REESE LIBRARY
()! THK
UNIVERSITY OF CALIFORNIA.
^eceii)ed
z/tccessious No.foSf/jy / . Chi ^ No.
EXERCISES
IN
WITH A SHORT TREATISE ON WOOD
WRITTEN FOR MANUAL TRAINING GLASSES
IN SCHOOLS AND COLLEGES
BY
IVIN SICKELS, M. S., M. D.
11 CF THE
-UNIVERSITY)
OF
NEW YORK : CINCINNATI : CHICAGO
AMERICAN BOOK COMPANY
COPYRIGHT, 1889,
BY D. APPLETON AND COMPANY.
prtnteb b^
B. Bppleton & Company
flew lorft, TH. S. B.
PEEFACE.
THE exercises in wood-working in this book were pre-
pared by me during the summer "of 1883, for the students
of the College of the City of New York. Subsequent
teaching suggested many changes and additions, until the
manuscript was scarcely preseSfeble. This manuscript has
been copied for other schools ; and now, in order that those
who have recently asked for it may receive it in better
shape, this little volume is printed.
I am indebted to Mr. Bashford Dean for the part relat-
ing to injurious insects, which was written expressly for
this book.
I. S.
NEW YORK, September, 1889.
TY
y
CTERSITT)
CN 8 " S
CONTENTS.
PAGE
INTRODUCTION .. . 7
PART FIRST. WOOD.
Structure of wood
Composition of wood
Branching of stems 19
Age of trees 20
Decay of trees 20
Season for cutting 21
Milling 21
Drying of wood . . . 22
Warping -23
Properties of wood . 24
Defects in wood 28
Measure and value of wood 29
Kinds of wood 30
Table of chief qualities of wood 38
Wood and iron 38
Wood-working trades 39
Parasitic plants 41
Timber-borers 45
Preservation of wood 52
PART SECOND. EXERCISES.
Tools (Plates A and B) 58
Drawing (Plate C) 63
Exercise 1. Use of the chisel 64
2. Use of the chisel (continued) 66
3. Use of the gouge 68
4. Use of the hammer .....> 70
6 CONTENTS.
PAGE
Exercise 5. Use of the jack-plane 72
6. Plane (continued) and marking-gauge 74
7. Use of the rip-saw 70
8. Use of the cross-cut .78
Sharpening tools with the oil-stone (Plate D) 80
Sharpening tools on the grindstone (Plate E) 82
Sharpening tools. Saw-filing (Plate F) .84
Exercise 9. Construction of a half-joint 86
10. Modified forms of the half-joint 88
11. Construction of a mortise- joint 00
12. Pinning the mortise-joint 92
13. Construction of a stub-mortise 94
14. Construction of a dovetail-joint 96
15. Construction of a miter-joint 98
16. Use of the miter-box . . . ' 100
17. Construction of a stretcher-joint 102
18. Uniting with dowels 104
19. Gluing 106
20. Examples of glued joints 108
21. Laying out a dovetailed box . . . . , . .110
22. Laying out and cutting the dovetails . . . . .112
23. Marking and cutting the tenons . . . . . . 114
24. Finishing the box v . 116
25. Hinging the top to the box 118
26. Construction of a drawer . . . . . . . 120
27. Construction of a blind-dovetailed box 122
28. Framing 124
29. Construction of window and door frames .... 126
30. Inclosing a building 128
31. Laying floors. Trimming . 130
32. Construction of a sash 132
33. Construction of a door . . . . . . . .134
34. Construction of stairs 136
35. Laying out and shaping the hand-rail . . . . . 138
36. Use of the frame-saw. Bending wood 140
37. Construction of a pattern 142
38. Shaping a boat-model 144
39. Veneering 146
Polishing . . . 148
Painting 149
Index . 151
EXERCISES IN WOOD-WORKING.
INTRODUCTION.
THE tendency of modern systems of education is toward
a proper distribution of practical with theoretical training.
The mind is to be aided in its development by the action of
the eye and hand ; and, in fact, all the special senses are
employed in objective teaching and manual exercises. In
school, the eye does more than interpret the printed page : it
recognizes the form and color of objects, it must calculate
their size, proportion, and distance, by observing and com-
paring them ; the hand is required to do more than writing :
it is taught to appreciate the weight, hardness, and other
properties of objects, by actual contact with them. At first
the introduction of drawing, modeling, and the use of tools,
into the courses of study was experimental; but, having
passed beyond that stage, these exercises are now known to
be efficient aids to a more natural and rapid as well as
stronger mental development.
There are some who, after being educated in the abstract
way, can apply their training successfully to practical pur-
suits, who see no necessity for manual or industrial training
in the schools, and who claim that superior and sufficient
development may be obtained by the study of mercantile
methods and the classics. These, however, form a very small
percentage of the people, and systems of education must be
arranged to stimulate all intellects, and not measured by the
accomplishments of a few. Our best educators recognize
this fact, and are modifying old systems by the greater intro-
duction of manual elements. No one doubts the value of
practical qualities, not only in ordinary people, but also in
8 EXERCISES IN WOOD-WORKING.
prominent leaders, who must be thoroughly practical a fact
so aptly illustrated by prosperous manufacturers and mer-
chants, successful engineers, great generals, and eminent
statesmen.
Manual training for the early cultivation of these prac-
tical qualities in students takes a place in the regular courses
of study : by means of it the reasoning power is more easily
awakened; knowledge of objects and the facts connected with
them are more readily understood and remembered; and,
above all, the accuracy and precision demanded by the prac-
tical studies, lead to closer observation and exactness in
others. This training begins in the lowest grades, and con-
tinues in its various applications through all the classes,
until in the higher grades we find sufficient physical strength
to handle the ordinary wood-working tools.
The prime object of all manual training, especially in
this country, is to aid mental development, and while this
fact must not be lost sight of, the training should be in some
useful art, or in some exercises which are introductory to
the useful arts.
Perhaps the most valuable of these studies is industrial
drawing, which is in itself a sort of universal language, a
medium between thought and execution. Its study cultivates
precision, and is well calculated to develop sound and accu-
rate ideas. Drawing naturally precedes construction, it pre-
pares the way for the work of the engineer, manufacturer,
or builder. Even the ideas of the inventor are jotted down
in a chance sketch, which is added to and modified at lei-
sure, leading to the finished sketch, from which the skilled
draughtsman produces the designs for the execution of the
work.
The studies of drawing and wood-working are closely
connected, and may be taught together with great advantage
to both. A simple object is roughly sketched on paper, its
measurements accurately made and marked on the sketch ;
from this a drawing is made with instruments, either full
size or to a scale, which is used in the workshop as a guide
to the construction of the object. Skill in sketching is a
INTRODUCTION. 9
valuable acquirement, and should be taught early in the
course of industrial drawing. These sketches should, if pos-
sible, be made from real objects, instead of charts, and should
always be accompanied by measurements. In sketching it
is well, first, to determine the number of diagrams necessary
to show the form or structure of the object, and allot for
each a certain space on the paper ; second, to place each
sketch in the middle of its space, of which it should occupy
about one half, thus leaving a margin for notes, measure-
ments, and small details ; third, to draw the relative propor-
tions of the object as accurately as possible ; fourth, to mark
on the sketch the measurements of each part.
Wood- working from the simple constructions of earliest
times has advanced with the necessities and customs of
nations, until at present it includes the complicated struct-
ures of modern requirements. Throughout all wood-working
trades we find certain general principles regarding the cut-
ting action of tools on wood, and the joining of different
pieces ; and, since those principles are more easily taught by
carpentry and joinery, these branches have been generally
adopted as educational aids.
The very extensive use of wood for building has given
rise in this country to a craft of carpenters whose improved
tools and methods of work are superior in many respects to
those of European workmen. Based upon these methods,
workshop practice in schools and colleges as applied to wood-
work does not stop with carpentry : its design is to prepare
the way for the entire field of mechanical arts ; so that car-
pentry and joinery are followed by turnery, carving, and
possibly a few lessons in pattern-making. These should be
followed by metal- work, such as forging, chipping, filing,
and, finally, with the elements of machine-work. The study
of mechanics as thus taught in the educational workshop
should be applied correctly, by methods which are the actual
but intelligent practice of the operating mechanic. As to
the time required, it can not be expected that the three to
five hours per week spent in the workshop are going to make
mechanics; far from it: several years of labor and experi-
10 EXERCISES IN WOOD-WORKING.
ence are necessary to produce -skilled workmen in any of the
arts.
This book deals with carpentry and joinery, and is divided
into two parts :
The First Part treats of the structure, properties, and
kinds of wood ; its manufactures and economic relations to
other substances, parasitic plants and insects ; and means of
preserving wood.
The Second Part contains the exercises, preceded by a
description of tools, and the manner of drawing used to illus-
trate the exercises.
These exercises are based upon American methods of
work and have been taught as follows : Each exercise was
explained, illustrated by sketches on the blackboard, and
then executed by the students. As the exercises advanced,
the blackboard sketches were prepared with more detail,
each being shown with its measurements designated. The
students copied these sketches and noted down such of the
verbal directions as they could. With the higher exercises
it was found necessary to issue duplicate copies, describing
and illustrating each step in construction, and also to exem-
plify by models made by the instructor.
Exercises 1 to 8 introduce the chief wood-working tools
and methods of marking. These exercises should be executed
with much care and patience, and if necessary repeated, to
insure better results in subsequent work.
Following exercise 8 are directions for sharpening tools.
But students should not attempt to sharpen tools until they
have had considerable practice in the use of them ; especially
saw-filing, which requires remarkably good judgment, keen
eye-sight, and a steady hand.
Exercises 9 to 20 give instructions for marking out and
shaping simple joints.
Exercises 21 to 27 instruct in the methods employed in
uniting several pieces to make a complete structure.
Exercises 28 to 35 give the details of ordinary house-car-
pentry, from which the student may obtain particulars for
the construction of models, and the apprentice the actual
INTRODUCTION. 11
building of the various parts making up a wooden dwell-
ing.
Exercise 36 shows the use of the frame-saw, and methods
of bending wood.
Exercise 37 gives an example of pattern- work, and illus-
trates the manner of uniting pieces for economy of labor.
Exercise 38 instructs in shaping by the use of templets.
Exercise 39 treats of veneering, followed by directions for
painting and polishing.
s*Tf&&^* LIBfi/f^yN^
f OF THE \
(UNIVERSITY)
V. f *S
PART FIRST.
STRUCTURE OF WOOD.
IF we examine the stem of a young plant, we find three
distinct tissues composing it : On the outside is the bark or
protecting tissue ( a, Fig/ 3) ; inside there is a soft material,
made up of many-sided, thin- walled cells, which constitute
the living portion (6, Fig. 3) ; and arranged in a circle in this
soft tissue are several fibrous bundles (c, Fig. 3), giving to the
stem its strength to support the branches and leaves. Be-
cause of differences in the character of these bundles, we
separate stems into three classes; and the pine, palm, and
oak may be taken as types of each.
In the pine and oak the bundles are similarly arranged,
and consist of an outer portion called bast (d, Fig. 3), and an
inner portion called wood (e, Fig. 3) ; between these is a thin
layer of active cells, which multiply by division to form the
bast and wood ; this layer is called cambium (/, Fig. 3), and
adds each year to the size of the bundle. In the palm the
bundles arise from active cells at the growing point of the
stem, and continue down the stem, sometimes becoming
smaller, but retaining a rounded form.
As the stems grow older and larger, we find, in the pine,
that new and branching bundles appear between the first
ones, forming, during the season, a circle of bundles, which
constitutes the first annual ring. This ring is interrupted by
plates of tissue communicating between the pith, on the in-
side of the ring, and the soft tissue on the outside. In a cross-
H EXERCISES IN WOOD-WORKING.
section of the stem these plates are seen as lines, called medul-
lary rays, radiating from the center toward the bark. At the
FIG. 1. Diagram of a stem with a cambium layer. A, section cut across the bundles ; B,
section in the direction of the bundles ; 1, 2, 3, first, second, and third annual rings ;
a, a, pith ; 6, 6, pitted vessels ; c, c, wood-cells ; d, spiral vessels, found only in the first
annual ring ; e, cambium-cells ; /, gf, 7i, layers of bark ; L i, medullary ray. (After
Carpenter.)
end of the season growth stops, to be resumed again in the
spring. The slow and condensed growth of summer, and the
rapid, open growth of spring, give rise to a peculiar mark in
the bundles which indicates each year's increase, so that by
counting these marks or the annual rings we may ascertain
the age of a tree.
The last few rings formed are engaged in transporting or
storing up nourishment, and give rise to what is called the
sap-wood. The rings inside of the sap-wood serve only for
support, and make up the heart- wood of the tree.
In the palm, new bundles arise, placed irregularly in the
soft tissue or pith, and by tracing these bundles throughout
the plant we see that they extend, usually without branch-
ing, from the apex of the leaf to the small ends of the roots,
so that for each new leaf there will be in the stem new bun-
dles.
STRUCTURE OF WOOD.
15
FIG. 2. Diagram of a palm-stem. A, cross-section ; B, longitudinal section ; o, a, soft
tissue ; b, 6, vessels or tubes with pitted sides : c, c, wood-cells or fibers ; d, d, vessels
with spiral markings. (After Carpenter. >
In the oak we have the same appearance regarding the
annual rings and medullary rays as in the pine :
Epidermis a., bark.
f pith...gr.
Active cells. . . 6 -j medullary ray . . h.
(. f cambium . ./.
""BBS?:..! US'
bast-cells., d.
FIG. 3. Section of stem.
Examining more closely these wood-forming bundles, we
find them composed of cells with a variety of forms and walls
of varying thickness and peculiar markings. In the pine
group the cells are long, with pointed ends, and walls marked
by characteristic elevations called bordered pits (Fig. 4). These
16
EXERCISES IN WOOD-WORKING.
pits arise during the thickening of the cell-wall, which can
not take place on the thin circular membranes (Fig. 10, c),
through which the sap passes, but forms arches with open
tops over them, and thus gives the bordered appearance. In
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 4. Section of pine-wood cut parallel with the medullary plates, a, spring growth,
with large bordered pits : 6, summer growth, with smaller bordered pits ; c, medul-
lary tissue.
FIG. 5. Section at right angles with the medullary plates, cf, bordered pits ; e, medullary
tissue.
FIG. (5. Cross-section of the same. /, summer growth ; g, spring growth ; 7i, medullary
ray.
the heart-wood these thin membranes have broken down,
allowing a free passage of air or water through the cells.
In spaces between the wood-cells there are, in most of the
pines, canals containing resin dissolved in turpentine. The
thin plates of tissue forming the medullary rays are com-
posed of small cells, with thin walls in the outer annual
rings, but in the heart-wood with walls very much thick-
ened.
The isolated bundles of the palm are composed of various
elemeiits,some of which simply support, as the bast and wood
fibers ; others support and conduct, as the vessels and wood-
cells ; these latter convey air, and water charged with min-
eral matters absorbed by the roots.
The bast-fibers are on the outside, surrounding the bundle,
and are very long, narrow, many-sided cells, with pointed ends,
the walls very much thickened and marked with oblique pores.
The wood-fibers are on the inside of the bundle, similar to
the bast-cells in every respect, except that they are shorter,
and occasionally used for conducting and storing up nourish-
STRUCTURE OF WOOD.
ment. The vessels or tubes are large and few, and present
varied markings ; the larger are pitted, the smaller either
S
FIG. 7. Palm-bundle, a, a, bast ; b, pitted
vessel ; c, wood-cells ; d, smaller ves-
sels ; e, soft tissue.
ringed, spiral, netted, or ladder-form. The wood-cells are-
like those of the pine group, but with simple in place of bor-
dered pits. There are present, also, sieve-tubes with clusters,
of small perforations in sides and ends, and a group of long,.
thin-walled cells similar to the cambium-cells of the. pine
and oak. Frequently in the vicinity of the
vessels are found thin- walled cells with blunt
ends, separated from the vessels and sur-
rounding cells by membranous pores ; these
cells, which are somewhat similar to cambi-
um-cells, serve the purpose of conducting
and storing up the organic materials formed
in the leaves.
In the oak group the wood is composed
of compact bundles made up of the same
fibers, cells, and vessels found in the palm,
with the exception of the bast-fibers, which are formed out-
side of the cambium zone and constitute the inner bark. .In?
the spring growth the vessels are large and numerous ; int
the autumn they are much smaller, and in some cases may
be absent. By this variation in the size and position of the
bundles the annual rings become distinctly marked. The
medullary rays in the heart- wood vary in thickness, and in
many of the woods the cells composing them become solid.
2
9 _p itted ves s e is
18
EXERCISES IN WOOD-WORKING.
COMPOSITION OF WOOD.
Newly formed cells have the wall composed of cellulose, a
substance similar to starch in composition. The contents of
the cell are made up of a number of substances, the chief of
which are albuminoids, starchy matters, oils, and water with
dissolved sugars, gums, and acids.
In the heart-wood the contents have
disappeared, air taking their place, and
the cell- wall has become very much thick-
ened by a deposit within the cellulose of
a dense substance called lignin, which
gives to wood its elasticity and hard-
ness.
In the living tree, air and water are
present in varying quantities, depending
on the season and kind of wood. The
amount of water is frequently as much
as fifty per cent. During the seasoning
of pine, about twenty per cent of water is
removed from the wood. This may be
called free water, because it exists in the
plant with all the ordinary properties of
water. But there is also in pine-wood
about the same amount of water, which is
chemically combined with carbon to form
cellulose and lignin. The presence of this
modified water may be demonstrated by
placing the wood in a partially closed iron
vessel, and heating it red hot ; the wood
is reduced to charcoal, while water is given
off, together with a small quantity of gases, oils, and other
matters.
The elementary composition of wood varies according to
the kind, the soluble matters in the soil, and the amount of
moisture absorbed by the tree. Generally wood contains
large quantities in proportion of carbon, hydrogen, and oxy-
gen ; less of nitrogen, sulphur, and potassium ; and small
FIG. 10. Diagram show-
ing growth of the
cell-wall.
1. Cambium-cell : a, pro-
toplasm or living con-
tents of the cell ; 6,
nucleus in the proto-
plasm ; c, thin mem-,
brane through which
the sap passes. In the
heart- wood this mem-
brane has broken
down, as at d.
2. Protoplasm forming a
wall of cellulose.
3. Protoplasm has disap-
peared. Cellulose
changing into lignin.
4. Cell-wall composed of
lignin and thin mem-
brane.
BRANCHING OF STEMS.
19
quantities of iron, phosphorus, calcium, sodium, and silicon,
with traces of many other elements.
If wood is burned in the open air, the carbon, hydrogen,
nitrogen, sulphur, and part of the oxygen are driven off in
gaseous form ; the other elements remain, and constitute the
ash, of which the principal ingredient is potassium.
The amount of ash is greater in the palms and least in
the pines. The percentage of a few are as follows :
Oregon pine 0'08
Red cedar 013
Redwood 014
Chestnut 018
White pine 019
Whitewood.. . 0'23
White oak 0*41
Hickory 073
Black walnut 079
Palmetto 7'66
Black iron- wood 8 '31
Spanish-bayonet _8'94
BRANCHING OF STEMS.
In the middle of a forest, trees grow straight, tall, and
slender, as in Fig. 12, because it is necessary for them to
Fio. 11.
FIG. 12.
FIG. 13.
FIG. 11. Shape of a tree on the border of a forest, a, broken branch exposing surfaces
for boring insects or fungus spores.
FIG. 12. Young forest tree. b. b, branches die for want of sunlight.
FIG. 13. Shape of forest tree with straight stem and crown of small branches and leaves.
push up the tops in order that they may receive sufficient
sunlight, to enable the leaves to digest the plant-food and
20 EXERCISES JN WOOD-WORKING.
increase the diameter and height of the stem. Lower branch-
es last only a few years, then die, and are broken off (6, Fig.
12). On the margins of the forest and in open places, trees
send out numerous branches, and stems become large in di-
ameter, but remain short (Fig. 11). The bordering trees,
while they serve as a protection from the wind for those in-
side, furnish knotty and cross-grained lumber ; those inside
produce the straight-grained and valuable wood (Fig. 13).
Members of the palm group rarely have branching stems.
In growth, the stems remain long and slender, but frequently
larger at the top than at the base.
AGE OF TREES.
Like animals, in growth and development plants are sub-
ject to influences of climate and nourishment. In its proper
latitude, and with an abundance of water and food in the
soil, a tree adds to its annual growth and lives to a great age.
But when the soil becomes exhausted of the necessary ele-
ments, or a more robust species crowds roots and leaves, then
a tree begins to show signs of decay. It is difficult to estab-
lish rules regarding the proper age for cutting. For timber,
most trees are considered fit at about one hundred years, al-
though oak may furnish excellent timber at two hundred
years. The purpose for which the wood is to be cut deter-
mines the proper age. Young trees show a closer grain and
give a more elastic wood than old ones. Very old trees, al-
though apparently sound, are found to be partially decayed
in the middle of the trunk, so that the elasticity and hard-
ness of the wood are replaced by a characteristic brittleness.
DECAY OF TREES.
As long as a tree is in a healthy condition, its top or
crown retains its small branches, but when these refuse to
send forth leaves, and break off, it is a sign of decay, and the
tree should be cut down and put to some use ; for, if allowed
to stand, its decay, aided by parasitic insects, will proceed
rapidly until there remains nothing but a shell, composed of
the growing zone and a few of the last annual rings, and its
SEASON FOR CUTTING. 21
value for any purpose will become very much lessened or
entirely lost.
Breaking or sawing off a branch and leaving the wound
exposed will furnish an opportunity for fungus spores *or
boring insects to begin the destruction of the wood.
Cutting down trees on the border of a forest, or clearing
a large space within it, is destructive to the tall trees remain-
ing exposed to the winds and elements. The swaying of the
stems in a storm causes the tender root-hairs to be broken
off, thus preventing absorption of sufficient nourishment by
the root, and shortening the life of the tree.
SEASON FOR CUTTING.
The proper time of the year for cutting down trees is an
important matter. In the spring and late summer the outer
portion of the wood is charged with elements which tend to
hasten its decay. In the drier summer months and in winter
the growing and conducting cells are less active or altogeth-
er dormant, and better wood may be secured if cut during
those times of the year. Oak is said to be more durable if
cut just after the leaves have fallen.
The trees are cut with axe or saw, and skill is required to
fell a tree so that it will come safely to the ground, and not
hang suspended to neighboring branches or crush young
trees in its fall. An experienced woodman will direct the
falling tree exactly where he wishes. He cuts on the side
and about at a right angle to the direction in which he wish-
es the tree to fall ; next he cuts on the opposite side, and, if
necessary, a few inches higher.
The tree, after falling, is cleared of its branches and sawed
into lengths, according to the future use of the wood.
MILLING.
If near a stream, the logs are rolled or drawn to the water
and floated to the mill, where they are examined and grouped
according to fitness for special uses. A long immersion of
the logs in water removes soluble substances in the sap-
wood, but is said to injure the heart-wood by rendering it
22 EXERCISES IN WO OJ)- WORKING.
less elastic. Water, however, is the easiest and cheapest
means of transporting logs. In the absence of an available
stream, the logs are carried on wagons or sleds to a railway
or directly to the mill.
The old-time mill, with its single upright saw and ancient
water-wheel, is seldom seen nowadays ; it has given way to
gang and circular saws, and even to giant band-saws, run by
turbine or steam. Frequently portable engines and saws are
employed on the ground where the trees are cut, thus saving
the transportation of the waste portions of the logs.
Logs are sawed into either timber, planks, or boards, and
these constitute lumber. Timber includes all of the largest
sizes, such as beams and joists. Planks are wide, of varying
lengths, and over one inch in thickness. Boards are one inch
or less in thickness, and of varying lengths and widths.
Lumber may be resawed into the many smaller sizes which
are to be found in the seasoning and storing yards.
The rough-sawed lumber may be planed at a mill, and is
then called dressed lumber, of which there is a great variety,
adapted to almost every purpose for which wood is used.
