INCLUDITO SQUAEE BOOT, CUBE BOOT, AND OTHER BOOTS. 
 
 A HIGHLY PRACTICAL, BRIEF AND UNIQUE METHOD 
 
 FOR THE EXTRACTION OF ALL 
 
 ARITHMETICAL ROOTS. 
 
 A SCIENTIFIC PROCESS 
 
 NOT HERETOFORE PRESENTED IN ANY PUBLISHED WORK 
 
 ON ARITHMETIC, AND 
 
 SAVING NINE-TENTHS OF THE LABOR 
 
 USUALLY NECESSARY FOR THE 
 
 EXTRACTION OF ROOTS, AND ESPECIALLY OF CUBE ROOT, 
 
 UNDER THE RULES NOW EMPLOYED. 
 
 FOR THE USE OF ALL GRADES AND ALL SCHOOLS 
 
 ABOVE THE PRIMARY, AND FOR TEACHERS 
 
 IN PARTICULAR. 
 
 ^^ OF THB***^ 
 
 " OF THE 
 
 lUKIVEESITY] 
 
 — BY— 
 
 G. D. HINES, A. M. 
 w 
 
 CLEVELAND. 0.: 
 J. R. HOLCOMB & CO., PUBLISHERS, 
 
 1886. 
 
COPYBIQHT, BY J. E, HOLCOMB & Co., 1886. 
 
 ,1^ -Copies of this work will be sent to any address, postpaid, on receipt of price. Active 
 Agents wanted. J. R- HOLCOMB & CO., Pdblishbes, 
 
 Cleveland, Ohio. 
 
 ^7-9^ 
 
DEDICATION. 
 
 TO MY WIFE, 
 
 THE SYMPATHETIC SHARER WITH ME OF THE MIXED 
 
 CUP OF FORTUNE INCIDENT TO 
 
 A LONG SCHOOL LIFE, THIS LITTLE VOLUME 
 
 IS AFFECTIONATELY INSCRIBED. 
 
 G. D. HiNES. 
 
PREFACE. 
 
 -^HIS little work needs but a short introduction. It is brevity itself, and whatever of merit it may 
 possess, is largely due to its brevity and practicability. The methods of treating difficult roots, 
 herein contained, and especially of cube root, were first suggested to the Author in the winter 
 of '8i and '82, while teaching the Lincoln School, Plumas County, California. The pupils of 
 that school, as is usual with most pupils, on first meeting the subject, were having trouble with 
 cube root. This caused the teacher to put his wits to work in the almost hopeless effort to 
 devise, if possible, some easier and shorter way of solution than the prolix processes extant in the 
 arithmetics ; and, after some days of close scrutiny of the meaning and relation of roots and powers, 
 the Author detected, for the first time, a new method of teaching cube root. The treatment of other 
 roots, and of surds, naturally followed ; and the result has been what my fellow-teachers and others 
 will find in the following pages of this work. 
 
 It is believed that the addenda of Interest, with its unique, brief, and simple treatment, will prove 
 an attractive feature of the book. 
 
 This work is distinctly original. It details our own discoveries and is the product of our own 
 thought respecting the treatment of that difficult subject, cube root. We send it forth on its mission, 
 conscious that it must stand or fall on its own merits. We are fully persuaded, at the same time, that 
 it needs only to be seen and understood to be appreciated ; and that, if generally introduced, it must 
 supplant the perplexing and unsatisfactory rules in the text-books on cube root and the higher roots, 
 and on surds. We ask an impartial examination by our fellow-teachers everywhere, and believe they 
 will find the little book helpful, if not indispensable, to them. 
 Selma, Cal., May 28, 1886. 
 
cube"root 
 
 AND OTHER ROOTS UPROOTED. 
 
 Def. — A root is one of the equal factors that has been repeated in multiplication a given number 
 of times, to produce a given pov/er. Ex. — 3 is the cube root of 27, having been twice repeated in 
 multiplication, or thrice used as a factor, to produce the power. 27 is the cube root of 19683, having 
 been twice repeated in multiplication, or thrice used as a factor, to produce the power. 15 is the fourth 
 root of 50625, having been three times repeated in multiplication, or four times used as a factor, to 
 produce the power. And so on for any other roots, integral or fractional, positive or negative. To 
 find the roots of all powers that legitimately belong to arithmetic, is the chief object of this work. 
 
 Obs. — As this treatise deals chiefly with cube root and other higher roots, no extended notice of 
 square root will be taken. Only an incidental usage will be made of it. 
 
 THE BASIS. 
 
 It is a well-known fact that the principles underlying Arithmetical evolution are derived from the 
 mother science of Algebra, and that the arithmetical rules have been formulated out of the algebraic 
 formulce. No other rules for the extraction of roots have been presented in the arithmetics, and per- 
 haps, substantially, no others can be framed than those which depend on algebraic principles. But 
 certain rules can, nevertheless, be formulated, which, while they have reference to algebraic principles, 
 completely revolutionize the old mammoth rules, and, in brevity, almost annul them. 
 
 THE NEW TREATMENT. 
 
 The methods about to be illustrated neted have no reference to algebra, nor do they require any 
 knowledge of that science. They annihilate the "cubic block" system, which clearly presents the 
 principles of evolution to only the maturer scholars ; and then only in cube root, and are of no real 
 advantage in the actual work of even the cube root, in very large numbers, and certainly of no advant- 
 age in extracting any other than the cube root. 
 
 CUBE ROOT. 
 
 We will now present our method for the extraction of the cube root. Powers are either perfect or 
 imperfect. 15625 is a perfect cube, while 18740 is an imperfect cube, or third power, and is called a surd. 
 
 We will present a rule for the extraction of the cube root of perfect third powers, and one also for 
 that of surds. 
 
 Obs. — It may be remarked that a surd may be considered an imperfect power of any degree what- 
 ever. Thus, 18740 may be considered an imjaerfect square, cube, fourth power, or any other power ; 
 for we may require the approximate square root, cube root, fourth root, or any other root, of 18740. 
 But it sometimes happens that a perfect power of one degree is a surd of another degree, and vice versa. 
 
 Ex. — 25 is a perfect square, but an imperfect cube ; while 27 is an imperfect square, but a perfect 
 cube, 
 
 EXACT CUBES OF TWO PERIODS. 
 
 Let us extract the cube root of the following numbers, viz.: 
 
 -^ 13824 
 74088 
 
 185 193 A little observation and practice enable us to determine by inspection the root 
 
 250047 figure of the first period of the pow^r. Thus, the root figure of 13, in the first of 
 262144 91 125 the preceding numbers, is 2. And by the new method, the root figure of the last 
 166375 ■ 97336 period is 4, when the period ends in 4. Hence, the cube root of 13824 is 24. The 
 704969 226981 root figure of the first period of 74088 is 4, and the root figure of the last perlod'is 2, 
 when the period ends in 8, (It is 8 when the periocl ends in 2.) So the cube i-oot, of the last number 
 is 42. The cube root of 262144 is obtained in the same way. The root figure of 262 is 6, and of 144 it 
 is 4. So the ^262144 is 64. Again, the root figure of the first period of 166375 is 5; and the root 
 figure of the last period is 5, when the period ends in 5. So the 1^166375 is 55. 704969 gives, for the 
 first root figure, 8 ; and the last is 9, when the period ends in 9. So, the ^'704969 is 89. In like man- 
 ner, 185193 gives, for the first root figure, 5 ; and last figure is 7, when the period ends in 3. (It is 3, 
 when the period ends in 7.) Thus, the 1^185193 is 57. The cube root of 250047, for reasons already 
 
MATHEMATICAL ROOTS UPROOTED. 
 
 Stated, is 63. The cube root of 9"25, for similar reasons, is 45. The ^97336 is to be written out 
 impromptu, just as the p revious roots have been ; making the last root figure 6, when the final period 
 ends in ^. Also, the ^226981 is 61, the last root figure being i, when the concluding period ends in 
 I. Observe that, in all perfect cubes, the final root figure is simply chosen, according to the character 
 of the terminating figure of the power. This is a great saving of time and work, as will be shown 
 hereafter. 
 
 EXPLANATION. 
 
 The reasons for the foregoing selection of the final root figure, depend on a very plain principle. In 
 all perfect third powers, it is evident that the final figure of the pnver arises from the multiplication 
 of the final figure of the root tzuice into itself. Now, if we multiply the nine digits, respectively, twice 
 into themselves, we shall have this result, viz.: 
 
 Observing the final figures of these powers, we see that the final root figure i pro- 
 duces a 1, on being twice multiplied into itself. We see that the final root figure 2 
 produces an 8, and an 8 a 2 ; that 3 produces a 7, and a 7 a 3 ; that a 4 produces a 
 4; that a 5 produces a 5 ; that a 6 produces a 6, and that a 9 produces a 9. 
 
 Obs. — The cubes of the several digits, viz.: i, 8, 27, 64, 125, 216, 343, 512, 729, 
 must be so thoroughly familiar to the student that he can select the root figure of the 
 first period impromptu. 
 
 If the first period is, in magnitude, between i and 8, the root figure is i ; if the 
 first period is, in magnitude, between 8 and 27, the root figure is 2 ; if the first period 
 is embraced between 27 and 64, the root figure is 3 ; if it is between 64 and 125, the root figure is 4; 
 and so on. 
 
