/4ZA*r7\ 
 
 ASTRONOMY DEPT. 
 
NEWCOMB'S 
 
 MATHEMATICAL COURSE. 
 
 /. SCHOOL COURSE. 
 
 Algebra for Schools. 
 
 Key to Algebra for Schools. 
 
 Plane Geometry and Trigonometry, with Tables. 
 
 The Essentials of Trigonometry. 
 
 II. COLLEGE COURSE. 
 
 Algebra for Colleges. 
 
 Key to Algebra for Colleges. 
 
 Elements of Geometry. 
 
 Plane and Spherical Trigonometry, with Tables. 
 
 Trigonometry (separate). 
 
 Tables (separate). 
 
 Elements of Analytic Geometry. 
 
 Elements of the Differential and Integral Calculus. 
 
 Astronomy, Advanced Course, by Newcomb and Holden. 
 
 Astronomy, Briefer Course, by Newcomb and Holden. 
 
 HENRY HOLT & CO., Publishers, New York. 
 
NE WC OMB' 8 MATHEMATICAL COURSE 
 
 LOGARITHMIC AND OTHER 
 MATHEMATICAL TABLES 
 
 WITH EXAMPLES OF THEIR USE AND HINTS ON THE ART OK 
 COMPUTATION 
 
 BY 
 
 SIMON NEWCOMB 
 
 f Mathematics, in the Johns Hopkins University. 
 
 NEW YORK 
 HENRY HOLT AND COMPANY 
 
 LC I ? I 
 
ASTRONOMY DEPT 
 
 COPYRIGHT, 1883, 
 
 BY 
 HENRY HOLT & COl 
 
 
PBEFACE. 
 
 IK the present work an attempt is made to present to computers 
 and students a set of logarithmic and trigonometric tables which 
 shall have all the conveniences familiar to those who use German 
 tables. The five-figure tables of F. G. GAUSS, of which fifteen edi- 
 tions have been issued, have, after long experience with them, been 
 taken as the basis of the present ones, but modifications have been 
 introduced wherever any improvement could be made. 
 
 Five places of decimals have been adopted as an advantageous 
 mean. The results obtained by them, being nearly always reliable to 
 the 10,000th part, are amply accurate for most computations, while 
 the time of the student who uses them is not wasted in unnecessary 
 calculation. 
 
 The Introduction is intended to serve not only as an explanation 
 of the tables, but as a little treatise on the art of computation, and 
 the methods by which the labor of computation may be abridged. 
 
 To avoid fostering the growing evil of nearsightedness among 
 students, the author and publishers have spared neither pains nor 
 expense in securing clearness of typography. 
 
 M192073 
 
CONTENTS. 
 
 INTRODUCTION TO TABLES. 
 
 TABLE I. 
 LOGARITHMS OP NUMBERS. 
 
 KAMI 
 
 Introductory Definitions 3 
 
 The Use of Logarithms 4 
 
 Arrangement of the Table of Logarithms 6 
 
 Characteristics of Logarithms 8 
 
 Interpolation of Logarithms 10 
 
 Labor-Saving Devices ' 11 
 
 Number Corresponding to Given Logarithm 13 
 
 Adjustment of Last Decimal 14 
 
 The Arithmetical Complement 16 
 
 Practical Hints on the Art of Computation 18 
 
 Imperfections of Logarithmic Calculation 20 
 
 Applications to Compound Interest and Annuities 25 
 
 Accumulation of an Annuity 28 
 
 TABLE II. 
 
 MATHEMATICAL CONSTANTS. 
 Explanation 31 
 
 TABLES III. AND IV. 
 LOGARITHMS OP TRIGONOMETRIC FUNCTIONS. 
 
 Angles less than 45 32 
 
 Angles between 45 and 90 33 
 
 Angles greater than 90 35 
 
 Methods of Writing the Algebraic Signs 36 
 
 Angle Corresponding to a Given Function 37 
 
 Cases when the Function is very Small or Great 38 
 
 TABLE V. 
 
 NATURAL SINES AND COSINES. 
 Explanation 42 
 
CONTENTS. 
 
 TABLE VI. 
 ADDITION AND SUBTRACTION LOGARITHMS. 
 
 PAGE 
 
 Use in Addition ........................................................ 43 
 
 Use in Subtraction .................. t .................................. 44 
 
 Special Cases ........................................................... 45 
 
 TABLE 
 SQUARES OP NUMBERS. 
 Explanation. .............. .................. .......................... 49 
 
 TABLE VIII. 
 
 HOURS, MINUTES, AND SECONDS INTO DECIMALS OP A DAY. 
 Explanation ........................................... . ................ 51 
 
 TABLE IX. 
 
 To CONVERT TIME INTO ARC. 
 Explanation ............................................................ 53 
 
 TABLE X. 
 
 MEAN AND SIDEREAL TIME. 
 Explanation ............................................................ 55 
 
 OF DIFFERENCES AND INTERPOLATION. 
 
 General Principles ........ . ...... .' ...................................... 56 
 
 Fundamental Formulae .................................................. 61 
 
 Transformations of the Formulae ......................................... 62 
 
 Formulas of Stirling and Bessel ..................................... ..... 68 
 
 Special Cases of Interpolation Interpolation to Halves .................... 64 
 
 Interpolation to Thirds ................................................ 66 
 
 Interpolation to Fifths ........................... , ..................... 70 
 
 FORMULAE FOR THE SOLUTION OF PLANE AND SPHERICIAL 
 
 TRIANGLES. 
 Remarks ............................................................... 74 
 
 Formulae ............................................................... 75 
 
 TABLES I. TO X. 
 
TABLE I. 
 LOGARITHMS OF NUMBERS. 
 
 1. Introductory Definitions. 
 
 Natural numbers are numbers used to represent quantities. 
 
 The numbers used in arithmetic and in the daily transactions of 
 life are natural numbers. 
 
 To every natural number may be assigned a certain other number, 
 called its logarithm. 
 
 The logarithm of a natural number is the exponent of the 
 power to which some assumed number must be raised to produce the 
 first number. The assumed number is called the base. E.g. f the 
 logarithm of 100 with the base 10 is 2, because 10 2 = 100; with the 
 base 2, the logarithm of 64 would be 6, because 2 fl = 64. 
 
 A system of logarithms means the logarithms of all POSN 
 tive numbers to a given base. 
 
 Although there may be any number of systems of logarithms, 
 only two are used in practice, namely: 
 
 1. The natural or Napierian system, base = e = 2. 718 282. 
 
 2. The common system, base = 10. 
 
 The natural system is used for purely algebraic purposes. 
 
 The common system is used to facilitate numerical calculations 
 and is the only one employed in this book. 
 
 If the natural number is represented by n, its logarithm is called 
 
 log n. 
 
 A logarithm usually consists of an integer number and a decimal 
 part. 
 
 The integer is called the characteristic of the logarithm. 
 
 The decimal part is called the mantissa of the logarithm. 
 
 A table of logarithms is a table by which the logarithm of 
 any given number, or the number corresponding to any given loga- 
 rithm, may be found. 
 
4 LOGARITHMIC TABLES. 
 
 The moot simple form of table is that on the first page of Table I., which 
 gives the logarithms of all entire numbers from 1 to 150; each logarithm being 
 found alongside its number. The student may begin his exercises with this 
 table. 
 
 Mathematical tables in general enable us, when one of two related 
 quantities is given, to find the other. 
 
 In such tables the quantity supposed to be given is called the 
 argument. 
 
 The argument is usually printed on the top, bottom, or side of 
 the table. 
 
 The quantities to be found are called functions of the argu- 
 ment, and are found in the same columns or lines as the argument, 
 feut in the body of the table. 
 
 In a table of logarithms the natural number is the argument, 
 and the logarithm is the function. 
 
 2. The Use of Logarithms. 
 
 The following properties of logarithms are demonstrated in 
 treatises on algebra. 
 
 I. The logarithm of a product is equal to the sum of the loga- 
 rithms of its factors. 
 
 II. The logarithm of a quotient is found by subtracting the loga- 
 rithm of the divisor from that of the dividend. 
 
 III. The logarithm of any power of a number is equal to the loga- 
 rithm of the number multiplied by the exponent of the power. 
 
 IV. The logarithm of the root of a number is equal to the loga- 
 rithm of the number divided by the index of the root. 
 
 "We thus derive the following rules: 
 
 To find the product of several factors by logarithms. 
 
 EULE. Add the logarithms of the several factors. Enter the 
 table with the sum as a new logarithm, and find the number corres- 
 ponding to it. 
 
 This number is the product required. 
 
 Example 1. To multiply 7x8. 
 
 We find from the first page of Table I. 
 
 log? = 0.84510 
 
 " 8 = 0.90309 
 
 Sum of logs = 1.748 19 = log of product. 
 Having added the logarithms, we look in column log for a num- 
 
THE USE OF LOGARITHMS. 5 
 
 ber corresponding to 1.788 19 and find it to be 56, which is the pro- 
 duct required. 
 
 Ex. 2 To find the continued product 2x6x8. 
 log 2, 0.30103 
 " 6, 0.77815 
 " 8, 0.90309 
 
 Sum of logs, 1.982 27 = log product. 
 
 The number corresponding to this logarithm is found to be 96, 
 which is the product required. 
 
 Ex. 3. To find the quotient of 147 -f- 21. 
 log 147, 2.16732 
 " 21,1.32222 
 
 Difference, 0.845 10 
 
 We find this difference to be the logarithm of 7, which is tha 
 required quotient. 
 
 Ex. 4. To find the quotient arising from dividing the continued 
 /roduct 98 X 102 X 148 by the continued product 21 X 37 X 68. 
 log 21, 1.322 22 log 98, 1.991 23 
 
 " 37, 1.56820 " 102, 2.00860 
 
 " 68, 1.83251 " 148, 2.17026 
 
 Sum = log divisor, 4.722 93 Sum = log dividend, 6.170 09 
 
 log divisor, 4.72293 
 
 Difference = log quotient, 1.447 16 
 
 Looking into the table, we find the number corresponding to this 
 logarithm to be 28, which is the required quotient. 
 
 NOTE. The student will notice that we have found this quotient without 
 actually determining either the divisor or dividend, having used only their loga- 
 rithms. If he will solve the problem arithmetically, he will see how much 
 shorter is the logarithmic process. 
 
 Ex. 5. To find the seventh power of 2. 
 We have log 2 = 0.301 03 
 
 7 
 
 2.10721 = log 128 
 Hence 128 is the required power. 
 Ex. 6. To find the cube root of 125. 
 
 3 | 2.09691 
 0.69897 
 
6 LOGARITHMIC TABLES. 
 
 The index of the root being 3, we divide the logarithm of 125 by 
 it. Looking in the tables, we find the number to be 5, which is the 
 root required. 
 
 EXEKCISES. 
 
 Compute the following products, quotients, powers, and roots by 
 logarithms. 
 
 OO C 
 
 1. 11 . 13. Ans. 143. 5. ~~. Ans. 128. 
 
 2. 12'. Ans. 144. 6. 51 ' 98 ^ 81 . Ans. 31. 
 
 O4: . DO 
 
 8. -^-. Ans. 48. 7. ' . Ans. 144. 
 
 D D 
 
 2. 9'. 91. 78 , 54.48 
 
 4 13'. 21. 3 * AnS ' 108 - 8 --8T9-' Ans ' 36 ' 
 
 3. Arrangement of the Table of Logarithms. 
 
 A table giving every logarithm alongside its number, as on the 
 first page of Table I., would be of inconvenient bulk. For numbers 
 larger than 150 the succeeding parts of Table I. are therefore used. 
 Here the first three figures of the natural number are given in the 
 left-hand column of the table. The first figure must be understood 
 where it is not printed. The fourth figure is to be sought in the 
 horizontal line at the top or bottom. The mantissa of the logarithm 
 is then found in the same line with the first three digits, and in the 
 column having the fourth digit at the top. 
 
 To save space the logarithm is not given in the column, 
 but only its last three figures. The first two figures are found in 
 the first column, and are commonly the same for all the logarithms 
 in any one line. 
 
 Example 1. To find the logarithm of 2090. 
 
 . We find the number 209, the figure 2 being omitted in printing, 
 in the left-hand column of the table, and look in the column having 
 the fourth figure, 0, at its top or bottom. In this column we find 
 320 15, which is the mantissa of the logarithm required. 
 
 Ex. 2. To find the logarithm of 2092. 
 
 Entering the table with 209 in the left-hand column, and choos- 
 ing the column with 2 at the top, we find the figures 056. Te 
 these we prefix the figures 32 in column 0, making the total logarithm 
 320 56. Therefore 
 
 Mantissa of log 2092 = .32056. 
 
ARRANGEMENT OF THE TABLE. 7 
 
 EXERCISES. 
 
 Find in the same way the mantissas of the logarithms of the fol- 
 lowing numbers: 
 
 2240; 5133; 
 
 2242; 5256; 
 
 2249; 5504; 
 
 2895; 8925; 
 
 3644; 9557; 
 
 4688; 9780. 
 
 When the first two figures of the mantissa are not found in the 
 same line in which the number is sought, they are to be found in the 
 first line above which contains them. 
 
 Example. The first two figures of log 6250 are 79, which be- 
 longs to all the logarithms below as far as 6309. Therefore mantissa 
 of log 6250 = .795 88. 
 
 EXEECISES. 
 
 Find the mantissae of the logarithms of 
 
 6300; answer, .79934. 
 
 6309; " .79996. 
 
 6434; 
 
 6653; 
 
 6755; 
 
 6918; 
 
 7868. 
 
 Exception. There are some cases in which the first two figures 
 change in the course of the line. In this case the first two figures 
 are to be sought in the line above before the change and in the line 
 next below after the change. 
 
 Example. The mantissa of log 6760 is .82995. But the man- 
 tissa of log 6761 is .83001. In this case the figures 83 are to be 
 found in the next line below. To apprise the computer of these 
 cases, each of the logarithms in which the two first figures are found 
 in the line below is indicated by an asterisk. 
 
 EXERCISES, 
 Find the mantissa of 
 
 log 1022; answer, .009 45. 
 log 1024; " .01030. 
 
8 LOGARITHMIC TABLES. 
 
 1231; 1999; 
 
 1387; 3988; 
 
 1419; 4675; 
 
 1621; 4798; 
 
 1622; 5377; 
 
 1862; 8512; 
 
 1863; 1009. 
 
 4. Characteristics of Logarithms. 
 
 The part of the table here described gives only the mantissa oj 
 <each logarithm. The characteristic must be found by the general 
 theory of logarithms. 
 
 The following propositions are explained in treatises on algebra: 
 The logarithm of 1 is 0. 
 " " " 10 " 1. 
 
 " " " 100 " 2. 
 
 " " " 1000 " 3. 
 
 10* " n. 
 
 Since any number of one digit is between and 10, its logarithm 
 is between and 1; that is, it is plus some fraction. In the same 
 way, the logarithm of a number of two digits is 1 + a fraction. And 
 in general, 
 
 The characteristic of the logarithm of any number greater than 1 is 
 
 less by unity than the number of its digits preceding the decimal point. 
 
 Example. The characteristic of the logarithm of any number 
 
 between 1 and 10 is 0; between 10 and 100 it is 1; between 100 and 
 
 1000 it is 2, etc. 
 
 Characteristic of log 1646 is 3. 
 " " " 164.6 " 2. 
 
 " " " 16.46 " 1. 
 
 " " " 1.646 " 0. 
 
 It is also shown in algebra that if a number be divided by 10 we 
 diminish its logarithm by unity. 
 
 Logarithms of numbers less than unity are most conveniently ex- 
 pressed by making the characteristic alone negative. 
 For example: 
 
 log 0.2 = log 2 - 1 = - 1 + .301 03; 
 " 0.02 = log2-2 = -2-f .301 03. 
 
 Hence: The mantissa of the logarithms of all numbers which 
 differ only in the position of the decimal point are the same. 
 
CHARACTERISTICS OF LOGARITHMS. 9 
 
 Hence, also, in seeking a logarithm from the table we find the 
 mantissa without any reference to the decimal point. Afterward we 
 affix the characteristic according to the position of the decimal point. 
 For convenience, when a negative characteristic is written the 
 minus sign is put above it to indicate that it extends only to the 
 characteristic below it and not to the mantissa. Thus we write 
 
 log .02 = 2. 301 03. 
 
 In practice, however, it is more common to avoid the use of 
 negative characteristics by increasing them by 10. We then write 
 
 log. 02 = 8. 301 03 -10. 
 
 If we omitted to write 10 after the logarithm, the latter would, 
 in strictness, be the log of 2 X 10 8 . But numbers so great as this 
 product occur so rarely in practice that it is not generally neces- 
 sary to write 10 after the logarithm. This may be understood. 
 
 A convenient rule for remembering what characteristic belongs to 
 the logarithm of a decimal fraction is: 
 
 The characteristic is equal to 9, minus the number of zeros after 
 the decimal point and before the first significant figure. 
 Examples, log 34060 =4.53224 
 
 " 340.60 =2.53224 
 
 " 3.4060 =0.53224 
 
 " .03406 =8.53224-10 
 
 " .000 340 6 = 6.532 24 - 10 
 
 It will be seen that we can find the logarithms of numbers from 
 1 to 150 without using the first page of the table at all, since all the 
 mantissas on this page are found on the following pages as loga- 
 rithms of larger numbers. 
 
 EXERCISES. 
 
 Find the logarithms of the following numbers: 
 1.515 .003 899 
 
 .01 702 0.4276 
 
 18.62 464700 
 
 .03 735 98.030 
 
 Find the numbers corresponding to the following logarithms: 
 
 3.241 80; 
 1.19145; 
 A65321; 
 .74827; 
 7.560 03; 
 
 ans. 
 ans. 
 ans. 
 
 450 000 
 5 601 000 
 36 310-000 
 
 8.75035 
 7.411 28 
 .6.88997 
 9.116 94 
 7.250 18 
 
 -10; 
 -10; 
 -.I?; 
 -10; 
 
 9.99991 - 
 5.99996; 
 2.96028; 
 "0788627;" 
 0.00087. 
 
 10; 
 
10 LOGARITHMIC TABLES. 
 
 5. Interpolation of Logarithms. 
 
 In all that precedes we have used only logarithms of numbers 
 containing not more than 4 significant digits. But in practice 
 numbers of more than four figures have to be used. To find the 
 logarithms of such numbers the process of interpolation is necessary. 
 This process is one of simple proportion, which can be seen from the 
 following example. 
 
 To find log. 1167.23. 
 
 The table gives the logarithms of 1167 and of 1168, which we find 
 to be as follows: 
 
 log 1167 = 3.06707 
 
 " 1168 = 3.06744 
 
 Difference of logarithms = .000 37 
 
 Now the number of which we wish to find the logarithm being 
 between these numbers, its logarithm is between these logarithms; 
 that is, it is equal to 3.067 07 plus a fraction less than .000 37. 
 
 Since the difference 37 corresponds to the difference of unity in 
 the two numbers, we assume that the quantity to be added to the 
 logarithm bears the same proportion to .23 that 37 does to unity. 
 We therefore state the proportion 
 
 1 : .23 :: 37 : increase required. 
 
 The solution of this proportion gives .23 X 37 = 8.51, which is 
 the quantity to be added to log 1167 to produce the logarithm 
 required.* The result is 3.067 155 1. 
 
 But our logarithms extend only to five places of decimals, while 
 the result we have written has seven. "We therefore take only five 
 places of decimals. If we write the mantissa 3.06715, the result will 
 be too small by .51. If we write 3.067 16, it will be too great by .49. 
 Since the last result is nearer than the first, we give it the prefer, 
 ence, and write for the required logarithm 
 
 log 1167. 23 = 3.06716. 
 
 We thus have the following rule for interpolating: 
 
 Take from the table the logarithm corresponding to the first four 
 significant digits of the number. 
 
 Considering the following digits as a decimal fraction, multiply 
 the difference between the logarithm and the next one following by 
 such decimal fraction. 
 
 * In this multiplication we have used a decimal point to mark oil the 
 fifth order of decimals. This is a convenient process in all such computations. 
 
LABOR-SAVING DEVICES. H 
 
 This product "being added to the logarithm of the table will give 
 the logarithm required. 
 
 The whole operation by which we have found log 1167.23 would 
 then be as follows: 
 
 log 1167 = 3.06707 
 37 X 0.2 7.4 
 
 X 0.03 1.11 
 
 log 1167.23 = 3.06716 
 
 The products for interpolation, 7.4 and 1.11, may be found by 
 multiplying by the fifth and sixth figures of the number separately. 
 
 To facilitate this multiplication, tables of proportional parts are 
 given in the margin. Each difference between two logarithms will 
 be readily found in heavy type not far from that part of the table 
 which is entered, and under it is given its product by .1, .2, etc., . . .9. 
 We therefore enter this little table with the fifth figure, and take out 
 the corresponding number to be added to the logarithm. Then if 
 there is a sixth figure, we enter with that also and move the decimal 
 one place to the left. We then add the two sums to the logarithm. 
 
 6. Labor-saving Devices. 
 
 In using a table of logarithms, the student should accustom 
 himself to certain devices by which the work may be greatly facili- 
 tated. 
 
 In the first place it is not necessary to take the whole difference 
 between two consecutive logarithms. He has only to subtract the 
 last figure of the preceding logarithm from the last one of the fol- 
 lowing, increased by 10 if necessary, and thus find the last figure of 
 the difference. 
 
 The nearest difference in the margin of the table having this 
 same last figure will always be the difference required. 
 
 Example. If the first four figures of the number are 1494, in- 
 stead of subtracting 435 from 464 we say 5 from 14 leaves 9, and 
 look for the nearest difference which has 9 for its last figure. This 
 we readily find to be 29, at the top of the next page. 
 
 NOTE. In nearly all cases the difference will be found on the same page 
 with the logarithm. The only exception is at the bottom of the first page, where t 
 owing to the number of differences, they cannot all be printed. 
 
 In the preceding examples we have written down the numbers in 
 full, which it is well that the beginner should do for himself. But 
 after a little practice it will be unnecessary to write down anything 
 
12 LOGAEITHMIG TABLES. 
 
 but the logarithm finally taken out. The student should accustom 
 himself to take the proportional parts mentally, adding them to the 
 logarithm of the table and writing down the sum at sight The 
 habit of doing this easily and correctly can be readily acquired by 
 practice. 
 
 Exercises. Find the logarithms of 
 
 792 638; 0.99997; 
 
 1000.77; 949.916; 
 
 1000.07; 20.8962; 
 
 100 007; 660 652; 
 
 181 982; 77.642; 
 
 281.936; 8.8953. 
 
 As a precaution in taking out logarithms, the computer should 
 always, after he has got his result, look into the table and see that 
 it does really fall between two consecutive logarithms in the table. 
 
 If the fraction to be interpolated is nearly unity, especially if it 
 is equal to or greater than 9, it will generally be more convenient to 
 multiply the difference of the logarithms by the complement* of the 
 fraction and subtract the product from the logarithm next succeed- 
 ing. The following are examples of the two methods, which may 
 always be applied whether the fraction be large or small: 
 Example 1. log 1004.28 = log (1005 - .72). 
 
 log 1004, .00173 log 1005, .00217 
 
 pr. pt. for .2, 8.8 pr. pt. for .7, - 30.8 
 
 " " " .08, 3.5 " " " .02, .9 
 
 log, 3.001 85 log, 3.001 85 
 
 Ex. 2. log 154 993 = 155 000 - 7. 
 
 log 1549, .19005 1550, .19>033 
 pr. pt. for .9, 25.2 pr. pt. for .07, 1.9b 
 " " " .03, 0.8 
 
 log, 5.19031 
 
 log, 5.19031 
 
 * By the complement or arithmetical complement of a decimal fraction is here 
 meant the remainder found by subtracting it from unity or from a unit of the 
 next order higher than itself. Thus : 
 
 co. .723 = .277 
 
 co. .1796 = .8204 
 
 co. .9932 = .0068. 
 
NUMBER CORRESPONDING TO A GIVEN LOGARITHM. 13 
 
 7. To find the Number corresponding to a given 
 Logarithm. 
 
 The reverse process of finding the number corresponding to a 
 given logarithm will be seen by the following example: 
 
 To find the number of which the logarithm is 2.027 90. 
 
 Entering the table, we find that this logarithm does not exactly 
 occur in the table. We therefore take the next smaller logarithm, 
 which we find to be as follows: 
 
 log 1066 = 2.02776. 
 
 Subtracting this from the given logarithm we find the latter to be 
 greater by 14, while the difference between the two logarithms of 
 the table is 40. We therefore state the proportion 
 40 : 14 : : 1 to the required fraction. 
 
 The result is obtained by dividing 14 by 40, giving a quotient .35. 
 The required number is therefore 106.635. It will be remarked that 
 we take no account of the characteristic and position of the decimal 
 until we write down the final result, when we place the decimal in 
 the proper position. 
 
 The table of proportional parts is used to find the fifth and sixth 
 figures of the number by the following rule: 
 
 If the given logarithm is not found in the table, note the ex- 
 cess of the given logarithm above the next smaller one in the table, 
 which call A. 
 
 Take the difference of the two tabular logarithms, and fjrui it 
 among the large figures which head the proportional parts. 
 
 That proportional part next smaller than A will be the fifth 
 figure of the required number. 
 
 Take the excess of A above this proportional part; imagine its 
 decimal point removed one place to the right, and find the nearest 
 number of the table. 
 
 This number will be the sixth figure of the required number. 
 
 Example. To find the number of which the logarithm is 2.193 59. 
 
 Entering the table, we find the next smaller logarithm to be 
 .193 40. Therefore A = 19. 
 
 Also its tabular difference = 28. 
 
 Entering the table of proportional parts under 28, we find 16.8 
 opposite 6 to be the number next smaller than 19 the value of A. 
 Therefore the fifth figure of the number is 6. 
 
 The excess of 19 above 16.8 is 2.2. Looking in the same tablt 
 for the number 22, we find the nearest to be opposite 8. 
 
14 LOGARITHMIC TABLES. 
 
 Therefore the fifth and sixth figures of the required number are 
 68. Now looking at the log .193 40 and taking the corresponding 
 number, we find the whole required number to be 
 
 156 168. 
 
 The characteristic being 2, the number should have three figures 
 before the decimal point. Therefore we insert the decimal point at 
 the proper place, giving as the final result 156.168. 
 
 8. Number of Decimals necessary. 
 
 In the preceding examples we have shown how with these tables 
 the numbers may be taken out to six figures. In reality, however, 
 it will seldom be worth while to write down more than five figures. 
 That is, we may be satisfied by adding only one figure to the four 
 found from the table. In this case, when we enter the table of 
 proportional parts, we take only the number corresponding to the 
 nearest proportional part. 
 
 To return to the last preceding example, where we find the num- 
 be/ corresponding to 2. 193 59. We find under the difference 28 that 
 th^ number nearest 19 is 19.6, which is opposite 7. 
 
 Therefore the number to be written down would be 156.17. 
 
 In the following exercises it would be well for the student to 
 4n ite six figures when the number is found on one of the first two 
 pa^es of the table and only five when on one of the following page* 
 Tl -e reason of this will be shown subsequently. 
 
 EXAMPLES AND EXERCISES. 
 
 \. To find the square root of f . 
 We have log 3, 0.477 12 
 
 " 2, 0.30103 
 
 log |, 0.17609 
 -f- 2, log V$, 0.08804 
 
 Here we have a case in which the half of an odd number is 
 required. We might have written the last logarithm 0.088045, but 
 we should then have had six decimals, whereas, as our tables only 
 give five decimals, we drop the sixth. If we write 4 for the fifth 
 figure it will be too small by half a unit, and if we write 5 it will 
 be too large by half a unit. It is therefore indifferent which figure 
 we write, so far as mere accuracy is concerned. 
 
NUMBER OF DECIMALS NECESSARY. 15 
 
 A good rule to adopt in such a case is to write the nearest EVEN" 
 number. For example, 
 
 for the half of .261 81 we write .130 90; 
 " " .26183 " .13092; 
 " " .26185 " .13092; 
 " " .26187 " .13094; 
 " " .26189 " .13094; 
 " " .26197 " .13098; 
 " " .26199 " .13100. 
 
 Returning to our example, we find, by taking the number corre- 
 sponding to 0.088 04, 
 
 Vt = 1.224 72. 
 
 2. To find the square root of f . 
 
 log 2, 0.301 03 
 " 3, 0.47712 
 
 logf, 9.82391 - 10 
 | log |, 4.911 96 - 5 = log |/f. 
 The last logarithm is the same as 
 
 9.911 96 - 10, 
 
 which is the form in which it is to be written in order to apply the 
 rule of characteristics. The corresponding number is 0.816 50. 
 
 We have here a case in which, had we neglected considering the 
 surplus 10 as we habitually do, the characteristic of the answer 
 would have been 4 instead of 9 or 1. The easiest way to treat 
 such cases is this: 
 
 When we have to divide a logarithm in order to extract a root, 
 instead of increasing the characteristic by 10, increase it by 10 X 
 index of root. 
 
 Thus we write log ^= 19.823 91 - 20. 
 Dividing by 2, log i/f = 9.911 96 - 10, 
 
 which is in the usual form. , > 
 
 3. To find the cube root of |. 
 
 logl, 0.00000 
 " 2, 0.30103 
 
 log|, 9.69897 -10, 
 which we write in the form 
 
 log | = 29.69897-30. 
 Dividing this by 3, 
 
 J log 1 = log VT = 9-899 66 - 10. 
 
16 LOGARITHMIC TABLES. 
 
 This logarithm is in the usual form, and gives 
 V?= 0.793 70. 
 
 The affix 30, or 10 x divisor, can be left to be understood 
 in these cases as in others. All that is necessary to attend to is that 
 instead of supposing the characteristic to be one or more units less 
 than 10, as in the usual run of cases, we suppose it to be one or more 
 nnits less than 10 X divisor. 
 
 Find: 4. The square root of -J; 
 
 5. The cube root of 2; 
 
 6. The fourth root of f ; 
 
 7. The fifth root of 20; 
 
 8. The tenth root of 10; 
 
 9. The tenth root of . 
 
 9. The Arithmetical Complement. 
 
 When a logarithm is subtracted from zero, the remainder is 
 called its arithmetical complement. 
 
 If L be any logarithm, its arithmetical complement will be L. 
 
 Hence if 
 
 L = log n, 
 then 
 
 arith. comp. = L = log -; 
 
 that is, 
 
 The arithmetical complement of a given logarithm is the logarithm 
 tfthe reciprocal of the number corresponding to the given logarithm. 
 
 Notation. The arithmetical complement of a logarithm is writ- 
 ten co-log. It is therefore defined by the form 
 
 co-log n = log . 
 
 Finding the arithmetical complement. To find the arithmetical 
 Complement of log 2 = 0.301 03, we may proceed thus: 
 
 0.00000 
 log 2, 0,30103 
 
 co-log 2, 9.69897-10. 
 
 We subtract from zero in the usual way; but when we come to 
 the characteristic, we subtract it from 10. This makes the re* 
 mainder too large by 10, so we write 10 after it, thus getting a 
 quantity which we see to be log 0.5. 
 
 We may leave the 10 to be understood, as already explained. 
 
THE ARITHMETICAL COMPLEMENT. 17 
 
 The arithmetical complement may be formed by the following 
 rule: 
 
 Subtract, each figure of the logarithm from 9, except the last sig- 
 nificant one, which subtract from 10. The remainders will form the 
 arithmetical complement. 
 
 For example, having, as above, the logarithm 0.301 03, we form, 
 mentally, 9-0 = 9; 9-3 = 6; 9-0 = 9; 9-1 = 8; 9-0 = 9; 
 
 10 3 = 7; and so write 
 
 9.698 97 
 
 as the arithmetical complement. 
 
 To form the arithmetical complement of 3.284 00 we have 9 3 
 = 6; 9 2 = 7; 9 8 = 1; 10 4 = 6. The complement is 
 
 therefore 
 
 6.71600. 
 
 The computer should be able to form and write down the arith- 
 metical complement without first writing the tabular logarithm, the 
 subtraction of each figure being performed mentally. 
 
 Use of the arithmetical complement. The co-log is used to substi- 
 tute addition for subtraction in certain cases, on the principle: To 
 add the co-logarithm is the same as to subtract the logarithm. 
 
 Example. We may form the logarithm of J in this way by ad- 
 dition: 
 
 log 3, 0.47712 
 co-log 2, 9.69897 
 
 logj, 0.17609 
 
 Here there is really no advantage in using the co-log. But there 
 is an advantage in the following example: 
 
 97fi3 N/ J.1Q 9J. 
 
 To find the value of P = ;L We ad <* to the loga- 
 
 yy 
 
 rithms of the numerator the co-log of the denominator, thus: 
 log 2763, 3.44138 
 log 419.24, 2.62246 
 co-log 99, 8.00436 
 
 logP, 4.06820 
 
 '.P = 11700. 
 
 The use of the arithmetical complement is most convenient when 
 ^o divisor is a little less than some power of 10. 
 
J8 LOQAEITHMIC TABLES. 
 
 EXERCISES. 
 
 Form by arithmetical complements the values of: 
 
 109 X 216.26 
 
 1. 
 2. 
 3. 
 
 0.99316 
 8263 X 9162.7 
 
 92 X 99.618 
 4 X 6 X 8219 
 9X992 
 
 1C. Practical Hints on the Art of Computation. 
 
 The student who desires to be really expert in computation 
 should learn to reduce his written work to the lowest limit, and to 
 perform as many of the operations as possible mentally. We have 
 already described the process of taking a logarithm from the table 
 without written computation, and now present some exercises which 
 will facilitate this process. 
 
 1. Adding and subtracting from left to right. If one has but 
 two numbers to add it will be found, after practice, more easj and 
 natural to write the sum from the left than from the right. The 
 method is as follows: 
 
 In adding each figure, notice, before writing the sum, whether 
 the sum of the figures following is less or greater than 9, or equal 
 to it. 
 
 If the sum is less than 9, write down the sum found, or its last 
 figure without change. 
 
 If greater than 9, increase the figure by 1 before writing it down. 
 
 If equal to 9, the increase should be made or not made accord- 
 ing as the first sum following which differs from 9 is greater or less 
 than 9. 
 
 If the first sum which differs from 9 exceeds it, not only must we 
 increase the number by 1, but must write zeros under all the places 
 where the 9's occur. If the first sun different from 9 is less than 9, 
 write down the 9's without change. 
 
 The following example illustrates the process: 
 
 7502768357858892837 
 8239171645041102598 
 
 15741940002899995435 
 Here 7 and 8 are 15. 5 + 2 being less than 9, we write 15 without 
 change. 3 + being less than 9, we write 7 without change. 9 + 2 being 
 greater than 9, we increase the sum 3 + by 1 and write down 4. 7 + 1 being 
 
PRACTICAL HINTS ON THE ART OF COMPUTATION. 19 
 
 less than 9, we write the last figure of 9 -|- 2, or 1, without change. 6 + 7 being 
 greater than 9, we increase 7 + 1 by 1 and write down 9. Under 6 + 7 we 
 write down 3 or 4. To find which, 8+ 1 = 9; 3 + 6 = 9; 5+4= 9; 7 + 5 = 
 12. This first sum which is different from 9 being greater than 9, we write 4 
 under 6 + 7, and O's in the three following places where the sums are 9. 7+5 
 = 12. Since 8 + < 9, we write down 2. Before deciding whether to put 8 or 
 9 under 8 + 0, we add 5 + 4 = 9; 8 + 1 = 9; 8 + 1 =9; 9 + = 9; 2 + 2 = 4 
 This being less than 9, we write 8 under 8 + 0, and 9's in the four following 
 places. Since 5 + 8 = 13 > 9, we write 5 under 2 + 2. Since 9+ 3 = 12 > 9, we 
 write 4 under 5 + 8. Since 8 + 7 = 15 > 9, we write 3 under 9 + 3. Finally, 
 under 8 + 7 we write 5. 
 
 This process cannot be advantageously applied when more than 
 two numbers are to be added. 
 
 EXERCISES. 
 
 Let the student practise adding each consecutive pair of the fol- 
 lowing lines, which are spaced so that he can place the upper margin 
 of a sheet of paper under the lines he is adding and write the sum 
 upon it. 
 
 250917285316981208 
 251235964692184368 
 791615832316646891 
 208532164379102909 
 868588964342944825 
 987654321012345674 
 
 Subtracting. We subtract each figure of the subtrahend from 
 the corresponding one of the minuend (the latter increased by 10 if 
 necessary), as in arithmetic. 
 
 Before writing down the difference, we note whether the follow- 
 ing figure of the subtrahend is greater, less, or equal to the corre- 
 'gponding figure of the minuend. 
 
 If greater, we diminish the remainder by 1 and write it down.* 
 
 If less, we write the remainder without change. 
 
 If equal, we note whether the subtrahend is greater or less than 
 the minuend in the first following figure in which they differ. 
 
 If greater, we diminish the remainder by 1, as before, and write 
 9's under the equal figures. 
 
 * If the student is accustomed to carrying 1 to the figures of the minuend 
 when he has increased the figure of his subtrahend by 10, he may find it easier 
 to defer each subtraction until he sees whether the remainder is or is not to be 
 diminished by 1, and, in the latter case, to increase the minuend by 1 before 
 subtracting. 
 
20 LOGARITHMIC TABLES. 
 
 If less, write the remainder unchanged, putting O's under the 
 equal figures. 
 
 Example. 
 
 72293516214394 
 24268518014198 
 
 48024998200196 
 
 Here 7 2 =5; because 4 > 2, we write 4 12 4 = 8; because 2 = 2 
 and 6 < 9, we write 8; and write in the following place. 96 = 3; be- 
 cause 8 > 3, we write 2. 13 8 = 5; 5 = 5; 1 = 1; 8>6; so under 13 8 we 
 write 4, with 9's in the two next places. 16 8 = 8; because < 2, we write 
 8. 2 = 2; 1 = 1; 4 = 4; 1 < 3; so under 2 we write 2, followed by O's. 
 3 1 = 2; because 9 = 9, 8 > 4, we write 1, with 9 in the next place. 14 8 = 
 6, which we write as the last figure. 
 
 EXERCISES. 
 
 The preceding exercises in addition will serve as exercises in sub- 
 traction by subtracting each line from that above or below it. The 
 student should be able to subtract with equal facility whether the 
 minuend is written above or below the subtrahend. 
 
 Mental addition and subtraction. When an expert computer has 
 to add or subtract two logarithms, as in forming a product or quo- 
 tient of two quantities, he does not necessarily write both of them, 
 but prefers to write the first and, taking the other mentally, add (or 
 subtract) each figure in order from left to right, and write down the 
 sum (or difference). He thus saves the time spent in writing one 
 number, and, sometimes, the inconvenience of writing it where 
 there is not sufficient room for it. 
 
 This process of inverted addition is most useful in adding the 
 proportional part in taking a logarithm from the table. It is then 
 absolutely necessary to save the computer the trouble of copying 
 both logarithm and proportional part. 
 
 Expert computers can add seven-figure logarithms in this way 
 without trouble. But with those who do not desire to become ex- 
 perts it will be sufficient to learn to add two or three figures, so as 
 to be able to take a five-figure or seven -figure logarithm from the 
 table without writing anything but the result. 
 
 11. Imperfections of Logarithmic Calculations. 
 
 Nearly all practical computations with logarithms are affected 
 by certain sources of error, arising from the omission of deci- 
 mals. It is important that these errors should be understood in 
 
IMPERFECTIONS OF LOGARITHMIC CALCULATIONS. 21 
 
 order not only to avoid them so far as possible, but to avoid spend- 
 ing labor in aiming at a degree of accuracy beyond that of which the 
 numbers admit. 
 
 Mathematical results may in general be divided into two classes: 
 (1) those which are absolutely exact, and (2) those which are only 
 to a greater or less degree approximate. 
 
 As an example of the former case, we have all operations upon 
 entire numbers which involve only multiplication and division. For 
 example, the equations 
 
 16 s = 256 
 j^_16 
 6 a ~ 9 
 are absolutely exact. 
 
 But if we express the fraction | as a decimal fraction, we have 
 ^ = .142857. ., etc., ad infinitum. 
 
 Hence the representation of \ as a decimal fraction can never be 
 absolutely exact. The amount of the error will depend upon how 
 many decimals we include. If we use only two decimals we shall 
 certainly be within one hundredth; if three, within one thou- 
 sandth, etc. Hence the degree of accuracy to which we attain de- 
 pends upon the number of decimals employed. By increasing the 
 number of decimals we can attain to any degree of accuracy. As an 
 example, it is shown in geometry that if the ratio of the circumfer- 
 ence of a circle to its diameter be written to 35 places of decimals, 
 the result will give the whole circumference of the visible universe 
 without an error as great as the minutest length visible in the most 
 powerful microscope. 
 
 There are no numbers, except the entire powers of 10, of which 
 the logarithms can be exactly expressed in decimals. We must 
 therefore omit all figures of the decimal beyond a certain limit. The 
 number of decimals to be used in any case depends upon the degree 
 of accuracy which is required. The large tables of logarithms con- 
 tain seven decimal places, and therefore give results correct to the 
 ten-millionth part of the unit. This is sufficiently near the truth 
 in nearly all the applications of logarithms. 
 
 With five places of decimals our numbers will be correct to the 
 hundred-thousandth part of a unit. This is sufficiently near for 
 most practical applications. 
 
 Accumulation of errors. When a long computation is to be 
 made, the small errors are liable to accumulate so that we cannot 
 rely upon this degree of accuracy in the final result. The manner 
 
22 LOGARITHMIC TABLES. 
 
 in which the tables are arranged so as to reduce the error to a mini- 
 mum may be shown as follows: 
 
 We have to seven places of decimals 
 
 log 17 = 1.230 448 9 
 " 18 = 1.2552725 
 
 When the tables give only five places of decimals the two last 
 figures must be omitted. If the tables gave log 17=. 230 44, the 
 logarithm would be too small by 89 units in the seventh place. It is 
 therefore increased by a unit in the fifth place, and given .23045. 
 This quantity is then too large by 11, and is therefore nearer the 
 truth than the other. The nearest number being always given, we 
 have the result: 
 
 Every logarithm in the table differs from the truth ~by not more 
 than one half a unit of the last place of decimals. 
 
 Since the error may range anywhere from zero to half a unit, and 
 is as likely to have one value as another between those limits, we 
 -conclude: 
 
 The average error of the logarithms in the tables is one fourth of 
 <a unit of the last place of decimals. 
 
 Errors in interpolation. When we interpolate the logarithm we 
 add to the tabular logarithm another quantity, the proportional part, 
 which may also be in error by half a unit, but of which the average 
 error will only be one fourth of a unit. 
 
 As most logarithms have to be interpolated, the general result 
 will be: 
 
 An interpolated logarithm may possibly be in error by a unit in 
 the last place of decimals. 
 
 The sum of the average errors will, however, be only half a unit. 
 But these errors may cancel each other, one being too large and the 
 other too small. The theory of probabilities shows that, in conse- 
 quence of this probable cancellation of errors, the average error only 
 increases as the square root of the number of erroneous units added. 
 
 The square root of 2 is 1.41. 
 
 If, therefore, we add two quantities each affected with a probable 
 error, .25, the result will be, for the probable error of the sum, 
 
 1.41 X .25 = 0.35. 
 We therefore conclude: 
 
 The average error of a logarithm derived from the table by inter- 
 polation is 0.35 of a unit of the last place. 
 
 Applying the above rule of the square root to the case in which 
 
IMPERFECTIONS OF LOGARITHMIC CALCULATIONS. 23 
 
 several logarithms are added or subtracted to form a quotient, we? 
 find the results of the following table: 
 
 No. of logs added or subtracted. 
 
 Average error. 
 
 1 
 
 0.35 
 
 2 
 
 0.50 
 
 3 
 
 0.63 
 
 4 
 
 0.72 
 
 5 
 
 0.81 
 
 6 
 
 0.88 
 
 7 
 
 0.95 
 
 8 
 
 1.02 
 
 9 
 
 1.08 
 
 10.. 
 
 , 1.14 
 
 From this table we see that if we form the continued product of 
 eight factors, by adding their logarithms the average error of th& 
 sum of the logarithms will be more than a unit in the last place. 
 
 As an example of the accumulation of errors, let us form the* 
 product 11 . 13. 
 
 We have from the table 
 
 log 11 = 1.041 39 
 " 13 = 1.11394 
 
 log product, 2.155 33 
 
 We see that this is less than the given logarithm of the product 
 143 by a unit of the fifth order. But if we use seven decimals we, 
 have log 11, 1.0413927 
 
 " 13, 1.1139434 
 
 2.1553361 
 
 Comparing this with the computation to five places, we see the 
 source of the error. 
 
 If the numbers with which we enter the tables are affected by 
 errors, these errors will of course increase the possible errors of the 
 logarithms. 
 
 In determining to what degree of accuracy to carry our results, 
 we have the following practical rule : 
 
 It is never worth while to carry our decimals beyond the limit of 
 precision given ~by the tables, which limit may be a considerable frac- 
 tion of the unit in the last figure of the tables. 
 
 Let us have a logarithm to five places of decimals, 1.92949, of 
 which we require the corresponding number. Entering the table, wa 
 
24 LOGARITHMIC TABLES. 
 
 perceive that the corresponding number is between 85. 01 an4 85.0& 
 If this logarithm is the result of adding a number of logarithms, 
 each of which may be in error in the way pointed out, we may sup- 
 pose it probably affected by an error of half a unit in the last figure 
 and possibly by an error of a whole unit or more. That is, its true 
 value may be anywhere between 92 948 and 92 950. 
 
 The number corresponding to the former value is 85. C13, and 
 that corresponding to the latter 85.016. Since the numbtrs may 
 fall anywhere between these limits, we assign to it a mean \alue of 
 85. 014, which value, however, may be in error by two units in the 
 last place. It is not, therefore, worth while to carry the interpolation 
 further and to write more than five digits. 
 
 Next suppose the logarithm to be 2.021 70. Entering the table, 
 we find in the same way that the number probably lies between the 
 limits 105.121 and 105.126. There is therefore an uncertainty of 
 five units in the sixth place, or half a unit in the fifth place. If the 
 greatest precision is desired, we should write 105. 124. But our last 
 figure being doubtful by two or three units, the question might arise 
 whether it were worth while to write it at all. As a general rule, if 
 the sixth figure is required to be exact, we must use a six- or seven- 
 place table of logarithms. 
 
 Still, near the beginning of the table, the probable error will be 
 diminished by writing the sixth figure. 
 
 Now knowing that at the beginning of the table a difference of 
 one unit in the number makes a change ten times as great in the 
 logarithm as at the end of the table, we reach the conclusions : 
 
 In talcing out a number in the first part of the table, it can never 
 be worth while to write more than six significant figures^ and very 
 little is added to the precision by writing more than five. 
 
 In the latter part of the table it is never worth while to write more 
 than five significant figures. 
 
 Sometimes no greater accuracy is required than can be gained by 
 irj/ng four-figure logarithms. There is then no need of writing the 
 last figure. If, however the printed logarithm is used without 
 change, the fourth figure must be increased by unity whenever the 
 fifth figure exceeds 5. When the fifth figure is exactly 5, the increase 
 should or should not be made according as the 5 is too small or too 
 great. To show how the case should be decided, a stroke is printed 
 above the 5 when it is too great. In these cases the fourth figure 
 should be used as it stands, but, when there is no stroke, it should 
 be increased by unity. 
 
THE COMPUTATION OF ANNUITIES, ETC. 25 
 
 12. Applications of Logarithms to the Computation of 
 Annuities and Accumulations of Funds at Com- 
 pound Interest. 
 
 One of the most useful applications of logarithms is to fiscal 
 calculations, in which the value of moneys accumulating for long 
 periods at compound interest is required. 
 
 Compound interest is gained by any fund on which the interest 
 is collected at stated intervals and put out at interest. 
 
 As an example, suppose that $10 000 is put out at 6 per cent 
 interest, and the interest collected semi-annually and put out at the 
 same rate. The principal will then grow as follows: 
 
 Principal at starting 810 000.00 
 
 Six months' interest = 3 per cent 300.00 
 
 Amount at end of 6 months $10 300.00 
 
 Interest on this amount = 3 per cent. . 309.00 
 
 Amount at end of 1 year $10 609.00 
 
 Interest on this amount = 3 per cent. . 318.27 
 
 Amount at end of H years $10 927.27 
 
 Interest on this amount for 6 months. . 327.82 
 
 Amount at end of 2 years $11 255.09 
 
 Although in business practice interest is commonly payable semi- 
 annually, it is in calculations of this kind commonly supposed to be 
 collected and re-invested only at the end of each year. This makes 
 the computation more simple, and gives results nearer to those ob- 
 tained in practice, because a company cannot generally invest its 
 income immediately. If it had to wait three months to invest each 
 semi-annual instalment of interest collected, the general result would 
 be about the same as if it collected interest only once a year and in- 
 vested it immediately. 
 
 If r be the rate per cent per annum, the annual rate of increase 
 
 will be . Let us put 
 
 1UU 
 
 p, the annual rate of increase = -r^; 
 
 1UU 
 
 p, the amount at interest at the beginning of the time, or the 
 principal; 
 
 a, the amount at the end of one or more years. 
 
26 LOGARITHMIC TABLES. 
 
 Then, at the beginning of first year, principal p 
 
 Interest during the year pp 
 
 Amount at end of year p (1 -f- p) 
 
 Interest on this amount during second year pp (I -f- p) 
 
 Amount at end of second year, (1 + p)p (1 + P) P (1 + PY 
 Continuing the process, we see that at the end of n years the 
 
 amount will be 
 
 a=p(l + py. (1) 
 
 To compute by logarithms, let us take the logarithms of both 
 members. We then have 
 
 log a = logp + n log (1 + p). (2} 
 
 Example. Find the amount of $1250 for 30 years at 6 per cent 
 per annum. 
 
 Here p = .06 
 
 1 + p = 1.06 
 
 log (1 -f p) = 0.025 306 (end of Table I.) 
 30 
 
 nlog(l+p), 0.75918 
 Iogj9, 3.09691 
 
 log a, 3.85609 
 
 a, $7179.50 = required amount. 
 
 EXERCISES. 
 
 1. Find the amount of $100 for 100 years at 5 per cent compound 
 interest. 
 
 2. A man bequeathed the sum of $500 to accumulate at 4 per 
 cent interest for 80 years after his death. After that time the annual 
 interest was to be applied to the support of a student in Harvard 
 College. What would be the income from the scholarship? 
 
 3. If the sum of one cent had been put out at 3 per cent per 
 annum at the Christian era, and accumulated until the year 1800, 
 what would then have been the amount, and the annual interest on 
 this amount? 
 
 It is only requisite to give three significant figures, followed by the necessary 
 number of zeros. 
 
 4. Solve by logarithms the problem of the horseshoeing, in which 
 a man agrees to pay 1 cent for the first nail, 2 for the second, and so 
 on, doubling the amount for every nail for 32 nails in all. 
 
 NOTE. It is only necessary to compute the amount for the 32d nail, be- 
 cause it is easy to see that the amount paid for each nail is 1 cent more than fnr 
 all the preceding ones. 
 
COMPUTATION OF ANNUITIES, ETC. . 27 
 
 5. A man lays aside $1000 as a marriage-portion for his new-born 
 daughter, and invests it so as to accumulate at 8 per cent compound 
 interest. The daughter is married at the age of 25. What does the 
 portion amount to? 
 
 6. A man of 30 pays $2000 in full for a $5000 policy of insurance 
 on his life. Dying at the age of 80, his heirs receive $7000, policy 
 and dividends. If the money was worth 4 per cent to him, how 
 much have the heirs gained or lost by the investment? 
 
 7. What would have been the answer to the previous question, 
 had the man died at the age of 40, and the amount paid been 
 $6000? 
 
 Other applications of the formula. By means of the equations 
 (1) and (2) we may obtain any one of the four quantities a, p, p, and 
 n when the other three are given. 
 
 CASE I. Given the principal, rate of interest, and time, to 
 find the amount. 
 
 This case is that just solved. 
 
 CASE II. Given the amount, time, and rate per cent, to find 
 the principal. 
 
 Solution. Equation (1) gives 
 
 Taking the logarithms, 
 
 log p = log a n log (1 + p), 
 by which the computation may be made. 
 
 CASE III. Given the principal, amount, and time, to find the rate. 
 
 Solution. Equation (2) gives 
 
 n n p 
 
 Example. A man wants a principal of $600 to amount to $1000 
 in 10 years. At what rate of interest must he invest it? 
 Solution. log a = 3.000 00 
 
 logp = 2.77815 
 
 log - = 0.221 85 
 
 ~ log|- = 0.022 185 = log (1 + P). 
 
 Hence, from last page of logarithms, 
 
 1+ p = 1.05241; 
 
 and rate = 5.241, 
 
 or 5^ per cent, nearly. 
 
28 LOGARITHMIC TABLES. 
 
 EXEKCISES. 
 
 1. At what rate of interest will money double itself every ten 
 years? Ans. 7.177. 
 
 2. At what rate will it treble itself every 15 years? Ans. 7.599. 
 
 3. A man having invested $1000, with all the interest it yielded 
 him, for 25 years, finds that it amounts to $3386. What was the 
 rate of interest? Ans. 5 per cent. 
 
 4. A life company issued to a man of 20 a paid-up policy for 
 $10,000, the single premium charged being $3150. If he dies at the 
 age of 60, at what rate must the company invest its money to make 
 itself good? Ans. 2.93 per cent. 
 
 5. A man who can gain 4 per cent interest wants to invest such a 
 sum that it shall amount to $5000 when his daughter, now 5 years old, 
 attains the age of 20. How much must he invest? Ans. $2776. 62. 
 
 6. How much must a man leave in order that it may amount to 
 $1,000,000 in 500 years at 2J per cent interest? Ans. $4.36 
 
 7. How much if the time is 1000 years, the rate being still 2-J 
 per cent, and the amount $1,000,000? Ans. 0.0019 of a cent. 
 
 8. A man finds that his investment has increased fivefold in 25 
 years. What is the average rate of interest he has gained ? 
 
 Ans. 6.65. 
 
 9. An endowment of $7500 is payable to a man when he attains 
 the age of 65. What is its value when he is 45, supposing the rate 
 of interest to be 4 per cent? Ans. $3423. 
 
 13. Accumulation of an Annuity. 
 
 It is often necessary to ascertain the present or future value of a 
 series of equal annual payments. Thus it is very common to pay a 
 constant annual premium for a policy of life insurance. The value 
 of such a series of payments at any epoch is found by reducing the 
 value of each one to the epoch, allowing for interest, and taking the 
 sum. Supposing the epoch to be the present time, the problem may 
 be stated as follows: 
 
 A man agrees to pay p dollars a year for n years, the first pay* 
 ment being due in one year, and the total number of payments n. 
 What is the present value of all n payments 9 
 
 Putting, as before, p = rate the present value of p 
 
 dollars payable after y years will, by 12, Case II., be 
 
 P 
 
ACCUMULATION OF AN ANNUITY. 29 
 
 Putting in succession, y = 1, y = 2, . . . y = w, the sum of the 
 present values is 
 
 p p , p , , m p 
 
 1 4- p "" (i -}- p) a ' (1 -f p) 3 "* *" (1 -f p)* 
 
 This is a geometrical progression in which 
 
 First term = ^- ; 
 1 +/> 
 
 Common ratio = ^ ; 
 
 Number of terms = n. 
 By College Algebra, 212, the sum of this progression will be 
 
 / 1 \n 
 
 , '-(iT-J 
 
 (1 + <)-! 
 
 
 If the first payment is to be made immediately, instead of at the 
 end of a year, the last or th payment will be due in n 1 years, 
 and the progression will be 
 
 p + r+p + (i + />)* + ' ' * + (i+P)' 1 - 1 * 
 
 We find the sum of the geometric progression to be 
 
 EXERCISES. 
 
 1. What is the present value of 15 annual payments of $85 each, 
 of which the first is due in one year, the rate being 5 per cent? 
 We find by substitution 
 
 Present value = 85 __!05^-1__ J5_ 1.05- 1 
 
 1.05 16 - 1.05 16 1.05" ' .05 
 _1700(1.05 16 -1) 
 (1.05) 16 ' 
 
 log 1.05, 0.021189 1.05", 2.07895 
 
 _ 15 1.05" -1, 1.07895 
 
 log 1.05", 0.31784 log, 0.03300 
 
 co-log 1.05 15 , 9.68216 
 
 log 1700, 3.23045 
 
 Value, $882.28 log value, 2L945 6? 
 
30 LOQAR1THM10 TABLES. 
 
 2. The same thing being supposed, what would be the present 
 value if the rate of interest were 4 per cent ? Ans. $945.80 
 
 3. What is the present value of 25 annual payments of $1000 
 each, the first due immediately, if the rate of interest is 3 per cent ? 
 
 Ans. $17,935 
 
 4. A debtor owing $10,000 wishes to pay it in 10 equal annual 
 instalments, the first being payable immediately. If the rate of 
 interest is 6 per cent, how much should each payment be? 
 
 Ans. $1281.76. 
 
 NOTE. This problem is the reverse of the given one, since, in the equation 
 (2), we have given 2 a = 10000, p = 0.06, and n = 10, to find p. 
 
 5. The same thing being supposed, what should be the annual 
 payment in case the payments should begin in a year? 
 
 Ans. $1358.69. 
 
 Perpetual annuities. If the rate of interest were zero, the 
 present value of an infinity of future payments would be infinite. 
 But with any rate of interest, however small, it will be finite. For if, 
 
 in the first equation (1), we suppose n infinite, f J will converge 
 toward zero, and we shall have 
 
 This result admits of being put into a concise form, thus: 
 
 Since 2 is the present value of the perpetual annuity p, the 
 
 annual interest on this value will be p*S. But the equation (3) gives 
 
 p2=p. 
 
 Hence: 
 
 The present value of a perpetual annuity is the sum of which the 
 
 annuity is the annual interest. 
 
 Example. If the rate of interest were 3| per cent, the present 
 
 value of a perpetual annuity of $70 would be $2000. 
 
 EXERCISES. 
 
 1. A government owing a perpetual annuity of $1000 wishes to 
 pay it off by 10 equal annual payments. If the rate of interest is 4 
 per cent, what should be the amount of each payment? 
 
 Ans. $3082.30. 
 
 2. A government bond of $100 is due in 15 years with interest at 
 6 per cent. The market rate of interest having meanwhile fallen to 
 3| per cent, what should be the value of the bond? 
 
 NOTE. We find, separately, the present value of the 15 annual instalments 
 of interest, and of the principal. 
 
TABLE II. 
 MATHEMATICAL CONSTANTS. 
 
 14. In this table is given a collection of constant quantities 
 which frequently occur in computation, with their logarithms. 
 
 The logarithms are given to more than five decimals, in order to 
 be useful when greater accuracy is required. When used in five- 
 place computations, the figures following the fifth decimal are to be 
 dropped, and the fifth decimal is to be increased by unity in case 
 the figure next following is 5 or any greater one. 
 
TABLES III. AND IT. 
 LOGARITHMS OF TRIGONOMETRIC FUNCTIONS. 
 
 15. By means of these tables the logarithms of the six trigono- 
 metric functions of any angle may be found. 
 
 The logarithm of the function instead of the function itself is 
 given, because the latter is nearly always used as a factor. 
 
 We begin by explaining Table IV., because Table III. is used only 
 in some special cases where Table IV. is not convenient. 
 
 I. Angles less than 45. If the angle of which a function is 
 soiight is less than 45, we seek the number of degrees at the top of 
 the table and the minutes in the left-hand column. Then in the 
 line opposite these minutes we find successively the sine, the tan- 
 gent, the cotangent, and the cosine of the angle, as given at the 
 heading of the page. 
 
 Example. log sin 31 27' = 9.717 47; 
 
 log tan 31 27' = 9.78647; 
 
 log cotan 31 27' = 0.213 53; 
 
 cos 31 27' = 9.93100. 
 
 The sine, tangent, and cosine of this angle being all less than 
 unity, the true mantissas of the logarithm are negative; they are 
 therefore increased by 10, on the system already explained. 
 
 If the secant or cosecant of an angle is required, it can be found 
 by taking the arithmetical complement of the cosine or sine. It is 
 shown in trigonometry that 
 
 secant = : , 
 cosine 
 
 and 
 
 cosecant = -; . 
 sine 
 
 Therefore log secant = log cosine = co-log cosine; 
 
 log cosec = log sine = co-log sine. 
 We thus find log sec 31 27' = 0.069 00; 
 
 log cosec 31 27' = 0.282 53. 
 After each column, upon intermediate lines, is given the differ- 
 
LOGARITHMS OF TRIGONOMETRIC FUNCTIONS. 33 
 
 ence between every two consecutive logarithms, in order to facilitate 
 interpolation. 
 
 In the case of tangent and cotangent, only one column of differ- 
 ences is necessary for both functions. 
 
 If we use no fractional parts of minutes, no interpolation is 
 necessary; but if decimals of a minute are employed, we can inter- 
 polate precisely as in taking out the logarithms of numbers. 
 
 "Where the differences are very small they are sometimes omitted. 
 
 Tables of proportional parts are given in the margin, the use of 
 which is similar to those given with the logarithms of numbers. 
 
 Example 1. To find the log sin of 31 27'.7. 
 
 We have from the tables, log sin 31 27' = 9.717 47 
 Under diff. 20, P.P. for 7, 14 
 
 log sin 31 27'. 7 = 9.71761 
 Ex. 2. To find log cot 15 44'. 34. 
 
 The tables give log cot 15 44' = 0.550 19 
 Under diff. 48, opposite 0.3, P.P., - 14.4 
 " " 0.4 -7- 10, - 1.9 
 
 log cot 15 44'. 34, 0.55003 
 
 Since the tabular quantity diminishes as the angle increases, the 
 proportional parts are subtractive. 
 
 EXEECISES. 
 Find from the tables : 
 
 1. log cot 43 29'. 3; 
 
 2. log tan 43 29'. 3; 
 
 3. log cos 27 10'. 6; 
 
 4. log sin 27 10'. 6; 
 
 5. log tan 12 9'. 43; 
 
 6. log cot 12 9'. 43. 
 
 In the case of sines and tangents of small angles the differences 
 vary so rapidly that in most cases the exact difference will not be 
 found in the table of proportional parts. In this case, if the pro- 
 portional parts are made use of, a double interpolation will generally 
 be necessary to find the fraction of a minute corresponding to a given 
 sine or tangent. If only tenths of minutes are used, an expert com- 
 puter will find it as easy to multiply or divide mentally as to refer to 
 ihe table. 
 
 II. Angles between 45 and 90. It is shown in trigonometry 
 that if we compute the values of the trigonometric functions for the 
 
34 LOGARITHMIC TABLES. 
 
 first 45, we have those for the whole circle by properly exchanging 
 them in the different parts of the circle. First, if we have 
 
 a + ft = 90, 
 
 then a and ft are complementary functions, and 
 |. sin ft = cos a\ 
 
 tan ft = cotan a. 
 
 Therefore if our angle is between 45 and 90, we may find its 
 complement. Entering the table with this complement, the com- 
 plementary function will then be the required function of the angle. 
 
 Example. To find the sine of 67 23', we may enter the table 
 with 22 37' (= 90- 67 23') and take out the cosine of 22 37', 
 whichfis the required sine of 67 23. 
 
 To save the trouble of doing this, the complementary angles and 
 the complementary denominations of the functions are given at the 
 bottom of the page. 
 
 The minutes corresponding to the degrees at the bottom are given 
 on the right hand. Therefore: 
 
 To find the trigonometric functions corresponding to an angle 
 between 45 an d 90, we take the degrees at the bottom, of the page and 
 the minutes in the right-hand column. The values of the four func- 
 tions log sine, log tangent, log cotangent, and log cosine, as read at 
 the bottom of the page, are then found in the same line as the 
 minutes. 
 
 Example 1. For 52 59' we find 
 
 log sin = 9.90225; 
 log tan = 0.12262; 
 log cot = 9.877 38; 
 log cos = 9.77963. 
 Ex. 2. To find the trigonometric functions of 77 17'. 28. 
 
 77 17' 9. 
 
 sin. tan. cot. cos. 
 
 98921 0.64653 9.35347 9.34268 
 
 P.P. for 0.2 
 
 + 0.6 
 
 + 11.8 
 
 - 11.8 
 
 - 11.2 
 
 " 0.08 
 
 + 0.2 
 
 + 4.7 
 
 - 4.7 
 
 - 4.5 
 
 9. 989 22 0. 646 70 9. 353 30 9. 342 52 
 Then log sec = co-log cos = 0.657 48; 
 
 log cosec = co-log sin = 0.010 78. 
 
 EXERCISES. 
 Find the logarithms of the six functions of the following angles: 
 
 1. 45 50'. 74; 3. 74 0'.68; 
 
 2. 4849'.37; 4. 83 59'.62. 
 
LOGARITHMS OF TRIGONOMETRIC 
 
 III. When the angle exceeds 90. 
 
 EULE. Subtract from the angle the greatest multiple of 90 
 which it contains. 
 
 If this multiple is 180, enter the table with the excess of the angle 
 over 180 and take out the functions required, as if this excess were 
 itself the angle. 
 
 If the multiple is 90 or 270, take out the complementary func- 
 tion to that required. 
 
 By then assigning the proper algebraic sign, as shown in trigo- 
 nometry, the complete values of the function will be obtained. 
 
 The computer should be able to assign the proper algebraic 
 sign according to the quadrant, without burdening his memory with 
 the special rules necessary in each + 
 
 case. This he can do by carrying Sine positive 
 
 in his mind's eye the following 
 scheme. He should have at com- 
 mand the arrangement of the four 
 quadrants as usually represented in 
 trigonometry, so as to know, when 
 an angle is stated, where it will fall 
 relatively to the horizontal and ver- 
 tical lines through the centre of the 
 circle. Then, in the case of 
 
 Sine or cosecant. If the angle Sine negative 
 
 is above the horizontal line (which 
 it is between and ISO ), the sine is positive; if below, negative. 
 
 Cosine or secant. If the angle is to the right of the vertical 
 central line (as it is in the first and fourth quadrants), the cosine and 
 secant are positive; if to the left (as in the second and third quad- 
 rants), negative. 
 
 Tangent or cotangent. Through the opposite first and third quad- 
 rants, positive; through the opposite second and fourth quadrants, 
 negative. 
 
 Example 1. To find the tangent and cosine of 122 44'. Sub- 
 tracting 90, we enter the table with 32 44' and find 
 
 log cot 32 44' = 0.19192; 
 log sin 32 44' = 9.73298. 
 
 T nerefore, writing the algebraic sign before the logarithm, we hare 
 log tan 122 44' = - 0.191 92; 
 log cos 122 44' = 9.732 98. 
 
86 LOGARITHMIC TABLES. 
 
 Ex. 2. To find the sine and cotangent of 322 58'. 
 Entering the table with 52 58' = 322 58' 270, and taking 
 out the complementary functions, we find 
 
 log sin 322 58' = - 9.779 80; 
 log cot 322 58' = 0.122 36. 
 Ex. 3. To find the sine and tangent of 253 5'. 
 Entering with 73 5', we take out the sine and tangent, finding 
 log sin 253 5' = 9.890 79; 
 log tan 253 5' = -f 0.516 93. 
 
 Ex. 4. To find the six trigonometric functions of 152 38'. We 
 have 
 
 log sin 152 38' = log cos 62 38' pos. = + 9.662 46; 
 
 log cos 152 38' = log sin 62 38' neg. = 9.948 45; 
 
 log tan 152 38' = log cot 62 38' neg. = 9.71401; 
 
 log cot 152 38' = log tan 62 38' neg. = 0.285 99; 
 
 log sec = co-log cos = 0.05155; 
 
 log cosec = co-log sin = + 0.337 54. 
 
 EXERCISES. 
 
 Find the six trigonometric functions of the following angles: 
 
 276 29'.3; 
 
 66 0'.5; 
 
 96 59'.8; 
 
 252 20'.3; 
 
 318 10'. 7; 
 
 - 25 22'.2; 
 
 -155 30'. 7. 
 
 16. Method of Writing the Algebraic Signs. 
 
 As logarithms are used in computation, they may always be con- 
 sidered positive. It is true that the logarithms of numbers less than 
 unity are in reality negative, but, for convenience in calculation, we 
 increase them by 10, so as to make them positive. 
 
 The number corresponding to a given logarithm may, in compu- 
 tation, be positive or negative. There are two ways of distinguishing 
 the algebraic sign of the number, between which the computer may 
 choose for himself. 
 
 I. Write the algebraic sign of the number before the logarithm. 
 As usually interpreted, the algebraic sign written thus would apply 
 to the logarithm, which it does not. It is therefore necessary for the 
 
ANGLE CORRESPONDING TO A GIVEN FUNCTION. 37 
 
 computer to bear in mind that the sign belongs, not to the loga- 
 rithm, as written, but to the number. 
 
 II. Write the letter n after the logarithm when the number i& 
 negative. This plan is theoretically the best, but, should the com- 
 puter accidentally omit the letter, the number will be treated as 
 positive, and a mistake will be made. It therefore requires vigilance 
 on his part. An improvement would be to write a letter not likely 
 to be mistaken for n, s for instance, after all positive logarithms. 
 
 17. To Find the Angle Corresponding to a Given 
 Trigonometric Function. 
 
 Disregarding algebraic signs, there will always be four angles 
 corresponding to each function, one in each quadrant. These angles, 
 will be: 
 
 The smallest angle, as found in the table; 
 This angle increased by 180; 
 The complementary angle increased by 90; 
 The complementary angle increased by 270. 
 
 For instance, for the angle of which log tan is 0.611 92, we find 
 76 16'. But we should get this same tangent for 103 44', 256 16', 
 and 283 44'. 
 
 Of the four functions corresponding to the four angles, two will 
 always be positive and two negative; so that, in reality, there will 
 only be two angles corresponding to a function of which both the- 
 sign and the absolute value are given. These values are found by 
 selecting from the four possible ones the two for which the functions 
 have the given algebraic sign. After selecting them, they may be 
 checked by the following theorems, which are easily deduced from: 
 the relations between the values of each function as given in trigo- 
 nometry: 
 
 The sum of the two angles corresponding to the same sine is ISO ' 
 vr 540. 
 
 The sum of the two angles corresponding to the same cosine is 
 360. 
 
 The difference of the two angles corresponding to the same tangenk 
 is 180. 
 
 Which of the two possible angles is to be chosen depends upon 
 the conditions of the problem or the nature of the figure to which 
 the angle belongs. If neither the conditions nor the figure decida 
 the question, the problem is essentially ambiguous, and either ^~ 
 Doth angles are to be taken. 
 
38 LOGARITHMIC TABLES. 
 
 EXEECISES. 
 
 Find tne pairs of values of the angle a from the following values 
 of the trigonometric functions: 
 
 1. log sin a = + 9.902 43; 12. log sec a = -{- 0.221 06; 
 
 2. log sin a = - 9.902 43; 13. log sec a = - 0.221 06; 
 
 3. log cos a = + 9.902 43; 14. log sec a - - 0.099 20; 
 
 4. log cos a = 9.902 43; 15. log sec a + 0.123 46; 
 
 5. log tan a = + 0.143 16; 16. log sin a = -f 8.990 30; 
 
 6. log tan a = 0.143 16; 17. log sin a ~ 8.990 30; 
 
 7. log cot a = -f 0.143 16; 18. log cos a = + 9.218 67; 
 
 8. log cot a 0.143 16; 19. log cos a = 9.218 67; 
 
 9. log tan a = - 9.024 81; 20. log tan a = - 9.136 90; 
 
 10. log tan a = - 0.975 19; 21. log tan a = -f- 9.136 90; 
 
 11. log tan a = + 0.975 19; 22. log cot a = + 9.136 90. 
 
 18. Cases when the Function is very Small or Great. 
 
 When the angle of which we are to find the functions approaches 
 to zero, the logarithms of the sine, tangent, and cotangent vary so 
 .rapidly that their values to five figures cannot be readily interpolated. 
 The same remark applies to the cosine, cotangent, and tangent of 
 angles near 90 or 270. The mode of proceeding in these cases will 
 depend upon circumstances. 
 
 In the use of five-place logarithms, there is little advantage in 
 carrying the computations beyond tenths of minutes, though the 
 hundredths may be found when the tangent or cotangent is given. 
 Where greater accuracy than this is required, six- or seven-place 
 tables must be used. 
 
 If the angles are only carried to tenths of minutes, there is no 
 necessity for taking out the sine, tangent, or cotangent to more than 
 four decimals when the angle is less than 3, and three decimal? 
 suffice for angles less than 30'. The reason is that this number of 
 decimals then suffice to distinguish each tenth of minute. 
 
 When the decimals are thus curtailed, an expert computer will be 
 able to perform the multiplication and division for the tenths o? 
 minutes mentally. If, however, this is inconvenient, the following 
 rule may be applied. 
 
 To find the log sine or log tangent of an angle less than 2 to 
 four places of decimals: 
 
 EULE. Enter the table of logarithms of numbers with the valu* 
 
WHEN THE FUNCTION IS VERY SMALL OR GREAT. 39 
 
 of the angle expressed in minutes and tenths, and take out the loga- 
 rithm. 
 
 To this logarithm add the quantity 6.4637. 
 The sum will be the log sine, and the log tangent may be assumed 
 to have the same value. 
 
 Example 1. To find log sin 1 2$'. 6. 
 1 22'. 6 = 82'.6 
 
 log 82'.6 = 1.9170 
 constant, 6.4637 
 
 log sin 1 22'. 6, 8.3807 
 
 This rule is founded on the theorem that the sines and tangents 
 of very small arcs may be regarded as equal to the arcs themselves. 
 Since, in using the trigonometric functions, the radius of the circle 
 is taken as unity, an arc must be expressed in terms of the unit 
 radius when it is to be used in place of its sine or tangent. Now, it 
 is shown in trigonometry that the unit radius is equal to 57. 2958 or 
 3437'. 747 or 206 264". 8. Hence we must divide the number of 
 angular units in the angle by the corresponding one of these coef- 
 ficients to obtain the length of the corresponding arcs in unit 
 radius. Now, 
 
 log 3437. 747 = 3.5363 
 
 co-log 6.4637 
 
 which may be added instead of subtracting the logarithm. 
 
 To find the cosine of an angle very near 90, we find the sine of 
 its complement, which will then be a very small angle, positive or 
 negative. 
 
 EXERCISES. 
 
 Find to four places of decimals: 
 
 1. log sin 22'. 73; 
 
 2. log sin 1 1M2; 
 
 3. log cos 90 0'.78; 
 
 4. log tan 88 59'. 35; 
 
 5. log cot 90 28'. 76; 
 
 6. log cos 89 22'.23; 
 
 7. log sin 0'.25. 
 
 If an angle corresponding to a given sine or tangent is required, 
 the rule is: 
 
 From the given log sine or tangent subtract 6.4637 or add 3.5363. 
 The result is the logarithm of the number of minutes. 
 
 Of course this rule applies only to angles less than 2, in the 
 value of which only tenths of minutes are required. 
 
40 LOGARITHMIC TABLES. 
 
 EXERCISES. 
 Find a from: 
 
 1. log sin a = 7.2243; 3. log tan a = - 3.8816; 
 
 2. log cot a = 2.8816; 4. log cos a = 6.9218. 
 When the small angle is given in seconds. Although the com, 
 
 puter may take out his angles to tenths of minutes, cases often arise 
 in which a small angle is given in seconds, or degrees, minutes, and 
 .seconds, and in which the trigonometric function is required to five 
 decimals. In this case the preceding method may not always give 
 = accurate results, because the arc and its sine or tangent may differ by 
 .a greater amount than the error we can admit in the computation. 
 
 Table III. is framed to meet this case. The following are the 
 quantities given: 
 
 In the second column : The argument, in degrees and minutes, as 
 already explained for Table IV. 
 
 In the first column : This argument reduced to seconds. From 
 this column the number of seconds in an arc of less than 2, given in 
 degrees, minutes, and seconds, may be found at sight. 
 
 Example. How many seconds in 1 28' 39' ? In the table, before 
 1 28', we find 5280*, which being increased by 39" gives 5319", the 
 number required. 
 
 Col. 3. The logarithm of the sine of the angle. This is the same 
 as in Table IV. 
 
 Col. 4. The value of log sine minus log arc; that is, the difference 
 between the logarithm of the sine and the logarithm of the number 
 of seconds in the angle. 
 
 Col. 5. The same quantity for the tangent. 
 
 Cols. 6 and 7. The complements of the preceding logarithms, dis- 
 tinguished by accents. 
 
 The use of the tables is as follows. 
 
 To find the sine or tangent of an angle less than 2: 
 
 Express the angle in seconds ~by the first two columns of the table. 
 
 Write down the logarithm in column 8 or column T, according as 
 the sine or a tangent is required. 
 
 Find from Table I. the logarithm of the number of seconds. 
 
 Adding this logarithm to S or T, the sum will be the log sine or 
 log tangent. 
 
 Example. Find log sin 1 2' 47'.9. 
 
 8, 4.68555 
 1 2' 47*. 9 = 3767*.9; log, 3.576 10 
 
 log sin 1 2' 47*.9, 8.261 65 
 
WHEN THE FUNCTION IS VERY SMALL OR GREAT. 4J 
 
 To find the arc corresponding to a given sine or tangent: 
 
 Find in the column L. sin. the quantity next greater or next 
 smaller than the given logarithm. 
 
 Take the corresponding value of S' or T' according as the given 
 function is a sine or tangent, and add it to the given function. 
 
 The sum is the logarithm of the number of seconds in the required 
 angle. 
 
 Example. Given log tan x = 8.401 25, to find x. 
 log tan x, 8.401 25 
 T', 5.31433 
 
 logz, 3.71558 
 x = 5194'. 9 = 1 26' 34'. 9, from col. 2. 
 
 EXERCISES. 
 
 Find: 1. log sin 20' 20'.25; 
 
 2. log tan 0' 1'.2273; 
 
 3. log sin 1 59' 22'. 7; 
 
 4. log tan 1 0'59'.7. 
 Find x from: 
 
 1. log tans = 8.42796; 
 
 2. log tan x = 7.42796; 
 
 3. log tan x = 6.427 96; 
 
 4. log sin x = 5.35435; 
 
 5. log sin x = 4.226 19; 
 
 6. log sin x = 8.540 78. 
 
 When the cosine or cotangent of an angle near 90 or 270 is re- 
 quired, we take its difference from 90 or 270, and find the comple- 
 mentary function by the above rules. 
 
 Remark. The use of the logarithms of the trigonometric func- 
 tions is so much more extensive than that of the functions themselves 
 that the prefix "log" is generally omitted before the designation of 
 the logarithmic function, where no ambiguity will result from the 
 omission. 
 
TABLE V. 
 NATURAL SINES AND COSINES. 
 
 19. This table gives the actual numerical values of the sine and 
 cosine for each minute of the quadrant. 
 
 To find the sine or cosine corresponding to a given angle less than 
 45, we find the degrees at the top of a pair of columns and the 
 minutes on the left. 
 
 In the two columns under the degrees and in the line of minutes 
 we find first the sine and then the cosine, as shown at the head of 
 the column. 
 
 A decimal point precedes the first printed figure in all cases, ex- 
 cept where the printed value of the function is unity. 
 
 If the given angle is between 45 and 90, find the degrees at the 
 bottom and the minutes at the right. 
 
 Of the two numbers above the degrees, the right-hand one is the 
 sine and the left-hand one the cosine. 
 
 For angles greater than 90 the functions are to be found ac- 
 cording to the precepts given in the case of the logarithms of the 
 sines and tangents. 
 
TABLE VL 
 ADDITION AND SUBTRACTION LOGARITHMS. 
 
 20. Addition and subtraction logarithms are used to solve the 
 problem: Having given the logarithms of two numbers, to find the 
 logarithm of the sum or difference of the numbers. 
 
 The problem can of course be solved by finding the numbers 
 corresponding to the logarithms, adding or subtracting them, and 
 taking out the logarithm of their sum or difference. The table 
 under consideration enables the result to be obtained by an abbrevi- 
 ated process. 
 
 I. Use in addition. The principle on which the table is con- 
 structed may be seen by the following reasonings. Let us put 
 
 8=*a + b, 
 
 a and b being two numbers of which the logarithms are given. "We 
 shall have 
 
 putting, for clearness, x = -. 
 
 We then have 
 
 log S = log a + log (1 + x). 
 
 Since log a and log b are both given, we can find log x from the 
 equation 
 
 log x = log b log a y 
 which is therefore a known quantity. 
 
 Now, for every value of log x there will be one definite value of 
 each of the quantities x, 1 + #> and log (I-{- x). Therefore a table 
 may be constructed showing, for every value of log x, the correspond- 
 ing value of log (1 -f- x). 
 
 Such a table is Table VI. 
 
 The argument, in column A, being log x, the quantity B in the 
 table is log (1 -j- x). 
 
 Example, log 0.25 = 9. 397 94. 
 
 Entering the table with A = 9.397 94, we find 
 
 J3 = 0.096 91, 
 which is the logarithm of 1.25. 
 
44 LOGARITHMIC TABLES. 
 
 Therefore, entering the table with log x as the argument, we 
 take out log (1 -}- x), which added to log a will give log S. 
 
 We have therefore the following precept for using the table in 
 addition: 
 
 Take the difference of the two given logarithms. 
 
 Enter the table with this difference as the argument A, and take 
 out the quantity B. 
 
 Adding B to the subtracted logarithm, the sum will be the required 
 logarithm of the sum. 
 
 It is indifferent which logarithm is subtracted, but convenience 
 in interpolating will be gained by subtracting the greater logarithm 
 from the lesser increased by 10. The number B will then be added 
 to the greater logarithm. 
 
 Example. Given log m = 1.62974, log n = 2.203 86 ; find, 
 log (m + n). 
 
 The required logarithm is found in either of the following two 
 
 ways: 
 
 Jog m, 1.629 74 (1) log , 0.676 76 (4) 
 
 log 'n, 2.203 86 (2) log m, 1.629 74 (1) 
 
 B, 0.102 64 (4) log , 2.203 86 (2) 
 
 A = log w -r- n, 9.425 88 (3) log n -=- ra, 0.574 12 (3) 
 
 log ( m + n ), 2.306 50 (5) log (m + ), 2.306 50 (5) 
 
 The figures in parentheses show the order in which the numbers 
 are written. 
 
 EXERCISES. 
 Log a and log b having the following values, find log (a -f- b). 
 
 1. log a = 1.700 37; log b = 0.921 69. 
 
 2. log a = 0.624 60; log b = 9.881 26. 
 
 3. log a = 9.791 86; log b = 9.322 09. 
 
 4. log a = 1.601 62; log I = 1.306 06. 
 
 5. log a = 0.792 90; log b = 9.221 27. 
 
 6. log a = 0.601 32; log b = 9.001 68. 
 
 7. log a = 4.796 43; log b = 3.981 86. 
 
 II. Use in subtraction. The problem is, having given log a and 
 log I, to find the logarithm of 
 
 D - a - b. 
 Wehave 
 
ADDITION AND SUBTRACTION LOGARITHMS. 45 
 
 
 Since log -r is found by subtracting log b from log a, if we can 
 
 find log IT- l) from log j-, the problem will be solved. 
 
 From the construction of the table already explained, if we have 
 
 we must have 
 
 We now have the following precept for subtraction: 
 Subtract the lesser of the given logarithms from the greater. 
 Enter the table so as to find the difference of the logarithms in the 
 numbers B of the table. 
 
 Add the corresponding value of A to the lesser of the given loga- 
 rithms. The sum will be the logarithm of the difference. 
 . Example. Find log (n m) in the example of the preceding 
 section. 
 
 log n, 2.203 86 (1) 
 
 log m, 1.62974 (2) 
 
 ^,0.43945 (4) 
 
 log = B, 0.57412 (3) 
 m 
 
 log (n - m), 2.069 19 (5) 
 
 EXERCISES. 
 
 Find the logarithms of the differences of the quantities a and b 
 in the preceding section. 
 
 Remark. In the use of addition and subtraction logarithms, 
 the precepts apply to numerical sums and differences, without 
 respect to the algebraic signs of the quantities. For example, the 
 algebraic difference between -f- 1473 and 29 462 is to be found by 
 addition, and the algebraic sum of a positive and negative quantity 
 by subtraction. 
 
 Case where the quotient is large. Near the end of the table, A 
 and B become nearly equal; the structure of the table is therefore 
 changed so as to simplify its use. It is evident that if b is very 
 small compared with a, the logarithms of a -f- b and a b will 
 not differ much from the logarithm of a itself. Hence, in this case, 
 we shall have smaller numbers to use if we can find the quantity 
 which must be added to log a to give log (a -f- b), or subtracted from 
 
46 LOGARITHMIC TABLES. 
 
 log a to give log (a 5). Now, the equations already written give, 
 when a > b, log a = log ft -{- A, 
 
 log (a + 1) = log b + ; 
 whence, by subtraction, 
 
 log (a + b) log a = B A, 
 
 or log (a + b) = log a + - A. (with Arg. ^) 
 
 We find in the same way, 
 
 log (a - b) = log a - (B - A), (with Arg. B) 
 Now, whenever log a log ~b is greater than 1.65, we shall find 
 it more convenient to take out B A from the table than either 
 A or B. We notice that the last two figures of B in this part of 
 the table vary slowly, and we need only attend to them in interpolate 
 ing. For instance, in the horizontal line corresponding to A = 1.66 
 we find: 
 
 for A = 1.660 00; B = 1.669 40; B - A = .009 40; 
 .66100; .67038; .00938; 
 
 .66200; .67136; .00936; 
 
 .66300; .67233; ,00933; 
 
 .66400; .67331; .00931; 
 
 .66500; .67429; .00929; 
 
 etc. etc. etc. 
 
 The interpolation of B A is now very easy whether the quan- 
 tity given is A or B. We note that B A has but three significant 
 figures, of which the first is found in column zero, and the other two 
 are the last two figures of B as printed. 
 
 As an example, let us find log (a + b) from 
 logfl = 2.79163 
 log = 1.12819 
 
 A = 1.66344 
 
 Entering the table with this value of A, we find by column 
 that B A falls between .009 40 and .009 19. Following the hori- 
 zontal line A = 1.66 to column 3 and interpolating the last two 
 figures between 33 and 31 for .44, with the difference 2, we find 
 
 B - A = .00932 
 Then log a = 2. 791 63 
 
 log(0 + b) = 2.80095 
 
 Next, if log (a b) is required, we have to find the difference 
 1.663 44 in the part B of the table. We find in the table: 
 for B = 1.662 55; B - A = .009 55; 
 for B = 1.663 53; B - A = .009 53. 
 
ADDITION AND SUBTRACTION LOGARITHMS. 47 
 
 Therefore 
 
 for B = 1.663 44; B - A = .009 53. 
 
 Subtracting this from log a, we have 
 
 log (a - b) = 2.78210. 
 
 EXEECISES. 
 
 ^'nd log (a + ) and log (a ) from: 
 
 8. log a = 0.367 02; log b = 8.462 83. 
 
 9. log a = 0.001 26; log b = 8.329 07. 
 
 10. log a = 2.069 23; log b = 0.110 85. 
 
 11. log a = 5.807 35; log b = 3.83809. 
 
 For values of A and B greater than 2.00, the table is so arranged 
 that no interpolation at all is necessary. The computer has only to 
 find what value of A or B given in the table comes nearest his value 
 of log a log b and take the corresponding value of B A. He 
 must remember that column A is to be entered for addition, and B 
 for subtraction. 
 
 In this part of the table A and B are given to fewer than five 
 decimals; because five decimals are not necessary to give B A with 
 accuracy. The nearer the end of the table is approached, the fewer 
 the decimals necessary in taking the difference. 
 
 Example. Find log (a -f b) and log (a b) from 
 log a = 1.265 32 
 log b = 9.22230 
 
 log a log, 2.04302 
 
 Entering column A with this difference, we find the nearest tabu- 
 lar value of A to be 2.0425, to which corresponds B A = .003 92. 
 Hence 
 
 log (a + b) = 1.265 32 -f .003 92 = 1.269 24. 
 Entering column B with the same difference, we find B A SB ' 
 .00395; whence 
 
 log (a - b) = 1.265 32 - .003 95 = 1.261 37. 
 
 EXERCISES. 
 Find log (a -f- b) and log (a b) from: 
 
 1. log a = 4.069 05; log b = 2.001 32. 
 
 2. log a = 3.926 93; log b = 1.201 59. 
 
 3. log a = 3.061 64; log b = 0.126 15. 
 
 4. log a = 1.22C 68; log b = 7.321 56. 
 
 5. log a = 0.693 17; log 5 = 6.010 23. 
 
 6. log a = 2.306 20; log b = 7.023 01. 
 
48 LOGARITHMIC TABLES. 
 
 Case of nearly equal numbers. Near the beginning of the table 
 the reverse is true: it is not possible to find A with accuracy to five 
 places of decimals. But here the value of A taken from the tables, 
 though it be found to only two, three, or four places of decimals, 
 will give as accurate a result as the computation of a and b to five 
 places will admit of. Let us suppose, for example, that we have to 
 find log (a b) from 
 
 log a = 9.883 15 
 
 log b = 9.88296 
 
 B = 0.00019 
 
 We find ^4 = 6.64-10; 
 
 whence log (a b) = 6.52 10. 
 
 We note that the value of A may be 6.63 or 6.65 as well as 6.64, 
 so that the result cannot be carried beyond two decimals. To show 
 that these two are as accurate as the work admits of* we find the 
 natural numbers a and b from Table I. 
 
 a= 0.76410 
 b = 0.76377 
 
 a-b = 0.00033 
 
 Since a b has but two significant figures, and the first of these 
 is less than 5, two figures in the logarithm are all that can be 
 accurate. 
 
TABLE YIL 
 SQUARES OF NUMBERS. 
 
 21. By means of this table the square of any number less than 
 1000 may be found at sight, and that of any number less than 10 000 
 by a simple and easy interpolation. 
 
 The first page gives the squares of the first 100 numbers, which 
 it is often convenient to have by themselves. 
 
 On the second and third pages (98 and 99) the hundreds of the 
 number to be squared are found at the tops of the several columns, 
 and the tens and units in the left-hand column. The first three or 
 four figures of the square are in the column under the hundreds, 
 and opposite the tens and units, and the last two figures on the right 
 of the page after the column 9 + + 
 
 Examples. The square of 634 is 401 956; 
 " " 329 " 108241; 
 " " 265 " 70225; 
 " " 153 " 23409; 
 999 " 998001. 
 
 The same table may be used for any number of three significant 
 figures by attention to the position of the decimal-point. Thus: 
 51100 9 = 2611210000; 
 
 511 s = 261121; 
 51.1' = 2611.21; 
 5.11' = 26.1121; 
 
 0.511 9 = 0.261121. 
 
 When there are four significant figures, an interpolation may be 
 executed in several ways. If n be the nearest number the square of 
 ^hich is found in the table, and h the excess of the given number 
 over this, so that n -{ his the number whose square is required, we 
 shall have 
 
 where N = n + h 9 the given number. 
 
50 LOGARITHMIC TABLES. 
 
 We may therefore find the square of 257.4 in the following way: 
 
 257 s = 66 049 
 514.4 X .4 = 205.76 
 
 (257. 4) 2 = 66254.76 
 
 To find the square of 9037 we proceed thus: 
 9037 
 9030 a = 81 540 900 
 
 18067 X 7 = 126469 
 9037 a = 81667369 
 
 In many cases only one more figure will be required in the square 
 than in the given number. The square can then be interpolated with 
 all required accuracy by the differences, the last two figures of which 
 are found in the last column of the table, while the remaining figures 
 are found by taking the difference between two consecutive numbers 
 in the principal column. 
 
 To return to the last example, we find the difference between 
 257 a and 258 3 to be 515, the first figure being the difference between 
 660 and 665, and the last two, 15, in the last column. Then 
 
 257 3 = 66 049 
 515 X 0.4 = 206 
 
 (257. 4) a = 66255 
 which is correct to the nearest unit. 
 
 It will be remarked that the two methods are substantially the 
 same when only five figures are sought in the result. The substantial 
 identity rests upon the general theorem that 
 
 The difference of the squares of two consecutive numbers is equal 
 to the sum of the numbers. 
 
 We prove this theorem thus: 
 
 (n + l) a - n* = 2n + 1 = n + (n + 1). 
 
 When the tabular difference is taken in the way already described, 
 it will often happen that the difference between the numbers in the 
 columns of hundreds is to be diminished by unity. Thus, although 
 4173 4160 = 13, the difference between 645 s and 646 2 is not 1391, 
 but 1291. These cases are noted by the asterisk after the number in 
 the last column. 
 
 The squares of numbers of more than four figures may be found 
 in the same way, but in such cases it will generally be easier to use 
 logarithms than the table of squares. 
 
TABLE VIII. 
 
 TO CONVERT HOURS, MINUTES, AND SECONDS 
 INTO DECIMALS OF A DAY, AND VICE VEKSA. 
 
 . The familiar method of solving this problem is to convert 
 the seconds into decimals of a minute, and the minutes into decimals 
 of an hour, by dividing by 60, and then the hours into decimals of a 
 day by dividing by 24. The reverse problem is solved by multiply- 
 ing by 24, 60,- and 60. 
 
 Table VIII. enables us to perform these operations without divi- 
 sion. Column D gives each hundredth of a day, but its numbers may 
 also be regarded as ten thousandths or millionths of a day, according 
 to which of the following three columns is used. In column H.M.S. 
 are found the hours, minutes, and seconds corresponding to these 
 hundredths. In the next column is one hundredth of column H. M. S. 9 
 or the minutes and seconds in the number of ten thousandths of a 
 
 day in column D. Finally, column ' ' shows the number of 
 
 iuu 
 
 seconds in the number of millionths of a day found in column D. 
 Example. To convert O d .532 946 into hours, minutes, and seconds. 
 O d .53 = 12 h 43 m 12 s 
 
 .002 9 = 4 m 10 8 .56 
 .000046= 3 8 .97 
 
 O d .532 946 = 12 h 47 m 26 8 .53 
 
 It will be seen that we divide the figures of the given decimal of 
 a day into pairs, and enter the three columns of time with these 
 three pairs in succession. 
 
 If seven decimals are given, we may interpolate the last number, 
 as in taking out a logarithm. 
 
 Example. Convert O d .050 762 7. 
 
 O d .05 = l h 12 m O 8 
 
 .000 7 = l m s . 48 
 
 .000062 = 5 s . 36 
 
 .0000007 = .7X.08= 0-.06 
 
 l h 13 m 5 8 .90 
 
52 LOGARITHMIC TABLED 
 
 In practice the computer will perform the interpolation mentally, 
 adding .7 X .08 = .06 to the number 5.36 of the table in his head, 
 and writing down 5 s . 42 as the last quantity to be added. 
 
 EXERCISES. 
 
 Convert into hours, minutes, and seconds: 
 
 1. O d .2030792; 
 
 2. O d . 783 605 8; 
 
 3. O d .0102034; 
 
 4. O d . 990 990 9. 
 
 To use the table for the reverse operation, we proceed as in the 
 following example: 
 
 It is required to convert 17 h 29 m 30 s . 93 into decimals of a day. 
 Looking in the table, we find that the required decimal is between 
 0.72 and 0.73. Hence the first two figures are 0.72, the equivalent 
 of 17 h 16 m 48 s . Subtracting the lat- 1711 ggm 30*. 93 
 
 ter from the given number, we 0.72 = 17 h 16 m 48 s 
 
 have a remainder 12 m 42 8 .93, to be 12 m 42 s . 93 
 
 ,,. . . H.M.S. _. -0088 = 12 m 40 s . 32 
 sought for in column m ~. This >000 03 2 = " ~2^61 
 
 gives 88 as the next two figures. Subtracting the equivalent of 
 .0088 or 12 m 40 8 .32, we have left 2 s . 61, which we are to seek in 
 
 TT -r nr 
 
 column ' ' '. We find the corresponding number of column D to 
 
 100 
 
 be 302. Hence 
 
 17 h 29 m 30 8 .93 = O d . 728 830 2. 
 
 In solving this problem the computer should be able, after a little 
 practice, to perform the subtractions and carry the remainders men- 
 tally, thus saving himself the trouble of writing down the numbers. 
 
 EXERCISES. 
 
 Take the answers obtained from the four preceding exercises, 
 subtract each result from 24 h O m B , change the remainder to deci- 
 mals of a day, and see if when added to the decimals of the preceding 
 exercises the sum is l d . 000 000 0, as it should be. 
 
TABLE IX. 
 TO CONVERT TIME INTO ARC, AND VICE VERSA. 
 
 23. In astronomy the right ascensions of the heavenly bodies 
 are commonly given in hours, minutes, and seconds, the circumfer- 
 ence being divided into 24 hours, each hour into 60 minutes, and 
 each minute into 60 seconds. 
 
 Since 360 r = one circumference, 
 
 ve have l h = 15; 
 
 l m = 15'; 
 
 1 s = 15'; 
 
 the signs h , m , and 8 indicating hours, minutes, and seconds of time. 
 
 Hence we may change time into arc by multiplying by 15, and 
 arc into time by dividing by 15, the denominations being changed in 
 each case. Table IX. enables us to do this by simple addition and 
 subtraction by a process similar to that employed in changing hours, 
 minutes, and seconds into decimals of a day. 
 
 To turn time into arc, we find in the table the whole number of 
 degrees contained in the time denomination next smaller than the 
 given one, and subtract the former time denomination from the 
 latter. 
 
 Next we find the minutes of arc corresponding to the given time 
 next smaller than the remainder, and again subtract. 
 
 Lastly we interpolate the seconds corresponding to the second 
 remainder. 
 
 Example. Change 15 h 29 m 46 8 .24 to arc. 
 
 Given time, 15 h 29 m 46 8 .24 
 
 The table gives 232 = 15 h 28 m 
 
 Remainder, l m 46 8 .24 
 
 The table gives 26' = l m 44 8 
 
 Remainder, 2 s . 24 = 33'. 6 
 
 Hence 
 
 15 h 29 m 46 8 .24 = 232 26' 33'. 6. 
 
54 LOGARITHMIC TABLES. 
 
 The computer should be able to go through this operation with- 
 out writing down anything but the result. 
 
 The operation of changing arc into time is too simple to require 
 description, but it is more necessary to write down the work. 
 
 EXERCISES. 
 
 Change the following times to arc, and then check the results by 
 changing the arcs into time and seeing whether the original times 
 are reproduced: 
 
 1. 7 h 29 m 17 8 .86; 
 
 2. O h 4 m 8 .25; 
 
 3. 12 h 4 m s . 25; 
 
 4. 13 h 48 m 16 9 .40; 
 
 5. 19 h 7 m 59 8 .92. 
 
TABLE X. 
 
 TO CONVERT MEAN TIME INTO SIDEREAL TIME, 
 AND SIDEREAL INTO MEAN TIME. 
 
 24. Since 365 solar days = 366^- sidereal days (very nearly),, 
 any period expressed in mean time may be changed to sidereal time- 
 
 by increasing it by its - part, and an interval of sidereal time- 
 
 uDO./oO 
 
 may be changed to mean time by diminishing it by its - part.. 
 
 ODD. -CO 
 
 The first part of the table gives, for each 10 minutes of the argu- 
 ment, its Q part, by which it is to be increased. The second: 
 
 part of the table gives the O^FITH P ar ^ f the argument. 
 
 The small table in the margin shows the change for periods of 
 less than 10 minutes. 
 
 Example 1. To change 17 h 48 m 36 s . 7 of mean time to sidereai 
 
 time. 
 
 Given mean time, 17 h 48 m 36 s . 70 
 
 Corr. for 17 h 40 m , 2 m 54M3 
 
 Corr. for 8 m 37', 1 8 .41 
 
 Sidereal time, 17 h 51 m 32 s . 24 
 
 Ex. 2. To change this interval of sidereal time back to mean 
 time. 
 
 Corr. for 17 h 50 m , - 2 m 55". 29 
 
 Corr. for l m 32% - 8 .25 
 
 2 m 55 8 .54 
 Sidereal time, 17 h 51 m 32 8 .24 
 
 Mean time, 17 h 48 m 36 8 .70 
 
 EXERCISES. 
 Change to sidereal time: 
 
 1. 3 h 42 m 36". 5 m. t.; 3. 22 h 3 m 5 .61 m. t* 
 
 2. 18 h 46 m 29 8 .82 " 4. O h l m 12 B .55 " 
 Change to mean time: 
 
 5. O h 7 m 16 8 .3 sidereal time; 
 
 6. 22 h 17 m 29 8 .65 " 
 
56 OF INTERPOLATION. 
 
 OF DIFFERENCES AND INTERPOLATION.* 
 
 25. General Principles. 
 
 "We call to mind that the object of a mathematical table is to 
 enable one to find the value of a function corresponding to any value 
 whatever of the variable argument. Since it is impossible to tabulate 
 the function for all values of the argument, we have to construct the 
 table for certain special values only, which values are generally equi- 
 distant. For example, in the tables of sines and cosines in the 
 present work the values of the functions are given for values of the 
 argument differing from each other by one minute. 
 
 The process of finding the values of functions corresponding to 
 values of the argument intermediate between those given is called 
 interpolation. 
 
 We have already had numerous examples of interpolation in its' 
 most simple form; we have now to consider the subject in a more 
 general and extended way. 
 
 In the first place, we remark that, in strictness, no process of 
 interpolation can be applicable to all cases whatever. From the 
 mere facts that 
 
 To the number 2 corresponds the logarithm 0.301 03, 
 " " " 3 " " " 0.477 12, 
 
 we are not justified in drawing any conclusion whatever respecting 
 "the logarithms of numbers between 2 and 3. Hence some one or 
 more hypotheses are always necessary as the base of any system of 
 interpolation. The hypotheses always adopted are these two: 
 
 1. That, supposing the argument to vary uniformly, the function 
 varies according to some regular law. 
 
 2. That this law may be learned from the values of the function 
 given in the table. 
 
 These hypotheses are applied in the process of differencing, the 
 
 * The study of this subject will be facilitated by first mastering so much of 
 it as is contained in the author's College Algebra, 299-302. 
 
 It is also recommended to the beginner in the subject that, before going 
 over the algebraic developments, he practise the methods of computation 
 according to the rules and formulae, so as to have a clear practical understand 
 ing of the notation. He can then more readily work out the developments. 
 
GENERAL PRINCIPLES. 57 
 
 nature of which will be seen by the following example, where it is 
 applied to the logarithms of the numbers from 30 to 37: 
 
 Function. A' 4" A"< A" 
 log 30. 1.47712 
 
 " 
 
 31. 1.491 36 ~ - 45 , 
 
 " 32. 1.505 15 T JoS - 43 J * + 2 
 
 " 33. 1.518 51 J i9Q7 - 39 J * - 8 
 
 34. 1.531 48 J J*JJ _ 38 + + 1 
 
 35. 1.544 07 + }f* _ 36 + * + 1 
 
 " 36. 1.556 30 "tifS - 33 + ' 
 
 "37. 1.568 20 ~* 
 
 The column A' gives each difference between two consecutive 
 values of the function, formed by subtracting each number from that 
 next following. These differences are called first differences. 
 
 The column A" gives the difference between each two consecu- 
 tive first differences. These are called second differences. 
 
 In like manner the numbers in the succeeding columns, when 
 written, are called third differences, fourth differences, etc. 
 
 Now if, in continuing the successive orders of differences, we find 
 them to continually become smaller and smaller, or to converge to- 
 ward zero, this fact shows that the values of the functions follow a 
 regular law, and the first hypothesis is therefore applicable. 
 
 In order to apply interpolation we must then assume that the 
 intermediate values of the function follow the same law. The truth 
 of this assumption must be established in some way before we can 
 interpolate with mathematical rigor, but in practice we may suppose 
 it true in the absence of any reason to the contrary. 
 
 26. Effect of errors in the values of the functions. In the pre- 
 ceding example it will be noticed that if we continue the orders of 
 differences beyond the fourth, they will begin to increase and become 
 irregular. This arises from the imperfections of the logarithms, 
 owing to the omission of decimals beyond the fifth, already described 
 in 11. 
 
 When we find the differences to become thus irregular, we must 
 be able to judge whether this irregularity arises from actual errors in 
 the original numbers, which ought to be corrected, or from the small 
 errors necessarily arising from the omission of decimals* 
 
 The great advantage of differencing is that any error, however 
 small, in the quantities differenced, unless it follows a regular law, 
 will be detected by the differences. To show the reason of this, we 
 investigate what effect errors in the given functions will have upon 
 the successive orders of differences. 
 
68 OF INTERPOLATION. 
 
 THEOREM. The differences of the sum of two quantities are equal 
 to the sums of their differences. 
 General proof. Let 
 
 / /, /, etc., be one set of functions; 
 //, /,',/,', etc., another set. 
 fi +//> /a + //> /s + /'> etc., wil1 then be their sums. 
 
 In the first of the following columns we place the first differences 
 of/, in the second those of/', and in the third those of / + /', each 
 formed according to the rule : 
 
 etc. etc. etc. 
 
 It will be seen that the quantities in the third column are the 
 sums of those in the first two. 
 
 NUMERICAL EXAMPLE. 
 / A f A' f+f A 
 
 lt+n l + i ll + n 
 
 *n ~r H c + 3 t-f. + 14 
 
 _ 5 ?- 51 10 + 4 9~ 47 
 
 We see that the third set of values of A r follow the theorem. 
 Because the second differences are the differences of the first, the 
 third the differences of the second, etc., it follows that the theorem 
 is true for differences of any order. 
 
 Now when we write a series of functions in which the decimals ex- 
 ceeding a certain order are omitted, we may conceive each written num- 
 ber to be composed of the algebraic sum of two quantities, namely: 
 
 1. The true mathematical value of the function. 
 
 2. The negative of the omitted decimals. 
 
 Example. In the preceding collection of logarithms, since the 
 true value of log 30 is 1.477 121 3 . . . , we may conceive the quantity 
 written to be 
 
 1.477 12 = log 30 - .000 001 3 ____ 
 
 Hence the differences actually written are the differences of the 
 true logarithms minus the differences of the errors. Now suppose 
 the errors to be alternately + 0.5 and 0.5 = the point marking 
 off the last decimal. Their differences will then be as follows: 
 
 /' J' A" 4'" 
 
 - 0.5 , x + 2 __ 4 
 + 0.5 i-2 
 
 - 0.5 ~ \ + 2 ' 
 + 0.5 " L - 2 " 
 
 etc. etc. etc. etc. 
 
GENERAL PRINCIPLES. 59 
 
 It is evident that the wth order of differences of the errors are 
 equal to 2"- 1 . Hence, in this case, if the nth order of differences 
 of the true values of the function were zero, still, in consequence of 
 the omission of decimals, the actual differences of the nth order would 
 be2- 1 . 
 
 This, however, is a very extreme case, since it is beyond all proba- 
 bility that the errors should alternate in this way. A more probable 
 average example will be obtained by supposing a single number to have 
 an error of 0.5, while the others are correct. We shall then have: 
 f A 1 4" d'" ^ 1T ^ T 
 A + 0-5 o 
 
 __ 
 
 o ' + 0.5 
 
 In this case the maximum value of the difference of the nth order 
 is 1.5 in the differences of the third order, 3 in those of the fourth, 
 5 in those of the fifth, etc. Its general expression is 
 
 1 n (n - 1) (n - 2) ____ (n - s -f 1) 
 
 2 1.2. 3.... s 
 where n is the order of differences, and 
 
 n 
 
 n 
 
 -1 
 
 
 * = 2 
 
 or 
 
 2 
 
 
 according as n is even or odd. Thus: 
 
 A' =1 
 
 . 
 
 
 
 2 
 
 > 
 
 
 
 ' - * L 
 
 2 
 ' 1 
 
 = 
 
 i; 
 
 1 
 
 3 
 
 
 I/ 
 
 ^'" = g- 
 
 " 1 
 
 = 
 
 .< 
 
 & - 1 
 
 4. 
 
 3 
 
 3. 
 
 2 
 
 * 1. 
 
 2 
 
 y 
 
 1 
 
 5. 
 
 4 
 
 5. 
 
 2 
 
 ' 1. 
 
 2 "~ 
 
 , 
 
 etc. etc. 
 
 This being about the average case, in actual practice the differ- 
 ences may be two or three times as great without necessarily imply- 
 ing an error greater than 0.5 in the numbers written. 
 
 We have now the following general rule for judging whether a 
 series of numbers do really follow a uniform law: 
 
 Difference the series until we reach an order of differences in which 
 the 4* and signs either alternate or follow each other irregularly. 
 
60 OF INTERPOLATION. 
 
 If none of the differences of this order expressed in units of the 
 last place of decimals exceed the limit 
 
 n (n 1) . . . _. (n s + 1) 
 1. 2. 3 .... s 
 
 that is, the value of the largest binomial coefficient of the nth order 
 the given numbers may be assumed to follow a regular law, and 
 therefore to be correct to a unit in the last figure. 
 
 If some differences exceed this limit, their quotient by the above 
 binomial coefficient may be considered to show the maximum error 
 with which the number opposite it is probably affected. 
 
 We can thus detect an isolated error in a series of numbers with 
 great certainty. Suppose, for example, an error of 2 in some number 
 of the series. Differencing the series 0, 0, 0, 2, 0, 0, 0, we shall 
 find the four largest differences of the fifth order to be 10, -j- 20, 
 20, -[- 10, which would enable us to hit at once upon the erro- 
 neous number and judge of the magnitude of its error. 
 
 An error near the beginning and end of the series of numbers of 
 which the differences are taken cannot be detected by the differences 
 unless it is considerable. If, for instance, the first or last number 
 is in error by 1, the error of each order of differences will only be 1, 
 as we may easily see by the following example: 
 /' A' A" A'" 
 
 ~ I + I - 1 etc. 
 
 It is only in those differences which are on or near the same line 
 as the numbers which are magnified in the way we have shown. But 
 at the beginning and end of the series we cannot determine theso 
 differences. 
 
 Examining the various tables of differences, we see that n numbers 
 have n 1 first differences, n 2 second differences, and so on, the 
 number diminishing by 1 with each succeeding order. Hence, unless 
 the number of given functions exceeds the index expressing the order 
 of differences which we have to form, no certain conclusion can be 
 drawn. 
 
 What is here said of the correctness of the numbers when the 
 differences run properly must be understood as applicable to isolated 
 errors only. If all the numbers were subject to an error following a 
 regular law, this error would not be detected by the differences be- 
 cause, from the nature of the case, the latter only show deviations 
 from some regular law. 
 
FUNDAMENTAL FORMULA. 61 
 
 27. Fundamental Formulae of Interpolation. 
 
 We suppose a series of numbers to be differenced in the way already 
 shown, and the various differences to be designated as in the follow- 
 ing scheme, which is supposed to be a selection from a series preceding 
 and- folio wing it. 
 
 Function. 1st Diff. 2d Diff. 3d Diff. 4th Diff. 5tn Diff. 
 
 a /f' 2 /f"' 3 yfv 
 
 A -I A ,, A _, J-.j 
 
 
 
 ' " 
 
 , 
 
 3 
 
 A'", 
 
 etc. etc. etc. etc. etc. etc. 
 
 It will be seen that the lower indices are chosen so as to 
 on which line a difference of any order falls. Thus all quantities 
 with index 2 are on one horizontal line, those with index |- = 2 are 
 half a line below, etc. This notation is a little different from that 
 used in algebra, but the change need not cause any confusion. , 
 
 It is shown in algebra that if n be any index, we have 
 
 the notation being changed as in the preceding scheme. 
 
 Now the fundamental hypothesis of interpolation is that this 
 iormula, which can be demonstrated only for integral values of ^>k 
 true also for fractional values; that is, for values of the function u 
 between those given in the table or in the above scheme. We there- 
 fore suppose this formula to express the value of the function u for 
 any value of n between and 1. r . , . 
 
 For values between -f 1 and -f 2 we have only to increase the 
 indices, of u and its differences by unity, thus: 
 
 
 . + etc,, 
 
 and by supposing n to increase from to 1 in this formula we shall 
 have values of u from u l to w a . 
 
62 OF INTERPOLATION. 
 
 Increasing the indices again that is, applying our general foi 
 mulae to a row of quantities one line lower we shall have 
 
 etc. 
 
 , 
 The equation (a) is known as Newton's formula of interpolation. 
 
 28. Transformations of the Formula of Interpolation. 
 
 In the equation (a) and those following it, the formula of inter- 
 polation is not in its most convenient form. We shall therefore 
 transform it so that the differences employed shall be symmetrical 
 with respect to the functions between which the interpolation is to 
 be made. 
 
 In working these transformations we shall suppose the sixth and 
 following orders of differences to be so small as not to affect the 
 result. These differences being supposed zero, any two consecutive 
 fifth differences may be supposed equal. 
 
 First transformation. Let us first find what the original formula 
 (a) will become when, instead of using the series of differences 
 
 J'*, J" lf ^'"j, A^\, etc., 
 we use 
 
 J'l, J" , J'"i, J* f etc. 
 
 To effect the transformation we must find the values of the first 
 series of differences in terms of the second, and substitute them in 
 the formula (a). 
 
 We find, by the mode of forming the differences, 
 
 for which, because we suppose the values of J T to be equal, we may put 
 #\ = *\ + 8J; 
 /}', = A\. 
 Making these substitutions in (a), we have 
 
 =. + J' t + * (* ~ l) (A>\ + J'",) 
 
 (-!) (-*) ,, 
 
 1.2.3.4.5 ** 
 
TRANSFORMATIONS OF FORMULAE. 63 
 
 Reducing by collecting the coefficients of equal differences, we find 
 
 - = //'* + n ( n ~ l l A" + ( + l) (-*) A ,n. 
 **n **o !l> t i 12 oi 123 
 
 ( + l)n(*-l)(-2) 
 1.2.3. 4 
 
 . v . 
 
 1.2.3.4.5 ** 
 
 Second transformation. Next, instead of the series of this last 
 formula, (J), 
 
 J't, J"., J'" b ^ , etc., 
 let us use 
 
 /J'_ t , J"., J"'_ 4 , J\, etc. 
 
 To effect this transformation we substitute in (S) for d\, 4"i, etc., 
 
 The series (b) then changes into 
 
 *-^^* 
 
 - . i 
 1.2.3.4 
 
 1.2.3.4.5 '-*' 
 
 tV<f transformation. Stirling's formula. We effect a third 
 transformation by taking the half sum of the equations (b) and (c), 
 Which gives us a formula perfectly symmetrical with respect to the 
 lines of differences, namely, 
 
 *-^4^+^ 
 
 *>'-!) n(it--l)(n'-4)k.H-^ . ^ ^ 
 
 1.2.3.4 ^ 1.2.3.4.5 2 T 0.| W 
 
 which is known as Stirling 9 s formula of interpolation. 
 It will be seen that we have put 
 
 n* - I for (n + 1) (n - 1), 
 w 9 - 4 for (n + 2) (w - 2), 
 
 etc. etc. 
 
 Fourth transformation. In the equation (5), instead of the series 
 of differences 
 
 J'h J"., J'",, J"., etc., 
 let us use 
 
 A' k , A', 4"', & etc. 
 
64 OF INTERPOLATION. 
 
 -. To effect this we put 
 
 J" = A'\ - J'" i5 
 
 JiV o = Jl Vi _ JV^ 
 
 Making these substitutions in (), it becomes 
 * - *J' 11 .f" ^ 
 
 -- , iv 
 1.2.3.4" ' ' 
 
 - . v 
 1.2.3.4.5 
 
 transformation. BesseVs formula. Let us take half the 
 sum of the equations (e) and (b). We then have 
 
 1.2.3.4.5 
 
 which is commonly known as BesseVs formula of interpolation, and 
 which is the one most convenient to use in practice. 
 , In applying this formula to find a value of the function inter- 
 mediate between two given values, we must always suppose ,^ the 
 index to apply to the given value next preceding that to be found, 
 and the index 1 to apply to that next following. The quantity n 
 will then be a positive proper fraction. 
 
 29. Example of interpolation to halves. If we increase the loga- 
 rithms of 30, 31, etc., already given, by unity, we shall have the 
 logarithms of 300, 310, 320, etc. It is required to find, by interpola- 
 tion, the logarithms of the numbers half way between the given ones 
 (omitting the first and last), namely, the logarithms of 315, 325, 335, 
 etc. 
 
 Here, the required quantities depending upon arguments half way 
 between the given ones, we have n = -J, and the values of the Bessel- 
 ian coefficient, so far as wanted, are 
 
 n (n - 1) _ !_ 
 2 " 8 J 
 
log (a, - 5) = log a, - - 
 
 TRANSFORMATIONS OF FORMULA. 65 
 
 The subsequent terms are neglected, being insensible. So, if we 
 put a and a l for any consecutive two of the numbers 300, 310, etc., 
 we have 
 
 (*) 
 
 where we put A for that first difference between a and a lt 
 
 These two formulae are two expressions for the same quantitj 
 because a -f- 5 = a l 5. They are both used in such a way as to 
 provide a check upon the accuracy of the work. For this purpose we 
 compute the two quantities 
 
 log (a. + 5) - log a = -^A\ - - 1, 1 
 
 1 A" A" f W 
 
 log a, - log (..+ 5) = -J'i + - 1 1. J 
 
 The most convenient and expeditious way of doing the work is 
 shown in the accompanying table, where we give every figure which 
 it is necessary to write, besides those found on p. 57. The following 
 is the plan of computation: 
 
 Ko. Log. Difl. ^', *'" + '"'. ^+X 
 
 310 
 
 2.49136 
 
 
 
 
 
 315 
 
 .498 31 
 
 RS4. 
 
 + 689.5 
 
 - 5.5 
 
 -44 
 
 320 
 
 .50515 
 
 UOTt 
 
 
 
 
 325 
 
 .51188 
 
 aao 
 
 668.0 
 
 - 5.1 
 
 - 41 
 
 330 
 
 .51851 
 
 DOO 
 
 r* Ef o 
 
 
 
 
 335 
 
 .52504 
 
 bOo 
 
 /? A 4 
 
 648.5 
 
 -4.8 
 
 - 38 
 
 340 
 
 .53148 
 
 b44 
 
 AQ/f 
 
 
 
 
 345 
 
 .53782 
 
 OO4: 
 
 629.5 
 
 - 4.6 
 
 - 37 
 
 350 
 
 .54407 
 
 /1-f /> 
 
 
 
 
 355 
 360 
 
 .55023 
 2.55630 
 
 616 
 607 
 
 + 611.5 
 
 - 4.3 
 
 -34 
 
 We compute the right-hand column by the formula 
 
 using the values of A given in the scheme, p. 57. 
 
 This mode of computing the half sum of two numbers which are 
 nearly equal is easier than adding and dividing by 2. 
 
 In the next two columns to the left, the sixth place of decimals 
 
66 OF INTERPOLATION. 
 
 is added in order that the errors may not accumulate by the addition 
 of several quantities. This precaution should always be taken when 
 the interpolated quantities are required to be as accurate as the given 
 ones. 
 
 The fourth column from the right is formed by adding and sub- 
 tracting the numbers of the second and third columns according to 
 the formula (k). The additional figure is now dropped, because no 
 longer necessary for accuracy. The numbers thus formed are the 
 first differences of the series of logarithms found by inserting the 
 interpolated logarithms between the given ones, as will be seen by 
 equation (&). 
 
 We write the first logarithm of the series, namely, 
 
 log 310 = 2.49136, 
 
 and then form the subsequent ones by continual addition of the dif- 
 ferences, thus: 
 
 log 315 = log 310 + 695; 
 log 320 = log 315 + 684; 
 log 325 = log 320 + 673; 
 etc. etc. etc. 
 
 If the work is correct, the alternate logarithms will agree with the 
 given ones in the former table. 
 
 The continuance of the above process for a few more numbers, 
 say up to 450, is recommended to the student as an exercise. 
 
 3O. Interpolation to thirds. Let us suppose the value of a 
 quantity to be given for every third day, and the value for every 
 day to be required. By putting n = -j- and applying formula (/) to 
 each successive given quantity, we shall have the value for each day 
 following one of those given, and by putting n = } we shall have 
 values for the second day following, which will complete the series . 
 But the interpolation can be executed by a much more expeditious 
 process, which consists in computing the middle difference of the 
 interpolated quantities and finding the intermediate differences by a 
 secondary interpolation. 
 
 Let us put 
 
 / / / f , etc., the given series of quantities; 
 
 / /u f*> /> /4> etc -> tne required interpolated series; 
 
 A' t A", etc., the first differences, second differences, etc., of the 
 given series; 
 
 $', ", etc., the first differences, second differences, etc., of the 
 interpolated series. 
 
TRANSFORMATIONS OF FORMULAS. 67 
 
 We may then put 
 
 /,/, = ^'* (in the given series); 
 
 /,-/.-*') 
 
 /,/! = ^ 'f > (in the interpolated series). 
 
 /.-/.= *Y) 
 We shall then have 
 
 <*'* + <*', + f| = 4'*. 
 
 The value of /i / = b\ is given by putting n = $ in the Bes- 
 selian formula (/). Thus we find 
 
 ,, 1 1 J".+ J". , 1 ., 
 
 ** = 3 J *~9 2 + i62 J 
 
 ^^ + ^_J_ 
 r 243 2 1458 
 
 Putting w = |, we have the value of/, ~/ , that is, of 
 Thus we find 
 
 5 ^ t +^. 1 
 r 2 r !458 
 
 Subtracting these expressions, we have 
 
 ^ = 3 L ^-^'"* 
 
 which is most easily computed in the form 
 
 We see that the computation of tf'f, the middle difference of the 
 interpolated quantities, is much simpler than that of <?V It will 
 therefore facilitate the work to compute only these middle differ- 
 ences, and to find the others by interpolation. 
 
 This process is again facilitated, in case the second differences are 
 considerable, by first computing the second differences of the inter- 
 polated series on the same plan. The formulae for this purpose are 
 derived as follows: 
 
 Let us put 
 
 <*'! =/, -/,- 
 
 The second difference of which we desire the value is then 
 
 <*,= ?'{ - ff 
 
 The value of S\ is given by the equation 
 
 tf'j^'j-OJ'j + <?',), 
 
OS LOGARITHMIC TABLES. 
 
 and the value of d'$ is found from that of d' by simply increasing, the 
 indices of the differences by unity, because it belongs to the next 
 lower line. 
 
 We thus find 
 
 I 
 ^ 
 
 243 a 1458 
 
 5 A\ + 4\ 1 
 243 2 1458 
 
 Then by subtraction, 
 
 4- (^-^ 
 
 __ . I ._ _1_ _ 
 r 243 2 1458 ^ f W * 
 
 Eeducing the first of these terms, we have 
 
 ^Y-^V;M", 
 
 For the second term, 
 
 whence 
 
 ^". + ^" a = ^^ + A'"\ - A '"\ = 2^", + A\, 
 and 
 
 ^". + aj " + ^"> = 2 J + L j.. 
 
 2 > ^ 2 '* 
 
 For the third term, 
 
 j'" f _ A'" k = J 1 ^. 
 
 For the fourth term, dropping the terms in d* as too small iu 
 practice, we may put 
 
 j". + aj". + ^'% = 
 
 g 
 
 The difference of the fifth terms may also be dropped, because 
 they contain only sixth differences. 
 
 Making these substitutions in the value of #" 3 , we find 
 
OF INTERPOLATION. 69> 
 
 By this formula we may compute every third value of #", and 
 then interpolate the intermediate values. By means of these values, 
 we find by addition the intermediate values of d', of which every 
 third value has been computed by formula (m). Then, by continu- 
 ally adding the values of 6', we find those of the function/. 
 
 As an example of the work, we give the following values of the. 
 sun's declination for every third day of part of July, 1886, for Green* 
 wich mean noon: 
 
 Date. Q'sDec. A' A" A'" 
 
 1886 o / // in n it 
 
 6.. . 
 
 ...22 
 
 41 
 
 9 
 
 > 
 
 16 
 
 28. 
 
 3 
 
 212. 
 
 4 
 
 
 9.. . 
 
 ...22 
 
 
 8. 
 
 5 
 
 20 
 
 0. 
 
 7 
 
 207. 
 
 9 
 
 + 4.5 
 
 12.. . 
 
 ...21 
 
 57 
 
 39 
 
 9 
 
 23 
 
 28. 
 
 6 
 
 203. 
 
 4 
 
 -f 4.5 
 
 15.. . 
 
 ...21 
 
 30 
 
 47, 
 
 9 
 
 26 
 
 52. 
 
 
 
 197. 
 
 7 
 
 + 5.7 
 
 18.. 
 
 21 
 
 
 
 38. 
 
 2 
 
 30 
 
 9. 
 
 7 
 
 
 
 
 The values of J iv are too small to hav-e any influence. 
 
 The whole work of interpolation is shown in the following table> 
 fhere, as before, the right-hand column is that first computed, and 
 gives the value of A' -faA'" according to formula (m) : 
 
 Date. o'sDec. <?' d" A' - 
 
 1886. ' " ' " " 
 
 July 6 ...... 22 41 9.2 R , , RR - 23.60 
 
 7 ...... 22 34 52.4 ' ' * * - 23.43 20 Q , 
 
 8 ...... 22 28 12.1 ; ^'?* - 23.27 " ' 87 
 
 9 ...... 22 21 8.5 "I ft 22 - 23 - 10 
 
 10 ...... 22 13 41.9 " ] * - 22.93 ^ 2g 77 
 
 11 ...... 22 5 52.3 " *5J - 22.78 ^ ^ <77 
 
 12 ...... 21 57 39.9 " g- - 22.61 
 
 13 ...... 2149 4.9 " I *** - 22.42 2 - 
 
 14 ...... 21 40 7.5 ' I - 22. 19 " 26 52 ' 21 
 
 15 ...... 21 30 47.9 " 19M - 21.97 
 
 To make the process in the example clear, the computed differ- 
 ences, etc., are printed in heavier type than the interpolated ones. 
 
 It is also to be remarked that the sum of the three consecutive 
 
 values of d", formed of one computed value and the interpolated 
 
 values next above and below it, should be equal to the difference 
 
 between the corresponding computed first differences. For instance, 
 
 23".27 + 23".10 + 22".93 = 7' 49".59 - 6' 40".29. 
 
 But in the first computation this condition will seldom be exactly 
 fulfilled, owing to the errors arising from omitted decimals and other 
 sources. If the given quantities are accurate, the errors should never 
 
70 LOGARITHMIC TABLES. 
 
 exceed half a unit of the last decimal in the given quantities, or five 
 units in the additional decimal added on in dividing. 
 
 To correct these little imperfections after the interpolation of the 
 second differences, but before that of the first differences, the sum of 
 the last two figures in each triplet of second differences should be 
 formed, and if it does not agree with the difference of the first differ- 
 ences, the last figures of the second difference should each be slightly 
 altered, to make the sum exact. 
 
 The first differences can then be formed by addition. 
 
 In the same way, the sum of three consecutive first differences 
 should be equal to the difference between the given quantities. If, 
 as is generally the case, this condition is not exactly fulfilled, the 
 differences should be altered accordingly. This alteration may, how- 
 ever, be made mentally while adding to form the required inter- 
 polated functions. 
 
 As an exercise for the student we give the continuance of the 
 sun's declination for the remainder of the month, to be interpolated 
 for the intermediate dates from July 15th onward: 
 
 o i n 
 
 July 21 20 27 16.5 
 
 24 19 50 49.1 
 
 27 19 11 22.7 
 
 30 18 29 4.8 
 
 Aug. 2 17 44 3.1 
 
 As another exercise the logarithms of the intermediate numbers 
 from 998 to 1014 may be interpolated by the following table: 
 Number. Logarithm. 
 
 994 2. 997 386 4 
 
 997 2.9986952 
 
 1000 3.0000000 
 
 1003 3.001 3009 
 
 1006 3.002 598 
 
 1009 3. 003 891 2 
 
 1012 3.005 180 5 
 
 1015 3. 006 466 
 
 1018 3.007 747 8 
 
 32. Interpolation to fifths. Let us next investigate the formulas 
 when every fifth quantity is given and the intermediate ones are to 
 be found by interpolation. By putting n = in the Besselian for- 
 mula, we shall have the value of the interpolation function second 
 
OF INTERPOLATION. 71 
 
 following one of the given ones, and by putting n = f that third 
 following. The difference will be the middle interpolated first dif- 
 ference of the interpolated series. Putting n = in (/ ), we have 
 
 2 ., 2.3 J" + J", 2.3.1 ., 
 
 m = * c + r J'* - ^ ^ - + gr^'"* 
 
 2.3.7.8 A\ + ^ _ 2.3.7.8.1 
 ^2.3.4.5* 2 2 a .3.4.5.5 6 ** 
 
 Putting n = $, we have 
 
 , 3 . 2.3 J" + A'\ 2.3.1 ., 
 ' "' 
 
 5 
 
 2.3.7.8 ^ 1Y + ^ lv , 8.3.2.7.1 . 
 h 2.3.4.5 4 2 i "2'.3.4.5.5' 
 
 The difference of these expressions, being reduced, gives 
 w - u\ = J'* - 125^'"* + 15625 JV * 
 
 The term in ^ y will not produce any effect unless the fifth differ- 
 ences are considerable, and then we may nearly always, in practice, 
 put $ instead of -Jfa. 
 
 The interpolated second differences opposite the given functions 
 are most readily obtained by Stirling's formula, (d). Putting n = \> 
 we have the following value of the interpolated first differences im- 
 mediately following a given value of the function: 
 
 2 50 6.5.25 2 
 
 24 
 
 Again, putting n = -fr, and changing the signs, we find for the 
 first difference next preceding a given function 
 
 50 6.5.25 
 24 
 
 6.5.20 - 
 
 The difference of these quantities gives the required second dif- 
 ference, which we find to be 
 
72 LOGARITHMIC TABLES. 
 
 As an example and exercise we show the interpolation of loga* 
 rithms when every fifth logarithm is given: 
 
 Number. 
 
 Logarithm. 
 
 6' 
 
 3" 
 
 A p A" 
 
 1000 
 
 3.0000000 
 
 
 
 + 21 661 
 
 1005 
 
 1006 
 
 3.002 166 1 
 
 .0025980 
 
 4319.2 
 
 A 0-1 A Q 
 
 -4.32 
 
 - 4.31 
 
 - 108 
 
 1007 
 1008 
 1009 
 1010 
 
 .003 029 5 
 .0034606 
 .0038912 
 3.0043214 
 
 'ioi^b. y 
 4310.6 
 
 4306.3 
 4302.0 
 
 A CIA W tV 
 
 - 4.30 
 - 4.30 
 - 4.29 
 
 - 4.28 
 
 + 21 553 
 - 107 
 
 1011 
 
 .0047512 
 
 4297.7 
 
 A Cir\f*i f 
 
 - 4.27 
 
 
 1012 
 .1013 
 1014 
 1015 
 
 .0051805 
 .0056094 
 .006 037 9 
 3.0064660 
 
 4293.5 
 4289.2 
 
 4285.0 
 4280.8 
 
 - 4.26 
 - 4.23 
 - 4.20 
 -4.16 
 
 + 21 446 
 + 21 342 ~" 104 
 
 1020 
 
 3.0086002 
 
 
 
 
 1025 
 
 3.0107239 
 
 
 
 
 1030 
 
 3.0128372 
 
 
 
 
 1035 
 
 3.0149403 
 
 
 
 
 1040 
 
 3.0170333 
 
 
 
 
FORMULAE 
 
 OE THE SOLUTION OF 
 
 PLANE AND SPHERICAL TRIANGLES. 
 
REMARKS. 
 
 1. It is better to determine an angle by its tangent than by its 
 sine or cosine, because a small angle or an angle near 180 cannot be 
 accurately determined by its cosine, nor one near either 90 or 270 
 by its sine, 
 
 Sometimes, however, the data of the problem are such that the 
 angle can. be determined only through its sine or cosine. Any un- 
 certainty which may then arise from the source pointed out is then 
 inherent in the problem; e.g., if the hypothenuse and one side of a 
 right triangle are 0.39808 and 0.39806 respectively (sixth and follow- 
 ing decimals being omitted), the value of the included angle may be 
 anywhere between 25' and 42', no matter what method of com- 
 putation be adopted. 
 
 2. If the sine and cosine can be independently computed, their 
 agreement as to the angle will generally serve as a check on the 
 accuracy of the computation. If they agree, their quotient will give 
 the tangent. 
 
 3. It is desirable, when possible, to have a check upon the accu- 
 racy of the computation; that is, to make a computation which must 
 give a certain result if the work is right. But no check can give a 
 positive assurance of accuracy: all it can do is to make it more or 
 less improbable that a mistake exceeding a certain limit exists. 
 
 4. In the following list several formulae are sometimes given as 
 applicable to the same problem. In such cases, the most convenient 
 for the special purpose must be chosen. 
 
PLANE TRIAXGLE8. 
 
 Notation, a, b, and c are the three sides. 
 
 A, B, and C are the opposite angles. 
 
 PLANE TRIANGLES. 
 
 Given. 
 
 Required. 
 
 s a+ 
 
 a, b, c, 
 
 ^, 
 
 
 the three 
 
 one angle. 
 
 tin A- -4 ~ \/ 
 
 sides. 
 
 o 
 
 s(s a) 
 
 
 A, B, C, 
 
 TT A/( S ~ a ) ( S 0)(S C) m 
 
 
 all the 
 
 s ' 
 
 
 angles. 
 
 tan^ = -*- 
 
 
 
 tan 45- H 
 
 s V 
 
 
 
 tan -i G 
 
 
 
 tCUl T ^ 
 
 s <? 
 
 
 
 Checks: A + B + C = 180; 
 
 
 
 a b c 
 
 
 
 ^ ____ 
 
 sin A sin .5 sin (7 
 
 b, c,A, 
 
 B and <7, 
 
 7) / 
 
 rwo sides 
 
 the other 
 
 tan ItCR r\ ont 4- A 
 
 tu/JJ ^ ^ jj - - ^ 1 ^u i, -j ^n - 
 
 ~T~ C 
 
 and the 
 included 
 
 angles. 
 
 !(+ C) = 90 -|^; 
 
 angle. 
 
 
 t7=|(^+(7)I|(^Z (7). 5 
 
 
 
 Check, as before. 
 
 
 a, B, C, 
 
 a sin -J (B C ) = (b c) cos -J A ; 
 
 
 the 
 
 rt cos - (B C) = (b -\- c) sin \A. 
 
 
 remaining 
 
 Having found a and (J? (7), proceed 
 
 
 parts. 
 
 as in the last case. 
 
 o, 5, A, 
 
 two sides 
 
 c, B, C, 
 the re- 
 
 sin B = sin A; (two values of B.) 
 
 and the 
 
 maining 
 
 /T _ -i QA / A 1 Z?\ 
 
 O = loU {A. -f- x>j; 
 
 angle oppo- 
 
 parts. 
 
 __ sin C' sin C 
 
 site one of 
 
 
 sin 5 " sin ^4 " 
 
 them. 
 
 
 
76 
 
 RIGHT SPHERICAL TRIANGLES. 
 
 Given. 
 
 Required. 
 
 
 a, A, B, 
 
 a, c, o, 
 
 C = 180 - (A + 5); 
 
 one side 
 
 the re- 
 
 , _ a sin ^ 
 
 and any 
 
 maining 
 
 sin J. ' 
 
 two angles. 
 
 parts. 
 
 a sin (7 a sin (^4 -f- J9) 
 
 
 
 sin A sin ^4 
 
 RIGHT SPHERICAL TRIANGLES. 
 
 
 
 c is the hypothenuse. 
 
