are very useful for mooring a boat where no great power of MUSHROOM HEDGE. resistance has to be overcome, and a large anchor would be cumbersome. One of these is called, from its shape, the " Mushroom Kedge," and is very useful, as, however it may be 42 NATURE'S TEACHINGS. dropped, some part of the edge is sure to take the ground. This Kedge is shown on the right hand of the illustration, and the Mushroom, from which its shape was borrowed, is seen on the left. . WE now come to some more examples of the principle of the Grapnel, some of which are applied to nautical, and others to terrestrial objects. EAGLE-CLAW. FLESH-HOOK. The right-hand upper figure represents the " Flesh-hook," used for taking boiled meat out of the caldron, so familiar to us by the reference to it in Exodus xxvii. 3, and the still better-known allusion to its office in 1 Samuel ii. 13, 14. In the former passage, even the material, brass, which was really what we now call bronze, is mentioned, and it is a curious fact that all the specimens in the British Museum, from one of which the drawing was taken, are made of bronze. I need hardly state that the hollow handle is meant to receive a wooden staff. On comparing this figure with that of the Eagle's foot on the opposite side, the reader cannot but be struck with the exact resemblance between the two. Indeed, there is very little doubt that the flesh-hook was intentionally copied from the foot of some bird of prey. Perhaps the Osprey would have furnished even a better example than the Eagle, the claws being sharper and more boldly curved, so as to hold their slippery prey the better. ON the left hand of the next illustration is a figure of the seed-vessel of the Grapple-plant of Southern Africa, drawn from a specimen in my collection. The seed-vessel is several inches in length, and the traveller who is caught by a single hook had better wait for assistance than try to release himself. The stems of the plant are so slender, and the armed seed-vessels so THE GRAPPLE-PLANT AND THE DRAG. 43 numerous, -that in attempting to rescue one portion of the dress, another portion becomes entangled, and the traveller gets hopelessly captured. Besides the hooks of the seed- vessels, the branches themselves are armed with long thorns, set in pairs. The scientific name of this plant is Uncinaria procumbenSy the former word signifying " a hook," and the latter " trailing." It is also known by the popular name of Hook- plant. GRAPPLE-PLANT. In the late Kafir wars the natives made great use of this and other plants with similar properties, their own naked, dark, and oiled bodies slipping through them easily and un- seen, while the scarlet coats of the soldiers were quickly entangled, and made them an easy mark for the Kafir's spear. In this way many more of our soldiers were killed by the spears than by the bullets of their enemies. Opposite to the Grapple-plant is shown the common Drag, which is utilised for so many purposes. Generally it is employed for recovering objects that have sunk to the bottom of the water, and its use by the officers of the Humane Society is perfectly well known, the Drag being sometimes affixed to the end of a long pole, like the flesh-hook already described, and sometimes tied to a rope. It can also be used as an anchor, after the manner of a kedge, and has been often employed in naval engagements for the purpose of drawing two ships together, and preventing the escape of the vessel which is being worsted. My relative, the late Admiral Sir J. Harvey, K.B., used drags in this manner, and secured two French ships, one on either side, namely, L'Achille and Le Vengeur. The first was sunk, and the second captured. NAUTICAL. CHAPTER V. SUBSIDIARY APPLIANCES. PART III. THE BOAT-HOOK AND PUNT-POLE. THE LIFE-BUOY AND PONTOON-RAFT. The Boat-hook and its varied Uses. The Earth-worm and the Serpula. Micro- scopic Boat-hooks. The Life-belt. Life-boats and their Structure. Uses of Cork. Wine Corks made serviceable. The Life-collar. Portuguese Man-of-war. Captain Boyton's Life-dress. The Life-raft. Victualling a Yacht and Boat. The Janthina and its Air-vessels. Cask-pontoon Pot- tery-raft and its Uses. A S all rowing men know, an indispensable appliance to the *-*- boat is the Boat-hook, which can be used either as a pole, wherewith to push the boat along, or as a grapnel, by which it can be drawn towards the shore or a ship. As the latter portion has been discussed at the close of the preceding chapter, we may proceed to the former. Every one knows how a boat may be propelled by a pole pressed against the bank or the bottom of the water, and that there are certain boats, called punts, which are propelled in no other way. Now, the punt-poles and boat-hooks, of which some examples are given in the accompanying illustration, have long been anticipated in Nature, there being many creatures which have no other mode of progression; such, for example, as the common Earth-worm, which pushes itself along by certain bristles which project from the rings of which the body is composed, and which have the power of extension and con- traction to a wonderful extent. As, however, I shall advert to these in another part of the work, I will content myself at present with a single example, namely, the beautiful marine worm known as the Serpula. PUNT-POLES. 45 This worm lives in a shelly tube, which is lined with a delicate membrane, up and down which it passes with ease, ascending slowly, but generally descending with such wonder- ful rapidity that the eye cannot follow its movements. The latter movement will be explained in a subsequent part of the book, and we will at present only treat of the former. If the creature be removed from the tube, and carefully examined, a number of projections will be seen, in each of which is a perforation. If the animal be pressed, a slight glass-like bristle passes through the perforation, and can easily PUSHING SPIKES OF SERPULA. BOAT-HOOKS AND PUXT-POLES. be removed. If properly treated, and placed under a high power of the microscope, the tiny bristle resolves itself into the remarkable object which is shown on the left hand of the illustration. It consists of a number of spear-like rods, each having a straight shaft, and a curved and pointed tip, deeply barbed on the inner portion of the curve. These curious bundles of spicules can be protruded or retracted at pleasure, and, as they are all directed backwards, it is evident that when they are pushed against the sides of the tube, either the points or the barbs must catch against the membrane which lines the tube, and so propel the animal upwards. When it wishes to descend, it uses another set of implements, and withdraws the first within their sheaths. This is exactly analogous to the mode of progression em- ployed by punters, who, after they have placed the pole against the bed of the stream, and run along the punt so as to push it as fast as possible, immediately withdraw the pole, and take it to the head of the punt, ready for another push. This, as the reader will see, is exactly the plan pursued by the Serpula in lengthening itself when it wishes to advance, and so to press 46 NATURE'S TEACHINGS. its spicules against the sides of its tube, and in shortening itself and withdrawing the spicules ready for another push. ANOTHER needful accessory of vessels now comes before us, namely, the capability of forming rafts or life-belts, which will float under any circumstances. Here, again, every human invention of which I know