PRIRCE GIFT or lirs. G. N, LeTTis t SHORT TABLE OF INTEGRALS BT B. O. PEIRCE HoLLis Professor of Mathematics and Natural Philosophy in Harvard University SECOND REVISED EDITION GINN AND COMPANY BOSTON • NEW YORK • CHICAGO • LONDON ATLANTA • DALLAS • COLUMBUS • SAN FRANCISCO COPYRICIIT, ISVd, 1910 By GINN and COMPANY ALL EIGHTS RESERVED 522.2 1 Since I cannot hope that these formulas are wholly free from misprints, I shall be grateful to any person who will call my attention to such errors as he may discover. B. O. PEIRCE, Harvard University, Cambridge. GIFT tH)t Stfjenatum jPrees I'.IW" AMI CllMl'ANY • Vlli). PKIETURS • liUSTuN • U.S.A. Q A- =s / o HA If ' TABLE OF INTEGRALS. -o-o>0x _ * a; (a + 6j:;) a x /dx _ 1 _ \_ , rz-t-^A-r xfa+^a;)^ a(a+bx) a^ (a+bxf a{a+bx) a^ x 37. C (a+bxY {a'+b'x)'"dx = - — ■ — -y ( (a+bxy + ' (a'+b'xf J ^ ^ ^ ' {in-\-n-\-\) b \ — m(ab'-a'b) C (a-^-bx)" (a' + b'xy-hlxj r {a + bxydx 1 f (a + hTY + ^ ' J (a' I _L /,' ,• \in — L {a' + b'x)'" (m — l){ab' - a'b) \{a' + b'x) r(a + bxYdx + (m — n — Z)b I -r-; z-^: r ^ 1 / (a-\-bxY ' ~ (m — n-l)b'\(a' + b'xy"-^ + n ^ ^J {a' + b'x)'" J _ i f (a + bx)" r (a + bx)''^^dx \ * /'—^^^— =--'- + - log ^^i-^ . J x\a + bx) ax a"^ " x 39 RATIONAL ALGEBRAIC FUNCTIONS dx 1 , ft' + Vx (a + bx) {a' + h'x) ~~ ab' -a'b' °^ a-\- bx dx 40./ (a + bxy {a' + b'x)"" = I ( 1 (m - 1) (ab' - a'b) \{a + bx)"-^ (a' + b'x)"'-' dx ^ 41 - (m + n-2) bC f (a + bxy (a' + b'xy"-\ xdx (a + bx) (a' + b'x) 42, j 43 (a + bx)\a' + b'x) = _J— f^- + — ^— log ^^^±^\ ab' — a'b \a + bx ab' — a'b a + bx J r xdx (CI + bxf (a' + b'x) — a a' . a' + b'x TTTz log ■ b (ab' - a'b) (a + bx) (ab' - a'by ^ a + bx x'^dx a^ (a + bxy (a' + b'x) ~~ b' (ab' - a'b) (a + bx) 1 r«'% / r . 7-r N , a(ab'-2a'b) ^ . , . .1 — ^ [y log (a' + b'x) + -^—j, '- log (a + bx)j /I n 2+i "^ («&' - .^ C dx n , ,-. ^~ (a + OXJn ^ ^ 8 RATIONAL ALGEBRAIC FUNCTIONS. B. — Expressions Involving (a + 5x"). r dx 1, _iX 1 . _, X 47. I -T", — -„ = -tan ^-=-sin i— ===• .^ C dx It c + x C dx 1 . .-r — c * 48. I -^ 5 = — log > \ —^ i = 77-log — — -• J c^ — x^ 2 c c — xjx^ — cr 2 c x-\-g 50. I — r^-i = — 7=log--= 7=j if a>0, b<0. J a + bx^ 2V^^ V^-a;V-6 /* « -«) (U /* a:"'-^rfa; Jx" + i~ (2 71 - 7M + 1) c.Y" 2?i-m + l"cJ X'" + i m — 1 a rx"'~^dx "*" 2 M - w + 1 ' c J X'' + i ' *dx X RATIONAL ALGEBRAIC FUNCTIONS. 11 ^„ rdx 1 , x^ b rt r dx __b_. ^ _ JL , /^i!_ _ i\ C— J x^X'^2 a" ^^ x" ax'^\2a'' aJJx' an C ^^ — 1 n + m — 1 h f* dx J aj'^X^+i ~ ~ (?» — 1) ax"'-'X" " m — 1 a J a;"'-iA'«- 2n + m — \ c r dx m — 1 aJ x"'-2X» + i r_^ ^^ ^ C^^ 1 r dx J ^^X'~2a(r^-l).Y«-l 2 a J X» "*" a J xX«-i' /" (a' + ^>'cc)(Zx _ j; 2a'c-bb' rdx ^^•J X» ~ 2(w-l)cX"-''^ 2c J X»' 86. r (a' + i'a:)'" X« dx = — ^ — ^— ( ^-'C^^' + b'x)"'-'X"+ J ^ ' {in -\r 2 n At V) c\ ^ ' + (m + n){2 a'c - 6^>') f(a' + 6'a;)'"-iX"c?a; - (m - l)(a6'=' - aW + ca'^) ("(a' + b'xy'-^X«dx\ 12 RATIONAL ALGEBRAIC FUNCTIONS. r (a' + b'x)'"dx _ 1 f (b + 2 ex) (a' + b'xf J J:» ~q{n-l)\ .Y"-i -2(m-2n + 3)cJ ^ — -j;^^ + m(2 a'c - bb')J ^ j;;^! J _ 1 f b' (a' 4- ^''x)"-^ ~ {m-2n + l)c\ X"-"^ + (m-n) (2 a'c - i&') J ^^ ji - (m - 1) (ab'' - aW + ca'') f ^^-^^^^^^~^\ J (ct' + i'x)"' 1 / - VX^ b"{m-l)\(a' + b'x)'—^ X'^-'^dx + n{bb'-2a'c)^— (a' + b'x)"'-'^ . „ C X—'dx \ 1 / 4- ^-'X" RATIONAL ALGEBRAIC FUNCTIONS. 13 89 C—^^— J (a' + ^»'x)"'X» b' n v(«' (m -1) (ab'^ - aW + ca''') \{a' + ft'a;)"— ^X"-' 1 / 6' 2 {ab'^ - aW + ca'^) \{n - 1) (a' + ^»'a;)"'-U'"-» + (2 a'c - bV) (—TT-^. TF- (m + 2n-^)b'^ r dx \ If aJ'2 - aW + ca'^ = 0, dx J Ca' (a' + b'xyX" 1 (- (bb' -2a'c)\(a' (m + 71-1) (bb' - 2 a'c) \(a' + b'xyX''-^ + (m + 2n-2)c f—r-nr^ — pf-Y '^ ^ J (a' + b'x)"'-^X"J D. — Eational Fractions. Every proper fraction can be represented by the general form : f(x) ^ g,x"-' + gr,x"-^ + g.x'^-' + . . ■ + ^^ F(x) x" + kix"-^ + k^x"-- + • • • + A;„ If a, b, c, etc., are the roots of the equation F(x) = 0, so that F(x) = (x- a)P {x — by (x - cy • • -, 14 RATIONAL ALGEBKAIC FUNCTIONS. then F{x) {x-ay {x-a)P-^ (x-ay-^^ x-a (x- by {x- by-' '^ (x- by--' '^ x -b 1 ^1 ^_ ^2 , ^3 |_ . . . 1 ^'r (X — Cy (X — 6')*' ^ (X — C)''~^ iC — C I ••• ••• ••• ••• ■•• where the numerators of the separate fractions may be deter- mined by the equations •) _, , , f(x) (x -a)' , , ^ fix) (x -by , If a, J, c, etc., are single roots, then j? = gr =?•=••• = 1, and i''(a;) cc — a x — b x — c The simpler fractions, into which the original fraction is thus divided, may be integrated by means of the formulas : . hdx _ r h d (inx -{- ti) _ h r hdx _ r ' J (mx + 71)' J (mx + ny J m(mx + n)' m(l — l) (mx + ii)'-' and I ■ — = — log (mx -f n). J mx + n ni ' RATIONAL ALGEBRAIC FUNCTIONS. 15 If any of the roots of the equation f{pc) = are imaginary, the parts of the integral which arise from conjugate roots can be combined, and the integral brought into a real form. The following formula, in which i = V — 1, is often useful in combining logarithms of conjugate complex quantities : log {x ± yi) = 1 log {x" + if) ± i tan-^ ^- The identities given below are sometimes convenient : 1 _ 1 r h _ b' "I {a + bx'') {a' + b'x^) ~ a'b - ab' ' \_a + bx'' a' + b'x'^J 7)1 + nx 1 {k + Ix) {a + bx + cx^) al^ + chP' - bkl Vl(ml — nk) c(nk — '>nl)x + (aln + ckm — blfn)~\ \_ k -{- Ix a -{- bx -{- cx"^ J I + mx^ {a + te") (a' + i'^") a'b 1 r^^ — am a'm — b'I~\ — ab'' \_a + bx" a' + b'x" J " 1 ^ +JL^ + J^, (x + a) {x + b) (x + c) X + a x + b x -\- c where B = - —Z TJ C = {a — b){a — c) {b — c){b- a) (c - a) (c — b) (x + a)(x + b)(x + c)(x + ;/) x + a x + b x + c x + g' where ^1 = T, : TT T ' ^ = Z 7T~/ 7T7 7^ ' ^tc. {b — a){c-a){g — a) {a - b){c — b){g — b) 16 IRRATIONAL ALGEBRAIC FUNCTIONS. III. IRRATIONAL ALGEBRAIC FUNCTIONS. A. — Expressions Involving Va + hx. The substitution of a new variable of integration, y = Va + bx, gives 2 2 ^a^bxdx = — V(a + bxf «« C I T- , 2 (2 a - 3 ^>a;) V(a + bxf 92. J xVa + bxdx = ^ ^g^^a ^" «„ r , / — T^- , 2 (8 a^ - 12 abx + 15 b^x^) V(a + Z»a;)« 93. J xWa + Z-xc?x = -^ ^^^, '- ^ 94. I dx = 2Va + Z^x + a I — ■ 98./- (/a; _2^a + bx i + bx ^ 96. I -7= = ^^r7-„ Va + bx. Va + bx /xdx 2(2 a — bx) I ■ I = ^ Q7.2 Va + v./ 4- /ax 3 ^>2 „„ f a;2t/a; 2 (8 a^ _ 4 a^,a; + 3 ^»V) / — 97. I , = ^ .^ ,„ ^ Va + ^aj. 00 r ^^ 1 , / VaTTx — Va . „ ^ „ 98. I — ■ = — ^ log ( , — ], for a > 99 a; Va + bx Va \ Va + ^a; + Va/ /c?a; 2 ^ , (a+^ —2 , , ia+bx — ■ = . — tan-i \^ , or —-= • tanh-^ \ IRKATIONAL ALGEBRAIC FUNCTIONS. 17 dx Va + hx ^ C ^^ , «« r dx ■\Ja-\-hx b r d 100. , = 77- I 7= •^ x^s/a + bx «^ ^^'^ xy/a + bx 2±n 4± n 2 ±n 102. J .(. + fa)*.& = p [_L__i L__LJ. r a;^c?a; _ 2a;"'Vtt + to 2 ma r x'^-^dx ' -^ Va + bx (2 w + 1) i (2 ?/i + 1) bJ Va + ^ /* (/a; _ Va + ^>x (2?^-3)& T dx ' '^ x"V^i + bx~ (n-l)ax"-^ {2n-2)aJ x"-Wi 105. Jfc±M*: = , J(, + fa)"-i-=rf, + a/(^ n dx 1 /* (/a: b C dx 106. n — 2 da;. , /^ dx _ 1 C ___dx b^C x{a + bxy^ x(a + ia;) 2 (a + te)2 107. ^ fix, V^^x)dx = '^fff^lL:-^, :J\z—-'dz, where z" = a -\- bx. m + n /, , , !^ , n(a-}-bx) « (a + bx) n dx = - \,,\ /m p f(x, (a + bx)", (a + bx^, • • ')dx where f = a + bx, and s is the least common multiple of n, q, etc. 18 IRRATIONAL ALGEBRAIC FUNCTIONS. B. — Expressions Involving Both Va + hx and Va' + b'x. Let u — a + bx, v = a' + b'x, and k = ab' — a'b, then dx k + 2bv r- ^' dx = — . .,, Vmv 110. r^^ / -^ vdx _ 1 / — h_ C V^ & 2bJ ^uv xdx V?w-("-« J (2 w - 1) ^ V + (2 m + 2 ?i - 3)b'Cv-"'ir <"-«c?a; j. 20 IRRATIONAL ALGEBRAIC FUNCTIONS. C. — Expressions Involving ^x^^a? ani> ^a? — x^. 24. f Vx2 ±a?dx = \ [x Va;2 ^ci'^a? log {x + Vx^ ± a^)].* X dx . , cc .a; — =r sip-t-, or— cos~^-' 28. 29 /c?a; 1 .a 1 , x ; = - cos~^ -1 or - sec ^-■ x^x^ — a? a X a a r dx __i, A, + v.-±.^ y -^ xVa-±a;2 « \ a; / on C ^«^ =*= ^^ 7 /~^ ; 1 «. + Vft^ ± X^ i*"- I rfx = Va"* dr x'' — a lo£? ■ ^ X - X r V.r- - a^ /— : a I — — dx = Vx^ — a^ — a cos -• »^ X X 32 ^ V „„ /* xt^x /-^ 33. 1 , = Vx2 - a". *^ Vx^ — o? 34 fxVx^ia^^^x = iV(x2±a2)S. 35. rxVa--x2(^x = - ^ V(a2 _ a:2)3. IRRATIONAL ALGEBRAIC FUNCTIONS. 21 136. C>/{x^±aydx 2 z dx dx :X = ^\ x-\/(x^±d 137. f-\{a^-x^ 138. f 139. /- 140. /- 141 I ~ * J -».//^2 _ o,.2\3 -v/«2 _ ^a »')]■ V(a;2 zh ay a^ Vx^i^ dJx X iCf^a; — 1 xc?a; 1 142. fa; V(^2^^(ix = ^y/(x'±ay. 143. Cx^J^F^^^^dx = - |V(^2_ 3.2)6; 144. faj^ Vx=^ ± a^cZx = ^V(x2±a^«rF|x-N/^^±^^-|log(a;+Vac*-ba?) 8 a;'e?x 145. Cx^y/^^ log 2 = sinh - J (^^) = cosh - 1 (^^7^) ; tanh- 1 2 = - i • tan- \ziy * (See Note ou pages 20-21.) 22 IRRATIONAL ALGEBRAIC FUNCTIONS. /Va^~±x^ dx ->Ja^ ± x^ IT dx X Lx -^ a-Va^'zhx^ 147, fx-Va^ + x^ (^x = (± 1 x2 - ^2^ a2) V(«2 i x^)^ /^ fix Va^ ± x^ 1 /^ <^x 148 xWa-±x- ^^^ ^ la-J X -^a? ± x" C ffx Vx^ — a^ , 1 , /x\ J x'^xJ' — o? 2a-x2 2^3 \^ay 160. I , = o Vx'^ ± a^ ^ - log (x + Vx^ ± a^). 151. I = — o Vct^ — X- + 77 sm !-• , ^„ . c?x Vx^io^ 152. J /• rfx ^ x^Vx^ zh a.' 2 a^x 183. f- ■'^ "'""-" x' 154 ^ = + log (x + Vx» ± a^. X- X a 156. f / = ,--^ 4-log(x+V^^T7^. X^(?X X . , 35 , - — = ■ , — sm-i-' • (See Note on pages 20-«l.) IRRATIONAL ALGEBRAIC FUNCTIONS. 23 air \ du 158. Cfj^^ = ,jCf( g'^ — cu^ j (^^ — cu^^ ' where u — 159. I , - = - \ f( 1 du, where u^ = a -^ cx^. J Va + ex'' cJ ' \ c J D. — Expressions Involving Va -\- bx + cx^. Let X = a -\- bx + cx^, q = 4: ac — b^, and k = In order q to rationalize the functio n f(x, Vft + bx + cx^) we may put Va + ^x + ex' = V± c V^ + Bx ± x^, according as c is posi- tive or negative, and then substitute for x a new variable z, such that z = ^A + Bx + a;2 ± a-, if c > 0. V^ + Bx — X' — vCi a ^ z = ■} if c < and >• 0. X — c = \- -f where a and /? are the roots of the equation ^ a — X a A -\- Bx - x^ = 0, if c < and < — c By rationalization, or by the aid of reduction formulas, may be obtained the values of the following integrals : 160. C^ = ^-logfVX-\-xVc + -^\iic>0. ^ -\fx Vc \ 2Vcy /dx —1 /2c.r + i>\ 1 . , ,/2c.>' + h\ 24 IRRATIONAL ALGEBRAIC FUNCTIONS. ' -^ X^fX q^/X r dx _ 2(2cx + b)Vx 2k {71- 1) r dx ^^" J X" VX ~ (2 n - 1) ^A'« "•" 2 w - 1 J X«-i Vx' 67. Cx^VXdx ^ {2cx + b)^X f hX , 15\ 5 r dx 12c \ '^ 4k Sk'J Wk^J VX 68. rx-vx..^ (^-+^)f:^^ + ,;"V, r^. J 4(7i + l)c 2(% + l)A;J Vx /xdx^_ Vx b r dx VX~ c '2 c J Vx dx Vx" 69 /* a;c?cc _ 2 (^ij; + 2 «) ■ J xVx ~ ^Vx / xdx Vx A r ^^ X"VX~ (2ri- l)oX«~2"J J^VX' "• J vf = (ro - jp) ^ + -87- J vx • ' J xVx c^Vx c J Vx' IRRATIONAL ALGEBRAIC FUNCTIONS. 25 174 Vn x^dx x^Vx 175 {2b''-4:ac)x + 2ab 4 ac + (2 n - 3 ) 5' P dx {2n-l)cqX'^-^Vx (2n-l)cq J X^-^Vx x^dx ■f Vx 'x^ 5bx 5b^ 2a' 3 c 12 c2 "^ 8 c3 3 c2 X + '3 ab 5 b^ 4 c^ 16 & )f dx Vx' 176. fxVXdx = ^^^^~~ f-yXdx. J 3 c 2 cJ 177. fxXVxdx = ^V-^ - ^ fxVx dx. J 5 c 2 cJ xX^dx X'^VX P S X^dx Vx (2*i + l)c 2cJ Vx 179. Cx^VXdx =(x-^}j 180 5 b\ X^X 5P-4ac 4:C 16 c2 /Vx c?a;. r x'^X'^dx _ xX'^Vx _ (2w + 3)^' r xX'^dx ' J Vx ~2(?i4-l)c 4(7i4-l)cJ Vx ^— r 2 (71 + 1) c J 181. Cx^Vxdx = (x^- X^lx (n + l)cJ Vx" 8 c 48 c' 3cy 5 c '3ab + 1 8c2 32cvJ VXrf; 'JCt -^ xVX Va \ a; 2Va/ 26 IRRATIONAL ALGEBRAIC FUNCTIONS. 183. I — = — ^sm-M -.= ] , or — = smh ^ ^• 184. f ^ dx 2VX — , ' II a = 0. ox 185. d xX" Vx Vx (2 n - 1) aX 1 r dx b_r " aJ -rX^'-'^^fx 2aJ dx 186 ■/ dx Vx a;'VX dx x«Vx «« 2aJ a;VX 188 »^ X X 189. fj^^iKl^ Vx (2 ?i - 1) Vx Vx '/ X"-''dx . ^> rx^'-^dx X Vx iC^ a? + « I ^ + dx .xVX -' Vx U-- VJ 2-' xVx ^ dx 190 Vx' 191, r x'^dx _ 1 r x'^-^d,x _ h_ C x-^-^dx a Cx'^' ' ^ x»Vx c J X'^-WX cJ A'«VX cJ x» f ■-r"'X"6ga; _ x"'~'^X"Vx _ (2n + 2m-l)h P x^^-'^X^dx Vx ~ {2n + m)c 2c(2n + m) J VX {vi -\)a r x'^-^X'^dx {2n + 7n)cJ Vx 192, r dx Vx (2n+27n-3)l> (w — 1 ) ax'" - ^X " 2(t{m~l) ?i + m — {in — 1) « '> r dx_ 'Vx (2 ?^ + m - 2) c Z' rf.r x m-2^Y«VX' IRRATIONAL ALGEBRAIC FUNCTIONS. 27 ■ r X"dx _ _ x"-'Vx (2?i-i)^> r X"-'(ir (2 7^ - 1) r X''~^dx m. - 1 J ^-'"--'VX 194. r/(a-, V(a; - a) (x - ^')) fZx /\hu^ — a u (b — a) [ u du where u^(x —b) = x — a. E. — Expressions Involving Products o f Powers of (a' + b'x) AND Va + bx + cx\ Let X = a + bx + cx^, v = a' + b'x, q = 4:ac — b^, /3=-bb' -2 a'c, k = ab'^ - a'bb' + c«'^ then 195. I — — = —j=log "^ — yVX VA; tan"^ V- k 2V^-kX = sin~^ 7=="' iiA;p£0. V— ^ b'v^—q „ r dx 2 b' Vx . „ , „ 196. — p= = 7. ' if ^ = : ^ v^X (So r dx _ ,_ ■> /^ + 1 , /- _^ ^ _ &'Vx _ _^ r dx ■J r^Vx" ^'^ 2aJ vVx ■Jy^VX 3/3i;^ 3/3J ^;VX 28 IRRATIONAL ALGEBRAIC FUNCTIONS. 200 f ^dx ^ 2(2k+Jv) ««, rvdx b'^^ B r dx 201. -7= = TT I -1^' 202. Cv^Xdx = ^-^^^-i~^Vxdx. r vdx __ _ b'Vx _ ^ r dx J X" Vr " ~ (2 .. - 1) cX» 2 J A'« VX ■ r^^x^ _ &'x»Vx _ _^ rxv^ J VX ~ {2n + l)c~ 2cJ VX ' r (Za: _ _ bWx _ (2m-3)f3 r dx ■ J ^'«VX (m — 1) A-y™-' 2(m — 1)A-J ^,m- iVX _ (m-2)c p dx _ ^ ifyt-z£0. (m — l)A-c/ ym-aVx 206 1/ y; ,y-«Vx (2 m -1)^^;" _ 2(m-l)c f _^^_ ■ . , _ rt {2m-l)(^J ,.»-iVx' r Vx^x _ _ ^>'XVX _ (2m-5)/3 T Vx^ J t;-" " (m-l)A;v"'-i 2 (m - 1) ^- J t-""-! (m - 4) c rVxdx ~ (m- l)kJ v"'-^ ~(w-l)^*'2(^ *'"'-■ ^^J i;'"-'Vx"^ ''J i;"'-2Vx^ _ 1 /_ &'VX _ r dx _ J r rfa; \ ~ (m - 2)6'='(^ v—' V v'-Vx ^^J v-'-'VxJ IRRATIONAL ALGEBRAIC FUNCTIONS. 29 208. (v'- ' x Va + ^a;'-^ where y^ = a' + b'x\ MISCELLANEOUS ALGEBRAIC EXPRESSIONS. 31 IV. MISCELLANEOUS ALGEBRAIC EXPRESSIONS. V2 ax — x^ •dx = — ^ — ^sr2ax — x^ -[- — sin"^ a «,^ r dx . . X 1 /-, ^\ 215. I — - = versm"^ - = cos~^( 1 ) ^ V2 ax - x2 ct \ */ ^-« . a;"c?a; a,w-iV2acc — x^ 216. V2aa;- ^2 71 a (I -2 n) C x^'-'^dx / n J V2 aa; - x^ / 217 *^ a;''V2 ax — aj^ + dx a/2 ax — x^ x»V2ax-x2 a{\-2n)x- n — 1 C dx 1) a J rpU—l (2 w - 1) aJ a;«-i V2 ax - x^ //- 5 , x"-iV(2ax — x^)" X" V2 ax -x^-dx= ^^-— r ^ 71 + 2 _^ (2.^ + l)a r„_,V2^^3T.., w + 2 J r V2 ax - x^ • 6?x _ V(2 ax - x'')^ 71 — o /' V2 ax — x^- c?x — 3 /' V2ax -c (2 71 - 3) a J x»^ 220. I — , = — sec-^ ( - )• 32 MISCELLANEOUS ALGEBRAIC EXPRESSIONS. 221 •/ dx 1 , Va^ + x^ — a , = — log , a;Vx"-|-a2 an Va^ + a;" + a 222 223 /x?dx %■ sin~l / — Sin CC"' a / • (Za; (a + ^'a;2)Vx hV"^ log I 'a; + 8' + V28^' + tan-M 1 + '2x -tan-M 1 \ '2x where iS* = a. c^.dx 1 r^ ,/^ , V2x\ ^ y. V2.t\ a + 6ic^ — log ( , — ) )■ , where hV' ^ f- V a + bx? 225. ^ -dx 2 V« / x^ -dx _ 2Va; a T c?a; (a + hx?) Vx 226 c?a; Vac + r dx 227. ■-^ (a + ^-x2)=2V^ 2a(a + Z»a;2) ' 4 a J (« +7»a;2) V^ /^ ^sfx-dx x^ . 1 r ^Jx-dx + (a 4- ^'a;'-')^ 2. a{a -\- hx^ 4aJ (a + bx^) iaJ (a If tti, ttj? «8> etc., are the roots of the equation Pffic^ +^ia;"-i +x>2^''~'^ + • • • +i9„ = 0. the integrand in the expression / {P(fic" + piX"~^ + • • • +p„) Va + 6x + cx^ MISCELLANEOUS ALGEBRAIC EXPRESSIONS. 33 where m where z — cos x. 239 r__^^-_ = _l— / f-^-f-^l, *^''- J a^h cos a; e(^ - (') \J z ■\- c J z-c j where s = tan ^x, and c- = (^^ + «)/(^ - a). [See 651.] , , . = 1 , ^; "^, 5' where s; = tan i a;. (X ± (^ sm a; »/ a ± 2 fts; + az' 241. ^/(sin a-) 6?x = -ffUos (^| - ^) ) '^ (^| " ^J' 242. r/(tan a-) rfa; = - J /ctn f | - xj d (^| " ^ j' 243. j"/(sec a;) dx = - J/csc f | - a- J fZ (^| ^ ^ j' rsmx^f(sui^x)dx^ r J^z) dz J Vl-A;^sin2x ^ 2 V(r-^^) (1 - k^^z) where z = sin'^a;. r cos.r./(cos^x).7.r ^ r.A l-^)^^ . ^here z = sin^x. J Vl-A-^sin^a; -^ 2 V^ (1 - A;^ «) 36 TRANSCENDENTAL FUNCTIONS. /' tan X -/(tan^ x) dx _ C J z \ dz^ where 2: = sin^ aj. 247. r/(«x + ^)<^^ = ^ ^ f{ax + S)c?(aa^ + ^'). 248. rsec" + 2a; ./(tan cr) (Za; = (^(l + z^yf{z) dz; « = tan 3 249. I /(sin x, cos x) dx = — I /( cos I — — X], ?,\n\ — — x]]d\ — — x |_^Uin(|-.))c/f| //• t/ic, where (x) = i f(x)dx. /C sin z j c?2:, where 2; = — — x. Li /' sin a; -/(cos x)dx _ IT J z — a\ dz J a-\-bcosx bJ \ b J z where z = a + b cos x. TRANSCENDENTAL FUNCTIONS. 87 256. ff(x, ^ogx)dx^jf(6', z)e'dz, where « = log x. 257_ r fQogx)dx ^ Cf{£^dz, where z = log x. 258. Cx"'f(log x) dx = Je('" + i>y(s) dz. 259. (/(sinar, cos a;, tan x, etna;, sec a:, csca;)c?« ' -J-^Vr+T^' 1 + ^^' 1-^=^' Iz'l-z^' 2z ) 2dz , ^ ^ ■ ) where z = tan - ; 1 + z' 2 VT^^2 1 1' :» where z = sinaj; Vi - «' = I / , > z, -y VI + s^ : J where z = tan a; : l-\-z^ ://(vi, vi^, Vr^^, W' vfe' 7: :> where « = sm-'a;: 2^z(l-z) J''\^i + z vi + v^ ^ ^ y 2V2(1 +«) :j where z = tan^x. 38 TRANSCENDENTAL FUNCTIONS. 260. I s\nxdx= — cos x. [See 247.] 261. I sin^ a; c?x = — ^ cos a; sin a; + 1^ cr = ^ a:; — :|^ sin 2 a;. 262. I sin^ xdx = — -^ cos x (sin^ x + 2). «o« r • „ 7 sin"-^a; cosa; . n — 1 f . „ „ . 263. I sm''xdx = 1 I sin«-^a;c?a;. J n n J 264. I cos a3 c?x = sin X. [See 247.] 265. I cos^ xdx = ^ sin a; cos x -'c \x = ^x + \ sin 2 aj. 266. I cos^ a; c?a; = -J sin a: (cos^ x + 2). 267. I cos" a; c?a; = - cos" ~^ a; sin a; H | cos"~^a;c?a;. J n n J 268. I sin x cos xdx = \ sin^aj. 269. I sin^ x cos'' a; c?a; = — ^ (:|^ sin 4 a; — x). 270. I sin X cos"» a; c?a; = — cos'^ + ^as i.p 271. I sin"'a; cos a;c?a; = in + 1 sin"» + ^a; m+ 1 272. j cos"" a; sin"x(Za; = '•/ 273. I cos"'x sin"a;rfx = cos'^^^a; sin^ + ^a; rth -\- n m — 1 m + w. sin"~^a; cos'^+^a: 4- — — r— I cos'""'' a; sin" a; (/a;. m + w. + "^ . ^ I cos'"a; sin"-''a:rfx. TRANSCENDENTAL FUNCTIONS. 39 , ri^^m^xdx 1 / sin"-\'r , ^ ^ rsiii"-^a-rf.»'\ 274. I ■ = \ — \-(n — 1) I J cos™ a; n — m \ cos'"~*a; ^ J cos"* a; / 1 /siu^ + ^-c , , _, rsin"a7(fe\ = 7 \ hi — m + Z) I r— m — 1 \cos'"-^a; ^ ^J cos"-'*x/ _ 1 / sin"-^a; rsin«-2xrfx\ ~ m — 1 \cos"'^^a; ^'^ ^J gos"'-^xJ' rcos,^xdx _ cos^' + ^a- m — ?i + 2 /'cos'"a:;c?cc "J siii"a: (/i — 1) sin""-'^ n — \ J sin"~^a; '^x m— 1 /^cos'""'^.' )in"^^a; m — ?^c/ sin": J_ r cos'"-^xd. n — lsm"~^x n — lJ sin"~^a; (m — n) sin" ^x m — nJ sin" a; 1 cos'"~^a; m — 1 /*cos"'~^xdx . . , _cos™ [tz— x]d[— — x , sm^xdx r V2 /sin'«a:;c?a;_ r cos"ic »/ sin" ( 77 — a^ 277. I -^ = log tan x. J sin x cos x 278. ^i- = log tan - + - ) J cos a; sin^a; \4 2/ — CSC X. 279. j sin^'x cos" a; 1 1 ,m + w — 2/* dx m-\-n — 2 r _ 3"~^x n — 1 J sii n — 1 sin"*" ^ a; -cos"" ^x n — 1 J sin"'a; -cos^^^a; 1 1 m + n — 2 r dx ~ m — 1 sin"*~'a; •cos"~^x m — 1 J sin"*"~^a; -cos".-?; ^ r dx 1 cos a; , m — 2 /* dx 280. I -. = r -: \ T I • ^ , • 40 TRANSCENDENTAL FUNCTIONS. dx 1 sin X . n — 2 C dx C dx 1 sm a- ii — 2 r dx J cos"a; n — 1 cos'^^-'a; n — \J cos"~^ 282. I tan xdx = — log cos x. [See 247.] 283. I iaxi^xdx = tan x — x. 284. I tan"a;fZic = r^ — j tan^-^xc^ic. 285. I ctn xdx — log sin x. [See 247.] 286. I ctn^xdx = — etna; — x. 287. jctn^aic^a; = - ^ "_ J^ — jctn"-^xdx. o.^^ /^ T -1 i /''■ , »'\ ,1 1+sina; 288. I sec xdx = log tan I - + - 1 = |- log -t— 289. I sec^a;c?a; = tan x. sin a: /r dx sma- n — 2C «^ sec^a^rfx = I = ■; TT \ — I I -^^ c/ cos"a; (72, — 1) cos" ~^ a; w — l^cos"~^a; sin a; , n — 2 C , , = 7 ;^ r~l 1 7 I sec"~^a;ria;. (n — 1) cos"~^a: n — lJ 291. I esc a; cifx = log tan -^ X. 292. I csc'^xc^a; = — ctn x. TRANSCENDENTAL FUNCTIONS. 4-1 293. I csc"a;rfx = | -r-^ cos X , n — 2 r dx n — 2r dx "-^a; n — 1 J sin"-^i (n — l)sm"~^x n — lJ sin"~"^ic cos x n — 2 f „ , = — 7 ..s . „ 1 1 7 I csc^-^xdx. (n — 1) sm"~^a; n — lJ 294. ftr-r^^ = - tan (i tt - i x). [See 241.1 J 1+ sill X V4 -J / L J /dx : = ctn a TT - ^ x) = tan (i tt + ^ a;). 1 — sin a; ^ 296. 