 , b, 
 
 A, B, or c. 
 
 cot A = cot a sin #; 
 
 the sides 
 
 
 cot B = cot J sin a\ 
 
 containing 
 
 
 cos c = cos a cos 5; 
 
 the right 
 
 
 sin # 
 
 CJl f^i / 
 
 angle. 
 
 
 bill t/ . - 
 
 Bin -4 
 
 
 A and c. 
 
 sin c sin A = sin a; 
 
 
 
 sin c cos ^4 = cos a sin 5; 
 
 
 
 cos c = cos a cos 5* 
 
 
 
 sin c sin ^ = sin J; 
 
 
 B and c 
 
 sin c cos B = sin a cos 5. 
 
 a, c, 
 
 A, B } or b. 
 
 . sin G^ 
 
 sin A . -, 
 
 one side 
 
 
 sin c 
 
 and the hy- 
 
 
 cos .Z? = tan a cot C| 
 
 pothenuse. 
 
 
 ^ cos c 
 
 C/wb C/ ~ 
 
 
 
 cos a 
 
 a, A, 
 
 b, c, or B. 
 
 sin = tan a cot ^4; 
 
 one side 
 
 
 sin a 
 
 and the 
 
 
 sin c = rj 
 sin -4 
 
 opposite 
 
 
 . cos A ' 
 
 r*i >i A. 
 
 angle. 
 
 
 bill X> 
 
 *,&, 
 
 b, c, or A. 
 
 tan b = sin tan B; 
 
 one side 
 
 
 tan a 
 
 and the 
 
 
 tan c = ^; 
 cos 2r 
 
 adjacent 
 
 
 cos ^4 = cos a sin .#. 
 
 angle. 
 
 c and A. 
 
 sin A sin c = sin a; 
 
 
 
 sin ^4 cos c = cos a cos 5; 
 
 
 
 cos A = cos a sin B. 
 
QUADRANTAL SPHERICAL TRIANGLES. 
 
 77 
 
 i*iven. 
 
 Required. 
 
 
 0, B. 
 
 b and A. 
 
 sin .4 sin b = sin a sin B; 
 
 
 
 sin -4 cos # = cos B. 
 
 c,A, 
 
 a, b, or B. 
 
 sin a = sin c sin ^4; 
 
 the hypo- 
 
 
 tan b = tan c cos A; 
 
 thenuse 
 
 
 cot j5 = cos c tan A 
 
 and one 
 
 
 
 angle. 
 
 a and B. 
 
 cos a sin j5 = cos A; 
 
 
 
 cos a cos J? = sin A cos c; 
 
 
 
 sin a = sin -4 sin c. 
 
 
 a and b. 
 
 cos a sin b = cos -4 sin c\ 
 
 
 
 cos a cos # = cos c. 
 
 A,B, 
 
 a, b, or c. 
 
 cos .4 
 
 the two 
 
 
 sin ^ J 
 
 angles. 
 
 
 , cos jB 
 cos b = -. -. ; 
 
 
 
 sm ^1 
 
 
 
 cos c = cot ^4 cot B. 
 
 QUADEANTAL SPHERICAL TEIANGLES. 
 
 a, 5, 
 
 the two 
 
 sides. 
 
 a, (7, 
 one side 
 and the 
 
 angle oppo- 
 site the 
 
 right side. 
 
 A, B, or C, 
 
 either 
 angle. 
 
 A, B, or b. 
 
 A and b. 
 
 A and B. 
 
 cos A = 
 
 c is the omitted side equal to 90. 
 C is the angle opposite this side. 
 
 cos a t 
 
 sin b' 
 
 cos 
 
 
 
 cos B = 
 
 sin a 
 
 cos C = cot 
 
 cot 
 
 sin -4 = sin a sin (7; 
 tan B = cos a tan (7; 
 cot # = tan a cos (7. 
 
 cos ^4 sin Z = cos a; 
 cos A cos b = sin a cos C. 
 sin -4. = sin a sin & 
 
 cos A sin ^ = cos a sin (7; 
 cos ^4 cos B = cos C. 
 
78 
 
 QUADRANTAL SPHERICAL TRIANGLES. 
 
 Given. 
 
 one angle 
 
 and the 
 
 adjacent 
 
 side. 
 
 0, A, 
 one side 
 and the 
 opposite 
 
 angle. 
 
 one angle 
 and the 
 angle oppo- 
 site the 
 right side. 
 
 A,B, 
 two angles. 
 
 Required. 
 a, B, or (7. 
 
 a and B. 
 
 a and C. 
 
 b, B, or C. 
 
 a, b, or B. 
 
 a, b 9 or C. 
 
 a and C. 
 
 I and a 
 
 cos a = cos A sin 5; 
 tan B = sin A tan b; 
 cot C = cot A cos . 
 
 sin a sin B = sin J. sin J; 
 sin a cos .Z? = cos &; 
 
 cos a = cos A sin . 
 
 sin a sin (7 = sin A \ 
 
 sin a cos C = cos J. cos 
 
 5 = 
 
 cos a 
 
 cos A' 
 sin .# = cot a tan .4; 
 
 . ~ sin A 
 
 sm # = . 
 
 sin a 
 
 sin A 
 
 sm a%= - ^ 
 sm C" 
 
 cos b = tan ^4 cot C"; 
 
 D cos (7 
 cosjS = 3. 
 
 cot a = cot A sin B; 
 cot # = sin A cot .5; 
 cos (7 = cos A cos #. 
 
 sin 7 sin a sin ^4; 
 sin (7 cos a = cos ^4 sin 5; 
 cos (7 = cos A cos 5. 
 
 sin C sin 5 = sin B\ 
 
 sin (7 cos b = sin ^4 cos B. 
 
SPHERICAL TRIANGLES IN GENERAL. 
 
 SPHERICAL TRIANGLES IN GENERAL. 
 
 Given. 
 
 Required. 
 
 
 a, b, c, 
 
 A, B, G, 
 
 - \ ), 
 
 the three 
 sides. 
 
 the three 
 angles. 
 
 rr A/ Sm ( S ~~ a ) SI* 1 ( S ~#) Sm ( 5 C ) 
 
 sins 
 
 
 
 tan 4 A 
 
 sin (s a) 
 
 
 
 fin 47? 
 
 
 
 tail TT -O : 7T> 
 
 sm (5 b)' 
 
 
 
 tnr 4 ^ 
 
 
 
 sm (s ) 
 
 
 
 p, , sin a sin 5 sin c 
 
 
 
 sin J[ sin B sin (7* 
 
 a, 5, C 9 
 
 A and <?, 
 
 sin c sin A = sin a sin C; 
 
 two sides 
 
 one angle 
 
 sin c cos A = cos a sin b sin cos b cos (7; 
 
 and the 
 
 and the 
 
 cos c = cos a cos 5 + sin a sin 5 cos C. 
 
 included 
 
 remaining 
 
 
 angle. 
 
 side. 
 
 
 
 B and c. 
 
 sin c sin B = sin 5 sin C; 
 
 
 
 sin c cos .Z? = sin a cos 5 cos a sin 5 cos C. 
 
 
 
 If addition and subtraction logarithms 
 
 
 
 are not available for this computation, we 
 
 
 
 may compute Jc and K from 
 
 
 
 Tc sin K = sin a cos (7; 
 
 
 
 & cos K = cos a. 
 
 
 
 Then 
 
 
 
 sin c cos -4 =; Jc sin (# JT); 
 
 
 
 cos c = k cos (b JT). 
 
 
 
 Also, 
 
 
 
 A sin H = sin # cos C\ 
 
 
 
 h cos If = cos J. 
 
 
 
 Then 
 
 
 
 sin c cos ^ = h sin (# If); 
 
 
 
 cos c = h cos (a 5"). 
 
 
 A, B, c, 
 
 sin -J c sin -J ( J. .Z?) = cos % Csin % (a b) ; 
 
 
 all the 
 
 sin I c cos | (^4 ^) = sin-J- C7sinJ( + ); 
 
 
 remaining 
 
 cos|csin- (A-\-B)= cos-J (7cos| (a b); 
 
 
 pasts. 
 
 cosij ccos-J (-44-2?) = sin J C cos J (a -\-b). 
 
80 
 
 SPHERICAL TRIANGLES. 
 
 Given. 
 
 Required. 
 
 
 a, I, A, 
 
 two sides 
 
 B, C, c, 
 
 all the 
 
 . D sin A sin b , , 
 sm B = : (two values of ); 
 sin CL 
 
 and an 
 
 remaining 
 
 4-0^, i n cos i( a ^) c t %(A -\- B) 
 
 opposite 
 
 parts. 
 
 cos % (a + b) 
 
 angle. 
 
 
 cos 4 (A 4- i?) tan !( + &) 
 tan * c <s \ i ^ 
 
 
 A, B, c, 
 
 a and C, 
 
 sin C sin a = sin A sin c; 
 
 two angles 
 
 one side 
 
 sin (7 cos a = cos ^4 sin B -\- sin J. cos B cos 0; 
 
 and the 
 
 and the 
 
 cos (7 = cos A cos .5-f-sin A sin^B cos c. 
 
 included 
 
 third angle. 
 
 
 side. 
 
 
 
 
 1 and C. 
 
 sin Csmb = sin .# sin c\ 
 
 
 
 sin (7 cos 5 = sin A cos ^ -f- cos A sin J5 cos c. 
 
 
 
 If we compute & and K from 
 
 
 
 & sin K = cos ^4, 
 
 
 
 & cos -5T = sin ^4. cos c, 
 
 
 
 then sin (7 cos a = k cos (^ K)\ 
 
 
 
 cos (7 = k sin (# -ZT). 
 
 
 
 If we compute h and H from 
 
 
 
 A sin ^T = cos B y 
 
 
 
 h cos If = sin j9 cos c, 
 
 
 
 ;hen sin (7 cos = h cos (^4 #); 
 
 - 
 
 
 cos C h sin (A H). 
 
 
 a, 1, C, 
 
 sin (7sin(a-|- Z>) = sinc cosj(^4 B); 
 
 
 all the 
 
 sin tfcos I (a -f Z>) = cos | c cos J (^4 + B); 
 
 
 remaining 
 
 cos^(7sinj( b) = sinc sin %(A B); 
 
 
 parts. 
 
 cos -J- C'cos J ( b) = cos ^ c sin (^4 + ). 
 
 A, B, a, 
 
 two angles 
 
 &, c, C, 
 all the 
 
 . .. sin a sin B 
 
 en T| /) /-f-TTT/^ iTrtli-i/%ci r\-r A\* 
 
 Dill U : 1 LWU YdtlUUo \JL U}* 
 
 sin A 
 
 and an 
 opposite 
 
 remaining 
 parts. 
 
 ^*- _ cos 1 (^ + B) tan i (a + b) m 
 
 wall -g- (/ ' " 1 / /f " 7?\ ' 
 
 side. 
 
 
 cos -|- (^ ^) cot -|- (^4 -j- ^) 
 
 
 
 COS % ( a + ^) 
 
 A, B, (7, 
 
 a, I, c, 
 
 #=(^ + +(7); 
 
 the three 
 
 the three 
 
 P-4/ -cos-S' 
 
 angles. 
 
 sides. 
 
 K cos(^-^) cos (#-.#) cos (#-(7)' 
 
 
 
 tan Ja = P cos ($ ^4); 
 
 
 
 tan %b = P cos ($ ^)^ 
 
 
 
 tan^c = Pcos (S C). 
 
TABLES. 
 
TABLE I. 
 
 COMMON LOGARITHMS 
 
 OF NUMBERS. 
 
 X. 
 
 Log. 
 
 N. 
 
 Log. 
 
 N. 
 
 Log. 
 
 N. 
 
 Log. 
 
 N. 
 
 Log. 
 
 
 
 1 
 
 2 
 3 
 
 Infinity. 
 
 30 
 
 31 
 32 
 33 
 
 I.477I2 
 
 60 
 
 61 
 62 
 63 
 
 1.77815 
 
 90 
 
 91 
 92 
 93 
 
 1.95424 
 
 120 
 
 121 
 122 
 123 
 
 2.07 918 
 
 O.OO OOO 
 0.30 103 
 
 0.47 712 
 
 1.49 136 
 I.505I5 
 1.51 851 
 
 1.78533 
 1.79239 
 1.79934 
 
 .95904 
 .96 379 
 .96 848 
 
 2.08 2>9 
 2.08636 
 
 2.08 991 
 
 4 
 5 
 6 
 
 0.60 206 
 0.69 897 
 
 0.77815 
 
 34 
 35 
 36 
 
 I.53I43 
 1.54407 
 1.55630 
 
 64 
 65 
 66 
 
 i. 80618 
 1.81 291 
 1.81 954 
 
 94 
 95 
 96 
 
 97 313 
 
 .97 772 
 .98 227 
 
 124 
 125 
 126 
 
 2.09342 
 
 2.09691 
 2.10037 
 
 7 
 8 
 9 
 
 10 
 
 11 
 
 12 
 13 
 
 0.84 510 
 .0.90 309 
 0.95 424 
 
 37 
 38 
 39 
 
 40 
 
 41 
 42 
 43 
 
 1 . 56 820 
 1.57978 
 1.59 106 
 
 67 
 
 68 
 69 
 
 70 
 
 71 
 
 72 
 73 
 
 1.82607 
 1.83251 
 1.83 885 
 
 97 
 98 
 99 
 
 100 
 
 101 
 
 102 
 103 
 
 .98 677 
 .99 123 
 99 564 
 
 127 
 
 128 
 129 
 
 130 
 
 131 
 132 
 133 
 
 2.10 380 
 2.IO 721 
 2. 1 1 059 
 
 I.OOOOO 
 
 1. 60 206 
 
 1.84 510 
 
 2.00000 
 
 2. ii 394 
 
 .04 139 
 
 .07 918 
 .11 394 
 
 1.61 278 
 1.62323 
 1.63347 
 
 1.85 126 
 
 1.85733 
 1.86332 
 
 2.00432 
 2.00 860 
 2.01 284 
 
 2. 1 1 727 
 2.12057 
 2.12385 
 
 14 
 15 
 16 
 
 .14613 
 .17609 
 .20412 
 
 44 
 45 
 46 
 
 1.64345 
 1.65321 
 1.66 276 
 
 74 
 75 
 76 
 
 1.86923 
 1.87 506 
 i. 88081 
 
 104 
 105 
 106 
 
 2.01 703 
 2.02 119 
 2.02 531 
 
 134 
 135 
 136 
 
 2.12 710 
 2,13033 
 2.13354 
 
 17 
 18 
 19 
 
 20 
 
 21 
 22 
 23 
 
 .23043 
 .25 527 
 .27 875 
 
 47 
 48 
 49 
 
 50 
 
 51 
 52 
 53 
 
 1.67 210 
 1.68 124 
 1.69 020 
 
 77 
 78 
 79 
 
 80 
 
 81 
 
 82 
 83 
 
 1.88649 
 1.89 209 
 1^89763 
 
 107 
 108 
 109 
 
 110 
 
 111 
 112 
 113 
 
 2.02 938 
 2.03 342 
 2.03743 
 
 137 
 138 
 139 
 
 140 
 
 141 
 142 
 143 
 
 2.13672 
 2.13988 
 2.I430I 
 
 .30 103 
 
 1.69897 
 
 1.90309 
 
 2.04139 
 
 2.I46I3 
 
 .32 222 
 .34242 
 .36 173 
 
 1.70757 
 1.71 600 
 1.72428 
 
 i .90 849 
 1.91 381 
 1.91 908 
 
 2.04532 
 2.04922 
 2.05 308 
 
 2.14 922 
 2.15229 
 2.15534 
 
 24 
 25 
 26 
 
 .38021 
 
 39794 
 41 497 
 
 54 
 55 
 66 
 
 1.73239 
 1.74036 
 1.74819 
 
 84 
 85 
 86 
 
 i .92 428 
 1.92942 
 1.93450 
 
 114 
 115 
 116 
 
 2.O5 600 
 2.06070 
 2.06446 
 
 144 
 145 
 146 
 
 2.15836 
 2.16 137 
 2.16435 
 
 27 
 28 
 29 
 
 30 
 
 .43 136 
 .44716 
 .46 240 
 
 57 
 58 
 59 
 
 60 
 
 1.75587 
 I 76 343 
 1.77085 
 
 87 
 88 
 89 
 
 90 
 
 1.93952 
 
 1.94448 
 1-94939 
 
 117 
 118 
 119 
 
 120 
 
 2.06 819 
 
 2.07 188 
 2.07 555 
 
 147 
 148 
 149 
 
 150 
 
 2.16732 
 2.17 026 
 2.17 319 
 
 1.477" 
 
 1.77815 
 
 1.95424 
 
 2.07918 
 
 2.17 609 
 
TABLE I. 
 
 N. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
 100 
 
 01 
 02 
 03 
 
 04 
 05 
 06 
 
 07 
 08 
 09 
 
 110 
 
 11 
 12 
 13 
 
 14 
 15 
 16 
 
 17 
 18 
 19 
 
 120 
 
 21 
 22 
 23 
 
 24 
 25 
 26 
 
 27 
 28 
 29 
 
 130 
 
 31 
 32 
 33 
 
 34 
 35 
 36 
 
 37 
 38 
 39 
 
 140 
 
 41 
 42 
 43 
 
 44 
 45 
 46 
 
 47 
 48 
 49 
 
 150 
 
 oo ooo 
 
 043 
 
 087 
 
 130 
 
 173 
 
 217 
 
 260 
 
 303 
 
 346 
 
 389 
 
 i 
 
 2 
 
 3 
 4 
 5 
 6 
 
 7 
 8 
 
 9 
 
 i 
 
 2 
 
 3 
 
 4 
 5 
 6 
 7 
 8 
 
 9 
 
 i 
 
 2 
 
 3 
 4 
 5 
 6 
 7 
 8 
 
 9 
 
 i 
 
 2 
 
 3 
 4 
 5 
 6 
 
 7 
 8 
 
 9 
 
 i 
 
 2 
 
 3 
 4 
 5 
 6 
 
 7 
 8 
 
 9 
 
 44 
 
 4-4 
 
 8.8 
 13 a 
 17-6 
 
 22.0 
 26-4 
 
 30.8 
 35-2 
 39-6 
 
 4 
 
 4' 
 
 8.2 
 
 12.3 
 
 16.4 
 
 20.5 
 
 24.6 
 28.7 
 32.8 
 
 36-9 
 
 38 
 
 3-8 
 7.6 
 ix. 4 
 15-2 
 19.0 
 
 22.8 
 26.6 
 
 3 4 
 34 .3 
 
 35 
 
 3-5 
 7-o 
 10.5 
 14.0 
 17 5 
 
 21. 
 
 4 5 
 28.0 
 
 31-5 
 
 32 
 
 3-2 
 6-4 
 9-6 
 
 12.8 
 
 16.0 
 19.2 
 
 22-4 
 
 25-6 
 28.8 
 
 43 
 
 43 
 
 8.6 
 12.9 
 17.2 
 
 21. S 
 
 2 5 .8 
 30.1 
 
 34 4 
 38.7 
 
 40 
 
 4-o 
 8.0 
 
 12.0 
 
 16.0 
 
 2O- 
 
 24.0 
 28.0 
 32.0 
 
 36.0 
 
 37 
 
 3-7 
 
 7-4 
 
 IX. I 
 
 14-8 
 18-5 
 
 22.2 
 25.9 
 2 9 .6 
 
 33-3 
 
 .34 
 
 3-4 
 6-8 
 
 10 2 
 
 I 3 -6 
 17.0 
 
 20.4 
 
 23.8 
 27.2 
 
 30.6 
 
 31 
 
 31 
 
 6.2 
 
 93 
 12.4 
 
 IS 5 
 18.6 
 21.7 
 24-8 
 27.9 
 
 49 
 
 4 
 8. 
 
 12. 
 
 16. 
 
 21. 
 
 25 
 29. 
 
 33-6 
 37-8 
 
 39 
 
 39 
 
 7-8 
 11.7 
 156 
 '9 5 
 23.4 
 
 27 3 
 31-2 
 35 
 
 36 
 3.6 
 7-a 
 10.8 
 14 4 
 18 o 
 
 21 6 
 
 25.3 
 28.8 
 
 32 4 
 
 33 
 
 33 
 6.6 
 
 99 
 
 13 3 
 
 I6 '5 
 19-8 
 
 23. x- 
 
 26.4 
 
 29 7 
 
 30 
 
 3-o 
 6.0 
 
 9-o 
 
 12. 
 15-0 
 
 18.0 
 
 21. 
 24.0 
 37-0 
 
 432 
 860 
 
 oi 284 
 
 703 
 
 02 119 
 
 531 
 
 938 
 03 342 
 
 743 
 
 475 
 903 
 326 
 
 7 2 5 
 1 60 
 
 572 
 
 979 
 383 
 782 
 
 518 
 
 945 
 368 
 
 787 
 
 202 
 
 612 
 
 *oi9 
 
 423 
 822 
 
 561 
 988 
 410 
 
 828 
 
 243 
 653 
 *o6o 
 
 463 
 862 
 
 604 
 *030 
 452 
 
 870 
 284 
 694 
 
 *IOO 
 
 503 
 902 
 
 647 
 
 *072 
 
 494 
 912 
 325 
 735 
 
 *I 4 I 
 
 543 
 941 
 
 689 
 
 *ii5 
 
 536 
 
 953 
 366 
 776 
 
 *i8i 
 
 583 
 981 
 
 732 
 
 *I57 
 578 
 
 995 
 407 
 816 
 
 *222 
 623 
 *02I 
 
 775 
 *i99 
 620 
 
 *O36 
 449 
 857 
 
 *262 
 663 
 
 *o6o 
 
 817 
 
 *242 
 662 
 
 *078 
 490 
 898 
 
 * 3 Q2 
 703 
 *IOO 
 
 04 139 
 
 179 
 
 218 
 
 258 
 
 297 
 
 336 
 
 376 
 
 415 
 
 454 
 
 493 
 
 532 
 922 
 05 308 
 
 690 
 06 070 
 446 
 
 819 
 07 1 88 
 555 
 
 5 2' 
 9 6i 
 
 346 
 
 729 
 1 08 
 483 
 
 856 
 225 
 591 
 
 610 
 
 999 
 
 385 
 
 767 
 
 H5 
 521 
 
 893 
 262 
 628 
 
 650 
 *038 
 423 
 
 805 
 183 
 558 
 
 930 
 298 
 664 
 
 689 
 
 *077 
 461 
 
 843 
 
 221 
 
 595 
 967 
 
 335 
 700 
 
 727 
 *ii S 
 500 
 
 881 
 258 
 633 
 
 *oo4 
 372 
 737 
 
 766 
 *I54 
 538 
 
 918 
 
 296 
 
 670 
 
 *04i 
 408 
 773 
 
 805 
 
 ="192 
 
 576 
 956 
 
 333 
 707 
 
 *078 
 
 445 
 809 
 
 844 
 
 *23I 
 
 614 
 
 994 
 371 
 744 
 
 *ii5 
 
 482 
 846 
 
 883 
 *269 
 652 
 
 *032 
 
 408 
 
 781 
 
 *I 5 I 
 
 518 
 882 
 
 918 
 
 954 
 
 990 
 
 *027 
 
 *o6 3 
 
 *099 
 
 *I35 
 
 *i 7 i 
 
 *2O7 
 
 *243 
 
 08 279 
 636 
 991 
 
 09 342 
 691 
 10 037 
 
 380 
 721 
 n 059 
 
 3H 
 672 
 
 *026 
 
 377 
 726 
 072 
 
 415 
 755 
 093 
 
 350 
 707 
 *o6i 
 
 412 
 760 
 1 06 
 
 449 
 789 
 126 
 
 386 
 
 743 
 *096 
 
 447 
 795 
 140 
 
 483 
 823 
 1 60 
 
 422 
 778 
 
 *I 3 2 
 
 482 
 830 
 
 175 
 
 517 
 857 
 193 
 
 458 
 814 
 *i67 
 
 517 
 864 
 209 
 
 551 
 
 890 
 227 
 
 493 
 849 
 
 *202 
 
 552 
 8 99 
 
 243 
 
 585 
 924 
 261 
 
 529 
 884 
 
 *2 3 7 
 
 587 
 934 
 278 
 
 619 
 958 
 294 
 
 565 
 
 920 
 
 * 27 2 
 
 621 
 968 
 312 
 
 653 
 
 992 
 
 327 
 
 600 
 955 
 *3<>7 
 
 656 
 *oo3 
 346 
 687 
 
 *025 
 
 36 1- 
 
 394 
 
 428 
 
 461 
 
 494 
 
 528 
 
 561 
 
 594 
 
 628 
 
 661 
 
 694 
 
 727 
 
 12 057 
 385 
 710 
 13033 
 
 354 
 672 
 988 
 14 301 
 
 760 
 090 
 418 
 
 743 
 066 
 386 
 
 704 
 *oi9 
 333 
 
 793 
 123 
 450 
 
 775 
 098 
 418 
 
 735 
 *o5i 
 364 
 
 826 
 
 483 
 808 
 
 130 
 450 
 
 767 
 
 *082 
 
 395 
 
 860 
 189 
 516 
 
 840 
 162 
 481 
 
 799 
 *ii4 
 426 
 
 893 
 
 222 
 548 
 
 8 7 2 
 194 
 513 
 830 
 
 *I45 
 457 
 
 926 
 
 254 
 581 
 
 3 
 
 545 
 862 
 *i76 
 489 
 
 959 
 287 
 
 613 
 
 937 
 258 
 577 
 
 893 
 
 *208 
 
 520 
 
 992 
 320 
 646 
 
 969 
 290 
 609 
 
 925 
 *239 
 55i 
 
 *O24 
 
 $ 
 
 *OOI 
 
 322 
 640 
 
 956 
 
 *27O 
 
 582 
 
 613 
 
 644 
 
 675 
 
 706 
 
 737 
 
 768 
 
 799 
 
 829 
 
 860 
 
 891 
 
 922 
 15 229 
 
 534 
 
 836 
 16 137 
 435 
 
 732 
 17 026 
 
 319 
 
 953 
 259 
 
 564 
 
 866 
 167 
 465 
 
 761 
 056 
 
 348 
 
 983 
 290 
 
 594 
 
 897 
 197 
 495 
 791 
 085 
 377 
 
 *oi4 
 320 
 625 
 
 927 
 227 
 
 524 
 
 820 
 114 
 406 
 
 *045 
 351 
 655 
 
 957 
 256 
 
 554 
 850 
 H3 
 435 
 
 *076 
 38i 
 685 
 
 987 
 286 
 584 
 879 
 
 f ? 
 
 464 
 
 *io6 
 412 
 715 
 *oi7 
 316 
 613 
 909 
 
 202 
 
 493 
 
 *i37 
 442 
 746 
 
 *047 
 346 
 643 
 938 
 231 
 522 
 
 *i68 
 
 473 
 776 
 
 *077 
 376 
 673 
 
 967 
 260 
 
 55i 
 
 *i98 
 
 503 
 806 
 
 *io7 
 406 
 702 
 
 289 
 580 
 
 609 
 O 
 
 638 
 
 667 
 2 
 
 696 
 3 
 
 725 
 4 
 
 754 
 
 MIBMMMM 
 
 5 
 
 782 
 
 - 
 
 6 
 
 811 
 7 
 
 840 
 
 8 
 
 869 
 9 
 
 N. 
 
 1 
 
 Prop. Pts. 
 
LOGARITHMS OF NUMBERS. 
 
 N. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 r 
 
 8 
 
 9 
 
 Prop. Pts. 
 
 150 
 
 17 609 
 
 638 
 
 667 
 
 696 
 
 725 
 
 754 
 
 782 
 
 811 
 
 840 
 
 869 
 
 
 51 
 
 898 
 
 926 
 
 955 
 
 984 
 
 *oi3 
 
 "041 
 
 *o7o 
 
 *O99 
 
 *I2 7 
 
 *i$6 
 
 
 29 
 
 28 
 
 52 
 
 18 184 
 
 213 
 
 241 
 
 270 
 
 298 
 
 327 
 
 355 
 
 384 
 
 412 
 
 441 
 
 
 
 
 53 
 
 469 
 
 498 
 
 526 
 
 554 
 
 583 
 
 611 
 
 639 
 
 667 
 
 696 
 
 724 
 
 1 
 2 
 
 2.9 
 
 5.8 
 
 2.8 
 5.6 
 
 54 
 
 752 
 
 780 
 
 808 
 
 837 
 
 865 
 
 893 
 
 921 
 
 949 
 
 977 
 
 *oos 
 
 3 
 
 8.7 
 
 8.4 
 
 55 
 
 19033 
 
 061 
 
 089 
 
 117 
 
 145 
 
 173 
 
 201 
 
 229 
 
 257 
 
 285 
 
 4 
 
 11.6 
 
 11.2 
 
 56 
 
 312 
 
 340 
 
 368 
 
 396 
 
 424 
 
 45 l 
 
 479 
 
 507 
 
 535 
 
 562 
 
 5 
 
 14.5 
 
 14.0 
 
 57 
 
 590 
 
 618 
 
 645 
 
 673 
 
 700 
 
 ^728 
 
 * 756 
 
 783 
 
 811 
 
 838 
 
 6 
 
 17.4 
 
 16.8 
 
 58 
 
 866 
 
 893 
 
 921 
 
 948 
 
 976 
 
 
 
 *o 5 8 
 
 *o85 
 
 *II2 
 
 7 
 
 20.3 
 
 19.6 
 
 59 
 
 20 140 
 
 167 
 
 194 
 
 222 
 
 249 
 
 276 
 
 303 
 
 330 
 
 358 
 
 385 
 
 8 
 
 
 
 23.2 
 
 22.4 
 
 OK 
 
 160 
 
 412 
 
 439 
 
 466 
 
 493 
 
 520 
 
 548 
 
 575 
 
 602 
 
 629 
 
 656 
 
 <J 
 
 * 
 
 <iJ , t 
 
 61 
 
 68 3 
 
 710 
 
 * 737 
 
 763 
 
 * 79 
 
 817 
 
 844 
 
 871 
 
 898 
 
 925 
 
 
 27 
 
 20 
 
 62 
 
 952 
 
 978 
 
 
 *O32 
 
 
 *o85 
 
 *II2 
 
 *I39 
 
 *i65 
 
 +192 
 
 1 
 
 o 7 
 
 9 ft 
 
 63 
 
 21 219 
 
 245 
 
 272 
 
 299 
 
 325 
 
 352 
 
 378 
 
 405 
 
 43i 
 
 458 
 
 J. 
 
 2 
 
 & . f 
 5.4 
 
 4. V 
 
 5.2 
 
 64 
 
 484 
 
 5" 
 
 537 
 
 564 
 
 590 
 
 617 
 
 643 
 
 669 
 
 696 
 
 722 
 
 3 
 
 8.1 
 
 7.8 
 
 65. 
 
 748 
 
 775 
 
 80 1 
 
 827 
 
 854 
 
 880 
 
 9 06 
 
 932 
 
 958 
 
 985 
 
 4 
 
 10.8 
 
 10.4 
 
 66' 
 
 22 Oil 
 
 037 
 
 063 
 
 089 
 
 115 
 
 141 
 
 167 
 
 194 
 
 220 
 
 246 
 
 5 
 
 13.5 
 
 13.0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Ifi 9 
 
 1C 
 
 67 
 68 
 69 
 
 272 
 531 
 
 , 789 
 
 298 
 
 557 
 814 
 
 324 
 583 
 840 
 
 350 
 608 
 866 
 
 376 
 634 
 891 
 
 401 
 660 
 917 
 
 427 
 
 686 
 943 
 
 453 
 712 
 968 
 
 479 
 737 
 994 
 
 7*3 
 
 7 
 8 
 9 
 
 ID . 
 
 18.9 
 21.6 
 24.3 
 
 10 . o 
 18.2 
 20.8 
 23.4 
 
 170 
 
 23 045 
 
 070 
 
 096 
 
 121 
 
 147 
 
 172 
 
 198 
 
 223 
 
 249 
 
 274 
 
 
 
 
 71 
 
 300 
 
 325 
 
 350 
 
 376 
 
 401 
 
 426 
 
 452 
 
 477 
 
 502 
 
 528 
 
 25 
 
 72 
 
 553 
 
 
 603 
 
 629 
 
 654 
 
 679 
 
 704 
 
 729 
 
 754 
 
 779 
 
 1 2.5 
 
 73 
 
 805 
 
 830 
 
 855 
 
 880 
 
 905 
 
 930 
 
 955 
 
 980 
 
 *<x>5 
 
 *030 
 
 2 5.0 
 
 74 
 
 24 055 
 
 080 
 
 105 
 
 130 
 
 155 
 
 180 
 
 204 
 
 229 
 
 254 
 
 279 
 
 3 7.5 
 
 75 
 
 304 
 
 329 
 
 353 
 
 378 
 
 403 
 
 428 
 
 452 
 
 477 
 
 502 
 
 527 
 
 4 10.0 
 
 76 
 
 
 576 
 
 601 
 
 625 
 
 650 
 
 674 
 
 699 
 
 724 
 
 748 
 
 773 
 
 5 12.5 
 
 77 
 
 797 
 
 822 
 
 846 
 
 871 
 
 895 
 
 920 
 
 944 
 
 969 
 
 993 
 
 *oi8 
 
 6 15.0 
 7 17.5 
 
 78 
 
 25 042 
 
 066 
 
 091 
 
 115 
 
 139 
 
 164 
 
 1 88 
 
 212 
 
 237 
 
 261 
 
 8 20.0 
 
 79 
 
 285 
 
 310 
 
 334 
 
 358 
 
 382 
 
 406 
 
 431 
 
 455 
 
 479 
 
 503 
 
 
 180 
 
 527 
 
 551 
 
 573 
 
 600 
 
 624 
 
 648 
 
 672 
 
 696 
 
 720 
 
 744 
 
 
 81 
 
 768 
 
 792 
 
 816 
 
 840 
 
 864 
 
 888 
 
 912 
 
 935 
 
 959 
 
 983 
 
 
 34 
 
 H 
 
 82 
 
 26 007 
 
 031 
 
 055 
 
 079 
 
 102 
 
 126 
 
 150 
 
 174 
 
 198 
 
 221 
 
 1 
 
 2.4 
 
 2.3 
 
 83 
 
 245 
 
 269 
 
 293 
 
 3 I6 
 
 340 
 
 364 
 
 387 
 
 411 
 
 435 
 
 458 
 
 2 
 
 4.8 
 
 4.6 
 
 84 
 
 482 
 
 55 
 
 529 
 
 553 
 
 576 
 
 600 
 
 623 
 
 647 
 
 670 
 
 694 
 
 3 
 
 7.2 
 
 6.9 
 
 85 
 
 717 
 
 
 764 
 
 788 
 
 8n 
 
 834 
 
 858 
 
 881 
 
 905 
 
 928 
 
 4 
 
 9.G 
 
 9.2 
 
 86 
 
 951 
 
 975 
 
 998 
 
 *02I 
 
 *045 
 
 *o68 
 
 "091 
 
 "114 
 
 *i 3 8 
 
 *i6i 
 
 5 
 6 
 
 12.0 
 14.4 
 
 11.5 
 13.8 
 
 87 
 
 27 184 
 
 207 
 
 231 
 
 254 
 
 277 
 
 300 
 
 323 
 
 346 
 
 370 
 
 393 
 
 7 
 
 16.8 
 
 16.1 
 
 88 
 89 
 
 416 
 646 
 
 439 
 669 
 
 g 
 
 485 
 715 
 
 508 
 738 
 
 531 
 761 
 
 554 
 
 784 
 
 577 
 807 
 
 600 
 830 
 
 623 
 852 
 
 8 
 9 
 
 19.2 
 21.6 
 
 18.4 
 20.7 
 
 190 
 
 875 
 
 898 
 
 921 
 
 944 
 
 967 
 
 989 
 
 *OI2 
 
 *Q35 
 
 *os8 
 
 *o8i 
 
 
 99 
 
 91 
 
 91 
 
 28 103 
 
 126 
 
 149 
 
 171 
 
 194 
 
 217 
 
 240 
 
 262 
 
 285 
 
 307 
 
 
 mm 
 
 21 
 
 92 
 
 330 
 
 353 
 
 
 398 
 
 421 
 
 443 
 
 466 
 
 488 
 
 
 533 
 
 1 
 
 2.2 
 
 2.1 
 
 93 
 
 556 
 
 578 
 
 601 
 
 623 
 
 646 
 
 668 
 
 691 
 
 713 
 
 735 
 
 758 
 
 2 
 
 4.4 
 
 4.2 i 
 
 94 
 
 780 
 
 803 
 
 825 
 
 847 
 
 870 
 
 892 
 
 914 
 
 937 
 
 959 
 
 981 
 
 3 
 
 4 
 
 6.6 
 
 80 
 
 6.3 
 
 Q 4 , 
 
 95 
 96 
 
 29 003 
 
 226 
 
 026 
 
 248 
 
 048 
 270 
 
 070 
 292 
 
 092 
 
 336 
 
 137 
 358 
 
 58 
 
 ill 
 
 403 
 
 203 
 
 425 
 
 rr 
 
 5 
 6 
 
 * O 
 
 11.0 
 13.2 
 
 O . rr 
 
 10.5 
 12.6 
 
 97 
 
 447 
 
 469 
 
 491 
 
 513 
 
 535 
 
 557 
 
 579 
 
 601 
 
 623 
 
 645 
 
 7 
 
 15.4 
 
 14.7 
 
 98 
 
 667 
 
 688 
 
 710 
 
 732 
 
 754 
 
 776 
 
 798 
 
 820 
 
 842 
 
 863 
 
 8 
 
 17.6 
 
 16.3 
 
 99 
 
 885 
 
 907 
 
 929 
 
 951 
 
 973 
 
 994 
 
 *oi6 
 
 *o 3 8 
 
 *o6o *o8i 
 
 9 
 
 19.818.9 
 
 200 
 
 30 103 
 
 125 
 
 146 
 
 168 
 
 190 
 
 211 
 
 233 
 
 255 
 
 276 298 
 
 
 N. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 1 9 
 
 Prop. Pts. 
 
TABLE I. 
 
 N. 
 
 O 
 
 1 
 
 9 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 O 
 
 Prop. 
 
 Pts. 1 
 
 200 
 
 01 
 
 02 
 03 
 
 04 
 05 
 06 
 
 07 
 
 08 
 09 
 
 210 
 
 11 
 12 
 13 
 
 14 
 15 
 16 
 
 17 
 >18 
 19 
 
 220 
 
 21 
 22 
 23 
 
 24 
 25 
 26 
 
 27 
 
 28 
 29 
 
 280 
 
 31 
 32 
 33 
 
 34 
 35 
 
 36 
 
 37 
 
 38 
 39 
 
 240 
 
 41 
 42 
 43 
 
 44 
 45 
 46 
 
 47 
 
 48 
 49 
 
 250 
 
 MM 
 
 N. 
 
 30 103 
 
 123 
 
 146 
 
 168 
 
 190 
 
 211 
 
 233 
 
 255 
 
 276 
 
 298 
 
 2 
 
 1 2 
 
 2 4 
 3 6 
 4 8 
 511 
 613 
 7 15 
 817 
 9 19 
 
 1 
 
 2 
 3 
 
 4 
 5 
 6 
 7 
 8 
 9 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 1 
 
 2 
 3 
 
 4 
 5 
 6 
 7 
 8 
 9 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 ~Pr 
 
 2 21 
 
 .2 2.1 
 
 .4 4.2 
 .6 6.3 
 .8 8.4 
 .0 10.5 
 .2 12.6 
 .4 14.7 
 ..6 16.8 
 .818.9 
 
 20 
 
 2.0 
 
 4.0 
 6.0 
 8.0 
 10.0 
 12.0 
 14.0 
 16.0 
 18.0 
 
 19 
 
 1.9 
 3.8 
 5.7 
 7.6 
 9.5 
 11.4 
 13.3 
 15.2 
 17.1 
 
 18 
 
 1.8 
 3.6 
 
 5.4 
 7.2 
 9.0 
 10.8 
 12.6 
 14.4 
 16.2 
 
 17 
 
 1.7 
 3.4 
 5.1 
 
 6.8 
 8.5 
 10.2 
 11.9 
 13.6 
 15.3 
 
 mmm*mwiBmmmmv 
 
 op. Pts. 
 
 320 
 
 535 
 750 
 
 963 
 3i 175 
 
 387 
 
 597 
 32 015 
 
 34i 
 
 557 
 771 
 
 984 
 197 
 408 
 
 618 
 
 827 
 035 
 
 363 
 578 
 
 792 
 
 *oo6 
 218 
 429 
 
 sis 
 
 040 
 056 
 
 & 
 
 814 
 
 *027 
 
 239 
 
 450 
 660 
 
 869 
 
 077 
 
 406 
 621 
 835 
 *048 
 260 
 471 
 681 
 890 
 098 
 
 428 
 
 643 
 8 5 6 
 
 *o6 9 
 281 
 492 
 
 702 
 
 9ii 
 118 
 
 449 
 664 
 878 
 
 *09i 
 302 
 513 
 
 723 
 93i 
 139 
 
 471 
 685 
 
 899 
 
 *II2 
 323 
 
 534 
 
 744 
 952 
 1 60 
 
 492 
 707 
 920 
 
 *I33 
 345 
 555 
 
 765 
 
 973 
 181 
 
 5H 
 728 
 942 
 
 *I54 
 366 
 576 
 
 785 
 994 
 20 1 
 
 222 
 
 243 
 
 263 
 
 284 
 
 305 
 
 325 
 
 346 
 
 366 
 
 387 
 
 408 
 
 428 
 
 634 
 838 
 
 33 041 
 
 244 
 
 445 
 646 
 846 
 34 044 
 
 449 
 654 
 858 
 
 062 
 264 
 465 
 
 666 
 866 
 064 
 
 469 
 
 6/5 
 879 
 
 082 
 284 
 486 
 
 686 
 885 
 084 
 
 490 
 
 695 
 899 
 
 102 
 
 304 
 5 06 
 
 7 06 
 90S 
 104 
 
 510 
 
 715 
 919 
 
 122 
 
 325 
 526 
 
 726 
 
 925 
 
 124 
 
 53i 
 736 
 940 
 
 H3 
 345 
 546 
 
 746 
 945 
 U3 
 
 552 
 756 
 960 
 
 163 
 
 3 S 
 566 
 
 766 
 965 
 163 
 
 572 
 
 777 
 980 
 
 183 
 
 385 
 586 
 
 786 
 985 
 183 
 
 593 
 797 
 
 *OOI 
 
 203 
 405 
 606 
 
 806 
 *oo5 
 203 
 
 613 
 818 
 
 *02I 
 
 224 
 425 
 626 
 
 826 
 
 *O25 
 
 223 
 
 242 
 
 262 
 
 282 
 
 301 
 
 321 
 
 34i 
 
 361 
 
 380 
 
 400 
 
 420 
 
 439 
 635 
 830 
 
 35 025 
 
 218 
 411 
 
 603 
 793 
 984 
 
 459 
 655 
 850 
 
 044 
 238 
 430 
 622 
 
 813 
 *oc>3 
 
 479 
 674 
 869 
 
 064 
 257 
 449 
 641 
 832 
 
 *02I 
 
 498 
 
 083 
 2 7 6 
 468 
 
 660 
 * 85 ' 
 
 *O4O 
 
 5 l8 
 
 713 
 908 
 
 I O2 
 
 679 
 870 
 
 *059 
 
 537 
 733 
 928 
 
 122 
 
 315 
 507 
 
 698 
 
 889 
 
 *078 
 
 557 
 753 
 947 
 
 141 
 334 
 526 
 
 717 
 
 908 
 *097 
 
 577 
 772 
 
 967 
 160 
 353 
 545 
 
 736 
 927 
 *u6 
 
 596 
 792 
 986 
 
 1 80 
 372 
 564 
 
 755 
 946 
 *i35 
 
 616 
 
 Su 
 *oo5 
 
 199 
 
 392 
 583 
 
 774 
 965 
 *I 5 4 
 
 36 173 
 
 192 
 
 211 
 
 229 
 
 248 
 
 267 
 
 286 
 
 305 
 
 324 
 
 342 
 
 361 
 549 
 736 
 
 922 
 37 107 
 291 
 
 S 
 
 840 
 
 380 
 568 
 754 
 940 
 125 
 310 
 
 493 
 676 
 858 
 
 773 
 
 959 
 
 144 
 
 328 
 
 694 
 876 
 
 418 
 605 
 791 
 
 977 
 162 
 
 346 
 
 530 
 712 
 
 894 
 
 436 
 624 
 810 
 
 996 
 181 
 365 
 548 
 
 73i 
 912 
 
 i 55 
 
 642 
 
 829 
 
 *oi4 
 199 
 383 
 566 
 749 
 93i 
 
 474 
 661 
 847 
 
 *0 33 
 
 218 
 401 
 
 %* 
 767 
 
 949 
 
 493 
 680 
 866 
 
 *o5i 
 236 
 420 
 
 603 
 785 
 967 
 
 511 
 
 *070 
 254 
 438 
 
 621 
 
 803 
 985 
 
 530 
 717 
 
 903 
 *o88 
 273 
 457 
 
 639 
 
 822 
 *oo3 
 
 38 021 
 
 039 
 
 057 
 
 075 
 
 093 
 
 112 
 
 130 
 
 148 
 
 166 
 
 184 
 
 2O2 
 382 
 561 
 
 739 
 917 
 
 39<>94 
 270 
 
 445 
 620 
 
 220 
 
 399 
 578 
 
 757 
 934 
 in 
 
 287 
 463 
 637 
 
 238 
 417 
 596 
 
 775 
 952 
 129 
 
 305 
 480 
 
 655 
 
 256 
 
 I 35 
 614 
 
 792 
 970 
 146 
 
 322 
 498 
 672 
 
 274 
 
 453 
 632 
 
 Sio 
 987 
 164 
 
 340 
 
 I 15 
 690 
 
 292 
 
 471 
 650 
 
 828 
 
 *oo5 
 182 
 
 358 
 533 
 707 
 
 310 
 846 
 
 *023 
 
 199 
 
 375 
 550 
 724 
 
 328 
 507 
 686 
 
 863 
 *04i 
 217 
 
 393 
 
 568 
 742 
 
 346 
 525 
 703 
 881 
 *os8 
 235 
 
 410 
 585 
 759 
 
 364 
 543 
 721 
 
 899 
 *076 
 252 
 
 428 
 602 
 
 777 
 
 794 
 
 MMMMBBMHI 
 
 
 
 Sn 
 
 |T 
 
 829 
 2 
 
 846 
 
 ^ : 
 
 3 
 
 863 
 4 
 
 881 
 
 M 
 
 5 
 
 898 
 6 
 
 915 
 
 mammmmm 
 
 7 
 
 933 
 
 8 
 
 950 
 O 
 
LOGARITHMS OF NUMBERS. 
 
 N. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Pr< 
 
 >p. PK 
 
 250 
 
 39 794 
 
 811 
 
 829 
 
 846 
 
 863 
 
 88 1 
 
 898 
 
 915 
 
 933 
 
 950 
 
 MMMMHM 
 
 MBMMMMMM 
 
 51 
 
 967 
 
 985 
 
 *002 
 
 
 
 
 
 
 *io6 
 
 *I2 3 
 
 
 18 
 
 52 
 53 
 
 40 140 
 312 
 
 157 
 329 
 
 I7 I 
 346 
 
 192 
 
 364 
 
 209 
 
 226 
 398 
 
 243 
 415 
 
 261 
 432 
 
 278 
 449 
 
 295 
 466 
 
 1 
 
 2 
 
 1.8 
 3 6 
 
 54 
 
 483 
 
 500 
 
 5 I8 
 
 535 
 
 552 
 
 569 
 
 586 
 
 603 
 
 620 
 
 637 
 
 3 
 
 5.4 
 
 55 
 
 654 
 
 671 
 
 688 
 
 705 
 
 722 
 
 739 
 
 756 
 
 773 
 
 790 
 
 8^7 
 
 4 
 
 7.2 
 
 56 
 
 824 
 
 841 
 
 858 
 
 875 
 
 892 
 
 909 
 
 926 
 
 943 
 
 960 
 
 976 
 
 5 
 
 9.0 
 
 57 
 
 993 
 
 *OIO 
 
 *027 
 
 *044 
 
 *o6i 
 
 * 07 g 
 
 *095 
 
 *m 
 
 *I28 
 
 *i45 
 
 6 
 
 10.8 
 
 58 
 
 m 
 41 162 
 
 179 
 
 196 
 
 212 
 
 229 
 
 246 
 
 263 
 
 280 
 
 296 
 
 3^3 
 
 7 
 
 12.6 
 
 59 
 
 330 
 
 347 
 
 363 
 
 380 
 
 397 
 
 414 
 
 430 
 
 447 
 
 464 
 
 481 
 
 8 
 
 14.4 
 
 260 
 
 497 
 
 5H 
 
 53 1 
 
 547 
 
 564 
 
 581 
 
 597 
 
 614 
 
 631 
 
 647 
 
 
 ' 
 
 61 
 
 664 
 
 68 1 
 
 697 
 
 7H 
 
 731 
 
 747 
 
 764 
 
 780 
 
 797 
 
 814 
 
 
 17 
 
 62 
 
 830 
 
 847 
 
 863 
 
 880 
 
 896 
 
 913 
 
 * 92 2 
 
 946 
 
 963 
 
 979 
 
 i 
 
 1 7 
 
 63 
 
 996 
 
 *OI2 
 
 *029 
 
 *045 
 
 *062 
 
 *o 7 8 
 
 
 *m 
 
 "127 
 
 *I44 
 
 J. 
 
 2 
 
 -l.i 
 
 3.4 
 
 64 
 65 
 
 42 160 
 325 
 
 177 
 341 
 
 193 
 357 
 
 210 
 
 374 
 
 226 
 390 
 
 406 
 
 259 
 423 
 
 275 
 439 
 
 292 
 455 
 
 308 
 
 472 
 
 3 
 
 4 
 
 5.1 
 6.8 
 
 66 
 
 488 
 
 504 
 
 521 
 
 537 
 
 553 
 
 570 
 
 586 
 
 602 
 
 619 
 
 635 
 
 5 
 
 8.5 
 
 67 
 
 651 
 
 66 7 
 
 684 
 
 700 
 
 716 
 
 732 
 
 749 
 
 765 
 
 781 
 
 797 
 
 6 
 
 7 
 
 10.2 
 
 UQ 
 
 68 
 
 8i3 
 
 830 
 
 846 
 
 862 
 
 878 
 
 * 894 
 
 * 9 " 
 
 927 
 
 * 943 
 
 959 
 
 t 
 
 . y 
 
 1 Q ft 
 
 69 
 
 975 
 
 991 
 
 *oo8 
 
 *034 
 
 *040 
 
 
 
 *o88 
 
 
 *I20 
 
 9 
 
 lo . O 
 
 15.3 
 
 270 
 
 43 136 
 
 152 
 
 169 
 
 185 
 
 201 
 
 217 
 
 233 
 
 249 
 
 265 
 
 281 
 
 
 
 71 
 
 297 
 
 313 
 
 329 
 
 345 
 
 361 
 
 377 
 
 393 
 
 409 
 
 425 
 
 441 
 
 
 16 
 
 72 
 
 457 
 
 473 
 
 489 
 
 505 
 
 521 
 
 537 
 
 553 
 
 569 
 
 584 
 
 600 
 
 1 
 
 1.8 
 
 73 
 
 616 
 
 632 
 
 648 
 
 664 
 
 680 
 
 696 
 
 712 
 
 727 
 
 743 
 
 759 
 
 2 
 
 
 74 
 
 775 
 
 791 
 
 807 
 
 823 
 
 838 
 
 854 
 
 870 
 
 886 
 
 902 
 
 * 9 ' 7 
 
 3 
 
 4^8 
 
 75 
 
 933 
 
 949 
 
 965 
 
 981 
 
 996 
 
 *OI2 
 
 *028 
 
 *44 
 
 *o 59 
 
 
 4 
 
 6.4 
 
 76 
 
 44091 
 
 107 
 
 122 
 
 138 
 
 154 
 
 170 
 
 185 
 
 20 1 
 
 217 
 
 232 
 
 5 
 
 Q 
 
 8.0 
 (i 
 
 77 
 
 248 
 
 264 
 
 279 
 
 295 
 
 3" 
 
 326 
 
 342 
 
 358 
 
 373 
 
 389 
 
 7 
 
 / vl 
 
 11.2 
 
 78 
 79 
 
 404 
 560 
 
 420 
 576 
 
 436 
 592 
 
 45i 
 607 
 
 467 
 623 
 
 483 
 638 
 
 498 
 654 
 
 669 
 
 S2Q 
 685 
 
 545 
 700 
 
 8 
 9 
 
 12.8 
 14.4 
 
 280 
 
 716 
 
 73 i 
 
 747 
 
 762 
 
 778 
 
 793 
 
 809 
 
 824 
 
 840 
 
 855 
 
 
 
 81 
 
 871 
 
 886 
 
 902 
 
 917 
 
 932 
 
 948 
 
 963 
 
 979 
 
 994 
 
 *OIO 
 
 
 15 
 
 82 
 
 45 025 
 
 040 
 
 056 
 
 071 
 
 086 
 
 1 02 
 
 117 
 
 133 
 
 148 
 
 163 
 
 1 
 
 1.5 
 
 83 
 
 179 
 
 194 
 
 209 
 
 225 
 
 240 
 
 255 
 
 271 
 
 286 
 
 301 
 
 317 
 
 2 
 
 3.0 
 
 84 
 
 332 
 
 347 
 
 362 
 
 378 
 
 393 
 
 408 
 
 423 
 
 439 
 
 454 
 
 469 
 
 3 
 
 4" 
 
 4.5 
 6f\ 
 
 85 
 
 484 
 
 500 
 
 515 
 
 530 
 
 545 
 
 561 
 
 576 
 
 
 606 
 
 621 
 
 
 
 .0 
 7e 
 
 86 
 
 637 
 
 652 
 
 667 
 
 682 
 
 697 
 
 712 
 
 728 
 
 743 
 
 758 
 
 773 
 
 6 
 
 .5 
 9.0 
 
 87 
 
 788 
 
 803 
 
 818 
 
 834 
 
 849 
 
 864 
 
 879 
 
 894 
 
 909 
 
 924 
 
 7 
 
 10.5 
 
 88 
 
 939 
 
 954 
 
 969 
 
 984 
 
 *000 
 
 *oi5 
 
 *O3O 
 
 *45 
 
 *o6o 
 
 "075 
 
 8 
 
 12.0 
 
 89 
 
 46 090 
 
 105 
 
 1 20 
 
 135 
 
 150 
 
 165 
 
 1 80 
 
 195 
 
 210 
 
 225 
 
 9 
 
 13.5 
 
 200 
 
 240 
 
 255 
 
 270 
 
 285 
 
 300 
 
 315 
 
 330 
 
 345 
 
 359 
 
 374 
 
 
 
 91 
 
 389 
 
 404 
 
 419 
 
 434 
 
 449 
 
 464 
 
 479 
 
 494 
 
 509 
 
 5 2 3 
 
 
 14 
 
 92 
 93 
 
 g 
 
 553 
 702 
 
 568 
 716 
 
 583 
 
 746 
 
 613 
 761 
 
 627 
 776 
 
 642 
 790 
 
 657 
 805 
 
 820 
 
 1 
 2 
 
 1.4 
 2.8 
 
 94 
 
 835 
 
 850 
 
 864 
 
 879 
 
 ^894 
 
 * 9 9 
 
 * 923 
 
 * 938 
 
 953 
 
 967 
 
 3 
 
 A 
 
 4.2 
 6 a 
 
 95 
 
 982 
 
 997 
 
 *OI2 
 
 *026 
 
 
 
 
 
 *IOO 
 
 *n 4 
 
 TE 
 
 ft 
 
 U 
 
 7 O 
 
 96 
 
 47 129 
 
 144 
 
 159 
 
 *73 
 
 1 88 
 
 202 
 
 217 
 
 232 
 
 246 
 
 261 
 
 *J 
 
 6 
 
 1 Vf 
 
 8.4 
 
 97 
 
 276 
 
 290 
 
 305 
 
 319 
 
 334 
 
 349 
 
 363 
 
 378 
 
 392 
 
 407 
 
 7 
 
 9.8 
 
 98 
 
 422 
 
 436 
 
 451 
 
 465 
 
 480 
 
 494 
 
 509 
 
 '524 
 
 538 
 
 553 
 
 8 
 
 11.2 
 
 99 
 
 567 
 
 582 
 
 59 6 
 
 6n 
 
 625 
 
 640 
 
 654 
 
 669 
 
 683 
 
 698 
 
 9 
 
 12.6 
 
 800 
 
 712 
 
 727 
 
 741 
 
 756 
 
 770 
 
 784 
 
 799 
 
 813 
 
 828 
 
 842 
 
 
 
 N. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Pr 
 
 p. Pts. 
 
TABLE I. " 
 
 N. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 
 
 Prop. Pts. 
 
 800 
 
 47 712 
 
 727 
 
 741 
 
 756 
 
 770 
 
 784 
 
 799 
 
 813 
 
 828 
 
 842 
 
 
 01 
 
 8 5 7 
 
 871 
 
 885 
 
 900 
 
 914 
 
 929 
 
 943 
 
 958 
 
 972 
 
 986 
 
 
 02 
 
 48 ooi 
 
 015 
 
 029 
 
 044 
 
 058 
 
 073 
 
 087 
 
 101 
 
 116 
 
 130 
 
 
 03 
 
 144 
 
 159 
 
 173 
 
 187 
 
 202 
 
 216 
 
 230 
 
 244 
 
 259 
 
 273 
 
 
 15 
 
 04 
 
 287 
 
 302 
 
 316 
 
 330 
 
 344 
 
 359 
 
 373 
 
 387 
 
 401 
 
 416 
 
 1 
 
 1.5 
 
 05 
 06 
 
 430 
 572 
 
 AAA 
 M r*r 
 
 586 
 
 458 
 601 
 
 6if 
 
 487 
 629 
 
 643 
 
 515 
 657 
 
 530 
 671 
 
 in 
 
 558 
 700 
 
 2 
 3 
 
 3.0 
 4.5 
 
 07 
 
 714 
 
 728 
 
 742 
 
 756 
 
 770 
 
 78J 
 
 799 
 
 813 
 
 827 
 
 841 
 
 4 
 
 6.0 
 
 08 
 
 855 
 
 869 
 
 883 
 
 J*& 
 
 911 
 
 926 
 
 940 
 
 954 
 
 968 
 
 982 
 
 5 
 
 7.5 
 
 09 
 
 996 
 
 *OIO 
 
 *O24 
 
 
 
 *o66 
 
 *o8o 
 
 
 *io8 
 
 *I22 
 
 6 
 
 7" 
 
 9.0 
 
 1ft K 
 
 810 
 
 49 136 
 
 150 
 
 164 
 
 178 
 
 192 
 
 206 
 
 220 
 
 234 
 
 248 
 
 262 
 
 8 
 
 1U.O 
 
 12.0 
 
 11 
 
 276 
 
 290 
 
 304 
 
 318 
 
 332 
 
 346 
 
 360 
 
 374 
 
 388 
 
 402 
 
 9 
 
 13.5 
 
 12 
 13 
 
 554 
 
 429 
 568 
 
 443 
 582 
 
 457 
 596 
 
 471 
 610 
 
 485 
 624 
 
 
 513 
 651 
 
 
 679 
 
 
 14 
 
 693 
 
 707 
 
 721 
 
 734 
 
 748 
 
 762 
 
 776 
 
 790 
 
 803 
 
 8l 7 
 
 
 ' 15 
 
 831 
 
 845 
 
 859 
 
 872 
 
 886 
 
 900 
 
 * 9 * 4 
 
 927 
 
 941 
 
 * 9 " 
 
 
 14 
 
 16 
 
 969 
 
 982 
 
 996 
 
 *OIO 
 
 *024 
 
 "037 
 
 
 "065 
 
 
 
 1 
 
 1.4 
 
 17 
 
 50 106 
 
 120 
 
 133 
 
 H7 
 
 161 
 
 174 
 
 1 88 
 
 202 
 
 215 
 
 229 
 
 2 
 
 2.8 
 
 18 
 
 243 
 
 2 5 6 
 
 270 
 
 284 
 
 297 
 
 
 325 
 
 338 
 
 352 
 
 365 
 
 3 
 
 4.2 
 
 19 
 
 379 
 
 393 
 
 406 
 
 420 
 
 433 
 
 447 
 
 461 
 
 474 
 
 488 
 
 SOI 
 
 4 
 
 5.6 
 
 7/v 
 
 820 
 
 515 
 
 529 
 
 542 
 
 556 
 
 569 
 
 583 
 
 596 
 
 610 
 
 623 
 
 637 
 
 6 
 
 .0 
 8 4 
 
 21 
 22 
 23 
 
 X 
 
 920 
 
 664 
 799 
 934 
 
 678 
 813 
 947 
 
 691 
 826 
 961 
 
 70S 
 840 
 
 974 
 
 718 
 987 
 
 732 
 866 
 
 *OOI 
 
 745 
 880 
 
 759 
 893 
 
 *028 
 
 772 
 % 907 
 
 7 
 8 
 9 
 
 9.8 
 11.2 
 12.6 
 
 24 
 
 51 055 
 
 068 
 
 08 1 
 
 095 
 
 1 08 
 
 121 
 
 135 
 
 148 
 
 162 
 
 175 
 
 
 25 
 26 
 
 188 
 322 
 
 202 
 
 335 
 
 348 
 
 228 
 362 
 
 242 
 375 
 
 388 
 
 402 
 
 282 
 415 
 
 2 95 
 
 308 
 441 
 
 
 27 
 
 455 
 
 468 
 
 481 
 
 495 
 
 508 
 
 521 
 
 534 
 
 548 
 
 561 
 
 574 
 
 
 18 
 
 28 
 
 587 
 
 601 
 
 614 
 
 627 
 
 640 
 
 654 
 
 667 
 
 680 
 
 693 
 
 706 
 
 1 
 
 1.3 
 
 29 
 
 720 
 
 733 
 
 746 
 
 759 
 
 772 
 
 7 86 
 
 799 
 
 812 
 
 825 
 
 838 
 
 2 
 
 2.6 
 
 880 
 
 851 
 
 865 
 
 878 
 
 891 
 
 904 
 
 917 
 
 930 
 
 943 
 
 957 
 
 970 
 
 3 
 
 3.9 
 
 31 
 
 983 
 
 996 
 
 "009 
 
 *022 
 
 *Q35 
 
 *048 
 
 *o6i 
 
 *075 
 
 *o88 
 
 *IOI 
 
 4 
 
 5.2 
 
 6K 
 
 32 
 
 52 114 
 
 127 
 
 140 
 
 153 
 
 1 66 
 
 179 
 
 192 
 
 205 
 
 218 
 
 231 
 
 
 O 
 
 7Q 
 
 33 
 
 244 
 
 257 
 
 270 
 
 284 
 
 297 
 
 310 
 
 323 
 
 336 
 
 349 
 
 362 
 
 7 
 
 .0 
 
 9.1 
 
 34 
 
 375 
 
 388 
 
 401 
 
 414 
 
 427 
 
 440 
 
 453 
 
 466 
 
 479 
 
 49* 
 
 8 
 
 10.4 
 
 35 
 36 
 
 504 
 634 
 
 I 17 
 647 
 
 
 543 
 673 
 
 556 
 686 
 
 569 
 699 
 
 582 
 711 
 
 595 
 724 
 
 608 
 737 
 
 621 
 750 
 
 9 
 
 11.7 
 
 37 
 
 763 
 
 776 
 
 789 
 
 802 
 
 815 
 
 827 
 
 840 
 
 853 
 
 866 
 
 * 879 
 
 
 38 
 
 892 
 
 905 
 
 917 
 
 930 
 
 943 
 
 956 
 
 969 
 
 982 
 
 994 
 
 
 
 39 
 
 53 020 
 
 033 
 
 046 
 
 058 
 
 071 
 
 084 
 
 097 
 
 no 
 
 122 
 
 135 
 
 
 12 
 
 840 
 
 148 
 
 161 
 
 173 
 
 1 86 
 
 199 
 
 212 
 
 224 
 
 237 
 
 250 
 
 263 
 
 1 
 
 1.2 
 
 41 
 
 275 
 
 288 
 
 301 
 
 3H 
 
 326 
 
 339 
 
 352 
 
 364 
 
 377 
 
 390 
 
 2 
 
 2.4 
 
 3/> 
 
 42 
 
 403 
 
 415 
 
 428 
 
 441 
 
 
 466 
 
 479 
 
 491 
 
 504 
 
 
 
 .6 
 
 43 
 
 529 
 
 542 
 
 555 
 
 567 
 
 580 
 
 593 
 
 605 
 
 618 
 
 631 
 
 643 
 
 4 
 5 
 
 4.8 
 6 
 
 44 
 45 
 
 656 
 782 
 
 668 
 794 
 
 681 
 807 
 
 694 
 820 
 
 706 
 832 
 
 719 
 845 
 
 732 
 857 
 
 744 
 870 
 
 882 
 
 769 
 895 
 
 6 
 
 7 
 
 7.2 
 8.4 
 
 46 
 
 908 
 
 920 
 
 933 
 
 945 
 
 958 
 
 970 
 
 983 
 
 995 
 
 *oo8 
 
 *020 
 
 8 
 
 9.6 
 
 47 
 
 54033 
 
 045 
 
 058 
 
 070 
 
 083 
 
 095 
 
 108 
 
 120 
 
 133 
 
 145 
 
 9 
 
 10.8 
 
 48 
 
 158 
 
 170 
 
 183 
 
 195 
 
 208 
 
 220 
 
 233 
 
 245 
 
 258 
 
 270 
 
 
 49 
 
 283 
 
 295 
 
 307 
 
 320 
 
 332 
 
 345 
 
 357 
 
 370 
 
 382 
 
 394 
 
 
 850 
 
 407 
 
 419 
 
 432 
 
 444 
 
 456 
 
 469 
 
 481 
 
 4941 
 
 506 
 
 518 
 
 
 N. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 1 8 
 
 9 
 
 Prop. Pts. 
 
LOGARITHMS OF NUMBERS. 
 
 N. 
 
 BMMMMM 
 
 350 
 
 51 
 52 
 53 
 
 54 
 , 55 
 56 
 
 57 
 58 
 59 
 
 360 
 
 61 
 62 
 63 
 
 64 
 65 
 66 
 
 67 
 68 
 69 
 
 370 
 
 71 
 72 
 73 
 
 74 
 75 
 76 
 
 77 
 78 
 79 
 
 880 
 
 81 
 82 
 83 
 
 84 
 85 
 86 
 
 87 
 
 88 
 89 
 
 390 
 
 91 
 
 92 
 93 
 
 94 
 95 
 96 
 
 97 
 98 
 99 
 
 400 
 
 N. 
 
 O 
 
 MHMMMMMMM 
 
 54 407 
 
 lj_ 
 
 419 
 
 2 
 
 432 
 
 3 
 
 444 
 
 4 
 
 456 
 
 5 
 
 469 
 
 6 
 
 481 
 
 7 
 
 494 
 
 8 
 ~ 
 
 9 
 
 ~ 
 
 Prc 
 
 <MMMMKH 
 
 1 
 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 1 
 2 
 3 
 4 
 1 
 6 
 7 
 S 
 1 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 ~Pro 
 
 >p. Pts. 
 
 
 
 13 
 
 1.3 
 2.6 
 3.9 
 5.2 
 6.5 
 7.8 
 9.1 
 10.4 
 11.7 
 
 12 
 
 1.2 
 2.4 
 
 3.6 
 4.8 
 6.0 
 7.2 
 8.4 
 9.6 
 10.8 
 
 11 
 
 1.1 
 2.2 
 3.3 
 4.4 
 5.5 
 6.6 
 7.7 
 8.8 
 9.9 
 
 10 
 
 1.0 
 2.0 
 3.0 
 4.0 
 5.0 
 6.0 
 7.0 
 8.0 
 9.0 
 
 p. Pts. 
 
 53i 
 654 
 
 777 
 900 
 55 023 
 145 
 267 
 388 
 509 
 630 
 
 75i 
 871 
 991 
 
 56 1 10 
 
 467 
 585 
 703 
 
 543 
 667 
 790 
 
 913 
 035 
 157 
 
 279 
 400 
 522 
 
 555 
 679 
 802 
 
 925 
 047 
 169 
 
 291 
 4i3 
 
 534 
 
 568 
 691 
 814 
 
 937 
 060 
 182 
 
 303 
 
 425 
 546 
 
 580 
 704 
 827 
 
 949 
 072 
 194 
 
 315 
 
 437 
 558 
 
 593 
 716 
 
 839 
 962 
 084 
 206 
 
 328 
 
 449 
 570 
 
 605 
 728 
 851 
 
 974 
 096 
 218 
 
 340 
 461 
 582 
 
 617 
 741 
 864 
 
 986 
 1 08 
 230 
 
 352 
 
 473 
 594 
 
 630 
 
 753 
 876 
 
 998 
 
 121 
 
 242 
 
 364 
 485 
 606 
 
 642 
 
 765 
 888 
 
 *OII 
 
 133 
 255 
 
 376 
 497 
 618 
 
 642 
 
 654 
 
 666 
 
 678 
 
 691 
 
 703 
 
 715 
 
 727 
 
 739 
 
 763 
 883 
 *OO3 
 
 122 
 241 
 360 
 
 478 
 
 597 
 7H 
 
 775 
 895 
 *oi5 
 
 134 
 253 
 372 
 
 490 
 608 
 726 
 
 787 
 907 
 
 *027 
 
 146 
 
 265 
 384 
 502 
 
 620 
 
 738 
 
 799 
 919 
 "038 
 
 158 
 
 277 
 396 
 
 5H 
 632 
 750 
 
 811 
 
 93i 
 *o5o 
 
 170 
 289 
 
 407 
 
 526 
 
 644 
 761 
 
 823 
 * 9 J 3 
 
 *062 
 
 182 
 301 
 419 
 
 1% 
 
 656 
 
 773 
 
 835 
 955 
 "074 
 
 194 
 312 
 43i 
 
 549 
 667 
 
 785 
 
 847 
 967 
 
 *o86 
 
 205 
 
 324 
 443 
 561 
 679 
 797 
 
 859 
 979 
 *098 
 
 217 
 336 
 453 
 
 573 
 691 
 808 
 
 820 
 
 832 
 
 844 
 
 855 
 
 867 
 
 879 
 
 891 
 
 902 
 
 914 
 
 926 
 
 937 
 57 054 
 171 
 
 287 
 403 
 519 
 
 634 
 
 749 
 864 
 
 978 
 
 9 i? 
 066 
 
 183 
 
 299 
 415 
 530 
 
 646 
 7 6i 
 875 
 
 961 
 078 
 194 
 
 310 
 426 
 542 
 
 657 
 772 
 887 
 
 972 
 089 
 206 
 
 322 
 438 
 553 
 
 669 
 
 784 
 898 
 
 984 
 
 101 
 
 217 
 
 334 
 449 
 565 
 680 
 
 795 
 910 
 
 996 
 
 "3 
 229 
 
 345 
 461 
 
 576 
 
 692 
 807 
 921 
 
 *oo8 
 124 
 241 
 
 357 
 473 
 588 
 
 88 
 933 
 
 *oi9 
 136 
 252 
 
 368 
 
 484 
 600 
 
 715 
 830 
 
 944 
 
 "031 
 148 
 264 
 
 380 
 496 
 61-1 
 
 726 
 841 
 955 
 
 *043 
 
 159 
 276 
 
 392 
 507 
 623 
 
 738 
 8f 
 967 
 
 990 
 
 *OOI 
 
 *OI 3 
 
 *O24 
 
 *Q35 
 
 *047 
 
 "058 
 
 *O7O 
 
 *o8i 
 
 58 092 
 206 
 320 
 
 433 
 546 
 659 
 
 771 
 883 
 995 
 
 104 
 218 
 331 
 
 444 
 557 
 670 
 
 782 
 
 894 
 *oo6 
 
 "5 
 
 229 
 
 343 
 
 456 
 569 
 
 681 
 
 794 
 906 
 
 *OI 7 
 
 127 
 240 
 
 354 
 467 
 
 e 
 
 805 
 917 
 
 *028 
 
 138 
 252 
 
 365, 
 478 
 
 591 
 704 
 
 816 
 928 
 *O4o 
 
 149 
 263 
 
 377 
 
 490 
 602 
 715 
 827 
 
 939 
 *o5i 
 
 161 
 274 
 388 
 
 501 
 614 
 726 
 
 838 
 
 
 172 
 286 
 399 
 512 
 625 
 737 
 850 
 961 
 *073 
 
 184 
 297 
 410 
 
 524 
 636 
 
 749 
 861 
 
 973 
 *o84 
 
 195 
 309 
 422 
 
 I 3 * 
 647 
 
 760 
 
 872 
 984 
 *o 9 s 
 
 59 106 
 
 118 
 
 129 
 
 140 
 
 151 
 
 162 
 
 173 
 
 184 
 
 195 
 
 207 
 
 218 
 329 
 439 
 
 770 
 879 
 
 60 097 
 
 229 
 
 340 
 450 
 
 I 61 
 671 
 
 780 
 890 
 
 240 
 461 
 
 III 
 
 791 
 901 
 
 *OIO 
 
 119 
 
 2 I' 
 362 
 
 472 
 
 a 
 
 802 
 912 
 
 *02I 
 130 
 
 262 
 373 
 483 
 
 594 
 704 
 
 813 
 
 923 
 "032 
 141 
 
 273 
 384 
 494 
 605 
 
 715 
 824 
 
 934 
 "043 
 152 
 
 284 
 
 395 
 506 
 
 616 
 726 
 835 
 
 945 
 *Q54 
 163 
 
 295 
 406 
 
 517 
 627 
 737 
 846 
 
 956 
 *o6ij 
 173 
 
 306 
 
 417 
 528 
 
 638 
 748 
 857 
 
 966 
 "076 
 184 
 
 3i8 
 428 
 
 539 
 649 
 
 759 
 868 
 
 977 
 *o86 
 
 195 
 
 206 
 O 
 
 217 
 
 mfmm^mmmm 
 
 1 
 
 228 
 2 
 
 239 
 
 3 
 
 249 
 4 
 
 260 
 5 
 
 271 
 6 
 
 282 
 7 
 
 293 
 
 8 
 
 304 
 9 
 
TABLE I. 
 
 1 N. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
 400 
 
 60 206 
 
 217 
 
 228 
 
 239 
 
 249 
 
 260 
 
 271 
 
 282 
 
 293 
 
 304 
 
 
 01 
 
 3H 
 
 325 
 
 336 
 
 347 
 
 358 
 
 369 
 
 379 
 
 390 
 
 401 
 
 412 
 
 
 02 
 
 423 
 
 433 
 
 444 
 
 455 
 
 466 
 
 477 
 
 487 
 
 498 
 
 509 
 
 520 
 
 
 03 
 
 531 
 
 541 
 
 552 
 
 563 
 
 574 
 
 584 
 
 595 
 
 606 
 
 617 
 
 627 
 
 
 04 
 
 638 
 
 649 
 
 660 
 
 670 
 
 68 1 
 
 692 
 
 703 
 
 713 
 
 724 
 
 735 
 
 
 05 
 
 746 
 
 756 
 
 767 
 
 778 
 
 788 
 
 799 
 
 810 
 
 821 
 
 83' 842 
 
 
 06 
 
 853 
 
 863 
 
 874 
 
 885 
 
 895 
 
 906 
 
 917 
 
 927 
 
 938 
 
 949 
 
 
 11 
 
 07 
 
 959 
 
 970 
 
 981 
 
 991 
 
 *O02 
 
 "013 
 
 *023 
 
 *034 
 
 *045 
 
 *055 
 
 1 
 
 1.1 
 
 08 
 
 61 066 
 
 077 
 
 087 
 
 098 
 
 I0 9 
 
 119 
 
 130 
 
 140 
 
 151 
 
 162 
 
 2 
 
 2.2 
 
 09 
 
 172 
 
 183 
 
 194 
 
 204 
 
 215 
 
 225 
 
 236 
 
 247 
 
 257 
 
 268 
 
 3 
 
 A 
 
 3.3 
 
 A A 
 
 410 
 
 278 
 
 289 
 
 300 
 
 310 
 
 321 
 
 33i 
 
 342 
 
 352 
 
 363 
 
 374 
 
 I 
 
 5 
 
 tb.4 
 
 5.5 
 
 11 
 
 384 
 
 395 
 
 405 
 
 416 
 
 426 
 
 437 
 
 448 
 
 458 
 
 469 
 
 479 
 
 6 
 
 6.6 
 
 12 
 13 
 
 490 
 595 
 
 500 
 606 
 
 5" 
 616 
 
 SJ 
 
 532 
 637 
 
 542 
 648 
 
 553 
 658 
 
 g 
 
 I 74 
 679 
 
 584 
 690 
 
 7 
 8 
 
 7.7 
 8.8 
 
 14 
 15 
 
 700 
 805 
 
 711 
 815 
 
 721 
 826 
 
 731 
 836 
 
 742 
 847 
 
 752 
 857 
 
 763 
 868 
 
 III 
 
 784 
 888 
 
 794 
 899 
 
 9 
 
 9.9 
 
 16 
 
 909 
 
 920 
 
 930 
 
 941 
 
 951 
 
 962 
 
 972 
 
 982 
 
 993 
 
 *c3 
 
 
 17 
 
 62 014 
 
 024 
 
 034 
 
 045 
 
 055 
 
 066 
 
 076 
 
 086 
 
 097 
 
 107 
 
 
 18 
 
 118 
 
 128 
 
 138 
 
 149 
 
 159 
 
 170 
 
 1 80 
 
 190 
 
 201 
 
 211 
 
 
 19 
 
 221 
 
 232 
 
 242 
 
 252 
 
 263 
 
 273 
 
 284 
 
 294 
 
 304 
 
 315 
 
 
 420 
 
 325 
 
 335 
 
 346 
 
 356 
 
 366 
 
 377 
 
 387 
 
 397 
 
 408 
 
 4 l8 
 
 
 21 
 
 428 
 
 439 
 
 449 
 
 459 
 
 469 
 
 480 
 
 490 
 
 500 
 
 511 
 
 521 
 
 
 IV 
 
 22 
 23 
 
 531 
 634 
 
 542 
 644 
 
 IS 
 
 562 
 665 
 
 572 
 675 
 
 583 
 685 
 
 
 603 
 706 
 
 716 
 
 624 
 726 
 
 1 
 2 
 
 1.0 
 2.0 
 
 24 
 
 737 
 
 747 
 
 757 
 
 767 
 
 778 
 
 788 
 
 798 
 
 808 
 
 818 
 
 829 
 
 3 
 
 3.0 
 
 4 A 
 
 25 
 26 
 
 839 
 941 
 
 849 
 95i 
 
 s? 
 
 870 
 972 
 
 880 
 982 
 
 890 
 992 
 
 900 
 
 *002 
 
 910 
 
 *OI2 
 
 921 
 
 *022 
 
 931 
 *033 
 
 4 
 5 
 6 
 
 .0 
 5.0 
 6.0 
 
 27 
 
 63 043 
 
 053 
 
 063 
 
 073 
 
 083 
 
 094 
 
 IO4 
 
 114 
 
 124 
 
 134 
 
 7 
 
 7.0 
 
 28 
 
 144 
 
 155 
 
 165 
 
 175 
 
 185 
 
 195 
 
 205 
 
 215 
 
 225 
 
 236 
 
 8 
 
 8.0 
 
 29 
 
 246 
 
 256 
 
 266 
 
 276 
 
 286 
 
 296 
 
 306 
 
 317 
 
 327 
 
 337 
 
 9 
 
 9.0 
 
 430 
 
 347 
 
 357 
 
 367 
 
 377 
 
 387 
 
 397 
 
 407 
 
 417 
 
 428 
 
 438 
 
 
 31 
 
 448 
 
 458 
 
 468 
 
 478 
 
 488 
 
 498 
 
 5 08 
 
 5 l8 
 
 528 
 
 538 
 
 
 32 
 
 548 
 
 558 
 
 568 
 
 579 
 
 589 
 
 599 
 
 60 9 
 
 619 
 
 629 
 
 639 
 
 
 33 
 
 649 
 
 659 
 
 669 
 
 679 
 
 689 
 
 699 
 
 709 
 
 719 
 
 729 
 
 739 
 
 
 34 
 
 35 
 
 849 
 
 759 
 859 
 
 769 
 
 869 
 
 779 
 879 
 
 789 
 889 
 
 899 
 
 80 9 
 909 
 
 819 
 919 
 
 829 
 929 
 
 839 
 939 
 
 
 36 
 
 949 
 
 959 
 
 969 
 
 979 
 
 988 
 
 998 
 
 *oo8 
 
 *oi8 
 
 *028 
 
 *o 3 8 
 
 
 9 
 
 37 
 
 64 048 
 
 058 
 
 068 
 
 078 
 
 088 
 
 098 
 
 108 
 
 118 
 
 128 
 
 137 
 
 1 
 
 0.9 
 
 38 
 
 147 
 
 157 
 
 167 
 
 177 
 
 187 
 
 197 
 
 207 
 
 217 
 
 227 
 
 237 
 
 2 
 
 1.8 
 
 39 
 
 246 
 
 256 
 
 266 
 
 276 
 
 286 
 
 296 
 
 306 
 
 316 
 
 326 
 
 335 
 
 3 
 
 2.7 
 
 440 
 
 345 
 
 355 
 
 365 
 
 375 
 
 385 
 
 395 
 
 404 
 
 414 
 
 424 
 
 434 
 
 4 
 
 3.6 
 
 4C 
 
 41 
 
 444 
 
 454 
 
 464 
 
 473 
 
 483 
 
 493 
 
 503 
 
 513 
 
 523 
 
 532 
 
 6 
 
 .0 
 
 5.4 
 
 42 
 
 542 
 
 552 
 
 562 
 
 572 
 
 582 
 
 59i 
 
 601 
 
 611 
 
 621 
 
 631 
 
 7 
 
 ft a 
 
 43 
 
 640 
 
 650 
 
 660 
 
 670 
 
 680 
 
 689 
 
 699 
 
 709 
 
 719 
 
 729 
 
 1 
 
 8 
 
 u %} 
 
 7.2 
 
 44 
 
 738 
 
 748 
 
 758 
 
 768 
 
 777 
 
 787 
 
 797 
 
 807 
 
 816 
 
 826 
 
 9 
 
 8.1 
 
 45 
 
 836 
 
 846 
 
 856 
 
 865 
 
 875 
 
 885 
 
 
 904 
 
 914 
 
 924 
 
 
 46 
 
 933 
 
 943 
 
 953 
 
 963 
 
 972 
 
 982 
 
 992 
 
 *O02 
 
 *OII 
 
 *O2I 
 
 
 47 
 
 65 031 
 
 040 
 
 050 
 
 060 
 
 070 
 
 079 
 
 089 
 
 099 
 
 108 
 
 118 
 
 
 48 
 
 128 
 
 137 
 
 H7 
 
 157 
 
 167 
 
 176 
 
 1 86 
 
 I 9 6 
 
 205 
 
 215 
 
 ^ \ 
 
 49 
 
 225 
 
 234 
 
 244 
 
 254 
 
 263 
 
 273 
 
 283 
 
 292 
 
 302 
 
 312 
 
 
 450 
 
 321 
 
 33i 
 
 341 
 
 350 
 
 360 
 
 369 
 
 379 
 
 389 
 
 398 
 
 408 
 
 
 N. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
LOGARITHMS OF NUMBERS. 
 
 N. 
 
 450 
 
 51 
 52 
 53 
 
 54 
 55 
 56 
 
 57 
 58 
 59 
 
 460 
 
 61 
 62 
 63 
 
 64 
 65 
 66 
 
 67 
 
 68 
 69 
 
 470 
 
 71 
 72 
 73 
 
 74 
 75 
 76 
 
 77 
 78 
 79 
 
 480 
 
 81 
 82 
 83 
 
 84 
 85 
 86 
 
 87 
 88 
 89 
 
 490 
 
 91 
 92 
 93 
 
 94 
 95 
 90 
 
 97 
 93 
 99 
 
 500 
 
 O 
 
 65 321 
 
 1 
 
 2 
 
 MM^M 
 
 341 
 
 3 
 
 350 
 
 4 
 
 5 
 
 ~ 
 
 6 
 
 - 
 
 379 
 
 7 
 
 m*mmm*mmm 
 
 389 
 
 8 
 "398" 
 
 9 
 
 408 
 
 Pro] 
 
 i 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 1 
 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 IMMHHMB 
 
 Pro 
 
 ). PtS. 
 
 MMMi^M 
 
 10 
 
 1.0 
 2.0 
 3.0 
 4.0 
 5.0 
 6.0 
 7.0 
 8.0 
 9.0 
 
 9 
 
 0.9 
 1.8 
 2.7 
 3.6 
 4.5 
 5.4 
 6.3 
 7.2 
 8.1 
 
 8 
 
 0.8 
 1.6 
 2.4 
 3.2 
 4.0 
 4.8 
 5.6 
 6.4 
 7.2 
 
 p. Pts. 
 
 418 
 
 5H 
 610 
 
 706 
 801 
 896 
 
 992 
 66 087 
 181 
 
 276 
 
 370 
 464 
 558 
 652 
 745 
 839 
 
 932 
 67 025 
 117 
 
 427 
 
 523 
 619 
 
 715 
 811 
 906 
 
 *OOI 
 
 096 
 191 
 
 437 
 533 
 629 
 
 725 
 820 
 916 
 
 *OII 
 
 106 
 200 
 
 447 
 543 
 639 
 
 734 
 830 
 
 925 
 
 *O2O 
 2IO 
 
 456 
 
 III 
 
 744 
 839 
 935 
 
 124 
 219 
 
 466 
 562 
 658 
 
 753 
 849 
 944 
 
 134 
 229 
 
 475 
 57i 
 667 
 
 763 
 858 
 
 954 
 238 
 
 485 
 
 |8l 
 677 
 
 772 
 
 868 
 963 
 
 153 
 247 
 
 495 
 686 
 
 782 
 877 
 973 
 *o68 
 162 
 257 
 
 504 
 600 
 696 
 
 792 
 887 
 982 
 
 172 
 
 266 
 
 285 
 
 295 
 
 304 
 
 3 T 4 
 
 323 
 
 332 
 
 342 
 
 35 1 
 
 361 
 
 380 
 474 
 567 
 661 
 
 755 
 848 
 
 941 
 
 034 
 127 
 
 389 
 483 
 577 
 
 671 
 764 
 857 
 950 
 
 043 
 136 
 
 398 
 492 
 5 86 
 
 680 
 
 773 
 867 
 
 960 
 052 
 MS 
 
 408 
 502 
 596 
 
 689 
 
 783 
 876 
 
 969 
 062 
 154 
 
 417 
 
 33 
 
 699 
 792 
 885 
 
 978 
 071 
 164 
 
 427 
 521 
 614 
 
 708 
 801 
 894 
 
 987 
 080 
 173 
 
 43 6 
 530 
 624 
 
 717 
 811 
 904 
 
 997 
 089 
 182 
 
 445 
 539 
 633 
 
 727 
 820 
 
 913 
 *oo6 
 099 
 191 
 
 455 
 549 
 642 
 
 736 
 829 
 922 
 
 20 1 
 
 210 
 
 219 
 
 228 
 
 237 
 
 247 
 
 256 
 
 265 
 
 274 
 
 284 
 
 293 
 
 302 
 
 394 
 486 
 
 H 8 
 669 
 
 761 
 852 
 
 *o 943 
 
 68 034 
 
 3" 
 403 
 495 
 
 587 
 679 
 770 
 
 861 
 952 
 043 
 
 321 
 
 504 
 
 596 
 688 
 779 
 870 
 961 
 052 
 
 330 
 422 
 
 605 
 
 788 
 
 879 
 970 
 06 1 
 
 339 
 
 523 
 614 
 706 
 797 
 888 
 
 979 
 070 
 
 348 
 440 
 532 
 624 
 
 897 
 988 
 079 
 
 357 
 449 
 541 
 
 633 
 724 
 
 906 
 
 997 
 088 
 
 367 
 459 
 550 
 642 
 
 733 
 825 
 
 916 
 *oo6 
 097 
 
 376 
 468 
 560 
 
 651 
 742 
 834 
 
 925 
 *oi5 
 106 
 
 385 
 477 
 569 
 
 660 
 
 752 
 843 
 
 934 
 "024 
 
 124 
 
 133 
 
 142 
 
 I 5 I 
 
 160 
 
 169 
 
 178 
 
 187 
 
 196 
 
 205 
 
 215 
 305 
 395 
 
 485 
 574 
 664 
 
 753 
 842 
 
 224 
 
 3H 
 404 
 
 494 
 583 
 673 
 
 762 
 851 
 940 
 
 233 
 323 
 413 
 502 
 592 
 68 1 
 
 771 
 860 
 949 
 
 242 
 332 
 422 
 
 601 
 690 
 
 780 
 869 
 958 
 
 251 
 
 431 
 520 
 610 
 699 
 
 789 
 878 
 966 
 
 260 
 350 
 440 
 
 529 
 619 
 708 
 
 975 
 
 269 
 359 
 449 
 
 538 
 628 
 717 
 
 806 
 895 
 984 
 
 278 
 368 
 458 
 
 547 
 637 
 726 
 
 815 
 
 904 
 
 993 
 
 287 
 377 
 467 
 
 S A 
 646 
 
 735 
 824 
 913 
 
 *OO2 
 
 $ 
 
 st 
 
 744 
 
 833 
 922 
 
 *OII 
 
 69 020 
 
 028 
 
 037 
 
 046 
 
 055 
 
 064 
 
 073 
 
 082 
 
 090 
 
 099 
 
 108 
 197 
 285 
 
 3 P 
 461 
 
 548 
 636 
 
 810 
 897 
 
 ^^ MHHHMHBBBMC 
 
 O 
 
 117 
 
 205 
 294 
 
 469 
 557 
 644 
 732 
 819 
 
 126 
 214 
 302 
 
 390 
 478 
 566 
 
 653 
 740 
 827 
 
 135 
 223 
 
 399 
 487 
 574 
 662 
 
 749 
 836 
 
 144 
 232 
 320 
 
 408 
 496 
 583 
 671 
 758 
 845 
 
 152 
 241 
 329 
 
 417 
 504 
 
 592 
 679 
 767 
 854 
 
 161 
 249 
 338 
 425 
 
 513 
 601 
 
 688 
 
 & 
 
 170 
 2 58 
 346 
 
 434 
 522 
 609 
 
 6 97 
 784 
 871 
 
 179 
 267 
 
 355 
 
 443 
 
 705 
 
 793 
 880 
 
 1 88 
 276 
 364 
 
 452 
 539 
 627 
 
 7H 
 801 
 888 
 
 906 
 
 914 
 
 923 
 3 
 
 932 
 4 
 
 940 
 5 
 
 949 
 6 
 
 958 
 7 
 
 966 
 
 975 
 
 N. 
 
 1 
 
 2 
 
 8 
 
 9 
 
10 
 
 TABLE I. 
 
 N. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
 500 
 
 01 
 02 
 03 
 
 04 
 05 
 06 
 
 07 
 
 08 
 09 
 
 510 
 
 11 
 12 
 13 
 
 14 
 15 
 16 
 
 17 
 18 
 19 
 
 520 
 
 21 
 22 
 23 
 
 24 
 25 
 26 
 
 27 
 
 28 
 29 
 
 580 
 
 31 
 32 
 33 
 
 34 
 35 
 36 
 
 37 
 38 
 39 
 
 540 
 
 41 
 42 
 43 
 
 44 
 45 
 46 
 
 47 
 
 48 
 49 
 
 550 
 N. 
 
 69897 
 
 984 
 70 070 
 
 157 
 
 243 
 329 
 415 
 501 
 586 
 672 
 
 906 
 
 914 
 
 923 
 
 932 
 
 940 
 
 949 
 
 958 
 
 966 
 
 975 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 ^M^BM^ 
 
 Pro 
 
 9 
 
 0.9 
 1.8 
 2.7 
 3.6 
 4.5 
 5.4 
 6.3 
 7.2 
 8.1 
 
 8 
 
 0.8 
 1.6 
 2.4 
 3.2 
 4.0 
 4.8 
 5.6 
 6.4 
 7.2 
 
 7 
 
 0.7 
 1.4 
 2.1 
 2.8 
 3.5 
 4.2 
 4.9 
 5.6 
 6 3 
 
 P. Pts. 
 
 992 
 079 
 165 
 
 252 
 338 
 424 
 
 509 
 
 595 
 680 
 
 *OOI 
 
 088 
 174 
 260 
 346 
 432 
 
 li 8 
 603 
 
 689 
 
 *OIO 
 
 096 
 183 
 269 
 
 355 
 
 441 
 
 526 
 612 
 697 
 
 *oi8 
 105 
 191 
 
 278 
 364 
 449 
 
 I 35 
 621 
 
 706 
 
 *02 7 
 114 
 2OO 
 
 286 
 372 
 458 
 
 544 
 629 
 
 7H 
 
 *036 
 
 122 
 .209 
 
 295 
 
 381 
 467 
 
 III 
 
 723 
 
 *044 
 131 
 217 
 
 303 
 389 
 475 
 561 
 646 
 73i 
 
 *Q53 
 140 
 226 
 
 312 
 398 
 484 
 569 
 
 655 
 740 
 
 *062 
 
 148 
 234 
 
 32 1 
 406 
 
 492 
 
 578 
 663 
 
 749 
 
 757 
 842 
 927 
 
 71 012 
 096 
 
 181 
 265 
 
 ( 349 
 433 
 517 
 
 766 
 
 851 
 935 
 
 020 
 
 105 
 189 
 273 
 
 357 
 441 
 
 525 
 
 774 
 
 783 ; 791 
 
 800 
 
 808 
 
 817 
 
 825 
 
 834 
 
 859 
 944 
 029 
 
 113 
 
 366 
 450 
 533 
 
 868 
 952 
 037 
 
 122 
 206 
 290 
 
 374 
 458 
 542 
 
 876 
 961 
 046 
 
 130 
 214 
 
 299 
 
 383 
 466 
 
 550 
 
 885 
 969 
 054 
 
 139 
 
 223 
 
 307 
 
 391 
 475 
 559 
 
 893 
 978 
 06 3 
 
 147 
 231 
 
 315 
 
 399 
 483 
 567 
 
 902 
 986 
 071 
 
 155 
 
 240 
 
 324 
 408 
 492 
 575 
 
 910 
 
 995 
 079 
 
 164 
 248 
 332 
 
 416 
 500 
 584 
 
 919 
 *oo3 
 088 
 
 172 
 257 
 341 
 
 s 
 
 592 
 
 600 
 
 609 
 
 617 
 
 625 
 
 634 
 
 642 
 
 650 
 
 659 
 
 667 
 
 675 
 
 684 
 767 
 850 
 
 933 
 72 016 
 099 
 
 181 
 "^28" 
 
 692 
 
 III 
 
 941 
 024 
 107 
 
 189 
 272 
 354 
 
 700 
 784 
 867 
 
 950 
 032 
 "5 
 
 362 
 
 709 
 792 
 875 
 
 958 
 041 
 123 
 
 206 
 288 
 370 
 
 717 
 800 
 883 
 
 966 
 049 
 132 
 
 214 
 296 
 378 
 
 725 
 809 
 892 
 
 975 
 057 
 140 
 
 222 
 304 
 387 
 
 734 
 817 
 900 
 
 983 
 148 
 
 230 
 313 
 395 
 
 742 
 
 8 
 
 991 
 074 
 156 
 
 239 
 321 
 403 
 
 750 
 
 834 
 917 
 
 163 
 
 247 
 329 
 411 
 
 759 
 842 
 925 
 
 *oo8 
 090 
 173 
 
 255 
 337 
 419 
 
 436 
 
 444 
 
 452 
 
 460 
 
 469 
 
 477 
 
 485 
 
 493 
 
 501 
 
 509 
 59i 
 673 
 
 754 
 835 
 916 
 
 997 
 73 078 
 159 
 
 518 
 
 599 
 681 
 
 762 
 
 843 
 925 
 
 *oo6 
 086 
 167 
 
 526 
 607 
 689 
 
 770 
 852 
 933 
 *oi4 
 094 
 175 
 
 I 3 ! 
 
 616 
 
 697 
 
 779 
 860 
 
 941 
 
 *022 
 102 
 I8 3 
 
 542 
 624 
 705 
 
 787 
 868 
 
 949 
 *03o 
 in 
 191 
 
 1 S 
 632 
 
 713 
 
 795 
 876 
 
 957 
 
 *038 
 119 
 199 
 
 558 
 640 
 722 
 
 803 
 884 
 965 
 
 *046 
 127 
 207 
 
 567 
 648 
 730 
 
 811 
 
 892 
 973 
 *054 
 135 
 215 
 
 575 
 656 
 
 738 
 
 819 
 900 
 981 
 
 *062 
 
 143 
 223 
 
 583 
 665 
 746 
 
 827 
 908 
 989 
 
 *O7O 
 
 151 
 231 
 
 239 
 
 247 
 
 255 
 
 263 
 
 272 
 
 280 
 
 288 
 
 296 
 
 304 
 
 312 
 
 320 
 400 
 480 
 
 560 
 640 
 719 
 
 1% 
 
 957 
 
 74 036 
 
 - 
 
 O 
 
 328 
 408 
 488 
 
 568 
 648 
 727 
 
 807 
 886 
 965 
 
 336 
 416 
 496 
 
 i^ 
 
 656 
 
 735 
 815 
 894 
 973 
 
 344 
 424 
 504 
 
 584 
 664 
 
 743 
 
 823 
 902 
 981 
 
 352 
 432 
 512 
 
 592 
 672 
 
 751 
 830 
 910 
 989 
 
 360 
 440 
 520 
 
 600 
 679 
 759 
 
 838 
 918 
 997 
 
 368 
 448 
 528 
 
 608 
 687 
 767 
 
 846 
 926 
 *oo3 
 
 376 
 456 
 536 
 
 616 
 695 
 775 
 
 854 
 933 
 *oi3 
 
 384 
 
 464 
 
 544 
 624 
 703 
 783 
 862 
 
 * 941 
 
 *O2O 
 
 392 
 472 
 552 
 
 632 
 711 
 791 
 
 870 
 949 
 
 *028 
 
 044 
 
 MMMM 
 
 1 
 
 052 
 2 
 
 060 
 3 
 
 068 
 
 4 
 
 076 
 
 ^MiMB 
 
 5 
 
 084 
 6 
 
 092 
 7 
 
 099 
 
 8 
 
 107 
 
 9 
 
LOGARITHMS OF NUMBERS. 
 
 1 1 
 
 fmmmmv^ 
 
 N. 
 
 550 
 
 5.1 
 52 
 53 
 
 54 
 55 
 56 
 
 57 
 58 
 59 
 
 660 
 
 61 
 
 62 
 63 
 
 64 
 65 
 66 
 
 67 
 68 
 69 
 
 570 
 
 71 
 72 
 73 
 
 74 
 75 
 76 
 
 77 
 78 
 79 
 
 580 
 
 81 
 82 
 83 
 
 84 
 85 
 86 
 
 87 
 
 88 
 89 
 
 590 
 
 91 
 92 
 93 
 
 94 
 95 
 96 
 
 97 
 
 98 
 99 
 
 600 
 
 N. 
 
 mmm^mttmrmm 
 
 
 
 74 036 
 
 
 
 1 
 044 
 
 2 
 
 052 
 
 3 
 
 060 
 
 4 
 
 ^M^^M 
 
 068 
 
 5 
 
 ^^MHMK 
 
 O76 
 
 6 
 
 084 
 
 r 
 
 092 
 
 8 
 099 
 
 9 
 
 107 
 
 Pro] 
 
 ^M^H 
 
 1 
 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 "Pr7 
 
 >.Pte. 
 
 
 
 8 
 
 0.8 
 1.6 
 2.4 
 3.2 
 4.0 
 4.8 
 5.6 
 6.4 
 7.2 
 
 7 
 
 0.7 
 1.4 
 2.1 
 2.8 
 3.5 
 4.2 
 4.9 
 5.6 
 6.3 
 
 p.Pts. 
 
 US 
 194 
 
 273 
 
 351 
 429 
 507 
 
 586 
 663 
 
 74i 
 
 123 
 
 202 
 280 
 
 359 
 437 
 515 
 
 593 
 671 
 749 
 
 131 
 
 210 
 288 
 
 367 
 
 445 
 523 
 601 
 679 
 
 757 
 
 139 
 218 
 296 
 
 374 
 453 
 531 
 609 
 687 
 764 
 
 147 
 225 
 
 304 
 382 
 46l 
 
 539 
 617 
 695 
 772 
 
 155 
 233 
 312 
 
 390 
 468 
 
 547 
 
 624 
 702 
 780 
 
 162 
 241 
 320 
 
 398 
 476 
 
 554 
 
 632 
 710 
 788 
 
 170 
 249 
 327 
 
 406 
 
 484 
 562 
 
 640 
 718 
 796 
 
 178 
 257 
 335 
 414 
 492 
 570 
 
 648 
 726 
 803 
 
 1 86 
 265 
 343 
 
 421 
 500 
 578 
 656 
 
 733 
 
 SH 
 
 819 
 
 827 
 
 834 
 
 842 
 
 850 
 
 858 
 
 865 
 
 873 
 
 881 
 
 889 
 
 896 
 
 974 
 75051 
 
 128 
 205 
 282 
 
 358 
 435 
 5" 
 
 904 
 981 
 059 
 
 136 
 213 
 289 
 
 366 
 442 
 519 
 
 912 
 
 989 
 066 
 
 143 
 
 220 
 
 297 
 
 374 
 450 
 526 
 
 920 
 
 997 
 074 
 
 I5i 
 
 228 
 
 305 
 
 38i 
 458 
 534 
 
 927 
 *ool 
 082 
 
 '59 
 236 
 312 
 
 389 
 465 
 
 542 
 
 935 
 
 *OI2 
 089 
 
 166 
 
 243 
 320 
 
 397 
 473 
 549 
 
 943 
 
 *020 
 
 097 
 
 174 
 
 251 
 
 328 
 
 404 
 481 
 557 
 
 950 
 
 *028 
 
 105 
 
 182 
 
 259 
 
 335 
 412 
 488 
 565 
 
 958 
 *035 
 "3 
 189 
 266 
 343 
 420 
 496 
 572 
 
 966 
 *043 
 
 120 
 
 197 
 274 
 351 
 
 427 
 504 
 580 
 
 587 
 
 595 
 
 603 
 
 610 
 
 618 
 
 626 
 
 633 
 
 641 
 
 648 
 
 656 
 
 664 
 740 
 815 
 
 891 
 967 
 76 042 
 
 118 
 
 193 
 268 
 
 343 
 
 671 
 
 747 
 823 
 
 899 
 
 974 
 050 
 
 125 
 200 
 275 
 
 679 
 755 
 83' 
 906 
 982 
 057 
 
 133 
 208 
 
 283 
 
 686 
 762 
 -838 
 
 914 
 
 989 
 o6J 
 
 140 
 215 
 
 290 
 
 694 
 770 
 846 
 
 921 
 
 997 
 072 
 
 148 
 223 
 298 
 
 702 
 778 
 853 
 
 929 
 *oos 
 080 
 
 155 
 230 
 
 305 
 
 709 
 
 785 
 861 
 
 937 
 
 *OI2 
 087 
 
 163 
 238 
 313 
 
 717 
 
 793 
 868 
 
 944 
 
 *020 
 095 
 
 170 
 
 245 
 320 
 
 724 
 800 
 876 
 
 952 
 
 *O27 
 
 103 
 178 
 
 253 
 328 
 
 732 
 808 
 
 884 
 
 959 
 *<>35 
 no 
 
 ' 
 
 260 
 335 
 
 350 
 
 358 
 
 365 
 
 373 
 
 380 
 
 388 
 
 395 
 
 403 
 
 410 
 486" 
 
 I 59 
 634 
 
 708 
 782 
 856 
 
 930 
 *oo4 
 078 
 
 418 
 492 
 567 
 
 641 
 716 
 790 
 
 77 012 
 
 425 
 500 
 
 574 
 649 
 723 
 797 
 
 871 
 
 945 
 019 
 
 433 
 507 
 582 
 
 656 
 
 730 
 805 
 
 879 
 953 
 026 
 
 440 
 515 
 589 
 664 
 738 
 812 
 
 886 
 960 
 034 
 
 448 
 522 
 
 597 
 671 
 
 745 
 819 
 
 ^ 
 967 
 
 041 
 
 455 
 530 
 604 
 
 678 
 
 753 
 827 
 
 901 
 975 
 
 462 
 
 537 
 612 
 
 686 
 760 
 834 
 908 
 
 982 
 
 056 
 
 470 
 
 545 
 619 
 
 693 
 768 
 842 
 
 916 
 
 989 
 063 
 
 477 
 
 g 
 
 % 
 
 849 
 
 923 
 997 
 070 
 
 085 
 
 093 
 
 IOO 
 
 107 
 
 H5 
 
 122 
 
 129 
 
 137 
 
 144 
 
 151 
 
 & 159- 
 232 
 305 
 
 379 
 452 
 525 
 
 597 
 670 
 
 743 
 
 166 
 240 
 313 
 386 
 459 
 532 
 
 605 
 677 
 750 
 
 173 
 247 
 320 
 
 3 ?I 
 466 
 
 539 
 612 
 685 
 757 
 
 181 
 254 
 327 
 401 
 
 474 
 546 
 
 619 
 692 
 764 
 
 188 
 262 
 335 
 408 
 481 
 554 
 
 627 
 699 
 772 
 
 195 
 269 
 
 342 
 
 415 
 488 
 5 6l 
 
 634 
 706 
 
 779 
 
 203 
 276 
 349 
 422 
 
 495 
 568 
 
 641 
 
 7H 
 786 
 
 210 
 28 3 
 
 357 
 
 430 
 5>3 
 576 
 
 648 
 721 
 793 
 
 217 
 291 
 364 
 
 437 
 5io 
 
 583 
 656 
 728 
 801 
 
 225 
 
 371 
 
 444 
 517 
 590 
 
 663 
 7 8ol 
 
 815 
 
 ^I^HH^^B^B 
 
 
 
 822 
 
 1 
 
 830 
 3 
 
 837 
 3 
 
 844 
 4 
 
 851 
 5 
 
 859 
 6 
 
 866 
 7 
 
 873 
 
 8 
 
 880 
 9 
 
12 
 
 TABLE I. 
 
 N. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Pro] 
 
 E>.Pts. 
 
 600 
 
 77 815 
 
 822 
 
 830 
 
 837 
 
 844 
 
 851 
 
 859 
 
 866 
 
 873 
 
 880 
 
 
 
 01 
 02 
 03 
 
 04 
 05 
 06 
 
 07 
 08 
 09 
 
 887 
 960 
 78 032 
 
 104 
 176 
 247 
 
 319 
 390 
 462 
 
 8 9 5 
 967 
 039 
 in 
 183 
 254 
 
 326 
 398 
 469 
 
 902 
 
 974 
 046 
 
 118 
 190 
 
 262 
 
 333 
 405 
 476 
 
 909 
 981 
 053 
 125 
 197 
 269 
 
 340 
 412 
 
 483 
 
 916 
 988 
 061 
 
 132 
 
 204 
 276 
 
 347 
 419 
 490 
 
 924 
 996 
 068 
 
 140 
 
 211 
 283 
 
 355 
 426 
 
 497 
 
 * 931 
 *oo3 
 
 075 
 
 147 
 219 
 290 
 
 362 
 
 433 
 504 
 
 * 938 
 
 *OIO 
 
 082 
 
 154 
 226 
 297 
 
 369 
 440 
 512 
 
 945 
 *oi7 
 089 
 
 161 
 233 
 305 
 
 376 
 
 447 
 519 
 
 952. 
 
 *025 
 
 097 
 
 1 68 
 240 
 312 
 
 383 
 
 455 
 526 
 
 1 
 2 
 
 3 
 
 8 
 
 0.8 
 1.6 
 2.4 
 
 39 
 
 610 
 
 533 
 
 540 
 
 547 
 
 554 
 
 561 
 
 569 
 
 576 
 
 583 
 
 590 
 
 597 
 
 5 
 
 4.0 
 
 11 
 12 
 13 
 
 14 
 15 
 16 
 
 17 
 
 18 
 19 
 
 604 
 675 
 746 
 
 817 
 888 
 958 
 
 79 029 
 
 099 
 169 
 
 611 
 682 
 753 
 
 824 
 
 895 
 965 
 
 036 
 1 06 
 176 
 
 618 
 689 
 760 
 
 831 
 902 
 
 972 
 
 043 
 H3 
 183 
 
 625 
 696 
 767 
 
 838 
 909 
 
 979 
 050 
 1 20 
 190 
 
 633 
 704 
 
 774 
 
 845 
 916 
 
 986 
 
 057 
 
 127 
 197 
 
 640 
 711 
 78i 
 852 
 923 
 993 
 064 
 
 134 
 204 
 
 647 
 718 
 789 
 
 859 
 930 
 
 *000 
 
 071 
 141 
 
 211 
 
 654 
 725 
 796 
 
 866 
 
 937 
 *oo7 
 
 078 
 148 
 218 
 
 661 
 732 
 803 
 
 873 
 
 * 944 
 *oi4 
 
 085 
 
 155 
 
 225 
 
 668 
 
 739 
 810 
 
 880 
 95i 
 
 *02I 
 
 092 
 162 
 232 
 
 6 
 7 
 8 
 9 
 
 4.8 
 5.6 
 6.4 
 7.2 
 
 620 
 
 239 
 
 246 
 
 253 
 
 260 
 
 267 
 
 274 
 
 28l 
 
 288 
 
 295 
 
 302 
 
 
 
 21 
 22 
 23 
 
 24 
 25 
 26 
 
 27 
 28 
 29 
 
 309 
 379 
 449 
 518 
 588 
 657 
 
 727 
 796 
 865 
 
 316 
 386 
 456 
 
 525 
 595 
 664 
 
 734 
 803 
 872 
 
 323 
 393 
 463 
 
 532 
 602 
 671 
 
 741 
 810 
 
 879 
 
 330 
 400 
 470 
 
 539 
 678 
 
 748 
 817 
 886 
 
 337 
 407 
 
 477 
 
 546 
 616 
 685 
 
 754 
 824 
 
 893 
 
 344 
 414 
 484 
 
 553 
 623 
 692 
 
 761 
 831 
 900 
 
 351 
 
 421 
 491 
 
 S 60^ 
 630 
 699 
 
 768 
 
 837 
 906 
 
 358 
 428 
 
 498 
 567 
 
 637 
 706 
 
 775 
 844 
 
 913 
 
 365 
 435 
 505 
 
 I 74 
 644 
 
 713 
 782 
 851 
 920 
 
 372 
 442 
 5ii 
 
 58i 
 650 
 720 
 
 789 
 858 
 927 
 
 1 
 2 
 3 
 4 
 5 
 C 
 7 
 8 
 9 
 
 7 
 
 0.7 
 1.4 
 2.1 
 2.8 
 3.5 
 4.2 
 4.9 
 5.6 
 6.3 
 
 630 
 
 934 
 
 941 
 
 948 
 
 955 
 
 962 
 
 969 
 
 975 
 
 982 
 
 989 
 
 996 
 
 - 
 
 
 31 
 32 
 33 
 
 34 
 1 35 
 36 
 
 37 
 38 
 39 
 
 80 003 
 072 
 140 
 
 209 
 
 277 
 346 
 
 414 
 482 
 550 
 
 OIO 
 
 079 
 H7 
 
 216 
 
 284 
 353 
 421 
 489 
 557 
 
 017 
 085 
 154 
 
 223 
 291 
 
 359 
 428 
 496 
 
 564 
 
 024 
 092 
 161 
 
 229 
 298 
 366 
 
 434 
 502 
 570 
 
 030 
 099 
 1 68 
 
 236 
 305 
 
 373 
 441 
 509 
 577 
 
 037 
 106 
 
 175 
 
 243 
 
 312 
 380 
 
 448 
 516 
 
 584 
 
 044 
 
 H3 
 182 
 
 250 
 3i8 
 387 
 
 455 
 523 
 59i 
 
 051 
 
 120 
 
 188 
 
 257 
 325 
 
 393 
 462 
 530 
 598 
 
 058 
 127 
 195 
 264 
 332 
 400 
 
 468 
 536 
 604 
 
 065 
 134 
 
 202 
 271 
 
 339 
 407 
 
 475 
 543 
 611 
 
 1 
 2 
 3 
 
 6 
 
 0.6 
 
 1.2 
 1.8 
 
 640 
 
 618 
 
 625 
 
 632 
 
 638 
 
 645 
 
 652 
 
 659 
 
 665 
 
 672 
 
 679 
 
 4 
 
 2.4 
 
 41 
 42 
 43 
 
 44 
 45 
 46 
 
 47 
 
 48 
 49 
 
 686 
 
 754 
 821 
 
 889. 
 956 
 8 1 023 
 
 090 
 158 
 
 224 
 
 693 
 760 
 828 
 
 895 
 963 
 030 
 
 097 
 164 
 231 
 
 699 
 767 
 835 
 902 
 969 
 037 
 104 
 171 
 238 
 
 706 
 
 774 
 841 
 
 909 
 976 
 043 
 in 
 178 
 245 
 
 713 
 
 781 
 848 
 
 916 
 
 983 
 050 
 
 117 
 184 
 251 
 
 720 
 787 
 855 
 922 
 990 
 057 
 
 124 
 191 
 258 
 
 726 
 
 794 
 
 862 
 
 929 
 
 996 
 
 064 
 
 I3J 
 198 
 265 
 
 733 
 801 
 868 
 
 93<3 
 *oo"j 
 070 
 
 137 
 
 204 
 271 
 
 740 
 808 
 875 
 
 * 943 
 
 *OIO 
 
 077 
 144 
 
 211 
 
 2 7 8 
 
 747 
 814 
 882 
 
 949 
 *oi7 
 
 084 
 
 151 
 
 218 
 
 285 
 
 5 
 6 
 7 
 8 
 9 
 
 3.0 
 3.6 
 4.2 
 4.8 
 5.4 
 
 650 
 N. 
 
 291 
 O 
 
 298 
 
 1 
 
 305 
 2 
 
 3ii 
 3 
 
 318 
 4 
 
 325 
 5 
 
 33i 
 6 
 
 338 
 
 KMWMM 
 
 7 
 
 345 
 8 
 
 351 
 9 
 
 Pro 
 
 p Pts. 
 
LOGARITHMS OF NUMBERS. 
 
 N. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
 650 
 
 81 291 
 
 298 
 
 305 
 
 311 
 
 3i8 
 
 325 
 
 33i 
 
 338 
 
 345 
 
 35i 
 
 
 
 51 
 
 358 
 
 365 
 
 371 
 
 378 
 
 385 
 
 391 
 
 398 
 
 405 
 
 411 
 
 418 
 
 
 
 52 
 
 425 
 
 
 438 
 
 445 
 
 
 458 
 
 465 
 
 47i 
 
 478 
 
 485 
 
 
 
 53 
 
 491 
 
 498 
 
 505 
 
 
 5i8 
 
 525 
 
 
 538 
 
 544 
 
 551 
 
 
 
 54 
 55 
 
 558 
 624 
 
 564 
 631 
 
 637 
 
 578 
 644 
 
 584 
 651 
 
 657 
 
 Li 
 
 604 
 671 
 
 611 
 677 
 
 617 
 684 
 
 
 
 56 
 
 690 
 
 697 
 
 704 
 
 710 
 
 717 
 
 723 
 
 730 
 
 737 
 
 743 
 
 750 
 
 
 
 57 
 
 757 
 
 763 
 
 770 
 
 776 
 
 783 
 
 790 
 
 796 
 
 803 809 
 
 816 
 
 
 
 58 
 
 823 
 
 829 
 
 836 
 
 842 
 
 849 
 
 856 
 
 862 
 
 869 
 
 875 
 
 882 
 
 
 
 59 
 
 889 
 
 895 
 
 902 
 
 908 
 
 915 
 
 921 
 
 928 
 
 935 
 
 941 
 
 948 
 
 
 
 660 
 
 954 
 
 961 
 
 968 
 
 974 
 
 981 
 
 987 
 
 994 
 
 *ooo 
 
 *oo7 
 
 *oi4 
 
 
 
 61 
 
 82 020 
 
 027 
 
 033 
 
 040 
 
 046 
 
 053 
 
 060 
 
 066 
 
 073 
 
 079 
 
 
 
 62 
 
 086 
 
 092 
 
 099 
 
 105 
 
 112 
 
 "9 
 
 125 
 
 132 
 
 138 
 
 143 
 
 1 
 
 0.7 
 
 63 
 
 151 
 
 158 
 
 164 
 
 171 
 
 I 7 8 
 
 184 
 
 191 
 
 197 
 
 204 
 
 210 
 
 2 
 
 1.4 
 
 64 
 65 
 
 217 
 282 
 
 223 
 289 
 
 230 
 295 
 
 236 
 302 
 
 308 
 
 249 
 315 
 
 256 
 321 
 
 263 
 328 
 
 269 
 334 
 
 2 7 6 
 341 
 
 3 
 
 4 
 
 2.1 
 2.8 
 
 3e 
 
 66 
 
 347 
 
 354 
 
 36o 
 
 367 
 
 373 
 
 380 
 
 387 
 
 393 
 
 400 
 
 406 
 
 6 
 
 O 
 
 4.2 
 
 67 
 
 413 
 
 419 
 
 426 
 
 432 
 
 439 
 
 445 
 
 452 
 
 458 
 
 465 
 
 471 
 
 7 
 
 4.9 
 
 68 
 
 478 
 
 484 
 
 491 
 
 497 
 
 504 
 
 510 
 
 
 523 
 
 530 
 
 53 6 
 
 8 
 
 5.6 
 
 69 
 
 543 
 
 549 
 
 556 
 
 562 
 
 569 
 
 575 
 
 582 
 
 588 
 
 595 
 
 601 
 
 9 
 
 6.3 
 
 670 
 
 607 
 
 614 
 
 620 
 
 627 
 
 633 
 
 640 
 
 646 
 
 653 
 
 659 
 
 666 
 
 
 
 71 
 
 672 
 
 679 
 
 685 
 
 692 
 
 698 
 
 705 
 
 711 
 
 718 
 
 724 
 
 730 
 
 
 
 72 
 
 73 
 
 737 
 802 
 
 808 
 
 750 
 814 
 
 756 
 821 
 
 763 
 827 
 
 769 
 834 
 
 776 
 840 
 
 782 
 847 
 
 789 
 853 
 
 795 
 860 
 
 
 
 74 
 
 866 
 
 872 
 
 879 
 
 885 
 
 892 
 
 898 
 
 905 
 
 911 
 
 918 
 
 924 
 
 
 
 75 
 
 930 
 
 937 
 
 943 
 
 * 95 
 
 956 
 
 963 
 
 * 969 
 
 975 
 
 982 
 
 988 
 
 
 
 76 
 
 995 
 
 *OOI 
 
 *oo8 
 
 
 *O2O 
 
 *027 
 
 
 
 *046 
 
 "052 
 
 
 
 77 
 
 83 059 
 
 065 
 
 072 
 
 078 
 
 085 
 
 091 
 
 097 
 
 104 
 
 no 
 
 117 
 
 
 
 78 
 
 W 123 
 
 129 
 
 136 
 
 142 
 
 149 
 
 155 
 
 161 
 
 168 
 
 174 
 
 181 
 
 
 
 79 
 
 187 
 
 193 
 
 200 
 
 206 
 
 213 
 
 219 
 
 225 
 
 232 
 
 238 
 
 241 
 
 
 
 680 
 
 251 
 
 257 
 
 264 
 
 270 
 
 2 7 6 
 
 283 
 
 289 
 
 296 
 
 302 
 
 308 
 
 
 
 81 
 
 315 
 
 321 
 
 327 
 
 334 
 
 340 
 
 347 
 
 353 
 
 359 
 
 366 
 
 372 
 
 
 6 
 
 82 
 83 
 
 378 
 442 
 
 448 
 
 391 
 455 
 
 398 
 461 
 
 404 
 467 
 
 410 
 474 
 
 480 
 
 423 
 487 
 
 429 
 493 
 
 436 
 499 
 
 1 
 2 
 
 0.6 
 1.2 
 
 84 
 
 506 
 
 512 
 
 518 
 
 525 
 
 531 
 
 537 
 
 544 
 
 55 
 
 556 
 
 563 
 
 3 
 
 1.8 
 
 2 A 
 
 85 
 86 
 
 569 
 632 
 
 575 
 639 
 
 645 
 
 588 
 651 
 
 594 
 658 
 
 664 
 
 607 
 670 
 
 613 
 677 
 
 620 
 683 
 
 626. 
 689 
 
 5 
 6 
 
 .4 
 3.0 
 3.6 
 
 87 
 
 696 
 
 702 
 
 708 
 
 715 
 
 721 
 
 727 
 
 734 
 
 740 
 
 746 
 
 753 
 
 7 
 
 4.2 
 
 88 
 
 759 
 
 765 
 
 771 
 
 778 
 
 784 
 
 790 
 
 797 
 
 
 809 
 
 816 
 
 8 
 
 4.8 
 
 89 
 
 822 
 
 828 
 
 835 
 
 841 
 
 847 
 
 853 
 
 860 
 
 866 
 
 872 
 
 879 
 
 
 
 5.4 
 
 690 
 
 885 
 
 891 
 
 897 
 
 904 
 
 910 
 
 916 
 
 923 
 
 929 
 
 935 
 
 942 
 
 
 
 91 
 
 948 
 
 954 
 
 960 
 
 967 
 
 973 
 
 979 
 
 985 
 
 992 
 
 998 
 
 *oo4 
 
 
 
 92 
 
 84 on 
 
 017 
 
 023 
 
 029 
 
 036 
 
 042 
 
 048 
 
 055 
 
 061 
 
 067 
 
 
 
 93 
 
 073 
 
 080 
 
 086 
 
 092 
 
 098 
 
 105 
 
 in 
 
 117 
 
 123 
 
 130 
 
 
 
 94 
 95 
 
 136 
 
 142 
 205 
 
 148 
 
 211 
 
 155 
 217 
 
 161 
 223 
 
 167 
 230 
 
 III 
 
 180 
 242 
 
 186 
 248 
 
 192 
 
 251 
 
 
 
 96 
 
 261 
 
 267 
 
 273 
 
 280 
 
 286 
 
 292 
 
 2 9 8 
 
 305 
 
 3" 
 
 317 
 
 
 
 97 
 
 98 
 
 $ 
 
 330 
 392 
 
 336 
 398 
 
 342 
 
 404 
 
 348 
 410 
 
 354 
 417 
 
 3 6i 
 423 
 
 367 
 429 
 
 373 
 
 435 
 
 379 
 
 442 
 
 
 
 99 
 
 448 
 
 454 
 
 460 
 
 466 
 
 473 
 
 479 
 
 485 
 
 491 
 
 497 
 
 504 
 
 
 
 700 
 
 510 
 
 516 
 
 522 
 
 528 
 
 535 
 
 54i 
 
 547 
 
 553 
 
 559 
 
 566 
 
 
 
 N. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
TABLE I. 
 
 N. 
 
 
 
 i 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 
 
 Prop. Pts. 
 
 700 
 
 01 
 1 02 
 03 
 
 1 04 
 05 
 OG 
 
 i 07 
 1 08 
 09 
 
 710 
 
 11 
 12 
 13 
 
 14 
 15 
 16 
 
 17 
 18 
 19 
 
 720 
 
 21 
 22 
 23 
 
 24 
 
 25 
 26 
 
 27 
 28 
 29 
 
 780 
 
 31 
 32 
 33 
 
 34 
 
 35 
 36 
 
 37 
 
 38 
 39 
 
 740 
 
 41 
 42 
 43 
 
 44 
 45 
 46 
 
 47 
 48 
 49 
 
 750 
 N. 
 
 84 510 
 
 516 
 
 522 
 
 528 
 
 535 
 
 541 
 
 547 
 
 553 
 
 559 
 
 566 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 MI^M 
 
 Pro] 
 
 7 
 
 0.7 
 1.4 
 2.1 
 2.8 
 3.5 
 4.2 
 4.9 
 5.6 
 6.3 
 
 
 
 0.6 
 1.2 
 1.8 
 2.4 
 3.0 
 3.6 
 4.2 
 4.8 
 5.4 
 
 5 
 
 0.5 
 1.0 
 1.5 
 2.0 
 2.5 
 3.0 
 3.5 
 4.0 
 4.5 
 
 ).PtS. 
 
 572 
 
 634 
 696 
 
 757 
 819 
 880 
 
 942 
 85 003 
 065 
 126 
 
 I 78 
 640 
 
 702 
 
 763 
 825 
 887 
 
 948 
 009 
 071 
 
 584 
 646 
 708 
 
 770 
 831 
 893 
 
 954 
 016 
 077 
 
 590 
 652 
 7H 
 
 776 
 837 
 899 
 960 
 
 022 
 083 
 
 597 
 658 
 720 
 
 782 
 844 
 905 
 
 967 
 028 
 089 
 
 603 
 665 
 726 
 
 788 
 850 
 911 
 
 973 
 034 
 095 
 
 609 
 671 
 733 
 
 794 
 856 
 917 
 
 979 
 040 
 
 101 
 
 6i5 
 
 677 
 
 739 
 800 
 862 
 924 
 
 107 
 
 621 
 683 
 743 
 
 807 
 868 
 93<> 
 991 
 052 
 114 
 
 628 
 689 
 75i 
 
 8i3 
 874 
 936 
 
 997 
 058 
 1 20 
 
 132 
 
 138 
 
 144 
 
 150 
 
 156 
 
 163 
 
 169 
 
 175 
 
 181 
 
 187 
 248 
 309 
 370 
 
 43i 
 491 
 
 552 
 612 
 
 673 
 
 193 
 
 254 
 
 315 
 
 376 
 
 437 
 497 
 
 558 
 618 
 679 
 
 199 
 260 
 321 
 
 382 
 443 
 503 
 
 564 
 625 
 685 
 
 205 
 266 
 327 
 388 
 
 449 
 509 
 
 570 
 
 631 
 691 
 
 211 
 
 272 
 
 333 
 
 394 
 455 
 516 
 
 576 
 6 37 
 697 
 
 217 
 278 
 339 
 400 
 461 
 522 
 
 582 
 643 
 703 
 
 224 
 285 
 345 
 
 406 
 467 
 528 
 
 588 
 649 
 709 
 
 230 
 291 
 352 
 412 
 473 
 534 
 
 594 
 655 
 715 
 
 236 
 297 
 358 
 
 418 
 
 479 
 540 
 
 600 
 661 
 721 
 
 242 
 303 
 364 
 
 425 
 485 
 546 
 
 606 
 667 
 727 
 
 733 
 
 739 
 
 745 
 
 751 
 
 757 
 
 763 
 
 769 
 
 775 
 
 78i 
 
 788 
 
 794 
 854 
 914 
 
 ^ 974 
 86 034 
 094 
 
 153 
 213 
 
 273 
 
 800 
 860 
 920 
 
 980 
 040 
 
 IOO 
 
 159 
 219 
 
 279 
 338" 
 
 806 
 866 
 926 
 
 986 
 046 
 106 
 
 165 
 225 
 285 
 
 812 
 872 
 932 
 
 992 
 052 
 
 112 
 
 171 
 231 
 291 
 
 818 
 878 
 938 
 
 998 
 058 
 118 
 
 177 
 
 237 
 297 
 
 824 
 884 
 944 
 *(X>4 
 064 
 124 
 
 183 
 
 243 
 303 
 
 830 
 890 
 950 
 
 *OIO 
 
 070 
 130 
 189 
 
 249 
 308 
 
 836 
 896 
 956 
 
 *oi6 
 076 
 136 
 
 195 
 
 255 
 3H 
 
 842 
 902 
 962 
 
 *O22 
 082 
 141 
 
 201 
 26l 
 320 
 
 848 
 908 
 968 
 
 *028 
 
 088 
 147 
 207 
 267 
 326 
 
 332 
 
 344 
 
 404 
 
 463 
 522 
 
 I 81 
 641 
 
 700 
 
 759 
 817 
 876 
 
 350 
 
 356 
 
 362 
 
 368 
 
 374 
 
 380 
 
 386 
 
 392 
 
 45' 
 510 
 
 570 
 629 
 688 
 
 747 
 806 
 864 
 
 39o 
 457 
 516 
 
 576 
 635 
 694 
 
 753 
 812 
 870 
 
 410 
 469 
 528 
 
 587 
 646 
 705 
 
 764 
 
 823 
 882 
 
 415 
 475 
 534 
 
 593 
 652 
 711 
 
 770 
 829 
 888 
 
 421 
 481 
 540 
 
 599 
 658 
 717 
 
 776 
 
 835 
 894 
 
 427 
 487 
 546 
 
 605 
 664 
 723 
 782 
 841 
 goo 
 
 433 
 493 
 
 552 
 
 611 
 670 
 729 
 788 
 
 847 
 906 
 
 439 
 499 
 558 
 
 617 
 676 
 
 735 
 
 794 
 853 
 911 
 
 445 
 504 
 564 
 
 623 
 682 
 741 
 800 
 
 859 
 917 
 
 923 
 
 929 
 
 935 
 
 941 
 
 947 
 
 953 
 
 958 
 
 964 
 
 970 
 
 976 
 
 982 
 87 040 
 099 
 
 I5 2 
 216 
 
 274 
 
 332 
 390 
 448 
 
 988 
 046 
 105 
 
 163 
 
 221 
 280 
 
 338 
 396 
 
 454 
 
 994 
 052 
 in 
 
 169 
 227 
 286 
 
 344 
 
 402 
 460 
 
 999 
 058 
 116 
 
 '75 
 233 
 291 
 
 349 
 408 
 466 
 
 *00 5 
 
 064 
 
 122 
 
 181 
 
 239 
 297 
 
 355 
 4i3 
 47i 
 
 *on 
 070 
 128 
 
 186 
 
 245 
 303 
 361 
 419 
 477 
 
 *oi7 
 075 
 134 
 
 192 
 251 
 309 
 
 367 
 425 
 483 
 
 *023 
 
 08 1 
 
 140 
 
 198 
 
 256 
 315 
 
 373 
 489 
 
 *O29 
 
 087 
 146 
 
 204 
 262 
 
 320 
 
 379 
 437 
 495 
 
 *35 
 093 
 151 
 
 210 
 268 
 326 
 
 384 
 442 
 500 
 
 558 
 
 9 
 
 5 o6 
 o 
 
 * 
 
 518 
 2 
 
 523 
 3 
 
 529 
 4 
 
 535 
 5 
 
 54i 
 6 
 
 547 
 7 
 
 552 
 
 8 
 
LOGARITHMS OF NUMBERS. 
 
 N. 
 
 >*m~~ 
 
 750 
 
 51 
 52 
 53 
 
 54 
 55 
 56 
 
 57 
 58 
 59 
 
 7 CO 
 
 61 
 62 
 63 
 
 64 
 65 
 66 
 
 67 
 68 
 69 
 
 770 
 
 71 
 72 
 73 
 
 74 
 75 
 76 
 
 77 
 78 
 79 
 
 780 
 
 81 
 82 
 83 
 
 84 
 85 
 86 
 
 87 
 
 88 
 89 
 
 790 
 
 91 
 92 
 93 
 
 94 
 95 
 96 
 
 97 
 98 
 99 
 
 800 
 
 O 
 
 87 506 
 
 1 
 512 
 
 2 
 
 ~ 
 
 3 
 
 523 
 
 4 
 
 529 
 
 5 
 
 ^HMMMM 
 
 535 
 
 6 
 
 MHMMM* 
 
 541 
 
 7 
 
 MMMM^ 
 
 547 
 
 8 
 
 i^mmmtmm 
 
 552 
 
 9 
 
 Iss" 
 
 Pro 
 
 MMMM 
 
 1 
 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 p. Pts. 
 
 -^ 
 
 
 
 O.G 
 1.2 
 1.8 
 2.4 
 3.0 
 3.6 
 4.2 
 4.8 
 5.4 
 
 5 
 
 0.5 
 1.0 
 1.5 
 2.0 
 2.5 
 3.0 
 3.5 
 4.0 
 4.5 
 
 622 
 679 
 
 737 
 795 
 852 
 
 910 
 967 
 88 024 
 
 570 
 628 
 685 
 
 743 
 800 
 858 
 
 915 
 973 
 030 
 
 576 
 
 633 
 691 
 
 749 
 806 
 864 
 
 921 
 978 
 036 
 
 |8i 
 639 
 697 
 
 754 
 812 
 869 
 
 927 
 984 
 041 
 
 587 
 645 
 703 
 
 760 
 818 
 875 
 
 933 
 990 
 047 
 
 593 
 
 65 i 
 708 
 
 766 
 
 823 
 
 881 
 
 938 
 996 
 
 053 
 
 599 
 656 
 
 714 
 
 772 
 829 
 887 
 
 944 
 
 *OOI 
 
 058 
 
 604 
 662 
 720 
 
 777 
 835 
 892 
 
 950 
 *oo7 
 064 
 
 610 
 668 
 726 
 
 783 
 841 
 898 
 
 * 955 
 *oi3 
 
 070 
 
 616 
 674 
 73i 
 
 789 
 846 
 904 
 
 961 
 *oi8 
 076 
 
 081 
 
 087 
 
 093 
 
 098 
 
 104 
 
 1 10 
 
 116 
 
 121 
 
 127 
 
 133 
 
 138 
 
 195 
 252 
 
 309 
 366 
 
 423 
 480 
 536 
 593 
 
 144 
 20 1 
 258 
 
 315 
 372 
 429 
 
 485 
 542 
 598 
 
 150 
 
 207 
 264 
 
 321 
 377 
 434 
 
 491 
 
 % 
 
 156 
 213 
 270 
 
 326 
 
 383 
 440 
 
 497 
 553 
 610 
 
 161 
 218 
 275 
 332 
 
 389 
 446 
 
 502 
 
 559 
 615 
 
 167 
 224 
 281 
 
 338 
 395 
 45i 
 508 
 564 
 621 
 
 173 
 230 
 287 
 
 343 
 400 
 
 457 
 
 513 
 570 
 627 
 
 173 
 
 235 
 292 
 
 349 
 406 
 463 
 
 519 
 576 
 632 
 
 184 
 241 
 298 
 
 355 
 412 
 468 
 
 525 
 581 
 638 
 
 190 
 247 
 3>4 
 360 
 417 
 474 
 
 530 
 
 I 87 
 643 
 
 649 
 
 655 
 
 660 
 
 666 
 
 672 
 
 677 
 
 683 
 
 689 
 
 694 
 
 700 
 
 70S 
 III 
 874 
 
 89042 
 098 
 154 
 
 711 
 767 
 824 
 
 880 
 936 
 992 
 
 048 
 104 
 159 
 
 717 
 
 773 
 829 
 
 885 
 941 
 997 
 
 053 
 109 
 165 
 
 722 
 779 
 835 
 891 
 
 947 
 *oo3 
 
 059 
 
 H5 
 170 
 
 728 
 784- 
 840 
 
 897 
 953 
 *oc9 
 
 064 
 
 120 
 
 176 
 
 734 
 79 
 846 
 
 902 
 
 958 
 *oi4 
 
 070 
 126 
 182 
 
 739 
 795 
 852 
 
 8 
 964 
 
 *020 
 076 
 
 I 3 I 
 
 745 
 801 
 
 857 
 
 9 I 3 
 969 
 
 *025 
 
 08 1 
 137 
 193 
 
 750 
 807 
 863 
 
 919 
 
 * 975 
 *03i 
 
 087 
 
 $ 
 
 756 
 812 
 868 
 
 925 
 
 981 
 *037 
 
 092 
 148 
 204 
 
 209 
 
 215 
 
 221 
 
 226 
 
 232 
 
 237 
 
 243 
 
 248 
 
 254 
 
 260 
 
 265 
 
 % 
 
 
 542 
 597 
 
 $ 
 
 271 
 326 
 382 
 
 437 
 492 
 548 
 
 603 
 658 
 713 
 
 2 7 6 
 
 $ 
 
 $ 
 
 553 
 609 
 664 
 719 
 
 282 
 337 
 393 
 
 448 
 504 
 
 559 
 
 614 
 669 
 724 
 
 287 
 
 $ 
 
 454 
 509 
 564 
 
 620 
 
 675 
 730 
 
 $ 
 
 404 
 
 459 
 5i5 
 570 
 
 625 
 680 
 735 
 
 298 
 
 354 
 409 
 
 465 
 520 
 
 575 
 
 686 
 741 
 
 304 
 360 
 
 415 
 
 470 
 
 526 
 581 
 
 636 
 
 691 
 
 746 
 
 310 
 
 365 
 421 
 
 476 
 53i 
 5 b<3 
 
 642 
 697 
 752 
 
 807 
 
 315 
 
 Z7 \ 
 
 426 
 
 481 
 537 
 592 
 
 647 
 702 
 757 
 
 763 
 
 768 
 
 774 
 
 779 
 
 785 
 
 790 
 
 796 
 
 801 
 
 812 
 
 818 
 
 873 
 927 
 
 982 
 90037 
 091 
 
 146 
 
 200 
 
 253 
 
 823 
 878 
 933 
 988 
 042 
 097 
 
 '*! 
 206 
 
 260 
 
 829 
 883 
 938 
 
 993 
 048 
 1 02 
 
 '.57 
 
 211 
 266 
 
 $ 
 
 944 
 998 
 
 33 
 
 162 
 217 
 271 
 
 840 
 894 
 949 
 *004 
 059 
 "3 
 168 
 
 222 
 2 7 6 
 
 845 
 900 
 
 955 
 *oo9 
 064 
 119 
 
 173 
 227 
 282 
 
 851 
 905 
 960 
 
 *oi"5 
 069 
 124 
 
 179 
 
 233 
 287 
 
 856 
 911 
 966 
 
 *O2O 
 075 
 129 
 
 I8 4 
 2 3 8 
 293 
 
 862 
 916 
 971 
 
 *026 
 
 080 
 135 
 189 
 
 244 
 
 298 
 
 867 
 922 
 977 
 *03i 
 086 
 140 
 
 195 
 249 
 304 
 
 309 
 
 314 
 
 320 
 
 325 
 
 331 
 
 336 
 
 342 
 
 347 
 
 352 
 
 358 
 
 N. 
 