Dressed planks and boards when free of all defects are called
clear, and their regular sizes are f, i, 1-J, If, and If inches,
which are one eighth of an inch less in thickness than sawed
lumber. One-half-inch dressed is made by resawing one-aiid-
a-quarter-inch lumber.
DRYING OF WOOD.
In the preparation of lumber for use, it is necessary to
remove its moisture, after which the wood is seasoned. The
planks and boards after sawing are placed in large square
piles in the open air, each layer separated by three or four
narrow strips or boards laid in the opposite direction. By
this means a free circulation of air takes place throughout
the pile ; the drying is gradual and thorough, if allowed suf-
ficient time. For ordinary carpentry, two years is considered
enough, but for joinery at least four years should be allotted
to the seasoning. Many processes have been devised to
hasten the evaporation such as kiln-drying, in which the
WARPING. 23
wood is placed in chambers heated by steam or hot air, or
by the employment of vacuum-pumps together with heat.
All are inferior, however, to the open-air seasoning, in that
they cause a rapid drying of the surface and ends, with a
slow or imperfect drying of the interior; thus impairing
both the strength and elasticity of the wood.
It is difficult to give rules for testing wood to determine
whether 'it has been properly seasoned or not. One way is
to push a knife-blade into the wood, and note how much it
sticks when withdrawn. Another is to cut a shaving from
the board, and note its elasticity, brittleness, or strength.
Experienced workmen crush shavings in their hands to de-
termine the character of the wood.
As the wood loses its water it shrinks perceptibly, much
more in the direction of the annual rings than in the direc-
tion of the medullary rays, and very little, if at all, in the
direction of the fibers. If we examine
the end of a log which has been exposed
to the weather, we will find cracks ex-
tending from the center toward the cir-
cumference, and which penetrate from
a few inches to a foot or more into the
log (Fig. 14). These cracks, called
wind-checks, are seen in planks and
boards, and cause the ends to become
waste wood. To prevent this rapid FlG 14 ._ End a of oak .i og ex-
drying, the ends of the logs are tarred wnd d check7 ^ shake.' a '
or painted. If the lumber is piled soon
after sawing, these wind-checks are smaller, and the waste
portion is consequently less.
WARPING.
Because of the unequal shrinking of the wood in drying,
the planks and boards have a natural tendency to warp or curl.
Those cut farthest from the center of the log warp the most,
while those at the center remain nearly flat. Lumber sea-
soned under pressure, such as that exerted in the pile in the
open air, dries straight and true ; but, if it should be resawed
a
EXERCISES IN WOOD-WORKING.
into boards of half the thickness, it will require further sea-
soning to avoid warping. This tendency to warp is sometimes
seen in very old wood ;
for instance, in planing
down an old mahogany
table - top to remove
scratches, what was per-
fectly straight ' and flat
before now warps and
twists to a remarkable
degree. This shows the
construction, lumber of the same
FIG.
15. Warping of planks cut from an unsea-
soned log.
necessity of using, in
thickness in which it has been seasoned.
Another cause which changes the shape of wood is its tend-
ency to absorb moisture, either from the air or the ground.
This makes it necessary to protect exposed surfaces with paint
or varnish. Pieces of work, in process of construction, should
stand endwise and not lie on the floor, even if it seems per-
fectly dry. Lumber in the workshop is kept in racks hang-
ing from the ceiling. These racks are so arranged as to allow
the boards to rest on one edge, and to be separated by vertical
strips. In this manner the boards are easily accessible, and
the seasoning process is continued by the warmth of the room.
PROPERTIES OF WOOD.
Grain. We have seen that wood is composed of long, hol-
low wood cells, or fibers, sometimes accompanied by vessels
of varying diameters. The character and direction of these
fibers constitute what is termed the grain of the wood. As
these fibers separate and break more easily lengthwise than
across, we say that wood splits with the grain. If the fibers
run very straight, the wood is straight-grained; if crooked,
then it is called cross-grained. Many causes affect the regu-
larity of the grain : the stem itself may be crooked, it may
be straight, but the fibers run spirally around it, or there may
be sets of fibers alternating in spiral directions ; branches and
wounds also cause cross-grain.
If the cells' are small and compact, the grain is said to be
PROPERTIES OF WOOD. 25
fine, as in box-wood ; if nearly uniform in size and thickness,
the wood is even-grained, as in maple. The cells may vary
greatly in size and thickness, and have large vessels in the
spring growth, which would give rise to coarse-grained wood,
as in the oak, ash, and chestnut.
The appearance given by the annual rings and medullary
rays to the surface of the wood differs very much with the
kind of wood and the part of the log from which the board
is sawed. Special cuts are made to obtain the best effect of
these markings. To show silver-grain, the face of the board
should be parallel, or nearly so, with the medullary rays.
The birch is an excellent example of this effect. Maple and
ash are frequently seen with a wavy or curled grain. For
veneers, which are about one sixteenth of an inch in thick-
ness, wood with a very irregular grain is selected, such as
walnut roots and knots, and knurls of mahogany. In some
old maple-trees an appearance called bird's-eye, due to a small
circular inflection of the fibers, gives to the wood a fine effect.
Woods in which the grain runs alternately in different
directions, though hard to split and very difficult to work
and finish, usually furnish an ornamented grain, such as
mahogany.
Density. This property depends on the more or less com-
plete thickening of the walls of the wood-cells, and also upon
the number and size of the vessels. Certain operations, such
as turning, carving, and wood-engraving require dense or
close-grained woods.
Porosity. A porous wood has large, thin- walled cells and
many open vessels. Its open grain is easily filled with pre-
serving liquids which adapts it for framing and timber work
generally ; if such a wood is to be finished, the pores must be
filled before a good surface can be obtained. As a rule, porous
woods are soft and light, while dense woods are, hard and
heavy.
Weight and Hardness. It sometimes happens that the en-
tire cell is replaced by the thickened cell-wall, and this, to-
gether with deposits of oily and resinous substances, make
an exceedingly hard and heavy wood. On the contrary, we
26 EXERCISES IN WOOD-WORKING.
have very light woods, even lighter than cork ; these are
composed of thin-walled cells filled with air. Between these
extremes are found many gradations of weight and hardness,
but woods are generally spoken of as hard or soft, and heavy
or light. The hard and heavy woods are stronger and more
durable than the softer and lighter ones.
The weight is expressed by a number, which shows the
weight of the wood compared with the weight of an equal
bulk of water, taken as the standard.
During the process of drying, wood becomes lighter and
harder ; thus, lignum-vitse and most of the palms are quite
soft and easily cut when green, but after drying are worked
with great difficulty.
Strength. The strength of wood depends on peculiar pow-
ers of resisting various forces brought to bear upon it. Thus,
iignum-vitse and the oaks are noted for their stiffness, or
resistance to bending, which is probably due to the interlac-
ing of their fibers. Young hickory, lance-wood, and others
are very elastic, bending readily and returning to their former
position without injury to the structure. Black or swamp
ash and young white oak split easily into long and strong-
strips or bands such as those used for making chair-seats or
baskets. Very little force is required to break the fibers of
whitewood, birch, and mahogany across the grain. Pine,
ash, and maple break easily but with a splintered fracture.
In some palms this splintering occurs to such a degree, that
walking-sticks may be transformed into very dangerous
weapons, which has given rise to laws in some countries re-
stricting their use. Rattan, oak, and hickory, when bent
short, have the individual fibers unbroken, but separated
from each other ; and are therefore tough woods. Hard and
dense woods resist compression, while soft woods yield to
pressure and are indented ; and more so when the pressure
is applied on the sides than on the ends of the fibers. This
compressibility of the softer woods is taken advantage of in
gluing up joints, where the pieces are forced into perfect
contact by the pressure of the screws. To secure a good
joint with hard woods it is necessary to use the greatest care
PROPERTIES OF WOOD. 27
in preparing and cutting the pieces. The cohesion of the
particles of the fibers, when strains are applied lengthwise,
is very great, several tons being required to fracture pine
one inch square.
Color. As the heart-wood becomes lignified, coloring-
matters are deposited within the substance of the cell-wall,
giving to each kind its characteristic colors ; these are ex-
hibited in great variety, including every shade of color be-
tween the white of satin-wood and the black of ebony. In
the same wood there may be variations of tint, or even color,
in the annual rings and medullary rays, enhancing the beauty
of its appearance. The sap-wood receives none of the color-
pigments, and therefore is always light or even white. As
a rule, exposed surfaces, whether varnished or not, become
darker ; and this darkening, besides indicating age, gives to
the surface a more agreeable effect than that of new wood.
It is for this reason, as well as deception, that new cabinet-
work of hard wood is stained to imitate the effects of age.
Color combined with a figured grain constitutes the intrinsic
ornament of wood.
Durability. At great age a slow oxidation of the constitu-
ents of the cell- wall takes place in the interior of the heart-
wood of standing trees, thus rendering the wood softer and
brittle, and an easy prey to the fungi and insects. Dampness,
by promoting fungus growths, is very destructive to cut
timber, few woods withstanding its injurious influence;
especially is this so when there are alternating dampness and
dryness as seen in those portions of a building or structure
in contact with the soil. Most woods if kept dry and pro-
tected from insects with 'paint or varnish, will last for ages, as
illustrated by ancient pieces of furniture. Nearly all woods
are perfectly preserved if kept immersed in water, which is
shown by the wood of vessels that have been sunk for a hun-
dred years or more, and which finds application in laying the
foundations of stone for large buildings and bridges upon
the tops of piles driven below the water-mark. Many woods
like cedar and camphor-wood have within their substance oils
and resins which protect them from the fungi and insect life.
28
EXERCISES IN WOOD-WORKING,
DEFECTS IN WOOD.
Some of the defects found in lumber, as wind-checks,
cross-grain, warping, and improper seasoning, have already
been alluded to. Wood may be shaky (6, Fig. 14), which is a
separation of the annual rings, showing checks or splits,
sometimes including nearly all of the central portion and
extending throughout the length of the stem. No wood fur-
nishes a better example of this than hemlock. This shaky
condition is caused by the swaying from the force of wind,
acting upon trees in open places, along the borders of forests,
and especially those adjoining cleared tracts.
Knots in the wood are imperfections arising from the de-
flection of the fibers which form branches. Near the center
of the stem the fibers are few and the knot - small, but as the
stem enlarges in size the' number of fibers in the branch
increases so that at the circumference of the stem the knots
are largest. The great strength required at the union of
branch and stem is shown by the superi-
or hardness and density of the wood
composing the knot. Dead branches
b give rise to loose and dark-colored knots
(Fig. 16, 6), and the fibers f the stem
that form afterward bend around the
branch, continue up the stem, and pro-
duce cross-grained wood in the vicinity
of the knot. Fast knots are the result
of living branches, and boards contain-
ing them may be used wherever strength
or finish is not required.
Sap-wood. The edges of boards fre-
quently retain a portion of the sap-wood, which must not be
placed in any permanent structure, because of its softness
and tendency to induce decay.
Resin-pockets are spaces between the annual rings of pine
timber, filled completely or in part with resin. These slightly
weaken the board, and if used in any portion of a building
exposed to the warmth of the sun, will exude drops of
FIG. 16. Knots, a, fast
6, loose.
MEASURE AND VALUE OF WOOD. 39
turpentine, even if the surface has been painted or var-
nished.
Decay. Of all the defects in wood, decay or rot is at once
the most prevalent and disastrous to the strength and use-
fulness of the material, and, when begun, will continue until
the whole of the wood is consumed.
Defects in milling are frequent. Lumber may be uneven
in width or thickness. The saw may have torn out fibers in
places, or have cut irregularly, so that, in planing the boards,
marks of the saw remain. When the edges of boards are
not squared, they are termed wany.
MEASURE AND VALUE OF WOOD.
Timber and lumber one inch or more in thickness arc
sold by the square foot, meaning one foot square by one inch
thick, or containing one hundred and forty-four cubic inches.
Boards less than one inch in thickness, and veneers, are sold
by the square foot, face measure. Lumber which is finished
at the mills for special purposes may be sold by the running
foot, or length in feet, as moldings ; or by the piece, as fence-
boards, studs, and many kinds cut to standard sizes. A few
are sold in quantity, as fence-pickets, laths, or a bundle of
shingles, intended to cover a certain area. Many of the more
expensive and fancy woods, such as lignum-vitse and box-
wood, are sold by the pound.
Values of wood vary with supply and demand as well
as with quality and appearance. Durability and a figured
grain are especially sought for. Fashion also, in dictating
the material as well as the style, determines the demand for
the hard woods, particularly those used for furniture and
the interior wood- work of houses. Thus we find a succession
of favorites, each of which, after serving a few years of pre-
ferment, has been set aside to make room for the next. Be-
ginning with mahogany and rose-wood, we note black walnut,
ash, ebony and its imitations, and again mahogany, as having
been the choice, until at the present day, oak, neglected for
many years, is the leading wood.
30 EXERCISES IN WOOD-WORKING.
KINDS OF WOOD.
In this list are given the woods commonly used by car-
penters and joiners, together with their chief characteristics.
Pine Group.
White Pine, commonly called pine, is a rapidly growing
tree in the Northern United States and in Canada. It attains
a large size in favorable soils, and furnishes a light, soft, not
strong wood, with a close and straight grain. The annual
rings are marked by narrow summer growths, and the me-
dullary rays are very fine and numerous. The color is a faint
yellowish brown, darkening with exposure. Its abundance,
the ease with which it is worked, and its power to hold glue,
make its use very extensive, especially in all carpentry-work
where an easily finished wood is desired. It is one of the
best woods for making patterns for casting.
Georgia Pine, of the South Atlantic and Gulf States, is a
large forest tree with smaller annual rings than pine, and
with a broad, dense, resinous, and dark-colored summer
growth, which gives to the wood a well-marked grain. In
radial section the numerous and fine medullary rays are
scarcely visible. The wood is heavy, hard, strong, and dura-
ble, becoming harder and somewhat brittle with age. It is
used for heavy timbers, floors, and, because of its grain,
sometimes as a trimming wood.
The many other species of pine have local or limited use.
Among them the yellow or Jersey pine is perhaps the best
known, as it is largely manufactured into lumber. Its prop-
erties are about intermediate between white and Georgia
pine
Black Spruce grows in about the same regions as white
pine, and furnishes a wood very similar to it, excepting
that it is more resinous. This and white spruce are com-
monly called spruce, and are used extensively for inferior
work.
Hemlock. A species similar to spruce, grows in the North-
ern States. Its wood, which splits or breaks easily, is light,
KINDS OF WOOD. 31
moderately soft, has a coarse, uneven grain, and is frequently
shaky. It holds a nail much better than pine, which fits it
for rougher building material.
White Cedar. Abundant in the Atlantic States, supply-
ing a soft, light, fine-grained, and durable wood, suited
for a variety of purposes where durability rather than
strength is required. The annual growth is of moderate
size, made up of very small wood-cells, traversed by exceed-
ingly fine and numerous medullary rays. It is used in
boat - building, cabinet - work, cooperage, cigar - boxes, and
shingles.
Red Cedar is a small tree of slow growth, widely distrib-
uted in various soils, usually rocky, but reaching its largest
size in swamps. The wood is like white cedar, but more
compact, even-grained, and durable. It is reddish-brown in
color and extensively used in cabinet-work, because of its
strong odor, which repels insects. Its durability makes it
valuable for posts, sills, and other structures in contact with
or near the ground.
Cypress. This tree of the Southern swamps grows to a
great size. It furnishes a most valuable wood, because of its
durability, which is claimed to be superior to that of all
other woods. It is light brown in color, and in structure
similar to white cedar, with larger wood-cells. Its timber is
preferable to pine in trimming brick houses, and in all parts
exposed to the weather. In the South its employment is as
general as that of pine in the North.
Redwood. Of late years the wood of the giant fir-trees of
California has been introduced into the chief lumber mar-
kets of the country. The wood-cells are large, the compact
summer growth constituting about one quarter of the
annual increase. The color is a dull red, the quality very
durable, while the wood shrinks perceptibly in the direc-
tion of the grain. In other respects this wood resembles
pine, and is used for general construction as well as orna-
mentation.
32 EXERCISES IN WOOD-WORKING.
Palm Group.
While in many tropical countries the palms supply the
inhabitants with many necessities, as building-woods, starch,
sugar, fruits, fibers for ropes and cloth ; in temperate cli-
mates the abundance of better material limits the use of the
palm group.
Palms. The numerous kinds differ in height, diameter,
and structure. The fibro-vascular bundles vary in size and
number, are exceedingly hard, and the surrounding pith
either soft or very hard and solid at the outside and soft with
few bundles on the inside. Usually the wood cuts easily
when green, but only with the greatest difficulty when dry.
Besides the use of the palmetto for wharf -piles, some of the
palms are combined in cabinet-work, and used for canes and
handles.
Rattan. A long, slender, trailing palm, furnishing a
tough, flexible material, which enters largely into the manu-
facture of furniture.
Bamboo. A gigantic member of the grass family, grows
in the tropical regions of America and Asia, and has a lim-
ited use in cabinet-work. Its hollow, jointed stem, adapts it
to many inferior uses, such as canes and handles, and when
split and joined in a peculiar way forms the much-prized
fishing-rods.
Oak Group.
Birch. Among the many species of birch, the cherry or
black birch supplies the best lumber. The wood is heavy
and strong, colored brownish-red, with a fine, compact, and
evenly marked grain,, due to the absence of many vessels in
the annual rings, and has very small but visible medullary
rays. It is used in ship-building, turning, and extensively in
cheap furniture.
White Oak is the standard by which the strength, dura-
bility, hardness, and other qualities of the various woods are
compared. It is distributed generally throughout the east-
ern half of the United States, grows to a large size, and fur-
nishes superior timber. Large vessels in the spring growth
occupy from one third to one half of the narrow an-
KINDS OF WOOD. 33
nual rings. The medullary rays are large, thick, and ex-
ceedingly hard. The wood is heavy, hard, strong, diffi-
cult to split radially, coarse-grained, and colored a light
brown. It is used in structures requiring great strength,
and especially in ship-building, cooperage, and carriage-mak>
ing.
Red Oak. A very large forest tree of the United States.
It furnishes a heavy, hard, and strong wood, with a very
coarse grain, due to a large number of vessels of uniform
size crowded into the first half of the annual growth, and
also to the large and thick medullary rays. The wood is
reddish brown, durable, and used extensively for furniture
and cabinet-work generally.
Chestnut. A very large forest tree common in the Atlan-
tic States, having a characteristic coarse-grained wood. The
annual growth is considerable, frequently over half an inch,
in which the vessels are numerous, large in the spring wood,,
but gradually becoming smaller toward the summer growth.
The medullary rays are small and indistinct. The wood is,
light, moderately soft, breaks and splits easily, is remarkably
durable exposed to the weather and not in contact with the
soil.. The tree reaches its best condition at about fifty years
of age, after which it is very liable to decay in the middle of
the heart-wood. It is well adapted for the coarser parts of a-,
building, is used to a small extent in cabinet-work, and ex-
tensively for out-of-door structures.
Beech. A large forest tree growing generally east of the
Mississippi, provides a heavy, hard, and strong wood. It,
has a fine, even grain, is of a light color, and has large me-
dullary rays. It is used to a limited extent for furniture,
but more for implements, especially plane-stocks.
Black Walnut is one of our finest and largest timber-trees,
growing in the central and eastern portions of the United
States. It furnishes long, wide planks and boards of supe-
rior qualities. The wood is moderately heavy and hard,
dark, porous, and marked by a beautiful grain. It is strong,
durable, and not liable to the attacks of insects. The annual
rings contain many vessels, and the medullary rays are ex-
34: EXERCISES IN WOOD-WORKING.
ceedingly small. At one time it was the favorite wood, and
extensively used for internal decoration and fancy-work.
It is still largely used combined with veneers from roots and
knurls of European varieties. Gun-stocks are almost exclu-
sively made of walnut.
Butternut is a small species of walnut, giving a light and
soft wood, with a well-marked grain. Its lumber is short in
length, not liable to split, noted for its resistance to heat and
moisture, and the ease with which it receives paint or polish.
It is used in cabinet-work.
Hickory is a tree of branching habit, found commonly in
the United States. Its wood is heavy, tough, very strong, and
usually cut into planks. The annual rings are indistinct
and crowded with fine vessels, or marked by a narrow zone
of larger vessels. The medullary rays are very broad, nu-
merous, and distinct. The flexibility and toughness of the
wood cause it to be extensively used in the construction of
implements, tools, carriages, etc. Difficulty of working and
liability to the attacks of boring insects prevent its use in
building.
Buttonwood, or sycamore, is the largest tree of the oak
group in the United States. It furnishes a heavy, hard, light-
brown wood, with a fine, close grain. It is readily polished,
easily broken, and difficult to work. Throughout its an-
nual rings are small vessels, very numerous in the spring
growth. The medullary rays are numerous and thick, and
give to the radial section a silver grain similar to that of
beech but more strongly marked. The great liability of the
wood to decay, and its tendency to warp, restrict its use to
structures thoroughly protected from the atmosphere and
moisture.
Ash. A large tree growing in the colder portions of the
United States, furnishes a moderately heavy, hard, strong,
and very elastic wood. The annual rings are compact, with
large vessels in the spring growth. The medullary rays are
numerous, small, and thin. The wood is coarse-grained,
light brown, and extensively used for implements and ma-
chinery, for furniture and cabinet-work. -Its liability to
KINDS OF WOOD. 35
decay, and its brittleness with, age, prevent its use in heavy
work.
Apple. The reddish-colored wood of the familiar fruit
tree, is moderately heavy. and hard, has a very compact
and fine grain. The annual rings are narrow with small
vessels, and the medullary rays are very fine and crowded.
The wood is preferred for tool-handles, turnery, and smok-
ing-pipes.
Pear. In structure the wood of the pear-tree is similar to
that of the apple. It becomes hard and dense when dry,
and yields readily to edge tools. Its almost grainless charac-
ter adapts it for a variety of purposes, particularly carving
and the coarsest kinds of wood-engraving.
Wild Cherry. A tree common in the United States, fur-
nishes a moderately heavy, hard, and durable wood. The
annual rings are wide and evenly filled with small vessels.
The medullary rays are fine, crowded, and light red in color.
The grain is fine and close, and the wood easily polished. It
is brownish red in color, and used extensively for cabinet-
work. After several years the wood becomes very brittle.
Locust. One of the largest forest trees, growing generally
throughout the United States. Its hard, yellowish wood is
composed of very wide annual layers, in which there are
comparatively few and large vessels arranged in rows. The
medullary rays are well marked and numerous. Although it
polishes readily, it is used only to a small extent in cabinet-
work, but finds a demand in exposed structures, where great
durability is necessary, as in ship-building, supports for
buildings, posts, etc. Its hardness, which increases after
manufacture, makes it a favorite with turners.
Sugar-Maple is a timber-tree of large size, growing in the
northern parts of the United States and in Canada, which,
besides furnishing a sap rich in sugar, gives a light-colored,
fine-grained, hard, strong, and heavy wood. Its annual growth
is narrow, with small vessels scattered through it. The medul-
lary rays are small and distinct, giving to the radial surface
a well-marked silver grain. In the older trees, wavy or curled
grain, or the inflection called bird's-eye, may appear, enhanc
36 EXERCISES IN WOOD-WORKING.
ing the beauty and increasing the value of the wood. Were
it not for its want of durability, its hardness and handsome,
silky grain would make it our most valuable wood. It is
used for a great variety of purposes building, implements,
machine-frames, work-benches, furniture, fancy-work, and
turnery. Curled and bird's-eye- maples are frequently sawed
into veneers.
Mahogany. A native tree of the West Indies and Central
America. It is a very large and most valuable tree, furnish-
ing a durable and handsomely marked wood. Its color varies
from yellowish to reddish brown ; its hardness from a mod-
erately to an exceedingly hard wood ; and its grain from
straight to the most crooked contortions. The annual rings
are large, and contain a few large, scattered vessels. The
medullary rays are very fine and crowded. A peculiarity in
the growth of mahogany is the alternating obliquity of the
fibers of one annual layer to those adjoining ; this is some-
times over ninety degrees between fibers four or five layers
apart. The straight-grained varieties have little tendency to
warp, but the cross-grained ones warp and twist to a remark-
able degree. The wood is used for many purposes machine-
frames, work-benches, all kinds of furniture, cabinet-work,
interior finish of dwellings, and patterns.
