IRLF ES7 00 O >- ^BBMBn^PiMi^nii'r" Wrr^ ^ mMfT^^"^=^~rK-1 ft" yWOT-^-V-T *TTT^F x^- ^^*^^^3/n ^ ji>- Fx-<-^--^F^^t-^^^ -^^^ ' vc t c n x \ REESE LIBRARY ^ ^vmr ^%fliilsE'^ ! ' V^^^^siF- OF THE , m UNIVERSITY OF CALIFORNIA. IP 2^, r /7 fi P^xl^i. V -^^^^C , i8&/ T^^^Mr^*' /I fe / K Accessions No.^*^- ^ / Shelf No J < \, " cj , 3 ^C*^ B*V, > JM|b^3Sg< I ^f.'. 1 ' l< 111 *l ' l ll'll m < 1*1 fcC'TI ^illllil" ! rl 1 HI' 1A,,t: 1 i V ", THE THEORY OF THE CONTINUOUS GIRDER Its Applicatioq to Girders with and without Variable Cross-sections, BY A. HOWE, C. Professor of Civil Engineering, Rose Polytechnic Institute. UNIVERSITY NE\V YORK: Eqgiqeering News Publishing Co, 1889. Entered according to an Act of Congress, 1888, by MALVERD A. HOWE, in the office of the Librarian of Congres at Washington. MOOKK & IjANGfEN, Printers, Terre Haute, Ind, PREFACE. Continuous bridges with the exception of draw bridges- are not considered economical and are not designed by. American engineers. This probably accounts for the brief treatment the theory of the continuous girder receives in text books and engineering literature. With one or two exceptions, all American treatises con- sider the moment of inertia as constant and deduce two equations for the moment over any support, one to be ap- plied when the loads are on the left of the support and the other when the loads are on the right. These two equa- tions combined would, of course, give the moment over any support for any load, but only when the moment of inertia could be assumed as constant, as in girders with parallel flanges, where it might be undue refinement to consider the cross-section as variable. American engineers have, until recently, assumed the moment of inertia as constant even when the flanges of the girder were considerably inclined, as in the Sabula draw bridge, relying upon the factor of ignorance to cover all dis- crepancies which might arise from the assumption. A few years ago the modulous of elasticity was quite variable in large bridges though all engineers considered it as constant in computations but now, since experience shows that iron and steel can be manufactured with, practically, a constant modulus of elasticity, it may safely be considered as con- stant, without leading to any appreciable error. Although no material may be saved by considering the IV PRP:FACE. moment of inertia as variable yet, if it is so considered, the material will be placed where it will do the best ser- vice. Girders with inclined chords, computed and designed as if their cross-sections were constant, have more material than is necessary in some of the compression pieces, and not enough in some of the tension members, as is clearly shown by the results on page 77 of the text. The object of the following pages is to present to com- puters, engineers and students a complete mathematical treatment of the theory of the continuous girder, and show how it can be applied to any girder especially to fixed girders and girders of two and three spans under any conditions. With the single assumption that the modulous of elas- ticity is constant a general equation has been deduced for the moment over any support of any girder under any conditions of loading, of any length of spans, of variable or constant cross-section and for supports at any level. By difference of level of the supports is meant any change of level which may take place when the girder is in position. It is evident that such a change alone would affect the mo- ments. From this equation special equations are readily deduced for any particular case. To illustrate the sim- plicity of the transformations necessary for any special case and also for the convenience of engineers, equations have been given for all the special cases usually discussed in text books, and also equations for these cases when the moment of inertia is considered as variable. The usual general equations for reactions, deflections and intermediate moments and their transformed equations for special cases are also presented. Several examples are solved to illustrate the application of the formulas and to show that the processes are almost mechanical when the formulas are thoroughly understood. From those examples which are solved considering the mo- ment of inertia as constant and then variable, a good idea of the manner in which the moment of inertia affects the PKEFACE. V results can be obtained. In the case of the Sabula draw there is a difference of about twenty per cent. In all pin connected bridges the loads are considered to be concentrated at the apices or panel points. In com- puting the moments for such girders Table I. will be found to be very convenient, as in it are found expressions for rfk-tW+k" and A- k' 1 for all values of k= / from 0.001 to 0.999 inclusive. The works enumerated under References, page 107, have been consulted, and some of their parts used without any material change, for which credit is given in foot notes. The author is indebted to R. H. Brown, C. E., and Geo. H. Hutchinson, C. E., for valuable assistance and sugges- tions. M. A. H. TERRE HAUTE, IND., September, 1888. GENERAL CONTENTS. PACiE. Nomenclature 1-2 I. GENERAL RELATIONS. Conditions of equilibrium In any girder 4 General relations betweenthe moments and reactions and the loads . . 4-6 Equation for the moment over any support when the moment of inertia is variable 7 Equation for the moment over any support when the momen 1 of inertia is constant 12 General equations for Shear 15-16 General equations for Deflection . ... 17 II. SUPPORTED GIRDERS. I. A simple girder resting upon two supports 19-20 II. A beam continuous over three supports .... 21-26 III. A beam continuous over four supports . . . 27-28 IV. "The Tipper" 29-83 III. BEAMS WITH FIXED ENDS. I. A beam fixed at one end, and supported at the othf 1 ' 34-38 II. A beam fixed at both ends i(9-41 III. A beam fixed at one end, and unsupported at the othei 42-43 IV. A beam 011 two supports, and one end unsupported 44 V. A beam on one*support, having one end fixed, and the other unsup- ported 45 VI. A beam on two supports, having neither end supported 6 IV. THE POINT OF ZERO MOMENT. General equations with graphical determination of the point of zero moment . . 47-51 vni GENERAL CONTENTS. V. APPLICATIONS. PAGE. Examples illustrating the application of the formulas o2-XM APPENDIX. Determination of the equation of the elastic line 8<>-87 Demonstration of Equation (A), p. 7 89-100 Demonstration of the equation of the elastic line 80-88 General expression for the Theorem of Three Moments &7 Demonstration of Equation (A) ' 8W-10O TABLE I. Values for k 2 k*+k 3 and k k* for all ratios ~ = k from .mil to .9W*, in- clusive 101-UHi REFERENCES. Some references to monographs, periodicals, Ac., which consider the theory of the continuous girder 1(>7-108 INDEX. Index of Equations . XKMlo si MMARV. Summary of contents 111-11(1 NOMENCLATURE. number of the support just at the left of the /" span. r=The horizontal length of the span r. -P r =Any concentrated load in the i** span. tc r =Any uniform load, per lineal foot, in the j** span. a f =The distance from the left support r to any concentrated load P r . a=J: r l r , t r '=The distance from the support to the point where the uniform load ends in the /" span. O/' The distance from the left support r to the point where the uniform load begins in the /** span. T fl r Kj= -T-, or, a r =k r l r , x r =The distance from the left support r to any point in the J w * span. JIr==rhe bending moment over the support r. bending moment over any support m. bending moment at any section, x r from the sup- port r. JJT=The bending moment at the center of any span of a girder. shear just at the right of the support /'. shear just at the left of the support r. reaction at the support r, and equals S r ^-S r '. distance the support )' is below some specified hori- zontal line of reference. n of summation. 2 THE CONTINUOUS GIRDER. ,.=Tangent of the angle that the elastic line makes with the horizontal over the support r. y r =The deflection of 1he girder at any section or,. ; y/,.is meas- ured from the horizonal line of reference. S The number of spans. e, The distance from the left support r to the point where the moment of inertia of the section of the girder changes for the fi^t time in the span i*. e 2 =The distance to the point where it changes the second time. e v =The distance to any point where the moment of inertia changes, always measured from the left support / and in the span r. Ii=The moment of inertia between the last value of e e and the end of the /*"* span. See Fig. _t>=The moment of inertia between the support r and the pointy. j, The moment of inertia between e t and e 2 in the r ( " span. ,7,. The moment of inertia at any section in the r m span. 12=The modulus of elasticity. GENERAL RELATIONS. * In the '/** span of a continuous girder, whose length is r , Fig. 1, take a point o vertically above the r'" support, as the origin of co-ordinates, and the horizontal through o as the axis of abscissas. Suppose any section of the girder at a distance w r from the left support r, and between this section and the support r a weight _P, distant from r, Or=k r /,.. Now, if the girder is continuous over any number of sup- ports there will be a bending moment over each of them (if the ends are not fixed the bending moment over the first and last support will equal zero): JC-/ over r 1, lML r over r, Hfr+i over r-\-lj etc., also, there will be a shear S r just at the right and $,. just at the left of /*, $.+,, just at the right and Sr+i just at the left of r-\-l, etc. If there is equilibrum the following conditions must be fulfilled : * See "Continuirlichen Und Einfachen Trager," page 4, by Prof. Weyraucb. "Theory and Calculation of Continuous Bridges," page 52, by Prof. Mer- riman. "Strains in Framed Structures," page 244, by Prof. DuBois. 4 THE CONTINUOUS GIRDER. /. The algebraic sum of all the horizontal forces must be zero. II. The algebraic sum of all the vertical forces must be zero. III. The algebraic sum of the moments of all the forces must be zero. From the third condition we have for any section in the r'" span, M,. M r -4-S r x P,. (x r a,'.) .... xa r . . ... . . .(1) If in (1) we make w,.~l n .M r ~M r+l , and it becomes M r+i =-M,A -S f I,. P, (l r a,.), or, since a, &,. /,., we have M r+i = M,A -S r lrPr I (1 ^ ...... . . (2) From (2), And if there is no load in the span r this becomes r= M. L -M r t ^,P,S n therefore from (3), ^ -K-ML.:p f t , ,,. better, And if there is no load in the span '/* /, (o) l)ecomes The reaction at any support equals the sum of the shears at that support, or GENERAL RELATIONS. 5 The above formulas were deduced under the supposition that there was but a single concentrated load JP, in the span r. If there be more than one concentration, the formulas become : (1) M r ^=M f -\ $,. x,.l' P r (x,.--a,.) . . . xa, ...... (8) (2) M^^lC+flt lr- P, /, (/-*) ......... W (3)- N,- -^ Mf ^P, (/- A- ( .) .......... (10) partial uniform load itt span r. If to, represents the uniform load per lineal foot in the span /, we can write ,., fc,. /,. I ft= ,, da,, or, since a,., fc ,. /, d k,.=lw f I,. k f ) (12) ar=k f l f fc '-V The last expression in (12) indicates the difference of the values of the parenthesis when A', equals - and - re- spectively. Substituting (12) in the above equations, we have, From (8), M r =M r +S r x r --Cw r /, d k r (xk f I,} . . . xa, (13) A 1 ; #) *U See (57) .... ............ (74) Uniform load orer all Uniform load over all A,= - w,. Ill <>,._, 4 B, Concentra ted loads B,.= -S P, I- (Av-A:;) o r . ....... See (58) . . , (./) Partial uniform toads GENERAL RELATIONS. 9 Concentrated loads- Partial uniform load a r =k r ! r " r = -F r *, /; o r _, | fe,- -L A-f | +H r o r _ t . , (78) Uniform load over all Concentrated loads '^= ~2F;_, IP r _ s !,_, (lk,.