IB^^K ^ TF eie IRLF ' REESE LIBRARY UNIVERSITY OF CALIFORNIA. Deceived MAR ...1.5 1893 , /^ . 'Otr, Class No. PRACTICAL TREATISE RAILWAY CURVES LOCATION, FOR YOUNG ENGINEERS ^OBTAINING A FULL DESCRIPTION OP THE INSTRUMENTS, THE MANNER OP ADJUSTING THEM, AN* tHE METHODS OF PROCEEDING IN THE FIELD, NEW AND SIMPLE FORMULA FOR <M- POUND AND REVER8B CURVING, RULES FOR CALCULATING EXCAVATION A>T> EMBANKMENT, STAKING OUT WORK, &C., TOGETHER WITH TABLES OF NATURAL SINES AND TANGENTS, RADII, CHORDS, ORDINATES, AMD OTHERS OF GENERAL USE IN THE PROFESSION. BY WILLIAM F. SHUNK, UNIVERSITY CIVIL ENGINEER. PHILADELPHIA: HENRY CAREY BAIRD & CO., INDUSTRIAL PUBLISHERS, BOOKSELLERS AND IMPORTERS, 810 WALNUT STREET. Entered, according to the Act of Congress, in the year 1854, by E. H. BUfLER ft CO., In the Clerk's Office of the District Court of the United States, in and for the Extern District of Pennsylvania. PREFACE. THE located line for railway is a series of curves and straight lines, or tangents. These are first plotted to a large scale from data gathered on preliminary survey. It is therefore desirable that all explorations should be made with extreme care, as upon their correctness depend, in no small degree, the labour and time required in location. It were better for accuracy that all angles should be made and recorded from the plates, and the needle used only as a test, or check. Good chaining is indispensable. Great attention, too, should be given to the proper use of the elope instrument. By these means a working map can be constructed in the office upon which the proposed location, grade lines, &c., may be traced with tolerable resemblance to fact. Still many errors attach to both data and map, and these, together with the unexpected obstacles encoun- tered in the field, require ready knowledge of the means for overcoming them. It has been my design to present this knowledge to my younger fellows in the profession. I have endeavoured to (3) IV PREFACE. do it lucidly and concisely without supposing unusual cases without prolix proof or complex figuring. The problems given are of frequent occurrence, and the tables appended will be found useful and correct. To STRICKLAND KNEASS, a gentleman whose professional abilities are well known, I return thanks for valuable assistance. I would likewise make my acknowledgments, for useful suggestions, to CHARLES DELISLE, an engineer of high mathematical attainment. I am aware that much more might have been said much more suggested on the subject of location ; but a field book being the object, the compact plan precluded any extensive essay. If the work with brevity combines clearness, and is comprehensive withal, it is the work intended. W. F. SHUNK. CONTENTS. 1'A.GK PREFACE ........ 3 Explanations ........ 7 ARTICLE I. Of the Instruments. The Level . . . It Its adjustment ...... 13 The Rod .. .... 14 Levelling . . . . . 15 The Transit ....... 17 The Vernier . . . . . . 18 Adjustment of Transit . . . . .19 II. Preliminary propositions .... 20 III. To avoid an obstacle in tangent . . . .21 IV. Triangulation ... 22 V. Of calculating tangents to any degree of curvature . 24 VI. To trace a curve with transit and chain ... 25 VII.- To triangulate on a curve .... 2? VIII. To change the origin of any curve, so that it shall termi- nate in a tangent, parallel to a given tangent . .31 IX. To change a P. C. C. with similar object. First. When ihe second curve has the smaller radius . . . 52 X. Second. When the last curve has the larger radius . 34 Synopsis of formulae for compound curving . . 35 XL Having located a compound curve terminating in any tan- gent, to find the P. C. C. at which to commence another curve of given radius which shall terminate in the same tangent. First. When the latter curves have the smaller radii ....... 3C XII. Second. When the latter curves have the larger radii . 38 1* (5) VI CONTENTS. PA.GJ* ART. XIII. To change a P. R. C. so that the second curve shall .ermi- nate in a tangent parallel to a given tangent . . 39 XIV. How to proceed when the P. C. is inaccessible . 41 XV. To avoid obstacles in the line of curve . . 43 XVI. To calculate reverse curves . . 45 XVII. Having givon a located curve, terminating in any given tangent, to find where a curve of different radius will ter- minate in a parallel tangent . . . 46 XVIII. Having a curve located and terminating in a given tangent, to find the P. C. C. whereat to begin another curve of given radius which shall terminate in a parallel tangent 48 XIX. To locate a Y . . . . . 49 XX. To run a tangent to two curves . . . .61 XXL Ofordinates 52 XXII. To find the radius corresponding to any chord and deflexion angle. Deflexion and tangential distances . . 54 XXIII. Of excavation and embankment . . . .56 XXIV. Side staking ... 60 TABLES. Natural Sines and Tangents ...... f>3 Radii ..... . 89 Long Chords ... . 90 Ordinates ..... 91 Squares and Square Roots . 94 Slopes and Distances for Topography . . , 108 EXPLANATIONS ALL railway curves are parts of circles. They are designated generally from their character as simple, com- pound, or reverse ; and specifically from the central angle subtended by a chord of 100 feet at the circumference, this being the length of the chain in common use. It is found that the circle described with radius of 5730 feet has a circumference of 36,000 feet. Since there are 360 in the circle, the central angle subtended by a chord of 100 feet is, in this case, equal to 1, and the curve is named a one degree curve. So likewise in a circle with radius of 2865 feet, half of 5730, the central angle cor- responding to the chord 100 is 2; the curve is then called a two degree curve. The beginning of a curve is called the point of curva- ture, or simply the P. C., and its termination the point of tangent, marked P. T. A compound curve is composed of two curves of different radii, turning in the same direction, and having a common tangent at their point of meeting. This point is called the point of compound curvature, or P. C. C. (7) RAILWAY CURVES AND LOCATION. A reverse curve is composed of two curves turning in different directions, and having a common tangent at their point of meeting, which latter is named the point of re- versed curvature, or the P. II. C. All sines and tangents made use of in this work are from the table at the end of the volume. For calculating curves it is not necessary to use more than four decimals. A. Bench is a shoulder hewn with the axe on the but- tressed base of a tree, and so shaped at the top as to afford footing to the rod. The tree is blazed and the elevation of the bench marked on it with red chalk. Benches serve as permanent reference points to the level. They are placed, where it is possible, about one thousand feet apart. Points. The operation termed pointing is the fact of putting a peg firmly into the ground, and of driving in its top a tack, or making thereon an indentation whose place is indicated by cross keel marks, directly in the line of col- limation of the transit. Thus true lines are traced on the ground, and angles measured accurately. When the transit is set over a point it is so posited that the plumb hangs immediately above the tack head. If the head plate of the tripod be much inclined the plumb should be examined after levelling the instrument, as that operation disturbs it to some extent. Stations. The line of a survey is marked on the ground at regular intervals, by stakes two feet in length, blazed, and numbered from up in arithmetical progression. These stakes are named stations. On exploration they are commonly placed two hundred, and on location, one hundred feet apart. It is customary, when locating, to drive pegs even with the surface along the true line, and to place the stations a couple of feet to the right, numbers facing in, to show their EXPLANATIONS. position. The pegs are less liable to disturbance from frost, animals, &c. In locating for construction stakes are driven on sharp curves at intervals of 50, sometimes 25 feet. The Chain in general use for railway surveys is made of soft iron. It is 100 feet long, and divided into 100 links, each one foot in length. At every tenth link is attached a brass drop, toothed so as to indicate its distance from the end. It presents the advantages of durability, accuracy, and expedition. A PRACTICAL TREATISE ON RAILWAY CURVES AND LOCATION. ARTICLE I. OF THE INSTRUMENTS. THE LEVEL. THE level is an instrument used in ascertaining the undulations of the ground along the line of a survey, and of measuring these ir- regularities accurately in reference to an assumed base called the datum. It consists mainly of the telescope k i, the spirit- level and its encasement 6, the Y's c c, the rectan- gular bar o d, the axis e, the plates and levelling screws / m, and the tripod g. In the tube of the telescope at /*, and at right angles to its axis, is placed a flat ring, called the diaphragm. To this ring the cross-hairs are attached two delicate spider lines stretched over it vertically and horizontally, and inter- secting at the centre. It isjield jjrposition by four UNIVERSITY 12 RAILWAY CURVES AND LOCATION. slightly movable screws, which pierce the tube in the direction of the "cross-hairs." i is a milled head for adjusting the focus of the object glass, and k an inserted tube, containing several lenses, which may be moved out or in so as to make the spider-lines distinctly visible. A straight line looked along from the eye glass at k through the intersection of the cross-hairs is the line of sight, technically named the line of collimation. The immediate supports of the telescope are called the Y's, from their resemblance to that letter. If a small arch were sprung between the two legs of the Y it would give a good idea of the clasping pieces which hold the telescope in place. They are jointed to one leg and secured to the other by pins which may be withdrawn and the pieces turned back in order to remove the telescope, or change it end for end. The Y's are attached at right angles to the bar d, which, again, is connected firmly at right angles with the hollow axis e. This latter fits closely over and is revolvable hori- zontally around a solid axis s, which, passing through the plate/, is secured to the head of the tripod by means of a loose ball-and-socket joint. The plate /has four levelling screws inserted in it ; with these the instrument may be brought to a horizontal position even when the lower plate is considerably inclined. One of the Y's is movable for a short space up or down by means of the capstan-head screw o. The spirit-level is likewise movable both vertically and laterally by means of screws at either end. n is a clamp screw, and p a tangent-screw for slightly turning the telescope in a horizontal direction. THE LEVEL 13 To adjust the Level. First. To make the line of collimation coincide with the of the telescope. Set the instrument firmly, and direct the telescope toward some distant, distinct object, such as a nail-head. ^ Clamp fast, and with tangent-screw fix the line of collima- tion upon the object accurately. Revolve the telescope half way round in the Y's, i. e. until the bubble is above it, and if the horizontal spider-line still covers the point, it requires no adjustment. If it does not, reduce the error one-half by means of the diaphragm screws, and complete the reduction with the capstan-head screw. Revolve the telescope round to its first position, and if the horizontal line and point do not then coincide, repeat the operation until they do, in any position of the telescope. In similar wise the vertical hair may be adjusted, when the line of collimation should cover the point through an entire revo- lution of the telescope. Great care should be taken in this as well as in all other adjustments of cross-hairs, that the opposite screw of the diaphragm be loosened before tightening its fellow, or injury to the instrument must result. Second. To make the axis of the spirit-level parallel to the line of collimation. With levelling screws bring the bubble to the middle of its tube, reverse the telescope in its Y's, and if the bubble does not then stand in the middle correct one-half the deviation with the screw at the left end of the bubble-case, and the other half with the capstan-head screw. Again reverse the telescope in its Y's, and, if necessary, repeat the operation. Now revolve the telescope a short distance in its Y's, so as to bring the spirit-level to one side of its lowest position. If the bubble deviates from the middle, correct the error 2 14 RAILWAY CURVES AND LOCATION. with the lateral screws at the right end of the bubble-case, and examine the previous adjustment before lifting the instrument. Third. To bring the line of collimation parallel to the bar. Turn the telescope until it stands directly over two of the levelling screws, and with them bring the bubble to the middle of the tube. Then revolve the telescope horizontally until it stands over the same screws, changed end for end. If the bubble does not still stand in the middle of the tube, correct one-half the deviation with the capstan-head, and one-half with the levelling screws. Place the telescope over the other levelling screws and proceed in a similar manner, and continue the corrections until the bubble stands without varying during an entire revolution of the instrument upon its axis. This completes the adjustment of the level. THE ROD. The rod used in levelling consists of a staff and a target, which latter is so attached to the staff as to be movable along it from end to end. The rod is commonly seven feet long, but, being composed of two rectangular pieces fitted together by means of a sliding groove, it can be extended to nearly double that length. It is graduated to feet and tenths of a foot. The target is a circle of wood or iron, usually four-tenths in diameter, and divided into quadrantal sectors by a horizontal and vertical line which intersect at its centre. The sectors are painted alternately red and white, so that their dividing lines are visible at a consider- able distance. On the back of the target, where it meets the graduated side of the rod, is fixed a chamfered brass edging, whereon the space of one-tenth is graven from the centre down. This is subdivided into ten spaces marking LEVELLING. 15 hundredths, and these latter divided into halves, so that the height of the middle of the target above the base of the rod may be accurately read to within -005 of a foot. There is a similar graduated tenth on the standing part of the rod, to be used for high sights when the sliding groove comes into play. Both target and rod are provided with clamp screws. LEVELLING. The operation technically called levelling is performed thus : Suppose a the starting point, or zero, in reference to which all the inequalities of the surface along the line of survey are measured, as at the points <?, ,/. The hori- zontal line af is called the datum line. This is arbitrarily assumed. It may be considered, for example, at any dis tance above the point #, and the irregularities of the ground measured from an imaginary level line in ether ; but for convenience of figuring, and other politic reasons, it is cus- tomary in seaport towns to take high tide as datum. In* land, the summer surface of the nearest stream, or, when commencing on a ridge, the highest neighbouring knoll is issumed. Well ! suppose a to be zero, and the instrument, for nstance, set and levelled at b. Stand the rod at , and nilide the target up until its cross-lines are covered by the cross-hairs in the telescope ; i. e., until the line of collima- tion coincides with the centre of the target. The leveller directs the movements of the target by raising or lowering 16 RAILWAY CURVES AND LOCATION. his hand. A circular motion of the hand signifies " make fast." The bubble should always be examined before the rod is taken down, and the latter should be read twice, or, if convenient, shown to the leveller, in order to guard against mistake. If in this case it reads 8 feet, the height of the instrument is then 8 feet above a. To find the ele- vation of c above a, take the rod thither and lower tho target until coincidence results as before. If the rod reads 2 feet, of course c is 8 2 = 6 feet above a. If it is necessary to lift the instrument here, a small peg is driven at c before sighting to that point, to insure firm footing for the rod. Sighting back from the new position, d, the rod reads 5 feet ; then 5 -j- t>, the elevation of c above a, = 11, the height of the telescope at d above a. If at e the reading is 6, the elevation of that point is 11 6 = 5, and if at / the reading is 8 the elevation of that point in reference to a is 11 8 = 3, marked -{- 3, The rule, therefore, in levelling is, at each new stand of the instrument, to add the reading of the rod sighted back at, to the discovered elevation of the point at which th<* rod stands, for the height of the instrument ; and to sub tract from this height the reading of the rod at any points observed from the new position in order to find the eleva- tion of those points. The above is noted in the field-bock as follows: Station. Rod, Height of Instrument. Total, or Elevation. a 8-00 8-00 00 C 2-00 + 6.00 5-00 11-00 e 6-00 -f- 5-00 f 8-00 + 3-00 i . . " OF THE TRANSIT. 17 The advantages of this method of levelling over the old system of backsights and foresights are, that it affords readier facilities for testing the correctness of the work, and it may be carried on more rapidly. By the old plan each sight at the rod was linked with that which preceded it, and added one more to a continuous calculation in which a single error affected all the following work. Here, how- ever, if haste is required, the calculation of the interme- diate sights or "cuttings" may be omitted entirely while in the field, the reading of the rod only being set down ; the "totals" may be worked from peg to peg, and the lia- bilities to mistake thus decreased about eighty per cent. OF THE TRANSIT. The transit is an instrument for measuring horizontal angles. It consists of the tele- scope a c, the Y's d, the compass- box, &c., e g, and the axis k. The telescope is furnished like that of the level, and the instru- ment is similarly fitted to its tri- pod. The telescope revolves in a vertical circle, and is attached to the Y's by means of a trans- verse axis whose extremities turn in smooth journals at the head of the Y's. The body of the instrument at/ contains a magnetic needle, with its usual circular surrounding, graduated to degrees and quarter degrees. The flooring of this box has, on one side, an opening with chamfered edge upon which the vernier is engraved. This latter, together with the telescope, Y's, and all the upper part of the instrument, is made to revolve by means of the screw h, upon a solid plate beneath, which is likewise graduated from to 180 each way. Thus angles may be measured 2* 18 RAILWAY CURVES AND LOCATION 7 . accurately without using the needle at all. It need be regarded merely as a check, g is a clamp screw for secur- ing the plates together, and i a screw for fastening the needle so as to prevent its vibrations while the instrument is being carried from place to place. A plumb is suspended from the axis of the transit, by means of which its centre may be placed over a point on the ground. THE VERNIER. The vernier, in the transit, is a graduated index which serves to subdivide the divisions of the graduated arc on the lower plate. There are many varieties of the vernier, but familiarity with one renders easy the acquaintance with all, since the same general principle is pervading. The figure represents a common form. Let a b be part of any graduated arc, and c d the vernier. It will be observed that the degrees on the limb are divided into spaces of 15' each. Now if the vernier be made equal in length to fourteen of those spaces, and be further divided into fifteen equal parts, it is evident that each of these parts will contain 14'. Then, if of the vernier coincides with any division of the limb, the first line of the vernier to the left will be just one minute behind the first line of the limb to the left ; the second vernier line two minutes behind the second limb line, and so on ; so that if the vernier be moved to the left over the space of 15' on the limb, the lines from to 15 of the vernier would coincide successively with lines TO ADJUST THE TRANSIT 1 J of the limb, and thus any angle may be read accurately to minutes. The vernier in the figure reads 48' to the left. A vernier graduated decimally is much more convenient on railway locations than those with the common graduation to minutes. This is principally on account of its adapted- ness to running in curves when the 100 feet chain is used. The work can be done with more ease and rapidity. One objection to it is that the tables in general use are calcu- lated for degrees and minutes. TO ADJUST THE TRANSIT. Place the instrument firmly at a, level it, clamp all fast, and with tangent-screw set the cross-hairs on the point b, at any convenient distance. Reverse the telescope on its axis, and fix another point in the opposite direction, ..... of as nearly as possible equidistant from a. Now loose the lower clamp and revolve the entire upper part of the instrument half way round on its axis. Clamp fast, and having brought the cross-hairs again to coincide with 5, reverse the telescope. If the sight strikes as before, the instrument is in adjustment. If not, place another point, d, where it does strike, and suppose c to be the point pre- viously fixed : the point e, midway between d and c, is then in the straight line. With the adjusting pin carefully place the vertical cross-hair upon /, distant from d one- quarter of the space d c with tangent-screw set it on e. and reverse the telescope. If the points have been cor- rectly placed, and the hair properly moved, the sight will strike b, and the adjustment is complete. 