IN MEMORIAM 
 FLORIAN CAJORI 
 
PLANE 
 TRIGONOMETRY 
 
 BY 
 
 ARTHUR GRAHAM HALL, Ph.D. (Leipzig) 
 
 Pbofessor of Mathematics 
 University of Michigan 
 
 FRED GOODRICH FRINK, M.S. (Chicago) 
 
 Professor of Railway Engineering 
 University of Oregon 
 
 NEW YORK 
 HENRY HOLT AND COMPANY 
 

 Copyright, 1W9, 
 
 BY 
 
 HENRY HOLT AND COMPANY. 
 
 CAJORI 
 
 NarfajDoli \$xt9S 
 
 J. 8. Gushing Co. — Berwick & Smith Co. 
 
 Norwood, Mass., U.S.A. 
 
PREFACE 
 
 This book has had its origin in the desire of the authors to 
 meet the mutual demands of mathematicians and engineers for 
 a treatment that shall more completely supply the needs of the 
 technological student. It is believed that this has been done by 
 enriching the subject with applications to physics and engineering, 
 in such a way as to increase its value at the same time to the 
 general student. The present volume is, moreover, based upon 
 a preliminary edition actually used for several terms in the class- 
 room. 
 
 In view of the peculiar situation of trigonometry in the cur- 
 riculum, the course has been kept of the usual length. The 
 topics have been arranged, however, in the order of increasing 
 difficulty, by postponing the more abstract but no less essential 
 study of the functions of the general angle, until after the arith- 
 metical solution of triangles. The abundance of exercises and 
 problems will give the teacher large opportunity for selection. 
 
 The discussion of the slide rule is inserted because of the 
 increasing employment of this useful instrument. 
 
 The authors gratefully acknowledge their indebtedness to 
 
 Professor E. J. Townsend and Professor H. L. Rietz, of the 
 
 University of Illinois, and Professor A. Ziwet and Professor J. L. 
 
 Markley, of the University of Michigan, for valuable criticisms 
 
 and suggestions. 
 
 ARTHUR G. HALL. 
 
 FRED G. FRINK. 
 
 Ann Arbor, January, 1909. 
 
 iii 
 
CONTENTS 
 
 PAET I 
 PLANE TBIQONOMETBY 
 
 CHAPTER I 
 GEOMETRIC NOTIONS 
 
 ARTICLE PAOS 
 
 1. General statement 1 
 
 2. Directed line segments 1 
 
 3. Positive and negative angles 2 
 
 Exercise I . . . . ^ 3 
 
 4. Rectangular coordinates 3 
 
 Exercise II 6 
 
 CHAPTER II 
 THE ACUTE ANGLE 
 
 6. The purpose of trigonometry 6 
 
 6. Definitions of the trigonometric functions . 6 
 
 7. Relations between the ratios 7 
 
 8. Signs and limitations in value 7 
 
 Exercise III 8 
 
 9. Fundamental relations 9 
 
 Exercise IV 10 
 
 10. Functions of complementary angles 11 
 
 11. Functions of 45°, 30°, 60° 12 
 
 12. Functions of 0° and 90° •. . . .12 
 
 Exercise V 13 
 
 13. Variation of the trigonometric functions as the angle varies ... 14 
 
 14. Inverse trigonometric functions 15 
 
 Exercise VI 16 
 
 16. Orthogonal projection .• . . 16 
 
 Exercise VII 18 
 
 CHAPTER III 
 RIGHT TRIANGLES 
 
 16. Laws for solution 19 
 
 17. Area of right triangles . 20 
 
VI 
 
 CONTENTS 
 
 ARTICLE PAGK 
 
 18. Method of solution 20 
 
 19. Trigonometric tables 22 
 
 20. Errors and checks 23 
 
 Exercise VIII 25 
 
 21. 
 22. 
 23. 
 24. 
 25. 
 
 27. 
 28. 
 29. 
 
 30. 
 
 31. 
 
 CHAPTER IV 
 
 LOGARITHMS 
 
 Definition of a logarithm . . . 29 
 
 Laws of combination , . . .30 
 
 Common logarithms 31 
 
 Characteristic ............ 32 
 
 Mantissa 33 
 
 Exercise IX . 34 
 
 Interpolation 1 ... 35 
 
 Numbers from logarithms 35 
 
 Cologarithms . .36 
 
 Logarithms of trigonometric functions 36 
 
 Exercise X . 37 
 
 The slide rule 39 
 
 Exercise XI .41 
 
 Right triangles solved by logarithms .41 
 
 Exercise XII 44 
 
 CHAPTER V 
 
 THE OBTUSE ANGLE 
 
 32. Definitions of the trigonometric functions of obtuse angle 
 
 33. Signs and limitations in value 
 
 34. Fundamental relations 
 
 35. Variation 
 
 36. Functions of 180° 
 
 37. Functions of supplementary angles 
 
 38. Functions of (90° -fa) 
 
 Exercise XIII 
 
 47 
 47 
 48 
 48 
 48 
 48 
 49 
 50 
 
 CHAPTER VI 
 OBLIQUE TRIANGLES 
 
 39. Formulas for solution 52 
 
 40. Law of projections 53 
 
 41. Law of sines ............ 63 
 
 42. Law of cosines 53 
 
 43. Law of tangents 64 
 
 44. Angles in terms of sides 65 
 
CONTENTS vii 
 
 ARTICLE PAGE 
 
 45. Area of oblique triangles ....,,.... 55 
 
 46. Numerical solution . . ' 56 
 
 47. Case I. Two angles and one side 57 
 
 48. Case II. Two sides and an opposite angle 58 
 
 49. Case III. Two sides and the included angle 61 
 
 50. Case IV. Three sides 61 
 
 51. Composition and resolution of forces. Equilibrium . . . . . 63 
 
 Exercise XIV 66 
 
 CHAPTER VII 
 THE GENERAL ANGLE 
 
 52. General definition of an angle 70 
 
 53. Axes, quadrants, etc. ' . . . . . . . . . .71 
 
 54. Definitions of the trigonometric functions ....... 71 
 
 55. Signs and limitations in value 72 
 
 Exercise XV 73 
 
 56. Variation of the trigonometric functions ....... 74 
 
 57. Graphs of the trigonometric functions 75 
 
 58. Functions of 270° and 360° 78 
 
 Exercise XVI 79 
 
 69. Fundamental relations 79 
 
 60. Line representations of the trigonometric functions . . . . . 80 
 
 Exercise XVII 82 
 
 61. Periodicity of the trigonometric functions 83 
 
 62. Functions of (k • ^± a) , . . .83 
 
 Exercise XVIII 87 
 
 CHAPTER VIII 
 FUNCTIONS OF TWO ANGLES 
 
 63. Formulas for sin (a + /3) and cos (a + /S) . . = . . . .89 
 
 64. Extension of the addition formulas 90 
 
 Exercise XIX 91 
 
 65. Subtraction formulas 91 
 
 66. Formulas for tan (a ±/3), cot (a ± (S) . . . . . . .92 
 
 Exercise XX .... 92 
 
 67. Functions of twice an angle 93 
 
 68. Functions of half an angle . . . , . . . . .93 
 
 Exercise XXI .... . . . . . . . .94 
 
 69. Conversion formulas for products 95 
 
 Exercise XXII 96 
 
 70. Conversion formulas for sums and differences 97 
 
 71. Multiple angles 97 
 
 Exercise XXIII 97 
 
viii CONTENTS 
 
 CHAPTER IX 
 
 ANALYTIC TRIGONOMETRY 
 
 AETIOLE PAGE 
 
 6 
 
 72. Limits of - — t, and - — -, as 6 approaches zero 99 
 
 sin d tan 0' 
 
 Examples 101 
 
 73. De Moivre's theorem 101 
 
 Examples 103 
 
 74. Graphical representation of complex numbers 103 
 
 Examples 108 
 
 75. Exponential values of the trigonometric functions 109 
 
 Examples 110 
 
 76. Hyperbolic functions 110 
 
 77. Exponential and trigonometric series Ill 
 
 Examples 115 
 
 78. Computation of trigonometric tables ........ 116 
 
 79. Proportional parts 116 
 
 80. General inverse functions . . . . , . , . . .117 
 
 81. Logarithmic values of inverse functions 118 
 
 Examples 119 
 
 Review Exercises ' . . 120 
 
 Formulas 130 
 
 Answers 137 
 
 Index , . 147 
 
 TRIGONOMETRIC AND LOGARITHMIC TABLES 
 
 I. Common logarithms of numbers 3 
 
 II. Logarithms of the trigonometric functions . . . . . .25 
 
 III. Natural trigonometric functions ........ 71 
 
 IV. Squares and square roots ..... o .... 91 
 
TRIGONOMETRY 
 
GREEK ALPHABET 
 
 Letters 
 
 Names 
 
 Letters 
 
 Names 
 
 Letters 
 
 Names 
 
 A o 
 
 Alpha ' 
 
 I I 
 
 Iota 
 
 P P 
 
 Rho 
 
 B^ 
 
 Beta 
 
 K/c 
 
 Kappa 
 
 S(r s 
 
 Sigma 
 
 Ty 
 
 Gamma 
 
 AX 
 
 Lambda 
 
 Tt 
 
 Tau 
 
 A5 
 
 Delta 
 
 Mm 
 
 Mu 
 
 Tu 
 
 Upsilon 
 
 Ee 
 
 Epsilon 
 
 N p 
 
 Nu 
 
 $0 
 
 Phi 
 
 Zf 
 
 Zeta 
 
 S^ 
 
 Xi 
 
 Xx 
 
 Chi 
 
 H^ 
 
 Eta 
 
 Oo 
 
 Omicron 
 
 ^,/. 
 
 Psi 
 
 ee 
 
 Theta 
 
 Htt 
 
 Pi 
 
 w 
 
 Omega 
 
TRIGONOMETRY 
 
 PART I 
 PLANE TRIGONOMETRY 
 
 CHAPTER I 
 
 GEOMETRIC NOTIONS 
 
 1. General statement. It is assumed that the student is well 
 versed in those theorems of elementary geometry concerning 
 angles, arcs, and triangles. It is particularly desirable that he 
 be familiar with the measurement of angles and with the proper- 
 ties of similar triangles. 
 
 While the review thus suggested is left to the student, certain 
 more advanced geometric ideas are treated in the remaining arti- 
 cles of this chapter. 
 
 Throughout the course the student should make continual, 
 careful, and intelligent use of such drawing instruments as are 
 included in the equipment at technical schools. In case such sets 
 are not available, as in more general classes, there should be pro- 
 vided at least a straightedge, with graduated scale, a protractor, 
 and a pair of compasses or dividers. 
 
 2. Directed line segments. A point which moves from one 
 position to a second, without changing its direction of motion, 
 traces a directed line segment. Directed line segments are always 
 read with regard to their direction, from the initial extremity to 
 the terminal extremity. 
 
 Two line segments are equal if they have the same length and 
 direction, whether their lines are coincident or parallel. Either 
 of two line segments having the same length but opposite direc- 
 tions is said to be the negative of the other. If one direction is 
 taken as positive, the opposite direction is negative. 
 
 1 
 
GEOMETRIC NOTIONS 
 
 iXiius, An FigCli,. 
 
 E F K H 
 
 HK^ BA = - AB, 
 
 Fio.i. CD='2BA = -2AB. 
 
 If ^ is the initial point and B the terminal point, the line 
 segment is read AB, and in this notation the positive or negative 
 direction of the segment is expressed without the aid of a prefixed 
 + or — . In case the segment is represented by a single symbol, 
 as the letter «, the direction must be indicated in some further 
 manner, as by a prefixed + or — , or by an arrowhead in the 
 figure. 
 
 Two line segments lying in the same line are added by 
 placing the initial point of the second upon the terminal point 
 of the first, each retaining its proper direction. The sum is the 
 segment extending from the initial point of the first to the termi- 
 nal point of the second. Subtraction is performed by reversing 
 the direction of the subtrahend and adding. Line segments 
 having the same or opposite directions may all be transferred 
 to a common line. Their addition and subtraction thus cor- 
 respond exactly to the algebraic addition and subtraction of posi- 
 tive and negative numbers. 
 
 If A, B^ denote three points arranged in any order along 
 a straight line, then 
 
 AB^BQ=AQ, 
 
 and AB^BC^CA = ^. 
 
 3. Positive and negative angles. If a line rotates (in a plane) 
 about one of its points, an angle is generated, of which the origi- 
 nal position of the line is the initial side and the final position the 
 terminal side. A distinction may be made according as the rota- 
 tion is clockwise or counter-clockwise about the vertex. The 
 counter-clockwise direction is chosen as positive. Angles are 
 always read with regard to their direction of rotation ; thus if 
 OA is the initial side and OB the terminal side, tlie angle is read 
 AOB. This notation includes the direction or sign of the angle, 
 and the -f- or — should not be prefixed. In case the angle is 
 represented by a single symbol, as by the Greek letter a, the 
 direction must be indicated in some further manner, as by a pre- 
 fixed -f or — , or by a curved arrow in the figure. 
 
POSITIVE AND NEGATIVE ANGLES 3 
 
 Just as with line segments, reversing the direction multiplies 
 the angle by - 1 ; thus BOA = -AOB. 
 
 Two angles are added by placing them in the same plane with 
 a common vertex, the initial side of the second coincident with 
 the terminal side of the first, each retaining its own direction. 
 The sum is the angle from the initial side of the first to 
 the terminal side of the second. Subtraction 
 is performed by reversing the subtraliend and 
 adding. 
 
 In Fig. 2, 
 
 AOB + BOO=AOC, 
 
 AOO-BOC=AOB. ^:;^^ 
 
 EXERCISE I 
 
 Solve the following problems graphically : 
 
 1. On a train running 40 miles an hour, a man walks 4 miles an hour. 
 Find the speed of the man with reference to the ground, (a) if he walks 
 toward the front ; (6) if he walks toward the rear of the train. 
 
 2. The man's speed with reference to the ground is 10 miles an hour. 
 What is the speed of the train (a) if he is walking 5 miles an hour toward 
 the front; (b) if lie is running 8 miles an hour toward the rear? 
 
 3. On June 1 the price of corn was 50 cents, and during the succeeding 
 ten days it fluctuated as follows : rose 2 cts., rose 3, fell 1, fell 2, fell 5, fell 3, 
 rose 2, rose 2, rose 3, rose 1. Find the price on June 11. 
 
 4. During a football game the progress of the ball from the middle of the 
 field was north 40 yards, south 25, south 5, south 10, south 30, north 50, north 
 10, north 20. Find the resulting position of the ball. 
 
 Combine graphically, using a protractor : 
 
 5. 45° + 30° ; 90° + 45° ; 40° + 35° + 50°. 
 
 6. 60° - 45° ; 90° - 50° ; 180° - 120°. 
 
 7. 30° + 80° + 55° ; 40° + 60° - 30° ; 60° - 20° + 70° - 90°. 
 
 8. 40° - 70° + 15°; 65° -f 15° - 90°; 75° - 180°. 
 
 4. Rectangular coordinates. If two mutually perpendicular 
 straight lines are chosen, and a positive direction on each, the 
 position of any point in their plane is determined by giving its 
 perpendicular distances from these fixed lines. The two lines are 
 called the axes of coordinates, and are usually taken so that one 
 
GEOMETRIC NOTIONS 
 
 r^^ 
 
 O^^-x. 
 
 -^x 
 
 ^A 
 
 is horizontal and the other vertical. The point of intersection of 
 the axes is called the origin. The two determining data for any 
 point are called its coordinates. The horizontal distance from the, 
 axis Oy to the point is the abscissa of the point, and the vertical 
 .y distance from the axis OX 
 
 to the point is the ordinate 
 of the point. The point 
 ^^-jP^ C^^ whose abscissa is x and 
 J^ ordinate y is denoted by 
 
 the notation (a:, ^). Be- 
 cause it is convenient to lay 
 off the abscissa of a point 
 upon the axis OX and the 
 ordinate upon the axis OY^ 
 these axes are referred to 
 ^^^- ^- as the axes of abscissas and 
 
 ordinates respectively. When x denotes the abscissa and y the. 
 ordinate of the point, the axes may be referred to as the X-axis 
 and the iF-axis respectively. 
 
 The distance from the origin to the point is called the radius 
 vector of the point. It is known whenever the abscissa and the 
 ordinate are given, since the three form, respectively, the hypote- 
 nuse, base, and altitude of a right triangle. 
 
 The abscissa of a point should always be read from the F-axis 
 to the point. The direction from left to right is chosen as posi- 
 tive. Therefore all points at the right of the y"-axis have positive 
 abscissas, and all points at the left, negative abscissas. The ordi- 
 nate of a point is always read from the JT-axis to the point. The 
 upward direction is chosen as positive. Hence all points above 
 the X-axis have positive ordinates, and all points below, negative 
 ordinates. The radius vector is always read from the origin to 
 the point, and is always considered positive. 
 
 It will be noticed that the abscissa and the ordinate are equal 
 to the projections of the radius vector on the X-axis and P"-axis, 
 respectively; these projections will henceforth be used inter- 
 changeably for the coordinates themselves.* 
 
 * The foot of the perpendicular dropped from a point upon a given line is said to 
 be the orthogonal or orthographic projection of the point on the line. The projec- 
 tion of a line segment on a given line is the segment from the projection of the ini- 
 tial point of the given segment to that of the terminal point. This kind of projec- 
 tion will be used exclusively throughout this book, unless otherwise expressly 
 stated. 
 
RECTANGULAR COORDINATES 
 
 The two axes divide the whole plane into four portions, known 
 as the first, second, third, and fourth quadrants, beginning with 
 the upper right-hand quadrant and 
 numbering counter-clockwise about 
 the origin. 
 
 If two points, P and Q, lie in a 
 line through the origin, their coordi- 
 nates, with the radii vectores, form 
 two similar triangles. If the abscissa, 
 ordinate, and radius vector of P are 
 X, y, V, respectively, those of Q are 
 Jcx, ky^ kv. Fig. 4. 
 
 EXERCISE II 
 
 1. Plot the points (2, 3), (-3, 5), (-2, -4), (1, -3), (3, 0), (0, 4), 
 (-5,0), (0, -2), (0,0). 
 
 2. Plot the points (3, 2), (6, 4), (12, 8). 
 
 3. Plot the points (0, 5), (4, 3), (-3, 4), (0, -5). 
 
 4. Find both graphically and by computation the radius vector of each 
 point in examples 1, 2, 3. In what quadrant does each point lie ? 
 
 5. Describe the location of all points whose abscissas equal 3 ; whose ordi- 
 nates equal 5 ; whose radii vectores equal 6. 
 
 6. Write the coordinates of the vertices of a square of side a, if the axes 
 of coordinates are taken along two sides ; along its diagonals. 
 
 7. The hour hand of a clock is 5 inches long. Find the coordinates of its 
 tip referred to the horizontal and vertical diameters of its face at three o'clock ; 
 at six ; at eight ; at half-past ten. 
 
 8. Compare the location of the points (2, 3), (3, 2), ( — 2, 3), ( — 2, —3), 
 (3, —2). Describe the directions of their radii vectores. 
 
 9. Find the distance from (2, 5) to (6, 9) ; from (-3, 2) to (4, 5). 
 
 10. Find the direction of the line joining (6, 1) to (8, 3) ; (4, 1) to (1, 4) ; 
 (6, 3) to (1,3); (-2,4) to (1,1). 
 
 11. A man starts from the southwest corner of a government township and 
 goes in turn to the northwest corner of section 36 ; northwest corner section 
 22 ; southeast corner section 3 ; northeast corner section 5 ; thence to the point 
 of beginning. Show by sketch the shortest route along section lines, and com- 
 pute the cross-country distances. 
 
 12. A city is laid out in checker-board fashion. The streets are eight to 
 the mile and look to the cardinal points of the compass. It is proposed to in- 
 troduce two diagonal (45"") streets extending through the busiest corner to the 
 outskirts. What distances will be saved thereby in driving from this corner to 
 each of the points specified below? Nine blocks east and six blocks north; 
 5 W. and 7 S. : 10 W. and 10 N. : 1 E. and 14 S. 
 
CHAPTER II 
 
 THE ACUTE ANGLE 
 
 5. Purpose of trigonometry. One of the principal objects of 
 trigonometry is the computation of triangles. We have learned 
 from elementary geometry that a triangle is determined when we 
 know any three of its parts (sides and angles), at least one of them 
 being a side. These data enable us to construct the triangle ; but 
 elementary geometry does not teach us how to calculate the re- 
 maining parts. The reason is that sides and angles are expressed 
 in different units. It is, therefore, desirable to measure angles not 
 only in degrees, but also by means of lines, or rather by means of 
 ratios of lines. This can be done as shown in the following 
 articles. 
 
 6. Definitions of the trigonometric functions.. Suppose the 
 acute angle A OB ( = «) to be placed on a system of axes of coor- 
 dinates with its vertex at the origin and its 
 initial side OA extending along the X-axis 
 toward the right. Its terminal side OB will 
 fall in the first quadrant. (See Fig. 5.) 
 
 Any point P in its terminal side possesses 
 
 one and only one set of related distances 
 
 (two coordinates and radius vector). 
 
 1 ^ > X Its abscissa x(^=OM)^ its ordinate 
 
 ^ (=zMP), and its radius vector 
 
 V (= OF) are all positive and con- 
 
 tY 
 
 O 
 
 M 
 Fig. 5. 
 
 nected by the relation o . o o 
 
 •^ TT -\- y^ — v^. 
 
 The six ratios between these three distances are of frequent 
 occurrence and prime importance. They serve, indeed, the pur- 
 pose mentioned in Art. 5, and are given the following names and 
 accompanying abbreviations : 
 
 ^ = sine of a = sin a, 
 
 = cosine of a = cos a, 
 = tangent of a = tan a, 
 
 = cosecant of a = esc a, 
 = secant of a = sec a, 
 = cotangent of a = cot a. 
 
FUNCTIONAL RELATION 
 
 7. Relations between the ratios and the angle. The three re- 
 lated distances of any other point P^ in the terminal side of the 
 angle a are connected with the determining distances of P by the 
 relation , , , 
 
 X y V 
 
 It follows that the values of the six ratios defined in Art. 6 do 
 not depend at all upon the particular choice of the point in the 
 terminal side of the angle, but are determined solely and definitely 
 by the size of the angle. A number that is determined in value 
 by the value of some other number is said to be a function of that 
 other number. The six ratios are therefore called trigonometric 
 functions of the angle. 
 
 This relation between the ratios and the angle is, moreover, a 
 mutual one, such that a knowledge of one of the ratios leads to a 
 knowledge of the angle.* Thus if we have given tan a = J, we 
 can construct the angle a as follows : On the system of axes OX 
 and OF plot the point P whose coordinates are (3, 2), using any 
 convenient scale. Draw the line OA from the origin through the 
 point P ; then is XOA the required angle a, in consequence of the 
 definitions of Art. 6. 
 
 It appears still further that from the knowledge of any one of 
 the six trigonometric functions the remaining five can be found. 
 Thus in the foregoing example we know by the * Pythagorean 
 proposition that on the scale employed the hypotenuse or radius 
 vector is V9 H- 4 = Vl3. We have then at once 
 
 sin a 
 
 cos a 
 
 Vl3 
 3 
 
 2 
 tan„ = -. 
 
 Vl3 
 
 seca = -— , 
 
 cot '^= -, 
 
 VT3 
 
 CSC « = —-—. 
 
 V13 
 
 The properties and relations of these functions and their more 
 immediate applications in pure and applied mathematics constitute 
 the subject-matter of trigonometry. The science takes its name 
 from its origin in the attempts of the ancient peoples to measure 
 triangles. 
 
 8. Signs and limitations in value. When any acute angle is 
 placed on the axes of coordinates in the manner prescribed in 
 
 *Tbis statement, as well as some others in the present chapter, will require 
 some modification when we extend the consideration to angles greater than 90°. 
 
8 THE ACUTE ANGLE 
 
 Art. 6, its terminal side will always fall in the first quadrant. 
 The abscissa and ordinate, as well as the radius vector, of every 
 point in the terminal side will all be positive. It follows that 
 their ratios, comprising the six trigonometric functions named in 
 Art. 6, are all positive. 
 
 In no case can the abscissa or the ordinate of a point be greater 
 than the radius vector. Indeed, save in the exceptional cases con- 
 sidered in Art. 12, they are less than the radius vector. Conse- 
 quently, sin a and cos a cannot be greater than unity and sec a and 
 CSC a cannot be less than unity. 
 
 EXERCISE III 
 
 By careful construction and measurement find the approximate 
 values of the following functions : 
 
 1. cos 60°. 2. tan 30°. 3. esc 45°. 
 
 4. cot 35°. 5. sin 20°. 6. sec 50°. 
 
 Construct each of the following angles and find by measure- 
 ment the values of all its functions, given 
 
 7. sin a = f . 8. cos a = y\. 9. tan a = ^\. 
 
 10. cot a = y«3. 11. sec a = ^^. 12. esc a = f i. 
 
 13. cos a = ^f . 14. sin a - |^. 
 
 15. For what angle is the tangent equal to the cotangent ? For what angle 
 is the sine equal to the cosine ? 
 
 16. Show that the direct functions (sin a, tan a, sec a) are greater or less 
 than the corresponding complementary functions (cos a, cot a, esc a) respec- 
 tively, according as the angle a is greater or less than 45°. 
 
 17. Can sin a and tana be equal? When do they approach equality? 
 
 18. Show that tan a • cot a does not depend on a. Show that the same is 
 true of sin a • esc a. 
 
 19. Show that cos a • see a does not depend on a. Show the same for 
 csc2 « - eot^ a. 
 
 20. Does sin2 a + eos^ a depend on a ? Does see^ a — tan^ a ? 
 
 21. Before reading Art. 11, find the values of the sine, cosine, and tangent 
 of 30°, 45°, and 60°. 
 
 9. Fundamental relations. The Pythagorean theorem 
 a;2 -J- ?/2 _ ^2^ 
 
FUNDAMENTAL RELATIONS 9 
 
 and the definitions of Art. 6 yield certain fundamental relations 
 
 between the six trigonometric functions of a single angle. Thus, 
 we have directly from the definitions 
 
 sma . ^ ^ 
 
 sec a = -, (2^ 
 
 cos a 
 
 cota = - — -• (3) 
 tana 
 
 Again, by division, 
 
 tena = ^"^, (4) 
 
 cos a 
 
 and cota=^^^. (5) 
 
 sin a 
 
 Dividing by v^ both members of the equation 
 
 2/2 -f ^2 _ ^2^ 
 
 we have {t\ j^{^ ^x 
 
 whence sin^ a + cos^ a = 1 . (6) 
 
 Dividing, in like manner, by a^ and by y^ respectively, we 
 obtain 
 
 tan^ a + 1 = sec^ a, (T) 
 
 cot^ a + 1 = csc^ a. (8) . 
 
 These eight equations constitute the fundamental relations of 
 trigonometry. Of these the fifth, seventh, and eighth may be 
 derived algebraically from the other five. By means of these 
 equations it is possible to express all six functions in terms of any 
 one of them. If the value of any one is given, the values of the 
 others can be found. Simple numerical examples of the latter 
 kind are more quickly solved by the geometrical method of Art. 7. 
 
 Example i. To find the remaining functions of the acute 
 angle whose tangent is -f^. 
 
 (1) G-eometric Method. The right triangle OMP (Art. 6, 
 ^^^' 5) has sides of relative length ;«/ = 5, a; = 12, whence on the 
 same scale v = 13. Thus the sine is -j^, etc. 
 
10 THE ACUTE ANGLE 
 
 (2) Analytic Method. Given tana = ^5_^ Then by the for- 
 mulas of Art. 9, 
 
 1 12 ,. ^- 13. 
 
 13 
 
 cot a = = — ; sec a = Vl + tiin^ « - zj^ , 
 
 tan « 5 12 
 
 CSC a = VI + cot^ CL— r 
 
 1 12 
 
 cos a = = —7 ; sm a 
 
 sec a 13 esc a 18 
 
 Example 2. To express all the functions of a in terms of 
 
 sec «. By the use of the appropriate formulas of Art. 9, we 
 
 obtain 
 
 1 . /^ 9 - Vsec^ « — ] ; 
 
 cosa = ; sina = VI — cos^a = 
 
 sec a sec a 
 
 1 sec a 
 
 csca = -r— - = — =^=i' tan«= Vsec2«-l; 
 sin « Vsec^a— 1 
 
 cot 06 = 
 
 tana Vsec^a-l 
 
 Example 3. Verify the following relation by reducing the 
 first member to the second : 
 
 tanSyg 1 o 
 
 ^ — 1 = sec /3. 
 
 sec /3 — 1 
 
 By means of the formulas of Art. 9, we have 
 
 tan'-^ ^ -< sec2 yS — 1^ o,ii o 
 
 W^ -1 = S — -- 1 = sec/3+1 -1 = sec ^. 
 
 sec p — 1 sec p — 1 
 
 EXERCISE IV 
 
 By means of the formulas of Art. 9, find the values of the 
 remaining functions of each of the following angles, given 
 
 1. sina = -iV5. 2. cot/3 = ff- 3. cosy = ||. 4. tany^^^. 
 
 Express all the functions of a in terms of 
 
 5. tan a. 6. cos a. 7 cot a. 8. sin a. 
 
 Find the values of the following expressions: 
 
 ft tan a + cot a i 9 
 
 9. , when cos a = — 
 
 tana — cot a 41 
 
 , r, sec a — cos a i • 12 
 
 10. , when sm a = — 
 
 tan a — sin a 13 
 
FUNCTIONS OF COMPLEMENTARY ANGLES 
 
 11 
 
 11. ^ ^^"^^ + cotB, when tanB=—- 
 1 + cos/3 ^ ^ 21 
 
 12. cos ^ • tan /? + sin y8 . cot y8, when sec /? = ||. 
 Express the following in terms of a single function 
 
 13. 
 
 CSC a 
 
 cot a + tan a 
 
 in terms of cos a- 
 
 , - sin B , 1 + COS B • . ^ ^ 
 
 14. ^=-— H =!^^ — —^ m terms of esc B. 
 
 1 + cos /? sni y8 ^ 
 
 15. sec y — tan y in terms of sin y. 
 1 1 
 
 16. 
 
 + 
 
 1 — sin y 1 + sin y 
 
 Verify the following identities : 
 
 17. cos4y8-sin4yS = 2cos2^-l. 
 
 18. cos a ' tan a = sin a. 
 
 cot2a 
 
 in terms of tan y. 
 
 19. 
 20. 
 
 cos'^ a. 
 
 1 + cot2 a 
 
 ^ + L_ 
 
 tan^yg+l cot2y8 + l 
 
 I. 
 
 10. Functions of complementary 
 angles. If, in Fig. 6, Z XOjS is 
 constructed equal to Z.AOY^ 
 XOB (=fi} and XOA (= a) are 
 complementary. The triangles 
 OM'F' and Oi)[fP are similar, the 
 pairs of corresponding sides being 
 v' and v^ x' and «/, ?/' and x. 
 
 We have then 
 
 sin (90°- a) = sin ^ = 
 
 cos «, 
 
 cos (90° — a) — cos ^ = , = ^ = sin a, 
 
 v' V 
 
 tan (90° - «) = tan ^ = -^^ = - = cot «, 
 
 cot (90°- a) = cot /?= -. = ^= tan a, 
 y ^ 
 
12 
 
 THE ACUTE ANGLE 
 
 sec (90° - «) = sec /? = -^ 
 
 CSC a, 
 
 CSC (90' 
 
 a) = CSC 8= —. = -= sec a. 
 
 The prefix " co " is thus seen to be the abbreviation of the 
 word "complement's." The general theorem may be stated as 
 follows : 
 
 Ant/ trigonometric function of an acute angle is equal to the 
 corresponding co function of its complementary angle. 
 
 Thus, sin 72° = cos 18°, cot 54° = tan 36°, etc. 
 
 11. Functions of 45°, 30°, 60°. The exact values of the func- 
 tions of certain angles are readily found. 
 
 (1) If, in Fig. 7, Z XOA = 45°, the triangle OMF is isosceles, 
 
 so that x — y = 
 
 We have at once 
 
 >X 
 
 V2 
 
 sin 45° = cos 45° = \-\/%. 
 tan 45° = cot 45° = 1, 
 sec 45° = CSC 45° = V2. 
 
 >X 
 
 Fig. 7. 
 
 (2) If, 'in Fig. 8, AXOA = ^0\ and "{Y 
 /. XOQ is constructed equal to —30°, 
 the triangle QOP is equilateral, so that 
 y = ^v, x = \^lv. 
 
 We have, at once, 
 
 sin 30° = |, cos 30° = I V3, 
 tan 30° = 1 V3, cot 30° = V3,. 
 sec 30°=|V3, CSC 30° = 2. 
 
 (3) In like manner to (2), or by Art. 10, we obtain 
 
 sin 60°= J V3, COS 60° =1, 
 
 tan 60° = V3, cot 60° = l VB, 
 
 sec 60° = 2, CSC 60° = | V3. 
 12. Functions of 0° and 90°. 
 
 (1) As the Z XOA (see Fig. 9) decreases so as to approach 
 the limit zero, the abscissa x will approach equality to the radius 
 
FUNCTIOA^S OF 0° AND QO'^ 
 
 13 
 
 vector V. If, at the same time, the radius vector remains finite, 
 the ordinate ?/ will approach the limit zero. 
 
 It should be noticed that the cosecant varies in such a manner 
 that its denominator approaches the limit zero while its numera- 
 tor remains constantly equal to the 
 finite number v, so that the value 
 of the cosecant increases without 
 limit as the angle approaches zero. 
 It is then said to become infinite 
 and is represented by the symbol oo. 
 The cotangent also becomes infinite 
 as the angle approaches zero, since 
 its numerator, although changing, 
 never exceeds v. 
 
 We have, then, sin 0° = 0, 
 
 tan 0° = 0, 
 sec 0° = 1, 
 
 (2) In like manner, we obtain 
 
 sin 90° = 1, cos 90° =0, 
 tan 90°= 00, cot 90° = 0, 
 
 sec 90° = 00, CSC 90° = 1. 
 
 Example. Solve the equation 
 sec^ 7 — V3 tan 7 = 1. 
 
 Expressing wholly in terms of tan 7, 
 tan^ ry -f 1 — V3 tan 7—1 = 0, 
 tan^ 7 — V3 tan 7 = 0, 
 tan 7=0 and V3. 
 
 ■^1 
 
 
 
 
 
 1^ 
 
 
 
 p 
 
 
 (2) 
 
 
 '1 
 
 1 
 
 y 
 
 • 
 
 
 I 
 
 
 
 
 
 J 
 
 \i 
 
 X 
 
 Fig. 10. 
 
 we have 
 
 or 
 
 whence 
 
 Then, by Arts. 11 and 12, 
 
 7 = 0° and 60°. 
 
 EXERCISE V 
 
 1. Express in terms of an angle less than 45° the functions of 75". 
 
 2. Express in terms of an angle less than 45° the functions of 65°. 
 
14 THE ACUTE ANGLE 
 
 Verify the following for « = 30° ; also for a = 45° ; 
 
 3. sin 2 a = 2 sin a cos a. 
 
 4. cos 2 a = cos^ a — sin^ a. 
 2 tan a 
 
 5. tan2a = 
 
 6. cot 2 a = 
 
 1 — tan^ a 
 cot2 a-\ 
 
 2 cot a 
 Notice that sin 2 a does not equal 2 sin a, cos 3 a does not equal 3 cos a, etc. 
 
 Verify for a = 30° : 
 
 7. sin 3 a = 3 sin a — 4 sin* a. 
 
 8. cos 3 a = 4 cos^ a — 3 cos a. 
 
 Evaluate the following expressions : 
 
 9. sin 60° cos 30° - cos 60° sin 30°. 
 
 10. cos 60° cos 30° + sin 60° sin 30°. 
 
 11. csc2 45° + sin 60° tan 30°. 
 
 12. sin 60° tan 45° - sec 30° sin2 45° cot 60°. 
 
 Solve each of the following equations for some one function of 
 a and find the angle in degrees. Verify the results by substitu- 
 tion in the given equation. 
 
 13. tan a - 3 cot a = 0. 
 
 14. sec a + 2 cos a = 3. 
 
 15. 4 sin2 a + 3 cot^ a = 4. 
 
 16. since + 3cosa = 2V2. 
 
 17. A ladder 22 feet long leans against a wall, its foot being 11 feet away 
 from the wall. Find (a) the angle formed by the ladder with the ground; 
 (6) the height of the top of the ladder above the ground. 
 
 18. The diagonal of a rectangle makes an angle of 30° with the long side. 
 If the length of this side is 14 inches, what is the length of the short side of 
 the rectangle ? of the diagonal ? 
 
 19. The side of a conical pile of sand makes an angle of 45° with the 
 floor. If the height from the floor is 12 feet, what is the area of the base ? 
 
 20. A guy rope (assumed to be straight) has a length of 60 feet and 
 extends from the top of a mast 30 feet high to the ground. Find the angle 
 between the rope and the mast. 
 
 13. Variation of the trigonometric functions as the angle varies. 
 Suppose the angle 6 to vary continuously from 0° to 90°. The 
 
VARIATION. INVERSE FUNCTIONS 15 
 
 terminal side revolves about the origin from the position OX to 
 
 the position OY. li v remains constant, y will increase from 
 
 to V, while X will decrease from v to 0. Consequently, the nu- 
 
 y 
 merator of the fraction -(= sin ^) increases from to v. while the 
 
 V 
 
 denominator remains constant. Hence, while 6 increases from 
 0° to 90°, sin 6 increases from to 1. 
 
 The numerator of the fraction - ( = cos 6) decreases from v to 
 
 V 
 
 0, while the denominator remains constantly equal to v. Hence, 
 while increases from 0° to 90°, cos decreases from 1 to 0. 
 
 The numerator of the fraction -(= tan 0^ increases from to 
 
 X ^ 
 
 V, while the denominator decreases 
 from V to 0. Hence, while 6 in- 
 creases from 0° to 90°, tan ^, be- 
 ginning with zero, increases with- 
 out limit as 6 approaches 90°. 
 We express this by saying that 
 tan 6 varies from to qo. 
 
 The student should trace care- 
 fully the variation of the other 
 trigonometric functions and compare the results with the values 
 found in Arts. 11 and 12. Article 7 should be read again at this 
 point. 
 
 14. Inverse trigonometric functions. The same functional re- 
 lation is expressed by the two statements, " m is the sine of the 
 acute angle a" and "a is the acute angle whose sine is m." The 
 corresponding symbolic notations are 
 
 m = sin a, a = arcsin m,* 
 
 with the understanding that a is an acute angle and that m is a 
 positive number not greater than unity. A similar symbolic 
 relation holds for the other trigonometric functions. It is fre- 
 quently read " arc-sine m," or "anti-sine m," since two mutually 
 inverse functions are said each to be the anti-function of the other. 
 
 * This notation is universally used in Europe and is fast gaining ground in this 
 country. A less desirable symbol, 
 
 a = sin-i m, 
 is still found in English and American texts. 
 
 The notation a = inv sin m is perhaps better still on account of its general 
 applicability. (See Art. 80.) 
 
16 THE ACUTE ANGLE 
 
 The inverse notation is convenient for the statement of prob- 
 lems. The purposes of interpretation and manipulation are better 
 served by transforming to the corresponding direct notation. 
 Example. Find the value of sin (90° — arccot ^^2)- 
 In the direct notation the example reads : Given cot a = -^^^ 
 find sin (90° - a). Then, by Arts. 10 and 9, 
 
 sin (90° — a) = cos a = ^\. 
 
 EXERCISE VI 
 
 1. Trace the variation in value of sec 6. 
 
 2. Trace the variation in value of esc 0. 
 
 Find the values of the following : 
 
 3. tan (cos-iyV)- 7. sec (90°- arcsec 2). 
 
 4. sin (arccot |). 8. esc (90°— arccsc V2). 
 
 5. cos (90°-arctan ^\). 9. sin (2 tan-i 1). 
 
 6. cot (90°- sin-i if). 10. cos (2 sin-i I). 
 
 Solve the following equations : 
 
 11. 2sin2/? + 3cos/8-3 = 0. 
 
 12. sec y8 - 2 tan )8 = 0. 
 
 13. tan^(2sin^-l)(secj8-V2) = 0. 
 
 14. sin y8 (2 cos j8 - V'3) (tan yS - 1) = 0. 
 
 Verify the identities : 
 
 15. sin^ a + cos* a + sin^ a cos^ a = sin* a — sin^ a + 1. 
 
 16. (esc a — cot a) (esc a + cot a) = 1. 
 
 17. (tan « + cot a) (sin a -cos a) = 1. 
 
 18. 1 - tan* a = 2 sec^ a - sec%. 
 
 19. sin« a + cos^ a = 1 - 3 sin^ a cos^ a. 
 
 20. cos* a - sin* a = l -2 sin^ a. 
 
 15. Orthogonal projection. In accordance with the definitions 
 of Art. 4 (see note, page 4) it follows that the projection of a 
 line segment on any line is equal to the length of the line segment 
 multiplied by the cosine of the angle formed by the line segment 
 with the line of projection. Thus, in Fig. 12, the projection of 
 AB on RS is 
 
 M]V= AB cos a. 
 
ORTHOGONAL PROJECTION 
 
 IT 
 
 In like manner, the projection of AB on a line perpendicular 
 to MS (i.e. making + 90° with MS) has the value AB sin a. 
 These projections are called the components of the 
 line segment AB along and at right angles 
 to the direction MS. 
 
 In physics, line segments are 
 often used to represent quanti- 
 ties that have direction as well as 
 magnitude ; for example, forces, 
 velocities, accelerations. The components of the line segment 
 used to represent a force represent components of the force ; like- 
 wise for a line segment representing a velocity, acceleration, or 
 moment. Suppose, for example, that the line segment AB, Fig. 
 13, represents a force applied to the block m resting on a liorizon- 
 tal plane. This segment has the component UB parallel to the 
 
 plane and the compo- 
 nent FB perpendicular 
 to the plane. Segment 
 FB represents a force 
 component F^ parallel 
 to the plane, which 
 tends to move the block 
 along the plane ; seg- 
 ment FB represents a 
 force component F.^ per- 
 pendicular to the plane and tending to produce pressure between 
 the block and plane. Denoting by F the force represented by 
 AB, we have 
 
 F^ = F cos a, 
 
 Fy = F sin a. 
 
 Example. At a given instant a point is moving in a direc- 
 tion at an angle of 30° with a given horizontal line with a velocity 
 of 20 feet per second. Find the component of the velocity along 
 the line. 
 
 Taking the given line as the JT-axis, we have for the compo- 
 nent v^ 
 
 v^ = v COS 30°= 20 X I V3 = 17.321 feet per second. 
 
 The component along a line perpendicular to the given hori- 
 zontal line in the plane of motion is 
 
 Vy = v sin 30°= 20 x | = 10 feet per second. 
 
18 THE ACUTE ANGLE 
 
 EXERCISE VII 
 The student should draw appropriate figures for each of the following exercises. 
 
 1. Find the projections of a line segment 8.5 inches in length on the X- 
 and Z-axes, (a) when the segment makes an angle of 45° with the Z-axis ; 
 (b) when it makes an angle of 60° with the F-axis. 
 
 2. A crank 16 inches long rotates in a vertical plane. When the crank 
 makes an angle of 30° with the horizontal diameter of the circle described by 
 the moving end, what is the distance of the moving end, (a) from the hori- 
 zontal diameter? (h) from the vertical diameter ? 
 
 3. If in Fig. 13 the force jP denoted by AB is 40 pounds, find the compo- 
 nents F^ and Fy, (a) when a = 30° ; (b) when a = 45°. Discuss the cases 
 a =r 0° and a = 90°. 
 
 4. A steamer is moving at a speed of 18 miles per hour in a direction 
 north of east, making an angle of 30° with an east and west line. At what 
 rate is the steamer sailing eastward ? at what rate northward ? 
 
 5. A guy wire exerts a pull of 3000 pounds on its anchorage and makes an 
 angle of 30° with the ground. Find the component of this force, (a) along 
 the ground; (b) vertical. 
 
 6. The eastward and northward components of the velocity of a moving 
 body are found to be 1^^= 12 miles per hour and Vj,= 12 V3 miles per hour, respec- 
 tively. Find (a) the magnitude and (b) the direction of the body's velocity. 
 
CHAPTER ITT 
 
 RIGHT TRIANGLES 
 
 16. Laws for solution. If, in a right triangle, two independent 
 parts are known, in addition to the right angle, the three remain- 
 ing parts can be found. Thus two given parts, at least one of 
 which is a side, determine a right triangle. The formulas needed 
 in all cases to effect this solution are 
 five in number. Two are the state- 
 ments of well-known geometric theo- 
 rems, while the other three are the 
 immediate consequences of the defini- 
 tions of the trigonometric ratios con- 
 tained in Art. 6. 
 
 In Fig. 14 let ACB be a right 
 triangle, right-angled at 0. We shall 
 denote the interior angles at the ver- 
 tices by a, yS, 7, and the lengths of 
 the sides opposite them by a, 5, c, 
 respectively. Note that <y = 90°, and 
 
 The five formulas are the following : 
 
 
 
 
 
 B 
 
 
 
 
 /f^ 
 
 
 
 
 X 
 
 
 a 
 
 
 X 
 
 
 y 
 
 
 A 
 
 
 b 
 
 c 
 
 -' 
 
 C IS 
 
 Fig. 14. 
 
 the hypotenuse. 
 
 (1) 
 
 (2) 
 (8) 
 
 (-1) 
 
 (5) 
 
 Equation (1) follows from the Pythagorean theorem, and 
 (2) from the fact that the sum of the angles of a triangle is equal 
 to two right angles. In order to establish the last three, place 
 the triangle on the axes of coordinates described in Art. 4, the 
 side JL(7 extending from the origin to the right along tlie X-axis, 
 and the hypotenuse lying in the first quadrant, as in Fig. 14. 
 
 19 
 
 
 a2+62_ 
 
 c\ 
 
 
 
 a+p = 
 
 90*^ 
 
 » 
 
 a 
 
 c 
 
 = sin a = 
 
 cos 
 
 p. 
 
 h 
 c 
 
 = cos a = 
 
 sin 
 
 p. 
 
 a 
 h 
 
 = tan a = 
 
 cot 
 
 p- 
 
20 RIGHT TRIANGLES 
 
 Then 5, a, c, are respectively the abscissa, ordinate, and radius 
 vector of j5, a point on the terminal side of the angle a, which is 
 conventionally placed. 
 
 It follows at once from Art. 6 that 
 
 a 
 
 - — sm a, 
 c 
 
 h 
 
 - = cos a, • 
 
 a , 
 
 - = tan a. 
 
 
 
 The corresponding values of the functions of the angle y8 result 
 from Art. 10. 
 
 17. Area of right triangles. The formulas for 'the area of a 
 right triangle follow from tiie familiar geometric theorem 
 
 Area = |^ x base x altitude, 
 
 or expressed symbolically, 
 
 A = \ab. (1) 
 
 The substitution for a of its value from the preceding article gives 
 
 ^ = 1 6c sin a. (2) 
 
 Again, introducing the values of both a and 5, 
 
 A = I c2 sin a • cos a. (2) 
 
 Other formulas for the area may also be obtained. 
 
 18. Method of solution. The solution of any problem consists 
 of four parts : the analysis, the algebraic solution, the arithmetical 
 computation, and the interpretation of the results. 
 
 (1) The student should read and analyze the problem, noting 
 which parts are known and which are desired. The construction 
 of a neat and sufficiently accurate figure is helpful and advisable. 
 
 (2) The student should select from the five formulas of Art. 
 16 those containing a single unknown part each, in addition to the 
 known parts, and should solve them for these unknown parts while 
 still in the literal form. 
 
 Experience has led to the adoption of the following two rules 
 of procedure : 
 
SOLUTION OF EIGHT TRIANGLES 21 
 
 (tI) The use of the Pythagorean formula, a^ -f 5^ = c^, is to be 
 avoided save when the data are very simple or a table of squares 
 and square roots is at hand. 
 
 (^) So far as is consistent with rule A, each unknown part 
 should be found in terms of those parts originally given in the 
 problem, in order to avoid accumulation of errors. 
 
 In conformity with these rules, the angle relation a-\- 13 = 90°, 
 and two of the three trigonometric formulas serve to effect the 
 solution, while the remaining trigonometric formula affords a 
 check on the work. 
 
 (3) The solution is now effected by introducing the numerical 
 data and performing the necessary computations. The correctness 
 and accuracy of the results are greatly enhanced by extreme order- 
 liness of arrangement and neatness of detail. 
 
 The use of the trigonometric tables and the employment of 
 suitable checks will be discussed in subsequent articles. 
 
 (4) The geometric or physical significance of the results ob- 
 tained should be fully considered and interpreted. 
 
 Example i. Given c == 254, a = 30°, to find a, 5, /3. 
 
 In this instance the analysis and construction are obvious. 
 
 The three appropriate formulas yield at once the forms 
 
 yS=90°-a, 
 
 a= c sin ct, 
 
 h = c cos a. 
 
 The formula b = a tan /3 affords the check. 
 
 On introducing the numerical data, we obtain 
 
 ^ = 90° - 30° = 60°, 
 
 a = 25ixi =254 X. 5 = 127, 
 
 ^> = 254 X 1V3 = 254 X .86605 = 219.976T. 
 
 The check formula gives 
 
 6 = 127x1.7321 = 219.9767. 
 
 Example 2. Given « = 39.00, 6 = 80.00, to find c, a, /9, and 
 the area. 
 
 As before, we may pass immediately to the second stage. Now 
 c is given directly in terms of a and b by the formula c?= Va^ + h^ 
 
22 RIGHT TRIANGLES 
 
 If we are to avoid the use of this formula, we must first find a and 
 /8, and then get c by means of one of these angles. We use the 
 forms : 
 
 I a = 
 
 a 
 
 "V 
 
 /9 = 
 
 90°- 
 
 C = 
 
 a 
 
 sm a 
 
 A = 
 
 \ah. 
 
 c = 
 
 h 
 sin l3' 
 
 and for the check 
 
 We obtain, then tan « = 39 -^ 80 == .4875, 
 
 a = 25° 59^ as found from Table III, 
 /3= 90° -25° 59' =64° 01', 
 ^ = 39 _j. .4381 = 89.01, 
 ^ = 1 X 39 X 80 = 1560, 
 
 and for the check c=SO-^ .8989 = 89.00, 
 
 showing a difference of .01. 
 
 On account of the simplicity of the numbers, we may, by using 
 the formula c^ = a^-]- P, find, exactly, c = 89. 
 
 Explain the accumulation of errors and, hence, the reason for 
 rule of procedure (jB). 
 
 Examples, l. Given c = 42, ^ = arcsin .28 ; find a and h, 
 
 2. Given 5 = 27, « = tan~i .75 ; find a and c. 
 
 3. Given a = 300, a = cos"^ .45 ; find c and b. 
 
 4. Given c= 200, a— arccot 1.12; find a and h. 
 
 19. Trigonometric tables. In the first example worked in the 
 preceding article, the functions of 30° had been determined in 
 Art. 11. In the second example, however, the value of tan a was 
 not one of those previously ascertained, and the value of a was not 
 recognizable from its tangent. For convenience of reference the 
 numerical values of the sines, cosines, tangents, and cotangents of 
 all angles differing by intervals of one minute from 0° to 90° have 
 been collected in Table III, on pages 71-89. The arrangement is 
 simple and plain. The degree numbers from 0° to 44° occur at the 
 top of the page, with the minutes running down the left margin. 
 
TABLES. ERRORS AND CHECKS 23 
 
 The numerical values of the functions, computed to four decimal 
 places, are placed in columns under the names of the functions. 
 
 Since sin (90° — a)— cos a, and tan (90° — ce) = cot a, the space 
 required may be reduced one half. The degree numbers of angles 
 from 45° to 90° are printed at the bottom of the pages in reversed 
 order, the minutes run up the right margin, and the names of the 
 functions are in reversed order at the bottom. 
 
 For the present the student need not concern himself with 
 smaller divisions of the angle than the minute. Further refine- 
 ment is attained by a method to be described in Art. 26. 
 
 Table IV, on pages 91-93, contains the squares of numbers less 
 than 1000 and, by interpolation, of numbers up to 9999. The 
 first page gives directly the squares of numbers from 1 to 100. 
 On the second and third pages the tens and units digits of the 
 number to be squared are in the left margin, while the hundreds 
 digits are at the tops of the several columns. The last two figures 
 of the square are in the column at the right under U., opposite 
 the tens and units digits ; the first three, or four, figures of the 
 square are in the same line in the column under the hundreds 
 digit. In the right margin are the last two figures of the tabular 
 difference used in interpolation, to which must be prefixed the 
 remainder obtained by subtracting the first three, or four, figures 
 of the square from those in the same column immediately beneath, 
 or that remainder diminished by 1 when the asterisk (*) is present. 
 The use of the table is best shown by illustration. 
 
 Examples, i. 3282 = 107,584. 
 
 2. 475.3 = 4752 4- .3 X 951 = 225,625 + 285 = 225,910.* 
 
 3. 28.372 =28.32 + . 07 x567 = 800.89 + 3.97 = 80 1.56. 
 
 Square roots are extracted by reversing the process ; thus. 
 
 4. V27556 = 166. 
 
 5. V658,037 = V657,72l + 316 ^ 1623 = 811 + .2 = 811.2. 
 
 20. Errors and checks. The results obtained are not always, 
 nor even usually, exactly correct. The deviations from the true 
 values are of two sorts, mistakes and errors, and a sharp distinc- 
 tion must be made between them. 
 
 * This result is, of course, only approximately correct. The true result may be 
 obtained as follows : 
 
 475.32 = 4752 + .3 X (475.3 + 475) = 225,625 + 285.09 = 225,910.09. 
 
24 RIGHT TRIANGLES 
 
 The data for problems arising in actual practice are derived 
 from observations made with instruments for measuring lengths, 
 angles, etc. 
 
 Mistakes may arise from a false reading of the observing instru- 
 ment, a misapprehension of the problem, the employment of the 
 wrong formula, faulty addition, etc. ^ They are never allowable or 
 excusable. 
 
 On the other hand, instruments are so constructed as to yield 
 results only to a certain degree of precision, which should be 
 ascertained for each instrument. Moreover, observation is per- 
 formed by the human apparatus, eyes, ears, etc., and a certain per- 
 sonal equation, an anticipation or lagging in sight or hearing, is 
 always present, varying with personal fitness and experience. 
 Methods of eliminating instrumental errors, so as to obtain the 
 maximum precision possible with the instruments used, are given 
 in standard works on engineering instruments. Again, the arith- 
 metical calculation involves the trigonometric ratios, which are, in 
 general, non-terminating decimal fractions, while their values in 
 the mathematical tables are computed only to a certain number of 
 decimal places. Errors, therefore, will always be present ; but 
 every precaution should be taken to keep the errors due to com- 
 putation well within the limits of error of the observed data and 
 desired results fixed by the nature of the problem. 
 
 In both observation and solution, certain additional processes 
 are employed, to avoid, or to reveal, mistakes. These processes 
 are known as checks and vary with the nature of the problem. 
 
 While no general rules for checks can be laid down, a frequent 
 practice in the solution of triangles is to make use of a formula 
 connecting the required parts, just found, noting if the results are 
 within the range of allowable error. The size of this allowable 
 error should be known for each table. 
 
 As a check to arithmetical computation, graphical construction 
 is well understood and strongly advised. As a means of avoiding 
 the grosser mistakes, a free-hand sketch will frequently suffice by 
 guiding the student to a reasonable interpretation of data, and 
 indicating possible results. 
 
 A drawing constructed to scale will further aid by yielding 
 values more or less approximate, approaching those obtained by 
 computation. 
 
 Carried a step farther as regards accuracy, by the use of pre- 
 cise instruments, the graphical construction often attains to the 
 
PROBLEMS INVOLVING RIGHT TRIANGLES 
 
 25 
 
 dignity of an independent solution, with results falling within the 
 limits prescribed by the physical conditions of the problem. 
 
 There is no better evidence of careful work than the record- 
 ing of a reasonable error obtained by the comparison of two 
 methods. In practical work the allowable per cent of error 
 becomes an important consideration. 
 
 EXERCISE VIII 
 
 Find the missing parts of the following triangles, using the 
 natural trigonometric functions, Table IIL 
 
 
 a 
 
 /3 
 
 a 
 
 h 
 
 c 
 
 A 
 
 1. 
 
 2.5° 10' 
 
 
 
 
 34 
 
 
 2. 
 
 52° 20' 
 
 
 
 
 73 
 
 
 3. 
 
 
 61° 15' 
 
 
 
 243 
 
 
 4. 
 
 
 78° 35' 
 
 
 
 521 
 
 
 5. 
 
 21° 25' 
 
 
 235 
 
 
 
 
 6. 
 
 72° 45' 
 
 
 720 
 
 
 
 
 7. 
 
 
 80° 30' 
 
 1200 
 
 
 
 
 8. 
 
 
 17° 30' 
 
 
 1500 
 
 
 
 9. 
 
 
 
 240 
 
 
 360 
 
 
 10. 
 
 
 
 381 
 
 
 715 
 
 
 11. 
 
 
 
 
 521 
 
 630 
 
 
 12. 
 
 
 
 
 840 
 
 1400 
 
 
 13. 
 
 
 
 648 
 
 864 
 
 
 
 14. 
 
 
 
 595 
 
 600 
 
 
 
 15. 
 
 
 
 215 
 
 385 
 
 
 
 16. 
 
 
 
 2111 
 
 1234 
 
 
 
 17. 
 
 
 
 95 
 
 
 
 7980 
 
 18. 
 
 
 
 
 264 
 
 
 30360 
 
 19. 
 
 74° 20' 
 
 
 
 
 
 1225 
 
 20. 
 
 
 24° 50' 
 
 
 
 
 843 
 
 21. In the same vertical plane the distances shown in Fig. 15 were meas- 
 ured in feet along the surface of 
 
 the ground. The distances of the « ^ ^ ^ ^ f^R- 
 
 different points below the instru- 
 ment, as measured by a rod, are 
 given also in feet. The vertical 
 scale is exaggerated for clearness. 
 What is the horizontal distance 
 from B to Gl (Check by a table of squares and square roots.) 
 
26 RIGHT TRIANGLES 
 
 22. A line surveyed across a ridge is 1500 feet in horizontal length. 
 Stakes are set 100 feet apart horizontally by level chaining. By leveling, the 
 elevations of the surface at the different stakes is obtained as follows : 730.2, 
 735.9, 739.7, 743.4, 750.1, 751.8, 760.7, 764.1, 764.3, 765.8, 765.0, 763.2, 758.3, 
 750.2, 743.1, 740.2. What length of wire will be required for fencing along 
 this line? (Check by a table of squares and square roots.) 
 
 23. If a gravel roof slopes one half inch to the horizontal foot, what angle 
 does it make with the horizon? 
 
 24. If the face of a wall has a batter or inclination of one inch in one ver- 
 tical foot, what is its angle with the vertical ? 
 
 25. What is the angle of ascent of a railway built on a 2 per cent grade 
 (i.e. 2 vertical feet to 100 horizontal feet) ? 
 
 C 26. The pitch of a roof is the ratio 
 
 — . (See Fig. 16.) What is the in- 
 
 clination to the horizon of a roof with 
 •^ pitch, I pitch, I pitch? 
 
 27. What is the pitch of a roof slop- 
 ing to the horizon at 15°, 30°, 45° ? 
 
 28. What is the inclination to the horizon of the corner or hip rafter of a 
 pyramidal roof whose pitches are ^? 
 
 29. What is the inclination from the vertical of the corner edge of a wall, 
 both of its faces having a batter of ^^^ ? 
 
 30. At what angle does a railway slope if it has a grade of 0.25%, 0.5%, 
 
 2.5%? 
 
 31. At what angle must a cog railway ascend in order to rise 2640 feet in 
 one horizontal mile ? 
 
 32. A battleship known to be 341 feet long subtends an angle of 3° 20' 
 when presenting its broadside to a fort on shore. For what distance should 
 guns be sighted when trained upon it ? (Note that the isosceles triangle hav- 
 ing the length of the ship for its base is separable into two right triangles.) 
 
 33. In planning the stairway for a house it is desired that the riser, or 
 vertical distance between steps, shall be 7 inches, and the treads, or horizontal 
 distances between faces, 11 inches. What will be the angle of inclination of 
 the hand rail? 
 
 34. Taking the data of the preceding problem, what will be the length of 
 the hand rail if straight, provided the height between floors is 11 feet 8 inches? 
 
 35. A cylindrical water tower whose external diameter is 25 feet subtends 
 a horizontal angle of 5° 30' as viewed from a distance. How far is its center 
 from the instrument? 
 
 (Note that we have a triangle that is right-angled when the line of sight 
 is tangent. The base is the radius of the tower and the opposite angle is half 
 of the one observed.) 
 
PROBLEMS INVOLVING RIGHT TRIANGLES 
 
 27 
 
 36. What horizontal angle would be subtended, at a distance of 2 miles^ 
 by a vertical cylindrical gas receiver 60 feet in diameter ? 
 
 (See note to problem 35.) 
 
 37. The end of a pendulum 34 inches long swings through an arc of 3| inches. 
 Find the angle through which the pendulum swings. 
 
 38. When vertically over a village, a balloon's angle of inclination, as 
 viewed from 9 miles distant, was 15° 20'. Assuming the surface of the country 
 to be fairly level, what was the height of the balloon ? 
 
 39. A flagstaff 110 feet high is covered by a vertical angle of 12° 30' at a 
 point approximately on a level with its center. How far is the observer from 
 the staff? 
 
 40. The data of a preliminary survey are as follows: 
 
 AB = 240.9 feet. 
 BC = 310.7 feet. 
 CZ> = 611.5 feet. 
 DE = 237.2 feet. 
 J5:i^= 528.0 feet. 
 
 Considering A, Fig. 17, as the 
 origin of coordinates and AB a,s 
 the axis of abscissas, it is required 
 to compute coordinates for all 
 points given, thus providing for 
 the accurate mapping of the 
 survey. 
 
 41. Find the missing parts 
 and area of the following isos- 
 celes triangles (see Fig. 18 for 
 lettering) 
 
 Angle at 5 = 62° 11' left. 
 Angle at C = 55° 50' left. 
 Angle at D = 43° 42' right. 
 Angle a.tE = 51° 23' right. 
 
 
 Fig. 17. 
 
 35°, a = 42; 
 
 « = 72°, & = 12o; 
 
 350, & = 180; 
 
 /3 = 54°, a = 360 ; 
 
 51° 26', & = 480; 
 
 a = 640, b = 840. 
 
 42. Find the lengths of the chords of the follow- 
 ing arcs in terms of the radius: 30°, 36°, 40°, 45°, 60°, 
 75°, 90°, 120°. Compute, given R = 100. 
 
 43. Express in terms of the sine and radius the relation between the chord 
 of an arc and the chord of half the arc. 
 
 44. Express in trigonometric form the most important relations between 
 the radius R of the circumscribed circle, the radius r of the inscribed circle, the 
 side s, and the number of sides n of a regular polygon. 
 
28 RIGHT TRIANGLES 
 
 45. Compute and tabulate the perimeter and the circumferences of the 
 circum- and in-circles of a regular polygon of n sides for n = 4, 8, 16, 32, given 
 72 = 10. 
 
 46. Compute and tabulate the area of a regular polygon of n sides and of 
 its circum- and in-circles for n = 4, 8, 16, 32, given R = 10. 
 
 47. Repeat example 45 for n == 6, 12, 24, 48. 
 
 48. Repeat example 46 for n = 6, 12, 24, 48. 
 
 49. A body is acted upon by three forces of magnitudes 20, 40, 60, parallel 
 to the sides of an equilateral triangle. Resolve these forces along two perpen- 
 dicular axes, then combine, and thus find the magnitude and direction of the 
 resultant. 
 
 50. A body situated at one vertex of a regular hexagon is acted upon by 
 five forces represented in magnitude and direction by the vectors drawn to the 
 five other vertices. Resolve along and perpendicular to the diameter through 
 the point and find the magnitude and direction of the resultant. 
 
 51. A point describes a circle with uniform speed. Determine the position 
 of its projection upon a diameter in terms of its angular displacement from that 
 diameter. 
 
 52. A point describes a circle of radius 30 feet at a rate of 4 revolutions 
 per minute. Find the position of its projection upon a diameter at the end of 
 5 seconds after passing the extremity of that diameter. 
 
 53. Determine the components of the vertical acceleration g along and 
 perpendicular to a plane inclined at an angle a to the horizon. 
 
 54. If ^r = 32, find the acceleration along and perpendicular to a plane 
 whose inclination to the horizontal is 30°, 15°, 10°, 5°. 
 
 55. A man weighing 150 pounds stands midway on a 30-foot ladder whose 
 foot is 10 feet horizontally from the vertical wall against which it leans. 
 Find the normal (perpendicular) pressure on the ladder and the force tending 
 to cause him to slide along the ladder. 
 
 56. Find the components along the X- and F-axes of a force of 65 pounds 
 making an angle of 28° 13' with the Z-axis. 
 
 57. A steamer is sailing in such a way that its speed due east is 12 miles 
 per hour and its speed due south is 14 miles per hour. Find the direction of 
 the steamer's course and the speed in that course. 
 
 58. In an oblique triangle, angle B = 45°, angle C = 32°, and side b = 16. 
 Find side c. (Suggestion. Draw the perpendicular from the vertex A upon 
 the opposite side.) Attempt to deduce a general relation between the func- 
 tions of the acute angles of au oblique triangle and the opposite sides. 
 
CHAPTER IV 
 
 LOGARITHMS 
 21. Definition of a logarithm. If we have given 
 
 we can find the product of 5Q and 79 without performing the 
 operation of multiplication, provided we know in advance the 
 powers of 10. For, we have from the general laws governing 
 exponents, 
 
 56 X 79 = 10i-^4«i^ X W'^''^' 
 
 __ -j^Ql.74819+1.89763 
 =:103-«4'^82^4424. 
 
 It will be seen that the process of multiplication has been replaced 
 by the simpler one of addition. 
 
 Many other processes in computation can be simplified in a 
 similar manner ; for example, if we wish to find the cube root of 
 a number, say 89.1, we have 
 
 89.1 = 101-94988^ 
 
 and consequently • 
 
 V89.1 = (10i-94988y = 100-64996 ^ 4.466+. 
 
 In this case the extraction of a root has been accomplished by the 
 simple process of division. In order to extend this method we 
 must know all of the powers of some convenient number. The 
 exponents involved are called logarithms, and the number raised 
 to a power is referred to as the base of the logarithmic system. 
 We may define a logarithm more exactly as follows : 
 
 If a is any number and x and n are so related that «^ = n^ then 
 X is^,«^lled the logarithm of n to the base a ; that is, a logarithm is 
 the index of the power to which the base must be raised to obtain 
 the given number. 
 
 This relation is denoted symbolically by writing 
 
 X = log„ n, 
 
 and is read ^'•x is equal to the logarithm of n to the base a." 
 
 29 
 
30 LOGARITHMS 
 
 Thus 3 is the logarithm of 8 to the base 2, since 2^ = 8 ; and 
 in the illustrations given above, 1.74819 is the logarithm of 66 to 
 the base 10, etc. 
 
 The two statements 
 
 a^ = n, x = logo n 
 
 are inverse to each other, just as are the relations sin x and 
 arcsin x^ etc., of Art. 14. 
 
 Exercise. Find by inspection log3 27, log5.625, log8 32, 
 log,. 04. . . . , 
 
 The logarithm of a number to itself as base is unity, since 71^ = 71. 
 
 The logarithm of 1 to any base other than zero is zero, since 
 a^ = 1. 
 
 In conformity with the definition just laid down, it follows that, 
 if two numbers are equal, their logarithms to the same base are 
 equal. It is also true conversely, that if the logarithms of two 
 numbers to the same base are equal, the numbers are equal.* 
 
 If the base is real and positive, real logarithms produce only 
 positive numbers. If the base is real and negative, even loga- 
 rithms produce positive numbers ; odd logarithms, negative num- 
 bers. For this reason only real positive bases are chosen in prac- 
 tice, and only positive numbers are combined by the aid of their 
 logarithms. The sign of the result is ascertained entirely apart 
 from the numerical computation. 
 
 22. Laws of combination. Logarithms are important in trigo- 
 nometry and elsewhere as labor-saving devices in calculations with 
 numbers containing many digits. Only so much of the theory of 
 logarithms as is necessary for this purpose will be developed in the 
 present chapter. 
 
 The laws of combination of numbers by the aid of their loga- 
 rithms follow at once from the definition of the preceding 
 article. 
 
 I. The logarithm of the product of two factors is equal to the sum 
 of their logarithms, all to the same hase. 
 
 For, if a; = log„ n and y = log^ m we may write • 
 
 n = a^ and m = a^. 
 
 * In the theory of analytic functions a broader definition of the logarithm is laid 
 down, and the statement just made requires modification. 
 
LAWS OF COMBINATION 31 
 
 Multiplying, we have, by the exponential law, 
 
 nm = a^+^, 
 
 whence, loga nm ^x-\-y= logc* ^ + lo&a ^- (1 ) 
 
 This law may evidently be extended to any finite number of 
 factors. 
 
 II. The logarithm of the quotient is equal to the logaritJim of the 
 dividend minus the logarithm of the divisor^ all to the same base. 
 
 For, if a; = log^ri and y = log^ m, we may write as before, 
 
 n = a*, m = a^. 
 
 n 
 Dividing, we have — = a^"^, 
 m 
 
 whence, log„ ^— j =x — y = log« n— log„ m. (2) 
 
 Manifestly log« f — j = — log^ m. 
 
 III. The logarithm of the power of a number is equal to the loga- 
 rithm of the number multiplied by the index of the power. 
 
 For, if a; = log^ n, then n = a^. 
 
 Hence, n^ = {a^y = a^"^ 
 
 or, log« (nP) =px = p loga n- (3) 
 
 IV. The logarithm of the root of a number is equal to the loga- 
 rithm of the number divided by the index of the root. 
 
 For, if :r = log^ n, then n = a^. Extracting the ^'th root of both 
 members, we get 
 
 v n = aQ, 
 
 whence, log^^^ = - = i log„ n. (4) 
 
 q <1 
 
 23. Common logarithms. Any number may be used as a base 
 of a system of logarithms. For certain purposes the so-called 
 natural system of logarithms, which has for its base the number 
 e = 2.71828183 •••, has advantages. For the purposes of ordinary 
 numerical computation, however, it is most convenient to employ 
 for the base of the system of logarithms, 10, the base of the 
 universally adopted system of numeration. 
 
32 LOGARITHMS 
 
 The common logarithms of all exact integral powers of 10 are 
 positive integers ; for instance 
 
 logio (1000000) = logio(W) 
 = 6 log,, 10 
 = 6. 
 
 The logarithms of reciprocals of integral powers of 10 are 
 negative integers ; thus 
 
 logio (.00001) =logi„ (10-0 
 = -51og,„10 
 = -5. 
 
 The losrarithms of numbers situated between two consecutive 
 integral powers of 10, say between 10^ and 10*+^, lie between k 
 and k + 1, where k is any integer, positive or negative. Thus 
 
 103 < 2417 < 104, 
 
 whence, , 3 < log^^ 2417 < 4, 
 
 or, logjQ 2417 = 3 + a number lying between and 1. 
 
 The logarithms of numbers greater than the base consist of an 
 integer plus a proper fraction. The fractional part is written 
 decimally, calculated to a number of decimal places, depending 
 on the degree of accuracy desired in the use of the table. The 
 integral part of the logarithm is called the characteristic; the 
 decimal fraction, its mantissa. 
 
 Hereafter, in this book, except in Chapter IX, we shall have 
 to do only with common logarithms and, unless otherwise expressly 
 stated, log n will denote logjQ n. 
 
 24. Characteristic. If one number is equal to another number 
 multiplied by a factor which is a power of 10, the logarithms of 
 the two numbers differ by an integer. For 
 
 log (10* xn')= log (10^ + log n 
 
 = k + log n. 
 
 Example. log 34000 = 3 + log 34 
 
 = 4 + log 3.4, etc. 
 
 Every number containing one digit at the left of the decimal 
 point lies between 10^ and 10^. The characteristic of its logarithm 
 
CHARACTERISTIC. MANTISSA 33 
 
 is therefore 0. The cipher should always be written to indicate 
 that the characteristic has not been overlooked. 
 
 Every number containing k digits at the left of the decimal 
 point is 10*"^ times a number with one digit at the left. The 
 characteristic is therefore k — \. We have then the following 
 rule for the characteristic : 
 
 The characteristic of the logarithm of any number greater than 
 unity is one less tlian the number of digits at the left of the decimal 
 point. 
 
 Should the number be less than unity, move the decimal point 
 ten places to the right (thus multiplying by 10^^) and apply the 
 same rule as before, then write — 10 after the logarithm for 
 correction. Thus 
 
 log 7.12 = 0.85248, 
 
 log 71200 = log (10* X 7.12) 
 
 = 4.85248, 
 log .00712 = log (10-10 X 71200000) 
 = log (10-10 X 107 X 7.12) 
 
 = 7.85248-10. 
 
 The positive part of the last characteristic is seen to be the 
 difference found by subtracting from 9 the number of ciphers 
 immediately following the decimal point in the number. 
 
 The characteristic of the logarithm of any number less than unity 
 is found by subtracting from 9 the number of ciphers between the 
 decimal point and the first significant digit, then affixing —10. 
 
 25. Mantissa. We have seen that moving the decimal point 
 in the number merely changes the characteristic of the logarithm, 
 leaving its mantissa unaltered. The mantissa depends solely upon 
 the sequence of significant digits. 
 
 In the tables given, the logarithms are computed to five deci- 
 mal places (see pp. 1-21), and the mantissas alone for all numbers 
 from 100 to 9999 are given, arranged in the following manner : 
 Running down the left margin, under iV, are to be found the 
 first three digits of the number. In the next, (open) column 
 occur the first two figures of the mantissa. In the next ten 
 columns are the remaining three figures of the mantissa arranged 
 under the fourth digit of the number at the top of the columns. 
 
34 • LOGARITHMS 
 
 Thus to find the mantissa of log 3814, we select the row having 
 381 in the left margin. The first two figures of the mantissa, 58, 
 are found in the first column. The three remaining figures, 138, 
 are found in the column headed 4, the fourth digit of the number, 
 giving the mantissa .58138. 
 
 To avoid repetition, the first two figures, 58, are not printed in 
 every line, but are to be used from 3802 to 3890, inclusive. The 
 prefixed asterisk, *006, denotes that the mantissa of 3891 is .59006, 
 not .58006. 
 
 EXERCISE IX 
 
 1. Find by inspection logg 16, log,, 27, log^ ^^. 
 
 2. Find by inspection logg 81, logg 32, logo; 9. 
 
 3. What numbers correspond to the following logarithms to base 4 : 0, 1, 
 2,2.5,3, -2,-3? 
 
 4. What numbers correspond to the following logarithms to base 8 : 0, 
 1,H, -I, -2? 
 
 5. Find by logarithms: («)^; (P) '^^^f^iM. 
 
 6. Find («) VtW; (b) \/W7 ; (c) \/9l. 
 
 ^ Find^ 
 
 18 X V240 X 753 
 72 X Vim X 200 
 
 3/ 
 
 , Find (^xV720xl5Y^ 
 V2x V480x 248/ 
 
 9. Find { "^^ ] * , where k = 1.41. 
 
 \ 65 / 
 
 10. Solve for x: ^^ = 24. 
 
 11. Solve for x : 6* = 25. 
 
 The amount A attained by a principal P at interest at the rate r com- 
 pounded annually for n years is 
 
 A =P(1 +r)~. 
 
 12. Find the amount of $ 3680 at 4 per cent in 6 years. 
 
 13. Find the principal which, in 7 years at 5 per cent, amounts to ^ 5820. 
 
 14. At what rate will ^ 5000 amount to $7500 in 8 years ? 
 
 15. In how many years will $ 86,500 amount to $ 129,600 at 3^ per cent ? 
 
 16. If a city increases its population I each year, in how many years will 
 it double its size ? 
 
INTERPOLATION 35 
 
 26. Interpolation. It will be shown in Art. 79 that the differ- 
 ence in the logarithms of two numbers is approximately propor- 
 tional to the difference in the numbers provided these differ- 
 ences are small. Thus, approximately, 
 
 log 51473 - log 51470 ^ 51473 - 51470 ^ 3 
 log 51480 - log 51470 51480-51470 10* 
 
 We have, then, 
 
 log 51473 = log 51470 + ^\ (log 51480 - log 51470). 
 
 Introducing the values from Table I, 
 
 log 51473 = 4.71155 + ^^^ (4. 71164 - 4.71155) 
 
 = 4.71155 4-. 3 X .00009 
 
 = 4. 71155 +.00003 
 
 = 4.71158. 
 
 The difference .00009, or omitting the denominator, the 9 is 
 called the tabular difference corresponding to the logarithm of 
 5147. Note that the added difference is computed to the nearest 
 fifth decimal place. 
 
 This process is called interpolation by the principle of pro- 
 portional parts. To facilitate interpolation, tables of proportional 
 parts are inserted in the logarithmic tables in the column headed 
 P.P. At the top of each of the P.P. tables is the tabular differ- 
 ence and under this is the number to be added corresponding to 
 the digit at the left. For example 
 
 log 38.25 = 1.58263 
 log 38.26 = 1.58274. 
 
 The difference is .00011 and in the P.P. column is a table 
 headed 11. Suppose now that log 38.257 is required. Opposite 
 7 under 11 is found 7.7 ; hence 8 is to be added in the fifth deci- 
 mal place, giving 
 
 log 38.257 = 1.58271. 
 
 27. Numbers from given logarithms. The inverse process of 
 finding the number corresponding to a given logarithm is best 
 explained by an illustration. Given the logarithm 3.84235. Only 
 the mantissa need be considered at first, as the characteristic 
 merely determines the position of the decimal point in the number. 
 
36 LOGARITHMS 
 
 Looking for 84 in the first column after the margin, we find it 
 corresponding to numbers from 692 to 707. The nearest tabular 
 number (mantissa) smaller than 235 is 230, corresponding to the 
 number 6955. The difference is 5, while the tabular difference, 
 found by subtracting 230 from 236, is 6. We have now the pro- 
 portion for the next digit, 
 
 n _5 ^ 
 
 10~6' 
 
 so that the next digit is found by dividing 50 by 6. It is inad- 
 visable to carry the interpolation beyond one additional digit. 
 Since 50 -^ 6 = 8 • + • • •, we have found the desired number to be 
 6955.8. The decimal point is placed after the fourth digit accord- 
 ing to the rule for the characteristic, the given characteristic 
 being 3. Should the logarithm be followed by — 10, the decimal 
 point must finally be moved ten places to the left. 
 
 28. Cologarithms. The logarithms of divisors have to be sub- 
 tracted. Subtraction, however, can be avoided and the logarith- 
 mic computation of a succession of multiplications and divisions 
 effected by a single addition process. There is no advantage in 
 using cologarithms when but two factors are involved. When, 
 however, more than two are involved, instead of dividing by the 
 denominator or divisor factors, we may multiply by their recipro- 
 cals, obviously a legitimate substitution. Now 
 
 log— = — log m = (10 — log m) — 10. 
 m 
 
 This logarithm, (10 — log m) — 10, is called the cologarithm 
 of m, written cologm. It may be written down immediately from 
 the table by beginning at the left and subtracting each figure from 
 9, until the last figure, which must be subtracted from 10. Thus 
 
 log 28.24 = 1.45086 
 
 and colog 28.24 = 8.54914 -10. 
 
 29. Logarithms of trigonometric functions. Logarithms of the 
 trigonometric functions are arranged in Table II in the same 
 manner as are the natural functions, or true numerical values of 
 the functions. Logarithmic secants and cosecants need not be 
 printed, since they are the cologarithms of the cosines and sines. 
 
 The sines and cosines of angles and the tangents of angles less 
 
LOGARITHMS OF TRIGONOMETRIC FUNCTIONS 37 
 
 than 45° are numerically less than unity. In conformity with 
 Art. 24, therefore, their logarithms are written in the augmented 
 
 ^^^^^' log sin 6d° 21^ = 9. 95850 - 10. 
 
 The — 10 is not printed in the table but it is always understood. 
 The positive portion of the characteristic is printed in the table. 
 Usage differs with respect to printing the logarithmic tangents 
 of angles greater than 45°. Engineering and physical instruments 
 are usually graduated to minutes or larger divisions of the angle, 
 so that it is not feasible to carry the interpolation farther than to 
 tenths of minutes. The tables of functions and of proportional 
 parts printed in connection with this book are arranged with this 
 in view. 
 
 Astronomic observations justify carrying the interpolation to 
 seconds, and astronomers use for this purpose tables computed to 
 seven or more decimal places. 
 
 For example, 
 
 log sin 29° 37' = 9.69890 - 10, 
 
 log sin 29° 38' = 9. 69412 - 10. 
 
 The difference is .00022, and in the P.P. column is a table headed 
 22. Suppose now that log sin 29° 37.4' is required. Opposite 4 
 under 22 is found 8.8 ; hence 9 is to be added in the fifth decimal 
 place, giving 
 
 log sin 39° 37.4' = 9.69399 - 10. 
 
 EXERCISE X 
 
 1. Find from the table the logarithms of 72484, 619.25, 695 x 10^ 
 .00064375, 3 x lO^i. 
 
 2. Find from the table the logarithms of 91386, 14.295, 321 x 10^, 
 .000078541, 2 x lO^*. 
 
 3. Find the numbers whose logarithms are 3.71295, 12.61242, 8.21312 - 10. 
 
 4. Find the numbers whose logarithms are 4.21382, 11.75153, 6.13579 - 10. 
 
 5. Find Young's modulus of elasticity from the formula Y= — ^, if 
 m = 4932.5, g = 980, I = 110.5, tt = 3.1416, r = .25, s = .3. '^'' ^ 
 
 6. Find the radius of the sun if its mass is 2.03 x 10^^ grams, and its 
 average density is 1.41, knowing that mass = volume x density. 
 
 7. The radius r of each of two equal, tangent, iron spheres which attract 
 each other with a force of 1 gram's weight, is given by the formula 
 
 4r2 i22' 
 
38 LOGARITHMS 
 
 in which the density of iron p = 7.5, the mass of the earth ikf = 6.14 x 10*^ 
 grams, and the radius of the earth R — 6.37 x 10^ cm., while ir = 3.1416. Solve 
 for r and compute by logarithms. 
 
 8. Solve example 7 for spheres of lead with density p = 11.3. 
 
 9. The population of a county increases each year by 12.5 per cent of the 
 number at the beginning of the year. If its population Jan, 1, 1776, was 
 2.5 X 106, what will it be Dec. 31, 1926? 
 
 10. If the number of births and deaths per annum are 3.5 per cent and 
 1.2 per cent respectively of the population at the beginning of each year, and* 
 the population on Jan. 1, 1830, was 5 x 10^ find the population Jan. 1, 1905. 
 
 11. Find from the tables log sin 25° 32.3', log cot 71° 18.6', colog cos 16° 
 29.2'. 
 
 12. Find from the tables log cos 19° 25.7', log tan 31° 16.2', colog sin 
 65° 12.8'. 
 
 13. Find the angles corresponding to log cos a = 9.31723, log cot y8 = 9.16251, 
 log tan y = 0.61253. 
 
 14. Find the angles corresponding to log sin a = 9.63152, log tati 
 (3 = 9.71728, log cot y = 0.15382. 
 
 15. Francis deduces the following formula for the discharge over a weir, 
 q = 3.01 bH^-^, in which q is the discharge in cubic feet per second, b the breadth 
 of the crest, and H the head of water. Find by logarithms the discharge when 
 6 = 3.5 and// =1.2. 
 
 16. A common formula for finding the diameter of a water pipe is 
 
 m 
 
 d = 0.479 
 
 h 
 
 in which /is a friction factor, I the length of the pipe, q the discharge, and h 
 the head. Find d when /= 0.02, I = 500, ^ = 5, ^ = 10. 
 
 17. The discharge from a triangular weir is given as ^ = c I'V V2 g H^, in 
 which c is a constant, g the acceleration of gravity, and H the head. Find q 
 when g = 32.2, H = 1.2, c = 0.592. 
 
 18. The formula for velocity head is h = 0.01555 V^. Find ?i when V = b. 
 
 19. The elevation of the outer rail on what is known as a one-degree railwav 
 curve to resist centrifugal force is sometimes given by the formula e = 0.00066 V^, 
 e being in inches and V the speed of the train in miles per hour. When F = 45, 
 comjmte e. 
 
 20. Another expression for the relation of the preceding problem is 
 
 qY-2 
 
 c = '^ • Here e is in feet, g is the gauge of the track, V is the speed in feet 
 
 per second, and R is the radius of the curve. Given g = 4.71, V = 66, R = 5730, 
 compute e. 
 
THE SLIDE RULE 39 
 
 21. The difference between the base and hypotenuse of a right triangle is 
 
 given by c — a = , and when a and c are nearly equal, approximately by 
 
 yi c -\- a 
 
 c — a = — . 
 
 2c 
 
 Find the per cent of error introduced by the second method when the angle 
 between a and c is 15°. 
 
 22. If a = length of a short circular arc and c = its chord, then approxi- 
 mately a — c = . Given a = ^ and R — 100, compute the value of this 
 difference. 
 
 23. The relation between the pressure and volume of air expanding under 
 certain conditions is pj??j ^-^^ — pv^*\ where p^ and v^ are initial values. If p^ = 40, 
 v^ = 5.5, find V when j9 = 24 ; also when p = 16. 
 
 24. The relation between the initial and final temperatures and pressures 
 is given by the equation 
 
 With ^j = 60 and the other data as in Ex. 23, find the final temperatures 
 for p = 24: and j9 = 16, respectively. 
 
 30. The slide rule. The principles of logarithmic computation 
 are conveniently illustrated by means of the slide rule, now widely 
 used in performing mechanically such operations as admit of the 
 use of logarithms. A brief description of this instrument will be 
 found profitable at th^s stage, and its use by the student as a 
 ready check upon the numerical solution of problems is strongly 
 recommended. As will be seen by an inspection of the simplified 
 diagram of Fig. 19, the rule is essentially a device for adding and 
 
 A B Rule C 
 
 1 2 3 4 5 6 7 
 
 a Slide h 
 
 1 1 — I — I — I — 
 
 3 4 5 6789 10 
 
 Fig. 19. 
 
 subtracting logarithms, thereby giving a wide range of computa- 
 tions. In the figure the point 6X on the "slide" is set opposite 
 the point B on the "rule." If both scales, which are alike, are 
 so divided that AB is equal, or proportional, to log 2 and ab to 
 log 3, then on the rule opposite b on the slide gives the distance 
 ^(7 equal, or proportional, to log 6. That is, log 2 + log 3 = log 
 (2x3) = log 6. 
 
 Similarly by subtraction, AC — ab = AB ; 
 
 that is log 6 — log 3 = log 2. 
 
40 
 
 LOGARITHMS 
 
 The point a of the slide is called the index^ hence we have the 
 following rules for simple operations. 
 
 1. To multiply two numbers, set the index opposite one num- 
 ber on the rule and opposite the other number on the slide read 
 the product on the rule. 
 
 2. To divide one number by another, set the divisor on the 
 slide opposite the dividend on the rule and read the quotient on 
 the rule opposite the index. 
 
 In the instrument as actually constructed, * Fig. 20, there are four scales 
 denoted respectively by A, B, C, and D, of which scales B and C are on the 
 
 Fig. 20. 
 
 slide. For convenience in compound operations the rule is provided with a 
 runner r by means of which a setting of the slide may be preserved while the 
 slide is moved to a new position. The following example will illustrate the 
 manipulation of slide and runner. 
 
 Example 1. Find 6^^^115x27. 
 14.6 X 342 
 
 Set 14.6 on C scale opposite 63 on D scale ; move runner to 115 on C scale ; 
 move 342 on C scale to runner, and opposite 27 on C scale read result on D scale. 
 
 In this, as in all slide-rule computations, the decimal point must be 
 located by inspection. 
 
 On the lower side of the slide are three scales, the outer of which are marked 
 S and Irrespectively. The following examples illustrate the use of these scales. 
 
 Example 2. Find 36 sin 22^ 
 
 Set 22 on the S scale opposite the mark on the slot in the right-end of the 
 rule ; then opposite the end of the A scale can be read on the B scale the natu- 
 ral sine of 22°. Now opposite 36 on the A scale read the result on the B scale. 
 
 Example 3. Find 26.5 tan 13° 15'. 
 
 Reverse the slide and set 13° 15' on the T" scale opposite the mark on the 
 slot ; then opposite the end of the B scale can be read on the D scale the natu- 
 ral tangent of 13° 15'. Set the runner at this point and replace the slide with 
 the index at the runner. Opposite 26.5 on the C scale read the required prod- 
 uct on the D scale. 
 
 Example 4. Find 56i''. 
 
 Set the index of C scale opposite 56 on D scale and opposite the mark on 
 the under side of the right-hand end of the rule read 748 on the middle scale 
 
 * A more detailed description of the slide rule is not within the scope of this 
 book. A manual describing fully the use of tlie instrument can be had of any firm 
 selling slide rules. 
 
LOGARITHMIC SOLUTION OF RIGHT TRIANGLES 41 
 
 of the lower side of the slide. This reading is the mantissa of the logarithm 
 of 56. The characteristic 1 must be supplied as usual. Now in the usual way- 
 find 1.3 X 1.748; that is, put index to 1.748 on D scale and opposite 1.3 on C 
 scale read the product 2.272. This is the logarithm of SG^-^. Set the mantissa 
 272 on the logarithm scale opposite the mark on the rule and read 118.7 on the 
 D scale opposite the index. 
 
 EXERCISE XI 
 
 1 17- /I ^ \ 64 X 37 ,,. 193 . . 0.05 x 137 x 62 
 
 1. liind (a) (b) — ; (c) • 
 
 ^ 163 ^ ^ 67 X 2.1 ^ ^ 14 X 28 X 6.5 
 
 2. Find (a) 127 sin 24°, (6) 0.32 sin 72°, (c) 16.5 cos 35°. 
 
 3. Find (a) 37 tan 8° 20', {h) 1.35 tan 40° 10'. 
 
 4. Find («) 11^2^32:, (/.) 35.5 ?H^^ 
 
 ^ ^ 64 ^ ^ sin 47° 
 
 5. Find (a) 28^ {h) y/^^, (c) 7.311-27. 
 
 31. Right triangles solved by logarithms. — It is now possible, 
 with the aid of the logarithmic tables, to solve right triangles the 
 numerical values of whose parts contain more digits than those 
 given in Chapter III, without entailing laborious multiplications 
 and divisions. 
 
 Example 1. Given a = 51.72, jS = 73° 46^ 
 
 Solving the proper formulas for the unknown parts, we have 
 
 a 
 
 ^ = B' 
 
 cos p 
 
 h=a tan /3, 
 
 A = \a^ tan ^, 
 
 h — c cos a, check. 
 
 Sum of angles =90° 00^ 
 
 ^= 73° 46^ 
 
 «=16°14^ 
 
 log «= 1.71366 
 
 log cos /3= 9.44646 -10 
 
 log (? = 2.26720 
 
 .•.c= 185.01 
 
42 LOGARITHMS 
 
 log a = 1.71366 
 log tan 13 = 0.53587 
 log 6 = 2.24953 
 .-. 5 = 177.64 
 
 21og«= 3.42732 
 log tan /3= 0.53587 
 colog 2 = 9.69897-10 
 log ^ = 13.66216 -10 
 .-. J. = 4593.67 
 
 Check 
 logc= 2.26720 
 log cos a = 9.98233-10 
 log 5 = 12.24953 -10 
 .-.5 = 177.64 
 
 Note that log a^=2 log a. In solving, first write all the forms 
 needed for the complete solution ; secondly, look up and write in 
 all the needed logarithms of the data from the tables ; thirdly, per- 
 form the additions and subtractions ; lastly, from the logarithmic 
 results find the numbers. Then log cos /3, log tan /3, and log 
 cos a ( = log sin )S) can all be found from once turning to the 
 angle 73° 46'. 
 
 A form of computation sometimes used is given below. It has 
 the advantage of being more compact than the usual form, and 
 furthermore the logarithms of the data stand close to the data, 
 thus permitting easy verification of results or correction of 
 mistakes. ^^^^^ 
 
 a=51.72 log 1.71366 logl. 71366 
 
 /3 = 73° 46' log cos 9.44646-10 log tan 0.53587 
 
 c = 185.01 
 
 log 2.26720 
 
 2 
 ^ = 4593.7 
 
 log 2.26720 
 
 5 = 177.64 
 « = 16°14' 
 5 = 177.64 
 
 log 2.24953 
 
 log cos 9.98233- 10 
 log 2.24953 
 
 log 3.42732 
 log tan 0.53587 
 colog 0.69897 -10 
 log 3.66216 
 
LOGARITHMIC SOLUTION OF RIGHT TRIANGLES 43 
 
 Example 2. Given 5 = 7124.5, c = 9365.4. 
 We have, 
 
 cos a = 
 
 1 
 c 
 
 
 ^ = 
 
 : 90° - a. 
 
 
 a = 
 
 ■ e sin a, 
 
 
 A = 
 
 : ^ he sin a, 
 
 
 a = 
 
 •■ h tan a, check. 
 
 log 5 = 
 
 : 3.85275 
 
 
 logc = 
 
 : 3.97153 
 
 
 log cos a = 
 
 : 9.88122- 
 
 10 
 
 a = 
 
 : 40° 28.4^ 
 
 
 = 
 
 : 49° 31.6' 
 
 
 loge^ 
 
 : 3.97153 
 
 
 log sin a = 
 
 : 9.81231- 
 
 -10 
 
 loga = 
 
 = 13.78384- 
 
 -10 
 
 a = 
 
 : 6079.2 
 
 
 Check 
 
 
 log 5 = 
 
 : 3.85275 
 
 
 log tan a = 
 
 : 9.93109- 
 
 -10 
 
 log a = 13.78384 -10 
 a =6079.2 
 
 The following is the compact arrangement of the computation : 
 
 Check 
 b = 7124.5 log 3.85275 log 3.85275 
 
 c = 9365.4 log 3.97153 log 3.97153 
 
 a = 40° 28.4^ log cos 9.88122-10 log sin 9.81231- 10 log tan 9.93109- 10 
 13 = 49° 31.6^ 
 
 a = 6079.2 log 3.78384 
 
 a = 6079.2 log 3.78384 
 
 It appears that the Pythagorean proposition, a^ + 5^ = c^, is 
 not used because it is not adapted to the use of logarithms. It 
 might be used in this case, however, in the form 
 
44 
 
 LOGARITHMS 
 
 EXERCISE XII 
 
 Find the missing parts of the following triangles, using loga- 
 rithms. (The work may be checked with a slide rule.) 
 
 
 a 
 
 fi 
 
 a 
 
 b 
 
 c 
 
 A 
 
 1. 
 
 63° 
 
 
 
 
 2584 
 
 
 2. 
 
 
 
 7531 
 
 
 8642 
 
 
 3. 
 
 75° 15.2' 
 
 
 965.24 
 
 
 
 
 4. 
 
 
 
 47.193 
 
 
 
 3972.6 
 
 5. 
 
 
 
 7.3298 
 
 6.1032 
 
 
 
 6. 
 
 18° 25.5' 
 
 
 
 
 32.96 
 
 
 7. 
 
 
 
 132.97 
 
 
 
 985.27 
 
 8. 
 
 
 
 53.215 
 
 13.712 
 
 
 
 9. 
 
 
 
 65983 
 
 
 72916 
 
 
 10. 
 
 29° 50.2' 
 
 
 
 10.207 
 
 
 
 11. 
 
 25° 17.4' 
 
 
 
 
 
 382.97 
 
 12. 
 
 
 
 .00020 
 
 .00037 
 
 
 
 13. 
 
 
 63° 12.7' 
 
 
 
 7.1436 
 
 
 14. 
 
 
 
 
 .07154 
 
 .09127 
 
 
 15. 
 
 
 35° 16.4' 
 
 .62961 
 
 
 
 
 16. 
 
 
 35° 16.8' 
 
 
 
 
 41658 
 
 17. 
 
 
 
 .00615 
 
 .00415 
 
 
 
 18. 
 
 
 80° 12.5' 
 
 
 5.2108 
 
 
 
 19. 
 
 
 
 
 .00729 
 
 .01625 
 
 
 20. 
 
 
 25° 18.2' 
 
 
 
 1729.3 
 
 
 The examples 1-20 of Exercise VIII may also be solved by 
 logarithms and the results compared with those there obtained. 
 
 21. Find the radius of the circle inscribed in a regular pentagon whose 
 side is 12 feet. 
 
 22. Find the side of a regular pentagon inscribed in a circle whose radius 
 is 15 feet 7 inches. 
 
 23. Find the area of a regular octagon whose circumscribed circle has a 
 diameter of 10 feet. 
 
 24. A tower 120 feet high throws a shadow 69.2 feet long upon the plane 
 of its base. What is the angle of inclination of the sun? 
 
 25. The top of a certain lighthouse is known to be 73 feet above the 
 water. From a boat the angle between the top and its reflection is measured 
 as 6° 45'. How far is the boat from the light ? 
 
 26. Two trains leave a station at the same time, one going north at the 
 rate of 30 miles per hour, and the other east at the rate of 40 miles per hour. 
 
PROBLEMS INVOLVING RIGHT TRIANGLES 
 
 45 
 
 How far apart will they be in 20 minutes, and what is the direction of the line 
 joining them ? 
 
 27. Show that if a is the side of a regular polygon of n sides, the area of 
 
 1 1 S()° 
 the polygon is given by ^4 = - d^n cot 
 
 28. Show that if r is the radius of a circle, then the area of a regular cir- 
 
 cumscribed polygon of n sides is A = rhi tan 
 
 n 
 
 29. Find a value for the area of an inscribed polygon corresponding to 
 that given above. 
 
 30. Taking the moon's diameter as 31' 20" and its distance from the earth 
 as 239,000 miles, what is its diameter in miles ? 
 
 31. At what distance may a mountain 4 miles high be seen across a plain, 
 the earth being taken as a sphere of 4000 miles radius? 
 
 32. If the sun's diameter is taken at 866,000 miles and its distance from 
 the earth as 93,000,000 miles, what angle should it subtend at the center of the 
 earth. 
 
 33. An approximate formula for the distance from the midpoint of a cir- 
 cular arc to the midpoint of its chord is m = - — — — ■, 
 
 4 100 
 
 in which I is the length of the chord in feet and a the 
 deflection or circumferential angle subtended by a base 
 or chord of 100 feet. Find m for Z = 30, a = 2°. 
 
 34. If / is the angle of intersection between two 
 tangents to a circle of radius i2, the distance T from 
 a point of tangency to the point of intersection is given 
 
 hj T = Rcod. Find T ior R = 3000 feet, and / = 22° 52'. 
 
 35. The length of a chord is given by 2 72 sin i 7, in which / is the central 
 angle. Find the chord length for R = 2000, / = 12° 13'. 
 
 36. A river which obstructs chaining on a survey is passed by tri- 
 angulation. The line ^J5,'Fig. 22, is measured 200 
 feet perpendicular to AC, and the angle ADC found 
 to be 35° 27'. AVhat is the distance AC 2 
 
 37. With an instru- 
 ment at A, Fig. 23, a 
 level line of sight passes 
 6 ft. above the top of a wall as measured 
 on a rod. The angles of depression * to 
 the top and bottom of the vertical face 
 are respectively, 2° 31' and 42° 16'. 
 What is the height of the wall? 
 * The angles of elevation and depression of an object measure respectively its 
 angular distance above or below the horizon of the observer. 
 
 Fig 
 
 Fig. 22. 
 
 Fig. 23. 
 
46 
 
 LOGARITHMS 
 
 AC 
 
 DAB 
 
 Fig. 24. 
 14° 41' find AD and DB. 
 
 38. In order to obtain both the horizontal 
 and vertical distances to an inaccessible point, 
 the solution of two triangles may be necessary. 
 Fig. 24 represents two views of the problem. 
 Wishing the distances AD and BD, first lay out 
 the base line A C of any convenient length per- 
 pendicular to AB. Measure the angle A CD and 
 compute AD. 
 
 Next from AD and the angle DAB^ the 
 angles of elevation, compute DB. 
 
 Having ^C = 300 ft., ACB = Ql°d4:', and 
 
CHAPTER V 
 
 THE OBTUSE ANGLE 
 
 32. Definitions of the trigonometric functions of obtuse angles. 
 If an obtuse angle (^.e. an angle greater than 90° and less than 
 180°) is placed on the axes of coordinates in the same manner as 
 was the acute angle in Art. 6, the terminal line will extend 
 into the second quadrant. The trigonometric functions of such 
 angles are defined exactly as in Art. 6. Thus in Fig. 25, 
 
 sin a 
 
 I 
 
 cos a 
 
 tan a 
 
 , etc. 
 
 4F 
 
 33. Signs and limitations in value. The abscissas of all points 
 in OA (Fig. 25) are negative, while their ordinates and radii 
 vectores are positive. It is evident, therefore, that some of the 
 defining ratios are negative. In 
 accordance with the law of signs 
 in algebraic division, we find 
 that the sines and cosecants of all 
 obtuse angles are positive, while 
 their cosines, secants, tangents, 
 and cotangents are negative. 
 
 The student should verify 
 each of these statements in de- 
 tail and become unhesitatingly 
 familiar with these fundamental 
 facts. 
 
 P\irthermore, the sine and cosine cannot be numerically greater 
 than unity and the secant and cosecant cannot be numerically 
 less than unity. 
 
 47 
 
 ^X 
 
 Fig. 25. 
 
48 
 
 THE OBTUSE ANGLE 
 
 Query. What are the limitations in value of the tangent and co- 
 tangent ? 
 
 34. Fundamental relations. If the effects of the law of signs 
 are traced, it will be seen that all the relations of Art. 9 hold also 
 for functions of an obtuse angle without any modifications. 
 
 35. Variation. As the angle 6 varies from 90° to 180°, while 
 V remains constant, x is always negative and varies from to — v, 
 and y is positive and varies from v to 0. Consequently, as 6 
 increases from 90° to 180°, sin 6 decreases from 1 to 0, cos 6 decreases 
 (algebraically) from to — 1, tan 6 increases from — oo to 0, cot 6 
 decreases from to — oo, sec 6 increases from — oo to — 1, esc 6 
 increases from 1 to oo. 
 
 The terms positive infinity and negative infinity require careful 
 consideration. If 6 varies continuously from 89° to 90°, tan 
 varies in such a way as to exceed in magnitude any previously 
 assigned definite value, however large. As it is positive for all 
 values of 9 in the first quadrant, it is consequently said to become 
 positively infinite (+oo). If 6 varies continuously from 91° to 
 90°, tan 6 varies so as to exceed numerically any previously 
 assigned definite value. As it is, however, always negative for 
 values of 6 in the second quadrant, it is said to become negatively 
 infinite (-co). The plus or minus sign written before the symbol 
 00 merely indicates whether the trigonometric function increases 
 numerically without limit through a positive or a negative set of 
 values. 
 
 36. Functions of i8o°. As 6 approaches 180°, v remaining 
 constant, x approaches — v and y approaches 0. We have, 
 
 \Y then, 
 
 sin 180° = 0, 
 
 cos 180° = - 1, 
 
 tan 180° = 0, 
 
 cot 180° = 00, 
 
 sec 180° = - 1, 
 
 FIG. 26. cscl80°=oc. 
 
 37. Functions of supplementary angles. Two angles are called 
 supplementary if their sum is 180°. Thus, in Fig. 27, a and fi are 
 
FUNCTIONS OF (180^^ - a) AND (90°+ a) 
 
 49 
 
 supplementary, and yS=180 — «, a being acute. The triangles 
 OMP and ONQ are similar, but ON is negative. The pairs of 
 corresponding sides are v and v\ x and r^:^ y and yK Hence we have 
 
 sin (180° - a) = sin /3 
 cos (180° - a) = cos yS = ^ 
 
 v' V 
 v' 
 
 sm a. 
 
 = — cos a, 
 
 tan (180° - a) = tan ^ 
 
 Similarly : 
 
 cot (180° - a) = - cot a, 
 
 sec (180° — a) = — sec a, 
 esc (180° — a) = CSC a. 
 
 As a consequence of the 
 relation sin (180° — «) = sin a, 
 two values exist for arcsin m, 
 the one acute, the other obtuse, 
 and supplemental to each other. 
 
 Y 
 
 y _ y 
 
 — tan a. 
 
 
 
 
 Y 
 
 
 
 
 
 
 P^^ 
 
 "^-^^ 
 
 
 V ^ 
 
 
 
 y' 
 
 
 ^' J 
 
 f3 3^ 
 
 
 y 
 
 I 
 
 ST 
 
 X' 
 
 X 
 
 M 
 
 Fig. 27. 
 
 In case m = 1, the two values are 
 identical. 
 
 Fig. 28. 
 
 QdERY. Is this also true of arccos m, 
 arctan tw, etc. ? 
 
 38. Functions of (90° + a). In 
 
 y Fig. 28, ^ = 90° + a, a being acute. 
 
 -^f-^^ The triangles OMP and ONQ are 
 
 similar, but the pairs of homologous 
 
 sides are v^and v\ x and y, y and a;', 
 
 while 2:' is negative. We thus obtain 
 
 sin (90° 4- a) = sin /8 = ^ = - = cos a, 
 
 cos (90° + a) = cos /8 
 
 _^_ ^_ 
 
 sma, 
 
 tan (90° + a) = tan /3 
 
 - = — cot a. 
 
50 THE OBTUSE ANGLE 
 
 In like manner, 
 
 cot (90° + a) = - tan a, 
 
 sec (90° + a) = — CSC a, 
 
 esc (90° + a)= sec a. 
 
 EXERCISE XIII 
 
 1. Find the values of the functions of 135°. (See Art. 11.) 
 
 2. Find the values of the functions of 150°. (See Art. 11.) 
 
 3. Find the value of sin [cos-^(— |f)], tan (csc-if ^), cos [arctan (— :^)], 
 the angles being of the second quadrant. 
 
 4. Find the value of cos (arccos — ^j), sin [tan-i ( — j^^)], cot (arcsin ff), 
 the angles being of the second quadrant. 
 
 5. Express in terms of an angle less than 45°, cos 160°, tan 130°, sec 150°. 
 
 6. Express in terms of an angle less than 45°, sin 170°, esc 95^ cot 140°. 
 
 7. Verify for a = 60°, the ftquatiiuiig - ^c/& ^^^c/^S 
 
 sin 2 a = 2 sin a cos a, cos 2 a = 2 cos^ a — 1. 
 
 8. Verify for a = 45°, the equations 
 
 sin 3 a = 3 sin ct — 4 sin^ a, 
 
 cos 3 a = 4 cos^ a — 3 cos a. • 
 
 9. Verify for a = 120°, the equations 
 
 ^^^ - ^ -. ,- + cos a 
 
 cos -'—'»' 
 
 tanl«:=V^-"Q^^^^-^»^^. 
 2 ^ 1 + cos a sin a 
 
 10. Verify for a = 120°, the equations 
 
 i«=4 
 
 cot- ^--^1- + cos«_l + cosa 
 
 cos a sm a 
 
 11. Verify for a = 120°, (3 = 30°, the equations 
 
 sin (« + ^) = sin a cos /3 + cos a sin ^, 
 cos (a- 13) = cos a cos )8 + sin a sin /S. 
 
 12. Verify for a = 120°, /3 = 60°, the equations 
 
 sin (a — )8) = sin a cos /3 — cos a sin y8, 
 cos (a -\- f3) = cos a cos /3 — sin a sin ^. 
 
FUNCTIONS OF OBTUSE ANGLES 51 
 
 13. Fill in the proper values in the following table for handy reference :" 
 
 
 a 
 
 sin a 
 
 cos a 
 
 tan a 
 
 cot a 
 
 sec a 
 
 CSC a 
 
 
 0° 
 
 
 
 
 
 
 
 
 
 30=^ 
 
 i 
 
 
 
 
 
 
 
 45° 
 
 lV2 
 
 
 
 
 
 
 
 60° 
 
 W3 
 
 
 
 
 
 
 
 90° 
 
 1 
 
 
 
 
 
 
 
 120° 
 
 iV3 
 
 
 
 
 
 
 
 135° 
 
 iV2 
 
 
 
 
 
 
 
 150° 
 
 i 
 
 
 
 
 
 
 
 180° 
 
 
 
 
 
 
 
 
 
 
CHAPTER VI 
 
 OBLIQUE TRIANGLES 
 
 39. Formulas for solution. In the oblique triangle ABC, 
 Fig. 29, let the angles be denoted by a, ^, 7, and the lengths of 
 the opposite sides by a, 5, c?, as in the figure. 
 
 The relation a 4- p + 7 = 180° al- 
 ways exists, and consequently when 
 two of the angles are known, the 
 third is determined. Five of the six 
 parts of the triangle still remain to 
 be found ; namely, the three sides 
 and two angles. It has been shown 
 in elementary geometry that if any 
 three independent parts are given, the triangle is determined and 
 the remaining parts can be found. Then two formulas, in addi- 
 tion to the one just stated, are sufficient for the complete solution. 
 It is, nevertheless, convenient to express the relations between 
 the sides and angles in a variety of forms. Those given in the 
 following pages are selected on the score of utility. They fall 
 into sets of three each. From any one of each set the other two 
 may be written by cyclic advance of the letters involved ; i.e. by 
 changing a into 6, h into c, c into a, and at the same time a into 
 ^, /3 into 7, 7 into a. The legitimacy of this process and the 
 truth of the resulting formulas appear from the consideration that 
 no distinction is made as to any one side or any one angle. Any 
 side and its opposite angle can be exchanged for any other pair. 
 The cyclic advance affords a convenient systematic method of 
 writing all possible forms. 
 
 From any one of these sets, as for instance that of Art. 40, 
 or that of Art. 42, all the other sets may be derived by purely 
 analytical processes. An independent geometric proof is given of 
 each, however. The derivation by the analytic method suggested 
 will afford a valuable review exercise after Chapter VIII has been 
 studied. 
 
 62 
 
LAWS FOR OBLIQUE TRIANGLES 
 
 53 
 
 40. Law of projections. If, in 
 Fig. 30, the perpendicular CD is 
 drawn from to AB^ the portions 
 AB and BB are respectively the 
 projections on the side AB of the 
 other two sides AC and CB. Con- 
 sequently, by Art. 15, we have 
 
 Fig. 30. 
 
 AB ==ACco^a-\-CB cos /3, 
 
 or c = & cos a + a cos p. 
 
 By drawing the perpendicular from A and B in turn, we get 
 
 a zz c cos p + 6 cos "y, 
 
 6 = a cos "Y + c cos a. 
 
 By cyclic advance of the letters the first formula is transformed 
 into the second, the second into the third, and the third into 
 the first. 
 
 41. Law of sines. Connect the circumcenter K in Fig. 31 
 with the vertices, A^ B, C, and the midpoints, X, M, iV, of the sides. 
 
 Then is Z BK0 = 2 «, Z CKA = 2 /3, 
 Z.AKB=2y. (Why?) In the 
 right triangle KLO^ /. LKO = a, 
 and LC=^a. Denoting the cir- 
 cumradius by R^ Art. 16 gives 
 
 R sin a. 
 
 Fig. 31. 
 
 J- a 
 
 The other right triangles give 
 likewise 
 
 ^b = R sin yS, 
 
 ^ c = R sin y. 
 
 Equating the values of 2 R, we obtain the law of sines ; namely, 
 
 a _ b _ c 
 sin a sin p sin 'y 
 
 The cyclic symmetry is apparent. 
 
 The student should draw the figure and give the proof in case 
 one angle of the triangle is obtuse. 
 
 42. Law of cosines. In Fig. 32 the perpendicular jt? drawn from 
 (7 divides the opposite side c into two portions m and w, and the 
 
54 
 
 OBLIQUE TRIANGLES 
 
 whole triangle into two right triangles ADC and BDO, In 
 
 the latter triangles, we have, by 
 Art. 16, 
 
 a^ = n^ -\-p^ 
 
 = ((? — 771)2 -{-p^ 
 
 Fig. 32. or a^ — ^2 ^ ^2 _ 2 hc COS a. 
 
 Proper changes in the figure yield 
 
 62 = c'^ + a^ -2ac cos p, 
 c2 = a2 _f. ^2 -2 ah cos 7. 
 
 These again may be written by cyclic advance of the letters. 
 Useful forms for writinsr these laws are : 
 
 cos a = 
 
 52+^2- 
 
 a^ 
 
 2 be 
 
 
 cos /3 = 
 
 c2-fa2- 
 
 h'^ 
 
 2 ao 
 
 
 i->r»o i\/ — 
 
 a'^+P- 
 
 -6'2 
 
 lab 
 
 43. Law of tangents. lu Fig. 33 draw AE the bisector of the 
 
 angle at J., and BF and CD perpendicular to it from the other 
 
 vertices. 
 
 Then 
 
 ABAF=^DAC=^a, 
 
 while 
 
 Z DCE= Z. EBF= 90° - Z BEF 
 
 = 90° - (Z ABE + Z ^^ JS') 
 
 = K« + ^ + 7)-(^ + -|«) 
 
 = K7-/3). 
 Again, 
 
 i)^= ^^+ DE=AF- AD. 
 
 From the right triangles in the figure we get 
 
 AF~AD 
 
 Fig. 33. 
 
 (e- 
 
 b) cos J a 
 
 ^^^2^7 Z:^; ^^ ^^^ FB + CD FB^-CD ((? + *) sin i« 
 
 or 
 
 taiil(v-p) 
 
 c + 6 
 
 cot ^ a. 
 
LAWS FOR OBLIQUE TRIANGLES 
 
 55 
 
 The forms 
 
 tani (a-v) = ^-^cotlp, 
 
 a 
 
 tani(p-a)=— --cot|Y, 
 
 & + « 
 
 may be obtained from suitably altered figures or by cyclic advance. 
 The formula may be written symmetrically 
 
 tanK7-y3) ^g-^ 
 tan i (7 + yg) c-^h 
 
 Ji b>c, the first formula will stand 
 
 tan i (/? - ry) = -Zl cot I a. 
 
 Similar changes may occur in the other two. 
 
 44. Angles in terms of the sides. Construct the inscribed 
 circle, Fig. 3-4, and denote its 
 radius by r. Denoting the perim- 
 eter a-{-b-{- c by 2 s, we have 
 
 AE=AF=s-a, 
 
 BD = BF=s-h, 
 
 CD=CE = s- c. 
 
 Consequently, by Art. 16, 
 
 V V 
 
 tan J a = , tan \ p = -, tan \ y = 
 
 The value of r in terms of the three sides is derived in the 
 corollary of Art. 45, thus completing this theorem. 
 
 45. Area of oblique triangles. 
 
 (1) By elementary geometry, we 
 have (see Fig. 35) 
 
 Introducing the value of p found by 
 Art. 16, we get the formula 
 
 ^ = 1 6c sin a. 
 
56 OBLIQUE TRIANGLES 
 
 with the cognate forms 
 
 A= ^ca sin p, ^ = | ab sin -y. 
 
 (2) Squaring both members of the formula just derived, we 
 obtain, with the aid of readily justifiable transformations and sub- 
 stitutions. 
 
 = i5V(l-cos2 
 
 a) 
 
 , 
 
 
 
 = — (l + coscc) • 
 
 |(1- 
 
 - cos a) 
 
 
 her. ^h^ + e^- 
 
 -> 
 
 !(■ 
 
 b'^^c^- 
 2 5c 
 
 .■) 
 
 2bc-hb^ + c^- 
 
 aP' 2bc- 
 
 52_,.2 4.^2 
 
 
 4 
 
 
 
 4 
 
 
 b-\-c + a b + 
 
 c— a 
 
 a- 
 
 -b-{- c a-\- b — c 
 
 2 2 
 
 = s(s — «)(s — 5)(s — c). 
 
 Whence we have the desired formula 
 
 A = Vs(s — a)(s — h) (s — c). 
 (3) If r is the radius of the inscribed circle, we have, by 
 elementary geometry, 
 
 A = rs. 
 
 Corollary. Equating the values of A found in (2) and (3), 
 and solving for r, we get 
 
 ^ s 
 
 the result needed to complete the theorem of Art. 44. 
 
 46. Numerical solution. The formulas of Arts. 40 and 42 are 
 not adapted to the employment of logarithms. They are useful, 
 however, in case the numerical values of the sides contain few 
 digits. 
 
 The solution of oblique triangles falls into four well-defined 
 cases, according as the three given parts consist of 
 
 I. Two angles and one side. 
 
 II. Two sides and an angle opposite one of them. 
 
 III. Two sides and the included angle. 
 
 IV. Three sides. 
 
NUMERICAL SOLUTION. CASE I 57 
 
 Each of these three cases with a model solution is discussed in 
 detail in the following articles. 
 
 47. Case I. Given two angles and one side. Let the given 
 parts be a, j3, a. 
 
 The solution is effected by means of the formulas of Arts. 39 
 and 41. Solving for the unknown parts, we have 
 
 7 = 180°-(« + /3), 
 , a sin y8 
 
 Example. 
 
 sin a ' 
 
 
 a sin 7 
 c=—. -, 
 
 sin a 
 
 
 t, , b sin 7 
 formula c = —. — ~ . 
 
 sm l3 
 
 
 Given a = 47° 13.2' 
 
 
 ^=65° 24.5' 
 
 
 a = 43.176 
 
 
 sum of angles = 180° 
 
 
 « 4-/5 = 112° 37.7' 
 
 
 .-. 7= 67° 22.3' 
 
 
 loga= 1.63524 
 
 
 log sin /3= 9.95871- 
 
 -10 
 
 cologsina= 0.13433 
 log 5 = 11.72828 - 
 
 -10 
 
 .-. 5 = 53.491 
 
 
 loga= 1.63524 
 
 
 log sin 7= 9.96522- 
 
 -10 
 
 cologsina= 0.13433 
 log c= 11.73479- 
 
 n^ 
 
 .-. c = 54.299 
 
 
 Check 
 
 
 log 5= 1.72828 
 
 
 log sin 7= 9.96522- 
 
 10 
 
 cologsiny8= 0.04129 
 log (? = 11.73479- 
 
 -10 
 
 /. (?= 54.299 
 
 
58 ^ OBLIQUE TRIANGLES 
 
 The compact form of computation is as follows ; 
 
 log 1.63524 
 
 a = 43.176 
 ^ ^ 65° 24.5' 
 a = 47° 13.2' 
 b = 53.491 
 y = 67° 22.3 
 c = 54.299 
 
 log 1.63524 
 log sin 9.95871 - 10 
 colog sin 0.13433 
 
 log b 1.72828 
 
 coiog sin 0.13433 
 log sin 9.9652g - 10 
 
 Check 
 colog sin 0.04129 
 
 log 1.72828 
 log sin 9.96522 
 
 log c 1.73479 
 
 Examples 
 Find the remaining three parts, given 
 
 1. ;8 = 65°15.5', y = 81° 24.6', 
 
 2. /? = 38°37.4', 7 = 75° 32.8', 
 
 3. a= 48° 29.2', y= 115° 33.8', 
 ^^— 4. a = 68° 41.5', y = 110° 16.5', 
 
 10 
 
 log c 1.73479 
 
 b = 724.32. 
 c = 129.63. 
 a = 14.829. 
 c = 9.4326. 
 
 48. Case II. Given two sides and an angle opposite one. 
 Let the given parts be a, 5, a. 
 
 The solution is effected by the formulas of Arts. 39 and 41. 
 
 Solving, we have 
 
 . ^ b sin a 
 sin/3= — , 
 
 a sin 7 
 
 c = 
 
 with the check formula 
 
 (? = 
 
 sm a 
 
 5 sin 7 
 sin y8 
 
 An ambiguity arises in this case, however, since to any value 
 of the sine correspond two supplementary angles, one acute, the 
 other obtuse. Thus we also have 
 
 /3' 
 
 = 180°-/3, 
 
 
 i 
 
 = 180°- (a 
 
 + /30. 
 
 c' 
 
 a sin 7' 
 sin a ' 
 
 
 e' 
 
 h sin 7' 
 
 
 siuiS' 
 
CASE II 
 
 59 
 
 The nature of this ambiguity will appear from the construction 
 of the triangles with the given parts. If the given angle a is 
 acute, there will be no solution, one solution, or two solutions, 
 according as the free end of a (see Fig. 36), swinging about 
 
 .>— . 
 
 A\ 
 
 T^L 
 
 Fig. 36. 
 
 (7, meets the line AL in no points, one point, or two points ; 
 i.e. as a is shorter than (72), the perpendicular from upon AL, 
 longer than AO^ or intermediate between CD and AC For 
 a = CD there is a single right triangle ; and for a = AC, a single 
 isosceles triangle. 
 
 When a is right or obtuse, there is no solution or one solution, 
 according as a is shorter or longer than AC. 
 
 These results may be tabulated for reference. 
 
 «<90' 
 
 'a<h sin a, 
 b sin a<a<h^ 
 
 a = b sin a,j 
 
 no solution, 
 two solutions, 
 
 one solution. 
 
 > 
 
 90^ 
 
 
 a :^ 6, no solution, 
 > 5, one solution. 
 
 If we proceed with the numerical work, without previously 
 testing the number of solutions possible, the case of a single 
 solution will appear from the fact that a -\- jS^ > 180°. (Whence 
 a + (180° - /9) > 180°, or a - yS > 0, or ^ < a.) When there is no 
 solution, we shall get log sin fi>0 ; i.e. its augmented character- 
 istic will be 10 or greater. A preliminary free-hand sketch will 
 ordinarily serve to determine the number of possible solutions. 
 
 Example i. Given 
 
 a = 3541, 
 b = 4017, 
 a = 61° 27'. 
 
60 
 
 OBLIQUE TRIANGLES 
 
 By careful arrangement of the work, we can determine the 
 number of solutions by inspection. 
 
 Check 
 log 
 
 &=4017 
 az=61°27' 
 
 h sin a 
 
 a = 3541 
 ^= 85° ir 
 
 a-f;8=146°38' 
 7 = 33° 22' 
 c=2217.16 
 c = 2217.16 
 
 3.60390 
 log sin 9.94369-10 
 log 3.54759 
 log 3.54913 
 log sin 9.99846 
 
 colog sin 0.05631 
 log 3.54913 
 
 log sin 9.74036-10 
 log 3.34580 
 
 log 
 
 3.60390 
 
 colog sin 0.00154 
 log sin 9.74036-10 
 log 3.34580 
 
 From the logarithms of 6, a, and h sin a it is seen that h sin a 
 <a<h, whence there are two solutions. For the second solution 
 we have : 
 
 a= 61° 27' 
 )8'= 94° 49' 
 « + /?' = 156° 16' 
 y' = 23°44' 
 a = 3541 
 6 = 4017 
 c' = 1622.52 
 c' = 1622.52 
 
 colog sin 0.05631 
 
 log sin 9.60474 - 10 
 log 3.54913 
 
 log 
 
 3.21018 
 
 Check 
 colog sin 0.00154 
 log sin 9.60474 - 10 
 log 3.60390 
 
 log 3.21018 
 
 Example 2. How many triangles are determined by the 
 given parts a = 30°, h = 24, « = 10, 12, 20, 24, 30 ? 
 
 Here 6 sin a = 24 x J = 12. Accordingly, we have, for a = 10, 
 no triangle ; for « = 12, one right triangle ; for a = 20, two triangles ; 
 for a = 24, one isosceles triangle ; and for a = 30, one triangle. 
 
 Examples 
 
 1. How many triangles are determined by the given parts (3 = 43°, c = 120, 
 and h = 63, 81.884, 95, 120, 150? 
 
 2. How many triangles are determined by the given parts y = 54°, a = 75, 
 and c = 51, 60, 67.5, 70, 75, 100? 
 
 Find the remaining parts of all possible triangles, given 
 
 3. a 
 
 62.518, 
 
 4. a= 429.15, 
 
 5. 6 = 3912.7, 
 
 6. 6 = 129680, 
 
 6 = 72.932, 
 c= 328.12, 
 c = 3526.5, 
 c = 152960, 
 
 /3= 98° 23.5'. 
 a = 130° 33.7'. 
 y= 35° 25.8'. 
 13= 38° 28.8'. 
 
CASE III 
 
 61 
 
 49. Case III. Given two sides and the included angle. Let 
 
 the given parts be «, 6, 7, with a>h. The solution is effected by 
 the formulas of Arts. 43, 39, and 41. Solving, we have 
 
 tan 1 (« — /3) = 
 
 I(« + ^) = 90°-i7, 
 a sin 7 
 
 cot J 7, 
 
 with the check formula 
 Example. Given 
 
 y = 78° 15' 
 
 
 
 a = .745 
 
 
 
 6 = .231 
 
 
 
 a-/; =.514 
 
 log 9.71096- 
 
 -10 
 
 a + 6=. 976 
 
 colog 0.01055 
 
 
 ^=39° 7.5' 
 2 
 
 log cot 0.08969 
 
 
 ^^^=32° 55.3' 
 2 
 
 ^^±^=50° 52.5' 
 2 
 
 log tan 9.81120 - 
 
 -10 
 
 
 
 a = 83° 47.8' 
 
 
 
 )8 = 17°57.2' 
 
 
 
 c = . 73368 
 
 
 
 c = . 73367 
 
 
 
 sm a 
 
 h sin 7 
 smy3 
 
 a =.745, 
 5 = .231, 
 7 = 78°15^ 
 
 log sin 9.99080- 10 
 log 9.87216-10 
 
 colog sin 0.00255 
 log 19.86551-20 
 
 Examples 
 
 Find the unknown parts, given 
 
 1. 6 = 284.12, c = 361.26, a = 125° 32'. 
 
 2. c = 395.71, a = 482.33, ^ = 137° 21'. 
 
 3. a = .06351, c = .10329, /8 = 83° 29.4.' 
 
 4. c = .00397, h = .00513, a = 68° 21.8^ 
 
 log sin 9.99080-10 
 log 9.36361 - 10 
 
 colog sin 0.51109 
 
 19.86550-20 
 
 50. Case IV. Given the three sides. The given parts are 
 a, 5, G. 
 
62 
 
 OBLIQUE TRIANGLES 
 
 The solution is effected by the formulas of Art. 44, with the 
 formula for r from Art. 45. We have at once 
 
 s = 1 (a -f 6 + 0' 
 
 ^_J(«-«)(«-*)(« 
 
 -0 
 
 tan -« = , etc. 
 
 2 s — a 
 
 
 
 « + /3 + 7 = 180°, serves as a check formula. 
 
 Example i. Given 
 
 
 
 a =.05341, 
 
 
 
 5 =.06217, 
 
 
 
 tf=. 03482. 
 
 
 
 Then 2 s = .15040 
 
 
 
 s= .07520 
 
 colog 
 
 1.12378 
 
 s-a=. 02179 
 
 log 
 
 8.33826-10 
 
 s- 5 = .01303 
 
 log 
 
 8.11494-10 
 
 «_ ^ = .04038 
 
 log 
 
 8.60617-10 
 
 r2 
 
 log 
 
 16.18315-20 
 
 r 
 
 log 
 
 8.09157-10 
 
 ^=29° 32.3' 
 
 log tan 
 
 9.75331-10 
 
 1 = 43° 27.6' 
 
 log tan 
 
 9.97663-10 
 
 ^=17° 0.1' 
 
 log tan 
 
 9.48540-10 
 
 a= 59° 4.6' 
 
 
 
 • y8= 86° 55.2' 
 
 
 
 7= 34° 0.2' 
 
 
 
 sum of angles =180° 0' 
 
 When the three sides are given and only one angle is required, 
 say /S, the two appropriate formulas may be combined into one, as 
 
 tan -^ 
 
 _^l(8 — a)(8 — c) 
 
 sCs-h) 
 
CASE IV. COMPOSITION OF FORCES 63 
 
 Example 2. Given 
 
 a= 35, 
 
 h= 64, 
 
 c= 73. 
 
 Then 2 s = 172 
 
 s= 86 colog 8.06550-10 
 
 s-a= 51 log 1.70757 
 
 8-h= 22 colog 8.65758-10 
 
 8-e= 13 log 1.11394 
 
 2)19.54459-20 
 i;8=30°37.4' log tan 9.7723U-10 
 
 ;e=61°14.8' 
 
 Examples 
 Find the angles of the following triangles : 
 
 1. a = 6123, ^> = 7148, c = 6815. 
 
 2. a = 12,545, 5=8612, ^=10,353. 
 
 3. a = .05431, 5 = .03714, 6'=. 06513. 
 -- — 4. a = .006152, b = .008174, c = .007534. 
 
 5. ^. = 72,584, 
 
 5 = 125,217, c?= 36,925. 
 
 6. a = 13,579, 
 
 6 = 35,791, (? = 24,680; find /3. 
 
 7. a = 80,812, 
 
 h = 37,194, e = 43,618. 
 
 8. « = 36,925, 
 
 5 = 25,814, c= 14,703; find 7. 
 
 Find the areas in examples 1 and 2. 
 
 51. Composition and resolution of forces. Equilibrium. In 
 
 mechanics the solution of oblique triangles is frequently required 
 in problems relating to the composition and resolution of forces, 
 velocities, and other directed quantities. 
 
 In this article will be stated, without proof, some of the laws 
 governing the combination of such quantities, showing the appli- 
 cation of trigonometry to certain of the problems involved. 
 
 Suppose the line segments AB and JL(7, P'ig. 37, to represent 
 in magnitude and direction two forces acting at a point J., and in- 
 cluding between their lines of action the angle <^. 
 
64 OBLIQUE TRIANGLES 
 
 Complete the parallelogram ABBQ. The diagonal AB^ drawn 
 from the point A^ is the line segment representing the resultant 
 
 of the two given forces, i.e. the sin- 
 gle force that will produce the same 
 effect as the two given forces. The 
 process of finding the resultant of 
 two or more given forces is called 
 the composition of forces. 
 
 Conversely, the two line segments 
 AB and AC may be taken as the 
 components of AB. Thus the two 
 Fig. 37. ^ forces AB and AC, acting together 
 
 at A, produce the same effect as the single force AB. The pro- 
 cess of finding two or more forces equivalent to a given force is 
 called the resolution of the force into its components. 
 
 Since the segment BB is equal and parallel to AC, it follows 
 that the resultant and the two components form a closed triangle 
 ABB, and the relation between the forces may be obtained by 
 solving this triangle. Note that the angle ABB is the supple- 
 ment of the angle <^, so that by Art 37, 
 
 cos ABB = — cos (/). 
 Example 1. Find the resultant of two forces of 320 dynes 
 and 400 dynes, respectively, acting on a common point, at an angle 
 of 54° 28^ 
 
 In the triangle ABB, Fig. 37, we have given two sides and 
 the included angle. If only the magnitude of the resultant is 
 desired, it may be obtained by the law of cosines. Art. 42. Thus 
 
 we obtain „ « 
 
 AB = ^\A^ -f ^(7+2 AB AC ■ cos c^j. 
 
 If the angle formed by the resultant with its components is also 
 required, the logarithmic computation may be effected as in Case 
 III, Art. 49. 
 
 Example 2. Resolve a force of 40 pounds into components 
 making angles of 32° and 74° 20 with its line of action. 
 
 Referring to Fig. 37, we have 
 
 ^D = 40, Z ^^2> = 32°, and Z i>^ (7= Z ^i)^ = 74° 20' . 
 
 Denoting the sides opposite the angles A, B, B, respectively, by 
 
 a, h, d, we have from the law of sines, 
 
 ,sin^ J ysini) 
 
 a — b -, d = o— — — • 
 
 sin B sin ^ 
 
EQUILIBRIUM OF FORCES 
 
 65 
 
 Hence the components may be computed. 
 
 Three forces are in equilibrium when the resultant of any two 
 forces is equal and opposite to the third. Thus in Fig. 37, if 
 the direction of the force AD is reversed, it and the forces AB 
 and AQ will be in equilibrium. The necessary conditions that 
 three forces shall be in equilibrium are : 
 
 1. Their lines of action shall lie in the same plane. 
 
 2. Their lines of action shall meet in a point. 
 
 3. The line segments representing the three forces when laid 
 off in order shall form a triangle. 
 
 In Fig. 38 the forces a, 5, and c applied at a common point are 
 in equilibrium. The angles between the lines of action are de- 
 noted by J., B^ C^ as indicated. When the forces are laid off to 
 
 form the triangle, the angles of the triangle are seen to be the 
 supplements of the corresponding angles A, B^ O. 
 
 That is, 
 
 a = 180° — J., whence sin a = sin A, 
 
 /3 = 180° - B, whence sin /S = sin B. 
 etc. etc. 
 
 From the law of sines. 
 
 Therefore, 
 
 a h 
 
 
 c 
 
 sin a sin ^ 
 
 
 sin 7 
 
 a h 
 
 
 c 
 
 sin A sin B sin O 
 
66 
 
 OBLIQUE TRIANGLES 
 
 EXERCISE XIV 
 Find the unknown parts of the following triangles : 
 
 
 a 
 
 18 
 
 y 
 
 a 
 
 b 
 
 c 
 
 1. 
 
 62° 35' 
 
 
 
 
 82916 
 
 59278 
 
 2. 
 
 
 
 
 75290 
 
 92841 
 
 69289 
 
 3. 
 
 25° 36.2' 
 
 68° 13.5' 
 
 
 3.9168 
 
 
 
 4. 
 
 
 55° 55.4' 
 
 
 .25317 
 
 
 .36291 
 
 5. 
 
 69° 17.5' 
 
 
 
 329.12 
 
 689.12 
 
 
 6. 
 
 
 100° 10' 
 
 
 
 62198 
 
 29322 
 
 7. 
 
 
 
 
 .0000713 
 
 .0000987 
 
 .0001255 
 
 8. 
 
 61° 15.2' 
 
 49° 16.3' 
 
 
 
 58.291 
 
 
 9. 
 
 
 
 120° 50.2' 
 
 2.8315 
 
 4.1217 
 
 
 10. 
 
 
 38° 17.2' 
 
 
 21.992 
 
 50.715 
 
 
 11. 
 
 150° 24.2' 
 
 
 
 
 .038251 
 
 .047319 
 
 12. 
 
 58° 06.5' 
 
 
 
 57.15 
 
 
 67.31 
 
 13. 
 
 
 75° 19.3' 
 
 70° 29.2' 
 
 
 658.42 
 
 
 14. 
 
 
 
 
 100.05 
 
 200.07 
 
 150.08 
 
 15. 
 
 
 126° 26.4' 
 
 
 .0021868 
 
 
 .0032292 
 
 16. 
 
 
 
 10° 32.8' 
 
 
 25.317 
 
 37.293 
 
 17. 
 
 
 
 
 50010 
 
 70020 
 
 90030 
 
 18. 
 
 
 48° 25.3' 
 
 56° 34.5' 
 
 
 
 7219.2 
 
 19. 
 
 
 
 120° 15' 
 
 62158 
 
 
 75292 
 
 20. 
 
 
 
 90° 00' 
 
 725.63 
 
 617.25 
 
 
 Solve the following triangles, given 
 21. a = 2500, c = 2125, A = 208,690. 
 22.. ft = 103.5, c = 90, A = 4586.7. 
 
 23. a = 73° 10', b = 753, A = 74,803. 
 
 24. ^ = 57° 25', c = 57.65, A = 3055.7. 
 
 25. Find the areas in examples 1, 9, 17. 
 
 26. Find the areas in examples 2, 4, 14. 
 
 27. Determine the magnitude and direction of the resultant of two forces 
 of magnitudes a and h, if their lines of action include an angle <f>. 
 
 28. Carry out the computation of example 27 in the following cases : 
 
 a = 20, & = 36, <^ = 45° ; a = 300, b = 540, <^ = 64°; 
 a = 75, 6 =3 60, <^ = 145° ; a = 250, b = 320, <^ = 120°. 
 
 29. Find the directions of three forces in equilibrium if a = 7, 6 = 10, 
 
 c = 15; also if a = 24, 6 == 36, c = 42. 
 
EXERCISES 
 
 67 
 
 30. Referring to Figure i 
 a = 695, 6 = 483, = 155°: a 
 
 ' solve completely and interpret physically when 
 720, b = 840, B = 100°. 
 
 = 135, 
 
 31. Solve and interpret when a = 1200, 5 = 135°, C = 150° 
 h = 142, c = 95. 
 
 32. Resolve a force of magnitude 84 into two equal components making an 
 angle of 60° with each other. 
 
 33. Resolve a force of magnitude 240 into two components of 120 and 180 
 each and find the directions of the components. 
 
 34. Determine the formula for one side of a quadrilateral in terms of the 
 other three sides and their included angles. Compute for a = 10,b = 12, c = 15, 
 ^6 = 135°, 6c = 60°. 
 
 Query. How many given parts serve to determine the remaining parts 
 of a quadrilateral? 
 
 35. Given the four sides and one angle of a quadrilateral, determine the 
 other angles and the diagonals. Compute for a = QO, b = 72, c = 90, d = 100, 
 Q = 120°. 
 
 36. Given three angles and two sides of a quadrilateral, determine the 
 remaining sides. Compute for a = 630, b = 500, ab = 100°, be = 80°, cd= 60°. 
 
 37. Find the angles and the lengths of the sides of a regular pentagram, 
 or five-pointed star, inscribed in a circle of radius 8. 
 
 38. Compute the volume for each foot in depth of a 
 horizontal cylindrical tank of length 30 feet and radius 
 6 feet. 
 
 39. Having measured the 
 following data, ^A = 80° 30', 
 B = 72° 15', and c = 232.5 
 feet, compute the inaccessi- 
 ble distance b (Fig. 39). 
 
 40. Compute the dis- 
 tance a across a lake. Fig. 
 40, having measured A, 
 B, and c, which are respectively 51° 20', 72° 40' and , 
 3420.5 feet. 
 
 Fig. 41. 
 
 41. A being invisible 
 from C, find the distance b 
 through a forest, having 
 measured a = 1037 feet, c = 1208 feet, B = 69° 25'. 
 
 42. In Fig. 42, BC, the distance of the foot of 
 a wall below the instrument is 12.3 feet, 6 and a, 
 the angles of elevation and depression, are 15° 20' 
 
 and 21° 15', respectively. Find the height of the wall and its distance 
 from the instrument. 
 
 Fig. 42. 
 
68 
 
 OBLIQUE TRIANGLES 
 
 Fig. 43. 
 
 Fig. 44. 
 
 43. A pole BC, Fig. 43, is 12 feet long and leans two feet from a vertical 
 toward the instrument at ^ . If the angles of elevation of the top and bottom 
 are respectively 37° 15' and 11° 50', what are the horizontal and 
 vertical distances from the instrument to the foot of the pole? 
 
 44. It is desired to find the 
 
 horizontal distance and eleva- 
 tion of the inaccessible 
 
 point B, Fig. 44, 
 
 with reference to 
 
 an instrument at 
 
 A. Having laid 
 
 out a base line 
 
 A C, 250 feet long, 
 
 the angles at A and C are found to be 87° 10' 
 and 73° 51', respectively, and from A the angular elevation of B is 11° 32'. 
 
 ,(7 45. Given 5 = 110° 05', ^ J5: = .4 7) = 200 f eet, 
 
 DE = 125 feet, and ^5 = 632 feet; find the distance 
 AC to be laid off, and the 
 inaccessible distance BC 
 (Fig. 45). 
 
 46. From measure- 
 ments we have (Fig. 46) 
 AB = Qm feet, BAC = 10° 40', BAD = Q2° 30', 
 ABD = 65° 32', ABC = 89° 25'. Find the inacces- 
 sible distances AD F^«- ^^^ 
 and DC, and the angle between DC and AB. 
 
 47. From the instrument at A (Fig. 47) 
 the angles of elevation to the top and base of 
 the vertical wall are 15° 12' and 1° 23', respec- 
 tively. A base line AB \& measured 75 feet 
 toward the wall down a plane inclined 8° 16', 
 and from B the angle of elevation to the top 
 of the wall is 37° 46'. Compute the height of 
 the wall and its horizontal distance from A. 
 
 Fig. 47. 
 
 48. It is required to prolong the line AB (Fig. 48) beyond an obstacle. 
 At B is made an angle 52° 20' to the right 
 
 and at C an angle of 110° 00' to the left, BC 
 being 210 feet. Compute the proper distance 
 CD and angle to the right at Z), also the 
 inaccessible distance BD. Note that by mak- 
 ing B = D = 60° and C = 120°, then BC=CD 
 = BD and all computations are avoided. 
 