^ O-ILL, O r ... See (59) . . . (//.) Partial uniform load ;L,= -2 F;_, o.w^i^, k r _ t - ~v_, [ -H r '_ Vf ) GENERAL RELATIONS. 11 Partial uniform load OT 2 P f (e r a r y=Cw r d a r (e,,-o^ . . . d,a^= Cw r d a f (e v ~^Y=-i w r c . (85) ./ ?> For all loads v=l r "=2: A ^~ .......... See (50) ' 12 THE CONTINUOUS GIRDER. / S,.=:(7 r +F;) #,. + , See (60) ..... (?) fr r =(l r _i -f /Vl/) 0r-k(Jr+#) #r-, - - . SeC (61) . . ... . () ^,._ ; See (62) . . . (0) /,_; /,. ) O r =6 E f, See (51) (e) c,=o. c a =l. c m - 2c m _ j -^ L r m _ s '/"~~ . . . See (66) (p) d.= -2 rf._^=L. ._ rfM |= / J x-i+2 P-,>i+2 . .See (68) ..... (r) By means of the above equations we can deduce the bend- ing moment over any support of any continuous girder under the single assumption that the modulus of elasticity, E, shall be constant. E AND I CONSTANT. If the moment of inertia as well as the modulus of elas- ticity is constant our equations will be much more simple. By inspection, we see that (a) equals zero, and hence jP r , Fr and F,,'.' equal zero and also H r and H t ; hence X,' and X^L t equal zero. By reduction we obtain . (A,) GENERAL RELATIONS. 13 r,=o. r g =--l. J , ? . /,-*+/,-/ In,-, L ltt ; 'ill I (lo. d a =l. l S - m+ 3 + l g - m+3 l -m+3 fc .< m+S Concentrated loads A = - I P r II (2 k r 3 # + fcj) (v; ; ) Partial uniform load A r = - w r /; ] ^-4? h-j- r ( 86 ) 4 J ;: ==ib r /,. Uniform load over all A r = ~ w t . /; (87) "^ Concen t rated lott ds Partial uniform load {O L2 7./, -j (t r =K r l r %r (88) j o;=k r i r Uniform load over 4rW* (89) 14 THE CONTINUOUS GIRDER. E AND I CONSTANT Span* equal. If the spans arc equal, the equations of the last case reduce to, -+* * ' 1 H ) r/,-0. (91) B, Concentrated loads B,.= - 1' P,. I 3 (kty (j g ) Partial uniform load t'etr' &.* o' r =k r t *= -^'l^Tr). (92) GENERAL RELATIONS. 15 Uniform load over all B r = - w r F . (93) -y h V I' T? f ^ " " r " Jr ' "(+/ In case the supports are at the same level, Y r =o in all equations. From (p.}) and (/*.,) we obtain the following values for c and (I: Ci = = d, c 7 = 780 = d, c 3 = - 4 = d s c 9 = 10864 = d c 4 = + 15 = d, CF= + . 40545 = d lo c 5 = - 56 = d, Cll = - 151316 = d tl c 6 = + 209 = cl G r, 3 = -f 564719 d Explanation of Table I In the co-efficients (2 k r 3 # + #) and (k r k?), k, is a fraction and equals -y 1 , henc^, it is immaterial about the actual values of a '; and I as long as the ratio is known. The ratio k r has been assumed to have all possible values from .001 to .000 inclusive, and the respective values of the above co efficients, carefully computed, are given in Table I. A few trials will prove the great utility of this table, and convince the computer that much time and labor can be saved by its use. SHEAR. The moments over the supports being determined, the shears can be found from the folio wing formulas, which apply to all cases. 16 THE CONTINUOUS GIRDER, + <2U ....... See (11) . . . . (C) ,._; In which Q and Q' have the following values: Concet it MI ted loads Q r =? p r (i-k,) .................. 0)4) Q f =SP r k ..................... 0)5) Partial uniform load ' / / Q r=Wr I, ]^=^j- _ ' " . . . ( vi , d,=k, I, ,.=w, l r \-f . . (97) V ' Al /' / a" r =k r I,. Uniform load over all INTERMEDIATE BENDING MOMENT 8. General equations for all possible cases. M^Mr+SrTrLr .......... See (8 ) . . - (D) In which L has the following values: Concentrated loads L r =IP r (xa r ) .......... ax, ...... (100) Partial uniform loads L r =w r a r (x r -^-} ..... a' r GENERAL. RELATIONS. 17 DEFLECTION. General formula. E alone constant. ? =h+t + :-*$SM T* s. tf- v P(x aY\ 6EI t * + - "^ (-**- - A) \ 3Mr e *fc ,- H^V ^ tf E/I ,/_, / *' ' -rp r ( ey a> y 3 (xe v ) 2P r (ea r y\ . See (39) . . (E) t r+l =. Ad_p^!L _}_ .__!_ | Mr ^_|_ ^ j/ r+/ l^^p^l (k r ls* r ) | 1 r f rf 7 -' 1-^ -T-|| Mr i$ -T 1 )-}- Mr+1^~ 6EIJ, v=l r ^j v _ t j ' ( + * + -f ? P r l r (l-k r )^ P r (e v -a f y-3e v S P r (e-a,^ . .(45) For uniform, loads a r =a r a,.=k r l r Z p r = C Wr d a r = Cw r l r d k, ........... (12) a r =a'r a'r=k r l r Remember that in the terms containing (x a) and (e a), x and e must never be less than a, or rather a^x or e E AND I CONSTANT. If the moment of inertia is constant the preceding equa- tions reduce to, yr=h r +t r x,+ ~jjnT r T r -\S r xt~^P r (x r -~a 1 ) :i . . (E,) tr+^ 'f * ^J { Mr 1+2 MT+, l f +S P r l> r (k r ~K) } - - (45 a ) 18 THE CONTINUOUS GIRDER. For uniform loads a r =a r a r =k, I,. Z P r = Cw r d Ur= Cw r l r d k r (12) a r =a'r a'r=k r l r If the supports are at the same level, the terms containing h in the above equations become zero; the equations re- main the same in every other particular. We have now deduced general equations by which we can determine the bending moments, shears and deflections for any continuous girder. In the next chapters we will give numerous examples or special cases illustrating the applica- tion of the formulas. II. SUPPORTED GIRDERS. CASE I. A simple girder resting upon ttvo supports 'Jr. sfe ft & W %. s. y ( a ) E alone constant. From (A] we have for M, and MI 2 t=M 3 =0 .................... (103) From (B) and (C) ,-=Q t ...... . .............. . (104) =e; ...................... (105) Or ,= P, (1 k t ) . . for concentrated loads ...... (106) i=2 PI k, . . for concentrated loads ......... (107) S f =Wt I, -,&/ . . .for any uniform load . . . (108) * ! a'^k, I, ( k 2 , ) a i~k t l t S 2 =w i I, \-jrr -for any uniform load .... (109) ' d;=k,l t $,= w t l t , . .for uniform load overall . . . . . . (110) 20 THE CONTINUOUS GIRDER. Sg= -r- w, I, . . . for uniform load over all . . . . . .(Ill) From ( J>) the bending moment at any section x, is Jt'<=$ &, L, .................. (112) Substituting the values of &, and L, we have, For concentrated loads M X =Z P< (l-k t ) x-Z P, (x-a,) . . .. :/<.c. . . .(113) For any uniform load a', a,=a'i M*= *< w, I, { k~ f-| - w, j, (z, - ^ ) j- a, (,,-^. ..(127) v=l ;= Z A I ^ Pt (e ~ a ' )3 - 3 - v p, (e-a,Y \ . . ( 128) V { I, i, ) v=l, -T- .......... ........ (129) A=v- -T- (180) ........... (183) v=! 2 =6 E /(/,+ F;')-\-6EI t . (134) SUPPORTED BEAMS. 23 A% and BI Concentrated loads A,= - ? P 2 II (2 k,3 kl-\-kt) 6 E I t (135) B t = - S P, If (kkf) 6EI t ' (136) Partial uniform loads . d,=k, I, /?,= -wJ^-^^^EI, . . . . (138) a'i =k, I, Uniform load over all A 2 = -J,w,li#EJt (13 ( ,)) n,= - -4- Wl i? 6 E i t . .... (iio) 4 a,.=a' r a' r =k r l r Z P r = Cw r d a,= Cw r l r d k, (12) " " 7 7 Shears and intermediate bending moments For shears and the intermediate bending moments, apply the general equations (IB) (c) and (I>), and for deflection use equations (E) and (45). (6) JE and I constant. In this case, we have from the equations under (a), M,=M y =o . (141) 24 THE CONTINUOUS GIRDER. Y,+A,+B, : In which, Concentrated loads = - i' P, // (Jg fc-5 */+Jk/) (14*) ,= - S P, If (k,k?) ... (145) Uniform load over all <*'a=k s L (146) 1 *;=*, /, Uniform load over all A 2 = 4-^ V ........ (148) B t = - W7 / ^ ................... ( 149 ) 4- As this is a case much used in practice, we will give ex- pressions for the bending moments in terms of the spans and the loads. Concentrated loads v _ V P / 2 K _ v P 1 ~ 1C _ J * - ' r * '2 *^2 - 1 r > l 'i A / ^r\\ *(/,+ In which, 2 =2 k,3 k/+k, ....',...., ...... (151) And ;=k,k; s ................ ..... (152) SUPPORTED BEAMS. 25 From(J?) and ( C), y ___ \' p l 2 L^ _ v p / " [+ - _ -,,, ~in(- ' " (164) Or, Uniform loads over each span Y g WV // W7; If - F 2 + w 2 Z/-(- w, If Or, The above equations at once reduce to (158) w, II w f If F 2 + -y- w, 4*+ -y W, f ' + - w< '' ..... (160) 26 TIIK CONTINUOUS (J ,- - w,i*- -w. i (c) E, I and It In this case, the formulas are the same as in case (ft) with the term Y g =0. (d) E, J, h and I constant. Making l,~l g , the equations of case (6) reduce to Conceit t rut i*<1 font Is v /' / l\ v /' / A" - - /y h Ay- 1 t i, A, Or, V /> /.' N' /> /.' - .' V , v /' A' v P V 3,= ^- '-+P,(1 k.)=R,. .(166) (166) /, i >' /> A' v /> #" , SP.(1 /.,) ' (167) v /' / v /' ( I 1- \ l> i ir _/,/,, _ / ( / /, . i /, . . ( I (>, I it i form loffd owr it/ltr, // // '.= -"< < 170 > , / 1.5 -f w; ^ -^- / i / / ^ 1 7'^ \ l ~U~ ' fc ~T ~^~ W I - -Q- V t ^ I / ) ^1 Q A? O H x f _ p > W f r f - fV n t!74) .-I CASE III or<>r four , J ( (1 ) / > : v V \ B,rf.) .1 ) \ \ i .; \ ',.1 ) .V \ ../?.<,} . T * I** ( ' Which minors to tho following: f ( A- } \ .V ,: . - ( ; , , , , - - f - flTS) (176 " X 7>> I : ' \ \ I'so general e<|iuitions tor tho various torms in the and also tor shear, intormoiliato moments anil 28 THE CONTINUOUS GIRDER. (b) E and I constant. Our equations now reduce to M (Y,+A,+B,) 2 (k+g-^, 4 (ft ' ,. ,-, 4 (/,+ (4+4)-4* (c) H, I and h constant. 2 (4+4) (^+B,)-^ (A S +B,) - TUT v \"/^ *g/ V-"an ^~V frg ^x^-p^y /ioo\ *s / // \i\fi i 7~\ 71 (^"^/ (d) JEJ, jT, /i and constant. (184) Uniform loads If each span is covered with a uniform load, we have = -* "'^'- *-+* tf . . . ....... (185) ^-^tf-tf+u,,// ..... ..... (186) If w,=Wg=w s =w, and / / =L=/ V = ) we obtain, at once, the well known forms, M 3 = *? ...... ........... (187) -wP .................. (188) SUPPORTED BEAMS. 29 And for the shears we have = -^-"M - - w l=;^. w i=R f . , .(189) wl ......... (190) Jo wl (192) wi + --wi = j-wi ...... (194) -ivi-\--wi = -v>i*=R 4 . ...... (196) CASE IV. * We will now consider the case of the "Tipper," or a beam continuous over four supports, the second and third supports, resting on a rigid beam, supported, generally, by a single support at its center. It is evident that if supports 2 and 3 are supported by an unyielding bar, which is supported, in turn, at its center, that the reaction J?., must equal the reaction It, 3 , and also that -\-fi s = Ti s . If the unyielding bar is not supported at its center, H,, and _B. V will be inversely proportional to their lever arms around the point of support, and -\-h a and h 3 will be directly proportional to the lever arms. See " Strains in Framed Structures," page 2o4, by Prof. DuBois. 30 THE CONTINUOUS GIRDER. The unyielding bar supported at its center a_^ i M, M, ^Tf/z> I ^ '*^ x>fts* v ? < HP * ^ ^r *** * ~2 I ~ \**z 7> (a) E alone, constant. From our general equations, by reduction, we obtain, ''/ ^8 p - ~ 3 -L * 3 i r>' -i_ D n QK^ i i V^9 "| ^C3 V * vOJ Since R 3 ~R 3) we have ^ -?- -f - ^1 i- + Q' i J r Q 2 Q' 2 Q 3== . . (199) Q Q' -V p^ /j ^ fc \ (200) Let Q't+Q a Q'sQs=Q - (201) l,=n I, and l s =m I, . . (202) Then (199) becomes n M 3 m M s -\-2 m n (M :i M 2 )-}-m n Q 1 2 =0 ..... (203) Or, n M 3 m M 2 -\-% m n (M 3 M a )= - m n Q L (204) By inspecting the equations under Case III, we see that the moment equations may be placed under the following forms : M S =C; K+C; Y,- SUPPORTED BEAMS. 31 From (205) and (206), we have ;c t ) .... (20?) Substituting (205), (206) and (207) in (204), it becomes f +n C' 2 Y 2 +n C' 3 Y a +n C' t } I _ TO a F f -ro C, Y 3 -m C, [=- mn Ql 2 . (208) + is determined from (217), and Y 2 and Y 3 from (210) and (211), the bending moments are readily obtained from (179) and (180). If h i =h^=o i as is usually the case, the process becomes still more simple. (c) E and I constant. h,=h 4 =o. 1,-l^L L=n I. h= -h :i . We have, as in (), by a little reduction, n (M 3 M,)-\-2 (M S M 3 )= -nlQ . . . . ..... (218) Or, (n+2)(M s -M,)= -nlQ. ........ . .(219) Letting . (/,H-4) <^+4) l,*=D I ......... (220) We have, from (179) and (180), *, _ t tt,, n s Then, D (M s ~M,)=(Y a +A s +B s ) 2 (n-^l)-(A^B t +Y s ) n (Y 3 +A 3 +B,)n -(At+Bi+Y,) 2 (n+1) . . (223) SUPPORTED BP;AMS. ;>-> Hence, Y a (Sn-\ 2) Y a (Sn 2} (A, ; 1L -A S -B) (3 n+2)=(M 3 -M,) D . . (224) Substituting (224) in (219), it reduces to (YsYa+Aa+B^A^BdtSn^^fy+fy^ -DnlQ . (225) Therefore, Y,-Y,= (3 ~^l n % -A : ,-B 3 +A s + Bl . . . .(226) Since hjh 4 =o and h s = h :ij n= 6 E I = + :f , : + 6 / (228) ( I ('>) (. M L ) Therefore, 1V= -r, .................... (229) And Y, Y 2 = -2 K. ...... ......... (230) Hence, r J^ /( l_ . ^.