20 RAILWAY CURVES AND LOCATION. After finishing this adjustment, the telescope may still net revolve truly in the meridian. This inaccuracy there is no method of removing in the field. It should be sent tc an instrument-maker for repairs. ARTICLE II. PRELIMINARY PROPOSITIONS. 1. In any circle the angle o cf at the centre, subtended by the chord o /, is double the angle o af, at any part of the circumference on the same side of the chord. 2 The angle fbe, formed by any chord / 6, with a, tangent at either extremity, is called a tangential angle. AVOIDING OBSTACLES. 21 and is equal to half the angle / c b at the centre, or is equal to the angle fa b at the circumference. . 3. The exterior angle dbf, formed at the circumference by the two equal chords a 5, b /, is called a deflexion angle, and is equal to the central angle b of, or double the tan- gential angle e bf. df is called the deflexion distance, and e /the tangential distance. 4. The exterior angle p o m of two unequal chords, is equal to the sum of their tangential angles, or half the sum of their central angles. 5. The exterior angle i k o, formed by tangents, is equal to the central angle b c o, subtended by the chord which connects their points of contact with the curve. ARTICLE III. TO AVOID AN OBSTACLE IN THE LINE OF TANGENT. A GLANCE at the figure will show, that having deflected to <?, and placed the instrument at that point, the angle he d must be made equal to twice d be, and the distance c d equal to the distance b c. Still another deflection at d, equal to the original angle turned, is necessary in order to sight again along the tangent. Should the obstruction be continuous a parallel line may be run, as from c to /, by deflecting at c an angle 22 RAILWAY CURVES AND LOCATION. equal to that at 5, and at /, repeating the deflection in order to strike tangent. If the angle dbc exceeds 4, and the distance be is greater than 200 feet, or even with an angle of 2|, should the distance be greater than 300 feet, be will differ sensibly in length from b k, and a calculation of the latter becomes necessary. To effect this, multiply the natural cosine of the angle k b c by b c. This result doubled will give b k d, the length proper along tangent. Thus : Suppose k b c, the angle deflected, to have been 5, and the distance b c 340 feet. Then -9962, the natural cosine of 5, multiplied by 340, gives 338*7 for the dis- tance b k. Double this makes bkd = 677-4, and shows a difference of 2-6 feet between b d and bed. ARTICLE IV. SHOULD THE OBSTRUCTION LIE ON THE OPPOSITE BANK AND it is desirable on any account not to run the line from d y corresponding to a d, set the instrument at a, in tangent, and deflect clear of the obstacle to d. Point at d. deflect to e, and point also there marking the angles c a d, d a e. Chain the base de, and placing the transit at e, measure the angle dea. Data are thus obtained sufficient for the calcula- tion of the line d a. The object now is to find the point c and the angle dca. The angle a d e subtracted from 180 will supply the AVOIDING OBSTACLES. 23 angle c d a, so that in the smaller triangle we have obtained two angles and their included side. The dis- tance cd, and angle dca readily follow. The transit standing at e, c is placed, of course, in the prolongation of the base d e, and the distance c d is carefully set off with the rod. Moving the instrument to c, and turning the angle ecf = 180 dca, we are again in tangent. Example. Let cad= 6, dae = 35, dea = 42, and the base d e = 200 feet. Then in the triangle dea we have Nat. sine d a e = (-5736) : nat. sine d e a = (-6691) : : d e = (200) : d , f)691 v 200 Wherefore, d a = &>-- = 233-3 feet. *O ( o\) Again, the angle cda = 77. The angle d a c being 6,acd is consequently = 97, and in the small triangle we have, Nat. sin. a c d (-9925) : nat. sin. c a d = (1045):: da = (233-3): c d. 1045 X 233-3 Therefore c d = - 79925 = 24-564 feet, and d cf 180 97 = 83. NOTE. A common and convenient plan for triangulat- ing a creek is as per figure. Set the in- strument at b, fix a point d on the oppo- site shore, and making d b c a right angle, place c at any convenient distance. Now move to <?, sight to c?, and making d c a a right angle also, fix a, in the same line with b and d. a, c, and d are points in the circumference of a circle whose dia- meter is a d, a b : b c : : b c : b d, and therefore Id = ~r 24 RAILWAY CURVES AND LOCATION. ARTICLE V. HAVING GIVEN THE ANGLE edb, FORMED BY THE INTERSEC- TION OF TWO STRAIGHT LINES, IT IS REQUIRED TO FIND THE POINT a OR 6, AT WHICH TO COMMENCE A CURVE OF <HVEN RADIUS. Draw the bisecting line d c. Then the angle d c i = half the angle acb or its equal e d b ; and in the tri- angle d c a, the angle d a c being a right angle, we have Rad. of 1 : Nat. Tang. do a : Rad. ca : ad. There- fore ad = Nat. Tang, d c a X Rad. e a. Example 1. Let e d b = 48 and a c = 1460 feet. Here half the angle edb or acb = 24, the Nat. Tang, of which is *4452 ; and multiplying by Rad. 1460, we have 650 feet for the length of a d or d bj the tangents. 2. If a die given and radius required, ad 650 Kad. = c^ T A A /--> 1460. Nat. Tang, a c d -4452 The following rule? are approximate, and sufficiently correct for all purposes of location. To find the degree of curvature of a b divide 5730 by the radius in feet ; and to find the length of the curve in feet divide the angle a c b (after reducing minutes to hun- dredths) by the degree of curvature the chord in each case being 100 feet in length. TO TRACE A CURVE. 25 ARTICLE VI. TO TRACE A CURVE WITH TRANSIT AND CHAIN. t THE legree of curvature and the angle to be turned are known. If the latter is expressed in degrees and minutes, reduce the minutes to hundredths, since the 100 feet chain is used, and divide the whole angle by the degree of cur- vature. The quotient will be the length of the curve in feet, and the P. T. is at once ascertained. Let m a be the tangent, and a the P. C. Place the transit at a, index reading 0, and direct the sight along the tangent m a e. The first deflection will be half the central angle subtended by the chord used, and all the stakes put in from a will be fixed by similar tangential deflections. (Prelim. Prop. 1.) 3 26 RAILWAY CURVES AND LOCATION. When the point d is reached, the angle dab, shown on the index, will* be half the angle dbe, or its equal a c d, at the centre. Move the instrument to d, sight back to a, and turn to double the index angle. The telescope is now directed along the tangent b d g, and the angle dbe = acd = dab-{-adb 1 reads on the index. Note this angle in the column of tangents oppo- site station d. Continue the curve from this new posi- tion, precisely as was done at a, and set the point h. Move to h, see that the vernier has not been disturbed, and sight back to d. The index now shows the angle (d b e -j- h d </), and the object is to turn the angle d hf, i. o. repeat the angle fd A, as was done before at d, and, at the same time, have the whole angle (d b e -f- hfy) indicated on the plate. To effect this, merely add this angle fhd to the present reading. It will be found sim- pler, in practice, to double the entire angle thus far turned, and subtract from the product the last tangent, viz. d b e. The vernier, turned to this resultant angle, will put the telescope in tangent line to h. And so on. ^Example. u At sta. 24 -f- 50 commence a 4 curve to the left for 35 12'." Suppose this a required duty. First, reducing minutes to hundredths, we have 35 -20, which, divided by 4, gives 880 feet for the length of the curve. Adding 880 to 24 -j- 50 it is at once seen that sta. 33 + 30 is the P. T Let a be the P. C., = 24 -f 50. Now the deflexion angle being 4, the tangential angle is 2, with a chord of 100 feet. With a chord of 50 feet, therefore, the tan- gential angle is 1, and this deflexion from tangent m a e fixes station 25. A deflexion from this latter point of 2, the chord being 100 feet, fixes station 26. And so on. When you have fixed the point d, = sta. 28, the index reads 7. .Move up to station 28, sight back to the P. C., and turn the index to 14. This throws you on tangent TO TRACE A CURVE. 27 Proceed as before, with the 2 deflexions, to sta. 31, = h. Move up, and sight back to sta. 28. The index now reada 20. Multiplying by 2, and subtracting the last tangent, we have the reading of the tangent at h = 26 : we have turned 26 of the curve. Continue as before. After putting in sta. 33, to find the deflexion which shall fix the P. T., 33 + 30, say, as 100 feet : 30 feet : : 2 : the re- quired deflexion, = 36'. We may here remark the great convenience of an instrument graduated to hundredth of a degree instead of sixtieths. In the present example it would be seen immediately that the tangential angle for 100 feet being 2, for 1 foot it would be 2 hundredth* of a degree, and for 30 feet it would be 60 hundredths. Well ! when the P. T., = 33 -f 30, is fixed, the index reads 30 36'. Move up, see that the vernier has not been disturbed, and sight back to sta. 31. Now twice the index reading, minus the last tangent, = 61 12' 26, = 35 12', the present tangent, which is the final tangent, which finishes the curve. The advantage of this manner of running a curve is that the instrument shows at a glance the work done, and there- fore errors may be detected with greater facility. By comparing at the P. T. the total index angle with the distance run, the work is tested at once. 28 RAILWAY CURVES AND LOCATION. The above is recorded in the field book as follows 6 03 . J3 O o> -M o 3 S oi2 S g o S ctt co r- I <M <M CO CO O O O O O O O O O O O O O CO In running compound and reversed curves the operation is quite as simple as the foregoing. A point is fixed at the P. C. C., or P. R. 0., and turning into tangent at that point, the second curve is traced from this tangent, without regard to what precedes. In reverse curving, it is a good plan to adjust the index in such manner at the P. R. C., that when we turn into tangent it will read 0. TO TRIANGULATE ON A CURVE. 29 This saves troublesome work, and it is advisable moreover to show in the field-book the contained angle of each curve, as well as the test of the two tangents with the magnetic course. ARTICLE VII. TO TRIANGULATE ON A CURVE. SET the transit at a, and, as usual, sight back, and turn into tangent. Estimate the distance to the farther bank do it liberally and make a deflexion around the curve, corresponding to your estimated distance. Fix a point b in this line. Measure any convenient angle, b a c, and sut the point c. Move to 6, measure the base b <?, the angle a b c y and, before lifting the instrument calculate the line b a. If the angle turned from tangent to d exceeds 4, and the distance is greater than 200 feet, the chord a d must also be calculated, as per example, and the difference between this and b a will be the distance b d to the point d, in the curve, which can be fixed from b. 3* 30 RAILWAY CURVES AND LOCAUON- Should b fall between d and a the operation is analogous. Example. Let a be a point in a 6 curve. Having set the transit, and turned into tangent, the distance to the farther verge is estimated 400 feet. The tangential angle for 100 feet is 3, and to fix d, 400 feet distant, is conse- quently 12. Deflect this angle, fix a point in line, and complete the triangulation, as previously illustrated in Art. IV., p. 22. Suppose a b found equal to 472 feet. Now the tangential angle to d = half the central angle, = fea, = 12; and to find the length of the chord a d y we have, in the triangle efa, Rad. : Sin. a ef : : ea : af, that is Rad. of 1 : Nat. Sin. 12 : : 9554, the Rad. of the 6 curve : half the chord required. Wherefore a d = twice the Nat. Sin. 12 X 955-4 = -2079 X 2 X 955-4 == 397-25 feet. Subtracting this from 472, we have the distance, 74*75 feet, back to the point in the curve. Move the instrument to d, set the index at 12, sight back to a, and turning to 24, the telescope is in tangent. A deflexion of 3 will fix the next station. NOTE. In this case, if preferred, a third proportional might be formed with the chord of crossing, as shown in the note to Art. IV. TO CHANGE THE ORIGIN OF A CURVE. 31 ARTICLE VIII. TO CHANGE THE ORIGIN OF ANY CURVE, SO THAT IT SHALL TERMINATE IN A TANGENT PARALLEL TO A GIVEN TAN- GENT. LET df/be the located curve, terminating in a tangent/^, and the nature of the ground requires that it should ter- minate in the tangent e i, parallel to fk. At /, the tele- scope being directed along the tangent fk, turn to the right an angle equal to the central angle d bf, previously turned to the left on the curve. This will direct the tele- scope along ef y parallel to d I. Measure <?/, and go back- on the tangent, d I, a distance, c d, equal to it. The curve, retraced from c and consuming the same angle, will termi nate tangentially in e i. An example in this case is not necessary. 82 RAILWAY CURVES AND LOCATION. ARTICLE IX. TO CHANGE A P. C. C. SO THAT THE SECOND CURVE SHALL TERMINATE IN A TANGENT PARALLEL TO A GIVEN TAN- GENT. LET a b d be the compound curve, located and terminat- ing in the tangent d h. Continue the larger curve to e, and from e, with radius e I = k 6, describe the curve ?/, terminating tangentially in / g, parallel to d h. From c, the centre of the larger curve, let fall upon fg the perpen- dicular eg, and fill up the figure as above. Call the radii respectively R and r, the angle b k d, or its equal, k e m, x, and the angle e If, or its equal, lcn,y. Let the dis- tance if, or h g, be named D. Now the line c g is made up of the lines c m -f- m h -{- kg, i. e., eg = cosin. x ( R r) -f r -f D. c g is also made up of the lines c n + ng, i. e., eg = cosin. y (R r) + r. Therefore cosin. x (R r ) _|_ r -f_ D = cosin. y (R r) + r, and reducing, TO CHANGE A ? P. C. C. 33 cosin. x (R r) 4- D cosm. y == T^ ; so that the distance z/, or Jig, measured rectangularly between the two tangents, being added to the nat. cosin. x 9 will give the nat. cosin. of the angle e If, to be turned on the smaller curve. The angle y, subtracted from the angle x, gives of course the angle b c e, to be advanced on the larger curve ; or, divid- ing this angle by the degree of curvature of a b, we find the distance from b to e the P. C. C. proper. If ef be the second curve located, and the tangent to be touched lies within, it is evident that we must retreat upon the large curve, and, by subtracting D from the cosine of the angle y, we obtain the cosine of the angle x. ^Example. Suppose a b a 3 curve located, and com- pounding, at b, into a 6 curve, which latter is continued to the right through an angle of 42. At the P. T. we discover that the proper tangent is 64 feet to the left. We must throw our curve out, then we must advance on the 3 curve a certain distance. How to find this distance : The radius of a 3 curve = 1910 ; the radius of a 6 curve = 955-4; R r, therefore, = 954-6. The nat. cosin. 42 = -7431. Now, by the formula just obtained, we cos. x (R r) + D (-7431 X 954-6) 4- 64 - i '_ - , -j \ r\r * rt ' ~~~- (R r) 9o4-6 8101 = nat. cosin. 35 53'. Subtracting this from 42*, we have 6 07', the angle to be advanced on the 8 curve ; or, reducing minutes to hundredths, and dividing by 3, we find 204 feet, the distance from b to the correct P. C. G 34 RAILWAY CURVES AND LOCATION. ARTICLE X. SHOULD THE SECOND CURVE BE ONE OF LONGER RADIUS THAN THE FIRST, OUR illustration takes simpler form, and the application of D varies vice versa. See figure, analogous to that of the previous problem. Here of, eg are equal and parallel radii; fh a perpen- dicular connecting them. Draw its fellow, c n. Then, nf = c h, and, consequently, h g = o n. Again, letting k m fall, perpendicular to eg, we have c m = n I, and o I = c m -j- o n', i. e., cosin. y (R r) = cosin. x (R r) -f-D- We observe that, with a curve of this nature, in order tc throw the line farther out, it is necessary to go back, toward b ; or, having located to y, if the object tangent lie within, we must advance toward e. Example. Suppose a b a 5 curve, b the P. C. C., and bg a 2 curve. Setting the instrument at g, the P. T., and turning into tangent, we find that we are a distance Jig, = 53 feet, too far to the left. The first question is, what angle have we turned on the second curve. Let it TO CHANGE A P. C. 0. 35 be 28. Now we know, that, in order to strike farther to the right, we must advance on the 5 curve. Consequently, D must be added to the cosine of 28, to give us the cosine of the proper angle for the 2 curve ; and the difference between 28 and this newly found angle will be the angle we are to advance on the 5 curve. Thus : the rad. of a 5 curve = 1146 feet, that of a 2 curve = 2865 feet and their difference = 1719 feet. The nat. cos. of 28' = 8829. Then =. 9137, = nat. cos. 23 58*. This, subtracted from 28, leaves 4 02', 80 feet, from b to the correct P. C. C. Synopsis of the preceding formulce. Call D the distance between tangents as before, a the angle of the second curve located, and b the angle of the same curve to be substituted for it. FIRST, when the second curve has the smaller radius Tangent falling within the point, cosine b = cos, a (R -r) J-J) (R-rj" Tangent falling without the point, cosine b = cos. a (R r) D SECOND, when the second curve has the larger radius Tangent falling within the point, cosine b = cos, a (R r) P (R r ) Tangent falling without the point, cosine b = cos. a (R r) + D Very little attention will familiarize these formulae, and render the field practice easy. 36 RAILWAY CURVES AND LOCATION. ARTICLE XL HAVING LOCATED THE COMPOUND CURVE a b d, TERMINAT- ING IN THE TANGENT df, IT IS REQUIRED TO FIND THE P. C. C. 5, AT WHICH TO COMMENCE ANOTHER CURVE OF GIVEN RADIUS, WHICH SHALL ALSO TERMINATE TAN- GENTIALLY IN df. PLOT the curves as per figure. From c let fall c g, per- pendicular to the tangent, df. From k and , the lesser centres, drop Jc m, i Z, perpendicular to c g. Call the great radius R, the smaller radius r, and the intended radius of the second curve /. Likewise name h k d, the angle of the small curve located, x, and b i e the angle to be found for the proposed curve, y. Now, the tangent df, and the curve a b, lying unstirred, the line c g is an unvarying dis- tance, and it is made up of the lines c m -f m g, i. e., c g = (R r) cosin. x + r. It also consists of the lines c I COMPOUND CURVES 37 -f- lg, i. e., eg = (R /) cosin. y -}- /, and, reducing, (R r) cosin. x -f- r / nat. cosin. y = ^ ,r . This, there fore, is the formula by means of which we can ascertain the point #, as follows : ^Example. Imagine a 2 curve, a A, compounding into a 6 curve, h d, which terminates at c?, in the tangent df. The tangent lies well ; the curve a h likewise ; but it is desired to throw the line to the left, on better ground, between d and A, by means of an intercalary 4 curve. We wish, then, to know the distance, h b, back to the new P. C. C. The radius of a 2 curve = 2865 feet, of a 6 curve =r 955-4 feet, and their difference (R r) = 1909-6. The radius of a 4 curve = 1433, and the difference (R /) is. therefore, 1432 feet. Let h k d, the angle turned on the 6 curve, be 41, the nat. cos. of which = -7547. T , (-7547 X 1909-6) + 9554 1433 Then, * 1432~ ~ = ' ^ nat. cosin. 47 43'. Subtracting 41, we have 6 43', the angle h c b. Reducing minutes to hundredths, and divid- ing by 2, we find 336 feet to bo the distance from h to 6. A 4 curve of 47 43', traced from this latter point, will terminate in the tangent ej. RAILWAY CURVES AND LOCATION. ARTICLE XII. IF THE LATTER CURVES HAVE LARGER RADII THAN THE THE solution retains its shape and simplicity. Draw the figure as above, and, for the sake of uniformity, name the radii as before. The curve a 6, and tangent df, being constant, the distance m g, or d w, is here constant Call it A. Now A, in the first place, is equal to d i n i, i. e., = r (r R) cosin. x\ and, in the second place, it is equal to g c m <?, = / (/ R) cosin. y ; where fore r (r R) cosin. x = / (/ R) cosin. ^, and (r R) cosin. x -}- / r consequently cosin. y = - > ' , , __ -p \ Example. Suppose a b a T c curve, compounding, at , into a 5 curve, b d, which latter subtends an angle of 38, and terminates in the tangent df. We wish to substitute a terminal 2 curve, Jig, and to know the position, A, of the new P. C C. The radius of a 7 curve = 819 feet = R. r and r', TO CHANGE A P. R. C. 39 the radii respectively of 5 and 2 curves, are equal to 1146, and 2865 feet, r R, therefore, = 327, and / R = 2046 feet. The nat. cosin. of 38 = -788. mi k ^ r i ('788 X 327) + 2865 1146 Then, by the formula, * on/ia - ~ == 9661, = the nat. cosin. of 14 57', the angle to be turned on the 2 curve. Subtracting this from 38, we have 23 03', the angle to be continued on the 7 curve. Reducing minutes to hundredths, and dividing by the degree of curva- ture, 7, we find 329 feet, the distance from b to the new P. C. C. h. ARTICLE XIII. TO CHANGE A P. R. C., SO THAT THE SECOND CURVE SHALL TERMINATE IN A TANGENT PARALLEL TO A GIVEN TAN- GENT. LET a d I be the reverse curve, located and terminating in the tangent I h. Call the radius c J, R, and the radius b e, r. Suppose ig the given tangent. At a distance 40 RAILWAY CURVES AND LOCATION. from it equal to i e, the radius of the second curve, draw the parallel line, op. With c as a centre, and radius of, = R -j- r, describe the integral curve, /e, cutting op in e. d then, is the centre of the curve adjusted. Application. Place the transit at the P. T., Z, and turn into a tan- gent, Im, parallel to d n, the common tangent of the two curves at d. Unless some wide mistake has been made, the distance Z&, measured along this line to ig, the tan- gent proper, will be about equal to the distance ef, and we shall have the proportion, cf :fe : : c d : db, i. e., R + r : ef : : R : d b, which gives -^5 , as a simple formula for finding the distance back from d to 5, the cor- rect P. R. C. This rule, though sufficiently true for most cases, is not mathematically justifiable. It will be seen that ef, or its equal i I, the distance we wish to measure, is a curving distance, part of the circumference of a -circle concentric with a b. Its radius is (R -f- r), therefore its 5730* degree of curvature = ,^ ., or, more simply, equals the product of the degrees of curvature of the curves com- posing the reverse, divided by their sum. To be strictly accurate, then, set the instrument at Z, turn into tangent I m as before, and trace the curve i Z, until it strikes the tangent ig. The angle which il subtends, being divided by the degree of curvature of a 6, will give the distance, d 6, to the P. R. C. proper. The curve retraced from 6, will terminate tangentially in ig, and its angle, bei, will be equal to df I deb. Example. Let a d I be a reverse curve, composed of a 3 curve, a d, and a 6 curve, d 1. Let the angle df I be equal to 52, and suppose the distance If to have been WHEN P. C. IS INACCESSIBLE. 