1 :; = tan A x, or esc x — ctn cc. »/ 1 + cos X /dx = — ctn 4 a-, or — ctn x — esc x, 1 — cos X 298. f— -^^ = ^-^^ • tan- > (sec ^ • tan i a- ± tan 0), if a > i, and b = a sin 6. ^„„ /* c?.x ± sec a , sin h(a ±x') 299. I r-^ = 7 — log f-) (» J a ± sm a^ o cos -^(x ^ a) if 6 > a, and a = 6 sin a. [See 241.] ««« /* dx — 1 . , r^ + a cos a;~l 300. I z = , • sm-' — — J a -\- b cos X Va^ — b^ \a-\-b cos a; J 5 CO ? " 5 o s -Sim QJ o o •^ 5- 1 . , r Va'^ — b^ ■ sin a;~| , sm- — : I Q^ — ip- \_ a -\- b cos X J b g or : sm- ' I r^ I ■> or , _ii 1 - ,rVft2-^ £s-§ or c o « •a Va* - y tan~M y^ tan \ x V> , r Vft^— ^ • sin a;~| tan-M — T— h L c» + a cos X J 42 TRANSCENDENTAL FUNCTIONS. 1 , r ^* + <^ COS a; + V6^ — d^ ■ sin x ~\ ' >2 - a2 °^ L a + 6 cos a; J ' V^ or 1 , r V^ + ft + V6 — ft • tan ^ a; ~| '-ft' LVZ* + ft-V6-a-tanlxJ' 1 , , , r V^»2 - ft2 . or , tanh-T \^^-"^-^^^^ l V^2 _ ^2 ^ 6 _|_ (J cos aj J _-, r dx 1 ^, , 301. I — TTT = o , ,i, [b log (ft cos cc + ^> sm x) + ftxl J a + 6 tan x a^ + ¥^ ^ /'J /f/a; 1 ^ \ = -7= log tan (i cc + i tt). r _^mxdx_ _ _ /* COS {\ TT — X) d (^ TT — x) ' J a -\- b cos x J a + b sin (^ tt — a;) = — - log (a + b cos a;). 304 /(ft' + J' cos x) dx _ b'x a'b — ah' r a + b cos X b b J i 305 / + b cos X b b J a-\- b cos x (ft' + b' cos a;) c?a; _ ab' — a'b sin x (a + b cos x)^ a^ — h^ a + b cos a; ftft' — bb' C dx , ftft' - bb' C dx _„ „,.^ "• 2 TT I — TT [See 241.] ft'' — 6^ c/ ft + ^ cos a; ■- -" gQg r (ft' + ^''cosa;)c?x ^ 1 V jab' -a'b)^ix\x ■J (ft + ^ cos a;)" (w- 1) (ft2- Z*^) |_(a + />cosa-)"-i r r(r^^<' - ^>Z'') (» - 1) + (n - 2) (ft/>' - a'b) cos a-] r/x l J (ft + 6cosa;)"-i J" 307./ TRANSCENDENTAL FUNCTIONS. 43 (a' + b' COS x) dx _ (a' — h') tan ^ x (1 + cos x)» ~ (2 w - 1) (1 + cos x)"-^ n (a' + h') - g.' r dx 2n-l J (1+ cos x)"-i ' 308 C——^^— = - r - ^ sin a; J (a + b cos xf (n - 1) (a^ - ^^^^ [_(a + Z» cos a;)"-i + (2n-3)aj ^^_^^ 'cos x)— ~ ^'' ~^U (a + b cos a;)'-^ J 309 f ^^ ^ tanja; * J (1 + cos x)" (2 ?i - 1) (1 + cos x)"-^ ^27i-lJ (l + cosx)»-^ L'e^-'-i^-J otn r (*' + ^' COS x) f/a; a'b — ab' , , j . 310. I ^ — — — '- — - = — ^ -^ log (a-\-b cos a^) »/ sin x(a + b cos x) a^ — ¥ ^ ^ H — ^ log sin ^x log cos -A- x. a + b ^ ^ a — b ^ ^ »■... r ((t^' + b' cos x) dx a' ^ , ,, , . 311. I -^^ — —7-^ — - = -logtan|-a7r + a;) J cos x(a + b cos x) a ^ ^ (ab'-a'b) f dx - a'b) r a J a -\- b cos X «,« r (a' -\- b' cos x) dx 4- («' =F ^') , i / i 7im 312. \ ,., ^ = ± ,\ ^ +i(a'db&')logtan|; J sm a; ^1 ± cos a;) 1 ± cos a; '' ^ '^ * ^ 313 /dx _ — ctn I" X (1 - cos xy ~ (2 71 - 1) (1 - COS a;) n — 1 C dx n — l 4.iL:Ll.r_ ^h-—. ^See241.] 44 TRAMSCENDENTAL FUNCTIONS. dx C dx 314 r dx r ci^ — b"^ cos?x J (a^ — U^ 1 . sin (a — x) log ^^ : 2 ab sin a sin (a -\- x)' ~l "■ — 3"t^^~M~^^ )' whei a^ sm /? \sm pj 1 a or -s -: — — tan ' i -: — - j , wnere cos a cos /3 b „,^ /* tZcc 1 ,/&tanic 315. I p^ 5 . ,„ . „ =— tan-^i a^ cos^ a; + ^^ sin^ a; ab a 316. r44^ = ^^ tan- ftan . . J-^") J « + b co&^x b^a \ ^ a + bj X ~b <«<» C sm a; cos a:" f/a* 1 , , , , • o s J a cos- a; + 6 sura; 2(b — a\ ^ ' 318. f ^ = C d{x-a) J {a -\-b cos X + c sin a.')" J [a + ?• cos (a- — a)]" where 6 = r cos a and c = r sin a. 319. I : [See page 61.] J C ' dx a -\- b cos X -\- c sin x -1 sin" J r i^ + c^ 4- a (b cos a; + c sin x) ^a^ — W—c^ |_ V(&^ + G^){a + ^ cos a; + c sin a;) , ^= • log V&2 + e^ _ ^2 ] [^^ + 0^4- a (& cos a- + csin a;) + V&^ + c^— ^^(isinx— ccosa;)"! V(6^ + c^) (a + i cos a: + c sin a;) J 1 , V^-2 4- ,.2 - a2 _ c _j_ /^ _ (j) tan ^a; OP o ' X ■sIV + c- -a" ■\/b'' + c'-d' + c-(b- a) tan \ c^ [_ Va^ -b^-c^ J" Va^ - 62 TRANSCENDENTAL FUNCTIONS. 45 /dx 1 — -— — : = - log (a -h c tan |a;) a (1 + cos x)-\- c %\nx 'C 321 f ^^ J (a [1 + COS a;] + c sin x)^ 1 r c (a sin a; — c cos x) i / , . i x ~l = -o —^ r-;' ■ a log (a + c tan ix) • ^r.r. r (a; + sin a?) c^cc ^ , 322. I ^— r^ — = a;tan-^a:. J 1 + cos x = |- sin a; Vl — P sin^a; + — sin~^(A; sin a;). 324. I sin x Vl — A;^ sin^ a; t?a; = — -|- cos a; Vl — A;^ sin- x ^-j— log (k cos a; + Vl — A;^ sin^a;), 325. J sin a: (1 - A;^ sin^ x)^ dx = - i cos a; (1 - A;^ sin^ x)^ + f (1 - k^) jsin X Vl - k"" siu^x dx. ««„ /^ cos a;c?a; 1 . , ,, . . 326. I , . ^= = T sin-i (A; sin x), ^ Vl — k^ sin^x ^ or - log (6 sin x + Vl + 6^sin^a;), where b^ = — k^ 327. I- = — -log(A:cosx + Vl — A-^sin^a;), •^ Vl — k^ sin'^ a; ^ 1 . , Jcosx „ 2 or — TSin~' , , > where 6. = — k^ b Vl+62 ^„„ /• tan a; c?a; 328. - = ^ Vl — A;^sin^a; 1 , / Vl - A;=^ sin^a; + Vl - k''\ ;log 2Vi^^ \ Vl - A;2 sin^a; - Vr^A:^ 46 TRANSCENDENTAL FUNCTIONS xdx /v cix -;——. = - a; tan |a TT - a;) + 2 log cos i (i tt - x). 1 + sin X ^ /cc doc ' : = X ctn -^ (^ TT — x) + 2 log sin i (i tt — x). J. olU X 331. iz = a; tan 4- cc + 2 log cos -J- a;. J 1 + cos X 332. I :: = — x ctn ix + 2 log sin 4- x. J 1 — cos a; ««« r tan a; fZa; 1 .( ^h — a \ 333. , ==— =^=cos-M p— -cosa;)- ^ Vet + ^ tan^ X -\/b — a \ V6 / 334. r-^^^^- = ^-yU-\^--tan-»( J-.tana- ) . J a -\-b tan^ a; a — b\_ ^a \* /J ««,. r tana^c^x 335. I a + h tan x = — — \bx — a log {a + b tan x) + a log sec a; V 336. I a; sin a;fZa; = sin x — x cos x. 337. I a;^ sin xdx = 2x sin a; — (a;^ — 2) cos x. 338. I a;^ sin a; c?a; = (3 a;^ — 6) sin x — (x^ — 6x) cos x. 339. J x"" sin xdx = — x™ cos x + m % x™~^cos xc?x. 340. I X cos xdx = cos x + x sin x. 341. I x^ cos X (fx = 2 03 cos x + (x^ — 2) sin x. 342. I x' cos X cZx = (3 x'' — 6) cos x + (x^ — 6 x) sin «. TRANSCENDENTAL FUNCTIONS. 47 343. I iC" COS xdx = x'" sin x — in i x'"~^sin xdx. .... rsincc , 1 sin ic , 1 Tcos cc , 344. I dx = ■ —-—J H 7 I ——-7 dx. J x"* m — 1 x'"-^ vi — lJx'"-^ «.., rcosx , 1 cos a; 1 rsincc , 345. I dx = T ■ T T I 7«a;. J X'" m - 1 a;'«-^ m - 1 J ic'"-* 346. J c?a; = a; - 77-77^ + ^^^ - ^^^7-, + ' x^ X 3-3! '5-5! 7-7! 9-9! ,6 a.8 «>.« rcos X , , x^ , X* a;" , 3^^- J -^^^' = ^°^^-2:2!-^4T4!-6T6l + 8.8! rxdx _ . x^ 7x^ 31a;^ 127 a-« ^^^- J sinx"'^'^3.3!"^3-5-5!"^3-7-7!"^3-5-9!"^ r^^ _ ^ g;^ 5.T^ 61^« 1385 a:^" J cosa;~ 2 "*"4-2!"^6-4!'^8-6!"^ 10-8! ' /x dx . „ = — a; ctn a; + log sin x. sin'' x 351. I — 5— = a; tan X + log cos a;. J COS'^X 362. n^ I aj^'sin^xtfo; = a;'"~^ sin"""^ x (m sin x — nx cos a;) ' + w(?i — 1) rx^sin^-^XfZx — 7;i(w — 1) ra;"'-2sin"a;c?x. 353, 71^ J x"' CDS'* xc^a: _ a;TO-i cos"~^ X (m cos x + nx sin x) 4- w(w - 1) fx'" cos'^-'^xcZx — m(?» - 1) Cx'"-'^ cos"xdx. 48 TRANSCENDENTAL FUNCTIONS. 354. f^ 1 r a:!"*"^ (m sin x -{- (n — 2)x cos x) ^ (?i - 1) (?i - 2) |_ sin«-ia; 365. f^ »/ COS" a; 1 r x^~^(m cos g; — (?i — 2)a; sin a:) ^ (?i - 1) (w - 2) L cos»-ix ^ 'J cos"~^x ^ ^J COS" -^ a; J ^^„ /'sin" re c?a; 356. J X'" X ((m — 2) sin x -\- nx cos a;) ™m— 1 1 r sin"-^ ~ (m - 1) (7n - 2) L - n'j —;;;=r- + "(« - 1) J ^..-^ J «^-. . 'cos" a:c?a; 357 1 P cos"~^ a; (na; cos a; — (m — 2) cos x) ^ (m - 1) (??i - 2) L ^'""^ „ /*cos"xfZx , . ., ^cos"~^xdx~\ — ^ I 5 \- n(n — 1) I 7, — • J a;'"-^^ ^ V a;'"-'' J 358. I x'' sin"* a: cos"a:c?x = a:^"' sin™ a: cos"~^a;(» cosa; -j-(')/i + n)x sin a;) (in + 7i)'' |_ \i \ + (n — 1) (//I + ?i) I X'' sin^x cos"~^a:(^x TRANSCENDENTAL FUNCTIONS. 49 — m'p I a;''"^ sin^^^a; cos"~^a;c?ic — p(^ — 1) I x^''"^ ^v^'x Q.o^'^xdx • = •; — ; — -5 a:^""^sin"'~^a;cos"a:;(» sin a; — (w + w^a; cosa?) (m + ny |_ v^ \ / / + (m — 1) (m + 11) I aj^ sin"*"- a; cos" a;c?a; -{-np i xP~^ sin"'~^x cos'^'^xdx „-n C ■ ■ 7 sin Cm — n) a; sin(m + w)a; ^ 359. I sin mx sin nx ax = — ^r-^ i ^77 — ; — r~ * J Z(m — n) Z{7n -\- 71) __- /* . - COS (m — n)x cos(m + n)x g, 360. I sin mx cos nxdx — tt, r —rr) ; — . ' " J 2(m — n) 2 (771 + 71) '^ » 03 -_- /* , sin (m — w) a; , sin(m + w)a; 361. I cos waj cos wa; rfa; = — T-7 r 1 777 ; — f— • ,/ 2 (m — 7i) 2(m + 71) •-' 362. I sin^ mxdx = tt — ("ma; - sin mx cos ma;). »/ 27n^ ' 363. I cos"^ mxdx = pr — ("mx + sin mx cos mx). ./ 2 ??i ^ '^ 1 364. I sin mx cos mxdx = — -f^ cos 2 mx. J 4m 365. I sin nx sin"'x + c) 377. I cos ax cos te cos ca; aa; = i i ^^ — —-. — ; J y_ a-\-b -\- c sin (6 + c — ft) a? sin (rt — 6 + c) a? , sin (a + b — c)x \ b ■\- c — a a — b -\- c a + b — c j cos (a -^ b -h c)x X 378. I sin aa? cos bx cos ca; c?a; = — :f i cos (6 -f c — g) a! cos (a -\- b — c)x cos (a + c — i) x } b + c — a a + b — c a + c — b ««« r -7 • 7 , r sin (a, -F ^» — c) a; 379. I cos ax sm bx sm ca;ax = f s ^^ — --. — J I a -\- b — c sin (a — b -h c)x sin (a + b -\- c)x sin (Z* -f- c — a.) a; a — 6 + c a -^ b -\- c b + c — a 380. I sin~^a;c?a; = x sin~"^a; + Vl — x"^. 381. J COS'^XC/X = X QQS~^X — Vl — x^. 382. I tan-^xc/'a; = x tan~^x — \ log(l + x^). 383. j ctn- ^xdx = x ctrr ^ x -}- -^ log (1 + x^). x\ 62 TRANSCENDENTAL FUNCTIONS. 384. I s.eor'^xdx = x sec~^x — log(x + Vcc^ — 1). 385. I csc~^ a;c?x = x csc~'a; + log(a; + ■\f^— 1). 386. I versin-^ icci^a; = {x — 1) versin"' x + V2 a; — 387. C {?.m-^xfdx = a; (sin- ^ a;)^ - 2a; + 2 Vl - a;^ sin- 'a;. 388. I (cos-^ a;)^c?a: = x (cos"^ a;)^ — 2 x — 2 Vl — x^ cos~^ x. 389. fa; sin-^x^x - i[(2x2 - l)sin-ix + x Vl - x"]. 390. I X cos~^xc?x = i[(2x^ — l)cos~'x — xVl — x^]. 391. I X tan""'xc?x = ^[(x^ + l)tan~'x — x]. 392. I X ctn-'xc?x = ^[(x" + l)ctn-'x + x]. 393. I X sec~'xc?x = ^^[x^ sec""^x — Vx^ — 1]. 394. I X csc-^xc?x = ^[x^ csc~'x +a^'x'^ — 1]. 395. I x"sin-'xc?x = — — r ( x" + ^ sin-^x - \ , ^^ \ J n-\-l\ -^ Vl - xV 396. I x"cos-'xcZx = — -— I x" + icos-'x 4- \ ^ , J n + \\ J Vl -x^ i ■^>-ck^ ^ ^---e'"' ^^'■rc^ TRANSCENDENTAL FUNCTIONS. 53 397. Jx"tsin-^xdx = ——(x'' + HEin-^x-Cj 398. Cx»ctn-'xdx = —^(x" + 'ctn-'x-^ f^!^l^Y X / iC 400 tan~^a;c?a; , .,.-..„. tan~^a; ^^ = logo; - 1 log(l + x^) - X 401. Ce'''=dx = —- Cf{e"^)dx=J'^^^^^^, y^e'^. a;e«^rfa; = — (ace - 1). x^e'^'dx = I x'^-'^e"^dx. a a J P^ax 1 r e"^ , c^'^d^~\ 404. I — dx — : + a I ' J x"" m — 1(_ x""-^ J a:"'-ij J log a (log ay (log a)^ n(n-l)(n-2)- • '2.1a^ ~ (loga)" + i a bx -«« Ta^'^a; 1 r «■" a^- 407. I — — = T --r - 7 log a 2)a;»-2 a^ • (log ay + (w-2)(ri-3)a;"-3 (w (logq)"-^ r a='dx ~\ - 2) (n- 3) "-2.1 J x J" ,^„ Ca^dx , , , , (cc log a)^ , (a; log a) 3 + J 54 TRANSCENDENTAL FUNCTIONS. 409. I :: = Ior i ^-^^ ' ■*- J 1 + e^ '' 1 + e^ /dx 1 411. \ —z;z-^-, — -: = ^=tan-M e^-^A/Tr 412. )— ^^== j=\\og(-\/a + be""'-Va) / /— 2 -\/n 4- /)^'"^ - log (Va +6 e"- + V^) L or == tan- ' ,Z_1 ^ VI -y/ZTa V- a J {\+xf 1 +x J a(n + 1) A-iA C ^^ 7 e'^ia sin ?;.x — » cos px) 414. I e"" sm »a? (/a? = — ^^ -^ f ^-^• Atn C r,^ 7 ^'^ (f' cos px + » sin »a^) 415. I e"" cos »x- dx = — ^^ ^, — ^ ^-^ • 416 e*" log a; c^a; = 2 I a aJ X goa: gij^2 xdx = J— — ^ ( sln X (o, B\Xi X — 2 cos cc) + - ] ' /e'" / 2\ goa; cos'^ajc^a; = — — — - ( cos a; (2 sin x + a cos a;) + - 1 • 419. I e'^sin"6xc?x = -5— — ;-^( (a sin bx J a^ + tr¥ \ ^ — nb cos bx) e'^ sin"~^ Jx + n (n — l)b- i e^ sin"~^ bxdx TRANSCENDENTAL FUNCTIONS. 55 . ). I e'" cos" bxdx = -^—, — ^-^ ( (a cos bx J a^ -\- n-h' \ ^ + nh siu te) e"^ cos"~^ hx -\- n {n — X)h^ I e°^ cos"~26icc?a; )• 421. re^^tan^ajc^ic n /' e'^tan"-ixc?a; — | e'^tan"-2a;c?x 422. re''^ctn«a;(Za; e'^ctn"-!^ 423 / n-1 e"^ dx + a n -J -/' e'^ctn''-^xdx— | e'" ctn"-^ a; c?a;. a sin X -\-(n — 2) cos a? pOX V i sin" X {n — 1) {n — 2) sin''"^ x + a^ + (71 - 2y re^^dx (n - 1) (7^ - 2) -2) J sin"-^ x 424. / e"^dx ^ a cos X —(n — 2) sin a; cos" a; "^ (n — 1) {n — 2) cos""~^aj a^ + (71 - 2)^ r e'^'dx + -2^ f -2) J ( (» — 1) (ti — 2)»/ cos""~^a; 426. I e"^ sin"' a; cos"xdx = 1 ; — TT"^ — ^ 1 ^""^ sin"^ X cos"~^ x (a cos x + (m + n) sin a;) (w + ny + a^ K. ^ \ / / — 7na I e'^sin"'~^a; cos"'~^a;(^a; + (?z. — 1) (m + n) I e"^ sin"' a; cos"~'^a;c^a; V 66 TRANSCENDENTAL FUNCTIONS. = ~, ; — r^~. — :, \ e"^ sin"*"^ x cos" x (a sin x — (m -\- n) cosx') (m + ny -\- a^ {. ^ ^ ' ' ■\- na \ e'^sin'"~^x cos"~^icc?a; + (m — 1) (to + ii) I e"^ sin"*"- x cos" xc^x \ = •:^ 7^; -c\ re"^cos"""^a;sin"'~^a;('asina;cosic + ?isin^a; (m + ny -\- a V — mcos^a;)] + 7t(w — 1) | e"^ sin'"cccos"~^icc?a; -\- mim — V) I e"^ sin'"~^ X cos^iccZo; [- = -A re"'^sin"'~^£CCOs"~"^a;(asinxcosa:+ wsin^x — m cos^x)] + w(w. — 1) I e"^ sin'"~^iccos"~^a; = - [(log a; - 2)Va + 6a; + 2V^ tan" ^ ^^^^^^ 1 .if a < 0. 444. I sin log xdx = ^x [sin log a; — cos log a^]. 445. I cos log a;c?a; = \x [sin log x + cos log a;]. 446. I sinh xdx = cosh x. 447. I cosh xdx = sinh a;. 448. I tanh a; c?a; = log cosh a;. 449. I ctnh xdx = log sinh x. TRANSCEIJTDENTAL FUNCTIONS. 59 450, I secli xdx = 2 tan~ ^ e'. 451. I csch a;c?a; = log tanh -• /I . % — 1 /* sinh"x(Zx = -sinh"~^a;-cosh a; I siuh"^^ xc?a; sinh" + ^ a; cosh cc — r I sinh" + ^ a; ^x. 7i + 1 w + /I . w — 1 /* cosli"xc?a; = -sinha:- cosh""' a; H I cosh"~2a;^x w n J = sinh a; cosh" + ' a; H -^ | cosh" + ^ a; c?a;. n + 1 n-^lJ 454. I x sinh xdx = x cosh a; — sinh x. 455. I a: cosh xdx = x sinh a? — cosh x. 456. j a;'' sinh xdx = (x' + 2) cosh a; — 2 a; sinh x. 457. I a;" sinh xdx = x" cosh a; — wa;""^ sinh a; + n(n — 1) I a;"~^ sinh xdx. 458. I sinh^ a; c?a; = |^ (sinh x cosh x — x). 459. I sinh a; • cosh xdx = \ cosh (2 a). 460. I cosh^ a;(Za; = | (sinh x cosh a; + a;). 461. I tanh^a:c?x = a; — tanh x. 60 TRANSCENDENTAL FUNCTIONS. 462. I ctnh^ xdx = x — ctnh x. 463. j sech^ xdx = tanh x. 464. j cscli^ic c?a; = — ctnh x. 465. I sinh~^ xdx = x sinh~' x — Vl + x^. 466. I cosh~^ a;c?a; = x cosh~^ x — Va- — 1. 467. j tanh- ^ cc (Za; = x tanh"^ a; + |- log (1 — a;^). 468. Cx sinh-i rrt/cc = ^[(2 x^ + 1) sinh"^ x - cc Vl + x^]. 469. I ic cosh-^ a;6?a; = :J[(2a;^ — l)cosh-^ x — xVx^ — 1]. * ./ cosh a + cosh a; = csch a [log cosh ^ (a; + a) — log cosh ^ (a; — a)]. = 2 csch a • tanh-^ (tanh ^ a- • tanh ^ a). /dx ; -. — = 2 CSC a ■ tan- ^ (tanh 4- a; • tan i^ a). cos a + cosh X \ ^ ^ / /dx - — \ ; — = 2 CSC a • tanh" ^ (tanh ^ x ■ tan A a). 1 + COS a ■ cosh X \ i ^ / 473. j sinh x ■ cos x c?a; = ^ (cosh x ■ cos a; + sinh x ■ sin x). 474. I cosh X • cos xdx = ^ (sinh a; • cos x + cosh a; • sin x). 475. j sinh x- sin a;c?a; = ^ (cosh a; • sin x — sinh x • cos x). TRANSCENDEiSTTAL FUNCTIONS. 61 476. I cosh X • sin xdx = \ (sinh x • sin x — cosh x ■ cos a). 477. I sinh (ma;) sinh (wa;) c?a; = — ^ 7, m sinh (?ia;) cosh (pix) — n cosh (jix) sinh (mo;) • 478. I cosh (mx) sinh (wa;) dx = — ^ J m sinh (na;) sinh (wa;) — n cosh (wa;) cosh (vix) • 479. I cosh (mx) cosh (raa;) 6?x = - 2 _ — ^ m sinh (ma;) cosh (wa;) — n sinh (/ia;) cosh (mx) ■ / ■ dx _ r (Z(tana-) a cos''^ X -\- c sin x • cos x -\- b sin^ a; J a + c tan a; + 6 tan"'^ ar /(I + 7/1. cos a; + w sin x) dx _ T (m cos 8 + ?i sin 8) cos s • dz a -{- b cos a; + (^ sin x J Z ' I ■ dz r (7)1 sin 8 — n cos 8) sin s ■ dz + . , . ^ where b — q • cos 8, c = q- sin 8, s = a; — 8, Z = a. + y • cos 2;. C . , , X • V , 7^ 7 [See 303 and 304.1 I sm (mx + a) • sm (na: + 0) aa; ^ -^ sin [?«a; — nx + a — &] sin [?/ia; + '^^ + <* + ^] ~ 2 (??i — 7i) 2 (?/i + «) I cos (mx + a) • cos (iix + i) rfa; sin [^mx -{- nx -\- a -\- b"^ sin [mx — nx -\- a — b"] ^ 2 (wi + n) ^ 2 (??i - n) I sin (mx -\- a) ■ cos (nx + h) dx cos [ma- + wa^ + «■ + ^] cos [^mx — nx + a — b~\ ~ 2 {m + w) 2 (?/i — w) 62 MISCELLANEOUS DEFINITE INTEGRALS. VI. MISCELLANEOUS DEFINITE INTEGRALS* 481. J x''-'^e-''dx= j log- dx = T(n). T(z + l)=z-T(z), if z>0. r(jj)-T(l-y)=^yiil>y>0. r(2)=r(l)=l. r (w + 1) = n I, if n is an integer. T (z)= Il(z — 1). r(i) = Vt^. Z(y) = i)^[log r(t/)]. Z(l) = - 0.577216. >,oo C w^ X ,, r" a:'"-^^/:^- T(m)T(n) 482. a:'"-'(l -a;)"-irfa;= I -— — — — = ^\ , .-^ • 483. I sin"a;c?a;= ) cos"xdx %/o «/o 484. 1-3-5 •• -(71-1) IT .^ . . , = o A r> — . s -77' if w IS an even integer, J • 4 • D • • ' in) Ii = ■ ^ _ ^j if 71. is an odd integer, = \ Vtt — ^ {-•) for any value of n greater rTl + lJ than-l. J'^'^sinmxc?ic 7r.„ ^^^.„ ^ 7r.„ ^. = -) if m>0; 0, if m = 0: — — > it ??i<0. a; .^ J * For very complete lists of definite integrals, see Bierens de Haan, Tables d'inti- grales (Ufinies, Amsterdam, 1858-64, and Nouv. Tables d'intigrales difinies, Leyden, 1867. MISCELLANEOUS DEFINITE INTEGRALS. 63 ,^^ /^* sin x» COS ma;c?a; ^ .- ^ ^ ^ ^ 485. I = 0, if w<- 1 or m>l; »/0 X — > ifw = — 1 or m = l: — > if — l<7n. r" , » , 1-3-5- • •(2?i-l) Pr Jo 2" + ia» ^a e ^dx = ^ ^^ - a>0. 496. I e-"^ VxcZa; = 77- \/- • «/o 2 n ^ 7i 497. f"^c^a; = V-- a>0, Jo Vx ^ ^i 64 MISCELLANEOUS DEFINITE INTEGRALS. dx IT 498 •f 499 r*__^^^_^ sinli (ma;) • sinh (nx) dx = \ cosh (ma;) • cosh (nx) dx = 0, if m is different from n. cosh^ (mx) dx = — \ sinh^ (mx) dx = 502. I sinh (mx) dx = 0. cosh (mx) dx = 0. sinh (mx) cosh (wx) c?a; = 0. sinh (mx) cosh (mx) c?a; = 0. 506. I e~ "^ cos mx dx = -5— ; ? if a >■ 0. a^ + m^ a-* + m^ J'' m e-"^ sin mxdx = -r-; ;» if a > 0. a-* + m"^ 6-'^'=^ cos hxdx = -^ a>0. Za ••X'l^ 509. I ^:^^^c;a; = -^- x o 510. rM£^=_^. 511, r'J<^,&=-^^ »/o 1 — a;'' 8 MISCELLANEOUS DEFINITE INTEGRALS. 65 1 + x\ dx ir^ 512. f\og(l±^).^ = »/o \1 — X/ X 513. r^i^l^ = -?log2. Jo Vl-a;2 2 515. J (loga;)"cZa;=(- l)«-w!. 516.X'(lo.i)'.. = ^. 518. f , '^ = V?. 519. ra:"'log(-)(Za:= T'^''t,2i >^f^ + 1>0, ^ + 1>0. 520. flog ('?^V = T- Jo ^ \e^ - ly 4 jr IT log sin xdx = \ log cos a;c?aj = — — • log 2. .0 c/o 2 X ■ log sin xdx = — — log 2. 523. I log (a±b cos x)dx = tt log ( ;r ] • « ^ 6. 66 ELLIPTIC INTEGRALS. VII. ELLIPTIC INTEGRALS. d6 r^ dz where k^ , k)=f Vl - k^ sin^ e ■ dO. y (1 + ri sin^ ^) Vl - k' sin^ ^ <^ = am u, sin <^ = cc = sn m, cos = Vl — aj^ = en m, tan (f> = tnu, A = Vl - A;2 sin^ <^ b Vl - kV = dn «, A;'^ = 1 - A^l t< = am~^(<^, ^)=sn~^(a;, A;)=cn~^(Vl — x% k) = dn-i(Vl-;k2^2, A;). JS:=i^(i7r, ^), K'=F(i7r, k'), E=E{^'ir, k), E'-E^Tr, k'). T* 7 2 A;* sin 2 (0 It ko = q — — 7 and tan <^ = 1 + k k + cos 2 , k), 3 5 5*3 where VI4 = i sin^ «^ -f- — , ^ = ^ sin* <^ + — sin^ <^ + ^^^, A = isin«<^ + g^sin*<^ + g^sin^- E -\- Bva cos, A ~k' 1 = E{4>, k). J , = sn-i(aj, k) V(l - a;2) (1 - k'^x') 528. . , V(l - x") (1 - k'^x') = F{sh\-^x,k). QtY 06>a;>0. 537. r , ^^ ^lsn-Y^,^Y ^>a>^. 538. . ^x V(a2 4- x") (b^ - x") cn-if?, ^=i=Y b>x>0. V^M^' V^ V 539. J^ ^^ J -a ELLIPTIC INTEGRALS. 69 dx V(a* - a;2) {x' - b^) 1 ,/ \a^ - x^ la'' - b^\ 541. r ^^ '" V(x2 + ay(^M^') 542. X' ''^ V(a; - a) (x - y8) (a; - y) . y Va-y K^^-y ^a-y V(a; — a) (cc — /3) (a- — y) 2 Va^ y (V!^;- V!5^) '^ V(a — x)(x — /3) (a; — y) 545, Va — y \^«-^ c?a; V(a — a;) (a; — )S) (x — y) 2 ^..-i/'./^Lziy i^^^. J^-/3^ Va-y V^«-/5^-y ^«-y. c?a; V(a^^^) (/? — a;) (a; — y) 2 Vo-" a > a; > 6. 1^ ,/a; /a^ - b'\ a > /3 > y. ^sn-Ur^, V^^^V a.>a. sn-M \ ^' \r^ ^ • x>a. ' --('^/^»■ Vfi|)- <'>->^- sn-i(-V ^ ^' -V ^ )• a>a->^. Va — y 546. f^ \ iS — y a — a; ^a — yj 70 ELLIPTIC INTEGRALS. '^ dx 5«X y V(a — x){fi — x) (x — y) 2 sn" 548 Va — y ■(^§i^. V!5^)- ^>^>y ^ V(a — cc) (/3 — cc) (y — a;) Va 549. f 7 (V^.- >/^) sn-^UL:^, X^^-^ • v>a;. V(a-x)(^-a^)(y-a;) 2 , / /a — y Va — V \ ^a — a; sn-M \ ^' \ ^ • y>x 550. X' a > y8 > y > 8. dx V(x - a) (cc - /3) (a; - y) {x - 8) 2 , / 113-8 X -a l/3-y a-8\ V(a-y)08-8) a;>- a, 531. f"- "^^ V(a. — a;) (a; — /3) (a:; — y) (x — 8) \^a — j8x — 8 ^a — ^ y-8^ 552 V(a - y) (/3 - 8) \^a--^x-8 ^a-y/3-8j a>x> fS. ■X ^ V(a - a;) (a; - ^) (a; - y) (x - 8) \^a— ^x— y ^ a 2 _g^-ir J«zi^y ^-^. J«^i^ 1^ V(a - y) ()8 - 8) \^a-^a;-y >'a-y^-8y a > a; > /3. 553 X ELLIPTIC INTEGRALS. 71 ^ dx ^ -si {a - x) (/3 - X) {x -i){x- 8) V^/3-y a-x' ^a-y ^-l) 2 sn" V(a - y) (/? - 8) ^ > CC > y. 554. J''^ "^^ ^ V(a - CI-) (^ - a;) (cc - y) {x - 8) 2 sn" V^)8-y a;- 8 ^/a ;8-y o^^ ■V(a -y)()8-8) V^^-y^-S ^a-yj8-8^ i8 > a; > y. 555. f^ "^^ V(a -x){(3- x) (y - a;) (x - 8) .2 s,,-irj^^ y^^. J^^:il y-8 Va V(a -y)(/3-8) V^y-S^-a; >'a-y^-8y y > a > 8. 556. J^ ^^-^ 's V(a - a;) ((8 - x) (y - x) (a; - 8) \ *y — 6 a —X ^a 1 .