 49. Having but one point C (Fig. 49) from which both inaccessible points 
 A and B are visible, we are required to find the inaccessible distances AC 
 
EXERCISES 
 
 69 
 
 and AD and the angle between AB and DC. 
 ADC = 87° 42', DC A = 60° 32', DCE = 170° 05', 
 BCE = 41° 20', CEB = 111° 35', DC = 365.2 feet, 
 C^^ = 410.7 feet. 
 
 50. It is required to ascertain the length and j) 
 
 position of an in- 
 A_, ,B 
 
 Fig. 50. 
 
 accessible line AB 
 (Fig. 50), its ex- 
 tremities not being visible from a common 
 point beyond the obstacles. By chaining 
 we have CD = 210.7 feet, DE = 390.4 feet, 
 EF = 173.5 feet. 
 
 Then the follow- 
 ing angles are measured : A CD = 83° 41', CDE = 
 19° 12' left (180°-19° 12'), CDA = 79° 49', FEB = 
 53° 20', DEF = 42° 03' left, EFB = 115° 27'. 
 
 In order to locate points suitably upon a map, 
 find lengths AB, AD, and BE. 
 
 /77777my 
 
 51. A tower 115 feet high casts a shadow 157 
 feet long upon a walk which slopes downward Fig- 51. 
 
 from its base at the rate of 1 in 10. What is the elevation of the sun above 
 the horizon? 
 
CHAPTER YII 
 
 THE GENERAL ANGLE 
 
 Only those parts of trigonometry that are necessary for the solution of triangles 
 have been developed thus far. In this and the following chapters are considered 
 some of the more important topics of another phase of trigonometry that is no less 
 essential for the further study of pure and applied mathematics. 
 
 52. General definition of an angle. If a straight line rotates 
 about one of its points, remaining always in the same plane, it 
 generates an angle. The angle is measured by the amount of ro- 
 tation by which the line is brought from its original position into 
 its terminal position. For the small rotation leading to acute and 
 obtuse angles this definition agrees with the customary elementary 
 definition, the knowledge of which has been presupposed in the 
 foregoing chapters. 
 
 As in Art. 3, counterclockwise rotation generates positive 
 angles ; clockwise rotation, negative. 
 
 In the sexagesimal system of angle measurement the standard 
 unit is the angle produced by one complete rotation of the 
 generating line. This angle is divided into 360 equal parts 
 called degrees^ the degree into 60 minutes, and the minute into 
 60 seconds. 
 
 In the circular system the standard unit is the radian^ the 
 angle produced by such a rotation that each point in the generat- 
 ing line describes an arc equal in length to its radius. Angu- 
 lar magnitudes are stated in radians and decimal fractions 
 thereof. 
 
 Instruments are graduated and tables printed in accordance 
 with the sexagesimal system, which is used in practical numerical 
 calculations. Astronomers, however, employ decimal fractions of 
 seconds, while engineers make use of tenths of minutes and deci- 
 mal divisions of degrees. In theoretical discussions the radian 
 system is commonly employed. Hereafter, in this book, the two 
 systems will be used interchangeably. 
 
 70 
 
DEFINITIONS OF TRIGONOMETRIC FUNCTIONS 71 
 
 .^^-^ 
 
 Since the circumference of a circle is equal to 2 tt times its 
 radius, where 7r= 3.14159---, we may write the following relations 
 between the two systems : 
 
 2 IT radians = 360° 
 
 1 radian = 57.29578°. . 
 = 57° 17' 44.8'' 
 
 and, in general, the number of degrees in any angle is equal to 
 
 180 
 the number of radians multiplied by • , while the number of 
 
 TT 
 
 radians is equal to the number of degrees multiplied by -^. 
 
 Thus the straight angle is tt radians ; the right angle, — radians. 
 
 A 
 If the radius of the circle is represented by r, the arc by a, 
 and the angle, in radians, by a, we have the important relation 
 
 a — vQ^. 
 
 53. Axes, quadrants, etc. Let the two axes of coordinates be 
 assumed as in Art. 4 ; and, as in Art. 6, let the angle be placed 
 upon the axis, its vertex at the origin, and its initial line 
 extending along the X-axis toward the right. The sign and 
 magnitude of the angle will determine the position of the terminal 
 line, causing it to coincide with one of the axes or to fall in one 
 of the quadrants. An angle is said to be of the first, second, 
 third, or fourth quadrant according as its terminal line falls in 
 that quadrant. 
 
 While the acute angle is of the first quadrant, the converse 
 is by no means necessarily true. The ter- 
 minal line of every angle, however large, 
 must coincide with the terminal line of 
 some positive angle less than 360° (see Fig. 
 52). For the purpose of trigonometry as 
 developed in the present chapter, for every 
 angle, positive or negative, and of any mag- 
 nitude, may be substituted a positive angle 
 less than 360°. 
 
 54. Definitions of the trigonometric functions. The trigono- 
 metric functions of angles of any size are defined identically as in 
 
72 
 
 THE GENERAL ANGLE 
 
 Art. 6. Thus for all positions of the terminal line, Fig. 53, 
 
 y . X 
 
 - = sm a, - = cos a, 
 
 V V 
 
 y X 
 
 — = tan a, — = cot a, 
 
 X 
 
 y 
 
 V V 
 
 - = sec a, - = CSC a. 
 X y 
 
 W 
 
 O X 
 
 M 
 
 p\a 
 
 {a) 
 
 Q>) (c) 
 
 Fig. 53. 
 
 (d) 
 
 55. Signs and limitations in value. The abscissas are positive 
 for all points in the first and fourth quadrants, negative for those 
 in the second and third. Ordinates are positive for all points in 
 the first and second quadrants, negative for those in the third and 
 fourth. The radius vector is, by agreement, considered positive 
 for all points. 
 
 In conformity with the sign law of algebra, the functions of 
 angles of the different quadrants will have signs as displayed in 
 the following table : 
 
 
 Quad. 
 
 Sine 
 
 Cosine 
 
 Tangent 
 
 Cotangent 
 
 Secant 
 
 Cosecant 
 
 I 
 
 + 
 
 + 
 
 + 
 
 + 
 
 + 
 
 + 
 
 II 
 
 + 
 
 - 
 
 — 
 
 — 
 
 - 
 
 + 
 
 III 
 
 - 
 
 — 
 
 + 
 
 + 
 
 — 
 
 — 
 
 IV 
 
 - 
 
 + 
 
 — 
 
 — 
 
 + 
 
 - 
 
 
 It will be noticed that for angles of the first quadrant all six 
 functions are positive. In each of the other quadrants one pair of 
 mutually reciprocal functions are positive, the other two pairs are 
 negative. These positive pairs run as follows : second quadrant, 
 sine and cosecant : third quadrant, tangent and cotangent : fourth 
 quadrant, cosine and secant. 
 
SIGNS AND LIMITATIONS IN VALUE 73 
 
 The student should establish these statements regarding the 
 signs of the functions and memorize them. 
 
 Since the lengths of the abscissa and ordinate can never exceed 
 that of the radius vector, it follows that the sine and cosine can 
 never be numerically greater than unity, and the secant and 
 cosecant can never be numerically less than unity. The tangent 
 and cotangent can have numerical values either greater or less 
 than unity. 
 
 EXERCISE XV 
 
 1. Express in degrees, minutes, and seconds the angles — , — , '-~^, 
 o,r« o« 3^ ■ 4 3 6 
 
 2. Express in radians the angles 30°, 15°, 45°, 120°, 240°, 300°, 450°. 
 
 /-^r' In a circle of radius 60 cm., what is the length of the arc which sub- 
 tends at the center the angle 30°, 60°, ^, ^ ? 
 ^ ' ' 3 ' 4 
 
 4. In a circle of radius 10 inches, what is the circular measure of the angle 
 subtended by an arc whose length is 10, 5, 20, 5 ir inches? 
 
 5. A friction gear consists of two tangent wheels, whose radii are 8 and 
 12 inches, respectively. The smaller wheel makes 4 revolutions per second. Find 
 the number of revolutions per second made by the larger, the angular velocity 
 of each, and the linear velocity of a point on the circumference of each. If 
 the larger wheel is attached to the rear axle of an automobile whose rear wheel 
 has a diameter of 30 inches, find the speed of progress of the machine. 
 
 6. The diameters of the front and rear sprocket wheels of a bicycle are 
 10 inches and 4 inches, respectively, and the diameter of the rear wheel is 28 
 inches. Find the rate of pedaling when the bicycle is traveling 12 miles per 
 hour, the corresponding angular velocities of the two sprocket wheels, and the 
 linear velocity of the chain. 
 
 7. Determine the quadrant to which each of the following angles belongs : 
 
 210°, 465°, 745°, - 830°, ^, i^, -^. 
 3 ' 4 ' 3 
 
 8. Determine the signs of the functions of the following angles: 240°, 
 
 330°, 400°, ^, -'Le, 6^. 
 3 4' 
 
 9. Show that the quadrant to which an angle belongs is determined if the 
 signs of any two non-reciprocal functions are given. 
 
 10. To what quadrant does an angle belong if its sine and tangent are 
 negative ; its secant and cotangent positive ; sine and secant negative ; tangent 
 and cosine positive ? 
 
74 
 
 THE GENERAL ANGLE 
 
 11. Determine the quadrants of the following angles: 
 
 sin"i|; arccos — j\; arctanf; cot-^ — j\. 
 
 12. Determine the quadrants of the following angles : 
 
 sin-i I = cot-i — f ; arccos — j% = arccsc i|. 
 
 13. For what values of a is sin a — cos a positive ? 
 
 14. For what values of cc is tan a — cot a negative ? 
 15-20. Find the missing values in the following table : 
 
 
 z 
 
 sin 
 
 cos 
 
 tan 
 
 cot 
 
 sec 
 
 CSC 
 
 QlFAD. 
 
 a 
 
 7 
 8 
 
 it 
 
 -II 
 
 --A 
 
 — 15 
 
 
 
 II 
 
 III 
 
 III 
 
 IV 
 
 
 
 
 
 
 
 ¥ 
 
 
 IV 
 
 ^ 
 
 
 
 
 
 
 -¥ 
 
 III 
 
 56. Variation of the trigonometric functions. A change in 
 the angle will produce a corresponding change in the values of the 
 coordinates and in their ratios. If, for convenience, the chosen 
 point in the terminal line of the angle is maintained at a constant 
 distance from the vertex, the radius vector will retain the constant 
 value + V. 
 
 As the angle increases continuously from 0° to 360°, the 
 abscissa and ordinate vary continuously between the limits — v 
 and 4- v. As 6 increases from 0° to 90°, x is positive and decreases 
 from V to ; as 6 increases from 90° to 180°, x is negative and 
 decreases (algebraically) from to — v ; as ^ increases from 180° 
 to 270°, X is negative and increases from —v to ; and as 6 
 increases from 270° to 360°, x is positive and increases from to v. 
 As 6 increases from 0° to 90°, i/ is positive and increases from to 
 y ; as ^ increases from 90° to 180°, ^ is positive and decreases from 
 V to ; as ^ increases from 180° to 270°, y is negative and decreases 
 from to —V ; as increases from 270° to 360°, i/ is negative and 
 increases from — v to 0. Upon introducing these varying values 
 into the ratio definitions, we are enabled to trace the variation of 
 the trigonometric functions. 
 
 We see, for example, that as increases from 0° to 360°, 
 tan 6 continually increases algebraically, changing sign from 
 negative to positive through the value as ^ passes through 0°, 
 
GRAPHS OF THE TRIGONOMETRIC FUNCTIONS 
 
 75 
 
 180°, and 360°, and from positive to negative by becoming infinite 
 as 6 passes through 90° and 270°. There is an infinite discon- 
 tinuity in tan 6>, for 6 = 90° and d = 270°. 
 
 Query. Which of the trigonometric functions other than the tangent 
 become infinite and therefore discontinuous ? 
 
 The student should trace the variation of each function in detail, stating 
 the narrative verbally. 
 
 57, Graphs of the trigonometric functions. The whole behavior 
 of each function can be conveniently represented by means of the 
 graphical method already introduced in Art. 4. Assume a pair 
 
 Fig. 54. Graph of sin 6. 
 
 of axes of coordinates, as in Art. 4, and along the JT-axis to the 
 right lay off equal spaces corresponding to the number of degrees 
 in the angle 6. At each point in the JT-axis erect a perpendicular 
 whose length is proportional to the value of the sine of that angle. 
 Each point thus determined has the property that its abscissa 
 represents the angle 6 and its ordinate the corresponding value 
 of sin 6. Now having located a sufficient number of points, draw 
 through them a smooth curve. It will be seen that the value, 
 sign, and variation of the sign at each instant is fully exhibited 
 by the ordinate, position, and inclination of the curve or graph. 
 The same may be done for each of the functions. 
 
 The graphs of the different functions are here presented. 
 The student should trace carefully the intimate and exact cor- 
 respondence of the graphical and the verbal narratives. 
 
76 
 
 THE GENERAL ANGLE 
 
 ^T 
 
 Fig. 55. Graph of cos d. 
 
 -h. 
 
 O 
 
 Fig. 56. Graph of tan d. 
 
GRAPHS 
 
 77 
 
 ^Y 
 
 X 
 
 Fig. 57. Graph of cot d. 
 
 /^Y 
 
 O 
 
 Fig. 58. Graph of sec 6. 
 
78 
 
 THE GENERAL ANGLE 
 AY 
 
 _7C_ 
 -7t 2 
 
 2 
 
 371 
 2 
 
 ^ 
 
 2 
 
 X 
 
 Fig. 59. Graph of esc d. 
 
 58. Functions of 270° and 360°. By the method of limits em- 
 ployed in Art. 12, we get the following sets of values : 
 
 sin 270° = - 1, cos 270° = 0, 
 
 tan 270° = oo, cot 270° = 0, ■ 
 
 sec 270° = 00. CSC 270° = - 1. 
 
 sin 360° = 0, cos 360° = 1, 
 
 tan 360° = 0, cot 360°= oo, 
 
 sec 360° = 1, CSC 360° = oo. 
 
 Here oo is used as before to denote the value of a fraction whose 
 numerator remains finite while its denominator approaches zero. 
 The sign + or — is prefixed to the symbol oo according as tlie 
 variable becomes oo through a positive or a negative sequence of 
 values. In the light of this discussion the values of the functions 
 
 oih y. —(k any integer) may be tabulated, the upper of the pair 
 
 of double signs arising when the angle approaches the critical 
 value from below. 
 
 e 
 
 sin 9 
 
 COS 
 
 tan 9 
 
 cot 6 
 
 sec B 
 
 esc B 
 
 
 
 TO 
 
 + 1 
 
 TO 
 
 Too 
 
 + 1 
 
 Too 
 
 f 
 
 -fl 
 
 ±0 
 
 ±cc 
 
 ±0 
 
 ±co 
 
 + 1 
 
 TT 
 
 ±0 
 
 -1 
 
 TO 
 
 Too 
 
 - 1 
 
 ±GO 
 
 It 
 
 -1 
 
 TO 
 
 ±cc 
 
 ±0 
 
 Too 
 
 -1 
 
 27r 
 
 ±0 
 
 + 1 
 
 TO 
 
 T 00 
 
 + 1 
 
 Too 
 
FUNDAMENTAL RELATIONS 79 
 
 EXERCISE XVI 
 
 n 
 
 1. Trace the variation, as d varies, (a) of sin 2 6\ (b) of cot -• 
 
 n 
 
 2. Trace the variation, as ^ varies, (a) of tan 2^; (h) of cos - • 
 
 id 
 
 3. Draw the graph of cos 2 B. 
 
 4. Draw the graph of sin 3 B. 
 
 5. In what points will a horizontal line \ unit above the JT-axis intersect 
 the graph of sin Q ? Explain the significance of the result. 
 
 6. In what points will a horizontal line 1 unit above the X-axis intersect 
 the graph of tan B1 Explain. 
 
 7. If the graphs of tan B and cot B are drawn on the same axes to the same 
 scale, where will they intersect? What is the significance? 
 
 8. If the graphs of sin B and cos B are drawn on the same axes to the same 
 scale, where will they intersect? What is the significance ? 
 
 9. Construct the graph of logj^x, taking values of the number x as abscis- 
 sas and the corresponding logarithms as ordinates. 
 
 59. Fundamental relations. Just as in Art. 9 we find, by in- 
 spection, 
 
 (1) 
 
 (2) 
 
 (3) 
 
 by division, tan a = ^*L^^ (^4) 
 
 (5) 
 sm a 
 
 by virtue of the Pythagorean proposition, 
 
 sin^ a + cos^ a = 1, (6) 
 
 tan^ a + 1 = sec^ a, (T) 
 
 cot^ a -f- 1 = csc^ a. (8) 
 
 The student should prove that all these formulas conform, for 
 angles in all quadrants, to the algebraic law of signs. 
 
 CSC a 
 
 1 
 sina^ 
 
 sec a 
 
 1 
 cos a 
 
 cot a 
 
 1 . 
 tan a' 
 
 tana 
 
 sin a 
 cos a 
 
 nnt CL 
 
 _ cos a . 
 
80 THE GENERAL ANGLE 
 
 60. Line representations of the trigonometric functions. As the 
 
 names tangent and secant indicate, the trigonometric functions 
 were originally defined as certain lines measured in terms of a 
 standard unit line. The adoption of the abstract ratios, as in 
 this book, is of comparatively recent date. It is both interesting 
 and advantageous to know the line representations and sliow that 
 they lead to the same science of trigonometry as do the ratio deti- 
 nitions. 
 
 The line representations most frequently used involve the use 
 of a unit circle, i.e. a circle of radius unity. It is evident that 
 we may replace each of the defining ratios of Art. 54 by an equal 
 ratio so chosen that its denominator is positive unity. The value 
 of the ratio will be equal to that of the numerator. In other 
 words, if a positive unit radius is taken as the denominator, the 
 length and sign of the numerator will represent the function in 
 magnitude and sign. We have, then, simply to select six lines 
 whose ratios to the radius agree with the definitions of Art. 54. 
 The ratio of the subtended arc to the radius is, by Art. 52, the 
 circular measure of the angle. 
 
 Suppose, then, a circle of unit radius drawn with its center at 
 the origin of coordinates. 
 
 The angle is placed upon the axes just as in Art. 6, and from 
 the point P of intersection of the terminal line with the circle, 
 perpendiculars MP and NP are drawn to the two axes. From 
 the two points Jl and ^ where the positive axes cut the circle, 
 tangents ^2^ and BS are drawn meeting the terminal line (pro- 
 duced if necessary) in the points T and S. 
 
 Since P, T, jS, Figs. 60-63, lie in the terminal line, we have, at 
 once, in accordance with Art. 54 (or Art. 6) : 
 
 MP NP 
 
 AT , BS 
 
 tan a = -—- , cot « = -— , 
 
 OA OB 
 
 OT OS 
 
 sec«=^, csc« = -^. 
 
 But by construction, 
 
 OP=OA=OB = 1. 
 
LINE REPRESENTATIONS 
 
 81 
 
 These denominators may then be suppressed and the functions 
 represented graphically as indicated below : 
 
 
 t 
 
 
 \^ 
 
 
 B 
 
 
 ^ 
 
 
 
 \ 
 
 
 
 \ 
 
 
 A , 
 
 1 M 
 
 1 
 \ 1 
 
 
 
 
 ^•\r 
 
 Fig. 60 
 
 Fig. 61. 
 
 Fig. 62. Fia. 63. 
 
 sin a — MP, cos a = NP, 
 
 tan a = AT, cot a = BS, 
 
 sec a= OT, CSC a = OS. 
 
 Moreover, the angle, in radians, is represented as follows 
 
 arc AP 
 
 OP 
 
 arc AP. 
 
 According to the modern view, the line is not the function, but 
 by its length and direction represents the function in magnitude 
 and sign. 
 
 Note that the line representing the tangent is always drawn 
 from the point A and that representing the cotangent from B. 
 All the lines are read from the axes to the terminal line. Hori- 
 zontal lines are positive toward the right, negative toward the left. 
 Vertical lines are positive upward, negative downward. 
 
82 THE GENERAL ANGLE 
 
 By means of the Pythagorean proposition, and the theorems 
 concerning similar triangles, the fundamental relations given in 
 the preceding article, as also the limitations of value stated in Art. 
 55, are readily established. So, also, the subsequent theorems of 
 trigonometry may be interpreted by means of the line represen- 
 tation of the trigonometric functions. This graphic interpretation 
 frequently presents special advantages. This is the case, for ex- 
 ample, in the investigation of the variation of the functions con- 
 sidered in Art. 5Q. So, too, the construction of the graphs of the 
 functions as treated in Art. 57 is facilitated, since the lengths of 
 the defining lines may be transferred by the use of dividers. 
 
 EXERCISE XVil 
 Find the values of the following expressions : 
 
 1. cos^ a — sin^ a, when a = arctan ( — |), in the 2d quadrant. 
 
 2. • H , when a = sec-i(— 3), in the 3d quadrant. 
 
 1 — tan a 1 — cot ct 
 
 3. '- -, when a = arcsin(— 14), in the 4th- quadrant. 
 
 tana - sec a + 1 \ o^/ ^ 
 
 4. 
 
 1 , when a = cos-^M, in the 4th quadrant. 
 
 CSC a — cot a esc a + cot a 
 
 Solve the following equations, finding all the angles less than 
 2 TT that satisfy each equation : 
 
 5. cos/? =^. 
 
 6. tan y8 = - Vs. 
 
 7. sin 2 a = - ^V^. 
 
 8. cot 3 a =: 1. 
 
 9. 4 sin2 a — 4 cos a — 1 = 0. 
 
 10. 3tan2y8-l = 0. 
 
 11. 2 sin ^ cos ^ - sin ^ = 0. 
 
 12. 2 sin a + \/3 tan a =0. 
 
 In exercises 13-24, verify the given identities by transforming 
 the first member into the second. 
 
 13. (sin a + cos a) (cot a + tan a) = sec « + esc a. 
 
 14. (sec a — cos a) (esc a — sin a) = sin a cos a. 
 
 15. ^^"^ + ^^^^ ^tan«cot)8. 
 cot a + tan ft ' 
 
PERIODICITY 83 
 
 16. (r cos Oy -{- (r sin cos <^)2 + (r sin ^ sin <f>y = r\ 
 
 ^_ tan a — tan y8 ^ cot a cot ^ + 1 _ ^ 
 1 + tan a tan ^ cot y8 — cot a 
 
 18. CSC a (sec a — 1) — cot a (1 — cos a) = tan a — sin a. 
 
 19. (sin a cos 13 — cos a sin ^)^ + (cos a cos ^ + sin a sin ^)2 = 1. 
 
 20. sec ct CSC a (1 — 2 cos'^ a) + cot a = tan a. 
 
 21. (sin a cos /? + cos « sin f^)'^ + (cos ot cos /? — sin a sin I3y = l. 
 
 oo o 2 (l-tan2a)2 . » 
 
 22. sec- a csc^ ct — ^^ ^ = 4. 
 
 tan-^ a 
 
 23. (cos a + V— 1 sin a) (cos a — V — 1 sin a) = 1. 
 
 24. (cos a + V— 1 sin a)^ + (cos a — V— 1 sin «)2 z= 4 cos^ a — 2. 
 
 25. By means of Fig. 60 show that, when is acute and measured in 
 radians, sec > tan 0>0> sin 0. 
 
 26. By means of Fig. 60 show that, when 6 is acute and measured in 
 radians, esc ^ > cot ^ > ( '^ — ^ j > cos ^. 
 
 61. Periodicity of the trigonometric functions. It was pointed 
 out, in Art. 53, that if two angles differing by an integral multiple 
 of 360° are placed on the axes, their terminal lines coincide. As 
 an immediate consequence, it follows that corresponding functions 
 of the two angles are identical. Thus we may write 
 
 sin (2 kir -^ a) = sin a, 
 and, in general, 
 
 F(2kiT -\- a) = jP(a), 
 
 where F denotes the same function in both members of the equa- 
 tion, and k is an integer. 
 
 62. Functions of 
 
 k^±a . Precisely as in Art. 10, 37, and 
 
 38, we may express the functions of the angles ± a, 90° ± a, 
 180° ± a, 270° ± a, 360° ± a, and other similarly compounded angles 
 in terms of the functions of cc, no matter what the quadrant of the 
 angle a. Because of the periodicity brought out in the preced- 
 ing article, it is not necessary to carry the investigation beyond 
 the five multiples of the right angle mentioned ; indeed, the fifth 
 reduces to the first. On account of the double signs and the pos- 
 sibility^ of a belonging to any one of the four quadrants, there 
 exist thirty-two distinct cases. The demonstration is tlie same 
 
84 
 
 THE GENERAL ANGLE 
 
 for all cases, involving the same proportionality of sides of similar 
 triangles and the same question of agreement or opposition of signs. 
 The working out of the proof in three characteristic instances 
 should be sufficient to enable the student to do the same for any 
 and all cases. The theorem is, however, somewhat elusive, and 
 the student can completely master it and render it an infallible 
 instrument only by actual careful construction and proof of most 
 of the cases. Upon first study it may be well to limit considera- 
 tion to the cases in which a is of the first quadrant. 
 
 Let it be required first to express the functions of (180° -f- a) 
 in terms of functions of a, when a is an angle of the first quad- 
 rant. If, in Fig. 64, Z XOA = a, 
 thenZXOB=/3=lS0°-\-a. The 
 two triangles OMP and OJSfQ are 
 similar, the pairs of correspond- 
 ing sides being v and v', x and x\ 
 and y and y. Notice also that 
 x^ and ?/' are negative, all the 
 other sides being positive. Giv- 
 ing due attention to signs, we 
 Fig 64. may write : 
 
 sin (180° + a) = sin /3 = 
 
 y 
 
 sin a, 
 
 cos (180° + a) = cos /5 = 
 
 = — cos OJ, 
 
 V 
 
 tan (180°+ a) =tan /5 = ^ = ^ = tan a, 
 
 cot (180° + a) = cot /3 = - = - = cot «, 
 
 y y 
 
 sec (180°+ a) = sec /? 
 
 sec a, 
 
 esc (180° + «) = CSC /3 = ^ 
 
 y 
 
 - = — CSC a. 
 
 y 
 
 Again, let it be required to express the functions of (270® — a) 
 in terms of functions of «, when a is of the first quadrant. In 
 Fig. Qb, Z XOA = «. Z XOB = /3 = 270° - a. The two triangles 
 OMP and ONQ are similar, the pairs of corresponding sides now 
 
FUNCTIONS OF 
 
 [..|±«] 
 
 being v and v\ x and y\ and y and x\ The sides x^ and 
 negative, all the others positive. We may then write; 
 
 sin(270°-«) = sinyS = 
 cos(270°-a)=cos)8 = 
 tan(270°-«)=tan^ = 
 cot(270°-«)=coty8 = 
 sec(270°-«)=secy8 = 
 csc(270°-a) = csc,/S = 
 
 As a third and especially important 
 instance, let us find the functions of — a, 
 when a is of the second quadrant. In 
 Fig. m, XOA = «, XOB= /3= - a. 
 The two triangles OMP and ONQ 
 are similar, the pairs of correspond- 
 ing sides being v and v', x and x\ 
 y and y\ while a;, a;', and ^' are ^ 
 negative. 
 
 We then have, as before : p^^ ^g 
 
 sin ( — a ) = sin ,8 = ^ = — ^= — sin a, 
 
 85 
 
 are 
 
 y 
 
 v' 
 
 
 - 
 
 X 
 
 V ~ 
 
 - COS a. 
 
 x' 
 
 v' 
 
 
 - 
 
 V 
 
 - sin a. 
 
 y' 
 
 x' 
 
 
 x 
 
 y 
 
 = cot 
 
 a. 
 
 x' 
 
 y' 
 
 = 
 
 y 
 
 X 
 
 = tan 
 
 a. 
 
 v[ 
 
 
 
 _ 
 
 V _ 
 
 - CSC a. 
 
 x' 
 
 
 
 y 
 
 
 v' 
 
 y' 
 
 = 
 
 — 
 
 V _ 
 X 
 
 • sec a. 
 
 X X 
 
 cos ( — a) = COS ^ = — = - = cos a, 
 
 v' V 
 
 tan ( — a) = tan /9 = '-^ 
 
 cot ( — a) = cot yS = — = 
 
 tana. 
 — cot a, 
 
 sec ( — a ) = sec ytj = — = - = sec a, 
 
 CSC ( — a) = CSC /3 = -r = = — esc a. 
 
 v' X 
 
86 THE GENERAL ANGLE 
 
 It will be noticed that whenever the number of right angles 
 involved is even the pairs of corresponding sides are v and v\x and 
 x' ^ y and y^ ; while whenever the number of right angles is odd 
 the pairs of corresponding sides are v and v\ x and y\ y and x' . 
 Thus we have the theorem : Any function of an even number of 
 
 right angles plus or minus a is 
 numerically equal to the same func- 
 tion of a; any function of an odd 
 number of right angles plus or minus 
 a is numerically equal to the cor- 
 responding co-function of a; the 
 agreement or opposition of signs is 
 to be determined from the quadrants 
 of a and of the compound angle. It 
 may easily be verified that in all 
 cases this agreement or opposition 
 of signs is the same as when a is of first quadrant. 
 
 The general theorem may also be stated as follows : If the sum 
 or difference of two angles is an even number of right angles^ the 
 functions of the one are numerically equal to the same functions of 
 the other. If the sum or difference of two angles is an odd number 
 of right angles^ the functions of the one are numerically equal to the 
 corresponding co-functio7is of the other. The agreement or opposition 
 of signs is to be determined from the quadrants of the two angles. 
 
 The significance of the theorem is made clear by application 
 to an example: Required to find the value of cos (810° + a). 
 Here 810° = 9 x 90°, an odd number of right angles. When a is 
 considered as of the first quadrant (and its functions consequently 
 positive), the compound angle (810° + a) is of the second quadrant 
 and hence its cosine is negative. The required relation is, there- 
 fore, 
 
 cos (810° + a) = — sin «, 
 
 which holds for all values of a. 
 
 Again, to find the value of tan 1230°. We have 
 
 1230° = 14 X 90° - 30°, and is of second quadrant. 
 
 Then tan 1230° = _ tan 30° = - — . 
 
 V3 
 
 The student may, if he prefers, construct the figure and proceed 
 as in the demonstration just given. 
 
FUNCTIONS OF Fa; • | ± a"] 87 
 
 As a consequence of these relations, it follows that to every 
 inverse function correspond two angles, lying between and 2 tt. 
 
 Thus arc sin a = a and ir — a^ 
 
 arc cos h = a and 2 tt — a, 
 
 arc tan c= a and tt + a, 
 
 arc cot d= a and tt + «, 
 
 arc sec e = a and 2 tt — «, 
 
 arc esc/ = a and tt — a. 
 
 These statements should be verified by the student. 
 
 EXERCISE XVIII 
 Express in terms of a positive angle less than 45° : 
 
 1. sin 700^ 4. cot - 35°. 
 
 2. cos 260°. 5. CSC 930". 
 
 3. tan436^ 6. sec 1400°. 
 
 Find the value of cos a -}- sin a and of tan a — cot a when a has 
 the value 
 
 7. ?. 10. '^'^. 
 
 6 (j 
 
 8. -2j-. 11 iijr 
 
 3 ■ 3 * 
 
 9. 1^. 12. -^. 
 
 4 4 
 
 Find all the values between 0° and 360° of 
 
 13. arctaii V3. 16. arcsec 2. 
 
 14. csc-i(- V2). 17. arccot(-l). 
 
 15. arccos (- .5). 18. sin-i (- ^ V3). 
 
 Find the value of 
 
 19. sin 480° sin 690° + cos ( - 420°) cos 600°. 
 
 20. tan 840° cot 420° + tan (- 300°) cot (- 120°). 
 
 21. tan llr tan ii5 + cot ( - 11^) cot ( - t'^) . 
 
 22. sin 1|^ cos ( - ^) - sin If cos ( - ^ 
 
88 THE GENERAL ANGLE 
 
 23. If sin 200° 30' = - .35, find cos 830° 30'. 
 
 24. If tan 558° 26' = i, find cot 468° 26'. 
 
 25. If cot 520° = - a, find sin 160°. 
 
 26. If cos 590° = - m, find tan 850°. 
 
 27. Express cos (a — 90°) as a function of a. 
 
 28. Express sin (a — 180°) as a function of a. 
 
 29. Express tan (a — 360°) as a function of a. 
 
 30. Express cot (a — 270)° as a function of a. 
 
CHAPTER VIII 
 
 FUNCTIONS OF TWO ANGLES 
 
 63. Formulas for sin (a + p) and cos (a4- p). Suppose a and 
 y8 to be acute angles. In Fig. 67 (ct + /3) is acute ; in Fig. 68 
 (a + yS) is obtuse. The following demonstration applies to both 
 figures. 
 
 Let ZXOA = a, ZAOB = 0', then ZX0B = a + /3. From 
 P, a point in 0J5, draw Pil[f perpendicular to OX, PQ perpendic- 
 
 M N 
 
 Fig. 67. 
 
 >X 
 
 Fig. 68. 
 
 ular to OA^ and from Q draw §iV perpendicular to OX, and QR 
 perpendicular to MP. The angle RPQ == a and PP = QP cos a, 
 PQ =z QP sin a, by Art. J6. By the same article. 
 
 MP=OP s'm (a + /3). 
 Also MP = MR + RP = NQ-\-RP 
 
 = 0§ sin a + ^jP cos a 
 
 = OP sin a cos yS + OP cos a sin y8. 
 
 Equating the two values of MP and dividing through by the 
 common factor OP, we have the theorem 
 
 sin (a + p) = sin a cos P + cos a sin p. 
 
 80 
 
 0) 
 
90 FUNCTIONS OF TWO ANGLES 
 
 In like manner 
 
 Oi)^f= OP cos («+)S), 
 and also OM=^ON-MN= ON- RQ 
 
 = OQ cos a — QP sin a 
 , = OP cos a cos /S — OP sin a sin p. 
 
 Hence the companion theorem 
 
 cos (a + p) = cos a cos p — sin a sin p. (2) 
 
 These are called the addition formulas and are fundamental 
 in trigonometry. 
 
 64. Extension of addition formulas. The two formulas of the 
 last article were proved only for angles both of the first quadrant. 
 It remains to be shown that they hold when a and /S denote any 
 angles. 
 
 First, let a be an angle of the second quadrant. Then 
 (^ (= a — 90°) is an angle of the first quadrant. Now a = 90° + <^, 
 so tliat, by Art. 38, 
 
 sin a = cos <^, cos a = — sin <f). 
 
 Since <^ is of the first quadrant, the formulas of Art. 63 apply 
 and we have 
 
 sin (a H- yS) = sin (90° +(/)+yS) 
 
 =:COS(</> + /S) 
 
 = cos (^ COS /3 — sin <f) sin /3, 
 = sin a cos /3 + cos a sin /3. 
 Likewise 
 
 cos (« + /8) = cos (90° + (^ + /3) 
 = -sin(^ + /3) 
 = — sin </) cos /3 — cos <f> sin /S, 
 = cos a cos yS — sin a sin y8. 
 
 The formulas are therefore true when one angle is of the first 
 and the other of the second quadrant. By adding 90° succes- 
 sively to each of the angles, the formulas are established for two 
 positive angles of all quadrants. If one of the angles is negative, 
 it can be augmented by such an integral multiple of 360° as to 
 produce a positive angle possessing the same functions. 
 
 The addition formulas are, therefore, true for angles of any 
 size. 
 
ADDITION AND SUBTRACTION FORMULAS 91 
 
 EXERCISE XIX 
 
 Evaluate the addition formulas for 
 
 1. a = 60°, /? = 30°. 3. a = 240°, 13 = 150°. 
 
 2. a = 45°, /? = 90°. 4. a = 300°, ^ = 150°. . 
 
 5. « = arctanf, ^ = arccos (— -^j), a first quadrant, ft second. 
 
 6. a = sin-i (— j^^), /3 = cot-^ 5^, a fourth quadrant, /? third. 
 
 Find the value of 
 
 7. cos (^ + a) cos (1 + /«) - sill (| + «) sin (| + )»). 
 
 8. sin (7 + a) cos(^+/8) + cos (| + a) sin (| + ysV 
 
 9. sin (1 + n) a cos (1 - n) « + cos (1 + n) « sin (1 — n) a. 
 
 10. cos (1 + n) a cos (1 — n) a — sin (1 + n) a sin (1 — n) a. 
 
 11. sin (^ + <^) cos {6 - <f>) + cos (^ + <^) sin (^ - <^). 
 
 12. cos (^ — <^) cos ^ — sin (^ — <^) sin <^. 
 
 13. Evaluate the addition formulas for a = 60°, ^ = 45°, and thus find 
 sin 105°, cos 105°, sin 15°, cos 15°. 
 
 14. Evaluate the addition formulas for a = 45°, ^ = 30°, and thus find 
 sin 75°, cos 75°, sin 15°, cos 15°. 
 
 65. Subtraction formulas. In the addition formulas replace /3 
 by — fi. We have 
 
 sin (a — yg) = sin a cos (—/?) + cos a sin (— yS). 
 But by Art. 62, 
 
 sin (— y8) = — sin y5, cos (— jS') = cos y5. 
 Making this substitution, we have 
 
 sin (a — P) = sin a cos p — cos a sin p. (1) 
 
 In like manner 
 
 cos (a — yS) = cos a cos (— yS) — sin a sin (— yS), 
 or, by the same substitution, 
 
 cos (a — p) = cos a cos p + sin a sin p. (2) 
 
92 FUNCTIONS OF TWO ANGLES 
 
 66. Formulas for tan (a ± p), cot (a ± p). From Arts. 59 and 
 
 63 we have 
 
 . . , a\ sin (a 4- yS) 
 
 tan(a + /3)= ) ^ ^( 
 
 cos (« + /3) 
 
 _ sin a cos /8 + cos a sin /3 
 cos a cos yS — sin a sin yS 
 
 sin a cos /3 cos « sin ^ 
 cos a cos /8 cos a cos /S 
 
 cos a cos yS _ sin a sin /S 
 cos ct cos ^ cos ct cos ff 
 
 or, finally, 
 
 -I ^ . ON tan a + tan B ^^ ^ 
 
 tan (a + P) = ;; ^ • (1) 
 
 ^ ^^ 1-tanatanP ^ ^ 
 
 In like manner we may derive 
 
 X / o\ tan a — tan B ^^;. 
 
 tan (a — P) = -^- (2) 
 
 ^^ 1 + tanatanP ^ ^ 
 
 cot(« + ^)=22^fi±|l, 
 
 Sin (ct + yS) 
 
 _ COS a cos /6 — sin a sin /3 
 sin a cos fi + cos a sin yS' 
 
 cos ct cos /3 sin cc sin y8 
 
 __ sin a sin y8 sin a sin ^ 
 
 sin a cos ^5 cos a sin yS' 
 
 sin a sin jS sin a sin /3 
 
 Again, 
 
 or 
 
 Likewise 
 
 ^ ^^ cot p + cot a ^ ^ 
 
 J. r ox cot a cot p + 1 ^ . ^ 
 
 cot (a — P) = ~ ^ — - • (4) 
 
 ^ cot p - cot a ^ ^ 
 
 EXERCISE XX 
 
 1. Demonstrate geometrically the formula for sin (« — y8), when a > (3^ 
 both acute. 
 
 2. Demonstrate geometrically the formula for cos (a — (3), when a > /?, 
 both acute. 
 
FUNCTIONS OF 2 a AND ^ 93 
 
 Evaluate the formulas of Art. ^^ for 
 
 3. a = 60°, y8 = 120°. 5. a = arcsin ^V, ^ = arctan - ^f . 
 
 4. a = 240°, y8 = 150°. 6. a = cot-i |^, ^ = cos-i ||. 
 
 Evaluate the formulas of Art. ^^ for 
 7. a = 330^ ^ = 150°. 8. a = 210°, )8 = 300°. 
 
 9. a = cos-i y5_, ^ :^ tan-i ( - f ). 
 
 10. a - arccot \\, /? = arctan f Q. 
 
 11. Find the functions of 15° by putting a = 45°, (3 = 30°. 
 
 12. Find the functions of 15° by putting a = 60°, /S = 45°. 
 
 Show that 
 
 13. sin (a + (3) sin (a- /3) = sin-^ a — sin^ (3 = cos^ /? — cos^ a. 
 
 14. cos (a + /3) cos (a - yS) = cos^ a — sin^ ^ =: cos^ (3 — sin^ a. 
 
 Expand by successive applications of the formulas : 
 
 15. sin(« + /?+y). 17. tan(« + ^ + y). 
 
 16. cos(a + j8 + y). 18. cot(a+^ + y). 
 
 Show that 
 
 19. sin(^+ « J - sin f "^ - a j = sina. 
 
 ( - — a y = \/3 cos a. 
 6 ■ / ■ \6 / 
 
 67. Functions of twice an angle. In the addition formulas of 
 Arts. 63 and 6Q, place jS = a. We then obtain 
 
 sin 2 a = 2 sin a cos a, (1) 
 
 cos 2 a = cos^ a — sin^ a, (2) 
 
 = l-2sin2a, (2 a) 
 
 = 2cos2a-l. (2?0 
 
 . n 2 tan a ^ox 
 
 tan2a = - —- (3) 
 
 1 — tan^ a 
 
 . o cot^ a — 1 ^ , X 
 
 cot 2 a = ~ (4) 
 
 2 cot a 
 
 68. Functions of half an angle. From Art. 67 we may write 
 
 cos 2 /3 = 1 - 2 sin2 /8, 
 
94 FUNCTIONS OF TWO ANGLES 
 
 and solving for sin/3, 
 
 sin ^ = Vi(l-cos2yS). 
 
 Now placing 2 /S = a, so that y^ = ^, we obtain 
 
 sin I a = Vi (1 - cos a). (1) 
 
 Similarly 
 
 cos 2 yS = 2 cos2 y8 - 1 ; 
 so that 
 
 cos y8 = Vi(l + COs2y8), 
 
 and, with the same substitution, 
 
 cos I a = Vi(l + cosa) . (2) 
 
 Dividing the first formula by the second, we get 
 
 . 1 ^ /I — cos a >-Q\ 
 
 taii-a = ^— , (d) 
 
 2 ^ 1 + cos a 
 
 and inverting, 
 
 .1 ^ /I + COS a ^^N 
 
 cot a = X|- (4) 
 
 a ^ 1 — cos a 
 
 Rationalizing the numerators of the last two formulas, we get 
 
 other useful forms, 
 
 ^-^^ 1 1 — cos a ,r>, 
 
 tan -a = -. , (5) 
 
 2 since 
 
 ^^i. 1 1 4- cos a y^«>, 
 
 cot - a = — : (6) 
 
 2 sin a 
 
 Query. — Why are formulas (1) to (4) ambiguous in sign, while (5) and ((>) 
 are apparently not ? 
 
 EXERCISE XXI 
 Find the values of 
 
 1. The functions of 60° from those of 30°. 
 
 2. The functions of 120° from those of 60°. 
 
 3. The functions of 75° from those of 150°. 
 « 4. The functions of 15° from those of 30°. 
 
 Find the values of the functions of 
 
 5. 2 arctan :f%. 8. I arctan \\l, 
 
 6. 2 cos-i (— j\). 9. arcsin ^^ + 2arccot f. 
 
 7. J sin-i ( — M)' ^0- arctan ^^ — 2 arccos f . 
 
CONVERSION FORMULAS 95 
 
 Transform the first member into the second : 
 
 11. l+sin^-cos2^ ^^^^^^ 
 
 cos ^ + sin 2 ^ 
 
 12. l+cos^ + cos2^^^^^^ 
 
 sin 6 + sin 2 6 
 
 13. (VT+sina+ Vl — sin a)2z=4cos2ia. 
 
 14. ( Vl + sin a — Vl —sin a) 2 = 4 sin^ i a. 
 
 15. tan f - + a J - tan f - - a J = 2 tan 2 a. 
 
 16. cot [- + a^ - cot [ - - a] = - 2 tan 2 a. 
 
 Find the values of a which satisfy the following equations 
 
 17. (2 + V3)(l-sin2a) -2cos22a = 0. 
 
 18. sin 2 a + 2 cos 2 a = 1. 
 
 19. 4 sec2 2 a + tan 2a = l. 
 
 20. CSC 2 a + cot 2 a = 2. 
 Show that 
 
 21. tan-i ^^^ = cos-i ^ 
 
 3 Va;2 - 4 a: + 13 
 
 2 a: + 
 
 — — ^i^:^^::^^::::^ — arccsc — --- 
 
 y/x'^ + 2 x - 3 2 
 
 9 a: + 1 
 
 22. arctan — " — arccsc - 
 
 23. Find sin (^- 2 tan-i 
 
 '\-- 
 
 \-x \ 
 l+xj' 
 
 24. Find sin fsin-i m 4- tan"!^^-^^ — ^V 
 
 \ ml 
 
 25. Find sin f arccos (1 — a) — 2 arctan -^ — ^^ — | • 
 
 26. Find cos (arccos (1 — 2 a) — 2 arcsin Va). 
 
 69. Conversion formulas for products. Adding the two first 
 formulas of Arts. 63 and 65, we have 
 
 sin (« + ,5) + sin (« — yS) = 2 sin a cos /3, 
 
 or, reversing and dividing by 2, 
 
 sin a cos p = 1 [sin (a + p) + sin (a - p)] . (1) 
 
 If we subtract, instead of adding, we get 
 
 sin (a + yS) — sin (a — /S) = 2 cos a sin /3, 
 or 
 
 cos a sin p = i [sin (a + P) - sin (a - p)]. (2) 
 
96 FUNCTIONS OF TWO ANGLES 
 
 Treating the two second formulas in like manner, we obtain 
 
 cos a COS p =1 [cos (a + p) + cos (a — p)], (3) 
 
 and 
 
 smasmp = -l [cos(a + p) -cos(a- P)]. (4) 
 
 By means of these formulas, products of sines and cosines are 
 expressed as sums or differences. By successive applications 
 higher powers and products are reducible to expressions linear 
 in sines and cosines. The same transformations may often be 
 effected by application of the formulas of Art. 67, written in the 
 form 
 
 sin a cos a = | sin 2 a, (5) 
 
 sin^ a = J (1 — cos 2 a), (6) 
 
 cos2a= I (l + cos2a). (7) 
 
 EXERCISE XXII 
 
 Reduce the following products to linear expressions : 
 
 1. sin 5 a cos S (^. 6. sin a cos^ u- 
 
 2. cos 6 a sin 4 cc. 7. cos^ a. 
 
 3. sin 7 a sin 3 a. 8. sin^ a. 
 
 4. cos 2 a cos 5 a. 9. cos^ a sin^ a. 
 
 5. sin^ a cos a. 10. sin^ a cos^ a. 
 
 Show that 
 
 11. cos a sin (/? — y) + cos /S sin (y — a) + cos y sin (« — ^) = 0. 
 
 12. sin(^ - y) sin (« - 8) + sin(y - a) sin (/3 - 8) + sin (a-/3) sin (y- 8) = 0. 
 
 13. sin — cos^+ sin^cosi^ = 0. 
 
 5 5 5 5 
 
 14. 2 cos^cos^ + sin^ + cos^ = 0. 
 
 8 4 8 8 
 
 Solve for a, making use of Art. 10. 
 
 15. COS (50'^ + a) sin (50° -a)- cos (40° - a) sin (40° + a) = 0. 
 
 16. sin (70° + a) sin (70° - a) + sin (20° + a) sin (20° - a) = 0. 
 
 Solve for a, making use of Art. 69. 
 
 17. cos 3 a + cos 9 a = 0. 
 
 18. sin 5 a — sin 10 a = 0. 
 
CONVERSION FORMULAS 97 
 
 19. cos (a + 0) cos (a- 6) + cos (3 a + 6) cos (3 a - 6) = cos 2 0. 
 
 20. sin (a + 6) cos (a - ^) + sin (3 a + ^) cos (3 ct - ^) = sin 2 0. 
 
 70. Conversion formulas for sums and differences. In the 
 
 process of deriving the formulas of the last article, before revers- 
 ing and dividing by 2, substitute a + /3 = ^, a— (3 = 6^ so that 
 
 We then obtain the following formulas : 
 
 sincj) + sin 6 = 2 sin ^ ^^^ T '> (^) 
 
 sine))- siii6 =2cos^ sin ^ , (2) 
 
 coscf) + cos6 =2 cos^-— — cos^— — , (3) 
 
 cos<)) — cosG = - 2sin^-- — ^i^^^^ — (^) 
 
 These formulas serve to effect transformations converse to 
 those mentioned in Art. 69. 
 
 71. Multiple angles. In the formula for sin (a + /3) put y8 = 2 a. 
 
 Then 
 
 sin 3 a = sin a cos 2 a + cos a sin 2 a 
 
 = sin a — 2 sin^ ce + 2 sin a cos^ a 
 
 = 3 sin a — 4 sin"^ a. 
 
 Again, cos 3 a = cos a cos 2 a — sin a sin 2 a 
 
 = 2 cos^ a — cos a — 2 sin^ « cos a 
 
 = 4 cos^a — 3 cos a. 
 
 In like manner the other functions of 3 ct and, by repeating the 
 process, the functions of any integral multiple of a may be ex- 
 pressed in terms of functions of a. 
 
 EXERCISE XXIII 
 
 Show that 
 
 1. ?i5A«±^iEij? = tan5a. 
 cos 6 a + cos 4 a 
 
 2 co^3^t-_cos^^^^^^^ 
 sin 3 a + sin 5 a 
 
98 FUNCTIONS OF TWO ANGLES 
 
 « sin 7 « — sin 5 a , 
 
 3. = tan a. 
 
 cos 7 a + cos 5 a 
 
 . cos 4 a — cos 2 « j. o 
 
 4. - — : — -— = - tan 3 a. 
 
 sin 4 « — sm 2 cj 
 
 5 sina-sin^^^^^^gM:^^^^a-^^ 
 sin ct + sin |8 2 2 
 
 6 cos« + co^^_^^^«+^^^^«-^ 
 cos a — cos )8 2 2 
 
 ^ cos 3 ^ + 2 cos 5 ^ + cos 7 _ , ^ ^ 
 sin 3 ^ + 2 sin 5 ^ + sin 7 ^ ~ 
 
 8 sin ^ - 2 sin 4 ^ + sin 7 6 _. .q 
 ' cos ^ - 2 cos 4 ^ + cos 7 ^ ~ 
 
 Solve the following equations : 
 
 9. cos 6 + cos 5 ^ = cos 3 ^. 
 
 10. sin ^ + sin 5^ = sin 3^. 
 
 11. sin 2 ^ + 2 sin 4 ^ + sin 6 ^ = 0. 
 
 12. cos3^ + 2cos4^+cos5^ = 0. 
 
 Derive the formulas for : 
 
 13. cot 3 a. (In terms of cot a.) 
 
 14. tan 3 a. (In terms of tan a.) 
 
 15. sin 4 a. 
 
 16. cos 4 a. 
 
 Solve the equations : 
 
 17. sin 3 a = V2 sin 2 a. 
 
 18. V3cos3a + 2sin2a = 0. 
 
 19. cos 3 a = cos a cos 2 a. 
 
 20. sin 3 a = sin a cos 2 a. 
 
CHAPTER IX 
 
 ANALYTIC TRIGONOMETRY 
 
 The foregoing chapters constitute an introduction to the elementary principles 
 of trigonometry. The student ought now to be prepared for a more advanced 
 study of the theory of the trigonometric functions, which may be entitled analytic 
 trigonometry. It is beyond the scope of this book to consider more than a few of 
 the most important topics which might be discussed under this head. For a more 
 extended treatment the student is referred to the treatises by Henrici and Treut- 
 lein, Hobson, Lock, Loney, Todhunter, and others, and, of course, to articles in 
 the various mathematical journals. 
 
 72. Limits of 6/sin 6 and 6/tan 9 as 
 6 approaches zero. Let 6 be an acute 
 angle measured in radians. Con- 
 struct, as in Fig. 69, the angle 
 XOP = ^, repeated symmetrically 
 as XOQ. Draw through P the arc 
 PAQ with center 0, the chord PMQ, 
 and the broken or double tangent 
 PTQ, Then 
 
 AP 
 OP 
 
 = 6, 
 
 MP 
 
 OP 
 
 = sin 6^ 
 
 TP 
 OP 
 
 = tan 6, 
 
 By elementary geometry, 
 
 PMQ < PAQ < PTQ. 
 
 Whence, dividing by 2 and by OP, 
 sin S < e < tan 6. 
 
 Dividing equation (1) through by sin 6, wo have 
 
 e 
 
 (1) 
 
 1 < 
 
 sin 
 
 e 
 
 < sec 6. 
 
 Now in Art. 12 it was proved that as 6 approaches the limit 0, 
 cos B and its reciprocal sec 6 approach the limit 1. Thus, the 
 value of ^/sin 6 is always intermediate between 1 and a number 
 that approaches the limit 1, as approaches 0. The ratio ^/sin 6 
 
 99 
 
100 ANALYTIC TRIGONOMETRY 
 
 must, therefore, approach the limit 1 at the same time. This is 
 expressed symbolically by writing 
 
 Again, dividing equation (1) through by tan 0, we get 
 cos e < — ^ < 1. 
 
 tan u 
 
 Now as approaches 0, cos 6 approaches 1, and hence, as before, 
 O/tand approaches the limit 1 at the same time. Symbolically, 
 
 0=0 Vtan 0/ 
 
 Note. — Since sin 6 and tan d both approach along with 6, it might seem that 
 they therefore approach equality, and then the theorems would follow. The fallacy 
 of assuming that the limiting form - has the value 1 will appear on considering the 
 
 following instances. The circumference and area of a circle approach zero simul- 
 taneously with the radius. We have, however, the general relations 
 
 Circumference 2 Trr ^ ^ ^ 6.28318 ••., 
 
 Radius r 
 
 Area _ irr^ 
 Radius r 
 
 = Trr = 3.14159 ...r. 
 
 Now when r approaches the limit 0, the limit of the first ratio is the constant 2 tt, 
 and the limit of the*second ratio is 0. 
 
 The limiting form - will be discussed at length in calculus. (See Townsend 
 and Goodenough's ''First Course in Calculus," Art. 13.) 
 
 Example. If is increased by an angle S, let it be required 
 to determine the limit of the ratio of the consequent increase in 
 sin 6 to the increment 3 of 6, as that increment 8 approaches zero. 
 By Art. 70, we have 
 
 2cosf(9 + |^sin I 
 s in ((9 + 3) -sin (9 _ V 27 2 
 
 = cos (6 + 
 
 sin - 
 S\ 2 
 
 2/ 8 
 2 
 
De moivrp:'S theorem lOi 
 
 Now when B approaches 0, cos ( ^ + ^ ) approaches cos 6 and 
 
 . 8 
 
 sm- 
 
 — -— approaches 1. 
 o 
 
 2 
 
 Hence 
 
 lim sin ((9 + 3) - sin 3 ^ ^^^ ^ 
 
 6 = g 
 
 It will be noticed that the numerator and denominator approach 
 simultaneously, but that the limit of the value of their ratio is 
 a number somewhere between — 1 and + 1, and depending upon 
 the value of 0. 
 
 Examples 
 
 In like manner find the limits as 3=0, of 
 
 , cos (6 + 8) — cos 
 
 8 
 
 n, sec (0 -\- 8) — sec ^c< -r« • j. r • \ 
 
 2. ^^ — ^^—^ • (Suggestion. Express in terms of cosme.) 
 
 « CSC (0 -\-S) - CSC $ 
 
 3. U 
 
 4 tan (0 + 8) — tan (Suggestion. Express in terms of sine and 
 
 8 cosine.) 
 
 5 cot (^ + 8) -cot^ 
 
 73. De Moivre's theorem. If we adopt the customary nota- 
 tion z = V— 1, so that P = —1, we have, on performing the mul- 
 tiplication, 
 
 (cos a+ i sin a) (cos /3 -f ^ sin /3) = cos a cos /3 — sin a sin ^ 
 
 + { (sin a cos /3 4- cos a sin /3) 
 
 = cos (« -1- /3) + « sin ((X + /3), (1) 
 
 a relation which holds for all values of a and /3, whether positive 
 or negative. 
 
 Putting y8 = a, we get 
 
 (cos a-\-i sin a)^ = cos 2a + i sin 2 a. 
 Again, putting /3 = 2 a in equation (1) and making use of the 
 relation just established, we get 
 
 (cos a+ i sin a)^ = (cos a-{-i sin cc) (cos 2a + i sin 2 a) 
 = cos 3 a -f i sin 3 a. 
 
102 ANALYTIC TRIGONOMETRY 
 
 Repetition of this process proves the relation 
 
 (cos a H- ^ sin a)" = cos na + i sin na (2) 
 
 for all positive, integral values of n. 
 It, is evident^ ypon multiplying, that 
 
 ''"'' rcr.«. '(^QQs ^_|_ ^- gii^ ^^(^cosa — z since) = 1, 
 
 whence 
 
 (cos a 4- i sin a)~^ = cos a — i sin a. 
 
 Suppose 71 to be a negative integer. Let n = — m^ where m is 
 a positive integer. Now 
 
 (cos P — i sin /3)""' = (cos yS + ^ sin yS)"" 
 
 = cos myS + ^ sin m^. 
 
 Substituting m = — n and yS = — a, we get 
 
 (cos a + z sin «)" = cos Tia + i sin Tia, 
 
 true also for negative integral values of n. 
 
 Suppose 71 to be a fraction, either positive or negative. Let 
 
 71 = -, where r and s are integers. Now 
 
 r 1 
 
 (cos yS + z sin y8) * = (cos ryS + ^ sin rp~) ' . 
 Raising both members to the sth power, 
 
 r 
 
 (cos Sy8 + i sin s/3) * = cos r/3 + i sin ry8. 
 
 Introducing - = ti, and putting sfS = a, so that r^= - - s^=na, 
 s ' s . 
 
 we get (cos a + ^ sin a)" = cos 7i« + i sin 7i«. 
 
 This relation, therefore, holds for all rational values of n. 
 By an argument involving the method of limits it can be proved 
 also for all irrational values of n. This is De Moivre's theorem, an 
 instrument of great importance in some branches of mathematics. 
 
 Example. An illustration of its use is afforded by applying 
 it to tlie derivation of the formulas for the sines and cosines of 
 multiple angles. Thus 
 
 cos 3 a -h ^ sin 3 a = (cos a -f- 1 sin a)^ 
 
 = cos^ a 4- 3 ^ cos^ « sin « — 3 cos a sin^ a— i sin^ a. 
 
COMPLEX NUMBERS 103 
 
 On equating the real terms on each side, and also the imagi- 
 nary terms, separately, we have at once 
 
 cos 3 a = cos^ a — 3 cos a sin^ a 
 
 = 4 cos^ ct — 3 cos a. 
 sin 3 a = 3 cos^ « sin a — sin^ a 
 
 = 3 sin a — 4 sin^ a. 
 
 The functions of 4 « and of higher multiples of a are as readily 
 found. The simplicity and beauty of the method appears on 
 comparison with that of Art. 71. 
 
 Examples 
 
 1. Show that cos«+^'s;"« ^ cos («-/?) + / sin (« - S). 
 
 cos (3 +isin^ 
 
 2. Show that ( cos "^ ^ 1- i sin ^ — ) = cos cc + i sin a. 
 
 \ n n J 
 
 3. Show that f cos ^ ^^ "^ " + f sin - ^'^ + ^ V = cos a + « sin a, where /[: is 
 
 \ n n J 
 
 any integer. 
 
 2 y^TT 4- C£ 
 
 4. Show that the angle — — ~ — has n different values as k takes the suc- 
 
 n 
 cessive values, 0, 1, 2, • • • n — 1 (n being a positive integer). Show also that 
 for all integral values of k outside these limits, the terminal sides of the angles 
 coincide with those of the n angles already found. 
 
 5. Since cos -\- i sin = 1, find the ?i different nth roots of 1, of which all 
 but one are imaginary. Making use of the tables of natural sines and cosines 
 compute for n = 2, 3, 4, 6. 
 
 6. Since cos tt + « sin tt = — 1, find the n different nth roots of — 1, of 
 which all but one are imaginary when n is odd, and all imaginary when n is 
 even. Compute for n = 2, 3, 4, 6. 
 
 74. Graphical representation of complex numbers. An interest- 
 ing application of De Moivre's theorem is found in the graphical 
 representation of complex numbers, devised by Wessel, a Danisli 
 mathematician, and published by Argand in 1608. The treatment 
 of this topic belongs rather to the courses in algebra and function 
 theory. (See Rietz and Crathorne's "Algebra.") Only so much 
 of the rudiments of the method will be developed here as possess a 
 trigonometric interest. 
 
 A pure imaginary is an indicated square root of a negative 
 number. A complex number is an indicated sum of a real number 
 
104 ANALYTIC TRIGONOMETRY 
 
 and a pure imaginary. All pure imaginaries can be expressed in 
 the form «/^, and all complex numbers in the form x + yi. Here 
 ^ = V— 1, so that z^ = — 1 ; while x and y are real numbers, either 
 rational or irrational. 
 
 Argand's method makes use of a pair of mutually perpendicu- 
 lar axes. The Argand diagram must not, however, be confused 
 with the Cartesian scheme of coordinates. 
 
 All real numbers, rational or irrational, are represented by dis- 
 tances from the origin to points in the horizontal axis, called now 
 the axes of reals, positive to the right, negative to the left. To 
 every real number corresponds a point in this axis, and conversely, 
 to every point in this axis corresponds a real number. Thus there 
 is said to be a one-to-one correspondence between the totality of 
 real numbers and the totality of points in the line. 
 
 All pure imaginaries are represented by distances from the 
 origin to points in the vertical axis, now called the axis of imagi- 
 naries, points above and below the origin giving, respectively, 
 positive and negative coefficients for the imaginary unit factor 
 i = V— 1. Here again there exists a one-to-one correspondence 
 between the totality of pure imaginaries and the totality of points 
 in the vertical axis. 
 
 Notice that the origin alone, of all points in the plane, is on 
 both axes. The number zero belongs to both systems. With this 
 single exception, no pure imaginary can equal a real number, since 
 the directions of the two axes are essentially different. 
 
 In order to represent the complex number x + yi recourse must 
 be had to the method of adding coplanar but non-collinear directed 
 line segments employed in the graphical composition and resolution 
 of forces in physics. Since directed line segments may undergo 
 translation, the segment yi may be placed with its initial point 
 upon the terminus of the segment x. The complex number is 
 therefore represented by the right line segment (radius vector) v 
 from the origin to the resulting terminus of the segment yi. For 
 y—^ we have real numbers, for a: = we have pure imaginaries. 
 
 As the lengths of the horizontal segment x and the vertical 
 segment ^^ measure respectively the magnitudes of the reals and the 
 pure imaginaries, so the length of the radius vector v may be said 
 to measure the absolute magnitude of the complex number 
 v — x-\- yi. This is called the absolute or numerical value of v, 
 and is denoted by the letter r. Evidently all points on the unit 
 circle about the origin possess the absolute value 1. 
 
COMPLEX NUMBERS 
 
 105 
 
 The directed line segment, or radius vector, v makes in general 
 an oblique angle with the axis of reals, and its direction is deter- 
 mined by the angle it forms with the positive axis of reals. This 
 angle is denoted by ^, and is called the amplitude of the complex 
 number. All points lying on the same radius have a common 
 amplitude, while radii vectores extending from the origin in 
 opposite directions have amplitudes differing by tt. All positive 
 real numbers have the amplitude ; negative reals, ir ; pure 
 
 TT 3 TT 
 
 imagmaries, — or -— -. 
 
 The right triangle formed by a;, ^, and v yields the relations 
 
 6 = arctan-1 
 
 X 
 
 \Y 
 
 x = r cos ^, 3/ = ^ sin 6, 
 
 We may write interchangeably, 
 
 v^ ov x + yi^ or r (cos ^ + ^ sin ^). 
 
 The expression cos 6 -\-i sin d consequently denotes a unit segment 
 (complex unit) with the amplitude ^, while r is a purely arith- 
 metical factor. 
 
 Conjugate complex numbers, x -f yi and x — y% evidently have 
 the same absolute value and amplitudes which are negatives of 
 each other. 
 
 Addition is effected graphically by placing the initial point of 
 the second segment upon the 
 terminus of the first and con- 
 necting the initial point of the 
 first to the terminus of the 
 second. Thus in Fig. 70, 
 
 = ^1 + %i + ^2 + % 
 
 = (^1 + ^2) +^'(^1 + ^2)- 
 The values of r and d in terms of /-j, r^^ 6^ and 0^ are readily deter- 
 mined, but exhibit little of present interest. Suffice it to point 
 
 out that 
 
 r < rj + 9-2, 
 
 e^e^ + e^. 
 
 Subtraction reduces at once to addition on reversing the sub- 
 trahend segment. 
 
 Fig. 70. 
 
106 ANALYTIC TRIGONOMETRY 
 
 On attacking the problem of multiplication, we must define 
 the product of a directed rectilinear segment by the imaginary 
 unit { as a segment of equal length turned through a positive 
 right angle. Thus v = x-{-iy =r (cos 6 -\-i sin ^) multiplied by i 
 gives 
 
 = — y -\-ix=r cos ( ^ + ^ ) + 2 sin ( ^ + ^ j • 
 
 2 7 V2 
 
 The absolute value is unchanged, while the amplitude is in- 
 
 ir 
 
 creased by — • This is consistent with the original scheme of rep- 
 
 A 
 
 resentation, since reals multiplied by i give pure imaginaries, and 
 these multiplied by i give — 1 times the original, i.e. the original 
 radius vector reversed. 
 
 Multiplying a directed segment by a positive real number 
 simply stretches it, multiplying its length and leaving its direc- 
 tion unchanged. Multiplying 
 
 V =x-\-iy = r (cos -\-i sin ^) by k^ we get 
 
 v' = hv = kx -\- iky = kr (cos -\-i sin ^). 
 
 The absolute value is multiplied by the factor k, while the ampli- 
 tude is unchanged. 
 
 Multiplication of one complex number by another is effected 
 by combining the two processes just described, applying the asso- 
 ciative and distributive laws. Thus 
 
 v = v^'V^= (^1 H- iyi) ' (a^2 + ^^2) 
 
 = ^1 (^2 + ^>2) + *>i (^2 + %) 
 
 = (.V2 - ViVi) + ^^1^2 + ^2^1) • 
 
 Using the other notation and applying De Moivre's theorem, 
 
 v = v^ • V2 = r^ (cos ^j + i sin ^j) • r^ (cos 0^ + i sin 0^^ 
 
 = r^r^ ' [cos ((9i + 0^-) + i sin ((9^ -hO^)-]. 
 
 Figure 71 illustrates the multiplication of 5 — 2 ^ by 2 4- 3 ^. 
 The product is shown to be 16 + 11 i. We have then the law that 
 the absolute value of the product of two complex numbers equals 
 the product of their absolute values, while the amplitude of the 
 product equals the sum of their amplitudes. 
 
COMPLEX NUMBERS 
 
 107 
 
 The inverse process of division is readily performed, with the 
 result 
 
 or 
 
 V = -1 = 
 
 ^2 
 
 X, + ly^ _ x^x^^ + y^y^ . x^y^ - x^y^ 
 
 ^2 + ^Vl ^2 + ^2 
 
 r^(cos 0^ + ^ sin Q^ 
 r^ (cos ^2 + ^ sin ^2) ' 
 
 + ^ 
 
 + ^2^ 
 
 i; = ^ [cos (6'i - 6>2) + ^ sin ((9i - 6>2)] • 
 ^2 
 The absolute value of the quotient is equal to the quotient of 
 the absolute values, while the amplitude of the quotient is equal 
 to the difference of the amplitudes. 
 We have further, 
 
 vz=v{' = r-^ (cos nO^ + i sin nO^. 
 
 The absolute value of 
 the power is equal to 
 the power of the abso- 
 lute value, while the 
 amplitude of the power 
 is equal to the ampli- 
 tude of the number 
 multiplied by the index 
 of the power. Here 
 " power " is used to de- 
 note the result of affect- 
 ing the number by the 
 exponent n^ whatever 
 the value of n. This 
 includes both involu- 
 tion and evolution. In 
 particular let n be the 
 reciprocal of a positive integer m. 
 
 Fig. 71. 
 
 V- m/ 
 
 Then 
 
 cos—i + 
 m 
 
 mj 
 
 But Vj is just as well and exactly represented by 
 
 r [cos (2 ^TT + ^) + i sin (2 kir + ^)], 
 
 where h is any integer. Thus the mth root just found is only one 
 of an infinite number, all given by the form 
 
 m/-r 2kir + 0. 
 Vr. cos =^— i 
 
 I 
 
 + i sin 
 
 ^kir 
 
 m 
 
 ±6,1 
 
 ^ J 
 
108 ANALYTIC TRIGONOMETRY 
 
 in which k assumes all integral values. This form gives m dif- 
 ferent values for the root, corresponding to A; = 0, 1, 2, ••• m — 1. 
 All the others are repetitions of these m roots, since the terminal 
 sides of all the other amplitude angles will coincide with the ter- 
 minal sides of the m amplitudes specified. 
 
 Hence every complex number has m different mth roots, whose 
 common absolute value is the arithmetical mth root of the absolute 
 value of the number, while their amplitudes have the m different 
 values, 
 
 e. ^TT + e^ 4 7r + 6>^ 2fm-l)7r + (9^ 
 
 m m m m 
 
 all less than 2 tt. 
 
 In the special case of any positive real number a^j, whose am- 
 plitude is therefore zero, we obtain m different mth roots with the 
 common absolute value Vr^, which is called the principal value of 
 Va^j, and the m different amplitudes, 
 
 /^ 2 TT 4 7r Gtt 2(m — l)7r 
 u, , , , ••• • 
 
 m m m m 
 
 Only one of these is real, the first, and it is called the principal 
 mth root of the positive real number. 
 
 The student should construct figures to illustrate the foregoing 
 theorems. Still another analytic notation for complex numbers 
 will be brought out in Art. 75. 
 
 Examples 
 
 1. Represent by Argand's diagrams^the numbers 2, —3, 3i, — 4i, 3 + 5t, 
 
 4 - 3 1, - 2 + i, - 5 - 3 i, 4 + VZ^ Vs - VIT?. 
 
 2. Write the numbers the termini of whose radii vectores have the Carte- 
 sian coordinates (3,4), (-3,2)^ (7,-3), (-5,-2), (6,0), (0,5), 
 (-2,0), (0, -6), (0,0), (V^, V5). 
 
 3. Find the absolute values and the amplitudes (expressed in degrees and 
 minutes) of the numbers in examples 1 and 2. 
 
 4. Describe the situation of the number points which have : (1) the 
 common absolute value 3 ; (2) the common amplitude 30° ; (3) the amplitudes 
 45° and 225°. 
 
 5. Perform graphically: (3 + 40 + (7 - 2 ; (-3 + 2/) + (6 - 3 {) ; 
 (7 - 3 - (4 + 2 i) ; (3 - 2 - (- 6 - 3 i) ; (5 + 2 i) + (3 - 4 i) - (6 - 3 {). 
 
 6. Perform graphically, taking the first factor in each case as the multi- 
 plier : 3.(5 + 2 0; I -(3 + 50; 2 t- (6-30; -4.(2+50; -6 i . (3+ 2 0; 
 (4+ 2 • (3 + 4 ; (3 + 4 -(4 + 20. 
 
EULER'S EXPONENTIAL VALUES 109 
 
 21 + ; 6 - 17 1 
 
 7. Construct the quotient of 
 
 3 + 2f 4-3t 
 
 8. Construct: (3 + 202; l-l^i^V-, (l-iV'dy;i\ 
 
 9. Find by construction: V7-24i; \/- 119 + 120 i; (-5 + 12i)^' 
 
 ^/ITl; ^; ^16. 
 
 10, Write the general solution of the binomial equation : x" — a" = 0. 
 
 11. Find all the roots of the equations a:^ — 1 = ; x'^ -{- 1 — 0; x^ — 1 = ; 
 a;3 - 8 = 0. 
 
 75. Exponential values of the trigonometric functions. The 
 first form of De Moivre's theorem, Art. 73, Eq. (1), may be written 
 symbolically, 
 
 which is read, function of a times (the same) function of /9 equals 
 (the same) function of (a + /3) ; or, the product of the (same) 
 functions of two numbers equals the (same) function of the sum 
 of the two nuifibers. Now this is identically the characteristic 
 relation or law governing the exponential function, that is, a 
 function of the form a^ ; thus. 
 
 For reasons discussed in Art. 77, it is found that instead of the 
 more general function a% we must place 
 
 cos a-\-i sin a = e'% (1) 
 
 where e = 2.71828183 ••• is the base of the Naperian, or natural, 
 system of logarithms given in Art. 23. 
 
 Note that the law of exponents, derived for positive integral 
 exponents, and assumed to hold also for negative, fractional, and 
 irrational exponents, is still further assumed for exponents which 
 are pure imaginaries and complex numbers. As in the former 
 cases, the significance must be determined in conformity to the 
 action of the assumed law. Indeed, the law defines the function. 
 
 Since cos a — i sin a = ;— : , we have also 
 
 cos a + ^ sin a 
 
 cos a—i sin a = er^°-. (2) 
 
 Adding and dividing by 2, we obtain 
 
 cosa = ; Ko) 
 
110 ANALYTIC TRIGONOMETRY 
 
 again, subtracting and dividing by 2 ^^ 
 
 sm a = — ^j— . (4) 
 
 These values were first given by Euler in 1743. Starting from 
 these two exponential values as fundamental definitions, and de- 
 fining further 
 
 , sin rt , 1 1 1 
 
 tana = , cota = , seca = , csca = 
 
 cos a tan a cos a sm a 
 
 it is possible to develop all the laws and formulas of trigonometry 
 as contained in Arts. 59 and 63-71, quite apart from any geo- 
 metric meaning attached to the functions or their argument a. 
 The analogous derivation of those trignometric theorems de- 
 pendent on the periodicity of the trigonometric functions involves 
 the periodicity of the logarithm, and is therefore postponed until 
 the later mathematical study of the student. 
 
 A third notation for complex numbers now becomes manifest.; 
 for 
 
 v = x + iy = r (cos 6 -\- i sin ^) = re^^. 
 
 The consequent theorems regarding the absolute values and am- 
 plitudes of products, quotients, powers, and roots follow readily, 
 and should be worked out by the student. 
 
 Examples 
 
 1. Find the exponential values of tan a, cot a, sec a, esc a. 
 
 2. Derive from the exponential values the laws sin^ a + cos^ a = 1, etc., of 
 Art. 59. 
 
 3. Derive from the exponential values the formulas of Arts. 63-71. 
 
 4. Derive from the exponential notation the laws for the absolute values 
 and amplitudes of products, quotients, powers, and roots of complex numbers. 
 
 76. Hyperbolic functions. Closely allied to Euler's forms of the 
 last article are the two interesting and important forms. 
 
 2 2 
 
 They are called, by analogy, the hyperbolic cosine and hyperbolic 
 sine. Thus, employing the customary notation, 
 
 cosh a = , sinha= — 
 
HYPERBOLIC FUNCTIONS 111 
 
 The remaining hyperbolic functions are defined from these, just as 
 in Art. 75 : 
 
 tanh a = ^IBIL^, coth a = —1—, sech a = -—, csch a = ___. 
 
 cosh a tanli a cosh a sinh a 
 
 A very simple relation exists between the hyperbolic and the 
 circular (^i.e. ordinary trigonometric) functions. Evidently 
 
 cosh a = cos ^a, 
 
 sinh a = — i sin m, 
 
 tanh a = — ^ tan ia ; 
 and conversely, 
 
 cos a — cosh za, 
 
 sin a = — i sinh m, 
 
 tan a = — { tanh za. 
 
 To each formula of Chapter YIII corresponds a formula for the 
 hyperbolic functions, which may be deduced either directly from 
 the exponential definitions, or by substituting the values just 
 given in the formulas for the circular functions. The student 
 should derive these formulas by both methods. 
 
 The analogue to De Moivre's theorem is 
 
 (cosh a -h sinh a)" = cosh na -\- sinh na. 
 
 Cosh a and sinli a possess an imaginary period 2 7^^, since 
 gM _ ^u+2kni^ jf. being any integer. (See treatises on the theory of 
 functions.) 
 
 77. Exponential and trigonometric series. In the present 
 article values in the form of infinite series will be derived for 
 certain exponential, logarithmic, and trigonometric functions. 
 In the proof, however, the use of the binomial formula and the 
 manipulation of the series introduce a lack of rigor requiring ex- 
 tended consideration in the subsequent courses in algebra, the 
 calculus, and the theory of functions. 
 
 (1) Exponential series. 
 
 Expanding by the binomial formula,* 
 
 n) ~ ll'^^ 2! ^ 3! ' n^ 
 
 *The symbol \k, or k !, is used to denote the product 1 • 2 • 3 ••■ A:, where k is 
 any positive integer, and is read " factorial A;". 
 
112 
 
 ANALYTIC TRIGONOMETRY 
 
 .2 
 
 (2) 
 
 Now as n becomes infinite, the binomial factors [ 1 ), f 1 — — ), 
 
 etc., all approach the common limit 1, and we shall have, in the 
 limit, 
 
 ,- = limrA+^Y1=l + ^ + ^ + |^+.... (1) 
 
 n=^[\ nJ J 1! 2! 3! 
 
 This series is convergent for all finite values of x. (See Rietz and 
 Crathorne's "Algebra.") 
 For a; = 1 we get 
 
 1,1,1.1,1, 
 
 ^=^ + l! + 2!-^3! + T!-^- 
 
 The terms diminish rapidly in value and, when expressed deci- 
 mally, the value of e is found to be 2.71828183 •••. 
 
 The series for e^ is valid also for negative and imaginary values 
 of X ; thus, substituting successively —x, ix, and —ix for a;, we have 
 
 * =^-T! + 2!-8T+-' 
 
 /y>^ /"Y*^ /^O /y% /y»t> /y*0 /y»7 I 
 
 ^ =^-2! + 4!-6! + - + ln-^ + 6!-f!+-} 
 
 _,> -, x^ , x^ x^ , .r X a^ , x^ x'^ , ~] 
 
 ^ ='-2! + 4!-0l+--iT!-^ + 5!-7!+-J- 
 
 (2) Logarithmic series. 
 
 From the expansion just obtained for e"^ can be derived a series 
 for log, (1 + ^). 
 
 Since* ^t^ = e^l«ge«, 
 
 we have ^^ = 1 + ^ (log, ^) + |y (loge ^)^ + ^y (log, uy + -- -. 
 Placing u=l + t/f 
 
 (l+y)-=l + ^log,(l+y) + ^[log,(l + y)P 
 
 + ^Doge(l+y)?+-- 
 
 * Let w = u*. Taking logarithms to base e, we have loge w = x log« u. Now 
 taking exponentials to base e, lo = w* = e* log*". 
 
TRIGONOMETRIC SERIES 113 
 
 Expanding the first member by the binomial formula, 
 
 (1+^)^ = 1 + — y+ ^ ^^ ^ f + -^ ^y^ -f+ •••• 
 
 Picking out and equating the coefficients of x in the two expres- 
 sions, the required expansion is obtained, 
 
 log«(l+2/) = f-f + |-J+-. (8) 
 
 This series is convergent for — 1 < ?/ ^ + 1. 
 
 If w = loga u^ we have a"' = u; wlience, taking logarithms to 
 
 base g, w log^ a = logg u. Therefore w = log« u = • log. u, 
 
 log, a 
 
 Substituting from (3) we see that 
 
 (3) Trigonometric series. 
 
 From De Moivre's theorem 
 
 cos mO -\-i sin mO = (cos 6 -\-i sin ^)"*. 
 Expanding b}^ the binomial formula and- separating the real terms 
 from the imaginary, 
 
 cos mO + i sin md = cos"^ 6 - ^^^ ~ ^^ cos'^-s ^ sin2 
 
 . w(m— l)(m — 2)(m— 3) m-A a - 4. a 
 + — ^^ — ^ cos"^ ^ a sin^ a •" 
 
 4! 
 
 -f ^ f — - cos"* 1 6 sm 6 — — ^ ^ ^ cos"*-3 gm^ j^ ... \ 
 
 Equating separately the real and the imaginary parts, 
 cos mO = cos"* - ^^^"-^^ cos"*-^ sin2 (9 4- •••, 
 
 sinmu==—j cos"* ^^sm^ ^^ /y^ ^cos"* ^osin^6-{- •••. 
 
 Place now 
 
 m$ = a, so that ^ = — ; 
 
 co.„ = cos"Q-^(^cos-Qsi,.Q+..., 
 
 sm 
 
 1 ! \wy Vm/ 
 
 m(m-l)(m-r2) 
 3! 
 
 -<^)^''<3^-- 
 
114 ANALYTIC TRIGONOMETRY 
 
 Now let approach the limit zero and m become infinite, while 
 still obeying the condition that mO = a, where a remains finite. 
 
 By Art. 12, cos—, cos^— , etc., approach the limit 1 as m becomes 
 
 mm . . 
 
 infinite, and in the calculus the same is shown for cos"*f — j, 
 cos^^-if-Y etc. 
 
 Again, m sm — = •, 
 
 \mj u 
 
 ■ m(m-l)sin2('"'\=a(«-6>)./'^Y, 
 m{rn - 1) (m - 2) sin^/"-^ = «(« - ^)(« - 2 l9) • f^}^\\ etc. 
 
 Since li^^^ ^ = 1, the limits approached by these expressions, as 
 
 ^ = 0, are a, a\ a^, etc. 
 
 Making these substitutions, we obtain, in the limit, 
 ^ «2 «4 ^6 . 
 
 cos« = l-- + jj-^j+..., (6) 
 
 '^"" = r!-3!+6T-^+-- <^^> 
 
 These series are convergent for all values of a. 
 Tan a may also be expanded into the series 
 
 *'^"" = i + F + i5 + W+-- ('> 
 
 It will be noticed that the series for cos a contains only even 
 powers of a, while those for sin a and tan a contain only the odd 
 powers of a. (See the third example worked out in Art. 62.) 
 
 The assumption of Art. 75 may now be justified. For, on sub- 
 stituting for e'^, e"'^ sin a:, and cos a; their expansions in series, we 
 obtain 
 
 cos x-\-i sin x = e'^, 
 
 cos ic — ^ sin a; = e~"^, 
 and cos x — 
 
 ^rx 
 
 4- e-'' 
 
 
 2 
 
 ^ix 
 
 - e-'^ 
 
 sma: 
 
 2i 
 
COMPUTATION OF TABLES • 115 
 
 (4) Hyperbolic series. 
 
 From the analogous relations the expansions for the hyperbolic 
 functions are readily obtained. 
 
 ri^i 1 e'^ + e~'^ 1 , ^2 ^4 ^6 
 
 Ihus cosha = -^^=l + - + - + -+ .-, (8) 
 
 Examples 
 
 1. By substituting — a for a, find the series for sin(— a), cos(— a), 
 tan (— a), and by comparison, verify the corresponding relations of Art. 62. 
 
 2. By substituting ia for a, verify the relations of Art. 76, cosh a — cos la, 
 etc. 
 
 3. Using two terms of the expansions for sin a and cos«, and retaining 
 only powers of a below the fifth, obtain an approximate verification of the fol- 
 lowing formulas : 
 
 sin^a + cos^a = 1, sin (a + /?) = •••, cos (a + y8)= •••, sin 2 a= ••-, cos 2 a = •••• 
 
 4. Do as required in example 3 for the hyperbolic functions. 
 
 5. Repeat examples 3 and 4, using three terms of the series and retaining 
 powers of a below the seventh, thus arriving at a closer approximation. 
 
 78. Computation of trigonometric tables. The numerical values 
 of the sine, cosine, and otlier trigonometric functions of angles 
 from 0° to 90°, as tabulated in Table III, may be calculated by 
 means of various trigonometric formulas, or better, by the use of 
 the series derived in Art. 77. 
 
 Euler gave the following series, carrying the computation to 
 28 decimal places and a corresponding number of terms : Place 
 
 a = m ' -^ in the series for sin a and cos a ; whence 
 
 sin ^w. 1^ = 1.570 796m -0.615 964^3 
 
 + 0.079 693 m^ - 0.004 682 m'^ 
 -f- 0.000 160 m^- 0.000 004m" 
 
 + , 
 
 cos C^ • I) = 1-000 000 - 1.233 700 m^ 
 + 0.253 699 m^ - 0.020 863 m^ 
 -{- 0.000 919 m^ - 0.000 025 m^^ 
 + 
 
116 * ANALYTIC TRIGONOMETRY 
 
 We need to calculate the sines and cosines of angles up to 
 45° only, so that m is a fraction and always less than |-. The 
 terms of the series converge rapidly and a few terms suffice to give 
 values correct to a small number of decimal places. 
 
 More extended discussion of this topic may be found in Hob- 
 son's "Trigonometry," Chap. IX; Todhunter's "Plane Trigonome- 
 try," Chap. X ; and other advanced treatises on trigonometry. 
 
 The series for log (1 + ^) converges too slowly for convenient 
 calculation, but a modified form is easily obtained. ^ Manifestly 
 
 /2 
 
 ~ 8 
 
 log (1 - ^) = - ^ - |- ^ 
 
 and 
 
 log l^f = 1^'g (! + «/)- log (1 - ^) 
 
 — 9 
 
 I + -8+5 + 
 
 } 
 
 Place y = , Avhence ^ = ; then 
 
 2i; + l 1 — y ^ 
 
 log !i±i = 2^-1-+ 1 + 1 : + ...), 
 
 or 
 
 log (v + 1) = lo^ V -h 2r — - — H h — + •••T 
 
 This series converges rapidly and by it log 2 can be computed 
 from log 1 = 0, log 3 from log 2, etc. Logarithms of composite 
 numbers can be checked by adding the logarithms of their factors. 
 
 79. Proportional parts. In using the logarithmic and trigo- 
 nometric tables it Avas assumed, as stated in Art. 2^, that for 
 small differences in the number, the differences in the logarithm 
 are proportional to the differences in the number, and that like- 
 wise, for small differences in the angle, the differences in the sine 
 (or other trigonometric function, or logarithmic function) are pro- 
 portional to the differences in the angle. 
 
 We have 
 
 log (a; + 8) - log a; = log^±^ = log f 1 + -^ 
 
 X ' \ xj 
 
 ^S_j5^ J3 ^ 
 
 X 2X^ SX^ 4:X^ 
 
 __ 8 (Approximately for small 
 
 X values of 3.) 
 
PROPORTIONAL PARTS. INVERSE FUNCTIONS 117 
 
 Therefore, we have approximately 
 
 log ix-\-8^)-lo^x ^ S^ /^ = ^1 , (13 
 
 log (x + 82) - log X hjx S2' 
 
 for small differences. 
 Again, 
 
 sin (3 -}- |9) - sin (9 = 2 cos [o + -") sin | 
 
 = cos Q • 3. (Approximately for small 
 
 values of 3.) 
 Hence, approximately 
 
 sin (0 4- 3j) — sin \ cos ^ \ 
 
 sin (^ + ^2) — sin Q h^ cos d h^ 
 
 (2) 
 
 For the other functions, the proof follows exactly similar lines, 
 and can easily be supplied by the student. 
 
 Full discussion along this line may be found in Loney's " Plane 
 Trigonometry," Chap. XXX ; Lock's " Higher Trigonometry," 
 Chap. VIII ; Hobson's " Trigonometry," Chap. IX ; etc. 
 
 80. General inverse functions. In Art. 14 only acute angles 
 were under consideration, so that the relations 
 
 m = sin a, a = arcsin m, 
 
 expressed a one-to-one correspondence. In other words, under 
 the condition that 
 
 0°<«<90°, 05m<l, 
 
 to each value of « there corresponds one and only one value of 
 m and conversely. 
 
 On considering the general angle, it became evident that to 
 any one angle there corresponds one and only one value of the 
 sine (or other function), but that to one value of the sine (or 
 other function) correspond many angles. We define arcsin m, 
 arccos m, arctan ?w, etc., as the numerically smallest angle having 
 the given sine, cosine, tangent, etc. It follows that arcsin m^ 
 
 arctan w, arccot m, arccsc m always lie between — — and +— , 
 
 while arccos m and arcsec m always lie between and + tt. 
 These are called the principal values of the general inverse func- 
 
118 ANALYTIC TRIGONOMETRY 
 
 tions Arcsin w, Arccos w, etc. As results of Arts. 61, 62, we 
 may write, if k is any integer, 
 
 Arcsin m = 2 A^tt + arcsin m, 
 
 Arccos m = 2 kir -{- arccos m, 
 
 Arctan m = Jctt -{- arctan w, 
 
 Arccot m — Jctt -\- arccot m, 
 
 Arcsec m = 2 kir + arcsec m, 
 
 Arccsc m = 2k7r -{- arccsc m. 
 
 Similar relations exist for the inverse hyperbolic functions, the 
 periods being imaginary, 2 kiri and kiri. 
 
 From the relations of Art. 76 may be derived the following : 
 
 arccos m = ( ± ) ^ inv cosh m^ 
 
 arcsin m = — i inv sinli im^ 
 
 arctan m = — z inv tanh iyn ; 
 and 
 
 inv cosh m = ( ± ) ^ arccos w, 
 
 inv sinh m = — i arcsin im^ 
 
 inv tanh m = — i arctan im. 
 
 81. Logarithmic values of inverse functions. Since the circular 
 and hyperbolic functions are expressible as exponential functions, 
 it would seem that the inverse functions should be expressible as 
 logarithmic functions. Such is, indeed, the case, and the desired 
 values may be found by solving for a the forms given in Arts. 75 
 and 76. 
 
 ( 1 ) Circular functions . 
 
 If, for example, 
 
 z — Sin a = -— — , 
 
 2 I 
 
 we have the quadratic equation in e'% 
 
 g2.« _ 2 {ze^<^ -1 = 0, 
 
 whose roots are 
 
 e'" = iz ± Vl — z^. 
 
 Choosing the upper sign, and taking logarithms to base e, we 
 
 ^^^ ia = log {iz + vr^^), 
 
 whence ^ ^ ^^^^.^ ^ _ _ . ^^^ ^ .^ _^ ^^^^ ) 
 
 gives the principal value of the arcsine. 
 
INVERSE HYPERBOLIC FUNCTIONS 119 
 
 (2) Hyperbolic functions. 
 
 As may be expected, the values of the inverse hyperbolic 
 functions are real in form. Thus from 
 
 z = smh cf = , 
 
 we get, on solving, 
 
 a — inv sinh z = log {z + Vs^ + 1 )• 
 
 Examples 
 Obtain 
 
 1. arccos z = — i log {z + Vz^ — 1 )• 
 
 2. arc tan s = - i log ^ + ^^ 
 
 2 " 1 - I. 
 
 iz 
 
 3. inv cosh z — log 2 {z + va;^ — 1 ). 
 
 1 1-4-2 
 
 4. invtanhs = - log =--^. 
 
 2 ^ \-z 
 
REVIEW EXERCISES 
 
 1. To what quadrant do the following angles belong : 560°, 653°, 1030°, 
 425°, -1260°? 
 
 2. To what quadrant do the following angles belong: — ^, r!L_^ 8^, 
 
 5 o 
 
 13 TT^' 
 
 3 ' 
 
 25^, ■ 
 
 4 ' - 
 
 3 
 
 3. 
 
 Reduce to radians 
 
 : 75° 
 
 300°, -250°, 2000°, 465° 20'. 
 
 4. Reduce to the degree system : 4^, - 6^, i^, ^, _ I^. 
 
 o o 2 
 
 5. Find the lengths of the arcs subtended by the following angles at the 
 
 center of a circle of radius 6 : 45°, 120°, 270°, ^^, ^^, 5^- 
 
 '4 8 3. 
 
 6. A polygon of n sides is inscribed in a circle of radius r. Find the 
 length of the arc subtended by one side. Compute the numerical values if 
 r = 10 and w = 3, 4, 5, 6, 8. 
 
 7. Taking the radius of the earth to be 4000 miles, find the difference in 
 latitude of two points on the same meridian 300 miles apart. 
 
 8. Find the difference in longitude of two points on the equator 1200 
 miles apart. 
 
 9. Find the distance in degrees between two points, one of which is 800 
 miles due north of the other. 
 
 10. A city is surrounded by a circular belt line 5 miles in radius. How 
 long will a train require to go at a speed of 20 miles an hour from a station due 
 east of the center to one due northwest, if the motion is clockwise ; if counter- 
 clockwise ? 
 
 11. Find with the protractor the angles formed successively by the radii 
 vectoresof the points (3, 0), (2, 4), (-3, 5), (0, 6), (-4, 2), (- 2, 1), (5, -3), 
 (8, 0). 
 
 12. Find with the protractor the angles of the triangles formed by the 
 abscissa, ordinate, and radius vector of each of the following points : (4, 4), 
 (1,3), (3, -3), (-2,2), (-4, -8). 
 
 13. Find by measurement the coordinates of the point whose radius vector 
 is 4 and makes an angle of 30° with the positive x-axis ; 5 and 120° ; 8 and 225°. 
 
 14. Find by measurement the length and inclination angle of the radii 
 vectores of the points whose coordinates are (2, 5), (—5, 12), (— 8, — 15). 
 
 120 
 
REVIEW EXERCISES 
 
 121 
 
 15. If the earth were assumed to be a plane, and one degree of latitude or 
 longitude were 60 miles, what would be the distance and direction from a point 
 in 20° N. lat., 60° E. long., to one in 50° N. lat., 30° E. long. ; from a point in 
 30° S. lat., 15° E. long., to one in 45° N. lat., 40° W. long. ? 
 
 Note. This assumption is made by navigators as a basis for what is known as 
 Plane Sailing. In Great Circle Sailing the earth is considered a sphere. Let the 
 student devise a system of coordinates for the latter. 
 
 16. Find by measurement the six trigonometric functions of 36°, 155°, 
 285°, - 130°. 
 
 17. Find by measurement the following angles: arccot | and of 1st quad- 
 rant ; arcsin f and of 2d quadrant ; arccos ( — 0.3) and of 3d quadrant ; arcsec 
 0.6 and of 4th quadrant. 
 
 18. Find the lacking functions in the following table : 
 
 
 Angle 
 
 Sink 
 
 Cosine 
 
 Tangent 
 
 Cotangent 
 
 Secant 
 
 Cosecant 
 
 Quadrant 
 
 a 
 
 -tV 
 
 
 
 
 
 
 III 
 
 ft 
 
 
 f 
 
 
 
 
 
 IV 
 
 y 
 
 
 
 -i 
 
 
 
 
 ir 
 
 a 
 
 
 
 
 Y- 
 
 
 
 III 
 
 e 
 
 
 
 
 
 _ 2 
 
 
 TIT 
 
 <t> 
 
 
 
 
 
 
 3 
 
 T 
 
 19. Find the value of ^^^ " + ^"^ ^ ii a = arcsin - and of 2d 
 quadrant. 1 - tan « l-cot« 5 
 
 20. Find the value of tan /? + sec y8 - 1 if ^ ^ arccsc f - — ) and of 3d 
 quadrant. tan ^ - sec /? + 1 ^ V 6 J 
 
 21. Find the value of tan^g - sin^ct .^ ^ ^ arccot f - I] and of 4th quad- 
 rant. '^^'^ ^ 2; 
 
 22. Find the value of 1 + cosy -2 secy -^ arctan-^ and of 1st quad- 
 rant. 3 + cosy + 2 secy 40 
 
 23. Express ^^^^ " + ^^^^ ^ in terms of tan a. 
 
 sec2 a + csc2 a 
 
 24. Express 4-sin^-3csc^ j^ ^^^^^ ^^ ^^^^^ 
 
 sin /8 - 1 - 6 CSC /^ ^ 
 
 25. Express Q - cos «) (1 -f sec «) -^ ^^^^^ ^^ ^^^ ^ 
 
 (1 -sin a)(l -fcsca) 
 
 26. In the following identity transform the first member into the second, 
 
 (1 + tan y) (cosy- cot y) ^ _ ^^^ 
 (1 + cot y) (sin y — tan y) 
 
122 REVIEW EXERCISES 
 
 27. Show that (l-tana)(l + cot(x) ^ _ ^^ 
 
 (1 + tan a)(l - cotw) 
 
 28. Show that sin^ /g + cos^ /S siii« ^ - cos^ ^ ^ _ ^ ^ .^^, ^ ^^^, ^^ 
 
 Solve the following equations and find the angle in degrees : 
 
 29. 4sin2y- tan^ynzO. 
 
 30. 2 tan2 a - sec a = 4:. 
 
 31. 4 CSC ;8 + cot2 y8 = 5. 
 
 32. tan2y + 3cot2y = 4. 
 
 33. sin2 a + sin^ /3 = I, cos"^ a + cos^ (3 = 0. 
 
 34. 2 cos2 a + sin2 y8 = 2, sin a + cos^ y8 = 0. 
 
 35. For what range of values of a between and 2 tt is sin a + cos a posi- 
 tive ; negative ? 
 
 36. For what range of values of (3 between and 2 rr is tan jS — cot/3 posi- 
 tive; negative? 
 
 37. Show that tan y + cot y must always be numerically greater than unity. 
 
 38. Trace the variation of sin^ ^ as ^ varies from to 2 tt.. 
 
 39. Trace the variation of cos^ ^ as ^ varies from to 2 tt. 
 
 40. Trace the variation of 1 — sin ^ as ^ varies from to 2 tt. 
 
 41. Trace the variation of 1 — cos ^ as ^ varies from to 2 tt. 
 
 42. Find by inspection logg .625, log8i27, loggg .008. 
 
 43. What numbers correspond to the following logarithms to base 9 : — 3, 
 -2, -1.5, -1,0, .5, 1,2,3? 
 
 44. In the formula W=^^^p^v^ [( ~)"^ ~ "^T ^^^^^ ^ives the work 
 of an air compressor, find W when n = 1.3, p^ = 14.7, p2 = 72, vi = 6. 
 
 45. Work the following with the slide rule : 
 
 ,. .72x137x14 . .J. fl20y-^ . ., 42 sin 27° . 
 ^^^ 372x778 =' ^'M42J =^ ^'^-13^- = ^ 
 
 46. Solve for a: : 52^ = 6; 8»=-i = 7. 
 
 Query. Does the result depend on the base of the system of logarithms 
 used? 
 
 47. Solve for x: 32« - 4 • 3'' + 3 = 0. 
 
 48. Find the amount of $2000 in 5 years at 4% compound interest. 
 
 49. At what rate, compound interest, will $45,000 amount in 8 years to 
 $60,000? 
 
 50. In how many years will a city become three times its original size if 
 it increases | each year ? 
 
REVIEW EXERCISES 123 
 
 51. Derive the formulas of Art. 42 from those of Art. 40. [Suggestion. 
 Multiply respectively by a, b, and - c and add.] 
 
 52. Derive the formulas of Art. 40 from those of Art. 42. [Suggestion. 
 Solve for a cos /8 and b cos a and add.] 
 
 53. From the law of sines, Art. 41, show that ^^^-^ = sm^-smy ^ 
 
 b + c sin 13 + sin y 
 
 54. By applying the formulas of Art. 70 to the result obtained in example 
 53, derive the law of tangents of Art. 48. 
 
 55. From the formulas of Arts. 42 and 68 derive the results 
 
 sin ^^ = J5ZS5ZI) ; COS « = JiSZ3 ; tan ^ = JKEMlZs) . 
 
 2 ^ be ' 2 > 6c 2 > s(s-a) 
 
 56. Draw the graph of sin ^ + cos ^ and thus trace its variation. What 
 values of cause the given expression to assume maximum values ; minimum? 
 
 57. Draw the graph of tan + cot and thus trace its variation. What 
 values of make the given expression a maximum ; a minimum ? 
 
 58. Draw the graph of arcsin u and trace its variation. [Suggestion. 
 Lay off the values of u as abcissas, of arcsin u as ordinates.] 
 
 59. Draw the graph of arccos u and trace its variation. 
 
 60. Draw the graph of arctan u and trace its variation. 
 
 61. Draw the graph of arccot u and trace its variation. What discon- 
 tinuities are exhibited by the functions of examples 58-61 ? 
 
 62. Find from the table the values of cos 625° 12' ; of sin 238° 25'; of 
 tan 324° 6'; of cot 921° 32'. 
 
 63. Find without reference to the table the value of 
 
 cos 285° cos 345° + sin 195° sin 465°. 
 
 64. Find without reference to the table the value of 
 
 tan 205° cot 335° + tan 295° cot 115°. 
 
 65. Find all the values between and 2 tt of 
 
 arcsin ( — ) ; arccos ( ] : arctan - . 
 
 V 2/' V V2/ 3 
 
 66. Find all the values of a between and 2 tt if 
 
 sin 3 a Z3 A ; if tan 2 a= - \/3 ; if cos - = — ; if cot - = - 1. 
 
 V2 '2 V2 3 
 
 67. Find the value of sin (2 a + /3) if a = arcsin | and of 2d quadrant, 
 ft = arctan | and of 1st quadrant. 
 
 68. Find the value of tan (3 a + 2 /?) if a = arcsin | and of 2d quadrant, 
 P = arccos y\ and of 4th quadrant. 
 
 69. Derive the formula for sin (« + /8 + y) in terms of sine and cosine. 
 
 70. Derive the formula for cos (^ + (S -\- y) in terms of sine and cosine. 
 
124 REVIEW EXERCISES 
 
 71. Derive the formula for tan (« + ^8 + y) in terras of tangent. 
 Discuss the results of examples 69-71 in case a + ft + y = ir. 
 
 72. In the results of examples 69-71 put ft = y — a, and thus obtain the 
 formulas for sin 3 a, cos 3 a, and tan 3 a. 
 
 73. Find the value of cos (3 a — 2 /3) if « = arccos ( — jV) and of 3d quad- 
 rant and ^ = arctan | and of 1st quadrant. 
 
 74. Find the value of cot {^ a — ft) \i a — arcsin f and of 1st quadrant 
 and ft = arccos (- ^f) and of 2d quadrant. 
 
 75. Find the value of sec (a + /8) if a = arctan ^^ and ft = arcsin ^V? both 
 of 1st quadrant. 
 
 2 tan a 
 
 76. Show that sin 2 = 
 
 77. Show that cos 2 a -- 
 
 1 + tan'-^ a 
 1 - tan2 a 
 
 1 + tan2 a 
 
 78. Show that tan ( 45° — ^ ) =: esc a + cot a. 
 
 79. Show that cot (45° — - J =csc a — cot a. 
 
 Transform into products or quotients the following expres- 
 sions (80-84) : 
 
 80. cot a + tan a. 
 
 81. cot a — tan a. 
 
 82. 1 + tan a tan ft. 
 
 83. cot a — tan ft. 
 g^ cot a + cot ft 
 
 tan a + tan ft 
 
 If a + /3 + 7 = TT, show that (85-87) 
 
 85. sin a + sin /? + sin y = 4 cos - cos ^ cos ^. [Suggestion. Apply 
 
 A Ji Ji 
 
 Art. 70 to the first two terms and Art. 67 to the third term.] 
 
 86. cos a + cos ft + cos y = 1 + 4 sin ^ sin ^ sin ^ • 
 
 Jd Z 2i 
 
 87. tan a + tan ft + tan y = tan a tan y8 tan y. (See example 71.) 
 
 88. How does it appear from example 87 that either all three angles of a 
 triangle are acute or else two are acute and one obtuse? (Consider the signs.) 
 
 89. How does it appear from example 87 that if one angle of a triangle 
 is obtuse, it is numerically nearer 90° than either of the acute angles? 
 
 In the following equations find the angle : 
 
 90. tan 2 a tan « = 1. 
 
 91. sin (60° - ft) - sin (60° + yg) = f . 
 
SECONDARY TRIGONOMETRIC FUNCTIONS 125 
 
 92. cos 6 y — cos 2 y = 0. 
 
 93. r sin ^ = 8, r cos ^ = 15. 
 
 94. r sin 6 cos <f> = S, r sin 6 sin <^ = 4, r cos 6 = 12. 
 
 95. Show that sin ^ sin ^ sin ^ sin i^ = A. 
 
 5 5 5 5 16 
 
 96. Show that cos — cos |^ cos ^ cos i^ = -i; • 
 
 15 15 lo 15 lb 
 
 97. Show that 2 sin ^ = ± VI + sin a ± VI - sin a. 
 
 98. Show that 2 cos ^ = ± Vl + sin a =f VI - sin a. 
 
 99. The formula for the horizontal range of a projectile fired at an eleva- 
 
 tion a with a muzzle speed u, is — sin 2 a. Show that the maximum range 
 
 9 
 is attained for an elevation of 45*^. 
 
 100. A triangle is formed by two given sides of constant length b and c, 
 including a variable angle a. For what value of a is the third side a maxi- 
 mum ; the area a maximum? 
 
 SECONDARY TRIGONOMETRIC FUNCTIONS 
 
 In addition to the trigonometric functions defined in Art. 6, 
 32, and 54, there are certain other expressions which are also 
 functions of the angle. While of less importance than the six 
 primary functions, an investigation of their properties will be 
 valuable, not only for the results obtained, but as a review of the 
 fundamental principles of trigonometry. 
 
 We may define, then, 
 
 versed sine a = vers a = 1 — cos a, 
 coversed sine a = covers a = 1 — sin a, 
 exsecant a = exsec a = sec a — 1, 
 excosecant a = excsc a = esc a— 1, 
 
 101. By reference to 
 
 Fig. 
 
 53, 
 
 show that 
 
 vers a = 1 , 
 
 V 
 
 
 
 covers « = 1 — - 
 
 V 
 
 exsec a = - — 1 , 
 
 
 
 excsc a = ' — 1 . 
 
 V 
 
 102. By reference to Figs. 60-63, show that, in line representations, 
 vers a = MA, covers a = NB, 
 
 exsec a = PT, excsc a = PS. 
 
 103. Determine the signs and limitations in value of each of the four 
 secondary functions in the different quadrants. 
 
126 REVIEW EXERCISES 
 
 104. Show that if the quadrant of the angle and the value of any one of 
 its ten functions are given, the values of the other nine can be found. 
 
 105. Find the values of the four secondary functions, given : 
 
 a = arcsin ( — ^%"j-) and of '3d quadrant ; jS = arccos |§ and of 4th quadrant ; 
 
 y = arctan (— -^^j) and of 2d quadrant; 8 = arccot ff and of 1st quadrant. 
 
 106. Find all ten functions, given: 
 
 a = arcvers |° and of 4th quadrant; ^ = arccovers t| and of 2d quadrant; 
 
 y = arcexsec ^ and of 1st quadrant ; 8 — arcexcsc 2^^ and of 3d quadrant. 
 
 107. Trace the variation of each of the secondary functions as the angle 
 varies from to 2 tt. 
 
 108. Draw the graph of each of the secondary functions. What discon- 
 tinuities, if any, are present. 
 
 109. Find the secondarv functions oi k •-, for ^ = 1, 2, ••• 8. 
 
 4 
 
 110. Find the secondary functions of ^' .--, for ^ = 1, 2, ••• 12. 
 
 111. Verify the relations of Art. 61 for the secondary functions. 
 
 112. Determine the relations analogous to those of Art. C2 affecting the 
 secondary functions. [Suggestion. Use Art. 60.] 
 
 113. By means of the cosine series. Art. 77, Eq. (.5), show that lim Y^^— — 0. 
 
 PXSPO 
 
 114. From the preceding example, show that lim — '-^ — = 0. 
 
 115. Show that 
 
 vers a + covers a exsec a + excsc a 2 vers a covers a 
 
 vers cc — covers a exsec a — excsc a vers a — covers a 
 
 116. Show that exsec^ /? + 2 exsec fi = tan^ p. 
 
 117. Solve and find y in degrees : 2 vers y (2 — vers y) = 1. 
 
 118. Solve and find 8 in degrees : tan^ 8 + exsec 8 = 4. 
 
 119. Show that, if a is the angle at the center of a circle of radius r, the 
 ordinate at the middle of the chord is given by the formula m = r vers -. Find 
 m for r = 1433, a = 11° 32'. ^ 
 
 120. If T is the intersection angle of two tangents to a circle of radius r, 
 the shortest distance of their point of intersection from the arc is given by 
 
 the formula d = r exsec -. Find d for r = 5730, t = 5° 32'. 
 
 121. Reduce the first member to the second in the identity 
 
 (exsec a + vers a) (excsc a + covers a) = sin a cos a. 
 
 122. Show that vers 2 a = 2 sin^ a. 
 
 123. Show that exsec 2 «= _2_sm^-a__^ 
 
 1-2 sin2 a 
 
 124. Show that excsc 2 a cos 2 a = tan a. 
 
REVIEW EXERCISES 
 
 127 
 
 125. At points in a straight line ordinates are erected siich that for each 
 point (x, y), x = vers (arcsin y). Show that the graph thus determined is a 
 circle tangent to the F-axis at the origin. 
 
 126. At each point in a circular arc the radius is extended an amount equal 
 to the exsecant (in line values) of the arc measured from a fixed point in it. 
 What is the graph thus determined? 
 
 127. Two equal circles have their centers in the same horizontal line. Show 
 that the horizontal distance between two points in the neighboring arcs is equal 
 to twice the versed sine (in line values) of the arc, measured from the point of 
 tangency. 
 
 128. Two tangents to a circle intersect at an angle t. Show that the dis- 
 tance of the point of intersection from the midpoint of the chord of contact 
 equals exsec t + vers t (in line values). 
 
 129. Show how the versed sine is of practical use in staking out a circular 
 railroad track passing through three given points. 
 
 130. Show how the exsecant is of practical use in staking out a circular 
 railroad spur of given radius branching tangentially from a straight track. 
 
 Compute the missing parts of the following triangles, distinguishing right 
 from oblique : 
 
 
 "A 
 
 '3 
 
 
 a 
 
 b 
 
 c 
 
 131. 
 
 37° 42.8' 
 
 
 90° 
 
 6244.8 
 
 
 
 132. 
 
 72° 25.6' 
 
 
 90° 
 
 
 
 64.863 
 
 133. 
 
 
 
 90° 
 
 375.84 
 
 296.57 
 
 
 - 134. 
 
 
 54° 36.9' 
 
 
 24.465 
 
 42.850 
 
 
 ^135. 
 
 
 136° 36.8' 
 
 
 36902 
 
 
 37490 
 
 136. 
 
 68° 51.5' 
 
 
 90° 
 
 
 7532.8 
 
 
 137. 
 
 
 
 90° 
 
 396.45 
 
 
 531.53 
 
 138. 
 
 
 
 90° 
 
 .005428 
 
 .006395 
 
 
 139. 
 
 148° 24' 
 
 
 
 7.4536 
 
 5.3648 
 
 
 140. 
 
 
 
 
 .038456 
 
 .028638 
 
 .051524 
 
 141. 
 
 125° 34.6' 
 
 35° 25.3' 
 
 
 
 
 2584.6 
 
 142. 
 
 
 
 24° 36.8' 
 
 2.4657 
 
 3.6542 
 
 
 143. 
 
 
 80° 04.5' 
 
 90° 
 
 
 
 30.007 
 
 144. 
 
 
 
 94° 46.8' 
 
 
 34.086 
 
 52.475 
 
 145. 
 
 
 
 
 .93274 
 
 .40586 
 
 .63208 
 
 146. 
 
 
 76° 46.3' 
 
 85° 38.7' 
 
 
 
 8.4637 
 
 147. 
 
 
 
 90° 
 
 
 29846 
 
 53857 
 
 148. 
 
 29° 57.4' 
 
 43° 52.6' 
 
 
 64.475 
 
 
 
 149. 
 
 17° 46.8' 
 
 
 
 
 .39475 
 
 .29478 
 
 — 150. 
 
 
 
 
 36875 
 
 28467 
 
 48542 
 
128 REVIEW EXERCISES 
 
 151. In a given triangle a = 280, c = 420, y = 38° ; find the radius of the 
 circumscribed circle. 
 
 152. In a given circle a = 63, & = 81, y = 54°; find the lengths of the bisec- 
 tors of the interior angles. 
 
 153. The sides of a given triangle are 220, 350, 440 ; find the lengths of the 
 three medians. 
 
 154. In a given triangle b = 340, a = 48°, y = 63°; find the lengths of the 
 radii of the inscribed and of the three escribed circles. 
 
 155. A boat drifts in a stream whose current runs 4 miles an hour due east 
 under a breeze of 10 miles an hour from the southwest. Determine the motion 
 during 35 minutes, if the resistance reduces the effect of the wind 30 %. 
 
 156. Three forces of 1800, 2200, and 2700 dynes are in equilibrium ; find 
 the angles they make with one another. 
 
 157. A helical spring is fastened to the door 16 inches from the axis of the 
 hinges, and to the jamb 4 inches from the same line in the same horizontal 
 plane. Find the length of the spring when the door is closed, open at 30°, 45°, 
 70°, 90°, 120°. Neglect the thickness of the door. 
 
 158. A cable 30 feet long is suspended from the tops of two vertical poles 
 20 feet apart and 15 and 18 feet high, and bears a load of 200 pounds hanging 
 from it by a trolley. Find the position of the trolley when at rest, and the 
 lengths, inclinations to the horizon, and (common) tensions of the segments of 
 the cable. Neglect the weight of the cable. 
 
 159. Let the data be as in the preceding example, save that the load hangs 
 from a ring knotted at the center of the cable ; find the inclinations to the hori- 
 zon and the (unequal) tensions of the segments. Solve when the ring is 
 knotted at a point 12 feet from the lower end of the cable. 
 
 160. The eye is 40 inches in front of a mirror and an object appears 
 to be 35 inches back of it, while the line of sight makes an angle of 48° with 
 the mirror. Find the distance and direction of the object from the eye. 
 (Note. The angles of incidence and reflection are equal.) 
 
 161. The line from the eye to the object recedes from the mirror at an 
 angle of 32°, while the object is 36 inches from the eye and 12 inches from the 
 mirror. Find the angles of incidence and reflection, and the point of reflection. 
 
 162. Two railway tracks intersect at an angle of 75°, and are connected by 
 a circular " Y " of 800 feet radius lying in the obtuse angle and tangent to the 
 two tracks. Find the distances of the points of tangency from the crossing and 
 the length of the " Y ". 
 
 163. Two railway tracks, intersecting at an angle of 62°, are joined by a 
 circular " Y " in the acute angle and tangent to the two tracks at points 900 
 feet from the crossing. Find the radius of the " Y " and its length. 
 
REVIEW EXERCISES 
 
 129 
 
 Fig. 72. 
 
 164. In setting a door frame 6 feet wide and 8 feet high, the vertical side is 
 found to be 2 inches (horizontally) out of plumb. Find the angles of the paral- 
 lelogram and the lengths of the diagonals. Is the diagonal of the true rectan- 
 gle the average (arithmetic mean) of these two ? 
 
 165. The staking out of a certain building requires the setting of stakes at 
 the vertices of a rectangle 32 x 48 feet. A test of the trial setting shows the 
 figure to be a parallelogram whose sides are as given above, but whose diagonals 
 dilfer by 9 inches. Find the angle through which the longer sides must be 
 swung to correct distortion, and the 
 chord of the arc through which the 
 back corners must be moved. 
 
 166. A triangular roof truss is 80 
 feet long and divided into 8 equal seg- 
 ments, by vertical members, as shown 
 in Fig. 72. The height being 25 feet, what are the lengths and inclinations 
 to the horizon of the various members? 
 
 167. The triangular roof truss shown in Fig. 73 is 60 feet long and 20 
 feet high. The bottom chord and rafters are divided into equal segments. 
 Find the lengths and inclinations of the members. 
 
 168. In order to determine the 
 exact location of the point G (Fig. 
 74), a base line AB \s laid oif due 
 north and south, measuring precisely 
 130 rods. Convenient intermediate 
 stations are chosen, and angles meas- 
 ured as follows: ^^0=^36° 35', 
 BA C = 61° 10', BAD = 43° 54', CAD = 17° 16', DCE = 66° 36', CDE = 47° 41', 
 EDF=55°4:H',DEF = 
 73° 12', FEG = 5S°32\ B 
 EFG = 10° 28'. Com- 
 pute the distances com- 
 posing the sides of the 
 triangles in the figure. 
 
 169. By projecting 
 the distances AC^ CE, 
 EG (Fig. 74), perpen- 
 dicular and parallel to 
 A B, compute the east- 
 erly and southerly dis- 
 tances of G from A; 
 
 find thence the direct Fig. 74. 
 
 distance and direction of G from A. 
 
 Fig. 73. 
 
FORMULAS 
 
 GENERAL TRIGONOMETRY 
 
 1 
 
 CSC a — 
 
 sec « = 
 
 cot a — 
 
 tan a = 
 
 cot a = 
 
 sill a 
 
 sin^a + cos^ a = 1. 
 
 tan^ a + I = sec^ a. 
 cot^H- 1 = csc2 a. 
 2 TT^ = 360°. 
 F(2k7r + a) = F(a), k an integer. 
 
 sm a 
 
 1 
 
 cos a 
 
 1 
 
 tan a 
 
 sin « 
 
 cos a 
 
 cos a 
 
 Ffk 
 
 ± a] = ±F (a), k an even integer. 
 
 Fik'-± a]= ± co-F (a), ^ an odd integer, 
 
 sin (a ± /3) = sin a cos yQ ± cos a sin yS. 
 . cos (a ± y6) = cos a cos /3 =F sin a sin /3. 
 
 tan(«±^)= tan«±tanff ^ 
 1 =F tan at'dn 8 
 
 cot(«±ff)=«"t«C"t/3Tl. 
 cot y8 ± cot a 
 
 130 
 
GENERAL TRIGONOMETRY 131 
 
 sin 2 a = 2 sin a cos a. 
 cos 2 a = cos^ a — sin^ a = 2 cos^ a — 1 = 1 — 2 sin^ «, 
 
 2 tan a 
 
 tan 2 a = 
 cot 2 « = 
 
 1 — tan^ a 
 cot^ ce — 1 
 
 2 cot a 
 sin \a= V| (1 — cos a). 
 
 cos I a = V| {\ 4- cos a). 
 
 .1 /l — cos a 1 — cos a 
 
 tan - a = \— = — : 
 
 2 ^ 1 H- cos a sm a 
 
 ,1 /I + cos « 1 + cos a 
 
 cot - a=V— ^- =— ^^ 
 
 2 ^ 1 — cos a sm a 
 
 sin a cos yS = | [sin (ct + y8) + sin (a — /8)]. 
 
 cos « sin /3 = J [sin (a -f- ^) — sin (a ^ /S)] . 
 
 cos a cos yS = I [cos (« + /S) + cos (a — 6)] . 
 
 sin a sin /3 = — -| [cos (ot + yS) — cos (a — ^)]. 
 
 sin a cos « = |^ sin 2 a. 
 
 cos^ a = 1 (1 + cos 2 a). 
 
 sin^ a = 1 (1 — cos 2 cj). 
 
 sin a -\- sin p = 2 sin — — ^ cos — --^ • 
 sin a — sm /3 = 2 cos — ^— ^ sm — --^» 
 cos a + COS p = 2 cos — —-^ cos — — ^ • 
 
 /o o- a-\- S . a— ^ 
 
 cos a — cos p = — 2 sin — ^ sm — —^ 
 
 RIGHT TRIANGLES 
 
 6^2 _|. ^2 ^ ^, 
 
 a + ^ = 90°. 
 
 a . ^ 
 
 - = sin a = cos p. 
 
132 
 
 FORMULAS 
 
 = cos a = sin y8. 
 
 a . 
 
 - = tan a 
 
 
 
 COtyS. 
 
 A= ^ ab = ^bcsin a= I c^ sin a cos a = ^ c^ gj^ 2 a. 
 
 OBLIQUE TRIANGLES 
 
 « + ye + 7=180°. 
 
 (? = 5 cos a-\- a cos yS, etc. 
 
 a _ h _ <? 
 sin ct sin yS sin 7 
 
 c^ = ^2 _j_ j2 _ 2 a5 cos 7, etc. 
 
 tan ^ ^ ^ = cot -, etc. 
 
 2 -\- c 2 
 
 tan 
 
 , etc. 
 
 2 s-a 
 
 r = ■% /('^ — ^)(g— ^)(g— g) 
 
 .A=j^ 5(? sin a = rs = Vs (s — a) (s — 6) (s — (?). 
 
 RIGHT SPHERICAL TRIANGLES 
 
 sin a = sin <? sin a. 
 sin 6 = sin c sin /3. 
 tan 6 = tan c cos a. 
 tan a = tan <? cos 0, 
 tan a = sin h tan a. 
 tan b — sin a tan yS. 
 cos c = cos a cos 5.' 
 cos /3 = cos b sin a. 
 cos a = cos a sin /?. 
 cos (? = cot a cot /3. 
 
GENERAL TRIGONOMETRY 
 
 133 
 
 OBLIQUE SPHERICAL TRIANGLES 
 
 sin a sin h sin c 
 
 sin a sin /3 sin 7 
 
 cos (? = cos a cos J + sin a sin 5 cos 7, etc. 
 
 cos 7 = — cos a cos y8 + sin a sin y8 cos c, etc. 
 
 tan - = 
 
 tan r 
 
 2 sin (s — a) 
 
 , etc. 
 
 tan r 
 
 _ / sin (g — a) sin {s — h) sin (s — g) 
 ^ sin s 
 
 tan - = 
 
 a _ cos (^S — a ) 
 
 , etc. 
 
 2 cot Z^ 
 
 ^=l(« + ^ + 7). 
 
 cot i2 = J - c<>^ (>S^- «) cos (S-fi) cos (a^- 7) 
 ^ cos aS' 
 
 tan 1 (/3 + 7) = ^^^i^l^cot 1 a, etc. 
 cos -^- (0 + c) 
 
 tan 1 (5 - ^) = ^"' 2 (f — ll tan 1 «, etc. 
 2^ sin 1(^4- 7) 
 
 tan 1 (5 + c?) = ^"^t ^^~^^ tan J a, etc. 
 - V cos 1 (^ - 7) 
 
 ANALYTIC TRIGONOMETRY 
 
 lim 
 
 0=0 
 
 lim 
 0=0 
 
 ' e 1 
 
 _sin ^J 
 
 • e - 
 
 tan ^ 
 
 = 1. 
 
 = 1. 
 
 (cos a-\-{ sin a) (cos ^+ i sin /3) = cos (a + /3) + i sin (a + /3). 
 (cos « + i sin a)*^ = cos na 4- ^ sin na. 
 cos a + ^ sin a = e**". 
 cos « — I sin a = e~**. 
 
 COS a = • . 
 
134 ANALYTIC TRIGONOMETRY. CONSTANTS 
 
 sm a = — — 
 
 2^ 
 
 cosh a + sinh a = g*. 
 
 cosh a — sinh a = e~"-. 
 
 cosh « = 
 sinh a = 
 
 2> 
 
 iog(i+.)=f-|Vf-|V-. 
 
 C0S«=l-- + jj-^+-. 
 
 tan « = - + — + — ^ + 
 
 1 8 15 315 
 
 cosh.= l + - + -+^4 
 
 CONSTANTS 
 
 7r = 3.14159265 •••. 
 
 7r^ = 180°. 
 
 l^ = 5T.295779e5° ••• =57° 17'44.8'^... 
 
 g = 2.7182818285 ••.. 
 
 Mode 10 = — ^ = .4342944819 .... 
 
CONSTANTS 135 
 
 1 inch = 2.54001 ••• centimeters. 
 1 foot = .3048 .-. meters. 
 1 mile= 1.60935 ••• kilometers. 
 1 centimeter = .3937 ••• inches. 
 1 meter = 3.28083 feet = 1.09361 yards. 
 1 kilometer = .62137 miles. 
 
 g= 32.086528 + .171293 sin^t^ feet per second per second. 
 = 9.779886 + .05221 sin^ (^ meters per second per second at 
 sea level for latitude ^. 
 
ANSWERS TO EXERCISES 
 
 (Answers are omitted in case their knowledge would detract from the value of the 
 
 exercise.) 
 
 Exercise II 
 
 6. (0, 0), (a, 0), (a, a), (0, a); (^ V2, o), ("' | Vs), (-|V2,o), 
 (0,-|V2). 
 
 7. (5, 0), (0, - 5), (-4.33, -2.5), (-3.54, 3.54). 
 9. 5.6569; 7.6158. 
 
 11. Cross country distances, in miles : 5.099; 2.828; 2.236; 2.236; 6.325. 
 
 12. Distances saved, in yards : 773.2 ; 644.4 ; 1288.7 ; 128.9. 
 
 
 
 
 
 
 Exercise IV 
 
 
 
 
 9. 
 
 1681 
 
 
 11. 
 
 If. 
 
 13. cos 
 
 a. 
 
 
 15. Jl-siny 
 ^l + sin y 
 
 
 1519 
 
 
 12. 
 
 If. 
 
 14. 2csc^. 
 
 
 10. 
 
 f. 
 
 
 
 
 Exercise V 
 
 
 
 16. 2(l+tan2y). 
 
 9. 
 
 h 
 
 
 
 13. 
 
 60°. 
 
 17. 
 
 (a) 
 
 60°; (b) 19.05 ft. 
 
 10. 
 
 W3. 
 
 
 
 14. 
 
 0° and 60°. 
 
 18. 
 
 8.08 
 
 ; 16.17. 
 
 11. 
 
 i- 
 
 
 
 15. 
 
 60° and 90°. 
 
 19. 
 
 452.39. 
 
 12. 
 
 K3V3- 
 
 -2). 
 
 
 16. 
 
 45°. 
 
 20. 
 
 60°. 
 
 
 Exercise VI 
 11. 0° and .60°. 12. 30°. 13. 0°, 30°, and 45°. 14. 0°, 30°, and 45°. 
 
 Exercise VII 
 
 1. (a) 6.7,6.7; (b) 8.23,4.75. 4. 15.6; 9. 
 
 2. (a) 8; (6) 13.86. 5. (a) 2598.16; (b) 1500. 
 
 3. (a) 20, 34.64 ; (6) 28.28, 28.28. 6. 24 miles per hour, 30° east of north. 
 
 ' Article 18 
 
 1. a = 40.32, & = 11.76. 3. 6 = 151.5, c = 381.6. 
 
 2. a = 20.25, c = 33.75. 4. a = 133.2, b = 149.2. 
 
 137 
 
138 ANSWERS TO EXERCISES 
 
 Exercise VIII 
 
 (These results were ol)tained with four-place tables.) 
 
 1. ^ = 64° 50', a = 14.46, h = 30.77. 
 
 2. p = 37° 40', a = 57.79, b = 44.61. 
 
 3. a = 28° 45', a = 116.88, b = 213.04. 
 
 4. a = 11° 25', a = 103.11, 6 = 510.68. 
 
 5. (3 = 68° 35', b = 599.13, c = 643.66. • 
 
 6. /3 = 17° 15', b = 223.56, c = 753.93. 
 
 7. a = 9° 30', b = 7170.96, c = 7272.73. 
 
 8. a = 72° 30', a = 4757.40, c = 4988.36. 
 
 9. a = 41° 49', /3 = 48° 11', 6 = 268.33. 
 
 10. a = 32° 12', (3= 57° 48', 6 = 605.03. 
 
 11. a = 34° 13', 13 = 55° 47', a = 354.25. 
 
 12. a = 53° 8', ^ = 36° 52', a = 1120. 
 
 13. a = 36° 52', ^ = 53° 8', c = 1080. 
 
 14. « = 44°46', )8 = 45°14', c = 845.07. ' 
 
 15. a = 29° 11', ^ = 60° 49', c = 440.94. 
 
 16. a = 59° 41', 13 = 30° 19', c = 2445.55. 
 
 17. a = 29° 29', (3 = 60° 31', b = 168.00, c = 193.00. 
 
 18. a = 41° 04', f3 = 48° 56', a = 230.00, c = 350.13. 
 
 19. (3 = 15° 40', a = 93.47, b = 26.21, c = 97.08-. 
 
 20. a = 65° 10', a = 60.35, 6 = 27.93, c = 66.50. 
 
 21. 200.1 ft. 23. 2° 23'. 25. 1° 9'. 
 
 22. 1501.73 ft. 24. 4° 46'. 26. 33° 41', 26° 34', 45°. 
 
 27. .134 pitch, .2887 pitch, | pitch. 
 
 28. 19° 28' inclination. 31. 26° 31'. 34. 21.73 ft. = 21 ft. 8| in. 
 
 29. 8° 3' inclination. 32. 5859.71 ft. 35. 260.4 ft. 
 
 30. 0° 9', 0° 17', 1° 26'. 33. 32° 28'. 36. 0° 20'. 
 
 37. 5° 54' ( = .1029 radians). Note that .1029 = sin 5° 52.5', an approxima- 
 tion. See Arts. 72 and 77 (3). 
 
 38. 2.468 miles. 39. 502.2 ft. 
 
 40. ^=(0,0), 5 = (240.9,0), C= (385.9, 274.8), 
 D = (98.7, 814.6), E = (162.8, 1043.0), F= (649.1, 1248.8). 
 
 41. 13 = 110°, b = 68.81, A = 828.81; ^ = 36°, a = 202.27, A = 12,641.88; 
 a = 75° 06', p = 29° 48', A = 30,441.6 ; a = 63°, b = 326.88, A = 52,425.01 ; 
 a = 64° 17', a = 553.12, A = 119,594.88; a = 41° 1', ^ = 97° 58', A = 202,809.6. 
 
 42. 51.76, 61.80, 68.40, 76.54, 1, 121.76, 141.42, 173.20. 
 
 43. 
 45. 
 
 5 = 2scos?. 
 4 
 
 44. 
 
 s = 2Rsin'''' = 2rt.u'''' 
 n n 
 
 n 
 
 2'7rR 
 
 cos 180°. 
 n 
 
 e = 62.83, P4= 56.57, 0^= 44.43; 
 
 
 
 P8 = 61.23, C8 = 58.05; 
 
 
 
 P,e = 62.43, c,«= 61.62; 
 
 
 
 P32 = 62.72, C32 = 62.53. 
 
 
 
Ap 
 
 ^nW^&ui 
 
 180° 180° 1 po . 360° 
 cos = - nR^ sm 
 
 
 
 n n 2 
 
 n 
 
 Ai 
 
 = tt/^^ cos 
 
 n 2 \ 
 
 360°\ 
 
 , ^P4 
 
 = 200.00, 
 
 .4,4 = 157.08; 
 
 
 Ap^ 
 
 = 282.84, 
 
 ^,-8 = 268.15; 
 
 
 ^P16 
 
 = 306.16, 
 
 A^Q = 302.21 ; 
 
 
 ^P32 
 
 = 312.16, 
 
 ^,32 = 311.14. 
 
 
 ^6- 
 
 60.00, c,. 
 
 = 54.41 ; 
 
 
 ^2 = 
 
 62.11, c,. 
 
 = 60.69 ; 
 
 
 ^^24 = 
 
 62.64, c.„ 
 
 = 62.29 ; 
 
 
 ^48 = 
 
 62.78, c,« 
 
 = 62.69. 
 
 
 1, ^^6 = 259.80, 
 
 J,g= 235.62; 
 
 
 Aj,^^ = 300.00, 
 
 .4 ,-,2 = 293.11; 
 
 
 ^,24 = 310.56, 
 
 ^/ = 308.80; 
 
 
 A,^ = 313.20, 
 
 ^,-^8 = 312.81. 
 
 
 ANSWERS TO EXERCISES 139 
 
 46. Ac=7rR% 
 
 ^,. = 314.16, 
 
 47. C = 62.83, 
 
 48. ^. = 314.16 
 
 49. Z = -30, F=- 17.321, 22 = 34.641, 30° south of west. 
 
 50. A' = 6 r, F = 0, R = 6 r, due east. 
 
 51. Distance from center = r cos 0. 52. x= — 15. 
 
 53. Component along plane = g sin a, component perpendicular to plane 
 = g cos a. 
 
 54. 16, 27.71; 8.28, 30.91; 5.56, 31.51; 2.79, 31.88. 
 
 55. 50 pounds pressure, 141.42 pounds along ladder. 
 
 56. Z = 57.28, y= 30.73. 57. i2 = 18.44, ^ = 49° 24'. 58. c= 11.99. 
 
 Exercise IX 
 
 1. 4,1.5, -2.5. 4. 1,8, 16, i,^V 
 
 2. 4, if. 5. (a) .4724; (b) .01614. 
 
 3. 1, 4, 16, 32, 64, tV, ^?- 6. (a) 28.16; (b) .01913; (c) 2.465. 
 
 7. 17.978. 9. 524.9. 11. a: = 1.79. 13. $4136.09. 15. 11.6 years. 
 
 8. .76252. 10. a; = 2.29. 12. $4656.20. 14. 5.2%. 16. 3.8 years. 
 
 Exercise X 
 
 1. 4.86024, 2.79187, 9.84198, 5.80872 - 10, 21.47712. 
 
 2. 4.96088, 1.15518, 11.50651, 5.89510 - 10, 24.30103. 
 
 3. 516.35, 4.0966 x 10^2, .016335. 
 
 4. 16361, 5.64325 x 10", .00013671. 
 
 5. 9,067,800,000. 7. 88.594 cm. 9. 13,231 x lO^o. 
 
 6. 7.0048 X 1010 cm. 8. 71.68 cm. 10. 2,754,100. 
 
 11. 9.63459 - 10, 9.52928 - 10, 0.01824. 13. 78° 01.1', 81° 43.7', 76° 17.1'. 
 
 12. 9.97454 - 10, 9.78340 - 10, 0.04197. 14. 25° 20.7', 27° 32.6', 35° 3.6'. 
 15. 13.861. 16. .91186. 17. 3.9968. 18. .38875. 
 
 19. 1.3365 inches. 22. .074765. 
 
 20. .1111 foot (=1.3332 inches). 23. 6:711; 8.381. 
 
 21. 1.7% less than the true value. 24. - 11.85; - 61.38. 
 
140 
 
 ANSWERS TO EXERCISES 
 
 Exercise XII 
 
 1. ^ = 27^ a = 2302.3, h = 1173.1. 
 
 2. cc = 60" 37.6', /3 = 29'^ 22.4', h = 4238.9. 
 
 3. ^ = 14° 44.8', b = 254.07, c = 998.12. 
 
 4. a = 15° 39.6', ^ = 74° 20.4', b = 168.36, c = 174.85. 
 
 5. a = 50° 13.1', (3 = 39° 46.9', c = 9.5378. 
 
 6. ^ z:. 71° 34.5', a = 10.417, ^> = 31.271. 
 
 7. a = 83° 38.4', y8 = 6° 21.6', 6 = 14.82, c = 133.79. 
 
 8. a = 75° 33', ^ = 14° 27', c = 54.953. 
 
 9. a = 64° 48.5', /S = 25° 11.5', 6 = 31,037. 
 
 10. ;8 rr 60° 9.8', a = 5.854, c = 11.766. 
 
 11. /? = 64° 42.6', a = 19.023, b = 40.264, c = 44.531. 
 
 12. a = 28° 23.6', (3 = 61° 36.4', c = .00042. 
 
 13. a = 26° 47.3', a = 3.2196, & = 6.3769. 
 
 14. a = 38° 23.3', ft = 51° 36.7', a = .056677. 
 
 15. a = 54° 43.6', b = .44535, c = .77120. 
 
 16. a = 54° 43.2', a =: 242.79, b = 343.16, c = 420.37. 
 
 17. a = 55° 59.3', 13 = 34° 0.7', c = .0074192. 
 
 18. a := 9° 47.5', a = .89928, c = 5.2878. 
 
 19. a = 63° 20.7', /3 = 26° 39.3', a = .014523. 
 
 20. a = 64° 41.8', a = 1563.4, 6 = 739.12. 
 
 21. 
 22. 
 
 8.2583 feet. 
 
 18 feet 3.8 inches. 
 
 23. 141.42 square feet. 
 
 24. 60° 1.8'. 
 
 25. 1237.8 feet. 
 
 26. 16| miles, 36° 52.2' north of west. 
 
 29. nR^ sin'-^cos'^- 
 
 n n 
 
 30. 2177.4. 
 
 31. 
 32. 
 33. 
 34. 
 35. 
 36. 
 
 37. 
 
 38. 
 
 178.8 miles. 
 0° 32'. 
 
 .078523 feet. 
 14834 feet. 
 425.64 feet. 
 142.4 feet. 
 
 118.1 feet. 
 
 554.06; 145.17. 
 
 Article 47 
 
 1. a = 33° 19.9', a = 438.23, c = 788.58. 
 
 2. a = 65° 49.8', a = 122.13, b = 885.60. 
 
 3. (3 = 15° 57.0', b = 5.442, c = 17.865. 
 — 4. ^ = 1° 02.0', a = 9.368, b = .18134. 
 
 Article 48 
 
 3. a = 57° .59.9', y = 23° 36.6', c = 29.526. 
 
 4. ^ = 13° 55.6', y = 35° 30.7', b = 135.96. 
 ^ (a = 104° 31.3', 13 = 40° 2.9', a = 5889.9 ; 
 
 ^ - 4° 37.1', ^' = 139° 57.1', a' = 489.8. 
 94° 17.9', y = 47° 13.3', a = 207,810; 
 
 6. ^ 
 
 (a 
 
 [ a' = 47° 4.6', y' = 132° 46.7', a' = 152,600. 
 
ANSWERS TO EXERCISES 141 
 
 Article 49 
 
 1. ^ = 23° 42.8', y =3o° 45.2', a = 450.35. 
 
 2. a = 23° 31.8', y = 19° 7.2', h = 818.54. 
 
 3. a = 33° 17.5', y = 63° 13.1', b = .11496. 
 
 4. ^ = 66° 27.0', y = 45° 11.2', a = .005202. 
 
 Article 50 
 
 66= 
 
 '49.4', 
 
 y = 
 
 z6r 
 
 *13.4'; 
 
 A = 
 
 1.9181 X 
 
 101 
 
 42° 
 
 '51.8', 
 
 y = 
 
 = 54= 
 
 •51.8'; 
 
 A = 
 
 4.4175 X 
 
 10^. 
 
 34° 
 
 45.4', 
 
 7 = 
 
 = 88^ 
 
 '45.8'. 
 
 
 
 
 72= 
 
 ' 33.2', 
 
 ^y-- 
 
 = QV 
 
 ^33.4'. 
 
 
 
 
 r? 
 
 
 
 7. 
 
 Impossible. 
 
 Why? 
 
 
 
 
 
 8. 
 
 y = 8< 
 
 ' 58.3' 
 
 '. 
 
 
 1. a = 51° 57.2', y8 
 
 2. a = 82° 16.4', /3 
 
 3. a = 56° 28.8', ^ 
 
 4. « = 45° 53.4', 13 
 
 5. Impossible. Why? 
 
 6. IS= 136° 39.8'. 
 
 Exercise XIV 
 
 1. /8 = 74° 0.3', y = 43° 24.7', a = 76,568. 
 
 2. a = 52° 56.6', y8 = 79^^ 47.8', y = 47° 15.6'. 
 
 3. y = 86° 10.3', b = 8.4172, c = 9.0436. 
 
 4. a = 43° 29.3', y = 80° 35.3', 6 = .30470. 
 
 5. Impossible. Why? 
 
 6. a = 52° 11.2', y = 27° 38.8', a = 49,921. 
 
 7. a = 34° 32.1', ^ = 51° 41.8', y = 93° 46.1'. 
 
 8. y = 69° 28.5', a = 67,439, c = 72.037. 
 
 9. a = 23° 34.1', jS = 35° 35.7', c = 6.0804. 
 
 10. a = 15° 35.2', y = 126° 7.6', c = 66.113. 
 
 11. (3 = 13° 11.7', y = 16° 24.1', a = .082764. 
 I ^ = 32° 8.5', y = 89° 45', b = 34.993 ; 
 
 ■ i /?' = 31° 38.5', y' = 90° 15', b' = 36.210. 
 
 13. a = 34° 11. .5', a = 382.48, c = 641.52. 
 
 14. a = 28° 57.0', /? =: 104° 28.6', y = 46° 34.4'. 
 
 15. a = 21° 13.9', y = 32° 19.7', b = .0048578. 
 
 16. a = 162° 18.9', y = 7° 08.3', a = 61.896. 
 
 17. a = 33° 33.1', /? = 50° 42.0', y = 95° 44.9'. 
 
 18. a = 75° 0.2', a = 8355.2, b = 6470.6. 
 