 1. What is the root figure of the first period, if the period is comprised between 512 and 729? 
 
 2. What is the root figure of the first period, if the period is larger than 729 ? 
 
 EXAMPLES. 
 
 iXiX 1= I 
 2x2x2= 8 
 3X3X3= 27 
 4X4X4= 64 
 5x5x5 = 125 
 6X6X6 = 216 
 
 7 X 7 X 7 = 343 
 8x8x8=512 
 9 X 9 X 9 = 729 
 
 Let it be required to extract the cube root of the following, by the foregoing principles, viz.: 
 
 Thus, we may write out, impromptu, according to the foregoing principles, the'roots 
 of these, and of all perfect cubes involving only two periods. 
 
 Let the student find the roots of the following, writing out the answers, off-hand, with- 
 out any figuring or formal extraction, and choosing, at sight, the final root figure, ac- 
 cording to the character of the terminal figure of the power, viz.: 
 
 39304 
 #" ■091125 
 f 46656 
 f 405224 
 f 389017 
 f 474582 
 
 lA 
 
 ] ^. 0000021744 
 ^.000024389 
 f^ . 000079507 
 ^ .000614125 
 f 2.19 7000 
 f^ 941. 192000 
 
 0l>s. — The last six preceding numbers consist of three periods, but may be solved without premed- 
 itation by the same rules, respecting the terminal figure, as are given for powers of two periods. 
 
 EXACT CUBES OF THREE PERIODS. 
 
 Let us extract the cube root of the following numbers: 
 
 : .- 7. 153990656 
 
 V'^^. I. 44361864 4- 12.812904 8. 387420489 
 
 \ Q^^ 2. 134217728 5. 5545233 9- 10077.696 
 
 \ , ',f 3. 12812904 6. 2000376 10, 36.926037 
 
 ^/u ' •' Taking the first of the preceding numbers, and selecting the first root figure, 3, we take its cube 
 44361864 I 354. I from the period, and to the remainder attach the next period. Find the second 
 /^ . 27 I Ans. root figure by dividing the partial dividend, save the two right-hand figures, by 
 
 triple the square of the first root figure. Choose the last figure according to the 
 
 17.361 I character of the terminal figure of the power. 
 
 27 
 
 75 
 
 In the same manner, the cube root of 
 134)217728 is 1 512, 
 125 I Ans 
 
 92,17 
 So, the. cube root of 
 
 For a partial divisor we take three times the square of the first root figure, 
 and again choose the last figure. 
 
 1 28 1 2004 is I 234, found 
 
 thus: Partial divisor 12 48,12 The last figure is simply chosen. 
 
 The cube root of 12:812904 is 2,34, the same in form but different in value. 
 
MATHEMATICAL ROOTS UPROOTED. 
 
 { I 
 
 3 I 45-45 Dividing and allowing for a completed divisor, we get 7 for the second root figure, 
 and choose the last, which must be 7. Why? 
 
 The ^2000376= 126. Ans. / -^> •- f ' 
 
 Partial divisor 3 
 
 !4- 
 
 10.00 Why is the last root figure 6? 
 
 No other figuring than the above is necessary. 
 
 Divisor 52x3=75 
 
 The ^153990656=536. 
 125 
 
 Always triple the square of first root figure for ^pktt&l divisor of all 
 
 
 289.90 
 
 but the two right-hand figures of the partial dividend. 
 The ^387420489 = 729. 
 I 343 
 
 Divisor 147 | 444.20 Having obtained the second root figure, we choose the last unerringly. 
 
 Why is it 9 ? How is 147 obtained ? 
 21.6. 
 
 The ^10077.696: 
 I 8 
 
 Divisor 12 | 20.77 O"^ the same principles the cube root of 
 
 36.926037 
 27 
 
 99.26 
 
 3-33. 
 
 and is found thus : 27 
 
 On the law of the terminal figure of the power depends the secret of this new method with cube 
 root. It is worth much to the student. Let him verify all of the above answers, by going through the 
 actual work in every case, and thus acquire the needed familiarity. 
 
 THIRD POWERS. 
 
 K 
 
 ^^K Involving periods of noughts at the left or right of the significant figures, and extracted by the 
 ^^B. foregoing rule. 
 
 i 
 
 The ^.000520476129 = .0809. 
 512 
 
 Partial divisor 192 174-75 The partial divisor is not contained in the brought-down 
 
 dividend shorn of its two right-hand figures, and we place a nought for the third figure of the root, and 
 arbitrarily choose the last figure which is 9. 
 
 The ^.048228544000 = .3640. 
 27 
 
 Divisor 
 
 27 
 
 212.28 
 
 Dividing, we find the partial divisor is contained in 212 only 6 
 
 ^ times, allowing for the effect of a finished divisor. ' We choose the remainder of the root figures. 
 
 .0192. 
 
 The ^.000,007,077, 
 I 
 
 Divisor 3 60.77 Dividing by the partial divisor, we find it will go into the par- 
 
 tial dividend the largest possible number of times. (No divisor can go more than 9 times.) The last 
 figure of the root is 2. Why ? 
 
 The ^.000618470208: 
 512 
 
 Divisor 
 
 192 
 
 .0852. Ans. 
 
 1064.70 
 
 I. How is the partial divisor, 192, obtained? 
 We select, unerringly, the last root figure. 
 
MATHEMATICAL ROOTS UPROOTED. 
 
 ADDITIONAL EXAMPLES FOR THE STUDENT. 
 
 Find the cube root of the following, viz.: 
 
 Find the value, also, of these : 
 
 I. 84604519. 
 
 7. f 13481272 
 
 2. 2803221. ^ 
 
 8. 1^8615.125000 
 
 3- 3176523. 
 
 9- f 738.763264 
 
 4. 382657176. 
 
 10. f 561.515625 
 
 5. 40.353607. 
 
 II. -^ 21024576 
 
 6. 1520875. 
 
 12. if 67917312 
 
 In solving these examples, let it be understood that our only rule for cubes of three periods is, to 
 take out by inspection the root figure of the first period, and, having taken its cube from that period 
 and attached the next peiiod to the remainder for a new dividend, to find the next root figure by divid- 
 ing the partial dividend by triple the square of the first root figure, and arbitrarily ckoose the last figure 
 of the root, according to principles already explained. 
 
 Perfect Cubes of More Than Three Periods. 
 
 We will now extract the cube root of some numbers of more than three periods, and show that the 
 new method applies to them, with a very slight amount of additional work. 
 
 Let it be required to extract the cube root of the following numbers, viz.: 8024024008, 10460353203, 
 98867482624, 1 226 1 5327232, 1 54480441 6. Taking the first of the above numbers, we proceed as with 
 powers of three periods, thus : 
 
 8,024,024,008 I 2002. Ans, 
 
 Divisor 12.00 24.024 Explajtation.—Ymdimg the first root figure, deducting its cube, and at- 
 
 taching the next period for a dividend, we find that the partial divisor, 12, is not contained in the par- 
 tial dividend, 24, of the second period, and we attach the next period. The root thus far found is 20, 
 and triple its square is 1200, the next partial divisor, which is again not contained in the brought-down 
 dividend shorn of the two right-hand figures, and the root now found is 200, and we choose the last 
 figure. 
 
 The ■ 
 
 12.6. 1 
 
 10460353203 
 8 
 
 24.60 
 1261 
 
 2187. Ans. 
 
 212X3=1323 11993.53 Explanation. — We divide, as usual, the first partial dividend by 
 
 the triple squai-e of the first root figure, which is 12, and obtain i for the second root figure. We finish 
 the divisor, 12, by adding to it, successively, advanced one place to the right for each addition, the 
 triple product of the two root figures, and the square of the last One. This finished divisor we multiply 
 by the last root figure, and take the product from the brought-down dividend. We need only a second 
 partial divisor, the triple square of 21, to find the third root figure, and we choose the last figure of 
 the root, according to the character of the terminal figure of the power. 
 
 4624. 
 
 The ^98867482624 = 
 64 
 
 Ans. 
 
 Divisor 
 
 48.36 
 72 
 
 348.67 
 33336 
 
 Fin. div. 5556 15314.82 Using the same finished divisor as an approximate divisor, we find 
 
 the next root figure to be 2, and then we select the last. Observe that 36 is put in the niche of the other 
 two parts of the divisor, to save space. 
 
 Obs. — To insure accuracy in finding the third root figure, it is generally best to take for a divisor the 
 triple square of the first two root figures. Even then there is an immense saving of work, time and 
 space over the old methods. By the modes of solution practiced heretofore, as treated in the books, the 
 work of the above example is absolutely overwhelming, covering, with the rule and the explanation, from 
 three to five pages. Let the pupil, for the present, accept on trust such parts or features of the rule as 
 he may not thoroughly understand. Further elucidation will be given in due time. 
 
MATHEMATICAL ROOTS UPROOTED. 
 
 1st Divisor 
 
 48.81 
 
 ^122615327232 = 4968. 
 64 
 
 586.15 
 53649 
 
 5961 
 
 49663.27 
 43218 
 
 2nd Divisor 49''X 3 = 7203 . , ,. . 
 