has been anticipated by Nature. Take, for example, the familiar instance of the cork life-belt and the cork edgings of the life-boat. Both are constructed on the same principle, i.e. the maintenance of cells which are filled by air instead of water, and are impervious to the latter. The material most used for this purpose is cork, and life- belts constructed of it have long been in well- deserved use, the cork -bark having the property of holding much air and ex- cluding water. Many of our life-boats are furnished with a broad and thick streak of cork, so that even if the boat be filled with water and upset, she will right herself and swim. I regret to say that many of the so-called " life-belts " which are offered for sale ought rather to be called "death-belts," they having been found to be filled with hay and straw, with only a few shavings of cork just under the covering of the belt. Indeed, so buoyant is this substance that a very efficient belt can be made by stringing together three or four rows of ordinary wine corks, and tying them round the neck like a collar. Under these circumstances it is simply impossible to sink, and though any one may collapse from exhaustion, drowning is almost out of the question. The now well-known cork mattress, which is used in many ships, is another example of the same principle. Lately there has been invented a " life-collar," which possesses similar advantages, but occupies less space when not wanted. It is nothing more than a tube of caoutchouc, which can be inflated at pleasure, and tied round the neck. The ordinary life-belt goes round the waist, and needs much more material without obtaining a better result, which is simply the keeping of the mouth and nostrils out of the water. Perhaps the most buoyant of living beings is the Portuguese Man-of-war (Physalis pelagicus], which floats on the surface of the ocean like a bubble. It can at pleasure distend itself with air and float, or discharge the air and sink. Now, there is a very remarkable swimming dress, which, BUOYS AND LIFE-BOATS. 47 though not entirely invented, was at least perfected by Captain Boyton, and which, as it enabled the wearer to cross from France to England under rather unfavourable circumstances, is clearly a most valuable invention. PORTUGUESE MAN-OF-WAB. CAPTADf BOYTON's LIFE-DBESS. Whether the inventor knew it or not I cannot say, but the Boyton life-dress is simply a modification of the Physalis, being capable of dilatation with air at will. So much for the individual life-belt, and we will now pass to those which are intended to sustain more than one individual. It has almost invariably been found that when a ship has been wrecked on a rock, or stove in by the sea, that, although there may be plenty of boats, there is great difficulty in getting them into the water rightly. Now, if parts of the ship itself could be made of materials which could not be sunk except by enormous pressure, and which might be released by a touch if the vessel were sinking, it is evident that many lives would be saved which have now been lost. And if such movable parts of the vessel were supplied with water and provisions in air-tight cases, there is no doubt that the number of " missing " ships would be very greatly dimi- nished. I remember an instance where a yacht was " hung up " on a mud-bank, whence there was no escape, for twenty- four hours, and there was one sandwich on board to be divided among the owner, two men, and a boy. Of course the boy had the sandwich, and the men sustained themselves as well as they could with tea, of which there was, fortunately, a canister on board. As it was, they were some thirty-six hours without food. After such an experience the owner had special lockers made in the yacht and her boat, containing biscuit, potted meats, water, 48 NATURE'S TEACHINGS. wine, spirits, tobacco, tea, an " etna " for heating the water, and matches. Of course these were on a smaller scale in the boat ; but several thick rugs were also stowed away, in case of being separated from the yacht at night. It so happened that they were never needed ; but the sense of security which they imparted was worth ten times the expense and trouble, which included a careful inspection of all the stores before each voyage. In Nature there is just such a raft as is needed, capable of carrying a heavy freight, and which cannot be upset. And it is rather remarkable that it has been unconsciously imitated in various parts of the world. JANTHINA AND AIR-RAFT. CASK-PONTOON. POTTERY-BAFT OF THE NILE. This is the singular apparatus attached to the Violet Snail (Janthina communis), which is common enough in the Atlantic, and derives its name of Violet-shell from its beautiful colour. The chief interest, however, centres in the apparatus which is popularly called the " raft," and which sustains the shell and eggs. It is made of a great number of air-vessels, affixed closely to each other, and by the curious property of bearing its cargo slung beneath it instead of being laid upon it. Beneath the raft are the eggs, or rather, the capsules which contain the eggs, and at one end is the beautiful violet shell itself. The floating power of the raft is really astonishing, and even in severe tempests, when it is broken away from the animal, the raft continues to float on the surface of the waves, bearing its cargo with it. On the opposite side of the illustration are two examples of rafts constructed so exactly on the same principle as that of the Violet Snail, that they both might have been borrowed from it. The upper is the kind of raft which has often been con- structed by sailors when trying to escape from a sinking ship, or by soldiers when wishing to convey troops across a THE CASK-PONTOON. 49 river, and having no regular " pontoons " at hand. It is made simply by lashing a number of empty casks to a flooring of beams and planks. The amount of weight which such a structure will support is really astonishing, as long as the casks remain whole, and to upset it is almost impossible. Even cannon can be taken across wide expanses of water in perfect safety, and there is hardly anything more awkward of conveyance than a cannon, with its own enormous and concentrated weight, and all the needful paraphernalia of limber, ammunition (which may not be wetted, and of immense weight), horses, and men. Yet even this heterogeneous mass of living and lifeless weight can be carried on the cask-raft, which is an exact imitation of the living raft of the Violet Snail. BENEATH the cask-pontoon is to be seen a sketch of a very curious vessel which is in use on the Nile, and I rather think on the Ganges also, though I am not quite sure. It is formed in the following manner : In both countries there are whole families who from genera- tion to generation have lived in little villages up the river, and gained their living by making pottery, mostly of a simple though artistic form, the vessel having a rather Iftng and slender neck, and a more or less globular body. When a man has made a sufficient number of these vessels, he lashes them together with their mouths uppermost, and then fixes upon them a simple platform of reeds. The papyrus was once largely used for this purpose, but it seems to be gradually abandoned. He thus forms a pontoon exactly similar in principle with the cask-pontoon which has just been described. Then, taking his place on his buoyant raft, he floats down the river until he comes to some populous town, takes his raft to pieces, sells