-F-ft-^-^i - But, D 1=4 (/,+ (^+y-// /; 44-4 4 I, ^^ I l t + ll_ll = ^ /*._)_ n ^_|_ C 5 ^ ^-'^p (3 U 3 l\($n+2)fy+2) ..... (232j And Q=^^~({<~Q, .............. (201) Substituting (201) and (232) in (231), we have Y _ llM+Qi-Q-Q^A^Bi-At-B, * 2 ,> *3 I -'Jd ) (233) completely determines 1^ and 3^ y , and now the bending moments can be deduced from (179) and (180). III. BEAMS WITH FIXED ENDS. In this chapter we shall consider beams with one or both ends fixed. CASE I. A beam flxed at one entl and 7i o, hence, we can use the equations of that case by making the proper changes. (a) E alone constant. (124) becomes M>-(A+K4A7) (234) BEAMS WITH FIXED ENDS. 35 (134) becomes * K= 3 n FJI t 7, j^r^j ........... (235) By inspecting equations (124) to (134), inclusive, it is seen i that we can cancel out 6* JEJ I t Irom all the terms in (234), hence, we can write *F,= -0j/,^r^ .............. (236) fi=l s +F s .................... (237) 2 2 I,-, I *i 3 L < 129 > v=l =^ (133) ..(127) f ) v=L ;=H 3 F:P a l s (l-k s ) .............. (238) Concentrated loads ,= I P, I* (2 k3 kf+kf) ........... (140 * In reality, 7 { ] ^-, Ii \ -jr \ which is indeterminate, (. h } (. U~' ) but the above form is the only logical one which the ex- pression for Y s can take. 36 THE CONTINUOUS GIRDKH. Partial nit i form loads f T, A \ GLo^Ko I.) A 3 = - w, // -*/--*/+ --f- ........... (146) -4 >:-L/, Uniform load over nil A.= 4- m, I* . . (148) 4 Shears and intermediate betid itt-f/ moments For shears and the intermediate bending moments, apply the general equations (.B), ( C) and (_D), and for deflection, use equations (JE7) and (4o). (6) JS7 and JT constant. For this case, (129), (131), (133), (127) and (238) be- come zero, and (237) reduces to &=J, ..................... (239) we have from (234) or (142) In which the values of Y 2 and A,, are given by (236), (144), (146) or (148). As this is a case quite likely to occur in practice, we will give expressions for the bending moments and shears in terms of the loads and span. Concentrated loads Substituting in ( 144) in (240), or from (150), we have ^= r '~^ //g ' ............ .... (241) In which K 2 =2 k,3 H+H. From (B) and ( C), or (155), S,= r f* ^ K * 4- I p^ (1 ]<)=& ...... (242) BEAMS WITH FIXED ENDS. 37 Also, (see 157). fifr=? -^P^ + - A **=#, . (243) Uniform load over all The above equations at once reduce to K- 4- v*K. ;!/=-" !> I, y, ^w, u s ?= ~^rp - + -J- * ^=ft +;T* .- 4- tr. I* s:,= __i_ i (c) .fJ, I and h constant. In this case the formulas are the same as in case (b) with the term Y 3 =0. The formulas are : Concentrated loads M - Z 1\ I, K., M <= ~J^ ........... (247) V*=^-j^ -f R (1-L)=R, ........... (248) S= ~r~^ +?RL=R :i ...... (249) Uniform load over all (244) becomes M*= -- ?'V// - ............... (250) (251) 38 THE CONTINUOUS GIRDER. S= - 4" Ws k+ 4- w s 4= -|- w>.o 4=#, ...... (-J52) From (18), we have JM^ : -|-'b(^t>--tf-4aS) ...... - ..(253) Mix. Af= - 4- '" f *=^ ....' (254) x - And CASE II. A beam fixed at both ends 39 . . (262) . (263) This is the same as Case II, Chapter II, with h t =h 3 , h 4 =h s , i 3 l t =o, 1 3=0, and 7i=o,-and I t =o. (a) ^J alone constant. From (177), we have (264) From (178), (265) 40 THE CONTINUOUS GIRDER. (264) reduces to And (178) becomes . (267) TY-y r , 4 ft ft ft ft (. In which, after dividing by 0,^=0 o s , (268) ........ (269) (270) ...... (271) ..... (272) -. .............. (278) The values of the remaining terms are easily found from the general equations, remembering that H, or 0,, has been cancelled out of each term. ( b ) JE and I constant. From (266) or (179), we have From (267) or (180), we obtain (1- + ^)^L-(A + K) /,_^(}>^)-(A + K) 5// "5T" ' ' (2lo) In which the terms have the values given under (~^ir- (277) For concentrated loads we can write MS = - 3 ' ~ (2" 8) And 2 V P I K'4-^P I K if ~ " r * l - A 3 i ('27Q} aJL& \ i u I Uniform load over all M 3 = - ^ w, U=M :1 (280) SM= 4" ^^V^S C 281 ) 2 If x=0 - 12 \ If h^=h ,=- 0. 1 Max. M x = - ^ w, %=M 9 =M 3 (283) =?-g-j * x ** W2 '^v+i'/) - - .*,=: . -(284) A single load In the centre of the beam By using Table I, we have at once from (278) and (279), ~ P * L - . (285) A ( 286 ) 42 THE CONTINUOUS GIRDER. Also, *-w **< - . - (287) . (288) If jr a =0, And Sfb= r-*.a5r) - - iKtfrF /, - - (291) CASE III. A beam fixed at one end, and unsupported L=0, and since M 3 =0, we have BEAMS WITH FIXED ENDS. 43 M,= -IP 2 Lk, . . .S a =SP a (292) Showing that the moment of inertia does not enter into the expression for the bending moment. Any uniform, load M,= ~ w, (a-al} (ai+ai) (293) S 2 =w, (ai CQ (294) From (8), M x =0. xa 2 And M x = I P 2 ( x a 2 ) . . . x g *j (sio) M s = - Q:i :i (307) (c) J5J, I and h constant. 1 c ^ (311) M,= -.-/'" If Let IB C represent any unloaded span. Then, IB H=x r for m<,r+l or a load on the right, and T> K=.r, for m>r or a load on the left, if E B=c n C F '=-- - c r +i -^ Pr F C=d^r+ t ^ and B E'= - r H-/ If the span considered is loaded, then the value of x r must be obtained from ( T)). If the supports are level, and the span considered is uni- formly loaded, .T r ,and also the bending moments, can be found graphically. Considering the span r as discontinuous and uniformly 1 1 loaded, the bending moment at the centre equals - - w r l' r . o Now, in Fig. 10, we wish to draw the moment parabola, so that A M=M r and B N=M r+l . We know H K must equal -~- w r I 2 ,.. Let D and C be the points of zero moment o for loads on the right and left of the span r. On the ver- tical H K take any point Jt and draw h D in and 7t C n, and connect in and n. Make n p = - - w r ?;' and draw o p r parallel to in n until it is intersected by in h, pro- duced in the point r. Draw r H and s jKparallel to li, and also jM~ ^parallel to in n. Then is H K= -~ w r I 2 n A H>f= o M n B y=M r+l and A E and A F=x r . 50 THE CONTINUOUS GIRDER. The co-efficient* c (titll _ 3 and 1C- 2 c m _ h c b k h=d g r d+p r k b=d g k m+p d' m 6 but, g d m k=(B e) l m _,, p d m b=c m _.> l m _ s and cbkh= -2 c m _ t (l m _,^l m _ 2 ) . Therefore, L-/ -4- l m - l m - B e = 2 c m _, r - c m . a T - == c m . And for d m we can write r> rt J "8 -f2 " n n e= -- % d m _, . -. L-, f'sm+3 s w-j-2 V. APPLICATIONS. We will now give a complete analysis of a continuous girder, to illustrate, more particularly, the use of Table I. Ex. 1. Let Fig. 14 represent a continuous girder of three spans on level supports, and having a constant moment of inertia. jr -jf -ft if * I j. Z = 300 i ' Let each panel be 30 in length and the loads repre- sented as in the figure. Then 8=3, r=l, 2, 3 and 4, m=l, 2, 3 and 4, l l =24D'=l a and l,=300'. First, look up in Table 1^ the values of the co-efficients 2 k 3 2 -}-F and k k 3l for the different values of - = k. fc,-*. **,-*+*! k-V 0.123,046,875 0.234,375,000 0.322,265,625 0.375,000,000 0.380,859,375 0.328,125,000 0.205.078,125 k ? 2k^3li + g k y -kl 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 0.171 0288 0.357 0.384 0.375 0.336 0.273 0.192 0.099 0.099 0.192 0.273 0.336 0.375 0384 0.857 0.288 0.171 0.125 0.250 0.375 0.500 0.625 0.750 0.875 0.205,078,125 0.328,125,000 0.380,859,375 0.375,000,000 0.322,265,625 0,234,375,000 0.123,046,875 APPLICATIONS. From (A,), we have M,=0=M,. 53 M a = A > From (p,) and (l*/), we find that, since c,=0 and c a =lj c a = 3.6 and C A = -j- ^-#. Also, d ; # and c? 2 =-/, d s = 3.6 and , etc., from (/,) and (,//), and substituting them, with the values of c and d above, in the moment equations, we obtain, TABLE VALUES OF Mo. Pi (0.123,046,875) ] f-- 7.111,198 P] (0.234,375,000) - 13545,140 Pf Pf (0.322,265,625) - 18.624,568 P! (0.375,0 no ooo^ l ft? 79 9 6 . . 91 fi79 99S pt Pf ((X380J859|375) ) - 23 010,853 j i Pf (0.328,125,000) - 18.963,196 PS PI (0.205,078,125) J 1-11.851,998 PI Pi (0.171) f + P^ (0.099) - 12.958,194 p.i PI (0.288) + PI (0.192) - 21.190,636 p.^ (0.357) + P| (0.273) - 25.389,634 \>;i 1 2 P| (0.384) 4- PI (0.336) - 26.247,494 ]> 1 Pi (0.375) h 90.3010+25.0836 { + P\ (0.375) }- = -j 24.456,525 Pi (0.336) I p i (0.384) - 20.709,033 l ;f PI (0.273) (0.357) - 15.697,327 PI (0.192) + PI (0.288) - 10.113,715 ii (0.099) I + PI (0.171) 4.650,503 4- P^ (0.205,078,125) ] + 3.292,221 pj 4- p 2 (0.328,125,000) 1 4- 5.267,554 PI -4- PI (0.380,859,375) | 4- 6.114,126 PI + Pf (0.375.000,000) } 16.0535- - . ...... { -f 6.020,061 p| -f Pi (0.322,265,625) -4- 5.173,491 PI -f P^ (0.234,3 75,000) 4- 3.762,365 pi; . Pa 7 (0.123,046,875) 1 -f- 1.975,333 PS THE CONTINUOUS GIRDER. TABLE a Continued. VALUES OF M,. + Pi (0.123,046,875)1 f -t- 1.975,333 P} + Pf (0.234,375,000) 4- 3.762,365 Pf -f Pf (0.322,265,625) 4 5.173,491 P? (0.375,000,000) 1- 16.0535= \ -f- 6.020,061 Pf f PI (0.380,859,375) 4- 6.114,126 Pi + Pf (0.328,125,000) 5.267,554 P? -rP{ (0.205,078,125) J L+ 3.292,221 Pi -f Pi (0.171)1 f P (0.099)1 - 4.650,503 PJ 4- P| (0.288) - P| (0.192) - 10.113,715 PI f PI (0.357) - P| (0.273) - 15.697,327 Pi! + P| (0.384) - Pi (0.336) - 20.709,0:53 P 4 + Pi (0.375) \ 25.0836+90.3010 \ P 5 2 (0.375) j - 24.456,525 P5 f P* (0.336) P (0.384) - 26.247,494 P!) 4- P| (0.273) - PI (0.357) - 25.389,634 Pi -f P! (0.192) - PI (0.288) - 21.190,6:50 V : , -f Pf (0.099) J [ P (0.171) J 1 15.958,194 P:; _ P 1 (0.205,078,125) 1 f 11.851,998 PJ PI (0.328,125,000) - 18.963,196 P^ -PI (0.380,859,375) 22.010,853 P^ (0.375,000,000) l 57.7 926 -....-{- 21.672,225 P| pi *- 3 (0.322,265,625) - 18.624,568 PJ pe * 3 (0.234,375,000) - 13.545,140 Pj; (0.123,046,875) J 1- 7.111,198 P, 7 Compare the values of M 2 and BI ;1 , and notice that the co-efficients of JPJ, JP, 6 , etc., of M it , are the same as the co efficients of J /, J?/, etc., of JfC, as they should be, owing to the symmetry of the girder. APPLICATIONS. 55 TABLE b The next step is the deduction of S from (J) and (C). FIRST SPAN. SECOND SPAN. THIRD SPAN. s< K 8, & ft 8* Pi +0 845,870 -i-0. 154,630 +0.030,288 -0.008,230 -p? +0.693.5 +0.829,014 +0.080,769 -0.021,948 PI +0.075,610 +0.924,384 +01,050,480 -0.013,717 Pi -0.053,992 +0.927,692 +0.072,307 +0.019,377 ?! -: 1.088,294 +0.836,923 +0.163,076 +0.042,140 pi -0.105,790 +0.732,307 +0.267,692 +0.065,405 PI ' | -0.109,364 -0.101,902 -0.086,287 Same as Si with+sign +0.618,461 +0.800,000 +0.381,538 +0.381,538 +0.500,000 +0.618,461 +0.086,287 +0.101,902 +0.109,364 Same as S 3 with sign p| -U.065,405 +0.267,692 +0.732,307 +0.105,790 PI -0.042,140 +0.163,076 +0.836,923 +0.088.294 TJ9 -0.019,377 +0.072,307 +0.927,692 +0.053,992 PJ +0.013,717 -0.050,480 +0.924,384 +0.075,616 P +0.021,948 -0.086,769 +0.829,014 +0.170,986 8 Pi +0.025,475 +0.025,083 +0.021,556 Same as Si with sign -0.093,749 -0.092,307 -0.079,327 Same as S 2 with+sign +0.716,712 +0.590,301 +0.452,603 +0.283,288 +0.409,699 +0.547,397 PS +0.015,676 -0.057,691 +0.306,438 +0.693,562 p +0.008,230 -0.030,288 +0.154,630 +0.845,370 The computation of the above table is very simple and easy. Thus : $, -y^ -f- PI (.1 &/) an d numerically becomes, for loads i f in the first span, 7.111 + 210 40 P<=. -f- 0.845 P/. 240 f - P?= +Q.698P*, etc, etc. For loads in the second and third spans, we have merely * , or the moment over the second support divided by the length of the first span. 56 THE CONTINUOUS GIRDER, S g = , -f- P 2 (1 L), for loads in the second span, and S g = -,- for loads in the other spans. '2 -M Sv *- -f P a (1 k s ) y for loads in the third span, and 83= 2 j for loads in the other spans. It is necessary to compute only $ S y and $, to fill out the table of shears, since S,-\-Sg==0 or jP,, S a +S 3 =0 or _P 2 , etc., but it is better to compute S',, S', and $, as a check. TABLE r VALUES OF J FIRST SPAN. 1 * 3 4 o 6 7 i 9 M< i Mi Mi i MI M; 1 PI + 25.361 + 20.722 + 16.083 + 11.444 + 6.805 + 2.166 - 2.472 P7, 2 P + 20.806 + 41.613 + 32.420 + 23.237 + 14.044 + 4.851 - 4.341 PS 8 Pf + 16.421 + 32.843 + 49.265 + a5.687 -22.109 + 8. -531 - 5.046 4 P| + 12.290 + 24.581 + 36.872 + 49.163 -T 31.554 + 13.745 - 3.963 P 4 5 P + 8.498 + 16997 + 25.495 + 33.994 + 42.493 + 20.991 - 0509 PT 6 Pf + 5.129 + 10.259 + 15.388 + 20.518 + 25,647 + 30.777 + 5.907 p-j 7 PI + 2.268 + 4,536 + 6.805 + 9.073 + 11.342 -r 13.610 + 15.679 Pi 8 VI - 1.619 - 3.239 - 4.859 - 6479 - 8/9S - 9.71* - 11.338 p* 9 PS - 2.648 - 5.297 - 7.916 - 10.595 - 13.244 - 15 892 - 18.541 Pg 10 - 3.173 - 6.347 - ' 9.521 - 12.694 - 15.868 - 19.042 - 22.215 PS 11 P| - 3.280 - 6.561 - 9.842 - 13.123 - 16.404 - 19.685 - 22.966 12 PI ! - 3.057 - 6.114 - 9.171 - 12 228 - 15.285 - 18.342 - 21.399 PS 13 Pi : - 2.588 - 5.177 - 7.76-5 - 10.354 - 12.943 - 15.531 - 18.120 PA 14 PA - 1.962 - 3.924 - 5. 