 
 
 i 
 
 2 
 
 3 
 
 4 
 
 5 
 
 <* 7 8 
 
 
 
 Prop. Pts. 
 
1 6 
 
 TABLE I. 
 
 N. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 
 
 7 
 
 8 
 
 9 
 
 ~ 
 
 Prop. Pts. 
 
 800 
 
 90 309 
 
 3H 
 
 320 
 
 325 
 
 331 
 
 ~ 
 
 342 
 
 347 
 
 352 
 
 
 
 
 
 01 
 
 363 
 
 369 
 
 374 
 
 380 
 
 385 
 
 390 
 
 396 
 
 401 
 
 407 
 
 412 
 
 
 
 02 
 
 417 
 
 423 
 
 428 
 
 434 
 
 439 
 
 445 
 
 450 
 
 455 
 
 461 
 
 466 
 
 
 
 03 
 
 472 
 
 477 
 
 482 
 
 488 
 
 493 
 
 499 
 
 504 
 
 509 
 
 515 
 
 520 
 
 
 
 04 
 
 526 
 
 53I 
 
 536 
 
 542 
 
 547 
 
 553 
 
 558 
 
 563 
 
 569 
 
 574 
 
 
 
 05 
 
 580 
 
 58? 
 
 590 
 
 596 
 
 601 
 
 607 
 
 612 
 
 617 
 
 623 
 
 628 
 
 
 
 00 
 
 634 
 
 639 
 
 644 
 
 650 
 
 655 
 
 660 
 
 666 
 
 671 
 
 677 
 
 682 
 
 
 
 
 07 
 
 687 
 
 693 
 
 698 
 
 703 
 
 709 
 
 714 
 
 720 
 
 725 
 
 730 
 
 736 
 
 
 
 08 
 
 74 1 
 
 747 
 
 752 
 
 757 
 
 763 
 
 768 
 
 773 
 
 779 
 
 784 
 
 789 
 
 
 
 09 
 
 795 
 
 800 
 
 806 
 
 Sii 
 
 816 
 
 822 
 
 827 
 
 832 
 
 838 
 
 843 
 
 
 
 810 
 
 849. 
 
 854 
 
 ~8~59~ 
 
 865 
 
 870 
 
 875 
 
 88 1 
 
 886 
 
 891 
 
 897 
 
 
 
 11 
 12 
 
 902 
 956 
 
 907 
 961 
 
 966 
 
 918 
 972 
 
 924 
 977 
 
 929 
 
 982 
 
 934 
 988 
 
 940 
 993 
 
 998 
 
 950 
 
 *oo4 
 
 1 
 
 0.6 
 
 13 
 
 91 009 
 
 014 
 
 020 
 
 025 
 
 030 
 
 036 
 
 041 
 
 046 
 
 052 
 
 057 
 
 2 
 
 1.2 
 
 14 
 
 062 
 
 068 
 
 073 
 
 078 
 
 084 
 
 089 
 
 094 
 
 IOO 
 
 105 
 
 no 
 
 3 
 
 1.8 
 
 2 A 
 
 15 
 
 116 
 
 121 
 
 126 
 
 132 
 
 137 
 
 142 
 
 148 
 
 153 
 
 158 
 
 164 
 
 
 ,*t 
 3 A 
 
 16 
 
 169 
 
 174 
 
 180 
 
 185 
 
 190 
 
 196 
 
 20 1 
 
 206 
 
 212 
 
 217 
 
 6 
 
 u 
 3.6 
 
 17 
 
 222 
 
 228 
 
 233 
 
 238 
 
 243 
 
 249 
 
 254 
 
 259 
 
 265 
 
 270 
 
 7 
 
 4.2 
 
 18 
 
 275 
 
 281 
 
 286 
 
 291 
 
 297 
 
 302 
 
 307 
 
 312 
 
 318 
 
 323 
 
 8 
 
 4.8 
 
 19 
 
 328 
 
 334 
 
 339 
 
 344 
 
 350 
 
 355 
 
 360 
 
 365 
 
 371 
 
 376 
 
 9 
 
 5.4 
 
 820 
 
 381 
 
 387 
 
 392 
 
 397 
 
 403 
 
 408 
 
 413 
 
 418 
 
 424 
 
 429 
 
 
 
 21 
 
 434 
 
 440 
 
 445 
 
 450 
 
 455 
 
 461 
 
 466 
 
 47 i 
 
 477 
 
 482 
 
 
 
 22 
 
 487 
 
 492 
 
 498 
 
 503 
 
 508 
 
 5H 
 
 519 
 
 524 
 
 529 
 
 535 
 
 
 
 23 
 
 540 
 
 545 
 
 
 556 
 
 561 
 
 566 
 
 572 
 
 577 
 
 582 
 
 587 
 
 
 
 24 
 
 593 
 
 598 
 
 603 
 
 609 
 
 614 
 
 619 
 
 624 
 
 630 
 
 635 
 
 640 
 
 
 
 25 
 
 645 
 
 651 
 
 656 
 
 661 
 
 666 
 
 672 
 
 677 
 
 682 
 
 687 
 
 693 
 
 
 
 26 
 
 f 698 
 
 703 
 
 709 
 
 7H 
 
 719 
 
 724 
 
 730 
 
 735 
 
 740 
 
 745 
 
 
 
 27 
 
 75 1 
 
 756 
 
 761 
 
 766 
 
 772 
 
 777 
 
 782 
 
 787 
 
 793 
 
 798 
 
 
 
 28 
 
 803 
 
 808 
 
 814 
 
 819 
 
 824 
 
 829 
 
 834 
 
 840 
 
 845 
 
 850 
 
 
 
 29 
 
 855 
 
 861 
 
 866 
 
 871 
 
 876 
 
 882 
 
 887 
 
 892 
 
 897 
 
 93 
 
 
 
 830 
 
 908 
 
 913 
 
 918 
 
 924 
 
 929 
 
 934 
 
 939 
 
 944 
 
 950 
 
 955 
 
 
 
 31 
 
 960 
 
 965 
 
 971 
 
 976 
 
 981 
 
 986 
 
 991 
 
 997 
 
 *OO2 
 
 *oo7 
 
 
 
 32 
 
 02 OI2 
 
 018 
 
 023 
 
 028 
 
 033 
 
 038 
 
 044 
 
 049 
 
 054 
 
 059 
 
 1 
 
 0.5 
 
 33 
 
 065 
 
 070 
 
 075 
 
 080 
 
 085 
 
 091 
 
 096 
 
 101 
 
 106 
 
 in 
 
 2 
 
 1.0 
 
 34 
 
 117 
 
 122 
 
 127 
 
 132 
 
 137 
 
 14^ 
 
 148 
 
 153 
 
 158 
 
 163 
 
 3 
 
 1.5 
 2i\ 
 
 35 
 36 
 
 I6 9 
 221 
 
 174 
 226 
 
 179 
 231 
 
 184 
 236 
 
 189 
 241 
 
 19? 
 247 
 
 200 
 252 
 
 205 
 257 
 
 2IO 
 262 
 
 215 
 267 
 
 5 
 6 
 
 .V 
 
 2.5 
 3.0 
 
 37 
 
 273 : 278 
 
 283 
 
 288 
 
 293 
 
 298 
 
 304 
 
 309 
 
 314 
 
 319 
 
 7 
 
 3.5 ' 
 
 38 
 
 324 330 
 
 335 
 
 340 
 
 345 
 
 350 
 
 355 
 
 361 
 
 3 66 
 
 371 
 
 8 
 
 4.0 1 
 
 39 
 
 376 
 
 381 
 
 3^7 
 
 392 
 
 397 
 
 402 
 
 407 
 
 412 
 
 4l8 
 
 423 
 
 
 
 4.5 
 
 840 
 
 428 
 
 433 
 
 438 
 
 443 
 
 449 
 
 454 
 
 459 
 
 464 
 
 469 
 
 474 
 
 
 
 41 
 
 480 
 
 485 
 
 490 
 
 495 
 
 500 
 
 505 
 
 5 11 
 
 516 
 
 521 
 
 526 
 
 
 
 42 
 
 531 
 
 536 
 
 542 
 
 547 
 
 
 557 
 
 562 
 
 567 
 
 572 
 
 578 
 
 
 
 43 
 
 
 588 
 
 593 
 
 598 
 
 603 
 
 609 
 
 614 
 
 619 
 
 624 
 
 629 
 
 
 
 44 
 
 634 
 
 639 
 
 645 
 
 650 
 
 655 
 
 660 
 
 665 
 
 670 
 
 675 
 
 68 1 
 
 
 
 45 
 46 
 
 686 
 737 
 
 691 
 
 742 
 
 747 
 
 701 
 752 
 
 706 
 758 
 
 711 
 
 763 
 
 716 
 768 
 
 722 
 773 
 
 727 
 
 778 
 
 732 
 783 
 
 
 
 47 
 48 
 
 788 
 840 
 
 793 
 
 845 
 
 799 
 850 
 
 804 
 85? 
 
 809 
 860 
 
 814 
 
 865 
 
 819 
 870 
 
 824 
 875 
 
 829 
 881 
 
 834 
 8S6 
 
 
 
 49 
 
 891 
 
 896 
 
 901 
 
 906 
 
 911 
 
 916 
 
 921 
 
 927 
 
 932 
 
 937 
 
 
 
 850 
 
 942 
 
 947 
 
 952 
 
 957 
 
 962 
 
 967 
 
 973 
 
 978 
 
 983 
 
 988 
 
 
 
 N. 
 
 O 
 
 1 
 
 MBMMIM 
 
 3 
 
 MMM 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop.Pts. 
 
LOGARITHMS OF NUMBERS. 
 
 N. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Pro] 
 
 ). PtS. 
 
 850 
 
 92 942 
 
 947 
 
 952 
 
 957 
 
 962 
 
 967 
 
 973 
 
 978 
 
 983 
 
 988 
 
 
 
 51 
 52 
 53 
 
 54 
 i 55 
 50 
 
 57 
 58 
 59 
 
 993 
 93 044 
 095 
 
 146 
 197 
 247 
 
 298 
 349 
 399 
 
 998 
 049 
 
 IOO 
 
 151 
 
 202 
 252 
 
 303 
 
 354 
 404 
 
 *oo3 
 054 
 105 
 
 156 
 207 
 258 
 
 308 
 
 359 
 409 
 
 *oo8 
 059 
 no 
 
 161 
 
 212 
 263 
 
 3 < 3 
 
 364 
 
 414 
 
 *OI 3 
 
 064 
 "5 
 166 
 217 
 268 
 
 3 i 8 
 369 
 420 
 
 *oi8 
 069 
 
 120 
 
 171 
 222 
 273 
 323 
 
 374 
 425 
 
 *024 
 
 075 
 125 
 
 176 
 
 227 
 
 278 
 328 
 
 379 
 430 
 
 *029 
 
 080 
 131 
 
 181 
 232 
 283 
 
 334 
 384 
 435 
 
 *Q34 
 085 
 136 
 
 1 86 
 
 237 
 288 
 
 339 
 389 
 440 
 
 *Q39 
 090 
 141 
 
 192 
 
 242 
 293 
 
 544 
 394 
 445 
 
 1 
 2 
 3 
 
 
 
 0.6 
 1.2 
 
 1.8 
 24. 
 
 860 
 
 450 
 
 455 
 
 460 
 
 465 
 
 470 
 
 475 
 
 480 
 
 485 
 
 490 
 
 495 
 
 5 
 
 3.0 
 
 61 
 62 
 63 
 
 64 
 65 
 66 
 
 67 
 68 
 60 
 
 500 
 
 551 
 601 
 
 651 
 702 
 752 
 
 802 
 852 
 902 
 
 505 
 
 656 
 707 
 757 
 807 
 
 857 
 907 
 
 S x 
 561 
 
 611 
 
 661 
 712 
 762 
 
 812 
 862 
 912 
 
 & 
 
 616 
 
 666 
 717 
 767 
 
 817 
 867 
 917 
 
 520 
 
 57i 
 621 
 
 671 
 722 
 772 
 
 822 
 872 
 922 
 
 52 ^ 
 576 
 
 626 
 
 676 
 727 
 777 
 827 
 877 
 927 
 
 531 
 |8i 
 631 
 
 682 
 732 
 782 
 
 832 
 882 
 932 
 
 536 
 586 
 636 
 
 687 
 737 
 787 
 
 837 
 887 
 937 
 
 541 
 59i 
 641 
 
 692 
 742 
 792 
 
 842 
 892 
 942 
 
 546 
 596 
 646 
 
 697 
 747 
 797 
 847 
 897 
 947 
 
 6 
 7 
 8 
 9 
 
 3.6 
 4.2 
 4.8 
 5.4 
 
 870 
 
 952 
 
 957 
 
 962 
 
 967 
 
 972 
 
 977 
 
 982 
 
 987 
 
 992 
 
 997 
 
 
 6' 
 
 71 
 72 
 73 
 
 74 
 75 
 
 76 
 
 77 
 78 
 79 
 
 94 002 
 052 
 
 101 
 
 151 
 
 201 
 250 
 
 300 
 
 349 
 399 
 
 007 
 
 5 2 
 106 
 
 156 
 206 
 255 
 
 305 
 354 
 404 
 
 012 
 062 
 III 
 
 161 
 
 211 
 260 
 
 310 
 
 359 
 
 409 
 
 017 
 
 067 
 
 116 
 
 166 
 216 
 
 265 
 
 315 
 
 364 
 4H 
 
 022 
 072 
 121 
 
 171 
 221 
 270 
 
 3 20 
 
 369 
 419 
 
 027 
 
 077 
 126 
 
 176 
 226 
 275 
 
 325 
 374 
 424 
 
 032 
 082 
 I3i 
 181 
 
 280 
 
 330 
 
 379 
 429 
 
 037 
 086 
 
 136 
 
 1 86 
 236 
 285 
 
 335 
 384 
 433 
 
 042 
 091 
 141 
 
 191 
 240 
 290 
 
 340 
 389 
 438 
 
 047 
 096 
 146 
 
 196 
 
 245 
 295 
 
 345 
 394 
 443 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 0.5 
 1.0 
 1.5 
 2.0 
 2.5 
 3.0 
 3.5 
 4.0 
 4.5 
 
 880 
 
 448 
 
 453 
 
 458 
 
 463 
 
 468 
 
 473 
 
 478 
 
 483 
 
 488 
 
 493 
 
 
 
 81 
 82 
 83 
 
 84 
 85 
 86 
 
 87 
 88 
 89 
 
 498 
 
 547 
 596 
 
 645 
 694 
 743 
 
 792 
 841 
 890 
 
 503 
 
 I 52 
 601 
 
 650 
 699 
 748 
 
 797 
 846 
 
 895 
 
 507 
 
 557 
 606 
 
 655 
 704 
 
 753 
 802 
 851 
 900 
 
 512 
 562 
 
 660 
 709 
 758 
 
 807 
 856 
 905 
 
 517 
 
 567 
 
 616 
 
 665 
 7H 
 763 
 
 812 
 86 1 
 910 
 
 522 
 
 571 
 621 
 
 670 
 719 
 768 
 
 817 
 866 
 915 
 
 52 2 
 
 576 
 626 
 
 675 
 
 724 
 
 773 
 822 
 871 
 919 
 
 532 
 
 630 
 
 680 
 729 
 778 
 
 827 
 876 
 924 
 
 537 
 586 
 
 635 
 685 
 734 
 783 
 
 832 
 880 
 929 
 
 542 
 
 I 91 
 
 640 
 
 689 
 738 
 787 
 
 836 
 885 
 934 
 
 1 
 2 
 3 
 
 4 
 
 0.4 
 0.8 
 1.2 
 
 890 
 
 939 
 
 944 
 
 949 
 
 954 
 
 959 
 
 963 
 
 968 
 
 973 
 
 978 
 
 983 
 
 4 
 5 
 
 1.6 
 2 
 
 91 
 92 
 93 
 
 94 
 
 95 
 96 
 
 97 
 
 98 
 99 
 
 988 
 95 036 
 085 
 
 134 
 182 
 231 
 
 279 
 328 
 376 
 
 993 
 041 
 090 
 
 139 
 187 
 236 
 
 284 
 332 
 38i 
 
 998 
 046 
 095 
 
 143 
 192 
 240 
 
 289 
 
 & 
 
 *002 
 051 
 IOO 
 
 148 
 197 
 245 
 
 294 
 342 
 390 
 
 *<x>7 
 056 
 105 
 
 153 
 
 202 
 250 
 
 209 
 
 347 
 395 
 
 *OI2 
 
 061 
 109 
 
 158 
 207 
 
 255 
 
 303 
 352 
 400 
 
 *oi7 
 066 
 114 
 
 163 
 
 211 
 
 260 
 
 308 
 
 357 
 405 
 
 *022 
 071 
 119 
 
 1 68 
 216 
 265 
 
 3 < 3 
 361 
 
 410 
 
 *027 
 
 075 
 124 
 
 173 
 
 221 
 270 
 
 318 
 366 
 415 
 
 *O32 
 
 080 
 129 
 
 177 
 226 
 274 
 
 323 
 371 
 419 
 
 6 
 7 
 8 
 9 
 
 2.4 
 2.8 
 3.2 
 3.6 
 
 900 
 
 424 
 
 429 
 
 434 
 
 439 
 
 444 
 
 448 
 
 453 
 
 458 
 
 463 
 
 468 
 
 
 
 N. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Pro 
 
 p. Pts. 
 
i8 
 
 TABLE I. 
 
 N. 
 
 O 
 
 1 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Ptg. 
 
 900 
 
 95 424 
 
 429 434 
 
 439 
 
 444 
 
 448 
 
 453 
 
 "458" 
 
 "463" 
 
 "468" 
 
 
 
 01 
 
 472 
 
 477 
 
 482 
 
 487 
 
 492 
 
 497 
 
 501 
 
 506 
 
 5" 
 
 516 
 
 
 
 02 
 03 
 
 521 
 569 
 
 525 
 574 
 
 530 
 578 
 
 535 
 
 540 
 588 
 
 545 
 593 
 
 550 
 598 
 
 602 
 
 559 
 607 
 
 564 
 612 
 
 
 
 04 
 
 617 
 
 622 
 
 626 
 
 631 
 
 636 
 
 641 
 
 646 
 
 650 
 
 655 
 
 660 
 
 
 
 05 
 
 665 
 
 670 
 
 674 
 
 679 
 
 684 
 
 689 
 
 694 
 
 698 
 
 703 
 
 708 
 
 
 
 06 
 
 713 
 
 718 
 
 722 
 
 727 
 
 732 
 
 737 
 
 742 
 
 746 
 
 
 756 
 
 
 
 07 
 
 761 
 
 766 
 
 770 
 
 775 
 
 780 
 
 785 
 
 789 
 
 794 
 
 799 
 
 804 
 
 
 
 08 
 
 809 
 
 813 
 
 818 
 
 823 
 
 828 
 
 o 
 
 837 
 
 842 
 
 847 
 
 852 
 
 
 
 09 
 
 856 
 
 861 
 
 866 
 
 871 
 
 875 
 
 880 
 
 885 
 
 890 
 
 895 
 
 899 
 
 
 
 910 
 
 904 
 
 909 
 
 914 
 
 918 
 
 923 
 
 928 
 
 933 
 
 938 
 
 942 
 
 947 
 
 
 
 11 
 
 952 
 
 957 
 
 * 961 
 
 966 
 
 * 971 
 
 976 
 
 980 
 
 985 
 
 990 
 
 995 
 
 
 
 12 
 
 999 
 
 *oo 4 
 
 
 *oi4 
 
 
 *023 
 
 *028 
 
 *O33 
 
 *o 3 8 
 
 *042 
 
 1 
 
 0.5 
 
 13 
 
 96047 
 
 052 
 
 057 
 
 061 
 
 066 
 
 071 
 
 076 
 
 080 
 
 085 
 
 090 
 
 2 
 
 1.0 
 
 14 
 15 
 
 095 
 142 
 
 099 
 147 
 
 104 
 152 
 
 109 
 156 
 
 114 
 161 
 
 118 
 166 
 
 123 
 
 128 
 175 
 
 III 
 
 137 
 
 185 
 
 3 
 
 4 
 p. 
 
 1.5 
 2.0 
 
 9 f\ 
 
 16 
 
 190 
 
 194 
 
 199 
 
 204 
 
 209 
 
 213 
 
 218 
 
 223 
 
 227 
 
 232 
 
 o 
 6 
 
 .O 
 
 3.0 
 
 17 
 18 
 
 as 
 
 242 
 289 
 
 246 
 294 
 
 251 
 298 
 
 256 
 303 
 
 261 
 308 
 
 265 
 313 
 
 270 
 317 
 
 275 
 322 
 
 280 
 327 
 
 7 
 
 8 
 
 3.5 
 4.0 
 
 19 
 
 332 
 
 336 
 
 341 
 
 346 
 
 350 
 
 355 
 
 360 
 
 365 
 
 369 
 
 374 
 
 9 
 
 4.5 
 
 920 
 
 379 
 
 384 
 
 388 
 
 393 
 
 398 
 
 402 
 
 407 
 
 412 
 
 417 
 
 421 
 
 
 
 21 
 
 426 
 
 431 
 
 435 
 
 440 
 
 445 
 
 450 
 
 454 
 
 459 
 
 464 
 
 468 
 
 
 
 22 
 
 473 
 
 478 
 
 483 
 
 487 
 
 492 
 
 497 
 
 501 
 
 506 
 
 5" 
 
 515 
 
 
 
 23 
 
 520 
 
 525 
 
 530 
 
 534 
 
 539 
 
 544 
 
 548 
 
 553 
 
 558 
 
 562 
 
 
 
 24 
 25 
 
 4 
 
 572 
 619 
 
 577 
 624 
 
 581 
 628 
 
 586 
 633 
 
 591 
 638 
 
 I 95 
 642 
 
 600 
 647 
 
 605 
 652 
 
 609 
 656 
 
 
 
 26 
 
 661 
 
 666 
 
 670 
 
 675 
 
 680 
 
 685 
 
 689 
 
 694 
 
 699 
 
 703 
 
 
 
 27 
 28 
 
 708 
 
 713 
 759 
 
 717 
 764 
 
 722 
 769 
 
 727 
 774 
 
 778 
 
 736 
 783 
 
 788 
 
 745 
 792 
 
 750 
 
 
 
 29 
 
 802 
 
 806 
 
 811 
 
 816 
 
 820 
 
 825 
 
 830 
 
 834 
 
 839 
 
 844 
 
 
 
 930 
 
 848 
 
 853 
 
 858 
 
 862 
 
 867 
 
 872 
 
 876 
 
 881 
 
 886 
 
 890 
 
 
 
 31 
 32 
 
 895 
 942 
 
 900 
 946 
 
 904 
 
 909 
 956 
 
 914 
 #9 6o 
 
 918 
 965 
 
 923 
 970 
 
 928 
 974 
 
 932 
 979 
 
 984 
 
 1 
 
 0.4 
 
 33 
 
 988 
 
 993 
 
 997 
 
 *OO2 
 
 
 *OII 
 
 *oi6 
 
 *02I 
 
 *O2S 
 
 *O3O 
 
 2 
 
 0.8 
 
 34 
 
 97 035 
 
 039 
 
 044 
 
 049 
 
 053 
 
 058 
 
 063 
 
 067 
 
 072 
 
 077 
 
 3 
 
 1.2 
 
 10 
 
 35 
 
 08 1 
 
 086 1 090 
 
 095 
 
 100 
 
 104 
 
 109 
 
 114 
 
 118 
 
 123 
 
 
 .0 
 
 2(1 
 
 36 
 
 128 
 
 132 1 137 
 
 142 
 
 146 
 
 
 155 
 
 1 60 
 
 165 
 
 169 
 
 6 
 
 .V 
 
 2.4 
 
 37 
 
 174 
 
 179 
 
 183 
 
 188 
 
 192 
 
 197 
 
 202 
 
 206 
 
 211 
 
 216 
 
 7 
 
 2.8 
 
 38 
 
 220 
 
 225 
 
 230 
 
 234 
 
 239 
 
 243 
 
 248 
 
 253 
 
 257 
 
 262 
 
 8 
 
 3.2 
 
 39 
 
 267 
 
 271 
 
 276 
 
 280 
 
 285 
 
 290 
 
 294 
 
 299 
 
 304 
 
 308 
 
 9 
 
 3.6 
 
 940 
 
 313 
 
 317 
 
 322 
 
 327 
 
 331 
 
 336 
 
 340 
 
 345 
 
 350 
 
 354 
 
 
 
 41 
 
 359 
 
 364 
 
 368 
 
 373 
 
 377 
 
 382 
 
 387 
 
 391 
 
 396 
 
 400 
 
 
 
 42 
 
 405 
 
 410 
 
 414 
 
 419 
 
 424 
 
 428 
 
 433 
 
 437 
 
 442 
 
 447 
 
 
 
 43 
 
 
 456 
 
 460 
 
 465 
 
 470 
 
 474 
 
 479 
 
 483 
 
 488 
 
 493 
 
 
 
 44 
 
 497 
 
 502 
 
 ! 506 
 
 5" 
 
 516 
 
 520 
 
 525 
 
 529 
 
 534 
 
 539 
 
 
 
 45 
 
 543 
 
 548 
 
 552 
 
 557 
 
 562 
 
 566 
 
 
 575 
 
 580 
 
 585 
 
 
 
 46 
 
 589 
 
 594 
 
 598 
 
 603 
 
 607 
 
 612 
 
 617 
 
 621 
 
 626 
 
 630 
 
 
 
 47 
 
 633 
 
 640 
 
 644 
 
 649 
 
 653 
 
 658 
 
 663 
 
 667 
 
 672 
 
 676 
 
 
 
 48 
 
 68 1 
 
 685 
 
 690 
 
 695 
 
 699 
 
 704 
 
 708 
 
 713 
 
 717 
 
 722 
 
 
 
 49 
 
 727 
 
 
 736 
 
 740 
 
 745 
 
 749 
 
 754 
 
 759 
 
 763 
 
 768 
 
 
 
 950 
 
 772 
 
 777 
 
 782 
 
 786 
 
 791 
 
 795 
 
 800 
 
 804 
 
 809 
 
 813 
 
 
 
 N. 
 
 O 
 
 1 | 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 r 
 
 8 
 
 9 
 
 Prop. Pte. 
 
LOGARITHMS OF NUMBERS. 
 
 N. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop.Pte.|| 
 
 950 
 
 97 772 
 
 777 
 
 782 
 
 786 
 
 791 
 
 795 
 
 800 
 
 804 
 
 809 
 
 813 
 
 
 
 51 
 
 818 
 
 823 
 
 827 
 
 832 
 
 836 
 
 841 
 
 845 
 
 850 
 
 855 
 
 859 
 
 
 
 52 
 
 864 
 
 868 
 
 873 
 
 877 
 
 882 
 
 886 
 
 891 
 
 896 
 
 900 
 
 90S 
 
 
 
 53 
 
 909 
 
 914 
 
 918 
 
 923 
 
 928 
 
 932 
 
 937 
 
 941 
 
 946 
 
 950 
 
 
 
 54 
 
 955 
 
 959 
 
 964 
 
 968 
 
 973 
 
 978 
 
 982 
 
 987 
 
 991 
 
 996 
 
 
 
 55 
 
 98 ooo 
 
 00$ 
 
 009 
 
 014 
 
 019 
 
 023 
 
 028 
 
 032 
 
 037 
 
 041 
 
 
 
 56 
 
 046 
 
 050 
 
 055 
 
 059 
 
 064 
 
 068 
 
 073 
 
 078 
 
 082 
 
 087 
 
 ' 
 
 
 57 
 
 58 
 
 091 
 137 
 
 096 
 141 
 
 100 
 
 146 
 
 105 
 150 
 
 !SS 
 
 114 
 
 159 
 
 118 
 164 
 
 III 
 
 127 
 173 
 
 132 
 177 
 
 
 
 59 
 
 182 
 
 186 
 
 191 
 
 195 
 
 200 
 
 204 
 
 209 
 
 214 
 
 218 
 
 223 
 
 
 
 960 
 
 227 
 
 232 
 
 236 
 
 241 
 
 245 
 
 250 
 
 254 
 
 259 
 
 263 
 
 268 
 
 
 
 
 61 
 
 272 
 
 277 
 
 281 
 
 286 
 
 290 
 
 295 
 
 2 99 
 
 304 
 
 308 
 
 313 
 
 
 6 
 
 62 
 
 318 
 
 322 
 
 327 
 
 331 
 
 336 
 
 340 
 
 345 
 
 349 
 
 354 
 
 358 
 
 1 
 
 0.5 
 
 63 
 
 363 
 
 367 
 
 372 
 
 376 
 
 381 
 
 385 
 
 390 
 
 394 
 
 399 
 
 403 
 
 2 
 
 1.0 
 
 64 
 65 
 
 408 
 
 412 
 457 
 
 4J7 
 
 462 
 
 421 
 466 
 
 426 
 47i 
 
 430 
 475 
 
 480 
 
 439 
 484 
 
 444 
 489 
 
 448 
 493 
 
 3 
 
 4 
 
 1.5 
 2.0 
 2 ft 
 
 66 
 
 498 
 
 502 
 
 507 
 
 5" 
 
 516 
 
 520 
 
 525 
 
 529 
 
 534 
 
 538 
 
 6 
 
 3.0 
 
 67 
 
 68 
 69 
 
 F 
 
 632 
 
 547 
 592 
 637 
 
 552 
 597 
 641 
 
 I* 6 
 601 
 
 646 
 
 I? 
 605 
 
 650 
 
 565 
 610 
 
 655 
 
 570 
 614 
 659 
 
 574 
 619 
 664 
 
 579 
 623 
 668 
 
 673 
 
 7 
 8 
 9 
 
 3.& 
 4.0 
 4.6 
 
 970 
 
 677 
 
 682 
 
 686 
 
 691 
 
 695 
 
 700 
 
 704 
 
 709 
 
 713 
 
 717 
 
 
 
 71 
 
 722 
 
 726 
 
 731 
 
 735 
 
 740 
 
 744 
 
 749 
 
 753 
 
 758 
 
 762 
 
 
 1 
 
 72 
 
 767 
 
 771 
 
 776 
 
 780 
 
 784 
 
 789 
 
 793 
 
 798 
 
 802 
 
 807 
 
 
 1 
 
 73 
 
 fell 
 
 816 
 
 820 
 
 825 
 
 829 
 
 834 
 
 838 
 
 843 
 
 847 
 
 851 
 
 
 1 
 
 74 
 
 856 
 
 860 
 
 865 
 
 869 
 
 874 
 
 878 
 
 883 
 
 887 
 
 892 
 
 896 
 
 
 | 
 
 75 
 
 900 
 
 9^5 
 
 909 
 
 914 
 
 918 
 
 923 
 
 927 
 
 932 
 
 936 
 
 941 
 
 
 I 
 
 76 
 
 945 
 
 949 
 
 954 
 
 958 
 
 963 
 
 967 
 
 972 
 
 976 
 
 981 
 
 985 
 
 
 1 
 
 77 
 
 989 
 
 994 
 
 098 
 
 "003 
 
 *oo7 
 
 *OI2 
 
 *oi6 
 
 *O2I 
 
 *025 
 
 *029 
 
 
 
 73 
 79 
 
 99034 
 078 
 
 038 
 083 
 
 043 
 087 
 
 047 
 092 
 
 052 
 096 
 
 056 
 100 
 
 061 
 105 
 
 06 5 
 109 
 
 069 
 114 
 
 074 
 
 118 
 
 
 I 
 
 980 
 
 123 
 
 127 
 
 131 
 
 136 
 
 140 
 
 145 
 
 149 
 
 154 
 
 158 
 
 162 
 
 
 
 81 
 
 167 
 
 171 
 
 176 
 
 1 80 
 
 185 
 
 189 
 
 193 
 
 I 9 8 
 
 202 
 
 207 
 
 
 II 
 
 82 
 
 211 
 
 216 
 
 220 
 
 224 
 
 229 
 
 233 
 
 238 
 
 242 
 
 247 
 
 251 
 
 1 
 
 0.4 
 
 83 
 
 255 
 
 260 
 
 264 
 
 269 
 
 273 
 
 277 
 
 282 
 
 286 
 
 291 
 
 295 
 
 2 
 
 0.8 
 
 84 
 
 300 
 
 304 
 
 308 
 
 313 
 
 317 
 
 322 
 
 326 
 
 330 
 
 335 
 
 339 
 
 3 
 
 1.2 
 
 1 ct 
 
 85 
 
 344 
 
 348 
 
 352 
 
 357 
 
 361 
 
 366 
 
 370 
 
 374 
 
 379 
 
 383 
 
 
 9 n 
 
 86 
 
 388 
 
 392 
 
 396 
 
 401 
 
 405 
 
 410 
 
 414 
 
 419 
 
 423 
 
 427 
 
 6 
 
 24 
 
 87 
 
 432 
 
 436 
 
 441 
 
 445 
 
 449 
 
 454 
 
 458 
 
 463 
 
 467 
 
 471 
 
 7 
 
 2.8 
 
 88 
 
 476 
 
 480 
 
 484 
 
 489 
 
 493 
 
 498 
 
 502 
 
 506 
 
 5 11 
 
 515 
 
 8 
 
 3.2 
 
 89 
 
 520 
 
 524 
 
 528 
 
 533 
 
 537 
 
 542 
 
 546 
 
 550 
 
 555 
 
 559 
 
 9 
 
 3.6 
 
 990 
 
 564 
 
 568 
 
 572 
 
 577 
 
 581 
 
 585 
 
 590 
 
 594 
 
 599 
 
 603 
 
 
 
 91 
 
 607 
 
 612 
 
 616 
 
 621 
 
 62$ 
 
 629 
 
 634 
 
 638 
 
 642 
 
 647 
 
 
 1 
 
 92 
 
 651 
 
 656 
 
 660 
 
 664 
 
 669 
 
 673 
 
 677 
 
 -682 
 
 686 
 
 691 
 
 
 
 93 
 
 695 
 
 699 
 
 704 
 
 708 
 
 712 
 
 717 
 
 721 
 
 726 
 
 730 
 
 734 
 
 
 
 94 
 
 739 
 
 743 
 
 747 
 
 752 
 
 756 
 
 760 
 
 765 
 
 769 
 
 774 
 
 778 
 
 
 
 95 
 
 782 
 
 787 
 
 791 
 
 795 
 
 800 
 
 804 
 
 808 
 
 813 
 
 8i7 
 
 822 
 
 
 1 
 
 96 
 
 826 
 
 830 
 
 835 
 
 839 
 
 843 
 
 848 
 
 852 
 
 856 
 
 861 
 
 865 
 
 
 1 
 
 97 
 
 870 
 
 874 
 
 878 
 
 883 
 
 887 
 
 801 896 
 
 000 
 
 904 
 
 909 
 
 
 
 1 98 
 99 
 
 913 
 957 
 
 ^61 
 
 922 
 965 
 
 926 
 970 
 
 930 
 974 
 
 935 
 978 
 
 939 
 983 
 
 944 
 987 
 
 94** 
 991 
 
 952 
 996 
 
 
 
 1000 
 
 00 000 
 
 004 
 
 009 
 
 013 
 
 017 
 
 022 
 
 026 
 
 030 
 
 035 
 
 039 
 
 
 9 
 
 N. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop.Pta.ll 
 
 |l 
 
2O 
 
 TABLE I. 
 
 N. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
 1000 
 
 ooo ooo 
 
 043 
 
 087 
 
 130 
 
 174 
 
 217 
 
 260 
 
 304 
 
 347 
 
 391 
 
 
 1001 
 
 434 
 
 477 
 
 521 
 
 564 
 
 608 
 
 651 
 
 694 
 
 738 
 
 78i 
 
 824 
 
 
 1002 
 
 868 
 
 911 
 
 954 
 
 998 
 
 *O4i 
 
 *o84 
 
 *I28 
 
 *I 7 I 
 
 *2I 4 
 
 *2 5 8 
 
 
 1003 
 
 ooi 301 
 
 344 
 
 388 
 
 43i 
 
 474 
 
 517 
 
 561 
 
 604 
 
 647 
 
 690 
 
 
 44 
 
 1004 
 
 734 
 
 777 
 
 820 
 
 863 
 
 907 
 
 950 
 
 993 
 
 *036 
 
 *o8o 
 
 *I2 3 
 
 1 
 
 4.4 
 
 1005 
 
 002 1 66 
 
 209 
 
 252 
 
 296 
 
 339 
 
 
 425 
 
 468 
 
 512 
 
 555 
 
 2 
 
 8.8 
 
 1006 
 
 598 
 
 641 
 
 684 
 
 727 
 
 771 
 
 814 
 
 857 
 
 900 
 
 943 
 
 986 
 
 3 
 
 13.2 
 
 1007 
 
 003 029 
 
 073 
 
 116 
 
 159 
 
 202 
 
 245 
 
 288 
 
 331 
 
 374 
 
 417 
 
 4 
 
 17.6 
 
 1008 
 
 461 
 
 504 
 
 547 
 
 590 
 
 633 
 
 676 
 
 719 
 
 762 
 
 805 
 
 848 
 
 5 
 
 22.0 
 
 1009 
 
 891 
 
 934 
 
 977 
 
 *020 
 
 *o6 3 
 
 *io6 
 
 *i 49 
 
 *I92 
 
 *235 
 
 *278 
 
 6 
 
 IT 
 
 26.4 
 
 OA Q 
 
 1010 
 
 004 321 
 
 364 
 
 407 
 
 450 
 
 493 
 
 536 
 
 579 
 
 622 
 
 665 
 
 708 
 
 f 
 
 8 
 
 oU. o 
 
 35.2 
 
 1011 
 
 75i 
 
 794 
 
 837 
 
 880 
 
 923 
 
 966 
 
 *oo9 
 
 "052 
 
 *095 
 
 *I38 
 
 9 
 
 39.6 
 
 1012 
 
 005 i 80 
 
 223 
 
 266 
 
 309 
 
 352 
 
 395 
 
 438 
 
 481 
 
 524 
 
 567 
 
 
 1013 
 
 609 
 
 652 
 
 695 
 
 738 
 
 781 
 
 824 
 
 867 
 
 909 
 
 952 
 
 995 
 
 
 1014 
 
 006 038 
 
 08 1 
 
 124 
 
 166 
 
 209 
 
 252 
 
 295 
 
 338 
 
 380 
 
 423 
 
 
 1015 
 
 466 
 
 509 
 
 552 
 
 594 
 
 637 
 
 680 
 
 723 
 
 765 
 
 808 
 
 851 
 
 
 43 
 
 1016 
 
 894 
 
 936 
 
 979 
 
 *022 
 
 *o6s 
 
 *io7 
 
 *i5o 
 
 *I93 
 
 '236 
 
 *278 
 
 1 
 
 4.3 
 
 1017 
 
 007 321 
 
 364 
 
 406 
 
 449 
 
 492 
 
 534 
 
 577 
 
 620 
 
 -662 
 
 705 
 
 2 
 
 8.6 
 
 1018 
 
 748 
 
 790 
 
 833 
 
 876 
 
 918 
 
 961 
 
 *oo4 
 
 *046 
 
 *o89 
 
 *I 3 2 
 
 3 
 
 12.9 
 
 1019 
 
 008 174 
 
 217 
 
 259 
 
 302 
 
 345 
 
 387 
 
 430 
 
 472 
 
 515 
 
 558 
 
 4 
 
 17.2 
 
 O1 K 
 
 1020 
 
 600 
 
 643 
 
 _6_8s_ 
 
 728 
 
 770 
 
 813 
 
 856 
 
 898 
 
 941 
 
 983 
 
 6 
 
 21. o 
 25.8 
 
 1021 
 
 009 026 
 
 068 
 
 in 
 
 153 
 
 196 
 
 238 
 
 281 
 
 323 
 
 366 
 
 408 
 
 7 
 
 30.1 
 
 1022 
 
 45i 
 
 493 
 
 536 
 
 578 
 
 621 
 
 f\f\^ 
 
 706 
 
 748 
 
 791 
 
 833 
 
 8 
 
 34.4 
 
 1023 
 
 876 
 
 918 
 
 961 
 
 *oo3 
 
 *45 
 
 *o88 
 
 *I30 
 
 *I73 
 
 *2I 5 
 
 *2 5 8 
 
 9 
 
 38.7 
 
 1024 
 
 oio 300 
 
 342 
 
 385 
 
 427 
 
 470 
 
 512 
 
 554 
 
 597 
 
 639 
 
 681 
 
 
 1025 
 
 724 
 
 766 
 
 809 
 
 851 
 
 893 
 
 936 
 
 978 
 
 *020 
 
 *o6 3 
 
 *ios 
 
 
 1026 
 
 on 147 
 
 190 
 
 232 
 
 274 
 
 317 
 
 359 
 
 401 
 
 444 
 
 486 
 
 528 
 
 
 1027 
 
 570 
 
 613 
 
 655 
 
 697 
 
 740 
 
 782 
 
 824 
 
 866 
 
 909 
 
 95i 
 
 
 42 
 
 1028 
 
 993 
 
 *035 
 
 *o 7 8 
 
 *I20 
 
 *I62 
 
 *2O4 
 
 *247 
 
 *289 
 
 *33i 
 
 *373 
 
 1 
 
 4/2 
 
 1029 
 
 012 415 
 
 458 
 
 500 
 
 542 
 
 584 
 
 626 
 
 669 
 
 711 
 
 753 
 
 795 
 
 2 
 
 8.4 
 
 1030 
 
 837 
 
 879 
 
 922 
 
 964 
 
 *oo6 
 
 *048 
 
 *O9O 
 
 *I 3 2 
 
 *I74 
 
 *2I 7 
 
 8 
 
 12.6 
 
 1031 
 
 013 259 
 
 301 
 
 343 
 
 385 
 
 427 
 
 469 
 
 5ii 
 
 553 
 
 596 
 
 638 
 
 4 
 
 16.8 
 
 91 A 
 
 1032 
 
 680 
 
 722 
 
 764 
 
 806 
 
 848 
 
 890 
 
 932 
 
 974 
 
 *oi6 
 
 ="058 
 
 
 XI . v 
 
 OK O 
 
 1033 
 
 014 100 
 
 142 
 
 184 
 
 226 
 
 268 
 
 310 
 
 352 
 
 395 
 
 437 
 
 479 
 
 7 
 
 4t). i 
 
 29.4 
 
 1034 
 
 521 
 
 563 
 
 605 
 
 647 
 
 689 
 
 730 
 
 772 
 
 814 
 
 856 
 
 898 
 
 8 
 
 33.6 
 
 1035 
 
 940 
 
 982 
 
 *024 
 
 *o66 
 
 *io8 
 
 *i5o 
 
 *I 9 2 
 
 *234 
 
 *276 
 
 * 3 i8 
 
 9 
 
 37.8 
 
 1036 
 
 015 360 
 
 402 
 
 444 
 
 485 
 
 527 
 
 569 
 
 611 
 
 653 
 
 695 
 
 737 
 
 
 1037 
 
 779 
 
 821 
 
 863 
 
 904 
 
 946 
 
 988 
 
 *O3O 
 
 *O72 
 
 *ii4 
 
 *I56 
 
 
 1038 
 
 016 197 
 
 239 
 
 281 
 
 323 
 
 365 
 
 407 
 
 448 
 
 490 
 
 532 
 
 574 
 
 
 1039 
 
 616 
 
 657 
 
 699 
 
 74i 
 
 783 
 
 824 
 
 866 
 
 908 
 
 950 
 
 992 
 
 
 41 
 
 1040 
 
 017 033 
 
 075 
 
 117 
 
 159 
 
 200 
 
 242 
 
 284 
 
 326 
 
 367 
 
 409 
 
 1 
 
 4.1 
 
 1041 
 
 45i 
 
 492 
 
 534 
 
 576 
 
 618 
 
 659 
 
 701 
 
 743 
 
 784 
 
 826 
 
 2 
 
 8.2 
 
 10i2 
 
 868 
 
 909 
 
 95i 
 
 993 
 
 *034 
 
 *076 
 
 *n8 
 
 *I 59 
 
 *20I 
 
 *243 
 
 3 
 
 12.3 
 
 1043 
 
 018 284 
 
 326 
 
 368 
 
 409 
 
 451 
 
 492 
 
 534 
 
 576 
 
 6I 7 
 
 659 
 
 4 
 5 
 
 16.4 
 20.5 
 
 1044 
 
 700 
 
 742 
 
 784 
 
 825 
 
 867 
 
 908 
 
 950 
 
 992 
 
 *033 
 
 *075 
 
 6 
 
 24.6 
 
 1045 
 
 019 116 
 
 158 
 
 199 
 
 241 
 
 282 
 
 324 
 
 366 
 
 407 
 
 449 
 
 490 
 
 7 
 
 28.7 
 
 1046 
 
 532 
 
 573 
 
 615 
 
 656 
 
 698 
 
 739 
 
 781 
 
 822 
 
 864 
 
 905 
 
 8 
 
 32.8 
 
 1047 
 
 947 
 
 988 
 
 *030 
 
 *07I 
 
 *ii3 
 
 *I54 
 
 *I 95 
 
 *237 
 
 *2 7 8 
 
 *320 
 
 9 
 
 36.9 
 
 1048 
 1049 
 
 020 361 
 775 
 
 403 
 817 
 
 444 
 858 
 
 486 
 900 
 
 527 
 94i 
 
 568 
 982 
 
 610 
 
 *O24 
 
 651 
 "065 
 
 693 
 *io7 
 
 734 
 *I48 
 
 
 1050 
 
 021 189 
 
 231 
 
 272 
 
 313 
 
 355 
 
 396 
 
 437 
 
 479 
 
 520 
 
 561 
 
 
 N. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
LOGARITHMS OF NUMBERS. 
 
 21 
 
 N. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
 1050 
 
 1051 
 1052 
 1053 
 
 1054 
 1055 
 ]056 
 
 1057 
 1058 
 1059 
 
 10CO 
 
 1061 
 1062 
 1063 
 
 1064 
 1065 
 1066 
 
 1067 
 1068 
 1069 
 
 1070 
 
 1071 
 1072 
 1073 
 
 1074 
 1075 
 1076 
 
 1077 
 1078 
 1079 
 
 1080 
 
 1081 
 1082 
 1083 
 
 1084 
 1085 
 1086 
 
 1087 
 1088 
 1089 
 
 1090 
 
 1091 
 1092 
 1093 
 
 1094 
 1095 
 1096 
 
 1097 
 1098 
 1099 
 
 1100 
 
 
 
 021 189 
 
 231 
 
 272 
 
 3i3 
 
 355 
 
 396 
 
 437 
 
 479 
 
 520 
 
 561 
 
 1 
 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 i 
 
 2 
 3 
 
 4 
 5 
 6 
 7 
 8 
 9 
 
 "FT 
 
 42 
 
 4.2 
 8.4 
 12.6 
 16.8 
 21.0 
 25.2 
 29.4 
 33.6 
 37.8 
 
 41 
 
 4.1 
 8.2 
 12.3 
 16.4 
 20.5 
 24.6 
 28.7 
 32.8 
 36.9 
 
 40 
 
 4.0 
 
 8.0 
 12.0 
 16.0 
 20.0 
 24.0 
 28.0 
 32.0 
 36.0 
 
 89 
 
 3.9 
 
 7.8 
 11.7 
 15.6 
 19.5 
 23.4 
 27.3 
 31.2 
 35.1 
 
 M^M^MMMV 
 
 op. Pts. 
 
 603 
 
 022 Ol6 
 4 2S 
 
 841 
 023 252 
 
 664 
 
 024 075 
 486 
 896 
 
 644 
 057 
 470 
 
 882 
 294 
 705 
 
 116 
 
 527 
 937 
 
 685 
 
 5" 
 
 923 
 
 335 
 746 
 
 157 
 568 
 978 
 
 727 
 140 
 552 
 964 
 376 
 787 
 
 198 
 609 
 *oi9 
 
 768 
 181 
 593 
 *oos 
 
 417 
 828 
 
 239 
 650 
 *o6o 
 
 809 
 
 222 
 635 
 
 *047 
 458 
 870 
 
 280 
 691 
 
 *IOI 
 
 851 
 263 
 676 
 
 *oS8 
 
 499 
 911 
 
 321 
 732 
 
 *I42 
 
 892 
 
 3^5 
 717 
 
 *I2 9 
 541 
 952 
 
 363 
 
 773 
 *i8 3 
 
 933 
 346 
 758 
 
 *I70 
 582 
 993 
 404 
 814 
 
 *22 4 
 
 974 
 387 
 799 
 
 *2II 
 623 
 *034 
 
 445 
 855 
 
 *26 5 
 
 025 306 
 
 347 
 
 388 
 
 429 
 
 470 
 
 SH 
 
 552 
 
 593 
 
 634 
 
 674 
 
 , 715 
 026 125 
 
 533 
 942 
 027 350 
 757 
 028 164 
 
 57i 
 978 
 
 029 384 
 
 756 
 165 
 574 
 982 
 390 
 798 
 
 205 
 612 
 *oi8 
 
 797 
 
 20<$ 
 615 
 *023 
 
 431 
 839 
 
 246 
 
 653 
 
 *059 
 
 838 
 247 
 656 
 
 "064 
 472 
 879 
 
 287 
 693 
 
 *IOO 
 
 879 
 288 
 
 697 
 *io5 
 
 5i3 
 920 
 
 327 
 734 
 *I4O 
 
 920 
 329 
 737 
 
 "146 
 
 II? 
 
 368 
 
 775 
 *i8i 
 
 961 
 370 
 778 
 
 *i86 
 594 
 
 *002 
 
 409 
 
 * 8 ' 5 
 S^T) j 
 
 *002 
 
 411 
 819 
 
 *227 
 
 635 
 *O42 
 
 449 
 856 
 
 *262 
 
 *043 
 
 452 
 860 
 
 *268 
 676 
 *o83 
 
 490 
 896 
 *3Q3 
 708 
 
 *o84 
 492 
 901 
 
 * 309 
 716 
 
 *I2 4 
 
 53i 
 937 
 *343 
 
 424 
 
 465 
 
 506 
 
 546 
 
 587 
 
 627 
 
 668 
 
 749 
 
 789 
 030 195 
 600 
 
 031 004 
 408 
 812 
 
 032 216 
 619 
 
 033 021 
 
 830 
 
 * 35 
 640 
 
 045 
 449 
 853 
 256 
 659 
 062 
 
 871 
 276 
 681 
 
 085 
 489 
 893 
 296 
 699 
 
 102 
 
 9l \ 
 316 
 
 721 
 
 126 
 530 
 
 933 
 
 337 
 740 
 142 
 
 952 
 
 357 
 762 
 
 166 
 570 
 974 
 
 377 
 780 
 182 
 
 77 
 
 992 
 
 397 
 802 
 
 206 
 610 
 *oi4 
 
 417 
 
 820 
 223 
 
 *Q33 
 438 
 843 
 
 247 
 651 
 *054 
 
 458 
 860 
 263 
 665 
 
 *073 
 478 
 883 
 
 287 
 691 
 *95 
 
 498 
 901 
 303 
 
 705" 
 
 *H4 
 519 
 923 
 328 
 
 732 
 *i 35 
 
 538 
 941 
 343 
 
 *I54 
 559 
 964 
 
 368 
 772 
 *i75 
 
 ' 5 Z 8 
 981 
 
 384 
 
 424 
 
 464 
 
 504 
 
 544 
 
 625 
 
 745 
 
 785 
 
 826 
 034 227 
 628 
 
 035 029 
 
 43 
 830 
 
 036 230 
 629 
 037 028 
 
 866 
 267 
 669 
 
 069 
 470 
 870 
 
 269 
 
 906 
 308 
 709 
 
 109 
 
 510 
 9IO 
 
 309 
 
 709 
 
 108 
 
 946 
 348 
 749 
 149 
 
 550 
 950 
 
 349 
 749 
 148 
 
 986 
 388 
 789 
 
 190 
 
 590 
 990 
 
 389 
 789 
 187 
 
 *O27 
 
 428 
 829 
 
 230 
 
 630 
 
 *O3O 
 
 
 
 227 
 
 *o67 
 468 
 869 
 
 270 
 670 
 *070 
 
 469 
 868 
 267 
 
 *io7 
 508 
 909 
 
 310 
 710 
 
 *IIO 
 
 509 
 908 
 307 
 
 *I 47 
 548 
 949 
 
 350 
 
 750 
 *i5o 
 
 549 
 948 
 347 
 
 "187 
 588 
 989 
 
 390 
 790 
 *i9o 
 
 9 
 
 387 
 
 426 
 
 466 
 
 506 
 
 546 
 
 586 
 
 984 
 382 
 
 779 
 176 
 
 573 
 969 
 
 365 
 761 
 *i$6 
 
 626 
 
 665 
 
 705 
 
 745 
 
 *H3 
 54i 
 938 
 
 335 
 73i 
 
 *I2 7 
 
 523 
 919 
 
 *3U 
 708 
 
 8 
 
 785 
 
 825 
 038 223 
 620 
 
 039 017 
 
 414 
 811 
 
 040 207 
 602 
 998 
 
 041 393 
 
 B^-M^ ^B 
 
 O 
 
 865 
 262 
 660 
 
 057 
 
 454 
 850 
 
 246 
 642 
 *Q37 
 
 904 
 302 
 700 
 
 097 
 
 493 
 890 
 
 286 
 68 1 
 *077 
 
 914 
 342 
 739 
 136 
 533 
 929 
 
 325 
 721 
 *ii6 
 
 *O24 
 
 421 
 819 
 
 216 
 612 
 *oo9 
 
 405 
 800 
 *'95 
 
 "064 
 461 
 859 
 
 ? 55 
 652 
 
 *o 4 8 
 
 444 
 840 
 
 I 2 3i 
 630 
 
 6 
 
 *io3 
 501 
 
 295 
 
 484 
 879 
 *2 7 4 
 
 *i83 
 580 
 978 
 
 374 
 771 
 *i67 
 
 563 
 958 
 
 *353 
 
 432 
 
 MMMMW 
 
 1 
 
 472 
 2 
 
 5H 
 3 
 
 55i 
 4 
 
 590 
 5 
 
 669 
 
 7 
 
 748 
 9 
 
TABLE II. 
 
 TABLE II. 
 
 CONSTANTS WITH THEIR LOGARITHMS. 
 
 
 Number. 
 
 Logarithm. 
 
 Ratio of circumference to diameter, TV, 
 
 3.14159265 
 
 0.49714 99 
 
 .. n\ 
 
 9.86960440 
 
 0.99429 97 
 
 . 27T, 
 
 6.28318531 
 
 0.79817 99 
 
 .. ^, 
 
 I-77245385 
 
 0.2485749 
 
 Number of degrees in circumference, 
 
 360 
 
 2-5563025 
 
 minutes 
 
 21600' 
 
 4-33445 38 
 
 seconds 
 
 1296000" 
 
 6.11260 50 
 
 Degrees in arc equal to radius, 
 
 57- 2957795 
 
 1.75812 26 
 
 Minutes .. .. 
 
 3437'. 74677 
 
 3-53627 39 
 
 Seconds 
 
 2o6264 // .8o6 
 
 5.31442 51 
 
 Length of arc of i degree, 
 
 .01745329 
 
 8.24187 7410 
 
 ..i minute, 
 
 .00029089 
 
 6.46372 61 10 
 
 .. ..i second, 
 
 .000004848 
 
 4.68557 4910 
 
 Number of hours in i day, 
 
 24 
 
 1.38021 12 
 
 minutes 
 
 1440 
 
 3.15836 25 
 
 . seconds 
 
 86400 
 
 4-9365 37 
 
 Number of days in Julian year, 
 
 365.25 
 
 2.5625902 
 
 Naperian base, 
 
 2.718281828 
 
 0.43429 45 
 
 Modulus of common logarithms, 
 
 0.434294482 
 
 9.637784310 
 
 Hours in which earth revolves through 
 
 
 
 arc equal to radius, 
 
 3.8197186 
 
 0.58203 14 
 
 Minutes of time .. .. .. 
 
 229.18312 
 
 2.36018 26 
 
 Seconds of time 
 
 '3750-987 
 
 4-1383339 
 
III SINES AND TANGENTS OF SMALL ANGLES. 25 
 
 TABLE III. 
 
 FOR 
 
 SINES AND TANGENTS OF SMALL ANGLES. 
 
 TO FIND THE SINE OB TANGENT I 
 
 Log sin a = log a (in seconds) + & 
 Log tan a = log a (in seconds) + T. 
 
 TO FIND A SHALL ANGLE FROM ITS SINE OB TANGENTs 
 
 Log a (in seconds) = log sin a + ?' 
 Log a (in seconds) as log tan a + 2*. 
 
26 
 
 TABLE III. 
 
 
 
 99 
 
 9 
 
 L. Sin. 
 
 8 
 
 T 
 
 S' 
 
 T' 
 
 
 60 
 1 2O 
 
 1 80 
 240 
 
 
 
 I 
 2 
 
 3 
 4 
 
 6.4^73 
 76476 
 
 7.06579 
 
 4-68557 
 .68557 
 .68557 
 .68557 
 .68557 
 
 4.68557 
 .68557 
 .68557 
 .68557 
 .68558 
 
 S-3I443 
 .31443 
 .31443 
 .31443 
 .31443 
 
 5-31443 
 .31443 
 .31443 
 .31443 
 .31442 
 
 300 
 360 
 420 
 4 80 
 540 
 
 1 
 
 I 
 
 9 
 
 7.16270 
 .24188 
 .30882 
 .36682 
 .41797 
 
 4.68557 
 .68557 
 .68557 
 .68557 
 .68557 
 
 4.68558 
 .68558 
 .68558 
 .68558 
 .68558 
 
 5-31443 
 31443 
 .31443 
 31443 
 .31443 
 
 5-31442 
 3 I 442 
 31442 
 .31442 
 .31442 
 
 600 
 660 
 720 
 780 
 840 
 
 10 
 ii 
 
 12 
 13 
 
 H 
 
 7.46373 
 .50512" 
 54291 
 
 n 
 
 -4:68557 
 .68557 
 68557 
 .68557 
 68557 
 
 4-68558 
 .68558 
 .68558 
 .68558 
 .68558 
 
 S.3I443 
 .31443 
 .31443 
 31443 
 .31443 
 
 5-3I442 
 .31442 
 .31442 
 3 I 442 
 . 3*442 
 
 s 
 
 960 
 
 I02O 
 1080 
 1140 
 
 !! 
 [I 
 
 19 
 
 7 :S& 
 
 .69417 
 
 .71900 
 .74248 
 
 4 .6557 
 .68557 
 .68557 
 .68557 
 .68557 
 
 4.68558 
 .68558 
 .68558 
 .68558 
 .68558 
 
 5-31443 
 .31443 
 .31443 
 .31443 
 .31443 
 
 5-31442 
 .31442 
 .3H42 
 .3*442 
 .3*442 
 
 1200 
 1260 
 1320 
 1380 
 1440 
 
 20 
 21 
 22 
 23 
 
 24 
 
 7.76475 
 .78594 
 .80615 
 
 .82545 
 .84393 
 
 4.68557 
 .68557 
 .68557 
 .68557 
 .68557 
 
 4-68558 
 .68558 
 .68558 
 .68558 
 .68558 
 
 5-3I443 
 .31443 
 .31443 
 .31443 
 .31443 
 
 5-31442 
 3 I 442 
 .31442 
 ..31442 
 .31442 
 
 1500 
 1560 
 
 1620 
 1680 
 1740 
 
 3 
 
 % 
 
 29 
 
 7.86166 
 .87870 
 .89509 
 .91088 
 .92612 
 
 4.68557 
 .68557 
 .68557 
 .68557 
 .68557 
 
 4-68558 
 .68558 
 .68558 
 .68558 
 .68559 
 
 5-31443 
 .31443 
 .31443 
 .31443 
 31443 
 
 5.31442 
 .31442 
 .31442 
 3 I 442 
 .3*44* 
 
 1800 
 
 1860 
 1920 
 1980 
 2040 
 
 30 
 3i 
 32 
 33 
 34 
 
 7.94084 
 .95508 
 .96887 
 .98223 
 99520 
 
 4-68557 
 .68557 
 .68557 
 .68557 
 .68557 
 
 4-68559 
 .68559 
 .68559 
 .68559 
 .68559 
 
 5-31443 
 .31443 
 .31443 
 3 I 443 
 3 I 443 
 
 5.3I44I 
 3 I 44i 
 3*441 
 .3*441 
 3*44* 
 
 SHOO 
 
 2l6o 
 2220 
 2280 
 2340 
 
 8 
 8 
 
 39 
 
 8.00779 
 .02002 
 .03192 
 
 04350 
 05478 
 
 4.68557 
 68557 
 .68557 
 .68557 
 .68557 
 
 4-68559 
 .68559 
 .68559 
 .68559 
 .68559 
 
 5.3I443 
 .31443 
 .31443 
 .31443 
 .31443 
 
 5.3*44* 
 3*441 
 .3*44* 
 .31441 
 .31441 
 
 2400 
 2460 
 2520 
 2580 
 2640 
 
 40 
 
 4i 
 42 
 
 43 
 
 44 
 
 8.06578 
 .07650 
 
 .09718 
 .10717 
 
 4 'S 55 1 
 .68556 
 
 .68556 
 .68556 
 .68556 
 
 4-68559 
 .68560 
 68560 
 .68560 
 .68560 
 
 5-31443 
 3 I 444 
 3 I 444 
 .31444 
 .31444 
 
 5-3*44* 
 .3*440 
 .31440 
 .3*440 
 3*440 
 
 2700 
 2760 
 2820 
 2880 
 2940 
 
 9 
 
 47 
 48 
 
 49 
 
 8.11693 
 .12647 
 .13581 
 .14495 
 .15391 
 
 4.68556 
 .68556 
 .68556 
 .68556 
 .68556 
 
 4.68560 
 .68560 
 .68560 
 .68560 
 .68560 
 
 5-3 I 444 
 3 I 444 
 .31444 
 .3!444 
 . 3*444 
 
 5.3I440 
 .3*440 
 .31440 
 3 I 440 
 .3*440 
 
 3000 
 3060 
 3120 
 3180 
 3240 
 
 50 
 51 
 52 
 S3 
 
 54 
 
 8.16268 
 .17128 
 
 -I797I 
 .18798 
 . 19610 
 
 4-68556 
 .68556 
 .68556 
 .68556 
 .68556 
 
 4.68561 
 .68561 
 .68561 
 .68561 
 .68561 
 
 5-31444 
 3 I 444 
 3M44 
 .51444 
 3 I 444 
 
 5.31439 
 .31439 
 .3H39 
 .31439 
 .3H39 
 
 3300 
 3360 
 3420 
 3480 
 
 3540 
 
 P 
 P 
 
 59 
 
 8.20407 
 .21189 
 .21958 
 .22713 
 
 23456 
 
 4-68556 
 .68556 
 .68555 
 .68555 
 .68555 
 
 4.68561 
 .68561 
 .68561 
 .68562 
 .68562 
 
 5-31444 
 3 I 444 
 3 I 445 
 .31445 
 31445 
 
 5-3I439 
 .3H39 
 .31439 
 .3H38 
 .31438 
 
 3600 
 
 60 
 
 8.24186 
 
 4-68555 
 
 4.68562 
 
 5-3I445 
 
 5 3H38 
 
SINES AND TANGENTS OF SMALL ANGLES. 
 
 1 
 
 M 
 
 t 
 
 L.Sin. 
 
 8 
 
 T 
 
 8' 
 
 r 
 
 3600 
 
 3660 
 
 3720 
 3780 
 3840 
 
 o 
 I 
 
 2 
 
 3 
 
 4 
 
 8.24186 
 .24907 
 .25609 
 .26304 
 .26988 
 
 4-68555 
 .68555 
 
 .68555 
 .68555 
 
 .68555 
 
 4.68562 
 .68562 
 .68562 
 .68562 
 .68563 
 
 5-3I445 
 .31445 
 31445 
 .31445 
 .31445 
 
 5.31438 
 31438 
 .31435 
 .31438 
 
 3H37 i 
 
 3900 
 3960 
 4020 
 4080 
 4140 
 
 i 
 I 
 
 9 
 
 8.27661 
 .28324 
 
 .28977 
 .29621 
 
 .30255 
 
 4-68555 
 .68555 
 
 .68555 
 .68555 
 .68555 
 
 4.68563 
 .68563 
 .68563 
 .68563 
 .68563 
 
 5-31445 
 .31445 
 .31445 
 31445 
 .31445 
 
 5-3H37 1 
 .3H37 
 .3H37 
 .3H37 
 31437 
 
 4200 
 4260 
 4320 
 
 4440 
 
 10 
 ii 
 
 12 
 13 
 
 H 
 
 8.30879 
 
 .3H95 
 .32103 
 .32702 
 .33292 
 
 4-68554 
 .68554 
 -68554 
 .68554 
 .68554 
 
 4-68563 
 .68564 
 .68564 
 .68564 
 .68564 
 
 5-31446 
 .31446 
 .31446 
 .31446 
 .31446 
 
 5.3H37 
 
 .31436 
 .31436 
 
 4620 
 4680 
 4740 
 
 % 
 
 19 
 
 8.33875 
 34450 
 .35018 
 .35578 
 .36131 
 
 4-68554 
 .68554 
 .68554 
 .68554 
 .68554 
 
 4.68564 
 .68565 
 .68565 
 .68565 
 .68565 
 
 5-31446 
 .31446 
 .31446 
 .31446 
 .31446 
 
 5.3I436 
 .3H3S 
 .31435 
 .31435 
 .31435 
 
 4800 
 4860 
 4920 
 498o 
 
 5040 
 
 20 
 
 21 
 22 
 23 
 
 24 
 
 8.36678 
 .37217 
 
 '38276 
 .38796 
 
 4.68554 
 .6S553 
 .68553 
 .68553 
 
 .68553 
 
 4.68565 
 .68566 
 .68566 
 .68566 
 .68566 
 
 5- 3M46 
 .31447 
 .31447 
 .31447 
 3 H47 
 
 5.31435 
 .31434 
 .31434 
 .3H34 
 .31434 
 
 5100 
 5160 
 5220 
 5280 
 5340 
 
 11 
 11 
 
 29 
 
 '40320 
 .40816 
 
 4-68553 
 .68553 
 .68553 
 .68553 
 .68553 
 
 4.68566 
 .68567 
 .68567 
 .68567 
 .68567 
 
 5-3I447 
 .31447 
 .31447 
 .31447 
 31447 
 
 5-3I434 
 
 ^433 
 .31433 
 .31433 
 
 5400 
 
 5520 
 558o 
 5640 
 
 30 
 31 
 32 
 
 33 
 34 
 
 8 41792 
 .42272 
 42746 
 .43216 
 .43680 
 
 4-68553 
 .68552 
 .68552 
 .68552 
 .68552 
 
 4-68567 
 .6856$ 
 .68568 
 .68568 
 .68568 
 
 5-31447 
 .31448 
 .31448 
 .31448 
 31448 
 
 5-3H33 
 .3H32 
 
 '3H32 
 
 5700 
 5760 
 5820 
 5880 
 
 CO CO CO CO CO 
 
 8.44139 
 
 .44594 
 .45044 
 
 .45489 
 .45930 
 
 4-68552 
 .68552 
 .68552 
 .68552 
 .68551 
 
 4-68569 
 .68569 
 .68569 
 .68569 
 .68569 
 
 5-3I448 
 .31448 
 .31448 
 .31448 
 .31449 
 
 ^31431 
 3H3I 
 .3H3I 
 3I43I 
 
 6060 
 6120 
 6180 
 6240 
 
 40 
 41 
 42 
 43 
 44 
 
 8.46366 
 
 .46799 
 .47226 
 .4p5o 
 .48069 
 
 4.68551 
 .68551 
 .68551 
 .68551 
 .68551 
 
 4.68570 
 .68570 
 .68570 
 .68570 
 .68571 
 
 5.31449 
 .31449 
 3 '449 
 .31449 
 .31449 
 
 5-3I430 
 .31430 
 .3M30 
 
 '31429 
 
 6300 
 6360 
 6420 
 6480 
 6540 
 
 49 
 
 '49304 
 .49708 
 .50108 
 
 4.68551 
 .68551 
 .68550 
 .68550 
 .68550 
 
 4.68571 
 .68571 
 .68572 
 .68572 
 .68572 
 
 5-3I449 
 31449 
 
 '3H50 
 
 5-3I429 
 .31429 
 .31428 
 .31428 
 .31428 
 
 6600 
 6660 
 6720 
 6780 
 6840 
 
 50 
 51 
 52 
 53 
 54 
 
 8.50504 
 
 '51673 
 .52055 
 
 4.68550 
 .68550 
 .68550 
 .68550 
 .68550 
 
 4.68572 
 .68573 
 .68573 
 .68573 
 .68573 
 
 5.3I450 
 .3H50 
 .3H50 
 .3H50 
 
 5.31428 
 .31427 
 31427 
 .31427 
 .31427 
 
 6900 
 6960 
 7020 
 7080 
 7I4P 
 
 11 
 11 
 
 59 
 
 8.52434 
 .52810 
 .53183 
 53552 
 .53919 
 
 4.68549 
 .68549 
 .68549 
 .68549 
 .68549 
 
 4.68574 
 .68574 
 .68574 
 .68575 
 68575 
 
 5.3I45I 
 .3H5I 
 .31451 
 .3H5I 
 .31451 
 
 5.3I426 
 .31426 
 .31426 
 .31425 
 
 31425 
 
 7200 
 
 60 
 
 8.54282 
 
 4.68549 
 
 4-68575 
 
 53H5I 
 
 5 31425 
 
TABLE IV. LOGARITHMS, ETC. 29 
 
 TABLE IV. 
 
 LOGARITHMS 
 
 OF THE 
 
 SINE, COSINE, TANGENT AND COTANGENT 
 
 FOR 
 
 EACH MINUTE OF THE QUADRANT. 
 
TABLE IV. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c. d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 
 
 Proj 
 
 ). Pt 
 
 S. 
 
 
 
 I 
 2 
 
 3 
 
 4 
 
 6.46373 
 6 . 76 476 
 6.94085 
 7.06 579 
 
 30x03 
 17609 
 12494 
 9601 
 
 6.46373 
 o . 76 476 
 6.94085 
 7.06579 
 
 30103 
 17609 
 12494 
 0601 
 
 3.53627 
 3.23524 
 3 05915 
 2.93421 
 
 o.ooooo 
 o.ooooo 
 o.ooooo 
 o.ooooo 
 
 0.00000 
 
 00 
 
 3 
 
 3 
 
 .1 
 .2 
 
 3 
 
 3476 
 348 
 695 
 1043 
 
 3218 
 322 
 644 
 965 
 
 2997 
 
 300 
 
 599 
 899 
 
 i 
 I 
 
 9 
 
 7.16 270 
 7 24188 
 7.30882 
 7.36682 
 7.41 797 
 
 7918 
 6694 
 5800 
 
 55 
 
 4576 
 
 7.16270 
 7.24 188 
 7.30882 
 7.36682 
 7.41 797 
 
 7918 
 6694 
 5800 
 
 S5 
 
 2.83730 
 2.75812 
 2.69 118 
 2.63318 
 2.58203 
 
 o.ooooo 
 o.ooooo 
 o.ooooo 
 
 0.00000 
 
 o.ooooo 
 
 55 
 54 
 53 
 52 
 5i 
 
 4 
 5 
 
 .x 
 
 1390 
 1738 
 
 2&M 
 
 280 
 
 X28 7 
 
 1609 
 
 2633 
 263 
 
 1199 
 1498 
 
 2483 
 248 
 
 10 
 ii 
 
 12 
 13 
 14 
 
 7.46373 
 7.50512 
 7-54291 
 7-57 767 
 7.60985 
 
 4139 
 3779 
 3476 
 32x8 
 
 7-46373 
 7.50512 
 7.5429I 
 7.57767 
 7.60986 
 
 4139 
 3779 
 3476 
 3219 
 
 2.53627 
 2.49488 
 2.45 709 
 2.42233 
 2.39014 
 
 o.oo ooo 
 o.ooooo 
 o.ooooo 
 o.ooooo 
 o.ooooo 
 
 50 
 
 4 2 
 4 8 
 
 47 
 46 
 
 .2 
 
 3 
 4 
 5 
 
 500 
 84X 
 ZI2X 
 S401 
 
 2227 
 
 527 
 790 
 1053 
 
 1316 
 
 497 
 745 
 993 
 1242 
 
 1848 
 
 ii 
 
 Is 7 
 19 
 
 7.63 982 
 7.66 784 
 7.69417 
 7.71900 
 7.74248 
 
 2802 
 2633 
 2483 
 2348 
 
 7.63982 
 7.66 ?8| 
 7.69418 
 7.71900 
 7.74248 
 
 2803 
 2633 
 2482 
 2348 
 2228 
 
 2.36018 
 2.33215 
 2.30582 
 2.28 100 
 2.25 752 
 
 0.00000 
 
 o.ooooo 
 9-99999 
 9-99999 
 9 99999 
 
 45 
 44 
 43 
 42 
 41 
 
 .x 
 
 .2 
 
 3 
 4 
 
 .5 
 
 22 3 
 445 
 668 
 Sgx 
 11x3 
 
 202 
 
 404 
 606 
 808 
 XOIO 
 
 370 
 554 
 739 
 924 
 
 20 
 
 21 
 22 
 23 
 
 24 
 
 7.76475 
 7- 78*>4 
 7.80615 
 
 7-82545 
 7-84393 
 
 2119 
 
 2O2I 
 X930 
 
 x8 4 8 
 
 7.76476 
 
 7.78595 
 7.80615 
 7-82546 
 7 84394 
 
 2119 
 
 2O2O 
 
 1931 
 1848 
 
 2.23524 
 
 2.21 405 
 2.19385 
 2.17454 
 2.15 606 
 
 9 99999 
 9-99999 
 9-99999 
 9-99999 
 9-99999 
 
 40 
 
 37 
 36 
 
 .1 
 
 .2 
 
 3 
 
 1704 
 
 170 
 
 5" 
 
 1579 
 
 158 
 
 3x6 
 474 
 
 I47 
 47 
 
 294 
 442 
 
 11 
 11 
 
 29 
 
 7.86 166 
 7.87870 
 7.89 509 
 7 91088 
 7.92 612 
 
 1704 
 x6 39 
 579 
 524 
 
 7.86 167 
 7-87871 
 7.89510 
 7.91 089 
 7.92613 
 
 1704 
 1639 
 
 579 
 1524 
 
 2.13833 
 2.12 129 
 2 . 10 490 
 2.08911 
 2.07387 
 
 9.99999 
 9-99999 
 9 99999 
 9-99999 
 9.99998 
 
 35 
 34 
 33 
 
 31 
 
 4 
 5 
 
 .1 
 
 682 
 852 
 
 1379 
 138 
 
 632 
 
 789 
 
 1297 
 130 
 
 589 
 736 
 
 1223 
 
 122 
 
 30 
 
 32 
 33 
 34 
 
 7.94084 
 
 7-95 58 
 7.96 887 
 7.98223 
 7-99 520 
 
 1472 
 1424 
 379 
 X336 
 1297 
 
 7.94086 
 7-95 5io 
 7.96889 
 7-98225 
 7.99522 
 
 *473 
 1424 
 '379 
 1336 
 "97 
 
 2.05914 
 2.04490 
 2.03 III 
 
 2.01 77<j 
 2.00478 
 
 9.99998 
 9.99998 
 9.99998 
 9.99998 
 9.99998 
 
 80 
 
 S 
 
 .2 
 
 3 
 4 
 5 
 
 276 
 
 552 
 
 690 
 
 11*8 
 
 259 
 389 
 5*9 
 649 
 
 45 
 
 367 
 489 
 
 6x2 
 
 39 
 
 8.00 779 
 
 8.02002 
 
 8.03 192 
 8.04350 
 8.05478 
 
 1259 
 
 X223 
 II9O 
 XI58 
 XI28 
 
 8.00 781 
 8.02004 
 8.03 194 
 8.04353 
 8.05481 
 
 1223 
 1190 
 
 "59 
 1x28 
 
 99 219 
 .97996 
 .96806 
 .95 647 
 945*9 
 
 9.99998 
 9.99998 
 9-99997 
 9-99 997 
 9 99997 
 
 25 
 24 
 23 
 
 22 
 21 
 
 .x 
 
 .2 
 
 3 
 .4 
 .5 
 
 "5 
 
 116 
 232 
 347 
 463 
 570 
 
 xxo 
 
 220 
 
 33 
 440 
 
 55 
 
 105 
 209 
 
 418 
 
 523 
 
 40 
 
 42 
 43 
 44 
 
 8.06578 
 8.07650 
 8.08696 
 8.09 718 
 8.10 717 
 
 IO72 
 1046 
 X022 
 
 999 
 
 n-rfi 
 
 8.06581 
 8.07653 
 8.08 700 
 8.09 722 
 8 . 10 720 
 
 1072 
 1047 
 
 XO22 
 
 O?6 
 
 93 419 
 .92347 
 .91300 
 
 9-99997 
 9-99997 
 9-99997 
 9-99997 
 9-99996 
 
 20 
 
 19 
 18 
 
 \l 
 
 .1 
 
 .2 
 
 ^ 
 
 999 
 
 100 
 200 
 300 
 
 954 
 95 
 
 191 
 
 286 
 
 914 
 9 1 
 
 183 
 274 
 
 46 
 47 
 48 
 
 49 
 
 8.11693 
 8.12647 
 8.13581 
 8.14495 
 
 8.I539I 
 
 97 
 
 954 
 934 
 914 
 896 
 
 8. ii 696 
 8.12651 
 
 8.13585 
 8.14500 
 
 8.15395 
 
 97 
 955 
 934 
 9i5 
 895 
 
 0-0 
 
 88304 
 87349 
 .86415 
 .85500 
 .84605 
 
 9.99996 
 9.99996 
 9.99996 
 
 9-99996 
 
 15 
 13 
 
 12 
 II 
 
 4 
 5 
 
 .1 
 
 400 
 500 
 
 877 
 
 88 
 
 382 
 477 
 
 843 
 
 84 
 
 366 
 457 
 
 812 
 8x 
 
 50 
 
 5' 
 
 52 
 53 
 54 
 
 8.16268 
 8.17 128 
 8.17971 
 8.18798 
 8 19610 
 
 77 
 860 
 
 843 
 827 
 812 
 
 8.16273 
 
 8.I7I33 
 8.17976 
 8.18804 
 8.19616 
 
 860 
 843 
 828 
 812 
 
 83 727 
 .82867 
 .82 024 
 .81 196 
 .80384 
 
 9-99995 
 9 99995 
 9-99995 
 9 99995 
 9 99995 
 
 10 
 
 I 
 
 .2 
 
 3 
 4 
 5 
 
 175 
 
 263 
 
 438 
 
 169 
 253 
 337 
 422 
 
 162 
 244 
 325 
 406 
 
 3 
 
 57 
 58 
 59 
 
 8.20407 
 8.21 189 
 8.21 958 
 8.22713 
 8.23456 
 
 797 
 . 782 
 769 
 755 
 743 
 
 8.20413 
 8.21 195 
 8.21 964 
 
 8.22 720 
 8.23462 
 
 797 
 782 
 769 
 
 756 
 742 
 
 79587 
 .78805 
 .78036 
 .77280 
 .76538 
 
 9-99994 
 9.99994 
 9.99994 
 9.99994 
 9.99994 
 
 5 
 4 
 
 2 
 I 
 
 .2 
 
 3 
 4 
 
 78 
 56 
 
 755 
 
 75 
 
 226 
 
 730 
 
 73 
 x 4 6 
 219 
 292 
 
 i 00 
 
 8.24 186 
 
 .73 
 
 8.24 192 
 
 73 
 
 i . 75 808 
 
 9 99993 
 
 
 
 
 
 
 3 5 
 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. 
 
 c. d. 
 
 L. Tang. 
 
 L. Sin. 
 
 9 
 
 
 Pro] 
 
 >.Pt 
 
 S. 
 
 
 
 
 
 
 89 
 
 
 
 
 
 
 
LOGARITHMS OF SINE, COSINE, TANGENT AND COTANGENT, ETC. 31 
 
 
 1 
 
 
 
 
 9 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 
 Prop. Pts. 
 
 
 
 I 
 
 2 
 
 3 
 4 
 
 8.24 186 
 8.24903 
 8.25609 
 8.26304 
 8.26988 
 
 717 
 7 o6 
 695 
 68 4 
 6 73 
 
 66 3 
 653 
 6 44 
 634 
 624 
 
 616 
 608 
 599 
 590 
 583 
 
 575 
 568 
 560 
 553 
 547 
 539 
 533 
 526 
 520 
 5H 
 508 
 502 
 496 
 49 1 
 485 
 480 
 474 
 470 
 464 
 459 
 455 
 450 
 445 
 441 
 436 
 433 
 427 
 424 
 419 
 416 
 411 
 408 
 404 
 400 
 396 
 393 
 39 
 386 
 382, 
 379 
 376 
 373 
 369 
 367 
 363 
 
 8.24 192 
 8.24910 
 8.25616 
 8.26312 
 8.26996 
 
 7 o6 
 696 
 68 4 
 673 
 66 3 
 654 
 643 
 634 
 625 
 
 617 
 607 
 
 599 
 
 584 
 
 575 
 568 
 
 553 
 546 
 
 54<> 
 533 
 527 
 520 
 
 509 
 502 
 496 
 
 49 1 
 486 
 
 480 
 475 
 470 
 464 
 460 
 
 455 
 450 
 446 
 
 437 
 432 
 428 
 
 424 
 
 420 
 416 
 413 
 408 
 
 4<H 
 
 401 
 
 397 
 393 
 
 390 
 386 
 383 
 380 
 
 376 
 373 
 370 
 367 
 363 
 
 .75808 
 75090 
 
 '73688 
 73004 
 
 9-99993 
 9-99993 
 9-99993 
 9 99 993 
 9-99992 
 
 00 
 
 59 
 58 
 
 P 
 
 .X 
 
 .2 
 
 3 
 
 4 
 5 
 
 .1 
 
 .3 
 3 
 4 
 
 5 
 .x 
 
 .9 
 
 3 
 4 
 5 
 
 .x 
 
 .3 
 
 3 
 4 
 5 
 
 .x 
 
 .3 
 
 3 
 4 
 5 
 
 .1 
 
 .9 
 
 3 
 4 
 .5 
 
 .1 
 
 .3 
 
 3 
 4 
 5 
 
 .1 
 
 .3 
 
 3 
 4 
 
 5 
 
 .2 
 
 3 
 
 4 
 5 
 
 717 
 
 71.7 
 143-4 
 215.1 
 286.8 
 358-5 
 
 653 
 
 65-3 
 130.6 
 
 195.9 
 261.9 
 396.5 
 
 599 
 
 59-9 
 119.8 
 179.7 
 939.6 
 299.5 
 
 553 
 
 55-3 
 110.6 
 165.9 
 
 221.2 
 
 276.5 
 
 5-4 
 
 102.8 
 
 154.2 
 
 205.6 
 
 957.0 
 
 480 
 
 48 
 96 
 
 44 
 199 
 940 
 
 9 
 
 135 
 1 80 
 225 
 
 420 
 
 4* 
 
 84 
 126 
 x68 
 
 310 
 390 
 
 39 
 78 
 117 
 
 '95 
 
 695 
 
 69-5 
 139.0 
 208.5 
 278.3 
 347 5 
 
 634 
 
 63-4 
 126.8 
 190.2 
 253.6 
 317.0 
 
 583 
 
 58.3 
 116.6 
 
 174-9 
 933.2 
 291.5 
 
 539 
 
 53-9 
 107.8 
 161.7 
 215.6 
 269.5 
 
 Soa 
 
 50.2 
 100.4 
 150.6 
 
 200.8 
 
 251.0 
 
 470 
 
 47 
 94 
 
 188 
 *35 
 
 ^ 
 
 i88 
 132 
 176 
 220 
 
 4 IO 
 
 41 
 82 
 123 
 164 
 205 
 
 3 80 
 
 38 
 76 
 1X4 
 
 190 
 
 673 
 
 67.3 
 134.6 
 201.9 
 269.3 
 336.5 
 
 6x6 
 
 61.6 
 123. a 
 184.8 
 246.4 
 308.0 
 
 568 
 56.8 
 113.6 
 170.4 
 227.3 
 284.0 
 
 5a6 
 S a.6 
 105.3 
 X57-8 
 310.4 
 263.0 
 
 490 
 49 
 98 
 147 
 196 
 
 45 
 
 460 
 
 46 
 93 
 38 
 184 
 330 
 
 430 
 
 43 
 86 
 
 X29 
 
 179 
 915 
 
 400 
 
 40 
 
 80 
 
 120 
 1 60 
 20O 
 
 370 
 
 37 
 74 
 
 XXX 
 
 148 
 185 
 
 9 
 10 
 
 ii 
 
 12 
 
 13 
 14 
 
 8.27661 
 8.28324 
 
 8.28977 
 8.29621 
 8-3025? 
 
 8.27669 
 8.28332 
 8.28986 
 8.29 629 
 8 . 30 263 
 
 7233 1 
 .71668 
 .71014 
 .70371 
 69 737 
 
 9.99992 
 9.99992 
 9.99992 
 9-99992 
 9.99991 
 
 55 
 54 
 53 
 52 
 
 8.30879 
 
 8.31 495 
 8.32 103 
 8.32 702 
 8.33292 
 
 8.30888 
 8-31 So? 
 
 8.32 112 
 8.327II 
 8.33302 
 
 .69 112 
 
 9.99991 
 9.99991 
 9-99990 
 9.99990 
 9.99990 
 
 50 
 
 It 
 
 19 
 
 8-33 875 
 8.34450 
 8.35018 
 
 8-35 578 
 8.36131 
 
 8.33886 
 8.34461 
 8.35029 
 
 8-35 590 
 8.36 143 
 
 .66 114 
 
 65 539 
 .64971 
 .64419 
 63 857 
 
 9.99990 
 9-99989 
 
 9.99989 
 9.99989 
 
 45 
 44 
 43 
 42 
 41 
 
 20 
 
 21 
 
 22 
 
 23 
 
 24 
 
 8.36678 
 8.37217 
 8.37750 
 8.38276 
 8.38796 
 
 8.36689 
 8.37229 
 8.37 762 
 8.38289 
 8.38809 
 
 633" 
 .62 771 
 .62 238 
 .61 711 
 .61 191 
 
 9.99988 
 9-99988 
 9.99988 
 9.99987 
 9.99987 
 
 40 
 
 39 
 38 
 
 i 
 
 29 
 
 "30" 
 
 32 
 33 
 34 
 
 8.39310 
 8.39818 
 8.40320 
 8.40816 
 8.41 307 
 
 8.39323 
 8.39832 
 8.40334 
 8.40 830 
 8.41 321 
 
 .60677 
 .60168 
 .59666 
 .59170 
 58679 
 
 9.99987 
 9.99986 
 9.99986 
 9.99986 
 
 9.99984 
 9.99984 
 
 35 
 34 
 33 
 32 
 
 8.41 792 
 8.42272 
 8.42 746 
 8.43216 
 8.43680 
 
 8.41 807 
 8.42287 
 8.42 762 
 8.43232 
 8.43696 
 
 58 193 
 57713 
 57238 
 56 768 
 56304 
 
 30 
 
 29 
 28 
 
 11 
 
 35 
 
 36 
 
 39 
 
 8.44 139 
 8-44594 
 8.45044 
 8.45489 
 8-45 93 
 
 8.44 156 
 8.44611 
 8.45061 
 
 8-45 507 
 8.45948 
 
 -55844 
 55389 
 54939 
 54493 
 54052 
 
 9-99983 
 
 9.99982 
 9.99982 
 
 25 
 24 
 
 23 
 
 22 
 21 
 
 40 
 
 42 
 43 
 44 
 
 8.46366 
 8.46 799 
 8.47 226 
 8.47650 
 8.48069 
 
 8.46385 
 8.46817 
 
 8.47245 
 8.47669 
 8.48089 
 
 .53615 
 53 183 
 52 755 
 52331 
 Si 9ii 
 
 9.99982 
 9-9998I 
 9.99981 
 9.99981 
 9.99980 
 
 20 
 
 18 
 
 \l 
 
 1 
 
 49 
 
 8.48485 
 8.48896 
 8.49304 
 8.49 708 
 8.50 108 
 
 8.48505 
 8.48917 
 8.49325 
 8.49 729 
 8.50 130 
 
 5 1 495 
 5i 083 
 50675 
 .50271 
 
 49 870 
 
 9.99980 
 9-99979 
 9-99979 
 9-99979 
 9.99978 
 
 15 
 14 
 13 
 
 12 
 II 
 
 50 
 
 1 5I 
 52 
 
 53 
 59 
 
 8.50 504 
 8.50 897 
 8.51287 
 
 8.51 673 
 8.52055 
 
 8-50527 
 8.50920 
 8.51 310 
 8.51 696 
 8.52079 
 
 49473 
 .49 080 
 .48 690 
 .48 304 
 47 921 
 
 9.99978 
 9-99977 
 9-99977 
 9-99977 
 9.99976 
 
 10 
 
 
 i 
 
 5 
 4 
 3 
 
 2 
 
 I 
 
 8.52434 
 8.52810 
 8-53 183 
 8.53552 
 8.53919 
 
 8.52459 
 8.52835 
 8.53 208 
 8-53578 
 8.53945 
 
 47 541 
 47 165 
 .46 792 
 .46422 
 46055 
 
 9.99976 
 9-99975 
 9-99975 
 9-99974 
 9-99974 
 
 00 
 
 8.54282 
 
 8.54308 
 
 1.45692 
 
 9-99974 
 
 
 
 
 L. Cos. 
 
 (1. 
 
 L. Cotg. 
 
 c.d. 
 
 L. Tang. 
 
 L. Sin. 
 
 / 
 
 Prop. Pts. 
 
 88 
 
TABLE IV. 
 
 
 
 
 
 
 2 
 
 
 
 
 
 
 
 t 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 
 
 Pro] 
 
 ). PtS 
 
 >. 
 
 
 
 I 
 
 2 
 
 3 
 4 
 
 8.54282 
 8 . 54 642 
 8-54999 
 8-55354 
 8-55 705 
 
 360 
 
 357 
 355 
 35i 
 349 
 
 8.54308 
 8.54669 
 8.55027 
 8.55382 
 8-55734 
 
 361 
 358 
 
 355 
 352 
 349 
 
 1.45692 
 I.4533I 
 44973 
 .44618 
 .44266 
 
 9-99974 
 9-99973 
 9-99973 
 9.99972 
 9.99972 
 
 GO 
 
 59 
 
 58 
 
 11 
 
 .1 
 
 .2 
 
 3 
 
 360 
 36 
 
 72 
 
 108 
 
 350 
 
 35 
 70 
 105 
 
 340 
 
 3* 
 
 a 
 
 102 
 
 I 
 
 9 
 
 8.56054 
 8 . 56 400 
 
 8.56743 
 8.57084 
 8.57421 
 
 346 
 343 
 341 
 337 
 336 
 
 8.56083 
 8.56429 
 
 8.56773 
 8.57114 
 
 8-57452 
 
 346 
 344 
 34i 
 338 
 
 006 
 
 .43917 
 43 571 
 43 227 
 .42886 
 42 548 
 
 9.99971 
 9.99971 
 9.99970 
 9.99970 
 9.99969 
 
 55 
 54 
 53 
 52 
 5i 
 
 4 
 5 
 .6 
 
 7 
 .8 
 
 144 
 
 180 
 216 
 252 
 288 
 
 140 
 
 75 
 
 210 
 
 245 
 280 
 
 I 3 6 
 170 
 204 
 2 3 8 
 2 7 2 
 
 10 
 
 it 
 
 12 
 13 
 
 14 
 
 8-57757 
 8 . 58 089 
 
 8.58419 
 8.58747 
 8.59072 
 
 333 
 330 
 328 
 325 
 323 
 
 8.57 788 
 8.58121 
 
 8 58451 
 8.58779 
 8.59105 
 
 333 
 330 
 3?8 
 y 
 
 32* 
 
 .42 212 
 .41 879 
 
 41 549 
 
 .41 221 
 
 .40895 
 
 9.99969 
 9.99968 
 9-99968 
 9.99967 
 9-99967 
 
 50 
 
 8 
 % 
 
 9 
 .x 
 
 .3 
 
 3 
 
 324 
 330 
 
 33 
 66 
 
 99 
 
 315 
 320 
 32 
 6 4 
 9 6 
 
 306 
 310 
 3* 
 
 6a 
 93 
 
 15 
 10 
 17 
 
 18 
 19 
 
 8-59395 
 8.59715 
 8.60033 
 8.60349 
 8.60662 
 
 320 
 3i3 
 316 
 313 
 311 
 
 8.59428 
 
 8 59749 
 8.60068 
 8 . 60 384 
 8.60698 
 
 321 
 319 
 316 
 314 
 
 .40572 
 .40251 
 -39932 
 .396l6 
 .39302 
 
 9-99967 
 9.99966 
 9.99966 
 
 9-99965 
 9.99964 
 
 45 
 44 
 43 
 42 
 41 
 
 *4 
 5 
 .6 
 
 7 
 
 .8 
 
 132 
 165 
 108 
 231 
 264 
 
 128 
 
 160 
 192 
 224 
 256 
 
 124 1 
 
 55 
 
 186 . 
 217 
 248 . 
 
 20 
 
 21 
 22 
 
 2 3 
 24 
 
 8.60973 
 8.61 282 
 8.61 589 
 8.61 894 
 8.62 196 
 
 309 
 307 
 305 
 302 
 
 8.61 009 
 8.61 319 
 8.61 626 
 8.61 931 
 8.62234 
 
 310 
 307 
 305 
 303 
 
 .38991 
 .38681 
 
 .3f374 
 .38069 
 37 766 
 
 9.99964 
 9.99963 
 9.99963 
 9.99962 
 9.99962 
 
 40 
 
 39 
 38 
 
 y 
 
 y 
 
 .X 
 
 .a 
 
 3 
 
 297 
 300 
 30 
 60 
 90 
 
 288 
 290 
 
 29 
 58 
 87 
 
 27$ 
 285 
 28.- 
 57-< 
 85-5 
 
 s 
 
 3 
 
 29 
 
 8.62497 
 8.62 79! 
 8.63091 
 8.63385 
 8.63678 
 
 298 
 296 
 294 
 293 
 
 8-62 535 
 8.62834 
 8.63 131 
 8.63426 
 8.63 718 
 
 299 
 297 
 
 295 
 292 
 
 .37465 
 
 .37 166 
 36869 
 
 .36574 
 .36282 
 
 9.99961 
 9.99961 
 9.99960 
 9.99960 
 9-99959 
 
 35 
 34 
 33 
 32 
 3* 
 
 4 
 .5 
 .6 
 
 7 
 
 .8 
 
 120 
 ISO 
 
 180 
 
 210 
 
 240 
 
 116 
 145 
 174 
 203 
 232 
 
 114.0 
 142.5 
 171.0 
 
 199.5 
 228.0 
 
 BO 
 
 3i 
 32 
 33 
 34 
 
 8.63968 
 8.64256 
 8.64543 
 8.64827 
 8.65 no 
 
 288 
 287 
 284 
 283 
 281 
 
 8.64009 
 8.64298 
 8.64585 
 8.64870 
 8.65 154 
 
 289 
 ,.87 
 "85 
 284 
 281 
 
 35 99i 
 35 702 
 35415 
 35 130 
 .34846 
 
 9-99959 
 9.99958 
 9-99958 
 9-99957 
 9.99956 
 
 80 
 
 3 
 
 11 
 
 9 
 .x 
 
 .2 
 
 3 
 
 270 
 280 
 
 28.0 
 S 6.0 
 84.0 
 
 275 
 
 27.5 
 55-0 
 82.5 
 
 256.5 
 270 
 27.0 
 54-0 
 
 81.0 
 
 35 
 36 
 
 * 
 
 1 39 
 
 8-65391 
 8.65670 
 8.65947 
 8.66223 
 8.66497 
 
 279 
 277 
 276 
 274 
 
 8.65435 
 8.65 715 
 8.65993 
 8.66269 
 
 8.66543 
 
 280 
 278 
 276 
 274 
 
 .34565 
 34285 
 .34007 
 33 73i 
 33457 
 
 9.99956 
 9-99955 
 9-99955 
 9-99954 
 9-99954 
 
 25 
 24 
 
 23 
 
 22 
 21 
 
 4 
 5 
 .6 
 
 7 
 .8 
 
 112. 
 
 I40.O 
 
 168.0 
 196.0 
 224.0 
 
 IIO.O 
 
 137.5 
 
 165.0 
 
 192.5 
 
 22O.O 
 
 108.0 
 135-0 
 162.0 
 189 o 
 
 2ld 
 
 40 
 
 4i 
 
 42 
 
 43 
 44 
 
 8.66769 
 8.67039 
 8.67308 
 
 8.67575 
 8.67841 
 
 270 
 269 
 267 
 266 
 267 
 
 8.66816 
 8.67087 
 8.67356 
 8.67624 
 8.67890 
 
 271 
 269 
 268 
 266 
 _g. 
 
 33 184 
 32913 
 .32644 
 .32376 
 .32 no 
 
 9-99953 
 9.99952 
 9-99952 
 9-99951 
 9-99951 
 
 20 
 
 JQ 
 
 !2 
 
 .1 
 
 .2 
 
 3 
 
 265 
 
 .26.5 
 53-0 
 79-5 
 
 260 
 
 .26.O 
 .52.0 
 . 7 8.0 
 
 255 
 
 25.5 
 .51.0 
 
 .76.5 
 
 9 
 
 % 
 
 49 
 
 8.68 104 
 8.68367 
 8.68627 
 8.68886 
 8.69 144 
 
 263 
 260 
 
 259 
 
 258 
 
 2-5 
 
 8.68 154 
 8.68417 
 8.68678 
 8.68938 
 8.69 196 
 
 263 
 261 
 260 
 258 
 
 .31 846 
 
 31 583 
 .31 322 
 .31 062 
 30804 
 
 9-99950 
 9-99949 
 9.99949 
 9.99948 
 9.99948 
 
 15 
 
 H 
 13 
 
 12 
 II 
 
 -4 
 
 5 
 .6 
 
 7 
 .8 
 
 132-5 
 159.0 
 185-5 
 
 212.0 
 
 2^8 <; 
 
 I04.O 
 130.0 
 156.0 
 182.0 
 208.0 
 
 127.5 
 153.0 
 178.5 
 
 204.0 
 
 50 
 
 5i 
 
 52 
 S3 
 
 54 
 
 8.69400 
 8.69654 
 8.69907 
 
 8.70159 
 8.70409 
 
 254 
 253 
 253 
 250 
 
 8.69453 
 8.69708 
 8.69962 
 8.70214 
 8.70465 
 
 25S 
 254 
 252 
 251 
 
 .30547 
 .30292 
 .30038 
 .29786 
 29535 
 
 9 99947 
 9.99946 
 9.99946 
 9-99945 
 9-99944 
 
 10 
 
 1 
 I 
 
 .1 
 .a 
 3 
 
 250 
 .25.0 
 .50.0 
 .75-0 
 
 345 
 .24.5 
 .49.0 
 73-5 
 
 240 
 .24.0 
 
 .48.0 
 .72.0 
 
 56 
 
 Ji 
 
 59 
 
 8.70658 
 8.70905 
 8.71 151 
 8.71395 
 8.71 638 
 
 949 
 
 247 
 246 
 344 
 243 
 
 8.70714 
 8.70962 
 8.71 208 
 
 71453 
 8.71697 
 
 249 
 248 
 246 
 245 
 244 
 
 .29286 
 .29038 
 .28 792 
 28 547 
 .28 303 
 
 9-99944 
 9-99943 
 9.99942 
 9.99942 
 9.9994: 
 
 5 
 4 
 3 
 
 i 
 
 .4 
 
 5 
 .6 
 
 7 
 
 125.0 
 150.0 
 175.0 
 
 200.0 
 295.O 
 
 122.5 
 X47.0 
 X7I-5 
 Z96.O 
 22O.5 
 
 I2O.O 
 
 144.0 
 168.0 
 
 193.0 
 2x6.0 
 
 GO 
 
 8.71 880 
 
 
 8.71940 
 
 
 1.28060 
 
 9.99940 
 
 
 
 
 
 
 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. 
 
 c.d. 
 
 L. Tang. 
 
 L. Sin. 
 
 t 
 
 
 Pro 
 
 P. Pfc 
 
 i. 
 
 1 
 
 
 
 
 
 87 
 
 
 
 
 
 
 
LOGARITHMS OF SINE, COSINE, TANGENT AND COTANGENT, ETC. 33 
 
 3 
 
 
 t 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 e.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 
 P0p. PtS. 
 
 
 
 I 
 
 8.71880 
 
 8.72 120 
 
 340 
 
 8.71940 
 8.72 181 
 
 241 
 
 1.28060 
 1.27819 
 
 9.99940 
 9.99940 
 
 GO 
 
 
 338 
 
 334 
 
 339 
 
 2 
 
 8.72359 
 
 339 
 
 2-0 
 
 8 . 72 420 
 
 239 
 
 1.27580 
 
 9-99939 
 
 58 
 
 .1 
 
 33.8 
 
 83-4 
 
 33.9 
 
 3 
 4 
 
 8.72$97 
 8.72834 
 
 330 
 
 837 
 
 8.72659 
 8.72896 
 
 239 
 237 
 
 2T.6 
 
 1.27341 
 1.27 104 
 
 9-99938 
 9-99938 
 
 y 
 
 .3 
 
 3 
 
 47.6 
 
 46.8 
 70.2 
 
 45-8 
 68.7 
 
 I 
 
 8.73069 
 8.73303 
 
 234 
 
 8.73132 
 8.73366 
 
 
 1.26868 
 1.26634 
 
 9 99937 
 9.99936 
 
 55 
 54 
 
 -4 
 
 5 
 
 95-2 
 119.0 
 
 93-6 
 117.0 
 
 91.6 
 "4-5 
 
 I 
 
 8-73535 
 8.73767 
 
 232 
 232 
 
 8.73600 
 8.738J2 
 
 234 
 
 232 
 
 i . 26 400 
 1.26 1 68 
 
 9-999J6 
 9-99935 
 
 53 
 52 
 
 .6 
 7 
 
 142.8 
 166.6 
 
 140.4 
 163.8 
 
 137-4 
 160.3 
 
 if 
 
 8-73997 
 
 229 
 228 
 
 8.74063 
 
 231 
 
 229 
 
 1-25937 
 
 9 99934 
 
 51 
 
 .8 
 9 
 
 190.4 
 314.2 
 
 187.2 
 
 2X0.6 
 
 183.3 
 206. x 
 
 8.74226 
 
 8.74292 
 
 1.25 708 
 
 9 99934 
 
 50 
 
 ii 
 
 12 
 
 8-74454 
 8.74680 
 
 226 
 
 226 
 
 8.74521 
 8.74748 
 
 229 
 
 227 
 
 __ 
 
 1-25479 
 1.25 252 
 
 9 99933 
 9-99932 
 
 4-Q 
 
 ., 
 
 22.5 
 
 22O 
 32.0 
 
 310 
 3X.6 
 
 13 
 
 8.74906 
 
 
 8.74974 
 
 
 1.25 026 
 
 9.99932 
 
 47 
 
 .3 
 
 45-0 
 
 44.0 
 
 43-a 
 
 H 
 
 8.75130 
 
 224 
 
 8-75 199 
 
 225 
 
 i . 24 801 
 
 9-99931 
 
 46 
 
 3 
 
 67-5 
 
 66.0 
 
 64.8 
 
 16 
 
 8-75353 
 8-75575 
 
 222 
 
 8.75423 
 8.75645 
 
 222 
 
 1-24577 
 1-24355 
 
 9.99930 
 9 99 9-9 
 
 45 
 
 44 
 
 4 
 
 5 
 
 90.0 
 112.5 
 
 88.0 
 
 XIO.O 
 
 86.4 
 108.0 
 
 ii 
 
 19 
 
 8-75795 
 8.76015 
 8.76234 
 
 220 
 8X9 
 217 
 
 8.75867 
 8.76087 
 8.76306 
 
 220 
 2X9 
 
 1.24133 
 1.23913 
 
 1.23694 
 
 9 99929 
 9.99928 
 9.99927 
 
 43 
 42 
 
 41 
 
 .6 
 
 7 
 .8 
 
 135-0 
 157.5 
 180.0 
 
 133.0 
 
 154.0 
 
 176.0 
 
 _-0 n 
 
 139.6 
 151.2 
 173.8 
 
 20 
 
 21 
 
 22 
 
 8.76451 
 8. 76667 
 8.76883 
 
 216 
 
 3l6 
 
 8.76525 
 8.76742 
 8.76958 
 
 3J7 
 
 2x6 
 
 1-23475 
 1.23258 
 1.23 042 
 
 9-99926 
 9.99926 
 9.99925 
 
 40 
 
 39 
 38 
 
 9 
 .1 
 
 313 
 
 21.2 
 
 198.0 
 
 308 
 
 20.8 
 
 304 
 
 20.4 
 
 23 
 
 8.77097 
 
 8X4 
 
 8.77173 
 
 8X5 
 
 1.22 827 
 
 9.99924 
 
 37 
 
 .3 
 
 42.4 
 
 41.6 
 
 40.8 
 
 24 
 
 8.77310 
 
 213 
 
 8.77387 
 
 8X4 
 
 I.226I3 
 
 9.99923 
 
 36 
 
 3 
 
 6 3 .6 
 
 63.4 
 
 61.3 
 
 25 
 26 
 
 8.77522 
 8-77 733 
 
 311 
 
 8.77600 
 8.77811 
 
 813 
 211 
 
 I . 22 400 
 1.22 189 
 
 9.99923 
 9.99922 
 
 35 
 
 S4 
 
 4 
 5 
 
 84.8 
 
 1 06.0 
 
 83.2 
 
 104.0 
 
 81.6 
 
 103.0 
 
 % 
 
 29 
 
 8-77943 
 8.78152 
 8.78360 
 
 309 
 
 208 
 208 
 
 8 . 78 022 
 8.78232 
 8.78441 
 
 211 
 2IO 
 209 
 208 
 
 I. 21 978 
 1. 21 768 
 
 I-2I559 
 
 9.99921 
 9 99 920 
 9.99920 
 
 33 
 32 
 
 w 
 
 .6 
 
 7 
 
 .8 
 
 9 
 
 127.2 
 148.4 
 169.6 
 190.8 
 
 124.8 
 
 145.6 
 166.4 
 
 187.2 
 
 122.4 
 142.8 
 163.2 
 183.6 
 
 30 
 
 8.78508 
 
 8.78649 
 
 I- 21 351 
 
 9.99919 
 
 S 2 
 
 8.78774 
 8.78979 
 
 205 
 
 8.78855 
 8.79061 
 
 206 
 206 
 
 I 21 145 
 1.20939 
 
 9.99918 
 9.99917 
 
 28 
 
 .1 
 
 301 
 
 2O. I 
 
 197 
 19.7 
 
 193 
 
 19.3 
 
 33 
 
 34 
 
 8.79183 
 8.79386 
 
 204 
 
 203 
 
 2O2 
 
 8 . 79 266 
 8.79470 
 
 205 
 204 
 
 1.20734 
 1 . 20 530 
 
 9 99917 
 9.99916 
 
 z 
 
 .3 
 
 3 
 
 40.2 
 60.3 
 
 39-4 
 59- 1 
 
 38.6 
 57-9 
 
 35 
 36 
 
 9 
 
 39 
 10" 
 
 8.79588 
 8.79789 
 8.79990 
 8.80 189 
 8.80388 
 
 201 
 201 
 199 
 199 
 197 
 197 
 
 8.79673 
 
 8.79875 
 8 80076 
 8.80277 
 8.80476 
 
 203 
 
 202 
 201 
 201 
 199 
 I 9 8 
 
 x 9 8 
 
 1.20327 
 1.20 125 
 1 . 19 924 
 1 . 19 723 
 1 . 19 524 
 
 9-999I5 
 9.99914 
 
 9 999'3 
 9-999I3 
 9.99912 
 
 25 
 24 
 23 
 
 22 
 21 
 
 20" 
 
 19 
 
 4 
 5 
 .6 
 
 7 
 
 .8 
 
 9 
 
 100.5 
 
 120.6 
 
 140.7 
 160.8 
 180.9 
 
 189 
 
 98.5 
 1x8.2 
 
 137-9 
 
 157.6 
 185 
 
 772 
 96-5 
 1x5.8 
 I35.I 
 154-4 
 173-7 
 181 
 
 8.80585 
 8.80782 
 
 8 80674 
 8.80872 
 
 1 . 19 326 
 I.I9 128 
 
 9.99911 
 9.99910 
 
 42 
 
 8.80978 
 
 196 
 
 8.81068 
 
 196 
 
 1.18932 
 
 9.99909 
 
 18 
 
 i 
 
 18.9 
 
 18.5 
 
 18.1 
 
 43 
 
 8.81 173 
 
 X 95 
 
 8.81 264 
 
 196 
 
 I.I8736 
 
 9.99909 
 
 17 
 
 .2 
 
 37. 
 
 37.0 
 
 36.3 
 
 44 
 
 8.81 367 
 
 194 
 
 8.81459 
 
 195 
 
 1.18 541 
 
 9.99 908 
 
 16 
 
 3 
 
 56.7 
 
 __ f 
 
 55-5 
 
 54-3 
 
 45 
 46 
 
 49 
 
 8.81 560 
 8.81 752 
 8.81 944 
 8.82 134 
 8.82324 
 
 192 
 192 
 190 
 190 
 
 1 80 
 
 8.81 653 
 8 81 846 
 8.82038 
 8.82 230 
 8.82420 
 
 194 
 
 193 
 192 
 192 
 190 
 
 1.18347 
 1.18154 
 1.17962 
 1.17 770 
 1.17 580 
 
 9.99907 
 9.99906 
 
 9-99905 
 9.99904 
 9.99904 
 
 15 
 13 
 
 12 
 II 
 
 4 
 5 
 .6 
 
 7 
 
 .8 
 
 
 75.0 
 94-5 
 
 132.3 
 151.9 
 170.1 
 
 74.0 
 92.5 
 
 XXX. 
 
 129.5 
 148.0 
 166.5 
 
 73.4 
 90.5 
 108.6 
 126.7 
 144-8 
 162.0 
 
 50 
 
 8.82513 
 8.82 701 
 
 188 
 
 8.82610 
 8.82 799 
 
 190 
 x89 
 
 1.17390 
 
 I.I7 201 
 
 9.99903 
 9.99 902 
 
 10 
 
 
 4 
 
 3 a x 
 
 52 
 53 
 
 8.82888 
 8.83075 
 8.83261 
 
 187 
 x8 7 
 
 186 
 
 8.82 987 
 8.83 175 
 8.83361 
 
 1 88 
 
 188 
 1 86 
 
 -QJC 
 
 I.I70I3 
 
 i . 16 825 
 i . 16 639 
 
 9.99901 
 9.99 900 
 9.99899 
 
 I 
 
 .1 
 
 .3 
 
 3 
 
 0.4 
 0.8 
 
 .2 
 
 0.3 O.2 O.X 
 
 0.6 0.4 o.a 
 0.9 0.6 0.3 
 
 59 
 
 8.83446 
 8.83630 
 8.83813 
 8.83996 
 8.84177 
 
 184 
 183 
 183 
 181 
 x8x 
 
 8-83547 
 8-83732 
 8.83916 
 8 . 84 100 
 
 8.84282 
 
 185 
 184 
 x8 4 
 182 
 182 
 
 i 16 453 
 1 . 16 268 
 i . 16 084 
 1.15900 
 1.15 718 
 
 9-99898 
 9.99898 
 9.99897 
 9.99896 
 9-99895 
 
 5 
 4 
 3 
 
 2 
 I 
 
 4 
 
 5 
 .6 
 
 7 
 .8 
 9 
 
 .O 
 
 4 
 
 .8 
 
 .2 
 
 3.6 
 
 1.5 .0 0.5 
 x.8 .2 0.6 
 a. i .4 0.7 
 3.4 .608 
 9.7 .809 
 
 60 
 
 8.84358 
 
 
 8 . 84 464 
 
 
 I-I5536 
 
 9.99894 
 
 o 
 
 
 
 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. 
 
 c.d 
 
 L. Tang. 
 
 L. Sin. 
 
 f 
 
 Prop. Pts. 
 
 86 
 
TABLE IV. 
 
 4 
 
 t 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 
 Prop. Pts. 
 
 
 
 I 
 
 2 
 
 3 
 4 
 
 8.84358 
 8.84539 
 8.84 718 
 8.84897 
 8.85075 
 
 181 
 179 
 179 
 178 
 177 
 177 
 176 
 US 
 175 
 173 
 173 
 173 
 171 
 171 
 171 
 169 
 169 
 169 
 167 
 168 
 
 166 
 1 66 
 165 
 164 
 164 
 
 163 
 163 
 162 
 162 
 160 
 161 
 59 
 J 59 
 159 
 158 
 
 157 
 157 
 156 
 155 
 155 
 55 
 154 
 153 
 *52 
 152 
 152 
 151 
 15* 
 150 
 150 
 149 
 149 
 148 
 147 
 M7 
 
 147 
 146 
 146 
 4S 
 145 
 
 8.84464 
 8.84646 
 8.84826 
 8.85006 
 8.85 185 
 
 182 
 180 
 
 180 
 179 
 178 
 
 15536 
 15354 
 15 *74 
 .14994 
 .14815 
 
 9.99894 
 
 9-99893 
 9.09892 
 9.99891 
 9.99891 
 
 60 
 
 11 
 H 
 
 .x 
 
 .2 
 
 3 
 .4 
 -5 
 .6 
 7 
 .8 
 
 9 
 .1 
 
 .2 
 
 3 
 4 
 5 
 .6 
 
 7 
 .8 
 
 9 
 .t 
 
 .2 
 
 3 
 4 
 5 
 .6 
 
 7 
 .8 
 
 9 
 
 ") 
 .i 
 
 .2 
 
 3 
 4 
 5 
 .6 
 
 7 
 .8 
 
 9 
 .1 
 
 .2 
 
 3 
 
 4 
 5 
 .6 
 
 7 
 .8 
 
 9 
 
 .2 
 
 3 
 4 
 5 
 .6 
 
 7 
 .8 
 
 9 
 
 z8z 
 
 18.1 
 36.2 
 
 54-3 
 72.4 
 90.5 
 108.6 
 126.7 
 144-8 
 162.9 
 
 175 
 i7-5 
 35-0 
 53-5 
 70.0 
 87-5 
 105.0 
 122.5 
 140.0 
 157-5 
 168 
 .16.8 
 33-6 
 50.4 
 
 779 
 
 17.9 
 35-8 
 53-7 
 71.6 
 
 89-5 
 107.4 
 
 125-3 
 143.2 
 
 161.1 
 
 173 
 
 17-3 
 34-6 
 51-9 
 69.2 
 86.5 
 103.8 
 
 121. 1 
 138.4 
 155-7 
 
 166 
 16.6 
 
 /33-2 
 49.8 
 66.4 
 83.0 
 99.0 
 116.2 
 
 132.8 
 149.4 
 
 159 
 15.9 
 
 31-8 
 47-7 
 63.6 
 79-5 
 95-4 
 111.3 
 127.2 
 i43- 
 153 
 15-3 
 30.6 
 
 45-9 
 61.2 
 
 76.5 
 91.8 
 107.1 
 122.4 
 "37-7 
 M7 
 14.7 
 29.4 
 44.1 
 58.8 
 
 73-5 
 88.2 
 102.9 
 117.6 
 132.3 
 
 177 
 
 17.7 
 35-4 
 53-1 
 70.8 
 88.5 
 106.9 
 123.9 
 141.6 
 *59-3 
 171 
 17.1 
 34- 
 Si-3 
 68.4 
 85.5 
 
 102.6 
 
 119.7 
 
 136.8 
 
 153-9 
 
 164 
 16.4 
 
 32.8 
 49.8 
 65.6 
 820 
 98-4 
 114.8 
 131-3 
 147.6 
 
 157 
 15-7 
 31-4 
 
 47- 
 62.8 
 
 78-5 
 94-3 
 109.9 
 125.6 
 MI- 3 ' 
 IS* 
 15.1 
 30.2 
 
 45-3 
 60.4 
 75-5 
 90.6 
 105.7 
 
 120.8 
 
 135.9 
 
 z 
 
 O.I 
 O.S 
 
 0.3 
 0.4 
 0.5 
 
 0.6 
 0.7 
 0.8 
 0.9 
 
 I 
 I 
 
 9 
 
 8.85 252 
 8.85429 
 8.85 605 
 8.85 780 
 8.8595! 
 
 8-85 363 
 8.85 540 
 8.85 717 
 8.85893 
 8.86069 
 
 177 
 177 
 176 
 176 
 174 
 174 
 174 
 172 
 172 
 171 
 171 
 170 
 169 
 169 
 168 
 
 167 
 167 
 1 66 
 165 
 165 
 
 165 
 163 
 163 
 
 163 
 161 
 162 
 160 
 1 60 
 1 60 
 !59 
 158 
 158 
 157 
 157 
 156 
 155 
 155 
 155 
 153 
 154 
 
 152 
 152 
 152 
 151 
 151 
 150 
 'So 
 149 
 148 
 149 
 
 147 
 H7 
 147 
 146 
 146 
 
 H 637 
 .14460 
 . 14 283 
 .14107 
 I393 1 
 
 9.99890 
 9.99 889 
 9.99888 
 9-99887 
 9.99886 
 
 55 
 54 
 53 
 S 2 
 5i 
 
 10 
 
 ii 
 
 12 
 13 
 
 14 
 
 8.86 128 
 8.86301 
 
 8.86474 
 8.86645 
 8-86816 
 
 8.86243 
 8.86417 
 8.86591 
 8.86 763 
 8.86935 
 
 13757 
 !3 5 8 3 
 13 409 
 .13237 
 .13065 
 
 9.99885 
 9.99884 
 9.99883 
 9.99882 
 9.99881 
 
 50 
 
 49 
 48 
 47 
 46 
 
 15 
 
 1 6 
 
 \l 
 
 I I9 
 
 8.86987 
 8.87 156 
 8.87325 
 8.87494 
 8.87661 
 
 8.87 106 
 8.87277 
 
 8.87447 
 8.87616 
 
 8.87785 
 
 .12894 
 
 . 12 723 
 
 .12553 
 . 12 384 
 .12 215 
 
 9.99880 
 9.99879 
 9.99879 
 9.99878 
 9.09877 
 
 45 
 
 4. 
 
 43 
 42 
 
 4i 
 
 20 
 
 21 
 22 
 
 23 
 2 4 
 
 8.87829 
 
 8.87995 
 8.88 ?6i 
 8.88326 
 8.88490 
 
 8-87953 
 8.88 126 
 8.88287 
 8.88453 
 8.88618 
 
 . 12 047 
 .11 880 
 .11 713 
 
 II547 
 .11 382 
 
 9-99876 
 
 9 99875 
 9.99874 
 
 9.99873 
 9.99872 
 
 40 
 
 i 
 H 
 
 2 
 
 II 
 
 
 
 31 
 32 
 
 33 
 34 
 
 8.88654 
 8.88817 
 8.88980 
 8.89 142 
 8.89304 
 
 8.88 783 
 8.88948 
 8.89 in 
 8.89274 
 8.89437 
 
 .11 217 
 . 1 1 052 
 
 . 10 889 
 . 10 726 
 . 10 563 
 
 9.99871 
 9.99870 
 9 . 99 869 
 9.99868 
 9.99867 
 
 35 
 34 
 33 
 32 
 3i 
 
 67.5 
 84.0 
 100.8 
 117.6 
 134-4 
 
 8.89464 
 8.89625 
 8.89 784 
 8.89943 
 
 8.90 102 
 
 8.89598 
 8.89 760 
 8.89920 
 8.90080 
 8.90240 
 
 . 10 402 
 . 10 240 
 . 10 080 
 .09920 
 
 .09760 
 
 9.99866 
 9.99865 
 9.99864 
 9.99863 
 9 . 99 862 
 
 30 
 
 2 9 
 28 
 
 % 
 
 151.2 
 
 ; 162 
 
 16.2 
 
 33-4 
 4 8.6 
 6 4 .8 
 
 81.0 
 97.2 
 "3-4 
 129.6 
 145-8 
 155 
 iS-5 
 31-0 
 46.5 
 62.0 
 
 77-5 
 93-o 
 108.5 
 124.0 
 139-5 
 149 
 14.9 
 29.8 
 44-7 
 59-6 
 74-5 
 89.4 
 104.3 
 119.2 
 I34-J 
 
 it 
 3 
 
 39 
 
 8.9O260 
 8.90417 
 
 8.90 574 
 8.90 730 
 8.90885 
 
 8.90399 
 
 8.90557 
 8.90 715 
 8.90872 
 8.91 029 
 
 .09601 
 
 .09443 
 
 .09285 
 .09 128 
 
 .08 971 
 
 9.99861 
 9.99860 
 
 9-99859 
 9.99858 
 
 .9 99857 
 
 25 
 
 24 
 
 23 
 
 22 
 21 
 
 "20" 
 
 ii 
 
 'to 
 
 i 4i 
 
 i 4* 
 43 
 44 
 
 8.91 040 
 8.91 195 
 8.91 349 
 8.91 502 
 8.91 655 
 
 8.91 185 
 8.91 340 
 8.91 495 
 8.91 650 
 8.91 803 
 
 .08815 
 .08 660 
 .08 505 
 .08350 
 .08 197 
 
 9.99856 
 9.99855 
 9-99854 
 9.99853 
 9.99852 
 
 9 
 9 
 
 49 
 
 8.91 807 
 8.91 959 
 8.92 no 
 8.92261 
 8.92411 
 
 8-91 957 
 8.92 no 
 8 . 92 262 
 8 92 414 
 8.92565 
 8.92 716 
 .8.92866 
 8.93016 
 8.9.3 165 
 8-93 313 
 
 .08043 
 .07890 
 
 .07 738 
 .07 586 
 07435 
 
 9.99851 
 9.99850 
 9-99848 
 9.99847 
 9.99846 
 
 15 
 
 14 
 13 
 
 12 
 II 
 
 50 
 
 Si 
 
 52 
 53 
 
 54 
 
 8.92 561 
 8.92 710 
 8.92859 
 8.93007 
 8-93 154 
 
 .07 284 
 07 134 
 
 .06 984 
 
 .06 835 
 .06 687 
 
 9-99845 
 9.99844 
 9-99843 
 9.99842 
 9.99841 
 
 10 
 
 1 
 I 
 
 55 
 56 
 
 R 
 
 59 
 
 8.93301 
 8.93448 
 
 8-93594 
 8.93 740 
 8.93 885 
 
 8.93462 
 8 9^609 
 8-9.3756 
 8.93903 
 8.94049 
 
 .06 538 
 .06 391 
 
 .06244 
 
 .06 097 
 05951 
 
 9.99840 
 
 9-99839 
 9.99838 
 
 9.99837 
 9.99836 
 
 5 
 4 
 3 
 
 2 
 
 I 
 
 60 
 
 8.94030 
 
 8.94195 
 
 1.05805 
 
 9-99834 
 
 
 
 
 L. Cos. 
 
 (1. 
 
 L. Cotg. 
 
 1C. d. 
 
 L. Tang. 
 
 L. Sin. 
 
 f 
 
 Prop. Pts. 
 
 85 . | 
 
LOGARITHMS OF SINE, COSINE, TANGENT AND COTANGENT, ETC. 35 
 
 
 
 
 
 
 5 
 
 
 
 
 
 
 
 9 
 
 L. Sin. 
 
 d. 
 
 L. Tang-. 
 
 c. d. 
 
 L. Cots. 
 
 L. Cos. 
 
 
 
 Pro 
 
 p. Pfe 
 
 1. 
 
 
 
 I 
 
 2 
 
 3 
 4 
 
 8.94030 
 8-94 174 
 8.94317 
 8.94461 
 8.94603 
 
 144 
 MS 
 
 144 
 142 
 
 8-94 195 
 8.94340 
 
 8.94485 
 8.94630 
 8-94 773 
 
 145 
 145 
 145 
 
 43 
 144 
 
 05805 
 .05 660 
 05 5i5 
 05 370 
 .05 227 
 
 9-99834 
 9-99833 
 9.99832 
 9.99831 
 9.99830 
 
 60 
 
 3 
 3 
 
 .X 
 
 .3 
 
 3 
 
 145 
 
 14.5 
 
 ay o 
 43-5 
 
 143 
 
 4-3 
 38.6 
 43.9 
 
 14X 
 X4.x 
 
 28.9 
 42-3 
 
 \ 
 
 I 
 
 9 
 
 8.94746 
 8.94887 
 8.95 029 
 8.95 170 
 8-95 3io 
 
 4 
 142 
 
 4 
 140 
 
 8.94917 
 8.95060 
 
 8.95 202 
 
 8.95 344 
 8.95 486 
 
 143 
 142 
 142 
 143 
 
 .05 083 
 .04 940 
 .04 798 
 .04 656 
 04 5H 
 
 9.99829 
 9.99828 
 9-99827 
 9.99825 
 9-99824 
 
 55 
 54 
 53 
 52 
 5i 
 
 4 
 5 
 
 .6 
 
 7 
 .8 
 
 58.0 
 73.5 
 87.0 
 
 101.5 
 116.0 
 
 57-2 
 71.5 
 85.8 
 
 1 00. 1 
 
 1x4.4 
 
 56.4 
 70.5 
 84.6 
 98.7 
 
 XI3.8 
 
 10 
 
 ii 
 
 12 
 13 
 14 
 
 8-95 450 
 8-95 589 
 8.95 728 
 8.95 867 
 8.96005 
 
 139 
 139 
 139 
 138 
 
 178 
 
 8.95 627 
 8.95 767 
 8.95908 
 8.96047 
 8.96 187 
 
 140 
 141 
 
 139 
 140 
 
 x?8 
 
 04 373 
 04 233 
 .04092 
 
 03 953 
 .03 813 
 
 9.99823 
 9.99822 
 9.99821 
 9.99820 
 9.99819 
 
 50 
 
 2 
 3 
 
 9 
 
 .X 
 .9 
 
 3 
 
 I30-5 
 139 
 
 13-9 
 37.8 
 
 41-7 
 
 128.7 
 
 138 
 13.8 
 ?. 
 
 4-4 
 
 126.9 
 
 136 
 13.6 
 
 07.9 
 
 40.8 
 
 !i 
 
 ii 
 
 19 
 
 8.96143 
 8.96280 
 
 8.96417 
 8.96 553 
 8.96689 
 
 37 
 37 
 136 
 136 
 
 ,,6 
 
 8-96325 
 8.96464 
 8.96602 
 8.96 739 
 8.96877 
 
 139 
 138 
 37 
 138 
 
 TQ6 
 
 03 675 
 03 536 
 03 398 
 .03 261 
 .03 123 
 
 9-99817 
 9.99816 
 9.99815 
 
 9-99814 
 9.99813 
 
 45 
 44 
 43 
 42 
 
 41 
 
 4 
 5 
 
 .6 
 
 7 
 .8 
 
 55-6 
 69.S 
 83-4 
 97-3 
 
 XII. 3 
 
 55-2 
 69.0 
 82.8 
 96.6 
 1x0.4 
 
 54-4 
 68.0 
 
 81.6 
 95. a 
 1 08. 8 
 
 20 
 
 21 
 22 
 23 
 24 
 
 8.96825 
 8.96960 
 8.97095 
 8.97229 
 8.97363 
 
 35 
 135 
 134 
 134 
 
 8.97013 
 8.97 ijo 
 8.97285 
 8.97421 
 8.97556 
 
 37 
 
 135 
 136 
 J35 
 
 .02 987 
 .02 8^0 
 .02 7lS 
 
 .02 579 
 .02444 
 
 9.99812 
 9.99 810 
 9.99809 
 9.99808 
 9.99807 
 
 40 
 
 P 
 II 
 
 9 
 .x 
 
 .9 
 
 3 
 
 125.1 
 
 135 
 
 3-5 
 37.0 
 40.5 
 
 124.2 
 133 
 
 3-3 
 26.6 
 
 39-9 
 
 122.4 
 131 
 X3.x 
 26.9 
 39-3 
 
 3 
 
 3 
 
 29 
 
 8.97496 
 8.97629 
 8.97 762 
 8 . 97 894 
 
 133 
 133 
 132 
 132 
 
 8.97691 
 8.97825 
 
 8-97959 
 8.98092 
 8.98225 
 
 134 
 134 
 133 
 133 
 
 .02309 
 
 02 175 
 .02 041 
 
 .01 908 
 
 oi 775 
 
 9.99806 
 9-99804 
 9.99803 
 9.99802 
 9.99801 
 
 35 
 34 
 33 
 32 
 3i 
 
 4 
 5 
 .6 
 
 7 
 .8 
 
 S4-o 
 67.5 
 81.0 
 94-5 
 
 108.0 
 
 53-2 
 66.5 
 79-8 
 93-i 
 ro6.4 
 
 Sa-4 
 6S.S 
 78.6 
 9X.7 
 104.8 
 
 ao 
 
 31 
 32 
 
 33 
 
 34 
 
 8.98157 
 8.98288 
 8.98419 
 8.98 549 
 8.98679 
 
 131 
 131 
 130 
 130 
 
 8.98358 
 8.98490 
 8.98622 
 8.98 753 
 8.98884 
 
 132 
 132 
 131 
 131 
 
 .01 642 
 .01 510 
 .01 378 
 .01 247 
 .01 116 
 
 9.99800 
 9 99 798 
 9-99 797 
 9.99796 
 
 9-99795 
 
 30 
 
 % 
 
 Vw 
 .9 
 
 3 
 
 129 
 13.9 
 25.8 
 38.7 
 
 .19.7 
 128 
 
 X3.8 
 
 25.6 
 38.4 
 
 117.9 
 
 126 
 
 X3.6 
 
 25.9 
 
 37-8 
 
 1 
 
 39 
 
 8.98808 
 
 8.98937 
 8.99066 
 
 8-99 194 
 8.99322 
 
 129 
 129 
 128 
 128 
 128 
 
 8.99015 
 8.99145 
 8.99275 
 8.99405 
 8-99534 
 
 130 
 130 
 130 
 129 
 128 
 
 .00985 
 .00855 
 .00 725 
 
 00595 
 
 .00466 
 
 9-99793 
 9 99 792 
 9-99 79i 
 9.99 790 
 9.99 788 
 
 25 
 24 
 23 
 
 22 
 21 
 
 4 
 5 
 .6 
 
 7 
 
 .8 
 
 51.6 
 64.5 
 77-4 
 90.3 
 103.2 
 116 x 
 
 51.2 
 64.0 
 76.8 
 89.6 
 
 :03.4 
 
 50.4 
 63.0 
 75-6 
 88.3 
 100.8 
 
 40 
 
 4i 
 42 
 
 43 
 44 
 
 8.99450 
 8-99577 
 8-99 704 
 8.99830 
 8.99956 
 
 127 
 127 
 126 
 126 
 126 
 
 8.99662 
 8.99 791 
 8.99919 
 9.00046 
 9.00 174 
 
 129 
 128 
 127 
 
 128 
 
 .00338 
 
 .00209 
 .00081 
 
 0.99954 
 0.99826 
 
 9-99 787 
 9.99 786 
 
 9.99785 
 9-99 783 
 9.99 782 
 
 20 
 
 !l 
 
 .x 
 
 .3 
 3 
 
 MS 
 
 12.5 
 35.0 
 37-5 
 
 123 
 
 13.3 
 34.6 
 36.9 
 
 123 
 12.2 
 24-4 
 36.6 
 
 .0 
 
 3 
 
 4^ 
 
 1 49 
 
 9.00082 
 9.00207 
 9.00332 
 9.00456 
 9.00 581 
 
 125 
 125 
 124 
 125 
 
 9.00301 
 9.00427 
 
 9-00553 
 9.00679 
 9.00 805 
 
 126 
 126 
 126 
 126 
 
 0.99699 
 
 0-99 573 
 0.99447 
 0.99321 
 0.99 195 
 
 9.99 781 
 9-99 78o 
 9-99 778 
 9-99 777 
 9-99 776 
 
 15 
 H 
 13 
 
 12 
 II 
 
 4 
 5 
 .6 
 7 
 .8 
 
 50.0 
 62.5 
 75-o 
 87.5 
 
 100. 
 "13-5 
 
 49.2 
 
 61.5 
 
 73-8 
 86.1 
 98.4 
 
 *IO.7 
 
 61.0 
 73- 
 85-4 
 97.6 
 
 IOQ.8 
 
 50 
 
 Si 
 
 52 
 53 
 54 
 
 9.00 704 
 9.00828 
 9.00951 
 9.01 374 
 9.01 196 
 
 124 
 123 
 123 
 
 122 
 
 9.00 930 
 9-01 055 
 9.01 179 
 9-Oi 303 
 9.01 427 
 
 125 
 124 
 124 
 
 124 
 
 0.99070 
 0.98 945 
 0.98821 
 0.98697 
 0.98573 
 
 9-99 775 
 9-99773 
 9-99 772 
 9-99 77i 
 9-99 769 
 
 10 
 
 1 
 I 
 
 .x 
 
 .3 
 
 3 
 
 121 
 13. 1 
 24.2 
 36.3 
 
 .0 . 
 