the pots and reeds, and makes his way home again by land. WAE AND HUNTING. CHAPTER I. THE PITFALL, THE CLUB, THE SWORD, THE SPEAR AND DAGGER. Analogy between War and Hunting. The Pitfall as used for both Purposes. African Pitfalls for large Game, and their Armature for preventing the P^scapa of Prey. Its Use in this Country on a miniature scale. Mr. Waterton's Mouse-trap. Pitfall of the Ant-lion, and its Armature for preventing the Escape of Prey. The Club and its Origin. Gradual Development of the Weapon. The "Pine-apjle" Club of Fiji. The Game of Pallone and the " Bracciale." The Irish Shillelagh. Clubs and Maces of Wood, Metal, or mixed. The Morgenstern. Ominous Jesting. Natural Clubs. The Durian, the Diodon, and the Horse-chestnut. The Sword, or flattened and sharpened Club. Natural and artificial Armature of the Edge. The Sword- grass, , Leech, and Saw-fish. Spears and Swords armed with Bones and Stones. The Spear and Dagger, and their Analogies. Structure of the Spear. The Bamboo as a Weapon of War or Hunting. Singular Combat, and its Results. THE two subjects which are here mentioned are practically one, the warfare being in the one case carried on against mankind, and in the other against the lower animals, the means employed being often the same in both cases. THE PITFALL. ONE of the simplest examples of this double use is afforded by the PITFALL, which is employed in almost every part of the world, and, although mostly used for hunting, still keeps its place in warfare. On the right hand of the accompanying illustration is shown a section of the Pitfall which is so commonly used in Africa for the capture of large game. It is, as may be seen, a conical hole, the bottom of which is armed with a pointed stake. Should a large animal fall intc the pit, the shape of the sides PITFALLS. 51 forces it upon the stake, by which it is transfixed. Even elephants of the largest size often fall victims to this simple trap. It is only large enough to receive the fore-legs and chest, but that is quite sufficient to cause the death of the animal, the stake penetrating to the heart. Many a hunter has fallen into these traps, and found great difficulty in escaping, while some have not escaped at all. Indeed, in many parts of Southern Africa, when part of one PITFALL OF ANT-LION FOR CATCHING INSECTS. AFRICAN PITFALL FOE CATCHING LARGE GAME. tribe is about to visit another, the pitfalls are always unmasked, lest the intended guests should fall into them. Even without the spike, the elephant would scarcely be able to save itself, owing to its enormous weight, unless helped out by its comrades before the hunters came up. Indeed, many pitfalls are intentionally made for this purpose, and are of a different shape, i.e. about eight feet in length and four in breadth. In those which are made for the capture of the giraffe, the pit is very deep, and the place of the stake is occupied by a trans- verse wall, which prevents the feet of the captive from touching the ground, and keeps it suspended until the hunters can come and kill it at leisure. Even in Belgium and our own country the pitfall is in use. "When the field-mice were devastating the districts about Liege some years ago, their ravages were effectually checked by pitfalls, in which they were caught by bushels, the pitfalls being simple holes some two feet deep, and made wider below than above. The late Mr. Waterton contrived to rid his garden of field- mice by pitfalls constructed on the same principle, though more permanent. Finding that the little animals made great E 2 52 NATURE'S TEACHINGS. havoc among his peas just as they were starting out of the ground, he buried between the rows a number of earthen pickle-jars, sinking them to the level of the ground. He then rubbed the inside of the neck with bacon, and left them. The mice stooped down to lick off the bacon, fell into the jars, and, the neck being narrow and the sides slippery, they could not get out again. ON the left hand of the illustration is the section of a pitfall made by the well-known Ant-lion (Mynneleo), of which there are several species. The history of this wonderful insect is so familiar to us that it need not be repeated at length. Suffice it to say that it digs conical pitfalls in loose sandy soil, and that it places itself at the bottom of the pit, securing the insect victims with its jaws just as the larger animals are secured by the stake of the human hunter. It makes no false cover, as does the human hunter, but it always chooses soil so loose that if an insect approach the edge, the sand gives way, and it goes sliding down into the pit, whence its chance of escape is very small, even were there no deadly jaws at the bottom ready to receive it. THE CLUB. THE simplest of all offensive weapons is necessarily the CLUB. At first, this was but a simple stick, such as any savage might form from a branch of a tree by knocking off the small boughs with a stone or another stick. Such clubs are still used in Australia, and I have several in my collection. Then the inventive genius of man improved their destructive power by various means. The most obvious plan was to add to the force of its blow by simply making one end much thicker and heavier than the other. This is done in the "Knob- kerry " of Southern Africa, ani it is worthy of remark that in Fiji a weapon exists so exactly like the short knob-kerry of Africa, that an inexperienced eye would scarcely be able to distinguish between them. The next plan was to arm the enlarged head with pro- jecting pieces or spikes, sometimes cut out of the solid wood, and sometimes artificially inserted. The " Shillelagh " of Ireland is a simple example of this kind of club. One of the CLUBS. 53 best and most elaborate examples of this sort of weapon is the "Pine-apple " Club of Fiji, a figure of which may be seen in the illustration, drawn from a specimen in my collection. It is made in the most ingenious manner from a tree which is trained for the purpose. There are certain trees belonging to the palm tribe which possess "aerial" roots, i.e. subsidiary roots, which surround the trunk at some distance from the ground, and assist in supporting it. Some trees have no central root, and are entirely upborne by the aerial roots, while others have both. One of these latter is selected, and when it is very young is bent over and fastened to the ground almost at right angles, as shown in the illustration. "When it has grown to a sufficient age it is cut to the requisite length, the central root is sharp- ened to a point, and the aerial roots are also cut down in such POLLEN OF HOLLYHOCK. HOBSE-CHESTNUT. WOODEN AND METAL CLUBS. a way that they radiate very much like the projections on a pine-apple. This is really an ingenious weapon, for if the long and sharpened end should miss its aim, the projections would be tolerably sure to inflict painful if not immediately dangerous injuries. As the pine-apple is so well known, I have given in the opposite side of the illustration a figure of the Durian, a large Bornean fruit, which is covered with projections almost identical in appearance with those of the pine-apple club, and almost equally hard and heavy. Perhaps some of my readers may have heard of the grand Italian game of Pallone, the " game of giants," as it has been 54 NATURE'S TEACHINGS. called. The ball, which is a large and rather heavy one, weighing more tha twice as much as a cricket-ball, is struck with a wooden gauntlet reaching nearly half-way up the fore- arm. The