 6445 It is only necessary to frame a second partial divisor 
 
 to obtain the third root figure, and then we arbitrarily choose the last figure of the root. What have 
 we saved by this abbreviated method ? 
 
 We have saved the completion of the second divisor, the formation of the third, the completion of 
 the third divisor, and all the multiplications and subtractions connected with these last periods, the 
 prolixity and difficulty of which rapidly increase, under old methods, as we approach the end. 
 
 The 1^1544804416 = 1156. Ans. 
 1st divisor 3 I 
 
 Finished divisor 331 
 2d divisor 363 
 
 544 
 331 
 
 2138.04 
 
 .1815 There is no necessity for multiplying the second partial divisor, 363, 
 
 by the third root figure, 5. We do so here, to show that the remainder of the dividend divided, is less 
 than the divisor. 
 
 The ^12,521,107,822,861 =23221. Ans. 
 1st divisor 12 
 
 Fin. divisor 
 2nd divisor 
 
 1389 
 
 45.21 
 4167 
 
 Explanation. — We complete the first partial divisor, and take 
 its product, with the corresponding root figure, from the l^rought- 
 
 I3174 down dividend. The triple of the square of the root now found 
 is a partial divisor by which all the other root figures may be 
 367 found, except the last, and that is simply chosen. Having framed 
 317 the partial divisor, 1587, we ascertain how often it is contained in 
 the corresponding partial dividend (always excepting the two 
 50 right-hand figures), and multiply the divisor by the quotient fig- 
 ire, and subtract the result from the portion of the dividend divided, as in ordinary division. Having 
 ound the third figure of the root, we use for a dividend the remainder of the last partial dividend, and 
 lor a divisor we use the previous divisor shorn of its right-hand figure. And, in multiplying this divisor 
 by the quotient figure, we reckon in the number of units that would be to carry from the figure cut off. 
 If there were more periods than five, the process might be continued, by dropping figures, successively, 
 from the right of the divisor. But the last figure of the root is always chosen. And, now, in what is 
 said above, respecting the finding of some of the root figures by ordinary divison, lies the germ of the 
 method herein treated, for the approximate extraction of the cube root of surds, to be explained in 
 due time. 
 
 Take one more example involving five periods. Let it be required to extract the cube root of the 
 number 
 
 599)183,710,672,625 1 84305. Ans. 
 512 
 
 1st divisor 192.16 
 
 20176 
 
 Bsor 842x3 = 2116.8 
 
 I 
 
 oot fieure. which, fror 
 
 871.83 
 80704 
 
 Elucidation.— E-aixTiCt in the usual way to find the 
 
 first two figures of the root. Then, as will be seen by in- 
 
 64797.10 specting the work, there is a necessity for finishing only 
 
 63504 one partial divisor, and afterward forming another one 
 
 from the first two root figures. This second partial divisor 
 
 1293 we use to find two more root figures, and then choose the 
 
 figure, which, from the character of the terminal figure of the power, must be 5. 
 Ods.—ln the above solution, there is an immense saving of labor, time, and space. The student 
 cannot reahze the wide difference, if he has not gone through the labyrinths of the old methods, and 
 the mazes of the old rule, in solving such problems. The ru?e and the explanation, under the old sys- 
 tem would cover several pages of this work. By the new method here taught, we save the completion 
 ot the second partial divisor, and the formation and completion of two other divisors, which it is the 
 most desirable to obviate, because they become very large toward the end of the extraction, requiring 
 much time and care in the work. But, for the encouragement of the student, it may be stated that few 
 ^authors give numbers involving more than four periods; and it is also a rare thing in applied mathe- 
 
MATHEMATICAL ROOTS UPROOTED. 
 
 matics to find questions involving the roots beyond the fourth or fifth decimal, which are exceedingly 
 easy by the method here taught, but long and tedious by the old method. 
 
 ADDITIONAL EXAMPLES FOR THE STUDENT. 
 
 Find the cube root of these numbers, viz.: 
 
 1. 2176782336. 
 
 2. 87824421 125. 
 
 3. 43132764843. 
 Solve, also, the following : 
 
 7. ^£TO5 
 
 8. 
 9- 
 
 132963364864. 
 
 225199.600704. 
 
 754863.574332608. 
 
 f 17327 4H 
 
 f2^% 
 
 Note. — All perfect cubes of only two periods are to be solved at sight 
 reduced to improper fractions, or to mixed decimals. 
 
 Find the value of this express ion, viz.; 
 f T6"6 -- f 6i- (4 X f Tsl^) = 
 Solution: 162 -f 4 — (4 X .8) = 
 256 -r 4 — ( 3-2 ) = 
 
 64 — ( 3.2 ) = 60.8. Atu. 
 Find the value of these, viz,: 
 
 Mixed numbers should be 
 
 f54.872 
 ^ 21.952 
 
 ^ 2326. 203125 
 ^64.964808 
 
 3- f2357947T^ff 
 
 Answer to last : J^f . Let the student find it. 
 
 Note. — If the terms of a fraction are not perfect powers of the indicated root, let them be reduced 
 to such powers, where possible, before the extraction begins. 
 
 The foregoing examples must suffice for illustration of the best method of extracting the root of 
 exact cubes. The roots of higher powers will be discussed in connection with logarithms. 
 
 CUBIC SURDS. 
 
 We will now present a brief, easy, and practical method of treating imperfect powers of the third 
 degree. In advance, we state that that method is, of course, one of approximation. Here it is impos- 
 sible to choose the final figure, since there is no definite final root figure in surds. 
 
 Let It be required to find the cube root, correct to four decimals, of the fraction 
 %. = .500000000 I .7937+ 
 
 ist divisor 
 
 Finished divisor 
 
 2d divisor 
 
 147.81 
 189 
 
 1 667 1 
 1872.3 
 
 343 
 
 1570.00 
 150039 
 
 69610.00 This answer is true to the fourth place, inclusive, 
 
 56169 as verified by logarithms. We extract in the usual 
 
 way until we obtain half the number of root figures 
 
 13441 desired. We then form the second partial divisor, 
 
 13 106 and with it obtain the other two root figures by a 
 
 mode of contracted division, thus: Having found 
 
 335 the third figure of the root and taken its product with 
 
 the divisor from the partial dividend, use, instead of attaching other periods, the same partial dividend, 
 and drop one figure from the right of the divisor last found, and ascertain how often it will go into the 
 remainder of dividend accruing from the previous division, reckoning in the number that would be to 
 carry from the figure dropped. 
 
MATHEMATICAL ROOTS UPROOTED. 
 
 1st divisor 
 
 Find the ^.27 correct to four places. 
 
 108.16 
 
 72, 
 
 "16 
 
 I22&.» 
 
 .270000000 I .6463-f- 
 216 
 
 540.00 
 
 2d divisor I228t* ' Observe that 16 is written in the niche of the 
 
 other two parts of the divisor, to save space. 
 
 Explanation. — 108 is the partial divisor. (How 
 obtained?) This divisor gives the next root figure. 
 1 1 536 is the finished divisor. (Hov/ obtained ?) Ob- 
 serve that the two added parts, 72 and 16, are each 
 advanced one place to the right. 12288 is the second 
 partial, or approximate, divisor. 
 
 1. How is it obtained ? 
 
 2. In the product of the root figure, 3, with the approximate divisor, 1228, account for the figure 
 6 in the result. 
 
 Obs. — Outside of mathematical astronomy, where, in a few instances, great precision is required, it 
 is scarcely necessary to approximate a root beyond four decimal figures. 
 The ^.640000000 &c. = .8617+ 
 
 7^6q.oo 
 73728 
 
 4832 
 3686 
 
 1 146 
 
 1st divisor 
 
 192.36 
 144 
 
 20676 
 
 512 
 
 1280.00 
 124056 
 
 2d divisor 2218.8 
 
 Observe that 36 is written in the niche of the 
 other two parts of the divisor, to save space. 20676 
 is the only finished divisor it is necessary to make. 
 1720 After finding the third root figure, we add no other 
 
 periods to the partial dividend, but use the same dividend, and use, as a divisor, the previous one shorn 
 of its final figure. If we wish to find other root figures, we drop other figures from the divisor, one by 
 one, and continiie to divide as in common division. But it is well to bear in mind that if v/e wish to 
 obtain accurately a definite number of decimals in the root, we must extract in the ordinary way, until 
 we have obtained one-half of them, and then make a partial divisor from the root thus far found, and 
 use that as an approximate divisor, to find the other root figures. But this is a very great saving, as it 
 is the final periods that are to be dreaded in extraction. Do not fail to be familiar with the cubes i, 8, 
 27, 64, 125, 216, 343 , 512, 729. Otherwise you cannot select at sight the first root figure. 
 
 ~- ' ~" -8735+ 
 
 1st divisor 
 
 Thef^/^ = 
 192.49 
 168 
 
 divisor 
 
 20929 
 
 2270.7 
 
 .666,666,666, &c. 
 512 
 
 1546.66 
 146503 
 
 81636.66 
 68i2i 
 
 135 1 5 See that 49 is written in the niche again, i'nstead 
 
 1 1353 of being written thus: 192 
 
 168 which would occupy 
 
 2162 49. too much space. 
 
 Obs. — In completing any divisor, we must advance each part one place to the right. 
 