41 found 34 feet. Being part of a 2 curve, it therefore sub- tends a central angle of 41'. This corresponds to a dis- tance of 23 feet, to be gone back on the 3 curve, and 52-00 41' = 51 19', the angle to be turned from h on the 6 curve, in order to strike the tangent ig. ARTICLE XIV. HOW TO PROCEED WHEN THE P. C. IS INACCESSIBLE. IN the figure, drawn to illustrate this case, let c be the point of curvature, c a the tangent, and eke the curve. Now the angle d c e, included between the tangent and any chord, as c e, fixing the point e, is known. Make c b along tangent, equal to c e, and connect be. If a circle were now described from c as a centre, with radius c e or c b, d, e, and 5, would be points injiajurcjimference, and 42 RAILWAY CURVES AND LOCATION. the angle dbe at once proven equal to half the angle dot. With proof precisely similar, d c e = half of d g e, and, consequently, d b e is equal to one-fourth of the central angle subtended by the chord c e. Example. Suppose c to be the inaccessible point of curvature of a 6 curve, eke. It is concluded to run to the third station, e. First we must calculate the length of the chord c e. The angle d c e = 9, and from Art. VII. we have Rad. of 1 : 9554 : : nat. sin. 9 = -1564 : ^, whereby e G is shown equal to 298-8. Place the transit then at 6, 298-8 feet distant from the P. C., and deflect to the left an angle of 4 30', equal to half the angle dee. This is in line to e, and b e must likewise be calculated as follows : In the triangle b c h we have Rad. of 1 : nat. cosin. 4 30' = -9969 : : b c = 298-8 : b h b e , whereby b e is shown equal to 595-7 feet. Arriving at e, the index reads 4 30'. Sight back to 6, turn to 18, and the telescope will be in tangent. Suppose, however, that having reached /, 100 feet from e, this latter point is also found inaccessible. We find k a different point in the curve, thus: The angle feg = 18 4 30' = 13 30', and the tangential angle g e k = 3. Consequently the angle fek = 10 30', and, drawing the bisecting line e i, we have, in the triangle efi, Rad. of 1 : nat. sin. 5 15' = -0915 : : ef = 100 : fi = 9-159 feet. Therefore fk = 18-318 feet, and the angle efk = 90 5 15' = 84 45'. At / deflect this angle to the right, and measure the distance fk carefully *vith the rod. At k, sighting back to /, and turning the equal angle fke, the telescope will be directed to e, and the curve may be continued. If it is inconvenient to run the line b e, the point e may TO AVOID OBSTACLES IN THE LINE OF CURVE. 43 be reached thus : Fix the P. C. Find the tangential distance d e, corresponding to the angle dee. Carefully with the rod lay off b I, equal to it, at right angles to b e Set the transit at Z, and, in line with c, put in e. The distance b I should not exceed 10 or 12 feet. NOTE. The foregoing illustrations will apply when the P. T. is likewise inaccessible. ARTICLE XV. TO AVOID OBSTACLES IN THE LINE 0"F CURVE. LET b Jc h be the curve. We can either follow the tan- gents h d, db, or trace a parallel curve, g a, within the first ; which tracing is effected thus : Set the instrument at A, the P. C., and offset any distance Jig, at right angles to the tangent h d. It will be observed that as the dis- tance h g increases, the distance g a decreases, whilst the angle subtended by g a remains equal to that subtended 44 RAILWAY CURVES AND LOCATION. by h b ; i. e., our deflexions on the offset curve stand unchanged, but the corresponding chords, g /, f.e, &c., are less than their equivalents, h i 9 i k, &c., along h b. To find their length, h i, i k, &c., being equal to 100 feet, we have the proportion, c h : eg :: hi: x; i. e., R, : rad. h g : : 100 feet : x, where x symbols the un- known chord. Now set the transit at g, turn into tangent parallel to h d, and with the shortened chord, fix fea. Rectangularly to the tangents at these points, and distant h g, will be i, k, b of the curve proper. Example. Let b h be a 4 curve, and the offset distance 85 feet. The radius then is 1433, and 1433 : 1348 : : 100 : 94, the short chord. To follow the tangents, suppose the angle b c h = 42. Then by Art. V. we find the tangent h d = 550 feet, which distance we duly measure, and, at d, deflecting 42, lay oft an equal distance to b, the point of tangency. FIND THE RADII OF REVERSE CURVE. 45 ARTICLE XVI. HAVING GIVEN THE ANGLES d b k, mkl, AND THE DISTANCE b &, IT IS REQUIRED TO FIND THE RADII C 6, ef OF THE EASIEST REVERSE CURVE WHICH SHALL UNITE a d, ~k THE angle d b e is equal to the angle a c e, half of which is b c e. So likewise ef k is equal to half of I km. Then, [nat. tang, b c e -f nat. tang, efk] : nat. tang, b c e : : b k : b e, and b k b e = e k. Wherefore rad. c e be ek = v and rad. ef = 7 ?-. nat. tang, bee nat. tang, kfe Example. Suppose the angle d b e = 54 30', the angle lkg = W 20', and the distance Ik = 832 feet. Therefore the angle b c e = 27 15', the nat. tang, of which is -5150, and the angle efk = 16 40', the nat. tang, of which is -2994. The sum of the tangents = -8144. Then, to find b e, we have As -8144 : -5150 : : 832 : 526, and subtracting this from b k, we have e k = 306 feet. 526 306 Again, the radius c e = ^TH, and the radius ej = .2994? = 1022 feet. 46 RAILWAY CURVES AND LOCATION. ARTICLE XVII. HAVING GIVEN THE CURVE /(/, LOCATED AND TERMINATING IN THE TANGENT g m, IT IS REQUIRED TO FIND WHERE A CURVE OF DIFFERENT RADIUS WILL TERMINATE IN A TANGENT PARALLEL TO g m. be the curve located, and fh the curve proposed, commencing at the common point /, and terminating in the parallel tangents, gm,hl. We wish to find the length und direction of the line g h, connecting the points of tan- Call the radii respectively R and r, and the central angle, fdg orfch, x. Now g k = d e, = sine of x, c d being radius ; i. e., = nat. sin. a; X (R r). Again, the % angle kg h = fh b = -, and g k = cosin. kg h, g h being SY* radius, i. e., g k = nat. cos. - X g h, and, consequently. nat. cos. - X g h = nat. sin. x X (R r), wherefore (R r) nat. sin. x gh= . nat. cos. <r It will be observed that the angle leg h, included between TERMINATION OP A CURVE. 47 the tangent to a curve at any point g, and the line g h connecting </ with an equivalent point h in any other curve fh commencing at the same P. C.,/, and turning in the same direction, is invariably equal to half the common central angle, fdg orfch. Example. Let fg be a 7 curve, subtending a central angle, fdg, of 44 26'. Having arrived at g, the P. T., and turned into tangent, g m, it is desired to fix the P. T., A, of a 4 curve which shall likewise subtend an angle of 44 26'. Here the radii are, respectively, 819 and 1433 feet, and E, r = 614. The nat. sine of 44 26' = -700, and the nat. cosine of half this angle, viz. : 22 13' = 614 y *7 9258. Then, by the formula, g h = --- = 464-2. Deflecting, therefore, to the left, an angle of 22 13', and laying off the distance 464-2 feet, we arrive at the point h. Move to A, sight back to g, and a deflexion of 22 13' to the right will direct the telescope along the tangent h L If h were the P. T. located, and g the point required, the same angle and distance would apply. 48 RAILWAY CURVES AND LOCATION. ARTICLE XVIII. HAVING THE CURVE nfg LOCATED, AND TERMINATING IN THE TANGENT g W, IT IS REQUIRED TO FIND THE POINT /, WHEREAT TO COMPOUND WITH ANOTHER CURVE 01 GIVEN RADIUS, WHICH SHALL TERMINATE IN i I, PARAL- LEL TO g m. [See previous figure.] NAME the radii and angle as before. Measure the dis- tance g i, between the tangents, and call it D. Then c h is equal to c e -j- e k -f- g i or k h ; i. e., R = (R r) R_( r _D) cosm. x -f- r -\- D, or, transposing, cosm. x = j^ \ Thus discovering the angle f d g^ divide it by the curvature nfg, and we have the distance, <//, to the P. C. C./. The second curve, traced from this point, will terminate tan- gentially in h I. ^Example. Let the curvatures equal those of the last problem, and suppose the distance g i to be 175-6 feet. Then, by the formula, cosin. x = gTT~~ ~ == '7143 = cosin. 44 26'. Reducing minutes to hundredths, and dividing by 7, we have 635 feet, the distance back to the P. C. C. COMMENCEMENT OF A CLRVE 49 ARTICLE XIX. HAVING GIVEN A TANGENT a b, AND A CURVE b k, LOCATED, IT IS REQUIRED TO FIND THE POINT d, OR /, AT WHICH TO COMMENCE A CURVE OF GIVEN RADIUS, WHICH SHALL BE TANGENT TO BOTH. DRAW the radius b c, and call it R. Name the radius of the other curve r. Make b e equal to r, and, through e. draw the line e I, parallel to the tangent a b. From c as a centre, with eg, = (R -|- r), as radius, sweep the arc of a circle ; which arc will intersect # I at g, and, from the equidistances, prove g the centre of the other curve touch- ing a b y b k, tangentially, at the points d and /. Now, to find the point / for purposes of location, we must know the angle b cf. Call it x. In the triangle eg e, we have eg : c e : : radius : cosin. g c e, or b cf\ i, e*, (R -f r) : (R r) : : 1 : nat. cosin #, wherefore nat. cosin. x = TO" r { So that, having divided the difference of ^rt -f- r) the radii by their sum, we shall find opposite to the quo- tient, in the table of nat. cosines, the angle b cf required. This angle, divided by the degree of curvature of b k, will 5 60 RAILWAY CURVES AND LOCATION give the distance from b to the P. R. C., /; and 180 x will equal the angle f g d, to be turned on the other curve. Another plan, which may be preferred, for finding the point d, is as follows : Make c g the diameter of a semicircle, ctg. This semi- circle is tangent to b d at t, and tf, perpendicular to eg, is a common tangent to the curves b k, df. We have then, / X /^ = tf\ i. e., R X r = tang. 2 1. Multiplying the radii together, and extracting the square root of the product, we find the distance tf, or its equal t b, which, doubled, is the distance b d, from b to the point of curvature, d. Example. Suppose k b a 3 curve, tangent to the line a b. We wish to know the point /, at which to begin a 5 curve, which shall be tangent to both. Here R = 1910, and r = 1146, wherefore (R + r) = 3056, (R r) = 764, and = = - , = -25, = nat. cosh, 75 31'. Reducing minutes to hundredths, and dividing by 3, we have 2517 feet, the distance from b to the P. R. C.,/. If the point d be required, we have ^/1910 X 1146 = 1478-9. Doubling this result we find 2957'8 feet, the dis- tance from b to the P. C., d. If the radii are equal, of course the distance b d is equal to their sum, and the angle # is a right angle. TO RUN A TANGENT TO TWO CURVES. 51 ARTICLE XX. TO RUN A TANGENT TO TWO CURVES. LET g , e /r, be the two curves. First plot them carefully to a large scale, and, finding from this plot an approximate P. T., say 6, run the tangent ef. Now the chord in the curve g b, to which ef is parallel, is known, and consequently the shortest distance, fg, between the tangent and the curve may be measured. Then ef : f g :: rad. : tang, feg, and nat. tang, feg = -^> Practi- cally, this angle feg will be found equal to g a b or dc e, so that, dividing it by the degree of curvature of k <*, we shall have the distance, e d, to the proper P. T. Strictly speaking, the angle g ef is too great by the small angle bhg. There are two modes of calculating this latter, but they are both complex, and in any but a most unusual case, the above rule is sufficiently accurate. Example. Let k e be a 5 curve. Suppose the tangent ef = 1632 feet, and the distance gf = 42 feet, Then 9 = -0257 = nat. tang, of 1 28'. Reducing 52 RAILWAY CURVES AND LOCATION. minutes to hundredths, and dividing by 5 feet, the distance back to the correct P. T. we have 29 Should the curves turn in the same direction, or should e be a fixed point from which to run a tangent to g b, the above illustration is still applicable. ARTICLE XXI. OBDINATES. TO FIND THE MIDDLE ORDINATE TO ANY GIVEN CHORD, IN A CURVE OF ANY GIVEN RADIUS. 1st. (See figure in Art. XVL) Ic c = */ a e 2 a F, and a c or be k e = the ordinate required. That is, from the square of the radius subtract the square of half the chord, and take the square root of the remainder from radius, for the middle ordinate. Example. The radius a c being 819 feet, and the chord a/ 100 feet, to find the middle ordinate, Ik. Here a <? a t? = 670761 2500, = 668261, the square root of which is c k, = 817-5, which taken from radius 819, leaves 1-5, the required middle ordinate. ORT>I NATES. 63 2d. Subtract the nat. cosine of the tangential ar/gle from 1, and multiply the remainder by radius. Example. Suppose a b a 7 curve. Here the nat. cosine of 3 30', the tangential angle, is -9981, which, sub- tracted from 1, leaves *0019. Multiplying this latter by radius 819, we have 1*5, the middle ordinate as before HAVING GIVEN THE MIDDLE ORDINATE, TO FIND ANY OTHER. 1st. eg = \/ c e 2 eg*, and ed = eg g d or clt. Example. Suppose the distance Jed or eg to be 20 feet. Thence e e 2 c g 2 = 670761 400 = 670361. the square root of which is eg, = 818*76. Taking from this the distance gd = 817 '5, we have the ordinate ed = 1-26. *2d. Multiply the ordinates of a 1 curve by the deflexion angle of the curve whose ordinates are required. This is an approximation sufficiently exact for railwa-y curves. 54 RAILWAY CURVES AND LOCATION, ARTICLE XXII. TO FIND THE RADIUS CORRESPONDING TO ANY DEFLEXION ANGLE, AND TO EQUAL CHORDS OF ANY GIVEN LENGTH. HERE the deflexion angle, d b a, is of course equal to the central angle d c b, subtended by the given chord d 6, SIA-*'- i ,jiv 180 deb and the triangle c d b being isosceles we have ~ A = c d b, or d b c. Then nat. sin. deb : nat. sin. c b d :: db : c d 9 the radius. Example. Let the deflexion angle be 5, and the chord 100 feet. Required the radius. The nat. sine of 5 = -I OAO CO 0872 and = 87 30', the nat. sine of which is z 9990. Then -0872 : -9990 : : 100 : radius = 1146 feet. An approximate result, sufficiently accurate for all pur- poses of railway location, may be found by simply dividing 5730 by the deflexion angle. To find the deflexion angle corresponding to any given RADIUS CORRESPONDING TO DEFLEXION ANGLE. .> radius and chord. In this case, we have c d : df : : rad of 1 : nat. sin. of half the deflexion angle ; therefore, divide half of the chord by the radius of the curve ; the quotient will }yc the nat. sine of half the deflexion angle. JExample. Radius as before 1146 feet, and chord 100 feet. Then j||g = -0436, the nat. sin. of 2 30'. Dou- bling this result, we have the deflexion angle, viz. 5 00'. To find the deflexion distance with chord of 100 feet and any radius. Divide the constant number 10000 by the radius in feet ; the quotient will be the deflexion distance : for the deflexion distance with a radius of 10000 ft-et is 1 foot, and the deflexion distances for other radii increase inversely as the radii. Example. What is the deflexion distance for a 5 curve, the chord being 100 feet? Here ^^ = 8-72 feet, the deflexion distance. To find the deflexion distance with any given chord and radius. The deflexion distance is equal to twice the natural sine of half the deflexion angle, multiplied by the chord. Thus, the chord being 100 feet, and the deflexion angle 5, we find the nat. sine of 2 30' equal to -0436, which doubled, and multiplied by 100, gives 8*72 feet, as above. The tangential distance, with any radius and chord, is in like manner equal to twice the nat. sine of half the tan- gential angle multiplied by the chord. Thus, the tangential angle being 2 30' and the chord 100 feet, we find the nat. S'ne of 1 15' = -0218. Multiplying by 2, and 100, we have 4*36 feet, the tangential distance. For all curves under 11, the tangential distance is equal to half the deflexion distance. J>6 RAILWAY CURVER AND LOCATION ARTICLE XXIII. OF EXCAVATION AND EMBANKMENT. A RAILWAY line having been located, the first office dutiea are to map it down, to make a continuous profile, and an approximate estimate of the cost of grading, &c. The " ele- vation" of each stake above or below a certain assumed base being fixed, the profile is drawn, on paper prepared for the purpose, to a horizontal scale of 400 feet, and a vertical scale of 40 feet, to the inch. This distorted pic- ture presents at a glance, in compact shape, the undula- tions of the surface, and from it grades are adopted, to balance as nearly as possible the excavation and embank- ment. By these grades, noted in the record, the cutting or filling is ascertained at each station. Suppose, for instance, that the elevation of station 40 is 12 feet, and that of station 100 is 72 feet. The distance between 40 and 100 is 6000 feet, and the difference between 12 and 72 is 60 feet. Consequently, to connect those points, we require an ascending grade of 1 in 100 feet. Grade at station 54 is therefore 26 feet, and at station 60, 32 feet. If the elevation at station 60 be 38 feet, of course we have 6 feet of excavation, and this is marked in our estimate sheets -f 6. If the elevation at that point should be 27 feet, o feet of embankment is the consequence, which is marked accordingly, 5 ; plus indicating excavation, and minus embankment. The usual slope for embankment is 1 feet horizontal to 1 foot vertical, making an angle of about 34 with the OF EXCAVATION AND EMBANKMENT. 57 horizon ; that for earth cut, 1 to 1, or 45, and for rock cut J to 1, or 76. The slopes of the ground surface at each station being known, together with the breadth of the intended roadway, we are prepared to calculate the cross- sectional areas, and from them to determine the cubic yards of excavation and embankment. To facilitate these operations the following rules were prepared. With Trautwine's common diagram, and the table of squares and square roots appended to the volume, they will be found an observable assistance. Suppose li the road bed, and fh the depth of an ordi nary clay cut. Produce the side slopes until they meet in the point k. Then the angle being 45, ef=fk, and ef 2 = twice the triangle efk, = the triangle e kg. For like reasons I h = h k, and I h 2 = triangle I k i. But the triangle Iki, taken from the triangle ekg, leaves the area elig, to find which we have therefore the following Rule. To half the breadth of the roadway, add the depth of the cut. From the square of this sum, subtract the square of half the breadth of the roadway for the area. Example. Suppose the breadth of the roadway to be 32 feet, and the depth hf, 7 feet. Half of 32 = 16, the square of which, viz., 256, becomes a constant subtrahend. 16 -{- 7 = 23, and a reference to the table shows the square of 23 equal to 529. Therefore 529 256 = 273, the area required in square feet. If there be a regular slope, as eg (p. 58), we can plot it on the diagram, and read at once the side cuts, g k, en. 58 RAILWAY CURVES AND LOCATION. the area is equal to that of the trapezoid e n k g, minus the two triangles e n h, mk g. Calling e ft, or its equal n li, a, m k or g k, 5, and half the breadth of the roadway, c, we have the triangle mk g = b X 77 = - The triangle e n h is in like manner = , 22 2 and the area of the trapezoid = a-\-b-{-2cX J . 2 Then the area required = a-j-5-|-2tfX - ~ 2 2 ab -f 2 ac -f 2bc = (a -f b) c + a.5. Should the slopes be J to 1, as in rock cut, the area might, in similar-wise, be shown equal to (a -f- b) c -\ ^-, and that of embankment, where the slopes are 1J to 1, equal to (a -f- #) c -j ^-. Wherefore, we arrive at the following general rule for finding cross-sectional areas, where the ground surface is a regular declivity : Multiply the sum of the side cuttings by half the breadth of the roadway, and mark the product. Multiply the pro- duct of the side cuttings by the ratio of the side slopes to 1, and add this result to the previous product marked for the area. Example 1. Earth excavation road bed 32 feet, side OF EXCAVATION AND EMBANKMENT. 59 slopes 1 to 1, right cutting 12 feet, left cutting 3 feet. Required the cross-sectional area. Here (a -f- b) c -\- a b = (12 + 3) 16 -f 12 X 3 = 240 + 36 = 276 square feet, the area required. Example 2. Rock cut road bed 28 feet, side slopes J to 1, cuttings as before. Required the area. Here (a -f b) c + t-*J. = 210 +^ = 219 square feet, the area. Example 3. Embankment roadway 27 feet, side slopes 1| to 1, cuttings as before. Here ( + #)<? + 3 ^ 2 X ^ = 202-5. + 54 = 256-5 square feet, the cross- sectional area. Other formulae might be given for varying surface slopes, but they would involve a simple matter, and require more time for calculation than a division of the diagram area into triangles. To find the cubic content of an excavation or embank- ment : Multiply half the sum of the two end areas by the distance between them ; thus : supposing 282 and 310 to be the end areas, and 100 feet the distance, we have (282 + 310) yards. Or we may multiply the sum of the end areas by 100, and divide the product by 6 and 9, the factors of 54, which is the number of cubic feet contained in two cubic yards ; thus, 5?|?? = 9866-6, and this divided by 9 = 1096-3, as above. 