original gauntlet was cut entirely out of the solid wood, and exactly resembled the exterior of the Durian. The modern gauntlet, however, has the spikes fixed separately into a wooden frame, so that they can be replaced if broken in the course of the game. The principle, however, is identical in all three cases. The technical name of this gauntlet is Bracciale. The next improvement was to add still further to the destruc- tive powers of the club by arming it with stones, so as to make it harder and heavier. Sometimes a stone is perforated, and the end of the club forced into it. Sometimes the stone is lashed to the club, and sometimes a hole is bored in the club, and the stone driven into it. This kind of club, made of a sort of rosewood, may be found among some of the tribes inhabiting the district of the Essequibo. The next improvement was to make the weapon entirely of metal, and such clubs are plentiful in every good collection of arms. There was, for example, the common mace, which was used for the purpose of stunning an adversary clothed in armour which the sword could not penetrate. As this, how- ever, was nothing more than an ordinary wooden club executed in iron, we need not produce examples. Other and more complicated forms were soon made, and were wonderfully valuable until the rapidly improving fire- arms kept combatants at a distance, and rendered a hand-to- hand fight almost impossible. Three examples of such clubs are given in the illustration, and are taken from Demmin's valuable work called " Weapons of War." The upper left-hand specimen is called Morgen stern, i.e. Morning Star. It is a large, heavy wooden ball studded with steel spikes, and affixed to a handle usually some six or seven feet, but sometimes exceeding eleven feet, in length. It was chiefly used by infantry when attacking cavalry, the long shaft enabling the foot-soldier to be tolerably sure of dealing the cavalier or his horse a severe blow, while himself out of reach of the latter's sword. Behind it is another Morgenstern in which there is an THE MORGEXSTEKX. 55 improvement, the armed ball being furnished at the end with a spike, so that it could be used either as a mace or a spear. The commonest form of the Morning Star is shown below, and is thus described by Demmin : " This mace had generally a long handle, and its head bristled with wooden or iron points. It was common among the ancients, for many museums possess several fragments of these weapons belonging to the age of bronze. " The Morning Star was very well known and much used in Germany and Switzerland. It received its name from the ominous jest of wishing the enemy 'good morning' with the Morning Star when they had been surprised in camp or city. " This weapon became very popular on account of the facility and quickness with which it could be manufactured. The peasants made it easily with the trunk of a small shrub and a handful of large nails. It was also in great request during the wars of the peasantry which have devastated Germany at different times, and the Swiss arsenals possess great numbers of them." One of these primitive weapons may be seen in the lower figure of the illustration. Sometimes the spiked ball was attached to a chain, and fastened to the end of a handle varying greatly in length, measuring from two to ten feet. One of these weapons may be seen in the Guildhall of London, being held by one of the celebrated giants. IF the reader will now turn to the illustration on page 53, he will see that on the right of the Durian there are two spherical objects covered with spikes. The upper is the pollen of the Hollyhock, and the lower the common Horse- chestnut. The reader will see that these are precisely similar in form to the spiked balls of the Morgenstern, whether they be used at the end of a staff or slung to a chain. There are many similar examples in the vegetable kingdom which will doubtless suggest themselves to the reader, but these are amply sufficient for this purpose. Then, in the animal world, the curious Diodons, sometimes called Urchin-fishes, or Prickly Globe-fishes, are good ex- amples. These fishes are covered with sharp spines, and, as 56 NATURE'S TEACHINGS. they have the power of swelling their bodies into a globular form, the spikes project on all sides just like those of the pollen, or chestnut. There is a specimen in my collection, which, if the tail and fins were removed, and a cast taken in metal, would make a very good Morgenstern ball. THE SWORD. THE next improvement on the club was evidently to flatten it, and sharpen one or both edges, so as to make it a cutting as well as a stunning implement in fact, the club was changed into a SWORD. A GOOD example of this weapon in its simplest form is the wooden sword of Australia, now an exceedingly rare weapon. SWORD-GRASS MAGNIFIED. SHARK-TOOTH SWORD OF MANGAIA. It looks like a very large boomerang, but is nearly straight, and is made from the hard, tough wood of the gum-tree. Travellers say that the natives can cut off a man's head with this very simple weapon. I just missed obtaining one of these swords from a man-of- war, but, unfortunately, a few hours before my arrival the zealous first lieutenant had ordered a large collection of savage weapons to be thrown overboard, among which were several Australian swords. Finding that the edges were not sufficiently sharp, and were liable to break, the maker next turned his attention to arming them with some substance harder than wood. Various materials were used for this purpose, some of which will be mentioned. PRIMITIVE SWORDS. 57 One of these is given in the illustration, and is taken from a specimen in my collection. It is made of wood, rather more than two feet in length, and would in itself be an insignificant weapon but for its armature. This consists of a number of sharks' teeth, which are fixed along either side, and are a most formidable apparatus, each tooth cutting like a lancet-blade, and not only being very sharp, but having their edges finely notched like the teeth of a saw. I have a series of these weapons in my collection, some being curved, some straight, and one very remarkable weapon having four blades, one straight and long blade in the centre, and three curved and short blades springing from the handle towards the point. Opposite the shark-tooth sword is an object which might almost be taken for a similar weapon, but is, in fact, nothing but a common grass-blade, such as may be found in any of our lanes. I suppose that most of my readers must at some time have cut their fingers with grass, and the reason why is shown in the illustration, which represents a much-magnified blade of grass. The edges of the leaf are armed with sharp teeth of flint, set exactly like those of the sword, with their points directed towards the tip of the blade. The whole of the under surface of the blade is thickly set with similar but smaller teeth, arranged in the same manner. I have just brought a blade of grass from a lane near my house, and when it was placed under the half-inch power of the microscope, the resem- blance to the sword was absolutely startling to some spectators who came to look at it. As if to make the resemblance closer, many savage weapons are edged with flat stones, flint chips, or pieces of obsidian, so that the flint teeth of the grass are exactly copied by the flint edgings of the sword. The old Mexican swords were nearly all edged with obsidian, as is seen in the lower right-hand figure of the next illustration. I