Lignum-vitae. A West India wood, exceedingly heavy and
hard. The annual rings are almost solid, containing a few
small and scattered vessels. The medullary rays are very
numerous, but difficult to make out. The wood is very resin-
ous, hard to split because of the obliquity of the fibers of the
annual layers, and dark brown in color ; it is soapy to the
touch ; is used for small tools, bowls, and in turnery ; and is
well adapted for block-pulleys.
Basswood is a large tree growing generally throughout
the Northern United States and Canada. It furnishes a light,
soft wood, with the general appearance of pine. The annual
layers are filled with very small vessels, the medullary rays
numerous and distinctly seen in radial sections. Though
not strong, the wood is difficult to split, and has a great tend-
ency to warp. It may be easily bent, thus adapting it to a
KINDS OF WOOD. 37
variety of uses, especially the curved panels of carriages and
sleighs.
Whitewood is the wood of the tulip-tree, a large, straight-
stemmed forest tree, growing in most of the United States.
The wood is light, soft, breaks easily without splintering,
does not split with the grain when dry, shrinks excessively
in drying, and is very liable to warp and twist. The annual
rings are very large, with numerous small vessels through-
out, giving a fine grain. The medullary rays are very nu-
merous and distinct. The cheapness, ease with which it is
worked, and large size of its boards, cause the wood to be
used in carpentry and cabinet-work in many places where
pine is better suited.
Rosewood. The wood of several foreign trees growing in
Brazil, Canary Islands, Siam, and other places. The annual
rings are narrow, almost solid with resinous materials, and
with a few very large, scattered vessels. The medullary rays
are very fine but perceptible on the smoothed surface. The
wood is heavy, hard, brittle, takes a high polish, and has a
characteristic odor and taste. The grain is remarkably hand-
some, those kinds with alternating dark-brown and red mark-
ings being most prized. Besides tool -handles few things are
made of the solid wood ; it is sawed into veneers which are
extensively used in cabinet-work.
Boxwood. A tree growing in Southern Europe and Asia,
furnishes a heavy, hard wood with a peculiarly even, almost
structureless grain. The annual rings are very narrow, with
many small, scattered vessels. The medullary rays are very
fine and numerous. Boxwood is yellowish in color, and is
used for many purposes in turning, model-making, and
particularly in wood-engraving, in which it has no equal.
Ebony. A dark, sometimes jet-black wood, from several
foreign countries, the best coming from the Mauritius. The
wood is heavy, hard, very strong, with an almost solid annual
growth, in which there are very few open vessels. The me-
dullary rays are very fine, but visible. It has an astringent
taste, takes a high polish, and is used for many small articles,
in turnery, and, in cabinet-work.
38 EXERCISES IN WOOD-WORKING.
Table of Woods, with their Chief Qualities compared by Simple Numbers.
COMMON NAME.
Scientific name.
Weight.
Water =
1-00.
Hard-
ness.
Bend-
ing.
Break-
ing.
White Pine
Pinus strobus ,
39
1
5
3
Georgia Pine
P palustris
70
4
10
9
Black Spruce
Picea nigra
46
1
7
4
Hemlock
Tsuga Canadensis
42
2
5
4
White Cedar.
Red Cedar
Chamcecyparis sphceroidea. .
Juniperus Virginiana
33
49
1
4
1
3
1
4
Cypress
Taxodium distichnm
45
2
6
3
Redwood
Sequoia sempervirens
42
1
3
3
Birch
70
7
9
9
White Oak
Ouercus alba .
75
7
6
G
Red Oak
rubra
65
5
7
7
Chestnut .
Castanea vulgaris
45
2
5
4
Beech
J?agus ferruginea
69
6
8
9
Black Walnut. . .
Juglans nigra
61
6
7
5
Butternut
J cinerea
41
2
4
3
Hickory
(Jarya alba
84
9
9
9
Buttonwood
Platanus occidentalis . . .
57
5
5
3
Ash...
Fravinus Americana
65
5
6
5
Wild Cherry . .
Pninus serotina
58
6
5
5
.Locust
73
8
8
10
Su/'ar-^Vfaple
Acer macrophyilum
49
5
4
4
Mahogany .
Swietenia mahogani .
73
10
6
7
Jjignum-vitas
Giiaiacum sanctum
1-14
(28)
5
5
Basswood
TiHa Americana
45
1
5
2
White wood
Liriodendron tulipifera ....
42
2
5
3
WOOD AND IRON.
Before the great advancement in the manipulation of iron
and steel, wood had a much more extended application than
exists at the present day. Structures such as buildings, fur-
niture, and implements, were made entirely of wood; the
pieces were stiffened by wooden braces and the joints fast-
ened by wooden pins. But the superior strength of metal,
and the convenience which attends its use in connection with
wood, have led to great changes in the manner of construc-
tion and the form of the work. Wooden pins and hand-made
nails have given way to machine-cut nails and screws, and
the superior joints obtained by the latter allow the wooden
parts to be made of different kinds and much lighter than
before.
In America, where wood is plentiful and cheap, dwellings
WOOD-WORKING TRADES. 39
and buildings generally are made of this material. In por-
tions of the larger cities where the houses are necessarily
high and crowded, the danger attending the use of such a
readily inflammable substance as wood has led to the adop-
tion of brick and stone for the walls, and metal or slate for
the roofs.
Lightness of weight and the natural beauty of its grain
will always insure the employment of wood in the manufact-
ure of furniture, and for the trim and interior decoration of
houses. To secure lightness and elasticity in implements
and machinery, many parts must be constructed of wood.
Temporary structures, such as scaffolding and the false
work of bridges and trestles, are built of wood, and require
almost as much care in their construction as if intended to
be permanent.
In ship-building, iron and steel have almost supplanted
the employment of wood. Their superior strength and firm-
ness at the joints make safer and faster vessels.
As a direct result of the progress in the manufacture of
iron and steel, most of the wood-working tools and machin-
ery have been greatly modified and improved. This is best
seen among the measuring, boring, and planing tools, which
have so changed that greater accuracy, easier work, and
better finish are now within the power of every workman.
Among the machines may be found appliances for imitating
many of the operations formerly done by hand, and, while
this may ssem to be an encroachment upon the province of
the workman, it must be remembered that the proper care
and adjustment of these machines, and the accurate union of
the pieces shaped by them, necessitate a thorough knowledge
of the manipulation of the hand tools.
WOOD-WORKING TRADES.
While one or two men in a small community may furnish
all the wood and metal work needed by it, in large towns
and cities the great amount and variety of work required
necessitate a division of labor, resulting in numerous trades
or crafts. Some of these are exclusively wood-working,
40 EXERCISES IN WOOD-WORKING.
others metal - working, while a few combine portions of
both.
To follow or employ any one of the trades intelligently
and successfully, the underlying principles governing the use
of all sharp tools must first be thoroughly understood and
acquired by practice. Upon this knowledge as a basis the
numerous details of forms and joints, of arrangement and
adaptation of different materials, must then be accumulated
by years of work and study to produce a mechanic in any
one of the various pursuits.
Carpentry. Of all the wood-working trades carpentry is
the most general. It includes the cutting and framing of
large timbers and rough planks and boards for building
houses, bridges, trestles, piers, ship-frames, and the like.
The form, size, and arrangement of the timbers necessary to
resist the strains are designed by an engineer or architect,
but the details, and especially those of the joints, must be
determined and laid out by the carpenter. The woods made
use of in carpentry are usually pine, hemlock, spruce, oak,
and chestnut. The tools employed are the larger hand-saws,
ax, adz, strong chisels, brace and large bits, hammer, and
mallet ; and for marking, a chalk-line, tape measure, large
steel square, and carpenter's pencil, together with plumb-line
or level ; as a general thing, these complete the outfit.
Joinery differs from carpentry in that the work is smaller
and made smoother; and the form, size, and joints estab-
lished by experience and long usage are constructed to give
a finished appearance as well as strength. All the commoner
arid fancy woods, together with bone, ivory, and some of the
metals, are used in the many branches of joinery. The tools,
besides those of the carpenter, include the finer saws, chisels,
and gouges, the various forms of planes, smaller boring-tools,
and measuring-tools, such as try-squares, bevels, gauges,
compasses, and finely divided rules.
As necessary adjuncts to joinery we have turnery and
carving, with modified forms of chisels and gouges for or-
namental work ; and painting for finishing and preserving
work.
PARASITIC PLANTS. 41
Some of the applications of joinery create distinct trades,
such as cabinet and furniture making ; stair, sash, and door
making; pattern and model making; carriage and boat
building, and cooperage all of which require special woods
and modified forms of tools adapted to the particular and
various forms and joints peculiar to each.
In America there are many mechanics well versed in
both carpentry and joinery of ordinary house-building, and
who are known by the general name of carpenter.
PARASITIC PLANTS.
The forms of plant-life destructive to living trees and
lumber belong to the higher orders of the group Fungi.
These are parasites that is, they do not possess chlorophyl
(the green matter common to the higher orders of plants), and
therefore do not assimilate or digest food for themselves, but
live on the digested and structural material of others. They
are developed from minute spores, grow and decay very
rapidly, and contain a large amount of nitrogen in their
composition.
The structure of these fungi consists of two portions a
tangle of thread-like filaments having somewhat the appear-
ance of the root-hairs in the higher orders of plants, and
which have for their function the absorbing of nutritive
material for the fungus ; and a denser portion composed of
straight filaments, which form on their extremities the spore-
bearing cells.
In developing, the fungus starts from the spore, which
corresponds to the seed of the higher orders. This spore
sends out a long filamentous tube which, as it progresses,
gives off branches, and these in their turn branch until the
tangle of filaments called the mycelium is formed. This my-
celium may have long and separated filaments, as in the
underground portion of mushrooms, or it may have the fila-
ments massed together, as seen in some polyporous fungi
under the bark of trees. When the mycelium has absorbed
sufficient nourishment to produce spores, it sends out the
straight branches usually into the light. The mycelium is
42 EXERCISES IN WOOD-WORKING.
about the same in all the different fungi ; the. variations in
the form and color of the spore-bearing portion, and the char-
acteristics of the spores, giving to each kind its place in clas-
sification.
The exact conditions which cause the spore to develop a
mycelium are not known, but it may be generally stated that
it must find a resting-place containing nutritive elements
peculiarly suited for its growth, and, as accompanying con-
ditions, warmth, moisture, ammonia, and an absence of strong
light.
Some of the fungi obtain their food from the contents of
the living cells of the plant, so that the mycelium destroys
by entering and depleting the sap-wood of the tree. In others
the mycelium secretes a peculiar juice, which has the power
of decomposing the lignin of the heart-wood, and converting
it back into cellulose, which is dissolved and absorbed by the
fungus. The latter destroys by removing those elements
which give to wood its strength, and causes a condition in
the tree or lumber known as decay or rot.
In the heart- wood the vessels and cells facilitate the
growth of the fungus in the direction of the grain, while its
progress across the grain is comparatively
slow. In passing to adjoining cells the
filaments of the mycelium may go through
the pores, or by the solvent action of its
secretion make openings for itself.
The extent to which these fungi will
grow depends on the supply of food mate-
r ^> so that, once established in the stem of
a tree > they may spread until the entire
holes formed by f structure is consumed. If their filaments
pass through the soil, like those of some of
the toadstools, many trees may be affected and destroyed by
one fungus. The innumerable mass of spores given off by
the fungus would seem to predict the entire destruction of
timber-trees, but fortunately this is prevented by the difficul-
ty of satisfying the peculiar requirements necessary for the
development of the spores.
PARASITIC PLANTS.
Among the parasitic fungi those which are especially de-
structive to wood belong to the group HYMENOMYCETES, or
those having naked spores growing on exposed surfaces. In
the agarics, or toadstools, these surfaces are thin, flat plates,
called gills. In the polypores, or tree-fungi, the spore sur-
faces are tubes whose openings constitute the pores. In
Merulius,OY tear-fungus, the spore surfaces are shallow cavi-
ties.
The toadstool (Agaricus melleus) is very destructive to
many trees, including the firs, pines, beech, and oak. Its
mycelium consists of long, dark filaments several inches be-
low the surface of the ground, that gain
access to the wood by attacking the roots
and sending its filaments up into the
stem. The spore-bearing' portion is fre-
quently seen in the autumn at the base of
dead trees ; it is yellowish, and has the
gills extending partly down the stem, on
which is a well-marked ring. Besides
scattering its spores, the danger from this
fungus consists in its power to send fila-
ments through the soil from one tree to
another.
The tree-fungus (Polyporus annosus)
is very destructive to the pines and firs.
Its mycelium is white, silky, and forces
its way through the bark of the roots into
the living cells, and from them into the heart-wood. The
spore-bearing portion may appear on the lower part of the
trunk or upon the roots underground. The porous surface
is turned upward and the spores transported by insects or
burrowing animals from root to root. The Polyporus sul-
phurus is one of the best known of the destructive fungi,
and attacks almost every kind of tree. Its mycelium devel-
ops from spores which lodge in the stump of broken or
sawed branches, and passes downward into the stem con-
suming the tissue as it goes. Jts sporing portion is bright
yellow on the under or porous side and red above, usually
FIG. 18. Toadstool, a,
stem ; ft, umbrella top ;
c, ring, attached to Jhe
top before it expands ;
d, gills ; e, filaments
forming the mycelium.
44 EXERCISES IN WOOD- WORKING.
projecting from the decayed stump of the branch or in ad-
vanced cases from the side of the stem.
P. pini is similar to the P. sulphurus,
and is a wound-parasite on the pines.
P. fulvus is also a pine-tree fungus, pe-
culiar in its action, in that it does not dis-
solve the lignified parts of the cell, but the
thin membranous substance which unites
the cells, thus setting the cells free. P.
dryadeus acts in a similar way in oak-trees.
FIG. 19. - Poiypore MeruUus Ictcrymans affects pine and
f, palpus ; c, clypeus ; e,
eye ; a, antenna.
2. Inner face of the Iabrum : 6, fringing bristles ; m, insertion of muscles ; h, deep hinge,
with insertion of muscles joining to clypeus.
3. Ventral aspect of the head : I, Iabrum ; p, palpus ; md, mandible ; li, labium ; mx,
maxilla ; mt, mentum ; a, antenna ; th, thorax.
4. Ventral aspect of the left maxilla with its palpi : ep, external palpus ; ip, internal
palpus.
5. Inner face of the labium : 6, bristles of tongue-groove ; m, insertion of tongue-muscles ;
ft, hinge, connecting the labium with the mentum.
6. Longitudinal- vertical section of the head : th. thorax ; c, clypeus ; I, Iabrum ; md, man-
dible ; li, labium ; mm, muscles of the mandible ; mh, muscles moving the head on the
thorax ; o, oesophagus.
7. Ventral aspect of the right mandible : e, cutting edge ; cd , double-headed pivot or con-
dyle ; mm, insertion of the muscles.
8. External lateral aspect of the right mandible : h, the hinge ; c, the condyle ; 1, 2, direc-
tion of cutting movement.
From the Journal of the New York Microscopical Society, July, 1888.
4
EXERCISES IN WOOD-WORKING.
weevil we are indebted for the worm-eaten appearance pre-
sented by old carved-oak furniture. So often, indeed, are
these borings regarded as an evidence of the antiquity of
furniture, that many European dealers have been known to
imitate their presence by a charge of fine bird-shot.
The large Roebuck beetle, or Horn-bug (Lucanus dama,
FIG. 27. Saw-beetle.
FIG. 28. Horn-bug.
Fig. 28), is fortunately at present rather uncommon ; the
grub attains the size of a man's thumb after a six years' life
spent in boring forest trees.
Another large borer is the common brown Saw-Beetle
(Prionus unicolor), named from its saw-like feelers. It in-
fests pine-trees, and may be
taken as the type of the de-
structive saw-beetle family.
Besides the beetles nearly
every other order of insects
has members more or less de-
structive as borers. Among
wasps, for example, we are
surely all familiar with the
large Carpenter - Bee (Xylo-
carpa Virginica). so common
FIG. 29. carpenter-bee. about the posts and railings
TIMBER-BORERS. 51
of our country porches, which bores a gallery for its young
large enough to admit a finger.
FIG. 30. Carpenter- moth.
As another example we may mention a moth, not uncom-
mon about the city, whose caterpillar lives in the hard yellow
locust, the Carpenter-Moth (Xyleutes robinice).
Before closing, it would perhaps be of interest to say a
few words of the relation of insects to knarls or burls. These
knotty outgrowths may occur on any tree, both on branch
and trunk, but become valuable only when of a size suitable
for cabinet-work or veneer-cutting. The wood in such cases
is abnormally hard, is dark and mottled in color, and usually
presents a curled, wavy grain.
The origin of burls has as yet been but little studied. It
is, however, usually conceded that these deformations, like
the well-understood galls, were originally produced by in-
sects ; that the young grubs feeding upon and irritating the
most delicate tissues, have caused the plant to form the
irregular accumulation of new wood-cells, both in and about
the injured part. That this formation will go on for ages
after the cause has disappeared seems to have been well es-
tablished, and it is often found that in after-years the burl
may fail to exhibit the slightest trace of its insect origin.
As in the formation of galls, the insects that cause these
deformations are not confined to an isolated group, but
belong to a number of families in no less than five different
52 EXERCISES IN WOOD-WORKING.
orders. The beetle-larvae, namely, Buprestids and Weevils,
are usually regarded as the typical burl-formers.
PRESERVATION OF WOOD.
t
To preserve wood it must be protected from those causes
which induce warping, checking, and discoloration ; be re-
moved from those^ conditions which favor the development
of fungi and the boring of insects.
Attention must first be given to the seasoning of the
wood. The logs should be sawed into lumber as soon as pos-
sible after cutting, or, if they have been immersed in water,
immediately on removal frorn the water, then stacked in the
open air and allowed to remain until thoroughly seasoned,
or be subjected to some other drying process now in use.
If the logs are to be shipped a long distance, or remain un-
sawed for even a few weeks, it is necessary to remove the
bark and coat the surface, particularly the ends of the
log, with a thick coat of tar or paint, to retard evapora-
tion. From most logs the sap-wood should be removed, to
prevent the attacks of fungi and insects. The sap-wood of
lignum- vitse is allowed to remain, to prevent checking in the
heart-wood.
Exposure of the raw surface of wood to the alternate
action of rain or moisture and sunlight causes a discolora-
tion called weather-stain, which penetrates into the tissue and
renders the surface unfit for finished work. If exposed for
a long time, the softer portions are worn away, giving a
weather-beaten effect. To protect smoothed boards from the
action of the weather, they are oiled, painted, or varnished.
Sawed and weather-beaten surfaces require a large quantity
of paint to cover them, and may be whitewashed or coated
with some other lime preparation.
Few woods can resist the constant alternation of damp-
ness and dryness occurring in those portions of timber in
contact with the soil. Here we have the most favorable con-
dition for the attacks of fungi and eventually decay or rot.
The ends of beams and joists resting on damp walls, posts
set in stone foundations, fences and railroad-ties, are well-
PRESERVATION OF WOOD, 53
known examples of wood exposed to this condition. Those
woods which have the least tendency to decay in contact
with the soil are the cypress, redwood, cedar, locust, and
white oak. The others require some one of the various arti-
ficial means to preserve them.
Charring, in which the wood is held for a few minutes in
a fire until the surface is evenly and completely converted
into charcoal. This will be effectual only in well-seasoned
woods, because, if the wood checks after the operation, fungus-
spores may germinate in the check and cause rotting of the
wood. A specimen observed by the author had a large, well-
developed polypore in a stick that had been charred only
one year.
Creosote. The protective substance developed in charring
seems to be creosote, which is one of the best preservatives
we have. The ends of timbers are placed in'the creosote until
they have drawn up into their pores a sufficient quantity,
and, as long as it gives a perceptible odor to the wood, fungi
and insects, including even the white ants, leave it alone.
Wood-Tar and Coal-Tar are quite frequently used in Amer-
ica as preserving coats for wood. They are to be recom-
mended as cheap and effective, and especially adapted to
out-of-door structures.
Paint. Although the so-called metallic paint, in which
an oxide of iron is the basis, and common paint, with car-
bonate of lead as a basis, have been used to a great extent
for preserving wood, they are desirable only for those por-
tions of wooden structures not in contact with the soil. In
any event, they need renewal every two or three years to
continue their preservative action.
Many chemical solutions have been used to protect wood
from fungi, insects, and even from fire. .Of these a ten-per-
cent solution of sulphate of copper, in which the wood is
placed until its cells and vessels have absorbed a sufficient
quantity, is the most prominent. A mixture, of one part of
silicate of sodium and three of water, applied to the wood,
renders it fire-proof and free from the attacks of parasites.
Acid solutions of various alums, together with sulphates of
54 EXERCISES IN WOOD-WORKING.
zinc and potassium, have been strongly recommended. For
railroad-ties a solution of rosin and paraffin in benzine has
been used effectually. In most of these solutions the wood
is simply immersed ; but, to render the absorption very com-
plete, the air is first removed by vacuum-pumps, and the
wood then immersed in the preserving fluid.
Wood will not decay as long as it is kept well ventilated
and dry. It may become brittle with age, but no sign of
fungus growth will make its appearance. This is shown in
the wood of old pieces of furniture and the interior wood-
work of houses, which the coat of paint or varnish has kept
perfectly sound.
The opposite condition, in which the wood is constantly
covered by water, will also preserve it ; as examples of this,
we have the oak of vessels sunken for a hundred years or
more, and the remains of ancient lake-dwellers in Switzer-
land and England. It is because of this peculiar preservative
action of water that foundations of great structures of gran-
ite and marble are laid upon the tops of wooden piles, driven
below the low-water mark.
In America, with its bountiful supply of wood, which is
easily obtained and cheap, little attention has been paid to
means of preserving it. But now we begin to note the result
of extravagant and unchecked destruction of timber-lands
by the increasing scarcity of some of the ordinary kinds, and
in the attempts made to preserve railroad-ties.
PART SECOND.
TOOLS DBA WING EXERCISES.
WOOD-WOKKLN T G.
IN" arranging a workshop, the position of the work-bench with
regard to the light is of prime importance. For carpentry and
general joinery, the light should be at the head of the bench, so
that it can pass under the try-square, and to avoid awkward posi-
tions in testing work. The turner and carver should have the
light come down on the top of their work, from a sky-light, or
have the lathe or bench in front of a tall window, the lower part
of which is screened by tool-racks.
Although some workmen are obliged to keep their tools in
chests for convenience in moving, or in drawers under the bench,
the better plan is to have them in a closet within easy reach, above
the bench or against the wall opposite the bench. The closet
should have the doors and sides furnished with strips of wood
notched to hold the various tools, nearly all of which may be sup-
ported on such racks. Each tool thus has its own peg or place, in
which it is kept when not in use. Even in a chest or in drawers
the saws, chisels, gouges, bits, and other edge tools, are separated
by notched strips to prevent injury to their edges.
The work-bench itself, made of hard wood, preferably maple,
requires some care to preserve a smooth and clean top. The saws,
chisels, boring-tools, nails, screws, or other sharp tools, must never
cut into the bench. The vise should be brought square to its
work, and no irregular or metallic objects should be fastened in it.
Frequently brush the top of the bench and clean off drops of glue,
paint, or varnish, immediately. Make no pencil-marks on the top,
as they soil the work.
CARE OF TOOLS. 57
Have on the bench only those tools to be used in the work at
hand ; all others must be put away.
The tools should be used only for the purpose for which they
are intended ; measures and marking-tools not to be used as levers,
the try-square not as a hammer or screw-driver, nor the compasses
as a boring-tool.