^-if.l^nj^^^^^. J^l^lI y-g V(a-y)(^-8) \^y-8a-x ^a-y(i-8j y>x>8. X^ (Ir V(a - x){fi- x) (y - a;) (8 - a;) 2 sn" i/^J^-y.g-^ /)8-y a-8\ V^a-8 y-a;' ^/a - y )8 - 8/ V(a-y)(/3-8) 8>a;. 558. i sna;c?x = - cosh~M -yp ]• 559. I en a; c?a; = - cos~^ (dn a;). 72 ELLIPTIC INTEGRALS. 560. I dn xdx = sin~^ (sn x) = am x. 561. r-^^^iogf" 'Y^ 1- J s,nx [_cn X 4- dn a; J ^nn r (^^ It F^' SH 0? + dll X~\ 562. I = - log • J cnx k' \_ en ic J _„„ /* c?aj _1 J FA;' sn X — en a?"] ' J dn X k' \_k' sn ic + en xj sn^xdx = Ti[a^ — -E^(ania;, A;)], 565. j en^ajc^cc = — [^(ama;, A;) — k'^x"]. 566. I dn^a;c?a; = ^(am x, k). 567. (m + 1) fsn'^ajc^x = (m + 2) (1 + A;^) fsn'^+^a^cfaj' — (m + S)k^ I sn^ + ^a^c^a; + sn'" + 'a; en a; dna;, 568. {m + l)k'^Ccn"'xdx = (m + 2) (1 - 2 k^)Ccn"'+^xdx + (m + 3)A;M cn'"+ *a;c?a; — cn'"+^a; snxdnx, 569. (m + 1)^'2 rdn"»a;c?a; = (m + 2) (2 - k^)fdn'" + ''xdx — (m + 3) j dn"*+*a;c?x + A;^dn"*+^a;snaena;, Since sin2 ^ = _ _ _ (i _ A;2 • sm2 ^), J ^2 sin2 6id& \ r^ dd 1 /^2 ^ VI -A;3sin2(? ^Vo Vl _ A;2sin2(? *Vo TRIGONOMETKIC FUNCTIONS. 73 Vm. AUXILIARY FORMULAS. A. — Trigonometric Functions. 570. tan a • ctn a = sin a • esc a = cos a ■ sec a = 1. tan a = sin a -j- cos a, sec^ a = 1 + tan^ a, csc^a = 1+ ctn^a, sin^ a + cos^ a = 1. 571. sin a = V 1 — cos^ a = 2 sin ^ a ■ cos ^ a = cos a • tan a fe=Vi 1 tana /I — cos 2a 2tan4-a Vl + ctn^a Vl+tan^a ^ 2 l + tan^^a =v gpp- ^ "1 = ctn ^a • (1 — cos a) = tan -^ a • (1 + cos a). sec^a 572. cos a = Vl — sin^ a = = = = Vl + tan^ a Vl + ctn^ a -4 1 + cos 2 a 1 - tan^ ^a „ , . „ , ~?^ = -. , ^ — rf — = cos^ia — sin^ia 2 1 + tan^ ^ a ^ ^ = 1—2 sin^ |- a = 2 cos^ ^ a — 1 = sin a • ctn a sin 2 a _ /csc^ ^ ~ 1 _ ^^^ i ^ — ^^'^ "2" ^ a * csc^ a ctn 4- a + tan 4- a -„n ^ sin a Vl — cos^ a sin 2 a o7o. tan a = Vl — sin^a cos a 1 + cos 2 a 1 — cos 2 a _ /l — cos 2 a _ 2 tan ^ a sin 2 a ' 1 + cos 2 a 1 — tan^ ^ a sec a _ 2 _ 2 ctn |^ a esc a ctn \ a — tan ^ a ctn^ ^ a — 1 74 574. TEIGONOMETEIC FUNCTIONS. 1 — — a. 90° ± a. 180° ± a. 270° ± a. 360° ± a. sin — sin a + cos a T sin a — cos a ± sin a cos + COS a T sin a — cos a ± sin a + COS a tan — tana T etna ± tana T etna ± tan a ctn — ctn a T tana ± ctn a T tana ± etna sec + sec a T CSC a — sec a ± CSC a + sec a CSC — CSC a + sec a T CSC a — sec a ± CSC a 575. 0°. 30°. 45°. 60°. 90°. 120°. 135°. 150°. 180°. sin i i^ iVs 1 iV3 iV2 i COS 1 iVi iV2 i -i -iV2 -IV3 -1 tan 1 V3 1 V3 00 -V3 — 1 1 V3 ctn CO V3 1 1 V3 1 V3 —1 -V3 00 sec 1 2 V3 V2 2 CO -2 -V2 2 V3 -1 esc CO 2 ^y^ 2 V3 1 2 V3 ^ 2 00 576. sin ^ a = V^(l — cos a). 577. cos ^ a = V^(l + cos a). 578. tan ^ a = ^— cos a cos a sm a + cos a sin a 1 + cos a 579. sin 2a = 2 sin a cos a. 580. sin 3 a = 3 sin a — 4 sin^ a. 581. sin 4 a = 8 cos^ a • sin a — 4 cos a sin a. TRIGONOMETRIC FUNCTIONS. 75 582. sin 5 a = 5 sin a — 20 sin^ a + 16 sin* a. 583. sin 6 a = 32 cos* a sin a — 32 cos^ a sin a + 6 cos a sin a. 584. cos 2a = cos^ a — sin^ a = 1 — 2 sin^ a = 2 cos^ a — 1. 585. cos 3 a = 4 cos^ a — 3 cos a. 586. cos 4 a = 8 cos* a — 8 cos^ a + 1. 587. cos 5 a = 16 cos* a — 20 cos^ a + 5 cos a. 588. cos 6 a = 32 cos^ a — 48 cos* a + 18 cos^ a — 1. 2 tan a 589. tan2a = 590. ctn2a = 1 — tan^ a ctn2 a - 1 2 ctn a 591. sin (a±ft) = sin a • cos /? ± cos a • sin )8. 592. cos (a± fi) = cos a • cos yS =f sin a • sin ft. ..«« , ^N tan a ± tan 5 593. ta.n(a±ft) = - — ^• ^ '^^ 1 rp tan a ■ tan /3 ..«.. , ^x ctn a • ctn )S rp 1 594. ctn(a±/5) = — ^ ^ Z, ' ^ ^^ ctn a ± ctn /3 595. sin a zt sin )8 = 2 sin ^ (a =b /3) • cos i(a + iS). 596. cos a + cos /8 = 2 cos ^(a + /8) • cos |(a - /3). 597. cos a - cos /8 = - 2 sin |(a + /3) • sin \{a- ft). sin ("a d= S) 598. tana±tan/3 = ^ ^• cos a • cos ft -~^ « sin (a ± ft) 599. ctn a ± ctn ;3 = ± ^-^^ — r^- '^ sin a- sin /3 76 TRIGONOMETRIC FUNCTIONS. _„_ sin a ± sin yS , , , _, 600. ■ ^ = tan i (a i S). cos a + cos p ^ ^ sin a dz sin /3 601. ^ = — ctn i (a + S). cos a — cos /8 i \ » / „-_ sin g + sin ^ _ tan -|- (a + j8) ^ sin a — sin /3 tan ^ (a — j3) 603. sin2 a - sin^ ^ = sin (a -\- (3) ■ sin (a - (3). 604. cos' a - cos' ^ = - sin (a + /3) • sin (a - /3)c 605. cos' a — sin' /3 = cos (« + /3) • cos (a — /3). 606. sin xi = ^ i(e^ — e~^) — i sinh x. 607. cos xi = ^{e^ + e~^) = cosh x. 608. tan xi = -^^ — ; — i tanh x. 6^ + e~^ 609. e^+ 2'' = e^ cos ?/ + ie^ sin ?/. 610. a^ + 2'' = a=^ cos (2/ • log a) + ta'^ sin {y • log a). 611. (cos zti- sin ^)" = cos nd ±i- sin n^. 612. sin a; = — i i(e" - e"^). ^ 613. cos a; = I- (e^" + e""). 614. tan x = — i -z—. • e-^ + 1 615. sin (x ± yi) = sin x cos yi ± cos x sin yi = sin X cosh y ± * cos x sinh y. 616. cos {x ± yi) = cos X cos 3/1 q= sin x sin yt = cos X cosh y 4= » sin x sinh y. TRIGONOMETRY. 77 617. In any plane triangle, a b c sin A sin B sin C 618. a'^ = h''^-c''-2bc(toQA. „-_ a-\-b _ sin ^ + sin B _ tan ^ (A -\- B) _ ctn ^ C ' a — b sin .4 — sin B tan ^ (.4 — i?) tan ^ (.4 — 5) 620. sin^^=^^^ — ^^ — ^, where 2s = a + 6 + c. 621. cosM=^pZ«). 622. tani^^>~/^^^;^> ^ >' s (s — a) 623. Area = ^ ic sin ^ = Vs (s — a) (s — 6) (s — c). In any spherical triangle, -„. sin A sin B sin C 624. -^ = —. — - = — sm a sin b sm c 625. cos a = cos 6 cos c + sin 5 sin c cos A. 626. — cos ^ = cos B cos C — sin B sin C cos a. 627. sin a ctn & = sin C ctn B + cos a cos C. «r.o , i /sin s • sin (s — a) 628. cosi-^=-V • r, ■ -• ^ ^ sin b ■ sm c ««« . , A /sin (s — 6) • sin (s — c) 629. sinAJ = -V — '^ — ^I — ^^ ^ ^ sm b ■ sm c ««o. , . /sin (s — ^) • sin (s — c) 630. ta.ulA = \ ^ i , . ^ ' ' ^ sm s • sm (s — a) 78 TrwIGONOMETRY. oQi 1 ^ j cos (S -B)- COS (S-C) 631. GOS^a=\ ^ : j- r-^-; ^- » sin f» . sm f ; sin B • sin C „r,n ■ 1 — COS S-cos(S — A) 632. smia = V ■■ — „ • ^ ^• ■^ \ sin « sm n CQQ 4- 1 * / — COSTS' -cos (.S — ^) 633. tania = V eos(^-^).cos(^'-C) - 2s = a-{-b-\-c. 2S=A + B + C: 634. cos \{A-\-B) = ^^—^ '- sm \ C. ■ coK 1/^ x)\ sin-|-(a + &) . 635. cos ^ (J — ^) = T-^^-r ^ sin ^ C. sin -^^ c 636. siniM + 5) = 2^^^^^P^cosia ^ -^ cos ^ c 637. sin \{A — B) = V^ cos \ C. 638. tani(^ + B) = 55ll|^etaia 639. tan«^-^) = ?|±i|^ctnia 640. tan |(a + ^') = ^"^ t ^^ 7 f x tan i c. ^ ^ ^ cos |(^ + 5) ^ 641. tan ^(^ - b) = ^!" t /^ 7 ^x tan ^c. g^2 cos ^(a + b) ^ ctn|C _ cos ^(a — b) tan -^ (^ f ^) ANTITRIGONOMETRIC FUNCTIONS. 79 In interpreting equations which involve logarithmic and anti-trigonometric functions, it is necessary to remember that these functions are multiple valued. To save space the formulas on this page and the next are printed in con- tracted form. 643. sin-^a; = cos~^ Vl — x^ = tan~^ X — sec~^ = CSC X 1 - = 2 sin-i [^ - i Vl - a;2]i = i sin-i (2 X Vr=T2) ^ 2 tan-» \^ — ^ | = -^tan-M ^--^^-J=i7r-cos ^a; = 4" TT — sin~^ Vl — x^ = — sin~ ^ (— a;) = ctn-i^^^^!— ^^ = (2w-f^)7r-nog(a;+Va;2-l) = i TT + ^ sin-\2 a;2 - 1) = ^ cos-'(l - 2 x^). VT^-^ 1 644. cos~^x = sin'^ Vl — x^ = tan~^ = sec""^ - X X = -^TT — sin~^a; = 2 cos" = |-cos-i(2a;2-l) ■v^ = csc~^ — ■ = TT — COS" V— aj) Vl - a;2 ^ ^ = ctn-i ~ Vl x* i log (a; -f Va;^ — 1) = tt — t log ( V^^ — 1 — a;). 80 ANTITRIGONOMETRIC FUNCTIONS. 645. tan~^cc = siri"^ — , = cos~^ , = h sin-^ -— — ; X = -J-TT — tan~^ - x- L 2 Vl + x2 J L 2 ViT^ J = ^ Un- ,-1^, = 2 tan- [^ll+l^'] 1 — X^ |_ X J = — tan~^ c + tan~^ :; = — tan~^ (— x) [_1 — ex J ^ ' = i * log TT^ — ; = i * log -. 646. sin~^ a; ± sin~^ y — sin"^ [cc Vl — if ±y Vl — a;*]. 647. cos~^ X zb cos~^ y = cos~^ [xy if V(l — x^) (1 — ?/^)]. 648. tan-i a; ± tan-^ v = tan-^ ^^J- i . 648. sin~^ a; ± cos~^ y = sin~ ^ [a:/y zt V(l — x^) (1 — ?/*)] = COS" ^ [?/ Vl — x^ If a: Vl — y^]. 650. tan- ^ x ± ctn-^ y - tau- ^ f^^^l = ctii- ' [^^1 651. log (x + yi) = i log (x^ + y^) + i tan"" ' (jj /x). HYPERBOLIC B'UNCTIONS. 81 B. — Hyperbolic Functions. 652. sinh a; = ^ (e^ — e^^) = — sinh (— x) = — i sin (ix) = (csch x)~^ — 2 tanh ^x -7-(l — tanh^ ^^)- 653. cosh X = ^ (e^ + e~^) = cosh (— a;) = cos (ix) — (sech ic)~^ = (1 + tanh^ ^x)^(l- tanh^ ^ x). 654. tanh a; = (e^ - e"^) -^ (e^ + e"^) = - tanh (- x) = — i tan (tx) = (ctuh x)~^ — sinh a; -^ cosh a;. 655. cosh xi = cos a;. t*^ z^ X ^ ^»*^V 656. sinh a;* = ^ sin a;. r57 -^^iX ^ eA-A/^^X 657. cosh^a; — sinh^a; = 1. 658. 1 — tanh^x = sech^a?. 659. 1 — ctnh^a; = — csch'^a;. 660. sinh (x ±y) = sinh x ■ cosh y ± cosh a; • sinh y. 661. cosh (x ±y) = cosh a; • cosh ?/ ± sinh a; • sinh y. 662. tanh (a; zt ?/) = (tanh x ± tanh ?/) ^ (1 rb tanh x • tanh ?/). 663. sinh (2 a;) = 2 sinh a; cosh x. 664. cosh (2 a;) = cosh2a;-|-sinh^a; = 2 cosh^a: — l = l+2sinh^a;. 665. tanh (2 a;) = 2 tanh a; ^ (1 + tanh^a;); 666. sinh (i a;) = V^ (cosh a; - 1). 667. cosh (J- x) = Vi (cosh a; + 1). 668. tanh (i a;) = (cosh x — 1) -i- sinh x = sinh a; -f- (cosh a; + 1). 669. sinh x -\- sinh y = 2 sinh -^ (a; + ?/) • cosh ^ (x — y). 670. sinh x — sinh y = 2 cosh ^ (x + 2/) • sinh ^(x — y). 82 HYPERBOLIC FUNCTIONS. 671. cosh X + cosh y = 2 cosh ^ {x + y)- cosh ^(x — y). 672. cosh X — cosh y = 2, sinh ^ {x + y) ■ sinh ^{x — y) 673. d sinh a; = cosh x ■ dx. 674. c? cosh X = sinh a; • dx. 675. c^ tanh x = sech^ a; • dx. 676. 0? ctnh a; = — csch'^ x • c?a;. 677. d sech a; = — sech a; • tanh x • c?a;. 678. d csch a; = — csch x ■ ctnh a; • dx. dx 679. sinh-'a; = log (a; +Va;2 + 1) = J" Vx^ + l = cosh~^ Va;^ + 1. 680. cosh- 1 X = log (a; + Vx^ - 1) = J Va;2-1 = sinh-^ Vx^ — 1. /rfa ^-3 x^ /rfx dx 683. sech- ^x = log (^^ + yj^, _ 1^ = - J 684. csch'^x = log f- + yj^ + 1 ) = "X X Vl — x^ dx 685. c? sinh-^x = 686. c? cosh~^x = xVx^ + l <^x Vl+X^ dx VV 687. dta,nh-^x = HYPERBOLIC FUNCTIONS. 83 dx 688. dGtnh-^x = - 689. dseGh-^x = - 690. dcsGh-^x = - 1-x^ dx x^-1 dx ic Vl — x^ dx X V^+i If m is an integer, 691. sinh (mTri) = 0. 692. cosh {miri) = cos mTT = (— 1)*". 693. tanh (mTri) = 0, 694. sinh (x + mTri) = (—!)'» sinh x. 695. cosh (x + mTri) = (— 1)™ cosh (x). 696. sinh (2 m + 1) ^ Tri = ^ sin (2 m + 1) ^ tt = ± i 697. cosh (2 m + 1) i T^^ = 0. -rr ±X ] = i cosh CC. 799. cosh (— ±a;j=±:i sinh x. 700. sinh w = tan gd u. 701. cosh u = sec gd m. 702. tanh u = sin gd u. 703. tanh ^ m = tan i gd w. 704. u = log tan (i tt + ^ gd u). Tsec a; r/rr = r/d' ' a:. 84 ELLIPTIC FUNCTIONS. Elliptic Functions. dz r* dO V(l - s;2) (1 - A"2^=^ Jo Vl-A-2siii2^ where A- Jo V(l - z') (1 - /tV) 714. sn^ u — sn^ y = cn^ v — cn^ ii. „.. ^ ^ sn ?6 ■ en V • dn v =h en m • sn y • dn w 715. sn ill ±v) — —. :-, 5 ^ ^ 1 — k^ sn- u ■ sn'' v „, _ , ^ en u • en y zp sn ?( • sn v ■ dn ?? • dn v 716. en (u ±v) = 7^ — 5 i ^ ^ 1 — A;'' sn- tc • sn'' y = en it • en V rp sn u • sn y • dn (u ± v). „,„ , . . dn «-dn y =p />;'^ sn ?i • sn y? -en 7/ • en V 717. dn {u ±v) = ::; —„ 7, s ^ ^ 1 — k^ sn^ u ■ sn'' v = dn ?< • dn v zp /*;- sn ?< • sn ?; • en (w ± v). „,„ , , tn ?f -dn f ± tn w-dn it 718. tn Cu±v) = - 7 , ^ ^ ^ 1 ^tu u -tn V • dn u ■ an v «,« , , s . V 2 sn it-en vdn V 719. sn (w + v) -\- sn (?t — v)= r; — 5 5— * ^ "^ ^ ^ 1 — k^ sn'' « • sn'' v / N 2 sn ?' • en u ■ dn ?t 720. sn (71 + y;) — sn (u — v) = r^ — 7. r~ ' ^ ^ ^ -^ 1 — /v'' sn'' ?t • sn'' V . . 2 en it • en ?' cn(?t + w) + cn(it— y)= :j 1-5 3 ^• ^ ^ ^ ^ 1 — /r sn- u ■ sn'' v „„ _ ^ . , . 2 sn ti, ■ sn ?> • dn u ■ dn i; Tad. en (it + iM — en ni ~ v)= 77 — 7, ^ ^ ^ ^ ^ 1 — A:'' sn'' it • sn'' v _,-„ ■, / ^ 1 / N 2 dn ?t • dn i> 7^ J. dn (u -\- v)+ dn (it — v)= 7-; ; ^ • 86 ELLIPTIC FUNCTIONS. _^ . , , , , , , 2k^ smi-snv -cnu-cnv 724. dn (ic + w) — dn (71 — v)= .. _ , .^ sn^ u ■ sn^ V sn^ u — sn'^ V 725. sn(t. + ^).sn(^^-^;) = ^_^,^^,^^_^^, -y 1 — A:^ sn^ w • sn* v 1 Fdn^ V -j- k'^ sn^ ?* • cn^ v ~| A;^ |_ 1 — A;^ sn^ u • sn^ v J 726. en (u ■}- v) ■ en (w — v) = rr — i ^ en^ w + en^ v 1 _ -1 ^^^ ''^ ' ^^^ ^' + ^'^^ '^ ' ^^^^ ^ 1 — A;^ sn^ tc-su^v 1 — A;'* sn^ w • sn'' v 727. dn (u + v)- dn (m — v) _ 1 — A;^ sn^ ?i — A;'^ sn^ v -\- k^ sn^ ii ■ sn^ v 1 — k^ sn^ u ■ sn^ t; dn^ n + dn^ t? -1. 1 -A:^ sn^ tt • sn^ V sn?< • dn w • en V ± sn ?' • dn V • en u 1 -A;^ sn^ u • sn^ V en?*- dnw- cnz?- dn vqzk'^ snu • snv 1 — A;^ sn^ u • sn^ v „_ _ , ^ , . sn M • en w • dn v ± sn ?? ■ en v • dn w 728. sn (u ± v) on {u rp v) 729. sn (m db v) dn (w qr v) 730. en(^±z;)dn(^zF^) = -^^ ^ j^ — sn^'t^^sn^.;^ -n- .-^ , . x-ir^ , x-i (en V ± snw-dn w)^ 732. sn (wt, A;) = i sn (w, A;') /en (m, A:'). 733. en (wt, A;) = 1 /en (m, A;'). 734. dn {ui, k) = dn (m, k')/cn(it, k'). bessel's functions. 87 D. — Bessel's Functions. 7oO. t/g (x) — 1 2^ "^ 2^ • 4^ 2^ ■ 4^ • 6^ 736. iq, (a;) = ^0 (a;) • log a; + 2-2 - 2F:4r2 + 22.42.62 7i! A (- i)^-^.» + 2t [a^.= l + i + i + ... + l/k:] [When 11 is an integer 737 T I't\ — "V 5^ -^ [When ?i is an integ • « I . t/„ ,^x; r (?i + 1) ^ 2" ■^'^^'■kl(n + k) ! ^19 may be used.] 738. lK(^)=Jn(x)-logx-^JX ^''~2^^.iy''' 739. According as n is or is not an integer, A ■ J^i^) + B ■ K„(x), or A ■ J^(x) + B ■ J_ ,^(x) is a particular solution of Bessel's equation, fp.^ ^ r?^ / w^ + -■—+ 1--Az = 0. 740. f/Jg (a;) /riic = — J^ (cc) ; 6? [ic" ■ J"„ (x) ] /(7ic = x" ■J^_i (x) , if /i > I ; (^[a;-« ■ J,Xx)ydx = — x.-" ■ J"„+i(a'), if ?i > - 1 741. J,^_,(x) - J„^,(x) = 2 . dj„(x)/dx ; 2 n ■ J^(x) = X ■ J"„_i (x) + x- J„+i(x). When x is large it is sometimes convenient to compute approximate numerical values of J^ (x) by means of the semi- convergent series. .^xrt x / N 2 r„ r (271 + 1)77 1 742. ^„(^)=^— I^P^.cosj^^ ^^_^| (4 n? - 1) (4 n" - 9) ^ . f(2n + l)7r -.}]. (4 rv" - 1) (4 ?i^ - 9) (4 v? - 25) (4 rv" - 49) ^ 4 ! (8 .x)* 744 n - ^^'-^ _ (4^^-l)(4r.'^-9)(4n^-25) '"~ 8x 3! (8^)^ "^ 88 SERIES. E. — Series and Products. [The expression in brackets attached to an infinite series shows values of the variable which lie within the interval of convergence. If a series is convergent for all finite values of x, the expression [x^ < co] is used.] 745. (a + by = a" + na^'-'^b , n(n — V) „,„ , , n\ a^~^b'' , ^,0^0-, + 2! "''+•• • + (,.- A)! ,!.! +• -•■[*<"■] 746. (2n-i ^nd Bz,, are sometimes rep- resented by B„ and £J„, respectively, 7? 9 '2n — 1 (2?i)! (22«-l)7r2« (2n 02n + 2r -I 1 1 1 7fi4 ^ _^ rr Ax^ B,x* B,x' B,x' e^-1 2 2! 4! 6! 8! [a;<2 7r.] 765. log X = (x - 1) - i(x - ly + i(x - ly . [2>a;>0.] [^>i-] SERIES. 91 [a^>0.] 768. log(l-{-x) = x-ix^ + ix'-ix* + -- -. [a;2 rp^n — l + •••+ (2.)!"" +•••• [^^a. = x + - + 2:^.- + 2:^.- + ■ • • = ^ TT — cos~^a;. [a;^< 1.] 779. tan-^cc = x — ^x"^ + ^x^ - \x'' + • • • = ^17 — ctn-^x. [a;2l.] 2 a; 3 a;'' 5ic^ ■- -* „oi 1 ttI 1 1-3 1.3-5 781. sec~^a; = — — 2 a; 6a;' 2.4.5a;^ 2 • 4 • 6 • 7 a;' = ^TT — csc"~^a;. [a;^>l.] 782. log sin a; = log a; - i a;^ - ^\^ x^ - ^^l^ a;« 22"-ii?,„_ia;2» ?i (2^0! [a;2<7r2.] 783. log cos a; = - -^ a;2 - J^ x^ - J3. a;« - ^\\^ x» 027J-1 /92n _ -|\ 7? ^2n ?i (2 /«) ! L * J 784. log tan a; = log x + ^ a;- + /^ *"* + ^§§5 ^^ /92n-l _ -|\ 02« » „2n w(2w)! L -i J •yft*; Bin. 1 . ,^' Sa-" %x^ 2,x^ mx' ^ [x2 < 00.] SERIES. 93 786. e-- = e(^l-- + — --g^+---J- [a:^ 1.] 7QQ 1.-1 .1 1 , 1-3 1-3-5 7yy. cscn x-^ 2.3.x3'^2.4 Sx^ 2.4.6.7 •x'-''^ "'• 800. J|^V-'(Zic =a; - ^ x^ + ^ - -^^ + • • •. [a;2< QO.] 801. n5 /yt9 /j^lo J^'COS (X') 806. /(x + A, y + A;) =/(x, li) + 7i/'^(a; + ^7i, y 4 ^A;) + ^/'^(x + ^A, y + ^A;). 807. SERIES. 96 i (,/2ii^ + 3 « ^£(^ + 3 M' m^ 3!V ^^^ ^ ^Z/-^-^' ^-^-^y +j,M^y...^E^ ■.f(x, y) + QiD^ + ^^.)/(^, y) + I; {hD. + A-i),)y (a;, 2/) ft • ««« . 4 r . TTCc , , . Sttcc , , . Stto; n 808. 1 = - sm h i sin 1- i sm + • • • • [0^"-^-4^^"- + (—--, )sin — + ••• • [0 <»•<('.] 2 TTir . 1 3 irx 5 5V c C^ 4 C^ r TTX 1 812. a;"-^ = r cos ^ cos h ^ cos 32 6- 42 — c _l,cosi^ + ---]- l-c' — c ?ft7ra , sm da. 816. sin^=^ 1 [' W,L 817. cos^ .27r. 1-1 2^ =[-(i')'] [-©)■] [-(.")•] 2^-4^6^ •• • (2m)^(2?>i + 2) TT 12.32.52 ... (^2 m + 1)-' 2 2^ -4' -6" • • • (2my(2m + l) 12.32.52 • • • (2m + ly 819. ^"^^~2"n!l 2(2/^ + 2)^2- a" (2 /i + 2) 2 • 4 (2 ?? + 2) (2 7i + 4) .r 2 • 4 ■ 6 (2 ;i -h 2) (2 w + 4) (2 ft + 6) TT + } 820. DERIVATIVES. 97 F. — Dekivatives. d (au) a du dx dx R91 d{u + v) _du dv dx dx dx 833. -^^; — - = V - — \- u--' dx dx dx fu\ du dv QOQ \'V _ dx dx dx v^ 824 ^/('^) = df(u) ^ du ^ dx du dx d\f{u) _ df (Ihi (lf_ dtl dx^ du dx^ du? dx^ 826. ^ = ?^a;«-^ dx 827. ^ = e-. dx oo« -^*" du . 829. '^^x^{l^\o^,x). d{\o^^x) 1 log„e 830. o?iC x • logg a a; _-, c? sm a; 831. — ; = cos X. dx d cos X 833. — ; = — sm X. dx 98 DERIVATIVES. 833. — % = sec^ic. ax 834. — = — csc^ic. ax 835. — ' = tan x • sec x. ax 836. — ; — = — ctn x ■ CSC x. ax ««-, (I sin~^a; 1 837. ; -- ax (I cos~^a:; dx d tan~^aj dx d etn^^.-B dx d sec~-^a; dx d csc~'rK 838. 839. 840. 841. 842. Vl-x^ -1 Vl-x« 1 1+x' 1 l+x2 1 x Vcc^ — 1 1 -.„ d^rahx . 843. ; = cosh a;. dx _. - (^ cosh a; . , " 844. — ^- — = smh x. ax o._ d tanh x . „ 845. ; = sech^ x. dx 846. ^li^=-csch^... dx DERIVATIVES. 99 847. = — seen x ■ tanh x. ax 848. = — cscli X ■ ctnli x. ax _._ d sinh~^a:; 1 849. - dx -yjx^ + 1 d cosh" ^ a; 1 850. 851. 852. 853. 854. 855. ^^£j{x)dx = f{h) dx -^x'-l d tanh~ ^x _ 1 dx 1 — x^ d ctnh^^a:; _ 1 d sech~^a; — 1 dx X Vl — x^ d csch~^a; — 1 dx X Va;"' + 1 d ^^ db. 856. ^fy(x)dx = -f(a). 857. jjjix, c) dx =£l)J(x,c) . dx +f(b, c) g - f(a, c) ^• r.,ro d«(u-v) d"u , dv d"-'^u 858. — ^^ = V ■ h n-- ; r dx" dx" dx dx"-^ n(n — V) d^v d"-^ic , d'^v ^ 2! dx^ dx^-^ dx'' 859. If f(x, y, z, • • •) is a homogeneous function of the wth order, so that /(Ax, Xy, \z, • • °) ^ X"/(x, y, z, • • •), x-DJ+y.DJ+z.DJ+-'- = 7if. 100 DERIVATIVES. 860. Ux = (y), dy _ 1 A _ _ < ^"(y) 15 861. If sc = f{t) and ?/ = (^ {t), dy^£({) d'y_ f'(t)-"(t)-f"(t).'(t) dx f'(ty dx' [f'(t)Y 862. Uf(x,y) = 0, dy ^ V >^f_ DJ dx dx ' dy D^f dhi _ D,y • ipjY - 2 D^BJ. DJ. DJ+ D,y ■ jDJ) dx' {DJ) 863. If y =f(u, v), u = {x), and v = \p{x), d£ ^^i dM di . (D,uy+ d: „D,«/> • {_D,u ■ D^v + D,jU ■ D.y] In the special case, u^r = Va-'^ + y'^, v = 6 = tan~^ (^//a-), we have D^x = cos = x/ Va;'^ + ?/- ; D^y = sin = y I Va;- + ?/^; Z>0X = — r sin = — y \ D^y = r cos ^ = a; ; D^r = a; / Va;^ + y'^ = cos ^ ; Z>^r = ?// •va^M-l? = sin ^j I^:P=-y I (^' + 2/') = - sin ^/r- ; Dyd=x / (x^ + y^) = C0Bd /r\ and Z>/ F + X*,;- F = Z>,^ F + - -i), V+\- De" V. 866. If F= «^(?<, v)' ''*=/iO^ ^). and v = f^{r, 6), 2>,2 F + ^ • A- F + i ■ A' F = i)„2 F- [(Aw)' + ^^$^~\ r r 102 DERIVATIVES. 867. If V=4>{u, V, iv), u =fi{x, ij, z), V =f^{x, y, z), and w=fs(x, y, z), I)JV= BJ^V. (R,icy + D^'V. (D^vf + DJV- (D^wf B^ V + D; V + D,'V= D^'V- [{D^uy + (!>,«)'+ (A^O'l + i),^ r[(D,^(;)^ + (D^tvy + (D^wy^ + 2 i)„A F- [ J>,tt . X>,^; + D,it ■ J>,v + JD^u ■ A«] + 2 1),A,V- IB.v ■ D^w + D,^v . D,jw + D,v ■ B.w^ + 2 i)„.i)„ V- [Bjv ■ JDji + D,/a ■ D^u + D^^v ■ i),w] + D„F.[i)> + I>/« + A'^*] In particular, if a; = r sin 6 cos <^, y = ?' sin 6 sin ^, z = r cos ^, 30 that M = j-^^ = a;2 + y2 _^ ,-s^ i; - ^ = tan-^ ( Va;^ -f- f/z), w~^~ tan~^ {y /x), we have Z>,.« = cos ^ = s/ Vx^ + ?/ + .v^ ; D^x = sin ^ cos ^ = x / VxM- y^ + ^^ ; DERIVATIVES. 103 r^ sin 6 V.y — sin 6 sin <^ = y I V.^'- + if + z^\ I)qZ = — r sin ^ = — Vcc^ + if ; jD^ = r eos ^ cos <^ = zx / ^j^ + y^ : J)^y z= r cos ^ sin ^ = zi/ / Vo;- + 3/^ ; B^z^O; D^x = — r sin ^ sin ^ = — y ; X)^y = r sin ^ cos <^ = x ^ 7)_r = s/r = cos 6\ D£ = - Vx-2 + //r^ = - sin 0/r j Z)^?- = X /r = sin ^ cos <^ ; J)^0 = xz/7-^ 'Vx^ -{- f = COS cos <;?