60 RAILWAY CURVES AND LOCATION. PRISMOIDAL FORMULA. To the two end areas add four times the middle area, and multiply the sum by one-sixth of the length of the pris- moid. Thus : from the foregoing example, the sum of the end areas, 592, added to four times their mean, 1184, gives 1776, and 1776 X 16-7 = 29659-2 cubic feet, = 1098'5 cubic yards. The former rule is approximate sufficiently so for rough preliminary calculations, but where strict correctness is required, as in a final field estimate, the prismoidal formula should be usefl. It applies to all solid bodies with plane faces and parallel ends. ARTICLE XXIV. SIDE STAKING. THE object in side staking is to find the point where the surface of the ground intersects the slope of the road formation. For performing this work with level and rod, place the instrument in such a position as to command as many stations as possible, whether they be on the upper SIDE STAKING 61 or lower side, and ascertain by transfers from the bench the height of your instrument with reference to grade. This will facilitate operations by giving usually small num- bers to work with. Knowing your rate of grade, subtract or add, as the case may be, as you change from station to station. Having the level in place, we will suppose on an exca- vation, our object is first to place the lower side stake. Let the width of the road bed be 26 feet, and the side slopes 1 to 1. Suppose the instrument to be 11 feet above grade and the centre cut 5 feet, which latter is already recorded in the field book for construction duties. Look- ing at the fall of the hill we judge that at the distance of 17 feet from the centre stake the descent is 1'5 feet, which would give us 3-5 feet cutting. We take an observation at that point and find that the rod reads 10 feet, which, subtracted from our height above grade, leaves us only one foot cutting, and shows that our judgment has been at fault. The distance measured is too much, for were we to increase the distance we would reduce the cutting, and it is therefore evident that we are too far from the centre Let us then make the distance from the centre stake 15 feet, and take another sight, when the rod reads 9, show- ing 2 feet cutting, which, added to half the road formation, slope being 1 to 1, equals the distance measured. The stake is therefore correct. The same process applies to the upper side. The only difference in staking out for banks is that you add 1J times the height of the bank to the distance mea- sured, or, as a general rule, the height of the bank multi- plied by the ratio of the side slopes to unity. Some judgment is required to be expeditious in this work, which is obtained only by experience. 6 62 RAILWAY CURVES AND LOCATION. The following is a common form of field record for con struction : ,* jji8t. Left Side. Centre. i Right Sido Course. Mag. Course. Elevation Grade. Dist. AorB A B Dist. AorB S-ll A 530 100 N20OOW N 20-05 W + 560-4 + 555-4 15-0 2-0 A 5-0 21-0 VTUEAL SINES AND TANGENTS (63) |l NAT. SINE. 65 ' ' ' O o [o 2 3 t 4 5 6 70 : / , o 000 OOCO 017 4524 034 8995 052 3360 069 7565 087 1557 104 5285 121 8693! 60 i 29091 7432,035 1902 6264 070 0467 4455 R178 1 221 581 59 '2 581b 018 0341 4809 91691 3368 7353 105 1070 4468 58 3 8727 3249 7716 053 2074 6270 0880251 3963 7355i 57 4 001 1636 6158 036 0623 4979 9171 3148 6856 1230241 56 ; 5 4544 9066 3530 7883,071 2073 6046 9748 312- 55 6 7453019 1974 6437 054 0788J 4974 8943 106 2G41 6015 54 i 7 C02 0362 48S3 9344 3693| 7876 089 1840 5533 8901 53 I 8 3271 7791 037 2251 6597 072 0777 4738 8425 124 1768 52 9 6180 020 0699 5158 9502 3678 7635 107 1318 4674 51 10 9089 3608 8065 055 2406 6580 090 0532 4210 7560 11 003 1998 6516 0380971 5311 9481 3429 7102 125 0446 49 1 12 4907J 9424 3878 8215 073 2382 6326 9994 3332 48 13 7815 021 2332 6785 Oo6 1119 5283 9223 108 2885 6218 47 14 004 0724 5241 9692 4024 8184 091 2119 5777 9104 46 i 15 3633 8149 039 2598 6928 074 1085 5016 8669 126 1990 45 16 6542 022 1057 5505 9832 3986 7913 109 1560 4875 44 17 9451 3965 8411 057 2736 6887 392 0809 4452 7761 43 18 005 2360 6873 040 0318 5640 9787 3706 7343 127 0646 42 19 5268 9781 4224 8544 075 268S 6602 1100234 3531 41 20 8177 023 2690 7131 058 1448 5589 9499 3126 6416 40 21 006 1086 5598 041 0037 4352 8489 093 2395 6017 9302 39 22 3995 8506 2944 7256 076 1390 5291 8908 128 2186 ;$) 23 6904 024 1414 5850 059 0160 4290 8187 111 1799 5071 37 24 9813 4322 8757 3064 7190 094 1083 4689 7956 36 25 007 2721 7230 042 1663 5967 0770091 3979 7580 1290841 35 2G 5630 025 0138 4569 8871 2991 6875 1120471 3725 34 i 27 8539 3046 7475 060 1775 5891 9771 3361 6609 33 28 008 1448 5954 043 0382 4678 8791 0952&66 6252 9494 32 29 4357 8662 3288 7582 078 1691 5562 9142 130 2378 31 30 7265 026 1769 6194 061 0485 4591 8458 1132032 5262 30 31 009 0174 4677 9100 3389 7491 ^96 1353 4922 8146 20 32 3083 7585 044 2006 6292 079 0391 4248 7812 131 1030 28 33 5992 027 0493 4912 9196 3290 7144 1140702 3913 27 34 8900 3401 7818 062 2099 6190 097 0039 3592 6797 2G 35 010 1809 6309 045 0724 5002 9090 2034 6482 . 9681 25 36 4718 9216 3630 7905 080 1989 5829 9372 132 2564 24 37 7627 028 2124 6536 063 0808 4880 8724 1152261 5447 23 38 Oil 0535 5032 9442 3711 7788 098 1619 5151 8330 22 39 3444 7940 046 2347 6614 081 0687 4514 8040 133 1213 21 40 6353 029 0847 5253 9517 3587 7408 1160929 4096 20 41 9261 3755 8159 064 2420 6486 099 0303 3818 6979 HI 42 012 2170 6662 047 1065 5323 9385 3197 6707 9S62 Ifc 43 5079 9570 3970 8226 082 2284 6092 9596 134 2744 17 , 44 7987 030 2478 6876 0651129 5183 8986 1172485 5627 in i 45 013 0896 5385 9781 4031 8082 100 1881 5374 8509 H 1 46 3805 8293 048 2687 6934 033 0981 4775 8263 136 1392 u i i 47 6713 031 1200 5592 9836 3880 76'19 118 1151 4274 13 ' 48 9622 4108 8498 066 2739 6778 101 0563 4040 7156 12 49 014 2530 7015 049 1403 5641 9677 3457 6928 136 0038 U 50 5439 9922 4308 8544 084 2576 6351 9816 291 10 51 8348 032 2830 7214 067 1446 5474 92451192704 5801 9 52 0151256 5737 0500119 4349 8373 102 2138 5503 8683 8 53 4165 8644 3024 7251 085 1271 5032 8481 137 1564 7 54 7073 033 1552 5929 068 0153 4169 7925 120 1368 4445 A 55 9982 4459 8835 3055 7067 1030819 4256 7327 5 1 56 016 2890 7366 051 1740 5957 9966 3712 7144 138 0208 4 i 57 5799 034 0274 4645 8859 086 2864 6605 121 0031 3089 3 58 8707 3181 7550 069 1761 5762 9499 2919 5970 2 59 0171616 6088 052 0455 4663 8660 104 2392 5806 8850 1 60 4524 8995 3360 7565 087 1557 5285; 8693 139 1731 (1 89 88 87 86 85 84 1 83 8-JQ ' NAT. COSINE. 06 NAT. TAN. / GO 1 2 3 [ 4 5 6 7 000 0000 017 4551 034 9208 052 40781069 9268 087 4887 05 1042 22 7841 60 1 2909 7460 035 2120 69951070 2191 7818 3983 23 079& 59 2 5818 018 0370 5033 9912 5115 088 0749 6925 3752 58 3 8727 3280 7945 053 2829 8038 3681 9866 b70t 57 i 4 001 1636 6191 036 0858 5746 071 0961 6612 06 2808 965^ 56 ' 5 4544 9100 3771 8663 3885 9544 5750 24 2612 55 6 7453 0192U10 6683 054 1581 6809 089 2476 8692 556t 54 ' 7 002 0362 4920 9596 4498 9733 5408 07 1634 8520 53 : 8 3271 7830 037 2509 7416 072 2657 8341 4576 25 1474 52 9 6130 020 0740 5422 055 0333 5581 090 1273 7519 4421 51 10 9089 3650 8335 3251 8505 420i 08 0462 7384 50 11 003 1998 6560 033 1248 6169 073 1430 7138 3405 26 033! - 49 1 12 4907 9470 4161 9087 4354 091 0071 6343 3294 ;- 13 7816 021 2380 7074 056 2005 727:; 3004 92 1 J1 624? 47 > 14 004 0725 5291 9988 4923 074 0203 5938 09 2234 9205 46 15 3634 8201 039 2901 7841 3128 8871 5176 127 21bl 45 16 6542 0221111 5814 057 0759 6053 092 1804 8122 5117 44 17 9451 4021 8728 3678 8979 4738 110 1066 8073 43 IS 005 2360 6932 040 1641 6596 075 1904 7672 4010 128 1030 42 19 5269 9842 4555 9515 4829 093 0606 6955 3986 41 :o 8178 023 2753 7469 058 2434 7755 3-540 9399 6943 40 ; 21 006 1087 5663 041 0383 5352 076 0680 6474 111 2844 9900 39 I 22 3996 8574 3296 8271 3606 9409 5789 129 29,'P 33 . 23 6905 024 1484 6210 059 1190 6532 094 2344 8734 5815 37 ! 24 9814 4395 9124 4109 9458 5278 112 1680 8773 36 ; 25 007 2723 7305 042 2038 7029 077 2384 8213 4625 130 1731 35 [ 26 5632 025 0216 4952 9948 5311 095 1148 7571 4690 34 i 27 8541 3127 7866 060 2867 8237 4084 1130517 7648 33 1 28 008 1450 6038 043 0781 5787 0781164 7019 3463 131 0607 32 29 4360 8948 3695 8706 409C 9955 6410 3566 31 30 7269 026 1859 6609 061 1626 7017 096 2890 9356 6525 30 ' 31 009 0178 4770 9524 4546 9944 5826 114 2303 9484 29 32 3087 7681 044 2438 7466 079 2871 8763 5250 132 2444 23 i 33 5996 027 0592 5353 062 0386 5798 097 1699 8197 5404 27 | 34 8905 3503 8268 3306 8726 4635 115 1144 8364 26 i 35 010 1814 6414 045 11831 6226 080 1653 7572 4092 133 1324 25 36 4724 9325 4097 9147 4581 098 0509 7039 4285 24 ! 37 7633 028 2236 7012 063 2067 7509 3446 9937 7246 23 j 38 0110542 5148 9927 4988 081 0437 6383 1162936 134 0207 22 39 3451 8059 046 2342 7908 3365 9320 5884 3168 21 40 6361 029 0970 5757 064 0829 6293 099 2257 8832 612? 2li 41 9270 3882 8673 3750 9221 5194 117 1781 9091 19 42 0122179 6793 047 1588 6671 082 2150 8133 4730 135 2053 18 ! 43 5088 9705 4503 9592 507S 100 1071 7679 50 If 17 44 7998 030 2616 7419 065 2513 8007 4009 118062P 797F 16 I 45 013 0907 5528 048 0334 5435 083 0936 6947 3578 136 094C 15 46 3817 8439 3250 8356 3865 9886 652R 3903 14 I 47 6726 031 1351 6166 U66 1278 6794 101 2824 9478 686f 13 48 9635 4263 9082 4199 9723 5763 1192428 983C 12 I 49 014 2545 7174 049 1997 7121 084 2653 8702 5378 137 2793 11 50 5454 032 0086 4913 067 0043 5583 102 1641 8329 5757 10 51 8364 2998 7829 2965 8512 4580 120 1279 872 9 52 015 1273 5910 050 0746 5887 085 1442 7520 4230 138 168, 8 53 4183 8822 3662 8809 4372 103 04CO 7192 46B 7 54 7093 033 1734 6578 068 1732) 7302 3399 121 0133 761. 6 55 016 0002 4646 9495 4654 086 0233 6340 3085 139 0580 5 56 2912 7558 051 2411 7577 3163 9280 603C 354. 4 ' 57 5821 034 0471 5328 069 049' 6094 104 2220 89 S 6510 3 ! 58 8731 3383 8244 3422 9025 516 122 194 947 2 ! 5 l ,17 1641 6295 052 1161 634E 087 195C 810 489! 140 244 1 CO 4551 9208 4078 926E 488' 105 1042 78461 540 ' 89 88 87 86 85o 84 83 J 82o ' NAT. COTAN. NAT. SINE-. 67 t ' \ 8 90 10 11 12 13 1 14 1 15 / 1139 1731 156 4345 173 6482 190 8090 2079117 224 951 1|241 92191258 8190 60 1 4612 7218 934b 191 0945 208 1962 225 2345 242 2041 259 1000 59 2 7492 157 0091 1742211 3801 4807 5179 4863 3810 58 ' 6 140 0372 2963 5075 665b 7652 8013 7685 6619 57 ; 4 3252 5336 7939 9510 209 0497 226 0846 243 0507 9428 56 5 6132 8708 175 0803 192 2365 3341 3680 3329 260 2237 55 ' 6 9012 158 1581 3667 5220 6186 6513 6150 5045 54 *7 141 1892 4453 6531 8074 9030 9346 8971 7953 53 ! 8 4772 7325 9395 193 0928 210 1874 227 2179 244 1792 261 0662 52 ' 9 7651 1590197 176 2258 3782 4718 5012 4613 3469 51 10 142 0531 3069 5121 6636 7561 7844 7433 6277 50 : 11 3410 5940 7984 9490 2110405 228 0677 245 0254 9085 40 12 6289 8812 177 0847 194 2344 3248 3509 3074 262 1892 43 U 9168 160 1683 3710 5197 6091 6341 5894 469P 47 14 143 2047 4555 6573 8050 8934 9172 8713 7500 46 15 4926 7426 9435 195 0903 212 1777 229 2004 246 1533 263 0312 45 16 7805 161 0297 178 2298 3756 4619 4835 4352 3118 44 17 144 0684 3167 5160 6609 7462 7666 7171 5925 43 13 3562 6038 8022 9461 213 0304 230 0497 9990 873C 42 19 6440 8909 179 0884 196 2314 3146 3328 247 2809 264 153C 41 , 20 9319 162 1779 3746 5166 5988 6159 5627 4342 40 21 145 2197 4650 6607 8018 8829 6989 8445 7147 39 1 22 5075 7520 9469 197 0870 214 1671 231 1819 248 1263 9952 38 i 23 7953 163 0390 180 2330 3722 4512 4649 4081 265 2757 37 24 146 0330 3260 5191 6573 7353 7479 6899 5561 36 25 3708 6129 8052 9425 215 0194 232 0309 9716 8366 35 26 6585 8999 181 0913 198 2276 3035 3138 249 2533 266 1170 34 ;7 9463 164 1868 3774 5127 5876 5967 5350 3973 33 28 147 2340 4738 6635 7978 8716 8796 8167 6777 32 29 5217 7607 9495 1990829 216 1556 233 1625 250 0984 9581 31 1 30 8094 165 0476 182 2355 3679 4396 4454 3800 267 2384 301 31 1480971 3345 5215 6530 7236 7282 6616 5187 29 32 3843 6214 8075 9380 217 0076 2340110 9432 7989 28 33 6724 9032 183 0935 200 2230 2915 2938 251 2248 268 0792 27 34 9601 166 1951 3795 5080 5754 5766 5063 3594 26 35 149 2477 4819 6654 7930 8593 8594 7879 6390 25 36 5353 7687 9514 201 0779 218 1432 235 1421 252 0694 9198 24 37 8230 167 0556 184 2373 3629 4271 4248 3508 269 2000 23 38 1501106 3423 5232 6478 7110 7075 6323 4801 22 39 3981 6291 8091 9327 9948 9902 9137 7602 21 40 6857 9159 185 0949 202 2176 219 2786 236 2729 253 1952 270 0403 20 41 9733 168 2026 3808 5024 5624 5555 4766 3204 19 42 151 2608 4894 6666 78*2 8462 8381 7579 6004 18 43 5484 7761 9524 203 0721 220 1300 237 1207 254 0383 8805 17 44 8359 169 0628 186 2332 3569 4137 4033 3206 271 1605 16 45 152 1234 3495 5240 6418 6974 6859 6019 4404 15 46 4109 6362 8098 9265 9811 9684 8832 72G4 14 47 6984 9228 187 0956 2042113 221 2648 238 2510 255 1645 272 0003 13 43 9858 170 209E 3813 4961 5485 5335 4458 2802 12 43 153 2733 4961 6670 7808 8321 8159 7270 5601 11 i 50 5607 782S 9528 205 0655 222 1158 239 0984 256 0082 8400 10 ! 51 8482 171 0694 188 2385 3502 3994 3803 2894 273 119R 9 52 154 1356 356C 5241 6349 6830 6633 5705 3997 8 1 53 4230 6425 8098 9195 9666 9457 8517 6794 7 54 7104 9291 189 0954 206 2042 223 2501 240 2280 257 1328 9592 6 55 9978 172 2156 3811 4833 5337 5104 4139 274 2390 5 i 5J 155 2851 5022 6667 7734 8172 7927 6950 5187 4 57 5725 7887 9523 207 0580 224 1007 241 0751 9760 7984 3 ' 53 8598 73 0752 190 2379 3426 3842 3574 258 2570 2750781 2 . 59 156 1472 3617 5234 6272 6676 6396 5381 3577 1 60 4345 6482 8090 9117 9511 9219 8190 6374 8lo 8Qo 79 78 77 76 1 75 3 740 i NAT. COSINE. ; 68 NAT. TAN. ' 8 U 10 11 1-2 13o 14 15 / 140 540f 58 3844 176 3270 194 3803 212 5E66 230 8682 249 32Pf 267 94P2 6n i 8375 6826 6269 6822 8606 231 1741 6370 2682611 59 2 141 1342 9809 9269 98411213 1647 '4811 9460 57'; F; 3 4308 1592791 177 2269 195 2861 4688 787t 250 2551 8847 5? , 4 7276 5774 5270 5881 7730 2320941 6642 269 1967 rr 5 142 0243 8757 8270 8901 214 0772 4007 8734 5081 "' 6 3211 160 1740 178 1271 196 1922 3814 7073 251 1826 B2ffi \4 i 7 6179 4724 4273 4943 6857 233 OHO 4919 270 132P ;V 6 9147 7708 7274 7964 9900 3207 8012 4449 52 9 1432115 161 0692 179 0276 197 098G 215 2944 6274 252 1 100 7571 ri 10 5084 3677 3279 4008 5988 9342 4200 271 0694 n : 11 8053 6662 6281 7031 9032 234 2410 7294 3817 4i: 12 144 1022 9647 9284 : 98 0053 216 2077 5479 253 0389 694C 48 i 13 3991 162 2632 180 2287 3076 5122 8548 3484 272 CC( 4 47 ! 14 6961 5618 5291 6100 8167 235 1617 658G 31PF 46 j 15 9931 8603 8295 9124 217 1213 4687 9676 6313 45 16 145 2901 163 1590 181 1299 199 2148 4259 7758 254 2773 9438 44 17 5872 4576 4303 5172 7306 236 0829 5870 273 2564 43 ' 18 8842 7563 7308 8197 218 0353 3900 8968 56PO 42 19 146 1813 164 0550 182 0313 200 1222 3400 6971 255 2066 8817 41 20 4784 3537 3319 4248 6448 237 0044 5165 274 194? 40 21 7756 6525 6324 7274 9496 3116 8264 507i 3D 22 147 0727 9513 9330 201 03001-49 2644 6189 256 1363 8201 38 23 3699 165 2501 183 2337 3327 5593 9262 4463 275 1330 :>7 24 6672 5489 5343 6354 8643 238 2336 7564 446( 36 25 9644 8478 8350 9381 220 1692 5410 257 0664 758p 35 26 148 2617 166 1467 184 1358 202 2409 4742 8485 3766 276071! 34 27 5590 4456 4365 5437 7793 239 1560 6868 38.1 33 . 28 8563 7446 7373 8465 221 0844 4635 9970 6P81 32 29 J149 1536 167 0436 185 0382 203 1494 3895 7711 258 3073 2770113 31 30 4510 3426 3390 4523 6947 240 0788 6176 3245 30 31 7484 6417 6399 7552 9999 3864 9280 6378 2:; j 32 150 0458 9407 9409 204 0582 222 3051 6942 259 23?4 9512 28 33 3433 168 2398 1862418 3612 6104 241 0019 5488 278 264 li 2J 34 6408 5390 5428 6643 9157 3097 8593 5780 ](.; ! 35 9383 8381 8439 9674 2232211 6176 260 1699 891F 2' 36 151 23M169 1373 187 1449 205 2705 5265 9255 4805 279 20HG '24 37 5333 4366 4460 5737 8319 242 2334 7911 5186 23 38 8309 7358 7471 8769 224 1374 5414 261 1018 8322 22 39 152 1285 1700351 188 0483 206 1801 4429 8494 4126 280 1459 21 40 4262 3344 3495 4834 7485 243 1575 7234 4597 20 41 7238 6338 6507 7867 2250541 4656 262 0342 7735 19 42 153 0215 9331 9520 207 09CO 3597 7737 3451 281 0873 18 43 3192 171 2325 189 2533 3934 6654 244 08 IP 6560 4012 17 44 6170 5320 5546 6968 9711 3902 9670 7152 Hi I i 45 9147 8314 B55f 208 CC03 226 2769 6P84 263 2780 282 02P2 IS 46 154 2125 172 1309 190 1573 3038 5827 245 0068 89 1 3432 14 ' 47 5103 4304 4587 6073 8885 3151 9CU 6573 13 48 8082 73CO 7C02 9109 227 1944 6236 2642114 97 IF 12 i 4P 155 1061 173 0296 191 0617 209 2145 5003 9320 5226 283 2857 li : 5C 4040 3292 3632 5181 8063 246 2405 8339 599P ic ! 1 7C19 G2F8 6648 8218 228 1123 5491 265 1452 9143 9 9 9998 9285 9664 210 1255 4184 8577 4566 284 228b 8 ' 3 156 2978 174 2282 19.2 2680 4293 7244 247 If 63 76FO 543C 7 , ' 4 5958| 5279 561X 7331 229 0306 47EC 266 0794 8575 6 i 5 8939| 8277 8713 211 0369 3367 7837 3f09 285 1720 5 i 6 157 191!) 175 1275 193 1731 3407 6429 248 0925 7025 4866 4 ' ! 7 4PCO 4273 474'- 6446 9492 4013 267 C 141 8012 3 1 8 78S 1 7272 776( 9486 230 2555 7102 3257 286 1159 2 1 9 15Srij;,|176C271 1940784 212 2525 5618 249C1P1 6374 4306 1 .0 3844 3270 3803 5566 8C82 328( 9482 7454 ' 81 80 TB 78 ! 77 76 75'-' 740 NAT. COTAN. NAT. SINK. 0!) / 10 17 'lb IL> 20 2lo 22 23 ' o 275 6374 2923717 309 0170 325 5682 342 0201 358 3679 374 6066 3'JO 7311 60 1 9170 6499 2936 8432 2935 6395 8763 9989 59 2 276 1965 9280 5702 326 1182 5668 9110375 1459 391 2666 58 3 4761 2932061 8468 3932 8400 359 1825 4156 5343 57 1 4 7556 4842 310 1234 6681 343 1133 4540 6852 8019 56 . 5 277 0352 7623 3999 94:^0 3865 7254 9547 392 0695 55 G 3147 294 0403 6764 327 2179 6597 9968 376 2243 3371 54 7 6941 3183 9529 4928 9329 360 2682 4938 6047 53 3 8736 5963 311 2294 7676 344 2060 5395 7632 9722 52 9 278 1530 8743 5058 328 0424 4791 8108 377 0327 39? 1397 51 ; 10 4324 295 1522 7822 3172 7521 361 0821 3021 4071 50 11 7118 4302 312 0586 5919 345 0252 3534 5714 6745 49 ! 12 9911 7081 3349 8666 2982 6246 8408 9419 4S 1 13 279 2704 9859 6112 329 1413 5712 8958 378 1101 394 2093 47l i I 4 5497 296 2638 8875 4160 8441 362 1669 S794 4766 46 15 8290 5416 313 1638 6906 346 1171 4380 64S6 7439 45 16 280 1083 8194 4400 9653 3900 7091 9178 3950111 44 17 3875 297 0971 7163 320 2398 6628 9802 379 1870 2783 43 18 6667 ' 3749 9925 5144 9357 363 2512 4562 5455 12 19 9459 6526 314 2686 7889 347 2085 5222 7253 8127 41 20 281 2251 9303 5448 331 0634 4812 7932 9944 396 0798 40 i 21 5042 298 2079 8209 3379 7540 364 0641 380 2634 3468 39 22 7833 4856 315 0969 6123 348 0267 3351 5324 6139 38 I 23 282 0624 7632 3730 8867 2994 6059 8014 8809 37 24 3415 299 0408 6490 3321611 5720 8768 381 0704 397 1479 3( : 25 6205 3184 9250 4355 8447 365 1476 3393 4148 35 26 8995 5959 316 2010 7098 349 1173 4184 6082 6818 34 27 283 1785 8734 4770 9341 3896 6891 8770 9486 33 28 4575 300 1509 7529 333 2584 6624 9599 382 1459 398 2155 32 29 7364 4284i317 0288 5326 9349 366 2306 4147 4823 31 30 284 0153 7058 3047 8069 350 2074 5012 6834 7491 30 31 2942 9832 5805 334 0810 4798 1 7719 9522 399 0158 29 32 5731 301 2606 8563 3552 7523 367 0425 383 2209 2826 23 33 8520 5380 313 1321 6293 351 0246 3130 4895 5492 27 34 285 1308 8153 4079 9034 2970 5836 7582 8158 26 35 4096 302 0926 6836 335 1775 5963 8541 384 02( 8 400 (W? 25 ' 36 6884 3699 9593 4516 8416 T68 1246 2953 3490 24 , 37 9671 6471 319 2350 7256 352 1139 3950 5639 6156 23 38 286 2458 9244 5106 9996 3862 C654 8324 8821 22 39 5246 303 2016 7863 336 2735 6584 9358 385 1008 401 1486 21 40 8032 4788 320 0619 5475 9306 369 2061 3693 4150 20, 41 2870819 7559 3374 8214 353 2027 4765 6377 6814 19 i 42 3605 304 0331 6130 337 0953 4748 7468 9060 9478 18 43 6391 3102 8885 3691 7468 370 0170 386 1744 4022141 17 44 9177 5872 321 1640 6429 354 0190 2872 4427 4804 16 45 288 1963 8643 4395 9167 2910 5574 7110 V467 15 46 4748 305 1413 7149 338 1905 5630 P276 9792 403 0129 14 47 7533 4183 9903 4642 8350 371 0977 387 2474 2791 13 : 48 289 0318 6953 322 2657 7379 355 1070 3678 5156 E453 12 49 3103 9723 5411 3390116 3781 6371 7837 8114 11 50 5887 306 2492 8164 2852 6508 9079 388 0518 404 077 1i ; 51 8671 5261 323 0917 5589 922( 372 1780 3199 3436 9 52 WO 1455 8030 3670 8325 356 1944 4479 5S80 6096 8 , 53 4239 307 0798 6422 340 1060 4662 7179 85(0 8751 7 54 7022 3566 9174 3796 7380 9878 389 1240 405 1416 6 ' 55 9805 6334 324 1926 6531 357 0097 3732577 3919 4075 t , 56 *91 2588 9102 4678 9265 2814 5275 6598 6734 / ; 57 5371 308 1869 7429 341 2COO 5531 7973 9277 9393 58 8153 4636 325 0180 4734 8248 374 0671 39019:5 4062051 59 292 0935 7403 2931 7469 358 0964 3369 4633 4709 1 , G0 3717 309 0170 5682 342 0201 3679 6066 7311 7366 ( 73 72o 71 > 70 I 69 68 67 66 ' NAT. COSINE. i J NAT. TAN. 16 17 18 19 20 J 1 21 22 23 i > 286 7454 305 7307 324 9197 344 3276 63 9702 383 8640 404 0262 24 4748 60 ! 1 287 0602 306 0488 325 2413 6530 64 2997i384 1978 3646 8182 59 ] 2 3751 3670 5630 9785 6292 5317 7031 25 1616 58 3 6900 6852 8848 345 3010 958SI 86564050417 5051 57 i 4 288 0050 307 0034 326 2066 62D6 65 2885 : 385 19961 3804 8487 56 . 5 3201 3218 5284 9553 6182 5337 7191 26 1924 55 i 6 6352 6402 8504 346 2810 9480 8679 406 0579 5361 54 7 9503 9588 327 1724 6068 366 2779 386 2021 3969 8800 53 8 289 2655 308 2771 4944 9327 6079 5364 7358 27 2239 52 9 5808 5957 8165 347 2586 9379 8708 407 0748 5680 51 10 8961 9143 328 1387 5846 367 2680 387 2053 4139 9121 50 i 11 2302114 309 2330 4610 9107 5981 5398 7531 428 2563 49 i 12 5269 5517 7833 348 2366 9284 8744 408 0924 6005 48 i 13 8-423 8705 329 1056 5630 368 2587 368 2091 4316 9449 47 14 291 1578 310 1893 4281 8893 5890 5439 7713 429 2894 46 l 15 4734 5083 7505 349 2156 9195 8787 403 1106 6339 45 16 7890 8272 330 0731 5420 369 2500 389 2136 4504 9785 44 17 292 1047 311 1462 3957 8685 5806 5486 7901 430 3232 43 18 4205 4653 7184 350 1950 9112 8837 410 1299 6680 42 19 7363 7845 3310411 5216 370 2420 330 2189 4697 431 0129 41 20 293 0521 312 1036 3639 8483 5728 5541 8097 3579 40 21 3680 4229 6868 351 1750 9036 8894 411 1497 7030 39 ! 22 6839 7422 332 0097 501P 371 2346 391 2247 4898 4320481 38 23 999S 3130(316 3327 828? 5656 5602 8300 3933 37 1 24 294 3160 3810 6557 352 1556 8967 8957 412 1703 7386 36 25 6321 7C05 9788 4820 372 2278 3922313 5106 433 0840 35 26 9483 314 0200 333 3020 8096 5590 5670 8510 4295 34 ! 27 295 2645 3396 6252 353 1368 8903 9027 413 1915 7751 33 j 28 580R 6593 9485 4640 373 2217 393 2386 5321 434 1208 32 29 8971 9790 334 2719 7912 5532 5745 8728 4665 31 30 296 2136 315 2989 5953 354 1186 8847 9105 414 2136 8124 30 31 5*19 6186 9188 4460 374 2163 394 2465 5544 435 1583 29 32 8464 93% 335 2424 7734 5479 5827 8953 5043 28 33 297 lt-30 316 2585 5660 355 1010 8797 9189 415 2363 8504 27 34 4790 5735 8396 4286 375 2 115 395 2552 5774 433 1966 26 35 7062 8980 336 2134 7562 5433 5916 9186 5429 25 36 298 1129 U7 2187 5372 356 0840 8753 92804162598 8893 24 37 4297 538f 8610 4118 376 2073 396 2645 6012 437 2357 23 38 746f 8591 337 1850 7337 5394 6011 9426 5823 2-2 39 299 063 1 313 1794 5000 357 0676 8716 9378 4172841 9289 21 40 3803 4998 8320 3951 : 377 2038 39? 