 19. a = 45° 29.5', /S = 14° 15.5', 6 = 2146.7. 
 
 20. a = 49° 36.8', ^ = 40° 23.2', c = 952.67. 
 
 21. a = 151° 56.6', /8 = 4° 30.4', y = 23° 38.0', b = 416.45. 
 
 22. a = 80° 0.0', ^ = 54° 45.2', y = 45° 14.8', a = 124.81. 
 
 23. /? =: 90° 50', y = 16° 0', a = 720.81, c = 207.58. 
 
 24. a = 95° 26.6', y = 27° 8.4', a = 125.81, b = 106.49. 
 
 25. 2.1815 X 109; 5.0105; 1,742,040,000. 
 
 26. 2.567 X 109; .038051; 7270.3. 
 
 27. Case III. 
 
142 
 
 ANSWERS TO EXERCISES 
 
 28. 
 
 29. 
 30. 
 
 a = 15° 45', yS 
 
 a = 2r 52.6 , fi 
 
 a = 91° 54.7', 13 
 
 a = 47° 59.5', (3 
 r A = 156° 55.6', B = 145° 57.2', C = 57° 7.2' ; 
 t ^ = 145° 13.6', B = 121° 11.4', C = 93° 35.0'. 
 
 29° 15', 
 
 c = 52.1 ; 
 
 42° 7.4', 
 
 c = 723.6; 
 
 53° 5.3', 
 
 c = 43.042 ; 
 
 72° 0.5', 
 
 c = 291.38. 
 
 (A 
 
 31. ^ 
 
 
 63° 25.9', B = 141° 34.1', c = 328.4 ; 
 122° 25.4', C = 137° 34.6', c = 575.41. 
 
 75°, & = 878.48, cz= 621.17; 
 L A = 113° 58.6', B = 106° 2.2', C = 139° 59.2'. 
 
 32. a = h = 48.5. 
 
 33. ^ = 151° 2.7', B = 133° 25.9', C = 75° 31.4'. 
 
 34. d^ = 0.2 + ^2 + c2 _ 2 a& cos ah -2 be cos kr + 2 ac cos (a6 + k-) ; d = 12.98 
 
 35. be = 84° 03.5', cS = 75° 53.0', (/a = 82° 03.5', ab - cd = 109.28, 
 6c - da = 114.47. 
 
 36. c = 1001.1, (/ = 568.6. 37. « rz 36°, s = 15.217. 
 „„ 6 - 
 
 38. V = 
 
 6 
 
 30 (6 - h) \/l2 A - A- : F^ = 135.0, V^ = 371. 
 
 F3 = 663.3, F4 = 990.0, F5 = 1338.0, F^ = 1696.4, F^ = 2054.8, Fg = 2402.8, 
 F9 = 2729.5, Fio = 3021.1, F„ = 3257.8, V^^ = 3392.8. 
 39. 6 = 483.4. 40. a = 3221.5. 41. b = 1286. 
 
 42. Distance = 31.63, total height = 20.97. 
 
 43. Distance = 24.24, height = 5.08. 
 
 44. AD = 738.2, DB = 150.6. 
 
 45. AC = 1075.1, BC = 679.5. 
 
 46. ^D = 1460, DC = 678, angle BXC at left = 17° 27.5'. 
 
 47. Distance = 135.74, height = 36.602. 
 
 48. D = 57° 40', CD = 196.73, BD = 233.55. 
 
 49. AD = 603.94, ^C = 693.12, BC = 838.82, 5^ = 595.76, AB = 867.48, 
 angle CXB at left = 4° 27.7'. 
 
 50. AC = 730.17, ^Z> = 737.37, BE = 805.40, BF = 715.52, ^5 = 841.67. 
 
 51. 39° 54'. 
 
 Exercise XV 
 
 1. 45°, 60°, 150°, 112° 30', 171° 53' 14.4", 42° 58' 18.6". 
 
 2. 
 
 77-^ TT^ TT^ 27r^ ilT^ 5^^ StT^ 
 
 6'12'4'3'.3'3'2* 
 
 3. 31.416 cm., 62.832 cm., 125.664 cm., 47.124 cm. 
 
 4. 1^, l\ 2^ ^^ 
 
 2 2 
 
 5. Smaller sprocket : 4 revolutions per second, angular velocity = 8 tt radi- 
 ans per second, linear velocity of circumference = 201.06 inches per second; 
 
 167r 
 
 larger sprocket: f revolutions per second, angular velocity 
 
 3 
 
 radians per 
 
 second, linear velocity of circumference = 201 .06 inches per second. Speed of 
 machine = 20.944 feet per second = 14.28 miles per hour. 
 
ANSWERS TO EXERCISES 143 
 
 6. Linear velocity of chain and of circumferences of both sprockets = 75.43 
 inches per second ; angular velocity of larger sprocket = 15.09 radians per sec- 
 ond, of smaller sprocket = 37.76 radians per second ; smaller sprocket makes 
 5.1 revolutions per second. 
 
 13. 
 
 I<«<V^- 
 
 
 
 
 
 14. 
 
 0<«<^, '{<a 
 
 < 
 
 3 7r ^^^Stt 37r^^^' 
 Exercise XVI 
 
 4 * 
 
 5. 
 
 (i'l>- ■ 
 
 
 
 - (!■)■ (V 
 
 , -1), etc. 
 
 6. 
 
 (-;,l).etc. 
 
 
 
 ' fe f )• { 
 
 5 TT V2\ , 
 
 
 
 
 Exercise XVII 
 
 
 1. 
 
 f. 
 
 
 
 7. 120°, 150°, 300°, 330°. 
 
 2. 
 
 l4-2\^ 
 3 
 
 
 
 8. 15°, 75°, 135°, 
 
 9. 60°, 300°. 
 
 195°, 255°, 315°. 
 
 3. 
 
 5 
 
 
 
 10. 30°, 150°, 210< 
 
 ^ 330°. 
 
 4. 
 
 -If- 
 
 
 
 11. 0°, 60°, 180°, 300°, 360°. 
 
 5. 
 
 60°, 300°. 
 
 
 
 12. 0°, 150°, 180°, 
 
 210°, 360°. 
 
 6. 
 
 120°, 300°. 
 
 
 
 
 
 
 
 
 Exercise XVIII 
 
 
 1. 
 
 - sin 20°. 
 
 
 9. 
 
 0,0. 
 
 22. 0. 
 
 2. 
 
 3. 
 
 - sin 10°. 
 cot 14°. 
 
 
 10. 
 
 1 + V3 2V3 
 2 ' 3 • 
 
 23. - .35. 
 
 24. -1. 
 
 4. 
 5. 
 6. 
 
 7. 
 
 - cot 35°. 
 
 - CSC 30°. 
 sec 40°. 
 
 1 + V3 2V3 
 2 ' 3 • 
 
 
 11. 
 12. 
 19. 
 
 V3 - 1 2V3 
 
 2 ' 3 • 
 0,0. 
 1 + V3 
 4 
 
 25. + VI - a\ 
 
 26. ^l--^ 
 
 m 
 
 27. sin«. 
 
 28. — sin a. 
 
 8. 
 
 1 + V3 2V3 
 2 ' 3 • 
 
 
 20. 
 21. 
 
 0. 
 
 0. 
 
 29. tan a. 
 
 30. - tan a. 
 
 
 
 
 Exercise XIX 
 
 
 5. 
 6. 
 7. 
 
 a + ^ = sin-i If = cos-i - |1, 
 cc + ft z= arcsin — ||f = arccos 
 -sin(a + y8). 9. 
 
 II quadrant. 
 — Iff, III quadrant, 
 sin 2 a. 
 
 11. sin 2 6. 
 
 8. 
 
 cos (a + y8). 
 
 
 10 
 
 . cos 2 a. 
 
 12. cos^. 
 
 13. 
 
 105°- arcsin ^" + 
 4 
 
 V6 
 
 1 \/2 - V6 
 
 = arccos ; 
 
 4. 
 
 
 
 15= 
 
 ' = 
 
 105° 90" = arcsin^ 7^ = 
 4 
 
 \/6+V2 
 arccos J 
 
144 ANSWERS TO EXERCISES 
 
 14. 75° = arcsm^ + ^^ = arccos^-^: 
 
 15° = 90° - 75° = arcsin^-^ = arccos^^ + ^ 
 
 = arccos- 
 4 4 
 
 Exercise XX 
 
 11. tan 15° = 2 - V3, cot 15° == 2 + V3. 
 
 15. sin (a + /8 + y) = sin a cos y8 cos y + cos a sin y8 cos y + cos a cos jS sin y 
 
 — sin a sin y8 sin y. 
 
 16. cos (a+ /3 + y) = cos ct cos ^ cos y — sin a sin y8 cos y — sin a cos ^ sin y 
 
 — cos a sin /? sin y. 
 
 T „ , . , a , N tan a + tan B + tan v — tan « tan (3 tan v 
 
 17. tan (a-\-a-\-y)=: ^^ ? 1- ti _L_. 
 
 1 — tan ytJ tan y — tan y tan a — tan a tan /3 
 
 18. cot (a + B+y)= ^ot^^oty + cotycotg+cotctcoty ^ 
 
 '"^ cot ct cot /? cot y — cot (/ — cot /5 — cot y 
 Note the symmetry in the last four formulas. 
 
 Exercise XXI 
 
 5. 2 a =: sin-i yV/o "= cos-i ifif. 
 
 6. 2 a = arcsin ± ilg = arccos — ^i|. Explain the signs. 
 
 7. sin ^ a = ± f and ± f , cos J =i ± f and ± f. 
 
 a s4«=.^^^ ana ±i^:eoa„..l^- and .^. 
 
 9. sin (a + 2 ;8) = f|f and - ||f, cos (a + 2 ;g; .. -^%% and - |04. 
 10. sin (a- 2 ft) =± |f | and T ff |, cos (a - 2 ^) = T^W and T |tf. 
 17. a = 30°, 45°, 60°, 210°, 225°, 240°. 18. a = 90^ 270°, and I arccos f . 
 
 19. a = 67° 30', 157° 30', 247° 30', 337° 30', and ^ arctan f . 
 
 20. a = 90°, 270°, and i cos-i f. 23. 2 x. 24. 1. 25. 0. 26. 1. 
 
 Exercise XXII 
 
 1. 1 [sin 8 a + sin 2 a]. 8. ^ [3 - 4 cos 2 a + cos 4 a]. 
 
 2. ^ [sin 10 a - sin 2 a]. 9. -^ [3 sin 2 a - sin 6 a]. 
 
 3. ^ [cos 4 a - cos 10 a]. 10. ^^ [1 - cos 4 a]. 
 
 4. 1 [cos 7 « + cos 3 a]. ^5^ ;t . J; [/t = 0, 1, 2, 3, 4]. 
 
 5. i [cos a - cos 3 a] . 4 > > » > j 
 
 6. K2sin2a + sin4a]. • royfc+n!!:. p/t - 1 9 31 
 
 7. i[3 + 4cos2a+cos4a]. ^^' ^"^ + ^^4' L^-«'1'-^J- 
 
 17. (2^+1)^; [/j=0, l,2,...ll]and(3A:+l)|; [A: = 0, 1, 2, 3]. 
 
 18. (2A: + 1)^; [^ = 0, 1,2, ...29]and(2^-+l)^; [^ = 0, 1, 2, ...9]. 
 
 19. A:.|; [A: = 0, 1, 2, ...7]. 20. ^.|; [^^ = 0, 1, 2, ... 7]. 
 
ANSWERS TO EXERCISES 145 
 
 Exercise XXIII 
 
 9. (2A: + 1)^; [/^ - 0, 1, 2, ...]. 13. ^0^3 a - 3 cot oc . 
 
 "^ ^6^ ' ' ' J 3cot2a-l 
 
 kir ^n kir -. ^ 3 tan a — tan^ a 
 
 10. — . 11. ^. 14. 
 
 3 
 
 12. TT and (2^ + 1) 
 
 3 4 1-3 tan'-^ a 
 
 15. 4 sin a cos^ a — 4 sin^ a cos a. 
 
 16. 8 cos* « - 8 cos2 a - 3. 
 
 17. 0°, 15°, 105°, 180°, 255°, 345^. (See Exercise XIX, examples 13 and 14.) 
 
 18. a = 60°, 90°, 120°, 270°, and arcsin ^. 19. — • 20. ^. 
 
 2V3 2 2 
 
 Article 72 
 1. - sin 0. 2. sec tan 0. 3. - esc cot ^. 4. sec^ 6. 5. - csc^ (9. 
 
 Article 73 
 
 5. cos^-+ I sin——; ±1; 1, ^ ; ±1, ±i; ±1, ^ 
 
 _ (2;t + l)7r, . . (2^+l)7r , . . 1± V^^ 
 
 6. cos ^^ — 1^ I sin -^^ ^— ; ±i: — 1, : 
 
 n n 2 ' 
 
 ± 1 ±« . ± V3±i 
 
 — Ti — ; ±h — 7^ 
 
 Article 74 
 
 6. Products: 15 + 6i; -5 + 3t; 6 + 12 {; _8-20^; 12-18/; 4+22i; 
 
 4 + 22 i. 
 
 7. Quotients: 5-3*; 3 - 2 i. 8. Results: 4 + 12i; 1; - 8; 1. 
 
 9. Roots: 4 - 3 ^ 3 + 2 t; - 46 + 9 i ; ±21 
 10. ^/a [cos ?^ + i sin ?^] ; [>l- = 0, 1, 2, ... (n - 1)]. 
 
 11. ±1; ±i; 1, ^\^ '^ 2, -l±V-3. 
 
INDEX 
 
 [Eeferences are to articles, except where otherwise indicated.] 
 
 Addition formulas, 63, 64. 
 Ambiguous case of oblique triangles, 48. 
 Angle, general definition of, 52. 
 Angles, positive and negative, 3. 
 Answers to exercises, page 135. 
 Area, laws for 
 
 oblique triangles, 45. 
 
 right triangles, 17. 
 
 Checks, 20. 
 
 Common logarithms of numbers. Table I, 
 page 3. 
 
 Complementary angles, functions of, 10. 
 
 Complex numbers, graphical methods of 
 representation and combination, 74. 
 
 Composition of forces, 51. 
 
 Conversion formulas for products, 69. 
 
 Conversion formulas for sums and differ- 
 ences, 70. 
 
 Coordinates, 4. 
 
 Definitions of the trigonometric functions, 
 
 32, 54. 
 De Moivre's theorem, 73. 
 Directed rectilinear segments, 2. 
 Drawing instruments, 1. 
 
 Equilibrium of forces, 51. 
 Errors, 20. 
 
 Exponential values of the trigonometric 
 functions, 75. 
 
 Formulas for tan (a:t0), cot (a i |3), 66. 
 Formulas, list of, page 130. 
 Functions of 0°, 90°, 12. 
 
 of 180°, 36. 
 
 of 270°, 360°, 58. 
 
 of 30°, 45°, 60°, 11. 
 
 of (90° + a), 38. 
 
 of (^~±a],62. 
 
 of half an angle, 68. 
 of twice an angle, 67. 
 Fundamental relations between the func- 
 tions of a single angle, 9, 34, 59. 
 
 General inverse functions, 80. 
 
 Graphs of the trigonometric functions, 
 
 57. 
 Greek alphabet, page x. 
 
 Half an angle, functions of, 68. 
 Hyperbolic functions, 76. 
 
 Infinity, definition of, 12, 35, 58. 
 
 Inverse functions, logarithmic values of, 
 
 81. 
 Inverse trigonometric functions, 14. 
 
 Law for angles in terms of sides, 44. 
 
 Law of cosines, 42. 
 
 Law of projections, 40. 
 
 Laws of sines, 41. 
 
 Law of tangents, 43. 
 
 Laws of area, 
 
 oblique triangles, 45. 
 
 right triangles, 17. 
 Laws for solution of 
 
 oblique triangles, 39-44. 
 
 right triangles, 16. 
 Limitations in value of the trigonometric 
 
 functions, 8, 33, 55. 
 Limits of 6»/sin e and 0/ta.n e, 72. 
 Line representations of the trigonometric 
 
 functions, 60. 
 List of formulas, page 130. 
 Logarithms, 
 
 characteristic, 24. 
 
 cologarithms, 28. 
 
 common system, 23. 
 
 definition of, 21. 
 
 interpolation, 26. 
 
 laws of combination, 22. 
 
 mantissa, 25. 
 
 numbers from logarithms, 27. 
 
 of numbers, Table I, page 3. 
 
 of trigonometric functions. Table 1\ 
 page 25. 
 
 Method of solution of triangles, 18. 
 Multiple angles, 71. 
 
 147 
 
148 
 
 INDEX 
 
 Natural trigonometric functions, Table 
 III, page 71. 
 
 Oblique triangles, 
 
 area, 45. 
 
 laws for solution, 3f)-44. 
 Oblique triangles, solution of, 46-50. 
 Orthogonal projection, 4 (note), 15. 
 
 Periodicity of the trigonometric functions, 
 
 61. 
 Proportional parts, theory of, 79. 
 Purpose of trigonometry, 5. 
 
 Relation between the ratios and the 
 
 angle, 7. 
 Resolution of forces, 51. 
 Right triangles, 
 
 area of, 17. 
 
 laws for solution, 16. 
 
 solution by logarithms, 31. 
 
 solution by natural functions, 18. 
 
 Series, exponential, logarithmic, trigono- 
 metric, hyperbolic, 77. 
 
 Signs of the trigonometric functions, 8, 33, 
 55. 
 
 Slide rule, 30. 
 
 Solution of oblique triangles, 46-50. 
 
 Solution of right triangles, 
 
 by logarithmic functions, 31. 
 
 by natural functions, 18. 
 Squares of numbers. Table IV, page 91. 
 Subtraction formulas, 65. 
 Supplementary angles, functions of, 37. 
 
 Table I. Common Logarithms of Num- 
 bers, page 3. 
 Table II. Logarithms of the Trigonometric 
 
 Functions, page 25. 
 Table III. Natural Trigonometric Func- 
 tions, pagre 71. 
 Table IV. Squares of Numbers, page 91. 
 Trigonometric functions, definitions of, 
 
 for acute angles, 6. 
 
 for obtuse angles, 32. 
 
 for the general angle, 54. 
 
 logarithms of, Table II, page 25. 
 
 natural, Table III, page 71. 
 Trigonometric tables, pages 1-93. 
 
 computation of, 78. 
 
 description of, 19. 
 Trigonometry, purpose of, 5. 
 Twice an angle, functions of, 67. 
 
 Variations of the trigonometric functions, 
 13, 35, 56. 
 
TABLES 
 
-/ 
 
 
 
 (- 
 
TABLE I 
 
 COMMON LOGARITHMS 
 
 OF NUMBERS 
 
 N. 
 
 
 
 1 
 2 
 3 
 
 4 
 5 
 6 
 
 7 
 8 
 9 
 
 10 
 
 11 
 12 
 13 
 
 14 
 15 
 16 
 
 17 
 18 
 19 
 
 20 
 
 21 
 22 
 23 
 
 24 
 25 
 26 
 
 27 
 
 28 
 29 
 
 30 
 
 Lo^. 
 
 Infinity. 
 
 o.oo ooo 
 0.30 103 
 
 0.47 712 
 
 0.60 206 
 0.69 897 
 
 0.77 815 
 
 0.84 510 
 0.90 309 
 0.95424 
 
 1.04 139 
 
 1.07 918 
 I. II 394 
 
 1. 14 613 
 1. 17 609 
 1.20 412 
 
 1.23045 
 1.25 527 
 1.27875 
 
 1.30 103 
 
 I .32 222 
 I 34 242 
 1 36 173 
 
 1 . 38 02 1 
 
 1.39 794 
 1. 41 497 
 
 1.43 136 
 
 1.44 716 
 1 . 46 240 
 
 N. 
 
 1.47 712 
 
 30 
 
 31 
 
 32 
 33 
 
 34 
 35 
 36 
 
 37 
 
 38 
 39 
 
 40 
 
 41 
 42 
 43 
 
 44 
 45 
 46 
 
 47 
 48 
 49 
 
 50 
 
 51 
 52 
 53 
 
 54 
 55 
 56 
 
 57 
 58 
 59 
 
 60 
 
 Log. 
 
 1.47 712 
 
 .49 136 
 .50515 
 .51851 
 
 •53 148 
 .54 4-'7 
 • 55630 
 
 . 56 820 
 . 57 978 
 .59 106 
 
 60 206 
 
 .61 278 
 .62 325 
 .63 347 
 
 .64345 
 .65 321 
 .66 276 
 
 .67 210 
 .68 124 
 .69 020 
 
 ,69 897 
 
 .70757 
 .71 600 
 .72 428 
 
 .73239 
 .74036 
 
 .74819 
 
 •75 587 
 76343 
 .77085 
 
 1.77 815 
 
 60 
 
 61 
 62 
 63 
 
 64 
 65 
 66 
 
 67 
 68 
 69 
 
 70 
 
 71 
 72 
 73 
 
 74 
 75 
 76 
 
 77 
 
 78 
 79 
 
 80 
 
 81 
 
 82 
 83 
 
 84 
 85 
 86 
 
 87 
 88 
 89 
 
 Log. 
 
 1.77 815 
 
 78 533 
 .79239 
 
 .79934 
 
 .80618 
 .81 291 
 .81 954 
 
 . 82 607 
 .83251 
 .83885 
 
 .84 510 
 
 .85 126 
 
 .85733 
 .86332 
 
 .86923 
 .87 506 
 .88081 
 
 .88649 
 . 89 209 
 .89763 
 
 90309 
 
 90849 
 91 381 
 
 91 908 
 
 92 428 
 92942 
 93450 
 
 93952 
 94448 
 94 939 
 
 90 1.95424 
 
 3 
 
 90 
 
 91 
 92 
 93 
 
 94 
 95 
 96 
 
 97 
 98 
 99 
 
 100 
 
 101 
 102 
 103 
 
 104 
 105 
 106 
 
 107 
 108 
 109 
 
 110 
 
 111 
 112 
 113 
 
 114 
 115 
 116 
 
 117 
 118 
 119 
 
 Log. 
 
 1.95424 
 
 1.95 904 
 
 1.96 379 
 1 . 96 848 
 
 1.97 313 
 
 1.97 772 
 
 1.98 227 
 
 1.98677 
 
 1 .99 123 
 1.99 564 
 
 2 . 00 000 
 
 2.00 432 
 2 . 00 860 
 
 2.01 284 
 
 2.01 703 
 
 2.02 119 
 2.02 531 
 
 2.02 938 
 
 2.03 342 
 2.03743 
 
 2.04139 
 
 2.04 532 
 
 2.04 922 
 
 2.05 308 
 
 2.05 690 
 2.06070 
 2.06446 
 
 2.06 819 
 
 2.07 188 
 2.07 555 
 
 N. 
 
 120 
 
 121 
 122 
 123 
 
 124 
 125 
 126 
 
 127 
 128 
 129 
 
 130 
 
 131 
 132 
 133 
 
 134 
 135 
 136 
 
 137 
 138 
 139 
 
 140 
 
 141 
 142 
 143 
 
 144 
 145 
 146 
 
 147 
 148 
 149 
 
 120 2.07918 160 2.17609 
 
 Log. 
 
 2.07 918 
 
 2.08 279 
 2.08 636 
 
 2.08 991 
 
 2.09 342 
 
 2.09 691 
 
 2.10 037 
 
 2.10 380 
 
 2.10 721 
 
 2. 11 059 
 
 2. II 394 
 
 2. 1 1 727 
 
 2.12 057 
 2.12 385 
 
 2.12 710 
 2.13033 
 2.13354 
 
 2.13672 
 2.13988 
 2.14301 
 
 2. 14 613 
 
 2.14 922 
 
 2.15 229 
 
 2.15 534 
 
 2.15836 
 
 2.16 137 
 2.16435 
 
 2.16 732 
 
 2.17 026 
 2.17 319 
 
TABLE I 
 
 N. 
 
 100 
 
 01 
 02 
 03 
 
 04 
 05 
 06 
 
 07 
 
 08 
 09 
 
 110 
 
 11 
 12 
 13 
 
 14 
 15 
 16 
 
 17 
 18 
 19 
 
 120 
 
 21 
 22 
 23 
 
 24 
 25 
 26 
 
 27 
 
 28 
 29 
 
 130 
 
 31 
 32 
 33 
 
 34 
 35 
 36 
 
 37 
 38 
 39 
 
 140 
 
 41 
 42 
 43 
 
 44 
 45 
 46 
 
 47 
 48 
 49 
 
 150 
 
 N. 
 
 O 
 
 oo ooo 
 
 432 
 860 
 
 01 284 
 
 703 
 
 02 119 
 
 531 
 938 
 
 03 342 
 
 743 
 
 043 
 
 04 139 
 
 532 
 922 
 
 05 308 
 
 690 
 
 06 070 
 446 
 
 819 
 
 07 188 
 555 
 
 918 
 
 08 279 
 636 
 991 
 
 09 342 
 691 
 
 10 037 
 
 380 
 721 
 
 11 059 
 
 394 
 
 727 
 
 12 057 
 
 385 
 710 
 
 13 033 
 
 354 
 
 672 
 
 988 
 
 I4_30i^ 
 
 613 
 
 922 
 
 15 229 
 534 
 
 836 
 
 16 137 
 
 435 
 
 732 
 
 17 026 
 
 319 
 609 
 
 475 
 903 
 326 
 
 745 
 160 
 
 572 
 
 979 
 383 
 782 
 
 179 
 
 571 
 961 
 346 
 
 729 
 108 
 483 
 
 856 
 
 225 
 591 
 
 087 
 
 518 
 
 945 
 368 
 
 202 
 612 
 
 *oi9 
 
 423 
 822 
 
 218 
 
 954 
 
 314 
 672 
 
 *026 
 
 377 
 726 
 072 
 
 415 
 755 
 093 
 
 428 
 
 760 
 090 
 418 
 
 743 
 066 
 386 
 
 704 
 
 *oi9 
 
 333 
 
 644 
 
 953 
 259 
 564 
 
 866 
 
 167 
 465 
 
 761 
 056 
 348 
 638 
 
 610 
 
 999 
 
 385 
 
 767 
 145 
 521 
 
 893 
 262 
 628 
 
 990 
 
 350 
 
 707 
 
 *o6i 
 
 412 
 760 
 106 
 
 449 
 789 
 126 
 
 461 
 
 793 
 123 
 450 
 
 775 
 098 
 418 
 
 735 
 ♦051 
 
 364 
 
 130 
 
 561 
 988 
 410 
 
 828 
 
 243 
 
 653 
 
 *o6o 
 
 463 
 862 
 
 258 
 
 650 
 
 ♦038 
 
 423 
 
 805 
 183 
 
 558 
 
 930 
 298 
 664 
 
 *027 
 
 386 
 
 743 
 *o96 
 
 447 
 795 
 140 
 
 483 
 823 
 160 
 
 494 
 
 826 
 156 
 483 
 
 808 
 130 
 
 450 
 
 767 
 *o82 
 
 395 
 
 675 706 
 
 983 *oH 
 290 
 
 594 
 
 897 
 197 
 495 
 
 791 
 085 
 
 377 
 
 667 
 
 320 
 625 
 
 927 
 227 
 524 
 
 820 
 114 
 406 
 
 "696 
 
 73 
 
 604 
 030 
 
 452 
 
 870 
 284 
 694 
 
 *ioo 
 
 503 
 902 
 
 297 
 
 689 
 
 *077 
 
 461 
 
 843 
 221 
 
 595 
 
 967 
 
 335 
 700 
 
 063 
 
 422 
 
 *I32 
 
 482 
 830 
 175 
 
 517 
 857 
 193 
 
 528 
 
 860 
 189 
 516 
 
 840 
 162 
 481 
 
 799 
 
 *ii4 
 
 426 
 
 737 
 
 '045 
 351 
 655 
 
 957 
 256 
 
 554 
 850 
 143 
 435 
 725 
 
 217 
 
 647 
 ♦072 
 494 
 912, 
 325 
 735 
 
 '141 
 
 543 
 941 
 
 689 
 
 *ii5 
 
 536 
 
 953 
 366 
 776 
 
 *i8i 
 
 583 
 981 
 
 336 
 
 727 
 
 500 
 
 881 
 258 
 633 
 
 '004 
 372 
 737 
 
 ^099 
 
 458 
 
 814 
 
 *i67 
 
 517 
 864 
 209 
 
 551 
 
 890 
 227 
 
 561 
 
 893 
 222 
 
 548 
 
 872 
 194 
 
 513 
 
 830 
 
 *i45 
 457 
 
 768 
 
 ♦076 
 381 
 685 
 
 987 
 286 
 584 
 
 879 
 173 
 
 464 
 
 754 
 
 260 
 
 732 
 
 *i57 
 
 578 
 
 995 
 407 
 816 
 
 *222 
 623 
 021 
 
 376 
 
 766 
 
 *I54 
 538 
 
 918 
 296 
 670 
 
 *04i 
 408 
 773 
 
 35 
 
 493 
 849 
 
 552 
 899 
 243 
 
 585 
 924 
 261 
 
 594 
 
 926 
 
 254 
 581 
 
 905 
 226 
 545 
 862 
 *I76 
 489 
 
 799 
 
 *io6 
 412 
 715 
 
 *oi7 
 316 
 613 
 
 909 
 202 
 493 
 782 
 
 303 
 
 415 
 
 805 
 
 *I92 
 
 576 
 956 
 
 333 
 707 
 
 *o78 
 
 445 
 809 
 
 *i7i 
 
 529 
 884 
 '237 
 
 587 
 934 
 278 
 
 619 
 
 958 
 294 
 
 628 
 
 959 
 
 287 
 
 613 
 
 937 
 258 
 577 
 
 893 
 ^208 
 520 
 
 829 
 
 *I37 
 442 
 746 
 
 *o47 
 346 
 643 
 
 938 
 
 231 
 522 
 
 "sTT 
 
 S 9 Prop. Pts. 
 
 346 
 
 775 
 
 *I99 
 
 620 
 
 ♦036 
 449 
 857 
 
 *262 
 663 
 
 *o6o 
 
 454 
 
 817 
 
 ♦242 
 662 
 
 =078 
 490 
 898 
 
 *302 
 
 703 
 
 ICX) 
 
 493 
 
 844 
 
 ♦231 
 
 614 
 
 994 
 371 
 744 
 
 = 115 
 
 482 
 846 
 
 *207 
 
 565 
 
 920 
 
 '272 
 
 621 
 
 968 
 
 312 
 
 653 
 
 992 
 327 
 
 661 
 
 992 
 
 320 
 
 646 
 969 
 
 290 
 609 
 
 925 
 
 *239 
 551 
 
 860 
 
 *i68 
 
 473 
 
 *o77 
 376 
 673 
 967 
 260 
 551 
 840 
 
 389 
 
 883 
 
 ♦269 
 
 652 
 
 ♦032 
 408 
 781 
 
 *i5i 
 518 
 882 
 
 =1=243 
 600 
 955 
 
 *307 
 
 656 
 
 *oo3 
 
 346 
 
 687 
 
 *02 5 
 
 361 
 
 694 
 
 *024 
 
 352 
 678 
 
 *OOI 
 
 322 
 640 
 
 956 
 
 *270 
 
 582 
 "89? 
 ♦198 
 
 503 
 806 
 
 *io7 
 406 
 702 
 
 997 
 289 
 580 
 
 9 
 
 44 
 
 43 
 
 4* 
 
 4-4 
 
 4 3 
 
 4 
 
 8 
 
 8 
 
 8 
 
 6 
 
 8 
 
 13 
 
 2 
 
 12 
 
 9 
 
 12 
 
 17 
 
 6 
 
 17 
 
 2 
 
 16 
 
 22 
 
 
 
 21 
 
 5 
 
 21. 
 
 26 
 
 4 
 
 25 
 
 8 
 
 25- 
 
 30 
 
 8 
 
 30 
 
 I 
 
 29 
 
 35 
 
 2 
 
 34 
 
 4 
 
 33 
 
 39 
 
 6 
 
 38 
 
 7 
 
 37- 
 
 41 40 39 
 
 12 o 
 16 o 
 20 o 
 
 61240 
 
 7 28.0 
 
 8 32.0 
 9I36.0 
 
 37 
 
 3-7 
 7-4 
 II. I 
 14-8 
 18.5 
 22.2 
 25 9 
 29.6 
 33-3 
 
 3 9 
 
 7 
 II 7 
 15 6 
 19 5 
 23 4 
 27 3 
 31-2 
 35 » 
 
 36 
 
 3-6 
 7- 
 
 35 
 
 34 
 
 33 
 
 3-5 
 
 3 4 
 
 3 
 
 7 
 
 
 
 6.8 
 
 6. 
 
 10 
 
 5 
 
 10 2 
 
 9 
 
 14 
 
 
 
 136 
 
 13 
 
 17 
 
 5 
 
 17.0 
 
 16. 
 
 21 
 
 
 
 20.4 
 
 19 
 
 24 
 
 5 
 
 238 
 
 23 
 
 28 
 
 
 
 27 2 
 
 26. 
 
 31 
 
 5 
 
 30.5 
 
 29- 
 
 3a 31 30 
 
 16.0 
 
 19 2 
 22.4 
 25.6 
 28-8 
 
 3-0 
 
 6.C 
 9.0 
 12 o 
 
 15 5 »50 
 18 6 18 o 
 21 7 
 24 8 
 27 9 
 
 21 .0 
 24 o 
 27.0 
 
 Prop. Pts. 
 
LOGARITHMS OF NUMBERS 
 
 N. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 y 
 
 S 1 9 
 
 Prop. Pts. 
 
 150 
 
 51 
 
 17 609 
 
 898 
 
 638 
 926 
 
 667 
 955 
 
 696 
 984 
 
 725 
 *oi3 
 
 754 
 
 782 
 
 811 
 
 840 
 
 869 
 
 
 *04i 
 
 *o7o 
 
 *o99 
 
 *I27 
 
 *i56 
 
 
 29 
 
 28 
 
 52 
 
 iS 184 
 
 2n 
 
 241 
 
 270 
 
 298 
 
 327 
 
 355 
 
 3^4 
 
 412 
 
 441 
 
 
 
 
 53 
 
 469 
 
 498 
 
 526 
 
 554 
 
 583 
 
 611 
 
 639 
 
 667 
 
 696 
 
 724 
 
 1 
 
 2 
 
 2.9 
 
 5 8 
 
 2.8 
 5.6 
 
 54 
 
 752 
 
 780 
 
 808 
 
 «37 
 
 865 
 
 «93 
 
 921 
 
 949 
 
 977 
 
 *oo5 
 
 3 
 
 8.7 
 
 8.4 
 
 55 
 
 19033 
 
 061 
 
 089 
 
 117 
 
 145 
 
 173 
 
 201 
 
 229 
 
 257 
 
 285 
 
 4 
 
 n.6 
 
 11.2 
 
 56 
 
 312 
 
 340 
 
 368 
 
 396 
 
 424 
 
 451 
 
 479 
 
 507 
 
 535 
 
 562 
 
 5 
 
 14.5 
 
 14.0 
 
 57 
 
 590 
 
 618 
 
 645 
 
 673 
 
 700 
 
 728 
 
 756 
 
 783 
 
 811 
 
 838 
 
 6 
 
 17.4 
 
 16.8 
 
 58 
 
 
 893 
 
 921 
 
 948 
 
 976 
 
 *oo3 
 
 ♦030 
 
 *o58 
 
 *o85 
 
 *II2 
 
 '/ 
 
 20.3 
 
 19.6 
 
 59 
 160 
 
 61 
 
 20 140 
 
 167 
 
 194 
 
 222 
 
 249 
 
 276 
 
 303 
 
 330 
 602 
 
 358 
 629 
 
 385 
 656 
 
 8 
 9 
 
 23.2 
 26.1 
 
 27 
 
 22.4 
 25.2 
 
 26 
 
 412 
 683 
 
 439 
 
 466 
 
 493 
 
 520 
 
 548 
 
 575 
 
 710 
 
 737 
 
 763 
 
 790 
 
 817 
 
 844 
 
 871 
 
 898 
 
 925 
 
 62 
 
 952 
 
 978 
 
 *oo5 
 
 *032 
 
 *o59 
 
 *o85 
 
 *II2 
 
 *I39 
 
 *i65 
 
 *,92 
 
 1 
 
 2.7 
 
 5 4 
 
 2.6 
 5.2 
 
 63 
 
 21 219 
 
 245 
 
 272 
 
 299 
 
 325 
 
 352 
 
 378 
 
 405 
 
 431 
 
 458 
 
 64 
 
 484 
 
 511 
 
 537 
 
 564 
 
 590 
 
 617 
 
 643 
 
 669 
 
 696 
 
 722 
 
 3 
 
 8.1 
 
 7.8 
 
 65 
 
 748 
 
 11^ 
 
 801 
 
 827 
 
 854 
 
 880 
 
 906 
 
 932 
 
 958 
 
 985 
 
 4 
 
 10.8 
 
 10.4 
 
 66 
 
 22 on 
 
 037 
 
 063 
 
 089 
 
 115 
 
 141 
 
 167 
 
 194 
 
 220 
 
 246 
 
 5 
 
 13.5 
 
 13.0 
 
 67 
 
 272 
 
 298 
 
 324 
 
 350 
 
 376 
 
 401 
 
 427 
 
 453 
 
 479 
 
 505 
 
 6 
 
 7 
 8 
 9 
 
 16.2 
 18.9 
 21.6 
 24 3 
 
 15.6 
 18.2 
 20.8 
 
 9.^ A. 
 
 68 
 
 531 
 
 557 
 
 5«3 
 
 608 
 
 634 
 
 660 
 
 686 
 
 712 
 
 737 
 
 .7^3 
 
 69 
 170 
 
 71 
 
 789 
 
 814 
 
 840 
 
 866 
 
 891 
 
 917 
 
 943 
 
 ,968 
 
 994 
 
 *oi9 
 
 23 045 
 
 070 
 
 096 
 
 121 
 
 147 
 
 172 ' 198 
 
 223 
 
 249 
 
 274 
 
 
 300 
 
 32s 
 
 350 
 
 376 
 
 401 
 
 426 
 
 452 
 
 477 
 
 502 
 
 528 
 
 
 25 
 
 72 
 
 553 
 
 
 603 
 
 629 
 
 654 
 
 679 
 
 704 
 
 729 
 
 754 
 
 779 
 
 1 
 
 2 5 
 
 73 
 
 805 
 
 830 
 
 «55 
 
 880 
 
 905 
 
 930 
 
 955 
 
 989 
 
 *oo5 
 
 *o3o 
 
 2 
 
 5.0 
 
 74 
 
 24 055 
 
 080 
 
 los 
 
 130 
 
 155 
 
 180 
 
 204 
 
 229 
 
 254 
 
 279 
 
 3 
 
 7.5 
 
 75 
 
 304 
 
 329 
 
 35^ 
 
 V^ 
 
 403 
 
 428 
 
 452 
 
 477 
 
 502 
 
 527 
 
 4 
 
 10.0 
 
 76 
 
 551 
 
 576 
 
 601 
 
 625 
 
 650 
 
 674 
 
 699 
 
 724 
 
 748 
 
 773 
 
 5 
 6 
 
 7 
 
 12.5 
 15.0 
 
 17.5 
 
 77 
 
 797 
 
 822 
 
 846 
 
 871 
 
 895 
 
 920 
 
 944 
 
 969 
 
 993 
 
 *oi8 
 
 78 
 
 25 042 
 
 066 
 
 091 
 
 115 
 
 139 
 
 164 
 
 188 
 
 212 
 
 237 
 
 261 
 
 8 
 
 20.0 
 
 79 
 180 
 
 81 
 
 285 
 
 527 
 768 
 
 310 
 
 334 
 
 358 
 
 3«2 
 
 406 
 ^648^ 
 888~ 
 
 431 
 672 
 912 
 
 455 
 
 479 
 
 503 
 
 9 
 
 22.5 
 
 551 
 
 575 
 
 600 
 
 624 
 
 864 
 
 696 
 
 720 
 
 744 
 983 
 
 . . 1 
 
 792 
 
 816 
 
 840 
 
 935 
 
 959 
 
 
 224: 
 
 23 
 
 82 
 
 26 007 
 
 031 
 
 055 
 
 079 
 
 102 
 
 126 
 
 150 
 
 174 
 
 198 
 
 221 
 
 1 
 
 2.4 
 
 2.3 
 
 83 
 
 245 
 
 269 
 
 293 
 
 316 
 
 340 
 
 3^4 
 
 3^7 
 
 411 
 
 435 
 
 458 
 
 2 
 
 4.8 
 
 4.6 
 
 84 
 
 482 
 
 505 
 
 529 
 
 553 
 
 576 
 
 600 
 
 623 
 
 647 
 
 670 
 
 694 
 
 3 
 
 7.2 
 
 6.9 
 9.2 
 
 85 
 
 717 
 
 741 
 
 764 
 
 788 
 
 811 
 
 8s4 
 
 858 
 
 881 
 
 90s 
 
 928 
 
 4 
 
 9.6 
 
 86 
 
 951 
 
 975 
 
 998 
 
 *02I 
 
 *o45 
 
 *o68 
 
 *o9i 
 
 Hl^ 
 
 *i38 
 
 *i6i 
 
 5 
 6 
 
 12.0 
 14 4 
 
 11.5 
 13.8 
 
 87 
 
 27 184 
 
 207 
 
 231 
 
 254 
 
 277 
 
 300 
 
 323 
 
 346 
 
 370 
 
 393 
 
 7 
 
 16.8 
 
 16.1 
 
 88 
 
 416 
 
 439 
 
 462 
 
 485 
 
 S08 
 
 531 
 
 554 
 
 577 
 
 600 
 
 623 
 
 8 
 
 19.2 
 
 18.4 
 
 89 
 190 
 
 91 
 
 646 
 
 669 
 
 692 
 
 715 
 
 738 
 
 761 
 989 
 217 
 
 784 
 
 807 
 
 830 
 
 852 
 
 9 
 
 21.6 
 
 20.7 
 
 J71 
 28 103 
 
 898 
 126" 
 
 921 
 149 
 
 944 
 
 967 
 
 *OI2 
 
 *o35 
 
 *o58 
 
 *o8i 
 
 .. .. 1 
 
 171 
 
 194 
 
 240 
 
 262 
 
 285 
 
 307 
 
 
 22 Zi 
 
 21 
 
 92 
 
 330 
 
 353 
 
 375 
 
 398 421 
 
 443 
 
 466 
 
 488 
 
 511 
 
 533 
 
 1 
 
 2.2 
 
 2.1 
 
 93 
 
 556 
 
 578 
 
 601 
 
 623 
 
 646 
 
 668 
 
 691 
 
 713 
 
 735 
 
 758 
 
 2 
 
 4.4 
 
 4.2 
 
 94 
 
 780 
 
 803 
 
 825 
 
 847 
 
 870 
 
 892 
 
 914 
 
 937 
 
 959 
 
 981 
 
 3 
 4 
 
 b.b 
 
 8 8 
 
 6.3 
 ft 4 
 
 95 
 
 29 003 
 
 026 
 
 048 
 
 070 
 
 092 
 
 115 
 
 137 
 
 159 
 
 181 
 
 203 
 
 ;=; 
 
 n fi 
 
 10.5 
 12.6 
 
 96 
 
 226 
 
 248 
 
 270 
 
 292 
 
 314 
 
 336 
 
 35« 
 
 380 
 
 403 
 
 425 
 
 6 
 
 13.2 
 
 97 
 
 447 
 
 469 
 
 491 
 
 513 
 
 535 
 
 557 
 
 579 
 
 601 
 
 623 
 
 64s 
 
 7 
 
 15.4 
 
 14.7 
 
 98 
 
 667 
 
 688 
 
 710 
 
 732 
 
 754 
 
 776 
 
 798 
 
 820 
 
 842 
 
 863 
 
 8 
 
 17.6 
 
 16.8 
 
 99 
 200 
 
 885 
 30 103 
 
 907 
 
 929 
 
 951 
 
 973 
 
 994 
 211 
 
 *oi6 
 
 *o38 
 
 *o6o 
 
 *o8i 
 
 9 
 
 19.8 
 
 18.9 
 
 125 
 
 146 
 
 168 
 
 190 
 
 233 
 
 255 
 
 276 
 
 298 
 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 « «| 
 
 Prop. Pts. 
 
TABLE I 
 
 N. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pt8. 
 
 200 
 
 01 
 02 
 03 
 
 30 103 
 
 320 
 
 535 
 750 
 
 12? 
 
 146 
 
 168 
 
 190 
 
 211 
 
 233 
 
 255 
 
 276 
 
 298 
 
 
 341 
 557 
 771 
 
 363 
 578 
 792 
 
 384 
 600 
 
 814 
 
 406 
 621 
 835 
 
 428 
 
 643 
 856 
 
 449 
 664 
 878 
 
 471 
 685 
 
 899 
 
 492 
 707 
 920 
 
 5'1 
 728 
 
 042 
 
 1 
 2 
 3 
 4 
 5 
 
 22 
 
 2.2 
 
 4.4 
 
 6.6 
 
 8.8 
 
 11.0 
 
 21 
 
 2.1 
 4.2 
 6.3 
 8,4 
 10.5 
 
 04 
 05 
 06 
 
 963 
 
 31 175 
 
 387 
 
 984 
 408 
 
 *oo6 
 218 
 429 
 
 *027 
 
 239 
 450 
 
 *048 
 260 
 471 
 
 *o69 
 281 
 492 
 
 ♦091 
 302 
 513 
 
 *II2 
 323 
 
 534 
 
 ♦133 
 345 
 555 
 
 *I54 
 366 
 576 
 
 07 
 08 
 09 
 
 210 
 
 11 
 12 
 13 
 
 597 
 32 015 
 
 618 
 827 
 035 
 
 639 
 
 848 
 056 
 
 "263- 
 
 660 
 869 
 077 
 
 284 
 
 681 
 890 
 098 
 
 305 
 
 702 
 118 
 
 723 
 931 
 139 
 
 744 
 952 
 160 
 
 765 
 973 
 181 
 
 785 
 994 
 201 
 
 6 
 7 
 
 8 
 9 
 
 13.2 
 15.4 
 17.6 
 19.8 
 
 12.6 
 14.7 
 16.8 
 18.9 
 
 222 
 
 243 
 
 325 
 
 346 
 
 366 
 
 387 
 
 408 
 
 '613 
 818 
 
 *02I 
 
 428 
 
 634 
 838 
 
 449 
 654 
 858 
 
 469 
 675 
 879 
 
 490 
 695 
 899 
 
 510 
 
 715 
 919 
 
 531 
 736 
 940 
 
 756 
 960 
 
 572 
 777 
 980 
 
 593 
 797 
 
 *OOI 
 
 1 
 
 20 
 
 2.0 
 4.0 
 
 14 
 15 
 16 
 
 33 041 
 
 244 
 
 445 
 
 062 
 264 
 465 
 
 082 
 284 
 486 
 
 102 
 
 304 
 506 
 
 122 
 
 526 
 
 143 
 546 
 
 163 
 
 365 
 566 
 
 183 
 
 385 
 586 
 
 203 
 
 224 
 425 
 626 
 
 3 
 4 
 5 
 
 6.0 
 
 8.0 
 
 10.0 
 
 17 
 
 18 
 19 
 
 220 
 
 21 
 22 
 23 
 
 646 
 
 846 
 
 34 044 
 
 666 
 866 
 064 
 
 686 
 885 
 084 
 
 706 
 90s 
 
 104 
 
 726 
 
 925 
 
 124 
 
 746 
 945 
 143 
 
 766 
 965 
 163 
 
 786 
 985 
 183 
 
 806 
 
 *oo5 
 203 
 
 826 
 
 *02 5 
 
 223 
 
 6 
 
 7 
 8 
 9 
 
 1 
 2 
 
 12.0 
 14.0 
 16.0 
 18.0 
 
 19 
 
 1.9 
 
 3.8 
 
 242 
 
 439 
 635 
 830 
 
 262 
 
 282 
 
 301 
 
 321 
 
 341 
 
 361 
 
 380 
 
 400 
 
 420 
 
 616 
 811 
 
 *oo5 
 
 459 
 850 
 
 479 
 674 
 869 
 
 498 
 
 518 
 908 
 
 537 
 733 
 928 
 
 557 
 753 
 947 
 
 577 
 772 
 967 
 
 596 
 986 
 
 24 
 25 
 26 
 
 35 025 
 218 
 411 
 
 044 
 
 238 
 430 
 
 064 
 257 
 449 
 
 083 
 
 276 
 468 
 
 102 
 
 488 
 
 122 
 
 315 
 507 
 
 141 
 334 
 526 
 
 160 
 353 
 545 
 
 180 
 372 
 564 
 
 199 
 392 
 583- 
 
 3 
 
 4 
 5 
 6 
 
 7 
 8 
 9 
 
 5.7 
 7.6 
 9.5 
 11.4 
 13.3 
 15.2 
 17.1 
 
 27 
 28 
 29 
 
 230 
 
 31 
 32 
 33 
 
 603 
 984 
 
 622 
 
 813 
 
 *oo3 
 
 641 
 832 
 
 *02I 
 
 660 
 
 851 
 
 *o4o 
 
 679 
 
 870 
 
 *o59 
 
 698 
 
 889 
 *o78 
 
 717 
 908 
 
 *o97 
 
 736 
 
 927 
 
 *ii6 
 
 755 
 946 
 
 *i35 
 
 774 
 
 965 
 
 *I54 
 
 36 173 
 
 192 
 
 211 
 
 229 
 
 248 
 
 267 
 
 286 
 
 305 
 
 324 
 
 342 
 
 .. 1 
 
 361 
 
 549 
 736 
 
 380 
 568 
 754 
 
 399 
 586 
 
 773 
 
 418 
 605 
 791 
 
 436 
 624 
 810 
 
 642 
 829 
 
 474 
 661 
 
 847 
 
 493 
 680 
 866 
 
 511 
 698 
 
 884 
 
 530 
 
 717 
 903 
 
 1 
 2 
 
 1» 
 
 1.8 
 3.6 
 
 34 
 35 
 36 
 
 922 
 
 37 107 
 
 291 
 
 940 
 125 
 310 
 
 959 
 144 
 328 
 
 977 
 162 
 346 
 
 996 
 181 
 
 365 
 
 *oi4 
 
 If. 
 
 *033 
 218 
 401 
 
 *o5i 
 236 
 420 
 
 ♦070 
 254 
 438 
 
 *o88 
 273 
 457 
 
 3 
 4 
 5 
 6 
 
 5.4 
 
 7.2 
 
 9.0 
 
 10 8 
 
 37 
 
 38 
 H9 
 
 240 
 
 41 
 42 
 43 
 
 475 
 658 
 840 
 
 493 
 676 
 858 
 
 1" 
 694 
 
 876 
 
 530 
 712 
 894 
 
 548 
 
 731 
 912 
 
 566 
 749 
 931 
 
 767 
 949 
 
 603 
 967 
 
 621 
 803 
 985 
 
 639 
 
 822 
 
 *oo3 
 
 7 
 
 8 
 9 
 
 1 
 2 
 
 12.6 
 14.4 
 16.2 
 
 17 
 
 1.7 
 3.4 
 5.1 
 
 6.8 
 
 8.5 
 
 10.2 
 
 38 021 
 
 039 
 
 057 
 
 075 
 
 093 
 
 112 
 
 292 
 
 471 
 650 
 
 130 
 
 148 
 
 166 
 
 184 
 
 202 
 561 
 
 220 
 
 399 
 578 
 
 238 
 417 
 596 
 
 256 
 614 
 
 274 
 632 
 
 489 
 668 
 
 328 
 507 
 686 
 
 346 
 
 525 
 703 
 
 364 
 543 
 721 
 
 44 
 45 
 46 
 
 739 
 39 094 
 
 757 
 934 
 III 
 
 775 
 952 
 129 
 
 792 
 970 
 146 
 
 810 
 
 987 
 164 
 
 828 
 
 *oo5 
 
 182 
 
 846 
 
 *023 
 
 199 
 
 863 
 
 ^^04 1 
 
 217 
 
 881 
 
 ♦058 
 
 235 
 
 899 
 
 ♦076 
 
 252 
 
 3 
 4 
 5 
 6 
 
 47 
 48 
 49 
 
 250 
 
 270 
 
 445 
 620 
 
 287 
 463 
 637 
 
 305 
 
 480 
 
 655 
 
 498 
 672 
 
 340 
 
 515 
 690 
 
 358 
 533 
 707 
 
 375 
 550 
 
 724 
 
 III 
 
 742 
 
 410 
 585 
 759 
 
 428 
 602 
 777 
 
 7 
 8 
 9 
 
 11.9 
 13.6 
 15.3 
 
 794 
 
 811 
 
 829 
 
 846 
 
 863 
 
 881 
 
 898 
 
 915 
 
 933 
 
 950 
 
 
 N. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 

 
 
 LOGARITHMS OF NUMBERS 
 
 
 
 7 
 
 N. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
 250 
 
 51 
 52 
 52 
 
 39 794 
 
 811 
 
 829 
 
 846 
 
 863 
 
 881 
 
 898 
 
 915 
 
 933 
 
 950 
 
 
 967 
 
 40 140 
 
 312 
 
 985 
 157 
 329 
 
 ♦002 
 
 175 
 346 
 
 ♦019 
 192 
 
 364 
 
 *037 
 209 
 
 381 
 
 *o54 
 226 
 398 
 
 *o7i 
 243 
 415 
 
 *o88 
 261 
 432 
 
 *io6 
 278 
 449 
 
 *I23 
 
 295 
 466 
 
 1 
 2 
 3 
 4 
 5 
 
 18 
 
 1.8 
 3.6 
 
 5.4 
 7.2 
 9 
 
 54 
 55 
 56 
 
 483 
 
 654 
 824 
 
 500 
 671 
 841 
 
 518 
 688 
 858 
 
 535 
 705 
 
 875 
 
 552 
 
 722 
 892 
 
 569 
 
 739 
 909 
 
 586 
 
 756 
 926 
 
 603 
 773 
 943 
 
 620 
 790 
 960 
 
 637 
 807 
 
 976 
 
 57 
 
 58 
 59 
 
 260 
 
 61 
 62 
 63 
 
 993 
 41 162 
 
 330 
 497 
 
 *OIO 
 
 179 
 347 
 
 *027 
 
 196 
 363 
 
 *o44 
 212 
 380 
 
 l47 
 
 *o6i 
 229 
 397 
 564 
 
 *o78 
 246 
 414 
 
 581 
 
 *o95 
 263 
 430 
 
 *iii 
 280 
 447 
 
 *I28 
 
 296 
 
 464 
 
 *i45 
 313 
 481 
 
 647 
 
 6 
 
 7 
 8 
 9 
 
 1 
 2 
 
 10.8 
 12.6 
 14.4 
 16.2 
 
 17 
 
 1.7 
 3.4 
 
 514 
 
 531 
 
 597 
 
 614 
 
 631 
 
 664 
 830 
 996 
 
 681 
 847 
 
 *OI2 
 
 697 
 863 
 
 *029 
 
 714 
 880 
 
 *o45 
 
 731 
 
 896 
 
 ♦062 
 
 747 
 
 913 
 
 *o78 
 
 764 
 
 929 
 *o95 
 
 780 
 
 946 
 
 *iii 
 
 797 
 963 
 
 *I27 
 
 814 
 
 979 
 
 *i44 
 
 64 
 65 
 66 
 
 42 160 
 
 325 
 488 
 
 177 
 341 
 504 
 
 193 
 
 357 
 521 
 
 210 
 374 
 537 
 
 226 
 390 
 553 
 
 406 
 570 
 
 259 
 423 
 586 
 
 275 
 439 
 602 
 
 292 
 
 455 
 619 
 
 308 
 472 
 635 
 
 3 
 4 
 
 
 5.1 
 6.8 
 S.5 
 
 67 
 
 68 
 69 
 
 270 
 
 71 
 72 
 73 
 
 651 
 813 
 975 
 
 667 
 830 
 991 
 
 684 
 
 846 
 
 ♦008 
 
 700 
 
 862 
 
 *024 
 
 716 
 
 878 
 
 *040 
 
 732 
 
 894 
 
 ♦056 
 
 217 
 
 749 
 911 
 
 *072 
 
 765 
 
 927 
 
 ♦088 
 
 781 
 
 943 
 
 *io4 
 
 797 
 959 
 
 *I20 
 
 6 
 
 7 
 8 
 9 
 
 1 
 2 
 
 10.2 
 11.9 
 13.6 
 15.3 
 
 10 
 
 1.6 
 3.2 
 
 43 136 
 
 152 
 
 169 
 
 185 
 
 201 
 
 233 
 
 249 
 
 265 
 
 281 
 
 297 
 457 
 616 
 
 313 
 
 473 
 632 
 
 329 
 489 
 648 
 
 345 
 505 
 664 
 
 361 
 521 
 680 
 
 377 
 537 
 696 
 
 393 
 553 
 712 
 
 409 
 569 
 727 
 
 425 
 584 
 743 
 
 441 
 600 
 
 759 
 
 74 
 75 
 76 
 
 775 
 
 933 
 
 44 091 
 
 791 
 949 
 107 
 
 807 
 965 
 122 
 
 823 
 981 
 
 138 
 
 838 
 996 
 154 
 
 854 
 
 *OI2 
 
 170 
 
 870 
 
 *028 
 
 185 
 
 886 
 
 *o44 
 
 201 
 
 902 
 
 *059 
 
 217 
 
 917 
 
 *o75 
 
 232 
 
 3 
 4 
 5 
 6 
 
 7 
 8 
 9 
 
 4.8 
 
 6.4 
 
 8.0 
 
 9.6 
 
 11.2 
 
 12.8 
 
 14.4 
 
 77 
 78 
 79 
 
 280 
 
 81 
 82 
 83 
 
 248 
 404 
 560 
 
 264 
 420 
 576 
 
 279 
 
 43^^ 
 592 
 
 295 
 451 
 607 
 
 467 
 623 
 
 326 
 
 483 
 638 
 
 342 
 498 
 654 
 
 358 
 
 514 
 669 
 
 373 
 
 529 
 
 685 
 
 389 
 545 
 700 
 
 716 
 
 731 
 
 747 
 
 762 
 
 778 
 
 793 
 
 809 
 
 824 
 
 840 
 
 855_ 
 
 *OIO 
 
 163 
 317 
 
 .. 1 
 
 871 
 
 45 025 
 
 179 
 
 886 
 040 
 194 
 
 902 
 056 
 209 
 
 917 
 071 
 
 225 
 
 932 
 086 
 240 
 
 948 
 102 
 
 255 
 
 963 
 117 
 271 
 
 979 
 133 
 
 286 
 
 994 
 148 
 301 
 
 1 
 2 
 
 15 
 
 1.5 
 3.0 
 
 84 
 85 
 86 
 
 332 
 484 
 637 
 
 347 
 500 
 652 
 
 362 
 
 515 
 667 
 
 378 
 
 530 
 682 
 
 393 
 545 
 697 
 
 408 
 561 
 712 
 
 423 
 576 
 728 
 
 439 
 591 
 743 
 
 454 
 606 
 
 758 
 
 469 
 621 
 773 
 
 3 
 
 4 
 5 
 6 
 
 4.5 
 6.0 
 7.5 
 9 
 
 87 
 88 
 89 
 
 290 
 
 91 
 92 
 93 
 
 788 
 
 939 
 46 090 
 
 803 
 
 954 
 105 
 
 818 
 969 
 120 
 
 834 
 984 
 135 
 
 849 
 *ooo 
 
 150 
 
 864 
 
 *oi5 
 
 165 
 
 879 
 
 894 
 
 *o45 
 
 195 
 
 909 
 
 *o6o 
 
 210 
 
 924 
 
 *o75 
 
 225 
 
 7 
 8 
 9 
 
 10.5 
 12.0 
 13.5 
 
 240 
 "389" 
 
 687 
 
 255 
 
 404 
 
 553 
 702 
 
 270 
 
 285 
 
 300 
 
 315 
 
 330 
 
 345 
 
 359 
 
 374 
 
 .. 1 
 
 419 
 568 
 716 
 
 434 
 583 
 731 
 
 449 
 598 
 746 
 
 464 
 613 
 761 
 
 479 
 627 
 776 
 
 494 
 642 
 790 
 
 509 
 
 657 
 805 
 
 672 
 820 
 
 1 
 2 
 3 
 4 
 5 
 6 
 
 J.* 
 
 1.4 
 2.8 
 
 94 
 
 95 
 96 
 
 835 
 
 982 
 
 47 129 
 
 850 
 
 997 
 144 
 
 864 
 
 *OI2 
 159 
 
 879 
 
 ♦026 
 
 173 
 
 894 
 
 *04i 
 
 188 
 
 909 
 
 *o56 
 
 202 
 
 923 
 
 *o7o 
 
 217 
 
 938 
 
 +085 
 
 232 
 
 953 
 
 *IOO 
 
 246 
 
 967 
 
 *ii4 
 
 261 
 
 4.2 
 5.6 
 70 
 
 8.4 
 
 97 
 98 
 99 
 
 300 
 
 276 
 422 
 567 
 
 290 
 436 
 582 
 
 305 
 
 451 
 596 
 
 319 
 465 
 611 
 
 334 
 
 480 
 625 
 
 770 
 
 349 
 494 
 640 
 
 784 
 
 363 
 509 
 654 
 
 799 
 
 378 
 524 
 669 
 
 I13 
 
 392 
 538 
 683 
 
 828 
 
 407 
 
 553 
 698 
 
 842 
 
 7 
 8 
 9 
 
 9.8 
 11.2 
 12.6 
 
 712 
 
 727 
 
 741 
 
 756 
 
 
 N. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
8 
 
 
 
 
 
 TABLE I 
 
 
 
 
 
 
 N. 
 
 
 
 1 
 
 2 
 
 9 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
 300 
 
 01 
 02 
 03 
 
 47 712 
 
 727 
 
 741 
 
 756 
 
 770 
 
 784 
 
 799 
 
 813 
 
 828 
 
 842 
 
 
 c^57 
 
 48 001 
 
 144 
 
 871 
 015 
 159 
 
 885 
 029 
 173 
 
 yoo 
 044 
 187 
 
 914 
 058 
 202 
 
 929 
 
 073 
 216 
 
 943 
 C87 
 230 
 
 958 
 
 lOI 
 
 244 
 
 972 
 116 
 259 
 
 986 
 130 
 273 
 
 
 15 
 
 04 
 Go 
 OG 
 
 287 
 
 430 
 572 
 
 302 
 
 444 
 586 
 
 316 
 458 
 601 
 
 330 
 
 473 
 615 
 
 344 
 487 
 629 
 
 359 
 643 
 
 373 
 657 
 
 387 
 
 401 
 
 544 
 686 
 
 416 
 558 
 700 
 
 1 
 2 
 3 
 
 1.5 
 3.0 
 4.5 
 
 07 
 08 
 09 
 
 310 
 
 11 
 12 
 13 
 
 996 
 
 728 
 869 
 
 *0I0 
 
 742 
 883 
 
 *024 
 
 756 
 
 897 
 
 *o38 
 
 770 
 
 911 
 
 ♦052 
 
 785 
 
 926 
 
 *o66 
 
 799 
 
 940 
 
 *o8o 
 
 813 
 954 
 
 *094 
 
 827 
 
 968 
 *io8 
 
 841 
 982 
 
 *I22 
 
 4 
 5 
 6 
 
 7 
 8 
 9 
 
 6.0 
 
 7.5 
 
 9.0 
 
 10.5 
 
 12.0 
 
 13.6 
 
 49 136 
 
 150 
 
 164 
 
 178 
 
 192 
 
 206 
 
 220 
 
 234 
 
 248 
 
 262 
 402 
 
 541 
 679 
 
 276 
 415 
 554 
 
 290 
 429 
 568 
 
 304 
 
 443 
 582 
 
 318 
 457 
 596 
 
 332 
 471 
 610 
 
 346 
 485 
 624 
 
 3^ 
 638 
 
 374 
 513 
 651 
 
 388 
 527 
 665 
 
 14 
 15 
 16 
 
 693 
 831 
 969 
 
 707 
 
 721 
 
 859 
 996 
 
 734 
 872 
 
 *OIO 
 
 748 
 886 
 
 *024 
 
 762 
 
 900 
 
 *o37 
 
 776 
 
 914 
 
 ♦051 
 
 790 
 
 927 
 
 *o65 
 
 803 
 
 941 
 
 *o79 
 
 817 
 
 955 
 ♦092 
 
 1 
 
 14 
 
 1.4 
 
 17 
 
 18 
 19 
 
 320 
 
 21 
 22 
 23 
 
 50 106 
 243 
 379 
 
 515 
 
 120 
 256 
 393 
 529 
 
 133 
 270 
 406 
 
 284 
 420 
 
 161 
 297 
 
 433 
 
 174 
 311 
 
 447 
 
 188 
 
 325 
 461 
 
 202 
 338 
 474 
 
 215 
 352 
 
 229 
 
 365 
 501 
 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 2.8 
 4.2 
 5.6 
 7.0 
 8.4 
 9.8 
 11.2 
 12.6 
 
 542 
 
 556 
 
 569 
 
 583 
 
 596 
 
 610 
 
 623 
 
 637 
 
 651 
 786 
 920 
 
 664 
 799 
 934 
 
 678 
 813 
 947 
 
 691 
 826 
 961 
 
 705 
 840 
 974 
 
 718 
 
 853 
 987 
 
 732 
 866 
 
 *OOI 
 
 745 
 
 880 
 
 *oi4 
 
 759 
 893 
 
 *028 
 
 772 
 
 907 
 
 *04i 
 
 24 
 25 
 26 
 
 51 055 
 188 
 322 
 
 068 
 202 
 335 
 
 081 
 215 
 348 
 
 095 
 228 
 362 
 
 108 
 242 
 375 
 
 121 
 
 255 
 388 
 
 135 
 
 268 
 402 
 
 148 
 282 
 415 
 
 162. 
 
 255 
 428 
 
 175 
 
 308 
 
 441- 
 
 
 27 
 28 
 29 
 
 830 
 
 31 
 32 
 33 
 
 455 
 587 
 720 
 
 468 
 601 
 733 
 
 481 
 614 
 746 
 
 495 
 627 
 
 759 
 
 508 
 640 
 
 772 
 
 654 
 786 
 
 534 
 667 
 
 799 
 
 548 
 680 
 812 
 
 693 
 825 
 
 574 
 706 
 838 
 
 1 
 2 
 3 
 
 4 
 5 
 6 
 
 7 
 
 13 
 
 1.3 
 2.6 
 3.9 
 
 5.2 
 6.5 
 7.8 
 9.1 
 
 851 
 
 865 
 
 878 
 
 891 
 
 904 
 
 917 
 
 930 
 
 943 
 
 957 
 
 970 
 
 983 
 
 52 114 
 
 244 
 
 996 
 127 
 257 
 
 *oo9 
 140 
 270 
 
 *022 
 
 III 
 
 *o35 
 166 
 297 
 
 *048 
 179 
 310 
 
 *o6i 
 192 
 323 
 
 *o75 
 205 
 336 
 
 *o88 
 218 
 349 
 
 *IOI 
 
 231 
 362 
 
 34 
 35 
 36 
 
 375 
 504 
 
 634 
 
 388 
 
 517 
 647 
 
 401 
 
 530 
 660 
 
 414 
 
 543 
 673 
 
 427 
 lit 
 
 440 
 569 
 699 
 
 453 
 582 
 711 
 
 466 
 
 595 
 
 724 
 
 479 
 608 
 
 737 
 
 492 
 621 
 750 
 
 8 
 9 
 
 10.4 
 11.7 
 
 37 
 
 38 
 39 
 
 340 
 
 41 
 42 
 43 
 
 763 
 
 892 
 
 53 020 
 
 148 
 
 776 
 905 
 033 
 
 789 
 917 
 046 
 
 802 
 930 
 058 
 
 815 
 943 
 071 
 
 827 
 956 
 084 
 
 840 
 969 
 097 
 
 853 
 982 
 no 
 
 866 
 
 994 
 122 
 
 879 
 *oo7 
 
 135 
 
 1 
 2 
 3 
 4 
 5 
 
 12 
 
 1.2 
 2.4 
 3.6 
 4.8 
 6 
 
 161 
 
 173 
 
 186 
 
 199 
 
 212 
 
 224 
 
 237 
 
 250 
 
 263 
 
 275 
 403 
 529 
 
 288 
 
 415 
 542 
 
 301 
 428 
 555 
 
 314 
 441 
 
 567 
 
 326 
 
 453 
 580 
 
 339 
 466 
 
 593 
 
 352 
 
 479 
 605 
 
 364 
 491 
 618 
 
 377 
 504 
 631 
 
 390 
 643 
 
 44 
 45 
 46 
 
 656 
 782 
 908 
 
 668 
 
 794 
 920 
 
 681 
 807 
 933 
 
 694 
 820 
 945 
 
 706 
 832 
 958 
 
 719 
 
 845 
 970 
 
 732 
 
 7s 
 
 744 
 870 
 
 995 
 
 757 
 
 882 
 
 *cx)8 
 
 769 
 895 
 
 *020 
 
 6 
 
 7 
 8 
 
 7.2 
 8.4 
 9.6 
 
 47 
 48 
 49 
 
 350 
 
 54 033 
 158 
 283 
 
 045 
 170 
 
 295 
 
 058 
 183 
 307 
 
 070 
 
 195 
 320 
 
 083 
 208 
 332 
 
 095 
 220 
 345 
 
 108 
 233 
 
 357 
 
 120 
 
 245 
 370 
 
 i 
 
 145 
 
 270 
 
 394 
 
 9 
 
 10.8 
 
 407 
 
 419 
 
 432 
 
 444 
 
 456 
 
 469 
 
 481 
 
 494 
 
 506 
 
 518 
 
 
 N. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 s 
 
 9 
 
 Prop. Pts. 
 

 
 
 LOGARITHMS OF NUMBERS 
 
 
 
 9 
 
 N. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 S 
 
 9 
 
 Prop. Pts. 
 
 350 
 
 61 
 52 
 53 
 
 54 407 
 
 419 
 
 432 
 
 444 
 
 456 
 
 469 
 
 481 
 
 494 
 
 506 
 
 518 
 
 
 531 
 654 
 777 
 
 543 
 667 
 790 
 
 555 
 679 
 802 
 
 568 
 691 
 814 
 
 580 
 704 
 827 
 
 716 
 839 
 
 605 
 728 
 851 
 
 617 
 
 741 
 864 
 
 630 
 
 753 
 876 
 
 642 
 765 
 888 
 
 
 13 
 
 54 
 55 
 56 
 
 900 
 
 55 023 
 
 145 
 
 913 
 035 
 
 157 
 
 925 
 047 
 169 
 
 937 
 060 
 182 
 
 949 
 072 
 194 
 
 962 
 084 
 206 
 
 974 
 096 
 218 
 
 986 
 108 
 230 
 
 998 
 121 
 242 
 
 *oii 
 133 
 255 
 
 1 
 2 
 3 
 
 1.3 
 2.6 
 3.9 
 
 57 
 58 
 59 
 
 360 
 
 61 
 62 
 63 
 
 267 
 388 
 509 
 
 279 
 400 
 522 
 
 291 
 413 
 534 
 
 303 
 425 
 546 
 
 315 
 437 
 558 
 
 328 
 
 449 
 570 
 
 691 
 
 340 
 461 
 582 
 
 352 
 
 473 
 594 
 
 364 
 
 376 
 497 
 618 
 
 4 
 5 
 6 
 7 
 8 
 9 
 
 5.2 
 6.5 
 7.8 
 9.1 
 10.4 
 11.7 
 
 630 
 
 871 
 991 
 
 642 
 
 654 
 
 666 
 
 678 
 
 703 
 
 715 
 
 727 
 
 739 
 
 763 
 
 883 
 
 *oo3 
 
 775 
 
 895 
 
 *oi5 
 
 787 
 907 
 
 *027 
 
 799 
 
 919 
 
 *o38 
 
 811 
 
 931 
 *o5o 
 
 823 
 
 943 
 *o62 
 
 835 
 
 955 
 
 *o74 
 
 847 
 
 967 
 
 ♦086 
 
 859 
 
 979 
 ♦098 
 
 64 
 65 
 66 
 
 56 no 
 229 
 348 
 
 122 
 241 
 360 
 
 134 
 253 
 372 
 
 146 
 265 
 384 
 
 158 
 
 277 
 
 .396 
 
 170 
 289 
 407 
 
 182 
 301 
 419 
 
 194 
 312 
 431 
 
 205 
 324 
 443 
 
 217 
 336 
 455 
 
 1 
 
 12 
 
 1.2 
 
 67 
 68 
 69 
 
 370 
 
 71 
 72 
 73 
 
 467 
 
 585 
 703 
 
 478 
 597 
 714 
 
 490 
 608 
 726 
 
 502 
 620 
 738 
 
 5H 
 632 
 750 
 
 526 
 
 644 
 761 
 
 656 
 773 
 
 549 
 667 
 
 785 
 
 561 
 679 
 797 
 
 573 
 691 
 808 
 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 2.4 
 3.6 
 4.8 
 6.0 
 7.2 
 8.4 
 9.6 
 10.8 
 
 820 
 
 832 
 
 844 
 
 855 
 
 867 
 
 879 
 
 891 
 
 902 
 
 914 
 
 +031 
 
 148 
 
 264 
 
 926 
 
 *043 
 
 159 
 276 
 
 937 
 
 57 054 
 
 171 
 
 949 
 066 
 183 
 
 961 
 078 
 194 
 
 972 
 089 
 206 
 
 984 
 
 lOI 
 
 217 
 
 996 
 
 113 
 229 
 
 *oo8 
 124 
 241 
 
 *oi9 
 136 
 252 
 
 74 
 75 
 76 
 
 287 
 403 
 519 
 
 299 
 
 415 
 530 
 
 310 
 
 426 
 
 542 
 
 322 
 438 
 553 
 
 334 
 449 
 565 
 
 461 
 576 
 
 357 
 473 
 588 
 
 368 
 
 484 
 600 
 
 380 
 496 
 611 
 
 392 
 507 
 623 
 
 
 77 
 78 
 79 
 
 380 
 
 81 
 82 
 83 
 
 634 
 
 749 
 864 
 
 978 
 
 646 
 761 
 875 
 
 657 
 772 
 887 
 
 669 
 
 784 
 898 
 
 680 
 
 795 
 910 
 
 692 
 807 
 921 
 
 703 
 818 
 
 933 
 
 830 
 944 
 
 726 
 841 
 955 
 
 852 
 
 967 
 
 *o8i 
 
 195 
 309 
 422 
 
 1 
 2 
 3 
 4 
 
 5 
 6 
 7 
 
 11 
 
 1.1 
 2.2 
 3.3 
 4.4 
 5.5 
 6.6 
 7.7 
 
 990 
 
 *OOI 
 
 *oi3 
 
 *024 
 
 *o35 
 
 *047 
 
 ♦058 
 
 ♦070 
 
 58 092 
 206 
 320 
 
 104 
 218 
 331 
 
 115 
 229 
 
 343 
 
 127 
 240 
 354 
 
 138 
 
 252 
 
 365 
 
 149 
 26^ 
 377 
 
 161 
 
 274 
 388 
 
 172 
 286 
 399 
 
 184 
 297 
 410 
 
 84 
 85 
 86 
 
 433 
 546 
 659 
 
 444 
 557 
 670 
 
 456 
 569 
 681 
 
 467 
 580 
 692 
 
 478 
 
 591 
 704 
 
 490 
 602 
 715 
 
 501 
 
 614 
 726 
 
 512 
 625 
 737 
 
 524 
 636 
 
 749 
 
 647 
 760 
 
 8 
 9 
 
 8.8 
 9.9 
 
 87 
 88 
 89 
 
 390 
 
 91 
 92 
 93 
 
 771 
 
 883 
 
 995 
 
 59 106 
 
 782 
 
 894 
 *oo6 
 
 T18 
 
 794 
 
 906 
 
 *oi7 
 
 805 
 917 
 
 *028 
 
 816 
 
 928 
 
 ♦040 
 
 827 
 
 939 
 ♦051 
 
 838 
 
 950 
 
 *o62 
 
 850 
 
 961 
 
 ♦073 
 
 861 
 
 973 
 ♦084 
 
 872 
 
 984 
 
 ♦095 
 
 1 
 2 
 3 
 4 
 5 
 
 10 
 
 1.0 
 2.0 
 3.0 
 4.0 
 5 
 
 129 
 
 140 
 
 151 
 
 162 
 
 173 
 
 184 
 
 195 
 
 207 
 
 318 
 428 
 
 539 
 
 218 
 329 
 439 
 
 229 
 340 
 450 
 
 240 
 461 
 
 362 
 472 
 
 262 
 
 373 
 483 
 
 273 
 384 
 494 
 
 284 
 
 395 
 506 
 
 7J> 
 
 517 
 
 306 
 
 417 
 528 
 
 94 
 95 
 96 
 
 550 
 660 
 770 
 
 671 
 780 
 
 572 
 682 
 
 791 
 
 693 
 802 
 
 594 
 704 
 
 813 
 
 605 
 824 
 
 616 
 726 
 835 
 
 627 
 
 737 
 846 
 
 638 
 748 
 857 
 
 649 
 
 6 
 7 
 
 8 
 
 6.0 
 7.0 
 8.0 
 
 97 
 98 
 99 
 
 400 
 
 N. 
 
 60 097 
 
 "206 
 
 890 
 ?o1 
 
 901 
 
 *OIO 
 
 119 
 
 912 
 
 *02I 
 130 
 
 923 
 
 ♦032 
 
 141 
 
 934 
 
 *o43 
 
 152 
 
 945 
 
 "054 
 
 163 
 
 956 
 
 *o65 
 
 173 
 
 966 
 
 +076 
 
 184 
 
 977 
 *o86 
 
 195 
 
 9 
 
 9.0 
 
 217 
 
 228 
 
 239 
 
 249 
 
 260 
 
 271 
 
 282 
 
 293 
 
 304 
 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 
 
 7 
 
 S 
 
 9 
 
 Prop. Pts. 
 
10 
 
 
 
 
 
 TABLE I 
 
 
 
 
 
 
 N. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 S 
 
 9 
 
 Prop. Pta. 
 
 400 
 
 01 
 02 
 03 
 
 6o 2o6 
 
 217 
 
 228 
 
 239 
 
 249 
 
 260 
 
 271 
 
 282 
 
 293 
 
 304 
 
 
 3H 
 423 
 
 531 
 
 325 
 433 
 541 
 
 336 
 
 444 
 552 
 
 347 
 455 
 563 
 
 358 
 466 
 
 574 
 
 369 
 477 
 584 
 
 379 
 487 
 595 
 
 390 
 498 
 606 
 
 401 
 509 
 617 
 
 412 
 520 
 627 
 
 04 
 05 
 06 
 
 638 
 746 
 853 
 
 649 
 
 756 
 863 
 
 660 
 
 767 
 874 
 
 670 
 778 
 885 
 
 681 
 788 
 895 
 
 692 
 
 799 
 906 
 
 703 
 810 
 
 917 
 
 713 
 
 82 F 
 927 
 
 724 
 83/ 
 938 
 
 P5 
 842 
 
 949 
 
 
 11 
 
 07 
 
 08 
 09 
 
 410 
 
 11 
 12 
 13 
 
 959 
 
 61 066 
 
 172 
 
 970 
 077 
 183 
 
 981 
 087 
 194 
 
 991 
 098 
 204 
 
 *002 
 109 
 215 
 
 *oi3 
 119 
 225 
 
 ♦023 
 130 
 236 
 
 *034 
 140 
 
 247 
 
 *o45 
 151 
 
 257 
 
 *o55 
 162 
 268 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 
 1.1 
 2.2 
 3.3 
 4.4 
 5.5 
 6.6 
 7.7 
 8.8 
 
 278 
 
 289 
 
 300 
 
 310 
 
 321 
 
 331 
 
 342 
 
 352 
 
 363 
 
 374 
 
 384 
 490 
 595 
 
 395 
 500 
 606 
 
 405 
 
 511 
 616 
 
 416 
 521 
 627 
 
 426 
 532 
 637 
 
 437 
 542 
 648 
 
 448 
 
 553 
 658 
 
 458 
 563 
 669 
 
 469 
 
 574 
 679 
 
 479 
 584 
 690 
 
 14 
 15 
 16 
 
 700 
 805 
 909 
 
 711 
 815 
 920 
 
 721 
 826 
 930 
 
 731 
 836 
 941 
 
 742 
 847 
 951 
 
 752 
 857 
 962 
 
 763 
 868 
 972 
 
 773 
 878 
 982 
 
 784 
 888 
 993 
 
 794 
 
 899 
 
 *cx)3 
 
 9 
 
 9.9 
 
 17 
 18 
 19 
 
 420 
 
 21 
 22 
 23 
 
 62 014 
 
 118 
 221 
 
 024 
 128 
 232 
 
 034 
 138 
 
 242 
 
 045 
 149 
 252 
 
 055 
 159 
 263 
 
 066 
 170 
 273 
 
 076 
 180 
 284 
 
 086 
 190 
 294 
 
 097 
 201 
 304 
 
 107 
 211 
 315 
 
 
 325 
 
 335 
 
 346 
 
 356 
 
 366 
 
 377 
 
 387 
 
 397 
 
 408 
 
 418 
 
 428 
 634 
 
 439 
 542 
 644 
 
 449 
 655 
 
 459 
 665 
 
 469 
 
 572 
 675 
 
 480 
 
 583 
 685 
 
 490 
 
 593 
 696 
 
 500 
 603 
 706 
 
 613 
 716 
 
 521 
 624 
 726 
 
 1 
 2 
 
 1.0 
 2.0 
 
 24 
 25 
 26 
 
 737 
 839 
 941 
 
 747 
 849 
 951 
 
 757 
 859 
 961 
 
 767 
 870 
 972 
 
 778 
 880 
 982 
 
 788 
 890 
 992 
 
 798 
 900 
 
 *002 
 
 808 
 910 
 
 *OI2 
 
 818 
 921 
 
 *022 
 
 829 
 
 931 
 
 *o33 
 
 3 
 4 
 5 
 6 
 
 3.0 
 4.0 
 5.0 
 6 
 
 27 
 28 
 29 
 
 430 
 
 31 
 32 
 33 
 
 63 043 
 144 
 
 246 
 
 053 
 
 155 
 256 
 
 063 
 165 
 266 
 
 073 
 175 
 276 
 
 083 
 185 
 286 
 
 094 
 
 195 
 296 
 
 104 
 205 
 306 
 
 114 
 215 
 317 
 
 124 
 225 
 327 
 
 134 
 236 
 
 337 
 
 7 
 8 
 9 
 
 7.0 
 8.0 
 9.0 
 
 347 
 
 357 
 
 367 
 
 377 
 
 387 
 
 397 
 
 407 
 
 417 
 
 428 
 
 438 
 
 639 
 739 
 
 
 448 
 548 
 649 
 
 458 
 659 
 
 468 
 568 
 669 
 
 478 
 
 579 
 679 
 
 488 
 589 
 689 
 
 498 
 
 599 
 699 
 
 508 
 609 
 709 
 
 619 
 
 719 
 
 629 
 729 
 
 34 
 35 
 36 
 
 749 
 849 
 
 949 
 
 759 
 859 
 959 
 
 769 
 869 
 969 
 
 779 
 879 
 979 
 
 789 
 889 
 988 
 
 799 
 899 
 
 998 
 
 809 
 909 
 
 *oo8 
 
 819 
 919 
 
 *oi8 
 
 829 
 
 929 
 
 *028 
 
 839 
 
 939 
 *038 
 
 
 9 
 
 37 
 
 38 
 39 
 
 440 
 
 41 
 42 
 43 
 
 64 048 
 
 147 
 246 
 
 058 
 
 157 
 256 
 
 068 
 167 
 266 
 
 078 
 177 
 276 
 
 088 
 187 
 286 
 
 098 
 197 
 296 
 
 108 
 207 
 306 
 
 118 
 217 
 316 
 
 128 
 227 
 
 326 
 
 137 
 237 
 335 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 
 0.9 
 1.8 
 
 2.7 
 3.6 
 4.5 
 5.4 
 6 3 
 7.2 
 
 345 
 
 355 
 
 365 
 
 375 
 
 385 
 
 395 
 
 404 
 
 414 
 
 424 
 
 434 
 
 444 
 542 
 640 
 
 454 
 650 
 
 464 
 562 
 660 
 
 473 
 572 
 670 
 
 483 
 582 
 680 
 
 493 
 591 
 689 
 
 503 
 601 
 699 
 
 611 
 709 
 
 621 
 
 719 
 
 532 
 631 
 729 
 
 44 
 45 
 46 
 
 738 
 836 
 
 933 
 
 748 
 846 
 
 943 
 
 758 
 856 
 
 953 
 
 768 
 865 
 963 
 
 777 
 875 
 972 
 
 787 
 885 
 982 
 
 797 
 895 
 992 
 
 807 
 
 904 
 
 *002 
 
 816 
 914 
 
 826 
 
 924 
 
 ♦021 
 
 9 
 
 8.1 
 
 47 
 
 48 
 49 
 
 450 
 
 65 031 
 128 
 225 
 
 040 
 137 
 234 
 
 050 
 
 147 
 244 
 
 060 
 
 157 
 254 
 
 070 
 167 
 263 
 
 079 
 176 
 273 
 369 
 
 089 
 186 
 283 
 
 099 
 196 
 292 
 
 108 
 205 
 302 
 
 118 
 
 215 
 312 
 
 408 
 
 
 321 
 
 331 
 
 341 
 
 350 
 
 360 
 
 379 
 
 389 
 
 398 
 
 N. 
 
 
 
 i 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 § 
 
 
 
 Prop. Pts. 
 
LOGARITHMS OF NUMBERS 
 
 11 
 
 N. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
 450 
 
 51 
 52 
 53 
 
 65 321 
 
 331 
 
 341 
 
 350 
 
 360 
 
 369 
 
 379 
 
 389 
 
 398 
 
 408 
 
 
 418 
 
 514 
 610 
 
 427 
 
 523 
 619 
 
 437 
 533 
 629 
 
 447 
 543 
 639 
 
 456 
 552 
 648 
 
 466 
 562 
 658 
 
 475 
 571 
 667 
 
 485 
 581 
 677 
 
 495 
 
 504 
 600 
 696 
 
 54 
 55 
 56 
 
 706 
 801 
 896 
 
 811 
 906 
 
 725 
 820 
 916 
 
 734 
 830 
 
 925 
 
 744 
 839 
 935 
 
 753 
 849 
 944 
 
 763 
 858 
 954 
 
 772 
 868 
 963 
 
 782 
 877 
 
 973 
 
 792 
 887 
 982 
 
 
 10 
 
 57 
 
 58 
 59 
 
 4G0 
 
 61 
 62 
 63 
 
 992 
 
 66 087 
 
 181 
 
 276 
 
 *OOI 
 
 096 
 
 191 
 
 *OII 
 
 106 
 200 
 
 *020 
 
 115 
 210 
 
 *o3o 
 124 
 219 
 
 *039 
 134 
 229 
 
 *o49 
 
 143 
 238 
 
 ♦058 
 
 153 
 247 
 
 *o68 
 162 
 257 
 
 *o77 
 172 
 266 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 
 1.0 
 2.0 
 3.0 
 4.0 
 5.0 
 6.0 
 7.0 
 8.0 
 
 285 
 
 295 
 
 304 
 
 3H 
 
 408 
 502 
 596 
 
 323 
 
 332 
 
 342 
 
 351 
 
 361 
 
 455 
 549 
 642 
 
 370 
 464 
 558 
 
 380 
 
 474 
 567 
 
 389 
 483 
 
 577 
 
 398 
 492 
 586 
 
 417 
 
 427 
 521 
 614 
 
 436 
 
 530 
 624 
 
 445 
 633 
 
 64 
 65 
 66 
 
 652 
 
 745 
 839 
 
 661 
 
 755 
 848 
 
 671 
 764 
 
 857 
 
 680 
 
 773 
 867 
 
 689 
 
 783 
 876 
 
 699 
 
 792 
 885 
 
 708 
 801 
 894 
 
 717 
 811 
 904 
 
 727 
 820 
 
 913 
 
 736 
 829 
 922 
 
 9 
 
 9.0 
 
 67 
 
 68 
 69 
 
 470 
 
 71 
 72 
 73 
 
 932 
 
 67 025 
 
 117 
 
 941 
 034 
 127 
 
 950 
 
 043 
 136 
 
 960 
 052 
 145 
 
 969 
 062 
 154 
 
 978 
 071 
 164 
 
 987 
 080 
 173 
 
 997 
 089 
 182 
 
 *oo6 
 099 
 191 
 
 201 
 
 
 210 
 
 219 
 
 228 
 
 237 
 
 247 
 
 256 
 
 265 
 
 274 
 
 284 
 
 293 
 
 1 
 2 
 3 
 4 
 6 
 6 
 
 9 
 
 0.9 
 
 1.8 
 2.7 
 3.6 
 4.5 
 5.4 
 
 302 
 486- 
 
 311 
 403 
 495 
 
 321 
 413 
 504 
 
 330 
 422 
 
 514 
 
 339 
 431 
 523 
 
 348 
 440 
 532 
 
 357 
 449 
 541 
 
 367 
 459 
 550 
 
 376 
 468 
 560 
 
 385 
 477 
 569 
 
 74 
 75 
 76 
 
 578 
 669 
 761 
 
 587 
 679 
 770 
 
 596 
 688 
 779 
 
 605 
 697 
 78S 
 
 614 
 706 
 
 797 
 
 624 
 
 715 
 806 
 
 633 
 724 
 
 815 
 
 642 
 733 
 825 
 
 651 
 742 
 834 
 
 660 
 752 
 843 
 
 77 
 78 
 79 
 
 480 
 
 81 
 82 
 83 
 
 852 
 68 034 
 
 861 
 952 
 043 
 
 870 
 961 
 052 
 
 879 
 970 
 061 
 
 888 
 
 979 
 070 
 
 897 
 988 
 079 
 
 906 
 
 997 
 088 
 
 916 
 
 *oo6 
 
 097 
 
 925 
 
 *oi5 
 
 106 
 
 934 
 
 *024 
 
 115 
 
 7 
 8 
 9 
 
 6.3 
 7.2 
 8.1 
 
 124 
 215 
 305 
 395 
 
 133 
 
 142 
 
 151 
 
 160 
 
 169 
 
 178 
 
 187 
 
 196 
 
 205 
 
 
 224 
 
 314 
 
 404 
 
 233 
 323 
 413 
 
 242 
 332 
 422 
 
 251 
 341 
 431 
 
 260 
 
 350 
 440 
 
 269 
 359 
 449 
 
 278 
 368 
 458 
 
 287 
 377 
 467 
 
 296 
 386 
 476 
 
 84 
 85 
 
 86 
 
 485 
 574 
 664 
 
 673 
 
 502 
 592 
 681 
 
 511 
 601 
 690 
 
 520 
 610 
 699 
 
 529 
 
 538 
 628 
 717 
 
 547 
 637 
 726 
 
 Pi 
 646 
 
 735 
 
 655 
 
 744 
 
 
 8 
 
 87 
 88 
 89 
 
 490 
 
 91 
 92 
 93 
 
 753 
 842 
 
 931 
 
 762 
 851 
 940 
 
 771 
 860 
 949 
 
 780 
 869 
 958 
 
 878 
 966 
 
 797 
 886 
 
 975 
 
 806 
 895 
 984 
 
 815 
 904 
 993 
 
 824 
 913 
 
 *002 
 
 833 
 
 922 
 
 *9ii 
 
 1 
 2 
 3 
 4 
 
 5 
 6 
 7 
 8 
 
 0.8 
 1.6 
 2.4 
 3.2 
 4.0 
 4.8 
 5.6 
 6.4 
 
 69 020 
 
 028 
 
 037 
 
 046 
 
 055 
 
 064 
 
 073 
 
 082 
 
 090 
 
 099 
 
 108 
 197 
 285 
 
 117 
 
 205 
 
 294 
 
 126 
 214 
 302 
 
 135 
 223 
 
 311 
 
 144 
 232 
 320 
 
 152 
 241 
 329 
 
 161 
 249 
 338 
 
 170 
 258 
 346 
 
 179 
 
 267 
 
 355 
 
 188 
 
 276 
 364 
 
 94 
 95 
 96 
 
 373 
 461 
 
 548 
 
 469 
 557 
 
 390 
 
 478 
 566 
 
 399 
 487 
 574 
 
 408 
 
 417 
 504 
 
 592 
 
 425 
 513 
 601 
 
 434 
 522 
 609 
 
 443 
 
 452 
 627 
 
 9 
 
 7.2 
 
 97 
 
 98 
 99 
 
 500 
 
 636 
 
 723 
 810 
 
 644 
 732 
 819 
 
 653 
 
 740 
 827 
 
 662 
 
 749 
 836 
 
 671 
 758 
 845 
 932 
 
 679 
 767 
 854 
 
 688 
 
 775 
 862 
 
 697 
 784 
 871 
 
 705 
 III 
 
 714 
 801 
 888 
 
 
 897 
 
 906 
 
 914 
 
 923 
 
 940 
 
 949 
 
 958 
 
 966 
 
 975 
 
 N. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
12 
 
 TABLE I 
 
 N. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
 600 
 
 01 
 02 
 03 
 
 69 897 
 
 984 
 
 70 070 
 157 
 
 906 
 
 914 
 
 923 
 
 932 
 
 940 
 
 949 
 
 958 
 
 966 
 
 975 
 
 
 992 
 079 
 165 
 
 *OOI 
 
 088 
 174 
 
 *OIO 
 
 096 
 183 
 
 *oi8 
 105 
 191 
 
 *027 
 
 114 
 
 200 
 
 ♦036 
 122 
 209 
 
 *044 
 131 
 217 
 
 *o53 
 140 
 226 
 
 *o62 
 148 
 234 
 
 04 
 05 
 06 
 
 243 
 329 
 
 415 
 
 252 
 338 
 424 
 
 260 
 346 
 432 
 
 269 
 
 355 
 441 
 
 278 
 364 
 449 
 
 286 
 
 458 
 
 295 
 467 
 
 303 
 389 
 
 475 
 
 312 
 
 321 
 406 
 492 
 
 
 9 
 
 07 
 08 
 09 
 
 510 
 
 11 
 12 
 13 
 
 501 
 586 
 672 
 
 757 
 
 842 
 
 927 
 
 71 012 
 
 509 
 
 595 
 680 
 
 518 
 603 
 689 
 
 612 
 697 
 
 P5 
 621 
 
 706 
 791 
 876 
 961 
 046 
 
 544 
 629 
 
 714 
 
 800 
 
 552 
 638 
 
 723 
 
 808 
 
 561 
 646 
 731 
 
 569 
 
 655 
 740 
 
 578 
 663 
 749 
 
 1 
 2 
 3 
 4 
 5 
 3 
 7 
 8 
 
 0.9 
 1.8 
 
 2.7 
 3 6 
 4.5 
 0.4 
 6.3 
 7.2 
 
 766 
 851 
 
 935 
 020 
 
 774 
 
 859 
 
 944 
 029 
 
 783 
 868 
 952 
 037 
 
 817 
 
 825 
 
 834 
 
 885 
 969 
 054 
 
 893 
 978 
 063 
 
 902 
 986 
 071 
 
 910 
 
 995 
 079 
 
 919 
 
 *oo3 
 
 088 
 
 U 
 15 
 16 
 
 265 
 
 105 
 189 
 273 
 
 "3 
 
 282 
 
 122 
 
 206 
 290 
 
 130 
 214 
 299 
 
 139 
 223 
 
 307 
 
 147 
 231 
 
 315 
 
 i9'5 
 240 
 
 324 
 
 248 
 
 332 
 
 172 
 257 
 341 
 
 9 
 
 8.1 
 
 17 
 
 18 
 19 
 
 520 
 
 21 
 22 
 23 
 
 349 
 433 
 517 
 
 357 
 441 
 
 525 
 
 366 
 450 
 533 
 
 374 
 458 
 542 
 
 383 
 466 
 
 550 
 
 391 
 475 
 559 
 
 399 
 
 483 
 
 567 
 
 408 
 
 492 
 
 575 
 
 416 
 500 
 584 
 
 592 
 
 8 
 
 10.8 
 21.6 
 
 600 
 
 684 
 767 
 850 
 
 609 
 
 617 
 
 625 
 
 634 
 
 642 
 
 650 
 
 659 
 
 667 
 
 675 
 
 692 
 
 775 
 858 
 
 700 
 784 
 867 
 
 709 
 792 
 875 
 
 717 
 800 
 883 
 
 725 
 809 
 892 
 
 734 
 817 
 900 
 
 742 
 825 
 908 
 
 750 
 
 834 
 917 
 
 759 
 842 
 925 
 
 24 
 25 
 
 26 
 
 933 
 
 72 016 
 
 099 
 
 941 
 024 
 107 
 
 950 
 032 
 115 
 
 958 
 041 
 123 
 
 966 
 049 
 132 
 
 975 
 057 
 140 
 
 983 
 066 
 148 
 
 991 
 074 
 156 
 
 999 
 082 
 
 165 
 
 *oo8 
 090 
 
 173 
 
 
 4 
 5 
 6 
 
 3.2 
 4.0 
 
 4.8 
 
 27 
 
 28 
 29 
 
 530 
 
 31 
 32 
 33 
 
 181 
 263 
 346 
 428 
 
 189 
 272 
 354 
 
 198 
 280 
 362 
 
 206 
 288 
 370 
 
 214 
 296 
 378 
 
 222 
 304 
 387 
 
 230 
 313 
 395 
 
 239 
 321 
 
 403 
 
 247 
 329 
 411 
 
 255 
 337 
 419 
 
 7 
 8 
 9 
 
 5.6 
 6.4 
 7.2 
 
 436 
 
 444 
 
 452 
 
 460 
 
 469 
 
 477 
 
 485 
 
 493 
 
 501 
 
 
 509 
 591 
 673 
 
 518 
 
 599 
 681 
 
 607 
 689 
 
 534 
 616 
 
 697 
 
 1^^ 
 624 
 
 705 
 
 550 
 632 
 
 713 
 
 558 
 640 
 722 
 
 567 
 648 
 
 730 
 
 575 
 656 
 
 738 
 
 583 
 665 
 746 
 
 34 
 35 
 36 
 
 ^54 
 835 
 916 
 
 762 
 
 843 
 925 
 
 770 
 852 
 933 
 
 779 
 860 
 941 
 
 787 
 868 
 
 949 
 
 795 
 876 
 
 957 
 
 803 
 884 
 965 
 
 811 
 
 892 
 973 
 
 819 
 900 
 981 
 
 827 
 908 
 989 
 
 
 7 
 
 37 
 
 38 
 39 
 
 540 
 
 41 
 42 
 43 
 
 997 
 
 73 078 
 
 159 
 
 239 
 
 *oo6 
 086 
 107 
 
 *oi4 
 094 
 175 
 
 *022 
 102 
 183 
 
 ♦030 
 III 
 191 
 
 *o38 
 119 
 199 
 
 *o46 
 127 
 207 
 
 *o54 
 
 135 
 215 
 
 *o62 
 
 143 
 223 
 
 ♦070 
 
 151 
 231 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 
 0.7 
 1.4 
 2.1 
 2.8 
 3.5 
 4.2 
 4.9 
 5 6 
 
 247 
 
 255 
 
 263 
 
 272 
 
 280 
 
 288 
 
 296 
 
 304 
 
 312 
 
 320 
 400 
 480 
 
 328 
 408 
 488 
 
 336 
 416 
 496 
 
 344 
 424 
 504 
 
 352 
 432 
 512 
 
 360 
 440 
 520 
 
 368 
 448 
 528 
 
 376 
 456 
 536 
 
 384 
 
 464 
 
 544 
 
 392 
 
 472 
 
 552 
 
 44 
 
 45 
 46 
 
 560 
 719 
 
 568 
 648 
 727 
 
 576 
 656 
 
 735 
 
 584 
 664 
 
 743 
 
 592 
 672 
 751 
 
 600 
 679 
 759 
 
 608 
 687 
 
 767 
 
 616 
 695 
 775 
 
 624 
 703 
 783 
 
 632 
 711 
 791 
 
 9 
 
 6.3 
 
 47 
 48 
 49 
 
 650 
 
 957 
 
 807 
 886 
 965 
 
 815 
 894 
 973 
 
 823 
 902 
 981 
 
 830 
 910 
 989 
 
 838 
 918 
 997 
 
 846 
 
 926 
 
 *cx>5 
 
 854 
 
 933 
 
 *oi3 
 
 862 
 941 
 
 *020 
 
 870 
 
 949 
 
 *028 
 
 
 74 036 
 
 044 
 
 052 
 
 060 
 
 068 
 
 076 
 
 084 
 
 092 
 
 099 
 
 107 
 
 N. 
 
 1 
 
 2 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 S 
 
 9 
 
 Prop. Pts. 
 

 
 
 LOGARITHMS OF NUMBERS 
 
 
 
 13 
 
 N. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 S 
 
 9 
 
 Prop. Pt8. 
 
 51 
 52 
 53 
 
 74 036 
 
 044 
 
 052 
 
 060 
 
 068 
 
 076 
 
 084 
 
 092 
 
 099 
 
 107 
 
 
 115 
 194 
 273 
 
 123 
 202 
 280 
 
 131 
 210 
 288 
 
 139 
 218 
 296 
 
 147 
 225 
 
 304 
 
 155 
 233 
 312 
 
 162 
 241 
 320 
 
 170 
 249 
 327 
 
 178 
 257 
 335 
 
 186 
 265 
 343 
 
 54 
 55 
 56 
 
 351 
 429 
 507 
 
 359 
 437 
 515 
 
 367 
 445 
 523 
 
 374 
 453 
 531 
 
 382 
 4.61 
 539 
 
 390 
 468 
 
 547 
 
 398 
 476 
 
 554 
 
 406 
 
 484 
 562 
 
 414 
 492 
 570 
 
 421 
 500 
 578 
 
 
 57 
 58 
 59 
 
 560 
 
 61 
 62 
 63 
 
 IS 
 
 741 
 
 593 
 671 
 
 749 
 
 601 
 679 
 
 757 
 
 609 
 687 
 764 
 
 617 
 695 
 
 772 
 
 624 
 702 
 780 
 
 632 
 710 
 788 
 
 640 
 718 
 796 
 
 648 
 726 
 803 
 
 656 
 
 733 
 811 
 
 889 
 
 
 819 
 
 827 
 
 834 
 
 842 
 
 850 
 
 858 
 
 865 
 
 873 
 
 881 
 
 896 
 
 974 
 
 75 051 
 
 904 
 981 
 059 
 
 912 
 989 
 066 
 
 920 
 
 997 
 074 
 
 927 
 
 *oo5 
 
 082 
 
 935 
 
 *OI2 
 089 
 
 943 
 
 *020 
 097 
 
 950 
 
 *028 
 
 105 
 
 958 
 
 *o35 
 
 113 
 
 966 
 
 *043 
 
 120 
 
 1 
 2 
 
 0.8 
 1.6 
 
 64 
 65 
 66 
 
 128 
 205 
 282 
 
 136 
 213 
 289 
 
 143 
 220 
 
 297 
 
 151 
 
 228 
 305 
 
 159 
 236 
 312 
 
 166 
 
 243 
 320 
 
 174 
 
 328 
 
 182 
 259 
 
 335 
 
 189 
 266 
 343 
 
 197 
 274 
 351 
 
 3 
 4 
 5 
 6 
 
 2.4 
 3.2 
 4.0 
 4.8 
 
 67 
 
 68 
 69 
 
 670 
 
 71 
 72 
 73 
 
 358 
 435 
 5" 
 
 587 
 
 366 
 442 
 519 
 595 
 
 374 
 450 
 526 
 
 458 
 534 
 
 389 
 465 
 
 542 
 
 618 
 
 397 
 473 
 549 
 626 
 
 404 
 481 
 557 
 633 
 
 412 
 488 
 565 
 
 420 
 496 
 572 
 
 427 
 504 
 580 
 
 7 
 8 
 9 
 
 5.6 
 6.4 
 7.2 
 
 603 
 
 610 
 
 641 
 
 648 
 
 656 
 
 
 664 
 740 
 815 
 
 671 
 
 747 
 823 
 
 679 
 831 
 
 686 
 762 
 838 
 
 694 
 770 
 846 
 
 702 
 778 
 853 
 
 709 
 
 785 
 861 
 
 717 
 868 
 
 724 
 800 
 876 
 
 732 
 808 
 884 
 
 74 
 75 
 76 
 
 891 
 
 967 
 
 76 042 
 
 899 
 
 974 
 050 
 
 906 
 982 
 057 
 
 914 
 989 
 065 
 
 921 
 
 997 
 072 
 
 929 
 
 *oo5 
 
 080 
 
 937 
 
 *OI2 
 
 087 
 
 944 
 
 *020 
 
 095 
 
 952 
 
 *027 
 
 103 
 
 959 
 
 *o35 
 
 no 
 
 
 77 
 78 
 79 
 
 580 
 
 81 
 82 
 83 
 
 118 
 
 193 
 268 
 
 125 
 200 
 
 275 
 
 III 
 283 
 
 140 
 215 
 290 
 
 148 
 223 
 298 
 
 155 
 230 
 
 305 
 
 1% 
 
 313 
 
 170 
 
 245 
 320 
 
 178 
 
 253 
 
 328 
 
 185 
 
 260 
 
 335 
 
 
 343 
 
 350 
 
 358 
 
 365 
 
 373 
 
 380 
 
 388 
 
 395 
 
 403 
 
 410 
 
 418 
 492 
 567 
 
 425 
 500 
 
 574 
 
 433 
 507 
 582 
 
 440 
 
 515 
 589 
 
 448 
 522 
 
 597 
 
 455 
 530 
 604 
 
 462 
 
 537 
 612 
 
 470 
 
 545 
 619 
 
 477 
 
 III 
 
 486 
 559 
 634 
 
 1 
 2 
 
 7 
 
 0.7 
 1.4 
 
 84 
 85 
 86 
 
 87 
 88 
 89 
 
 590 
 
 91 
 92 
 93 
 
 641 
 716 
 790 
 
 864 
 
 938 
 
 77 012 
 
 649 
 723 
 797 
 
 871 
 
 945 
 019 
 
 656 
 730 
 805 
 
 879 
 026 
 
 664 
 
 If. 
 
 886 
 960 
 034 
 
 671 
 819 
 
 893 
 967 
 041 
 
 678 
 
 753 
 827 
 
 901 
 
 975 
 048 
 
 686 
 760 
 834 
 
 908 
 982 
 056 
 
 842 
 916 
 
 989 
 063 
 
 701 
 775 
 849 
 
 923 
 997 
 070 
 
 708 
 782 
 856 
 
 930 
 
 *oo4 
 
 078 
 
 3 
 
 4 
 5 
 6 
 7 
 8 
 9 
 
 2.1 
 2.8 
 3.5 
 4.2 
 4.9 
 5.6 
 6.3 
 
 085 
 
 093 
 
 100 
 
 107 
 
 115 
 
 122 
 
 129 
 
 137 
 
 144 
 
 151 
 
 
 159 
 232 
 
 305 
 
 166 
 240 
 313 
 
 173 
 247 
 320 
 
 181 
 254 
 327 
 
 188 
 262 
 335 
 
 269 
 342 
 
 203 
 276 
 349 
 
 210 
 283 
 357 
 
 217 
 291 
 364 
 
 225 
 298 
 371 
 
 94 
 95 
 96 
 
 379 
 452 
 
 525 
 
 386 
 459 
 532 
 
 393 
 
 466 
 
 539 
 
 401 
 
 474 
 546 
 
 408 
 481 
 554 
 
 415 
 488 
 561 
 
 422 
 
 430 
 503 
 576 
 
 437 
 
 583 
 
 444 
 517 
 590 
 
 
 97 
 98 
 99 
 
 670 
 743 
 
 605 
 677 
 750 
 
 612 
 685 
 
 757 
 
 619 
 692 
 764 
 
 627 
 699 
 772 
 
 634 
 706 
 
 779 
 
 641 
 714 
 786 
 
 648 
 721 
 793 
 
 866 
 
 656 
 728 
 801 
 
 663 
 735 
 
 
 GOO 
 
 815 
 
 822 
 
 830 
 
 837 
 
 844 
 
 851 
 
 859 
 
 873 
 
 880 
 
 N. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
14 
 
 TABLE I 
 
 N. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
 600 
 
 01 
 02 
 03 
 
 n 815 
 887 
 960 
 
 78 032 
 
 822 
 
 830 
 
 837 
 
 844 
 
 851 
 
 859 
 
 866 
 
 873 
 
 880 
 
 
 895 
 967 
 039 
 
 902 
 
 974 
 046 
 
 909 
 981 
 053 
 
 916 
 988 
 061 
 
 924 
 996 
 068 
 
 931 
 *oo3 
 
 075 
 
 938 
 
 *OIO 
 
 082 
 
 945 
 
 *oi7 
 
 089 
 
 952 
 
 *025 
 
 097 
 
 04 
 05 
 06 
 
 104 
 176 
 247 
 
 III 
 183 
 
 254 
 
 118 
 190 
 
 262 
 
 125 
 
 197 
 269 
 
 132 
 204 
 276 
 
 140 
 211 
 283 
 
 147 
 219 
 290 
 
 226 
 297 
 
 161 
 233 
 305 
 
 168 
 
 240 
 
 312 
 
 
 8 
 
 07 
 
 08 
 09 
 
 GIO 
 
 11 
 12 
 13 
 
 319 
 
 390 
 462 
 
 326 
 
 398 
 469 
 
 333 
 405 
 476 
 
 340 
 
 412 
 483 
 
 347 
 419 
 490 
 
 355 
 426 
 
 497 
 
 362 
 
 433 
 504 
 
 369 
 440 
 512 
 
 376 
 447 
 519 
 
 383 
 
 455 
 526 
 
 1 
 2 
 3 
 4 
 6 
 6 
 7 
 8 
 
 0.8 
 1.6 
 2.4 
 3.2 
 4.0 
 4.8 
 5.6 
 6.4 
 
 533 
 
 540 
 
 547 
 
 554 
 
 561 
 
 569 
 
 576 
 
 583 
 
 590 
 
 597 
 
 604 
 
 675 
 746 
 
 611 
 682 
 753 
 
 618 
 689 
 760 
 
 625 
 696 
 767 
 
 633 
 
 704 
 774 
 
 640 
 711 
 781 
 
 647 
 718 
 789 
 
 654 
 
 725 
 796 
 
 661 
 732 
 803 
 
 668 
 
 739 
 810 
 
 14 
 15 
 16 
 
 817 
 
 888 
 958 
 
 824 
 
 895 
 965 
 
 831 
 902 
 972 
 
 838 
 909 
 979 
 
 845 
 916 
 986 
 
 852 
 923 
 993 
 
 859 
 
 930 
 
 *ooo 
 
 866 
 
 937 
 *oo7 
 
 873 
 
 944 
 
 *oi4 
 
 880 
 951 
 
 *02I 
 
 9 
 
 7.2 
 
 17 
 
 18 
 19 
 
 620 
 
 21 
 22 
 23 
 
 79 029 
 099 
 169 
 
 036 
 106 
 176 
 
 043 
 113 
 183 
 
 050 
 120 
 190 
 
 057 
 127 
 197 
 
 064 
 
 134 
 204 
 
 274 
 
 071 
 141 
 
 211 
 
 078 
 148 
 218 
 
 085 
 
 155 
 225 
 
 092 
 162 
 232 
 
 
 239 
 
 246 
 
 253 
 
 260 
 
 267 
 
 281 
 
 288 
 
 295 
 
 302 
 
 309 
 379 
 449 
 
 316 
 
 386 
 456 
 
 323 
 393 
 463 
 
 330 
 400 
 470 
 
 337 
 407 
 
 477 
 
 344 
 414 
 
 484 
 
 351 
 421 
 491 
 
 358 
 428 
 498 
 
 365 
 435 
 505 
 
 372 
 
 442 
 
 511 
 
 1 
 2 
 
 7 
 
 0.7 
 1.4 
 
 24 
 25 
 26 
 
 518 
 588 
 657 
 
 525 
 595 
 664 
 
 532 
 602 
 671 
 
 539 
 609 
 678 
 
 546 
 616 
 685 
 
 553 
 623 
 692 
 
 560 
 630 
 699 
 
 637 
 706 
 
 574 
 644 
 
 713 
 
 650 
 720 
 
 3 
 4 
 5 
 
 2.1 
 2.8 
 3.5 
 
 4 9 
 
 27 
 
 28 
 29 
 
 630 
 
 31 
 32 
 33 
 
 727 
 796 
 865 
 
 734 
 803 
 872 
 
 810 
 
 879 
 
 748 
 817 
 886 
 
 754 
 824 
 893 
 
 761 
 
 831 
 900 
 
 768 
 
 837 
 906 
 
 775 
 844 
 913 
 
 782 
 851 
 920 
 
 789 
 858 
 927 
 
 7 
 
 8 
 9 
 
 4.9 
 5.6 
 6.3 
 
 934 
 
 941 
 
 948 
 
 955 
 
 962 
 030 
 
 168 
 
 969 
 
 975 
 
 982 
 
 989 
 
 996 
 
 
 80 003 
 072 
 140 
 
 010 
 079 
 147 
 
 017 
 085 
 154 
 
 024 
 092 
 161 
 
 037 
 106 
 
 175 
 
 044 
 
 051 
 120 
 188 
 
 058 
 127 
 195 
 
 06s 
 134 
 202 
 
 34 
 35 
 36 
 
 209 
 
 277 
 346 
 
 216 
 284 
 353 
 
 223 
 291 
 359 
 
 298 
 366 
 
 236 
 305 
 373 
 
 243 
 312 
 
 380 
 
 250 
 
 387 
 
 257 
 325 
 393 
 
 264 
 
 332 
 400 
 
 271 
 
 339 
 407 
 
 
 6 
 
 37 
 
 38 
 39 
 
 640 
 
 41 
 42 
 43 
 
 414 
 482 
 550 
 
 421 
 489 
 557 
 
 428 
 496 
 564 
 
 434 
 502 
 570 
 
 441 
 509 
 
 577 
 
 448 
 
 584 
 652 
 
 455 
 523 
 
 659 
 
 462 
 530 
 598 
 
 468 
 536 
 604 
 
 475 
 543 
 611 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 
 0.6 
 1.2 
 1.8 
 2.4 
 3.0 
 3.6 
 4.2 
 4 8 
 
 618 
 
 625 
 
 632 
 
 638 
 
 645 
 
 665 
 
 672 
 
 679 
 
 686 
 
 754 
 821 
 
 693 
 
 760 
 828 
 
 699 
 767 
 835 
 
 706 
 774 
 841 
 
 713 
 781 
 848 
 
 720 
 787 
 855 
 
 726 
 
 794 
 862 
 
 733 
 801 
 868 
 
 740 
 808 
 875 
 
 747 
 814 
 882 
 
 44 
 45 
 46 
 
 889 
 
 956 
 
 81 023 
 
 895 
 963 
 030 
 
 902 
 969 
 037 
 
 909 
 976 
 043 
 
 916 
 983 
 050 
 
 922 
 990 
 057 
 
 929 
 996 
 064 
 
 936 
 
 *oo3 
 
 070 
 
 943 
 
 *oio 
 
 077 
 
 949 
 ♦017 
 
 084 
 
 9 
 
 5.4 
 
 47 
 48 
 49 
 
 650 
 
 090 
 158 
 224 
 
 097 
 164 
 231 
 
 104 
 171 
 238 
 
 III 
 178 
 245 
 
 117 
 184 
 251 
 
 124 
 258 
 
 131 
 
 198 
 265 
 
 137 
 204 
 271 
 
 144 
 211 
 278 
 
 218 
 285 
 
 
 291 
 
 298 
 
 305 
 
 3" 
 
 318 
 
 325 
 
 331 
 
 338 
 
 345 
 
 351 
 
 N. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop Pts. 
 

 
 
 LOGAEITHMS OF NUMBERS 
 
 
 
 15 
 
 N. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
 650 
 
 51 
 62 
 53 
 
 8 1 291 
 
 298 
 
 305 
 
 311 
 
 318 
 
 325 
 
 331 
 
 338 
 
 345 
 
 351 
 
 
 358 
 425 
 491 
 
 365 
 498 
 
 438 
 505 
 
 378 
 445 
 511 
 
 385 
 518 
 
 391 
 
 458 
 525 
 
 398 
 465 
 531 
 
 405 
 471 
 538 
 
 411 
 478 
 544 
 
 418 
 485 
 551 
 
 54 
 55 
 56 
 
 |5» 
 
 624 
 690 
 
 564 
 631 
 697 
 
 637 
 704 
 
 578 
 644 
 710 
 
 584 
 651 
 717 
 
 591 
 657 
 723 
 
 598 
 664 
 
 730 
 
 604 
 671 
 737 
 
 611 
 677 
 743 
 
 617 
 684 
 750 
 
 
 57 
 58 
 59 
 
 660 
 
 61 
 
 62 
 63 
 
 823 
 889 
 
 763 
 829 
 
 895 
 
 770 
 836 
 902 
 
 776 
 842 
 908 
 
 783 
 849 
 915 
 
 790 
 856 
 921 
 
 796 
 862 
 928 
 
 803 
 869 
 935 
 
 809 
 
 875 
 941 
 
 816 
 882 
 948 
 
 
 954 
 
 82 020 
 
 086 
 
 151 
 
 961 
 
 968 
 
 974 
 
 981 
 
 987 
 
 994 
 
 *CXXD 
 
 *oo7 
 
 *oi4 
 
 027 
 092 
 158 
 
 033 
 099 
 164 
 
 040 
 105 
 171 
 
 046 
 112 
 178 
 
 053 
 184 
 
 060 
 125 
 191 
 
 066 
 132 
 197 
 
 073 
 138 
 204 
 
 079 
 
 145 
 210 
 
 1 
 2 
 
 0.7 
 1.4 
 
 64 
 65 
 66 
 
 217 
 282 
 347 
 
 223 
 289 
 354 
 
 230 
 295 
 360 
 
 236 
 302 
 367 
 
 Itl 
 373 
 
 249 
 
 315 
 380 
 
 256 
 387 
 
 263 
 328 
 
 393 
 
 269 
 
 334 
 400 
 
 276 
 406 
 
 3 
 4 
 5 
 6 
 
 2.1 
 
 2.8 
 3.5 
 4.2 
 
 67 
 68 
 69 
 
 670 
 
 71 
 72 
 73 
 
 413 
 478 
 543 
 
 419 
 484 
 549 
 
 426 
 491 
 556 
 
 432 
 497 
 562 
 
 439 
 504 
 
 569 
 
 445 
 510 
 
 575 
 
 452 
 582 
 
 458 
 
 Pi 
 
 465 
 530 
 595 
 
 471 
 536 
 601 
 
 7 
 8 
 9 
 
 4.9 
 5.6 
 6 3 
 
 607 
 672 
 
 802 
 
 614 
 
 620 
 
 627 
 
 633 
 
 640 
 
 646 
 
 653 
 
 659 
 
 666 
 
 
 679 
 III 
 
 685 
 750 
 814 
 
 692 
 756 
 821 
 
 698 
 763 
 827 
 
 705 
 769 
 
 834 
 
 711 
 776 
 840 
 
 718 
 782 
 847 
 
 724 
 789 
 
 853 
 
 730 
 795 
 860 
 
 74 
 75 
 76 
 
 866 
 930 
 995 
 
 872 
 937 
 
 *OOI 
 
 879 
 
 943 
 
 *cx)8 
 
 885 
 
 950 
 
 *oi4 
 
 892 
 956 
 
 *020 
 
 898 
 963 
 
 *027 
 
 905 
 
 969 
 
 *033 
 
 911 
 
 975 
 *04o 
 
 918 
 
 982 
 
 *o46 
 
 924 
 
 988 
 
 ♦052 
 
 
 77 
 78 
 79 
 
 680 
 
 81 
 82 
 83 
 
 83 059 
 123 
 187 
 
 065 
 129 
 
 193 
 
 072 
 136 
 200 
 
 078 
 142 
 206 
 
 085 
 149 
 213 
 
 091 
 
 155 
 219 
 
 097 
 161 
 225 
 
 104 
 168 
 232 
 
 no 
 
 174 
 238 
 
 117 
 181 
 245 
 
 
 251 
 
 257 
 
 264 
 
 270 
 
 276 
 
 283 
 
 289 
 
 296 
 
 302 
 
 308 
 
 315 
 378 
 442 
 
 321 
 
 385 
 
 448 
 
 327 
 391 
 
 455 
 
 334 
 398 
 461 
 
 340 
 404 
 467 
 
 347 
 410 
 
 474 
 
 353 
 417 
 480 
 
 359 
 423 
 487 
 
 366 
 429 
 493 
 
 372 
 436 
 499 
 
 1 
 2 
 
 0.6 
 1.2 
 
 84 
 
 85 
 86 
 
 506 
 569 
 632 
 
 512 
 575 
 639 
 
 518 
 645 
 
 525 
 588 
 651 
 
 531 
 
 594 
 658 
 
 537 
 601 
 664 
 
 544 
 607 
 670 
 
 |5° 
 613 
 
 677 
 
 556 
 620 
 683 
 
 563 
 626 
 689 
 
 3 
 
 4 
 5 
 6 
 
 1.8 
 2.4 
 3.0 
 3.6 
 
 87 
 
 88 
 89 
 
 690 
 
 91 
 92 
 93 
 
 696 
 
 759 
 822 
 
 702 
 765 
 828 
 
 708 
 771 
 835 
 
 778 
 841 
 
 721 
 784 
 ^47 
 
 727 
 790 
 853 
 
 734 
 797 
 860 
 
 740 
 803 
 866 
 
 746 
 809 
 872 
 
 879 
 
 7 
 8 
 9 
 
 4.2 
 4.8 
 5.4 
 
 885 
 
 891 
 
 897 
 
 904 
 
 910 
 
 916 
 
 923 
 
 929 
 
 935 
 
 942 
 
 *oo4 
 
 067 
 
 130 
 
 
 948 
 
 84 on 
 
 073 
 
 954 
 017 
 080 
 
 960 
 023 
 086 
 
 967 
 029 
 092 
 
 973 
 036 
 098 
 
 979 
 042 
 105 
 
 985 
 048 
 III 
 
 992 
 055 
 117 
 
 061 
 123 
 
 94 
 95 
 96 
 
 198 
 261 
 
 142 
 
 205 
 267 
 
 148 
 211 
 273 
 
 155 
 
 28c 
 
 161 
 
 223 
 
 167 
 230 
 
 292 
 
 298 
 
 180 
 242 
 305 
 
 186 
 248 
 311 
 
 192 
 255 
 317 
 
 
 97 
 
 98 
 99 
 
 700 
 
 N. 
 
 323 
 448 
 
 330 
 392 
 454 
 
 336 
 398 
 460 
 
 342 
 404 
 466 
 
 348 
 410 
 
 473 
 
 354 
 417 
 479 
 
 361 
 
 485 
 
 367 
 429 
 491 
 
 373 
 435 
 497 
 
 379 
 
 4.^2 
 
 504 
 
 
 510 
 
 516 
 
 522 
 
 528 
 
 535 
 
 541 
 
 547 
 
 553 
 
 559 
 
 566 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
16 
 
 
 
 
 
 TABLE 1 
 
 
 
 
 
 
 N. 
 
 O 
 
 1 
 
 « 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 S 
 
 9 
 
 Prop. Pts. 
 
 700 
 
 01 
 02 
 03 
 
 84 510 
 572 
 
 634 
 
 696 
 
 516 
 
 522 
 
 528 
 
 535 
 
 541 
 
 547 
 
 553 
 
 559 
 
 566 
 
 628 
 689 
 751 
 
 
 640 
 702 
 
 584 
 646 
 708 
 
 590 
 652 
 714 
 
 597 
 658 
 720 
 
 603 
 665 
 726 
 
 609 
 671 
 733 
 
 677 
 739 
 
 621 
 683 
 745 
 
 04 
 05 
 06 
 
 ^57 
 819 
 
 880 
 
 763 
 825 
 887 
 
 770 
 831 
 893 
 
 776 
 837 
 899 
 
 782 
 
 844 
 905 
 
 788 
 850 
 911 
 
 794 
 856 
 917 
 
 800 
 862 
 924 
 
 807 
 868 
 930 
 
 813 
 874 
 936 
 
 
 7 
 
 07 
 08 
 09 
 
 710 
 
 11 
 12 
 13 
 
 942 
 
 85003 
 
 065 
 
 948 
 009 
 071 
 
 954 
 016 
 077 
 
 960 
 022 
 
 083 
 
 967 
 028 
 089 
 
 973 
 034 
 095 
 
 979 
 040 
 
 lOI 
 
 985 
 046 
 107 
 
 991 
 052 
 114 
 
 997 
 058 
 120 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 
 0.7 
 
 1.4 
 2.1 
 2.8 
 3.5 
 4.2 
 4.9 
 5.6 
 
 126 
 
 132 
 
 138 
 
 144 
 
 150 
 
 156 
 217 
 278 
 339 
 
 163 
 
 169 
 
 175 
 
 181 
 
 248 
 309 
 
 193 
 
 254 
 
 315 
 
 199 
 260 
 321 
 
 Tel 
 
 327 
 
 211 
 
 272 
 333 
 
 224 
 285 
 345 
 
 230 
 291 
 352 
 
 236 
 297 
 358 
 
 242 
 303 
 364 
 
 14 
 15 
 16 
 
 370 
 431 
 491 
 
 376 
 
 437 
 497 
 
 382 
 443 
 503 
 
 388 
 
 449 
 509 
 
 394 
 455 
 516 
 
 400 
 461 
 522 
 
 406 
 467 
 528 
 
 412 
 473 
 534 
 
 418 
 
 479 
 540 
 
 425 
 485 
 546 
 
 9 
 
 6.3 
 
 17 
 
 18 
 19 
 
 720 
 
 21 
 22 
 23 
 
 552 
 612 
 
 673 
 
 558 
 618 
 679 
 
 564 
 625 
 685 
 
 570 
 631 
 691 
 
 576 
 
 697 
 
 582 
 643 
 703 
 
 588 
 649 
 709 
 
 594 
 655 
 715 
 
 600 
 661 
 721 
 
 606 
 667 
 727 
 
 
 733 
 
 739 
 
 745 
 
 751 
 
 757 
 
 763 
 
 769 
 
 775 
 
 781 
 
 788 
 
 794 
 854 
 914 
 
 800 
 860 
 920 
 
 806 
 
 866 
 926 
 
 812 
 872 
 932 
 
 818 
 878 
 938 
 
 824 
 884 
 944 
 
 830 
 890 
 950 
 
 836 
 896 
 956 
 
 842 
 902 
 962 
 
 848 
 908 
 968 
 
 1 
 2 
 
 6 
 
 0.6 
 1.2 
 
 24 
 25 
 26 
 
 974 
 
 86 034 
 094 
 
 980 
 040 
 100 
 
 986 
 046 
 106 
 
 992 
 052 
 112 
 
 998 
 058 
 118 
 
 *oo4 
 064 
 124 
 
 *OIO 
 
 070 
 130 
 
 *oi6 
 076 
 136 
 
 *022 
 082 
 141 
 
 *028 
 
 088 
 
 147 
 
 3 
 4 
 5 
 
 1.8 
 2.4 
 3.0 
 
 27 
 28 
 29 
 
 730 
 
 31 
 32 
 33 
 
 153 
 213 
 
 273 
 
 332 
 
 159 
 219 
 
 279 
 
 338 
 
 165 
 225 
 285 
 
 171 
 231 
 291 
 
 177 
 
 237 
 297 
 
 183 
 243 
 303 
 
 189 
 249 
 308 
 
 195 
 
 255 
 3H 
 
 201 
 261 
 320 
 
 207 
 
 267 
 326 
 
 6 
 7 
 8 
 9 
 
 3.0 
 4.2 
 4.8 
 5.4 
 
 344 
 
 350 
 
 356 
 
 362 
 
 368 
 
 374 
 
 380 
 
 386 
 
 445 
 504 
 564 
 
 392 
 451 
 510 
 
 390 
 457 
 516 
 
 404 
 463 
 522 
 
 410 
 469 
 528 
 
 415 
 475 
 534 
 
 421 
 481 
 540 
 
 427 
 487 
 546 
 
 433 
 493 
 552 
 
 439 
 499 
 558 
 
 
 34 
 35 
 36 
 
 570 
 629 
 688 
 
 576 
 635 
 694 
 
 581 
 641 
 700 
 
 587 
 646 
 705 
 
 593 
 652 
 711 
 
 658 
 717 
 
 605 
 664 
 723 
 
 611 
 670 
 729 
 
 617 
 676 
 735 
 
 623 
 
 682 
 
 741 
 
 
 5 
 
 37 
 38 
 39 
 
 740 
 
 41 
 42 
 43 
 
 747 
 806 
 864 
 
 923 
 
 753 
 812 
 870 
 
 759 
 817 
 876 
 
 764 
 
 823 
 
 882 
 
 770 
 829 
 
 888 
 
 776 
 894 
 
 782 
 841 
 900 
 
 788 
 
 847 
 906 
 
 794 
 853 
 911 
 
 800 
 
 859 
 917 
 
 1 
 2 
 3 
 
 t 
 
 6 
 
 6 
 
 0.5 
 1.0 
 1.5 
 2.0 
 2.5 
 3.0 
 3.5 
 4.0 
 
 929 
 
 935 
 
 941 
 
 947 
 
 953 
 
 958 
 
 964 
 
 970 
 
 976 
 
 982 
 
 87 04.0 
 
 099 
 
 988 
 046 
 105 
 
 994 
 052 
 III 
 
 058 
 116 
 
 *oo5 
 064 
 122 
 
 *OII 
 
 070 
 128 
 
 *oi7 
 075 
 134 
 
 *023 
 
 081 
 140 
 
 *029 
 
 087 
 146 
 
 *o35 
 093 
 151 
 
 44 
 45 
 46 
 
 '57 
 216 
 
 274 
 
 163 
 221 
 280 
 
 169 
 227 
 286 
 
 175 
 233 
 291 
 
 181 
 239 
 297 
 
 186 
 245 
 303 
 
 192 
 251 
 309 
 
 198 
 256 
 315 
 
 204 
 262 
 320 
 
 210 
 268 
 326 
 
 9 
 
 4.5 
 
 47 
 48 
 49 
 
 750 
 
 332 
 
 390 
 448 
 
 396 
 
 454 
 
 344 
 402 
 460 
 
 408 
 466 
 
 355 
 413 
 471 
 
 361 
 419 
 477 
 
 367_ 
 483 
 
 373 
 489 
 
 379 
 437 
 495 
 
 384 
 442 
 500 
 
 
 506 
 
 512 
 
 518 
 
 523 
 
 529 
 
 535 
 
 541 
 
 547 
 
 552 
 
 558 
 
 N. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 S 
 
 9 
 
 Prop. Pts. 
 
LOGAEITHMS OF NUMBERS 
 
 17 
 
 N. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 535 
 
 593 
 651 
 708 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
 750 
 
 51 
 52 
 53 
 
 87 506 
 
 512 
 
 518 
 
 523 
 
 529 
 
 541 
 
 547 
 
 552 
 
 558 
 
 
 564 
 622 
 679 
 
 570 
 628 
 685 
 
 633 
 691 
 
 581 
 639 
 697 
 
 587 
 645 
 703 
 
 599 
 656 
 
 714 
 
 604 
 662 
 720 
 
 610 
 668 
 726 
 
 616 
 674 
 731 
 
 54 
 55 
 56 
 
 737 
 795 
 852 
 
 800 
 858 
 
 806 
 864 
 
 812 
 869 
 
 760 
 818 
 875 
 
 766 
 823 
 881 
 
 772 
 829 
 887 
 
 777 
 
 f35 
 892 
 
 783 
 841 
 898 
 
 789 
 846 
 904 
 
 
 57 
 58 
 59 
 
 760 
 
 61 
 62 
 63 
 
 910 
 
 967 
 
 88 024 
 
 915 
 
 973 
 030 
 
 978 
 036 
 
 927 
 984 
 041 
 
 933 
 990 
 
 047 
 
 938 
 996 
 
 053 
 
 944 
 
 *OOI 
 
 058 
 
 950 
 
 ♦007 
 
 064 
 
 955 
 
 *oi3 
 
 070 
 
 961 
 
 *oi8 
 
 076 
 
 
 081 
 
 087 
 
 093 
 
 098 
 
 104 
 
 no 
 
 116 
 
 121 
 
 127 
 
 133 
 190 
 247 
 304 
 
 138 
 195 
 252 
 
 144 
 201 
 258 
 
 150 
 207 
 264 
 
 156 
 
 213 
 270 
 
 161 
 218 
 
 275 
 
 167 
 224 
 281 
 
 173 
 
 230 
 
 287 
 
 178 
 
 235 
 292 
 
 184 
 241 
 298 
 
 1 
 2 
 
 
 
 0.6 
 1.2 
 
 64 
 65 
 66 
 
 3?? 
 366 
 
 423 
 
 315 
 
 372 
 429 
 
 321 
 377 
 434 
 
 326 
 
 383 
 440 
 
 389 
 446 
 
 338 
 395 
 451 
 
 343 
 400 
 
 457 
 
 349 
 406 
 
 463 
 
 355 
 412 
 468 
 
 360 
 417 
 474 
 
 3 
 4 
 5 
 
 6 
 
 1.8 
 2.4 
 3.0 
 3 6 
 
 67 
 68 
 69 
 
 770 
 
 71 
 72 
 73 
 
 480 
 536 
 593 
 
 485 
 542 
 598 
 
 491 
 604 
 
 497 
 553 
 610 
 
 502 
 
 |59 
 615 
 
 508 
 564 
 621 
 
 513 
 570 
 627 
 
 519 
 
 632 
 
 5^5 
 581 
 638 
 
 F 
 
 643 
 
 7 
 8 
 9 
 
 4.2 
 4.8 
 5.4 
 
 649 
 
 655 
 
 660 
 
 666 
 
 672 
 
 (>77 
 
 683 
 
 689 
 
 694 
 
 700 
 
 
 705 
 762 
 818 
 
 711 
 767 
 824 
 
 717 
 
 773 
 829 
 
 722 
 779 
 835 
 
 728 
 
 784 
 840 
 
 734 
 790 
 846 
 
 739 
 795 
 852 
 
 801 
 857 
 
 750 
 807 
 863 
 
 756 
 812 
 
 868 
 
 74 
 75 
 76 
 
 874 
 
 880 
 936 
 992 
 
 885 
 941 
 997 
 
 891 
 
 947 
 *oo3 
 
 897 
 
 953 
 
 *oc9 
 
 902 
 
 958 
 
 *oi4 
 
 908 
 964 
 
 *020 
 
 913 
 969 
 
 *025 
 
 919 
 
 975 
 ♦031 
 
 925 
 
 98. 
 
 *037 
 
 
 77 
 78 
 79 
 
 780 
 
 81 
 82 
 83 
 
 89 042 
 098 
 154 
 
 048 
 104 
 159 
 
 053 
 109 
 165 
 
 059 
 
 115 
 170 
 
 064 
 120 
 176 
 
 070 
 126 
 182 
 
 076 
 131 
 
 081 
 137 
 193 
 
 087 
 
 143 
 198 
 
 092 
 148 
 204 
 
 260 
 
 
 209 
 265 
 
 ?76 
 
 215 
 
 271 
 326 
 382 
 
 221 
 
 226 
 
 232 
 
 237 
 
 243 
 
 248 
 
 254 
 
 276 
 332 
 387 
 
 282 
 337 
 393 
 
 287 
 343 
 398 
 
 293 
 404 
 
 298 
 
 354 
 409 
 
 304 
 
 360 
 415 
 
 310 
 
 365 
 421 
 
 315 
 
 426 
 
 1 
 2 
 
 5 
 
 0.5 
 1.0 
 
 84 
 85 
 86 
 
 542 
 
 437 
 492 
 548 
 
 443 
 498 
 553 
 
 448 
 504 
 559 
 
 454 
 509 
 564 
 
 459 
 515 
 570 
 
 465 
 520 
 575 
 
 470 
 
 526 
 581 
 
 476 
 
 We 
 
 481 
 537 
 592 
 
 3 
 
 4 
 5 
 
 p 
 
 1.5 
 2.0 
 2.5 
 3 
 
 87 
 88 
 89 
 
 790 
 
 91 
 92 
 93 
 
 597 
 708 
 
 603 
 658 
 713 
 
 609 
 664 
 719 
 
 614 
 669 
 724 
 
 620 
 675 
 730 
 
 625 
 680 
 
 735 
 
 631 
 686 
 741 
 
 636 
 
 691 
 
 746 
 
 642 
 697 
 752 
 
 647 
 702 
 757 
 
 7 
 8 
 9 
 
 3.5 
 4.0 
 4.5 
 
 763 
 
 768 
 
 774 
 
 779 
 
 785 
 
 790 
 
 796 
 
 801 
 
 807 
 
 812 
 
 
 818 
 873 
 927 
 
 823 
 878 
 
 933 
 
 829 
 883 
 938 
 
 834 
 889 
 944 
 
 840 
 894 
 949 
 
 845 
 900 
 
 955 
 
 851 
 905 
 960 
 
 856 
 911 
 
 966 
 
 862 
 916 
 971 
 
 867 
 922 
 977 
 
 94 
 95 
 96 
 
 982 
 
 90 037 
 
 091 
 
 988 
 042 
 097 
 
 993 
 048 
 102 
 
 998 
 "III 
 
 *oo4 
 059 
 
 i'3 
 
 *oo9 
 064 
 119 
 
 *oi5 
 069 
 124 
 
 *020 
 
 075 
 129 
 
 *026 
 
 080 
 135 
 
 *o3i 
 086 
 140 
 
 
 97 
 98 
 99 
 
 800 
 
 146 
 200 
 
 255 
 
 '53 
 206 
 
 260 
 
 157 
 211 
 266 
 
 162 
 217 
 271 
 
 168 
 222 
 276 
 
 173 
 227 
 282 
 
 179 
 233 
 287 
 
 184 
 238 
 293 
 
 189 
 
 244 
 298 
 
 195 
 249 
 304 
 
 
 309 
 
 314 
 
 320 
 
 325 
 
 331 
 
 336 
 
 342 
 
 347 
 
 352 
 
 358 
 
 N. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
18 
 
 TABLE I 
 
 N. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
 800 
 
 01 
 02 
 03 
 
 90 309 
 
 363 
 417 
 472 
 
 314 
 
 320 
 
 325 
 
 331 
 
 336 
 
 342 
 
 347 
 
 352 
 
 358 
 
 
 369 
 423 
 477 
 
 374 
 428 
 482 
 
 380 
 
 434 
 488 
 
 385 
 439 
 493 
 
 390 
 445 
 499 
 
 396 
 450 
 504 
 
 401 
 
 455 
 509 
 
 407 
 461 
 515 
 
 412 
 466 
 520 
 
 04 
 05 
 06 
 
 526 
 580 
 634 
 
 531 
 
 585 
 639 
 
 536 
 590 
 644 
 
 596 
 650 
 
 601 
 655 
 
 553 
 607 
 660 
 
 |5^ 
 612 
 
 666 
 
 f3 
 617 
 
 671 
 
 569 
 623 
 677 
 
 574 
 628 
 682 
 
 
 07 
 
 08 
 09 
 
 810 
 
 11 
 12 
 13 
 
 687 
 741 
 795 
 
 693 
 
 747 
 800 
 
 698 
 
 752 
 806 
 
 703 
 811 
 
 709 
 763 
 816 
 
 714 
 768 
 822 
 
 875 
 
 720 
 
 773 
 827 
 
 881 
 
 725 
 779 
 832 
 886 
 
 730 
 784 
 838 
 
 -89T 
 
 736 
 789 
 843 
 897 
 
 
 849 
 
 854 
 
 859 
 
 865 
 
 870 
 
 902 
 
 956 
 
 91 009 
 
 907 
 961 
 014 
 
 ^6^ 
 
 020 
 
 918 
 972 
 025 
 
 924 
 
 977 
 030 
 
 929 
 982 
 036 
 
 041 
 
 940 
 
 993 
 
 046 
 
 945 
 998 
 052 
 
 950 
 
 *oo4 
 
 057 
 
 1 
 2 
 
 0.6 
 1.2 
 
 14 
 15 
 16 
 
 062 
 116 
 169 
 
 068 
 121 
 174 
 
 180 
 
 078 
 185 
 
 084 
 
 137 
 190 
 
 089 
 142 
 196 
 
 094 
 148 
 201 
 
 100 
 
 153 
 206 
 
 105 
 
 158 
 212 
 
 no 
 164 
 217 
 
 3 
 4 
 5 
 6 
 
 1.8 
 2.4 
 3.0 
 3 6 
 
 17 
 18 
 19 
 
 820 
 
 21 
 22 
 23 
 
 222 
 
 275 
 328 
 
 228 
 281 
 334 
 
 233 
 286 
 
 339 
 
 238 
 291 
 
 344 
 
 243 
 297 
 350 
 
 249 
 302 
 
 355 
 
 254 
 307 
 360 
 
 259 
 312 
 365 
 
 265 
 318 
 371 
 
 270 
 
 323 
 
 376 
 
 7 
 8 
 9 
 
 4.2 
 4.8 
 5.4 
 
 381 
 
 387 
 
 392 
 
 397 
 
 403 
 
 408 
 
 413 
 
 418 
 
 424 
 
 429 
 
 
 434 
 487 
 540 
 
 440 
 492 
 
 545 
 
 445 
 498 
 551 
 
 450 
 503 
 556 
 
 455 
 508 
 561 
 
 461 
 
 514 
 566 
 
 466 
 
 519 
 
 572 
 
 471 
 524 
 577 
 
 477 
 
 582 
 
 482 
 535 
 587 
 
 24 
 25 
 26 
 
 593 
 645 
 698 
 
 598 
 651 
 703 
 
 603 
 656 
 709 
 
 609 
 661 
 714 
 
 614 
 666 
 719 
 
 619 
 672 
 724 
 
 624 
 677 
 730 
 
 630 
 682 
 735 
 
 635 
 687 
 740 
 
 640 
 693 
 
 745 
 
 
 27 
 
 28 
 29 
 
 830 
 
 31 
 32 
 33 
 
 751 
 803 
 
 855 
 
 756 
 808 
 861 
 
 761 
 814 
 866 
 
 766 
 819 
 871 
 
 772 
 824 
 876 
 
 777 
 829 
 882 
 
 782 
 834 
 887 
 
 7^7 
 840 
 892 
 
 793 
 845 
 897 
 
 798 
 850 
 
 903 
 
 
 908 
 
 913 
 
 918 
 
 924 
 
 929 
 
 934 
 
 939 
 
 944 
 
 950 
 
 955 
 
 960 
 
 92 012 
 
 065 
 
 965 
 018 
 070 
 
 971 
 023 
 075 
 
 976 
 028 
 080 
 
 981 
 
 033 
 
 085 
 
 986 
 038 
 091 
 
 991 
 044 
 096 
 
 997 
 049 
 
 lOI 
 
 *002 
 054 
 106 
 
 *oo7 
 059 
 III 
 
 1 
 2 
 
 6 
 
 0.5 
 1.0 
 
 34 
 
 35 
 36 
 
 117 
 169 
 221 
 
 122 
 
 174 
 226 
 
 127 
 179 
 231 
 
 132 
 184 
 236 
 
 137 
 189 
 241 
 
 143 
 195 
 
 247 
 
 148 
 200 
 252 
 
 153 
 
 205 
 
 257 
 
 158 
 210 
 262 
 
 163 
 215 
 267 
 
 3 
 4 
 5 
 
 
 1.5 
 2.0 
 2.5 
 3 
 
 37 
 38 
 39 
 
 840 
 
 41 
 42 
 43 
 
 273 
 324 
 376 
 
 278 
 330 
 381 
 
 283 
 335 
 387 
 
 288 
 340 
 392 
 
 293 
 345 
 397 
 
 298 
 
 350 
 402 
 
 304 
 355 
 
 407 
 
 309 
 361 
 412 
 
 3H 
 366 
 418 
 
 319 
 371 
 423 
 
 7 
 8 
 9 
 
 3.5 
 4.0 
 
 4.5 
 
 428 
 
 433 
 
 438 
 
 443 
 
 449 
 
 454 
 
 459 
 
 464 
 
 469 
 
 474 
 
 
 480 
 531 
 583 
 
 485 
 536 
 588 
 
 490 
 
 542 
 593 
 
 495 
 547 
 598 
 
 500 
 603 
 
 505 
 557 
 609 
 
 562 
 614 
 
 516 
 
 567 
 619 
 
 521 
 572 
 624 
 
 526 
 578 
 629 
 
 44: 
 
 45 
 
 46 
 
 634 
 686 
 
 737 
 
 639 
 691 
 742 
 
 7A7 
 
 650 
 701 
 
 752 
 
 655 
 706 
 
 758 
 
 660 
 711 
 763 
 
 665 
 716 
 768 
 
 670 
 722 
 773 
 
 675 
 727 
 77S 
 
 681 
 732 
 783 
 
 
 47 
 
 48 
 19 
 
 850 
 N. 
 
 788 
 840 
 891 
 
 793 
 845 
 896 
 
 799 
 850 
 901 
 
 804 
 
 855 
 906 
 
 809 
 860 
 911 
 
 814 
 865, 
 916 
 
 819 
 870 
 921 
 
 824 
 875 
 927 
 
 829 
 881 
 932 
 
 834 
 886 
 937 
 
 
 942 
 
 947 
 
 952 
 
 957 
 
 962 
 
 967 
 
 973 
 
 978 
 
 983 
 
 988 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. VU. 
 