 The f .097672831790877 = .46053+ 
 1st divisor 48.36 I 64 
 
 »72 — 
 I 336.72 
 5556 33336 
 
 2d divisor 63480.0 
 
 3368.31 7.90 
 3174000 
 
 I 943 I 7 
 190440 
 
 3877 
 
 This is accurate as far as extracted ; and, ye , 
 there is a necessity to frame only a second approxi- 
 mate divisor. Referring to the third root figure, we 
 see that the divisor is not contained in the partial divi- 
 
10 
 
 MATHEMATICAL ROOTS UPROOTED. 
 
 dend shorn of the last two figures, and we put a nought in the quotient, and two noughts to the right 
 of the divisor, because the squaring of the root thus far found, namely 460, would give two noughts in 
 the resulting partial divisor, 634800. Attaching another period, we use this divisor to find the remain- 
 ing root figures. 
 
 Required the indicated roots of the following surds, accurate to four deci mals, vi z.; 
 
 I. 
 
 f.171467 
 
 3- 
 
 ^2.42999 
 1^19-44 
 
 4- 
 
 f^.571428 
 
 5- 
 6. 
 
 7- 
 
 f 5 
 f 4>^ 
 
 f 42f 
 
 8. 
 
 9- 
 10. 
 
 f 22.4 
 f 3 
 
 1^41-502 
 f II 
 
 1^9^ 
 f 9 
 
 f 7 
 
 f48x 4=^-182 
 
 ^'300484 
 
 ^129.009 
 
 ^.6748 
 f 6 
 
 .2482 
 
 These examples must suffice for illustration of the brevity secured by this mode of approximating 
 the cube root of surds, by which at least three-fourths of the work necessary under other methods is 
 saved ; while, in perfect cubes, nine-tenths of the usual work is obviated. 
 
 HIGHER ROOTS. 
 
 To "roots of all powers," so called, but a small space can be allotted in this brief work. Some 
 authors, with what seems to be a strange love of novelty, rather than a desire for utility, have made 
 quite an array of numbers requiring the 5th, 6th, 7th, 8th, 9th, lOth, I2th, 15th, l8th, 20th; and the 
 25th root, to be extracted. Now, it is needless to say that no such roots occur in nature, or in the 
 course of applied mathematics. It is rare, indeed, in applied mathematics, that a number or quantity 
 occurs requiring a root beyond the ihh-d or fourth. Then why should such numbers encumber that 
 most practical of all the mathematical branches — arithmetic ? One of the many authors on arithmet- 
 ical science, whose works are in extensive use in this country, requires the 20th root of 617, the 15th 
 root of 15, and the 25th root of 100. Wherefore? we ask ; what the need ? When will the necessity 
 for their use arise? Such novelties are incubuses on the science of numbers, and ought to be relegated 
 to the closets of defunct mathematics. But, if mathematicians must put such impractical problems in 
 their books and have them solved, let them be solved by shorter and better methods than those pre- 
 sented in their works. That briefer and better method is by m.eans of logarithms. Especially is this 
 true for roots whose indices are not factorable into the square and cube roots. Indeed, even in this 
 case, the logarithmic method would be far preferable, and, if once adopted, would supersede all other 
 methods for the higher roots. For, although the 8th root can be taken by three successive extractions 
 of the square root, the 9th root by two successive extractions of the cube root, and the 6th root by the 
 cube root of the square root, or the square root of the cube root, still these roots can be much more 
 easily and quickly taken by logarithms. We simply take, from a table of logarithms, the log. of the 
 number whose root is sought ; divide this log. by the index of the root, and find, in the same table, the 
 number corresponding to l^^^uotient, and it will be the required root. 
 
 Ex. — Find the cttb^oot of 1.577635 — . 
 
 The log. of this number is .19800+ ; divide it by 9, the index, and the result is .02200-{-, and the 
 number in the table corresponding to these figures is 1. 05 19, the required root. The same result is also 
 easily obtained by the abbreviated method for cube root, thus: 
 
 1st root. 2d root. 
 1-577635= 1.1641+ I I.05-I-. Ans. 
 
 Divisor 3.3.1 i i 
 
 Divisor 363.36 
 iq8 
 
 Divisor 
 
 383^6^ 
 403. 6. J 
 
 5-77 
 331 
 
 2466.35 
 229896 
 
 16739 
 16147 
 
 3.00 
 
 1. 641. 00 This is the answer to the example in the 
 
 1500 , work from which it has been drawn ; but it 
 
 will be seen that the logarithmic method 
 
 141 gives the answer more accurately. We have 
 
 simply taken the cube root of the cube root 
 by our method. 
 
 592 
 404 
 
MATHEMATICAL ROOTS UPROOTED. 
 
 Find the 7th root of 308. The log. of 308, page 6 of the logarithmic table, is 2.48855 ; divide by 
 the index of the root, 2.48855 4- 7 = .35550-]- ; and the number corresponding to this logarithmic quo- 
 tient is 2.26729 + , the 7th root of 308. All that is necessary in order to extract, by logarithms, atty 
 root, is to look in a table of logarithms for the log. of the number to be extracted ; divide this by the 
 index of the root, and find, in the same table, the number corresponding to the quotient, and it will l)e 
 the root sought. This method is vastly shorter, and only requires a little knowledge of logarithms, and 
 a little facility in their use, to enable one to evolve, with despatch, all roots. But such roots belong 
 rather to higher mathematics. We would advise that, by all means, all roots above the third be taken 
 by means of logarithms. It is but an hour's work to teach, to anyone that can multiply and divide, the 
 use of the table. The after work is simply routine, and much valuable time is saved. 
 
 As a matter of curiosity, we give below the 7th root of the same number, as presented by its author 
 in one of the books of the day. That is, the 7th root of 308. 
 
 OPERATION, 
 f 338"= 2.59 + 
 ■1/308=2.04-1- 
 2.59-1-2.04 = 4.63 
 4.63 -=- 2 = 2.31 -|- assumed root. 
 2.316 = 151.93 
 308 -M51. 93 = 2-0272 -h 
 2.31X6-1-2.0272=15.8872 
 15.8872 -f 7 = 2.2696 1st approximation. 
 2.2696® = 136.6748 
 308-^136.6748 = 2.253452-}- 
 
 2 2606 V 6 -^ 2 2^'i±<2 —It; 87io-;2 ^'^ ^^^'^ reached the second approximation, Con- 
 
 2.2090 X -h 2.253452 -15.671052 g^j.^^^ thought ! And these are only indicated results, 
 
 15.871052^7 = 2.267293 2d approx. none of the multiplications, divisions, etc., being car- 
 
 ried out. Now, if this belongs anywhere, and there is doubt of its having a place in applied mathe- 
 matics, it belongs to higher mathematics. Such skirmishing in figures is calculated to keep one hum- 
 ble, by giving him a modest estimate of his attainments in evolution. 
 
 EVOLUTION BY LOGARITHMS. 
 
 Required the 25th root of 100. The log. of 100 = 2.000000. 2.000000 -f- 25 = .080000, and the 
 number corresponding is 1.202266 + , which is the root sought. The solution of the same example, as 
 given by a standard author, is as follows : 
 
 Now, as the The y/ 100 =10 
 25th root must / 100 = y 1 =3.1 622 
 be less than the y 1 00 = / 3.i622^ 1.7782 
 24th root, let us |^'ioo= ^1.7782=1.2115 
 take 1.2 = the assumed root. 
 
 1.224 = 79.49684-]- 
 100 -^ 79,49684= 1.25792 -f 
 1.2 X 24 -f 1.25792 = 30.05792 
 
 30.05792 -T- 25 = 1. 2023168 1st approx. 
 1.2023x682* =83.2677184 
 100-^83.2677184= 1.2009492-f- 
 1.2023168 X 24-j- 1,2009492^=30.0565524 
 
 30.0565524 -^ 25 =1.202262-]- 2d approx. 
 We breathe a sigh of relief. Of course, not much space can be devoted, ii^ this small work, to such 
 solutions. It is only to show the difficulty of the subject under the old methods, in contrast with the 
 brevity and facility of the new, that we allow a little space for some solutions under existing methods. 
 Find, by the logarithmic method, the 6th root of 25632972850442049. The log. of this large num- 
 ber is 16.408800. Dividing by 6, we get 2.734800. The number found in the table, corresponding to 
 this quotient, is 543, the sixth root of the above number. The foregoing number, treated by the new 
 metho d, gives, for the square root, 160103007, and the 
 ^160103007 = 543 
 
 125 Explanation. — With the approximate divisor, 75, find the second 
 
 figure of the root, 4, and choose the last. Why is it 3 ? Thus, the 
 
 75 351-03 work of the heretofore difficult cube root is almost annihilated. 
 
12 MATHEMATICAL ROOTS UPROOTED. 
 
 What is the 20th root of 617 ? The log, of 617 is 2.790285. Dividing by 20, we have .139514, 
 and the number corresponding is 1,378841, the ans. 
 
 Find the 5th root of 5, The log. of 5 is .69897. Divide by 5, and get .13979, and the number cor- 
 responding is 1.37973, the 5th root of 5. 
 