The polished surfaces of steel tools should be carefully pro-
tected from moisture and especially from perspiration. To prevent
rust, rub the bright parts frequently with a mixture of paraffine
and vaseline, or equal parts of beeswax and tallow. If rust should
appear, brighten the spot with some fine emery-cloth and oil, rub-
bing always in the direction of the polish scratches.
In working up old material, the greatest caution must be taken
to prevent sawing and planing on nails, etc.
In mortising, do not strike the chisel with the hammer, and on
no occasion strike the hammer on its side. Planes must have their
soles frequently rubbed with the wax or paraffine mixture ; always
lay them on their side or on thin strips on the bench.
The student should wear a long apron, without pockets, and
made of strong material. Workmen use short aprons, and while
building or in out-of-door work have the bottom turned up and
sewed, to make a large pocket for nails and small tools.
The work must be carefully protected from bruises by drop-
ping, striking with hammer or other tools, and from chips on the
bench.
In all this training three things are to be aimed at: First,
accuracy, which in wood- working specially applies to marking and
cutting ; second, finish, or smoothness ; and, third, quickness of ex-
ecution.
After marking out the work, it should be inspected and ap-
proved by the instructor before cuts are made. Pencil-marks must
always be light and fine, so as to be easily removed.
When an exercise is finished, the work should have the name
or number of the student and the date written on it, the bench
brushed off, and all tools cleaned and put away.
58 WOOD-WORKING.
Tools. (Plate A.)
The following are the ordinary measuring, marking, and holding
tools :
1. Four-fold, two-foot rule. The graduations of inches and even
fractions of an inch running from right to left.
2. Full size of portion of inside divided into, a, sixteenths ; 6, one
of the scales usually found on the carpenter's rule. It is the three-
quarter inch to one foot scale.
3. Portion of the metric rule. This rule is one meter long, divided
into ten segments, each one decimeter, which is divided into ten cen-
timeters, and each centimeter into ten millimeters, or thousandths of
a meter.
4. Full size of one end of the metric rule. Note that the centi-
meters are numbered from left to right.
5. A circle is divided into three hundred and sixty degrees ; a
quarter-circle, a, has ninety degrees, and measures a right or square
angle. The arc, b, measures a thirty degrees opening ; c, forty-five
degrees ; d, sixty degrees.
6. Carpenter's steel square, used for measuring and marking tim-
ber ; the long side twenty-four inches, the short side sixteen ; the outer
edges graduated into sixteenths, the inner into quarters or eighths.
7. Try-square, rosewood handle faced with brass, steel blade.
8. Small steel square for testing fine work.
9. Sliding T-bevel, for marking or testing other than a square angle.
10. Carpenters use three sizes of pencils : a short stick of plum-
bago, three quarters inch square, a large pencil (see section), and an
ordinary No. 3.
11. Bench-knife ; at a, round taper-point for scratching ; at 6, a
knife-edge. 12. Marking-gauge : a, the bar ; 6, the head.
13. Spring compasses. 14. Plumb-bob and line.
15. Spirit-level : a for horizontal, b for vertical surfaces.
16. Bench-vise : a, bench-screw. The vise is adjusted by the screw
and a strip containing holes or notches, fastened to the bottom of the
vise.
17. Bench-stop of hard maple, about two inches square. There is
a great variety of iron bench-stops.
18. Pine bench-hook. 19. Iron bench-dog. 20. Iron clamp.
21. Hand-screw. 22. Oil-stone. 23. Oil-slip. 24. Oil-can.
25. Miter-box with one side projecting to catch against the
bench-top. 26. Glue-pot : a, for the water ; b, for the glue.
27. Carpenter's horse.
TOOLS.
59
Plate A.
60 WOOD-WORKING.
Tools. (Plate B.)
The chief edge-tools used by the carpenter are :
1. Rip-saw and cross-cut, apple-wood or beech handles and steel
blades.
2. Compass-saw.
3. Back-saw, a very thin blade stiffened by an iron or brass back.
Also called tenon-saw.
4. Frame-saw.
5. Float, like a saw, but with wide teeth.
6. Chisel, with apple-wood or hickory handle, a bevel side, and a
flat side or face.
7. Gouge, the face is the hollow side.
8. Jack-plane : a, stock ; b, top ; c, sole, in front the toe and
behind the heel ; d, handle ; e, wedge, driven behind the throat ; /,
iron. There are three large planes used by carpenters : jack-plane,
sixteen inches long, sometimes furnished with a single iron ; fore-
plane, twenty-two inches long; and jointer, twenty -six or more inches
in length. 9. Plane-iron.
10. Cap. 11. Double iron, cap and iron united.
12. Wedge. 13. Smoothing-plane.
14. Rabbet-plane, of which there are several forms, some with
irons the full width of the sole, some with a small side cutter, and
some with stops. 15. Iron of rabbet-plane.
16, 17. Show the shapes of paring match-planes.
18, 19. Shapes of match-plane irons.
20. Shape of the sole of a hollow.
21. Shape of a round. 22. Shape of a sash-plane.
23. Plow ; recent form with iron stock and apple-wood handle ;
a, iron, secured by a thumb-screw ; b, fence ; c, stop for regulating
depth of cut ; d, handle. 24. One of the set of irons.
25. The sole with its iron, which when attached to the stock makes
a fillister or rabbet-plane.
26. Scratch-plane for preparing wood before gluing.
27. Portion of the scratch-plane iron, showing its teeth, full size.
28. Brace, with head, handle, and bit-holder. 29. Twist-bit.
30. Center-bit. 31. Auger-bit. 32. Rose countersink.
33, 34. Half-round reamer. 35. Draw-knife.
36. Spoke-shave. 37. Screw-driver. 38. Claw-hammer.
39. Bench-ax. 40. Wooden mallet.
Besides which there are rasps, files, brad-awls, and many other
tools for special purposes.
TOOLS.
61
'late B.
WOOD-WORKING.
Drawing. (Plate C.)
The distance between the heavy lines in Fig. 1, measured accord-
ing to the scale, three quarters of an inch to one foot, will be found to
be 2 feet 3f inches. This measurement may be expressed by using
the signs for feet and inches, or by writing a letter on the line and
referring to the margin or notes for its value. Broken lines usually
terminated by arrow-heads are used to show the extent of the meas-
urement.
In locating a circle, give the distances of its center or circumfer-
ence from two known points (Fig. 2). An oblique line must have
both ends determined, or one end, its length, and inclination
(Fig. 2).
The drawings of any object should consist of as many parts as are
necessary to show all its dimensions. Usually three are sufficient, as
in Fig. 3, in which a is the elevation, b the plan, and c the end-view
or side elevation, of a rectangular block.
Sections through an object are frequently shown in drawings. If
it is cut across the grain, it is shaded by straight parallel oblique lines,
a and &, Fig. 4, which show two views of a section through the block,
Fig. 3, on the line e f. Sections with the grain are shaded by lines
parallel with the grain ; thus, a vertical section through the line g h
of Fig. 3 would appear as at c, Fig. 4.
Generally one perspective of an object will show a sufficient num-
ber of its details to enable a workman to understand its form. From
a true perspective, as the cube in Fig. 5, measures can not be easily
obtained ; therefore, in illustrating the following exercises, false or
parallel perspective is employed.
Fig. 6 represents a cube drawn in right and left parallel perspec-
tive. It is seen that surfaces and lines parallel with the plane of the
paper are drawn their full size and correct shape. The receding hori-
zontal lines are represented by shorter lines inclined at an angle of
45. To obtain this shortened length, the full length of the line is
laid off on a vertical line drawn from the nearest end of the receding
one, and from the upper end of the length thus obtained an oblique
line at an angle of 30 is let fall ; where it intersects the 45 line is
the shortened length, as shown in Fig. 6.
Fig. 7, a, 6, and c show the elevations and plan of a work-bench,
drawn to a scale of i" to V ; d and e show the details of the vise, V
to 1'. The irregular line-shading is used to represent wooden sur-
faces.
LEA WIN a.
63
Plate C.
Fig. 5
Fig. 6
64r ORDINARY TOOLS.
Exercise 1 .Use of the Chisel.
Material. A rough block of pine, about 2" square, and 8" long 1 .
Work. 1. To cut one side of the block perfectly smooth and flat.
2, To cut an adjacent side smooth, flat, and at right angles with
the first side.
Fasten the block lengthwise in the vise, so that about 1J" of it
is above the bench-top.
Hold the chisel in the right hand, the cutting edge obliquely to
the direction of the grain, and inclined from the block a sufficient
amount to make a thin shaving (a, #, Fig. 1). The fingers of the
left hand should rest on the face of the blade, and guide the cutting
edge. If additional strength is required to force the chisel through
the wood, grasp the blade in the left hand.
The surface is pared smooth with the chisel in the above posi-
tion. To make the surface flat, turn the chisel on its face, as
shown in Fig. 2, a and b ; cut very thin shavings in those places
where the wood is too high, and avoid cutting in the low places.
To test the surface, hold the try-square on various parts of the
surface in the two positions, as shown in Fig. 3, a and Z, and note
the light passing under the square at the low places. Handle the
try-square with the left hand. If its edge is pressed or rubbed
against the wood, it will mark the high places. Look along the
block from end to end, to see whether the surface is twisted or
warped. Also pass the fingers lightly over the surface, to note its
irregularities.
When smooth ^nd flat, this surface of the block is called its
face. Turn the block in the vise and fasten with its face outward.
Pare the second side the same as the first, testing frequently for
flatness. When nearly smooth and flat, remove the block and test
the angle between the sides with the try-square, as shown in Fig. 4.
Care must be taken to hold the try-square true to the face.
When the second side is finished, mark it and the face with a
pencil, as shown in Fig. 4. The edge of the block, toward which the
marks point, is the face-edge, from which all measures are made.
In using any sharp tool, care must be taken to avoid cutting the
work-bench, the bench-stop, and particularly the hands. Always
keep the hands behind the chisel-edge.
CHISEL.
65
EX.I.
66 ORDINARY TOOLS.
Exercise 2. Use of the Chisel continued.
Work. 1. To mark the block of Exercise 1 for width of face.
2. To cut the remaining sides so that the block will be 1"
square.
3. To chamfer the edges.
Fasten the block in the vise with face up and face-edge out-
ward. Hold the rule as shown in Fig. 1, so that it measures ex-
actly !" from the face-edge, and make a small mark with the
pencil along the end of the rule. Adjust the rule by bending the
first finger of the left hand underneath it against the face-edge
(Fig. 2), until the point of the pencil, held against the end of the
rule, comes on the measured mark, and draw the rule and pencil
along the block, producing a line parallel to and 1" from the face-
edge. Mark the side opposite to the face of the block in the same
way.
Pare the third side down to the pencil marks, being careful not
to pass below them. Mark and pare the fourth side.
In cutting end-wood with the chisel, considerable force is neces-
sary to push and guide the tool. Small shavings must be cut at a
time, and, in order to leave a smooth surface behind it, the cutting
edge must be very sharp. Instead of cutting straight down, the
cut is oblique, as shown by the arrow in Fig. 3, or the chisel is in-
clined and pushed in the direction of the arrow in Fig. 4. The
block should rest on the bench- hook or a small waste board, in cut-
ting the end-wood as above.
Lay out the chamfer, as shown in Fig. 5, 1" from the ends of
the block, and f " wide. Mark the lines parallel with the face-
edge, with the rule and pencil, and the cross marks with the try-
square.' Lay out the ends of the chamfer according to the meas-
ures given in Figs. 6 and 7 ; the first is an ogee, and the second a
bevel.
In cutting the chamfer, use the chisel in the position shown in
Fig. 1, Ex. 1, and great care must be taken to avoid cutting beyo'nd
the pencil marks. Cut the ends after the straight portion is
finished.
In Fig. 8 are shown some of the shapes given to chamfer
ends.
CHISEL.
67
Ex.2.
V
Fig. 3
Fig. 4
Fig. 5
fig. e
f
Fig. 7
Fig. 8
68 ORDINARY TOOLS.
Exercise 3. Use of the Gouge.
Material. A block of dressed pine, 2" wide, 1" thick, and about 6"
long.
Work. To shape a molding with gouge and chisel.
Lay out the block as shown in Fig. 1, using the measures
as given in Fig. 2. The form of the molding, an ogee, as seen
on the end of the block, #, Fig. 1, is sketched on the wood, or,
as is the practice in shops, is marked on the end from a thin
pattern, Fig. 2. The lines #, #, Fig. 1, are drawn by the rule and
pencil.
In cutting with the gouge, apply the same directions given for
the use of the chisel. Cut small shavings, hold the gouge obliquely,
as shown in Fig. 3, test frequently with the try-square, and avoid
cutting beyond the marks. The hollow portion should be cut first
with the gouge, then the small rectangular piece in the upper part
of the molding cut out with the chisel, leaving what is called a
quirk, and lastly the top rounded by the chisel. In cutting the
quirk, the chisel is held by the blade and drawn along the pencil
mark on the top of the block, cutting like a knife-edge, and the
wood pared down to the bottom of the cut ; the chisel is then again
used like a knife, and more pared off, this process being repeated
until the entire quirk is cut.
To return the molding, the end is given the same form as the
face, , Fig. 4. This form may be marked on the end, from a piece
of molding held against it, by the marking-point of the bench-
knife, or by measuring points along the curve with the rule, and
marking through them with the pencil. The return is cut down
upon a waste board with the gouge and chisel. In cutting across
the grain with the gouge, it must have a circular motion, which is
the same in effect as the oblique cut of the chisel.
In drawings, the form of a molding is always indicated by a sec-
tion of it, as shown at c, Fig. 4.
In Fig. 5 is represented a core-box, made by pattern-makers.
It is an example of gouge work.
Fig. 6 shows a molding coped, or fitted to another. The shape
of the end of a molding for coping may be obtained by sawing the
end in a miter-box.
GOUGE.
69
Ex.3.
Fig. 3
b\
Fig.
H
4
Fig. 5
Fig. 6
OF THE ''"
UNIVERSITY
70 ORDINARY TOOLS.
Exercise 4. Use of the Hammer.
Material. Sawed block of pine, 4" square and 16" long.
Work. To strike blows on the block, in order to learn the right
manner of holding the hammer.
Grasp the handle of the hammer firmly, whether for a light or
a heavy blow, and hold it so that its striking face is parallel with
the surface of the wood (Fig. 1). Strike two or three light blows
at one end of the block, and examine the impressions, which should
be like those of a, Fig. 2 ; but if like #, Fig. 2, the hammer must
be held better. Strike two or three again, and examine the prints
of the hammer. Now strike several heavy blows, and note the re-
sult. It is a common fault among students to draw the handle
down, as in , Fig. 3, in striking a hard blow, and in correcting
this fault to give the opposite result (b, Fig. 3). If the print shows
that the hammer falls as at e, Fig. 3, then it is not held sufficiently
tight in the hand.
For light blows a wrist motion is used, for ordinary blows a
movement from the elbow, and for heavy blows a shoulder or com-
bined movement of all the parts of the arm is necessary.
Cut nails are wedge-shaped, and if driven the wrong way will
spread the fibers and cause the wood to split ; but if driven the
right way, break and compress the fibers without splitting the wood :
a and , Fig. 4, show the cut nail in its proper position, c and d,
Fig. 4, the wrong position. Pick up a cut nail near the smaller
end, the thumb and finger will instantly determine the wedge from
the parallel sides and place the nail properly on the wood. Some
men pick up the nail near the larger end, but allow the third finger
to determine its shape. Wire nails do not need examination be-
fore striking, but must be struck a direct blow, or they will bend.
Fig. 5 illustrates a peculiar drawn blow of the hammer. Start-
ing at d, it follows the direction of the broken line in its course ;
the effect of which is to bend the nail in such a manner that it
forces the board a close up to c, as shown at /. This blow is prac-
ticed in nailing floors and clinching wrought nails. If the point ,
Fig. 6, be struck light, drawn blows, it will curl, as shown at ~b.
And if the blows are now drawn less, but made harder, the point
will sink into the wood as at d, leaving a small and clean depression.
HAMMER.
n
Ex. 4.
Fig.
a\ \
Fig. 6
72 ORDINARY TOOLS.
Exercise 5. Use of the Jack-Plane.
Material. The block used in the previous exercise.
Work. 1. To adjust the iron of the plane.
2. To plane two adjacent surfaces flat and square.
In adjusting a plane, hold it in the left hand, with the thumb
in the throat and pressed against the iron, as in Fig. 1. Look
along the sole and note the projection of the iron, as at #, Fig. 2.
The iron should be highest in the middle, and gradually curving
until it disappears near the edges of the sole, as shown at a, Fig. 3.
If it projects too far, strike the plane lightly on the hard start, c,
Fig. 1, until it recedes the required amount. If the iron does not
project far enough, strike its top, #, Fig. 1. If the iron projects
too much on one side, strike the iron near the top on the project-
ing side. When the iron is properly adjusted, give the wedge a
light blow to secure the iron. The block may be fastened in the
vise.
Hold the plane straight on the work, the left hand placed in
front of the iron, properly, with the thumb on top and the fingers
on the side. Stand firmly on the floor, with the right side close up
to the bench, behind the block. At the beginning of the stroke,
press down with the left hand only ; at the finish, remove the left
and press with the right. Each shaving should be the entire
length of the block.
Examine the cut made by the iron ; it may be either too deep
or too shallow. If the cut surface is rough (&, Fig. 5), then the
plane is working against the grain, and the block must be turned
around. If smooth, as in Fig. 6, it is cutting with the grain. If
the shavings do not curl in coming out of the throat, examine
the position of the end of the cap ; for the jack-plane " to J-"
back is proper, and for other planes about t l g -" (#, Fig. 5, and. c,
Fig. 6).
Plane out all the saw marks or weather stains, and examine the
surface for flatness and warping, as in Exercise 1. Plane and
square the adjacent side, and mark the face-edge.
In planing a warped board, the plane is sometimes pushed ob-
liquely across the board, as shown by the arrows in Fig. 7, until
flat, and then finished with straight strokes.
JACK-PLANE.
Ex. 5.
Fig. 1
Fig. 3
Fig. 4
Fig. 6
Fig. 7
74 ORDINARY TOOLS.
Exercise 6. Plane continued, and Marking-Gauge.
Material. Same as before.
Work. 1. To smooth the two planed surfaces of the block with the
smoothing-plane.
2. To mark with the gauge for the third side.
3. To plane the third and fourth sides of the block.
The smoothing-plane is adjusted the same as the jack-plane, ex-
cepting that its iron is drawn back by a blow on the back of the
stock. Its iron should just show, as in #, Fig. 3, Ex. 5, and should
remove a very thin shaving. Smooth the face and adjacent side of
the block, testing with the try-square, and marking over again the
face-edge.
Adjust the gauge, holding it in the left hand, thumb on the
head ; move the bar so that the marking-point is exactly 3"
from the head ; fasten the bar with the thumb-screw. In marking,
hold the head in the left hand, thumb against the bar near the
point (#, Fig. 1). Incline the gauge as shown in the figure,
until it makes a faint mark ; press the head of the gauge firmly
against the face-edge, and mark th'e entire length of the block.
Repeat, making the mark deeper, until it is sufficiently distinct.
If the head of the gauge is not pressed against the face-edge, or if
the point is forced in deeply at first, it is apt to follow the grain,
as shown in Fig. 2, where the gauge makes a fault from a to b.
Gauge all around 3^" from the face of the block, as shown in
Fig. 3.
Plane the edges of the third side down to the gauge-marks, as
in Fig. 4; these beveled surfaces serve as guides. Then plane
down the middle, being very careful not to go beyond the gauge-
marks.
Fig. 5 shows the manner of truing the edge of a board by using
one side of the edge of the plane-iron. In the figure, c is the stock,
a the high part of the edge. The fingers of the left hand are used
as a guide, and pass along the side of the board at b.
Fig. 6 shows one of the best forms of modern planes ; its adjust-
ments are made with screws and levers : a and b fasten the iron, c
moves the iron sideways, d regulates the depth of the cut, e is the
iron, and / its cap.
MAKEING-GAUGR
Ex.6.
Fig. 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
76 ORDINARY TOOLS.
Exercise 7. Use of the Rip-Saw,
Material. Squared block of the previous exercises.
Work. To saw the block into boards which may be planed to %"
thick.
Examine the rip-saw ; note that its teeth are about four and
a half to an inch ; the angular opening 60, and the slant of the
tooth about 90 to the direction of the cut. In Fig. 1 the teeth
are shown slanting toward the point, and are called hooked. At #,
Fig. 2, the teeth are square, and at 1) are raked. The teeth are
smaller near the point of the saw. The face of the teeth may be
cut square across, 'as at , Fig. 3, or obliquely as at b. In order
that the saw may not bind, its teeth are set that is, the points are
bent, as at #, #, c, Fig. 3, alternately to one
side and the other. The effect of the teeth
on the wood-fibers shows that the action is
tearing. Fig. 4 exhibits a magnified view
of a section through a saw-kerf
Gauge all around the block " from its
f ace - Fasten the block vertically in the
vise with its face outward. Hold the saw
firmly in the right hand, against the thumb of the left acting as
a guide (a, Fig. 7), and about -J" beyond the gauge-mark. Move
the saw with short strokes, back and forth, a little above the wood ;
let it gradually approach and enter the wood. The weight of the
saw must be sustained by the right hand while starting ; after it
has entered fairly into the wood, let the saw cut by its own weight.
Go slowly, and push the saw as straightly as possible. When the
saw has penetrated as far as shown at #, Fig. 8, change to the op-
posite side and saw down as shown at I ; change again, and con-
tinue this alternation, keeping the saw all the while about -J" from
the gauge-mark.
In starting the saw, many workmen would begin at #, Fig. 7,
and draw the saw backward, resting on the wood. The saw cuts
quickest if pushed at right angles to the grain, but if inclined, as
in Fig. 6, requires less force. In sawing boards, use the horses for
supports and test the position of the saw, as shown in Fig. 5, until
practice gives a correct habit.
EIP-SA W.
Ex. 7.
Fig. 8
Fig. 7
78 ORDINARY TOOLS.
Exercise 8. Use of the Cross-Cut.
Material. Block of pine, 4" square and 16" long.
Work.l. Plane the block to 3f " square.
2. Practice sawing with cross-cut.
Examine the cross-cut, and note the small, pointed teeth, shown
enlarged at , Fig. 1 ; look down on the tops of the teeth ; they ap-
pear as at #, Fig. 1 ; look along the saw from the handle toward
the point ; a depression is seen, made by the peculiar shape and set
of the points of the teeth (c, Fig. 1).
Plane the block carefully to 3f " square, observing instruction
in Exercises 5 and 6.
Measure and mark a point on the face-edge, J-" from the right
end. Hold the try-square, as shown at #, Fig. 2, firmly against the
face-edge and coinciding with the pencil-mark. Draw a pencil-
mark along the try-square. Then place the try-square in the posi-
tion shown at #, Fig. 2, and again mark along the square.
Place the block on the bench-hook, with the marks toward you
(Fig. 3). Hold the saw as directed in the previous exercise, the
thumb used as a guide, and start the cut in the same way, begin-
ning at the front or back of the face and on the pencil-mark. Let
the weight of the saw do the cutting ; give all your attention to
guiding. Avoid letting the point of the saw drop at the end of
the stroke. Keep the movement of the teeth as parallel as pos-
sible with the bench-top. Examine the sawed surface.
Repeat the exercise, this time using the knife for marking, and
guiding the saw so that the kerf is to the right of the knife-mark.
In Fig. 4, a represents the knife-mark
and c the kerf. Repeat again, this time
sawing to the left of the knife-mark, as
at #, Fig. 4 ; this last piece should be ex-
actly |" thick. Repeat the exercise with
oblique cuts, as shown in Fig. 5, always
6 measuring and adjusting the try-square on
the face-edge. Fig. 6 shows the appear-
ance under the microscope of a section oj: pine-wood which has
been sawed by a cross-cut. The fibers are bent and broken by the
sharp points, showing the tearing action of the tool.
CROSS-CUT.