 
 
 LOG 
 
 ARIl 
 
 HMS 
 
 OF NUMBERS 
 
 
 
 19 
 
 N. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 § 
 
 9 
 
 Prop. ris. 
 
 850 
 
 51 
 52 
 53 
 
 92 942 
 
 947 
 
 952 
 
 957 
 
 962 
 
 967 
 
 973 
 
 978 
 
 983 
 
 988 
 
 
 993 
 
 93 044 
 
 095 
 
 998 
 049 
 100 
 
 *oo3 
 
 054 
 105 
 
 *oo8 
 059 
 no 
 
 *oi3 
 064 
 115 
 
 *oi8 
 069 
 120 
 
 *024 
 
 075 
 125 
 
 *029 
 
 080 
 131 
 
 *oi! 
 136 
 
 *039 
 090 
 141 
 
 54 
 55 
 5G 
 
 146 
 197 
 
 247 
 
 151 
 
 202 
 252 
 
 156 
 207 
 258 
 
 161 
 212 
 263 
 
 166 
 217 
 268 
 
 171 
 222 
 273 
 
 176 
 
 227 
 
 278 
 
 181 
 
 232 
 
 283 
 
 186 
 
 192 
 242 
 293 
 
 
 6 
 
 57 
 
 58 
 59 
 
 860 
 
 61 
 62 
 63 
 
 298 
 349 
 399 
 
 303 
 354 
 404 
 
 308 
 
 359 
 409 
 
 313 
 364 
 414 
 
 369 
 420 
 
 323 
 374 
 425 
 
 328 
 
 379 
 430 
 
 334 
 384 
 435 
 
 339 
 
 389 
 44.0 
 
 344 
 394 
 
 445 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 
 0.6 
 1.2 
 1.8 
 2.4 
 3.0 
 3.6 
 4.2 
 4.8 
 
 450 
 500 
 
 III 
 
 455 
 
 460 
 
 465 
 
 470 
 
 475 
 526 
 576 
 626 
 
 480 
 
 485 
 
 490 
 
 495 
 
 505 
 556 
 606 
 
 510 
 611 
 
 515 
 566 
 616 
 
 520 
 
 571 
 621 
 
 531 
 
 636 
 
 541 
 591 
 641 
 
 546 
 596 
 646 
 
 64 
 65 
 66 
 
 651 
 702 
 752 
 
 656 
 707 
 757 
 
 661 
 712 
 762 
 
 666 
 717 
 767 
 
 671 
 722 
 772 
 
 676 
 727 
 777 
 
 682 
 732 
 782 
 
 687 
 787 
 
 692 
 742 
 792 
 
 697 
 747 
 797 
 
 9 
 
 5.4 
 
 67 
 68 
 69 
 
 870 
 
 71 
 72 
 73 
 
 802 
 852 
 902 
 
 807 
 857 
 907 
 
 812 
 862 
 912 
 
 817 
 867 
 917 
 
 822 
 872 
 922 
 
 827 
 
 877 
 927 
 
 832 
 882 
 932 
 
 837 
 887 
 937 
 
 842 
 892 
 942 
 
 847 
 897 
 947 
 
 
 952 
 
 957 
 
 962 
 
 967 
 
 972 
 
 977 
 
 982 
 
 987 
 
 992 
 
 997 
 
 1 
 2 
 3 
 4 
 5 
 6 
 
 5 
 
 0.5 
 1.0 
 1.5 
 2.0 
 2.5 
 3.0 
 
 94 002 
 052 
 
 lOI 
 
 007 
 106 
 
 012 
 062 
 III 
 
 017 
 067 
 116 
 
 022 
 072 
 121 
 
 027 
 077 
 126 
 
 131 
 
 086 
 136 
 
 042 
 091 
 141 
 
 047 
 096 
 146 
 
 74 
 75 
 76 
 
 151 
 201 
 250 
 
 156 
 206 
 255 
 
 161 
 211 
 260 
 
 166 
 216 
 265 
 
 171 
 221 
 270 
 
 176 
 226 
 275 
 
 181 
 
 186 
 285 
 
 191 
 240 
 290 
 
 196 
 245 
 295 
 
 77 
 
 78 
 79 
 
 880 
 
 81 
 82 
 83 
 
 300 
 
 349 
 399 
 448 
 
 305 
 354 
 404 
 
 310 
 
 359 
 409 
 
 364 
 414 
 
 320 
 
 369 
 419 
 
 325 
 374 
 424 
 
 330 
 379 
 429 
 
 335 
 384 
 433 
 
 340 
 438 
 
 345 
 394 
 443 
 
 7 
 8 
 9 
 
 3.5 
 4.0 
 4.5 
 
 453 
 
 458 
 
 463 
 
 468 
 
 473 
 
 478 
 
 483 
 
 488 
 
 493 
 
 
 498 
 547 
 596 
 
 503 
 552 
 601 
 
 507 
 557 
 606 
 
 512 
 611 
 
 567 
 616 
 
 522 
 621 
 
 527 
 576 
 626 
 
 532 
 630 
 
 537 
 586 
 
 635 
 
 r42 
 
 591 
 640 
 
 84 
 85 
 86 
 
 645 
 694 
 743 
 
 650 
 699 
 748 
 
 655 
 704 
 
 753 
 
 660 
 709 
 758 
 
 665 
 714 
 763 
 
 670 
 719 
 768 
 
 675 
 724 
 
 773 
 
 680 
 
 729 
 778 
 
 685 
 734 
 783 
 
 689 
 738 
 787 
 
 
 4 
 
 87 
 88 
 89 
 
 890 
 
 91 
 92 
 93 
 
 792 
 841 
 890 
 
 797 
 846 
 895 
 
 802 
 851 
 900 
 
 807 
 856 
 905 
 
 812 
 861 
 910 
 
 817 
 866 
 
 915 
 
 822 
 
 871 
 919 
 
 827 
 876 
 
 924 
 
 880 
 929 
 
 836 
 885 
 934 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 
 4 
 
 0.8 
 1.2 
 1.6 
 2.0 
 2.4 
 2.8 
 3.2 
 
 939 
 
 988 
 
 95 036 
 
 085 
 
 944 
 
 993 
 041 
 090 
 
 949 
 
 954 
 
 959 
 
 *oo7 
 
 056 
 
 105 
 
 963 
 
 *OI2 
 061 
 109 
 
 968 
 
 973 
 
 978 
 
 983 
 
 998 
 046 
 095 
 
 *002 
 051 
 100 
 
 ♦017 
 066 
 114 
 
 *022 
 071 
 119 
 
 *027 
 
 075 
 124 
 
 ♦032 
 080 
 129 
 
 94 
 95 
 96 
 
 231 
 
 139 
 187 
 236 
 
 143 
 192 
 240 
 
 148 
 197 
 245 
 
 153 
 202 
 250 
 
 158 
 207 
 255 
 
 163 
 211 
 260 
 
 168 
 216 
 265 
 
 173 
 
 221 
 270 
 
 177 
 226 
 274 
 
 9 
 
 3.6 
 
 97 
 
 98 
 99 
 
 900 
 
 279 
 
 ^;6 
 
 284 
 
 332 
 381 
 
 289 
 
 337 
 386 
 
 294 
 342 
 390 
 
 299 
 347 
 395 
 
 303 
 352 
 400 
 
 308 
 
 357 
 405 
 
 361 
 410 
 
 318 
 366 
 415 
 
 323 
 371 
 419 
 
 
 424 
 
 429 
 
 434 
 
 439 
 
 444 
 
 448 
 
 453 
 
 458 
 
 463 
 
 468 
 
 N. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
20 
 
 
 
 
 
 TABLE I 
 
 ■, 
 
 
 
 
 
 N. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
 900 
 
 01 
 02 
 03 
 
 95 424 
 
 429 
 
 434 
 
 439 
 
 444 
 
 448 
 
 453 
 
 458 
 
 463 
 
 468 
 
 
 472 
 569 
 
 477 
 525 
 574 
 
 482 
 530 
 578 
 
 487 
 535 
 583 
 
 492 
 
 540 
 588 
 
 497 
 545 
 593 
 
 501 
 598 
 
 506 
 
 554 
 602 
 
 511 
 559 
 607 
 
 564 
 612 
 
 04 
 05 
 06 
 
 617 
 665 
 713 
 
 622 
 670 
 718 
 
 626 
 674 
 722 
 
 631 
 679 
 727 
 
 636 
 684 
 732 
 
 641 
 6S9 
 737 
 
 646 
 694 
 742 
 
 650 
 698 
 746 
 
 655 
 703 
 
 751 
 
 660 
 708 
 756 
 
 
 07 
 
 08 
 09 
 
 910 
 
 11 
 12 
 13 
 
 761 
 809 
 856 
 
 904 
 
 766 
 
 813 
 
 861 
 
 818 
 
 866 
 
 823 
 871 
 
 780 
 828 
 875 
 
 785 
 880 
 
 789 
 
 885 
 
 794 
 842 
 890 
 
 799 
 847 
 895 
 
 804 
 852 
 899 
 
 
 909 
 
 914 
 
 918 
 
 923 
 
 928 
 
 933 
 
 938 
 
 942 
 
 947 
 
 952 
 
 999 
 96 047 
 
 957 
 
 *oo4 
 
 052 
 
 961 
 
 *oo9 
 
 057 
 
 966 
 
 *oi4 
 061 
 
 971 
 
 ♦019 
 
 066 
 
 976 
 
 *023 
 
 071 
 
 980 
 
 *028 
 
 076 
 
 985 
 
 *o33 
 
 080 
 
 
 ,995 
 
 *042 
 
 090 
 
 1 
 
 2 
 
 0.5 
 1.0 
 
 14 
 15 
 IG 
 
 095 
 142 
 
 190 
 
 099 
 
 147 
 194 
 
 104 
 152 
 199 
 
 109 
 156 
 204 
 
 114 
 161 
 209 
 
 118 
 166 
 213 
 
 123 
 218 
 
 128 
 
 175 
 223 
 
 133 
 
 180 
 227 
 
 137 
 
 185 
 
 232 
 
 3 
 4 
 5 
 6 
 
 1.5 
 2.0 
 2.5 
 3.0 
 
 17 
 
 18 
 19 
 
 920 
 
 21 
 22 
 23 
 
 237 
 284 
 332 
 
 379 
 
 426 
 
 473 
 520 
 
 1% 
 336 
 
 246 
 294 
 341 
 
 251 
 298 
 346 
 
 256 
 303 
 350 
 
 261 
 308 
 355 
 402 
 450 
 497 
 544 
 
 265 
 360 
 
 270 
 317 
 365 
 
 275 
 322 
 369 
 
 280 
 327 
 
 374 
 
 7 
 8 
 9 
 
 3.5 
 4.0 
 4.5 
 
 384 
 
 388 
 
 393 
 
 398 
 
 407 
 
 412 
 
 417 
 
 421 
 
 
 478 
 
 525 
 
 435 
 483 
 530 
 
 440 
 487 
 534 
 
 445 
 492 
 539 
 
 454 
 548 
 
 459 
 506 
 
 553 
 
 464 
 558 
 
 468 
 562 
 
 24 
 25 
 
 26 
 
 567 
 614 
 661 
 
 572 
 619 
 666 
 
 577 
 624 
 670 
 
 581 
 628 
 
 675 
 
 586 
 
 633 
 680 
 
 591 
 638 
 685 
 
 P5 
 642 
 
 689 
 
 600 
 647 
 694 
 
 605 
 652 
 699 
 
 609 
 656 
 703 
 
 
 27 
 28 
 29 
 
 930 
 
 31 
 32 
 33 
 
 708 
 
 755 
 802 
 
 848 
 
 713 
 759 
 806 
 
 717 
 764 
 811 
 
 722 
 
 ^^? 
 816 
 
 727 
 774 
 820 
 
 825 
 
 736 
 783 
 830 
 
 741 
 788 
 
 834 
 
 745 
 792 
 839 
 
 750 
 844 
 
 
 853 
 
 858 
 
 862 
 
 ^7 
 
 872 
 
 876 
 
 881 
 
 886 
 
 890 
 
 895 
 942 
 988 
 
 900 
 946 
 993 
 
 904 
 951 
 997 
 
 909 
 956 
 
 *002 
 
 914 
 *oo7 
 
 918 
 965 
 
 *OII 
 
 923 
 
 970 
 
 *oi6 
 
 928 
 974 
 
 *02I 
 
 932 
 979 
 
 *025 
 
 ♦030 
 
 1 
 2 
 
 4 
 
 0.4 
 
 0.8 
 
 34 
 35 
 36 
 
 97 035 
 
 081 
 128 
 
 132 
 
 044 
 090 
 
 137 
 
 049 
 095 
 142 
 
 053 
 100 
 146 
 
 058 
 104 
 151 
 
 063 
 109 
 155 
 
 067 
 114 
 160 
 
 072 
 118 
 
 165 
 
 077 
 123 
 169 
 
 3 
 
 4 
 5 
 6 
 
 1.2 
 1.6 
 2.0 
 2.4 
 
 37 
 38 
 39 
 
 940 
 
 41 
 42 
 43 
 
 174 
 220 
 267 
 
 .79 
 
 225 
 271 
 
 183 
 230 
 276 
 
 188 
 
 192 
 
 197 
 
 243 
 290 
 
 202 
 248 
 294 
 
 206 
 
 253 
 299 
 
 211 
 257 
 304 
 
 216 
 262 
 308 
 
 7 
 8 
 9 
 
 2.8 
 3.2 
 3.6 
 
 313 
 
 359 
 405 
 
 451 
 
 317 
 
 322 
 
 327 
 
 331 
 
 336 
 
 340 
 
 345 
 
 350 
 
 354 
 400 
 447 
 493 
 
 
 364 
 410 
 456 
 
 368 
 414 
 460 
 
 373 
 419 
 465 
 
 377 
 424 
 
 470 
 
 382 
 428 
 474 
 
 387 
 433 
 479 
 
 391 
 437 
 483 
 
 396 
 442 
 488 
 
 44 
 45 
 46 
 
 497 
 589 
 
 502 
 548 
 594 
 
 506 
 552 
 598 
 
 511 
 603 
 
 562 
 607 
 
 •520 
 566 
 612 
 
 525 
 571 
 617 
 
 529 
 575 
 621 
 
 534 
 580 
 626 
 
 630 
 
 
 47 
 48 
 49 
 
 950 
 
 635 
 
 681 
 
 727 
 
 640 
 685 
 731 
 
 644 
 690 
 736 
 
 649 
 695 
 740 
 
 653 
 699 
 745 
 
 658 
 
 704 
 749 
 
 663 
 708 
 
 754 
 
 667 
 713 
 
 759 
 
 672 
 717 
 
 763 
 
 676 
 722 
 768 
 
 
 772 
 
 m 
 
 782 
 
 786 
 
 791 
 
 795 
 
 800 
 
 804 
 
 809 
 
 813 
 
 N. 
 
 
 
 1 
 
 2 
 
 «|4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. PtR. 
 

 
 
 LOGARITHMS OF NUMBERS 
 
 
 
 21 
 
 N. 
 
 o 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
 050 
 
 51 
 52 
 53 
 
 97 772 
 
 777 
 
 782 786 
 
 791 
 
 795 
 
 800 
 
 804 
 
 809 
 
 813 
 
 
 8i8 
 864 
 909 
 
 823 
 868 
 914 
 
 827 
 
 873 
 918 
 
 832 
 ^77 
 923 
 
 836 
 882 
 928 
 
 841 
 886 
 932 
 
 845 
 891 
 
 937 
 
 850 
 896 
 941 
 
 855 
 900 
 946 
 
 859 
 905 
 950 
 
 54 
 55 
 56 
 
 0^55 
 
 98 000 
 
 046 
 
 959 
 005 
 050 
 
 964 
 009 
 055 
 
 968 
 014 
 059 
 
 973 
 019 
 064 
 
 978 
 023 
 068 
 
 982 
 028 
 073 
 
 987 
 032 
 078 
 
 991 
 
 21 
 
 996 
 041 
 087 
 
 
 57 
 
 58 
 59 
 
 960 
 
 61 
 62 
 63 
 
 091 
 
 096 
 
 141 
 186 
 
 100 
 146 
 191 
 
 105 
 150 
 195 
 
 109 
 
 155 
 200 
 
 114 
 
 159 
 204 
 
 118 
 164 
 209 
 
 123 
 168 
 214 
 
 127 
 
 173 
 
 218 
 
 132 
 177 
 223 
 
 
 227 
 
 232 
 
 236 
 
 241 
 
 245 
 
 250 
 
 254 
 
 259 
 
 263 
 
 268 
 
 272 
 
 363 
 
 277 
 322 
 367 
 
 281 
 
 327 
 372 
 
 286 
 
 331 
 376 
 
 290 
 336 
 381 
 
 295 
 340 
 385 
 
 299 
 345 
 390 
 
 304 
 349 
 394 
 
 308 
 354 
 399 
 
 313 
 358 
 403 
 
 1 
 2 
 
 5 
 
 0.5 
 1.0 
 
 64 
 65 
 66 
 
 408 
 
 453 
 498 
 
 412 
 
 457 
 502 
 
 417 
 462 
 
 507 
 
 421 
 466 
 511 
 
 426 
 
 471 
 516 
 
 430 
 475 
 520 
 
 480 
 525 
 
 439 
 484 
 529 
 
 444 
 489 
 
 534 
 
 448 
 
 .493 
 
 538 
 
 3 
 4 
 5 
 6 
 
 1.5 
 2.0 
 2.5 
 3.0 
 
 67 
 
 68 
 69 
 
 970 
 
 71 
 72 
 73 
 
 543 
 588 
 632 
 
 547 
 592 
 ^57 
 
 552 
 597 
 641 
 
 601 
 646 
 
 561 
 605 
 650 
 
 610 
 655 
 
 570 
 614 
 659 
 
 619 
 664 
 
 579 
 668 
 
 583 
 628 
 
 673 
 
 7 
 8 
 9 
 
 3.5 
 4.0 
 4.5 
 
 677 
 
 682 
 
 686 
 
 691 
 
 695 
 
 700 
 
 744 
 789 
 834 
 
 704 
 
 709 
 
 713 
 
 717 
 
 
 722 
 767 
 811 
 
 726 
 771 
 816 
 
 731 
 820 
 
 825 
 
 740 
 
 784 
 829 
 
 749 
 III 
 
 798 
 843 
 
 802 
 
 847 
 
 762 
 807 
 851 
 
 74 
 75 
 76 
 
 856 
 900 
 945 
 
 860 
 905 
 949 
 
 865 
 909 
 954 
 
 869 
 914 
 958 
 
 874 
 918 
 963 
 
 878 
 
 923 
 967 
 
 883 
 927 
 972 
 
 ^2>7 
 932 
 976 
 
 892 
 936 
 981 
 
 896 
 941 
 985 
 
 
 77 
 78 
 79 
 
 080 
 
 81 
 
 82 
 83 
 
 989 
 
 99 034 
 078 
 
 994 
 038 
 083 
 
 998 
 043 
 087 
 
 *oo3 
 047 
 092 
 
 *oo7 
 052 
 096 
 
 *OI2 
 056 
 100 
 
 145 
 189 
 233 
 
 277 
 
 ^=016 
 061 
 105 
 
 *02I 
 065 
 109 
 
 *025 
 
 069 
 114 
 
 *029 
 
 074 
 118 
 
 
 123 
 
 127 
 
 131 
 
 136 
 
 140 
 
 149 
 
 154 
 
 158 
 
 162 
 
 167 
 , 211 
 
 255 
 
 171 
 216 
 260 
 
 176 
 220 
 264 
 
 180 
 
 224 
 269 
 
 185 
 229 
 
 273 
 
 193 
 
 282 
 
 198 
 
 242 
 286 
 
 202 
 
 247 
 291 
 
 207 
 251 
 295 
 
 1 
 
 2 
 
 4 
 
 0.4 
 0.8 
 
 84 
 85 
 86 
 
 300 
 
 344 
 388 
 
 304 
 
 348 
 392 
 
 308 
 
 396 
 
 313 
 357 
 401 
 
 317 
 361 
 405 
 
 322 
 366 
 410 
 
 326 
 
 370 
 414 
 
 330 
 
 374 
 419 
 
 335 
 
 379 
 
 423 
 
 339 
 383 
 427 
 
 3 
 4 
 
 5 
 
 1.2 
 1.6 
 2.0 
 2 4 
 
 87 
 88 
 89 
 
 090 
 
 91 
 92 
 93 
 
 432 
 476 
 520 
 
 436 
 480 
 
 524 
 
 441 
 484 
 528 
 
 445 
 489 
 533 
 
 449 
 493 
 537 
 
 454 
 498 
 542 
 
 458 
 502 
 546 
 
 590 
 
 463 
 506 
 
 550 
 
 467 
 511 
 555 
 
 471 
 515 
 559 
 603 
 
 7 
 8 
 9 
 
 2.8 
 3.2 
 3.6 
 
 564 
 
 568 
 
 572 
 
 577 
 
 581 
 
 585 
 629 
 673 
 717 
 
 594 
 
 599 
 
 
 607 
 
 695 
 
 612 
 656 
 699 
 
 616 
 660 
 704 
 
 621 
 664 
 708 
 
 625 
 669 
 712 
 
 614 
 
 677 
 721 
 
 it 
 
 726 
 
 642 
 686 
 730 
 
 647 
 691 
 734 
 
 94 
 95 
 96 
 
 739 
 782 
 826 
 
 743 
 787 
 830 
 
 747 
 791 
 
 835 
 
 752 
 795 
 839 
 
 756 
 800 
 843 
 
 760 
 804 
 848 
 
 765 
 808 
 852 
 
 769 
 
 813 
 856 
 
 774 
 817 
 861 
 
 822 
 865 
 
 
 97 
 
 98 
 99 
 
 1000 
 
 870 
 
 9'3 
 957 
 
 874 
 917 
 961 
 
 878 
 922 
 965 
 
 883 
 926 
 970 
 
 887 
 930 
 974 
 
 891 
 
 935 
 978 
 
 896 
 939 
 983 
 
 900 
 944 
 987 
 
 904 
 948 
 991 
 
 909 
 952 
 996 
 
 
 00 coo 
 
 004 
 
 009 
 
 013 
 
 017 
 
 022 
 
 026 
 
 030 
 
 035 
 
 039 
 
 N. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 § 
 
 9 
 
 Prop. Pts. 
 
22 
 
 TABLE I 
 
 N 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 S 
 
 9 
 
 Prop. Pts. 
 
 1000 
 
 1001 
 1002 
 1003 
 
 ooo ooo 
 
 ~434 
 
 868 
 
 ooi 301 
 
 043 
 
 477 
 911 
 
 344 
 
 087 
 
 130 
 
 174 
 
 217 
 
 260 
 
 304 
 
 347 
 
 391 
 
 
 521 
 
 388 
 
 564 
 998 
 431 
 
 608 
 
 ♦041 
 
 474 
 
 651 
 
 ♦084 
 517 
 
 694 
 
 ♦128 
 
 561 
 
 738 
 
 *i7i 
 
 604 
 
 781 
 
 ♦214 
 
 647 
 
 824 
 
 ♦258 
 
 690 
 
 
 44 
 
 1004 
 1005 
 1006 
 
 734 
 
 002 166 
 
 598 
 
 777 
 209 
 641 
 
 820 
 
 252 
 684 
 
 863 
 296 
 727 
 
 907 
 
 339 
 771 
 
 950 
 382 
 814 
 
 993 
 
 857 
 
 ♦036 
 468 
 900 
 
 *o8o 
 512 
 943 
 
 *I23 
 
 555 
 986 
 
 1 
 2 
 3 
 
 4.4 
 
 8.8 
 
 13.2 
 
 1007 
 
 1008 
 1009 
 
 1010 
 
 1011 
 1012 
 1013 
 
 003 029 
 461 
 891 
 
 073 
 504 
 
 934 
 
 116 
 
 547 
 977 
 
 159 
 
 590 
 
 *020 
 
 202 
 
 633 
 *o63 
 
 245 
 
 676 
 
 *io6 
 
 536 
 
 288 
 719 
 
 *i49 
 
 331 
 
 762 
 
 *I92 
 
 374 
 805 
 
 *235 
 
 417 
 
 848 
 
 *278 
 
 4 
 5 
 6 
 7 
 8 
 9 
 
 17.6 
 22.0 
 26.4 
 30.8 
 35.2 
 39.6 
 
 004 321 
 
 364 
 
 407 
 
 450 
 
 493 
 
 579 
 
 622 
 
 665 
 
 708 
 
 751 
 
 005 180 
 
 609 
 
 794 
 223 
 652 
 
 837 
 266 
 
 695 
 
 880 
 309 
 738 
 
 923 
 352 
 
 966 
 
 395 
 
 824 
 
 *oo9 
 438 
 867 
 
 *052 
 
 481 
 909 
 
 *o95 
 524 
 952 
 
 *i38 
 567 
 995 
 
 1014 
 1015 
 1016 
 
 006 038 
 466 
 894 
 
 081 
 509 
 936 
 
 124 
 552 
 979 
 
 166 
 
 594 
 
 *022 
 
 209 
 
 637 
 *o65 
 
 252 
 
 680 
 
 *io7 
 
 295 
 
 723 
 
 *i5o 
 
 338 
 
 *i93 
 
 808 
 ♦236 
 
 f3 
 851 
 
 *278 
 
 1 
 
 43 
 
 4.3 
 
 1017 
 1018 
 1019 
 
 1020 
 
 1021 
 1022 
 1023 
 
 007 321 
 748 
 
 008 174 
 
 600 
 oop 026 
 
 451 
 S76 
 
 364 
 790 
 217 
 
 406 
 
 833 
 259 
 
 449 
 876 
 302 
 
 492 
 918 
 
 345 
 
 961 
 387 
 
 577 
 *oo4 
 
 430 
 
 620 
 
 *o46 
 
 472 
 
 662 
 
 *o89 
 
 515 
 
 705 
 
 *I32 
 
 558 
 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 8.6 
 12.9 
 17.2 
 21.5 
 25.8 
 30.1 
 34.4 
 38.7 
 
 643 
 
 685 
 
 728 
 
 770 
 
 813 
 
 856 
 
 898 
 
 941 
 
 983 
 
 068 
 
 493 
 918 
 
 III 
 536 
 961 
 
 578 
 *oo3 
 
 196 
 
 621 
 
 *o45 
 
 238 
 
 663 
 
 *o88 
 
 281 
 
 706 
 
 *i30 
 
 323 
 
 748 
 
 *i73 
 
 366 
 791 
 
 *2I5 
 
 408 
 
 833 
 *258 
 
 1024 
 1025 
 1026 
 
 010 300 
 
 724 
 
 on 147 
 
 342 
 766 
 190 
 
 232 
 
 427 
 851 
 274 
 
 470 
 893 
 317 
 
 936 
 359 
 
 978 
 401 
 
 597 
 
 *020 
 
 444 
 
 639 
 
 *o63 
 486 
 
 681 
 
 *io5 
 
 528 
 
 
 1027 
 1028 
 1029 
 
 1030 
 
 1031 
 1032 
 1033 
 
 570 
 
 993 
 012 415 
 
 *035 
 458 
 
 655 
 
 ''078 
 
 5cx> 
 
 697 
 
 *I20 
 542 
 
 740 
 
 *l62 
 
 584 
 
 782 
 
 *204 
 
 626 
 
 824 
 
 *247 
 669 
 
 866 
 
 *289 
 
 711 
 
 909 
 
 *33i 
 
 753 
 
 951 
 
 *373 
 
 795 
 
 1 
 2 
 
 I 
 
 6 
 7 
 
 42 
 
 4.2 
 
 8.4 
 12.6 
 16.8 
 21.0 
 25.2 
 29.4 
 
 837 
 
 879 
 
 922 
 
 964 
 
 *oo6 
 
 ♦048 
 
 ♦090 
 
 *I32 
 
 *I74 
 
 *2I7 
 
 013 259 
 680 
 
 014 ICX) 
 
 301 
 
 722 
 142 
 
 343 
 764 
 184 
 
 226 
 
 427 
 848 
 268 
 
 469 
 890 
 310 
 
 511 
 932 
 352 
 
 553 
 974 
 395 
 
 596 
 
 *oi6 
 
 437 
 
 638 
 
 ♦058 
 
 479 
 
 1034 
 1035 
 1036 
 
 521 
 
 940 
 
 015 360 
 
 563 
 982 
 402 
 
 605 
 
 *024 
 
 444 
 
 647 
 
 *o66 
 485 
 
 689 
 *io8 
 
 527 
 
 730 
 
 *i5o 
 569 
 
 772 
 
 *I92 
 
 611 
 
 814 
 
 *234 
 
 653 
 
 856 
 
 ♦276 
 
 695 
 
 898 
 
 *3i8 
 
 737 
 
 8 
 9 
 
 33.6 
 37.8 
 
 1037 
 1038 
 1039 
 
 1040 
 
 1041 
 1042 
 1043 
 
 779 
 
 016 197 
 616 
 
 017 033 
 
 821 
 
 239 
 657 
 
 863 
 281 
 699 
 
 904 
 
 323 
 741 
 
 946 
 365 
 783 
 
 988 
 407 
 824 
 
 +030 
 
 448 
 
 866 
 
 ♦072 
 490 
 908 
 
 *ii4 
 532 
 950 
 
 ♦156 
 574 
 992 
 
 1 
 2 
 3 
 4 
 5 
 
 41 
 
 4.1 
 
 8.2 
 12.3 
 16.4 
 20 5 
 
 075 
 
 117 
 
 159 
 
 200 
 
 242 
 
 284 
 
 326 ! 367 
 
 409 
 
 451 
 
 86S 
 
 018 284 
 
 492 
 909 
 326 
 
 534 
 368 
 
 576 
 
 993 
 409 
 
 618 
 
 "034 
 
 451 
 
 659 
 
 ♦076 
 
 492 
 
 701 
 
 *ii8 
 
 534 
 
 743 
 *I59 
 
 576 
 
 784 
 
 *20I 
 617 
 
 826 
 
 *243 
 
 659 
 
 1044 
 1045 
 1046 
 
 700 
 
 019 116 
 
 532 
 
 742 
 158 
 
 573 
 
 784 
 199 
 615 
 
 825 
 241 
 656 
 
 867 
 282 
 698 
 
 908 
 324 
 739 
 
 950 
 366 
 781 
 
 992 
 407 
 822 
 
 *o33 
 449 
 864 
 
 *o75 
 490 
 905 
 
 6 
 
 7 
 8 
 
 24.6 
 28.7 
 32.8 
 
 1047 
 
 10 i8 
 1019 
 
 1050 
 
 947 
 020 361 
 
 775 
 
 988 
 403 
 817 
 
 *030 
 
 444 
 858 
 
 *o7i 
 486 
 900 
 
 *ii3 
 527 
 941 
 
 *i54 
 568 
 982 
 
 "3^6 
 
 *I95 
 610 
 
 *024 
 
 *237 
 
 651 
 
 *o65 
 
 *278 
 
 693 
 *io7 
 
 ♦320 
 
 734 
 *i48 
 
 561 
 
 9 
 
 36.9 
 
 021 189 
 
 231 
 
 272 
 
 313 
 
 355 
 
 437 
 
 479 
 
 520 
 
 
 N. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 

 
 
 LOGARITHMS OF NUMBERS 
 
 
 
 23 
 
 N. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 S 
 
 9 
 
 Prop. i'U, 
 
 1050 
 
 1051 
 1052 
 1053 
 
 02I 189 
 
 231 
 
 272 
 
 313 
 
 355 
 
 396 
 
 437 
 
 479 
 
 520 
 
 561 
 
 974 
 387 
 799 
 
 
 603 
 
 022 016 
 
 428 
 
 644 
 057 
 
 470 
 
 685 
 098 
 511 
 
 727 
 140 
 552 
 
 768 
 181 
 593 
 
 809 
 
 222 
 635 
 
 851 
 263 
 676 
 
 892 
 
 305 
 717 
 
 933 
 346 
 758 
 
 
 42 
 
 1054 
 1055 
 1056 
 
 841 
 
 882 
 
 294 
 705 
 
 923 
 
 335 
 746 
 
 964 
 376 
 787 
 
 ♦005 
 
 417 
 828 
 
 *047 
 458 
 870 
 
 *o88 
 
 499 
 911 
 
 *I29 
 
 541 
 952 
 
 *i7o 
 582 
 993 
 
 *2II 
 623 
 
 *o34 
 
 1 
 2 
 3 
 
 4.2 
 
 8.4 
 
 12.6 
 
 1057 
 1058 
 1059 
 
 1000 
 
 1061 
 1062 
 1063 
 
 024 075 
 
 486 
 896 
 
 025 306 
 
 116 
 
 527 
 937 
 
 157 
 568 
 978 
 
 198 
 
 609 
 
 ♦019 
 
 239 
 
 650 
 
 *o6o 
 
 280 
 691 
 
 *IOI 
 
 321 
 732 
 
 *I42 
 
 363 
 
 773 
 
 *i83 
 
 404 
 814 
 
 *224 
 
 445 
 
 855 
 
 ♦265 
 
 674 
 
 4 
 5 
 6 
 7 
 8 
 9 
 
 16.8 
 21,0 
 25.2 
 29.4 
 33.6 
 37.8 
 
 347 
 
 388 
 
 429 
 
 470 
 
 511 
 
 552 
 
 593 
 
 634 
 
 026 125 
 
 533 
 
 756 
 165 
 574 
 
 797 
 206 
 615 
 
 838 
 247 
 656 
 
 879 
 288 
 697 
 
 920 
 329 
 737 
 
 961 
 370 
 778 
 
 *002 
 819 
 
 *o43 
 452 
 860 
 
 ♦084 
 492 
 901 
 
 1064 
 1065 
 1066 
 
 942 
 
 027 350 
 
 757 
 
 982 
 
 390 
 798 
 
 *023 
 
 431 
 839 
 
 *o64 
 
 472 
 879 
 
 *io5 
 
 513 
 920 
 
 *i46 
 961 
 
 ♦186 
 594 
 
 *002 
 
 *227 
 
 635 
 *042 
 
 *268 
 
 676 
 
 *o83 
 
 *309 
 716 
 
 *I24 
 
 1 
 
 41 
 
 4.1 
 
 1067 
 1068 
 1069 
 
 1070 
 
 1071 
 1072 
 1073 
 
 028 164 
 _978 
 
 02Q 384 
 
 789 
 
 030 195 
 
 600 
 
 205 
 612 
 
 *oi8 
 
 246 
 
 653 
 
 *o59 
 
 287 
 693 
 
 *ICX) 
 
 327 
 
 734 
 
 ♦140 
 
 368 
 
 775 
 *i8i 
 
 409 
 
 815 
 
 *22I 
 
 449 
 856 
 
 *262 
 
 490 
 
 896 
 
 ♦303 
 
 531 
 
 937 
 
 *343 
 
 749 
 
 2 
 3 
 
 4 
 5 
 6 
 
 7 
 8 
 9 
 
 8.2 
 12.3 
 16.4 
 20.5 
 24.6 
 28.7 
 32.8 
 36.9 
 
 424 
 830 
 
 640 
 
 465 
 
 871" 
 276 
 681 
 
 506 
 
 546 
 
 587 
 
 627 
 
 668 
 
 708 
 
 316 
 721 
 
 952 
 
 357 
 762 
 
 992 
 397 
 802 
 
 *o33 
 438 
 843 
 
 *o73 
 478 
 883 
 
 *ii4 
 519 
 923 
 
 *i54 
 559 
 964 
 
 1074 
 1075 
 1076 
 
 031 004 
 
 408 
 812 
 
 045 
 
 449 
 853 
 
 085 
 
 489 
 893 
 
 126 
 530 
 
 933 
 
 166 
 570 
 974 
 
 206 
 
 610 
 
 *oi4 
 
 247 
 
 651 
 
 *o54 
 
 287 
 
 691 
 
 *o95 
 
 328 
 
 732 
 
 *i35 
 
 368 
 
 772 
 
 *i75 
 
 
 1077 
 1078 
 1079 
 
 1080 
 
 1081 
 1082 
 1083 
 
 032 216 
 619 
 
 033 021 
 
 256 
 659 
 062 
 
 296 
 699 
 102 
 
 337 
 740 
 142 
 
 377 
 780 
 182 
 
 4^7 
 820 
 223 
 
 458 
 860 
 263 
 
 498 
 901 
 
 J03 
 
 705 
 
 538 
 941 
 
 343 
 
 745 
 
 578 
 981 
 384 
 785 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 
 40 
 
 4.0 
 8.0 
 12.0 
 10.0 
 20.0 
 24.0 
 28.0 
 
 424 
 
 464 
 
 504 
 
 544 
 
 585 
 
 625 
 
 665 
 
 826 
 
 034 227 
 
 628 
 
 866 
 267 
 669 
 
 906 
 308 
 709 
 
 946 
 348 
 749 
 
 986 
 388 
 789 
 
 *027 
 
 428 
 
 829 
 
 *o67 
 468 
 869 
 
 *io7 
 50S 
 909 
 
 *I47 
 548 
 949 
 
 *i87 
 588 
 989 
 
 1084 
 1085 
 1086 
 
 035 029 
 
 430 
 830 
 
 069 
 470 
 870 
 
 109 
 510 
 910 
 
 149 
 
 550 
 950 
 
 190 
 590 
 990 
 
 230 
 
 630 
 ♦030 
 
 270 
 
 670 
 
 ♦070 
 
 310 
 710 
 
 *IIO 
 
 350 
 
 750 
 
 *i5o 
 
 390 
 
 790 
 
 ♦190 
 
 8 
 9 
 
 32.0 
 36.0 
 
 1087 
 1088 
 1089 
 
 1000 
 
 1091 
 1092 
 1093 
 
 036 230 
 629 
 
 037 028 
 
 269 
 669 
 068 
 
 309 
 709 
 108 
 
 349 
 749 
 148 
 
 389 
 789 
 187 
 
 429 
 
 828 
 227 
 
 469 
 868 
 267 
 
 509 
 908 
 307 
 
 549 
 948 
 
 347 
 
 III 
 387 
 785 
 *i83 
 580 
 978 
 
 1 
 2 
 3 
 4 
 
 5 
 
 39 
 
 3.9 
 
 7.8 
 11.7 
 15.6 
 19 5 
 
 426 
 
 466 
 
 506 
 
 546 
 
 944 
 342 
 739 
 
 586 
 
 984 
 382 
 779 
 
 626 
 
 665 
 
 705 
 
 745 
 
 038 223 
 620 
 
 865 
 262 
 660 
 
 904 
 302 
 700 
 
 *024 
 
 421 
 819 
 
 *o64 
 461 
 
 859 
 
 *io3 
 501 
 898 
 
 *I43 
 541 
 938 
 
 1094 
 1095 
 1096 
 
 039 017 
 
 057 
 
 454 
 850 
 
 097 
 
 493 
 890 
 
 136 
 
 533 
 929 
 
 176 
 969 
 
 216 
 
 612 
 
 ♦009 
 
 ?55 
 652 
 
 ♦048 
 
 295 
 
 692 
 *o88 
 
 335 
 731 
 
 *I27 
 
 374 
 
 771 
 
 *i67 
 
 6 
 
 7 
 8 
 
 23.4 
 27.3 
 31.2 
 
 1097 
 1098 
 1099 
 
 1100 
 
 040 207 
 602 
 998 
 
 246 
 
 642 
 
 *037 
 
 286 
 
 681 
 
 *o77 
 
 325 
 
 721 
 
 *ii6 
 
 761 
 ♦156 
 
 405 
 
 800 
 *i95 
 
 590 
 
 444 
 840 
 
 *235 
 
 630 
 
 484 
 
 879 
 
 *274 
 
 669 
 
 523 
 919 
 
 *3i4 
 
 708 
 
 563 
 
 958 
 
 "353 
 
 748 
 
 9 
 
 35.1 
 
 041 393 
 
 432 
 
 472 
 
 511 
 
 551 
 
 
 N. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 § 
 
 
 
 Prop. Pts. 
 
TABLE II 
 
 LOGARITHMS 
 
 OF THE 
 
 TRIGONOMETRIC FUNCTIONS 
 
 FOR 
 
 EACH MINUTE 
 
 25 
 
26 
 
 TABLE II 
 
 0^ 
 
 2 
 
 3 
 _4_ 
 
 5 
 6 
 
 7 
 8 
 
 _9_ 
 10 
 II 
 
 12 
 
 13 
 
 ;i 
 
 17 
 i8 
 
 19 
 
 20 
 
 21 
 22 
 23 
 
 24 
 
 26 
 
 27 
 28 
 
 29 
 
 30 
 
 31 
 
 32 
 33 
 34 
 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 
 II 
 
 49 
 
 60 
 
 51 
 
 52 
 53 
 il 
 
 ii 
 II 
 
 Jl 
 00 
 
 L. Sin. 
 
 6.46373 
 6.76476 
 6.94085 
 7.06 579 
 
 16 270 
 24 188 
 30882 
 36682 
 41 797 
 
 46373 
 50512 
 54291 
 57767 
 60985 
 
 63982 
 66 784 
 69417 
 71 900 
 74248 
 
 76475 
 78594 
 80615 
 
 82545 
 84393 
 
 86 166 
 87870 
 89509 
 
 91 088 
 
 92 612 
 
 94 084 
 95508 
 96 §87 
 98223 
 99520 
 
 8.00779 
 8 . 02 002 
 8.03 192 
 8.04350 
 8.05478 
 
 8.06578 
 8.07650 
 8.08696 
 
 8.09 718 
 
 8.10 717 
 
 II 693 
 12647 
 13 581 
 14495 
 15 391 
 
 8.16268 
 8.17 128 
 8.17971 
 8.18798 
 8.19 610 
 
 8 . 20 407 
 8.21 189 
 
 8.21 958 
 
 8.22 713 
 8.23456 
 
 8.24 186 
 
 L. Cos, 
 
 30103 
 17609 
 12494 
 9691 
 7918 
 6694 
 5800 
 
 5"5 
 4576 
 4139 
 3779 
 3476 
 3218 
 2997 
 2802 
 2633 
 2483 
 2348 
 2227 
 
 2119 
 2021 
 1930 
 1848 
 1773 
 1704 
 1639 
 1579 
 1524 
 1472 
 
 1424 
 1379 
 1336 
 X297 
 1259 
 1223 
 1190 
 1158 
 1128 
 
 IIOO 
 
 1072 
 1046 
 
 I022 
 
 999 
 976 
 
 954 
 934 
 914 
 896 
 877 
 860 
 843 
 827 
 812 
 797 
 782 
 769 
 755 
 743 
 .730 
 
 L. Tang, c. d. L, Cotg 
 
 46373 
 76476 
 94085 
 
 06579 
 
 16 270 
 24 188 
 30882 
 36682 
 41 797 
 
 46373 
 50512 
 54291 
 57767 
 60986 
 
 63982 
 66785 
 69418 
 71 900 
 74248 
 
 76476 
 
 78595 
 80615 
 82 546 
 84394 
 
 86167 
 87871 
 89 510 
 91 089 
 92613 
 
 94 086 
 95510 
 96889 
 98 225 
 99522 
 
 00 781 
 
 02 004 
 
 03 194 
 04353 
 05481 
 
 06581 
 
 07653 
 
 08 700 
 
 09 722 
 
 10 720 
 
 11 696 
 
 12 651 
 
 13585 
 14500 
 15395 
 
 16 273 
 
 17 133 
 17976 
 18804 
 19 616 
 
 20413 
 21 195 
 
 21 964 
 
 22 720 
 23462 
 
 8.24 192 
 
 L. Cotg. 
 
 30103 
 17609 
 
 12494 
 9691 
 7918 
 6694 
 5800 
 5"5 
 4576 
 4139 
 3779 
 3476 
 3219 
 2996 
 2803 
 2633 
 2482 
 2348 
 2228 
 21 19 
 2020 
 193 1 
 1848 
 1773 
 1704 
 1639 
 1579 
 1524 
 1473 
 1424 
 1379 
 1336 
 1297 
 "59 
 1223 
 1x90 
 
 "59 
 Z128 
 ixoo 
 1072 
 X047 
 
 X022 
 
 998 
 976 
 
 955 
 934 
 915 
 895 
 878 
 
 860 
 843 
 828 
 812 
 797 
 782 
 769 
 756 
 742 
 730 
 
 c. d. 
 
 3 53627 
 3 23 524 
 3 05915 
 2.93421 
 
 2.83 730 
 2.75 812 
 2.69 118 
 2.63318 
 2 58 203 
 
 2.53627 
 2 . 49 488 
 
 2 45 709 
 2 42233 
 2.39014 
 
 2.36018 
 
 2 33215 
 2 30 582 
 2 28 100 
 2 25 752 
 
 2 23 524 
 2 21 405 
 2 19385 
 
 7 454 
 [5 606 
 
 13833 
 12 129 
 10 490 
 08 911 
 07387 
 
 05914 
 04 490 
 03 III 
 
 01 775 
 00478 
 
 99219 
 97996 
 96806 
 95647 
 94519 
 
 93419 
 92347 
 91 300 
 90278 
 89280 
 
 88304 
 
 87349 
 86415 
 85 500 
 84605 
 
 83727 
 82867 
 82 024 
 81 196 
 80384 
 
 79587 
 78805 
 78036 
 77 280 
 76538 
 75808 
 
 L. Tang, 
 
 89^ 
 
 L. Cos. 
 
 000 
 000 
 000 
 000 
 000 
 
 000 
 000 
 000 
 000 
 oco 
 
 000 
 000 
 000 
 000 
 000 
 
 00 000 
 00 000 
 99 999 
 99 999 
 99 999 
 
 99 999 
 99 999 
 99 999 
 99 999 
 99 999 
 
 99 999 
 99 999 
 99 999 
 99 999 
 99998 
 
 99998 
 99998 
 99998 
 09998 
 99998 
 
 99998 
 99998 
 99997 
 
 99 997 
 99 997 
 
 99997 
 99 997 
 99 997 
 99997 
 
 99996 
 
 99996 
 99996 
 99996 
 99996 
 99996 
 
 99 995 
 99 995 
 99 995 
 99 995 
 99 995 
 
 99 994 
 99 994 
 99 994 
 99994 
 
 99 994 
 
 99 993 
 
 L. Sin. 
 
 35 
 34 
 33 
 32 
 3» 
 30 
 29 
 28 
 27 
 26 
 
 Prop. Pts. 
 
 
 3476 
 
 3218 
 
 .X 
 
 348 
 
 322 
 
 .2 
 
 695 
 
 644 
 
 •3 
 
 1043 
 
 965 
 
 •4 
 
 1390 
 
 1287 
 
 •5 
 
 1738 
 
 X609 
 
 
 2803 
 
 2633 1 
 
 .1 
 
 280 
 
 263 
 
 .2 
 
 560 
 
 527 
 
 •3 
 
 841 
 
 790 
 
 •4 
 
 1121 
 
 1053 
 
 •5 
 
 1401 
 
 X316 
 
 
 2227 
 
 203I 
 
 .1 
 
 223 
 
 202 
 
 .2 
 
 445 
 
 404 
 
 •3 
 
 668 
 
 606 
 
 •4 
 
 891 
 
 808 
 
 •5 
 
 IXX3 
 
 xoxo 
 
 
 1704 
 
 1579 
 
 .1 
 
 170 
 
 158 
 
 .2 
 
 341 
 
 316 
 
 •3 
 
 5" 
 
 474 
 
 ■4 
 
 682 
 
 632 
 
 •5 
 
 852 
 
 789 
 
 
 1379 
 
 1297 
 
 .X 
 
 138 
 
 130 
 
 .2 
 
 276 
 
 259 
 
 •3 
 
 414 
 
 389 
 
 •4 
 
 552 
 
 519 
 
 •5 
 
 690 
 
 649 
 
 
 XX58 
 
 1x00 
 
 
 X16 
 
 110 
 
 
 232 
 
 220 
 
 
 347 
 
 330 
 
 
 463 
 
 440 
 
 
 579 
 
 550 
 
 
 999 
 
 954 
 
 .1 
 
 100 
 
 95 
 
 .2 
 
 200 
 
 191 
 
 •3 
 
 300 
 
 286 
 
 •4 
 
 400 
 
 382 
 
 •5 
 
 500 
 
 477 
 
 
 877 
 
 843 
 
 .1 
 
 88 
 
 84 
 
 .2 
 
 »75 
 
 169 
 
 •3 
 
 263 
 
 253 
 
 •4 
 
 351 
 
 337 
 
 •5 
 
 438 
 
 422 
 
 
 782 
 
 755 
 
 .1 
 
 78 
 
 75 
 
 .a 
 
 156 
 
 i5» 
 
 •3 
 
 235 
 
 226 
 
 • 4 
 
 313 
 
 302 
 
 •5 
 
 391 
 
 377 
 
 2997 
 
 300 
 
 599 
 899 
 1 199 
 1498 
 
 2483 
 
 24& 
 
 497 
 745 
 993 
 1242 
 
 1848 
 
 185 
 370 
 554 
 739 
 924 
 
 147a 
 
 H7 
 294 
 442 
 589 
 736 
 
 1223 
 122 
 245 
 367 
 489 
 612 
 
 X046 
 
 105 
 209 
 314 
 418 
 523 
 
 914 
 
 91 
 X83 
 274 
 366 
 
 457 
 
 8ia 
 
 81 
 162 
 244 
 325 
 406 
 
 730 
 73 
 146 
 219 
 29a 
 365 
 
 Prop. Pte. 
 
LOGARITHMS OF THE TRIGONOMETRIC FUNCTIONS 
 
 27 
 
 L. Sill. 
 
 
 
 \ 
 
 2 
 
 3 
 
 _4_ 
 
 I 
 
 7 
 8 
 
 _9_ 
 
 10 
 
 12 
 
 13 
 
 il. 
 
 ;i 
 
 17 
 
 t8 
 
 20 
 
 21 
 22 
 23 
 24 
 
 26 
 
 27 
 
 28 
 
 29 
 
 31 
 
 32 
 
 33 
 34 
 
 36 
 37 
 38 
 ii 
 40 
 41 
 42 
 43 
 44 
 
 45" 
 46 
 
 47 
 48 
 
 60 
 
 51 
 52 
 53 
 il. 
 
 ^i 
 II 
 
 59 
 60 
 
 24 186 
 24903 
 
 25 609 
 26304 
 26988 
 
 27 661 
 
 28 324 
 28977 
 
 29 621 
 30255 
 
 30879 
 
 31 495 
 
 32 103 
 
 32 702 
 
 33 292 
 
 33875 
 34450 
 35018 
 
 35578 
 36 131 
 
 36678 
 37217 
 37750 
 38276 
 38796 
 
 39310 
 39818 
 40320 
 
 40 816 
 
 41 307 
 
 41 792 
 42272 
 
 42 746 
 43216 
 
 43 680 
 
 44 139 
 
 44 594 
 
 45 044 
 45489 
 45930 
 
 46 366 
 
 46 799 
 
 47 226 
 47650 
 
 48 069 
 
 48485 
 48896 
 
 49304 
 
 49 708 
 
 50 108 
 
 50504 
 50897 
 51 287 
 51 673 
 52055 
 
 52434 
 52 810 
 53183 
 53552 
 53919 
 
 54282 
 
 L. Cos. 
 
 717 
 706 
 695 
 684 
 
 673 
 663 
 
 653 
 644 
 
 634 
 624 
 
 616 
 608 
 599 
 590 
 583 
 
 575 
 568 
 560 
 553 
 547 
 539 
 
 533 
 526 
 520 
 514 
 508 
 502 
 496 
 491 
 485 
 480 
 
 474 
 470 
 464 
 459 
 455 
 450 
 445 
 441 
 436 
 
 433 
 427 
 
 424 
 419 
 416 
 411 
 408 
 404 
 400 
 396 
 
 393 
 390 
 386 
 382 
 379 
 376 
 373 
 369 
 367 
 363 
 
 Tang. 
 
 24 192 
 
 24 910 
 
 25 616 
 
 26 312 
 26 996 
 
 27 669 
 
 28 332 
 28986 
 
 29 629 
 30263 
 
 30888 
 
 31 505 
 
 32 112 
 
 32 711 
 
 33302 
 
 33886 
 34461 
 35029 
 35590 
 36143 
 
 36689 
 37229 
 37762 
 38289 
 38809 
 
 39323 
 39832 
 40334 
 40830 
 41 321 
 
 41 S07 
 
 42 287 
 42 762 
 43232 
 43696 
 
 44 156 
 
 44 611 
 
 45 061 
 45507 
 45948 
 
 46385 
 46817 
 
 47245 
 47669 
 48089 
 
 48505 
 48917 
 
 49325 
 
 49 729 
 
 50 130 
 
 50527 
 
 50 920 
 
 51 310 
 51 696 
 52079 
 
 52459 
 52835 
 53208 
 53578 
 53 945 
 
 54308 
 
 L. Cotg. 
 
 c.d. 
 
 718 
 706 
 696 
 684 
 673 
 663 
 654 
 643 
 634 
 625 
 
 617 
 607 
 
 599 
 591 
 584 
 
 575 
 568 
 561 
 553 
 546 
 
 540 
 533 
 527 
 520 
 514 
 
 509 
 502 
 496 
 491 
 486 
 480 
 475 
 470 
 464 
 460 
 
 455 
 450 
 446 
 441 
 437 
 
 432 
 428 
 424 
 420 
 416 
 412 
 408 
 404 
 401 
 397 
 393 
 390 
 386 
 
 383 
 380 
 
 376 
 373 
 370 
 367 
 363 
 
 C.d. 
 
 L. Cotg. 
 
 75808 
 75090 
 74384 
 73688 
 73004 
 
 72331 
 71 668 
 71 014 
 70371 
 69 737 
 
 69 112 
 68495 
 67888 
 67 289 
 66698 
 
 66 114 
 
 65539 
 64971 
 64 410 
 63857 
 
 63 3" 
 62771 
 62238 
 61 711 
 61 191 
 
 60 677 
 60168 
 59 666 
 59 170 
 58679 
 
 58193 
 57713 
 57238 
 56768 
 56304 
 
 55844 
 55389 
 54 939 
 54 493 
 54052 
 
 53615 
 53183 
 52755 
 52331 
 51 9" 
 
 51495 
 51083 
 50675 
 50 271 
 49870 
 
 49 473 
 49 080 
 48 690 
 
 48304 
 47921 
 
 47541 
 47165 
 46 792 
 46 422 
 46055 
 
 .45692 
 
 L. Tang. 
 
 88° 
 
 L. Cos. 
 
 99 993 
 99 993 
 99 993 
 99 993 
 99992 
 
 99992 
 99992 
 99992 
 99992 
 99991 
 
 99991 
 99991 
 99990 
 99990 
 99990 
 
 99990 
 99989 
 99989 
 99989 
 99989 
 
 99988 
 99988 
 99988 
 99987 
 99987 
 
 99987 
 99 986 
 99 986 
 99 986 
 99985 
 
 99985 
 99985 
 99984 
 99984 
 99984 
 
 99983 
 99983 
 99983 
 99 982 
 99982 
 
 99982 
 99981 
 99981 
 99981 
 99 980 
 
 99 980 
 99 979 
 99 979 
 99979 
 
 99978 
 
 99978 
 99977 
 
 99 977 
 99977 
 99976 
 
 99976 
 99 975 
 99 975 
 99 974 
 99 974 
 
 9 99 974 
 
 L. Sin, 
 
 GO 
 
 59 
 58 
 57 
 _5i 
 55 
 54 
 53 
 52 
 _51 
 50 
 49 
 48 
 47 
 46 
 
 45 
 44 
 43 
 42 
 
 _iL 
 40 
 
 39 
 38 
 
 _3^ 
 
 35 
 34 
 33 
 32 
 
 30 
 
 29 
 28 
 27 
 26 
 
 25 
 24 
 23 
 22 
 21 
 20" 
 
 19 
 18 
 
 17 
 16 
 
 15 
 14 
 13 
 12 
 II 
 
 To" 
 9 
 
 8 
 
 7 
 6 
 
 Prop. Pte. 
 
 
 717 
 
 695 
 
 .1 
 
 71.7 
 
 69.5 
 
 .2 
 
 M3-4 
 
 139.0 
 
 •3 
 
 215. 1 
 
 208.5 
 
 •4 
 
 286.8 
 
 278.0 
 
 • 5 
 
 358.5 
 
 347-5 
 
 
 653 
 
 634 
 
 .1 
 
 65.3 
 
 63-4 
 
 .2 
 
 130.6 
 
 126.8 
 
 •3 
 
 195-9 
 
 190.2 
 
 •4 
 
 261.2 
 
 253.6 
 
 •5 
 
 326.5 
 
 3170 
 
 
 599 
 
 583 
 
 
 59-9 
 
 58.3 
 
 
 119. 8 
 
 n6.6 
 
 
 179.7 
 
 174.9 
 
 
 239-6 
 
 233-2 
 
 
 299-5 
 
 291-5 
 
 
 553 
 
 539 
 
 .1 
 
 55-3 
 
 53-9 
 
 .2 
 
 no. 6 
 
 107.8 
 
 ■3 
 
 165.9 
 
 161.7 
 
 •4 
 
 221.2 
 
 215.6 
 
 •5 
 
 276.5 
 
 269.5 
 
 
 514 
 
 503 
 
 
 51.4 
 
 50.2 
 
 
 102.8 
 
 100.4 
 
 
 154-2 
 
 150.6 
 
 
 205.6 
 
 200.8 
 
 
 257.0 
 
 251.0 
 
 
 480 
 
 470 
 
 .1 
 
 48 
 
 47 
 
 .2 
 
 96 
 
 94 
 
 •3 
 
 144 
 
 141 
 
 •4 
 
 192 
 
 188 
 
 •5 
 
 240 
 
 235 
 
 
 450 
 
 440 
 
 .X 
 
 45 
 
 44 
 
 .2 
 
 90 
 
 88 
 
 •3 
 
 135 
 
 132 
 
 •4 
 
 180 
 
 176 
 
 •5 
 
 225 
 
 220 
 
 
 430 
 
 410 
 
 .1 
 
 42 
 
 4» 
 
 .2 
 
 84 
 
 82 
 
 •3 
 
 126 
 
 123 
 
 •4 
 
 168 
 
 164 
 
 •5 
 
 210 
 
 205 
 
 390 
 
 380 
 
 39 
 
 38 
 
 78 
 
 76 
 
 117 
 
 114 
 
 156 
 
 152 
 
 >95 
 
 190 
 
 673 
 
 67.3 
 
 134.6 
 
 201 9 
 269.2 
 336.5 
 
 616 
 
 61.6 
 123.2 
 184.8 
 246.4 
 308.0 
 
 56.8 
 113.6 
 170.4 
 227.2 
 284.0 
 
 536 
 
 52.6 
 105.2 
 157.8 
 210.4 
 263.0 
 
 490 
 
 49 
 
 98 
 
 U7 
 
 196 
 
 245 
 
 460 
 
 46 
 92 
 
 138 
 184 
 230 
 
 430 
 
 43 
 86 
 129 
 172 
 215 
 
 400 
 
 40 
 80 
 120 
 160 
 
 300 
 
 37 
 
 74 
 
 III 
 
 148 
 
 Prop. Pts. 
 
28 
 
 TABLE II 
 
 2' 
 
 3 
 
 ±^ 
 
 l 
 
 I 
 
 9_ 
 10 
 II 
 
 12 
 
 13 
 
 :i 
 
 ii. 
 
 20 
 
 21 
 22 
 23 
 
 24 
 
 25 
 26 
 27 
 28 
 29 
 
 30 
 
 31 
 
 32 
 33 
 11 
 35 
 36 
 37 
 3« 
 39. 
 40 
 
 41 
 
 42 
 
 43 
 44 
 
 46 
 
 47 
 48 
 
 49 
 
 50 
 
 51 
 52 
 53 
 
 54 
 
 II 
 
 57 
 58 
 59 
 GO 
 
 L. Sin. 
 
 8 54 282 
 8 . 54 642 
 8.54999 
 8-55 354 
 
 8 . 56 054 
 8 . 56 400 
 
 8.56743 
 8.57084 
 8.57421 
 
 8.57757 
 8.58089 
 8.58419 
 
 8.58747 
 8.59072 
 
 8 59 395 
 8.59715 
 8 . 60 033 
 8.60349 
 8.60662 
 
 8.60973 
 8.61 282 
 8.61 589 
 
 8.61 894 
 
 8.62 196 
 
 8 . 62 49 7 
 
 8.62 795 
 
 8.63 091 
 8.6338c 
 8.6367 
 
 8.63968 
 8.64256 
 8.64543 
 8.64827 
 
 8.65 no 
 8.65391 
 8.65670 
 8.65947 
 8 . 66 223 
 
 8.66 497 
 
 8.66 769 
 8 ■ 67 039 
 8.67.308 
 
 8.67575 
 8.67841 
 
 8.68 104 
 8.68367 
 8.68627 
 
 8.68 886 
 
 8.69 144 
 
 8 . 69 400 
 8 . 69 654 
 
 8.69 907 
 
 8.70 159 
 8 . 70 409 
 
 8.70658 
 8 70 905 
 8.71 151 
 8.71 395 
 8.71638 
 
 8.71 880 
 
 L. Cos. 
 
 360 
 357 
 
 355 
 351 
 349 
 346 
 343 
 341 
 337 
 336 
 
 332 
 330 
 328 
 
 325 
 323 
 320 
 318 
 316 
 313 
 3" 
 
 309 
 307 
 305 
 303 
 301 
 298 
 296 
 294 
 293 
 290 
 
 288 
 287 
 284 
 283 
 281 
 279 
 277 
 276 
 274 
 272 
 270 
 269 
 267 
 266 
 263 
 263 
 260 
 259 
 258 
 256 
 
 254 
 253 
 252 
 250 
 249 
 
 247 
 246 
 244 
 243 
 242 
 
 L. Tang. 
 
 c.d. 
 
 8.54308 
 8 . 54 669 
 8.55027 
 8.55382 
 8 55 734 
 
 8 56~oS3" 
 
 8.56 429 
 8.56773 
 
 8.57 "4 
 8.57452 
 
 8.57788 
 8 58 121 
 8 58451 
 8 58779 
 8.59 105 
 
 8.59428 
 
 8 59 749 
 8.60068 
 8.60384 
 8.60698 
 
 8.61 009 
 8.61 319 
 8.61 626 
 
 8.61 931 
 
 8.62 234 
 
 8.62535 
 8.62834 
 8.63 131 
 8.63426 
 8.63718 
 
 8 . 64 009 
 8.64298 
 8.64585 
 8.64870 
 8.65 154 
 
 8.65435 
 8.65 715 
 8.65993 
 8.66269 
 8.66543 
 
 8.66816 
 8.67087 
 8.67356 
 8.67624 
 8 67890 
 
 8.68 154 
 8.68417 
 8.68678 
 8.68938 
 
 8.69 196 
 
 8.69453 
 
 8.69 708 
 8 . 69 962 
 
 8.70 214 
 8 . 70 465 
 
 8.70714 
 8 . 70 962 
 8.71 208 
 
 8.71453 
 8.71 697 
 
 8.71 940 
 
 L. Cotff. 
 
 361 
 358 
 355 
 
 352 
 349 
 346 
 344 
 341 
 338 
 336 
 
 333 
 330 
 328 
 326 
 323 
 321 
 319 
 316 
 3H 
 3" 
 310 
 307 
 305 
 303 
 301 
 
 299 
 297 
 295 
 292 
 291 
 289 
 287 
 285 
 284 
 281 
 280 
 278 
 276 
 274 
 273 
 271 
 269 
 268 
 266 
 264 
 263 
 261 
 260 
 258 
 257 
 255 
 254 
 252 
 251 
 249 
 
 248 
 246 
 245 
 244 
 243 
 
 L. Cotg. 
 
 1.45692 
 1-45 331 
 1.44 973 
 I .44 618 
 1 . 44 266 
 
 1-43917 
 I -43 571 
 1.43227 
 1.42886 
 1 . 42 548 
 
 I .42 212 
 1. 41 879 
 
 I -41 549 
 1 .41 221 
 
 1.40895 
 
 1.40572 
 1 .40 251 
 
 1-39932 
 1.39 616 
 1-39302 
 
 •38991 
 .38681 
 
 -38374 
 .38069 
 .37766 
 
 •27 ^§ 
 .37 166 
 
 • 36869 
 
 -36574 
 . 36 282 
 
 1-35 991 
 1.35 702 
 
 1-35415 
 1-35 130 
 1.34846 
 
 1-34565 
 1-34285 
 1.34007 
 1-33 731 
 I 33 457 
 
 I 33 184 
 I 32913 
 1.32644 
 1.32376 
 I 32 no 
 
 C.d, 
 
 1. 31 846 
 
 I -31 583 
 1. 31 322 
 1 .31 062 
 I 30 804 
 
 I 30547 
 1 . 30 292 
 1 . 30 038 
 I . 29 786 
 1-29 535 
 
 1 . 29 286 
 1 . 29 038 
 I . 28 792 
 1.28547 
 1.28303 
 
 1.28060 
 
 L. Tang. 
 
 87^ 
 
 L. Cos. 
 
 99 974 
 99 973 
 99 973 
 99972 
 
 99972 
 
 99971 
 99971 
 99970 
 99970 
 99969 
 
 99969 
 99 968 
 99 968 
 99967 
 99967 
 
 99967 
 99 966 
 99 966 
 99965 
 99964 
 
 99964 
 99963 
 99963 
 99 962 
 99 962 
 
 99961 
 
 99 961 
 99 960 
 99 960 
 99 959 
 
 99 959 
 99958 
 99958 
 99 957 
 99956 
 
 99956 
 
 99 955 
 
 9 99 955 
 
 9 99 954 
 
 9-99 954 
 
 99 953 
 99952 
 99952 
 
 99951 
 99951 
 
 99950 
 99 949 
 99 949 
 99948 
 99948 
 
 99 947 
 99946 
 99946 
 99 945 
 99 944 
 
 99 944 
 99 943 
 99942 
 99942 
 99941 
 
 99940 
 
 L. Sin. 
 
 GO 
 
 59 
 58 
 
 57 
 
 55 
 54 
 53 
 52 
 il 
 50 
 49 
 48 
 47 
 
 25 
 24 
 
 23 
 22 
 21 
 20 
 
 19 
 18 
 
 17 
 16 
 
 15 
 14 
 13 
 12 
 II 
 
 To 
 
 9 
 
 8 
 
 7 
 6 
 
 Prop. Pte. 
 
 
 360 
 
 350 
 
 
 36 
 
 35 
 
 
 72 
 
 70 
 
 
 108 
 
 105 
 
 
 144 
 
 140 
 
 
 180 
 
 175 
 
 
 216 
 
 210 
 
 • 7 
 
 252 
 
 245 
 
 .8 
 
 288 
 
 280 
 
 •9 
 
 324 
 
 315 
 
 
 330 
 
 320 
 
 1 
 
 33 
 
 32 
 
 3 
 
 66 
 
 64 
 
 3 
 
 99 
 
 96 
 
 4 
 
 132 
 
 128 
 
 5 
 
 165 
 
 160 
 
 6 
 
 108 
 
 192 
 
 7 
 
 231 
 
 224 
 
 8 
 
 264 
 
 256 
 
 9 
 
 297 
 
 288 
 
 
 300 
 
 290 
 
 385 
 
 
 30 
 
 29 
 
 28. 
 
 
 60 
 
 58 
 
 57 
 
 
 90 
 
 87 
 
 85- 
 
 
 120 
 
 116 
 
 114. 
 
 
 150 
 
 145 
 
 142. 
 
 .6 
 
 180 
 
 174 
 
 171. 
 
 •7 
 
 210 
 
 203 
 
 199. 
 
 .8 
 
 240 
 
 232 
 
 228. 
 
 •9 
 
 270 
 
 261 
 
 256 
 
 
 380 
 
 375 
 
 270 
 
 I 
 
 28.0 
 
 27-5 
 
 27- 
 
 .2 
 
 56.0 
 
 55-0 
 
 54- 
 
 •3 
 
 84.0 
 
 82.5 
 
 81. 
 
 •4 
 
 112. 
 
 IIO.O 
 
 108. 
 
 • 5 
 
 140.0 
 
 137-5 
 
 135- 
 
 .6 
 
 168.0 
 
 165.0 
 
 162. 
 
 -7 
 
 196.0 
 
 192.5 
 
 189. 
 
 .8 
 
 224.0 
 
 220.0 
 
 216. 
 
 •9 
 
 252.0 
 
 247 -5 
 
 243- 
 
 365 
 
 ■ 26.5 
 •53-0 
 •79-5 
 106.0 
 132-S 
 159.0 
 1.85 5 
 212 o 
 
 260 
 
 .26.0 
 .52.0 
 .78.0 
 104.0 
 130.0 
 156.0 
 182.0 
 208.0 
 234.0 
 
 
 250 
 
 245 
 
 
 .25.0 
 
 •24.5 
 
 
 .50 
 
 
 
 -49 
 
 
 
 
 •75 
 
 
 
 •73 
 
 5 
 
 
 100 
 
 
 
 198 
 
 
 
 
 125 
 
 
 
 122 
 
 5 
 
 .6 
 
 150 
 
 
 
 »47 
 
 
 
 
 '75 
 
 
 
 171 
 
 5 
 
 
 200 
 
 
 
 196 
 
 
 
 •9 
 
 225 
 
 
 
 320 
 
 5 
 
 Prof). Pts. 
 
LOGARITHMS OP THE TRIGONOMETRIC FUNCTIONS 29 
 
 3° 
 
 2 
 
 3 
 j4 
 
 I 
 
 7 
 8 
 
 9 
 10 
 
 II 
 
 12 
 
 13 
 
 J4_ 
 
 ;i 
 \i 
 
 Ji_ 
 
 20 
 
 21 
 
 22 
 23 
 24 
 
 26 
 
 27 
 28 
 
 29 
 
 30 
 
 31 
 
 32 
 
 33 
 
 36 
 
 37 
 38 
 
 40 
 
 41 
 42 
 43 
 44 
 
 45 
 46 
 47 
 48 
 
 19. 
 50 
 
 51 
 
 52 
 53 
 54. 
 55 
 56 
 
 II 
 
 59 
 (JO 
 
 L. Sin. 
 
 8 74 226 
 
 8.74454 
 8.74680 
 8 . 74 906 
 ■ 75 130 
 
 71 880 
 
 72 120 
 72359 
 72597 
 72834 
 
 73069 
 73303 
 73 535 
 73767 
 73 997 
 
 75 353 
 75 575 
 75 795 
 76015 
 76234 
 
 76451 
 
 76 667 
 76883 
 77097 
 77310 
 77522 
 
 77 733 
 77 943 
 78152 
 
 78360 
 
 78568 
 
 78774 
 78979 
 
 79183 
 79386 
 
 79588 
 79789 
 79990 
 80189 
 80388 
 
 80585 
 80782 
 80978 
 81 173 
 81367 
 
 8.B1 560 
 8.81 752 
 
 8.81 944 
 
 8.82 134 
 8.82324 
 
 82513 
 82 701 
 82888 
 
 83075 
 83261 
 
 83446 
 83630 
 83813 
 83996 
 84177 
 
 8.84358 
 
 L. Cos. 
 
 240 
 
 239 
 238 
 
 237 
 23s 
 234 
 232 
 233 
 230 
 229 
 228 
 226 
 226 
 224 
 223 
 222 
 220 
 220 
 219 
 217 
 216 
 216 
 214 
 213 
 212 
 
 211 
 210 
 
 209 
 208 
 208 
 206 
 205 
 204 
 203 
 
 20-i. 
 201 
 201 
 199 
 199 
 197 
 197 
 196 
 
 194 
 193 
 192 
 192 
 190 
 190 
 189 
 188 
 187 
 187 
 186 
 185 
 184 
 183 
 183 
 181 
 
 L. Tang. 
 
 c. d. 
 
 71 940 
 
 72 181 
 72 420 
 72659 
 72 896 
 
 73366 
 73 600 
 73832 
 74063 
 
 74292 
 74521 
 74748 
 
 74 974 
 
 75 199 
 
 75423 
 75645 
 75867 
 76087 
 76306 
 
 76525 
 76742 
 76958 
 77173 
 77387 
 
 77 600 
 
 77 811 
 
 78 022 
 78232 
 78441 
 
 78649 
 
 78855 
 
 79 061 
 
 8 79 266 
 
 8.79470 
 
 79673 
 79875 
 80076 
 80 277 
 80476 
 
 80 674 
 80872 
 
 81 068 
 81 264 
 81 459 
 
 8.81 653 
 8 81 846 
 8 82038 
 8 82 230 
 8 82 420 
 
 8 82610 
 8 82 799 
 8 82987 
 
 883175 
 8.83361 
 
 8 83547 
 8 83732 
 8 83 916 
 8 84 100 
 8 84282 
 
 8,84464 
 
 L. Cotg. 
 
 241 
 
 239 
 239 
 237 
 236 
 
 234 
 234 
 232 
 231 
 229 
 229 
 227 
 226 
 225 
 224 
 222 
 222 
 220 
 219 
 219 
 
 217 
 216 
 215 
 214 
 213 
 211 
 
 209 
 208 
 206 
 206 
 205 
 204 
 203 
 202 
 201 
 
 20I 
 199 
 
 198 
 I9& 
 196 
 196 
 
 194 
 
 193 
 192 
 192 
 190 
 190 
 189 
 
 186 
 186 
 
 185 
 184 
 184 
 182 
 
 L. Cotg. 
 
 1 . 28 060 
 1.27 819 
 
 1.27 580 
 I 27341 
 I .27 104 
 
 1.26868 
 1.26634 
 1 . 26 400 
 1.26 168 
 1-25937 
 
 I . 25 708 
 
 I 25 479 
 I .25 252 
 I .25 026 
 1 . 24 801 
 
 I 24577 
 
 1-24355 
 I 24 133 
 1-23913 
 1.23694 
 
 I 23 475 
 1.23258 
 1.23042 
 1.22 827 
 I .22 613 
 
 1 . 22 400 
 I .22 189 
 1. 21 978 
 1. 21 768 
 I-21 559 
 
 I 21 351 
 I 21 145 
 1.20939 
 1.20734 
 1.20530 
 
 c. d. 
 
 1 . 20 327 
 I .20 125 
 I 19 924 
 I 19 723 
 I 19 524 
 1. 19 326 
 1. 19 128 
 1 . 18 932 
 
 1. 18 736 
 
 1. 18 541 
 
 18347 
 18 154 
 17 962 
 17770 
 17580 
 
 1. 17 390 
 1.17 201 
 1.17013 
 1. 16 825 
 I 16 639 
 
 I 16453 
 1 . 16 268 
 1 . 16 084 
 1 . 1 5 900 
 1.15 718 
 
 15 536 
 
 L. Tang. 
 
 80° 
 
 L. Cos. 
 
 9 99940 
 9 99940 
 9 99 939 
 9 99938 
 9 99938 
 
 9 99 937 
 9 99936 
 9.99936 
 9 99 935 
 9 99 934 
 
 9 99 934 
 9 99 933 
 9.99932 
 9 99932 
 9 99931 
 
 9 99930 
 9 99 929 
 9.99929 
 9.99928 
 9.99927 
 
 9.99926 
 9.99926 
 9-99925 
 9-99924 
 9.99923 
 
 9.99923 
 9.99922 
 9 99921 
 9.99920 
 9.99920 
 
 9.99919 
 9.99918 
 9.99917 
 9 99917 
 9.99916 
 
 9 99915 
 9.99914 
 
 9 99913 
 9 99913 
 9.99912 
 
 9 99911 
 9 99910 
 9.99909 
 9.99909 
 9.99908 
 
 9,99907 
 9.99906 
 9 99905 
 9 99904 
 9 99 904 
 
 9.99903 
 9.99902 
 9.99901 
 9.99900 
 9.99899 
 
 9.99898 
 9.99898 
 9.99897 
 9 99896 
 9 99895 
 
 9.99894 
 
 L. Sin. 
 
 Prop. Pts. 
 
 
 238 
 
 334 
 
 sag 
 
 .1 
 
 23.8 
 
 23 -4 
 
 22 
 
 .2 
 
 47.6 
 
 46. « 
 
 45 
 
 •3 
 
 71.4 
 
 70.2 
 
 68 
 
 •4 
 
 95-2 
 
 93-6 
 
 91 
 
 •5 
 
 119.0 
 
 117. 
 
 114 
 
 .6 
 
 142.8 
 
 140.4 
 
 137 
 
 •7 
 
 166.6 
 
 163.8 
 
 160 
 
 .8 
 
 190.4 
 
 187.2 
 
 183 
 
 •9 
 
 214.2 
 
 210.6 
 
 206 
 
 
 225 
 
 220 
 
 .1 
 
 22.5 
 
 22.0 
 
 2 
 
 45.0 
 
 44.0 
 
 •3 
 
 67.5 
 
 66.0 
 
 •4 
 
 90.0 
 
 88.0 
 
 •5 
 
 112.5 
 
 IIO.O 
 
 .6 
 
 135 -o 
 
 132.0 
 
 ■7 
 
 157-5 
 
 I54-0 
 
 .8 
 
 180.0 
 
 176.0 
 
 9 
 
 202.5 
 
 198.0 
 
 
 212 
 
 208 
 
 
 21.2 
 
 20.8 
 
 
 42.4 
 
 41.6 
 
 
 63.6 
 
 62.4 
 
 
 84.8 
 
 83.2 
 
 
 106.0 
 
 104.0 
 
 
 127.2 
 
 124.8 
 
 -7 
 
 148.4 
 
 145.6 
 
 .8 
 
 169.6 
 
 166.4 
 
 •9 
 
 190.8 
 
 187.2 
 
 
 201 
 
 197 
 
 .1 
 
 20.1 
 
 19.7 
 
 .2 
 
 40.2 
 
 39-4 
 
 •3 
 
 60.3 
 
 59-1 
 
 •4 
 
 80.4 
 
 78.8 
 
 •5 
 
 100.5 
 
 98.5 
 
 .6 
 
 120.6 
 
 118.2 
 
 •7 
 
 140.7 
 
 137-9 
 
 .8 
 
 160.8 
 
 157-6 
 
 •9 
 
 180.9 
 
 J77-3 
 
 i8g 
 18.9 
 37-8 
 56.7 
 75 6 
 94-5 
 "3 4 
 132.3 
 151.2 
 170.1 
 
 185 
 
 18.5 
 37-0 
 55-5 
 74 -o 
 92.5 
 
 III.O 
 
 129.5 
 148.0 
 166. 5 
 
 43a 
 
 1 0.4 0.3 0.2 c 
 
 2 0.8 0.6 0.4 o 
 
 3 1.2 0.9 0.6 o 
 
 4 1.6 1.2 o.'^ o 
 
 5 2.0 1.5 1.0 o 
 
 6 2.4 1.8 1.2 o 
 
 7 2.8 2.1 1.4 o 
 
 8 3.2 2.4 1.6 o 
 
 9 3.6 2.7 1.8 o 
 
 216 
 21.6 
 43-2 
 64.8 
 86.4 
 108.0 
 129.6 
 151.2 
 172.8 
 194.4 
 204 
 20.4 
 40.8 
 61.2 
 81.6 
 102.0 
 122.4 
 142.8 
 163.2 
 183 6 
 193 
 19-3 
 38.6 
 
 57-9 
 
 77.2 
 
 96.5 
 
 1158 
 
 135 I 
 
 154-4 
 
 173-7 
 
 181 
 
 18. 1 
 
 36.2 
 
 54-3 
 72.4 
 905 
 108.6 
 126.7 
 144.8 
 162.9 
 
 Prop. Pts. 
 
30 
 
 TABLE II 
 
 _9 
 10 
 II 
 
 12 
 13 
 
 ii_ 
 
 \i 
 
 18 
 
 20 
 
 21 
 22 
 23 
 24 
 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 il 
 
 36 
 37 
 
 3« 
 
 40 
 
 41 
 42 
 
 43 
 44 
 
 45 
 46 
 
 47 
 48 
 
 49 
 
 50 
 
 51 
 52 
 53 
 
 54 
 
 55 
 56 
 57 
 58 
 59 
 60 
 
 L. Sin. 
 
 8.84358 
 
 8 84539 
 8.84 718 
 8 84897 
 8 85 075 
 
 8 85 252 
 8.85429 
 8 85 605 
 8 85 780 
 8 85955 
 
 8 86 128 
 8 86 301 
 8 86 474 
 8 86 645 
 8 86816 
 
 8 86 987 
 8 87 156 
 
 8 87325 
 8 87494 
 8 87661 
 
 8 87 829 
 8 87 995 
 8 88 161 
 8 88 326 
 8 88 490 
 
 8 88 654 
 8 88817 
 8.88980 
 8 89 142 
 8 89 304 
 
 8 89 464 
 8 89 625 
 8 89 784 
 8.89943 
 8 90 102 
 
 8 90 260 
 8 90 417 
 8 90574 
 8 90 730 
 8 90 885 
 
 8 91 040 
 8 91 195 
 8 91 349 
 8 91 502 
 8 91 655 
 
 8 91 807 
 8 91.959 
 8 92 no 
 8 92 261 
 8 92 411 
 
 8 92 561 
 8 92 710 
 8 92 859 
 8 93 007 
 8 93 ^54 
 
 8 93 301 
 8 93448 
 8 93 594 
 8.93 740 
 8 93 885 
 
 8.94030 
 
 L. Cos. 
 
 179 
 179 
 178 
 177 
 
 177 
 176 
 >75 
 175 
 173 
 173 
 173 
 171 
 171 
 171 
 169 
 169 
 169 
 167 
 168 
 166 
 166 
 165 
 164 
 164 
 163 
 163 
 162 
 162 
 160 
 161 
 159 
 159 
 159 
 158 
 
 157 
 157 
 156 
 155 
 '55 
 155 
 154 
 153 
 153 
 152 
 152 
 151 
 151 
 150 
 150 
 149 
 149 
 148 
 147 
 147 
 
 147 
 146 
 146 
 H5 
 145 
 
 L. Tang. 
 
 8.84464 
 8.84646 
 8.84826 
 8.85006 
 8.85 185 
 
 c.d. 
 
 8 85 363 
 
 8.85 540 
 
 8.85717 
 8.85893 
 
 8.86 o6q 
 
 8 86 243 
 8.86417 
 8.86591 
 8.86 763 
 8.86935 
 
 8.87 106 
 8.87277 
 
 8.87447 
 8.87616 
 
 8 87 785 
 
 8.87953 
 8.88 120 
 8.88287 
 8.88453 
 8.88618 
 
 8.88783 
 8.88948 
 8.89 III 
 8.89274 
 8.89437 
 
 8 89598 
 8.89 760 
 8 . 89 920 
 8 . 90 080 
 8 . 90 240 
 
 8.90399 
 
 8 90557 
 8 90715 
 8.90872 
 8 91 029 
 
 8.91 185 
 8.91 340 
 8.91 495 
 8 91 650 
 8.91 803 
 
 91 957 
 o 92 no 
 8.92 262 
 8.92 414 
 8.92 565 
 
 8.92 716 
 8.92866 
 
 8.93 016 
 8.93 165 
 8 93 S13 
 8 93 462 
 8 9^ 609 
 8 93 756 
 8 93903 
 8 94 049 
 
 8 94 '95 
 
 182 
 180 
 180 
 179 
 178 
 177 
 177 
 176 
 176 
 174 
 
 ^74 
 174 
 172 
 172 
 171 
 171 
 170 
 169 
 169 
 168 
 167 
 167 
 1 66 
 165 
 165 
 
 165 
 163 
 163 
 163 
 i6i 
 162 
 160 
 160 
 160 
 159 
 158 
 158 
 157 
 157 
 156 
 
 155 
 155 
 155 
 153 
 154 
 153 
 152 
 152 
 151 
 151 
 150 
 ISO 
 149 
 
 I J*8 
 149 
 
 I X47 
 147 
 147 
 
 I 146 
 
 j 146 
 
 L. Cotg. 
 
 I 15 536 
 I 15 354 
 I 15 174 
 1 . 14 994 
 I 14 815 
 
 1. 14 637 
 I 14 460 
 I 14 283 
 I 14 107 
 I 13 931 
 
 13757 
 13583 
 13409 
 13237 
 13065 
 
 1 . 12 894 
 I 12 723 
 I 12 553 
 I 12 384 
 1 . 12 215 
 
 12047 
 n 880 
 II 713 
 II 547 
 11382 
 
 I II 217 
 III 052 
 
 1 . 10 889 
 1 . 10 726 
 I 10 563 
 
 1 . 10 402 
 1 . 10 240 
 1 . 10 080 
 1 . 09 920 
 I . 09 760 
 
 I 09 601 
 1.09443 
 I 09 285 
 I .09 128 
 1.08 971 
 
 I 08815 
 1 .08 660 
 1.08505 
 I 08350 
 I .08 197 
 
 I 08 043 
 1.07 890 
 1.07738 
 1.07586 
 I 07 435 
 1 .07 284 
 I 07 134 
 I 06 984 
 1.06 835 
 1.06687 
 To6~538" 
 1.06 391 
 I 06 244 
 1 .06 097 
 I 059 51 
 I 05 805 
 
 L. Cos. 
 
 L. Cotg. ic. d.l L. Tang. 
 
 85^ 
 
 99894 
 
 99893 
 99892 
 99891 
 99891 
 
 99 890 
 99889 
 99888 
 99887 
 99886 
 
 99885 
 99884 
 99883 
 99882 
 99881 
 
 99880 
 99879 
 99879 
 99878 
 99877 
 
 99876 
 99875 
 99874 
 99873 
 99872 
 
 99871 
 99 870 
 99 869 
 99868 
 99867 
 
 99866 
 99865 
 99 864 
 99863 
 99 862 
 
 . 99 861 
 9 99 860 
 . 99859 
 9 99 858 
 9 99 857 
 
 9 99 856 
 
 9 99855 
 
 99854 
 
 99853 
 
 99852 
 
 99851 
 99850 
 99848 
 99847 
 99 846 
 
 99845 
 99844 
 99843 
 99842 
 
 99841 
 
 99 840 
 
 99839 
 99838 
 
 99837 
 99836 
 
 99834 
 
 L. Sin. 
 
 GO 
 
 59 
 
 58 
 57 
 
 55 
 54 
 53 
 52 
 51 
 50 
 49 
 48 
 47 
 
 45 
 
 43 
 42 
 41 
 40 
 39 
 38 
 
 36 
 
 35 
 34 
 33 
 32 
 31 
 30 
 29 
 28 
 
 27 
 26 
 
 Prop. Pts. 
 
 
 181 
 
 179 
 
 I 
 
 18.1 
 
 17.9 
 
 .2 
 
 36.2 
 
 35-8 
 
 •3 
 
 54-3 
 
 53-7 
 
 •4 
 
 72.4 
 
 71.6 
 
 •5 
 
 90-5 
 
 89.5 
 
 .6 
 
 108.6 
 
 107.4 
 
 •7 
 
 126.7 
 
 125.3 
 
 .8 
 
 144.8 
 
 143-2 
 
 •9 
 
 162.9 
 
 161. 1 
 
 
 175 
 
 X73 
 
 .1 
 
 17-5 
 
 17-3 
 
 .2 
 
 35.0 
 
 34-6 
 
 •3 
 
 52-5 
 
 51-9 
 
 •4 
 
 70.0 
 
 69.2 
 
 •5 
 
 87.5 
 
 86.5 
 
 .6 
 
 105.0 
 
 103.8 
 
 ■7 
 
 122.5 
 
 121. 1 
 
 .8 
 
 140.0 
 
 138.4 
 
 •9 
 
 157-5 
 
 155.7 
 
 
 168 
 
 166 
 
 I 
 
 .16.8 
 
 16.6 
 
 3 
 
 33-6 
 
 33-2 
 
 •3 
 
 50-4 
 
 49-8 
 
 •4 
 
 67.2 
 
 66.4 
 
 •5 
 
 84.0 
 
 83.0 
 
 .6 
 
 100.8 
 
 99-6 
 
 •7 
 
 117. 6 
 
 116.2 
 
 .8 
 
 134-4 
 
 132.8 
 
 •9 
 
 151-2 
 
 149.4 
 
 
 162 
 
 159 
 
 
 16.2 
 
 159 
 
 
 32-4 
 
 31-8 
 
 
 48.6 
 
 47-7 
 
 
 64.8 
 
 63.6 
 
 
 81.0 
 
 79-5 
 
 6 
 
 97-2 
 
 95-4 
 
 •7 
 
 "3-4 
 
 III. 3 
 
 .8 
 
 129.6 
 
 127.2 
 
 •9 
 
 145.8 
 
 I43-I 
 
 
 155 
 
 153 
 
 I 
 
 15 5 
 
 153 
 
 2 
 
 31-0 
 
 30.6 
 
 3 
 
 46.5 
 
 45-9 
 
 4 
 
 62.0 
 
 61.2 
 
 5 
 
 77-5 
 
 76.5 
 
 .6 
 
 93-0 
 
 91.8 
 
 •7 
 
 108.5 
 
 107.1 
 
 .8 
 
 124.0 
 
 122.4 
 
 •9 
 
 139-5 
 
 '37-7 
 
 
 149 
 
 147 
 
 
 14.9 
 
 M-7 
 
 
 29.8 
 
 29.4 
 
 
 44-7 
 59-6 
 
 44.1 
 58.8 
 
 .6 
 
 74-5 
 894 
 
 73-5 
 S8.a 
 
 •7 
 .8 
 
 104 3 
 119.2 
 
 102.9 
 1176 
 
 •9 
 
 134 -I 
 
 132 3 
 
 Prop. Pts. 
 
LOGARITHMS OF THE TRIGONOMETRIC FUNCTIONS 
 
 31 
 
 2 
 
 3 
 _4 
 
 5' 
 6 
 
 7 
 8 
 
 9 
 
 10 
 
 II 
 
 12 
 
 13 
 
 14 
 
 15 
 i6 
 
 17 
 i8 
 
 20 
 
 21 
 22 
 23 
 
 26 
 
 27 
 28 
 
 29_ 
 
 30 
 
 31 
 32 
 
 33 
 34 
 
 36 
 37 
 38 
 39 
 40 
 
 41 
 
 42 
 
 43 
 44 
 
 45 
 46 
 
 47 
 48 
 
 49 
 
 50 
 
 51 
 
 52 
 53 
 54 
 
 55 
 56 
 57 
 58 
 J9 
 60 
 
 L. Sin. 
 
 94030 
 94 174 
 94317 
 94461 
 94603 
 
 94 746 
 94887 
 95029 
 
 95 170 
 95310 
 
 95450 
 95589 
 
 95 728 
 95867 
 
 96 005 
 
 96 143 
 96 280 
 96417 
 
 96553 
 96 689 
 
 96825 
 96 960 
 
 97095 
 97229 
 
 97363 
 
 97496 
 97629 
 97762 
 97894 
 98 026 
 
 98157 
 98288 
 98419 
 
 98549 
 98679 
 
 98808 
 
 98937 
 99 066 
 
 99 194 
 99322 
 
 99450 
 99 577 
 99 704 
 99830 
 99956 
 
 00 082 
 00 207 
 00332 
 00 456 
 00 581 
 
 00 704 
 00828 
 00951 
 
 01 074 
 01 196 
 
 01 318 
 01 440 
 01 561 
 01 682 
 01 803 
 
 01 923 
 
 L. Cos. 
 
 L. Tang. 
 
 94195 
 94340 
 94485 
 94630 
 
 94 773 
 
 94917 
 95 060 
 95 202 
 95 344 
 954S6 
 
 95627 
 95 767 
 
 95 908 
 
 96 047 
 96 187 
 
 96325 
 96 464 
 96 602 
 96 739 
 96877 
 
 97013 
 97 150 
 97285 
 97421 
 97556 
 
 97691 
 97825 
 
 97 959 
 
 98 092 
 98 225 
 
 98358 
 98 490 
 98 622 
 
 98753 
 98884 
 
 99015 
 99 145 
 99275 
 99405 
 99 534 
 
 99 662 
 
 99 791 
 99919 
 00 046 
 00 174 
 
 00 301 
 00 427 
 
 00553 
 00 679 
 00 805 
 
 00 930 
 
 01 055 
 01 179 
 01 303 
 01 427 
 
 01 550 
 01 673 
 01 796 
 
 01 918 
 
 02 040 
 
 02 162 
 
 Cotg. 
 
 c.d. 
 
 c.d. 
 
 L. Cotg. 
 
 1.05 805 
 1 . 05 660 
 
 I 05 515 
 
 1.05 370 
 
 05 227 
 
 05 083 
 04 940 
 04 798 
 04 656 
 04514 
 
 04373 
 04233 
 04 092 
 
 03953 
 03813 
 
 03675 
 03536 
 03398 
 03 261 
 03 123 
 
 02 987 
 02 850 
 02 715 
 02579 
 02444 
 
 02 309 
 02 175 
 02 041 
 01 908 
 01 775 
 
 01 642 
 01 510 
 01378 
 01 247 
 01 116 
 
 1 . 00 985 
 00 855 
 I 00 725 
 I 00595 
 I 00 466 
 
 I 00338 
 1 . 00 209 
 I 00 081 
 
 o 99 954 
 o 99 826 
 
 0.99699 
 o 99 573 
 0.99447 
 0.99321 
 0.99 195 
 
 o . 99 070 
 o 98945 
 
 0.98821 
 0.98 697 
 
 0.98573 
 
 o . 95 450 
 
 0.98327 
 
 o . 98 204 
 o . 98 082 
 0.97 960 
 
 0.97 
 
 L. Tang. 
 
 84° 
 
 I 
 
 .Cos. 
 
 60 
 
 It 
 11 
 
 55 
 54 
 53 
 52 
 51 
 
 9 
 9 
 9 
 9 
 9 
 
 99834 
 99833 
 99832 
 99831 
 99830 
 
 9 
 9 
 9 
 9 
 9 
 
 99829 
 99828 
 99827 
 99825 
 99824 
 
 9 
 9 
 9 
 9 
 9 
 
 99823 
 99822 
 99821 
 99 820 
 99819 
 
 50 
 
 49 
 48 
 47 
 46 
 
 45 
 44 
 43 
 42 
 41 
 40 
 
 1 
 
 9 
 9 
 9 
 9 
 9 
 
 99817 
 99 816 
 99815 
 99814 
 99813 
 
 9 
 9 
 9 
 9 
 9 
 
 99812 
 99 810 
 99809 
 99808 
 99807 
 
 9 
 9 
 9 
 9 
 9 
 
 99806 
 99804 
 99803 
 99802 
 99801 
 
 35 
 34 
 33 
 32 
 31 
 30 
 
 29 
 28 
 
 11 
 
 9 
 9 
 9 
 9 
 9 
 
 99800 
 99798 
 
 99 797 
 99796 
 
 99 795 
 
 9 
 9 
 9 
 9 
 9 
 
 99 793 
 99792 
 99791 
 99790 
 99788 
 
 25 
 24 
 23 
 22 
 21 
 
 9 
 9 
 9 
 9 
 9 
 
 997S7 
 99786 
 99785 
 99783 
 99782 
 
 20 
 
 19 
 18 
 
 \l 
 
 IS 
 14 
 13 
 12 
 II 
 
 9 
 9 
 9 
 9 
 9 
 
 99781 
 99780 
 99778 
 99777 
 
 99776 
 
 9 
 9 
 9 
 9 
 9 
 
 99 775 
 99 773 
 99772 
 99771 
 99769 
 
 10 
 
 7 
 6 
 
 9 
 9 
 9 
 9 
 9 
 
 99768 
 99767 
 99765 
 99 764 
 99763 
 
 5 
 4 
 3 
 2 
 I 
 
 
 9 
 
 99761 
 
 I 
 
 .Sin. 
 
 f 
 
 Prop. Pts. 
 
 
 145 
 
 X43 
 
 141 
 
 
 14.5 
 
 14.3 
 
 14. 
 
 
 ap.o 
 
 28.6 
 
 28. 
 
 
 43-5 
 
 42.9 
 
 42 
 
 
 58.0 
 
 57-2 
 
 56 
 
 
 72-5 
 
 71-3 
 
 70 
 
 6 
 
 87.0 
 
 85.8 
 
 84 
 
 7 
 
 101.5 
 
 100. 1 
 
 98. 
 
 8 
 
 116.0 
 
 114.4 
 
 112. 
 
 9 
 
 130.5 
 
 128.7 
 
 126. 
 
 139 
 
 ,^3-9 
 27 
 
 41 
 
 55 
 69 
 
 83 
 97 
 
 138 
 
 13 ■ 
 27 
 
 41 
 
 55 
 
 69 
 
 82 
 
 96 
 no 
 .•24 
 
 
 135 
 
 133 
 
 .1 
 
 13.5 
 
 13.3 
 
 3 
 
 27.0 
 
 26.6 
 
 3 
 
 40.5 
 
 39-9 
 
 4 
 
 540 
 
 53-2 
 
 5 
 
 675 
 
 66.5 
 
 6 
 
 81.0 
 
 79.8 
 
 7 
 
 94-5 
 
 93-1 
 
 8 
 
 108.0 
 
 106.4 
 
 9 
 
 121.5 
 
 119.7 
 
 
 139 
 
 128 
 
 .1 
 
 12.9 
 
 12.8 
 
 .2 
 
 25.8 
 
 25.6 
 
 •3 
 
 38.7 
 
 38.4 
 
 •4 
 
 51.6 
 
 51.2 
 
 •5 
 
 645 
 
 64.0 
 
 .6 
 
 77-4 
 
 76.8 
 
 •7 
 
 90-3 
 
 89.6 
 
 .8 
 
 103.2 
 
 t02.4 
 
 •9 
 
 116. 1 
 
 115 2 
 
 
 135 
 
 133 
 
 .t 
 
 "•5 
 
 12.3 
 
 .2 
 
 25 
 
 
 
 24.6 
 
 3 
 
 37 
 
 5 
 
 36.9 
 
 4 
 
 50 
 
 
 
 49.2 
 
 •5 
 
 62 
 
 5 
 
 61.5 
 
 6 
 
 75 
 
 
 
 73-8 
 
 7 
 
 87 
 
 5 
 
 86.1 
 
 8 
 
 100 
 
 
 
 98.4 
 
 9 
 
 112 
 
 5 
 
 110.7 
 
 
 X3I 
 
 xao 
 
 .1 
 
 12. 1 
 
 12.0 
 
 .2 
 
 24.2 
 
 «4.o 
 
 •3 
 
 36.3 
 
 36.0 
 
 .4 
 
 48.4 
 
 48.0 
 
 •5 
 
 60.5 
 
 60.0 
 
 .6 
 
 72.6 
 
 72.0 
 
 7 
 
 847 
 
 84.0 
 
 .8 
 
 96.8 
 
 96.0 
 
 •9 
 
 108.9 
 
 108.0 
 
 136 
 
 13 
 27 
 40 
 
 54 
 
 131 
 13-1 
 26.2 
 39-3 
 52.4 
 65.5 
 78.6 
 91.7 
 104.8 
 117.9 
 
 136 
 
 12.6 
 25.2 
 37-8 
 50.4 
 63.0 
 75-6 
 88.2 
 100.8 
 "34 
 122 
 12.2 
 24.4 
 36.6 
 48.8 
 61.0 
 
 73-2 
 
 85.4 
 
 97.6 
 109.8 
 
 z 
 
 0.1 
 
 0.2 
 
 0.3 
 0.4 
 0.5 
 0.6 
 0.7 
 0.8 
 0.9 
 
 Prop. Pts. 
 
32 
 
 TABLE II 
 
 6^ 
 
 __9_ 
 10 
 II 
 
 12 
 
 13 
 14 
 
 15 
 
 i6 
 
 17 
 
 i8 
 
 19 
 20 
 
 21 
 
 22 
 23 
 
 il 
 
 26 
 27 
 28 
 29 
 
 31 
 
 32 
 
 33 
 34 
 
 36 
 
 37 
 38 
 39 
 40 
 
 41 
 42 
 
 43 
 44 
 
 46 
 
 47 
 48 
 
 49 
 
 50 
 
 51 
 
 52 
 53 
 
 il. 
 
 55 
 56 
 
 57 
 58 
 i9_ 
 60 
 
 L. Sin. 
 
 01 923 
 
 02 043 
 02 163 
 02 283 
 02 402 
 
 02 520 
 02 639 
 02 757 
 02 874 
 02 992 
 
 03 109 
 03 226 
 03342 
 03458 
 03574 
 
 03 690 
 03 805 
 
 03 920 
 04034 
 
 04 149 
 
 04 262 
 04376 
 04 490 
 04 603 
 04 715 
 
 04828 
 
 04 940 
 
 05 052 
 05 164 
 05275 
 
 05386 
 05497 
 05 607 
 
 05 717 
 05 827 
 
 05937 
 06 046 
 
 06155 
 06 264 
 06372 
 
 06 481 
 06 589 
 06 696 
 06 804 
 06 911 
 
 07018 
 07 124 
 07231 
 
 07337 
 07442 
 
 07548 
 07653 
 07758 
 07863 
 07968 
 
 08 072 
 08 176 
 08280 
 08383 
 08486 
 
 08589 
 
 L. Cos. 
 
 d. L. Tang. 
 
 02 162 
 02 283 
 02 404 
 02 525 
 02 645 
 
 02 766 
 02885 
 03005 
 
 03 124 
 03 242 
 
 03 361 
 03479 
 03597 
 03 714 
 03832 
 
 03948 
 04 065 
 04 181 
 04297 
 04413 
 
 04 528 
 04 643 
 04758 
 04873 
 04987 
 
 05 lOI 
 05214 
 05 328 
 05441 
 05553 
 
 05 666 
 05 778 
 
 05 890 
 
 06 002 
 06 113 
 
 06 224 
 06335 
 06445 
 06 556 
 06666 
 
 06775 
 06885 
 
 06 994 
 
 07 103 
 
 07 211 
 
 07 320 
 07428 
 07536 
 07643 
 07751 
 
 07858 
 07964 
 08 071 
 08 177 
 08 283 
 
 08389 
 
 08495 
 08 600 
 08 705 
 08810 
 
 08 914 
 
 d« L. Cotg. 
 
 c. d. 
 
 c. d, 
 
 L. Cotg. 
 
 0.97838 
 0.97717 
 0.97 596 
 0.97475 
 0.97355 
 
 0.97234 
 0.97 115 
 0.96995 
 0.96 876 
 0.96 758 
 
 0.96639 
 0.96 521 
 o . 96 403 
 o . 96 286 
 
 0.96 168 
 
 0.96 052 
 
 0.95935 
 
 o 95 819 
 0.95 703 
 o 95587 
 
 0.95472 
 
 o 95 357 
 0.95 242 
 0.95 127 
 o 95013 
 
 0.94899 
 0.94 786 
 0.94 672 
 
 o 94 559 
 0.94447 
 
 0.94334 
 o 94 222 
 0.94 no 
 
 0.93998 
 0.93887 
 
 o 93 776 
 0.93665 
 
 o 93 555 
 o- 93 444 
 
 o 93 334 
 
 0.93 225 
 
 o 93 "5 
 o . 93 006 
 0.92 897 
 0.92 789 
 
 0.92 680 
 0.92 572 
 0.92 464 
 0.92357 
 0,92 249 
 
 0.92 142 
 o . 92 036 
 0.91 929 
 0.91 823 
 
 0.91 717 
 
 0.91 oil 
 
 o 91 505 
 0.91 400 
 0.91 295 
 0.91 190 
 
 0.91 086 
 
 L. Tang, 
 
 83° 
 
 L. Cos. 
 
 99 761 
 99760 
 
 99 759 
 99 757 
 99756 
 
 99 755 
 99 753 
 99 752 
 99 751 
 99 749 
 
 99 748 
 99 747 
 99 745 
 99 744 
 99 742 
 
 99741 
 99 740 
 99 738 
 99 737 
 99736 
 
 99 734 
 99 733 
 99731 
 99 730 
 99 728 
 
 99727 
 99 726 
 
 99 724 
 99 723 
 99721 
 
 99 720 
 99718 
 99717 
 99 716 
 99714 
 
 99 713 
 99 711 
 99710 
 99 708 
 99707 
 
 99705 
 99 704 
 99702 
 
 99 701 
 99699 
 
 99 698 
 99 696 
 
 99695 
 99693 
 99 692 
 
 9.99690 
 9.99689 
 9.99687 
 9 . 99 686 
 9 99684 
 
 99683 
 99 681 
 99 680 
 99678 
 99677 
 
 9 99675 
 
 L. Sin. 
 
 Prop. Pts. 
 
 
 lai 
 
 xao 
 
 I 
 
 12.1 
 
 12.0 
 
 .3 
 
 24.2 
 
 24.0 
 
 3 
 
 36.3 
 
 36.0 
 
 4 
 
 48.4 
 
 48.0 
 
 5 
 
 60.5 
 
 60.0 
 
 6 
 
 72.6 
 
 72.0 
 
 7 
 
 84.7 
 
 84.0 
 
 8 
 
 96.8 
 
 96.0 
 
 9 
 
 108.9 
 
 108.0 
 
 
 118 
 
 117 
 
 .1 
 
 II. 8 
 
 II. 7 
 
 .2 
 
 236 
 
 23 
 
 4 
 
 .3 
 
 35-4 
 
 35 
 
 I 
 
 •4 
 
 47.2 
 
 46 
 
 8 
 
 •5 
 
 59.0 
 
 58 
 
 5 
 
 .6 
 
 70.8 
 
 70 
 
 2 
 
 •7 
 
 82.6 
 
 81 
 
 9 
 
 .8 
 
 94-4 
 
 93 
 
 6 
 
 ■9 
 
 106.2 
 
 los 
 
 3 
 
 
 "5 
 
 114 
 
 .1 
 
 "•5 
 
 II. 4 
 
 .2 
 
 33.0 
 
 22.8 
 
 •3 
 
 34-5 
 
 34-2 
 
 '4 
 
 46.0 
 
 45-6 
 
 .5 
 
 57-5 
 
 570 
 
 .6 
 
 69.0 
 
 68.4 
 
 • 7 
 
 80.5 
 
 79.8 
 
 .8 
 
 92.0 
 
 91.2 
 
 .9 
 
 103.5 
 
 102.6 
 
 
 iia 
 
 III 1 
 
 .1 
 
 II. 2 
 
 II. I 
 
 .2 
 
 22 
 
 4 
 
 22.2 
 
 •3 
 
 33 
 
 6 
 
 33-3 
 
 .4 
 
 44 
 
 8 
 
 44-4 
 
 •5 
 
 56 
 
 
 
 55-5 
 
 .6 
 
 67 
 
 2 
 
 66.6 
 
 •7 
 
 78 
 
 4 
 
 77-7 
 
 .8 
 
 89 
 
 6 
 
 88.8 
 
 •9 
 
 100 
 
 8 
 
 99.9 
 
 
 109 
 
 108 
 
 lOJ 
 
 .1 
 
 10.9 
 
 10.8 
 
 10 
 
 .3 
 
 31 
 
 8 
 
 21.6 
 
 21 
 
 •3 
 
 32 
 
 7 
 
 32.4 
 
 32 
 
 •4 
 
 43 
 
 6 
 
 43-2 
 
 42 
 
 •5 
 
 54 
 
 5 
 
 54 -o 
 
 53 
 
 .6 
 
 65 
 
 4 
 
 64.8 
 
 64 
 
 •7 
 
 76 
 
 3 
 
 75.6 
 
 74 
 
 .8 
 
 87 
 
 2 
 
 86.4 
 
 85 
 
 •9 
 
 98 
 
 I 
 
 97.2 
 
 96 
 
 
 X06 
 
 IC.5 
 
 I 
 
 10.6 
 
 10.5 
 
 .3 
 
 21.2 
 
 21. 
 
 •3 
 
 31-8 
 
 31 5 
 
 •4 
 
 42.4 
 
 42.0 
 
 •5 
 .6 
 
 53 
 63.6 
 
 52 5 
 63.0 
 
 .7 
 .8 
 
 74.2 
 84.8 
 
 73-5 
 84.0 
 
 •9 
 
 95-4 
 
 94-5 
 
 Prop. Pts. 
 
LOGARITHMS OF THE TRIGONOMETRIC FUNCTIONS 
 
 33 
 
 L. Sin. 
 
 9_ 
 10 
 II 
 
 12 
 
 13 
 
 \l 
 
 17 
 i8 
 
 19 
 
 20 
 
 21 
 22 
 23 
 24 
 
 25 
 26 
 
 27 
 28 
 
 29 
 
 30 
 
 31 
 
 32 
 33 
 34 
 
 36 
 
 37 
 38 
 39 
 40 
 
 41 
 
 42 
 
 43 
 44 
 
 46 
 
 47 
 48 
 
 49 
 
 50 
 
 51 
 
 52 
 53 
 
 II 
 II 
 
 59 
 GO 
 
 08589 
 08 692 
 
 08795 
 08897 
 
 08 999 
 
 09 lOI 
 
 09 202 
 09304 
 09405 
 09 506 
 
 09 606 
 09 707 
 09 807 
 09907 
 0006 
 
 o 106 
 o 205 
 
 0304 
 
 0402 
 o 501 
 
 0599 
 0697 
 0795 
 0893 
 
 o 990 
 
 I 087 
 
 1 184 
 1 281 
 1377 
 
 I 474 
 
 I 570 
 I 666 
 I 761 
 1857 
 1952 
 
 2047 
 2 142 
 2 236 
 
 2331 
 
 2425 
 
 2519 
 2 612 
 2 706 
 
 2 799 
 2 892 
 
 2985 
 3078 
 
 3 171 
 3263 
 
 3 355 
 
 3 447 
 3 539 
 3630 
 3 722 
 3813 
 
 3904 
 
 3 994 
 4085 
 
 4175 
 
 4 266 
 
 4356 
 
 L. Cos. 
 
 103 
 
 103 
 102 
 102 
 1 03 
 101 
 1 03 
 
 lOI 
 lOI 
 
 100 
 
 lOI 
 
 100 
 100 
 
 •99 
 100 
 
 99 
 99 
 98 
 
 99 
 98 
 
 98 
 98 
 98 
 97 
 97 
 97 
 97 
 96 
 
 97 
 96 
 
 96 
 95 
 96 
 
 95 
 95 
 95 
 94 
 95 
 94 
 94 
 93 
 94 
 93 
 93 
 93 
 93 
 93 
 92 
 92 
 92 
 92 
 
 91 
 92 
 
 91 
 91 
 90 
 
 91 
 90 
 
 91 
 90 
 
 L. Tang. 
 
 c. d. 
 
 08 914 
 
 09 019 
 09 123 
 09 227 
 09330 
 
 09434 
 09537 
 09 640 
 
 09 742 
 09845 
 
 09947 
 o 049 
 o 150 
 o 252 
 
 0353 
 
 0454 
 
 o 656 
 
 0756 
 0856 
 
 0956 
 
 I 056 
 
 1 155 
 1 254 
 
 I 353 
 
 452 
 
 649 
 747 
 845 
 
 1943 
 2 040 
 2138 
 2235 
 2332 
 
 2428 
 
 2525 
 2 621 
 
 2 717 
 2813 
 
 2 909 
 3004 
 3099 
 
 3 194 
 3289 
 
 3384 
 3478 
 
 3 573 
 3667 
 
 3 761 
 
 3854 
 3948 
 4041 
 
 4 134 
 4227 
 
 4320 
 4412 
 4504 
 4 597 
 4688 
 
 4780 
 
 L. Cotgr. 
 
 c. d. 
 
 L. Cotg. 
 
 0.91 086 
 0.90 981 
 0.90 877 
 
 0.90 773 
 0.90 670 
 
 o . 90 566 
 0.90463 
 o . 90 360 
 0.90 258 
 
 0.90155 
 
 0.90053 
 0.89 951 
 o . 89 850 
 0.89 748 
 o . 89 647 
 
 0.89 546 
 
 0.89445 
 0.89344 
 
 o . 89 244 
 0.89 144 
 
 o . 89 044 
 o . 88 944 
 0.88845 
 0.88 746 
 0.88647 
 
 0.88548 
 o . 88 449 
 0.88351 
 0.88253 
 0.88 155 
 
 0.88057 
 0.87960 
 c. 87 862 
 0.87 765 
 0.87668 
 
 0.87572 
 
 0.87475 
 0.87379 
 0.87283 
 0.87 187 
 
 0.87091 
 0.86 996 
 0.86 901 
 0.86806 
 0.86 711 
 
 0.86616 
 0.86 522 
 0.86 427 
 0.86333 
 o . 86 239 
 
 0.86 146 
 0.86 052 
 0.85959 
 0.85 866 
 0.85 773 
 
 0.85 680 
 0.85588 
 0.85 496 
 0.85403 
 0.85 312 
 
 0.85 220 
 
 L. Tang. 
 
 82° 
 
 L* Cos. 
 
 9.99667 
 9 . 99 666 
 9.99664 
 9.99663 
 9.99 661 
 
 99675 
 99674 
 99672 
 99670 
 99 669 
 
 99659 
 99658 
 99656 
 99655 
 99653 
 
 99651 
 99650 
 99 648 
 99647 
 99645 
 
 99643 
 99642 
 99 640 
 99638 
 99637 
 
 99635 
 99633 
 99632 
 99630 
 99 629 
 
 99627 
 99625 
 99624 
 99 622 
 99 620 
 
 99 618 
 99617 
 99615 
 99613 
 99 612 
 
 99 610 
 99 608 
 99607 
 99605 
 99603 
 
 9.99 601 
 9.99 600 
 9-99 598 
 99596 
 99 595 
 
 99 593 
 99591 
 99589 
 99588 
 99586 
 
 99584 
 99582 
 
 99581 
 99 579 
 99 577 
 
 9-99 575 
 
 L. Sin. 
 
 60 
 
 59 
 
 58 
 
 57 
 _5i 
 55 
 54 
 53 
 52 
 _5i 
 50 
 
 49 
 48 
 
 47 
 _46 
 
 45 
 44 
 43 
 42 
 41 
 40 
 
 39 
 38 
 
 _36 
 
 35 
 34 
 33 
 32 
 _3i 
 30 
 29 
 28 
 27 
 26 
 
 Prop. Pt8. 
 
 
 105 
 
 104 
 
 I 
 
 IO-5 
 
 10.4 
 
 .2 
 
 21.0 
 
 20.8 
 
 •3 
 
 31 5 
 
 31.2 
 
 •4 
 
 42.0 
 
 41.6 
 
 .5 
 
 52. s 
 
 52.0 
 
 .6 
 
 63.0 
 
 62.4 
 
 •7 
 
 73-5 
 
 72.8 
 
 .8 
 
 84.0 
 
 832 
 
 •9 
 
 94 5 
 
 93 6 
 
 
 102 
 
 lOI 
 
 I 
 
 10.2 
 
 10. I 
 
 2 
 
 20.4 
 
 20.2 
 
 3 
 
 •4 
 
 i 
 
 30.6 
 40.8 
 
 61 .2 
 
 303 
 40.4 
 
 I 
 
 l\:t 
 
 £i 
 
 ■9 
 
 9.. 8 
 
 90.9 
 
 
 9S 
 
 ) 
 
 98 
 
 I 
 
 9 9 
 
 9 
 
 ? 
 
 19 
 
 8 
 
 19. 
 
 •3 
 
 29 
 
 7 
 
 29. 
 
 •4 
 
 39 
 
 6 
 
 39- 
 
 
 49 
 
 5 
 
 49- 
 
 .6 
 
 59 
 
 4 
 
 58. 
 
 7 
 
 69 
 
 3 
 
 68. 
 
 8 
 
 79 
 
 2 
 
 78. 
 
 9 
 
 89 
 
 I 
 
 88. 
 
 97 
 
 9 7 
 19 
 29 
 38 
 
 48 
 58 
 67 
 77 
 87 
 
 94 
 
 9-4 
 18.8 
 28.2 
 37 6 
 47.0 
 
 56.4 
 65.8 
 75-2 
 84.6 
 
 9e 
 
 ' 1 
 
 9.6 
 
 19.2 
 
 28.8 
 
 38.4 
 
 48.0 
 
 57-6 
 
 67.2 
 
 76.8 
 
 86.4 
 
 93 
 
 9 3 
 
 18 
 
 6 
 
 27 
 
 9 
 
 37 
 
 2 
 
 46 
 
 55 
 
 1 
 
 65 
 
 I 
 
 74 
 
 4 
 
 83 
 
 7 
 
 103 
 
 10.3 
 20.6 
 
 309 
 
 41 .2 
 
 6i'8 
 72.1 
 82.4 
 92.7 
 100 
 10.0 
 20.0 
 30.0 
 40.0 
 50.0 
 60.0 
 70.0 
 80.0 
 90.0 
 
 4 
 2 
 
 95 
 
 9 5 
 19 o 
 
 285 
 380 
 
 47-5 
 
 
 91 
 
 
 90 
 
 .1 
 
 9 ^ 
 
 9.0 
 
 .2 
 
 18 
 
 2 
 
 18.0 
 
 •3 
 
 27 
 
 3 
 
 27.0 
 
 •4 
 
 ?6 
 
 4 
 
 36.0 
 
 .5 
 
 45 
 
 5 
 
 45 
 
 .6 
 
 54 
 
 b 
 
 .54 
 
 • 7 
 
 63 
 
 7 
 
 63.0 
 
 .8 
 
 r. 
 
 8 
 
 72.0 
 
 9 
 
 9 
 
 81.0 
 
 92 
 
 9.2 
 18.4 
 27.6 
 
 36.8 
 
 46.0 
 
 64.4 
 
 73 6 
 82.8 
 
 a 
 
 0.2 
 0.4 
 0.6 
 0.8 
 i.o 
 1.2 
 
 1-4 
 1.6 
 1.8 
 
 Prop. Pts. 
 
34 
 
 TABLE II 
 
 8° 
 
 L. Sin, 
 
 10 
 
 II 
 
 12 
 
 13 
 
 14 
 
 15 
 
 i6 
 
 17 
 
 i8 
 
 i9_ 
 20 
 
 21 
 
 22 
 23 
 24 
 
 26 
 
 27 
 28 
 
 30 
 
 31 
 
 32 
 33 
 
 34 
 
 36 
 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 
 46 
 
 47 
 48 
 
 j49 
 
 50 
 
 51 
 52 
 53 
 54 
 
 59 
 60 
 
 E 
 
 4356 
 4445 
 4535 
 4624 
 
 4 714 
 
 4803 
 4891 
 
 4 980 
 5069 
 
 5 J57 
 
 5245 
 5 333 
 5421 
 5508 
 5596 
 
 5683 
 5 770 
 5857 
 5 944 
 6030 
 
 6 116 
 6 203 
 6289 
 
 6374 
 6 460 
 
 6545 
 6631 
 6 716 
 6801 
 6 886 
 
 6970 
 7055 
 7 139 
 7223 
 
 7307 
 
 7391 
 7 474 
 7558 
 7641 
 7724 
 
 7807 
 7890 
 7 973 
 8055 
 8137 
 
 6 220 
 
 8 302 
 8383 
 8465 
 8547 
 
 8628 
 8 709 
 8790 
 8871 
 8952 
 
 9033 
 9 "3 
 9 193 
 9273 
 9 353 
 
 9 19433 
 
 L. Cos, 
 
 d. 
 
 89 
 
 L. Tan^. 
 
 4780 
 4872 
 4963 
 5054 
 5 145 
 
 5236 
 5327 
 5417 
 5 "^08 
 5598 
 
 5 688 
 
 5 777 
 5867 
 
 6 046 
 
 6135 
 6 224 
 6312 
 6 401 
 6489 
 
 6577 
 6665 
 
 6753 
 6841 
 6928 
 
 7 016 
 7103 
 7 190 
 7277 
 7363 
 
 7450 
 7536 
 7 622 
 7708 
 7 794 
 
 7880 
 
 7965 
 8051 
 8 136 
 8221 
 
 8306 
 8391 
 8475 
 8560 
 8644 
 
 8728 
 8812 
 8896 
 8979 
 9063 
 
 9 146 
 9 229 
 9312 
 
 9 395 
 9478 
 
 9561 
 9643 
 9725 
 9807 
 9889 
 
 9.19971 
 
 L. Cotg. c. d 
 
 c.d. 
 
 L. Cotg. 
 
 0.85 220 
 o 85 128 
 o 85037 
 o 84 946 
 
 0.84855 
 
 o 84 764 
 o . 84 673 
 
 084583 
 
 o . 84 492 
 o . 84 402 
 
 84312 
 84223 
 84133 
 
 84 044 
 
 83954 
 
 83865 
 83776 
 
 83688 
 83599 
 
 83 5" 
 
 0.83423 
 o 83335 
 
 0.83247 
 0.83 159 
 
 o . 83 072 
 
 0.82984 
 0.82897 
 0.82810 
 
 o 82 723 
 o 82 637 
 
 0.82 550 
 o . 82 464 
 
 0.82378 
 
 0.82 292 
 o 82 206 
 
 0.82 120 
 o 82 035 
 o 81 949 
 o 81 864 
 o 81 779 
 
 o 81 694 
 0.81 609 
 o 81 525 
 o 81 440 
 
 0.81 356 
 
 0.81 272 
 
 0.81 188 
 
 0.81 104 
 o 81 021 
 o 80 937 
 
 o 80 854 
 o 80 771 
 o 80688 
 o . 80 605 
 0.80 522 
 
 o . 80 439 
 0.80357 
 0.80275 
 0.80 193 
 0.80 III 
 
 . 80 029 
 
 L. T,aiig. 
 
 8r 
 
 L. Cos. 
 
 9 99 575 
 
 9 99 574 
 9 99 572 
 9 99 570 
 9 99 568 
 
 99566 
 99565 
 99563 
 99561 
 99 559 
 
 99 557 
 99556 
 99 554 
 99552 
 99550 
 
 99548 
 99 546 
 99 545 
 99 543 
 99541 
 
 99 539 
 99 537 
 99 535 
 99 533 
 99532 
 
 99530 
 99528 
 99526 
 99524 
 99522 
 
 99520 
 99518 
 99517 
 99515 
 99513 
 
 99 5" 
 
 99509 
 99507 
 99505 
 99503 
 
 99501 
 99 499 
 99 497 
 99 495 
 99 494 
 
 99492 
 99490 
 99488 
 99 486 
 99484 
 
 99482 
 99 480 
 99478 
 99476 
 99 474 
 
 99472 
 99470 
 99 468 
 99 466 
 99464 
 
 99462 
 
 L. Sin, 
 
 GO 
 
 59 
 58 
 57 
 _5i 
 55 
 54 
 53 
 52 
 _51 
 50 
 49 
 48 
 47 
 _46^ 
 
 45 
 44 
 43 
 42 
 41 
 40 
 39 
 38 
 37 
 36 
 
 Prop. Pts. 
 
 
 9i 
 
 
 91 
 
 1 
 
 I 
 
 9.2 
 
 9.1I 
 
 2 
 
 18 
 
 4 
 
 
 2 
 
 3 
 
 27 
 
 6 
 
 27 
 
 3 
 
 4 
 
 36 
 
 8 
 
 36 
 
 4 
 
 <; 
 
 46 
 
 
 
 45 
 
 5 
 
 6 
 
 55 
 
 2 
 
 S4 
 
 6 
 
 7 
 
 64 
 
 4 
 
 63 
 
 7 
 
 8 
 
 73 
 
 6 
 
 72 
 
 8 
 
 9 
 
 82 
 
 8 
 
 81 
 
 9 
 
 90 
 
 9.0 
 
 18.0 
 
 27.0 
 36.0 
 
 45.0 
 
 54 o 
 63.0 
 72.0 
 81.0 
 
 89 
 
 87 
 
 17 
 26 
 
 34 
 43 
 52 
 60 
 
 69 
 78 
 
 85 
 
 17 
 25 
 34 
 42 
 51 
 59 
 68 
 
 76 
 
 83 
 
 8 
 16 
 24 
 33 
 41 
 49 
 58 
 66 
 
 74 
 
 8.8 
 17.6 
 26.4 
 35 2 
 44 o 
 52.8 
 61.6 
 70.4 
 79 2 
 
 86 
 
 i.6 
 17.2 
 25.8 
 34 4 
 43 o 
 51 6 
 60.2 
 68.8 
 77 4 
 
 84 
 
 8.4 
 16.8 
 25.2 
 33-6 
 42.0 
 
 50 4 
 58.8 
 67 2 
 75.6 
 
 16 
 24 
 32 
 41 
 49 
 57 
 65 6 
 
 738 
 
 
 81 
 
 
 80 
 
 I 
 
 8.1 
 
 8.0 
 
 2 
 
 16 
 
 2 
 
 16.0 
 
 3 
 
 24 
 
 3 
 
 24.0 
 
 4 
 
 32 
 
 4 
 
 32.0 
 
 s 
 
 40 
 
 5 
 
 40.0 
 
 6 
 
 48 
 
 6 
 
 48.0 
 
 7 
 
 S6 
 
 7 
 
 56.0 
 
 8 
 
 64 
 
 8 
 
 64.0 
 
 9 
 
 72 
 
 9 
 
 72.0 
 
 3 
 0.2 
 
 0.4 
 0.6 
 0.8 
 
 1 .0 
 
 1.2 
 
 1-4 
 1.6 
 1.8 
 
 Prop. Pts. 
 

 LOGARITHMS OF THE TRIGONOMETRIC FUNCTIONS 35 
 
 9° 1 
 
 
 
 L. Sin. 
 
 d. 
 
 L. Tan^. 
 
 c.d. 
 
 L. Cot^. 
 
 L. Cos. 
 
 
 Prop. Pts. 
 
 9 19433 
 
 80 
 
 9 19 971 
 
 82 
 
 80 029 
 
 9 99462 
 
 (JO 
 
 
 I 
 
 9 19 513 
 
 
 9.20053 
 
 
 79 947 
 
 9.99460 
 
 59 
 
 83 81 80 
 
 2 
 
 9 19592 
 
 80 
 
 9 20 134 
 
 82 
 
 79 866 
 
 9 99 458 
 
 58 .1 
 
 8.2 8.1 8.0 
 
 3 
 
 9 19672 
 
 79 
 79 
 
 9 20 216 
 
 79 784 
 
 9 99 456 
 
 57 2 
 
 16.4 16.2 16.0 
 
 4 
 5 
 
 9 19 751 
 9 19 830 
 
 9 20 297 
 
 81 
 81 
 
 0.79703 
 
 9 99 454 
 
 56 .3 
 55 -4 
 
 24.6 24.3 24.0 
 32.8 32.4 32.0 
 
 9 20 378 
 
 . 79 622 
 
 9 99 452 
 
 6 
 
 9 19909 
 
 
 9 20 459 
 
 79541 
 
 9 99 450 
 
 54 -5 
 
 41 .0 40.5 40.0 
 
 7 
 
 9 19988 
 
 79 
 
 9 20 540 
 
 
 . 79 460 
 
 9 99 448 
 
 53 ^ 
 
 49.2 48.6 48.0 
 
 8 
 
 9 20 067 
 
 79 
 78 
 78 
 
 9 20 621 
 
 80 
 81 
 
 0.79379 
 
 9 99446 
 
 52 •/ 
 
 57.4 56.7 56.0 
 
 9 
 10 
 
 9 20 145 
 
 9 20 701 
 9 20 782 
 
 79 299 
 
 9 99 444 
 
 51 .^ 
 50 5 
 
 65 6 64.8 64.0 
 73.8 72.9 72.0 
 
 9 20 223 
 
 79 218 
 
 9 99 442 
 
 II 
 
 9 20 302 
 
 78 
 
 9 20 862 
 
 80 
 
 79 138 
 
 9 99440 
 
 49 
 
 79 
 
 78 
 
 12 
 
 9 20 380 
 
 9 20 942 
 
 . 79 058 
 
 9 99438 
 
 48 
 
 .1 7.9 
 
 7-8 
 
 13 
 
 9 20 458 
 
 78 
 
 9 21 022 
 
 80 
 
 0.78978 
 
 9 99436 
 
 47 
 
 .2 15.8 
 
 15.6 
 
 14 
 
 9 20535 
 
 77 
 78 
 
 9.21 102 
 
 80 
 
 0.78898 
 
 9 99 434 
 
 46 
 45 
 
 .3 23.7 
 
 4 31 6 
 
 23 4 
 31.2 
 
 9 20 613 
 
 9 
 
 21 182 
 
 0.78818 
 
 9 99432 
 
 i6 
 
 9.20691 
 
 78 
 
 9 
 
 21 261 
 
 79 
 
 0.78739 
 
 9 99 429 
 
 44 
 
 5 39-5 
 
 2^2 
 
 17 
 
 9 20 768 
 
 77 
 
 9 
 
 21 341 
 
 80 
 
 0.78 659 
 
 9 99427 
 
 43 
 
 6 47.4 
 
 46.8 
 
 i8 
 
 9 ■ 20 845 
 
 77 
 
 9 
 
 21 420 
 
 79 
 
 0.78 580 
 
 9 99 425 
 
 42 
 
 l I^^ 
 
 54 6 
 
 19 
 20 
 
 9 20 922 
 
 77 
 77 
 
 9 
 
 21499 
 
 79 
 79 
 
 0.78 501 
 
 9 99423 
 
 41 
 40 
 
 .8 63.2 
 •9l 71 I 
 
 62.4 
 70.2 
 
 9.20999 
 
 9 
 
 21578 
 
 0.78422 
 
 9 99 421 
 
 21 
 
 9.21 076 
 
 77 
 
 9 
 
 21 657 
 
 79 
 
 78343 
 
 9.99419 
 
 39 
 
 77 
 
 76 
 
 22 
 
 9 21 153 
 
 77 
 76 
 
 9 
 
 21 736 
 
 79 
 
 0.78264 
 
 9.99417 
 
 38 
 
 .1 7-7 
 
 7.6 
 
 23 
 
 9.21 229 
 
 9 
 
 21 814 
 
 78 
 
 0.78 186 
 
 9 99415 
 
 37 
 
 .2 15 4 
 
 ^5-^ 
 
 24 
 
 9.21 306 
 
 77 
 76 
 
 9 
 
 21893 
 
 79 
 78 
 
 0.78 107 
 
 9 99413 
 
 36 
 35 
 
 ■3 23.1 
 
 .4 30.8 
 
 22.8 
 30.4 
 
 2S 
 
 9.21 382 
 
 9 
 
 21 971 
 
 . 78 029 
 
 9 99 411 
 
 26 
 
 9.21 458 
 
 76 
 
 9 
 
 22049 
 
 78 
 
 0.77951 
 
 9.99409 
 
 34 
 
 l ^l^ 
 
 38. 
 45-6 
 
 27 
 
 9 21 534 
 
 76 
 
 9 
 
 22 127 
 
 78 
 
 0.77873 
 
 9.99407 
 
 33 
 
 .6 46.2 
 
 28 
 
 9.21 610 
 
 76 
 
 9 
 
 22 205 
 
 78 
 
 0.77795 
 
 9.99404 
 
 32 
 
 I in 
 
 9 693 
 
 ^:8 
 
 68.4 
 
 29 
 
 30 
 
 9.21 685 
 
 75 
 76 
 
 9 
 
 22 283 
 
 78 
 78 
 
 0.77717 
 
 9 99402 
 
 31 
 80 
 
 9.21 761 
 
 9 
 
 22 361 
 
 0.77639 
 
 9.99400 
 
 31 
 
 9.21 836 
 
 75 
 
 9 
 
 22438 
 
 77 
 
 0.77562 
 
 9 99398 
 
 29 
 
 75 
 
 74 
 
 32 
 
 9.21 912 
 
 76 
 
 9 
 
 22 516 
 
 78 
 
 0.77484 
 
 9.99396 
 
 28 
 
 .1 75 
 
 7-4 
 
 33 
 
 9.21 987 
 
 75 
 
 9 
 
 22593 
 
 77 
 
 0.77407 
 
 9 99 394 
 
 27 
 
 .2 15.0 
 
 14 8 
 
 34 
 35 
 
 9 22 062 
 
 75 
 75 
 
 9 
 
 22 670 
 
 77 
 77 
 
 0.77330 
 
 9 99392 
 
 26 
 25 
 
 •3 22.5 
 •4 30 
 
 22.2 
 29.6 
 
 9.22 137 
 
 9 
 
 22747 
 
 0.77253 
 
 9 99 390 
 
 3^ 
 
 9.22 211 
 
 74 
 
 9 
 
 22 824 
 
 77 
 
 0.77176 
 
 9 99 388 
 
 24 
 
 •5 37 5 
 
 .6 45.0 
 
 37 
 
 37 
 
 9 22 286 
 
 75 
 
 9 
 
 22 901 
 
 77 
 
 0.77099 
 
 9 99385 
 
 23 
 
 Tii 
 
 3« 
 
 9.22 361 
 
 75 
 
 9 
 
 22977 
 
 7b 
 
 0.77023 
 
 9 99383 
 
 22 
 
 .8 60.0 
 ■ 9 67 5 
 
 39 
 40- 
 
 9 22435 
 
 74 
 74 
 
 9 
 
 23054 
 
 77 
 76 
 
 0.76946 
 
 9 99381 
 
 21 
 20 
 
 Iti 
 
 9 22509 
 
 9 
 
 23 130 
 
 0.76 870 
 
 9 99 379 
 
 41 
 
 9.22583 
 
 74 
 
 9 
 
 23 206 
 
 76 
 
 0.76 794 
 
 9 99 377 
 
 19 
 
 73 
 
 72 
 
 42 
 
 9 22657 
 
 74 
 
 9 
 
 23283 
 
 77 
 
 0.76 717 
 
 9 99 375 
 
 18 
 
 • I 7-3 
 
 7.2 
 
 43 
 
 9.22 731 
 
 74 
 
 9 
 
 23359 
 
 7b 
 
 0.76 641 
 
 9 99 372 
 
 17 
 
 .2 14.6 
 
 144 
 
 44 
 
 9.22805 
 
 74 
 73 
 
 9 
 
 23435 
 
 7b 
 75 
 
 0.76565 
 
 9 99370 
 
 16 
 15 
 
 .3 21.9 
 
 4 29.2 
 
 5 36.5 
 
 6 43 8 
 
 7 51 I 
 
 .8 58 4 
 
 •9 65.7 
 
 21.6 
 28.8 
 36.0 
 43-2 
 50 4 
 57 6 
 64.8 
 
 45 
 
 9 22878 
 
 9 
 
 23510 
 
 0.76490 
 
 9.99368 
 
 46 
 
 9.22952 
 
 74 
 
 9 
 
 23 586 
 
 7b 
 
 0.76414 
 
 9.99366 
 
 14 
 
 ' 47 
 
 9 23025 
 
 73 
 
 9 
 
 23661 
 
 75 
 
 0.76339 
 
 9 99364 
 
 13 
 
 ,4« 
 
 9 23 098 
 
 73 
 
 9 
 
 23737 
 
 7b 
 
 . 76 263 
 
 9 99362 
 
 12 
 
 49 
 60 
 
 9 23 171 
 
 73 
 73 
 
 9 
 
 23812 
 
 15 
 75 
 
 76 188 
 
 9 99 359 
 
 II 
 10 
 
 9 . 23 244 
 
 9 
 
 23887 
 
 0.76 113 
 
 999 357 
 
 51 
 
 9 23317 
 
 73 
 
 9 
 
 23962 
 
 75 
 
 0.76038 
 
 9 99 355 
 
 ?> T 
 
 71 
 
 3 3 
 
 52 
 
 9 23390 
 
 73 
 
 9 
 
 24037 
 
 75 
 
 0.75963 
 0.75888 
 
 9 99 353 
 
 8 I 
 
 7.1 c 
 
 .6 0.4 
 .9 0.6 
 .2 0.8 
 5 '0 
 
 53 
 
 9.23462 
 
 72 
 
 9 
 
 24 112 
 
 75 
 
 9 99351 
 
 7 1 
 
 14.2 c 
 
 55 
 
 9 23535 
 
 73 
 72 
 
 9 
 
 24 186 
 
 74 
 75 
 
 0.75 814 
 
 9-99 348 
 
 6 3 
 
 5 1 
 4 6 
 
 21.3 c 
 
 28.4 I 
 
 35-5 I 
 42.6 I 
 
 49 7 2 
 
 56.8 2 
 
 63.9 2 
 
 9.23607 
 
 9 
 
 24 261 
 
 0.75739 
 
 9 -99 346 
 
 5t> 
 
 9 23679 
 
 72 
 
 9 
 
 24335 
 
 74 
 
 0.75665 
 
 9 99 344 
 
 .8 1 .2 
 
 H 
 
 9 23 752 
 
 73 
 
 9 
 
 24410 
 
 75 
 
 0.75590 
 
 9 99342 
 
 I -7 
 
 8 
 
 .1 1.4 
 .4 1.6 
 7 I 8 
 
 5^ 
 
 9.23823 
 
 71 
 
 9 
 
 24484 
 
 74 
 
 75516 
 
 9 99340 
 
 59 
 
 60 
 
 9 23895 
 
 72 
 72 
 
 9 24 55« 
 
 74 
 74 
 
 0.75442 
 
 9 99 337 
 
 ' 
 
 9.23967 
 
 9.24632 
 
 0.75368 
 
 9 99 335 
 
 ^ 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. 
 
 c.d. 
 