2746 6257 438 2750 20 i 41 6973 8202 338 157 i 7237 5361 6114 9673 6224 19 ' 42 300 0144 319 1407 481^3580518 8685 9483 413 3091 9693 18 \ 43 33 IF 4613 8056 3=501 378 2010 398 2953 6E09 439 3163 17 44 648( 7819 339 1299 7083 6335 6224 9928 6034 16 45 P659 520 1025 4543 359 036? 8661 9595 419 3348 440 0105 15 46 301 2831 4232 7787 3651 379 19SS 399 2968 6769 3578 14 1 47 6004 7440i340 1032 6931 5315 6341 4200190 7051 13 ! 4R 917F 321 0649 4278 360 0222 8644 9715 3613 441 05-26 12 4!) 302 2352 3858 ' 7524 3508 380 1973 400 3089 7036 4001 11 50 5527 7067 341 0771 679E 5302 6465 421 0460 7477 H) i 51 6703 322 0279 4019 361 0062 8633 9841 3898 442 095^ 9 i 52 303 1S79 3489 7267 3371 381 1964 401 3218 731 4432 8 i 53 5055 67CO 3420516 66GO 5296 6596 422 0738 7910 7 54 8232 991*2 3765 9949 8629 9974 4165 443 1390 6 55 304 14 1C 323 3125 7015 362 3240 382 1962 402 3354 7594 4971 5 56 4588 8338 343 0266 6531 5296 6734 423 102 8352 4 57 7767 9552 3516 9823 8631 4030115 4453 444 1834 3 58 305 094 f 324 2766 6770 3633115 393 1907 3496 7894 531E 2 59 412C 5981 344 0023 6408 5303 6879424 131 8805 1 ' 60 730? 91971 3276 9702 8;J40 404 02621 474 445 2287 / 73 72 71 70 69 68 67 66 ' NAT. COTAN. NAT. SINE. 71 / 24s 25 350 27 28 f 29 30" 31 t 4C6 7366 422 6183 4383711 453 990." 469 4710 484 8096 SCO OOOC 5150381 60 1 4i7 0024 8819 6326 454 2497 7284 485 0640 2519 2874 59 , 2 2681 423 1455 8940 5038 9852 3184 5037 5367 58 3 5337 4090 439 1553 767^. 4702419 5727 7556 785S 57 4 7993 6725 4166 455 0269 4986 8270 501 007; 5160351 56 5 408 0649 9360 6779 2359 7553 436 0812 2591 2842 55 G 3305 424 1994 9392 544< 4710119 3354 5107 5333 54 7 5960 4628 440 2004 8038 2685 5895 7g24 7824 53 8 8615 7262 4615 456 0627 5250 8436 5020140 5170314 52 i ' 9 409 1269 9895 7227 3216 7815 487 0977 2655 2804 51 ! ' 10 3923:425 2528 9838 5804 472 0380 3517 5170 52r)3 50 11 6577 5161 441 2448 8392 2944 6057 7685 7782 49 12 9230 7793 5059 457 0979 5508 8597 5030199 518 0270 48 i 13 410 1383 426 0425 7668 3566 8071 4881136 2713 2758 47 14 4536 3056 442 0278 6153 473 0634 3674 5227 5246 46 15 7139 5637 2887 8739 3197 6212 7740 7733 45 Iti 9841 8318 5496 458 1325 5759 8750 504 0252 5190219 44 17 411 2492 427 0949 8104 3910 8321 489 1288 2765 2705 43 13 5144 357!) 4430712 6496 474 0382 3825 5276 5191 42 19 7795 620S 3319 9080 3443 6361 7788 7676 41 20 4120445 8338 5927 459 1665 6004 8897 505 0298 5200161 40 21 3096 ,23 1467 8534 424S 8564 490 1433 2809 2646 39 22 5745 4095 444 1140 6832 475 1124 3968 5319 5130 38 23 8395 6723 37461 9415 3683 6503 7823 7613 37 24 413 1044 ' 9351 63521460 1998 6242 9038 506 033R 521 0096 36 .^r 3693 429 1979 8957 4580 8801 491 1572 2846 2579 35 j 26 6342 4606 445 1562 7162 476 1359 4105 5355 5061 34 27 8990 7233 4167 9744 3917 6638 7863 7543 33 28 414 1638 9859 6771 46] 2325 6474 9171 507 0370 522 0024 32 i 29 4285 430 2485 9375 4906 9031 492 1704 2877 250531 30 6932 5111 446 1978 7486 477 1588 4236 5334 498630 31 9579 7736 4581 462 0066 4144 6767 7890 7466 29 32 415 2226 431 0361 7184 2646 6700 9298 508 0396 9945(28 33 4872 2936 9786 5225 9255 493 1829 2901 523 2424 27 34 7517 5610 447 23S3 7804 478 1810 4359 5406 4903 26 35 4160163 8234 4990 463 0332 4364 6339 7910 7381 25 36 2808 432 0857 7591 2960 6919 9419 509 0414 9859 24 37 5453 3481 448 0192 5538 9472 494 1948 2918 524 2336 23 38 8097 6103 2792 8115 479 2026 4476 5421 4813 22 39 4170741 8726 5392 464 0692 4579 7005 7924 7290 21 40 3385 433 1343 7992 3269 7131 9532 510 0426 9766 20 41 6028 3970 449 0591 5345 9683 495 2060 2928 0252241 19 | 12 8671 6591 3190 8420 480 2235 4587 5429 4717 13 43 418 1313 9212 5789 465 0996 4786 7113 7930 7191117 44 3956 434 1832 8387 3571 7337 9639 511 0431 966516 i , 45 6597 4453 450 0984 6145 9883 496 2165 2931 5262139 15 46 9239 7072 3582 8719 481 2438 4690 5431 4613|14 i 47 419 1880 9692 6179 466 1293 4987 7215 7930 7035113 | 43 4521 4352311 8775 3866 7537 9740 512 0429 9558 12 49 7161 4930 151 1372 6439 432 0086 497 2264 2927 527 2030 11 1 51) 9801 7548 3967 9012 2634 4787 5425 4502 10 51 4202441 4350166 6563 467 1584 5182 7310 7923 6973 9 52 5080 2784 9158 4156 7730 9333 513 0420 9443 8 l 53 7719 5401 452 1753 6727 483 0277 498 2355 2916 528 1914 7 54 421 0358 8018 4347 9298 2824 4877 5413 4383 6 55 2996 437 0634 6941 468 1869 5370 7399 7908 6853 5 56 5634 3251 9535 4439 7916 9926 514 0404 9322 4 57 8272 5866 453 2128 7009 434 0462 4992441 2899 529)790 3 58 422 0909 8482 4721 9578 3007 4961 5393 4258 2 59 3546 438 1097 7313 469 2147 5552 7481 7887 6726 1 i I 6183 3711 9905 4716 8096 500 0000 o!5 0331 9193 ' 65 64 G3 && 61 G0 59 58 f NAT. COSINE. 72 TVAT. TAN. ! ' 24 25 26 27 28 29 30 31 ' c 445 2287 466 3077 487 7326 509 5254 531 7094 554 3091 577 3503 600 8606 60 i 5773 6618 488 0927 8919 532 0826 6894 7382 601 2566 59 : 2 9260 1670161 4530 510 2585 4559 555 0698 5781262 6527 58 | 3 446 2747 3705 8133 6252 8293 4504 5144 602 041:0 57 4 6236 7250 489 1737 9919 533 2029 8311 9027 4454 56 5 9726 468 0796 5343 511 3588 5765 5562119 579 2912 8419 55 6 447 3216 4342 8949 7259 9503 5929 6797 603 2386 54 7 6708 7890 490 2557 512 0930 34 3242 9739 580 0684 6354 53 8 448 0200 469 1439 6166 4602 6981 557 3551 4573 604 0323 52 - 9 3693 4988 9775 8275 o35 0723 7364 8462 4294 51 ! 10 7187 8539 491 3386 513 1950 4465 558 1179 581 2353 826( 50 11 449 0682 470 2090 6997 5625 8208 4994 6245 605 2'14( 49 1 1 12 4178 5643 492 0610 9302 j36 1953 8811 582 0139 621E 48 i 13 7675 9196 4224 514 2980 5699 559 2629 4034 606 0192 47 14 4501173 471 2751 7838 6658 9446 6449 7930 417C 46 15 4672 6306 493 1454 515 0338 537 3194 560 0269 583 1828 814S 45 16 8171 9863 5071 4019 6943 4091 5726 607 2131 44 I 17 451 1672 472 3421) 6689 7702 538 0694 7914 9627 6112 43 j 13 5173 6978 494 2308 516 1385 4445 561 1738 584 3528 608 00! 5 42 19 8676 473 0538 5928 5069 8198 5564 7431 40SO 41 20 452 2179 4098 9549 8755 539 1952 9391 585 1335 8067 40 21. 5683 7659 495 3171 5172441 5707 562 32 H 5241 609 2054 39 22 9188 474 1222 6794 6129 9464 7048 9148 6043 38 23 453 2694 4785 4960418 9818 540 3221 563 0879 586 3056 JlO 0034 37 24 6201 8349 4043 518 3508 6980 47 if; 6965 402C 36 25 9709 475 1914 7669 7199 541 0740 8543 587 0876 801? 35 26 454 3218 5481 497 1297 519 0891 4501 564 2378 4788 611 2014 34 ' 27 6728 9048 4925 4584 8263 6213 8702 6011 33 i 28 455 0238 476 2616 8554 8278 542 2027 565 005f 588 2616 612 OOOF 32 29 3750 6185 498 2185 520 1974 5791 3888 6533 4007 31 30 7263 9755 5816 5671 9557 7728 589 0450 8008 SO 31 456 0776 477 3326 9449 9368 543 3324 5661568 4369 613 2010 29 32 42 6899 499 3082 521 3067 7092 5410 8289 6013 28 i 33 7806 4780472 6717 6767 544 0862 9254 5902211 6140018 27 ' 34 457 1322 4046 500 0352 522 0468 4632 567 3098 6134 4024 26 35 4839 7621 3989 4170 8404 6944 591 0058 8032 25 36 8357 4791197 7627 7874 545 2177 568 0791 3984 6152041 24 37 458 1877 4774 501 1266 523 1578 5951 4639 7910 6052 23 i 38 5397 8352 4906 5284 9727 8488 592 1839 616 0064 22 39 8918 480 1932 8547 8990 546 3503 569 2339 5768 4077 2-1 i 40 459 2439 5512 502 2189 524 2698 7281 6191 9699 8092 20 41 5962 9093 5832 6407 547 1060 570 0045 593 3632 617 2108 ,19 42 9486 481 2675 9476 5250117 4840 3899 7565 6126 18 43 4603011 6258 503 3121 3829 8621 7755 594 1501 618 014E 17 44 6537 9842 6768 7541 548 2404 571 1612 5437 4166 16 U5 461 0063 482 3427 5040415 526 1255 6188 5471 9375 8188 15 '46 3591 7014 4063 4969 9973 9331 5953314 6192211 14 i : 47 7119 483 0601 7713 8685 549 3759 572 3192 7255 6236 13 i '48 462 0649 4189 505 1363 527 2402 7547 7054 596 1196 620 026:- 12 , '49 4179 7778 5015 6120 550 1335 573 0918 5140 4291 11 50 7710 484 1368 8668 9839 5125 4783 9084 832C 10 51 463 1243 4959 506 2322 528 3560 8916 8649 597 3030 621 2351 9 ! 52 4776 8552 5977 7281 551 2708 574 2516 .6978 6383 8 ' ; 53 8310 485 2145 9633 529 1004 6502 6385 598 0926 6220417 7 1 54 464 1845 5739 507 3290 4727 552 0297 575 0255 4877 4452 6 55 5382 9334 6948 8452 4093 412C 8828 8488 5 56 8919 486 2931 508 0607 530 2178 7890 7999 599 2781 623 2527 4 57 465 2457 6528 4267 5906 553 1688 576 1871 6735 6566 3 58 5996 487 0126 7929 9634 5488 5748(600 0691 624 0607 2 59 9536 3726 509 1591 531 3364 9288 9625 4648 4650 1 60 466 3077 7326 5254 7094 554 3091 577 3503 8606 8694 65 64 63 G2 61 G0 1 59 58 / NAT. COTAN. NAT. SINE. 73 ' I 32 33 34 35 36 37 38 39 ' ! 529 9193 544 630T 559 1929 573 5764 587 7853 601 8150 615 6615 629 3204 60 1 53U HiSli 8830 4340 8147 588 020i; U02 0473 8907 5464 59 2 4125 545 1269 6751 574 0529 2558 2795 616 1198 7724 58 3 6591 3707 9162 2911 4910 5117 3489 9983 57 4 9057 6145 560 1572 5292 7262 7439 5780 630 2242 56 ! 5 531 1521 8583 3981 7672 9613 9760 8069 450(1 55 . 6 3986 546 1020 6390 575 0053 589 1964 603 2080 617 0359 6758 54 ! 7 6450 3456 8798 2432 4314 4400 2648 9015 53 1 8 8913 5892 561 1206 4811 6663 6719 4936 631 1272 52 9 532 1376 8328 3614 7190 9012 9038 7224 3528 51 1 10 3839 547 0763 6021 9568 590 1361 604 1356 9511 5784 50 ! fl 6301 3198 8428 576 1946 3709 3674 618 1798 8039 49 12 8763 5632 562 0834 4323 6057 5991 4084 632 0293 48 ! 13 533 1224 8066 3239 6700 8404 8308 6370 2547 47 14 3685 548 0499 5645 9076 591 0750 605 0624 8655 4800 46 i 15 6145 2932 8049 577 1452 3096 2940 619 0939 7053 45 i 16 8605 5365 563 0453 3827 5442 5255 3224 9306 44 j 17 534 1065 7797 2857 6202 7787 7570 5507 633 1557 43 18 3523 549 0228 5260 8576 592 0132 9884 7790 3809 42 i 19 5982 2659 7663,578 0950 2476 606 2198 620 0073 6059 41 20 8440 5090 564 0066 3323 4819 4511 2355 8310 40 21 535 0898 7520 2467 5696 7163 6824 4636 634 0559 39 22 3355 9950 4369 8069 9505 9136 6917 2.808 38 23 5812 550 2379 7270 579 0440 593 1847 607 1447 9198 5057 37 ! 24 8268 4807 9670 2812 4189 3758 621 1478 7305 36 25 536 0724 7236 565 2070 5183 6530 6069 3757 9553 35 26 3179 9663 4469 7553 8871 8379 6036 635 1800 34 27 5634 551 2091 6868 9923 594 1211 608 0689 8314 4046 33 1 28 8089 4518 9267 580 2292 3550 2998 622 0592 6292 32. ; 29 537 0543 6944 566 1665 4661 5889 5306 2870 8537 31 ! 30 2996 9370 4062 7030 8228 7614 5146 636 0782 30 31 5449 552 1795 6459 9397 595 0566 9922 7423 3026 29 , 32 7902 4220 8856 581 1765 2904 609 2229 9698 5270 28 33 538 0354 6645 567 1252 4132 5241 4535 623 1974 7513 27 34 2806 9069 3648 6498 7577 6841 4248 9756 26 1 35 5257 553 1492 6043 8864 9913 9147 6522 637 1998 25 36 7708 3915 8437 582 1230 596 2249 610 1452 8796 4240 24 37 5390158 6338 568 0832 3595 4584 3756 624 1069 3481 23 ' 38 2608 8760 3225 5959 6918 6060 3342 8721 22 39 5058 554 1182 5619 8323 9252 8363 5614 638 0961 21 40 7507 3603 8011 583 0687 597 1586 611 0666 7885 3201 20 41 9955 6024 569 0403 3050 3919 2969 625 0156 5440 19 42 540 2403 8444 2795 5412 6251 5270 2427 7678 18 ' 43 4851 555 0864 5187 7774 8583 7572 4696 9916 17 44 7298 3283 7577 5840136 5980915 9873 6966 639 2153 16 45 9745 5702 9968 2497 3246 6122173 9235 4390 15 . 46 541 2191 8121 570 2357 4857 5577 4473 626 1503 6626 14 47 4637 556 0539 4747 7217 7906 6772 3771 8862 13 48 7082 2956 7136 9577 599 0236 9071 6038 640 1097 12 ! 49 9527 5373 9524 585 1936 2565 613 1369 8305 3332 11 | 50 542 1971 7790 571 1912 4294 4893 c666 627 0571 5566 10 51 4415 557 0206 4299 6652 7221 5964 2837 7799 9 52 685?; 2621 6686 9010 9549 8260 5102 641 0032 8 53 9302 5036 9073 586 1367 600 1876 614 0556 7366 2264 7 54 543 1744 7451 572 1459 3724 4202 2852 9631 4496 6 55 4187 9865 3844 6080 6528 5147 628 1894 6728 5 56 6628 558 2279 6229 8435 8854 7442 4157 8958 4 57 9069 4692 8614 587 0790 601 1179 9736 6420 642 1189 3 58 544 1510 7105 573 0998 3145 3503 615 2029 8682 3418 2 59 3951 9517 3381 5499 5827 4322 629 0943 5647 1 , 60 6390 559 1929 5764 7853 8150 6615 3204 7876 / 57 56 55 54 53 52 51 50 NAT. COSINE. 74 NAT. TAN / 32 33 84 35 36o 37 38 [ 39 / 624 8694 649 4076 674 5085 700 2075 726 5425 753 5541 781 285C 809 7840 60 1 625 2739 8212 9318 6411 9871 754 0102 7542 810 2658 59 2 6786 650 2350 675 3553 701 0749 727 4318 4666 782 2229 7478 58 3 626 0834 6490 7790 5089 8767 9232 6919 311 2300 57 4 4884 651 0631 676 2028 9430 728 3218 755 3799 7831611 7124 56 ! 5 8935 4774 6268 702 3773 7671 8369 6305 812 1951 55 | 6 627 2988 8918 677 0509 8118 729 2125 7562941 784 1002 6780 54 7042 652 3064 4752 703 2464 6582 7514 57CO 3131611 53 & 628 1098 7211 8997 6813 730 1041 757 2090 785 0400 6444 52 9 5155 653 1360 678 3243 704 1163 5501 6668 5103 814 12PC M 10 9214 5511 7492 5515 9963 758 1248 9808 611? 50 11 629 3274 9663 o79 1741 9869 731 4428 5829 786 4515 815 0959 49 12 733C 654 3817 5993 705 4224 8894 759 0413 9224 5801 18 13 630 139P 7972 680 0246 8581 732 3362 4999 787 3935 816 0641 47 14 5464 655 2129 4501 706 2940 7832 9587 8649 493 46 15 9530 6287 8758 7301 733 2303 7604177 788 3364 817 0343 45 16 631 3598 656 0447 681 3016 707 1664 6777 8769 80?2 5196 44 17 7667 4609 7276 (.028 734 1253 761 3363 789 2802 818 0049 '43 i 13 632 1738 8772 682 1537 708 0395 5730 7959 7524 4905 42 19 5810 657 2937 5601 4763 735 0210 762 2557 790 2248 9764 41 20 9883 7103 683 0066 9133 4691 7157 6975 819 462E 40 : 21 633 3959 658 1271 4333 709 3504 9174 763 1759 791 1703 948r 39 1 22 8035 5441 8601 7878 736 3660 6363 6434 820 4354 38 ( 23 6342113 9612 684 2871 710 2253 8147 764 0969 792 1167 9222 37 24 6193 659 3785 7143 6630 737 2636 5577 5902 821 4093 36 25 635 0274 7960 685 1416 711 1009 7127 765 0188 793 0640 8965 35 26 4357 660 2136 5692 5390 738 1620 4800 5379 822 3640 34 27 8441 6313 9969 9772 6115 9414 794 0121 87 IS 33 1 28 636 2527 661 04 )2 686 4247 7124157 7390611 766 4031 4865 823 3597 32 29" 6614 4b73 8528 8543 5110 8649 9611 8479 31 30 637 0703 8856 687 2810 7132931 9611 767 3270 795 4359 824 3364 30 31 4793 662 3040 7093 7320 7404113 7893 9110 8251 29 32 8885 7225 688 1379 714 1712 8618 768 2517 796 3862 625 3140 28 33 638 2978 663 1413 5666 6106 741 3124 7144 8617 8031 27 34 7073 5601 9955 715 0501 7633 769 1773 797 3374 826 2925 26 35 639 1169 9792 689 4246 4898 742 2143 6404 8134 7821 25 36 5267 664 3984 8538 9297 6655 770 1037 798 2895 827 2719 24 37 9366 8178 690 2832 716 3698 743 1170 5672 7659 762C 23 38 640 3467 665 2373 7128 8100 5686 771 0309 799 2425 828 2523 22 39 7569 6570 691 1425 717 2505 744 0204 4948 7193 7429 21 40 641 1673 666 0769 5725 6911 4724 9589 SCO 1963 329 2337 20 41 5779 4969 692 0026 718 1319 9246 772 4233 6736 7247 19 42 9886 9171 4328 5729 745 3770 8878 801 1511 830 210 16 43 642 3994 667 3374 8633 7190141 8296 773 3526 6288 7075 ir 44 8105 7580 693 2939 4554 746 2824 8176 802 1067 831 1992 10 45 643 2216 668 1786 7247 8970 7354 774 2827 5849 6912 15 . 46 6329 5995 694 1557 720 3387 747 1886 7481 803 0632 832 1834 14 ; 47 644 0444 669 0205 5868 7806 6420 775 2137 5418 o759 13 48 4560 4417 695 01S1 721 2227 748 0956 6795 804 0206 833 1686 12 49 8678 8630 4496 6650 5494 776 1455 4997 6615 11 1 50 645 2797 670 2845 8813 722 1075' 749 C033 6118 9790 834 1547 10 ; I 51 6918 7061 696 3131 5502 4575 777 0782 805 4584 6481 9 52 646 1041 671 1280 7451 9930 9119 5448 9382 835 1418 8 53 5165 55CO 697 1773 723 4361 7EO 3665 7780117 8064181 6357 7 54 9290 9721 6097 8793 8212 4788 8983 836 1298 6 | 55 6473417 672 3944 698 0422 724 3227 751 2762 9460 807 3787 6242 5 56 7546 8169 4749 7663 7314 7794135 8593 8371188 4 57 648 1676 673 2396 9078 725 2101 752 1P67 88121808 3401 6136 3 58 5808 6624 699 3409 6540 6423 780 3492 8212 838 1087 2 59 60 9941 649 4076 674 0854 5085 774-1 700 2075 726 0982 5425 753 0981 5541 8173 809 3025 781 2856 7840 6041 839 0996 1 ' 57 56 55 | 54 53 52 51 50 / NAT. COT AN. NAT. SINE. 75 ' 40 41 | 42 430 440 45 46 i 47 / i 642 7876 656 0590 6b9 1306 681 9984 694 6584 707 10C8719 3398 731 3537 6C 1 643 0104 2785 34686822111 867b 3124 5418 552. 59 2 2332 4980 56281 4237 695 0767 5180 7438 750} 5SJ 3 4559 7174 7789 6363 2858 7236 9457 9485 57 1 4 6735 9367 9948 8489 4949 9291 720 1476 732 14f,7 56 . 5 9011 657 1560 670 2108,683 Ob 13 7039 708 1345 3494 3449 55 6 644 1236 3752 4266 2738 9128 3398 5511 5429 54 , 7 3461 5944 6424 4861 696 1217 5451 7528 7409 53 . 8 5685 8135 8582 69P4 3305 7504 9544 9388 52 i 9 7909 658 0326 671 0739 9107 5392 9556 721 1559 733 1367 51 10 645 0132 2516 2895 684 1229 7479 709 1607 3574 3345 50 1 11 2355 4706 5051 3350 9565 3657 5589 5322 49 i 12 4577 6895 7206 5471 697 1651 5707 7602 7299 48] 13 6798 9083 9361 7591 3736 7757 9615 9275 47 14 9019 659 1271 672 1515 9711 5S21 9806 722 162S 734 12EO 46 15 641 J240 3458 3668 685 1830 7905 710 1854 3640 3225 45 16 3460 5645 5821 3948 9988 3901 5651 519- 44 17 5679 7831 7973 6066 6982071 5948 7661 7173 43 18 7898 660 0017 673 0125 8184 4153 7995 9671 9146 42 19 6170116 2202 2276 686 0300 6234 7110041 723 1681 7351116 41 20 2334 4386 4427 2416 8315 2086 3690 3090 40 21 4551 6570 6577 4532 699 0396 4130 5698 5061 39 22 6767 8754 8727 6647 2476 6174 7705 7032 38 23 8984 661 0936 674 0876 8761 4555 8218 9712 9002 37 24 648 1199 3119 3024 687 0875 6633 7120260 724 1719 7360971 36 25 3414 5300 5172 2988 8711 230;^ 3724 2940 35 26 5628 7482 7319 5101 700 0789 4344 5729 4908 34 1 27 7842 9682 9466 7213 2866 6385 7734 6875 33 i 28 649 0056 662 1842 675 1612 9325 4942 8426 9738 8842 32 29 2268 4022 3757 688 1435 7018 713 0465 725 1741 737 0808 31 30 4480 6200 5902 3546 9093 2504 3744 2773 30 31 6692 8379 8046 5655 701 1167 4543 5746 4738 29 32 8903 6630557,6760190 7765 3241 6581 7747 6703 28 33 650 1114 2734 2333 9873 5314 8618 9748 8666 27 i 34 3324 4910 4476 689 1981 7387 7140655 726 1748 738 0629 26 1 35 5533 7087 6618 4089 9459 2691 3748 2592 25 36 7742 9262 8760 6195 702 1531 4727 5747 4553 24 1 37 9951 664 1437 677 0901 8302 3601 6762 7745 6&15 23 38 651 2158 3612 3041 690 0407 5672 8796 9743 S475' 22 39 4366 5786 5181 2512 7741 715 0830 727 1740 7390435' 21 40 6572 7959 7320 4617 9811 2863 3736 2394 20 i 41 8778 665 0131 9459 6721 703 1879 4895 5732 4353 19 f 42 652 0984 304 678 1597 8824 3947 6927 7728 6311 18: 43 3189 4475J 3734 691 0927 G014, 8959 9722 8268 17 44 5394 6646 5871 3029 8081 716 0989 728 1716 740 0225 16 45 7598 8817 8007 5131 704 0147 3019 3710 2181 15 46 9801 666098716790143 7232 2213 5049 5703 4137 14 47 653 2004 3156 2278 9332 4278 7078 7695 6092 13 , 49 4206 5325 4413 692 1432 6342 9106 9686 9046 12 49 6408 7493 6547 3531 8406 717 1134 729 1677 7410000 11 50 8609 9661 8681 5630 705 0469 3161 3668 1953 10 51 654 0810 66718286800813 7728 2532 5187 565 17 3905 9 52 3010 3994 2946 9825 4594 7213 7646 5857 8 53 5209 6160 5078 693 1922 6655 9238 9635 7808 7 54 7408 8326 7209 4018 8716 718 1263 730 1623 9758 6 55 9607 668 0490 9339 6114 706 0776 3287 3610 742 1708 5 56 655 1804 2(355 681 1469 8209 2835 5310 5597 3658 4 51 4002 4818 3599 694 0304. 4894 7333 7583 5606 3 ! 59 6198 6981 5728 2398 6953 9355 9568 7554 2 59 8395 9144 78561 4491 90 il 719 1377 731 1553 9502 1 i 130 656 0590 669 1^06 9984 6584 707 1068 3398 3537 743 1448 Oi * 49 3 48 470 46* 45 C ' 44 43 42 ' NAT. COSINE. 76 _ NAT. TAN. f ' 40 4lo 42^ 43^ 44 45 4<> J 47 J / 8390996 8692867 9004040 9325151 9656S88 oocoooo 0355303 0723687 60 i 1 5955 7976 9309 9330591 9662511 05819 61333 29913 59 2 8400915 8703087 9014580 6034 8137 1164k 67367 362031 8 3 5878 8200 9854 9341479 9673767 1746<- 73404 4246? 57 4 8410844 8713316 9025131 6928 9399 23296 79445 48734 56 5 5812 8435 903U411 9352380 968503*; 29131 85489 55006 55 ] 6 8420782 8723556 5693 7834 9690674 34966 91538 612821 64 ' 7 5755 8680 9040979 9363292 631? 40807 97589 67561 .'3 8 8430730 8733806 6267 8753 970196-2 46651 0403645 73845 52 9 5708 8935 9051557 9374216 7610 52497 09704 80132 51 10 8440688 8744067 6851 9683 9713262 5834S 15767 86423 50 11 5670 9201 9062147 9335153 G917 64201 21833 927J8 49 12 8450655 8754338 7446 9390625 9724575 70058 27904 99018 48 13 5643 9478 9072748 610} 9730236 75918 33977 -0805321 47 14 8460633 8764620 8053 9401579 5901 81782 40055 11628 46 1 15 5625 9765 9083360 7061 9741569 87649 46130 17939 45 1 16 8470620 8774912 8671 9412545 7240 93520 52221 24254 44 17 5617 8780062 9093984 8033 9752914 99394 58310 30573 43 18 8480617 5215 9300 9423523 8591 -0105272 64102 36896 42 19 5619 8790370 9104919 9017 9764272 11152 70498 43223 41 20 8490624 5528 9940 9434513 9956 17038 76598 49551 40 21 5631 8800688 9115265 9440013 9775643 22925 82702 55889 39 22 8500640 5852 9120592 5516 9781333 28817 88809 62228 38 23 5^"3 8811017 5922 9451021 7027 34712 94920 68571 37 24 8510667 6186 9131255 6530 9792724 40610 0501034 74918 36 25 5684 8821357 6591 9462042 8424 46512 07153 81269 35 26 8520704 6531 9141929 7556 9804127 52418 13275 87624 34 27 5726 8831707 7270 9473074 9833 58326 19401 93984 33 28 8530750 6886 9152615 8595 9815543 64239 25531 1-0900347 32 29 5777 8842068 7962 9484119 9821256 70155 31664 06714 31 30 8540807 7253 9163312 9646 6973 76074 37801 13085 30 31 5839 8852440 8665 9495176 9832692 81997 43942 19460 29 32 8550873 7630 9174020 9500709 8415 87923 50087 25840 28 33 5910 8862822 9379 6245 9844141 93853 56235 32223 27 : 34 8560950 8017 9184740 9511784 9871 99786 62388 38610 26' 36 5992 8873215 9190104 7326 9855603 0205723 68544 45002 25 36 8571037 8415 5471 9522871 9861339 11664 74704 51397 24 i 37 6084 8883619 9200841 8420 7079 17608 80867 57797 23 38 8581133 8825 6214 9533971 9872821 23555 87035 64201 22 39 6185 8894033 9211590 9526 8567 29506 93206 7060J 21 40 8591240 9244 6969 9545083 98P4316 35461 99381 77020 20 41 6297 8904458 9222350 9550644 9890069 41419 1-0605560 83436 19 ; 42 8601357 9675 7734 6208 5825 47381 11742 89857 18 43 6419 8914894 9233122 9561774 9901584 53346 17929 96281 17 44 8611484 8920116 8512 7344 7346 593 IF 24119 1-1002709 16 45 6551 5341 9243905 9572917 9913112 65287 30313 09141 15 46 8621621 8930569 9301 8494 8881 71263 36511 15578 14 47 6694 5799 9254700 9584073 9924654 77243 42713 22019 13 48 8631768 8941032 9260102 9655 9930429 83226 48918 28463 12 49 6846 6268 5506 9595241 6208 89212 6512J 34912 11 50 8641926 8951506 9270914 9600829 9941991 95203 61341 413P? 10 51 7009 6747 6324 6421 7777 1-0301196 67558 47623 9 52 8652094 8961991 9281738 9612016 9953566 07194 73779 542P4 F : 53 7181 7238 7154 7614 9358 13195 80004 6076U 7 54 8662272 8972487 9292573 9623215 9965154 19199 86233 6721? f 55 7365 7739 7996 8819 9970953 25208 92466 73693 5 56 8672460 8982994 9303421 9634427 6756 31220 98702 8017 4 i 57 7558 8251 8849 9640037 9982562 3723f 1-0704943 86C53 3 58 8682659 8993512 9314280 5651 837 4325- 11187 93140 2 59 7762 8775 $714 9651268 9994184 4927" 17435| 99630 1 1 60 869 867 9004040 9325151 6888 1-0000000 5530 23687 1-1106125 43 48 470 46 45 440 43 4-2 NAT. COTAN. NAT. SINE. 77 ' 4eP 4J 50 | 51 | 52 53o 54 55* / 743 14 If 754 7096 766 0444 777 1460 788 0108 798 6355 809 0170 6191620 GO 1 3394 9004 2314 3290 1898 8105 1879 3189 59 ' 9 5340 7550911 4183 5120 3688 9855 3588 48F6 58 j 3 7285 2818 6051 6949 5477 799 1604 5296 6523 57 4 9229 4724 7918 8777 7266 3352 7C04 8189 r-6 5 744 1173 6630 9785 778 0604 9054 5100 8710 9854 55 6 3115 8535 767 1652 2431 789 0841 6847 810C416 820 1519 54 7 5058 756 0439 3517 4258 2627 8593 2122 31F3 53 ! R 6999 2342 5382 6084 4413 800 0338 3826 484(- 52 < 8941 4246 7246 7909 6198 2083 5530 6509 51 i" 745 0881 6148 9110 9733 7983 3827 7234 8170 50 ii 2821 8050 768 0973 779 1557 9767 5571 8936 9832 49 \'2 4760 9951 2835 3380 790 1550 7314 811 0638 821 1492 48 I 5 6699 757 1851 4697 5202 3333 90561 2339 3152 47 ; 14 863ii 6751 6558 7024 5115 801 0797 4040 4811 46 : IB 746 0574 5650 8418 8845 6896 2538 5740 G46i' 45 I'i 2510 7548 769 0278 7GO 0665 8676 4278 7439 8127 44 ; 17 4446 9446 2137 2485 791 0456 6018 9137 9784 43 IS 6382 758 1343 3996 4304 2235 7756 812 0835 822 1440 42 19 8317 3240 5853 6123 4014 9495 2532 309G 41 20 747 0251 5136 7710 7940 5792 802 1232 4229 4751 40 21 2184 7031 9567 9757 7569 2969 5925 6405 39 22 4117 8926 770 1423 781 1574 9345 4705 7620 8059 3R ' 23 6049 759 0820 3278 3390 792 1121 6440 9314 9712 37 24 7981 2713 5132 5205 2896 8175 813 100P 823 13C4 36 1 25 9912 4606 6986 7019 4671 9909 2701 3015 35 26 748 1842 6498 6840 8833 6445 803 1642 4393 4666 34 27 3772 8389 771 0692 782 0646 8218 3375 6084 6316 33 i 28 5701 760 0280 2544 2459 9990 5107 7775 7965 32 29 7629 2170 4395 4270 793 1762 6838 946G 9614 31 30 9557 4060 6246 6082 3533 8569 -14 1155 924 1262 30 1 31 749 1484 5949 8096 7892 5304 804 0299 2844 2909 29 32 3411 7837 9945 9702 7074 2028 4532 4556 28 ! 