79
Ex.8.
l/NjyNJVNJ^^^
Fig. 1
Fig. 2
Fig. 3
a a
Fig. 4
80 SHARPENING TOOLS.
Sharpening Tools. (Plate D.)
WITH THE OIL-STONE.
To sharpen or whet a chisel, moisten the oil-stone with a few
drops of oil ; hold the chisel by the blade in the right hand, as shown
in Fig. 1, two or three fingers of the left pressing on the face of the
chisel near the edge, a. The chisel is moved backward and forward
the entire length of the stone, and maintained strictly at a certain
angle, about 30 to 35, depending on the kind of chisel and the
work to be done with it ; for paring, thinner angles, and for mortising,
thicker angles are used.
In the forward movement (a to 5, Fig. 2), the tool must be pressed
hard on the stone, but lightly as it is drawn back ; and the surface
formed at the cutting edge should be flat, as shown at c.
Avoid a rocking motion, as shown in Fig. 3, in which the tool is
started at too great an angle (a), which becomes less as it moves
along, ending in an angle much too small, as at c. This fault, which
is a very common one, gives to the edge a curved shape, as shown at
d, Fig. 3.
After the stone has worn the steel down to the edge, the chisel is
turned on its face, flat on the stone, and moved forward lightly once
or twice to remove the wire-edge caused by the grinding.
To sharpen a plane-iron, hold it the same as the chisel, turned so
as to bring the corners of the iron within the limits of the stone ;
press with considerable force in the forward strokes, and keep the
iron strictly at its proper angle, about 35.
The iron of the jack-plane must have a rocking motion sidewise,
so as to preserve its curved edge.
When the stone is small or narrow, a circular motion is given to
the iron, as at a, Fig. 4. For the finishing touches, the iron is pushed
forward lightly, raised from the stone coming back, and removing
the wire-edge, as in the case of the chisel.
To sharpen a gouge, hold it and the oil-slip as shown in Fig. 5.
Give the slip a back-and-forward motion while the tool is turned to
bring all parts of the edge to bear on the stone. Remove the wire-
edge with the round side of the slip.
Should the surface of the oil-stone become hollow or uneven, it
may be made flat by grinding with fine sand or medium emery on a
flat stone or cast-iron plate. To remove oil which has hardened in
the pores of the surface, the stone may be placed in boiling, soapy
water, or in some strong alkaline solution.
OILSTONE.
81
Plate D.
82 SHARPENING TOOLS.
Sharpening Tools. (Plate E.)
ON THE GRINDSTONE.
The grindstone must be kept constantly wet with water while in
use. Of the many positions in which the tool may be held against
the grindstone, that shown at a, Fig. 1, is the easiest for a student.
The handle, held in the right hand, rests on a board at 6, the bevel is
pressed against the stone at c, with the palm of the left hand, which
is applied to the face of the tool. The angle of the ground surface is
regulated by moving the handle nearer to or away from the stone.
At c?, Fig. 1, the angle of the bevel is regulated by moving the
handle on the rest, and maintained by a finger held against the rest.
At e, Fig. 1, and 6, Fig, 2, are shown positions used by workmen.
The tool must not be held on one part of the stone, but con-
stantly moved so as to wear the face of the stone evenly, as shown at
a, Fig 2.
For chisels, gouges, and planes, the angle is tested by a gauge,
shown full size in Fig. 3, made of steel or brass, with an opening of
20 to 25, as shown at c, the value of the opening stamped on the
gauge, and a hole at one end for a small chain fastened to the grind-
stone-frame. The bevel of the tool, 6, is placed in the opening, c,
and its angle tested ; if too thin, the handle, 6, Fig. 1, must be drawn
away from the stone, or brought nearer if too thick. When once
determined a mark may be made on the rest at &, and the grinding
continued until the bevel is brought down to the face. The edge is
then tested with the try-square.
Care must be taken to preserve the correct shape of plane-irons
(see a, 6, Fig. 3, Ex. 5), and particularly the edge, which must be
square.
Gouges are ground as shown in Fig. 4, so that the edge slants, and
is square to the whetted surface, as shown by c, d, Fig. 4. For spe-
cial work some gouges are ground just the opposite to the ordinary
tool that is, with the edge on the outer surface, at 6, instead of a,
Fig. 4.
Fig. 5 represents a simple means of obtaining the bevel surface
on a chisel. It is supported on the rest, 6, and held against the side
of an emery-wheel. The wheel should be constantly oiled or wet
with water.
To remove hollows or grooves in the grindstone, hold a wrought-
iron bar, pointing downward, resting on the support 6, Fig. 1, and
with its end cutting into the high parts of the face ; after which,
smooth the stone by holding a coarse sandstone against it.
GRINDSTONE.
83
Plate E,
Fig. 5
84 SHARPENING TOOLS.
Sharpening Tools. (Plate F.)
SAW-FILING.
The easiest saw to file is the rip-saw, with teeth square across and
standing at 90. Fasten the saw in the clamps as shown in Fig. 1.
Pass a flat, smooth file lightly over the teeth first, to reduce all the
tops to the same level. Examine the teeth carefully, and deter-
mine by the amount removed from the points which of them need
the most filing, and whether on the square or beveled side. If the
teeth are spaced irregularly, each filing should tend to correct the
fault.
The triangular file is held in the right hand, its point guided by
the thumb and forefinger of the left. For filing large teeth the file
should have slanting furrows (6, Fig. 2) ; for small teeth, finer and
less oblique furrows (c, Fig. 2). Pressure is applied only during the
forward stroke of the file, it being raised above the tooth or touching
very lightly as it comes back, because the brittle cutting edges,
which are shaped as at a, Fig. 2, are easily rubbed off, and the file
may be ruined by a careless back-stroke. The file should cut in the
direction of the set, as at b and c, Fig. 3. One or two strokes are
usually sufficient to sharpen a tooth. The first, third, fifth, and so on,
are filed first, then the saw is turned and the remainder filed. If the
teeth are oblique, as in Fig. 4, then the direction of the file must be
adjusted to fit this inclination, as shown by the arrows.
In the cross-cut, the file is held pointing upward and toward the
handle of the saw, as shown by the arrows a, a, and 6, 6, Fig. 5. As
this always leaves a wire-edge on each tooth, some prefer to file
exactly in the opposite direction that is, pointing downward and
toward the point of the saw.
After filing, the saw should be set. For this important operation
a good instrument must be used. Crude instruments, such as a
block of wood, a nail punch, and a hammer, in the hands of an inex-
perienced workman, are more likely to ruin the saw than to benefit
it. The teeth must be set with great regularity, in order to secure a
smooth and straight cut. Morrill's instrument, shown in Figs. 6 and
7, acts by bending the point of the tooth with the punch c, the amount
of the set being regulated by adjusting a and b.
Bip-saws, and also cross-cuts for fine work, should have very little
set, and the points only of the teeth should be bent.
After setting the teeth, they should be finally trued, by rubbing
the oil-stone lightly on the sides of the points.
SAW-FILING.
85
Plate F.
86 SIMPLE JOINTS.
Exercise 9. Construction of a Half-Joint.
Material. Stick of sawed pine, 3" square and 4" long.
Work. To lay out and make a half -joint.
Plane the stick to exactly 2f" square, and mark the face-edge.
Saw into two equal lengths after marking with the try-square and
knife. When near the finish of the saw-cut, support the ends to
prevent the stick from breaking, as shown at #, Fig. 1.
Set the marking-gauge to If" ; mark on the ends just cut and
along the sides 2f ", keeping the head of the gauge always on the
face of the piece. These gauge-marks may be made without turn-
ing the pieces over, but allowing them to remain on the bench>
face up, as shown in &, a, Fig. 2.
Now mark with the try-square and knife 2f" from the end,
above the gauge-mark on one piece, and below the gauge-mark on
the other, as at #, #, Fig. 2, always adjusting the handle of the try-
square to the face of the stick.
The parts to be removed, shaded , , in Fig. 3, are now sawed
out, using the rip-saw first and the cross-cut to finish. These
parts, which are waste pieces, must contain the saw- kerfs, as shown
in Fig. 3.
If the gauge and try-square have been properly adjusted to the
face of the pieces, and the saw-kerfs accurately kept in the waste
wood, the sticks will fit together, as shown in Fig. 4, so as to make
the face even, or flush.
If the saws have not cut accurately, trim down carefully to the
gauge and square-marks with the chisel.
Fig. 5 shows the pieces placed at right angles, in which posi-
tion they should fit as well as in Fig. 4.
The same method of marking and cutting is employed to make
the scarf-joints, of which Figs. 6, 7, and 8 are examples. In the
joint (Fig. 8) the pieces are forced together by the key #, which is
slightly wedge-shaped.
The joints (Figs. 9 and 10) used in building trusses may be
made entirely with the saws, or with the saws and chisel. In
practice, one piece of such joints is marked and cut first, laid
in proper position on the other, which is then marked from the
first.
HALF-JOIST.
87
Ex. 9.
Fig. 1
Ag.
Fig. 5
Fig. G
Fig. 7
Fig. 9
Fig. 8
Fig. 10
88 SIMPLE JOINTS.
Exercise '1 0. Modified Forms of the Half-Joint.
Fig. 1 shows the pieces in position and marked for a lap-joint,
commonly used in building frame houses ; Fig. 2, the upper piece
cut to receive the vertical one. In nailing the pieces together, the
vertical one is forced up against the shoulder, a, of the horizontal.
This shoulder adds to the firmness of the joint, and the rabbet
gives more secure nailing. The rabbet for timbers should have
about the proportions shown in the figures.
Fig. 3 shows the ordinary rabbeted-joint of boards to be united
by nailing. In laying out the rabbet, the mark a, Fig. 4, must be
made with try-square and knife, the mark b with the marking-
gauge; saw on the mark a with the cross-cut, and then chisel
down the rabbet to the mark b. The horizontal piece may project
slightly over the vertical, if it is intended to be finished with a
plane.
Fig. 5 shows a grooved joint ; the groove is marked with try-
square and knife, the depth at the ends gauged. It is cut out
with saw and chisel. This joint is used where there is apt to be a
displacement sidewise, and also to make water-tight structures.
In the latter case the groove is made a little narrower than the
thickness of the tongue, which is slightly chamfered. The groove
and tongue are then coated with white-lead and forced together.
Fig. 6 is a modified form of the grooved joint. Where there is
not enough wood beyond the groove to give sufficient strength,
the groove may be made smaller, usually half size. It is cut the
same as that of Fig. 5, or with a rabbet-plane.
The difficulty of giving a good appearance to joints like Fig. 3
leads to various devices for finishing, the commonest of which is
the bead. This is worked on the edge by a plane, the shape of
which for cutting a J" bead is shown in Fig. 8 ; the iron cuts only
the depth $, and the round b ; the portion c of the sole acts as a
stop to regulate the depth, and d as a guide against the edge of the
board. The form cut is shown at #, Fig. 9, and is called a single
bead ; by reversing the plane and cutting on the other side, a
double bead is formed, as at #, Fig. 9.
Fig. 7 shows applications of the bead. Although either piece
may be beaded, it is customary to bead the tongued edge of a board
HALF-JOINT.
89
Ex. 10.
Fig. 1
Fig.
Fig. 3
Fig. 4
Fig. 9
90 SIMPLE JOINTS.
Exercise 1 1 .Construction of a Mortise-Joint.
Materials. The sticks of Exercise 9, after cutting off the half-
joint.
Work. To unite the pieces with a through mortise-joint.
Hold the pieces in the position shown in Fig. 1, with the faces
toward you. The upper is to have a tenon formed on its end, and
the lower a mortise cut into it.
Adjust the upper piece 2" from the end of the lower ; mark
with a sharp pencil the width of the upper piece on the face-edge
of the lower (#, #, Fig. 1). With these points as guides, mark with
the try-square and pencil on three sides of the mortise-piece, as
shown at #, #, Fig. 2 ; and with the try-square and knife, mark all
around the tenon-piece 3J" from its end, as at #, b.
Set the gauge at -J-", and mark on the end and sides of the
tenon-piece, and on the top and bottom of the mortise-piece, as at
#, #, Fig. 3. Then set the gauge at 1-J" and mark between the same
limits as before, producing the lines #, Z>, Fig. 4. Now place the
tenon-piece on the mortise-piece, and note that the marks corre-
spond exactly.
Saw the tenon, observing the instructions in Exercise 9, in re-
gard to the saw-kerf and waste wood. In order to enter the mor-
tise, the tenon (, Fig. 5) must have its edges removed by chamfer-
ing, as at b ; the measures, shown at c, Fig. 5, are marked with the
pencil and rule, and the chamfer cut with the chisel.
To cut out the mortise, bore with the brace and J" center-bit
two holes in the mortise-piece, as at , #, Fig. 6, about one half
way through ; then turn the piece over and bore down to meet
the first holes. With the chisel and mallet, remove the part I be-
tween the holes, cutting first one side then the other with the edge
of the chisel, parallel to the grain, c, and with the bevel side down,
so as to throw out the chips. Next turn the chisel, and cut down
the ends of the mortise as at d, leaving a margin of wood for
finishing.
The mortise is now fitted for the tenon by cutting away the
margin (#, #, Fig. 7) and paring the sides until the tenon passes
snugly through. Test the sides of the mortise for flatness with the
blade of the try-square.
MORTISE-JOIST.
91
Ex. ii.
Fig. i
Figr.
Fig. 3
Fig.
Fig. 6
Fig. 5
Fig. 7
/ CFTHE
UNIVERSITY
92 SIMPLE JOINTS.
Exercise 12. Pinning the Mortise- Joint.
Material. The joint of Exercise 11, and a piece of hard wood, f "
square and about 5" long.
Work. To fasten the tenon in the mortise with a pin.
Bore with a f " auger-bit, through the face of the piece and
mortise, V below the face-edge, as shown in Fig. 1. The line a is
marked by pencil and rule, and the point b marked in the middle
of this line for starting the point of the bit. The hole is not bored
all the way, but when the point shows through, as at , Fig. 2, turn
the piece around and bore from that side to complete the hole. By
this means a clean cut is made on both sides of the piece. Test
the auger-bit with the try-square, to keep it straight until fairly
started into the wood.
Place the tenon in the mortise and mark the center of the hole
on it with the point of the bit. Remove the tenon, and start the
bit about fa" nearer the shoulder. The hole thus bored (Fig. 3) is
not in a line with that of the mortise, as shown at , Fig. 4, but
when the pin is forced through, the pieces are brought closer
together, forming a stiff er and stronger joint.
The pin is planed to f " square, chamfered with plane or chisel
to an octagonal shape, rounded and pointed with the chisel, as
shown in Fig. 5, which is just one half size. In practice, the pin
is driven in flush with the face of the mortise-piece, the protruding
portion being either allowed to remain, or sawed off close.
For large through mortise- joints, such as are seen in the heavy
frames of barns and mills, two oak pins are used, as at #, Fig. 6.
Sometimes the pins are intended to act like wedges and force the
parts together, as shown at &, Fig. 6. This joint is common in
machine-frames.
Formerly, when pins were used to a greater extent, they were
compressed by being forced through a tapering hole in an iron
block. This had the effect of binding the pin firmly in the
joint.
Fig. 7 is an example of a double mortise, and is used for secur-
ing the central leg of a table to the top. It is sometimes made
without the shoulders , , which is bad practice, because they give
greater stability to the joint.
PINSING A MORTISE.
93
Ex. 12.
JX
V \
Fig. 1
Fig. 3
\
Fig.
Fig. 4
b
O
Fig. 5
Fig. 6
f. 7
94: SIMPLE JOINTS.
Exercise 1 3. Construction of a Stub-Mortise.
Material. The same pieces as before, after removing the pinned
joint. '
Work. To, lay out, cut, and fasten a stub-mortise joint.
Use the same methods and measurements in marking as in
Exercise 11, except that the tenon is to be J" long, and the mortise
1" deep, and 1" from the end of the piece. Fig. 1 represents the
work laid out, the lines a, , marked with try-square and knife,
and the lines #, #, with the marking-gauge. After cutting the
tenon, a very small chamfer, about -J", may be cut on its end with-
out marking.
The holes bored by the center-bit should not be more than 1"
deep. When a large number of holes are to be bored the same
depth, a wooden stop is made by boring a hole through a block of
wood, so that the stem of the bit will pass through it, but of
proper thickness to prevent the tool cutting beyond the required
amount.
In removing chips from the mortise, do not pry with the chisel
on the sides and ends. In testing the mortise, hold the chisel
against the side, and note whether it is square or inclined. The
mortise and tenon should fit very snugly.
With the tenon in place, bore with a |-" auger-bit a hole through
the bottom of the mortise-piece, and into the middle of the tenon-
piece about 3", as shown in Fig. 3. This is to receive an iron bolt.
At If" from the shoulder, and on the inside of the tenon-piece
(, Fig. 3), cut with chisels a hole large enough to receive the nut
(b, Fig. 3) of the bolt. The head, d, of the bolt should have a
washer, c, to prevent it crushing the wood. In some cases it is
necessary to sink the head flush with the surface, as at #, Fig. 4.
The stub-mortise is extensively used in heavy machine-frames.
Fig. 5 shows a blind-mortise, used in making furniture. Some-
times the end of the tenon is spread with wedges, as at , #, Fig. 6.
Fig. 7 shows a form of stub-mortise used in heavy railroad-
trestles. The timbers are secured by iron straps spiked to the
sides.
Fig. 8 is a form of joint used in trusses, the broken line a
showing the shape of the tenon.
STUB-MORTISE.
95
Ex. 13.
Fig. 1
x fr
Fig. 4
r. 5
, Fig. 6) gives marks as at b and d, Fig. 3, which are ad-
justed to the saw-kerfs on the side d. Fig. 1, of the miter-box. The
outside measurement (c d, Fig. 6) gives marks as at a and c, Fig. 3,
and these are adjusted to the kerfs on the bottom piece of the box,
as at /, Fig. 1. But in the lower moldings, shown in Fig. 6, the
marks are made in the rabbets, and a little care must be taken to
adjust them to the kerfs on the bottom of the miter-box.
Very large moldings are built up of several elements fastened
to frames,, as in Fig. 7. Fig. 8 shows a joint commonly used in
trimming windows and doors, in which only the molded part is
mitered. This miter is cut with the chisel alone, or with the aid
of a guide, as shown at #, Fig. 9.
A miter-box for ordinary work should be about 18" long, and
made of hard wood, 4" wide and 1" thick. The middle or bot-
tom piece (, Fig. 1) must be planed perfectly flat and with par-
allel and square edges ; the sides (#, , Fig. 1) firmly fastened
with screws. The holes for these screws should be bored as shown
in Fig. 2; the first boring, #, should admit the smooth shaft of
the screw a the second boring, , should be smaller and the full
length of the screw ; the top of the hole, d, is countersunk for the
head of the screw. The saw-cuts are laid out from the face-edge
(d, Fig. 1), and made with the saw which is to be used in the box.
MITER-BOX.
101
Ex. 16.
I b '}\
abed
V.
Fig. 1
Fig.
f
/\/\/\/\/\
Fig. 4
Fig. 5
Fig. 7
Fig. 8
Fig.
Fig.
Fig. 9
102 SIMPLE JOINTS.
Exercise 1 7. Construction of a Stretcher- Joint.
Material. Pine, 2" wide, f " thick, and 12" long.
Work. To make a joint such as that used in frames for stretching
canvas.
' This joint is a combination of miter and half joint, and is laid
out as shown in Fig. 1. The miter is on the face-side, and i"
thick, the tenon also J" thick. For the miter the gauge is set at
J", but for the tenon at -J". To avoid mistakes, the parts to be cut
out should be shaded as in Fig. 2. Saw the tenon and mortise
with a back-saw before sawing the miter.
With an " chisel, or better, an " float (Fig. 5, Plate B), cut the
grooves for wedges as shown in Fig. 4. The groove for the hori-
zontal one is made in the tenon-piece, close up to the tenon, and,
for the vertical one, in the mortise. Make the wedges of hard
wood, with the grain parallel to one side, which must be in contact
with the end wood of the pieces as they are driven in.
The pine piece for this exercise may be sawed out of a f" board.
This board should rest on carpenter's horses ; the rip-saw is used
first, the kerf is made on the pencil-mark, is brought just up to the
cross-mark, and finished with a vertical stroke. In marking, an
allowance of about -J" should be made for planing and finishing.
Fig. 5 shows a form of stretcher- joint sometimes seen in pict-
ure-frames. This joint will stretch the canvas fairly well, but has
not the control over wrinkles as that of Fig. 4 has.
Fig. 6 shows a form of miter- joint in which oblique saw-kerfs
are made for the insertion of thin pieces of hard wood. The joint
has somewhat the character of a dovetail, and should be well
glued.
A miter-joint in thin pieces is usually secured by a veneer,
glued in as in Fig. 7. The pieces are first mitered, then fastened
in the jaws of a hand-screw or bench-vise, and the saw-cut made
for the insertion of the veneer.
Picture-frames are generally made by mitering, gluing, and fast-
ening with small finishing-nails at the outer corners. Occasionally
we see frames with joints like those of Fig. 3, and sometimes with
two tenons and mortises instead of one. Since glue holds better
on side- wood than on end-wood, the latter are much stronger.
STRETCHER-JOINT.
103
Ex. 17.
Fig. 1
Fig. 3
Fig. 4
Fig. 5
\
A
Fig. 6
Fig. 7
104: SIMPLE JOINTS.
Exercise 18. -Uniting with Dowels.
Material Two blocks of wood, about 3" wide, 2" thick, and 4" to 5"
long.
Work. To mark for the positions of the dowels, and join the pieces.
Plane the surfaces of the blocks until perfectly flat, test them
by bringing the surfaces in contact, and note whether they touch
all around. The dowel-joint is a weak one, and, unless the surfaces
are flat and brought in close contact, the dowels will be of no serv-
ice in holding the pieces together.
Select positions for the dowels on the pieces to be united, so that
other joints or cuts will not interfere with them. Fix a point (#,
Fig. 1) on each piece, at corresponding distances from the edges,
for one dowel. With this first point for a center, mark the arcs
#, b with the compasses, and mark on them corresponding points
for the second dowel. From the points #, a describe the arcs e, c ;
and from #, b the arcs d, d, crossing c, c to give the places for the
third dowels. With a f " auger or dowel-bit bore a hole about I"
deep at each point. Saw three dowels from a dowel-rod, about 2"
long, and slightly chamfer their ends with the chisel or rasp. Drive
them into one piece. Measure the depths of the holes in the other
piece, see that the dowels are not too long, and then force the pieces
together.
An ordinary way of getting the marks for the dowels is to place
small shot in position on one piece and press the other piece on
them.
Fig. 2 shows a method of marking with try-square and gauge
for dowels ; Fig. 3, the dowels in position and the pieces ready for
gluing.
When dowel-rods can not be obtained, the dowels may be made
with a dowel-plate. Fig. 4, a, is a dowel-plate, of iron or steel, and
having a number of holes of different sizes in it, through which
rough pieces of wood, #, are forced with the hammer.
Fig. 5 shows the diagonal positions of dowels in uniting thick
pieces. Fig. 6 illustrates the use of dowels in holding the parts of a
core-box in position. Fig. 7 illustrates the use of dowels in uniting
the parts of a hand-rail ; a is a square nut, b a nut (shown enlarged
at c) with projections, so that it may be turned with a punch.
DOWEL-JOINT.
105
Ex. 18.
Fig. 1
Fig. 4
Fig. 5
Fig.
O \0
Fig. 3
Fig. 6
Fig. 7
106 SIMPLE JOINTS.
Exercise 19.-GIuing
Material. Two blocks of wood.
Glue prepared for use.
Work. To face the blocks and unite them with glue.
To prepare glue : Fill the inner vessel of the glue-pot about one
third full of dried glue ; cover with cold water and set aside for
several hours ; after which keep the outer vessel about one half full
of water, and boil with the inner vessel in place. Add enough hot
water to the melted glue until the drip from the brush begins to
form drops.