 L. Tan^. 
 
 L. Sin. 
 
 t 
 
 Prop. Pts. 1 
 
 80° 1 
 
36 
 
 TABLE II 
 
 10^ 
 
 _9_ 
 10 
 II 
 
 12 
 
 13 
 
 14 
 
 15 
 
 16 
 
 17 
 18 
 
 19 
 
 20 
 
 21 
 
 22 
 23 
 ^_ 
 
 '25 
 
 26 
 
 27 
 
 28 
 
 29 
 30 
 
 31 
 
 32 
 
 33 
 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 
 46 
 
 47 
 48 
 
 49_ 
 
 50 
 
 51 
 
 52 
 53 
 51 
 55 
 56 
 57 
 58 
 19. 
 
 (io 
 
 ]j. Siii< 
 
 23967 
 24039 
 24 no 
 24 181 
 24253 
 
 24324 
 24395 
 24 466 
 
 24536 
 24 607 
 
 24677 
 24 748 
 24818 
 24888 
 24958 
 
 25 028 
 25 098 
 25 168 
 25237 
 25 307 
 
 d* L. Tan^. c. d 
 
 25376 
 25445 
 25514 
 25583 
 25652 
 
 25 721 
 25 790 
 25858 
 25927 
 25995 
 
 26 063 
 26 131 
 26 r9'9 
 26 267 
 26335 
 
 26403 
 26 470 
 26538 
 26 605 
 26 672 
 
 26739 
 26806 
 26873 
 
 26 940 
 
 27 007 
 
 27073 
 27 140 
 27 206 
 27273 
 27 339 
 
 27405 
 27471 
 
 27537 
 27 602 
 27668 
 
 27 734 
 
 27 799 
 27864 
 27930 
 27995 
 
 28 060 
 
 L. Cos. 
 
 72 
 
 71 
 71 
 72 
 
 71 
 
 71 
 71 
 70 
 
 71 
 70 
 
 71 
 70 
 70 
 70 
 70 
 70 
 70 
 69 
 70 
 69 
 69 
 69 
 69 
 69 
 69 
 69 
 
 68 
 69 
 68 
 68 
 68 
 68 
 68 
 68 
 68 
 
 67 
 68 
 67 
 67 
 67 
 67 
 67 
 67 
 67 
 66 
 
 67 
 66 
 67 
 66 
 66 
 66 
 66 
 65 
 . 66 
 66 
 
 6S 
 65 
 66 
 65 
 65 
 
 24 632 
 24 706 
 ,24779 
 24853 
 24 926 
 
 .25 000 
 
 25073 
 .25 146 
 25 219 
 25 292 
 
 25365 
 25437 
 25510 
 25582 
 
 25655 
 
 •25 727 
 
 25 799 
 .25 871 
 
 •25943 
 .26 015 
 
 26086 
 26 158 
 26 229 
 26 301 
 26372 
 
 26443 
 26514 
 
 26585 
 26 655 
 26 726 
 
 26797 
 26867 
 26937 
 27 008 
 27078 
 
 27 148 
 27 218 
 27288 
 27357 
 27427 
 
 9 
 9 
 9 
 9_ 
 9 
 9 
 9 
 9 
 9. 
 9 
 9 
 9 
 9 
 9_ 
 9 
 9 
 9 
 9 
 9_ 
 9 
 9 
 9 
 9 
 _9 
 9 
 9 
 9 
 9 
 _9 
 9 
 9 
 9 
 9 
 J9 
 9 
 9 
 9 
 9 
 
 _9 
 
 L. Cot^. 
 
 2,7496 
 27 566 
 
 27635 
 
 27 704 
 
 27773 
 
 .27 842 
 .27911 
 
 27 980 
 
 28 049 
 28 117 
 
 ,28 186 
 .28254 
 28323 
 28391 
 ,28459 
 
 28 527 
 28 595 
 ,28662 
 28 730 
 ,28 798 
 ,28865 
 
 74 
 73 
 74 
 73 
 74 
 73 
 73 
 73 
 73 
 73 
 72 
 
 73 
 72 
 
 73 
 72 
 
 72 
 72 
 72 
 72 
 71 
 72 
 
 71 
 72 
 
 71 
 71 
 
 71 
 71 
 70 
 
 71 
 71 
 70 
 70 
 
 71 
 70 
 70 
 70 
 70 
 69 
 70 
 69 
 70 
 69 
 69 
 69 
 69 
 69 
 69 
 69 
 
 68 
 69 
 68 
 69 
 68 
 68 
 68 
 68 
 67 
 68 
 68 
 67 
 
 c. d. 
 
 L. Cotg. 
 
 0.75368 
 0.75294 
 0.75 221 
 
 0.75 147 
 0.75074 
 
 o . 75 000 
 0.74927 
 0.74854 
 0.74781 
 o . 74 708 
 
 0.74635 
 0.74563 
 0.74490 
 0.74418 
 0.74345 
 
 0.74273 
 0.74 201 
 0.74 129 
 0.74057 
 0.73985 
 
 0.73914 
 0.73842 
 0.73 771 
 0.73699 
 0.73 628 
 
 0.73557 
 0.73486 
 0.73415 
 0.73345 
 0.73274 
 
 0.73203 
 
 0.73 133 
 0.73063 
 o . 72 992 
 0.72 922 
 
 L. Cos. 
 
 0.72 852 
 0.72 782 
 0.72 712 
 0.72643 
 0.72573 
 
 o . 72 504 
 
 0.72434 
 0.72 365 
 
 o . 72 296 
 0.72 227 
 
 0.72 155 
 o . 72 089 
 o . 72 020 
 0.71 951 
 
 0.71 883 
 
 0.71 814 
 0.71 746 
 
 0.71 677 
 
 0.71 609 
 
 0.71 541 
 
 0.71 473 
 0.71 405 
 0.71 338 
 0.71 270 
 0.71 202 
 
 0.71 135 
 
 L. Tang. 
 
 79^ 
 
 9 99335 
 9 99333 
 9 99331 
 9.99328 
 
 9 99326 
 
 9 99 
 9 99 
 9 99 
 9 99 
 9 99 
 
 324 
 322 
 
 319 
 317 
 315 
 
 9 99 
 9.99 
 
 9 99 
 9 99 
 9 99 
 
 3^3 
 310 
 308 
 306 
 304 
 
 9.99301 
 9.99299 
 9.99297 
 9.99294 
 9,99292 
 
 9.99290 
 9 . 99 288 
 9.99285 
 9.99283 
 9.99 281 
 
 9.99278 
 9.99276 
 9.99274 
 9.99271 
 9.99269 
 
 9.99267 
 9.99264 
 9 . 99 262 
 9 . 99 260 
 
 9-99 257 
 
 9 99255 
 9.99252 
 9.99250 
 9.99248 
 9 99245 
 
 99243 
 99241 
 99238 
 99236 
 99233 
 
 9.99231 
 9.99229 
 9.99 226 
 9 99224 
 9.99 221 
 
 9.99219 
 9.99217 
 9,99214 
 9.99 212 
 9 99209 
 
 9.99207 
 9.99204 
 9 99 202 
 9 . 99 200 
 9 99 197 
 9 99 195 
 L. Sin. 
 
 60 
 
 59 
 58 
 
 56 
 
 45 
 44 
 43 
 42 
 
 _1L 
 40 
 
 39 
 38 
 
 _3i 
 35 
 34 
 33 
 32 
 31 
 30 
 29 
 28 
 27 
 26 
 
 25 
 24 
 
 23 
 22 
 21 
 
 20^ 
 
 ^9 
 18 
 
 17 
 16 
 
 Prop. Pis. 
 
 
 74 
 
 73 
 
 I 
 
 ^i 
 
 7. 
 
 2 
 
 14.8 
 
 14 
 
 •3 
 
 22.2 
 
 21. 
 
 4 
 
 29.6 
 
 29 
 
 .5 
 
 37.0 
 
 36. 
 
 .6 
 
 44.4 
 
 43 
 
 ■7 
 
 51.8 
 
 51 
 
 .8 
 
 59.2 
 
 58 
 
 •9 
 
 66.6 
 
 165 
 
 
 7a 
 
 I 
 
 7.2 
 
 2 
 
 14.4 
 
 3 
 
 21,6 
 
 4 
 
 28.8 
 
 
 36. c 
 
 .6 
 
 43 2 
 
 .7 
 
 .50.4 
 
 .8 
 
 57-6 
 
 ■9 
 
 64.8 
 
 70 
 
 7.0 
 
 14,0 
 
 21 .0 
 28.0 
 
 35 o 
 42.0 
 49 o 
 56,0 
 63.0 
 68 
 
 6.8 
 13-6 
 20.4 
 27.2 
 34 o 
 40.8 
 47.6 
 
 54-4 
 61.2 
 
 3 
 
 03 
 0.6 
 
 0.9 
 I .2 
 
 
 66 
 
 I 
 
 6.6 
 
 2 
 
 13.2 
 
 3 
 4 
 
 19.8 
 26.4 
 
 .7 
 .8 
 
 330 
 39 6 
 46.2 
 52.8 
 
 •9 
 
 59 4 
 
 4 
 7 
 71 
 71 
 14 
 21 
 28 
 
 35 
 42 
 
 49 7 
 56.8 
 
 63 9 
 
 69 
 
 69 
 13 '^ 
 
 20, 
 
 27 
 34 
 41 
 48 
 
 55 
 62 
 
 67 
 6. 
 
 13 
 
 20. 
 26. 
 
 33 
 
 40.2 
 46.9 
 53 6 
 60.3 
 
 65 
 
 6.5 
 13.0 
 
 26.0 
 
 32 5 
 39 o 
 
 45 5 
 52.0 
 
 58.5 
 a 
 
 0.2 
 0.4 
 06 
 08 
 1 .0 
 
 12 
 
 14 
 16 
 
 1.8 
 
 Prop. Pts. 
 
LOGARITHMS OF THE TRIGONOMETRIC FUNCTIONS 37 
 
 11 
 
 7 
 8 
 
 _9_ 
 
 10 
 
 12 
 
 13 
 
 \l 
 
 17 
 
 i8 
 
 19 
 20 
 
 21 
 22 
 23 
 24 
 
 25 
 26 
 
 27 
 28 
 
 29 
 
 30 
 
 31 
 32 
 
 33 
 
 34 
 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 
 46 
 
 47 
 48 
 
 49 
 
 60 
 
 51 
 
 52 
 53 
 ii 
 55 
 56 
 
 U 
 
 60 
 
 L. Sin. 
 
 9 28 060 
 9 28 125 
 9.28 190 
 9.28254 
 9,28319 
 
 9 • 28 384 
 9 2S 448 
 9.21 512 
 9.28577 
 9 28 641 
 
 9.28 705 
 9.28 769 
 9 28 833 
 9 . 28 896 
 9 28 960 
 
 9 29 024 
 9.29 087 
 9.29 150 
 9.29 214 
 9.29277 
 
 9 29340 
 9.29403 
 9 . 29 466 
 9.29529 
 9.29591 
 
 9.29654 
 9.29 716 
 
 9 29 779 
 9.29841 
 9.29903 
 
 9 . 29 966 
 9 . 30 028 
 9.30090 
 
 930 151 
 9.30213 
 
 9 30275 
 9 30336 
 9 30398 
 9 30459 
 9 30521 
 
 9.30 582 
 9 30643 
 9,30 704 
 
 9 30 765 
 9 . 30 826 
 
 9.30887 
 
 9 30947 
 9 31 008 
 9.31 068 
 9 31 ^29 
 9.31 189 
 9 31 250 
 9-31 310 
 9 31 370 
 9 31 430 
 9.31 490 
 
 9 31 549 
 9 31 609 
 9,31 669 
 9 31 728 
 
 9.31 788 
 
 L. Cos. 
 
 65 
 
 65 
 64 
 65 
 65 
 64 
 64 
 65 
 64 
 64 
 64 
 64 
 63 
 64 
 64 
 
 63 
 63 
 64 
 63 
 63 
 63 
 63 
 63 
 62 
 63 
 62 
 
 63 
 62 
 62 
 63 
 62 
 62 
 61 
 62 
 62 
 61 
 62 
 61 
 62 
 61 
 61 
 61 
 61 
 61 
 61 
 60 
 61 
 60 
 61 
 60 
 
 6i 
 60 
 60 
 60 
 60 
 
 59 
 60 
 60 
 
 59 
 60 
 
 L. Tang, c. d 
 
 28865 
 
 28933 
 29 000 
 29 067 
 29 134 
 
 29 201 
 29 268 
 
 29335 
 29 402 
 29 468 
 
 29535 
 29 601 
 29668 
 
 29734 
 29 800 
 
 29866 
 
 29 932 
 29998 
 
 30 064 
 30 130 
 
 30195 
 30 261 
 30326 
 30391 
 30457 
 
 30 522 
 
 30587 
 30652 
 30717 
 30 782 
 
 30 846 
 
 30 91 1 
 
 30975 
 
 31 040 
 31 104 
 
 31 168 
 31 233 
 31 297 
 31 361 
 31425 
 
 • 31 489 
 
 31 616 
 31 679 
 
 31 743 
 
 31 806 
 31 870 
 
 31933 
 31996 
 32059 
 
 32 122 
 32185 
 32248 
 
 323" 
 
 32373 
 
 32436 
 32498 
 
 32561 
 32623 
 32685 
 
 32747 
 
 68 
 67 
 67 
 67 
 67 
 
 67 
 67 
 67 
 66 
 67 
 66 
 67 
 66 
 66 
 66 
 66 
 66 
 66 
 66 
 65 
 66 
 65 
 65 
 66 
 65 
 65 
 65 
 65 
 65 
 64 
 
 65 
 64 
 65 
 64 
 64 
 
 65 
 64 
 64 
 64 
 64 
 
 63 
 64 
 63 
 64 
 63 
 64 
 63 
 63 
 63 
 63 
 63 
 63 
 63 
 62 
 
 63 
 62 
 61 
 62 
 62 
 62 
 
 L. Cotg. 
 
 0.71 135 
 0.71 067 
 0,71 000 
 
 o 70933 
 o . 70 866 
 
 0.70799 
 o . 70 732 
 o . 70 665 
 0.70 598 
 0.70532 
 
 o . 70 465 
 
 0.70399. 
 0.70332 
 
 o . 70 266 
 o . 70 200 
 
 0,70 134 
 
 o . 70 068 
 o . 70 002 
 
 0.69936 
 
 o 69 870 
 
 o . 69 805 
 
 0.69739 
 
 0.69 674 
 0.69 609 
 
 0.69543 
 
 0.69 478 
 
 0.69413 
 0.69348 
 
 o . 69 283 
 o 69 218 
 
 0.69 154 
 o . 69 089 
 o . 69 025 
 0.68 960 
 
 0.68896 
 
 L. Cos. 
 
 L. Cotg. Ic. d. 
 
 0.68832 
 0.68 767 
 0.68 703 
 o 68 639 
 0.68575 
 
 0.68 511 
 0.68448 
 0.68384 
 o 68321 
 0.68 257 
 
 0.68 194 
 0.68 130 
 0.68067 
 o . 68 004 
 o 67 941 
 
 0.67878 
 0.67815 
 o 67 752 
 o 67 689 
 0.67 627 
 
 0.67 564 
 0.67 502 
 o 67439 
 0.67377 
 o 67315 
 
 67253 
 
 L. Tang. 
 
 78^ 
 
 9 99 195 
 9.99 192 
 9.99 190 
 9.99 187 
 9 99 185 
 
 9.99 182 
 9.99 180 
 9.99 177 
 
 9 99 175 
 9.99 172 
 
 9.99 170 
 9.99 167 
 9.99 165 
 9 99 162 
 9 99 160 
 
 9 99 
 9 99 
 9 99 
 9 99 
 9 99 
 
 157 
 155 
 152 
 150 
 147 
 
 9 99 
 9 99 
 9 99 
 9 99 
 9 99 
 
 145 
 142 
 140 
 137 
 135 
 
 9 99 
 9 99 
 9 99 
 9 99 
 9 99 
 
 132 
 130 
 127 
 124 
 122 
 
 9 99 
 9 99 
 9 99 
 9 99 
 9 99 
 
 9 99 
 9 99 
 
 9-99 
 9 99 
 9 99 
 
 106 
 104 
 
 lOI 
 
 099 
 096 
 
 9 99 
 9 99 
 9 99 
 9 99 
 9 99 
 
 093 
 091 
 088 
 086 
 083 
 
 9 99 
 9 99 
 9 99 
 9 99 
 9 99 
 
 080 
 078 
 
 075 
 072 
 076 
 
 9 99 
 9 99 
 9 99 
 9 99 
 9 99 
 
 067 
 064 
 062 
 
 059 
 056 
 
 9 99054 
 9,99051 
 9.99048 
 9.99046 
 9 99043 
 
 9 99 040 
 
 L. Sin. 
 
 60 
 
 59 
 58 
 
 55 
 54 
 53 
 52 
 
 _5L 
 50 
 
 49 
 48 
 47 
 46 
 
 25 
 24 
 23 
 22 
 21 
 
 20 
 
 19 
 18 
 
 17 
 16 
 
 Prop, rts. 
 
 68 
 
 6.8 
 13.6 
 20 4 
 27 2 
 34 o 
 40.8 
 47 6 
 
 54-4 
 61 2 
 
 66 
 
 6.6 
 13 2 
 10 8 
 26 
 33 
 39 
 46 
 52 
 59-4 
 
 64 
 
 6.4 
 12.8 
 19.2 
 25.6 
 32.0 
 38.4 
 44-8 
 51 2 
 576 
 
 63 
 
 62 
 
 12 
 
 24 
 31 
 37 
 43 
 49 
 55 
 
 60 
 
 6.0 
 12.0 
 18.0 
 24.0 
 30,0 
 36.0 
 42 o 
 48.0 
 54 oi 
 
 67 
 
 07 
 13 4 
 20 I 
 26 8 
 
 33 5 
 40.2 
 
 46 9 
 
 60.3 
 
 65 
 
 65 
 13 
 19 
 26 
 
 32 
 39 
 45 
 52 
 58 
 63 
 
 12.6 
 189 
 25 2 
 
 3^ 5 
 37 8 
 44 I 
 50 4 
 567 
 
 61 
 
 6 
 12 
 
 18 
 24 
 
 36 
 
 42 
 
 48 
 
 54 
 
 59 
 
 5 9 
 II 
 
 17 
 
 23 
 
 
 3 
 
 .1 
 
 03 
 
 .2 
 
 0.6 
 
 •3 
 
 0.9 
 
 4 
 
 1.2 
 
 I 
 
 'A 
 
 7 
 
 2. 1 
 
 8 
 
 2.4 
 
 9 
 
 2.7 
 
 a 
 
 0.2 
 0.4 
 0.6 
 0.8 
 1.0 
 1.2 
 
 14 
 16 
 1.8 
 
 Prop. Pts. 
 
38 
 
 TABLE II 
 
 12° 1 
 
 
 / 
 
 L. Sin. 
 
 d. 
 
 L.Taug. c.d.| 
 
 L. Cotg. 
 
 L. Cos. 
 
 60 
 
 Prop. Pts. 
 
 
 
 
 9.31 788 
 
 
 9 32 747 
 
 63 
 
 0.67253 
 
 9.99040 
 
 
 
 
 9 31 847 
 
 
 9.32 810 
 
 0.67 190 
 
 9.99038 
 
 59 
 
 63 6a 
 
 
 2 
 
 9.31 907 
 
 
 9-32872 
 
 
 0.67 128 
 
 9 99035 
 
 58 
 
 I 63 6.2 
 
 
 3 
 
 9.31 966 
 
 59 
 
 9 32933 
 
 62 
 
 0.67067 
 
 9.99032 
 
 57 
 
 .2 12 6 12 4 
 
 
 _± 
 
 9.32025 
 
 59 
 
 9-32995 
 
 62 
 62 
 
 0.67005 
 
 9.99030 
 
 56 
 
 55 
 
 .3 18 9 18.6 
 .4 25 2 24.8 
 
 
 9.32084 
 
 9-33 057 
 
 0.66943 
 
 9 99027 
 
 
 6 
 
 9 32 143 
 
 59 
 
 9 33 "9 
 
 fi-W 
 
 0.66881 
 
 9 99 024 
 
 54 
 
 .5 31 5 31 
 
 
 7 
 
 9.32 202 
 
 59 
 
 9 33 180 
 
 62 
 
 61 
 
 0.66820 
 
 9.99022 
 
 S3 
 
 -6 37 8 37 2 
 
 
 8 
 
 9.32 261 
 
 59 
 58 
 59 
 
 9 33242 
 
 0.66 758 
 
 9.99019 
 
 52 
 
 -7 44-1 43.4 
 
 
 9 
 10 
 
 9 32319 
 
 9 33303 
 
 62 
 
 0.66697 
 
 9.99016 
 
 51 
 
 .8 50.4 49 6 
 •9 567 55-8 
 
 
 9 32378 
 
 9 33 365 
 
 0.66635 
 
 9.99013 
 
 50 
 
 
 II 
 
 9 32437 
 
 59 
 58 
 58 
 
 9 33426 
 
 61 
 
 0.66 574 
 
 9.99 on 
 
 49 
 
 61 60 
 
 
 12 
 
 9 32495 
 
 9 33487 
 
 61 
 
 0.66 513 
 
 9 99 008 
 
 48 
 
 .1 6.1 6.0 
 
 
 13 
 
 9 32553 
 
 9 33548 
 
 61 
 
 0.66452 
 
 9 99 005 
 
 47 
 
 .2 12.2 12 
 
 
 14 
 15 
 
 9 32 612 
 
 59 
 58 
 
 58 
 58 
 58 
 58 
 58 
 58 
 
 9.33609 
 
 61 
 61 
 61 
 61 
 60 
 61 
 
 0.66 391 
 
 9 99002 
 
 46 
 
 .3 18.3 18.0 
 .4 24.4 24.0 
 
 
 9 32 670 
 
 9-33670 
 
 0.66330 
 
 9 99000 
 
 45 
 
 
 16 
 
 9 32 728 
 
 9 33 731 
 
 0.66269 
 
 9 98 997 
 
 44 
 
 I ^2i ^2 ° 
 
 
 17 
 
 932786 
 
 9-33 792 
 
 0.66208 
 
 9 98 994 
 
 43 
 
 .6 36.6 36.0 
 
 
 18 
 
 9.32844 
 
 9 33853 
 
 0.66 147 
 
 9 98991 
 
 42 
 
 .7 42.7 42.0 
 .8 48.8 48.0 
 •9 54-9 540 
 
 
 19 
 
 20 
 
 9.32902 
 
 9 33913 
 
 0.66087 
 
 998989 
 
 41 
 40 
 
 
 9.32960 
 
 9 33 974 
 
 . 66 026 
 
 9.98986 
 
 
 21 
 
 9.33018 
 
 9 34034 
 
 At 
 
 0.65 966 
 
 9-98983 
 
 39 
 
 59 
 
 
 22 
 
 9 33075 
 
 57 
 
 S8 
 
 9 34095 
 
 
 0.65905 
 
 9.98980 
 
 38 
 
 •' ^1 
 
 
 2S 
 
 9 33 133 
 
 9-34155 
 
 
 0.65 845 
 
 9.98978 
 
 37 
 
 .2 II. 8 
 
 
 24 
 25 
 
 9 33 190 
 
 57 
 58 
 
 9 34215 
 
 61 
 60 
 60 
 60 
 60 
 60 
 
 0.65 785 
 
 9 98975 
 
 36 
 
 35 
 
 .3 17 7 
 •4 23.6 
 •5 29-5 
 •6 35 4 
 
 
 9 33248 
 
 9.34276 
 
 0.65 724 
 
 9 98972 
 
 
 26 
 
 9 33305 
 
 57 
 
 9 34336 
 
 0.65 664 
 
 9 98969 
 
 34 
 
 
 27 
 
 9 33362 
 
 57 
 58 
 
 9 34396 
 
 0.65 604 
 
 9.98967 
 
 33 
 
 
 28 
 
 9-33 420 
 
 9 34456 
 
 0.65 544 
 
 9 98964 
 
 32 
 
 • 7 41 3 
 .8 47 2 
 
 9 53 I 
 
 58 57 
 
 1 5.8 5.7 
 
 2 II. 6 II. 4 
 
 
 29 
 
 30 
 
 9-33 477 
 
 57 
 57 
 
 9 34516 
 
 0.65 484 
 
 9.98 961 
 
 3^ 
 30 
 
 
 9-33 534 
 
 9 34 576 
 
 0.65 424 
 
 9.98958 
 
 
 V 
 
 9 33591 
 
 57 
 
 9 34635 
 
 59 
 60 
 60 
 
 0.65 365 
 
 9 98955 
 
 29 
 
 
 32 
 
 9-33 647 
 
 56 
 
 9 34695 
 
 0.65 305 
 
 9 98953 
 
 28 
 
 
 33 
 
 9 33 704 
 
 57 
 
 9 34 755 
 
 0.65245 
 
 9.98950 
 
 27 
 
 
 34 
 
 9-33761 
 
 57 
 57 
 56 
 
 9 34814 
 
 59 
 60 
 
 0.65 186 
 
 9.98947 
 
 26 
 
 ,3 17.4 171 
 .4 23.2 22.8 
 .5 29.0 28,5 
 .6 34.8 34 2 
 7 40 6 39 9 
 .8 46.4 45.6 
 .9 52 2 51.3 
 
 56 55 
 
 •I 56 55 
 
 
 3S 
 
 9 33818 
 
 9 34874 
 
 0.65 126 
 
 9 98944 
 
 25 
 
 
 3^ 
 
 9 33874 
 
 9 34 933 
 
 59 
 
 0.65 067 
 
 9.98941 
 
 24 
 
 
 37 
 
 9 33931 
 
 57 
 56 
 56 
 57 
 
 9 34992 
 
 59 
 
 0.65 008 
 
 9.98938 
 
 23 
 
 
 3« 
 39 
 40 
 
 9 33987 
 9 -34 043 
 
 9 35051 
 9 35 "I 
 
 59 
 60 
 
 59 
 
 0.64949 
 0.64889 
 
 9-98936 
 9 98933 
 
 22 
 21 
 20 
 
 
 9 34 100 
 
 9 35 170 
 
 0.64830 
 
 9.98930 
 
 
 41 
 
 9 34156 
 
 56 
 
 9 35229 
 
 59 
 
 0.64 771 
 
 9.98927 
 
 19 
 
 
 42 
 
 9.34212 
 
 56 
 
 9 35288 
 
 59 
 
 0.64 712 
 
 9 98924 
 
 18 
 
 
 43 
 
 9 . 34 268 
 
 56 
 56 
 56 
 56 
 
 9 35 347 
 
 59 
 58 
 59 
 
 0.64653 
 
 9.98 921 
 
 17 
 
 3 16. 8i 16 5 
 
 .4 22 4 22.0 
 ,5 28 27.5 
 .6 33.6 33.0 
 -7 39-2 38.5 
 8 44.8 44.0 
 
 
 44 
 45 
 
 9 34324 
 
 9 35 405 
 
 0.64595 
 
 9 98919 
 
 lb 
 15 
 
 
 9-34380 
 
 9 35 464 
 
 64 536 
 
 9 98 916 
 
 
 46 
 
 9-34436 
 
 9 35 523 
 
 59 
 58 
 
 0.64477 
 
 9 98913 
 
 14 
 
 
 47 
 
 9-34 491 
 
 55 
 
 9 35 581 
 
 0.64419 
 
 9 98 910 
 
 »3 
 
 
 48 
 
 9-34 547 
 
 56 
 
 9-35 640 
 
 59 
 58 
 59 
 58 
 58 
 58 
 58 
 S8 
 58 
 58 
 58 
 58 
 57 
 
 . 64 360 
 
 9 98907 
 
 12 
 
 
 49 
 50 
 
 9.34602 
 
 55 
 56 
 
 935698 
 
 . 64 302 
 
 9.98904 
 
 II 
 10 
 
 .9 50 4 49 5 
 
 3 3 
 
 
 9-34658 
 
 9 35 757 
 
 0.64243 
 
 9.98901 
 
 
 51 
 
 9-34713 
 
 55 
 
 9 35815 
 
 0.64 185 
 
 9.98898 
 
 9 
 
 I 0.3 0.2 
 .2 0.6 0.4 
 
 3 0.9 0.6 
 .4 1.2 08 
 
 •5 15 10 
 .6 1.8 1.2 
 
 
 52 
 
 9-34769 
 
 56 
 
 9 35873 
 
 0.64 127 
 
 9.98896 
 
 8 
 
 
 S3 
 
 9.34824 
 
 55 
 
 9 35931 
 
 . 64 069 
 
 9.98893 
 
 7 
 
 
 54 
 
 9 34879 
 
 55 
 55 
 
 9 35989 
 
 0.64 on 
 
 9.98890 
 
 6 
 
 5 
 
 
 9 34 934 
 
 9.36047 
 
 0.63953 
 
 9 98887 
 
 
 56 
 
 9.34989 
 
 55 
 
 9 36 105 
 
 63 895 
 
 9 98 884 
 
 4 
 
 
 57 
 
 9-35044 
 
 55 
 
 9.36 163 
 
 0.63837 
 
 9.98881 
 
 3 
 
 7 2.1 14 
 
 
 S« 
 
 9-35099 
 
 55 
 
 9.36221 
 
 0.63 779 
 
 9.98878 
 
 2 
 
 .8 24 16 
 
 
 59 
 
 or 
 
 9 35 154 
 
 55 
 55 
 
 9.36279 
 
 0.63 721 
 
 9.98875 
 
 I 
 
 .9 2.7 1.8 
 
 
 9 35209 
 
 9 36336 
 
 . 63 664 
 
 9.98872 
 
 
 
 
 L. Cos. 
 
 d. |l. Cotg. 
 
 c.d. 
 
 L. Taug. 
 
 L. Sin. 
 
 Prop. Pts. 
 
 
 77° 1 
 
LOGARITHMS OF THE TKIGONOMETRIC FUNCTIONS 
 
 39 
 
 
 13° 1 
 
 
 
 L. Sin. 
 
 54 
 55 
 55 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 60 
 
 Prop. Pts. 1 
 
 9 35209 
 
 9 36 336 
 
 58 
 58 
 57 
 
 0.63 664 
 
 9.98872 
 
 1 
 
 I 
 
 9 
 
 35263 
 
 9 36 394 
 
 0.63 606 
 
 998869 
 
 S9 
 
 58 
 
 57 
 
 2 
 
 9 
 
 35318 
 
 9 36452 
 
 63 548 
 
 9 98867 
 
 58 
 
 • I 5.^ 
 
 ? 5 7 
 
 3 II 4 
 
 \ 17 I 
 I 22 8 
 
 3 
 
 9 
 
 35 373 
 
 9 36 509 
 
 63 491 
 
 9.98864 
 
 57 
 
 .2 II. ( 
 
 4 
 
 9 
 
 35427 
 
 54 
 
 9.36566 
 9.36624 
 
 58 
 
 63434 
 
 9 98861 
 
 56 
 
 S5 
 
 •3 17- 
 •4 23. i 
 
 9 
 
 35481 
 
 63 376 
 
 9 98858 
 
 6 
 
 9 35 536 
 
 
 9.36681 
 
 
 0.63319 
 
 9 98855 
 
 S4 
 
 •5 29.: 
 
 D 28 5 
 
 7 
 
 9 35 590 
 
 
 9 36738 
 
 
 63 262 
 
 9 98 852 
 
 SS 
 
 .6 34. { 
 
 ^ 34 2 
 
 8 
 
 9 35644 
 
 
 9 36 795 
 
 
 63 205 
 
 9 98 849 
 
 S2 
 
 .7 40 6 39.9 1 
 
 9 
 10 
 
 9 
 "9 
 
 35 698 
 
 54 
 
 9.36852 
 
 57 
 
 63 148 
 
 9 . 98 846 
 
 51 
 50 
 
 .8 46 . 
 •9 52.^ 
 
 \ 45-6 
 2 51 3 
 
 35752 
 
 9 36909 
 
 0.63091 
 
 9 98843 
 
 II 
 
 9 35 806 
 
 
 9 36966 
 
 
 0.63034 
 
 9 98 840 
 
 49 
 
 56 
 
 55 
 
 12 
 
 9.35860 
 
 
 9 37023 
 
 57 
 
 0.62977 
 
 9 98837 
 
 48 
 
 .1 5 < 
 
 ^ 5 5 
 
 13 
 
 9 
 
 35914 
 
 
 9 37 080 
 
 
 0.62 920 
 
 9.98834 
 
 47 
 
 .2 II.: 
 
 2 II. 
 
 14 
 IS 
 
 9 
 
 35968 
 
 54 
 
 9 37 137 
 
 57 
 56 
 
 62863 
 
 9 98 831 
 
 46 
 45 
 
 .3 16.8 16.5 
 .4 22.4 22.0 
 
 9 
 
 36022 
 
 9 37 193 
 
 0.62 807 
 
 9.98828 
 
 i6 
 
 9 
 
 36075 
 
 53 
 
 9 37250 
 
 57 
 56 
 
 0.62 750 
 
 9 98825 
 
 44 
 
 •5 28.0 27 5 
 
 17 
 
 9 
 
 36 129 
 
 
 9 37306 
 
 . 62 694 
 
 9.98822 
 
 43 
 
 •6 33( 
 
 ^ 330 
 
 i8 
 
 9 
 
 36 182 
 
 53 
 
 9 37363 
 
 56 
 57 
 56 
 56 
 56 
 56 
 56 
 
 0.62 637 
 
 9.98819 
 
 42 
 
 ■9 50-^ 
 
 \ 38.5 
 
 19 
 20 
 
 9 
 
 36236 
 
 53 
 
 9 37419 
 
 0.62 581 
 
 9.98816 
 
 41 
 40 
 
 5 44.0 
 ^ 49-5 
 
 9 
 
 36289 
 
 9 37 476 
 
 0.62 524 
 
 9.98813 
 
 21 
 
 9 
 
 36342 
 
 
 9 37532 
 
 0.62468 
 
 9.98810 
 
 39 
 
 
 54 
 
 22 
 
 9 
 
 36395 
 
 
 937588 
 
 0.62 412 
 
 9.98807 
 
 38 
 
 .1 
 
 5 4 
 
 23 
 
 9 
 
 36449 
 
 54 
 
 9 37644 
 
 0.62 356 
 
 9.98804 
 
 37 
 
 .2 10.8 1 
 
 24 
 2S 
 
 9 
 
 36502 
 
 53 
 
 9.37700 
 
 0.62 300 
 
 9.98801 
 
 36 
 
 35 
 
 •3 I 
 •4 2 
 
 62 
 16 
 
 9 36555 
 
 9 37756 
 
 62 244 
 
 9.98798 
 
 26 
 
 9 36 608 
 
 53 
 
 9 37812 
 
 56 
 
 0.62 188 
 
 9 98 795 
 
 34 
 
 •5 27.0 
 
 27 
 
 9 ^6 660 
 
 52 
 
 9 37 868 
 
 56 
 
 0.62 132 
 
 9 98 792 
 
 33 
 
 t ^li 
 
 28 
 
 9 36713 
 
 53 
 
 9 37924 
 
 56 
 56 
 55 
 
 0.62 076 
 
 9.98789 
 
 32 
 
 ■I V 
 
 29 
 
 9 36766 
 
 53 
 53 
 
 9 37980 
 
 . 62 020 
 
 9 98 786 
 
 31 
 30 
 
 .8 4 
 •9 4 
 
 3 2 
 8.6 
 
 9 
 
 36819 
 
 9 38035 
 
 0.61 965 
 
 9.98783 
 
 31 
 
 9 
 
 36871 
 
 52 
 
 9.38091 
 
 56 
 
 0.61 909 
 
 9 . 98 780 
 
 29 
 
 53 
 
 5a 
 
 32 
 
 9 
 
 36924 
 
 53 
 
 938 147 
 
 50 
 
 0.61 853 
 
 9.98 777 
 
 28 
 
 •I 5' 
 
 ; 52 
 
 33 
 
 9 
 
 36976 
 
 52 
 
 9 38 202 
 
 55 
 
 0.61 798 
 
 9.98 774 
 
 27 
 
 .2 10. ( 
 
 ) 10.4 
 
 34 
 
 9 
 
 37028 
 
 52 
 53 
 
 9 38257 
 
 55 
 56 
 
 0.61 743 
 
 9.98771 
 
 26 
 
 •3 15 S 
 
 ) 156 
 20.8 
 26.0 
 
 35 
 
 9 
 
 37081 
 
 9 38313 
 
 61 687 
 
 9.98768 
 
 25 
 
 .4 21.2 
 • 5 26. c 
 .6 31-^ 
 
 3^ 
 
 9 
 
 37 133 
 37185 
 
 52 
 
 9 38 368 
 
 55 
 
 61 632 
 
 9.98765 
 
 24 
 
 37 
 
 9 
 
 52 
 
 9 38 423 
 
 55 
 
 0.61 577 
 
 9.98 762 
 
 23 
 
 ; 31.2 
 
 36 4 
 
 \ 416 
 
 ' 46.8 
 
 3« 
 
 9 
 
 37 237 
 
 52 
 
 9 38 479 
 
 56 
 
 0.61 521 
 
 9 98 759 
 
 22 
 
 •7 371 
 .8 42.4 
 
 •9 47 y 
 
 39 
 40 
 
 9 
 
 37289 
 
 52 
 52 
 
 9 38534 
 
 55 
 
 55 
 
 0.61 466 
 
 9.98 756 
 
 21 
 
 9 
 
 37341 
 
 9 38 589 
 
 0.61 411 
 
 9 98 753 
 
 20 
 
 41 
 
 9 
 
 37 393 
 
 52 
 
 9 38644 
 
 55 
 
 61 356 
 
 9.98750 
 
 19 
 
 51 
 
 4 
 
 42 
 
 9 
 
 37 445 
 
 52 
 
 9 38 699 
 
 55 
 
 0.61 301 
 
 9.98 746 
 
 18 
 
 • I 51 
 
 0I 
 
 43 
 
 9 37 497 
 
 52 
 
 9 38 754 
 
 55 
 
 0.61 246 
 
 9 98 743 
 
 17 
 
 .2 10.2 
 
 44 
 4.S 
 
 9 
 
 37 549 
 
 52 
 51 
 
 9 38 808 
 
 54 
 
 55 
 
 0.61 192 
 
 9.98740 
 
 16 
 
 •3 15 3 
 .4 20.4 
 
 .6 30. e 
 
 9 45 5 
 
 3 
 
 1.2 
 
 1.6 
 2 
 
 37600 
 
 9 38 863 
 9.38918 
 
 0.61 137 
 
 9 98 737 
 
 15 
 
 46 
 
 9 37 652 
 
 52 
 
 55 
 
 0.61 082 
 
 9 98734 
 
 14 
 
 It 
 
 47 
 
 9 37703 
 
 51 
 
 9.38972 
 
 54 
 
 0.61 028 
 
 9.98 731 
 
 13 
 
 48 
 
 9 37 755 
 
 52 
 
 9 39 027 
 
 55 
 
 0.60973 
 
 9.98 728 
 
 12 
 
 11 
 
 49 
 60 
 
 9 37806 
 
 51 
 
 52 
 
 9.39082 
 
 55 
 54 
 
 0.60 918 
 
 9.98725 
 9.98 722 
 
 II 
 10 
 
 9 
 
 37858 
 
 9 39 136 
 
 . 60 864 
 
 51 
 
 9 
 
 37909 
 
 51 
 
 9 39 190 
 
 54 
 
 0.60 810 
 
 9 98 719 
 
 9 
 
 0.2 
 
 52 
 
 9 
 
 37960 
 
 51 
 
 9 39245 
 
 55 
 
 0.60 755 
 
 9 98 715 
 
 8 
 
 .2 0.6 
 
 53 
 
 9 
 
 38 on 
 
 ^' 
 
 9.39299 
 
 54 
 
 0.60 701 
 
 9 98 712 
 
 7 
 
 0.6 
 08 
 
 I.O 
 
 54 
 55 
 
 9 
 
 38062 
 
 51 
 
 51 
 
 9 39 353 
 
 54 
 54 
 
 0.60 647 
 
 9 98 709 
 
 6 
 5 
 
 3 09 
 .4 12 
 
 9 
 
 38 113 
 
 9-39 407 
 
 0.60593 
 
 9 98 706 
 
 5^ 
 
 9 38 164 
 
 SI 
 
 9.39461 
 
 54 
 
 0.60539 
 
 9 98 703 
 
 4 
 
 1.2 
 
 ■■^^ 
 
 9 38215 
 
 51 
 
 9 39515 
 
 54 
 
 0.60485 
 
 9.98 700 
 
 3 
 
 .7 2.1 
 8 2.4 
 
 \i 
 
 5« 
 
 9 38 266 
 
 51 
 
 9 39569 
 
 54 
 
 60 43 1 
 
 9.98697 
 
 2 
 
 59 
 60_ 
 
 9 383^7 
 
 51 
 51 
 
 939623 
 
 54 
 54 
 
 0.60377 
 
 9.98694 
 
 I 
 
 
 9 2.7 
 
 1.8 
 
 9.38368 
 
 9.39677 
 
 0.60323 
 
 9.98690 
 
 
 L. Cos. 
 
 d. 
 
 L. Cotgr. 
 
 C.d. 
 
 L. Tangr. 
 
 L. Sin. 
 
 f 
 
 Prop. Pts. ' 1 
 
 76^ 1 
 
40 
 
 TABLE II 
 
 14 
 
 9_ 
 10 
 II 
 
 12 
 13 
 
 \l 
 
 18 
 
 i9_ 
 20 
 21 
 22 
 
 23 
 
 24^ 
 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 
 36 
 
 37 
 38 
 39 
 40 
 
 41 
 
 42 
 
 43 
 44 
 
 46 
 
 47 
 48 
 
 49_ 
 50 
 
 51 
 
 52 
 53 
 il 
 
 II 
 
 60 
 
 L. Sin. d. 
 
 38368 
 38418 
 38469 
 38519 
 38570 
 
 38 620 
 38 670 
 38721 
 
 38771 
 38821 
 
 38871 
 38921 
 
 38971 
 39021 
 39071 
 
 39 121 
 39 170 
 39 220 
 39270 
 39319 
 
 39369 
 39418 
 39467 
 
 39566 
 
 39615 
 39664 
 
 39713 
 39 762 
 39 811 
 
 39860 
 39909 
 39958 
 40 006 
 
 40055 
 
 40 103 
 40 152 
 40 200 
 40249 
 40297 
 
 40346 
 40394 
 40 442 
 40 490 
 40538 
 
 40 586 
 40634 
 40 682 
 
 40730 
 40778 
 
 40 825 
 40873 
 
 40 921 
 4c 968 
 
 41 016 
 
 41 063 
 41 III 
 41 158 
 41 205 
 41 252 
 
 41 300 
 
 L. Cos. d. 
 
 L. Tang. 
 
 39677 
 39 731 
 39785 
 39838 
 39892 
 
 39 945 
 
 39 999 
 
 40 052 
 40 106 
 40159 
 
 40 212 
 40 266 
 
 40319 
 40372 
 
 40425 
 
 40478 
 40531 
 40584 
 40 636 
 40 689 
 
 40742 
 
 40795 
 40847 
 40 900 
 40952 
 
 41 005 
 41057 
 41 109 
 41 161 
 41 214 
 
 41 266 
 41 318 
 41 370 
 41 422 
 
 41 474 
 
 41 526 
 41 578 
 41 629 
 41 681 
 41 733 
 
 41 784 
 41 836 
 41 887 
 
 41939 
 41 990 
 
 42 041 
 42093 
 42 144 
 
 42 195 
 42 246 
 
 42297 
 42348 
 
 42399 
 42450 
 42501 
 
 42552 
 42 603 
 42653 
 42 704 
 42755 
 
 9 . 42 805 
 
 L. Cotg. 
 
 c.d. 
 
 c.d, 
 
 L. Cotg. 
 
 o . 60 323 
 o . 60 269 
 0.60 215 
 0.60 162 
 0.60 108 
 
 0.60 055 
 0.60 001 
 
 0.59948 
 0.59894 
 0.59841 
 
 0.59 788 
 0.59734 
 
 0.59 681 
 0.59 628 
 059 575 
 
 0.59 522 
 0.59469 
 0.59 416 
 0.59364 
 0.59311 
 
 0.59258 
 o . 59 205 
 
 0.59153 
 0.59 100 
 0.59048 
 
 0.58995 
 0.58943 
 0.58891 
 0.58839 
 0.58 786 
 
 0.58 734 
 0.58682 
 o . 58 630 
 0.58578 
 0.58 526 
 
 0.58474 
 o . 58 422 
 0.58371 
 0.58319 
 0.58 267 
 
 0.58 216 
 0.58 164 
 0.58 113 
 0.58061 
 0.58 010 
 
 0.57959 
 0.57907 
 0.57856 
 0.57805 
 o 57 754 
 
 0.57 703 
 0.57652 
 0.57 601 
 0.57550 
 o. 57 499 
 0.57448 
 0.57397 
 0.57347 
 0.57 296 
 0.57245 
 
 0.57195 
 
 L. Tang. 
 
 75° 
 
 L. Cos. 
 
 98 690 
 98687 
 98684 
 98681 
 98678 
 
 98675 
 98671 
 98668 
 98665 
 98662 
 
 98659 
 98656 
 98652 
 98 649 
 98646 
 
 98643 
 98 640 
 98636 
 98633 
 98630 
 
 98 627 
 98 623 
 98 620 
 98617 
 98614 
 
 98 610 
 98 607 
 98 604 
 98 601 
 98597 
 
 98594 
 98591 
 98588 
 
 98584 
 98581 
 
 98578 
 98574 
 98571 
 98568 
 
 98565 
 
 98561 
 98558 
 98555 
 98551 
 
 98548 
 
 98545 
 98541 
 98538 
 98535 
 98531 
 
 98528 
 
 98525 
 98521 
 98518 
 98515 
 
 98 511 
 98508 
 
 98505 
 98 501 
 98498 
 
 9.98494 
 
 L. Sin. 
 
 d. 
 
 60 
 
 59 
 58 
 
 55 
 54 
 53 
 52 
 
 IL 
 50 
 
 49 
 48 
 47 
 _46_ 
 
 45 
 44 
 43 
 42 
 
 41 
 40 
 
 39 
 38 
 
 35 
 34 
 33 
 32 
 31 
 
 25 
 24 
 23 
 22 
 21 
 
 20 
 
 19 
 18 
 
 17 
 
 16 
 
 Prop. Pts. 
 
 
 54 
 
 53 
 
 I 
 
 5i 
 
 5- 
 
 2 
 
 10.8 
 
 10. 
 
 3 
 
 16.2 
 
 15- 
 
 4 
 
 21.6 
 
 21 . 
 
 
 27.0 
 
 26. 
 
 6 
 
 32.4 
 
 31 
 
 . 7 
 
 37.8 
 
 37- 
 
 .8 
 
 48 6 
 
 42. 
 
 •9 
 
 47 
 
 52 
 
 5- 
 10. 
 
 15- 
 20. 
 26. 
 
 41.6 
 46.8 
 
 50 
 
 50 
 10.0 
 15 o 
 20.0 
 25.0 
 30.0 
 350 
 40.0 
 45 o 
 
 4 
 
 0.4 
 o 8 
 1.2 
 1.6 
 2.0 
 2.4 
 2.8 
 
 36 
 
 
 48 
 
 47 
 
 I 
 
 4.8 
 
 4 
 
 2 
 
 9.6 
 
 9 
 
 3 
 
 14.4 
 
 14 
 
 4 
 
 19 2 
 
 18. 
 
 S 
 
 24.0 
 
 23 
 
 6 
 
 28.8 
 
 28. 
 
 7 
 
 336 
 
 32 
 
 8 
 
 384 
 
 37 
 
 9 
 
 43 2 
 
 42 
 
 Prop. Pts. 
 
LOGARITHMS OF THE TRIGONOMETRIC FUNCTIONS 
 
 41 
 
 15^ 
 
 L. Sin. 
 
 
 
 I 
 
 2 
 
 3 
 
 I 
 
 I 
 
 10 
 
 II 
 
 12 
 
 13 
 14 
 
 ;i 
 
 17 
 
 i8 
 
 19 
 20 
 
 21 
 22 
 23 
 24 
 
 26 
 27 
 28 
 29 
 
 30 
 
 31 
 
 32 
 33 
 
 34 
 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 
 45 
 46 
 
 47 
 48 
 
 49 
 
 50 
 
 51 
 
 52 
 53 
 
 J.9 
 60 
 
 42 001 
 42047 
 42093 
 42 140 
 42 186 
 
 42 232 
 42 278 
 42324 
 42370 
 42 416 
 
 42 461 
 42507 
 42553 
 42599 
 42644 
 
 42 690 
 
 42735 
 42 781 
 42 826 
 42872 
 
 42917 
 42 962 
 43008 
 
 43053 
 43098 
 
 43 143 
 4318S 
 
 43233 
 43278 
 43323 
 
 43367 
 43412 
 43 457 
 43502 
 43 546 
 
 43591 
 43 635 
 43 680 
 43 724 
 43 769 
 
 43813 
 43857 
 43901 
 43946 
 43990 
 
 44034 
 
 47 
 47 
 47 
 47 
 47 
 
 47 
 46 
 
 47 
 47 
 46 
 
 47 
 46 
 
 47 
 46 
 
 47 
 46 
 46 
 
 47 
 46 
 46 
 
 46 
 46 
 46 
 46 
 45 
 46 
 46 
 46 
 45 
 46 
 
 45 
 46 
 45 
 46 
 45 
 
 45 
 46 
 45 
 45 
 45 
 45 
 45 
 45 
 45 
 44 
 45 
 45 
 45 
 44 
 45 
 44 
 45 
 44 
 45 
 44 
 44 
 44 
 45 
 44 
 44 
 
 L. Tang. 
 
 C. d. 
 
 42 805 
 42856 
 42 906 
 
 42957 
 43007 
 
 43 057 
 43 108 
 43 158 
 43 208 
 43258 
 
 43308 
 43358 
 43408 
 43458 
 43508 
 
 43558 
 43607 
 43657 
 43 707 
 43756 
 
 43 806 
 43855 
 43905 
 
 43 954 
 
 44 004 
 
 44053 
 44 102 
 
 44 151 
 
 44 201 
 44250 
 
 44299 
 44348 
 44 397 
 44446 
 44 495 
 
 44 544 
 44592 
 44641 
 44 690 
 44738 
 
 44787 
 44836 
 44884 
 
 44 933 
 44981 
 
 45029 
 45078 
 45 126 
 45 174 
 45 222 
 
 45 271 
 45319 
 45367 
 45415 
 45463 
 
 45 5" 
 
 45 559 
 45 606 
 45654 
 45 702 
 
 9 45 750 
 
 5» 
 
 50 
 51 
 50 
 50 
 51 
 50 
 50 
 50 
 50 
 50 
 50 
 50 
 50 
 50 
 
 49 
 50 
 50 
 49 
 50 
 
 49 
 50 
 49 
 50 
 49 
 49 
 49 
 50 
 49 
 49 
 49 
 49 
 49 
 49 
 49 
 48 
 49 
 49 
 48 
 
 49 
 
 49 
 48 
 
 49 
 48 
 48 
 
 49 
 48 
 48 
 48 
 49 
 48 
 48 
 48 
 48 
 48 
 48 
 47 
 48 
 48 
 48 
 
 L. Cotg. 
 
 0.57 195 
 0.57 144 
 0.57094 
 
 0.57043 
 0.56993 
 
 o 56943 
 o . 56 892 
 o . 56 842 
 0.56 792 
 
 0.56 742 
 
 o 56 692 
 o . 56 642 
 0.56 592 
 
 0.56542 
 0.56492 
 
 0.56 442 
 o 56393 
 
 0.56343 
 
 0.56 293 
 0.56 244 
 
 0.56 194 
 
 o 56 145 
 0.56 095 
 0.56 046 
 o 55996 
 
 55 947 
 55898 
 
 55849 
 55 799 
 55 750 
 
 o 55 701 
 o 55652 
 0.55603 
 o 55 554 
 o 55505 
 
 o 55456 
 0.55 408 
 
 o 55 359 
 o 55310 
 0.55 262 
 
 o 55213 
 0.55 164 
 o 55 116 
 
 0.55067 
 0.55019 
 
 0.54971 
 0.54922 
 0.54874 
 
 o . 54 826 
 o 54778 
 
 0.54 729 
 0.54 681 
 0.54633 
 o 54585 
 o 54 537 
 
 0.54489 
 0.54441 
 0.54394 
 0.54346 
 o . 54 298 
 
 0.54250 
 
 L. Cos. I d. I L. Cotg. c. d. L. Tang. 
 
 740 
 
 L. Cos. 
 
 9 98 4Q4 
 9.98491 
 9 98488 
 
 9 98484 
 9 98 481 
 
 98477 
 98474 
 98471 
 98467 
 98 464 
 
 98 460 
 98457 
 98453 
 98450 
 98447 
 
 98443 
 98 440 
 
 98436 
 98433 
 98429 
 
 98 426 
 98 422 
 98419 
 
 98415 
 98 412 
 
 98 409 
 
 98405 
 98 402 
 98398 
 98395 
 
 98391 
 98388 
 
 98384 
 98381 
 
 98377 
 
 98373 
 98370 
 98366 
 98363 
 98359 
 
 98356 
 98352 
 98349 
 98345 
 98342 
 
 98338 
 98334 
 98331 
 98327 
 98324 
 
 98317 
 98313 
 98309 
 98306 
 
 98 302 
 98299 
 98295 
 98 291 
 98288 
 
 9 . 98 284 
 
 L. Sin, 
 
 d. 
 
 60 
 
 59 
 58 
 
 55 
 54 
 53 
 52 
 51 
 50 
 49 
 48 
 47 
 _46_ 
 
 45 
 44 
 43 
 42 
 41 
 40 
 39 
 38 
 
 36 
 
 35 
 34 
 33 
 32 
 31 
 30 
 29 
 28 
 27 
 26 
 
 25 
 24 
 23 
 22 
 21 
 
 20 
 
 19 
 18 
 
 17 
 16 
 
 Prop. Pts. 
 
 
 5t 
 
 .1 
 
 51 
 
 .2 
 
 10.2 
 
 3 
 
 15 3 
 
 4 
 
 20.4 
 
 •5 
 
 25 5 
 
 6 
 
 30 6 
 
 7 
 
 35-7 
 
 8 
 
 40 8 
 
 9 
 
 45 9 
 
 
 49 
 
 48 
 
 .1 
 
 4 9 
 
 4 
 
 .2 
 
 9.8 
 
 9 
 
 •3 
 
 14.7 
 
 14 
 
 •4 
 
 19,6 
 
 19 
 
 . 5 
 
 24 5 
 
 24 
 
 .6 
 
 29.4 
 
 28 
 
 7 
 
 34-3 
 
 33 
 
 .8 
 
 39 2 
 
 38 
 
 9 
 
 44 I 
 
 43 
 
 
 45 
 
 
 46 
 
 I 
 
 4 7 
 
 4- 
 
 2 
 
 9 
 
 4 
 
 9 
 
 3 
 4 
 
 Is 
 
 8 
 
 \l 
 
 5 
 
 11 
 
 5 
 
 23- 
 
 .6 
 
 2 
 
 27 
 
 7 
 
 32 
 
 9 
 
 32 
 
 .8 
 
 37 
 
 6 
 
 36. 
 
 9 
 
 42 
 
 3 
 
 41 
 
 
 43 
 
 1 
 
 I 
 
 4 51 
 
 2 
 
 9 
 
 
 
 3 
 
 13 
 
 5 
 
 4 
 
 18 
 
 
 
 5 
 
 22 
 
 5 
 
 6 
 
 27 
 
 
 
 ■ 7 
 
 31 
 
 5 
 
 .8 
 
 36 
 
 
 
 9 
 
 40 
 
 5 
 
 Prop. Pts. 
 
42 
 
 TABLE II 
 
 16 
 
 9_ 
 10 
 II 
 
 12 
 
 13 
 14 
 
 15 
 i6 
 
 17 
 i8 
 
 19 
 
 20 
 
 21 
 
 22 
 23 
 24 
 
 25 
 26 
 
 27 
 28 
 
 29 
 
 30 
 
 31 
 
 32 
 
 33 
 34 
 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 
 45 
 46 
 
 47 
 48 
 
 49 
 
 50 
 
 51 
 
 52 
 53 
 il 
 55 
 56 
 
 II 
 
 -59. 
 60 
 
 L. Sin. 
 
 9.44472 
 9.44516 
 
 9 44 559 
 9.44 602 
 9.44646 
 
 45 120 
 45 163 
 45 206 
 45 249 
 45 292 
 
 44034 
 44078 
 44 122 
 44 166 
 44 210 
 
 44253 
 44297 
 
 44341 
 44385 
 44428 
 
 44 689 
 
 44 733 
 44776 
 44819 
 44 862 
 
 44905 
 44948 
 
 44992 
 45035 
 45077 
 
 45 334 
 45 377 
 45419 
 45 462 
 45504 
 
 45 547 
 45589 
 45632 
 45674 
 45 716 
 
 45 758 
 45 801 
 45843 
 45885 
 45927 
 
 45969 
 46 on 
 46053 
 46095 
 46 136 
 
 46 178 
 46 220 
 46 262 
 46303 
 46345 
 
 46 386 
 46 428 
 46 469 
 46 511 
 46552 
 
 9 46594 
 L. Cos. 
 
 d. 
 
 L. Tang:. 
 
 45 750 
 45 797 
 45845 
 45892 
 45 940 
 
 45987 
 46 035 
 46 082 
 46 130 
 46 177 
 
 46 224 
 46271 
 
 46319 
 46 366 
 
 46413 
 
 46 460 
 46507 
 46554 
 46 601 
 46648 
 
 46 694 
 46741 
 46 788 
 46835 
 46881 
 
 46 928 
 
 46975 
 
 47 021 
 47 068 
 47 114 
 
 47 160 
 47207 
 47253 
 47299 
 47346 
 
 47392 
 47438 
 47484 
 47530 
 47576 
 
 47 622 
 47668 
 
 47 714 
 47760 
 47 806 
 
 47852 
 47897 
 47 943 
 47989 
 48035 
 
 48080 
 48 126 
 
 48 171 
 
 48217 
 48262 
 
 48307 
 48353 
 48398 
 48443 
 48489 
 
 48534 
 
 L. Cotg. 
 
 c.d. 
 
 47 
 48 
 47 
 48 
 47 
 48 
 47 
 48 
 47 
 47 
 
 47 
 48 
 47 
 47 
 47 
 47 
 47 
 47 
 47 
 46 
 
 47 
 47 
 47 
 46 
 47 
 
 47 
 46 
 47 
 46 
 46 
 
 47 
 46 
 46 
 47 
 46 
 
 46 
 46 
 46 
 46 
 46 
 46 
 46 
 46 
 46 
 46 
 
 45 
 46 
 46 
 46 
 
 45 
 46 
 45 
 46 
 45 
 45 
 46 
 43 
 45 
 46 
 
 45 
 
 c. d, 
 
 L. Cotg. 
 
 0.54250 
 0.54203 
 
 o 54 155 
 0.54 108 
 o . 54 060 
 
 o 54013 
 
 0.53965 
 0.53918 
 0.53870 
 0.53823 
 
 0.53 776 
 0.53 729 
 0.53681 
 
 0.53634 
 
 o- 53 587 
 
 o 53540 
 0.53493 
 0.53446 
 0.53399 
 0.53352 
 
 0.53306 
 0.53259 
 0.53 212 
 0.53 165 
 0.53 "9 
 
 0.53 072 
 0.53025 
 0.52979 
 0.52 932 
 0.52886 
 
 0.52 840 
 
 0.52 793 
 0.52 747 
 0.52 701 
 0.52654 
 
 o . 52 608 
 0.52 562 
 0.52 516 
 0.52 470 
 0,52424 
 
 0.52378 
 0.52332 
 0.52 286 
 0.52 240 
 0.52 194 
 
 0.52 148 
 0.52 103 
 0.52057 
 0.52 on 
 o 51 965 
 
 0.51 920 
 
 0.51 874 
 
 0.51 829 
 
 0.51 783 
 0.51 738 
 
 o 51 693 
 
 0.51 647 
 
 0.51 602 
 o 51 557 
 05^ 5" 
 0.51 466 
 
 L. Tang. 
 
 73^ 
 
 L. Cos. 
 
 98284 
 98281 
 98277 
 98273 
 98 270 
 
 98266 
 
 98 262 
 
 98259 
 
 9 98255 
 
 9 9825 1 
 
 9 98 248 
 
 98 244 
 98 240 
 98237 
 98233 
 
 98 229 
 98 226 
 98 222 
 98218 
 98215 
 
 98 211 
 
 98 207 
 98 204 
 98 200 
 98 196 
 
 98 192 
 98 189 
 98 185 
 98 i8i 
 98 177 
 
 98 174 
 98 170 
 98 166 
 98 162 
 98 159 
 
 98 155 
 98 151 
 
 98 147 
 08 144 
 98 140 
 
 98 136 
 98 132 
 98 129 
 98 125 
 98 121 
 
 98 117 
 98 113 
 98 no 
 98 106 
 98 102 
 98098 
 98 094 
 98 090 
 98087 
 9 8083 
 98079 
 98075 
 98071 
 98 067 
 98063 
 
 9 . 98 060 
 L. Sin." 
 
 (>0 
 
 It 
 1 
 
 55 
 54 
 53 
 52 
 11 
 50 
 
 49 
 48 
 
 47 
 i5_ 
 45 
 44 
 43 
 42 
 
 41 
 40 
 
 39 
 38 
 37 
 Ji 
 35 
 34 
 33 
 32 
 31 
 30 
 29. 
 28 
 27 
 26 
 
 25 
 24 
 23 
 22 
 21 
 
 20 
 
 19 
 18 
 
 17 
 16 
 
 15 
 14 
 13 
 12 
 II 
 To 
 
 9 
 8 
 
 7 
 6 
 
 Prop. Pte. 
 
 
 48 
 
 47 
 
 I 
 
 4.8 
 
 4 
 
 2 
 
 9.6 
 
 9 
 
 3 
 
 14.4 
 
 H 
 
 4 
 
 19 2 
 
 18. 
 
 S 
 
 24.0 
 
 23 
 
 6 
 
 28.8 
 
 28. 
 
 7 
 
 ,336 
 
 32 
 
 8 
 
 38 4 
 
 37 
 
 9 
 
 43 2 
 
 42. 
 
 
 At 
 
 
 45 
 
 I 
 
 4.6 
 
 4 
 
 2 
 
 9 
 
 2 
 
 9 
 
 3 
 
 13 
 
 8 
 
 IT, 
 
 4 
 
 18 
 
 4 
 
 18. 
 
 5 
 
 23 
 
 
 
 22. 
 
 .6 
 
 27 
 
 6 
 
 27 
 
 • 7 
 
 32 
 
 2 
 
 31 
 
 .8 
 
 36 
 
 8 
 
 36. 
 
 9 
 
 41 
 
 4 
 
 40 
 
 
 44 
 
 43 
 
 I 
 
 4 4 
 
 4 
 
 2 
 
 8.8 
 
 8. 
 
 3 
 
 13 2 
 
 12. 
 
 4 
 
 17.6 
 
 17 
 
 .q 
 
 22.0 
 
 21. 
 
 .6 
 
 26.4 
 
 25 
 
 • 7 
 
 30.8 
 
 30 
 
 .8 
 
 35-2 
 
 34- 
 
 9 
 
 39-6 
 
 38. 
 
 
 43 ! 
 
 I 
 2 
 3 
 4 
 
 4.2 
 
 8.4 
 
 12.6 
 
 16.8 
 
 
 21 .0 
 
 6 
 
 25.2 
 
 7 
 8 
 
 9 
 
 29 4 
 336 
 37 ^ 
 
 
 4 
 
 I 
 2 
 
 0.4 
 0.8 
 
 3 
 4 
 
 S 
 
 1.2 
 1.6 
 2.0 
 
 .6 
 
 .1 
 
 2.4 
 2.8 
 32 
 
 9 
 
 3-6 
 
 Prop. Pts. 
 
LOGARITHMS OF THE TRIGONOMETRIC FUNCTIONS 43 
 
 17' 
 
 L. Sin. 
 
 
 
 I 
 
 2 
 
 3 
 _4 
 
 i 
 
 7 
 8 
 
 _9_ 
 
 10 
 
 I 
 
 12 
 
 13 
 
 :i 
 
 17 
 
 i8 
 
 ii. 
 20 
 
 21 
 22 
 23 
 
 24 
 
 25 
 26 
 
 27 
 28 
 29 
 
 31 
 
 32 
 
 33 
 
 36 
 
 37 
 38 
 
 39 
 
 40 
 
 41 
 42 
 
 43 
 44 
 
 46 
 
 47 
 48 
 
 50 
 
 51 
 52 
 53 
 il 
 
 60 
 
 46594 
 46635 
 46 676 
 46 717 
 46758 
 
 46 8cx) 
 46 841 
 46882 
 46923 
 46 964 
 
 47005 
 
 47045 
 47 086 
 47 127 
 47 168 
 
 47209 
 
 47249 
 47290 
 
 47330 
 47371 
 
 47 411 
 47452 
 47492 
 
 47 533 
 47 573 
 
 47613 
 47654 
 47694 
 47 734 
 47 774 
 
 47814 
 47854 
 47894 
 47 934 
 47 974 
 
 48 014 
 48054 
 48 094 
 48 133 
 48173 
 
 48213 
 48252 
 48 292 
 48332 
 48371 
 
 48 411 
 48450 
 48 490 
 48529 
 48568 
 
 48607 
 48647 
 48686 
 48 ,725 
 48 764 
 
 48803 
 48842 
 48881 
 48 920 
 48959 
 
 48998 
 
 41 
 41 
 41 
 
 41 
 42 
 41 
 
 41 
 41 
 41 
 41 
 40 
 41 
 41 
 41 
 41 
 40 
 41 
 40 
 41 
 40 
 
 41 
 40 
 41 
 40 
 40 
 
 41 
 40 
 40 
 40 
 40 
 40 
 40 
 40 
 40 
 40 
 40 
 40 
 39 
 40 
 40 
 
 39 
 40 
 40 
 
 39 
 40 
 
 39 
 40 
 
 39 
 39 
 39 
 40 
 39 
 39 
 39 
 39 
 39 
 39 
 39 
 39 
 39 
 
 L. Cos. I d. 
 
 L. Tang. 
 
 c. d. 
 
 48534 
 48579 
 48 624 
 48669 
 48714 
 
 48759 
 48804 
 48849 
 48894 
 48939 
 
 48984 
 49029 
 
 49073 
 49 118 
 49 163 
 
 49207 
 49252 
 49296 
 49341 
 49385 
 
 49430 
 49 474 
 49 519 
 49563 
 49607 
 
 49652 
 49 696 
 49 740 
 49 784 
 49828 
 
 49872 
 49916 
 49960 
 50 004 
 50 048 
 
 50 092 
 50136 
 50 180 
 50223 
 50 267 
 
 503" 
 
 50355 
 50398 
 50442 
 50485 
 
 9 50 529 
 9 50572 
 
 50616 
 50659 
 50703 
 
 50746 
 50789 
 50833 
 50876 
 509^9 
 
 50 962 
 
 51 005 
 51 048 
 51 092 
 51 135 
 
 51 178 
 
 45 
 45 
 45 
 45 
 45 
 45 
 45 
 45 
 45 
 45 
 45 
 44 
 45 
 45 
 44 
 45 
 44 
 45 
 44 
 45 
 44 
 45 
 44 
 44 
 45 
 44 
 44 
 44 
 44 
 44 
 44 
 44 
 44 
 44 
 44 
 44 
 44 
 43 
 44 
 44 
 44 
 43 
 44 
 43 
 44 
 43 
 44 
 43 
 44 
 43 
 43 
 44 
 43 
 43 
 43 
 43 
 43 
 44 
 43 
 43 
 
 L. Cotg. 
 
 0.51 466 
 0.51 421 
 0.51 376 
 
 0-51331 
 0.51 286 
 
 0.51 241 
 0.51 196 
 o 51 151 
 o 51 106 
 0.51 061 
 
 o 51 010 
 o 50971 
 0.50 927 
 
 0.50882 
 0.50837 
 
 0.50793 
 0.50748 
 
 0.50 704 
 0.50 659 
 
 0.50615 
 
 0.50 570 
 o 50 526 
 0.50481 
 o 50 437 
 0.50393 
 
 o 50 348 
 o . 50 304 
 o . 50 260 
 0.50 216 
 0.50 172 
 
 o. 50 128 
 o . 50 084 
 o . 50 040 
 
 0.49 996 
 0.49952 
 
 0.49 908 
 o . 49 864 
 o . 49 820 
 0.49 777 
 0.49 733 
 
 o 49 689 
 
 0.49 645 
 o 49 602 
 0.49 558 
 0.49515 
 
 0.49471 
 0.49 428 
 
 0.49384 
 0.49 341 
 0.49 297 
 
 0.49254 
 0.49 211 
 0.49 167 
 0.49 124 
 0.49 081 
 
 0.49038 
 o 48 995 
 o 48 952 
 0.48 908 
 o 48 865 
 
 0.48822 
 
 L. Cotg. c. d. L. Tang. 
 
 72° 
 
 L. Cos. 
 
 98060 
 98 056 
 98 052 
 98048 
 98 044 
 
 98 040 
 98 036 
 98 032 
 98 029 
 98025 
 
 98021 
 98017 
 98013 
 98 009 
 98 005 
 
 98 001 
 97997 
 
 97 993 
 97989 
 97986 
 
 97982 
 97978 
 97 974 
 97970 
 97966 
 
 97962 
 97958 
 97 954 
 97950 
 97946 
 
 97942 
 97938 
 97 934 
 97930 
 97 926 
 
 97 922 
 97918 
 
 97914 
 97910 
 97906 
 
 97902 
 97898 
 
 97894 
 97890 
 
 9.97886 
 9.97882 
 , 97 878 
 9.97874 
 9.97870 
 97866 
 
 97861 
 97857 
 97853 
 97849 
 97S45 
 
 97841 
 97837 
 97833 
 97829 
 97825 
 
 9782] 
 
 L. Sin. 
 
 d. 
 
 60 
 
 58 
 57 
 
 55 
 54 
 53 
 52 
 
 _5L 
 50 
 
 49 
 
 48 
 47 
 
 45 
 44 
 43 
 42 
 41 
 40 
 
 39 
 38 
 
 35 
 34 
 33 
 32 
 
 30 
 
 29 
 28 
 
 27 
 26 
 
 Prop. Pts. 
 
 
 45 
 
 I 
 
 4.5 
 
 2 
 
 9.0 
 
 3 
 
 13.5 
 
 4 
 
 18.0 
 
 
 22.5 
 
 .6 
 
 27.0 
 
 7 
 
 31-5 
 
 8 
 
 36.0 
 
 9 
 
 40.5 
 
 
 43 
 
 1 
 
 .1 
 
 4 3l 
 
 .2 
 
 8 
 
 6 
 
 •3 
 
 12 
 
 9 
 
 •4 
 
 17 
 
 2 
 
 I 
 
 21 
 
 25 
 
 I 
 
 :l 
 
 30 
 
 I 
 
 34 
 
 4 
 
 9 
 
 38 
 
 7 
 
 
 41 
 
 I 
 
 4-1 
 
 2 
 
 8.2 
 
 3 
 
 12.3 
 
 4 
 
 16.4 
 
 S 
 
 20. s 
 
 6 
 
 24.6 
 
 7 
 
 28.7 
 
 .8 
 
 32.8 
 
 9 
 
 36.9 
 
 
 39 
 
 I 
 
 39 
 
 2 
 
 7-8 
 
 3 
 
 II. 7 
 
 4 
 
 15.6 
 
 5 
 
 19 5 
 
 6 
 
 23 4 
 
 7 
 
 27 -3 
 
 8 
 
 31.2 
 
 9 
 
 35 I 
 
 
 4 
 
 .1 
 
 0.4 
 
 .2 
 
 0.8 
 
 ■3 
 
 1.2 
 
 .4 
 
 1.6 
 
 •5 
 
 2.0 
 
 .6 
 
 2.4 
 
 7 
 
 2.8 
 
 8 
 
 3-2 
 
 9 
 
 36 
 
 4 4 
 8.8 
 13.2 
 17.6 
 22.0 
 26.4 
 30.8 
 35 2 
 39-6 
 
 42 
 
 4.2 
 
 8.4 
 12.6 
 16 8 
 21 .0 
 25.2 
 29.4 
 33-6 
 37-8 
 
 40 
 
 4.0 
 8.0 
 12.0 
 16.0 
 20.0 
 24.0 
 28.0 
 32.0 
 36.0 
 
 5 
 
 05 
 1 .0 
 
 15 
 
 2.0 
 
 2.5 
 30 
 
 3-5 
 4.0 
 
 4 5 
 
 3 
 
 0.6 
 
 0.9 
 1.2 
 
 2.1 
 
 2.4 
 2.7 
 
 Prop. Pts. 
 
44 
 
 TABLE II 
 
 18^ 
 
 
 
 I 
 
 2 
 
 3 
 
 4 
 
 I 
 
 7 
 8 
 
 _9_ 
 10 
 II 
 
 12 
 13 
 14 
 
 15 
 16 
 
 17 
 18 
 
 i9_ 
 20 
 
 21 
 22 
 23 
 24 
 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 35 
 31 
 
 36 
 
 37 
 38 
 J9_ 
 40 
 
 41 
 42 
 43 
 44 
 
 46 
 
 47 
 48 
 
 49_ 
 
 50 
 
 5^ 
 52 
 53 
 ■>! 
 
 ]^ 
 
 i9. 
 (JO 
 
 L. Sin. 
 
 9 48998 
 
 9 49037 
 49076 
 
 49 115 
 49 153 
 
 49 192 
 49231 
 49269 
 49308 
 49 347 
 
 9 49385 
 9.49424 
 9 49462 
 9 49 500 
 9 49 539 
 
 9 49 577 
 9.49615 
 
 9 49654 
 49692 
 
 49 730 
 
 49768 
 49 806 
 49844 
 49882 
 49920 
 
 49958 
 49996 
 50034 
 50072 
 50 no 
 
 50 148 
 9.50185 
 9.50 223 
 9.50 261 
 9 50 298 
 
 T 50336" 
 9 50 374 
 9 50 411 
 
 9 50449 
 50486 
 
 9 50523 
 
 9 50 561 
 
 50598 
 
 50635 
 
 50673 
 
 50 710 
 50747 
 50784 
 50 821 
 50858 
 
 50 896 
 
 50933 
 50970 
 
 51 007 
 51 043 
 
 9 
 9 
 9 
 9 
 
 _9_ 
 
 9.51 080 
 9 SI "7 
 9 51 154 
 9.51 191 
 51 227 
 
 9.51 264 
 
 L. CoSu 
 
 39 
 39 
 39 
 38 
 39 
 
 39 
 38 
 39 
 39 
 38 
 
 39 
 38 
 38 
 39 
 38 
 
 38 
 39 
 38 
 38 
 38 
 38 
 38 
 38 
 38 
 38 
 38 
 38 
 38 
 38 
 38 
 
 37 
 38 
 3*? 
 37 
 38 
 38 
 37 
 38 
 37 
 37 
 38 
 37 
 37 
 38 
 37 
 37 
 37 
 37 
 37 
 38 
 
 37 
 37 
 37 
 36 
 37 
 37 
 37 
 37 
 36 
 37 
 
 L. Tang. 
 
 178 
 221 
 264 
 306 
 349 
 
 392 
 435 
 478 
 520 
 563 
 
 606 
 648 
 691 
 
 776 
 819 
 861 
 
 903 
 946 
 
 52031 
 52073 
 52 115 
 52157 
 52 200 
 
 52 242 
 52284 
 52 326 
 52368 
 52410 
 
 52452 
 52494 
 52536 
 52578 
 52 620 
 
 52 661 
 52703 
 52745 
 52 787 
 52 829 
 
 52 870 
 52 912 
 52953 
 52995 
 53037 
 
 53078 
 53 120 
 53 161 
 53 202 
 53244 
 
 53285 
 53327 
 53368 
 53409 
 53450 
 
 53492 
 53 533 
 53 574 
 53615 
 53656 
 
 9 53697 
 
 L. Cotg. c. d 
 
 c.d. 
 
 L. Cotg. 
 
 o . 48 822 
 0.48 779 
 0.48 736 
 0.48 694 
 0.48 651 
 
 0.48608 
 0.48 565 
 0.48 522 
 o . 48 480 
 
 0.48437 
 
 0.48394 
 0.48352 
 
 o 48 309 
 0.48 266 
 o 48 224 
 
 0.48 181 
 0.48 139 
 
 o 48 097 
 0.48 054 
 0.48 012 
 
 0.47969 
 0.47927 
 0.47885 
 0.47843 
 
 0.47 800 
 
 0.47 758 
 0.47716 
 0.47674 
 
 0.47 632 
 
 0.47590 
 
 0.47548 
 
 0.47 506 
 
 0.47464 
 
 0.47 422 
 
 0.47380 
 
 0.47 339 
 0.47297 
 
 0.47255 
 0.47213 
 0.47 171 
 
 0.47 130 
 0.47088 
 0.47047 
 0.47 005 
 0.46963 
 
 0.46 922 
 0.46880 
 o . 46 839 
 0.46 798 
 0.46 756 
 
 0.46715 
 0.46 673 
 o . 46 632 
 0.46 591 
 0.46 550 
 
 o . 46 508 
 0.46 467 
 o . 46 426 
 
 0.46 385 
 0.46344 
 
 0.46303 
 
 L. Tang. 
 
 71° 
 
 L. Cos. 
 
 d. 
 
 
 9.97821 
 
 
 60 
 
 9 
 
 97817 
 
 
 59 
 
 9 
 
 97812 
 
 
 58 
 
 9 
 
 97808 
 
 
 57 
 
 9 
 
 97804 
 
 
 56 
 
 55 
 
 9 
 
 97800 
 
 9 
 
 97796 
 
 
 S4 
 
 9 
 
 97792 
 
 
 53 
 
 9 
 
 97788 
 
 
 52 
 
 9 97 784 
 
 
 51 
 50 
 
 9 97 779 
 
 9-97 775 
 
 
 49 
 
 9 
 
 97771 
 
 
 48 
 
 9 
 
 97767 
 
 
 47 
 
 9 
 
 97763 
 
 
 46 
 45 
 
 9 
 
 97 759 
 
 9 
 
 97 754 
 
 
 44 
 
 9 
 
 97 750 
 
 
 43 
 
 9 
 
 97746 
 
 
 42 
 
 9 
 
 97742 
 
 ^ 
 
 41 
 40 
 
 9 
 
 97738 
 
 9 
 
 97 734 
 
 
 39 
 
 9 
 
 97729 
 
 
 38 
 
 9 
 
 97725 
 
 
 37 
 
 9 
 
 97721 
 
 
 36 
 3S 
 
 9 
 
 97717 
 
 9 
 
 97713 
 
 
 34 
 
 9 
 
 97708 
 
 
 33 
 
 9 
 
 97704 
 
 
 32 
 
 9 
 
 97700 
 
 
 31 
 30 
 
 9 
 
 97696 
 
 9 
 
 97691 
 
 
 29 
 
 9 
 
 97687 
 
 
 28 
 
 9 
 
 97683 
 
 
 27 
 
 9 
 
 97679 
 
 
 26 
 25 
 
 9 
 
 97674 
 
 9 
 
 97670 
 
 
 24 
 
 9 
 
 97666 
 
 
 23 
 
 9 
 
 97662 
 
 
 22 
 
 9 
 
 97657 
 
 
 21 
 20 
 
 9 
 
 97653 
 
 9 
 
 97649 
 
 
 19 
 
 9 
 
 97645 
 
 
 18 
 
 9 
 
 97640 
 
 
 17 
 
 9 
 
 97636 
 
 
 16 
 15 
 
 9 
 
 97632 
 
 9 
 
 97628 
 
 
 14 
 
 9 
 
 97623 
 
 
 13 
 
 9 
 
 97619 
 
 
 12 
 
 9 
 
 97615 
 
 
 II 
 10 
 
 9 
 
 97 610 
 
 9 
 
 97606 
 
 
 9 
 
 9 
 
 97602 
 
 
 8 
 
 9 
 
 97 597 
 
 
 7 
 
 9 
 
 97 593 
 
 
 b 
 
 S 
 
 9 
 
 97589 
 
 9 
 
 97584 
 
 
 4 
 
 9 
 
 97580 
 
 
 3 
 
 9 
 
 97576 
 
 
 2 
 
 9 
 
 97571 
 
 
 I 
 
 
 9 
 
 97567 
 
 L. Sin. 
 
 d. 
 
 f 
 
 Prop. Pte. 
 
 
 43 
 
 .1 
 
 4 3 
 
 2 
 
 8.6 
 
 3 
 
 12.9 
 
 4 
 
 17.2 
 
 1 
 
 l\i 
 
 7 
 
 30 I 
 
 8 
 
 34-4 
 
 9 
 
 387 
 
 4a 
 4.2 
 
 37-8 
 
 41 
 
 41 
 8.2 
 12.3 
 16.4 
 20.5 
 24.6 
 28.7 
 32.8 
 
 369 
 
 
 39 
 
 1 
 
 I 
 
 3 9 
 
 2 
 
 7.8 
 
 3 
 
 II 
 
 7 
 
 4 
 
 15 
 
 6 
 
 5 
 
 19 
 
 5 
 
 b 
 
 23 
 
 4 
 
 7 
 
 27 
 
 3 
 
 8 
 
 31 
 
 2 
 
 9 
 
 35 
 
 I 
 
 
 3^ 
 
 ' 1 
 
 I 
 
 3-7| 
 
 .2 
 
 7 
 
 4 
 
 3 
 
 II 
 
 I 
 
 4 
 
 14 
 
 8 
 
 •S 
 
 18 
 
 5 
 
 6 
 
 22 
 
 2 
 
 • 7 
 
 25 
 
 9 
 
 8 
 
 29 
 
 6 
 
 9 
 
 33 
 
 3 
 
 38 
 
 3-8 
 
 76 
 
 II 4 
 
 15 2 
 19 o 
 22.8 
 26.6 
 
 304 
 34-2 
 
 36 
 
 3-6 
 7.2 
 10.8 
 14.4 
 18.0 
 21.6 
 25.2 
 28.8 
 32 4 
 
 
 5 
 
 I 
 
 05 
 
 2 
 
 1.0 
 
 3 
 
 15 
 
 4 
 
 2.0 
 
 S 
 
 25 
 
 6 
 
 30 
 
 7 
 
 3-5 
 
 8 
 
 4.0 
 
 9 
 
 4-5 
 
 Prop. Pts. 
 
LOGARITHMS OF THE TRIGONOMETRIC FUNCTIONS 45 
 
 19^ 
 
 9_ 
 10 
 
 12 
 
 13 
 
 \i 
 
 17 
 i8 
 
 19 
 
 20 
 
 21 
 
 22 
 23 
 
 24 
 
 26 
 27 
 28 
 29 
 
 30 
 
 31 
 
 32 
 33 
 34 
 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 
 46 
 
 47 
 48 
 
 49_ 
 
 50 
 
 51 
 52 
 53 
 
 il 
 
 59_ 
 60 
 
 L. Sin. 
 
 264 
 301 
 338 
 374 
 411 
 
 447 
 484 
 520 
 557 
 593 
 
 629 
 666 
 702 
 738 
 774 
 
 811 
 847 
 883 
 919 
 955 
 
 51 991 
 
 52 027 
 52063 
 52099 
 52 135 
 
 52 171 
 52 207 
 52 242 
 52 278 
 52314 
 
 52350 
 52385 
 52421 
 
 52456 
 52492 
 
 52527 
 52563 
 52598 
 52634 
 52 669 
 
 52 705 
 52 740 
 52 775 
 52 811 
 52846 
 
 52881 
 52 916 
 
 52951 
 
 52 986 
 
 53.0^ 
 53056 
 53092 
 
 53 126 
 53 161 
 53 196 
 
 53231 
 53 266 
 53301 
 53336 
 53370 
 
 9 53405 
 
 L. Cos. 
 
 37 
 37 
 36 
 37 
 36 
 
 37 
 36 
 37 
 36 
 36 
 
 37 
 36 
 36 
 36 
 37 
 36 
 36 
 36 
 36 
 36 
 36 
 36 
 36 
 36 
 36 
 36 
 35 
 36 
 36 
 36 
 
 35 
 36 
 35 
 36 
 35 
 36 
 35 
 36 
 35 
 36 
 
 35 
 35 
 36 
 35 
 
 35 
 35 
 35 
 35 
 35 
 35 
 36 
 34 
 35 
 35 
 35 
 35 
 35 
 35 
 34 
 35 
 
 L. Tang. 
 
 53697 
 53738 
 53 779 
 53820 
 53861 
 
 c.d. 
 
 53902 
 53 943 
 53984 
 54025 
 54065 
 
 54 106 
 54147 
 54187 
 54228 
 54269 
 
 54 329 
 54350 
 54390 
 54431 
 54471 
 
 54512 
 54552 
 54 593 
 54633 
 54673 
 
 54714 
 54 754 
 54 794 
 54835 
 54875 
 
 54915 
 54 955 
 54 995 
 55035 
 55075 
 
 55 115 
 55 155 
 55 195 
 55235 
 55275 
 
 55315 
 55 355 
 55 395 
 55 434 
 55 474 
 
 55514 
 55 554 
 55 593 
 55633 
 55673 
 
 55712 
 
 55752 
 55 791 
 55831 
 55870 
 
 55910 
 
 55 949 
 55989 
 56028 
 
 56 067 
 
 56 107 
 
 41 
 41 
 41 
 41 
 41 
 41 
 41 
 41 
 40 
 41 
 
 41 
 40 
 41 
 41 
 40 
 
 41 
 40 
 41 
 
 40 
 
 41 
 40 
 41 
 40 
 40 
 41 
 40 
 40 
 41 
 40 
 40 
 40 
 40 
 40 
 40 
 40 
 40 
 40 
 40 
 40 
 40 
 40 
 40 
 
 39 
 40 
 40 
 40 
 
 39 
 40 
 40 
 
 39 
 40 
 
 39 
 40 
 
 39 
 40 
 
 39 
 40 
 
 39 
 39 
 40 
 
 L. Cotg. 
 
 0.46 303 
 o . 46 262 
 0.46 221 
 0,46 180 
 0.46 139 
 
 o . 46 098 
 0.46057 
 0.46 016 
 0.45 975 
 0.45 935 
 
 0.45 894 
 0.45 853 
 0.45 813 
 0.45 772 
 0.45 731 
 
 0.45 691 
 0.45 650 
 0.45 610 
 0.45 569 
 0.45 529 
 
 0.45 488 
 
 0.45 448 
 0.45 407 
 
 0.45 367 
 0.45327 
 
 0.45 286 
 0.45 246 
 0.45 206 
 0.45 165 
 0.45 125 
 
 0.45 085 
 
 0.45045 
 0.45 005 
 0.44965 
 0.44925 
 
 0.44885 
 0.44845 
 o . 44 805 
 0.44765 
 0.44 725 
 
 o . 44 685 
 
 0.44645 
 o . 44 605 
 0.44 566 
 0.44 526 
 
 o . 44 486 
 0.44446 
 0.44407 
 0.44367 
 0.44327 
 
 0.44 288 
 o 44 248 
 o . 44 209 
 0.44 169 
 0.44 130 
 
 o . 44 090 
 o . 44 05 1 
 0.44 on 
 o 43972 
 o 43 933 
 
 0.43 893 
 
 L. Cotg. Ic. d. L. Tang. 
 
 70° 
 
 L. Cos. 
 
 97567 
 97563 
 97558 
 97 554 
 97550 
 
 97 545 
 97541 
 97536 
 97532 
 97528 
 
 97523 
 97519 
 97515 
 97510 
 97506 
 
 97501 
 97 497 
 97492 
 97488 
 97484 
 
 97 479 
 97 475 
 97470 
 97466 
 97461 
 
 97 457 
 97 453 
 97448 
 
 97 444 
 97 439 
 
 97 435 
 97430 
 97426 
 97421 
 97417 
 
 97412 
 97408 
 97403 
 97 399 
 97 394 
 
 97390 
 97385 
 97381 
 97376 
 97372 
 
 97367 
 97363 
 97358 
 97 353 
 97349 
 
 97 344 
 97340 
 97 335 
 97331 
 97326 
 
 97322 
 97317 
 97312 
 97308 
 97303 
 
 9.97299 
 
 L. Sin. 
 
 d. 
 
 60 
 
 59 
 58 
 
 57 
 
 55 
 54 
 53 
 52 
 
 _51 
 50 
 
 49 
 48 
 47 
 
 45 
 44 
 43 
 42 
 
 41 
 40 
 
 39 
 38 
 
 ,36 
 
 35 
 34 
 33 
 32 
 _3i 
 30 
 
 29 
 28 
 
 27 
 26 
 
 Prop. Pis. 
 
 
 4» 
 
 .1 
 
 4.1 
 
 .2 
 
 8.2 
 
 •3 
 
 12.3 
 
 4 
 
 16.4 
 
 •5 
 
 20.5 
 
 6 
 
 24 6 
 
 •7 
 
 28.7 
 
 .8 
 
 32.8 
 
 9 
 
 369 
 
 
 39 
 
 .1 
 
 3- 
 
 .2 
 
 7- 
 
 •3 
 
 II. 
 
 • 4 
 
 15 
 
 •5 
 
 19 
 
 .6 
 
 23 
 
 • 7 
 
 27. 
 
 .8 
 
 31 
 
 9 
 
 35- 
 
 
 37 
 
 I 
 
 3-7 
 
 2 
 
 7-4 
 
 •3 
 
 II .1 
 
 ■4 
 
 14.8 
 
 
 18.5 
 
 .6 
 
 22.2 
 
 •7 
 
 25 -9 
 
 .8 
 
 29.6 
 
 9 
 
 33-3 
 
 
 3« 
 
 1 
 
 I 
 
 3 51 
 
 .2 
 
 7 
 
 
 
 •3 
 
 10 
 
 5 
 
 •4 
 
 14 
 
 
 
 . 5 
 
 17 
 
 5 
 
 .6 
 
 21 
 
 
 
 •7 
 
 24 
 
 5 
 
 .8 
 
 28 o| 
 
 9 
 
 31 
 
 51 
 
 
 5 
 
 .1 
 
 05 
 
 .2 
 
 1.0 
 
 •3 
 
 15 
 
 •4 
 
 2.0 
 
 •5 
 
 2.5 
 
 .6 
 
 30 
 
 • 7 
 
 3 5 
 
 .8 
 
 4.0 
 
 •9 
 
 4 5 
 
 40 
 
 4.0 
 8.0 
 
 12.0 
 
 16.0 
 
 20.0 
 24.0 
 
 28.0 
 
 32 o 
 
 36.0 
 
 36 
 
 36 
 
 7.2 
 10.8 
 14.4 
 18.0 
 
 21 .6 
 
 25.2 
 
 28,8 
 
 32 4 
 
 34 
 
 3 4 
 6 8 
 10.2 
 13 6 
 17.0 
 20 4 
 23 8 
 27 2 
 30.6 
 
 4 
 0.4 
 
 0.8 
 1 .2 
 1.6 
 20 
 
 2.4 
 2.8 
 
 36 
 
 Prop. Pts. 
 
46 
 
 TABLE II 
 
 20^ 
 
 
 
 I 
 
 2 
 
 3 
 
 I 
 
 7 
 8 
 
 10 
 
 II 
 
 12 
 
 13 
 
 '4 
 
 15 
 i6 
 
 17 
 
 i8 
 
 i2. 
 20 
 
 21 
 
 22 
 
 23 
 
 24 
 
 26 
 
 27 
 28 
 29 
 
 30 
 
 31 
 
 32 
 33 
 34 
 
 36 
 
 37 
 38 
 
 39 
 
 40 
 
 41 
 
 42 
 
 43 
 44 
 
 46 
 
 47 
 48 
 
 49 
 60 
 
 51 
 
 52 
 53 
 
 il 
 
 60 
 
 L. Sin. 
 
 9 53405 
 9 53440 
 9 53 475 
 9 53509 
 9 53 544 
 
 9 53 578 
 9 53613 
 9 53647 
 9 53 682 
 9 53 716 
 
 9 53 751 
 9 53 785 
 9 53819 
 9 53854 
 9 53 888 
 
 53922 
 53 957 
 53991 
 54025 
 
 54059 
 
 54093 
 54 127 
 54 161 
 54 195 
 54229 
 
 54263 
 54297 
 54331 
 54365 
 54 399 
 
 54 433 
 54466 
 54500 
 54 534 
 54567 
 
 54601 
 
 54635 
 54668 
 54702 
 54 735 
 
 54769 
 54 802 
 54836 
 54869 
 54903 
 
 54936 
 54969 
 55003 
 55036 
 55069 
 
 55 102 
 55 136 
 55 169 
 55 202 
 55235 
 55268 
 55301 
 55 334 
 55367 
 55400 
 
 55 433 
 
 L. Cos. 
 
 35 
 35 
 34 
 35 
 34 
 35 
 34 
 35 
 34 
 35 
 34 
 34 
 35 
 34 
 34 
 35 
 34 
 34 
 34 
 34 
 34 
 34 
 34 
 34 
 34 
 34 
 34 
 34 
 34 
 34 
 33 
 34 
 34 
 33 
 34 
 34 
 33 
 34 
 33 
 34 
 33 
 34 
 33 
 34 
 33 
 33 
 34 
 33 
 33 
 33 
 34 
 33 
 33 
 33 
 33 
 33 
 33 
 33 
 33 
 33 
 
 L. Tang. 
 
 56 107 
 56 146 
 56185 
 56 224 
 56 264 
 
 56303 
 56342 
 56381 
 56 420 
 
 56459 
 
 56498 
 
 56576 
 56615 
 56654 
 
 56693 
 56732 
 56771 
 56810 
 56849 
 
 56887 
 56 926 
 
 56965 
 57004 
 57042 
 
 57081 
 57 120 
 57158 
 57 197 
 57235 
 
 57274 
 57312 
 57351 
 57389 
 57428 
 
 57466 
 57504 
 57 543 
 57581 
 57619 
 
 57658 
 57696 
 57 734 
 57 772 
 57810 
 
 57849 
 57887 
 57925 
 57963 
 58 001 
 
 58039 
 58077 
 58 115 
 58153 
 58 191 
 58 229 
 58267 
 58304 
 58342 
 58380 
 
 58418 
 
 d. L. Cotg. c. d 
 
 c.d. 
 
 L. Cotg. 
 
 0.43893 
 0.43 854 
 0.43815 
 0.43 776 
 
 0.43 736 
 
 0.43 697 
 0.43 658 
 0.43 619 
 0.43 580 
 0.43 541 
 
 0.43 502 
 
 0.43463 
 0.43424 
 
 0.43 385 
 0.43346 
 
 0.43 307 
 0.43 268 
 o 43 229 
 o 43 190 
 o 43 151 
 
 0.43 "3 
 0.43074 
 
 o 43035 
 o 42 996 
 o 42 958 
 
 0.42 919 
 o 42 880 
 o 42 842 
 o . 42 803 
 o 42 765 
 
 0.42 726 
 o 42688 
 o . 42 649 
 o 42 611 
 0.42 572 
 
 0.42 534 
 0.42 496 
 0.42457 
 0.42 419 
 0.42381 
 
 0.42 342 
 0.42 304 
 o . 42 266 
 o 42 228 
 o 42 190 
 
 0.42 151 
 
 0.42 113 
 o 42075 
 o 42037 
 0,41 999 
 
 o 41 961 
 o 41 923 
 
 0.41 885 
 
 0.41 847 
 0.41 809 
 
 o 41 771 
 o 41 733 
 o 41 696 
 o 41 658 
 o 41 620 
 
 0.41 582 
 
 L. Tang. 
 
 69° 
 
 L. Cos. 
 
 9 97276 
 9.97271 
 9.97 266 
 9.97 262 
 9-97 257 
 
 97 206 
 97 201 
 
 97 196 
 97 192 
 97 187 
 
 97299 
 97294 
 97289 
 97285 
 97 280 
 
 97252 
 97248 
 
 97243 
 97238 
 
 97234 
 
 97229 
 97224 
 97 220 
 97215 
 97 210 
 
 97 182 
 97 178 
 97 173 
 97 168 
 97 163 
 
 97 159 
 97 154 
 97 149 
 97 145 
 97 140 
 
 97 135 
 97 130 
 97 126 
 97 121 
 97 116 
 
 97 III 
 
 97 107 
 97 102 
 
 97097 
 97092 
 
 9.97087 
 9.97083 
 9.97078 
 
 9 97073 
 9 97 068 
 
 97063 
 97059 
 97054 
 97049 
 97044 
 
 97039 
 97035 
 97030 
 97025 
 97 020 
 
 9.97015 
 
 L. Sin. 
 
 60 
 
 59 
 58 
 57 
 
 55 
 54 
 53 
 52 
 51 
 50 
 49 
 48 
 47 
 
 45 
 44 
 43 
 42 
 41 
 40 
 39 
 38 
 37 
 
 35 
 34 
 33 
 32 
 _31 
 30 
 
 29 
 28 
 27 
 26 
 
 25 
 24 
 
 23 
 22 
 21 
 
 20 
 
 19 
 18 
 
 17 
 16 
 
 15 
 14 
 13 
 12 
 II 
 
 To 
 
 I 
 
 7 
 
 6 
 
 Prop. Pte. 
 
 
 40 
 
 .1 
 
 .2 
 
 Vo 
 
 3 
 
 12.0 
 
 4 
 
 16.0 
 
 c 
 
 20.0 
 
 ^ 
 
 24.0 
 28.0 
 
 9 
 
 32.0 
 36.0 
 
 39 
 
 3 9 
 
 78 
 
 II 7 
 
 156 
 
 19 5 
 
 
 38 
 
 I 
 
 38 
 
 2 
 
 7.6 
 
 3 
 
 II 4 
 
 4 
 
 15 2 
 
 5 
 
 19 
 
 6 
 
 22.8 
 
 7 
 
 26 6 
 
 8 
 
 30 4 
 
 9 
 
 34 2 
 
 37 
 
 3-7 
 7-4 
 II . I 
 14.8 
 18.5 
 22.2 
 25.9 
 29.6 
 33-3 
 
 35 
 
 3 5 
 
 7.0 
 
 10.5 
 
 14.0 
 
 17 5 
 21 .0 
 
 24 5 
 28.0 
 
 31 5 
 
 
 34 
 
 33 
 
 I 
 
 3-4 
 
 3. 
 
 2 
 
 6.8 
 
 6. 
 
 3 
 
 10.2 
 
 9 
 
 4 
 
 13 6 
 
 13. 
 
 5 
 
 17 
 
 16. 
 
 6 
 
 20 4 
 
 19. 
 
 7 
 
 23.8 
 
 23- 
 
 8 
 
 27 2 
 
 26. 
 
 9 
 
 30.6 
 
 29. 
 
 
 5 
 
 I 
 
 05 
 
 2 
 
 I.O 
 
 3 
 
 15 
 
 •4 
 
 2.0 
 
 .5 
 
 2 S 
 
 .6 
 
 30 
 
 •7 
 
 3 5 
 
 .8 
 
 4.0 
 
 9 
 
 4 5 
 
 4 
 
 0.4 
 0.8 
 1.2 
 1.6 
 2 
 2.4 
 28 
 
 ^l 
 36 
 
 Prop, Pt8. 
 
LOGARITHMS OF THE TRIGONOMETRIC FUNCTIONS 
 
 47 
 
 21 
 
 9_ 
 10 
 
 12 
 
 13 
 
 ;i 
 
 17 
 i8 
 
 19 
 
 20 
 
 21 
 22 
 23 
 
 24 
 
 26 
 
 27 
 28 
 
 29 
 
 30 
 
 31 
 32 
 
 33 
 34 
 
 36 
 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 
 45 
 46 
 
 47 
 48 
 
 49 
 
 50 
 
 51 
 52 
 
 53 
 54 
 
 55 
 56 
 57 
 58 
 59 
 60 
 
 L. Sin. 
 
 9 55 433 
 9 55466 
 
 9 55 499 
 9 55532 
 9 55 564 
 
 9 55 597 
 9 55 630 
 9 55663 
 9 55 695 
 9 55 728 
 
 55 761 
 55 793 
 
 55 858 
 55 891 
 
 55923 
 55 956 
 55988 
 56021 
 56053 
 
 56085 
 56 118 
 
 56150 
 56 182 
 56215 
 
 56247 
 56279 
 563" 
 56343 
 56375 
 
 56 408 
 56440 
 56472 
 56504 
 56536 
 56568 
 
 56599 
 56631 
 56663 
 56695 
 
 56727 
 56759 
 56 790 
 56822 
 56854 
 
 56886 
 56917 
 56949 
 56980 
 57012 
 
 57044 
 57075 
 57 107 
 57138 
 57 169 
 
 9.57201 
 9 57232 
 9 57264 
 9 57 295 
 9 57 326 
 
 9-57 358 
 
 L. Cos. 
 
 L. Tang«t€. i> L. Cotg 
 
 58418 
 58455 
 58493 
 58531 
 58569 
 
 58606 
 58644 
 58681 
 58719 
 58757 
 
 58794 
 58832 
 58869 
 58907 
 58944 
 
 58981 
 59019 
 59056 
 59094 
 59 131 
 
 59 168 
 59205 
 59243 
 59 280 
 59317 
 
 59 354 
 59391 
 59429 
 59466 
 
 59503 
 
 59540 
 59 577 
 59614 
 59651 
 59688 
 
 59725 
 59762 
 59 799 
 59835 
 59872 
 
 59909 
 59946 
 59983 
 60 019 
 60 056 
 
 60093 
 60 130 
 60 166 
 60 203 
 60 240 
 
 60 276 
 60 313 
 
 60349 
 60386 
 60422 
 
 60459 
 60495 
 60532 
 60568 
 60 605 
 
 60 641 
 
 d. L. Cotg. 
 
 37 
 
 38 
 38 
 38 
 37 
 38 
 37 
 38 
 38 
 37 
 38 
 37 
 38 
 37 
 37 
 38 
 37 
 38 
 37 
 37 
 37 
 38 
 37 
 37 
 37 
 37 
 38 
 37 
 37 
 37 
 37 
 37 
 37 
 37 
 37 
 37 
 37 
 36 
 37 
 37 
 37 
 37 
 36 
 37 
 37 
 37 
 36 
 37 
 37 
 36 
 
 37 
 36 
 37 
 36 
 37 
 36 
 37 
 36 
 37 
 36 
 
 41 582 
 41 545 
 41 507 
 41 469 
 
 41 431 
 
 41 394 
 41 356 
 41 319 
 41 281 
 41 243 
 
 41 206 
 41 168 
 
 41 131 
 
 41093 
 41 056 
 
 41 019 
 40 981 
 
 40944 
 40 906 
 . 40 869 
 
 40832 
 40795 
 40757 
 40 720 
 40683 
 
 40 646 
 40 609 
 40571 
 40534 
 40497 
 
 40 460 
 
 40423 
 40 386 
 
 40349 
 40312 
 
 40275 
 40238 
 40 201 
 40 165 
 40 128 
 
 40 091 
 40054 
 40 017 
 39981 
 39 944 
 
 L. Cos. 
 
 39907 
 39870 
 39834 
 39 797 
 39 760 
 
 39 724 
 39687 
 39651 
 39614 
 39578 
 
 39 541 
 39505 
 39468 
 
 39432 
 39 395 
 
 9.97015 
 9.97 010 
 9.97005 
 9 97 001 
 9 96 996 
 
 9 96 991 
 9 96 986 
 
 9 . q6 942 
 9.96937 
 
 96932 
 96927 
 96 922 
 
 39 359 
 
 c. d. L. Tang. 
 
 68° 
 
 96981 
 96 976 
 96971 
 
 96 966 
 96 962 
 96957 
 96952 
 96947 
 
 96917 
 96 912 
 96907 
 96 903 
 96898 
 
 96893 
 96888 
 96883 
 96878 
 96873 
 
 96868 
 96863 
 96858 
 
 96853 
 96848 
 
 d. 
 
 Q6843 
 96838 
 96833 
 96828 
 96823 
 
 96818 
 96813 
 96808 
 96803 
 96798 
 
 96 793 
 96788 
 
 96783 
 96778 
 96 772 
 
 96 767 
 96 762 
 96757 
 96 752 
 96 747 
 
 96 742 
 96737 
 96 732 
 96 727 
 96 722 
 
 9.96717 
 
 L. Sin. 
 
 60 
 
 59 
 58 
 
 55 
 54 
 53 
 52 
 _5i_ 
 50 
 49 
 48 
 47 
 
 45 
 44 
 43 
 42 
 41 
 40 
 
 39 
 38 
 
 _36 
 
 35 
 34 
 33 
 32 
 31 
 
 Prop. Pts. 
 
 25 
 24 
 23 
 22 
 21 
 20^ 
 
 19 
 
 18 
 
 17 
 16 
 
 10 
 
 I 
 
 7 
 6 
 
 
 38 
 
 I 
 
 3 8 
 
 2 
 
 76 
 
 3 
 
 11 4 
 
 4 
 
 15 2 
 
 5 
 
 19 
 
 6 
 
 22 8 
 
 7 
 
 26 6 
 
 8 
 
 30 4 
 
 9 
 
 342 
 
 37 
 
 3 7 
 1 \ 
 II . I 
 14 8 
 185 
 22 2 
 
 25 9 
 29 6 
 
 33 3 
 
 
 36 
 
 33 
 
 I 
 
 36 
 
 3 
 
 2 
 
 72 
 
 6. 
 
 3 
 
 10 8 
 
 9 
 
 4 
 
 S 
 
 18 
 
 \l 
 
 6 
 
 21.6 
 
 19 
 
 •7 
 
 25.2 
 
 23 
 
 .8 
 
 28.8 
 
 26 
 
 9 
 
 32.4 
 
 29 
 
 33 
 
 64 
 96 
 
 12 8 
 
 16 o 
 
 19 2 
 22.4 
 
 25 6 
 28.8 
 
 
 31 
 
 .2 
 
 6.2 
 
 3 
 
 •4 
 
 i 
 
 9 3 
 12.4 
 
 • 7 
 .8 
 
 9 
 
 21.7 
 24.8 
 27.9 
 
 
 5 
 
 I 
 
 05 
 
 2 
 
 I.O 
 
 3 
 
 15 
 
 4 
 
 20 
 
 5 
 
 2.5 
 
 6 
 
 30 
 
 7 
 
 3-5 
 
 8 
 
 4.0 
 
 9 
 
 4 5 
 
 6 
 
 0.6 
 1.2 
 I 
 
 2.4 
 
 3-6 
 4.2 
 4.8 
 5-4 
 
 4 
 
 0.4 
 O. 
 I 2 
 
 1.6 
 2.0 
 
 24 
 2.8 
 
 36 
 
 Prop. Pts. 
 
48 
 
 TABLE II 
 
 22' 
 
 
 
 I 
 
 2 
 
 3 
 _4 
 
 I 
 
 7 
 8 
 
 _9_ 
 
 10 
 
 II 
 
 12 
 
 13 
 
 ii_ 
 
 ;i 
 
 17 
 i8 
 
 19 
 
 20 
 
 21 
 
 22 
 23 
 
 24 
 
 26 
 27 
 28 
 29 
 
 30 
 
 31 
 
 32 
 33 
 
 36 
 
 38 
 
 39 
 40 
 
 41 
 42 
 43 
 44 
 
 46 
 
 47 
 48 
 
 49 
 50 
 
 51 
 
 52 
 53 
 54. 
 
 II 
 II 
 
 59 
 60 
 
 L. Sin. 
 
 57358 
 57389 
 57420 
 
 57451 
 57482 
 
 57514 
 57 545 
 57576 
 57607 
 57638 
 
 57669 
 57700 
 
 57731 
 57762 
 
 57 793 
 
 57824 
 57855 
 57885 
 57916 
 57 947 
 
 57978 
 58008 
 58039 
 58 070 
 58 loi 
 
 58 131 
 58 162 
 58 192 
 58223 
 58253 
 
 58284 
 58314 
 58345 
 58375 
 58 406 
 
 58436 
 58467 
 58497 
 58527 
 58557 
 
 58588 
 58618 
 58648 
 58678 
 58709 
 58 739 
 58769 
 58799 
 58829 
 58859 
 
 58889 
 58919 
 58949 
 58979 
 59009 
 
 59039 
 59069 
 59098 
 59128 
 59 158 
 59188 
 
 L. Cos. 
 
 31 
 31 
 
 31 
 31 
 32 
 31 
 31 
 
 3» 
 31 
 31 
 31 
 31 
 31 
 31 
 31 
 31 
 30 
 31 
 31 
 31 
 30 
 31 
 31 
 31 
 30 
 31 
 30 
 31 
 30 
 31 
 30 
 31 
 30 
 31 
 30 
 35^ 
 30 
 30 
 30 
 31 
 30 
 30 
 30 
 31 
 30 
 
 30 
 30 
 30 
 30 
 30 
 
 30 
 30 
 30 
 30 
 30 
 
 30 
 29 
 
 L. Tangr. 
 
 9.60 641 
 9.60 677 
 9.60 714 
 9 60 750 
 9 . 60 786 
 9 . 60 823 
 9 60 859 
 9 60 895 
 9.60 931 
 9 60 967 
 
 9.6 
 
 9.6 
 
 ^i 
 9.6 
 
 9.6 
 
 9.6 
 
 9.6 
 
 9.6 
 9.6 
 
 9.6 
 9.6 
 
 9.6 
 
 9.6 
 9.6 
 9.6 
 
 96 
 9.6 
 9.6 
 
 004 
 040 
 076 
 112 
 148 
 
 184 
 220 
 256 
 292 
 328 
 
 364 
 400 
 
 436 
 472 
 508 
 
 544 
 579 
 615 
 651 
 687 
 
 722 
 758 
 794 
 830 
 865 
 
 901 
 
 936 
 972 
 
 9 , 62 008 
 9.62043 
 
 9 . 62 079 
 9.62 114 
 9.62 150 
 9.62 185 
 9.62 221 
 
 9.62 256. 
 9 . 62 292 
 9.62327 
 9 . 62 362 
 9.62 398 
 
 9 62 433 
 9 . 62 468 
 9.62 504 
 9 62539 
 9 62 574 
 
 c. d. L. Cotg. 
 
 9.62 609 
 9.62 645 
 9 . 62 680 
 9.62 715 
 9.62 750 
 9.62 785 
 
 L. Cotg. 
 
 36 
 37 
 36 
 36 
 37 
 36 
 36 
 36 
 36 
 37 
 36 
 36 
 36 
 36 
 36 
 36 
 36 
 36 
 36 
 36 
 36 
 36 
 36 
 36 
 36 
 35 
 36 
 36 
 36 
 
 35 
 36 
 36 
 36 
 35 
 36 
 
 35 
 36 
 36 
 35 
 36 
 35 
 36 
 35 
 36 
 35 
 36 
 35 
 35 
 36 
 35 
 35 
 36 
 35 
 35 
 35 
 36 
 35 
 35 
 35 
 35 
 
 c. d. 
 
 0.39359 
 0.39323 
 0.39 286 
 0.39 250 
 0.39214 
 
 0.39 177 
 0.39 141 
 0.39 105 
 o . 39 069 
 0.39033 
 
 o 38 996 
 o . 38 960 
 
 0.38924 
 0.38888 
 
 0.38852 
 
 0.38816 
 0.38 780 
 
 0.38 744 
 0.38 708 
 0.38672 
 
 0.38636 
 o . 38 600 
 o . 38 564 
 0.38528 
 0.38492 
 
 0.38456 
 0.38 421 
 0.38385 
 0.38349 
 0.38313 
 
 0.38278 
 0.38 242 
 o . 38 206 
 0.38 170 
 
 0.38135 
 
 0.38099 
 
 o . 38 064 
 
 0.38028 
 0.37992 
 0.37957 
 
 0.37921 
 0.37886 
 0.37850 
 0.37815 
 
 o 37 779 
 
 0.37 744 
 0.37708 
 0.37673 
 0.37 638 
 0.37 602 
 
 o 37567 
 0.37532 
 0.37496 
 0.37461 
 o 37 426 
 
 0.37391 
 o 37 355 
 o 37320 
 0.37285 
 o 37250 
 o 37215 
 li. Tang. 
 
 67° 
 
 L. Cos, 
 
 96717 
 96 711 
 
 96 706 
 96 701 
 96 696 
 
 96 691 
 96686 
 96681 
 96 676 
 96 670 
 
 96 665 
 96 660 
 96655 
 96 650 
 96645 
 
 96 640 
 96634 
 96 629 
 96 624 
 96 619 
 
 96 614 
 96608 
 96603 
 96598 
 96593 
 
 96588 
 96 582 
 96577 
 96572 
 96567 
 
 96 562 
 96556 
 96551 
 96546 
 
 96541 
 
 96535 
 96530 
 96525 
 96 520 
 
 96514 
 
 96509 
 96504 
 96 498 
 
 96493 
 96488 
 
 96483 
 96477 
 96472 
 96467 
 96 461 
 
 96456 
 96451 
 96445 
 96 440 
 
 9^35. 
 96 429 
 96424 
 96419 
 
 96413 
 96 408 
 
 9 96403 
 
 L. Sin. 
 
 60 
 
 59 
 58 
 
 1 
 
 55 
 
 54 
 
 53 
 
 52 
 
 S]_ 
 
 50 
 
 49 
 
 48 
 
 47 
 
 45 
 44 
 43 
 42 
 41 
 40 
 
 39 
 38 
 
 _3i 
 35 
 34 
 33 
 32 
 31 
 
 Prop. Pts. 
 
 
 35 
 
 1 
 
 .1 
 
 3-71 
 
 .2 
 
 7 
 
 4 
 
 •3 
 
 II 
 
 I 
 
 4 
 
 14 
 
 8 
 
 .5 
 
 18 
 
 5 
 
 6 
 
 22 
 
 2 
 
 7 
 
 25 
 
 9 
 
 .8 
 
 29 
 
 6 
 
 9 
 
 33 
 
 3 
 
 36 
 
 36 
 7.2 
 10.8 
 14.4 
 18.0 
 
 21.6 
 
 25.2 
 28.8 
 
 32 4 
 
 35 
 
 3 5 
 7.0 
 
 10.5 
 14.0 
 
 17 5 
 21 o 
 
 24 5 
 28.0 
 
 31 5 
 
 
 32 
 
 I 
 
 32 
 
 2 
 
 6.4 
 
 3 
 
 9.6 
 
 4 
 
 12.8 
 
 5 
 
 16.0 
 
 .6 
 
 19.2 
 
 7 
 
 22.4 
 
 .8 
 
 25.6 
 28.8 
 
 9 
 
 
 30 
 
 29 
 
 I 
 
 2 
 
 3.0 
 6.0 
 
 2 
 
 3 
 
 4 
 
 9.0 
 12.0 
 
 II . 
 
 I 
 
 15 
 18.0 
 
 14 
 17 
 
 I 
 9 
 
 21.0 
 
 20 
 
 24.0 
 27 
 
 23 
 26 
 
 6 
 
 0.6 
 1.2 
 
 1.8 
 24 
 
 36 
 4.2 
 4.8 
 5 4 
 
 31 
 
 3^ 
 
 6.2 
 
 9 3 
 12.4 
 
 \ll 
 
 21.7 
 24.8 
 27.9 
 
 5 
 
 05 
 
 I 
 I 
 2.0 
 
 2 5 
 
 30 
 
 3 5 
 4.0 
 
 4 5 
 
 Prop. Pts. 
 

 
 LOGARITHMS OF THE TRIGONOMETRIC FUNCTIONS 
 
 49 
 
 23° 1 
 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 d. 
 
 
 Prop. Pts. 
 
 9 59 188 
 
 
 9.62785 
 
 
 0.37215 
 
 9.96403 
 
 6 
 
 ■fiO" 
 
 
 I 
 
 9 59 218 
 
 
 9 
 
 62820 
 
 35 
 35 
 36 
 35 
 
 0.37 180 
 
 9 
 
 96397 
 
 59 
 
 
 2 
 
 9 
 
 59247 
 
 
 9 
 
 62855 
 
 0.37 145 
 
 9 
 
 96392 
 
 5 
 
 58 
 
 
 36 
 
 3 
 
 7 
 
 10 
 
 35 
 
 6 3-5 
 2 7.C 
 8 10.5 
 4. 14.0 
 
 3 
 
 9 
 
 59277 
 
 30 
 30 
 29 
 
 9 
 
 62890 
 
 0.37 no 
 
 9 
 
 96 387 
 
 
 57 
 
 
 _4 
 
 9 
 
 59307 
 
 9 
 
 62 926 
 
 0.37074 
 
 9 
 
 96381 
 
 5 
 6 
 
 56 
 
 55 
 
 2 
 3 
 
 9 
 
 59336 
 
 9 
 
 62 961 
 
 0.37039 
 
 9 
 
 96376 
 
 6 
 
 9 
 
 59366 
 
 
 9 
 
 62 996 
 
 
 37004 
 
 9 
 
 96370 
 
 54 
 
 \/\ 
 
 7 
 
 9 
 
 59396 
 
 
 9 
 
 63031 
 
 
 0.36969 
 
 9 
 
 96365 
 
 
 53 
 
 5 
 
 t8 
 
 17.1; 
 
 8 
 
 9 
 
 59425 
 
 
 9 
 
 63 066 
 
 35 
 34 
 
 35 
 
 0.36934 
 
 9 
 
 96360 
 
 5 
 6 
 5 
 
 52 
 
 6 
 
 21 
 
 6 21 
 
 9 
 10 
 
 9 
 
 59 455 
 
 29 
 
 9 
 
 63 lOI 
 
 . 36 S99 
 
 9 
 
 96354 
 
 51 
 50 
 
 7 
 8 
 
 li. 
 
 2 24.5 
 8 28.0 
 
 9 
 
 59484 
 
 9 
 
 63135 
 
 0.36865 
 
 9 
 
 96349 
 
 II 
 
 9 
 
 59514 
 
 
 9 
 
 63 170 
 
 . 36 830 
 
 9 
 
 96343 
 96338 
 
 
 49 
 
 9 
 
 32. 
 
 4 31 5 
 
 12 
 
 9 
 
 59 543 
 
 
 9 
 
 63205 
 
 
 0.36 795 
 
 9 
 
 
 48 
 
 1 
 
 i.S 
 
 9 
 
 59 573 
 
 
 9 
 
 63 240 
 
 35 
 35 
 
 0.36 760 
 
 9 
 
 96333 
 
 6 
 5 
 6 
 
 47 
 
 1 
 
 14 
 15 
 
 9 
 
 59602 
 
 30 
 
 9 
 
 63275 
 
 0.36725 
 
 9 
 
 96327 
 
 46 
 45 
 
 .1 
 
 34 
 
 9 
 
 59632 
 
 9 
 
 63310 
 
 0.36690 
 
 9 
 
 96322 
 
 16 
 
 9 
 
 59 661 
 
 
 9 
 
 63345 
 
 ■lA 
 
 0.36655 
 
 9 
 
 96316 
 
 44 
 
 
 .2 
 
 6.8 
 
 17 
 
 9 
 
 59690 
 
 29 
 
 9 
 
 63379 
 
 
 0.36 621 
 
 9 
 
 96 311 
 
 5 
 6 
 
 43 
 
 
 •3 
 
 [O 2 
 
 18 
 
 9 
 
 59 720 
 
 30 
 
 9 
 
 63414 
 
 
 0.36586 
 
 9 
 
 96305 
 
 42 
 
 
 4 
 
 [36 
 
 19 
 20 
 
 9 
 
 59 749 
 
 29 
 
 9 
 
 63449 
 
 35 
 
 0.36551 
 
 9 
 
 96300 
 
 5 
 6 
 
 41 
 40 
 
 
 i: 
 
 17.0 
 
 20.4 
 238 
 
 30.6 
 
 9 
 
 59778 
 
 9 
 
 63484 
 
 0.36516 
 
 9 
 
 96294 
 
 21 
 
 9 
 
 59808 
 
 
 9 
 
 63519 
 
 
 0.36481 
 
 9 
 
 96289 
 
 5 
 
 39 
 
 
 22 
 
 9 
 
 59^7 
 
 29 
 
 9 
 
 63 553 
 
 
 0.36447 
 
 9 
 
 96284 
 
 5 
 6 
 
 38 
 
 
 23 
 
 9 
 
 59866 
 
 29 
 
 9 
 
 35 
 
 0.36412 
 
 9 
 
 96278 
 
 37 
 
 ■y 1 . 
 
 24 
 
 2S 
 
 9 
 
 59895 
 
 29 
 
 29 
 
 9 
 
 63623 
 
 34 
 
 0.36377 
 
 9 
 
 96273 
 
 5 
 6 
 
 36 
 
 35 
 
 1 
 
 9 
 
 59924 
 
 9 
 
 63657 
 
 0.36343 
 
 9 
 
 96267 
 
 
 30 
 
 29 
 
 2b 
 
 9 
 
 59 954 
 
 
 9 
 
 63692 
 
 
 0.36 308 
 
 9 
 
 96 262 
 
 5 
 
 34 
 
 
 27 
 
 9 
 
 59983 
 
 29 
 
 9 
 
 63 726 
 
 34 
 
 0.36274 
 
 9 
 
 96256 
 
 
 33 
 
 
 i. 
 
 5.8 
 8.7 
 II. 6 
 14. ■; 
 
 28 
 
 9 60012 
 
 29 
 
 9 
 
 63 761 
 
 
 0.36239 
 
 9 
 
 96251 
 
 5 
 
 32 
 
 
 29 
 
 30 
 
 9 60 041 
 
 29 
 
 29 
 
 9 
 
 63796 
 
 34 
 
 . 36 204 
 
 9 
 
 96245 
 
 5 
 6 
 
 31 
 30 
 
 i 
 4 
 
 9 
 
 12. 
 15 . 
 
 9 . 60 070 
 
 9 
 
 63830 
 
 0.36 170 
 
 9 
 
 96 240 
 
 31 
 
 9 
 
 60099 
 
 
 9 
 
 63 865 
 
 
 0.36 135 
 
 9 
 
 96234 
 
 29 
 
 18. 
 
 17 4 
 
 32 
 
 9 
 
 60128 
 
 
 9 
 
 63899 
 
 
 0.36 lOI 
 
 9 
 
 96 229 
 
 5 
 6 
 
 28 
 
 I 
 
 21 . 
 
 20 3 
 23 2 
 
 33 
 
 9 
 
 60157 
 
 29 
 
 9 
 
 63934 
 
 
 0.36066 
 
 9 
 
 96 223 
 96 218 
 
 27 
 
 ?./[ 
 
 34 
 35 
 
 9 
 
 60186 
 
 29 
 
 29 
 
 9 
 
 63968 
 
 35 
 
 0.36032 
 
 9 
 
 5 
 6 
 
 26 
 25 
 
 9 
 
 27. 
 
 26 I 
 
 9 
 
 60215 
 
 9 
 
 64 003 
 
 0.35997 
 
 9 
 
 96 212 
 
 
 3^^ 
 
 9 
 
 60244 
 
 29 
 
 9 
 
 64037 
 
 
 0.35963 
 
 9 
 
 96 207 
 
 5 
 6 
 
 24 
 
 1 
 
 37 
 
 9 
 
 60273 
 
 29 
 
 9 
 
 64 072 
 
 35 
 
 35 928 
 
 9 
 
 96 201 
 
 23 
 
 
 38 
 
 3« 
 
 9 
 
 60302 
 
 29 
 
 9 
 
 64 106 
 
 34 
 
 0.35894 
 
 9 
 
 96 196 
 
 5 
 6 
 5 
 
 22 
 
 T 
 
 2 8 
 
 39 
 40 
 
 9 
 
 60331 
 
 29 
 28 
 
 9 
 
 64 140 
 
 35 
 
 0.35860 
 
 9 
 
 96 190 
 
 21 
 20 
 
 
 .2 
 
 3 
 
 56 
 8.4 
 
 9 
 
 60359 
 
 9 
 
 64 175 
 
 35825 
 
 9 
 
 96 185 
 
 41 
 
 9 
 
 60388 
 
 29 
 
 9 
 
 64 209 
 
 34 
 
 0.35 791 
 
 9 
 
 96179 
 
 
 19 
 
 
 .4 
 
 II .2 
 
 42 
 
 9 
 
 60417 
 
 29 
 
 9 
 
 64243 
 64278 
 
 
 0.35 757 
 
 9 
 
 96 174 
 
 5 
 
 18 
 
 
 s 
 
 14 
 
 43 
 
 9 
 
 60 446 
 
 29 
 28 
 29 
 
 9 
 
 
 0.35 722 
 
 9 
 
 96168 
 
 
 17 
 
 
 6 
 
 16 8 
 
 44 
 
 9 
 
 60474 
 
 9 
 
 64312 
 
 34 
 
 0.35 688 
 
 9 
 
 96 162 
 
 5 
 
 16 
 15 
 
 
 • 7 
 .8 
 
 196 
 22 4 
 
 45 
 
 9 
 
 60503 
 
 9 64 346 
 
 o- 35 654 
 
 9 
 
 96 157 
 
 46 
 
 9 
 
 60 532 
 
 29 
 
 9 64 381 
 
 
 0.35619 
 
 9 
 
 96 151 
 
 
 14 
 
 
 •9 - 
 
 25 2 
 
 47 
 
 9 
 
 60 561 
 
 29 
 28 
 
 9.64415 
 
 
 o- 35 585 
 
 9 
 
 96 146 
 
 5 
 6 
 
 13 
 
 1 
 
 48 
 
 9 
 
 60589 
 
 9 
 
 64449 
 
 34 
 
 0.35551 
 
 9 
 
 96 140 
 
 12 
 
 1 
 
 49 
 50 
 
 9 
 
 60618 
 
 29 
 
 28 
 
 9 
 
 64483 
 
 34 
 34 
 
 0.35517 
 
 9 
 
 96135 
 
 5 
 6 
 
 II 
 10 
 
 
 6 
 
 
 5 
 
 6 0.5 
 
 9 
 
 60 646 
 
 9 
 
 64517 
 
 35483 
 
 9 
 
 96 129 
 
 51 
 
 9 
 
 60675 
 
 29 
 
 9 
 
 64552 
 
 35 
 
 0.35448 
 
 9 
 
 96 123 
 
 
 9 
 
 2 
 
 I 
 
 2 I.O 
 
 52 
 
 9 
 
 60704 
 
 29 
 
 9 
 
 64586 
 
 34 
 
 0.35414 
 
 9 
 
 96 118 
 
 5 
 
 8 
 
 3 
 
 I 
 
 8 1.5 
 
 53 
 
 9 
 
 60732 
 
 
 9 
 
 64 620 
 
 34 
 
 0.35380 
 
 9 
 
 96 112 
 
 
 7 
 
 4 
 
 2 
 
 ^ 2.0 
 
 54 
 
 55 
 
 9 
 
 60 761 
 
 29 
 28 
 
 9 
 
 64654 
 
 34 
 34 
 
 0.35 346 
 
 9 
 
 96 107 
 
 5 
 6 
 
 6 
 
 5 
 
 
 3 < 
 3 
 
 5 3.0 
 
 9 
 
 60789 
 
 9 
 
 64688 
 
 0.35312 
 
 9 
 
 96 lOI 
 
 56 
 
 9 
 
 60818 
 
 29 
 
 9 
 
 64 722 
 
 34 
 
 0.35 278 
 
 9 
 
 96095 
 
 
 4 
 
 7 
 
 4 
 
 I 3 5 
 i 40 
 
 57 
 
 9 
 
 60846 
 
 
 9 
 
 64756 
 
 34 
 
 0.35 244 
 
 9 
 
 96 090 
 
 5 
 
 3 
 
 8 
 
 4^ 
 
 5« 
 
 9 
 
 60875 
 
 29 
 
 9 
 
 64790 
 
 34 
 
 0.35 210 
 
 9 
 
 96084 
 
 
 2 
 
 9 
 
 b-' 
 
 ^ 4 5 
 
 59 
 60_ 
 
 9 
 
 60903 
 
 28 
 
 9 
 
 64824 
 
 34 
 34 
 
 0.35 176 
 
 9 
 
 96079 
 
 5 
 6 
 
 I 
 
 
 
 9 
 
 60931 
 
 9 
 
 64858 
 
 0.35 142 
 
 9 
 
 96073 
 
 L. Cos. 
 
 d. 
 
 L. Cotgr. 
 
 c!T 
 
 L. Tang. 
 
 L. Sin. 
 
 d. 
 
 t 
 
 Prop. Pt8. 
 
 
 
 
 66^ 
 
 
 
 
 
50 
 
 TABLE II 
 
 24' 
 
 2 
 
 3 
 
 1 
 
 7 
 8 
 
 9 
 10 
 II 
 
 12 
 
 13 
 
 \l 
 
 17 
 i8 
 
 19 
 
 20 
 
 21 
 
 22 
 23 
 
 24 
 
 25 
 26 
 
 27 
 28 
 
 29 
 
 30 
 
 31 
 32 
 
 33 
 J4 
 
 35 
 3^ 
 
 37 
 38 
 
 39 
 
 40 
 
 41 
 
 42 
 43 
 44 
 
 46 
 
 47 
 48 
 
 49 
 
 60 
 
 51 
 
 52 
 53 
 ii 
 
 II 
 
 57 
 58 
 
 Ji. 
 60 
 
 L. Sin. 
 
 6093: 
 60 960 
 60988 
 
 016 
 045. 
 073 
 
 lOI 
 
 129 
 
 158 
 186 
 
 214 
 
 242 
 270 
 
 298 
 326 
 
 354 
 382 
 411 
 438 
 466 
 
 494 
 522 
 
 578 
 606 
 
 634 
 662 
 689 
 717 
 745 
 
 773 
 800 
 828 
 856 
 883 
 
 911 
 
 939 
 966 
 
 994 
 62 021 
 
 62 049 
 62 076 
 62 104 
 62 131 
 62 159 
 
 d. 
 
 62 186 
 62 214 
 62 241 
 62 268 
 62 296 
 
 62323 
 62 350 
 62377 
 62 405 
 62432 
 
 62459 
 62486 
 
 62513 
 62541 
 62568 
 
 62595 
 
 L. Cos. 
 
 29 
 27 
 28 
 28 
 28 
 28 
 28 
 28 
 28 
 28 
 27 
 28 
 28 
 28 
 27 
 28 
 28 
 27 
 28 
 28 
 27 
 28 
 27 
 28 
 
 37 
 
 28 
 27 
 28 
 
 L. Tang. 
 
 c.d. 
 
 64858 
 . 64 892 
 . 64 926 
 .64 960 
 64 994 
 
 65 028 
 65 062 
 65 096 
 
 197 
 231 
 265 
 . 299 
 65333 
 
 65 366 
 9 . 65 400 
 
 9 65 434 
 9.65467 
 
 9 65 501 
 
 65535 
 65568 
 65 602 
 65 636 
 65 669 
 
 65 703 
 65 736 
 65 770 
 65 803 
 65837 
 
 130 
 164 
 
 65870 
 65 904 
 65937 
 
 65 971 
 
 66 004 
 
 66038 
 66071 
 66 104 
 66 138 
 66 171 
 
 66 204 
 66238 
 66 271 
 66 304 
 66337 
 
 9.66371 
 9 . 66 404 
 9.66437 
 9 . 66 470 
 9 66 503 
 
 9 66537 
 9 66 570 
 9 . 66 603 
 9 . 66 636 
 9 66 669 
 
 9.66 702 
 9 66735 
 9 66 768 
 9.66 801 
 9.66834 
 
 66867 
 
 L. Cotg. 
 
 L. Cotg. 
 
 0.35 142 
 0.35 108 
 
 o 35074 
 0.35 040 
 0.35 006 
 
 o 34 972 
 0.34938 
 0.34904 
 0.34870 
 o 34 836 
 
 o 34 803 
 0.34 769 
 
 0.34735 
 0.34 701 
 0.34667 
 
 0.34634 
 o . 34 600 
 0.34566 
 0.34533 
 0.34499 
 
 0.34465 
 0.34432 
 0.34398 
 0.34364 
 0.34331 
 
 0.34297 
 o . 34 264 
 0.34230 
 0.34 197 
 0.34 163 
 
 0.34 130 
 0.34096 
 o . 34 063 
 o . 34 029 
 0.33996 
 
 0.33 962 
 
 0.33929 
 0:33896 
 0.33 862 
 0.33829 
 
 0.33 796 
 0.33 762 
 
 0.33 729 
 0.33696 
 o 33663 
 
 0.33 629 
 
 0.33 596 
 0.33563 
 033 530 
 0.33497 
 
 0.33463 
 0.33430 
 0.33397 
 0.33364 
 0.33 331 
 
 c.d. 
 
 0.33 298 
 o 33 265 
 o 33 232 
 0.33 199 
 0.33 166 
 
 0.33 133 
 
 L. Tang. 
 
 65° 
 
 L. Cos, 
 
 9.96073 
 9 . 96 067 
 9 . 96 062 
 9.96 056 
 9 , 96 050 
 
 9 96 045 
 9 96 039 
 9 96 034 
 9 96 028 
 9 96 022 
 
 9.96 017 
 9.96 on 
 9 . 96 005 
 9.96 000 
 9 95 994 
 
 9.95988 
 9.95982 
 9 95 977 
 9 95971 
 9 95965 
 
 9 95 960 
 9 95 954 
 9 95948 
 9 95942 
 9 95 937 
 
 9 95931 
 9 95925 
 9.95920 
 
 9 95 914 
 9 95908 
 
 9 95 902 
 9 95897 
 9 95 891 
 9.95885 
 
 9 95879 
 
 9-95873 
 9 95 868 
 9.95 862 
 9 95856 
 9 95850 
 
 9-95 844 
 9 95839 
 9 95833 
 9.95827 
 9.95821 
 
 9 95815 
 9.95 810 
 9.95 804 
 9 95 798 
 9 95 792 
 
 9 95 786 
 9 95 780 
 9 95 775 
 9 95 769 
 9 95 763 
 
 9 95 757 
 9 95 751 
 9 95 745 
 9 95 739 
 9 95 733 
 
 9 95 728 
 
 L. Sin, 
 
 d. 
 
 60 
 
 59 
 58 
 
 1 
 
 55 
 54 
 53 
 
 52 
 
 iL 
 50 
 
 49 
 48 
 47 
 
 45 
 44 
 43 
 42 
 41 
 40 
 
 It 
 1 
 
 35 
 34 
 33 
 32 
 _3i 
 30 
 29 
 28 
 
 27 
 26 
 
 Prop. Pte. 
 
 
 34 
 
 33 
 
 I 
 
 ^A 
 
 J. 
 
 2 
 
 6.8 
 
 6. 
 
 3 
 
 10 2 
 
 9 
 
 4 
 
 13 6 
 
 13 
 
 5 
 
 17.0 
 
 16 
 
 6 
 
 20,4 
 
 19 
 
 7 
 
 23.8 
 
 23 
 
 8 
 
 27.2 
 
 26 
 
 9 
 
 30.6 
 
 29 
 
 
 29 
 
 , I 
 
 2.9 
 
 .2 
 
 5.8 
 
 •3 
 
 8.7 
 
 .4 
 
 II. 6 
 
 •5 
 
 145 
 
 .6 
 
 17 4 
 
 •7 
 
 20.3 
 
 .8 
 
 23.2 
 
 •9 
 
 26.1 
 
 
 a8 
 
 .1 
 
 2.8 
 
 .2 
 
 5 6 
 
 .3 
 
 8.4 
 
 •4 
 
 II. 2 
 
 
 14.0 
 
 6 
 
 16.8 
 
 i 
 
 19.6 
 
 22.4 
 
 •9 
 
 25.2 
 
 
 37 
 
 .1 
 
 2.7 
 
 .2 
 
 5 4 
 
 •3 
 
 8. 1 
 
 •4 
 
 10.8 
 
 •S 
 
 13 5 
 
 .6 
 
 16.2 
 
 i 
 
 18.9 
 
 21 6 
 
 9 
 
 24 3 
 
 
 6 
 
 .1 
 
 0.6 
 
 .2 
 
 12 
 
 •3 
 
 1.8 
 
 4 
 
 2.4 
 
 . ^ 
 
 3 c 
 
 6 
 
 3-6 
 
 7 
 
 4.2 
 
 8 
 
 4-8 
 
 9 
 
 5 4 
 
 5 
 
 05 
 1 .0 
 
 15 
 2.0 
 
 2.5 
 30 
 
 3 5 
 4.0 
 
 4-5 
 
 Prop. Pts, 
 
LOGARITHMS OF THE TRIGONOMETRIC FUNCTIONS 
 
 51 
 
 25" 
 
 L. Siu. 
 
 _9_ 
 10 
 II 
 
 12 
 
 13 
 
 !i 
 
 i8 
 19 
 20 
 
 21 
 22 
 
 23 
 24 
 
 26 
 27 
 28 
 29 
 
 30 
 
 31 
 32 
 33 
 34 
 
 36 
 37 
 3« 
 39 
 40 
 41 
 42 
 43 
 44 
 
 46 
 
 47 
 48 
 
 j49 
 
 50 
 
 51 
 
 52 
 
 53 
 
 H 
 
 55 
 
 56 
 
 II 
 
 GO 
 
 62595 
 62 622 
 62 649 
 62 676 
 62 703 
 
 62 730 
 62 757 
 62 784 
 62 811 
 62838 
 
 62865 
 62 892 
 62918 
 62945 
 62 972 
 
 62 999 
 
 63 026 
 63 052 
 63079 
 63 106 
 
 63 133 
 
 63213 
 63239 
 
 63 266 
 63 292 
 633^9 
 63345 
 63372 
 
 63398 
 63425 
 63451 
 63478 
 63 504 
 
 63531 
 
 63557 
 
 63 610 
 63636 
 
 63 662 
 63 689 
 63 715 
 63 741 
 63 767 
 
 63 794 
 63820 
 63 846 
 63872 
 63898 
 
 63924 
 63950 
 63976 
 64 002 
 64 028 
 
 64054 
 64 080 
 64 106 
 64 132 
 64 158 
 
 64 184 
 
 L. Cos. 
 
 d. 
 