possess a number of obsidian flakes which were intended for that purpose, but do not appear to have been used. The second figure from the top represents the head of a spear similarly armed, and I possess a small Australian implement in Avhich the flakes of obsidian are set only on one side, so that the instrument can be used as a rude saw. 58 NATURE S TEACHINGS. Between these two weapons is a spear-head armed with shark-teeth. I have a very remarkable weapon of this kind, made in Mangaia. It is eleven feet in length, and, besides being armed with a double row of sharks' teeth nearly to the handle, it has three curved blades similarly armed, set at dis- SWORD-GRASS. LEECH JAW. SAW-FISH. SPEARS AND SWORD ARMED WITH OBSIDIAN AND SHABKS* TEETH. tances of about two feet, and projecting at right angles. Thus, if the foe were missed with the point of the spear, he would probably be wounded by one of the blades. The upper figure represents a weapon where the natural bone of the sting-ray has been used as the point. On the opposite side are seen three natural objects similarly armed. The uppermost is another species of sword-grass, like that which has already been described. Next comes a magnified view of one of the three cutting instruments of the leech, showing the serrated teeth set along its edge, by means of which it produces the sharply-cut wounds through which it sucks the blood. The last figure represents the head of the common Saw-fish, in which a vast number of flat and sharply-edged teeth are set upon the blade-like head. The fish has been observed to use this weapon just as the Mangaian uses his sword-spear. It dashes among a shoal of fish, sweeps its head violently back- wards and forwards, and then, after they have dispersed, picks up at its leisure the dead and disabled. THE SPEAR AND THE DAGGER. IT is tolerably evident that the invention of the spear and dagger must have been nearly, if not quite, contemporaneous with that of the club. I place these weapons together because PRIMITIVE SPEARS. 59 there is great difficulty in assigning to either of them the pre- cedence, the spear being but a more or less elongated dagger, and the dagger a shortened spear. As a good example of this fact, I have in my collection a number of spears and daggers belonging to the Fan tribe of Western Africa. In every case the weapons correspond so closely with each other, that if the daggers were attached to shafts they would exactly resemble the spears, and if the spears were cut off within a few inches of the head, they would be taken for daggers. I may here mention that as this part of the subject merely involves the employment of a pointed or thrusting weapon, instead of the club or sword, both of which are used for striking, the question of poison, barbs, and sheaths will be treated on another page. The primary origin of the Spear is probably the thorn, as a savage who had been wounded by a thorn would easily pass to the conclusion that a thorn of larger size would enable him to kill an enemy in war, or an animal in hunting. Anything of sufficient dimensions, which either possessed a natural point or could be sharpened into a point, would be available for the pur- pose of the hunter or warrior. Accordingly we find that such objects as the beak of the heron or stork, the sharp hind-claw of the kangaroo, the bone of the sting-ray, the beak of the sword-fish, and many similar objects, are employed for the heads of spears, or used simply as daggers. As to artificial spears, nothing is easier than to scrape a stick to a point, and then, if needful, to harden it in the fire. This is, indeed, one of the commonest forms of primitive spears, and I have in my collection many examples of such weapons. Another simple form of this weapon is that which is made by cutting a stick or similar object diagonally. Hollow rods such, for example, as the bamboo are the best for this purpose. I have now before me a cast of a most interesting weapon discovered by Colonel Lane Fox. It is the head of a spear, and is formed from part of the leg-bone of a sheep. At one end there is a simple round hole, which acted as a socket for the reception of the shaft, and the other end is cut away diagonally, so as to leave a tolerably sharp point. 60 NATURE'S TEACHINGS. As to the bamboo, it has a great advantage in the thinness of its walls, and the coating of flinty substance with which it is surrounded, and which gives its edges a knife-like sharpness. Indeed, so very sharp is the silex, that splinters of bamboo are still used as knives, and with them a skilful operator can cut up a large hog as expeditiously as one of our pork-butchers could do with the best knife that Sheffield produces. I possess several of these weapons, and formidable arms of offence they are. If the reader can imagine to himself a tooth- pick, a foot or more in length, made from bamboo instead of quill, and having its edges nearly as sharp as a razor, he can realise the force of even so simple a weapon. In the case of the bamboo, too, celerity of manufacture has its value, for any one can make a couple of spears in less than as many minutes. All he has to do is to cut down a joint of bamboo transversely, and then with a diagonal blow of his knife at the other end to form the point. The force of such a weapon may be inferred from a remarkable combat that took place some sixty years ago, when the roads were not so safe as they are at present. A gentleman, who happened to be a consummate master of the sword, was going along the highway at night, and was attacked by two footpads, he having no weapon but a bamboo cane. One of them he temporarily disabled by a severe kick, and then turned to the other, whom he found to be pretty well as good a swordsman as himself, and to possess a good stick instead of a slight cane. The footpad soon discovered the dis- crepancy of weapons, and with a sharp blow smashed the cane to pieces, leaving only about eighteen inches in his antagonist's hand. Almost instinctively Baron sprang under the man's guard, and dashed the broken cane in his face. The footpad staggered with a groan, put his hands to his face, and ran away, followed by his companion, who did not desire another encounter with such an antagonist. When the victor reached his destination, he found that the footpad's face must have been torn to pieces, for the clefts of the split bamboo were full of scraps of skin, flesh, and whisker hair. It is worthy of notice that the combination of the club and THE PATOO. 