886 - 7.848 ; - 9.810 - 11.772 13.735 P 3 15 PI | - 1.264 - 2.528 - 3.792 - 5.056 9.321 - 7.58-5 - 8.849 PR 16 Pi - 0.581 - 1.162 - 1.743 - 2.325 - 2.906 - 3.487 - 4.0 9 pi 17 PI + 0.411 + 0.823 + 1.234 + 1.646 + 2.057 + 2469 + 2880 Pi 18 P^ + 0.658 + 1.316 + 1.975 + 2.633 + 3.292 + 3.950 -r 4.609 P? 19 1 P 3 + 0.764 + 1.528 + 2.292 -r 3.057 + 3.82L + 4.585 + 5.349 Pf 20 P| + 0.752 + 1.504 + 2.257 + 3.009 + 3.762 + 4.514 + 5.267 Pf 21 Pi> + 0.646 + 1.293 + 1.940 + 2.586 + 3.233 + 3.880 + 4.527 22 Ptj + 0.470 + 0.940 + 1.410 + 1.881 + 2.351 + 2.821 + 3.291 P| 23 1 + 0.246 + 0.493 + 0.740 + 0.987 + 1.234 -r 1.481 + 1.728 3 3 3 3 ., 3 3 m m M* M Mi m AC THIRD SPAX. APPLICATIONS. 57 TABLE c Continued, SK( OND SPAN. / 2 r> 4 ~) 6 7 8 9 10 11 m Ml m Mi M* 'MI m Ml m 1 >_' P? ft !! - 6.202 - 11.824 Hi. 241 - 18.903 - 19.198 - 16.540 - 10.337 - 5.293 - 10 103 - 13.804 - 16.133 - 16.385 - 14.117 - 8.823 - 4.385 - 8.382 - 11.485 - 13.364 - 13.573 - 11.693 - 7.308 - 3.476 - 6.662 - 9.105 - 10.595 - 10.760 - 9.270 - 5.794 - 2.567 - 4.941 - 6.725 - 7826 - 7.948 - 6.847 - 4.279 - 1.659 - 3.220 - 4.345 - 5.05(5 - 5.136 - 4.424 - 2.765 - 0.750 - 1.500 - 1.965 - 2.287 - 2.323 - 2.001 - 1.251 + 0.157 + 0.220 + 0.413 + 0.481 + 0.498 + 0.421 + 0.263 + 1.006 1 1.041 + 2.793 + 3.250 + 3.301 + 2.844 + 1.777 il ii P i:f P! + 14.872 + 3.917 - 3.420 - 7.693 - 9.456 + 12.703 + 29.024 + 18.548 + 10.860 + 5.543 + 10.534 + 24.132 + 40.517 + 29.413 + 20.543 + 8.364 + 19.240 + 32 487 H 47DU7 + 35.543 + 6.195 + 14.347 + 24.456 + 36.521 + 50.543 + 4.026+ 1.857 + 9.155'+ 4.563 + 16.425|+ 8.394 + 25.075 + 13.629 + 35.543'+ 20 543 - 0.312 - 0.329 + 0.361 + 2.183 + 5.543 - 2.481 - 5.221 - 7.666 - 9.263 - (1.450 ii n M 9 ifc m m j\b m m M; m SECOND SPAN. M X =S, w, !*, (Wr-di) for loads in the first span, and / MxS, Xi for loads in the other spans. M x = 8 3 W 3 IP 3 (w 3 a 3 ) for loads in the third span, and JJ=& X 3 for loads in the other spans. If there were no equal spans, then Table c would have the number of apices squared computations, making -its formation tedious, if many spans were considered, but the great worth of the table, when once computed, overbalances the hard labor in its formation. Having Table c before us, we can tell at once which of the apices must be loaded, to produce a certain result, in any par- ticular chord member. 58 THE CONTINUOUS GIRDKK. MAXIMUM MOMENTS. Table (c) enables one to find the maximum bending moments for any chord piece, with comparatively little labor. r Dead load For the dead, or static loads, of the structure, the maximum bending moment for any chord member is found by taking the algebraic sum of the quantities in the proper column of Table ( c) (each co-efficicient is, of course, multiplied by its IP). For example, suppose the maximum bending moment at the second panel of the first span, or, better, the second panel point of the first span, is desired : Multiply each co-efficient in column 3 of Table (#), by its proper JP, and take the algebraic sum of the products. Live load For the live or moving load, the maximum negative mom< nt at any panel point is found by taking the sum of the negative co-efficients (multiplied by their proper IP's) in the proper column. of Table (c), and vice versa for the maximum positive bending moment. For example, suppose the maximum negative bending moment at the second panel point is desired : Take the sum of the negative products in column 3 of Table (c). For positive moment, take the sum of the positive products. If the IP's are equal, the work is somewhat easier, as the co-efficients can be at once summed, and then multiplied by the common value of IP. The maximum bending moments over the supports are obtained in the same manner from Table (a). APPLICATIONS. 59 MAXIMUM SHEAR. The maximum shear is obtained from Table (6). .J)ead load The maximum shear at any panel point is found by: First. Taking the algebraic sum of the co-efficients (multiplied by their JP*s) of all the loads outside of the span in which the apex considered lies. Second. Considering the span in which the apex lies alone, and using for the left reactions the co-efficients as found in the column giving the values of 8. For example, take the second apex of the first span. The maximum shear is found : First, by taking the algebraic sum of the co-efficients in column $, for the second and third spans. Second, by taking the sum of the co-efficients opposite JP/, ff to JP 1 /, inclusive, and decreasing it by the co-efficient opposite JP/ in column S' s . Live load For positive or negative shear : First. Take the sum of the positive or negative co-efficients (multiplied by their JP^s) for spans in which the apex does not lie. Second. Consider the span in which the apex lies alone, and use for left reactions the positive or negative co-efficients (multi- plied by their J?'s) as given in the proper column of Table (b). For example, find the maximum positive shear at the second apex of the first span : First. Take sum of co efficients (multiplied by their jP V) in column $,, opposite third span. Second. Take sum of coefficients (multiplied by their jP's), opposite J?,* to JP/, inclusive. Knowing the maximum shears and bending moments, the maximum stresses are then easily obtained. 60 THE CONTINUOUS GIRDER. 1=2.40' The following is a graphical solution of the same example. Tables (&) and (<") can be filled by means of graphics, as can also Table (), by using Pro/. Greene's Method of Area Moments, which is fully explained in Part II of Greene's Trusses and Arches. Let it be supposed that Table (ft) has been filled, either by computation or by Greenes Method of Area Moments; we have, then, the bending moments over the supports, or the "pier ordinates." Consider only a single concentration at the second apex of the first span, and call it J?*; then, if the first span were discontinuous, the moment polygon A c< IB would enable us to determine the bending moments at other apices of the span; bat the girder is not discon- tinuous, and the load Pf induces a negative moment over the second support, which may be designated by IB J?,,, then the other negative moments are given by the ordi- nates in the triangle or polygon A B ]$>. The differ- ence of the ordinates of the two polygons determines the magnitude and kind of bending moment at each apex of the first span. The load jP/ induces a positive moment over the second support, which may be designated by C C g , then the ordinates between the lines 1$ C and J2.> C 3 will give us the moments at the apices of the second span. The APPLICATIONS. 61 moments in the third span are given by the ordinates be- tween the lines > I) and C ID. Having given an outline of the method, we will now pro- ceed to give it in detail. First. Assume some value for JP/, as unity, ten or one hundred. Second. Form the stress diagram, Fig. 16, assuming for the pole distance some value as unity, ten or one hundred. Assume the pole in such a position, that the closing line A 1$ to the equilibrium polygon A c, IB shall be horizontal, and construct the equilibrium polygon A c, IB. Third. From Table (), we find the bending moment over the second support to be 13.54 JPf; now, if IPf=l, and the pole distance == J, then the ordinate IB J^ 2 : =13.54j laid off to the tcale of A IB. Draw A IB a . Scale the ordinates b, b,, c, c*, etc., and place the results in Table (c), column 3, opposite _P/, fgj etc. The results will be found to agree with those computed. Fourth. From Table (a), we find that C C 2 = + 3.762 Pf] hence, lay off C C s =3.76 to scale of A IB, and draw 1$ 2 C 2 and C s ID and fill out the remainder of column 3, Table (c), by scaling the ordinates between these lines and the horizontal. In like manner, each column of Table (c) can be filled in a comparatively short time. To fill Table (ft), proceed as follows: Fiist. Draw G H, Fig. 16, parallel to A _R, then 72 H $, and F H=S;. Second. Draw G If, parallel to B 3 C 2 , then K H t =8 2 '-&'. Third. Draw G H 3 parallel to C, 1), then K H 2 = -& = + ,'. Proceed in like manner with each load. 62 THE CONTINUOUS GIRDER. * EXAMPLE 2 VARIABLE L K-- l t =52, lf=6fi, lf=65, 1 4 =52. 8=4. r=l, 2, 3 and 4. m=l, 2, '>', 4 and . i t / - L=240=I, L=300=I ;i 1^=420=1, I t =r>2o=i Wr=6.7 I 5 =300=I S l tn =360=I 3 I t =420=1 IS I 6 = I 2 =300=1,, / 7 =300=1, I 3 =300='i io } 8 =240=I r> I A =240=1, 1=300=1 Determine the value of From (A), M 2 = In which the several terms have the following values : * See page 131, Alhjem,eine Theoricund Berechnung tier continuirlic7i.cn untl einfachen Trager, by J. Jacob Weyraueh, Ph. D. APPLICATIONS. First Span L=52. e, =e, , A, *: 4 e, = 10,50 4- 0.300 + 6 e, = 13 75 /\, = -|- -337 37 -e,= 3125 - 337 198 e 4 = 31,50 - 0.300 237 c, = 43.50 + 0.433 + 685 f ' G = 46 00 + 289 541 e 7 = 48.00 + 0.201 427 e a = 50.00 A, - + 0.243 + 584 f 1825 : + -si" : + 35 - omi Second Span, A, A'-'/ \ A. <- ef c v A ^ ^"' (3-2 +) A " A. z A, t c, = 1.50 A/ = -0.256 73 2 ' e " } i 11 32 90 -f 343 331 858 1443 + 1775 1202 865 + 1004 ^~30~82~ ,; I A, l ~0 1 4 H- 39 49 318 638 + 1316 + 972 + 755 + 937 ~Tl07 e,= 1.50 e= 2.75 e, = 4.25 e 4 = -. 6.25 r, = : 8.75 e,= 18.00 e 7 = 22.25 e s = 41.50 <> 9 = 45.75 e lo = 58.25 e,,= 60.25 = 62.00 e, 3 = 63.50 -0.154 -0.155 -0.206 -0.289 - 0.433 : + 0.433 f 0.289 -0.289 p = -0.433 AF= + 0.433 A//=+ 0.289 A= + 0.206 /\ /3= -f 0.238 44 80 160 319 644 + 1138 874 1163 ] 782 + 1827 1220 -870 1005 ~T742~ + *W_ , ,,.,. v S M _ , /r 65 65 + M)7 - 4-soo - T 65 Fourth Spun. < A; i :i -(l~e,,r f?(3-2 A_) / A, L *, 2.00 0.110 33 e.., = 4.00 A, ~- -- 0.095 55 f,= 600 0134 111 C A - 8.50 A4 : 0-200 224 (V= 17.50 0.143 + 274 0; - 20.75 A = 0.151 320 e, ^ 38.25 0.151 101 e^= 41.50 A S = 0.143 384 1 4 13 39 + 102 143 337 346 -614 495 * 22807 F d** - E\o) * >-*& o& o& ' 4 APPLICATIONS. 65 Collecting the values of F, we have .F,"= -f 35.096 - F a = + 56.528 FS=-- -f- 56.061 F* =-- + 50 Jfil F s = + 4%315 F,'=: + -47.^5 F/= -f 47.00 #= - ^.07 JFV = 9.519 From (e), 0, = 6 E I t = 520 E ' (by making L '=6 E) O g = 6 E I t = 560 E' (by making E'=6 E) 3 = 6 E I t = 520 E (by making E'=6 E) 4 = 6 E I = 240 E ' (by making E '=6 E) From (mj, p a =0 s (l,^F.;)=520 (121.061) E'= 62,951.7 E' ^=0 4 (l 8 -^ r F;)=240 (112.415) E'= 26,979.6 E' From (n), ^(t.+A^+ACt+R) = 560 (87.096) E' +520 (121.523)E'= . . 111,965.7 E' &=M4+^;) + M^+^) = 520 (115.461) E'+560 (107.215) E "= 120,080.1 E' /^M^ + ^')-M<(^ + ^) = 240 (112.800) E'+520 (40.193} E'= 47,972.3 E' From (o), &=V* (l s -\-Fs)=520 (121.061} E = 62,951.7 E' ft=0, (1 3 +F;)=560 (112.415) E = 62,952.4 E' fc=0 3 (1 4 + F^)=520 (42.481) E= 22,090.1 E' Since k r = ~, I P r l r (lk r )=l J P r (l r a r ). Now, we i r lr have, from (&), for a uniform load, - P r = lw r da r , lr :. ^' P r l r (lk r )- = w f d a,. (l r ~a r )== - w r //, and we 66 THE CONTINUOUS GIRDER. can write r P, i, (i-k,)= 4- . v= 4- *M^= v P 2 I, (l-k)= Also, e v IP r (e r a r y= Cw r da r (e,:a r ) 3 = -j- w r ^ P f (e-a r y=-- w r d a r (e^a r ) 9 =-- -- w r Substituting these values in (/) and (r/), they become v=l r v=l 4k lr 3 v=l r v=l ' 3 w r ( et__ \ ~T~1 lr I 9=4 APPLICATIONS. VALUES OF H AND H'. 