 120 
 12.0 
 
 *4.o 
 
 36.0 
 
 .0 _ 
 
 X 
 O.I 
 O.3 
 0.3 
 
 11 
 11 
 
 59 
 
 9.01 318 
 9.01 440 
 9.01 561 
 9.01 682 
 9.01 803 
 
 122 
 121 
 I2X 
 121 
 
 9-Oi 550 
 9.01 673 
 9.01 796 
 9.01 918 
 9 . 02 040 
 
 123 
 
 123 
 
 122 
 122 
 
 0.98 450 
 0.98 327 
 0.98 204 
 o 98 082 
 0.97 960 
 
 9.99768 
 9.99 767 
 9 99 765 
 9-99764 
 9.99763 
 
 5 
 4 
 3 
 
 2 
 I 
 
 4 
 5 
 .6 
 
 7 
 .8 
 
 
 48.4 
 60.5 
 
 72.6 
 84.7 
 96.8 
 108.9 
 
 60.0 
 72.0 
 
 8 4 .a 
 96.0 
 108.0 
 
 0-5 
 
 0.6 
 f 0.7 
 08 
 o.o 
 
 GO 
 
 9.01 923 
 
 
 9.02 162 
 
 
 0.97838 
 
 9-99 76i 
 
 
 
 
 
 
 
 
 L. Cos. 
 
 d. 
 
 L. Cotgf. 
 
 c.d. 
 
 L. Tang. 
 
 L. Sin. 
 
 f 
 
 
 Pro 
 
 P. Pfc 
 
 L 
 
 
 
 
 
 
 84 
 
 
 
 
 
 
 
6 TABLJ2, IV. 
 
 6 
 
 I 
 
 L. Sin. 
 
 (1. 
 
 L. Tang. 
 
 c.d. 
 
 L.Cotg. 
 
 L. Cos. 
 
 
 Prop. Pts. 
 
 
 
 I 
 
 2 
 
 3 
 4 
 
 I 
 I 
 
 9 
 
 lo- 
 ii 
 
 12 
 
 13 
 
 14 
 
 9-oi 923 
 9.02 043 
 9.02 163 
 9.02283 
 9.02402 
 
 120 
 1 2O 
 120 
 119 
 
 118 
 119 
 118 
 117 
 118 
 117 
 117 
 116 
 116 
 "6 
 116 
 
 "5 
 "5 
 114 
 "5 
 "3 
 114 
 114 
 "3 
 
 112 
 XI3 
 112 
 112 
 ZI2 
 XII 
 III 
 III 
 110 
 1 10 
 110 
 110 
 109 
 109 
 109 
 
 108 
 109 
 108 
 107 
 108 
 107 
 107 
 106 
 107 
 106 
 105 
 106 
 105 
 105 
 105 
 105 
 104 
 
 104 
 104 
 103 
 103 
 103 
 
 9.02 162 
 9.02 283 
 9 . 02 404 
 9.02525 
 
 9.02 645 
 
 121 
 121 
 I2X 
 120 
 X2X 
 
 "9 
 1 2O 
 119 
 
 118 
 1x9 
 118 
 118 
 117 
 1x8 
 116 
 117 
 1x6 
 116 
 1x6 
 US 
 "5 
 "5 
 "5 
 114 
 114 
 
 "3 
 114 
 
 "3 
 
 1X2 
 
 1x3 
 
 1X2 
 112 
 XI2 
 III 
 III 
 III 
 
 no 
 
 III 
 
 1X0 
 
 109 
 
 no 
 
 109 
 109 
 
 108 
 109 
 108 
 108 
 107 
 108 
 107 
 106 
 107 
 106 
 106 
 106 
 106 
 105 
 105 
 105 
 104 
 
 0.97838 
 0.97717 
 0.97596 
 0-97471 
 0-97355 
 
 9 99 76i 
 9-99 76o 
 9-99 759 
 9 99757 
 9-99 756 
 
 GO 
 
 59 
 58 
 
 I 
 
 .1 
 
 .2 
 
 3 
 4 
 
 5 
 .6 
 
 7 
 .8 
 
 9 
 
 .1 
 .a 
 3 
 4 
 5 
 .6 
 7 
 .8 
 
 9 
 
 .3 
 
 3 
 
 4 
 5 
 .6 
 7 
 .8 
 
 9 
 
 .3 
 
 3 
 4 
 
 5 
 .6 
 
 7 
 .8 
 
 9 
 
 .i 
 .a 
 3 
 4 
 
 5 
 .6 
 7 
 .8 
 
 S 
 
 .3 
 
 3 
 4 
 5 
 .6 
 7 
 .8 
 
 9 
 
 tax 
 
 12. 1 
 
 34.2 
 
 36.3 
 48.4 
 60.5 
 73.6 
 84.7 
 
 96.8 
 108.9 
 8 
 xx.8 
 a 3 .6 
 35-4 
 47.3 
 59-0 
 70.8 
 82.6 
 
 94-4 
 106.3 
 
 115 
 
 11.5 
 23.0 
 34-5 
 46.0 
 57-5 
 69.0 
 80.5 
 92.0 
 103.5 
 iia 
 
 II. 2 
 23.4 
 
 33-6 
 44-8 
 56.0 
 67.2 
 78.4 
 89.6 
 100.8 
 
 109 
 10.9 
 
 31.8 
 
 32-7 
 
 43.6 
 
 54 5 
 65-4 
 76-3 
 87.2 
 98.1 
 106 
 10.6 
 
 21.2 
 31-8 
 43-4 
 
 53-c 
 
 6 3 .< 
 
 74.3 
 84.8 
 95-4 
 
 zoo 
 
 12.0 
 
 24.0 
 3 e o 
 48.0 
 60.0 
 72.0 
 84.0 
 9 6.o 
 108.0 
 
 "7 
 
 "7 
 
 33.4 
 
 35-1 
 46.8 
 
 58.5 
 70.2 
 81.9 
 93-6 
 105.3 
 
 "4 
 
 11.4 
 
 22.8 
 34.3 
 
 45-6 
 57-0 
 68.4 
 79.8 
 91.2 
 
 IO2.6 
 
 III 
 II. I 
 
 32.2 
 
 33-3 
 44-4 
 55-5 
 66.6 
 
 77-7 
 
 83.8 
 
 99-9 
 zo8 
 10.8 
 
 21.6 
 
 3-4 
 43-2 
 54-0 
 64.8 
 75-6 
 86.4 
 97.2 
 
 zos 
 10.5 
 
 21. 
 3-S 
 42.0 
 
 52 S 
 
 63. c 
 73-5 
 84. c 
 94-5 
 
 "9 
 
 IS. J 
 
 *3-8 : 
 ,35 7 
 47 6 I 
 59 ! 
 7i-4 
 83-3 
 95 -a 
 107.1 
 
 116 
 li. 6 ' 
 93.3 
 34-8 1 
 46.4 , 
 58.0 
 69.6 
 81.3 
 92.8 
 104.4 
 
 "3 
 11.3 
 
 22 6 
 
 33 9 
 45-- 
 56.5 
 67.8 
 79-1 
 90.4 
 101.7 
 zzo 
 
 II. 
 22.0 
 
 33 o 
 44-0 
 
 55-0 
 66.0 
 77.0 
 88.0 
 99.0 
 107 
 10.7 
 21.4 
 32.1 
 
 42.8 
 
 53-5 
 6 4 .a 
 
 74-9 ' 
 85-6 I 
 96.3 
 Z04 
 10.4 
 
 20.8 
 
 3*. 2 
 41.6 
 52.0 
 62.4 
 72.8 
 8 3 .a 
 93.6 
 
 9.02 520 
 9.02639 
 9.02 757 
 9.02874 
 9.02992 
 
 9.02 766 
 9.02885 
 9.03005 
 9.03 124 
 9.03242 
 
 0.97234 
 0.97 115 
 
 0.96995 
 0.96 8/6 
 0.96 758 
 
 9-99755 
 9-99 753 
 9-99 75 2 
 9-99751 
 9-99 749 
 
 55 
 54 
 53 
 52 
 5i 
 
 9.03 109 
 9.03 226 
 9.03342 
 9 03458 
 9-03 574 
 
 9.03361 
 9-03479 
 9-03 597 
 9.03714 
 9.03832 
 
 0.96 639 
 0.96 521 
 o . 96 403 
 0.96 286 
 0.96 1 68 
 
 9-99 748 
 9-99 747 
 9-99745 
 9-99 744 
 9-99 742 
 
 50 
 
 3 
 i 
 
 II 
 
 12 
 
 19 
 
 9.03690 
 9.03805 
 9 . 03 920 
 9.04034 
 9.04 149 
 
 9.03 948 
 9.04065 
 9.04 181 
 9.04297 
 9.04413 
 
 0.96052 
 
 0-95 935 
 0.95819 
 
 0-95 73 
 o 95 587 
 
 9-99 74i 
 9-99 740 
 9-99 738 
 9-99 737 
 9-99 736 
 
 45 
 44 
 43 
 42 
 4i 
 
 ~w 
 
 39 
 38 
 
 3 
 
 20 
 
 21 
 22 
 
 23 
 
 24 
 
 9 . 04 262 
 9.04376 
 9.04490 
 9.04603 
 9-047I5 
 
 9.04528 
 9-04643 
 9.04758 
 9.04873 
 9.04987 
 
 0.95472 
 
 0-95 357 
 0.95 242 
 0.95 127 
 0.95013 
 
 9-99 734 
 9-99 733 
 9-99731 
 9-99730 
 9 99 728 
 
 g 
 
 8 
 
 29 
 
 9.04828 
 9.04940 
 9.05052 
 9.05 164 
 9.05275 
 
 9.05 101 
 9.05 214 
 9.05328 
 9.05441 
 9-05553 
 
 0.94899 
 0.94 786 
 0.94672 
 
 0-94559 
 0.94447 
 
 9 99 727 
 9-99 726 
 9-99 724 
 9-99 723 
 9 99 72i 
 
 35 
 34 
 33 
 32 
 3i 
 
 B 
 
 31 
 32 
 
 33 
 
 34 
 
 9.05386 
 
 9-05497 
 9.05607 
 9.05 717 
 9.05 827 
 
 9.05 666 
 9.05 778 
 9.05 890 
 9.06002 
 9.06 113 
 
 0-94334 
 
 . 94 222 
 
 0.94 no 
 o . 93 998 
 0.93887 
 
 9-99 720 
 9.99718 
 9.99717 
 9.99716 
 9-99 7H 
 
 30 
 
 29 
 28 
 27 
 26 
 
 9 
 
 11 
 
 39 
 
 9-5 937 
 9.06 046 
 9-o6 155 
 9.06264 
 9.06372 
 
 9.06 224 
 
 9-06335 
 9.06445 
 9.06556 
 9.06666 
 
 0.93 776 
 0.93 665 
 0-93555 
 0.93444 
 0-93334 
 
 9-99 713 
 9 99 7" 
 9.99710 
 
 9-99 7o8 
 9.99707 
 
 25 
 24 
 23 
 
 22 
 21 
 
 40 
 
 4i 
 42 
 43 
 44 
 
 9.06481 
 9.06 589 
 9.06 696 
 9 . 06 804 
 9.06911 
 
 9.06 775 
 9.06885 
 9.06994 
 9.07 103 
 
 9.O7 211 
 
 0.93225 
 
 0.93H5 
 0.93 006 
 0.92 897 
 0.92 789 
 
 9 99 705 
 9-99 704 
 9.99702 
 
 9 99 7oi 
 9.99699 
 
 20 
 
 1 9 
 18 
 
 17 
 16 
 
 * 
 
 
 
 49 
 
 9.07 018 
 9.07 124 
 9.07231 
 9-07337 
 9 07442 
 
 9.07320 
 9.07 428 
 
 9 07536 
 9.07643 
 9.07 751 
 
 0.92 680 
 0.92572 
 0.92 464 
 0.92357 
 0.92 249 
 
 9.99698 
 9.99696 
 
 9-99695 
 9.99693 
 9.99692 
 
 15 
 14 
 13 
 
 12 
 II 
 
 50 
 
 5i 
 52 
 53 
 54 
 
 9.07548 
 9-07653 
 9.07758 
 9 07863 
 9.07968 
 
 9-07858 
 9.07964 
 9.08071 
 9.08 177 
 9.08283 
 
 0.92 142 
 0.92 036 
 0.91 929 
 0.91 823 
 0.91 717 
 
 9.99 690 
 9.99 689 
 9.99687 
 9.99686 
 9.99684 
 
 10 
 
 I 
 
 9 
 
 12 
 
 59 
 60" 
 
 9.08 072 
 9.08 176 
 9.08280 
 9.08383 
 9.08486 
 
 9.08389 
 9.08495 
 9.08 600 
 9.08 705 
 9.08810 
 
 0.91 611 
 
 o 9i 505 
 0.91 400 
 o 91 295 
 o 91 190 
 
 9.99683 
 9.99681 
 9.99 680 
 9.99678 
 9 99677 
 
 5 
 4 
 3 
 
 2 
 
 9-08589 
 
 9.08 914 
 
 o 91 086 
 
 9.99675 
 
 
 
 
 L. Cos. 
 
 (1. 
 
 L. Cotg. 
 
 c.d. 
 
 L. Tang. 
 
 L. Sin. 
 
 / 
 
 Prop. Pts. 
 
 83 
 
LOGARITHMS OF SINE, COSINE, TANGENT AND COTANGENT, ETC. 37 
 
 7 
 
 / 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 BO" 
 
 P 
 
 H 
 
 Prop. Pts. 
 
 6 
 
 2 
 
 3 
 4 
 
 | 
 
 I 
 
 9 
 
 9.08589 
 9.08 692 
 
 9.08795 
 9.08897 
 9.08999 
 
 103 
 103 
 
 102 
 102 
 102 
 
 lot 
 
 102 
 
 lot 
 xox 
 
 100 
 
 tot 
 
 TOO 
 TOO 
 
 99 
 
 100 
 
 99 
 
 99 
 98 
 
 99 
 98 
 
 98 
 98 
 98 
 97 
 97 
 97 
 97 
 96 
 
 97 
 96 
 
 96 
 95 
 96 
 95 
 95 
 95 
 94 
 95 
 94 
 94 
 93 
 94 
 93 
 93 
 93 
 93 
 93 
 92 
 93 
 93 
 93 
 
 9* 
 
 93 
 
 9* 
 9* 
 9 
 9 
 90 
 
 9' 
 9 
 
 9.08914 
 9.09019 
 9 09 123 
 9.09227 
 9.09330 
 
 105 
 104 
 104 
 103 
 104 
 103 
 
 03 
 
 103 
 
 103 
 
 102 
 
 XO3 
 
 toi 
 
 X02 
 IOX 
 IOI 
 XOI 
 XOX 
 100 
 100 
 
 too 
 
 too 
 99 
 99 
 99 
 99 
 
 99 
 
 98 
 98 
 98 
 98 
 
 97 
 98 
 97 
 97 
 96 
 
 97 
 
 96 
 96 
 96 
 96 
 
 95 
 95 
 95 
 95 
 95 
 94 
 95 
 94 
 94 
 93 
 94 
 93 
 93 
 93 
 93 
 93 
 93 
 93 
 9' 
 93 
 
 0.91 086 
 0.90981 
 0.90877 
 
 0.90 773 
 0.90670 
 
 9-99675 
 9.99674 
 9.99672 
 9.99670 
 9.99669 
 
 .2 
 
 3 
 4 
 
 :i 
 
 i 
 
 -9 
 .1 
 
 .2 
 
 3 
 .4 
 
 :l 
 
 :1 
 
 9 
 .1 
 
 .2 
 
 3 
 4 
 
 i 
 
 9 
 
 .2 
 
 3 
 -4 
 
 i 
 
 9 
 .1 
 
 .2 
 
 3 
 4 
 
 :i 
 :l 
 
 9 
 
 105 
 io-5 
 
 21.0 
 
 31-5 
 42.0 
 
 52-5 
 63.0 
 
 III 
 
 94-5 
 
 103 
 
 IO.2 
 
 20.4 
 30.6 
 40.8 
 
 i!:S 
 
 E:t 
 9 i.8 
 
 i 
 
 .1 < 
 
 .2 K 
 . 3 2( 
 
 4 3< 
 5 4< 
 
 : JZ 
 :5 
 
 97 
 
 9-7 
 19.4 
 29.1 
 38.8 
 
 48-5 
 58.2 
 67.9 
 77.6 
 873 
 
 94 
 
 ,11 
 
 28.2 
 37-6 
 47 o 
 56.4 
 65.8 
 
 III 
 
 9* 
 
 9 i 
 18.2 
 
 27-3 
 36-4 
 45-5 
 546 
 
 11 
 81^9 
 
 104 
 10.4 
 
 20.8 
 
 31.2 
 41.6 
 52.0 
 62.4 
 72.8 
 83.2 
 93-6 
 zox 
 10. 1 
 20.2 
 
 30-3 
 40.4 
 
 Si 
 
 Si 
 
 90.9 
 
 39 ! 
 
 >-9 < 
 >-8 ic 
 
 )-7 2< 
 ) 6 3< 
 >-5 4; 
 
 1-3 % 
 
 ?-2 7* 
 
 >.i SI 
 
 96 
 9.6 
 19.2 
 28.8 
 
 38-4 
 48.0 
 
 III 
 
 76 .8 
 
 93 
 
 93 
 
 18.6 
 27.9 
 37-2 
 46-5 
 558 
 65 i 
 74-4 
 83-7 
 90 
 
 ,I:S 
 35 
 
 45-o 
 54.0 
 63-0 
 
 E:S 
 
 103 
 10.3 
 
 20.6 
 
 30.9 
 41.2 
 
 ill 
 
 2: 
 
 92.7 
 
 100 
 
 IO.O 
 2O. O 
 30.0 
 40.0 
 50.0 
 6O.O 
 
 70.0 
 80.0 
 
 90.0 
 
 > 
 
 >.8 
 >.6 
 
 M 
 
 ).a 
 
 |.o 
 
 58 
 5.6 
 
 u 
 
 95 
 
 95 
 19.0 
 28.5 
 38.0 
 
 47-5 
 570 
 66.5 
 76.0 
 85-5 
 
 9* 
 
 92 
 18.4 
 27.6 
 
 36.8 
 46 O 
 
 55 2 
 64-4 
 73 ^ 
 82.8 
 
 a 
 
 O.2 
 1 
 
 0.6 
 0.8 
 
 I.O 
 1.2 
 
 :i 
 
 1.8 
 
 9.09 101 
 
 9.09 202 
 9.09304 
 9.09405 
 9.09506 
 
 9 09434 
 9 09537 
 9.09 640 
 9.09742 
 9.09845 
 
 0.90566 
 0.90463 
 0.90360 
 0.90 258 
 0.90155 
 
 9.99667 
 9.99666 
 9.99664 
 9.99663 
 9.99661 
 
 55 
 54 
 53 
 52 
 5i 
 
 10 
 ii 
 
 12 
 
 '3 
 14 
 
 9.09606 
 9.09 707 
 9.09807 
 9.09907 
 9.IO006 
 
 9-09947 
 9.10049 
 9.10 150 
 9.10252 
 9.10353 
 
 0.90053 
 
 0.89951 
 0.89850 
 0.89 748 
 0.89 647 
 
 9 99659 
 9.99658 
 9.99656 
 9 99655 
 9 99653 
 
 50 
 
 49 
 48 
 47 
 46 
 
 ii 
 
 !1 
 
 J9 
 
 9.10 106 
 
 9.1020f 
 
 9-10304 
 9 . 10 402 
 9.10501 
 
 9.10454 
 
 9-10555 
 9.10650 
 9.10756 
 9.10856 
 
 o . 89 546 
 
 0.89445 
 0.89344 
 0.89244 
 
 o 89 144 
 
 9 99651 
 9 99 650 
 9.99648 
 9.99647 
 9 99645 
 
 45 
 44 
 43 
 42 
 
 41 
 40" 
 
 i 
 
 20 
 
 21 
 22 
 
 23 
 24 
 
 9.10599 
 9-10697 
 9.10795 
 9 10893 
 9.10990 
 
 9.10956 
 9.11 056 
 9 ii 155 
 9 ii 254 
 9-ii 353 
 
 o 89044 
 o 88944 
 
 0.88845 
 
 o 88 746 
 0.88647 
 
 9 99643 
 9.99642 
 9.99640 
 9.99638 
 9 99637 
 
 11 
 11 
 
 29 
 
 9.11 087 
 9.11 184 
 9.11 281 
 9.11377 
 9.11474 
 
 9.11452 
 
 9 55i 
 9.11 649 
 
 9 ii 747 
 9- ii 845 
 
 o 88548 
 0.88449 
 0.88351 
 0.88253 
 o 88155 
 
 9 99635 
 9 99633 
 9.99632 
 9.99630 
 9 99629 
 
 35 
 34 
 33 
 32 
 3i 
 
 w 
 3 
 
 11 
 
 BO 
 
 3i 
 
 32 
 33 
 34 
 
 9 "570 
 9.11 666 
 9.11 761 
 9 ii857 
 9.11 952 
 
 9 ii 943 
 9.12040 
 9 .12 138 
 9.1223? 
 9.12332 
 
 0.88057 
 0.87960 
 0.87862 
 o 87765 
 o 87 668 
 
 9 99627 
 9.99625 
 9.99624 
 9 99622 
 9 . 99 620 
 
 35 
 36 
 
 H 
 
 39 
 
 9-12047 
 9.12 142 
 9.12 2^6 
 9.12331 
 9.12425 
 
 9.12428 
 9 12 525 
 9.12621 
 
 9.12717 
 9.12813 
 
 o 87 572 
 o 87475 
 o 87379 
 o 87283 
 0.87 187 
 
 9.99618 
 9.99617 
 9.99615 
 9.99613 
 9.99612 
 
 25 
 24 
 
 23 
 
 22 
 21 
 
 20" 
 
 !1 
 \l 
 
 40 
 
 4i 
 42 
 
 ' 43 
 1 44 
 
 9.12519 
 9.12 612 
 9 12 706 
 9. 12 799 
 9 12 892 
 
 9 12909 
 9.13004 
 9 13099 
 
 9 13 194 
 9.13289 
 
 o 87091 
 0.86996 
 0.86901 
 o 86 806 
 o 86 711 
 
 9.99 610 
 9 99608 
 9 99607 
 9 99605 
 9 99603 
 
 8 
 ? 
 
 49 
 50 
 
 51 
 52 
 53 
 
 54 
 
 9.12.985 
 9 13078 
 
 9 U i/i 
 9 13263 
 9 U355 
 
 9 i33 8 4 
 9 13478 
 9 13573 
 9.13667 
 9.13 761 
 
 o 86616 
 o 86 522 
 o 86 427 
 086333 
 o 86 239 
 
 9 99 601 
 9 99 600 
 9 99 598 
 9 99 596 
 9 99595 
 
 15 
 14 
 
 13 
 
 12 
 II 
 
 9 13447 
 9 13539 
 9.13630 
 9.13722 
 9 13813 
 
 9 13854 
 9.13948 
 9.14041 
 
 9-I4I34 
 9.14227 
 
 0.86 146 
 0.86052 
 0.85 959 
 0.85 866 
 0-85 773 
 
 9 99593 
 9-99591 
 9-99589 
 9-99 588 
 9.99586 
 
 10 
 
 1 
 I 
 
 P 
 
 y 
 
 59 
 
 9.13904 
 
 9-13994 
 9.14085 
 
 9-I4I75 
 
 9.14266 
 
 9.14320 
 9.14412 
 9.14504 
 
 9-14597 
 9.14688 
 
 0.85 680 
 0.85 588 
 0.85 496 
 o 85403 
 0.85 312 
 
 9.99584 
 9.99582 
 9.99581 
 9-99 579 
 9-99577 
 
 5 
 4 
 3 
 
 2 
 I 
 
 "0" 
 
 loo 
 
 9.I4356 
 
 9.14780 
 
 0.85 220 
 
 9-99575 
 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. 
 
 c. d. 
 
 L. Tang. 
 
 L. Sin. 
 
 f 
 
 Prop. Pts. 
 
 82 
 
8 
 
 
 
 
 
 TABLE I\ 
 
 r 
 
 
 
 
 
 
 
 
 
 
 
 
 8 
 
 
 
 
 
 
 
 
 9 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 
 F 
 
 ro 
 
 P.; 
 
 Pts 
 
 b 
 
 
 
 2 
 
 3 
 
 4 
 
 9-I4356 
 9-14445 
 9-14535 
 9.14624 
 9.14714 
 
 89 
 
 90 
 
 8 9 
 
 90 
 
 80 
 
 9.14780 
 9.14872 
 9.14963 
 9-15054 
 9-i5 i45 
 
 99 
 
 9* 
 9* 
 9 
 
 0.85 220 
 0.85 128 
 0.85 037 
 
 o . 84 946 
 
 0.84855 
 
 9 99575 
 9-99574 
 9-99572 
 9-99570 
 9.99568 
 
 (JO 
 
 5 si 
 
 1 
 
 9 
 i 9 
 
 .2 18 
 
 .3 27 
 
 a 
 .2 
 
 1 
 
 i 
 
 .1 
 
 27 
 
 x 
 .1 
 .2 
 
 ^ 
 
 go 
 9.0 
 
 27.0 
 
 i 
 1 
 
 9 
 
 9.14803 
 9.14891 
 9.14980 
 9.15069 
 9-15 157 
 
 88 
 89 
 89 
 88 
 88 
 
 9.15236 
 9-15327 
 9-15417 
 9.15508 
 9 15 598 
 
 9 1 
 
 90 
 
 9 
 90 
 
 o . 84 764 
 
 0.84673 
 0.84583 
 
 o . 84 492 
 0.84402 
 
 9.99566 
 9.99565 
 9 99563 
 9.99561 
 
 9-99559 
 
 55 
 54 
 53 
 52 
 5 1 
 
 .436 
 
 5 46 
 6 55 
 
 .7 64 
 
 18 I 3 
 
 .8 
 
 .0 
 .2 
 
 4 
 .6 
 
 36 
 
 45 
 
 8 
 
 P 
 
 4 
 
 i 
 i 
 
 36.0 
 45-Q 
 54.0 
 63.0 
 
 P' 
 
 10 
 
 II 
 
 12 
 '3 
 H 
 
 9.15245 
 9-15333 
 9.15421 
 9-I5508 
 9-I5596 
 
 88 
 
 88 
 
 87 
 83 
 87 
 
 9.15688 
 
 9-15777 
 9.15867 
 9.I5956 
 9.16046 
 
 89 
 90 
 89 
 90 
 80 
 
 0.84312 
 0.84223 
 
 0.84133 
 
 0.84044 
 
 0.83954 
 
 9-99557 
 9-99556 
 9-99554 
 9-99 SS 2 
 9 99550 
 
 50 
 
 8 
 S 
 
 9 82 
 
 .2 
 
 3 
 
 .8 
 
 ! 
 
 i 
 
 2( 
 
 81 
 *9 
 
 5-9 
 7-8 
 37 
 
 9 
 
 i 
 
 i 
 
 81.0 
 M 
 $.8 
 
 a 
 
 hi 
 jS' 
 
 19 
 
 9-15683 
 .9.15 770 
 9-I5857 
 9-15944 
 9.16030 
 
 87 
 87 
 87 
 
 86 
 86 
 
 9-16135 
 9.16224 
 9.16312 
 9.16401 
 9.16489 
 
 89 
 88 
 89 
 88 
 
 88 
 
 0.83865 
 0.83 776 
 0.83688 
 
 0.83 599 
 0.83 511 
 
 9-99548 
 9.99546 
 
 9-99545 
 9 99543 
 9-99541 
 
 45 
 44 
 43 
 42 
 41 
 
 -4 
 
 1 
 .:i 
 
 3. 
 
 * 
 
 i 
 
 5-0 
 1-5 
 5-4 
 z-3 
 
 1.2 
 
 3. 
 
 4^ 
 
 r 
 
 7< 
 
 ) 2 
 
 :i 
 
 1.6 
 >-4 
 
 20 
 
 21 
 22 
 
 23 
 
 2 4 
 
 9.16 116 
 9 16203 
 9.16289 
 
 9-16374 
 9 16 460 
 
 87 
 86 
 85 
 86 
 
 8e 
 
 9-I6577 
 9.16665 
 9-16753 
 9.16841 
 9.16928 
 
 88 
 88 
 88 
 87 
 88 
 
 0.83423 
 0-83335 
 0.83247 
 0.83159 
 0.83072 
 
 9-99539 
 9-99537 
 9 )9 535 
 9i 99 533 
 9 99532 
 
 40 
 
 3. 
 
 11 
 
 9 
 .1 
 
 .2 
 
 3 
 
 a 
 
 ck 
 1 
 
 } 
 I 
 
 J. 1 
 17 
 
 5-7 
 7-4 
 
 ^ ( 
 
 J 
 i 
 
 2 
 
 ^.2 
 36 
 ?.6 
 
 tl 
 
 '2 
 
 2 
 
 29 
 
 9-16545 
 9.16631 
 9.16 716 
 9.56801 
 9.16886 
 
 86 
 85 
 85 
 85 
 
 BA. 
 
 9.17016 
 9.17 103 
 9.17 190 
 9.17277 
 9 17363 
 
 87 
 87 
 
 87 
 86 
 8? 
 
 0.82984 
 o 82897 
 0.82 810 
 0.82 723 
 o 82 637 
 
 9 99530 
 9.99528 
 9-99526 
 9 99524 
 9-99 522 
 
 35 
 34 
 33 
 32 
 3i 
 
 3 
 
 is 
 
 3< 
 4. 
 
 I 
 
 6( 
 
 -< 
 
 ^& 
 
 J-5 
 
 Z.2 
 
 3.9 
 
 ?.6 
 ? _ 
 
 3< 
 4. 
 
 1 
 
 6J 
 
 \4. 
 
 J-o 
 [.6 
 
 5.2 
 
 $.8 
 
 80 
 31 
 
 S 
 
 34 
 
 9.16970 
 
 9-I7055 
 9.17139 
 9-17223 
 
 9.17307 
 
 85 
 84 
 84 
 84 
 
 4 
 
 9.I7450 
 9.17536 
 9.17 622 
 9.17708 
 
 9.17794 
 
 86 
 86 
 86 
 86 
 86 
 
 0.82 550 
 0.82464 
 0.82378 
 0.82 292 
 0.82 206 
 
 9.99520 
 9.99518 
 9-995I7 
 9 99515 
 9 99513 
 
 30 
 
 1 
 
 9 
 .1 
 
 .2 
 
 3 
 
 7 J 
 
 i 
 
 i 
 
 2. 
 
 >-o 
 !5 
 
 5-5 
 
 7-0 
 
 >-5 
 
 7 
 
 J 
 i< 
 
 2 
 
 7-4 
 H 
 
 ^:S 
 J -? 
 
 i 
 
 39 
 
 9.17391 
 9-17474 
 9.17558 
 9.17641 
 9.17724 
 
 83 
 84 
 8 3 
 8 3 
 8l 
 
 9.17880 
 9.17965 
 9.18051 
 9.18 136 
 
 9.l8 221 
 
 85 
 86 
 85 
 
 85 
 
 a- 
 
 O.82 I2O 
 0.82035 
 
 0.81 949 
 0.81 864 
 0.81 779 
 
 9.99511 
 9 99509 
 9 99507 
 9 99505 
 9 99503 
 
 25 
 24 
 
 23 
 
 22 
 21 
 
 :! 
 
 i 
 
 # 
 * 
 
 5 
 I 
 
 7( 
 
 ^0 
 
 2-5 
 [.0 
 
 1:1 
 
 3r 
 
 3. 
 4^ 
 
 ! 
 
 7 
 
 J-6 
 s.o 
 
 ^ 
 
 7-2 
 ;6 
 
 40 
 
 4? 
 42 
 
 43 
 44 
 
 9.17807 
 9.17890 
 
 9-17973 
 9.18055 
 9.18137 
 
 8 3 
 8 3 
 
 82 
 82 
 
 8? 
 
 9.18306 
 9.I839I 
 
 9-I8475 
 9.18560 
 9.18644 
 
 85 
 84 
 
 85 
 
 84 
 g. 
 
 0.81 694 
 0.81 609 
 0.81 525 
 0.81 440 
 0.81 356 
 
 9.99501 
 9.99499 
 9 99497 
 9 99495 
 9 99494 
 
 20 
 
 18 
 
 \l 
 
 .1 
 
 .2 
 
 3 
 
 / l 
 1 
 \ 
 K 
 2*. 
 
 J 
 3 
 
 1:2 
 
 t 9 
 
 /. 
 
 1 
 i 
 
 K 
 2i 
 
 w 
 
 to 
 
 $.2 
 
 il 
 
 45 
 46 
 
 
 
 49 
 
 9.18220 
 9.18302 
 9-18383 
 9-18465 
 9-18547 
 
 82 
 81 
 82 
 82 
 81 
 
 9.18728 
 9.I88I2 
 9.18896 
 9.18979 
 9.19063 
 
 84 
 84 
 8 3 
 84 
 
 Q, 
 
 0.81 272 
 0.81 188 
 0.81 104 
 0.81 021 
 0.80937 
 
 9.99492 
 9.99490 
 9.99488 
 9.99486 
 9.99484 
 
 15 
 14 
 13 
 
 12 
 II 
 
 '4 
 
 3. 
 4 
 
 I 
 
 7 
 
 i- 2 
 [ -5 
 ).8 
 J.I 
 
 > 4 
 
 (7 
 
 *>< 
 4 
 4< 
 
 i 
 
 7' 
 
 S.o 
 
 [.O 
 )-2 
 
 ^ 
 
 }g 
 
 SO 
 5' 
 52 
 53 
 
 54 
 
 9:18628 
 9.18709 
 9.18790 
 9.18871 
 9-18952 
 
 8x 
 
 Si 
 81 
 81 
 81 
 
 9.I9I46 
 9.19229 
 9.I93I2 
 
 9-19395 
 9.19478 
 
 8 3 
 83 
 8 3 
 83 
 83 
 
 0- 
 
 0.80854 
 0.80771 
 0.80688 
 0.80605 
 0.80522 
 
 9.99482 
 9.99480 
 9.99478 
 9.99476 
 9 99474 
 
 10 
 
 I 
 I 
 
 1 
 
 .1 8 
 
 .2 16 
 
 3 24 
 
 I 
 
 .1 
 .2 
 
 3 
 
 / 
 
 a 
 S 
 16 
 24 
 
 /. 
 
 .0 
 .O 
 .0 
 
 
 
 
 
 0.2 
 04 
 
 0.6 
 
 A X 
 
 11 
 H 
 
 r59 
 
 9 1933 
 9.19113 
 9.19 193 
 9 19273 
 9 19353 
 
 80 
 80 
 80 
 80 
 
 flrt 
 
 9.I956I 
 9.19643 
 9.19725 
 
 9 19807 
 9.19889 
 
 *3 
 82 
 82 
 82 
 82 
 
 0.80439 
 0.80357 
 0.80275 
 0.80 193 
 0.80 in 
 
 9.99472 
 9.99470 
 9.99468 
 9.99466 
 9.99464 
 
 5 
 4 
 3 
 
 2 
 I 
 
 4 3 2 
 5 4Q 
 .6 48 
 
 7 56 
 .8 64 
 .0 72 
 
 4 
 
 i 
 
 . y 
 
 3 2 
 
 ? 
 
 
 7? 
 
 .0 
 .0 
 
 :.o 
 .0 
 
 o 
 
 1.0 
 1.2 
 
 M 
 
 1.8 1 
 
 j60 
 
 9 19433 
 
 
 9.19971 
 
 
 0.80029 
 
 9.99462 
 
 
 
 
 
 
 
 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. 
 
 c.d. 
 
 L. Tang. 
 
 L. Sin. 
 
 f 
 
 p 
 
 ro 
 
 p.] 
 
 Pfe 
 
 . 
 
 
 
 
 
 
 81 
 
 
 
 
 
 
 
 
LOGARITHMS OF SINE, COSINE, TANGENT AND COTANGENT, ETC. 39 
 
 
 
 
 
 
 9 
 
 
 
 
 
 
 
 
 t 
 
 L. Sin. 
 
 d. 
 
 L. Tangr. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 
 I 
 
 to 
 
 P.: 
 
 Pfe 
 
 b 
 
 
 
 I 
 
 2 
 
 3 
 4 
 
 9-19433 
 9-i95i3 
 9.19592 
 9 19672 
 9 I975I 
 
 80 
 
 79 
 80 
 
 79 
 70 
 
 9.19971 
 9.20053 
 9 20 134 
 9.20216 
 
 9.20297 
 
 8a 
 81 
 82 
 81 
 8x 
 
 0.80029 
 0.79 947 
 0.79 866 
 0.79784 
 0.79703 
 
 9.99462 
 9.99460 
 9-99458 
 9-99456 
 9-99454 
 
 00 
 
 59 
 
 58 
 
 11 
 
 8 
 
 .1 8 
 
 2 16 
 
 3 24 
 
 2 
 2 
 
 4 
 .6 
 
 ! 
 
 8 
 
 16 
 
 24 
 
 I 
 .1 
 .2 
 
 3 
 
 80 
 
 8.0 
 16.0 
 
 24.0 
 
 i 
 
 t 
 
 9 
 
 9.19830 
 9.19909 
 9.19988 
 9.20067 
 9.20145 
 
 79 
 79 
 79 
 78 
 
 .0 
 
 9.20378 
 9.20459 
 
 9.20540 
 9.20621 
 9.20 701 
 
 8x 
 81 
 
 81: 
 80 
 
 RT 
 
 0.79622 
 
 0.79541 
 0.79460 
 0.79379 
 0.79299 
 
 9-99452 
 9-99450 
 9-99448 
 9-99446 
 9-99444 
 
 55 
 54 
 53 
 52 
 5i 
 
 4 32 
 5 41 
 -6 49 
 
 ig 
 
 .8 
 
 .0 
 .2 
 
 .4 
 
 .6 
 
 32 
 4 c 
 
 4* 
 
 
 4 
 
 . ^ 
 
 o 
 
 i 
 
 32.0 
 40.0 
 48.0 
 56.0 
 64.0 
 
 10 
 
 ii 
 
 12 
 '3 
 14 
 
 9.20223 
 9.20302 
 9.20380 
 9 . 20 458 
 9 20535 
 
 79 
 78 
 78 
 77 
 
 .0 
 
 9.20 782 
 9.20862 
 
 9.20942 
 
 9.21 022 
 9.21 102 
 
 80 
 80 
 80 
 80 
 
 0- 
 
 0.79218 
 0.79138 
 0.79058 
 0.78978 
 0.78898 
 
 9.99442 
 9.99440 
 9-99438 
 9 99436 
 9-99434 
 
 50 
 
 3 
 
 3 
 
 9 73 
 .1 
 
 .2 
 
 3 
 
 .8 
 
 , 
 t 
 
 I 
 2; 
 
 yu 
 79 
 
 -1 
 
 
 
 J-7 
 
 y 
 
 i 
 
 i 
 2: 
 
 72.0 
 
 rt 
 
 3 
 
 J-4 
 
 II! 
 
 !1 
 
 19 
 
 9.20613 
 9.20691 
 9 . 20 768 
 9.20845 
 9 . 20 922 
 
 78 
 77 
 77 
 77 
 
 9-21 l82 
 9.21 26l 
 
 9 21 341 
 
 9.21 420 
 
 9 21 499 
 
 79 
 80 
 
 79 
 79 
 
 0.78818 
 0.78739 
 0.78 659 
 0.78580 
 0.78501 
 
 9-99432 
 9.99429 
 9.99427 
 9 99425 
 9 99423 
 
 45 
 44 
 43 
 42 
 41 
 
 4 
 
 i 
 1 
 
 3 
 3 ( 
 4 
 
 I: 
 
 [.to 
 ?-5 
 7-4 
 5-3 
 
 5-2 
 
 3 
 3< 
 
 1 
 
 t.2 
 
 !:| 
 
 J.6 
 
 20 
 
 21 
 
 22 
 
 23 
 24 
 
 9.20999 
 9 21 076 
 9 21 153 
 9 21 229 
 9 21 306 
 
 77 
 77 
 76 
 
 77 
 
 _g 
 
 9 21 578 
 9 21 657 
 9 21 736 
 9 21 814 
 9 21 893 
 
 79 
 
 79 
 79 
 78 
 
 79 
 
 _0 
 
 0.78422 
 
 0.78343 
 0.78 264 
 0.78 186 
 0.78 107 
 
 9.99421 
 9.99419 
 9;994i7 
 9 99415 
 9.994I3 
 
 40 
 
 I 
 
 9 
 .1 
 
 .2 
 
 3 
 
 7 
 
 - 
 
 i 
 
 2. 
 
 77 
 
 r-7 
 
 5-4 
 J -J 
 
 7 ( 
 
 | 
 i 
 
 i. 
 
 2: 
 
 ? 
 T-6 
 
 Ii 
 
 2 5 
 26 
 
 3 
 
 29 
 
 9 21 382 
 9 21 45 8 
 9 21 534 
 9 21 610 
 9.21 685 
 
 76 
 76 
 76 
 
 75 
 
 76 
 
 9 21 971 
 
 9.22049 
 9.22 127 
 
 9 22 2O5 
 9 22 283 
 
 78 
 78 
 78 
 78 
 
 _Q 
 
 0.78029 
 0.77951 
 0.77873 
 0-77795 
 o 77 717 
 
 9 99411 
 9.99409 
 9.99407 
 9.99404 
 9 99402 
 
 35 
 34 
 33 
 32 
 3i 
 
 4 
 
 i 
 i 
 
 I 
 
 4< 
 
 i 
 
 6 
 
 3.8 
 
 !:i 
 
 59 
 [.6 
 
 5 
 
 4. 
 
 i; 
 
 fi< 
 
 d 
 
 ;.6 
 
 !:! 
 
 ? A 
 
 so 
 31 
 
 32 
 
 33 
 
 34 
 
 9 21 761 
 9 21 836 
 9 21 912 
 9.21 987 
 
 9 . 22 O62 
 
 7 
 
 75 
 76 
 75 
 75 
 
 9.22361 
 
 9 22438 
 9.22 516 
 
 9-22593 
 9.22 670 
 
 77 
 78 
 77 
 77 
 
 o 77 639 
 o 77562 
 0.77484 
 o 77407 
 0.77330 
 
 9 99400 
 9 99398 
 9.99396 
 
 9 99394 
 9.99392 
 
 ao 
 
 29 
 28 
 
 n 
 
 .2 
 
 3 
 
 I. 
 2: 
 
 3 
 75 
 
 7-S 
 >.o 
 
 2-5 
 
 I 
 I 
 
 I; 
 
 2: 
 
 J -4 
 74 
 
 [1 
 
 1.2 
 
 P 
 
 ii 
 
 39 
 
 9 22137 
 
 9 22 21 1 
 9.22286 
 
 9 22361 
 9 22435 
 
 75 
 
 74 
 75 
 75 
 74 
 
 9 22 747 
 9.22824 
 9.22901 
 9.22977 
 9 23054 
 
 77 
 77 
 77 
 76 
 
 77 
 
 o 77253 
 o 77176 
 0.77099 
 o 77023 
 o 76946 
 
 9 99390 
 9.99388 
 
 9 99385 
 9 99383 
 9 99381 
 
 25 
 24 
 23 
 
 22 
 21 
 
 4 
 
 ii 
 
 :I 
 
 3< 
 3 
 4. 
 
 g 
 
 6 
 
 J.O 
 
 7-S 
 5-0 
 
 2-5 
 
 ).0 
 
 2C 
 
 3' 
 
 * 
 
 5 
 
 1! 
 
 ) 6 
 
 7.0 
 
 f:| 
 
 i 6 
 
 40 
 
 4i 
 42 
 1 43 
 
 i 44 
 
 9 22509 
 9 22583 
 9 22657 
 9 22731 
 9.22 805 
 
 74 
 74 
 74 
 74 
 
 74 
 
 9 23 130 
 9.23 206 
 9 23283 
 9 23359 
 9-23435 
 
 76 
 76 
 77 
 7 
 76 
 
 0.76870 
 0.76794 
 0.76717 
 o 76 641 
 
 0.76565 
 
 9 99379 
 9 99377 
 9 99375 
 9 99372 
 9 99370 
 
 20 
 
 19 
 
 18 
 
 17 
 16 
 
 V 
 
 .1 
 
 .2 
 
 3 
 
 D 
 
 1. 
 
 2 
 
 5 
 73 
 
 I'l 
 
 '9 
 
 i 
 
 i4 
 
 2 
 
 .< 
 
 ^a 
 7.2 
 
 
 
 50 
 
 11 
 
 ;i 
 
 49 
 
 9.22878 
 9.22952 
 9 23025 
 9.23098 
 9.23 171 
 
 73 
 74 
 73 
 73 
 73 
 
 9.23510 
 9 23586 
 9.23661 
 
 9 23737 
 9.23812 
 
 75 
 76 
 75 
 76 
 75 
 
 o 76 490 
 o 76414 
 
 o 76339 
 0.76263 
 o 76188 
 
 9 99368 
 9 99366 
 9 99 364 
 9 99 3 6 2 
 9 99 359 
 
 5 
 14 
 13 
 
 12 
 11 
 
 4 
 
 i 
 
 II 
 
 2< 
 
 3< 
 4. 
 
 1 
 
 H 
 
 j'8 
 [.i 
 
 5-4 
 
 7 
 
 2c 
 
 3< 
 
 4: 
 
 5< 
 
 & 
 
 .5 
 ).0 
 
 5-2 
 
 ;i 
 
 , 8 
 
 50 
 
 5i 
 52 
 53 
 54 
 
 9.23244 
 
 9 23317 
 9.23390 
 9.23462 
 9 23535 
 
 73 
 73 
 73 
 72 
 
 73 
 
 9-23887 
 9-23962 
 9.24037 
 
 9.24 112 
 
 9.24 186 
 
 75 
 75 
 75 
 75 
 74 
 
 0.76 113 
 o . 76 038 
 
 0-75 963 
 
 0.75888 
 0.75814 
 
 9 99357 
 9 99355 
 9-99353 
 9 99351 
 9 99348 
 
 10 
 
 
 I 
 
 ? 
 i 7 
 
 2 14 
 
 3 21 
 
 . -0 
 
 ". 
 i 
 .1 
 
 2 
 
 -3 
 
 C 
 
 c 
 
 C 
 
 3 
 
 '3 
 6 
 
 9 
 
 
 O.2 
 
 4 
 0.6 
 
 r 8 
 
 it 
 
 12 
 
 59 
 
 9.23607 
 9.23679 
 9.23752 
 9.23823 
 
 923895 
 
 72 
 72 
 73 
 7i 
 7* 
 
 9.24261 
 
 9-24335 
 9.24410 
 
 9-24484 
 9.24558 
 
 75 
 74 
 75 
 74 
 
 74 
 
 0-75 739 
 0.75665 
 0.75590 
 o.755i6 
 0.75442 
 
 9 99346 
 9 99344 
 9 99342 
 9-9934C 
 9 99337 
 
 5 
 4 
 3 
 
 2 
 I 
 
 .4 2% 
 
 :i2 
 
 :I3 
 
 96? 
 
 4 
 
 I 
 I 
 
 n 
 
 I 
 I 
 
 2 
 2 
 1 
 
 I 
 
 i 
 
 4 
 
 7 
 
 I.O 
 1.2 
 
 Ji 
 
 1.8 
 
 60 
 
 9.23967 
 
 72 
 
 9.24632 
 
 74 
 
 0.75368 
 
 9-99335 
 
 
 
 
 
 
 
 
 
 L. Cos. 
 
 d. 
 
 L. Cot?. 
 
 c.d. 
 
 L. Tang. 
 
 L. Sin. 
 
 f 
 
 r 
 
 ro 
 
 P 
 
 Pfc 
 
 u 
 
 
 
 
 
 
 80 
 
 
 
 
 
 
 
 
4 
 
 TABLE IV. 
 
 10 I 
 
 / 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cot?. 
 
 L.Cos. 
 
 
 Prop. Pts. | 
 
 
 
 i 
 
 2 
 
 6 
 4 
 
 9-23967 
 9-24039 
 9.24 no 
 9.24 181 
 9 24253 
 
 72 
 7* 
 7* 
 72 
 
 7 
 
 7 
 7 
 70 
 
 7* 
 70 
 
 7 
 70 
 70 
 70 
 70 
 70 
 70 
 69 ' 
 
 7<> 
 69 
 
 69 
 69 
 69 
 69 
 69 
 69 
 63 
 69 
 68 
 68 
 68 
 68 
 68 
 68 
 68 
 67 
 68 
 67 
 67 
 67 
 
 67 
 67 
 67 
 67 
 66 
 
 67 
 66 
 67 
 66 
 66 
 66 
 66 
 65 
 66 
 66 
 
 65 
 65 
 66 
 65 
 65 
 
 "dT 
 
 9-24632 
 9.24706 
 9-24779 
 9-24853 
 9 . 24 926 
 
 74 
 73 
 74 
 73 
 74 
 73 
 73 
 73 
 73 
 73 
 72 
 
 73 
 72 
 
 73 
 7* 
 7 
 72 
 72 
 72 
 7 
 7* 
 7* 
 73 
 
 7* 
 7 
 7* 
 7 
 
 70 
 
 7* 
 7 1 
 70 
 7<> 
 7* 
 70 
 70 
 70 
 70 
 
 69 
 70 
 69 
 70 
 69 
 69 
 69 
 69 
 69 
 69 
 69 
 63 
 69 
 68 
 69 
 68 
 68 
 68 
 68 
 67 
 68 
 68 
 67 
 
 0.75368 
 0.75294 
 
 0.75 221 
 
 0-75 H7 
 0.75074 
 
 9-99335 
 9-99333 
 9-99331 
 9.99328 
 9.99326 
 
 >0 
 
 P 
 
 11 
 
 .1 
 
 .2 
 
 3 
 
 .4 
 
 :! 
 
 9 
 .1 
 
 .2 
 
 .3 
 
 A 
 e 
 
 '.I 
 
 :l 
 
 .9 
 .1 
 
 ./ 
 .1 
 .( 
 
 !s 
 .9 
 
 .1 
 
 .2 
 
 3 
 4 
 
 :1 
 :i 
 
 74 
 
 il'i 
 
 22.2 
 29.6 
 
 37-o 
 
 Si 
 
 11:1 
 
 7 
 7-2 
 
 14.4 
 
 21.6 
 
 28.8 
 
 36.0 
 
 43 2 
 50.4 
 
 III 
 
 70 
 
 7-0 
 14.0 
 
 21.0 
 28.0 
 
 35-0 
 42.0 
 490 
 56.0 
 63.0 
 
 68 
 6.8 
 13-6 
 20.4 
 27.2 
 34-0 
 40.8 
 47-6 
 54-4 
 61.2 
 
 66 
 6.6 
 
 13.2 
 
 19.8 
 26.4 
 
 33-c 
 39-6 
 46.2 
 52.8 
 59-4 
 3 
 
 -; 
 
 0.6 
 0-9 
 
 1.2 
 1.5 
 
 I.I 
 
 2.1 
 
 2-4 
 
 2.7 
 
 73 
 
 ,1:1 
 
 21.9 
 
 29.2 
 36.5 
 43-8 
 Si.i 
 58.4 
 65-7 
 71 
 
 7-i 
 14.2 
 21.3 
 28.4 
 
 35-5 
 42.6 
 
 49-7 
 56.6 
 
 63-9 
 69 
 
 6.9 
 13-8 ) 
 
 20.7 
 27.6 
 
 34-5 
 
 81 
 
 ts 
 
 z, 
 
 13.4 
 
 20.1 
 26.8 
 
 33-5 
 40.2 
 
 46.9 
 53-6 
 60.3 
 
 6s 
 
 6-5 
 13.0 
 
 195 
 26.0 
 
 32-5 
 39 o 
 
 45-5 
 52.0 
 
 58-5 
 
 a 
 
 O.2 
 
 0-4 
 0.6 
 c 8 
 
 I.O 
 1.2 
 
 11 
 
 1.8 
 
 I 
 I 
 
 & 
 
 ii 
 
 12 
 
 13 
 14 
 
 9.24324 
 
 9-2439? 
 9.24466 
 
 9-24536 
 9.24607 
 
 9.25 ooo 
 
 9-25073 
 9.25 146 
 
 9-25219 
 9-25292 
 
 0.75 ooo 
 
 0.74927 
 0.74854 
 0.74781 
 0.74708 
 
 9 99324 
 9-99322 
 9-993I9 
 9-993I7 
 9-9931? 
 
 55 
 54 
 53 
 52 
 5i 
 
 9.24677 
 9.24748 
 9.24818 
 9.24888 
 9.24958 
 
 9-25365 
 9-25437 
 9.25 5io 
 9-25 582 
 9-25655 
 
 0.74635 
 
 0.74563 
 0.74490 
 
 0.74418 
 
 0.74345 
 
 9 993*3 
 ; 9-99 3'o 
 9-99308 
 9.99306 
 9-99304 
 
 50 
 
 49 
 48 
 47 
 46 
 
 :* 
 \i 
 
 19 
 
 20" 
 
 21 
 22 
 23 
 24 
 
 9 . 25 028 
 9-25098 
 9.25 1 68 
 9 25237 
 9 25307 
 
 9.25 727 
 
 9-25 799 
 9.25871 
 
 9-25 943 
 9.26 015 
 
 0.74273 
 
 0.74201 
 
 0.74129 
 0.74057 
 0.73985 
 
 9.99301 
 9.99299 
 
 9-99297 
 9.99294 
 9-99292 
 
 45 
 44 
 43 
 42 
 
 41 
 
 16" 
 
 P 
 
 
 
 35 
 34 
 33 
 32 
 3i 
 
 9-25 376 
 9-25445 
 9.25514 
 9-25583 
 9 25652 
 
 9.26086 
 9.26 158 
 9.26229 
 9.26301 
 9.26372 
 
 0.73914 
 0.73842 
 0.73771 
 
 o 73699 
 0.73628 
 
 9-99290 
 9.99 288 
 9.99285 
 9.99283 
 9.99281 
 
 3 
 
 3 
 
 29 
 
 9.25 721 
 9-25 790 
 9-25858 
 9-25927 
 9-25995 
 
 9.26443 
 9.26514 
 9-26585 
 9.26655 
 9.26 726 
 
 0.73557 
 0.73486 
 
 0.73415 
 0.73345 
 
 o 73 274 
 
 9.99278 
 9 99276 
 9-99274 
 9-99271 
 9.99269 
 
 80 
 
 3i 
 
 32 
 33 
 34 
 
 9.26063 
 9.26 131 
 9.26199 
 9.26 267 
 9 26335 
 
 9-26 797 
 9.26867 
 9.26937 
 9.27008 
 9.27078 
 
 0.73203 
 0.73133 
 0.73063 
 0.72992 
 0.72 922 
 
 9.99267 
 9-99264 
 9.99 262 
 9.99260 
 9 99257 
 
 BO 
 
 3 
 
 'd 
 
 3 
 
 ? 
 
 * 
 
 41 
 
 42 
 43 
 44 
 
 9 . 26 403 
 9.26470 
 9 26538 
 9.26605 
 9.26672 
 
 9.27 148 
 9.27218 
 9.27288 
 
 9-27357 
 9.27427 
 
 0.72 852 
 0.72 782 
 0.72 712 
 0.72643 
 0.72573 
 
 9.9925? 
 9.99252 
 9.99250 
 9.99248 
 9 99245 
 
 25 
 24 
 
 23 
 
 22 
 21 
 
 9 . 26 806 
 9.26873 
 9 . 26 940 
 9.27007 
 
 9-27496 
 9-27566 
 
 9-27635 
 9.27704 
 
 9-27 773 
 
 0.72504 
 0.72434 
 0.72365 
 0.72 296 
 0.72 227 
 
 9 99243 
 9.99241 
 9.99238 
 9.99236 
 9 99233 
 
 20 
 
 !! 
 \l 
 
 .1 
 
 .2 
 ,J 
 
 -A 
 c 
 
 .6 
 
 :l 
 
 .9 
 .1 
 
 4 
 i 
 
 .3 
 :I 
 
 .0 
 
 A l 
 46 
 
 47 
 48 
 
 49 
 
 9.27073 
 9.27 140 
 9.27 206 
 9.27273 
 
 9 27339 
 
 9.27842 
 9.27911 
 9.27980 
 9.28049 
 9.28 117 
 
 0.72 158 
 0.72 089 
 0.72 020 
 0.71 951 
 0.71 883 
 
 9.99231 
 9-99229 
 9.99226 
 9 99 224 
 9 99 221 
 
 15 
 14 
 13 
 
 12 
 II 
 
 50 
 
 5i 
 
 52 
 
 53 
 J.L 
 
 * 
 9 
 
 59 
 
 9.27405 
 9.27471 
 
 9-27537 
 9.27 602 
 9.27668 
 
 9.28 186 
 9-28254 
 9.28323 
 9-28391 
 9.28459 
 
 0.71 814 
 0.71 746 
 0.71677 
 0.71 609 
 0.7I54I 
 
 9.99219 
 9.992I7 
 9-99214 
 9.99212 
 9-99209 
 
 10 
 
 I 
 I 
 
 9-27734 
 9-27799 
 9.27864 
 9.27930 
 9-27995 
 9 -*So6o 
 
 9-28527 
 
 9.2859! 
 9.28662 
 9.28730 
 9.28 798 
 
 0.7M73 
 0.71405 
 
 0.71338 
 0.71 270 
 
 0.71 202 
 
 9.99207 
 9.99204 
 9.99202 
 9.99200 
 9-99 197 
 
 5 
 4 
 3 
 
 2 
 
 I 
 
 60 
 
 9.28865 
 
 0-71 135 
 
 9-99 195 
 
 
 
 
 
 L* Cos. 
 
 L. Cotg. 
 
 c. d. 
 
 L. Tang. 
 
 L. Sin. 
 
 t 
 
 Prop. Pts. 
 
 79 
 
LOGARITHMS OF SINE, COSINE, TANGENT AND COTANGENT, ETC. 41 
 
 i 11 
 
 f i iu MIL d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 
 Prop. Pts. 
 
 1 9.28060 
 i 1 9.28 125 
 
 2 1 9.28 190 
 
 3 9-28254 
 4 9-28319 
 
 65 
 6 4 
 
 65 
 65 
 64 
 
 6 S 
 64 
 64 
 
 64 
 63 
 64 
 
 6 3 
 63 
 64 
 63 
 63 
 63 
 63 
 63 
 
 63 
 62 
 
 63 
 62 
 62 
 63 
 6a 
 62 
 61 
 6a 
 62 
 61 
 62 
 61 
 6a 
 61 
 61 
 61 
 61 
 61 
 61 
 60 
 61 
 60 
 61 
 60 
 61 
 60 
 60 
 60 
 60 
 
 59 
 60 
 60 
 
 59 
 60 
 
 9.28865 
 
 9-28933 
 9.29000 
 9.29067 
 9.29 134 
 
 68 
 67 
 67 
 67 
 67 
 67 
 67 
 67 
 66 
 67 
 66 
 
 67 
 66 
 66 
 66 
 66 
 66 
 66 
 66 
 
 65 
 65 
 
 65 
 65 
 65 
 65 
 
 64 
 
 65 
 64 
 65 
 64 
 
 65 
 64 
 64 
 64 
 64 
 63 
 64 
 63 
 64 
 6 3 
 64 
 63 
 63 
 63 
 63 
 63 
 63 
 63 
 62 
 
 62 
 
 63 
 62 
 
 62 
 
 62 
 
 0.71 i35 
 0.71 067 
 0.71 ooo 
 0.70933 
 0.70 866 
 
 9-99 195 
 9-99 192 
 9-99 190 
 9-99 187 
 9-99 185 
 
 GO 
 
 59 
 
 58 
 
 g 
 
 .2 
 
 3 
 -4 
 
 :I 
 i 
 
 9 
 .1 
 
 .2 
 
 3 
 4 
 
 9 
 .1 
 
 .2 
 
 .3 
 
 4 
 . c 
 
 6 
 
 k 
 
 .9 
 .1 
 
 A 
 \l 
 
 .9 
 .1 
 
 ,4 
 
 1 1 
 
 .6 
 
 ;j 
 
 .i 
 .1 
 
 .6 
 
 t 
 
 :l 
 .9 
 
 68 
 
 6.8 
 
 20.4 
 27.2 
 34-0 
 40.8 
 47-6 
 54-4 
 61.2 
 
 66 
 
 6.6 
 13.2 
 10.8 
 
 26.4 
 33-o 
 39-6 
 46.2 
 52.8 
 59-4 
 
 6.4 
 
 12.8 
 
 19.2 
 
 32.0 
 38.4 
 44-8 
 
 57^6 
 6a 
 6.2 
 
 12 ./. 
 
 18.6 
 24.8 
 31.0 
 37-2 
 43-4 
 49-6 
 55-8 
 60 
 6.0 
 
 12.0 
 
 18.0 
 24.0 
 30.0 
 36.0 
 42.0 
 48.0 
 54-0 
 3 
 
 0.9 
 
 1.2 
 
 1:1 
 
 2.1 
 
 2.4 
 
 2.7 
 
 6? 
 6.7 
 
 I3.4 
 20.1 
 26.8 
 
 33-5 
 40.2 
 46.9 
 53-6 
 60.3 
 
 65 
 
 6-5 
 13-0 
 195 
 26.0 
 
 32.5 
 39-o 
 
 45-5 
 52.0 
 
 58.5 
 63 
 6-3 
 
 12.6 
 
 18.9 
 25.2 
 
 44.1 
 50.4 
 56.7 
 6s 
 6.1 
 
 12.2 
 
 18-3 
 24.4 
 
 36i 
 42.7 
 48.8 
 54-9 
 
 59 
 
 5-9 
 11. 8 
 
 17.7 
 23-6 
 29-5 
 35-4 
 41-3 
 47.2 
 
 53-1 
 a 
 0.2 
 
 o!s 
 
 I.O 
 1.2 
 
 i.B 
 
 7 
 
 9 
 
 "tin 
 
 12 
 13 
 
 14 
 
 9-28384 
 9.28448 
 9.28512 
 9.28577 
 
 9 . 28 641 
 9 . 28 705 
 9.28769 
 9-28833 
 9.28896 
 9.28960 
 
 9.29 201 
 9.29268 
 
 9-29335 
 9.29402 
 
 9 . 29 468 
 
 0.70799 
 0.70 732 
 0.70665 
 0.70598 
 0.70532 
 
 9.99 182 
 9.99 180 
 9-99 177 
 9-99 175 
 9-99 172 
 
 55 
 54 
 53 
 52 
 _51_ 
 
 3 
 
 47 
 46 
 
 9-29535 
 9.29 601 
 9.29668 
 
 9-29 734 
 9.29 800 
 
 0.70465 
 0.70399 
 0.70332 
 0.70 266 
 
 0.70 200 
 
 9-99 170 
 9.99 167 
 9-99 165 
 9.99 162 
 9.99 160 
 
 15 1 9.29024 
 
 16 I 9.29087 
 17 9.29 150 
 18 1 9.29214 
 19 1 9.29277 
 
 9.29866 
 9.29932 
 9-29998 
 9.30064 
 9.30 130 
 
 0.70 134 
 0.70068 
 0.70002 
 0.69936 
 0.69 870 
 
 9-99 157 
 9-99 155 
 9-99 152 
 9.99150 
 
 9 99 H7 
 
 45 
 44 
 43 
 42 
 
 41 
 
 1T 
 
 P 
 
 i 
 
 20 
 
 21 
 22 
 2 3 
 
 24 
 
 9.29340 
 9.29403 
 9.29466 
 
 9 29 529 
 9.29591 
 
 9-30I95 
 9.30261 
 9.30326 
 9-30391 
 9-30457 
 
 0.69 805 
 
 0-69 739 
 0.69674 
 0.69609 
 0.69 543 
 
 9 99H5 
 9-99 '42 
 9-99 HO 
 9-99 137 
 9-99 135 
 
 2 7 
 29 
 
 30 
 
 32 
 
 P 
 
 9-29654 
 9.29716 
 9.29 779 
 9.29841? 
 9-29903 
 9 . 29 966 
 9 . 30 028 
 9.30090 
 9 30151 
 9 30213 
 
 9.30275 
 9-30336 
 9-30398 
 
 9.30521 
 
 9-30522 
 9-30587 
 9.30652 
 9.30717 
 9.30782 
 
 0.69478 
 0.69413 
 0.69348 
 0.69 283 
 0.69 218 
 
 9-99 132 
 9 99 13 
 9 99 127 
 9-99 124 
 9.99122 
 
 35 
 34 
 33 
 32 
 
 9.30846 
 9.30911 
 
 9-30975 
 9.31 040 
 9.31 104 
 
 0.69 154 
 0.69 089 
 o . 69 025 
 0.68960 
 0.68896 
 
 9.99119 
 9.99117 
 
 9 99 "4 
 9.99 112 
 9 99 109 
 
 30 
 
 11 
 
 11 
 
 f 
 
 s 
 
 44 
 
 9.31 168 
 
 9 -31 233 
 9.31 297 
 9.31 361 
 
 0.68832 
 0.68 767 
 0.68 703 
 0.68639 
 0.68575 
 
 9.99 106 
 9-99 104 
 9.99 101 
 9.99099 
 9.99096 
 
 25 
 24 
 
 23 
 
 22 
 21 
 
 9.30582 
 
 9-30643 
 9.30 704 
 
 9-30765 
 9 . 30 826 
 
 9.31489 
 
 9-31 55| 
 9.31 616 
 9.31 679 
 9-3i 743 
 
 0.68511 
 0.68448 
 0.68384 
 0.68321 
 0.68257 
 
 9.99093 
 9.99091 
 9.99088 
 9.99086 
 9.99083 
 
 20 
 
 5 
 
 |45 
 46 
 47 
 
 | 4 8 
 
 i 49 
 
 9-30887 
 
 9-30947 
 9.31 008 
 9.31 068 
 9.31 129 
 
 9.31806 
 9.31 870 
 
 9-31 933 
 9.31 996 
 
 9-32059 
 
 0.68 194 
 0.6*8 130 
 0.68067 
 0.68004 
 0.67941 
 
 9 . 99 080 
 9.99078 
 
 9-99075 
 9-99072 
 9.99070 
 
 i5 
 13 
 
 12 
 II 
 
 150 
 
 52 
 
 53 
 54 
 
 9 
 
 II 
 
 ! 59_ 
 
 9.31 189 
 9 31 250 
 9.31310 
 9-31 370 
 9-3 1 430 
 
 9.32 122 
 9-32 185 
 9-32248 
 9-32311 
 9-32373 
 
 0.67878 
 0.67815 
 0.67 752 
 0.67 689 
 0.67 627 
 
 9.99067 
 9.99064 
 9 . 99 062 
 
 9.99059 
 9-99056 
 
 10 
 
 I 
 
 I 
 
 9.31 490 
 
 9-31 549 
 9.31 609 
 9.31 669 
 9.31 728 
 
 9-32436 
 9.32498 
 9.32561 
 9.32623 
 9.32685 
 
 0.67 564 
 0.67 502 
 0.67439 
 0.67377 
 0.67315 
 
 9-99054 
 9.99051 
 9.99048 
 9-99046 
 9.99043 
 
 5 
 4 
 3 
 
 2 
 
 I 
 
 9.31 788 
 
 9-3 2 747 
 
 0.67253 
 
 9.99040 
 
 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. c. d. 
 
 L. Tans. 
 
 L. Sin. 
 
 t 
 
 Prop. Pts. 
 
 78 
 
TABLE IV. 
 
 
 
 
 
 
 12 
 
 
 
 
 
 
 t 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 
 p 
 
 rop. ] 
 
 Pts. 
 
 
 
 I 
 
 2 
 
 3 
 4 
 
 9.31 788 
 
 9-3 1 847 
 9.31 907 
 9.31 966 
 9.32025 
 
 59 
 60 
 
 59 
 
 59 
 
 rg 
 
 9-32747 
 9.32810 
 9.32872 
 9.32933 
 9-32995 
 
 63 
 62 
 
 61 
 62 
 62 
 
 0.67253 
 0.67 190 
 0.67 128 
 0.67067 
 0.67 005 
 
 9.99040 
 9.99038 
 
 9-99035 
 9.99032 
 9.99030 
 
 (JO 
 
 3 
 
 11 
 
 .1 
 
 .2 
 
 3 
 
 63 
 6.3 
 
 12.6 
 
 18.9 
 
 62 
 
 6.2 
 
 12 4 
 18.6 
 
 I 
 I 
 
 9 
 
 9.32084 
 
 9-32 H3 
 9.32202 
 9.32261 
 9-32 3*9 
 
 59 
 59 
 59 
 58 
 
 9-33057 
 9-33 "9 
 9-33 * 80 
 9-33242 
 9.33303 
 
 62 
 61 
 62 
 61 
 62 
 
 o . 66 943 
 0.66881 
 0.66 820 
 0.66758 
 0.66697 
 
 9.99027 
 9.99024 
 9 . 99 022 
 9.99019 
 9.99 016 
 
 55 
 54 
 53 
 S 2 
 5i 
 
 4 
 
 :f 
 I 
 
 25.2 
 
 3J:i 
 
 44.1 
 50.4 
 
 24.8 
 31.0 
 
 37-2 
 43-4 
 49-6 
 
 10 
 
 ii 
 
 12 
 13 
 
 14 
 
 9-32378 
 9.32437 
 9-32495 
 9-32553 
 9.32 612 
 
 59 
 58 
 58 
 59 
 
 eg 
 
 9.33365 
 9.33426 
 9.33487 
 9-33548 
 9-33609 
 
 61 
 61 
 61 
 61 
 
 61 
 
 0.66635 
 0.66574 
 0.66 513 
 0.66452 
 0.66391 
 
 9.99013 
 9.99011 
 9.99008 
 9.99005 
 9.99002 
 
 50 
 
 3 
 
 s 
 
 9 
 
 .2 
 
 3 
 
 i> 6 -'; 
 
 61 
 
 6.1 
 
 12.2 
 18-3 
 
 55- 8 
 60 
 6.0 
 
 12.0 
 
 18.0 
 
 II 
 
 ii 
 
 19 
 
 9-32670 
 9.32 728 
 9-32 786 
 9-32844 
 9.32902 
 
 58 
 58 
 58 
 5 
 
 t-8 
 
 9.33670 
 9-33 73 1 
 9-33 792 
 9.33853 
 9.33913 
 
 61 
 61 
 61 
 
 60 
 61 
 
 0.66 330 
 0.66 269 
 0.66 208 
 0.66 147 
 0.66087 
 
 9.99 ooo 
 
 9.98997 
 9.98994 
 
 9.98991 
 9 . 98 989 
 
 45 
 44 
 43 
 42 
 41 
 
 4 
 
 ii 
 
 24.4 
 
 30-5 
 3 6.6 
 
 42-7 
 48.8 
 
 24.0 
 30.0 
 36.0 
 42.0 
 48.0 
 
 20 
 
 21 
 22 
 
 \ 23 
 24 
 
 9.32960 
 9.33018 
 9-33075 
 9-33 133 
 9-33 190 
 
 58 
 57 
 58 
 
 57 
 eg 
 
 9-33974 
 9-34034 
 9-34095 
 9.34155 
 9.34215 
 
 60 
 61 
 60 
 60 
 6z 
 
 0.66 026 
 0.65 966 
 0.65 905 
 0.65 845 
 0.65 785 
 
 9.98 986 
 9.98983 
 9.98980 
 9.98978 
 9-98975 
 
 40 
 
 3 
 
 11 
 
 9 
 
 54-9 
 
 5 
 
 .i 5 
 
 .2 II 
 3 IJ 
 
 54- 
 
 9 
 
 'I 
 
 2 5 
 26 
 
 3 
 
 29 
 
 9-33248 
 9-33305 
 9-33362 
 9-33420 
 9-33477 
 
 57 
 57 
 58 
 57 
 
 9.34276 
 9.34336 
 9.34396 
 9.34456 
 9-345I6 
 
 60 
 60 
 60 
 60 
 60 
 
 0.65 724 
 0.65 664 
 0.65 604 
 0.65 544 
 0.65 484 
 
 9-98972 
 9.98969 
 9.98967 
 
 9-98964 
 9.98961 
 
 35 
 34 
 33 
 32 
 31 
 
 
 4 *J 
 .5 29 
 6 35 
 .7 4i 
 .8 45 
 
 Q H^ 
 
 .6 
 5 
 4 
 -3 
 
 .2 
 
 IT 
 
 30 
 
 3i 
 32 
 33 
 34 
 
 9-33 534 
 9-33591 
 9-33647 
 9-33 704 
 9-3376I 
 
 57 
 56 
 57 
 57 
 
 9.34576 
 9.34635 
 9.34695 
 9-34755 
 9.34814 
 
 59 
 60 
 60 
 
 59 
 60 
 
 0.65 424 
 0.65 365 
 0.65 305 
 0.65 245 
 0.65 186 
 
 9.98958 
 9.98955 
 9.98953 
 9.98950 
 9.98947 
 
 30 
 
 3 
 Z 
 
 .1 
 
 .2 
 
 3 
 
 y jj 
 58 
 
 5-8 
 n. 6 
 
 17-4 
 
 57 
 
 5-7 
 11.4 
 
 17.1 
 
 it O 
 
 35 
 36 
 
 % 
 
 39 
 
 9.338i8 
 9-33 874 
 9-33931 
 9-33987 
 9-34043 
 
 57 
 56 
 57 
 56 
 56 
 
 9-34874 
 9-34933 
 9-34992 
 9-3505I 
 9-35IH 
 
 59 
 59 
 59 
 60 
 
 0.65 126 
 0.65 067 
 0.65 008 
 0.64 949 
 0.64889 
 
 9.98944 
 9.98941 
 9.98938 
 9.98936 
 9-98933 
 
 25 
 24 
 
 23 
 
 22 
 21 
 
 ii 
 ii 
 
 .0 
 
 23.2 
 29.0 
 34-8 
 40.6 
 
 46.4 
 
 tJ2.2 
 
 28.5 
 
 34-2 
 39-9 
 45-6 
 51.3 
 
 40 
 
 4i 
 
 42 
 
 43 
 44 
 
 9-34 loo 
 9.34I5 6 
 9.34212 
 9.34268 
 9-34324 
 
 56 
 5 
 
 56 
 56 
 
 efi 
 
 9-35 170 
 9-35 229 
 9-35 288 
 9-35347 
 9-35 405 
 
 59 
 59 
 59 
 58 
 
 o . 64 830 
 0.64 771 
 0.64 712 
 0.64653 
 0.64595 
 
 9.98930 
 9.98927 
 9.98924 
 9.98 921 
 9.98919 
 
 20 
 
 ii 
 
 11 
 
 .1 
 
 .2 
 
 3 
 
 56 
 
 5-6 
 
 II. 2 
 
 16.8 
 
 122 4 
 
 55 
 
 5-5 
 
 II. 
 
 16.5 
 
 22 O 
 
 $ 
 9 
 
 49 
 
 9-3438o 
 9-34436 
 9-34491 
 9-34547 
 9.34602 
 
 5 
 56 
 
 55 
 56 
 55 
 
 9.35464 
 9.35 5J3 
 9-35 58i 
 9-35 640 
 9-35698 
 
 59 
 58 
 59 
 58 
 
 0.64536 
 0.64477 
 0.64419 
 0.64 360 
 0.64 302 
 
 9.98 916 
 9.98913 
 9.98910 
 9.98907 
 9.98904 
 
 15 
 14 
 13 
 
 12 
 
 II 
 
 ii 
 
 .9 
 
 28.0 
 33-6 
 
 39-2 
 44-8 
 50.4 
 
 27-5 
 
 33-0 
 38-5 
 44-0 
 49-5 
 
 50 
 
 5i 
 52 
 53 
 
 54 
 
 9-34658 
 9-347I3 
 9-34769 
 9-34824 
 9-34879 
 
 5 
 55 
 56 
 55 
 55 
 
 9-35 757 
 9-35815 
 9-35 873 
 9-35931 
 9-35 989 
 
 58 
 58 
 58 
 
 58 
 
 eg 
 
 0.64243 
 0.64 185 
 0.64 127 
 0.64069 
 0.64 on 
 
 9.98 901 
 9.98898 
 9.98896 
 9.98893 
 9.98890 
 
 10 
 
 I 
 I 
 
 .1 
 
 .2 
 4 
 
 3 
 
 -3 
 0.6 
 
 0.9 
 
 1.2 
 
 a 
 10.2 
 0.4 
 0.6 
 0.8 
 
 9 
 
 9 
 
 1 59 
 
 9-34934 
 9.34989 
 9-35044 
 9.35099 
 9-35 154 
 
 55 
 55 
 55 
 55 
 55 
 
 9.36047 
 9.36 105 
 
 9-36 163 
 9.36221 
 9.36279 
 
 58 
 58 
 58 
 58 
 
 0.63953 
 0.63 895 
 0.63 837 
 0.63 779 
 0.63 721 
 
 9.98887 
 9.98884 
 9.98881 
 9.98 878 
 9.98875 
 
 5 
 4 
 3 
 
 2 
 I 
 
 I 
 
 I 
 
 i 
 
 4 
 
 ii 
 
 2.1 
 
 2.4 
 2.7 
 
 I.O 
 1.2 
 
 H 
 
 1.8 
 
 60 
 
 9-35209 
 
 55 
 
 9.36336 
 
 
 0.63 664 
 
 9.98 872 
 
 
 
 
 
 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. 
 
 c.d. 
 
 L. Tang. 
 
 L. Sin. 
 
 t 
 
 I 
 
 >rop. 
 
 Pts. 
 
 
 
 
 
 
 77 
 
 
 
 
 
 
LOGARITHMS OF SINE, COSINE, TANGENT AND COTANGENT, ETC. 43 
 
 1 3 I 
 
 I , 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 
 Prop. Pts. 
 
 
 
 9-35209 
 
 
 9-36336 
 
 eg 
 
 0.63 664 
 
 9.98872 
 
 60 
 
 
 i 
 
 9-35 263 
 
 
 9.36394 
 
 eg 
 
 o 63 606 
 
 9.98869 
 
 59 
 
 
 58 
 
 57 
 
 2 
 
 9-35 3 l8 
 
 55 
 
 9-36452 
 
 
 0.63 548 
 
 9.98867 
 
 S8 
 
 .1 
 
 S-8 
 
 5-7 
 
 3 
 
 9-35373 
 
 55 
 
 9-36509 
 
 
 0.63491 
 
 9.98864 
 
 57 
 
 .2 
 
 11.6 
 
 II.4 
 
 4 
 
 9-35427 
 
 54 
 
 9.36566 
 
 58 
 
 0.63434 
 
 9.98861 
 
 56 
 
 3 
 
 17.4 
 
 I7.I 
 
 I 
 
 9-3548i 
 9-35 S3 6 
 
 55 
 
 9.36624 
 9.36681 
 
 57 
 
 0.63 376 
 0.63319 
 
 9.98858 
 9-98855 
 
 55 
 S4 
 
 4 
 
 23.2 
 29.0 
 
 22.8 
 28.5 
 
 7 
 
 9-35590 
 
 54 
 
 9-36738 
 
 57 
 
 0.63 262 
 
 9.98852 
 
 53 
 
 .6 
 
 34-8 
 
 34-2 
 
 8 
 
 9-35 644 
 
 54 
 
 9.36 795 
 
 57 
 
 0.63 205 
 
 9.98849 
 
 S2 
 
 7 
 
 40.6 
 
 39-9 
 
 9 
 
 9-35698 
 
 54 
 54 
 
 9.36852 
 
 57 
 
 57 
 
 0.63 148 
 
 9.98846 
 
 51 
 
 .8 
 
 46.4 
 
 45-6 
 
 10 
 
 9-35 752 
 
 
 9-36909 
 
 
 0.63091 
 
 9-98843 
 
 50 
 
 9 
 
 52.2 
 
 5^3 
 
 ii 
 
 9.358o6 
 
 54 
 
 9.36966 
 
 57 
 
 0.63 034 
 
 9.98 840 
 
 49 
 
 
 56 
 
 55 
 
 12 
 13 
 H 
 
 9-35 860 
 9-359H 
 
 54 
 54 
 
 9.37023 
 9.37080 
 9-37 137 
 
 57 
 
 57 
 
 eg 
 
 0.62977 
 0.62 920 
 0.62863 
 
 9-98837 
 9.98834 
 9-98831 
 
 48 
 47 
 46 
 
 .2 
 
 -3 
 
 5-6 
 
 II. 2 
 
 16.8 
 
 5.5 
 
 II. 
 
 16.5 
 
 11 
 
 17 
 
 9.36 022 
 9-36075 
 9 3 6 129 
 
 53 
 54 
 
 9-37 193 
 9-37250 
 9.37306 
 
 57 
 
 56 
 
 0.62 807 
 0.62 750 
 0.62694 
 
 9.98828 
 9.98825 
 9.98822 
 
 45 
 44 
 43 
 
 4 
 
 22.4 
 28.0 
 33-6 
 
 22.0 
 27-5 
 
 33-o 
 
 18 
 
 9.36 182 
 
 53 
 
 9-373 6 3 
 
 57 
 
 0.62637 
 
 9.98 ^19 
 
 42 
 
 I 
 
 39-2 
 
 38-5 
 
 19 
 
 9-36236 
 
 54 
 53 
 
 9.37419 
 
 5 
 
 0.62 581 
 
 9.98816 
 
 
 .8 
 
 44.8 
 
 44-0 
 
 20 
 
 9.36289 
 
 
 9-37476 
 
 
 0.62524 
 
 9-988i 3 
 
 40 
 
 9 
 
 5'4 
 
 49-5 
 
 21 
 
 9-36342 
 
 53 
 
 9-37532 
 
 e 
 
 0.62468 
 
 9.98 810 
 
 39 
 
 54 
 
 22 
 23 
 
 24 
 
 9-36395 
 9.36449 
 9-36502 
 
 53 
 54 
 53 
 
 CO 
 
 9.37588 
 9-37644 
 9-37 700 
 
 5 
 
 56 
 56 
 
 0.62412 
 0.62 356 
 0.62 300 
 
 9.93 807 
 9.98804 
 9.98801 
 
 38 
 
 11 
 
 .1 5-4 
 
 .2 10.8 
 
 3 16.2 
 
 % 
 
 9.36555 
 9.36608 
 
 53 
 
 9.37756 
 9.37812 
 
 56 
 
 0.62244 
 0.62 188 
 
 9.98 798 
 9 98795 
 
 35 
 34 
 
 .4 21.6 
 
 .5 27.0 
 
 27 
 
 9.36660 
 
 5~ 
 
 9.37868 
 
 50 
 
 0.62 132 
 
 9.98 792 
 
 33 
 
 .6 32.4 
 
 29 
 
 9.36713 
 9.36766 
 
 53 
 53 
 51 
 
 9-37924 
 9.37980 
 
 5 
 56 
 
 0.62076 
 o . 62 020 
 
 9.98 789 
 9.98786 
 
 32 
 
 'I 37-8 
 .8 43-2 
 
 9..Q 6 
 
 30 
 
 9.36 819 
 
 
 9-38035 
 
 
 0.61 965 
 
 9-98783 
 
 80 
 
 40.0 
 
 
 9.36871 
 
 52 
 
 9.38091 
 
 56 
 
 0.61 909 
 
 9.98780 
 
 29 
 
 
 53 
 
 S* 
 
 32 
 33 
 34 
 
 9.36924 
 9.36976 
 9.37028 
 
 53 
 52 
 
 52 
 
 9.38 147 
 9.38202 
 9-38257 
 
 50 
 55 
 55 
 
 0.61 853 
 0.61 798 
 0.61 743 
 
 9.98 777 
 9.98 774 
 9.98771 
 
 28 
 
 11 
 
 .1 
 
 .2 
 
 3 
 
 5-3 
 10.6 
 
 15-9 
 
 5-2 
 10.4 
 
 15.6 
 
 1 
 
 39 
 
 9-37o8i 
 9-37I33 
 9.371S5 
 
 9 37237 
 9-37289 
 
 52 
 
 52 
 
 52 
 52 
 
 9-383I3 
 9.38368 
 
 9-38423 
 9-38479 
 9.38534 
 
 55 
 
 55 
 56 
 55 
 
 0.61 687 
 0.61 632 
 0.61 577 
 o.Ci 521 
 0.61 466 
 
 9.98768 
 9.98 765 
 9.98 762 
 
 9-98 759 
 9.98 756 
 
 25 
 24 
 23 
 
 22 
 21 
 
 4 
 
 7 
 
 21 .2 
 26.5 
 
 3? 8 
 
 37-i 
 42.4 
 
 20. 
 
 26.0 
 3 1.7 
 
 36.4 
 41.6 
 46 8 
 
 40 
 
 9-37341 
 9-37393 
 
 52 
 
 9-38589 
 9.38644 
 
 55 
 
 55 
 
 0.61 411 
 0.61 356 
 
 9.98 753 
 9.98 750 
 
 20 
 
 19 
 
 . 
 
 51 
 
 4 
 
 42 
 
 9-37445 
 
 5 2 
 
 9.38699 
 
 55 
 
 o.Ci 301 
 
 9.98 746 
 
 18 
 
 .1 
 
 b- 1 
 
 0.4 
 
 43 
 
 44 
 
 9-37497 
 9-37549 
 
 S 2 
 52 
 
 9! 38 808 
 
 55 
 54 
 
 0.61 246 
 0.61 192 
 
 9-98 743 
 9.98740 
 
 \l 
 
 .2 
 
 3 
 
 10.2 
 15-3 
 
 1.2 
 
 45 
 46 
 
 9.37600 
 
 52 
 
 9.38863 
 9.38918 
 
 55 
 55 
 
 0.61 137 
 0.61 082 
 
 9-98 737 
 9-98 734 
 
 15 
 
 14 
 
 4 
 
 25-5 
 
 2.0 
 
 11 
 
 9-37703 
 9-37755 
 
 Si 
 52 
 
 9-38972 
 9.39027 
 
 54 
 55 
 
 0.61 028 
 0.60973 
 
 9.98 73i 
 9.98 728 
 
 13 
 
 12 
 
 :J 
 
 Hi 
 
 
 49 
 
 9.37806 
 
 5 1 
 
 9.39082 
 
 55 
 
 0.60918 
 
 9-98 725 
 
 II 
 
 O 
 
 AC Q 
 
 \ 6 
 
 50 
 
 9.37858 
 
 
 9-39 136 
 
 54 
 
 0.60864 
 
 9.98 722 
 
 10 
 
 
 
 
 51 
 
 9-37909 
 
 5 X 
 
 9.39 190 
 
 54 
 
 0.60810 
 
 9.98 719 
 
 9 
 
 
 3 
 
 
 52 
 53 
 
 54 
 
 9.37960 
 9.38011 
 9.38062 
 
 5* 
 5 
 
 9.39245 
 9.39299 
 
 9-39353 
 
 55 
 54 
 54 
 
 0.60 755 
 0.60 701 
 0.60647 
 
 9.98 715 
 9.98 712 
 9.98 709 
 
 I 
 
 .1 
 
 .2 
 -3 
 
 0.3 
 
 0.6 
 0.9 
 
 I* 
 
 O.2 
 O.O 
 
 o 8 
 
 P 
 
 9.38 "3 
 9.38 164 
 
 S 
 
 9.39407 
 9.39461 
 
 54 
 54 
 
 0.60593 
 0.60539 
 
 9.98 706 
 9.98 703 
 
 5 
 
 4 
 
 
 1:1 
 
 1.0 
 1.2 
 
 
 9-38215 
 9.38266 
 
 5 X 
 5 
 
 9.39515 
 
 54 
 
 54 
 
 0.6048? 
 0.60431 
 
 9.98700 
 9.98697 
 
 3 
 
 i 
 
 2.1 
 
 2 A 
 
 
 59 
 
 9-38317 
 
 5 
 
 9-39623 
 
 54 
 
 0.60377 
 
 9.98694 
 
 i 
 
 .9 
 
 if .4 
 
 2.7 
 
 1.8 
 
 60 
 
 9-38368 
 
 
 9-39677 
 
 54 
 
 0.60323 
 
 9 . 98 690 
 
 
 
 
 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. 
 
 c.d. 
 
 L. Tang. 
 
 L. Sin. 
 
 t 
 
 Prop. Pts. 
 
 76 
 
44 
 
 TABLE IV. 
 
 
 
 
 
 
 14 
 
 
 
 
 
 
 
 t 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 .d. 
 
 L. Coter. 
 
 L. Cos. 
 
 d. 
 
 
 T] 
 
 rop. ] 
 
 >ts. 
 
 1 
 
 I 
 
 2 
 
 3 
 
 4 
 
 9-38368 
 9.38418 
 9.38469 
 9-38519 
 
 9-38570 
 
 so 
 51 
 50 
 51 
 
 5 
 
 9.39677 
 9-39 73i 
 9.39785 
 9-39838 
 9-39892 
 
 54 
 54 
 53 
 54 
 53 
 
 0.60323 
 o . 60 269 
 0.60 215 
 0.60 162 
 0.60 108 
 
 9.98690 
 9.98687 
 9.98684 
 9.98681 
 9.98678 
 
 3 
 3 
 3 
 3 
 
 00 
 
 59 
 58 
 
 y 
 
 .1 
 
 2 
 
 54 
 
 5-4 
 10 8 
 
 53 
 IO O 
 
 1 
 
 I 
 
 9 
 
 9.38620 
 9.38670 
 9-38721 
 9.38 771 
 9.38821 
 
 So 
 Si 
 So 
 5 
 SO 
 
 9-39945 
 9-39999 
 9.40052 
 9.40 106 
 9-40 159 
 
 54 
 53 
 54 
 53 
 53 
 
 0.60055 
 0.60001 
 0.59948 
 0.59894 
 0.59841 
 
 9-98675 
 9.98671 
 9.98668 
 9.98665 
 9.98662 
 
 4 
 3 
 3 
 3 
 
 55 
 54 
 53 
 52 
 5i 
 
 3 
 -4 
 
 .7 
 
 16.2 
 
 21.6 
 
 27.0 
 
 SI 
 
 15-9 
 
 21.2 
 26.q 
 318 
 
 37-1 
 
 10 
 
 ii 
 
 12 
 13 
 
 H 
 
 9.38871 
 9.38921 
 9.38971 
 9.39021 
 9.39071 
 
 So 
 So 
 So 
 So 
 
 9.40212 
 9.40266 
 9.40319 
 9.40372 
 9.40425 
 
 54 
 53 
 53 
 53 
 
 0.59788 
 
 0-59734 
 0.59681 
 0.59 628 
 0-59575 
 
 9.98659 
 9.98 656 
 9-98652 
 9.98649 
 9 . 98 646 
 
 3 
 4 
 3 
 .3 
 
 60 
 
 3 
 
 % 
 
 .8 
 9 
 
 &6 
 5* 
 
 42-4 
 47-7 
 
 5 
 
 \l 
 
 11 
 
 19 
 
 9-39 121 
 9 39 170 
 9.39220 
 9.39270 
 9.393I9 
 
 49 
 50 
 50 
 49 
 
 9.40478 
 
 9-40531 
 9.40584 
 9.40 636 
 9.40689 
 
 53 
 53 
 52 
 53 
 53 
 
 0.59522 
 0.59469 
 0.59416 
 0.59364 
 0-593" 
 
 9-98643 
 9.98640 
 9.98636 
 9-98633 
 9.98630 
 
 3 
 
 4 
 3 
 3 
 
 45 
 44 
 43 
 42 
 41 
 
 .1 
 
 .2 
 
 3 
 4 
 
 5-2 
 10.4 
 15.6 
 20.8 
 
 26.0 
 
 5-x 
 
 IO.2 
 
 15.3 
 20.4 
 
 25-5 
 
 20 
 
 21 
 22 
 
 23 
 
 24 
 
 9-39369 
 9.39418 
 
 9-39467 
 9.395I7 
 9.39566 
 
 49 
 49 
 So 
 49 
 
 9.40 742 
 
 9-40 795 
 9.40847 
 9.40900 
 9.40952 
 
 53 
 
 53 
 53 
 53 
 
 0.59258 
 0.59205 
 
 0.59153 
 0.59 100 
 0.59048 
 
 9.98627 
 9.98 623 
 9 98 620 
 9.98617 
 9.98 614 
 
 4 
 3 
 3 
 3 
 
 40 
 
 39 
 38 
 
 11 
 
 i 
 
 9 
 
 31.2 
 
 36.4 
 
 41.6 
 
 46.8 
 
 30.0 
 
 35-7 
 40.6 
 
 45-9 
 
 > 
 
 8 
 
 3 
 
 29 
 
 9-396i5 
 9.39664 
 
 9-397I3 
 9.39762 
 9.39811 
 
 49 
 49 
 49 
 49 
 
 9-41 005 
 9-4i 057 
 9.41 109 
 9.41 161 
 9.41 214 
 
 53 
 53 
 53 
 53 
 
 52 
 
 0.58995 
 0.58943 
 0.58891 
 0.58839 
 0.58786 
 
 9.98 610 
 9.98607 
 9.98604 
 9.98601 
 9-98597 
 
 3 
 3 
 3 
 
 4 
 
 35 
 34 
 33 
 32 
 3i 
 
 .1 
 
 2 
 
 3 
 
 A 
 
 50 
 5-0 
 
 10. 
 
 15.0 
 
 20 o 
 
 49 
 
 4-9 
 
 9.1 
 
 14.7 
 
 IQ.6 
 
 80 
 
 3i 
 32 
 33 
 34 
 
 9.39860 
 9.39909 
 
 9-3995? 
 9.40006 
 9-40055 
 
 49 
 49 
 48 
 49 
 48 
 
 9.41 266 
 9.41 318 
 9.41 370 
 9.41 422 
 9.41 474 
 
 53 
 53 
 53 
 53 
 5 a 
 
 0.58 734 
 0.58682 
 0.58630 
 0.58578 
 0.58 526 
 
 9.98594 
 9.98591 
 9-98588 
 9.98584 
 9.98581 
 
 3 
 3 
 
 4 
 3 
 
 80 
 
 3 
 2 
 
 :! 
 
 .9 
 
 25.0 
 30.0 
 
 35.0 
 40.0 
 45.0 
 
 24.5 
 29.4 
 
 34-3 
 39.2 
 44.1 
 
 P 
 
 H 
 
 39 
 
 9-40 103 
 9-40 152 
 9.40200 
 9.40249 
 9.40297 
 
 49 
 48 
 49 
 48 
 
 9-41 526 
 9.41 578 
 9.41 629 
 9.41 68 i 
 9-41 733 
 
 5 
 
 5 
 
 5 
 
 53 
 
 0.58474 
 0.58422 
 0.58371 
 0.58319 
 0.58267 
 
 9.98578 
 9.98574 
 9-9857I 
 9-98568 
 9-98565 
 
 4 
 3 
 3 
 3 
 
 25 
 
 24 
 
 23 
 
 22 
 21 
 
 .1 
 
 .2 
 
 48 
 
 4-8 
 9.6 
 
 47 
 
 4-7 
 9.4 
 
 40 
 
 4i 
 
 42 
 
 43 
 
 44 
 
 9.40346 
 9 40394 
 9-40442 
 9.40490 
 9-40538 
 
 48 
 
 48 
 48 
 
 48 
 
 A a 
 
 9.41 784 
 9.41 836 
 9.41 887 
 9.4I939 
 9.41 990 
 
 5* 
 Si 
 53 
 
 S 
 
 0.58 216 
 0.58 164 
 0.58 113 
 0.58061 
 0.58010 
 
 9.98 561 
 9.98558 
 9.98555 
 9.98551 
 9-98548 
 
 3 
 3 
 
 4 
 3 
 
 20 
 
 18 
 
 II 
 
 3 
 4 
 
 14.4 
 19.2 
 
 24.0 
 28.8 
 3,V6 
 
 ls',8 
 
 S:ll 
 32.9 1 
 
 3 
 
 s 
 
 49 
 
 9.40586 
 9.40634 
 9.40682 
 
 9.4073 
 9.40 778 
 
 48 
 48 
 48 
 48 
 
 9.42041 
 9.42093 
 9.42 144 
 9.42 195 
 9.42 246 
 
 53 
 51 
 Si 
 5* 
 
 0-57959 
 0.57907 
 0.57856 
 0.57805 
 0-57754 
 
 9-98545 
 9.98541 
 9.98538 
 9.98535 
 9-98531 
 
 4 
 3 
 3 
 4 
 
 15 
 
 14 
 13 
 
 12 
 II 
 
 9 
 
 38.4 
 43 2 
 
 4 
 
 37.6 
 
 : 
 
 sr 
 
 ! 5I 
 
 1 C2 
 
 1 53 
 54 
 
 9.40825 
 9.40873 
 9.40921 
 9 40 968 
 9.41 016 
 
 47 
 48 
 48 
 47 
 48 
 
 9.42297 
 9-42348 
 9.42399 
 9-42450 
 9.42501 
 
 5i 
 5 
 Si 
 5 
 
 0-57 703 
 0.57652 
 0.57601 
 0.57550 
 0.57499 
 
 9.98528 
 
 998525 
 9 98521 
 9-98518 
 9 985*5 
 
 3 
 3 
 4 
 3 
 3 
 
 10 
 
 1 
 
 .1 
 
 .2 
 
 3 
 4 
 
 0.4 
 
 o.S 
 
 1.2 
 
 1.6 
 
 2.C 
 
 0.3 
 
 0.6 
 0.9 
 
 1.2 
 
 ;-j 
 
 5 5^ 
 
 ? 
 
 59 
 
 9.41063 
 9.41 in 
 9.41 158 
 9.41 205 
 9 41 252 
 
 48 
 47 
 47 
 47 
 
 .0 
 
 9.42552 
 9-42603 
 9-42653 
 9-42 704 
 9-42 755 
 
 5* 
 
 50 
 S 
 Si 
 
 0.57448 
 0-57397 
 0-57347 
 0.57296 
 0.57245 
 
 9.98511 
 9-98508 
 
 9-98505 
 9.98501 
 
 9.98498 
 
 4 
 
 3 
 3 
 
 4 
 3 
 
 5 
 4 
 3 
 
 2 
 I 
 
 :l 
 
 9 
 
 2.4 
 2.8 
 
 3:! 
 
 1.8 
 
 2.1 
 
 2-4 
 2-7 
 
 it jo 
 
 9.41 300 
 
 
 9.42805 
 
 
 0-57 195 
 
 9.98494 
 
 
 
 
 
 
 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. 
 
 c.d 
 
 L. Tang 
 
 L. Sin. 
 
 d. 
 
 t 
 
 1 
 
 *rop. 
 
 Pts. 
 
 
 
 
 
 
 75 
 
 
 
 
 
 
 
LOGARITHMS OF SINE, CO.Bl^, TANGENT AND COTANGENT, ETC. 
 
 45 
 
 15 
 
 t 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 d. 
 
 
 Prop. Pts. 
 
 
 
 9.41 300 
 
 
 9.42805 
 
 
 O-57 J 95 
 
 9.98494 
 
 
 00 
 
 
 I 
 
 9-4i 347 
 
 
 9-42856 
 
 
 0.57 144 
 
 9.98491 
 
 
 S9 
 
 
 2 
 
 9-41 394 
 
 
 9.42906 
 
 
 0.57094 
 
 9.98488 
 
 3 
 
 S8 
 
 
 SI 
 
 5 
 
 3 
 4 
 
 9.41441 
 9.41 488 
 
 47 
 47 
 
 9-42957 
 9.43007 
 
 50 
 50 
 
 0.57043 
 0-56993 
 
 9.98484 
 9.98481 
 
 3 
 4 
 
 H 
 
 .1 
 
 .2 
 
 IO.2 
 
 5-o 
 
 IO.O 
 
 i 
 
 I 
 
 9 
 
 9-4i 535 
 9.41 582 
 9.41 628 
 9-4i 675 
 9.41 722 
 
 47 
 46 
 
 47 
 47 
 46 
 
 9-43057 
 9-43 108 
 9-43 158 
 9.43208 
 9-43258 
 
 50 
 50 
 50 
 
 5 
 
 0-56943 
 0.56 892 
 0.56 842 
 0.56 792 
 0.56 742 
 
 9.98477 
 9.98474 
 9.98471 
 9.98467 
 9.98464 
 
 3 
 3 
 
 4 
 3 
 
 55 
 54 
 53 
 52 
 
 .3 
 
 4 
 
 15-3 
 20.4 
 
 25-5 
 30.6 
 
 3S-7 
 
 15-0 
 
 20. o 
 
 25-0 ; 
 30.0 
 
 35-o 
 
 10 
 
 9.41 768 
 
 
 9-43308 
 
 
 0.56692 
 
 9 . 98 460 
 
 
 50 
 
 .8 
 
 40.8 
 
 40.0 
 
 12 
 
 9.41815 
 9.41 861 
 
 47 
 46 
 
 9-43358 
 9.43408 
 
 5 
 50 
 
 0.56642 
 0.56592 
 
 9-98457 
 9-98453 
 
 3 
 
 4 
 
 49 
 48 
 
 9 
 
 45-9 
 
 45-0 
 
 13 
 
 14 
 
 9.41 908 
 9-41 954 
 
 47 
 46 
 
 9-43458 
 9-43508 
 
 5 
 50 
 5 
 
 0.56542 
 0.56492 
 
 9.98450 
 9.98447 
 
 3- 
 3 
 
 47 
 46 
 
 
 49 
 
 48 
 
 ii 
 
 9.42001 
 9.42047 
 9.42093 
 9.42 140 
 
 46 
 46 
 47 
 
 9.43558 
 9.43607 
 
 9.43657 
 9-43 707 
 
 49 
 50 
 50 
 
 0.56442 
 0.56393 
 0.56343 
 0.56293 
 
 9-98443 
 9-98440 
 9.98436 
 
 9-98433 
 
 3 
 
 4 
 3 
 
 45 
 44 
 43 
 42 
 
 .1 
 
 .2 
 
 3 
 4 
 
 49 
 9-8 
 
 14.7 
 19.6 
 
 4-8 
 9-6 
 14.4 
 19.2 
 
 19 
 
 9.42 186 
 
 40 
 46 
 
 9-43756 
 
 49 
 5 
 
 0.56244 
 
 9.98429 
 
 4 
 
 41 
 
 5 
 
 24-5 
 
 
 21 
 22 
 23 
 
 9.42232 
 9.42278 
 9.42324 
 9.42370 
 
 46 
 46 
 46 
 .f. 
 
 9-43855 
 9-43954 
 
 49 
 50 
 49 
 
 0.56 194 
 0.56 145 
 0.56095 
 0.56046 
 
 9.98 426 
 9.98422 
 9.98419 
 9.98415 
 
 4 
 3 
 4 
 
 40 
 
 39 
 38 
 37 
 
 9 
 
 29.4 
 
 34.3 
 39-2 
 44.1 
 
 pU 
 
 43-2 
 
 1 24 
 
 9.42416 
 
 AC 
 
 9.44004 
 
 40 
 
 0.55996 
 
 9.98412 
 
 3 
 
 36 
 
 f 
 
 ? 
 
 29 
 
 9.42461 
 9.42507 
 9-42553 
 9.42599 
 9.42644 
 
 4 6 
 4 6 
 46 
 
 45 
 46 
 
 9-44053 
 
 9-44 102 
 
 9.44I5I 
 9.44201 
 9.44250 
 
 49 
 49 
 So 
 49 
 
 0-55947 
 0.55898 
 0.55849 
 0-55 799 
 0.55750 
 
 9.98409 
 9.98405 
 9.98402 
 9.98398 
 9-98395 
 
 4 
 3 
 4 
 3 
 
 35 
 34 
 33 
 32 
 31 
 
 .1 
 
 .2 
 
 3 
 
 A 
 
 47 
 
 4-7 
 9-4 
 
 14.1 
 18 8 
 
 4.6 
 9-2 
 n.8 
 18.4 
 
 30 
 
 9.42690 
 9.42735 
 
 45 
 
 .e. 
 
 9.44299 
 
 49 
 
 0.55 701 
 0-55652 
 
 9.98391 
 9.98388 
 
 3 
 
 29 
 
 
 23.5 
 28.2 
 
 23.0 
 27.6 
 
 32 
 33 
 34 
 
 9.42 781 
 9.42 826 
 9.42872 
 
 40 
 45 
 46 
 
 45 
 
 9-44397 
 9.44446 
 9.44495 
 
 49 
 49 
 49 
 
 0.55603 
 0-55554 
 0.55505 
 
 9-98384 
 9.98381 
 
 9.98377 
 
 4 
 3 
 
 4 
 
 28 
 11 
 
 .9 
 
 32.9 
 37-6 
 
 32.2 
 36.8 
 41.4 
 
 P 
 
 9.42917 
 9.42962 
 
 45 
 A f. 
 
 9-44544 
 9-44592 
 
 48 
 
 0.55456 
 0.55408 
 
 9-98373 
 9.98370 
 
 3 
 
 25 
 24 
 
 
 ii 
 
 39 
 
 9.43008 
 
 9.43053 
 9.43098 
 
 4 
 45 
 45 
 
 9.44641 
 9-44690 
 9.44738 
 
 49 
 49 
 48 
 
 0-55359 
 0.55310 
 0.55 262 
 
 9-98366 
 9-98363 
 9.98359 
 
 4 
 3 
 
 4 
 
 23 
 
 22 
 21 
 
 2 
 
 45 
 
 4-5 
 9O 
 
 44 
 
 it 
 
 40 
 
 9-43 143 
 
 
 9.44787 
 
 49 
 
 0-55213 
 
 9.98356 
 
 3 
 
 20 
 
 .3 
 
 
 
 41 
 
 9-43 l8 8 
 
 45 
 
 9.44836 
 
 49 
 
 0-55 164 
 
 9.98 352 
 
 4 
 
 19 
 
 4 
 
 18.0 
 
 17 6 
 
 42 
 43 
 44 
 
 9.43233 
 9.43278 
 
 9.43323 
 
 45 
 
 45 
 45 
 
 9-44884 
 9-44933 
 9.44981 
 
 48 
 49 
 48 
 
 A 9 
 
 0.55 116 
 0.55067 
 0.55019 
 
 9-98349 
 9-98345 
 9.98342 
 
 3 
 
 4 
 3 
 
 \l 
 
 
 22.5 
 27.0 
 
 v-s 
 
 22. 
 26.4 
 30.8 
 
 ? 
 
 9.43367 
 9.43412 
 
 9-43457 
 
 45 
 45 
 
 9-45029 
 9-45078 
 9-45 126 
 
 49 
 48 
 
 0-54971 
 0.54922 
 0.54874 
 
 9-98338 
 9-98334 
 9-9833I 
 
 4 
 
 4 
 3 
 
 15 
 H 
 13 
 
 9 
 
 36.0 
 40.5 
 
 35-2 
 39-6 
 
 48 
 
 9-43502 
 
 45 
 
 9-45 174 
 
 4 8 
 
 0.54826 
 
 9-98327 
 
 4 
 
 12 
 
 
 49 
 
 9-43546 
 
 44 
 
 9-45222 
 
 48 
 
 0.54778 
 
 9.98324 
 
 3 
 
 II 
 
 
 4 
 
 3 
 
 50 
 
 9-43591 
 
 
 9-45 271 
 
 49 
 
 0.54729 
 
 9.98320 
 
 4 
 
 10 
 
 .1 
 
 04 
 
 03 
 
 5i 
 
 52 
 
 9-43635 
 9.43680 
 
 44 
 45 
 
 9-45 319 
 9-45 367 
 
 4 8 
 48 
 
 0.54681 
 0.54633 
 
 9.98317 
 9-983I3 
 
 3 
 
 4 
 
 1 
 
 .2 
 3 
 
 0.8 
 1.2 
 
 0.6 
 0.9 
 
 53 
 
 9-43 724 
 
 44 
 
 9.45 4i5 
 
 48 
 
 0-54585 
 
 9.98309 
 
 4 
 
 7 
 
 4 
 
 1.6 
 
 1.2 
 
 
 9-43 769 
 
 45 
 
 9-45463 
 
 48 
 
 .0 
 
 0-54537 
 
 9.98306 
 
 3 
 
 6 
 
 
 2.O 
 
 1-j 
 
 55 
 
 9-43813 
 
 
 9-455" 
 
 4 
 
 0.54489 
 
 9.98302 
 
 4 
 
 5 
 
 .b 
 
 2.4 
 
 1.8 
 
 5<> 
 
 9-43857 
 
 44 
 
 9-45559 
 
 48 
 
 0.54441 
 
 9.98299 
 
 3 
 
 4 
 
 7 
 
 2.8 
 
 2.1 
 
 57 
 
 9.43901 
 
 44 
 
 9-45 606 
 
 47 
 
 0-54394 
 
 9.98295 
 
 4 
 
 3 
 
 .8 
 
 3.2 
 
 2.4 
 
 58 
 
 9-43 946 
 
 45 
 
 9-45 654 
 
 48 
 
 0.54346 
 
 9.98291 
 
 4 
 
 2 
 
 9 
 
 3-6 
 
 2.7 
 
 59 
 
 9-43990 
 
 44 
 
 9.4^702 
 
 48 
 
 0.54298 
 
 9.98288 
 
 3 
 
 I 
 
 
 GO 
 
 9-44034 
 
 
 9-45 750 
 
 4 
 
 o 54 250 
 
 9.98284 
 
 4 
 
 
 
 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. 
 
 c.d. 
 
 L. Tang. 
 
 L. Sin. 
 
 d. 
 
 , 
 
 Prop. P^. 
 
 74 
 
TABLE IV. 
 
 
 
 
 
 
 16 
 
 
 
 
 
 
 
 / 
 
 L. Sin. 
 
 d. 
 
 L. Tan?. 
 
 c.d. 
 
 L. Cot?. 
 
 L, Cos. 
 
 d. 
 
 
 p 
 
 rop. 1 
 
 Pis. 
 
 
 
 I 
 
 2 
 
 3 
 4 
 
 9.44034 
 9.44078 
 
 9.44 122 
 
 9.44 166 
 9.44210 
 
 44 
 44 
 44 
 44 
 43 
 
 9-45 750 
 9-45 797 
 9.4584? 
 9-45892 
 9-45 940 
 
 47 
 48 
 47 
 48 
 47 
 
 0.54250 
 0.54203 
 
 0.54155 
 0.54 1 08 
 0.54060 
 
 9 . 98 284 
 9.98281 
 9.98277 
 9.98273 
 9.98270 
 
 3 
 4 
 
 4 
 3 
 
 00 
 
 9 
 
 9 
 
 .1 
 
 48 
 
 4-8 
 9f. 
 
 47 
 4-7 
 
 I 
 
 9 
 
 9-44253 
 9.44297 
 
 9-44341 
 9.44385 
 9.44428 
 
 44 
 44 
 44 
 43 
 44 
 
 9-45 987 
 9-46035 
 9.46082 
 9.46 130 
 9.46 177 
 
 48 
 47 
 48 
 47 
 
 0.54013 
 0.53965 
 o.539i8 
 0.53870 
 0.53823 
 
 9.98266 
 9.98 262 
 9.98259 
 
 9.98255 
 9.98251 
 
 4 
 3 
 
 4 
 4 
 
 55 
 54 
 53 
 52 
 |l 
 
 3 
 4 
 
 7 
 
 
 14.4 
 19.2 
 24.0 
 28.8 
 33 6 
 
 9-4 
 14.1 
 18.8 
 
 III 
 
 72 Q 
 
 110 
 ii 
 
 12 
 13 
 14 
 
 9-44472 
 9 44 5 l6 
 9-44559 
 9.44602 
 9.44646 
 
 44 
 43 
 43 
 44 
 43 
 
 9.46224 
 9.46271 
 9-463I9 
 9-46366 
 9.46413 
 
 47 
 48 
 47 
 47 
 47 
 
 0.53776 
 0.53729 
 0.53681 
 
 0.53634 
 0.53587 
 
 9.98248 
 9.98244 
 9.98240 
 9.98237 
 9-98233 
 
 3 
 
 4 
 4 
 3 
 
 4 
 
 60" 
 
 % 
 % 
 
 8 
 9 
 
 P-4 
 43- 2 
 
 46 
 
 37-6 
 42.3 
 
 45 
 
 15 
 
 16 
 
 \l 
 
 19 
 
 9.44689 
 9-44 733 
 9-44 776 
 9-448I9 
 9.44862 
 
 44 
 43 
 43 
 43 
 
 9.46460 
 9.46 507 
 
 9.46554 
 9.46601 
 9.46648 
 
 47 
 47 
 47 
 47 
 <i6 
 
 0-53540 
 0-53493 
 0.53446 
 0-53399 
 0.53352 
 
 9.98 229 
 9 . 98 226 
 
 9.98 222 
 9.98218 
 9.98215 
 
 3 
 
 4 
 4 
 3 
 
 45 
 44 
 43 
 42 
 41 
 
 .1 
 
 .2 
 
 3 
 4 
 
 4.6 
 9-2 
 
 13.8 
 
 18.4 
 23.0 
 
 4-5 
 9.0 
 
 '3-5 
 18.0 
 22.5 
 
 20 
 
 21 
 
 22 
 
 23 
 24 
 
 9-44905 
 9.44948 
 9.44992 
 9-45035 
 9-45 077 
 
 43 
 44 
 43 
 43 
 
 9-46694 
 9.46 741 
 9.46 788 
 9-46835 
 9.46881 
 
 47 
 47 
 47 
 46 
 
 0.53306 
 0.53259 
 0.53212 
 0-53 165 
 0-53 "9 
 
 9.98 211 
 9.98 207 
 9.98204 
 9.98 200 
 9.98 196 
 
 4 
 4 
 3 
 
 4 
 4 
 
 40 
 
 9 
 9 
 
 * 
 
 9 
 
 2y. 6 
 32.2 
 36.8 
 41.4 
 
 27.0 
 
 3J-5 
 36.0 
 40.5 
 
 % 
 % 
 
 29 
 
 9-45 "O 
 
 9-45 163 
 9-45 206 
 9-45 249 
 9-45 292 
 
 43 
 43 
 43 
 43 
 
 4 2 
 
 9.46 928 
 
 9-46 975 
 9.47021 
 9.47068 
 9-47 "4 
 
 47 
 46 
 47 
 46 
 
 4 6 
 
 0.53072 
 0.53025 
 
 0.52979 
 0.52932 
 0.52886 
 
 9.98 192 
 9.98 I9 
 9.98 IS? 
 
 9.98 181 
 9-98 177 
 
 3 
 
 4 
 4 
 
 4 
 
 35 
 34 
 33 
 32 
 31 
 
 .1 
 
 .2 
 
 3 
 
 44 
 
 31 
 I?1 
 
 43 
 
 3:1 
 
 12.9 
 
 172 
 
 130 
 
 31 
 
 62 
 33 
 34 
 
 9-45 334 
 9-45 377 
 9.45419 
 9.45462 
 
 9-45504 
 
 43 
 42 
 43 
 42 
 
 9.47 160 
 9.47207 
 
 9.47253 
 9.47299 
 9-47346 
 
 47 
 
 46 
 
 46 
 47 
 d.6 
 
 0.52840 
 
 0.52 793 
 0.52 747 
 0.52 701 
 0.52654 
 
 9-98 174 
 9.98 170 
 9.98 166 
 9.98 162 
 9-98 159 
 
 4 
 4 
 4 
 3 
 
 30 
 
 27 
 26 
 
 1 
 
 .0 
 
 I/.U 
 
 22.0 
 26.4 
 30.8 
 
 35-2 
 39-6 
 
 l/.^ 
 
 21. 5 
 
 25.8 
 30.1 
 
 9 
 
 9 
 
 39 
 
 9-45 547 
 9-45 589 
 9-45632 
 9-45674 
 9-45 7i6 
 
 42 
 43 
 42 
 42 
 
 9-47392 
 9.47438 
 9.47484 
 9-47530 
 9-47576 
 
 46 
 46 
 46 
 46 
 46 
 
 0.52608 
 0.52562 
 0.52 516 
 0.52470 
 0.52424 
 
 9-98 155 
 9.98 151 
 9.98 147 
 9.98 144 
 9.98 140 
 
 4 
 4 
 4 
 3 
 
 4 
 
 25 
 24 
 
 23 
 
 22 
 21 
 
 .1 
 
 2 
 
 4 
 
 4-2 
 
 8 4 
 
 41 
 
 
 
 40 
 
 4i 
 42 
 43 
 44 
 
 9-45 758 
 9.45801 
 
 9-45 843 
 9-45885 
 9-45927 
 
 43 
 42 
 42 
 42 
 
 9.47622 
 9.47668 
 
 9-47 7H 
 9.47 760 
 9.47806 
 
 46 
 46 
 46 
 46 
 
 A.6 
 
 0.52378 
 0.52332 
 0.52 286 
 0.52 240 
 0.52 194 
 
 9.98 136 
 9.98 132 
 9.98 129 
 
 9-98 12? 
 9.98 121 
 
 4 
 4 
 3 
 
 4 
 4 
 
 20 
 
 JQ 
 
 il 
 
 3 
 4 
 
 i 
 
 .7 
 
 12.6 
 
 16.8 
 
 21.0 
 
 25.2 
 
 29.4 
 
 "3 
 
 16.4 
 
 20.5 
 
 24.6 
 
 28.7 
 
 45 
 46 
 
 47 
 48 
 49 
 
 9 45969 
 9.46011 
 9-46053 
 9.46095 
 9.46 136 
 
 42 
 42 
 42 
 4i 
 
 9.47852 
 9.47897 
 
 9-47943 
 9.47989 
 9-48035 
 
 45 
 46 
 46 
 46 
 
 0.52 148 
 0.52 103 
 0.52057 
 0.52011 
 0.51965 
 
 9.98 117 
 9.98113 
 
 9.98 1 10 
 9.98 106 
 
 9.98 IO2 
 
 4 
 
 4 
 3 
 
 4 
 4 
 
 '5 
 H 
 13 
 
 12 
 II 
 
 .8 
 9 
 
 33-6 
 37-8 
 
 4 
 
 32.8 1 
 
 36.9 
 
 3 
 
 50 
 
 Si 
 
 52 
 53 
 
 1 54 
 
 9 46 178 
 9.46 220 
 9.46 262 
 9-46303 
 9-46345 
 
 42 
 42 
 4i 
 43 
 
 9.48080 
 9.48 126 
 9.48 171 
 9.48217 
 9.48262 
 
 46 
 45 
 46 
 45 
 
 0.51 920 
 0.51874 
 0.51 829 
 0.51 783 
 0.51 738 
 
 9,98098 
 9.98094 
 9.98090 
 9.98087 
 9.98083 
 
 4 
 
 4 
 4 
 3 
 
 4 
 
 10 
 
 I 
 I 
 
 .1 
 
 .2 
 
 3 
 4 
 5 
 
 0.4 
 0.8 
 
 1.2 
 
 1.6 
 
 2.0 
 
 0.3 
 0.0 
 0.9 
 1.2 
 
 -J 
 
 9 
 
 9 
 
 59 
 
 9.46386 
 9 . 46 428 
 9.46469 
 9.46511 
 9-46552 
 
 42 
 4i 
 42 
 4 
 
 9.48307 
 
 9.48353 
 9.48398 
 
 9-48443 
 9.48489 
 
 46 
 
 45 
 45 
 46 
 
 0.51 693 
 0.51 647 
 0.51 602 
 0.51557 
 0.51 5ii 
 
 9.98079 
 9.98075 
 
 9.98071 
 9.98067 
 
 9.98063 
 
 4 
 
 ' 4 
 4 
 4 
 4 
 
 5 
 
 4 
 3 
 
 2 
 I 
 
 .6 
 9 
 
 li 
 H 
 
 1.8 
 
 2.1 
 2.4 
 2.7 
 
 60 
 
 9.46594 
 
 
 9.48534 
 
 
 0.51 466 
 
 9.98 060 
 
 3 
 
 
 
 
 
 
 
 L. Cos. 
 
 d. 
 
 L. Cot?. 
 
 c.d. 
 
 L. Tan?. 
 
 L. Sin. 
 
 d. 
 
 f 
 
 r 
 
 top. 
 
 Pts. 
 
 
 
 
 
 
 73 
 
 
 
 
 
 
 
LOGARITHMS OF SINE, COSINE, TANGENT AND COTANGENT, ETC. 47 
 
 17 1 
 
 t 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 d. 
 
 
 Prop. Pts. \ 
 
 
 
 2 
 
 3 
 4 
 
 9-46594 
 9-46635 
 9.46 676 
 9.46717 
 9-46758 
 
 4 1 
 4* 
 41 
 41 
 42 
 4 
 4* 
 41 
 4< 
 4 
 4 
 41 
 41 
 4< 
 41 
 40 
 4> 
 40 
 4 
 40 
 
 4> 
 40 
 4' 
 40 
 40 
 
 41 
 40 
 40 
 4<> 
 40 
 
 4 
 4<> 
 40 
 4<> 
 
 40 
 
 4<> 
 40 
 39 
 40 
 40 
 
 39 
 4<> 
 40 
 39 
 40 
 
 39 
 40 
 39 
 39 
 39 
 40 
 39 
 39 
 39 
 39 
 39 
 39 
 39 
 39 
 39 
 
 9-48534 
 9.48579 
 9.48 624 
 9.48669 
 9.48 714 
 
 45 
 45 
 45 
 45 
 45 
 45 
 45 
 45 
 45 
 45 
 45 
 44 
 45 
 45 
 44 
 45 
 44 
 45 
 44 
 45 
 44 
 45 
 44 
 44 
 45 
 44 
 44 
 44 
 44 
 44 
 44 
 44 
 44 
 44 
 44 
 44 
 44 
 43 
 44 
 44 
 44 
 43 
 44 
 43 
 44 
 43 
 44 
 43 
 44 
 43 
 43 
 44 
 43 
 43 
 43 
 43 
 43 
 44 
 43 
 43 
 
 0.51 466 
 0.51 421 
 0.51 376 
 
 0.51331 
 0.51 286 
 
 9 . 98 060 
 9.98056 
 9.98052 
 9 . 98 048 
 9.98044 
 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 3 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 3 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 5 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 
 00 
 
 f* 
 y 
 
 .1 
 
 .2 
 
 3 
 4 
 
 :i 
 
 .7 
 
 .8 
 9 
 
 .1 
 
 .2 
 
 3 
 
 4 
 
 j 
 
 9 
 
 I 
 
 .2 
 
 3 
 
 4 
 
 ;2 
 
 9 
 .1 
 
 .2 
 
 3 
 
 4 
 
 .b 
 
 :l 
 
 9 
 
 .2 
 
 3 
 4 
 
 j 
 
 -9 
 
 45 
 
 4-5 
 9.0 
 
 !3i 
 
 22.5 
 27.0 
 
 3J-S 
 36.0 
 
 40-5 
 
 43 
 
 tt 
 
 12.9 
 17.2 
 21-5 
 258 
 30.1 
 34-< 
 38-7 
 
 V 
 
 41 
 
 8^2 
 
 12.3 
 
 16.4 
 
 20.5 
 
 24.6 
 
 28.7 
 
 32.8 
 
 36-9 
 
 39 
 
 ?:l 
 
 11.7 
 15.6 
 iQ-5 
 23-4 
 27-3 
 31.2 
 
 35-i 
 
 4 
 0.4 
 0.8 
 
 -1.2 
 
 1.6 
 
 2.0 
 
 2-4 
 2.8 
 
 1-6 
 
 44 
 
 si 
 
 o.o 
 
 '3-2 , 
 17 6 
 
 22 
 26.4 
 30.8 
 
 35-2 
 39-6 
 
 42 
 
 4-2 
 8.4 
 
 12.6 
 
 16.8 
 
 21. 
 
 25-2 
 29.4 
 336 
 
 37-8 
 
 t 
 40 
 4.0 
 8.0 
 
 12.0 
 
 16.0 
 20. o 
 
 24.0 
 28.0 
 
 32.0 
 
 36.0 
 
 5 
 
 0.5 
 
 1.0 
 
 15 
 
 2.0 
 2-5 
 
 30 
 
 35 
 4-0 
 4-5 
 
 3 
 
 -3 | 
 0.6 
 
 0.9 
 
 1.2 
 
 !:i 
 
 2.1 
 2.4 
 2.7 
 
 I 
 
 I 
 
 9 
 10 
 ii 
 
 12 
 13 
 
 14 
 
 9 . 46 800 
 9.46841 
 9.46882 
 9.46923 
 9.46964 
 
 9-48 759 
 9.48804 
 9.48849 
 9-48894 
 9-48939 
 
 0.51 241 
 0.51 196 
 
 0.51 151 
 0.51 106 
 0.51 061 
 
 9 . 98 040 
 9 . 98 036 
 9.98032 
 9.98029 
 9.98025 
 
 55 
 54 
 53 
 52 
 5i 
 
 9.47005 
 
 9-47045 
 9.47086 
 9-47 127 
 9.47168 
 
 9.48984 
 9.49029 
 
 9-49073 
 9.49 118 
 9-49 103 
 
 0.51 016 
 0.50971 
 0.50927 
 
 O.5O 8\>2 
 
 0.50837 
 
 9.98021 
 9.98017 
 9.98 013 
 9 98 oc i 
 9 . 98 005 
 
 50 
 
 3 
 
 8 
 
 15 
 
 16 
 
 17 
 18 
 
 19 
 
 9.47209 
 9.47249 
 9.47290 
 9-47330 
 9-47371 
 
 9-49 207 
 9-49252 
 9.49296 
 9-49341 
 9.49385 
 
 0.50793 
 0.50 748 
 o . 50 704 
 0.50659 
 0.50 615 
 
 9.98001 
 9-97997 
 9-97993 
 9.97989 
 9.97986 
 
 45 
 44 
 43 
 42 
 41 
 
 20 
 
 21 
 22 
 
 23 
 24 
 
 9.47411 
 9.47452 
 9-47492 
 9-47533 
 9-47573 
 
 9-49430 
 9-49474 
 9.49519 
 9-49 563 
 9.49607 
 
 0.50570 
 0.50526 
 0.50481 
 
 0.50437 
 0.50393 
 
 9.97982 
 9.97978 
 
 9-97974 
 9.97970 
 9.97966 
 
 40 
 
 3 
 
 11 
 
 II 
 % 
 
 29 
 
 9-47613 
 9.47654 
 9.47694 
 9 47 734 
 9-47 774 
 
 9.49652 
 9.49696 
 9-49 740 
 9.49784 
 9.49828 
 
 0.50 348 
 0.50304 
 0.50 260 
 0.50216 
 
 o . 50 1 72 
 
 9.97962 
 9-97958 
 9-97954 
 9-97950 
 9.97946 
 
 35 
 34 
 33 
 32 
 31 
 
 mT 
 
 ?8 
 
 11 
 
 30 
 
 3i 
 
 32 
 33 
 34 
 
 9.47814 
 9-47854 
 9.47894 
 
 9-47934 
 9 47974 
 
 9.49872 
 9.49916 
 9.49960 
 9 . 50 004 
 9 . 50 048 
 
 0.50 128 
 o . 50 084 
 o . 50 040 
 
 0.49996 
 0.49952 
 
 9.97942 
 9-97938 
 9-97934 
 9.97930 
 9.97926 
 
 9 
 
 % 
 
 39 
 
 9.48014 
 9-48054 
 9.48094 
 9 48 133 
 9-48 173 
 
 9.50092 
 9.50 136 
 9.50 180 
 9.50223 
 9.50267 
 
 0.49 908 
 0.49 864 
 0.49820 
 
 0.49777 
 
 0-49 733 
 
 9.97922 
 9.97918 
 9.97914 
 9.97910 
 9.97906 
 
 25 
 24 
 
 23 
 
 22 
 21 
 
 40 
 
 4i 
 
 42 
 
 43 
 44 
 
 9.48213 
 9-48252 
 9.48292 
 9-48332 
 9-4837I 
 
 9-503" 
 9.50355 
 9-50398 
 9.50442 
 9-50485 
 
 0.49 689 
 0.49645 
 0.49 602 
 0.49558 
 OA951S 
 
 9.97902 
 9-97898 
 9.97894 
 9.97890 
 9.97886 
 
 20 
 
 : 
 
 \i 
 
 45 
 46 
 47 
 48 
 49 
 
 9.48411 
 9.48450 
 9.48490 
 
 9-48529 
 9.48568 
 
 9-50529 
 9.50572 
 9.50616 
 9-50659 
 9-50703 
 
 0.49471 
 0.49428 
 0.49 384 
 0.49341 
 0.49 297 
 
 9.97882 
 9.97878 
 9.97874 
 9.97870 
 9.97866 
 
 15 
 14 
 
 13 
 
 12 
 II 
 
 ~w 
 
 I 
 
 5 
 4 
 3 
 
 2 
 I 
 
 ~0" 
 
 50 
 
 5i 
 52 
 53 
 54 
 
 9.48 607 
 9.48647 
 9.48686 
 
 9-48725 
 9.48 764 
 
 9.50746 
 
 9-50789 
 9-50833 
 9.50876 
 9.50919 
 
 0.49 254 
 
 0.49 211 
 0.49 167 
 0.49 124 
 0.49081 
 
 9.97861 
 9-97857 
 9-97853 
 9-97849 
 9-97845 
 
 P 
 
 57 
 58 
 59 
 
 w 
 
 9-48803 
 9.48842 
 9.48881 
 9.48920 
 9-48959 
 
 9.50962 
 9-5IOOS 
 9-51048 
 9-51092 
 9-51 135 
 
 0.49038 
 0.48995 
 
 o 48 952 
 
 0.48908 
 0.48865 
 
 9.97841 
 9-97837 
 
 9-97833 
 9.97829 
 9-97825 
 
 9-48998 
 
 9-51 178 
 
 0.48822 
 
 9.97821 
 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. 
 
 c.d. 
 
 L. Tang. 
 
 L. Sin. 
 
 d. 
 
 1 
 
 Prop. Pts. 
 
 72 
 
TABLE IV. 
 
 18 
 
 t 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 d. 
 
 
 Prop. Pts. 
 
 Y 
 
 I 
 
 2 
 
 3 
 4 
 
 9.48998 
 
 9.49037 
 9.49076 
 
 9-49 H5 
 9 49 153 
 
 39 
 39 
 39 
 38 
 39 
 
 39 
 38 
 39 
 39 
 33 
 
 39 
 38 
 28 
 39 
 38 
 38 
 39 
 38 
 38 
 38 
 38 
 38 
 38 
 38 
 38 
 38 
 38 
 38 
 38 
 38 
 
 37 
 38 
 38 
 37 
 38 
 38 
 37 
 38 
 37 
 37 
 38 
 37 
 37 
 38 
 
 9-5i 178 
 
 9.51 221 
 9.51 264 
 9.51 306 
 
 9-51 349 
 
 43 
 
 43 
 42 
 43 
 43 
 43 
 43 
 
 43 
 43 
 42 
 43 
 43 
 42 
 
 43 
 42 
 
 42 
 
 43 
 42 
 
 43 
 42 
 42 
 42 
 43 
 42 
 
 42 
 42 
 42 
 42 
 42 
 42 
 42 
 42 
 42 
 
 42 
 42 
 42 
 42 
 
 42 
 
 4>I 
 
 42 
 
 42 
 
 41 
 4* 
 42 
 41 
 42 
 41 
 
 42 
 
 4* 
 41 
 4 1 
 
 0.48822 
 0.48 779 
 0.48 736 
 0.48 694 
 0.48 651 
 
 9.97821 
 9.97817 
 9.97812 
 9.97808 
 9.97804 
 
 4 
 5 
 
 4 
 4 
 4 
 4 
 4 
 4 
 4 
 5 
 4 
 4 
 4 
 4 
 4 
 5 
 4 
 4 
 4 
 
 00 
 
 59 
 58 
 
 JL 
 
 55 
 54 
 53 
 52 
 
 .1 
 
 .2 
 
 3 
 4 
 
 ^9 
 .1 
 
 .2 
 
 3 
 4 
 
 9 
 .1 
 
 .2 
 
 3 
 4 
 
 '9 
 .1 
 
 .2 
 
 3 
 4 
 
 ii 
 
 9 
 
 4 
 8 
 
 12 
 
 17 
 21 
 
 25 
 30 
 
 3 
 4 
 
 : i 
 
 9 
 
 l 
 2 
 / 
 ii 
 
 i< 
 
 ic 
 
 2< 
 23 
 3' 
 
 3f 
 
 : 
 
 ^ 
 \ 
 
 i 
 ii 
 \\ 
 
 22 
 2 
 2( 
 3; 
 
 ( 
 
 t 
 
 t 
 i 
 
 3 
 
 i 
 
 9 
 
 .2 
 
 i 
 
 4 
 7 
 
 < 
 
 \ 
 
 12 
 
 ie 
 
 2C 
 2^ 
 2* 
 
 I 
 
 9 
 
 9 
 
 3 
 
 >-5 
 4 
 '3 
 
 .2 
 
 -I 
 
 17 
 
 1 7 
 r-4 
 .1 
 
 1:1 
 
 1.2 
 
 >-9 
 )-6 
 
 J-3 
 
 5 
 ).f 
 
 I.G 
 
 z.o 
 
 2-5 
 
 J-o 
 5-5 
 l- 
 1-5 
 
 43 
 
 4-2 
 8-4 
 
 12.6 
 
 16.8 
 
 21.0 
 25.2 
 29.4 
 
 33 6 
 37-8 
 
 x 
 
 I 
 
 f 2 
 
 3 
 
 '4 
 >.5 
 
 5 
 
 >_9 
 
 38 
 
 3-8 
 7-6 
 ii. 4 
 15-2 
 
 19.0 
 
 22.8 
 26.6 
 30.4 
 34-2 
 
 36 
 3 .6 
 
 10.8 
 18 o 
 
 21 6 ; 
 25.2 
 28.8 
 32-4 
 
 4 
 
 ; 3-4 i 
 
 0.8 
 
 1.2 
 
 1.6 
 
 2.O 
 
 2.4 
 
 2.8 
 
 I 
 I 
 
 9 
 
 12 
 
 14 
 
 9.49 192 
 9.49231 
 9.49269 
 9.49308 
 9-49 347 
 
 9.51392 
 9.5I435 
 9-5 1 478 
 9-51 520 
 9 5 1 563 
 
 0.48608 
 0.48 565 
 0.48 522 
 z 48480 
 ? 48 437 
 
 9.97800 
 9.97796 
 9.97792 
 9-97 788 
 9.97784 
 
 9.49424 
 9.49462 
 9.49500 
 9 49539 
 
 9.51 606 
 9.51 648 
 9.51691 
 
 9-5 1 734 
 9.51 776 
 
 0.48394 
 0.48352 
 0.48309 
 0.48 266 
 0.48 224 
 
 9-97779 
 9-97775 
 9.97771 
 
 9-97767 
 9-97 763 
 
 50 
 
 49 
 48 
 
 15 
 16 
 
 \l 
 
 19 
 "20" 
 
 21 
 22 
 23 
 24 
 
 9-49577 
 9.49615 
 
 9 49654 
 9-49692 
 9-49730 
 
 9.51819 
 9.51 861 
 
 9-5 1 903 
 9.51946 
 
 9-51988 
 
 0.48 181 
 
 0.48 139 
 0.48097 
 0.48 054 
 0.48012 
 
 9-97 759 
 9-97754 
 9-97750 
 9-97746 
 9-97 742 
 
 45 
 44 
 43 
 42 
 41 
 
 9.49768 
 9.49 806 
 9.49844 
 9.49882 
 9.49920 
 
 9.52031 
 9-52073 
 
 9-52 157 
 9.52 200 
 
 0.47969 
 0.47927 
 0.47 885 
 
 0-47843 
 0.47 800 
 
 9.97738 
 9-97734 
 
 9.97725 
 9-97 72i 
 
 4 
 5 
 
 4 
 4 
 4 
 4 
 5 
 4 
 4 
 4 
 5 
 4 
 4 
 4 
 5 
 4 
 4 
 4 
 5 
 4 
 4 
 4 
 5 
 4 
 4 
 4 
 5 
 4 
 4 
 5 
 4 
 4 
 5 
 4 
 4 
 5 
 4 
 4 
 5 
 4 
 
 40 
 
 9 
 9 
 
 ? 
 