>/r; ^;«<^= -I//(^^ + f)= -sin<^/r sin^j -^/ = y/-'" = sin ^ sin <^ ; Z)y$ = ^1/ / i^ Va;^ + y"^ — cos ^ sin ^/r; X>j,<^ = X / (x^ + U') = cos ^ /r sin 6 ; (i>,r)^ + (i>,r)^ + (D^rf = 1 ; (DAY + (A,<^)^ + (A<^)' - 1 /'-^ siii'^ ; D^^V + I),fV + B.^V D,{r- ■ B, V) ■sinO + ^^ + A(sin 6 ■ A F) 104 DERIVATIVES. 868. If X =fi{u, v), y =/2(m, v), z =fz{u, v), D^ = _ D..f,-Dj\~DJ,-D,.f, 869. If X =/(«, u), and y = ^(z, u), Byz = BJlip,^. BJ- BJ. i>„<^). 870. If F^ (x, y, z, u, v) = 0, F^ (x, y, z, u, v) — 0, and F^ (x, y, z, u, v) = 0, B^ B,F, B^F, B^F, B^F, B^F, B,F, B,F, B^F, B,Fz B,F, B^F, B^F, B,F, B^F, B,F, B,F, B^F, B,F, 871. If F^ (x, y, z) = 0, and F^ (x, y, z) = 0, cly dz B,F, . B,F^ - B,F, . B,F, BJ\ • B,^F, - B,F^ ■ B,,F, dx ByF^.B,F^-B^F^-B,F,' If each of the quantities y^, y^, yz, • • • 2/„ is a function of the n variables x^i x^, x^, ' • • x^, the determinant, B^^yi B^^j^ B^^y^ • • • B^^y^ B^^j^ B^^j^ ■ ' • B^^y„ B^,^y„ D^ij,^ ■ • • B^j„ 873. DERIVATIVES. 105 is called the functional determinant or the Jacobian of the ^s with respect to the a;'s and is denoted by the expression, g,jr2 g(yi> y2> 2/3, •• • Vn) . g (^^^1, ^2, X^, • ' ' X„) ^ ^ d {Xi, a-2, Xs, ' • ■ Xn) d (3/1, y2, Vz, • • • Vn) ~ d (Vl, ?/2, Vs, ■ ■ • Vn) . g (^1, ^2, ^3, • • • ^„) g (^Ij ^2) ^3j ■ ■ ' ^n) g (^1? "^25 X^, • • • X^ ^ d (]/l, 3/2, y?., ■ • • Vn) (Xi, X^f Xg, • • • X^) If the ?/'s are not all independent but are connected by an equation of the form (f> (jji, ?/2, ys, ' ' ■ y„) = 0, the Jacobian of the ?/'s with respect to the cc's vanishes identically ; and, conversely, if the Jacobian vanishes identically, the ?/'s are connected by one or more relations of the above-mentioned form. The directional derivative of any scalar point function, u, at any point, P, in any fixed direction PQ\ is the limit, as PQ approaches zero, of the ratio of «q — Up to PQ, where ^ is a point on the straight line PQ' between P and ^'. The gradie7it, h^, of the function ti at P is the directional deriva- tive of M at P taken in the direction in which w increases most rapidly. This direction is normal to the surface of constant m which passes through P. 874. K' = {D,u)' + {D^n)' + {D^uf. The directional derivative of any scalar point function at any point in any given direction is evidently equal to the product of the gradient and the cosine of the angle between the given direction and that in which the function increases most rapidly. 106 MISCELLANEOUS FORMULAS. The normal derivative, at any point, P, of a point function u, taken with respect to another point function v, is the limit as P(^ approaches zero of the ratio of «q — tip to Vq — Vp, where ^ is a point so chosen on the normal at P of the surface of constant v which passes through P, that Vq — Vp is positive. If (u, v) denotes the angle between the directions in which u and v increase most rapidly, the normal derivatives of u with respect to v, and of v with respect to u may be written h^^ cos (?<, v) -7- 7ij,, and A„ • cos (w, v) -v- ^„ respectively. If A„ = h^, these derivatives are equal. Gr. — Miscellaneous Formulas. If s is a plane analytic closed curve, n its normal drawn from within outwards, and dA the element of plane area within s, the usual integral transformation formulas for the functions u and v which, with their derivatives of the first order, are continuous everywhere within s, may be written — 875. I M • cos (x, n) ds = \ i D^u ■ dA. 876. j [w • cos (x, 7i) + V ■ cos (?/, w)] ds=^ C C(D^ti + DyV) dA. Sn. Jb„u .ds= C C (B/u + Dyhi) dA. 878. j'^iD.n . Djj + D,^u ■ D^v) dA = Ju ■ D^v -ds- C Cu (Z)> + D,fv) dA = Cv . D^u .ds-^ifv {B^u + D,fv) dA. 879. f C\ {D^u ■ Djo + D,;ii ■ IJ,/-) dA = Cxu- D„v ■ ds -ff ' U'. (^ • A'O + ^. (^ • ^>M dA MISCELLANEOUS FORMULAS. 107 If ^ and 7} are two analytic functions which define a set of orthogonal curvilinear coordinates, and if (^, n) and {-q, n) represent the angles between n and the directions in which ^ and 7], respectively, increase most rapidly. 880. ^j'h^ ■ \ • A ( r ) ^^ =X" ■ ^°^ ^'^' ^^^ ^^' 881. ^ ^ h^ h^-DA^jdA =fu . cos (i, n) ds. 882. If r is the distance from a fixed point, Q, in the coordi- nate plane, /cos (v 71) cl'S — '-^^^ — —— = 0, TT, or 2 TT, according as Q is without, on, or within s. If a9 is an analytic closed surface, n its normal drawn from within outwards, and dr the element of volume shut in by S, the usual integral transformation formulas may be written — 883. r Cu cos (x, 71) dS= C C C D^u ■ dr. 884. I I [y« cos {x, n) + v cos (y, n) + tv cos (z, n)"] dS = f f fi^x'if' + I>y^ + D,w)dT. 885. r rz)„« • (7s = ( ( r (^/« + ^2,''* + a'«) <^t. 886. j" ^ j" (7),^« . D^v + i>^7f . D^v + i),-a . X>,y) dr = r r« -D^v-dS- C C Cu (Bj'v + Z>/y + n^^) dr = f f^- ^nU dS- C C C r {Dju + Dfa + D.hi) dr. 108 MISCELLANEOUS FOKMULAS. 887. fff>^ {D^u ■ D,v + DyU ■ D^v + D,u ■ D,v) dr - ^ ^ ^ vlB^iXB^u) + D^iXD^u) + D,{XD,u)^dr, If I, rj, I are three analytic functions which define a system of orthogonal curvilinear coordinates, 889. jyj"/'| • ^ • h^ ■ Dr, (j;^) ^^ =ff"' ■ cos (^7, ?0 ^'S^- 890. ////^f • hr, .\-D^ {irrh) '^^ =//" • ^°' (^' '') '^'^- 891. If r is the distance from a fixed point, Q, /cos ^?' ??'^ -j—^ dS = 0, 2 TT, or 4 TT according as Q is without, on, or within S. Stokes's Theorem, — The line integral, taken around a closed curve, of the tangential component of a vector point function, is equal to the surface integral, taken over a surface bounded by the curve, of the normal component of the curl of the vector, the direction of integration around the curve form- ing a right-handed screw rotation about the normals. If X, Y, Z are the components of the vector, 892. C{Xdx + Ydy + Zdz) = C C[(D,,Z - I), Y) cos (x, n) + (I),X ~ D,Z) cos (t/, n) + (B, Y - DyX) cos {z, n)-] dS. MISCELLANEOUS FORMULAS. 109 Equations 893 to 897 give Poisson's Equation in orthogonal Cartesian, in cylindrical, in spherical, and in orthogonal curvi linear coordinates. 893. v2r=Z»/r+X>/F+ A'^=-4 7rp. 1 894. ~I),(r.D,V) + ^-De'r+l),^V=-4.7rp. 895. sme.DJr^-D,.V) + ^^ ^ ^ sm 6 + Dg (sin ei)0V) = - A Trpr'' sin 6. 896. 7i/ ■D^^V+ /i,2 ■D^W+ hi ■ Dl V 397. ;,,./,,. /.,{i),(,^^^.A^')+ A _rL •i>„F y.,A, ^ H. — Certain Constants. 7r = 3.14159 26535 89793 logio7r = 0.49714 98726 94134 - = 0.31830 98861 83791 TT TT^ = 9.86960 44010 89359 V^ = 1.77245 38509 05516 logio 2 = 0.30102 99956 63981 e = 2.71828 18284 59045 logio e = 0.43429 44819 03252 log, 10 = 2.30258 50929 94046 log^2 = 0.69314 71805 59945 togiologio e = 9.63778 43113 00537 log^7r = 1.14472 98858 49400 + ^dj±-^)dt = • cos (wt + ). /I 1 sm^(u)t + ). 112 AUXLLIAIIY FORMULAS. 925. / sin (uyf + <^) ■ cos (wf + cl>)dt = — - sm'^(wt + <}>). /I 1 cos2(o)^ -\- )dt = -t + -— sin 2 (u)t + cfi). 927. fsin (.ot -\- X) ■ sin (a>^ + /x) dt = ^^^ — ^ (o)^) sin (^ + A) • cos (wt + A) 2 w ^„^ C . , . , ^ , sin r???f — n?' + A — Atl 930. / sm (»^ ^ -I- A) • sm (ni + yu) —d). 934. / e^-^^"^'(h^ -h^ cl W + c^ ^e .(-b±ci)t -ht = 77 ; [(c ■ sin ct — b- cos ct) =F «' G> ■ sin r?' 4- c • cos cf)! 0^ 4-c^^ r.-ht —= [sin (cf - 8) =F '■ • cos (c;^ - 8)] 935. j e"' ■ cos () (If a^ + o, where tan S = /^/c. ^ [to sin ((of + ^) 4- « • cos ((of + <^)] = — -==:^ cos [to;' + "'■ sin ((of + ) (It ^ai a^+(o 2 [a • sin (wf + ^) — o> • cos ((of + <^ )] 937. /^[e''' • sin ((of + )'fdt ■ sin \_(of + <^ — tan ^(w/a)]. 4 1 to • sin 2 ( o)/' 4- <^) + « ■ cos 2 (ojj' '^ + <^) ] a cf'^ + ft)"^ J 1 cosr2a)?' + 2(^-tan-i(ai/Q:)] " (X Va"^ + U) '1 114 AUXILIARY FORMULAS. 938. fie"' ■ COS (wt + ), T = 2 tt/o) is called the ^>erio(^ or the c//f^e. The mean value for any whole number of periods, reckoned from any epoch, of sin (wt + <^), cos (wt + (j>), or sin (cof + ^) • cos (wf + ), is zero, whereas the mean value for any whole number of half periods, reckoned from any epoch, of either sin'-^ (wt + ) is one half. The mean value of sin (w.') from ^ = to ;* = ^ T, or of cos () for Certain Values of k and ^t, dz ^<*'*>=XV A;2 sin2 z a = sin-^k. 0° 1(P 15° 30° 45° 60° 75° 80° 90° 1° 0.0174 0.0174 0.0174 0.0174 0.0174 0.0174 0.0174 0.0174 0.0174 2° 0.0349 0.0349 0.0349 0.0349 0.0349 0.0349 0.0349 0.0349 0.0349 3° 0.0524 0.0524 0.0524 0.0524 0.0524 0.0524 0.0524 0.0524 0.0524 40 0.0698 0.0698 0.069S 0.0698 0.0698 0.0699 0.0699 0.0699 0.0699 5° 0.0873 0.0873 0.0873 0.0873 0.0873 0.0S74 0.0874 0.0874 0.0874 10° 0.1745 0.1746 0.1746 0.1748 0.1750 0.1752 0.1754 0.1754 0.1754 15° 0.2618 0.2619 0.2620 0.2625 0.2633 0.2641 0.2646 0.2647 0.2648 20° 0.3491 0.3493 0.3495 0.3508 0.3526 0.3545 0.3559 0.3562 0.3564 25° 0.4363 0.4367 0.4372 0.4397 0.4433 0.4470 0.4498 0.4504 0.4509 30° 0.5236 0.5243 0.5251 0.5294 0.5356 0.5422 0.5474 0.5484 0.5493 35° 0.6109 0.6119 0.6132 0.6200 0.6300 0.6408 0.6495 0.6513 0.6528 40° 0.6981 0.6997 0.7016 0.7116 0.7267 0.7436 0.7574 0.7604 0.7629 45° 0.7854 0.7876 0.7902 0.8044 0.8260 0.8512 0.8727 0.8774 0.8814 50° 0.8727 0.8756 0.8792 0.8982 0.9283 0.9646 0.9971 1.0044 1.0107 55° 0.9599 0.9637 0.9683 0.9933 1.0337 1.0848 1.1331 1.1444 1.1542 60° l.(H72 1.0519 1.0577 1.0896 1.1424 1.2125 1.2837 1.3014 1.3170 65° 1.1345 1.1402 1.1474 1.1869 1.2545 1.3489 1.4532 1.4810 1.5064 70° 1.2217 1.2286 1.2373 1.2853 1.3697 1.4944 1.6468 1.6918 1.7354 75° 1.3090 1.3171 1.3273 1.3846 1.4S79 1.6492 1.8714 1.9468 2.0276 80° 1.3963 1.4056 1.4175 1.4846 1.6085 1.8125 2.1339 2.2653 2.4362 85° 1.4835 1.4942 1.5078 1.5850 1.7308 1.9826 2.4366 2.6694 3.1313 86° 1.5010 1.5120 1.5259 1.6052 1.7554 2.0172 2.5013 2.7612 3.3547 87° 1.5184 1.5297 1.5439 1.6253 1.7801 2.0519 2.5670 2.8561 3.6425 88° 1.5359 1.5474 1.5620 1.6454 1.8047 2.0867 2.6336 2.9537 4.0481 89° 1.5533 1.5651 1.5S01 1.6656 1.8294 2.1216 2.7007 3.0530 4.7414 90° 1.5708 1.5828 1.5981 1.6858 1.8541 2.1565 2.7681 3.1534 Inf. TABLES. 123 Values of E(k, 4>) for Certain Values of k and 0. E{k, ^) = I Vl - fc2 sin2 z • dz. : a = sin-i&. 0° 10° 15° 30° 45° 60° 75° 80° 90° P 0.0174 0.0174 0.0174 0.0174 0.0174 0.0174 0.0174 0.0174 0.0174 2» 0.0349 0.0349 0.0349 0.0349 0.0349 0.0349 0.0349 0.0349 0.0349 3» 0.0524 0.0524 0.0524 0.0524 0.0524 0.0523 0.0523 0.0523 0.0523 40 0.0698 0.0698 0.0698 0.0698 0.0698 0.0698 0.0698 0.0698 0.0698 5° 0.0873 0.0873 0.0873 0.0872 0.0872 0.0872 0.0S72 0.0872 0.0872 10° 0.1745 0.1745 0.1745 0.1743 0.1741 0.1739 0.1737 0.1737 0.1736 15° 0.2618 0.2617 0.2616 0.2611 0.2603 0.2596 0.2590 0.2589 0.2588 20° 0.3491 0.3489 0.3486 0.3473 0.3456 0.3438 0.3425 0.3422 0.3420 25° 0.4363 0.4359 0.4354 0.4330 0.4296 0.4261 0.4236 0.4230 0.4226 30° 0.5236 0.5229 0.5221 0.5179 0.5120 0.5061 0.5016 0.5007 0.5000 35° 0.6109 0.6098 0.6085 0.6019 0.5928 0.5833 0.5762 0.5748 0.5736 40° 0.6981 0.6966 0.6947 0.6851 0.6715 0.6575 0.6468 0.6446 0.6428 45° 0.7854 0.7832 0.7806 0.7672 0.7482 0.7282 0.7129 0.7097 0.7071 50° 0.8727 0.8698 0.8663 0.8483 0.8226 0.7954 0.7741 0.7697 0.7660 55° 0.9599 0.9562 0.9517 0.9284 0.8949 0.8588 0.8302 0.8242 0.8192 60° 1.0472 1.0426 1.0368 1.0076 0.9650 0.9184 0.8808 0.8728 0.8660 65° 1.1345 1.12SS 1.1218 1.0858 1.0329 0.9743 0.9258 0.9152 0.9063 70° 1.2217 1.2149 1.2065 1.1632 1.0990 1.0266 0.9652 0.9514 0.9397 75° 1.3090 1.3010 1.2911 1.2399 1.1635 1.0759 0.9992 0.9814 0.9659 80° 1.3963 1.3S70 1.3755 1.3161 1.2266 1.1225 1.0282 1.0054 0.9848 85° 1.4835 1.4729 1.4598 1.3919 1.2889 1.1673 1.0534 1.0244 0.9962 86° 1.5010 1.4901 1.4767 1.4070 1.3012 1.1761 1.0581 1.0277 0.9976 87° 1.5184 1.5073 1.4936 1.4221 1.3136 1.1848 1.0628 1.0309 0.9986 88° 1.5359 1.5245 1.5104 1.4372 1.3260 1.1936 1.0674 1.0340 0.9994 89° 1.5533 1.5417 1.5273 1.4524 1.3383 1.2023 1.0719 1.0371 0.9998 90« 1.5708 1.5589 1.5442 1.4675 1.3506 1.2111 1.0764 1.0401 1 1.0000 124 TABLES. Hyperbolic Functions. 1, e^ e-^ sinhx coshx gdx 0.00 1.0000 1.0000 0.0000 1.0000 o!oooo .01 1.0100 0.9900 .0100 1.0000 0.5729 .02 1.0202 .9802 .0200 1.0002 1.1458 .03 1.0305 .9704 .0300 1.0004 1.7186 .04 1.0408 .9608 .0400 1.0008 2.2912 .05 1.0513 .9512 .0500 1.0013 2.8636 .06 1.0618 .9418 .0600 1.0018 3.4357 .07 1.0725 .9324 .0701 1.0025 4.0074 .08 1.0833 .9231 .0801 1.0032 4.5788 .09 1.0942 .9139 .0901 1.0041 5.1497 .10 1.1052 .9048 .1002 1.0050 5.720 .11 1.1163 .8958 .1102 1.0061 6.290 .12 1.1275 .8869 .1203 1.0072 6.859 .13 1.1388 .8781 .1304 1.0085 7.428 .14 1.1503 .8694 .1405 1.0098 7.995 .15 1.1618 .8607 .1506 1.0113 8.562 .16 1.1735 .8521 .1607 1.0128 9.128 .17 1.1853 .8437 .1708 1.0145 9.694 .18 1.1972 .8353 .1810 1.0162 10.258 .19 1.2092 .8270 .1911 1.0181 10.821 .20 1.2214 .8187 .2013 1.0201 11.384 .21 1.2337 .8106 .2115 1.0221 11.945 .22 1.2461 .8025 .2218 1.0243 12.505 .23 1.2586 .7945 .2320 1.0266 13.063 .24 1.2712 .7866 .2423 1.0289 13.621 .25 1.2840 .7788 .2526 1.0314 14.177 .26 1.2969 .7711 .2629 1.0340 14.732 .27 1.3100 .7634 .2733 1.0367 15.285 .28 1.3231 .7558 .2837 1.0395 15.837 .29 1.3364 .7483 .2941 1.0423 16.388 .30 1.3499 .7408 .3045 1.0453 16.937 .31 1.3634 .7334 .3150 1.0484 17.484 .32 1.3771 .7261 .3255 1.0516 18.030 .33 1.3910 .7189 .3360 1.0549 18.573 .34 1.4049 .7118 .3466 1.0584 19.116 .35 1.4191 .7047 .3572 1.0619 19.656 .36 1.4333 .6977 .3678 1.0655 20.195 .37 1.4477 .6907 .3785 1.0692 20.732 .38 1.4623 .6839 .3892 1.0731 21.267 .39 1.4770 .6771 .4000 1.0770 21.800 .40 1.4918 .6703 .4108 1.0811 22.331 .41 1.5068 .6636 .4216 1.0852 22.859 .42 1.5220 .6570 .4325 1.0895 23.386 .43 1.5373 .6505 .4434 1.0939 23.911 .44 1.5527 .6440 .4543 1.0984 24.434 .45 1.5683 .6376 .4653 1.1030 24.955 .46 1.5841 .6313 .4764 1.1077 25.473 .47 1.6000 .6250 .4875 1.1125 25.989 .48 1.6161 .6188 .4986 1.1174 26.503 .49 1.6323 .6126 .5098 1.1225 27.015 0.50 1.648f 0.6065 0.5211 1.1276 27?524 Note. —This table is talien from Prof. Byerly's Treatise on Fourier's Series, published by Messrs. Oiim& Co. TABLES. 125 Hyperbolic Functions. X e-^ er-x sinhx coshx gdx 0.50 1.6487 0.6065 0.5211 1.1276 27!524 .51 1.6653 .6005 .5324 1.1329 28.031 .52 1.6820 .5945 .5438 1.1383 28.535 .53 1.6989 .5886 .5552 1.1438 29.037 .54 1.7160 .5827 .5666 1.1494 29.537 .55 1.7333 .5770 .5782 1.1551 30.034 .56 1.7507 .5712 .5897 1.1609 30.529 .57 1.7683 .5655 .6014 1.1669 31.021 .58 1.7860 .5599 .6131 1.1730 31.511 .59 1.8040 .5543 .6248 1.1792 31.998 .60 1.8221 .5488 6367 1.1855 32.483 .61 1.8404 .5433 .6485 1.1919 32.965 .62 1.8589 .5379 .6605 1.1984 33.444 .63 1.S776 .5326 .6725 1.2051 33.921 .64 1.8965 .5273 .6846 1.2119 34.395 .65 1.9155 .5220 .6967 1.2188 34.867 .66 1.9348 .5169 .7090 1.2258 35.336 .67 1.9542 .5117 .7213 1.2330 35.802 -68 1.9739 .5066 .7336 1.2402 36.265 -69 1.9937 .5016 .7461 1.2476 36.726 .70 2.0138 .4966 .7586 1.2552 37.183 -71 2.0340 .4916 .7712 1.2628 37.638 -72 2.0544 .4867 .7838 1.2706 38.091 -73 2.0751 .4819 .7966 1.2785 38.540 .74 2.0959 .4771 .8094 1.2865 38.987 .75 2.1170 .4724 .8223 1.2947 39.431 .76 2.1383 .4677 .8353 1.3030 39.872 -77 2.1598 .4630 .8484 1.3114 40.310 .78 2.1815 .4584 .8615 1.3199 40.746 -79 2.2034 .4538 .8748 1.3286 41.179 -80 2.2255 .4493 .8881 1.3374 41.608 -81 2.2479 .4449 .9015 1.3464 42.035 .82 2.2705 .4404 .9150 1.3555 42.460 -83 2.2933 .4360 .9286 1.3647 42.881 -84 2.3164 .4317 .9423 1.3740 43.299 -85 2.3396 .4274 .9561 1.3835 43.715 .86 2.3632 .4232 .9700 1.3932 44.128 .87 2.3869 .4190 .9840 1.4029 44.537 .88 2.4109 .4148 .9981 1.4128 44.944 .89 2.4351 .4107 1.0122 1.4229 45.348 .90 2.4596 .4066 1.0265 1.4331 45.750 .91 2.4843 .4025 1.0409 1.4434 46.148 -92 2.5093 .3985 1.0554 1.4539 46.544 -93 2.5345 .3946 1.0700 1.4645 46.936 -94 2.5600 .3906 1.0847 1.4753 47.326 -95 2.5857 .3867 1.0995 1.4862 47.713 -96 2.6117 .3829 1.1144 1.4973 48.097 .97 2.6379 .3791 1.1294 1.5085 48.478 .98 2.6645 .3753 1.1446 1.5199 48.857 .99 2.6912 .3716 1.1598 1.5314 49.232 1.00 2.7183 0.3679 1.1752 1.5431 49!60S siiih X = tan gd x ; cosh a: = sec gd a; ; tanh x = sin gd x. 126 TABLES. Hyperbolic Functions. X I .si nil X I cosh X X isinhx I cosh X X isinhx I cosh X 1.00 0.0701 0.1884 1.50 0.3282 0.3715 2.00 0.5595 0.5754 1.01 .0758 .1917 1.51 .3330 .3754 2.01 .5640 .5796 1.02 .0815 .1950 1.52 .3378 .3794 2.02 .5685 .5838 1.03 .0871 .1984 1.53 .3426 .3833 2.03 .5730 .5880 1.04 .0927 .2018 1.54 .3474 .3873 2.04 .5775 .5922 1.05 .0982 .2051 1.55 .3521 .3913 2.05 .5820 .5964 1.06 .1038 .2086 1.56 .3569 .3952 2.06 .5865 .6006 1.07 .1093 .2120 1.57 .3616 .3992 2.07 .5910 .6048 1.08 .1148 .2154 1.58 .3663 .4032 2.08 .5955 .6090 1.09 .1203 .2189 1.59 .3711 .4072 2.09 .6000 .6132 1.10 .1257 .2223 1.60 .3758 .4112 2.10 .6044 .6175 1.11 .1311 .2258 1.61 .3805 .4152 2.11 .6089 .6217 1.12 .1365 .2293 1.62 .3852 .4192 2.12 .6134 .6259 1.13 .1419 .2328 1.63 .3899 .4232 2.13 .6178 .6301 1.14 .1472 .2364 1.64 .3946 .4273 2.14 .6223 .6343 1.15 .1525 .2399 1.65 .3992 .4313 2.15 .6268 .6386 1.16 .1578 .2435 1.66 .4039 .4353 2.16 .6312 .6428 1.17 .1631 .2470 1.67 .4086 .4394 2.17 .6357 .6470 1.18 .1684 .2506 1.68 .4132 .4434 2.18 .6401 .6512 1.19 .1736 .2542 1.69 .4179 .4475 2.19 .6446 .6555 1.20 .1788 .2578 1.70 .4225 .4515 2.20 .6491 .6597 1.21 .1840 .2615 1.71 .4272 .4556 2.21 .6535 .6640 1.22 .1892 .2651 1.72 .4318 .4597 2.22 .6580 .6682 1.23 .1944 .2688 1.73 .4364 .4637 2.23 .6624 .6724 1.24 .1995 .2724 1.74 .4411 .4678 2.24 .6668 .6767 1.25 .2046 .2761 1.75 .4457 .4719 2.25 .6713 .6809 1.26 .2098 .2798 1.76 .4503 .4760 2.26 .6757 .6852 1.27 .2148 .2835 1.77 .4549 .4801 2.27 .6802 .6894 1.28 .2199 .2872 1.78 .4595 .4842 2.28 .6846 .6937 1.29 .2250 .2909 1.79 .4641 .4883 2.29 .6890 .6979 1.30 .2300 .2947 1.80 .4687 .4924 2.30 .6935 .7022 1.31 .2351 .2984 LSI .4733 .4965 2.31 .6979 .7064 1.32 .2401 .3022 1.82 .4778 .5006 2.32 .7023 .7107 1.33 .2451 .3059 1.83 .4824 .5048 2.33 .7067 .7150 1.34 .2501 .3097 1.84 .4870 .5089 2.34 .7112 .7192 1.35 .2551 .3135 1.85 .4915 .5130 2.35 .7156 .7235 1.36 .2600 .3173 1.86 .4961 .5172 2.36 .7200 .7278 1.37 .2650 .3211 1.87 .5007 .5213 2.37 .7244 .7320 1.38 .2699 .3249 1.88 .5052 .5254 2.38 .7289 .7363 1.39 .2748 .3288 1.89 .5098 .5296 2.38 .7333 .7406 1.40 .2797 .3326 1.90 .5143 .5337 2.40 .7377 .7448 1.41 .2846 .3365 1.91 .5188 .5379 2.41 .7421 .7491 1.42 .2895 .3403 1.92 .5234 .5421 2.42 .7465 .7534 1.43 .2944 .3442 1.93 .5279 .5462 2.43 .7509 .7577 1.44 .2993 -3481 1.94 .5324 .5504 2.44 .7553 .7619 1.45 .3041 .3520 1.95 .5370 .5545 2.45 .7597 .7662 1.46 .3090 .3559 1.96 .5415 .5687 2.46 .7642 .7705 1.47 .3138 .3598 1.97 .5460 .5629 2.47 .7686 .7748 1.48 .3186 .3637 1.98 .5505 .5671 2.48 .7730 .7791 1.49 .3234 .3676 1.99 .5550 .5713 2.49 .7774 .7833 1.50 0.3282 0.3715 2.00 0.5595 0.5754 2.50 0.7818 0.7876 TABLES. 