 The 5th root of 120 is: Log. 120 = 2^piS= .41583 -(- ; and the number corresponding is 2.605174:5 
 the root wanted. ^ ^ 
 
 Let the student find, by logarithms (see explanation of use of the table, pp. -62 and^, etc.,) the 
 roots of the following numbers, viz.: 
 
 1. The 8th root of 109951 1627776, 
 
 2. The I2th root of 16.3939. 
 
 3. The i8th root of 104.9617, 
 
 4, The 7th root of 1.95678. 
 
 5, The loth root of 743044. 
 
 6, The 3rd root of 4330747. ' 
 
 Find, also, by logarithms, or by the abbreviated method, at your option, the cube root of the fol- 
 lowing numbers, viz.: 
 
 7. 7023 1 089 1 84307 2. I 9. 10964743589696. 
 
 8. 744935304423023. I 10, 1881365963625. 
 Required the solution of these examples : '^"^' 
 
 1. If a ball 10 inches in diameter weighs 125 lbs,, what is the diameter of a ball that weighs 
 216 lbs.? 
 
 Solution.— f \2i^ : ^216 :: 10 : ans= ^f|| X lO == 12, 
 5:6:: 10: ans, Ans. 12 inches. 
 
 2. How many balls % inch in diameter will be required to make a ball i inch in diameter ? Ans. 
 64 balls. 
 
 3. Suppose the diameter of the earth to be 7912 miles, and that it takes 1404928 bodies of the 
 size of the earth to make one as large as the sun, what is the diameter of the sun ? 
 
 ^i3o|2lsx 7912= 112 X 7912 = 886144 miles. Ans. 
 
 4. A bin is 8 feet long, 4 feet wide, and 2 feet deep ; what is the linear edge of a cubical box that 
 will hold the same quantity of grain ? 
 
 t^S X 4 X 2 = f8x8 = 2X2 = 4 feet. Ans. 
 Let the curt processes be used. Extract the factors of products in preference to taking the roots 
 of the products. 
 
 5. If a stack of hay 24 feet high weighs 27 tons, what is the hight of a stack weighing 8 tons? 
 
 if Ty X 24 = 2^ X 24= 16 feet. Ans. 
 
 6. If a bell 4 inches high, 3 inches in diameter, and "% of an inch thick, weighs i pound, what are 
 the dimensions of a similar bell weighing 27 pounds ? 
 
 Ans. 12 inches high, 9 inches diameter, and ^ of an inch thick. 
 
 7. If a loaf of sugar 10 inches high weighs 8 pounds, what is the hight of a similar loaf weighing 
 I pound ? 
 
 fyiY, 10 = j^ X 10= 5 inches. Ans. 
 
 8. There is a bin 32 ft. long, 16 ft. wide, and 8 ft. deep; what must the side of a cubic bin be 
 that shall contain the same quantity ? 
 
 ^32 X 16X8= 1^64X64 = 4X4= 16 ft. Ans. 
 
 9. What must be the side of a cubic bin that shall hold 350 bushels of grain ? 
 
 SOLUTION. 
 2150,4X350 = 752640 I 90.96+ =7 ft. 6,96 in. 
 Divisor 24300.81 729 Ans. 
 
 2430 
 
 236,400.00 
 22089429 
 
 Fin. div. 245438. 
 
 1550571 We use the finished divisor, shorn of the final fig- 
 
 , . 1472629 ure, as an approximate divisor to obtain the fourth 
 
 figure of the root. For practical purposes, the above 
 
 77942 is a close approximation. 
 
 10. If a sphere of gold i inch in diameter is worth $100, what is the diameter of a sphere that is 
 worth $6400 ? 
 
 iff^Q = ^64 X I = 4 inches. Ans. 
 
 11. The cubic metre is 61026.048 cubic inches ; what is the linear metre ? 
 
 Ans. 39.37 inches. Find it by approximation. 
 We give one more illustration, each, of the new method of taking the cube root of perfect and im- 
 perfect third powers : 
 
MATHEMATICAL ROOTS UPROOTED. 
 
 1st divisor 
 
 2d divisor 
 
 The ^146113369163 = 5267. Ans. 
 
 75 
 30-4 
 
 7804 
 
 125 
 
 211.13 
 
 15608 
 
 55053-69 There is no necessity of the last multiplication, 6 times 
 
 48672 the second divisor. Satisfy yourself that the remainder will be 
 
 less than the divisor, and then choose the last root figure, thus 
 
 6381 saving a vast amount of work. Why is the final root figure 7? 
 
 What is the value of 1.05I to 6 decimals? 
 
 The log of 1.05 is .021189. Divide this by 3, and multiply the result by 5, and we get .035315 ; the 
 number corresponding is i. 084715 + , the answer. To solve the above example in the old way, will re- 
 quire about 30 minutes; by the logarithmic method, 2 or 3 minutes. 
 
 The ^1.1810108914205625, by the approximate method, accurate to 6 decimals, is 1.0570234;. 
 Find it. ^ ^^ , p ^ ^ ,-^^ T v^ A i V 5 ; .:, ; ]. OSI^O ^ :i , ^> / s^ % -■ ^ > ^ :"■ 
 
 We have presented an unusually large number of solutions, in order that the cube root method 
 herein set forth may be clearly apprehended by all. For, knowing its advantage in brevity and sim- 
 plicity, and, consequently, its economy of time and space, we are thoroughly convinced that, if once 
 adopted, it will be abandoned for no other. Let it be remembered, that if, in approximating the cube 
 root of a number, it is desirable to extend the answer to a given number of decimal figures, one-half of 
 all the root figures must be obtained by extraction in the usual way. The other half may be obtained 
 by contracted division. For instance, in example 9 of the 12th page, 90.9 is obtained by extraction, 
 and 625 is obtained by contracted division. If it be asked how we determine when a number is a per- 
 fect cube, and when it is a cubic surd, we answer that, in actual business, in applied mathematics, this 
 fact is always known when the problem occurs in the course of our work. Perfect cubes are in the 
 minority in the course of mathematics. The small number of problems given under the head of evolu- 
 tion by logarithms, will be sufficient to illustrate the subject. The student may work any, or all, of the 
 others by logarithms, if he chooses. For this purpose, a table of logarithms is appended, calculated as 
 accurately as possible to five decimal places. The table is extensive enough to enable us to find the 
 roots of all numbers correct to five decimals. An explanation of the use of the table is also appended. 
 Should anyone desire further aid in the matter of a knowledge and ready application of logarithms in 
 the extraction of roots, the author will take pleasure in rendering all the assistance in his power. In 
 conclusion, if any have their pet theories, methods, or processes, in cube root, to which they cleave 
 with such a blind adherence that they cannot, or will not, see merit in anything else, this book is not 
 made for them. If any are moved by prejudice,or jealousy, or envy at my good fortune, or by a spirit 
 of criticism, or are unduly inflated with the importance of their own knowledge of the subject, through 
 the belief that nothing new can be presented in evolution, the book is not written for any of these classes. 
 
 All true science consists, not in the discovery of any new truth, but in the right application of ex- 
 isting truth, so as to render it subservient, in the highest degree, to the interests and to the pleasure of 
 mankind. If *' brevity is the soul of wit," it is no less the key to successful business. The large cur- 
 tailment of the amount of work done in book-keeping in the last few years, is only in harmony with the 
 spirit of the age, and, reinforces the sentiment of "short profits and quick sales." So must our 
 methods and processes in education be constantly improved and refined, so as to be the most highly 
 contributory to the important interests of business and of society. 
 
14 MATHEMATICAL ROOTS UPROOTED. 
 
 Simple Interest. 
 
 Owing td the universal application and great practicality of this subject, we have thought proper' to 
 give it a place in this work, and a treatment that, for brevity, utility, and simplicity, is in keeping with 
 the constant drafts made upon it by all classes of men — those of inferior, as well as these of superior, 
 attainments. The subject is what the name signifies, but is made rather complex by some authors and 
 teachers, owing to the multiplicity of rules and tedious methods of treatment used by them. In simple 
 interest, there is scarcely a necessity for more than one uniform rule, whatever be the rate or the time. 
 
 Let us take some examples, by way of illustration : 
 
 What is the interest of $450.87 for i yr. 7 m. and 9 da., at 6 per cent.? 
 
 Operation. — 450.87 
 
 .0965 
 
 .005 225435 
 
 450.87 19.3 >&6. 270522 
 
 X — X — = 405783 
 
 I ^•i, I 9 days is .3 of a month, and the process 
 
 Ans. 43.508,955 is simply one of cancellation. 
 
 Find the interest of $125.16 for i yr. li m. 25 da., at 6 per cent.? 
 Process. — 1.4298 
 
 10.43 
 10.43 
 
 '■^ 23.83+.06 42894 
 
 -X — X — == 57192 
 
 I -13. I 14298 
 
 One year and Ii months are 23 months, and 
 An%. 14.91 25 d. are .83+ of a mo. So that the time is 
 23-834- mos., or I2ths of years, at the given rate per year. Let the cancellations, and all the multi- 
 plications possible, be done mentally. 
 
 Find the interest of $1500.60 for 2 yr. 4 mo., at 6^ per cent.? 
 
 125.05 
 
 1-75 
 
 125.05 
 
 >5aQ.6o 28 .06 >( 62525 
 
 X-X = 87535 
 
 I ^ta., I 12505 
 
 We take 6 times 28, plus the % of 28, 
 
 Ans. $218.8375 mentally, which gives 1.75. 
 