Plane the surfaces of the blocks perfectly fiat. Test them by
holding together as in Fig. 1, and note if the surfaces come together
at the edges, and particularly at opposite corners, as a and c. Mark
the edges of the block, so that you will know which way they go
together. The surfaces may be roughened with the scratch-plane,
and must not be oily. Adjust the hand-screws a little wider apart
than the thickness of the united blocks.
Heat the blocks and apply the hot glue to both surfaces, then
rub them together, forcing out the excess of glue. Rest the lower
jaw of the hand-screw on the bench, and place the blocks well into
the screws, as shown in Fig. 2 ; tighten the screw a until a slight
pressure is exerted on c, c, Fig. 2 ; then turn the screw b until the
jaws close down at d, d, Fig. 3. Examine carefully to see that the
joint is evenly closed, adjusting the pieces with the hammer, if not
in place. Remove the excess of glue with a wet sponge, or with
the chisel when partially set, after which stand the pieces aside for
several hours.
In gluing together the edges of boards, or the parts of a door,
clamps must be used, as shown in Fig. 4.
Fig. 5 represents a block built up by uniting several pieces ; the
pieces #, # may be doweled as well as glued, the pieces a, a simply
glued. Where glue alone is used, some attention should be paid
to the direction and character of the grain. If possible, the grain
should be parallel and alike in size. A coarse grain, , will not
unite well with a fine grain, 5, Fig. 6, especially if the pieces are
not perfectly seasoned. Fig. 7 illustrates a way in which large
pieces are built up in pattern- work.
GLUING.
107
Jix. 19.
Fig. 1
Fig. 6
Fig. 7
108 SIMPLE JOINTS.
Exercise 2O. Examples of Glued Joints.
Fig. 1 shows the usual way in which furniture is joined that
is, with dowels and glue. While there are many joints in furni-
ture and cabinet-work for which the dowel is especially suited,
there are also many joints in which it is constantly used, but not
at all suited, and where a well-made mortised joint would be much
stronger.
Fig. 2 shows a blind-mortise-joint used in well-made cabi-
net work. The tenon of such a joint should have shoulders
on at least three sides. Glue the mortise and tenon, and not the
shoulder.
Fig. 3 shows the manner of stiffening a joint, by means of
angle-pieces (a, a). These are carefully fitted, glued, and rubbed
until the glue sets.
As another example of angle-pieces we have that shown in
Fig. 4, in which the pieces #, , #, stiffen the joint by acting like
braces between the boards. This practice is very extensive in the
manufacture of furniture, and is also used between the tread and
riser of a stair. Where greater strength is required, and the ex-
posed surfaces of the work are to be kept as free as possible from
marks, as in fastening a table-top to its frame, the pieces may be
screwed together as shown in Fig. 5. The recesses are first cut
with a gouge or one of the recent forms of bits shown in Fig. 6 ;
then the holes are made for the screws, which are usually short
and thick. This new form of bit is guided by a sharp rim, #,
which prepares the way for the cutter, >, and may be started against
the side of a board for an oblique cut, as in Fig. 5, as well as a
straight boring.
It frequently happens that where boards have to be securely
united, screws must be used through a surface which is afterward
to be finished. Fig. 7 shows the boards prepared for the screws ;
the space a is cut very neatly, and afterward filled with a round
piece of wood corresponding in coldr and direction of grain. Fig.
8 shows the pieces screwed together, and the round block, #, glued
in place, after which the surface is planed. The round piece may
be pared with the chisel, or turned in a lathe.
GLUING.
109
fix. 20.
Fig. 5
Fig. 8
Fig. 6
110 COMPOUND JOINTS.
Exercise 21. Laying out a Dovetailed Box.
Material. Dressed pine-board, 14" wide and " thick.
Work. 1. Saw off 17" of the board.
2. Lay out the parts of the box on the board.
3. Saw and plane the pieces to proper size.
The dimensions of the box are : length 8", height 4J", width 5",
thickness of material f ", depth of inside 3i", as in Fig. 1.
It will take 17" in length of a board 14" wide to furnish enough
material. Saw tin's from the board, resting on horses, after mark-
ing with the large pencil and steel square, and allowing for wind-
checks, if at the end.
The 17" piece must now be carefully examined on both sides
for checks, shakes, knots, sap-wood, resin-pockets, and other im-
perfections, and the box laid out so that these faults may come in
the waste wood. If the wood is clear, the pieces may be laid out
as shown in Fig. 2 : , the top ; #, bottom ; c, c, front and back ;
d, d y ends ; e, e, waste wood to make up for any defects that may
occur. Notice that all the pieces are laid out larger than the true
size. Thus the top and bottom are 8" by 5", the front and back
8J" by 3i", and the ends 5" by 3J". This is allowed for working
margins.
If a 9" board is used, the pieces may be obtained with less
waste, as shown in Fig. 3. It would take 22J" length to provide
the material.
In sawing out the pieces where they are short, as in this case,
those of the same kind should be kept together until after planing ;
a with #, c with c, and d with d, Fig. 2. The pieces are first
squared on one edge, which becomes the face-edge ; from this the
opposite edge is gauged and planed.
The top and bottom may be put aside without planing until
the other pieces are glued together.
Plane to 3" wide, carefully measure and mark with the knife
the length, 8", of the front and back pieces, and saw accurately
with the back-saw.
It is sometimes the practice, after sawing the pieces apart, to
adjust the cut ends and face-edges together, and make one knife-
mark across the edges, thus securing equal lengths.
DOVETAILED BOX.
Ill
Ex. 21.
t
i
j
t
i
i
t
'i
T
ra
:::]
T
.1
1
I
P
p
P
_J L_
H C
H C
I] r~
i
1
<
8
T
.-I
T
:FYV/. ^
1
I
j,
1
. ct
6
|
I
*^ c
C
* ^
d
e
,
i
6
.
r
S
4
i
i
*
2?^"
.
nM
OF THE \
XTNIVERSITT
112 COMPOUND JOINTS.
Exercise 22. Laying out and cutting the Dovetails.
Material. Front and back pieces of the dovetailed box.
Work. Marking and cutting the mortises.
The pieces are marked with a sharp pencil on both sides and
edge f-" from the ends, as at a, a, I, I, Fig. 1. Or the pieces are
brought together and points marked on both at the face-edge, by
which the lines #, #, Fig. 1, are squared. It is very necessary to
square the lines from the face-edge, otherwise the joints are likely
to be open on one side or the other.
On these lines mark the places for the dovetails as indicated in
Fig. 2. This may be done in either of two ways : the measure may
be carefully made on a cardboard and transferred from it to each
of the lines with a sharp point ; or the marking-gauge may be set
at each measure and its point used to mark the distance on the
lines.
In Fig. 2, one end is shown full size with the measures ; on the
line from a to b each space has its value ; while from c to d each
point is measured from the face-edge, and any inaccuracy given
to one of the points is not continued along the line. This latter
method is truer, but more difficult. Having marked the points,
the slanting sides of the joints are marked with the knife along
the T-bevel set to a certain angle. This angle, an arbitrary one,
is shown in Fig. 3. On a board with a true edge measure f ", #, c\
from 1) draw the line a b with try-square ; lay oif on this line a
point 3" from #; join this last point and c\ adjust the T-bevel to
this line, a c. The bevel is applied to the ends of the pieces in
marking the lines g, */, and i, t, and the marks across the ends
/, h, completed with the try-square and knife.
In cutting out the mortises, it would be well to shade the parts
to be removed, then saw, observing the rule in regard to the saw-
kerf, as in Fig. 4. The pieces are cut out as directed in Exercise
14. In finishing the cuts, use a small chisel grasped by the right
hand resting on the piece (Fig. 5), so that the hand acts both as a
power and a guide or check to prevent the tool cutting beyond
half the depth. The cut should be as near as possible straight
across, but rather hollow than round, as at d. Fig. 6. In testing
use a small steel square (Fig. 8, Plate A).
DOVETAILED BOX MORTISES.
113
EX. 22.
Fig. 1
114: COMPOUND JOINTS.
Exercise 23. Marking and cutting the Tenons.
Material. The end pieces of the dovetailed box.
Work. 1. Marking and cutting the tenons.
2. Gluing together the sides.
Mark with a sharp pencil f " from the ends all around the end
pieces. Stand the front, back, and end pieces on the bench in the
positions which they will have when the box is completed. Mark
the outer and upper corners of adjoining parts with the same sign
or number.
Fasten the end piece numbered 1 in the vise, with its number
up and out ; place the front piece on the end piece as shown in
Fig. 1, resting the back part on a plane-stock or block of wood.
Adjust the two pieces with the try-square, its handle against the
face- edge of the front piece, and its blade up against the end
piece. Hold the upper piece in this adjusted position, while with
a knife or point you mark along the sides of the mortise on the
top of the end piece. The marks should appear like those of #,
Fig. 2. Mark the other ends in the same way. With try-square
and knife mark from the ends of the lines , Fig. 2, down to the
pencil-mark, as at b and c.
Saw with the back-saw as shown in Fig. 3, keeping the kerf in
the waste wood.
Saw the corner waste pieces, and chisel out the middle ones,
making the surfaces #, #, Fig. 4, as flat as possible. Carefully
fit the corresponding parts, using the chisel for paring where
neccessary.
With a sharp finely set smoothing-plane clean off the inside
surfaces of the pieces. Open two hand-screws ready for use in the
positions shown in Fig. 5.
The pieces are now warmed, the tenons and mortices glued, the
parts pressed together and placed in the hand-screws, which are
tightened sufficiently to close the joints but not bend in the sides.
The gluing process should be performed quickly, and the student
should have a fellow-student assist him.
Clean off as much excess glue as possible, wiping the inside
with a wet sponge or cloth, and set aside the box for several
hours.
DOVETAILED BOX TENONS.
115
Ex. 23.
Fig. 1
A/iA
\ c \
Fig.
Fig. 3
Fig. 4
tl
Fig. 5
116 COMPOUND JOINTS.
Exercise 24. Finishing the Box.
Work. 1. Examine and prepare the smoothing-plane f or finishing,
2. Smooth and plane flat the bottom edge of the sides, and glue on
the bottom piece.
3. Smooth the joints and sides.
Eemove and sharpen the iron of the smoothing-plane. Ex-
amine the sole of the plane with the try-square for flatness. The
fault in wooden planes, particularly if new, is shown in Fig. 1 ;
holding the blade on the sole, you will notice that the wood just
behind the throat is too* high, as at IT This is caused by unequal
shrinkage of the wood when the iron and wedge are in place, and
must be remedied by planing down the sole with a true, sharp, fine-
set fore-plane or smoothing-plane. Unless the sole of the plane
is perfectly flat, no good work can be performed with it.
Eig. 2 represents a block-plane, made of iron, with levers for
adjusting its iron, and a movable toe-piece to regulate the opening
of the throat. The iron, c, has its bevel side up, and is inclined
about 20. There is more friction with an iron plane, but it gives
better results across the grain or on hard wood.
Fasten the box in the vise with the bottom upward ; hold the
plane in the position shown in #, Fig. 3 ; push it slowly along the
side, to cut rather on the inside than outside of the pieces ; turn
the corners as shown by the arrow at e, Fig. 3. The tendency is
to cut too much on the outer edge and on the corners, which must
be carefully avoided. In all finishing the shavings must be very
thin. After planing and testing the bottom for flatness, smooth the
face of the bottom piece, glue it to the box, clean off the excess
glue, and set aside for the glue to harden ; after which, fasten the
box in the vise with an end upward, and clean off the wood. Here
the greatest care must be taken to prevent splitting off pieces in
the manner shown in Fig. 4. In Fig. 5 the broken line shows the
direction which the cutting edge should take, always raising the
plane when nearly across. Plane from the edges toward the mid-
dle, and, if the middle becomes high, confine the strokes to the
high part.
In framed work, as in Fig. 6, plane a and b first, then c and d.
noting the direction of the grain, so as to secure a smooth surface.
DOVETAILED BOX FINISHING.
117
Fig. 3
Fig. 5
Fig. 4
Fig. 6
118 COMPOUND JOINTS.
Exercise 25. Hinging the Top to the Box.
Material. V middle-size wrought-brass butts, f" brass screws to fit.
Work. 1. Prepare the upper edge of the box for the top.
2. Smooth the top piece and square its back edge.
3. Fit and fasten the hinges.
4. Finish the edges of the top piece.
The hinges may have either of the three positions shown in
Figs. 1, 2, and 3. For that of Fig. 3, narrow-size butts should be
used, and the edges of the back piece and top chamfered, as at
a and b.
Hold the hinge on the back piece f " from the corner, and mark
with the knife (#, #, Fig. 4). Eepeat for the other hinge at the
other end. Set the gauge, using the hinge for the distance (c, Fig.
1), and mark the lines (, Fig. 4). Set the gauge, exactly one half
the thickness of the hinge (rf, Fig. 1), and mark the lines (c, Fig.
4). Hold the hinge so that it coincides with the marks #, , and
b, Fig. 4, and extend the lines &, &, up to b with the knife.
Cut down on the line d, Fig. 5, with the knife about the depth
required ; with the chisel cut out the corners, as shown at $, $,
Fig. 5 ; and with the chisel in the position c, Fig. 5, make several
cuts to finish the recess for the hinge. Place the hinge in the re-
cess ; with a brad-awl make holes smaller and not as deep as the
length of the screw, and fasten the hinge with the screws. Eepeat
the cutting and fasten the other hinge. Close the butts, and place
the top in position, resting on them ; mark with the knife points
on the top to correspond with the marks , , Fig. 4. From these
marks as guides repeat the marking and cutting as for the back
piece.
Screw the butts to the top, using one screw for each ; then test
the top by closing it, and remedy any defect by cutting or placing
strips of cardboard under the butts, if cut away too much. Then
put in the other screws. Finish the edges of the top piece, using
the box as a guide. Smooth the face of the top.
The top may be secured with a brass hook and eye. Screw the
eye in the middle of the front edge of the top ; place the hook in
the eye to determine the place for the screw.
Fig. 6 shows a table-hinge, and Fig. 7 a door-hinge.
DOVETAILED BOX HINGING TOP.
119
Ex. 25.
Fig. 4
120 COMPOUND JOINTS.
Exercise 26. Construction of a Drawer.
Material. One piece of ash, to work 4" wide, " thick, and 9^" long.
Two pieces of maple, to work 4" wide, f thick, and 14f " long.
One piece of maple, to work 3f " wide, V thick, and 8" long.
One piece of whitewood, to work 14" wide, \" thick, and 8f " long.
Work. 1. Plane the pieces to the proper dimensions.
2. Cut the dovetails on the front piece.
3. Cut the mortises and grooves for the back piece in the sides.
4. Plow the grooves in the front and sides for the bottom.
5. Fit the back piece.
6. Glue and nail the front sides and back together.
7. Fit and place the bottom in position.
The pieces may be cut from boards, allowance being made
for working, so as to produce a drawer of the dimensions given in
Fig. 1.
In marking for the dovetails in the ash front, use the measures
given in 0, Fig. 2. In cutting out the dovetails, use the back-saw,
as shown in Fig. 4. Chisel out the waste wood, being careful not
to undercut the spaces, which should be frequently tested for
squareness.
The mortises (shown at c and d, Fig. 2) are marked from the
tenons. The grooves for the back are sawed and chiseled out -J"
deep, " wide, and about f" from the ends.
Place the i" iron in the plow (, Fig. 3), adjust it for a fine cut;
set the bridge ft so that the iron is " from it ; set the stop c so
that the iron will plow to a depth of y ; and firjt try the plow on
some waste block before grooving the pieces.
The dovetail-joints are glued. The back piece is nailed with
1J" finishing or wire nails, which should be driven a short way be-
low the surface with a nail-punch.
After the glue has hardened, the bottom is fitted and pushed in
place. The edge of the bottom is marked with the gauge set at a
little less than J", and beveled with the jack-plane to about 1" back
from the edge.
The entire drawer is now finished with the smoothing-plane,
and may be furnished with handle or lock. A lock is fitted
somewhat like a hinge, the key-hole being the guide for its
position.
D It A WER.
121
Ex. 26.
Fig. 1
122 COMPOUND JOINTS.
Exercise 27. Construction of a Blind-Dovetailed Box.
Material. \" dressed mahogany.
Work. To construct a box 9" long, 6" wide, and about 4" high, with
hidden joints.
The box will consist of two portions, the lower or box proper,
and a !" lid. To secure perfect coincidence between lid and box,
these are built together, and, after the box has been glued up, are
separated with the saw. An allowance from " to -f^" must there-
fore be made for the saw-cut and finishing. The joints between
the sides are dovetailed with a mitered edge. The top is grooved
and mitered to the sides, and the bottom tongued, to fit a groove
in the sides.
Fig. 1, #, shows the details, drawn one half size of the end
piece, c a perspective of the same, 1) a perspective of the adjoining
piece. At d, d, d, is shown the separation to form the lid.
Fig. 2 gives the full-size details of the joint for the top and
also for the sides of the lid. The groove and miter are worked
with the plow and plane all around the top.
Fig 3 gives the details, also full size, for the bottom.
The dovetails are f " long, and the mitered edge ". At the
top, bottom, and adjoining the line of separation (d, Fig. 1) of the
sides, the joints are mitered, as shown in b and c, Fig. 1.
In working the joints, cut all the grooves and rabbets first,
then the dovetails, and lastly the mitered surfaces. On the ends
of the sides, saw and chisel a rabbet -J" wide and f" deep ; mark
out the dovetails ; saw both tenons and mortises, as shown in Fig.
4, Example 26 ; chisel out and fit the dovetails and miters.
To make the joint between the lid and box dust-tight, strips
J" thick and f " wide may be glued around the inside of the box,
projecting above its edge about T \", and with mitered joints. The
projecting edge should be round.
Or a tray about 1^" deep may be made of thin material, to rest
on an inside lining about f$" thick and !" high.
In Fig. 4 the mitered edge, is shown rounded, as frequently seen
in cabinet-work. Fig. 5 is a simpler joint than the above. Some-
times the corners are left open to be afterward filled with a narrow
strip of some fancy wood.
BLIND-DOVETAILED BOX.
123
Ex. 27.
Fig. 1
Fig. 2
Fig. 5
Fig.
Fig. 3
124 ELEMENTS OF HOUSE-BUILDING.
Exercise 28. Framing.
In the eight exercises following, the actual sizes will be given,
from which the student will calculate the proportionate measures
for his models.
Fig. 1 represents a portion of the frame of a wooden house.
The sills, a, are 3" by 6", with half -joints at the corners, and scarf
or lap-joints between. The sills should be 2" inside of the founda-
tion-walls (see Fig. 1, Exercise 30). The corner-posts, #, are 4" by
4", and extend all the way to the roof. The roof-plates, d, are also
4" by 4", with half-joints at the corners, or, if the building has a
gable-end, the joint may be like that in Fig. 2, Exercise 10.
At c the corner-post is notched for the strip supporting the joists
of the second story. This strip is I" by 5". The studs, e, are 3"
by 4", 13' long, and set 16" from centers ; they are spliced as shown
in Fig. 2, b} 7 nailing strips on the wide sides. The floor-joists, /*,
should be 3" by 10" for the principal floor, set against the studs, to
which they are securely nailed. At g is the opening for the chim-
ney ; this opening is formed by mortising the trimmer, i, into the
joists, /, 7i, 3' from the studs ; into this trimmer are mortised the
joists, j. The form of mortising this case is that shown in Fig. 3,
or the stronger joint formed by an iron strap, as in Fig. 4. To
avoid waste, the openings for the windows may be calculated from
the size of the glass ; for a sash three lights wide and six high, each
8" by 10", the width will be 2' 11", and the height 6'. The studs
for such openings are framed as at I and Ic. If a small building,
the roof-joists may be 3" by 6", butting against the ridge-pole, m.
If the upper story is an attic, its ceiling will be hung, supported,
as at n, by light material. The floor-joists are stiffened by bridg-
ing, which is shown in Fig. 6. Two chalk-lines, as far apart as
the joists are wide, are made across the tops of the joists where
the bridging is to go, and from these lines the exact length and in-
clination of the saw-cut are obtained. Fig. 7 shows the manner of
fastening beams or joists to brick walls, by using an anchor. Fig.
8 shows the manner of indicating the place for the foundation ;
the lines are fastened to nails driven into stakes. To square the
lines with the tape-measure, lay off 8' on one, and stick a pin
through it at that point ; on the other lay off 6', and stick in a pin ;
the pins should be exactly 10' apart to make the angle square.
itJNIVERSITT)
FRAMING. 125
E.X. 28.
Fig. 1
126 ELEMENTS OF HOUSE-BUILDING.
Exercise 29. Construction of Window and Door
Frames.
Material. The following pieces enter into a window-frame the size
of that mentioned in the previous Exercise :
Two pulley-stiles, a, Figs. 1, 2, and 3, li" thick, 5" wide, 6' I" long.
One head, b, Figs. 2 and 4, li" " 5" " 2' 5f " "
One sill, c, Figs. 1, 2, and 4, li" " 5" " 2' 5f " "
One sub-sill, d, Figs. 1, 2, and 4, 2" " 6i" " 3' 4" "
Two casings, e, Figs. 1 and 2, i" " If" " 5' 6" "
One casmgr, /, Figs. 1 and 2, 1" u If" " 2 f 1" "
Two parting-strips, g, Figs. 1 and 2, " " $" " 5' 6" "
One parting-strip, h, Fig. 2, $" " |" " 2' 5f " "
Two hanging-stiles, i, Fig. 1, li" " 4" " 5' 7" "
One top, j, Fig. 1, li" " 4" " 3' 2" "
The pulley-stiles are grooved 1^" from the face-edge to receive
the parting-strips, and at the top and bottom for the head and sills.
The pulleys are let in with the chisel (d, Fig. 3) ; the pocket
formed by two oblique saw - cuts, the bottom beveled with the
chisel and secured by two small nails, and the top screwed (e, Fig.
3). The head #, sill c, and a portion of the sub-sill (d, Fig. 4), are
of the same length, the sills beveled before nailing in place. The
sub-sill should be grooved on the under side, to receive the siding,
and prevent draughts under the window (d, Fig. 2).
The top parting-strip is the full length of the groove, the side
parting-strips butting against it to hold it in place ; usually none
of these strips are nailed, the paint serving to secure them. If the
hanging-stiles are chamfered, beaded, or molded, the joint with the
top must be like that of Fig. 8, Exercise 16.
Door-frames are much simpler in construction. The diagrams,
Figs. 5 and 6, give the necessary parts for an outside door 7' high
and 2' 10" wide. The jambs, a, are rabbeted and grooved to receive
the head. The sill is nailed to the ends of the jambs. Frames
for inside doors are made of three pieces, the jambs and head.
Window and door-frames are built at the same time or before
the frame is put up, and are placed in position before the siding is
nailed on.
The diagrams in this Exercise are drawn to a scale of /f
tol'.
WINDOW AND DOOR FRAMES. 127
Ex. 29.
n eg
Fig. 3
hi-
Fie 1
d
Fig.
d\
Fig. 2
U
128 ELEMENTS OF HOUSE-BUILDING.
Exercise SO. Inclosing a Building.
A building is inclosed by sheathing, placing window and door
frames in position, putting on building paper, siding and shingling.
If a frame is braced by oblique studs at the corners and possi-
bly in the middle, the sheathing-boards are nailed on horizontally ;
but, if not braced by studs, it should be temporarily secured by
oblique boards nailed on the inside of the studs, and the sheathing
put on at about an angle of 45. In Fig. 1, a represents the foun-
dation, b the sill, c, c the studs, e e the sheathing, which passes
down over the sills, and is firmly nailed throughout.
Sheathing is usually composed of rough hemlock boards, 10"
wide, I" thick, and 13' long.
The water-table, #, Fig. 1, is specially molded to cover the
joint between the foundation and sills, and mitered at the corners.
Next, the window and door frames are fastened in position, with
the hanging-stiles against the sheathing, and the corner-boards, i,
carefully nailed in place. These boards are usually 1^" thick, one
2" wide and the other 3^" wide, and beaded, chamfered, or molded
on the outer edge. The building paper is fastened to the sheath-
ing with tacks, a little in advance of the siding (/, Fig. 1).