 L. Tang. 
 
 66867 
 66 900 
 66933 
 66966 
 66 999 
 
 67032 
 67065 
 67098 
 
 67 131 
 67 163 
 
 67 196 
 67 229 
 67 262 
 67295 
 67327 
 67360 
 
 67393 
 67426 
 
 67458 
 67491 
 
 67524 
 67556 
 67589 
 67 622 
 
 67654 
 
 67687 
 67719 
 67752 
 67785 
 67817 
 
 67850 
 67882 
 67915 
 67947 
 67 980 
 
 68012 
 68 044 
 68077 
 68 109 
 68 142 
 
 68 174 
 68206 
 68239 
 68271 
 68303 
 
 68336 
 68368 
 68 400 
 68432 
 68465 
 
 68497 
 68529 
 68561 
 
 68593 
 68626 
 
 68658 
 68690 
 68 722 
 
 68754 
 68 786 
 
 68818 
 
 Cotgr. 
 
 L. Cotg. 
 
 0-33 133 
 0.33 100 
 0.33067 
 
 0.33034 
 0.33001 
 
 o 32 968 
 
 0.32935 
 0.32 902 
 o . 32 869 
 
 0.32837 
 
 o . 32 804 
 
 0.32 771 
 0.32 738 
 0.32 705 
 0.32673 
 
 o . 32 640 
 0.32 607 
 
 0.32 574 
 0.32 542 
 0.32 509 
 
 0.32476 
 0.32444 
 0.32 4n 
 0.32378 
 0.32346 
 
 0.32313 
 0.32 281 
 0.32 248 
 0.32 215 
 0.32 183 
 
 0.32 150 
 0.32 118 
 o . 32 085 
 0.32 053 
 o . 32 020 
 
 0.31 988 
 0.31 956 
 o 31 923 
 0.31 891 
 
 0.31 858 
 
 0.31 826 
 
 o 31 794 
 0.31 761 
 0.31 729 
 0.31 697 
 
 0.31 664 
 0.31 632 
 0.31 600 
 0.31 568 
 o. 31535 
 
 0.31 503 
 0.31 471 
 
 o 31 439 
 0.31 407 
 0.31 374 
 
 342 
 310 
 278 
 246 
 214 
 
 0.31 182 
 
 c. d. L. Tang. 
 
 64^ 
 
 L. Cos. 
 
 9.95698 
 9.95692 
 9.95 686 
 9.95 680 
 9 95674 
 
 95 728 
 95 722 
 95 716 
 95 710 
 95 704 
 
 95668 
 95663 
 95657 
 95651 
 95645 
 
 95639 
 95633 
 95627 
 95 621 
 95615 
 
 95609 
 95603 
 95 597 
 95591 
 95585 
 
 95 579 
 95 573 
 95567 
 95561 
 95 555 
 
 95 549 
 95 543 
 95 537 
 95531 
 95525 
 
 95519 
 95513 
 95507 
 95500 
 95 494 
 
 95488 
 95482 
 95476 
 95470 
 95464 
 
 95458 
 95452 
 95446 
 95440 
 95 434 
 
 95427 
 95421 
 95415 
 95409 
 95403 
 
 95 397 
 95391 
 95384 
 95378 
 95372 
 
 9.95366 
 
 d. 
 
 L. Sin. I d. 
 
 60 
 
 59 
 58 
 57 
 
 55 
 54 
 53 
 52 
 _51 
 50 
 
 49 
 48 
 47 
 _46_ 
 
 45 
 44 
 43 
 42 
 41 
 40 
 
 39 
 38 
 
 _3^ 
 35 
 34 
 33 
 32 
 31 
 
 25 
 24 
 23 
 22 
 21 
 
 w 
 
 19 
 
 17 
 16 
 
 15 
 14 
 13 
 
 12 
 II 
 
 To 
 
 i 
 
 7 
 6 
 
 Prop. Pts. 
 
 
 33 
 
 I 
 
 3 3 
 
 2 
 
 6.6 
 
 3 
 
 9.9 
 
 4 
 
 13.2 
 
 
 16.5 
 
 6 
 
 19.8 
 
 7 
 
 
 8 
 
 26.4 
 
 9 
 
 29.7 
 
 33 
 
 6.4 
 
 9.6 
 
 12.8 
 
 16.0 
 19.2 
 
 22.4 
 25.6 
 28.8 
 
 27 
 
 2.7 
 
 i;t 
 
 10.8 
 16.2 
 
 .8.9 
 
 21.6 
 24-3 
 
 a6 
 
 2.6 
 
 7.8 
 10.4 
 
 lie 
 
 18 2 
 20 8 
 23 4 
 
 7 
 
 0.7 
 1-4 
 
 2.1 
 2.8 
 
 3 5 
 
 4 2 
 4-9 
 
 l^ 
 6.3 
 
 .1 
 
 6 
 0.6 
 
 .2 
 
 12 
 
 •3 
 
 I 8 
 
 •4 
 
 2 4 
 
 
 it 
 
 i 
 
 t:i 
 
 •9 
 
 5-4 
 
 5 
 
 0.5 
 i.o 
 
 1-5 
 2 o 
 
 2.5 
 30 
 
 3-5 
 4.0 
 
 4-5 
 
 Prop. Pts. 
 
52 
 
 TABLE II 
 
 26' 
 
 2 
 
 3 
 ± 
 
 I 
 
 7 
 8 
 
 10 
 
 II 
 
 12 
 
 13 
 14_ 
 
 IS 
 
 i6 
 
 17 
 
 i8 
 
 II. 
 20 
 
 21 
 
 22 
 23 
 
 26 
 27 
 28 
 
 30 
 
 31 
 
 32 
 33 
 Ji 
 
 39 
 40 
 
 41 
 
 42 
 
 43 
 44 
 
 46 
 
 47 
 48 
 
 49 
 
 50 
 
 51 
 52 
 53 
 
 54. 
 
 _59 
 GO 
 
 L. Sill. 
 
 64 184 
 64 210 
 64236 
 64 262 
 64288 
 
 64313 
 64339 
 64365 
 64391 
 64417 
 
 9 64442 
 9 64 468 
 
 9 64 494 
 9 64519 
 
 9 64545 
 
 964 571 
 9.64596 
 9 . 64 622 
 9.64647 
 9.64673 
 
 9 . 64 698 
 9.64724 
 9.64 749 
 
 9 64775 
 9 . 64 800 
 
 9 . 64 826 
 9.64 851 
 9,64877 
 9 . 64 902 
 9 64927 
 
 9 64953 
 9.64978 
 9.65003 
 9 . 65 029 
 9 65054 
 
 9.65 079 
 9 65 104 
 9.65 130 
 
 9 65 155 
 9.65 180 
 
 9 . 65 205 
 9.65 230 
 9 65255 
 9.65 281 
 9.65 306 
 
 9 65331 
 9 65356 
 9 65381 
 9 65 406 
 
 9 65431 
 
 d. 
 
 9 65456 
 9.65 481 
 9.65 506 
 9 65531 
 9 65556 
 
 9 65 580 
 9 65 605 
 9 65 630 
 9 65655 
 9 65 680 
 
 9 65705 
 
 L. Cos. 
 
 26 
 26 
 26 
 26 
 25 
 26 
 26 
 26 
 26 
 25 
 26 
 26 
 25 
 26 
 26 
 
 25 
 26 
 
 25 
 
 26 
 
 25 
 
 26 
 25 
 26 
 25 
 26 
 
 25 
 26 
 25 
 25 
 26 
 
 25 
 25 
 26 
 
 25 
 25 
 
 25 
 26 
 25 
 25 
 25 
 25 
 25 
 26 
 25 
 25 
 
 25 
 
 25 
 25 
 25 
 25 
 
 25 
 
 25 
 25 
 25 
 24 
 25 
 25 
 
 25 
 
 25 
 25 
 
 L. Tang. 
 
 c.d. 
 
 d. 
 
 9.68818 
 9.68850 
 9.68882 
 9.68 914 
 9 . 68 946 
 
 9.68978 
 9.69 010 
 9 . 69 042 
 9.69074 
 9.69 106 
 
 9.69 138 
 9.69 170 
 9 . 69 202 
 9 69234 
 9 . 69 266 
 
 9 . 69 298 
 9.69329 
 9.69361 
 
 9 69 393 
 9.69425 
 
 9 69 457 
 9 . 69 488 
 9.69 520 
 9 69 552 
 9.69584 
 
 9 69 615 
 9.69647 
 9.69679 
 9.69 710 
 9.69742 
 
 9.69 774 
 9 , 69 805 
 9.69837 
 9.69868 
 9 . 69 900 
 
 9.69932 
 9.69963 
 
 9 69995 
 9 70 026 
 9 . 70 058 
 
 9 . 70 089 
 9 70 121 
 9.70 152 
 9.70 184 
 9 70 2 1 5 
 
 9.70247 
 9.70 278 
 9.70309 
 
 9 70341 
 9.70372 
 
 9.70404 
 
 9 70435 
 9 70 466 
 9 70498 
 9 70529 
 
 9 . 70 560 
 9.70592 
 9 70 623 
 9.70654 
 9 . 70 685 
 
 9.70717 
 
 32 
 32 
 32 
 32 
 32 
 32 
 32 
 32 
 32 
 32 
 32 
 32 
 32 
 32 
 32 
 
 31 
 32 
 32 
 
 32 
 32 
 
 31 
 32 
 32 
 32 
 31 
 32 
 32 
 31 
 32 
 32 
 
 31 
 32 
 31 
 32 
 32 
 
 31 
 32 
 
 3» 
 32 
 31 
 32 
 31 
 32 
 31 
 32 
 
 31 
 31 
 32 
 31 
 32 
 
 31 
 31 
 32 
 31 
 31 
 32 
 31 
 31 
 31 
 32 
 
 L. Cotg. 
 
 0.31 
 0.31 
 
 [82 
 
 - % 
 0.31 118 
 
 o 31 086 
 
 o 3» 054 
 
 o 31 022 
 o . 30 990 
 0.30 958 
 o . 30 926 
 
 0.30894 
 
 o . 30 862 
 o . 30 830 
 0.30 798 
 0.30 766 
 o 30 734 
 
 0.30 702 
 0.30 671 
 o . 30 639 
 0.30 607 
 o 30575 
 
 0.30543 
 
 0.30 512 
 o . 30 480 
 
 0.30448 
 
 o 30 416 
 
 0.30 385 
 
 o. 30 353 
 0.30 321 
 o . 30 290 
 0.30258 
 
 o . 30 226 
 
 0.30 195 
 
 0.30 163 
 0.30 132 
 0.30 100 
 
 L. Cos. 
 
 o . 30 068 
 o 300^7 
 o . 30 005 
 
 0.29974 
 
 o . 29 942 
 
 0.29 911 
 0.29 879 
 o . 29 848 
 0.29 816 
 0.29 785 
 
 0.29753 
 
 0.29 722 
 0.29 691 
 0.29 659 
 0.29 628 
 
 o . 29 596 
 0.29 565 
 
 0.29534 
 
 0.29 502 
 
 0.29471 
 
 o . 29 440 
 o . 29 408 
 
 0.29377 
 0.29 346 
 0.29315 
 
 0.29 283 
 
 L. Cotg. led. I L. Tang. 
 
 68° 
 
 9 95 366 
 9 95360 
 9 95 354 
 9 95348 
 9 95341 
 
 9 95335 
 9 95 329 
 9 95323 
 9 95317 
 9 95 310 
 
 9 95304 
 9.95298 
 9.95292 
 9 95 286 
 9 95 279 
 
 9 95273 
 9.95 267 
 9 95 261 
 9 95254 
 9 95 248 
 
 9 95242 
 9 95236 
 9 95229 
 9 95223 
 9,95217 
 
 9 95 211 
 9.95 204 
 9.95 198 
 9 95 192 
 9 95 185 
 
 9 95 179 
 9 95 173 
 9 95 167 
 9 95 160 
 9 95 154 
 
 9.95 148 
 9 95 141 
 9 95 135 
 9.95 129 
 9 95 122 
 
 9 95 "6 
 9 95 "o 
 9 95 103 
 9,95097 
 9.95090 
 
 9.95084 
 9.95078 
 9.95071 
 9.95065 
 9 95059 
 
 9.95052 
 9.95046 
 9 95039 
 9 95033 
 9.95027 
 
 9.95 020 
 9.95014 
 9.95007 
 9 95001 
 9 94 995 
 
 9,94988 
 
 L. Sin, 
 
 d. 
 
 60 
 
 59 
 58 
 57 
 
 55 
 54 
 53 
 52 
 51 
 50 
 49 
 48 
 47 
 
 45 
 44 
 43 
 42 
 41 
 40 
 39 
 38 
 
 36 
 
 25 
 24 
 23 
 22 
 21 
 20 
 
 19 
 18 
 
 17 
 16 
 
 Prop. Pts. 
 
 3a 
 
 
 3 
 
 2 
 
 6 
 
 4 
 
 9 
 
 6 
 
 12 
 
 8 
 
 16 
 
 
 
 19 
 
 2 
 
 22 
 
 4 
 
 % 
 
 6 
 
 8 
 
 
 26 
 
 .1 
 
 2 
 
 .2 
 
 5 
 
 •3 
 
 7 
 
 ■4 
 
 10 
 
 .5 
 
 13 
 
 .6 
 
 ■7 
 
 W 
 
 .8 
 
 20 
 
 •9 
 
 23 
 
 3» 
 
 3.1 
 
 6,2 
 
 9 3 
 12 4 
 
 21 7 
 
 24 8 
 27.9 
 
 as 
 
 25 
 
 50 
 
 7-5 
 
 10.0 
 
 12 5 
 15 o 
 17 5 
 20.0 
 22.5 
 
 a4 
 24 
 
 8 
 
 2 
 6 
 o 
 
 4 
 8 
 2 
 6 
 
 
 7 
 
 I 
 
 07 
 
 2 
 
 14 
 
 •3 
 
 2 I 
 
 •4 
 
 28 
 
 i 
 
 3 5 
 42 
 
 I 
 
 S 6 
 
 9 
 
 6.3 
 
 6 
 2 
 
 8 
 
 4 
 o 
 6 
 2 
 8 
 54 
 
 Prop. Pts. 
 
LOGARITHMS OF THE TRIGONOMETRIC FUNCTIONS 
 
 53 
 
 w)7o 
 
 9_ 
 10 
 I 
 
 12 
 
 13 
 H 
 
 \l 
 \l 
 
 20 
 
 21 
 
 22 
 23 
 24 
 
 26 
 27 
 28 
 29 
 
 31 
 
 32 
 
 33 
 31 
 
 36 
 37 
 38 
 39L 
 40 
 
 41 
 
 42 
 
 43 
 44 
 
 46 
 
 47 
 48 
 
 49 
 
 60 
 
 51 
 52 
 53 
 ii 
 55 
 56 
 57 
 58 
 _59 
 60 
 
 L. Sin, 
 
 65 705 
 65 729 
 
 65 754 
 65 779 
 65 804 
 
 65828 
 
 65853 
 65878 
 65 902 
 65927 
 
 65952 
 65976 
 66 001 
 66 025 
 66 050 
 
 66075 
 66 099 
 66 124 
 66 148 
 66 173 
 
 9.66 197 
 9.66 221 
 9 66 246 
 9 66 270 
 9 . 66 295 
 
 66319 
 
 66343 
 66368 
 66392 
 66 416 
 
 66 441 
 66465 
 66489 
 66513 
 66 537, 
 
 66 562 
 66586 
 66 610 
 66 634 
 66658 
 
 66682 
 66 706 
 66 731 
 
 66755 
 66 779 
 
 66803 
 66827 
 66851 
 66875 
 66899 
 
 66 922 
 66 946 
 66 970 
 66 994 
 67018 
 
 67 042 
 67 066 
 67 090 
 67 "3 
 67137 
 67 i6i 
 
 L. Cos. 
 
 24 
 25 
 
 2S 
 
 24 
 
 25 
 
 24 
 25 
 25 
 24 
 25 
 24 
 25 
 24 
 24 
 25 
 24 
 25 
 
 24 
 24 
 25 
 24 
 24 
 
 25 
 
 24 
 24 
 24 
 24 
 
 25 
 
 24 
 24 
 24 
 24 
 24 
 24 
 25 
 24 
 24 
 24 
 24 
 24 
 24 
 24 
 23 
 24 
 24 
 24 
 24 
 24 
 24 
 24 
 23 
 24 
 24 
 
 L. Tang. 
 
 c. d, 
 
 70717 
 70748 
 70779 
 70 810 
 70 841 
 
 70873 
 70904 
 
 70935 
 70 966 
 70997 
 
 71 028 
 71 059 
 71 090 
 71 121 
 71 153 
 
 71 184 
 71 215 
 71 246 
 71 277 
 71 308 
 
 71 339 
 71 370 
 71 401 
 
 71 431 
 71 462 
 
 71 493 
 71 524 
 71 555 
 71586 
 71 617 
 
 71 648 
 71 679 
 71 709 
 71 740 
 71 771 
 
 71 802 
 71833 
 71863 
 71 894 
 71 925 
 
 72 017 
 72 048 
 72 078 
 
 72 109 
 72 140 
 72 170 
 72 201 
 72231 
 
 72 262 
 72293 
 72323 
 72354 
 72384 
 
 72415 
 72445 
 72476 
 72 506 
 72537 
 
 72567 
 
 Cotg. 
 
 3» 
 31 
 31 
 31 
 
 32 
 
 31 
 31 
 31 
 31 
 31 
 31 
 31 
 31 
 32 
 31 
 31 
 31 
 31 
 31 
 31 
 31 
 31 
 30 
 31 
 31 
 31 
 31 
 31 
 31 
 31 
 
 31 
 30 
 31 
 31 
 31 
 31 
 30 
 31 
 31 
 30 
 
 31 
 31 
 31 
 30 
 
 31 
 
 31 
 30 
 31 
 30 
 31 
 31 
 30 
 31 
 30 
 31 
 3? 
 31 
 30 
 31 
 30 
 
 L. Cotg. 
 
 0.29 283 
 0.29 252 
 0.29 221 
 0.29 790 
 0.29 159 
 
 0.29 127 
 o . 29 096 
 o . 29 065 
 
 0.29034 
 
 o . 29 003 
 
 0.28 972 
 0.28 941 
 0.28 910 
 
 0.28879 
 0.28847 
 
 0.28816 
 0.28 785 
 0.28754 
 
 0.28 723 
 o . 28 692 
 
 0.28661 
 
 o . 28 630 
 o . 28 599 
 0.28 569 
 0.28538 
 
 0.28 507 
 o 28 476 
 0.28 445 
 0.28 414 
 
 0.28383 
 
 0.28 352 
 0.28 321 
 0.28 291 
 0.28 260 
 0.28 229 
 
 0.28 198 
 0.28 167 
 0.28 137 
 0.28 106 
 0.28075 
 
 o . 28 045 
 0.28 014 
 
 0.27983 
 0.27 952 
 0.27 922 
 
 o 27 891 
 0.27 860 
 0.27 830 
 0.27 799 
 0.27 769 
 
 c.d, 
 
 0.27 738 
 o 27 707 
 o 27 677 
 o 27 646 
 0.27 616 
 
 0.27585 
 0.27555 
 
 0.27 524 
 
 0.27494 
 0.27463 
 
 0.27433 
 
 L. Tang. 
 
 62^ 
 
 L. Cos. 
 
 94891 
 94885 
 94878 
 94871 
 94865 
 
 94988 
 94982 
 94 975 
 94969 
 94962 
 
 94956 
 94 949 
 94 943 
 94936 
 94930 
 
 94923 
 94917 
 94 91 1 
 94904 
 94898 
 
 94858 
 94852 
 94845 
 94839 
 94832 
 
 94 826 
 94819 
 94813 
 94 806 
 
 94 799 
 
 94 793 
 94786 
 94780 
 94 773 
 94767 
 
 94 760 
 94 753 
 94 747 
 94740 
 94 734 
 
 94727 
 94720 
 
 94714 
 94707 
 94700 
 
 94694 
 94687 
 94 680 
 
 94674 
 94667 
 
 94 660 
 94654 
 94647 
 94 640 
 
 94634 
 
 94627 
 94 620 
 94614 
 94607 
 94 600 
 
 9-94 593 
 
 L. Sin. 
 
 d. 
 
 60 
 
 59 
 58 
 
 57 
 
 55 
 54 
 53 
 52 
 11 
 60 
 
 It 
 
 47 
 J^ 
 45 
 44 
 43 
 42 
 41 
 40 
 
 39 
 38 
 
 _3i 
 35 
 34 
 33 
 32 
 31 
 
 Prop. Pts. 
 
 
 2M 
 
 I 
 
 2 
 
 3 
 4 
 
 32 
 
 6.4 
 
 9.6 
 
 12.8 
 
 16 
 
 6 
 
 19 2 
 
 8^ 
 
 22.4 
 25.6 
 
 9 
 
 28.8 
 
 SI 
 
 II 
 
 9-3 
 
 12.4 
 
 155 
 18.6 
 21 .7 
 24.8 
 27.9 
 
 30 
 
 30 
 
 6 o 
 
 90 
 
 12.0 
 
 15 o 
 
 18.0 
 
 21.0 
 
 24.0 
 
 27.0 
 
 
 as 
 
 I 
 
 2.5 
 
 2 
 
 50 
 
 3 
 
 7 5 
 
 4 
 
 10. 
 
 •5 
 
 12.5 
 
 .6 
 
 15 
 
 .7 
 
 17-5 
 
 .8 
 
 20.0 
 
 9 
 
 22.5 
 
 H 
 
 2.4 
 
 4.8 
 
 7.2 
 
 9.6 
 
 12.0 
 
 14.4 
 
 16.8 
 
 19 2 
 
 21.6 
 
 6.9 
 9.2 
 
 ii? 
 
 18.4 
 20 7 
 
 
 7 
 
 I 
 
 0.7 
 
 2 
 
 14 
 
 3 
 
 2. I 
 
 4 
 
 2.8 
 
 5 
 
 3 5 
 
 6 
 
 4.2 
 
 I 
 
 56 
 
 9 
 
 6.3 
 
 6 
 
 0.6 
 I .2 
 1.8 
 24 
 
 36 
 4.2 
 
 48 
 
 5 4 
 
 Prop. Pfs. 
 
54 
 
 TABLE II 
 
 28^ 
 
 9 67 i6i 
 
 I 
 2 
 3 
 
 i 
 
 7 
 8 
 
 9 
 
 10 
 
 II 
 12 
 13 
 
 II 
 
 ;i 
 
 17 
 
 18 
 
 19 
 20 
 
 21 
 22 
 23 
 ii 
 
 26 
 27 
 28 
 
 80 
 
 31 
 
 L. Sin. 
 
 67185 
 67208 
 67 232 
 67256 
 
 67280 
 
 67303 
 67327 
 
 67350 
 67374 
 
 9.67398 
 9 67421 
 
 9 67445 
 9 67 468 
 
 9 67 492 
 
 9 67515 
 9 67539 
 0.67 562 
 9.67586 
 9 67 609 
 
 9 67 633 
 9 67 656 
 9 . 67 680 
 9.67 703 
 9 67 726 
 
 9 67 750 
 9 67 773 
 9.67 796 
 9 67 820 
 9 67 843 
 9 67866 
 ^_ 9 67 890 
 
 32 967913 
 
 33 967936 
 
 34 9 67959 
 
 36 
 
 I 39 
 
 40 
 
 41 
 42 
 
 43 
 44 
 
 46 
 47 
 48 
 
 49 
 60 
 
 51 
 
 52 
 53 
 ii 
 
 59 
 60 
 
 9 67 982 
 9 68006 
 9 68 029 
 9 68 052 
 9 68 075 
 9.68098 
 9 68 121 
 9 68 144 
 9 68 167 
 9 68 190 
 
 9 68 213 
 9 68 237 
 9 . 68 260 
 9 68 283 
 9 68 305 
 
 9 68 328 
 9 68351 
 9 68 374 
 9 68 397 
 9 68 420 
 "9 68443 
 9.68466 
 9.68489 
 9.68 512 
 9-68 534 
 
 9 68 557 
 
 L. Cos. 
 
 24 
 
 23 
 
 24 
 
 24 
 
 24 
 
 23 
 
 24 
 
 23 
 
 24 
 
 24 
 
 23 
 
 24 
 
 23 
 
 24 
 
 23 
 
 24 
 
 23 
 
 24 
 
 23 
 
 24 
 
 23 
 
 24 
 
 23 
 
 23 
 
 24 
 
 23 
 
 23 
 
 24 
 
 23 
 
 23 
 
 24 
 
 23 
 
 23 
 
 23 
 
 23 
 
 24 
 
 23 
 
 23 
 
 23 
 
 23 
 
 23 
 
 23 
 
 23 
 
 23 
 
 23 
 
 24 
 
 23 
 
 23 
 
 23 
 23 
 23 
 23 
 23 
 23 
 23 
 23 
 23 
 23 
 23 
 23 
 
 L. Tang. 
 
 72567 
 72598 
 72 628 
 72659 
 72689 
 
 9 72 720 
 9 72 750 
 9 72 780 
 9 72 811 
 72 841 
 
 c.d. 
 
 72 872 
 72 902 
 72932 
 72 963 
 72993 
 
 73023 
 
 73 114 
 
 73 144 
 
 73 175 
 73205 
 
 73235 
 73265 
 
 73295 
 
 73326 
 73356 
 73386 
 73416 
 73446 
 
 73476 
 
 73507 
 
 73537 
 
 9 73567 
 
 9 12, 597 
 
 9 73 627 
 9 73 657 
 9.73687 
 
 73 717 
 73 747 
 
 73 777 
 73807 
 73837 
 73867 
 73897 
 
 73927 
 73 957 
 73987 
 74017 
 74047 
 
 9.74077 
 9 74 107 
 9 74 137 
 9 74 166 
 
 9 74 196 
 
 74 226 
 74256 
 74286 
 74316 
 74 345 
 
 9 74 375 
 
 31 
 
 30 
 
 3» 
 30 
 31 
 30 
 30 
 31 
 30 
 31 
 30 
 30 
 31 
 30 
 30 
 31 
 30 
 30 
 30 
 31 
 30 
 30 
 30 
 30 
 31 
 30 
 30 
 30 
 30 
 30 
 
 31 
 30 
 30 
 30 
 30 
 30 
 30 
 30 
 30 
 30 
 
 30 
 30 
 30 
 30 
 30 
 30 
 30 
 30 
 30 
 30 
 
 30 
 30 
 29 
 30 
 30 
 30 
 30 
 30 
 29 
 30 
 
 L. Cotg. 
 
 0.27433 
 0.27 402 
 0.27 372 
 o 27341 
 0.27 311 
 
 0.27 280 
 0.27 250 
 0.27 220 
 0.27 189 
 0.27 159 
 0.27 128 
 0.27 098 
 0.27 068 
 0.27 037 
 0.27 007 
 
 0.26 977 
 o . 26 946 
 0.26 916 
 
 0.26886 
 0.26856 
 
 0.26 825 
 0.26 795 
 0.26 765 
 0.26 735 
 0.26 705 
 
 0.26 674 
 o . 26 644 
 0.26 614 
 0.26 584 
 0.26554 
 
 0.26 524 
 o . 26 493 
 o . 26 463 
 
 0.26433 
 
 o . 26 403 
 
 L. Cos. 
 
 0.26373 
 0.26343 
 0.26 313 
 o . 26 283 
 0.26 253 
 
 o . 26 223 
 
 0.26 193 
 
 0.26 163 
 o 26 133 
 0.26 103 
 
 o 26 073 
 o 26 043 
 0.26 013 
 o 25983 
 o 25953 
 
 25923 
 25893 
 25863 
 
 25 834 
 
 25 804 
 
 0.25 774 
 o 25 744 
 0.25 714 
 o 25 684 
 0.25655 
 
 0.25 625 
 
 L. Cotg. c. d. L. Tang 
 
 61^ 
 
 9 94 593 
 9 94 587 
 9 94 580 
 9 94 573 
 9 94567 
 
 9 94 560 
 9 94553 
 
 9-94 546 
 9 94540 
 9 94 533 
 
 9 94526 
 9 94519 
 9 94513 
 9 94506 
 9 94 499 
 
 9 94492 
 9 94485 
 9 94 479 
 9.94472 
 
 9 94465 
 
 9 94458 
 9-94 451 
 9 94 445 
 9-94 438 
 9 94431 
 
 9 94424 
 9 94417 
 9.94410 
 9.94404 
 9 94 397 
 
 d. 
 
 9 94390 
 9 94383 
 9 94376 
 9 94369 
 9.94362 
 
 9 94 355 
 9 94 349 
 9 94342 
 9-94 335 
 9.94328 
 
 9 94321 
 9 94314 
 9 94307 
 9.94300 
 
 9 94293 
 
 9 . 94 286 
 9.94279 
 
 9 94273 
 9 94 266 
 
 9 94259 
 
 9 94252 
 
 9 94245 
 9 94238 
 9 94 231 
 9 94224 
 
 9 94217 
 9 94 210 
 9 94 203 
 9 94 196 
 9 94 189 
 
 9.94 182 
 
 L. Sin. 
 
 60 
 
 1 
 
 55 
 54 
 53 
 52 
 SL 
 60 
 49 
 48 
 47 
 
 45 
 44 
 43 
 42 
 _4i_ 
 40' 
 39 
 38 
 
 36 
 
 35 
 34 
 33 
 32 
 
 30 
 
 29 
 28 
 27 
 26 
 
 Prop. Pts. 
 
 
 31 1 
 
 I 
 
 .2 
 
 C 
 
 3 
 4 
 
 1 
 
 9 3 
 12.4 
 
 •7 
 .8 
 
 9 
 
 21.7 
 24.8 
 27.9 
 
 30 
 30 
 
 6 O 
 
 9 o 
 
 12 C 
 18 O 
 
 21 .0 
 24.0 
 27.0 
 
 29 
 29 
 58 
 8.7 
 
 II 6 
 14 5 
 17 4 
 20.3 
 23.2 
 26.1 
 
 
 34 
 
 I 
 
 2.4 
 
 2 
 
 4.8 
 
 3 
 
 7.2 
 
 4 
 
 9.6 
 
 • S 
 
 12 
 
 .6 
 
 14 4 
 
 .7 
 
 16.8 
 
 .8 
 
 19.2 
 
 9 
 
 21.6 
 
 23 
 
 6.9 
 92 
 II. 5 
 
 «3 8 
 16 I 
 18 4 
 20.7 
 
 
 7 
 
 I 
 
 0.7 
 
 2 
 
 14 
 
 3 
 
 2.1 
 
 4 
 
 2 8 
 
 5 
 
 3 5 
 
 6 
 
 42 
 
 I 
 
 S 6 
 
 9 
 
 6.3 
 
 sa 
 
 2.2 
 
 4 4 
 6.6 
 8 8 
 no 
 13 2 
 
 176 
 19.8 
 
 Prop. Pts. 
 
LOGARITHMS OF THE TRIGONOMETRIC FUNCTIONS 
 
 55 
 
 29° 1 
 
 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 1. Cotg. 
 
 L. Cos. 
 
 d. 
 
 
 Prop. Pts. 
 
 9 68557 
 
 23 
 
 9 74 375 
 
 
 . 25 625 
 
 9.94 182 
 
 
 ■fiO" 
 
 
 I 
 
 9 
 
 68580 
 
 9 
 
 74405 
 
 
 0.25595 
 
 9 
 
 94175 
 94168 
 
 
 S9 
 
 
 2 
 
 9 
 
 68603 
 
 
 9 
 
 74 435 
 
 
 0.25565 
 
 9 
 
 
 S8 
 
 
 30 
 
 3 
 
 9 
 
 68625 
 
 23 
 23 
 
 9 
 
 74465 
 
 
 0.25535 
 
 9 
 
 94 161 
 
 
 S7 
 
 
 _4 
 
 5 
 
 9 
 
 68648 
 
 9 
 
 74 494 
 
 30 
 
 25 506 
 
 9 
 
 94 154 
 
 
 56 
 
 SS 
 
 
 2 
 
 7 
 
 io 
 9 
 12.0 
 
 9 
 
 68671 
 
 9 
 
 74524 
 
 0.25476 
 
 9 
 
 94147 
 
 6 
 
 9 
 
 68694 
 
 
 9 
 
 74 554 
 
 
 . 25 446 
 
 9 
 
 94140 
 
 
 S4 
 
 
 4 
 
 7 
 
 9 
 
 68716 
 
 
 9 74 583 
 
 29 
 
 0.25417 
 
 9 
 
 94133 
 
 
 S3 
 
 
 5 
 
 15 
 18.0 
 
 8 
 
 9 
 
 68739 
 
 23 
 22 
 
 9 74613 
 
 30 
 
 0.25387 
 
 9 
 
 94126 
 
 
 S2 
 
 
 6 
 
 9 
 10 
 
 9 
 
 68 762 
 
 9 74 643 
 
 30 
 
 0.25357 
 
 9 
 
 94 119 
 
 
 51 
 50 
 
 
 I 
 
 21.0 
 24.0 
 
 9 68 784 
 
 9 
 
 74673 
 
 0.25327 
 
 9 
 
 94 112 
 
 II 
 
 9 68 807 
 
 
 9 
 
 74702 
 
 29 
 
 0.25 298 
 
 9 
 
 94 105 ! 1 
 
 49 
 
 
 9 
 
 27.0 
 
 12 
 
 9 68 829 
 
 
 9 
 
 74732 
 
 
 0.25 268 
 
 9 
 
 94098 
 
 
 48 
 
 1 
 
 13 
 
 9 68 852 
 
 23 
 22 
 
 9 
 
 74762 
 
 30 
 
 0.25 238 
 
 9 
 
 94090 
 
 
 47 
 
 
 14 
 IS 
 
 9 68 875 
 
 9 
 
 74791 
 
 30 
 
 . 25 209 
 
 9 
 
 94083 
 
 
 46 
 4S 
 
 1 
 
 29 
 2.9 
 
 9 68 897 
 
 9 
 
 74821 
 
 0.25 179 
 
 9 
 
 94076 
 
 
 I 
 
 i6 
 
 9 68 920 
 
 
 9 
 
 74851 
 
 30 
 
 0.25 149 
 
 9 
 
 94069 
 
 
 44 
 
 
 2 
 
 17 
 
 9 
 
 68942 
 
 
 9 
 
 74880 
 
 29 
 
 0.25 120 
 
 9 
 
 94062 
 
 
 43 
 
 
 3 
 
 8-7 
 II. 6 
 
 i8 
 
 9 
 
 68965 
 
 
 9 
 
 74910 
 
 30 
 
 0.25 090 
 
 9 
 
 94055 
 
 
 42 
 
 
 4 
 
 19 
 
 2r 
 
 9 
 
 68987 
 
 23 
 
 9 
 
 74 939 
 
 29 
 30 
 
 0.25 061 
 
 9 
 
 94048 
 
 
 41 
 40 
 
 
 •s^ 
 
 145 
 17 4 
 20.3 
 
 '41 
 
 9 
 
 69 010 
 
 9 
 
 74969 
 
 0.25 031 
 
 9 
 
 94041 
 
 21 
 
 9 
 
 69032 
 
 
 9 
 
 74998 
 
 
 0.25 002 
 
 9 
 
 94034 
 
 7 
 
 39 
 
 
 22 
 
 9 
 
 69055 
 
 
 9 
 
 75028 
 
 
 0.24972 
 
 9 
 
 94027 
 
 
 38 
 
 
 
 23 
 
 9 
 
 69077 
 
 
 9 
 
 75058 
 
 30 
 
 0.24942 
 
 9 
 
 94020 
 
 
 37 
 
 
 
 24 
 
 25 
 
 9 
 
 69 100 
 
 22 
 
 9 
 
 75087 
 
 29 
 
 30 
 
 0.24913 
 
 9 
 
 94012 
 
 
 36 
 3S 
 
 1 
 
 9 
 
 69 122 
 
 9 
 
 75 117 
 
 0.24883 
 
 9 
 
 94005 
 
 
 23 
 
 26 
 
 9 
 
 69 144 
 
 
 9 
 
 75 146 
 
 29 
 
 0.24 854 
 
 9 
 
 93998 
 
 
 34 
 
 T 
 
 1:1 
 69 
 9.2 
 
 27 
 
 9 
 
 69 167 
 
 
 9 
 
 75 176 
 
 
 . 24 824 
 
 9 
 
 93991 
 
 
 33 
 
 
 
 
 28 
 
 9 
 
 69 189 
 
 
 9 
 
 75 205 
 
 29 
 
 0.24795 
 
 9 
 
 93984 
 
 
 32 
 
 
 •3 
 • 4 
 
 29 
 
 30 
 
 9 
 
 69 212 
 
 22 
 
 9 
 
 75235 
 
 30 
 29 
 
 0.24765 
 
 9 
 
 93 977 
 
 
 31 
 30 
 
 
 9 
 
 69234 
 
 9 
 
 75264 
 
 0.24736 
 
 9 
 
 93970 
 
 31 
 
 9 69256 
 
 
 9 
 
 75294 
 
 30 
 
 0.24 706 
 
 9 
 
 93963 
 
 
 29 
 
 
 6 
 
 32 
 
 9 69279 
 
 23 
 
 9 
 
 75323 
 
 29 
 
 0.24677 
 
 9 
 
 93 955 
 
 
 28 
 
 
 y 
 
 16. 1 
 
 33 
 
 9 
 
 69301 
 
 
 9 
 
 75 353 
 
 30 
 
 0.24647 
 
 9 
 
 93948 
 
 
 27 
 
 
 g 
 
 18.4 
 
 34 
 
 3S 
 
 9 
 
 69323 
 
 22 
 
 9 
 
 75382 
 
 29 
 29 
 
 0.24 618 
 
 9 
 
 93 941 
 
 
 26 
 25 
 
 
 .9 
 
 20.7 
 
 9 
 
 69345 
 69 368 
 
 9 
 
 75 411 
 
 0.24589 
 
 9 
 
 93 934 
 
 1 
 
 36 
 
 9 
 
 
 9 
 
 75441 
 
 30 
 
 0.24559 
 
 9 
 
 93927 
 
 
 24 
 
 1 
 
 37 
 
 9 
 
 69390 
 
 
 9 
 
 75470 
 
 29 
 
 0.24530 
 
 9 
 
 93920 
 
 
 23 
 
 
 aa 
 
 3« 
 
 9 
 
 69412 
 
 
 9 
 
 75 500 
 
 30 
 
 . 24 500 
 
 9 
 
 93912 
 
 
 22 
 
 . I 
 
 2.2 
 
 39 
 40 
 
 9 
 
 9 
 
 69434 
 
 22 
 
 9 
 
 75529 
 
 29 
 29 
 
 0.24471 
 
 9 
 
 93905 
 
 
 21 
 20 
 
 
 .2 
 
 .3 
 
 44 
 6.6 
 
 69456 
 
 9 
 
 •75558 
 
 0.24442 
 
 9 
 
 93898 
 
 41 
 
 9 
 
 69479 
 
 23 
 
 9 
 
 75588 
 
 30 
 
 0.24412 
 
 9 
 
 93?9i 
 
 
 19 
 
 
 • 4 
 
 8.8 
 
 42 
 
 9 
 
 69501 
 
 
 9 
 
 75617 
 
 29 
 
 0.24383 
 
 9 
 
 93884 
 
 
 18 
 
 
 
 II. 
 
 43 
 
 9 
 
 •69 523 
 
 
 9 
 
 75647 
 
 30 
 
 0.24353 
 
 9 
 
 93876 
 
 
 17 
 
 
 6 
 
 13.2 
 
 44 
 45 
 
 9 
 
 69545 
 
 22 
 
 9 
 
 • 75 676 
 
 29 
 29 
 
 0.24324 
 
 9 
 
 93869 
 
 
 16 
 15 
 
 
 :l 
 
 17.6 
 
 9 
 
 69567 
 
 9 
 
 •75 705 
 
 0.24295 
 
 9 
 
 93 862 
 
 46 
 
 9 
 
 .69589 
 
 
 9 
 
 • 75 735 
 
 30 
 
 0.24 265 
 
 9 
 
 93 855 
 
 
 14 
 
 
 9 
 
 19.8 
 
 47 
 
 9 
 
 69 611 
 
 
 9 
 
 ■ 75 764 
 
 29 
 
 0.24236 
 
 9 
 
 93847 
 
 
 13 
 
 1 
 
 48 
 
 9 
 
 69633 
 
 
 9 
 
 •75 793 
 
 29 
 
 . 24 207 
 
 9 
 
 93840 
 
 
 12 
 
 1 
 
 49 
 50 
 
 _9 
 9 
 
 69655 
 
 22 
 
 9 
 
 .75822 
 
 29 
 30 
 
 0.24 178 
 
 9 
 
 93833 
 
 
 II 
 10 
 
 I 
 
 8 
 
 0.8 
 
 7 
 
 0.7 
 
 .69677 
 
 9 
 
 .75852 
 
 0.24 148 
 
 9 
 
 .93826 
 
 SI 
 
 9 
 
 .69699 
 
 
 9 
 
 .75881 
 
 29 
 
 0.24 119 
 
 9 
 
 93819 
 
 
 9 
 
 
 2 
 
 lb 
 
 14 
 
 S2 
 
 9 
 
 .69 721 
 
 
 9 
 
 75910 
 
 29 
 
 . 24 090 
 
 9 
 
 93 811 
 
 
 8 
 
 
 3 
 
 2.4 
 
 2.1 
 
 S3 
 
 9 
 
 69 743 
 
 
 9 
 
 75 939 
 
 29 
 
 0.24061 
 
 9 
 
 93804 
 
 
 7 
 
 
 4 
 
 32 
 
 2.8 
 
 54 
 SS 
 
 9 
 
 69 765 
 
 22 
 
 9 
 
 75 969 
 
 30 
 29 
 
 . 24 03 1 
 
 9 
 
 93 797 
 
 
 b 
 5 
 
 
 I 
 
 It 
 
 73 
 
 3 b 
 4.2 
 
 49 
 
 9 
 
 69787 
 
 9 
 
 75998 
 
 . 24 002 
 
 9 
 
 93789 
 
 S6 
 
 9 
 
 69809 
 
 
 9 
 
 .76027 
 
 29 
 
 0.23973 
 
 9 
 
 93 782 
 
 
 4 
 
 
 57 
 
 9 
 
 69831 
 
 
 9 
 
 76 056 
 
 29 
 
 0.23944 
 
 9 
 
 W 
 
 
 3 
 
 
 
 SB 
 
 9 
 
 69853 
 
 
 9 
 
 . 76 086 
 
 30 
 
 0.23914 
 
 9 
 
 8 
 7 
 
 2 
 
 y 1 
 
 59 
 
 9 
 
 .69875 
 
 22 
 
 9 
 
 .76115 
 
 29 
 29 
 
 0.23885 
 
 9 
 
 93760 
 
 I 
 
 
 
 9 
 
 .69897 
 
 9 
 
 76144 
 
 0.23856 
 
 9 
 
 93 753 
 
 L. Cos. 
 
 ~ 
 
 L. Cotg. 
 
 c.d. 
 
 L. Tangi 
 
 L. Sin. 
 
 d. 
 
 / 
 
 Prop. Pts. 
 
 60^ 1 
 
56 
 
 TABLE II 
 
 30^ 
 
 
 
 I 
 
 2 
 
 3 
 
 i 
 
 7 
 8 
 
 _9_ 
 
 10 
 
 II 
 
 12 
 
 13 
 
 M 
 
 19 
 20 
 
 21 
 22 
 23 
 24 
 
 26 
 27 
 28 
 29 
 
 30 
 
 31 
 32 
 33 
 34 
 
 36 
 37 
 3« 
 39 
 40 
 41 
 42 
 43 
 44 
 
 46 
 
 47 
 48 
 
 49 
 
 60 
 
 51 
 
 52 
 53 
 
 il 
 
 i2. 
 00 
 
 L. Sin, 
 
 69897 
 69919 
 69941 
 69963 
 69 984 
 
 70 006 
 70028 
 70 050 
 70 072 
 70093 
 
 70 115 
 70137 
 
 70159 
 70 180 
 70 202 
 
 70 224 
 
 70245 
 70 267 
 76288 
 70310 
 
 70332 
 70353 
 70375 
 70396 
 70418 
 
 70439 
 70461 
 70 482 
 70504 
 70525 
 
 70547 
 70568 
 70590 
 70 611 
 70633 
 
 70654 
 70675 
 70697 
 70 718 
 70 739 
 
 70 761 
 70 782 
 70803 
 70 824 
 70 846 
 
 70867 
 70888 
 70 909 
 70931 
 70952 
 
 70973 
 70994 
 71 015 
 71 036 
 71058 
 
 71 079 
 71 100 
 71 121 
 71 142 
 71 163 
 
 71 184 
 
 L. Cos. 
 
 d. 
 
 L. Tally. 
 
 76 144 
 76 173 
 76 202 
 76231 
 76 261 
 
 76 290 
 76319 
 76348 
 76377 
 76 406 
 
 76435 
 76464 
 
 76493 
 76 522 
 
 76551 
 
 76580 
 76 609 
 76639 
 76668 
 76697 
 
 76725 
 76 754 
 76 1^2> 
 76812 
 76841 
 
 76870 
 76899 
 76928 
 
 76957 
 76986 
 
 77015 
 
 77044 
 77073 
 77 101 
 77 130 
 
 77 159 
 77188 
 77217 
 77246 
 77274 
 
 77303 
 77332 
 77361 
 7739c 
 77418 
 
 77 447 
 77476 
 77505 
 77 533 
 77562 
 
 77591 
 77619 
 77648 
 
 77677 
 77706 
 
 77 734 
 77 763 
 77791 
 77 820 
 77^^49 
 
 77877 
 
 d. L. Cotg. 
 
 c. d. 
 
 L. Cotg. 
 
 o 23 856 
 o 23 827 
 0.23 798 
 0.23 769 
 0.23 739 
 
 0.23 710 
 0.23 681 
 0.23 652 
 0.23 623 
 0.23 594 
 
 0.23565 
 0.23 536 
 0.23 507 
 0.23478 
 0.23449 
 
 o . 23 420 
 0.23391 
 0.23 361 
 0.23332 
 0.23303 
 
 0.23 275 
 0.23 246 
 0.23 217 
 0.23 188 
 o 23 159 
 
 0.23 130 
 0.23 lOI 
 
 0.23 072 
 
 0.23043 
 0.23014 
 
 . 22 985 
 O 22 956 
 O 22 927 
 O 22 899 
 0.22 870 
 
 c. d. 
 
 O 22 841 
 O 22 812 
 O 22 783 
 0.22 754 
 0.22 726 
 
 0.22 697 
 . 22 668 
 . 22 639 
 0.22 610 
 O 22 582 
 
 0.22553 
 0.22 524 
 . 22 495 
 O 22 467 
 . 22 438 
 
 0.22 409 
 O 22 381 
 O 22 352 
 . 22 323 
 O 22 294 
 
 0.22 266 
 0.22 237 
 . 22 209 
 O 22 180 
 0.22 151 
 
 0.22 123 
 
 L. Tang. 
 
 59^ 
 
 L. Cos. 
 
 d. 
 
 60 
 
 9 93 753 
 
 
 9 
 
 93 746 
 
 
 59 
 
 9 
 
 93738 
 
 
 58 
 
 9 
 
 93 731 
 
 
 S7 
 
 9 
 
 93 724 
 
 7 
 
 56 
 
 9 
 
 93 717 
 
 55 
 
 9 
 
 93 709 
 
 
 54 
 
 9 
 
 93 702 
 
 
 S^ 
 
 9 
 
 93695 
 
 
 52 
 
 9 
 
 93687 
 
 51 
 50 
 
 9 93 680 
 
 9 93 673 
 
 
 49 
 
 9 93665 
 
 48 
 
 9 
 
 93 658 
 
 
 47 
 
 9 
 
 93650 
 
 46 
 4S 
 
 9 
 
 93643 
 
 9 
 
 93636 
 
 
 44 
 
 9 
 
 93 628 
 
 4^ 
 
 9 
 
 93621 
 
 
 42 
 
 9 
 
 93614 
 
 
 41 
 40 
 
 9 
 
 93606 
 
 9 
 
 93 599 
 
 
 39 
 
 9 
 
 93591 
 
 S8 
 
 9 
 
 93584 
 
 
 37 
 
 9 
 
 93 577 
 
 
 36 
 
 35 
 
 9 
 
 93569 
 
 9 
 
 93562 
 
 
 34 
 
 9 
 
 93 554 
 
 33 
 
 9 
 
 93 547 
 
 
 32 
 
 9 
 
 93 539 
 
 31 
 30 
 
 9 
 
 93532 
 
 9 
 
 93525 
 
 
 29 
 
 9 
 
 93517 
 
 28 
 
 9 
 
 93510 
 
 
 27 
 
 9 
 
 93502 
 
 26 
 
 25 
 
 9 
 
 93 495 
 
 9 
 
 93487 
 
 24 
 
 9 
 
 93480 
 
 
 23 
 
 9 
 
 93472 
 
 22 
 
 9 
 
 93465 
 
 
 21 
 20 
 
 9 
 
 93 457 
 
 9 
 
 93450 
 
 
 19 
 
 9 
 
 93442 
 
 18 
 
 9 
 
 93 435 
 
 
 17 
 
 9 
 
 93427 
 
 16 
 15 
 
 9 
 
 93420 
 
 9 
 
 93412 
 
 14 
 
 9 
 
 93405 
 
 
 13 
 
 9 
 
 93 397 
 
 12 
 
 9 
 
 93390 
 
 
 II 
 10 
 
 9 
 
 93382 
 
 9 
 
 93 375 
 
 
 9 
 
 9 
 
 93367 
 
 
 8 
 
 9 
 
 93360 
 
 
 7 
 
 9 
 
 93352 
 
 6 
 
 5 
 
 9 
 
 93 344 
 
 9 
 
 9Z2,i1 
 
 
 4 
 
 9 
 
 93329 
 
 3 
 
 9 
 
 93322 
 
 d. 
 
 2 
 
 9 
 
 93314 
 
 
 
 9 
 
 93307 
 
 L. Sin. 
 
 Prop. Pts. 
 
 
 30 
 
 I 
 
 3 
 
 2 
 
 6.0 
 
 3 
 
 9.0 
 
 4 
 
 12.0 
 
 
 15.0 
 
 6 
 
 18 
 
 7 
 
 21.0 
 
 8 
 
 24.0 
 
 9 
 
 27.0 
 
 2.9 
 8 
 
 7 
 6 
 
 5 
 4 
 
 5 
 
 8 
 II 
 14 
 17 
 20.3 
 23.2 
 26.1 
 
 28 
 28 
 
 
 8 
 
 .1 
 
 0.8 
 
 .2 
 
 r 6 
 
 3 
 
 2.4 
 
 4 
 
 32 
 
 1; 
 
 4.0 
 
 6 
 
 48 
 
 i 
 
 l\ 
 
 9 
 
 7-2! 
 
 23 
 2 2 
 
 4 4 
 6 6 
 8.8 
 
 II. o 
 
 13.2 
 
 17 6 
 19.8 
 
 ai 
 2.1 
 
 42 
 
 8.4 
 
 12.6 
 
 14 7 
 16 8 
 18.9 
 
 Prop. Pts. 
 
LOGARITHMS OF THE TRIGONOMETRIC FUNCTIONS 
 
 57 
 
 31° 1 
 
 
 L. Sin. 
 
 d. 
 
 L. Tang. c. d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 d. 
 
 
 Prop. Pts. 
 
 9 71 184 
 
 
 977877 ,„ 
 
 0.22 123 
 
 9 93307 
 
 g 
 
 60 
 
 
 I 
 
 9 71 205 
 
 
 9 77 906 
 
 29 
 
 28 
 
 . 22 094 
 
 9.93299 
 
 3 
 
 59 
 
 
 2 
 
 9 71 226 
 
 
 9 77 935 
 
 . 22 065 
 
 9 93291 
 
 
 58 
 
 
 33 
 
 ^ 
 
 9 71 247 
 
 
 9 77 963 
 
 
 0.22037 
 
 9 93 284 
 
 Q 
 
 57 
 
 T 
 
 2 9 
 
 
 9 71 268 
 
 21 
 
 9 77 992 
 
 28 
 29 
 28 
 
 22 008 
 
 9 93276 
 
 7 
 8 
 
 56 
 
 55 
 
 
 2 
 
 3 
 
 9 71 289 
 
 9 78 020 
 
 0,21 980 
 
 9.93269 
 
 6 
 
 9 71 310 
 
 21 
 
 9 78049 
 
 0.21 951 
 
 9.93261 
 
 8 
 
 54 
 
 
 4 
 
 II 6 
 
 7 
 
 9 71 331 
 
 
 9 78 077 
 
 
 21 923 
 
 9-93 253 
 
 
 53 
 
 
 
 14 5 
 
 8 
 
 9 
 
 10 
 
 9 71 352 
 9 71 373 
 
 21 
 20 
 
 9 78 106 
 9 78135 
 
 29 
 28 
 
 0.21 894 
 0.21 865 
 
 9.93246 
 9-93 238 
 
 8 
 8 
 
 52 
 51 
 60 
 
 
 7 
 8 
 
 17 4 
 20 3 
 23.2 
 
 9 71 393 
 
 9 78 163 
 
 21 837 
 
 9 93230 
 
 II 
 
 9 71 414 
 
 
 9.78 192 
 
 28 
 
 21 808 
 
 9.93223 
 
 8 
 
 49 
 
 
 9 
 
 26.1 
 
 12 
 
 9 71 435 
 
 
 9 78 220 
 
 
 31 780 
 
 9 93215 
 
 8 
 
 .48 
 
 1 
 
 n 
 
 9 71 456 
 
 
 9 78 249 
 
 
 21 751 
 
 9.93207 
 
 
 47 
 
 
 15 
 
 9 71 477 
 
 21 
 
 9.78277 
 
 29 
 28 
 
 21 723 
 
 9 93200 
 
 8 
 8 
 
 46 
 
 45 
 
 
 28 
 2 8 
 ^.6 
 8.4 
 
 9 71 498 
 
 9.78306 
 
 0.21 694 
 
 9 93 192 
 
 
 I 
 
 16 
 
 9 
 
 71 519 
 
 
 9 78 334 
 
 0.21 666 
 
 9 93 184 
 
 44 
 
 
 2 
 
 •7 
 
 9 
 
 71 539 
 
 
 9 78363 
 
 29 
 28 
 28 
 29 
 28 
 
 21 637 
 
 9 93 177 
 
 8 
 8 
 7 
 8 
 8 
 
 43 
 
 
 3 
 
 18 
 
 9 
 
 71 560 
 
 ^ 
 
 9.78391 
 
 0.21 609 
 
 9 93 169 
 
 42 
 
 
 4 
 
 II .2 
 
 19 
 20 
 
 9 
 
 71 581 
 
 21 
 
 9.78419 
 
 0.21 581 
 
 9 93 161 
 
 41 
 40 
 
 
 I 
 
 14.0 
 16.8 
 19 6 
 22 4 
 25.2 
 
 9 
 
 71 602 
 
 9.78448 
 
 0.21 552 
 
 9 93 154 
 
 21 
 
 9 
 
 71 622 
 
 
 9.78476 
 
 0.21 524 
 
 9 93 146 
 
 39 
 
 
 22 
 
 9 
 
 71 643 
 
 
 9 78505 
 
 29 
 28 
 
 0.21 495 
 
 9 93 138 
 
 38 
 
 
 
 23 
 
 9 
 
 71664 
 
 
 9 78533 
 
 0.21 467 
 
 9 93 131 
 
 7 
 8 
 8 
 
 37 
 
 •y 
 
 24 
 
 2S 
 
 9 
 
 71685 
 
 20 
 
 9.78562 
 
 29 
 28 
 28 
 
 0.21 438 
 
 9 93 123 
 
 36 
 
 35 
 
 1 
 
 9 
 
 71 705 
 
 9 78 590 
 
 0.21 410 
 
 9 93 "5 
 
 
 
 26 
 
 9 
 
 71 726 
 
 
 9.78618 
 
 0.21 382 
 
 9.93 108 
 
 7 
 
 34 
 
 
 2 I 
 
 27 
 
 9 
 
 71 747 
 
 
 9 78 647 
 
 29 
 28 
 
 0.21 353 
 
 9.93 100 
 
 8 
 8 
 7 
 8 
 8 
 8 
 
 33 
 
 
 
 4.2 
 
 8.4 
 
 10 5 
 
 28 
 
 9 
 
 71 767 
 
 
 9.78675 
 
 0.21 325 
 
 9.93092 
 
 32 
 
 
 3 
 • 4 
 
 .5 
 
 29 
 
 30 
 
 9 
 
 71788 
 
 21 
 
 9 78 704 
 
 29 
 28 
 28 
 
 0.21 296 
 
 9.93084 
 
 31 
 30 
 
 
 9 
 
 71 809 
 
 9.78732 
 
 0.21 268 
 
 9.93077 
 
 31 
 
 9 
 
 71 829 
 
 
 9,78 760 
 
 0.21 240 
 
 9.93069 
 
 29 
 
 
 .6 
 
 12.6 
 
 32 
 
 9 71 850 
 
 
 9,78789 
 
 29 
 28 
 28 
 29 
 28 
 28 
 
 0.21 211 
 
 9.93061 
 
 28 
 
 
 .7 
 
 14 7 
 
 ,1S 
 
 9 71 870 
 
 
 9.78817 
 
 0.21 183 
 
 9-93 053 
 
 27 
 
 
 .8 
 
 16.8 
 
 34 
 
 3S 
 
 9 71 891 
 
 20 
 
 9.78845 
 
 0.21 155 
 
 9.93046 
 
 8 
 
 26 
 
 25 
 
 
 9 
 
 18.9 
 
 9 71 911 
 
 9.78874 
 
 0.21 126 
 
 9-93 038 
 
 1 
 
 ^^ 
 
 9 71 932 
 
 
 9.78902 
 
 0.21 098 
 
 9.93030 
 
 
 24 
 
 1 
 
 37 
 
 9 71 952 
 
 
 9.78930 
 
 0.21 070 
 
 9.93022 
 
 8 
 
 23 
 
 
 • 20 
 
 3« 
 
 9 
 
 71 973 
 
 
 9 78959 
 
 29 
 28 
 28 
 28 
 
 0.21 041 
 
 9.93014 
 
 22 
 
 J 
 
 2.0 
 
 39 
 40 
 
 9 
 
 71 994 
 
 20 
 
 9 78987 
 
 0.21 013 
 
 9.93007 
 
 8 
 
 Q 
 
 21 
 20 
 
 
 .2 
 ■ 3 
 
 40 
 6.0 
 
 9 
 
 72014 
 
 9.79015 
 
 . 20 985 
 
 9.92999 
 
 41 
 
 9 
 
 72034 
 
 
 9 79043 
 
 0.20957 
 
 9.92991 
 
 Q 
 
 19 
 
 
 • 4 
 
 8.0 
 
 42 
 
 9 
 
 72055 
 
 
 9 • 79 072 
 
 29 
 
 0.20 928 
 
 9.92983 
 
 
 18 
 
 
 .5 
 
 10.0 
 
 43 
 
 9 
 
 72075 
 
 
 9.79 100 
 
 
 . 20 900 
 
 9.92976 
 
 8 
 8 
 8 
 
 Q 
 
 17 
 
 
 .6 
 
 12.0 
 
 _4£_ 
 4S 
 
 9 
 
 72096 
 
 20 
 
 9.79 128 
 
 28 
 
 0.20 872 
 
 9.92 968 
 
 16 
 15 
 
 
 •7 
 .8 
 
 14.0 
 16.0 
 18.0 
 
 9 
 
 72 116 
 
 9 79156 
 9 79 185 
 
 . 20 844 
 
 9.92960 
 
 46 
 
 9 
 
 72 137 
 
 
 29 
 28 
 
 0.20 815 
 
 9.92952 
 
 14 
 
 
 •9 
 
 47 
 
 9 
 
 72 157 
 
 
 9.79213 
 
 0.20 787 
 
 9.92944 
 
 D 
 
 13 
 
 1 
 
 48 
 
 9 
 
 72 177 
 
 
 9 79 241 
 
 
 0.20759 
 
 9.92936 
 
 
 12 
 
 1 
 
 49 
 50 
 
 9 
 
 72 198 
 
 20 
 
 9 79 269 
 
 28 
 28 
 
 20 731 
 
 9.92929 
 
 7 
 
 8 
 8 
 8 
 8 
 8 
 8 
 
 10 
 
 .1 
 
 8 
 0.8 
 
 7 
 07 
 
 9 
 
 .72218 
 
 9.79297 
 
 0.20 703 
 
 9.92-921 
 
 51 
 
 9 
 
 .72238 
 
 
 9 79 326 
 
 29 
 
 . 20 674 
 
 9 92913 
 
 9 
 
 
 2 
 
 I.b 
 
 14 
 
 •ia 
 
 9 
 
 72 259 
 
 
 9 79 354 
 
 
 . 20 646 
 
 9.92905 
 
 8 
 
 
 3 
 
 2.4 
 
 2. I 
 
 S3 
 
 9 
 
 .72 279 
 
 
 9.79382 
 
 28 
 
 0.20618 
 
 9.92897 
 
 7 
 
 
 4 
 
 32 
 
 2 8 
 
 54 
 SS 
 
 9 
 
 72 299 
 
 21 
 
 9.79410 
 
 28 
 28 
 
 . 20 590 
 
 9 92 889 
 
 6 
 
 5 
 
 
 6 
 
 4.0 
 
 3 b 
 
 4 2 
 4 9 
 
 9 72 320 
 
 9 -79 438 
 
 0.20 562 
 
 9.92881 
 
 ,S6 
 
 9 72 340 
 
 
 9.79466 
 
 28 
 
 0.20534 
 
 9 92874 
 
 7 
 
 4 
 
 
 I 
 
 S7 
 
 9.72360 
 
 
 9 79 495 
 
 29 
 
 . 20 505 
 
 9.92866 
 
 
 3 
 
 
 Sb 
 
 9 72 381 
 
 
 9 79523 
 
 28 
 
 0.20477 
 
 9.92858 
 
 
 2 
 
 y 1 
 
 / ■^ *' Ji 
 
 59 
 00 
 
 9 72 401 
 
 20 
 
 9 79551 
 
 28 
 28 
 
 . 20 449 
 
 9 92 850 
 
 8 
 
 I 
 
 
 
 
 9.72421 
 
 9 79 579 
 
 0.20421 
 
 9 . 92 842 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. 
 
 c.d. 
 
 L. Tang. 
 
 L. Sin. 
 
 d. 
 
 Prop. Pts. 
 
 
 58^ 
 
 
 1 
 
58 
 
 TABLE II 
 
 32° 1 
 
 — 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 d. 
 
 60 
 
 Prop. Pte. 
 
 9.72421 
 
 
 9-79 579 
 
 28 
 
 0.20 421 
 
 9.92842 
 
 8 
 8 
 8 
 8 
 7 
 8 
 
 
 
 9.72441 
 
 
 9.79607 
 
 
 0.20393 
 
 9.92834 
 
 59 
 
 
 2 
 
 9 72 461 
 
 
 9 79635 
 
 28 
 
 0.20 365 
 
 9.92 826 
 
 58 
 
 
 29 38 
 2.9 2.8 
 58 5-6 
 8.7 8.4 
 
 3 
 4 
 
 s 
 
 9 72482 
 9 72 502 
 
 20 
 20 
 
 9.79663 
 9.79691 
 
 28 
 28 
 28 
 
 20337 
 
 20 309 
 
 9.92 818 
 9 92 810 
 
 u 
 
 55 
 
 2 
 3 
 
 9.72522 
 
 9.79719 
 
 0.20 281 
 
 9 92 803 
 
 6 
 
 9.72542 
 
 
 9-79 747 
 
 
 0.20 253 
 
 9 92 795 
 
 8 
 
 54 
 
 4 
 
 II .6 II .2 
 
 7 
 
 9 72 562 
 
 
 9 79 776 
 
 28 
 
 0.20 224 
 
 9 92787 
 
 53 
 
 
 14. c 
 
 I4.0 
 
 8 
 
 9 72582 
 
 
 9.79804 
 
 28 
 
 0.20 196 
 
 9 92 779 
 
 
 52 
 
 6 
 
 17 4 16 8 
 
 9 
 10 
 
 9 . 72 602 
 
 20 
 
 9.79832 
 
 28 
 
 0.20 168 
 
 9.92771 
 
 8 
 8 
 8 
 8 
 8 
 8 
 8 
 8 
 8 
 
 51 
 50 
 
 •7 
 8 
 
 20.3 19.6 
 23 2 22.4 
 
 9 72 622 
 
 9 . 79 860 
 
 0.20 140 
 
 9 92763 
 
 II 
 
 9.72643 
 
 
 9.79888 
 
 28 
 
 0.20 112 
 
 9 92 755 
 
 49 
 
 9 
 
 26.] 
 
 I252 
 
 12 
 
 9 72 663 
 
 
 9.79916 
 
 28 
 
 0.20084 
 
 9 92 747 
 
 48 
 
 1 
 
 M 
 
 9 72683 
 
 
 9-79 944 
 
 28 
 
 0.20 056 
 
 9 92 739 
 
 47 
 
 1 
 
 14 
 
 9 72 703 
 
 20 
 
 9.79972 
 
 28 
 28 
 
 . 20 028 
 
 9.92 731 
 
 46 
 
 45 
 
 I 
 
 37 
 
 2.7 
 
 9 72 723 
 
 9.80000 
 
 0.20000 
 
 9.92 723 
 
 i6 
 
 9 72 743 
 
 
 9.80028 
 
 28 
 
 0.19972 
 
 9.92 715 
 
 44 
 
 .2 
 
 5 4 
 
 17 
 
 9.72 763 
 
 
 9 . 80 056 
 
 
 19944 
 
 9.92 707 
 
 43 
 
 3 
 
 8.1 
 
 i8 
 
 9 72 783 
 
 
 9.80084 
 
 28 
 28 
 28 
 
 0.19 916 
 
 9.92699 
 
 42 
 
 4 10. 
 
 '9 
 20 
 
 9.72803 
 
 20 
 
 9.80 112 
 
 0.19888 
 
 9.92691 
 
 8 
 8 
 8 
 8 
 8 
 8 
 8 
 8 
 8 
 8 
 8 
 8 
 8 
 
 41 
 40 
 
 I lit 
 
 9.72823 
 
 9.80 140 
 
 0.19 860 
 
 9.92683 
 
 21 
 
 9.72843 
 
 
 9.80 168 
 
 0.19 832 
 
 9 92675 
 
 39 
 
 22 
 
 9 72863 
 
 20 
 
 9.80195 
 
 
 0. 19 805 
 
 9,92667 
 
 38 
 
 9 24.3 
 
 2^ 
 
 9 72883 
 
 
 9.80223 
 
 28 
 
 19777 
 
 9 92659 
 
 37 
 
 25 
 
 9.72902 
 
 20 
 
 9.80251 
 
 28 
 ,0 
 
 0.19749 
 
 9 92651 
 
 36 
 
 35 
 
 
 9.72922 
 
 9.80279 
 
 0.19 721 
 
 9.92643 
 
 
 21 1 90 1 
 
 26 
 
 9.72942 
 
 
 9.80307 
 
 _Q 
 
 19 693 
 
 9 92635 
 
 34 
 
 J 
 
 
 
 I 20 
 
 27 
 
 9.72962 
 
 
 9-80335 
 
 28 
 28 
 28 
 
 0,19 665 
 
 9.92627 
 
 33 
 
 
 
 4 
 
 6. 
 
 8. 
 
 10. 
 
 2 40 
 
 3 6.0 
 
 4 8.0 
 
 5 10.0 
 
 28 
 29 
 
 30 
 
 9.72982 
 9.73002 
 
 20 
 20 
 
 9.80363 
 9.80391 
 
 0.19637 
 0.19 609 
 
 9 92 619 
 9.92 611 
 
 32 
 31 
 30 
 
 3 
 4 
 
 9.73022 
 
 9.80419 
 
 0.19 581 
 
 9 92 603 
 
 ^i 
 
 9.73041 
 
 
 9.80447 
 
 
 o- 19 553 
 
 9 92 595 
 
 29- 
 
 5 
 
 12. 
 
 6 12.0 
 
 32 
 
 9.73061 
 
 
 9.80474 
 
 27 
 28 
 
 0.19526 
 
 9.92587 
 
 28 
 
 .7 
 
 14 
 
 7 14 
 
 33 
 
 9.73081 
 
 
 9.80 502 
 
 
 0.19498 
 
 9 92579 
 
 8 
 8 
 8 
 
 27 
 
 .8 
 
 16. 
 
 8 16.0 
 
 34 
 
 35 
 
 9 73 loi 
 
 20 
 
 9.80530 
 
 28 
 
 28 
 
 0.19470 
 
 9.92571 
 
 26 
 
 25 
 
 9 
 
 18. 
 
 9 18.0 
 
 9 73 121 
 
 9.80558 
 
 0.19442 
 
 9 92563 
 
 
 36 
 
 9 73 140 
 
 
 9.80586 
 
 28 
 28 
 27 
 
 28 
 28 
 
 „Q 
 
 0.19 414 
 
 9 92555 
 
 24 
 
 1 
 
 37 
 
 9.73 160 
 
 
 9.80 614 
 
 0.19386 
 
 9.92546 
 
 9 
 8 
 8 
 8 
 8 
 8 
 8 
 8 
 8 
 
 23 
 
 
 19 
 
 1 9 
 
 3« 
 39 
 40 
 
 41 
 
 9.73180 
 9.73200 
 
 20 
 20 
 
 9 . 80 642 
 9.80669 
 
 o. 19 358 
 0.19 331 
 
 9 92538 
 9 92530 
 
 22 
 21 
 20 
 
 19 
 
 .1 
 
 .2 
 
 3 
 .4 
 
 3 
 
 5- 
 7- 
 
 9 0.9 
 
 8 1.8 
 7 2.7 
 6 3.6 
 
 9.73219 
 9 -73 239 
 
 9.80697 
 9-80725 
 
 0.19303 
 0.19275 
 
 9.92522 
 9.92514 
 
 42 
 
 9 73259 
 
 
 9-80753 
 9.80 781 
 
 28 
 
 0.19247 
 
 9.92506 
 
 18 
 
 .5 
 
 9 
 
 5 4 5 
 
 43 
 
 9.73278 
 
 
 0.19 219 
 
 9.92498 
 
 17 
 
 .6 
 
 II 
 
 4 5 4 
 
 44 
 4S 
 
 9.73298 
 
 20 
 
 9.80808 
 
 28 
 28 
 28 
 
 0.19 192 
 
 9.92490 
 
 16 
 15 
 
 ■I 
 
 13 
 15 
 
 3 6.3 
 2 7.2 
 
 9 73318 
 
 9.80836 
 
 0.19 164 
 
 9 92 482 
 
 46 
 
 9 73 337 
 
 ^9 
 
 9.80864 
 
 0.19 136 
 
 9 92473 
 
 9 
 8 
 8 
 8 
 8 
 8 
 8 
 
 14 
 
 9 
 
 17 
 
 I 8.1 
 
 47 
 
 9 73 357 
 
 
 9.80892 
 
 0.19 108 
 
 9.92465 
 
 13 
 
 1 
 
 48 
 
 9-73 377 
 
 
 9.80919 
 
 27 
 28 
 28 
 
 28 
 
 0.19 081 
 
 9 92457 
 
 12 
 
 1 
 
 49 
 50 
 
 9 73396 
 
 ^9 
 20 
 
 9.80947 
 
 0.19053 
 
 9.92449 
 
 II 
 10 
 
 I 
 
 8 
 0. 
 
 7 
 
 8 0.7 
 
 9 73416 
 
 9.80975 
 
 0.19025 
 
 9.92441 
 
 51 
 
 9 73 435 
 
 19 
 
 9.81 003 
 
 0.18997 
 
 9 92433 
 
 9 
 
 .2 
 
 I. 
 
 6 1.4 
 
 52 
 
 9 73 455 
 
 
 9.81 030 
 
 27 
 
 28 
 28 
 27 
 28 
 28 
 
 0. 18 970 
 
 9.92425 
 
 8 
 
 3 
 
 2. 
 
 4 21 
 
 S3 
 
 9 73 474 
 
 ^9 
 
 9.81 058 
 9.81 086 
 
 0.18942 
 
 9.92416 
 
 9 
 8 
 8 
 8 
 8 
 
 7 
 
 -4 
 
 3 
 
 2 28 
 
 54 
 
 9 73 494 
 
 19 
 
 0.18914 
 
 9 . 92 408 
 
 6 
 
 5 
 
 i 
 
 4 
 4 
 
 3 5 
 8 42 
 6 49 
 
 \ is 
 
 9 73513 
 
 9.81 113 
 
 0.18887 
 
 9.92400 
 
 56 
 
 9 73 533 
 
 
 9 81 141 
 
 0.18859 
 
 9.92392 
 
 4 
 
 ■'J 
 .8 
 
 6: 
 
 ^S^ 
 
 9 73552 
 
 *9 
 
 9.81 169 
 
 0.18 831 
 
 9 92384 
 
 3 
 
 9-73 572 
 
 
 9.81 196 
 
 27 
 
 28 
 28 
 
 0.18804 
 
 9 92376 
 
 
 2 
 
 y 
 
 y 
 
 59 
 60_ 
 
 9 73591 
 
 19 
 20 
 
 9 81 224 
 
 0.18 776 
 
 9.92367 
 
 9 
 8 
 
 I 
 _0^ 
 
 
 9.73 611 
 
 9.81 252 
 
 0.18 748 
 
 9 92 359 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. Ic. d. 
 
 L. Tang. 
 
 L. Sin. 
 
 d. 
 
 Prop. Pte. 
 
 57° 1 
 
LOGARITHMS OF THE TRIGONOMETRIC FUNCTIONS 
 
 59 
 
 33° 
 
 1 
 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 d. 
 
 "60" 
 
 Prop. Pt8. 
 
 9-73611 
 
 19 
 
 9 81 252 
 
 27 
 
 0.18 748 
 
 9 92359 
 
 g 
 
 
 I 
 
 9 73630 
 
 20 
 
 9 81 279 
 
 28 
 
 0.18 721 
 
 9 92351 
 
 8 
 
 59 
 
 
 2 
 
 9-73 650 
 
 IQ 
 
 9 81 307 
 
 28 
 
 0.18 693 
 
 9 92343 
 
 
 
 58 
 
 
 38 
 
 87 
 
 2.7 
 
 5 4 
 
 3 
 
 9.73669 
 
 ao 
 
 981335 
 
 27 
 28 
 28 
 
 0.18665 
 
 9 92335 
 
 
 57 
 
 T 
 
 2.8 
 5.6 
 8.4 
 
 4 
 
 9.73689 
 
 19 
 19 
 
 9 81 362 
 
 0.18638 
 
 9 92326 
 
 8 
 
 8 
 8 
 
 56 
 
 55 
 
 .2 
 
 .3 
 
 9 73 708 
 
 9.81390 
 
 18 610 
 
 9 92318 
 
 6 
 
 9 73727 
 
 20 
 
 9 81 418 
 
 
 0.18 582 
 
 9,92310 
 
 54 
 
 4 
 
 II. 2 
 
 10.8 
 
 7 
 
 9 73 747 
 
 19 
 
 9.81445 
 
 28 
 
 0.18555 
 
 9,92302 
 
 9 
 
 8 
 
 53 
 
 
 14.0 
 
 13 5 
 
 8 
 
 9 73 766 
 
 
 9 81473 
 
 
 0.18527 
 
 9.92 293 
 
 52 
 
 .6 
 
 16.8 
 
 16.2 
 
 9 
 
 9 73785 
 
 20 
 
 9 81 500 
 
 28 
 
 0.18 500 
 
 9 92285 
 
 8 
 
 51 
 
 •7 
 
 19.6 
 
 18 9 
 
 10 
 
 9 73805 
 
 10 
 
 9.81 528 
 
 28 
 
 0.18472 
 
 9.92277 
 
 8 
 
 50 
 
 .8 
 
 22.4 
 
 21.6 
 
 II 
 
 9 73 824 
 
 
 9 81 556 
 
 27 
 28 
 
 0.18444 
 
 9.92269 
 
 9 
 
 8 
 
 49 
 
 9 
 
 25.2 
 
 243 
 
 12 
 
 9 73843 
 
 20 
 
 9 81 583 
 
 0.18 417 
 
 9.92 260 
 
 48 
 
 1 
 
 n 
 
 9 73863 
 
 19 
 19 
 
 9 81 611 
 
 
 0.18389 
 
 9.92252 
 
 
 47 
 
 
 15 
 
 9 73 882 
 
 9.81 638 
 
 28 
 
 0.18362 
 
 9 92244 
 
 9 
 
 8 
 
 46 
 45 
 
 1 
 
 30 
 2.0 
 
 9 73901 
 
 9.81 666 
 
 0.18334 
 
 9 92235 
 
 
 I 
 
 .16 
 
 9.73921 
 
 19 
 
 9 81 693 
 
 28 
 
 0.18 307 
 
 9 92227 
 
 8 
 
 44 
 
 
 
 8.0 
 
 17 
 
 9 73940 
 
 9 81 721 
 
 
 0.18 279 
 
 9.92219 
 
 8 
 
 43 
 
 
 •3 
 
 18 
 
 9 73 959 
 
 19 
 
 9.81 748 
 
 27 
 28 
 27 
 ,0 
 
 0.18 252 
 
 9 92 211 
 
 42 
 
 
 •4 
 
 19 
 20 
 
 9 73978 
 
 ^9 
 19 
 20 
 
 9.81 776 
 
 0. 18 224 
 
 9 92 202 
 
 9 
 
 8 
 g 
 
 41 
 40 
 
 
 '\ 
 
 10.0 
 12 
 14 
 16 
 
 9 73 997 
 
 9 81 803 
 
 0.18 197 
 
 9.92 194 
 
 21 
 
 9 74017 
 
 19 
 19 
 19 
 19 
 
 9 81 831 
 
 
 0.18 169 
 
 9.92 186 
 
 
 39 
 
 
 22 
 
 9.74056 
 
 9 81 858 
 
 28 
 
 0.18 142 
 
 9.92 177 
 
 8 
 
 38 
 
 
 n 
 
 18 
 
 23 
 
 9 74055 
 
 9.81 886 
 
 
 0.18 114 
 
 9.92 169 
 
 
 
 37 
 
 
 
 24 
 25 
 
 9 74 074 
 
 9 81 913 
 
 28 
 
 0.18087 
 
 9.92 161 
 
 9 
 
 8 
 
 _36_ 
 35 
 
 1 
 
 9 74093 
 
 9 81 941 
 
 0. 18 059 
 
 9.92152 
 
 
 19 
 
 26 
 
 9 74 "3 
 
 19 
 19 
 19 
 19 
 
 9 81 968 
 
 28 
 
 0. 18 032 
 
 9.92 144 
 
 8 
 
 34 
 
 ¥ 
 
 3:1 
 
 n 
 
 27 
 28 
 29 
 30 
 
 9 74 132 
 9 74 151 
 9.74170 
 
 9 81 996 
 9 82 023 
 9 82 051 
 
 27 
 28 
 27 
 28 
 
 0.18004 
 0.17977 
 0.17949 
 
 9.92 136 
 9.92 127 
 9.92 119 
 
 9 
 8 
 8 
 
 33 
 32 
 31 
 30 
 
 
 .2 
 
 •3 
 •4 
 
 • S 
 
 9 74 189 
 
 9.82078 
 
 0.17922 
 
 9.92 III 
 
 31 
 
 9.74208 
 
 19 
 
 9.82 106 
 
 0.17894 
 
 9.92 102 
 
 
 
 29 
 
 
 .6 
 
 I 
 
 r 1 
 
 32 
 
 9.74227 
 
 19 
 
 9 82133 
 
 28 
 
 0.17867 
 
 9.92094 
 
 8 
 
 28 
 
 
 .7 
 
 i^.\ 1 
 
 33 
 
 9.74246 
 
 ^9 
 
 9.82 161 
 
 0.17839 
 
 9.92086 
 
 
 27 
 
 
 .8 
 
 
 ) 2 
 
 34 
 35 
 
 9.74265 
 
 19 
 »9 
 
 9 82 188 
 
 27 
 27 
 28 
 
 0.17 812 
 
 9.92077 
 
 9 
 8 
 
 26 
 
 25 
 
 
 9 
 
 I 
 
 I 
 
 9,74284 
 
 9 82 215 
 
 0.17785 
 
 9.92069 
 
 1 
 
 36 
 
 9 74303 
 
 19 
 
 9,82243 
 
 0.17757 
 
 9.92060 
 
 8 
 
 24 
 
 1 
 
 37 
 
 9.74322 
 
 
 9 82 270 
 
 28 
 
 0.17730 
 
 9.92052 
 
 8 
 
 23 
 
 
 18 
 
 3« 
 
 9 74341 
 
 
 9.82 298 
 
 0.17 702 
 
 9.92044 
 
 
 22 
 
 1 
 
 I 8 
 
 39 
 40 
 
 9 74 360 
 
 19 
 
 9 82325 
 
 27 
 27 
 
 28 
 
 0,17675 
 
 9 92035 
 
 8 
 
 21 
 20 
 
 2 
 .3 
 
 36 
 
 5 4 
 
 9 74 379 
 
 9.82352 
 
 0.17648 
 
 9.92027 
 
 41 
 
 9 74398 
 
 
 9 82 380 
 
 0.17 620 
 
 9.92 018 
 
 
 19 
 
 
 .4 
 
 7.2 
 
 42 
 
 9 74417 
 
 ^9 
 
 9 82 407 
 
 27 
 28 
 
 0.17593 
 
 9.92 010 
 
 
 18 
 
 
 
 9.0 
 
 43 
 
 9 74436 
 
 ^9 
 
 9.82435 
 
 0.17565 
 0.17538 
 
 9 92 002 
 
 
 17 
 
 
 6 
 
 10.8 
 
 44 
 
 4S 
 
 9 74 455 
 
 »9 
 »9 
 
 9 . 82 462 
 
 27 
 27 
 28 
 
 9 91 993 
 
 9 
 8 
 
 lb 
 15 
 
 
 i 
 
 12.6 
 14.4 
 
 9 74 474 
 
 9.82489 
 
 0.175" 
 
 9.91 985 
 
 46 
 
 9 74 493 
 
 19 
 
 9.82517 
 
 0,17483 
 
 9,91976 
 
 9 
 8 
 
 14 
 
 
 •9 
 
 16.2 
 
 47 
 
 9 74512 
 
 »9 
 
 9.82 544 
 
 27 
 
 0.17456 
 
 9.91 968 
 
 13 
 
 1 
 
 48 
 
 9 74 53^ 
 
 19 
 18 
 
 9 82571 
 
 27 
 28 
 27 
 
 0.17429 
 
 9 91 959 
 
 8 
 
 12 
 
 1 
 
 49 
 50 
 
 9 74 549 
 
 19 
 
 9.82599 
 
 0.17 401 
 
 9 91 951 
 
 9 
 
 
 II 
 10 
 
 . I 
 
 9 
 0.9 
 
 8 
 
 0.8 
 
 9 • 74 568 
 
 9.82 626 
 
 0.17374 
 
 9 91 942 
 
 51 
 
 9 74 587 
 
 19 
 
 9.82653 
 
 27 
 
 0.17347 
 
 9 9i 934 
 
 
 9 
 
 .2 
 
 1.8 
 
 1.6 
 
 52 
 
 9.74606 
 
 19 
 
 9.82681 
 
 
 0.17319 
 
 9.91 925 
 
 8 
 
 8 
 
 •3 
 
 2.7 
 
 2.4 
 
 S3 
 
 9 74 625 
 
 19 
 
 9.82 708 
 
 27 
 
 0.17 292 
 
 9.91 917 
 
 7 
 
 .4 
 
 36 
 
 32 
 
 54 
 
 55 
 
 9.74644 
 
 19 
 t8 
 
 9 82735 
 
 27 
 27 
 
 0.17265 
 
 9,91 908 
 
 9 
 8 
 
 6 
 
 5 
 
 i 
 I 
 
 9 
 
 4.5 
 5 4 
 6.3 
 7.2 
 8.1 
 
 n 
 
 72 
 
 9.74662 
 
 9.82 762 
 
 0.17 238 
 
 9.91 900 
 
 56 
 
 9 74681 
 
 19 
 
 9.82 790 
 
 
 0. 17 210 
 
 9.91 891 
 
 8 
 
 9 
 8 
 
 4 
 
 57 
 58 
 
 9 . 74 700 
 9 74 719 
 
 19 
 19 
 18 
 
 19 
 
 9 82817 
 9.82844 
 
 27 
 27 
 
 0.17 183 
 17 156 
 
 9,91883 
 9,91 874 
 
 3 
 2 
 
 59 
 60 
 
 9 74 737 
 
 9.82871 
 
 27 
 
 28 
 
 0.17 129 
 
 9,91 866 
 
 9 
 
 I 
 
 
 
 9 74756 
 
 9.82899 
 
 0.17 lOI 
 
 9 91 857 
 
 L. Cos. 
 
 T" 
 
 L. Cotg. 
 
 ™d. 
 
 L. Tang* 
 
 L. Sin. 
 
 d. 
 
 / 
 
 Prop. Pts. 
 
 56° 
 
 
 1 
 
60 
 
 TABLE II 
 
 34° 1 
 
 t 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 d. 
 
 60 
 
 Prop. Pts. 
 
 "F 
 
 9-74 756 
 
 
 9.82 899 
 
 
 0.17 lOI 
 
 9 91 857 
 
 8 
 
 
 I 
 
 9 
 
 74 775 
 
 
 9 
 
 82 926 
 
 
 0.17074 
 
 9.91 849 
 
 5Q 
 
 
 2 
 
 3 
 
 9 
 9 
 
 74 794 
 74812 
 
 18 
 
 9 
 9 
 
 82953 
 82 980 
 
 27 
 28 
 
 0.17047 
 0.17 020 
 
 9.91 840 
 9.91 832 
 
 9 
 8 
 
 58 
 
 57 
 
 
 28 
 
 2.8 
 5.6 
 8.4 
 
 27 
 
 4 
 
 9 
 
 74831 
 
 19 
 18 
 
 9 
 
 83008 
 
 27 
 
 0.16 992 
 
 9.91 823 
 
 9 
 8 
 
 56 
 
 55 
 
 .2 
 
 •3 
 .4 
 
 2.7 
 
 9 
 
 74850 
 
 9 
 
 83035 
 
 0. 16 965 
 
 9.91 815 
 
 6 
 
 9 
 
 74868 
 
 
 9 
 
 83062 
 
 
 0.16938 
 
 9.91 806 
 
 9 
 8 
 
 54 
 
 II 2 
 
 10 8 
 
 7 
 
 9 
 
 74887 
 
 
 9 
 
 83089 
 
 28 
 
 0.16911 
 
 9.91 798 
 
 ^^ 
 
 
 14.0 
 
 
 8 
 
 9 
 
 74906 
 
 18 
 
 9 
 
 ^Z 117 
 
 27 
 27 
 
 0.16883 
 
 9.91 789 
 
 9 
 8 
 
 9 
 
 52 
 
 t6 8 
 
 9 
 10 
 
 9 
 
 74924 
 
 19 
 
 9 
 
 83 144 
 
 0.16856 
 
 9.91 781 
 
 51 
 
 oO 
 
 •7 
 .8 
 
 19.6 
 
 22.4 
 
 189 
 21.6 
 
 9 
 
 74 943 
 
 9 
 
 83 171 
 
 0.16 829 
 
 9.91 772 
 
 II 
 
 9 
 
 74961 
 
 
 9- 
 
 83198 
 
 
 0.16 802 
 
 9.91 763 
 
 9 
 8 
 
 4Q 
 
 .9 
 
 25.2 
 
 24 3 
 
 12 
 
 9 
 
 74980 
 
 
 9 
 
 83225 
 
 
 0.16775 
 
 9 91 755 
 
 48 
 
 
 n 
 
 9 
 
 74 999 
 
 18 
 
 9 
 
 l^ ^p 
 
 28 
 
 0. 16 748 
 
 9 91 746 
 
 9 
 8 
 
 9 
 
 47 
 
 
 14 
 15 
 
 9 
 
 75017 
 
 19 
 
 t8 
 
 9 
 
 2,z 280 
 
 27 
 
 0.16 720 
 
 9 91 738 
 
 46 
 
 45 
 
 ! 
 
 26 
 26 
 
 9 
 
 75036 
 
 9 
 
 83307 
 
 0.16 693 
 
 9 91 729 
 
 
 .1 
 
 16 
 
 9 
 
 75054 
 
 
 9 
 
 83334 
 
 
 0. 16 666 
 
 9.91 720 
 
 9 
 8 
 
 44 
 
 
 .2 
 
 M 
 
 17 
 
 9 
 
 75073 
 
 18 
 
 9 
 
 83 361 
 
 
 0.16 639 
 
 9.91 712 
 
 43 
 
 
 •3 
 
 18 
 
 9 
 
 75091 
 
 9 
 
 83 388 
 
 
 0. 16 612 
 
 9.91 703 
 
 9 
 8 
 
 9 
 
 42 
 
 
 .4 
 
 10.4 
 
 19 
 ^0" 
 
 9 
 
 75 no 
 
 18 
 
 9 
 
 83415 
 
 27 
 
 28 
 
 0.16 585 
 
 9.91 695 
 
 41 
 40 
 
 
 i 
 
 13.0 
 
 ;§2 
 
 9 
 
 75128 
 
 9 
 
 83442 
 
 0. 16 558 
 
 9.91 686 
 
 21 
 
 9 
 
 75 147 
 
 18 
 
 9 
 
 83470 
 
 27 
 27 
 27 
 27 
 
 0.16 530 
 
 9.91677 
 
 9 
 8 
 
 30 
 
 
 20 8 
 
 22 
 
 9 
 
 75 165 
 
 
 9 
 
 83497 
 
 0.16 503 
 
 9.91 669 
 
 38 
 
 
 
 23 4 
 
 23 
 
 9 
 
 75184 
 
 ^9 
 
 9 
 
 83524 
 
 0.16 476 
 
 9.91 660 
 
 9 
 
 37 
 
 •y 
 
 24 
 
 2S 
 
 9 
 
 75202 
 
 19 
 
 9 
 
 83 551 
 
 16449 
 
 9,91 651 
 
 9 
 8 
 
 36 
 
 3S 
 
 1 
 
 9 
 
 75221 
 
 9 
 
 83 578 
 
 0. 16 422 
 
 9.91 643 
 
 
 X9 
 
 26 
 
 9 
 
 75239 
 
 
 9 
 
 83605 
 
 
 0.16395 
 0.16368 
 
 9.91 634 
 
 9 
 
 34 
 
 ^ 
 
 I - 1 
 
 27 
 
 9 
 
 75258 
 
 19 
 
 18 
 
 9 
 
 83632 
 
 
 9.91 625 
 
 9 
 8 
 
 33 
 
 
 
 
 
 \ 
 
 28 
 
 9 
 
 75276 
 
 18 
 19 
 
 t8 
 
 9 
 
 83659 
 83686 
 
 
 0.16 341 
 
 9.91 617 
 
 32 
 
 
 3 
 
 •4 
 
 >.7 
 r6 
 
 ) 5 
 
 29 
 
 30 
 
 9 
 
 75294 
 
 9 
 
 27 
 
 0.16 314 
 
 9.91 608 
 
 9 
 9 
 8 
 
 31 
 30 
 
 
 9 
 
 75313 
 
 9 
 
 83 713 
 
 0.16287 
 
 9-91 599 
 
 31 
 
 9 
 
 75331 
 
 
 9 
 
 83740 
 
 28 
 
 0. 16 260 
 
 9 91 591 
 
 29 
 
 
 (y 
 
 I 
 
 .4 
 
 32 
 
 9 
 
 75350 
 
 18 
 18 
 19 
 
 9 
 
 83 768 
 
 
 0.16232 
 
 9 91 582 
 
 9 
 
 28 
 
 
 7 
 
 I' 
 
 r'i 
 
 33 
 
 9 
 
 75368 
 
 9 
 
 83 795 
 
 
 0,16 205 
 
 9 91 573 
 
 9 
 
 27 
 
 
 8 
 
 1 
 
 52 
 
 7.1 
 
 34 
 35 
 
 9 
 
 75386 
 
 9 
 
 83822 
 
 27 
 
 0.16 178 
 
 9 .91 565 
 
 9 
 
 26 
 25 
 
 
 9 
 
 
 9 
 
 75405 
 
 9 
 
 83 849 
 
 0.16 151 
 
 9 91 556 
 
 1 
 
 Z^ 
 
 9 
 
 75423 
 
 18 
 
 9 
 
 83876 
 
 
 0.16 124 
 
 9 91 547 
 
 9 
 
 24 
 
 1 
 
 37 
 
 9 
 
 75441 
 
 ,Q 
 
 9 
 
 83 903 
 
 
 0.16 097 
 
 9 91 538 
 
 9 
 8 
 
 23 
 
 
 18 
 
 3« 
 
 9 
 
 75 459 
 
 
 9 
 
 83930 
 
 
 0.16 070 
 
 9 91 530 
 
 22 
 
 
 I 8 
 
 39 
 40 
 
 9 
 
 75478 
 
 ^9 
 18 
 
 9 
 
 83957 
 
 27 
 
 0. 16 043 
 
 9.91 521 
 
 9 
 9 
 8 
 
 21 
 20 
 
 
 .2 
 .3 
 
 36 
 5 4 
 
 9 
 
 75496 
 
 9 
 
 83984 
 
 16 016 
 
 9.91 512 
 
 41 
 
 9 
 
 75514 
 
 
 9 
 
 84 on 
 
 
 0.15989 
 
 9.91 504 
 
 19 
 
 
 .4 
 
 72 
 
 42 
 
 9 
 
 75 533 
 
 
 9 
 
 84038 
 
 
 0.15 962 
 
 9 91 495 
 
 9 
 
 18 
 
 
 .«; 
 
 9.0 
 
 43 
 
 9 
 
 75551 
 
 18 
 18 
 18 
 
 9 
 
 84065 
 
 
 o- 15 935 
 
 9.91 486 
 
 9 
 
 17 
 
 
 .6 
 
 10.8 
 
 44 
 4.S 
 
 9 
 
 75569 
 
 9 
 
 84092 
 
 27 
 
 0.15908 
 
 9.91477 
 
 9 
 8 
 
 16 
 
 
 i 
 
 12 6 
 14 4 
 
 9 
 
 75587 
 
 9 
 
 84 119 
 
 0.15 881 
 
 9.91 469 
 
 4b 
 
 9 
 
 75605 
 
 9 
 
 84 146 
 
 27 
 
 0.15854 
 
 9.91 460 
 
 9 
 
 14 
 
 
 9 
 
 16.2 
 
 47 
 
 9 
 
 75624 
 
 19 
 18 
 
 9 
 
 84173 
 
 27 
 
 0.15827 
 
 9 91 451 
 
 9 
 
 13 
 
 1 
 
 48 
 
 9 
 
 75 ^f 
 
 9 
 
 .84200 
 
 27 
 
 0.15 800 
 
 9.91 442 
 
 9 
 
 12 
 
 1 
 
 49 
 50 
 
 51 
 
 9 
 
 75660 
 
 18 
 18 
 
 9 
 
 84227 
 
 27 
 27 
 
 26, 
 
 0.15 HZ 
 
 9 91 433 
 
 9 
 8 
 
 9 
 
 II 
 10 
 
 9 
 
 .2 
 
 9 
 
 8 
 
 08 
 
 I 6 
 
 9 
 9 
 
 75678 
 75696 
 
 9 
 9 
 
 '84280 
 
 0.15 746 
 0.15 720 
 
 9.91425 
 9 91 416 
 
 52 
 
 9 
 
 75 7M 
 
 
 9 
 
 .84307 
 
 27 
 
 
 9.91 407 
 
 9 
 
 8 
 
 •3 
 
 z 7 
 
 24 
 
 53 
 
 9 
 
 • 75 733 
 
 19 
 
 18 
 18 
 18 
 18 
 18 
 18 
 18 
 
 9 
 
 84334 
 
 27 
 
 0.15666 
 
 9.91 398 
 
 9 
 
 7 
 
 4 
 
 3 6 
 
 3 2 
 
 54 
 55 
 
 9 
 
 •75 751 
 
 9 
 
 .84361 
 
 27 
 27 
 
 0.15639 
 
 9.91 389 
 
 9 
 8 
 
 6 
 
 S 
 
 i 
 
 4 5 
 
 5 4 
 63 
 
 4 
 48 
 
 5 6 
 64 
 
 9 
 
 •75769 
 
 9 
 
 84388 
 
 0. 15 612 
 
 9.91 381 
 
 50 
 
 9 
 
 .75787 
 
 9 
 
 84415 
 
 27 
 
 0.15585 
 
 9.91 372 
 
 9 
 
 4 
 
 i 
 
 i^ 
 
 9 
 
 .75805 
 
 9 
 
 .84442 
 
 27 
 
 0.15 558 
 
 9 91 363 
 
 9 
 
 3 
 
 l\ 
 
 9 
 
 .75823 
 
 9 
 
 .84469 
 
 27 
 
 15 531 
 
 9 91 354 
 
 9 
 
 2 
 
 9 
 
 7^ 
 
 59 
 
 G0_ 
 
 9 
 
 .75841 
 
 9 
 
 .84496 
 
 27 
 27 
 
 0.15504 
 
 9 91 345 
 
 9 
 9 
 
 
 
 
 9 
 
 75859 
 
 9 
 
 ■84523 
 
 0.15477 
 
 9 91 336 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. 
 
 c.d. 
 
 L. Tang. 
 
 L. Sin. 
 
 d. 
 
 Prop. Pts. 
 
 
 
 55° 
 
 
 1 
 
LOGARITHMS OF THE TRIGONOMETRIC FUNCTIONS 
 
 61 
 
 85^ 
 
 2 
 
 3 
 
 I 
 
 7 
 8 
 
 _9_ 
 10 
 II 
 
 12 
 13 
 
 iil 
 
 ;i 
 
 17 
 
 18 
 
 i9. 
 20 
 
 21 
 22 
 23 
 24 
 
 25 
 26 
 27 
 28 
 _29 
 30 
 31 
 32 
 33 
 
 ^\ 
 36 
 
 37 
 38 
 
 _39 
 40 
 41 
 42 
 43 
 44 
 
 J^ 
 
 47 
 48 
 
 49 
 
 50 
 
 51 
 52 
 53 
 54 
 
 55 
 56 
 57 
 58 
 
 ii. 
 60 
 
 L. Sin. 
 
 9 75 859 
 9 75877 
 9 75895 
 9 75913 
 9 75931 
 
 9 75 949 
 9 75 967 
 9 -75 985 
 9 . 76 003 
 9.76 021 
 
 9.76039 
 9.76057 
 9.76075 
 9.76093 
 9.76 III 
 
 9.76 129 
 9.76 146 
 9.76 164 
 9.76 182 
 9 76 200 
 
 9 76 218 
 9.76236 
 9 76253 
 9 76271 
 9 76 289 
 
 9 76 307 
 9 76 324 
 9.76342 
 9.76360 
 9.76378 
 
 9 76395 
 9 76413 
 9 76431 
 9.76448 
 9 . 76 466 
 
 9.76484 
 9.76501 
 9.76519 
 9 76537 
 9 76554 
 
 9.76572 
 9.76590 
 9 . 76 607 
 9 . 76 625 
 9 . 76 642 
 
 9 . 76 660 
 9.76677 
 9.76695 
 9.76 712 
 9 76 730 
 
 9.76747 
 
 9 76765 
 9 76 782 
 9 . 76 800 
 9.76 817 
 
 9 76835 
 9.76852 
 9 76 870 
 9.76887 
 9 76904 
 
 9 . 76 922 
 
 L. Cos. d. 
 
 L. Tang. c. d. 
 
 9-84 5£3 
 9.84550 
 9.84576 
 9,84 603 
 9.84630 
 
 9.84657 
 9 84 684 
 9.84 711 
 9 84738 
 9 84 764 
 
 9.84791 
 9.84818 
 o . 84 845 
 9.84872 
 9.84899 
 
 9.84925 
 9.84952 
 9.84979 
 9 . 85 006 
 9 85033 
 
 9 85059 
 9.85086 
 
 9 85 113 
 9.85 140 
 9.85 166 
 
 9 85 193 
 9 85 220 
 9.85247 
 9 85273 
 9 85 300 
 
 9 85327 
 9 85354 
 9 85 380 
 9 85407 
 9 85434 
 
 9 . 85 460 
 9.85487 
 9 85514 
 9 85540 
 9 85567 
 
 9 85 594 
 9.85 620 
 9 85647 
 9.85674 
 9.85 700 
 
 9,85 727 
 
 9 85 754 
 9.85 780 
 9 85 807 
 9 85834 
 
 9.85 860 
 9.85887 
 9 85 913 
 9 85 940 
 9 85 967 
 
 9 85 993 
 9 86 020 
 9 86 046 
 9 86 073 
 9 86 100 
 
 9.86 126 
 
 L. Cotg. c. d 
 
 27 
 26 
 27 
 27 
 27 
 27 
 27 
 27 
 26 
 27 
 27 
 27 
 27 
 27 
 26 
 27 
 27 
 27 
 27 
 26 
 27 
 27 
 27 
 26 
 27 
 27 
 27 
 26 
 27 
 27 
 27 
 26 
 27 
 27 
 26 
 
 27 
 27 
 26 
 27 
 27 
 26 
 27 
 27 
 26 
 27 
 27 
 26 
 
 27 
 27 
 26 
 27 
 26 
 27 
 27 
 26 
 
 27 
 26 
 27 
 27 
 36 
 
 L. Cotg. 
 
 0.15477 
 0.15450 
 C.15 424 
 c. 15 397 
 0.15370 
 
 15343 
 15 316 
 15289 
 15 262 
 15236 
 
 0.15 209 
 0.15 182 
 
 o 15 155 
 0.15 128 
 o. 15 lOI 
 
 o. 15 075 
 0.15 048 
 o. 15 021 
 
 0.14994 
 
 o. 14 967 
 
 0.14 941 
 0.14 914 
 0.14887 
 
 o . 14 860 
 
 0.14834 
 
 o. 14 807 
 0.14 780 
 
 0.14753 
 
 0.14 727 
 o. 14 700 
 
 0.14673 
 
 0.14 646 
 o. 14 620 
 
 o 14593 
 o. 14 566 
 
 o. 
 o. 
 o 
 o 
 o. 
 
 14540 
 14 513 
 
 14 486 
 14 460 
 
 14433 
 
 o. 14 406 
 0.14 380 
 o 14353 
 
 0.14326 
 0.14300 
 
 L. Cos. 
 
 0.14273 
 
 o. 14 246 
 o. 14 220 
 
 0.14 193 
 
 o. 14 166 
 
 0.14 140 
 0.14 113 
 
 o. 14 087 
 o. 14 060 
 
 0.14033 
 
 o. 14 007 
 o. 13 980 
 
 0.13954 
 0.13927 
 
 0.13 900 
 
 [3874 
 
 L. Tang. 
 
 54° 
 
 91 336 
 91 328 
 
 91 319 
 91 310 
 91 301 
 
 91 292 
 91 283 
 91 274 
 91 266 
 91 257 
 91 248 
 91 239 
 91 230 
 91 221 
 91 212 
 
 91 203 
 91 194 
 91 185 
 91 176 
 91 167 
 
 91 158 
 91 149 
 91 141 
 91 132 
 91 123 
 
 9 91 114 
 9 91 105 
 9 91 096 
 9.91 087 
 9.91 078 
 
 d. 
 
 91 069 
 91 060 
 91 051 
 91 042 
 91033 
 
 91 023 
 
 91 014 
 91 005 
 90 996 
 90987 
 
 90978 
 90 969 
 90 960 
 
 90951 
 90942 
 
 90933 
 90924 
 
 90915 
 90 906 
 90 896 
 
 90887 
 90878 
 90 869 
 90 860 
 90851 
 
 90 842 
 90 832 
 90 823 
 90 814 
 90805 
 
 9.90796 
 
 L. Sin. 
 
 60 
 
 59 
 58 
 
 55 
 54 
 53 
 52 
 51 
 50 
 49 
 48 
 47 
 _46_ 
 
 45 
 44 
 43 
 42 
 
 41 
 40 
 
 39 
 38 
 
 36 
 
 35 
 34 
 33 
 32 
 31 
 30 
 
 29 
 28 
 
 27 
 26 
 
 25 
 
 24 
 
 23 
 22 
 21 
 
 20" 
 
 19 
 18 
 
 17 
 16 
 
 15 
 14 
 13 
 12 
 II 
 
 To 
 
 9 
 
 8 
 
 7 
 6 
 
 Prop. Pts. 
 
 
 37 
 
 I 
 
 2.7 
 
 2 
 
 5 4 
 
 3 
 
 8. 1 
 
 4 
 
 10.8 
 
 . 5 
 
 13 5 
 
 .6 
 
 16.2 
 
 •7 
 
 18.9 
 
 .8 
 
 21.6 
 
 9 
 
 243 
 
 26 
 
 2.6 
 
 5-2 
 
 7.8 
 
 10.4 
 
 13.0 
 
 15 6 
 18 2 
 20,8 
 23 4 
 
 18 
 
 1.8 
 
 36 
 
 5 4 
 
 7.2 
 
 9.0 
 
 10 8 
 
 12 6 
 
 14.4 
 
 16.2 
 
 17 
 17 
 3 4 
 
 \\ 
 
 85 
 10.2 
 11.9 
 136 
 15-3 
 
 10 
 
 i.o 
 20 
 
 30 
 40 
 
 60 
 7.0 
 8.0 
 90 
 
 
 9 
 
 .1 
 
 0.9 
 
 .2 
 
 1.8 
 
 •3 
 
 27 
 
 •4 
 
 36 
 
 i 
 
 4 5 
 
 5 4 
 
 I 
 
 63 
 
 7 2 
 
 9 
 
 8.1 
 
 8 
 
 08 
 1.6 
 
 24 
 3 2 
 
 7 2 
 
 Prop. Pts. 
 
62 
 
 TABLE II 
 
 36^ 
 
 9_ 
 10 
 
 ;i 
 
 i8 
 
 i2_ 
 20 
 
 21 
 22 
 
 23 
 24 
 
 26 
 27 
 28 
 
 29 
 
 80 
 
 31 
 
 32 
 33 
 34 
 
 II 
 II 
 
 40 
 
 41 
 42 
 
 43 
 44 
 
 46 
 
 47 
 48 
 
 49 
 60 
 
 51 
 
 52 
 53 
 ii 
 55 
 50 
 
 II 
 
 GO 
 
 L. Sill. 
 
 76922 
 76939 
 76957 
 76974 
 76991 
 
 77009 
 77026 
 
 77043 
 77061 
 77078 
 
 77095 
 77 112 
 77130 
 
 77147 
 77164 
 
 77 181 
 77199 
 77216 
 
 77233 
 77250 
 
 77268 
 772S5 
 77302 
 77319 
 77336 
 
 77 353 
 
 77370 
 77 3^7 
 77405 
 77422 
 
 77 439 
 
 77456 
 77 473 
 
 77490 
 77507 
 
 77 5-4 
 77541 
 77558 
 77 575 
 77592 
 77G09 
 77626 
 
 77643 
 77 CGo 
 
 77677 
 
 77694 
 77 711 
 77728 
 
 77 744 
 77761 
 
 77 77^ 
 77 795 
 77812 
 77829 
 77846 
 
 77862 
 77879 
 77896 
 
 77913 
 77930 
 
 77946 
 
 I L. Cos. I <1 
 
 17 
 
 18 
 
 J7 
 J7 
 18 
 
 »7 
 »7 
 18 
 17 
 17 
 
 17 
 
 18 
 17 
 17 
 17 
 x8 
 17 
 17 
 17 
 18 
 
 17 
 17 
 17 
 17 
 17 
 17 
 17 
 18 
 17 
 17 
 17 
 17 
 17 
 17 
 «7 
 17 
 17 
 17 
 17 
 17 
 17 
 17 
 17 
 17 
 
 16 
 
 17 
 
 Tangr. 
 
 c.d. 
 
 86 
 
 ,86 
 
 126 
 
 o. '53 
 ,86 179 
 86206 
 86232 
 
 ,86259 
 ,86285 
 86312 
 86338 
 .86365 
 
 .86392 
 1. 86418 
 1.86445 
 1.86 471 
 1.86498 
 1.86524 
 '•^5551 
 1.86577 
 1.86603 
 86 630 
 
 9.86656 
 9.86683 
 9.86 709 
 9.86736 
 9.86 762 
 
 9.86 789 
 9.86815 
 9.86842 
 9.86868 
 9.86894 
 
 9.86921 
 9.86947 
 9.86974 
 9.87000 
 9.87027 
 
 9-87053 
 9.87079 
 9.87 106 
 9.87 132 
 9-87 158 
 
 9.87 185 
 9.87 211 
 9.87238 
 9.87264 
 9.87290 
 
 9.87317 
 
 9-87343 
 9.87369 
 9.87396 
 9.87422 
 
 9.87448 
 
 9-87475 
 9.87501 
 9.87527 
 9-87554 
 9.87580 
 9.87606 
 
 9-87633 
 9.87659 
 9.87685 
 
 9.8771 
 
 L. Cotg, 
 
 27 
 26 
 27 
 26 
 27 
 26 
 27 
 26 
 
 »7 
 27 
 
 26 
 27 
 26 
 27 
 26 
 
 27 
 26 
 26 
 27 
 26 
 27 
 26 
 27 
 26 
 27 
 26 
 27 
 26 
 26 
 27 
 26 
 27 
 26 
 27 
 26 
 
 26 
 27 
 26 
 26 
 27 
 26 
 27 
 26 
 26 
 27 
 26 
 26 
 27 
 26 
 26 
 
 27 
 
 26 
 26 
 27 
 26 
 26 
 27 
 26 
 
 26 
 
 L« Cotg. 
 
 0.13874 
 0.13847 
 0.13 821 
 o. 13 794 
 0.13768 
 
 o. 13 741 
 0.13 715 
 0.13688 
 0.13 662 
 0-13635 
 
 0.13 608 
 0.13582 
 
 0.13555 
 0.13529 
 0.13502 
 
 0.13476 
 0.13449 
 0.13423 
 
 0.13397 
 0.13370 
 
 13344 
 ^3317 
 13 291 
 13264 
 13 238 
 
 0.13211 
 0.13 185 
 0.13 158 
 0.13 132 
 0.13 106 
 
 0.13 079 
 0.13053 
 0.13026 
 0.13000 
 0.12973 
 
 0.12 947 
 0.12 921 
 0.12 894 
 0.12 868 
 0.12 842 
 
 0.12 815 
 0.12 789 
 0.12 762 
 0.12 736 
 0.12 710 
 
 c.d. 
 
 0.12683 
 0.12 657 
 0.12 631 
 0.12 604 
 0.12578 
 
 0.12 552 
 0.12 525 
 0.12 499 
 0.12473 
 0.12 446 
 
 0.12 420 
 0.12394 
 0.12367 
 0.12 341 
 0.12 315 
 
 [2 289 
 
 L. Tang. 
 
 53° 
 
 L, Cos. 
 
 90657 
 
 90648 
 
 90639 
 
 ^ ,90 630 
 
 9.90 620 
 
 90 796 
 90787 
 90777 
 90 768 
 
 90759 
 90750 
 90741 
 
 90731 
 90 722 
 90713 
 
 90704 
 90 694 
 90685 
 90676 
 90667 
 
 90 611 
 90 602 
 90592 
 90583 
 90574 
 
 90565 
 90555 
 90546 
 90537 
 90527 
 
 90518 
 90509 
 90499 
 90490 
 90480 
 
 90471 
 90462 
 90452 
 
 90443 
 90 434 
 
 90424 
 
 90415 
 
 90405 
 
 90396 
 90386 
 
 90377 
 90368 
 
 90358 
 90349 
 90339 
 
 90330 
 90320 
 90 311 
 90301 
 90292 
 
 90 282 
 
 90273 
 90 263 
 
 90254 
 90 244 
 
 9 90 235 
 
 L. Sin. 
 
 GO 
 
 It 
 I 
 
 55 
 54 
 53 
 52 
 
 JL 
 60 
 
 49 
 48 
 
 46 
 
 45 
 44 
 43 
 42 
 41 
 40 
 
 39 
 38 
 
 36 
 
 35 
 34 
 33 
 32 
 31 
 
 Prop. Pis. 
 
 
 27 
 
 36 
 
 I 
 
 2.7 
 
 26 
 
 •2 
 
 -3 
 
 il 
 
 11 
 
 •4 
 
 10.8 
 
 10.4 
 
 . 1; 
 
 13-5 
 16.2 
 
 13.0 
 
 .6 
 
 IS. 6 
 
 • 7 
 
 18. q 
 
 
 .8 
 
 21.6 
 
 20.8 
 
 .9 
 
 243 
 
 23-4 
 
 18 
 1.8 
 
 36 
 
 5 4 
 7.2 
 
 9° 
 10.8 
 
 12.6 
 
 14.4 
 16.2 
 
 17 
 17 
 
 3-4 
 
 u 
 
 8.5 
 
 10.2 
 II. 9 
 136 
 15-3 
 
 x6 
 
 1.6 
 
 3 2 
 4.8 
 
 6.4 
 
 80 
 
 96 
 
 112 
 
 12 8 
 
 14.4 
 
 
 10 
 
 .1 
 
 I.O 
 
 .2 
 
 2.0 
 
 •3 
 •4 
 
 i 
 
 30 
 4.0 
 
 i 
 
 7.0 
 8.0 
 
 -9 
 
 9.0 
 
 9 
 
 09 
 I 
 
 2 
 
 3 
 4 
 
 I 
 
 Prop. Pts. 
 
LOGARITHMS OF THE TRIGONOMETRIC FUNCTIONS 
 
 63 
 
 37° 1 
 
 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d.iL. Cotg. 1 
 
 L. Cos. 
 
 d. 
 
 60 
 
 Froi». V\s, 
 
 9 77946 
 
 
 9 87 711 
 
 
 0. 12 289 
 
 9 90 235 
 
 
 
 I 
 
 9 77963 
 
 
 9 87 738 
 
 26 
 
 0.12 262 
 
 9 
 
 90225 
 
 
 S9 
 
 
 2 
 
 9 77980 
 
 
 9 87 764 
 
 26 
 
 0.12 236 
 
 9 
 
 90 216 
 
 
 S8 
 
 
 ^ 
 
 9 77 997 
 
 
 9 87790 
 
 
 0.12 210 
 
 9 
 
 90 206 
 
 
 S7 
 
 
 27 
 
 ,J_ 
 
 9 78013 
 
 '7 
 
 9 
 
 87817 
 
 26 
 
 0. 12 183 
 
 9 
 
 90197 
 
 10 
 
 56 
 
 ss 
 
 
 .2 
 
 •3 
 .4 
 
 9 78030 
 
 9 
 
 87 843 
 
 0.12 157 
 
 9 
 
 90 187 
 
 6 
 
 9 78047 
 
 i5 
 
 9 
 
 87869 
 
 36 
 
 12 131 
 
 9 
 
 90178 
 
 
 S4 
 
 
 10 8 
 
 7 
 
 9 78 063 
 
 
 9 
 
 87895 
 
 
 12 105 
 
 9 
 
 90 168 
 
 
 S3 
 
 
 ,5 
 
 'I 5 
 16 2 
 
 8 
 
 9 78080 
 
 
 9 
 
 87922 
 
 r>(\ 
 
 0.12078 
 
 9 
 
 90 159 
 
 9 
 
 S2 
 
 
 ,6 
 
 9 
 
 9 78097 
 
 [6 
 
 9 
 
 87948 
 
 26 
 26 
 
 0.12 052 
 
 9 
 
 90 149 
 
 10 
 
 51 
 50 
 
 
 :l 
 
 18.9 
 21.6 
 
 9 78 113 
 
 9 
 
 87974 
 
 0. 12 026 
 
 9 
 
 90139 
 
 1 1 
 
 9 
 
 78 130 
 
 
 9 
 
 88000 
 
 r%m 
 
 0.12000 
 
 9 
 
 90130 
 
 
 49 
 
 
 •9 
 
 24.3 
 
 12 
 
 9 
 
 78 147 
 
 [6 
 
 9 
 
 88027 
 
 
 on 973 
 
 9 
 
 90 120 
 
 
 48 
 
 1 
 
 n 
 
 9 
 
 78163 
 
 
 9 
 
 S°53 
 
 
 o.ii 947 
 
 9 
 
 90 III 
 
 
 47 
 
 1 
 
 •4 
 
 9 
 
 78 180 
 
 7 
 
 9 
 
 88079 
 
 26 
 26 
 
 o.ii 921 
 
 9 
 
 90 lOI 
 
 10 
 
 46 
 4S 
 
 .1 
 
 36 
 26 
 
 IS 
 
 9 
 
 78 197 
 
 9 
 
 11 '°5 
 
 O.II 895 
 
 9 
 
 90091 
 
 i6 
 
 9 
 
 78213 
 
 
 9 
 
 88 131 
 
 O.II 869 
 
 9 
 
 90 082 
 
 9 
 
 44 
 
 
 .2 
 
 ^l 
 
 '7 
 
 9 
 
 78230 
 
 6 
 
 9 
 
 88158 
 
 27 
 
 26 
 26 
 26 
 26 
 
 on 842 
 
 9 
 
 90072 
 
 
 43 
 
 
 •3 
 
 78 
 
 i8 
 
 9 78 246 
 
 9 
 
 Z?> 184 
 
 O.II 816 
 
 9 
 
 90063 
 
 9 
 
 42 
 
 
 •4 
 
 10.4 
 
 19 
 20 
 
 9 78 263 , 
 
 7 
 6 
 
 9 
 
 88210 
 
 on 790 
 
 9 
 
 90053 
 
 10 
 
 41 
 40 
 
 
 i 
 
 15 6 
 18 2 
 20 8 
 23 4 
 
 9 78280 
 
 9 
 
 88236 
 
 on 764 
 
 9 
 
 90 043 
 
 21 
 
 9 . 78 296 
 
 9 
 
 88262 
 
 on 738 
 
 9 
 
 90034 
 
 9 
 
 3Q 
 
 
 ■ 7 
 .8 
 
 22 
 
 9 
 
 78313 
 
 
 9 
 
 88289 
 
 26 
 26 
 26 
 26 
 
 0. II 711 
 
 9 
 
 90024 
 
 
 38 
 
 
 2^ 
 
 9 
 
 78329 
 
 
 9 
 
 88315 
 
 on 685 
 
 9 
 
 90014 
 
 
 37 
 
 •y 
 
 24 
 2S 
 
 9 
 
 78346 
 
 16 
 
 9 
 
 88341 
 
 II 659 
 
 9 
 
 90003 
 
 10 
 
 36 
 
 3S 
 
 1 
 
 9 
 
 78362 
 
 9 
 
 88367 
 
 on 633 
 
 9 
 
 8999s 
 
 
 17 
 
 1-7 
 
 26 
 
 9 
 
 78379 
 
 16 
 
 9 
 
 88393 
 
 on 607 
 
 9 
 
 8998s 
 
 
 34 
 
 . 
 
 27 
 
 9 
 
 78395 
 
 9 
 
 88420 
 
 27 
 
 26 
 
 O.II 580 
 
 9 
 
 89976 
 
 9 
 
 33 
 
 
 
 28 
 
 9 
 
 78412 
 
 ^1 
 [6 
 
 '7 
 [6 
 
 9 
 
 88446 
 
 on 554 
 
 9 
 
 89966 
 
 
 32 
 
 
 
 34 
 
 29 
 
 BO 
 
 9 
 
 78428 
 
 9 
 
 88472 
 
 36 
 
 26 
 26 
 
 0. II 528 
 
 9 
 
 89956 
 
 9 
 
 31 
 80 
 
 
 •3 
 
 •4 
 
 10.2 
 
 9 
 
 78445 
 
 9 
 
 88498 
 
 on 502 
 
 9 
 
 89947 
 
 ^i 
 
 9 
 
 78461 
 
 9 
 
 SS524 
 
 oil 476 
 
 9 
 
 89937 
 
 
 29 
 
 
 ^2 
 
 9 
 
 78478 
 
 
 9 
 
 88 550 
 
 oil 450 
 
 9 
 
 89927 
 
 
 28 
 
 
 i 
 
 II. 9 
 136 
 IS.:? 
 
 1^ 
 
 9 
 
 78494 
 
 ,£. 
 
 9 
 
 88577 
 
 27 
 26 
 26 
 
 0,11423 
 
 9 
 
 89918 
 
 9 
 
 27 
 
 
 34 
 
 9 
 
 78510 
 
 17 
 
 t6 
 
 9 
 
 88603 
 
 II 397 
 
 9 
 
 89908 
 
 10 
 
 26 
 
 2S 
 
 
 .q 
 
 9 
 
 78527 
 
 9 
 
 88629 
 
 on 371 
 
 9 
 
 89898 
 
 1 
 
 ^6 
 
 9 
 
 78543 
 
 9 
 
 88 6^5 
 88681 
 
 26 
 26 
 
 O.II 345 
 
 9 
 
 89888 
 
 
 24 
 
 1 
 
 V 
 
 9 
 
 78560 
 
 [6 
 [6 
 '7 
 [6 
 
 9 
 
 II 319 
 
 9 
 
 89879 
 
 •9 
 
 23 
 
 
 16 
 
 ^« 
 
 9 
 
 78576 
 
 9 
 
 88707 
 
 II 293 
 
 9 
 
 89869 
 
 
 22 
 
 ^ 
 
 I 6 
 
 39 
 40 
 
 9 
 
 78592 
 
 9 
 
 88733 
 
 26 
 
 II 267 
 
 9 
 
 89859 
 
 10 
 
 21 
 
 20 
 
 
 .2 
 
 .3 
 
 U 
 
 9 
 
 78609 
 
 9 
 
 88759 
 88786 
 
 II 241 
 
 9 
 
 89849 
 
 41 
 
 9 
 
 78625 
 
 9 
 
 27 
 
 0. II 214 
 
 9 
 
 89840 
 
 9 
 
 19 
 
 
 .4 
 
 6.4 
 
 42 
 
 9 
 
 78642 
 
 16 
 t6 
 t7 
 [6 
 t6 
 [6 
 
 9 
 
 88812 
 
 
 on 188 
 
 9 
 
 89830 
 
 
 18 
 
 
 .1; 
 
 8.0 
 
 43 
 
 9 
 
 78658 
 
 9 
 
 88838 
 
 
 II 162 
 
 9 
 
 89820 
 
 
 17 
 
 
 .6 
 
 9.6 
 
 44 
 4S* 
 
 9 
 
 78674 
 
 9 
 
 88864 
 
 26 
 26 
 
 II 136 
 
 9 
 
 89810 
 
 9 
 
 16 
 IS 
 
 
 :l 
 
 n.2 
 
 12.8 
 
 9 
 
 78691 
 
 9 
 
 88890 
 
 0. II no 
 
 9 
 
 89801 
 
 46 
 
 9 
 
 78707 
 
 9 
 
 88916 
 
 on 084 
 
 9 
 
 89791 
 
 
 14 
 
 
 .9 
 
 14.4 
 
 47 
 
 9 
 
 78723 
 
 9 
 
 88942 
 
 26 
 
 O.II 058 
 
 9 
 
 89781 
 
 
 13 
 
 1 
 
 48 
 
 9 
 
 78739 
 
 9 
 
 88968 
 
 O.II 032 
 
 9 
 
 89771 
 
 
 12 
 
 1 
 
 49 
 50 
 
 _9 
 9 
 
 78756 
 78772 
 
 16 
 [6 
 
 9 
 
 88994 
 
 26 
 
 O.II 006 
 
 9 
 
 89761 
 
 9 
 
 II 
 10 
 
 .1 
 
 zo 
 
 I.O 
 
 9 
 0.9 
 
 9 
 
 89 020 
 
 . 10 980 
 
 9 
 
 89752 
 
 SI 
 
 9 
 
 78788 
 
 9 
 
 89046 
 
 26 
 
 0. 10 954 
 
 9 
 
 89 742 
 
 
 9 
 
 .2 
 
 2.0 
 
 1.8 
 
 S2 
 
 9 
 
 78805 
 
 I/' 
 [6 
 16 
 6 
 6 
 
 9 
 
 89073 
 
 27 
 
 0. 10 927 
 
 9 
 
 89732 
 
 
 8 
 
 3 
 
 30 
 
 2.7 
 
 S3 
 
 9 
 
 78821 
 
 9 
 
 89099 
 
 
 10 901 
 
 9 
 
 89722 
 
 
 7 
 
 4 
 
 4.0 
 
 36 
 
 54. 
 
 •>s 
 
 9 
 9 
 
 78837 
 
 9 
 
 89125 
 
 26 
 
 26 
 
 0.10875 
 
 9 
 
 89712 
 
 10 
 
 6 
 5 
 
 i 
 
 5 
 
 6 
 
 4.5 
 
 V. 
 
 78 85.3 
 
 9 
 
 89 151 
 
 0.10 849 
 
 9 
 
 89 702 
 
 S6 
 
 9 78 869 
 
 9 
 
 89 1 77 
 
 26 
 
 0.10823 
 
 9 
 
 89693 
 
 9 
 
 4- 
 
 i 
 
 8^o 
 
 S7 
 
 9 78886 
 
 16 
 6 
 [6 
 
 9 
 
 89 203 
 
 26 
 
 o.io 797 
 
 9 
 
 89 683 
 
 
 3 
 
 S« 
 
 9.78902 
 
 9 
 
 89 229 
 
 
 0. 10 771 
 
 9 
 
 89673 
 
 
 2 
 
 ■9 
 
 9.0 
 
 59 
 60 
 
 9 78918 
 
 9 
 
 89255 
 
 26 
 
 0.10 745 
 
 9 
 
 89663 
 
 10 
 
 I 
 
 
 
 9 78934 
 
 9 
 
 89281 
 
 0. 10 719 
 
 9 
 
 89653 
 
 L. Cos. 4 
 
 i. 
 
 L. Cotg. 
 
 c."(i. 
 
 L. TaiifiT. 
 
 L. Sin. 
 
 d. 
 
 / 
 
 Prop. Fts. 
 
 52^ 1 
 
64 
 
 TABLE II 
 
 38' 
 
 
 
 I 
 
 2 
 
 3 
 _4 
 
 I 
 
 7 
 8 
 
 _9_ 
 10 
 II 
 
 12 
 
 13 
 
 ;i 
 
 17 
 i8 
 
 i9_ 
 20 
 
 21 
 22 
 23 
 
 24 
 
 26 
 
 27 
 28 
 29 
 
 31 
 32 
 
 33 
 
 34 
 
 36 
 37 
 38 
 39 
 40 
 
 41 
 42 
 
 43 
 44 
 
 45 
 46 
 
 47 
 48 
 
 49. 
 50 
 
 51 
 
 52 
 53 
 
 il 
 
 ^^ 
 
 GO 
 
 L. Sin, 
 
 78934 
 
 78 QW 
 78967 
 78983 
 78999 
 
 79015 
 79031 
 79047 
 79063 
 79079 
 
 79095 
 79 III 
 
 79 128 
 
 79 144 
 79 160 
 
 79176 
 
 79 192 
 79 208 
 79224 
 79240 
 
 79256 
 79272 
 79288 
 79304 
 79319 
 
 79 335 
 79351 
 79367 
 79383 
 79 399 
 
 79415 
 79431 
 79 447 
 79463 
 79478 
 
 79 494 
 79510 
 79526 
 79542 
 79558 
 
 79 573 
 79589 
 79605 
 79 621 
 79636 
 
 79652 
 79668 
 79684 
 79699 
 79715 
 
 79731 
 79 746 
 79 762 
 79778 
 79 793 
 
 79809 
 79825 
 79840 
 79856 
 79872 
 
 79887 
 
 L. Cos. 
 
 L. Taiig. 
 
 c. d. 
 
 89281 
 89307 
 89333 
 89359 
 89385 
 
 89 411 
 
 89437 
 89463 
 89489 
 89515 
 
 89541 
 89567 
 89593 
 89 619 
 
 89645 
 
 89671 
 89697 
 89723 
 89749 
 89775 
 
 89801 
 89827 
 89853 
 89879 
 89905 
 
 89931 
 89957 
 89983 
 90 009 
 90035 
 
 90061 
 90 086 
 90 112 
 90 138 
 90 164 
 
 90 190 
 90 216 
 90 242 
 90 268 
 90294 
 
 90 320 
 90346 
 90371 
 90397 
 90423 
 
 90449 
 90475 
 90 501 
 
 90527 
 90553 
 
 9.90578 
 
 9 . 90 604 
 
 90630 
 
 9.90 
 9 90 
 
 656 
 682 
 
 90 708 
 90734 
 90759 
 90785 
 90 811 
 
 9.90837 
 
 36 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 
 25 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 25 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 25 
 26 
 26 
 26 
 26 
 26 
 26 
 25 
 26 
 26 
 
 L. Cotg. Ic. (1 
 
 L. Cotg. 
 
 o.io 719 
 o.ic 693 
 o ic 667 
 o 10 64£ 
 o. 10 615 
 
 O.IO 589 
 o. 10 563 
 
 0.10537 
 
 O.IO 511 
 o. 10 485 
 
 0.10459 
 
 0.10433 
 
 o. 10 407 
 O.IO 381 
 
 0.10355 
 
 0.10329 
 
 o . 10 303 
 O.IO 277 
 O.IO 251 
 o. 10 225 
 
 o. 10 199 
 O.IO 173 
 O.IO 147 
 
 O. 10 121 
 
 0.10095 
 
 O.IO 069 
 o. 10 043 
 O.IOOI7 
 0.09 991 
 o • 09 965 
 
 0.09939 
 
 0.09 914 
 
 0.09888 
 
 o . 09 862 
 0.09 836 
 
 0.09 810 
 0.09 784 
 0.09 758 
 0.09 732 
 0.09 706 
 
 o . 09 680 
 0.09 654 
 o . 09 629 
 o . 09 603 
 
 0.09577 
 
 0.09551 
 
 0.09 525 
 
 0.09499 
 0.09473 
 0.09447 
 
 o . 09 422 
 0.09 396 
 0.09 370 
 
 0.09344 
 
 0.09 318 
 
 0.09 292 
 0.09 266 
 o . 09 241 
 o 09 2 1 5 
 o 09 189 
 0.09 163 
 
 L. Tang. 
 
 5r 
 
 L. Cos. 
 
 89653 
 89643 
 89633 
 89 624 
 89 614 
 
 89 604 
 89594 
 89584 
 89574 
 89564 
 
 89554 
 89544 
 89534 
 89524 
 89514 
 
 89504 
 89495 
 89485 
 
 89475 
 89465 
 
 89455 
 89445 
 89435 
 89425 
 
 89415 
 
 89405 
 89395 
 89385 
 89375 
 89364 
 
 89354 
 89344 
 89334 
 89324 
 
 89314 
 
 89304 
 89294 
 89284 
 
 89274 
 89 264 
 
 89254 
 89244 
 89233 
 89 223 
 89213 
 
 89203 
 
 89193 
 
 8918:5 
 
 89173 
 
 89 Ib2 
 
 89152 
 89 142 
 
 89 132 
 89 122 
 89 112 
 
 89 lOI 
 
 89 091 
 
 89081 
 89071 
 89 060 
 
 9 . 89 050 
 
 L. Sin. 
 
 60 
 
 59 
 58 
 57 
 
 55 
 54 
 53 
 52 
 51 
 50 
 49 
 48 
 47 
 _46_ 
 
 45 
 44 
 43 
 42 
 41 
 40 
 
 39 
 38 
 
 36 
 
 35 
 34 
 33 
 32 
 
 Jl 
 30 
 
 29 
 28 
 
 27 
 26 
 
 Prop. Vis. 
 
 
 26 
 
 I 
 
 26 
 
 2 
 
 S-2 
 
 3 
 
 7.8 
 
 4 
 
 10.4 
 
 5 
 
 13 
 
 6 
 
 15.6 
 
 7 
 
 18 2 
 
 8 
 
 20.8 
 
 9 
 
 23 4 
 
 
 17 
 
 2 
 
 1 ■ 
 
 3 
 
 3 
 
 
 4 
 
 6 
 
 
 8. 
 
 .6 
 
 10. 
 
 .7 
 
 II 
 
 .8 
 
 13 
 
 9 
 
 15 
 
 25 
 
 25 
 
 50 
 
 7 5 
 10 o 
 
 12 5 
 15 o 
 
 17 5 
 20.0 
 22.5 
 
 
 16 
 
 I 
 
 1.6 
 
 2 
 
 32 
 
 3 
 
 4.8 
 
 4 
 
 S4 
 
 .1^ 
 
 8 ol 
 
 .6 
 
 96 
 
 • 7 
 
 II. 2 
 
 .8 
 
 12.8 
 
 9 
 
 14-4 
 
 
 XI 
 
 I 
 
 I. 
 
 2 
 
 2 
 
 3 
 
 3 
 
 •4 
 
 4 
 
 I 
 
 7 
 
 I 
 
 7 
 
 .8 
 •9 
 
 8 
 9 
 
 zo 
 
 9 
 
 10 
 
 
 
 20 
 
 I 
 
 30 
 
 2 
 
 4.0 
 
 3 
 
 SO 
 
 4 
 
 6.0 
 
 S 
 
 7.0 
 
 6 
 
 8.0 
 
 I 
 
 90 
 
 15 
 
 30 
 
 6.0 
 
 7 5 
 9.0 
 
 10. 5 
 12.0 
 
 ^3 5 
 
 Prop. Pis. 
 
LOGARITHMS OF THE TRIGONOMETRIC FUNCTIONS 
 
 65 
 
 39° 1 
 
 t 
 
 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 d. 
 
 60 
 
 Prop. 
 
 Pts. 
 
 9 79887 
 
 16 
 
 9.90837 
 
 26 
 
 0.09 163 
 
 9 89 050 
 
 
 ■ 1 
 
 I 
 
 9 
 
 79903 
 
 TC 
 
 9 
 
 90«b3 
 
 26 
 
 0.09 137 
 
 9 
 
 89 040 
 
 
 S9 
 
 1 
 
 2 
 
 3 
 _4_ 
 
 9 
 9 
 9 
 
 79918 
 79 934 
 79950 
 
 16 
 16 
 15 
 16 
 
 9 
 9 
 9 
 
 90889 
 90914 
 90940 
 
 2S 
 26 
 26 
 26 
 
 0.09 III 
 0,09086 
 . 09 060 
 
 9 
 9 
 9 
 
 89 030 
 89 020 
 89009 
 
 10 
 II 
 10 
 
 58 
 
 .1 
 
 .2 
 3 
 4 
 
 26 
 2.6 
 
 li 
 
 10.4 
 
 ill 
 
 208 
 
 9 
 
 79965 
 
 9 
 
 90966 
 
 0.09034 
 
 9 
 
 88999 
 
 6 
 
 9 
 
 79981 
 
 15 
 16 
 
 9 
 
 90992 
 
 oA 
 
 0.09008 
 
 9 
 
 88989 
 
 
 54 
 
 7 
 
 9 
 
 79996 
 
 9 
 
 91 018 
 
 
 0.08982 
 
 9 
 
 88978 
 
 
 S^ 
 
 8 
 
 9 
 
 80012 
 
 15 
 16 
 
 16 
 
 9 
 
 91043 
 
 26 
 26 
 
 0.08957 
 
 9 
 
 88968 
 
 
 52 
 
 9 
 10 
 
 9 
 
 80027 
 
 9 
 
 91 069 
 
 0.08 931 
 
 9 
 
 88958 
 
 10 
 
 51 
 50 
 
 I 
 
 9 
 
 80043 
 
 9 
 
 91095 
 
 0.08905 
 
 9 
 
 88948 
 
 II 
 
 9 
 
 80058 
 
 9 
 
 91 121 
 
 26 
 
 0.08879 
 
 9 
 
 88937 
 
 
 49 
 
 9 
 
 23 4 
 
 12 
 
 9 
 
 80074 
 
 
 9 
 
 91 147 
 
 
 0.08853 
 
 9 
 
 88927 
 
 
 48 
 
 
 n 
 
 9 
 
 80089 
 
 16 
 
 9 
 
 91 172 
 
 25 
 
 26 
 26 
 26 
 26 
 
 0.08828 
 
 9 
 
 88917 
 
 
 47 
 
 1 
 
 14 
 15 
 
 9 
 
 80 105 
 
 IS 
 16 
 
 9 
 
 91 198 
 
 0.08802 
 
 9 
 
 88906 
 
 10 
 
 46 
 45 
 
 
 25 
 
 25 
 
 9 
 
 80 120 
 
 9 
 
 91 224 
 
 0.08 776 
 
 9 
 
 88896 
 
 16 
 
 9 
 
 80 136 
 
 
 9 
 
 91 250 
 
 0.08 750 
 
 9 
 
 88 886 
 
 
 44 
 
 .2 
 
 50 
 
 17 
 
 9 
 
 80 151 
 
 
 9 
 
 91 276 
 
 0.08 724 
 
 9 
 
 88875 
 
 
 43 
 
 •3 
 
 7-5 
 
 18 
 
 9 
 
 80166 
 
 16 
 
 9 
 
 91 301 
 
 25 
 
 26 
 26 
 26 
 
 0.08 699 
 
 9 
 
 88865 
 
 
 42 
 
 •4 
 
 10.0 
 
 19 
 20 
 
 9 
 
 80 182 
 
 15 
 
 16 
 
 9 
 
 91 327 
 
 0.08 673 
 
 9 
 
 88855 
 
 II 
 
 41 
 40 
 
 i 
 
 12.5 
 15 
 
 9 
 
 80197 
 
 9 
 
 91353 
 
 0.08 647 
 
 9 
 
 88844 
 
 21 
 
 9 
 
 80213 
 
 
 9 
 
 91 379 
 
 0.08 621 
 
 9 
 
 88834 
 
 
 39 
 
 i 
 
 17 5 
 
 22 
 
 9 
 
 80228 
 
 16 
 
 9 
 
 91404 
 
 25 
 
 26 
 26 
 26 
 
 0.08 596 
 
 9 
 
 88824 
 
 10 
 
 38 
 
 20.0 
 
 2S 
 
 9 
 
 80244 
 
 
 9 
 
 91430 
 
 0.08 570 
 
 9 
 
 88813 
 
 
 37 
 
 •9 
 
 22.5 
 
 24 
 2"^ 
 
 ^9 
 "9 
 
 80 259 
 
 15 
 
 16 
 
 9 
 
 91456 
 
 0.08 544 
 
 9 
 
 88803 
 
 10 
 
 36 
 
 35 
 
 1 
 
 80274 
 
 9 
 
 91482 
 
 0.08518 
 
 9 
 
 88793 
 
 
 16 
 
 26 
 
 9 
 
 80290 
 
 
 9 
 
 91 507 
 
 26 
 26 
 26 
 25 
 26 
 26 
 26 
 
 0.08493 
 
 9 
 
 88782 
 
 
 34 
 
 
 1.6 
 
 27 
 
 9 
 
 80305 
 
 
 9 
 
 91 533 
 
 0.08467 
 
 9 
 
 88772 
 
 
 33 
 
 
 28 
 
 9 
 
 80320 
 
 16 
 15 
 
 9 
 
 91 559 
 
 0.08 441 
 
 9 
 
 88761 
 
 
 32 
 
 
 8 
 
 29 
 
 30 
 
 9 
 
 8033^ 
 
 9 
 
 91585 
 
 0.08 415 
 
 9 
 
 88751 
 
 10 
 10 
 
 31 
 80 
 
 ■3 
 •4 
 
 9 
 
 80351 
 
 9 
 
 91 610 
 
 0.08 390 
 
 9 
 
 88741 
 
 31 
 
 9 
 
 80366 
 
 16 
 
 9 
 
 91 636 
 
 0.08 364 
 
 9 
 
 88730 
 
 11 
 
 
 9.6 
 112 
 
 32 
 
 9 
 
 80382 
 
 9 
 
 91 662 
 
 0.08338 
 
 9 
 
 88 720 
 
 10 
 
 28 
 
 i 
 
 33 
 
 9 
 
 80397 
 
 
 9 
 
 91688 
 
 08 312 
 
 9 
 
 88 709 
 
 II 
 
 27 
 
 12 8 
 
 34 
 
 3S 
 
 9 
 
 80412 
 
 16 
 
 9 
 
 91 713 
 
 25 
 
 26 
 26 
 26 
 
 0.08287 
 
 9 
 
 88699 
 
 10 
 II 
 
 26 
 25 
 
 .g 
 
 9 . . 
 
 lA A 
 
 9 
 
 80428 
 
 9 
 
 91 739 
 
 0.08 261 
 
 9 
 
 88 688 
 
 
 36 
 
 9 
 
 80443 
 
 
 9 
 
 91 765 
 
 0.08 235 
 
 9 
 
 88678 
 
 10 
 
 24 
 
 1 
 
 37 
 
 9 
 
 80458 
 
 
 9 
 
 91 791 
 
 08 209 
 
 9 
 
 88 668 
 
 10 
 
 23 
 
 
 X5 
 
 IS 
 
 30 
 
 38 
 
 9 
 
 80473 
 
 IS 
 
 16 
 15 
 
 9 
 
 91 816 
 
 25 
 
 0.08 184 
 
 9 
 
 88 657 
 
 II 
 
 22 
 
 
 39 
 40 
 
 9 
 
 80489 
 
 9 
 
 91842 
 
 26 
 
 0.08 158 
 
 9 
 
 88 647 
 
 10 
 11 
 
 21 
 20 
 
 .2 
 
 3 
 .4 
 
 9 
 
 80504 
 
 9 
 
 91 868 
 
 08 132 
 
 9 
 
 88636 
 
 41 
 
 9 
 
 80519 
 
 15 
 
 9 
 
 91 893 
 
 25 
 26 
 26 
 26 
 
 2S 
 26 
 
 0.08 107 
 
 9 
 
 88626 
 
 10 
 
 IQ 
 
 42 
 
 9 
 
 80534 
 
 15 
 
 9 
 
 91 919 
 
 0.08081 
 
 9 
 
 88615 
 
 II 
 
 18 
 
 
 7 5 
 
 43 
 
 9 
 
 80550 
 
 
 9 
 
 91 945 
 
 0.08 055 
 
 9 
 
 88605 
 
 
 17 
 
 5 
 
 90 
 
 44 
 4S 
 
 9 
 
 80565 
 
 IS 
 
 9 
 
 91 971 
 
 . 08 029 
 
 9 
 
 88594 
 
 10 
 
 16 
 15 
 
 i 
 
 10.5 
 12 
 
 9 
 
 80580 
 
 9 
 
 91 996 
 
 . 08 004 
 
 9 
 
 88584 
 
 46 
 
 9 
 
 80595 
 
 *s 
 
 9 
 
 92 022 
 
 0.07978 
 
 9 
 
 88 573 
 
 II 
 
 14 
 
 9 
 
 13 5 
 
 47 
 
 9 
 
 80610 
 
 IS 
 
 9 
 
 92 048 
 
 
 0.07952 
 
 9 
 
 88 S63 
 
 10 
 
 n 
 
 1 
 
 48 
 
 9 
 
 80625 
 
 IS 
 
 16 
 
 ^5 
 
 9 
 
 92073 
 
 25 
 26 
 26 
 
 0.07927 
 
 9 
 
 88 552 
 
 II 
 
 12 
 
 1 
 
 49 
 60 
 
 9 
 
 80641 
 
 9 
 
 92099 
 
 0.07 901 
 
 9 
 
 88542 
 
 II 
 
 II 
 10 
 
 .1 
 
 II 
 I . I 
 
 10 
 1.0 
 
 9 
 
 80656 
 
 9 
 
 92 125 
 
 0.07875 
 
 9 
 
 88531 
 
 SI 
 
 9 
 
 80671 
 
 ^s 
 
 9 
 
 92 150 
 
 2S 
 
 0.07850 
 
 9 
 
 88521 
 
 10 
 
 p 
 
 .2 
 
 2.2 
 
 2.0 
 
 52 
 
 9 
 
 80686 
 
 IS 
 
 9 
 
 92176 
 
 26 
 
 0.07 824 
 
 9 
 
 88510 
 
 II 
 
 8 
 
 3 
 
 3 3 
 
 30 
 
 S3 
 
 9 
 
 80 701 
 
 
 9 
 
 92 202 
 
 0.07 798 
 
 9 
 
 88499 
 
 I' 
 
 7 
 
 4 
 
 4 4 
 
 4.0 
 
 54 
 
 SS 
 
 9 
 
 80 716 
 
 15 
 15 
 
 9 
 
 92227 
 
 2S 
 26 
 
 0.07 773 
 
 9 
 
 88489 
 
 10 
 II 
 
 6 
 
 S 
 
 I 
 
 U 
 
 50 
 6.C 
 
 9 
 
 80731 
 
 9 
 
 92253 
 
 0.07 747 
 
 9 
 
 88478 
 
 S6 
 
 9 80 746 
 
 15 
 
 16 
 
 9 
 
 92279 
 
 
 0.07 721 
 
 9 
 
 88468 
 
 10 
 
 4 
 
 :i 
 
 ii 
 
 7.0 
 8.C 
 
 S7 
 
 9 80 762 
 
 9 
 
 92304 
 
 2S 
 
 0.07 696 
 
 Q 
 
 88457 
 
 IX 
 
 3 
 
 S8 
 
 9 80 777 
 
 15 
 
 9 
 
 92330 
 
 
 0.07 670 
 
 9 
 
 88447 
 
 10 
 
 2 
 
 •9 
 
 9 9 
 
 9.0 
 
 59 
 
 9 80792 
 
 15 
 15 
 
 9 
 9 
 
 92356 
 92381 
 
 2S 
 
 0.07 644 
 
 9 88 436 
 
 II 
 II 
 
 I 
 
 
 
 9 80 807 
 
 0.07 619 
 
 9.88425 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. 
 
 c.d. 
 