61 the dagger is common to savage and civilised life, as may be seen by reference to the illustration in page 53, where the wooden club of savage warfare and the metal club and maces of civilisation are alike armed with a piercing as well as a bruising apparatus. Mostly the dagger is on the head of the mace or battle-axe, but, in some cases, the end of the handle acts as the dagger, and the head as the axe or mace. A very good example of this formation is found in the wooden battle-axe, or "Patoo," of New Zealand, a weapon which has been long superseded by modern fire-arms. A specimen in my possession is rather more than five feet in length. The head is just like that of an ordinary axe, while the handle tapers gra- dually to the end, where it terminates in a sharp spike. In actual combat the point was used much more than the axe. WAR AND HUNTING. CHAPTER II. POISON, ANIMAL AND VEGETABLE. PEINCIPLE OF THE BARB. Poison as applied to Weapons. Its limited Use. Animal and Vegetable Poisons. Animal Poisons. The Malayan Dagger, or Kris, and two Modes of poisoning it. The Bosjesmans and their Arrows. Snake Poison and its Preparation. The Pseudo-barb. The Poison-grub, or N'gwa. Simple Mode of Prepara- tion, and its terrible Effects. Vegetable Poisons. The Upas of Malacca. The Wourali Poison of Tropical America. Mode of preparing the various Arrows. The Fan Tribe of West Africa, and their poisoned Arrows. Sub- cutaneous Injection. Examples in Nature. The Poison-fang of the Serpent. Sting of the Bee. Tail of the Scorpion. Fang of the Spider. Sting of the Kettle. Exotic Nettles and their Effects. The Barb and its Develop- ments. The " Bunday " of Java. Reversed Barbs of Western Africa. Tongans and their Spears. The Harpoon and Lernentoma, or Sprat-sucker. The Main Gauche, or Brise-e"pee. A NOTHER advance, if it may so be called, lay in increasing *"*- the deadly effect of the weapons by arming them with poison. Without the poison, it was necessary to inflict wounds which in themselves were mortal ; but with it a comparatively slight wound would suffice for death, providing only that the poison mixes with the blood. It is worthy of notice that cutting weapons, such as swords and axes, seldom, if ever, have been envenomed, the poison being reserved for piercing weapons, such as the dagger, the spear, and the arrow. ANIMAL POISONS. PERHAPS the most diabolical invention of this kind was the Venetian stiletto, made of glass. It came to a very sharp point, and was hollow, the tube containing a liquid poison. When the dagger was used, it was driven into the body of the victim, and then snapped off in the wound, so that the poison was ablo to have its full effect. WEAPONS OF THE BOSJESMAN. 63 Such poisons are of different kinds, and invariably animal or vegetable in their origin. Taking the animal poisons first, we come to the curious mode of poisoning the Malayan dagger, or " Kris." The blade of the weapon is not smooth, but is forged from very fibrous steel, and then laid in strong acid until it is covered with multitudinous grooves, some of them being often so deep that the acid has eaten its way completely through the blade. Among some tribes the kris is poisoned by being thrust into a putrefying human body, and allowed to remain there until the grooves are filled with the decaying matter. It is also said that if the kris be similarly plunged into the thick stem that grows just at the base of the pine-apple, the result is nearly the same. As a rule, however, the Arrow is generally the weapon which is poisoned, and a few examples will be mentioned of each kind of poisoning. The two most formidable animal poisons are those which are made by the Bosjesmans of Southern Africa. Their bows are but toys, and their arrows only slender reeds. But they arm these apparently insignificant weapons with poison so potent, that even the brave and bellicose Kafir warrior does not like to fight a Bosjesman, though he be protected by his enormous shield. There are two kinds of animal poison used by the Bosjesmans. The first is made from the secretion of the poison-glands of the cobra, puff-adder, and cerastes. Knowing the sluggish nature of snakes in general, the Bosjesman kills them in a very simple manner. He steals cautiously towards the serpent, boldly sets his foot upon its neck, and cuts off its head. The body makes a dainty feast for him, and' the head is soon opened, and the poison-glands removed. By itself, the poison would not adhere to the point of the weapon, and so it is mixed with the gummy juice of certain euphorbias, until it attains a pitch-like consistency. It is then laid thickly upon the bone point of the arrow, and a little strip of quill is stuck into it like a barb. The object of the quill is, that if a man, or even an animal, be wounded, and the arrow torn away, the quill remains in the wound, retaining sufficient poison to insure death. I have a quiverful of such arrows in my collection. 64 NATURE'S TEACHINGS. That arrows so armed should be very terrible weapons is easily to be imagined, but there is another kind of poison which is even more to be dreaded. This is procured from the innocent- looking, but most venomous, Poison-grub. It is called N'gwa by the Bosjesmans, and is the larval state of a small beetle. When the arrow is to be poisoned, the grub is broken in half, and the juices squeezed upon the arrow in small spots. Both Livingstone and Baines give full and graphic accounts of the horrible effect produced by this dread poison, which, as soon as it mixes with the blood, drives the victim into raging madness. A lion wounded by one of these arrows has been known nearly to tear himself to pieces in his agonies. M. Baines was good enough to present me with the N'gwa grub in its different .stages, together with an arrow which has been poisoned with its juices. The Bosjesmans are themselves so afraid of the weapon, that they always carry the arrows with the points reversed, the poisoned end being thrust into the hollow reed which forms the shaft of the arrow. Not until the arrow is to be discharged does its owner place the tip with its point uncovered. VEGETABLE POISONS. WE now come to the Vegetable Poisons, the two best known of which are the Upas poison of Borneo, and the Wourali of South America. It is rather remarkable that in both these cases the arrows are very small, and are blown through a hollow tube, after the manner of the well-known " Puff-and-dart " toy of the present day. The Upas poison is simply the juice of the tree, and it does not retain its strength for more than a few hours after it has been placed on the arrow-points. A supply of the same liquid is therefore kept in an air-tight vessel made of bamboo, the opening being closed by a large lump of wax kneaded over it at the mouth. One of these little flasks, taken from a specimen in my collection, is seen on the extreme right of the illustration. The Wourali poison owes all its power to its vegetable ele- ment, though certain animal substances are generally mixed with it. The principal ingredient is the juice of one of the strychnine vines, which is extracted by boiling, and then care- fully inspissated until it is about the consistency of treacle. POISONED WEAPONS. 65 This poison differs from the Upas in the fact that it retains its potency after very many years, if only kept dry. I have a number of arrows poisoned with the Wourali. They were given to me by the late Mr. Waterton, who procured them in 1812, and even in the present year (1875) they are as deadly as when they were first made. A bundle of these tiny arrows, surmounted by the little wheel which is used to guard the hand from being pricked, is seen next to the Bornean poison- flask. SF.RPENT-FANG. BEE-STING. INJECTING SCORPION-STING. SYRINGE. SETTLE-STING. SPIDER-FANG. POISONED ARROWS AND POISON-FLASK. Beside these little arrows, which are only about ten inches in length, very much larger arrows are used both for war and hunting, and are propelled by the bow, and not with the breath. Many of these arrows are nearly six feet in length. In all, the head is movable fitting quite loosely into a socket, so that when an animal is struck and springs forward, the shaft is shaken off, to be picked up by the hunter, and fitted with another point, while the poisoned head remains in the wound. Another kind of poison, also of a vegetable origin, is used by the Fan tribe. The arrows are mere little slips of bamboo, and are propelled by a slight crossbow. But the poison is so potent, that