127 Hyperbolic Functions. X I sinh X I cosh X X isinhx I cosh X X I sinh X I cosh X 2.50 0.7S1S 0.7876 2.1 S 0.8915 0.8951 3.0 1.0008 1.0029 2.51 .7862 .7919 2.76 .8959 .8994 3.1 1.0444 1.0462 2.52 .7906 .7962 2.77 .9003 .9037 3.2 1.0880 1.0894 2.53 .7950 .8005 2.78 .9046 .9080 3.3 1.1316 1.1327 2.54 .7994 .8048 2.79 .9090 .9123 3.4 1.1751 1.1761 2.55 .8038 .8091 2.80 .9134 .9166 3.5 1.2186 1.2194 2.56 .8082 .8134 2.81 .9178 .9209 3.6 1.2621 1.2628 2.57 .8126 .8176 2.82 .9221 .9252 3.7 1.3056 1.3061 2.58 .8169 .8219 2.83 .9265 .9295 3.8 1.3491 1.3495 2.59 .8213 .8262 2.84 .9309 .9338 3.9 1.3925 1.3929 2.60 .8257 .8305 2.85 .9353 .9382 4.0 1.4360 1.4363 2.61 .8301 .8348 2.86 .9396 .9425 4.1 1.4795 1.4797 2.62 .8345 .8391 2.87 .9440 .9468 4.2 1.5229 1.5231 2.63 .8389 .8434 2.88 .9484 .9511 4.3 1.5664 1.5665 2.64 .8433 .8477 2.89 .9527 .9554 4.4 1.6098 1.6099 2.65 .8477 .8520 2 90 .9571 .9597 4.5 1.6532 1.6533 2.66 .8521 .8563 2.91 .9615 .9641 4.6 1.6967 1.6968 2.67 .8564 .8606 2.92 .9658 .9684 4.7 1.740] 1.7402 2.68 .8608 .8649 2.93 .9702 .9727 4.8 1.7836 1.7836 2.69 .8652 .8692 2.94 .9746 .9770 4.9 1.8270 1.8270 2.70 .8696 .8735 2.95 .9789 .9813 5.0 1.8704 1.8705 2.71 .8740 .8778 2.96 .9833 .9856 6.0 2.3047 2.3047 2.72 .8784 .8821 2.97 .9877 .9900 7.0 2.7390 2.7390 2.73 .8827 .8864 2.98 .9920 .9943 8.0 3.1733 3.1733 2.74 .8871 .8907 2.99 .9964 .9986 9.0 3.6076 3.6076 2.75 0.8915 0.8951 3.00 1.0008 1.0029 10.0 4.0419 4.0419 For values of x greater than 7.0, we may write, to five places of deci- mals at least, logio sinh X = logio cosh x = log i e^ = x (0.4342945) + 1.6989700. The Values of e-x^ for Certain Values of x. X e-^ X e-^ X Q-X X Q-X 1/10 0.90484 8/10 0.44933 18/10 0.16530 5 0.00674 1/8 0.88250 9/10 0.40657 2 0.13534 11/2 0.00409 1/6 0.84648 1 0.36788 9/4 0.10540 6 0.00248 2/10 0.81873 11/10 0.33287 5/2 0.08209 13/2 0.00150 1/4 0.77880 9/8 0.32465 8/3 0.06948 7 0.00091 3/10 0.74082 12/10 0.30119 3 0.04979 15/2 0.00055 1/3 0.71653 5/4 0.28650 25/8 0.04394 8 0.00034 4/10 0.67032 13/10 0.27253 16/5 0.04076 9 0.00012 5/10 0.60653 4/3 0.26360 18/5 0.02732 10 0.00004 6/10 0.54881 14/10 0.24660 4 0.01832 11 0.00002 2/3 0.51342 3/2 0.22313 25/6 0.01550 12 0.00001 7/10 0.49659 16/10 0.20190 9/2 0.01111 13 0.00000 128 TABLES. The Common Logarithms of e^ and e-«. « logioe^ logioe-^ 0.00001 0.0000043429 1.9999956571 0.00002 0.0000086859 1.9999913141 0.00003 0.0000130288 1.9999869712 0.00004 0.0000173718 1.9999826282 0.00005 0.0000217147 1.9999782853 0.00006 0.0000260577 1.9999739423 0.00007 0.0000304006 1.9999695994 • 0.00008 0.0000347436 1.9999652564 0.00009 0.0000390865 1.9999609135 0.00010 0.0000434294 1.9999565706 0.00020 0.0000868589 1.9999131411 0.00030 0.0001302883 1.9998697117 0.00040 0.0001737178 1.9998262822 0.00050 0.0002171472 1.9997828528 0.00060 0.0002605767 1.9997394233 0.00070 0.0003040061 1.9996959939 0.00080 0.0003474356 1.9996525644 0.00090 0.0003908650 1.9996091350 0.00100 0.0004342945 1.9995657055 0.00200 0.0008685890 1.9991314110 0.00300 0.0013028834 1.9986971166 0.00400 0.0017371779 1.9982628221 0.00500 0.0021714724 1.9978285276 0.00600 0.0026057669 1.9973942331 0.00700 0.0030400614 1.9969599386 0.00800 0.0034743559 1.9965256441 0.00900 0.0039086503 1.9960913497 0.01000 0.0043429448 1.9956570552 0.02000 0.0086858896 1.9913141 ICH- 0.03000 0.0130288345 1.9869711655 0.04000 0.0173717793 T.9826282207 0.05000 0.0217147241 1.9782852759 0.06000 0.0260576689 1.9739423311 0.07000 0.0304006137 1.9695993863 TABLES. 129 X logio e* logio e-" 0.08000 0.0347435586 1.9652564414 0.09000 0.0390865034 1.9609134966 0.10000 0.0434294482 1.9565705518 0.20000 0.0868588964 1.9131411036 0.30000 0.1302883446 1.8697116554 0.40000 0.1737177928 1.8262822072 0.50000 02171472410 1.7828527590 0.60000 0.2605766891 1.7394233109 0.70000 0.3040061373 1.6959938627 0.80000 0.3474355855 1.6525644145 090000 0.3908650337 1.6091349663 1.00000 0.4342944819 1.5657055181 2.00000 0.8685889638 1.1314110362 3.00000 1.3028834457 2.6971165543 4.00000 1.7371779276 2.2628220724 5.00000 2.1714724095 3.8285275905 6.00000 2.6057668914 3.3942331086 7.00000 3.0400613733 4.9599386267 8.00000 3.4743558552 4.5256441448 9.00000 3.9086503371 4.0913496629 10.00000 4.3429448190 5.6570551810 20.00000 8.6858896381 9.3141103619 30.00000 13.0288344571 14.9711655429 ^ 40.00000 17.3717792761 18.6282207239 50.00000 21.7147240952 22.2852759048 60.00000 26.0576689142 27.9423310858 70.00000 30.4006137332 31.5993862668 80.00000 34.7435585523 35.2564414477 90.00000 39.0865033713 40.9134966287 100.00000 43.4294481903 44.5705518097 200.00000 86.8588963807 87.1411036193 300.00000 130.2883445710 131.7116554290 400.00000 173.7177927613 174.2822072387 500.00000 217.1472409516 218.8527590tS4 Note •- log e^ + V = log e* + log &>. Thus, log giis-iirs - 49.139465 ISa 130 TABLES. Five-Place Natural Logarithms. No. 1 2 3 4 5 6 7 8 9 D. 1.00 0.0 0000 0100 0200 0300 0399 0499 0598 0698 0797 0896 100-99 1.01 0.0 0995 1094 1193 1292 1390 1489 1587 1686 1784 1882 99-98 1.02 0.0 1980 2078 2176 2274 2372 2469 2567 2664 2762 2859 98-97 1.03 0.0 2956 3053 3150 3247 3343 3440 3537 3633 3730 3826 97-96 1.04 0.0 3922 4018 4114 4210 4306 4402 4497 4593 4688 4784 96-95 1.05 0.0 4879 4974 5069 5164 5259 5354 5449 5543 5638 5733 95-94 1.06 0.0 5827 5921 6015 6110 6204 6297 6391 6485 6579 6672 94 1.07 0.0 6766 6859 6953 7046 7139 7232 7325 7418 7511 7603 93 1.08 0.0 7696 7789 7881 7973 8066 8158 8250 8342 8434 8526 93-92 1.09 0.0 8618 8709 8801 8893 8984 9075 9167 9258 9349 9430 92-91 1.10 0.0 9531 9622 9713 9803 9894 9985 *0075 0165 0256 0346 91-90 1.11 0.1 0436 0526 0616 0706 0796 0885 0975 1065 1154 1244 90-89 1.12 0.1 1333 1422 1511 1600 1689 1778 1867 1956 2045 2133 89 1.13 0.1 2222 2310 2399 2487 2575 2663 2751 2839 2927 3015 88 1.14 0.1 3103 3191 3278 3366 3453 3540 3628 3715 3802 3889 88-87 1.15 0.1 3976 4063 4150 4237 4323 4410 4497 4583 4669 4756 87-86 1.16 0.1 4842 4928 5014 5100 5186 5272 5358 5444 5529 5615 86 1.17 0.1 5700 5786 5871 5956 6042 6127 6212 6297 6382 6467 85 1.18 0.16551 6636 6721 6805 6890 6974 7059 7143 7227 7311 85-84 1.19 0.1 7395 7479 7563 7647 7731 7815 7898 7982 8065 8149 84-83 1.20 0.1 8232 8315 8399 8482 8565 8648 8731 8814 8897 9979 83 1.21 0.1 9062 9145 9227 9310 9392 9474 9557 9639 9721 9803 83-82 1.22 0.1 9885 9967 *0049 0131 0212 0294 0376 0457 0539 0620 82-81 1.23 0.2 0701 0783 0864 0945 1026 1107 1188 1269 1350 1430 81 1.24 0.21511 1592 1672 1753 1833 1914 1994 2074 2154 2234 81-80 1.25 0.2 2314 2394 2474 2554 2634 2714 2793 2873 2952 3032 80-79 1.26 0.2 3111 3191 3270 3349 3428 3507 3586 3665 3744 3823 79 1.27 0.2 3902 3980 4059 4138 4216 4295 4373 4451 4530 4608 79-78 1.28 0.2 4686 4764 4842 4920 4998 5076 5154 5231 5309 5387 78 1.29 0.2 5464 5542 5619 5697 5774 5811 5928 6005 6082 6159 77 1.30 0.2 6236 6313 6390 6467 6544 6620 6697 6773 6850 6926 77-76 1.31 0.2 7003 7079 7155 7231 7308 7384 7460 7536 7612 7687 76 1.32 0.2 7763 7839 7915 7990 8066 8141 8217 8292 8367 8443 76-75 1.33 0.2 8518 8593 8668 8743 8818 8893 8968 9043 9118 9192 75 1.34 0.2 9267 9342 9416 9491 9565 9639 9714 9788 9862 9936 75-74 1.35 0.3 0010 0085 0158 0232 0306 0380 0454 0528 0601 0675 74 1.36 0.3 0748 0822 0895 0969 1042 1115 1189 1262 1335 1408 74-73 1.37 0.3 1481 1554 1627 1700 1773 1845 1918 1991 2063 2136 73-72 1.38 0.3 2208 2281 2353 2426 2498 2570 2642 2714 2786 2858 72 1.39 0.3 2930 3002 3074 3146 3218 3289 3361 3433 3504 3576 72-71 1.40 0.3 3647 3719 3790 3861 3933 4004 4075 4146 4217 4288 71 1.41 0.3 4359 4430 4501 4572 4642 4713 4784 4854 4925 4995 71-70 1.42 0.3 5066 5136 5206 5277 5347 5417 5487 5557 5677 5697 70 1.43 0.3 5767 5837 5907 5977 6047 6116 6186 6256 6335 6395 70-69 1.44 0.3 6464 6534 6603 6672 6742 6811 6880 6949 7018 7087 69 1.45 0.3 7156 7225 7294 7363 7432 7501 7569 7638 7707 7775 69 1.46 0.3 7844 7912 7981 8049 8117 8186 8254 8322 8390 8458 68 1.47 0.3 8526 8594 8662 8730 8798 8866 8934 9001 9069 9137 68 1.48 0.3 9204 9272 9339 9407 9474 9541 9609 9676 9743 9810 68-67 1.49 0.3 9878 9945 *0012 0079 0146 0213 0279 0346 0413 0480 67 1.50 0.4 0547 0613 0680 0746 0813 0879 0946 1012 1078 1145 67-€6 1 2 3 4 5 6 7 8 9 TABLES. 131 Five-Place Natural Logarithms. No. 1 2 3 4 5 7 8 9 D. 1.50 0.4 0547 0613 0680 0746 0813 0879 0946 1012 1078 1145 67-66 1.51 0.41211 1277 1343 1409 1476 1542 1608 1673 1739 1805 66 1.52 0.4 1871 1937 2003 2068 2134 2199 2265 2331 2396 2461 66-65 1.53 0.4 2527 2592 2657 2723 2788 2853 2918 2983 3048 3113 65 1.54 0.4 3178 3243 3308 3373 3438 3502 3567 3632 3696 3761 65-64 1.55 0.4 3825 3890 3954 4019 4083 4148 4212 4276 4340 4404 64 1.56 0.4 4469 4533 4597 4661 4725 4789 4852 4916 4980 5044 64 1.57 0.4 5108 5171 5235 5298 5362 5426 5489 5552 5616 5679 64-63 1.58 0.4 5742 5S06 5869 5932 5995 6058 6122 6185 6248 6310 63 1.59 0.4 6373 6436 6499 6562 6625 6687 6750 6813 6875 6938 63 1.60 0.4 7000 7063 7125 7188 7250 7312 7375 7437 7499 7561 62 1.61 0.4 7623 7686 7748 7810 7872 7933 7995 8057 8119 8181 63 1.62 0.4 8243 8304 8366 8428 8489 8551 8612 8674 8735 8797 62-61 1.63 0.4 8858 8919 8981 9042 9103 9164 9225 9287 9348 9409 61 1.64 0.4 9470 9531 9592 9652 9713 9774 9835 9896 9956 *0017 61 1.65 0.5 0078 013S 0199 0259 0320 0380 0441 0501 0561 0622 61-60 1.66 ■ 0.5 0682 0742 0802 0862 0922 0983 1043 1103 1163 1222 60 1.67 0.5 1282 1342 1402 1462 1522 1581 1641 1701 1760 1820 60 1.68 0.5 1879 1939 1998 2058 2117 2177 2236 2295 2354 2414 60-59 1.69 0.5 2473 2532 2591 2650 2709 2768 2827 2886 2945 3004 59 1.70 0.5 3063 3122 3180 3239 3298 3357 3415 3474 3532 3591 59-58 1.71 0.5 3649 3708 3766 3825 3883 3941 4000 4058 4116 4174 58 1.72 0.5 4232 4291 4349 4407 4465 4523 4581 4639 4696 4754 58 1.73 0.5 4812 4870 4928 4985 5043 5101 5158 5216 5274 5331 58-57 1.74 0.5 5389 5446 5503 5561 5618 5675 5/oj 5790 5847 5904 57 1.75 0.5 5962 6019 6076 6133 6190 6247 6304 6361 6418 6475 57 1.76 0.5 6531 6588 6645 6702 6758 6815 6872 6928 6985 7041 57 1.77 0.5 7098 7154 7211 7267 7324 7380 7436 7493 7549 7605 56 1.78 0.5 7661 7718 7774 7830 7886 7942 7998 8054 8110 8166 56 1.79 0.5 8222 8277 8333 8389 8445 8501 8556 8612 8667 8723 56 1.80 0.5 8779 8834 8890 8945 9001 9056 9111 9167 9222 9277 56-55 1.81 0.5 9333 9388 9443 9498 9553 9609 9664 9719 9774 9829 55 1.82 0.5 9884 9939 9993 *004S 0103 0158 0213 0268 0322 0377 55 1.83 0.6 0432 0486 0541 0595 0650 0704 0759 0813 0868 0922 55-54 1.84 0.6 0977 1031 1085 1139 1194 1248 1302 1356 1410 1464 54 1.85 0.61519 1573 1627 1681 1735 1788 1842 1896 1950 2004 54 1.86 0.6 2058 2111 2165 2219 2272 2326 2380 2433 2487 2540 54-53 1.87 0.6 2594 2647 2701 2754 2808 2861 2914 2967 3021 3074 53 1.88 0.6 3127 3180 3234 3287 3340 3393 3446 3499 3552 3605 53 1.89 0.6 3658 3711 3763 3816 3869 3922 3975 4027 4080 4133 53 1.90 0.6 4185 4238 4291 4343 4396 4448 4501 4553 4606 4658 53-52 1.91 0.6 4710 4763 4815 4867 4920 4972 5024 5076 5128 5180 52 1.92 0.6 5233 5285 5337 5389 5441 5493 5545 5596 5648 5700 52 1.93 0.6 5752 5804 5856 5907 5959 6011 6062 6114 6166 6217 52 1.94 0.6 6269 6320 6372 6423 6475 6526 6578 6629 6680 6732 52-51 1.95 0.6 6783 6834 6885 6937 6988 7039 7090 7141 7192 7243 51 1.96 0.6 7294 7345 7396 7447 7498 7549 7600 7651 7702 7753 51 1.97 0.6 7803 7854 7905 7956 8006 8057 8107 8158 8209 8259 51 1.98 0.6 8310 8360 8411 8461 8512 8562 8612 8663 8713 8763 50 1.99 0.6 8813 8864 8914 8964 9014 9064 9115 9165 9215 9265 50 2.00 0.6 9315 9365 9415 9465 9515 9564 9614 9664 9714 9764 50 1 2 3 4 5 6 7 8 9 132 TABLES. Five-Place Natural Logarithms. No. 1 2 3 4 5 6 7 8 9 D. 2.00 0.6 9315 9365 9415 9465 9515 9564 9614 9664 9714 9764 50 2.01 0.6 9813 9863 9913 9963 - *^0012 0062 0112 0161 0211 0260 50 2.02 0.7 0310 0359 0409 0458 0508 0557 0606 0656 0705 0754 49 2.03 0.7 0804 0853 0902 0951 1000 1050 1099 1148 1197 1246 49 2.04 0.7 1295 1344 1393 1442 1491 1540 1589 1638 1686 1735 49 2.05 0.7 1784 1833 1881 1930 1979 2028 2076 2125 2173 2222 49 2.06 0.7 2271 2319 2368 2416 2465 2513 2561 2610 2658 2707 49-48 2.07 0.7 2755 2803 2851 2900 2948 2996 3044 3092 3141 3189 48 2.08 0.7 3237 3285 3333 3381 3429 3477 3525 3573 3621 3669 48 2.09 0.7 3716 3764 3812 3860 3908 3955 4003 4051 4098 4146 48 2.10 0.7 4194 4241 4289 4336 4384 4432 4479 4527 4574 4621 48-47 2.11 0.7 4669 4716 4764 4811 4858 4905 4953 5000 5047 5094 47 2.12 0.7 5142 5189 5236 5283 5330 5377 5424 5471 5518 5565 47 2.13 0.7 5612 5659 5706 5753 5800 5847 5893 5940 5987 6034 47 2.14 0.7 6081 6127 6174 6221 6267 6314 6361 6407 6454 6500 47 2.LS 0.7 6547 6593 6640 6686 6733 6779 6825 6872 6918 6965 47-46 2.16 0.7 7011 7057 7103 7150 7196 7242 7288 7334 7381 7427 46 2.17 0.7 7473 7519 7565 7611 7657 7703 7749 7795 7841 7887 46 2.18 0.7 7932 7978 8024 8070 8116 8162 8207 8253 8299 8344 46 2.19 0.7 8390 8436 8481 8527 8573 8618 8664 8709 8755 8800 46-45 2.20 0.7 8846 8891 8937 8982 9027 9073 9118 9163 9209 9254 45 2.21 0.7 9299 9344 9390 9435 9480 9525 9570 9615 9661 9706 45 2.22 0.7 9751 9796 9841 9886 9931 9976 *0021 0066 0110 0155 45 2.23 0.8 0200 0245 0290 0335 0379 0424 0469 0514 0558 0603 45 2.24 0.8 0648 0692 0737 0781 0826 0871 0915 0960 1004 1049 45-44 2.25 0.8 1093 1137 1182 1226 1271 1315 1359 1404 1448 1492 44 2.26 0.8 1536 1581 1625 1669 1713 1757 1802 1846 1890 1934 44 2.27 0.8 1978 2022 2066 2110 2154 2198 2242 2286 2330 2374 44 2.28 0.8 2418 2461 2505 2549 2593 2637 2680 2724 2768 2812 44 2.29 0.8 2855 2899 2942 2986 3030 3073 3117 3160 3204 3247 44-43 2.30 0.8 3291 3334 3378 3421 3465 3508 3551 3595 3638 3681 43 2.31 0.8 3725 3768 3811 3855 3898 3941 3984 4027 4070 4114 43 2.32 0.8 4157 4200 4243 4286 4329 4372 4415 4458 4501 4544 43 2.33 0.8 4587 4630 4673 4715 4758 4801 4844 4887 4930 4972 43 2.34 0.8 5015 5058 5101 5143 5186 5229 5271 5314 5356 5399 43 2.35 0.8 5442 5484 5527 5569 5612 5654 5697 5739 5781 5824 43-48 2.36 0.8 5866 5909 5951 5993 6036 6078 6120 6162 6205 6247 42 2.37 0.8 6289 6331 6373 6415 6458 6500 6542 6584 6626 6668 42 2.38 0.8 6710 6752 6794 6836 6878 6920 6962 7004 7046 7087 42 2.39 0.8 7129 7171 7213 7255 7297 7338 7380 7422 7464 7505 42 2.40 0.8 7547 7589 7630 7672 7713 7755 7797 7838 7880 7921 42 2.41 0.8 7963 8004 8046 8087 8129 8170 8211 8253 8294 8335 41 2.42 0.8 8377 8418 8459 8501 8542 8583 8624 8666 8707 8748 41 2.43 0.8 8789 8830 8871 8913 8954 8995 9036 9077 9118 9159 41 2.44 0.8 9200 9241 9282 9323 9364 9405 9445 9486 9527 9568 41 2.45 0.8 9609 9650 9690 9731 9772 9813 9853 9894 9935 9975 41 2.46 0.9 0016 0057 0097 0138 0179 0219 0260 0300 0341 0381 41-40 2.47 0.9 0422 0462 0503 0543 0584 0624 0664 0705 0745 0786 40 2.48 0.9 0826 0866 0906 0947 0987 1027 1067 1108 1148 1188 40 2.49 0.9 1228 1268 1309 1349 1389 1429 1469 1509 1549 1589 40 2.60 0.91629 1669 1709 1749 1789 1829 1869 1909 1949 1988 40 J 1 2 3 4 5 6 7 8 9 I TABLES. 133 Five-Place Natural Logarithms. No. 1 2 3 4 5 6 7 8 9 D. 2.50 0.91629 1669 1709 1749 1789 1829 1869 1909 1949 1988 40 2.51 0.9 2028 2068 2108 2148 2188 2227 2267 2307 2346 2386 40 2.52 0.9 2426 2466 2505 2545 2584 2624 2664 2703 2743 2782 40 2.53 0.9 2S22 2S61 2901 2940 2980 3019 3059 3098 3138 3177 40-39 2.54 0.9 3216 3256 3295 3334 3374 3413 3452 3492 3531 3570 39 2.55 0.9 3609 3649 3688 3727 3766 3805 3844 3883 3923 3962 39 2.56 0.9 4001 4040 4079 4118 4157 4196 4235 4274 4313 4352 39 2.57 0.9 4391 4429 4468 4507 4546 4585 4624 4663 4701 4740 39 2.58 0.9 4779 4818 4856 4895 4934 4973 5011 5050 5089 5127 39 2.59 0.9 5166 5204 5243 5282 5320 5359 5397 5436 5474 5513 39-38 2.60 0.9 5551 5590 5628 5666 5705 5743 5782 5820 5858 5897 38 2.61 0.9 5935 5973 6012 6050 6088 6126 6165 6203 6241 6279 38 2.62 0.9 6317 6356 6394 6432 6470 6508 6546 6584 6622 6660 38 2.63 0.9 6698 6736 6774 6812 6S50 6S88 6926 6964 7002 7040 38 2.64 0.9 7078 7116 7154 7191 7229 7267 7305 7343 7380 7418 38 2.65 0.9 7456 7494 7531 7569 7607 7644 7682 7720 7757 7795 38 2.66 0.9 7833 7S70 7908 7945 7983 8020 8058 8095 8133 8170 38-37 2.67 0.9 8208 8245 8283 8320 8358 8395 8432 8470 8507 8544 37 2.68 0.9 8582 8619 8656 8694 8731 8768 8805 8843 8880 8917 37 2.69 0.9 8954 8991 9028 9066 9103 9140 9177 9214 9251 9288 37 2.70 0.9 9325 9362 9399 9436 9473 9510 9547 9584 9621 9658 37 2.71 0.9 9695 9732 9769 9806 9842 9879 9916 9953 9990 *0026 37 2.72 1.0 0063 0100 0137 0173 0210 0247 0284 0320 0357 0394 37 2.73 1.0 0430 0467 0503 0540 0577 0613 0650 0686 0723 0759 37 2.74 1.0 0796 0832 0869 0905 0942 0978 1015 1051 1087 1124 36 2.75 1.0 1160 1196 1233 1269 1305 1342 1378 1414 1451 1487 36 2.76 1.0 1523 1559 1596 1632 1668 1704 1740 1776 1813 1849 36 2.77 1.0 1S85 1921 1957 1993 2029 2065 2101 2137 2173 2209 36 2.78 1.0 2245 2281 2317 2353 2389 2425 2461 2497 2532 2588 36 2.79 1.0 2604 2640 2676 2712 2747 2783 2819 2855 2890 2926 36 2.80 1.0 2962 2998 3033 3069 3105 3140 3176 3212 3247 3283 36 2.81 1.0 3318 3354 3390 3425 3461 3496 3532 3567 3603 3638 36-35 2.82 1.0 3674 3709 3745 3780 3815 3851 3886 3922 3957 3992 35 2.S3 1.0 4028 4063 4098 4134 4169 4204 4239 4275 4310 4345 35 2.84 1.0 43 SO 4416 4451 4486 4521 4556 4591 4627 4662 4697 35 2.85 1.0 4732 4767 4802 4837 4872 4907 4942 4977 5012 5047 35 2.86 1.0 5082 5117 5152 5187 5222 5257 5292 5327 5361 5396 35 2.87 1.0 5431 5466 5501 5536 5570 5605 5640 5675 5710 5744 35 2.88 1.0 5779 5814 5848 5883 5918 5952 5987 6022 6056 6091 35 2.89 1.0 6126 6160 6195 6229 6264 6299 6333 6368 6402 6437 35-34 2.90 1.0 6471 6506 6540 6574 6609 6643 6678 6712 6747 6781 34 2.91 1.0 6815 6850 6884 6918 6953 6987 7021 7056 7090 7124 34 2.92 1.0 7158 7193 7227 7261 7295 7329 7364 7398 7432 7466 34 2.93 1.0 7500 7534 7568 7603 7637 7671 7705 7739 7773 7807 34 2.94 1.0 7841 7875 7909 7943 7977 8011 8045 8079 8113 8147 34 2.95 1.0 8181 8214 8248 8282 8316 8350 8384 8418 8451 8485 34 2.96 1.0 8519 8553 8586 8620 8654 8688 8721 8755 8789 8823 34 2.97 1.0 8856 8890 8924 8957 8991 9024 9058 9092 9125 9159 34 2.98 1.0 9192 9226 9259 9293 9326 9360 9393 9427 9460 9494 34-33 2.99 1.0 9527 9561 9594 9628 9661 9694 9728 9761 9795 9828 33 3.00 1.0 9861 9895 9928 9961 9994 *0028 0061 0094 0128 0161 33 1 2 3 4 5 6 7 8 9 134 TABLES. Five-Place Natural Logarithms. No, 1 2 3 4 5 6 7 8 9 D. 3.00 1.0 9861 9895 9928 9961 9994 *0028 0061 0094 0128 0161 33 3.01 1 10194 0227 0260 0294 0327 0360 0393 0426 0459 0493 33 3.02 i.l 0526 0559 0592 0625 0658 0691 0724 0757 0790 0823 33 3.03 1.1 0856 0889 0922 0955 0988 1021 1054 1087 1120 1153 33 3.04 1.1 1186 1219 1252 1284 1317 1350 1383 1416 1449 1481 33 3.05 1.11514 1547 1580 1612 1645 1678 1711 1743 1776 1809 33 3.06 1.1 1841 1874 1907 1939 1972 2005 2037 2070 2103 2135 33 3.07 1.1 2168 2200 2233 2265 2298 2330 2363 2396 2428 2460 33-33 3.08 1.1 2493 2525 2558 2590 2623 2655 2688 2720 2752 2785 32 3.09 1.12817 2849 2882 2914 2946 2979 3011 3043 3076 3108 32 8.10 1.13140 3172 3205 3237 3269 3301 3334 3366 3398 3430 32 3.11 1.1 3462 3494 3527 3559 3591 3623 3655 3687 3719 3751 32 3.12 1.1 3783 3815 3847 3879 3911 3943 3955 4007 4039 4071 32 3.13 1.1 4103 4135 4167 4199 4231 4263 4295 4327 4359 4390 32 3.14 1.14422 4454 4486 4518 4550 4581 4613 4645 4677 4708 32 3.15 1.1 4740 4772 4804 4835 4867 4899 4931 4962 4994 5026 32 3.16 1.1 5057 5089 5120 5152 5184 5215 5247 5278 5310 5342 32 3.17 1.15373 5405 5436 5468 5499 5531 5562 5594 5625 5657 32-31 3.18 1.1 5688 5720 5751 5782 5814 5845 5877 5908 5939 5971 31 3.19 1.1 6002 6033 6065 6096 6127 6159 6190 6221 6253 6284 31 3.20 1.1 6315 6346 6378 6409 6440 6471 6502 6534 6565 6596 31 3.21 1.1 6627 6658 6689 6721 6752 6783 6814 6845 6876 6907 31 3.22 1.1 6938 6969 7000 7031 7062 7093 7124 7155 7186 7217 31 3.23 1.1 7248 7279 7310 7341 7372 7403 7434 7465 7496 7526 31 3.24 1.1 7557 7588 7619 7650 7681 7712 7742 7773 7804 7835 31 3.25 1.1 7865 7896 7927 7958 7989 8019 8050 8081 8111 8142 31 3.26 1.18173 8203 8234 8265 8295 8326 8357 8387 8418 8448 31 3.27 1.1 8479 8510 8540 8571 8601 8632 8662 8693 8723 8754 31-30 3.28 1.1 8784 8815 8845 8876 8906 8937 8967 8998 9028 9058 30 3.29 1.1 9089 9119 9150 9180 9210 9241 9271 9301 9332 9362 30 3.30 1.1 9392 9423 9453 9483 9513 9544 9574 9604 9634 9665 30 3.31 1.1 9695 9725 9755 9785 9816 9846 9876 9906 9936 9966 30 3.32 1.1 9996 *0027 0057 0087 0117 0147 0177 0207 0237 0267 30 3.33 1.2 0297 0327 0357 0387 0417 0447 0477 0507 0537 0567 30 3.34 1.2 0597 0627 0657 06S7 0717 0747 0777 0806 0836 0866 30 3.35 1.2 0896 0926 0956 0986 1015 1045 1075 1105 1135 1164 30 3.36 1.21194 1224 1254 1283 1313 1343 1373 1402 1432 1462 30 3.37 1.2 1491 1521 1551 1580 1610 1640 1669 1699 1728 1758 30 3.38 1.2 1788 1817 1847 1876 1906 1935 1965 1994 2024 2053 30 3.39 1.2 2083 2112 2142 2171 2201 2230 2260 2289 2319 2348 29 3.40 1.2 2378 2407 2436 2466 2495 2524 2554 2583 2613 2642 29 3.41 1.2 2671 2701 2730 2759 2788 2818 2847 2876 2906 2935 29 3.42 1.2 2964 2993 3023 3052 3081 3110 3139 3169 3198 3227 29 3.43 1.2 3256 3285 3314 3343 3373 3402 3431 3460 3489 3518 29 3.44 1.2 3547 3576 3605 3634 3663 3692 3721 3750 3779 3808 29 3.45 1.2 3837 3866 3895 3924 3953 3982 4011 4040 4069 4098 29 3.46 1.2 4127 4156 4185 4214 4242 4271 4300 4329 4358 4387 29 3.47 1.2 4415 4444 4473 4502 4531 4559 4588 4617 4646 4674 29 3.48 1.2 4703 4732 4761 4789 4818 4847 4875 4904 4933 4962 29 3.49 1.2 4990 5019 5047 5076 5105 5133 5162 5191 5219 5248 29 8.50 1.2 5276 5305 5333 5362 5391 5419 5448 5476 5505 5533 29-28 1 2 3 4 5 6 7 8 9 TABLES. Five-Place Natural Logarithms. 