33 5337 9724 772 1794 7831511 8843 3756 6220 6202 27 34 7262 761 1611 3642 3320 7940611 5484 7906 7847 26 1 35 9187 3497 5489 5127 2379 7211 9593 9491 25 36 ~50 1111 5383 7336 6935 4146 8938 815 1278 825 1135 '"4 37 3034 7268 9182 8741 5913 Q05 0664 2963 2778 23 38 4957 9152 773 1027 784 0547 7678 2389 4647 4420 22 39 6879 762 1036 2872 2352 9444 4113 6330 6062 21 ; 40 8800 2919 4716 4157 795 1208 5837 8013 7703 20 ' 41 751 0721 4802 6559 5961 2972 7560 9695 9343 19 42 2641 6683 8402 7764 4735 9283 816 1376 826 0983 18 43 456! 8564 774 0244 9566 6497 806 1005 3056 2622 17 44 6480 763 0445 2086 785 1368 8259 2726 4736 4260 16 45* 8398 2325 3926 3169 796 C020 4446 6416 5897 15 46 7520316 4204 5767 4970 1780 6166 8094 7534 14 47 2233 6082 7606 6770 3540 7885 9772 9170 13 48 4149 7960 9445 8569 5299 S603 817 1449 727 0806 12 49 6065 9838 775 1283 786 0367 7058 807 1321 3125 2440 11 50 7980 764 1714 3121 2165 8815 3038 4901 4074 10 . 51 9894 3590 4957 3963 797 0572 4754 6476 5708 9 52 753 1808 5465 6794 5759 2329 6470 8151 7710 8 53 3721 7340 8629 7555 4084 8185 9824 8972 7 54 5634 9214 776 0464 9350 5839 9899 818 1497 828 0603 6 55 7546 765 1087 2298 787 1145 7594 808 1612 3169 2234 5 56 9457 2960 4132 2939 9347 3325 4841 3864 4 67 754 1368 4832 5965 4732 798 1100 5037 6512 5493 3 58 3278 6704 7797 6524 2853 6749 8182 7121 2 59 5187 8574 9629 8316 4604 8460 9852 8749 1 60 7096-1766 0444 777 1460 788 0108 6355 809 0170 819 1520 829 0376 ' 4lo 1 400 39 38 37 36 35 34 i NAT. COSINE. 78 NAT. TAN. i ' 48 49 50^ 51 52 .53 3 ; 54 55 ' 1-1106125 1-1C03684 1-1917536 1-2 48972 1-2799416 l-S270448li-3763819 1-428148C LO 1 12624 10445 24579 56319 1 -2807094 78483 72242 90326 59 2 19127 17210 316^6 63672 14776 86524 80672 99178 5H ; 3 25635 23979 38679 71030 22465 94571 89108 1 -480803? 57 4 32146 30754 45736 78393 30160 1-3202624 97551 Itii'Ol 56 5 38662 37532 52799 85762 37860 10684 1-3806001 25781 5 6 45182 44316 59866 93136 45566 18750 14458 34664 r>i: 7 51706 51104 ' 66938 1-2400515 53277 26822 22922 43554(53 8 58235 57896 74015 07900 60995 34900 31392 52451 52 9 64768 64693 81097 15290 68718 42984 39869 61356 51 10 71305 71495 88184 22685 76447 51075 48353 70266 50 11 77846 78301 95276 30086 84182 59172 56844 79187 49 12 84391 85112 1-2002373 37492 91922 67276 65342 88114 .^' 13 90941 91927 09475 44903 99669 75386 73847 97049 47 14 97495 98747 16581 52320 1-2907421 83502 82358 1-4405991 46 15 M204053 1-1605571 23693 59742 15179 91624 . 90876 14940 45 16 10616 12400 30810 67169 229-13 99753 99401 23897 44 17 17133 19234 37932 74602 30713 1-3407888 1-3907934 32862 13 16 23754 26073 45058 82040 38488 16029 16473 41834 42 19 30329 32916 52190 89484 46270 24177 25019 50814 41 20 S6909 39763 59327 96933 54057 32331 33571 59S01 H ' 21 43493 46615 66468 1-2504388 61850 40492 42131 6879( fc 22 50081 5-3472 73615 11848 69649 48658 50698 7779F .;-' 23 56674 60334 80767 19313 77454 56832 59272 8680S 37 24 63271 67200 87924 26784 85265 65011 67852 95825 31 ; 25 69872 74071 95085 34260 93081 73198 76440 1-4504R50 r. 26 76478 80947 1-2102252 41742 1-3000904 81390 85034 13883 ! ; 27 83088 87827 09424 49229 08733 89589 93636 2292!: >'.'', 28 89702 94712 16601 56721 16567 97794 1-4002245 31971 :-. 29 96321 1-1701601 23783 64219 24407 1-3506006 10860 41027 ll 30 1-1?02944 08496 30970 71723 32254 14224 19483 5C09C ;>, 31 09571 15395 38162 79232 1 40106 22449 28113 59161 >( i 32 16203 22298 45359 86747 47964 30680 36749 68240 ~> : - 33 22839 29207 52562 94267 55828 38918 45393 77326 27 34 29479 36120 59769 1-2601792 63699 47162 54044 86420 26 35 36124 43038 66982 09323 71575 55413 62702 95525 '.-, 36 42773 49960 74199 16860 79457 63670 71367 1-4604632 24 37 49427 56888 81422 24402 87345 71934 80039 1374< ?3 38 56085 63820 88650 31950 95239 80204 88718 22874 22 39 62747 70756 95883 39503 1-3103140 88481 97405 32007 21 40 69414 77698 2203121 47062 11046 96764 1-4106098 41147 20 41 76086 84644 10364 54626 18958 1-3605054 14799 50291 19 42 82761 91595 17613 62196 26376 13350 23506 5945: ta 43 89441 98551 24866 69772 34801 21653 32221 686 It 17 44 96126 1-1805512 32125 77353 42731 29963 40943 7778? 16 45 1-1402815 12477 39389 84940 50668 38279 49673 859G7 15 46 09508 19447 46658 92532 58610 46602 58409 9615f it 47 16206 26422 53932 1-2700130 66559 54931 67153 1-470535C 13 48 22908 33402 61211 07733 74513 63267 75904 1455: J [2 49 29615 40387 68496 15342 82474 71610 84662 23764 1: 50 36326 47376 75786 22957 90441 79959 93427 329S3 1C 51 43041 54370 83081 30578 98414 88315 1-4202200 42210 ! , 52 49762 61369 90381 38204 1-3206393 96678 10979 5144? $ 53 564S6 68373 97687 45835 14379 1-3705047 19766 60688 1 54 63215 75382 1-2304997 53473 22370 13423 28561 69938 (' 55 69949 82395 12313 61116 3C368 21806 37362 79197 - 56 76687 89414 19634 68765 3S371 30195 46171 88463 -] ,57 83429 T6437 26961 76419 46381 38591 54988 9773P ; 58 90176 1-1903465 342y2 84079 54397 46994 63811 1-4S07021 ! 59 96928 10498 41629 91745 62420 55403 72642 16311 i ,60 1-1503684 17536 48972 99416 70448 63819 81480 25610 i ' 41 40 39o 38 37 36 35 34 ' NAT. COTAN. ; i NAT. SINE. 79 ' / 5t> 57 58 59 60 61 62 68 ' 829 0376 638 6706 848 0481 857 1673 866 0254 874 6197 S82 9476 891 OC65 CO 1 2002 8290 2022 3171 1708 7607 8830841 1365 59 2 362S 9873 3562 4668 3161 9016 2206 270? 58 3 5252 839 1455 5102 6164 4614 875 0425 3569 4G24 57 ; 4 6877 3037 6641 7660 6066 1832 4933 5342 56 i 5 8500 4618 8179 9155 7517 3239 6295 6659 5 ; e 830 0123 6199 9717 858 0649 8967 4645 7656 7975 54 7 1745 7778849 1254 2143 8670417 6051 9017 9291 53 8 3366 9357 2790 3635 1866 7455 884 0377 892 0606 52 ' 9 4987 840 0936 4325 5127 3314 8359 1736 1920 51 ! 10 6607 2513 5860 6619 4762 376 0263 3095 3234 50 11 8226 4090 7394 8109 6209 1665 4453 4546 49 , 12 9845 5666 8927 9599 7655 3067 5810 5858 48 ! 13 831 1463 7241 850 0459 859 1088 9100 4468 7166 7169 47 14 3080 8816 1991 2576 868 0544 5868 8522 8480 46 15 4696 841 0390 3522 4064 1988 7268 9876 9789 45 ' 16 6312 1963 5053 5551 3431 8666 385 1230 893 1098 44 17 7927 3536 6582 7037 4874 877 0064 2584 240G 43 . 18 9541 5108 8111 8523 6315 1462 3936 3714 42 . 19 8321155 6679 9639 860 0007 7756 2858 5288 5021 41 20 2768 8249 851 1167 1491 9196 4254 6639 6326 40 21 4380 9819 2698 2975 869 0636 5649 7989 7632 39 1 22 5991 342 1388 4219 4457 2074 7043 9339 8936 38 ! 23 7602 2956 5745 5939 3512 8437 886 0688 894 0240 37 i 24 9212 4524 7269 7420 4949 9830 2036 1542 36 ! 25 833 0822 6091 8793 8901 6386 878 1222 3383 2844 35 i 26 2430 7657 8520316 861 0380 7821 2613 4730 4146 34 27 4038 9222 1839 1859 9256 4004 6075 5446 33 1 28 5646 843 0787 3360 3337 870 0691 5394 7420 6746 32 29 7252 2351 4881 4815 2124 6783 8765 8045 31 j 30 8858 3914 6402 6292 3557 8171 887 0108 9344 30 31 834 0463 5477 7921 7768 4989 9559 1451 8950641 29 32 2068 7039 9440 9243 6420 879 0946 2793 193S 28 . 33 3672 8600 853 0958 862 0717 7851 2332 4134 3234 27 1 34 5275 844 0161 2475 2191 9281 3717 5475 4529 26 | 35 6877 1720 3992 o664 871 0710 5102 6815 5824 25 36 8479 3279 5508 5137 2133 6486 8154 7118 24 | 37 935 0080 4838 7023 6608 3566 7869 9492 8411 23 38 1680 6395 8538 8079 4993 9251 388 0830 9703 22 ! 3'.) 3279 7952 854 0051 9549 6419 880 0633 2166 896 09C4 21 40 4878 9508 1564 863 1019 7844 2014 3503 2285 20 ! 41 6476 345 1064 3077 2483 9269 3394 4838 3575 19 ' 42 8074 2618 4588 3956 872 0693 4774 6172 4864 18 - 43 9670 4172 6099 5423 2116 6152 7506 6153 17 44 336 1266 5726 7609 6889 3538 7530 8839 7440 16 , 45 2862 7278 9119 8355 4960 8907 889 0171 8727 15 46 4456 8830 855 0627 9820 6331 881 0284 1503 897 0014 14 ! 1 47 6050 846 0381 2135 864 1284 78011 1660 2834 1299 13 i 18 7643 1932 3643 2748 92211 3035 4164 2584 12 19 9236 3481 5149 4211 873 0640 4409 5493 3866 11 50 ^37 0827 5030 6655 5673 2058 5782 6822 5151 10 '' Fl 24 IP 6579 8160 7134 3475 7155 8149 6433 9 ! 52 40U9 8126 9664 8595 4891 8627 9476 7715 8 B3 559^ 9673 856 1 168 865 0055 6307 9898 890 0803 8996 7 , 54 7187 ~47 1219 2671 1514! 77228821269 2128 898 0276 6 1 55 8775 2765 4173 29731 9137 2638 3453 1555 5 1 56 838 0363 4309 5674 4430 874 0550 4007 4777 2834 4 57 19SC 5853 7175 5887 1963 5376 6100 4112 3 ' 58 3536 7397 8675 7344 3375 6743 7423 628S 2 i 59 5121 8939 857 0174 8799 4786 8110 8744 6665 1 i 60 6706 848 0431 1673 866 0254 6197 9476 891 0065 7C40 ' 33o 32 31 80 29 28 27 26 ' NAT. COSINE. ^X*^7 ^~^~-- '80 WAT. TAN. ' 56 57 58 5D 60" 61 62 (53 . ' c 25GIO 1-5-J98650 1-6003345 1-6642795 l7:J20r;OS 1-8040478 1-8807266 1-9626105 GO 1 34916 1-5408460 13709 53766 32149 52S60 20470 40227 59 2 44231 18280 24082 64748 43803 65256 33690 54364 5 3 53554 28108 34465 75741 55468 77664 46924 685 Ifc 57 4 62S84 37946 44858 86744 67144 90086 60172 82688 56 5 72223 47792 55260 97758 78833 1-8102521 73436 96874 ',', 6 81570 57647 65672 1-6708782 90533 14969 86713 1-9711077 54 7 90925 67510 76094 19818 7402245 27430 1-8900006 25296 5b g .-4900288 77383 86525 30864 13969 399C4 13313 39531 52 9 09659 87264 96966 41921 25705 52391 26635 53782 51 i U) 19039 97155 1-6107417 52988 37453 64892 39971 68050 ec 11 28426 1-6507054 17878 64067 49213 77405 53322 82334 4: i 12 37822 16963 28349 75156 60984 89932 66688 96635 i.- : 13 47225 26830 38829 86256 72768 1-8202473 80068 1-9810952 17 14 56637 36806 49320 97367 84564 15026 93464 25286 l< 15 66058 46741 59820 1-6808489 96371 27593 1-9006874 39636 if-! 16 75486 56685 70330 19621 1-7508191 40173 20299 54003 44 17 84923 66639 80850 30765 20023 52767 33738 68387 '3 IS 94367 76601 91380 41919 31866 65374 47193 82787 12 19 1 '5003821 86572 1-6201920 53085 43722 77994 60663 97204 11 20 13282 96552 12469 64261 55590 90628 74147 1-99H637 1C 21 22751 1-5606542 23029 75449 67470 1-8303275 87647 26087 1 22 32229 16540 3359 86647 79362 15936 1-9101162 40554 & 23 41716 26548 44178 97856 91267 28610 14691 5503? 37 24 51210 36564 54768 1-6909077 1-7603183 41297 28236 69539 if ; , 25 60713 46590 65368 20308 15112 53999 41795 84056 :r 26 70224 56625 75977 31550 27053 66713 55370 98590 M 2? 79743 66669 86597 42804 39007 79442 68960 2-0013142 .4: ! , 28 89271 76722 97227 54069 50972 92184 82565 27710 /] 29 98807 86784 163C7%7 65344 62950 1-8404940 96186 4229E 31 30 1-5108352 96856 18517 76631 74940 17709 1-9209821 56897 ;' \ 31 17905 1-5706936 29177 87929 86943 30492 23472 71516 >' ' 32 27466 1702t 39847 99238 9895R 43289 37138 86153 ;:,. 33 37036 27126 50528 1-7010559 1-7710985 56099 50819 2-0100801 '2'i 34 46614 37234 61218 21890 23024 68923 64516 15477 2C 35 56201 47352 71919 33233 35076 81761 78228 30164 '?' 36 65796 57479 82630 44587 47141 94613 91956 4486? 24 ! 37 75400 67615 93351 55953 592 IP 1-8507479 I -9^05699 59592 ); 38 85012 7776C 1-6404082 67329J 71307 20358 19457 74331 25 39 94632 87915 14824 78717 83409 33252 33231 8908S 21 40 1-5204261 98079 25576 90116 95524 46159 47020 2-0903862 21 ! 41 1389S 1-5808253 36338 1-7101527 1 7S07651 59080 10825 18654 if 42 23545 18436 47111 12949 19790 72015 74645 33462 43 33200 28628 57893 24382 31943 84965 88481 4828? 7 44 42863 38830 68687 35827 44107 97928 1-9402333 63133 45 52535 49041 79490 47283 56285 1-8610905 16200 77994 r . 46 62215 59261 90304 58751 68475 23396 30083 92873 4 47 71904 69491 1-6501128 70230 80678 36902 43981 2-0 07769 48 81602 79731 11963 81720 92893 49921 57896 22683 2 49 91308 8997!; 22808 93222 1-7905121 62955 71826 37615 ill , 50 l-5?01023 l 5900238 33663 1-7204736 17362 76003 85772 52565 If' . 51 10746 10505 44529 16261 29616 89065 99733 67532 9' 1 52 20479 20783 55405 27797 41883 1-6702141 1-9513711 82517 8 53' 30219 31070 66292 39346 54162 15231 27704 97519 7 , 54, 39969 41366 77189 50905 66454 28336 41713 2-0412540 (. 55] 49727 51672 88097 62477 78759 41455 55739 27578 E , 56 59494 61987 99016 74060 91077 54588 69780 42634 4 ! 57 69270 72312 1-6609945 85654 1-9003408 67736 83837 57706 3 i 58 79054 82647 20884 97260 15751 80898 97910 7280C ;. 1 59 83848 92991 31834 1-7E08878 28108 94074 1-9612000 87910 ] 60 98650 1-6003345 42795 20508 40478 1-8807265 26105 2-050303? I '1 33^ 3-2 31 30 29 ^ 28 27 26 ' NAT. COTAN. 1 NAT. SINE. 81 . f 64 65 66 67 68 69 70 71 , ' J 898 7910 906 3078 913 5455 920 5049 927 1839 933 5804 939 6926 945 5186 60 ! 1 9215 4307 6637 6185 2928 6846 7921 6132 59 : 2 S99 04S9 5535 7819 7320 4016 7888 8914 7078 58 ' 3 1763 6762 9001 8455 5104 8928 9907 8023 57 4 3035 7989 9140181 9589 6191 9968 940 0899 8918 56 5 4307 9215 1361 921 0722 7277 934 1007 1891 9911 55 ' 6 5578 907 0440 2540 1854 8363 2045 2881 946 0854 54! 7 6848 1665 3718 2986 9447 3082 3871 1795 53 ' 8 8117 2888 4895 4116 928 0531 4119 4860 2736 52 j ' 9 9386 4111 6072 5246 1614 5154 5848 3677 51 : 10 900 0654 5333 7247 6375 2696 6189 6835 4616 50 11 1921 6554 8422 7504 3778 7223 7822 5555 49 12 3188 7775 9507 8632 4858 8257 8808 64915 4S 13 4453 8995 9150770 9758 5938 9289 9793 7430 47 14 5718 908 0214 1943 922 0884 7017 935 0321 941 0777 8366 46 15 6982 1432 3115 2010 8096 1352 1760 9301 45 16 8246 2649 4286 3134 9173 2382 2743 947 0236 44 17 9508 3866 5456 4258 929 0250 3412 3724 1171) 43 i 18 901 0770 5082 6626 5381 1326 4440 4705 210S 42 ; 19 2031 6297 7795 6503 2401 5468 5686 3035 41 ; 20 3292 7511 8963 7624 3475 6495 6665 3966 40 21 4551 8725 9160130 8745 4549 7521 7644 4897 39 ' 22 5810 9938 1297 9865 5622 8547 8621 5827 38 i 23 7068 9091150 2462 923 0984 6694 9571 9598 6756 37 24 8325 2361 3627 2102 7765 936 0595 942 0575 7684 36 ; 25 9582 3572 4791 3220 8835 1618 1550 8612 35 1 i 26 902 0838 4781 5955 4336 9905 2641 2525 9538 34 i 27 2092 59SO 7118 5452 930 0974 3662 3498 948 0464 33 ! 28 3347 7199 8279 6567 2042 4633 4471 138E 32 ! 29 46CO 84C6 9440 7682 3109 5703 5444 2313 31 i 30 5853 9613 917 0601 8795 4176 6722 6415 3237 30 1 31 7105 C1008U 1760 9908 5241 7740 7386 4159 29 ' 32 8356 2024 2919 924 1020 6306 8758 8355 5081 28 ! 33 9606 3228 4077 2131 7370 9774 9324 6002 27 1 34 903 0856 4432 5234 3242 8434 937 0790 943 0293 6922 26 35 2105 5635 6391 4351 9496 1806 1260 7842 25 ! 36 3353 6837 7546 5460 931 0558 2820 2227 87t)l 24 | 37 4600 8038 8701 6568 1619 3833 3192 9678 23 ; ; ss 5847 9236 9855 7676 2679 4846 4157 949 05f 5 22 39 7093 9110436 918 1009 8782 3739 5858 5122 1511 21 1 40 8338 1637 2161 9888 4797 6869 6085 2426 -20 ' 41 9582 2835 3313 925 0993 5855 7880 7048 3341 19 ' 42 904 0825 4033 4464 2097 6912 8889 8010 4255 18 i 43 2068 5229 5614 3201 7969 9898 8971 51(iP 17 i 44 3310 6425 6763 4303 9024 938 0906 9931 6080 16 45 4551 7620 7912 5405 932 0079 1913 944 0890 6991 15 46 5792 881F 906C 6506 1133 2920 1849 7902 14 47 7032 912 COOF 919 020? 7606 2186 3925 2807 8812 13 49 8271 1201 1353 8706 3238 4930 3764 9721 12 49 950P 2393 249P 9805 4290 5934 4720 950 0629 11 50 9C5 0746 3584 3644 926 0902 5340 6938 5675 1536 11' 51 1983 4775 4788 2000 6390 7940 6630 2443 i. 52 321P 5965 5931 3096 7439 8942 7584 3348 6 53 4454 7154 7073 41 92 8488 9943 8537 4253 7 54 5688 8342 82 IF 5286 9535 939 0943 9489 5157 6 55 6922 9529 9356 6380 933 0582 1942 9450441 6061 5 56 8154 9130716 920 04PP 7474 1628 2940 1391 6963 4 57- 9386 1S02 1635 8566 2673 3938 2341 7865 3 j 58 006 0618 3087 2774 9658 3718 4935 3290 876( ; 2 | 59 1848 4271 3912 927 0748 4761 5931 4238 9666 1 ' 60 3078 5455 5049 1839 5804 6926 5186 951 0565 25 24 23 22o 21 20 19 18 NAT. COSINE. i 8*2 NAT. TAN. G4 65 66 67 G8 69 70^ 71 ' 2-0503038 2-1445069 2-346(1368 2-3558524 2-4750869 2-6050891 2-7474774 2-9042109 60 1 1 181S5 61366 77982 77590 71612 73558 99661 69576 ot- 2 33349 77683 95580 96683 92386 96259 2-7524588 9708!) 5^, 1 3 48531 94021 2-2513221 2-C615801 2-4813190 2-6118995 495542-912464957! 1 4 637-3". 2-1510378 30885 34946 34023 41766 74561 52256 .-)!, 5 i 6 78950 94187 26757 43156 48572 66283 54118 73316 54887 75781 64571 87411 99h08 2-7624695 79909 55! 2-9207610:54 7 2'0609442 59575 ' 84016 92540 96706 2-6210286 49822 35358 53! 8 24716 76015 2-2601773 2-3711791 2-4917660 33196 74990 63152^52 ! 9 40008 92476 19554 31068 38645 56141 2-7700 199J 909955]! K 55318 2-1608958 37357 50372 59661 79121 25448 2-9318885 50 1 11 70646 25460 55184 69703 80707 26302136 50738 46822 49 : is 85994 41983 73035 89060 2-5001784 251S6 76069 748071481 ' 13 20701359 58527 P0f:09 2-::R08444 22891 48271 2-7801440 2-9402840 47 14 16743 750912-2708807 27855 44029 71392 26853 30921 46 IB 32146 91677 26729 47293 65198 94549 52307 5ff05(i 4fi 16 47567 2-1708283! 44674 66758 86398 2 64 17741 77802 87227 4-1 17 63007 24911 62643 86250 2 5107629 40969 2-7003339 2-9515453 43 IS 78465 41559 80636 2-::905769 288:10 64232 28917 43727 42 1; 93942 58229 98653 25316 50183 87531 54537 72050 11 20 2-0509438 74920 2-2816693 44889 71507 2-6510867 80198 2-9600422 it" 2 24953 91631 34758 64490 92863 34238 2-8005901 28842 39 22 40487 8-1808364 52?46 84118 2-5214249 57645 31646 57312 38 123 56039 25119 70959 2-4003774 35667 81089 57433 85831 37 24 71'UO 41894 89096 23457 57117 2-6604569 83263 2-9714399136 25 87200 58691 2-2907257 43168 78598 28085 2-8109164 43016 35i 26 2 or02809 75510 25442 62906 2-5 "001 1 1 51638 35048 71C83J34 27 18437 92349 43651 82672 21655 75227 61004 2-9800400 33 28 34085 2-1909210 61885 2-4102465 43231 98853 87003 29167 32 29 49751 26093 80143 2^286 64839 2-6722516 2-8213045 57983 : j ,i 3C 65436 42997 98425 42136 86479 46215 39129 86850 3' 31 81140 59923 2-3016732 62013 2-5408151 69951 65256 2-9915766 29 32 96864 76871 35064 81918 29855 93725 91426 44734 2- 33 21012607 93840 53420 2-4201851 51591 2-6817535 2-8"17639 73751 27 34 28369 2.9010831 71801 21812 73359 41383 4389( "000282(1 26 35 44150 27843 90206 41801 95160 65267 7019C 31939 25 36 595l 44878 2-3108637 61819 2-5516992 89 ICO 96539 6110S 24 37 75771 61934 27092 81864 38858 2-6913149 2-8-122926 90330 23 38 91611 79012 45571 2-4 01938 60756 37147 49356 30HP603 22 3! 2-1107470 96112 64076 22041 82686 61131 75831 48926 21 4( 23348 22113234 82606 42172 2-5604649 85254 2-8502349 78301 20 41 39246 30379 2-3201160 62331 26645 2-7009364 28911 >02772S 111 42 55164 47545 19740 82519 48674 33513 55517 37207 18 i43 71101 64733 38345 2-4402736 70735 57699 82168 66737 17 44 87057 81944 56975 22982 92830 81923 -'8608863 96320 16 45 2-1203034 99177 75630 43256 2-5714957 2-7106 186 3^602 3-0325954 IB 46 19030 2-2216432 94311 63559 37118 30487 62386 55641 14 47 35046 33709 2-3313017 83891 59312 54826 89215 85381 13 48 51082 51009 31748 2-4504252 81539 79204 2-87 1(^088 3-0415173 12 49 67137 68331 50505 24642 2-5863SCO 2-7203620 43007 45018 11; 5C 83213 85676, 69287 45061 26094 28076 69970 7491? 10 51 99308 2-2 03043 88095 65510 48421 52569 96979 30504866 g 52 2-1315423 20433 2-3406928 85987 70782 77102 2-8824033 34870 8 53 31559 37845 25787 2-4606494 93177 2T01674 51132 64928 7 54 47714 55280 44672 27030 2-5915606 26284 78277 95038 6 55 63890 72738 63582 47596 38068 50934 2-S905467 106,25203 5: 56 80085 90218 82519 68191 60564 75623 32704 55421 4 57 96301 2-2407721 2-3501481 88816 83095 2-7400352 59986 85694 3 |58 2-1412537 25247 20469 2-4709470 26005659 25120 87314 3-0716020 2 59 28793 42796 39483 30155 28258 49P27 2-9014F83 464OT 1 60 45069 60368 58524 50869 50891 74774 42109 76835 G ' 25 24 23 22 21 20 19 18 ' NAT. COTAN. 1 NAT. SINE. 83 t 72- 73^ 74 75 7G 770 78 79 ' 951 0565 956 3048 961 2617 965 9258 970 2957 974 3701 978 1476 961 6272 60 1 1464 3898 3418 9660011 3661 4355 2080 682b '59 i 2 2361 4747 4219 0762 4363 5C08 2684 7380 58 3 3258 5595 5019 1513 5065 5660 3287 7933 57 4 4154 6443 5818 2263 5766 6311 3889 8485 56 5 5050 7290 6616 3012 6466 6962 4490 9037 55 ' 6 5944 8136 7413 3761 7165 7612 5090 9587 54 1 7 6838 8981 8210 4508 7863 8261 5689 982 0137 53 8 7731 9825 9005 5255 8561 8909 6288 Off 6 52 9 8623 957 0669 9800 6001 9258 9556 6886 1234 51 10 9514 1512 962 0594 6746 9953 375 0203 7483 1781 11 952 0404 2354 138? 7490 9? 