 29 
 
 31 
 32 
 
 33 
 
 f 
 9 
 
 39 
 
 9 49958 
 9.49996 
 
 9.50034 
 9.50072 
 9.50 no 
 
 9.52242 
 9.52284 
 9.52326 
 9-52368 
 9.52410 
 
 0-47 758 
 0.47716 
 0.47674 
 0.47632 
 0.47590 
 
 9.97717 
 9-97713 
 9-97 7oS 
 9.97704 
 9.97700 
 
 35 
 34 
 33 
 32 
 
 W 
 
 2Q 
 
 28 
 
 9.50 148 
 9.50185 
 9-50223 
 9.50261 
 9.50298 
 
 9.52494 
 9.52536 
 
 9.52 620 
 
 0.47548 
 
 0.47 56 
 0.47464 
 0.47422 
 0.47380 
 
 9.97696 
 9.97691 
 9-97687 
 9.97683 
 9.97679 
 
 9-50336 
 9.50374 
 9.50411 
 
 9 50449 
 9.50486 
 
 9.52 661 
 9-52 703 
 9.52745 
 9-52 787 
 9.52829 
 
 0-47 339 
 0.47297 
 
 0-47255 
 0.47213 
 0.47 171 
 
 9.97670 
 9.97666 
 9.97662 
 9-97657 
 
 25 
 24 
 23 
 22 
 21 
 
 40 
 
 42 
 43 
 
 1 44 
 
 9-50523 
 9 50 561 
 9.50598 
 9 50 635 
 9-50673 
 
 9.52870 
 9 52912 
 9 52953 
 9 52 995 
 9-53037 
 
 0.47 130 
 o 47 088 
 o 47 047 
 o 47005 
 0.46963 
 
 9-97653 
 9.97649 
 9-97645 
 9-97640 
 9-97636 
 
 20 
 
 19 
 
 17 
 16 
 
 45 
 46 
 
 9 
 
 49 
 
 9.50710 
 
 9.50747 
 9.50784 
 9.50 821 
 9.50858 
 
 37 
 37 
 37- 
 37 
 38 
 
 37 
 37 
 37 
 36 
 
 9-53078 
 9-53 120 
 9 53 161 
 9.53202 
 
 0.46 922 
 0.46880 
 0.46 839 
 0.46 798 
 0.46 756 
 
 9-97632 
 9.97628 
 9-97623 
 9.97619 
 9-976I5 
 
 IS 
 14 
 13 
 
 12 
 II 
 
 50 
 
 52 
 53 
 54 
 
 9 . 50 896 
 
 9.50933 
 
 9.50970 
 9.51 007 
 9.51 043 
 
 9-53285 
 9.53327 
 9.53368 
 9-53409 
 9.53450 
 
 0.46 715 
 0.46673 
 0.46 632 
 0.46591 
 0.46 550 
 
 9.97 610 
 9.97606 
 9.97602 
 9 97597 
 9-97593 
 
 10 
 
 I 
 
 59 
 
 9.51 080 
 9 5i "7 
 9-51 154 
 9.51 191 
 9.51 227 
 
 37 
 37 
 37 
 36 
 
 9-53492 
 9-53533 
 9-53574 
 9-53615 
 9-53656 
 
 0.46 508 
 0.46 467 
 0.46 426 
 0.46 385 
 0.46344 
 
 9-97589 
 9-97584 
 9.97580 
 9-97576 
 9-97571 
 
 5 
 4 
 3 
 
 2 
 I 
 
 GO 
 
 9.51 264 
 
 37 
 
 9-53697 
 
 0.46303 
 
 9-97567 
 
 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. 
 
 c.d. 
 
 L. Tang. 
 
 L. Sin. 
 
 d. 
 
 t 
 
 Prop. Pts. 
 
 ! 71 
 
LOGARITHMS OF SINE, COSINE, TANGENT AND COTANGENT, ETC. 49 
 
 
 19 ! 
 
 f 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 d. 
 
 
 Prop. Pts. | 
 
 
 
 I 
 
 2 
 
 3 
 4 
 
 9.51 264 
 9-5i3oi 
 9-5I338 
 9-5 1 374 
 9-5 1 4" 
 
 37 
 37 
 36 
 37 
 36 
 
 37 
 36 
 37 
 36 
 36 
 
 37 
 36 
 36 
 36 
 37 
 36 
 36 
 36 
 36 
 36 
 36 
 36 
 36 
 36 
 36 
 
 36 
 35 
 36 
 36 
 36 
 
 35 
 36 
 35 
 36 
 35 
 36 
 35 
 36 
 35 
 36 
 35 
 35 
 36 
 35 
 35 
 35 
 35 
 35 
 35 
 35 
 36 
 34 
 35 
 35 
 35 
 35 
 35 
 35 
 34 
 35 
 
 9-53697 
 9-53 738 
 9-53779 
 9-53820 
 9-5386I 
 
 41 
 41 
 41 
 41 
 4 
 4< 
 4< 
 
 4* 
 40 
 4i 
 
 4 
 40 
 41 
 41 
 4<> 
 4 
 4<> 
 4^ 
 40 
 41 
 
 0.46303 
 0.46 262 
 
 0.46 221 
 
 0.46 180 
 
 0.46 139 
 
 9-97567 
 9-97563 
 9.97558 
 9-97554 
 9-97550 
 
 4 
 5 
 4 
 4 
 5 
 4 
 5 
 4 
 4 
 5 
 4 
 4 
 5 
 4 
 5 
 4 
 5 
 4 
 4 
 5 
 4 
 5 
 4 
 5 
 4 
 4 
 5 
 4 
 5 
 4 
 5 
 4 
 5 
 4 
 5 
 4 
 5 
 4 
 5 
 4 
 5 
 4 
 5 
 4 
 5 
 4 
 5 
 5 
 4 
 5 
 4 
 5 
 4 
 5 
 4 
 5 
 5 
 4 
 5 
 4 
 
 (JO 
 
 59 
 58 
 
 H 
 
 .1 
 
 .2 
 
 .3 
 .4 
 
 i 
 
 9 
 .1 
 
 .2 
 
 3 
 4 
 
 :S 
 :i 
 
 9 
 .1 
 
 .2 
 
 3 
 4 
 
 :i 
 
 :l 
 
 9 
 .1 
 
 .2 
 
 3 
 4 
 
 :1 
 
 9 
 
 41 
 
 4-1 
 
 8.2 
 
 "3 
 
 16.4 
 20.5 
 24.6 
 28.7 
 32.8 
 
 36.9 
 3 
 
 .' 3 
 
 .2 7 
 
 3 " 
 4 15 
 
 5 19 
 .6 23 
 .7 27 
 8 3i 
 9 35 
 
 37 
 3-7 
 7-4 
 ii. i 
 
 14.8 
 18.5 
 
 22.2 
 
 25.9 
 29.6 
 
 33-3 
 35 
 
 3-5 
 7-o 
 10.5 
 14.0 
 17-5 
 
 21.0 
 
 24-5 
 28.0 
 
 31.5 
 
 5 
 
 o-5 
 
 I.O 
 
 15 
 
 2.0 
 2-5 
 
 3-o 
 
 3-5 
 4.0 
 
 4-5 
 
 40 
 
 4.0 
 8.0 
 
 12. 
 
 16.0 
 
 20.0 
 24.0 
 28.0 
 32.0 
 36.0 
 
 9 
 
 1 
 
 iiii 
 
 -5 
 4 
 3 
 
 .2 
 .1 
 
 36 
 
 3-6 
 
 10.8 
 14.4 
 18.0 
 
 21.6 
 
 25.2 
 28.8 
 32.4 
 
 34 
 
 i: 4 8 
 
 10.2 
 136 
 17.0 
 20.4 
 23-8 
 2 7 .2 
 30.6 
 
 4 
 0.4 
 0.8 
 
 1.2 
 
 1.6 
 
 2.0 
 
 :i 
 
 i:l 
 
 I 
 I 
 
 9 
 
 'To 
 ii 
 
 :2 
 13 
 
 14 
 
 9-5 1 447 
 9.51 484 
 
 9-5 1 5 2 o 
 9.51557 
 9-5i 593 
 9-51629 
 9.51 666 
 9.51 702 
 9 5' 738 
 9 5i 774 
 
 9-53902 
 9-53943 
 9-53984 
 9-54025 
 9.54065 
 
 0.46 098 
 0.46057 
 
 o 46016 
 0-4597 
 0.45 93 
 
 9-97545 
 9-97541 
 9-97536 
 9-97532 
 9.97528 
 
 55 
 54 
 53 
 52 
 5i 
 
 9.54106 
 9-54147 
 9-54 187 
 9.54228 
 9.54269 
 
 0.45894 
 0-45 853 
 0.45813 
 0.45 772 
 0-45 73 1 
 
 9-97523 
 9 975*9 
 9-975I5 
 9.97510 
 9.97506 
 
 50 
 
 49 
 48 
 
 47 
 46 
 
 IS 
 
 \l 
 
 ft 
 
 21 
 22 
 23 
 
 24 
 
 9.51 811 
 
 9-5I847 
 9.51883 
 
 9-5i 9i9 
 9-5I955 
 
 9-54309 
 9-54350 
 9 54390 
 9 5443 1 
 9-54471 
 
 0.45 691 
 0.45 650 
 0.45 610 
 0-45 569 
 0-45 5 2 9 
 
 9.97501 
 
 9-97497 
 9.97492 
 9.97488 
 9.97484 
 
 45 
 44 
 43 
 42 
 41 
 40~ 
 39 
 38 
 
 P 
 
 9 5 1 99i 
 9.52027 
 9.52063 
 9.52099 
 9-5 2 135 
 
 9 54512 
 9 54552 
 9 54593 
 9 54633 
 9 54673 
 
 40 
 41 
 40 
 40 
 4 
 
 40 
 40 
 4 1 
 40 
 4> 
 40 
 4<> 
 40 
 4 
 4<> 
 40 
 4<> 
 40 
 4 
 4 
 4<> 
 4<> 
 39 
 4 
 4> 
 4 
 39 
 40 
 4<> 
 39 
 40 
 39 
 40 
 39 
 
 o . 45 488 
 0.45 448 
 0.45407 
 0-45 367 
 0.45327 
 
 9-97479 
 9-97475 
 9.97470 
 9.97466 
 9.97461 
 
 111 
 
 3 
 
 29 
 
 9.52 171 
 9.52207 
 9.52242 
 9.52278 
 9 5 2 3H 
 
 9 547H 
 9-54754 
 9-54794 
 9.54835 
 9 54875 
 
 0.45 286 
 0.45 246 
 0.45 206 
 0.45 165 
 0.45 125 
 
 9 97457 
 9 97453 
 9.97448 
 
 9-97444 
 9-97439 
 
 35 
 34 
 33 
 32 
 3i 
 
 80 
 
 3i 
 32 
 33 
 _34_ 
 
 9 
 
 3 
 
 39 
 
 9-52350 
 9-52385 
 9.52421 
 
 9-52456 
 9-52492 
 
 9-54915 
 9-54955 
 9-54995 
 9-55035 
 9.55075 
 
 0.45 08 
 0.4504 
 0.4500; 
 0.4496; 
 0.4492 
 
 9 97435 
 9 9743 
 9.97426 
 
 9-97421 
 9.97417 
 
 30 
 
 2 9 
 28 
 
 3 
 
 9-52527 
 9-52563 
 9-52598 
 9-52634 
 9.52669 
 
 9-55 "5 
 9-55 155 
 9-55 195 
 9.55235 
 9 55275 
 
 0.44885 
 0.44845 
 0.44805 
 0.44 765 
 0-44 725 
 
 9 97412 
 9.97408 
 9-97403 
 9 97399 
 9 97394 
 
 25 
 24 
 23 
 
 22 
 21 
 
 20" 
 
 19 
 
 18 
 
 !| 
 
 40 
 
 4i 
 
 42 
 
 43 
 
 44 
 
 9 52 705 
 9.52740 
 
 9.52775 
 9.52 811 
 9.52 846 
 
 9 553J5 
 9-55355 
 9-55395 
 9-55434 
 9-55474 
 
 0.44685 
 0.44645 
 0.44605 
 0.44566 
 0.44526 
 
 9.97390 
 
 9 97385 
 9.97381 
 9.97376 
 9.97372 
 
 11 
 % 
 
 49 
 
 Iso' 
 
 1 5 1 
 52 
 53 
 54 
 
 9.52881 
 ,9.52916 
 9.52951 
 9-52986 
 9 53021 
 
 9-555H 
 9-55554 
 9-55593 
 9.55633 
 
 o . 44 486 
 0.44446 
 0.44407 
 0.44367 
 0.44327 
 
 9 97367 
 9 97363 
 9-97358 
 9 97353 
 9 97349 
 
 15 
 H 
 13 
 
 12 
 II 
 
 9-53056 
 9-53092 
 9-53 126 
 9-53i6i 
 9-53I96 
 
 9-55712 
 9 55752 
 9-55 79i 
 9-55831 
 9 55870 
 
 0.44288 
 0.44248 
 0.44209 
 0.44 169 
 0.44 130 
 
 9-97344 
 9-97340 
 9-97335 
 9-97331 
 9.97326 
 
 10 
 
 6 
 
 P 
 P 
 
 59 
 
 9-53231 
 9-53266 
 
 9-53301 
 9.53336 
 9-53370 
 
 9-55910 
 9-55949 
 9.55989 
 9.56028 
 9.56067 
 
 39 
 4<> 
 39 
 39 
 4<> 
 
 0.44090 
 0.44051 
 0.44011 
 0.43972 
 0-43933 
 
 9-97322 
 
 9-973I7 
 9.97312 
 9.97308 
 9 97303 
 
 5 
 4 
 3 
 
 2 
 I 
 
 60 
 
 9 534^5 
 
 9-56107 
 
 0.43893 
 
 9.97299 
 
 
 
 
 L. Cos. 
 
 (1. 
 
 L. Cots. 
 
 c.d. 
 
 L. Tang. 
 
 L. Sin. 
 
 d. 
 
 ' f 
 
 Prop. Pts. 
 
 70 
 
TABLE IV. 
 
 
 
 
 
 
 20 
 
 
 
 
 
 
 
 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 d. 
 
 
 p 
 
 rop. 
 
 Pts. 
 
 
 
 I 
 
 2 
 
 3 
 4 
 
 9.53405 
 9-53440 
 9-53475 
 9.53509 
 9-53544 
 
 35 
 35 
 34 
 35 
 34 
 
 9.56 107 
 9.56 146 
 9-56185 
 9.56224 
 9 . 56 264 
 
 39 
 39 
 39 
 40 
 
 39 
 
 0.43893 
 0.43 854 
 
 0.43 815 
 0.43 776 
 0.43 736 
 
 9.97299 
 
 9-97294 
 9.97 289 
 9.97285 
 9.97280 
 
 5 
 
 5 
 4 
 5 
 
 00 
 
 59 
 58 
 
 i 
 
 .1 
 
 2 
 
 40 
 
 \l 
 
 39 
 
 3 -i 
 
 7 
 
 I 
 I 
 
 9 
 
 9.53578 
 9.53$i3 
 9.53647 
 9-53682 
 
 9-53 7i6 
 
 35 
 34 
 35 
 34 
 35 
 
 9-56303 
 9.56342 
 9-56381 
 9.56420 
 
 9.56459 
 
 39 
 39 
 39 
 39 
 39 
 
 0.43 697 
 0.43658 
 0.43619 
 0.43 580 
 0.43 54i 
 
 9.97276 
 9.97271 
 9.97266 
 9.97262 
 9-97257 
 
 5 
 5 
 
 4 
 5 
 
 55 
 54 
 53 
 52 
 Si 
 
 3 
 
 :! 
 
 .7 
 
 12.0 
 
 16.0 
 
 20.0 
 
 7.0 
 
 ii. 7 
 15.6 
 19-5 
 23 4 
 27.7 
 
 10 
 
 ii 
 
 12 
 
 13 
 14 
 
 9-53 751 
 9-53 75 
 9-53819 
 9.53854 
 9.53888 
 
 34 
 34 
 
 35 
 34 
 
 34 
 
 9.56498 
 9.56537 
 9.56576 
 9.56615 
 9-56654 
 
 39 
 39 
 39 
 39 
 39 
 
 0.43 502 
 
 0.43463 
 0.43 424 
 
 0-43 385 
 0-43 346 
 
 9-97252 
 9.97248 
 
 9-97243 
 9-97238 
 9-97234 
 
 4 
 5 
 5 
 
 4 
 
 w 
 
 8 
 
 % 
 
 .8 
 9 
 
 32.0 
 36.0 
 
 38 
 
 31-2 
 35-1 
 
 37 
 
 15 
 
 16 
 
 !i 
 
 19 
 
 9-53922 
 9-53957 
 9-53991 
 9-54025 
 
 9 54059 
 
 35 
 34 
 34 
 34 
 34 
 
 9.56693 
 9.56732 
 9.56771 
 9.56810 
 9.56849 
 
 39 
 39 
 39 
 39 
 38 
 
 0-43 307 
 0.43 268 
 0.43 229 
 0.43 190 
 0.43 I5i 
 
 9.97229 
 9-97224 
 9.97220 
 9-97215 
 9.97210 
 
 5 
 4 
 5 
 5 
 
 45 
 44 
 43 
 42 
 41 
 
 .2 
 
 3 
 4 
 
 3 ^ 
 
 7-6 
 11.4 
 15-2 
 19.0 
 
 3-7 
 7-4 
 ii. i 
 14.8 
 18.5 
 
 20 
 
 21 
 
 22 
 23 
 
 24 
 
 9.54093 
 9-54I27 
 
 9.54i6i 
 
 9-54I95 
 9-54229 
 
 34 
 34 
 34 
 34 
 34 
 
 9-56887 
 9.56926 
 
 9-56965 
 9.57004 
 9.57042 
 
 39 
 39 
 39 
 38 
 39 
 
 0-43 "3 
 0.43074 
 
 0.43035 
 0.42 996 
 0.42958 
 
 9.97206 
 9.97201 
 
 9-97 196 
 9.97192 
 9-97 187 
 
 5 
 
 5 
 
 4 
 5 
 
 40 
 
 3 
 
 11 
 
 i 
 
 9 
 
 22.8 
 26.6 
 30.4 
 
 34-2 
 
 22.2 
 
 25-9 
 29.6 
 
 33-3 
 > 
 
 3 
 
 2 
 
 29 
 
 9-54263 
 9-54297 
 9-54331 
 9-5436? 
 9-54399 
 
 34 
 34 
 34 
 34 
 34 
 
 9.57081 
 
 9.57 120 
 9.57158 
 9-57197 
 9.57235 
 
 39 
 
 38 
 39 
 38 
 39 
 
 0.42919 
 0.42880 
 0.42 842 
 0.42 803 
 (^42 765 
 
 9.97 182 
 9.97178 
 
 9-97 173 
 9.97 168 
 
 9-97 163 
 
 4 
 5 
 5 
 5 
 
 35 
 34 
 33 
 32 
 3i 
 
 
 .1 
 
 .2 
 
 3 i< 
 
 A \. 
 
 35 
 J-S 
 
 7-0 
 >-5 
 
 1 O 
 
 80 
 
 3i 
 32 
 33 
 34 
 
 9-54433 
 9.54466 
 
 9-54500 
 9-54534 
 9.54567 
 
 33 
 34 
 34 
 33 
 
 OJ 
 
 9.57274 
 9.57312 
 9-57351 
 9.57389 
 9.57428 
 
 38 
 39 
 38 
 39 
 08 
 
 0.42 726 
 0.42688 
 0.42 649 
 0.42 611 
 
 0.42 572 
 
 9-97 159 
 9-97 154 
 9-97 149 
 9-97 H5 
 9-97 HO 
 
 5 
 5 
 
 4 
 5 
 
 30 
 
 1 
 
 
 5 * 
 
 .6 2 
 
 .7 2, 
 
 .8 2! 
 9 3 
 
 7-3 
 
 I.O 
 
 ti 
 
 [.5 
 
 9 
 
 !? 
 
 39 
 
 9-54601 
 9-54635 
 9.54668 
 9.54702 
 9-54735 
 
 34 
 33 
 34 
 33 
 34 
 
 9.57466 
 9.57504 
 9-57543 
 9.57581 
 9-57619 
 
 38 
 39 
 38 
 38 
 
 30 
 
 0.42534 
 0.42496 
 
 0.42457 
 0.42419 
 0.42 381 
 
 9 97135 
 9-97 130 
 9.97 126 
 9.97121 
 9.97 116 
 
 5 
 5 
 
 4 
 5 
 5 
 
 25 
 24 
 23 
 
 22 
 21 
 
 .1 
 
 2 
 
 34 
 
 n 
 
 33 
 3 6' 3 6 
 
 40 
 
 4i 
 
 42 
 43 
 44 
 
 9-54769 
 9.54802 
 9-54836 
 9-54869 
 9-54903 
 
 33 
 34 
 
 33 
 34 
 33 
 
 9.57658 
 9.57696 
 
 9-57734 
 9-57772 
 9.57810 
 
 38 
 38 
 38 
 38 
 
 30 
 
 0.42342 
 0.42304 
 0.42 266 
 0.42 228 
 0.42 190 
 
 9.97 in 
 9-97 107 
 9.97 102 
 9.97097 
 9.97092 
 
 5 
 
 4 
 5 
 5 
 5 
 
 20 
 
 J 9 
 
 II 
 
 3 
 4 
 
 .7 
 
 10.2 
 13-6 
 17.0 
 20.4 
 23.8 
 
 9-9 
 13.2 
 
 i6.g 
 19.8 
 
 23-1 
 
 s 
 
 47 
 48 
 
 49 
 
 9-54936 
 9.54969 
 9-55003 
 9-55036 
 9-55069 
 
 33 
 34 
 33 
 33 
 
 9.57849 
 9 57887 
 9.57925 
 9-57963 
 9.58 ooi 
 
 38 
 38 
 38 
 38 
 ^s 
 
 0.42 151 
 0.42 113 
 0.42075 
 0.42037 
 0.41 999 
 
 9.97087 
 9-97083 
 9.97078 
 9.97073 
 9.97068 
 
 5 
 4 
 5 
 5 
 5 
 
 15 
 14 
 13 
 
 12 
 II 
 
 .8 
 9 
 
 2 7 .2 
 3O.6 
 
 5 
 
 26.4 
 29.7 
 
 4 
 
 50 
 
 5i 
 
 5 2 
 53 
 54 
 
 9-55 102 
 9-55 136 
 9-55 169 
 9-55202 
 9.55235 
 
 34 
 33 
 33 
 33 
 q-a 
 
 9-58039 
 9.58077 
 9-58 n5 
 9.58153 
 9-58 191 
 
 38 
 38 
 38 
 38 
 38 
 
 0.41 961 
 
 0.41 923 
 0.41 885 
 0.41 847 
 0.41 809 
 
 9.97063 
 9-97059 
 9-97054 
 9.97049 
 
 9-97044 
 
 5 
 4 
 5 
 5 
 
 5 
 
 10 
 
 
 I 
 
 .1 
 
 .2 
 
 3 
 4 
 5 
 
 o-5 
 
 I.O 
 
 i-5 
 
 2.0 
 2-5 
 
 0.4 
 0.8 
 1.2 
 
 1.6 
 
 2.0 
 
 55 
 56 
 
 ii 
 
 59 
 
 9-55268 
 9-55301 
 9-55334 
 9.55367 
 9-55400 
 
 33 
 33 
 33 
 33 
 
 9-58229 
 9-58267 
 9-58304 
 9-58342 
 9-58380 
 
 38 
 
 37 
 38 
 38 
 
 ,Q 
 
 0.41 771 
 
 0.41 733 
 0.41 696 
 0.41 658 
 0.41 620 
 
 9-97039 
 9.97035 
 9.97030 
 9.97025 
 9.97020 
 
 5 
 4 
 5 
 5 
 5 
 
 5 
 4 
 3 
 
 2 
 I 
 
 .b 
 
 :l 
 
 9 
 
 3-o 
 3-5 
 4-0 
 4-5 
 
 111 
 
 5.8 
 
 60 
 
 9-55433 
 
 
 9.58418 
 
 
 0.41 582 
 
 9.97015 
 
 5 
 
 
 
 
 
 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. 
 
 c.d. 
 
 L. Tang. 
 
 L. Sin. 
 
 d. 
 
 t 
 
 F 
 
 rop. ] 
 
 Pte. 
 
 
 
 
 
 
 69 
 
 
 
 
 
 
 
LOGARITHMS OF SINE, COSINE, TANGENT AND COTANGENT, ETC. 5 , 
 
 21 
 
 r 
 
 L. Sill. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 d. 
 
 
 Prop.Pte. 
 
 
 
 I 
 
 2 
 
 3 
 4 
 
 9-55433 
 9.55466 
 
 9-55499 
 9-55 532 
 9.55564 
 
 33 
 33 
 33 
 33 
 33 
 33 
 33 
 33 
 
 33 
 
 33 
 33 
 33 
 33 
 33 
 33 
 
 33 
 33 
 33 
 33 
 33 
 
 33 
 33 
 33 
 33 
 33 
 33 
 33 
 33 
 33 
 33 
 3* 
 3 
 33 
 33 
 3 
 
 3 
 33 
 
 33 
 33 
 33 
 
 33 
 3' 
 33 
 33 
 33 
 
 3' 
 33 
 3* 
 33 
 33 
 
 3* 
 33 
 3' 
 3i 
 33 
 
 3 
 33 
 3* 
 3 
 33 
 
 9-58418 
 9-58455 
 9.58493 
 9-58531 
 9-58569 
 
 37 
 
 38 
 38 
 38 
 37 
 38 
 37 
 38 
 38 
 37 
 38 
 37 
 38 
 37 
 37 
 38 
 37 
 38 
 37 
 37 
 37 
 38 
 37 
 37 
 37 
 37 
 38 
 37 
 37 
 37 
 37 
 37 
 37 
 37 
 37 
 37 
 37 
 36 
 37 
 37 
 37 
 37 
 36 
 37 
 37 
 37 
 36 
 37 
 37 
 36 
 
 37 
 36 
 37 
 36 
 37 
 36 
 37 
 36 
 37 
 36 
 
 0.41 582 
 
 0.41 545 
 0.41 507 
 0.41 469 
 0.41 431 
 
 9.97015 
 9.97010 
 9.97005 
 9.97001 
 9.96996 
 
 5 
 
 5 
 4 
 5 
 5 
 5 
 5 
 5 
 5 
 5 
 4 
 5 
 5 
 5 
 5 
 5 
 5 
 5 
 5 
 5 
 5 
 5 
 4 
 
 5 
 5 
 5 
 5 
 5 
 5 
 5 
 5 
 5 
 5 
 5 
 5 
 5 
 5 
 5 
 5 
 5 
 5 
 5 
 6 
 5 
 5 
 5 
 5 
 5 
 5 
 5 
 5 
 5 
 5 
 5 
 
 60 
 
 P 
 g 
 
 .1 
 
 .2 
 
 3 
 4 
 
 :i 
 
 i 
 
 9 
 .1 
 
 .2 
 3 
 
 :! 
 
 is 
 
 9 
 .1 
 
 .2 
 
 3 
 4 
 
 :i 
 
 9 
 .1 
 
 .2 
 
 3 
 4 
 
 i 
 
 9 
 
 38 
 
 3-8 
 7-6 
 11.4 
 15-2 
 19.0 
 
 22.8 
 26.6 
 304 
 34.2 
 
 3 6 
 
 3-6 
 
 10.8 
 
 14.4 
 18.0 
 
 21.6 
 
 25.2 
 28.8 
 32.4 
 
 J" 
 
 .2 < 
 
 3 < 
 .4 i: 
 
 5 I( 
 
 .6 K 
 
 7 * 
 .8 l 
 .9 2\ 
 
 3> 
 
 6.2 
 
 93 
 12.4 
 
 21.7 
 24.8 
 27-9 
 
 5 
 
 -5 
 
 I.O 
 
 1-5 
 
 2.0 
 
 2.5 
 
 3-o 
 3-5 
 4.0 
 
 4-5 
 
 37 
 3-7 
 74 
 II. 1 
 14.8 
 18.5 
 22.2 
 25.9 
 29.6 
 
 33-3 
 
 33 
 
 i:i 
 
 99 
 15.2 
 i&.J 
 19.8 
 23.1 
 26.4 
 29.7 
 
 J 
 
 J- a 
 
 >-4 
 )-6 
 
 2.8 
 
 3.0 
 
 ?-2 
 
 |1 
 
 3.8 
 
 | 
 o'.6 
 
 1.2 
 
 I 8 
 2.4 
 3-o 
 36 
 
 4-2 
 
 48 
 
 54 
 
 4 
 0.4 j 
 0.8 
 
 1.2 
 
 1.6 
 
 2.O 
 
 ;i 
 
 3:8 
 
 \ 
 
 9 
 
 \w 
 
 II 
 
 12 
 
 13 
 
 H 
 
 9-55 597 
 9-55630 
 9-55663 
 9-55695 
 9.55728 
 
 9.58606 
 9.58644 
 9.58681 
 9-58719 
 9-58757 
 
 0.41 394 
 0.41 356 
 0.41 319 
 0.41 281 
 0.41 243 
 
 9.96991 
 9.96986 
 9.96981 
 9-96976 
 9.96971 
 
 55 
 54 
 53 
 52 
 5i 
 
 9-55 76i 
 9-55 793 
 9.55 826 
 9.55858 
 9-5589I 
 
 9.58794 
 9-58832 
 9-58869 
 9-58907 
 9-58944 
 
 0.41 206 
 0.41 168 
 0.41 131 
 0.41 093 
 0.41 056 
 
 9.96966 
 9.96962 
 9-96957 
 9-96952 
 9.96947 
 
 60 
 
 8 
 8 
 
 3 
 
 :; 
 
 19 
 
 9.55923 
 9^5956 
 
 9.56021 
 9-56053 
 
 9.58981 
 9.59019 
 9-59056 
 9-59094 
 9-59131 
 
 0.41 019 
 0.40981 
 0.40 944 
 0.40 906 
 0.40 869 
 
 9.96942 
 9.96937 
 9.96932 
 9.96927 
 9.96922 
 
 45 
 44 
 43 
 42 
 4i 
 
 IT 
 
 1 
 
 20 
 
 21 
 22 
 23 
 24 
 
 9.56085 
 9.56 na 
 9-56 150 
 9.56 182 
 9-56215 
 
 9-59 1 68 
 9-59205 
 
 9-59243 
 9.59280 
 
 9.59317 
 
 0.40832 
 0.40 795 
 0.40 757 
 0.40 720 
 0.40 683 
 
 9.96917 
 9.96912 
 9.96907 
 9 . 96 903 
 9.96898 
 
 
 2 
 
 29 
 
 9.56247 
 9.56279 
 9-56311 
 9-56343 
 9.56375 
 
 9-59354 
 9.59391 
 9.59429 
 9.59466 
 
 9-59503 
 
 0.40 646 
 0.40609 
 0.40571 
 0.40 534 
 0.40497 
 
 9 . 96 893 
 9.96888 
 9-96883 
 9.96878 
 9.96873 
 
 35 
 34 
 33 
 32 
 3i 
 
 30 
 
 3i 
 32 
 33 
 
 34 
 
 9.56408 
 9.56440 
 9.56472 
 9-56504 
 9-56536 
 
 9-59540 
 9-59577 
 9-59614 
 9-5965I 
 9.59688 
 
 9.59725 
 9.59762 
 
 9 59799 
 9.59835 
 9.59872 
 
 0.40 460 
 
 0.40423 
 0.40386 
 0.40349 
 0.40312 
 
 9.96868 
 9-96863 
 9-96858 
 9-96853 
 9.96848 
 
 30 
 
 11 
 11 
 
 25 
 24 
 23 
 
 22 
 21 
 
 20- 
 
 19 
 
 18 
 
 g 
 
 35 
 36 
 
 9 
 
 39 
 
 9.56568 
 
 9-56599 
 9-56631 
 9.56663 
 9.56695 
 
 0.40275 
 0.40 238 
 
 0.40 2OI 
 O.40 165 
 O.40 125 
 
 9 96 843 
 9-96838 
 9-96833 
 9.96828 
 9-96823 
 
 j40 
 
 4i 
 42 
 
 43 
 44 
 
 9-56727 
 9-56759 
 9-56790 
 9 56 822 
 9.56854 
 
 9-59909 
 9^9946 
 9.59983 
 9.60019 
 9.60 056 
 
 0.40091 
 0.40054 
 0.40017 
 0.39981 
 0-39944 
 
 9.96818 
 9-96813 
 9.96808 
 9.96803 
 9.96 798 
 
 45 
 46 
 
 47 
 48 
 49 
 50 
 5i 
 52 
 53 
 54 
 
 9.56886 
 9.56917 
 
 9 56949 
 9 . 56 980 
 9.57012 
 
 9.60093 
 9.60 130 
 9.60 1 66 
 9.60203 
 9 . 60 240 
 
 0.39907 
 0.39870 
 
 o 39834 
 
 0-39 797 
 0.39760 
 
 9-96 793 
 9.96 788 
 9-96 783 
 9.96 778 
 9.96772 
 
 15 
 H 
 13 
 
 12 
 II 
 
 "10" 
 
 6 
 
 9 57044 
 9-57075 
 9.57107 
 
 9.57138 
 9.57169 
 
 9.60276 
 9.60313 
 9.60349 
 9.60386 
 9.60422 
 
 0.39 724 
 0.39687 
 0.39651 
 0.39614 
 0-39 578 
 
 9.96767 
 9.96 762 
 
 9.96757 
 9.96 752 
 9.96 747 
 
 55 
 56 
 
 ? 
 
 ft 
 
 9.57201 
 9-57232 
 9.57264 
 
 9.57295 
 9-57326 
 
 9.60459 
 9.60495 
 9.60532 
 9.60 568 
 9.60605 
 
 o 39 54i 
 0.39505 
 0.39468 
 
 0.3943 2 
 0-39395 
 
 9.96742 
 9.96 737 
 9.96 732 
 9.96727 
 9.96 722 
 
 5 
 4 
 3 
 
 2 
 I 
 
 9-57358 
 
 9.60641 
 
 0-39359 
 
 9.96717 
 
 
 
 
 L. Cos. 
 
 d. 
 
 L. Cots. 
 
 o. d. 
 
 L. Tang. 
 
 L. Sin. 
 
 d. 
 
 / 
 
 Prop. Pts. 
 
 68 
 
TABLE IV. 
 
 22 
 
 I 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 d. 
 
 
 Prop. Pts. 
 
 
 
 I 
 
 9.57358 
 9-57389 
 
 31 
 
 9.60641 
 9.60677 
 
 36 
 
 0-39359 
 0.39323 
 
 9.96717 
 9.96711 
 
 6 
 
 60 
 
 >9 
 
 
 2 
 
 9.57420 
 
 
 9.60714 
 
 ,6 
 
 0.39 286 
 
 9.96 706 
 
 5 
 
 S8 
 
 
 37 1 
 
 36 
 
 3 
 
 4 
 
 9 57451 
 9.57482 
 
 3 2 
 
 9.60750 
 9.60 786 
 
 36 
 37 
 
 0.39250 
 0.39214 
 
 9.96 701 
 9.96696 
 
 5 
 
 5 
 
 
 .1 
 
 2 
 
 3-7 
 
 7 4 
 
 3-6 
 
 7.2 
 
 i 
 
 9.57514 
 9-5754? 
 
 
 9.60823 
 9 . 60 859 
 
 36 
 ,6 
 
 0.39177 
 o-39 HI 
 
 9.96691 
 9.96686 
 
 5 
 
 55 
 S4 
 
 3 
 .4 
 
 II. I 
 
 14.8 
 
 14.4 
 
 I 
 
 9 
 
 9-57576 
 9-57607 
 9-57638 
 
 3 
 3* 
 
 9.60895 
 9.60931 
 9-60967 
 
 36 
 36 
 37 
 
 0.39 105 
 0.39069 
 0.39033 
 
 9.96681 
 9.96676 
 9.96670 
 
 5 
 5 
 
 6 
 
 53 
 52 
 
 1 
 
 18-5 
 22.2 
 25.9 
 
 18.0 
 
 21.6 
 
 2 5- 2 
 
 10 
 
 9.57669 
 
 
 9.61 004 
 
 ,6 
 
 0.38996 
 
 9.96665 
 
 
 50 
 
 .8 
 
 29.6 
 
 28.8 
 
 ii 
 
 9.57700 
 
 
 9.61 040 
 
 og 
 
 0.38960 
 
 9.96 660 
 
 5 
 
 49 
 
 9 
 
 33-3 
 
 32-4 
 
 12 
 13 
 14 
 
 9-57731 
 9.57762 
 9-57793 
 
 $ 
 
 9.61 076 
 
 9.61 112 
 9.6l 148 
 
 36 
 36 
 
 36 
 
 0.38924 
 0.38888 
 0.38852 
 
 9-96655 
 9 . 96 650 
 9.96645 
 
 5 
 
 5 
 
 48 
 
 8 
 
 35 
 
 \l 
 
 9.57824 
 9.57855 
 9.57885 
 
 30 
 
 9.6l 184 
 9.61 22O 
 9.61 256 
 
 36 
 36 
 
 ,A 
 
 0.38816 
 0.38 780 
 0.38 744 
 
 9 . 96 640 
 9.96634 
 9 . 96 629 
 
 6 
 5 
 
 45 
 44 
 43 
 
 .2 7-0 
 
 3 lo-S 
 
 18 
 
 9.57916 
 
 * 
 
 9.61 292 
 
 ,jt 
 
 0.38 708 
 
 9.96624 
 
 5 
 
 42 
 
 .4 I4.O 
 
 19 
 
 9-57947 
 
 31 
 
 9.61 328 
 
 3 
 36 
 
 0.38672 
 
 9.96619 
 
 5 
 
 41 
 
 
 20 
 
 21 
 
 9.57978 
 9.58008 
 
 30 
 
 9-6l 364 
 9.6l 400 
 
 36 
 
 0.38636 
 0.38600 
 
 9.96614 
 9.96608 
 
 6 
 
 *? 
 
 .7 24.5 
 
 X 28 O 
 
 22 
 23 
 
 24 
 
 9-58039 
 9.58070 
 9.58 101 
 
 
 9.6l 436 
 9.6l 472 
 9.6l 508 
 
 3 
 36 
 36 
 
 36 
 
 0.38 564 
 0.38528 
 0.38492 
 
 9.96603 
 9.96598 
 9-96593 
 
 5 
 5 
 5 
 
 11 
 
 9 3'-5 
 
 11 
 
 9-58131 
 9.58 162 
 
 
 9.61 544 
 9.61 579 
 
 35 
 -e. 
 
 0.38456 
 0.38421 
 
 9.96588 
 9.96582 
 
 6 
 
 35 
 34 
 
 
 3 
 
 31 
 
 3 | 
 
 % 
 
 29 
 
 9.58192 
 9.58223 
 9-58253 
 
 30 
 
 30 
 31 
 
 9.61 615 
 9.61 651 
 9.61 687 
 
 3 
 36 
 36 
 35 
 
 0-38385 
 0.38349 
 0.38313 
 
 9-96577 
 9.96572 
 9.96567 
 
 5 
 5 
 5 
 
 33 
 32 
 31 
 
 .2 
 3 
 
 A 
 
 T? 8 
 
 6.2 
 
 9.3 
 
 12.4 
 
 30 
 
 9 S 8 284 
 
 
 9.61 722 
 
 ofi 
 
 0.38278 
 
 9 . 96 562 
 
 
 30 
 
 
 16 o 
 
 
 31 
 
 9-583I4 
 
 3 
 
 9.61 758 
 
 30 
 
 ,6 
 
 0.38242 
 
 9 96556 
 
 
 29 
 
 .6 
 
 19.2 
 
 18.6 
 
 
 
 34, 
 
 9-58345 
 9.58406 
 
 30 
 
 9.61 794 
 9.61 830 
 9,61 865 
 
 36 
 
 35 
 
 16 
 
 0.38 206 
 0.38 170 
 0.38135 
 
 9 96551 
 9 96546 
 9.96541 
 
 5 
 5 
 
 6 
 
 11 
 
 9 
 
 22.4 
 25.6 
 28.8 
 
 21.7 
 
 24.8 
 
 27.9 
 
 
 9-58436 
 9.58467 
 
 3' 
 
 9.61 901 
 9.61 936 
 
 35 
 
 0.38099 
 0.38064 
 
 9 96535 
 9 96530 
 
 5 
 
 25 
 
 24 
 
 
 39 
 
 9-58497 
 9-58527 
 9 58557 
 
 30 
 30 
 
 30 
 
 9.61972 
 9.62 008 
 9.62043 
 
 36 
 
 36 
 35 
 
 ,6 
 
 0.38028 
 0.37992 
 0-37957 
 
 9-9652? 
 9.96520 
 9.96514 
 
 5 
 
 5 
 6 
 
 23 
 
 22 
 21 
 
 .1 
 
 2 
 
 30 
 
 ft 
 
 29 
 2.9 
 
 (0 
 
 9-58588 
 
 3 
 
 9 . 62 079 
 
 
 0.37921 
 
 9.96509 
 
 
 20 
 
 .3 
 
 9 
 
 8 7 
 
 41 
 
 9.58618 
 
 3 
 
 9.62 114 
 
 35 
 
 0.37886 
 
 9-96504 
 
 5 
 
 19 
 
 4 
 
 12.0 
 
 ii. 6 
 
 42 
 
 9.58648 
 
 3 
 
 9.62 150 
 
 30 
 
 0.37850 
 
 9.96498 
 
 
 18 
 
 
 15 
 
 14-5 
 
 43 
 
 9.58678 
 
 3 
 
 9.62 185 
 
 35 
 -f. 
 
 0-37815 
 
 9.96493 
 
 5 
 
 17 
 
 .6 
 
 18.0 
 
 17-4 
 
 44 
 
 9.58 709 
 
 3 1 
 
 9.62 221 
 
 3 
 
 0.37 779 
 
 9.9648$ 
 
 5 
 
 ib 
 
 .7 
 
 21.0 
 
 20.3 
 
 | 
 
 9-58739 
 9.58769 
 
 30 
 
 9.62 256 
 
 9 . 62 292 
 
 36 
 
 0-37744 
 0.37708 
 
 9.96483 
 9.96477 
 
 6 
 
 15 
 14 
 
 9 
 
 24.0 
 27.0 
 
 23.2 
 26.1 
 
 
 9.58799 
 9 - 58 829 
 
 30 
 30 
 
 9.62327 
 9.62 362 
 
 35 
 35 
 
 0.37673 
 0.37638 
 
 9.96472 
 9.96467 
 
 5 
 5 
 
 13 
 
 12 
 
 
 49 
 
 9-58859 
 
 3 
 
 9.62 398 
 
 
 0.37602 
 
 9.96461 
 
 
 II 
 
 
 6 
 
 5 
 
 50 
 
 9.58889 
 9.58919 
 
 30 
 
 9.62433 
 9.62468 
 
 35 
 
 0.37567 
 0.37532 
 
 9.96451 
 
 5 
 
 10 
 
 .1 
 
 .2 
 
 0.6 
 
 1.2 
 
 0-5 
 
 I.O 
 
 52 
 
 9-58949 
 
 3 
 
 9.62 504 
 
 36 
 
 0.37496 
 
 9-96445 
 
 6 
 
 8 
 
 3 
 
 1.8 
 
 15 
 
 53 
 
 9-58979 
 
 30 
 
 9.62 539 
 
 35 
 
 0.37461 
 
 9.96440 
 
 5 
 
 7 
 
 4 
 
 2.4 
 
 2 
 
 54 
 
 9.59009 
 
 30 
 
 9.62574 
 
 35 
 
 0.37426 
 
 
 5 
 5 
 
 6 
 
 
 3-o 
 
 2-5 
 
 55 
 
 9.59039 
 
 
 9.62609 
 
 
 0.37391 
 
 9.96429 
 
 
 5 
 
 b 
 
 3-6 
 
 3-0 
 
 56 
 
 9.59069 
 
 30 
 
 9 . 62 645 
 
 36 
 
 0-37355 
 
 9.96424 
 
 5 
 
 4 
 
 'I 
 
 4-2 
 
 3-5 
 
 57 
 
 9.59098 
 
 29 
 
 9.62680 
 
 35 
 
 0.37320 
 
 9.96419 
 
 5 
 
 3 
 
 .8 
 
 4-8 
 
 4.0 
 
 58 
 59 
 
 9-59 128 
 9-59 IS 8 
 
 3 
 30 
 
 9-62 715 
 9.62 750 
 
 35 
 35 
 
 0.37285 
 0.37250 
 
 9-96413 
 9.96408 
 
 6 
 5 
 
 2 
 I 
 
 9 
 
 5-4 
 
 4-5 
 
 60 
 
 9.59188 
 
 
 9.62 785 
 
 
 0.37215 
 
 9.96403 
 
 5 
 
 
 
 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. 
 
 c.d. 
 
 L. Tang. 
 
 L. Sin. 
 
 d. 
 
 t 
 
 Prop. Pts. 
 
 67 | 
 
LOGARITHMS OF SINE, COSINE, TAff -tfT AND COTANGENT, ETC. 
 
 i 23 
 
 t 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 d. 
 
 
 Prop. Pts. 
 
 
 
 I 
 
 2 
 
 3 
 4 
 
 9.59 188 
 9.59218 
 9-59247 
 9-59277 
 9- 5937 
 
 30 
 29 
 30 
 30 
 29 
 
 30 
 30 
 29 
 30 
 29 
 
 30 
 29 
 30 
 29 
 30 
 29 
 39 
 30 
 29 
 
 9 
 30 
 29 
 29 
 29 
 *9 
 30 
 
 9 
 
 29 
 29 
 29 
 29 
 29 
 29 
 29 
 9 
 29 
 29 
 29 
 29 
 28 
 29 
 29 
 29 
 28 
 29 
 29 
 29 
 28 
 29 
 28 
 29 
 
 
 38 
 
 29 
 28 
 39 
 28 
 29 
 28 
 28 
 
 9-62785 
 9 . 62 820 
 9.62 855 
 9 . 62 890 
 9.62 926 
 
 35 
 35 
 35 
 36 
 35 
 35 
 35 
 35 
 35 
 34 
 35 
 35 
 35 
 35 
 35 
 35 
 34 
 35 
 35 
 35 
 35 
 34 
 35 
 35 
 34 
 35 
 34 
 35 
 35 
 34 
 35 
 34 
 35 
 34 
 35 
 34 
 35 
 34 
 34 
 35 
 34 
 34 
 35 
 34 
 34 
 35 
 34 
 34 
 34 
 34 
 35 
 34 
 34 
 34 
 34 
 34 
 34 
 34 
 34 
 34 
 
 0.37215 
 0.37 180 
 
 0-37 145 
 0.37 no 
 0.37074 
 
 9.96403 
 9.96397 
 9-96392 
 9.96387 
 9.96381 
 
 6 
 5 
 5 
 6 
 5 
 6 
 5 
 5 
 6 
 5 
 6 
 5 
 5 
 6 
 5 
 6 
 5 
 6 
 5 
 6 
 
 5 
 5 
 
 6 
 5 
 
 6 
 
 5 
 
 6 
 5 
 6 
 5 
 
 6 
 5 
 6 
 5 
 6 
 
 5 
 
 6 
 5 
 
 6 
 5 
 
 6 
 5 
 6 
 6 
 5 
 6 
 5 
 6 
 5 
 6 
 
 6 
 5 
 6 
 
 5 
 
 6 
 
 6 
 5 
 6 
 5 
 6 
 
 00 
 
 CQ 
 
 i 
 
 .1 
 
 4 
 3 
 4 
 
 i 
 
 9 
 .1 
 
 .2 
 3 
 
 :l 
 i 
 
 9 
 .1 
 
 .2 
 
 3 
 -4 
 
 i 
 i 
 
 9 
 
 3 
 
 3 
 7 
 
 ID 
 
 11 
 
 21 
 
 25 
 28 
 32 
 
 .1 
 
 .2 
 3 
 4 
 
 :l 
 .1 
 
 9 
 
 2 
 
 1 
 s 
 
 12 
 IE 
 
 ll 
 
 21 
 2<: 
 2; 
 
 .1 
 
 .2 
 
 3 
 .4 
 
 i 
 
 :l 
 
 .9 
 
 ( 
 
 : 
 
 i 
 i 
 
 i 
 
 6 
 
 .6 
 
 2 
 
 .8 
 4- 
 
 
 
 .6 
 
 .2 
 
 .8 
 4 
 
 I 
 
 \ 
 
 1C 
 
 ': 
 i; 
 
 2C 
 2; 
 2; 
 
 3< 
 
 
 
 .0 
 .0 
 
 >.o 
 
 .0 
 
 :S 
 
 .0 
 
 ^o 
 
 r.o 
 
 i 
 i 
 
 i 
 
 2 
 2 
 
 6 
 
 >.6 
 
 [.2 
 
 [.8 
 i-4 
 
 M 
 1:5 
 
 ;-4 
 
 35 
 
 3-5 
 
 7.0 1 
 10.5 
 14.0 
 17-5 
 
 21.0 
 
 24-5 
 28.0 
 
 31-5 
 
 14 
 
 S;i 
 
 >.2 
 
 t-6 
 
 r.O 
 
 ;i 
 
 r.2 
 
 >.6 
 
 39 
 
 2.9 
 
 l l 
 
 II. 6 
 
 14-5 
 17-4 
 20.3 
 
 2:? 
 
 8 
 
 2.8 
 
 I' 6 
 
 1.4 
 
 1.2 
 
 4..0 
 5.8 
 9.6 
 2.4 
 52 
 
 5 
 
 0.5 
 
 1.0 
 
 '5 
 
 20 
 
 2-5 
 30 
 
 35 
 40 
 
 4-5 
 
 i 
 
 I 
 
 9 
 
 lo- 
 ii 
 
 12 
 13 
 
 H 
 
 9.59336 
 9-59366 
 9-59396 
 9-59425 
 9-59455 
 
 9.62 961 
 9.62 996 
 
 9-63031 
 9 . 63 066 
 9.63 101 
 
 0.37039 
 0.37004 
 0.36969 
 0.36934 
 o . 36 899 
 
 9-96376 
 9.96370 
 
 9-96365 
 9-96360 
 9-96354 
 
 55 
 54 
 53 
 52 
 5i 
 
 9-59484 
 9-595H 
 9-59543 
 9 59573 
 9.59602 
 
 9-63 135 
 9-63 170 
 9.63205 
 9.63240 
 9 63275 
 
 0.36865 
 
 0.36830 
 
 0.36 795 
 0.36 760 
 0.36 725 
 
 9-96349 
 996343 
 9 96338 
 9 96333 
 9.96327 
 
 60 
 
 * 
 % 
 
 15 
 10 
 
 11 
 
 19 
 
 9-59632 
 9 59661 
 9.59690 
 9.59720 
 9-59749 
 
 9.63310 
 9.63345 
 9.63379 
 9.63414 
 
 9-63449 
 
 0.36690 
 0.36655 
 0.36621 
 0.36586 
 0.36551 
 
 9-96322 
 9.96316 
 9.96311 
 
 9-96305 
 9.96300 
 
 45 
 44 
 43 
 42 
 
 4i 
 40" 
 
 39 
 38 
 
 8 
 
 20 
 
 21 
 22 
 
 23 
 
 24 
 
 9-59778 
 9-59808 
 
 9 59837 
 9.59866 
 
 9 59895 
 
 9.63484 
 9.63519 
 9.63 553 
 9-63588 
 9-63623 
 
 0.36516 
 0.36481 
 
 0.36447 
 0.36412 
 
 0.36377 
 
 9.96294 
 9.96 289 
 9.96284 
 9.96278 
 9.96273 
 
 3 
 
 2 
 
 29 
 
 9-59924 
 9-59954 
 9-59983 
 9.60012 
 9.60041 
 
 9-63657 
 9.63692 
 9.63726 
 9-63 76i 
 9-63796 
 
 0.36343 
 0.36308 
 0.36274 
 0.36239 
 0.36204 
 
 9.96267 
 9.96262 
 9 96256 
 9 96251 
 9.96245 
 
 35 
 34 
 33 
 32 
 _1L 
 80 
 
 3 
 
 27 
 26 
 
 30 
 
 3i 
 
 32 
 33 
 34 
 
 9.60070 
 9.60099 
 9.60 128 
 9-60157 
 9.60186 
 
 9 63 830 
 9-63865 
 9.63899 
 
 9.63934 
 9.63968 
 
 0.36 170 
 0.36 135 
 0.36 101 
 0.36066 
 0.36032 
 
 9 . 96 240 
 9-96234 
 9 96 229 
 9-96223 
 9.96 218 
 
 9 
 
 12 
 
 i- 
 
 41 
 42 
 43 
 44 
 
 9.60215 
 9.60244 
 9.60273 
 9.60302 
 9 60331 
 
 9 64003 
 9.64037 
 9.64072 
 9.64 106 
 9.64 140 
 
 0-35 997 
 0-35 963 
 0.35 928 
 
 0.35894 
 0.35 860 
 
 9.96 212 
 9.96207 
 9.96 201 
 9.96 196 
 9.96 190 
 
 25 
 24 
 23 
 
 22 
 21 
 
 ~w 
 
 19 
 
 i! 
 
 9-60359 
 9.60388 
 9.60417 
 9.60446 
 9-60474 
 
 9.64I75 
 9.64209 
 
 9-64243 
 9.64278 
 9.64312 
 
 0-35825 
 0-35 79i 
 o.35 757 
 0.35 722 
 0.35688 
 
 9.96 185 
 
 9.96 179 
 9.96174 
 
 9.96 168 
 9.96 162 
 
 i* 
 iti 
 
 49 
 
 9.60503 
 9.60532 
 9.60 561 
 9.60589 
 9.60618 
 
 9 64 346 
 9-64381 
 9.64415 
 9.64449 
 9.64483 
 
 0-35654 
 0.35619 
 
 0-35 585 
 o.3555i 
 0-35 5i7 
 
 9.96 157 
 9.96151 
 9.96146 
 9.96 140 
 9-96I35 
 
 15 
 14 
 13 
 
 12 
 II 
 
 lo" 
 
 I 
 
 60 
 
 5i 
 
 52 
 53 
 
 54 
 
 9.60646 
 9-60675 
 9.60 704 
 9.60 733 
 9.60 76. 
 
 9-64517 
 9 6^552 
 9-64586 
 9.64620 
 9.64654 
 
 0-35 483, 
 0.35448 
 0.354J4 
 0.35380 
 0-35 346 
 
 9.96129 
 9.96 123 
 9.96 1 18 
 
 9.96 112 
 
 9.96 107 
 
 11 
 
 % 
 
 59 
 
 9.60 789 
 9.60818 
 9.60846 
 9.60875 
 9.60903 
 
 9.64688 
 9.64722 
 9.64756 
 9.64790 
 9.64824 
 
 0.35312 
 0.35 278 
 
 0.35 244 
 0.35210 
 0.35 176 
 
 9.96 ioi 
 
 9.96095 
 9.96090 
 
 9 . 96 084 
 9.96079 
 
 5 
 4 
 3 
 
 2 
 
 I 
 
 ~TT 
 
 00 
 
 9-60931 
 
 9.64858 
 
 0-35 142 
 
 9.96073 
 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. 
 
 c.d. 
 
 L. Tang. 
 
 L. Sin. 
 
 d. 
 
 t 
 
 Prop. Pts. 
 
 66 j 
 
TABLE IV. 
 
 
 
 
 
 
 24 
 
 
 
 
 
 
 
 t 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cots. 
 
 L. Cos. 
 
 d. 
 
 
 Proi 
 
 >. 
 
 Pts. 
 
 
 
 2 
 
 3 
 
 4 
 
 9.60931 
 9.60960 
 9.60988 
 9.61 016 
 9.61045 
 
 29 
 28 
 28 
 29 
 28 
 
 9.64858 
 9 . 64 892 
 9 . 64 926 
 9 . 64 960 
 9.64994 
 
 34 
 
 34 
 34 
 34 
 34 
 
 0-35 J 42 
 
 0.35 108 
 
 0-35 074 
 0.35 040 
 0.35006 
 
 9.96073 
 9.96067 
 9 . 96 062 
 9 . 96 056 
 9 . 96 050 
 
 6 
 5 
 6 
 6 
 
 
 
 60 
 
 CQ 
 
 I 
 
 3 
 
 .1 3 
 
 2 6 
 
 4 
 
 * 
 
 S3 
 
 i:I 
 
 I 
 I 
 
 9 
 
 9.61073 
 9.61 101 
 9.61 129 
 9.61 158 
 9.61 186 
 
 28 
 28 
 29 
 28 
 28 
 
 9 . 65 028 
 9 . 65 062 
 9 . 65 096 
 9.65 130 
 9.65 164 
 
 34 
 34 
 34 
 34 
 33 
 
 0.34972 
 0.34938 
 0.34904 
 0.34870 
 0.34836 
 
 9-96045 
 9-96039 
 9.96034 
 9 . 96 028 
 9 . 96 022 
 
 6 
 5 
 6 
 6 
 
 55 
 54 
 53 
 52 
 5i 
 
 .3 10 
 4 13 
 
 5 17 
 
 .6 20 
 
 7 23 
 
 2 
 
 .6 
 
 .0 
 
 :i 
 
 99 
 13.2 
 
 16 5 
 19.8 
 23.1 
 
 10 
 
 ii 
 
 12 
 3 
 
 '4 
 
 9.61 214 
 9.61 242 
 9.61 270 
 9.61 298 
 9.61 326 
 
 28 
 26 
 28 
 28 
 28 
 
 9.65 197 
 9.65231 
 9.65 265 
 9.65299 
 9-65 333 
 
 34 
 34 
 34 
 
 34 
 
 0.34803 
 0-34 769 
 0-34735 
 0.34701 
 0.34667 
 
 9.96017 
 9.96011 
 9.96005 
 9.96000 
 9-95994 
 
 6 
 6 
 
 5 
 
 6 
 5 
 
 50 
 
 8 
 
 4 J 
 
 .8 27 
 9 30 
 
 .2 
 
 .6 
 i 
 
 26.4 
 29.7 
 
 >9 
 
 II 
 
 11 
 
 9 
 
 9-6i 354 
 9.61 382 
 9.61 411 
 9-61 438 
 9.61 466 
 
 28 
 29 
 
 27 
 28 
 28 
 
 9.65 400 
 
 9.65434 
 9.65 467 
 9.65 501 
 
 34 
 34 
 33 
 
 34 
 
 0.34634 
 0.34600 
 0.34566 
 0-34533 
 0-34499 
 
 9.95988 
 9.95982 
 9-95977 
 9-95971 
 9-95965 
 
 6 
 S 
 
 6 
 
 6 
 
 45 
 44 
 43 
 42 
 
 41 
 
 .1 
 
 .2 
 
 3 
 
 4 
 
 t 
 I 
 ii 
 i; 
 
 2 
 
 8 
 
 l l 
 
 .6 
 1-5 
 
 20 
 
 21 
 22 
 
 23 
 
 24 
 
 9.61 494 
 9.61 522 
 9-6i 550 
 9-6i 578 
 9.61 606 
 
 28 
 28 
 28 
 28 
 28 
 
 9-65 535 
 9.65 568 
 9.65 602 
 9.65 636 
 9.65 669 
 
 33 
 34 
 34 
 33 
 
 0.34465 
 0.34432 
 0.34398 
 0.34364 
 0-34331 
 
 9.95960 
 9 95954 
 9-95948 
 9 95942 
 9 95937 
 
 6 
 6 
 6 
 
 5 
 
 6 
 
 40 
 
 39 
 
 38 
 
 8 
 
 j 
 
 9 
 
 1 
 
 2C 
 2; 
 
 7-4 
 >-3 
 
 11 
 
 3 
 
 3 
 
 29 
 
 9-61634 
 9.61 662 
 9.61 689 
 9.61 717 
 9-6i 74? 
 
 28 
 27 
 28 
 28 
 28 
 
 9-65 703 
 9-65 736 
 9.65 770 
 9-65 803 
 9-65837 
 
 33 
 34 
 33 
 34 
 
 0.34297 
 0.34264 
 0.34230 
 
 0-34 197 
 0.34 163 
 
 9-95 93 1 
 9.95925 
 9.95920 
 
 9.959H 
 9.95908 
 
 6 
 5 
 
 6 
 6 
 6 
 
 35 
 34 
 33 
 32 
 3i 
 
 .1 
 
 .2 
 
 3 
 
 4 
 
 T 
 
 18 
 2.8 
 
 ii 
 
 1 .2 
 
 30 
 3* 
 
 32 
 33 
 34 
 
 9.61 773 
 9.61 800 
 9.61 828 
 9.61 856 
 9.61 883 
 
 27 
 38 
 28 
 27 
 28 
 
 9.65 870 
 9.65 904 
 
 9.65937 
 9.65971 
 9.66004 
 
 34 
 33 
 34 
 33 
 
 0.34 130 
 0.34096 
 0.34063 
 0.34029 
 0.33996 
 
 9.95902 
 
 9.95897 
 9.95 891 
 9.95885 
 9.95879 
 
 5 
 
 6 
 6 
 6 
 5 
 
 30 
 
 27 
 26 
 
 1 
 
 .9 
 
 I 
 I 
 I 
 2 
 2 
 
 *-o 
 5.8 
 ? .6 
 
 2.4 
 
 5-2 
 
 8 
 8 
 
 1 39 
 
 9.61 911 
 9.61 939 
 9.61 966 
 9.61 994 
 
 9.62 O2I 
 
 28 
 27 
 28 
 27 
 38 
 
 9.66038 
 9.66071 
 9.66 104 
 9.66 138 
 9.66 171 
 
 33 
 33 
 34 
 33 
 
 0-33 962 
 0.33929 
 0.33 896 
 0.33862 
 0.33829 
 
 9-95873 
 9.95868 
 9.95 862 
 9.95856 
 9-95 850 
 
 5 
 
 6 
 6 
 6 
 
 g 
 
 25 
 24 
 
 23 
 
 22 
 21 
 
 .1 
 
 .2 
 
 
 7 
 2.7 
 r 4 
 
 ,40 
 
 4i 
 
 42 
 
 43 
 
 44 
 
 9.62 049 
 9.62076 
 9.62 IO4 
 9.62 131 
 9.62 159 
 
 27 
 28 
 27 
 28 
 
 9.66204 
 9.66238 
 9.66 271 
 9.66304 
 9.66337 
 
 34 
 33 
 33 
 33 
 
 0.33 796 
 0-33 762 
 0.33729 
 0.33696 
 0.33663 
 
 9-95 844 
 9-95 839 
 9.95833 
 9.95827 
 9.95821 
 
 5 
 
 6 
 6 
 6 
 g 
 
 20 
 
 19 
 18 
 
 11 
 
 3 
 4 
 
 '-7 
 
 I 
 
 I 
 I 
 
 n 
 
 0.8 
 
 Ii 
 
 8-9 
 
 9 
 
 ;i 
 
 49 
 
 9.62 186 
 9.62 214 
 9.62 241 
 9.62268 
 9 . 62 296 
 
 28 
 27 
 27 
 28 
 
 9.66371 
 9 . 66 404 
 9.66437 
 9.66470 
 9.66503 
 
 33 
 33 
 33 
 33 
 
 0.33 629 
 0.33 596 
 0-33 563 
 0-33 530 
 
 0-33497 
 
 9 958i5 
 9-95 810 
 9.95 804 
 9 95798 
 9 95 792 
 
 5 
 
 6 
 6 
 6 
 6 
 
 15 
 14 
 13 
 
 12 
 II 
 
 .8 
 9 
 
 2 
 2 
 
 6 
 
 1.6 
 4- 3 
 
 5 
 
 150 
 5i 
 52 
 53 
 54 
 
 9.62323 
 9.62350 
 9.62377 
 9-62405 
 9.62432 
 
 27 
 27 
 28 
 
 9-66537 
 9.66570 
 9.66603 
 9.66636 
 9 . 66 669 
 
 33 
 33 
 33 
 33 
 
 0-33463 
 0.33430 
 0-33 397 
 0.33 364 
 0-33331 
 
 9.95 786 
 9-95 78o 
 9-95 775 
 9-95 769 
 9-95 763 
 
 
 10 
 
 I 
 
 .1 C 
 .2 1 
 
 3 1 
 
 4 J 
 
 5 : 
 
 >.6 
 
 .2 
 
 .8 
 '-4 
 
 ;o 
 
 0-5 1 
 1.0 ; 
 
 15 
 2.0 
 
 25 
 
 P 
 
 11 
 
 59 
 
 9-62459 
 9.62486 
 
 9-62513 
 9 62 541 
 9.62568 
 
 37 
 
 98 
 
 9.66702 
 
 9-66735 
 9.66 768 
 9.66801 
 9-66834 
 
 33 
 33 
 
 33 
 33 
 
 0.33298 
 0.33265 
 0-33 232 
 0-33 199 
 0.33 166 
 
 9-95 757 
 9-95 75i 
 9 95 745 
 9 95 739 
 9 95 733 
 
 6 
 6 
 6 
 6 
 
 5 
 4 
 3 
 
 2 
 
 o : 
 
 i ; 
 
 9 I 
 
 ; -t> 
 
 |:S 
 
 1 4 
 
 30 
 
 35 
 4.0 
 
 45 
 
 60 
 
 9 62595 
 
 7 
 
 9.66867 
 
 
 o 33 133 
 
 9 95 728 
 
 
 
 
 
 
 
 
 L. Cos. 
 
 d. 
 
 L. Cotsr. 
 
 c.d. 
 
 L. Tang. 
 
 L. Sin. 
 
 d. 
 
 f 
 
 Pro 
 
 P- 
 
 Pts. 
 
 
 
 
 
 
 65 
 
 
 
 
 
 
 
u 
 
 JUAKl 1 1 
 
 MS L 
 
 * blJNJL, I 
 
 .AJMJ 
 
 NJi, lAJNlj 
 
 r,JN 1 AJN 1 
 
 ) l^U 
 
 1AJN< 
 
 jUJMl, 
 
 C 1 
 
 rc - 5 
 
 
 
 
 
 
 25 
 
 
 
 
 
 
 
 t 
 
 L.Sin. 
 
 d. 
 
 L. Tang. 
 
 c. d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 d. 
 
 
 Proj 
 
 >.] 
 
 Pts. 
 
 
 
 i 
 
 2 
 
 3 
 4 
 
 9-62595 
 9.62 622 
 9.62 649 
 9.62 676 
 9.62 703 
 
 27 
 27 
 27 
 27 
 27 
 
 9.66867 
 9 . 66 900 
 
 9.66933 
 9.66966 
 9.66999 
 
 33 
 33 
 33 
 33 
 33 
 
 0-33 133 
 0.33 ioo 
 0.33067 
 
 0.33034 
 0.33001 
 
 9-95 728 
 9-95 722 
 9-95 7i6 
 9-95 7io 
 9-95 704 
 
 6 
 6 
 6 
 6 
 6 
 
 60 
 
 59 
 58 
 
 H 
 
 3 
 i 3 
 
 2 6 
 
 3 
 
 33 
 
 3-2 
 
 6.4 
 
 i *<> 
 
 I 
 
 9 
 
 9.62 730 
 9.62 757 
 9.62 784 
 9.62 81 i 
 9.62 838 
 
 27 
 27 
 27 
 27 
 27 
 
 9.67032 
 9 . 67 065 
 9.67098 
 9.67131 
 9.67 163 
 
 33 
 33 
 33 
 33 
 33 
 
 0.32968 
 
 0.32935 
 0.32 902 
 0.32869 
 0.32837 
 
 9.95698 
 9.95692 
 9-95^36 
 9.95 680 
 9-95674 
 
 6 
 6 
 6 
 6 
 6 
 
 55 
 54 
 53 
 52 
 5i 
 
 3 9 
 4 13 
 5 l6 
 .6 19 
 7 23 
 
 9 
 
 .2 
 . I 
 
 1 
 
 12.8 
 
 16.0 
 19.2 
 22.4 
 
 10 
 
 ii 
 
 12 
 13 
 
 14 
 
 9.62865 
 9.62 892 
 9.62 918 
 
 9-62945 
 9.62972 
 
 27 
 26 
 27 
 27 
 27 
 
 9.67196 
 9.67229 
 9.67262 
 9.67295 
 9.67327 
 
 33 
 33 
 33 
 32 
 
 0.32804 
 0.32 77i 
 0.32 738 
 0-32 705 
 0.32673 
 
 9.95 668 
 9-95 663 
 9.95657 
 9-9565I 
 9 95645 
 
 S 
 
 6 
 6 
 6 
 
 6 
 
 50 
 
 49 
 48 
 
 47 
 46 
 
 .8 26 
 .9 29 
 
 4 
 7 
 
 2C.6 
 2.8 
 
 7 
 
 15 
 
 1 6 
 
 Is 7 
 
 19 
 
 9-62999 
 9.63026 
 9.63052 
 9.63079 
 9.63 106 
 
 87 
 
 26 
 27 
 27 
 
 27 
 
 9-67360 
 
 9.67393 
 9.67426 
 9.67458 
 9.67491 
 
 33 
 
 33 
 33 
 33 
 
 0.32 640 
 0.32 607 
 
 0.32574 
 0.32 542 
 0.32509 
 
 9-95639 
 9.95633 
 9-95627 
 9.95621 
 9-956I5 
 
 6 
 6 
 6 
 6 
 6 
 
 45 
 44 
 43 
 42 
 41 
 
 .1 
 
 .2 
 
 3 
 4 
 
 3 
 
 : 
 
 t 
 
 1C 
 
 i: 
 
 5.7 
 
 11 
 
 >.8 
 SI ' 
 
 20 
 
 21 
 22 
 23 
 
 24 
 
 9-63 133 
 9-63 159 
 9.63 186 
 9.63213 
 9 63239 
 
 26 
 27 
 27 
 26 
 
 27 
 
 9.67524 
 9.67556 
 9.67589 
 9.67 622 
 9.67654 
 
 32 
 33 
 33 
 33 
 
 0.32476 
 0.32444 
 
 0.324" 
 
 0.32378 
 0.32 346 
 
 9.95609 
 9-95603 
 9-95 597 
 9-95591 
 9 95585 
 
 6 
 6 
 6 
 6 
 6 
 
 40 
 
 i 
 
 :1 
 
 9 
 
 i* 
 
 2 
 2^ 
 
 l'| 
 
 [.6 
 
 L-3 
 
 3 
 
 3 
 
 29 
 
 9.63266 
 9.63292 
 9.63319 
 9.63345 
 9.63372 
 
 26 
 27 
 26 
 27 
 26 
 
 9.67687 
 9.67719 
 9.67752 
 
 9-67785 
 9.67817 
 
 3 
 33 
 33 
 32 
 
 0.32313 
 0.32 281 
 0.32248 
 0.32 215 
 0.32 183 
 
 9-95579 
 9 95 573 
 9 95567 
 9 95 56i 
 9 95 555 
 
 6 
 6 
 6 
 6 
 g 
 
 35 
 34 
 33 
 32 
 3i 
 
 .1 
 
 .2 
 
 3 
 
 A 
 
 I 
 
 T( 
 
 * 
 
 2.6 
 
 \l 
 
 5 A 
 
 80 
 
 3i 
 32 
 33 
 34 
 
 9-63398 
 9-63425 
 9-63451 
 9.63478 
 
 9-63504 
 
 27 
 26 
 27 
 26 
 
 l%% 
 
 9.67915 
 9.67947 
 9.67980 
 
 33 
 33 
 33 
 33 
 
 0.32 150 
 0.32 118 
 0.32085 
 0.32053 
 0.32020 
 
 9 95 549 
 9-95 543 
 9-95 537 
 9-9553' 
 9-95 525 
 
 6 
 6 
 6 
 6 
 
 6 
 
 30 
 
 11 
 
 2 
 
 i 
 
 .9 
 
 i; 
 
 i 
 
 2( 
 2, 
 
 3-. 
 
 ii 
 
 D.8 
 
 5-4 
 
 P 
 9 
 
 39 
 
 9-63 S3 1 
 9.63557 
 9-63583 
 9.63610 
 9-63 636 
 
 26 
 
 26 
 27 
 
 2 
 
 26 
 
 9.68012 
 9 . 68 044 
 9.68 077 
 9 68 109 
 9.68 142 
 
 32 
 33 
 32 
 33 
 
 0.31 988 
 0.31 956 
 0.31 923 
 0.31 891 
 0.31 858 
 
 9.95519 
 9-95 513 
 9 95 507 
 9-95500 
 9-95494 
 
 6 
 6 
 
 7 
 6 
 5 
 
 25 
 24 
 23 
 
 22 
 21 
 
 .1 
 
 .2 
 
 < 
 
 7 
 
 3.7 
 
 1-4 
 
 40 
 
 4i 
 42 
 43 
 44 
 
 9.63 662 
 9.63 689 
 
 9-63 715 
 9.63 741 
 9.63 767 
 
 27 
 26 
 26 
 26 
 
 9.68174 
 9.68206 
 9 . 68 239 
 9.68271 
 9.68303 
 
 32 
 33 
 33 
 33 
 
 0.31 826 
 0.31 794 
 0.31 761 
 0.31 729 
 0.31 697 
 
 9.95488 
 9.95482 
 9.95476 
 9-95 470 
 9.95464 
 
 6 
 6 
 6 
 6 
 
 g 
 
 20 
 
 11 
 \l 
 
 3 
 
 :! 
 
 7 
 
 t 
 t 
 
 Z.I 
 
 2.8 
 
 5-5 
 
 \.2 
 
 t-9 
 
 9 
 9 
 
 49 
 
 9-63 794 
 9.63820 
 9-63 846 
 9.63872 
 9.63898 
 
 26 
 26 
 96 
 26 
 26 
 
 9-68336 
 9.68368 
 9.68400 
 9.68432 
 9.68465 
 
 33 
 32 
 
 32 
 33 
 
 0.31 664 
 0.31 632 
 0.31 600 
 0.31 568 
 0.31 535 
 
 9.95458 
 9-95452 
 9-95 446 
 9-95 440 
 9-95434 
 
 6 
 6 
 6 
 6 
 
 15 
 14 
 13 
 
 12 
 II 
 
 .8 
 9 
 
 5 
 
 I 6 
 &3 
 
 5 
 
 50 
 
 5i 
 
 52 
 53 
 54 
 
 9.63924 
 9.63950 
 9.63976 
 9.64002 
 9.64028 
 
 26 
 26 
 26 
 26 
 26 
 
 9-68497 
 9-68529 
 9.68561 
 9.68 593 
 9.68626 
 
 33 
 33 
 33 
 33 
 
 0.31 503 
 0.31471 
 
 0.31 439 
 0.31 407 
 
 0.31 374 
 
 9.95427 
 9.95421 
 
 9.95415 
 9-95 409 
 9.95403 
 
 6 
 6 
 
 10 
 
 1 
 I 
 
 .1 C 
 .2 1 
 
 3 i 
 
 4 a 
 
 i 3 
 
 >.6 
 .2 
 
 .8 
 
 4 
 .0 
 
 0-5 
 t.o 
 
 i-5 
 
 2.0 
 25 
 
 55 
 56 
 
 P 
 
 59 
 
 9-64054 
 9.64080 
 9.64 106 
 9 64 132 
 9.64 158 
 
 26 
 26 
 26 
 26 
 26 
 
 9.68658 
 9.68690 
 9.68 722 
 9.68 754 
 9.68 786 
 
 33 
 
 33 
 32 
 
 32 
 
 0.31 342 
 0.31 310 
 0.31 278 
 0.31 246 
 0.31 214 
 
 9-95 397 
 9-95 39i 
 9-95384 
 9.95378 
 9 95372 
 
 
 5 
 4 
 3 
 
 2 
 
 6 3 
 
 i : 
 
 9 5 
 
 6 
 
 .2 
 
 .8 
 4 
 
 30 
 
 35 
 4.0 
 
 4 5 
 
 60 
 
 9.64 184 
 
 
 9.68818 
 
 
 0.31 182 
 
 9-95 366 
 
 
 
 
 
 
 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. 
 
 c.d. 
 
 L. Tang. 
 
 L. Sin. 
 
 d. 
 
 9 
 
 Proi 
 
 ). 
 
 Pts. 
 
 
 
 
 
 
 64 
 
 
 
 
 
 
 
6 TABLE IV. 
 
 26 ll 
 
 t 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 .d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 d. 
 
 60- 
 
 9 
 
 JL 
 
 55 
 54 
 53 
 52 
 5i 
 
 Prop. Pts. 
 
 
 
 i 
 
 2 
 
 3 
 4 
 
 9.64 184 
 
 9.64 2IO 
 9.64236 
 9.64 262 
 9.64288 
 
 26 
 26 
 26 
 26 
 25 
 26 
 
 86 
 
 26 
 26 
 25 
 26 
 36 
 
 25 
 
 26 
 26 
 
 25 
 
 26 
 
 25 
 
 26 
 
 25 
 26 
 25 
 26 
 25 
 26 
 
 S 
 26 
 5 
 25 
 26 
 
 25 
 25 
 
 36 
 
 25 
 25 
 
 25 
 26 
 25 
 
 25 
 25 
 
 3 
 25 
 
 26 
 25 
 25 
 25 
 25 
 25 
 25 
 25 
 25 
 25 
 25 
 25 
 24 
 25 
 25 
 25 
 25 
 25 
 
 9.68818 
 9.68850 
 9.68882 
 9.68 914 
 9.68946 
 
 32 
 32 
 32 
 32 
 32 
 32 
 32 
 32 
 32 
 
 0.31 182 
 0.31 150 
 0.31 118 
 0.31 086 
 0.31 054 
 
 9-95366 
 9-9536o 
 9-95354 
 9-95 348 
 9-95341 
 
 6 
 6 
 6 
 
 6 
 6 
 6 
 6 
 
 7 
 6 
 
 6 
 6 
 6 
 
 7 
 6 
 
 6 
 6 
 7 
 6 
 6 
 6 
 
 7 
 6 
 6 
 
 6 
 
 7 
 6 
 6 
 
 7 
 6 
 
 6 
 6 
 
 7 
 6 
 6 
 
 7 
 6 
 6 
 7 
 6 
 
 6 
 7 
 6 
 7 
 6 
 
 6 
 7 
 6 
 6 
 7 
 6 
 7 
 6 
 6 
 7 
 6 
 
 7 
 6 
 6 
 
 7 
 
 & 
 
 :i I 
 
 3 9 
 .4 12 
 
 I l6 
 .6 19 
 
 .7 22 
 
 [9 28 
 .1 
 
 .2 
 
 3 
 4 
 
 :i 
 
 i 
 
 9 
 .1 
 
 .2 
 
 3 
 4 
 
 i 
 :I 
 
 9 
 .1 
 
 .2 
 
 3 
 4 
 
 :i 
 
 :I 
 
 -9 
 .1 ( 
 
 .2 
 
 3 ' 
 
 4 - 
 
 i ; 
 
 i : 
 
 9 < 
 
 i j 31 
 
 2 3-1 
 4 6.2 
 
 o 9-3 
 .8 12.4 
 
 o 1^.5 
 .2 18.6 
 
 .4 21.7 
 
 11$ 
 
 * 
 
 \i 
 
 S:| 
 
 15-6 
 18.2 
 
 20.8 
 
 ,3,1! 
 
 as 
 
 2-5 
 5-0 
 7-5 
 
 10. 
 
 12. 5 
 
 15.0 
 17.5 
 
 20. o 
 
 22.5 
 
 N 
 
 :i 
 
 ll 
 
 12.0 
 
 !t.i 
 
 19.2 
 
 21.6 
 7 
 
 )-7 0.6 
 1.4 1.2 
 z.i 1.8 
 
 B.8 2. 4 
 
 J-S 3-0 
 
 J-2 3-6 
 
 ^9 4-2 
 
 j-6 4-8 
 >-3 5-4 
 
 1 
 I 
 
 9 
 
 IT 
 
 ii 
 
 12 
 
 13 
 
 H 
 
 11 
 
 17 
 
 18 
 19 
 
 21 
 22 
 
 23 
 
 24 
 
 3 
 3 
 
 29 
 
 9-643I3 
 9-64339 
 9.64365 
 9.64391 
 9.64417 
 
 9.68978 
 9.69010 
 9 . 69 042 
 9.69074 
 9.69 106 
 
 0.31 022 
 0.30990 
 0.30958 
 0.30926 
 0.30894 
 
 9-95335 
 9-953 2 9 
 9-95 323 
 9-953I7 
 9-95310 
 
 9.64442 
 9.64468 
 9.64494 
 9.64519 
 9.64545 
 
 9-69 138 
 9.69 170 
 9.69202 
 
 9-69234 
 9.69 266 
 
 32 
 32 
 32 
 32 
 
 0.30862 
 0.30830 
 0.30 798 
 0.30 766 
 0.30734 
 
 9-95304 
 9-95 298 
 9.95 292 
 9 95286 
 9 95279 
 
 60 
 
 11 
 8 
 
 9.6457I 
 9.64596 
 9.64622 
 9.64647 
 9.64673 
 
 9.69298 
 9.69329 
 9.69361 
 
 9.69393 
 9.69425 
 
 3 
 
 3* 
 32 
 32 
 32 
 
 3i 
 32 
 32 
 32 
 3i 
 32 
 32 
 3 
 32 
 32 
 
 3* 
 32 
 3 
 32 
 32 
 
 3 
 
 33 
 
 3 
 
 32 
 3 
 32 
 3 
 32 
 3* 
 32 
 
 3 
 3i 
 32 
 3 
 32 
 
 3i 
 3* 
 32 
 3 
 3 
 32 
 3 
 3* 
 3 
 32 
 
 O.30 702 
 0.30671 
 0.30639 
 0.30607 
 0.30575 
 
 9-95273 
 9-95 267 
 9.95261 
 
 9-95254 
 9.95248 
 
 45 
 44 
 43 
 42 
 
 41 
 
 9.64698 
 9.64 724 
 9.64749 
 
 9.64775 
 9.64 800 
 
 9-69457 
 9.69488 
 9.69520 
 9.69552 
 9.69584 
 
 0.30543 
 0.30512 
 0.30480 
 
 o . 30 448 
 
 0.30416 
 
 9.95242 
 9 95236 
 9.95229 
 9 95223 
 9.95217 
 
 40 
 
 P 
 ll 
 
 9.64826* 
 9.64851 
 9.64877. 
 9.64902 
 9.64927 
 
 9.69615 
 9.69647 
 
 9-69679 
 0.69 710 
 9.69742 
 
 0.30385 
 0.30353 
 0.30321 
 0.30290 
 0.30258 
 
 9-952II 
 9.95204 
 9.95 198 
 9-95 192 
 9 95 185 
 
 35 
 34 
 33 
 32 
 
 i 
 
 1 
 
 25 
 24 
 23 
 
 22 
 21 
 
 w 
 
 10 
 
 ii 
 
 \l 
 
 30 
 
 3i 
 
 32 
 33 
 34 
 
 9.64953 
 9.64978 
 9.65003 
 9.65 O29 
 9-65054 
 
 9.69774 
 
 9-69805 
 9.69837 
 9.69868 
 9.69900 
 
 0.30 226 
 
 0.30 195 
 0.30 163 
 0.30 132 
 0.30 100 
 
 9 95 179 
 9-95 173 
 9 95 167 
 9-95 160 
 9-95 '54 
 
 5 
 
 9 
 
 39 
 
 9.65079 
 9.65 104 
 9.65 130 
 9.65 155 
 
 9.65 180 
 
 9.69932 
 9.69963 
 
 9.69995 
 9.70026 
 9.70058 
 
 0.30068 
 
 0.30037 
 0.30005 
 0.29974 
 0.29942 
 
 9.95 148 
 9-95 HI 
 9-95 135 
 9 95 129 
 9 95 122 
 
 40 
 
 4 
 42 
 
 43 
 44 
 
 9-65205 
 9-65230 
 
 9.65 255 
 9.65 281 
 9.65306 
 
 9.70089 
 
 9.70 121 
 9.70152 
 9.70184 
 9.70215 
 
 0.29 911 
 0.29879 
 
 0.29848 
 
 0.29 816 
 0.29 785 
 
 9-95 "6 
 9 95 "0 
 9 95 103 
 9.95097 
 9.95090 
 
 9 
 
 .a 
 
 49 
 
 9-6533I 
 9-65356 
 
 9- 653*i 
 9.65406 
 
 9.65431 
 
 9.70247 
 9.70278 
 9.70309 
 9.70341 
 9.70372 
 
 0.29 753 
 0.29 722 
 0.29 691 
 0.29 659 
 o . 29 628 
 
 9.95084 
 9.95078 
 9.95071 
 9.95065 
 9-95059 
 
 15 
 
 14 
 13 
 
 12 
 II 
 
 60 
 
 51 
 5 2 
 53 
 54 
 
 9.65456 
 9.65 481 
 9.65506 
 9 65531 
 9 65 556 
 
 9.70404 
 9-70435 
 
 9 . 70 466 
 9.70498 
 9-70529 
 
 0.29596 
 0.29565 
 0.29 534 
 0.29502 
 0.29471 
 
 9-95052 
 9.95046 
 9-95039 
 9-95033 
 9.95027 
 
 10 
 
 I 
 
 i? 
 
 12 
 
 59 
 
 E 
 
 9.65580 
 9 65605 
 9 65 630 
 
 9-65655 
 9.65 680 
 
 9.70560 
 9.70592 
 9.70623 
 9.70654 
 9 70 685 
 
 0.29440 
 o . 29 408 
 0.29377 
 0.29 346 
 0.29315 
 
 9 95 020 
 9 95014 
 9 95007 
 9.95001 
 9 94 995 
 
 s 
 
 4 
 3 
 
 2 
 I 
 
 ~cr 
 
 9.65 705 
 
 9.70717 
 
 o . 29 283 
 
 9.94988 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. 
 
 c.d 
 
 L. Tang. 
 
 L. Sin. 
 
 d. 
 
 t 
 
 Prop. Pts. 
 
 63 | 
 
LOGARITHMS OF SINE, COSINE, TANGENT AND COTANGENT, ETC. 57 
 
 
 
 
 
 
 27 
 
 
 
 
 
 
 
 
 9 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 .d. 
 
 L. Cotgr. 
 
 L. Cos. 
 
 d. 
 
 
 p 
 
 rop 
 
 ,1 
 
 >ts. 
 
 
 
 I 
 
 2 
 
 3 
 4 
 
 9.65 705 
 9.65 729 
 9-65754 
 9-65 779 
 9.65804 
 
 24 
 
 25 
 25 
 25 
 
 24 
 
 9.70717 
 9.70748 
 9.70779 
 9.70 810 
 9.70841 
 
 3 
 3 
 3 
 3 
 
 o . 29 283 
 0.29252 
 
 0.29 221 
 O.29 190 
 0.29 159 
 
 9.94988 
 9.94982 
 
 9-94975 
 9.94969 
 9.94962 
 
 6 
 7 
 6 
 
 7 
 6 
 
 60 
 
 5? 
 58 
 
 Ii 
 
 .1 
 
 .2 
 
 32 
 
 I 
 
 2 
 
 /) 
 
 31 
 
 ii 
 
 1 
 I 
 
 9 
 
 9.65828 
 9-65853 
 9-65878 
 9.65902 
 9.65927 
 
 25 
 25 
 24 
 25 
 25 
 
 9.70873 
 9 . 70 904 
 
 9.70935 
 9.70966 
 9.70997 
 
 3i 
 3 
 31 
 3 
 31 
 
 0.29 127 
 0.29096 
 0.29065 
 0.29034 
 0.29003 
 
 9.94956 
 9.94949 
 9-94943 
 9.94936 
 9-94930 
 
 7 
 6 
 
 7 
 6 
 
 55 
 54 
 53 
 52 
 5i 
 
 3 
 4 
 
 :! 
 
 7 
 
 9 
 
 12 
 
 16 
 19 
 
 22 
 
 6 
 8 
 
 
 2 
 
 4 
 
 9-3 
 12.4 
 
 21.7 
 
 10 
 
 ii 
 
 12 
 13 
 14 
 
 9-65952 
 9.65976 
 9 . 66 ooi 
 9.66025 
 9.66050 
 
 24 
 
 23 
 24 
 25 
 25 
 
 9.71 028 
 9.71059 
 9.71090 
 
 9.71 121 
 9-71 153 
 
 3 
 31 
 31 
 32 
 31 
 
 0.28972 
 0.28941 
 0.28910 
 0.28879 
 0.28 847 
 
 9.94923 
 9.94917 
 9.94911 
 9.94904 
 9.94898 
 
 6 
 6 
 
 7 
 6 
 
 50 
 
 3 
 t? 
 
 .8 
 9 
 
 3 
 
 6 
 8 
 
 3 
 
 24.8 
 27.9 
 
 
 
 15 
 10 
 
 \l 
 
 19 
 
 9-66075 
 9.66099 
 9.66 124 
 9.66 148 
 9-66173 
 
 24 
 25 
 24 
 5 
 
 2 4 
 
 9.71 184 
 9.71 2l| 
 9.71 246 
 9.71277 
 9.71308 
 
 3* 
 3i 
 3* 
 3* 
 
 0.288l6 
 0.28 785 
 
 0.28 754 
 0.28 723 
 0.28 692 
 
 9.94891 
 9.9488; 
 9.94878 
 9.94871 
 9.94865 
 
 6 
 7 
 7 
 6 
 
 45 
 44 
 43 
 42 
 
 41 
 
 
 i 
 
 .2 
 
 3 
 4 
 
 i 
 
 I 
 
 $ 
 
 12 
 
 ;s 
 
 .0 
 .O 
 .0 
 .0 
 .0 
 ! o 
 
 20 
 
 21 
 22 
 23 
 
 24 
 
 9.66 197 
 
 9.66 221 
 9.66246 
 9.66270 
 9.66293 
 
 24 
 25 
 24 
 25 
 
 9.71339 
 9.71370 
 9.7I40I 
 
 9.7I43I 
 9.71 462 
 
 3 
 3 
 30 
 3 
 
 0.28 661 
 o . 28 630 
 0.28599 
 o 28 569 
 0.28 538 
 
 9.94858 
 9.94852 
 9.94845 
 9-94839 
 9.94832 
 
 6 
 7 
 6 
 
 7 
 
 6 
 
 40 
 
 fs 
 
 11 
 
 
 i 
 
 9 
 
 21 
 
 24 
 2; 
 
 .O ' 
 [0 
 
 r.o 
 
 25 
 20 
 
 3 
 
 29 
 
 9-66319 
 
 ris 
 IM 
 
 24 
 25 
 24 
 4 
 
 9$ 
 
 9.7I493 
 9-71 5 2 4 
 9.7I555 
 9.71586 
 9.7I6I7 
 
 3i 
 3 
 3 
 3* 
 
 0.28 507 
 0.28476 
 0.28445 
 0.28414 
 0.28383 
 
 9 . 94 826 
 9.94819 
 9.94813 
 9.94806 
 9-94799 
 
 7 
 6 
 
 7 
 
 7 
 6 
 
 35 
 34 
 33 
 32 
 3i 
 
 .1 
 
 .2 
 
 3 
 
 A 
 
 a 
 2 
 
 5 
 7 
 10 
 
 5 
 
 5 
 
 .0 
 
 5 
 
 o 
 
 4 
 
 2 4 
 4.8 
 
 & 
 
 30 
 
 3i 
 
 32 
 33 
 34 
 
 9.66441 
 9.6646? 
 9.66489 
 9-66513 
 9-66537 
 
 24 
 24 
 24 
 24 
 25 
 
 9 71 648 
 9.71679 
 9.71 709 
 9.71 740 
 9.71 771 
 
 3* 
 30 
 
 3i 
 3i 
 
 0.28352 
 0.28 321 
 0.28 291 
 0.28 260 
 0.28 229 
 
 9-94793 
 9.94786 
 9.94780 
 
 9-94773 
 9.94767 
 
 7 
 6 
 
 7 
 6 
 
 so 
 
 29 
 28 
 27 
 26 
 
 ''I 
 9 
 
 12 
 15 
 17 
 20 
 22 
 
 5 
 
 .0 
 
 -5 
 .0 
 
 -S 
 
 12. 
 
 14 4 
 16.8 
 192 
 
 21.6 
 
 II 
 
 9 
 
 39 
 
 9.66 562 
 9.66586 
 9.66610 
 9.66634 
 9.66658 
 
 24 
 24 
 24 
 24 
 
 9.71 802 
 9-71833 
 9.71863 
 9.71894 
 9.71 925 
 
 3i 
 30 
 3* 
 3 
 
 0.28 198 
 0.28 167 
 0.28 137 
 0.28 1 06 
 0.28075 
 
 9.94760 
 9 94753 
 9-94 747 
 9.94740 
 
 9 94 734 
 
 7 
 6 
 7 
 6 
 
 25 
 24 
 23 
 
 22 
 21 
 
 
 .1 
 ? 
 
 
 23 
 
 a 
 
 40 
 
 41 
 
 42 
 43 
 44 
 
 9.66 682 
 
 9 . 66 706 
 9.66731 
 
 9-66755 
 9.66779 
 
 24 
 25 
 2 4 
 2 4 
 
 9.7I955 
 9.71 986 
 9.72017 
 9 . 72 048 
 9.72078 
 
 3i 
 3 
 3i 
 30 
 
 o . 28 045 
 0.28 014 
 0.27983 
 0.27952 
 0.27922 
 
 9.94727 
 9.94720 
 9.94714 
 9-94 707 
 9.94700 
 
 7 
 6 
 
 7 
 
 7 
 
 | 
 
 20 
 
 19 
 
 il 
 
 
 3 
 4 
 
 :i 
 
 7 
 
 , 
 
 i 
 
 5, 9 
 9.2 
 
 il 
 
 3 
 
 4 J 
 
 49 
 
 9.66803 
 9.66827 
 9.66851 
 9 66875 
 9.66 899 
 
 24 
 24 
 24 
 
 24 
 
 9.72 109 
 9.72 140 
 9.72170 
 9 . 72 201 
 
 9.72231 
 
 3i 
 30 
 3i 
 30 
 
 o 27891 
 0.27 860 
 0.27 830 
 0.27 799 
 0.27 769 
 
 9.94694 
 9.94687 
 9 . 94 680 
 9.94674 
 9.94667 
 
 7 
 7 
 6 
 7 
 
 15 
 14 
 13 
 
 12 
 II 
 
 
 .8 
 9 
 
 i 
 
 2 
 7 
 
 8.4 
 
 0.7 
 
 6 
 
 50 
 
 5i 
 52 
 53 
 
 54 
 
 9.66 922 
 9 . 66 946 
 9.66970 
 9.66994 
 9.67018 
 
 24 
 24 
 24 
 24 
 
 9 . 72 262 
 9.72293 
 9-72323 
 9.72354 
 9.72384 
 
 3i 
 30 
 
 3 
 30 
 
 0.27738 
 0.27 707 
 0.27677 
 0.27646 
 0.27616 
 
 9 . 94 660 
 
 9-94654 
 9.94647 
 9.94640 
 9-94634 
 
 7 
 6 
 7 
 7 
 6 
 
 10 
 
 I 
 
 .1 
 
 .2 
 
 3 
 4 
 
 c 
 
 i 
 
 2 
 2 
 
 3 
 
 -7 
 4 
 . i 
 .S 
 5 
 
 0.6 
 
 1.2 
 
 1.8 
 2.4 
 3-0 
 
 I 
 
 s 
 
 59 
 
 9.67042 
 9.67066 
 9.67090 
 9.67113 
 ,9.67137 
 
 24 
 24 
 23 
 24 
 
 9-72415 
 9.72445 
 9.72476 
 9.72506 
 9.72537 
 
 30 
 3i 
 30 
 3i 
 
 0-27585 
 
 0-27555 
 0.27524 
 .0.27494 
 0.27463 
 
 9.94627 
 9 . 94 620 
 9.94614 
 9.94607 
 9.94600 
 
 7 
 6 
 7 
 7 
 
 5 
 4 
 3 
 
 2 
 
 I 
 
 :1 
 
 9 
 
 4 
 4 
 
 1 
 
 .2 
 
 1 
 
 3 
 
 3-6 
 4.2 
 4-8 
 5-4 
 
 60 
 
 9.67 161 
 
 
 9.72 567 
 
 
 0.27433 
 
 9-94593 
 
 
 
 
 
 
 
 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. 
 
 c.d 
 
 L. Tang 
 
 L. Sin. 
 
 d. 
 
 t 
 
 ] 
 
 VO] 
 
 > 
 
 Pts. 
 
 
 
 
 
 
 62 
 
 
 
 
 
 
 
 
g TABLE IV. 
 
 28 
 
 1 
 
 I. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 d. 
 
 
 Prop. Pts. 
 
 
 
 9.67 161 
 
 
 9.72567 
 
 
 0.27433 
 
 9-94593 
 
 
 00 
 
 
 
 I 
 
 2 
 
 3 
 4 
 
 9.67 185 
 9.67208 
 9.67232 
 9.67256 
 
 23 
 24 
 24 
 24 
 
 9.72598 
 9.72 628 
 9.72659 
 9.72 689 
 
 3 1 
 
 3 
 
 31 
 
 0.27402 
 0.27372 
 0.27341 
 0.27311 
 
 9-94587 
 9-9458o 
 9-94573 
 9-94567 
 
 7 
 7 
 6 
 
 
 .1 
 
 2 
 
 31 
 3- 1 
 
 6 2 
 
 30 
 
 I 
 
 9.67280 
 9.67303 
 
 23 
 24 
 
 9.72 720 
 9.72750 
 
 30 
 
 0.27 280 
 0.27 250 
 
 9-9456o 
 9-94553 
 
 7 
 
 55 
 54 
 
 3 
 -4 
 
 9-3 
 12.4 
 
 9.0 
 12.0 
 
 I 
 
 9.67327 
 9.67350 
 
 23 
 
 9.72 780 
 9.72811 
 
 3i 
 
 0.27 220 
 0.27 189 
 
 9.94546 
 9.94540 
 
 6 
 
 53 
 
 S2 
 
 i 
 
 
 5 
 
 15.0 
 
 18.0 
 
 9 
 
 9-67374 
 
 24 
 
 9.72841 
 
 31 
 
 0.27159 
 
 9-94533 
 
 7 
 
 
 7 
 
 21 
 
 .7 
 
 21 .0 
 
 10 
 
 9.67398 
 
 
 9.72872 
 
 
 0.27 128 
 
 9.94 526 
 
 
 50 
 
 .8 
 
 24 
 
 .8 
 
 24.0 
 
 ii 
 
 12 
 
 9.67421 
 
 9-67445 
 9.67468 
 
 24 
 23 
 
 9.72902 
 9-72932 
 9-72963 
 
 3 
 30 
 3* 
 
 0.27098 
 0.27068 
 0.27037 
 
 9-94 5 J 9 
 9-94513 
 9.94506 
 
 7 
 6 
 
 7 
 
 49 
 48 
 
 9 
 
 27 
 
 9 
 
 27.0 
 
 *4 
 
 9.67492 
 
 23 
 
 9-72993 
 
 30 
 
 0.27007 
 
 9-94499 
 
 7 
 
 46 
 
 
 39 
 
 !<> 
 
 9.675I5 
 
 
 9.73023 
 
 
 0.26977 
 
 9.94492 
 
 
 45 
 
 .1 
 
 2.9 
 
 16 
 
 9-67539 
 
 
 9-73054 
 
 3 1 
 
 0.26 946 
 
 9-94485 
 
 7 
 
 44 
 
 .2 
 
 5-8 
 
 17 
 18 
 
 9.67562 
 9.67 586 
 
 24 
 
 9.73084 
 9-73ii4 
 
 30 
 
 0.26916 
 0.26886 
 
 9-94479 
 9. 94 472 , 
 
 7 
 
 43 
 42 
 
 3 
 4 
 
 & 
 
 19 
 
 9.67609 
 
 23 
 24 
 
 9-73 144 
 
 3 
 
 0.26856 
 
 9-94465 
 
 7 
 
 4i 
 
 5 
 
 14-5 
 
 20 
 
 9.67633 
 
 
 9 73 175 
 
 
 0.26 825 
 
 9-94458 
 
 
 40 
 
 7 
 
 17-4 
 20 7 
 
 21 
 
 9.67656 
 
 
 9-73205 
 
 
 0.26 795 
 
 9-94451 
 
 
 39 
 
 'I 
 
 
 22 
 
 9.67680 
 
 
 9.73235 
 
 30 
 
 0.26 765 
 
 9-94445 
 
 
 38 
 
 Q 
 
 23.2 
 26 i 
 
 23 
 
 24 
 
 9.67703 
 9.67726 
 
 23 
 24 
 
 9-73265 
 9.73295 
 
 30 
 3 
 
 0-26735 
 0.26 705 
 
 9-94438 
 9-9443 1 
 
 7 
 7 
 
 
 y 
 
 
 25 
 
 9.67750 
 
 
 9.73326 
 
 
 0.26 674 
 
 9-94424 
 
 
 35 
 
 
 34 
 
 26 
 29 
 
 9.67773 
 9-67796 
 9.67820 
 9.67843 
 
 23 
 
 24 
 23 
 23 
 
 9.73356 
 9.73386 
 9.73416 
 9-73446 
 
 3 
 30 
 30 
 30 
 
 0.26 644 
 0.26 614 
 0.26 584 
 0.26554 
 
 9.94417 
 9.94410 
 9.94404 
 9-94397 
 
 7 
 7 
 6 
 
 7 
 
 34 
 33 
 32 
 
 .1 
 .2 
 
 3 
 
 A 
 
 7-2 
 o 6 
 
 V 6 
 
 6.9 
 
 92 
 
 30 
 
 9.67866 
 
 
 9-73476 
 
 
 0.26 524 
 
 9-94390 
 
 
 30 
 
 
 12.0 
 
 II. j 
 
 32 
 33 
 34 
 
 9.67890 
 9.67913 
 9.67936 
 9 67959 
 
 23 
 23 
 23 
 23 
 
 9-73507 
 9-73537 
 9-73567 
 9-73597 
 
 3 1 
 
 30 
 30 
 30 
 
 0.26 493 
 o . 26 463 
 0.26433 
 0.26403 
 
 9-94383 
 9-94376 
 9-94369 
 9-94362 
 
 7 
 7 
 7 
 7 
 
 1 
 
 i 
 
 .9 
 
 14.4 
 
 16.8 
 19.2 
 
 21.6 
 
 20.7 
 
 % 
 
 9.67982 
 9.68006 
 
 24 
 
 9.73627 
 
 30 
 
 0.26373 
 0.26343 
 
 9-94355 
 9 94 349 
 
 6 
 
 25 
 24 
 
 
 
 B 
 
 9.68029 
 9.68052 
 
 23 
 23 
 
 9-73687 
 9-73 717 
 
 30 
 
 30 
 
 0.26313 
 0.26 283 
 
 9-94342 
 9-94335 
 
 7 
 7 
 
 23 
 
 22 
 
 
 33 
 2 2 
 
 39 
 
 9.68075 
 
 23 
 
 9-73 747 
 
 30 
 
 0.26253 
 
 9-94328 
 
 7 
 
 21 
 
 .2 
 
 4-4 
 
 40 
 
 9.68098 
 
 
 9-73777 
 
 
 o . 26 223 
 
 9-94321 
 
 
 20 
 
 -3 
 
 6.6 
 
 41 
 
 9.68 121 
 
 
 9.73807 
 
 3 
 
 0.26 193 
 
 9-943H 
 
 7 
 
 19 
 
 .4 
 
 8.8 
 
 42 
 43 
 
 9.68 144 
 9.68 167 
 
 23 
 23 
 
 9.73867 
 
 3 
 
 30 
 
 0.26 163 
 0.26 133 
 
 9-94307 
 9.94300 
 
 7 
 7 
 
 18 
 17 
 
 i 
 
 II. 
 
 13.2 
 
 44 
 
 9.68 190 
 
 23 
 
 9.73897 
 
 3 
 
 0.26 103 
 
 9-94293 
 
 7 
 
 16 
 
 .7 
 
 
 9 
 
 9.68 213 
 
 24 
 
 9-73927 
 9-73957 
 
 30 
 
 0.26073 
 0.26043 
 
 9.94286 
 9.94279 
 
 7 
 
 15 
 
 9 
 
 17.6 
 19.8 
 
 47 
 
 9.68260 
 
 
 9- 73 987 
 
 3 
 
 0.26013 
 
 9-94273 
 
 
 13 
 
 
 
 48 
 
 9.68283 
 
 
 9.74017 
 
 30 
 
 0.25983 
 
 9 . 94 266 
 
 7 
 
 12 
 
 
 
 49 
 
 9.68305 
 
 
 9.74047 
 
 30 
 
 0.25 953 
 
 9-94259 
 
 7 
 
 II 
 
 
 
 7 
 
 6 
 
 50 
 
 9.68328 
 
 
 9.74077 
 
 
 0.25923 
 
 9-94252 
 
 
 10 
 
 .1 
 
 0.7 
 
 0.6 
 
 5' 
 
 9-6835I 
 
 23 
 
 9-74 107 
 
 3 
 
 0.25893 
 
 9-94245 
 
 7 
 
 9 
 
 .2 
 
 ] 
 
 [-4 
 
 1.2 
 
 52 
 53 
 
 9-68374 
 9.68397 
 
 23 
 23 
 
 9.74137 
 9.74166 
 
 30 
 29 
 
 0.25863 
 0.25 834 
 
 9.94238 
 9.94231 
 
 7 
 7 
 
 7 
 
 -3 
 4 
 
 2.1 
 2.8 
 
 1.8 
 2.4 
 
 54 
 
 9.68420 
 
 23 
 23 
 
 9.74196 
 
 30 
 
 0.25 804 
 
 9.94224 
 
 7 
 
 6 
 
 5 
 
 3-5 
 
 8-8 
 
 B 
 
 ii 
 
 9.68443 
 9.68466 
 9.68489 
 9-68 512 
 
 23 
 23 
 23 
 
 9.74226 
 9.74256 
 9 . 74 286 
 9.74316 
 
 30 
 30 
 30 
 
 0.25 774 
 0.25 744 
 0.25 714 
 
 0.-25 684 
 
 9.94217 
 
 9.94 2IO 
 9.94203 
 9.94196 
 
 7 
 7 
 7 
 
 5 
 4 
 3 
 
 2 
 
 .b 
 
 i 
 
 9 
 
 4.2 
 4-9 
 
 I' 6 
 6-3 
 
 3- 6 
 5-4 
 
 59 
 
 9-68534 
 
 23 
 
 9-74345 
 
 29 
 
 0-25655 
 
 9-94 189 
 
 7 
 
 I 
 
 
 
 
 00 
 
 9.68557 
 
 
 9-74375 
 
 
 0.25 625 
 
 9.94 182 
 
 
 
 
 
 
 
 L. Cos. 
 
 d. 
 
 L. Cots. 
 
 c.d. 
 
 L. Tancr. 
 
 L. Sin. 
 
 d. 
 
 t 
 
 Prop. Pts. 
 
 I 61 
 
LOGARITHMS OF SINE, COSINE, TANGENT AND COTANGENT, ETC. r 
 
 29 i 
 
 9 
 
 
 
 I 
 2 
 
 3 
 4 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 d. 
 
 
 Prop. Pts. 
 
 9-68557 
 9.68580 
 9 68603 
 9.68625 
 9.68648 
 
 23 
 23 
 
 22 
 23 
 3 
 
 23 
 22 
 23 
 23 
 22 
 
 23 
 22 
 
 23 
 23 
 23 
 
 23 
 29 
 
 23 
 22 
 
 23 
 32 
 
 23 
 22 
 23 
 22 
 22 
 
 23 
 22 
 
 23 
 22 
 
 22 
 23 
 22 
 22 
 22 
 
 23 
 33 
 93 
 33 
 
 22 
 
 3 
 32 
 33 
 33 
 33 
 33 
 32 
 22 
 22 
 23 
 32 
 22 
 22 
 22 
 22 
 22 
 23 
 22 
 22 
 23 
 
 9-74375 
 9-74405 
 9-74435 
 9.74465 
 9-74494 
 
 3 
 3 
 3 
 29 
 30 
 30 
 29 
 30 
 30 
 30 
 
 29 
 
 30 
 30 
 
 29 
 30 
 
 30 
 29 
 3<> 
 29 
 30 
 
 29 
 30 
 30 
 29 
 30 
 
 29 
 30 
 29 
 30 
 29 
 30 
 29 
 30 
 29 
 29 
 30 
 29 
 30 
 29 
 29 
 30 
 29 
 30 
 29 
 29 
 30 
 29 
 29 
 29 
 30 
 29 
 29 
 29 
 30 
 29 
 29 
 
 29 
 30 
 29 
 29 
 
 o . 25 625 
 25 595 
 0-25565 
 0-25 535 
 0.25 506 
 
 9.94 182 
 
 9.94175 
 9.94 168 
 9.94161 
 9 94154 
 
 7 
 7 
 7 
 7 
 7 
 7 
 7 
 7 
 7 
 7 
 7 
 7 
 8 
 7 
 7 
 7 
 7 
 7 
 7 
 7 
 7 
 7 
 7 
 8 
 
 7 
 7 
 7 
 7 
 7 
 7 
 
 7 
 
 8 
 
 7 
 7 
 7 
 7 
 7 
 8 
 7 
 7 
 7 
 7 
 8 
 
 7 
 
 7 
 
 7 
 8 
 
 7 
 7 
 7 
 
 7 
 8 
 
 7 
 7 
 8 
 
 7 
 
 7 
 7 
 
 8 
 
 7 
 
 00 
 
 3 
 
 11 
 
 .1 
 
 .2 
 3 
 
 4 
 
 i 
 
 9 
 .1 
 
 .2 
 
 3 
 
 :I 
 :| 
 
 9 
 .1 
 
 .2 
 
 3 
 
 4 
 
 :! 
 
 i 
 
 9 
 .1 
 
 .2 
 
 3 
 4 
 
 :i 
 
 :l 
 
 9 
 
 .1 C 
 
 .2 1 
 .3 ' 
 
 .4 : 
 
 i : 
 
 :l \ 
 
 .9 ; 
 
 30 
 
 3 
 6.0 
 9.0 
 
 12.0 
 
 I 5- 
 18.0 
 
 21.0 
 24.0 
 27.0 
 
 9 
 2.9 
 
 H 
 
 n. 6 
 
 14.5 
 17-4 
 20.3 
 
 2J.2 
 20.1 
 
 93 
 
 i 1 
 
 6. 9 
 
 9-2 
 
 "5 
 
 '3-8 
 IO.I 
 
 18.4 
 20.7 
 
 99 
 
 2.2 
 
 to 
 
 8.8 
 
 II. O 
 
 13-2 
 15-4 
 17.6 
 |I 9 .8 
 
 8 7 
 
 ).8 0.7 
 .6 1.4 
 (.4 2.1 
 5.2 2.8 
 [.o 3.5 
 t.8 4.2 
 ;.6 4-9 
 -4 5-6 
 r.2 6.3 
 
 1 
 
 9 
 
 9.68 671 
 9 . 68 694 
 9.68 716 
 9.68739 
 9.68 762 
 
 9.74524 
 9^74554 
 9-74583 
 9.74613 
 
 9.74643 
 
 0.25 476 
 0.25 446 
 0.25417 
 0.25387 
 0.25357 
 
 9.94147 
 9.94 140 
 
 9-94I33 
 9.94 126 
 9.94 119 
 
 55 
 54 
 53 
 52 
 Si 
 
 10 
 
 ii 
 
 12 
 3 
 14 
 
 9.68 784 
 9.68807 
 9.68829 
 9.68852 
 9.68875 
 
 9.74673 
 9.74702 
 
 9-74732 
 9.74762 
 
 9-74791 
 
 0.25327 
 0.25 298 
 0.25 268 
 0.25 238 
 0.25 209 
 
 9.94 112 
 9.94105 
 9.94098 
 9.94090 
 9.94083 
 
 50 
 
 4 2 
 4 8 
 
 47 
 46 
 
 45 
 44 
 43 
 42 
 
 41 
 
 !2 
 !2 
 
 19 
 
 9.68897 
 9.68920 
 9.68942 
 9.68965 
 9.68987 
 
 9.74821 
 9-74851 
 9.74880 
 9.74910 
 9-74939 
 
 0.25 179 
 0.25 149 
 
 O.25 120 
 O.25 09O 
 
 0.25 06 1 
 
 9.94076 
 9.94069 
 9.94062 
 9-94055 
 9.94048 
 
 20 
 
 21 
 22 
 23 
 
 24 
 
 9.69010 
 9.69032 
 9 69055 
 9.69077 
 9.69 100 
 
 9.74969 
 9.74998 
 9.75028 
 9.75058 
 9.75087 
 
 0.25 031 
 
 O.25 002 
 0.24972 
 0.24942 
 0.24913 
 
 9.94041 
 
 9-94034 
 9.94027 
 9.94020 
 9.94012 
 
 40 
 
 39 
 38 
 
 1 
 
 35 
 34 
 33 
 32 
 3i 
 
 % 
 
 11 
 
 29 
 
 9.69 122 
 
 9.69144 
 9.69167 
 9.69 189 
 9.69212 
 
 9-75 "7 
 9-75 H6 
 9-75 176 
 9-75205 
 
 9-75 235 
 
 0.24883 
 0.24854 
 0.24824 
 0.24795 
 0.24765 
 
 9.94005 
 9-93998 
 9-93991 
 9-93984 
 9-93977 
 
 n 
 
 31 
 32 
 
 33 
 
 34 
 
 9.69234 
 9.69256 
 9.69279 
 9.69301 
 9.69323 
 
 9-75 264 
 9-75294 
 9.75323 
 9-75353 
 9.75382 
 
 0-24736 
 
 o . 24 706 
 
 0.24677 
 0.24647 
 
 0.24618 
 
 9.93970 
 9.93963 
 9-93955 
 9-93948 
 9-93941 
 
 30 
 
 27 
 26 
 
 i 
 
 39 
 
 IT 
 
 41 
 42 
 
 43 
 
 44 
 
 9-69345 
 9.69368 
 9.69390 
 9.69412 
 9-69434 
 
 9-754" 
 9-75441 
 9-75470 
 9-75500 
 9.75529 
 
 0.24589 
 
 0.24559 
 0.24530 
 0.24500 
 0.24471 
 
 9-93934 
 9.93927 
 9.93920 
 9.93912 
 9-93905 
 
 25 
 24 
 23 
 
 22 
 21 
 
 "20" 
 
 ! 9 8 
 \l 
 
 9-69456 
 9-69479 
 9.69501 
 
 9-69523 
 9.69545 
 
 9-75558 
 9-75588 
 9-756I7 
 9-75647 
 9.75676 
 
 0.24442 
 
 0.24412 
 
 0.24383 
 0.24353 
 0.24324 
 
 9-93898 
 9.93891 
 9.93 884 
 9.93 876 
 9.93869 
 
 9 
 
 8 
 
 49 
 
 9.69567 
 9.69589 
 9.69 611 
 9-69633 
 9-69655 
 
 9-75705 
 9-75735 
 9-75 764 
 9-75793 
 9-75822 
 
 0.24295 
 
 0.24 265 
 0.24236 
 0.24207 
 0.24 178 
 
 9.93862 
 9.93855 
 9.93847 
 9.93840 
 
 9-93833 
 
 15 
 H 
 13 
 
 12 
 II 
 
 50 
 
 5i 
 
 52 
 53 
 54 
 
 9.69677 
 9.69699 
 9.69721 
 9 69743 
 9 69765 
 
 9-75852 
 9.75881 
 9.75910 
 9-75939 
 9.75969 
 
 0.24 148 
 0.24 119 
 0.24090 
 0.24061 
 0.24031 
 
 9.93826 
 9.93819 
 9.93811 
 9.93804 
 9-93 797 
 
 10 
 
 1 
 I 
 
 55 
 56 
 
 9 
 
 59 
 
 1ST 
 
 9 69787 
 9.69809 
 9.69831 
 9 69853 
 9 69875 
 
 9-75998 
 9.76027 
 9.76056 
 9.76086 
 9.76 115 
 
 0.24002 
 c 23973 
 
 0.23944 
 
 0.23 914 
 
 0.23885 
 
 9-93 789 
 9-93 782 
 9-93 775 
 9.93 768 
 9 93 76o 
 
 5 
 4 
 3 
 
 2 
 I 
 
 "0" 
 
 9 69 897 
 
 9.76 144 
 
 o 23 856 
 
 9-93753 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. 
 
 c.d. 
 
 L. Tang. 
 
 L. Sin. 
 
 d. 
 
 t 
 
 Prop. Pts. 
 
 60 
 
TABLE IV* 
 
 i 80 1 
 
 t 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 .d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 d. 
 
 
 Prop. Pis. 
 
 i ' 
 \ 
 
 9.69897 
 9.69919 
 9.69941 
 
 9 69963 
 9.69984 
 
 23 
 
 33 
 33 
 21 
 23 
 
 9.76 144 
 9.76 173 
 
 9 . 76 202 
 9.76231 
 9.76 26l 
 
 39 
 29 
 29 
 30 
 29 
 
 39 
 29 
 29 
 
 9 
 29 
 
 39 
 
 29 
 29 
 39 
 29 
 29 
 30 
 29 
 39 
 28 
 39 
 39 
 29 
 29 
 39 
 29 
 29 
 29 
 29 
 39 
 29 
 29 
 28 
 29 
 29 
 29 
 29 
 29 
 28 
 29 
 29 
 29 
 29 
 28 
 29 
 29 
 29 
 28 
 29 
 29 
 28 
 29 
 29 
 29 
 28 
 29 
 28 
 29 
 29 
 28 
 
 0.23 856 
 0.23 827 
 o 23 798 
 0.23 769 
 o 23 739 
 
 9 93 753 
 9 93 746 
 9 93 738 
 9-9373" 
 9 93 724 
 
 7 
 8 
 7 
 7 
 7 
 8 
 7 
 7 
 8 
 7 
 
 7 
 8 
 
 7 
 8 
 
 7 
 
 7 
 8 
 7 
 7 
 8 
 
 7 
 8 
 
 7 
 7 
 8 
 
 7 
 8 
 
 7 
 8 
 7 
 
 7 
 8 
 
 7 
 8 
 7 
 8 
 
 7 
 
 8 
 
 7 
 8 
 
 7 
 8 
 
 7 
 
 8 
 7 
 8 
 
 7 
 8 
 7 
 8 
 
 7 
 8 
 
 7 
 8 
 8 
 
 7 
 8 
 
 7 
 
 8 
 
 7 
 
 00 
 
 3 
 
 11 
 
 3< 
 
 :i I 
 
 3 9 
 .4 12 
 
 :i !I 
 
 its 
 
 .9 27 
 .1 
 
 .2 
 
 3 
 
 :I 
 i 
 
 9 
 .1 
 
 .2 
 
 3 
 .4 
 
 i 
 
 :J 
 
 9 
 .1 
 
 .2 
 
 3 
 4 
 
 :i 
 
 i 
 
 9 
 .1 ( 
 
 .2 
 
 3 ' 
 4 , 
 5 * 
 
 .6 - 
 
 :2 . 
 
 9 
 
 > 
 
 o 2.9 
 o j.8 
 .0 8.7 1 
 .0 ii. 6 
 .0 14.5 
 .0 17.4 
 .0 20.3 
 .0 23.2 
 
 .0 20.1 
 
 38 
 2.8 
 
 s- 6 
 
 1-4 
 
 II. 2 
 
 14 o 
 16.8 
 19.6 
 22.4 
 25.2 
 
 sa 
 
 2.2 
 
 ft 
 
 8.8 
 
 II. 
 
 13 2 
 "5-4 
 17.6 
 I 9 .8 
 
 at 
 2.1 
 
 4 2 
 63 
 8.4 
 10 5 
 
 12.6 
 
 2 
 
 18.9 
 
 8 7 
 
 5.8 0.7 
 [.6 1.4 
 
 2.4 2.1 
 J.2 2.8 
 
 *o 3.5 
 ^.8 4-2 
 C.6 49 
 3-4 5-6 
 7.2 6.3 
 
 i 
 2 
 
 9 
 10 
 ii 
 
 12 
 13 
 H 
 
 \l 
 
 11 
 
 19 
 
 21 
 
 22 
 23 
 
 24 
 
 9 . 70 006 
 9 . 70 028 
 9 . 70 050 
 9.70072 
 9.70093 
 
 33 
 32 , 
 22 
 21 
 23 
 33 
 33 
 91 
 32 
 33 
 31 
 22 
 81 
 23 
 32 
 21 
 23 
 21 
 22 
 21 
 22 
 31 
 33 
 21 
 33 
 21 
 33 
 81 
 33 
 31 
 31 
 23 
 21 
 31 
 33 
 31 
 31 
 21 
 22 
 21 
 21 
 21 
 22 
 21 
 21 
 21 
 21 
 21 
 23 
 21 
 XX 
 21 
 21 
 21 
 21 
 
 9.76290 
 9.76319 
 9.76348 
 
 9.76377 
 9.76406 
 
 0.23 710 
 0.23 68 1 
 0.23652 
 0.23623 
 o 23 594 
 
 9 93717 
 9 93 709 
 9.93702 
 
 9-93695 
 9-93687 
 
 9.93680 
 
 9 93673 
 9 93 66 J 
 9-93658 
 9 93 650 
 
 55 
 54 
 53 
 52 
 5" 
 60" 
 
 3 
 2 
 
 9.70115 
 9.70137 
 9.70159 
 9.70 180 
 9 . 70 202 
 
 9.76435 
 9.76464 
 9.76493 
 9.76522 
 9-7655I 
 
 0.23565 
 0.23536 
 0.23 507 
 0.23478 
 0.23449 
 
 9.70224 
 9.70245 
 9.70 267 
 9.70288 
 9.70310 
 
 9.76580 
 9.76609 
 9.76639 
 9.76668 
 9.76697 
 
 o . 23 420 
 0.23391 
 0.23361 
 0.23332 
 0.23303 
 
 9-93643 
 9 93636 
 9 93 628 
 9-9362I 
 9.93614 
 
 45 
 44 
 43 
 42 
 
 4" 
 
 9-70332 
 9.70352 
 9.70375 
 9.70396 
 9.70418 
 
 9.76725 
 
 9-76 754 
 9-76783 
 9.76 812 
 9.76841 
 
 0.23275 
 0.23 246 
 0.23217 
 0.23 188 
 0.23 159 
 
 9.93606 
 9-93599 
 9-9359" 
 9 93 584 
 9 93577 
 
 40 
 
 3 
 
 1 
 
 35 
 34 
 33 
 32 
 
 i 
 
 I 
 
 s 
 2 
 
 29 
 
 31 
 32 
 
 33 
 
 Jl_ 
 
 $ 
 
 12 
 
 39 
 
 4i 
 42 
 43 
 
 1 44 
 
 9.70439 
 9.70461 
 9.70482 
 9.70504 
 9-70525 
 
 9.76870 
 9.76899 
 9.76928 
 
 9.76957 
 9.76986 
 
 0.23 130 
 0.23 101 
 0.23072 
 0.23043 
 0.23 014 
 
 9-93569 
 9 93562 
 9-93554 
 9-93547 
 9 93539 
 
 9-70547 
 9-70568 
 9.70590 
 9.70611 
 9-70633 
 
 9.77015 
 
 9.77044 
 9.77073 
 9.77 101 
 9.77130 
 
 0.22985 
 
 0.22 956 
 0.22 927 
 . 22 899 
 0.22 870 
 
 9-93532 
 9-935 2 5 
 9-93 5"7 
 9-93510 
 9-93 502 
 
 9.70654 
 9.70675 
 9.70697 
 9.70718 
 9-70739 
 
 9.77159 
 9.77188 
 9.77217 
 9.77246 
 9.77274 
 
 0.22 841 
 0.22 8l2 
 0.22 783 
 
 0.22 754 
 
 0.22 726 
 
 9-93495 
 9 93487 
 9-9348o 
 9-93472 
 9 93465 
 
 25 
 24 
 
 23 
 
 22 
 21 
 
 w 
 
 19 
 
 ii 
 
 9.70761 
 9.70782 
 9.70803 
 9.70824 
 9 . 70 846 
 
 9.77303 
 9-77332 
 9.77361 
 
 9-77390 
 9.77418 
 
 0.22 697 
 . 22 668 
 O.22 639 
 O.22 6lO 
 0.22 582 
 
 9 93457 
 9 93450 
 9 93442 
 9 93435 
 9 93427 
 
 4 
 46 
 
 % 
 
 49 
 10" 
 
 5i 
 
 52 
 53 
 J 
 
 9 
 
 5 5 I 
 
 I 
 
 9.70 867 
 9.70888 
 9.70909 
 9.70931 
 9.70952 
 
 9-77447 
 9.77476 
 9- 7755 
 9-77533 
 9.77562 
 
 0.22 553 
 
 0.22 524 
 0.22495 
 0.22 467 
 0.22438 
 
 9.93420 
 9 93412 
 9 93405 
 9 93397 
 9 93390 
 
 15 
 14 
 
 "3 
 
 12 
 II 
 
 lo~ 
 
 1 
 
 5 
 4 
 3 
 
 2 
 I 
 
 ~0" 
 
 9-70973 
 9.70994 
 9.71 015 
 9.71036 
 9.71058 
 
 9-77591 
 9.77619 
 9-77648 
 9.77677 
 9.77706 
 
 . 22 409 
 22 381 
 0.22352 
 0.22 323 
 22 294 
 
 9 93382 
 9 93 375 
 9 93 367 
 9-93360 
 9 93 352 
 
 9.71 079 
 9.71 loo 
 
 9.71 121 
 9.71 142 
 
 9 7i I 6 3 
 
 9-77734 
 9-77 763 
 9.77791 
 9.77820 
 9.77849 
 
 0.22 266 
 0.22237 
 O.22 2O9 
 0.22 l80 
 0.22 151 
 
 9-93344 
 9 93337 
 9 933 2 9 
 9 93322 
 
 9 93314 
 
 9 71 184 
 
 9.77877 
 
 0.22 123 
 
 9 93 37 
 
 L. Cos. 
 
 d. 
 
 L. Cots 
 
 c.d, 
 
 L. Tang 
 
 L. Sin. 
 
 d. 
 
 / 
 
 Prop. Pts. 
 
 59 1 
 
LOGARITHMS OF SINE, COSINE, TANGENT AND COTANGENT, ETC. 6Y 
 
 
 31 
 
 
 / 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 d. 
 
 W 
 
 CQ 
 
 57 
 56 
 
 Prop. Pts. 
 
 
 I 
 
 2 
 
 3 
 4 
 
 9.71 184 
 9.71 205 
 9.71 226 
 9.71247 
 9.71 268 
 
 21 
 21 
 21 
 21 
 21 
 21 
 21 
 21 
 21 
 20 
 21 
 21 
 21 
 21 
 21 
 21 
 20 
 21 
 21 
 21 
 2O 
 21 
 
 si 
 
 91 
 2O 
 81 
 
 21 
 20 
 21 
 21 
 20 
 21 
 20 
 21 
 20 
 21 
 20 
 21 
 21 
 20 
 20 
 21 
 20 
 21 
 20 
 21 
 2O 
 2O 
 21 
 20 
 20 
 21 
 20 
 20 
 21 
 30 
 2O 
 M 
 90 
 30 
 
 9.77877 
 9.77906 
 
 9-7793? 
 9.77963 
 
 9-77992 
 
 29 
 29 
 28 
 29 
 28 
 
 0.22 123 
 0.22094 
 0.22065 
 0.22037 
 0.22008 
 
 9-93307 
 9.93299 
 
 9-93 291 
 9.93284 
 9.93276 
 
 8 
 
 8 
 
 7 
 8 
 
 7 
 
 8 
 8 
 
 7 
 8 
 8 
 
 7 
 8 
 8 
 7 
 8 
 
 8 
 
 7 
 8 
 8 
 7 
 8 
 8 
 7 
 8 
 8 
 
 7 
 8 
 8 
 8 
 7 
 8 
 8 
 8 
 
 7 
 8 
 g 
 
 8 ' 
 
 .1 
 
 .2 
 
 3 
 4 
 
 ii 
 
 9 
 .1 
 
 .2 
 3 
 
 :! 
 :J 
 
 9 
 .1 
 
 .2 
 
 3 
 4 
 
 ii 
 
 9 
 .1 
 
 .2 
 
 .3 
 
 4 
 
 ii 
 ii 
 
 9 
 .1 < 
 
 .2 ] 
 
 3 - 
 
 .4 : 
 
 :i ; 
 
 :i i 
 
 9 ; 
 
 39 
 
 S* 
 
 ,!:i 
 
 H-5 
 17 4 
 20.3 
 
 li.l 
 
 38 
 
 2.8 
 
 5.6 
 8.4 
 
 II. 2 
 
 14-0 
 
 16 8 
 19.6 
 22.4 
 25.2 
 
 ax 
 2.1 
 
 X 
 
 8-4 
 
 S:i 
 Z 
 
 18.9 
 20 
 
 2.O 
 
 4-0 
 6.0 
 
 8.0 
 
 IO.O 
 12. 
 14-0 
 
 16.0 
 180 
 
 8 7 
 
 ).8 0.7 
 1.6 1.4 
 
 J.4 2.1 
 J.2 2.8 
 
 ^o 3-5 
 k8 4-2 
 ;.6 4.0 
 
 )-4 5- 6 
 
 r 2 63 
 
 1 
 
 I 
 
 9 
 
 9.71289 
 9.71310 
 9-7i33i 
 9-71352 
 9 7i 373 
 
 9 . 78 020 
 9.78049 
 9.78077 
 9.78 106 
 9.78135 
 
 29 
 28 
 29 
 
 29 
 28 
 
 0.21 980 
 0.21 951 
 0.21 923 
 0.21 894 
 0.21 865 
 
 9.93269 
 9.93261 
 
 9-93253 
 9-93246 
 9-93238 
 
 55 
 54 
 53 
 5 2 
 51 
 
 "50" 
 
 49 
 48 
 
 8 
 
 10 
 
 ii 
 
 12 
 '3 
 
 14 
 
 9.71393 
 9.71414 
 
 9-7i 435 
 9-71 45 6 
 9.71 477 
 
 9-78163 
 9.78192 
 9 . 78 220 
 9.78249 
 9.78277 
 
 29 
 28 
 29 
 28 
 29 
 28 
 29 
 28 
 28 
 29 
 
 38 
 
 29 
 
 98 
 
 29 
 
 38 
 
 28 
 29 
 28 
 29 
 28 
 28 
 29 
 28 
 28 
 29 
 28 
 28 
 29 
 28 
 28 
 28 
 29 
 28 
 28 
 28 
 29 
 28 
 28 
 28 
 28 
 29 
 28 
 28 
 28 
 28 
 28 
 39 
 28 
 28 
 28 
 
 0.21 837 
 0.21 808 
 0.21 780 
 0.21 751 
 0.21 723 
 
 9.93230 
 9.93223 
 9-932I5 
 9-93207 
 9-93200 
 
 11 
 
 II 
 
 19 
 
 9.71 498 
 9.7i 5*9 
 9-71 539 
 9.71 560 
 9.71 581 
 
 9.78306 
 9-78334 
 9-78363 
 9.78391 
 9.78419 
 
 0.21 694 
 
 0.21 666 
 
 0.21 637 
 O.2I 609 
 
 0.21 581 
 
 9-93 192 
 9-93 l8 4 
 9-93 177 
 9-93 169 
 9.93 161 
 
 45 
 
 44 
 43 
 42 
 
 * 
 
 9 
 
 11 
 
 20 
 
 21 
 22 
 23 
 
 24 
 
 9.71 602 
 9.71 622 
 9-71 643 
 9.71664 
 9.71 685 
 
 9.78448 
 9-78476 
 9-78505 
 9.78533 
 9-78562 
 
 0.21 552 
 O.2I 524 
 
 0.21 495 
 
 0.21 467 
 0.21 438 
 
 9 93 154 
 9-93 H6 
 9-93 138 
 9 93 131 
 9 93 123 
 
 3 
 
 27 
 28 
 
 3 
 
 3i 
 32 
 33 
 
 34 
 
 9.71 705 
 9.71 726 
 9.71 747 
 9.71 767 
 9.71 788 
 
 9.78590 
 9.78618 
 9.78647 
 9.78675 
 9.78 704 
 
 0.21 410 
 O.2I 382 
 0-21353 
 0.21325 
 0.21 296 
 
 9-93 "5 
 9.93 1 08 
 9.93 loo 
 9.93092 
 9.93084 
 
 35 
 34 
 33 
 32 
 
 * 
 
 % 
 2 
 
 25 
 24 
 
 23 
 
 22 
 21 
 
 ~w 
 
 19 
 18 
 
 \l 
 
 9.71 809 
 9.71 829 
 9-71850 
 9.71 870 
 9.71 891 
 
 9-78732 
 9.78760 
 
 9-78789 
 9-73817 
 9-78845 
 
 0.21 268 
 0.21 240 
 O.2I 211 
 O.2I 183 
 0.21 155 
 
 9.93077 
 9.93069 
 9.93061 
 
 9.93053 
 9.93046 
 
 9 
 
 II 
 
 39 
 
 9.71 911 
 9.71932 
 9.71952 
 9-7i 973 
 9.71994 
 
 9-78874 
 9.78902 
 9.78930 
 9-78959 
 9-78987 
 
 0.21 126 
 0.21 098 
 0.21 07O 
 O.2I 041 
 0.21 013 
 
 9-93038 
 9.93030 
 9.93022 
 9.93014 
 9.93007 
 
 40 
 
 4i 
 42 
 43 
 44 
 
 9.72014 
 9.72034 
 9.72055 
 9.72075 
 9.72096 
 
 9.79015 
 
 9-79043 
 9.79072 
 9.79 loo 
 9.79 128 
 
 0.20985 
 0.20957 
 0.20928 
 O.2O 9OO 
 0.2072 
 
 9.92999 
 9.92991 
 9.92983 
 9-92976 
 9 . 92 968 
 
 S 
 S 
 
 49 
 
 9.72 116 
 9.72 137 
 9.72 157 
 
 9.72177 
 9.72 198 
 
 9-79I56 
 9-79 185 
 9-792I3 
 9.79241 
 9.79269 
 
 o . 20 844 
 
 0.20815 
 0.20 787 
 0.20759 
 
 o 20 731 
 
 9 . 92 960 
 9.92952 
 9.92944 
 9.92936 
 9.92929 
 
 15 
 14 
 J 3 
 
 12 
 II 
 
 ICT 
 
 z 
 
 50 
 
 5i 
 52 
 53 
 
 54 
 
 9.72 218 
 9.72238 
 9.72259 
 9.72279 
 9-72299 
 
 9-79297 
 9.79326 
 
 9-79354 
 9.79382 
 9.79410 
 
 0.20 703 
 O.2O 674 
 . 2O 646 
 O.206l8 
 0.20 590 
 
 9.92921 
 9.92913 
 9.92905 
 9.92 897 
 9.92 889 
 
 55 
 56 
 
 9 
 
 59 
 
 9.72320 
 9.72340 
 9.72360 
 9.72381 
 9.72401 
 
 9-79438 
 9-79466 
 9-79495 
 9.795 2 3 
 9-79551 
 
 0.20 562 
 0.20534 
 0.20 505 
 0.20477 
 0.20449 
 
 9.92881 
 9.92874 
 9.92866 
 9-92858 
 9.92 850 
 
 5 
 4 
 3 
 
 2 
 I 
 
 ~0" 
 
 60 
 
 9.72421 
 
 9-79579 
 
 O.2O 421 
 
 9.92842 
 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. 
 
 c.d. 
 