135 No. 1 2 3 4 5 6 7 8 9 D. 3.50 1.2 5276 5305 5333 5362 5391 5419 5448 5476 5505 5533 29-28 3.51 1.2 5562 5590 5619 5647 5675 5704 5732 5761 5789 5818 28 3.52 1.2 5846 5875 5903 5931 5960 5988 6016 6045 6073 6101 28 3.53 1.2 6130 6158 6186 6215 6243 6271 6300 6328 6356 6384 28 3.54 1.2 6413 6441 6469 6497 6526 6554 6582 6610 6638 6667 28 3.55 1.2 6695 6723 6751 6779 6807 6836 6864 6892 6920 6948 28 3.56 1.2 6976 7004 7032 7060 7088 7116 7144 7172 7201 7229 28 3.57 1.2 7257 7285 7313 7341 7369 7397 7424 7452 7480 7508 28 3.5S 1.2 7536 7564 7592 7620 7648 7676 7704 7732 7759 7787 28 3.59 1.2 7815 7843 7871 7899 7927 7954 7982 8010 8038 8066 28 3.60 1.2 8093 8121 8149 8177 8204 8232 8260 8288 8315 8343 28 3.61 1.2 8371 8398 8426 8454 8482 8509 8537 8564 8592 8620 28 3.62 1.2 8647 8675 8703 8730 8758 8785 8813 8841 8868 8896 28 3.63 1.2 8923 8951 8978 9006 9033 9061 9088 9116 9143 9171 28-27 3.64 1.2 9198 9226 9253 9281 9308 9336 9363 9390 9418 9445 27 3.65 1.2 9473 9500 9527 9555 9582 9610 9637 9664 9692 9719 27 3.66 1.2 9746 9774 9801 9828 9856 9883 9910 9937 9965 9992 27 3.67 1.3 0019 0046 0074 0101 0128 0155 0183 0210 0237 0264 27 3.68 1.3 0291 0318 0346 0373 0400 0427 0454 0481 0508 0536 27 3.69 1.3 0563 0590 0617 0644 0671 0698 0725 0752 0779 0806 27 3.70 1.3 0833 0860 0887 0914 0941 0968 0995 1022 1049 1076 27 3.71 1.3 1103 1130 1157 1184 1211 1238 1265 1292 1319 1345 27 3.72 1.3 1372 1399 1426 1453 1480 1507 1534 1560 1587 1614 27 3.73 1.3 1641 1668 1694 1721 1748 1775 1802 1828 1855 1882 27 3.74 1.3 1909 1935 1962 1989 2015 2042 2069 2096 2122 2149 27 3.75 1.3 2176 2202 2229 2256 2282 2309 2335 2362 2389 2415 27 3.76 1.3 2442 2468 2495 2522 2548 2575 2601 2628 2654 2681 27 3.77 1.3 2708 2734 2761 2787 2814 2840 2867 2893 2919 2946 27-26 3.78 1.3 2972 2999 3025 3052 3078 3105 3131 3157 3184 3210 26 3.79 1.3 3237 3263 3289 3316 3342 3368 3395 3421 3447 3474 26 3.80 1.3 3500 3526 3553 3579 3605 3632 3658 3684 3710 3737 26 3.81 1.3 3763 3789 3815 3842 3868 3894 3920 3946 3973 3999 26 3.82 1.3 4025 4051 4077 4104 4130 4156 4182 4208 4234 4260 26 3.83 1.3 4286 4313 4339 4365 4391 4417 4443 4469 4495 4521 26 3.84 1.3 4547 4573 4599 4625 4651 4677 4703 4729 4755 4781 26 3.85 1.3 4807 4833 4859 4885 4911 4937 4963 4989 5015 5041 26 3.86 1.3 5067 5093 5119 5144 5170 5196 5222 5248 5274 5300 26 3.87 1.3 5325 5351 5377 5403 5429 5455 5480 5506 5532 5558 26 3.88 1.3 5584 5609 5635 5661 5687 5712 5738 5764 5789 5815 26 3.89 1.3 5841 5867 5892 5918 5944 5969 5995 6021 6046 6072 26 3.90 1.3 6098 6123 6149 6175 6200 6226 6251 6277 6303 6328 26 3.91 1.3 6354 6379 6405 6430 6456 6481 6507 6533 6558 6584 26 3.92 1.3 6609 6635 6660 6686 6711 6737 6762 6788 6813 6838 26-25 3.93 1.3 6864 6889 6915 6940 6966 6991 7016 7042 7067 7093 25 3.94 1.3 7118 7143 7169 7194 7220 7245 7270 7296 7321 7346 25 3.95 1.3 7372 7397 7422 7447 7473 7498 7523 7549 7574 7599 25 3.96 1.3 7624 7650 7675 7700 7725 7751 7776 7801 7826 7851 25 3.97 1.3 7877 7902 7927 7952 7977 8002 8028 8053 8078 8103 25 3.98 1.3 8128 81-13 8178 8204 8229 8254 8279 8304 8329 8354 25 3.99 1.3 8379 8404 8429 8454 8479 8504 8529 8554 8579 8604 25 4.00 1.3 8629 8654 8679 8704 8729 8754 8779 8804 8829 8854 25 1 2 3 4 5 6 7 8 9 136 TABLES. Five-Place Natural Logarithms. No. 1 2 3 4 5 6 7 8 9 D. 4.00 1.3 8629 8654 8679 8704 8729 8754 8779 8804 8829 8854 25 4.01 1.3 8879 8904 8929 8954 8979 9004 9029 9054 9078 9103 25 4.02 1.3 9128 9153 9178 9203 9228 9252 9277 9302 9327 9352 25 4.03 1.3 9377 9401 9426 9451 9476 9501 9525 9550 9575 9600 25 4.04 1.3 9624 9649 9674 9699 9723 9748 9773 9798 9822 9847 25 4.0.S 1.3 9872 9896 9921 9946 9970 9995 *0020 0044 0069 0094 25 4.06 1.4 0118 0143 0168 0192 0217 0241 0266 0291 0315 0340 25 4.07 1.4 0364 0389 0413 0438 04b3 0487 0512 0536 0561 0585 25 4.08 1.4 0610 0634 0659 0683 0708 0732 0757 0781 0806 0830 25-24 4.09 1.4 0854 0879 0903 0928 0952 0977 1001 1025 1050 1074 24 4.10 1.4 1099 1123 1147 1172 1196 1221 1245 1269 1294 1318 24 4.11 1.4 1342 1367 1391 1415 1440 1464 1488 1512 1537 1561 24 4.12 1.4 1585 1610 1634 1658 1682 1707 1731 1755 1779 1804 24 4.13 1.4 1828 1852 1876 1900 1925 1949 1973 1997 2021 2045 24 4.14 1.4 2070 2094 2118 2142 2166 2190 2214 2239 2263 2287 24 4.15 1.4 2311 2335 2359 2383 2407 2431 2455 2479 2503 2527 24 4.16 1.4 2552 2576 2600 2624 2648 2672 2696 2720 2744 2768 24 4.17 1.4 2792 2816 2840 2864 2887 2911 2935 2959 2983 3007 24 4.18 1.4 3031 3055 3079 3103 3127 3151 3175 3198 3222 3246 24 4.19 1.4 3270 3294 3318 3342 3365 3389 3413 3437 3461 3485 24 4.20 1.4 3508 3532 3556 3580 3604 3627 3651 3675 3699 3723 24 4.21 1.4 3746 3770 3794 3817 3841 3865 3889 3912 3936 3960 24 4.22 1.4 3984 4007 4031 4055 4078 4102 4126 4149 4173 4197 24 4.23 1.4 4220 4244 4267 4291 4315 4338 4362 4386 4409 4433 24 4.24 1.4 4456 4480 4503 4527 4551 4574 4598 4621 4645 4668 24 4.25 1.4 4692 4715 4739 4762 4786 4809 4833 4856 4880 4903 24-23 4.26 1.4 4927 4950 4974 4997 5021 5044 5068 5091 5115 5138 23 4.27 1.4 5161 5185 5208 5232 5255 5278 5302 5325 5349 5372 23 4.28 1.4 5395 5419 5442 5465 5489 5512 5535 5559 5582 5605 23 4.29 1.4 5629 5652 5675 5699 5722 5745 5768 5792 5815 5838 23 4.30 1.4 5862 5885 5908 5931 5954 5978 6001 6024 6047 6071 23 4.31 1.4 6094 6117 6140 6163 6187 6210 6233 6256 6279 6302 23 4.32 1.4 6326 6349 6372 6395 6418 6441 6464 6487 6511 6534 23 4.33 1.4 6557 6580 6603 6626 6649 6672 6695 6718 6741 6764 23 4.34 1.4 6787 6810 6834 6857 6880 6903 6926 6949 6972 6995 23 4.35 1.4 7018 7041 7064 7087 7109 7132 7155 7178 7201 7224 23 4.36 1.4 7247 7270 7293 7316 7339 7362 7385 7408 7431 7453 23 4.37 1.4 7476 7499 7522 7545 7568 7591 7614 7636 7659 7682 23 4.38 1.4 7705 7728 7751 7773 7796 7819 7842 7865 7887 7910 23 4.39 1.4 7933 7956 7978 8001 8024 8047 8070 8092 8115 8138 23 4.40 1.4 8160 8183 8206 8229 8251 8274 8297 8319 8342 8365 23 4.41 1.4 8387 8410 8433 8455 8478 8501 8523 8546 8569 8591 23 4.42 1.4 8614 8637 8659 8682 8704 8727 8750 8772 8795 8817 23 4.43 1.4 8840 8863 8885 8908 8930 8953 8975 8998 9020 9043 23 4.44 1.4 9065 9088 9110 9133 9155 9178 9200 9223 9245 9268 23 4.45 1.4 9290 9313 9335 9358 9380 9403 9425 9448 9470 9492 23-22 4.46 1.4 9515 9537 9560 9582 9605 9627 9649 9672 9694 9716 22 4.47 1.4 9739 9761 9784 9806 9828 9851 9873 9895 9918 9940 22 4.48 1.4 9962 9985 *0007 0029 0052 0074 0096 0118 0141 0163 22 4.49 1.5 0185 0208 0230 0252 0274 0297 0319 0341 0363 0386 22 4.50 1.5 0408 0430 0452 0474 0497 0519 0541 0563 0585 0608 22 1 2 3 4 5 6 7 8 9 TABLES. Five-Place Natural Logarithms. 137 No. 1 2 3 4 5 6 7 8 9 D. 4.50 1.5 0408 0430 0452 0474 0497 0519 0541 0563 0585 0608 22 4.51 1.5 0630 0652 0674 0696 0718 0741 0763 0785 0807 0829 22 4.52 1.5 0851 0873 0895 0918 0940 0962 0984 1006 1028 1050 22 4.53 1.5 1072 1094 1116 1138 1160 1183 1205 1227 1249 1271 22 4.54 1.5 1293 1315 1337 1359 1381 1403 1425 1447 1469 1491 22 4.55 1.5 1513 1535 1557 1579 1601 1623 1645 1666 1688 1710 22 4.56 1.5 1732 1754 1776 1798 1820 1842 1864 1886 1908 1929 22 4.57 1.5 1951 1973 1995 2017 2039 2061 2083 2104 2126 2148 22 4.58 1.5 2170 2192 2214 2235 2257 2279 2301 2323 2344 2366 22 4.59 1.5 2388 2410 2432 2453 2475 2497 2519 2540 2562 2584 22 4.60 1.5 2606 2627 2649 2671 2693 2714 2736 2758 2779 2801 22 4.61 1.5 2823 2844 2866 2888 2910 2931 2953 2975 2996 3018 22 4.62 1.5 3039 3061 3083 3104 3126 3148 3169 3191 3212 3234 22 4.63 1.5 3256 3277 3299 3320 3342 3364 3385 3407 3428 3450 22 4.64 1.5 3471 3493 3515 3536 3558 3579 3601 3622 3644 3665 22 4.65 1.5 3687 3708 3730 3751 3773 3794 3816 3837 3859 3880 22-21 4.66 1.5 3902 3923 3944 3966 3987 4009 4030 4052 4073 4094 21 4.67 1.5 4116 4137 4159 4180 4202 4223 4244 4266 4287 4308 21 4.68 1.5 4330 4351 4373 4394 4415 4437 4458 4479 4501 4522 21 4.69 1.5 4543 4565 4586 4607 4629 4650 4671 4692 4714 4735 21 4.70 1.5 4756 4778 4799 4820 4841 4863 4884 4905 4926 4948 21 4.71 1.5 4969 4990 5011 5032 5054 5075 5096 5117 5138 5160 21 4.72 1.5 5181 5202 5223 5244 5266 5287 5308 5329 5350 5371 21 4.73 1.5 5393 5414 5435 5456 5477 5498 5519 5540 5562 5583 21 4.74 1.5 5604 5625 5646 5667 5688 5709 5730 5751 5772 5793 21 4.75 1.5 5814 5836 5857 5878 5899 5920 5941 5962 5983 6004 21 4.76 1.5 6025 6046 6067 6088 6109 6130 6151 6172 6193 6214 21 4.77 1.5 6235 6256 6277 6298 6318 6339 6360 6381 6402 6423 21 4.78 1.5 6444 6465 6486 6507 6528 6549 6569 6590 6611 6632 21 4.79 1.5 6653 6674 6695 6716 6737 6757 6778 6799 6820 6841 21 4.80 1.5 6862 6882 6903 6924 6945 6966 6987 7007 7028 7049 21 4.81 1.5 7070 7090 7111 7132 7153 7174 7194 7215 7236 7257 21 4.82 1.5 7277 7298 7319 7340 7360 7381 7402 7423 7443 7464 21 4.83 1.5 7485 7505 7526 7547 7567 7588 7609 7629 7650 7671 21 4.84 1.5 7691 7712 7733 7753 7774 7795 7815 7836 7857 7877 21 4.85 1.5 7898 7918 7939 7960 7980 8001 8022 8042 8063 8083 21 4.86 1.5 8104 8124 8145 8166 8186 8207 8227 8248 8268 8289 21 4.87 1.5 8309 8330 8350 8371 8391 8412 8433 8453 8474 8494 21-20 4.88 1.5 8515 8535 8555 8576 8596 8617 8637 8658 8678 8699 20 4.89 1.5 8719 8740 8760 8781 8S01 8821 8842 8862 8883 8903 20 4.90 1.5 8924 8944 8964 8985 9005 9026 9046 9066 9087 9107 20 4.91 1.5 9127 9148 9168 9188 9209 9229 9250 9270 9290 9311 20 4.92 1.5 9331 9351 9371 9392 9412 9432 9453 9473 9493 9514 20 4.93 1.5 9534 955' 9574 9595 9615 9635 9656 9676 9696 9716 20 4.94 1.5 9737 9757 9777 9797 9817 9838 9858 9878 9898 9919 20 4.95 1.5 9939 9959 9979 9999 *0020 0040 0060 OOSO 0100 0120 20 4.96 1.6 0141 0161 0181 0201 0221 0241 0261 028? 0302 0322 20 4.97 1.6 0342 0362 0382 0402 0422 0443 0463 0483 0503 0523 20 4.98 1.6 0543 0563 0583 0603 0623 0643 0663 0683 0704 0724 20 4.99 1.6 0744 0764 0784 0804 0824 0844 0864 0884 0904 0924 20 5>00 1.6 0944 0964 0984 1004 1024 1044 1064 1084 1104 1124 20 1 2 3 4 5 6 7 8 9 138 TABLES. Five-Place Natural Logarithms. No. 1 2 3 4 5 6 7 8 9 D. 5.0 1.6 0944 1144 1343 1542 1741 1939 2137 2334 2531 2728 200-196 5.1 1.6 2924 3120 3315 3511 3705 3900 4094 4287 44S1 4673 196-192 5.2 1.6 4866 5058 5250 5441 5632 5823 6013 6203 6393 6582 192-189 5.3 1.6 6771 6959 7147 7335 7523 7710 7896 8083 8269 8455 189-185 5.4 1.6 8640 8825 9010 9194 9378 9562 9745 9928 *0111 0293 185-182 5.5 1.7 0475 0656 0838 1019 1199 1380 1560 1740 1919 2098 182-179 5.6 1.7 2277 2455 2633 2811 2988 3166 3342 3519 3695 3871 178-176 5.7 1.7 4047 4222 4397 4572 4746 4920 5094 5267 5440 5613 175-173 5.8 1.7 5786 5958 6130 6302 6473 6644 6815 6985 7156 7326 172-170 5.9 1.7 7495 7665 7834 8002 8171 8339 8507 8675 8842 9009 169-167 6.0 1.7 9176 9342 9509 9675 9840 *0006 0171 0336 0500 0665 167-164 6.1 1.8 0829 0993 1156 1319 1482 1645 1808 1970 2132 2294 164-161 6.2 1.8 2455 2616 2777 2938 3098 3258 3418 3578 3737 3896 161-159 6.3 1.8 4055 4214 4372 4530 4688 4845 5003 5160 5317 5473 159-156 6.4 1.8 5630 5786 5942 6097 6253 6408 6563 6718 6872 7026 156-154 6.5 1.8 7180 7334 7487 7641 7794 7947 8099 8251 8403 8555 154-152 6.6 1.8 8707 8858 9010 9160 931] 9462 9612 9762 9912 *0061 151-149 6.7 1.9 0211 0360 0509 0658 0806 0954 1102 1250 1398 1545 149-147 6.8 1.9 1692 1839 1986 2132 2279 2425 2571 2716 2862 3007 147-145 6.9 1.9 3152 3297 3442 3586 3730 3874 4018 4162 4305 4448 145-143 7.0 1.9 4591 4734 4876 5019 5161 5303 5445 5586 5727 5869 143-141 7.1 1.9 6009 6150 6291 6431 6571 6711 6851 6991 7130 7269 141-139 7.2 1.9 7408 7547 7685 7824 7962 8100 8238 8376 8513 8650 139-137 7.3 1.9 8787 8924 9061 9198 9334 9470 9606 9742 9877 *0013 137-135 7.4 2.0 0148 0283 0418 0553 0687 0821 0956 1089 1223 1357 135-133 7.5 2.0 1490 1624 1757 1890 2022 2155 2287 2419 2551 2683 133-132 7.6 2.0 2815 2946 3078 3209 3340 3471 3601 3732 3862 3992 131-130 7.7 2.0 4122 4252 4381 4511 4640 4769 4898 5027 5156 5284 130-128 7.8 2.0 5412 5540 5668 5796 5924 6051 6179 6306 6433 6560 128-127 7.9 2.0 6686 6813 6939 7065 7191 7317 7443 7568 7694 7819 127-125 8.0 2.0 7944 8069 8194 8318 8443 8567 8691 8815 8939 9063 125-124 8.1 2.0 9186 9310 9433 9556 9679 9802 9924 *0047 0169 0291 123-122 8.2 2.1 0413 0535 0657 0779 0900 1021 1142 1263 1384 1505 122-121 8.3 2.1 1626 1746 1866 1986 2106 2226 2346 2465 2585 2704 120-119 8.4 2.1 2823 2942 3061 3180 3298 3417 3535 3653 3771 3889 119-118 8.5 2.1 4007 4124 4242 4359 4476 4593 4710 4827 4943 5060 118-116 8.6 2.1 5176 5292 5409 5524 5640 5756 5871 5987 6102 6217 116-115 8.7 2.1 6332 6447 6562 6677 6791 6905 7020 7134 7248 7361 115-114 8.8 2.1 7475 7589 7702 7816 7929 8042 8155 8267 8380 8493 114-112 8.9 2.1 8605 2.1 9722 8717 9834 8830 8942 9944 *0055 9054 0166 9165 9277 9389 9500 9611 112-111 9.0 0276 0387 0497 0607 0717 111-110 9.1 2.2 0827 0937 1047 1157 1266 1375 1485 1594 1703 1812 110-109 9.2 2.2 1920 2029 2138 2246 2354 2462 2570 2678 2786 2894 109-108 9.3 2.2 3001 3109 3216 3324 3431 3538 3645 3751 3858 3965 107-106 9.4 2.2 4071 4177 4284 4390 4496 4601 4707 4813 4918 5024 106-105 9.5 2.2 5129 5234 5339 5444 5549 5654 5759 5863 5968 6072 105-104 9.6 2.2 6176 6280 6384 6488 6592 6696 6799 6903 7006 7109 104-103 9.7 2.2 7213 7316 7419 7521 7624 7727 7829 7932 8034 8136 103-102 9.8 2.2 8238 8340 8442 8544 8646 8747 8849 8950 9051 9152 102-101 9.9 2.2 9253 9354 9455 9556 9657 9757 9858 9958 *0058 0158 101-100 10.0 2.3 0259 0358 0458 0558 0658 0757 0857 0956 1055 1154 100-99 1 2 3 4 5 6 7 8 9 TABLES. 139 The Natural Logarithms (each increased by 10.) of Numbers between 0.00 and 0.99. No. 1 2 3 4 5 6 7 8 9 0.0 5.395 6.088 6.493 6.781 7.004 7.187 7.341 7.474 7.592 0.1 7.697 7.793 1880 7.960 8.034 8.103 8.167 8.228 8.285 8.339 0.2 8.391 8.439 8.486 8.530 8.573 8.614 8.653 8.691 8.727 8.762 0.3 8.796 8.829 8.861 8.891 8.921 8.950 8.978 9.006 9.032 9.058 0.4 9.084 9.10S 9.132 9.156 9.179 9.201 9.223 9.245 9.266 9.287 0.5 9.307 9.327 9.346 9.365 9.384 9.402 9.420 9.438 9.455 9.472 0.6 9.489 9.506 9.522 9.538 9.554 9.569 9.584 9.600 9.614 9.629 0.7 9.643 9.658 9.671 9.685 9.699 9.712 9.726 9.739 9.752 9.764 0.8 9.777 9.789 9.802 9.814 9.826 9.837 9.849 9.861 9.872 9.883 0.9 9.895 9.906 9.917 9.927 9.938 9.949 9.959 9.970 9.980 9.990 Note : loggX = logioX • lege 10 =: (2.30259) logio x. The Natural Logarithms of Whole Numbers from 10 to 209. No. 1 2 3 4 5 6 7 8 9 1 2.3026 3979 4849 5649 6391 7080 7726 8332 8904 9444 2 2.9957 *0445 0910 1355 1781 2189 2581 2958 3322 3673 3 3.4012 4340 4657 4965 5264 5553 5835 6109 6376 6636 4 3.6889 7136 7377 7612 7842 8067 8286 8501 8712 8918 5 3.9120 9318 9512 9703 9890 *0073 0254 0431 0604 0775 6 4.0943 1109 1271 1431 1589 1744 1897 2047 2195 2341 7 4.2485 2627 2767 2905 3041 3175 3307 3438 3567 3694 8 4.3820 3944 4067 4188 4308 4427 4543 4659 4773 4886 9 4.4998 5109 5218 5326 5433 5539 5643 5747 5850 5951 10 4.6052 6151 6250 6347 6444 6540 6634 6728 6821 6913 11 4.7005 7095 7185 7274 7362 7449 7536 7622 7707 7791 12 4.7875 7958 8040 8122 8203 8283 8363 8442 8520 8598 13 4.8675 8752 8828 8903 8978 9053 9127 9200 9273 9345 14 4.9416 94SS 9558 9628 9698 9767 9836 9904 9972 *0039 15 5.0106 0173 0239 0304 0370 0434 0499 0562 0626 0689 16 5.0752 0814 0876 0938 0999 1059 1120 1180 1240 1299 17 5.1358 P17 1475 1533 1591 1648 1705 1762 1818 1874 18 5.1930 1985 2040 2095 2149 2204 2257 2311 2364 2417 19 5.2470 2523 2575 2627 2679 2730 2781 2832 2883 2933 20 5.2983 3033 3083 3132 3181 3230 3279 3327 3375 3423 Note : loge 10 = 2,30258509. lege 100 = 4.60517019. 140 TABLES. The Common Logarithms of r (n) for Values of n between 1 and 2. r(n)= j x"-i-e-^dx= j log- dx. n 9^ o n o ho O r— » n 3^ o n 3; 2 0^ n 3; bO 1.01 1.9975 1.21 T.9617 1.41 1.9478 1.61 1.9517 1.81 1.9704 1.02 1.9951 1.22 1.9605 1.42 1.9476 1.62 1.9523 1.82 1.9717 1.03 1.9928 1.23 1.9594 1.43 1.9475 1.63 1.9529 1.83 1.9730 1.04 1.9905 1.24 1.9583 1.44 1.9473 1.64 1.9536 1.84 1.9743 1.05 1.9883 1.25 1.9573 1.45 1.9473 1.65 1.9543 1.85 1.9757 1.06 T.9862 1.26 1.9564 1.46 1.9472 1.66 1.9550 1.86 1.9771 1.07 T.9841 1.27 T.9554 1.47 1.9473 1.67 1.9558 1.87 1.9786 l.OS 1.9821 1.28 1.9546 1.48 1.9473 1.68 T.9566 1.88 1.9800 1.09 1.9802 1.29 1.9538 1.49 1.9474 1.69 1.9575 1.89 1.9815 1.10 1.9783 1.30 1.9530 1.50 1.9475 1.70 T.9584 1.90 1.9831 1.11 1.9765 1.31 T.9523 1.51 1.9477 1.71 1.9593 1.91 T.9846 1.12 1.9748 1.32 1.9516 1.52 1.9479 1.72 1.9603 1.92 1.9862 1.13 1.9731 1.33 1.9510 1.53 1.9482 1.73 1.9613 1.93 1.9878 1.14 1.9715 1.34 T.9505 1.54 1.9485 1.74 T.9623 1.94 1.9895 1.15 1.9699 1.35 1.9500 1.55 1.9488 1.75 1.9633 1.95 1.9912 1.16 1.9684 1.36 1.9495 1.56 1.9492 1.76 1.9644 1.96 T.9929 1.17 1.9669 1.37 1.9491 1.57 1.9496 1.77 T.9656 1.97, 1.9946 1.18 1.9655 1.38 1.9487 1.5S 1.9501 1.78 T.9667 1.98 1.9964 1.19 1.9642 1.39 1.9483 1.59 1.9506 1.79 1.9679 1.99 1.9982 1.20 1.9629 1.40 1.9481 1.60 1.9511 1.80 1.9691 200 0.0000 r(2 + i) = z-r(2), z>i. TABLES. 