The siding is now put on, beginning at the bottom (A, /, Fig.
1). The joints between the boards are marked with try-square and
pencil, and sawed very carefully to keep out wind and rain; the
joints should always come opposite a stud for secure nailing. Two
nails are driven at each stud, one in the middle of the board and
the other just above the lap, as shown at/. Other forms of siding
are shown at k and /, but are not as good as that at h.
Fig. 2 shows the preparation for shingles and the manner ot
putting them on. The first three layers (c, d, e) are put on over-
lapping, as shown at b ; then, 6" from the edge, a chalk-line is
marked on the layer, e, and the next row, /, nailed with this line as
a guide. The projecting part of the roof is finished with dressed
boards, of which the one covering the ends of the rafters (#, Fig.
2) is put on last and should project about " below that covering
the under sides.
Fig. 3 shows a form of gutter used on overhanging roofs, like
that of Fig. 2. Fig. 4 shows the form of the usual tin-lined gutter.
In all work that is to be painted, the nails must be punched.
INCLOSING THE BUILDING.
129
Ex. 30.
Fig. 1
130 ELEMENTS OF HOUSE-BUILDING.
Exercise 31. Laying Floors. Trimming.
Starting at one side, the floor-boards are laid with the tongued
edge out (#, Fig. 1). Joints, #, marked with try-square and pen-
cil, must come over a joist, and be as far removed from other
joints as possible. Each board must be hammered up tight
against the one behind it, using for this purpose a portion of
a board with the groove, as shown at c. The nails are driven
obliquely, near the face of the board on the tongued side, as
shown at d, and with the drawn blow described in Exercise 4.
If a joist is too low, a small chip must be placed between it and
the floor-board before nailing; or if too high, it should be cut
down with an adz. When the floor is complete, a smoothing-
plane should be passed over those places where the boards are not
flush.
Partitions are built by laying on the floor a stud, as at e, Fig. 1,
and holding a corresponding one against the joists above ; between
these place the studs, 16" from centers, using braces wherever pos-
sible. Studs are usually doubled at the doorways.
In trimming, the wood- work must be fitted to irregular plastered
walls or floors by scribing, which is illustrated in Fig. 2. The
base-board, a, is placed on blocks or nails a short distance above
the floor, and the compasses, c, run along near its edge, so as to
mark on it a line, d, corresponding to the uneven floor indicated
by the broken line, #, 1). The board is now sawed with a rip-saw,
using the line d as a guide. By carefully adjusting the ends of the
board to be scribed, the opposite edge may be brought flush with
other portions of the trim.
Fig. 3 gives an example of a window-trim, with the shape
indicated by shaded spaces. The base is returned at a. The
inside sill, d, laps over the sill of the frame ; c is the stop-bead
which completes the groove in the frame for the lower sash;
and the outer member of the molding, #, is scribed to the plastered
wall.
Fig. 4 is an example of a simple wooden mantel. The bottom,
ft, is scribed to the floor, and the shelf, #, to the wall.
Fig. 5 gives a form of base. The board, a, is scribed to the floor,
the molding, #, nailed to the studs, and the molding, c, nailed to the
floor, thereby preventing draughts.
LAYING FLOORS. TRIMMING.
131
Ex. 31.
Fig. 1
Fig. 3
Fig. 5
132 ELEMENTS OF HOUSE-BUILDING.
Exercise 32. Construction of a Sash.
While in former times the smaller size and greater cost of glass
led to uniformity in the construction of the sash, at present there
are few designers who think at all of adapting the window to the
size of the glass ; but, reversing that practice, design the window,
and then cut the glass to fit.
The regular sizes for small panes are 6" X 8", 7" X 9", 8" X 10",
9" X 11", and 10" X 12", from which the sash and window-frame
are easily computed, if the dimensions are laid off on rods. Fig. 1,
#, shows one side of a rod, upon which is laid out the width of a
sash to hold three 8" by 10" lights, and at b is shown the side of
the rod on which is measured the height of the sash.
In Fig. 2 parts of the rod are enlarged to show the details of
the marking, the letters corresponding with those of Fig. 1 ; c
shows the top-rail, 2" wide, with a 1" tenon. From the rabbet,
which is T 3 g-," for the glass in the top-rail, to that of the first bar, is
10 T y. The bar is i" wide. At e is shown the meeting-rail, 1",
and at / the bottom-rail From such a rod, carefully laid out,
many sashes and frames may be marked out.
The rails and stiles are 1J" thick, and molded with a sash-
plane ; in the absence of which a flat chamfer will serve just as
well.
The meeting-rails are made in one piece, as shown in Fig. 3 : a
is the upper stile with its mortise, b the lower stile, c the meeting-
rail of the upper sash, and is not molded, but simply rabbeted for
the glass; ^, the meeting-rail for the lower sash,is molded, and not
rabbeted ; there is a groove about -J" wide and T 3 ^-" deep for receiv-
ing the glass ; the rails are sawed apart, as shown at e. When the
sashes are put in the building, the bevels are planed and fitted
tightly, as shown in Fig. 4.
The vertical bars are mortised through the rails, and have small
mortises, y square, for the insertion of the horizontal bars, which
are made the full width of the sash, but sawed into separate pieces
just before putting together, as shown in Fig. 6.
Excepting those of the short bars, all of the joints are glued,
the mortises wedged, and the dovetails pinned.
Fig. 5 shows the groove and socket for the sash-cord; a is
plowed, and b bored with a long spoon-bit.
SASH.
133
Ex. 32,
Pig. 1
1
Fig. 2
O
Fig. 5
134 ELEMENTS OF HOUSE- BUILDING.
Exercise 33. Construction of a Door.
Doors are either batten or panel.
Batten-doors are made by fastening several tongued and grooved
boards to two or three cross-pieces, with clinch-nails or screws. If
heavy, the doors should be braced with diagonal pieces between the
cross-pieces.
The parts of a panel-door to fit the frame of Fig. 5, Example
29, are shown in Fig. 1 : a is the top-rail, I the lock-rail, c the bot-
tom-rail, d the stile, e the muntin, and / a side view of the stile
showing the mortises.
The joints are mortise and tenon, as indicated by the dotted
lines. After the mortises and tenons are cut, the inner edges of
the pieces are grooved to receive the panels.
Fig. 2 shows an enlarged view of the joint of the top-rail and
stile : a is the tenon, %" thick, ft the relish, c the mortise, e the
groove for the panel, and d the groove enlarged with a chisel to
receive the relish. This may be taken as a sample for all of the
joints. The tenon is at first the full width of the rail, and about
i" longer than the width of the stile.
The parts, of the door, after the panels have been fitted, are
glued, forced together by clamps such as that shown in Fig. 4,
Exercise 19, and wedged.
The panels are plain, according to the section (Fig. 1), or raised,
in which the material is thick, the sides cut down to fit the grooves,
and the middle portion molded around its edge, as in Fig. 3, Ex-
ercise 39 ; or a plain panel molded, as in Fig. 6, Exercise 16.
Fig. 3 shows a portion of the frame of a blind or shutter ; it is
made on the same principle as a door, but smaller ; the joints, in-
stead of being glued and wedged, are white-leaded and pinned,
and in place of panels may have laths, the ends of which have a
projecting pin to fit into holes in the stiles of the frame. These
holes must be bored to the same depth, and the distance between
the ends of the pins of the lath should be a trifle greater than that
between the bottoms of the holes in opposite stiles, or the laths
will drop instead of retaining any position given them.
The rod is fastened to the laths with staples, one set of which
is driven into the rod, and the other into the middle of the inner
edge of the laths.
DOOR.
135
Ex. 33.
fl
Fig. 3
X
Fig. 1
136 ELEMENTS OF HOUSE-BUILDING.
Exercise 34. Construction of Stairs.
For ordinary stairs, the single step should have a riser (#, Fig.
1), between 6i" and 7" high, and a tread, I, from 9" to 11". The
distance between the floors, say 9' 8", is measured in the build-
ing, and is divided to obtain a riser about the proper height, giving
sixteen risers, 7i" high. If there are sixteen treads, and the space
allowed for the stairs is 12', then it will require 9" for each.
After carefully measuring the space for the stairway, the height,
width, and length, the work is laid out, cut, and partly put together
in the workshop. From the height and length the pitch, or angle,
of the stairs is determined.
The details for the step are shown in Fig. 1 : the riser, , is "
thick, grooved near the bottom of its face, and the outer end cut
for a miter, as shown at d. The tread is If" or 1 J" thick, tongued
at b for insertion into the next riser, grooved on the under side
near the front for its own riser, its front edge rounded, mitered
at the end, and two dovetail mortises, c, c, to receive the balusters
cut into the end, as shown at e. The tread and riser, with the
quarter hollow molding, are glued together : sometimes to secure
a better joint, blocks are glued in the angle under the tread, as
shown in Fig. 4, Exercise 20.
Fig. 2 represents the wall-string, #, grooved to receive the steps,
which are forced against the front edges, with wedges glued and
driven at #, #, for both tread and riser. The bottom riser is not
wedged.
Fig. 3 shows the face-string, the upright edges of which are
mitered as at b ; the edge, c, is square, to receive the treads, which
are firmly nailed near the base of the baluster. The face-string is
usually stiffened by a stud or joist, as at e, Fig. 3.
A plain newel is shown in Fig. 4. The section at a shows the
structure through the base and the way in which it is fastened to
the riser, #, and the string, c, the tread being cut away to allow it
to pass down to the floor.
Fig. 5 shows the balusters ; the shorter, , coincides with the
face of the riser, the longer, #, is placed with its face one half way
between the risers.
After the balusters are in position, the molding is completed
on the face-string, as in the upper part of Fig. 4.
STAIRS.
137
Ex. 34.
h 9- -i
or THE
UNIVERSITY
138 ELEMENTS OF HOUSE-BUILDING.
Exercise 35. Laying out and shaping the Hand-rail.
The hand-rail should always have a gradual and graceful change
from one direction to another. In Fig. 1, a b represents a tread,
b d a riser, and a d the pitch, which is the direction of the hand-
rail ; c a point on the axis of the cylinder around which the stairs
turn ; a e a quarter of an ellipse, and represents the bending of the
center of the hand-rail in passing from the inclined to the hori-
zontal position; eg a quadrant, through which the center of the
hand-rail bends before becoming straight again.
This double bending, or wreath, is made in two pieces, joined
at e. We will take for illustration the elliptical one. In Fig. 2,
c represents the axis of the cylinder at the landing, d the face of
the string, e the line of the balusters and center of the hand-rail,
a c the tread, a b the riser, c b the pitch, a b c the angle used in
marking the work ; c g and g i are semi- diameters of the ellipse
through which the hand-rail passes.
With the lengths eg and^i, of Fig. 2, construct the lines a- b
and b c of Fig. 3 ; with i h, of Fig. 2, lay off a f and a li in Fig. 3 ;
with gf, of Fig. 2, lay off ce and c d in Fig. 3, and complete the
elliptical form, / e dh. This form, the mold, is cut out of a thin
board, and used in laying out the work.
Fig. 4 represents a block of wood, thicker than the hand-rail,
and sawed to the form of the mold. With a T-bevel adjusted to
the angle, a b c, of Fig. 2, and applied to the side, d 0, Fig. 3, slide
the mold along the line a #, Fig. 3, until the center of the hand-
rail in this inclined position comes to the center of the end of the
wood, as shown at e g, Fig. 3. A rectangle, inclosing the form of
the rail, is now drawn on the end, eg, and also on the end at/, Fig.
3. The corners of these rectangles are now united by curved lines
drawn along a thin straight-edge pressed to the hollow and round
surfaces, as in Fig. 4.
The block is then cut to these lines, producing a shape as shown
in Fig. 5 in which it must be remembered the side #, and also
that directly opposite, are cylindrical surfaces.
The elements of the molding are now marked from the edges,
and worked with gouge, spoke-shave, and planes specially shaped
for the purpose. In practice a straight portion of the rail is
worked on the same block with the wreath, a h and g Ji\ Fig. 1.
HAND-RAIL,
139
35.
Fig. 5
1 4:0 WO OD- WO EKING.
Exercise 36. Use of the Frame-Saw. Bending Wood.
For small work, a narrow saw, with fine teeth, as at a, #, Fig.
1, is used ; but for ordinary carpenter's scroll-work, a saw like that
shown at c and d, held in a frame, as in Fig 4, Plate B, is em-
ployed. The back of the saw is beveled to turn easily when cut-
ting small circles, and it will cut better if drawn very tight.
To cut out a circular hole in a board, bore first with a center-
bit (, Fig. 2), close up to the line, then start the saw from this hole,
as at b. In cutting narrow angles in scroll-work, the saw is sent
all the way into the corner, as at , Fig. 3, then backed up to cut
as shown at Z>, the piece c is taken out, the saw turned and the
piece cut, as at d. Scroll-work is finished with the chisel, spoke-
shave, or rasp, and smoothed with sand-paper.
There are many ways of bending wood, but the best is to steam
and bend it around a form, as shown in Fig. 4. The form, , is
fastened to a plank or the shop-floor, the piece, #, steamed thor-
oughly, bent in place, and held until dry by blocks nailed against
it, as at d ; or, if several pieces are to receive the same shape, by
pins driven into holes, as at c. Boat-builders use planks with pins
on both sides of the steamed stick in bending the ribs. Pieces to
be bent with steam are usually worked to the desired shape first,
then bent, and when dry are finished with the spoke-shave.
In bending moldings, if steam is not convenient, they may be
sawed, as shown at a, Fig. 5 and Fig. 6. In bending the face-
string of stairs, the method shown in Fig. 7 is employed. The
string has a series of grooves cut parallel with the axis of the
cylinder around which the string is to bend ; it is then wet with
hot water, and bent over a cylinder, or saddle, and the strips, a,
fitted and glued in. When the glue has set, the tops of the strips
may be planed down, and a piece of canvas glued over the bent
portion. Fig. 8 shows another method of arriving at the same re-
sult, in which the string acts as a sort of veneer to -the pieces, a.
Where a bend and twist are to be given, the wood may be made up
of several thin pieces glued together, as in Fig. 9.
In bending wood, compress the fibers on the inside of the curve,
to retain its strength.
The curve of the form (a, Fig. 4) should tie a little quicker, to
allow for a slight spring back of the wood when released.
FRAME-SAW. BENDING WOOD.
141
Ex. 36.
1 42 WO OD- WORKING.
Exercise 37. Construction of a Pattern.
Pattern makers receive drawings of finished iron- work ; from
these drawings they must lay out and construct the wood-work nec-
essary to obtain molds for the castings.
Fig. 1 represents a cast-iron pillow-block, to receive an inch-
shaft ; Fig. 2, the plan of the box without the cap. The surfaces
through, from a to #, Fig. 1, are to be finished.
Fig. 3 represents the pattern for the cap ; it is made of four
pieces, #, J, , d, nailed together.
The measures taken from the drawings, or specifications, are
increased a small amount, about -J" to 1', to allow for shrinkage of
the iron.
Those surfaces which are to be finished should be about T y
thicker than shown in the drawings. In Fig. 3 the wood beyond
the broken line, e, e, shows the allowance made on the pattern for
finishing.
The smoothest surface, containing the least number of blow-
holes, on a casting, is the one which was down ; therefore, the pat-
tern must be built with that in view. In order to facilitate draw-
ing the pattern from the sand, it should have its vertical sides
slightly inclined and very smooth.
The base, Fig. 4, is made of the several pieces, , Z>, c, d, and e, to
secure smoother surfaces than could be obtained by cutting the
pattern from a solid block. The lower part of the piece, d, may
be made separately.
The holes for the bolts are either to be bored in the metal or
cored. In the latter case, a core-print, /, is fastened in the proper
place, and the molder inserts in the mold a core of the proper size.
The box is to have hollows, to receive Babbit metal linings;
these hollows must be cored out ; c, Fig. 3, and e, Fig. 4, are the
core-prints, and Fig. 6, the core-box for the hollows, which are in- %
dicated by broken lines in Figs. 3, 4, and 5. The core-box is
made of five pieces ; the block, a, with the thin pieces, #, nailed to
its ends ; the pieces, c, c, held in position by dowels, are removed,
to free the core. .
The pattern has its nail-holes filled with wax or putty, and is
varnished with shellac dissolved in alcohol. The core-prints are
covered with shellac varnish in which lamp-black has been mixed.
PATTERN FOR CASTING.
143
Ex.37.
Fig. 1
o o
00
Fig.
d_
41., U
Fig.
Fig. 5
Fig. G
144 WO OD- WORKING.
Exercise 38. Shaping a Boat-Model.
Material. A. block of pine, 2" high, If" wide, and 9" long.
Work. To chisel out a half -model, conforming to the lines given in
the plans.
The design, which is that of a common yawl, is divided into
spaces, 1" apart, as shown in Fig. 1 and Fig. %-, ab represents the
water-line, and c d an arbitrary vertical section through the model.
Fig. 3 gives the full size and form of the model for each inch.
-The numbers correspond with those of Figs. 1 and 2.
With tracing-paper transfer these curves to cardboard or thin
veneers ; cut the hollow sides, thus forming templates, which are
to be used in testing the work as it progresses.
Mark all around the block pencil-lines 1" apart. Lay off on
these lines the vertical heights of each of the spaces on the front
and back of the block, and through the points thus obtained draw
curves representing the deck. Chisel down the top to these lines,
and restore the inch lines on the deck surface.
Lay off on the inch lines of the deck the horizontal widths of
each, and, drawing a curve through these, obtain the outer curve
of Fig. 2. On the bottom lay off the widths to obtain the inner
curve, e, Fig. 2. Saw the inclinations of bow and stern, and mark
on the stern end the shape of that part from its template. In
order to hold the block its flat side may be fastened with screws to
another block and the curved side shaped with the chisel and
gouge. When finished, the model may be fastened to a thin hard-
wood piece, as shown in Figs. 1 and 2, making it more ornament-
al; or, for a better effect, the -block may be built up of " pieces
and thin dark veneers, all glued or screwed together.
Besides testing with the templates, the fingers should be passed
lightly over the side, to detect high and irregular places, which
must be pared down.
Finish with fine sand-paper held in the fingers.
In practice the boat-builder constructs his models of thin pieces,
usually -J-" thick, dowelled together, so that they may be easily
taken apart. After shaping the model the pieces are marked,
separated, and the measures obtained from the pieces give him the
details with which he makes the curves on the block (Fig. 4, Exer-
nise 36) for bending the ribs.
BOA T-MODEL. ' 145
Ex. 38.
Fig. 1
Fig. 2
10
146 WOOD-WORKING.
Exercise 39. Veneering.
Material. Block of pine large enough to furnish a cube of 3".
Six pieces of veneers, preferably of different woods and as near
the same thickness as possible.
Work. 1. To plane the cube.
2. Glue veneers on opposite surfaces.
3. Polish the veneers.
One of the most effective ways of finishing wood is to cover it
with a thin layer of some fancy variety. Sometimes the fancy
wood lacks strength, or can not be obtained sufficiently large, or
possibly is too expensive to be used in solid form. Then, to obtain
its effect, a common wood must be used as a base and the fancy
wood as a veneer.
Veneers are of varying thickness, from -fa" up to y. Because
of the greater tendency of hard wood to warp and shrink, struct-
ures like doors are made with an inside of pine and outer coats of
veneers, i" or more in thickness. For ordinary cabinet-work, ve-
neers are about -fa" thick.
Thick veneers, as a, in Fig. 1, are prepared for gluing, as di-
rected in Exercise 19. The surface should always be scratched,
unless the wood holds glue very well.
The cube, Fig. 2, is made true by carefully sawing and planing
the ends first, and from them squaring the sides. The ends and
sides must be perfectly flat, or the veneers will receive no support
at the corners.
The ends are now sized that is, coated with very thin glue, to
cause better adhesion.
The veneers, , Fig. 2, are cut at least " larger all around than
the size of the block, roughened with the iron of the scratch-plane,
taken out of the plane, and held in the hand ; and the opposite
side marked with a pencil to distinguish the surface.
Next, prepare two cauls (A, Fig. 2), %" larger all around than a
face of the cube, about 1" thick, and with one side very flat. These
are kept hot when ready for use.
Cover the scratched surface of two veneers and the ends of the
cube with glue ; place the veneers on the ends, the hot cauls on the
veneers, and apply the hand-screws with great care. The hot cauls
remelt the glue, and therefore this operation need not be hastened
VENEERING.
147
Ex.39.
Fig. 1
Fig. 2
f
Fig. 3
\
r. 5
148 WOOD-WORKING.
as in the case of ordinary gluing. If the veneers are split or have
small holes through which the glue may ooze, place a piece of
thick paper between the cauls and veneers to prevent them from
adhering.
When thoroughly dry, the veneers are trimmed, and the next
pair glued on.
The veneered surfaces are now planed with a block-plane or
very true smoothing-plane, observing the directions in Exercise 24,
then sand-papered, coated with a filling varnish, and set aside to
harden.
If it is desired to put fancy designs in veneers on the cube,
they should first be sawed, and if straight, edged with the plane, in
the position shown in Fig. 7, Exercise 15, and glued to a piece of
strong paper, as in Fig. 4. This is then scratched and glued on in
place of the single piece.
The raised portion of panels is frequently veneered, as shown
in Fig. 3. In this case the veneer should be of the same kind of
wood, as a walnut-root veneer on a walnut panel. Strong contrasts
should be avoided.
In cabinet-work, recesses are sometimes cut to receive veneers;
these may be cut out with the chisel, or, better, with a router, shown
in Fig. 5 ; a is the cutting-edge, projecting the proper depth below
the smooth surface of the tool, adjusted and fastened by the pinch-
screw, 1) ; , c, are projections against which the thumbs are applied
in pushing the tool.
Wooden routers may be made of a thick piece of hard wood,
with a throat for the insertion of a chisel and wedge to secure it.
A very small veneer may be set by gluing and holding a hot
iron against it for a few moments. This is of service in repairing
broken or loose veneers.
Bags of hot sand are sometimes used as cauls in veneering un-
even surfaces.
Polishing.
Fasten the veneered cube in the vise, using cloth between the
jaws and the cube. If it is too low, a hand-screw may be fastened
in the vise and the cube held in the hand-screw. The work will
b3 hastened if the pores of open-grained woods are closed with a
fillsr. This filler, which may be obtained already prepared, or
POLISHING. H9
made by mixing chalk or plaster with turpentine to a paste, is
rubbed in with a cotton cloth, and the cube set aside for a few
hours to become nearly dry, when the excess of the filler is removed
with a sharp steel scraper, and the surface smoothed with fine
sand-paper moved in the direction of the grain.
To polish, take a wad of cotton as large as a walnut, place it
within a clean cotton cloth about 5" square, and saturate with
shellac varnish ; twist the corners of the cloth, hold in the fingers,
and pass a finger moistened with a drop of raw linseed-oil over the
surface of the rubber. Apply the rubber with small circular strokes
until the entire surface has been gone over, and the grain seems
filled. Turn the cube and go over the same process with each of
the other sides. Set the cube aside for a day. Repeat the process,
scraping and sand-papering, if necessary, and again rubbing in var-
nish with a new rubber until the sunken spots are filled. If the rub-
ber begins to stick, it must be slightly oiled, but the least amount
of oil used the better for the polishing. To finish, moisten a clean
cloth with a few drops of alcohol, and rub the surface briskly for
a minute or two. The palm of the hand is frequently used to put
the finishing touch to a polished surface ; this should be done before
the varnish becomes hard.
If furniture varnish is used, the wood is filled, then covered
with several coats of varnish, applied with a flat brush, allowing
each coat to become perfectly hard, and smoothing with fine sand-
paper before the next is put on ; the surface is then polished with
rotten-stone and petroleum, and rubbed perfectly dry with cloths
or cotton- waste.
Painting.