67 4 4 Is i. ^P. QS l~ V , 4 -, i *.u \ \ ^ ' ' ** ~ V ^ I V <\ HJ= 454,105.9. H 2 = - 1,039,860.1. H 3 = 331,676.4. From (h), ^^ p; vp a i s (1k,) o t = -56.06 (14,153.7) 520E= - 412,597,339 E' r+) . Therefore, A^= 4~ w 2 1 0,= -239,198,375 E' 4 A,= 4- w, II o.= - 84,584,500 E 4 A 4 = - 4- w * V f= - 122,469,568 E 4 B<= - w, If 2 = - 131,890,304 E B.= 4- w t U o,= 239,198,375 E 4 B,= w 3 If A = 36,250,500 E APPLICATIONS. 69 From (p), since c t =0. and c a =l, C 3 - 2c 4 fcc s K _ ~ 2,590,360 E' ~ ~ From (>), since - , Therefore, ( ( 239,198,375 E' 210,013,191 E' ~\ 101,703,032 E' -oo- ' ' 5.38o -311,716,223^' J f 84,584,500 E' 60,224,626 S' 239,198,375*.' ^ (1.524) ^ __ ~ 1 j =Tl09.HHOJP' 202,036,278 ' 262,260,904 E' 122,469.568 E + 22,147,927 E ' 36,250,500 E ' 27,029,904 E' 4,881,977 E' 5,385 (2.33) 2,590,360 E ( 131,890,304 E') M.= (- 2,966,675,: !_ ^i 12.565 ! + 893 ' 13 ' 719 + (-131,890,304) I- 163,602,045 J M 2 = -2015.66 639.68= -2656. The moments, produced by the loads in the respective spans, can be easily deduced, as follows : First span loaded M ~ u '~* 3 ' 2 R _L ~ V" 1 ~ (c. ft.) ft, ft, ' TdJfT) * > (-101,703,032) (5,385) | , -,, , _ 4 , )4 M,= - 640 70 THE CONTINUOUS GIRDER. Second span loaded M,= ,.- ! (( 239,198,375 210,013,191) (5,385) )_ _ 1 574 * ** 1,109,880 \ ( _ 202,036,278 - 239,198.375) (- 1,524) ) Third span loaded >.\ - 1 C (- 84,584,500 - 60,224,626) ( 1 ,524) i I 1 4.O 2 = 1,109,880 j (_ 27,029,904 - 36,250,500) J ....... Fourth span loaded - __ 1,109,880 j _j_ 22,147,927 \ Sum- -2656 THE SAME EXAMPLE WITH I CONSTANT. Fr-* c 5 ^ ' ,=0, ^,=1, d,= 3.6, d t = -f 2901 () ,= -- r w s I, A,= -- r v., // ^1,= - 444 <= 4- w/ ^* Br=^- ^- w, // ^.,= -y 4 4 Then, 4 - 4- < l ? ( 13 -4) 4 APPLICATIONS. f 919,993.7 w -f 247,162.5 w 71 --J -h 247,162.5 v - 68,656.2 v - 2587 - 35,152,0 w 471,036.8 w The partial moments are easily obtained, as follows : First span loaded M- ~ 2901.6 (471,036.8 w) =-. 1088 Second span loaded 1 w + 247,162.5 w)= ... 1554 Third span loaded t=5IKfi- (247,162.5 v 68,656.2 v)= . . 136 Fourth span loaded (- $6,126.0 )= Sum --= 2587 Spans loaded. Variable I. Constant I. Difference. Per cent, of Variable I Results. FIRST. 1134 -1088 -46 .041 SECOND. - 1574 -1554 -20 .012 THIRD. + 142 -f 136 + 6 .043 FOURTH. 90 81 9 .100 ALL. -2656 -2587 - 69 .026 72 THE CONTINUOUS GIRDER. EXAMPLE 3. THE SABULA DRAW. We now propose to compare the bending moments in the Sabula Draw, considering the moment of inertia as constant and variable, respectively. Variable moment of Inertia From Fig. 20, is obtained the cross section of each mem- APPLICATIONS. 73 ber, and the length of each vertical; the moments of inertia for each section are readily deduced as follows: neglecting the moment of inertia of the section of the member about its own axis, it being very small, in comparison with the moment of inertia of the truss section. =(17.7+17.6) (12.5 y- 144= 40= =(29.1+22.5) (13.4 ) 2 -144= 60= =(29.1+28.5) (14.25) 2 --144= 80= =(34.5+31.5) (15.15)^144=110= =(34.5+27.5) (16.05) 2 144=110= =(33.8+275) (16.9 /-144=120= =(31.5+28.5) (17.8 ) 2 -:-144=130= =(47.5+36.0) (187 ) 2 --114=200= =(47.5+48.0) (200 ) 2 --144+270= FIRST SPAN. =104.5 c 4 = 75.5 ^,=113.5 ^=132.5 V=151.5 From (124), we have, M a -- z4-=-(- In which, X:=H 2 o, F 2 I P 2 1, (1 h) (> s X,"= - H, 2 2 F t " P, 1, (1k,) 0, v-=l ( 4 1 3 v=L THK CovriNrors UIKDKK. v=l t ; /,(/,-/: )+6 Kl(L-F s ) 9=1 * f 3 IT" v A r '* - A -IT r I, v=l F s = Z I 4 /_, 1 Ir-, I We will first compute those co-efficients that do not depend upon the loading. For a uniform load over all, t -=/ H != I 4-3 4 r 4 ( S ) H,= r 9=1 ' >'~ APPLICATIONS. 75 Ft fat san ^ e< = 18.5 /\* = 0.052 1,215 e s = 37.5 A? = 0.107 19,043 e s = 56.5 As 0026 14,342 e 4 = 75.5 Ax 0.030 35,397 e, = 113.5 A,-- 0.137 422,318 C 6 = 132.5 A-= 0.166 691,825 e 7 = 151.5 A;-- 0.333 - 1,709,655 - 2,893,795 Multiplying this sum by ^-, we obtain 7 4 First span l a =180- e<= 28.5 A^ + 2.250 A/ ,= 47.5 A='+ 1-125 A e.^ 66.5 A.? + 0.921 A. c.= 104.5 A, -f 0.204 Ax *,=123.5 A= -f ai 73 A, -f 0.727 u-.,~H* = -h 52,085 120,568 270,847 232,797 325,871 6^=142.5 7 =-161.5 A r = 4- 0.350 AX- 4- A, ^ + A* 's "" ('!) I \ 'l '2 V'2 '17 I, / \ ,= H -- - - (32,400) (270) " MJ, = + 451,965,420 w s E' + 256,634,190 IP, A 1 ' _;/ VA, // ?/ /*= -141.36 (32,400)(40)w, '= - 183,202,560 w t E ' -H, o s = -f 2,615,286 (40) w t E'= + 104,611,440 w t E' 78,591,120^ E' &=40 (180+141.36) '+270(180 132.32) E'= + 25,728 E'. A= ~ "'" ^' 2 70 "= 393,660,000 E' w,. 4 B,= -- 4- ^ // 40 E'= 58,320,000 E' w,. 4 Then, ( 393,660,000 w,E'} 1 \ 58,320,000 w, E ' \ " - 5T4M7? 78,59i;i20 ,; ' "< lf ^ H 256,634,190 t 3 B{ APPLICATIONS. 77 Jfirst spun alone loaded f 58,320,000 w/i - 78^91,120 W| I 137,000,000 w, } Second span alone loaded ( 393,660,000 w,} M ^ + 256,834,190 w, I - 137,000,000 w s J EXAMPLE 3o. This is the same as Example 3, with the moment of inertia considered as constant. From (142), 720 A,= w. 11= 145,800 w,. 4 B,= 7- w< lf--= 145,800 w,. 4 Therefore, M a - ~ r and if w,=w, F =w 1 M s = - 4050 w. No. of Loaded Span. FIRST. Bending Moment Variable 1. - 2661 w, SECOND. 2661 w. BOTH. 5322 w M 2 Bending Moment Constant I. - 2025 w, 2025 w 4050 w Difference. 636 w, 636 w 1272 w 7-S THE CONTINUOUS GIKDEK. EXAMPLE 4. CONCENTRATED LOADS. Let us consider the Sabula Draw again, but with single concentrated loads, instead of uniform loads. Supports level. a,=7. o. ? /?>. See pages 73 and 74 for the value of M,. From Example 3 : #=40 (180+141.36) #'+270 (180132.32) "= + 25,728 E'. F t "=-- + 141.36. #=103.33. F,= -132.32. ^=270 E'. ^=40 E'. The values of H 3 and Hi depend upon the position of the loads. Let us take a load in the first span 7' from the left support, and one in the second span 123' from the left support; then we have for Hi and H,, the following: First span- l,=180'. a,==7'. V=l *= 28.5 ea<. e,= 47.5 e s = 66.5 + 9.5 A*= + 0.921 88 P, e 4 = 104.5 + 47.5 , = + 0.204 680 P t + 66.5 A 5= + 0.173 1,292 P, + 85.5 AI ^ t -ii ^ J P, (c,a 2 Y | APPLICATIONS. 79 e, - 18.5 e, = 37.5 ea, e 3 - 56.5 ej, - 75.5 e s == 113.5 e, == 132.5 4- 9.5 A 5 = -0.166 13 P e 7 = = 151.5 + 28.5 = 0.333 172 P 2 185 P,=H, NOTE. e, must always be greater than or equal to a s . r -f #, /= - 185 (270) E' P 2 49,950 E' P g * - - F: P, (l s -n,) (),= ( H- 103.33 (57) (270) E' P,= + 1,590,248 E' P 3 98 E' P 2 ( H; 3 = + 20,225 P ; (40) E'= + 809,000 E' P, ( - 141.36 (123) (80) E' P<= - 1,390,928 E' P, ~581~,928 Y' P; From (i) and (J), / A p 12 ( i, & Z-2 i .3\ ft T? r T ./lo JL ? t"> \ & A/ d A/ /V I C/ Xl/ _//. Or, by Table I, A,= - P // (0.285,144) 270 E' - - 2,494,269 E f P,. ^/= - P^/ (0.285,144) 40"= 369,520 E' P,. Therefore, f 2,494,269 ^' P/l M _ I j + 1,540/298 E ' P, { __ j -18 5 P 2 \ ~ 51456 E'} - 369,520 E' P, f ~~ 1 18.5 P, } 581,928 E' P; Or, if P ; =P, ? 3f 3 ^ - 37.0 P. First span alone loaded (SO THE CONTINUOUS GIRDED. Or, 51,448/>=18.5/>, ' 556 , Second span alone loaded Or, - 953,961 J>, = 18.6 P, Since IP, and IP, are symmetrical about the center of the draw, the moments over the center pier should be equal, as shown above. If our work was absolutely correct, and decimals had been used to several places, the quantities in the parentheses above would have been the same ; as it is, the quotients are practically equal. * EXAMPLE 4 BY GRAPHICS. For any load in the first span of a two span girder, we have, from Greene's Trusses and Arches, Part //, EI El El i In which: distance from the left support to the ordinate y, of the equilibrium polygon A C IB. Fig. 21, page 72. ordinate of the polygon A C IB. distance from the left support to the ordinate y' f of the polygon A IB IB,. ordinate of the polygon A IB IB,. distance from the right support to any ordinate a of a polygon in the second span, similar to AS _Z?,. * For this excellent graphical method, the author is indebted to R. H. Brown, C. E., First Assistant Engineer of Boston Bridge Works. APPLICATIONS. 81 ordinate of the above polygon. jT The moment of inertia of the cross section of the girder at any ordinate y',. 2 J The moment of inertia of the cross section of the girder at any ordinate y' s . _Z? The modulus of elasticity. / 2 Since l,=L=l, and 1=1=1, we have, considering JE as constant, Now, - ' ^ equals an area multiplied by the distance of its center of gravity from the left support, and hence we or ?/ may write 2 '-7^ = A a, in which A represents the area and a the c. g. distance. In like manner, # - ''' . ' =2 B b. Therefore, we may write, ^1 a 2 B b. With any scale, lay off the horizontal line A 12, Fig. 21, and divide it into panel points at ?>, r, d, etc. With any scale, preferably a large scale, lay off' a load line A ID, equal unity, and assume If also equal unity, then, assuming the pole in such a position that its closing line will be horizontal, construct the equilibrium polygon A C IB and scale its ordinates (the lengths are given in Fig. 21.) Not knowing the proper position of the closing line, let us assume a position as A 12, making B B 2 =12.8 9 and scale the ordinates b b 3 , c C 2J etc. Divide each ordinate of the polygon A C B by its proper I (given in per cent, of the center I above Fig. 21 ), and lay 82 THE CONTINUOUS GIRDER. off the results downward from A It, forming the polygon Ab 5 c 5 . . . . B. The ordinates are 80.00, 118.18, etc., as shown in Figure 21, page 72. Now, find the area of this figure, either by computation or the planimeter, and also its center of gravity. The center of gravity is readily found by cutting the polygon out of stiff card board and balancing it upon a needle point. The area = 109 15.1= A, and a=nr>f>. Proceed in like manner with the polygon A B B,, de- ducing the figure A b- ; c ;; .... />,, which has an area of ;>.' f (>!t.(>l=-B', and V =100.8. Let B B, represent the true magnitude of the pier ordi- nate //, then from the triangles A. B B, and A J> B n we have, y,',:y lt '.'.c c 2 :e c,, or, c e,= r e e 2 . Then, x ,(,) ?/ v x 2 (ec.^ y^ , , f r - j , UI ,/)!/ r 1J v . I Vo I 'Un -, v,> , , , j , (Ad) '/,', Hence, A a=2 -~- II' b', and y a = ^ ^/^ , Which becomes 10915.1X65.5X12.8 2X2469.61X100.8 Since H=l and Pf=l, the bending moment over the center pier is 18.38 JP*. We obtained, by computation, - 18.3 JP; V , which shows the graphical method to be accu- rate enough for all practical purposes. It would have been more correct to have taken the ordi- nates y at the points where the values of J change, but the result would have been but little different. The above computations can be very readily made by means of Thatcher's Calculating Instrument. APPLICATIONS. 83 A. rf Fig. 17, page 72, and Fig. 18 are diagrams for the Sabula Draw, with a concentration at each apex in both spans. A aB b. or A a--= -^4- B' 6. Therefore, V* _(Aa)y 65568 X 148x94.6 B' b' 36865X2045 Since Hfif^ the bending moment over the pier is 121,800x50-= 6,090,000 Considering / as constant, the bending moment is 4,732,000 7^58~000:= Diff. APPENDIX. * The general equation of the elastic line can be deduced as follows : Vertical forces acting upon a girder cause a change of shape, lengthening the originally parallel fibres on one side, and shortening or compressing them on the other. Between the lengthened and shortened fibres there is a plane which undergoes no change in length ; the centre line of this plane is called the neutral axis or the elastic line. Thus, in Fig. (, (22r ; ) becomes M x = ..................... (22/) (5 or the moment of the internal forces equals the stress in the remotest fibre times the moment of inertia of the section divided by the distance of the remotest fibre from the neutral axis. The line d f denotes the change of length in the fire a d, due to the force JZ, hence, if J be the co-efficient of elasticity, ad:df::E:H .................. (220) Designating the radius c o by ?-,., we have, from similar figures, o rl/'and c ft d. (-in o=a d). a d:df::r,.:e ................... (22 h) H E H r , - : or ' c = - Substituting this value of e in (22/), we have r.