even these tiny weapons produce a fatal effect. Nearly in the centre of the illustration is seen a rather curiously formed syringe, with an extremely long and slender 66 NATURE'S TEACHINGS. tip. This is a recently invented instrument, used for the pur- pose of subcutaneous injection i.e. of injecting any liquid under the skin. It is mostly employed for injecting opium and other drugs of similar qualities, for the purpose of obtain- ing relief from local pain. The slender spike-like point is hollow, and ends in a sharp tip, formed like the head of a lance. Just below the head there is a little hole, communi- cating with the interior of the tube. The mode of operatir* It 1 simple enough. The syringe i filled with the drug, and the point introduced under the skin at any given spot. Pressure on the piston then forces out the liquid, and causes it to mix with the blood. NATURAL ANIMAL POISONS. Now, both in the animal and vegetable worlds may be found several examples of an apparatus which acts in exactly the same manner. The first is the poison-fang of the Serpent, a specimen of which is given on the left hand of the illustration. This fang answers in every respect to the syringe above mentioned. The long and slender fang is hollow, and answers to the pipe of the syringe. It communicates at the base with a reservoir of liquid poison, which answers to the body of the syringe, and there is a little hole, or rather slit, just above the point, which allows the poison to escape. When the serpent makes its stroke, the base of the fang is driven against the reservoir, so that the liquid is urged through the hollow tube, and forced into the wound. Even in large serpents these fangs are very small. I have now before me some fangs of the cobra, puff-adder, rattlesnake, and viper, and it is astonishing how small and slender are these most deadly weapons. The figure in the illustration is much magnified, in order to show the aperture at the base, where communication is made with the interior of the fang. As the exit hole is on the upper curve of the fang, it is not visible in the figure. Next to the serpent's fang is a representation of the Bee- sting, the poisonous reservoir being seen at the base, and having attached to it the tiny thread-like gland by which the poison is secreted. In the centre is seen the tail of a Scorpion, with its hooked VEGETABLE POISON'S. 67 sting. The last joint is formed just like the serpent's fang, being hollow, having a sharp point with a slit near the end, and a poison reservoir in the rounded base. When the scorpion attacks an enemy, it strikes violently with the tail, and the force of the blow drives out the poison just as is done with the serpent's fang. At the bottom of the illustration is shown the poison-fang of a Spider, which, as the reader may see, is formed just on the principle of the scorpion-sting. NATURAL VEGETABLE POISONS. So much for animal poisons. We will now pass to the vegetable world. Of the vegetable sting-bearers none are more familiar to us than the Nettle, three species of which inhabit this country. The two commonest are the Great Nettle ( Urtica diceced) and the Small Nettle (Urtica urens), and both of them are armed with venomous stings, which cause the plants to be so much dreaded. The structure of these stings is very simple, and can be made out with an ordinary microscope, or even a good pocket lens. Each of these stings is, in fact, a rather elaborately con- structed hair, hollow throughout its length, coming to a point at the tip, and having the base swollen into a receptacle con- taining the poisonous juice. When any object such, for example, as the human hand touches a nettle, the points of the stings slightly penetrate the skin, and the hair is pressed downwards against the base, so that the poison is forced through the hole- One of these hairs is shown in the left-hand bottom corner of the illustration. Even the tiny stings of our English nettles are sufficiently venomous to cause considerable pain, and, in some cases, even to affect the whole nervous system. But some of the exotic nettles are infinitely more formidable, and are, indeed, so dangerous that, when they are grown in a botanical garden, a fence is placed round them, so as to prevent visitors even from touching a single leaf. The two most dreaded species are called Urtica heterophylla and Urtica crenulata. The former is thought to be the more dangerous of the two, and a good idea of its venomous qualities 68 NATURE'S TEACHINGS. may be gathered from an account of an adventure with Urtica crenulata. The narrator is M. L. de la Tour. " One of the leaves slightly touched the first three fingers of my left hand ; at the time I only perceived a slight pricking, to which I paid no attention. This was at seven in the morn- ing. The pain continued to increase, and in an hour it became intolerable ; it seemed as if some one were rubbing my fingers with a hot iron. Nevertheless, there was no remarkable appearance, neither swelling, nor pustules, nor inflammation. " The pain spread rapidly along the arm as far as the arm- pit. I was then seized with frequent sneezing, and with a copious running at the nose, as if I had caught a violent cold in the head. About noon I experienced a painful attack of cramp at the back of the jaws, which made me fear an attack of tetanus. I then went to bed, hoping that repose would alleviate my suffering, but it did not abate. On the contrary, it continued nearly the whole of the following night ; but I lost the con- traction of the jaws about seven in the evening. " The next morning the pain began to leave me, and I fell asleep. I continued to suffer for two days, and the pain returned in full force when I put my hand into water. I did not finally lose it for nine days." There is another of these formidable nettles, called in the East by a name which signifies " Devil's Leaf," and which is sufficiently venomous to cause death. There is but little doubt, however, that in the present instance, if a larger portion of the body say the whole arm instead of three fingers, had been stung, death would have ensued from the injury. THE BARB. WE now come to another improvement, or rather addi- tion, in the various piercing weapons. Sometimes, as in the case of the dagger or the hand-spear, it was necessary that when a blow had been struck the weapon should be easily withdrawn from the wound, so as not to disarm the assailant, and to enable him to repeat the stroke if needful. But in the case of a missile weapon, such as a javelin or an arrow, it was often useful, both in war and hunting, to form the head in such a way that when it had once entered it could scarcely be withdrawn. For this purpose the Barb was invented, taking PRINCIPLE OF THE BARB. 69 different forms, according to the object of the weapon and the nationality of the maker. As in this work I prefer to show the gradual development of human inventions, I shall take my examples of barhs entirely from the weapons of uncivilised nations, six examples of which are given in the accompanying illustration, and five of them being drawn from specimens in my collection. BAEBED WEAPONS. The upper left-hand figure is rather a curious one, the position of the barbs being nearly reversed, so that they serve to tear the flesh rather than adhere to it. The opposite figure repre- sents an arrow with a doubly barbed point. It is chiefly used for shooting fish as they lie dozing on or near the surface of the water, but it is an effective