1 0649 0849 807<: 2327 49 12 1294 3195 2180 8234 1343 1494 8674 2873 48 13 2183 4035 2972 8977 2036 2138 9268 3417 47 14 3071 4875 3762 9713 2729 2781 9862 3961 46 15 3958 5714 4552 967 0459 3421 3423 979 0455 45U4 45 16 4844 6552 5342 1200 4112 4065 1047 504(- 44 1 17 5730 7389 6130 1939 4802 4706 163R 5587 43 I 18 6615 8225 6917 2678 5491 5345 2228 6128 42 19 7499 9060 7704 3415 6180 5985 2818 6668 41 20 8382 9895 8490 4152 6867 6623 3406 7206 40 21 9264 958 0729 9275 4888 7554 7260 3994 7744 39 22 9530146 1562 963 0060 5624 8240 7897 4581 8282 38 23 1027 2394 0843 6358 8926 8533 5167 8818 37 24 1907 3226 1626 7092 9610 9168 5752 9353 36 25 2786 4056 2408 7825 972 0294 9802 6337 9886 35 26 3664 4886 3189 8557 0976 976 0435 6921 983 0422 34 27 4542 5715 3969 9288 1658 1069 7504 0955 33 i 28 5418 6543 4748 J68 0018 2339 1699 8086 1487 32 29 6294 7371 5527 0748 3020 2330 8668 2019 31 1 30 7170 8197 6305 1476 3699 2960 9247 2549 30 1 31 8044 9023 7081 2204 4378 3589 9827 3079 29 32 8917 9848 7858 2931 5056 4218 980 0405 3608 28 1 33 9790 959 0672 8633 3658 5733 4845 0983 4136 27 34 954 0662 1496 9407 4383 6409 5472 1560 4663 26 35 1533 2318 964 0181 5108 7084 6098 2136 5189 25 36 2403 3140 0954 5832 7759 6723 2712 57 IF 24 37 3273 3961 1726 6555 9432 7347 3286 6239 23 38 4141 4781 2497 mi 9105 7970 3860 6763 22 1 39 5009 5600 3268 7998 9777 8593 4433 728( 21 40 5876 6418 4037 8719 973 0449 9215 5005 7608 20 41 6743 7236 4806 9438 1119 9836 5576 8330 19 42 7608 8053 5574 969 01-57 1789 977 0456 6147 88EI 18 43 8473 8869 6341 0875 2458 1075 6716 9370 17 44 9336 9684 7108 1593 3125 1693 7285 9889 16 45 955 0199 960 0499 7873 2309 3793 2311 7853 984 0407 15 i 46 1062 1312 8638 3025 4459 2928 8420 0924 14 47 1923 2125 9402 3740 5124 3544 8986 1441 13 48 2784 2937 965 0165 4453 5789 4159 9552 195C 12 49 3643 3748 0927 5167 6453 4773 9810116 2471 11 50 4502 4558 1689 5879 7116 5387 0680 2985 10 ' 51 5361 5368 2449 6591 7778 5999 1243 3498 9 52 6218 6177 3209 7301 8439 6611 1805 4010 8 ! 53 7074 6984 3968 8011 9100 7222 2366 4521 7 54 7930 7792 4726 8720 9760 7832 2927 5032 6 55 8785 8598 5484 9426 974 0419 8442 3486 5542 5 56 9639 9403 6240 970 0136 1077 905C 4045 6050 4 57 956 0492 961 0208 6996 OS4S 1734 965 4603 655E 3 58 1345 1012 7751 154 2390 978 02GC &16C 706C 2 59 2197 1815 8505 2253 3046 087 57ie 7572 ! 60 3046 2617 925S 2957 3701 1471 6272 8076 ' 17 16 15 14 13 12 11 IQo NAT. COSINE. 84 HAT. TAN. ' 72 73o 740 75 7 . 77 78 > 3-0776835 3-2708526 3-4S74144 3-7320508 4 -CIO ' C 09 4 -33 14759 4-7046301 60 1 3-0807325 42588 3-4912470 63980 575701 72-316 4-7113686 69 2 37369 76715 50874 3-7407546 4-0207446:4-3430018 81256 5R 3 68468 3-2810907 89356 51207 57440 878664-7249012 57 4 99122 45164 3-5027916 94963 4-0307550 4-3545861 '4-7316954 56 5 3-0929831 79487 66555 3-7538815 57779(4-3604003 85U83 55 6 60596 3-2913876 3-5105273 82763 4-04081251 62293)4-7453401 54 7 91416 4R330 44070 3-7626807 58590 4-3720731 4-7521907! 53 ! Q 3 1022291 82851 82946 70947 4-0509174 79317 90603 52 9 53223 3-3017438 3-5221902 3-7715185 59877 4-3838054 4-7659490 51 10 84210 52091 60938 59519 4-0610700 96940 4-7728568 50 11 3-1115254 86811 3-5300054 3-7803951 61643 4-3965977 97837 49 1 12 46353 3-3121598 39251 48481 4-0712707 4-4015164 J4-7867300 48 13 77509 56452 78528 93109 63892 74504 4-7936957 47 , 14 ? 1208722 91373 3-5417836 3-7937835 4-0815199 4-4133996 4-8006808 46 15 39991 3-3226362 57325 82661 66627 93641 76854 45 16 71317 61419 96846 i'-RI)^75~n 4-0918178 4-4253439 4-8147096 44 17 3-1302701 96543 3-5526449 72609 69852 4-4313392 4-8217536 43 IS 34141 3-3331736 76133 3-8117733 4-1021649 73500 88174 42 K) 65639 66997 3-5615900 62957 73569 4-4433762 4-8359010 41 20 97194 3-3402326 55749 3-8208281 4-1125614 94181 4-8430045 40 21 3-1428807 37724 95681 53707 77784 4-4554756 4-8501282 39 22 60478 73191 3-5735696 99233 4-1230079 4-4615489 72719 38 23 92207 3-3508728 75794 3-8344861 82499 763794-8644359 37 1 24 i 25 3-1523994 55840 44333 80008 3-5815975 56241 90591 3-8436424 4-1335046 87719 4-47374284-8716201 98636 88248 36 35 26 87744 3-3615753 96590 82358 4-1440519 4-4860004 4-8860499 34 27 3-1619706 51568 3-5937024 3-8528396 93446 4-4921532 4-8932956 33 28 51728 87453 77543 74537 4-1546501 83221|4-9005620 32 29 83808 3-3723408 3-6018146 3-8620782 99665 4-5045072 78491 31 30 31715948 59434 58835 67131 4-1652998 4-5107085 4-9151570 30 31 4S147 95531 99609 3-8713584 4-1706440 69261 4-9224859 29 32 80406 3-3831699 3-6140469 60142 60011 4-5231601 98358 28 33 3-1812724 67938 81415 3-8806805 4-1813713 94105 4-9372068 27 34 45102 3-3904249 3-6222447 53574 67546 4-5356773 4-9445990 26 35 77540 40631 63566 3-8900448 4-1921510 4-5419608 4-9520125 25 i 36 .M910039 77085 3-6304771 47429 75606 82608 94474 24 37 42598 3-4013612 46064 94516 4-2029835 4-5545776 4-9669037 23 38 75217 50210 87444 3-9041710 84196 4-5609111 4-9743817 22 1 39 3-2007897 86882 3-6428911 89011 4-2138690 72615 4-9818313 21 ] 40 40638 3-4123626 70467 3-9136420 93318 4-5736287 94027 20 41 73440 60443 3-6512111 83937 4-2248080 4-5800129 4-9969459 19 42 3-2106304 97333 53844 3-9231563 4-2302977 6414115-0045111 13 43 39228 3-4234297 95665 79297 58009 4-5928325 5-0120984 17 44 72215 71334 3-6637575 3-9327141 4-2413177 92680 97078 16 45 3-2205263 3-4308446 79575 75094 68482 4-6057207 5-0273395 15 46 38373 45631 3-6721665 3-9423157 4-25239234-6121908 5-0349935 14 47 71546 82891 63845 71331 79501 86783 5-0426700 13 \ 46 3-2304780 3-4420226 3-6806115 3-9519615 4-2635218 4-6251832 5-0503690 12 49 38078 57635 48475 68011 91072 4-6317056 80907 11 50 71438 95120 90927 3-9616518 4-2747066 82457 5-0658352 10 \ i 51 3-2404860 3-4532679 3-G933469 65137 4-2803199 4-6448031 5-0736025 9 i 52 38346 70315 76104 3-9713868 59472 4-6513788 5-0313928 8 ; 53 71895 3-4608026 3-7018830 62712 4-2915885 79721 92061 7 54 3-2505508 45S13 61648 3-9811669 72440 4-6645832 5-0970426 6 55 39184 83676 3-7104553 60739 4-3029136 4-6712124 5-1049024 5 56 72924 3-4721616 47561 3-9909924 . 85974 78595 5-1127855 4 57 3-2606728 59632 90658 59223 4-3142955 4-6845248 5-1206921 3 58 40596 97726 3-7233847 4-0008636 4-3200079 4-6912083 86224 2 59 74529 3-4835896 77131 58165 57347 79100 5-1365763 I 60 3-2708526 74144 3-7320508 4-0107809 4-3314759 4-7046301 5*1445540 17 16 15 14 13 12 11 ' NAT. COTAN. ! NAT. SINE. 85 ' 80 81 83o 83 84o 85 8() 87 / 9948 078 3876 883 9902 631 9925 462 9945 219 9961 947 9975 641 9986 295 60 1 582 ,)877 333 9903 035 816 523 9962 200 843 447 59 2 9849 086 792 489 9926 169 825 452 9976 015 598 58 3 589 :)878 245 891 521 9946 127 704 245 743 57 4 9850 091 697 9904 293 873 428 954 4451 898 56 5 593 J879 148 694 9927 224 729 9963 204 645 9987 046 55 6 9351 093 599 9905 095 573 9947 026 453 843 194 54 7 593 ;)380 048 494 922 327 701 9977 040 340 53 ! 8 9852 092 497 893 9928271 625 948 237 486 52 9 590 945 9906 290 618 921 9964 195 433 631 51 10 9853 087 9881 392 687 965 9948 217 440 627 775 50 11 583 838 9907 083 9929 310 513 685 821 919 49 12 9854 079 9882 284 478 655 807 929 9978 015 9988 061 43 13 574 728 873 999 9949 101 9965 172 207 203 47 14 9855 068 9833 172 9908 266 9930 342 393 414 399 344 46 15 561 615 659 685 685 655 589 484 45 16 9856 053 9884 057 9909051 9931 026 976 895 779 623 44 ' i 17 544 493 442 367 9950 266 9966 135 968 761 43 \ 13 9857 035 939 832 706 556 374 9973 156 899 42 19 524 9835 378 9910 221 9932 045 844 612 343 9989 035 41 ' 20 9858013 817 610 334 9951 132 849 530 171 40 21 501 9836 255 997 721 419 9967 085 716 306 39 22 988 692 9911 384 3933 057 705 321 900 440 33 23 9859 475 9887 128 770 393 990 555 998C 084 573 37 24 960 564 9912 155 728 9952 274 789 267 706 36 25 9860 445 998 540 9934 062 557 9963 022 450 837 35 26 929 9838 432 923 395 840 254 631 968 34 27 9361412 865 9913 306 727 9953 122 485 811 9990 098 33 28 894 9889 297 683 9935 058 403 715 991 227 32 29 9362 375 723 9914 069 389 683 945 9981 170 355 31 30 856 9890 159 449 719 962 9969 173 348 482 30 31 9863 336 588 823 9936 047 9954 240 401 525 609 29 32 815 9891 017 9915 206 375 518 628 701 734 26 33 9864 293 445 584 703 795 854 877 859 27 34 770 872 961 9937 029 9955 070 9970 080 9982 052 933 26 35 9865 216 3892 298 9916 337 355 345 304 225 9991 106 25 | 36 722 723 712 679 620 528 398 228 24 1 37 9866 196 9893 148 9917 036 9938 OU3 893 750 570 350 23 1 38 670 572 459 326 9956 165 972 742 470 22 39 9867 143 994 832 648 437 9971 193 912 590 21 40 615 9894416 9918 204 969 708 413 9983 082 709 20 41 9868 087 833 574 9939 290 978 633 250 827 19 42 557 9395 258 944 610 9957 247 851 418 944 18 ' 43 0869 027 677 9919314 923 515 9972 069 585 9992 060 17 44 496 9396 096 682 9940 246 783 286 751 176 16 45 964 514 9920 049 563 9958 049 502 917 290 15 1 46 9370 431 931 416 830 315 717 9984 031 404 14 | 47 897 9897 347 782 9941 195 580 931 245 517 13 48 9371 363 762 9921 147 510 844 9973 145 408 629 12 49 827 9393 177 511 823 9959 107 357 570 740 11 50 9872 291 590 874 9942 136 370 569 731 851 10 51 T54 9399 003 9922 237 448 631 780 891 960 9 52 9373 216 415 599 760 892 990 9985 050 9993 069 8 53 678 826 959 9943 070 9960 152 9974 199 209 177 7 54 9874 138 9900 237 9923 319 379 411 408 367 284 6 55 598 646 679 688 669 615 524 390 5 56 9875 057 9901 055 9924 037 996 926 822 680 195 4 '' 57 514 462 394 9944 303 9961 183 9975 023 835 600 3 58 972 869 751 609 438 233 989 704 2 59 9876 428 9902 275 9925 107 914 693 437 9936 143 806 1 60 833 681 462 9945 219 947 641 295 908 ' 9 3 8 70 6 5 40 3 2 ' ! NAT. COSTIVE. 86 NAT. TAN. ' 79 80 81 8-2 83 84^ 85 / 5-1445540 5-6712818 6-3137515 7-1153697 8-1443464 9-5143645 11-430052 60 , 1 525557 809446 256601 304190 639786 410613 468474 59 2 605813 906394 376126 455308 837041 679068 5071541 58 3 686311 5-7003663 496092 607056 8-2035239 949022 546093 57 4 767051 101256 616502 759437 234384 9-6220486 585294 56 ! 5 848035 199173 737359 912456 434465 493475 624761 55 6 929264 297416 858665 7-2066116 635547 766000 664495 54 7 5-2010738 395988 980422 22C422 837579 9*7044075 704500 53 8 092459 4:4889 6-4102633 3753788-3040536 321713 744779 52 9 174428 594122 225301 530987 244577 600927 785333 51 , 10 256647 693688 348428 687255 449558 881732 820107 50 I 11 339116 793588 472017 844184 655536 9-8164140 867282 49 : 12 421836 893825 596070 7-3001780 862519 448166 908682 98 , 13 504309 994400 720591 160047 8-4070515 733823 950370 47 14 588035 5-8095315 845581 318989 279531 9-9021125 992349 46 i 15 671.517 196572 971043 478610 489573 310088 12-034622 45 ! 16 755255 298172 6-5096981 638916 700651 600724 077192 44 i 17 S39251 400117 223396 799909 912772 893050 120062 43 , 18 923505 502410 350293 961595 8-5125943 10-018708 163236 42 19 5-3008018 605051 477672 7-4123978 340172 043283 206716 41 20 092793 708042 605538 2S7064 555468 078031 250505 40 21 177830 811386 733892 450855 771838 107954 294609 39 22 263131 915084 862739 615357 989290 138054 339028 38 23 348696 5-9019138 992080 780576 8-6207333 168332 383768 37 24 434527 123550l6-6121919 946514 427475 198789 428831 36 25 520626 228322 252258 7-5113178 648223 229428 474221 35 26 606993 333455 383100 280571 87008P 260249 519942 34 27 693630 4:48952 514449 44S699 8-7093077 291*55 565997 33 28 780538 544815 646307 617567 317198 322447 612390 32 29 867718 651045 778677 787179 542461 353827 659125 31 , i 30 955172 757644 911562 957541 768S74 385397 706205 30 31 5-4042901 864614 6-7044966 7-6128657 996446 417158 753634 29 32 130906 971957 178891 300533 8-8225186 449112 801417 28 33 219188 6:0079676 313341 473174 455103 481261 849557 27 34 307750 187772 448318 646584 686206 513607 898058 26 35 396592 296247 583826 820769 918505 546151 P46924 25 36 485715 405103 719867 995735 8-9152009 578895 996160 24 i 37 575121 514343 856446 7-7171486 386726 611841 13-045769 23 j 38 664812 623967 993565 348028 622668 644992 095757 22 39 754788 733979 6-8131227 525366 859843 678348 146127 21 40 845052 844381 269437 703506 9-0098261 711913 196883 20 41 935604 955174 408196 882453 337933 745687 248031 19 42 5-5026446 6-1066360 547508 7-8062212 578867 779673 299574 18 43 117579 177943 687378 242790 821074 813872 35151P 17 44 209005 289923 827807 424191 9-1064564 848288 403867 16 45 300724 402303 968799 606423 309348 882921 45662E 15 46 392740 515085 6-9110359 789489 555436 917775 59979? 14 ' 47 485052 628272 252489 973396 802838 952850 563391 13 , 48 577663 741865 395192 7-9158151 9-2051564 988150 617409 12 49 670574 855867 538473 343758 301627 11-023676 671856 11 50 763786 970279 682335 530224 553035 059431 726738 10 ; 51 857302 (5-2085106 826781 717555 805802 C95416 782060 9 ! 52 951121 200347 971806 905756 9-3059936 131635 837827 8 53 5-6045247 316007 7-0117441 8-0094835 315450 168CS9 894C45 7 54 139680 432086 263662 284796 572355 204780 950719 6 1 55 234421 548588 410482 475647 830663 241712 14-007856 5 56 329474 665515 557905 667394 9-4090384 278885 065459 4 57 424838 782868 705934 860042 351531 316304 123536 3 58 520516 900651 854573:8-1053599 614116 353970 182092 2 i 59 616509 6-301886G 7-1003326 24S071 878149 391885 241134 1 60 712818 137515 153697 443464 9-5143645 43C052 3COC6G 10 9 8 7 6 5 40 ' NAT. OOT/VN. NAT. SINK. NAT. TAN. 87 i ' 88 89 ' ' 8G 87 3 88 89 ' i 9993 908 9998 477 60 |i 14 300666 19-081137 28-636253 57-289962 60 ' 1 1 9994 009 52759 1 360696 187930 877089 58-261174 59 ! I 2 110 57758 '2 421230 295922 29-122005 59-265872 58 ; 3 209 625:57 'A 482273 405133 371106 60-305820 57 , 4 308 673 56 4 543833 515584 624499 61-382905 56 5 405 72055 5 605916 627296 882299 62-499154 55 6 502 766 54 (i 668529 740291 30-144619 63-656741 54 7 598 812 53 7 731.579 854591 411580 64-858008 53 8 693 85652 8 79*372, 970219 683307 66-105473 52 9 788 900 51 g 85U616 23-087199 959928 67-401854 51 10 881 942 50 10 924417 205553 31-241577 68-750087 50 11 974 98449 11 989784 325308 528392 70-153346 49 1 12 9995 066 9999 025 48 12 kd-055723 446486 820516 71-615070 48 13 157 065!47 13 122242 569115 32-118099 73-138991 47 14 247 10546 14 189349 693220 421295 74-729165 46 15 336 143 45 15 257052 818828 730264 76-390009 45 16 424 18144 16 325358 945966 33-045173 78T26342 44 17 512 21843 17 394276 21-074664 366194 79-943430 43 18 1 19 599 684 254 42 289 4 1 18 19 463814 533981 204949 336851 693509 34-027303 81-847041 42 83-843507 41 ! ':C 770 323 10 20 604784 470401 367771 85-939791 40 ! o . 854 357 J9 21 676233 605630 715115 88-143572 39 I 22 937 389 22 748337 742569 35-069546 90-463336 38 23 9996 020 421 37 23 8-21105 881251 431282 92-908487 37 I 24 101 452 $ 24 894545 22-021710 800553 95-489475 36 25 182 482 35 25 963667 163980 36-177596 99-217943 35 26 26-: 511 11 26 16-043492 308097 562659 101-10690 34 27 341 539 33 27 1 1899S 454096 956001 104-17094 33 28 419 507 J2 >".} 195225 602015 37-357892 107-42648 32 i 29 497 593 :i 29 272174 751892 768613 110-89205 31 30 573 619 JO 30 349855 903766 38-188459 114-58865 30 ! 31 649 644 29 31 42827923-057677 617738 118-54018 29 32 724 668 23 32 507456 213666 39-056771 122-77396 28 33 798 602 27 33 587396 371777 505695 127-32134 27 34 871 714 2(i 34 668112 532052 965460 132-21851 26 35 943 736 25 35 749614 694537 40-435837 137-50745 25 36 9997 015 756 24 36 831915 859277 917412 143-23712 24 37 086 776 23 37 915025124*026320 41-410588 149-46502 23 38 156 795 22 3H 998957 195714 915790 156-25909 22 39 224 813 21 39 17-083724 367509 42-433464 163-70019 21 40 292 831 20 40 169337 541758 964077 171-88540 20 , 41 360 847 19 41 255809 719512 43-508122 180-93220 I 19 42 426 863 19 42 343155 897826 44-066113 190-98419 18 43 492 878 17 43 431385 25-079757 638596 202-21875 17 ! 44 556 892 16 4-1 5205161 264361 45-226141 214-85762 16 i 45 620 905 15 45 6105591 451700 829351 229-18166 15 46 683 917 14 46 701529 641832 46-448862 245-55198 14 47 i 48 43 745 807 867 928 939 949 13 12 11 47 49 49 793442) 834823:47-085343 88631026-030736 739501 980150 229638,48-412084 264-44080 286-47773 312-52137 13 12 ; 11 50 927 958 to 50 13-074977 43160049-103891 343-77371 10 ' 51 966 966 g 51 170807 636690| 815726 381-97099 9 52 999S 044 973 8 52 267654 844984 50-548506 429-71757 8 : 53 101 979 7 53 365537 27-05655751-303157 491-10COO 7 i 54 157 985 6 54 464471 27 1486 52-080673 572-95721 6! 55 213 989 5 55 564473 489853 89210^ 687-54987 5 56 267 993 4 56 665562 71174053-709587 859-43630 4 57 321 996 3 57 767754 03723354-561300 1145-9153 3 58 374 999 2 B8 871068 28-166422 55'441517 1718-8732 2 59 426 I- 0000 000 1 5! 975523 399397 56'350590 3437-7467 1 60 4771 000 e< 19-091137 63625357-281962 Infinite. ' IQ ' / 3 1 2 1 NAT. COSINK. NAT. COT AN. 89 TABLE OF RADII, &c.~- Chord 100 Feet. An<j;l<> of Radius Def. dis Angle o Radius Def. dis Angle ol ' Radius Def. dist LL'tk-.vn in feet. in feet Detiex'n in feet. in feet Deflex'n in feet. in feet. O / / / 5 |68760-0 -145 3 25 1677-0 5-962 12 U 468-7 21.360 , 10 34380-0 -291 30 1637-0 6-108 3C 459-3 21-790 ! 15 22920-0 -436 35 1599-0 6-253 o 45 450-3 22-210 20 117190-01 -581 40 1563-0 6-398 13 441-7 22-640 25 13752-0] -727 45 1528-0 6-544 15 433-4 23-070 30 35 11460-01 -872 9823-0 1-017 50 o 55 1495-0 1463-0 6-689 6-835 3C o 45 425-5 23-510 417-7 i23-940 i 40 8595-0 1-163 4 . 1433.0! 6-980 14 410-3 24-370 , 45 7640-0 1-308 15 1348-0 7-416 15 403-1 J24-810 i ! 50 6876-0 1-453 30 1274-0 7-853 30 396-2 ;25-24</ ' i o 55 6251-0 1-600 o 45 1207-0 8-289 o 45 389-6 ;25-670 1 5730-0 1-745 5 1146-0 8-722 15 383- U26-1 10 5 5289-0 1 1-890 15 1092-0 9-159 15 376-9 126-520 10 4912-0 2-036 30 1042-0 9-595 30 370-8 J26-940 15 4584-0 2-181 o 45 996-8 10-030 o 45 365-0 27-370 20 4298-0 2-327 6 955-4 10-470 16 359-3 27-830 25 4045-0 2-472 15 917-0 10-900 o 30 348-4 28-700 30 35 3820-0 2-618 3619-0 2-763 30 o 45 882-0 849-3 11-340 11-780 17 o 30 338-3 328-7 29-560 30-430 i ! 40 3438-0 2-908 7 819-0 12-210 18 319-6 31-290 45 3274-0 3-054 15 790-8 12-640 o 30 311-0 32-500 50 3125-0 3-199 30 764-5 13-080 19 302-9 33010 o 55 2990-0 3-345 o 45 739-9 13-510 o 30 295-3 33-870 2 2865-0 3-490 8 716-8 13-950 20 287-9 34-730 5 2750-0 3-635 15 695-1 14-380 21 274.4 36-440 10 2644-0 3-781 30 674-6 14-810 22 262-0 38-150 15 2547-0 3-926 o 45 655-5 15-250 23 250-8 39-870 20 2456-0 4-072 9 637-3 15-680 24 240-5 41-580 25 2371-0 4-217 15 620-2 16-120 25 231-0 43-280 30 2292-0 4-363 30 603-8 16-550 26 222-3 44-980 35 2218-0 4-508 o 45 588-4 16-990 27 214-2 46-680 40 21490 4-653 10 573-7J17-430 28 206-7 48-380 ! 45 2084-0 4-799 15 559-7 17-870 29 199-7 50-070 50 2023-0! 4-9 14 30 546.4 18-300 30 193-2 51-760 ! o 55 1965-0 5-090 o 45 533-8J18-730 31 187-1 53-450 3 1910-0 5-235 11 521-719-170 32 181-4 55-130 5 1859-0 5-380 15 510-119-610 33 176-0 56-800 10 1810-0 5-526 30 499-120-050 34 171-0 58/470 15 1763-0! 5-671 o 45 488-520-500 35 166-3 60-140" 20 1719-0 5-817 12 478-3j20-940 36 .161-8 61-800 j 8* 90 TABLE OF LONG CHORDS. Raclics in feet. Angle of Deflection. Length 1 Station. of Chord in f< 2 Stations. jet required tc 3 Stations. subtend 4 Stations. 5730-0 1 100 200-0 300-0 400-0 4584-0 * 100 200-0 300-0 399-9 3820-0 | 100 200-0 300-0 399-9 3274-0 100 200-0 300-0 399-8 2865-0 2 f 100 200-0 299-9 399-7 I 2547-0 * 100 200-0 299-9 399-6 2292-0 100 200-0 299-8 399-5 2084-0 f. 100 200-0 299-8 399-4 1910-0 3 100 200-0 299-7 399-3 1763-0 i 100 200-0 299-7 399-2 . 1637-0 | 100 200-0 299-6 399-1 1528-0 100 200-0 299-6 399-0 1433-0 4 f 100 199-9 299-6 398-9 1348-0 \ 100 199-9 299-5 398-7 1274-0 100 199-9 299-4 398-5 1207-0 I 100 199-9 299-3 398-3 1146-0 5 100 199-9 299-2 398-0 1092-0 k 100 199-8 299-1 397-8 1042-0 100 199-8 299-0 397-6 1 996-8 ! 100 199-7 298-9 397-5 955.4 6 100 199-7 298-8 397-3 917-0 i 100 199-7 298-7 397-0 882-0 100 199-7 298-6 396-7 849-3 1 100 19^fc 298-5 396-5 819-0 7 100 199-6 298-4 396-2 790-8 i 100 199-6 298-3 396-0 764-5 * 100 199-6 298-2 395-7 739-9 1 100 199-6 298-1 395-4 1 716-8 8 100 199-6 298-0 395-1 695-1 i 100 199-5 297-9 394-8 674-6 100 199-5 297-8 394-5 655-5 3. 100 199-4 297-7 394-3 637-3 9 100 199-4 297-5 394-1 620-2 i 100 199-4 297-4 393-7 603-8 100 199-3 297-3 393-2 588-4 1 100 199-2 297-2 392-8 573-7 10 100 199-2 297-0 392-4 : TABLE OF ORDINATES. Ordinates 10 feet apart. Chord 100 feet. Distances of the Ordinates from the end of the 100 feet Chord. Deflexion Angle in Degrees and 50 feet. 40 feet. 30 feet. 20 feet. 10 feet. Lengths of Ordinates in feet. o / 5 018 017 015 012 006 10 036 035 031 023 ' -013 15 054 052 046 035 019 20 073 070 061 047 026 25 091 087 076 058 032 30 109 105 092 070 039 i 35 127 123 108 082 045 40 145 140 123 093 052 i 45 163 157 137 105 058 50 182 175 153 117 065 o 55 200 192 168 128 071 1 218 209 183 140 078 5 236 226 198 152 085 10 254 244 214 163 091 15 273 261 229 175 098 20 291 279 244 187 104 i 25 309 296 259 198 111 30 327 314 275 210 117 35 345 331 290 *221 124 40 364 349 305 233 130 45 382 366 321 245 137 50 400 '-384 336 256 144 o 55 418 401 351 268 150 2 436 419 366 280 157 5 454 436 382 291 163 10 473 454 397 303 . -170 15 491 471 412 315 -17' 20 509 489 428 326 1. 25 527 506 443 338 190 30 545 524 458 350 196 35 564 541 474 361 203 40 582 559 489 373 209 45 600 576 504 384 216 ; .50 618 594 519 396 222 o 55 636 611 535 408 229 i 3 654 629 550 419 235 5 673 646 565 431 242 10 691 664 581 443 249 15 709 681 596 454 255 ! 20 727 699 611 466 262 ; 25 j - 745 716 627 478 268 1 1 92 TABLE OF ORDINATES. CONTINUED. Ordinates 10 feet apart. Chord 100 feet. Distances of the Ordinates from the end of the 100 feet Chord. Deflexion Angle in Degrees and Minutes. 60 feet. 40 feet. 30 feet. 20 feet. 10 feet Lengths of Ordinates in feet. o / 3 30 764 734 642 489 275 35 782 751 657 501 281 ! 40 800 769 673 512 288 45 818 786 688 524 294 50 836 804 703 536 301 o 55 854 821 718 547 308 4 873 839 734 559 314 15 927 891 780 594 334 30 981 944 825 629 354 o 45 1-036 996 871 664 373 5 1-091 1-048 917 699 393 15 1-146 1-100 963 734 413 30 1-200 1-153 1-009 769 432 o 45 1-255 1-205 1-055 804 452 6 1-309 1-258 1-100 839 472 15 1-364 1-310 1-146 874 492 30 1-419 1-362 1-192 909 511 o 45 1-473 1-415 1-238 944 531 7 1-528 1-467 1-284 979 551 15 1-582 1-520 1-330 1-014 570 30 1-637 1-572 1-375 1-048 590 o 45 1-692 1-624 1-421 1-083 . 