 Find the amount of $3050 for 4 yr. 8 m., at 51^ per cent.? 
 
 i.245>^ 
 3050 
 
 14 .0175 
 
 3050 ^ ^e5^ 62250 
 
 X-X = 3735 
 
 I -« I 
 
 -3- Ans. $3797.250 In making multiplications mentally, after 
 
 the cancellations have been made, let the smallest numbers be so multiplied. Thus 14 times .0175, ^"^ 
 then add i to the result, to get the amount of $1 for the lime, at the given rate. This result is then 
 multiplied by the principal. 
 
MATHEMATICAL ROOTS UPROOTED. 
 
 15 
 
 Required the interest of $250 for i yr. 10 m. 15 da., 6 per cent. 
 125 .01 .225 
 
 --^^ 22.5 rD6- 125 
 
 I "T^ I II25 
 
 •'^ 2700 
 
 
 Ans. $28,125 
 
 If the amount had been required, 
 
 we 
 
 should have 
 
 proceeded thus : 
 
 
 
 .005 
 
 
 1. 1125 
 
 250 22.5 ^36 
 
 
 250 
 
 
 
 
 I -t^ I 
 
 
 556250 
 
 
 4ns, 
 
 22250 
 
 
 $278.1250 
 
 After the mental multiplication of the 
 time and rate, add one to the result, be- 
 fore the final multiplication by the prin- 
 ciple. 
 
 Find the interest of $51.10 for 10 m.'and 3 da., 4 per cent. 
 .01 51.10 
 
 51.10 lo.i Tc^. .101 
 
 I r^ I 511 
 
 3 5" 
 
 
 3|5-i6ii 
 
 
 Ans, 1.72 
 
 It may also be done thus : 
 
 ===== 
 
 17-033+ -01 
 
 17.033 
 
 -3tTT& 10. 1 Aft^ 
 
 .101 
 
 X X — = 
 
 
 I ^s^ I 
 
 17033 
 
 ^ 
 
 17033 
 
 As before $1.720333 
 
 What is the interest of $175.40 for 15 m. 8 da., 10 per cent.? 
 , 1.272+ 175.40 
 175.40 >5,.i66+ .10 .1272 
 X X — = 
 
 I ^Ki I 3508 
 
 12278 
 21048 
 
 Ans. $22.3108 
 
 The multiplications are made mentally, 
 except one. 
 
 Required the amount of $1500 for 6 m. 24 da., JJ^ per cent. 
 7 -025 
 
 1.0425 =amt. of $1. 
 1500 
 
 1500 ~'&r5 >f5, 
 
 I T-3 I 
 
 :3 
 
 $1563.7500 Ans. 
 
 Required the amount of 
 
 1.25 for I yr. 5 m. 10 da., 6}{ per cent. 
 8664 
 361 
 
 1.444+ 
 84.25 >>^+ .o6X_ 
 
 I >2. I 
 
 1.09025 
 84.25 
 
 545125 
 218050 
 436100 
 872200 
 
 Ans. . $91.85 
 
l6 MATHEMATICAL ROOTS UPROOTED. 
 
 After first multiplication, add I to the result, before the formal multiplication. 
 Find the interest of $112.50 for 3 m. I da. <)% per cent.? 
 .2527+ 2274 112.50 
 
 112.50 ^TS954- .09^ 126 .02400 
 
 I 1^ I 4500 
 
 2250 
 
 Ans. $2.70 
 In multiplying the time and rate together, allow for the number of units that would be carried 
 from 9 times 7. 
 
 What is the interest of $408 for 20 da., 6 per cent.? 
 
 .333 .01 408 
 
 408 ":64i44- 7o§-. .00333 
 
 1224 
 1224 
 1224 
 
 1. 35864=$!. 36, Ans. 
 Always divide the days by 3, since every three days is tV of a month, thus reducing the days to 
 decimals of a month. More than 5 mills should be called a cent. Less than 5 mills should be disregarded. 
 
 Required the interest of $50 for i yr., 3 m., 27 da., 3 >^ per cent. 
 25 5-3 .05 1-25 
 
 -5€- -f^rf- .-K-^ 5.3 
 
 I -t5- -3- 375 
 
 -6- 625 
 
 ^ ^ 3 16^6^ 
 
 Ans. $2.2o8>^ 
 Find the interest of $384.50 for 2 yr., 8 m., 4 da., 8 per cent. 
 10.71 .02 384.50 
 
 384.50 -:5^~iad- -"^^ -2142 
 
 I -«- I 7690 
 
 3- 15380 
 
 3845 
 7690 
 
 5$82.35990=$82.36. Ans. 
 Solve this by other methods and see if you get a different answer. 
 
 Required the amount of $275 in 4 m., 25 da., 7 per cent. 
 .4027+ 1. 02818 
 
 275 >>S5i+- -07 275 
 
 — X X — = 
 
 I -tt- I 514090 
 
 719726 
 205636 
 
 $282.7495o=-$282.75. Ans. ^^ ^ ^ , .v 1 * 
 
 After multiplying .4027 by .07, we add i to the result, for the amount of $1, before we make the last 
 multiplication. Multiply .402 by .07, but carry from 7 times 7. 
 Interest of $318.29 for 9 m., 10 da., "]}( per cent.? 
 •777+ 5443 318.29 
 
 318.29 -9:395;^ .07X 194 .05637 
 
 X X = — 
 
 I -in- I 222803 
 
 95487 
 190974 
 159145 
 
 Ans. 17.94.20 
 
MATHEMATICAL ROOTS UPROOTED. 
 
 17 
 
 Required the interest of $4684.68 for 11 da., 12;^ per cent. 
 
 390-39 
 .04582 
 
 390.39 .183+ 
 ,+§S:;:cS. -rS^-l- .25 — -— 
 X X = 78078 
 
 I -K- -2- 3I23I2 
 
 I95I95 
 I56I56 
 
 $17.8876 = $17.89. Arts. 
 
 In making the mental multiplication by 
 25, allow for the number that would be to 
 carry, had the decimal .183+ been extended 
 one figure further. 
 
 Find the interest of $127.36 for I yr. 6 m. 21 da., 4^ per cent. 
 
 5-306+ 
 5.306+ . 1.683^ 
 
 -is?.^^- 18.7 .09 15918 
 
 X X = 42448 
 
 I -r^ -2- 31836 
 
 5306 
 
 Ans. $8.93. $8.929998 
 
 Find the amount of $723.60 for 2 yr. 3 m. 18 da., 5^ per cent, 
 
 2-3 
 723.60 ^Jfr^. .23 .529 
 
 X — X— = — = .13225 
 
 I -f~ 4 4 
 
 Add I 
 
 1. 13225 
 723.6 
 
 679350 
 339675 
 22645b 
 792575 After cancelling and multiplying the expres- 
 
 sions of time and rate, we add i to the product, 
 
 $819,296 Ans. to get the amt. of $1. This saves time and one 
 operation in the work. Now, if the work is short with these peculiar and mixed rates, it is much mo-e 
 so with all ordinary rates. We will take only two or three illustrations : 
 
 Find the interest of $780.26 for 90 da., without grace, at 1%. per cent, per month. 
 Operation, — 195.065 
 
 195.065 .15 
 
 ;So.x6 — 3^ .15 
 
 — X— X— == 975325 
 
 I -rt- I 195065 
 
 _4_ 
 
 Ans. $29.26975 
 What is the interest of $845 for i yn 10 m. 6 da., at I per cent a month? 
 
 845 
 .01 .222 
 
 845 2^.2 7t±- 
 
 X X = 1690 
 
 I -1-3- I 1690 
 
 1690 
 
 Multiplying by .01 simply throws the point 
 
 Ans. $187,590 two placesfurther to the left on the multiplicand. 
 Find the interest of 1040 for i yr. 9 m. 9 da. at 8 per cent. 
 
 .142 
 7.1 .02 1040 
 
 1040 -2*t5 "naS^ 
 
 X X- 5680 
 
 I nr I 142 
 
 -3- 
 
 Ans. $147,680 This method is equally expeditious in reck- 
 oning up notes whereon partial payments have been made. Indeed, there is no department of interest 
 
i8 
 
 MATHEMATICAL ROOTS UPROOTED. 
 
 where it may not be used with greater facility, and with much less work, than any other process. We 
 have chosen to call it the Cancellation Method. The advantage lies in its simplicity, brevity, and uni- 
 formity of treatment, there being but one process for all problems, whatever the rate, time or other 
 conditions. And surely this, of itself, is a great saving, to both teacher and pupil, of much labor and 
 taxing of memory, under the numerous methods and rules of interest laid down in the books. The 
 plan here presented is strictly mathematical, depending on the principle, that the annual rate on a dol- 
 lar, multiplied by the number of dollars in the principal, is equal to the interest. The time is reduced 
 to months and decimals of a month; and, then, the expression for months is divided by 12, thus ex- 
 pressing the time in years. Each example given in the foregoing pages, is simply a grouping of the 
 sum at interest, the years, and the rate. Cancellation naturally follows. We might have reduced the 
 time to days, dividing the number ot days by 360, thus making it express years. For instance, 2 yr. 4 
 m. 20 da. is 720 da. -f- 120 da. -|-20 da. = 860 da., or ||g years. But this is considerably longer, requir- 
 ing more work every way. The briefer the method of reckoning interest, the less liability to mistakes. 
 The one herein set forth,' takes the happy mean in all particulars. 
 