 L. Tang. 
 
 L. Sin. 
 
 d. 
 
 f 
 
 Prop. Pis. 
 
 50^ 1 
 
66 
 
 TABLE II 
 
 40° 1 
 
 t 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c. d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 d. 
 
 w 
 
 Prop. Pts. 
 
 
 
 9.80807 
 
 
 9.92381 
 
 
 0.07 619 
 
 9.88425 
 
 
 
 I 
 
 9 
 
 80 822 
 
 
 9 
 
 92407 
 
 
 0.07593 
 
 9 
 
 88415 
 
 
 S9 
 
 
 2 
 
 9 
 
 80837 
 
 
 9 
 
 92433 
 
 
 0.07567 
 
 9 
 
 88404 
 
 
 S8 
 
 
 26 
 
 3 
 
 9 
 
 80852 
 
 
 9 
 
 92458 
 
 25 
 
 0.07 542 
 
 9 
 
 88 394 
 
 
 S7 
 
 T 
 
 2 6 
 
 4 
 
 9 
 
 80867 
 
 
 9 
 
 92484 
 
 26 
 
 0.07 516 
 
 9 
 
 88383 
 
 II 
 
 56 
 
 55 
 
 
 2 
 
 3 
 
 '7s 
 
 9 
 
 80882 
 
 9 
 
 92510 
 
 0.07490 
 
 9 
 
 88 372 
 
 6 
 
 9 
 
 80 897 
 
 
 9 
 
 92535 
 
 25 
 
 0.07465 
 
 9 
 
 88362 
 
 
 54 
 
 
 4 
 
 10 4 
 
 7 
 
 9 
 
 80 912 
 
 
 9 
 
 92561 
 
 26 
 
 0.07439 
 
 9- 
 
 88351 
 
 
 53 
 
 
 
 13 
 
 8 
 
 9 
 
 80927 
 
 
 9 
 
 92587 
 
 
 0.07413 
 
 9. 
 
 88340 
 
 
 52 
 
 
 (5 
 
 15 6 
 
 9 
 10 
 
 9 
 
 80942 
 
 
 9 
 
 92 612 
 
 25 
 26 
 
 0.07388 
 
 9 
 
 88330 
 
 II 
 
 51 
 50 
 
 
 7 
 8 
 
 182 
 20 8 
 
 9 
 
 80957 
 
 9 
 
 92 638 
 
 0.07362 
 
 9 
 
 88319 
 
 II 
 
 9 
 
 80972 
 
 
 9 
 
 92 663 
 
 25 
 26 
 26 
 
 0.07337 
 
 9 
 
 88308 
 
 
 49 
 
 
 9 
 
 23 4 
 
 12 
 
 9 
 
 80987 
 
 
 9 
 
 92689 
 
 0.07 311 
 
 9 
 
 88298 
 
 
 48 
 
 1 
 
 n 
 
 9 
 
 81 002 
 
 
 9 
 
 92 715 
 
 0.07 285 
 
 9- 
 
 88287 
 
 
 47 
 
 1 
 
 14 
 
 9 81 017 
 
 
 9 
 
 92 740 
 
 26 
 26 
 
 0.07 260 
 
 9 
 
 88276 
 
 10 
 
 46 
 45 
 
 
 25 
 
 25 
 
 9 81 032 
 
 9 
 
 92766 
 
 0.07234 
 
 9 
 
 88266 
 
 
 1 
 
 i6 
 
 9 
 
 81 047 
 
 
 9 
 
 92 792 
 
 0.07 208 
 
 9 
 
 88255 
 
 
 44 
 
 
 2 
 
 50 
 
 17 
 
 9 
 
 81 061 
 
 
 9 
 
 92817 
 
 25 
 26 
 
 0.07 183 
 
 9. 
 
 88244 
 
 
 43 
 
 
 3 
 
 7 5 
 
 i8 
 
 9 
 
 81 076 
 
 
 9 
 
 92843 
 
 0.07 157 
 
 9 
 
 88234 
 
 
 42 
 
 
 4 
 
 10 
 
 19 
 20" 
 
 9 
 
 81 091 
 
 
 9 
 
 92868 
 
 25 
 26 
 
 26 
 
 0.07132 
 
 9 
 
 88223 
 
 II 
 
 41 
 40 
 
 
 I 
 
 12.5 
 15 
 
 17 5 
 20 
 
 9 
 
 81 106 
 
 9 
 
 92894 
 
 0.07 106 
 
 9 
 
 88212 
 
 21 
 
 9 
 
 81 121 
 
 
 9 
 
 92 920 
 
 0.07 080 
 
 9 
 
 88201 
 
 
 39 
 
 
 22 
 
 9 
 
 81 136 
 
 
 9 
 
 92945 
 
 25 
 26 
 
 0.07055 
 
 9 
 
 88 191 
 
 ° 
 
 38 
 
 
 n 
 
 22.5 
 
 2^ 
 
 9 
 
 81 151 
 
 
 9 
 
 92971 
 
 0.07029 
 
 9 
 
 88180 
 
 
 37 
 
 
 24 
 2S 
 
 9 
 
 81 166 
 
 
 9 
 
 92996 
 
 25 
 
 26 
 
 26 
 
 0.07004 
 
 9 
 
 88 169 
 
 II 
 
 36 
 35 
 
 1 
 
 9 
 
 81 180 
 
 9 
 
 93022 
 
 0.06978 
 
 9 
 
 88158 
 
 
 IS 
 
 26 
 
 9 
 
 81 195 
 
 
 9 
 
 93048 
 
 0.06952 
 
 9 
 
 88 148 
 
 
 34 
 
 ^ 
 
 15 
 
 3 
 
 4 5 
 
 6 
 
 7 5 
 
 27 
 
 9 
 
 81 210 
 
 
 9 
 
 93073 
 
 25 
 
 26 
 
 0.06927 
 
 9 
 
 88137 
 
 
 33 
 
 
 2 
 
 28 
 
 9 
 
 81 225 
 
 
 9 
 
 93099 
 
 06 901 
 
 9 
 
 88 126 
 
 
 32 
 
 
 •3 
 •4 
 
 • S 
 
 29 
 
 30 
 
 _9 
 9 
 
 81 240 
 81 254 
 
 
 9 
 
 93 124 
 
 25 
 26 
 
 06876 
 
 9 
 
 88 115 
 
 10 
 
 31 
 30 
 
 
 9 
 
 93 150 
 
 0.06 850 
 
 9 
 
 %% 105 
 
 SI 
 
 9 
 
 81 269 
 
 
 9 
 
 93 175 
 
 25 
 
 0.06825 
 
 9 
 
 88094 
 
 
 29. 
 
 
 .6 
 
 90 
 
 32 
 
 9 
 
 81 284 
 
 
 9 
 
 93201 
 
 26 
 
 0.06 799 
 
 9 
 
 88083 
 
 
 28 
 
 
 .7 
 
 10 5 
 
 33 
 
 9 
 
 81 299 
 
 
 9 
 
 93227 
 
 0.06 773 
 06 748 
 
 9 
 
 88072 
 
 
 27 
 
 
 .8 
 
 12 
 
 34 
 3S 
 
 9 
 
 81 314 
 
 
 9 
 
 93252 
 
 25 
 
 26 
 
 9 
 
 88061 
 
 10 
 
 26 
 25 
 
 
 9 
 
 13 5 
 
 9 
 
 81 328 
 
 9 
 
 93278 
 
 0.06 722 
 
 9 
 
 88051 
 
 1 
 
 3^ 
 
 9 
 
 81343 
 
 
 9 
 
 93303 
 
 25 
 
 06 697 
 
 9 
 
 88040 
 
 
 24 
 
 1 
 
 37 
 
 9 
 
 81358 
 
 
 9 
 
 93329 
 
 
 06 671 
 
 9 
 
 88029 
 
 
 23 
 
 
 14 
 
 3« 
 
 9 
 
 81372 
 
 
 9 
 
 93 354 
 
 25 
 
 06 646 
 
 9 
 
 88018 
 
 
 22 
 
 I 
 
 14 
 2 8 
 
 4 2 
 
 39 
 40 
 
 9 
 
 ,81 387 
 
 
 9 
 
 93380 
 
 26 
 
 06 620 
 
 9 
 
 88007 
 
 11 
 
 21 
 
 20 
 
 
 .2 
 
 .3 
 
 9 81 402 
 
 9 
 
 93406 
 
 0.06594 
 
 9 
 
 87996 
 
 A\ 
 
 9,81 417 
 
 
 9 
 
 93431 
 
 25 
 
 0.06 569 
 
 9 
 
 87985 
 
 
 19 
 
 
 • 4 
 
 56 
 
 42 
 
 9 81 431 
 
 
 9 
 
 93 457 
 
 26 
 
 . 06 543 
 
 9 
 
 87975 
 
 
 18 
 
 
 .5 
 
 7 
 
 43 
 
 9 81 446 
 
 
 9 
 
 93482 
 
 25 
 
 06 518 
 
 9 
 
 87964 
 
 
 17 
 
 
 .6 
 
 84 
 
 44 
 4S 
 
 9 81 461 
 
 
 9 
 
 93508 
 
 26 
 
 25 
 
 06 492 
 
 9 
 
 87953 
 
 II 
 
 16 
 
 ^5 
 
 
 •7 
 .8 
 
 98 
 II 2 
 
 9^1 475 
 
 9 
 
 93 533 
 
 0.06467 
 
 9 
 
 87942 
 
 46 
 
 9 81 490 
 
 
 9 
 
 93 559 
 
 26 
 
 0.06 441 
 
 9 
 
 87931 
 
 
 14 
 
 
 9 
 
 12 6 
 
 47 
 
 9 81 505 
 
 
 9 
 
 93584 
 
 25 
 
 06 416 
 
 9 87 920 
 
 
 13 
 
 1 
 
 48 
 
 9 81 519 
 
 
 9 
 
 93 610 
 
 
 0.06390 
 
 9 87 909 
 
 
 12 
 
 1 
 
 49 
 50 
 
 9 «i 534 
 
 
 9 
 
 93636 
 
 26 
 
 25 
 
 06 364 
 
 9 87 898 
 
 II 
 
 II 
 10 
 
 I 
 
 XI 
 
 II 
 
 10 
 
 ID 
 
 9 81 549 
 
 9 
 
 93661 
 
 06339 
 
 9 87 887 
 
 .S» 
 
 9 8' 563 
 9 «• 578 
 
 
 9 
 
 93687 
 
 26 
 
 06313 
 
 9 87877 
 
 
 9 
 
 .2 
 
 22 
 
 2 
 
 S2 
 
 
 9 
 
 93712 
 
 25 
 
 0.06288 
 
 9 
 
 87866 
 
 
 8 
 
 3 
 
 3 3 
 
 3 
 
 S3 
 
 9 81 592 
 
 
 9 
 
 93 738 
 
 26 
 
 0.06 262 
 
 9 
 
 87855 
 
 
 7 
 
 4 
 
 4 4 
 
 4 
 
 54 
 
 9 81 607 
 
 
 9 
 
 93 763 
 
 25 
 26 
 
 0.06 237 
 
 9 
 
 87844 
 
 
 6 
 
 5 
 
 .^5 
 
 IS 
 
 5S 
 
 9 81 622 
 
 
 9 
 
 93 789 
 
 0.06 211 
 
 9 
 
 ^l^ZZ 
 
 
 5 
 
 6 
 
 6 6 
 
 5^ 
 
 9 81 636 
 
 
 9 
 
 93814 
 
 25 
 
 0.06 186 
 
 9 
 
 87822 
 
 
 4 
 
 .8 
 
 1^ 
 
 ^0 
 
 ^s^ 
 
 9 81 651 
 
 
 9 
 
 93 840 
 
 26 
 
 0.06 160 
 
 9 87 811 
 
 
 3 
 
 9 81 665 
 
 
 9 
 
 93865 
 
 25 
 
 0.06 135 
 
 9.87800 
 
 
 2 
 
 y 
 
 9 9 
 
 90 
 
 59 
 60 
 
 9 81 680 
 
 
 9 
 
 93891 
 
 26 
 25 
 
 0.06 109 
 
 9 87789 
 
 II 
 
 
 
 
 9 81 694 
 
 9 
 
 93916 
 
 06 084 
 
 9 87 778 
 
 L. Cos. 
 
 
 L. Cotg. 
 
 c. d. 
 
 L. Tang. 
 
 L. Sin. 
 
 f 
 
 Prop. Pt8. 
 
 49^ 1 
 
LOGARITHMS OF THE TRIGONOMETRIC FUNCTIONS 
 
 67 
 
 41 
 
 9_ 
 10 
 II 
 
 12 
 
 \i 
 
 i8 
 20 
 
 21 
 
 22 
 23 
 
 24 
 
 25 
 26 
 27 
 28 
 
 f9 
 30 
 
 31 
 32 
 33 
 Jl 
 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 
 46 
 
 47 
 48 
 
 49 
 
 50 
 
 51 
 
 52 
 53 
 _54 
 55 
 5^ 
 
 00 
 
 L. Sin, 
 
 694 
 709 
 723 
 738 
 
 752 
 
 767 
 781 
 796 
 810 
 825 
 
 839 
 854 
 868 
 882 
 897 
 
 911 
 926 
 940 
 
 955 
 969 
 
 983 
 998 
 82 012 
 82 026 
 82 041 
 
 82055 
 82 069 
 82084 
 82098 
 82 112 
 
 82 126 
 82 141 
 82155 
 82 169 
 82 184 
 
 82 198 
 82 212 
 82 226 
 82 240 
 82255 
 
 82 269 
 82283 
 82 297 
 82 311 
 82_326_ 
 
 82340 
 82354 
 82368 
 82382 
 82396 
 
 82 410 
 82 424 
 82439 
 
 82453 
 82467 
 
 82481 
 82495 
 82 509 
 82523 
 82537 
 
 82551 
 
 L. Cos. 
 
 d. 
 
 Tang. 
 
 93916 
 93942 
 93 967 
 
 93 993 
 
 94 018 
 
 94044 
 94 069 
 94095 
 94 120 
 94 146 
 
 94 171 
 94 197 
 94 222 
 94248 
 94273 
 
 94299 
 94324 
 94350 
 94 375 
 94401 
 
 94 426 
 94452 
 94 477 
 94503 
 94528 
 
 94 554 
 94 579 
 94 604 
 94630 
 94655 
 
 94 681 
 94 706 
 94 732 
 94 757 
 94783 
 
 94808 
 94834 
 94859 
 94884 
 94910 
 
 94 935 
 94961 
 
 94 986 
 
 95 012 
 95037 
 
 95 062 
 95088 
 95 113 
 95 139 
 95 164 
 
 95 190 
 95215 
 95 240 
 95 266 
 95291 
 
 95317 
 95 342 
 95368 
 95 393 
 95 418 
 
 c. d. 
 
 95 444 
 
 Cotff. 
 
 c. d. 
 
 L. Cotg. 
 
 o . 06 084 
 0.06 058 
 0.06033 
 0.06 007 
 0.05 982 
 
 0.05 956 
 0.05931 
 0.05 905 
 0.05 880 
 0.05 854 
 
 0.05 829 
 0.05 803 
 o 05 778 
 o 05 752 
 0.05 727 
 
 o 05 701 
 o 05 676 
 0.05 650 
 0.05 625 
 0.05 599 
 
 0.05 574 
 0.05 548 
 0.05 523 
 0.05 497 
 0.05 472 
 
 0.05 446 
 0.05 421 
 o 05 396 
 0.05 370 
 005 345 
 
 0.05 319 
 0.05 294 
 0.05 268 
 0.05 243 
 6.05 217 
 
 0.05 192 
 0.05 166 
 0.05 141 
 o 05 116 
 o . 05 090 
 
 0.05 065 
 o 05 039 
 o 05 014 
 o 04 988 
 o 04963 
 
 o 04 938 
 o 04 912 
 o 04 887 
 0.04 861 
 o . 04 836 
 
 0.04 5IO 
 
 0.04 785 
 o 04 760 
 o 04 734 
 0.04 709 
 
 o . 04 683 
 o . 04 658 
 o . 04 632 
 0.04 607 
 o . 04 582 
 
 0.04 556 
 
 L. Tang. 
 
 48° 
 
 L. Cos. 
 
 87778 
 87767 
 87756 
 87745 
 87734 
 
 87723 
 87712 
 87 701 
 87 69c 
 87679 
 
 87668 
 
 87657 
 87646 
 
 87635 
 87624 
 
 87613 
 87601 
 87590 
 87579 
 87 568 
 
 87557 
 87546 
 87535 
 87524 
 87513 
 
 87501 
 87490 
 87479 
 87468 
 
 87457 
 
 87446 
 87434 
 87423 
 87 412 
 87 401 
 
 87390 
 87378 
 87367 
 87356 
 
 9 87 345 
 
 9 87 334 
 9 87322 
 
 9 873" 
 9 87300 
 9.87288 
 
 87277 
 87266 
 87255 
 87243 
 87232 
 
 87221 
 
 87 209 
 
 87 198 
 
 9 87 187 
 
 9 87 175 
 
 9 87 164 
 9 87 153 
 9 87 141 
 9 87 130 
 9 87 119 
 
 9.87 107 
 
 L. Sin, 
 
 d. 
 
 «0 
 
 59 
 58 
 57 
 56 
 
 55 
 54 
 53 
 52 
 _5L 
 50 
 49 
 48 
 47 
 46 
 
 45 
 44 
 43 
 42 
 41 
 40 
 
 39 
 38 
 
 36 
 
 35 
 34 
 33 
 32 
 31 
 
 25 
 24 
 23 
 22 
 21 
 
 20 
 
 ^9 
 18 
 
 17 
 16 
 
 15 
 14 
 13 
 12 
 II 
 
 9 
 8 
 
 7 
 6 
 
 Prop. Pts. 
 
 6 
 2 
 
 8 
 
 4 
 o 
 
 18.2 
 20.8 
 23 4 
 
 25 
 
 25 
 50 
 
 7 5 
 10.0 
 
 12.5 
 15 o 
 
 17 5 
 20.0 
 22.5 
 
 15 
 
 IS 
 
 30 
 
 6.0 
 
 7-5 
 9.0 
 
 10.5 
 12.0 
 
 13 5 
 
 X4 
 
 14 
 8 
 2 
 6 
 o 
 
 4 
 8 
 2 
 6 
 
 
 13 
 
 .1 
 
 12 
 
 .2 
 
 2.4 
 
 3 
 
 36 
 
 • 4 
 
 48 
 
 
 6.0 
 
 .6 
 
 7.2 
 
 • 7 
 
 8.4 
 
 .8 
 
 9.6 
 
 •9 
 
 0.8 
 
 Prop. Pts. 
 
68 
 
 TABLE II 
 
 42^ 
 
 2 
 
 3 
 
 A 
 
 5 
 6 
 
 7 
 8 
 
 9^ 
 
 10 
 
 II 
 
 12 
 
 13 
 14 
 
 11 
 
 17 
 
 i8 
 
 i9_ 
 20 
 
 21 
 
 22 
 23 
 24 
 
 26 
 27 
 28 
 29 
 
 30 
 
 31 
 32 
 33 
 34_ 
 
 36 
 
 37 
 38 
 39 
 40 
 
 41 
 42 
 
 43 
 44 
 
 45 
 46 
 
 47 
 48 
 
 49 
 
 50 
 
 51 
 
 52 
 53 
 
 I 
 II 
 
 60 
 
 L. Sin. 
 
 82551 
 82565 
 82 579 
 82 593 
 82 607 
 
 82621 
 82 635 
 82 649 
 82663 
 82677 
 
 82 69_i 
 82 705 
 82 719 
 82 733 
 82 747 
 
 82 76_i 
 
 82775 
 82788 
 82802 
 82816 
 
 82830 
 82844 
 82858 
 82872 
 8288=: 
 
 82899 
 82913 
 82 927 
 82 941 
 82955 
 
 82968 
 82982 
 
 82 996 
 
 83 010 
 83023 
 
 83037 
 83051 
 83065 
 83078 
 83092 
 
 83 106 
 83 120 
 83133 
 83 147 
 83 161 
 
 83 174 
 83 188 
 83 202 
 83215 
 83 229 
 
 83242 
 83256 
 83 270 
 83283 
 83297 
 
 83310 
 83324 
 83338 
 83351 
 83365 
 
 983378 
 
 Cos. 
 
 d. L. Tang. 
 
 95 444 
 95 469 
 95 495 
 95 520 
 95 545 
 
 95 571 
 95596 
 95 622 
 95647 
 95 672 
 
 95698 
 95 723 
 95 748 
 95 774 
 95 799 
 
 95 825 
 95850 
 95875 
 95901 
 95 926 
 
 95952 
 
 95 977 
 
 96 002 
 96 028 
 96053 
 
 96 078 
 96 104 
 96 129 
 
 96155 
 96 180 
 
 96 205 
 96231 
 96 256 
 96281 
 96307 
 
 96332 
 96357 
 96383 
 96 408 
 
 96433 
 
 96459 
 96 484 
 96 510 
 
 96535 
 96 560 
 
 96586 
 96 611 
 96636 
 96 662 
 96687 
 
 96 712 
 96738 
 96 763 
 96788 
 96 814 
 
 96839 
 96864 
 96 890 
 
 96915 
 96 940 
 
 c.d, 
 
 96 966 
 
 d. I L. Cotg. 
 
 25 
 26 
 25 
 25 
 26 
 
 25 
 26 
 
 25 
 
 25 
 26 
 
 25 
 25 
 26 
 
 25 
 26 
 
 25 
 25 
 26 
 
 25 
 26 
 
 25 
 25 
 26 
 
 25 
 25 
 26 
 25 
 26 
 25 
 25 
 26 
 
 25 
 
 25 
 26 
 25 
 
 25 
 26 
 25 
 25 
 26 
 
 25 
 26 
 25 
 25 
 26 
 
 25 
 25 
 26 
 25 
 
 25 
 
 26 
 25 
 25 
 26 
 25 
 
 25 
 26 
 25 
 25 
 26 
 
 c.d. 
 
 L. Cotg. 
 
 0.04 556 
 o 04531 
 o . 04 505 
 o 04 480 
 o 04 455 
 
 o 04 429 
 o 04 404 
 
 0,04378 
 0.04353 
 
 0.04 328 
 
 o . 04 302 
 0.04 277 
 o 04 252 
 o . 04 226 
 0.04 201 
 
 0.04 175 
 
 0.04 150 
 0.04 125 
 o . 04 099 
 o . 04 074 
 o . 04 048 
 o . 04 023 
 
 0.03 998 
 
 0.03 972 
 
 0.03947 
 
 0.03 922 
 0.03 896 
 
 0.03871 
 
 0.03 845 
 0.03 820 
 
 0.03 795 
 0.03 769 
 0.03 744 
 0.03 719 
 0.03 693 
 
 0.03 668 
 0.03643 
 o 03617 
 0.03 592 
 0.03 567 
 
 0.03541 
 0.03 516 
 o . 03 490 
 o . 03 465 
 
 0.03440 
 
 0.03 414 
 0.03389 
 0.03364 
 0.03338 
 0.03313 
 
 0.03 288 
 
 0.03 262 
 
 0.03237 
 
 0.03 212 
 0.03 186 
 
 0.03 161 
 
 o 03 136 
 o 03 no 
 o 03 085 
 o , 03 060 
 
 0.03034 
 
 L. Tang. 
 
 470 
 
 I 
 
 . Cos. 
 
 d 
 
 • 
 
 60 
 
 9,87 107 
 
 
 9 
 
 87096 
 
 , 
 
 
 59 
 
 9 
 
 87085 
 
 
 
 58 
 
 9 
 
 87073 
 
 
 
 57 
 
 _9_ 
 9 
 
 87062 
 
 
 2 
 
 56 
 
 55 
 
 87 050 
 
 9 
 
 87039 
 
 
 
 54 
 
 9 
 
 87028 
 
 
 
 5^ 
 
 9 
 
 87016 
 
 
 
 52 
 
 9 
 
 87005 
 
 
 2 
 
 51 
 50 
 
 9 
 
 86993 
 
 9 
 
 86982 
 
 
 ^ 
 
 49 
 
 9 
 
 86970 
 
 
 
 48 
 
 9 
 
 86959 
 
 
 
 47 
 
 9 
 
 86947 
 
 
 I 
 
 46 
 45 
 
 9 
 
 86936 
 
 9 
 
 86924 
 
 
 
 44 
 
 9 
 
 86913 
 
 
 
 43 
 
 9 
 
 86902 
 
 
 
 42 
 
 9 
 
 86890 
 
 
 I 
 
 41 
 40 
 
 9 
 
 86879 
 
 9 
 
 86867 
 
 
 
 39 
 
 9 
 
 86 855 
 
 
 
 38 
 
 q 
 
 86844 
 
 
 
 37 
 
 9 
 
 86832 
 
 
 ^ 
 
 36_ 
 
 35 
 
 9 
 
 86821 
 
 9 
 
 86809 
 
 
 
 M 
 
 9 
 
 86798 
 
 
 ^ 
 
 S3 
 
 9 
 
 86786 
 
 
 
 ^2 
 
 9 
 
 86775 
 
 
 2 
 
 31 
 30 
 
 9 
 
 86763 
 
 9 
 
 86752 
 
 
 ' 
 
 29- 
 
 9 
 
 86 740 
 
 
 
 28 
 
 9 
 
 86728 
 
 
 
 27 
 
 9 
 
 86717 
 
 
 2 
 
 26 
 
 25 
 
 9 
 
 86705 
 
 9 
 
 86694 
 
 
 ' 
 
 24 
 
 9 
 
 86682 
 
 
 
 23 
 
 9 
 
 86670 
 
 
 
 22 
 
 9 
 
 86659 
 
 
 2 
 
 21 
 20 
 
 9 
 
 86647 
 
 9 
 
 86 63s 
 
 
 
 19 
 
 9 
 
 86624 
 
 
 
 18 
 
 9 
 
 86612 
 
 
 
 17 
 
 9 
 
 86600 
 
 
 I 
 
 16 
 15 
 
 9 
 
 86589 
 
 9 
 
 86577 
 
 
 
 14 
 
 9 
 
 86 565 
 
 
 
 13 
 
 9 
 
 86554 
 
 
 
 12 
 
 9 
 
 86542 
 
 
 2 
 
 II 
 10 
 
 9 
 
 86530 
 
 9 
 
 86518 
 
 
 
 9 
 
 9 
 
 86507 
 
 
 
 8 
 
 9 
 
 86495 
 
 
 
 7 
 
 9 
 
 86483 
 
 
 
 6 
 
 5 
 
 9 
 
 86472 
 
 9 
 
 86460 
 
 
 
 4 
 
 9 
 
 86448 
 
 
 
 3 
 
 9 
 
 86436 
 
 
 
 2 
 
 9 86 425 
 
 
 
 
 
 9 86413 
 
 
 I 
 
 .. Sin. 
 
 i 
 
 . 
 
 / 
 
 Prop. Pts, 
 
 36 
 
 2 6 
 
 25 
 
 25 
 
 o 
 
 5 
 
 5 
 
 7 
 
 10.0 
 
 12.5 
 
 14 
 
 14 
 
 2.8 
 
 
 13 
 
 .1 
 
 1 . 
 
 .2 
 
 2 
 
 •3 
 
 3 
 
 • 4 
 
 5 
 
 .5 
 
 6. 
 
 6 
 
 7 
 
 7 
 
 9 
 
 .8 
 
 10. 
 
 9 
 
 II . 
 
 
 12 
 
 .1 
 
 I 2 
 
 .2 
 3 
 
 •4 
 
 3I 
 
 4.8 
 6.0 
 
 9 
 
 
 II 
 I 
 
 2.2 
 
 3 3 
 
 4 4 
 
 II 
 
 7 7 
 
 8 8 
 
 9 9 
 
 Prop. Pts. 
 
LOGARITHMS OF THE TRIGONOMETRIC FUNCTIONS 
 
 69 
 
 43^ 
 
 L. Sin. 
 
 7 
 8 
 
 9_ 
 10 
 II 
 
 12 
 
 13 
 
 lA 
 15 
 
 i6 
 
 17 
 i8 
 
 i9_ 
 20 
 
 21 
 22 
 23 
 
 24 
 
 26 
 27 
 28 
 29 
 
 31 
 32 
 
 33 
 34 
 
 36 
 
 37 
 38 
 J9 
 40 
 
 41 
 42 
 43 
 _44_ 
 
 46 
 
 47 
 48 
 
 49 
 50 
 
 51 
 
 52 
 53 
 id 
 55 
 56 
 57 
 58 
 i9_ 
 60 
 
 983378 
 9 83392 
 9 83405 
 9.83419 
 
 9 83432 
 
 9.83446 
 9 83 459 
 9 83473 
 9 83 486 
 9 83 500 
 
 9 83513 
 9 83 527 
 9 83540 
 
 83554 
 83567 
 
 83581 
 
 83594 
 
 83608 
 
 83621 
 
 83,634^ 
 
 83648 
 
 83661 
 
 83674 
 83688 
 83701 
 
 83715 
 83728 
 
 83741 
 83755 
 83768 
 
 83781 
 
 83795 
 83808 
 83821 
 83834 
 
 83848 
 83861 
 
 83874 
 83887 
 83901 
 
 83914 
 83927 
 
 83940 
 83954 
 83.967 
 83 
 83993 
 84 006 
 84 020 
 84033 
 
 9 . 84 046 
 9 84 059 
 9 84 072 
 9 84 085 
 9 84 098 
 
 84 112 
 84 125 
 84138 
 84 151 
 84 164 
 
 9 84177 
 
 L. Cos. 
 
 L. Tang. 
 
 9 96 966 
 
 9 96 991 
 9 97 016 
 9 97042 
 9.97067 
 
 97092 
 97 118 
 
 97 143 
 97168 
 
 97 193 
 
 97219 
 97244 
 97269 
 
 97295 
 97320 
 
 97 345 
 97371 
 97396 
 97421 
 97 447 
 
 97472 
 97 497 
 97523 
 97548 
 97 573 
 
 97598 
 97624 
 97649 
 97674 
 97 700 
 
 97725 
 97750 
 97776 
 97 801 
 97 826 
 
 97851 
 97877 
 97902 
 97927 
 97 953 
 
 97978 
 98 003 
 98 029 
 98054 
 98079 
 
 98 104 
 98 130 
 98 155 
 98 180 
 98 206 
 
 9 98 231 
 9 98 256 
 9 98 281 
 9 98307 
 9 98 332 
 
 9 98357 
 998383 
 9 . 98 408 
 
 9 98433 
 9.98458 
 
 9.98484 
 
 L. Cotg. c. (I 
 
 c. d. 
 
 L. Cotg. 
 
 0.03034 
 o 03 009 
 o . 02 984 
 0.02 958 
 
 0.02933 
 
 0.02 908 
 o 02 882 
 0.02 857 
 0.02 832 
 o 02 807 
 
 02 781 
 02 756 
 02 731 
 02 705 
 02 680 
 02 655 
 02 629 
 02 604 
 0.02 579 
 0.02 553 
 
 0.02 528 
 0.02 503 
 0.02 477 
 
 o . 02 452 
 0.02 427 
 
 o . 02 402 
 0.02 376 
 o 02 351 
 o . 02 326 
 o 02 300 
 
 o 02 275 
 o . 02 250 
 0.02 224 
 o 02 199 
 0.02 174 
 
 o 02 149 
 o 02 123 
 o . 02 098 
 o . 02 073 
 0.02 047 
 
 o . 02 022 
 o.oi 997 
 o.oi 971 
 o.oi 946 
 o.oi 921 
 
 O.OI 896 
 
 O.OI 870 
 0.01 845 
 O.OI 820 
 O.OI 794 
 
 O.OI 769 
 O.OI 744 
 O.OI 719 
 O.OI 693 
 O.OI 668 
 
 O.OI 643 
 o 01 617 
 o 01 592 
 O.OI 567 
 O.OI 542 
 
 O.OI 516 
 
 L. Tang. 
 
 46° 
 
 L 
 
 . Cos. 
 
 d. 
 
 
 9 86413 
 
 
 60" 
 
 9 
 
 86401 
 
 
 
 59 
 
 9 
 9 
 
 86389 
 86377 
 
 
 2 
 
 58 
 
 57 
 
 9 
 
 86366 
 
 
 2 
 2 
 
 56 
 
 55 
 S4 
 
 9 
 9 
 
 86354 
 86342 
 
 9 
 
 86330 
 
 
 
 ■^^ 
 
 9 
 
 86318 
 
 
 
 '^2 
 
 9 
 
 86306 
 
 
 
 51 
 50 
 
 9 
 
 86295 
 
 9 
 
 86283 
 
 
 
 49 
 
 9 
 
 86271 
 
 
 
 48 
 
 9 
 
 86259 
 
 
 
 47 
 
 9 
 
 86247 
 
 
 2 
 
 46 
 
 45 
 
 9 
 
 86235 
 
 9 
 
 8b 223 
 
 
 
 44 
 
 9 
 
 86 211 
 
 
 
 43 
 
 9 
 
 86200 
 
 
 
 42 
 
 9 
 
 86188 
 
 
 2 
 
 41 
 40 
 
 9 
 
 86176 
 
 9 
 
 86 164 
 
 
 i:^ 
 
 39 
 
 9 
 
 86152 
 
 
 
 38 
 
 9 
 
 86 140 
 
 
 
 37 
 
 9 
 
 86128 
 
 
 [2 
 
 36 
 
 35 
 
 9 
 
 86 116 
 
 9 
 
 86 104 
 
 
 
 34 
 
 9 
 
 86092 
 
 
 
 33 
 
 9 
 
 86080 
 
 
 
 32 
 
 9 
 
 86068 
 
 
 [2 
 
 31 
 30 
 
 9 
 
 86056 
 
 9 
 
 86044 
 
 
 
 29 
 
 9 
 
 86032 
 
 
 
 28 
 
 9 
 
 86020 
 
 
 
 27 
 
 9 
 
 86008 
 
 
 12 
 
 26 
 25 
 
 9 
 
 85996 
 
 9 
 
 85984 
 
 
 
 24 
 
 9 
 
 85972 
 
 
 
 23 
 
 9 
 
 85 960 
 
 
 
 22 
 
 9 
 
 85948 
 
 
 C2 
 
 21 
 20 
 
 9 
 
 85936 
 
 9 
 
 85924 
 
 
 
 19 
 
 9 
 
 85 912 
 
 
 
 18 
 
 9 
 
 85900 
 
 
 
 17 
 
 9 
 
 85888 
 
 
 [2 
 
 16 
 IS 
 
 9 
 
 85876 
 
 9 
 
 85 864 
 
 
 
 14 
 
 9 
 
 85851 
 
 
 3 
 
 13 
 
 9 
 
 85839 
 
 
 
 12 
 
 9 
 
 85827 
 
 
 2 
 
 II 
 10 
 
 9 
 
 85815 
 
 9 
 
 85 803 
 
 
 
 9 
 
 9 
 
 85 791 
 
 
 
 8 
 
 9 
 
 85 779 
 
 
 
 7 
 
 ■9 
 
 85 766 
 
 
 3 
 
 2 
 
 6 
 
 5 
 
 9 
 
 85754 
 
 9 
 
 85 742 
 
 
 2 
 
 4 
 
 9 
 
 85 730 
 
 
 
 3 
 
 9 
 
 85718 
 
 
 2 
 
 . 2 
 
 9 
 
 85706 
 
 
 2 
 
 I 
 
 
 9 85693 
 
 13 
 
 L. Sin. 
 
 d. 
 
 / 
 
 Prop. Pts. 
 
 
 26 
 
 I 
 
 2. 
 
 2 
 
 5 
 
 3 
 
 7- 
 
 4 
 
 10 
 
 
 13 
 
 6 
 
 
 7 
 
 18 
 
 8 
 
 20 
 
 9 
 
 23 
 
 
 25 
 
 I 
 
 25 
 
 2 
 
 50 
 
 3 
 
 7-5 
 
 4 
 
 10.0 
 
 5 
 
 12 s 
 
 6 
 
 15 
 
 7 
 
 175 
 
 8 
 
 20.0 
 
 9 
 
 22.5 
 
 
 14 
 
 ,1 
 
 1-4 
 
 .2 
 
 2.8 
 
 •3 
 
 4.2 
 
 •4 
 
 5-6 
 
 •5 
 
 7.0 
 
 .6 
 
 .8.4 
 
 •7 
 
 98 
 
 .8 
 
 II. 2 
 
 •9 
 
 12.6 
 
 
 13 
 
 I 
 
 I . 
 
 2 
 
 2 
 
 3 
 
 3 
 
 4 
 
 5 . 
 
 
 6. 
 
 6 
 
 7- 
 
 7 
 
 9 
 
 8 
 
 10 
 
 9 
 
 II. 
 
 
 12 
 
 II 
 
 .1 
 
 1.2 
 
 I. 
 
 .2 
 
 2.4 
 
 2. 
 
 3 
 
 36 
 
 3 
 
 •4 
 
 4.8 
 
 4- 
 
 5 
 
 6.0 
 
 5- 
 
 6 
 
 7.2 
 
 6. 
 
 7 
 
 8.4 
 
 7- 
 
 8 
 
 9.6 
 
 8. 
 
 9 
 
 10.8 
 
 9- 
 
 Prop. Pts. 
 
70 
 
 TABLE II 
 
 44° 1 
 
 / 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 C.d. 
 
 L. Cotg. 
 
 L. Cos. d 
 
 I. 
 
 60 
 
 Prop. Pts. 
 
 
 
 9 84 177 
 
 
 9.98484 
 
 
 0.01 516 
 
 985693 , 
 
 
 
 I 
 
 9 84 190 
 
 13 
 
 9 98509 
 
 25 
 
 0.01 491 
 
 9 85 681 
 
 
 SP 
 
 
 2 
 
 9 
 
 84203 
 84216 
 
 *3 
 
 9 98534 
 
 25 
 
 0.01 466 
 
 985669 
 
 
 58 
 
 9fi 
 
 S 
 
 9 
 
 
 9 98 560 
 
 
 0.01 440 
 
 9 85 657 
 
 
 S7 
 
 , 
 
 2 6 
 
 78 
 
 4 
 
 s 
 
 9 
 
 84229 
 
 »3 
 *3 
 
 998585 
 
 25 
 
 0.01 415 
 
 9.85645 ; 
 
 3 
 
 56 
 
 55 
 
 2 
 
 3 
 .4 
 
 9 
 
 84242 
 
 9 98 610 
 
 001 390 
 
 985632 
 
 6 
 
 9 
 
 84 2.S5 
 
 »3 
 
 9 98635 
 
 
 01 365 
 
 9 85 620 
 
 
 54 
 
 10 4 
 
 7 
 
 9 
 
 84269 
 
 
 9 98 661 
 
 
 01339 
 
 9.85608 ' 
 
 
 5S 
 
 I 
 
 IT, 
 
 8 
 
 9 
 
 84 282 
 
 13 
 
 9 98686 
 
 
 01 314 
 
 985596 ; 
 
 
 52 
 
 15 6 
 
 9 
 10 
 
 9 
 
 84295 
 
 13 
 13 
 
 9 98 711 
 
 26 
 
 0.01 289 
 
 985583 ; 
 
 J 
 
 2 
 
 51 
 50 
 
 7 
 8 
 
 18 2 
 20 8 
 
 9 84 308 
 
 9 98737 
 
 01 263 
 
 985571 
 
 II 
 
 9 84 321 
 
 »3 
 
 9 98 762 
 
 
 01 238 
 
 985559 , 
 
 
 49 
 
 9 
 
 23 4 
 
 12 
 
 9 84 334 
 
 
 9 98 787 
 
 
 01 213 
 01 188 
 
 985547 , 
 
 
 48 
 
 1 
 
 IS 
 
 9 84 347 
 
 
 9 98812 
 
 26 
 25 
 
 985534 ■ 
 
 
 47 
 
 1 
 
 14 
 IS 
 
 9 84 360 
 
 13 
 13 
 
 _9_ 
 9 
 
 98838 
 9886^ 
 98888 
 
 0.01 162 
 
 9.85522 ; 
 
 2 
 
 46 
 45 
 
 .1 
 
 25 
 
 2 5 
 
 9 84 373 
 
 0.01 137 
 
 985510 
 
 i6 
 
 9 84385 
 9.84398 
 
 
 9 
 
 
 0.01 112 
 
 985497 
 
 3 
 
 44 
 
 .2 
 
 5.0 
 
 17 
 
 13 
 
 9 
 
 98913 
 
 25 
 26 
 
 0.01 087 
 
 9.85485 
 
 
 43 
 
 •3 
 
 7 5 
 
 i8 
 
 9 84 411 
 
 13 
 
 9 
 
 98939 
 
 01 061 
 
 985473 , 
 
 
 42 
 
 •4 
 
 10 
 
 19 
 20 
 
 9 84424 
 
 13 
 13 
 
 9 
 
 98964 
 
 25 
 25 
 26 
 
 01 036 
 
 9 85 460 
 
 3 
 
 3 
 
 41 
 40 
 
 ■ i 
 
 .7 
 .8 
 
 •9 
 
 12 5 
 15 
 
 17 5 
 20.0 
 22 5 
 
 9 84 437 
 
 9 
 
 98989 
 
 o.oi on 
 
 985448 , 
 
 21 
 
 9 84 450 
 
 13 
 
 9 
 
 99015 
 
 0.00 985 
 
 985436 , 
 
 
 39 
 
 22 
 
 9.84463 
 9.84476 
 
 
 9 
 
 99040 
 
 
 . 00 960 
 
 985423 , 
 
 3 
 
 38 
 
 23 
 
 
 9 
 
 99065 
 
 
 0.00935 
 
 9-85411 
 
 
 37 
 
 24 
 
 2S 
 
 9 84 489 
 
 13 
 
 9 
 
 99090 
 
 26 
 
 0.00910 
 
 9 85 399 , 
 
 3 
 
 36 
 
 35 
 
 1 
 
 9 84 502 
 
 9 
 
 99 116 
 
 0.00 884 
 
 9.85386 
 
 
 14 
 
 26 
 
 984515 
 
 *3 
 
 9 
 
 99 141 
 
 25 
 
 0.00859 
 
 985374 , 
 
 
 34 
 
 .1 
 
 27 
 
 9 
 
 84528 
 
 >3 
 
 9 
 
 99 166 
 
 25 
 
 0.00834 
 
 9.85361 
 
 3 
 
 33 
 
 42 
 56 
 7.0 
 
 28 
 
 9 
 
 84540 
 
 
 9 
 
 99 191 
 
 25 
 26 
 25 
 
 0.00809 
 
 985349 
 
 
 32 
 
 •3 
 
 •4 
 
 29 
 
 30 
 
 9 
 
 84553 
 
 13 
 13 
 
 9 
 
 99217 
 
 0.00 783 
 
 9 85 337 
 
 ■3 
 
 31 
 30 
 
 9 
 
 84566 
 
 9 
 
 99242 
 
 0.00 758 
 
 9 85324 
 
 31 
 
 9 
 
 84579 
 
 *3 
 
 9 
 
 99267 
 
 25 
 26 
 
 0.00 733 
 
 9 85312 
 
 
 29 
 
 8 4 
 
 32 
 
 9 
 
 84592 
 
 
 9 
 
 99293 
 99318 
 
 0.00 707 
 
 9.85299 
 
 
 28 
 
 .7 
 
 9.8 
 
 33 
 
 9 
 
 84605 
 
 13 
 
 9 
 
 25 
 
 0.00 682 
 
 9.85287 
 
 
 27 
 
 8 
 
 II .2 
 
 34 
 
 9 
 
 84618 
 
 13 
 12 
 
 9 
 
 99 343 
 
 25 
 
 25 
 
 26 
 
 0.00657 
 
 9.85274 
 
 13 
 
 t2 
 
 26 
 
 25 
 
 .9 
 
 12.6 
 
 3S 
 
 9 
 
 84630 
 
 9 
 
 99368 
 
 0.00632 
 
 9 . 85 262 
 
 
 36 
 
 9 
 
 84643 
 84656 
 
 13 
 
 9 
 
 99 394 
 
 0.00606 
 
 9.85250 
 
 
 24 
 
 1 
 
 37 
 
 9 
 
 13 
 
 9 
 
 99419 
 
 25 
 
 0.00 581 
 
 9 85237 
 
 IJ 
 
 23 
 
 
 13 
 
 38 
 
 9 
 
 84669 
 
 13 
 
 9 
 
 99 444 
 
 25 
 
 0.00 556 
 
 9. 85 225 
 
 
 22 
 
 I 
 
 I 1 
 
 39 
 40 
 
 9 
 
 84682 
 
 13 
 12 
 
 9 
 
 99469 
 
 25 
 
 26 
 
 0.00531 
 
 9.85 212 
 
 13 
 
 t2 
 
 21 
 20 
 
 .2 
 .3 
 
 3 9 
 
 9 
 
 84694 
 
 9 
 
 99 495 
 
 . 00 505 
 
 9.85 200 
 
 41 
 
 9 
 
 84 707 
 
 »3 
 
 9 
 
 99520 
 
 25 
 
 . 00 480 
 
 9 85 187 
 
 13 
 
 19 
 
 .4 
 
 5.2 
 
 42 
 
 9 
 
 84 720 
 
 
 9 
 
 99 545 
 
 25 
 
 0.00455 
 
 9 85175 
 
 
 18 
 
 
 M 
 
 43 
 
 9 
 
 84733 
 
 13 
 
 9 
 
 99570 
 
 25 
 
 26 
 25 
 
 0.00430 
 
 9 85 162 
 
 13 
 
 17 
 
 .6 
 
 44 
 4S 
 
 9 
 
 84745 
 
 13 
 
 9 
 
 99596 
 
 . 00 404 
 
 9 85 150 
 
 '3 
 
 16 
 15 
 
 • 7 
 .8 
 
 91 
 10.4 
 
 9 
 
 84758 
 
 9 
 
 99621 
 
 0.00379 
 
 9 85 137 
 
 46 
 
 9 
 
 84771 
 
 »3 
 
 9 
 
 99646 
 
 25 
 
 0.00354 
 
 9.85 125 
 
 
 14 
 
 9 
 
 II. 7 
 
 :i 
 
 9 
 
 84784 
 
 13 
 
 9 
 
 99672 
 
 
 00 328 
 
 9.85 112 
 
 13 
 
 13 
 
 1 
 
 9 
 
 84796 
 
 
 9 
 
 99697 
 
 25 
 
 00 303 
 
 9.85 100 
 
 
 12 
 
 1 
 
 49 
 
 60 
 
 9 84 809 
 
 13 
 13 
 
 9 
 
 99722 
 
 25 
 
 25 
 
 0.00 278 
 0.00 253 
 
 9.85087 
 
 13 
 3 
 
 II 
 10 
 
 
 la 
 
 12 
 
 9 84822 
 
 9 
 
 99 747 
 
 9.85 074 
 
 SI 
 
 9 
 
 84835 
 
 13 
 
 9 
 
 99 773 
 
 26 
 
 0.00 227 
 
 9 . 85 062 
 
 
 9 
 
 .2 
 
 2.4 
 
 S2 
 
 9 
 
 84847 
 
 
 9 
 
 99 798 
 
 25 
 
 . 00 202 
 
 9,85049 
 
 3 
 
 8 
 
 •3 
 
 3^ 
 
 S3 
 
 9 
 
 84860 
 
 13 
 
 9 
 
 99823 
 
 25 
 
 0.00177 
 
 9 85037 
 
 
 7 
 
 •4 
 
 4.8 
 
 54 
 SS 
 
 9 
 
 84873 
 
 13 
 12 
 
 9 
 
 99848 
 
 25 
 26 
 
 0.00 152 
 
 9 85 024 
 
 3 
 
 2 
 
 6 
 
 5 
 
 i 
 
 6.0 
 
 96 
 
 10.8 
 
 9 
 
 84885 
 84898 
 
 9 
 
 99874 
 
 0.00 126 
 
 9.85 012 
 
 S6 
 
 9 
 
 13 
 
 9 
 
 99899 
 
 25 
 
 0.00 lOI 
 
 984999 ; 
 
 3 
 
 4 
 
 ■7 
 .8 
 
 ■>7 
 
 9 
 
 84 911 
 
 13 
 
 9 
 
 99924 
 
 25 
 
 0.00076 
 
 984986 ' 
 
 3 
 
 3 
 
 S8 
 
 9 
 
 84923 
 
 
 9 
 
 99 949 
 
 25 
 
 0.00 051 
 
 9.84974 
 
 
 2 
 
 •9 
 
 59 
 00 
 
 9 
 
 84936 
 
 13 
 13 
 
 9 
 
 99 975 
 
 26 
 25 
 
 0.00 025 
 
 9.84961 ] 
 
 3 
 
 2 
 
 _0_ 
 
 
 9 
 
 84949 
 
 
 
 00 000 
 
 0.00000 
 
 9.84949 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. 
 
 c.d. 
 
 L. Tanjr. 
 
 L. Sin. d 
 
 [. 
 
 Prop. Pts. 
 
 
 
 
 
 45° 
 
 
 
 
TABLE III 
 
 NATURAL 
 
 TRIGONOMETRIC FUNCTIONS 
 
 FOR 
 
 EACH MINUTE 
 
 71 
 
72 
 
 TABLE m 
 
 
 ©° 
 
 1-- 
 
 30 
 
 30 ■ — 
 
 4» 1 
 
 
 t 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 60 
 
 59 
 58 
 
 55 
 54 
 
 53 
 52 
 51 
 50 
 
 % 
 
 47 
 46 
 45 
 44 
 43 
 42 
 
 41 
 40 
 
 35 
 34 
 33 
 32 
 31 
 30 
 
 27 
 26 
 
 25 
 24 
 
 23 
 22 
 21 
 20 
 
 19 
 18 
 
 '\l 
 
 15 
 14 
 13 
 12 
 
 
 
 I 
 
 2 
 
 3 
 4 
 
 1 
 
 9 
 
 lO 
 
 II 
 
 12 
 ~^ 
 
 14 
 
 \l 
 
 19 
 
 20 
 21 
 22 
 23 
 
 26 
 
 27 
 28 
 29 
 30 
 
 .00000 
 .00029 
 .ocx)58 
 .00087 
 .00116 
 .00145 
 .00175 
 
 I. 00000 
 I .00000 
 I .00000 
 I. 00000 
 I .00000 
 I. 00000 
 I. 00000 
 
 ■01745 
 .01774 
 .01803 
 .01832 
 .01862 
 .0189J 
 .01920 
 
 •99985 
 .99984 
 .99984 
 .99983 
 
 ■99983 
 .99982 
 .99982 
 
 •03490 
 •03519 
 ■03548 
 ■03577 
 .03606 
 
 .03664 
 
 •99939 
 .99938 
 
 ■99937 
 ■99936 
 ■99935 
 •99934 
 •99933 
 
 •05234 
 .05263 
 .05292 
 ■05321 
 •05350 
 •05379 
 .05408 
 
 .99863 
 99861 
 .99860 
 .99858 
 ■99857 
 ■99855 
 .99854 
 
 .06976 
 ■07005 
 
 ■07034 
 .07063 
 .07092 
 .07121 
 
 .07150 
 
 ■99756 
 ■99754 
 ■99752 
 ■99750 
 ■99748 
 ■99746 
 ■99744 
 
 .00204 
 .00233 
 .00262 
 .00291 
 .00320 
 .00349 
 
 I. 00000 
 I. 00000 
 I. 00000 
 I. 00000 
 .99999 
 .99999 
 
 .01949 
 .01978 
 .02007 
 .02036 
 .02065 
 .02094 
 
 .99981 
 .99980 
 .99980 
 .99979 
 99979 
 ■99978 
 
 .03693 
 .03723 
 ■03752 
 ■03781 
 .03S10 
 
 •03839 
 
 .99932 
 
 99931 
 .99930 
 .99929 
 .99927 
 .99926 
 
 ■05437 
 .05466 
 
 ■05495 
 ■05524 
 ■05553 
 •05582 
 
 ■99852 
 .99851 
 .99849 
 
 •99847 
 .99846 
 .99844 
 
 . .07208 
 
 ■07237 
 .07266 
 .07295 
 •07324 
 
 .99742 
 .99740 
 ■99738 
 .99736 
 
 ■99734 
 •99731 
 
 .00378 
 .00407 
 .00436 
 .00465 
 .00495 
 .00524 
 
 .99999 
 .99999 
 .99999 
 .99999 
 
 •99999 
 .99999 
 
 .02123 
 .02152 
 .02181 
 .02211 
 .02240 
 .02269 
 
 .99977 
 
 •99977 
 .99976 
 .99976 
 •99975 
 ■99974 
 
 .03868 
 .03897 
 .03926 
 
 •03955 
 .03984 
 .04013 
 
 .99925 
 .99924 
 .99923 
 .99922 
 .99921 
 .99919 
 
 .05611 
 .05640 
 .05669 
 .05698 
 .05727 
 ■05756 
 
 .99842 
 .99841 
 .99839 
 .99838 
 .99836 
 .99834 
 
 •07353 
 .07382 
 .07411 
 .07440 
 .07469 
 .07498 
 
 .99729 
 .99727 
 •99725 
 •99723 
 .99721 
 .99719 
 
 •00553 
 .00582 
 .00611 
 .00640 
 .00669 
 .00698 
 
 •99998 
 .99998 
 .99998 
 •99998 
 .99998 
 .99998 
 
 .02298 
 .02327 
 .02356 
 .02385 
 .02414 
 .02443 
 
 .99974 
 
 ■99973 
 .99972 
 .99972 
 .99971 
 .99970 
 
 .04042 
 .04071 
 .04100 
 .04129 
 .04159 
 .04188 
 
 .99918 
 .99917 
 .99916 
 ■99915 
 ■99913 
 .99912 
 
 ■05785 
 .05814 
 .05844 
 
 ■05873 
 .05902 
 
 ■05931 
 
 99833 
 .99831 
 .99829 
 .99827 
 .99826 
 .99824 
 
 ■07527 
 ■07556 
 ■07585 
 .07614 
 .07643 
 .07672 
 
 .99716 
 .99714 
 .99712 
 .99710 
 .99708 
 ■99705 
 
 .00727 
 .00756 
 .00785 
 .00814 
 .00844 
 .00873 
 
 .99997 
 .99997 
 .99997 
 
 •99997 
 .99996 
 .99996 
 
 .02472 
 .02501 
 .02530 
 .02560 
 .02589 
 .02618 
 
 .99969 
 
 .99967 
 .99966 
 .99966 
 .99965 
 .99964 
 .99963 
 .99963 
 .99962 
 .99961 
 
 .04217 
 .04246 
 .04275 
 .04304 
 
 •04333 
 .04362 
 
 .99911 
 .99910 
 .99909 
 .99907 
 .99906 
 ■99905 
 
 .05960 
 .05989 
 .06018 
 .06047 
 .06076 
 .06105 
 
 .06163 
 .06192 
 .06221 
 .06250 
 .06279 
 
 .99822 
 .99821 
 .99819 
 
 .99817 
 .99815 
 .99813 
 
 .07701 
 •07730 
 •07759 
 .07788 
 .07817 
 .07846 
 
 .99703 
 .99701 
 .99699 
 .99696 
 .99694 
 .99692 
 
 31 
 
 32 
 
 33 
 34 
 
 % 
 
 39 
 40 
 
 41 
 
 42 
 
 43 
 44 
 
 % 
 
 49 
 50 
 51 
 52 
 53 
 54 
 
 55 
 56 
 
 .00902 
 .00931 
 .00960 
 .00989 
 .01018 
 .01047 
 
 .99996 
 .99996 
 •99995 
 •99995 
 •99995 
 •99995 
 
 .02647 
 .02676 
 .02705 
 •02734 
 .02763 
 .02792 
 
 .04391 
 .04420 
 .04449 
 .04478 
 
 •04507 
 •04536 
 
 .99904 
 .99902 
 .99901 
 .99900 
 .99898 
 .99897 
 
 .99812 
 .99810 
 .99808 
 .99806 
 .99804 
 .99803 
 
 ■07875 
 .07904 
 
 ■07933 
 .07962 
 .07991 
 .08020 
 
 .99689 
 ■99687 
 .99685 
 .99683 
 .99680 
 .99678 
 
 .01076 
 .01105 
 
 •01134 
 .01164 
 .01193 
 .01222 
 
 .99994 
 .99994 
 
 ■99994 
 •99993 
 •99993 
 ■99993 
 
 .02821 
 .02850 
 .02879 
 .02908 
 .02938 
 .02967 
 
 .99960 
 ■99959 
 •99959 
 .99958 
 
 ■99957 
 ■99956 
 
 ■04565 
 ■04594 
 .04623 
 
 •04653 
 .04682 
 .04711 
 
 .99896 
 .99894 
 .99893 
 .99892 
 .99890 
 .99889 
 
 .06308 
 
 ^06366 
 
 ■06395 
 .06424 
 
 •06453 
 
 .99801 
 .99799 
 .99797 
 •99795 
 •99793 
 .99792 
 
 .08049 
 .08078 
 .08107 
 .08136 
 .08165 
 08194 
 
 .99676 
 
 ■99673 
 .99671 
 .99668 
 .99666 
 .99664 
 .99661 
 •99659 
 ■99657 
 .99654 
 .99652 
 .99649 
 
 .01251 
 .01280 
 .01309 
 
 •01338 
 .01367 
 .01396 
 
 .99992 
 .99992 
 .99991 
 .99991 
 .99991 
 .99990 
 
 .02996 
 .03025 
 
 03054 
 .03083 
 .03112 
 .03141 
 
 •99955 
 ■99954 
 ■99953 
 .99952 
 .99952 
 ■99951 
 
 .04740 
 .04769 
 .04798 
 .04827 
 .04856 
 .04885 
 
 .99888 
 .99886 
 ■99885 
 ■99883 
 .99882 
 .99881 
 
 .06482 
 .06511 
 .06540 
 .06569 
 .06598 
 .06627 
 .06656 
 .06685 
 .06714 
 .06743 
 ■06773 
 .06802 
 .06831 
 .06860 
 .06889 
 .06918 
 .06947 
 .06976 
 
 .99790 
 .99788 
 •99786 
 .99784 
 .99782 
 .99780 
 
 ■99778 
 .99776 
 ■99774 
 ■99772 
 ■99770 
 .99768 
 
 .08223 
 .08252 
 .08281 
 .08310 
 
 ■08339 
 .08368 
 
 .01425 
 .01454 
 .01483 
 
 •01513 
 .01542 
 .01571 
 
 .99989 
 .99989 
 .99989 
 
 .03170 
 .03199 
 .03228 
 
 .03286 
 .03316 
 
 •99950 
 
 •99949 
 .99948 
 
 •99947 
 .99946 
 
 ■99945 
 
 .04914 
 
 •04943 
 .04972 
 .05001 
 .05030 
 •05059 
 
 .99879 
 .99878 
 .99876 
 .99875 
 ■99873 
 .99872 
 
 .08397 
 .08426 
 
 •08455 
 .08484 
 
 •08513 
 .08542 
 
 .99647 
 
 •99644 
 .99642 
 
 •99639 
 •99637 
 •99635 
 
 II 
 10 
 
 I 
 
 5 
 4 
 
 3 
 2 
 
 I 
 
 
 .01600 
 .01629 
 .01658 
 .C1687 
 .01716 
 •01745 
 
 .99987 
 .99987 
 .99986 
 .99986 
 99985 
 ■99985 
 
 •Q3345 
 •03374 
 ■03403 
 •03432 
 .03461 
 .03490 
 
 .99944 
 
 •99943 
 .99942 
 .99941 
 .99940 
 99939 
 
 .05088 
 .05117 
 .05146 
 
 ■05175 
 .05205 
 
 ■05234 
 
 .99870 
 .99869 
 .99867 
 .99866 
 .99864 
 ■99863 
 
 .99766 
 .99764 
 .99762 
 .99760 
 •99758 
 99756 
 
 .08571 
 .08600 
 .08629 
 .08658 
 .08687 
 .08716 
 
 ■99632 
 ■99630 
 .99627 
 .99625 
 .99622 
 .99619 
 
 
 N. cos. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 
 89° 
 
 SS** 
 
 87° 
 
 86° 
 
 85° 
 
TRIGONOMETRIC FUNCTIONS FOR EACH MINUTE 
 
 73 
 
 ^^■^ 
 
 5« 1 
 
 6° 1 
 
 7- 1 
 
 8» 1 
 
 »• 1 
 
 60 
 
 11 
 
 55 
 54 
 
 53 
 
 52 
 51 
 50 
 
 It 
 % 
 
 45 
 44 
 43 
 42 
 
 o 
 
 I 
 
 2 
 
 3 
 4 
 
 i 
 I 
 
 9 
 
 lO 
 i2 
 
 13 
 
 14 
 
 \l 
 \l 
 
 19 
 
 20 
 21 
 22 
 
 23 
 24 
 
 1 
 
 29 
 
 30 
 
 31 
 32 
 
 33 
 
 34 
 
 11 
 11 
 
 39 
 40 
 
 41 
 42 
 
 NT. sine ] 
 
 ST. COS. 
 
 N. sine ] 
 
 ST. COS. 
 
 NT. sine] 
 
 ST. COS. 
 
 ^r. sine|] 
 
 ST. COS. 
 
 N. sine 
 
 N. COS. 
 
 .08716 
 
 .08745 
 .08774 
 .08803 
 .08831 
 .08860 
 .08889 
 
 .99619 
 .99617 
 .99614 
 .99612 
 .99609 
 .99607 
 .99604 
 
 . 10482 
 .10511 
 
 ■ 10540 
 
 ■ 10569 
 
 •10597 
 . 10626 
 
 •99452 
 •99449 
 •99446 
 •99443 
 •99440 
 99437 
 •99434 
 
 .12187 
 .12216 
 
 .12245 
 .12274 
 .12302 
 
 •12331 
 .12360 
 
 •99255 
 .99251 
 .99248 
 .99244 
 .99240 
 .99237 
 ■99233 
 
 •I39I7 
 .13946 
 
 •13975 
 
 .14004 
 • 14033 
 
 .14061 
 
 . 14090 
 
 .99027 
 .99023 
 .99019 
 .99015 
 .99011 
 .99006 
 .99002 
 
 •15643 
 .15672 
 .15701 
 •15730 
 .15758 
 .15787 
 .15816 
 
 .98769 
 .98764 
 .98760 
 
 •98755 
 .98751 
 .98746 
 .98741 
 
 .08918 
 .08947 
 .08976 
 .09005 
 .09034 
 .09063 
 
 .99602 
 
 •99599 
 .99596 
 
 •99594 
 .99591 
 .99588 
 
 .10713 
 .10742 
 .10771 
 . 10800 
 
 •99431 
 .99428 
 
 .99424 
 .99421 
 .99418 
 ■99415 
 
 .12389 
 .12418 
 .12447 
 .12476 
 .12504 
 •12533 
 
 .99230 
 .99226 
 .99222 
 .99219 
 .99215 
 .99211 
 .99208 
 .99204 
 .99200 
 .99197 
 
 •99193 
 .99189 
 
 .14119 
 .14148 
 
 .14177 
 • 14205 
 .14234 
 .14263 
 
 .98998 
 .98994 
 .98990 
 .98986 
 .98982 
 .98978 
 
 .15845 
 
 •15873 
 .15902 
 
 •15931 
 
 •98737 
 •98732 
 .98728 
 .98723 
 .98718 
 .98714 
 
 .09092 
 .09121 
 .09150 
 .09179 
 .09208 
 .09237 
 
 .99586 
 
 •99583 
 .99580 
 
 •99578 
 •99575 
 •99572 
 
 . 10829 
 '10887 
 
 .10916 
 
 .10945 
 .10973 
 
 .99412 
 
 •99409 
 .99406 
 .99402 
 •99399 
 •99396 
 
 .12562 
 .12591 
 .12620 
 .12649 
 .12678 
 .12706 
 
 . 14292 
 .14320 
 ■14349 
 •14378 
 .14407 
 .14436 
 
 •98973 
 .98969 
 .98965 
 .98961 
 •98957 
 •98953 
 
 .16017 
 .16046 
 .16074 
 .16103 
 .16132 
 .16160 
 
 .98709 
 .98704 
 .98700 
 .98695 
 
 .09266 
 .09295 
 .09324 
 
 •09353 
 .09382 
 .09411 
 
 •99570 
 •99567 
 •99564 
 .99562 
 
 •99559 
 •99556 
 
 .11002 
 
 .11031 
 
 .11060 
 . 1 1089 
 .IIII8 
 .11147 
 
 •99393 
 •99390 
 .99386 
 
 •99383 
 .99380 
 
 •99377 
 
 ■12735 
 .12764 
 .12793 
 .12822 
 .12851 
 .12880 
 
 .99186 
 .99182 
 .99178 
 
 •99175 
 .99171 
 .99167 
 
 .14464 
 
 •14493 
 .14522 
 
 .14551 
 .14580 
 . 14608 
 
 .98948 
 .98944 
 .98940 
 .98936 
 .98931 
 .98927 
 
 .16189 
 .16218 
 .16246 
 .16275 
 .16304 
 •16333 
 
 .98681 
 .98676 
 .98671 
 .98667 
 .98662 
 •98657 
 
 41 
 
 40 
 
 P 
 
 .09440 
 .09469 
 .09498 
 .09527 
 •09556 
 ■09585 
 
 ■99553 
 •99551 
 .99548 
 
 •99545 
 .99542 
 .99540 
 
 . II 1 76 
 .11205 
 .11234 
 
 .11263 
 
 .11291 
 .11320 
 
 •99374 
 •99370 
 ■99367 
 .99364 
 •99360 
 •99357 
 
 .12908 
 .12937 
 .12966 
 .12995 
 .13024 
 •13053 
 
 .99163 
 .99160 
 .99156 
 .99152 
 .99148 
 .99144 
 
 .14666 
 .14695 
 •14723 
 •14752 
 .14781 
 
 ■98923 
 .98919 
 .98914 
 .98910 
 .98906 
 .98902 
 
 .16361 
 .16390 
 .16419 
 .16447 
 .16476 
 •16505 
 
 .98652 
 .98648 
 
 •98643 
 .98638 
 
 •98633 
 .98629 
 
 35 
 34 
 33 
 32 
 31 
 30 
 29 
 28 
 27 
 26 
 
 25 
 24 
 
 23 
 22 
 21 
 20 
 19 
 
 \l 
 
 15 
 14 
 13 
 12 
 
 .09614 
 .09642 
 .09671 
 .09700 
 .09729 
 .09758 
 
 ■99537 
 •99534 
 •99531 
 .99528 
 .99526 
 •99523 
 
 •I 1349 
 .11378 
 .11407 
 .11436 
 .11465 
 .11494 
 
 •99354 
 •99351 
 •99347 
 •99344 
 •99341 
 •99337 
 
 .13081 
 .13110 
 
 •13197 
 .13226 
 
 .99141 
 •99137 
 •99133 
 .99.129 
 .99125 
 .99122 
 
 .14810 
 
 • 14838 
 
 .14867 
 
 .14896 
 .14925 
 
 • 14954 
 
 .98897 
 
 .98884 
 .98880 
 .98876 
 
 •16533 
 .16562 
 .16591 
 .16620 
 .16648 
 .16677 
 
 .98624 
 .98619 
 .98614 
 .98609 
 .98604 
 .98600 
 
 .09787 
 .09816 
 .09845 
 .09874 
 .09903 
 .09932 
 
 .99520 
 •99517 
 •99514 
 •9951 1 
 .99508 
 .99506 
 
 •11523 
 
 •II552 
 .11580 
 
 .11609 
 
 .11638 
 .11667 
 
 •99334 
 •99331 
 .99327 
 
 •99324 
 .99320 
 
 ■99317 
 
 •13254 
 •13283 
 •13312 
 •13341 
 •13370 
 •13399 
 
 .99118 
 .99114 
 .99110 
 .99106 
 .99102 
 .99098 
 
 .14982 
 .15011 
 
 .15040 
 .15069 
 •15097 
 
 .15126 
 
 .98871 
 .98867 
 .98863 
 .98858 
 .98854 
 .98849 
 
 .16706 
 •16734 
 .16763 
 .16792 
 .16820 
 .16849 
 
 •98595 
 .98590 
 .98585 
 .98580 
 
 •98575 
 .98570 
 
 43 
 44 
 
 11 
 
 .09961 
 .09990 
 .10019 
 .10048 
 .10077 
 .10106 
 
 •99503 
 •99500 
 .99497 
 
 •99494 
 .99491 
 .99488 
 
 .11696 
 .11725 
 
 ■11754 
 .11783 
 .11812 
 
 .11840 
 
 ■99314 
 .99310 
 
 •99307 
 •99303 
 .99300 
 .99297 
 
 •13427 
 •13456 
 •13485 
 •13514 
 •13543 
 •13572 
 
 •99094 
 .99091 
 .99087 
 •99083 
 •99079 
 •99075 
 
 •I5I55 
 .15184 
 
 .15212 
 
 .15241 
 .15270 
 •15299 
 
 .98845 
 .98841 
 .98836 
 .98832 
 .98827 
 .98823 
 
 .16878 
 .16906 
 
 •16935 
 .16964 
 .16992 
 .17021 
 
 .98565 
 .98561 
 .98556 
 .98551 
 .98546 
 .98541 
 
 49 
 50 
 51 
 52 
 53 
 54 
 
 55 
 56 
 
 11 
 
 i. 
 
 .10135 
 .10164 
 .10192 
 .10221 
 .10250 
 .10279 
 
 •99485 
 .99482 
 .99479 
 .99476 
 
 •99473 
 ■99470 
 
 .11869 
 .11898 
 .11927 
 .11956 
 .11985 
 
 .12014 
 
 •99293 
 .99290 
 99286 
 .99283 
 .99279 
 .99276 
 
 .13600 
 .13629 
 
 .13716 
 •13744 
 
 .99071 
 .99067 
 .99063 
 .99059 
 
 •99055 
 .99051 
 
 •15327 
 •15356 
 
 •15385 
 
 •I54I4 
 .15442 
 
 •I547I 
 
 .98818 
 .98814 
 .98809 
 .98805 
 .98800 
 •98796 
 
 .17050 
 .17078 
 .17107 
 .17136 
 .17164 
 •17193 
 
 •98536 
 •98531 
 .98526 
 .98521 
 .98516 
 .98511 
 
 10 
 
 I 
 
 5 
 4 
 3 
 2 
 
 
 
 .10308 
 
 •10395 
 . 10424 
 •10453 
 
 ■99467 
 .99464 
 .99461 
 .99458 
 ■99455 
 ■99452 
 
 .12043 
 .12071 
 .12100 
 .12129 
 .12158 
 .12187 
 
 .99272 
 .99269 
 •99265 
 .99262 
 .99258 
 99255 
 
 .13889 
 •13917 
 
 .99047 
 .99043 
 .99039 
 
 •99035 
 .99031 
 .99027 
 
 •15500 
 •15529 
 
 •'5557 
 .15586 
 
 •15615 
 •15643 
 
 .98791 
 
 •98787 
 .98782 
 .98778 
 
 •98773 
 .98769 
 
 . 1 7222 
 .17250 
 .17279 
 .17308 
 •17336 
 •17365 
 
 .98506 
 .98501 
 .98496 
 
 .98481 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 M. sine 
 
 N. COS. 
 
 N.,sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 / 
 
 
 84'* 1 
 
 §3° 1 
 
 82° 1 
 
 81° 1 
 
 80° 
 
 
74 
 
 TABLE III 
 
 t 
 
 o 
 
 I 
 
 2 
 
 3 
 4 
 
 I 
 I 
 
 9 
 
 lO 
 
 II 
 
 12 
 
 14 
 
 \l 
 
 17 
 
 i8 
 
 10° j 
 
 If 
 
 19' 1 
 
 1»» 
 
 .4^ 
 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 !^. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 60 
 59 
 58 
 57 
 
 56 
 55 
 
 54 
 
 53 
 52 
 51 
 50 
 
 It 
 
 47 
 46 
 
 45 
 44 
 43 
 
 42 
 
 17365 
 17393 
 .17422 
 
 17451 
 ■17479 
 .17508 
 
 •17537 
 
 .98481 
 .98476 
 .98471 
 .98466 
 .98461 
 
 98455 
 
 •98450 
 
 .19081 
 .19109 
 .19138 
 .19167 
 
 •19195 
 . 19224 
 .19252 
 
 .98163 
 
 .98157 
 .98152 
 .98146 
 .98140 
 
 98.35 
 
 .98129 
 .98124 
 .98118 
 .98112 
 .98107 
 .98101 
 .98096 
 
 20791 
 . 20820 
 .20848 
 .20877 
 .20905 
 .20933 
 .20962 
 
 •97815 
 .97809 
 
 .97803 
 
 .97797 
 .97791 
 •97784 
 •97778 
 
 •22495 
 •22523 
 •22552 
 .22580 
 .22608 
 .22637 
 .22665 
 
 •97437 
 •97430 
 .97424 
 
 •97417 
 .97411 
 
 •97404 
 •97398 
 
 .24192 
 .24220 
 .24249 
 •24277 
 •24305 
 •24333 
 .24362 
 
 .97030 
 •97023 
 
 •97015 
 .97008 
 .97001 
 ■96994 
 .96987 
 
 ■17565 
 •17594 
 .17623 
 .17651 
 .17680 
 .17708 
 
 .98445 
 .98440 
 
 •98435 
 .98430 
 .98425 
 
 .98420 
 
 .19281 
 .19309 
 •19338 
 .19366 
 
 •19395 
 .19423 
 
 .20990 
 .21019 
 .21047 
 .21076 
 .21104 
 .21132 
 
 .97772 
 .97766 
 .97760 
 
 •97754 
 .97748 
 .97742 
 
 .22693 
 
 .22722 
 .22750 
 •22778 
 .22807 
 .22835 
 
 •97391 
 •97384 
 •97378 
 •97371 
 •97365 
 •97358 
 
 •24390 
 .24418 
 .24446 
 .24474 
 •24503 
 •24531 
 
 .96980 
 
 •96973 
 .96966 
 
 •96959 
 .96952 
 .96945 
 
 .17766 
 
 •17794 
 .17823 
 .17852 
 .17880 
 
 .98414 
 .98409 
 .98404 
 •98399 
 
 tut 
 
 .19452 
 .19481 
 .19509 
 
 .19566 
 •19595 
 
 .98090 
 .98084 
 .98079 
 .98073 
 .98067 
 .98061 
 
 .21161 
 .21189 
 .21218 
 .21246 
 .21275 
 .21303 
 
 ■97735 
 •97729 
 •97723 
 .97717 
 .97711 
 •97705 
 
 .22863 
 .22892 
 .22920 
 .22948 
 .22977 
 •23005 
 
 •97351 
 •97345 
 •97338 
 •97331 
 •97325 
 •97318 
 
 •24559 
 .24587 
 
 •24615 
 .24644 
 .24672 
 .24700 
 
 •96937 
 .96930 
 .96923 
 .96916 
 .96909 
 .96902 
 
 19 
 
 20 
 21 
 22 
 23 
 
 _^ - 
 25 
 26 
 27 
 28 
 29 
 30 . 
 
 31 
 
 32 
 
 33 
 34 
 
 It 
 
 .17909 
 
 •17937 
 .17966 
 
 •17995 
 .18023 
 .18052 
 
 •98383 
 ■98373 
 
 :98368 
 .98362 
 •98357 
 
 .19623 
 
 .19680 
 .19709 
 
 .19766 
 
 .98056 
 .98050 
 .98044 
 •98039 
 •98033 
 .98027 
 
 •21331 
 .21360 
 .21388 
 .21417 
 .21445 
 .21474 
 
 .97698 
 .97692 
 .97686 
 .97680 
 
 .97667 
 
 •23033 
 .23062 
 .23090 
 .23118 
 .23146 
 •23175 
 
 973" 
 
 •97304 
 .97298 
 .97291 
 .97284 
 •97278 
 
 .24728 
 
 .24756 
 .24784 
 .24813 
 .24841 
 .24869 
 
 ! 9688 7 
 .96880 
 
 •96873 
 .96866 
 .96858 
 
 41 
 40 
 
 It 
 11 
 
 .18081 
 .18109 
 .18138 
 .18166 
 .18195 
 .18224 
 
 •98352 
 •98347 
 .98341 
 
 •98336 
 •98331 
 •98325 
 
 .19794 
 .19823 
 
 .19908 
 •19937 
 
 .98021 
 .98016 
 .98010 
 .98004 
 .97998 
 .97992 
 
 .21502 
 •21530 
 •21559 
 .21587 
 .21616 
 .21644 
 
 .97661 
 
 .97648 
 .97642 
 .97636 
 •97630 
 
 .23203 
 
 .23260 
 .23288 
 .23316 
 •23345 
 
 .97271 
 .97264 
 •97257 
 •97251 
 .97244 
 
 •97237 
 
 .24897 
 .24925 
 .24954 
 .24982 
 .25010 
 .25038 
 
 .96851 
 .96844 
 
 •96837 
 .96829 
 .96822 
 .96815 
 
 35 
 34 
 33 
 32 
 31 
 30_ 
 
 29 
 28 
 
 27 
 26 
 25 
 
 24 
 
 .18252 
 .18281 
 
 .18367 
 •18395 
 
 .98320 
 
 •98315 
 .98310 
 
 •98304 
 .98299 
 .98294 
 
 .19965 
 .19994 
 .20022 
 .20051 
 .20079 
 .20108 
 
 .97987 
 .97981 
 
 •97975 
 .97969 
 
 •97963 
 •97958 
 
 .21672 
 .21701 
 .21729 
 .21758 
 .21786 
 .21814 
 
 •97623 
 .97617 
 .97611 
 .97604 
 •97598 
 •97592 
 
 23373 
 .23401 
 
 •23429 
 •23458 
 •23486 
 •23514 
 
 .97230 
 •97223 
 .97217 
 .97210 
 •97203 
 .97196 
 
 .25066 
 .25094 
 .25122 
 •25151 
 •25179 
 •25207 
 
 .96807 
 .96800 
 
 till 
 •96778 
 .96771 
 
 11 
 
 39 
 40 
 
 41 
 42 
 
 .18424 
 ^18481 
 
 •IP 
 
 .18567 
 
 .98288 
 •98283 
 .98277 
 .98272 
 .98267 
 .98261 
 
 .20136 
 .20165 
 
 •20193 
 .20222 
 .20250 
 .20279 
 
 •97952 
 •97946 
 .97940 
 
 •97934 
 .97928 
 .97922 
 
 •21843 
 .21871 
 .21899 
 .21928 
 .21956 
 .21985 
 
 •97585 
 •97579 
 •97573 
 •97566 
 .97560 
 
 •97553 
 
 •23542 
 •23571 
 •23599 
 .23627 
 
 .97189 
 .97182 
 .97176 
 .97169 
 .97162 
 •97155 
 
 •25235 
 .25263 
 .25291 
 •25320 
 •25348 
 •25376 
 
 .96764 
 .967.56 
 
 •96749 
 .96742 
 
 •96734 
 .96727 
 
 23 
 22 
 21 
 20 
 19 
 18 
 
 17 
 16 
 
 15 
 H 
 13 
 12 
 
 II 
 
 10 
 
 I 
 
 5 
 4 
 3 
 2 
 I 
 
 
 43 
 44 
 45 
 
 1 
 
 49 
 50 
 51 
 52 
 53 
 54 
 
 11 
 
 .18652 
 .18681 
 
 18710 
 
 .18738 
 
 .98256 
 .98250 
 
 •98245 
 .98240 
 .98234 
 .98229 
 
 .20307 
 .20336 
 20364 
 •20393 
 .20421 
 .20450 
 
 .97916 
 .97910 
 
 .97899 
 
 •97893 
 •97887 
 
 .22013 
 .22041 
 .22070 
 .22098 
 .22126 
 •22155 
 
 •97547 
 •97541 
 •97534 
 •97528 
 •97521 
 •97515 
 
 .23712 
 .23740 
 .23769 
 
 :2^^^5^ 
 •23853 
 
 .97148 
 .97141 
 
 ■97134 
 .97127 
 .97120 
 •97"3 
 
 •25404 
 •25432 
 .25460 
 .25488 
 •25516 
 •25545 
 
 .96719 
 .96712 
 •96705 
 .96697 
 .96690 
 .96682 
 
 .18767 
 
 ' 18795 
 . 18824 
 .18852 
 .18881 
 .18910 
 
 .98223 
 .98218 
 .98212 
 .98207 
 .98201 
 .98196 
 
 .20478 
 .20507 
 
 •20535 
 .20563 
 .20592 
 .20620 
 
 .97881 
 
 •97875 
 .97869 
 
 •97863 
 •97857 
 ■97851 
 
 .22183 
 .22212 
 
 .22240 
 .22268 
 .22297 
 •22325 
 
 .97508 
 .97502 
 .97496 
 .97489 
 
 •97483 
 .97476 
 
 .23882 
 .23910 
 
 .23966 
 
 •23995 
 .24023 
 
 .97106 
 .97100 
 .97093 
 .97086 
 
 •97079 
 .97072 
 
 •25573 
 .25601 
 .25629 
 
 ■.25685 
 •25713 
 
 .96675 
 .96667 
 .96660 
 
 .96645 
 .96638 
 
 .18938 
 
 .18967 
 
 .18995 
 .19024 
 .19052 
 .19081 
 
 .98190 
 .98185 
 .98179 
 
 tit 
 .98163 
 
 .20649 
 .20677 
 .20706 
 .20734 
 .20763 
 .20791 
 
 •97845 
 •97839 
 •97833 
 •97827 
 .97821 
 
 97815 
 
 •22353 
 .22382 
 .22410 
 .22438 
 .22467 
 .22495 1 
 
 .97470 
 97463 
 •97457 
 .97450 
 •97444 
 97437 
 
 .24051 
 .24079 
 .24108 
 .24136 
 .24164 
 .24192 
 
 .97065 
 •97058 
 •97051 
 ■97044 
 •97037 
 .97030 
 
 •25741 
 .25769 
 
 '25826 
 
 •25854 
 .25882 
 
 .96630 
 .96623 
 
 & 
 
 96600 
 ■96593 
 
 N. COS. 
 
 N. sine 
 
 M. COS. 
 
 N. sine 
 
 N. cos.|N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. CCS. 
 
 N. sine 
 
 / 
 
 1 
 
 79- 1 
 
 78^ 
 
 yyo 
 
 76° 
 
 75° 
 
 
TRIGONOMETRIC FUNCTIONS FOR EACH MINUTE 
 
 75 
 
 o 
 I 
 
 2 
 
 3 
 
 4 
 
 16° j 
 
 16" 1 
 
 17° 
 
 1§" 
 
 19° 
 
 60 
 
 It 
 
 11 
 
 55 
 54 
 
 53 
 52 
 51 
 50 
 
 tt 
 % 
 
 45 
 44 
 43 
 42 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 .25S82 
 25910 
 
 .25966 
 
 •25994 
 .26022 
 .26050 
 
 96593 
 96585 
 96578 
 .96570 
 .96562 
 96555 
 •96547 
 
 .27564 
 .27592 
 .27620 
 .27648 
 .27676 
 27704 
 27731 
 
 .96126 
 .96118 
 .96110 
 .96102 
 
 .96078 
 
 29237 
 .29265 
 .29293 
 .29321 
 .29348 
 .29376 
 .29404 
 
 •95630 
 .95622 
 
 •95613 
 •95605 
 •95596 
 •95588 
 •95579 
 
 .30902 
 .30929 
 •30957 
 •30985 
 .31012 
 .31040 
 .31068 
 
 .95106 
 
 •95079 
 .95070 
 .95061 
 .95052 
 
 •32557 
 •32584 
 .32612 
 
 .32694 
 .32722 
 
 •94552 
 •94542 
 •94533 
 •94523 
 •94514 
 •94504 
 •94495 
 
 I 
 
 9 
 
 lO 
 
 II 
 
 12 
 
 .26079 
 .26107 
 .26135 
 .26163 
 .26191 
 .26219 
 
 96540 
 •96532 
 .96524 
 
 •96517 
 .96509 
 .96502 
 
 ■27759 
 .27787 
 
 •27815 
 27843 
 .27871 
 .27899 
 
 .96070 
 .96062 
 .96054 
 .96046 
 .96037 
 .96029 
 
 .29432 
 .29460 
 •29487 
 •29515 
 •29543 
 ■29571 
 
 •95571 
 •95562 
 •95554 
 ■95545 
 ■95536 
 •95528 
 
 •31095 
 •31123 
 
 •31151 
 .31178 
 .31206 
 •31233 
 
 •95043 
 •95033 
 .95024 
 
 •95015 
 .95006 
 .94997 
 
 •32749 
 
 .32777 
 .32804 
 •32832 
 
 .94485 
 .94476 
 .94466 
 •94457 
 •94447 
 •94438 
 
 13 
 14 
 
 \i 
 
 18 
 
 19 
 20 
 21 
 22 
 
 23 
 
 24 
 
 .26247 
 .26275 
 .26303 
 •26331 
 •26359 
 .26387 
 
 •96494 
 .96486 
 
 .96479 
 .96471 
 .96463 
 •96456 
 
 .27927 
 
 •27955 
 .27983 
 .28011 
 .28039 
 .28067 
 
 .96021 
 .96013 
 .96005 
 
 •95997 
 .95989 
 .95981 
 
 .29599 
 .29626 
 
 .29710 
 ■29737 
 
 •95519 
 •95511 
 
 •95502 
 
 •95493 
 •95485 
 •95476 
 
 .31261 
 .31289 
 •31316 
 •31344 
 •31372 
 •31399 
 
 .94988 
 
 •94979 
 .94970 
 .94961 
 .94952 
 •94943 
 
 .32914 
 .32942 
 •32969 
 •32997 
 •33024 
 •33051 
 
 .94428 
 .94418 
 .94409 
 
 •94399 
 .94390 
 .94380 
 
 •26415 
 •26443 
 .26471 
 .26500 
 .26528 
 .26556 
 
 .96448 
 .Q6440 
 
 •96433 
 .96425 
 .96417 
 .96410 
 
 .28095 
 .28123 
 .28150 
 .28178 
 .28206 
 •28234 
 
 ■95972 
 .95964 
 
 •95956 
 .95948 
 •95940 
 ■95931 
 
 .29765 
 
 •29793 
 .29821 
 .29849 
 .29876 
 .29904 
 
 •95467 
 •95459 
 •95450 
 •95441 
 ■95433 
 •95424 
 
 •31427 
 •31454 
 .31482 
 •31510 
 •31537 
 •31565 
 
 •94933 
 •94924 
 •94915 
 .94906 
 
 '.lists 
 
 •33079 
 .33106 
 
 •33134 
 •33161 
 •33189 
 .33216 
 
 •94370 
 .94361 
 
 •94351 
 .94342 
 
 •94332 
 .94322 
 
 41 
 
 40 
 
 39 
 
 1 
 
 25 
 
 26 
 
 li 
 
 29 
 30 
 
 3J 
 32 
 
 33 
 34 
 35 
 36 
 
 11 
 
 39 
 40 
 
 41 
 
 43 
 44 
 45 
 46 
 
 47 
 48 
 
 .26584 
 .26612 
 
 ^26696 
 .26724 
 .26752 
 .26780 
 .26808 
 .26836 
 .26864 
 .26892 
 
 .96402 
 
 •96394 
 .96386 
 
 96379 
 •96371 
 96363 
 •96355 
 •96347 
 .96340 
 .96332 
 
 •96324 
 .96316 
 
 .28262 
 .28290 
 .28318 
 .28346 
 
 •28374 
 .28402 
 
 ■95923 
 •95915 
 •95907 
 .95898 
 .95890 
 .95882 
 
 ■29932 
 .29960 
 
 •29987 
 ■30015 
 ■30043 
 .30071 
 
 .30098 
 .30126 
 
 ■30154 
 .30182 
 .30209 
 .30237 
 
 •95415 
 
 •95389 
 •95380 
 •95372 
 
 •31593 
 .31620 
 .31648 
 •31675 
 •31703 
 •31730 
 
 .94860 
 .94851 
 .94842 
 .94832 
 
 •33244 
 •33271 
 •33298 
 •33326 
 •33353 
 •33381 
 
 •94313 
 •94303 
 •94293 
 .94284 
 
 •94274 
 .94264 
 
 •94254 
 •94245 
 •94235 
 .94225 
 .94215 
 .94206 
 
 35 
 34 
 33 
 32 
 31 
 30 
 
 27 
 26 
 
 25 
 24 
 
 23 
 22 
 21 
 20 
 
 \l 
 15 
 14 
 13 
 12 
 
 II 
 
 10 
 
 \ 
 
 5 
 4 
 3 
 2 
 
 I 
 
 
 .28429 
 
 •28457 
 .28485 
 .28513 
 
 .28569 
 
 •95874 
 •95865 
 •95857 
 •95849 
 .95841 
 ■95832 
 
 •95363 
 ■95354 
 ■95345 
 95337 
 ■95328 
 95319 
 
 •31758 
 .31786 
 .31813 
 .31841 
 .31868 
 •31896 
 
 •94823 
 .94814 
 •94805 
 
 •94795 
 .94786 
 
 ■94777 
 
 •33408 
 •33436 
 •33463 
 •33490 
 •33518 
 •33545 
 
 .26920 
 .26948 
 .26976 
 .27004 
 .27032 
 .27060 
 
 .96308 
 •96301 
 .96293 
 .96285 
 .96277 
 .96269 
 
 .28597 
 .28625 
 .28652 
 .28680 
 .28708 
 •28736 
 
 •95816 
 •95807 
 •95799 
 •95791 
 .95782 
 
 .30265 
 .30292 
 ■30320 
 •30348 
 .30376 
 ■30403 
 
 95310 
 
 •95301 
 
 •95293 
 .95284 
 
 •95275 
 .95266 
 
 •31923 
 •31951 
 •31979 
 .32006 
 
 •32034 
 .32061 
 
 .94768 
 
 •94758 
 .94749 
 .94740 
 
 •94730 
 .94721 
 
 •33573 
 .33600 
 .33627 
 
 •33710 
 
 .94196 
 .94186 
 .94176 
 .94167 
 
 •94157 
 .94147 
 
 .27088 
 .27116 
 .27144 
 .27172 
 .27200 
 .27228 
 
 .96261 
 
 •96253 
 .96246 
 .96238 
 .96230 
 .96222 
 
 .28764 
 .28792 
 28820 
 .28847 
 .28875 
 .28903 
 
 .95766 
 •95757 
 •95749 
 •95740 
 ■95732 
 
 ■30431 
 ■30459 
 .30486 
 
 ■30514 
 •30542 
 •30570 
 
 ■95257 
 .95248 
 .95240 
 
 ■95231 
 ■95222 
 
 95213 
 
 .32089 
 .32116 
 .32144 
 .32171 
 .32199 
 .32227 
 
 .94712 
 .94702 
 
 •94693 
 .94684 
 .94674 
 •94665 
 
 •33737 
 •33764 
 •33792 
 •33819 
 •33846 
 •33874 
 
 •94137 
 .94127 
 .94118 
 .94108 
 
 49 
 50 
 51 
 
 11 
 
 54- 
 
 11 
 
 11 
 
 .27256 
 .27284 
 .27312 
 .27340 
 .27368 
 .27396 
 
 .96214 
 .96206 
 .96198 
 .96190 
 .96182 
 .96174 
 
 •28931 
 
 .29015 
 .29042 
 .29070 
 
 •95724 
 •95715 
 •95707 
 95698 
 .95690 
 .95681 
 
 •30597 
 .30625 
 
 .30708 
 •30736 
 
 ■95204 
 
 •^5195 
 .95186 
 
 .95168 
 •95159 
 
 •32254 
 .32282 
 .32309 
 •32337 
 •32364 
 .32392 
 
 •94656 
 .94646 
 
 •94637 
 .94627 
 .94618 
 .94609 
 
 •33901 
 •33929 
 •33956 
 •33983 
 .54011 
 ■34038 
 
 .94078 
 .94068 
 •94058 
 •94049 
 •94039 
 .94029 
 
 .27424 
 .27452 
 .27480 
 .27508 
 
 •27536 
 .27564 
 
 .96166 
 .96158 
 .96150 
 .96142 
 
 .96126 
 
 .29098 
 .29126 
 .29154 
 29182 
 .29209 
 .29237 
 
 •95664 
 •95656 
 •95647 
 95639 
 •95630 
 
 .30763 
 .30791 
 .30819 
 .30846 
 .30874 
 .30902 
 
 ■95150 
 ■95142 
 ■95133 
 ■95124 
 
 95"5 
 .95106 
 
 .32419 
 
 •32447 
 •32474 
 .32502 
 
 •32529 
 •32557 
 
 •94599 
 •94590 
 .94580 
 
 •94571 
 
 .94561 
 
 •94552 
 
 -34065 
 
 •34093 
 .34120 
 
 •34147 
 •34175 
 .34202 
 
 •94019 
 .94009 
 
 •93999 
 •93989 
 •93979 
 .93969 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 / 
 
 
 74" 1 73° 1 72" 
 
 71" 1 70" 
 
 
76 
 
 TABLE III 
 
 f 
 
 o 
 
 I 
 
 2 
 
 3 
 4 
 
 "I 
 
 9 
 
 lO 
 
 II 
 
 12 
 
 20° 1 
 
 «» 
 
 22° 1 
 
 23° 1 
 
 24° 
 
 60 
 59 
 58 
 
 11 
 
 55 
 
 il_ 
 
 53 
 52 
 51 
 50 
 49 
 48 
 
 47 
 46 
 
 45 
 44 
 43 
 42 
 
 41 
 40 
 39 
 38 
 
 11 
 
 35 
 34 
 33 
 32 
 31 
 30 
 
 29 
 28 
 27 
 26 
 
 25 
 24 
 
 23 
 22 
 21 
 20 
 
 \t 
 \l 
 
 15 
 14 
 13 
 12 
 
 10 
 
 I 
 
 5 
 4 
 3 
 
 2 
 I 
 
 
 N. sine 
 
 ^T. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 .34202 
 .34229 
 
 .34284 
 •343" 
 •34339 
 •34366 
 
 .93969 
 •93959 
 93949 
 ■93939 
 .93929 
 
 •93919 
 •93909 
 
 •35891 
 ■35918 
 •35945 
 •35973 
 .36000 
 
 •93358 
 •93348 
 •93337 
 •93327 
 •93316 
 •93306 
 •93295 
 
 •37461 
 .37488 
 
 •37515 
 •37542 
 •37569 
 •37595 
 .37622 
 
 .92718 
 
 .92707 
 .92697 
 .92686 
 
 .92664 
 •92653 
 
 •39073 
 .39100 
 
 •39127 
 
 •39153 
 .39180 
 .39207 
 ■39234 
 
 .92050 
 .92039 
 92028 
 .92016 
 .92005 
 .91994 
 .91982 
 
 .40674 
 .40700 
 .40727 
 
 •40753 
 .40780 
 .40806 
 •40833 
 .40860 
 .40886 
 .40913 
 
 .40992 
 
 •91355 
 91343 
 91331 
 •91319 
 •91307 
 .9 [295 
 .91283 
 
 •34393 
 .34421 
 .34448 
 •34475 
 •34503 
 •34530 
 
 •93899 
 .93889 
 
 •93879 
 .93869 
 
 •93859 
 •93849 
 
 .36027 
 .36108 
 
 ■93285 
 •93274 
 •93264 
 •93253 
 •93243 
 .93232 
 
 •37649 
 .37676 
 
 ■37703 
 •37730 
 •37757 
 •37784 
 
 .92642 
 .92631 
 .92620 
 .92609 
 .92598 
 •92587 
 
 .39260 
 .39287 
 •39314 
 •39341 
 •39367 
 ■39394 
 
 .91971 
 
 •91959 
 .91948 
 .91936 
 .91925 
 .91914 
 
 .91272 
 .91260 
 .91248 
 .91236 
 .91224 
 .91212 
 
 13 
 
 14 
 
 •34557 
 •345^4 
 .34612 
 
 •34639 
 .34666 
 .34694 
 
 •93839 
 •93829 
 .93819 
 •93809 
 •93799 
 ■93789 
 
 .36190 
 .36217 
 
 •36244 
 .36271 
 .36298 
 •36325 
 
 .93222 
 .93211 
 •93201 
 
 .93180 
 .93169 
 
 .37811 
 •37838 
 •37865 
 .37892 
 
 •37919 
 •37946 
 
 .92576 
 .92565 
 •92554 
 •92543 
 •92532 
 .92521 
 
 .39421 
 .39448 
 •39474 
 •39501 
 •39528 
 •39555 
 
 .91902 
 .91891 
 .91879 
 .91868 
 .91856 
 .91845 
 
 .41019 
 .41045 
 .41072 
 .41098 
 .41125 
 .41151 
 
 .91200 
 .91188 
 .91176 
 .91164 
 .91152 
 .91140 
 
 19 
 
 20 
 21 
 22 
 
 23 
 
 24 
 
 •34721 
 •34748 
 •34775 
 •34803 
 •34830 
 •34857 
 
 •93779 
 •93769 
 •93759 
 •93748 
 •93738 
 .93728 
 
 •36352 
 •36379 
 .36406 
 
 .36461 
 .36488 
 
 •93159 
 .93148 
 
 •93137 
 •93127 
 .93116 
 .93106 
 
 •37973 
 
 .38107 
 
 .92510 
 
 •92499 
 
 .92488 
 .92477 
 .92466 
 •92455 
 
 •39581 
 .39608 
 
 .39688 
 •39715 
 
 •91833 
 .91822 
 .91810 
 .91799 
 .91787 
 •91775 
 
 .41178 
 .41204 
 .41231 
 •41257 
 .41284 
 .41310 
 
 .91128 
 .91116 
 .91104 
 .91092 
 .91080 
 .91068 
 
 29 
 
 30 
 
 31 
 
 32 
 
 33 
 34 
 
 P 
 
 39 
 40 
 
 41 
 42 
 
 43 
 44 
 45 
 46 
 
 ti 
 
 49 
 50 
 51 
 52 
 53 
 54 
 
 55 
 56 
 
 ,34884 
 .34912 
 
 •34939 
 .34966 
 
 •34993 
 •35021 
 
 •93718 
 .93708 
 .93698 
 .93688 
 .93677 
 .93667 
 
 •36515 
 •36542 
 .36569 
 .36596 
 
 •^^?^ 
 .36650 
 
 •93095 
 .93084 
 
 •93074 
 .93063 
 
 •93052 
 .93042 
 
 .38188 
 .38215 
 .38241 
 .38268 
 
 •92444 
 .92432 
 .92421 
 .92410 
 
 •39741 
 •39768 
 
 •39795 
 .39822 
 
 •39848 
 
 •39875 
 
 .91764 
 
 •91752 
 .91741 
 .91729 
 .91718 
 .91706 
 
 •41337 
 •41363 
 .41390 
 .41416 
 
 •41443 
 .41469 
 
 .91056 
 .91044 
 .91032 
 .91020 
 .91008 
 .90996 
 
 •3^048 
 
 •35075 
 •35102 
 
 •35130 
 •35157 
 •35184 
 
 •93657 
 •93647 
 •93637 
 .93626 
 .93616 
 .93606 
 
 •36677 
 •36704 
 •36731 
 •36758 
 
 •93031 
 .93020 
 .93010 
 
 .92978 
 
 •38295 
 .38322 
 
 •38349 
 •38376 
 •38403 
 •38430 
 
 ■$t 
 
 .38510 
 •38537 
 .38564 
 •38591 
 
 ■92377 
 .92366 
 
 •92355 
 •92343 
 .92332 
 .92321 
 .92310 
 .92299 
 .92287 
 .92276 
 .92265 
 •92254 
 
 •39902 
 •39928 
 
 •39955 
 .39982 
 .40008 
 •40035 
 
 .91694 
 .91683 
 .91671 
 .91660 
 .91648 
 .91636 
 
 .41496 
 .41522 
 •41549 
 •41575 
 .41602 
 .41628 
 
 .90984 
 .90972 
 .90960 
 .90948 
 .90936 
 .90924 
 
 •35211 
 •35239 
 .35266 
 
 •35293 
 •35320 
 •35347 
 
 •93596 
 •93585 
 •93575 
 •93565 
 •93555 
 •93544 
 
 •36894 
 .36921 
 .36948 
 •36975 
 
 .92967 
 .92956 
 •92945 
 •92935 
 .92924 
 .92913 
 
 .40062 
 .40088 
 .40115 
 .40141 
 .40168 
 .40195 
 
 .91625 
 .91613 
 .91601 
 .91590 
 
 .91566 
 
 tell 
 
 .41707 
 
 •41734 
 .41760 
 .41787 
 
 .90911 
 .90899 
 .90887 
 
 •90875 
 .90863 
 .90851 
 
 •35375 
 •35402 
 
 •35429 
 •35456 
 •35484 
 •355" 
 
 •93534 
 •93524 
 •93514 
 •93503 
 •93493 
 •93483 
 
 .37002 
 .37029 
 •37056 
 •37083 
 .37110 
 
 •37137 
 
 .92902 
 .92892 
 .92881 
 .92870 
 •92859 
 .92849 
 
 .38617 
 .38644 
 .38671 
 .38698 
 •38725 
 •38752 
 
 .92243 
 .92231 
 .92220 
 .92209 
 .92198 
 .92186 
 
 .40221 
 .40248 
 .40275 
 .40301 
 .40328 
 •40355 
 
 •91555 
 •91543 
 91531 
 91519 
 .91508 
 .91496 
 
 .41813 
 .41840 
 .41866 
 .41892 
 .41919 
 •41945 
 
 •90839 
 .90826 
 .90814 
 .90802 
 .90790 
 ■90778 
 
 •35538 
 •35565 
 •35592 
 •35619 
 •35647 
 •35674 
 
 •93472 
 •93462 
 •93452 
 •93441 
 •93431 
 .93420 
 
 •37164 
 •37191 
 .37218 
 
 •37245 
 .37272 
 
 •37299 
 
 .92838 
 .92827 
 .92816 
 •92805 
 .92794 
 .92784 
 
 .38912 
 
 •92175 
 .92164 
 .92152 
 .92141 
 .92130 
 .92119 
 
 .40381 
 .40408 
 .40434 
 .40461 
 .40488 
 .40514 
 
 .91484 
 .91472 
 .91461 
 .91449 
 
 •91437 
 .91425 
 
 .41972 
 .41998 
 .42024 
 •42051 
 •42077 
 .42104 
 
 .90766 
 
 •90753 
 .90741 
 
 9^729 
 .90717 
 .90704 
 .90692 
 .90680 
 .90668 
 90655 
 90643 
 .90631 
 
 •35701 
 •35728 
 
 •35755 
 •35782 
 •35810 
 •35837 
 
 .93410 
 •93400 
 •93389 
 •93379 
 •93368 
 •93358 
 
 •37326 
 •37353 
 •37380 
 •37407 
 •37434 
 •37461 
 
 .92773 
 .92762 
 .92751 
 .92740 
 .92729 
 .92718 
 
 •38939 
 .38966 
 
 •38993 
 .39020 
 .39046 
 •39073 
 
 .92107 
 .92096 
 .92085 
 .92073 
 .92062 
 .92050 
 
 .40541 
 .40567 
 .40594 
 .40621 
 .40647 
 .40674 
 
 .91414 
 .91402 
 .91390 
 
 .91366 
 •91355 
 
 •42130 
 .42156 
 .42183 
 .42209 
 
 •42235 
 .42262 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 / 
 
 
 69° 1 
 
 68° 
 
 67° 1 
 
 66° 1 
 
 65° 
 
 
TRIGONOMETRIC FUNCTIONS FOR EACH MINUTE 
 
 77 
 
 9 
 
 35° 1 
 
 26° 1 
 
 sr 1 
 
 28° 1 
 
 29° 1 
 
 60 
 59 
 58 
 57 
 
 56 
 55 
 
 54 
 
 53 
 52 
 51 
 50 
 
 :i 
 
 47 
 46 
 
 45 
 44 
 43 
 42 
 
 41 
 40 
 
 35 
 34 
 33 
 32 
 31 
 30 
 
 29 
 28 
 
 V, 
 
 25 
 24 
 
 23 
 22 
 21 
 
 20 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 o 
 I 
 
 2 
 
 3 
 4 
 c 
 
 l_ 
 9 
 
 lO 
 12 
 
 13 
 
 14 
 
 :i 
 
 17 
 18 
 
 .42262 
 .42288 
 •42315 
 •42341 
 •42367 
 .42394 
 .42420 
 
 .90631 
 .90618 
 .90606 
 .90594 
 .90582 
 .90569 
 •90557 
 
 •43863 
 ■43889 
 .43916 
 ■43942 
 .43968 
 •43994 
 
 .89879 
 .89867 
 
 .89854 
 .89841 
 .89828 
 .89816 
 .89803 
 
 45399 
 •45425 
 •45451 
 ■45477 
 •45503 
 •45529 
 ■45554 
 
 .89101 
 .89087 
 .89074 
 .89061 
 .89048 
 
 ■89035 
 .89021 
 
 .46947 
 •46973 
 •46999 
 .47024 
 .47050 
 .47076 
 .47101 
 
 .88295 
 .88281 
 .88267 
 .88254 
 .88240 
 .88226 
 .88213 
 
 .48481 
 .48506 
 ■48532 
 ■48557 
 ■48583 
 .48608 
 .48634 
 
 ■48659 
 .48684 
 .48710 
 
 ■48735 
 .48761 
 .48786 
 
 .87462 
 .87448 
 
 ■87434 
 .87420 
 .87406 
 ■87391 
 ■87377 
 •87363 
 •87349 
 •87335 
 .87321 
 •87306 
 .87292 
 
 .42446 
 •42473 
 •42499 
 •42525 
 •42552 
 .42578 
 
 •90545 
 •90532 
 .90520 
 .90507 
 .90495 
 .90483 
 
 .44020 
 .44046 
 .44072 
 .44098 
 .44124 
 •44151 
 •44177 
 ■44203 
 .44229 
 
 ■44255 
 .44281 
 
 •44307 
 
 .89790 
 •89777 
 .89764 
 •89752 
 ■89739 
 .89726 
 
 .45580 
 .45606 
 •45632 
 ■45658 
 ■45684 
 •45710 
 
 .89008 
 .88995 
 .88981 
 .88968 
 
 .88955 
 .88942 
 
 .47127 
 
 •47153 
 .47178 
 .47204 
 .47229 
 •47255 
 
 .88199 
 .88185 
 .88172 
 .88158 
 
 .88144 
 .88130 
 
 .42604 
 •42631 
 
 .42709 
 •42736 
 
 .90470 
 .90458 
 .90446 
 
 •90433 
 .90421 
 .90408 
 
 ■89713 
 .89700 
 
 .89687 
 .89674 
 .89662 
 .89649 
 
 •45736 
 •45762 
 •45787 
 •45813 
 •45839 
 •45865 
 
 .88928 
 •88915 
 
 : 88888 
 .88875 
 .88862 
 
 .47281 
 .47306 
 •47332 
 •47358 
 ■47383 
 ■47409 
 
 .88ii7 
 .88103 
 .88089 
 .88075 
 .88062 
 .88048 
 
 .48811 
 
 •48837 
 .48862 
 .48888 
 •48913 
 •48938 
 
 .87278 
 .87264 
 .87250 
 
 •87235 
 .87221 
 .87207 
 
 19 
 20 
 21 
 22 
 
 23 
 
 24 
 
 .42762 
 .42788 
 
 •42815 
 .42841 
 .42867 
 •42894 
 
 •90396 
 •90383 
 •90371 
 •90358 
 .90346 
 
 •90334 
 
 •44333 
 •44359 
 •44385 
 .44411 
 
 •44437 
 •44464 
 
 .89636 
 .89623 
 .89610 
 
 •89597 
 .89584 
 .89571 
 
 .45891 
 •45917 
 •45942 
 .45968 
 •45994 
 .46020 
 
 .88848 
 •88835 
 .88822 
 .88808 
 
 :i5i 
 
 ■47434 
 .47460 
 ■47486 
 ■475" 
 ■47537 
 ■47562 
 •47588 
 .47614 
 
 •47639 
 .47665 
 .47690 
 .47716 
 
 .88034 
 .88020 
 .88006 
 
 ■87993 
 .87979 
 
 .87965 
 
 .48964 
 .48989 
 .49014 
 .49040 
 •49065 
 .49090 
 
 •87193 
 .87178 
 .87164 
 .87150 
 .87136 
 .87121 
 
 25 
 26 
 
 27 
 28 
 29 
 3c 
 
 31 
 
 32 
 33 
 34 
 
 % 
 
 39 
 40 
 
 41 
 42 
 
 43 
 44 
 
 47 
 48 
 
 49 
 50 
 51 
 52 
 53 
 54 
 
 .42920 
 .42946 
 .42972 
 .42999 
 •43025 
 •43051 
 
 .90321 
 .90309 
 .90296 
 .90284 
 .90271 
 •90259 
 
 ■44490 
 .44516 
 ■44542 
 •44568 
 •44594 
 .44620 
 
 .89558 
 ■89545 
 ■89532 
 .89519 
 .89506 
 .89493 
 
 .46046 
 .46072 
 .46097 
 .46123 
 .46149 
 •46175 
 
 .88768 
 •88755 
 .88741 
 .88728 
 
 .88715 
 .88701 
 
 •87951 
 •87937 
 
 li 
 
 ".87882 
 
 .49116 
 .49141 
 .49166 
 .49192 
 .49217 
 .49242 
 
 .87107 
 .87093 
 .87079 
 .87064 
 .87050 
 •87036 
 
 •43077 
 .43104 
 
 •43130 
 •43156 
 .43182 
 .43209 
 
 .90245 
 .90233 
 .90221 
 .90208 
 .90196 
 .90183 
 
 .44646 
 •44672 
 .44698 
 .44724 
 •44750 
 .44776 
 
 .89480 
 .89467 
 
 ■89454 
 .89441 
 .89428 
 .89415 
 
 .46201 
 .46226 
 .46252 
 .46278 
 •46304 
 •46330 
 
 .88688 
 .88674 
 .88661 
 .88647 
 .88634 
 .88620 
 
 •47741 
 •47767 
 
 .47844 
 •47869 
 
 •47895 
 .47920 
 .47946 
 •47971 
 •47997 
 .48022 
 
 .87868 
 
 •87854 
 .87840 
 .87826 
 .87812 
 •87798 
 
 •87784 
 .87770 
 
 .87756 
 
 ■87743 
 .87729 
 
 .87715 
 
 .49268 
 .49293 
 .49318 
 •49344 
 •49369 
 •49394 
 
 .87021 
 .87007 
 
 •86993 
 .86978 
 .86964 
 .86949 
 
 •43235 
 .43261 
 .43287 
 
 •43313 
 ■43340 
 •43366 
 
 .90171 
 .90158 
 .90146 
 
 •90133 
 .90120 
 .90108 
 
 .44802 
 .44828 
 .44854 
 .44880 
 .44906 
 .44932 
 
 ■44958 
 .44984 
 45010 
 •45036 
 ■45062 
 .45088 
 
 .89402 
 .89389 
 ■89376 
 •89363 
 •89350 
 •89337 
 .89324 
 .89311 
 .89298 
 .89285 
 .89272 
 .89259 
 
 •46355 
 .46381 
 .46407 
 
 •46433 
 .46458 
 .46484 
 
 .88607 
 
 .88566 
 .88539 
 
 .49419 
 
 •49445 
 •49470 
 
 •49495 
 .49521 
 
 ■49546 
 
 •86935 
 .86921 
 
 .86878 
 .86863 
 
 •43392 
 .43418 
 
 •43445 
 •43471 
 •43497 
 •43523 
 
 .90095 
 .90082 
 .90070 
 .90057 
 .90045 
 .90032 
 
 .46510 
 •46536 
 •46561 
 .46587 
 .46613 
 ■46639 
 
 .88526 
 .88512 
 
 .88499 
 .88485 
 .88472 
 .88458 
 
 .48048 
 
 •48073 
 .48099 
 .48124 
 .48150 
 •48175 
 
 .87701 
 .87687 
 ■87673 
 ■87659 
 •^645 
 .87631 
 
 ■49571 
 ■49596 
 .49622 
 .49647 
 .49672 
 .49697 
 
 ■49723 
 ■49748 
 
 •49773 
 .49798 
 .49824 
 •49849 
 
 .86849 
 .86834 
 .8682c 
 .86805 
 .86791 
 .86777 
 
 15 
 14 
 13 
 12 
 
 11 
 
 10 
 
 7 
 6 
 
 •43549 
 •43575 
 .43602 
 •43628 
 
 .90019 
 .90007 
 
 :& 
 
 .89968 
 .89956 
 
 •89943 
 •89930 
 .89918 
 
 ■89905 
 .89892 
 
 •89879 
 
 ■45114 
 .45140 
 .45166 
 .45192 
 .45218 
 ■45243 
 
 ■89245 
 ■89232 
 .89219 
 .89206 
 
 .89193 
 .89180 
 
 .46664 
 .46690 
 .46716 
 .46742 
 .46767 
 ■46793 
 
 .88445 
 .88431 
 .88417 
 .88404 
 .88390 
 •88377 
 
 .48201 
 .48226 
 .48252 
 .48277 
 
 ■48303 
 .48328 
 
 .87617 
 .87603 
 .87589 
 •87575 
 .87561 
 .87546 
 
 .86762 
 .86748 
 ■86733 
 .86719 
 .86704 
 .86690 
 
 •43706 
 43733 
 43759 
 .43785 
 .43811 
 
 •43837 
 
 •45269 
 •45295 
 •45321 
 •45347 
 •45373 
 •4539S 
 
 .89167 
 
 ■89153 
 .89140 
 .89127 
 .89114 
 .89101 
 
 .46819 
 .46844 
 .4687c 
 .46896 
 .46921 
 ■46947 
 
 .88363 
 
 .88349 
 ■88336 
 .88322 
 .88308 
 .88295 
 
 •48354 
 •48379 
 .48405 
 .4843c 
 ■48456 
 .48481 
 
 •87532 
 .87518 
 .87504 
 .87490 
 •87476 
 .87462 
 
 .49874 
 .49899 
 .49924 
 .49950 
 
 •49975 
 .5000c 
 
 .86675 
 .86661 
 .86646 
 .86632 
 .86617 
 .86603 
 
 5 
 4 
 3 
 
 2 
 I 
 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 / 
 
 fij^ 
 
 «;i° 
 
 62° 
 
 61° 
 
 60° 
 
 ^^__ 
 
78 
 
 
 
 
 TABLE III 
 
 
 
 
 
 
 
 SO'' 1 
 
 31° 1 
 
 92^ 1 
 
 33° 
 
 34° 
 
 
 o 
 
 I 
 
 2 
 
 3 
 4 
 
 I 
 I 
 
 9 
 
 lO 
 
 II 
 
 12 
 
 13 
 14 
 
 i6 
 
 N. sine ] 
 
 ST. COS. 
 
 N. sine ] 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 NT. COS. 
 
 N. sine 
 
 N. COS. 
 
 60 
 
 ^^ 
 
 55 
 54 
 
 53 
 52 
 51 
 50 
 
 4I 
 
 47 
 46 
 
 45 
 44 
 43 
 42 
 
 50000 
 •5^5025 
 .50050 
 .50076 
 50101 
 50126 
 50151 
 
 .86603 
 .86588 
 
 8^573 
 86559 
 86544 
 86530 
 .86515 
 
 •51504 
 •51529 
 •51554 
 •5'579 
 
 •5'653 
 
 •85717 
 .85702 
 .85687 
 .85672 
 85657 
 •85642 
 .85627 
 .85612 
 
 •85597 
 .85582 
 .85567 
 .85551 
 •85536 
 
 52992 
 •530*7 
 
 •53091 
 53115 
 •53140 
 
 .84805 
 •84789 
 .84774 
 .84759 
 
 •84743 
 .84728 
 .84712 
 
 •54513 
 •54537 
 .54561 
 .54586 
 .54610 
 
 .83867 
 •83851 
 •83835 
 .83819 
 
 ■83772 
 
 •55919 
 
 :^ 
 
 •55992 
 .56016 
 .56040 
 .56064 
 
 .82871 
 .82855 
 .82839 
 .82822 
 .82806 
 
 .50176 
 .50201 
 .50227 
 .50252 
 .50277 
 .50302 
 
 .86501 
 .86486 
 .86471 
 
 .86457 
 .86442 
 .86427 
 
 .51678 
 
 •51703 
 .51728 
 
 5'753 
 .51778 
 .51803 
 
 •53164 
 53189 
 
 .84697 
 .84681 
 .84666 
 .84650 
 
 •84635 
 .84619 
 
 ■54635 
 
 .54708 
 54732 
 ■54756 
 
 83756 
 .83740 
 
 83724 
 .83708 
 .83692 
 ■83676 
 
 .56088 
 .56112 
 
 itt 
 
 .56184 
 .56208 
 
 .82790 
 82773 
 •82757 
 .82741 
 
 mil 
 
 50327 
 50352 
 •50377 
 •50403 
 .50428 
 
 •50453 
 
 86413 
 .86398 
 •86384 
 .86369 
 •86354 
 .86340 
 
 .51828 
 
 .51852 
 
 •51877 
 .51902 
 ,51927 
 •51952 
 
 .85521 
 .85506 
 .85491 
 .85476 
 .85461 
 .85446 
 
 •53312 
 •53337 
 •53361 
 •53386 
 
 •534" 
 •53435 
 
 .84604 
 .84588 
 •84573 
 •84557 
 .84542 
 .84526 
 
 .54781 
 .54805 
 •54829 
 •54854 
 ■54878 
 ■54902 
 
 .83660 
 
 •83645 
 .83629 
 
 •83613 
 •83597 
 .83581 
 
 tit 
 •56305 
 •56329 
 •56353 
 
 .82692 
 .82675 
 .82659 
 .82643 
 .82626 
 .82610 
 
 19 
 
 20 
 21 
 22 
 
 23 
 
 24 
 
 ^1 
 
 27 
 28 
 29 
 
 30 
 
 .50478 
 
 •50503 
 .50528 
 
 50553 
 50578 
 .50603 
 
 .86325 
 .86310 
 .86295 
 .86281 
 .86266 
 .86251 
 
 51977 
 .52002 
 .52026 
 
 52051 
 .52076 
 52101 
 
 •85431 
 .85416 
 •85401 
 ■85385 
 •85370 
 •85355 
 
 •53460 
 
 •53484 
 
 •53509 
 
 •53534 
 
 •53558 
 
 •53583. 
 
 •53607 
 
 •53705 
 •53730 
 
 .84511 
 
 •84495 
 .84480 
 .84464 
 .84448 
 •84433 
 
 ■54927 
 •54951 
 •54975 
 ■54999 
 ■55024 
 ■55048 
 
 •83565 
 •83549 
 •83533 
 •83517 
 •83501 
 .83485 
 
 •56377 
 .56401 
 .56425 
 •56449 
 •56473 
 •56497 
 
 •82593 
 .82577 
 .82561 
 •82544 
 .82528 
 .82511 
 
 41 
 40 
 
 '^ 
 1? 
 
 35 
 34 
 33 
 32 
 31 
 30 
 
 29 
 28 
 
 V, 
 
 25 
 24 
 
 23 
 22 
 21 
 20 
 
 18 
 
 17 
 16 
 
 15 
 14 
 13 
 12 
 
 II 
 
 10 
 
 i 
 I 
 
 5 
 4 
 3 
 
 2 
 I 
 
 
 .50628 
 .50654 
 50679 
 •50704 
 .50729 
 
 •50754 
 
 86237 
 .86222 
 .86207 
 .86192 
 .86178 
 .86163 
 
 .52126 
 52151 
 •52175 
 .52200 
 .52225 
 •52250 
 
 •85340 
 
 •85325 
 .85310 
 .85294 
 .85279 
 .85264 
 
 .84417 
 .84402 
 .84386 
 •84370 
 •84355 
 •84339 
 
 ■55072 
 ■55097 
 .55121 
 
 •55145 
 •55169 
 •55194 
 
 •83469 
 •83453 
 •83437 
 .83421 
 
 •83405 
 •83389 
 
 •56521 
 .56641 
 
 •82495 
 .82478 
 .82462 
 .82446 
 .82429 
 .82413 
 
 3 
 
 32 
 
 33 
 34 
 
 11 
 
 •50779 
 .50804 
 . 50829 
 .50854 
 .50879 
 •50904 
 
 .86148 
 •86133 
 .86119 
 .86104 
 .86089 
 .86074 
 
 •52275 
 •52299 
 •52324 
 52349 
 •52374 
 •52399 
 
 •85249 
 .85234 
 .85218 
 .85203 
 .85188 
 •85173 
 
 •53754 
 
 •53828 
 •53853 
 •53877 
 
 .84292 
 
 •84277 
 .84261 
 .84245 
 
 •55218 
 
 .55266 
 •55291 
 55315 
 •55339 
 
 •83373 
 •83356 
 •83340 
 •83324 
 .83308 
 .83292 
 
 .56665 
 .56689 
 
 •56713 
 
 .56760 
 .56784 
 
 .82363 
 .82347 
 .82330 
 •82314 
 
 11 
 
 39 
 40 
 
 41 
 42 
 
 .50929 
 ■50954 
 •50979 
 .51004 
 .51029 
 •51054 
 
 .86059 
 .86045 
 .86030 
 86015 
 .86000 
 .85985 
 
 •52448 
 •52473 
 •52498 
 •52522 
 •52547 
 
 .85157 
 .85142 
 .85127 
 .85112 
 .85096 
 .85081 
 
 •53902 
 •53926 
 •53951 
 
 •53975 
 .54000 
 
 •54024 
 
 .84230 
 .84214 
 .84198 
 .84182 
 .84167 
 .84151 
 
 •55412 
 •55436 
 •55460 
 •55484 
 
 •83276 
 .83260 
 
 •83244 
 .83228 
 .83212 
 •83195 
 
 .56808 
 
 •56832 
 
 ■IS 
 
 .82297 
 .82281 
 .82264 
 .82248 
 .82231 
 .82214 
 
 43 
 44 
 
 tl 
 
 47 
 48 
 
 49 
 50 
 51 
 52 
 53 
 54 
 
 55 
 56 
 
 •51079 
 .51104 
 •51129 
 •51154 
 •51179 
 .51204 
 
 .85970 
 .85956 
 ■85941 
 .85926 
 .85911 
 .85896 
 
 •52572 
 •52597 
 52621 
 .52646 
 .52671 
 .52696 
 
 .85066 
 .85051 
 
 •85035 
 .85020 
 •85005 
 .84989 
 
 •54049 
 •54073 
 •54097 
 •54122 
 .54146 
 •54171 
 
 •84135 
 .84120 
 .84104 
 .84088 
 .84072 
 •84057 
 
 •55509 
 •55533 
 •55557 
 .55581 
 
 •55605 
 •55630 
 
 •83179 
 •83163 
 •83147 
 •83J31 
 
 ; 83098 
 
 .57000 
 .57024 
 •57047 
 •57071 
 
 .82198 
 .82181 
 .82165 
 .82148 
 .82132 
 •82115 
 
 .51229 
 •51254 
 •51279 
 •51304 
 •51329 
 •51354 
 
 •51379 
 .51404 
 .51429 
 •5H54 
 •5H79 
 •51504 
 
 .85881 
 .85866 
 .85851 
 •85836 
 .85821 
 .85806 
 .85792 
 
 •85777 
 .85762 
 
 •85747 
 •85732 
 .85717 
 
 .52720 
 
 •52745 
 .52770 
 
 •52794 
 .52819 
 .52844 
 
 •84974 
 .84959 
 •84943 
 .84928 
 .84913 
 .84897 
 
 •54195 
 .54220 
 
 •54244 
 .54269 
 
 •54293 
 •54317 
 
 .84041 
 .84025 
 .84009 
 •83994 
 •83978 
 .83962 
 
 •55654 
 •55678 
 •55702 
 •55726 
 •55750 
 •55775 
 
 .83082 
 .83066 
 •83050 
 •83034 
 •83017 
 .83001 
 
 •57095 
 •57119 
 •57143 
 •57167 
 •57I9I 
 •57215 
 
 .82098 
 .82082 
 .82065 
 .82048 
 .82032 
 .82015 
 
 .52869 
 
 •52893 
 .52918 
 
 •52943 
 .52967 
 .52992 
 
 .84882 
 .84866 
 .84851 
 .84836 
 .84820 
 .84805 
 
 •54366 
 ■54391 
 •54415 
 •54440 
 ■54464 
 
 •83946 
 •83930 
 
 i%l 
 .83883 
 .83867 
 
 •55799 
 .55823 
 •55847 
 .55871 
 •55895 
 •55919 
 
 .82985 
 .82969 
 
 •82953 
 .82936 
 .82920 
 .82904 
 
 •57238 
 .57262 
 .57286 
 •57310 
 
 •57334 
 •57358 
 
 .81999 
 .81982 
 .81965 
 .81949 
 .81932 
 .81915 
 
 N COS. 
 
 N. sine 
 
 N. COS. 
 
 Kfrgirie 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 M. sine 
 
 N. COS. 
 
 N. sine 
 
 p 
 
 59" 1 
 
 68** 1 
 
 .«» 1 
 
 56° 
 
 55' 
 
 
TRIGONOMETRIC FUNCTIONS FOR EACH MINUTE 
 
 79 
 
 
 ss*' 1 
 
 36° 
 
 37° 1 
 
 38° 1 
 
 39° 
 
 
 9 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. cos. 
 
 
 O 
 
 I 
 2 
 
 3 
 4 
 
 i 
 
 7 
 8 
 
 9 
 
 lO 
 12 
 
 13 
 
 14 
 15 
 16 
 
 57358 
 •57381 
 ■57405 
 
 57429 
 •57453 
 •57477 
 ■57501 
 
 •81882 
 .81865 
 •81848 
 .81832 
 •81815 
 
 •58779 
 •58802 
 .58826 
 .58849 
 
 .■|896 
 .58920 
 
 .80867 
 .80850 
 .80833 
 .80816 
 .80799 
 
 60182 
 . 60205 
 .60228 
 .60251 
 •60274 
 .60298 
 .60321 
 
 •79864 
 •79846 
 .79829 
 •79811 
 
 •79793 
 •79776 
 
 •79758 
 
 .61566 
 
 .61612 
 61635 
 .61658 
 .61681 
 .61704 
 
 .78801 
 •78783 
 .78765 
 •78747 
 •78729 
 •78711 
 •78694 
 
 .62932 
 
 •62955 
 .62977 
 •63000 
 •63022 
 
 •63045 
 •63068 
 
 •77715 
 . 77606 
 
 60 
 59 
 
 .77678 
 .77660 
 .77641 
 •77623 
 •77605 
 
 58 
 
 55 
 54 
 
 53 
 52 
 51 
 50 
 49 
 48 
 
 57524 
 •57548 
 •57572 
 •57596 
 •57619 
 •57643 
 
 •81798 
 •81782 
 •81765 
 •81748 
 
 •81731 
 •81714 
 
 ■58943 
 .58967 
 
 ■58990 
 .59014 
 
 ■59037 
 .59061 
 
 .80782 
 .80765 
 .80748 
 •80730 
 
 •80713 
 .80696 
 
 .60344 
 .60367 
 .60390 
 .60414 
 .60437 
 .60460 
 
 •79741 
 •79723 
 •79706 
 •79688 
 •79671 
 •79653 
 
 .61726 
 
 •61749 
 .61772 
 
 •61795 
 .61818 
 .61841 
 
 •78676 
 •78658 
 • 78640 
 .78622 
 .78604 
 •78586 
 
 •63090 
 •63113 
 •63135 
 •63158 
 .63180 
 .63203 
 
 •77586 
 •77568 
 •77550 
 •77531 
 •77513 
 • 77494 
 
 •57667 
 •57691 
 •57715 
 
 •57762 
 .57786 
 
 •81698 
 .81681 
 •81664 
 •81647 
 •81631 
 •81614 
 
 .59084 
 .59108 
 ■59131 
 •59154 
 •59178 
 •59201 
 
 .80679 
 •80662 
 .80644 
 80627 
 .80610 
 •80593 
 
 •60529 
 
 •60576 
 •60599 
 
 •79635 
 .79618 
 •79600 
 •79583 
 •79565 
 •79547 
 
 .61864 
 .61887 
 •61909 
 •61932 
 
 •61955 
 .61978 
 
 • 78568 
 •78550 
 ■78532 
 •78514 
 •78496 
 •78478 
 
 .63225 
 •63248 
 .63271 
 
 IP 
 
 •63338 
 
 •77476 
 •77458 
 •77439 
 •77421 
 .77402 
 •77384 
 
 45 
 44 
 43 
 42 
 
 41 
 40 
 
 % 
 
 35 
 34 
 33 
 32 
 31 
 30 
 
 19 
 20 
 21 
 22 
 
 23 
 24 
 
 ^i 
 
 27 
 28 
 29 
 30 
 
 31 
 32 
 33 
 34 
 
 35 
 36 
 
 39 
 40 
 
 41 
 42 
 
 43 
 44 
 
 t 
 
 47 
 48 
 
 •57810 
 •57833 
 
 •57904 
 •57928 
 
 •81597 
 •81580 
 
 •81563 
 •81546 
 .81530 
 •81513 
 
 •59225 
 .59248 
 •59272 
 
 •59295 
 •59318 
 59342 
 
 .80576 
 .80558 
 .8054J 
 .80524 
 •80507 
 •80489 
 
 .60622 
 .60645 
 •60668 
 •60691 
 •60714 
 •60738. 
 