610 8 1-746 1-677 1-467 1-118 629 15 1-801 1-729 1-513 1-153 649 30 1-855 1-782 1-559 1-188 609 o 45 - 1-910 1-834 1-605 1-223 689 9 1-965 1-886 1-651 1-258 708 15 2-019 1-939 1-696 1-293 728 30 2-074 1-991 1-742 1-328 748 I o 45 2-128 2-044 1-788 1-363 767 10 2-183 2-096 1-834 1-398 787 [ 15 2-238 2-148 1-880 1-433 807 30 2-292 2-201 1-926 1-468 827 o 45 2-347 2-254 1-972 1-503 846 11 2-401 2-306 2-018 1-538 866 15 2-456 2-359 2-064 1-574 886 30 2-511 2-411 2-110 1-609 906 o 45 2-566 2-464 2-156 1-644 926 12 2-620 2-516 2-203 1-680 946 15 2-675 2-569 2-249 1-715 966 30 2-730 2-621 2.295 1-750 985 if 93 TABLE OF ORDINATES. CONTINUED. Ordinates 10 feet apart. Chord 100 feet. Distances of the Ordinates from the end of the 100 feet Chord. ; Deflexion Angle iu Degrees and 50 feet. 40 feet. 30 feet. 20 feet. 10 feet. Minutes. Lengths of Ordinates in feet. o / 12 45 2785 2-674 2-341 1-785 1-005 13 2-839 2-726 2-387 1-820 1-025 1 15 2-894 2-779 2-433 1-855 1-045 30 2-949 2-832 2-479 1-891 1-065 o 45 3-000 2-884 2-525 1-926 1-085 14 3-058 2-937 2-571 1-961 1-105 15 3-113 2-989 2-618 1-996 1-124 30 3-168 3-042 2-664 2-031 1-144 o 45 3-222 3-094 2-710 2-067 1 164 15 3-277 3-147 2-756 2-102 1-184 15 3-332 3-200 2-802 2-137 1-204 30 3-387 3-252 2-848 2-172 1-224 o 45 3-442 3-305 2-895 2-208 1-244 16 3-496 3-358 2-941 2-243 1-264 o 30 3-606 3-463 3-033 2-314 1-304 17 3-716 3-569 3-125 2-384 1-344 o 30 3-826 3-674 3-218 2-455 1-384 i 18 3-935 3-779 3-310 2-525 1-424 i o 30 4-045 3-885 3-403 2-596 1-464 19 4-155 3-990 3-495 2-666 1-504 o' 30 4-265 4-096 3-588 2-737 1-544 20 4-375 4-201 3-680 2-808 1-583 94 A TABLE OF THE SQUARES AND SQUARE ROOTS OF NUMBERS. From 1 to 1000. No. Squares. Square Roots. No. Squares. Square Roots. 1 1 1-0000 44 1936 6-6332 2 4 1-4142 45 2025 6-7082 i 3 9 1-7320 46 2116 6-7823 4 16 2-0000 47 2209 6-8556 5 25 2-2360 48 2304 6-9282 ' i 6 36 2-4495 49 2401 7-0000 7 49 2-6457 50 2500 7-0711 8 64 2-8284 51 2601 7-1414 9 81 3-0000 52 2704 7-2111 10 100 3-1623 53 2809 7-2801 11 121 3-3166 54 2916 7-3485 12 144 3-4641 55 3025 7-4162 13 169 3-6055 56 3136 7-4833 14 196 3*7416 57 3249 7-5498 15 225 3-8730 58 3364 7-6158 16 256 4-0000 59 3481 7-6811 17 289 4-1231 60 3600 7-7460 18 324 4-2426 61 3721 7-8102 19 3G1 4-3589 62 3844 7-8740 20 400 4-4721 63 3969 7-9372 21 441 4-5826 64 4096 8-0000 22 484 4-6904 65 4225 8-0628 , 23 529 4-7958 66 4356 8-1240 24 576 4-8990 67 4489 8-1853 25 625 5-0000 68 4624 8-2462 26 676 5-0990 69 4761 8-3066 27 729 5-196L 70 4900 8-3666 28 784 5-2915 71 5041 8-4261 29 841 5-3852 72 5184 8-4853 30 900 5-4772 73 5329 8-5440 31 961 5-5678 74 5476 8-6023 32 1024 5-6568 75 5625 8-6603 33 1089 5-7446 76 5776 8-7178 34 1156 5-8309 77 5929 8-7750 35 1225 5-9161 78 6084 8-8318 36 1296 6-0000 79 6241 8-8882 37 1369 6-0828 80 6400 8-9443 ; 38 1444 6-1644 81 6561 9-0000 39 1521 6-2450 82 6724 9-0554 i 40 1600 6-3246 83 6889 9-1104 41 1681 6-4031 84 7056 9-1651 42 1764 6-4807 85 7225 9-2195 43 1849 6-5574 86 7396 9-2736 i i 95 A TABLE OF THE SQUARES AND SQUARE ROOTS OF NUMBERS. CONTINUED. From 1 to 1000. No. Squares. Square Roots. No. Squares. Square Roots. ! 87 7569 9-3274 130 16900 11-4017 88 7744 9-3808 131 17161 11-4455 89 7921 9-4340 132 17424 11-4891 90 8100 9-4868 133 17689 11-5326 91 8281 9-5394 134 17956 11-5758 92 8464 9-5917 135 18225 11-6189 93 8649 9-6436 136 18496 11-6619 94 8836 9-6954 137 18769 11-7047 95 9025 9-7468 138 19044 11-7473 96 i 9216 9-7979 139 19321 11-7898 97 9409 9-8488 140 19600 11-8322 98 9604 9-8995 141 19881 11-8743 99 9801 9-9499 142 20164 11-9164 100 10000 10-0000 143 20449 11-9583 101 10201 10-0499 144 20736 12-0000 102 10404 10-0995 145 21025 12-0416 103 10609 10-1489 146 21316 12-0830 104 10816 10-1980 147 21609 12-1244 105 11025 10-2469 148 21904 12-1655 106 11236 10-2956 149 22201 12-2065 107 11449 10-3440 150 22500 12-2474 108 11664 10-3923 151 22801 12-2882 109 11881 10-4403 152 23104 12-3288 110 12100 10-4881 153 23409 12-3693 111 12321 10-5356 154 23716 12-4097 112 12544 10-5830 155 24025 12-4499 113 12769 10-6301 156 24336 12-4900 114 12996 10-6771 157 24649 12-5300 115 13225 10-7238 158 24964 12-5700 116 13456 10-7703 159 25281 12-6095 117 13689 10-8166 160 25600 12-6491 118 13924 10-8628 161 25921 12-6886 ! 119 14161 10-9087 162 26244 12-7279 , 120 14400 10-9544 163 26569 12-7671 i 121 14641 11-0000 164 26896 12-8062 | 122 14884 11-0454 165 27225 12-8452 123 15129 11-0905 166 27556 12-8841 124 15376 11-1355 167 27889 12-9228 125 15625 11-1803 168 28224 129615 126 15876 11.2250 169 28561 13-0000 127 16129 11-2694 170 28900 13-0384 128 16384 11-3137 171 29241 13-0767 129 16641 11-3578 172 29584 13-1149 1 96 A TABLE OF THE SQUARES AND SQUARE ROOTS OF NUMBERS. CONTINUED. From 1 to 1000. No. Squares. Square Roots. No. Squares. Square Koots. 173 29929 13-1529 216 46656 14-6969 174 30276 13-1909 217 47089 14-7309 175 30625 13-2287 218 47524 14-7648 I 176 30976 13-2665 219 47961 14-7986 177 31329 13-3041 220 48400 14-8324 178 31684 13-3417 221 48841 14-8661 179 32041 13-3791 222 49284 14-8997 180 32400 13-4164 223 49729 14-9332 181 32761 13-4536 224 50176 14-9666 182 33124 13-4907 225 50625 15-0000 183 33489 13-5277 226 51076 15-0333 184 33856 13-5647 227 51529 15-0665 185 34225 13-6015 228 51984 15-0997 186 34596 13-6382 229 52441 15-1327 187 34969 13-6748 230 52900 15-1657 188 35344 13-7113 231 53361 15-1987 189 35721 13-7477 232 53824 15-2315 190 36100 13-7840 233 54289 15-2643 191 36481 13-8203 234 54756 15-2970 192 36864 13-8564 235 55225 15-3297 193 37249 13-8924 236 55696 15-3623 194 37636 13-9284 237 56169 15-3948 195 38025 13-9642 238 56644 15-4272 196 38416 14-0000 239 57121 15-4596 197 38809 14-0357 240 57600 15-4919 198 39204 14-0712 241 58081 15-5242 199 39601 14-1067 242 58564 15-5563 200 40000 14-1421 243 59049 15-5885 201 40401 14-1774 244 59536 15-6205 202 40804 14-2127 245 60025 15-6525 203 41209 14-2478 246 60516 15-6844 204 41616 14-2828 247 61009 15-7162 205 42025 14-3178 248 61504 15-7480 206 42436 14-3527 249 62001 15-7797 207 42849 14-3874 250 62500 15-8114 208 43264 14-4222 251 63001 15-8430 209 43681 14-4568 252 63504 15-8745 210 44100 14-4914 253 64009 15-9060 211 44521 14-5258 254 64516 15-9374 212 44944 14-5602 255 65025 15-9687 213 45369 14-5945 256 65536 16-0000 214 45796 14-6287 257 66049 16-0312 215 46225 14-6629 258 66564 16-0624 97 A TABLE OF THE SQUARES AND SQUARE ROOTS OF NUMBERS. CONTINUED. From 1 to 1000. No. Squares. Square Roots. No. Squares. Square Roots. 259 67081 16.0935 302 91204 17-3781 260 67600 16-1245 303 91809 17-4069 261 68121 16-1555 304 92416 17-4356 262 68644 16-1864 305 93025 17-4642 263 69169 16-2173 306 93636 17-4928 264 69696 16-2481 307 94249 17-5214 265 70225 16-2788 308 94864 17-5499 266 70756 16-3095 309 95481 17-5784 267 71289 16-3401 310 96100 17-6068 268 71824 ' 16-3707 311 96721 17-6352 269 72361 16-4012 312 97344 17-6635 270 72900 16-4317 313 97969 17-6918 271 73441 16-4621 314 98596 17-7200 272 73984 16-4924 315 99225 17-7482 273 74529 16-5227 316 99856 17-7764 274 75076 16-5529 317 100489 17-S045 275 75625 16-5831 318 101124 17-8325 276 76176 16-6132 319 101761 17-8606 277 76729 16-6433 320 102400 17-8885 278 77284 16-6733 321 103041 17-9165 279 77841 16-7033 322 103684 17-9444 280 78400 16-7332 323 104329 17-9722 281 78961 16-7630 324 104976 18*0000 282 79524 16-7928 325 105625 18-0277 283 80089 16-8226 326 106276 18-0555 284 80656 16-8523 327 106929 18-0831 285 81225 16-8819 328 107584 18-1108 286 81796 16-9115 329 108241 18-1384 287 82369 16-9411 330 108900 18-1659 288 82944 16-9706 331 109561 18-1934 289 83521 17-0000 332 110224 18-2209 290 84100 17-0294 333 110889 18-2483 291 84681 17-0587 334 111556 18-2757 292 85264 17-0880 aas 112225 18-3030 293 85849 17-1172 336 112896 18-3303 294 86436 17-1464 337 113569 18-3576 295 87025 17-1756 338 114244 18-3848 296 87616 17*2046 339 114921 18-4119 297 88209 17-2337 340 115600 18-4391 298 88804 17-2627 341 116281 18-4662 299 89401 17-2916 342 116964 18-4932 300 90000 17-3205 343 117649 18-5203 301 90601 17-3493 344 118336 18-5472 98 A TABLE OF THE SQUARES AND SQUARE ROOTS OF NUMBERS. CONTINUED. From 1 to 1000. No. Squares. Square Roots. No. Squares. Square Roots. 345 119025 18-5742 388 150544 19-6977 346 119716 18-6011 389 151321 19-7231 347 120409 18-6279 390 152100 19-7484 348 121104 18-6548 391 152881 19-7737 349 121801 18-6815 392 153664 19-7990 350 122500 18-7083 393 154449 19-8242 351 123201 18-7350 394 155236 19-8494 352 123904 18-7617 395 156025 19-8746 353 124609 18-7883 396 156816 19-8997 354 125316 18-8149 397 157609 19-9248 355 126025 18-8414 398 158404 19-9499 356 126736 18-8680 399 159201 19-9750 357 127449 18-8944 400 160000 20-0000 358 128164 18-9209 401 160801 20-0250 359 128881 18-9473 402 161604 20-0499 360 129600 18-9737 403 162409 20-0749 361 130321 19-0000 404 163216 20-0997 362 131044 19-0263 405 164025 20-1246 363 131769 19-0526 406 164836 20-1494 364 132496 19-0788 407 165649 20-1742 365 133225 19-1050 408 166464 EO-1990 366 133956 19-1311 409 167281 20-2237 - 367 134689 19-1572 410 168100 20-2485 368 135424 19-1833 411 168921 20-2731 369 136161 19-2094 412 169744 20-2978 370 136900 19-2354 413 170569 20-3224 371 137641 19-2614 414 171396 20-3470 372 138384 19-2873 415 172225 20-3715 373 139129 19-3132 416 173056 20-3961 374 139876 19-3391 417 173889 20-4206 375 140625 19-3649 418 174724 20-4450 376 141376 19-3907 419 175561 20-4695 377 142129 19-4165 420 176400 20-4939 378 142884 19-4422 421 177241 20-5183 379 143641 19-4679 422 178084 20-5426 380 144400 19-4936 423 178929 20-5670 381 145161 19-5192 424 179776 20-5913 382 145924 19-5448 425 180625 20-6155 383 146689 19-5704 426 181476 20-6398 384 147456 19-5959 427 182329 20-6640 385 148225 19-6214 428 183184 20-6882 386 148996 19-6469 429 184041 20-7123 387 149769 19-6723 430 184900 20-7364 11 99 A TABLE OF THE SQUARES AND SQUARE ROOTS OF NUMBERS. CONTINUED. From 1 to 1000. No. Squares. Square Roots. No. Squares. Square Roots. 431 185761 20-7605 474 224676 21-7715 432 186624 20-7846 475 225625 21-7945 433 187489 20-8086 476 226576 21-8174 434 188356 20-8327 477 227529 21-8403 435 189225 20-8566 478 228484 21-8632 43G 190096 20-8806 479 229441 21-8861 437 190969 20-9045 480 230400 21-9089 438 191844 20-9284 481 231361 21-9317 439 192721 20-9523 482 232324 21-9545 I 440 193600 20-9762 483 233289 21-9773 1 441 194481 21-0000 484 234256 22-0000 442 195364 21-0238 485 235225 22-0227 443 196249 21-0476 486 236196 22-0454 444 197136 21-0713 487 237169 22-0689 445 198025 21-0950 488 238144 22-0907 446 198916 21-1187 489 239121 22-1133 447 199809 21-1424 490 240100 22-1359 448 200704 21-1660 491 241081 22-1585 449 201601 21-1896 492 242064 22-1811 450 202500 21-2132 493 243049 22-2036 451 203401 21-2368 494 244036 22-2261 452 204304 21-2603 495 245025 22-2486 j 453 205209 21-2838 496 246016 22-2711 454 206116 21-3073 497 247009 22-2935 455 207025 21-3307 498 248004 22-3159 456 207936 21-3542 499 249001 22-3383 457 208849 21-3776 500 250000 22-3607 458 209764 21-4009 501 251001 22-3830 459 210681 21-4243 502 252004 22-4054 460 211600 21-4476 503 253009 22-4277 461 212521 21-4709 504 254016 22-4499 462 213444 21-4942 505 255025 22-4722 463 214369 21-5174 506 256036 22-4944 i 464 215296 21-5407 507 257049 22-5167 465 216225 21-5639 508 258064 22-5388 1 466 217156 21-5870 509 259081 22-5610 467 218089 21-6102 510 260100 22-5832 I 1 468 219024 21-6333 511 261121 22-6053 469 219961 21-6564 512 262144 22-6274 470 220900 21-6795 513 263169 22-6495 471 221841 21-7025 514 264196 22-6716 | 472 222784 21-7256 515 265225 22-6936 473 223729 21-7486 516 266256 22-7156 100 A TABLE OF THE SQUARES AND SQUARE ROOTS OF NUMBERS. CONTINUED. From 1 to 1000. No. Squares. Square Roots. No. Squares. Square Roots. ! i 517 267289 22-7376 560 313600 23-6643 1 518 268324 22-7596 561 314721 23-6854 519 269361 22-7816 562 315844 23-7065 520 270400 22-8035 563 316969 23-7276 521 271441 22-8254 564 318096 23-7487 522 272484 22-8473 565 319225 23-7697 523 273529 22-8692 566 320356 23-7907 524 274576 22-8910 567 321489 23-8118 525 275625 22-9129 568 322624 23-8327 526 276676 22-9347 569 323761 23-8537 527 277729 22-9565 570 324900 23-8747 528 278784 22-9782 571 326041 23-8956 529 279841 23-0000 572 327184 23-9165 1 530 280900 23-0217 573 328329 23-9374 531 281961 23-0434 574 329476 23-9583 532 283024 2a-0651 575 330625 23-9792 533 284089 23-0868 576 331776 24-0000 534 285156 23-1084 577 332929 24-0208 535 286225 23-1301 578 334084 24-0416 536 287296 23-1517 579 335241 24-0624 537 288369 23-1733 580 336400 24-0832 538 289444 23-1948 581 337561 24-1039 539 290521 23-2164 582 338724 24-1247 540 291600 23-2379 583 339889 24-1454 541 292681 23-2594 584 341056 24-1661 542 293764 23-2809 585 342225 24-1868 543 294849 23-3021 586 343396 24-2074 544 295936 23-3238 587 344569 24-2281 545 297025 23-3452 588 345744 24-2487 546 298116 23-3666 589 346921 24-2693 547 299209 23-3880 590 348100 24-2899 548 300304 23-4094 591 349281 24-3105 549 301401 2, 4307 592 350464 24-3310 550 302500 i3-4521 593 351649 24-3516 551 303601 23-4734 594 352836 24-3721 552 304704 23-4947 595 354025 24-3926 553 305809 23-5159 596 355216 24-4131 554 306916 23-5372 597 356409 24-4336 555 308025 23-5584 598 357604 24-4540 556 309136 23-5796 599 358801 24-4745 557 310249 23-6008 600 360000 24-4949 558 311364 23-6220 601 361201 24-5153 559 312481 23-6432 602 362404 24-5357 101 A TABLE OF THE SQUARES AND SQUARE ROOTS OF NUMBERS. CONTINUED. From 1 to 1000. No. Squares. Square Roots. No. Squares. Square Roots. 603 363609 24-5560 646 417316 25-4165 604 364816 24-5764 647 418609 25-4362 605 366025 24-5967 648 419904 25-4558 606 867236 24-6171 649 421201 25-4755 607 368449 24-6374 650 422500 25-4950 1 608 369664 24-6576 651 423801 25-5147 609 370881 24-6779 652 425104 25-5343 610 372100 24-6982 653 426409 25-5539 611 373321 24-7184 654 427716 25-5734 612 374544 24-7386 655 429025 25-5930 613 375769 24-7588 656 430336 25-6125 614 376996 24-7790 657 431649 25-6320 615 378225 24-7992 658 432964 25-6515 616 379456 24-8193 659 434281 25-6710 617 380689 24-8395 660 435600 25-6905 618 381924 24-8596 661 436921 25-7099 619 383161 24-8797 662 438244 25-7204 620 384400 24-8998 663 439569 25-7488 621 385641 24-9199 664 440896 25-7682 622 386884 24-9399 665 442225 25-7876 623 388129 24-9600 666 443556 25-8070 624 389376 ' 24-9800 667 444889 25-8263 625 390625 25-0000 668 446224 25-8457 626 391876 25-0200 669 447561 25-8650 627 393129 25-0400 670 448900 25-8844 628 394384 25-0600 671 450241 25-9037 629 395641 25-0799 672 451584 25-9230 630 396900 25-0998 673 452929 25-9422 631 398161 25-1197 674 454276 25-9615 632 399424 25-1396 675 455625 25-9808 633 400689 25-1595 676 456976 26-0000 634 401956 25-1794 677 458329 26-0192 635 403225 25-1992 678 459684 26-0384 636 404496 25-2190 679 461041 26-0576 637 405769 25-2389 680 462400 26-0768 638 407044 25-2587 681 463761 26-0960 639 408321 25-2785 682 465124 26-1151 640 409600 25-2982 683 466489 26-1343 641 410881 25-3180 684 467856 26-1534 642 412164 25-3377 685 469225 26-1725 643 413449 25-3574 686 470596 26-1916 644 414736 25-3772 687 471969 26-2107 645 416025 25-3968 688 473344 26-2297 ! ! i ! 102 A TABLE OF THE SQUARES AND SQUARE ROOTS OF NUMBERS. CONTINUED. From 1 to 1000. No. Squares. Square Roots. No. Squares. Square Roots. 689 474721 26-2488 7S2 535824 27-0555 690 476100 26-2678 733 537289 27-0740 691 477481 26-2869 734 538756 27-0924 i 692 478864 26-3059 735 540225 27-1109 693 480249 26-3249 736 541696 27-1293 j 694 481636 26-3439 737 543169 27-1477 695 483025 26-3629 738 544644 27-1662 696 484416 26-3818 739 546121 27-1846 697 485809 26-4008 740 547600 27-2029 698 487204 26-4197 741 549081 27-2213 699 488601 26-4386 742 550564 27-2397 700 490000 26-4575 743 552049 27-2580 701 491401 26-4764 744 553536 27-2764 702 492804 26-4953 745 555025 27-2947 703 494209 26-5141 746 556516 27-3130 704 495616 26-533C 747 558009 27-3313 705 497025 26-5518 748 I 559504 27-3496 706 498436 26-5707 749 561001 27-3679 707 499849 26-5895 750 562500 27-3861 708 501264 26-6083 751 564001 27-4044 709 502681 26-6271 752 565504 27-4226 710 504100 26-6458 753 567009 27-4408 711 505521 26-6646 754 568516 27-4591 712 506944 26-6833 755 570025 27-4773 713 508369 26-7021 756 571536 27-4955 714 509796 26-7208 757 i 573049 27-5136 715 511225 26-7395 758 i 574564 27-5318 716 512656 26-7582 759 ! 576081 27-5500 717 514089 26-7769 760 577600 27-5681 718 515524 26-7955 761 579121 27-5862 719 516961 26-8142 ! 762 580644 27-6043 720 518400 26-8328 763 582169 27-6225 721 519841 26-8514 764 583696 27-6405 722 521284 26-8701 765 585225 27-6586 723 522729 26-8887 766 586756 27-6767 724 524176 26-9072 767 588289 27-6948 725 525625 26-9258 768 589824 27-7128 726 527076 26-9444 769 591361 27-7308 i 727 528529 26-9629 770 592900 27-7489 j 728 529984 26-9815 771 594441 27-7669 729 531441 27-0000 772 ! 595984 27-7849 730 532900 27-0185 773 597529 27-8029 731 534361 27-0370 774 599076 27-820S 103 A TABLE OF THE SQUARES AND SQUARE ROO'i'S OF NUMBERS. CONTINUED. From 1 to 1000. No. Squares. Square Roots. No. Squares. Square Roots. 775 600625 27-8388 818 669124 28-6007 776 602176 27-8568 819 670761 28-6182 777 603729 27-8747 820 672400 28-6356 778 605284 27-8926 821 674041 28-6531 ! 779 606841 27-9106 822 675684 28-6705 780 608400 27-9285 823 677329 28-6880 781 609961 27-9464 824 678976 28-7054 782 611524 27-9643 825 680625 28-7228 783 613089 27-9821 826 682276 28-7402 784 614656 28-0000 827 683929 28-7576 785 616225 28-0179 828 685584 28-7750 786 617796 28-0357 829 687241 28-7924 787 619369 28-0535 830 688900 28-8097 788 620944 28-0713 831 690561 28-8271 789 622521 28-0891 832 692224 28-8444 i 790 624100 28-1069 833 693889 28-8617 791 625681 28-1247 834 695556 28-8791 792 627264 28-1425 835 697225 28-8964 793 628849 28-1603 836 698896 28-9137 794 630436 28-1780 837 700569 28-9310 i 795 632025 28-1957 838 702244 28-9482 ! 796 633616 28-2135 839 703921 28-9655 797 635209 28-2312 840 705600 28-9828 798 636804 28-2489 841 707281 29-0000 799 638401 28-2666 842 708964 29-0172 800 640000 28-2843 843 710649 29-0345 801 641601 28-3019 844 712336 29-0517 802 643204 28-3196 845 714025 29-0689 803 644809 28-3373 846 715716 29-0861 804 646416 28-3549 847 717409 29-1033 1 805 648025 28-3726 848 719104 29-1204 806 649636 28-3901 849 720801 29-1376 807 651249 28-4077 850 722500 29-1548 808 652864 28-4253 851 724201 29-1719 809 654481 28-4429 852 725904 29-1890 810 656100 28-4605 853 727609 29-2062 811 657721 28-4781 854 729316 29-2233 812 659344 28-4956 855 731025 29-2404 813 660969 28-5132 856 732736 29-2575 814 662596 28-5307 857 734449 29-2746 815 664225 28-5482 858 736164 29-2916 816 665856 28-5657 859 737881 29-3087 817 667489 28-5832 860 739600 29-3258 r=-- _ - 104 A TABLE OF THE SQUARES AND SQUARE ROOTS : OF NUMBERS. CONTINUED. From 1 to 1000. No. Squares. Square Roots. No. Squares. Square Roots. ! 861 741321 29-3428 904 817216 30-0666 862 743044 29-3598 905 819025 30-0832 863 744769 29-3769 906 820836 30-0998 864 746496 29-3939 907 822649 30-1164 865 748225 29-4109 908 824464 30-1330 866 749956 29-4279 909 826281 30-1496 867 751689 29-4449 910 828100 30-1662 868 753424 29-4618 911 829921 30-1828 869 755161 29-4788 912 831744 30- 1993 870 756900 29-4958 913 833569 30 2159 871 758641 29-5127 914 835396 30-2324 872 760384 29-5296 915 837225 30-2490 873 762129 29-5466 916 839056 30-2655 874 763876 29-5635 917 840889 30-2820 875 765625 29-5804 918 842724 30-2985 876 767376 29-5973 919 844561 30-3150 877 769129 29-6142 920 846400 30-3315 878 770884 29-6311 921 848241 30-3480 879 772641 29-6479 922 850084 30-3645 880 774400 29-6648 923 851929 30-3809 881 776161 29-6816 924 853776 30-3974 882 777924 29-6985 925 855625 30-4138 883 779689 29-7153 926 857476 30-4302 884 781456 29-7321 927 859329 30-4467 885 783225 29-7489 928 861184 30-4631 886 784996 29-7658 929 863041 30-4795 887 786769 29-7825 930 864900 30-4959 888 788544 29-7993 931 866761 30-5123 889 790321 29-8161 932 868624 30-5287 890 792100 29-8329 933 870489 30-5450 891 793881 29-8496 934 872356 30-5614 892 795664 29-8664 935 874225 30-5778 j 893 797449 29-8831 936 876096 30-5941 894 799236 29-8998 937 877969 30-6105 895 801025 29-9166 938 879844 30-6268 896 802816 29-9333 939 881721 30-6431 897 804609 29-9500 940 883600 30-6594 1 898 806404 29-9666 941 885481 30"i757 999 808201 29-9833 942 887364 30-6920 900 810000 30-0000 943 889249 30-7083 901 811801 30-0167 944 891136 30-7246 ' 902 813604 30-0333 945 893025 30-7409 903 815409 30-0500 946 894916 30-7571 105 A TABLE OF THE SQUARES AND SQUARE ROOTS OF NUMBERS. CONTINUED. From 1 to 1000. No. Squares. Square Roots. No. Squares. Square Roots. 947 896809 30-7734 974 948676 31-2090 948 898704 30-7896 975 950625 31-2250 949 900601 30-8058 ' 976 952576 31-2410 950 902500 30-8221 977 954529 31-2570 951 904401 30-8383 978 956484 31-2730 952 906304 30-8545 979 958441 31-2890 953 908209 30-8707 980 960400 31-3050 954 910116 30-8869 981 962361 31-3209 955 912025 30-9031 982 964324 31-3369 956 913936 30-9192 983 966289 31-3528 957 915849 30-9354 984 968256 31-3688 958 917764 30-9516 985 970225 31-3847 959 919681 30-9677 986 972196 31-4006 960 921600 30-9839 987 974169 31-4166 961 923521 31-0000 988 976144 31-4325 962 925444 31-0161 989 978121 31-4484 963 927369 31-0322 990 980100 31-4643 964 929296 31-0483 991 982081 31-4802 965 931225 31-0644 992 984064 31-4960 966 933156 31-0805 993 986049 31-5119 ! 967 935089 31-0966 994 988036 31-5278 , 968 937024 31-1127 995 990025 31-5436 969 938961 31-1288 996 992016 31-5595 970 940900 31-1448 997 994009 31-5753 i 971 942841 31-1609 998 996004 31-5911 972 944784 31-1769 999 998001 31-6070 973 946729 31-1929 1000 1000000 31-6228 106 TABLE OF SLOPES, &c. For TOPOGRAPHY. Vertical Rise Horizontal Vertical Rise Horizontal Degrees. in 100 feet horizontal. Distance to a rise of 10 feet. Degrees. in 100 feet horizontal. Distance to a rise of 10 feet. 1 1-75 572-9 o 19 34-43 29-0 2 3-49 286 : 4 20 36-40 27-5 3 5-24 190-8 21 38-40 26-0 4 6-99 143-0 22 40-40 24-7 5 8-75 114-3 23 42-45 23-5 6 10-51 95-1 24 44-52 22-4 7 12-28 81-4 25 46-63 21-4 8 14-05 71-2 26 48-77 20-5 9 15-83 63-1 27 50-95 19-6 10 17-63 56-7 28 53-17 18-8 11 19-44 51-4 29 55-43 18-0 12 21-25 47-0 30 57-73 17-3 13 23-09 43-3 35 70-02 14-2 14 24-93 40-1 40 83-91 11-9 15 26-79 37-3 45 100-00 10-0 16 28-67 34-9 50 119-17 8-4 17 30-57 32-7 55 142-81 7-0 ]8 32-49 30-7 60 173-20 5-7 ; 1^ ! R. B. WEARS, STEREOTYPER. AN INITIAL FINE OF 25 CENTS OVERDUE. p YB 5360! 2/y W~ - _