 L. Tang. 
 
 L. Sin. 
 
 d. 
 
 / 
 
 Prop. Pts. 
 
 58 
 
TABLE IV. 
 
 
 
 
 
 
 32 
 
 
 
 
 
 
 
 
 9 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 d. 
 
 
 p 
 
 roi 
 
 ). ] 
 
 Pts. 
 
 
 
 I 
 
 2 
 
 3 
 4 
 
 9.72421 
 9.72441 
 9.72461 
 9.72482 
 9.72502 
 
 20 
 
 20 
 
 21 
 2O 
 
 20 
 
 9-79579 
 9.79607 
 
 9.79635 
 9.79663 
 9.79691 
 
 28 
 28 
 28 
 28 
 98 
 
 0.20421 
 0.20393 
 
 0.20 365 
 0.20337 
 0.20309 
 
 9.92842 
 9.92834 
 9.92 826 
 9.92818 
 9.92 810 
 
 8 
 8 
 8 
 8 
 
 GO 
 
 59 
 58 
 
 % 
 
 .1 
 
 2 
 
 z 
 2 
 
 9 
 
 38 
 2.8 
 
 <: 6 
 
 i 
 
 I 
 
 9 
 
 9.72522 
 9-72542 
 9-72562 
 9.72582 
 9 . 72 602 
 
 20 
 20 
 2O 
 2O 
 2O 
 
 9-79 719 
 9-79 747 
 9-79 776 
 9.79804 
 9-79832 
 
 28 
 29 
 28 
 28 
 28 
 
 O.2O 28l 
 0.20253 
 0.20224 
 0.20 196 
 
 0.20 168 
 
 9.92 803 
 
 9-92 795 
 9.92 787 
 
 9-92 779 
 9-92 77i 
 
 8 
 8 
 8 
 8 
 g 
 
 55 
 54 
 53 
 52 
 
 3 
 4 
 
 7 
 
 14 
 17 
 
 2C 
 
 5 
 -4 
 
 .T, 
 
 :> - u 
 8.4 
 
 II. 2 
 14-0 
 
 16.8 
 19.6 
 
 12 
 13 
 
 H 
 
 9.72622 
 
 9.72643 
 9-72663 
 9.72683 
 9-72703 
 
 21 
 2O 
 20 
 20 
 2O 
 
 9 . 79 860 
 9.79888 
 9.79916 
 
 9-79944 
 9.79972 
 
 28 
 28 
 28 
 28 
 28 
 
 0.20 140 
 0.20 112 
 0.20084 
 0.20056 
 0.20028 
 
 9-92 763 
 9.92755 
 9.92747 
 
 9-92 739 
 9.92 731 
 
 8 
 8 
 8 
 8 
 3 
 
 1 
 
 % 
 
 .8 
 9 
 
 % 
 
 .2 
 
 a 
 
 22.4 
 25.2 
 
 7 
 
 19 
 
 9.72723 
 
 9-7? 743 
 9.72763 
 9.72783 
 9.72803 
 
 20 
 20 
 20 
 20 
 2O 
 
 9.80000 
 9.80028 
 9 . 80 056 
 9.80084 
 
 9.80 112 
 
 28 
 28 
 28 
 28 
 28 
 
 0.20000 
 0.19972 
 0.19944 
 O.I9 916 
 0.19888 
 
 9.92 723 
 9.92 715 
 
 9 92 707 
 9.92699 
 9.92691 
 
 8 
 8 
 8 
 8 
 3 
 
 45 
 44 
 43 
 42 
 
 
 .1 
 .2 
 
 3 
 4 
 
 1 
 
 2 
 
 i 
 
 1C 
 
 7 
 
 .4 
 
 iis 
 
 20 
 
 21 
 22 
 23 
 
 24 
 
 9-72823 
 
 9-72843 
 9.72863 
 9-72883 
 9.72902 
 
 2O 
 20 
 20 
 19 
 
 9.80 140 
 9.80168 
 9-80 195 
 9.80223 
 9.80251 
 
 28 
 27 
 28 
 28 
 28 
 
 0.19 860 
 0.19832 
 0.19805 
 0.19777 
 
 o. 19 749 
 
 9.92 683 
 9.92675 
 9.92667 
 9.92659 
 9.92651 
 
 8 
 8 
 8 
 8 
 3 
 
 40 
 
 1 
 
 
 1 
 
 9 
 
 I* 
 
 2] 
 2; 
 
 *-9 
 1.6 
 
 t-3 
 
 27 
 28 
 
 29 
 
 9.72922 
 9-72942 
 9.72962 
 o . 72 982 
 9.73002 
 
 20 
 20 
 2O 
 2O 
 
 9.80279 
 9.80307 
 9.80335 
 9.80363 
 9.80391 
 
 28 
 28 
 28 
 28 
 28 
 
 0.19 721 
 0.19 693 
 0.19 665 
 0.19637 
 0.19 609 
 
 9-92643 
 9-92635 
 9.92627 
 9.92 619 
 9.92 611 
 
 8 
 8 
 8 
 8 
 3 
 
 35 
 34 
 33 
 32 
 
 .1 
 
 .2 
 
 3 
 
 4 
 
 -. 
 
 2 
 4 
 
 ( 
 
 J 
 
 II 
 !.I 
 
 I 2 
 
 H 
 
 30 
 2.0 
 4.0 
 
 6.0 
 8.0 
 
 30 
 
 32 
 33 
 34 
 
 9.73022 
 9.73041 
 9.73061 
 9.73081 
 9.73101 
 
 20 
 20 
 20 
 
 9.80419 
 9.80447 
 9.80474 
 
 9 . 80 502 
 9.80530 
 
 28 
 27 
 28 
 28 
 28 
 
 0.19581 
 
 0.19553 
 0.19 526 
 0.19498 
 0.19470 
 
 9.92603 
 
 9-92 595 
 9.92587 
 
 9-92579 
 9.92571 
 
 8 
 8 
 
 8 
 8 
 3 
 
 30 
 
 29 
 28 
 
 % 
 
 9 
 
 1C 
 
 i: 
 i, 
 K 
 I. 
 
 11 
 
 1-7 
 3.8 
 
 5-9 
 
 IO.O 
 12. 
 14.0 
 
 16.0 
 18.0 
 
 9 
 
 9 
 
 39 
 
 9.73121 
 9.73140 
 9-73 160 
 9.73180 
 9.73200 
 
 J 9 
 
 20 
 20 
 20 
 10 
 
 9.80558 
 9.80586 
 9.80614 
 9 . 80 642 
 9.80669 
 
 28 
 28 
 28 
 27 
 28 
 
 0.19 442 
 0.19414 
 0.19 386 
 0.19358 
 0.19331 
 
 9-92563 
 9-92555 
 9.92 546 
 
 9-92 538 
 9-92530 
 
 8 
 
 9 
 8 
 8 
 3 
 
 25 
 24 
 23 
 
 22 
 21 
 
 .2 
 
 
 [ . C 
 
 9 
 
 40 
 
 41 
 42 
 
 43 
 44 
 
 9.73219 
 9.73239 
 9-73259 
 9.73278 
 9.73298 
 
 20 
 20 
 
 20 
 
 9.80697 
 9-80725 
 ,9.80753 
 9.80 781 
 9.80808 
 
 28 
 28 
 28 
 27 
 28 
 
 0.19303 
 0.19275 
 0.19247 
 0.19 219 
 0.19 192 
 
 9.92522 
 9.92514 
 9-92506 
 9.92498 
 9-92490 
 
 8 
 8 
 8 
 8 
 3 
 
 20 
 
 19 
 18 
 
 17 
 16 
 
 3 
 
 7 
 
 i 
 
 i 
 
 \l 
 
 ?-5 
 i.4 
 
 3-3 
 
 1:1 
 
 4-5 
 54 
 6-3 
 
 49 
 
 9-733I8 
 9-73337 
 9-73357 
 9-73377 
 9 73396 
 
 19 
 20 
 20 
 
 '9 
 
 9.80836 
 9.80864 
 9.80892 
 9.80919 
 9.80947 
 
 28 
 28 
 27 
 28 
 28 
 
 o. 19 164 
 0.19 136 
 0.19 108 
 0.19081 
 0.19053 
 
 9.92482 
 
 9-92473 
 9.92465 
 
 9-92457 
 9.92449 
 
 9 
 
 8 
 8 
 8 
 3 
 
 15 
 14 
 13 
 
 12 
 II 
 
 .8 
 9 
 
 i 
 
 i 
 
 5-2 
 7-1 
 
 8 
 
 21 
 
 7 
 
 W 
 
 53 
 54 
 
 9-734i6 
 9-73435 
 9-73455 
 9-73474 
 9-73494 
 
 20 
 20 
 
 9.80975 
 9.81 003 
 9.81 030 
 9.81 058 
 9.81 086 
 
 28 
 27 
 28 
 28 
 
 0.19025 
 0.18997 
 o. 18 970 
 0.18 942 
 0.18 914 
 
 9.92441 
 
 9-92433 
 9.92425 
 9.92416 
 9 . 92 408 
 
 8 
 8 
 
 9 
 8 
 3 
 
 10 
 
 I 
 
 .1 
 
 .2 
 
 3 
 4 
 
 < 
 
 t 
 
 D.8 
 
 1.6 
 2.4 
 3-2 
 
 *-s 
 
 o-7 
 
 2.1 
 
 2.8 
 
 3-5 
 
 59 
 
 9 73513 
 9-73533 
 9 73552 
 9 73572 
 9 73591 
 
 2O 
 
 20 
 19 
 
 9.81 113 
 9.81 141 
 9.81 169 
 9.81 196 
 9!8i 224 
 
 28 
 28 
 27 
 28 
 28 
 
 0.18887 
 0.18859 
 0.18831 
 0.18804 
 o. 18 776 
 
 9.92 400 
 9.92 392 
 9.92384 
 
 9-92367 
 
 8 
 8 
 8 
 
 9 
 3 
 
 s 
 
 4 
 3 
 
 2 
 I 
 
 9 
 
 t 
 ( 
 
 \.t> 
 
 \\ 
 
 7-2 
 
 4.2 
 4-9 
 
 1.1 
 
 !()() 
 
 9 73 6n 
 
 
 9.81 252 
 
 
 0.18 748 
 
 9-92359 
 
 
 
 
 
 
 
 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. 
 
 c.d. 
 
 L. Tang. 
 
 L. Sin. 
 
 d. 
 
 f 
 
 1 
 
 To 
 
 1>. 
 
 Pte. 
 
 
 
 
 
 
 57 
 
 
 
 
 
 
 
 
LOGARITHMS OF SINE, COSINE, TANGENT AND COTANGENT, ETC. 
 
 33 
 
 / 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 d. 
 
 
 Prop. Pte. 
 
 
 
 I 
 
 2 
 
 3 
 4 
 
 9.73611 
 9.73630 
 
 9-73 6 50 
 9.73 669 
 9.73689 
 
 19 
 
 20 
 
 *9 
 
 30 
 19 
 
 '9 
 20 
 
 19 
 
 J 9 
 
 20 
 
 19 
 19 
 2O 
 
 19 
 
 *9 
 
 20 
 9 
 
 J 9 
 19 
 19 
 20 
 19 
 *9 
 J 9 
 J 9 
 20 
 9 
 9 
 >9 
 9 
 19 
 19 
 J 9 
 
 *9 
 
 X 9 
 19 
 19 
 9 
 i9 
 19 
 *9 
 *9 
 19 
 i9 
 *9 
 19 
 9 
 19 
 18 
 
 19 
 i> 
 19 
 19 
 19 
 18 
 
 19 
 19 
 19 
 18 
 
 *9 
 
 9.81 252 
 9.81 279 
 9.81 307 
 9-8i 335 
 9.81 362 
 
 7 
 28 
 28 
 27 
 28 
 28 
 27 
 28 
 27 
 28 
 
 0.18 748 
 0.18 721 
 0.18 693 
 0.18665 
 0.18638 
 
 9 92359 
 9-9235 1 
 9-92343 
 9-92335 
 9.92326 
 
 8 
 
 8 
 8 
 
 9 
 8 
 
 8 
 8 
 
 9 
 
 8 
 8 
 8 
 
 9 
 
 8 
 8 
 9 
 . 8 
 8 
 8 
 9 
 8 
 
 & 
 
 9 
 8 
 8 
 9 
 8 
 8 
 
 9 
 8 
 8 
 
 9 
 
 8 
 8 
 
 9 
 8 
 
 9 
 8 
 8 
 
 9 
 8 
 
 9 
 
 8 
 
 8 
 
 9 
 8 
 
 9 
 
 8 
 
 9 
 
 8 
 
 9 
 8 
 
 9 
 8 
 
 9 
 8 
 
 9 
 8 
 
 9 
 8 
 
 9 
 
 60 
 
 3 
 
 11 
 
 a 
 
 .1 2 
 
 I I 
 
 .4 II 
 
 5 H 
 .6 16 
 
 7 19 
 
 .8 22 
 
 9 25 
 .1 
 
 .2 
 
 3 
 
 :! 
 
 i 
 
 9 
 
 .1 
 
 .i 
 
 .3 
 .4 
 
 ;i 
 i 
 
 9 
 .1 
 
 2 
 
 3 
 
 :1 
 
 i 
 
 9 
 
 .1 C 
 .2 1 
 
 3 2 
 
 4 2 
 
 :l 1 
 
 7 * 
 
 :5 ^ 
 
 8 37 
 
 .8 2.7 
 .6 c.4 
 .4 8.1 
 
 .2 10.8 
 
 o J 3.5 
 .8 16.2 
 .6 18.9 
 .4 21.6 
 
 .2 24.3 
 
 90 
 2.O 
 
 1 
 
 6.0 
 8.0 
 
 IO.O 
 12. 
 14-0 
 IO.O 
 
 18.0 
 9 
 
 5:1 
 M 
 
 95 
 H.4 
 
 J3.3 
 15.2 
 17.1 
 
 it 
 
 1.8 
 36 
 
 5-4 
 7.2 
 
 9.o 
 10.8 
 
 12 6 
 
 14.4 
 
 16.2 
 
 9 
 
 >-9 0.8 
 .8 1.6 
 .7 2. 4 
 .6 3.2 
 5 4.o 
 4 4.8 
 3 5-6 
 .2 6.4 
 .1 72 
 
 I 
 
 I 
 
 9 
 
 9.73708 
 9.73727 
 
 9-73747 
 9.73766 
 
 9-73785 
 
 9-8i 390 
 9.81418 
 
 9.81445 
 9 8i473 
 9.81 500 
 
 0.18 610 
 0.18 582 
 
 0.18555 
 0.18 527 
 0.18 500 
 
 9.92318 
 9.92310 
 9.92302 
 9.92293 
 9-92285 
 
 55 
 54 
 53 
 52 
 5i 
 
 10 
 
 ii 
 
 12 
 13 
 
 14 
 
 9.73805 
 9.73824 
 9.73843 
 9.73863 
 9.73882 
 
 9.81 528 
 9 81 556 
 9.81 583 
 9.81 611 
 9.81 638 
 
 28 
 27 
 28 
 27 
 28 
 
 0.18472 
 0.18444 
 0.18417 
 0.18389 
 0.18 362 
 
 9.92277 
 9.92269 
 9.92 260 
 9 92252 
 9.92244 
 
 50 
 
 3 
 3 
 
 15 
 10 
 
 \l 
 
 19 
 
 ,20 
 
 21 
 22 
 
 23 
 
 24 
 
 9.73901 
 9.73921 
 9-73940 
 9 73959 
 9.73978 
 
 9.81 666 
 9.81 693 
 9.81 721 
 9.81 748 
 9.81 776 
 
 27 
 28 
 27 
 28 
 27 
 28 
 27 
 28 
 27 
 28 
 27 
 28 
 27 
 28 
 27 
 28 
 27 
 28 
 27 
 27 
 28 
 27 
 28 
 27 
 27 
 28 
 27 
 28 
 27 
 27 
 28 
 27 
 27 
 28 
 27 
 27 
 28 
 27 
 27 
 27 
 28 
 27 
 27 
 27 
 28 
 
 0.18334 
 0.18307 
 0.18 279 
 0.18252 
 0.18 224 
 
 9-92235 
 9.92227 
 9.92 219 
 
 9.92 211 
 9 . 92 202 
 
 45 
 44 
 43 
 42 
 41 
 40" 
 
 i 
 
 9-73997 
 9.74017 
 9.74036 
 
 9-74055 
 9.74074 
 
 9.81 803 
 9.81 831 
 9.81858 
 9.81 886 
 9.81913 
 
 0.18 197 
 0.18 169 
 0.18 142 
 0.18 114 
 
 0.18087 
 
 9.92 I 9 4 
 
 9.92 186 
 
 9-92 177 
 9.92 169 
 9.92 161 
 
 3 
 
 i 27 
 28 
 29 
 
 9-74093 
 9.74"3 
 9-74132 
 
 9-74 IS 1 
 9.74170 
 
 9.81941 
 9.81 968 
 9.81 996 
 9.82023 
 9.82051 
 
 0.18 059 
 0.18032 
 0.18004 
 
 0.17977 
 0.17949 
 
 9-92 152 
 9.92 144 
 9.92 136 
 9.92 127 
 9.92119 
 
 35 
 34 
 33 
 32 
 3 1 
 30 
 
 29 
 28 
 27 
 26 
 
 30 
 3 1 
 
 32 
 33 
 34 
 
 9.74189 
 9.74208 
 9.74227 
 9.74246 
 9.74265 
 
 9.82078 
 9.82 106 
 9.82 133 
 9.82 161 
 9.82 1 88 
 
 0.17922 
 
 0.17894 
 0.17867 
 0.17839 
 0.17 812 
 
 9.92 in 
 
 9.92 102 
 
 9 . 92 094 
 9 . 92 086 
 9.92077 
 
 9 
 
 i? 
 
 39 
 
 9.74284 
 
 9 -7433 
 9.74322 
 
 9-74341 
 9.74360 
 
 9.82 215 
 9.82243 
 9.82 270 
 9.82 298 
 9.82325 
 
 0.17785 
 0.17757 
 0.17730 
 0.17 702 
 0.17675 
 
 9.92069 
 9.92060 
 9-92052 
 9.92044 
 9-92035 
 
 25 
 24 
 23 
 
 22 
 21 
 
 W 
 
 il 
 
 40 
 
 4i 
 42 
 
 43 
 44 
 
 9-74379 
 9-74398 
 9.744I7 
 9.74436 
 9-74455 
 
 9.82352 
 9.82380 
 9.82407 
 
 9-82435 
 9 . 82 462 
 
 0.17 648 
 0.17 620 
 0.17593 
 0.17565 
 0.17538 
 
 9.92027 
 9.92 018 
 9.92010 
 9 . 92 002 
 9-91 993 
 
 3 
 
 s 
 
 49 
 
 9-74474 
 9-74493 
 9-74512 
 
 9-74531 
 9-74549 
 
 9.82489 
 9.82517 
 9.82544 
 9.82571 
 9.82599 
 
 0.17511 
 0.17483 
 0.17456 
 0.17429 
 0.17401 
 
 9.91 985 
 9.91 976 
 9.91 968 
 9-9i 959 
 9-9i 95i 
 
 15 
 H 
 13 
 
 12 
 II 
 
 50 
 
 5i 
 52 
 53 
 54 
 
 9.74568 
 
 9-74587 
 9.74606 
 9.74625 
 9.74644 
 
 9.82 626 
 9.82653 
 9.82681 
 9.82 708 
 9-82 735 
 
 0.17374 
 0.17347 
 0.17319 
 0.17 292 
 0.17265 
 
 9.91 942 
 
 9-9i 934 
 9.91 925 
 9.91 917 
 9.91 908 
 
 10 
 
 I 
 I 
 
 5 
 4 
 3 
 
 i 
 
 55 
 56 
 
 H 
 
 59 
 
 9.74662 
 9.74681 
 9.74700 
 9.74719 
 9-74737 
 
 9.82 762 
 9.82 790 
 9.82 817 
 9.82 844 
 9.82871 
 
 0.17238 
 
 0.17 210 
 0.17 183 
 O.I7I56 
 O.I7 129 
 
 9.91 900 
 9.91 891 
 
 9-91 f3 
 9.91 874 
 9.91 866 
 
 00 
 
 9-74756 
 
 9.82899 
 
 0.17 ioi 
 
 9-91 857 
 
 
 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. 
 
 c. d. 
 
 L. Tang. 
 
 L. Sin. 
 
 d. 
 
 / 
 
 Prop. Pts. 
 
 56 
 
TABLE IV. 
 
 
 
 
 
 
 34 
 
 
 
 
 
 
 
 / 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 d. 
 
 
 Pro] 
 
 0. 
 
 Pte. 
 
 
 I 
 
 2 
 
 3 
 
 4 
 
 9-74756 
 9-74775 
 9-74794 
 9.74812 
 9-74831 
 
 X 9 
 X 9 
 18 
 
 X 9 
 
 9.82899 
 9.82 926 
 
 9-82953 
 9.82980 
 9.83008 
 
 27 
 27 
 27 
 28 
 27 
 
 0.17 101 
 0.17074 
 0.17047 
 0.17 020 
 0.16992 
 
 9.91 857 
 9.91 849 
 9.91 840 
 9.91 832 
 9.91 823 
 
 8 
 
 9 
 8 
 
 9 
 
 8 
 
 58 
 
 11 
 
 g 
 
 .1 2 
 2 e 
 
 8 
 
 .8 
 6 
 
 27 
 2.7 
 
 r A 
 
 i 
 I 
 
 9 
 
 9.74850 J 
 9.74868 
 9-74887 
 9.74906 
 9.74924 
 
 18 
 X 9 
 X 9 
 18 
 to 
 
 9-83035 
 9.83062 
 9-83089 
 9-83117 
 9-83 144 
 
 27 
 27 
 28 
 27 
 27 
 
 0.16 965 
 0.16938 
 0.16911 
 0.16883 
 0.16856 
 
 9.91815 
 9.91 806 
 9.91 798 
 9.91 789 
 9.91 781 
 
 9 
 
 8 
 
 9 
 8 
 
 55 
 54 
 53 
 
 5i 
 
 3 8 
 .4 ii 
 
 5 14 
 .6 16 
 .7 19 
 
 4 
 
 .2 
 .0 
 
 .8 
 .6 
 
 11 
 
 10.8 
 13-5 
 
 16.2 
 
 18.9 
 
 10 
 ii 
 
 12 
 13 
 
 9-74943 
 9.74961 
 9.74980 
 
 9-74999 
 9.75017 
 
 18 
 
 X 9 
 x8 
 
 X 9 
 
 9-83 171 
 9.83 198 
 9-83225 
 9-83252 
 9.83280 
 
 27 
 27 
 27 
 28 
 27 
 
 0.16 829 
 0.16 802 
 0.16775 
 0.16 748 
 0.16 720 
 
 9.91 772 
 9-91 763 
 9-9i 755 
 9.91 746 
 9.91 738 
 
 9 
 
 9 
 8 
 
 9 
 8 
 
 50 
 
 8 
 3 
 
 .8 22 
 
 9 25 
 
 4 
 
 .2 
 i 
 
 21.6 
 
 24.3 
 
 (6 
 
 19 
 
 9-75036 
 9-75054 
 9.75073 
 9.75091 
 
 9 75 " 
 
 18 
 
 X 9 
 18 
 
 X 9 
 
 18 
 
 9-83307 
 9-83334 
 9-83361 
 9.83388 
 
 9-83415 
 
 27 
 27 
 
 27 
 
 0.16693 
 0.16666 
 0.16639 
 0.16 612 
 0.16 585 
 
 9.91 729 
 9.91 720 
 9.91 712 
 9.91 703 
 9.91 695 
 
 9 
 8 
 
 9 
 8 
 
 45 
 44 
 43 
 42 
 
 41 
 
 .1 
 
 .2 
 
 3 
 4 
 
 1 
 
 2 
 c 
 i 
 i 
 1C 
 
 i; 
 
 >..6 
 
 >-4 
 '6 
 
 20 
 
 21 
 22 
 23 
 
 24 
 
 9-75 128 
 9-75 147 
 9-75 165 
 9-75 184 
 9.75202 
 
 X 9 
 
 18 
 
 X 9 
 18 
 
 9.83442 
 9.83470 
 9-83497 
 9-83524 
 9-83551 
 
 28 
 
 2? 
 27 
 27 
 
 0.16 558 
 o. 16 530 
 0.16503 
 0.16476 
 o 16 449 
 
 9.91 686 
 9.91 677 
 9.91 669 
 9.91 660 
 9.91 651 
 
 9 
 
 9 
 
 8 
 
 9 
 9 
 
 40" 
 
 P 
 
 H 
 
 .0 
 9 
 
 ij 
 
 2< 
 
 2; 
 
 >- 6 
 
 $.2 
 
 >.8 
 M 
 
 29 
 
 9-75221 
 9.75239 
 9-75258 
 9-75276 
 9.75294 
 
 18 
 
 X 9 
 18 
 18 
 
 9.83578 
 9.83605 
 
 9-83659 
 9.83686 
 
 27 
 27 
 27 
 27 
 27 
 
 0.16422 
 0.16395 
 0.16368 
 0.16341 
 0.16 314 
 
 9.91 643 
 9.91 634 
 9.91 625 
 9.91617 
 9.91 608 
 
 9 
 
 9 
 8 
 
 9 
 
 35 
 34 
 33 
 32 
 
 .1 
 
 .2 
 
 -3 
 
 A 
 
 ' 1 
 
 [9 
 
 7 6 
 
 80 
 
 32 
 33 
 34 
 
 9-753I3 
 9-75.331 
 9-75350 
 9-75368 
 9 75386 
 
 18 
 
 X 9 
 18 
 18 
 
 ig 
 
 9-83 7i3 
 9.83 740 
 9-83 768 
 9-83 795 
 9.83822 
 
 27 
 28 
 2 7 
 27 
 27 
 
 0.16287 
 0.16260 
 0.16 232 
 0.16 205 
 0.16 178 
 
 9-9i 599 
 9-91 59i 
 9.91582 
 
 9.91573 
 9 -9i S 6 ? 
 
 9 
 8 
 9 
 9 
 8 
 
 30 
 
 27 
 26 
 
 9 
 
 ( 
 I 
 
 i; 
 
 i 
 
 i 
 
 >-5 
 1-4 
 5-3 
 
 5-2 
 
 7-1 
 
 P 
 
 3^ 
 39 
 
 9 75405 
 9-75423 
 9 75441 
 9-75459 
 9 75478 
 
 18 
 18 
 18 
 
 X 9 
 18 
 
 9-83849 
 9-83876 
 9-83903 
 9-83930 
 9.83957 
 
 27 
 27 
 
 2 7 
 
 27 
 
 0.16 151 
 0.16 124 
 0.16097 
 0.16 070 
 o. 16 043 
 
 9-91 556 
 91 547 
 
 9.91 530 
 9.91 521 
 
 9 
 9 
 8 
 
 9 
 
 25 
 24 
 
 23 
 
 22 
 21 
 
 .1 
 
 .2 
 
 
 IS 
 
 [.8 
 z.6 
 
 40 
 
 42 
 43 
 44 
 
 9-75496 
 9-755I4 
 9-75533 
 9-75551 
 9-75 569 
 
 18 
 
 18 
 18 
 
 18 
 
 9-83984 
 9.84 on 
 9.84038 
 9.84065 
 9 . 84 092 
 
 27 
 27 
 27 
 27 
 
 o. 16 016 
 0.15989 
 0.15 962 
 
 0.15935 
 0.15 908 
 
 9.91512 
 9.91 504 
 
 9-91 495 
 9.91 486 
 9.91 477 
 
 9 
 8 
 9 
 9 
 
 9 
 3 
 
 20 
 
 19 
 18 
 
 17 
 16 
 
 -3 
 
 4 
 
 i 
 
 K 
 
 I 
 
 5-4 
 7-2 
 ?-o 
 
 D.8 
 2.6 
 
 47 
 48 
 49 
 
 9-75587 
 9-75605 
 9 75 624 
 9.75642 
 9.75660 
 
 It 
 
 18 
 18 
 18 
 
 9.84 119 
 9 . 84 146 
 9.84173 
 9 . 84 200 
 
 9.84227 
 
 7 
 27 
 27 
 27 
 
 0.15881 
 0.15854 
 0.15 827 
 0.15 800 
 0.15 773 
 
 9.91 469 
 9.91 460 
 
 9-91 451 
 9.91 442 
 
 9-91433 
 
 9 
 9 
 
 9 
 
 9 
 8 
 
 15 
 14 
 13 
 
 12 
 II 
 
 9 
 
 9 
 
 8 
 
 50 
 
 5* 
 52 
 53 
 54 
 
 9.75696 
 9-757H 
 9-75733 
 9-75751 
 
 18 
 
 18 
 
 X 9 
 18 
 
 18 
 
 9.84254 
 9.84280 
 9.84307 
 
 9.84334 
 9.84361 
 
 27 
 27 
 27 
 
 0.15 746 
 o. 15 720 
 0.15 693 
 o.'is 666 
 0.15639 
 
 9.91 425 
 9.91 416 
 9.91407 
 9.91 398 
 9.91 389 
 
 9 
 9 
 9 
 
 9 
 8 
 
 10 
 
 I 
 
 .1 C 
 
 .2 1 
 
 3 '< 
 
 .4 : 
 
 5 4 
 
 > 9 
 
 .8 
 
 5-7 
 \-6 
 
 [5 
 
 0.8 i 
 i 6 
 2 4 
 3-3 
 
 11 
 
 56 
 59 
 
 9.75769 
 9.75787 
 9.75805 
 9-75823 
 9-75841 
 
 z8 
 18 
 x8 
 18 
 18 
 
 9.84388 
 9.84415 
 9.84442 
 9.84469 
 9.84496 
 
 27 
 27 
 27 
 
 0.15 612 
 0-15585 
 0.15558 
 O.I553I 
 0.15 504 
 
 9.91 381 
 9.91 372 
 9-91 363 
 9-91 354 
 9-91 345 
 
 9 
 9 
 9 
 9 
 
 5 
 
 4 
 3 
 
 2 
 
 '.7 * 
 
 :5 1 
 
 -4 
 >-3 
 
 r.2 
 
 ;.i 
 
 4 .S 
 
 I 6 
 6.4 
 
 7.2 
 
 60 
 
 9-75 859 
 
 
 9.84523 
 
 
 0.15477 
 
 9-9i S3 6 
 
 9 
 
 
 
 
 
 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. 
 
 c.d. 
 
 L. Tancr. 
 
 L. Sin. 
 
 d. 
 
 t 
 
 Pro 
 
 > 
 
 Pis. 
 
 
 
 
 
 
 55 
 
 
 
 
 
 
 
LOGARITHMS OF SINE, COSINE, TANGENT AND COTANGENT, ETC. 
 
 
 
 
 
 
 85 
 
 
 
 
 
 
 
 t 
 
 L. Sin. 
 
 <1. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 d. 
 
 
 Proj 
 
 .1 
 
 ?ts. 
 
 
 
 I 
 
 2 
 
 3 
 4 
 
 9-75859 
 9.75877 
 9.75895 
 9.75913 
 9-75931 
 
 18 
 It 
 
 18 
 
 18 
 18 
 
 9-84523 
 9-8455o 
 9.84576 
 9 . 84 603 
 9.84630 
 
 27 
 26 
 27 
 27 
 27 
 
 o.i5477 
 0.15450 
 0.15424 
 
 0.15397 
 0.15370 
 
 9-91 S3 6 
 9.91 328 
 9.91319 
 9.91 310 
 9.91 301 
 
 8 
 9 
 9 
 9 
 9 
 
 60 
 
 5 2 
 58 
 
 H 
 
 2 
 .1 2 
 .2 5 
 
 7 
 
 -7 
 4 
 
 26 
 2.6 
 
 C.2 
 
 I 
 
 I 
 
 9 
 
 9-75949 
 9.75967 
 9.75985 
 9/76003 
 9.76021 
 
 18 
 18 
 18 
 18 
 
 18 
 
 9-84657 
 9.84684 
 9.84711 
 9.84738 
 9.84764 
 
 27 
 27 
 27 
 26 
 27 
 
 0-15343 
 0.15 316 
 0.15 289 
 0.15 262 
 0.15 236 
 
 9.91 292 
 9.91 283 
 9.91 274 
 9.91 266 
 9.91 257 
 
 9 
 9 
 8 
 
 9 
 9 
 
 55 
 54 
 53 
 52 
 5i 
 
 3 8 
 .4 10 
 
 : 7 Is 
 
 .1 
 
 .8 
 
 5 
 
 .2 
 
 9 
 
 7.8 
 
 10.4 
 I 3 .0 
 
 i.6 
 18.2 
 
 10 
 ii 
 
 12 
 13 
 
 14 
 
 9.76039 
 9.76057 
 9.76075 
 9.76093 
 9 . 76 1 1 1 
 
 18 
 18 
 18 
 18 
 18 
 
 9.84791 
 9.84818 
 9.84845 
 9 . 84 872 
 9.84899 
 
 27 
 27 
 27 
 27 
 26 
 
 0.15 209 
 0.15 182 
 
 0-15 155 
 0.15 128 
 0.15 101 
 
 9.91 248 
 9.91 239 
 9.91 230 
 
 9.91 221 
 9.91 212 
 
 9 
 9 
 9 
 9 
 
 50 
 
 49 
 48 
 47 
 46 
 
 .8 21 
 
 9 24 
 
 .6 
 3 
 
 i 
 
 20.8 
 
 23 4 
 8 
 
 11 
 
 \l 
 
 19 
 
 9.76129 
 9.76146 
 9.76164 
 9.76 182 
 9 . 76 200 
 
 7 
 18 
 18 
 
 18 
 18 
 
 9.84925 
 9.84952 
 9.84979 
 9.85 006 
 9-85033 
 
 27 
 27 
 27 
 27 
 26 
 
 0-15075 
 0.15 048 
 
 0.15 021 
 0.14994 
 0.14967 
 
 9.91 203 
 9.91 194 
 9.91 185 
 9.91 176 
 9.91 167 
 
 9 
 9 
 9 
 9 
 
 45 
 44 
 43 
 42 
 
 4i 
 
 .1 
 
 .2 
 
 3 
 4 
 
 \ 
 
 1 
 
 t 
 < 
 
 .8 
 1-6 
 
 5-4 
 
 r-2 
 ) o 
 
 )O 
 
 20 
 
 21 
 22 
 
 23 
 
 24 
 
 9.76 218 
 
 9.76236 
 9-76253 
 9.76271 
 9.76289 
 
 18 
 
 7 
 
 18 
 18 
 
 18 
 
 9-85059 
 9.85086 
 
 9-85 "3 
 9.85 140 
 9.85 166 
 
 27 
 27 
 27 
 26 
 
 0.14941 
 O.I49I4 
 0.14887 
 0.14860 
 0.14834 
 
 9.91 158 
 9.91 149 
 9.91 141 
 9.91 I 3 2 
 9.91 123 
 
 9 
 8 
 
 9 
 9 
 
 40 
 
 li 
 II 
 
 i 
 
 9 
 
 i: 
 
 i. 
 K 
 
 .5 
 
 1.6 
 
 11 
 
 11 
 
 27 
 28 
 29 
 
 9.76307 
 9.76324 
 9.76342 
 9.76360 
 9.76378 
 
 7 
 
 18 
 
 18 
 
 18 
 
 9-85 193 
 
 9.85 220 
 
 9-85 247 
 
 9.85273 
 9.85300 
 
 27 
 27 
 26 
 
 27 
 
 0.14807 
 O.I4 780 
 
 0-14753 
 0.14727 
 0.14 700 
 
 9.91 114 
 9.91 IO5 
 
 9 91 096 
 9.91087 
 9.91 078 
 
 9 
 9 
 9 
 9 
 
 35 
 34 
 33 
 32 
 3i 
 
 .1 
 
 .2 
 
 3 
 
 A 
 
 
 t7 
 t-7 
 J-4 
 
 Ij 
 
 30 
 
 3i 
 
 32 
 33 
 34 
 
 9-76395 
 9.76413 
 9.76431 
 9.76448 
 
 9 . 76 466 
 
 18 
 18 
 17 
 18 
 18 
 
 9-85327 
 9-85354 
 9-85380 
 9.85407 
 9-85434 
 
 27 
 26 
 27 
 27 
 
 26 
 
 O.I4 673 
 0.14 646 
 0.14620 
 
 0.14593 
 0.14566 
 
 9.91069 
 9.91 060 
 9.91051 
 9.91042 
 9 91 033 
 
 9 
 
 9 
 9 
 9 
 
 30 
 
 2 2 | 
 11 
 
 1 
 
 i 
 
 9 
 
 i 
 i 
 i 
 i 
 
 *-5 
 
 D.2 
 
 1 1 
 
 36 
 
 5-3 
 
 9 
 9 
 
 39 
 
 9.76484 
 9.76501 
 9 76519 
 9.76537 
 9.76554 
 
 17 
 
 18 
 18 
 
 17 
 18 
 
 9.85460 
 9-85487 
 9-855I4 
 9.85540 
 
 9-85 567 
 
 27 
 27 
 26 
 27 
 
 0.14540 
 
 O.I45I3 
 0.14486 
 0.14460 
 0-14433 
 
 9.91023 
 9.91014 
 9.91 005 
 9.90996 
 9.90987 
 
 9 
 
 9 
 9 
 9 
 
 25 
 
 24 
 23 
 
 22 
 21 
 
 .1 
 
 .2 
 
 
 zo 
 
 I.O 
 
 2.O 
 
 40 
 
 41 
 42 
 43 
 44 
 
 9.76572 
 9.76590 
 9.76607 
 9-76625 
 9 . 76 642 
 
 18 
 
 7 
 
 18 
 
 *7 
 x8 
 
 9 85594 
 9.85 620 
 9.85647 
 9.85674 
 9.85 700 
 
 26 
 27 
 27 
 26 
 
 0.14406 
 0.14380 
 0-14353 
 
 o. 14 326 
 
 0.14300 
 
 9.90978 
 9.90969 
 9.90960 
 9.90951 
 9.90942 
 
 9 
 
 9 
 9 
 9 
 
 20 
 
 19 
 
 ii 
 
 3 
 -4 
 
 :i 
 
 .7 
 
 
 30 
 4.0 
 
 |-o 
 5.0 
 
 7.0 
 
 9 
 9 
 
 49 
 
 9.76 660 
 9.76677 
 9-76695 
 9.76712 
 9.76730 
 
 17 
 18 
 7 
 18 
 
 9.85 727 
 
 9-85 754 
 9.85 780 
 9-85807 
 9-85834 
 
 27 
 
 27 
 26 
 27 
 27 
 
 ofi 
 
 0.14273 
 0.14246 
 
 0.14220 
 
 0.14193 
 
 0.14 166 
 
 9 90933 
 9.90924 
 9.90915 
 9.90906 
 9 . 90 896 
 
 9 
 9 
 9 
 9 
 xo 
 
 15 
 14 
 13 
 
 12 
 II 
 
 .8 
 9 
 
 9 
 
 8.0 
 
 30 
 
 8 
 
 50 
 5i 
 
 52 
 53 
 
 _5!_ 
 
 9.76747 
 9.76765 
 9.76782 
 9.76800 
 9.76817 
 
 18 
 
 17 
 
 18 
 
 7 
 18 
 
 9.85860 
 9.85887 
 
 9-859I3 
 9.85940 
 9.85967 
 
 27 
 26 
 
 2 7 
 2 7 
 
 0.14 140 
 0.14113 
 0.14 087 
 0.14060 
 0.14033 
 
 9.90887 
 9.90878 
 9 . 90 869 
 9 . 90 860 
 9 . 90 85 1 
 
 9 
 9 
 9 
 9 
 9 
 
 10 
 
 I 
 
 .1 C 
 .2 1 
 
 3 2 
 4 2 
 
 '} A 
 
 >-9 
 
 'I 
 
 r-5 
 
 0.8 
 1.6 
 2.4 
 32 
 
 4 'S 
 
 55 
 56 
 
 12 
 
 59 
 
 9-76835 
 9-76852 
 9.76870 
 9.76887 
 9.76904 
 
 17 
 
 18 
 
 7 
 17 
 18 
 
 9 85993 
 9 . 86 020 
 9.86046 
 9.86073 
 9.86 loo 
 
 27 
 26 
 
 27 
 
 27 
 
 0.14007 
 0.13980 
 
 0-13954 
 0.13927 
 o 13 900 
 
 9.90842 
 9.90832 
 9.90823 
 9.90814 
 9 90805 
 
 9 
 xo 
 9 
 9 
 9 
 
 5 
 4 
 3 
 
 2 
 
 I 
 
 :? i 
 
 .8 I 
 
 . 9 i 
 
 4 
 3 
 
 .2 
 
 .1 
 
 4-8 
 56 
 6.4 
 
 7 2 
 
 GO 
 
 9.76922 
 
 
 9.86 126 
 
 
 o 13874 
 
 9 90796 
 
 9 
 
 
 
 
 
 
 
 L. Cos. 
 
 d. 
 
 L. Cotgr. 
 
 c.d. 
 
 L. Tang. 
 
 L. Sin. 
 
 d. 
 
 t 
 
 Pro] 
 
 > 
 
 Pfs. 
 
 
 
 
 
 
 54 
 
 
 
 
 
 
 
66 
 
 TABLE IV. 
 
 
 
 
 
 
 36 
 
 
 
 
 
 
 
 1 
 
 L. Sin. 
 
 (1. 
 
 L. Tang. 
 
 C.<1. 
 
 L. Cot!?. 
 
 L. Cos. 
 
 <1. 
 
 
 Pro] 
 
 >. 
 
 Pts. 
 
 
 
 I 
 
 2 
 
 3 
 4 
 
 9.76922 
 9 76939 
 9-76957 
 9.76974 
 9.76991 
 
 17 
 
 18 
 J7 
 7 
 
 18 
 
 9.86 126 
 9-86 153 
 9.86179 
 9.86206 
 9.86232 
 
 27 
 26 
 27 
 26 
 
 27 
 
 0.13874 
 0.13847 
 
 0.13 821 
 
 0.13794 
 
 0.13 768 
 
 9.90 796 
 9.90787 
 9.90777 
 9.90768 
 9.90 759 
 
 9 
 
 10 
 
 9 
 9 
 
 GO 
 
 3 
 
 11 
 
 3 
 I 2 
 2 C 
 
 7 
 
 7 
 
 | 
 
 26 
 
 2.6 
 
 IT 2 
 
 I 
 I 
 
 9 
 
 9.77009 
 9.77026 
 
 9-77043 
 9.77061 
 9.77078 
 
 17 
 17 
 
 18 
 
 7 
 17 
 
 9.86 259 
 9.86285 
 9.86312 
 9.86338 
 9.86365 
 
 26 
 2 7 
 96 
 27 
 27 
 
 o. 13 741 
 0.13 7i5 
 0.13688 
 0.13 662 
 0.13635 
 
 9.90750 
 9.90 741 
 9.90731 
 9.90 722 
 9.90 713 
 
 9 
 
 9 
 
 x> 
 
 9 
 9 
 
 55 
 54 
 53 
 52 
 5i 
 
 3 * 
 .4 ic 
 
 * \l 
 
 7 iS 
 
 .1 
 .8 
 5 
 
 .2 
 
 9 
 
 fl 
 
 10.4 
 
 ill 
 
 10 
 ii 
 
 12 
 13 
 
 '4 
 
 9-77095 
 9.772 
 9.77130 
 
 9-77 H7 
 9.77164 
 
 7 
 18 
 7 
 *7 
 *7 
 
 9 86392 
 9.86418 
 
 9.86445 
 9.86471 
 9.86498 
 
 26 
 27 
 26 
 27 
 26 
 
 0.13608 
 0.13582 
 
 0.13555 
 0.13529 
 0.13 502 
 
 9.90704 
 9-90694 
 9.90685 
 9.90 676 
 9.90667 
 
 9 
 
 10 
 
 9 
 9 
 9 
 
 50 
 
 3 
 % 
 
 .8 21 
 
 .9 24 
 
 .6 
 3 
 
 20.8 
 
 23.4 
 
 18 
 
 III 
 
 17 
 18 
 
 19 
 
 9.77181 
 9.77199 
 9.77216 
 
 9.77233 
 9-77250 
 
 18 
 17 
 7 
 17 
 18 
 
 9-86524 
 9.86551 
 9.86577 
 9.86603 
 9.86630 
 
 27 
 26 
 26 
 27 
 2<> 
 
 0.13476 
 0.13449 
 0.13423 
 0.13397 
 0.13370 
 
 9.90657 
 9.90648 
 9-90639 
 9.90630 
 9 . 90 620 
 
 9 
 9 
 9 
 
 10 
 
 45 
 44 
 43 
 42 
 41 
 
 .1 
 
 .2 
 
 3 
 4 
 
 I 
 
 I 
 >, 
 
 i 
 
 c 
 
 .8 
 1-6 
 
 !-4 
 r.2 
 ).o 
 
 
 
 20 
 
 21 
 22 
 23 
 24 
 
 9.77268 
 9.77285 
 9.77302 
 9-773I9 
 9-77336 
 
 17 
 7 
 17 
 7 
 17 
 
 9.86656 
 9.86683 
 9.86709 
 9-86 736 
 9.86 762 
 
 27 
 26 
 27 
 
 26 
 
 0.13344 
 0.13317 
 0.13291 
 0.13264 
 0.13 238 
 
 9.90611 
 9.90602 
 9.90592 
 9-90583 
 9-90574 
 
 9 
 
 9 
 xo 
 
 9 
 9 
 
 ~w 
 
 fs 
 
 11 
 
 .0 
 
 :l 
 
 9 
 
 K 
 
 Ii 
 1^ 
 
 I( 
 
 ).o 
 
 j.6 
 
 M 
 
 ) 2 
 
 2 
 3 
 
 29 
 
 9-77353 
 9-77370 
 9-77387 
 9.77405 
 9.77422 
 
 7 
 17 
 18 
 
 17 
 17 
 
 9.86789 
 9.86815 
 9.86842 
 9.86868 
 9.86894 
 
 26 
 27 
 26 
 26 
 
 0.13 211 
 0.13 185 
 0.13 158 
 O.I3I32 
 
 0.13 106 
 
 9-90565 
 9.90555 
 9.90546 
 9-90537 
 9.90527 
 
 9 
 
 10 
 
 9 
 9 
 xo 
 
 35 
 34 
 
 33 
 32 
 3i 
 
 .1 
 
 .2 
 3 
 
 ] 
 
 17 
 
 [-7 
 5-4 
 
 ij 
 
 30 
 
 3i 
 32 
 
 ! 33 
 
 1 34 
 
 9-77439 
 9-77456 
 9-77473 
 9.77490 
 
 9-77507 
 
 7 
 
 7 
 7 
 '7 
 
 17 
 
 9.86921 
 9.86947 
 9.86974 
 9.87000 
 9.87027 
 
 26 
 27 
 26 
 2 7 
 26 
 
 0.13079 
 0.13053 
 0.13026 
 0.13000 
 0.12973 
 
 9.90518 
 9.90509 
 
 9-90499 
 9.90490 
 9.90480 
 
 9 
 
 9 
 10 
 
 9 
 xo 
 
 80 
 
 1 
 
 :! 
 
 .9 
 
 ! 
 
 1C 
 
 i 
 
 ; 
 
 i 
 
 J-5 
 
 5.2 
 
 'i 
 
 j.6 
 53 
 
 !$ 
 12 
 
 39 
 
 9-77524 
 9-77541 
 9-77558 
 9-77575 
 9-77592 
 
 '7 
 7 
 7 
 17 
 17 
 
 9-87053 
 9.87079 
 9.87 106 
 
 9-87 132 
 9.87 158 
 
 26 
 27 
 26 
 26 
 
 0.12947 
 
 0.12 921 
 0.12894 
 0.12868 
 O.I2 842 
 
 9.90471 
 9.90462 
 9.90452 
 9-90443 
 9-90434 
 
 9 
 
 9 
 xo 
 
 9 
 9 
 
 25 
 24 
 23 
 
 22 
 21 
 
 .1 
 
 .2 
 
 
 16 
 
 [.6 
 
 i. 2 
 
 40 
 
 4i 
 42 
 
 43 
 
 44 
 
 9 . 77 609 
 9.77626 
 
 9-77643 
 9 77660 
 9.77677 
 
 17 
 17 
 i? 
 17 
 17 
 
 9-87 185 
 9.87211 
 9.87238 
 9.87264 
 9.87290 
 
 26 
 2 7 
 26 
 26 
 
 0.12 815 
 O.I2 789 
 O.I2 762 
 0.12 736 
 0.12 710 
 
 9.90424 
 9.90415 
 9.90405 
 9.90396 
 9.90386 
 
 9 
 
 xo 
 
 9 
 xo 
 
 20 
 
 19 
 
 il 
 
 3 
 
 4 
 
 :I 
 
 .7 
 
 * 
 i 
 
 ( 
 f 
 
 3 
 ;:o- 
 
 >.6 
 
 1.2 
 
 45 
 46 
 
 4 4 I 
 49 
 
 9.77694 
 9.77711 
 9.77728 
 
 9-77 744 
 9.77761 
 
 17 
 17 
 16 
 
 17 
 
 9.87317 
 
 9-87343 
 9.87369 
 9.87396 
 9.87422 
 
 26 
 26 
 2 7 
 26 
 26 
 
 0.12 683 
 0.12 657 
 0.12 631 
 0.12 604 
 0.12 578 
 
 9.90377 
 9.90368 
 9-90358 
 9-90349 
 9-90339 
 
 9 
 
 9 
 xo 
 
 9 
 xo 
 
 15 
 
 14 
 13 
 
 12 
 II 
 
 .8 
 9 
 
 i 
 
 u 
 i< 
 
 
 
 2.8 
 
 J-4 
 
 9 
 
 50 
 
 5i 
 
 5 2 
 53 
 54 
 
 9.77778 
 
 9-77795 
 9.77812 
 9-77829 
 9.77846 
 
 J7 
 7 
 17 
 '7 
 
 16 
 
 9.87448 
 
 9.87475 
 9-87501 
 9.87527 
 9.87554 
 
 27 
 26 
 26 
 27 
 26 
 
 0.12552 
 O.J2525 
 0.12499 
 0.12473 
 0.12446 
 
 9-90330 
 9.90320 
 9.90311 
 9.90301 
 9.90292 
 
 9 
 xo 
 
 9 
 xo 
 
 9 
 
 10 
 
 I 
 
 .1 i 
 
 .2 2 
 
 3 3 
 4 A 
 
 '? f 
 
 .0 
 .0 
 .0 
 .0 
 
 .0 
 
 ?:2 
 
 ai 
 
 4-5 
 
 11 
 
 11 
 
 59 
 
 9.77862 
 9.77879 
 9.77896 
 
 9.779I3 
 9.77930 
 
 '7 
 17 
 '7 
 '7 
 
 16 
 
 9.87580 
 9.87606 
 9-87633 
 9-87659 
 9.87685 
 
 26 
 2? 
 26 
 26 
 26 
 
 O. 12 42O 
 0.12394 
 0.12367 
 O.I234I 
 O.I23I5 
 
 9.90 282 
 9.90273 
 9 . 90 263 
 9.90254 
 9.90244 
 
 9 
 xo 
 
 9 
 xo 
 
 5 
 4 
 3 
 
 2 
 I 
 
 .6 c 
 
 :l I 
 
 9 9 
 
 .0 
 .0 
 .0 
 .0 
 
 1.1 
 
 C 
 
 00 
 
 9.77946 
 
 
 9.87711 
 
 
 0.12 289 
 
 9-90235 
 
 9 
 
 
 
 
 
 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. 
 
 c.d. 
 
 L. Tang. 
 
 L. Sin. 
 
 d. 
 
 9 
 
 Pro] 
 
 ). . 
 
 Pts. 
 
 
 
 
 
 
 53 
 
 
 
 
 
 
 
LOGARITHMS OF SINE, COSINE, TANGENT AND COTANGENT, ETC. 67 
 
 1 37 
 
 t 
 
 1 Sin. 
 
 d. 
 
 L. Tang 1 . 
 
 c.d. 
 
 L. Cotg-. 
 
 L. Cos. 
 
 d. 
 
 6JT 
 
 Prop. Pts. 
 
 
 
 I 
 
 2 
 
 3 
 
 4 
 
 9.77946 
 9.77963 
 9.77980 
 
 9-77997 
 9.78013 
 
 17 
 17 
 
 16 
 
 '7 
 
 16 
 17 
 7 
 16 
 
 7 
 
 17 
 7 
 16 
 
 16 
 7 
 17 
 16 
 
 7 
 
 16 
 
 17 
 16 
 
 17 
 16 
 
 16 
 17 
 16 
 17 
 16 
 16 
 7 
 16 
 7 
 
 16 
 i7 
 16 
 
 16 
 
 16 
 17 
 16 
 16 
 16 
 
 16 
 
 16 
 
 7 
 
 16 
 16 
 16 
 
 16 
 17 
 16 
 16 
 16 
 
 9.87711 
 9-87738 
 9-87764 
 9.87 790 
 
 9-87817 
 
 27 
 26 
 26 
 27 
 26 
 26 
 26 
 27 
 26 
 26 
 
 0.12 289 
 0.12 262 
 0.12 236 
 0.12 210 
 0.12 183 
 
 9-90235 
 9.90225 
 9.90 216 
 9.90206 
 9.90197 
 
 xo 
 
 9 
 xo 
 
 9 
 xo 
 
 9 
 xo 
 
 9 
 xo 
 xo 
 
 9 
 xo 
 
 9 
 xo 
 xo 
 
 9 
 xo 
 
 9 
 xo 
 xo 
 
 9 
 xo 
 xo 
 
 9 
 
 10 
 
 xo 
 
 9 
 xo 
 xo 
 9 
 xo 
 xo 
 
 9 
 xo 
 
 10 
 
 xo 
 
 .9 
 
 10 
 
 xo 
 xo 
 
 9 
 xo 
 
 10 
 
 xo 
 9 
 xo 
 
 IO 
 
 xo 
 xo 
 9 
 xo 
 
 10 
 
 xo 
 xo 
 xo 
 
 9 
 xo 
 xo 
 
 10 
 
 xo 
 
 .1 
 
 .2 
 
 3 
 4 
 
 i 
 :l 
 
 -9 
 .1 
 
 .2 
 
 3 
 
 4 
 
 4 
 
 .1 
 
 .2 
 
 3 
 4 
 
 :I 
 
 9 
 
 .2 
 
 3 
 
 4 
 
 '.S 
 9 
 
 .1 l 
 
 .2 i 
 
 3 : 
 
 4 4 
 
 V 
 
 91 * 
 
 7 
 
 2.7 
 
 H 
 
 10.8 
 
 '3-5 
 16.2 
 18.9 
 
 21.6 
 
 24.3 
 
 2.6 
 
 5-2 
 
 7.8 
 
 10.4 
 13.0 
 15.6 
 18.2 
 
 20.8 
 
 23 4 
 
 17 
 
 1-7 
 
 3-4 
 5.1 
 6.8 
 8-5 
 
 10.2 
 
 "I 
 
 13-6 
 15-3 
 
 16 
 1.6 
 
 |! 
 
 8.0 
 9-6 
 
 II. 2 
 
 12.8 
 
 14.4 
 
 to g 
 
 .0 0.9 
 
 5.0 1.8 
 
 5-0 2.7 
 [.o 3.6 
 >.o 4-5 
 >-o 5.41 
 r.o 6.3 
 5.0. 7.2 
 i.o[ 8.1 
 
 I 
 I 
 
 9 
 10 
 
 12 
 13 
 
 9.78030 
 
 9.78047 
 9-78063 
 9.78080 
 9.78097 
 
 9.87843 
 9.87869 
 9.87895 
 9.87922 
 9.87948 
 
 O.I2I57 
 0.12 131 
 0.12 ID? 
 0.12078 
 0.12052 
 
 9.90187 
 9.90 178 
 9.90 168 
 9-90 159 
 9-90 149 
 
 55 
 54 
 53 
 52 
 
 9.78113 
 9-78130 
 9.78147 
 9-78163 
 9.78 180 
 
 9.87974 
 9.88000 
 9.88027 
 9-88053 
 9.88079 
 
 26 
 27 
 
 26 
 26 
 
 0.12026 
 0.12000 
 
 O.II973 
 O.II947 
 
 o.ii 921 
 
 9.90139 
 9-90 13 
 
 9.90 120 
 9.90 III 
 
 9.90 ioi 
 
 50 
 
 4 2 
 4 8 
 
 ~iT 
 
 44 
 43 
 42 
 41 
 
 !i 
 \l 
 
 19 
 "20" 
 
 21 
 22 
 
 23 
 
 24 
 
 9.78197 
 9-78213 
 9.78230 
 9.78246 
 9.78263 
 
 9.88 105 
 9 .88 131 
 9.88 158 
 9.88 184 
 9.88210 
 
 26 
 
 8 7 
 
 26 
 26 
 26 
 26 
 27 
 26 
 26 
 26 
 26 
 27 
 
 26 
 26 
 26 
 26 
 26 
 27 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 27 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 27 
 26 
 26 
 
 26 
 26 
 26 
 26 
 26 
 
 o.ii 895 
 
 O.II 869 
 
 o.ii 842 
 o.ii 816 
 o.ii 790 
 
 9.90091 
 
 9.90 082 
 
 9.90072 
 9-90063 
 9-90053 
 
 9.78280 
 9.78296 
 
 9-78313 
 9.78329 
 9.78346 
 
 9.88236 
 9.88262 
 9.88289 
 9.88315 
 9.88341 
 
 o.ii 764 
 o.ii 738 
 o.ii 711 
 o.ii 685 
 o.ii 659 
 
 9.90043 
 9.90034 
 
 9 . 90 024 
 9.90014 
 9.90005 
 
 1 
 
 27 
 28 
 29 
 
 9.78362 
 9.78379 
 9-78395 
 9.78412 
 9.78428 
 
 9.88367 
 
 9.88393 
 9.88420 
 9.88446 
 9.88472 
 
 o.ii 633 
 o.ii 607 
 o.ii 580 
 o.ii 554 
 o.ii 528 
 
 9-89995 
 9.89 985 
 9.89976 
 9.89966 
 9.89956 
 
 35 
 34 
 33 
 32 
 3' 
 
 30 
 
 32 
 
 33 
 
 34 
 
 9.78445 
 9.78461 
 9.78478 
 
 9.78494 
 9.78510 
 
 9.88498 
 9.88524 
 9-88550 
 9.88577 
 9.88603 
 
 o.ii 502 
 o.ii 476 
 o.ii 450 
 o.ii 423 
 
 0.11397 
 
 9.89947 
 9-89937 
 
 9 '.899i8 
 9.89908 
 
 30 
 
 29 
 28 
 
 % 
 
 I 
 
 39 
 
 41 
 42 
 43 
 
 44 
 
 9.78527 
 
 9.78543 
 9-78560 
 
 9-78592 
 
 9.88629 
 9-88655 
 9.88681 
 9.88707 
 9-88 733 
 
 o.ii 371 
 o.ii 345 
 o.ii 319 
 o.ii 293 
 o.ii 267 
 
 9.89898 
 9.89888 
 9.89879 
 9.89869 
 9-89859 
 
 25 
 24 
 
 23 
 
 22 
 21 
 
 "20" 
 
 |2 
 
 9.78609 
 9-78625 
 9 . 78 642 
 9.78658 
 9-78674 
 
 9-88 759 
 9.88 786 
 9.88812 
 9.88838 
 9.88864 
 
 o.ii 241 
 o.ii 214 
 o.ii 188 
 o.ii 162 
 o.ii 136 
 
 9.89849 
 9.89840 
 9.89830 
 9 . 89 820 
 9.89810 
 
 47 
 48 
 
 49 
 
 9.78691 
 9.78 707 
 9.78723 
 
 9.88.890 
 9.88916 
 9.88942 
 9.88968 
 9.88994 
 
 O.II IIO 
 
 o.ii 084 
 o.ii 058 
 o.ii 032 
 
 O.II 006 
 
 9.89801 
 9.89 791 
 9.89 781 
 9.89 771 
 9.89 761 
 
 15 
 14 
 13 
 
 12 
 II 
 
 lo~ 
 
 I 
 I 
 
 50 
 
 52 
 53 
 54 
 
 9.78772 
 9.78788 
 9-78805 
 9.78821 
 9.78837 
 
 9.89020 
 9.89046 
 9.89073 
 9.89099 
 9-89 125 
 
 0.10980 
 0.10954 
 o.io 927 
 0.10901 
 0.10875 
 
 9.89 752 
 9.89 742 
 9.89732 
 9.89 722 
 9.89 712 
 
 1 
 
 58 
 59 
 
 9-78853 
 9.78869 
 9.78886 
 9.78902 
 9.78918 
 
 9.89 151 
 9.89 177 
 9.89203 
 9 . 89 229 
 9-8925? 
 
 0.10849 
 0.10823 
 
 0.10797 
 
 o.io 771 
 
 0.10745 
 
 9.89 702 
 9.89693 
 9.89683 
 9.89673 
 9-89663 
 
 5 
 4 
 3 
 
 2 
 
 I 
 
 nr 
 
 GO 
 
 9-78934 
 
 9.89281 
 
 o.io 719 
 
 9 89653 
 
 
 L. Cos. 
 
 d. 
 
 L. Cotfir. 
 
 c.d. 
 
 L. Tang-. 
 
 L. Sin. 
 
 d. 
 
 t 
 
 Prop. Pts. 
 
 52 
 
68 
 
 TABLE IV. 
 
 
 
 
 
 
 38 
 
 
 
 
 
 
 
 
 1 
 
 L. Sin. 
 
 d. 
 
 L. Tanar. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 d. 
 
 
 r 
 
 ro] 
 
 ). 
 
 Pts. 
 
 
 
 2 
 
 3 
 4 
 
 9-7*934 
 9.78950 
 9.78967 
 9.78983 
 9.78999 
 
 16 
 
 17 
 
 16 
 16 
 16 
 
 9.89281 
 9-89307 
 9.89333 
 9-89359 
 9-89385 
 
 26 
 26 
 26 
 26 
 26 
 
 o.io 719 
 0.10693 
 0.10667 
 0.10641 
 0.10615 
 
 9-89653 
 9.89643 
 
 9-89633 
 9 . 89 624 
 9.89 614 
 
 xo 
 xo 
 xo 
 xc 
 xo 
 
 00 
 
 9 
 
 11 
 
 .1 
 
 2 
 
 2 
 
 2 
 e 
 
 6 
 .6 
 
 2 
 
 25 
 
 2-5 
 e o 1 
 
 I 
 i 
 
 9 
 
 9.79015 
 9.79031 
 9.79047 
 9.79063 
 9.79079 
 
 16 
 *6 
 16 
 16 
 
 16 
 
 9.89411 
 
 9.89437 
 9.89463 
 
 9.89489 
 9-89515 
 
 76 
 26 
 26 
 26 
 26 
 
 0.10589 
 o.io 563 
 
 0.10537 
 
 o.io 511 
 0.10485 
 
 9.89604 
 9.89594 
 9-89584 
 9-89574 
 9.89564 
 
 xo 
 xo 
 xo 
 xo 
 
 55 
 54 
 53 
 
 52 
 51 
 
 .3 
 
 :S 
 
 .7 
 
 7 
 
 10 
 
 13 
 
 ;i 
 
 .8 
 -4 
 
 .0 
 
 .6 
 
 .2 
 
 75 
 
 10. 
 
 12.5 
 15.0 
 
 ^S i 
 
 10 
 
 ii 
 
 12 
 13 
 H 
 
 9-7995 
 9.79111 
 9.79128 
 9.79 144 
 9.79160 
 
 16 
 
 17 
 16 
 16 
 16 
 
 9.89541 
 9.89567 
 
 9.89593 
 9.89619 
 9.89645 
 
 26 
 26 
 26 
 26 
 26 
 
 0.10459 
 0.10433 
 
 0.10407 
 0.10381 
 
 0.10355 
 
 9-89554 
 9.89544 
 9.89534 
 9.89524 
 9.89514 
 
 xo 
 xo 
 xo 
 xo 
 
 50 
 
 3 
 
 8 
 
 .8 
 9 
 
 20 
 23 
 
 .8 
 4 
 
 i 
 
 20. o 
 22.5 
 
 7 
 
 it 
 
 \l 
 
 19 
 
 9.79176 
 9.79192 
 9 . 79 208 
 9.79224 
 9.79240 
 
 16 
 16 
 16 
 16 
 
 16 
 
 9.89671 
 9.89697 
 9.89723 
 9.89749 
 9.89775 
 
 26 
 26 
 26 
 26 
 26 
 
 0.10329 
 0.10303 
 
 0.10277 
 0.10251 
 0.10225 
 
 9.89504 
 9-89495 
 9.89485 
 9-89475 
 9.89465 
 
 9 
 xo 
 xo 
 xo 
 
 45 
 44 
 43 
 
 42 
 41 
 
 
 .1 
 .2 
 
 3 
 
 4 
 
 5 
 
 i 
 
 i 
 
 ! 
 
 -7 
 
 1-4 
 
 si 
 
 .s 
 
 "20 
 
 21 
 22 
 
 23 
 24 
 
 9.79256 
 9.79272 
 9.79288 
 9-79304 
 9.79319 
 
 16 
 x6 
 x6 
 IS 
 
 16 
 
 9.89801 
 9.89827 
 9.89853 
 9-89879 
 9.89905 
 
 26 
 
 26 
 26 
 26 
 26 
 
 o.io 199 
 o.io 173 
 o.io 147 
 
 O.IO 121 
 
 0.10095 
 
 9-89455 
 9-89445 
 9-89435 
 9.89425 
 9.89415 
 
 xo 
 xo 
 xo 
 xo 
 
 40 
 
 It 
 
 9 
 
 
 :l 
 
 -9 
 
 I 
 
 i; 
 
 i. 
 
 [ -9 
 *-6 
 
 5-3 
 
 3 
 
 3 
 
 29 
 
 9-79335 
 9-79351 
 9.79367 
 
 9-79383 
 9-79399 
 
 16 
 16 
 16 
 16 
 x6 
 
 9.89931 
 
 9.89957 
 9,89983 
 9.90009 
 9-90035 
 
 26 
 26 
 26 
 26 
 26 
 
 0.10069 
 0.10043 
 0.10017 
 0.09991 
 0.09965 
 
 9.89405 
 9.89395 
 9-89385 
 9.89375 
 9.89364 
 
 IO 
 
 xo 
 xo 
 
 XI 
 
 35 
 34 
 33 
 
 32 
 31 
 
 .1 
 
 .2 
 
 3 
 
 .4 
 
 i 
 i 
 
 i 
 
 ^ 
 f 
 
 6 
 .6 
 
 3 
 
 > 4 
 
 15 
 '5 
 3-o 
 
 *j 
 
 30 
 
 3i 
 32 
 33 
 
 34 
 
 9-794I5 
 9-79431 
 9-79447 
 9-79463 
 9.79478 
 
 16 
 16 
 16 
 15 
 16 
 
 9.90061 
 
 9 . 90 086 
 
 9.90 112 
 
 9.90138 
 9.90 164 
 
 25 
 26 
 26 
 26 
 26 
 
 0.09 939 
 0.09 914 
 0.09 888 
 0.09 862 
 0.09 836 
 
 9.89354 
 9.89344 
 9.89334 
 9.89324 
 9.89314 
 
 xo 
 
 10 
 
 xo 
 
 IO 
 
 30 
 
 2! 
 
 11 
 
 1 
 i 
 
 .9 
 
 i 
 c 
 ii 
 
 12 
 It 
 
 1.0 
 
 ).6 
 
 .2 
 5.8 
 
 I--4 
 
 7-5 
 9.0 
 10.5 
 
 12. 
 
 '3 5 
 
 9 
 9 
 
 39 
 
 9-79494 
 9.79510 
 9.79526 
 9-79542 
 9-79558 
 
 16 
 16 
 16 
 16 
 
 9.90190 
 
 9.90216 
 9.90242 
 9.90268 
 9.90294 
 
 26 
 26 
 26 
 26 
 26 
 
 0.09810 
 0.09 784 
 0.09 758 
 0.09 732 
 0.09 706 
 
 9.89304 
 9.89294 
 9.89284 
 9.89274 
 9.89 264 
 
 xo 
 xo 
 
 10 
 
 xo 
 
 25 
 24 
 23 
 
 22 
 21 
 
 
 .1 
 
 .2 
 
 
 ii 
 
 [.i 
 
 2.2 
 
 40 
 
 4i 
 42 
 
 43 
 44 
 
 9-79573 
 9-79589 
 9-79605 
 9.79 621 
 9.79636 
 
 x6 
 16 
 16 
 IS 
 
 16 
 
 9.90320 
 9.90346 
 9.90371 
 9.90397 
 9.90423 
 
 26 
 25 
 26 
 26 
 26 
 
 0.09 680 
 0.09 654 
 0.09 629 
 o . 09 603 
 0.09577 
 
 9.89254 
 9.89244 
 
 9-89233 
 9.89223 
 9.89213 
 
 xo 
 
 XX 
 
 xo 
 xo 
 
 20 
 
 ii 
 
 
 3 
 4 
 
 7 
 
 i 
 
 ( 
 
 3-3 
 [>4 
 
 7-7 
 
 2 
 
 ;* 7 
 
 49 
 
 9.79652 
 9 79668 
 9.79684 
 9.79699 
 9-797I5 
 
 16 
 
 16 
 
 IS 
 
 16 
 
 16 
 
 9.90449 
 
 9-90475 
 9-90501 
 9.90527 
 
 9-90553 
 
 26 
 26 
 26 
 26 
 
 0.09551 
 0.09525 
 0.09499 
 0.09473 
 0.09447 
 
 9.89 203 
 
 9-89193 
 9.89 183 
 
 9-89 173 
 
 9.89 W2 
 
 zo 
 xo 
 xo 
 
 XX 
 
 15 
 14 
 13 
 
 12 
 
 II 
 
 
 .8 
 9 
 
 3 
 
 < 
 
 i 
 
 
 
 3.8 
 )-9 
 
 9 
 
 50 
 5i 
 52 
 53 
 
 54 
 
 9-79 73 1 
 9.79746 
 
 9-79 762 
 9.79778 
 9 79 793 
 
 IS 
 16 
 16 
 
 IS 
 
 16 
 
 9.90578 
 9.90604 
 9.90630 
 9.90656 
 9 . 90 682 
 
 26 
 26 
 26 
 26 
 26 
 
 0.09 422 
 0.09 396 
 0.09370 
 0.09344 
 0.09318 
 
 9 .8 9 I52 
 9.89142 
 9.89 132 
 9.89 122 
 9.89 112 
 
 xo 
 xo 
 xo 
 xo 
 
 10 
 
 I 
 I 
 
 .1 
 
 .2 
 
 3 
 4 
 
 ] 
 2 
 
 3 
 
 A 
 
 I 
 
 .0 
 
 .0 
 
 -o 
 
 .0 
 
 .0 
 
 0.9 
 
 ii 
 
 4-5 
 
 55 
 56 
 
 fi 
 
 59 
 
 9.79809 
 9-79825 
 9.79840 
 9.79856 
 9.79872 
 
 x6 
 15 
 x6 
 16 
 
 9 . 90 708 
 9-90734 
 9-90759 
 9.90 785 
 9.90 811 
 
 26 
 25 
 26 
 26 
 26 
 
 0.09 292 
 0.09 266 
 0.09 241 
 0.09 215 
 0.09 189 
 
 9.89 101 
 
 9.89 091 
 9.89081 
 9.89071 
 
 9 . 89 060 
 
 xo 
 
 10 
 
 xo 
 
 IX 
 
 5 
 4 
 3 
 
 2 
 
 I 
 
 :1 
 
 .9 
 
 I 
 
 9 
 
 .0 
 .0 
 .0 
 
 n 
 
 K 
 
 60 
 
 9.79887 
 
 
 9.90837 
 
 
 0.09 163 
 
 9 . 89 050 
 
 
 
 
 
 
 
 
 
 L. os. 
 
 d. 
 
 L. Cotg. 
 
 c.d. 
 
 L. Tang. 
 
 L. Sin. 
 
 d. 
 
 / 
 
 p 
 
 roj 
 
 ). 
 
 PtSr 
 
 
 
 
 
 
 51 
 
 
 
 
 
 
 
 
LOGARITHMS OF SINE, COSINE, TANGENT AND COTANGENT, ETC. 69 
 
 
 
 
 
 
 39 
 
 
 
 
 
 
 
 t 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 d. 
 
 
 Proj 
 
 .1 
 
 ts. 
 
 
 I 
 
 2 
 
 3 
 4 
 
 9.79887 
 
 9-79903 
 9.79918 
 
 9-79934 
 9-79950 
 
 16 
 
 15 
 16 
 16 
 15 
 
 9.90837 
 9.90863 
 9.90889 
 9.90914 
 9-90940 
 
 26 
 26 
 
 as 
 26 
 26 
 
 0.09 163 
 0.09 137 
 0.09 in 
 0.09 086 
 0.09060 
 
 9 . 89 050 
 9 . 89 040 
 9.89030 
 9.89020 
 9.89009 
 
 xo 
 
 IO 
 10 
 
 II 
 
 IO 
 
 00 
 
 ii 
 
 11 
 
 .1 
 
 .2 
 
 21 
 2 
 
 5 
 
 5 
 
 .6 
 
 .2 
 
 \ 
 
 I 
 
 9 
 
 9.79981 
 9.79996 
 9.80012 
 9.80027 
 
 16 
 IS 
 16 
 15 
 
 16 
 
 9.90966 
 9.90992 
 9.91 018 
 9.91 043 
 9.91069 
 
 26 
 26 
 as 
 26 
 26 
 
 0.09034 
 0.09 008 
 0.08982 
 0.08957 
 0.08931 
 
 9.88999 
 9.88989 
 9.88978 
 9.88968 
 9.88958 
 
 10 
 XI 
 
 xo 
 xo 
 xo 
 
 55 
 54 
 53 
 
 52 
 51 
 
 3 
 4 
 
 '7 
 
 7 
 
 10 
 
 13 
 
 !i 
 
 .8 
 
 4 
 
 .0 
 
 .6 
 
 .2 
 
 10" 
 ii 
 
 12 
 
 '3 
 
 14 
 
 9.80043 
 9.80058 
 9 . 80 074 
 9.80089 
 9.80 105 
 
 IS 
 
 16 
 
 IS 
 16 
 
 15 
 
 9.91095 
 
 9.91 121 
 9.91 147 
 9.91 172 
 9.91 198 
 
 26 
 26 
 
 26 
 26 
 
 0.08905 
 0.08879 
 0.08853 
 0.08828 
 0.08802 
 
 9.88948 
 
 9-88937 
 9.88927 
 
 9.88917 
 9.88906 
 
 XX 
 
 xo 
 
 IO 
 XX 
 
 xo 
 
 50 
 
 4 i 
 48 
 
 .8 
 9 
 
 20 
 
 23 
 
 a 
 
 .8 
 4 
 
 5 
 
 19 
 
 9.80 120 
 9.80 136 
 9.80151 
 9.80 166 
 9.80 182 
 
 16 
 IS 
 IS 
 
 16 
 
 15 
 
 9.91 22 4 
 
 9 9i 250 
 9.91 276 
 
 9-91 301 
 9.91 327 
 
 26 
 26 
 
 as 
 26 
 26 
 
 0.08 776 
 0.08 750 
 0.08 724 
 0.08 699 
 0.08673 
 
 9 . 88 896 
 9.88886 
 9.88875 
 9.88865 
 9.88855 
 
 IO 
 XX 
 
 xo 
 xo 
 
 jj 
 
 45 
 44 
 43 
 
 42 
 41 
 
 .1 
 
 .2 
 
 3 
 
 4 
 
 2 
 
 5 
 
 7 
 
 10 
 12 
 
 5 
 .0 
 
 5 
 .0 
 
 5 
 
 20 
 
 21 
 22 
 23 
 24 
 
 9.80 197 
 9.80213 
 9.80228 
 9.80244 
 9-80259 
 
 16 
 
 IS 
 16 
 
 9 9i 353 
 9-91 379 
 9.91404 
 9.91430 
 9.91 456 
 
 26 
 85 
 26 
 26 
 26 
 
 0.08 647 
 0.08 621 
 0.08 596 
 0.08 570 
 0.08544 
 
 9.88844 
 9-88834 
 9.88824 
 9.88813 
 9.88803 
 
 xo 
 
 IO 
 XX 
 IO 
 
 40 
 
 3 
 
 11 
 
 9 
 
 J 5 
 I? 
 2C 
 22 
 
 5 
 .0 
 
 -5 
 
 29 
 
 9.80274 
 9 . 80 290 
 9-80305 
 9.80320 
 9-86336 
 
 x6 
 15 
 IS 
 
 x6 
 
 9.91 482 
 9.91 507 
 9 9i 533 
 9-91 559 
 9 9i 585 
 
 as 
 26 
 26 
 26 
 
 0.08518 
 0.08493 
 0.08467 
 0.08441 
 0.08 415 
 
 9.88793 
 9.88782 
 9.88772 
 9.88 761 
 9.88751 
 
 XX 
 
 IO 
 IX 
 
 xo 
 
 35 
 34 
 33 
 
 32 
 31 
 
 .1 
 
 .2 
 
 3 
 
 A 
 
 1 
 1 
 
 3 
 
 i 
 
 6 
 .6 
 
 1:5 
 
 30 
 
 32 
 33 
 34 
 
 980351 
 
 9.80366 
 9.80382 
 9.80397 
 9.80412 
 
 IS 
 
 16 
 
 IS 
 IS 
 16 
 
 9.91 610 
 9.91 636 
 9.91 662 
 9.91 688 
 9.91 713 
 
 26 
 26 
 26 
 as 
 26 
 
 0.08 390 
 0.08 364 
 0.08 338 
 0.08 312 
 0.08287 
 
 9.88741 
 9 88730 
 9.88 720 
 9.88709 
 9.88699 
 
 IX 
 IO 
 IX 
 IO 
 
 30 
 
 i 
 
 I 
 
 .9 
 
 J 
 
 < 
 i] 
 i: 
 K 
 
 ! - 4 
 \l 
 
 .2 
 
 1.8 
 
 L-4 
 
 39 
 
 9.80428 
 9.80443 
 9-80458 
 9.80473 
 9.80489 
 
 IS 
 
 15 
 IS 
 
 16 
 
 9-9i 739 
 9.91 765 
 
 9 9i 791 
 9.91 816 
 9 91 842 
 
 26 
 26 
 as 
 26 
 26 
 
 0.08 261 
 0.08235 
 0.08 209 
 0.08 184 
 0.08 158 
 
 9.88688 
 9.88678 
 9.88668 
 9.88657 
 9.88647 
 
 xo 
 xo 
 II 
 
 IO 
 
 25 
 24 
 23 
 
 22 
 21 
 
 .1 
 
 .2 
 
 ] 
 
 <5 
 5 
 
 4i 
 42 
 
 43 
 
 44 
 
 9 . 80 504 
 9 80519 
 980534 
 9 80550 
 9 80565 
 
 IS 
 
 16 
 IS 
 
 9 91 868 
 9 91 893 
 9.91 919 
 
 9-9 945 
 9.91971 
 
 as 
 
 26 
 
 26 
 26 
 
 0.08 132 
 0.08 107 
 0.08081 
 0.08055 
 0.08 029 
 
 9.88636 
 9 . 88 626 
 9 88615 
 9.88605 
 9.88594 
 
 IO 
 
 II 
 
 10 
 
 II 
 
 20 
 
 il 
 
 3 
 4 
 
 7 
 
 i 
 ( 
 
 ( 
 
 1C 
 
 kS 
 
 ) O 
 
 r.5 
 
 ) o 
 >-5 
 
 s 
 
 49 
 
 9 . 80 580 
 9 80 595 
 9 80 610 
 9 80 625 
 9 80 641 
 
 15 
 
 '5 
 
 16 
 
 9.91 996 
 
 9 92 022 
 
 9 92 048 
 9 92073 
 9.92099 
 
 26 
 26 
 25 
 26 
 26 
 
 0.08004 
 o 07 978 
 o 07952 
 
 0.07927 
 
 0.07 901 
 
 9 88 584 
 988573 
 9.88563 
 9 88552 
 9-88542 
 
 II 
 
 IO 
 
 II 
 
 IO 
 
 15 
 14 
 
 13 
 
 12 
 
 II 
 
 .8 
 9 
 
 i: 
 
 i; 
 
 d 
 
 s.o 
 J 5 
 
 xo 
 
 50 
 
 52 
 53 
 54 
 
 9 80 656 
 9.80 671 
 9.80686 
 9.80 701 
 9.80 716 
 
 IS 
 
 15 
 
 IS 
 
 15 
 
 9.92 125 
 9-92150 
 9.92176 
 
 9 . 92 202 
 9.92227 
 
 85 
 
 26 
 26 
 
 as 
 06 
 
 0.07875 
 
 0.07 850 
 0.07 824 
 0.07 798 
 0.07 773 
 
 9.88531 
 9.88521 
 9.88510 
 
 9-88499 
 9.88489 
 
 xo 
 
 II 
 II 
 
 10 
 
 10 
 
 I 
 I 
 
 .1 1 
 .2 : 
 
 .3 : 
 
 .4 / 
 
 5 l 
 
 t.i 
 
 1.2 
 
 5-3 
 t-4 
 
 i-j 
 
 I.O 
 
 2.O 
 
 3-o 
 4.0 
 
 i- 
 
 55 
 56 
 
 59 
 
 9 80731 
 9 80 746 
 9 80 762 
 9.80777 
 9 . 80 792 
 
 15 
 
 16 
 IS 
 
 9.92279 
 9.92304 
 9.92330 
 9.92356 
 
 26 
 85 
 26 
 26 
 
 0.07 747 
 0.07 721 
 0.07696 
 0.07 670 
 0.07 644 
 
 Q 88 478 
 9 . 88 468 
 9.88457 
 9.88447 
 9.88436 
 
 10 
 XI 
 10 
 XX 
 
 5 
 4 
 3 
 
 2 
 
 I 
 
 .6 ( 
 
 :! i 
 
 9 S 
 
 >.t> 
 
 7 -7 
 5.8 
 
 >-9 
 
 6.0 
 7.0 
 8.0 
 9.0 
 
 (iO 
 
 9.80807 
 
 
 9.92381 
 
 2 S 
 
 0.07 619 
 
 9.88425 
 
 
 
 
 
 
 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. 
 
 c.d. 
 
 L. Tang. 
 
 L. Sin. 
 
 d. 
 
 t 
 
 Pro] 
 
 P.: 
 
 Pts. 
 
 
 
 
 
 
 50 
 
 
 
 
 
 
 
TABLE IV. 
 
 40 
 
 t 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 d. 
 
 
 Prop. Pte. 
 
 
 
 9.80807 
 
 
 9.92381 
 
 26 
 
 0.07619 
 
 9.88425 
 
 
 60 
 
 
 i 
 
 9.80822 
 
 
 9.92407 
 
 
 0.07 593 
 
 9.88415 
 
 
 59 
 
 
 2 
 
 9.80837 
 
 is 
 
 9-92433 
 
 
 0.07567 
 
 9.88404 
 
 
 58 
 
 
 36 
 
 3 
 
 9.80852 
 
 15 
 
 9.92458 
 
 25 
 26 
 
 0.07 542 
 
 9.88394 
 
 10 
 
 57 
 
 j 
 
 2 6 
 
 4 
 
 9.80867 
 
 
 9.92484 
 
 26 
 
 0.07 516 
 
 9.88383 
 
 M 
 
 56 
 
 .2 
 
 e.2 
 
 1 
 
 9.80882 
 9.80897 
 9.80912 
 9.80927 
 
 15 
 15 
 15 
 
 9.92 510 
 9-92535 
 9-92561 
 9.92587 
 
 25 
 26 
 26 
 
 0.07490 
 0.07465 
 0.07439 
 0.07413 
 
 9.88372 
 9.88362 
 
 9-88351 
 9.88340 
 
 10 
 
 II 
 II 
 
 55 
 54 
 53 
 
 S2 
 
 3 
 4 
 
 7-8 
 10.4 
 130 
 15.6 
 
 9 
 
 9.80942 
 
 15 
 
 9.92 612 
 
 25 
 26 
 
 0.07388 
 
 9.88330 
 
 II 
 
 
 7 
 
 lS.2 
 
 ii 
 
 12 
 
 9.80957 
 9.80972 
 9.80987 
 
 15 
 
 IS 
 
 9.92 638 
 9.92663 
 9.92 689 
 
 25 
 
 26 
 
 0.07362 
 0.07337 
 0.07311 
 
 9.88319 
 9.88308 
 9.88298 
 
 II 
 
 IO 
 
 50 
 
 49 
 48 
 
 .8 
 9 
 
 20.8 
 
 23-4 
 
 13 
 
 9.8l 002 
 
 15 
 
 9.92 715 
 
 20 
 
 0.07285 
 
 9.88287 
 
 
 47 
 
 
 14 
 
 9.8l 017 
 
 15 
 15 
 
 9-92 740 
 
 25 
 26 
 
 0.07260 
 
 9.88276 
 
 IO 
 
 46 
 
 
 5 
 
 !i 
 
 9.8l 032 
 9.8l 047 
 
 IS 
 
 9.92 766 
 9.92 792 
 
 26 
 
 0.07 234 
 0.07 208 
 
 9.88266 
 9.88255 
 
 XX 
 
 45 
 44 
 
 .1 
 
 .2 
 
 2.5 
 
 5-0 
 
 IS 
 
 9.81 061 
 9.81 076 
 
 14 
 IS 
 
 9.92817 
 9.92 843 
 
 25 
 26 
 
 0.07 183 
 0.07 157 
 
 9.88244 
 9-88234 
 
 to 
 
 43 
 42 
 
 3 
 4 
 
 7-5 
 
 IO.O 
 
 19 
 
 9.81 091 
 
 IS 
 15 
 
 9.92868 
 
 25 
 26 
 
 0.07 132 
 
 9.88223 
 
 I] 
 
 41 
 
 5 
 
 12.5 
 
 20 
 
 21 
 
 9.81 106 
 9.81 121 
 
 IS 
 
 9.92894 
 9.92 920 
 
 26 
 
 0.07 106 
 0.07080 
 
 9.88212 
 9.88201 
 
 XI 
 
 *9 
 
 i 
 
 17-5 
 20 o 
 
 22 
 
 9.81 136 
 
 *5 
 
 9 92945 
 
 25 
 
 ?f> 
 
 0.07055 
 
 9.88 191 
 
 
 38 
 
 o 
 
 22. C 
 
 23 
 
 24 
 
 9.81 151 
 9.81 166 
 
 IS 
 
 9.92971 
 9.02 996 
 
 25 
 26 
 
 0.07029 
 o . 07 004 
 
 9.88 180 
 9.88 169 
 
 II 
 
 11 
 
 
 11 
 
 9.81 180 
 9.81 195 
 
 
 9.93022 
 9.93048 
 
 26 
 
 0.06 978 
 0.06952 
 
 9.88 158 
 9 . 88 148 
 
 IO 
 
 35 
 34 
 
 
 * f 
 
 11 
 
 9.8l 210 
 9.81 225 
 
 15 
 IS 
 
 9-93073 
 9.93099 
 
 25 
 26 
 
 0.06927 
 0.06901 
 
 9.88137 
 9.88126 
 
 xr 
 
 33 
 32 
 
 .2 
 
 J 
 
 3-0 
 
 29 
 
 9.8l 240 
 
 15 
 
 9 93 124 
 
 25 
 26 
 
 0.06876 
 
 9.88 115 
 
 
 
 '. 
 .4 
 
 60 
 
 30 
 
 3' 
 32 
 
 9.8l 254 
 9.8l 269 
 9.8l 284 
 
 15 
 
 IS 
 
 9-93 ISO 
 9 93 175 
 
 9.93 2OI 
 
 25 
 26 
 
 0.06 850 
 0.06 825 
 0.06 799 
 
 9.88105 
 9.88094 
 9.88083 
 
 ii 
 
 IX 
 
 30 
 
 3 
 
 i 
 
 7-5 
 9.0 
 10.5 
 
 33 
 34 
 
 9.8l 299 
 9.8l 314 
 
 15 . 
 15 
 
 9-93227 
 9.93252 
 
 26 
 25 
 26 
 
 0.06 773 
 0.06 748 
 
 9.88072 
 9.88061 
 
 IX 
 
 10 
 
 2 
 
 9 
 
 12.0 
 135 
 
 P 
 8 
 
 9.81328 
 
 9-8i 343 
 9-8i 358 
 9.81 372 
 
 15 
 
 15 
 14 
 
 9.93278 
 9-93303 
 9-93329 
 
 9-93354 
 
 25 
 26 
 25 
 
 0.06 722 
 0.06 697 
 0.06 671 
 0.06 646 
 
 9.88051 
 9.88040 
 9 88 029 
 9.88018 
 
 XI 
 
 II 
 II 
 
 25 
 24 
 23 
 
 22 
 
 
 N 
 
 I A. 
 
 39 
 
 9.81387 
 
 15 
 
 9.9338o 
 
 26 
 
 0.06 620 
 
 9.88007 
 
 
 21 
 
 .2 
 
 I'i 
 
 40 
 
 9.81 402 
 
 
 9.93406 
 
 
 0.06 594 
 
 9.87996 
 
 
 20 
 
 3 
 
 4-2 
 
 41 
 
 9.81417 
 
 15 
 
 9-93431 
 
 25 
 
 0.06 569 
 
 9.87985 
 
 
 19 
 
 .4 
 
 5-6 
 
 42 
 
 9.81 431 
 
 14 
 
 9 93457 
 
 26 
 
 0.06 543 
 
 9 87975 
 
 
 18 
 
 
 7.0 
 
 43 
 44 
 
 9.81446 
 9.81 461 
 
 15 
 15 
 
 9.93482 
 9-93 5o8 
 
 25 
 26 
 
 0.06 518 
 0.06492 
 
 9.87964 
 9.87953 
 
 II 
 
 11 
 
 7 
 
 8.4 
 9.8 
 
 45 
 
 9 81475 
 
 
 9-93533 
 
 25 
 
 0.06467 
 
 9.87942 
 
 
 IS 
 
 .8 
 
 II. 2 
 
 46 
 
 9.81 490 
 9-8i 505 
 
 IS 
 
 15 
 
 9-93 559 
 9-93 584 
 
 26 
 25 
 
 0.06441 
 0.06416 
 
 9.87931 
 9.87920 
 
 II 
 
 14 
 13 
 
 9 
 
 12.6 
 
 48 
 
 9.81 519 
 
 14 
 
 9.93610 
 
 26 
 
 0.06390 
 
 9.87909 
 
 
 12 
 
 
 49 
 
 9 81 534 
 
 IS 
 
 9.93636 
 
 26 
 
 0.06 364 
 
 9.87898 
 
 
 II 
 
 IX 10 
 
 50 
 5 2 
 
 9.81 549 
 9-81563 
 9.81 578 
 
 14 
 15 
 
 9.93661 
 9-93687 
 9 93 7 12 
 
 25 
 26 
 25 
 
 0.06339 
 0.06313 
 0.06 288 
 
 9.87887 
 9.87877 
 9.87866 
 
 xo 
 II 
 
 10 
 
 .1 I.I I.O 
 .2 2.2 2.0 
 
 3 33 3-0 
 
 53 
 
 9.81 592 
 
 14 
 
 9-93 73 s 
 
 26 
 
 0.06 262 
 
 9-87855 
 
 IX 
 
 7 
 
 .4 4.4 4.0 
 
 54 
 
 9.81 607 
 
 15 
 
 9-93 763 
 
 25 
 
 0.06237 
 
 9.87844 
 
 
 6 
 
 -I n I'i 
 
 1 
 
 9.81 622 
 9.81 636 
 9.81 651 
 9.81 665 
 
 14 
 
 IS 
 
 14 
 
 9 93 789 
 9-93 814 
 9.93840 
 
 25 
 26 
 25 
 
 0.06211 
 0.06 186 
 0.06 160 
 0.06 135 
 
 9-87833 
 9.87822 
 9.87811 
 9.87800 
 
 XX 
 XX 
 
 XX 
 
 5 
 4 
 3 
 
 2 
 
 .6 6.6 6.0 
 
 1 11 I:S 
 
 9 9.9 9.0 
 
 59 
 
 9.81 680 
 
 15 
 
 9.93891 
 
 26 
 
 0.06 109 
 
 9.87789 
 
 XX 
 
 I 
 
 
 GO 
 
 9 81 694 
 
 
 9.93916 
 
 25 
 
 0.06084 
 
 9.87778 
 
 
 
 
 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. 
 
 c.d. 
 
 L. Tang. 
 
 L. Sin. 
 
 d. 
 
 t 
 
 Prop. Pts. 
 
 49 | 
 
LOGARITHMS OF SINE, COSINE, TANGENT AND COTANGENT, ETC. 7, 
 
 1 
 
 
 
 
 
 41 
 
 
 
 
 
 
 , 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. ' 
 
 d. 
 
 
 Proj 
 
 ). Pts. 
 
 ho" 
 
 2 
 
 * 
 
 9.81 694 
 9.81 709 
 9.81 723 
 9.81 738 
 9.81 752 
 
 s 
 
 14 
 15 
 14 
 
 15 
 
 9.93916 
 9-93942 
 9-93967 
 9-93 993 
 9.94018 
 
 26 
 25 
 26 
 
 25 
 26 
 
 0.06084 
 0.06058 
 0.06 033 
 0.06007 
 0.05 982 
 
 9.87778 
 9.87 767 
 9.87 756 
 9-87 745 
 9-87 734 
 
 IX 
 
 zz 
 
 ZI 
 IZ 
 ZI 
 
 60 
 
 9 
 9 
 
 .1 
 
 .2 
 
 a6 
 2.6 
 
 C.2 
 
 * 
 
 9 
 
 9 81 767 
 9.81 781 
 9 81 796 
 9.81 810 
 9.81825 
 
 14 
 15 
 14 
 
 15 
 
 14 
 
 9.94044 
 9.94069 
 
 9-94095 
 9.94 120 
 
 9-94 H6 
 
 25 
 26 
 25 
 26 
 25 
 
 0.05 956 
 0.05 931 
 0.05 905 
 0.05 880 
 0.05 854 
 
 9.87723 
 9 87 712 
 9.87 701 
 9.87690 
 9.87679 
 
 zz 
 zz 
 zz 
 zz 
 JI 
 
 55 
 54 
 53 
 
 52 
 51 
 
 3 
 
 :! 
 
 .7 
 
 7-8 
 10.4 
 13.0 
 15.6 
 18.2 
 
 10" 
 ii 
 
 1 I2 
 *3 
 14 
 
 9.81 839 
 9-81854 
 9.81868 
 9.81 882 
 9.81897 
 
 IS 
 14 
 14 
 15 
 14 
 
 9.94171 
 
 9-94 197 
 9.94222 
 9.94248 
 9-94273 
 
 26 
 
 25 
 26 
 25 
 26 
 
 0.05 829 
 0.05 803 
 0.05 778 
 0.05 752 
 0.05 727 
 
 9.87 668 
 9.87657 
 9.87646 
 
 9.f7635 
 9.87624 
 
 zz 
 zz 
 zz 
 zz 
 zz 
 
 50 
 
 9. 
 9. 
 
 .8 
 9 
 
 20.8 
 
 23.4 
 
 m 
 
 15 
 10 
 
 17 
 18 
 19 
 
 9.81 911 
 9.81 926 
 9.81 940 
 
 9 81955 
 9.81 969 
 
 S 
 H 
 
 15 
 14 
 
 14 
 
 9.94299 
 9-94324 
 9-94350 
 9 94375 
 9,94401 
 
 S 
 26 
 25 
 26 
 
 25 
 
 0.05 701 
 0.05 676 
 0.05 650 
 0.05 625 
 0.05 599 
 
 9-87613 
 9.87601 
 9.87590 
 9 87579 
 ,9-87568 
 
 12 
 
 zz 
 zz 
 
 ZI 
 
 II 
 
 45 
 44 
 43 
 
 42 
 41 
 
 .2 
 3 
 
 4 
 'I 
 
 2-5 
 
 5-o 
 7-5 
 
 IO.O 
 
 12 5 
 
 1C O 
 
 20 
 
 21 
 
 22 
 
 1 23 
 
 24 
 
 9 81 983 
 9.81 998 
 
 9.82 OI2 
 
 9 . 82 026 
 9.82 041 
 
 '5 
 M 
 14 
 S 
 14 
 
 9 94 426 
 9 94452 
 9-94477 
 9 94503 
 9.94528 
 
 26 
 25 
 26 
 25 
 26 
 
 0.05 574 
 0.05 548 
 0.05 523 
 0.05497 
 0.05472 
 
 9.87557 
 9.87546 
 
 9 87535 
 9.87524 
 
 9 87513 
 
 ZI 
 
 zz 
 zz 
 
 ZI 
 
 ia 
 
 40 
 
 37 
 
 36 
 
 i 
 
 9 
 
 5- 
 17-5 
 20. o 
 
 22.5 
 
 hs~ 
 
 26 
 
 h 
 
 \ 2 9 
 
 9.82055 
 9 82 069 
 9.82084 
 9.82098 
 
 9.82 112 
 
 14 
 IS 
 
 14 
 14 
 
 9-94 554 
 9-94579 
 9.94604 
 9 94630 
 9 94655 
 
 25 
 
 25 
 26 
 25 
 26 
 
 0.05 446 
 0.05421 
 0.05 396 
 0.05 370 
 0-05 345 
 
 9.87501 
 9.87490 
 9.87479 
 9.87468 
 9 87 457 
 
 tz 
 II 
 II 
 
 ZI 
 ZI 
 
 35 
 
 34 
 33 
 
 32 
 31 
 
 i 
 
 .2 
 
 3 
 .4, 
 
 5 
 
 "5 
 
 30 
 
 n 
 
 30 
 
 31 
 I 32 
 
 33 
 34 
 
 9.82 126 
 9.82 141 
 9-82 155 
 9.82 169 
 9.82 184 
 
 IS 
 14 
 4 
 S 
 
 9.94681 
 9.94706 
 9-94732 
 9-94757 
 9-94 783 
 
 25 
 
 26 
 25 
 26 
 25 
 
 0.05319 
 0.05 294 
 0.05 268 
 0.05 243 
 0.05 217 
 
 9 87446 
 9 87434 
 9.87423 
 9 87412 
 9.87401 
 
 IS 
 
 II 
 
 ZI 
 
 II 
 zz 
 
 30 
 
 2! 
 
 11 
 
 ii 
 
 :1 
 
 9 
 
 7.5 
 9 .o 
 
 lo-S 
 
 12. 
 '3-5 
 
 P 
 9 
 
 39 
 
 9.82 198 
 9 82 212 
 
 9 82 226 
 9 . 82 240 
 9 82255 
 
 14 
 M 
 4 
 IS 
 
 9.94808 
 9-94 834 
 9.948$9 
 9.94884 
 9.94910 
 
 26 
 25 
 S 
 26 
 
 o 05 192 
 0.05 166 
 o 05 141 
 o 05 116 
 o 05 090 
 
 9 87390 
 9.87378 
 9 87 367 
 9 87356 
 9 87345 
 
 13 
 
 zz 
 zz 
 
 ZI 
 ZI 
 
 25 
 24 
 23 
 
 22 
 21 
 
 .1 
 
 .2 
 
 14 
 
 ;i 
 
 40 
 
 41 
 42 
 43 
 44 
 
 9 82 269 
 9 82283 
 9 82297 
 9.82 311 
 9.82326 
 
 14 
 14 
 
 14 
 IS 
 
 9 94935 
 9.94961 
 9 94986 
 9.95012 
 9 95037 
 
 26 
 
 25 
 26 
 
 25 
 
 0.05 065 
 005039 
 0.05 014 
 o 04988 
 0.04963 
 
 9 87334 
 9.87322 
 9 87311 
 9.87300 
 9.87288 
 
 12 
 
 II 
 II 
 
 12 
 IZ 
 
 20 
 
 19 
 
 il 
 
 3 
 4 
 
 i 
 
 7 
 
 g 
 
 i;: 
 
 9.8 
 
 9 
 
 9- 
 
 49 
 
 9 82 340 
 9 82354 
 9.82 368 
 9.82382 
 9 82396 
 
 4 
 14 
 14 
 14 
 
 9.95062 
 995088 
 9 95 3 
 9 95 '39 
 9-95 164 
 
 26 
 25 
 
 26 
 25 
 
 26 
 
 o 04938 
 0.04912 
 0.04 887 
 
 0.04 861 
 o 04 836 
 
 9 87277 
 9 87266 
 9 87255 
 9 87 243 
 9.87232 
 
 zz 
 
 IZ 
 Z2 
 ZI 
 
 15 
 14 
 13 
 
 12 
 II 
 
 .8 
 9 
 
 i 
 
 II. 2 
 12.6 
 
 a II 
 
 150 
 
 5 1 
 52 
 
 53 
 
 54 
 
 9.82 410 
 9 82424 
 9.82439 
 9 82453 
 9.82467 
 
 14 
 
 s 
 
 14 
 
 4 
 
 9-95 !90 
 9-952I5 
 9-95 240 
 9-95 266 
 9-95 291 
 
 25 
 as 
 
 26 
 5 
 
 26 
 
 0.04 810 
 0.04 785 
 0.04 760 
 0.04 734 
 0.04 709 
 
 9.87 221 
 9.87209 
 9.87 I 9 8 
 9.87 187 
 
 9 87175 
 
 la 
 zz 
 zz 
 za 
 
 ff 
 
 10 
 
 6 
 
 .1 i 
 .2 s 
 3 c 
 
 4 4 
 
 .2 I.I 
 (.4 2.2 
 
 [6 3.3 
 
 ^8 4-4 
 
 >0 ii 
 
 56 
 
 19 
 
 59 
 
 9.82481 
 9.82495 
 9-82509 
 9-82523 
 9 82537 
 
 4 
 >4 
 14 
 4 
 14 
 
 9-953I7 
 9-95342 
 9-95 368 
 9-95393 
 9.95418 
 
 as 
 26 
 as 
 5 
 96 
 
 0.04683 
 0.04 658 
 0.04 632 
 o . 04 607 
 0.04 582 
 
 9.87 164 
 
 9-87153 
 9.87 141 
 
 9-87 130 
 9.87 119 
 
 XI 
 
 12 
 
 xz 
 11 
 
 5 
 4 
 
 3 
 
 2 
 I 
 
 Ii 
 
 9 
 
 r.2 6.6 
 
 U 7-7 
 > 6 8.8 
 >.8 9.9 
 
 
 9-82551 
 
 
 9-95444 
 
 
 0.04 556 
 
 9.87 107 
 
 
 
 
 
 
 1 
 
 L. Cos. 
 
 d. 
 
 L. Cotgr. 
 
 c.d. 
 
 L. Tang. 
 
 L. Sin. 
 
 d. 
 
 / 
 
 Pro] 
 
 p. Pts. 
 
 
 
 
 
 
 4:8 
 
 
 
 
 
 
2 
 
 
 
 
 
 LAKLZ, IV 
 
 
 
 
 
 
 
 
 
 
 
 
 42 
 
 
 
 
 
 
 
 / 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 d. 
 
 
 Pro] 
 
 ). ] 
 
 Pts. 
 
 
 
 I 
 
 2 
 
 3 
 4 
 
 9.82551 
 9.82565 
 9.82579 
 982593 
 9.82 607 
 
 14 
 14 
 14 
 14 
 
 9-95444 
 9 95469 
 9-95495 
 9-95 520 
 9-95 545 
 
 25 
 26 
 25 
 25 
 26 
 
 0.04556 
 0.04531 
 0.04505 
 0.04480 
 0.04455 
 
 9.87 107 
 9.87096 
 9-87085 
 9.87073 
 9.87062 
 
 ii 
 
 IX 
 12 
 II 
 
 60 
 
 5 2 
 58 
 
 8 
 
 2 
 
 a 
 
 2 
 
 i 
 .6 
 
 2 
 
 1 
 
 1 
 
 9 
 
 9.82 621 
 9-82635 
 9 . 82 649 
 9.82663 
 9.82677 
 
 4 
 14 
 14 
 4 
 14 
 
 9-95571 
 9-95 596 
 9-95 622 
 9-95 647 
 9-95 672 
 
 25 
 26 
 25 
 25 
 26 
 
 o 04 429 
 o 04 404 
 0.04 378 
 
 0.04353 
 
 o 04328 
 
 9.87 050 
 9.87039 
 9.87028 
 9.87 016 
 9 - 87 005 
 
 II 
 IX 
 12 
 II 
 12 
 
 55 
 54 
 53 
 52 
 5i 
 
 3 
 .4 
 
 :I 
 
 .7 
 
 7 
 
 1C 
 
 13 
 
 !! 
 
 .8 
 
 4 
 
 .0 
 
 .6 
 
 .2 
 
 10 
 
 ii 
 
 12 
 13 
 H 
 
 9.82 691 
 9.82 705 
 9.82 719 
 9-82 733 
 9-82747 
 
 H 
 14 
 J4 
 4 
 14 
 
 9.95698 
 9-95 723 
 9-95 748 
 9-95 774 
 9-95 799 
 
 25 
 25 
 26 
 25 
 36 
 
 o . 04 302 
 
 0.04277 
 0.04252 
 0.04 226 
 
 0.04 201 
 
 9.86993 
 9 . 86 982 
 9.86 970 
 9.86959 
 9.86947 
 
 II 
 l 
 IX 
 12 
 
 50 
 
 3 
 
 11 
 
 .8 
 9 
 
 2C 
 
 23 
 
 3 
 
 .8 
 4 
 
 5 
 
 II 
 \l 
 
 19 
 
 9.82 761 
 
 9-82775 
 9.82 788 
 9.82802 
 9.82816 
 
 4 
 
 13 
 14 
 14 
 1^ 
 
 9.95 825 
 9-95850 
 9-95875 
 9-95 901 
 9 95 926 
 
 25 
 25 
 26 
 25 
 26 
 
 0.04 175 
 0.04 150 
 0.04 125 
 0.04099 
 0.04074 
 
 9 . 86 936 
 9 . 86 924 
 9 86 913 
 9.86902 
 9.86890 
 
 12 
 XI 
 II 
 
 is 
 
 ii 
 
 45 
 44 
 43 
 42 
 
 41 
 
 .1 
 
 .2 
 
 3 
 4 
 
 J 
 
 2 
 
 5 
 5 
 
 1C 
 12 
 
 5 
 .0 
 
 '5 
 >.o 
 
 5 
 
 20 
 
 21 
 22 
 
 23 
 24 
 
 9.82830 
 9.82844 
 9.82858 
 9 . 82 872 
 9.82885 
 
 >4 
 4 
 14 
 3 
 14 
 
 9-95 952 
 9-95 977 
 9.96002 
 9 . 96 028 
 9-96053 
 
 25 
 95 
 
 6 
 *5 
 
 o 04 048 
 0.04023 
 0.03998 
 0.03 972 
 0.03947 
 
 9.86879 
 9.86867 
 9.86855 
 9.86844 
 9 . 86 832 
 
 13 
 12 
 XX 
 19 
 
 40 
 
 P 
 
 H 
 
 :i 
 
 9 
 
 i; 
 
 2C 
 22 
 
 O 
 
 r-5 
 
 5 O 
 
 '5 
 
 2 5 
 26 
 
 3 
 
 29 
 
 9.82899 
 9.82913 
 9.82927 
 9.82941 
 9 82955 
 
 4 
 14 
 
 14 
 H 
 13 
 
 9.96078 
 9.96 104 
 9.96 129 
 
 9.96 155 
 9.96 180 
 
 26 
 25 
 26 
 25 
 
 0.03 922 
 0.03 896 
 0.03871 
 0.03 845 
 
 o 03 820 
 
 9.86821 
 9.86 809 
 9.86 798 
 9.86786 
 9-86775 
 
 12 
 IX 
 12 
 XX 
 
 35 
 34 
 33 
 32 
 3i 
 
 .1 
 
 .2 
 
 3 
 
 A 
 
 1 
 1 
 
 t 
 
 14 
 
 1:1 
 H 
 
 80 
 
 3i 
 32 
 33 
 34 
 
 9.82968 
 9.82982 
 9.82996 
 9.83 oio 
 9.83023 
 
 14 
 14 
 14 
 3 
 14 
 
 9.96205 
 9.96231 
 9.96256 
 9.96 281 
 9.96 307 
 
 26 
 25 
 25 
 26 
 
 0.03 795 
 0.03 769 
 0.03 744 
 0.03 719 
 0.03693 
 
 9.86763 
 9.86752 
 9.86 740 
 9.86 728 
 9.86717 
 
 XX 
 12 
 12 
 XX 
 12 
 
 30 
 
 3 
 
 27 
 26 
 
 :i 
 :I 
 
 .9 
 
 I 
 ( 
 I 
 
 i: 
 
 ii: 
 
 >.i 
 
 [.2 
 2.6 
 
 9 
 
 9 
 
 39 
 
 9-83037 
 9.83051 
 9.8300? 
 9.83078 
 9.83092 
 
 4 
 14 
 13 
 14 
 14 
 
 9.96332 
 9 96357 
 9-96383 
 9 . 96 408 
 
 9-96433 
 
 25 
 26 
 25 
 25 
 26 
 
 0.03 668 
 0.03 643 
 0.03 617 
 0.03592 
 c 03 567 
 
 9.86705 
 9 . 86 694 
 9.86682 
 9.86670 
 9 86 659 
 
 XX 
 12 
 13 
 II 
 
 25 
 24 
 
 23 
 
 22 
 21 
 
 .1 
 
 .2 
 
 
 >3 
 
 1-3 
 
 2.6 
 
 40 
 
 41 
 42 
 
 43 
 
 44 
 
 9.83 106 
 
 9.83 I2O 
 
 9 83 133 
 9 83 147 
 9.83 161 
 
 14 
 
 13 
 14 
 4 
 *3 
 
 9-96459 
 9.96484 
 9-96510 
 
 9.96535 
 9.96560 
 
 25 
 26 
 25 
 25 
 26 
 
 0.03541 
 0.03 516 
 0.03490 
 0.03 465 
 0.03440 
 
 9 86647 
 9 86635 
 9 86 624 
 9.86612 
 9.86600 
 
 12 
 XI 
 12 
 12 
 
 20 
 
 19 
 
 ii 
 
 3 
 4 
 
 :! 
 
 7 
 
 
 3 9 
 
 1 
 
 M 
 
 4 S 
 <6 
 
 47 
 48 
 
 49 
 
 9-83 174 
 9.83 188 
 9 . 83 202 
 
 9 83215 
 9.83229 
 
 4 
 14 
 13 
 M 
 
 9.96586 
 9.96 61 1 
 9 . 96 636 
 9 . 96 662 
 9.96687 
 
 25 
 25 
 26 
 25 
 
 0.03 414 
 0.03389 
 0.03 364 
 0.03338 
 0.03313 
 
 9 86 589 
 9 86577 
 9 .86 565 
 9-86554 
 9.86542 
 
 12 
 12 
 II 
 12 
 
 15 
 14 
 13 
 
 12 
 II 
 
 .8 
 9 
 
 3 
 
 I 
 
 i 
 
 2 
 
 3-4 
 1.7 
 
 XI 
 
 60 
 
 5i 
 
 52 
 53 
 54 
 
 9.83 242 
 9 83256 
 9-83270 
 9.83283 
 9.83297 
 
 14 
 14 
 3 
 4 
 
 9.96 712 
 9.96738 
 9-96763 
 9.96 788 
 9.96 814 
 
 2 5 
 26 
 25 
 25 
 26 
 
 0.03 288 
 0.03 262 
 0.03 237 
 
 0.03 212 
 
 0.03 186 
 
 9.86530 
 9.86 518 
 9.86 507 
 9.86495 
 9.86483 
 
 12 
 II 
 12 
 12 
 
 10 
 
 I 
 
 .1 1 
 
 .2 2 
 -3 I 
 
 \ \ 
 
 .2 
 
 4 
 .6 
 
 ^s 
 
 >.o 
 
 I.I 
 
 2.2 
 
 3-3 
 4-4 
 5-5 
 
 fi 
 ? 
 
 59 
 
 9.83310 
 9 83324 
 983338 
 9-8335I 
 983365 
 
 14 
 14 
 13 
 14 
 
 9.96839 
 9.96864 
 9.96890 
 9.96915 
 9 9 6 940 
 
 25 
 
 25 
 26 
 25 
 
 25 
 
 0.03 161 
 o 03 136 
 0.03 no 
 0.03 085 
 o . 03 060 
 
 9.86472 
 9 . 86 460 
 9.86448 
 9.86436 
 9.86425 
 
 12 
 12 
 12 
 II 
 
 5 
 4 
 3 
 
 2 
 
 * t 
 
 .8 c, 
 9 ic 
 
 .2 
 
 -4 
 .6 
 >.S 
 
 o.o 
 
 Ii 
 
 9-9 
 
 60 
 
 9.83378 
 
 
 9.96 966 
 
 
 0.03034 
 
 9.86413 
 
 
 
 
 
 
 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. 
 
 c.d. 
 
 L. Tang. 
 
 L. Sin. 
 
 d. 
 
 / 
 
 Pro] 
 
 > 
 
 Pts. 
 
 
 
 
 
 
 47 
 
 
 
 
 
 
 
LOGARITHMS OF SINE, COSINE, TANGENT AND COTANGENT, ETC. 73 
 
 1 43 
 
 , 
 
 L. Sin. 
 
 d. 
 
 L. Tang. 
 
 c.d. 
 
 L. Cotg. 
 
 L. Cos. 
 
 d. 
 
 
 Prop. Pts. 
 
 
 
 i 
 
 2 
 
 3 
 4 
 
 9 83378 
 9-83392 
 9-83405 
 9.83419 
 
 9-83432 
 
 14 
 13 
 
 13 
 14 
 
 13 
 14 
 13 
 
 13 
 13 
 
 14 
 13 
 13 
 14 
 
 13 
 13 
 14 
 
 3 
 13 
 
 13 
 13 
 3 
 
 13 
 
 4 
 3 
 U 
 
 14 
 13 
 J3 
 13 
 13 
 
 13 
 13 
 '3 
 
 13 
 14 
 13 
 13 
 '3 
 13 
 13 
 
 9.96966 
 9.96991 
 9.97016 
 9.97042 
 9.97067 
 
 25 
 25 
 26 
 25 
 25 
 
 0.03034 
 0.03 009 
 
 O.02 984 
 O.O2 958 
 
 0.02 933 
 
 9-86413 
 9.86 401 
 9-86389 
 9-86377 
 9.86366 
 
 12 
 12 
 12 
 II 
 12 
 S3 
 S3 
 13 
 12 
 II 
 S3 
 12 
 13 
 12 
 13 
 12 
 S3 
 IS 
 S3 
 
 GO 
 
 ii 
 
 i 
 
 55 
 54 
 53 
 52 
 
 .1 
 
 .2 
 3 
 
 4 
 
 .1 
 
 :i 
 
 -9 
 .1 
 
 .2 
 3 
 4 
 
 :l 
 
 9 
 .1 
 
 .2 
 
 3 
 4 
 
 :I 
 
 9 
 .1 
 
 .2 
 
 3 
 
 4 
 
 i 
 
 9 
 .1 
 
 .2 1 
 
 -3 : 
 
 .4 < 
 
 ;! i 
 
 .9 ic 
 
 aff 
 2.6 
 
 w 
 
 10.4 
 
 111 
 
 18.2 
 
 20.8 
 
 23 4 
 
 25 
 5-0 
 7.5 
 
 10. 
 
 12.5 
 
 17^5 
 20. o 
 22.5 
 
 14 
 
 1:2 
 U 
 
 9-8 
 
 II. 2 
 12.6 
 
 13 
 
 39 
 
 7$ 
 
 9-1 
 10.4 
 11.7 
 
 13 II 
 
 [.2 I.I 
 Z.4 2.2 
 
 J-6 3-3 
 1-8 4-4 
 
 >- 5-5 
 7.2 6.6 
 
 !:* Ii 
 
 ).8 9.9 
 
 I 
 
 8 
 9 
 
 9.83446 
 9 83459 
 9.83473 
 9.83486 
 9.83500 
 
 9.97092 
 9-97 "8 
 9-97 143 
 9.97 168 
 
 9-97 193 
 
 26 
 25 
 25 
 25 
 26 
 
 25 
 
 25 
 26 
 25 
 25 
 26 
 25 
 25 
 26 
 25 
 
 25 
 26 
 25 
 25 
 25 
 26 
 25 
 25 
 26 
 25 
 
 25 
 26 
 25 
 25 
 25 
 
 26 
 25 
 25 
 26 
 
 25 
 
 25 
 26 
 25 
 25 
 25 
 26 
 25 
 25 
 26 
 25 
 25 
 25 
 26 
 
 25 
 25 
 26 
 25 
 
 5 
 
 25 
 26 
 
 o.o2"9o8 
 
 0.02 882 
 0.02 857 
 O.02 832 
 O.O2 807 
 
 9-86354 
 9-86342 
 9.86330 
 9.86318 
 9.86306 
 
 10 
 
 ii 
 
 12 
 13 
 H 
 
 9.83513 
 
 9.83540 
 9.83554 
 9-83567 
 
 9.97219 
 
 9-97244 
 9-97269 
 
 9.97320 
 
 0.02 781 
 O.02 756 
 0.02 731 
 0.02 705 
 0.02 680 
 
 9.86295 
 9.86283 
 9.86271 
 9-86259 
 9.86247 
 
 50 
 
 4 2 
 4 8 
 
 ii 
 
 1 L. 
 
 21 
 22 
 23 
 
 24 
 
 9.83581 
 
 9-83594 
 9.83608 
 9.83 621 
 9-83634 
 
 9-97345 
 9-97371 
 9.97396 
 9-97421 
 9-97447 
 
 0.02 655 
 O.02 629 
 O.O2 604 
 
 0.02 579 
 0.02 553 
 
 9.86235 
 9.86223 
 9.86211 
 9.86 200 
 9.86 188 
 
 45 
 44 
 43 
 42 
 
 9-83648 
 9.83661 
 9.83674 
 9.83688 
 9.83 701 
 
 9-97472 
 9-97497 
 
 9-97548 
 9-97573 
 
 O.O2 528 
 0.02 503 
 0.02477 
 0.02452 
 O.O2 427 
 
 9.86176 
 9.86 164 
 9.86 152 
 9.86 146 
 9.86 128 
 
 S3 
 S3 
 S3 
 S3 
 S3 
 13 
 13 
 S3 
 S3 
 S3 
 S3 
 S3 
 S3 
 12 
 S3 
 S3 
 13 
 S3 
 12 
 S3 
 S3 
 S3 
 12 
 12 
 12 
 13 
 
 13 
 12 
 S3 
 S3 
 S3 
 S3 
 S3 
 
 13 
 S3 
 
 S3 
 S3 
 S3 
 S3 
 
 40 
 
 39 
 38 
 
 37 
 
 Jl 
 35 
 34 
 33 
 32 
 
 ? 
 
 2 9 
 
 9.83715 
 9-83728 
 9.83741 
 9.83755 
 9-83 768 
 
 9-97 598 
 9-97624 
 9.97649 
 9.97674 
 9.97 700 
 
 O.O2 4O2 
 0.02376 
 0.02351 
 0.02 326 
 0.02 300 
 
 9.86 116 
 9.86 104 
 9.86092 
 9.86080 
 9.86068 
 
 3 
 
 32 
 i 33 
 34 
 
 9.83781 
 9 83 795 
 9.83808 
 9.83821 
 9-83834 
 
 9-97 725 
 9=97750 
 
 9-97 776 
 9.97801 
 9.97826 
 
 O.O2 275 
 0.02 2JJO 
 0.02 224 
 O.O2 199 
 0.02 174 
 
 9.86056 
 9.86044 
 9.86032 
 9.86020 
 9.86008 
 
 30 
 
 3 
 
 11 
 
 35 
 3 6 
 
 39 
 
 9.83848 
 983861 
 9.83874 
 9-83887 
 9.83901 
 
 9-97851 
 9.97877 
 9.97902 
 9.97927 
 9-97953 
 
 O.O2 149 
 0.02 123 
 0.02098 
 0.02073 
 0.02 047 
 
 9.85996 
 9.85984 
 9.85972 
 9.85960 
 9.85948 
 
 25 
 24 
 23 
 
 22 
 21 
 
 w 
 
 19 
 
 i! 
 
 40 
 
 42 
 
 43 
 44 
 
 45 
 46 
 
 i 48 
 
 1 49 
 
 9.83914 
 9.83927 
 9.83940 
 
 9 83954 
 9.83967 
 
 9-97978 
 9.98003 
 9.98029 
 9.98054 
 9-98079 
 
 O.O2 O22 
 
 o.oi 997 
 o.oi 971 
 o.oi 946 
 o.oi 921 
 
 9-85936 
 9.85924 
 9.85912 
 9.85 900 
 9.85888 
 
 9.83980 
 
 9.f3993 
 9 . 84 006 
 9 . 84 020 
 9 84 033 
 
 9.98 104 
 9-98 130 
 9-98155 
 9.98 180 
 9.98 206 
 
 o.oi 896 
 o.oi 870 
 o.oi 845 
 o.oi 820 
 o.oi 794 
 
 9.85876 
 9.85 864 
 9-85851 
 9-85839 
 9.85827 
 
 15 
 13 
 
 12 
 II 
 
 50 
 
 i 5 ' 
 
 1 53 
 1 54 
 
 9 84 046 
 9 84059 
 9 84072 
 9-8408$ 
 9 . 84 098 
 
 9-98231 
 9-98256 
 9.98281 
 9.98307 
 9-98332 
 
 o.oi 769 
 o.oi 744 
 o.oi 719 
 o.oi 693 
 o.oi 668 
 
 9.85815 
 9-85803 
 9.85 791 
 9-85 779 
 9-85 766 
 
 10 
 
 S 
 
 5 
 
 4 
 3 
 
 i 
 
 55 
 
 5 6 
 
 58 
 59 
 
 9.84 112 
 9.84 125 
 9.84138 
 9.84151 
 9.84 164 
 
 9 '.98 p| 
 9.98408 
 
 9.98458 
 
 o.oi 643 
 o.oi 617 
 o.oi 592 
 o.oi 567 
 o.oi 542 
 
 9-85 754 
 9-85742 
 9-85 730 
 9.85 718 
 9-85 7o6 
 
 9.84 177 
 
 9.98484 
 
 o.oi 516 
 
 9-85693 
 
 
 
 
 L. Cos. 
 
 d. 
 
 L. Cotsr. 
 
 c.d. 
 
 L. Tang. 
 
 L. Sin. 
 
 d. 
 
 f 
 
 Prop. Pts. 
 
 46 
 
TABLE IV. 
 
 
 
 
 
 
 
 44 
 
 
 
 
 
 
 t 
 
 L. Sin. 
 
 (!. 
 
 L. Tang. 
 
 e.d. 
 
 L. Cot. 
 
 L. Cos. 
 
 d. 
 
 
 Proi 
 
 ). Pts. 
 
 
 I 
 
 2 
 
 3 
 4 
 
 9.84 177 
 9.84 190 
 9-84203 
 
 9.84 210 
 9.84229 
 
 3 
 13 
 
 *3 
 3 
 
 9.98484 
 9.98509 
 
 9-98534 
 9.98 560 
 
 9-98585 
 
 25 
 25 
 26 
 25 
 
 o.oi 516 
 o.oi 491 
 
 O.OI 466 
 
 o.oi 440 
 o.oi 415 
 
 9-85693 
 9.85 68 1 
 9-85669 
 9-85657 
 9-85645 
 
 12 
 12 
 
 xa 
 
 12 
 
 (>0 
 
 9 
 
 11 
 
 ,i 
 
 26 
 
 2.6 
 1 2 
 
 I 
 I 
 
 9 
 
 9 . 84 242 
 9 84255 
 9 . 84 269 
 9 84282 
 9.84295 
 
 *3 
 4 
 >3 
 *3 
 
 9.98 610 
 9-98635 
 9.98661 
 9.98686 
 9.98711 
 
 25 
 26 
 25 
 25 
 26 
 
 o.oi 390 
 o.oi 365 
 o.oi 339 
 o.oi 314 
 o.oi 289 
 
 9.85632 
 9.85 620 
 9.85608 
 9.85596 
 9.85 583 
 
 12 
 12 
 12 
 3 
 
 55 
 54 
 53 
 52 
 5i 
 
 3 
 4 
 
 :I 
 
 .7 
 
 f: 
 
 10.4 
 13.0 
 15.6 
 18.2 
 
 10 
 
 ii 
 
 12 
 *3 
 
 H 
 
 9.84308 
 9.84321 
 9- ^4334 
 9.84347 
 9.84360 
 
 3 
 3 
 13 
 3 
 
 9.98737 
 9.98 762 
 
 9-98 787 
 9.98812 
 9.96838 
 
 25 
 25 
 s 
 26 
 
 o.oi 263 
 o.oi 238 
 o.ci 213 
 o.oi 188 
 o.oi 162 
 
 9.85571 
 9.85559 
 9-85 547 
 9.85534 
 9-85 522 
 
 12 
 12 
 
 13 
 12 
 
 50 
 
 49 
 48 
 
 47 
 46 
 
 .8 
 9 
 
 20.8 
 
 23.4 
 
 25 
 
 3- 
 
 !1 
 
 19 
 
 9.84373 
 9.84385 
 9.84398 
 9.84411 
 9.84424 
 
 12 
 
 3 
 
 3 
 13 
 
 9.98863 
 9.98808 
 9.98913 
 
 9 9*939 
 
 9.98964 
 
 25 
 25 
 26 
 25 
 
 o.oi 137 
 
 O.OI 112 
 
 o.oi 087 
 o.oi obi 
 o.oi 036 
 
 9.85 510 
 
 9.85497 
 9.85485 
 
 9-85473 
 9.85460 
 
 3 
 12 
 12 
 3 
 
 45 
 44 
 43 
 42 
 41 
 
 .1 
 
 .2 
 
 3 
 4 
 
 I 
 
 2.5 
 
 5-0 
 7-5 
 
 10. 
 
 12.5 
 
 20 
 
 21 
 
 22 
 23 
 24 
 
 9-84437 
 9.84450 
 9.84463 
 9.84476 
 9.84489 
 
 3 
 3 
 J3 
 13 
 
 9.98989 
 9.99015 
 9.99040 
 9.99065 
 9.99090 
 
 26 
 25 
 25 
 25 
 26 
 
 O.OI Oil 
 
 0.00985 
 o.oo 960 
 
 0.00935 
 
 0.00910 
 
 9-85448 
 9-85436 
 9-85423 
 9.85411 
 
 9.85399 
 
 12 
 
 '3 
 
 12 
 12 
 
 40 
 
 I 
 
 .0 
 
 :1 
 
 9 
 
 I S 
 
 17-5 
 
 20.0 
 22.5 
 
 S 
 
 27 
 28 
 29 
 
 9-8450^ 
 9.84515 
 9-84528 
 9.84540 
 
 9.84553 
 
 13 
 *3 
 
 12 
 13 
 
 9.99 116 
 
 9-99 HI 
 9.99 166 
 
 9-99 191 
 9.99217 
 
 25 
 25 
 
 85 
 
 26 
 
 0.00884 
 0.00859 
 o.oo 834 
 0.00809 
 o.oo 783 
 
 9-85386 
 9-85374 
 9-85361 
 9 85349 
 9-85337 
 
 19 
 <3 
 12 
 
 12 
 
 35 
 34 
 33 
 32 
 3i 
 
 .1 
 
 .2 
 3 
 4 
 
 M 
 
 5:1 
 
 4.2 
 5-6 
 
 80 
 
 3 
 
 32 
 33 
 34 
 
 9-84566 
 
 9 84579 
 9 84592 
 9.84605 
 9.84618 
 
 3 
 3 
 3 
 *3 
 
 9-99242 
 9.99267 
 
 9-99293 
 9.99318 
 
 9-99343 
 
 25 
 26 
 
 25 
 25 
 
 o.oo 758 
 o.oo 733 
 o.oo 707 
 0.00682 
 0.00657 
 
 9-85 324 
 9-85312 
 
 9-85 299 
 9-85287 
 9.85274 
 
 12 
 
 3 
 
 12 
 
 3 
 
 12 
 
 80 
 
 1 
 
 :i 
 
 i 
 
 9 
 
 7-0 
 8-4 
 9.8 
 
 II. 2 
 12.6 
 
 9 
 9 
 
 39 
 
 9 84 630 
 9.84 643 
 9 . 64 656 
 9.84669 
 9.84082 
 
 *3 
 3 
 3 
 3 
 
 9.99368 
 9-99394 
 9.99419 
 9.99444 
 9.99469 
 
 26 
 25 
 25 
 
 25 
 26 
 
 0.00632 
 0.00606 
 o.oo 581 
 0.00556 
 o.oo 531 
 
 9 . 85 262 
 9-85250 
 9-85237 
 9-85 225 
 
 9.85 212 
 
 12 
 
 3 
 
 12 
 
 >3 
 
 12 
 
 25 
 24 
 
 23 
 
 22 
 21 
 
 .1 
 
 .2 
 
 3 
 
 11 
 
 40 
 
 41 
 42 
 
 43 
 
 44 
 
 9-84694 
 9-84707 
 9.84720 
 
 9 84733 
 9-4 745 
 
 3 
 3 
 13 
 
 ' 12 
 
 9-99495 
 9-99 520 
 9-99545 
 9-99570 
 9-99 59& 
 
 25 
 25 
 25 
 26 
 
 o.oo 505 
 o.oo 480 
 o.oo 455 
 0.00430 
 0.00404 
 
 9.85 200 
 
 9.85 187 
 
 9-85 175 
 9.85 162 
 
 9-85 15 
 
 3 
 
 12 
 
 3 
 
 12 
 
 i>0 
 
 ;i 
 
 3 
 
 3 
 
 !i 
 
 7 
 
 39 
 
 l: i 
 
 7-8 
 9-i 
 
 3 
 J2 
 
 49 
 
 9-84758 
 9.84 771 
 9.84 784 
 9.84 796 
 9 . 84 809 
 
 X 3 
 13 
 13 
 
 12 
 
 3 
 
 9.99621 
 9.99646 
 9.99672 
 9.99697 
 9.99722 
 
 8 S 
 
 25 
 
 26 
 
 25 
 
 25 
 
 0.00379 
 0.00354 
 0.00328 
 0.00303 
 0.00278 
 
 9-85 137 
 9-85 125 
 9.85 112 
 
 9.85 ioo 
 
 9.85087 
 
 12 
 
 *3 
 
 12 
 13 
 
 15 
 14 
 13 
 
 12 
 II 
 
 .8 
 9 
 
 10.4 
 11.7 
 
 xa 
 
 50 
 
 5i 
 52 
 53 
 
 54 
 
 9.84822 
 9.8483$ 
 9-84847 
 9.84860 
 
 9-84873 
 
 X 3 
 3 
 
 12 
 
 3 
 3 
 
 9-99747 
 9-99 773 
 9.99798 
 9-9982;? 
 9.99848 
 
 25 
 
 26 
 
 25 
 
 25 
 25 
 
 0.00253 
 0.00227 
 
 O.OO 2O2 
 
 o.oo 177 
 o.oo 152 
 
 9.85074 
 9.85062 
 
 9.85049 
 9.85037 
 9.85024 
 
 18 
 
 3 
 
 12 
 >3 
 
 10 
 
 1 
 I 
 
 .1 
 
 .2 
 
 3 
 4 
 
 1 
 
 1.2 
 
 'I 
 tt 
 
 P 
 12 
 
 59 
 
 9-84885 
 9.8489$ 
 9.849" 
 9.84923 
 9.84936 
 
 3 
 3 
 
 19 
 
 3 
 
 9.99874 
 9-99899 
 9-99924 
 9.99949 
 9-99975 
 
 25 
 25 
 25 
 
 96 
 
 o.oo 126 
 
 0.00 101 
 
 0.00076 
 o.oo 051 
 0.00025 
 
 9.85012 
 
 9.84999 
 9.84986 
 
 9.84974 
 9.84961 
 
 3 
 3 
 
 19 
 
 3 
 
 ft 
 
 5 
 
 4 
 3 
 
 i 
 
 .0 
 
 i 
 
 9 
 
 *1 
 
 ,2:1 
 
 00 
 
 9 84949 
 
 *3 
 
 o.ooooo 
 
 25 
 
 o.oo ooo 
 
 9.84949 
 
 
 
 
 
 
 
 L. Cos. 
 
 d. 
 
 L. Cotg. 
 
 c.d. 
 
 L. Tang:. 
 
 L. Sin. 
 
 d. 
 
 i 
 
 Pro] 
 
 [>. PtS. 
 
 
 
 
 
 
 45 
 
 
 
 
 
 
TABLE V NATURAL SINES AND COSINES. 75 
 
 TABLE V. 
 
 NATURAL 
 
 SINES AND COSINES 
 
) 1 Alil^r* V 
 
 
 
 
 1 
 
 2 
 
 3 
 
 40 
 40 
 
 60 
 59 
 
 58 
 
 H 
 
 55 
 54 
 
 53 
 52 
 5i 
 50 
 
 2 
 
 t 
 
 tf. sine 
 
 N. cos. 
 
 N. sine 
 
 S T. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 ^. cos. 
 