 EXAMPLES FOR THE STUDENT. 
 
 2. 
 3- 
 4- 
 5- 
 6. 
 
 7- 
 8. 
 9- 
 10. 
 
 Let it be required to find the interest on the following, viz.: 
 $300 for 2 yr. 7 m. 24 da., at 6 per cent. 
 $700 for I yr. 9 m. 12 da., at 6 per cent. 
 $400 for 2 yr. 6 m. 15 da., at 6 per cent. 
 $350 for 3 yr. 8 m. 24 da., at 6 per cent. 
 $450.87 for I yr. 7 m. 9 da., at 7 per cent. 
 $375.50 for 2 yr. i m. 8 da., at 7 per cent. 
 $125.16 for I yr. ii m, 25 da., at 7 per cent. 
 $658.25 for I yr. 2 m. 13 da., at 7 per cent. 1 
 $187.44 for I yr. 10 m. 24 da., at 7^,7 per cent. [-Find the amount. 
 $444.84 for I yr. i m. 16 da., at 5 per cent. j 
 Also, reckon up the following promissory notes, on which indorsements have been made, viz.: 
 $167.42. Selma, Apr. 15, 1882. 
 
 1. For value received, I promise to pay Judge Fowler, or order, one hundred sixty-seven and -^ 
 dollars, in 6 months from date with interest. 
 
 Tom Scroggins. 
 Indorsements : 
 
 May 21, 1883, $42.18; July 17, 1884, $6.25; Sept. 9, 1884, $48.16; Jan. 27, 1885, $27.47. What 
 was due Apr. 15, 1886? ^ns. $72,277. 
 
 $472.76. Selma, June 4, 1884. 
 
 2. For value received of Arrents & Longacre, I promise to pay them, or their order, four hundred 
 seventy-two and ^^% dollars, in 6 months from date, with interest at 7 per cent, afterward. 
 
 Jno. Grubs. 
 Indorsements : 
 
 Apr. 10, 1885, $125,843 ; Nov. 28, 1885, $133,724; Apr. 15, 1886, $223,081. What will due Nov. 
 13, 1886? ylns. $24.95. 
 
 Let these be done strictly by the abbreviated process — it saves half the usual work. These exam- 
 ples must suffice for our book. The student will find abundant material for practice from other sources. 
 We will present the solution of the last promisory note, to show the plan by the cancellation process. 
 W^e first write the dates in succession, thus ; 
 1886, II, 13 =6 m. 28 da. 
 1886, 4, 15 = 4 m. 17 da. 
 1885, II, 28 = 7 m. 18 da. 
 
 4, 10 = 4 m. 6 da. JV. B. — The four cancellations and multiplications" following, present 
 
 12, 4= the entire work, and not simply the indicated vioxY'. 
 
 1885, 
 
 472.76 
 1.0245 
 
 236380 
 189104 
 
 94552 
 47276 
 
 $484,342 
 Payment — 125.843 
 
 $358-499 
 
 .63+ 
 358.50 .i^ .07 
 X X 
 
 358-50 
 1.0443 
 
 10755 
 14340 
 14340 
 3585 
 
 $374,381 
 Payment— 133.724 
 
 $240,657 
 
MATHEMATICAL ROOTS UPROOTED. 
 
 19 
 
 1.026635 
 240.657 
 
 •3805 
 
 240.657 4.566 U 
 
 X X— 
 
 I -^-^- I 
 
 07 
 
 7186445 
 
 5133175 
 6159810 
 4106540 
 2053270 
 
 $247.06689 
 Payment— ^223 .08 1 
 $23.99 
 
 •574- 
 23-99 -^^^^f -07 
 
 I -irt- I 
 
 •57 X. 07+ I = 1.0399 
 
 $24,947 = $24.95. 
 Ans. 
 ramt. of $1. 
 
 In partial payments, most authors, in illustrating their methods, give simply a brief of results, as if 
 they would make the work appear short. After cancellation and multiplication of the expressions lor 
 time and rate, let i be added to the result, for the amt. of $1, before the mechanical multiplication is 
 made. See above. Observe the manner of writing the dates, all at once, and all in one group, from 
 the latest to the earliest, and then the consecutive subtraction of them, thus giving the several periods 
 of time at once, before the cancellation processes are commenced. This is a great saving of time, and 
 promotes simplicity. And here it may be stated that, with respect to the subject of interest, the author 
 does not so much claim to have discovered new truth, as he does a new and right application of it. 
 Much of scientific truth is as good as lost, through the circuitous, obscure processes under which it is 
 presented. 
 
 Required the interest on the following, viz.: 
 
 1. $1284.60 for 5 m. 12 da., at ^ per cent, a month. 
 
 2. $621.09 for 7 m. 16 da., at ^ per cent, a month. 
 
 3. $818.26 for 9 m. 3 da., at \ per cent, a month. 
 
 4. $220.38 for 2 m. 21 da., at lOj^ per cent, per annum. 
 
 5. $62.96 for I yr. 8 m. 23 da., at 11 per cent per annum. 
 
 62.96 
 1-73, .1903 
 
 62.96 —20^76-+- 
 
 -X X = 
 
 1888 
 56664 
 6296 
 
 $11.98. Ans. to last. 
 
 $614.42. 
 
 For value received, I promise to pay D 
 on demand, with interest at 6^ per cent. 
 Indorsements : 
 
 May 15, 1886, $169.30; June 10, 1886, $88.40; Sept. I 
 on this note Nov. 20, 1886? 
 
 Selma, Cal., May i, 1886. 
 Wagner, or order, six hundred, fourteen and -^ dollars, 
 
 John Davis. 
 
 1886, $325.80. How much will be due 
 
 Write the dates in a group, as above ; begin with the date of giving the note, and subtract each 
 from the next succeeding, as 5 m. i da. from 5 m. 15 da., always making the subtractions mentally, and 
 writing the payments opposite the intervening times. Find the amount of the original principal for the 
 first term of time, and of each succeeding principal for its term of time, subtracting each payment, in 
 order, from the corresponding amount, till you come to the maturity of the note. Then find the 
 amount of the last principal for the corresponding term of time, and it will be the balance. 
 Solution of the last example : 614.42 
 
 1.00262 amt. of $1. 
 
 1886, 
 
 II, 
 
 20 = 2 m. 
 
 2 da. 
 
 PAYMENTS 
 
 1886, 
 
 9, 
 
 18 = 3 m. 
 
 8 da. 
 
 
 1886, 
 
 6, 
 
 10 = m. 
 
 25 da. 
 
 $325.80. 
 
 IS86, 
 
 S, 
 
 15 = om. 
 
 14 da. 
 
 88.40. 
 
 1886, 
 
 5, 
 
 I 
 
 
 169.30. 
 
 .0291 
 
 -.1165- .09 
 
 614.42 ~:^f6B- .2f- 
 
 X X — 
 
 I -12- -4- 
 
 122884 
 368652 
 122884 
 61442 
 
 $616.03 
 169.30 
 
 $446.73 2d prin. 
 
20 MATHEMATICAL ROOTS UPROOTED, 
 
 1.00468 amt. of $1. 
 44673 
 
 20S .02^ 357384 
 
 446.73 .-853. -r^T^ 268038 
 
 X X 178692 
 
 I -«- S^ 44673 
 
 $448.82 
 88.40 
 
 $360.42 3d prin. 
 
 1.01836 amt. of $1. 
 360.42 
 
 .204 .09 203672 
 
 360.42 - 3-^6^ : >^ 407344 
 
 X X — = 611016 
 
 I -13— _4_ 305508 
 
 After multiplying .204 
 
 $367,037 
 325.80 
 
 by .09, prefix I to the result. $41.24 4tli prin. 
 
 I.01162 amt. of $1. 
 41.24 
 
 404648 
 202324 
 101 162 
 404648 
 
 $41,719. Ans. $41.72 Ba/. 
 
 The above is the entire work. It is comparatively short, and is quickly done. Let the student use 
 the stereotyped methods in use, and he will at once see a vast difference in favor of this curt cancella- 
 tion process, uniform for a/l rates, times, and conditions, and equally easy for all questions in interest. 
 For these and other reasons, this method, once adopted, will be used in preference to any other. 
 
 In reckoning up the balance due on promissory notes whereon partial payments have been made, 
 let the cancellations be so managed that the uncancelled factors may, as far as possible, be multiplied 
 iogQihev mentally ; or, at least, maybe reduced to one formal multiplication. The advantage of the 
 cancellation process may be seen in the following problem : 
 
 Find the amount of $235.18 for 2 yr. 8 m. and 12 da., at 5>^ per cent. 
 
 $235.18 
 .9 I. 144 
 
 •w>8. 
 
 235.18 :yM. -16 94072 
 
 X X = 94072 
 
 I Hri- -5-. 258698 
 
 $269.04592 = $269,046. Ans. 
 
 Observe that, after multiplying together the expressions of time and rate, .g and .16, we add I to 
 the result, which makes the amt. of $1. This multiplied into the principal gives the amt. of the debt. 
 Hence, in the cancellations, it is not proper to cut down the principal, when the amount is to be found. 
 If only the interest is required, factors may be stricken from any of the three parts. 
 