weapon for ordinary hunting pur- poses, and, as the shaft is fully five feet in length, is quite formidable enough for war. The left-hand bottom figure represents a very remarkable instrument, for it can hardly be called a weapon, and is, in fact, the head of a policeman's staff. It is peculiar to Java, and is called by the name of " Bunday." As may be seen by refer- ence to the illustration, the head of the Bunday is formed of two diverging slips of wood. To each of these is lashed a row of long and sharp thorns, all pointing inwards, and the whole is attached to a tolerably long shaft. When a prisoner is brought before the chief, a policeman stands behind him, armed with the Bunday, and, if the man should try to escape, he is immediately arrested by thrusting the weapon at him, so as to catch him by the waist, neck, or arm, or a leg. Escape is impossible, especially as in Java the prisoner wears nothing but his waist-cloth. A weapon formed on exactly the same principle was used in. the fifteenth and sixteenth centuries, and was employed for 70 NATURE S TEACHINGS. dragging knights off their horses. It was of steel instead of wood, and the place of the thorns was taken by two movable barbs, working on hinges, and kept open by springs. When a thrust was made at the knight's neck the barbs gave way, so as to allow the prongs to envelop the throat, and they then sprang back again, preventing the horseman from disengaging himself. This weapon is technically named a "catchpoll." An illustration of one of these weapons will be given on another page. The right-hand central figure is an arrow from Western Africa. In a previous illustration (page 65) a head of one of these arrows is given on rather a larger scale, so as to show the very peculiar barbs. These are of such a nature that when they have well sunk into the body they cannot be withdrawn, but must be pushed through, and drawn out on the opposite side. This is drawn from one of my own specimens. In some cases, with an almost diabolical ingenuity, the native arrow-maker has set on a couple of similar barbs, directed towards the point, so that the weapon can neither be pushed through nor drawn back. One of these arrows is shown in the illustration, but, for want of space, the artist has placed the opposing barbs too near each other. In some parts of Southern Africa a similar weapon was used for securing a prisoner, the barbed point being thrust down his throat and left there. If it were pushed through the neck it killed him on the spot, and if it remained in the wound the man could not eat nor drink, and the best thing for him was to die as soon as he could. With similar ingenuity, the Tongans and Samoans made their war-spears with eight or nine barbs, and, before going into action, used to cut the wood almost through between each barb, so that when the body was pierced, the head, with several of the barbs, was sure to break off and leave a large portion in the wound. In Mariner's well-known book there is an admirable account of the mode employed by a native surgeon for extracting one of these spear-heads. So common was this weapon that every Tongan gentleman carried a many- barbed spear about five feet long, and used it either as a walking-stick or a weapon. It is needless to say that this spear is almost an exact copy of the tail-bone of the Sting- THE HARPOON. 71 ray. A dagger made of this bone was used in the Pelew Islands in 1780, but seemed to be rather scarce. The left-hand central figure is a Fijian fish-spear of four points, and the last figure on the right hand represents a large four-pronged spear of Borneo. Both these weapons are in my collection. ANOTHER example of a weapon where a large and powerful barb is needful is the Harpoon. As the harpoon is used in capturing the whale, the largest and most powerful of living mammalia, it is evident that a barb which will hold such a prey must be rather peculiarly made. The head and part of the shaft of the harpoon are shown in the right-hand figure of the accompanying illustration. The left-hand figure represents a curious parasitic crustacean, popularly called the Sprat- sucker, because it is usually found on sprats. It affixes itself mostly to the eye, the deeply barbed head being introduced between the eye and the socket. In LERNEXTOMA. some seasons this remarkable parasite is quite plentiful, while in others scarcely a specimen can be found. Its total length is slightly under an inch, and its scientific name is Lernentoma Spratti. The following graphic account of some prototypic weapons belonging to a marine worm is given by Mr. Rymer Jones, and is well worthy of perusal, not only for the vividness of the description, but for its exact accuracy : " Here is a Polynoe, a curious genus, very common under stones at low water on our rocky shores. " It is remarkable on several accounts. All down the back we discover a set of oval or kidney-shaped plates, which are called the back-plates (dorsal elytra) ; these are flat, and are planted upon the back by little footstalks, set on near the margin of the under surface : they are arranged in two rows, overlapping each other at the edge. These kidney-shaped shields, which can be detached with slight violence, are studded over with little transparent oval bodies, set on short footstalks, which are, 72 NATURE'S TEACHINGS. perhaps, delicate organs of touch. The intermediate antennae, the tentacles, and the cirrhi or filaments of the feet, are similarly fringed with these little appendages, which resemble the glands of certain plants, and have a most singular appearance. " If we remove the shields, we discover, on each side of the body, a row of wart-like feet, from each of which project two bundles of spines of exquisite structure. The bundles, expand- ing on all sides, resemble so many sheaves of wheat, or you may more appropriately fancy you behold the armoury of some belligerent sea-fairy, with stacks of arms enough to accoutre a numerous host. "But, if you look closely at the weapons themselves, they rather resemble those which we are accustomed to wonder at in missionary museums, the arms of some ingenious but bar- barous people from the South Sea Islands, than such as are used in civilised warfare. Here are long lances, made like scythe-blades, set on a staff, with a hook on the tip, as if to capture the fleeing foe, and bring him within reach of the blade. Among them are others of similar shape, but with the edge cut into delicate slanting notches, which run along the sides of the blade like those on the edge of our reaping-hooks. " These are chiefly the weapons of the lower bundle ; those of the upper are still more imposing. The outermost are short curved clubs, armed with a row of shark's teeth to make them more fatal ; these surround a cluster of spears, the long heads of which are furnished with a double row of the same appendages, and lengthened scimitars, the curved edges of which are cut into teeth like a saw. " Though a stranger might think I had drawn copiously on my fancy for this description, I am sure, with your eye upon what is on the stage of the microscope at this moment, you will acknowledge that the resemblances are not at all forced or unnatural. To add to the effect, imagine that all these weapons are forged out of the clearest glass instead of steel ; that the larger bundles may contain about fifty, and the smaller half as many each ; that there are four bundles upon every segment, and that the body is co mposed of twenty-five such segments, i