 N. sine|N. cos. 
 
 O 
 
 I 
 
 2 
 
 3 
 4 
 
 I 
 'I 
 
 9 
 
 1C 
 
 ii 
 
 12 
 
 ~^3~ 
 
 14 
 
 II 
 1 
 
 19 
 
 20 
 21 
 22 
 
 23 
 24 
 
 .00000 
 
 .00029 
 .00058 
 
 .00087 
 
 .00116 
 
 .00145 
 .00175 
 
 .00000 
 .00000 
 
 .00000 
 .00000 
 
 .00000 
 .00000 
 .00000 
 
 01745 
 .01774 
 .01803 
 .01832 
 .01862 
 .01891 
 .01920 
 
 .99985 
 .99984 
 .99984 
 .99983 
 .99983 
 .99982 
 .99982 
 
 .03490 
 03519 
 03548 
 -03577 
 .03606 
 
 03635 
 .03664 
 
 99939 
 .99938 
 
 99937 
 9993 6 
 99935 
 99934 
 99933 
 
 35234 
 .05263 
 .05292 
 05321 
 05350 
 05379 
 .05408 
 
 .99863 
 
 99861 
 .99860 
 
 .99858 
 99857 
 99855 
 99854 
 
 .06976 
 .07005 
 .07034 
 .07063 
 .07092 
 .07121 
 .07150 
 
 99756 
 99754 
 99752 
 99750 
 99748 
 99746 
 99744 
 
 .00204 
 .00233 
 .00262 
 .00291 
 
 .00320 
 .00349 
 
 .00000 
 .00000 
 .00000 
 .00000 
 
 99999 
 99999 
 
 .01949 
 .01978 
 .02007 
 .02036 
 .02065 
 .02094 
 
 .99981 
 .99980 
 .99980 
 99979 
 99979 
 99978 
 
 .03693 
 .03723 
 03752 
 .03781 
 .03810 
 03839 
 
 99932 
 99931 
 .99930 
 .99929 
 
 99927 
 .99926 
 
 5437 
 .05466 
 
 05495 
 05524 
 05553 
 .05582 
 
 .99852 
 .99851 
 
 99849 
 .99847 
 .99846 
 .99844 
 
 .07179 
 .07208 
 .07237 
 .07266 
 .07295 
 07324 
 
 .99742 
 .99740 
 99738 
 99736 
 99734 
 99731 
 
 .00378 
 .00407 
 .00436 
 .00465 
 .00495 
 .00524 
 
 99999 
 99999 
 99999 
 99999 
 99999 
 99999 
 
 .02123 
 .02152 
 .02181 
 
 .02211 
 
 .O224O 
 .02269 
 
 99977 
 99977 
 .99976 
 
 99976 
 99975 
 99974 
 
 .03868 
 .03897 
 .03926 
 
 03955 
 .03984 
 .04013 
 
 99925 
 .99924 
 .99923 
 .99922 
 .99921 
 .99919 
 
 .05611 
 .05640 
 .05669 
 .05698 
 05727 
 05756 
 
 .99842 
 .99841 
 
 99839 
 .99838 
 
 99836 
 99834 
 
 07353 
 07382 
 .07411 
 .07440 
 .07469 
 .07498 
 
 .99729 
 .99727 
 99725 
 99723 
 99721 
 .99719 
 
 9 
 
 45 
 44 
 43 
 42 
 
 005*3 
 .00582 
 .00611 
 .00640 
 .00669 
 
 .00698 
 
 99998 
 .99998 
 .99998 
 99998 
 .99998 
 .99998 
 
 .02298 
 .02327 
 02356 
 02385 
 .02414 
 .02443 
 
 99974 
 99973 
 99972 
 .99972 
 .99971 
 .99970 
 
 .04042 
 .04071 
 .04100 
 .04129 
 .04159 
 .04188 
 
 .99918 
 .99917 
 .99916 
 
 99915 
 99913 
 .99912 
 
 05785 
 05814 
 .05844 
 
 05873 
 .05902 
 
 05931 
 
 99833 
 .99831 
 .99829 
 .99827 
 .99826 
 .99824 
 
 .07527 
 07556 
 07585 
 .07614 
 
 07643 
 .07672 
 
 .99716 
 .99714 
 .99712 
 .99710 
 .99708 
 99705 
 
 41 
 40 
 
 39 
 38 
 
 37 
 
 36 
 
 2 
 
 3 
 
 29 
 jp_ 
 
 3i 
 32 
 33 
 34 
 35 
 _36_ 
 
 11 
 
 39 
 40 
 
 4i 
 42 
 
 43 
 44 
 45 
 46 
 
 47 
 48 
 
 .00727 
 .00756 
 .00785 
 
 .00814 
 
 .00844 
 .00873 
 
 99997 
 99997 
 99997 
 99997 
 .99996 
 .99996 
 
 .02472 
 .02501 
 .02530 
 .02560 
 .02589 
 .02618 
 
 99969 
 
 .99967 
 .99966 
 .99966 
 
 .04217 
 .04246 
 .04275 
 .04304 
 
 04333 
 .04362 
 
 .99911 
 .99910 
 .99909 
 .99907 
 .99906 
 .99905 
 
 .05960 
 
 05989 
 .06018 
 .06047 
 .06076 
 .06105 
 
 .99822 
 .99821 
 .99819 
 
 99817 
 .99815 
 .99813 
 
 .07701 
 .07730 
 
 07759 
 .07788 
 .07817 
 .07846 
 
 99703 
 99701 
 .99699 
 .99696 
 
 99694 
 .99692 
 
 35 
 
 34 
 33 
 32 
 3i 
 30 
 
 .00902 
 
 .00931 
 
 .00960 
 
 .00989 
 
 .01018 
 
 .01047 
 
 .99996 
 .99996 
 99995 
 99995 
 99995 
 99995 
 
 .02647 
 .02676 
 .02705 
 .02734 
 .02763 
 .02792 
 
 99965 
 .99964 
 
 99963 
 .99963 
 .99962 
 .99961 
 
 .04391 
 .04420 
 
 04449 
 .04478 
 
 04507 
 04536 
 
 99904 
 .99902 
 .99901 
 
 99897 
 
 .06134 
 .06163 
 .06192 
 .06221 
 .06250 
 .06279 
 
 1.99812 
 .99810 
 .99808 
 .99806 
 .99804 
 99803 
 
 07875 
 .07904 
 
 07933 
 .07962 
 .07991 
 .08020 
 
 .99689 
 .99687 
 .99685 
 9968 3 
 .99680 
 .99678 
 
 % 
 
 11 
 
 25 
 
 24 
 
 .01076 
 .01105 
 .01134 
 
 .01164 
 .01193 
 
 .01222 
 
 .99994 
 99994 
 99994 
 99993 
 99993 
 99993 
 
 .02821 
 .02850 
 .02879 
 .02902 
 .02938 
 .02967 
 
 .99960 
 99959 
 99959 
 .99958 
 
 99957 
 99956 
 
 04565 
 .04594 
 .04623 
 
 04653 
 .04682 
 .04711 
 
 .99896 
 .99894 
 
 99893 
 .99892 
 
 .06308 
 .06337 
 .06366 
 
 06395 
 .06424 
 06453 
 
 .99801 
 
 99799 
 99797 
 99795 
 99793 
 .99792 
 
 .08049 
 .08078 
 .08107 
 .08136 
 .08165 
 .0819^ 
 
 .99676 
 
 99673 
 .99671 
 .99668 
 .99666 
 .99664 
 
 23 
 
 22 
 21 
 
 2O 
 
 *9 
 
 .01251 
 .01280 
 .01309 
 01338 
 .01367 
 .01396 
 
 99992 
 99992 
 .99991 
 .99991 
 .99991 
 .99990 
 
 .02996 
 .03025 
 
 03054 
 .03083 
 .O3II2 
 .03141 
 
 99955 
 99954 
 99953 
 .99952 
 
 99952 
 99951 
 
 .04740 
 .04769 
 .04798 
 .04827 
 .04856 
 .04885 
 
 .99888 
 .99886 
 .99885 
 .99883 
 .99882 
 .99881 
 
 .06482 
 .06511 
 .06540 
 .06569 
 .06598 
 .06627 
 
 .99790 
 .99788 
 99786 
 .99784 
 99782 
 .99780 
 
 .08223 
 .08252 
 .08281 
 .08310 
 
 .0836* 
 
 .99661 
 .99659 
 
 99657 
 .99654 
 .99652 
 99649 
 
 II 
 
 15 
 H 
 13 
 
 12 
 II 
 
 10 
 
 I 
 
 49 
 50 
 5i 
 
 ! 52 
 
 , 53 
 5 * 
 
 .01425 
 .01454 
 .01483 
 .01513 
 .01542 
 .01571 
 
 99990 
 99989 
 99989 
 .99989 
 .99988 
 .99988 
 
 .03170 
 .03199 
 .03228 
 
 03257 
 .03286 
 .03316 
 
 .99950 
 99949 
 99948 
 99947 
 99946 
 99945 
 
 .04914 
 .04943 
 .04972 
 .05001 
 05030 
 05059 
 
 .99879 
 .99878 
 .99876 
 99875 
 99873 
 99872 
 
 .06656 
 .06685 
 .0671^ 
 06743 
 .06773 
 .06802 
 
 .99778 
 99776 
 99774 
 99772 
 .99770 
 .99768 
 
 .08397 
 .08426 
 .08455 
 .08484 
 
 S&3 
 
 99647 
 .99644 
 99642 
 99639 
 .99637 
 99635 
 
 1 55 
 56 
 57 
 5 
 
 8 
 
 .OI6OO 
 .01629 
 .01658 
 .01687 
 .01716 
 01745 
 
 N. cos. 
 
 .99987 
 .99987 
 .99986 
 .99986 
 .99985 
 .99985 
 
 N. sine 
 
 03345 
 03374 
 03403 
 03432 
 .03461 
 .03490 
 
 N. cos. 
 
 99944 
 99943 
 .99942 
 .99941 
 .99940 
 99939 
 
 N. sine 
 
 .05088 
 .05117 
 .05146 
 
 05175 
 .05205 
 
 05234 
 N. cos. 
 
 .99870 
 .99869 
 .99867 
 .99866 
 .99864 
 99863 
 
 N. sine 
 
 .06831 
 06860 
 .00889 
 .06918 
 .06947 
 .06976 
 
 N. cos. 
 
 .99766 
 .99764 
 .99762 
 .99760 
 99758 
 99756 
 
 N. sine 
 
 S 
 
 .08629 
 .08658 
 .08687 
 .08716 
 
 N. cos. 
 
 1.99632 
 .99630 
 .90627 
 99625 
 .99622 
 .99619 
 
 N. sine 
 
 5 
 4 
 3 
 
 2 
 I 
 
 
 f 
 
 
 89' 
 
 88 
 
 87 
 
 86 
 
 85 
 
 
NATURAL SINES AND COSINES. 
 
 77 
 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 
 / 
 
 o 
 
 I 
 
 2 
 
 3 
 4 
 
 1 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 
 .08716 
 
 .08745 
 .08774 
 .08803 
 .08831 
 .08860 
 .08889 
 
 .99619 
 .99617 
 .99614 
 .99612 
 .99609 
 .99607 
 .99604 
 
 10453 
 . 10482 
 .10511 
 
 10540 
 .10569 
 
 .10597 
 . 10626 
 
 .99452 
 99449 
 99446 
 
 99443 
 .99440 
 
 99437 
 99434 
 
 .12187 
 .12216 
 .12245 
 .12274 
 .12302 
 
 12331 
 .12360 
 
 99255 
 .99251 
 .99248 
 
 99244 
 .99240 
 .99237 
 99233 
 
 I39I7 
 .13946 
 
 13975 
 .14004 
 
 14033 
 .14061 
 . 14090 
 
 .99027 
 .99023 
 .99019 
 .99015 
 .99011 
 .99006 
 .99002 
 
 15643 
 .15672 
 .15701 
 15730 
 15758 
 15787 
 .15816 
 
 .98769 
 .98764 
 .98760 
 98/55 
 9875' 
 .98746 
 .98741 
 
 60 
 
 9 
 
 9 
 
 55 ' 
 
 54 , 
 
 I 
 
 9 
 
 10 
 
 ii 
 
 12 
 
 .08918 
 .08947 
 .08976 
 .09005 
 .09034 
 .09063 
 
 .99602 
 
 99599 
 .99596 
 
 99594 
 99591 
 .99588 
 
 ! 10684 
 .10713 
 .10742 
 .10771 
 .10800 
 
 9943 1 
 .99428 
 .99424 
 .99421 
 .99418 
 99415 
 
 .12389 
 .12418 
 .12447 
 .12476 
 .12504 
 12533 
 
 99230 
 .99226 
 .99222 
 .99219 
 
 99215 
 .99211 
 
 .14119 
 .14148 
 .14177 
 .14205 
 .14234 
 .14263 
 
 .98998 
 
 98994 
 .98990 
 .98986 
 .98982 
 .98978 
 
 15845 
 15873 
 .15902 
 
 I593I 
 15959 
 .15988 
 
 98737 
 98732 
 .98728 
 .98723 
 .98718 
 .98714 
 
 53 i 
 52 
 Si 
 50 
 49 
 48 
 
 13 
 14 
 15 
 
 11 
 
 .09092 
 .09121 
 .09150 
 .09179 
 .09208 
 .09237 
 
 .99586 
 
 99583 
 .99580 
 
 99578 
 99575 
 99572 
 
 . 10829 
 . 10858 
 . 10887 
 .10916 
 .10945 
 .10973 
 
 .99412 
 .99409 
 .99406 
 .99402 
 99399 
 99396 
 
 .12562 
 .12591 
 .12620 
 .12649 
 .12678 
 .12706 
 
 .99208 
 .99204 
 .99200 
 .99197 
 
 99193 
 .99189 
 
 .14292 
 .14320 
 14349 
 14378 
 .I44CJ 
 .14436 
 
 98973 
 .98969 
 .98965 
 .98961 
 98957 
 98953 
 
 .16017 
 .16046 
 .16074 
 .16103 
 .16132 
 .16160 
 
 .98709 
 .98704 
 .98700 
 .98695 
 .98690 
 .98686 
 
 47 
 46 
 
 45 
 44 
 43 
 42 
 
 19 
 2O 
 21 
 22 
 
 23 
 24 
 
 .09266 
 .09295 
 .09324 
 
 09353 
 .09382 
 .09411 
 
 9957 
 99567 
 .99564 
 .99562 
 99559 
 99556 
 
 .IIOO2 
 .11031 
 .11060 
 .11089 
 .IIIlS 
 .11147 
 
 99393 
 .99390 
 .99386 
 
 99383 
 99380 
 99377 
 
 12735 
 .12764 
 .12793 
 .12822 
 .12851 
 .12880 
 
 .99186 
 .99182 
 .99178 
 
 99175 
 .99171 
 .99167 
 
 .14464 
 
 .14493 
 .14522 
 
 I455I 
 .14580 
 .14608 
 
 .98948 
 .98944 
 .98940 
 .98936 
 .98931 
 .98927 
 
 .16189 
 .16218 
 .16246 
 .16275 
 .16304 
 16333 
 
 .98681 
 .98676 
 .98671 
 .98667 
 .98662 
 .98657 
 
 41 
 40 
 
 39 
 38 
 37 
 36 
 
 2 
 
 3 
 
 29 
 30 
 
 .09440 
 .09469 
 .09498 
 .09527 
 09556 
 09585 
 
 99553 
 99551 
 .99548 
 
 99545 
 99542 
 .99540 
 
 . 1 1 1 76 
 .11205 
 .11234 
 .11263 
 .11291 
 .II32O 
 
 99374 
 99370 
 99367 
 99364 
 9936o 
 99357 
 
 .12908 
 
 12937 
 .12966 
 .12995 
 .13024 
 13053 
 
 .99163 
 .99160 
 .99156 
 .99152 
 .99148 
 .99144 
 
 14637 
 .14666 
 .14695 
 H723 
 14752 
 .14781 
 
 .98923 
 .98919 
 .98914 
 .98910 
 .98906 
 .98902 
 
 .16361 
 .16390 
 .16419 
 .16447 
 .16476 
 16505 
 
 .98652 
 .98648 
 98643 
 .9863$ 
 
 98633 
 .98629 
 
 35 
 34 
 33 
 32 
 31 
 30 
 
 3 1 
 32 
 33 
 34 
 
 I 
 
 .09614 
 .09642 
 .09671 
 .09700 
 .09729 
 .09758 
 
 99537 
 99534 
 
 99531 
 .99528 
 
 99526 
 99523 
 
 II349 
 .11378 
 .11407 
 .11436 
 .11465 
 .11494 
 
 99354 
 99351 
 99347 
 99344 
 99341 
 99337 
 
 .13081 
 .13110 
 
 I3 J 39 
 .13168 
 
 I3I97 
 .13226 
 
 .99141 
 99137 
 99133 
 .99129 
 .99125 
 .99122 
 
 .14810 
 14838 
 .14867 
 .14896 
 .14925 
 14954 
 
 .98897 
 
 ! 98884 
 .98880 
 .98876 
 
 16533 
 .16562 
 
 'SB! 
 
 .16620 
 
 .16648 
 .16677 
 
 .98624 
 .98619 
 .98614 
 .98609 
 .98604 
 .98600 
 
 % 
 
 11 
 
 25 
 24 
 
 9 
 
 39 
 40 
 
 4i 
 42 
 
 .09787 
 .09816 
 .09845 
 .09874 
 .09903 
 .09932 
 
 .99520 
 99517 
 99514 
 995" 
 .99508 
 .99506 
 
 H523 
 
 "552 
 
 .11580 
 .11609 
 .11638 
 .11667 
 
 99334 
 9933 1 
 99327 
 99324 
 .99320 
 
 99317 
 
 13254 
 13283 
 I33I2 
 I334I 
 13370 
 13399 
 
 .99118 
 .99114 
 .99110 
 .99106 
 .99192 
 .99098 
 
 .14982 
 .15011 
 .15040 
 .15069 
 
 .15097 
 .15126 
 
 .98871 
 .98867 
 .98863 
 .98858 
 .98854 
 .98849 
 
 .16706 
 
 16734 
 .16763 
 .16792 
 .16820 
 .16849 
 
 98595 
 
 98585 
 .98580 
 
 98575 
 .98570 
 
 23 
 
 22 
 21 
 20 
 
 43 
 
 44 
 
 9 
 3 
 
 .09961 
 .09990 
 .10019 
 .10048 
 .10077 
 .10106 
 
 99503 
 .99500 
 
 99497 
 99494 
 .99491 
 .99488 
 
 .11696 
 .11725 
 
 .11754 
 .11783 
 .11812 
 .11840 
 
 993M 
 .99310 
 
 99307 
 99303 
 .99300 
 
 99297 
 
 13427 
 13456 
 13485 
 I35I4 
 13543 
 13572 
 
 99094 
 
 .99083 
 99079 
 99075 
 
 I5I55 
 .15184 
 .15212 
 .15241 
 .15270 
 .15299 
 
 98845 
 .98841 
 .98836 
 .98832 
 .98827 
 .98823 
 
 .16878 
 .16906 
 
 '6935 
 .1696^ 
 .16992 
 .17021 
 
 98565 
 .98561 
 98556 
 98551 
 .98546 
 .98541 
 
 \l 
 
 15 
 H 
 13 
 12 
 
 49 
 50 
 51 
 
 52 
 53 
 54 
 
 IOI 35 
 .10164 
 .10192 
 .10221 
 .10250 
 .10279 
 
 .99485 
 .99482 
 99479 
 99476 
 
 99473 
 .99470 
 
 .11869 
 .11898 
 .11927 
 .11956 
 .11985 
 .12014 
 
 99293 
 .99290 
 .99286 
 99283 
 99279 
 -99276 
 
 .13600 
 .13629 
 13658 
 13687 
 .13716 
 
 13744 
 
 .99071 
 
 .99067 
 .99063 
 .99059 
 
 99055 
 .99051 
 
 15327 
 15356 
 15385 
 I54H 
 .15442 
 
 I547I 
 
 .98818 
 .98814 
 .98809 
 .98805 
 .98800 
 .98796 
 
 .17050 
 .17078 
 .17107 
 .17136 
 .17164 
 17193 
 
 98536 
 98531 
 98526 
 .98521 
 98516 
 .98511 
 
 11 
 
 10 
 
 I 
 
 55 
 56 
 
 9 
 
 S 
 
 . 10308 
 
 10337 
 .10366 
 10395 
 .10424 
 10453 
 
 .99467 
 .99464 
 .99461 
 .99458 
 99455 
 9945 2 
 
 .12013 
 .12071 
 
 .12100 
 .12129 
 .12158 
 .12187 
 
 .99272 
 .99269 
 99265 
 .99262 
 .99258 
 99255 
 
 13773 
 .13802 
 
 :& 
 
 13889 
 13917 
 
 .99047 
 
 99043 
 .99039 
 
 99035 
 .99031 
 .99027 
 
 .15500 
 15529 
 15557 
 .15586 
 .15615 
 15643 
 
 .98791 
 .98787 
 .98782 
 98778 
 
 98773 
 .98769 
 
 . i 7222 
 17250 
 .17279 
 .17308 
 17336 
 17365 
 
 .98506 
 .98501 
 .98496 
 .98491 
 .98486 
 .98481 
 
 5 
 4 
 3 
 
 2 
 I 
 O 
 
 ( 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 9 
 
 
 84 
 
 83 
 
 82 
 
 81 
 
 80 
 
 
7 8 TABLE V. 
 
 
 10 
 
 11 % 
 
 12 
 
 13 
 
 14 
 
 
 / 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 
 o 
 
 i 
 
 2 
 
 3 
 
 1 
 
 17365 
 17393 
 
 .17422 
 
 I745I 
 17479 
 .17508 
 
 17537 
 
 .98481 
 .98476 
 .98471 
 .98466 
 1.98461 
 .9f455 
 9845 
 
 .19081 
 .19109 
 .19138 
 .19167 
 
 .19195 
 .19224 
 .19252 
 
 98163 
 
 98i57 
 .98152 
 .98146 
 .98140 
 
 98135 
 .98129 
 
 .20791 
 .20820 
 .20848 
 .20877 
 .20905 
 .20933 
 .20962 
 
 978i5 
 .97809 
 .97803 
 
 97797 
 .97791 
 
 97784 
 97778 
 
 .22495 
 .22523 
 22552 
 .22580 
 
 .22637 
 .22665 
 
 97437 
 9743 
 97424 
 97417 
 .97411 
 
 97404 
 97398 
 
 .24192 
 .24220 
 .24249 
 .24277 
 24305 
 24333 
 .24362 
 
 .97030 
 .97023 
 
 97015 
 .97008 
 .97001 
 
 60 
 59 
 58 
 
 !? 
 
 55 
 54 
 
 I 
 
 9 
 
 10 
 
 ii 
 
 12 
 
 17565 
 17594 
 .17623 
 
 :$ 
 
 .17708 
 
 98445 
 .98440 
 
 98435 
 .98430 
 .98425 
 .98420 
 
 .19281 
 .19309 
 I 933 8 
 .19366 
 
 19395 
 .19423 
 
 .98124 
 .98118 
 .98112 
 .98107 
 .98101 
 .98096 
 
 .20990 
 .21019 
 .21047 
 .21076 
 .21104 
 .21132 
 
 .97772 
 .97766 
 .97760 
 97754 
 97748 
 .97742 
 
 .22693 
 .22722 
 .22750 
 .22778 
 .22807 
 22835 
 
 97391 
 97384 
 97378 
 97371 
 97365 
 97358 
 
 .24390 
 .24418 
 .24446 
 24474 
 24503 
 24531 
 
 .96980 
 
 .96973 
 .96966 
 
 .96959 
 .96952 
 
 96945 
 
 53 
 52 
 5i 
 50 
 
 1 
 
 '3 
 H 
 
 \l 
 II 
 
 :!$6 7 
 
 17794 
 
 '17852 
 
 ! i 7880 
 
 .98414 
 .98409 
 .98404 
 .98399 
 .98394 
 .98389 
 
 .19452 
 .19481 
 .19509 
 .I953f 
 .19566 
 19595 
 
 .98079 
 
 98073 
 .98067 
 .98061 
 
 .21161 
 .21189 
 .21218 
 .21246 
 .21275 
 .21303 
 
 97735 
 97729 
 97723 
 .97717 
 .97711 
 97705 
 
 .22863 
 .22892 
 .22920 
 .22948 
 .22977 
 .23005 
 
 97351 
 97345 
 9733 s 
 97331 
 97325 
 97318 
 
 24559 
 .24587 
 .24615 
 .24644 
 .24672 
 .24700 
 
 .96937 
 
 .96930 
 .96923 
 .96916 
 .96909 
 .96902 
 
 9 
 
 45 
 44 
 43 
 42 
 
 19 
 20 
 
 21 
 22 
 
 23 
 
 24 
 
 3 
 
 2 
 
 29 
 
 30 
 
 .17909 
 
 17937 
 .17966 
 
 17995 
 .18023 
 .18052 
 
 3 
 
 '& 
 
 .98362 
 98357 
 
 .19623 
 .19652 
 .19680 
 .19709 
 
 .19737 
 .19766 
 
 .98056 
 .98050 
 .98044 
 .98039 
 
 98033 
 .98027 
 
 21331 
 .21360 
 .21388 
 .21417 
 
 21445 
 .21474 
 
 .97698 
 .97692 
 
 .97680 
 
 97673 
 .97667 
 
 23033 
 .23062 
 .23090 
 .23118 
 .23146 
 23175 
 
 973H 
 97304 
 .97298 
 
 97291 
 .97284 
 97278 
 
 .24728 
 24756 
 24784 
 .24813 
 .24841 
 .24869 
 
 .96894 
 .96887 
 .96880 
 
 96873 
 .96866 
 .96858 
 
 41 
 40 
 
 P 
 
 11 
 
 .18081 
 .18109 
 .18138 
 .18166 
 18195 
 . 18224 
 
 98352 
 9f347 
 .98341 
 
 98336 
 98331 
 98325 
 
 .19794 
 .19823 
 .19851 
 .19880 
 .19908 
 19937 
 
 .98021 
 .98016 
 .98010 
 .98004 
 97998 
 97992 
 
 .21502 
 21530 
 
 21559 
 .21587 
 .21616 
 .21644 
 
 .97661 
 
 2$ 
 3& 
 
 .97630 
 
 .23203 
 .23231 
 .23260 
 .23288 
 .23316 
 23345 
 
 .97271 
 .97264 
 .97257 
 97251 
 97244 
 97237 
 
 .24897 
 24925 
 24954 
 .24982 
 .25010 
 .25038 
 
 .96851 
 .96844 
 .96837 
 .96829 
 .96822 
 96815 
 
 35 
 34 
 33 
 32 
 31 
 30 
 
 31 
 32 
 
 33 
 34 
 
 $ 
 
 .18252 
 .18281 
 .18309 
 18338 
 18367 
 .18395 
 
 .98320 
 
 98315 
 .98310 
 .98304 
 .98299 
 .98294 
 
 .19965 
 .19994 
 
 .20022 
 .20051 
 .20079 
 .20108 
 
 .97987 
 .97981 
 97975 
 97969 
 .97963 
 97958 
 
 .21672 
 .21701 
 .21729 
 .21758 
 .21786 
 .21814 
 
 .97623 
 .97617 
 .97611 
 .97604 
 97598 
 97592 
 
 .23373 
 .23401 
 .23429 
 23458 
 .23486 
 
 23514 
 
 .97230 
 97223 
 .97217 
 .97210 
 .97203 
 .97196 
 
 .25066 
 .25094 
 .25122 
 .25151 
 25179 
 .25207 
 
 .96807 
 .96800 
 
 .96793 
 .96786 
 .96778 
 .96771 
 
 1 
 
 25 
 
 24 
 
 S 
 
 39 
 40 
 
 4i 
 
 42 
 
 .18424 
 .18452 
 .18481 
 .18509 
 18538 
 18567 
 
 .98288 
 .98283 
 .98277 
 .98272 
 .98267 
 .98261 
 
 .20136 
 .20165 
 .20193 
 -2O222 
 .20250 
 .20279 
 
 97952 
 .97946 
 97940 
 97934 
 .97928 
 .97922 
 
 .21843 
 .21871 
 .21899 
 .21928 
 .21956 
 .21985 
 
 97585 
 97579 
 97573 
 97566 
 97560 
 97553 
 
 .23542 
 .23571 
 23599 
 .23627 
 .23656 
 .23684 
 
 .97189 
 .97182 
 .97176 
 .97169 
 .97162 
 .97155 
 
 25235 
 .25263 
 25291 
 25320 
 25348 
 25376 
 
 .96764 
 .967.56 
 .96749 
 .96742 
 96734 
 96727 
 
 23 
 
 22 
 21 
 
 2O 
 
 43 
 
 44 
 i 45 
 46 
 
 2 
 
 18595 
 .18624 
 .18652 
 .18681 
 .18710 
 .18.738 
 
 .98256 
 .98250 
 
 98245 
 .98240 
 .98234 
 .98229 
 
 .20307 
 .20336 
 20364 
 20393 
 .20421 
 .20450 
 
 .97916 
 .97910 
 97905 
 97899 
 97893 
 97887 
 
 .22013 
 .22041 
 .22070 
 .22098 
 .22126 
 22155 
 
 97547 
 97541 
 97534 
 97528 
 97521 
 97515 
 
 .23712 
 
 .23740 
 .23769 
 .23797 
 .23825 
 23853 
 
 .97148 
 .97141 
 
 97134 
 .97127 
 .97120 
 97"3 
 
 25404 
 25432 
 .25460 
 .25488 
 .25516 
 25545 
 
 .96719 
 .96712 
 .96705 
 .96697 
 
 \l 
 
 15 
 
 H 
 13 
 
 12 
 
 49 
 50 
 5i 
 52 
 53 
 54 
 
 .18767 
 
 i8795 
 .18824 
 .18852 
 .18881 
 .18910 
 
 .98223 
 .98218 
 .98212 
 .98207 
 .98201 
 .98196 
 
 .20478 
 .20507 
 
 20535 
 .20563 
 .20592 
 .2O62O 
 
 .97881 
 
 97875 
 .97869 
 .97863 
 97857 
 97851 
 
 .22183 
 
 .22212 
 .22240 
 .22268 
 .22297 
 22325 
 
 .97508 
 .97502 
 .97496 
 97489 
 97483 
 97476 
 
 .23882 
 .23910 
 
 20 
 
 23995 
 .24023 
 
 .97106 
 .97100 
 
 97093 
 .97086 
 
 .97079 
 .97072 
 
 25573 
 .25601 
 .25629 
 
 25657 
 .25685 
 
 25713 
 
 96075 
 .96667 
 .96660 
 .96653 
 .96645 
 .96638 
 
 II 
 10 
 
 I 
 
 I 
 
 55 
 56 
 
 H 
 
 8 
 
 .18938 
 .18967 
 .18995 
 .19024 
 .19052 
 .19081 
 
 N. cos. 
 
 .98190 
 .98185 
 .98179 
 .98174 
 .98168 
 98163 
 
 N. sine 
 
 .20649 
 .20677 
 .20706 
 20734 
 20763 
 .20791 
 
 N. cos. 
 
 97845 
 97839 
 97833 
 97827 
 .97821 
 978i5 
 
 N. sine 
 
 22353 
 .22382 
 .22410 
 .22438 
 .22467 
 22495 
 
 N. cos. 
 
 97470 
 97463 
 97457 
 .97450 
 97444 
 97437 
 
 N. sine 
 
 .24051 
 .24079 
 .24108 
 .24136 
 .24164 
 .24192 
 
 N. cos. 
 
 .97065 
 .97058 
 
 .97051 
 .97044 
 
 .97037 
 97030 
 
 N. sine 
 
 25741 
 .25769 
 
 .25826 
 
 -25854 
 .25882 
 
 N. cos. 
 
 .96630 
 
 '12 
 
 [96600 
 96593 
 
 M. sine 
 
 5 
 4 
 3 
 
 2 
 O 
 / 
 
 
 79 
 
 7 
 
 77 
 
 76 
 
 75 
 
NATURAL SINES AND COSINES. 
 
 79 
 
 
 15 
 
 16 
 
 17 
 
 18 
 
 19 
 
 
 t 
 
 N". sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 
 o 
 I 
 
 2 
 
 3 
 4 
 
 .25882 
 .25910 
 
 25938 
 .25966 
 
 25994 
 .26022 
 .26050 
 
 .96593 
 .96585 
 .96578 
 .96570 
 .96562 
 96555 
 96547 
 
 27564 
 .27592 
 .27620 
 .27648 
 .27676 
 .27704 
 .27731 
 
 .96126 
 .96118 
 .96110 
 .96102 
 
 ^96078 
 
 29237 
 .29265 
 29293 
 29321 
 .29348 
 .29376 
 .29404 
 
 95630 
 .95622 
 
 95613 
 95605 
 955? 6 
 .95588 
 95579 
 
 .30902 
 .30929 
 3957 
 30985 
 .31012 
 .31040 
 .31068 
 
 .95106 
 
 95097 
 .95088 
 
 95079 
 95070 
 95061 
 95052 
 
 32557 
 32584 
 .32612 
 .32639 
 .32667 
 
 32694 
 .32722 
 
 94552 
 94542 
 94533 
 94523 
 94514 
 94504 
 94495 
 
 60 
 
 59 
 58 
 
 11 
 
 55 
 54 
 
 9 
 
 10 
 
 ii 
 
 12 
 
 .26079 
 .26107 
 26135 
 .26163 
 .26191 
 .26219 
 
 .96540 
 
 96532 
 .96524 
 
 96517 
 .96509 
 96502 
 
 27759 
 .27787 
 .27815 
 .27843 
 .27871 
 .27899 
 
 .96070 
 .96062 
 .96054 
 .96046 
 
 96037 
 .96029 
 
 .29432 
 .29460 
 .29487 
 29515 
 29543 
 29571 
 
 95571 
 95562 
 95554 
 95545 
 95536 
 95528 
 
 31095 
 3 II2 3 
 .31151 
 .31178 
 .31206 
 3^233 
 
 9543 
 95033 
 .95024 
 
 95015 
 .95006 
 
 94997 
 
 32749 
 
 .32777 
 .32804 
 .32832 
 
 32859 
 32887 
 
 .94485 
 .94476 
 .94466 
 94457 
 94447 
 .94438 
 
 53 
 52 
 5i 
 50 
 
 4 J 
 
 13 
 14 
 
 ii 
 
 || 
 
 .26247 
 .26275 
 .26303 
 -26331 
 26359 
 .26387 
 
 .96494 
 .96486 
 .96479 
 .96471 
 .96463 
 .96456 
 
 .27927 
 
 27955 
 .27983 
 .28011 
 .28039 
 .28067 
 
 .96021 
 .96013 
 .96005 
 
 95997 
 .95989 
 .95981 
 
 2Q5C9 
 .29626 
 .29654 
 .29682 
 .29710 
 29737 
 
 95519 
 955" 
 95502 
 
 95493 
 95485 
 95476 
 
 .31261 
 .31289 
 31316 
 31344 
 31372 
 31399 
 
 .94988 
 94979 
 94970 
 .94961 
 94952 
 94943 
 
 .32914 
 32942 
 .32969 
 32997 
 33024 
 33051 
 
 .94428 
 .94418 
 94409 
 94399 
 .94390 
 .94380 
 
 9 
 
 45 
 44 
 43 
 42 
 
 19 
 
 20 
 21 
 22 
 
 3 
 
 24 
 
 26415 
 .26443 
 .26471 
 .26500 
 .26528 
 .26556 
 
 .96448 
 .96440 
 96433 
 96425 
 .96417 
 .96410 
 
 .28095 
 .28123 
 .28150 
 .28178 
 .28206 
 .28234 
 
 95972 
 95964 
 95956 
 .95948 
 .95940 
 95931 
 
 29765 
 29793 
 .29821 
 .29849 
 .29876 
 .29904 
 
 95467 
 95459 
 9545 
 95441 
 95433 
 .95424 
 
 31427 
 3H54 
 .31482 
 3i5io 
 31537 
 31565 
 
 94933 
 94924 
 94915 
 .94906 
 
 .94897 
 .94888 
 
 33079 
 .33106 
 
 33!34 
 33161 
 33189 
 .33216 
 
 94370 
 .94361 
 
 94351 
 94342 
 94332 
 94322 
 
 41 
 40 
 
 9 
 
 H 
 
 % 
 
 27 
 
 28 
 29 
 3 
 
 .26584 
 .26012 
 
 '.2.6696 
 .26724 
 
 .96402 
 .96394 
 .96386 
 
 96379 
 .96371 
 
 96363 
 
 .28262 
 .28290 
 .28318 
 28346 
 
 28374 
 .28402 
 
 95923 
 95915 
 95907 
 .95898 
 .95890 
 .95882 
 
 .29932 
 .29960 
 .29987 
 30015 
 30043 
 .30071 
 
 95415 
 95407 
 95398 
 95589 
 95380 
 95372 
 
 31593 
 .31620 
 .31648 
 3 l6 75 
 31703 
 31730 
 
 .94878 
 .94869 
 .94860 
 .94851 
 .94842 
 .94832 
 
 33JM4 
 
 332/1 
 3329? 
 33326 
 33353 
 33381 
 
 94313 
 94303 
 94293 
 .94284 
 .94274 
 .94264 
 
 35 
 34 
 33 
 32 
 3i 
 30 
 
 3i 
 
 32 
 33 
 34 
 
 i 
 
 .26752 
 .26780 
 .26808 
 .26836 
 .26864 
 .26892 
 
 96355 
 96347 
 .96340 
 .96332 
 .96324 
 .96316 
 
 .20429 
 
 28457 
 .28485 
 
 2C 5 I 3 
 .28541 
 .28569 
 
 95*74 
 .95865 
 
 95857 
 .95849 
 .95841 
 95832 
 
 .30098 
 .30126 
 
 3 OI 54 
 .30182 
 .30209 
 .30237 
 
 95363 
 95354 
 95345 
 95337 
 95328 
 95319 
 
 31758 
 31786 
 31813 
 .31841 
 .31868 
 .31896 
 
 .94823 
 .94814 
 .94805 
 
 94795 
 .94786 
 
 91-777 
 
 33408 
 33436 
 33463 
 33490 
 33518 
 33545 
 
 94254 
 94245 
 94235 
 94225 
 
 94215 
 .94206 
 
 11 
 3 
 
 25 
 
 24 
 
 9 
 
 39 
 40 
 
 41 
 
 1 42 
 
 .26920 
 .26948 
 .26976 
 .27004 
 .27032 
 .27060 
 
 .96308 
 .96301 
 96293 
 96285 
 .96277 
 .96269 
 
 .28597 
 .28625 
 .28652 
 .28680 
 .28708 
 .28736 
 
 .95824 
 .95816 
 95807 
 95799 
 95791 
 95782 
 
 30265 
 .30292 
 .30320 
 30348 
 .30376 
 .30403 
 
 95310 
 95301 
 
 95293 
 .95284 
 
 95275 
 .95266 
 
 31923 
 3J95 1 
 31979 
 .32006 
 
 32034 
 .32061 
 
 .94768 
 94758 
 94749 
 94740 
 94730 
 94721 
 
 33573 
 33600 
 .33627 
 
 33655 
 33682 
 33710 
 
 .94196 
 .94186 
 .94176 
 .94167 
 
 94157 
 .94147 
 
 23 
 
 22 
 21 
 20 
 
 11 
 
 43 
 44 
 45 
 
 i 46 
 
 i:i 
 
 .27068 
 .27116 
 .27144 
 .27172 
 .27200 
 .27228 
 
 .96261 
 
 96253 
 .96246 
 
 96238 
 .96230 
 .96222 
 
 .287^4 
 .28792 
 28820 
 .2^847 
 28875 
 .20905 
 
 95774 
 95766 
 -95757 
 95749 
 95740 
 95732 
 
 30431 
 
 :$ 
 
 30514 
 30542 
 30570 
 
 95257 
 .95248 
 95240 
 95231 
 .95222 
 
 95213 
 
 .32089 
 .32116 
 .32144 
 .32171 
 
 32199 
 
 .32227 
 
 .94712 
 .94702 
 .94603 
 .9461)4 
 .94674 
 .CJ46CS 
 
 33737 
 33764 
 33792 
 33819 
 33846 
 33874 
 
 94137 
 .94127 
 .94118 
 .94108 
 .94098 
 .94088 
 
 !! 
 
 15 
 14 
 13 
 
 12 
 
 49 
 50 
 51 
 52 
 53 
 54 
 
 .27256 
 .27284 
 .27312 
 .27340 
 27368 
 27396 
 
 .96214 
 .96206 
 .96198 
 .96190 
 .96182 
 96174 
 
 28931 
 .28959 
 .28987 
 29015 
 .29042 
 .29070 
 
 95724 
 95715 
 
 .95698 
 .95690 
 95681 
 
 30597 
 .30625 
 
 30653 
 .30680 
 .30708 
 30736 
 
 .95204 
 
 95*95 
 .95186 
 
 95177 
 .95168 
 
 95159 
 
 32254 
 .32282 
 
 32309 
 32337 
 32364 
 32392 
 
 94656 
 .94646 
 
 94637 
 .94627 
 .94618 
 .94609 
 
 33901 
 33929 
 33956 
 33983 
 .34011 
 
 34038 
 
 .94078 
 .94068 
 .94058 
 .94049 
 
 94039 
 .94029 
 
 II 
 10 
 
 I 
 
 i 
 g 
 
 .27424 
 .27452 
 .27480 
 .27508 
 27536 
 27564 
 
 .96166 
 .96158 
 .96150 
 .96142 
 .96134 
 .96126 
 
 .29098 
 .29126 
 .29154 
 .29182 
 .29209 
 .29237 
 
 .95673 
 .95664 
 
 95656 
 95647 
 95639 
 95630 
 
 N. sine 
 
 30763 
 .30791 
 30819 
 .30846 
 .30874 
 .30902 
 
 N. cos. 
 
 95150 
 95142 
 -95*33 
 
 95124 
 
 95^5 
 .95106 
 
 .32419 
 32447 
 32474 
 32502 
 .32529 
 32557 
 
 94599 
 .94590 
 .94580 
 94571 
 9456i 
 94552 
 
 34065 
 
 34093 
 34120 
 
 34H7 
 34175 
 .34202 
 
 .94019 
 .94009 
 
 93999 
 .93989 
 
 93979 
 .93969 
 
 5 
 4 
 3 
 
 2 
 I 
 O 
 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 9 
 
 
 74 
 
 73 
 
 72 
 
 71 
 
 70 
 
8o 
 
 TABLE V. 
 
 
 2O 
 
 21 
 
 22 
 
 23 
 
 24 
 
 
 / 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 60 
 59 
 58 y 
 
 1 
 
 55 
 54 
 
 o 
 I 
 
 2 
 
 3 
 
 i 
 
 .34202 
 .34229 
 
 .34257 
 .34284 
 
 543" 
 34339 
 34366 
 
 93969 
 93959 
 93949 
 93939 
 93929 
 939 J 9 
 93909 
 
 35837 
 .35864 
 35891 
 35918 
 35945 
 35973 
 .36000 
 
 93358 
 93348 
 93337 
 93327 
 93316 
 93306 
 93295 
 
 .37461 
 37488 
 
 37515 
 37542 
 .37569 
 37595 
 .37622 
 
 37649 
 .37676 
 
 37703 
 37730 
 37757 
 37784 
 
 .92718 
 .92707 
 .92697 
 .92686 
 
 .92675 
 .92664 
 
 92653 
 
 39073 
 .39100 
 .39127 
 
 39153 
 .39180 
 .39207 
 39234 
 
 .92050 
 .92039 
 .92028 
 .92016 
 .92005 
 .91994 
 .91982 
 
 .40674 
 .40700 
 .40727 
 
 40753 
 .40780 
 .40806 
 40833 
 .40860 
 .40886 
 .40913 
 .40939 
 
 .40992 
 
 91355 
 91343 
 91331 
 913*9 
 91307 
 .91295 
 .91283 
 
 i 
 
 9 
 
 10 
 
 ii 
 
 12 
 
 34393 
 .34421 
 
 34448 
 34475 
 3453 
 34530 
 
 .93899 
 .93889 
 .93879 
 93869 
 93859 
 .93849 
 
 .36027 
 
 36054 
 .36081 
 .36108 
 
 36135 
 .36162 
 
 93285 
 93274 
 .93264 
 
 93253 
 93243 
 9323 2 
 
 .92642 
 .92631 
 .92620 
 .92609 
 92598 
 92587 
 
 .39260 
 .39287 
 39314 
 39341 
 39367 
 39394 
 
 .91971 
 
 9*959 
 .91948 
 .91936 
 .91925 
 .91914 
 
 .91272 
 .91260 
 .91248 
 .91236 
 .91224 
 .91212 
 
 53 
 52 
 5i 
 50 
 49 
 48 
 
 13 
 H 
 
 !i 
 [I 
 
 34557 
 34584 
 .34612 
 
 34639 
 .34666 
 
 34694 
 
 93839 
 .93829 
 
 93819 
 .93809 
 
 93799 
 
 .36190 
 .36217 
 
 36244 
 .36271 
 .36298 
 36325 
 
 .93222 
 .93211 
 .93201 
 .93190 
 .93180 
 .93169 
 
 .37811 
 37838 
 37865 
 37892 
 37919 
 37946 
 
 .92576 
 92565 
 92554 
 92543 
 92532 
 .92521 
 
 .39421 
 .39448 
 39474 
 39501 
 39528 
 39555 
 
 .91902 
 
 .91879 
 .91868 
 .91856 
 .91845 
 
 .41019 
 .41045 
 .41072 
 .41098 
 .41125 
 .41151 
 
 .91200 
 .91188 
 .91176 
 .97164 
 .91152 
 .91140 
 
 47 
 46 
 
 45 
 44 
 43 
 42 
 
 19 
 20 
 
 21 
 22 
 
 23 
 
 24 
 
 34721 
 34748 
 
 34803 
 34830 
 34857 
 
 93779 
 93769 
 93759 
 93748 
 93738 
 .93728 
 
 36352 
 3637? 
 .36406 
 
 36434- 
 .36461 
 .36488 
 
 93159 
 .93148 
 
 93137 
 93127 
 .93116 
 93106 
 
 37973 
 37999 
 .38026 
 
 38*053 
 .38080 
 .38107 
 
 .92510 
 
 92499 
 .92488 
 
 92477 
 .92466 
 
 92455 
 
 3958i 
 .39608 
 
 19688 
 39715 
 
 91833 
 .91822 
 .91810 
 .91799 
 .91787 
 9 J 775 
 
 .41178 
 .41204 
 .41231 
 
 .41257 
 .41284 
 .41310 
 
 .91128 
 .91116 
 
 .91104 
 .91092 
 .91080 
 .91068 
 
 41 
 40 
 
 fs 
 
 11 
 
 2 
 2 
 
 29 
 30 
 
 .34884 
 .34912 
 
 34939 
 .34966 
 
 34993 
 35021 
 
 93718 
 93708 
 .93698 
 93688 
 .93677 
 93667 
 
 36515 
 36542 
 36569 
 .36596 
 36623 
 .36650 
 
 93095 
 .93084 
 
 93074 
 93063 
 93052 
 93042 
 
 38134 
 .38161 
 .38188 
 .38215 
 .38241 
 .38268 
 
 92444 
 92432 
 .92421 
 .92410 
 .92399 
 .92388 
 
 39741 
 39768 
 
 39795 
 39822 
 .39848 
 39875 
 
 .91764 
 
 91752 
 .91741 
 .91729 
 .91718 
 .91706 
 
 41337 
 41363 
 .41390 
 .41416 
 
 41443 
 .41469 
 
 .91056 
 .91044 
 .91032 
 .91020 
 .91008 
 .90996 
 
 35 
 34 
 33 
 32 
 3i 
 30 
 
 3i 
 32 
 33 
 
 34 
 
 8 
 
 35048 
 
 35075 
 35102 
 
 35130 
 35157 
 35184 
 
 93657 
 93647 
 .93637 
 .93626 
 .93616 
 .93606 
 
 .36677 
 36704 
 .36731 
 .36758 
 36785 
 .36812 
 
 93031 
 .93020 
 .93010 
 
 .92978 
 
 .38295 
 38322 
 .3f349 
 38376 
 38403 
 38430 
 
 .92377 
 .92366 
 92355 
 92343 
 92332 
 92321 
 
 .39902 
 .39928 
 
 39955 
 .39982 
 .40008 
 40035 
 
 .91694 
 .91683 
 .91671 
 .91660 
 .91648 
 91636 
 
 .41496 
 .41522 
 41549 
 .41575 
 .41602 
 .41628 
 
 .90984 
 .90972 
 .90960 
 .90948 
 .90936 
 .90924 
 
 27 
 26 
 
 25 
 
 24 
 
 23" 
 
 22 
 21 
 2O 
 19 
 
 P 
 
 39 
 40 
 
 4i 
 42 
 
 35 211 
 .35239 
 .35266 
 
 .35293 
 35320 
 35347 
 
 93596 
 93585 
 93575 
 93565 
 93555 
 93544 
 
 36839 
 .36867 
 
 .36894 
 36921 
 .36948 
 
 36975 
 
 .92967 
 92956 
 92945 
 92935 
 .92924 
 .92913 
 
 38456 
 38483 
 .38510 
 
 .38537 
 .38564 
 38591 
 
 .92310 
 .92299 
 .92287 
 .92276 
 .92265 
 92254 
 
 .40062 
 .40088 
 .40115 
 .40141 
 .40168 
 .40195 
 
 .91625 
 .91613 
 .91601 
 .91590 
 91578 
 .91566 
 
 41655 
 .41681 
 .41707 
 
 41734 
 .41760 
 .41787 
 
 !9o875 
 .90863 
 90851 
 
 43 
 44 
 
 g 
 
 48 
 
 35375 
 35402 
 
 35429 
 35456 
 35484 
 355" 
 
 93534 
 93524 
 935'4 
 93503 
 93493 
 93483 
 
 .37002 
 .37029 
 37056 
 37083 
 .37110 
 -37137 
 
 .92902 
 .92892 
 .92881 
 .92870 
 .92859 
 .92849 
 
 .38617 
 
 .38644 
 .38671 
 38698 
 .38725 
 38752 
 
 92243 
 .92231 
 .92220 
 .92209 
 .92198 
 .92186 
 
 .40221 
 .40248 
 40275 
 40301 
 .40328 
 
 .40355 
 
 91555 
 91543 
 9i53i 
 9I5J9 
 .91508 
 .91496 
 
 .41813 
 .41840 
 .41866 
 .41892 
 .41919 
 41945 
 
 90839 
 .90826 
 .90814 
 .90802 
 .90790 
 .90778 
 
 !Z 
 
 15 
 H 
 13 
 
 12 
 
 ~II~~ 
 10 
 
 I 
 
 49 
 50 
 51 
 52 
 53 
 S4 
 
 35538 
 35565 
 35592 
 356i9 
 .35647 
 35674 
 
 93472 
 93462 
 93452 
 93441 
 93431 
 .93420 
 
 37164 
 37I9I 
 .37218 
 
 .37245 
 .37272 
 
 .37299 
 
 .92838 
 .92827 
 .92816 
 .92805 
 .92794 
 .92784 
 
 .38778 
 .38805 
 38832 
 
 38859 
 . 3 8856 
 .38912 
 
 92175 
 .92164 
 .92152 
 .92141 
 .92130 
 .92119 
 
 .40381 
 .40408 
 .40434 
 .40461 
 .40488 
 .40514 
 
 .91484 
 .91472 
 .91461 
 .91449 
 
 9H37 
 .91425 
 
 .41972 
 .41998 
 .42024 
 .42051 
 .42077 
 .42104 
 
 .90766 
 
 90753 
 .90741 
 .90729 
 .90717 
 .90704 
 
 ft 
 
 5 58 7 
 S 
 
 35701 
 .35728 
 
 35755 
 .35782 
 35810 
 35837 
 
 .93410 
 .93400 
 93389 
 93379 
 93368 
 93358 
 
 .37326 
 37353 
 37380 
 37407 
 37434 
 .37461 
 
 92773 
 .92762 
 
 92751 
 .92740 
 .92729 
 .92718 
 
 38939 
 .38966 
 
 38993 
 .39020 
 
 39046 
 39073 
 
 .92107 
 .92096 
 .92085 
 .92073 
 .92062 
 .92050 
 
 .40541 
 .40567 
 .40594 
 .40621 
 .40647 
 .40674 
 
 .91414 
 .91402 
 .91390 
 91378 
 .91366 
 
 91355 
 
 .42130 
 .42156 
 .42183 
 .42205 
 
 42235 
 .42262 
 
 ! 90668 
 90655 
 90643 
 .90631 
 
 5 
 4 
 3 
 
 
 I 
 
 
 
 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 f 
 
 69 
 
 6' 
 
 67 
 
 66 
 
 65 
 
NATURAL SINES AND COSINES. 
 
 8l 
 
 Vw 
 
 2, 
 
 5 
 
 2< 
 
 J 
 
 2' 
 
 r 
 
 21 
 
 * 
 
 21 
 
 > 
 
 
 / 
 
 ^. sine 
 
 \. cos. 
 
 X. sine 
 
 N. cos. 
 
 \. sine 
 
 \. cos. 
 
 N T . sine 
 
 ^. cos. 
 
 N. sine 
 
 N. cos. 
 
 
 o 
 I 
 
 2 
 
 3 
 4 
 
 I 
 
 .42262 
 .42288 
 
 42315 
 .42341 
 .42367 
 .42394 
 
 .42420 
 
 .90631 
 .90618 
 .90606 
 
 90594 
 .90582 
 
 .90569 
 90557 
 
 43837 
 43863 
 43889 
 .43916 
 43942 
 .43968 
 43994 
 
 .89879 
 .89867 
 .89854 
 .89841 
 .89828 
 .89816 
 .89803 
 
 45399 
 45425 
 45451 
 45477 
 45503 
 45529 
 45554 
 
 .89101 
 
 .89087 
 .89074 
 .89061 
 .89048 
 89035 
 
 .89021 
 
 .46947 
 46973 
 46999 
 .47024 
 .47050 
 .47076 
 .47101 
 
 .88295 
 .88281 
 .88267 
 .88254 
 .88240 
 .88226 
 .88213 
 
 .48481 
 .48506 
 48532 
 48557 
 48583 
 .48608 
 .48634 
 
 .87462 
 .87448 
 
 87434 
 .87420 
 .87406 
 .87391 
 .87377 
 
 60 
 59 
 5* 
 57 
 5 
 55 
 
 54 
 
 I 
 
 9 
 
 10 
 
 ii 
 
 12 
 
 .42446 
 
 42473 
 .42499 
 
 42525 
 42552 
 .42578 
 
 90545 
 90532 
 .90520 
 .90507 
 .90495 
 .90483 
 
 .44020 
 .44046 
 .44072 
 .44098 
 .44124 
 44151 
 
 .89790 
 
 89777 
 .89764 
 
 8975 2 
 89739 
 .89726 
 
 .4558o 
 .45606 
 45632 
 45658 
 .45684 
 45710 
 
 ^88968 
 
 88955 
 .88942 
 
 .47127 
 
 47153 
 .47178 
 .47204 
 .47229 
 47255 
 
 .88199 
 .88185 
 .88172 
 .88158 
 .88144 
 .88130 
 
 48659 
 .48684 
 .48710 
 
 .48735 
 .48761 
 .48786 
 
 87363 
 87349 
 87335 
 .87321 
 .87306 
 .87292 
 
 53 
 52 
 5i 
 50 
 49 
 48 
 
 13 
 
 H 
 
 !i 
 jl 
 
 .42604 
 .42631 
 .42657 
 42683 
 .42709 
 42736 
 
 .90470 
 .90458 
 .90446 
 
 90433 
 .90421 
 
 .90408 
 
 44177 
 .44203 
 .44229 
 
 44255 
 .44281 
 
 44307 
 
 89713 
 .89700 
 .89687 
 
 .89674 
 .89662 
 .89649 
 
 45736 
 .45762 
 
 45787 
 45813 
 45839 
 45865 
 
 .88928 
 88915 
 .88902 
 
 .88888 
 88875 
 .88862 
 
 .47281 
 47306 
 47332 
 47358 
 4733 
 .47409 
 
 .88117 
 .88103 
 .88089 
 
 .88075 
 .88062 
 .88048 
 
 .48811 
 
 48837 
 .48862 
 .48888 
 .48913 
 48938 
 
 .87278 
 .87264 
 .87250 
 87235 
 .87221 
 .87207 
 
 47 
 46 
 
 45 
 44 
 43 
 42 
 
 19 
 
 20 
 21 
 22 
 
 23 
 
 24 
 
 .42762 
 .42788 
 
 42815 
 .42841 
 .42867 
 .42894 
 
 .90396 
 
 90383 
 .90371 
 
 90358 
 .90346 
 
 90334 
 
 44333 
 44359 
 44385 
 .44411 
 
 44437 
 44464 
 
 .89636 
 .89623 
 .89610 
 
 89597 
 .89584 
 
 89571 
 
 .45891 
 45917 
 .45942 
 .45968 
 
 45994 
 .46020 
 
 .88848 
 .88835 
 .88822 
 .88808 
 .88795 
 .88782 
 
 47434 
 .47460 
 .47486 
 
 475 
 47537 
 .47562 
 
 .88034 
 .88020 
 .88006 
 87993 
 
 87979 
 
 .87965 
 
 .48964 
 .48989 
 .49014 
 .49040 
 .49065 
 .49090 
 
 87193 
 .87178 
 .87164 
 87150 
 .87136 
 .87121 
 
 41 
 40 
 
 P 
 
 M 
 
 2 
 
 3 
 
 29 
 30 
 
 .42920 
 .42946 
 42972 
 .42999 
 43025 
 43051 
 
 .90321 
 .90309 
 .90296 
 
 .90284 
 
 .90271 
 .90259 
 
 .44490 
 .44516 
 .44542 
 .44568 
 
 44594 
 .44620 
 
 .89558 
 89545 
 89532 
 89519 
 .89506 
 .89493 
 
 .46046 
 .46072 
 .46097 
 .46123 
 .46149 
 46i75 
 
 .88768 
 
 88755 
 .88741 
 .88728 
 88715 
 .88701 
 
 47588 
 476i4 
 .47639 
 47665 
 .47690 
 .47716 
 
 8795! 
 87937 
 .87923 
 .87909 
 .87896 
 
 .87882 
 
 .49116 
 .49141 
 .49166 
 .49192 
 .49217 
 .49242 
 
 .87107 
 .87093 
 .87079 
 .87064 
 .87050 
 .87036 
 
 35 , 
 34 
 33 
 32 
 3i 
 30 
 
 31 
 32 
 33 
 34 
 
 35 
 36 
 
 4377 
 .43104 
 
 43130 
 43156 
 .43182 
 .43209 
 
 .90246 
 
 .90233 
 
 .90221 
 .90208 
 
 .90196 
 .90183 
 
 .44646 
 .44672 
 .44698 
 44724 
 44750 
 .44776 
 
 .89480 
 .89467 
 .89454 
 .89441 
 .89428 
 .89415 
 
 .46201 
 .46226 
 .46252 
 .46278 
 .46304 
 46330 
 
 .88688 
 .88674 
 .88661 
 .88647 
 .88634 
 .88620 
 
 47741 
 47767 
 47793 
 .47818 
 
 47844 
 .47869 
 
 .87868 
 .87854 
 
 .87840 
 .87826 
 .87812 
 
 .87798 
 
 .49268 
 .49293 
 .49318 
 49344 
 49369 
 49394 
 
 .87021 
 .87007 
 .86993 
 .86978 
 .86964 
 .86949 
 
 i 
 
 27 
 26 
 
 25 
 24 
 
 11 
 
 39 
 40 
 4i 
 42 
 
 43235 
 .43261 
 .43287 
 
 43313 
 43340 
 43366 
 
 .90171 
 .90158 
 .90146 
 .90133 
 
 .90120 
 .90108 
 
 .44802 
 .44828 
 .44854 
 .44880 
 .44906 
 .44932 
 
 .89402 
 .89389 
 89376 
 89363 
 89350 
 89337 
 
 46355 
 .46381 
 .46407 
 .46433 
 46458 
 .46484 
 
 .88607 
 .88593 
 .88580 
 .88566 
 88553 
 88539 
 
 47895 
 .47920 
 .47946 
 47971 
 47997 
 .48022 
 
 .87784 
 .87770 
 .87756 
 87743 
 .87729 
 
 87715 
 
 .49419 
 
 49445 
 .49470 
 
 49495 
 .49521 
 .49546 
 
 86935 
 .86921 
 
 !86878 
 .86863 
 
 23 
 
 22 
 21 
 20 
 19 
 
 43 
 44 
 45 
 46 
 
 47 
 1 48 
 
 43392 
 .43418 
 
 43445 
 43471 
 43497 
 43523 
 
 90095 
 .90082 
 .90070 
 .90057 
 .90045 
 .90032 
 
 .44958 
 .44984 
 45010 
 
 45036 
 .45062 
 .45088 
 
 89324 
 .89311 
 .89298 
 .89285 
 .89272 
 .89259 
 
 .46510 
 46536 
 .46561 
 .46587 
 .46613 
 46639 
 
 .88526 
 .88512 
 .88499 
 .88485 
 .88472 
 .88458 
 
 .48048 
 .48073 
 .48099 
 .48124 
 .48150 
 48i75 
 
 .87701 
 .87687 
 
 87673 
 .87659 
 
 .87645 
 
 .87631 
 
 49571 
 .49596 
 .49622 
 .49647 
 .49672 
 49697 
 
 .86849 
 .86834 
 .86820 
 .86805 
 .86791 
 86777 
 
 || 
 
 *5 
 14 
 
 *3 
 
 12 
 
 49 
 50 
 51 
 
 52 
 53 
 54 
 
 43549 
 43575 
 .43002 
 43628 
 
 43654 
 .43680 
 
 .90019 
 .90007 
 
 .89994 
 .89981 
 
 .89968 
 .89956 
 
 45 "4 
 .45140 
 .45166 
 .45192 
 .45218 
 45243 
 
 89245 
 .89232 
 .89219 
 .89206 
 .89193 
 .89180 
 
 .46664 
 .46690 
 .46716 
 .46742 
 .46767 
 46793 
 
 .88445 
 .88431 
 .88417 
 .88404 
 .88390 
 88377 
 
 .48201 
 .48226 
 .48252 
 .48277 
 
 48303 
 .48328 
 
 .87617 
 .87603 
 
 .87589 
 87575 
 .87561 
 .87546 
 
 49723 
 49748 
 
 49773 
 .49798 
 .49824 
 .49849 
 
 .86762 
 .86748 
 
 86733 
 .86719 
 .86704 
 .86690 
 
 II 
 10 
 
 7 
 
 58 
 60 
 
 .43706 
 43733 
 43759 
 43785 
 438" 
 .43837 
 
 .89943 
 .89930 
 .89918 
 
 89879 
 
 .45269 
 
 .45295 
 45321 
 45347 
 45373 
 45399 
 
 .89167 
 
 .89153 
 .89140 
 .89127 
 .89114 
 .89101 
 
 .46819 
 .46844 
 .46870 
 .46896 
 .46921 
 46947 
 
 .88363 
 .88349 
 88336 
 .88322 
 .88308 
 .88295 
 
 .48354 
 .48379 
 .48405 
 .48430 
 .48456 
 .48481 
 
 87532 
 .87518 
 87504 
 .87490 
 .87476 
 .87462 
 
 .49874 
 .49899 
 .49924 
 .49950 
 49975 
 .50000 
 
 .86675 
 .86661 
 .86646 
 .86632 
 .86617 
 .86603 
 
 5 
 4 
 3 
 
 2 
 I 
 O 
 
 
 N. cos 
 
 N. sine 
 
 N. cos 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos 
 
 N. sine 
 
 N. cos. 
 
 N.sine 
 
 / 
 
 1 
 
 
 
 4 
 
 6 
 
 3 
 
 6 
 
 2 
 
 e 
 
 1 
 
 
 
 
 
 
TABLE V. 
 
 
 30 
 
 31 
 
 32 
 
 33 
 
 34 
 
 
 f 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 
 
 
 I 
 
 2 
 
 3 
 4 
 
 | 
 
 .50000 
 50025 
 .50050 
 .50076 
 .50101 
 .50126 
 .50151 
 
 .86603 
 .86588 
 86573 
 86559 
 .86544 
 .86530 
 .86515 
 
 51504 
 51529 
 51554 
 51579 
 .51604 
 .51628 
 5 l6 53 
 
 .85717 
 .85702 
 .85687 
 .85672 
 
 85657 
 .85642 
 -85627 
 
 .52992 
 53017 
 53041 
 .53066 
 
 53091 
 53H5 
 53 HO 
 
 .84805 
 .84789 
 .84774 
 84759 
 84743 
 .84728 
 .84712 
 
 54464 
 .54488 
 54513 
 54537 
 .54561 
 54586 
 .54610 
 
 .83867 
 83851 
 83835 
 83819 
 .83804 
 83788 
 .83772 
 
 .55919 
 
 55943 
 55968 
 55992 
 .56016 
 .56040 
 .56064 
 
 ^82871 
 .82855 
 .82839 
 .82822 
 .82806 
 
 60 
 
 II 
 H 
 
 55 
 54 
 
 2 
 
 9 
 
 10 
 
 ii 
 
 12 
 
 50176 
 .50201 
 .50227 
 .50252 
 .50277 
 50302 
 
 .86501 
 .86486 
 .86471 
 
 .86457 
 .86442 
 .86427 
 
 .51678 
 
 STO 
 .51728 
 
 51753 
 
 
 
 .85612 
 85597 
 85582 
 85567 
 85551 
 85536 
 
 53164 
 53189 
 53214 
 53238 
 53263 
 5328S 
 
 .84697 
 .84681 
 .84666 
 .84650 
 
 84635 
 .84619 
 
 54635 
 54659 
 54683 
 .54708 
 54732 
 54756 
 
 .83750 
 .83740 
 .83724 
 .83708 
 .83692 
 .83676 
 
 .56088 
 .56112 
 
 56136 
 .56160 
 .56184 
 .56208 
 
 .82790 
 82773 
 .82757 
 .82741 
 .82724 
 .82708 
 
 53 
 52 
 5i 
 50 
 49 
 48 
 
 13 
 14 
 
 is 
 [I 
 
 50327 
 50352 
 50377 
 50403 
 .50428 
 
 5453 
 
 .86413 
 .86398 
 .86384 
 .86369 
 86354 
 .86340 
 
 .51828 
 .51852 
 
 51877 
 .51902 
 
 51927 
 5!952 
 
 85521 
 .85506 
 .85491 
 .85476 
 .85461 
 .85446 
 
 533 12 
 53337 
 5336i 
 53386 
 
 -534" 
 
 53435 
 
 .84604 
 .84588 
 84573 
 84557 
 84542 
 .84526 
 
 5478i 
 54805 
 54829 
 54854 
 .54878 
 .54902 
 
 .83660 
 
 83645 
 .83629 
 
 83613 
 83597 
 .83581 
 
 .56232 
 .56256 
 .56280 
 56305 
 56329 
 .56353 
 
 .82692 
 .82675 
 .82659 
 .82643 
 .82626 
 .82610 
 
 47 
 46 
 
 45 
 44 
 43 
 42 
 
 19 
 
 20 
 21 
 22 
 23 
 
 24 
 
 .50478 
 50503 
 50528 
 
 50553 
 .50578 
 .50603 
 
 .86325 
 .86310 
 
 ! 86266 
 .86251 
 
 51977 
 .52002 
 .52026 
 
 52051 
 .52076 
 .52101 
 
 85431 
 85416 
 
 .85401 
 85385 
 85370 
 85355 
 
 53460 
 .53484 
 53509 
 53534 
 53558 
 53583 
 
 .84511 
 84495 
 .84480 
 .84464 
 .84448 
 84433 
 
 54927 
 54951 
 54975 
 54999 
 55024 
 55048 
 
 83565 
 83549 
 83533 
 83517 
 83501 
 83485 
 
 56377 
 .56401 
 
 56425 
 56449 
 56473 
 56497 
 
 82593 
 82577 
 .82561 
 82544 
 .82528 
 .82511 
 
 41 
 40 
 
 1 
 
 II 
 
 3 
 
 29 
 
 30 
 
 .50628 
 
 50654 
 .50679 
 .50704 
 .50729 
 .50754 
 
 86237 
 .86222 
 .86207 
 .86192 
 .86178 
 .86163 
 
 .52126 
 52151 
 52175 
 .52200 
 .52225 
 52250 
 
 85340 
 
 85325 
 .85310 
 .85294 
 .85279 
 .85264 
 
 53607 
 53632 
 53656 
 .53681 
 53705 
 5373 
 
 .84417 
 .84402 
 .84386 
 .84370 
 .84355 
 84339 
 
 55072 
 55097 
 55I2I 
 55145 
 55169 
 55194 
 
 .83469 
 83453 
 83437 
 .83421 
 
 83405 
 83389 
 
 56521 
 56545 
 56569 
 56593 
 56617 
 .56641 
 
 .82495 
 .82478 
 .82462 
 .82446 
 .82429 
 .82413 
 
 35 
 34 
 33 
 32 
 31 
 30 
 
 '11 
 
 11 
 
 25 
 
 24 
 
 3i 
 32 
 33 
 
 34 
 
 ii 
 
 .50779 
 .50804 
 .50829 
 
 50854 
 .50879 
 .50904 
 
 .86148 
 86133 
 .86119 
 .86104 
 .86089 
 .86074 
 
 52275 
 52299 
 52324 
 52349 
 52374 
 52399 
 
 .85249 
 
 85234 
 .85218 
 .85203 
 .85188 
 85173 
 
 53754 
 53779 
 53804 
 .53828 
 
 53853 
 53877 
 
 .84324 
 .84308 
 .84292 
 .84277 
 .84261 
 
 84245 
 
 .55218 
 55242 
 55266 
 55291 
 55315 
 55339 
 
 83373 
 83356 
 .83340 
 83324 
 .83308 
 .83292 
 
 .56665 
 .56689 
 
 56736 
 .56760 
 .56784 
 
 .82396 
 .82380 
 82363 
 
 82347 
 82330 
 82314 
 
 11 
 
 39 
 40 
 
 4i 
 42 
 
 .50929 
 50954 
 50979 
 .51004 
 .51029 
 51054 
 
 .86059 
 .86045 
 .86030 
 .86015 
 .86000 
 85985 
 
 5 2 423 
 .52448 
 
 52473 
 .52498 
 .52522 
 52547 
 
 .85157 
 85142 
 .85127 
 .85112 
 .85096 
 .85081 
 
 53902 
 53926 
 53951 
 53975 
 .54000 
 .54024 
 
 84230 
 .84214 
 .84198 
 .84182 
 .84167 
 .84151 
 
 :P 
 
 55412 
 55436 
 55460 
 55484 
 
 83276 
 .83260 
 .83244 
 .83228 
 .83212 
 83195 
 
 .56808 
 .56832 
 
 '56904 
 .56928 
 
 .82297 
 .82281 
 .82264 
 .82248 
 .82231 
 .82214 
 
 23 
 
 22 
 21 
 2O 
 
 43 
 44 
 
 1 
 
 2 
 
 51079 
 .51104 
 .51129 
 5H54 
 5H79 
 .51204 
 
 .85970 
 85956 
 .85941 
 .85926 
 .85911 
 .85896 
 
 5 2 572 
 52597 
 52621 
 .52646 
 .52671 
 .52696 
 
 .85066 
 85051 
 
 85035 
 .85020 
 .85005 
 .84989 
 
 .54049 
 54073 
 54097 
 .54122 
 .54146 
 .54171 
 
 84135 
 .84120 
 .84104 
 .84088 
 .84072 
 .84057 
 
 55509 
 55533 
 55557 
 5558i 
 55605 
 55630 
 
 83179 
 83163 
 83147 
 83131 
 .83115 
 .83098 
 
 .56952 
 .56976 
 .57000 
 57024 
 57047 
 57071 
 
 .82198 
 .82181 
 .82165 
 .82148 
 .82132 
 .82115 
 
 \l 
 
 15 
 H 
 '3 
 12 
 
 49 
 50 
 51 
 52 
 53 
 54 
 
 .51229 
 51254 
 51279 
 5 I 34 
 5 I 3 2 9 
 :5i354 
 
 .85881 
 .85866 
 .85851 
 .85836 
 .85821 
 .85806 
 
 .52720 
 52745 
 52770 
 .52794 
 .52819 
 52844 
 
 84974 
 .84959 
 .84943 
 .84928 
 .84913 
 .84897 
 
 54195 
 .54220 
 
 54244 
 .54269 
 
 54293 
 54317 
 
 .84041 
 .84025 
 .84009 
 83994 
 .83978 
 .83962 
 
 55654 
 55678 
 55702 
 55726 
 55750 
 55775 
 
 .83082 
 .83066 
 .83050 
 83034 
 83017 
 .83001 
 
 57095 
 57"9 
 57143 
 .57167 
 .57191 
 57215 
 
 .82098 
 .82082 
 .82065 
 .82048 
 .82032 
 .82015 
 
 II 
 10 
 
 | 
 
 P 
 
 R 
 
 e 
 
 5 I 379 
 .51404 
 .51429 
 51454 
 S479 
 51504 
 
 .85792 
 
 85777 
 .85762 
 85747 
 85732 
 85717 
 
 .52869 
 
 52893 
 .52918 
 
 52943 
 52967 
 .52992 
 
 .84882 
 .84866 
 .84851 
 .84836 
 .84820 
 .84805 
 
 54342 
 .54366 
 54391 
 .54415 
 .54440 
 .54464 
 
 .83946 
 83930 
 
 83915 
 .83899 
 .83883 
 83867 
 
 55799 
 55823 
 .55847 
 55871 
 55895 
 55919 
 
 .82985 
 .82969 
 
 82953 
 .82936 
 .82920 
 .82904 
 
 5723* 
 .57262 
 .57286 
 57310 
 .57334 
 57358 
 
 .81999 
 .81982 
 
 81965 
 .81949 
 .81932 
 81915 
 
 5 
 4 
 3 
 
 2 
 I 
 O 
 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 f 
 
 
 59 
 
 . 68 
 
 57 
 
 56 
 
 55 
 
 
NATURAL SINES AND COSINES. 8 
 
 
 35 
 
 36 
 
 37 
 
 38 
 
 39 
 
 1 
 
 f 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 
 
 
 i 
 
 2 
 
 3 
 4 
 
 I 
 
 57358 
 573^1 
 57405 
 57429 
 57453 
 57477 
 57501 
 
 81915 
 .81899 
 .81882 
 .81865 
 .81848 
 .81832 
 .81815 
 
 .58779 
 .58802 
 .58826 
 .58849 
 
 58873 
 .58896 
 .58920 
 
 .80902 
 .80885 
 .80867 
 .80850 
 .80833 
 .80816 
 .80799 
 
 .60182 
 .60205 
 .60228 
 .60251 
 .60274 
 .60298 
 .60321 
 
 .79864 
 .79846 
 .79829 
 .79811 
 79793 
 79776 
 79758 
 
 .61566 
 61589 
 .61612 
 61635 
 .61658 
 .61681 
 .61704 
 
 .78801 
 78783 
 78765 
 .78747 
 .78729 
 .78711 
 .78694 
 
 .62932 
 
 62955 
 .62977 
 .63000 
 .63022 
 63045 
 .63068 
 
 .77715 
 .77696 
 77678 
 .77660 
 .77641 
 .77623 
 .77605 
 
 60 
 
 * 
 
 H 
 
 55 ' 
 54 I 
 
 I 
 
 9 
 
 1C 
 
 ii 
 
 12 
 
 13 
 
 14 
 
 3 
 
 17 
 18 
 
 57524 
 57548 
 57572 
 57596 
 57619 
 57643 
 
 .81798 
 .81782 
 .81765 
 .81748 
 .81731 
 .81714 
 
 58943 
 58967 
 .58990 
 .59014 
 
 59037 
 .59061 
 
 .80782 
 .80765 
 .80748 
 .80730 
 .80713 
 .80696 
 
 .60344 
 .60367 
 .60390 
 .60414 
 .60437 
 .60460 
 
 79741 
 79723 
 .79706 
 .79688 
 .79671 
 79653 
 
 .61726 
 
 6i749 
 .61772 
 .61795 
 
 !6i84i 
 
 .78676 
 .78658 
 .78640 
 .78622 
 .78604 
 .78586 
 
 .63090 
 63113 
 
 I 3 ! 3 ! 
 
 .63180 
 63203 
 
 77586 
 77568 
 77550 
 77531 
 77513 
 77494 
 
 53 
 52 
 5i 
 So 
 49 
 48 
 
 .57667 
 57691 
 57715 
 57738 
 57762 
 57786 
 
 .81698 
 .81681 
 .81664 
 .81647 
 .81631 
 .81614 
 
 .59084 
 .59108 
 59I3I 
 59154 
 .59178 
 .59201 
 
 .80679 
 .80662 
 .80644 
 .80627 
 .80610 
 80593 
 
 .60483 
 .60506 
 60529 
 
 60553 
 .60576 
 .60599 
 
 .79635 
 .79618 
 .79600 
 .79583 
 79565 
 79547 
 
 .61864 
 .61887 
 .61909 
 .61932 
 
 .61955 
 .61978 
 
 . 78568 
 78550 
 78532 
 .785H 
 .78496 
 .78478 
 
 63225 
 .63248 
 .63271 
 63293 
 63316 
 63338 
 
 .77476 
 77458 
 
 77439 
 .77421 
 .77402 
 77384 
 
 47 
 46 
 
 45 
 44 
 43 
 42 
 
 19 
 
 20 
 21 
 22 
 
 23 
 
 2 4 
 
 57810 
 57833 
 57857 
 .57881 
 
 57904 
 .57928 
 
 igg 
 
 .81563 
 .81546 
 .81530 
 81513 
 
 59225 
 .59248 
 .59272 
 
 59295 
 59318 
 59342 
 
 .80576 
 .80558 
 .80541 
 .80524 
 .80507 
 .80489 
 
 .60622 
 .60645 
 .60668 
 .60691 
 .60714 
 60738 
 
 79530 
 79512 
 79494 
 79477 
 79459 
 .79441 
 
 .62001 
 .62024 
 .62046 
 .62069 
 .62092 
 .62115 
 
 .78460 
 .78442 
 .78424 
 .78405 
 
 78387 
 .78369 
 
 .63361 
 
 * 338 2 
 
 .63406 
 
 .63428 
 63451 
 63473 
 
 .77366 
 77347 
 77329 
 .77.310 
 .77292 
 .77273 
 
 41 
 40 
 
 I 
 
 3 
 2 
 
 29 
 30 
 
 57952 
 .57976 
 
 57999 
 -58023 
 .58047 
 .58070 
 
 .81496 
 
 .81479 
 .81462 
 .81445 
 .81428 
 .81412 
 
 59365 
 59389 
 .59412 
 
 .59436 
 -59459 
 .59482 
 
 .80472 
 80*455 
 80438 
 .80420 
 .80403 
 .80386 
 
 .60761 
 .60784 
 .60807 
 .60830 
 .60853 
 .60876 
 
 .79424 
 .79406 
 .79388 
 79371 
 79353 
 79335 
 
 .62138 
 .62160 
 .62183 
 .62206 
 .62229 
 .62251 
 
 78351 
 78333 
 78315 
 .78297 
 .78279 
 .78261 
 
 .63496 
 .63518 
 63540 
 63563 
 63585 
 .63608 
 
 77255 
 77236 
 .77218 
 .77199 
 .77181 
 .77162 
 
 35 
 34 
 33 
 32 
 3i 
 30 
 
 31 
 32 
 33 
 34 
 
 g 
 
 .58094 
 .58118 
 .58141 
 .58165 
 .58189 
 .58212 
 
 .81395 
 81378 
 .81361 
 .81344 
 81327 
 .81310 
 
 59506 
 -59529 
 59552 
 59576 
 59599 
 .59622 
 
 .80368 
 .80351 
 80334 
 .80316 
 .80299 
 .80282 
 
 .60899 
 .60922 
 .60945 
 .60968 
 .60991 
 .61015 
 
 793 l8 
 .79300 
 .79282 
 .79264 
 .79247 
 .79229 
 
 .62274 
 .62297 
 .62320 
 .62342 
 62365 
 .62388 
 
 .78243 
 .78225 
 .78206 
 .78188 
 .78170 
 78152 
 
 .63630 
 .63653 
 63675 
 .63698 
 .63720 
 63742 
 
 77144 
 77125 
 .77107 
 .77088 
 .77070 
 77051 
 
 2 
 25 
 
 24 
 
 S 
 
 39 
 40 
 
 4i 
 
 42 
 
 58236 
 .58260 
 .58283 
 58307 
 58330 
 58354 
 
 81293 
 .81276 
 .81259 
 .81242 
 .81225 
 .81208 
 
 59646 
 .59669 
 
 59693 
 59716 
 59739 
 59/63 
 
 .80264 
 .80247 
 .80230 
 .80212 
 .80195 
 .80178 
 
 .61038 
 .61061 
 .61084 
 .61107 
 .61130 
 6"53 
 
 .79211 
 
 .79193 
 .79176 
 
 79158 
 .79140 
 .79122 
 
 .62411 
 
 62433 
 .62456 
 .62479 
 .62502 
 .62524 
 
 78i34 
 .78116 
 .78098 
 .78079 
 .78061 
 .78043 
 
 63765 
 .63787 
 .63810 
 .63832 
 .63854 
 .63877 
 
 77033 
 .77014 
 .76996 
 .76977 
 
 76959 
 .76940 
 
 23 
 
 22 
 21 
 2O 
 
 "il 
 
 15 
 
 H 
 13 
 
 12 
 
 43 
 
 44 
 45 
 46 
 47 
 
 48 
 
 58378 
 .58401 
 
 58425 
 .58449 
 .58472 
 .58496 
 
 .81191 
 .81174 
 
 8n57 
 .81140 
 .81123 
 .81106 
 
 59786 
 .59809 
 59832 
 59856 
 598/9 
 .59902 
 
 .80160 
 .80143 
 .80125 
 .80108 
 .80091 
 .80073 
 
 .61176 
 .61199 
 .61222 
 61245 
 .61268 
 .61291 
 
 79105 
 79087 
 .79069 
 79051 
 79033 
 .79016 
 
 .62547 
 .62570 
 .62592 
 .62615 
 .62638 
 .62660 
 
 .78025 
 . 78007 
 77988 
 779/0 
 77952 
 77934 
 
 .63899 
 .63922 
 .63944 
 .63966 
 .63989 
 .64011 
 
 -.76921 
 .76903 
 .76884 
 .76866 
 .76847 
 .76828 
 
 49 
 50 
 51 
 52 
 53 
 54 
 
 .58519 
 58543 
 58567 
 58590 
 .58614 
 58637 
 
 .81089 
 .81072 
 81055 
 .81038 
 .81021 
 .81004 
 
 .59926 
 59949 
 59972 
 59995 
 .60019 
 .60042 
 
 .80056 
 .80038 
 .80021 
 .80003 
 .79986 
 .79968 
 
 .61314 
 
 :$ 
 
 ^ 
 
 .61406 
 .61429 
 
 .78998 
 .78980 
 .78962 
 .78944 
 .78926 
 .78908 
 
 .62683 
 .62706 
 .62728 
 .62751 
 62774 
 .62796 
 
 .77916 
 
 77897 
 .77879 
 .77861 
 
 77843 
 .77824 
 
 64033 
 .64056 
 .64078 
 .64100 
 .64123 
 .64145 
 
 .76810 
 .76791 
 .76772 
 76754 
 76735 
 .76717 
 
 II 
 IO 
 
 I 
 
 55 
 56 
 
 8 
 
 
 
 .58661 
 .58684 
 58708 
 58731 
 .58755 
 .58779 
 
 .80987 
 .80970 
 80953 
 .80936 
 .80919 
 .80902 
 
 .60065 
 .60089 
 .60112 
 60135 
 .60158 
 .60182 
 
 79951 
 79934 
 .79916 
 .79899 
 .79881 
 .79864 
 
 .61451 
 61474 
 .61497 
 .61520 
 
 61543 
 .61566 
 
 .78891 
 78873 
 78855 
 78837 
 .78819 
 .78801 
 
 .62819 
 .62842 
 .62864 
 .62887 
 .62909 
 .62932 
 
 .77806 
 .77788 
 .77769 
 77751 
 77733 
 77715 
 
 .64167 
 .64190 
 .64212 
 .64234 
 .64256 
 .64279 
 
 .76698 
 
 76679 
 .76661 
 .76642 
 .76623 
 .76604 
 
 N. sine 
 
 S 
 4 
 
 3 
 
 2 
 
 I 
 O 
 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 i 
 
 
 54 
 
 53 
 
 52 
 
 51 
 
 50 
 
 
TABLE V. 
 
 
 , 40 
 
 41 
 
 42 
 
 43 
 
 44 
 
 
 9 
 
 N. sine 
 
 N. cos. 
 
 N. sine N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 60 
 
 % 
 H l 
 
 55 . 
 54 
 
 O 
 
 I 
 2 
 
 3 
 4 
 
 I 
 
 .64279 
 .64301 
 
 64323 
 .64346 
 .64368 
 .64390 
 .64412 
 
 . 76604 
 76586 
 7 6 567 
 .76548 
 
 76530 
 .76511 
 .76492 
 
 .65606 
 .65628 
 .65650 
 .65672 
 .65694 
 65716 
 65738 
 
 75471 
 75452 
 75433 
 75414 
 75395 
 75375 
 75356 
 
 66913 
 66935 
 .66956 
 .66978 
 .66999 
 .67021 
 .67043 
 
 743H 
 74295 
 74276 
 .74256 
 
 74237 
 .74217 
 .74198 
 
 .68200 
 .68221 
 .68242 
 .68264 
 .68285 
 .68306 
 .68327 
 
 73135 
 .73116 
 73096 
 .73076 
 73056 
 73036 
 .73016 
 
 .69466 
 .69487 
 .69508 
 .69529 
 .69549 
 .69570 
 .69591 
 
 71934 
 .71914 
 .71894 
 71873 
 71853 
 71833 
 .71813 
 
 i 
 
 9 
 
 10 
 
 ii 
 
 12 
 
 64435 
 64457 
 64479 
 .64501 
 .64524 
 .64546 
 
 76473 
 76455 
 76436 
 . 7641 7 
 . 76398 
 76380 
 
 65759 
 .65781 
 65803 
 .65825 
 -65847 
 .65869 
 
 75337 
 753i8 
 
 75299 
 .75280 
 
 75261 
 75241 
 
 .67064 
 .67086 
 .67107 
 .67129 
 .67151 
 .67172 
 
 .74178 
 .74159 
 74139 
 .74120 
 .74100 
 .74080 
 
 .68349 
 68370 
 68391 
 .68412 
 .68434 
 68455 
 
 .72996 
 .72976 
 72957 
 72937 
 .72917 
 72897 
 
 .69612 
 69633 
 .69654 
 
 '%& 
 
 .69696 
 
 .69717 
 
 .71792 
 .71772 
 .71752 
 .71732 
 .71711 
 .71691 
 
 53 
 52 
 5i 
 50 
 49 
 48 
 
 13 
 H 
 
 :i 
 
 17 
 
 18 
 
 .64568 
 .64590 
 .64612 
 64635 
 64657 
 .64679 
 
 .76361 
 .76342 
 .76323 
 
 76304 
 .76286 
 .76267 
 
 .65891 
 65913 
 65935 
 .65956 
 .65978 
 .66000 
 
 .75222 
 75203 
 75184 
 75165 
 75H6 
 .75126 
 
 .67194 
 67215 
 .67237 
 .67258 
 .67280 
 .67301 
 
 .74061 
 .74041 
 .74022 
 .74002 
 73983 
 73963 
 
 .68476 
 
 .68497 
 .68518 
 .68539 
 .68561 
 .68582 
 
 72877 
 72857 
 72837 
 .72817 
 .72797 
 72777 
 
 .69737 
 .69758 
 .69779 
 .69800 
 .69821 
 .69842 
 
 .71671 
 .71650 
 .71630 
 .71610 
 71590 
 71569 
 
 47 
 46 
 45 
 44 
 43 
 42 
 
 19 
 
 20 
 21 
 22 
 23 
 
 24 
 
 .64701 
 .64723 
 .64746 
 .64768 
 .64790 
 .64812 
 
 .76248 
 .76229 
 .76210 
 .76192 
 76i73 
 76i54 
 
 .66022 
 .66044 
 .66066 
 .66088 
 .66109 
 .66131 
 
 75107 
 .75088 
 .75069 
 75050 
 75030 
 .75011 
 
 67323 
 
 %m 
 
 67387 
 .67409 
 
 6743 
 
 73944 
 73924 
 73904 
 73885 
 73865 
 .73846 
 
 .68603 
 .68624 
 .68645 
 .68666 
 .68688 
 .68709 
 
 72757 
 .72737 
 .72717 
 .72697 
 .72677 
 .72657 
 
 .69862 
 .69883 
 .69904 
 .69925 
 .69946 
 .69966 
 
 71549 
 71529 
 .71508 
 .71488 
 .71468 
 71447 
 
 41 
 40 
 
 11 
 
 H 
 
 II 
 
 2 
 
 29 
 30 
 
 .64834 
 .64856 
 .64878 
 .64901 
 .64923 
 .64945 
 
 76135 
 .76116 
 .76097 
 76078 
 76059 
 .76041 
 
 66153 
 
 I7S 
 
 .66197 
 
 .66218 
 .66240 
 .66262 
 
 .74992 
 74973 
 74953 
 74934 
 74915 
 .74896 
 
 .67452 
 67473 
 67495 
 .67516 
 
 67538 
 67559 
 
 73826 
 .73806 
 
 73787 
 .73767 
 
 73747 
 73728 
 
 .68730 
 .68751 
 .68772 
 
 68793 
 .68814 
 
 68835 
 
 .72637 
 .72617 
 
 72597 
 72577 
 72557 
 72537 
 
 .69987 
 .70008 
 .70029 
 .70049 
 .70070 
 .70091 
 
 .71427 
 .71407 
 71386 
 .71366 
 71345 
 71325 
 
 35 
 34 
 33 
 32 
 31 
 30 
 
 3* 
 32 
 33 
 
 34 
 
 P 
 
 .64967 
 
 .64989 
 .65011 
 
 65033 
 65055 
 .65077 
 
 . 76022 
 .76003 
 75984 
 75965 
 75946 
 75927 
 
 .66284 
 .66306 
 66327 
 .66349 
 
 66371 
 .66393 
 
 .74876 
 74857 
 .74838 
 .74818 
 
 74799 
 
 .74780 
 
 95 
 
 .67623 
 .67645 
 .67666 
 .67688 
 
 73708 
 .73688 
 .73669 
 73649 
 73629 
 .73610 
 
 .68857 
 .68878 
 .68899 
 .68920 
 .68941 
 .68962 
 
 72517 
 72497 
 72477 
 72457 
 72437 
 .72417 
 
 .70112 
 .70132 
 
 70153 
 .70174 
 
 70195 
 .70215 
 
 71305 
 .71284 
 .71264 
 
 71243 
 .71223 
 .71203 
 
 3 
 
 11 
 25 
 24 
 
 P 
 
 39 
 40 
 
 4i 
 42 
 
 .65100 
 .65122 
 
 3% 
 
 .65188 
 .65210 
 
 75870 
 .75851 
 75832 
 758i3 
 
 .66414 
 .66436 
 .66458 
 .66480 
 .66501 
 66523 
 
 .74760 
 
 74741 
 .74722 
 
 74703 
 .74683 
 .74664 
 
 .67709 
 .67730 
 .67752 
 67773 
 67795 
 .67816 
 
 73590 
 73570 
 73551 
 73531 
 735" 
 73491 
 
 .68983 
 .69004 
 .69025 
 .69046 
 .69067 
 .69088 
 
 72397 
 .72377 
 
 72357 
 72337 
 .72317 
 .72297 
 
 .70236 
 70257 
 .70277 
 .70298 
 .70319 
 70339 
 
 .71182 
 .71162 
 .71141 
 .71121 
 .71100 
 .71080 
 
 23 
 
 22 
 21 
 
 2O 
 
 lo 
 
 43 
 44 
 
 $ 
 
 i 
 
 65232 
 8 
 
 .65298 
 .65320 
 65342 
 
 75794 
 75775 
 75756 
 75738 
 75719 
 .75700 
 
 66545 
 .66566 
 66588 
 .66610 
 .66632 
 .66653 
 
 74644 
 .74625 
 .74606 
 74586 
 74567 
 74548 
 
 .67837 
 
 67859 
 .67880 
 .67901 
 
 67923 
 .67944 
 
 73472 
 73452 
 -73432 
 73413 
 73393 
 73373 
 
 .69109 
 .69130 
 69151 
 .69172 
 .69193 
 .69214 
 
 .72277 
 
 72257 
 .72236 
 .72216 
 .72196 
 .72176 
 
 .70360 
 .70381 
 .70401 
 .70422 
 70443 
 70463 
 
 71059 
 .71039 
 .71019 
 .70998 
 .70978 
 70957 
 
 11 
 
 15 
 
 H 
 13 
 
 12 
 
 49 
 50 
 51 
 52 
 53 
 54 
 
 65364 
 65386 
 .65408 
 65430 
 .65452 
 65474 
 
 .75680 
 .75661 
 .75642 
 75623 
 .75604 
 75585 
 
 .66675 
 .66697 
 .66718 
 .66740 
 .66762 
 .66783 
 
 .74528 
 
 74509 
 .74489 
 .74470 
 74451 
 74431 
 
 .67965 
 
 .68029 
 .68051 
 .68072 
 
 73353 
 73333 
 733!4 
 73294 
 73274 
 73254 
 
 69235 
 .69256 
 .69277 
 .69298 
 .69319 
 69340 
 
 72156 
 .72136 
 .72116 
 .72095 
 
 72075 
 72055 
 
 .70484 
 70505 
 70525 
 70546 
 70567 
 70587 
 
 .70937 
 .70916 
 .70896 
 
 70875 
 70855 
 .70834 
 
 II 
 10 
 
 1 
 
 6 
 
 P 
 II 
 g 
 
 .65496 
 .65518 
 65540 
 .65562 
 
 l& 
 
 .75566 
 75547 
 75528 
 75509 
 75490 
 75471 
 
 .66805 
 .66827 
 .66848 
 .66870 
 .66891 
 66913 
 
 .74412 
 74392 
 74373 
 74353 
 74334 
 743H 
 
 .68093 
 .68115 
 .68136 
 .68157 
 .68179 
 .68200 
 
 73234 
 .73215 
 73*95 
 73*75 
 73155 
 73135 
 
 69361 
 .69382 
 
 69403 
 .69424 
 
 69445 
 .69466 
 
 72035 
 72015 
 .71995 
 .71974 
 .71954 
 .71934 
 
 .70608 
 .70628 
 .70649 
 .70670 
 .70690 
 .70711 
 
 70813 
 
 70793 
 .70772 
 .70752 
 
 -7073 1 
 .70711 
 
 5 
 4 
 3 
 
 2 
 
 I 
 
 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 N. cos. 
 
 N. sine 
 
 9 
 
 
 49 
 
 48 
 
 47 
 
 46 
 
 45 
 
TABLE VI. ADDITION AND SUBTRACTION LOGARITHMS. 
 
 8 
 
 TABLE VI. 
 
 
 
 
 
 ; ADDITION AND SUBTRACTION LOGARITHMS. 
 
 PRECEPTS. 
 
 
 
 
 
 I. Wfan difference of given logarithms is less than 2.OO. 
 
 ADDITION. Enter table with difference between 
 
 logarithms 
 
 as Arg. A, and take out B. 
 
 
 
 
 
 Add B to subtracted logarithm. 
 
 
 
 
 
 SUBTRACTION. Subtract lesser from greater logarithm; 
 
 enter 
 
 with the difference as B, and take out A. 
 
 
 
 
 
 Add A to the subtracted logarithm. 
 
 
 
 
 
 II. When difference of given logarithms exceeds 2.OO. 
 
 Subtract lesser from greater. 
 
 
 
 
 
 ADDITION. Enter table with difference as Arg. A t take out 
 
 BA and add it to the greater logarithm. 
 
 
 
 
 
 SUBTRACTION. Enter column B with difference of 
 
 logarithms ; 
 
 take out BA, and subtract it from greater logarithm. 
 
 
 
 
 
 A. 
 
 B. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. 
 
 Pts. 
 
 5- 
 
 o.oo ooo 
 
 001 
 
 OOI 
 
 OOI 
 
 OOI 
 
 OOI 
 
 002 
 
 002 
 
 "003 
 
 "ooj 
 
 
 
 
 m^mmm 
 
 
 
 G.O 
 
 004 
 
 004 
 
 005 
 
 005 
 
 005 
 
 005 
 
 005 
 
 005 
 
 005 
 
 005 
 
 
 
 
 
 
 6.1 
 
 005 
 
 006 
 
 006 
 
 006 
 
 006 
 
 006 
 
 006 
 
 006 
 
 007 
 
 007 
 
 
 3 
 
 4 
 
 5 
 
 6 
 
 6.2 
 
 007 
 
 007 
 
 007 
 
 007 
 
 008 
 
 008 
 
 008 
 
 008 
 
 008 
 
 008 
 
 i 
 
 0.3 
 
 o 4 
 
 0.3 
 
 0.6 
 
 6.3 
 
 009 
 
 009 
 
 009 
 
 009 
 
 OIO 
 
 OIO 
 
 OIO 
 
 OIO 
 
 OIO 
 
 Oil 
 
 2 
 
 0.6 
 
 08 
 
 I.O 
 
 1.3 
 
 
 
 
 
 
 
 
 
 
 
 
 3 
 
 0.9 
 
 Z 2 
 
 1.5 
 
 1.8 
 
 6.4 
 
 on 
 
 on 
 
 Oil 
 
 OI2 
 
 OI2 
 
 012 
 
 013 
 
 013 
 
 013 
 
 013 
 
 4 
 
 1.3 
 
 i 6 
 
 3.O 
 
 a 4 
 
 6.5 
 
 014 
 
 014 
 
 014 
 
 015 
 
 015 
 
 015 
 
 016 
 
 016 
 
 017 
 
 017 
 
 5 
 
 i. 5 
 
 3 
 
 9 *5 
 
 3.0 
 
 6.6 
 
 017 
 
 018 
 
 018 
 
 019 
 
 019 
 
 019 
 
 020 
 
 020 
 
 02 1 
 
 02 1 
 
 6 
 
 1.8 
 
 a 4 
 
 3-0 
 
 3-6 
 
 6.7 
 
 022 
 
 022 
 
 023 
 
 023 
 
 024 
 
 024 
 
 025 
 
 026 
 
 026 
 
 027 
 
 7 
 8 
 
 3.1 
 8.4 
 
 3 8 
 
 3 2 
 
 3-5 
 4.0 
 
 4-a 
 4.8 
 
 68 
 
 027 
 
 028 
 
 029 
 
 O2Q 
 
 O3O 
 
 O3I 
 
 Oil 
 
 O32 
 
 o^* 
 
 014 
 
 
 
 
 
 
 6.9 
 
 034 
 
 035 
 
 036 
 
 X 
 
 037 
 
 038 
 
 039 
 
 J 
 
 040 
 
 *J 
 
 O4I 
 
 ijj 
 
 041 
 
 JT^ 
 
 042 
 
 
 
 
 
 
 7.0 
 
 043 
 
 044 
 
 045 
 
 047 
 
 048 
 
 049 
 
 050 
 
 051 
 
 052 
 
 053 
 
 
 
 
 
 
 7-1 
 
 055 
 
 056 
 
 057 
 
 059 
 
 060 
 
 061 
 
 063 
 
 064 
 
 066 
 
 06 7 
 
 j 
 
 7 
 
 O 7 
 
 0.8 
 
 9 
 
 TO 
 
 7-2 
 
 069 
 
 070 
 
 072 
 
 074 
 
 075 
 
 077 
 
 079 
 
 08 1 
 
 083 
 
 085 
 
 2 
 
 w.y 
 
 1.4 
 
 1.6 
 
 0.9 
 
 1.8 
 
 2.O 
 
 7-3 
 
 087 
 
 089 
 
 091 
 
 093 
 
 095 
 
 097 
 
 099 
 
 102 
 
 104 
 
 106 
 
 3 
 
 2.1 
 
 3-4 
 
 2.7 
 
 3-o 
 
 7-4 
 
 109 
 
 in 
 
 ii/ 
 
 117 
 
 119 
 
 122 
 
 125 
 
 128 
 
 131 
 
 134 
 
 4 
 
 2.8 
 
 3-2 
 
 3-6 
 
 4.0 
 
 7-5 
 
 137 
 
 140 
 
 144 
 
 147 
 
 150 
 
 154 
 
 157 
 
 161 
 
 165 
 
 169 
 
 5 
 6 
 
 3-5 
 4- 2 
 
 4.0 
 
 4.8 
 
 4-5 
 
 5 A 
 
 5-o 
 6.0 
 
 7.6 
 
 173 
 
 177 
 
 181 
 
 185 
 
 I8 9 
 
 194 
 
 198 
 
 203 
 
 207 
 
 212 
 
 7 
 
 4-9 
 
 5-6 
 
 '^ 
 
 6-3 
 
 7.0 
 
 7-7 
 
 217 
 
 222 
 
 227 
 
 233 
 
 2 3 8 
 
 244 
 
 249 
 
 255 
 
 261 
 
 267 
 
 8 
 
 5-6 
 
 6-4 
 
 7.2 
 
 8.0 
 
 7-8 
 
 273 
 
 280 
 
 286 
 
 293 
 
 299 
 
 3 06 
 
 313 
 
 321 
 
 328 
 
 336 
 
 9 
 
 3 
 
 7.3 
 
 8.1 
 
 9.0 
 
 79 
 
 344 
 
 352 
 
 360 
 
 3 68 
 
 377 
 
 385 
 
 394 
 
 403 
 
 413 
 
 422 
 
 
 
 
 
 
 1 8.0 
 
 432 
 
 442 
 
 452 
 
 463 
 
 474 
 
 485 
 
 496 
 
 507 
 
 519 
 
 531 
 
 
 
 
 
 
 1 A> 
 
 B. 
 
 1 
 
 2 
 
 a 
 
 . 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. 
 
 Pts. 
 
86 
 
 TABLE VL 
 
 ADD i lo S<* ~ lo S* = A > Qrm / lo S* ~ lo S<* = & 
 Am Mlo g (0 + ) = log0 + ^. SU3 'Uog(0~) = log + ^. 
 
 A. 
 
 rsloo 
 
 8.01 
 
 8.02 
 
 8.03 
 
 8.04 ; 
 8.05 
 8.06 
 
 8.07 
 8.08 
 8.09 
 
 8.10 
 8. ii 
 
 8.12 
 
 8.13 
 
 8.14 
 
 8.15 
 8.16 
 
 8.17 
 8.18 
 8.19 
 
 8.20 
 
 8.21 
 8.22 
 
 1 8-23' 
 
 8.24 
 8.25 
 
 8.26 
 
 8.27 
 8.28 
 
 8.29 
 
 8.30 
 
 .3i 
 8.32 
 
 I- 
 
 Sip 
 
 l :5 
 
 8.39 
 8.40 
 
 Itt 
 
 8.43 
 
 8.44 
 
 I' 4 ! 
 8.46 
 
 8.47 
 8.48 
 8.49 
 8.50 
 
 11. 
 o.oo 432 
 
 1 
 
 433 
 
 i 
 
 434 
 
 a 
 
 435 
 
 4 
 
 ~ 
 
 5 
 
 ~ 
 
 
 
 M 
 
 438 
 
 7 
 
 m^m^mm 
 
 439 
 
 8 
 440 
 
 9 
 
 44i 
 
 "451 
 462 
 
 473 
 
 483 
 495 
 506 
 
 518 
 530 
 
 542 
 
 Proi 
 
 ^^^w 
 
 I 
 
 2 
 
 3 
 
 i 
 i 
 
 9 
 
 i 
 
 2 
 
 3 
 4 
 
 i 
 I 
 
 9 
 
 i 
 
 2 
 
 3 
 4 
 
 1 
 I 
 
 9 
 
 ).Pt8. 1 
 ' 
 
 * 
 
 0.8 
 
 J:5 
 \i 
 
 :\ 
 
 3 
 0.6 
 
 ?:I 
 1:1 
 
 * 
 
 '.' 
 
 *1 
 
 0.8 \ 
 
 1.2 
 
 1.6 
 
 2.0 
 
 :i 
 
 !:J 
 
 442 
 
 452 
 
 463 
 
 474 
 485 
 496 
 507 
 519 
 53i 
 
 443 
 453 
 464 
 
 475 
 486 
 
 497 
 508 
 520 
 532 
 
 444 
 454 
 465 
 
 476 
 487 
 498 
 
 510 
 521 
 533 
 
 445 
 456 
 466 
 
 477 
 
 488 
 
 499 
 
 5" 
 523 
 535 
 
 446 
 
 457 
 467 
 
 478 
 489 
 500 
 
 512 
 524 
 536 
 
 447 
 458 
 468 
 
 479 
 490 
 502 
 
 513 
 525 
 537 
 
 448 
 
 459 
 469 
 
 480 
 
 49 i 
 503 
 
 5H 
 526 
 538 
 
 449 
 460 
 470 
 
 481 
 
 492 
 504 
 
 515 
 527 
 540 
 
 450 
 461 
 47i 
 482 
 494 
 505 
 
 517 
 529 
 541 
 
 543 
 
 5|6 
 569 
 582 
 
 595 
 609 
 623 
 
 638 
 652 
 667 
 683 
 
 545 
 
 546 
 
 547 
 
 548 
 
 550 
 
 55i 
 
 552 
 
 553 
 
 555 
 
 557 
 570 
 
 583 
 
 597 
 611 
 625 
 
 639 
 654 
 669 
 
 558 
 57i 
 585 
 
 598 
 612 
 626 
 
 641 
 
 655 
 671 
 
 560 
 
 $ 
 
 599 
 613 
 628 
 
 642 
 
 657 
 
 672 
 
 561 
 574 
 587 
 601 
 
 6i5 
 629 
 
 644 
 658 
 674 
 
 562 
 
 575 
 589 
 
 602 
 616 
 630 
 
 645 
 660 
 675 
 
 564 
 
 577 
 590 
 
 604 
 618 
 632 
 646 
 661 
 677 
 
 565 
 578 
 59i 
 605 
 619 
 633 
 648 
 663 
 678 
 
 566 
 579 
 593 
 606 
 620 
 635 
 649 
 664 
 680 
 
 567 
 58i 
 594 
 608 
 622 
 636 
 
 & 
 
 681 
 
 684 
 
 686 
 
 688 
 
 689 
 
 691 
 
 692 
 
 694 
 
 696 
 
 697 
 
 699 
 
 715 
 731 
 
 748 
 766 
 
 783 
 801 
 820 
 839 
 858 
 
 "8^8 
 898 
 919 
 
 940 
 962 
 984 
 o.oi 006 
 030 
 Q53 
 077 
 
 700 
 716 
 733 
 750 
 767 
 785 
 803 
 822 
 841 
 
 702 
 718 
 735 
 
 752 
 769 
 
 787 
 805 
 823 
 842 
 
 703 
 720 
 
 736 
 
 753 
 771 
 
 789 
 807 
 825 
 844 
 
 705 
 721 
 738 
 
 755 
 773 
 790 
 
 809 
 827 
 846 
 
 707 
 
 723 
 740 
 
 757 
 774 
 792 
 810 
 829 
 848 
 
 708 
 
 725 
 741 
 
 759 
 776 
 794 
 812 
 
 831 
 850 
 
 710 
 726 
 743 
 760 
 778 
 796 
 
 814 
 
 833 
 852 
 
 712 
 728 
 745 
 762 
 780 
 798 
 
 816 
 835 
 854 
 
 713 
 
 730 
 747 
 764 
 78i 
 799 
 818 
 
 837 
 856 
 
 860 
 
 862 
 
 864 
 
 866 
 
 868 
 
 870 
 
 872 
 
 874 
 
 876 
 
 880 
 900 
 921 
 
 942 
 964 
 986 
 
 009 
 032 
 056 
 
 882 
 902 
 923 
 
 944 
 
 966 
 988 
 
 on 
 
 034 
 058 
 
 884 
 
 904 
 
 925 
 946 
 968 
 99 o 
 
 013 
 
 037 
 060 
 
 886 
 906 
 927 
 
 948 
 970 
 
 993 
 016 
 
 039 
 063 
 
 888 
 908 
 929 
 
 95i 
 973 
 995 
 018 
 041 
 065 
 
 890 
 910 
 93i 
 
 953 
 
 975 
 997 
 020 
 
 044 
 068 
 
 892 
 912 
 933 
 
 955 
 977 
 999 
 
 022 
 
 046 
 070 
 
 894 
 915 
 936 
 
 957 
 979 
 
 *002 
 
 O23 
 
 048 
 073 
 
 896 
 917 
 938 
 
 P? 
 *<x>4 
 027 
 
 51 
 075 
 
 080 
 
 082 
 
 085 
 
 087 
 
 090 
 
 092 
 
 095 
 
 097 
 
 IOO 
 
 1 02 
 128 
 153 
 1 80 
 207 
 23 
 263 
 292 
 322 
 352 
 
 105 
 130 
 156 
 
 183 
 
 2IC 
 
 23* 
 
 266 
 295 
 32] 
 
 107 
 133 
 159 
 185 
 
 21; 
 
 240 
 
 269 
 298 
 
 328 
 
 HO 
 135 
 
 161 
 
 1 88 
 215 
 243 
 272 
 30 
 33 
 
 112 
 138 
 164 
 
 I 9 I 
 
 218 
 
 246 
 
 275 
 304 
 
 334 
 
 H5 
 
 140 
 
 167 
 193 
 
 221 
 249 
 2 7 * 
 307 
 
 337 
 
 117 
 
 143 
 169 
 
 196 
 
 22; 
 252 
 
 280 
 310 
 340 
 
 120 
 146 
 172 
 
 199 
 226 
 25" 
 283 
 313 
 
 343 
 
 122 
 148 
 175 
 2O2 
 229 
 257 
 286 
 316 
 346 
 
 125 
 
 151 
 177 
 
 204 
 
 232 
 
 260 
 289 
 
 319 
 
 349 
 
 35! 
 
 358 
 
 36 
 
 364 
 
 36* 
 
 37 
 
 374 
 
 377 
 
 380 
 
 II A - 
 
 B. 
 
 1 
 
 2 
 
 8 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
 o 
 
ADDITION AND SUBTRACTION LOGARITHMS. g 
 
 Ann J lQ % b "" lo % a ^' STTB J lo S<* lo ^ = A 
 ' I log ( + *) = log* -f A bIJ i log (a - J) = log* + A. 
 
 A. 
 ~&60 
 
 8.5i 
 8.52 
 
 8-53 
 8.54 
 8-55 
 8.56 
 
 8.57 
 8.58 
 
 8-59 
 8.60 
 
 8.61 
 8.62 
 8.63 
 
 8.64 
 8.65 
 8.66 
 
 8.67 
 8.68 
 8.69 
 
 8.70 
 
 8.7i 
 8.72 
 
 8.73 
 8.74 
 8.75 
 8.76 
 
 *.77 
 8.78 
 
 8.79 
 8.80 
 8.81 
 8.82 
 8.83 
 
 8.84 
 8.85 
 8.86 
 
 8.87 
 8.88 
 8.89 
 
 8.90 
 
 8.91 
 8.92 
 8-93 
 8.94 
 8.95 
 8.96 
 
 8.97 
 8.98 
 8.99 
 
 9.00 
 
 B. 
 
 o.oi 352 
 
 383 
 415 
 447 
 480 
 5H 
 549 
 584 
 621 
 658 
 
 695 
 
 1 
 
 "355 
 
 2 
 IP 
 
 a 
 
 ~i 
 
 4 
 
 364 
 
 5 
 
 368 
 
 6 
 
 37i 
 
 7 
 374 
 
 8 
 377 
 
 9 
 
 380 
 
 P 
 
 I 
 
 2 
 
 3 
 4 
 
 i 
 I 
 
 9 
 
 I 
 
 2 
 
 3 
 
 i 
 i 
 
 9 
 
 i 
 
 2 
 
 3 
 
 I 
 I 
 
 9 
 
 i 
 
 2 
 
 3 
 
 i 
 I 
 
 9 
 
 rop. 
 
 MHM^ 
 
 s 
 0.3 
 0.6 
 0.9 
 
 1.2 
 
 *:I 
 
 2.1 
 2.4 
 2.7 
 
 5 
 
 0-5 
 
 I.O 
 
 -5 
 
 2.O 
 
 2-5 
 
 3-o 
 3-5 
 4-0 
 
 4-5 
 
 7 
 
 0.7 
 1-4 
 
 2.1 
 
 2.8 
 
 3-5 
 4.2 
 
 4-9 
 
 I' 6 
 0-3 
 
 9 
 
 !:! 
 
 11 
 
 4-5 
 
 *1 
 
 *; 
 
 Pts. 
 
 mmm^^m^mmmm 
 
 4 
 0.4 
 
 0.8 
 
 1.2 
 
 1.6 
 
 2.O 
 
 2:3 
 
 & 
 
 6 
 0.6 
 
 1.2 
 
 1.8 
 2.4 
 3-o 
 3-6 
 4.2 
 4.8 
 54 
 
 8 
 
 0.8 
 1.6 
 2.4 
 3-2 
 4.0 
 4.8 
 
 I' 6 
 6.4 
 
 7.2 
 so 
 
 I.O 
 2.O 
 30 
 4-0 
 
 5-0 
 6.0 
 7.0 
 8.0 
 9.0 
 
 386 
 418 
 450 
 
 484 
 518 
 552 
 588 
 624 
 661 
 
 389 
 421 
 454 
 
 487 
 521 
 556 
 
 I 9 l 
 628 
 
 665 
 "703 
 
 393 
 424 
 457 
 490 
 5^5 
 559 
 
 595 
 632 
 669 
 
 39 6 
 428 
 460 
 
 494 
 
 5 2 8 
 563 
 
 599 
 635 
 673 
 
 399 
 43i 
 464 
 
 497 
 531 
 566 
 
 602 
 
 639 
 676 
 
 402 
 434 
 467 
 501 
 
 535 
 570 
 
 606 
 
 643 
 680 
 
 405 
 437 
 470 
 
 504 
 538 
 574 
 610 
 646 
 684 
 
 408 
 441 
 474 
 507 
 542 
 577 
 613 
 650 
 688 
 
 412 
 444 
 477 
 
 5" 
 
 545 
 581 
 
 617 
 654 
 692 
 
 699 
 
 707 
 
 711 
 
 715 
 
 719 
 
 722 
 
 726 
 
 730 
 
 734 
 774 
 814 
 
 856 
 898 
 941 
 
 985 
 
 O.O2 030 
 077 
 
 124 
 
 738 
 778 
 8.'8 
 
 860 
 902 
 
 945 
 990 
 
 035 
 08 1 
 
 742 
 782 
 822 
 
 864 
 906 
 950 
 
 994 
 040 
 086 
 
 746 
 786 
 827 
 
 868 
 911 
 954 
 
 999 
 044 
 091 
 
 750 
 790 
 831 
 872 
 9i5 
 959 
 *oo3 
 049 
 095 
 
 754 
 794 
 835 
 877 
 
 ?i 9 
 03 
 
 *oo8 
 053 
 
 100 
 
 758 
 798 
 
 839 
 881 
 924 
 967 
 
 *OI2 
 058 
 105 
 
 762 
 802 
 843 
 885 
 928 
 972 
 *oi7 
 063 
 no 
 
 766 
 806 
 847 
 889 
 932 
 976 
 
 *O2I 
 06 7 
 114 
 
 770 
 8ro 
 851 
 
 894 
 937 
 981 
 
 *026 
 
 072 
 119 
 
 129 
 
 133 
 
 138 
 
 143 
 
 148 
 
 153 
 
 158 
 
 162 
 
 167 
 
 172 
 221 
 272 
 
 323 
 376 
 430 
 485 
 
 54i 
 599 
 
 177 
 226 
 
 277 
 
 329 
 38i 
 435 
 490 
 
 547 
 604 
 
 182 
 231 
 282 
 
 334 
 387 
 441 
 496 
 
 I 52 
 610 
 
 187 
 236 
 287 
 
 339 
 392 
 446 
 502 
 558 
 616 
 
 192 
 241 
 292 
 
 344 
 397 
 452 
 
 507 
 564 
 622 
 
 197 
 246 
 297 
 350 
 
 403 
 457 
 
 513 
 570 
 628 
 
 2O2 
 252 
 303 
 
 355 
 408 
 
 463 
 518 
 
 I 75 
 634 
 
 207 
 
 257 
 308 
 
 360 
 414 
 468 
 
 524 
 581 
 
 639 
 
 211 
 262 
 3'3 
 365 
 419 
 
 474 
 
 % 
 
 645 
 
 216 
 267 
 3i8 
 
 37i 
 424 
 479 
 
 535 
 593 
 651 
 
 657 
 717 
 
 779 
 841 
 
 905 
 971 
 0.03 037 
 
 106 
 175 
 
 247 
 
 663 
 
 669 
 
 675 
 
 68 1 
 
 687 
 
 693 
 
 699 
 
 705 
 
 711 
 
 723 
 785 
 848 
 
 912 
 
 977 
 044 
 
 "3 
 183 
 
 254 
 
 729 
 791 
 854 
 918 
 984 
 051 
 
 120 
 100 
 26l 
 
 735 
 797 
 860 
 
 925 
 991 
 058 
 
 126 
 197 
 268 
 
 742 
 803 
 867 
 
 931 
 
 22 
 
 065 
 
 133 
 204 
 276 
 
 748 
 810 
 
 873 
 
 938 
 *oo4 
 071 
 
 140 
 
 211 
 283 
 
 754 
 816 
 879 
 
 944 
 *on 
 078 
 
 147 
 218 
 290 
 
 760 
 822 
 886 
 
 95i 
 "017 
 085 
 
 '54 
 
 3 
 
 766 
 829 
 892 
 
 957 
 
 *024 
 
 092 
 
 161 
 
 232 
 305 
 
 772 
 835 
 899 
 
 964 
 *031 
 099 
 
 168 
 240 
 312 
 
 320 
 
 327 
 
 334 
 
 342 
 
 349 
 
 357 
 
 364 
 
 37i 
 
 379 
 
 386 
 
 394 
 470 
 
 548 
 
 627 
 708 
 790 
 
 5* 
 
 961 
 
 0.04 049 
 
 401 
 478 
 555 
 635 
 7i6 
 799 
 883 
 970 
 058 
 
 409 
 485 
 563 
 
 643 
 724 
 807 
 
 892 
 
 979 
 067 
 
 417 
 493 
 57i 
 651 
 
 73 2 
 816 
 
 901 
 
 987 
 076 
 
 424 
 501 
 
 579 
 659 
 
 74i 
 824 
 
 909 
 996 
 085 
 
 432 
 509 
 
 587 
 667 
 
 749 
 832 
 
 918 
 
 *00 5 
 
 094 
 
 439 
 516 
 
 595 
 
 675 
 757 
 841 
 
 926 
 *oi4 
 103 
 
 447 
 524 
 603 
 
 683 
 765 
 849 
 
 935 
 
 *023 
 112 
 
 455 
 532 
 611 
 
 691 
 
 774 
 858 
 
 944 
 
 *0 3 2 
 121 
 
 462 
 540 
 619 
 
 700 
 782 
 866 
 
 953 
 *o4o 
 
 130 
 
 139 
 
 148 
 
 '57 
 
 167 
 
 176 
 
 i*5 
 
 194 
 
 203 
 
 213 
 
 222 
 
 A. 
 
 B. 
 
 
 2 
 
 a 
 
 4 
 
 6 
 
 tf 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. ! 
 
88 
 
 TABLE VI. 
 
 ADD f Io 8* lo % a = A * SUB i lo % a "* lo S^ = A 
 x i log( + J) = log* + ^. bU i log( - *) = log + ^. 
 
 A. 
 
 B. 
 
 1 
 
 2 
 
 a 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
 0.00 
 
 9.01 
 9.02 
 
 9.03 
 9.04 
 9.05 
 
 9.06 
 
 9.07 
 9.08 
 9.09 
 
 9.10 
 
 9.11 
 9.12 
 9-13 
 9-H 
 
 9.15 
 9.16 
 
 9-17 
 9.18 
 9.19 
 9.20 
 
 9.21 
 9.22 
 9-23 
 
 9-24 
 9.25 
 9.26 
 
 9-27 
 9.28 
 9.29 
 
 9.30 
 
 9.31 
 9-32 
 9-33 
 9-34 
 9-35 
 9.36 
 
 9-37 
 9-38 
 9-39 
 9.40 
 
 9.41 
 9.42 
 9-43 
 9-44 
 9-45 
 9.46 
 
 9-47 
 9.48 
 9-49 
 9.50 
 
 0.04 139 
 
 148 
 
 157 
 
 167 
 
 176 
 
 185 
 
 194 
 
 203 
 
 213 
 
 306 
 401 
 499 
 598 
 700 
 803 
 
 909 
 017 
 127 
 
 222 
 
 z 
 
 3 
 
 3 
 4 
 5 
 6 
 7 
 8 
 
 9 
 
 z 
 
 3 
 
 3 
 
 4 
 5 
 6 
 
 7 
 8 
 
 9 
 
 i 
 
 2 
 
 3 
 4 
 5 
 6 
 7 
 8 
 
 9 
 
 X 
 2 
 
 3 
 4 
 5 
 6 
 
 7 
 8 
 
 9 
 
 z 
 
 3 
 
 3 
 4 
 5 
 6 
 
 7 
 8 
 
 9 
 
 z 
 2 
 3 
 4 
 5 
 6 
 
 7 
 8 
 
 9 
 
 9 
 
 0.9 
 
 1.8 
 2.7 
 3-6 
 4-5 
 5-4 
 6-3 
 7.2 
 8.z 
 
 xa 
 
 Z.2 
 
 2.4 
 3.6 
 4.8 
 6.0 
 7.2 
 8.4 
 9.6 
 10.8 
 
 '5 
 -5 
 
 3-0 
 4-5 
 6.0 
 7-5 
 9.0 
 10.5 
 
 13.0 
 
 3-5 
 18 
 z.8 
 3-6 
 S-4 
 7.2 
 9.0 
 10.8 
 
 13.6 
 
 H.4 
 
 16.2 
 
 at 
 
 zo 
 z.o 
 
 2.0 
 
 3.c 
 
 4.0 
 5.0 
 
 6.0 
 7.0 
 8.0 
 9.0 
 
 '3 
 
 1-3 
 
 2.6 
 
 3-9 
 
 5-2 
 
 6-5 
 7.8 
 9.1 
 10.4 
 zz.7 
 16 
 z.6 
 3.2 
 4.8 
 6.4 
 8.0 
 9.6 
 
 IX. 2 
 13.8 
 
 x 4-4 
 
 9 
 
 1.9 
 3.8 
 5-7 
 7.6 
 9-5 
 
 II. 4 
 
 T 3-3 
 15.2 
 17. x 
 
 23 
 
 XI 
 
 z.z 
 
 3.il 
 
 3-3 
 44 
 
 5-5 
 6.6 
 
 7-7 
 8.8 
 
 9-9 
 M 
 
 *-4 
 
 3.8 
 
 4. 
 5-6 
 7.0 
 8.4 
 9.8 
 ii. a 
 
 12.6 
 
 17 ; 
 f 
 
 3-4 
 
 5-1 
 
 6.8 
 8-5 
 10. a 
 11.9 
 13.6 
 '5-3 
 2O 
 a.o 
 4-0 
 6.0 
 8.0 
 
 IO.O 
 12.0 
 14.0 
 
 16.0- 
 18.0 
 
 as 
 
 231 
 
 325 
 421 
 
 5 ! 9 
 618 
 720 
 
 824 
 
 93i 
 0.05 039 
 
 240 
 334 
 43 
 528 
 628 
 73i 
 
 835 
 941 
 050 
 
 250 
 
 344 
 440 
 
 I 38 
 639 
 
 74i 
 
 845 
 952 
 061 
 
 259 
 
 353 
 450 
 
 548 
 649 
 75i 
 856 
 
 963 
 072 
 
 268 
 
 363 
 460 
 
 I 58 
 659 
 
 762 
 
 867 
 974 
 083 
 
 278 
 
 373 
 469 
 
 568 
 669 
 772 
 
 877 
 985 
 
 094 
 
 287 
 382 
 479 
 
 I 78 
 679 
 
 782 
 888 
 
 995 
 105 
 
 297 
 392 
 489 
 
 588 
 689 
 793 
 898 
 006 
 116 
 
 315 
 411 
 
 509 
 
 608 
 710 
 814 
 
 92O 
 028 
 139 
 
 150 
 
 161 
 
 172 
 
 183 
 
 195 
 
 206 
 
 217 
 
 229 
 
 240 
 
 251 
 
 263 
 378 
 496 
 
 616 
 
 738 
 863 
 
 991 
 
 0.06 121 
 
 254 
 
 274 
 390 
 508 
 
 628 
 
 $ 
 
 004 
 
 134 
 267 
 
 286 
 401 
 519 
 
 640 
 763 
 889 
 
 *oi7 
 
 147 
 281 
 
 297 
 4i3 
 53i 
 652 
 
 775 
 901 
 
 *030 
 161 
 
 294 
 
 308 
 425 
 543 
 
 664 
 788 
 914 
 
 1*043 
 
 174 
 308 
 
 320 
 436 
 555 
 
 677 
 800 
 927 
 *o 5 6 
 187 
 321 
 
 332 
 448 
 567 
 
 689 
 813 
 939 
 *o69 
 200 
 335 
 
 343 
 460 
 
 579 
 701 
 825 
 952 
 
 *082 
 
 214 
 
 348 
 
 355 
 472 
 
 59i 
 
 7H 
 838 
 965 
 
 *095 
 227 
 362 
 
 366 
 484 
 604 
 
 726 
 
 851 
 978 
 
 *io8 
 240 
 376 
 
 389 
 
 403 
 
 417 
 
 430 
 
 444 
 
 458 
 
 472 
 
 486 
 
 500 
 
 513 
 
 13 
 
 812 
 
 959 
 0.07 108 
 261 
 
 416 
 
 575 
 736 
 
 54i 
 683 
 827 
 
 973 
 123 
 276 
 
 432 
 59i 
 753 
 
 I 55 
 697 
 
 841 
 988 
 138 
 291 
 
 448 
 607 
 769 
 
 569 
 711 
 856 
 
 *oc>3 
 154 
 307 
 
 463 
 623 
 785 
 
 583 
 725 
 870 
 
 *oi8 
 169 
 322 
 
 479 
 639 
 802 
 
 597 
 740 
 885 
 
 *033 
 184 
 338 
 
 495 
 655 
 818 
 
 612 
 
 754 
 900 
 
 *048 
 199 
 354 
 
 I 11 
 671 
 
 835 
 
 626 
 
 769 
 914 
 
 *o63 
 215 
 369 
 
 527 
 687 
 851 
 
 640 
 
 783 
 929 
 
 *o 7 8 
 230 
 
 385 
 
 543 
 704 
 868 
 
 654 
 798 
 944 
 
 *093 
 245 
 400 
 
 559 
 720 
 884 
 
 901 
 
 918 
 
 934 
 
 95i 
 
 968 
 
 985 
 
 *OOI 
 
 *oi8 
 
 *<>35 
 
 *0$2 
 
 0.08 069 
 240 
 415 
 592 
 774 
 958 
 0.09 146 
 338 
 533 
 
 086 
 257 
 432 
 610 
 792 
 977 
 165 
 357 
 553 
 
 I0j 
 
 275 
 450 
 628 
 810 
 996 
 
 184 
 
 377 
 573 
 
 120 
 292 
 468 
 
 646 
 829 
 
 *oi4 
 204 
 396 
 593 
 
 137 
 309 
 485 
 664 
 
 847 
 *o 33 
 
 223 
 416 
 612 
 
 154 
 327 
 503 
 683 
 865 
 
 *0 5 2 
 
 242 
 
 I 35 
 632 
 
 171 
 344 
 521 
 
 701 
 884 
 *o7i 
 
 261 
 
 455 
 652 
 
 188 
 362 
 539 
 719 
 
 206 
 379 
 
 557 
 
 737 
 921 
 *io8 
 
 299 
 
 494 
 692 
 
 223 
 
 397 
 574 
 
 755 
 940 
 
 *I27 
 
 319 
 
 5H 
 712 
 
 902 
 *090 
 
 280 
 
 474 
 672 
 
 4-2 
 
 6.3 
 
 8.4 
 
 10.5 
 12.6 
 
 14.7 
 
 16.8 
 18.9 
 
 24 
 
 3.4 
 4.8 
 7.2 
 9.6 
 
 12.0 
 14.4 
 
 z6.8 
 19.2 
 
 21.6 
 
 4-4 
 6.6 
 8.8 
 
 II. 
 
 13-2 
 iS-4 
 
 17.6 
 19.8 
 
 5 
 
 2-5 
 5.0 
 7-5 
 
 10. 
 
 12.5 
 15.0 
 17-5 
 
 20.0 
 22. 5 
 
 4-6 
 6.9 
 9.3 
 XZ.J 
 
 13.8 
 
 i6.z 
 
 18.4 
 20.7 
 
 26 
 
 2.6 
 
 5-2 
 
 7.8 
 
 10.4 
 13-0 
 
 15.6 
 
 lS.2 
 20.8 
 
 23-4 
 
 732 
 
 935 
 o.io 141 
 
 35i 
 
 565 
 783 
 o.n 005 
 
 23 
 
 46 
 69- 
 
 933 
 
 752 
 
 773 
 
 793 
 
 813 
 
 833 
 
 853 
 
 874 
 
 894 
 
 914 
 
 955 
 162 
 
 373 
 
 587 
 805 
 028 
 
 % 
 
 715 
 
 976 
 183 
 394 
 609 
 827 
 050 
 
 277 
 507 
 742 
 
 996 
 204 
 415 
 630 
 849 
 073 
 3 oc 
 
 53i 
 766 
 
 *oi7 
 225 
 437 
 652 
 872 
 095 
 
 323 
 
 554 
 790 
 
 * 03 8 
 246 
 458 
 
 674 
 894 
 118 
 
 345 
 
 *os8 
 267 
 479 
 696 
 916 
 140 
 
 368 
 60 1 
 837 
 
 *0 79 
 
 288 
 501 
 
 718 
 938 
 163 
 
 392 
 
 62; 
 
 86 
 
 *IOO 
 
 309 
 522 
 
 739 
 960 
 1 86 
 
 415 
 648 
 885 
 
 *I2O 
 330 
 
 544 
 761 
 
 983 
 208 
 
 438 
 671 
 909 
 
 957 
 
 98 
 
 *oc5 
 
 *030 
 
 *054 
 
 *o 7 8 
 
 *I02 
 
 *I27 
 
 *i 5 i 
 
 A. 
 
 B. 
 
 1 
 
 2 
 
 8 
 
 | 
 
 6 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
ADDITION AND SUBTRACTION LOGARITHMS. 
 
 89 
 
 A ( log loga = A. 9 i loga log = B. \ 
 x \ log (a + t) = loga + B. bUB * i log(a - b] = log^ + A 
 
 A. 
 
 B. 
 
 1 
 
 2 
 
 a 
 
 4 
 
 5 
 
 6 
 
 7 
 
 *I02 
 
 8 
 
 9 
 
 Prop. Pts. 
 