 •79530 
 •79512 
 •79494 
 •79477 
 •79459 
 •79441 
 
 .62001 
 .62024 
 .62046 
 •62069 
 •62092 
 •62115 
 
 •78460 
 •78442 
 .78424 
 .78405 
 
 •78387 
 .78369 
 
 .63361 
 
 •63383 
 .63406 
 .63428 
 •63451 
 •63473 
 
 .77366 
 
 •77347 
 .77329 
 .77.310 
 .77292 
 
 •77273 
 
 •57952 
 •57976 
 •57999 
 •58023 
 
 •58047 
 •58070 
 
 •81496 
 
 81479 
 .81462 
 • 81445 
 •81428 
 .81412 
 
 •593^5 
 59389 
 .59412 
 
 •59436 
 
 .80472 
 
 •80455 
 •80438 
 .80420 
 .80403 
 •80386 
 
 •60761 
 •60784 
 .60807 
 .60830 
 •60853 
 •60876 
 
 •79424 
 .79406 
 •79388 
 •79371 
 •79353 
 •79335 
 •79318 
 .79300 
 . 79282 
 .79264 
 .79247 
 .79229 
 .79211 
 
 •79193 
 .79176 
 
 •79158 
 .79140 
 .79122 
 
 •62138 
 •62160 
 .62183 
 •62206 
 .62229 
 .62251 
 
 •78351 
 •78333 
 •78315 
 .78297 
 .78279 
 .78261 
 
 •63496 
 •63518 
 •63540 
 •63563 
 
 •77255 
 •77236 
 .77218 
 
 •77199 
 .77181 
 .77162 
 
 .58141 
 .58165 
 .58189 
 .58212 
 
 •81395 
 .81378 
 .81361 
 
 .81344 
 .81327 
 .81310 
 
 •59506 
 •59529 
 •59552 
 •59576 
 •59599 
 •59622 
 
 •80368 
 •80351 
 
 .80264 
 .80247 
 •80230 
 .80212 
 •80195 
 .80178 
 
 •60899 
 .60922 
 •60945 
 .60968 
 .60991 
 .61015 
 •61038 
 •61061 
 .61084 
 .61107 
 .61130 
 •61153 
 
 .62274 
 •62297 
 •62320 
 .62342 
 
 ^62388 
 
 .78243 
 .78225 
 .78206 
 .78188 
 .78170 
 .78152 
 
 .63630 
 •63653 
 
 ^63698 
 .63720 
 •63742 
 
 •77144 
 •77125 
 .77107 
 .77088 
 .77070 
 •77051 
 
 29 
 
 25 
 24 
 
 23 
 
 22 
 21 
 20 
 19 
 
 .58236 
 .58260 
 •58283 
 •58307 
 •58330 
 •58354 
 
 .81293 
 .81276 
 .81259 
 .81242 
 •81225 
 •81208 
 
 •59646 
 •59669 
 •59693 
 •59716 
 
 •59739 
 •59763 
 
 .62411 
 •62433 
 •62456 
 •62479 
 •62502 
 •62524 
 
 •78134 
 .78116 
 .78098 
 
 •78079 
 .78061 
 
 •78043 
 
 •63765 
 •63787 
 .63810 
 •63832 
 •63854 
 •63877 
 
 •77033 
 .77014 
 .76996 
 .76977 
 
 •76959 
 .76940 
 
 •58378 
 .58401 
 
 •58425 
 .58449 
 
 .58472 
 .58496 
 
 •81191 
 .81174 
 .81157 
 .81140 
 .81123 
 .81106 
 
 •59786 
 •59809 
 59832 
 •59856 
 •59879 
 •59902 
 
 •80160 
 •80143 
 •80125 
 •80108 
 •80091 
 ■80073 
 
 .61176 
 .61199 
 .61222 
 •61245 
 61268 
 .61291 
 
 •79105 
 .79087 
 .79069 
 •79051 
 •79033 
 •79016 
 
 •62547 
 •62570 
 •62592 
 •62615 
 •62638 
 •62660 
 
 .78025 
 .78007 
 •77988 
 •77970 
 •77952 
 •77934 
 
 •63899 
 .63922 
 .63944 
 .63966 
 .63989 
 .64011 
 
 .76921 
 .76903 
 .76884 
 . 76866 
 .76847 
 •76828 
 
 15 
 14 
 13 
 12 
 
 11 
 10 
 
 \ 
 
 5 
 4 
 3 
 2 
 I 
 
 
 49 
 50 
 
 51 
 
 52 
 53 
 54 
 
 •58519 
 •58637 
 
 .81089 
 .81072 
 •81055 
 .81038 
 .81021 
 .81004 
 
 •59926 
 •59949 
 •59972 
 
 •59995 
 •60019 
 .60042 
 
 .80056 
 .80038 
 .80021 
 •80003 
 .79986 
 •79968 
 
 •79951 
 •79934 
 .79916 
 •79899 
 •79881 
 •79864 
 
 .61314 
 
 .61383 
 
 .61406 
 .61429 
 •61451 
 .61474 
 •61497 
 •61520 
 
 •61543 
 .61566 
 
 •78998 
 •78980 
 .78962 
 .78944 
 .78926 
 .78908 
 
 •62683 
 .62706 
 .62728 
 •62751 
 •62774 
 •62796 
 
 .77916 
 •77897 
 •77879 
 .77861 
 
 •77843 
 .77824 
 
 •64033 
 •64056 
 •64078 
 .64100 
 •64123 
 •64145 
 
 •76810 
 •76791 
 •76772 
 •76754 
 •76735 
 .76717 
 
 .76698 
 .76679 
 •76661 
 •76642 
 •76623 
 .76604 
 
 •58661 
 .58684 
 .58708 
 58731 
 •58755 
 58779 
 
 .80987 
 .80970 
 
 •80953 
 •80936 
 •80919 
 •80902 
 
 •60065 
 •60089 
 .60112 
 •60135 
 •60158 
 •60182 
 
 .78891 
 •78873 
 •78855 
 •78837 
 .78819 
 .78801 
 
 •62819 
 .62842 
 •62864 
 •62887 
 •62909 
 •62932 
 
 .77806 
 .77788 
 .77769 
 •77751 
 
 ■nnz 
 •77715 
 
 •64167 
 .64190 
 .64212 
 .64234 
 .64256 
 .64279 
 
 N. COS. 
 
 N. sine 
 
 N. COS. ] 
 
 V. sine 
 
 N. COS. 
 
 N^. sine 
 
 N. COS. ] 
 
 V. sme 
 
 N^. COS. ] 
 
 V. sine 
 
 54" 1 
 
 53° 1 
 
 52° 1 
 
 51° 1 
 
 50° 1 
 
80 
 
 TABLE III 
 
 o 
 I 
 
 2 
 
 3 
 
 4 
 
 1 
 
 9 
 
 lO 
 
 II 
 
 12 
 33 
 
 \l 
 
 18 
 
 40- 1 
 
 41** 1 
 
 42° 1 
 
 «» 1 
 
 44° 
 
 60 
 
 It 
 % 
 
 55 
 54 
 
 53 
 52 
 51 
 50 
 
 It 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 N. sine 
 
 N. COS. 
 
 .64279 
 .64301 
 
 64323 
 64346 
 .64368 
 .64390 
 .64412 
 
 .76604 
 .76586 
 .76567 
 .76548 
 •76530 
 .76511 
 .76492 
 
 .65606 
 .65628 
 •65650 
 .65672 
 
 •65694 
 .65716 
 
 •65738 
 
 •75471 
 •75452 
 •75433 
 •75414 
 •75395 
 •75375 
 •75356 
 
 66913 
 •66935 
 .66956 
 .66978 
 .66999 
 .67021 
 •67043 
 .67064 
 .67086 
 .67107 
 .67129 
 .67151 
 .67172 
 
 •74314 
 •74295 
 •74276 
 •74256 
 •74237 
 •74217 
 .74198 
 
 .74178 
 •74159 
 •74139 
 .74120 
 .74100 
 .74080 
 
 .68200 
 .68221 
 .68242 
 .68264 
 .68285 
 .68306 
 •68327 
 
 •73135 
 .73116 
 .73096 
 ■73076 
 •73056 
 •73036 
 .73016 
 
 .69466 
 
 •69487 
 .69508 
 
 •69529 
 •69549 
 .69570 
 .69591 
 
 •71934 
 .71914 
 .71894 
 ■71873 
 •71853 
 •71833 
 .71813 
 
 •64435 
 •64457 
 •64479 
 .64501 
 .64524 
 .64546 
 
 •76473 
 ■76455 
 .76436 
 .76417 
 .76398 
 .76380 
 
 •65759 
 
 •65803 
 .65825 
 .65847 
 .65869 
 
 ■7S337 
 •75318 
 
 •75299 
 .75280 
 
 •75261 
 
 •75241 
 
 •68349 
 
 .68370 
 
 •68391 
 
 .68412 
 
 •68434 
 
 •68455 
 
 .68476" 
 
 •68497 
 
 .68518 
 
 •68539 
 .68561 
 .68582 
 
 .72996 
 .72976 
 
 •72957 
 .72937 
 .72917 
 .72897 
 
 .69612 
 .69633 
 .69654 
 
 •69675 
 .69696 
 .69717 
 
 .71792 
 .71772 
 •71752 
 .71732 
 .71711 
 .71691 
 
 .64568 
 .64590 
 .64612 
 
 ■64635 
 .64657 
 .64679 
 
 •76361 
 •76342 
 •76323 
 .76304 
 .76286 
 .76267 
 
 .65891 
 •65913 
 
 •65956 
 .65978 
 .66000 
 
 .75222 
 •75203 
 •75184 
 •75165 
 •75146 
 .75126 
 
 .67194 
 .67215 
 
 •67237 
 .67258 
 .67280 
 .67301 
 
 .74061 
 .74041 
 .74022 
 .74002 
 •73983 
 •73963 
 
 .72877 
 .72857 
 
 •72837 
 .72817 
 
 •72797 
 
 ■72777 
 
 •69737 
 •69758 
 .69779 
 .69800 
 .69821 
 .69842 
 
 .71671 
 .71650 
 .71630 
 .71610 
 •71590 
 •71569 
 
 % 
 
 45 
 44 
 43 
 42 
 
 19 
 20 
 21 
 22 
 
 23 
 
 24 
 
 11 
 11 
 
 29 
 3c 
 
 31 
 32 
 
 33 
 
 34 
 35 
 36 
 
 11 
 
 39 
 40 
 
 41 
 42 
 
 43 
 44 
 
 :i 
 
 47 
 48 
 
 49 
 50 
 51 
 52 
 53 
 54 
 
 55 
 56 
 
 11 
 
 .64701 
 .64723 
 .64746 
 .64768 
 .64790 
 .64812 
 
 .76248 
 .76229 
 .76210 
 .76192 
 .76173 
 •76154 
 
 •76135 
 .76116 
 .76097 
 .76078 
 
 •76059 
 .76041 
 
 .76022 
 .76003 
 •75984 
 •75965 
 •75946 
 •75927 
 .75908 
 .75889 
 •75870 
 .75851 
 •75832 
 •75813 
 
 .66022 
 .66044 
 .66066 
 .66088 
 .66109 
 .66131 
 
 .75069 
 •75050 
 •75030 
 .75011 
 
 •67323 
 67344 
 •67366 
 
 .67409 
 •67430 
 
 •73944 
 •73924 
 •73904 
 ■73885 
 •73865 
 .73846 
 
 .68603 
 .68624 
 .68645 
 .68666 
 .68688 
 .68709 
 
 ■72757 
 ■72737 
 •72717 
 .72697 
 .72677 
 .72657 
 
 .69862 
 •69883 
 .69904 
 
 .69946 
 .69966 
 
 •71549 
 •71529 
 .71508 
 .71488 
 .71468 
 •71447 
 
 41 
 40 
 
 35 
 34 
 33 
 32 
 31 
 30 
 
 29 
 28 
 
 % 
 
 25 
 24 
 
 23 
 22 
 21 
 
 20 
 19 
 
 \l 
 
 15 
 14 
 13 
 12 
 
 II 
 10 
 
 i 
 
 7 
 
 6 
 
 .64834 
 64856 
 64878 
 .64901 
 64923 
 64945 
 64967 
 .64989 
 .65011 
 
 •65033 
 ■65055 
 ■65077 
 .65100 
 .65122 
 .65144 
 .65166 
 .65188 
 .65210 
 
 66175 
 .66197 
 .66218 
 .66240 
 .66262 
 
 •74992 
 •74973 
 •74953 
 •74934 
 
 •74896 
 
 .67452 
 ■67473 
 
 ■67538 
 •67559 
 
 .73826 
 •73806 
 •73787 
 •73767 
 •73747 
 •73728 
 
 •68730 
 .68751 
 .68772 
 
 68793 
 .68814 
 
 ■68835, 
 
 .72637 
 .72617 
 •72597 
 •72577 
 •72557 
 •72537 
 
 •69987 
 .70008 
 .70029 
 .70049 
 .70070 
 .70091 
 
 .71427 
 .71407 
 .71386 
 .71366 
 ■71345 
 ■71325 
 
 .66284 
 .66306 
 •66327 
 •66349 
 
 •66393 
 .66414 
 .66436 
 .66458 
 .66480 
 .66501 
 •66523 
 
 .74876 
 •74857 
 
 ■.Ifsfs 
 
 .67580 
 .67602 
 .67623 
 
 .67688 
 
 .73708 
 •73688 
 73669 
 •73649 
 .73629 
 .73610 
 
 .68857 
 .68878 
 .68899 
 .68920 
 .68941 
 .68962 
 
 •72517 
 .72497 
 
 •72477 
 •72457 
 •72437 
 .72417 
 
 .70112 
 .70132 
 
 •70153 
 .70174 
 
 •70195 
 •70215 
 
 •71305 
 .71284 
 .71264 
 
 •71243 
 .71223 
 .71203 
 
 .74760 
 
 •74741 
 .74722 
 
 •74703 
 ■74683 
 .74664 
 
 .67709 
 .67730 
 .67752 
 •67773 
 •67795 
 .67816 
 
 •73590 
 •73570 
 •73551 
 •73531 
 •735" 
 •73491 
 
 .68983 
 .69004 
 .69025 
 .69046 
 .69067 
 .69088 
 
 •72397 
 ■72377 
 ■72357 
 ■72337 
 .72317 
 .72297 
 
 .70236 
 •70257 
 .70277 
 .70298 
 .70319 
 •70339 
 
 .71182 
 .71162 
 .71141 
 .71121 
 
 .71100 
 .71080 
 
 .65232 
 
 •65254 
 •65276 
 .65298 
 •65320 
 •65342 
 
 •75794 
 •75775 
 •75756 
 •75738 
 •75719 
 ■75700 
 
 "66566 
 66588 
 .66610 
 .66632 
 •66653 
 
 .74644 
 
 .74606 
 •74586 
 •74567 
 •74548 
 
 •67837 
 
 .67901 
 
 •67923 
 .67944 
 
 •73472 
 •73452 
 •73432 
 •73413 
 •73393 
 ■73373 
 
 .69109 
 .69130 
 .69151 
 .69172 
 .69193 
 .69214 
 
 .72277 
 
 •72257 
 .72236 
 .72216 
 .72196 
 .72176 
 
 .70360 
 .70381 
 .70401 
 .70422 
 •70443 
 •70463 
 
 •71059 
 .71039 
 .71019 
 .70998 
 •70978 
 •70957 
 
 •65364 
 .65386 
 .65408 
 •65430 
 •65452 
 •65474 
 
 .75680 
 .75661 
 •75642 
 •75623 
 .75604 
 
 •75585 
 
 .66675 
 .66697 
 .66718 
 .66740 
 .66762 
 •66783 
 
 .74528 
 •74509 
 •74489 
 •74470 
 •74451 
 •74431 
 
 .67965 
 
 .68029 
 .68051 
 .68072 
 
 •73353 
 •73333 
 •73314 
 •73294 
 •73274 
 •73254 
 
 •69235 
 .69256 
 .69277 
 .69298 
 .69319 
 .69340 
 
 .72156 
 •72136 
 .72116 
 .72095 
 •72075 
 •72055 
 
 .70484 
 •70505 
 •70525 
 .70546 
 
 •70567 
 •70587 
 
 .70937 
 .70916 
 .70896 
 .70875 
 •70855 
 .70834 
 
 •65496 
 .65518 
 •65540 
 65562 
 .65584 
 .65606 
 
 •75566 
 •75547 
 •75528 
 •75509 
 •75490 
 •75471 
 
 .66805 
 .66827 
 .66848 
 .66870 
 .66891 
 •66913 
 
 .74412 
 •74392 
 
 •74373 
 •74353 
 •74334 
 •74314 
 
 .68093 
 .68115 
 .68136 
 .68157 
 .68179 
 .68200 
 
 •73234 
 •73215 
 •73195 
 •73175 
 •73155 
 •73135 
 
 •69361 
 .69382 
 .69403 
 .69424 
 
 •72035 
 •72015 
 •71995 
 •71974 
 •71954 
 71934 
 
 .70608 
 .70628 
 .70649 
 .70670 
 .70690 
 .70711 
 
 .70813 
 
 •70793 
 .70772 
 
 •70752 
 •70731 
 .70711 
 
 5 
 4 
 3 
 
 2 
 I 
 
 
 t 
 
 N. COS. ] 
 
 NT. sine 
 
 f^. COS. ] 
 
 N". sine 
 
 NT. COS. ] 
 
 N". sine 
 
 ^J. CO.S. ^ 
 
 ST. sine 
 
 N'. cos. ] 
 
 V. sine 
 
 
 49° 1 
 
 4§*' 1 
 
 47° 1 
 
 46° 1 
 
 45- 1 
 
NATURAL TANGENTS AND COTANGENTS 
 
 81 
 
 / 
 
 0^^ 
 
 1° 
 
 2^" 
 
 3° 
 
 40 
 
 / 
 
 
 Tang Cotg 
 
 Tang Cotg 
 
 Tang Cotg 
 
 Tang Cotg 
 
 Tang Cotg 
 
 
 
 
 I 
 
 2 
 
 3 
 4 
 
 0000 Infinite 
 0003 3437-75 
 0006 1718.87 
 0009 1145.92 
 0012 859.436 
 
 0175 57.2900 
 0177 56.3506 
 0180 55.4415 
 0183 54.5613 
 0186 53.7086 
 
 0349 28.6363 
 0352 28.3994 
 0355 28.1664 
 0358 27.9372 
 0361 27.7117 
 
 0524 19.0811 
 0527 18.9755 
 0530 18.8711 
 0533 18.7678 
 0536 18.6656 
 
 0699 14.3007 
 0702 14.2411 
 070^ 14.1821 
 0708 14.1235 
 0711 14.0655 
 
 60 
 
 5 
 6 
 
 7 
 8 
 
 9 
 
 0015 687.549 
 0017 572957 
 0020 491.106 
 0023 429.718 
 0026 381.971 
 
 0189 52.8821 
 0192 52.0807 
 0195 51.3032 
 0198 50.5485 
 0201 49.8157 
 
 0364 27.4899 
 0367 27.2715 
 0370 27.0566 
 0373 26.8450 
 0375 26.6367 
 
 0539 18.5645 
 0542 18.4645 
 0544 18.3655 
 0547 18.2677 
 0550 18.1708 
 
 0714 14.0079 
 0717 13-9507 
 0720 13.8940 
 
 0723 138378 
 0726 13.7821 
 
 55 
 54 
 53 
 52 
 51 
 
 10 
 
 II 
 
 12 
 
 13 
 14 
 
 0029 343-774 
 0032 312.521 
 0035 286.478 
 0038 264.441 
 0041 245.552 
 
 0204 49.1039 
 0207 48.4121 
 0209 47.7395 
 0212 47.0853 
 0215 46.4489 
 
 0378 26.4316 
 0381 26.2296 
 0384 26.0307 
 0387 25.8348 
 0390 25.6418 
 
 0553 18.0750 
 0556 17.9802 
 OS59 17.8863 
 0562 17.7934 
 ^565 17-7015 
 
 0729 13.7267 
 0731 13.6719 
 0734 13-6174 
 0737 13-5634 
 0740 13.5098 
 
 50 
 
 49 
 48 
 47 
 46 
 
 17 
 i8 
 
 19 
 
 0044 229.152 
 0047 214.858 
 0049 202,219 
 0052 190.984 
 0055 180.932 
 
 0218 45.8294 
 0221 45.2261 
 0224 44.6386 
 0227 44.0661 
 0230 43.5081 
 
 0393 25.4517 
 0396 25.2644 
 0399 25.0798 
 0402 24.8978 
 0405 24.7185 
 
 0568 17.6106 
 0571 17.5205 
 0574 1 7.43 H 
 0577 17.3432 
 0580 17.2558 
 
 0743 13.4566 
 0746 13.4039 
 0749 13.3515 
 0752 13.2996 
 0755 13.2480 
 
 45 
 44 
 43 
 42 
 41 
 
 20 
 
 21 
 
 22 
 23 
 24 
 
 25 
 26 
 
 27 
 28 
 29 
 
 0058 171.885 
 0061 163.700 
 0064 156.259 
 0067 149.465 
 0070 143.237 
 
 0233 42.9641 
 0236 42.4335 
 0239 41-9158 
 0241 41.4106 
 0244 40.9174 
 
 0407 24.5418 
 0410 23.3675 
 0413 24.1957 
 0416 24.0263 
 0419 23.8593 
 
 0582 17.1693 
 0585 17.0837 
 0588 16.9990 
 0591 16.9150 
 0594 16.8319 
 
 0758 13.1969 
 0761 13.1461 
 0764 13.0958 
 0767 13.0458 
 0769 12.9962 
 
 40 
 
 39 
 38 
 31 
 36 
 
 0073 137-507 
 0076 132.219 
 0079 127.321 
 0081 122.774 
 0084 118.540 
 
 0247 40.4358 
 0250 39.9655 
 0253 39.5059 
 0256 39.0568 
 0259 38.6177 
 
 0422 23.6945 
 0425 23.5321 
 0428 23.3718 
 0431 23.2137 
 0434 23.0577 
 
 0597 16.7496 
 0600 16.6681 
 0603 16.5874 
 0606 16.5075 
 0609 16.4283 
 
 0772 12.9469 
 0775 12.8981 
 0778 12.8496 
 0781 12.8014 
 0784 12.7536 
 
 35 
 34 
 32, 
 32 
 31 
 
 30 
 
 31 
 
 32 
 
 34 
 
 0087 114-589 
 0090 110.892 
 0093 107.426 
 0096 104.171 
 0099 101.107 
 
 0262 38.1885 
 0265 37.7686 
 0268 37-3579 
 0271 36.9560 
 0274 36.5627 
 
 0437 22.9038 
 0440 22.7519 
 0442 22.6020 
 0445 22.4541 
 0448 22.3081 
 
 0612 16.3499 
 0615 16.2722 
 0617 16.1952 
 0620 16.1190 
 0623 16.0435 
 
 0787 12.7062 
 0790 12.6591 
 0793 12.6124 
 0796 12.5660 
 0799 12.5199 
 
 30 
 
 29 
 28 
 
 27 
 26 
 
 35 
 36 
 
 39 
 
 0102 98.2179 
 0105 95.4895 
 0108 92.9085 
 oiii 904633 
 01 13 88.1436 
 
 0276 36.1776 
 0279 35.8006 
 0282 35-4313 
 0285 35-0695 
 0288 34.7151 
 
 0451 22.1640 
 0454 22.0217 
 0457 21.8813 
 0460 21.7426 
 0463 21.6056 
 
 0626 15.9687 
 0629 15.8945 
 0632 15.8211 
 
 0635 15.7483 
 0638 15.6762 
 
 0802 12.4742 
 0805 12.4288 
 0808 12.3838 
 0810 12.3390 
 0813 12.2946 
 
 25 
 24 
 
 23 
 22 
 21 
 
 40 
 
 41 
 
 42 
 
 43 
 44 
 
 01 16 85.9398 
 01 19 83.8435 
 0122 81.8470 
 0125 79.9434 
 0128 78.1263 
 
 0291 34.3678 
 0294 34.0273 
 
 0297 336935 
 0300 33.3662 
 
 0303 33-0452 
 
 0466 21.4704 
 0469 21.3369 
 0472 21.2049 
 0475 21.0747 
 0477 20.9460 
 
 0641 15.6048 
 0644 15-5340 
 0647 15.4638 
 0650 15.3943 
 0653 15.3254 
 
 0816 12.2505 
 0819 12.2067 
 0822 12.1632 
 0825 12.1201 
 0828 12.0772 
 
 20 
 
 19 
 
 18 
 
 17 
 i6 
 
 45 
 46 
 
 47 
 48 
 
 49 
 
 0131 76.3900 
 0134 74.7292 
 0137 73.1390 
 0140 71.6151 
 0143 70.1533 
 
 0306 32.7303 
 0308 32.4213 
 0311 32.1181 
 0314 31.8205 
 0317 31.5284 
 
 0480 20.8188 
 0483 20.6932 
 0486 20.5691 
 0489 20.4465 
 0492 20.3253 
 
 0655 15.2571 
 0658 15.1893 
 0661 15.1222 
 0664 15.0557 
 0667 14.9898 
 
 0831 12.0346 
 0834 11.9923 
 0837 11.9504 
 0840 11.9087 
 0843 11.8673 
 
 15 
 14 
 13 
 12 
 11 
 
 50 
 
 51 
 
 52 
 53 
 54 
 
 59 
 
 0146 68.7501 
 0148 67.4019 
 0151 66.1055 
 0154 64.8580 
 0157 63.6567 
 
 0320 31.2416 
 
 0323 30.9599 
 0326 30.6833 
 0329 30.4116 
 0332 30.1446 
 
 0495 20.2056 
 0498 20.0872 
 0501 19.9702 
 0504 19.8546 
 0507 19.7403 
 
 0670 14.9244 
 0673 14-8596 
 0676 14.7954 
 0679 14-7317 
 0682 14.6685 
 
 0846 11.8262 
 0849 11.7853 
 0851 11.7448 
 0854 11.7045 
 0857 11.6645 
 
 10 
 
 I 
 
 7 
 6 
 
 5 
 4 
 3 
 2 
 
 I 
 
 0160 62.4992 
 0163 61,3829 
 0166 60.3058 
 0169 59.2659 
 0172 58.2612 
 
 0335 29.8823 
 0338 29.6245 
 0340 29.3711 
 0343 29.1220 
 0346 28.8771 
 
 0509 19.6273 
 
 OCil2 19.5156 
 0515 19.4051 
 0518 19.2959 
 0521 19.1879 
 
 0685 14.6059 
 0688 14.5438 
 0690 14.4823 
 0693 14.4212 
 0696 14.3607 
 
 0860 11.6248 
 0863 11.5853 
 0866 11.5461 
 0869 11.5072 
 0872 11.4685 
 
 60 
 
 0175 57.2900 
 
 0349 28.6363 
 
 0524 19.0811 
 
 0699 14.3007 
 
 0875 11.4301 
 
 
 
 
 (.otg Tang 
 
 Cotg Tang 
 
 Cotg Tang 
 
 Cotg Tang 
 
 Cotg Tang 
 
 
 / 
 
 8^0 
 
 8H0 
 
 H7^ i H(i^ 
 
 85^ 
 
 / 
 
82 
 
 TABLE III 
 
 / 
 
 50 
 
 0° 
 
 7" 
 
 8'-^ 
 
 90 
 
 / 
 
 
 Tang Cotg 
 
 Tang 
 
 totg 
 
 Tang Cotg 
 
 Tang Cotg 
 
 Tang 
 
 Cotg 
 
 60 
 
 
 
 0875 1 1. 4301 
 
 1051 
 
 9.5144 
 
 1228 8.1443 
 
 1405 7.1154 
 
 1584 
 
 6.3138 
 
 I 
 
 0878 11.3919 
 
 1054 
 
 9-4878 
 
 1231 8.1248 
 
 1408 7.1004 
 
 1587 
 
 6.3019 
 
 59 
 
 2 
 
 0881 11.3540 
 
 1057 
 
 9.4614 
 
 1234 8.1054 
 
 141 1 7.0855 
 
 1590 
 
 6.2901 
 
 58 
 
 ^ 
 
 0884 1 1. 3 1 63 
 
 1060 
 
 94352 
 
 1237 8.0860 
 
 1414 7.0706 
 
 1593 
 
 6.2783 
 
 57 
 
 4 
 
 0887 11.2789 
 
 1063 
 
 9.4090 
 
 1240 8.0667 
 
 1417 7-0558 
 
 1596 
 
 6.2666 
 
 56 
 
 s 
 
 0890 1 1.24 1 7 
 
 1066 
 
 9-3831 
 
 1243 8.0476 
 
 1420 7.0410 
 
 1599 
 
 6.2549 
 
 55 
 
 6 
 
 0892 11.2048 
 
 1069 
 
 9-3572 
 
 1246 8.0285 
 
 1423 7.0264 
 
 1602 
 
 6.2432 
 
 54 
 
 7 
 
 0895 1 1. 1 681 
 
 1072 
 
 9-3315 
 
 1249 8.0095 
 
 1426 7.0117 
 
 1605 
 
 6.2316 
 
 53 
 
 8 
 
 0898 11.1316 
 
 1075 
 
 9.3060 
 
 1 25 1 7.9906 
 
 1429 6.9972 
 
 1608 
 
 6.2200 
 
 52 
 
 9 
 
 0901 11.0954 
 
 1078 
 
 9.2806 
 
 1254 7.9718 
 
 1432 6.9827 
 
 1611 
 
 6.2085 
 
 51 
 
 10 
 
 0904 11.0594 
 
 1080 
 
 9-2553 
 
 1257 7.9530 
 
 1435 6.9682 
 
 1614 
 
 6.1970 
 
 50 
 
 II 
 
 0907 11.0237 
 
 1083 
 
 9.2302 
 
 1260 7.9344 
 
 1438 6.9538 
 
 1617 
 
 6.1856 
 
 49 
 
 12 
 
 9910 10.9882 
 
 1086 
 
 9.2052 
 
 1263 7.9158 
 
 1441 6.9395 
 
 1620 
 
 6.1742 
 
 48 
 
 1,3 
 
 0913 10.9529 
 
 1089 
 
 9.1803 
 
 1266 7.8973 
 
 1444 6.9252 
 
 1623 
 
 6.1628 
 
 47 
 
 14 
 
 0916 10.9178 
 
 1092 
 
 9-1555 
 
 1269 7.8789 
 
 1447 6.91 10 
 
 1626 
 
 6.1515 
 
 46 
 
 IS 
 
 0919 10.8829 
 
 1095 
 
 9.1309 
 
 1272 7.8606 
 
 1450 6.8969 
 
 1629 
 
 6.1402 
 
 45 
 
 i6 
 
 0922 10.8483 
 
 1098 
 
 9.1065 
 
 1275 7.8424 
 
 1453 6.8828 
 
 1632 
 
 6.1290 
 
 44 
 
 17 
 
 0925 10.8139 
 
 IIOI 
 
 9.0821 
 
 1278 7.8243 
 
 1456 6.8687 
 
 1635 
 
 6.1178 
 
 43 
 
 18 
 
 0928 10.7797 
 
 1104 
 
 9-0579 
 
 1281 7.8062 
 
 1459 6.8548 
 
 1638 
 
 6.1066 
 
 42 
 
 19 
 
 0931 10.7457 
 
 1 107 
 
 9-0338 
 
 1284 7.7883 
 
 1462 6.8408 
 
 1641 
 
 6-0955 
 
 41 
 
 20 
 
 0934 10.71 19 
 
 mo 
 
 9.0098 
 
 1287 7.7704 
 
 1465 6.8269 
 
 1644 
 
 6.0844 
 
 40 
 
 21 
 
 0936 10.6783 
 
 1113 
 
 8.9860 
 
 1290 7.7525 
 
 1468 6.8131 
 
 1647 
 
 6.0734 
 
 39 
 
 22 
 
 0939 10.6450 
 
 1116 
 
 8.9623 
 
 1293 7.7348 
 
 1471 6.7994 
 
 1650 
 
 6.0624 
 
 38 
 
 23 
 
 0942 10.61 18 
 
 1119 
 
 8.9387 
 
 1296 7.7171 
 
 1474 6.7856 
 
 1653 
 
 6.0514 
 
 37 
 
 24 
 
 0945 10.5789 
 
 1122 
 
 8.9152 
 
 1299 7.6996 
 
 1477 6.7720 
 
 1655 
 
 6.0405 
 
 36 
 
 2S 
 
 0948 10.5462 
 
 1125 
 
 8.8919 
 
 1302 7.6821 
 
 1480 6.7584 
 
 1658 
 
 6.0296 
 
 35 
 
 26 
 
 0951 10.5136 
 
 1128 
 
 8.8686 
 
 1305 7.6647 
 
 1483 6.7448 
 
 1661 
 
 6.0188 
 
 34 
 
 27 
 
 0954 10.4813 
 
 1131 
 
 8.8455 
 
 1308 7.6473 
 
 i486 6.7313 
 
 1664 
 
 6.0080 
 
 33 
 
 28 
 
 0957 10.4491 
 
 1 134 
 
 8.8225 
 
 1 31 1 7.6301 
 
 1489 6.7179 
 
 1667 
 
 5-9972 
 
 32 
 
 29 
 
 0960 10.4172 
 
 1 136 
 
 8.7996 
 
 1314 7.6129 
 
 1492 6.7045 
 
 1670 
 
 5.9865 
 
 31 
 
 30 
 
 0963 10.3854 
 
 1 139 
 
 8.7769 
 
 1317 7-5958 
 
 1495 6.0912 
 
 Tell 
 
 5-9758 
 
 30 
 
 31 
 
 0966 10.3538 
 
 1 142 
 
 8.7542 
 
 1319 7.5787 
 
 1497 6.6779 
 
 5-9651 
 
 29 
 
 32 
 
 0969 10.3224 
 
 1 145 
 
 8.7317 
 
 1322 7.5618 
 
 1500 6.6646 
 
 1 679 
 
 5.9545 
 
 28 
 
 33 
 
 0972 10,2913 
 
 1148 
 
 8.7093 
 
 1325 7.5449 
 
 1503 6.6514 
 
 1682 
 
 5.9439 
 
 27 
 
 34 
 
 0975 10.2602 
 
 1151 
 
 8.6870 
 
 1328 7.5281 
 
 1506 6.6383 
 
 1685 
 1688 
 
 5-9333 
 5.9228 
 
 26 
 25 
 
 3S 
 
 0978 10.2294 
 
 1154 
 
 8.6648 
 
 1331 7.5113 
 
 1509 6.6252 
 
 36 
 
 0981 10.1988 
 
 1157 
 
 8.6427 
 
 1334 7.4947 
 
 1512 6.6122 
 
 1691 
 
 5.9124 
 
 24 
 
 37 
 
 0983 10.1683 
 
 1 160 
 
 8.6208 
 
 1337 7.4781 
 
 1515 6.5992 
 
 1694 
 
 5-9019 
 
 23 
 
 38 
 
 0986 10.1381 
 
 1163 
 
 8.5989 
 
 1340 7.4615 
 
 15 18 6.5863 
 
 1697 
 
 5.8915 
 
 22 
 
 39 
 
 0989 10.1080 
 
 1166 
 
 8-5772 
 
 1343 7.4451 
 
 1521 6.5734 
 
 1700 
 
 5.8811 
 
 21 
 
 40 
 
 0992 10.0780 
 
 1 169 
 
 8.5555 
 
 1346 7.4287 
 
 1524 6.5606 
 
 1703 
 
 5.8708 
 
 20 
 
 41 
 
 0995 10.0483 
 
 1172 
 
 8.5340 
 
 1349 7.4124 
 
 1527 6.5478 
 
 1706 
 
 5.8605 
 
 19 
 
 42 
 
 0998 10.0187 
 
 1 175 
 
 8.5126 
 
 1352 7.3962 
 
 1530 6.5350 
 
 1709 
 
 5.8502 
 
 18 
 
 43 
 
 looi 9.9893 
 
 1178 
 
 8.4913 
 
 1355 7.3800 
 
 1533 6.5223 
 
 1712 
 
 5.8400 
 
 17 
 
 44 
 
 1004 9.9601 
 
 
 8.4701 
 
 1358 7.3639 
 
 1536 6.5097 
 
 1715 
 
 6.8298 
 
 16 
 15 
 
 45 
 
 1007 9.9310 
 
 1 184 
 
 8.4490 
 
 1361 7.3479 
 
 1539 6.4971 
 
 1718 
 
 58197 
 
 46 
 
 loio 9.9021 
 
 1187 
 
 8.4280 
 
 1364 7.3319 
 
 1542 6.4846 
 
 1721 
 
 5-8095 
 
 14 
 
 47 
 
 IOI3 9-8734 
 
 1 189 
 
 8.4071 
 
 1367 7.3160 
 
 1545 6.4721 
 
 1724 
 
 5-7994 
 
 13 
 
 48 
 
 1016 9.8448 
 
 1192 
 
 8.3863 
 
 1370 7.3002 
 
 1548 6.4596 
 
 1727 
 
 5-7894 
 
 12 
 
 49 
 
 IOI9 9.8164 
 
 "95 
 
 8.3656 
 
 1373 7.2844 
 
 1551 6.4472 
 
 1730 
 
 5-7794 
 
 II 
 
 50 
 
 1022 9.7882 
 
 1 198 
 
 8.3450 
 
 1376 7.2687 
 
 1554 6.4348 
 
 1733 
 
 5-7694 
 
 10 
 
 SI 
 
 1025 9.7601 
 
 1 201 
 
 8.3245 
 
 1379 7.2531 
 
 1557 6.4225 
 
 1736 
 
 5-7594 
 
 9 
 
 S2 
 
 1028 9-7322 
 
 1204 
 
 8.3041 
 
 1382 7.2375 
 
 1560 6.4103 
 
 1739 
 
 5-7495 
 
 8 
 
 S3 
 
 1030 9.7044 
 
 1207 
 
 8.2838 
 
 1385 7.2220 
 
 1563 6.3980 
 
 1742 
 
 5.7396 
 
 7 
 
 54 
 
 1033 9-6768 
 
 1210 
 
 8.2636 
 
 1388 7.2066 
 
 1566 6.3859 
 
 1745 
 
 5.7297 
 
 6 
 
 5S 
 
 1036 9-6499 
 
 1213 
 
 8.2434 
 
 1391 7.1912 
 
 1569 6.3737 
 
 1748 
 
 5.7199 
 
 5 
 
 5^ 
 
 1039 9.6220 
 
 1216 
 
 8.2234 
 
 1394 7.1759 
 
 1572 6.3617 
 
 1751 
 
 5.7101 
 
 4 
 
 S7 
 
 1042 9-5949 
 
 1219 
 
 8.2035 
 
 1397 7.1607 
 
 1575 6.3496 
 
 1754 
 
 5.7004 
 
 3 
 
 5« 
 
 1045 9.5679 
 
 1222 
 
 8.1837 
 
 1399 7.1455 
 
 1578 6.3376 
 
 1757 
 
 5.6906 
 
 2 
 
 59 
 
 1048 9-541 1 
 
 1225 
 
 8.1640 
 
 1402 7.1304 
 
 1581 6.3257 
 
 1760 
 
 5.6809 
 
 I 
 
 00 
 
 1051 9-5144 
 
 1228 
 
 8.1443 
 
 1405 7.1 154 
 
 1584 6.3138 
 Cotg Tang 
 
 1763 
 Cotg 
 
 5-6713 
 Tang 
 
 
 
 
 Cotg Tang 
 
 Cotg 
 
 Tang 
 
 Cotg Tang 
 
 L. 
 
 84° 
 
 83° 
 
 82^ 
 
 81" 
 
 80" 
 
 / 
 

 
 NATURAL TANGENTS AND COTANGENTS 
 
 
 83 
 
 / 
 
 10^ 1 
 
 11^ 
 
 12° 
 
 13° 
 
 14° 
 
 / 
 
 
 Taug 
 
 Cotg 
 
 Tang 
 
 Cotg 
 
 Tang 
 
 Cotg 
 
 Tang 
 
 Cotg 
 
 Tang 
 
 Cotg 
 
 60 
 
 
 
 ^I^Z 
 
 5-6713 
 
 1944 
 
 5.1446 
 
 2126 
 
 4.7046 
 
 2309 
 
 4-3315 
 
 2493 
 
 4.0108 
 
 I 
 
 1766 
 
 5.6617 
 
 1947 
 
 5.1366 
 
 2129 
 
 4-6979 
 
 2312 
 
 4-3257 
 
 2496 
 
 4.0058 
 
 5? 
 
 2 
 
 1769 
 
 5-6521 
 
 1950 
 
 5.1286 
 
 2132 
 
 4.6912 
 
 2315 
 
 4.3200 
 
 2499 
 
 4.0009 
 
 58 
 
 ^ 
 
 1772 
 
 5-6425 
 
 1953 
 
 5.1207 
 
 2135 
 
 4.6845 
 
 2318 
 
 4-3143 
 
 2503 
 
 3-9959 
 
 57 
 
 4 
 
 1775 
 
 5-6330 
 
 1956 
 
 5.1128 
 
 2138 
 
 4.6779 
 
 2321 
 
 4.3086 
 
 2506 
 
 3.9910 
 
 5^ 
 
 S 
 
 1778 
 
 5-6234 
 
 1959 
 
 5-I049 
 
 2141 
 
 4.6712 
 
 2324 
 
 4-3029 
 
 2509 
 
 3-9861 
 
 55 
 
 6 
 
 I78I 
 
 5.6140 
 
 1962 
 
 5-0970 
 
 2144 
 
 4.6646 
 
 2327 
 
 4-2972 
 
 2512 
 
 3-9812 
 
 54 
 
 7 
 
 1784 
 
 5.6045 
 
 1965 
 
 5.0892 
 
 2147 
 
 4.6580 
 
 2330 
 
 4.2916 
 
 2515 
 
 3-9763 
 
 53 
 
 8 
 
 1787 
 
 5-5951 
 
 1968 
 
 5.0814 
 
 2150 
 
 4.6514 
 
 233.3 
 
 4-2859 
 
 2518 
 
 3-9714 
 
 52 
 
 9 
 10 
 
 1790 
 
 5-5857 
 
 1971 
 
 5-0736 
 
 2153 
 
 4.6448 
 
 2336 
 
 4.2803 
 
 2521 
 
 3.9665 
 
 51 
 
 1793 
 
 5-5764 
 
 1974 
 
 5.0658 
 
 2156 
 
 4.6382 
 
 2339 
 
 4.2747 
 
 2524 
 
 3-9617 
 
 50 
 
 II 
 
 1796 
 
 5-5671 
 
 1977 
 
 5-0581 
 
 2159 
 
 4-6317 
 
 2342 
 
 4.2691 
 
 2527 
 
 3-9568 
 
 49 
 
 12 
 
 1799 
 
 5-5578 
 
 1980 
 
 5-0504 
 
 2162 
 
 4.6252 
 
 2345 
 
 4-2635 
 
 2530 
 
 3.9520 
 
 48 
 
 i,S 
 
 1802 
 
 5-5485 
 
 1983 
 
 5.0427 
 
 2165 
 
 4.6187 
 
 2349 
 
 4.2580 
 
 2533 
 
 3-9471 
 
 47 
 
 14 
 
 1805 
 
 5-5393 
 
 1986 
 
 5-0350 
 
 2168 
 
 4.6122 
 
 2352 
 
 4.2524 
 
 2537 
 
 3-9423 
 
 46 
 
 IS 
 
 1808 
 
 5-5301 
 
 1989 
 
 5-0273 
 
 2171 
 
 4-6057 
 
 2355 
 
 4.2468 
 
 2540 
 
 3-9375 
 
 45 
 
 i6 
 
 I8II 
 
 5-5209 
 
 1992 
 
 50197 
 
 2174 
 
 4.5993 
 
 2358 
 
 4.2413 
 
 2543 
 
 3-9327 
 
 44 
 
 17 
 
 I8I4 
 
 5.5118 
 
 1995 
 
 5.0121 
 
 2177 
 
 4-5928 
 
 2361 
 
 4.2358 
 
 2546 
 
 3-9279 
 
 43 
 
 18 
 
 I8I7 
 
 5.5026 
 
 1998 
 
 5-0045 
 
 2180 
 
 4-5864 
 
 2364 
 
 4.2303 
 
 2549 
 
 3-9232 
 
 42 
 
 19 
 
 1820 
 
 5-4936 
 
 2001 
 
 4.9969 
 
 2183 
 
 4.5800 
 
 2367 
 
 4.2248 
 
 2552 
 
 3.9184 
 
 41 
 
 20 
 
 1823 
 
 5-4845 
 
 2004 
 
 4.9894 
 
 2186 
 
 4-5736 
 
 2370 
 
 4.2193 
 
 2555 
 
 3-9136 
 
 40 
 
 21 
 
 1826 
 
 5-4755 
 
 2007 
 
 4.9819 
 
 2189 
 
 4.5673 
 
 2373 
 
 4.2139 
 
 2558 
 
 3.9089 
 
 39 
 
 22 
 
 1829 
 
 5-4665 
 
 2010 
 
 4.9744 
 
 2193 
 
 4.5609 
 
 2376 
 
 4.2084 
 
 2561 
 
 3.9042 
 
 38 
 
 23 
 
 1832 
 
 5-4575 
 
 2013 
 
 4.9669 
 
 2196 
 
 4-5546 
 
 2379 
 
 4.2030 
 
 2564 
 
 3-8995 
 
 31 
 
 24 
 
 i«35 
 
 5-4486 
 
 2016 
 
 4-9594 
 
 2199 
 
 4.5483 
 
 2382 
 
 4.1976 
 
 2568 
 
 3-8947 
 
 36 
 
 2S 
 
 1838 
 
 5-4397 
 
 2019 
 
 4.9520 
 
 2202 
 
 4.5420 
 
 2385 
 
 4.1922 
 
 2571 
 
 3.8900 
 
 35 
 
 26 
 
 1841 
 
 5-4308 
 
 2022 
 
 4-9446 
 
 2205 
 
 4.5357 
 
 2388 
 
 4.1868 
 
 2574 
 
 3-8854 
 
 34 
 
 27 
 
 1844 
 
 5-4219 
 
 2025 
 
 4-9372 
 
 2208 
 
 4.5294 
 
 2392 
 
 4.1814 
 
 2577 
 
 3-8807 
 
 33 
 
 28 
 
 1847 
 
 5-4131 
 
 2028 
 
 4.9298 
 
 221 1 
 
 4.5232 
 
 2395 
 
 4.1760 
 
 2580 
 
 3-8760 
 
 32 
 
 29 
 
 1850 
 
 5-4043 
 
 2031 
 
 4.9225 
 
 2214 
 
 4.5169 
 
 2398 
 
 4.1706 
 
 2583 
 
 3-8714 
 
 31 
 
 30 
 
 i8S3 
 
 5-3955, 
 
 2035 
 
 4.9152 
 
 2217 
 
 4-5107 
 
 2401 
 
 4.1653 
 
 2586 
 
 38667 
 
 30 
 
 31 
 
 1856 
 
 5.3868 
 
 2038 
 
 4.9078 
 
 2220 
 
 4.5045 
 
 2404 
 
 4.1600 
 
 2589 
 
 3.8621 
 
 29 
 
 32 
 
 i«59 
 
 5-3781 
 
 2041 
 
 4.9006 
 
 2223 
 
 4.4983 
 
 2407 
 
 4-1547 
 
 2592 
 
 3-8575 
 
 28 
 
 33 
 
 1862 
 
 5-3694 
 
 2044 
 
 4-8933 
 
 2226 
 
 4.4922 
 
 2410 
 
 4.1493 
 
 2.595 
 
 3-8528 
 
 27 
 
 34 
 
 1865 
 
 5-3607 
 
 2047 
 
 4.8860 
 
 2229 
 
 4.4860 
 
 2413 
 
 4.1441 
 
 2599 
 
 3.8482 
 
 26 
 
 35 
 
 1868 
 
 5-3521 
 
 2050 
 
 4.8788 
 
 2232 
 
 4.4799 
 
 2416 
 
 4.1388 
 
 2602 
 
 3-8436 
 
 25 
 
 3^ 
 
 1871 
 
 5-3435 
 
 2053 
 
 4.8716 
 
 2235 
 
 4.4737 
 
 2419 
 
 4.1335 
 
 2605 
 
 3-8391 
 
 24 
 
 37 
 
 1874 
 
 5-3349 
 
 2056 
 
 4.8644 
 
 2238 
 
 4.4676 
 
 2422 
 
 4.1282 
 
 2608 
 
 3-8345 
 
 23 
 
 38 
 
 1877 
 
 5-3263 
 
 2059 
 
 4.8573 
 
 2241 
 
 4-4615 
 
 2425 
 
 4.1230 
 
 261 1 
 
 3-8299 
 
 22 
 
 39 
 
 1880 
 
 5-3178 
 
 2062 
 
 4-8501 
 
 2244 
 
 4-4555 
 
 2428 
 
 4.1178 
 
 2614 
 
 3-8254 
 
 21 
 
 40 
 
 1883 
 
 5-3093 
 
 2065 
 
 4-8430 
 
 2247 
 
 4.4494 
 
 2432 
 
 4.1126 
 
 2617 
 
 3.8208 
 
 20 
 
 41 
 
 1887 
 
 5-3008 
 
 2068 
 
 4-8359 
 
 2251 
 
 4.4434 
 
 2435 
 
 4.1074 
 
 2620 
 
 3-8163 
 
 19 
 
 42 
 
 1890 
 
 5-2924 
 
 2071 
 
 4.8288 
 
 2254 
 
 4-4374 
 
 2438 
 
 4.1022 
 
 2623 
 
 3.81 18 
 
 18 
 
 43 
 
 1893 
 
 5-2839 
 
 2074 
 
 4.8218 
 
 2257 
 
 4.4313 
 
 2441 
 
 4.0970 
 
 2627 
 
 3-8073 
 
 17 
 
 44 
 45 
 
 1896 
 1899 
 
 5-2755 
 
 2077 
 
 4.8147 
 
 2260 
 
 4-4253 
 
 2444 
 
 4.0918 
 
 2630 
 
 3.8028 
 
 16 
 
 5.2672 
 
 2080 
 
 4-8077 
 
 2263 
 
 4.4194 
 
 2447 
 
 4.0867 
 
 2633 
 
 3-7983 
 
 15 
 
 4b 
 
 1902 
 
 5.2588 
 
 2083 
 
 4.8007 
 
 2266 
 
 4-4134 
 
 2450 
 
 4-0815 
 
 2636 
 
 3-7938 
 
 14 
 
 47 
 
 1905 
 
 5-2505 
 
 2086 
 
 4-7937 
 
 2269 
 
 4.4075 
 
 2453 
 
 4.0764 
 
 2639 
 
 3-7893 
 
 13 
 
 48 
 
 1908 
 
 5-2422 
 
 2089 
 
 4.7867 
 
 2272 
 
 4.4015 
 
 2456 
 
 4.0713 
 
 2642 
 
 3-7848 
 
 12 
 
 49 
 
 1911 
 
 5-2339 
 
 2092 
 
 4.7798 
 
 2275 
 
 4.3956 
 
 2459 
 
 4.0662 
 
 2645 
 
 3.7804 
 
 II 
 
 50 
 
 1914 
 
 5-2257 
 
 2095 
 
 4-7729 
 
 2278 
 
 4.3897 
 
 2462 
 
 4.061 1 
 
 2648 
 
 3.7760 
 
 10 
 
 51 
 
 1917 
 
 5-2174 
 
 2098 
 
 4-7659 
 
 2281 
 
 4.3838 
 
 2465 
 
 4.0560 
 
 2651 
 
 3-7715 
 
 9 
 
 52 
 
 1920 
 
 5.2092 
 
 2101 
 
 4-7591 
 
 2284 
 
 4.3779 
 
 2469 
 
 4.0509 
 
 2655 
 
 3-7671 
 
 8 
 
 53 
 
 1923 
 
 5.2C1 1 
 
 2104 
 
 4.7522 
 
 2287 
 
 4-3721 
 
 2472 
 
 4.0459 
 
 2658 
 
 3.7627 
 
 7 
 
 54 
 55 
 
 1926 
 
 5.1929 
 
 2107 
 
 4-7453 
 
 2290 
 
 4.3662 
 
 2475 
 
 4.0408 
 
 2661 
 
 3-7583 
 
 b 
 
 1929 
 
 5.1848 
 
 2110 
 
 4.7385 
 
 2293 
 
 4.3604 
 
 2478 
 
 4.0358 
 
 2664 
 
 3-7539 
 
 '5 
 
 5<^ 
 
 1932 
 
 ^•^lll 
 
 2113 
 
 4-7317 
 
 2296 
 
 4-3546 
 
 2481 
 
 4.0308 
 
 2667 
 
 3-7495 
 
 4 
 
 57 
 
 1935 
 
 5.1686 
 
 2116 
 
 4.7249 
 
 2299 
 
 4-3488 
 
 2484 
 
 4.0257 
 
 2670 
 
 3-7451 
 
 3 
 
 5« 
 
 i93« 
 
 5.1606 
 
 2119 
 
 4.7181 
 
 2303 
 
 4.3430 
 
 2487 
 
 4.0207 
 
 2673 
 
 3.7408 
 
 2 
 
 59 
 
 1 941 
 
 5-1526 
 
 2123 
 
 4.7114 
 
 2306 
 
 4.3372 
 
 2490 
 
 4.0158 
 
 2676 
 
 3.7364 
 
 I 
 
 00 
 
 1944 
 
 5.1446 
 
 2126 
 
 4.7046 
 
 2309 
 
 4.3315 
 
 2493 
 
 4.0108 
 
 2679 
 
 3-7321 
 
 
 
 
 Cotg 
 
 Tan^ 
 
 Cotg 
 
 Tang 
 
 Cotg 
 
 Tang 
 
 Cotg 
 
 Tang 
 
 Cotg 
 
 Tang 
 
 
 / 
 
 7 
 
 0° 
 
 78° 
 
 77 ' 
 
 7 
 
 6^ 
 
 7 
 
 5° 
 
 f 
 
84 
 
 TABLE III 
 
 / 
 
 15° 
 
 1(>° 
 
 17° 
 
 18^ 
 
 193 
 
 / 
 
 
 ian^ 
 
 Cot^ 
 
 Tang 
 
 Cotg 
 
 Tang 
 
 Cotg 
 
 Tang 
 
 Cotg 
 
 Tang 
 
 Cotg 
 
 
 
 
 2679 
 
 3.7321 
 
 2867 
 
 3-4874 
 
 3057 
 
 3-2709 
 
 3249 
 
 3.0777 
 
 3443 
 
 2.9042 
 
 60 
 
 I 
 
 2683 
 
 3-7277 
 
 2871 
 
 34836 
 
 3060 
 
 3-2675 
 
 3252 
 
 3.0746 
 
 3447 
 
 2.9015 
 
 S9 
 
 2 
 
 2686 
 
 3-7234 
 
 2874 
 
 3-4798 
 
 3064 
 
 3.2641 
 
 3256 
 
 3.0716 
 
 3450 
 
 2.8987 
 
 S8 
 
 3 
 
 2689 
 
 3-7191 
 
 2877 
 
 3.4760 
 
 3067 
 
 3.2607 
 
 3259 
 
 3.0686 
 
 3453 
 
 2.8960 
 
 S7 
 
 4 
 
 2692 
 
 3-7148 
 
 2880 
 
 3.4722 
 
 3070 
 
 3.2573 
 
 3262 
 
 3.0655 
 
 3456 
 
 2-8933 
 
 '^6 
 
 5 
 
 2695 
 
 3-7105 
 
 2883 
 
 3-4684 
 
 .3073 
 
 32539 
 
 3265 
 
 3.0625 
 
 3460 
 
 2.8905 
 
 SS 
 
 6 
 
 2698 
 
 3.7062 
 
 2886 
 
 3-4646 
 
 3076 
 
 3.2506 
 
 3269 
 
 3.0595 
 
 3463 
 
 2.8878 
 
 S4 
 
 7 
 
 2701 
 
 3-7019 
 
 2890 
 
 3.4608 
 
 3080 
 
 3-2472 
 
 3272 
 
 3.0565 
 
 3466 
 
 2.8851 
 
 S3 
 
 8 
 
 2704 
 
 3.6976 
 
 2893 
 
 34570 
 
 .3083 
 
 3.2438 
 
 3275 
 
 3.0535 
 
 3469 
 
 2.8824 
 
 S2 
 
 9 
 
 2708 
 
 3-6933 
 
 2896 
 
 3-4533 
 
 3086 
 
 3-2405 
 
 3278 
 
 3-0505 
 
 3473 
 
 2.8797 
 
 51 
 
 50 
 
 10 
 
 2711 
 
 3.6891 
 
 2899 
 
 3-4495 
 
 3089 
 
 3-2371 
 
 3281 
 
 3.0475 
 
 .3476 
 
 2.8770 
 
 II 
 
 2714 
 
 3.6848 
 
 2902 
 
 3-4458 
 
 3092 
 
 3-2338 
 
 3285 
 
 3.0445 
 
 3479 
 
 2.8743 
 
 49 
 
 12 
 
 2717 
 
 3.6806 
 
 2905 
 
 3.4420 
 
 3096 
 
 3.2305 
 
 3288 
 
 3.0415 
 
 .3482 
 
 2.8716 
 
 48 
 
 1.3 
 
 2720 
 
 3.6764 
 
 2908 
 
 3-4383 
 
 3099 
 
 3.2272 
 
 3291 
 
 30385 
 
 .3486 
 
 2.8689 
 
 47 
 
 14 
 
 2723 
 
 3.6722 
 
 2912 
 
 3-4346 
 
 3102 
 
 3-2238 
 
 3294 
 
 3-0356 
 
 3489 
 
 2.8662 
 
 46 
 
 15 
 
 2726 
 
 3.6680 
 
 2915 
 
 3-4308 
 
 3105 
 
 3.2205 
 
 3298 
 
 3.0326 
 
 3492 
 
 2.8636 
 
 4S 
 
 lb 
 
 2729 
 
 3.6638 
 
 2918 
 
 3-4271 
 
 3108 
 
 3.2172 
 
 3301 
 
 3.0296 
 
 3495 
 
 2.8609 
 
 44 
 
 17 
 
 2733 
 
 3.6596 
 
 2921 
 
 3-4234 
 
 3111 
 
 3.2139 
 
 3304 
 
 3.0267 
 
 3499 
 
 2.8582 
 
 43 
 
 18 
 
 2736 
 
 3-6554 
 
 2924 
 
 3-4197 
 
 3"5 
 
 3.2106 
 
 3307 
 
 3.0237 
 
 3502 
 
 2.8556 
 
 42 
 
 19 
 
 2739 
 
 3.6512 
 
 2927 
 
 3.4160 
 
 3118 
 
 3.2073 
 
 3310 
 
 3.0208 
 
 3505 
 
 2.8529 
 
 41 
 
 20 
 
 2742 
 
 3.6470 
 
 2931 
 
 3.4124 
 
 3121 
 
 3.2041 
 
 3314 
 
 3.0178 
 
 3So8 
 
 2.8502 
 
 40 
 
 21 
 
 2745 
 
 3.6429 
 
 2934 
 
 3.4087 
 
 3124 
 
 3.2008 
 
 3317 
 
 3.0149 
 
 3512 
 
 2.8476 
 
 39 
 
 22 
 
 2748 
 
 3.6387 
 
 2937 
 
 3.4050 
 
 3127 
 
 3.1975 
 
 3320 
 
 3.0120 
 
 3515 
 
 2.8449 
 
 38 
 
 23 
 
 2751 
 
 3-6346 
 
 2940 
 
 3-4014 
 
 3131 
 
 3.1943 
 
 3323 
 
 3.0090 
 
 3518 
 
 2.8423 
 
 37 
 
 24 
 
 2754 
 
 3-6305 
 
 2943 
 
 3-3977 
 
 3134 
 
 3.1910 
 
 3327 
 
 3.0061 
 
 3522 
 
 2.8397 
 
 36 
 
 25 
 
 2758 
 
 3.6264 
 
 2946 
 
 3-3941 
 
 3137 
 
 3.1878 
 
 3330 
 
 3.0032 
 
 .3525 
 
 2.8370 
 
 3S 
 
 26 
 
 2761 
 
 3.6222 
 
 2949 
 
 3-3904 
 
 3140 
 
 3.1845 
 
 3333 
 
 3.0003 
 
 3528 
 
 2.8344 
 
 34 
 
 27 
 
 2764 
 
 3.6181 
 
 29S3 
 
 3-3868 
 
 3143 
 
 3-1813 
 
 3336 
 
 2.9974 
 
 3S3I 
 
 2.8318 
 
 33 
 
 28 
 
 2767 
 
 3.6140 
 
 2956 
 
 3.3832 
 
 3147 
 
 3.1780 
 
 3339 
 
 2-9945 
 
 3535 
 
 2.8291 
 
 32 
 
 29 
 
 2770 
 
 3.6100 
 
 2959 
 
 3-3796 
 
 3150 
 
 3-1748 
 
 3343 
 
 2.9916 
 
 3538 
 
 2.8265 
 
 31 
 
 30 
 
 2773 
 
 3-6059 
 
 2962 
 
 3.3759 
 
 3153 
 
 3.1716 
 
 3346 
 
 2.9887 
 
 3541 
 
 2.8239 
 
 30 
 
 31 
 
 2776 
 
 3.6018 
 
 2965 
 
 3.3723 
 
 3156 
 
 3.1684 
 
 3349 
 
 2.9858 
 
 3S44 
 
 2.8213 
 
 29 
 
 32 
 
 2780 
 
 3-5978 
 
 2968 
 
 3.3687 
 
 3I.S9 
 
 3-1652 
 
 3352 
 
 2.9829 
 
 3548 
 
 2.8187 
 
 28 
 
 ^^ 
 
 2783 
 
 3-5937 
 
 2972 
 
 3.3652 
 
 3163 
 
 3.1620 
 
 3.356 
 
 2.9800 
 
 3551 
 
 2.8161 
 
 27 
 
 34 
 
 2786 
 
 3.5897 
 
 2975 
 
 3-3616 
 
 3166 
 
 3-1588 
 
 3359 
 
 2.9772 
 
 3554 
 
 2.8135 
 
 26 
 
 35 
 
 2789 
 
 3-5856 
 
 2978 
 
 3-3580 
 
 3169 
 
 3-1556 
 
 3362 
 
 2.9743 
 
 3558 
 
 2.8109 
 
 25 
 
 3b 
 
 2792 
 
 3.5816 
 
 2981 
 
 3.3544 
 
 3172 
 
 3.1524 
 
 3365 
 
 2.9714 
 
 3561 
 
 2.8083 
 
 24 
 
 37 
 
 2795 
 
 3-5776 
 
 2984 
 
 3.3509 
 
 3175 
 
 3.1492 
 
 3369 
 
 2.9686 
 
 3564 
 
 2.8057 
 
 23 
 
 38 
 
 2798 
 
 3-5736 
 
 2987 
 
 3-3473 
 
 3179 
 
 3.1460 
 
 .3372 
 
 2.9657 
 
 3567 
 
 2.8032 
 
 22 
 
 39 
 
 40 
 
 2801 
 
 3.5696 
 
 2991 
 
 3.3438 
 
 3182 
 
 3.1429 
 
 3375 
 
 2.9629 
 
 3571 
 
 2.8006 
 
 21 
 
 2805 
 
 3.5656 
 
 2994 
 
 3.3402 
 
 318s 
 
 3.1397 
 
 3378 
 
 2.9600 
 
 3574 
 
 2.7980 
 
 20 
 
 41 
 
 2808 
 
 3-5616 
 
 2997 
 
 3.3367 
 
 3188 
 
 3.1366 
 
 3382 
 
 2.9572 
 
 3577 
 
 2.7955 
 
 19 
 
 42 
 
 2811 
 
 3-5576 
 
 3000 
 
 3-3332 
 
 3191 
 
 3.1334 
 
 3385 
 
 2.9544 
 
 3581 
 
 2.7929 
 
 18 
 
 43 
 
 2814 
 
 3-5536 
 
 3003 
 
 3.3297 
 
 3195 
 
 3.1303 
 
 3388 
 
 2.9515 
 
 3584 
 
 2.7903 
 
 17 
 
 44 
 
 2817 
 
 3-5497 
 
 3006 
 
 3.3261 
 
 3198 
 
 3.1271 
 
 3391 
 
 2.9487 
 
 3587 
 
 2.7878 
 
 16 
 
 4S 
 
 2820 
 
 3-5457 
 
 3010 
 
 3.3226 
 
 3201 
 
 3.1240 
 
 3395 
 
 2.9459 
 
 3590 
 
 2.7852 
 
 15 
 
 46 
 
 2823 
 
 3.5418 
 
 3013 
 
 3.3191 
 
 3204 
 
 3.1209 
 
 3398 
 
 2.9431 
 
 3594 
 
 2.7827 
 
 14 
 
 47 
 
 2827 
 
 3-5379 
 
 3016 
 
 3.3156 
 
 3207 
 
 3.1178 
 
 3401 
 
 2.9403 
 
 3597 
 
 2.7801 
 
 13 
 
 48 
 
 2830 
 
 3-5339 
 
 3019 
 
 3.3122 
 
 3211 
 
 3-1146 
 
 3404 
 
 2.9375 
 
 3600 
 
 2.7776 
 
 1 2 
 
 49 
 
 2833 
 
 3.5300 
 
 3022 
 
 3.3087 
 
 3214 
 
 3-i"5 
 
 3408 
 
 2.9347 
 
 3604 
 
 2.7751 
 
 II 
 
 50 
 
 2836 
 
 3.5261 
 
 3026 
 
 3-3052 
 
 3217 
 
 3.1084 
 
 3411 
 
 2.9319 
 
 3607 
 
 2.7725 
 
 10 
 
 SI 
 
 2839 
 
 3.5222 
 
 3029 
 
 3-3017 
 
 3220 
 
 3.1053 
 
 3414 
 
 2.9291 
 
 3610 
 
 2.7700 
 
 9 
 
 S2 
 
 2842 
 
 3.5183 
 
 3032 
 
 3-2983 
 
 3223 
 
 3.1022 
 
 3417 
 
 2.9263 
 
 3613 
 
 2-7675 
 
 8 
 
 S3 
 
 2845 
 
 3-5144 
 
 .S03S 
 
 3.2948 
 
 3227 
 
 3.0991 
 
 3421 
 
 2-9235 
 
 3617 
 
 2.7650 
 
 7 
 
 54 
 
 2849 
 
 3-5105 
 
 3038 
 
 3-2914 
 
 3230 
 
 3.0961 
 
 3424 
 
 2.9208 
 
 3620 
 
 2.7625 
 
 b 
 
 ss 
 
 2852 
 
 3-5067 
 
 3041 
 
 3.2880 
 
 3233 
 
 3-0930 
 
 3427 
 
 2.9180 
 
 3623 
 
 2.7600 
 
 5 
 
 S6 
 
 2855 
 
 3-5028 
 
 3045 
 
 3-2845 
 
 3236 
 
 3.0899 
 
 3430 
 
 2.9152 
 
 3627 
 
 2-7575 
 
 4 
 
 S7 
 
 28s8 
 
 3.4989 
 
 3048 
 
 3.281 1 
 
 3240 
 
 3.0868 
 
 3434 
 
 2.9125 
 
 3630 
 
 2.7550 
 
 3 
 
 S8 
 
 2861 
 
 3-4951 
 
 .SOS I 
 
 3-2777 
 
 3243 
 
 3-0838 
 
 3437 
 
 2.9097 
 
 3633 
 
 2.7525 
 
 2 
 
 59 
 
 2864 
 
 3.4912 
 
 3054 
 
 3-2743 
 
 3246 
 
 3.0807 
 
 3440 
 
 2.9070 
 
 3636 
 
 2.7500 
 
 I 
 
 GO 
 
 2867 
 
 3.4874 
 
 3057 
 
 3.2709 
 
 3249 
 
 3.0777 
 
 3443 
 
 2.9042 
 
 3640 
 
 2.7475 
 
 
 
 
 Cotg 
 
 Tang 
 
 Cotg 
 
 Tang 
 
 Cotg 
 
 Tang 
 
 Cotg 
 
 Tang 
 
 Cotg 
 
 Tang 
 
 
 / 
 
 74° 1 
 
 73^ 1 
 
 7 
 
 2° 
 
 71° 
 
 7 
 
 0° 1 / 1 
 
NATURAL TANGENTS AND COTANGENTS 
 
 85 
 
 / 
 
 20° 
 
 21° 
 
 2 
 
 52° 
 
 23° 
 
 24° 
 
 / 
 
 
 Tang 
 
 Cotg 
 
 Tang 
 
 Cotg 
 
 Tang 
 
 Cotg 
 
 Tang 
 
 Cotg 
 
 Tang 
 
 Cotg 
 
 
 
 
 3640 
 
 2.7475 
 
 3839 
 
 2.6051 
 
 4040 
 
 2.4751 
 
 4245 
 
 2.3559 
 
 4452 
 
 2.2460 
 
 60 
 
 I 
 
 3643 
 
 2.7450 
 
 3842 
 
 2.6028 
 
 4044 
 
 2.4730 
 
 4248 
 
 2.3539 
 
 4456 
 
 2.2443 
 
 59 
 
 2 
 
 3646 
 
 2.7425 
 
 3845 
 
 2.6006 
 
 4047 
 
 2.4709 
 
 4252 
 
 2.3520 
 
 4459 
 
 2.2425 
 
 58 
 
 3 
 
 3650 
 
 2.7400 
 
 3849 
 
 2.5983 
 
 4050 
 
 2.4689 
 
 4255 
 
 2.3501 
 
 4463 
 
 2.240S 
 
 57 
 
 4 
 S 
 
 3653 
 
 2.7376 
 
 3852 
 
 2.5961 
 
 4054 
 
 2.4668 
 
 4258 
 
 2.3483 
 
 4466 
 
 2.2390 
 
 56 
 55 
 
 3656 
 
 2.7351 
 
 3855 
 
 2.5938 
 
 4057 
 
 2.4648 
 
 4262 
 
 2.3464 
 
 4470 
 
 2.2373 
 
 6 
 
 3659 
 
 2.7326 
 
 3859 
 
 2.5916 
 
 4061 
 
 2.4627 
 
 4265 
 
 2.3445 
 
 4473 
 
 2.2355 
 
 54 
 
 7 
 
 3663 
 
 2.7302 
 
 3862 
 
 2.5893 
 
 4064 
 
 2.4606 
 
 4269 
 
 2.3426 
 
 4477 
 
 2.2338 
 
 53 
 
 8 
 
 3666 
 
 2.7277 
 
 .3865 
 
 2.5871 
 
 4067 
 
 2.4586 
 
 4272 
 
 2.3407 
 
 4480 
 
 2.2320 
 
 52 
 
 9 
 
 3669 
 
 2.7253 
 
 3869 
 
 2.5848 
 
 4071 
 
 2.4566 
 
 4276 
 
 2:3388 
 
 4484 
 
 2.2303 
 
 51 
 
 10 
 
 3673 
 
 2.7228 
 
 .S872 
 
 2.5826 
 
 4074 
 
 2.4545 
 
 4279 
 
 2.3369 
 
 4487 
 
 2.2286 
 
 50 
 
 II 
 
 367b 
 
 2.7204 
 
 .S875 
 
 2.5804 
 
 4078 
 
 2.4525 
 
 4283 
 
 2.3351 
 
 4491 
 
 2.2268 
 
 49 
 
 12 
 
 3679 
 
 2.7179 
 
 3879 
 
 2.5782 
 
 4081 
 
 2.4504 
 
 4286 
 
 2.3332 
 
 4494 
 
 2.2251 
 
 48 
 
 1.3 
 
 3(>^3 
 
 2.7155 
 
 3882 
 
 2-5759 
 
 4084 
 
 2.4484 
 
 4289 
 
 2.3313 
 
 4498 
 
 2.2234 
 
 47 
 
 14 
 
 3b86 
 
 2.7130 
 
 3885 
 
 2.5737 
 
 4088 
 
 2.4464 
 
 4293 
 
 2.3294 
 
 4501 
 
 2.2216 
 
 46 
 
 IS 
 
 3689 
 
 2.7106 
 
 3889 
 
 2-5715 
 
 4091 
 
 2.4443 
 
 4296 
 
 2.3276 
 
 4505 
 
 2.2199 
 
 45 
 
 I6 
 
 3693 
 
 2.7082 
 
 3892 
 
 2.5693 
 
 4095 
 
 2.4423 
 
 4300 
 
 2.3257 
 
 4508 
 
 2.2182 
 
 44 
 
 17 
 
 3696 
 
 2.7058 
 
 3895 
 
 2.5671 
 
 4098 
 
 2.4403 
 
 4303 
 
 2.3238 
 
 4512 
 
 2.2165 
 
 43 
 
 18 
 
 3699 
 
 2.7034 
 
 3899 
 
 2.5649 
 
 4101 
 
 2.4383 
 
 4307 
 
 2.3220 
 
 4515 
 
 2.2148 
 
 42 
 
 19 
 
 3702 
 
 2.7009 
 
 3902 
 
 2.5627 
 
 4105 
 
 2.4362 
 
 4310 
 
 2.3201 
 
 4519 
 
 2,2130 
 
 41 
 
 20 
 
 3706 
 
 2.6985 
 
 3906 
 
 2.5605 
 
 4108 
 
 2.4342 
 
 4314 
 
 2.3183 
 
 4522 
 
 2.2113 
 
 40 
 
 21 
 
 3709 
 
 2.6961 
 
 3909 
 
 2.5533 
 
 4111 
 
 2.4322 
 
 4317 
 
 2.3164 
 
 4526 
 
 2.2096 
 
 39 
 
 22 
 
 3712 
 
 2.6937 
 
 3912 
 
 2.5561 
 
 4115 
 
 2.4302 
 
 4320 
 
 2.3146 
 
 4529 
 
 2.2079 
 
 38 
 
 23 
 
 37^^ 
 
 2.6913 
 
 3916 
 
 2.5539 
 
 4118 
 
 2.4282 
 
 4324 
 
 2.3127 
 
 4533 
 
 2.2062 
 
 37 
 
 24 
 
 3719 
 
 2.6889 
 
 3919 
 
 2.5517 
 
 4122 
 
 2.4262 
 
 4327 
 
 2.3109 
 
 4536 
 
 2.2045 
 
 36 
 
 25 
 
 3722 
 
 2.6865 
 
 3922 
 
 2.5495 
 
 4125 
 
 2.4242 
 
 4331 
 
 2.3090 
 
 4540 
 
 2.2028 
 
 35 
 
 2b 
 
 3726 
 
 2.6841 
 
 3926 
 
 2.5473 
 
 4129 
 
 2.4222 
 
 4334 
 
 2.3072 
 
 4543 
 
 2.201 1 
 
 34 
 
 27 
 
 3729 
 
 2.6818 
 
 3929 
 
 2.5452 
 
 4132 
 
 2.4202 
 
 4338 
 
 2.3053 
 
 4547 
 
 2.1994 
 
 33 
 
 28 
 
 3732 
 
 2.6794 
 
 .3932 
 
 2.5430 
 
 413s 
 
 2.4182 
 
 4341 
 
 2.3035 
 
 4S50 
 
 2.1977 
 
 32 
 
 29 
 
 373^ 
 
 2.6770 
 
 3936 
 
 2.5408 
 
 4139 
 
 2.4162 
 
 4345 
 
 2.3017 
 
 4554 
 
 2 i960 
 
 31 
 
 30 
 
 3739 
 
 2.6746 
 
 3939 
 
 2.5386 
 
 4142 
 
 2.4142 
 
 4.348 
 
 2.2998 
 
 4557 
 
 2.1943 
 
 30 
 
 31 
 
 3742 
 
 2.6723 
 
 3942 
 
 2.5365 
 
 4146 
 
 2.4122 
 
 4352 
 
 2.2980 
 
 4561 
 
 2.1926 
 
 29 
 
 32 
 
 3745 
 
 2.6699 
 
 3946 
 
 2.5343 
 
 4149 
 
 2.4102 
 
 4355 
 
 2.2962 
 
 4564 
 
 2.1909 
 
 28 
 
 33 
 
 3749 
 
 2.6675 
 
 3949 
 
 2.5322 
 
 4152 
 
 2.4083 
 
 4359 
 
 2.2944 
 
 4568 
 
 2.1892 
 
 27 
 
 34 
 
 3752 
 
 2.6652 
 
 3953 
 
 2.5300 
 
 4156 
 
 2.4063 
 
 4362 
 
 2.2925 
 
 4571 
 
 2.1876 
 
 26 
 
 35 
 
 3755 
 
 2.6628 
 
 3956 
 
 2.5279 
 
 4159 
 
 2.4043 
 
 4365 
 
 2.2907 
 
 4575 
 
 2.1859 
 
 25 
 
 3^ 
 
 3759 
 
 2.6605 
 
 3959 
 
 2.5257 
 
 4163 
 
 2.4023 
 
 4369 
 
 2.2889 
 
 4578 
 
 2.1842 
 
 24 
 
 37 
 
 3762 
 
 2.6581 
 
 3963 
 
 2.5236 
 
 4166 
 
 2.4004 
 
 4372 
 
 2.2871 
 
 4582 
 
 2.1825 
 
 23 
 
 3« 
 
 3765 
 
 2.6558 
 
 3966 
 
 2.5214 
 
 4169 
 
 2.3984 
 
 4376 
 
 2.2853 
 
 4585 
 
 2.1808 
 
 22 
 
 39 
 
 3769 
 
 2.6534 
 
 3969 
 
 2.5193 
 
 4173 
 
 2.3964 
 
 4379 
 
 2.2835 
 
 4589 
 
 2.1792 
 
 21 
 
 40 
 
 3772 
 
 2.65 II 
 
 3973 
 
 2.5172 
 
 4176 
 
 2.3945 
 
 4383 
 
 2.2817 
 
 4592 
 
 2.1775 
 
 20 
 
 41 
 
 3775 
 
 2.6488 
 
 3976 
 
 2.5150 
 
 4180 
 
 2.3925 
 
 4386 
 
 2.2799 
 
 4596 
 
 2.1758 
 
 19 
 
 42 
 
 3779 
 
 2.6464 
 
 3979 
 
 2.5129 
 
 4183 
 
 2.3906 
 
 4390 
 
 2.2781 
 
 4599 
 
 2.1742 
 
 18 
 
 43 
 
 37^2 
 
 2.6441 
 
 3983 
 
 2.5108 
 
 4187 
 
 2.3886 
 
 4393 
 
 2.2763 
 
 4603 
 
 2.1725 
 
 17 
 
 44 
 
 37^5 
 
 2.6418 
 
 3986 
 
 2.5086 
 
 4190 
 
 2.3867 
 
 4397 
 
 2.2745 
 
 4607 
 
 2.1708 
 
 16 
 15 
 
 45 
 
 3789 
 
 2.6395 
 
 3990 
 
 2.5065 
 
 4193 
 
 2.3847 
 
 4400 
 
 2.2727 
 
 4610 
 
 2.1692 
 
 4b 
 
 3792 
 
 2.6371 
 
 3993 
 
 2.5044 
 
 4197 
 
 2.3828 
 
 4404 
 
 2.2709 
 
 4614 
 
 2.1675 
 
 14 
 
 47 
 
 3795 
 
 2.6348 
 
 3996 
 
 2.5023 
 
 4200 
 
 2.3808 
 
 4407 
 
 2.2691 
 
 4617 
 
 2.1659 
 
 13 
 
 48 
 
 3799 
 
 2.6325 
 
 4000 
 
 2.5002 
 
 4204 
 
 2.3789 
 
 441 1 
 
 2.2673 
 
 4621 
 
 2,1642 
 
 12 
 
 49 
 
 3802 
 
 2.6302 
 
 4003 
 
 2.4981 
 
 4207 
 
 2.3770 
 
 4414 
 
 2.2655 
 
 4624 
 
 2.1625 
 
 II 
 
 50 
 
 3805 
 
 2.6279 
 
 4006 
 
 2.4960 
 
 4210 
 
 2.3750 
 
 4417 
 
 2.2637 
 
 4628 
 
 2.1609 
 
 10 
 
 51 
 
 3809 
 
 2,6256 
 
 4010 
 
 2.4939 
 
 4214 
 
 2.3731 
 
 4421 
 
 2.2620 
 
 4631 
 
 2.1592 
 
 ? 
 
 52 
 
 3812 
 
 2.6233 
 
 4013 
 
 2.4918 
 
 4217 
 
 2.3712 
 
 4424 
 
 2.2602 
 
 4635 
 
 2.1576 
 
 8 
 
 53 
 
 3«i5 
 
 2.6210 
 
 4017 
 
 2.4897 
 
 4221 
 
 2.3693 
 
 4428 
 
 2.2584 
 
 4638 
 
 2.1560 
 
 7 
 
 54 
 
 3«i9 
 
 2.6187 
 
 4020 
 
 2.4876 
 
 4224 
 
 2.3673 
 
 4431 
 
 2.2566 
 
 4642 
 
 2.1543 
 
 b 
 
 55 
 
 3822 
 
 2.6165 
 
 4023 
 
 2.4855 
 
 4228 
 
 2.3654 
 
 4435 
 
 2.2549 
 
 4645 
 
 2.1527 
 
 5 
 
 5t> 
 
 3«25 
 
 2.6142 
 
 4027 
 
 2.4834 
 
 4231 
 
 2.3635 
 
 4438 
 
 2.2531 
 
 4649 
 
 2.1510 
 
 4 
 
 57 
 
 3829 
 
 2.6119 
 
 4030 
 
 2.4813 
 
 4234 
 
 2.3616 
 
 4442 
 
 2.2513 
 
 4652 
 
 2.1494 
 
 3 
 
 5« 
 
 3«32 
 
 2.6096 
 
 4033 
 
 2.4792 
 
 4238 
 
 2.3597 
 
 4445 
 
 2.2496 
 
 4656 
 
 2.1478 
 
 2 
 
 59 
 
 3835 
 
 2.6074 
 
 4037 
 
 2.4772 
 
 4241 
 
 2.3578 
 
 4449 
 
 2.2478 
 
 4660 
 
 2.1461 
 
 I 
 
 60 
 
 3839 
 
 2.6051 
 
 4040 
 
 2.4751 
 
 4245 
 
 2.3559 
 
 4452 
 
 2.2460 
 
 4663 
 
 2.1445 
 
 
 
 
 Cotg 
 
 Tang 
 
 Cotg 
 
 Tang 
 
 Cotg 
 
 Tang 
 
 Cotg 
 
 Tang 
 
 Cotg 
 
 Tang 
 
 
 / 
 
 69° 
 
 68° 
 
 67° 
 
 66° 1 
 
 d 
 
 5° 
 
 / 
 
86 
 
 TABLE TTT 
 
 / 
 
 25° 
 
 26° 
 
 270 
 
 28° 
 
 29° 
 
 / 
 
 
 
 2 
 
 3 
 
 4 
 
 Tang totg 
 
 Tang Cotg 
 
 Tang Cotg 
 
 Tang Cotg 
 
 Tang Cotg 
 
 
 4663 2.1445 
 4667 2.1429 
 4670 2. 14 1 3 
 4674 2.1396 
 4677 2.1380 
 
 487"7 2.0503 
 4881 2.0488 
 4885 2.0473 
 4888 2.0458 
 4892 2.0443 
 
 5095 1.9626 
 5099 1. 96 1 2 
 5103 1.9598 
 5106 1.9584 
 5110 1.9570 
 
 5317 1.8807 
 5321 1.8794 
 5325 1.8781 
 5328 1.8768 
 5332 1.8755 
 
 5543 1.8040 
 5547 1.8028 
 5551 1. 8016 
 5555 1-8003 
 5558 1.7991 
 
 60 
 
 59 
 58 
 57 
 56 
 
 7 
 8 
 
 9 
 
 4681 2.1364 
 4684 2. 1 348 
 4688 2.1332 
 4691 2.1315 
 4695 2.1299 
 
 4895 2.0428 
 4899 2.0413 
 4903 2.0398 
 4906 2.0383 
 4910 2.0368 
 
 51 14 1.9556 
 51 17 1.9542 
 5121 1.9528 
 5125 1.9514 
 5128 1.9500 
 
 5336 1.8741 
 5340 1.8728 
 
 5343 1-8715 
 5347 1.8702 
 5351 1.8689 
 
 5562 1.7979 
 5566 1.7966 
 5570 1.7954 
 5574 1.7942 
 5577 1-7930 
 
 55 
 54 
 53 
 52 
 51 
 
 10 
 
 II 
 
 12 
 
 13 
 
 14 
 
 4699 2.1283 
 4702 2.1267 
 4706 2. 1 25 1 
 4709 2.1235 
 4713 2.1219 
 
 4913 2.0353 
 4917 2.0338 
 4921 2.0323 
 4924 2.0308 
 4928 2.0293 
 
 5132 1.9486 
 5136 1.9472 
 5139 1.9458 
 5143 1.9444 
 5147 1.9430 
 
 5354 1.8676 
 5358 1.8663 
 5362 1.8650 
 5366 1.8637 
 5369 1.8624 
 
 5581 1.7917 
 5585 1.7905 
 5589 1-7893 
 5593 1.7881 
 5596 1.7868 
 
 50 
 
 49 
 48 
 
 11 
 
 17 
 19 
 
 4716 2.1203 
 4720 2.1 187 
 4723 2.1 171 
 4727 2.1155 
 4731 2.1 139 
 
 4931 2.0278 
 4935 2.0263 
 4939 2.0248 
 4942 2.0233 
 4946 2.0219 
 
 5150 1.9416 
 5154 1.9402 
 5158 1.9388 
 
 5161 1.9375 
 5165 1.9361 
 
 5373 1861 1 
 5377 1-8598 
 5381 1.8585 
 5384 1.8572 
 5388 1.8559 
 
 5600 1.7856 
 5604 1.7844 
 5608 1.7832 
 5612 1.7820 
 5616 1.7808 
 
 45 
 44 
 43 
 42 
 41 
 
 20 
 
 21 
 
 22 
 
 23 
 
 24 
 
 4734 2. 1 1 23 
 4738 2.1 107 
 4741 2.1092 
 4745 2.1076 
 4748 2.1060 
 
 4950 2.0204 
 4953 2.0189 
 4957 2.0174 
 4960 2.0160 
 4964 2.0145 
 
 5169 1.9347 
 
 5172 1.9333 
 5176 1.9319 
 5180 1.9306 
 5184 1.9292 
 
 5392 1.8546 
 5396 1.8533 
 5399 1.8520 
 5403 1.8507 
 5407 1.8495 
 
 5619 1.7796 
 
 5623 1.7783 
 5627 1.7771 
 
 5631 1.7759 
 5635 1.7747 
 
 40 
 
 38 
 37 
 36 
 
 27 
 28 
 29 
 
 4752 2.1044 
 4755 2.1028 
 4759 2.1013 
 4763 2.0997 
 4766 2.0981 
 
 4968 2.0130 
 4971 2.0115 
 4975 2.0101 
 4979 2.0086 
 4982 2.0072 
 
 5187 1.9278 
 5191 1.9265 
 
 5^95 1-9251 
 5198 1.9237 
 5202 1.9223 
 
 541 1 1.8482 
 5415 1.8469 
 5418 1.8456 
 5422 1.8443 
 5426 1.8430 
 
 5639 1.7735 
 5642 1.7723 
 5646 1.7711 
 5650 1.7699 
 5654 1.7687 
 
 35 
 34 
 33 
 32 
 31 
 
 30 
 
 31 
 32 
 33 
 
 34 
 
 4770 2.0965 
 4/ 73 2.0950 
 4777 2.0934 
 4780 2.0918 
 4784 2.0903 
 
 4986 2.0057 
 4989 2.0042 
 4993 2.0028 
 4997 2.0013 
 5000 1.9999 
 
 5206 1.9210 
 5209 1.9196 
 5213 1.9183 
 5217 1.9169 
 5220 1.9155 
 
 5430 1. 84 1 8 
 
 5433 1.8405 
 5437 1.8392 
 5441 1.8379 
 5445 1.8367 
 
 5658 1.7675 
 5662 1.7663 
 
 5665 1.7651 
 5669 1.7639 
 5673 1.7627 
 
 30 
 
 29 
 28 
 27 
 26 
 
 39 
 
 4788 2.0887 
 4791 2.0872 
 4795 2.0856 
 4798 2.0840 
 4802 2.0825 
 
 5004 1.9984 
 5008 1.9970 
 
 50" 1-9955 
 5015 1. 9941 
 5019 1.9926 
 
 5224 1.9142 
 5228 1.9128 
 5232 1.9115 
 5235 1.9101 
 5239 1.9088 
 
 5448 1.8354 
 5452 1.8341 
 5456 1.8329 
 5460 1. 83 1 6 
 5464 1.8303 
 
 5677 1.7615 
 5681 1.7603 
 5685 1.7591 
 5688 1.7579 
 5692 1.7567 
 
 25 
 
 24 
 
 23 
 22 
 
 21 
 
 40 
 
 41 
 42 
 
 43 
 44 
 
 4806 2.0809 
 4809 2.0794 
 4813 2.0778 
 4816 2.0763 
 4820 2.0748 
 
 5022 1. 9912 
 5026 1.9897 
 5029 1.9883 
 5033 1.9868 
 5037 1.9854 
 
 5243 1.9074 
 5426 1. 9061 
 5250 1.9047 
 5254 1.9034 
 5258 1.9020 
 
 5467 1. 8291 
 5471 1.8278 
 5475 1-8265 
 5479 1.8253 
 5482 1.8240 
 
 5696 1.7556 
 5700 1.7544 
 5704 1.7532 
 5708 1.7520 
 5712 1.7508 
 
 20 
 
 19 
 18 
 
 17 
 16 
 
 45 
 46 
 
 47 
 48 
 
 49 
 
 4823 2.0732 
 4827 2.0717 
 4831 2.0701 
 4834 2.0686 
 4838 2.0671 
 
 5040 1 .9840 
 5044 J. 9825 
 5048 1. 98 II 
 5051 1.9797 
 5055 1.9782 
 
 5261 1.9007 
 5265 1.8993 
 5269 1.8980 
 5272 1.8967 
 5276 1.8953 
 
 5486 1.8228 
 5490 1.8215 
 5494 1.8202 
 5498 1. 8 1 90 
 5501 1.8177 
 
 5715 1.7496 
 
 5719 1.7485 
 5723 1.7473 
 5727 1. 7461 
 5731 1.7449 
 
 15 
 14 
 13 
 12 
 II 
 
 50 
 
 51 
 
 52 
 
 53 
 54 
 
 4841 2.0655 
 4845 2.0640 
 4849 2.0625 
 4852 2.0609 
 4856 2.0594 
 
 5059 1.9768 
 5062 1.9754 
 5066 1.9740 
 5070 1.9725 
 5073 1.9711 
 
 5280 1.8940 
 5284 1.8927 
 5287 1.8913 
 5291 1.8900 
 5295 1.8887 
 
 5505 1-8165 
 5509 1.8152 
 5513 1.8140 
 5517 1.8127 
 5520 1.8115 
 
 5735 1-7437 
 5739 1.7426 
 
 5743 1-7414 
 5746 1.7402 
 5750 1.7391 
 
 10 
 
 9 
 8 
 
 7 
 6 
 
 59 
 
 4859 2.0579 
 4863 2.0564 
 4867 2.0549 
 4870 2.0533 
 4874 2.0518 
 
 5077 1.9697 
 5081 1.9683 
 5084 1.9669 
 5088 1.9654 
 5092 1.9640 
 
 5298 1.8873 
 5302 1.8860 
 5306 1.8847 
 5310 1.8834 
 5313 1.8820 
 
 5524 1.8103 
 5528 1.8090 
 5532 1.8078 
 5535 1.8065 
 5539 1.8053 
 
 5754 1-7379 
 5758 1.7367 
 5762 1.7355 
 5766 1.7344 
 5770 1.7332 
 
 5 
 4 
 3 
 2 
 I 
 
 60 
 
 4877 2.0503 
 
 5095 1.9626 
 
 5317 1.8807 
 
 5543 1.8040 
 
 5774 1-7321 
 
 
 
 
 Cotff Tang 
 
 Cotg Tang 
 
 Cotg Tang 
 
 Cotg Tang 
 
 Cotg Tang 
 
 
 / 
 
 64° 
 
 63° 
 
 620 
 
 61° 
 
 60° / 1 
 

 NATURAL TANGENTS AND COTANGENTS 
 
 87 
 
 / 
 
 30° 
 
 31° 
 
 32° 
 
 38° 
 
 34° / 1 
 
 
 Tang Cotg 
 
 Tang Cotg 
 
 Tang Cotg 
 
 Tang Cotg 
 
 Tang Cotg 
 
 
 
 
 I 
 
 2 
 
 3 
 4 
 
 5 
 6 
 
 7 
 8 
 
 9 
 
 5774 1.7321 
 5777 1-7309 
 5781 1.7297 
 5785 1.7286 
 5789 1.7274 
 
 6009 1.6643 
 6013 1.6632 
 6017 1.6621 
 6020 1. 66 10 
 6024 1.6599 
 
 6249 1.6003 
 6253 1.5993 
 6257 1.5983 
 6261 1.5972 
 6265 1.5962 
 
 6494 1.5399 
 6498 1.5389 
 6502 1.5379 
 6506 1.5369 
 6511 1-5359 
 
 6745 1.4826 
 6749 1.4816 
 6754 1.4807 
 6758 1.4798 
 6762 1.4788 
 
 60 
 
 59 
 58 
 57 
 56 
 
 5793 1-7262 
 5797 1-7251 
 5801 1.7239 
 5805 1.7228 
 5808 1.7216 
 
 6028 1.6588 
 6032 1.6577 
 6036 1.6566 
 6040 1.6555 
 6044 1.6545 
 
 6269 1.5952 
 6273 1.5941 
 6277 1.5931 
 6281 1.5921 
 6285 1. 59 1 1 
 
 6515 1-5350 
 6519 1.5340 
 
 6523 1-5330 
 6527 1-5320 
 6531 1-53" 
 
 6766 1.4779 
 6771 1.4770 
 6775 1.4761 
 6779 1.4751 
 6783 1.4742 
 
 55 
 54 
 53 
 52 
 51 
 50 
 49 
 48 
 47 
 46 
 
 45 
 44 
 43 
 42 
 41 
 40 
 39 
 38 
 37 
 36 
 
 10 
 
 II 
 
 12 
 
 13 
 
 5812 1.7205 
 5816 1.7193 
 5820 1.7182 
 5824 1.7170 
 5828 1.7159 
 
 6048 1.6534 
 6052 1.6523 
 6056 1.65 1 2 
 6060 1. 6501 
 6064 1.6490 
 
 6289 1.5900 
 6293 1.5890 
 6297 1.5880 
 6301 1.5869 
 6305 1.5859 
 
 6536 1.5301 
 6540 1.5291 
 6544 1.5282 
 6548 1.5272 
 6552 1.5262 
 
 6787 1.4733 
 6792 1.4724 
 6796 1.4715 
 6800 1.4705 
 6805 1.4696 
 
 15 
 i6 
 
 17 
 i8 
 
 19 
 
 5832 1. 7147 
 5836 1,7136 
 5840 1.7124 
 5844 1.7113 
 5847 1. 7 102 
 
 6068 1.6479 
 6072 1.6469 
 6076 1.6458 
 6080 1.6447 
 6084 1.6436 
 
 6310 1.5849 
 6314 1.5839 
 6318 1.5829 
 6322 • 1.5818 
 6326 1.5808 
 
 6556 1.5253 
 6560 1.5243 
 
 6565 1.5233 
 6569 1.5224 
 6573 1.5214 
 
 6809 1.4687 
 6813 1.4678 
 6817 1.4669 
 6822 1.4659 
 6826 1.4650 
 
 20 
 
 21 
 
 22 
 
 23 
 24 
 
 5851 1.7090 
 
 5S55 1-7079 
 5859 1.7067 
 5863 1.7056 
 5S67 1.7045 
 
 6088 1.6426 
 6092 1. 641 5 
 6096 1.6404 
 6100 1.6393 
 6104 1.6383 
 
 6330 1.5798 
 6334 1-5788 
 6338 1.5778 
 6342 1.5768 
 6346 1.5757 
 
 6577 1.5204 
 
 6581 1.5195 
 6585 1.5185 
 
 6590 1.5 1 75 
 6594 1.5 166 
 
 6830 1. 464 1 
 6834 1.4632 
 6839 1.4623 
 6843 1. 46 14 
 6847 1.4605 
 
 25 
 26 
 27 
 28 
 29 
 
 5871 1.7033 
 5875 1.7022 
 5879 1.7011 
 5883 1.6999 
 5887 1.6988 
 
 6108 1.6372 
 6112 1.6361 
 61 16 1.6351 
 6120 1.6340 
 6124 1.6329 
 
 6350 1.5747 
 6354 1.5737 
 6358 1.5727 
 
 6363 1-5717 
 6367 1-5707 
 
 6598 1.5156 
 6602 1.5 147 
 6606 1.5 137 
 6610 1. 5127 
 6615 1.5118 
 
 6851 1.4596 
 6856 1.4586 
 6860 1.4577 
 6864 1.4568 
 6869 1.4559 
 
 35 
 34 
 33 
 32 
 31 
 
 30 
 
 31 
 
 32 
 33 
 34 
 
 5890 1.6977 
 5894 1.6965 
 5898 1.6954 
 5902 1.6943 
 5906 1.6932 
 
 6128 1.6319 
 6132 1.6308 
 6136 1.6297 
 6140 1.6287 
 6144 1.6276 
 
 6371 1.5697 
 6375 1-5687 
 6379 1-5677 
 6383 1.5667 
 6387 1.5657 
 
 6619 1.5108, 
 6623 1.5099 
 6627 1.5089 
 6631 1.5080 
 6636 1.5070 
 
 6873 1.4550 
 6877 1.4541 
 6881 1.4532 
 6886 1.4523 
 6890 1.45 14 
 
 30 
 
 29 
 
 28 
 
 27 
 26 
 
 35 
 36 
 37 
 38 
 39 
 
 5910 1.6920 
 5914 1.6909 
 5918 1.6898 
 S922 1.6887 
 5926 1.6875 
 
 6148 1.6265 
 6152 1.6255 
 6156 1.62,1/1 
 6160 1.6234 
 6164 1.6223 
 
 6391 1.5647 
 
 6395 1-5637 
 6399 1-5627 
 6403 1. 56 1 7 
 6408 1.5607 
 
 6640 1. 506 1 
 6644 1.505 1 
 6648 1.5042 
 6652 1.5032 
 6657 1.5023 
 
 6894 1.4505 
 6899 1.4496 
 6903 1.4487 
 6907 1.4478 
 691 1 1.4469 
 
 25 
 24 
 23 
 22 
 21 
 
 40 
 
 41 
 
 42 
 
 43 
 
 44 
 
 5930 1.6864 
 5934 1.6853 
 5938 1.6842 
 5942 1.6831 
 5945 1.6820 
 
 6168 1.6212 
 6172 1.6202 
 6176 1.6191 
 6i8o 1.6181 
 6184 1. 6170 
 
 6412 1.5597 
 6416 1.5587 
 6420 1.5577 
 6424 1.5567 
 6428 1.5557 
 
 6661 1.5013 
 6665 1.5004 
 6669 1.4994 
 6673 1.4985 
 6678 1.4975 
 
 6916 1.4460 
 6920 1.445 1 
 6924 1.4442 
 6929 1.4433 
 6933 1-4424 
 
 20 
 
 19 
 18 
 
 17 
 16 
 
 45 
 46 
 
 47 
 
 48 
 
 49 
 50 
 
 51 
 
 52 
 53 
 54 
 
 5949 1.6808 
 5953 1-6797 
 5957 1-6786 
 5961 1.6775 
 5965 1.6764 
 
 6188 1.6160 
 6192 1.6149 
 6196 1.6139 
 6200 1. 6 1 28 
 6204 1. 61 18 
 
 6432 1.5547 
 
 6436 1.5537 
 6440 1.5527 
 
 6445 1-55 1 7 
 6449 1-5507 
 
 6682 1.4966 
 6686 1.4957 
 6690 1.4947 
 6694 1.4938 
 6699 1.4928 
 
 6937 1.4415 
 6942 1.4406 
 6946 1.4397 
 6950 1.4388 
 6954 1-4379 
 
 15 
 14 
 13 
 12 
 
 5969 1.6753 
 5973 1-6742 
 5977 1-6731 
 5981 1.6720 
 5985 1.6709 
 
 6208 1.6107 
 6212 1.6097 
 6216 1.6087 
 6220 1.6076 
 6224 1.6066 
 
 6453 1-5497 
 6457 1.5487 
 6461 1.5477 
 6465 1.5468 
 6469 1-5458 
 
 6703 1.4919 
 6707 1. 49 10 
 6711 1.4900 
 6716 1. 489 1 
 6720 1.4882 
 
 6959 1-4370 
 6963 1.4361 
 
 6967 1-4352 
 6972 1.4344 
 
 6976 1-4335 
 
 10 
 
 9 
 8 
 
 7 
 6 
 
 55 
 56 
 
 11 
 
 59 
 
 5989 1.6698 
 5993 1.6687 
 5997 1-6676 
 6001 1.6665 
 6005 1.6654 
 
 6228 1.6055 
 6233 1.6045 
 6237 1-6034 
 6241 1.6024 
 6245 1. 6014 
 
 6473 1-5448 
 6478 1.5438 
 6482 1.5428 
 6486 1.5418 
 6490 1.5408 
 
 6724 1.4872 
 6728 1.4863 
 6732 1.4854 
 6737 1.4844 
 6741 1.4835 
 
 6980 1.4326 
 6985 1.43 1 7 
 6989 1.4308 
 
 6993 1-4299 
 6998 1.4290 
 
 5 
 4 
 3 
 2 
 
 GO 
 
 6009 1.6643 
 
 6249 1.6003 
 
 6494 1-5399 
 
 6745 1.4826 
 
 7002 1. 4281 
 
 
 
 
 Cotg Tang 
 
 Cotg Tang 
 
 Cotg Tang 
 
 Cotg Tang 
 
 Cotg Tang 
 
 
 / 
 
 51)° 
 
 5S° 
 
 57° 
 
 56° 
 
 55° 
 
 / 
 
88 
 
 TABLE III 
 
 / 
 
 35° 
 
 36° 
 
 37° 
 
 38° 
 
 31)° 
 
 / 
 
 
 Tang Cotg 
 
 Tang Cotg 
 
 Tang Cotg 
 
 Tang Cotg 
 
 Tang Cotg 
 
 
 
 
 I 
 
 2 
 
 3 
 
 4 
 
 7002 1. 428 1 
 7006 1.4273 
 70 II 1.4264 
 7015 1.4255 
 7019 1.4246 
 
 7265 1.3764 
 7270 1.3755 
 7274 1.3747 
 
 7279 1-3739 
 7283 1.3730 
 
 7536 1.3270 
 7540 1.3262 
 7545 1.3254 
 7549 1.3246 
 7554 1.3238 
 
 7813 1.2799 
 7818 1.2792 
 7822 1.2784 
 7827 1.2776 
 7832 1.2769 
 
 S098 1.2349 
 8103 1.2342 
 8107 1.2334 
 81 12 1.2327 
 8117 1.2320 
 
 60 
 
 59 
 58 
 
 I 
 
 7 
 8 
 
 9 
 
 7024 1.4237 
 7028 1.4229 
 7032 1.4220 
 7037 1.4211 
 7041 1.4202 
 
 7288 1.3722 
 7292 1.3713 
 7297 1.3705 
 7301 1.3697 
 7306 1.3688 
 
 7558 1.3230 
 7563 1.3222 
 7568 1.3214 
 7572 1.3206 
 7577 1.3198 
 
 7836 1.2761 
 
 7841 1.2753 
 7846 1.2746 
 7850 1.2738 
 7855 1-2731 
 
 8122 1. 2312 
 8127 1.2305 
 8132 1.2298 
 8136 1.2290 
 8141 1.2283 
 
 55 
 54 
 53 
 52 
 51 
 
 10 
 
 II 
 
 12 
 
 13 
 14 
 
 7046 1. 41 93 
 7050 1. 4 1 85 
 7054 1.4176 
 7059 1.4167 
 7063 1. 41 58 
 
 7310 1.3680 
 7314 1.3672 
 7319 1.3663 
 
 7323 1.3655 
 7328 1.3647 
 
 7581 1.3190 
 7586 1.3182 
 7590 1.3175 
 7595 1.3167 
 7600 1. 3 1 59 
 
 7860 1.2723 
 7865 1.2715 
 7869 1.2708 
 7874 1.2700 
 7879 1.2693 
 
 8146 1.2276 
 8151 1.2268 
 8156 1. 2261 
 8i6i 1.2254 
 8165 1.2247 
 
 60 
 
 49 
 48 
 
 47 
 46 
 
 19 
 
 7067 1.4150 
 7072 1.4141 
 7076 1.4132 
 7080 1. 4 1 24 
 7085 1.4115 
 
 7332 1.3638 
 7337 1.3630 
 7341 1.3622 
 7346 1.3613 
 7350 1.3605 
 
 7604 1.3151 
 7609 1.3143 
 7613 1.3135 
 7618 1.3127 
 7623 1.3119 
 
 7883 1.2685 
 7888 1.2677 
 7893 1.2670 
 7898 1.2662 
 7902 1.2655 
 
 8170 1.2239 
 8175 1.2232 
 8180 1.2225 
 8185 1.2218 
 8190 1. 2210 
 
 45 
 44 
 43 
 42 
 41 
 
 20 
 
 21 
 22 
 23 
 
 24 
 
 7089 1. 4 1 06 
 7094 1.4097 
 7098 1.4089 
 7102 1.4080 
 7107 1.4071 
 
 7355 1-3597 
 7359 1.3588 
 7364 1.3580 
 7368 1.3572 
 7373 1-3564 
 
 7627 1.3111 
 7632 1. 3103 
 
 7636 1.3095 
 7641 1.3087 
 7646 1.3079 
 
 7907 1.2647 
 7912 1.2640 
 7916 1.2632 
 7921 1.2624 
 7926 1.2617 
 
 8195 1.2203 
 8199 1. 2196 
 8204 1. 21 89 
 8209 1.2181 
 8214 1.2174 
 
 40 
 
 39 
 38 
 27 
 36 
 
 25 
 26 
 27 
 28 
 29 
 
 71 II 1.4063 
 71 15 1.4054 
 7120 1.4045 
 7124 1.4037 
 7129 1.4028 
 
 7377 1.3555 
 7382 1.3547 
 
 7386 1.3539 
 7391 1.3531 
 7395 1.3522 
 
 7650 1.3072 
 7655 1.3064 
 7659 1.3056 
 7664 1.3048 
 7669 1.3040 
 
 7931 1.2609 
 7935 1.2602 
 7940 1.2594 
 7945 1.2587 
 7950 1.2579 
 
 8219 1. 2167 
 8224 1.2 1 60 
 8229 1.2153 
 8234 1.2145 
 8238 1.2138 
 
 35 
 34 
 
 32 
 31 
 
 30 
 
 31 
 
 32 
 
 zz 
 
 34 
 
 7133 1.4019 
 7137 1.4011 
 7142 1.4002 
 7146 1.3994 
 7151 1.3985 
 
 7400 1.35 14 
 7404 1.3506 
 7409 1.3498 
 7413 1.3490 
 7418 1. 3481 
 
 7673 1.3032 
 7678 1.3024 
 7683 1.3017 
 7687 1.3009 
 7692 1.3001 
 
 7954 1.2572 
 
 7959 1.2564 
 7964 1.2557 
 7969 1.2549 
 7973 1.2542 
 
 8243 1.2131 
 8248 1. 21 24 
 8253 1.2117 
 8258 1.2109 
 8263 1.2102 
 
 30 
 
 29 
 28 
 
 27 
 26 
 
 37 
 38 
 39 
 
 7155 1-3976 
 7159 1.3968 
 7164 1.3959 
 7168 1.3951 
 7173 1.3942 
 
 7422 1.3473 
 7427 1.3465 
 7431 1.3457 
 7436 1.3449 
 7440 1.3440 
 
 7696 1.2993 
 7701 1.2985 
 7706 1.2977 
 7710 1.2970 
 7715 1.2962 
 
 7978 1.2534 
 7983 1.2527 
 7988 1.2519 
 7992 1.25 1 2 
 7997 1.2504 
 
 8268 1.2095 
 8273 1.2088 
 8278 1.2081 
 8283 1.2074 
 8287 1.2066 
 
 25 
 24 
 23 
 22 
 21 
 
 40 
 
 41 
 
 42 
 
 43 
 44 
 
 7177 1.3934 
 7181 1.3925 
 7186 1.3916 
 7190 1.3908 
 7195 1-3899 
 
 7445 1.3432 
 7449 1.3424 
 7454 1.3416 
 7458 1.3408 
 7463 1.3400 
 
 7720 1.2954 
 7724 1.2946 
 7729 1.2938 
 
 7734 1.2931 
 7738 1.2923 
 
 8002 1.2497 
 8007 1.2489 
 8012 1.2482 
 8016 1.2475 
 8021 1.2467 
 
 8292 1.2059 
 8297 1.2052 
 8302 1.2045 
 8307 1.2038 
 8312 1.203 1 
 
 20 
 
 »9 
 
 18 
 
 17 
 16 
 
 45 
 46 
 
 47 
 48 
 
 49 
 
 7199 1.3891 
 7203 1.3882 
 7208 1.3874 
 7212 1.3865 
 7217 1.3857 
 
 7467 1.3392 
 7472 1.3384 
 7476 1.3375 
 7481 1.3367 
 
 7485 1.3359 
 
 7743 1.2915 
 
 7747 1.2907 
 7752 1.2900 
 7757 1.2892 
 7761 1.2884 
 
 8026 1.2460 
 8031 1.2452 
 8035 1.2445 
 8040 1.2437 
 8045 1.2430 
 
 8317 1.2024 
 8322 1. 2017 
 8327 1.2009 
 8332 1.2002 
 8337 1.1995 
 
 15 
 14 
 13 
 12 
 II 
 
 50 
 
 51 
 
 52 
 53 
 54 
 
 7221 1.3848 
 7226 1.3840 
 7230 1.3831 
 7234 1.3823 
 7239 1.3814 
 
 7490 1.335 1 
 7495 1-3343 
 7499 1.3335 
 7504 1.3327 
 7508 1.3319 
 
 7766 1.2876 
 7771 1.2869 
 7775 1.2861 
 7780 1.2853 
 7785 1.2846 
 
 8050 1.2423 
 8055 1.2415 
 8059 1.2408 
 8064 1. 240 1 
 8069 1.2393 
 
 8342 1. 1 988 
 8346 1.1981 
 8351 1. 1974 
 8356 1. 1967 
 8361 1. 1960 
 
 10 
 
 9 
 8 
 
 7 
 6 
 
 55 
 56 
 
 59 
 
 7243 1.3806 
 7248 1.3798 
 7252 1.3789 
 7257 1.3781 
 7261 1.3772 
 
 7513 i-2>2,^i 
 7517 1.3303 
 7522 1.3295 
 7526 1.3287 
 7531 1.3278 
 
 7789 1.2838 
 7794 1.2830 
 7799 1.2822 
 7803 1.28 1 5 
 7808 1.2807 
 
 8074 1.2386 
 8079 1.2378 
 8083 1. 237 1 
 8088 1.2364 
 8093 1.2356 
 
 8366 1. 1953 
 8371 1. 1946 
 8376 1. 1939 
 8381 1. 1932 
 8386 1. 1925 
 
 5 
 4 
 3 
 2 
 
 60 
 
 7265 1.3764 
 
 7536 1.3270 
 
 7813 1.2799 
 
 8098 1.2349 
 
 8391 1.1918 
 
 
 
 
 Cotg Tang 
 
 Cotg Tang 
 
 Cotg Tang 
 
 Cotg Tang 
 
 Cotg Tang 
 
 _ 
 
 / 
 
 54° 
 
 53° 
 
 52° 
 
 51° 
 
 50° 
 
 zl 
 
NATURAL TANGENTS AND COTANGENTS 
 
 / 
 
 40° 
 
 41° 
 
 42o 
 
 43° 
 
 44° 
 
 / 
 
 
 Tang Cotg 
 
 Tang Cotg 
 
 Tang Cotg 
 
 Tang Cotg 
 
 Tang Cotg 
 
 60 
 
 59 
 
 58 
 
 11 
 
 
 
 I 
 
 2 
 
 3 
 4 
 
 8391 1.1918 
 8396 1.1910 
 8401 1. 1903 
 8406 1. 1 896 
 8411 1. 1889 
 
 8693 1.1504 
 8698 1.1497 
 8703 1.1490 
 8708 1.1483 
 8713 1.1477 
 
 9004 I.I 106 
 9009 I.I 100 
 9015 1.1093 
 9020 1.1087 
 9025 1.1080 
 
 9325 1.0724 
 9331 1.0717 
 9336 1.0711 
 9341 1.0705 
 9347 1.0699 
 
 9657 1-0355 
 9663 1.0349 
 9668 1.0343 
 
 9674 1-0337 
 9679 1.0331 
 
 1, 
 
 9 
 
 8416 1. 1882 
 8421 I. 1875 
 8426 1. 1 868 
 8431 1.1861 
 8436 1. 1 854 
 
 8718 1.1470 
 8724 1.1463 
 8729 1. 1456 
 8734 1.1450 
 8739 1. 1443 
 
 9030 1.1074 
 9036 1.1067 
 9041 1.1061 
 9046 1. 1 054 
 9052 1. 1048 
 
 9352 1.0692 
 9358 1.0686 
 9363 1.0680 
 9369 1.0674 
 9374 1.0668 
 
 9685 1.0325 
 9691 1.0319 
 9696 1. 03 1 3 
 9702 1.0307 
 9708 1. 030 1 
 
 55 
 54 
 53 
 52 
 51 
 50 
 49 
 48 
 47 
 46 
 
 10 
 
 II 
 
 12 
 
 13 
 14 
 
 8441 1. 1 847 
 8446 1. 1 840 
 
 8451 1.1833 
 8456 1. 1826 
 8461 1.1819 
 
 8744 1.1436 
 8749 1.1430 
 8754 1.1423 
 8759 1.1416 
 8765 1.1410 
 
 9057 1.1041 
 9062 1.1035 
 9067 1.1028 
 9073 1.1022 
 9078 1. 1016 
 
 9380 1.0661 
 9385 1.0655 
 9391 1.0649 
 9396 1.0643 
 9402 1.0637 
 
 9713 1.0295 
 9719 1.0289 
 9725 1.0283 
 9730 1.0277 
 9736 1.0271 
 
 15 
 
 16 
 
 17 
 
 18 
 
 19 
 
 8466 1.1812 
 8471 1. 1806 
 8476 I.I 799 
 8481 1. 1792 
 8486 1.17^5 
 
 8770 1.1403 
 8775 1-1396 
 8780 1.1389 
 
 8785 1.1383 
 8790 1.1376 
 
 9083 1.1009 
 9089 1. 1 003 
 9094 1.0996 
 9099 1.0990 
 9105 1.0983 
 
 9407 1.0630 
 9413 1.0624 
 9418 1.0618 
 9424 1. 06 1 2 
 9429 1.0606 
 
 9742 1.0265 
 9747 1-0259 
 9753 1-0253 
 9759 1.0247 
 9764 1.0241 
 
 45 
 44 
 43 
 42 
 
 41 
 
 20 
 
 21 
 
 22 
 
 23 
 
 24 
 
 8491 I. 1778 
 8496 1.1771 
 8501 1.1764 
 8506 1. 1757 
 8511 1. 1750 
 
 8796 1. 1 369 
 8801 1. 1363 
 8806 1.1356 
 8811 1.1349 
 8816 1.1343 
 
 9110 1.0977 
 9115 1.0971 
 91 21 1.0964 
 9126 1.0958 
 9131 1.0951 
 
 9435 1-0599 
 9440 1.0593 
 9446 1.0587 
 9451 1.0581 
 9457 1-0575 
 
 9770 1.0235 
 9776 1.0230 
 9781 1.0224 
 9787 1.0218 
 9793 1. 02 1 2 
 
 40 
 
 39 
 
 3^ 
 
 11 
 
 25 
 26 
 27 
 28 
 29 
 
 8516 1. 1743 
 8521 1. 1736 
 8526 1. 1729 
 8531 1. 1722 
 8536 1.1715 
 
 8821 1. 1336 
 8827 1.1329 
 8832 1.1323 
 8837 1.1316 
 8842 1.1310 
 
 9137 1.0945 
 9142 1.0939 
 9147 1.0932 
 9153 1.0926 
 9158 1.0919 
 
 9462 1.0569 
 9468 1.0562 
 9473 1-0556 
 9479 1-0550 
 9484 1.0544 
 
 9798 1.0206 
 9804 1.0200 
 9810 1.0194 
 9816 1.0188 
 9821 1.0182 
 
 35 
 34 
 33 
 32 
 31 
 
 30 
 
 31 
 32 
 
 33 
 34 
 
 8541 I. 1708 
 8546 I.I 702 
 
 8551 1-1695 
 8556 1. 1688 
 8561 1.1681 
 
 8847 1.1303 
 8852 1.1296 
 8858 1.1290 
 8863 1.1283 
 8868 1.1276 
 
 9163 1.0913 
 9169 1.0907 
 9174 1.0900 
 9179 1.0894 
 9185 1.0888 
 
 9490 1.0538 
 9495 1-0532 
 9501 1.0526 
 9506 1.0519 
 9512 1.0513 
 
 9827 1.0176 
 9833 1.0170 
 9838 1. 01 64 
 9844 1. 01 58 
 9850 1.0152 
 
 30 
 
 29 
 28 
 27 
 26 
 
 37 
 38 
 39 
 
 8566 1.1674 
 8571 1.1667 
 8576 1.1660 
 8581 I. 1653 
 8586 1. 1 647 
 
 8873 1.1270 
 8878 1.1263 
 8884 1.1257 
 8889 1. 1250 
 8894 1.1243 
 
 9190 1.0881 
 9195 1.0875 
 9201 1.0869 
 9206 1.0862 
 9212 1.0856 
 
 9517 1.0507 
 9523 1.0501 
 9528 1.0495 
 9534 1.0489 
 9540 1.0483 
 
 9856 1.0147 
 9861 1.0141 
 9867 1.0135 
 9873 1.0129 
 9879 1.0123 
 
 25 
 24 
 
 23 
 22 
 21 
 
 40 
 
 41 
 42 
 43 
 44 
 
 i 
 
 49 
 
 8591 I. 1640 
 8596 I. 1633 
 8601 1. 1 626 
 8606 1. 1619 
 8611 1. 1612 
 
 8899 1-1237 
 8904 I.I 230 
 8910 1.1224 
 8915 1.1217 
 8920 1.1211 
 
 9217 1.0850 
 9222 1.0843 
 9228 1.0837 
 9233 1. 083 1 
 9239 1.0824 
 
 9545 1-0477 
 9551 1.0470 
 9556 1.0464 
 9562 1.0458 
 9567 1.0452 
 
 9884 1.0117 
 
 9890 l.OIIl 
 9896 1.0105 
 9902 1.0099 
 9907 1.0094 
 
 20 
 
 19 
 18 
 
 17 
 16 
 
 8617 1. 1606 
 8622 1. 1599 
 8627 1. 1592 
 8632 1.1585 
 8637 1.1578 
 
 8925 1.1204 
 8931 1.1197 
 8936 1.1191 
 8941 I.I 184 
 8946 1.1178 
 
 9244 1. 08 1 8 
 9249 1. 08 1 2 
 9255 1.0805 
 9260 1.0799 
 9266 1.0793 
 
 9573 1.0446 
 9578 1.0440 
 9584 1.0434 
 9590 1.0428 
 9595 1.0422 
 
 9913 1.0088 
 9919 1.0082 
 9925 1.0076 
 9930 1.0070 
 9936 1.0064 
 
 15 
 14 
 13 
 12 
 II 
 
 50 
 
 51 
 
 52 
 53 
 54 
 
 8642 1.1571 
 8647 1. 1 565 
 8652 1.1558 
 8657 1.1551 
 8662 1.1544 
 
 8952 1.1171 
 8957 1.1165 
 8962 1.1158 
 8967 1.1152 
 8972 1.1145 
 
 9271 1.0786 
 9276 1.0780 
 9282 1.0774 
 9287 1.0768 
 9293 1.0761 
 
 9601 1.0416 
 9606 1. 04 10 
 9612 1.0404 
 9618 1.0398 
 9623 1.0392 
 
 9942 1.0058 
 9948 1.0052 
 9954 1.0047 
 9959 I -004 1 
 9965 1.0035 
 
 10 
 
 i 
 
 7 
 6 
 
 57 
 58 
 59 
 
 8667 1. 1538 
 8672 1.1531 
 8678 1.1524 
 8683 1.1517 
 8688 1. 1510 
 
 8978 I.I 139 
 8983 1.1132 
 8988 1.1126 
 8994 1.1119 
 8999 I-III3 
 
 9298 1.0755 
 
 9303 1-0749 
 9309 1.0742 
 9314 1.0736 
 9320 1.0730 
 
 9629 1.0385 
 
 9634 1-0379 
 9640 1.0373 
 9646 1.0367 
 9651 1.0361 
 
 9971 1.0029 
 9977 1.0023 
 9983 1.0017 
 9988 1. 00 1 2 
 9994 1.OC06 
 
 5 
 
 4 
 3 
 2 
 
 I 
 
 (>0 
 
 8693 1.1504 
 
 9004 I.I 106 
 
 9325 1.0724 
 
 9657 1-0355 
 
 1000 1. 0000 
 
 
 
 
 Cotg Tang 
 
 Cotg Tang 
 
 Cotg Tang 
 
 Cotg Tang 
 
 Cotg Tang 
 
 
 / 
 
 490 
 
 48° 
 
 47° 
 
 46° 
 
 45° 
 
 / 
 

 TABLE IV 
 
 
 
 * 
 
 SQUARES OF NUMBERS 
 
 No. 
 
 Square. 
 
 No. 
 
 Square. 
 
 No. 
 
 Square. 
 
 No. 
 
 Square. 
 
 No. 
 
 Square. 
 
 
 
 I 
 
 O 
 
 20 
 21 
 
 400 
 
 40 
 
 41 
 
 1600 
 
 m 
 61 
 
 3600 
 
 80 
 81 
 
 64CX) 
 
 I 
 
 441 
 
 1681 
 
 3721 
 
 6561 
 
 2 
 
 4 
 
 22 
 
 484 
 
 42 
 
 1764 
 
 62 
 
 3844 
 
 82 
 
 6724 
 
 3 
 
 9 
 
 23 
 
 529 
 
 43 
 
 1849 
 
 63 
 
 3969 
 
 83 
 
 6889 
 
 4 
 
 i6 
 
 24 
 
 576 
 
 44 
 
 1936 
 
 64 
 
 4096 
 
 84 
 
 7056 
 
 5 
 
 25 
 
 25 
 
 625 
 
 45 
 
 2025 
 
 65 
 
 4225 
 
 85 
 
 7225 
 
 6 
 
 36 
 
 26 
 
 676 
 
 46 
 
 2116 
 
 66 
 
 4356 
 
 86 
 
 7396 
 
 7 
 
 49 
 
 27 
 
 729 
 
 47 
 
 2209 
 
 67 
 
 4489 
 
 87 
 
 7569 
 
 8 
 
 64 
 
 28 
 
 784 
 
 48 
 
 2304 
 
 68 
 
 4624 
 
 88 
 
 7744 
 
 9 
 10 
 
 1 1 
 
 81 
 
 29 
 30 
 
 31 
 
 841 
 
 49 
 50 
 
 51 
 
 2401 
 
 69 
 70 
 
 71 
 
 4761 
 
 89 
 90 
 
 91 
 
 7921 
 8100 
 
 100 
 
 900 
 
 2500 
 
 4900 
 
 121 
 
 961 
 
 2601 
 
 5041 
 
 8281 
 
 12 
 
 144 
 
 32 
 
 1024 
 
 52 
 
 2704 
 
 72 
 
 5184 
 
 92 
 
 8464 
 
 '3 
 
 169 
 
 33 
 
 1089 
 
 53 
 
 2809 
 
 73 
 
 5329 
 
 93 
 
 8649 
 
 14 
 
 196 
 
 34 
 
 1 1 56 
 
 54 
 
 2916 
 
 74 
 
 5476 
 
 94 
 
 8836 
 
 '5 
 
 22s 
 
 35 
 
 1225 
 
 55 
 
 3025 
 
 75 
 
 5625 
 
 95 
 
 9025 
 
 i6 
 
 256 
 
 36 
 
 1296 
 
 56 
 
 3136 
 
 76 
 
 5776 
 
 96 
 
 9216 
 
 17 
 
 289 
 
 37 
 
 1369 
 
 57' 
 
 3249 
 
 77 
 
 5929 
 
 97 
 
 9409 
 
 i8 
 
 324 
 
 38 
 
 1444 
 
 58' 
 
 3364 
 
 78 
 
 6084 
 
 98 
 
 9604 
 
 «9 
 •20 
 
 361 
 400 
 
 39 
 40 
 
 1521 
 
 59 
 GO 
 
 3481 
 
 79 
 80 
 
 6241 
 
 99 
 100 
 
 9801 
 
 1600 
 
 3600 
 
 6400 
 
 lOOOO 
 
 91 
 
92 
 
 TABLE IV 
 
 00 
 
 !♦♦ 
 
 244 
 
 $♦♦ 
 
 4^# 
 
 &♦♦ 
 
 6#^ 
 
 T4^ 
 
 §♦♦ 
 
 9^^ 
 
 u 
 
 00 
 
 Diff' 
 
 I 
 
 100 
 
 400 
 
 900 
 
 1600 
 
 2500 
 
 3600 
 
 4900 
 
 6400 
 
 8100 
 
 OI 
 
 02 
 03 
 
 102 
 104 
 106 
 
 404 
 408 
 412 
 
 906 
 912 
 918 
 
 1608 
 1616 
 1624 
 
 2510 
 2520 
 2530 
 
 3612 
 
 4914 
 4928 
 4942 
 
 6416 
 6432 
 6448 
 
 8118 
 8136 
 8154 
 
 01 
 
 04 
 09 
 
 3 
 
 5 
 7 
 
 04 
 
 108 
 no 
 112 
 
 416 
 
 420 
 424 
 
 924 
 930 
 936 
 
 1632 
 1640 
 1648 
 
 2540 
 
 2550 
 2560 
 
 3648 
 3660 
 3672 
 
 4956 
 
 6464 
 6480 
 6496 
 
 8172 
 8190 
 8208 
 
 16 
 
 25 
 
 36 
 
 9 
 II 
 
 13 
 
 11 
 
 09 
 
 114 
 116 
 118 
 
 428 
 432 
 436 
 
 04.2 
 948 
 
 954 
 
 1656 
 1664 
 1672 
 
 2570 
 2580 
 2590 
 
 3696 
 
 3708 
 
 4998 
 5012 
 5026 
 
 6512 
 6528 
 6544 
 
 8226 
 
 8244 
 8262 
 
 1'. 
 
 IS 
 17 
 19* 
 
 10 
 
 121 
 
 441 
 
 961 
 
 1681 
 
 2601 
 
 3721 
 
 5041 
 
 6561 
 
 8281 
 
 00 
 
 21 
 
 II 
 
 12 
 13 
 
 123 
 
 125 
 
 127 
 
 445 
 449 
 453 
 
 967 
 973 
 979 
 
 1689 
 1697 
 1705 
 
 2611 
 2621 
 2631 
 
 3733 
 3745 
 3757 
 
 5055 
 5069 
 5083 
 
 6577 
 
 8299 
 8317 
 8335 
 
 21 
 
 44 
 69 
 
 23 
 25 
 27 
 
 14 
 
 129 
 132 
 134 
 
 til 
 
 466 
 
 985 
 992 
 998 
 
 1713 
 
 1722 
 1730 
 
 2641 
 2652 
 2662 
 
 3769 
 3782 
 
 3794 
 
 5097 
 5112 
 5126 
 
 6625 
 6642 
 6658 
 
 8353 
 8372 
 8390 
 
 96 
 5^ 
 
 29* 
 
 31 
 
 33 
 
 19 
 
 136 
 139 
 141 
 
 470 
 
 475 
 479 
 
 1004 
 ion 
 1017 
 
 1738 
 
 1747 
 1755 
 
 2672 
 2683 
 2693 
 
 3806 
 3819 
 3^3^ 
 
 5140 
 5155 
 51^9 
 
 6691 
 6707 
 
 8408 
 8427 
 8445 
 
 89 
 6i 
 
 35* 
 
 37 
 
 39* 
 
 20 
 
 144 
 
 484 
 
 1024 
 
 1764 
 
 2704 
 
 3844 
 
 5184 
 
 6724 
 
 8464 
 
 00 
 
 4» 
 
 21 
 
 22 
 23 
 
 146 
 148 
 151 
 
 488 
 492 
 407 
 
 1030 
 1036 
 1043 
 
 1772 
 17S0 
 1789 
 
 2714 
 
 2724 
 2735 
 
 3881 
 
 5198 
 5212 
 5227 
 
 6756 
 ^773 
 
 8482 
 8500 
 8519 
 
 41 
 
 84 
 
 29 
 
 43 
 
 45* 
 
 47 
 
 24 
 
 153 
 
 lit 
 
 501 
 506 
 510 
 
 1049 
 1056 
 1062 
 
 1797 
 1806 
 1814 
 
 2745 
 2766 
 
 3893 
 3906 
 3918 
 
 5241 
 5256 
 5270 
 
 6789 
 6806 
 6822 
 
 8537 
 8556 
 8574 
 
 76 
 25 
 76 
 
 49* 
 5» 
 
 53* 
 
 11 
 
 29 
 
 161 
 
 166 
 
 515 
 519 
 524 
 
 1069 
 
 1075 
 1082 
 
 1823 
 1831 
 1840 
 
 2777 
 2787 
 2798 
 
 3931 
 3943 
 3956 
 
 5285 
 5299 
 53H 
 
 6839 
 
 6855 
 6872 
 
 8630 
 
 29 
 84 
 41 
 
 55 
 51* 
 
 59* 
 
 30 
 
 169 
 
 529 
 
 1089 
 
 1849 
 
 2809 
 
 3969 
 
 5329 
 
 6889 
 
 8649 
 
 00 
 
 61 
 
 31 
 32 
 33 
 
 171 
 
 III 
 
 542 
 
 1095 
 1102 
 1 108 
 
 1857 
 1866 
 1874 
 
 2819 
 2830 
 2840 
 
 3981 
 
 3994 
 4006 
 
 5343 
 5358 
 5372 
 
 6905 
 6922 
 6938 
 
 8667 
 8686 
 8704 
 
 61 
 
 89 
 
 63* 
 
 65 
 
 67* 
 
 34 
 35 
 36 
 
 184 
 
 547 
 
 l^ 
 
 "15 
 
 1122 
 1128 
 
 1883 
 1892 
 1900 
 
 2862 
 2872 
 
 4019 
 4032 
 4044 
 
 5387 
 5402 
 5416 
 
 6955 
 
 C972 
 6988 
 
 8723 
 8742 
 8760 
 
 56 
 11 
 
 69* 
 
 7» 
 
 73* 
 
 39 
 
 187 
 190 
 193 
 
 571 
 
 "35 
 1142 
 1 149 
 
 1909 
 1918 
 1927 
 
 2883 
 2894 
 2905 
 
 4057 
 4070 
 4083 
 
 5431 
 5446 
 5461 
 
 7005 
 7022 
 7039 
 
 8779 
 8798 
 8817 
 
 69 
 
 44 
 21 
 
 75* 
 77* 
 
 79* 
 
 40 
 
 196 
 
 576 
 
 1 156 
 
 1936 
 
 2916 
 
 4096 
 
 5476 
 
 7056 
 
 8836 
 
 00 
 
 81 
 
 41 
 
 42 
 
 43 
 
 198 
 
 201 
 204 
 
 580 
 5«5 
 590 
 
 1 162 
 1 1 76 
 
 1944 
 
 1953 
 1962 
 
 2926 
 
 2937 
 2948 
 
 4108 
 4121 
 4134 
 
 5490 
 5505 
 5520 
 
 7072 
 7089 
 7106 
 
 8854 
 
 8S73 
 8892 
 
 81 
 64 
 49 
 
 83* 
 85* 
 87^ 
 
 44 
 45 
 46 
 
 207 
 210 
 213 
 
 595 
 605 
 
 1 183 
 
 1 190 
 1197 
 
 1971 
 1980 
 1989 
 
 2959 
 2970 
 2981 
 
 4147 
 4160 
 
 4173 
 
 5535 
 5550 
 5565 
 
 7123 
 
 7140 
 7157 
 
 891 1 
 
 8930 
 8949 
 
 36 
 2 
 
 89* 
 91" 
 93* 
 
 49 
 
 216 
 219 
 222 
 
 610 
 620 
 
 1204 
 I2n 
 1218 
 
 1998 
 2007 
 2016 
 
 2992 
 3003 
 3014 
 
 4186 
 4199 
 4212 
 
 5580 
 
 7174 
 7191 
 7208 
 
 8968 
 8987 
 9006 
 
 09 
 04 
 01 
 
 95* 
 97* 
 99* 
 
 50 
 
 225 
 
 625 
 
 1225 
 
 2025 
 
 3025 
 
 4225 
 
 S62S 
 
 7225 
 
 9025 
 
 00 
 
 
SQUAKES OF NUMBERS 
 
 93 
 
 60 
 
 !♦♦ 
 
 24^ 
 
 3## 
 
 4## 
 
 5## 
 
 €♦♦ 
 
 74^ 
 
 «♦♦ 
 
 94^ 
 
 U 
 00 
 
 Diff. 
 
 z 
 
 225 
 
 625 
 
 1225 
 
 2025 
 
 3025 
 
 4225 
 
 5625 
 
 7225 
 
 9025 
 
 51 
 
 52 
 53 
 
 228 
 231 
 234 
 
 630 
 640 
 
 1232 
 1239 
 1246 
 
 2034 
 2043 
 2052 
 
 3036 
 3047 
 3058 
 
 4238 
 
 4251 
 
 5640 
 
 5655 
 5670 
 
 7242 
 
 7259 
 7276 
 
 9044 
 9063 
 9082 
 
 01 
 04 
 09 
 
 3 
 5 
 7 
 
 54 
 55 
 5^^ 
 
 237 
 240 
 
 243 
 
 645 
 
 650 
 655 
 
 1253 
 
 12G0 
 
 1267 
 
 2061 
 2070 
 2079 
 
 3069 
 3080 
 3091 
 
 4277 
 4290 
 
 4303 
 
 5685 
 5700 
 
 5715 
 
 7293 
 7310 
 7327 
 
 9101 
 9120 
 9139 
 
 16 
 
 25 
 36 
 
 9 
 11 
 
 13' 
 
 11 
 
 59 
 
 246 
 249 
 252 
 
 660 
 665 
 670 
 
 1274 
 
 12S1 
 1288 
 
 20S8 
 2097 
 2106 
 
 3102 
 3113 
 3124 
 
 4316 
 4329 
 4342 
 
 5730 
 5760 
 
 7344 
 7361 
 7378 
 
 9158 
 
 9177 
 9196 
 
 49 
 Si 
 
 15 
 17 
 19* 
 
 00 
 
 256 
 
 676 
 
 1296 
 
 2116 
 
 3136 
 
 4356 
 
 5776 
 
 7396 
 
 9216 
 
 00 
 
 21 
 
 61 
 62 
 63 
 
 259 
 262 
 265 
 
 68i 
 686 
 691* 
 
 1303 
 1310 
 
 1317 
 
 2125 
 
 2134 
 2143 
 
 3147 
 3158 
 3169 
 
 4369 
 4382 
 
 4395 
 
 ^^6 
 
 5821 
 
 7413 
 7430 
 7447 
 
 9235 
 9254 
 9273 
 
 21 
 
 69 
 
 23 
 
 25 
 27 
 
 ^4 
 
 268 
 272 
 275 
 
 696 
 
 702 
 707 
 
 1324 
 1332 
 1339 
 
 2152 
 2162 
 2171 
 
 3180 
 3192 
 3203 
 
 4408 
 4422 
 4435 
 
 5836 
 
 ^5^7 
 
 7464 
 7482 
 7499 
 
 9292 
 9312 
 9331 
 
 96 
 25 
 56 
 
 29* 
 
 31 
 
 33 
 
 69 
 
 278 
 282 
 285 
 
 712 
 718 
 723 
 
 1346 
 1354 
 1361 
 
 2180 
 2190 
 2199 
 
 3214 
 3226 
 
 3237 
 
 4448 
 4462 
 
 4475 
 
 5882 
 5898 
 5913 
 
 7516 
 7534 
 7551 
 
 9350 
 9370 
 9389 
 
 89 
 24 
 61 
 
 35* 
 
 37 
 
 39* 
 
 70 
 
 289 
 
 729 
 
 1369 
 
 2209 
 
 3249 
 
 4489 
 
 5929 
 
 7569 
 
 9409 
 
 00 
 
 41 
 
 71 
 
 72 
 
 73 
 
 292 
 
 295 
 299 
 
 734 
 739 
 745 
 
 1376 
 1383 
 1391 
 
 2218 
 2227 
 2237 
 
 3260 
 3271 
 3283 
 
 4502 
 4515 
 4529 
 
 5944 
 5959 
 5975 
 
 7586 
 7603 
 7621 
 
 9428 
 
 9447 
 9467 
 
 29 
 
 43 
 
 45" 
 
 47 
 
 74 
 
 302 
 306 
 309 
 
 750 
 It 
 
 1398 
 1406 
 
 1413 
 
 2246 
 2265 
 
 3294 
 3306 
 3317 
 
 4542 
 4556 
 4569 
 
 5990 
 6021 
 
 7638 
 7656 
 7673 
 
 9486 
 9506 
 9525 
 
 76 
 
 49* 
 51 
 
 S3* 
 
 77 
 78 
 79 
 
 113 
 
 316 
 320 
 
 767 
 
 772 
 778 
 
 1421 
 1428 
 1436 
 
 2275 
 2284 
 2294 
 
 3329 
 3340 
 3352 
 
 4583 
 4596 
 4610 
 
 6037 
 6052 
 6ob8 
 
 7691 
 7708 
 7726 
 
 9545 
 9564 
 9584 
 
 41 
 
 55 
 
 57* 
 
 59* 
 
 80 
 
 324 
 
 784 
 
 1444 
 
 2304 
 
 3364 
 
 4624 
 
 6084 
 
 7744 
 
 9604 
 
 00 
 
 61 
 
 81 
 82 
 83 
 
 327 
 331 
 334 
 
 789 
 
 1451 
 
 2313 
 
 2323 
 2332 
 
 3375 
 
 4637 
 4651 
 4664 
 
 6099 
 6115 
 6130 
 
 7761 
 
 ,7779 
 7796 
 
 9623 
 9662 
 
 61 
 
 It 
 
 63* 
 67* 
 
 
 338 
 342 
 345 
 
 806 
 812 
 817 
 
 1482 
 1489 
 
 2342 
 2361 
 
 3410 
 3422 
 
 3433 
 
 4678 
 4692 
 4705 
 
 6146 
 6162 
 6177 
 
 7814 
 7832 
 7849 
 
 9682 
 9702 
 9721 
 
 56 
 25 
 96 
 
 69* 
 71 
 
 73* 
 
 89 
 
 349 
 353 
 357 
 
 823 
 
 829 
 
 835 
 
 1497 
 1505 
 1513 
 
 2371 
 2381 
 2391 
 
 3445 
 3457 
 3469 
 
 4719 
 4733 
 4747 
 
 6193 
 
 6209 
 6225 
 
 7867 
 7885 
 7903 
 
 9741 
 
 9761 
 
 9781 
 
 69 
 
 44 
 21 
 
 75* 
 
 77* 
 79* 
 
 90 
 
 361 
 
 841 
 
 1521 
 
 2401 
 
 3481 
 
 4761 
 
 6241 
 
 7921 
 
 9801 
 
 00 
 
 81 
 
 91 
 
 92 
 
 93 
 
 372 
 
 846 
 
 852 
 858 
 
 1528 
 1536 
 1544 
 
 2410 
 2420 
 2430 
 
 3492 
 
 4774 
 4788 
 
 6256 
 6272 
 6288 
 
 7938 
 
 7956 
 
 7974 
 
 9820 
 9840 
 9860 
 
 81 
 
 64 
 49 
 
 83* 
 85* 
 87* 
 
 94 
 
 384 
 
 864 
 870 
 876 
 
 1560 
 1568 
 
 2440 
 
 2450 
 2460 
 
 3528 
 3540 
 3552 
 
 4816 
 4830 
 4844 
 
 6304 
 6320 
 6336 
 
 7992 
 8010 
 8028 
 
 9880 
 9900 
 9920 
 
 36 
 
 89* 
 9x* 
 93* 
 
 99 
 
 388 
 392 
 396 
 
 882 
 888 
 894 
 
 1592 
 
 2470 
 2480 
 2490 
 
 3564 
 
 4858 
 
 6pi 
 6384 
 
 8046 
 8064 
 8082 
 
 9940 
 9960 
 9980 
 
 09 
 04 
 01 
 
 99* 
 
 100 
 
 400 
 
 900 
 
 1600 
 
 2500 
 
 3600 
 
 4900 
 
 6400 
 
 8100 
 
 lOOOO 
 
 00 
 
 
MATHEMATICAL SERIES 
 
 While this series has been planned to meet the 
 needs of the student who is preparing for engineer- 
 ing work, it is hoped that it will serve equally well 
 the purposes of those schools where mathematics is 
 taken as an element in a liberal education. In order 
 that the applications introduced may be of such char- 
 acter as to interest the general student and to train 
 the prospective engineer in the kind of work which 
 he is most likely to meet, it has been the policy of the 
 editors to select as joint authors of each text, a 
 mathematician and a trained engineer or physicist. 
 
 The problems as well as the applications intro- 
 duced in the text are of such a character as to draw 
 upon the student's general information which will 
 be of use to him later in the application of mathe- 
 matics. Without sacrificing the value of mathe- 
 matical study as a discipline, it is the purpose of the 
 series so to correlate the mathematics with the phy- 
 sical applications as to stimulate the interest and 
 train the student to use his mathematics as a means 
 of investigation and stating the laws of physical 
 phenomena. 
 
 The following texts have appeared : 
 
 I. Calculus. 
 
 By E. J. TowNSEND, Professor of Mathematics in the 
 University of Illinois, and G. A. Goodenough, Professor of 
 Mechanical Engineering, University of Illinois. $2.50. 
 
 II. College Algebra. 
 
 By H. L. RiETZ, Assistant Professor of Mathematics in 
 the University of Illinois, and Dr. A. R. Crathorne, Asso- 
 ciate in Mathematics in the University of Illinois. $1.40. 
 
 III. Trigonometry. 
 
 By A. G. Hall, Professor of Mathematics in the Uni- 
 versity of Michigan, and F. G. Frink, Professor of Railway 
 Engineering in the University of Oregon. $1.25. 
 
 HENRY HOLT AND COMPANY 
 
 NEW YORK CHICAGO 
 
ENGINEERING BOOKS 
 
 Hoskins's Hydraulics. 
 
 By L. M. HosKiNS, Professor in Leland Stanford Uni- 
 versity. 8vo. 271 pp. $2.50. 
 
 A comprehensive text-book, intended for the 
 fundamental course in the subject usually offered 
 in schools of engineering, but somewhat more com- 
 pact in treatment than the ordinary treatise now 
 available. 
 
 Russell's Text-book on Hydraulics. 
 
 By George E. Russell, Assistant Professor of Civil En- 
 gineering, Massachusetts Institute of Technology. viii + 
 183 pp. 8vo. $2.50. 
 
 This book is designed primarily for classroom 
 use rather than for reference for practicing engi- 
 neers. It avoids discussion of specialized topics 
 which are taught separately with special books and 
 devotes itself to the consideration of the more com- 
 mon and important subjects. At the end of each 
 chapter are given problems to illustrate the appli- 
 cation of the principles just preceding. 
 
 Benjamin's Machine Design. 
 
 By Charles H. Benjamin, Professor in Purdue Uni- 
 versity. i2mo. 202 pp. $2.00. 
 
 Machinery : — We know of no v^^ork on Machine Design 
 which can be more heartily recommended to the average 
 student than this. . . . The work has the characteristics of 
 Professor Benjamin's writing in general ; that is, clearness 
 and simplicity. It is brought up to date, containing, for 
 example, a summary of the paper on the collapsing strength 
 of lap-welded steel tubes presented by Professor Stewart 
 before the spring meeting of the A. S. M. E. in 1906. 
 
 Leffler's The Elastic Arch. 
 
 With special reference to the Reinforced Concrete Arch. 
 By Burton R. Leffler, Engineer of Bridges on the Lake 
 Shore and Michigan Southern Railway. viii-}-57 pp. i2mo. 
 $1.00. 
 
 HENRY HOLT AND COMPANY 
 
 NEW YORK CHICAGO 
 
14 DAY USE 
 
 RETURN TO DESK FROM WHICH BORROWED 
 
 LOAN DEPT. 
 
 This book is due on the last date stamped below, or 
 
 on the date to which renewed. 
 
 Renewed books are subject to immediate recall. 
 
 290ct59lii 
 n^C'D LP 
 
 PCTisigsg 
 
 8JuI'6UM 
 
 RECn 1 D 
 
 JUN 841961 
 
 FEB 7 1969 3 8 
 RECEIVED — 
 
 M^*^ 25 '69 -8 AM 
 
 LOAN DEPT. 
 
 MAR 6 1975 4 
 
 REC. CIR. MAR 6 '75 
 
 KTTt 
 
 1^ 
 
 Wl 
 
 jtECCIR- J>Pli?9 
 
 31 
 
 LD 21A-50m-4,'59 
 (A1724sl0)476B 
 
 General Librsuy 
 
 University of California 
 
 Berkeley 
 
/'^ 5'S %3 - 
 
 t^ 
 
 '^ZZ^^ 
 
 918r8e< - • 
 
 ^^^5"^^ 
 
 //2r 
 
 THE UNIVERSITY OF CALIFORNIA LIBRARY 
 
 W 
 
 // 
 
 ^ J 
 
 ^,r <^-^/^