- The radius of curvature of any plane curve, whose length is tt, and co ordinates x r and y n is d K 7r d x,. d* y f ' ' According to the third hypothesis, d u,.=-d x n and (2 becomes !-,.= 'i^- (22m) 88 APPENDIX. Substituting (22/n) in (22A;), it becomes ,.,- E I x Which is the differential equation of the elastic line, appli- cable to all bodies subjected to flexure which fulfill the con- ditions imposed by the third hypothesis. The values of J and I may be different for each and every section. If (22) be integrated, it becomes ''/ / ;//., 1 CM* < l V . i o If x r =0, then C = = t n and we have o A * Integrating again, (24) becomes If x r =6>, then C'^=h n and we have X r r X r 1 rM r d x f c y r =h r +t r x r + -g-Jr- - J o T * o ( 23) ^- = t f +- r I ~^ - (24) APPENDIX. 89 By examining Fig. 2, which represents a continuous gir- der having a variable cross-section, and consequently a variable moment of inertia, the following integration will be clearly understood : X r r * T 4 4-- c C M x d x r * Integration 01 I i. r r ., e 2 /M x d x r 1 / , r , 1 c\Jr j - = \ M x d x r + I M x d x r . . . T T J T J o lx lo o Ji e t x 1 / r . . . + -\M X d iA x r e x But, 1 f* r 1 r* r 1 f* T I M x d x r = I M x d x r I M x d x r . . . . 7 T T Therefore, we can write for (27), * See Weyrauch's Continuirlichen und Einfachen Trager, p. 168. (27) (28) 90 APPENDIX. x r e, e, CM X d x,.-- 4- (*M x dx r -\- 4- faL d x,.... I i* 'i-i ** or, & r x r -f CM x d x (29) i A . (30) * T '-> T > v=x r o Substituting (30) in (26), it reduces to x r x r y r = b + t r x r + -jr; I d x r M X d x r T ^o o v=l x r e r <3i) r T v=x r v From 8, we have M x ^M r ^S r x r -l' P r (x r a r ) . . a)'} ..... (37) Substituting (33), (34), (36) and (37) in (31), it becomes y r =h r + t r x r + \ -I .I/,. **+S r x*-l' P f (x r -0r?\ 6 El, ( v=l 4- --7- ? 6EI >V=*r J ~ T * +S r el-l'P r (e r -a,.Y-]t . . .(38) Which reduces to i r =h r -\-t r x r + \3 M r aj-f- S, x*. I P r (x r a r ] a 1 6EI n ( + ?' [i - i- 6EJ X v=x r ^/ r _ ; /,. - I P,. (e-a r )*-i (x-e,.} 1' P, (r-n,.y [-'...; (39) If we make x r -l r , then y r =h r+1 , e f e t < and I x =Ii. Let r . then, from (39), we have r+l = h, + t r l r + - \8 M r tf-f S, lf-*S P,. (/,-",.)< 6' E I, v=l M, e,. (~> lr-e v + $ r r r (3 /,.-^ e,.) - ^'P, (/,.-,)' v -^ (/,-r,,) ^ />, (c.-a,)^ . . . (40) From (10), APPENDIX. 93 But, since AY 1 , this becomes (10a) Substituting (10a) in (40), and solving for f we obtain h f+ . -h,. 1 ( , -f I P r a r ft. a r ) (# /,. a r ) 't?=jf - ^' A, | 2 M;. * (5^,-^^- -^-) i 1 yf" 9 / fo ^ *'V \ | 7lf,. + / ^ (o ) + 4 (> -^ L ) " Pr (Ir-a,.)? P r (e~d r Y -3 (/, e r ) I P r (e a,.) 2 1 (41) Since O,.=AY /,, a, (la r ) (2 l r a r )=l? (2 k r 3 ^+K), / r a,. 7 ( . (1 AY), and (41) reduces to tr 7 ... I - r ,--N ,-H r - ->' (/, e,.)l' P, (e a*)* I . . . . (42) Returning to (24), '',": =^ 4rf-^4^-: .020 94 APPENDIX. Substituting (32) and (35) in (30), and the result in (24), it becomes = t r + ^~-r \ 2 M r x~ r +S r *t-SP r (*,-a,)> 2 E I, ( v=l 3/ r v-f-S r <-!' P r (M f e, (3 13 e r '; E I, /, , l ,.l; (2 fc r -5 v=l +9 J P, (lk r ) 1..3 l t . 2 P ; . (r r a,)* \ . . . . (44) ) Which reduces to hr+l'hr + _!_ | M ^^ M ^ s p ^ ^ft) 1 APPENDIX. 95 If we were to suppose loads in the v 1 th span at distances <7,._ ; --Av_/ /,._/ from the left support r-l, we would find in a similar manner, or by decreasing the subscripts of (45). by unity, k-h,._. 1 -(46) Equating (42) and (46), we obtain ^~ hf + -2 M r l r M r+l lZ P, g (^ fc r -- ^ A. ^ f ' - ^r + 4- } 2 M - ~ - A. 4 ' - ' ; y v=l ?P r l r (i-k r ) 4 i' A, APPENDIX. r / r l^+S P,_, /;_, (fc^-#_;) -f i- "7 >S Pr-, U (1kr-,) - - ^ A /-/-'' ? I*,-, (c,-a r _,Y V=lr-< V-=l v=l r _, Let v=l ? A, f*- ^r- + 4] =F ' ^ 48) v ', ',- y t;=l - (50) (51) SPf (er - ai Y-H r . .(52) v P ( P _ /^ ^ 3 c ? ^ ^ f ^j~ ? P,. (ecty t H r > . . (53) Substituting (48), (49), (50), (51), (52) and (53) in (47), transposing and reducing, we obtain APPENDIX. 97 o r Or-* ^=|-^- f 2 M r /, ",_,-{- 1/,^ /, C,-hS P r 1; (2 k r 3 ^ ,'!' P r l r (lk r ) O r _, ;_ t M,_, Br+FZ-t 2 M r 9 r +F^ 4 0=0 , . . (54) Which reduces to r+1 () o r _,= - o r o r _ t I (,._/ t,. -r p, // (^ ^ r -^ +) O,._F; i p r i r (ik r } o r _ s (55) Let F) ...... ... (56) -?P r l;(2k,.-< 3 ](*+](?) o r _ t =A, .......... (57) - I P r l~ (kty (> r+! =B, ........ ....... (58) -F; i 1 p r i,. (iic r ) 0,-,+Hr o r _, =x; . . | . . . . (59) -2 F;_, Z P,_ ; U (i tU) ^-^--/ ^r=-X^/ ) ~ ' (59a) A ................... (60) =^ f . . . ................ (62) Then we can write M l ._ l ^_ l +2M r ft^M r+ . l ^ f =A r ^ r B r _ i ~}-Y r ^X 1 ..... (63) Which is the general form of the Theorem of three moments. It expresses the relation between the bending moments over three consecutive supports in terms of the loads, spans, E t Tand /i. An equation of the form of (63) can be written for every support, and, as, if the girder rests on the supports, the moment at the firgt and last support is zero, we shall 98 APPENDIX. have as many equations as there are unknown quantities or bending moments, and hence we can determine their values. Let there be s spans in the continuous girder represented in Fig. 1, and let the /'"' span alone be loaded, then by the three moment theorem, the equation for each support is as follows: . .! M, ^ 4 ^f & i M, & \ 2 ^r ! & 4 M 4 & =o XX XX XX M,.- t '&_ 4- * M f K 4 M*, K K 43 A; \ ... M r r 4- 2 M f+l ^ 4- M r+2 ^=B r XX XX XXX Multiplying the first equation of (64) by #,, the second by c ;i} the i^* by r ,, etc , we obtain, after reduction, ; c s _;H-^ r s /SJJ^r, r v IT f l . P-J t*--' Pm I T /ni\ M m =d s _ m+2 - - ^ - - M fl ............ (71) /-_/ Ps 2 ' l j ,i, Substituting (69) in (70), and (67) in (71), we obtain /7O\ /; 7?rtt \ ~+> ' ~+> (72) < 73 > In (72), as in must always be less than -/*-r i, r can have values from .s to in. 100 APPENDIX. In (73"), as m must always be greater than f, /' can have values from 1 to m 1. Hence, adding (72) and (73), and substituting X' -f X,_, for X n we have From (J), we can obtain the bending moment over any support m of a continuous girder of any number of spans s, of any lengths as l t , I, . . . 1 8 , supports at any levels, the moment of inertia I constant or variable, the modulus of elasticity JE being constant, and the loads being placed at pleasure. Note that '/? w . TABLE I. 101 *4 t-f a /l "7~ A- -A" Hr A- -A;* oe-o 059 784 COO .940 .120 118 272 000 .880 .001 COO 999 999 .999 ' 61 060 773 019 39 21 119 228 439 79 2 001 999 992 8 62 061 761 672 38 22 120 184 152 78 3 002 999 973 7 63 062 749 953 37 23 121 139 133 77 4 003 999 936 6 64 063 737 856 36 24 122 093 376 76 5 004 999 875 5 65 064 725 375 35 25 123 046 875 75 6 005 999 784 4 66 065 712 504 34 26 123 999 624 74 006 999 657 3 67 066 699 237 33 27 124 951 617 73 8 007 999 488 2 68 067 685 568 32 28 125 902 848 72 9 COS 999 271 1 69 068 671 491 31 29 126 853 311 71 .010 009 9S9 000 .990 .070 069 657 000 .930 .130 127 803 000 .870 11 010 998 669 89 71 070 642 089 29 31 128 751 909 69 12 Oil 998 272 88 72 071 626 752 28 32 129 700 032 68 13 012 997 803 87 73 072 610 983 27 33 130 647 363 67 14 013 997 256 86 74 073 594 776 26 34 131 593 896 66 15 014 996 625 85 75 074 578 125 25 35 132 539 625 65 16 015 995 904 84 76 075 561 024 24 36 133 484 544 64 17 016 995 087 83 77 076 543 467 23 37 134 428 647 63 18 017 994 168 82 78 077 525 448 22 38 135 371 928 62 19 018 993 141 81 79 078 506 961 21 39 136 314 381 61 .020 019 992 000 .980 .080 079 488 000 .920 .140 187 256 000 .860 21 020 990 739 79 81 080 468 559 19 41 138 196 779 59 22 021 989 352 78 82 081 448 632 18 42 139 136 712 58 23 022 987 833 77 83 082 428 213 17 43 140 075 793 57 24 023 986 176 76 84 083 407 296 16 44 141 014 016 56 25 024 984 375 75 85 084 385 875 15 45 141 951 375 55 26 025 982 424 74 86 085 363 944 14 46 142 887 864 54 27 026 980 317 73 87 086 341 497 13 47 143 823 477 53 28 027 978 048 72 88 087 318 528 12 48 144 758 208 52 29 028 975 611 71 89 088 295 031 11 49 145 692 051 51 .030 029 973 000 .970 .C90 089 271 000 .910 .150 146 625 000 .850 31 030 970 209 69 91 090 246 429 9 51 147 557 049 49 32 031 967 232 68 92 091 221 312 8 52 148 488 192 48 33 032 964 063 67 93 092 195 643 7 53 149 418 423 47 34 033 960 696 66 94 093 169 416 6 54 150 347 736 46 35 034 957 125 65 95 094 142 625 5 55 151 276 125 45 36 035 953 344 64 96 095 115 264 4 56 152 208 584 44 37 0-)6 949 347 63 97 096 087 327 3 57 153 130 107 43 38 037 945 128 62 98 097 058 808 2 58 154 055 688 42 39 038 940 681 61 99 098 029 701 1 59 154 9KO 321 41 .040 039 936 000 .960 .100 099 000 000 900 .160 155 904 COO .810 41 040 931 079 59 1 099 969 699 899 61 156 826 719 39 42 041 925 912 58 2 100 938 792 98 62 157 748 472 38 43 042 920 493 57 3 101 907 273 97 63 158 669 253 37 44 043 914 816 56 4 102 875 136 96 64 159 589 056 36 45 044 908 875 55 5 103 842 375 95 65 160 507 875 35 46 045 902 664 54 6 104 808 984 94 66 161 425 704 34 47 046 896 177 53 7 105 774 957 93 67 162 342 537 33 48 047 889 408 52 8 106 740 288 92 68 163 258 368 32 49 048 882 351 51 9 107 704 971 91 69 164 173 191 31 .050 049 875 000 .950 .110 108 669 000 .890 .170 165 087 000 .830 51 050 867 349 49 11 109 632 369 89 71 165 999 789 29 52 051 859 392 48 12 110 595 072 88 72 166 911 552 28 53 052 851 123 47 13 111 557 103 87 73 167 822 283 27 54 053 842 536 46 14 112 518 456 74 168 731 976 26 55 054 8 {3 625 45 15 113 479 125 85 75 169 640 625 25 56 055 824 384 44 16 114 439 104 84 76 170 548 224 24 57 056 814 807 43 17 115 398 387 83 77 171 454 767 23 58 057 804 888 42 18 116 356 968 82 78 172 360 248 22 59 058 794 621 41 19 117 314 841 81 79 173 264 661 21 > k _ w +l* a *i*-lM* i. ^ k-'i A"+A" V , a /-= I / " i 102 TABLE I. Continued. a ' k-k' 1 1 n ! fc=-7- I: k :: i fcfc 8 \ .180 174 108 000 .82) .210 220 176 000 .760 .300 273 000 000 .700 81 175 070 259 19 41 227 002 479 59 1 273 729 099 699 82 175 971 432 18 42 227 827 512 58 2 274 456 392 MS 83 176 871 513 17 43 228 651 093 57 3 275 181 873 97 84 177 770 496 16 44 2i9 473 216 56 4 275 1)05 536 06 85 178 668 375 15 45 230 293 875 55 5 276 627 375 86 179 565 144 14 46 231 113 061 54 6 277 347 384 01 87 180 460 797 13 47 231 930 777 68 7 278 065 557 93 88 181 355 328 12 48 J.T2 747 008 52 8 278 781 888 92 89 182 248 731 11 49 233 561 751 51 9 279 496 371 91 .190 183 141 000 .81CU .250 234 375 000 .750 .310 280 209 000 .600 91 184 032 129 9 51 235 186 749 18 11 280 919 769 89 92 184 922 112 8 52 235 9!) !)!I2 48 12 281 628 672 88 93 185 810 943 7 J-3 236 805 723 47 13 282 335 703 87 94 186 698 616 6 54 237 612 936 46 14 283 010 856 86 95 187 585 125 5 55 238 418 6.5 45 15 283 744 12.') 85 96 18* 470 464 4 56 239 222 784 44 16 2(iS 82 9} 191 119 401 1 59 241 626 021 41 19 286 538 241 81 .200 192 000 000 .8 r O .WO $42 424 O'X) .740 .320 287 232 000 .680 1 192 879 399 .799 61 243 220 419 39 21 287 923 88!) 79 2 193 757 592 98 62 244 015 272 38 22 288 613 752 78 3 191 634 573 97 63 244 808 553 37 23 289 301 733 77 4 195 510 336 96 64 245 600 256 88 24 289 987 776 76 5 196 384 875 95 65 246 390 375 35 25 290 671 875 75 6 197 258 184 94 66 247 178 904 34 26 291 354 024 74 7 198 130 257 93 67 247 9a5 837 33 27 292 034 217 73 8 199 001 088 92 68 248 751 168 32 28 292 712 448 72 9 199 870 671 91 69 249 534 891 31 29 293 388 711 71 .210 200 739 000 .790 .270 250 317 000 .7450 .aso 291 063 OfO .670 11 201 606 069 89 71 251 097 489 21) 31 294 735 309 69 12 202 471 872 88 72 251 876 352 28 32 295 405 632 68 13 203 830 403 87 73 252 653 583 27 33 296 3 963 67 14 204 199 6515 86 74 253 429 17(i 26 34 2!