 9.50 
 
 9.51 
 9.52 
 9-53 
 9-54 
 9-55 
 9.56 
 
 9-57 
 9.58 
 9-59 
 9.60 
 
 9.61 
 9.62 
 9-63 
 9.64 
 9.65 
 9.66 
 
 9.67 
 9.68 
 9.69 
 
 9.70 
 
 9.71 
 9-72 
 9-73 
 9-74 
 9-75 
 9.76 
 
 9-77 
 9.78 
 9-79 
 9.80 
 
 9.81 
 9.82 
 9-83 
 9.84 
 9.85 
 9.86 
 
 9-8'/ 
 9.88 
 9.89 
 
 9.90 
 
 9.91 
 9.92 
 9-93 
 
 9-94 
 9-95 
 9.96 
 
 9-97 
 9.98 
 
 9-99 
 0.00 
 
 o." 933 
 0.12 175 
 422 
 673 
 928 
 0.13 188 
 452 
 721 
 
 994 
 0.14 272 
 
 ~554 
 841 
 0.15 133 
 43 
 
 , 73i 
 o.io 037 
 
 349 
 665 
 986 
 o.i7_3i2 
 
 643 
 980 
 0.18 322 
 668 
 
 0.19 020 
 
 378 
 740 
 
 0.20 108 
 
 481 
 860 
 
 957 
 
 981 
 
 *oo5 
 
 *O3O 
 
 *54 
 
 *078 
 
 *I2 7 
 
 "151 
 
 i 
 
 2 
 
 3 
 4 
 5 
 6 
 7 
 8 
 
 9 
 
 i 
 
 2 
 
 3 
 4 
 5 
 6 
 
 7 
 
 8 
 
 9 
 
 i 
 
 2 
 
 3 
 4 
 5 
 6 
 7 
 8 
 
 9 
 
 i 
 
 2 
 
 3 
 4 
 
 5 
 6 
 7 
 8 
 9 
 
 i 
 
 5 
 
 3 
 4 
 
 5 
 
 e 
 
 7 
 8 
 
 9 
 
 i 
 
 2 
 
 3 
 4 
 
 6 
 
 7 
 8 
 9 
 
 37 
 
 2.7 
 
 5-4 
 8.1 
 10.8 
 
 13-5 
 16.2 
 18.9 
 
 21.6 
 
 24-3 
 31 
 
 3-i 
 
 6.2 
 
 9-3 
 12.4 
 
 15-5 
 18.6 
 21.7 
 24.8 
 27.9 
 
 35 
 
 3-5 
 7.0 
 10.5 
 14.0 
 17-5 
 
 21.0 
 24-5 
 28.0 
 31-5 
 
 39 
 
 3-9 
 7.8 
 11.7 
 15-6 
 19-5 
 23-4 
 27-3 
 31-2 
 35- 1 
 43 
 4-3 
 8.6 
 12.9 
 17.2 
 21.5 
 25.8 
 30-1 
 34-4 
 33.7 
 47 
 4-7 
 9-4 
 14.1 
 18.8 
 23-5 
 28.2 
 32.9 
 37-6 
 43.3 
 
 38 
 2.8 
 
 5-6 
 8.4 
 
 II. 2 
 I 4 .0 
 
 16.8 
 19.6 
 22.4 
 25.2 
 
 32 
 
 3-2 
 
 6.4 
 9-6 
 
 12.8 
 
 16.0 
 19.2 
 22.4 
 25.6 
 28.8 
 
 36 
 
 3-6 
 
 7-2 
 
 10.8 
 14.4 
 18.0 
 
 21.6 
 
 25.2 
 28.8 
 32-4 
 40 
 
 29 
 
 2-9 
 
 5-8 
 8.7 
 ix. 6 
 14-5 
 17.4 
 20.3 
 23.2 
 26.1 
 
 33 
 
 3-3 
 6.6 
 
 9-9 
 13.2 
 16.5 
 19.8 
 23.1 
 26.4 
 29.7 
 
 37 
 
 3-7 
 7-4 
 u. i 
 14.8 
 18.5 
 
 22.2 
 
 25-9 
 29.6 
 
 33-3 
 41 
 
 30 
 
 3-o 
 6.0 
 
 9 a 
 
 12 ' 
 
 15 o 
 18.0 
 
 21.0 
 24.0 
 27.0 
 
 34 
 3-4 
 6.8 
 
 10.2 
 I 3 .6 
 17.0 
 20.4 
 2 3 .8 
 2 7 .a 
 30.6 
 
 38 
 3-8 
 
 7.6 
 11.4 
 15.2 
 19.0 
 
 22.3 
 26.6 
 30.4 
 
 34-a 
 
 43 
 
 200 
 
 447 
 698 
 
 954 
 
 214 
 479 
 748 
 
 *O2I 
 300 
 
 224 
 472 
 724 
 980 
 240 
 505 
 
 775 
 *049 
 328 
 
 249 
 497 
 749 
 *oo6 
 267 
 532 
 802 
 *077 
 356 
 
 274 
 522 
 775 
 
 *0 3 2 
 293 
 
 559 
 829 
 *I04 
 384 
 
 298 
 
 547 
 800 
 
 *o58 
 
 3 J 9 
 586 
 
 85* 
 
 *I32 
 
 412 
 
 323 
 572 
 826 
 
 *o84 
 346 
 613 
 884 
 *i6o 
 441 
 
 348 
 
 597 
 851 
 
 *IIO 
 
 372 
 640 
 
 911 
 
 *i88 
 469 
 
 372 
 622 
 877 
 *I36 
 
 399 
 667 
 
 939 
 
 *2l6 
 
 497 
 
 397 
 648 
 
 903 
 
 *l62 
 
 425 
 694 
 
 966 
 
 *244 
 526 
 
 583 
 
 611 
 
 640 
 
 668 
 
 697 
 
 726 
 
 755 
 
 783 
 
 812 
 
 870 
 162 
 
 460 
 
 7 6l 
 068 
 380 
 
 697 
 
 *oi8 
 345 
 
 899 
 192 
 
 489 
 
 792 
 099 
 411 
 
 729 
 *o5i 
 378 
 
 928 
 
 221 
 520 
 
 822 
 I 3 
 
 443 
 761 
 *o83 
 411 
 
 957 
 251 
 
 550 
 
 8 I 3 
 161 
 
 474 
 
 793 
 *ii6 
 
 444 
 
 986 
 281 
 580 
 
 884 
 192 
 506 
 
 825 
 *I48 
 477 
 
 *oi6 
 310 
 610 
 
 914 
 
 224 
 538 
 
 857 
 *i8i 
 510 
 
 *045 
 340 
 640 
 
 945 
 
 255 
 569 
 
 889 
 
 *2I 4 
 
 544 
 
 *074 
 370 
 670 
 
 976 
 286 
 601 
 
 921 
 
 *2 4 7 
 577 
 
 *IO4 
 400 
 701 
 
 *oo 7 
 317 
 633 
 
 954 
 *279 
 610 
 
 677 
 
 710 
 
 744 
 
 777 
 
 811 
 *i5o 
 
 494 
 844 
 
 198 
 558 
 923 
 294 
 670 
 ^052 
 
 845 
 *i84 
 529 
 879 
 
 234 
 
 
 9 6o 
 
 331 
 
 708 
 
 *O90 
 
 878 
 
 912 
 
 946 
 
 *oi4 
 356 
 703 
 056 
 414 
 777 
 
 145 
 519 
 898 
 
 *048 
 390 
 738 
 091 
 450 
 813 
 182 
 557 
 937 
 
 *082 
 
 425 
 773 
 127 
 486 
 850 
 
 220 
 
 594 
 975 
 
 *ii6 
 460 
 808 
 
 163 
 522 
 887 
 
 257 
 
 * 632 
 *oi3 
 
 *2l8 
 
 564 
 914 
 
 270 
 631 
 
 997 
 
 369 
 746 
 
 *I28 
 
 *2 53 
 599 
 949 
 306 
 667 
 *Q34 
 
 406 
 784 
 *i67 
 
 *287 
 633 
 985 
 
 342 
 704 
 *o7i 
 
 444 
 822 
 
 *206 
 
 8.0 
 
 12.0 
 
 16.0 
 20. o 
 
 24.0 
 28.0 
 32.0 
 
 36.0 
 
 44 
 
 4-4 
 8.8 
 13-2 
 17.6 
 
 22.0 
 26. 4 
 30.8 
 
 35-2 
 39.6 
 
 48 
 
 4.8 
 9.6 
 14.4 
 19.2 
 24.0 
 28.8 
 33-6 
 38.4 
 43-2 
 
 8.2 
 
 12.3 
 16.4 
 20.5 
 24-6 
 28.7 
 32.8 
 36-9 
 45 
 4-5 
 9.0 
 13-5 
 18.0 
 22.5 
 27.0 
 3i-5 
 36.0 
 
 40-5 
 
 49 
 
 4.9 
 9.8 
 14.7 
 19.6 
 24-5 
 29.4 
 34-3 
 39-2 
 44.1 
 
 8.4 
 
 12.6 
 
 16.8 
 
 21.0 
 
 25.2 
 29.4 
 33-6 
 
 37-8 
 46 
 4.6 
 9.2 
 13-8 
 18.4 
 23.0 
 27.6 
 32.2 
 36.8 
 41.4 
 
 50 
 5-0 
 
 IO.O 
 
 iS-o. 
 20. o 
 
 25.0 
 30.0 
 
 35-0 
 40.0 
 45-0 
 
 0.21 244 
 
 634 
 O.22 O29 
 
 430 
 8 3 6 
 0.23 247 
 665 
 
 0.24 088 
 5 I6 
 950 
 
 283 
 
 322 
 
 361 
 
 399 
 
 438 
 
 477 
 
 516 
 
 556 
 
 595 
 989 
 3S9 
 795 
 
 *206 
 
 623 
 *Q45 
 
 473 
 907 
 
 *346 
 
 673 
 069 
 470 
 
 877 
 289 
 707 
 
 130 
 559 
 994 
 
 712 
 109 
 510 
 
 918 
 330 
 749 
 
 173 
 603 
 *o 3 8 
 
 752 
 149 
 
 55i 
 
 959 
 372 
 791 
 
 216 
 646 
 
 *082 
 
 791 
 189 
 59i 
 
 *000 
 
 414 
 
 833 
 
 258 
 689 
 
 *I26 
 
 831 
 229 
 632 
 
 *04I 
 455 
 875 
 301 
 733 
 
 *I 7 
 
 870 
 269 
 673 
 
 *082 
 
 497 
 918 
 
 344 
 776 
 
 *2I 4 
 
 910 
 309 
 713 
 
 *I2 3 
 
 539 
 960 
 
 387 
 819 
 *258 
 
 949 
 349 
 754 
 *i65 
 581 
 *oo3 
 
 430 
 863 
 
 *302 
 
 0.25 390 
 
 434 
 
 479 
 
 523 
 
 568 
 
 612 
 
 657 
 
 701 
 
 746 
 
 791 
 
 836 
 0.26 287 
 
 744 
 0.27 207 
 
 675 
 0.28 149 
 
 629 
 0.29 115 
 606 
 
 881 
 332 
 790 
 
 253 
 722 
 
 197 
 
 677 
 163 
 
 655 
 
 926 
 378 
 836 
 
 300 
 769 
 245 
 
 726 
 
 212 
 705 
 
 970 
 
 423 
 882 
 
 346 
 817 
 292 
 
 7 2 4 
 261 
 
 754 
 
 *oi6 
 469 
 928 
 
 393 
 864 
 
 340 
 822 
 310 
 
 804 
 
 *o6i 
 515 
 974 
 440 
 911 
 388 
 
 871 
 359 
 854 
 
 *io6 
 560 
 
 *02I 
 487 
 
 959 
 436 
 920 
 409 
 903 
 
 *i 5 i 
 606 
 "067 
 
 534 
 *oo6 
 484 
 
 968 
 458 
 953 
 
 *i 9 6 
 652 
 *U4 
 581 
 *Q54 
 532 
 *oi7 
 507 
 *oo3 
 
 *2 4 2 
 698 
 
 *i6o 
 628 
 
 *IOI 
 
 581 
 
 *o66 
 556 
 *053 
 
 0.30 103 
 
 153 
 
 2O3 
 
 253 
 
 303 
 
 354 
 
 404 
 
 454 
 
 505 
 
 555 
 
 1 A. 
 
 B. 
 
 1 
 
 2 
 
 a 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 

 
 ADD { ^ga-logd = A. g ( loga - log = B. 
 ' \ log (a + &) = log + -#. | log (a ) = log + A. 
 
 A. 
 
 B. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 6 
 
 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
 0.00 
 
 O.OI 
 O.O2 
 0.03 
 
 0.04 
 O.O5 
 0.06 
 
 0.07 
 0.08 
 O.O9 
 
 0.10 
 
 O.II 
 O.I2 
 
 0.13 
 
 0.14 
 0.15 
 0.16 
 
 0.17 
 0.18 
 0.19 
 
 0.20 
 
 0.21 
 0.22 
 0.23 
 
 0.24 
 O.2J 
 
 O.26 
 
 0.27 
 0.29 
 
 0.30 
 
 0.31 
 0.32 
 0.33 
 
 0-34 
 0.35 
 0.36 
 
 0.37 
 0.38 
 0.39 
 
 0.40 
 
 0.4 
 
 0.42 
 0.43 
 
 0.4 
 
 0.4 
 0.46 
 
 0.4 
 0.4 
 0.4 
 
 0.5 
 
 0.30 103 
 606 
 0.31 115 
 629 
 
 0.32 149 
 
 675 
 0.33 207 
 
 744 
 0.34 287 
 836 
 
 153 
 
 203 
 
 253 
 
 303 
 
 354 
 
 404 
 
 454 
 
 505 
 
 555 
 
 5 
 
 5-0 
 
 10.0 
 
 15.0 
 
 20.0 
 25.0 
 30.0 
 
 35-o 
 40.0 
 > 5-o 
 54 
 5-4 
 
 ! 10.8 
 JI6.2 
 J2I.6 
 
 527.0 
 532.4 
 737-8 
 3 43-2 
 ?4 8.6 
 
 58 
 ' 5-8 
 
 2 II. 6 
 
 3 17-4 
 4 23.2 
 5 29.0 
 634.8 
 740.6 
 846.4 
 952.2 
 
 62 
 
 I 6.2 
 2 12.4 
 
 3 18.6 
 424.8 
 53i-o 
 637.2 
 743-4 
 849-6 
 955.8 
 
 66 
 
 i 6.6 
 213.2 
 
 3 19-8 
 426.4 
 533-c 
 639-6 
 746.2 
 852.8 
 959-4 
 70 
 
 2 14. c 
 
 32I.C 
 
 4 28. c 
 535-c 
 6 42. c 
 
 749 < 
 8 5 6.c 
 
 963.* 
 
 51 
 
 5-i 
 
 tO. 2 
 
 '5-3 
 20.4 
 
 25-5 
 30.6 
 
 J5-7 
 to. 8 
 15-9 
 55 
 
 5-5 
 
 II. 
 
 '6.5 
 
 22.0 
 27.5 
 
 33-o 
 38.5 
 44-o 
 49-5 
 59 
 
 5-9 
 ii. 8 
 17.7 
 23-6 
 29-5 
 35-4 
 4i-3 
 47-2 
 S3-i 
 63 
 6-3 
 
 12.6 
 
 18.9 
 
 25.2 
 
 37-8 
 44.1 
 5-4 
 56-7 
 67 
 6-7 
 13-4 
 
 20.1 
 26.8 
 
 33-5 
 40.2 
 46-9 
 53-6 
 60.3 
 
 71 
 
 14.2 
 21.3 
 28.4 
 
 35.5 
 
 42. e 
 
 49-3 
 56.8 
 
 6 3 -<3 
 
 5-2 
 
 to. 4 
 
 20.8 
 
 26.0 
 ;i.2 
 56.4 
 
 56 
 
 5-6 
 
 [1.2 
 
 [6.8 
 22.4 
 28.0 
 33-6 
 39-2 
 44-8 
 50.4 
 
 60 
 6.0 
 
 12.0 
 
 18.0 
 
 24.0 
 30.0 
 36.0 
 
 42.0 
 
 48.0 
 
 54-0 
 6.4 
 
 12.8 
 
 19.2 
 25.6 
 
 32.0 
 
 38.4 
 
 44.8 
 51.2 
 57-6 
 68 
 6.8 
 13.6 
 20.4 
 27.2 
 34-c 
 40.8 
 47-C 
 54-4 
 61.2 
 
 73 
 
 7.2 
 14.4 
 
 21. e 
 
 28. 
 
 43-s 
 50.4 
 57-< 
 64.* 
 
 53 
 
 5-3 
 0.6 
 
 5-9 
 
 1.2 
 
 6-5 
 1.8 
 7-J 
 
 2-4 
 
 7-7 
 57 
 5-7 
 M 
 7-i 
 
 22.8 
 
 28.5 
 
 34-a 
 39-9 
 45-6 
 Si-3 
 6x 
 6.x 
 
 12.2 
 I8. 3 
 24.4 
 30-5 
 36.6 
 42.7 
 4 8.8 
 
 54-9 
 65 
 6-5 
 13-0 
 19.5 
 26.0 
 32-5 
 39-0 
 45.5 
 52.0 
 58.5 
 69 
 6.9 
 13-8 
 20.7 
 27.6 
 34-5 
 41.4 
 48.3 
 
 55-2 
 62.1 
 
 73 
 
 7-3 
 14.6 
 21.9 
 29.9 
 36.5 
 43-8 
 51.1 
 58.4 
 65-7 
 
 656 
 1 66 
 68 1 
 
 20 1 
 728 
 260 
 
 798 
 342 
 891 
 
 707 
 217 
 
 732 
 
 254 
 
 852 
 
 396 
 946 
 
 758 
 268 
 
 784 
 306 
 834 
 367 
 906 
 
 OOI 
 
 809 
 320 
 836 
 
 359 
 887 
 421 
 
 960 
 * 5 6 
 
 859 
 37i 
 888 
 
 411 
 940 
 
 474 
 
 '5 
 561 
 
 112 
 
 910 
 422 
 940 
 
 464 
 
 993 
 528 
 
 069 
 616 
 168 
 
 961 
 474 
 992 
 
 5I 2 
 
 046 
 582 
 
 123 
 670 
 223 
 
 012 
 526 
 045 
 
 569 
 100 
 
 636 
 
 178 
 726 
 
 279 
 
 063 
 
 577 
 097 
 
 622 
 
 153 
 690 
 
 232 
 78i 
 334 
 
 0.35 390 
 
 446 
 
 502 
 
 558 
 
 614 
 
 6 7 
 
 726 
 
 782 
 
 838 
 
 894 
 
 * 95 ? 
 0.36 516 
 
 0.37 088 
 665 
 0.38 247 
 836 
 
 0.39 430 
 0.40 029 
 
 634 
 0.41 244 
 
 007 
 573 
 
 723 
 306 
 895 
 
 489 
 089 
 695 
 
 *o6 3 
 630 
 203 
 
 363 
 954 
 
 549 
 149 
 756 
 
 119 
 
 687 
 260 
 
 839 
 423 
 *oi3 
 
 609 
 
 2IO 
 
 816 
 "428 
 
 669 
 297 
 
 570 
 214 
 864 
 
 ?J! 
 
 744 
 
 897 
 482 
 
 *073 
 669 
 270 
 877 
 
 *2 33 
 80 1 
 375 
 955 
 
 *I 3 2 
 
 729 
 
 33 o 
 
 938 
 
 +289 
 858 
 433 
 *oi4 
 600 
 *I9I 
 
 789 
 999 
 
 * 34 6 
 916 
 491 
 
 *072 
 
 / 59 
 849 
 
 452 
 
 *o6i 
 
 403 
 973 
 549 
 
 718 
 *3io 
 
 909 
 512 
 
 *I22 
 
 *459 
 *O3O 
 607 
 
 777 
 *370 
 
 969 
 
 573 
 *i8 3 
 
 306 
 
 367 
 
 490 
 
 552 
 
 613 
 
 1 
 
 487 
 
 *I22 
 763 
 4 08 
 
 *o6o 
 716 
 "377 
 
 675 
 
 737 
 
 798 
 
 860 
 0.42 481 
 0.43 108 
 740 
 o.44 378 
 0.45 020 
 
 668 
 0.46 322 
 
 980 
 
 922 
 
 544 
 171 
 
 804 
 
 442 
 085 
 
 387 
 
 O/1 ( 
 
 984 
 606 
 
 234 
 
 867 
 506 
 149 
 
 799 
 
 453 
 
 *II2 
 
 *io8 
 
 360 
 
 995 
 634 
 279 
 
 929 
 584 
 
 *245 
 
 *i70 
 794 
 423 
 *o 5 8 
 698 
 344 
 
 994 
 650 
 * 3 n 
 
 920 
 550 
 *i86 
 827 
 
 473 
 
 782 
 *444 
 
 *357 
 982 
 613 
 
 89? 
 538 
 
 *IGO 
 8 4 8 
 * 5 IO 
 
 *045 
 677 
 
 *3H 
 956 
 603 
 
 *2 5 6 
 
 914 
 
 *577 
 
 Q.47 643 
 0.48 312 
 986 
 0.49 665 
 
 0.50 349 
 0.51 037 
 
 0.52 430 
 o.53 133 
 84 
 
 o.54 554 
 
 710 
 
 777 
 
 844 
 
 910 
 
 977 
 
 O4^ 
 
 *iii 
 
 *I 7 8 
 
 *245 
 918 
 *597 
 
 *280 
 
 968 
 661 
 *36o 
 
 *062 
 
 770 
 *483 
 
 * 379 
 
 73: 
 
 417 
 107 
 
 801 
 
 500 
 204 
 912 
 
 447 
 
 *I2I 
 
 Soi 
 
 486 
 176 
 870 
 
 570 
 274 
 983 
 
 869 
 
 555 
 245 
 940 
 
 640 
 345 
 *55 
 
 *257 
 938 
 624 
 
 *OIO 
 
 710 
 
 416 
 
 *I26 
 
 * 64 - 
 *oo6 
 692 
 
 384 
 *o8o 
 
 78 
 486 
 *i97 
 
 716 
 *393 
 *o 7 4 
 761 
 
 453 
 "150 
 
 85 
 
 *M 7 8 
 
 783 
 * 4 6i 
 
 *I43 
 830 
 522 
 
 *220 
 
 92 
 628 
 
 *34o 
 
 851 
 *529 
 
 *2II 
 
 899 
 
 592 
 
 *289 
 992 
 699 
 *4i 
 
 626 
 
 697 
 
 769 
 
 841 
 
 912 
 
 984 
 
 *os6 
 
 *I28 
 
 *2OO 
 
 0.55 272 
 
 , 994 
 0.56 72 
 
 o.57 45 
 0.58 18 
 92 
 
 0.59 67 
 0.60 42 
 0.61 17 
 
 344 
 *o66 
 
 794 
 262 
 
 748 
 497 
 251 
 
 416 
 *i 39 
 86 
 
 59 
 
 3 
 
 82 
 
 57 
 32 
 
 488 
 
 *2II 
 
 940 
 
 672 
 4ic 
 *i 5 i 
 
 897 
 648 
 402 
 
 *28 
 
 746 
 
 484 
 
 *226 
 972 
 
 723 
 478 
 
 632 
 *357 
 *o86 
 
 819 
 
 558 
 * 3 oo 
 
 79 
 
 554 
 
 704 
 
 *?59 
 
 893 
 63 
 *37~ 
 
 *I2 
 
 874 
 
 6 3 c 
 
 777 
 
 * 5 02 
 *2 3 2 
 
 967 
 706 
 
 *449 
 *i 9 
 
 94 
 70 
 
 * 4 6 
 
 849 
 
 *57" 
 * 3 o 
 
 *0 4 
 
 * 78C 
 
 *27 
 
 78 4 
 
 * 92 ' 
 
 *379 
 *ii 4 
 854 
 * S9 8 
 
 *347 
 
 *IOO 
 
 857 
 
 *ooc 
 
 *o8 
 
 *i6 
 
 *237 
 
 *3M 
 
 * 39 c 
 
 *54 
 
 *6i9 
 
 B. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 
 
 1 
 
 8 
 
 9 
 
 Prop. Pts. 
 
ADDITION AND SUBTRACTION LOGARITHMS. 
 
 A f loga log b= A. q ( loga log = B. 
 ADD ' i log(a + b) = log* + B. 3 ' i log(0 - b) = log + ^. 
 
 A. 
 
 B. 
 
 1 
 
 2 
 
 a 
 
 4 
 
 5 
 
 G 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
 0.50 
 
 0.51 
 0.52 
 o.53 
 0.54 
 o.55 
 0.56 
 
 0.57 
 0.58 
 0.59 
 
 0.60 
 
 0.61 
 0.62 
 0.63 
 
 0.64 
 0.65 
 0.66 
 
 0.67 
 0.68 
 0.69 
 
 0.70 
 
 0.71 
 0.72 
 o.73 
 0.74 
 0.75 
 0.76 
 
 0.77 
 0.78 
 
 o.79 
 0.80 
 
 0.81 
 10.82 
 0.83 
 
 0.84 
 0.85 
 0.86 
 
 0.87 
 0.88 
 0.89 
 
 0.90 
 
 0.91 
 0.92 
 0.93 
 
 0.94 
 0.95 
 0.96 
 
 0.97 
 0.98 
 0.99 
 
 1.00 
 
 0.61 933 
 
 *cx>9 
 
 +085 
 
 *l6i 
 
 *237 
 
 * 3 i 4 
 
 *39o 
 
 *466 
 
 *542 
 
 *6i 9 
 
 X 
 2 
 
 3 
 4 
 5 
 6 
 
 7 
 
 8 
 
 9 
 
 X 
 3 
 
 3 
 4 
 5 
 6 
 
 7 
 
 8 
 
 9 
 
 t 
 a 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 X 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 
 9 
 
 X 
 3 
 
 3 
 4 
 5 
 6 
 
 7 
 8 
 
 9 
 
 X 
 
 a 
 3 
 4 
 5 
 6 
 7 
 8 
 o 
 
 74 
 
 7-4 
 14-8 
 
 22.2 
 2 9 .6 
 37.0 
 
 44-4 
 51.8 
 
 59-2 
 66.6 
 
 77 
 7-7 
 15-4 
 
 30.8 
 38.5 
 46.2 
 
 53-9 
 61.6 
 69.3 
 80 
 8.0 
 16.0 
 24.0 
 32.0 
 40.0 
 48.0 
 56.0 
 64.0 
 72.0 
 
 83 
 
 8-3 
 16.6 
 24.9 
 33-2 
 41.5 
 49-8 
 58.1 
 66.4 
 74-7 
 86 
 8.6 
 17.2 
 25.8 
 34-4 
 
 51.6 
 60.2 
 68.8 
 77-4 
 
 89 
 89 
 
 2^7 
 35. 6 
 44-5 
 53-4 
 62.3 
 7.a 
 80.1 
 
 75 
 
 7-5 
 15-0 
 22.5 
 30.0 
 37-5 
 45-0 
 52-5 
 60.0 
 67-5 
 78 
 7.8 
 15.6 
 23-4 
 31.2 
 
 39-0 
 46.8 
 54-6 
 63.4 
 70.2 
 
 81 
 8.x 
 16.2 
 24.3 
 32.4 
 40.5 
 48.6 
 56.7 
 64.8 
 72.9 
 
 84 
 
 8.4 
 
 16.8 
 25.2 
 
 33-6 
 42.0 
 
 50.4 
 58.8 
 67.2 
 75-6 
 87 
 8-7 
 17-4 
 26.1 
 34-8 
 43-5 
 52.2 
 60.9 
 69.6 
 78.3 
 90 
 9.0 
 18.0 
 27.0 
 36.0 
 45 .e 
 54-c 
 63.0 
 72.0 
 8x.c 
 
 7 6 
 7.6 
 15-2 
 
 22.8 I 
 30-4 
 38.0 | 
 
 45-6 
 53-2 
 60.8 
 
 68.4 
 
 79 
 7-9 
 15.8 
 23.7 
 31.6 
 39-5 
 47-4 
 55-3 
 63.2 
 71.1 
 83 
 8.2 
 
 16.4 
 24.6 
 32.8 
 
 41.0 
 49.2 
 
 57-4 ! 
 65.6 
 73-8 
 
 85 
 
 8.5 
 17.0 
 25.5 
 34-o 
 42.5 
 51-0 
 59-5 
 68.0 
 76.5 
 88 
 8.8 
 17.6 
 26.4 
 
 35-a 
 44.0 
 52.8 
 61.6 
 70.4 
 
 9* 
 9.1 
 18.2 
 27.3 
 36.4 
 45-5 
 54-6 
 63.7 
 72.8 
 81.9 
 
 0.62 695 
 0.63 461 
 0.64 231 
 
 0.65 005 
 
 783 
 0.66 565 
 
 0.67 351 
 0.68 141 
 935 
 
 771 
 538 
 308 
 
 083 
 861 
 644 
 
 430 
 
 220 
 
 *oi4 
 
 848 
 615 
 386 
 
 160 
 
 939 
 722 
 
 509 
 * 3 
 
 924 
 692 
 463 
 
 2 3 8 
 *oi8 
 Soi 
 
 588 
 379 
 *I74 
 
 *OOI 
 
 768 
 540 
 
 "096 
 879 
 667 
 458 
 
 845 
 618 
 
 394 
 *i 74 
 
 958 
 
 746 
 538 
 *333 
 
 *I54 
 923 
 695 
 472 
 
 *2 5 2 
 
 617 
 * 4 I 3 
 
 *2 3 I 
 
 *ooo 
 773 
 
 549 
 *33 
 *ii5 
 
 904 
 696 
 *493 
 
 *37 
 "077 
 850 
 
 * 627 
 *I94 
 
 983 
 776 
 
 *573 
 
 OOOO W4^vjvO-iU> 
 ononONVJOOO tOOnOO 
 to on U U> ^>J on G04- 4- 
 
 0.69 732 
 
 812 
 
 892 
 
 972 
 
 *0$2 
 
 *I32 
 
 *2I2 
 
 *293 
 
 *373 
 
 *453 
 
 0.70 533 
 0.71 338 
 0.72 146 
 
 958 
 0.73 774 
 o.74 592 
 
 o.75 415 
 0.76 240 
 0.77 069 
 
 _9oi 
 
 0.78 736 
 
 o.79 575 
 0.80 416 
 
 0.81 261 
 0.82 108 
 959 
 0.83 812 
 0.84 668 
 0.85 527 
 
 614 
 419 
 227 
 
 855 
 
 674 
 
 497 
 323 
 152 
 
 694 
 
 499 
 308 
 
 *I2I 
 
 937 
 757 
 
 579 
 406 
 
 235 
 
 774 
 580 
 
 390 
 
 *202 
 
 839 
 662 
 488 
 318 
 
 *IOI 
 
 921 
 
 744 
 57i 
 401 
 
 935 
 
 742 
 552 
 * 3 6 5 
 *i8 3 
 
 *00 3 
 
 827 
 654 
 485 
 
 *oi6 
 
 823 
 
 633 
 
 *447 
 
 *o8s 
 909 
 
 737 
 568 
 
 *o 9 6 
 904 
 7H 
 
 * 34 6 
 *i68 
 
 992 
 820 
 651 
 
 *I77 
 984 
 796 
 
 *6io 
 *428 
 
 *o 7 5 
 903 
 734 
 
 *257 
 
 877 
 ^692 
 
 -"157 
 818 
 
 984 
 
 820 
 659 
 500 
 
 345 
 193 
 *044 
 898 
 
 754 
 613 
 
 *o68 
 
 *I 5 I 
 
 *235 
 
 *3i8 
 
 * 4 02 
 
 *48$ 
 
 *56 9 
 
 *653 
 
 904 
 
 743 
 585 
 
 430 
 
 278 
 
 *I2 9 
 
 983 
 840 
 700 
 
 987 
 827 
 66 9 
 
 515 
 363 
 *2I4 
 
 926 
 786 
 
 911 
 
 754 
 
 599 
 448 
 * 3 oo 
 
 *I54 
 
 *OI2 
 8 7 2 
 
 995 
 838 
 
 684 
 * 533 
 
 *2 4 
 958 
 
 * 239 
 
 922 
 769 
 
 618 
 * 4 7o 
 
 *i63 
 *oo7 
 
 854 
 703 
 * 55 6 
 
 *4H 
 
 938 
 
 788 
 
 *497 
 *355 
 
 *2I7 
 
 * 49 i 
 *?76 
 
 *02 3 
 
 873 
 
 * 7 2 7 
 
 *44i 
 
 0.86 389 
 
 476 
 
 562 
 
 648 
 
 735 
 
 821 
 
 908 
 
 994 
 
 *o8i 
 
 "167 
 
 0.87 254 
 0.88 121 
 991 
 
 0.89 863 
 0.90 738 
 0.91 616 
 
 0.92 49 6 
 0.93 378 
 0.94 263 
 
 340 
 
 20 
 
 951 
 826 
 704 
 
 584 
 466 
 
 427 
 295 
 
 914 
 
 7 9 I 
 
 6 7 2 
 
 555 
 440 
 
 382 
 
 *2 5 2 
 
 *I25 
 *OOI 
 
 879 
 760 
 643 
 
 529 
 
 600 
 469 
 *339 
 
 *2I 3 
 
 967 
 848 
 732 
 617 
 
 687 
 * 556 
 
 !3 
 *I77 
 
 *55 
 
 936 
 820 
 706 
 
 774 
 
 * 643 
 *5H 
 
 *'4: 
 
 08 
 795 
 
 861 
 
 730 
 *6oi 
 
 *475 
 *352 
 
 *2 3 I 
 
 *ii3 
 997 
 883 
 
 947 
 
 *68 7 
 * 5 6 3 
 t 440 
 
 *20I 
 
 *o86 
 972 
 
 904 
 *776 
 
 *4o8 
 
 *I74 
 *o6i 
 
 950 
 
 Q.95 '50 
 0.96 039 
 
 0.97 82^ 
 
 0.98 720 
 0.99 618 
 i. oo 519 
 
 i.oi 421 
 
 1.02 325 
 1.03 231 
 
 239 
 128 
 
 *020 
 914 
 
 810 
 708 
 609 
 
 5" 
 322 
 
 327 
 
 416 
 
 505 
 
 594 
 
 683 
 
 772 
 
 861 
 
 217 
 *i09 
 
 *00 3 
 
 900 
 
 798 
 699 
 
 601 
 506 
 413 
 
 *i8 
 
 789 
 692 
 597 
 503 
 
 395 
 *288 
 
 *l82 
 
 879 
 782 
 
 687 
 
 594 
 
 485 
 *377 
 
 *2 7 2 
 
 *i69 
 *o68 
 969 
 
 873 
 778 
 685 
 
 *362 
 
 *259 
 *I 5 8 
 *o6o 
 
 963 
 868 
 776 
 
 663 
 
 *45i 
 *349 
 
 959 
 867 
 
 *645 
 * 54 i 
 
 *44 
 957 
 
 841 
 
 *735 
 *63i 
 
 *528 
 *428 
 
 "140 
 
 1.04 139 
 
 230 
 
 321 
 
 412 
 
 503 
 
 594 
 
 685 
 
 776 
 
 867 
 
 958 
 
 1 A. 
 
 B. 
 
 1 
 
 2 
 
 8 
 
 4 
 
 6 
 
 G 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
2 TABLE VI. 
 
 ADD ) l Z a ~~ 10g b = A ' QTTR f lo g * ~ lo * = # 
 
 * t log (a + b) == log ^+ A i log( - J) = log^ 4- A. 
 
 ; A. 
 
 B. 
 
 1 
 
 2 
 
 a 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
 1.00 
 
 01 
 
 02 
 
 03 
 
 04 
 
 l 
 
 06 
 
 :>7 
 08 
 09 
 
 10 
 
 ii 
 
 12 
 13 
 
 14 
 15 
 
 16 
 
 17 
 18 
 
 19 
 .20 
 
 21 
 22 
 .23 
 
 .24 
 .25 
 .26 
 
 !28 
 .29 
 
 .30 
 
 31 
 3 2 
 < -33 
 
 : -34 
 i -35 
 36 
 
 37 
 38 
 39 
 
 1.04 139 
 
 230 
 
 321 
 
 412 
 
 503 
 
 594 
 
 685 
 
 776 
 
 867 
 
 958 
 
 9 
 
 i 9 
 
 2 18 
 3 27 
 4 36 
 5 45 
 6 54 
 
 9 Si 
 I 
 
 2 
 
 3 
 4 
 
 i 
 I 
 
 9 
 i 
 
 2 
 
 3 
 4 
 
 1 
 
 9 
 
 ! 
 
 i c 
 
 2 I< 
 
 32 i 
 
 4 3^ 
 5 4 
 
 6 \ 
 7 6( 
 
 8 7 
 9 8 
 
 i 
 
 2 
 
 3 
 4 
 
 .1 
 I 
 
 9 
 
 i 
 
 .2 
 
 3 
 4 
 
 9 
 
 93 
 
 27 
 
 1 
 
 65 
 
 g 
 
 9 
 
 ,i 
 
 28 
 
 37 
 
 1 
 1 
 
 )5 
 
 )-5 
 ).o 
 
 1:1 
 
 J-S 
 7-c 
 
 It 
 
 5-5 
 
 ? 
 5 
 IS 
 
 2C 
 
 1 
 6; 
 
 7' 
 
 8; 
 
 9* 
 
 9.2 
 18.4 
 27.6 
 36.8 
 46.0 
 
 55-2 
 64.4 
 
 g;l 
 I 
 
 q 
 2 
 
 I 
 
 I 
 
 4 
 7 
 
 \ 
 
 i 
 
 .2 
 
 .6 
 
 .0 
 
 i 
 
 .2 
 
 .6 
 
 96 
 96 
 19.2 
 28.8 
 
 38.4 
 48 o 
 57-6 
 67.2 
 76.8 
 86.4 
 
 >7 
 
 >-7 
 >-4 
 
 !i 
 
 ii 
 
 ',i 
 
 r-3 
 
 1.05 049 
 961 
 i. 06 875 
 
 1.07 790 
 i. 08 708 
 1.09 627 
 
 i. 10 548 
 i. i i 470 
 1. 12 394 
 
 140 
 
 053 
 966 
 
 882 
 800 
 719 
 
 640 
 562 
 486 
 
 232 
 144 
 
 058 
 
 974 
 891 
 811 
 
 732 
 655 
 579 
 
 323 
 235 
 149 
 
 065 
 983 
 903 
 824 
 
 747 
 671 
 
 414 
 * 3 26 
 
 *2 4 I 
 I 157 
 
 *075 
 995 
 916 
 839 
 764 
 
 505 
 418 
 
 332 
 
 249 
 167 
 087 
 
 009 
 932 
 857 
 
 596 
 *5o 9 
 
 *424 
 
 34i 
 259 
 179 
 
 101 
 
 024 
 949 
 
 687 
 "601 
 * 5 i6 
 
 *432 
 *35i 
 
 *27 1 
 
 ^193 
 *ii7 
 
 ^042 
 
 779 
 692 
 607 
 
 524 
 443 
 363 
 285 
 209 
 134 
 
 870 
 
 783 
 6 99 
 
 616 
 535 
 455 
 378 
 301 
 227 
 
 1.13 320 
 
 412 
 
 503 
 
 598 
 
 690 
 
 783 
 
 876 
 
 968 
 
 06 1 
 
 i54 
 
 i 14 247 
 I.I5 175 
 1.16 106 
 
 1.17 J7 
 97i 
 1.18 905 
 
 1.19 841 
 1.20 779 
 
 1. 21 717 
 1.22 657 
 
 1.23 599 
 1.24 54i 
 1.25 485 
 
 1.26 430 
 1.27 376 
 1.28 323 
 
 1.29 272 
 
 1.30 221 
 
 1.31 J 72 
 
 340 
 268 
 199 
 
 131 
 
 064 
 
 999 
 
 935 
 872 
 811 
 
 432 
 361 
 292 
 
 224 
 
 157 
 092 
 
 029 
 966 
 905 
 
 525 
 454 
 385 
 
 317 
 251 
 1 86 
 
 122 
 
 060 
 
 999 
 
 618 
 547 
 473 
 
 411 
 
 *344 
 *27 9 
 
 *2l6 
 
 *I 54 
 
 *0 93 
 
 I 11 
 
 640 
 
 57i 
 504 
 * 43 8 
 *373 
 * 3 ip 
 *248 
 *i8 7 
 
 804 
 
 733 
 665 
 
 597 
 
 * S ? ! 
 
 *467 
 
 * 4 03 
 *342 
 
 *28l 
 
 897 
 826 
 758 
 691 
 
 I 6 ? 
 *56o 
 
 *497 
 *435 
 *375 
 
 990 
 
 9 2O 
 8 5 I 
 
 784 
 718 
 654 
 
 591 
 5 2 9 
 
 46 9 
 
 083 
 013 
 944 
 
 877 
 812 
 
 748 
 
 685 
 623 
 563 
 
 751 
 
 845 
 
 939 
 
 *Q34 
 
 *I28 
 
 *222 
 
 * 3 i6 
 
 410 
 
 504 
 
 693 
 635 
 579 
 524 
 
 47i 
 418 
 
 367 
 316 
 267 
 
 787 
 730 
 674 
 
 619 
 565 
 5 J 3 
 462 
 411 
 362 
 
 88 1 
 824 
 
 768 
 
 714 
 660 
 608 
 
 557 
 507 
 458 
 
 975 
 918 
 863 
 
 808 
 755 
 703 
 652 
 602 
 553 
 
 *070 
 *oi3 
 957 
 
 903 
 850 
 
 797 
 746 
 
 697 
 648 
 
 *l64 
 
 *I07 
 
 *052 
 
 997 
 944 
 892 
 
 841 
 792 
 
 743 
 
 *2 5 8 
 *2O2 
 *I 4 6 
 *092 
 
 *d^9 
 987 
 936 
 887 
 838 
 
 352 
 
 2 9 6 
 *24I 
 
 *i8 7 
 *i 34 
 
 *082 
 
 $ 
 
 933 
 
 447 
 390 
 *335 
 
 *28l 
 *22 9 
 
 *I77 
 
 *I26 
 
 *077 
 
 *02 9 
 
 1.32 124 
 
 219 
 
 3H 
 
 410 
 
 505 
 
 600 
 
 695 
 
 791 
 
 886 
 
 9 8l 
 
 1.33 77 
 1.34 3 
 
 985 
 
 1.35 94i 
 1.36 898 
 1.37 856 
 1.38 814 
 1.39 774 
 1.40 734 
 
 172 
 126 
 *o8i 
 
 *Q37 
 994 
 95i 
 910 
 870 
 830 
 
 267 
 
 221 
 
 *i76 
 
 *I 3 2 
 
 *o89 
 *O47 
 
 *oo6 
 966 
 926 
 
 363 
 3i7 
 
 *272 
 *228 
 
 *i85 
 *i43 
 
 *IO2 
 *062 
 *022 
 
 458 
 
 * 4 ^ 2 
 * 3 6 7 
 
 * 3 24 
 *28l 
 
 *2 39 
 
 *i98 
 *I58 
 *u 9 
 
 55 ^ 
 508 
 
 * 4 6 3 
 *4i 9 
 *377 
 *335 
 
 *2 94 
 
 * 254 
 
 *2I5 
 
 649 
 603 
 
 *559 
 
 *5i5 
 *472 
 
 * 43 I 
 
 * 39 o 
 * 3 5o 
 * 3 ii 
 
 744 
 699 
 *6 54 
 
 *6n 
 
 * 5 68 
 
 *527 
 ^486 
 *446 
 * 4 o 7 
 
 840 
 794 
 *750 
 
 *7o6 
 *664 
 622 
 
 * 5 82 
 
 *542 
 * 5 o 3 
 
 935 
 
 890 
 
 *845 
 
 *802 
 
 *76o 
 * 7 i8 
 
 *678 
 *6 3 8 
 *599 
 
 .40 
 
 4 
 .42 
 
 44 
 .4 
 .46 
 
 .47 
 4 
 .4 
 1.50 
 
 i 4 1 6 95 
 
 792 
 
 888 
 
 984 
 
 *oSo 
 
 *I 7 6 
 
 *273 
 
 * 3 6 9 
 
 * 4 6 5 
 * 4 28 
 
 *39 
 * 35 6 
 
 *32 
 * 2 87 
 *2 5 4 
 
 *22 
 
 *i8 
 *i5 
 
 *56i 
 
 1.42 658 
 1.43 6 2 J 
 1.44 584 
 
 1.45 549 
 I.465H 
 1.47 480 
 
 1.48 447 
 1.49 4i 
 1.50 383 
 
 754 
 717 
 681 
 
 645 
 61 
 
 577 
 544 
 
 % 
 
 850 
 813 
 777 
 
 742 
 707 
 674 
 
 64 
 
 608 
 577 
 
 946 
 9IC 
 874 
 8 3 8 
 804 
 
 770 
 
 737 
 
 705 
 
 674 
 
 *043 
 *oo6 
 970 
 
 935 
 901 
 867 
 
 834 
 802 
 
 771 
 
 *I 39 
 
 *I02 
 
 *o66 
 
 *o 3 
 997 
 964 
 
 93 
 
 895 
 868 
 
 *235 
 *I 99 
 *i63 
 
 *I2S 
 
 *o 9 4 
 *o6c 
 
 *028 
 
 99 6 
 964 
 
 *332 
 
 *29 
 
 *2 59 
 
 *22~ 
 *I 9 C 
 
 *i 5 
 
 *I24 
 
 *09 
 *o6 
 
 *524 
 *488 
 *452 
 * 4 i8 
 * 3 8 4 
 * 350 
 
 *3i8 
 *286 
 
 *255 
 
 1.51 35 
 
 449 
 
 546 
 
 64: 
 
 740 
 
 837 
 
 934 
 
 *o 3 
 
 *I2 
 
 *225 
 
 A. 
 
 B. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 
 
 1 
 
 8 
 
 t) 
 
 Prop. 
 
 Pts. 
 
ADDITION AND SUBTRACTION LOGARITHMS. 
 
 93 
 
 A ( log a - log b = A. Q ( log a log b = B. 
 x \ log (a + J) = log<* + ^. bu B ' i log( - ) = log* + A. 
 
 A. 
 1.50 
 
 51 
 
 52 
 53 
 
 54 
 
 :ii 
 
 ? 
 
 59 
 .GO 
 
 .61 
 
 .62 
 63 
 
 .64 
 65 
 .66 
 
 .67 
 .68 
 .69 
 
 .70 
 
 71 
 .72 
 73 
 74 
 
 :3 
 
 77 
 .78 
 79 
 .80 
 
 .81 
 .82 
 .8 3 
 
 .84 
 .85 
 .86 
 
 .87 
 .88 
 .89 
 
 1.90 
 
 91 
 .92 
 
 93 
 
 94 
 95 
 .96 
 
 97 
 .98 
 99 
 2.00 
 
 B. 
 
 1 
 
 2 
 
 546 
 
 3 
 
 643 
 
 4 
 
 5 
 
 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
 1-51 352 
 1.52 322 
 1.53 292 
 i . 54 263 
 
 1-55 235 
 1.56 207 
 1.57 180 
 
 1-58 153 
 1.59 128 
 
 I. 60 102 
 
 1.61 077 
 
 449 
 
 740 
 
 837 
 
 934 
 
 *0 3 I 
 
 *I28 
 
 *225 
 
 i 
 
 2 
 
 3 
 
 1 
 
 I 
 9 
 
 i 
 
 2 
 
 3 
 4 
 
 i 
 I 
 
 9 
 
 i 
 
 2 
 
 3 
 
 4 
 
 1 
 
 9 
 
 97 
 
 9-7 
 19.4 
 
 38.8 
 
 485 
 58.2 
 67.0 
 77.6 
 87.3 
 
 98 
 
 9-8 
 19.6 
 29.4 
 
 39-2 
 49.0 
 
 68^6 
 
 78.4 
 88.2 
 
 99 
 
 9> i 
 
 19.8 
 29.7 
 39 6 
 49.5 
 
 1 
 g;! 
 
 419 
 
 389 
 360 
 
 332 
 304 
 277 
 251 
 225 
 200 
 
 516 
 486 
 457 
 
 429 
 402 
 
 375 
 
 348 
 322 
 297 
 
 613 
 
 583 
 555 
 526 
 
 499 
 472 
 
 446 
 420 
 
 395 
 
 710 
 680 
 652 
 
 624 
 596 
 569 
 
 543 
 517 
 492 
 
 807 
 778 
 749 
 721 
 693 
 667 
 
 640 
 
 6i5 
 590 
 
 904 
 
 875 
 846 
 
 818 
 791 
 764 
 
 738 
 712 
 687 
 
 *OOI 
 
 972 
 
 943 
 
 861 
 
 835 
 810 
 
 785 
 
 *o 9 8 
 *o6 9 
 *O4O 
 
 *OI 3 
 
 985 
 959 
 
 933 
 907 
 882 
 
 ::n 
 
 *I 3 8 
 
 *IIO 
 
 *o8 3 
 ^056 
 
 *O 3 O 
 
 ^005 
 9 8o 
 
 175 
 
 273 
 
 370 
 
 468 
 
 565 
 
 663 
 
 760 
 
 858 
 
 956 
 
 1.62 053 
 1.63 o 3 o 
 i 64 006 
 
 984 
 1.05 962 
 i . 66 940 
 
 1.67 919 
 1.68 898 
 1.69 878 
 
 151 
 127 
 104 
 
 *o8i 
 *059 
 *o 3 8 
 
 *oi7 
 996 
 976 
 
 248 
 225 
 
 202 
 
 *I79 
 *I57 
 *I 3 6 
 
 *ii5 
 *094 
 *074 
 
 346 
 322 
 299 
 
 *277 
 *255 
 *233 
 
 *2I2 
 *I 9 2 
 *I72 
 
 444 
 420 
 
 397 
 
 *375 
 *353 
 *33' 
 
 * 3 IO 
 *290 
 *270 
 
 54i 
 518 
 
 495 
 
 *473 
 *45i 
 *429 
 
 *4o8 
 * 3 88 
 * 3 68 
 
 * 34 8 
 
 639 
 616 
 
 593 
 
 *57o 
 * 54 8 
 * 5 2 7 
 
 * 5 o6 
 *486 
 *466 
 
 737 
 713 
 6 9 o 
 
 *668 
 *646 
 *62 5 
 
 *6o4 
 *584 
 *5 6 4 
 
 834 
 811 
 788 
 
 * 7 66 
 *744 
 *723 
 
 *702 
 
 *682 
 *662 
 
 932 
 
 886 
 
 *86 4 
 *842 
 
 *82I 
 
 *8oo 
 * 7 8o 
 * 7 6o 
 
 1.70 858 
 
 956 
 
 *054 
 
 *I52 
 
 *250 
 
 *446 
 
 *544 
 
 *642 
 
 *74i 
 
 1.71 859 
 1.72 820 
 1.73 801 
 
 1-74 783 
 1.75 766 
 1.76 748 
 
 1-77 73i 
 1.78 715 
 1-79 699 
 
 937 
 918 
 899 
 
 881 
 864 
 847 
 8 3 o 
 813 
 797 
 
 *o 3 5 
 *oi6 
 998 
 980 
 962 
 945 
 928 
 
 f 
 
 *i33 
 *ii4 
 *o 9 6 
 
 *078 
 *o6o 
 *Q4 3 
 
 *026 
 *OIO 
 
 994 
 
 *23I 
 *2I2 
 
 *I 94 
 
 *I 7 6 
 *I 59 
 *i 4 i 
 
 *I25 
 
 *io8 
 
 *0 9 2 
 
 * 3 2 9 
 
 * 3 IO 
 *292 
 
 *274 
 *257 
 *24O 
 
 *22 3 
 *2O7 
 
 *i9i 
 
 *427 
 *49 
 * 39 o 
 
 *373 
 *355 
 * 33 8 
 
 * 3 2I 
 
 * 3 os 
 
 *28 9 
 
 * 5 25 
 
 *507 
 * 4 8 9 
 * 47 i 
 
 *453 
 * 43 6 
 
 * 4 20 
 
 * 4 o 3 
 * 3 88 
 
 *62 3 
 
 *6o 5 
 * 5 8 7 
 
 * 5 6 9 
 * 55 2 
 *535 
 * 5 i8 
 
 *502 
 
 * 4 86 
 
 *722 
 
 * 703 
 *685 
 
 *667 
 *65O 
 *6 33 
 
 *6i6 
 *6oo 
 *584 
 
 i. 80 68 3 
 
 781 
 
 880 
 
 978 
 
 *077 
 
 *I75 
 
 *274 
 
 * 3 72 
 
 * 47 i 
 
 * 5 6 9 
 
 1.81 667 
 1.82 652 
 i.8 3 6 3 8 
 
 1.84 625 
 1.85 609 
 1.86 595 
 
 1.87 582 
 1.88 569 
 1.89 556 
 
 766 
 
 75 i 
 736 
 
 722 
 708 
 694 
 
 681 
 667 
 655 
 
 864 
 849 
 835 
 820 
 806 
 793 
 
 779 
 766 
 
 753 
 
 963 
 948 
 
 933 
 919 
 
 878 
 865 
 852 
 
 *o6i 
 *046 
 
 *0 3 2 
 
 *oi8 
 *oo4 
 990 
 
 977 
 964 
 
 95i 
 
 *i6o 
 *i45 
 
 *I 3 
 
 *u6 
 
 *I02 
 
 *o89 
 *075 
 
 *062 
 
 *o5o 
 
 *258 
 *244 
 
 *22 9 
 
 *2I5 
 *20I 
 
 *i87 
 
 *I74 
 *i6i 
 *I 4 8 
 
 *357 
 *342 
 
 * 3 28 
 
 * 3I3 
 *286 
 
 *2 73 
 *260 
 
 *2 4 7 
 
 *455 
 *44i 
 
 * 4 26 
 
 *4I2 
 
 * 39 8 
 * 3 8s 
 
 *37i 
 *358 
 * 34 6 
 
 *554 
 *539 
 *525 
 *5ii 
 
 *497 
 * 4 8 3 
 
 *47o 
 *457 
 *445 
 
 i 9Q 543 
 
 1.91 53i 
 1.92 519 
 
 1-93 507 
 1.94 496 
 1.95 485 
 1.96 474 
 
 1-97 463 
 1.98 452 
 1.99442 
 2.00 432 
 
 642 
 
 74i 
 
 840 
 
 938 
 
 *0 37 
 
 *i 3 6 
 
 *2 3 5 
 
 *333 
 
 *432 
 
 630 
 618 
 606 
 
 PI 
 
 573 
 562 
 55i 
 54i 
 
 729 
 717 
 
 705 
 69^: 
 682 
 671 
 66 1 
 650 
 640 
 
 827 
 815 
 804 
 
 770 
 760 
 749 
 739 
 
 926 
 914 
 903 
 891 
 880 
 869 
 
 859 
 848 
 838 
 
 *025 
 *OI 3 
 *002 
 
 990 
 
 979 
 968 
 
 958 
 947 
 937 
 
 *I2 4 
 *II2 
 *IOO 
 
 *o8 9 
 *078 
 *o6 7 
 *o 57 
 *o 4 6 
 *o 3 6 
 
 *22 3 
 *2II 
 *I99 
 
 *i88 
 
 *i77 
 *i66 
 
 *I 5 6 
 *I 4 5 
 *i35 
 
 * 3 2I 
 * 3 IO 
 *2 9 8 
 
 *28 7 
 *2 7 6 
 
 *26s 
 
 *254 
 *244 
 
 *2 34 
 
 *420 
 
 *4o8 
 *397 
 * 3 86 
 
 ! 3 ^ 
 
 * 3 64 
 
 *353 
 *343 
 *333 
 
 53i 
 
 630 
 
 729 
 
 828 
 
 927 
 
 *026 
 
 *I25 
 
 *22 4 
 
 *323 
 
 B. 
 
 1 
 
 2 
 
 8 
 
 4 
 
 5 
 
 
 
 7 
 
 8 
 
 9 
 
 Prop. Pts. 
 
94 
 
 TABLE VI. 
 
 log a log b = 
 log( + *) = 
 
 = A. log a log b = B. 
 log* + (B - A). log (a - b) = log a - (B - A) 
 
 A. 
 
 B. 
 
 B-A. 
 
 A. 
 
 B. 
 
 B-A. 
 
 A. 
 
 B. 
 
 B-A. 
 
 1.9823 
 .9833 
 .9842 
 .9852 
 .9862 
 
 1.9868 
 .9878 
 .9887 
 .9897 
 .9907 
 
 .00450 
 449 
 448 
 447 
 446 
 
 2.0337 
 .0348 
 
 .0359 
 .0370 
 .0381 
 
 2.0377 
 .0388 
 
 0399 
 .0410 
 .0421 
 
 .00400 
 399 
 398 
 397 
 396 
 
 2.0920 
 .0932 
 .0945 
 .0957 
 .0970 
 
 2.0955 
 .0967 
 .0980 
 .0992 
 .1005 
 
 .00350 | 
 
 349 
 348 
 347 
 346 
 
 1.9872 
 .9882 
 .9891 
 .9901 
 .9911 
 
 1.9917 
 .9926 
 
 9935 
 9945 
 9955 
 
 .00445 
 444 
 443 
 442 
 441 
 
 2.0392 
 .0403 
 .0414 
 .0425 
 0437 
 
 2.0432 
 
 .0443 
 .0454 
 .0465 
 .0476 
 
 .00395 
 394 
 393 
 392 
 39i 
 
 2.0982 
 .0995 
 .1008 
 .1020 
 1033 
 
 2.1017 
 .1029 
 .1042 
 .1054 
 .1067 
 
 .00345 
 344 
 343 
 342 
 34i 
 
 1.9921 
 9931 
 .9941 
 .9951 
 .9961 
 
 1.9965 
 9975 
 .9985 
 9995 
 2.0005 
 
 .00440 
 439 
 438 
 437 
 436 
 
 2.0448 
 .0459 
 .0470 
 .0481 
 .0493 
 
 2.0487 
 .0498 
 .0509 
 .0520 
 .0532 
 
 .00390 
 
 389 
 388 
 
 387 
 386 
 
 2.1046 
 .1059 
 .1072 
 .1085 
 .1098 
 
 2.1080 
 .1093 
 .1106 
 .1119 
 .1132 
 
 .00340 
 
 339 
 338 
 337 
 336 
 
 1.9971 
 .9981 
 .9991 
 
 2.0001 
 .OOI I 
 
 2.0015 
 .0024 
 .0034 
 .0044 
 .0054 
 
 .00435 
 434 
 433 
 432 
 431 
 
 2.0504 
 .0515 
 .0527 
 .0538 
 .0550 
 
 2.0543 
 
 0553 
 .0565 
 .0576 
 .0588 
 
 .00385 
 384 
 383 
 382 
 38i 
 
 2. mi 
 .1124 
 
 1137 
 .1150 
 .1163 
 
 2.1144 
 .1157 
 .1170 
 .1183 
 .1196 
 
 00335 
 334 
 333 
 332 
 33i 
 
 2.OO2I 
 .OO32 
 .OO42 
 .0052 
 .0062 
 
 2.0065 
 .0075 
 .0085 
 .0095 
 .0105 
 
 .00430 
 
 429 
 428 
 
 427 
 426 
 
 2.0561 
 
 .0573 
 .0584 
 .0596 
 .0607 
 
 2.0600 
 .0611 
 .0622 
 .0634 
 .0645 
 
 .00380 
 
 379 
 378 
 377 
 376 
 
 2.1176 
 .1190 
 .1203 
 .1216 
 .1229 
 
 2.1209 
 .1223 
 .1236 
 .1249 
 .1262 
 
 00330 
 
 329 
 328 
 
 327 
 326 
 
 2.0073 
 .0083 
 .0093 
 .OIO4 
 .0114 
 
 2.0115 
 .0125 
 
 .0135 
 .0146 
 .0156 
 
 .00425 
 424 
 423 
 422 
 421 
 
 2.0619 
 .0630 
 .0642 
 .0654 
 .0666 
 
 2.0656 
 .0667 
 .0679 
 .0691 
 .0703 
 
 .00375 
 374 
 373 
 372 
 37i 
 
 2.1243 
 .1256 
 .1270 
 .1283 
 .1297 
 
 2.1275 
 .1288 
 .1302 
 
 .1315 
 .1329 
 
 .00325 
 324 
 323 
 322 
 321 
 
 2.0124 
 .0135 
 .0145 
 .0156 
 .0166 
 
 2.0166 
 .oi7/ 
 .0187 
 .0198 
 .0208 
 
 .00420 
 419 
 418 
 
 417 
 416 
 
 2.0677 
 .0689 
 .0701 
 .0713 
 .0725 
 
 2.0714 
 .0726 
 .0738 
 .0750 
 .0762 
 
 .00370 
 
 369 
 368 
 
 367 
 366 
 
 2.1310 
 .1324 
 .1338 
 .1351 
 .1365 
 
 2.1342 
 .1356 
 .1370 
 
 .1383 
 1397 
 
 .00320 
 
 319 
 3i8 
 317 
 316 1 
 
 2.0177 
 .0187 
 .0198 
 .0208 
 .0219 
 
 2.0218 
 .0228 
 .0239 
 .0249 
 .0260 
 
 .00415 
 414 
 
 413 
 412 
 411 
 
 2.0737 
 .0749 
 .0761 
 
 .0773 
 .0785 
 
 2.0773 
 .0785 
 .0797 
 .0809 
 .0821 
 
 .00365 
 3 6 4 
 363 
 362 
 361 
 
 2.1379 
 .1393 
 .1407 
 
 .1421 
 H35 
 
 2.1410 
 
 .1424 
 .1438 
 .1452 
 .1466 
 
 .00315 
 3'4 
 
 313 
 312 
 
 3" 
 
 2.0229 
 .0240 
 .0251 
 .O26l 
 .O272 
 
 2.0270 
 .0281 
 .0292 
 .0302 
 .0313 
 
 .00410 
 409 
 408 
 407 
 406 
 
 2.0797 
 .0809 
 .0821 
 0833 
 .0845 
 
 2.0833 
 .0845 
 .0857 
 .0869 
 .0881 
 
 .00360 
 359 
 358 
 
 35 2 
 356 
 
 2.1449 
 .1463 
 
 .1477 
 .1491 
 .1505 
 
 2.1480 
 
 .1494 
 .1508 
 .1522 
 1536 
 
 .00310 
 
 309 
 308 
 307 
 306 
 
 2.O283 
 .0294 
 .0305 
 
 OS'S 
 .0326 
 
 2.0324 
 .0334 
 .0345 
 
 3 II 
 .0366 
 
 .00405 
 404 
 
 403 
 402 
 401 
 
 2.0858 
 .0870 
 .0882 
 .0895 
 .0907 
 
 2.0893 
 .0905 
 .0917 
 .0930 
 .0942 
 
 .00355 
 354 
 353 
 352 
 35i 
 
 2.1520 
 .1534 
 .1548 
 .1563 
 .'577 
 
 2.1550 
 .1564 
 .1578 
 .1593 
 . 1607 
 
 .00305 
 304 
 303 
 302 
 
 30i 
 
 2.0337 
 
 2.0337 
 
 .00400 
 
 2.0920 
 
 2.0955 
 
 .00350 
 
 2.1592 
 
 2 1622 
 
 .00300 
 
 A. 
 
 B. 
 
 B-A. 
 
 A. 
 
 B. 
 
 B-A. 
 
 A. 
 
 B. 
 
 B-A. 
 
ADDITION AJND 5UJJTKAUT1U.N -LUUAK.1T.HM5. g 
 
 Iog0 log as A. loga log = B. 
 log(0 + V] = loga + (B A). log(a V) as loga (B A). 
 
 A. 
 
 B. 
 
 B-A. 
 
 A. 
 
 B. 
 
 B-A. 
 
 A. 
 
 B. 
 
 B A. 
 
 2.1592 
 
 .1606 
 
 .1621 
 
 .1635 
 
 .1650 
 
 2.1622 
 
 .1636 
 
 .1651 
 .1665 
 .1680 
 
 .00300 
 
 299 
 298 
 
 297 
 
 296 
 
 2.2386 
 .2403 
 .2421 
 
 .2439 
 .2456 
 
 2.2411 
 .2428 
 
 .2446 
 .2464 
 .2481 
 
 .00250 
 
 249 
 248 
 
 247 
 246 
 
 2.3358 
 
 3379 
 .3401 
 
 .3423 
 .3446 
 
 2.3378 
 3399 
 .3421 
 
 3443 
 .3466 
 
 .00200 
 199 
 198 
 197 
 196 
 
 2.1665 
 .1680 
 .1694 
 
 .1710 
 .1724 
 
 2.1694 
 
 .1709 
 .1723 
 
 .1739 
 .1753 
 
 .00295 
 294 
 
 293 
 292 
 291 
 
 2.2474 
 .2492 
 .2510 
 .2528 
 .2546 
 
 2.2498 
 .2516 
 
 .2534 
 .2552 
 .2570 
 
 .00245 
 244 
 243 
 242 
 241 
 
 2.3468 
 .3490 
 .3513 
 3535 
 .3558 
 
 2.3487 
 .3509 
 3532 
 3554 
 3577 
 
 .00195 
 194 
 
 193 
 192 
 191 
 
 2.1739 
 .1754 
 .1770 
 
 .1785 
 
 .1800 
 
 2.1768 
 .1783 
 .1799 
 .1814 
 .1829 
 
 .00290 
 289 
 288 
 287 
 286 
 
 2.2564 
 .2582 
 .2600 
 .2618 
 .2637 
 
 2.2588 
 .2606 
 .2624 
 .2642 
 .2661 
 
 .00240 
 
 239 
 238 
 
 237 
 236 
 
 2.3581 
 .3604 
 .3627 
 .3650 
 .3673 
 
 2.3600 
 
 .3646 
 .3669 
 .3692 
 
 .00190 
 
 187 
 
 1 86 
 
 2.1815 
 .1830 
 .1846 
 .1861 
 .1877 
 
 2.1844 
 .1858 
 
 .1874 
 .1889 
 .1905 
 
 to to to to to 
 
 00 00 0000 OO 
 1-4 to CO 4^> Cn 
 
 2.2656 
 .2674 
 .2693 
 .2711 
 .2730 
 
 2.2679 
 .2697 
 .2716 
 .2734 
 2753 
 
 .00235 
 234 
 233 
 232 
 231 
 
 2.3697 
 .3720 
 
 3744 
 .3768 
 .3792 
 
 (0 
 
 CO CO CO CO OJ 
 
 <-> OO ONCO i-i 
 O ON tO OOCn 
 
 .00185 
 184 
 
 183 
 182 
 
 181 
 
 2.1892 
 .1908 
 
 .1923 
 .1939 
 .1955 
 
 2.1920 
 .1936 
 
 .1951 
 .1967 
 
 .1983 
 
 .00280 
 279 
 
 278 
 
 277 
 276 
 
 2.2749 
 .2768 
 .2787 
 .2806 
 
 .2825 
 
 2.2772 
 
 .2791 
 .2810 
 .2829 
 .2848 
 
 .00230 
 229 
 228 
 227 
 226 
 
 2.3816 
 .3840 
 .3865 
 .3889 
 .39H 
 
 .3883 
 .3907 
 .3932 
 
 .00180 
 179 
 178 
 177 
 176 
 
 2.1971 
 .1987 
 
 .2002 
 
 .2019 
 .2035 
 
 2.1998 
 .2014 
 .2029 
 .2046 
 .2062 
 
 .00275 
 274 
 
 273 
 
 272 
 271 
 
 2.2845 
 .2864 
 .2884 
 .2903 
 .2923 
 
 2.2867 
 .2886 
 .2906 
 .2925 
 .2945 
 
 .00225 
 224 
 223 
 
 222 
 221 
 
 2-3939 
 .3964 
 .3989 
 .4014 
 .4039 
 
 2.3956 
 .3981 
 .4006 
 
 .4031 
 .4056 
 
 .00175 
 174 
 173 
 172 
 171 
 
 2 . 205 1 
 
 .2067 
 
 .2083 
 .2099 
 
 .2116 
 
 2 . 2078 
 .2094 
 .2110 
 .2126 
 .2143 
 
 .00270 
 
 269 
 268 
 267 
 266 
 
 2.2943 
 .2962 
 .2982 
 .3002 
 .3022 
 
 2.2965 
 .2984 
 .3004 
 .3024 
 
 .3044 
 
 .OO22O 
 219 
 
 218 
 217 
 216 
 
 2.4065 
 .4090 
 .4116 
 .4142 
 .4168 
 
 2.4082 
 .4107 
 .4133 
 .4159 
 .4185 
 
 .00170 
 
 \6 7 
 1 66 
 
 2.2132 
 .2149 
 .2165 
 .2182 
 .2198 
 
 2.2159 
 
 .2175 
 .2191 
 .2208 
 .2224 
 
 00265 
 
 264 
 
 263 
 
 262 
 261 
 
 2.3043 
 .3063 
 .3083 
 .3104 
 .3124 
 
 2.3064 
 .3084 
 .3104 
 .3125 
 .3H5 
 
 .00215 
 214 
 213 
 
 212 
 211 
 
 2.4195 
 .4221 
 .4248 
 
 .4275 
 .4302 
 
 2.4211 
 
 .4237 
 .4264 
 .4291 
 .4318 
 
 .00165 
 164 
 
 'g 
 
 162 
 
 161 
 
 2.2215 
 
 .2232 
 .2249 
 .2266 
 .2283 
 
 2.2241 
 
 .2258 
 
 .2275 
 
 .2292 
 
 .2309 
 
 .00260 
 
 259 
 258 
 
 256 
 
 .3166 
 .3187 
 .3208 
 .3229 
 
 2.3166 
 
 .3187 
 .3208 
 
 .3229 
 .3250 
 
 20g 
 208 
 207 
 206 
 
 2.4329 
 .4356 
 .4383 
 .4411 
 
 4439 
 
 2.4345 
 .4372 
 
 4399 
 .4427 
 
 4455 
 
 .00160 
 
 159 
 158 
 
 157 
 
 156 
 
 2.2300 
 
 .2317 
 .2334 
 
 .2369 
 
 2.2325 
 .2342 
 
 .2359 
 .2376 
 
 .2394 
 
 .00255 
 
 254 
 
 253 
 
 252 
 251 
 
 to 
 
 CO CO CO CO CO 
 CO CO tO tO tO 
 CO >-i\O Vjen 
 O\4^co - O 
 
 2.3271 
 .3291 
 .3313 
 3334 
 .3356 
 
 .OO2O5 
 204 
 20 3 
 202 
 201 
 
 2.4467 
 4495 
 .4523 
 4552 
 .4581 
 
 2.4482 
 .4510 
 .4538 
 .4567 
 
 .4596 
 
 .00155 
 154 
 153 
 152 
 
 2.2386 
 
 2.2411 
 
 .00250 
 
 2.3358 
 
 2.3378 
 
 .O0200 
 
 2.4609 
 
 2 4624 
 
 .00150 
 
 A. 
 
 B. 
 
 B-A. 
 
 A. 
 
 B. 
 
 B-A. 
 
 A. 
 
 B. 
 
 B-A. 
 

 TABLE VI. 
 
 1 
 
 Iog0 log b = A. log a log b = B. 
 log (a + ) = log* + (^ ^). log (a ) = log a (^ ^4). 
 
 
 A. 
 
 B. 
 
 B-A. 
 
 A. 
 
 B. 
 
 B-A. 
 
 A. 
 
 B. 
 
 B-A. 
 
 
 2.4609 
 .4638 
 .4668 
 .4697 
 .4727 
 
 2.4624 
 .4653 
 .4683 
 .4712 
 .4742 
 
 .00150 
 149 
 148 
 
 H7 
 146 
 
 2.6373 
 .6416 
 .6461 
 .6505 
 .6550 
 
 2.6383 
 .6426 
 .6471 
 
 5 S i 5 
 .6560 
 
 .OOIOO 
 
 .00099 
 
 98 
 
 9 
 96 
 
 2.9385 
 9474 
 .9563 
 .9655 
 .9748 
 
 2.9390 
 9479 
 .9568 
 .9660 
 9753 
 
 .00050 
 
 J3 
 % 
 
 2-4757 
 .4787 
 .4817 
 4848 
 4878 
 
 2.4772 
 .4801 
 .4831 
 .4862 
 .4892 
 
 .00145 
 144 
 
 143 
 142 
 141 
 
 2.6596 
 .6642 
 .6688 
 
 .6735 
 .6783 
 
 2.6606 
 .6651 
 .6697 
 
 .6744 
 .6792 
 
 .00095 
 
 94 
 93 
 92 
 9i 
 
 2.9844 
 
 2.9941 
 3.0041 
 .0143 
 .0248 
 
 2.9848 
 2.9945 
 3-0045 
 .0147 
 .0252 
 
 .00045 
 44 
 43 
 42 
 
 41 
 
 
 4910 
 4941 
 4972 
 5004 
 5036 
 
 2.4924 
 
 4955 
 .4986 
 .5018 
 .5050 
 
 .00140 
 
 139 
 138 
 
 137 
 136 
 
 2.6831 
 .6880 
 .6928 
 .6978 
 .7028 
 
 2 . 6840 
 .6889 
 .6937 
 .6987 
 .7037 
 
 .00090 
 89 
 88 
 
 87 
 86 
 
 3 ' 3 ^ 
 .0466 
 
 .0578 
 .0694 
 .0813 
 
 3-0360 
 .0470 
 .0582 
 .0698 
 .0817 
 
 .00040 
 
 P 
 
 ! 
 
 
 5068 
 5100 
 
 5 J 33 
 5165 
 
 5199 
 
 2.5081 
 
 .5H| 
 .5146 
 
 .5178 
 .5212 
 
 .00135 
 134 
 133 
 132 
 131 
 
 2.7079 
 7131 
 .7183 
 .7236 
 .7289 
 
 2.7088 
 .7139 
 .7191 
 .7244 
 .7297 
 
 .00085 
 84 
 
 83 
 82 
 81 
 
 3-0935 
 .1061 
 .1191 
 .1324 
 .1463 
 
 3-0939 
 .1064 
 .1194 
 .1327 
 .1466 
 
 .00035 
 
 34 
 33 
 32 
 3i 
 
 5232 
 5266 
 5299 
 
 5333 
 5368 
 
 2.5245 
 .5279 
 .5312 
 .5346 
 .538i 
 
 .00130 
 129 
 128 
 127 
 126 
 
 2.7343 
 .7398 
 7453 
 .7509 
 .7566 
 
 2.7351 
 .7406 
 .7461 
 .7517 
 
 7574 
 
 .00080 
 
 79 
 78 
 
 8 
 
 3.1606 
 
 .1753 
 .1905 
 .2063 
 .2226 
 
 3.1609 
 .1756 
 .1908 
 .2066 
 
 .2229 
 
 .00030 
 29 
 28 
 27 
 26 
 
 5402 
 5437 
 
 5472 
 5508 
 5544 
 
 2.5415 
 5449 
 .5484 
 .5520 
 .5556 
 
 .00125 
 124 
 123 
 
 122 
 121 
 
 2.7623 
 .7682 
 
 .7741 
 .7801 
 .7862 
 
 2.7631 
 .7689 
 .7748 
 .7808 
 .7869 
 
 .00075 
 74 
 73 
 72 
 7i 
 
 3-2396 
 .2575 
 .2760 
 .2952 
 .3154 
 
 3-2399 
 .2577 
 .2762 
 
 .2954 
 .3156 
 
 .00025 
 24 
 23 
 
 22 
 21 
 
 5580 
 5616 
 
 5653 
 5690 
 
 5727 
 
 2.5592 
 .5628 
 .5665 
 .5702 
 
 5739 
 
 .OOI20 
 119 
 
 118 
 117 
 116 
 
 2.7923 
 .7985 
 .8050 
 .8114 
 .8180 
 
 2.7930 
 .7992 
 .8057 
 .8121 
 .8187 
 
 .00070 
 
 69 
 68 
 
 67 
 66 
 
 3.3366 
 3590 
 .3825 
 .4072 
 4335 
 
 3.3368 
 3592 
 .3827 
 
 .4074 
 4337 
 
 .OO020 
 19 
 
 I/ 
 
 16 
 
 2.5765 
 5803 
 5841 
 5880 
 .5919 
 
 2.5776 
 .5814 
 5852 
 .5891 
 
 .5930 
 
 .00115 
 114 
 H3 
 
 112 
 III 
 
 2.8245 
 
 .8313 
 .8381 
 
 .8451 
 .8521 
 
 2.8252 
 .8319 
 .8387 
 .8457 
 .8527 
 
 .00065 
 64 
 
 3 
 62 
 
 61 
 
 3-4617 
 49 J 7 
 .5237 
 .5587 
 .5964 
 
 3.46i9 
 .4918 
 .5238 
 .5588 
 
 .5965 
 
 .00015 
 14 
 13 
 
 12 
 
 II 
 
 2.5958 
 5998 
 .6038 
 .6079 
 .6120 
 
 2.5969 
 .6009 
 .6049 
 .6090 
 .6131 
 
 .OOIIO 
 
 107 
 106 
 
 2.8593 
 .8666 
 
 .8741 
 .8816 
 .8893 
 
 2.8599 
 .8672 
 
 .8747 
 .8822 
 
 .8899 
 
 .00060 
 59 
 58 
 
 i 
 
 3.6377 
 .6835 
 7345 
 .7925 
 .8595 
 
 3.6378 
 .6836 
 .7346 
 .7926 
 .8596 
 
 .OOOIO 
 
 09 
 08 
 07 
 06 
 
 2.6161 
 .6202 
 .6244 
 .6287 
 .6329 
 
 2.6172 
 .6212 
 .6254 
 6297 
 .0339 
 
 .00105 
 104 
 103 
 
 102 
 101 
 
 2.8971 
 .9051 
 .9132 
 .9215 
 .9300 
 
 2.8977 
 .9056 
 9'37 
 .9220 
 
 .9305 
 
 .00055 
 54 
 53 
 52 
 5i 
 
 3.9390 
 4.0355 
 4.1600 
 
 4.3375 
 4.6367 
 
 3.9391 
 4.0355 
 4.1600 
 
 4.3375 
 4.6367 
 
 .00005 
 
 04 
 03 
 
 02 
 
 01 
 
 2.6373 
 
 2.6383 
 
 .OOIOO 
 
 2.9385 
 
 2.9390 
 
 .00050 
 
 oo 
 
 00 
 
 .00000 
 
 A. 
 
 B. 
 
 B-A. 
 
 A. 
 
 B. 
 
 B-A. 
 
 A. 
 
 B. 
 
 B-A. 
 
TABLE VII. SQUARES OF NUMBERS. 
 
 97 
 
 TABLE VTL> 
 
 SQUARES OF NUMBERS. 
 
 No. 
 
 Square. 
 
 No. 
 
 Square. 
 
 No. 
 
 Square. 
 
 No. 
 
 Square. 
 
 No. 
 
 Square. 
 
 
 
 I 
 2 
 
 3 
 
 
 
 20 
 
 21 
 22 
 23 
 
 400 
 
 40 
 
 4i 
 
 42 
 43 
 
 1600 
 
 60 
 
 61 
 62 
 63 
 
 3600 
 
 80 
 
 Si 
 82 
 83 
 
 6400 
 
 I 
 4 
 9 
 
 441 
 484 
 529 
 
 1681 
 1764 
 1849 
 
 3721 
 3844 
 3969 
 
 6561 
 6724 
 6889 
 
 4 
 5 
 6 
 
 16 
 
 25 
 36 
 
 24 
 
 25 
 26 
 
 576 
 625 
 676 
 
 44 
 45 
 46 
 
 1936 
 2025 
 2116 
 
 64 
 
 65 
 66 
 
 4096 
 4225 
 4356 
 
 84 
 
 85 
 86 
 
 7056 
 7225 
 7396 
 
 7 
 8 
 
 9 
 10 
 ii 
 
 12 
 13 
 
 49 
 64 
 81 
 
 27 
 28 
 29 
 
 80 
 
 3i 
 32 
 33 
 
 729 
 784 
 841 
 
 47 
 48 
 
 49 
 50 
 
 5i 
 52 
 53 
 
 2209 
 2304 
 2401 
 
 67 
 68 
 69 
 
 70 
 
 7i 
 72 
 
 73 
 
 4489 
 4624 
 4761 
 
 87 
 88 
 89 
 
 90 
 
 9i 
 92 
 93 
 
 7569 
 
 7744 
 7921 
 
 100 
 
 900 
 
 2500 
 
 4900 
 
 8100 
 
 121 
 144 
 I6 9 
 
 961 
 1024 
 1089 
 
 2601 
 2704 
 2809 
 
 5041 
 5184 
 5329 
 
 8281 
 8464 
 8649 
 
 14 
 15 
 16 
 
 J96 
 225 
 2 5 6 
 
 34 
 35 
 36 
 
 1156 
 
 1225 
 1296 
 
 54 
 55 
 56 
 
 2916 
 3025 
 3136 
 
 74 
 75 
 76 
 
 5476 
 5625 
 5776 
 
 94 
 95 
 96 
 
 8836 
 9025 
 9216 
 
 17 
 18 
 
 19 
 20 
 
 289 
 324 
 3 6l 
 
 37 
 38 
 39 
 
 40 
 
 1369 
 1444 
 7521 
 
 57 
 
 58 
 59 
 
 60 
 
 3249 
 3364 
 348i 
 
 77 
 78 
 79 
 
 80 
 
 5929 
 6084 
 6241 
 
 97 
 98 
 99 
 
 100 
 
 9409 
 9604 
 9801 
 
 400 
 
 1600 
 
 3600 
 
 6400 
 
 10000 
 
o8 
 
 SQUARES OF NUMBERS FROM 100 TO 1000. 
 
 
 1<* 
 
 9~ 
 
 3*+ 
 
 4** 
 
 5~ 
 
 6~ 
 
 1~ 
 
 $ 
 
 94* 
 
 
 Diff. 
 
 00 
 
 100 
 
 40O 
 
 900 
 
 1600 
 
 2500 
 
 3600 
 
 4900 
 
 6400 
 
 8100 
 
 00 
 
 X 
 
 01 
 
 102 
 
 404 
 
 906 
 
 1608 
 
 2510 
 
 3612 
 
 4914 
 
 6416 
 
 8118 
 
 01 
 
 
 O2 
 03 
 
 104 
 106 
 
 408 
 412 
 
 912 
 918 
 
 1616 
 1624 
 
 252O 
 2530 
 
 & 
 
 4928 
 4942 
 
 6432 
 6448 
 
 8136 
 8154 
 
 04 
 09 
 
 3 
 
 5 
 7 
 
 04 
 
 108 
 
 416 
 
 924 
 
 1632 
 
 2540 
 
 3648 
 
 495 6 
 
 6464 
 
 8172 
 
 16 
 
 
 05 
 
 no 
 
 420 
 
 930 
 
 1640 
 
 2550 
 
 3660 
 
 4970 
 
 6480 
 
 8190 
 
 2 5 
 
 j j 
 
 06 
 
 112 
 
 424 
 
 936 
 
 1648 
 
 2560 
 
 3672 
 
 4984 
 
 6496 
 
 8208 
 
 36 
 
 
 07 
 
 114 
 
 428 
 
 942 
 
 1656 
 
 2570 
 
 3684 
 
 4998 
 
 6512 
 
 8226 
 
 49 
 
 
 08 
 
 116 
 
 432 
 
 948 
 
 1664 
 
 2580 
 
 3696 
 
 5012 
 
 6528 
 
 8244 
 
 64 
 
 * 
 
 09 
 
 118 
 
 436 
 
 954 
 
 1672 
 
 2590 
 
 3708 
 
 5026 
 
 6544 
 
 8262 
 
 81 
 
 19* 
 
 10 
 
 121 
 
 441 
 
 961 
 
 1681 
 
 2601 
 
 3721 
 
 5041 
 
 6561 
 
 8281 
 
 oo 
 
 21 
 
 II 
 
 123 
 
 445 
 
 967 
 
 1689 
 
 26ll 
 
 3733 
 
 5055 
 
 6577 
 
 8299 
 
 21 
 
 
 12 
 
 125 
 
 449 
 
 973 
 
 1697 
 
 2621 
 
 3745 
 
 5069 
 
 6593 
 
 8317 
 
 44 
 
 25 
 
 13 
 
 127 
 
 453 
 
 979 
 
 1705 
 
 2631 
 
 3757 
 
 5083 
 
 
 8335 
 
 69 
 
 27 
 
 14 
 
 129 
 
 457 
 
 985 
 
 1713 
 
 2641 
 
 3769 
 
 5097 
 
 6625 
 
 8353 
 
 96 
 
 20* 
 
 " 
 
 15 
 
 I 3 2 
 
 462 
 
 992 
 
 1722 
 
 2652 
 
 3782 
 
 5112 
 
 6642 
 
 8372 
 
 2 5 
 
 OT 
 
 16 
 
 134 
 
 466 
 
 998 
 
 1730 
 
 2662 
 
 3794 
 
 5126 
 
 6658 
 
 8390 
 
 5 6 
 
 J* 
 
 33 
 
 17 
 
 136 
 
 470 
 
 1004 
 
 1738 
 
 2672 
 
 3806 
 
 5140 
 
 6674 
 
 8408 
 
 89 
 
 # 
 
 18 
 
 139 
 
 475 
 
 IOII 
 
 1747 
 
 2683 
 
 3819 
 
 5*55 
 
 6691 
 
 8427 
 
 24 
 
 
 19 
 
 141 
 
 479 
 
 1017 
 
 1755 
 
 2693 
 
 3831 
 
 5i 6 9 
 
 6707 
 
 8445 
 
 61 
 
 39* 
 
 20 
 
 144 
 
 484 
 
 1024 
 
 1764 
 
 2704 
 
 3844 
 
 5184 
 
 6724 
 
 8464 
 
 00 
 
 4 
 
 21 
 
 22 
 
 I 4 6 
 
 145 
 
 488 
 492 
 
 1030 
 1036 
 
 1780 
 
 2714 
 2724 
 
 3856 
 3868 
 
 5198 
 5212 
 
 6740 
 6756 
 
 8482 
 8500 
 
 84 
 
 43 
 
 AS* 
 
 23 
 
 IS' 
 
 497 
 
 1043 
 
 1789 
 
 2735 
 
 3881 
 
 5227 
 
 6773 
 
 8519 
 
 29 
 
 45 
 
 47 
 
 24 
 
 3 
 
 $ 
 I 5 8 
 
 501 
 506 
 
 1049 
 1056 
 
 IO02 
 
 1797 
 1806 
 1814 
 
 2745 
 2756 
 2766 
 
 3893 
 3906 
 
 5241 
 5256 
 5270 
 
 6789 
 6806 
 6822 
 
 P 
 8574 
 
 76 
 
 49* 
 5* 
 53* 
 
 27 
 28 
 
 161 
 
 515 
 519 
 
 1069 
 1075 
 
 1823 
 1831 
 
 2777 
 2787 
 
 3931 
 3943 
 
 5285 
 5299 
 
 6839 
 6855 
 
 ?? 
 
 29 
 84 
 
 55 
 
 29 
 
 166 
 
 524 
 
 1082 
 
 1840 
 
 2798 
 
 3956 
 
 53H 
 
 6872 
 
 8630 
 
 4i 
 
 59* 
 
 30 
 
 169 
 
 529 
 
 1089 
 
 1849 
 
 2809 
 
 3969 
 
 5329 
 
 6889 
 
 8649 
 
 00 
 
 61 
 
 3 i 
 
 171 
 
 533 
 
 1095 
 
 1857 
 
 2819 
 
 3981 
 
 5343 
 
 6905 
 
 8667 
 
 61 
 
 6,* 
 
 32 
 33 
 
 :n 
 
 542 
 
 1102 
 
 1108 
 
 1866 
 1874 
 
 2830 
 2840 
 
 3994 
 4006 
 
 5358 
 5372 
 
 6922 
 6938 
 
 8686 
 8704 
 
 n 
 
 "j 
 65 | 
 67* 
 
 34 
 
 9 
 
 ig 
 
 547 
 55J 
 556 
 
 1115 
 
 1 122 
 1128 
 
 1883 
 1892 
 1900 
 
 2851 
 2862 
 2872 
 
 4019 
 4032 
 4044 
 
 5387 
 5402 
 
 6972 
 6988 
 
 8723 
 8742 
 8760 
 
 56 
 96 
 
 69* 
 
 7 / 
 73* 
 
 8 
 
 1*0 
 
 566 
 
 "35 
 1142 
 
 1909 
 1918 
 
 2883 
 2894 
 
 4057 
 4070 
 
 5431 
 5446 
 
 7005 
 7022 
 
 8779 
 
 69 
 
 44 
 
 75 * 
 
 39 
 
 J93 
 
 57i 
 
 "49 
 
 1927 
 
 2905 
 
 4083 
 
 
 7039 
 
 88? 7 
 
 21 
 
 79* 
 
 40 
 
 196 
 
 576 
 
 1156 
 
 1936 
 
 29l6 
 
 4096 
 
 5476 
 
 7056 
 
 8836 
 
 00 
 
 81 
 
 41 
 
 198 
 
 580 
 
 1162 
 
 1944 
 
 2926 
 
 4108 
 
 5490 
 
 7072 
 
 8854 
 
 81 
 
 8 * 
 
 42 
 
 2OI 
 
 585 
 
 1169 
 
 '953 
 
 2937 
 
 4121 
 
 5505 
 
 7o8 9 
 
 8873 
 
 64 
 
 8 * 
 
 43 
 
 204 
 
 590 
 
 1176 
 
 1962 
 
 2948 
 
 4134 
 
 5520 
 
 7106 
 
 8892 
 
 49 
 
 87* 
 
 44 
 
 207 
 
 595 
 
 1183 
 
 1971 
 
 2959 
 
 4M7 
 
 5535 
 
 7123 
 
 8911 
 
 36 
 
 89" 
 
 $ 
 
 210 
 213 
 
 600 
 605 
 
 1190 
 1197 
 
 1980 
 1989 
 
 2970 
 298l 
 
 4160 
 4173 
 
 5550 
 5565 
 
 7140 
 7i57 
 
 8930 
 8949 
 
 3 
 
 9t" 
 93* 
 
 47 
 
 216 
 
 610 
 
 1204 
 
 1998 
 
 2992 
 
 4186 
 
 558o 
 
 7174 
 
 8968 
 
 09 
 
 OS* 
 
 48 
 
 219 
 
 615 
 
 I2II 
 
 2007 
 
 
 4199 
 
 5595 
 
 7191 
 
 8987 
 
 04 
 
 95 
 
 07* 
 
 49 
 
 222 
 
 620 
 
 1218 
 
 2016 
 
 3 OI 4 
 
 4212 
 
 5610 
 
 7208 
 
 9006 
 
 01 
 
 97 
 99* 
 
 50 
 
 225 
 
 625 
 
 1225 
 
 2025 
 
 3025 
 
 4225 
 
 5625 
 
 7225 
 
 9025 
 
 oo 
 
 
SQUARES OF NUMBERS FROM 100 TO 1000 (Continued). 
 
 99 
 
 
 1~ 
 
 2~ 
 
 3~ 
 
 4** 
 
 5~ 
 
 6~ 
 
 r+ 
 
 8~ 
 
 0*^ 
 
 
 Diff. 
 
 60 
 
 225 
 
 625 
 
 1225 
 
 2025 
 
 3025 
 
 4225 
 
 5625 
 
 7225 
 
 9025 
 
 00 
 
 i 
 
 5 i 
 
 228 
 
 630 
 
 1232 
 
 2034 
 
 3036 
 
 4238 
 
 5640 
 
 7242 
 
 9044 
 
 01 
 
 
 52 
 53 
 
 231 
 234 
 
 635 
 640 
 
 1239 
 1246 
 
 2043 
 2052 
 
 3047 
 3058 
 
 4251 
 4264 
 
 5655 
 5670 
 
 7259 
 7276 
 
 9063 
 9082 
 
 04 
 
 09 
 
 3 
 5 
 7 
 
 54 
 
 237 
 
 645 
 
 1253 
 
 2061 
 
 3069 
 
 4277 
 
 5685 
 
 7293 
 
 9101 
 
 16 
 
 
 55 
 
 240 
 
 650 
 
 1260 
 
 2070 
 
 3080 
 
 4290 
 
 5700 
 
 7310 
 
 9120 
 
 25 
 
 
 56 
 
 243 
 
 655 
 
 1267 
 
 2079 
 
 3091 
 
 4303 
 
 5715 
 
 7327 
 
 9U9 
 
 36 
 
 131 ' 
 
 57 
 
 246 
 
 660 
 
 1274 
 
 2088 
 
 3102 
 
 43l6 
 
 5730 
 
 7344 
 
 9158 
 
 49 
 
 
 58 
 
 249 
 
 665 
 
 1281 
 
 2097 
 
 31*3 
 
 4329 
 
 5745 
 
 
 9177 
 
 64 
 
 
 59 
 
 252 
 
 670 
 
 1288 
 
 2106 
 
 3124 
 
 4342 
 
 5760 
 
 7378 
 
 9196 
 
 Si 
 
 19* 
 
 60 
 
 256 
 
 676 
 
 1296 
 
 2116 
 
 3136 
 
 4356 
 
 5776 
 
 7396 
 
 9216 
 
 00 
 
 I 
 
 61 
 
 259 
 
 681 
 
 1303 
 
 2125 
 
 3U7 
 
 4369 
 
 5791 
 
 7413 
 
 9235 
 
 21 
 
 
 62 
 63 
 
 265 
 
 686 
 691 
 
 1310 
 1317 
 
 2134 
 2143 
 
 3158 
 3169 
 
 4382 
 4395 
 
 5806 
 5821 
 
 7430 
 7447 
 
 9254 
 9273 
 
 % 
 
 35 
 27 
 
 64 
 
 268 
 
 696 
 
 1324 
 
 2152 
 
 3l80 
 
 4408 
 
 5836 
 
 7464 
 
 9292 
 
 96 
 
 29* 
 
 
 272 
 
 702 
 
 1332 
 
 2162 
 
 3192 
 
 4422 
 
 5852 
 
 7482 
 
 9312 
 
 25 
 
 
 66 
 
 275 
 
 707 
 
 '339 
 
 2171 
 
 3203 
 
 4435 
 
 5867 
 
 7499 
 
 9331 
 
 56 
 
 33 
 
 % 
 
 278 
 
 712 
 
 718 
 
 1346 
 1354 
 
 2180 
 2190 
 
 32H 
 3226 
 
 4448 
 4462 
 
 5882 
 5898 
 
 7534 
 
 9350 
 9370 
 
 8 9 
 24 
 
 * 
 
 69 
 
 285 
 
 723 
 
 1361 
 
 2199 
 
 3237 
 
 4475 
 
 59^3 
 
 755' 
 
 9389 
 
 61 
 
 39* 
 
 70 
 
 289 
 
 729 
 
 1369 
 
 2209 
 
 3249 
 
 4489 
 
 5929 
 
 7569 
 
 9409 
 
 00 
 
 41 
 
 72 
 
 292 
 295 
 
 734 
 739 
 
 1376 
 1383 
 
 2218 
 2227 
 
 3260 
 3271 
 
 4502 
 4515 
 
 5944 
 5959 
 
 7586 
 7603 
 
 9428 
 9447 
 
 41 
 
 84 
 
 43 
 
 73 
 
 299 
 
 745 
 
 I39i 
 
 2237 
 
 3283 
 
 45 2 9 
 
 5975 
 
 7621 
 
 9467 
 
 29 
 
 47 
 
 74 
 
 9 
 
 302 
 306 
 309 
 
 750 
 
 1398 
 1406 
 
 1413 
 
 2246 
 2256 
 .2265 
 
 3294 
 3306 
 
 4542 
 4556 
 4569 
 
 5990 
 6006 
 6021 
 
 7638 
 
 7656 
 
 7673 
 
 9486 
 9506 
 9525 
 
 76 
 
 49* 
 
 s- 
 
 78 
 
 313 
 316 
 
 767 
 
 772 
 
 1421 
 1428 
 
 2275 
 2284 
 
 3329 
 3340 
 
 4583 
 4596 
 
 6037 
 6052 
 
 7691 
 7708 
 
 9545 
 95 6 4 
 
 29 
 
 84 
 
 55 
 
 79 
 
 320 
 
 778 
 
 1436 
 
 2294 
 
 3352 
 
 4610 
 
 6068 
 
 7726 
 
 9584 
 
 41 
 
 57* 
 59* 
 
 80 
 
 324 
 
 784 
 
 1444 
 
 2304 
 
 33 6 4 
 
 4624 
 
 6084 
 
 7744 
 
 9604 
 
 00 
 
 61 
 
 81 
 
 327 
 
 789 
 
 I45I 
 
 2313 
 
 3375 
 
 4637 
 
 6099 
 
 7761 
 
 9623 
 
 61 
 
 fia* 
 
 82 
 
 331 
 
 795 
 
 U59 
 
 2323 
 
 3387 
 
 4651 
 
 6115 
 
 7779 
 
 9643 
 
 24 
 
 03 
 
 6. 
 
 83 
 
 334 
 
 800 
 
 1466 
 
 2332 
 
 3398 
 
 4664 
 
 6130 
 
 7796 
 
 9662 
 
 89 
 
 J 
 
 67* 
 
 f 4 
 
 ii 
 
 338 
 342 
 345 
 
 806 
 812 
 817 
 
 1474 
 1482 
 1489 
 
 2342 
 2352 
 2361 
 
 3422 
 3433 
 
 4678 
 4692 
 4705 
 
 6146 
 6162 
 6177 
 
 78H 
 7832 
 7849 
 
 9682 
 9702 
 9721 
 
 56 
 
 69* 
 71 
 
 73* 
 
 87 
 
 349 
 
 823 
 
 1497 
 
 2371 
 
 3445 
 
 4719 
 
 6193 
 
 7867 
 
 9741 
 
 69 
 
 
 88 
 
 353 
 
 829 
 
 1505 
 
 2381 
 
 3457 
 
 4733 
 
 6209 
 
 7885 
 
 9761 
 
 44 
 
 75 
 
 89 
 
 357 
 
 835 
 
 '513 
 
 2391 
 
 3469 
 
 4747 
 
 6225 
 
 793 
 
 9781 
 
 21 
 
 77* 
 79* 
 
 90 
 
 361 
 
 841 
 
 1521 
 
 2401 
 
 348i 
 
 4761 
 
 6241 
 
 7921 
 
 9801 
 
 00 
 
 81 
 
 9 1 
 
 364 
 
 846 
 
 1528 
 
 2410 
 
 3492 
 
 4774 
 
 6256 
 
 793 
 
 9820 
 
 81 
 
 
 92 
 93 
 
 368 
 372 
 
 852 
 858 
 
 1536 
 1544 
 
 2420 
 2430 
 
 3504 
 3516 
 
 4788 
 4802 
 
 6272 
 6288 
 
 7956 
 
 ^Q74 
 
 9840 
 0860 
 
 64 
 49 
 
 8 3* 
 85' 
 87* 
 
 94 
 
 384 
 
 864 
 870 
 876 
 
 1560 
 1568 
 
 2440 
 2450 
 2460 
 
 3528 
 3540 
 3552 
 
 4816 
 
 4830 
 4844 
 
 6304 
 6320 
 6336 
 
 79^* 
 8010 
 8028 
 
 9880 
 9900 
 9920 
 
 36 
 
 s 
 
 89* 
 9** 
 93* 
 
 11 
 
 388 
 392 
 
 882 
 888 
 
 1576 
 
 2470 
 2480 
 
 35 6 4 
 3576 
 
 4858 
 4872 
 
 6352 
 636* 
 
 8046 
 8064 
 
 9940 
 9960 
 
 09 
 04 
 
 95* 
 
 99 
 
 396 
 
 894 
 
 1592 
 
 2490 
 
 
 4886 
 
 6384 
 
 $082 
 
 9980 
 
 01 
 
 97* 
 99* 
 
 100 
 
 400 
 
 900 
 
 1600 
 
 2500 
 
 3600 
 
 4900 
 
 6400 
 
 8100 
 
 1 0000 
 
 oo 
 
 
TABLE VIII. DECIMALS OF DAY INTO HOURS, ETC. 
 
 101 
 
 
 
 H. M. S. 
 
 H.M.S. 
 
 
 
 H. M. S. 
 
 H.M.S. 
 
 D. 
 
 H. M. S. 
 
 
 ~"~ o 
 
 D. 
 
 H. M. S. 
 
 
 
 
 
 IOO 
 
 IOO 
 
 
 
 IOO 
 
 IOO* 
 
 d. 
 
 h. m. s. 
 
 M. S. 
 
 s. 
 
 d. 
 
 h. m. s. 
 
 m, s. 
 
 *. 
 
 O.OI 
 
 o 14 24 
 
 o 8.64 
 
 0.09 
 
 0.51 
 
 12 14 24 
 
 7 20.64 
 
 4.41 
 
 0.02 
 
 o 28 48 
 
 o 17.28 
 
 0.17 
 
 0.52 
 
 12 28 48 
 
 7 29.28 
 
 4.49 
 
 0.03 
 
 o 43 12 
 
 o 25.92 
 
 0.26 
 
 0.53 
 
 12 43 12 
 
 7 37.92 
 
 4.58 
 
 O.O4 
 
 o 57 36 
 
 o 34.56 
 
 0.35 
 
 0-54 
 
 12 57 36 
 
 7 46.56 
 
 4.67 
 
 O.O5 
 
 I 12 
 
 o 43.20 
 
 o.43 
 
 0.55 
 
 13 12 
 
 7 55-20 
 
 4.75 
 
 O.O6 
 
 I 26 24 
 
 o 51.84 
 
 0.52 
 
 0.56 
 
 13 26 24 
 
 8 3.84 
 
 4.84 
 
 0.07 
 
 I 40 48 
 
 0.48 
 
 0.60 
 
 0.57 
 
 13 40 48 
 
 8 12.48 
 
 4.92 
 
 0.08 
 
 I 55 12 
 
 9.12 
 
 0.69 
 
 0.53 
 
 13 55 12 
 
 8 21.12 
 
 5.01 
 
 O.O9 
 0.10 
 
 2 9 36 
 
 2 24 
 
 17.76 
 26.40 
 
 0.78 
 0.86 
 
 0-59 
 0.60 
 
 14 9 36 
 14 24 o 
 
 8 29.76 
 8 38.40 
 
 5.10 
 5.18 
 
 O.II 
 
 2 38 24 
 
 35.04 
 
 0.95 
 
 0.61 
 
 14 38 24 
 
 8 47.04 
 
 5.27 
 
 0.12 
 
 2 52 48 
 
 43-68 
 
 .04 
 
 0.62 
 
 14 52 48 
 
 8 55.68 
 
 5.36 
 
 0.13 
 
 3 7 12 
 
 52.32 
 
 .12 
 
 0.63 
 
 15 7 12 
 
 9 4.32 
 
 5.44 
 
 0.14 
 0.15 
 
 3 21 36 
 3 36 o 
 
 2 0.96 
 2 9.60 
 
 .21 
 .30 
 
 0.64 
 0.65 
 
 15 21 36 
 
 15 36 o 
 
 9 12.96 
 9 21.60 
 
 III 
 
 0.16 
 0.17 
 
 3 50 24 
 4 4 48 
 
 2 18.24 
 2 26.88 
 
 .38 
 
 47 
 
 0.66 
 0.67 
 
 15 50 24 
 
 16 448 
 
 9 30-24 
 9 38.88 
 
 5.70 
 5.79 
 
 0.18 
 
 4 19 12 
 
 2 35.52 
 
 .56 
 
 0.68 
 
 16 19 12 
 
 9 47.52 
 
 5.88 
 
 0.19 
 
 4 33 36 
 
 2 44.16 
 
 .64 
 
 0.69 
 
 16 33 36 
 
 9 56.16 
 
 5.96 
 
 O.2O 
 
 448 o 
 
 2 52.80 
 
 73 
 
 0.70 
 
 16 48 o 
 
 10 4.80 
 
 6.05 
 
 0.21 
 
 5 2 24 
 
 3 L44 
 
 .81 
 
 0.71 
 
 17 2 24 
 
 10 13.44 
 
 6.13 
 
 0.22 
 
 5 16 48 
 
 3 10.08 
 
 .90 
 
 0.72 
 
 17 16 48 
 
 10 22.08 
 
 6.22 
 
 0.23 
 
 5 3 1 I2 
 
 3 18.72 
 
 99 
 
 0.73 
 
 17 31 12 
 
 10 30.72 
 
 6-31 
 
 0.2l 
 0.2$ 
 
 5 45 36 
 600 
 
 3 27.36 
 3 36.00 
 
 2.07 
 2.16 
 
 0.74 
 o.75 
 
 17 45 36 
 1800 
 
 10 39.36 
 10 48.00 
 
 6.39 
 6.48 
 
 O.26 
 
 6 14 24 
 
 3 44.64 
 
 2.25 
 
 0.76 
 
 18 14 24 
 
 10 56.64 
 
 6-57 
 
 0.27 
 
 6 28 48 
 
 3 53.28 
 
 2-33 
 
 o.77 
 
 18 28 48 
 
 II 5.28 
 
 6.6 5 
 
 0.28 
 
 6 43 12 
 
 4 1.92 
 
 2.42 
 
 0.78 
 
 18 43 12 
 
 II 13.92 
 
 - 6.74 
 
 0.29 
 
 6 57 36 
 
 4 10.56 
 
 2.51 
 
 0.79 
 
 18 57 36 
 
 II 22.56 
 
 6.83 
 
 0.30 
 
 7 12 
 
 4 19.20 
 
 2.59 
 
 0.80 
 
 19 12 O 
 
 II 31.20 
 
 6.91 
 
 0.31 
 
 7 26 24 
 
 4 27.84 
 
 2.68 
 
 0.81 
 
 19 26 24 
 
 II 39.84 
 
 7.00 
 
 0.32 
 
 7 40 48 
 
 4 36.48 
 
 2.76 
 
 0.82 
 
 19 4O 48 
 
 II 48.48 
 
 7.08 
 
 0-33 
 
 7 55 12 
 
 4 45.12 
 
 2.85 
 
 0.83 
 
 19 55 12 
 
 II 57.12 
 
 7-17 
 
 
 8 9 36 
 
 
 2.94 
 
 0.84 
 
 20 9 36 
 
 12 5.76 
 
 7.26 
 
 0.35 
 
 8 24 o 
 
 5 2.40 
 
 3.02 
 
 0.85 
 
 20 24 o 
 
 12 14.40 
 
 7.34 
 
 0.36 
 
 8 38 24 
 
 5 ".04 
 
 3 TI 
 
 0.86 
 
 20 38 24 
 
 12 23.04 
 
 7-43 
 
 0.37 
 
 8 52 48 
 
 5 19.68 
 
 3-20 
 
 0.87 
 
 20 52 48 
 
 12 31.68 
 
 7.52 
 
 0.38 
 
 9 7 12 
 
 5 28.32 
 
 3.28 
 
 0.88 
 
 21 7 12 
 
 12 40.32 
 
 7.6o 
 
 o-39 
 
 9 21 36 
 
 5 36.96 
 
 3-37 
 
 0.89 
 
 21 21 36 
 
 12 48.96 
 
 7.6 9 
 
 0.40 
 
 9 36 o 
 
 5 45-60 
 
 3-46 
 
 0.90 
 
 21 36 
 
 12 57.6O 
 
 7.78 
 
 0.41 
 
 9 50 24 
 
 5 54-24 
 
 3-54 
 
 0.91 
 
 21 50 24 
 
 13 6.?A 
 
 7.86 
 
 0.42 
 
 10 4 48 
 
 6 2.88 
 
 3.63 
 
 0.92 
 
 22 4 48 
 
 13 14.88 
 
 7.95 
 
 o.43 
 
 IO 19 12 
 
 6 11.52 
 
 3-72 
 
 0.93 
 
 22 19 12 
 
 I? 13.52 
 
 8.04 
 
 0.44 
 
 10 33 36 
 
 6 20.16 
 
 
 0.94 
 
 22 33 36 
 
 15, jz.ib 
 
 8.12 
 
 0.45 
 
 10 48 o 
 
 6 28.80 
 
 3-89 
 
 0.95 
 
 22 48 
 
 15 40.80 
 
 8.21 
 
 0.46 
 0.47 
 
 II 2 24 
 
 ii 16 48 
 
 6 37-44 
 6 46.08 
 
 3-97 
 4.06 
 
 0.96 
 o.97 
 
 23 2 24 
 
 23 16 48 
 
 13 49-44 
 13 58.08 
 
 8.29 
 8.38 
 
 0.48 
 
 II 31 12 
 
 6 54.72 
 
 4.15 
 
 0.98 
 
 23 31 12 
 
 14 6.72 
 
 8.47 
 
 0.49 
 
 ii 45 36 
 
 7 3.36 
 
 4.23 
 
 0-99 
 
 23 45 36 
 
 14 15.36 
 
 8.55 
 
 0.50 
 
 12 
 
 7 12.00 
 
 4-32 
 
 1. 00 
 
 24 o o 
 
 14 24.00 
 
 8.64 
 
 i 
 
 
 
 
 
 
 
 
102 
 
 TABLE IX. ARC INTO TIME AND VICE VERSA. 
 
 o 
 
 h, m. 
 
 o 
 
 /i. m. 
 
 
 
 h. m. 
 
 
 
 h. m. 
 
 o 
 
 h. m. 
 
 
 
 h. m. 
 
 i 
 
 m. s. 
 
 
 
 j. 
 
 o 
 
 O O 
 
 60 
 
 4 o 
 
 1 20 
 
 8 
 
 180 
 
 12 O 
 
 240 
 
 16 o 
 
 300 
 
 20 
 
 
 
 
 
 o 
 
 0.000 
 
 I 
 
 o 4 
 
 61 
 
 4 4 
 
 121 
 
 8 4 
 
 181 
 
 12 4 
 
 241 
 
 16 4 
 
 301 
 
 20 4 
 
 i 
 
 o 4 
 
 i 
 
 0.066 
 
 2 
 
 o 8 
 
 62 
 
 4 8 
 
 122 
 
 8 8 
 
 182 
 
 12 8 
 
 242 
 
 16 8 
 
 302 
 
 20 8 
 
 2 
 
 o 8 
 
 2 
 
 *33 
 
 3 
 
 12 
 
 63 
 
 4 12 
 
 123 
 
 8 12 
 
 183 
 
 12 12 
 
 243 
 
 16 12 
 
 33 
 
 2O 12 
 
 3 
 
 12 
 
 3 
 
 0.200 
 
 4 
 
 o 16 
 
 64 
 
 4 16 
 
 I2 4 
 
 8 16 
 
 184 
 
 12 16 
 
 244 
 
 16 16 
 
 304 
 
 20 16 
 
 4 
 
 o 16 
 
 4 
 
 0.266 
 
 I 
 
 o 20 
 o 24 
 
 66 
 
 420 
 
 I2 5 
 126 
 
 8 20 
 
 824 
 
 185 
 186 
 
 12 20 
 12 24 
 
 III 
 
 16 20 
 16 24 
 
 305 
 306 
 
 20 20 
 
 20 24 
 
 I 
 
 O 20 
 
 o 24 
 
 \ 
 
 o 333 
 0.400 i 
 
 7 
 
 028 
 
 67 
 
 4 28 
 
 127 
 
 8 28 
 
 187 
 
 12 28 
 
 247 
 
 16 28 
 
 
 20 28 
 
 7 
 
 28 
 
 7 
 
 0.466 
 
 8 
 
 032 
 
 68 
 
 4 32 
 
 128 
 
 832 
 
 188 
 
 12 3 2 
 
 248 
 
 16 32 
 
 308 
 
 2o 32 
 
 8 
 
 o 32 
 
 8 
 
 o-533 
 
 9 
 
 o 36 
 
 69 
 
 436 
 
 129 
 
 836 
 
 189 
 
 12 36 
 
 249 
 
 1636 
 
 309 
 
 20 36 
 
 9 
 
 o 36 
 
 9 
 
 0.600 
 
 10 
 
 o 40 
 
 70 
 
 4 40 
 
 130 
 
 8 40 
 
 190 
 
 40 
 
 250 
 
 16 40 
 
 310 
 
 2O 40 
 
 IO 
 
 o 40 
 
 10 
 
 0.666 
 
 n 
 
 o 44 
 
 
 4 44 
 
 
 844 
 
 191 
 
 12 44 
 
 251 
 
 16 44 
 
 3" 
 
 20 44 
 
 n 
 
 o 44 
 
 n 
 
 0-733 
 
 12 
 
 o 48 
 
 72 
 
 448 
 
 132 
 
 8 48 
 
 192 
 
 12 48 
 
 252 
 
 1648 
 
 312 
 
 2048 
 
 12 
 
 o 48 
 
 12 
 
 0.800 
 
 13 
 
 052 
 
 73 
 
 452 
 
 133 
 
 852 
 
 193 
 
 12 52 
 
 253 
 
 16 52 
 
 313 
 
 20 52 
 
 3 
 
 o 52 
 
 13 
 
 0.866 i 
 
 '4 
 
 o 56 
 
 74 
 
 456 
 
 134 
 
 8 56 
 
 194 
 
 12 56 
 
 254 
 
 16 56 
 
 
 20 56 
 
 M 
 
 o 56 
 
 M 
 
 0-933 
 
 11 
 
 o 
 4 
 
 76 
 
 c o 
 5 4 
 
 135 
 136 
 
 Q O 
 
 9 4 
 
 '95 
 196 
 
 13 o 
 13 4 
 
 255 
 256 
 
 17 o 
 17 4 
 
 3'5 
 316 
 
 21 O 
 21 4 
 
 15 
 
 16 
 
 o 
 
 4 
 
 15 
 
 1 6 
 
 1. 000 
 
 1.066 
 
 11 
 
 8 
 
 12 
 
 78 
 
 5 8 
 
 5 '2 
 
 137 
 138 
 
 9 8 
 9 12 
 
 197 
 198 
 
 13 8 
 
 13 12 
 
 257 
 258 
 
 17 8 
 17 12 
 
 317 
 
 21 8 
 21 12 
 
 \l 
 
 8 
 
 12 
 
 M 
 
 I 133 
 
 1.200 
 
 *9 
 
 16 
 
 79 
 
 516 
 
 139 
 
 9 16 
 
 199 
 
 13 16 
 
 259 
 
 17 16 
 
 319 
 
 21 16 
 
 19 
 
 16 
 
 19 
 
 1.266 
 
 20 
 
 20 
 
 80 
 
 5 20 
 
 140 
 
 9 20 
 
 200 
 
 13 20 
 
 260 
 
 17 20 
 
 320 
 
 21 20 
 
 20 
 
 20 
 
 20 
 
 '333 
 
 21 
 22 
 
 24 
 28 
 
 Si 
 82 
 
 528 
 
 141 
 
 142 
 
 9 24 
 9 28 
 
 201 
 
 202 
 
 13 24 
 
 n 28 
 
 261 
 262 
 
 17 24 
 17 28 
 
 321 
 322 
 
 21 24 
 21 28 
 
 21 
 22 
 
 3 
 
 21 
 
 22 
 
 i 400 
 1.466 
 
 23 
 
 32 
 
 83 
 
 5 3? 
 
 143 
 
 9 32 
 
 203 
 
 '3 32 
 
 263 
 
 17 32 
 
 323 
 
 21 32 
 
 23 
 
 32 
 
 23 
 
 ' 533 
 
 2 4 
 
 36 
 
 84 
 
 536 
 
 144 
 
 9 36 
 
 204 
 
 13 36 
 
 264 
 
 17 36 
 
 324 
 
 21 36 
 
 24 
 
 36 
 
 24 
 
 i. 600 
 
 11 
 
 40 
 44 
 
 II 
 
 5 40 
 5 44 
 
 MS 
 
 146 
 
 9 40 
 9 44 
 
 205 
 206 
 
 3 40 
 
 3 44 
 
 266 
 
 1740 
 
 '7 44 
 
 1 
 
 21 40 
 
 21 44 
 
 3 
 
 40 
 44 
 
 11 
 
 1.666 
 1-733 
 
 11 
 
 48 
 52 
 
 11 
 
 548 
 5 52 
 
 H8 
 
 948 
 9 5 2 
 
 207 
 208 
 
 13 48 
 13 52 
 
 267 
 268 
 
 1748 
 17 52 
 
 
 21 48 
 21 52 
 
 11 
 
 48 
 52 
 
 11 
 
 i. 806 
 1.866 
 
 29 
 
 56 
 
 89 
 
 5 56 
 
 149 
 
 9 S^ 
 
 20 9 
 
 *3 5 6 
 
 269 
 
 17 56 
 
 329 
 
 21 56 
 
 29 
 
 56 
 
 29 
 
 * 933 
 
 30 
 
 2 O 
 
 90 
 
 6 o 
 
 ISO 
 
 1C O 
 
 210 
 
 14 o 
 
 270 
 
 18 o 
 
 330 
 
 22 O 
 
 30 
 
 2 O 
 
 30 
 
 2 OOO 
 
 31 
 
 2 4 
 
 
 6 3 
 
 
 10 4 
 
 211 
 
 14 4 
 
 271 
 
 18 4 
 
 331 
 
 22 4 
 
 
 2 4 
 
 31 
 
 2.066 
 
 32 
 
 2 8 
 
 92 
 
 6 8 
 
 152 
 
 ic 8 
 
 212 
 
 14 8 
 
 272 
 
 18 8 
 
 332 
 
 22 8 
 
 32 
 
 2 8 
 
 32 
 
 2-133 
 
 33 
 
 2 12 
 
 93 
 
 6 12 
 
 153 
 
 10 12 
 
 213 
 
 14 12 
 
 273 
 
 18 12 
 
 333 
 
 22 12 
 
 33 
 
 2 12 
 
 33 
 
 2.200 
 
 34 
 
 2 16 
 
 94 
 
 6 16 
 
 154 
 
 ic 16 
 
 2I 4 
 
 14 16 
 
 274 
 
 18 16 
 
 334 
 
 22 16 
 
 34 
 
 2 16 
 
 34 
 
 2.266 
 
 35 
 36 
 
 2 20 
 2 24 
 
 95 
 
 96 
 
 6 20 
 
 624 
 
 155 
 
 IO 20 
 
 ic 24 
 
 215 
 
 216 
 
 14 20 
 14 24 
 
 III 
 
 18 20 
 18 24 
 
 335 
 336 
 
 122 20 
 22 24 
 
 35 
 3 6 
 
 2 20 
 2 24 
 
 1 
 
 2-333 
 2.4OO 
 
 37 
 
 2 28 
 
 
 6 28 
 
 *57 
 
 10 28 
 
 217 
 
 14 28 
 
 277 
 
 18 28 
 
 337 
 
 22 28 
 
 
 2 28 
 
 
 2.466 
 
 38 
 
 2 3 2 
 
 98 
 
 632 
 
 158 
 
 10 32 
 
 218 
 
 M 3 2 
 
 278 
 
 1832 
 
 338 
 
 22 32 
 
 38 
 
 2 32 
 
 38 
 
 2-533 
 
 39 
 
 2 3 6 
 
 99 
 
 6 36 
 
 159 
 
 10 36 
 
 219 
 
 M 36 
 
 279 
 
 18 36 
 
 339 
 
 22 36 
 
 39 
 
 2 36 
 
 39 
 
 2.600 
 
 40 
 
 240 
 
 IOO 
 
 640 
 
 160 
 
 10 40 
 
 22O 
 
 M 40 
 
 280 
 
 18 40 
 
 340 
 
 22 40 
 
 40 
 
 2 40 
 
 40 
 
 2.666 
 
 4' 
 
 2 44 
 
 101 
 
 644 
 
 161 
 
 10 44 
 
 221 
 
 M 44 
 
 281 
 
 18 44 
 
 
 22 44 
 
 
 2 44 
 
 
 2 733 
 
 4? 
 
 248 
 
 102 
 
 6 48 
 
 162 
 
 10 48 
 
 222 
 
 1448 
 
 282 
 
 18 48 
 
 342 
 
 22 48 
 
 42 
 
 2 4 8 
 
 42 
 
 2.800 
 
 43 
 
 2 52 
 
 103 
 
 652 
 
 163 
 
 10 52 
 
 223 
 
 14 52 
 
 283 
 
 18 52 
 
 343 
 
 22 S2 
 
 43 
 
 2 52 
 
 43 
 
 2.866 
 
 44 
 
 2 56 
 
 104 
 
 r ;6 
 
 164 
 
 10 56 
 
 224 
 
 14 56 
 
 284 
 
 18 56 
 
 344 
 
 22 5 6 
 
 44 
 
 2 5 6 
 
 44 
 
 2 933 
 
 45 
 
 46 
 
 3 o 
 3 4 
 
 I0 5 
 1 06 
 
 7 4 
 
 
 
 II 
 
 ii 4 
 
 III 
 
 15 o 
 15 4 
 
 III 
 
 19 o 
 
 19 4 
 
 345 
 346 
 
 23 o 
 
 23 4 
 
 46 
 
 3 o 
 3 4 
 
 46 
 
 3.000 
 3.066 
 
 47 
 
 3 8 
 
 107 
 
 7 8 
 
 167 
 
 n 8 
 
 227 
 
 15 8 
 
 287 
 
 19 8 
 
 347 
 
 23 8 
 
 47 
 
 3 8 
 
 47 
 
 3 133 
 
 48 
 
 3 I2 
 
 108 
 
 7 12 
 
 1 68 
 
 II 12 
 
 228 
 
 15 12 
 
 288 
 
 19 12 
 
 348 
 
 23 12 
 
 48 
 
 3 I2 
 
 4^ 
 
 3.200 
 
 49 
 
 316 
 
 109 
 
 716 
 
 169 
 
 ii 16 
 
 229 
 
 15 16 
 
 289 
 
 19 16 
 
 349 
 
 23 16 
 
 49 
 
 316 
 
 49 
 
 3.266 
 
 50 
 
 320 
 
 no 
 
 7 20 
 
 170 
 
 II 20 
 
 230 
 
 15 20 
 
 290 
 
 19 20 
 
 350 
 
 2 3 20 
 
 50 
 
 3 20 
 
 50 
 
 3-333 
 
 51 
 
 3 24 
 
 in 
 
 724 
 
 171 
 
 II 24 
 
 2 3 I 
 
 15 24 
 
 291 
 
 19 24 
 
 351 
 
 23 24 
 
 51 
 
 
 51 
 
 3.400 
 
 52 
 
 3 28 
 
 112 
 
 728 
 
 172 
 
 II 28 
 
 232 
 
 15 28 
 
 292 
 
 19 28 
 
 352 
 
 23 28 
 
 52 
 
 3 28 
 
 52 
 
 3.466 
 
 53 
 
 3 32 
 
 "3 
 
 732 
 
 173 
 
 II 32 
 
 233 
 
 15 32 
 
 293 
 
 19 32 
 
 353 
 
 23 32 
 
 53 
 
 3 32 
 
 53 
 
 3 533 
 
 54 
 
 336 
 
 114 
 
 736 
 
 174 
 
 II 36 
 
 234 
 
 15 36 
 
 294 
 
 19 36 
 
 354 
 
 2336 
 
 54 
 
 336 
 
 54 
 
 3-600 
 
 55 
 
 3 40 
 
 115 
 
 740 
 
 175 
 
 II 40 
 
 235 
 
 '5 40 
 
 295 
 
 19 40 
 
 355 
 
 23 40 
 
 55 
 
 3 40 
 
 55 
 
 3.666 
 
 56 
 
 3 44 
 
 no 
 
 7 44 
 
 176 
 
 ii 44 
 
 236 
 
 15 44 
 
 296 
 
 19 44 
 
 356 
 
 23 44 
 
 56 
 
 3 44 
 
 56 
 
 3 733 
 
 
 348 
 
 117 
 
 748 
 
 
 II 48 
 
 237 
 
 15 48 
 
 297 
 
 1948 
 
 357 
 
 2348 
 
 
 348 
 
 57 
 
 3.800 
 
 58 
 
 3 52 
 
 118 
 
 7 52 
 
 178 
 
 II 52 
 
 238 
 
 15 52 
 
 298 
 
 19 52 
 
 358 
 
 23 52 
 
 58 
 
 3 52 
 
 58 
 
 3-866 
 
 .59 
 
 356 
 
 119 
 
 756 
 
 179 
 
 II 56 
 
 239 
 
 15 56 
 
 299 
 
 19 5 6 
 
 359 
 
 2356 
 
 59 
 
 356 
 
 59 
 
 3 933 
 
TABLE Xa. TO CONVERT MEAN INTO SIDEREAL TIME. 
 
 103 
 
 Mean T. 
 h. m. 
 
 Correction. 
 m. s. 
 
 Mean T. 
 h. m. 
 
 Correction. 
 /. s. 
 
 Mean T 
 h. m. 
 
 Correction. 
 m. s. 
 
 Corr. for min. 
 and sec. 
 m. s. s. 
 
 o o 
 
 0.00 
 
 8 o 
 
 i 18.85 
 
 16 o 
 
 2 37.70 
 
 10 
 
 0.03 
 
 10 
 
 1.64 
 
 10 
 
 20.50 
 
 10 
 
 39.35 
 
 20 
 
 O.Oj 
 
 20 
 
 3.29 
 
 20 
 
 22.14 
 
 20 
 
 40.99 
 
 30 
 
 0.08 
 
 30 
 
 4-93 
 
 30 
 
 23.78 
 
 30 
 
 42.63 
 
 40 
 
 O.II 
 
 40 
 
 6.57 
 
 40 
 
 25-42 
 
 40 
 
 44.28 
 
 5 
 
 0.14 
 
 50 
 
 8.21 
 
 50 
 
 27.07 
 
 50 
 
 45.92 
 
 I 
 
 0.16 
 
 
 
 
 
 
 
 IO 
 
 0.19 
 
 I 
 
 o 9.86 
 
 9 o 
 
 i 28.71 
 
 17 o 
 
 2 47.56 
 
 20 
 3 
 
 0.22 
 C.25 
 
 IO 
 
 11.50 
 
 IO 
 
 30.35 
 
 IO 
 
 49.20 
 
 40 
 
 0.27 
 
 20 
 
 13.14 
 
 20 
 
 31-99 
 
 20 
 
 50.85 
 
 
 0.30 
 
 30 
 
 14.78 
 
 30 
 
 33.64 
 
 30 
 
 52.49 
 
 2 O 
 
 0.33 
 
 40 
 50 
 
 16.43 
 16.07 
 
 40 
 50 
 
 35.28 
 36.92 
 
 40 
 50 
 
 54.13 
 55-77 
 
 XO 
 20 
 
 0.36 
 0. 3 3 
 
 
 
 
 
 
 
 30 
 
 0.41 
 
 2 
 10 
 
 o 19.71 
 21.36 
 
 10 
 
 10 
 
 i 38.56 
 40.21 
 
 18 o 
 
 10 
 
 2 57.42 
 59.06 
 
 40 
 50 
 
 0.44 
 0.47 
 
 20 
 
 23.00 
 
 20 
 
 41.85 
 
 20 
 
 3 0.70 
 
 3 o 
 
 o 49 
 
 30 
 
 c 40 
 
 So 
 
 24.64 
 26.28 
 27.93 
 
 30 
 40 
 50 
 
 43-49 
 45.14 
 46.78 
 
 30 
 40 
 50 
 
 2.34 
 
 3.99 
 5.63 
 
 IO 
 20 
 
 30 
 40 
 
 0.52 
 o 55 
 
 o 60 
 
 
 
 
 
 
 
 50 
 
 0.63 
 
 3 o 
 
 o 29.57 
 
 II 
 
 i 48.42 
 
 19 o 
 
 3 7.27 
 
 4 
 
 0.66 
 
 10 
 
 31.21 
 
 10 
 
 50.06 
 
 10 
 
 8.92 
 
 10 
 
 0.68 
 
 20 
 
 32.86 
 
 20 
 
 51.71 
 
 20 
 
 10.56 
 
 20 
 
 0.71 
 
 30 
 
 34.50 
 
 3 
 
 53-35 
 
 30 
 
 12. 2O 
 
 30 
 
 0.74 
 
 40 
 
 36.14 
 
 40 
 
 54-99 
 
 40 
 
 13.84 
 
 40 
 
 0.77 
 
 50 
 
 37.78 
 
 
 56.64 
 
 50 
 
 15.49 
 
 5 
 
 0.79 
 
 
 
 
 
 
 
 c o 
 
 0.82 
 
 4 o 
 
 o 39-43 
 
 12 
 
 I 58.28 
 
 20 o 
 
 3 I7.I3 
 
 IO 
 
 o 85 
 
 n RS 
 
 10 
 
 20 
 30 
 
 41.07 
 42.71 
 
 44.35 
 
 10 
 20 
 30 
 
 59-92 
 2 1.56 
 
 10 
 20 
 30 
 
 18.77 
 20.42 
 22.06 
 
 20 
 
 30 
 
 40 
 5 
 
 o.oo 
 
 0.90 
 
 093 
 0.96 
 
 40 
 
 46.00 
 
 40 
 
 4*85 
 
 40 
 
 23.70 
 
 
 
 50 
 
 47.64 
 
 50 
 
 6.49 
 
 50 
 
 25.34 
 
 6 o 
 
 10 
 
 o 99 
 
 .01 
 
 
 
 
 
 
 
 20 
 
 04 
 
 5 o 
 
 o 49.28 
 
 13 o 
 
 2 8.13 
 
 21 
 
 3 26.99 
 
 30 
 
 .07 
 
 10 
 
 50.92 
 
 10 
 
 9.78 
 
 10 
 
 28.63 
 
 40 
 
 IO 
 
 20 
 
 52 57 
 
 20 
 
 11.42 
 
 20 
 
 30.27 
 
 50 
 
 .12 
 
 30 
 
 54.21 
 
 30 
 
 13.06 
 
 30 
 
 31.91 
 
 7 O 
 
 j- 
 
 40 
 
 55.85 
 
 40 
 
 14.70 
 
 40 
 
 33.56 
 
 / 
 
 10 
 
 '18 
 
 50 
 
 57.50 
 
 50 
 
 16.35 
 
 50 
 
 35-20 
 
 20 
 
 .21 
 
 
 
 
 
 
 
 30 
 
 23 
 
 6 o 
 
 10 
 
 o 59.H 
 i 0.78 
 
 14 o 
 
 10 
 
 2 17.99 
 19.63 
 
 22 
 10 
 
 3 36.84 
 38.48 
 
 40 
 50 
 
 .29 
 
 20 
 
 2.42 
 
 20 
 
 21.28 
 
 20 
 
 40.13 
 
 8 o 
 
 .31 
 
 30 
 
 4.07 
 
 30 
 
 22.92 
 
 30 
 
 4L77 
 
 IO 
 
 34 
 
 40 
 
 5.71 
 
 40 
 
 24.56 
 
 40 
 
 43-41 
 
 20 
 
 37 
 
 50 
 
 7-35 
 
 50 
 
 26.20 
 
 50 
 
 45.o6 
 
 3> 
 
 40 
 
 .40 
 .42 
 
 
 
 
 
 
 
 So 
 
 45 
 
 7 o 
 
 10 
 
 I 9.00 
 
 10.64 
 
 15 o 
 
 10 
 
 2 27.85 
 29.49 
 
 23 o 
 
 10 
 
 3 46.70 
 48.34 
 
 9 o 
 
 48 
 
 rf\ 
 
 20 
 
 12.28 
 
 20 
 
 
 20 
 
 49.98 
 
 20 
 
 5 
 
 30 
 
 13.92 
 
 30 
 
 32.77 
 
 30 
 
 51-63 
 
 3 
 
 ?o 
 
 40 
 
 15.57 
 
 40 
 
 34.42 
 
 40 
 
 53.27 
 
 40 
 
 Pg 
 
 50 
 
 17.21 
 
 50 
 
 36.06 
 
 50 
 
 
 50 
 
 .6, 
 
TABLE X. TO CONVERT SIDEREAL INTO MEAN TIME. 
 
 Sid. T. 
 k. m. 
 
 Correction. 
 m. s. 
 
 Sid. T. 
 A. m. 
 
 Correction. 
 m. s. 
 
 Sid. T. 
 k. m. 
 
 Correction, 
 w. s. 
 
 Corr. for min. 
 and sec. 
 m. s. s. 
 
 
 
 o o.oo 
 
 8 o 
 
 I 18.64 
 
 16 o 
 
 2 37-27 
 
 O IO 
 
 0.03 
 
 10 
 20 
 
 1.64 
 3.28 
 
 10 
 
 20 
 
 20.28 
 21 .91 
 
 IO 
 
 20 
 
 38.91 
 40.55 
 
 20 
 
 30 
 
 0.05 
 0.08 
 
 30 
 
 4.92 
 
 30 
 
 23.55 
 
 30 
 
 42.19 
 
 40 
 
 O.1I 
 
 40 
 
 6-55 
 
 40 
 
 25.19 
 
 40 
 
 43.83 
 
 5 
 
 0.14 
 
 50 
 
 8 19 
 
 50 
 
 26.83 
 
 50 
 
 45.46 
 
 I 
 
 o. 16 
 
 
 
 
 
 
 
 10 
 
 o. 19 
 
 t 
 
 o 9.83 
 
 9 o 
 
 I 28.47 
 
 17 o 
 
 2 47.10 
 
 20 
 
 3 
 
 0.22 
 0.25 
 
 IO 
 
 11.47 
 
 IO 
 
 30.10 
 
 10 
 
 48.74 
 
 40 
 
 O.27 
 
 20 
 
 13." 
 
 20 
 
 3L74 
 
 20 
 
 50.38 
 
 50 
 
 0.30 
 
 30 
 
 H.74 
 
 30 
 
 33.38 
 
 30 
 
 52.02 
 
 2 O 
 
 o ? 3 
 
 40 
 
 16.38 
 
 40 
 
 35-02 
 
 40 
 
 53-66 
 
 10 
 
 0.35 
 
 50 
 
 18.02 
 
 50 
 
 36.66 
 
 50 
 
 55-29 
 
 20 
 
 0.38 
 
 
 
 
 
 
 
 30 
 
 0.41 
 
 t 
 
 IO 
 
 o 19.66 
 21.30 
 
 10 
 10 
 
 i 38.30 
 39-93 
 
 18 o 
 
 IO 
 
 2 56.93 
 58.57 
 
 40 
 50 
 
 0.44 
 0.47 
 
 20 
 
 22.94 
 
 20 
 
 4L57 
 
 20 
 
 3 0.21 
 
 3 O 
 
 0.49 
 
 30 
 
 40 
 
 24.57 
 26.21 
 
 30 
 
 40 
 
 43-21 
 44-85 
 
 30 
 40 
 
 1.85 
 
 3.48 
 
 IO 
 90 
 
 0.52 
 
 o-55 
 
 50 
 
 27.85 
 
 50 
 
 46.49 
 
 50 
 
 5.12 
 
 3 
 40 
 
 0.57 
 0.60 
 
 
 
 
 
 
 
 50 
 
 0.63 
 
 ^ o 
 
 o 29.49 
 
 II 
 
 i 48.12 
 
 19 o 
 
 3 6.76 
 
 4- o 
 
 0.66 
 
 10 
 
 31.13 
 
 10 
 
 49.76 
 
 10 
 
 8.40 
 
 10 
 
 0.68 
 
 20 
 
 32.76 
 
 20 
 
 51.40 
 
 20 
 
 10.04 
 
 20 
 
 0.71 
 
 30 
 
 34.40 
 
 30 
 
 53.04 
 
 30 
 
 11.68 
 
 30 
 
 0.74 
 
 40 
 
 36.04 
 
 40 
 
 54.68 
 
 40 
 
 13.32 
 
 40 
 
 0.76 
 
 50 
 
 37.68 
 
 50 
 
 56.32 
 
 50 
 
 J4-95 
 
 5 
 
 0.79 
 
 
 
 
 
 
 
 5 
 
 0.82 
 
 4 o 
 
 10 
 20 
 
 o 39.32 
 40.96 
 42.60 
 
 12 
 IO 
 2O 
 
 i 57.96 
 
 59-59 
 2 1.23 
 
 20 o 
 
 10 
 
 20 
 
 3 16.59 
 18.23 
 19.87 
 
 10 
 20 
 30 
 
 4 
 
 0.85 
 0.87 
 0.90 
 0.93 
 
 30 
 
 44.23 
 
 30 
 
 2.87 
 
 30 
 
 21.51 
 
 5 
 
 0.96 
 
 40 
 
 45.87 
 
 40 
 
 4-5' 
 
 40 
 
 23.14 
 
 
 
 30 
 
 47.51 
 
 50 
 
 6.15 
 
 50 
 
 24.78 
 
 6 o 
 
 10 
 
 0.98 
 i .01 
 
 
 
 
 
 
 
 20 
 
 i .04 
 
 C o 
 
 o 49.15 
 
 13 o 
 
 2 7.78 
 
 21 
 
 3 26.42 
 
 30 
 
 i. 06 
 
 10 
 
 50.79 
 
 IO 
 
 9.42 
 
 IO 
 
 28.06 
 
 40 
 
 1.09 
 
 20 
 
 52 42 
 
 20 
 
 II. 06 
 
 20 
 
 29.70 
 
 5 
 
 I . 12 
 
 30 
 
 54.06 
 
 30 
 
 12.70 
 
 3 
 
 31.34 
 
 7 
 
 .15 
 
 40 
 
 55-70 
 
 40 
 
 14-34 
 
 40 
 
 32.97 
 
 IO 
 
 1 7 
 
 50 
 
 57-34 
 
 50 
 
 15.98 
 
 50 
 
 34.6i 
 
 20 
 
 .20 
 
 
 
 
 
 
 
 30 
 
 2 3 
 
 6 o 
 
 o 58.98 
 
 14 o 
 
 2 I7.6l 
 
 22 
 
 3 36.25 
 
 40 
 
 fr\ 
 
 .26 
 
 10 
 
 I 0.62 
 
 10 
 
 19.25 
 
 10 
 
 37.89 
 
 5 
 
 l2 
 
 20 
 
 2.25 
 
 20 
 
 20.89 
 
 20 
 
 39-53 
 
 8 o 
 
 31 
 
 - 3 
 
 3.89 
 
 30 
 
 22.53 
 
 30 
 
 41.16 
 
 10 
 
 34 
 
 40 
 
 5-53 
 
 40 
 
 24.17 
 
 40 
 
 42.80 
 
 20 
 
 37 
 
 50 
 
 7.17 
 
 50 
 
 25.80 
 
 50 
 
 44-44 
 
 3 
 40 
 
 39 
 .42 
 
 
 
 
 
 
 
 5 
 
 45 
 
 7 o 
 
 i 8.81 
 
 15 o 
 
 2 27.44 
 
 23 o 
 
 3 46.08 
 
 
 4*7 
 
 IO 
 
 10.44 
 
 lo 
 
 29.08 
 
 10 
 
 47.72 
 
 IO 
 
 *t/ 
 
 20 
 
 12.08 
 
 20 
 
 30.72 
 
 20 
 
 49.36 
 
 20 
 
 C? 
 
 30 
 
 13.72 
 
 30 
 
 32.36 
 
 30 
 
 51.00 
 
 3 
 
 56 
 
 40 
 
 15.36 
 
 40 
 
 34-00 
 
 40 
 
 52.63 
 
 40 
 
 .58 
 
 5 
 
 17.00 
 
 50 
 
 35.64 
 
 50 
 
 54.27 
 
 50 
 
 .61 
 
 
 
 
 
 
 
 i 
 
 
UNIVERSITY OF CALIFORNIA LIBRARY 
 BERKELEY 
 
 Return to desk from which borrowed. 
 This book is DUE on the last date stamped below. 
 
 ASTRONOMY LIBRARY 
 
 flffT 2 5 11 G' 
 
 LD 21-100m-ll,'49(B7146sl6)476 
 
YC i 02258 
 
 
 M19307: 
 
 AsH 
 
 THE UNIVERSITY OF CALIFORNIA LIBRARY