141 NATURAL TRIGONOMETRIC FUNCTIONS. Angle. Sin. Csc. Tan. Ctn, Sec. Cos. 0° 0.000 00 0.000 00 1.000 1.000 90° 1 0.017 57.30 0.017 57.29 1.000 1.000 89 2 0.035 28.65 0.035 28.64 1.001 0.999 88 3 0.052 19.11 0.052 19.08 1.001 0.999 87 4 0.070 14.34 0.070 14.30 1.002 0.998 86 5° 0.0S7 11.47 0.0S7 11.43 1.004 0.996 85° 6 0.105 9.567 0.105 9.514 1.006 0.995 84 7 0.122 8.206 0.123 8.144 1.008 0.993 83 8 0.139 7.185 0.141 7.115 1.010 0.990 82 9 0.156 6.392 0.158 6.314 1.012 0.988 81 10° 0.174 5.759 0.176 5.671 1.015 0.985 80° 11 0.191 5.241 0.194 5.145 1.019 0.982 79 12 0.208 4.810 0.213 4.705 1.022 0.978 78 13 0.225 4.445 0.231 4.331 1.026 0.974 77 14 0.242 4.134 0.249 4.011 1.031 0.970 76 15° 0.259 3.864 0.268 3.732 1.035 0.966 75° 16 0.276 3.628 0.287 3.487 1.040 0.961 74 17 0.292 3.420 0.306 3.271 1.046 0.956 73 18 0.309 3.236 0.325 3.078 1.051 0.951 72 19 0.326 3.072 0.344 2.904 1.058 0.946 71 20° 0.342 2.924 0.364 2.747 1.064 0.940 70° 21 0.358 2.790 0.384 2.605 1.071 0.934 69 22 0.375 2.669 0.404 2.475 1.079 0.927 68 23 0.391 2.559 0.424 2.356 1.086 0.921 67 24 0.407 2.459 0.445 2.246 1.095 0.914 66 25^ 0.423 2.366 0.466 2.145 1.103 0.906 65° 26 0.438 2.281 0.488 2.050 1.113 0.899 64 27 0.454 2.203 0.5 JO 1.963 1.122 0.891 63 28 0.469 2.130 0.532 1.881 1.133 0.883 62 29 0.485 2.063 0.554 1.804 1.143 0.875 61 30" 0.500 2.000 0.577 1.732 1.155 0.866 60° 31 0.515 1.942 0.601 1.664 1.167 0.857 59 32 0.530 1.8S7 0.625 1.600 1.179 0.848 58 33 0.545 1.836 0.649 1.540 1.192 0.839 57 34 0.559 1.788 0.675 1.483 1.206 0.829 56 35° 0.574 1.743 0.700 1.428 1.221 0.819 55° 36.. '37 ;^ S8 0.588 1.701 1 £.ilC%- ■■■ 0.727 1.376 -1.327 1.280 1.236 1.252 1.269 0.809 0.799 0.788 54 53 52 0.602 0.616 1.662 1.624 0.754- 0.781 39 0.629 1.589 0.810 1.235 1.287 0.777 51 40° 0.643 1.556 0.839 1.192 1.305 0.766 50° ' 41 0.656 1.524 0.869 1.150 1.325 0.755 49 42 0.669 1.494 0.900 1.111 1.346 0.743 48 43 0.682 1.466 0.933 1.072 1.367 0.731 47 44 0.695 1.440 0.966 1.036 1.390 0.719 46 45° 0.707 1.414 1.000 1.000 1.414 0.707 45° Cos. Sec. Ctn. Tan. Csc. Sin. Angle. 142 TABLES. Logarithms. N 1 2 3 4 5 6 7 8 9 P.P. 1.2- 3. 4- 5 lO 0000 0043 0086 0128 0170 0212 0253 0294 0334 0374 4- 8-12.17.21 11 0414 0453 0492 0531 0569 0607 0645 0682 0719 0755 4 8.11.10-19 12 0792 0828 0864 0899 0934 0969 1004 1038 1072 1106 3- 7-10. 14-17 13 1139 1173 1206 1239 1271 1303 1335 1367 1399 1430 3- 610.13.16 14 15 1461 1492 1523 1553 1584 1614 1044 1673 1703 1732 3. 6. 9.12.15 1761 1790 1818 1847 1875 1903 1931 1959 1987 2014 3. 6. 8-11.14 16 2041 2068 2095 2122 2148 2175 2201 2227 2253 2279 3. 5. 81113 17 2304 2330 2355 2380 2405 2430 2455 2480 2504 2529 2. 5- 7-10-12 18 2553 2577 2601 2625 2648 2672 2695 2718 2742 2765 2- 5- 7. 9-12 19 20 2788 2810 2833 2856 2878 2900 2923 2945 2967 2989 2. 4. 7. 911 3010 3032 3054 3075 3096 3118 3139 3160 3181 3201 2- 4- 6- 8 11 21 3222 3243 3263 3284 3304 3324 3345 3365 3385 3404 2. 4. 6. 810 22 3424 3444 3464 3483 3502 3522 3541 3560 3579 3598 2- 4. 6- 8.10 23 3617 3636 3655 3674 3692 3711 3729 3747 3766 3784 2. 4. 5- 7- 9 24 25 3802 3820 3838 3856 3874 3892 3909 3927 3945 3962 2- 4. 5- 7. 9 3979 3997 4014 4031 4048 4065 4082 4099 4110 4133 2 3. 5. 7. 9 26 4150 4166 4183 4200 4216 4232 4249 4265 4281 4298 2. 3. 5. 7. 8 27 4314 4330 4346 4362 4378 4393 4409 4425 4440 4456 2. 3. 5. 6- 8 28 4472 4487 4502 4518 4533 4548 4564 4579 4594 4609 2- 3. 5. 6. 8 29 30 4624 4639 4654 4669 4683 4698 4713 4728 4742 4757 1. 3- 4. 6. 7 4771 4786 4800 4814 4829 4843 4857 4871 4886 4900 1- 3. 4. 6. 7 31 4914 4928 4942 4955 4969 4983 4997 5011 5024 5038 1- 3- 4. 6- 7 32 5051 5065 5079 5092 5105 5119 5132 5145 5159 5172 1. 3. 4- 5- 7 33 5185 5198 5211 5224 5237 5250 5263 5276 5289 5302 1- 3. 4- 5. 6 34 35 5315 5328 5340 5353 5366 5378 5391 5403 5416 5428 1. 3- 4- 5- 6 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551 1- 2- 4- 5- 6 36 5563 5575 5587 5599 5611 5623 5635 5647 5658 5670 1- 2- 4. 5. 6 37 5682 5694 5705 5717 5729 5740 5752 5763 5775 5786 1-2. 3- 5. 6 38 5798 5809 5821 5832 58i3 5855 5866 5877 5888 5899 1- 2- 3. 5. 6 39 40 5911 5922 5933 5944 5955 5966 5977 5988 5999 6010 1- 2- 3. 4- 6 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117 1- 2- 3. 4. 5 41 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222 1- 2. 3. 4. 5 42 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325 1- 2- 3- 4. 5 43 6335 6345 6355 6365 6375 6385 6395 6405 6415 6425 1- 2. 3. 4- 5 44 45 6435 6444 6454 6464 6474 6484 6493 6503 6513 6522 1. 2. 3- 4- 5 6532 6542 6551 65G1 6571 6580 6590 6599 6809 6618 1. 2- 3. 4. 5 46 6628 6637 6646 6656 6665 6675 6684 6693 6702 6712 1. 2- 3- 4- 5 47 6721 6730 6739 6749 6758 6767 6776 6785 6794 6803 1. 2. 3. 4. 5 48 6812 6821 6830 6839 6848 6857 6366 6875 6884 6893 1. 2. 3 4. 4 49 50 6902 6911 6920 6928 6937 6946 6955 6964 6972 6981 1- 2- 3- 4- 4 6990 6998 7007 7016 7024 7033 7042 7050 7059 7067 1- 2. 3. 3. 4 51 7076 7084 7093 7101 7110 7118 7126 7135 7143 7152 1- 2- 3. 3. 4 52 7160 7168 7177 7185 7193 7202 7210 7218 7226 7235 1- 2- 2- 3. 4 53 7243 7251 7259 7267 7275 7284 7292 7300 7308 7316 1- 2. 2- 3. 4 54 7324 7332 7340 7348 7356 7364 7372 7380 7388 7396 1. 2- 2. 3. 4 NoTK. — This page and the three that follow it are taken from the Mathematical Tables of Prof. J. M. Peirce, published by ^Messrs. Ginn & Co. TABLES. Logarithms. 143 [ N 12 3 4 5 6 7 8 9 P P. 1. ^ • 3- 4. 5 55 7404 7412 7419 7427 7435 7443 7451 7459 7466 7474 J. 2 . 2. 3- 4 56 7482 7490 7497 7505 7513 7520 7528 7536 7543 7551 1-2 .23-4 57 7559 7566 7574 7582 7589 7597 7604 7612 7619 7627 1. 2 • 2. 3. 4 58 7634 7642 7649 7657 7664 7672 7679 7686 7694 7701 2-3. 4 59 60 7709 7716 7723 7731 7738 7745 7752 7760 7767 7774 2. 3 4 7782 7789 7796 7803 7810 7818 7825 7832 7839 7846 2-3.4 61 7853 7860 7868 7875 7882 7889 7896 7903 7910 7917 2.3-4 62 7924 7931 7938 7945 7952 7959 7966 7973 7980 7987 2.3.3 63 7993 8000 8007 8014 8021 8028 8035 8041 8048 8055 2.3- 3 64 65 8062 8069 8075 8082 8089 8096 8102 8109 8116 8122 2.3.3 8129 8136 8142 8149 8156 8162 8169 8176 8182 8189 2-3.3 66 8195 8202 8200 8215 8222 8228 8235 8241 8248 8254 2.3.3 67 8261 8267 8274 8280 8287 8293 8299 8306 8312 8319 2.3.3 68 8325 8331 8338 8344 8351 8357 8363 8370 8376 8382 2.3. 3 69 70 8388 8395 8401 8407 8414 8420 8426 8432 8439 8445 2. 3.3 8451 8457 8463 8470 8476 8482 8488 8494 8500 8506 2.2.3 71 8513 8519 8525 8531 8537 8543 8549 8555 8561 8567 2-2.3 72 8573 8579 8585 8591 8597 8603 8609 8615 8621 8627 2.2.3 73 8633 8639 8645 8651 8657 8663 8669 8675 8681 8686 2. 2-3 74 75 8692 8698 8704 8710 8716 8722 8727 8733 8739 8745 2-2.3 8751 8756 8762 8768 8774 8779 8785 8791 8797 8802 2.2.3 76 8808 8814 8820 8825 8831 8837 8842 8848 8854 8859 2-2-3 77 8865 8871 8876 8882 8887 8893 8899 8904 8910 8915 2.2.3 78 8921 8927 8932 8938 8943 8949 8954 8960 8965 8971 2.2.3 79 80 8976 8982 8987 8993 8998 9004 9009 9015 9020 9025 2- 2. 3 9031 9036 9042 9047 9053 9058 9063 9069 9074 9079 2-2.3 81 9085 9090 9096 9101 9106 9112 9117 9122 9128 9133 2.2.3 82 9138 9143 9149 9154 9159 9165 9170 9175 9180 9186 2.2-3 83 9191 9196 9201 9206 9212 9217 9222 9227 9232 9238 2.2-3 84 85 9243 9248 9253 9258 9263 9269 9274 9279 9284 9289 2.2.3 9294 9299 9304 9309 9315 9320 9325 9330 9335 9340 2 2.3 86 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 2-2.3 87 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 0. 1 1.2.2 88 9445 9450 9455 9460 9465 9469 9474 9479 9484 9489 0.1 1- 2-2 89 90 9494 9499 9504 9509 9513 9518 9523 9528 9533 9538 0. 1 1.2.2 9542 9547 9552 9557 9562 9566 9571 9576 9581 9586 0- 1 1.2.2 91 9590 9595 9600 9605 9609 9614 9619 9624 9628 9633 0. 1 1.2.2 92 9638 9643 9647 9652 9657 9661 9666 9671 9675 9680 0- 1 1.2-2 93 9685 9689 9694 9699 9703 9708 9713 9717 9722 9727 0- 1 1.2.2 94 95 9731 9736 9741 9745 9750 9754 9759 9763 9768 9773 1 1. 2- 2 9777 9782 9786 9791 9795 9800 9805 9809 9814 9818 0. 1 1.2.2 96 9823 9827 9832 9836 9841 9845 9850 9854 9859 9863 0. 1 1.2.2 97 9868 9872 9877 9881 9886 9890 9894 9899 9903 9908 0- 1 1.2.2 98 9912 9917 9921 9926 9930 9934 9939 9943 9948 9952 0- 1 . 1. 2. 2 99 9956 9961 9965 9969 9974 9978 9983 9987 9991 9996 0- 1 1.2-2 log !r= 0.49715- log e = 0.43429 - 144 TABLES. Logarithms. N T 2 3 4 5 6 7 8 9 10 100 0000 0004 0009 0013 0017 0022 0026 0030 0035 0039 0043 101 0043 0043 0052 0056 0060 0065 0069 0073 0077 0082 0086 102 0086 0090 0095 0099 0103 0107 0111 0116 0120 0124 0128 103 0128 0133 0137 0141 0145 0149 0154 0158 0162 0166 0170 104 105 0170 0175 0179 0183 0187 0191 0195 0199 0204 0208 0212 0212 0216 0220 0224 0228 0233 0237 0241 0245 0249 0253 106 0253 0257 0261 0265 0269 0273 0278 0282 0286 0290 0294 107 0294 0298 0302 0306 0310 0314 0318 0322 0326 0330 0334 108 0334 0338 0342 0346 0350 0354 0358 0362 0366 0370 0374 109 110 0374 0378 0382 0386 0390 0394 0398 0402 0406 0410 0414 0414 0418 0422 0426 0430 0434 0438 0441 0445 0449 0453 111 0453 0457 0461 0465 0469 0473 0477 0481 0484 0488 0492 112 0492 0496 0500 0504 0508 0512 0515 0519 0523 0527 0531 113 0531 0535 0538 0542 0546 0550 0554 0558 0561 0565 0569 114 115 0569 0573 0577 0580 0584 0588 0592 0596 0599 0603 0607 0607 0611 0615 0618 0622 0626 0630 0633 0637 0641 0645 116 0645 0648 0652 0656 0660 0663 0667 0671 0674 0678 0682 117 0682 0686 0689 0693 0697 0700 0704 0708 0711 0715 0719 118 0719 0722 0726 0730 0734 0737 0741 0745 0748 0752 1 0755 119 120 0755 0759 0763 0766 0770 0774 0777 0781 0785 0788 \ 0792 0792 0795 0799 0803 0806 0810 0813 0817 0821 0824 0828 121 0828 0831 0835 0839 0842 ' 0846 0849 0853 0856 0860 0864 122 0864 0867 0871 0874 0878 / 0881 0885 0888 0892 0896 0899 123 0899 0903 0906 0910 0913 0917 0920 0924 0927 0931 0934 124 125 0934 0938 0941 0945 0948 0952 0955 0959 0962 0966 0969 0969 0973 0976 0980 0983 0986 0990 0993 0997 1000 1004 126 1004 1007 1011 1014 1017 1021 1024 1028 1031 1035 1038 127 1038 1041 1045 1048 1052 1055 1059 1062 1065 1069 1072 128 1072 1075 1079 1082 1086 1089 1092 1096 1099 1103 1106 129 130 1106 1109 1113 1116 1119 1123 1126 1129 1133 1136 1139 1139 1143 1146 1149 1153 1156 1159 1163 1166 1169 1173 131 1173 1176 1179 1183 1186 1189 1193 1196 1199 1202 1206 132 1208 1209 1212 1216 1219 1222 1225 1229 1232 1235 1239 133 1239 1242 1245 1248 1252 1255 1258 1261 1265 1268 1271 134 135 1271 1274 1278 1281 1284 1287 1290 1294 1297 1300 1303 1303 1307 1310 1313 1316 1319 1323 1326 1329 1332 1335 136 1335 1339 1342 1345 1348 1351 1355 1358 1361 1364 1367 137 1367 1370 1374 1377 1380 1383 1386 1389 1392 1396 1399 138 1399 1402 1405 1408 1411 1414 1418 1421 1424 1427 1430 139 140 1430 1433 1436 1440 1443 1446 1449 1452 1455 1458 1461 1461 1464 1467 1471 1474 1477 1480 1483 1486 1489 1492 141 1492 1495 1498 1501 1504 1508 1511 1514 1517 1520 1523 142 1523 1526 1529 1532 1535 1538 1541 1544 1547 1550 1553 143 1553 1556 1559 1562 1565 1569 1572 1575 1578 1581 1584 144 145 1584 1587 1590 1593 1596 1599 1602 1605 1608 1611 1614 1614 1617 1620 1623 1626 1629 1632 1635 1638 1641 1644 146 1644 1647 1649 1652 1655 1658 1661 1664 1667 1670 1673 147 1673 1676 1679 1682 1685 1688 1691 1694 1697 1700 1703 148 1703 1706 1708 1711 1714 1717 1720 1723 1726 1729 1732 149 1732 1735 1738 1741 1744 1746 1749 1752 1755 1758 1761 TABLES. Logarithms. 145 N 1 2 3 4 5 6 7 8 9 10 150 1761 1764 1767 1770 1772 1775 1778 1781 1784 1787 1790 151 1790 1793 1796 1798 1801 1804 1807 1810 1813 1816 1818 152 1818 1821 1824 1827 1830 1833 1836 1838 1841 1844 1847 153 1847 1850 1853 1855 1858 1861 1864 1867 1870 1872 1875 154 155 1875 1878 1881 1884 1886 1889 1892 1895 1898 1901 1903 1903 1906 1909 1912 1915 1917 1920 1923 1926 1928 1931 156 1931 1934 1937 1940 1942 1945 1948 1951 1953 1956 1959 157 1959 1962 1965 1967 1970 1973 1976 1978 1981 1984 1987 158 1987 1989 1992 1995 1998 2000 2003 2006 2009 2011 2014 159 160 2014 2017 2019 2022 2025 2028 2030 2033 2036 2038 2041 2041 2044 2047 2049 2052 2055 2057 2060 2063 2066 2068 161 2068 2071 2074 2076 2079 2082 2084 2087 2090 2092 2095 162 2095 2098 2101 2103 2106 2109 2111 2114 2117 2119 2122 163 2122 2125 2127 2130 2133 2135 2138 2140 2143 2146 2148 164 165 2148 2151 2154 2156 2159 2162 2164 2167 2170 2172 2175 2175 2177 2180 2183 2185 2188 2391 2193 2196 2198 2201 166 2201 2204 2206 2209 2212 2214 2217 2219 2222 2225 2227 167 2227 2230 2232 2235 2238 2240 2243 2245 2248 2251 2253 168 2253 2256 2258 2261 2263 2266 2269 2271 2274 2276 2279 169 170 2279 2281 2284 2287 2289 2315 2292 2294 2297 2299 2302 2304 2330 2304 2307 2310 2312 2317 2320 2322 2325 2327 171 2330 2333 2335 2338 2340 2343 2345 2348 2350 2353 2355 172 2355 2358 2360 2363 2305 2368 2370 2373 2375 2378 2380 173 2380 2383 2385 2388 2390 2393 2395 2398 2400 2403 2405 174 175 2405 2408 2410 2413 2415 2418 2420 2423 2425 2428 2430 2430 2433 2435 2438 2440 2443 2445 2448 2450 2453 2455 176 2455 2458 2460 2463 2465 2467 2470 2472 2475 2477 2480 177 2480 2482 2485 2487 2490 2492 2494 2497 2499 2502 2504 178 2504 2507 2509 2512 2514 2516 2519 2521 2524 2526 2529 179 180 2529 2531 2533 2536 2538 2541 2543 2545 2548 2550 2553 2553 2555 2558 2560 2562 ' 2565 2567 2570 2572 2574 2577 181 2577 2579 2582 2584 2586 2589 2591 2594 2596 2598 2601 182 2601 2603 2605 2608 2610 2613 2615 2617 2620 2622 2625 183 2625 2627 2629 2632 2634 2636 2639 2641 2643 2646 2648 184 185 2648 2651 2653 2655 2658 2660 2662 2665 2667 2669 2672 2672 2674 2676 2679 2681 2083 2686 2688 2690 2693 2695 186 2695 2697 2700 2702 2704 2707 2709 2711 2714 2716 2718 187 2718 2721 2723 2725 2728 2730 2732 2735 2737 2739 2742 188 2742 2744 2746 2749 2751 2753 2755 2758 2760 2762 2765 189 190 2765 2767 2769 2772 2774 2776 2778 2781 2783 2785 2788 2788 2790 2792 2794 2797 2799 2801 2804 2806 2808 2810 191 2810 2813 2815 2817 2819 2822 2824 2826 2828 2831 2833 192 2833 2835 2838 2840 2842 2844 2847 2849 2851 2853 2856 193 2856 2858 2860 2862 2865 2867 2869 2871 2874 2876 2878 194 195 2878 2880 2882 2885 2887 2889 2891 2894 2896 2898 2900 2900 2903 2905 2907 2909 2911 2914 2916 2918 2920 2923 196 2923 2925 2927 2929 2931 2934 2936 2938 2940 2942 2945 197 2945 2947 2949 2951 2953 2956 2958 2960 2962 2964 2967 198 2967 2969 2971 2973 2975 2978 2980 2982 2984 2986 2989 199 2989 2991 2993 2995 2997 2999 3002 3004 3006 3008 3010 146 TABLES. Trigonometric Functions. RADIANS. DEGREES. SINES. COSINES. TANGENTS. COTANGENTS. Nat. Log. Nat. Log. Nat. Log. Nat. Log. 0.0000 0°00' .0000 CO 1.0000 0.0000 .0000 00 CO CO 90° 00' 1.5708 0.0029 10 .0029 7.4637 1.0000 .0000 .0029 7.4637 343.77 2.5363 50 1.5679 0.0058 20 .0058 .7648 1.0000 .0000 .0058 .7648 171.89 .2352 40 1.5650 0.0087 30 .0087 .9408 1.0000 .0000 .0087 .9409 114.59 .0591 30 1.5621 0.0116 40 .0116 8.0658 .9999 .0000 .0116 8.0658 85.940 1.9342 20 1.5592 0.0145 50 .0145 .1627 .9999 .0000 .0145 .1627 68.750 .8373 10 1.5563 0.0175 POO' .0175 8.2419 .9998 9.9999 .0175 8.2419 57.290 1.7581 89° 00' 1.5533 0.02(H 10 .0204 .3088 .9998 .9999 .0204 .3089 49.104 .6911 50 1.5504 0.0233 20 .0233 .3668 .9997 .9999 .0233 .3669 42.964 .6331 40 1.5475 0.0262 30 .0262 .4179 .9997 .9999 .0262 .4181 38.188 .5819 30 1.5446 0.0291 40 .0291 .4637 .9996 .9998 .0291 .4638 34.368 .5362 20 1.5417 0.0320 50 .0320 .5050 .9995 .9998 .0320 .5053 31.242 .4947 10 1.5388 0.0349 2° 00' .0349 8.5428 .9994 9.9997 .0349 8.5431 28.636 1.4569 88° 00' 1.5359 0.0378 10 .0378 .5776 .9993 .9997 .0378 .5779 26.432 .4221 50 1.5330 0.0407 20 .0407 .6097 .9992 .9996 .0407 .6101 24.542 .3899 40 1.5301 0.0436 30 .0436 .6397 .9990 .9996 .0437 .6401 22.904 .3599 30 1.5272 0.0465 40 .0465 .6677 .9989 .9995 .0466 .6682 21.470 .3318 20 1.5243 0.0495 50 .0494 .6940 .9988 .9995 .0495 .6945 20.206 .3055 10 1.5213 0.0524 3° 00' .0523 8.7188 .9986 9.9994 .0524 8.7194 19.081 1.2806 87° 00' 1.5184 0.0553 10 .0552 .7423 .9985 .9993 .0553 .7429 18.075 .2571 50 1.5155 0.0582 20 .0581 .7645 .9983 .9993 .0582 .7652 17.169 .2348 40 1.5126 0.0611 30 .0610 .7857 .9981 .9992 .0612 .7865 16.350 .2135 30 1.5097 0.0640 40 .0640 .8059 .9980 .9991 .0641 .8067 15.605 .1933 20 1.5068 0.0669 50 .0669 .8251 .9978 .9990 .0670 .8261 14.924 .1739 10 1.5039 0.0698 4° 00' .0698 S.S436 .9976 9.9989 .0699 8.8446 14.301 1.1554 86° 00' 1.5010 0.0727 10 .0727 .8613 .9974 .9989 .0729 .8624 13.727 .1376 50 1.4981 0.0756 20 .0756 .8783 .9971 .9988 .0758 .8795 13.197 .1205 40 1.4952 0.0785 30 .0785 .8946 .9969 .9987 .0787 .8960 12.706 .1040 30 1.4923 0.0814 40 .0814 .9104 .9967 .9986 .0816 .9118 12.251 .0882 20 1.4893 0.0844 50 .0843 .9256 .9964 .9985 .0846 .9272 11.826 .0728 10 1.4864 0.0873 5°00' .0872 8.9403 .9962 9.9983 .0875 8.9420 11.430 1.0580 85° 00' 1.4835 0.0902 10 .0901 .9545 .9959 .9982 .0904 .9563 11.059 .0«7 50 1.4806 0.0931 20 .0929 .9682 .9957 .9981 .0934 .9701 ]0.712 .0299 40 1.4777 0.0960 30 .0958 .9816 .9954 .9980 .0963 .9836 10.385 .0164 30 1.4748 0.0989 40 .0987 .9945 .9951 .9979 .0992 .9966 10.078 .0034 20 1.4719 0.1018 50 .1016 9.0070 .9948 .9977 .1022 9.0093 9.7882 0.9907 10 1.4690 0.1047 6° 00' .1045 9.0192 .9945 9.9976 .1051 9.0216 9.5144 0.9784 84° 00' 1.4661 0.1076 10 1074 .0311 .9942 .9975 .1080 .0336 9.2553 .9664 50 1.4632 0.1105 20 .1103 .0426 .9939 .9973 .1110 .0453 9.0098 .9547 40 1.4603 0.1134 30 .1132 .0539 .9936 .9972 .1139 .0567 8.7769 .9433 30 1.4574 0.1164 40 .1161 .0648 .9932 .9971 .1169 .0678 8.5555 .9322 20 1.4544 0.1193 50 .1190 .0755 .9929 .9969 .1198 .0786 8.3450 .9214 10 1.4515 0.1222 7° 00' .1219 9.0859 .9925 9.9968 .1228 9.0891 8.1443 0.9109 83° 00' 1.4486 0.1251 10 .1248 .0961 .9922 .9966 .1257 .0995 7.9530 .9005 50 1.4457 0.1280 20 .1276 .1060 .9918 .9964 .1287 .1096 7.7704 .8904 40 1.4428 0.1309 30 .1305 .1157 .9914 .9963 .1317 .1194 7.5958 .8806 30 1.4399 0.1338 40 .1334 .1252 .9911 .9961 .1346 .1291 7.4287 .8709 20 1.4370 0.1367 50 .1363 .1345 .9907 .9959 .1376 .1385 7.2687 .8615 10 1.4341 0.1396 8° 00' .1392 9.1436 .9903 9.9958 .1405 9.1478 7.1154 0.8522 82° 00' 1.4312 0.1425 10 .1421 .1525 .9899 .9956 .1435 .1569 6.9682 .8431 50 1.4283 0.1454 20 .1449 .1612 .9894 .9954 .1465 .1658 6.8269 .8342 40 1.4254 0.1484 30 .1478 .1697 .9890 .9952 .1495 .1745 6.6912 .8255 30 1.4224 0.1513 40 .1507 .1781 .9886 .9950 .1524 .1831 6.5606 .8169 20 1.4195 0.1542 50 .1536 .1863 .9881 .9948 .1554 .1915 6.4348 .8085 10 1.4166 0.1571 9° 00' .1564 9.1943 .9877 9.9946 .1584 9.1997 6.3138 0.8003 81° 00' 1.4137 Nat. Log. Nat. Log. Nat. Log. Nat. Log. ■^ COSINES. SINES. COTANGENTS. TANGENTS. DEGREES. RADIANS. TABLES. 