>(i 740 296 66 15 205 061 625 85 75 254 203 125 25 35 2JJ7 404 25 66 16 205 922 304 84 76 254 975 424 24 36 298 066 944 17 206 781 687 83 77 255 746 067 23 37 298 727 247 88 18 207 639 76$ 82 78 256 515 048 22 38 299 385 528 62 19 208 496 541 81 79 257 282 361 21 39 300 041 781 61 .220 209 a52 000 .780 .280 258 048 000 .720 .340 30) 696 000 .660 21 210 206 139 79 81 258 811 959 19 41 301 348 171) 59 22 211 058 952 78 82 259 574 232 18 42 301 998 312 58 23 211 910 433 77 83 260 334 813 17 43 302 646 393 57 24 212 760 576 76 84 261 093 696 16 44 303 292 416 56 25 213 609 375 75 85 261 850 875 15 45 303 936 375 55 26 214 456 824 74 86 262 606 344 14 46 304 578 264 54 27 215 302 917 73 87 263 360 097 13 47 SOS 218 077 53 28 216 147 648 72 ' 88 264 112 128 12 48 305 855 808 52 29 216 991 Oil 71 89 264 862 431 11 49 306 491 451 51 .230 217 833 000 .770 .290 265 611 (XO .710 .350 307 125 POO .650~ 31 218 673 609 69 91 266 357 829 9 51 307 756 449 49 32 219 512 832 68 92 267 102 912 8 52 308 385 792 48 33 220 350 663 67 93 267 846 243 7 53 309 013 023 47 34 221 187 096 66 94 268 587 816 6 54 309 638 136 46 35 222 022 125 65 95 269 327 625 5 55 310 261 125 45 36 222 855 744 64 96 270 065 664 4 56 310 881 9*4 44 37 223 6S7 947 63 97 270 801 927 3 57 311 500 707 43 38 224 518 728 62 98 271 536 108 2 58 312 117 288 42 39 225 348 081 61 99 272 269 101 1 59 312 731 721 41 2k-3k 2 +k 3 a ,'>k-i1r -I- k- a 2 k3 k s -^k /. a / 1 I I TABLE I. Continued. 103 7. Cl ~T k- k :i fc= I k F 1 *=T k~k ! .3i,0 :{l;J 344 UW) .641) .420 345 912 ( (-0 .580 .4 408 CO ) .520 61 313 954 119 39 21 346 381 539 79 81 715 359 19 m 314 562 072 88 22 346 848 552 78 82 370 019 832 18 6;} 315 167 853 37 25 347 313 033 77 83 32 L 413 17 64 315 771 456 36 24 347 774 976 76 84 620 096 16 65 316 372 875 85 25 348 234 375 7i 85 915 875 15 66 316 972 104 34 26 348 691 224 74 86 371 i08 741 14 67 317 569 137 33 27 349 145 517 73 87 498 697 13 68 318 163 968 32 28 349 597 248 72 fc8 785 728 12 09 318 756 591 31 29 350 046 411 71 89 372 069 831 11 .370 . 319 317 000 .630 .430 50 4!)3 000 .r.70 ,4U) 351 COO .510 71 319 935 189 29 31 350 937 009 69 91 629 229 9 72 320 521 152 28 32 a51 378 432 68 92 904 512 8 73 321 104 883 27 33 851 817 263 67 93 373 176 843 7 74 321 686 376 26 34 a52 253 496 66 94 446 216 6 75 322 265 625 25 35 352 687 125 65 95 712 625 5 76 322 842 624 -24 36 353 118 144 64 96 976 064 4 77 323 417 367 23 37 353 546 547 63. 97 374 236 527 3 78 323 989 848 22 38 353 972 328 62 98 494 C08 2 79 324 560 061 21 39 354 395 481 61 99 748 501 1 .380 325 128 OCO .620 .440 354 816 000 .560 .500 375 000 000 .500 81 325 693 659 19 41 355 233 879 59 1 375 248 499 .499 82 326 257 032 18 42 355 649 112 5S 2 493 992 98 83 326 818 113 17 43 356 061 693 57 3 736 473 97 84 i?27 376 896 16 44 356 471 616 56 4 975 936 96 85 327 933 375 15 45 356 878 875 5 5 376 212 375 95 86 323 487 544 14 46 357 283 464 54 6 445 784 94 87 329 039 397 18 47 357^685 377 53 7 676 157 93 88 329 588 928 12 48 358 084 608 52 8 903 488 92 89 33-J 136 131 11 49 358 481 151 51 9 377 127 771 91 .390 3 '0 681 000 .610 .450 358 875 000 .550 .510 349 OCO ;490 91 331 223 529 9 51 859 266 149 49 11 567 169 89 92 331 763 712 8 52 359 654 592 48 12 782 272 88 93 332 301 543 7 53 36) 040 323 47 13 994 3,3 87 94 332 837 016 6 54 360 423 336 46 14 378 203 256 86 95 333 370 125 5 55 360 81.3 625 45 15 409 125 85 96 333 900 864 4 56 361 181 184 44 16 611 904 84 97 334 429 227 3 57 556 007 43 17 811 587 83 98 334 955 208 2 58 928 088 42 18 379 008 168 82 99 335 478 801 1 59 362 297 421 41 19 201 641 81 .400 336 000 000 .600 .460 661 000 .540 .520 392 (KO .480 1 336 518 799 .599 61 S63 027 819 39 21 579 239 79 2 337 035 192 98 62 363 388 872 38 24 763 352 78 3 337 549 173 97 63 747 153 37 23 379 944 333 77 4 338 060 736 96 64 364 102 656 36 24 380 122 176 76 5 338 569 875 95 65 455 375 35 25 296 875 75 6 339 076 584 94 66 805 304 34 26 468 424 74 7 339 580 857 93 67 365 152 437 33 27 636 817 73 8 340 082 688 92 68 496 768 32 28 802 048 72 9 340 582 071 91 69 838 291 31 k9 964 111 71 .410 311 079 000 .590 .470 366 177 COn .530 80 381 123 000 .470 11 341 573 469 89 71 512 8^9 29 31 278 709 69 12 342 065 472 88 72 845 952 28 32 431 232 6* 13 342 555 003 87 73 367 176 183 27 33 580 563 67 14 343 042 056 86 74 503 576 26 34 726 696 66 15 343 526 625 85 75 *28 125 25 35 869 625 65 16 344 008 704 84 76 . 368 149 824 24 36 382 (H*9 344 64 17 344 48$ 287 83 77 468 667 23 37 145 847 63 18 344 965 368 82 78 784 648 22 38 279 128 62 19 345 439 941 . 81 79 369 097 761 21 39 409 181 61 2 A-->' Jb*+fr' k- a **-** fc 8 A-=A Sk-XV+l? *=-- I / I 104 TABLE I. Continued. *=f fe- /," /l> I /,' I" 1. <( n . A- -A" .540 536 Oi).' .460 .6-JO 384 000 000 .400 .660 .304 i 00 .310 41 659 579 59 1 383 918 19!) .399 61 195 219 90 42 779 912 58 2 832 792 98 62 371 882 472 38 43 896 993 57 3 743 773 97 63 565 753 37 44 383 010 816 56 4 651 136 96 64 245 056 86 45 121 375 55 5 554 875 95 65 370 920 375 35 46 228 664 54 6 454 984 94 60 o!)l 704 34 47 332 677 53 7 351 457 93 67 259 037 88 48 433 408 52 8 244 288 92 68 369 922 368 32 49 530 851 51 9 133 471 91 69 .581 691 M .550 383 625 000 .450 .610 019 000 .393 .670 237 000 .330 51 715 849 49 11 382 900 869 89 71 368 888 289 29 52 803 392 48 12 77!) 072 88 72 .535552 28 53 887 623 47 13 653 603 87 73 178 783 27 54 968 536 46 14 524 456 86 74 367 817 976 26 55 384 046 125 45 15 391 625 8i 75 453 125 2.3 56 120 884 44 16 255 104 84 76- 084 224 24 57 191 307 43 . 17 114 887 83 77 366 711 2(57 23 58 2.50 888 42 18 381 970 968 82 78 334 248 22 59 323 121 41 19 823 341 81 79 365 953 161 21 .560 384 000 .440 .620 672 000 .380 .680 568 000 .320 61 441 519 39 21 516 939 79 81 ITS 75! 19 62 4^5 672 38 22 358 152 78 82 361 785 432 18 63 546 453 37 23 195 633 77 83 888 013 17 64 593 856 36 24 Oi9 376 76 84 363 986 496 16 65 637 875 35 25 380 859 375 75 85 fi80 875 15 66 678 504 34 26 685 624 74 86 171 144 14 67 715 737 33 27 508 117 73 87 362 757 297 i:; 68 749 568 32 28 326 818 72 88 339 328 12 69 779 991 31 29 141 811 71 89 361 917 231 11 570 807 000 .430 630 379 9.53 000 .370 .690 491 000 .310 71 830 589 29 31 760 409 (ij 91 060 629 9 72 850 752 28 32 564 032 68 92 360 626 112 8 73 867 483 27 33 363 863 67 93 187 443 7 74 880 776 26 34 159 896 66 94 359 744 616 6 75 890 625 25 35 378 952 125 65 297 625 5 76 897 024 24 36 710 44 64 96 358 846 464 4 77 899 967 23 37 525 147 s 97 391 127 3 78 899 448 22 38 305 928 62 98 357 931 608 2 79 895 461 21 39 082 881 61 99 467 901 1 .580 888 000 .420 .640 377 856 000 .3(30 .700 357 000 000 .801 81 877 059 19 41 625 279 59 1 356 527 899 .299 82 862 632 18 42 390 712 58 2 051 592 98 83 844 713 17 43 152 293 57 3 355 571 073 97 84 823 296 1H 44 376 910 016 56 4 086 336 9o 85 798 375 15 45 663 875 55 5 354 597 375 95 86 769 944 14 46 413 864 54 6 354 104 184 94 87 737 997 13 47 159 977 53 7 353 606 757 93 88 702 528 12 48 375 902 208 52 8 105 088 92 89 663 531 11 49 640 551 51 9 352 599 171 91 .590 621 000 .410 .6 375 375 000 .350 .710 089 000 .290 91 574 929 9 51 105 549 49 11 351 574 569 89 92 525 312 8 52 374 832 192 48 12 055 872 88 93 472 143 7 53 554 923 47 13 350 532 903 87 94 415 416 6 54 273 736 46 14 005 656 86 95 355 125 5 55 373 988 625 45 15 349 474 125 85 96 291 264 4 56 699 .584 44 16 348 938 304 84 97 223 827 3 57 406 607 43 17 398 187 83 98 152 808 2 58 109 688 42 18 347 853 768 82 99 078 201 1 59 372 808 821 41 19 305 041 81 2 k-3 A-'+fc 3 , a <2k-31^1f *. 21-3 V+tf fc=-i I I [ TABLE I. Continued. 105 k ~ I k=-r- Mf *=f k-lf .720 346 752 000 .280 .780 305 448 0>0 .220 .840 247 296 000 .160 21 194 639 79 81 304 620 459 19 41 246 176 679 59 22 345 632 952 78 82 303 788 232 18 42 245 052 312 58 23 f66 933 77 83 302 951 313 17 43 243 922 893 57 24 344 496 576 76 84 302 109 696 16 44 242 788 416 56 25 343 921 875 75 85 301 263 375 15 45 241 648 875 55 26 343 342 824 74 86 301 412 344 14 46 240 504 264 54 27 342 759 417 73 87 299 566 597 13 47 239 354 577 53 28 171 648 72 88 293 696 128 12 48 238 199 8U8 52 29 341 579 511 71 89 297 830 931 11 49 237 039 951 51 .730 310 983 000 .270 .790 296 961 000 .210 .850 235 875 000 .150 31 382 109 69 91 296 086 329 9 51 234 704 919 49 32 339 776 832 68 92 295 206 912 8 52 233 529 792 48 as 167 163 67 93 294 322 743 7 53 232 349 523 47 34 338 553 096 66 94 293 433 816 6 54 231 164 136 46 35 337 934 625 65 95 292 540 125 5 55 229 973 625 45 36 311 744 64 96 291 641 664 4 56 228 777 984 44 37 336 684 447 63 97 290 738 427 3 57 227 577 207 43 38 (J52 728 62 98 289 830 408 2 58 226 371 288 42 39 335 416 581 61 99 288 917 601 1 59 225 169 221 41 .740 834 776 000 .260 .800 288 000 000 .200 .860 223 944 000 .140 41 130 979 59 1 287 077 599 .199 61 222 722 619 39 42 333 481 512 58 2 286 150 392 98 62 221 496 072 38 43 aS2 827 593 57 3 285 218 373 97 63 220 264 353 37 44 169 216 56 4 284 281 536 96 64 219 027 456 36 45 331 506 375 55 5 283 339 875 95 65 217 785 375 35 46 330 839 064 54 6 282 393 384 94 66 216 538 104 34 47 167 277 53 7 281 442 057 93 67 215 285 637 33 48 329 491 008 52 8 280 485 888 92 68 214 027 968 32 49 328 810 251 51 9 279 524 871 91 69 212 765 091 31 .750 328 125 000 .250 .810 278 559 000 .190 .870 211 497 000 .130 51 327 4a5 249 49 11 277 588 269 89 71 210 223 689 29 52 326 740 992 48 12 276 612 672 88 72 208 945 152 28 53 326 042 223 47 13 275 632 203 87 73 207 661 383 27 54 325 338 936 46 14 274 646 856 86 74 206 372 376 26 55 324 631 12> 45 15 273 656 625 85 75 205 078 125 25 56 323 918 784 44 16 272 661 504 84 76 203 778 624 24 57 323 201 907 43 17 271 661 487 83 77 202 473 867 23 58 322 480 488 42 18 270 656 568 82 78 201 163 848 22 59 321 7.54 521 41 ' 19 269 646 741 81 79 199 848 561 21 .760 321 024 000 .240 .820 268 632 000 .180 .880 198 528 000 .120 61 320 288 919 39 21 267 612 339 79 81 197 202 159 19 62 319 549 272 38 22 266 587 752 78 82 195 871 032 18 63 318 805 053 37 23 265 558 233 77 83 194 534 613 17 64 318 056 256 36 24 264 523 776 76 84 193 192 896 16 65 317 302 875 35 25 263 484 375 75 85 191 815 875 15 66 316 544 904 34 26 262 440 024 74 86 190 493 544 14 67 315 782 3i7 33 27 261 390 717 73 87 189 135 897 13 68 315 015 168 32 28 260 336 448 72 88 187 772 928 12 69 314 243 391 31 29 259 277 211 71 89 186 404*631 11 .770 313 467 000 .230 .830 258 213 000 .170 .890 185 031 000 .110 71 312 685 989 29 31 257 143 809 69 91 183' 652 029 9 72 311 900 a52 28 32 256 069 632 68 92 182 267 712 8 73 311 110 083 27 33 254 990 463 67 93 180 878 043 7 74 310 315 176 26 34 253 906 296 66 94 179 483 016 6 75 309 515 625 25 35 252 817 125 65 95 178 082 625 5 76 308 711 424 24 36 251 722 944 64 96 176 676 864 4 77 307 902 567 23 37 250 623 747 63 97 175 265 727 3 78 1307 089 048 22 38 249 519 528 62 98 173 849 208 2 79 30S 270 861 21 39 218 410 281 61 99 172 427 301 1 a g / ; i>* + l>3 7. a a -. -* k ~~~r I t 106 TABLE I. Continued. I. a " / A ~ A -T ikjb 8 Hr A-- -/r .900 171 000 000 .100 .940 109 416 000 60 .980 03* 808 000 20 1 169 5t7 299 99 41 107 762 379 59 81 036 923 859 19 2 168 129 192 98 42 106 103 112 58 82 035 033 H32 18 3 166 685 673 97 43 104 43S 193 57 83 033 137 913 17 4 165 236 736 96 41 102 7(57 till! 66 84 031 236 098 16 5 1(53 782 375 95 45 101 091 :!7"> 55 86 029 328 375 15 6 162 322 584 94 46 099 409 464 54 86 027 414 744 14 160 857 357 93 47 097 721 877 53 87 025 495 197 13 8 159 386 688 92 48 096 028 608 52 88 023 5(59 728 12 9 157 910 571 91 49 094 329 651 51 89 (2L 038 331 11 .910 156 429 000 90 .950 092 (525 COO 50 .990 019 701 000 10 11 154 941 969 89 51 090 914 649 49 91 017 757 72!) 9 12 153 449 472 88 52 089 198 592 48 92 015 808 512 8 18 151 951 -503 87 53 087 47U 823 47 93 013 8.-,:! ;M3 7 14 150 448 056 86 54 085 749 :m 16 94 Oil 892 21 (i (i 15 148 939 125 85 55 084 016 125 45 95 009 925 125 6 16 147 424 7(14 84 56 082 277 184 44 96 007 952 064 4 17 145 904 787 83 57 ( s i r,32 507 18 97 005 973 027 3 18 144 379 368 82 58 078 782 088 42 98 003 998 (X 8 2 19 142 848 441 81 59 077 025 921 41 99 TOl 997 001 .001 .920 141 312 000 80 .96) 075 264 000 40 n 21 139 770 039 79 61 073 49(5 819 39 2 k-3 Ir /,' fc= 22 138 222 552 78 62 071 722 872 38 / 23 136 (569 533 77 63 069 943 653 :!7 24 13T> 110 976 7(5 64 068 158 (-..Hi 36 26 133 S 46 875 :r> 65 (KK> 3(57 875 35 26 131 977 224 74 66 0(51 571 304 34 27 130 402 017 73 67 062 7(58 937 33 28 128 821 248 72 (18 060 960 7(58 32 29 127 234 911 71 69 OE9 146 791 81 .930 125 643 000 70~ ~970 057 327 000 30 31 124 045 f>()9 69 71 055 501 38! 