A new brush should stand in linseed-oil ten or twelve hours,
after which it is reaciy for use. When finished the brush should
be thoroughly cleaned with turpentine, and put aside in such a
way that the bristles are not bent, but lie out straight. The bristles
may be wrapped in cloth or paper to prevent them from spreading.
In the absence of turpentine, kerosene or soap and water will clean
the brush nearly as well.
To prepare work for painting, the nails should be punched
that is, driven about -fa" below the surface, and the wood sand-
papered. In sand-papering a soft wood, coarse paper is bent
150 WO OD- WORKING.
around a block, 3" by 5" and 1" thick, with a layer of cork, J"
thick, glued to its face ; the wood is gone over with oblique and
circular strokes to cut down ridges and high places, then a few
strokes with the grain to remove scratches. Next, with a fine pa-
per and the block rub only in the direction of the grain until very
smooth. Surfaces to be varnished or polished should always be
sand-papered with the grain. Before painting pine-woods, the
knots and resin-pockets must be covered with size, or, better, with
thick shellac- varnish.
The first, or priming coat, is^a mixture of white-lead, raw and
boiled linseed-oils ; or, it may contain red-lead and other pigments
and turpentine ; but, in any case, the drying-oil is in greater and
the pigment in less proportion than in ordinary paint. To obtain
an even flow of paint from the brush, hold it nearly perpendicular
to the surface, and allow the ends only of the bristles to touch.
When the priming is dry, the nail-holes, cracks, and defects
generally are puttied, and the work smoothed with sand-paper, if
small.
The work is then painted two or more coats with the regular
mixture of white-lead, oil, and turpentine, lightly sand-papering
the first and second, if very smooth work is desired. The strokes
should be long, even, and with the grain. If the subject is a door,
paint the panels first, then the muntins, next the rails, and lastly
the styles, thus making the brush-marks correspond to the grain of
the wood.
For inside work the paint should contain about one half as
much turpentine as oil, which, in drying, will give a dull surface ;
but for outside work little or no turpentine should be used to se-
cure a good and lasting surface, and, in drying, the surface retains
its luster.
INDEX.
Active cells, 13, 15.
Age of trees, 14, 20.
of wood, 27.
Agaric, 43.
Agaricus mellcus, 43.
Anchored beam, 124.
Angle of cutting edge, 80, 82.
Angle-piece, 108.
right, 58.
square, 58.
Annual ring, 13, 14, 17.
Applewood, 35.
Apron, 57.
Ash, 19, 26, 34, 38.
Attic ceiling, 124.
Auger-bit, 60, 92.
Ax, 60.
Babbit metal, 142.
Back-saw, 60.
Baluster, 136.
Bamboo, 32.
Bar, sash, 132.
Bark, 13, 14, 15.
Base, 130.
Basswood, 36, 38.
Bast, 13, 15, 16.
Batten-door, 134.
Bead, 88.
double, 88.
Bead-plane, 88.
Beech, 33, 38.
Beetle, 46.
boring through metal, 49
grub of, 46.
mouth parts of. 48.
pupa of, 46.
stages of, 46.
Bench-ax, 60.
Bench-dog, 58.
Bench-hook, 58.
Bench-knife, 58.
Bench-screw, 58.
Bench-stop, 58.
Bench-vise, 58.
Bending moldings, 140.
wood, 38, 140.
Binding of saw, 76.
Birch, 32, 38.
Bird's-eye maple, 25.
Bit, auger, 60, 92.
center, 60, 90, 94.
countersinking, 60.
dowel, 104.
reaming, 60.
twist, 60.
Black ironwood, 19.
spruce, 30, 38.
walnut, 19, 33, 38.
Blind, window, 134.
Blind-dovetailed box, 122.
Blind-mortise, 108.
Blind-rod, 134.
Block-plane, 116.
152
INDEX.
Blow-holes, 142.
Board, 22.
sawing a, 22, 110.
Boat-model, 144.
Bolted joint, 94.
Bordered pits, 15, 16.
Borers, timber, 45.
Boring for screws, 100.
of grub, 45.
Boring insects, 21, 45.
Borings, appearance of, 45.
Bottom- rail, 132, 134.
Box, 142.
dovetailed, 110.
Boxwood, 3'<,
Brace, 60.
Branching of stems, 19.
Breaking of wood, 26, 38.
Bridging, 124.
Building, inclosing a, 128.
Building-paper, 128.
Bundles, fibrous, 13, 15, 32.
Buprestid, 49.
Buprestis Vircfinica^ 49.
Burls, 51.
Butternut, 34, 33.
Buttonwood, 34, 38.
Butts, 118.
Cambium, 13, 14, 15, 18.
Cap, 60, 72, 142.
Care of tools, 56.
Carpenter-bee, 50.
Carpenter-moth, 51.
Carpenter's pencil, 58.
Carpenter's horse, 58.
Carpentry, 40.
Carving, 40.
Casing, 126.
Casting, pattern for, 30, 36, 142.
Cauls, 146.
hot sand, 148.
Cedar, 19, 31, 38, 53.
Ceiling, 124.
Cell, contents of, 18.
Cell, pitted, 14, 17.
wood, 14, 15, 16, 17.
Cellulose, 18.
Cell-wall, 16, 18, 25,
Center-bit, 60, 90, 94.
Center-bit stop, 94.
Centimeter, 58.
Chamfer, 66, 90.
Charcoal, 18;
Charring, 53,
Checks, wind, 23.
Cherry, wild, 35, 38.
Chestnut, 19, 33, 38.
Chimney, framing for, 124.
Chisel, 60, 64, 80, 82.
use of, 64, 66.
Clamp, 58, 106.
iron, 58.
Claw-hammer, 60.
Clear lumber, 22.
Clinching nails, 70.
Clytus speciosa, 49.
Coal-tar, 53.
Color of wood, 27.
Compasses, 58.
Compass-saw, 60.
Composition of wood, 18.
Compressibility of wood, 26.
Contents of cell, 18.
Coped moldings, 68.
Core, 142.
Core-box, 68, 104, 142.
Core-print, 142.
Cork, 26.
Corner-boards, 128.
Corner posts, 124.
Countersink, 60.
Creosote, 53.
Cross-cut saw, 78.
filing, 84.
Cross-grain, 20.
Curled maple, 35.
Cut nails, 70.
Cutting trees, 21.
Cypress, 31, 38, 53.
INDEX.
153
Dcedalia, 44.
Dampness, effect of, on wood, 27, 52.
Decay of trees, 20, 42.
of wood, 21, 29, 42, 54.
Decimeter, 58
Defects in milling, 29.
in wood, 28.
Degrees, measuring, 58.
Dematium giganteum, 44.
Density of wood, 25.
Discoloration of wood, 52.
Door, 134.
Door-frame, 126.
Door-hinge, 118.
Double bead, 88.
Double plane-iron, 60.
Dovetail-joint, 69, 96, 110, 112, 120, 122.
Dowel-bit, 104.
Dowel-joint, 104
Dowel-plate, 104.
Drawer, 120.
Draw-knife, 60.
Drawing, 8, 62.
Dressed lumber, 22.
Dry rot, 44.
Drying of wood, 22, 26.
Durability of wood, 27.
Ebony, 37.
Edge, cutting, 80, 82.
Elasticity of wood, 18, 23, 26.
Elements composing wood, 18.
Emery-wheel for sharpening, 82.
Engraving on wood, 25, 35, 37.
Epidermis, 15.
Face of work, 64.
Face measure, 29.
Face-edge, 64.
Face-string, 136.
bending, 140.
Felling timber, 21.
Fibro- vascular bundle, 13, 15, 32.
File, triangular, 84.
Filing saws, 84.
Filler, 148.
Filling the grain, 148.
Fillister, 60.
Finishing, 116, 142.
Float, 60, 102.
Floor, laying a, 130.
Floor-joists, 124.
Foot, running, 29.
square, 29.
Fore-plane, 60.
Foundation of building, 121.
Frame, door, 126.
head of, 126.
molding a, 100.
window, 126.
Frame-saw, 140.
Framing, 124.
Free water in plant, 18.
Fungus, 19, 41.
growth in wood, 42, 44.
nitrogen in, 41.
spores of, 41.
tear, 43, 44.
water in, 44.
Furniture-joints, 108.
varnish, 149.
Gable, 124.
Gauge for grinding, 82.
marking, 58.
Georgia pine, 38.
Glass, 132.
Glue, 106.
Glued joints, 26, 106, 108.
Glue-pot, 58, 106.
Gluing, 106.
a box, 114.
veneers, 146.
Gouge, 60, 68, 80, 82.
Grain, 24, 72.
coarse, 25.
cross, 24.
curled, 25.
even, 25.
filling the, 148.
154:
INDEX.
Grain, fine, 25.
silver, 25.
straight, 24.
Grindstone, 82.
Grooved joints, 88.
Growth of trees, 19.
spring, 14, 16.
summer, 14, 16.
Grub, beetle, 46.
Gunstock, 34.
Gutter, 128.
Half-joint, 86.
modified forms of, 88.
Hammer, 57, 70.
Hand-rail, 104, 138.
Hand-screw, 58, 106.
Hanging-stile, 126.
Hardness, 18, 25, 38.
Head of frame, 126.
Heart- wood, 14, 18.
Hemlock, 28, 30, 38.
Hickory, 19, 26, 34, 38.
Hinge, 118.
Hollow-plane, 60.
Hook and eye, 118.
Hooked teeth of saw, 76.
Horn-bug, 50.
Hung ceiling, 124.
Hymenomycctes, 43.
Immersion of wood in water, 21, 27, 52.
of logs in water, 52.
Inclosing a building, 128.
Insects, parasitic, 19, 45.
Iron, plane, 60.
Jack-plane, 60, 72.
Jambs of door, 126.
Jaws of beetle, 47.
Jersey pine, 30.
Joinery, 40.
Joint, blind-dovetail, 122.
blind-mortise, 94.
bolted, 94.
Joint, dovetail, 69.
dowel, 104.
glued, 106, 114.
grooved, 88.
half, 86, 88.
keyed, 86.
lap, 88.
miter, 98, 102.
mortise, 90.
oblique-dovetail, 88.
of studs, 124.
pinned, 92.
rabbeted, 88.
scarf, 86.
screwed, 108,
shoulder of, 88.
stretcher, 102.
stub-mortise, 94.
water-tight, 88.
wedged, 86.
Jointer, 60.
Kerf, 76.
Kiln-dried wood, 22.
Kinds of wood, 30.
Knarls, 51.
Knife, bench, 58.
marking with, 78.
Knots, 28.
Ladder-form vessels, 17.
Lap-joint, 88.
Larva, 46.
Lath, blind, 134.
Laying floors, 130.
Laying out material, 110.
Level, spirit, 58.
Lignin, 18.
Lignum-vitae, 36, 38.
sap-wood of, 52.
Lips of beetle, 47.
Lock-rail, 134.
Locust 35, 38, 53.
Logs immersed in water, 21, 27, 52.
prepared for shipping, 52.
INDEX.
155
Lucanus dama, 50.
Lumber, 22.
clear, 22.
dressed, 22.
resawed, 22.
measurement for selling, 29.
Machinery, wood-working, 39.
Mahogany, 36, 38.
Mallet, 60, 90.
Mandibles, 47.
muscles of, 47.
Mantel, 130.
Maple, bird's-eye, 35.
curled, 35.
sugar, 35, 38.
Marking, rod for, 132.
with pencil, 66.
Marking-gauge, 58, 74.
Match-planes, 60.
Measurement of lumber, 29
Mechanic, 40.
Medullary rays, 14, 15, 16, 17.
Meeting-rail, 132.
Merulim lacrymans, 43, 44.
Metric rule, 58.
Millimeter, 58.
Milling, 21, 29.
defects in, 29.
Miter, 98.
guide for cutting, 100.
Miter-box, 58, 100.
Miter-joint, 98, 102.
Model of boat, 144.
Modified water, 1 8.
Mold, 138.
Molding, 68, 100.
bending a, 140.
coped, 68.
returned, 68.
Morrell's saw-set, 84.
Mortise, 90.
pinning a, 92.
stub, 94.
Mortise -joint, 90.
Mouth parts of beetle, 48.
Muntin, 134.
Muscles of mandibles, 47.
Mushroom, 41.
Mycelium, 41.
Nail, clinch, 70.
cut, 70.
punching a, 149.
Nailing floors, 130.
Netted vessels, 17.
Newel, 136.
Nitrogen in fungus, 41.
Oak, 20, 21.
group, 13, 15, 17, 32.
red, 33, 38.
white, 19, 26, 32, 38, 53.
Oak-pruner, 46.
Oblique dovetail-joint, 96.
Ogee, 66.
Oil-can, 58.
Oil-slip, 58, 80.
Oil-stone, 58, 80.
Oregon pine, 19.
Paint, 24, 27, 53.
for inside work, 150.
for outside work, 150.
Paint-brush, 149.
Painted clytus, 49.
Painting, 149.
a door, 150.
Palm for walking-sticks, 26.
group, 13, 14, 16, 20, 32.
Palmetto, 19, 32.
Palms, 32.
Panel, 134.
door, 134.
raised, 134.
veneered, 148.
Paper, building, 1 28.
used in veneering, 148.
Parallel perspective, 62.
Parasite, wound, 43, 44.
156
INDEX.
Parasitic insects, 45.
plants, 41.
Paring, 64.
Parting-strips, 126.
Partitions, 130.
Patterns for casting, 30, 36, 142.
Pearwood, 35.
Pencil, 58.
Perspective, 62.
Picture-frames, 102.
Pillow-block, 142.
Pine group, 13, 15, 16, 30.
Jersey, 30.
white, 19, 27, 30, 38.
yellow, 30, 38.
weevil, 49.
Pinning a mortise, 92,
Pitch of stairs, 136.
Pith, 13, 14, 15, 32.
Pits,, bordered, 15, 16.
Pitted vessels, 14, 17.
Plane, 72, 74.
block, 116.
fore, 60.
hollow, 60.
jack, 60, 72.
jointing, 60.
match, 60.
rabbet, 60.
round, 60.
sash, 60, 132.
scratch, 60, 106, 146.
smoothing, 60,74, 116.
Plane iron, 60, 72, 80, 82.
Plane-stock, 60.
Plank, 22.
Plants, parasitic, 41.
Plow, 60, 120.
Plumb-bob, 58.
Pocket in window-frame, 126.
resin, 28, 150.
Polishing, 148.
Polypore, 41, 43.
Polyponts annosm, 43.
dryadeus, 44.
Polyporus, fulvus, 44.
pini, 44.
Hulphurus, 43.
Porosity, 25.
Preservation of wood, 52.
Priming- coat, 150.
Prionus unicolor, 50.
Properties of wood, 24.
Pulley-stile, 126.
Pupa, 46.
Quirk, 68.
Rabbet, 88.
Rabbet-plane. 60.
Rail, bottom, 132, 134.
lock, 134.
meeting, 132.
top, 132, 134.
Raked teeth of saw, 76.
Rattan, 26, 32.
Reamer, 60.
Red cedar, 19, 31, 38.
oak, 33, 38.
Redwood, 19, 31, 38, 53.
Relish, 134.
Resawing lumber, 22, 23.
Resin, 16, 25, 27.
pockets, 28, 150.
Return molding, 08.
Ridge-pole, 124.
Right angle, 58.
Ringed vessels, 17.
Rip-saw, 76.
filing, 84.
use of the, 76, 102.
Riser, 136.
Rod for marking, 132.
blind, 134.
Roebuck beetle, 50.
Roof -plate, 124.
Rosewood, 37.
Rot of wood, 42.
Round-plane, 60.
Router, 148.
INDEX.
157
Rubber, polishing, 149.
Rule, metric, 68.
two-foot, 58.
Running foot, 29.
Rust on tools, 57.
Saddle, 140.
Sandpapering, 149.
Sap-wood, 14, 27, 28.
Sash, 132
Sash-bar, 132.
Sash-cord, 132.
Sash-plane, 60, 132.
Saw, back, 60.
binding of, 76.
compass, 60.
cross-cut, 60.
frame, 60.
mill, 22.
rip, 60.
set of, 76, 78, 84.
tearing action of, 76, 78.
teeth of, 76, 78, 84.
tenon, 60.
Saw-beetle, 50.
Saw-filing, 84.
Sawing-boards, 22, 110.
Scale, three quarters, 58.
Scarf-joint, 86.
Scratch-plane, 60, 106, 146.
Screw-driver, 60.
Scribing, 130.
Scroll-work, 140.
Season for cutting, 21.
Seasoned wood, 18, 22, 52.
Sections in drawing, 62.
Set of saw-teeth, 76, 78, 84.
Shaky wood, 23, 28.
Sharpening tools, 80, 82, 84.
Sheathing, 128.
Shellac varnish, 142.
in painting, 150.
Shingling, 128.
Shot used in marking, 104.
Shoulder of joint, 88.
Shrinkage of cast-iron, 142.
of wood, 23.
Shutter, 134.
Siding, 128.
Sieve-tubes, 17.
Sill, 124, 126.
Size, 146.
of glass, 132.
of lumber, 22.
Sketching, 8.
Smoothing-plane, 60, 74, 116.
Sole of plane, 60, 116.
Spanish-bayonet, L9.
Spiral vessels, 14, 17.
Spirit level, 58.
Spoke-shave, 60.
Spores, fungus, 41.
development of, 41, 42.
Spring-compasses?, 58.
Spring growth, 14, 16.
Spruce, 30, 38.
Square angle, 58, 124.
foot, 29.
Stairs, 136.
pitch of, 136.
Start, 72.
Steel-square, 58.
Stem of plants, 13, 19.
Step, 186.
Stiffness of wood, 26.
Stile, 132, 134.
hanging, 126
pulley, 126.
Stop for center-bit, 94.
Stop-bead. 130.
Strength of wood, 26.
Stretcher-joint, 102.
Strips, parting, 126.
Structure of wood, 13.
Stub-mortise, 94.
Studs, 124.
Sub-sill, 126.
Sugar-maple, 35, 38.
Summer growth, 14, 16.
Sycamore, 34, 38.
158
INDEX.
Table of woods, 38.
Table-hinge, 118.
T-bevel, 58, 98.
Tear fungus, 43, 44.
Tearing action of saws, 76, 78.
Teeth of saws, 76, 78, 84.
Template, 144.
Tenon, 90, 114.
Testing seasoned wood, 23.
Thin membranes, 16, 17.
Through mortise-joint, 90.
Timber, 20, 22.
Timber-borers, 45.
Toadstool, 42.
Tools, 40, 58, 60.
sharpening, 80, 82, 84.
Top of window-frame, 126.
Top-rail, 132, 134.
Toughness of wood, 26.
Tread, 136.
Trees, growth of, 19.
Triangular file, 84.
Trimmer joist, 124.
Trimming, 130.
Try-square, 58, 64.
Tulip-tree, 37, 38.
Turnery, 40.
Turpentine, 16.
Twist-bit, 60.
Value of wood, 24, 27, 29.
Varnish, furniture, 149.
shellac, 142, 150.
Veneer, 25, 146.
Veneering, 146.
Vessels, 17.
Wall-string, 136.
Wany edge, 29.
Warped board, planing, 72.
Warping of wood, 23.
Water in wood, 18, 23.
in fungus, 44.
Water-table, 128.
Water-tight joint, 88.
Weather-beaten, 52.
stain, 52.
Wedge, 60.
Weevil, 49, 52.
Weight of wood, 25, 38.
White cedar, 31, 38.
pine, 19, 27, 30, 38.
oak, 19, 26, 32, 38, 53.
Whitewood, 19, 37, 38.
Wild cherry, 35, 38.
Wind-checks, 23.
Window-frame, 126.
Window-trim, 130.
Wire-edge, 80.
Wood, 13.
Wood and iron, 38.
Wood-cells, 14, 15, 16, 17.
Wood-engraving, 25, 35, 37.
Wood-fibers, 15, 16.
Wood-tar, 53.
Wood-working tools, 39, 58, 60.
Wood-working trades, 39.
Work-bench, 56, 62.
Wound-parasite, 43, 44.
Wreath of hand-rail, 138.
Wrought nails, 70.
Xyleutes robinice, 51.
Xylocarpa Virginica, 50.
Zopherm Mexicanm, 47, 48, 49.
jlTIVERSITT
THE END,
APPLETONS'
STANDARD GEOGRAPHIES.
Comprehensive, Attractive, Up to Date,
THE SERIES:
Applet ons' Elementary Geography.
This book treats the subject objectively, makes knowledge precede
definitions, and presents facts in their logical connections, taking
gradual steps from the known to the unknown. The work is de-
signed to be elementary, not only in name and size, but also in
the style and quality of its matter and development of the subject.
The illustrations have been selected with great care, and the maps
are distinct, unencumbered with names, accurate, and attractive.
Introduction price, 55 cents.
Appletons* Higher Geography.
This volume is not a repetition of the Elementary, either in its mat-
ter or mode of developing the subject. In it the earth is viewed as a
whole, and the great facts of political as depending on the physical
geography are fully explained. Great prominence is given to com-
merce and leading industries as the result of physical conditions,.
The maps challenge comparison in point of correctness, distinctness,
and artistic finish. Special State editions, with large, beautiful maps
and descriptive matter, supplied without additional expense.
Introduction price, $1.25.
Appletons' Physical Geography.
The new Physical Geography stands unrivaled among text-books on
the subject. Its list of authors includes such eminent scientific
specialists as Quackenbos, Newberry, Hitchcock, Stevens, Gannett,
Dall, Merriam, Britton, Lieutenant Stoney, George F. Kunz, and
others, presenting an array of talent never before united in the
making of a single text-book.
Introduction price, $1.60.
Specimen copies, for examination, will be sent, post-paid, to teachers and school-
officzrs, on receipt of the introduction prices.
Liberal terms made to schools for introduction and exchange.
AMERICAN BOOK COMPANY, Publishers,
NEW YORK, .: CINCINNATI, .: CHICAGO.
PRACTICAL AND PROGRESSIVE.
APPLETONS'
STANDARD COPY-BOOKS.
THE SERIES:
LEAD-PENCIL TRACING, three numbers, 1, 2,
and 3. (Writing taught three grades lower than in
any other books.)
NEW TRACING COURSE, four numbers, 1, 2, 3,
and 4.
SHORT COURSE (without Tracing), seven numbers,
1, 2, 3, 4, 5, 6, and 7.
GRAMMAR COURSE, ten numbers, 1, 2, 3, 4, 4,
5, and 6, and Exercise-Books A, B, and C.
BUSINESS COURSE, 1, 2, and 3.
The Lead-Pencil, Short, and Grammar Courses arc independent of each
other, and each is complete in itself. But progressive grading is main-
tained throughout, so that the Short Course is an advance upon the Lead-
Pencil Course, and the Grammar upon the Short Course.
Exercise-Books A, B, and C, make Movement practicable for public schools.
Graded Exercise-Books A (primary drill-book), B, and C (grammar grades,
high schools, and business colleges), contain a series of exercises calcu-
lated to train the muscles of the arm and hand, producing the true writing
movement. Practical drills upon all possible combinations of letters.
They are designed to supplement the regular writing-book.
Business Course, 1, 2, and 3, contains all kinds of business and social forms,
blank checks, receipts, etc. Business forms and letters contained in these
books are the joint product of some of the leading educators and business
men of this country. Designed for the upper grades, high schools, and
business colleges, these books are a valuable addition to our popular sys-
tem, and a long step in the right direction.
Teachers will find it to their interest to examine these books, and they are accord-
ingly invited to correspond icith the publishers.
AMERICAN BOOK COMPANY, Publishers,
NEW YORK, I CINCINNATI, ; CHICAGO.
^-3
f ^ OF THE
{UNIVERSITY
\^C
FOURTEEN DAY USE
RETURN TO DESK FROM WHICH BORROWED
This book is due on the last date stamped below, or
on the date to which renewed.
Renewed books are subject to immediate recall.
RECTP L.
SEP 2 1
General Library
University of California
Berkeley
LD 21-100m-2,'55
(B139s22)476
I L/
UNIVERSITY OF CALIFORNIA LIBRARY