147 Trigonometric Functions. RADIANS. DEGREES. SINES. COSINES. TANGENTS. COTANGENTS. Nat. Log. Nat. Log. Nat. Log. Nat. Log. 0.1571 9° 00' .1564 9.1943 .9877 9.9946 .1584 9.1997 6.3138 0.8003 81° 00' 1.4137 0.1600 10 .1593 .2022 .9872 .9944 .1614 .2078 6.1970 .7922 50 1.4108 0.1629 20 .1622 .2100 .9868 .9942 .1644 .2158 6.0S44 .7842 40 1.4079 0.1658 30 .1650 .2176 .9863 .9940 .1673 .2236 5.9758 .7764 30 1.4050 0.1687 40 .1679 .2251 .9858 .9938 .1703 .2313 5.8708 .7687 20 1.4021 0.1716 50 .1708 .2324 .9853 .9936 .1733 .2389 5.7694 .7611 10 1.3992 0.1745 10° 00' .1736 9.2397 .9848 9.9934 .1763 9.2463 5.6713 0.7537 80° 00' 1.3963 0.1774 10 .1765 .2468 .9843 .9931 .1793 .2536 5.5764 .7464 50 1.3934 0.1804 20 .1794 .2538 .9838 .9929 .1823 .2609 5.4845 .7391 40 1.3904 0.1833 30 .1822 .2606 .9833 .9927 .1853 .2680 5.3955 .7320 30 1.3875 0.1862 40 .1851 .2674 .9827 .9924 .1883 .2750 5.3093 .7250 20 1.3846 0.1891 50 .1880 .2740 .9822 .9922 .1914 .2819 5.2257 .7181 10 1.3817 0.1920 11° 00' .1908 9.2806 .9816 9.9919 .1944 9.2S87 5.1446 0.7113 79° 00' 1.3788 0.1949 10 .1937 .2870 .9811 .9917 .1974 .2953 5.0658 .7047 50 1.3759 0.1978 20 .1965 .2934 .9805 .9914 .2004 .3020 4.9894 .6980 40 1.3730 0.2007 30 .1994 .2997 .9799 .9912 .2035 .3085 4.9152 .6915 30 1.3701 0.2036 40 .2022 .3058 .9793 .9909 .2065 .3149 4.8430 .6851 20 1.3672 0.2065 50 .2051 .3119 .9787 .9907 .2095 .3212 4.7729 .6788 10 1.3643 0.2094 12° 00' .2079 9.3179 .9781 9.9904 .2126 9.3275 4.7046 0.6725 78° 00' 1.3614 0.2123 10 .2108 .3238 .9775 .9901 .2156 .3336 4.6382 .6664 50 1.3584 0.2153 20 .2136 .3296 .9769 .9899 .2186 .3397 4.5736 .6603 40 1.3555 0.2182 30 .2164 .3353 .9763 .9896 .2217 .3458 4.5107 .6542 30 1.3526 0.2211 40 .2193 .3410 .9757 .9893 .2247 .3517 4.4494 .6483 20 1.3497 0.2240 50 .2221 .3466 .9750 .9890 .2278 .3576 4.3897 .6424 10 1.3468 0.2269 13° 00' .2250 9.3521 .9744 9.9887 .2309 9.3634 4.3315 0.6366 77° 00' 1.3439 0.2298 10 .2278 .3575 .9737 .9884 .2339 .3691 4.2747 .6309 50 1.3410 0.2327 20 .2306 .3629 .9730 .9881 .2370 .3748 4.2193 .6252 40 1.3381 0.2356 30 .2334 .3682 .9724 .9878 .2401 .3804 4.1653 .6196 30 1.3352 0.2385 40 .2363 .3734 .9717 .9875 .2432 .3859 4.1126 .6141 20 1.3323 0.2414 50 .2391 .3786 .9710 .9872 .2462 .3914 4.0611 .6086 10 1.3294 0.2443 14° 00' .2419 9.3837 .9703 9.9869 .2493 9.3968 4.0108 0.6032 76° 00' 1.3265 0.2473 10 .2447 .3887 .9696 .9866 .2524 .4021 3.9617 .5979 50 1.3235 0.2502 20 .2476 .3937 .9689 .9863 .2555 .4074 3.9136 .5926 40 1.3206 0.2531 30 .2504 .3986 .9681 .9859 .2586 .4127 3.8667 .5873 30 1.3177 0.2560 40 .2532 .4035 .9674 .9856 .2617 .4178 3.8208 .5822 20 1.3148 0.2589 50 .2560 .4083 .9667 .9853 .2648 .4230 3.7760 .5770 10 1.3119 0.2618 15° 00' .2588 9.4130 .9659 9.9849 .2679 9.4281 3.7321 0.5719 75° 00' 1.3090 0.2647 10 .2616 .4177 .9652 .9846 .2711 .4331 3.6891 .5669 50 1.3061 0.2676 20 .2644 .4223 .9644 .9843 .2742 .4381 3.6470 .5619 40 1.3032 0.2705 30 .2672 .4269 .9636 .9839 .2773 .4430 3.6059 .5570 30 1.3003 0.2734 40 .2700 .4314 .9628 .9836 .2805 .4479 3.5656 .5521 20 1.2974 0.2763 50 .2728 .4359 .9621 .9832 .2836 .4527 3.5261 .5473 10 1.2945 0.2793 16° 00' .2756 9.4403 .9613 9.9828 .2867 9.4575 3.4874 0.5425 74° 00' 1.2915 0.2822 10 .2784 .4447 .9605 .9825 .2899 .4622 3.4495 .5378 50 1.2886 0.2851 20 .2812 .4491 .9596 .9821 .2931 .4669 3.4124 .5331 40 1.2857 0.2880 30 .2840 .4533 .9588 .9817 .2962 .4716 3.3759 .5284 30 1.2828 0.2909 40 .2868 .4576 .9580 .9814 .2994 .4762 3.3402 .5238 20 1.2799 0.2938 50 .2896 .4618 .9572 .9810 .3026 .4808 3.3052 .5192 10 1.2770 0.2967 17° 00' .2924 9.4659 .9563 9.9806 .3057 9.4853 3.2709 0.5147 73° 00' 1.2741 0.2996 10 .2952 .4700 .9555 .9802 .3089 .4898 3.2371 .5102 50 1.2712 0.3025 20 .2979 .4741 .9546 .9798 .3121 .4943 3.2041 .5057 40 1.2683 0.3054 30 .3007 .4781 .9537 .9794 .3153 .4987 3.1716 .5013 30 1.2654 0.3083 40 .3035 .4821 .9528 .9790 .3185 .5031 3.1397 .4969 20 1.2625 0.3113 50 .3062 .4861 .9520 .9786 .3217 .5075 3.1084 .4925 10 1.2595 0.3142 18° 00' .3090 9.4900 .9511 9.9782 .3249 9.5118 3.0777 0.4882 72° 00' 1.2566 Nat. Log. Nat. Log. Nat. Log. Nat. Log. COSINES. SINES. COTANGENTS. TANGENTS. DEGREES. RADIANS. 148 TABLES. Trigonometric Functions. RADIANS. DEGREES. SINES. COSINES. TANGENTS. COTANGENTS. Nat. Log. Nat. Log. Nat. Log. i Nat. Log. 0.3142 18° 00' .3090 9.4900 .9511 9.9782 .3249 9.5118 3.0777 0.4882 72° 00' 1.2566 0.3171 10 .3118 .4939 .9502 .9778 .3281 .5161 3.0475 .4839 50 1.2537 0.3200 20 .3145 .4977 .9492 .9774 .3314 .5203 3.0178 .4797 40 1.2508 0.3229 30 .3173 .5015 .9483 .9770 .3346 .5245 ' 2.9887 .4755 30 1.2479 0.3258 40 .3201 .5052 .9474 .9765 .3378 .5287 2.9600 .4713 20 1.2450 0.3287 50 .3228 .5090 .9465 .9761 .3411 .5329 2.9319 .4671 10 1.2421 0.3316 19° 00' .3256 9.5126 .9455 9.9757 .3443 9.5370 2.9042 0.4630 71° 00' 1.2392 0.3345 10 .3283 .5163 .9446 .9752 .3476 .5411 2.8770 .4589 50 1.2363 0.3374 20 .3311 .5199 .9436 .9748 .3508 .5451 2.8502 .4549 40 1.2334 0.3403 30 .3338 .5235 .9426 .9743 .3541 .5491 2.8239 .4509 30 1.2305 0.3432 40 .3365 .5270 .9417 .9739 .3574 .5531 2.7980 .4469 20 1.2275 0.3462 50 .3393 .5306 .9407 .9734 .3607 .5571 2.7725 .4429 10 1.2246 0.3491 20° 00' .3420 9.5341 .9397 9.9730 .3640 9.5611 2.7475 0.4389 70° 00' 1.2217 0.3520 10 .3448 .5375 .9387 .9725 .3673 .5650 2.7228 .4350 SO 1.2188 0.3549 20 .3475 .5409 .9377 .9721 .3706 .5689 2.6985 .4311 40 1.2159 0.3578 30 .3502 .5443 .9367 .9716 .3739 .5727 2.6746 .4273 30 1.2130 0.3607 40 .3529 .5477 .9356 .9711 .3772 .5766 2.6511 .4234 20 1.2101 0.3636 50 .3557 .5510 .9346 .9706 .3805 .5804 2.6279 .4196 10 1.2072 0.3665 21° 00' .3584 9.5543 .9336 9.9702 .3839 9.5842 2 6051 0.4158 69° 00' 1.2043 0.3694 10 .3611 .5576 .9325 .9697 .3872 .5879 2.5826 .4121 50 1.2014 0.3723 20 .3638 .5609 .9315 .9692 .3906 .5917 2.5605 .4083 40 1.1985 0.3752 30 .3665 .5641 .9304 .9687 .3939 .5954 25386 .4046 30 1.1956 0.3782 40 .3692 .5673 .9293 .9682 .3973 .5991 2.5172 .4009 20 1.1926 0.3811 50 .3719 .5704 .9283 .9677 .4006 .6028 2.4960 .3972 10 1.1897 0.3840 22° 00' .3746 9.5736 .9272 9.9672 .4040 9.6064 2.4751 0.3936 68° 00' 1.1868 0.3869 10 .3773 .5767 .9261 .9667 .4074 .6100 2.4545 .3900 50 1.1839 0.3898 20 .3800 .5798 .9250 .9661 .4108 .6136 2.4342 .3864 40 1.1810 0.3927 30 .3827 .5828 .9239 .9656 .4142 .6172 2.4142 .3828 30 1.1781 0.3956 40 .3854 .5859 .9228 .9651 .4176 .6208 2.3945 .3792 20 1.1752 0.3985 SO .3831 .5889 .9216 .9646 .4210 .6243 23750 .3757 10 1.1723 0.4014 23° 00' .3907 9.S919 .9205 9.9640 .4245 9.6279 2.3559 0.3721 67° 00' 1.1694 0.4043 10 .3934 .5948 .9194 .9635 .4279 .6314 2.3369 .3686 SO 1.1665 0.4072 20 .3961 .5978 .9182 .9629 .4314 .6348 2.3183 .3652 40 1.1636 0.4102 30 .3987 .6007 .9171 .9624 .4348 .6383 2.2998 .3617 30 1.1606 0.4131 40 .4014 , .6036 .9159 .9618 .4383 .6417 2.2817 .3583 20 1.1577 0.4160 50 .4041 .6065 .9147 .9613 .4417 .6452 2.2637 .3548 10 1.1548 0.4189 24° 00' .4067 9.6093 .9135 9.9607 .4452 9.6486 2.2460 0.3514 66° 00' 1.1519 0.4218 10 .4094 .6121 .9124 .9602 .4487 .6520 2.2286 .3480 SO 1.1490 0.4247 20 .4120 .6149 .9112 .9596 .4522 .6553 2.2113 .3447 40 1.1461 0.4276 30 .4147 .6177 .9100 .9590 .4557 .6587 2.1943 .3413 30 1.1432 0.4305 40 .4173 .6205 .9088 .9584 .4592 .6620 2.1775 .3380 20 1.1403 0.4334 50 .4200 .6232 .9075 .9579 .4628 .6654 2.1609 .3346 10 1.1374 0.4363 25° 00' .4226 9.6259 .9063 9.9573 .4663 9.6687 2 1445 0.3313 65° 00' 1.1345 0.4392 10 .4253 .6286 .9051 .9567 .4699 .6720 2.1283 .3280 50 1.1316 0.4422 20 .4279 .6313 .9038 .9561 .4734 .6752 2.1123 .3248 40 1.1286 0.4451 30 .4305 .6340 .9026 .9555 .4770 .6785 2.0965 .3215 30 1.1257 0.4480 40 .4331 .6366 .9013 .9549 .4806 .6817 2.0809 .3183 20 1.1228 0.4509 50 .4358 .6392 .9001 .9543 .4841 .6850 2.0655 .3150 10 1.1199 0.4538 26° 00' .4384 9.6418 .8988 9.9537 .4877 9.6882 2.0503 0.3118 64° 00' 1.1170 0.4567 10 .4410 .6444 .8975 .9530 .4913 .6914 2.0353 .3086 50 1.1141 0.4596 20 .4436 .6470 .8962 .9524 .4950 .6946 2.0204 .3054 40 1.1112 0.4625 30 .4462 .6495 .8949 .9518 .4986 .6977 2.0057 .3023 30 1.1083 0.4654 40 .4488 .6521 .8936 .9512 .5022 .7009 1.9912 .2991 20 1.1054 0.4683 SO .4514 .6546 .8923 .9505 .5059 .7040 1.9768 .2960 10 1.1025 0.4712 27° 00' .4540 9.6570 .8910 9.9499 .5095 9.7072 1.9626 0.2928 63° 00' 1.0996 Nat. Log. Nat. Log. Nat. Log. Nat. Log. COSINES. SINES. COTANGENTS. TANGENTS. DEGREES. RADIANS. TABLES. 149 Trigonometric Functions. RADIANS. DEGREES. SINES. COSINES. TANGENTS. COTANGENTS. Nat. Log. Nat. Log. Nat. Log. Nat. Log. 0.4712 27° 00' .4540 9.6570 .8910 9.9499 .5095 9.7072 1.9626 0.2928 63° 00' 1.0996 0.4741 10 .4566 .6595 .8897 .9492 .5132 .7103 1.9486 .2897 50 1.0966 0.4771 20 .4592 .6620 .8884 .9486 .5169 .7134 1.9347 .2866 40 1.0937 0.4800 30 .4617 .6644 .8870 .9479 .5206 ,7165 1.9210 .2835 30 1.0908 0.4829 40 .4643 .6668 .8857 .9473 .5243 .7196 1.9074 .2804 20 1.0879 0.4858 50 .4669 .6692 .8843 .9466 .5280 .7226 1.8940 .2774 10 1.0850 0.4887 28° 00' .4695 9.6716 .8829 9.9459 .5317 9.7257 1.8807 0.2743 62° 00' 1.0821 0.4916 10 .4720 .6740 .8816 .9453 .5354 .7287 1.8676 .2713 50 1.0792 0.4945 20 .4746 .6763 .8802 .9446 .5392 .7317 1.8546 .2683 40 1.0763 0.4974 30 .4772 .6787 .8788 .9439 .5430 .7348 1.8418 .2652 30 1.0734 0.5003 40 .4797 .6810 .8774 .9432 .5467 .7378 1.8291 .2622 20 1.0705 0.5032 50 .4823 .6833 .8760 .9425 .5505 .7408 1.S165 .2592 10 1.0676 0.5061 29° 00' .4848 9.6856 .8746 9.9418 .5543 9.7438 1.8040 0.2562 61° 00' 1.0647 0.5091 10 .4874 .6878 .8732 .9411 .5581 .7467 1.7917 .2533 50 1.0617 0.5120 20 .4899 .6901 .8718 .9404 .5619 .7497 1.7796 .2503 40 1.0588 0.5149 30 .4924 .6923 .8704 .9397 .5658 .7526 1.7675 .2474 30 1.0559 0.5178 40 .4950 .6946 .8689 .9390 .5696 .7556 1.7556 .2444 20 1.0530 0.5207 50 .4975 .6968 .8675 .9383 .5735 .7585 1.7437 .2415 10 1.0501 0.5236 30° 00' .5000 9.6990 .8660 9.9375 .5774 9.7614 1.7321 0.2386 60° 00' 1.0472 0.5265 10 .5025 .7012 .8646 .9368 .5812 .7644 1.7205 .2356 50 1.0443 0.5294 20 .5050 .7033 .8631 .9361 .5851 .7673 1.7090 .2327 40 1.0414 0.5323 30 .5075 .7055 .8616 .9353 .5890 .7701 1.6977 .2299 30 1.0385 0.5352 40 .5100 .7076 .8601 .9346 .5930 .7730 1.6864 .2270 20 1.0356 0.5381 50 .5125 .7097 .8587 .9338 .5969 .7759 1.6753 .2241 10 1.0327 0.5411 31° 00' .5150 9.7118 .8572 9.9331 .6009 9.7788 1.6643 0.2212 59° 00' 1.0297 0.5440 10 .5175 .7139 .8557 .9323 .6048 .7816 1.6534 .2184 50 1.0268 0.5469 20 .5200 .7160 .8542 .9315 .6088 .7845 1.6426 .2155 40 1.0239 0.5498 30 .5225 .7181 .8526 .9.308 .6128 .7873 1.6319 .2127 30 1.0210 0.5527 40 .5250 .7201 .8511 .9300 .6168 .7902 1.6212 .2098 20 1.0181 0.5556 50 .5275 .7222 .8496 .9292 .6208 .7930 1.6107 .2070 10 1.0152 0.5585 32° 00' .5299 9.7242 .8480 9.9284 .6249 9.7958 1.6003 0.2042 58° 00' 1.0123 0.5614 10 .5324 .7262 .8465 .9276 .6289 .7986 1.5900 .2014 50 1.0094 0.5643 20 .5348 .7282 .8450 .9268 .6330 .8014 1.5798 .1986 40 1.0065 0.5672 30 .5373 .7302 .8434 .9260 .6371 .8042 1.5697 .1958 30 1.0036 0.5701 40 .5398 .7322 .8418 .9252 .6412 .8070 1.5597 .1930 20 1.0007 0.5730 50 .5422 .7342 .8403 .9244 .6453 .8097 1.5497 .1903 10 0.9977 0.5760 33° 00' .5446 9.7361 .8387 9.9236 .6494 9.8125 1.5399 0.1875 57° 00' 0.9948 0.5789 10 .5471 .7380 .8371 .9228 .6536 .8153 1.5301 .1847 50 0.9919 0.5818 20 .5495 .7400 .8355 .9219 .6577 .8180 1.5204 .1820 40 0.9890 0.5847 30 .5519 .7419 .8339 .9211 .6619 .8208 1.5108 .1792 30 0.9861 0.5876 40 .5544 .7438 .8323 .9203 .6661 .8235 1.5013 .1765 20 0.9832 0.5905 50 .5568 .7457 .8307 .9194 .6703 .8263 1.4919 .1737 10 0.9803 0.5934 34° 00' .5592 9.7476 .8290 9.9186 .6745 9.8290 1.4826 0.1710 56° 00' 0.9774 0.5963 10 .5616 .7494 .8274 .9177 .6787 .8317 1.4733 .1683 50 0.9745 0.5992 20 .5640 .7513 .8258 .9169 .6830 .8344 1.4641 .1656 40 0.9716 0.6021 30 .5664 .7531 .8241 .9160 .6873 .8371 1.4550 .1629 30 0.9687 0.6050 40 .5688 .7550 .8225 .9151 .6916 .8398 1.4460 .1602 20 0.9657 0.6080 50 .5712 .7568 .8208 .9142 .6959 .8425 1.4370 .1575 10 0.9628 0.6109 35° 00' .5736 9.7586 .8192 9.9134 .7002 9.8452 1.4281 0.1548 55° 00' 0.9599 0.6138 10 .5760 .7604 .8175 .9125 .7046 .8479 1.4193 .1521 50 0.9570 0.6167 20 .5783 .7622 .8158 .9116 .7089 .8506 1.4106 .1494 40 0.9541 0.6196 30 .5807 .7640 .8141 .9107 .7133 .8533 1.4019 .1467 30 0.9512 0.6225 40 .5831 .7657 .8124 .9098 .7177 .8559 1.3934 .1441 20 0.9483 0.6254 50 .5854 7675 .8107 .9089 .7221 .8586 1.3848 .1414 10 0.9454 0.6283 36° 00' .5878 9.7692 .8090 9.9080 .7265 9.8613 1.3764 0.1387 54° 00' 0.9425 Nat. Log. Nat. Log. Nat. Log. Nat. Log. COSINES. SINES. COTANGENTS. TANGENTS. DEGREES. RADIANS. 150 TABLES. Trigonometric Functions. RADIANS. DEGREES. SINES. COSINES. TANGENTS. COTANGENTS. Nat. Log. Nat. Log. Nat. Log. Nat. Log. 0.62S3 36° 00' .5878 9.7692 .8090 9.9080 .7265 9.8613 1.3764 0.13S7 54° 00' 0.9425 0.6312 10 .5901 .7710 .8073 .9070 .7310 .8639 1.3680 .1361 50 0.9396 0.6341 20 .5925 .7727 .8056 .9061 .7355 .8666 1.3597 .1334 40 0.9367 0.6370 30 .5948 .7744 .8039 .9052 .7400 .8692 1.3514 .1308 30 0.9338 0.6400 40 .5972 .7761 .8021 .9042 .7445 .8718 1.3432 .1282 20 0.9308 0.6429 50 .5995 .7778 .8004 .9033 .7490 .8745 1.3351 .1255 10 0.9279 0.6458 37° 00' .6018 9.7795 .7986 9.9023 .7536 9.8771 1.3270 0.1229 53° 00' 0.9250 0.64S7 10 .6041 .7811 .7969 .9014 .7581 .8797 1.3190 .1203 50 0.9221 0.6516 20 .6065 .7828 .7951 .9004 .7627 .8824 1.3111 .1176 40 0.9192 0.6545 30 .6088 .7844 .7934 .8995 .7673 .8850 1.3032 .1150 30 0.9163 0.6574 40 .6111 .7861 .7916 .8985 .7720 .8876 1.2954 .1124 20 0.9134 0.6603 50 .6134 .7877 .7898 .8975 .7766 .8902 1.2876 .1098 10 0.9105 0.6632 38° 00' .6157 9.7893 .7880 9.8965 .7813 9.8928 1.2799 0.1072 52° 00' 0.9076 0.6661 10 .6180 .7910 .7862 .8955 .7860 .8954 1.2723 .1046 50 0.9047 0.6690 20 .6202 .7926 .7844 .8945 .7907 .8980 1.2647 .1020 40 0.9018 0.6720 30 .6225 .7941 .7826 .8935 .7954 .9006 1.2572 .0994 30 0.8988 0.6749 40 .6248 .7957 .7808 .8925 .8002 .9032 1.2497 .0968 20 0.8959 0.67 7S 50 .6271 .7973 .7790 .8915 .8050 .9058 1.2423 .0942 10 0.8930 0.6807 39° 00' .6293 9.7989 .7771 9.8905 .8098 9.9084 1.2349 0.0916 51° 00' 0.8901 0.6836 10 .6316 .8004 .7753 .8895 .8146 .9110 1.2276 .0890 50 0.8872 0.6865 20 .6338 .8020 .7735 .8884 .8195 .9135 1.2203 .0865 40 0.8843 0.6894 30 .6361 .8035 .7716 .8874 .8243 .9161 1.2131 .0839 30 0.8814 0.6923 40 .6383 .8050 .7698 .8864 .8292 .9187 1.2059 .0813 20 0.8785 0.6952 50 .6406 .8066 .7679 .8853 .8342 .9212 1.1988 .0788 10 0.8756 0.6981 40° 00' .6428 9.S081 .7660 9.8843 .8391 9.9238 1.1918 0.0762 50° 00' 0.8727 0.7010 10 .6450 .8096 .7642 .8832 .8441 .9264 1.1847 .0736 50 0.S698 0.7039 20 .6472 .8111 .7623 .8821 .8491 .9289 1.1778 .0711 40 0.8668 0.7069 30 .6494 .8125 .7604 .8810 .8541 .9315 1.1708 .0685 30 0.8639 0.7098 40 .65.'.7 .8140 .7585 .8800 .8591 .9341 1.1640 .0659 20 0.S610 0.7127 50 .6539 .8155 .7566 .8789 .8642 .9366 1.1571 .0634 10 0.8581 0.7156 41° 00' .6561 9.8169 .7547 9.8778 .8693 9.9392 1.1504 0.0608 49° 00' 0.8552 0.7185 10 .6583 .8184 .7528 .8767 .8744 .9417 1.1436 .0583 50 0.8523 0.7214 20 .6604 .8198 .7509 .8756 .8796 .9443 1.1369 .0557 40 0.8494 0.7243 30 .6626 .8213 .7490 .8745 .8847 .9468 1.1303 .0532 30 0.8465 0.7272 40 .6648 .8227 .7470 .8733 .8899 .9494 1.1237 .0506 20 0.8436 0.7301 50 .6670 .8241 .7451 .8722 .8952 .9519 1.1171 .0481 10 0.8407 0.7330 42° 00' .6691 9.8255 .7431 9.8711 .9004 9.9544 1.1106 0.0456 48° 00' 0.8378 0.7359 10 .6713 .8269 .7412 .8699 .9057 .9570 1.1041 .0430 50 0.8348 0.7389 20 .6734 .8283 .7392 .8688 .9110 .9595 1.0977 .0405 40 0.8319 0.7418 30 .6756 .8297 .7373 .8676 .9163 .9621 1.0913 .0379 30 0.8290 0.7447 40 .6777 .8311 .7353 .8665 .9217 .9646 1.0850 .0354 20 0.8261 0.7476 50 .6799 .8324 .7333 .8653 .9271 .9671 1.0786 .0329 10 0.8232 0.7505 43° 00' .6820 9.8338 .7314 9.8641 .9325 9.9697 1.0724 0.0303 47° 00' 0.8203 0.7534 10 .6841 .8351 .7294 .8629 .9380 .9722 1.0661 .0278 50 0.8174 0.7563 20 .6862 .8365 .7274 .8618 .9435 .9747 1.0599 .0253 40 0.8145 0.7592 30 .6884 .8378 .7254 .8606 .9490 .9772 1.0538 .0228 30 0.8116 0.7621 40 .6905 .8391 .7234 .8594 .9545 .9798 1.0477 .0202 20 0.8087 0.7650 50 .6926 .8405 .7214 .8582 .9601 .9823 l.ail6 .0177 10 0.8058 0.7679 44° 00' .6947 9.8418 .7193 9.8569 .9657 9.9848 1.0355 0.0152 46° 00' 0.8029 0.7709 10 .6967 .8431 .7173 .8557 .9713 .9874 1.0295 .0126 50 0.7999 0.7738 20 .6988 .8444 .7153 .8545 .9770 .9899 1.0235 .0101 40 0.7970 0.7767 30 .7009 .8457 .7133 .8532 .9827 .9924 1.0176 .0076 30 0.7941 0.7796 40 .7030 .8469 .7112 .8520 .9884 .9949 1.0117 .0051 20 0.7912 0.7825 50 .7050 .8482 .7092 .8507 .9942 .9975 1.0058 .0025 10 0.7883 0.7854 45° 00' .7071 9.8495 .7071 9.8495 1.0000 0.0000 1.0000 0.0000 45° 00' 0.7854 Nat. Log. Nat. Log. Nat. Log. Nat. Log. COSINES. SINES. COTANGENT.S. TANGENTS. DEGREES. RADIANS. TABLES. 151 Equivalents of Radians in Degrees, Minutes, and Seconds of Arc. RAmATJS- EQUIVALENTS. RADIANS. EQUIVALENTS. 0.0001 0° 0' 20".6 or 0°.005730 0.0600 3° 26' 15".9 or 3°.437747 0.0002 0° 0'41".3 or 0°.011459 0.0700 4° 0'3S".5 or 4°.010705 0.0003 0° 1'01".9 or 0°.017189 O.OSOO 4°35'01".2 or 4°.5S3662 0.0004 0° V 22".5 or 0°. 022918 0.0900 5° 9'23".S or 5°.156620 0.0005 0° 1' 43". 1 or 0°.028648 0.1000 5° 43' 46". 5 or 5°.729578 0.0006 0° 2'03".8 or 0°.034377 0.2000 11°27'33".0 or 11°.459156 0.0007 Qo 2'24".4 or 0°.040107 0.3000 17°11'19".4 or 17°. 188734 0.0008 0° 2'45".0 or 0°.045837 0.4000 22°55'05".9 or 22°.918312 0.0009 0° 3'05".6 or 0°.051566 0.5000 2S°38'52".4 or 28°.647890 0.0010 0° 3'26".3 or 0°. 057296 0.6000 34° 22' 3S".9 or 34°377468 0.0020 0° 6'52".5 or 0°.114S92 0.7000 40° 6'25".4 or 40°. 107046 0.0030 0°10'1S".8 or 0°.171887 O.SOOO 45°50'11".8 or 45°.836624 0.0040 0°13'45".l or 0°. 229183 0.9000 51° 33' 58".3 or 51°.566202 0.0050 0°17'11".3 or 0°.286479 1.0000 57°17'44".8 or 57°.295780 0.0060 0°20'37".6 or 0^.343775 2.0000 114° 35' 29".6 or 1M°.591559 0.0070 0°24'03".9 or 0°.401070 3.0000 171° 53' 14".4 or 171°.8S7339 0.00S0 0°27'30".l or 0°. 458366 4.0000 229° 10' 59".2 or 229°. 183 118 0.0090 0°30'S6".4 or 0°.515662 5.0000 286°28'44".0 or 286°.478898 0.0100 0°34'22".6 or 0°.572958 6.0000 343°46'28".8 or 343°.774677 0.0200 1° 8'45".3 or P.145916 7.0000 401° 4' 13" 6 or 401°.070457 0.0300 1''43'07".9 or 10.718873 8.0000 458° 21' 58".4 or 458°.366236 0.0400 2°17'30".6 or 2°.291831 9.0000 515°39'43".3 or 515°.662016 0.0500 2° 51' S3".2 or 2°.864789 10.0000 572° 57' 2S".l or 572°.95779S The Values in Circular Measure of Angles which are given in Degrees and Minutes. r 0.0003 9' 0.0026 3° 0.0524 20° 0.3491 100° \.7453 2' 0.0006 10' 0.0029 4° 0.0698 30° 0.5236 110° 1.9199 3' 0.0009 20' 0.0058 5° 0.0873 40° 0.6981 120° 2.0944 4' 0.0012 30' 0.0087 6° 0.1047 50° 0.8727 130° 2.2689 5' 0.0015 40' 0.0116 7° 0.1222 60° 1.0472 140° 2.4435 6' 0.0017 50' 0.0145 8° 0.1396 70° 1.2217 150° 2.6180 7' 0.0020 1° 0.0175 9° 0.1571 80° 1.3963 160° 2.7925 8' 0.0023 2° 0.0349 10° 0.1745 90° 1.5708 170° 2.9671 PAGE INDEX. INTEGRALS. Fundamental forms Rational algebraic expressions involving (a + bx) and (a' + b'x) {a + bx") . " " " (a + bx + cx^) . (a' + 6'x)and(a + 6a; + cx2) Rational fractions ......... Irrational algebraic expressions involving Va + bx or \/a + bx . (1 11 Miscellaneous algebraic expressions General transcendental forms ...... Expressions involving simple direct trigonometric functions Expressions involving inverse trigonometric functions Exponential forms ..... Logarithmic forms ..... Expressions involving hyperbolic functions Miscellaneous definite integrals Elliptic integrals Pages 3,4 5,7 8,9 10,11 11-13 13,14 16,17 18,19 20-23 31 23-27 (a' + b'x) and Va + bx + cx^ 27-30 32-34 35-37 38-51 51-53 63-56 66-58 68-61 62-65 66-72 V a + bx and Va' + b' x •V x2 ± a2 or Va2 — x^ V2 ax — x^ Va + bx + cx2 AUXILIARY FORMULAS AND TABLES. Trigonometric functions . Hyperbolic functions Elliptic functions, Bessel's functions Series Derivatives .... Green's Theorem and allied formulas Table of mathematical constants General formulas of integration Note on interpolation Table of the probability integral Tables of elliptic integrals Table of hyperbolic functions . Table of values of e-^ Table of common logarithms of e^ and e-^ Five-place table of natural logarithms Table of logarithms of T {x) . Three-place table of natural trigonometric functions Four-place table of common logarithms of numbers Four-place table of trigonometric functions Tables for reducing radians to degrees 152 73-80 81-83 84-87 88-96 97-106 106-109 109 110-114 115 116-120 121-123 124-127 127 128, 129 130-139 140 141 142-145 146-150 151 14 DAY USE RETURN TO DESK FROM WHICH BORROWED LOAN DEPT. This book is due on the last date stamped below, or on the date to which renewed. Renewed books are subject to immediate recall. NOV 8-1966 6 3 4ftHc3c:W^ ..Mr^ ' Bb-^ ^ \J'u^' L.<;^'/^iH ij^fur M^^m^ AUG 21 1984 CIRCULAT'^M nFPT. LD 21A-60ni-7,'66 (G4427sl0)476B General Library University of California Berkeley