29 32 122 442 432 68 72 053 669 !52 28 33 120 833 763 67 73 051 S32 liS3 -'7 34 119 219 496 66 74 049 !IH!t :>7(i 26 35 117 599 625 65 75 048 140 625 25 36 115 974 144 64 76 046 285 824 24 37 114 343 047 63 77 044 425 Ki7 23 38 112 706 328 62 78 C42 558 648 22 39 111 (63 981 61 79 040 686 261 21 2 k-3 k^k 3 Hr 2 k-i k^+k 1 k~ a k ~ I REFERENCES. The Britannia and Conway Tubular Bridge, with general inquiries on Beams and on the properties of Materials used in Construction. Edwin Clark, London, 1850. Calcul d'une poutr elastique reposant librement sur des appuis inegalement especes. Clapeyron. 1857. Beitrag zur Theorie der Holz und Eisen constructionen. Mohr, 1860. Beitrage zur Theorie continuirlicher Bruckeutrager. Winkler, Civil Iug<5- nieur, 1862. Die Lehre von der Elasticetaet und Festigkeit, Winkler, 18(i7. -Vortrage viber Briickenbau. Winkler, 1875. -Theorie der Briicken Aeussere Kraf tegerader Trager. Winkler, Wien, 1875. Course de Mechanique Appliquee. Ill Partie. Bresse, Paris, 1865. -Die graphische Statik. Culmann, 1866. A Handy Book for the Calculation of Strains, &c.Humber, New York, 1860. Calcul des Fonts mgtalliques a poutres droites et continus. DeMoudesir, Pans. 1873. = : Allgemeine Theorie und Berechnung der continuirlichen und einfachen Trager. Weyrauch, Leipzig, 1873. The Elements of Graphical Statics. DuBois, New York, 1875. Graphical Method for the Analysis of Bridge Trusses. Greene, New York, 1875. Continuous Revolving Draw Bridges. Herschel, Boston, 1875. Der bau der Briickentrager mit Besouderer Biicksicht auf eisen-construc- tiouen, pp. 161-231. Laissle-Schiibler, Stuttgart, 1876. The Theor/ and Calculation of Continuous Bridges. Merriman, New York, 1876. Practical Treatise on the Properties of Continuous Bridges. Bender, New York, 1876. Elementary Theory and Calculation of Iron Bridges and Roofs. Bitter (Hankey)- London, 1879. The Strains in Framed Structures DuBois, New York, 1888. 108 REFERENCES. Annales des Fonts et Chaussces. 1864 Paper 75 pp. 141-213 Collignon. 1866 " 126 pp. 310-408 Renaiidot. 1866 " 132 pp. 53-175 Albaret. 1867 " 158-^pp. 27-115 Regnauld. 1871 " 3 pp. 44-51 Pierre. -1871- " 20 pp. 170-274 Des Orgeries. 1872 " 25 pp. 189-220 Poulet. 1S74 " 15 pp. 327-391 Choron. 1882 " 9 pp. 141-218 Huleu'icz. 1884 " 44- pp. 101-197 HulHvicz. 188-5 " 72 pp. 267-351 Guillaume. 1885 86 pp. 613-726 Hausserct. 1886- " 40 pp. 5-39 Collignon. 1886- " 11 pp. 304-357 Leygue. Van Nostrand's Engineering Magazine. *1874 pp. 55i_.V)7 . 1876 pp. 65- 73 . . *1877 pp. 481-490 . . 1878 pp. 55:{-5f)0 . . 1881-pp. 49- 59 . . 1885 pp. 137-144 . . Eddy. Merriman. Eddy. Hiidyins. Kidder.\ Berfsford. ' Variable Moment of Inertia. INDEX OF EQUATIONS. TT"" . -> 1 ; A. . . . B . . C . . . D . . . E . . . E, . . . PAGK. 7 12 . ,14 15 16 10a PAGE. 5 14-19 6 20-21 . . 7 . . 86 87 22a-22d 22c-22m . . 16 17 17 11 22-26 27-28 . . 88 89 29-31 32-36 . . 90 . . 81 . . 92 93 b . . . c . . . d . . . e . . . f 11 11 11 12 9 37-40 41-42 ..... 43-44 45a . . 94 . . 17 95 45-46 o 10 47-53 54-63 . . . . 96 97 h . . . i . . . i., . . . L . - . i 9 8 12 ....... ]4 8 59a 97 64-67 68-73 74-77 . . 98 . . 99 . . 8 . . 9 10 j> L 12 14 . 12 12 15 78-81 82-85 86-89 . . 13 14 90-92 93 15 n . . . . . . . . 12 94-102 103-110 ...... 111-117 118-124 . . 16 . . 19 . . 20 21 12 12 12 12 125-134 135-141 142-152 . . 22 . . 23 24 'D ... 14 r . . . . T , . . . . 1-7 12 12 14 4 153-162 ." 25 163-173 .... 26 174-178 27 8-13 . . . 5 179-188 . . 28 110 INDEX OF EQUATIONS. 189-196 . 21) 262-2(8 . 39 197-206 .'.......:'() 207-217 31 218-223 :\-2 224-233 33 234 34 235-238 35 239-2-12 :-',(> 243-251 37 252-261 . 38 266-275 40 276-286 41 28 -291 . 42 292-300 301-30(5 307-311 312-313 314-316 43 44 45 46 47 48 SUMMARY. PAGE. Nomenclature 1-2 I. GENERAL RELATIONS. Conditions of equilibrium (I), (II) and (III) ... 4 Moment equations for single concentrated load (1) and (2) 4 Moment equations for concentrated loads (8) and (9) 5 Moment equations for partial uniform loads (13), (14) and (15) 5-6 Moment equations for uniform load over all (18) and (19) 6 MOMENTS. General equations for the moment over any support ; the modulus of elasticity, E, alone, being considered constant. Moment equation ( A ) 7 Concentrated loads- Values of A, and B r (i) and (j) Values of X;, X^ t and H r (A), (h) and (/) .... 9 Value of H;(g) .... 10 Partial uniform loads Values of A,, and B r (74) and (76) Values of A7 and AZ/ (78) and (80) 9 Value of #, (f), (82) and (83) 9-10 Value of H/ (g), (82) and (83) 10-11 Uniform load over all Values of A r and B,. (75) and (77) Values of A7 and X;_, (79) and (81) 9 Value of Jf y . (/), (84) and (85) 9-10 Value of If/ (g), (84) and (85) 10-11 112 SUMMARY. For all loads Values of^., F/, F," and ,(6), (c), (rf) and () . . 11 Values of ft r , ,V, ', }',",, e* and d,, (m), (n), (o), (/), (e), (p) and (r) 12 The modulus of elasticity, E, and tlie moment of inertia, I, being constant. Moment equation (A,) 12 Concentrated loads, values of A f and B,. ( i, ) and ( j, ) . 13 Partial uniform loads, values of ^1, and B, (86) and (88) 13 Uniform load over all, values of A,, and B, (87) and (89) 13 For all loads- Values of c,,,, d, H and Y,(p,), (r t ) and (/,) 13 The modulus of elasticity, E, the moment of inertia, I, and the length of the spans being constant. Moment equation (A x ) 14 Concentrated loads, values oi A, and B, (L) and (,/,) . 14 Partial uniform loads, values of A,, and B,. (90) and (92) 14 Uniform load over all, values of A,, and B, (91) and (93) 14-15 For all loads- Values of c w ,rf w and Y r (p,),(r s ) and (/,) 14-15 GENERAL EQUATIONS FOR SHEAR. General equation (B), value of S, 15 General equation (C), value of &,! 16 Concentrated loads, values of Q ; .and Q/ (94) and (95) 16 Partial uniform loads, values of Q,. and QJ (96) and (97) 16 Uniform load overall, values of Q,and Q/ (98) and (99) 1(5 GENERAL EQUATIONS FOR INTERMEDIATE BENDING MOMENTS. General equation (D) 16 Concentrated loads, value of L r (100) 5 and 16 Partial uniform loads, value of L, (101) 6 and 16 Uniform load over all, value of L,. (102) 7 and 16 GENERAL EQUATIONS FOR DEFLECTION. E, alone, constant. General equation ("), value of y, 17 Value of t r+i (45) 17 E and I constant. General equation (";), value of y, ..-.-. 17 Value of t r +, (45a) 17 SUMMARY. 113 II. SUPPORTED GIRDERS. GIRDER RESTING UPON T\VO SUPPORTS. (a) JE, alone, constant. Values of M, and M (103) . 19 Concentrated loads Values or >S and ' (106) and (107) 19 Value of J/,' (113) 20 Value of y, (117)' 20 Partial uniform loads- Values of S, and ' (108) and (109) 19 Value of M; (114) 20 Value of y, (117) ... See (12), p. 18 20 Uniform load over all Values of S, and &' (110) and (111) 19-20 Value of MJ (115) 20 Value of M (116) 20 Value of ?/, (117) - - See (12), p. 18 . 20 (6) IE and I constant. Value of y, (119) . . (concentrated loads) 21 A BEAM CONTINUOUS OVER THREE SUPPORTS. (a) jEJ, alone, constant. Value of J/ ; , M., and M (120) and (121) 21 Value of M (124) 21 Concentrated loads, values of A.> and B t (135) and (136) 23 Partial uniform load, values of A., and B, (137) and (138) 23 Uniform load over all, values of A.> and B, (139) and (140) " 23 For all loads Values of c,, c., and ,(122) 21 Values of ',', X, and X," (189) to (196) . . k 2l) TIIK TIIM'ER. ( d ) K, (done, ronx((tnt. Value of //.,( 217) Values of V., and )> (210) and (211) ....... Values of .17, and .I/, (177) and (ITS) . . . . . See General Relations for other equations ( I) } E and I convlant. Values of T. and Y (233) 33 Values of .17, and .17 (179) and (180) . . 28 See General Relations for other equation^ III. BEAMS WITH FIXED ENDS. A MKAM KIXKI) AT ONE KM) A XI) SI l'l'( >RTKI > AT TIIK OT Value of Mr- (234) 34 Concentrated loads, value of A,, ( 144) Partial uniform loads, value of A., (146; Uniform load over all, value of A., (148) . . ... For all loads Values of )'.,, B' and A, (236) to ( 129) 35 Values of 7'V, 7-; 11, and AY (131) to (238) 35 See ( General Relations for other equations ( ft ) K ml I roiiNffi lit. Value of .17, (240) . . . 36 Concentrated loads- Value of .17, (241) 36 Value of )', (236) 35 Values of X, and X' (212) and (243) . . 36-37 116 SUMMARY. Uniform load over all Value of .)/., (244) . . . :'>7 Value of K, (236) . . . 85 Values of X and X' (245) and (24(5) . 87 (c) .H, 1 "/id It constant. Concentrated loads Value of Mr- (247) . 37 Values of X and X,.' ( 24s ) and ( 249 , 8 , ("niform load over all- Value of M; (250) 37 Values of X, and S,' (251 ) and (252) . 8,-8S Value of ,!/,( 253) . Value of M.r. .I/, (254) . Load at center of beam Value of .JA (256) Value of X, and X,.' (257) and (25X> . 8,s Value of M (251)) or (260) . :'.S \ r alue of Mas. :]/, (261) . 38 N'alue of//,, if/;, />, <> (22) or (2r,:V) . 3<) A 1JEA.M FIXKD AT I'.OTII ENDS. (a ) /, nlnin . a m slant. N'alues J/, and .)/, (266) and (267) . 40 Values of"^'. A', A, &", ^ and );-(268) to (273) . . 40 See Generai Relations for other equations. (/;) E and I constant. Values of .!/, and M : (274) and (275) 40 ( c ) .E, I an d h con *ta-nt. Values of .17, and M (276) and (277) 41 Concentrated loads Values of ,]/, and M : . (27) and (27?h Uniform load over all- Values of .17, and : I/. (280) . \'alues of X, and X,' (281) Value of M (282) 41 N'alue of Mas. J/ (283) . . 41 Value of?/, (284) SrM.MAKY. 11, A single load in the center of the beam Values of M, and M (285) Values of & and &' (286) . . Value of J^ (287) or (288) ... 42 Value of Mas. #(289) . 42 Valueof^ (290) or(291) . . , 42 A I5EAM FIXED AT ONE END, AND I XST !'!'( ) KTET) AT TIIK OTIIEIl. Concentrated loads Value of M (21)2) . . . 43 X'alue of X, (292) .... 43 Partial uniform loads Value of M,( 293) 43 Value of X, ( 294) 43 Value of M' (295) , . 43 Value of ;?/,, I constant (297) 43 Single concentrated load, value of y, (298) 43 Load at end of beam, value of y, (299) 43 Uniform load over all, value of ;//, (300). . . 43 A I5EAM OX TWO Sl'I'I'OUTS, AND ONE KXD 1 XSI I'I'oKTED. Value of M (301) . 44 Value of X, ,SV and X, (302) to (304) . . 44 Values of .!/, and .I/, (305) and (30(i) 44 \ P.EA.M ON ONE Sl'J'I'ORT, HAVIN(i OXE END FIXED, AXD THE OTIIEI! i NSIIM'OKTED. ( a ) 12, afoiWj constant. X'alues of .)/, and M :I (309) and (307) . . . 4") ( b ) K an d 1 constant. N'alues of M, and .]/,- (310) and ( 307 ) . 45 (c) H, I and h cr instant. \' ulues of .I/,, and M (31 1 ) and (307) ... 45 A I'.KA.M ON T\\ () sri'l'ORTS, IfAXINt. XKITIIEK EN D SI I' I'OUTEI). Values of M, and .17^ (312) and (313) 40 1 18 SUMMARY. IV. THE mi NT OK XKUo MOMENT. Load on the right, value of .-,. ('>\\<>) 47 Load on the left, value of .r r (317) 4s Values of .r, by (Jraphics L8-49 T1IK CO-KFKICIKNTS <- AND 0-5i APPLICATIONS. Kxainple I. A continuous girder of three spans upon level supports, the two end spans being equal. Determination of bending moments and shears o2 Values of .17, and .17.. for each load Table (H) .... 08-54 Values of N, >./, >', >',', >', and X/ Table (/>) -V> Values of .17,. Table' (c) -^ Maximum mom^n'ts ">* Maximum shear -V.t Example 1. By graphics 60-ttl Kxample '2. A. continuous girder of four spans with uniform loads and a variable cross section. De- termination of moments (;_!-<;!> Kxample 2. With a constant cross-section 7<-71 A comparison of the results obtained, considering the moment of inertia as variable and then constant . 71 Kxample o. A continuous girder of two spans. The Sabula Draw uniformly loaded, and having a variable cross- section. Determination of the mo- ment over the second support 72-7(> Example o. The same as Example 3, but with a constant cross-section 77 Comparison of the results of Example 3 and Example 3 m ' / "