 Those who have not tried this method cannot realize how easily these factors (principal, time in 
 years, and rate) can be thrown together, and cut down to the answer, with a very small amount of fig- 
 uring, whatever be the nature of the parts. The years and months are reduced to months, simply by 
 inspection, without a mental effort ; the days are reduced to the decimal of a month, by dividing them 
 by 3 ; and under this mixed expression we place 12, thus expressing the whole time in years. 
 
 We have little patience with sticklers for analysis in everything. It is very essential in some depart- 
 ments of arithmetical science, but is utterly useless in many of its most practical subjects. As an inci- 
 dental feature, and as conducing to thoroughness in the fundamental principles of a mathematical edu- 
 cation, analysis, in a few subjects in arithmetic, should be thoroughly taught to the young, but beyond 
 this it is useless. In interest it is of no value. The banker, the lawyer, the real estete man, and all 
 other practical people, have no use for analysis in any of the several departments of interest, but must 
 have the most direct, curt processes for all problems arising under this broad department in the science 
 
MATHEMATICAL ROOTS UPROOTED. 21 
 
 of numbers. Teachers should not lose sight of the fact that, in our practical civilization, we are, in 
 many things, reducing more and more to practicality. Hence, as business increases and ramifies into 
 various new departments, thus multiplying our cares and duties, we must seek to do our work with the 
 utmost despatch consistent with accuracy. The cancellation process in interest meets the demands of 
 business, on the subject to which it belongs. It supersedes the necessity and the utility of any 6 per 
 cent, method, or 12 per cent, method, or i per cent, method, or 10 percent method, or any other 
 specific method. It secures uniformity, simplicity, brevity, accuracy, 
 
 FINIS. 
 
22 LOGARITHMS. 
 
 Logarithms. 
 
 A Logarithm is simply an exponent of a power. The logarithm of a number is the exponent of the 
 power to which the base of the number must be raised, to produce the number. Thus, in the following 
 equations : 
 
 5" = 1 and lo<* = I 
 
 51 = 5 loi = 10 
 
 52 = 25 lo* = 100 
 
 53 = 125 10* = loog, 
 
 O, I, 2, 3 are the logarithms of the respective numbers to which they stand opposite in the several equa- 
 tions. 5 is the base in the one set, and ten in the other. In any one of the above quotations, the value 
 of the second member depends on the numerical value of the base and the exponent attached. In a sys- 
 tem of logarithms, any number above I may be taken as a base, and, by suitably varying the exponent, 
 the base being unaltered, all possible numbers may be represented. For example, lo^ -82000 represents 
 the number 6607, and 3.82000 is the log. of this number. io3'7'*225 represents the number 5524, and 
 3.74225 is the log. of this niimber. It means that 10 must be raised to the power denoted by 3.74225 
 to produce 5524. In all practical mathematics, 10 is the base. The system is called the Common, or 
 Brigg's system, and, in it, all numbers, integral or fractional, are regarded as some power of 10. 10° is 
 no power of 10, and is equal to 10 divided by 10, or to I. That is, the log. of i is o. All numbers be- 
 tween I and 10 have, for their logarithm, a decimal fraction ; all numbers between 10 and 100 have, for 
 their logarithm, i -[-a decimal ; and all numbers between 100 and 1000 have, for their logarithm, 2 -(- a 
 decimal ; and so on. See, page I of the table of logarithms, in column headed N, that numbers be- 
 tween I and 10, 10 and loo, and 100 and 1000, respectively, fulfill the above conditions. The log. of 7, 
 for example, is .84510, and that of 25 is 1-39794, and these logs, are simply exponents. io''-845io __ 7^ 
 and ioi-^9794 =25, signifying that 10 must be raised to these powers, respectively, to produce 7 and 25. 
 
 To find the logarithms of numbers over 100, and under looo. — Look opposite the number, in column 
 headed O, and find the logarithm. The log. of 398, page 7 of the table, is 2.59988. 
 
 .-To find the logarithms of numbers of four figures. — Look under caption iV'for the first three 'fig- 
 ures of the number, and at the top of the page for the fourth figure ; and opposite the one part of the 
 number and under the other, find the logarithm. Thus, the log. of 6982 is 3.84398. The decimal part 
 of any logarithm is called the mantissa, and the integral part, the characteristic. In the log. of 1840, 
 which is 3.26482, 3 is the characteristic, and .26482 is the mantissa. The characteristic of all numbers 
 between I and 10 is o. 
 
 To find the logarithms of numbers of more than four figures. — Find, for example, the logarithm of 
 248963. On page 4 we find, as previously directed, the «/rt«/wa*corresponding to the first four figures, 
 2489, to be .39602 ; and, to this partial mantissa, there must be an addition for the remaining part of 
 the number, 63. And since this addition affects only the decimal part, or mantissa, and not the char- 
 acteristic, 63, the remaining part of the number must be regarded as a decimal. This decimal, .63, we 
 multiply by the tabular difference, opposite the mantissa, in column D, which is 17+, or 17.5, and get 
 .63 X 17.5 = 11.025, giving II to be added to the final figures of the partial mantissa, .39602, already 
 taken out, making .39613 ; and the characteristic is 5, being always one less than the number of figures 
 in the integral part of the number whose logarithm is sought. Thus, the log. 248963 = 5.39613. 
 
 Required the logarithm of 142967542. The mantissa of the first four figures, 1429, page 2 of the 
 table, is .15503, and the tabular difference is 30+, or 30.5. This multiplied into .67542, the remainder 
 of the number treated as a decimal, gives 20.6, or 21, to be added to the terminal figures of the partial 
 mantissa already taken out, making .15524, and the characteristic is 8. Thus, the log. 142967542 = 
 8.15524. In making additions to the mantissa, more than 5 decimal units should be reckoned i , less 
 than 5 should be disregarded. 
 
 For the same figures, in the same order, the mantissa is the same, whatever the local value or the fig- 
 ures. Thus, the mantissa of the logs, of these numbers, viz.: 8328, 832.8, 83.28, 8.328, .8328, .08328. 
 ,008328, etc., is .92054, the same for each of the numbers. The characteristic of the first is 3 ; of the 
 second, 2 ; of the third, i ; of the fourth, o; of the fifth, — i ; of the sixth, —2 ; of the seventh, — 3. The 
 
LOGARITHMS. 
 
 23 
 
 characteristic of a decimal is always negative, and numerically one more than the number_of noughts 
 prefixed to the decimal. The negative sign is usually vsrritten over the characteristic, thus 2, 6 9 8 9 7, in 
 the log. of .05. 
 
 Find the logarithm of .6423. On page 12 we find the mantissa to be .80774, and the characteristic 
 is T, making T. 8 7 7 4, for the log. of .6423. 
 
 To find the number corresponding to a given logarithm. — What is the number whose log. Is 
 1. 681^4? Looking on page I, we find this log. opposite 48. Hence, 48 is the number whose log. is 
 I. 68 I 24. 
 
 Find the number having for its logarithm 2 , 3 6 3 5_. Looking on page 4, we find opposite 230 and 
 under 7, the number 230.7, the answer required^. 
 
 Find the number having for its logarithm 2,64367. Looking for the nearest mantissa to the given 
 one, we find it, page 8, opposite 440 and under 2, to be .64365. This mantissa we subtract from the 
 given one, and divide the difference, 2, by the tabular diff^ence, 10, and get .2. Appending this to 
 the 4402, already taken out, we get 44022. And now, as the characteristic is — 2, we prefix one o to 
 the last result, and get .044022 for the required number. 
 
 What is the number having for its logarithm .29824? The nearest mantissa is .29820, page 3, op- 
 posite 198 and under 7 ; ,29824— ,29820 = 4; 4-4-22, the tab. difif., gives 1.8, or 2 nearly. Appending 
 2 to 1987, we have 19872 — . And, since there is no characteristic, the integral part is I. Hence, .29824 
 = log. I. 19872. 
 
 ; Find the cube root of .4986. The log. of .4986 (p. 9) is T.6 9 775, This we divide by 3, the in- 
 dex of the required root. But since the characteristic is negative, while the mantissa is always positive, 
 we cannot directly divide the logarithm by the index 3. But T,6 9 7 7 S == ^-f 2^.69775, in which the 
 characteristic is exactly divisible by the index 3. Dividing, we get T,?99 2 5, We now find the num- 
 ber corresponding to this logarithm. The nearest mantissa is .89922.' Subtracting it from the given 
 .89925, we get 3, which, divided by the corresponding tabular diffe^nce, §-f ' gives 5. The number 
 corresponding to the mantissa .89925 is 79295. To this prefix^'wic. o, to correspond to the negative 
 characteristic, and the cube root of .4986 is .-&7929§^ ^^ ,^ y- ^7 <^J^ 
 
 When the characteristic is negative, and not divisible by me4nclex^of any root, add to it the smallest nega- 
 tive number that will render it divisible, and then prefix the same number, with a plus sign, to the mantissa. 
 
 What is the 5th root of 512.8? The log. of 512.8 = 2.70995 ; 2,70995 -f- 5 "= -54199 ; the nearest 
 mantissa, opposite 348 and 3, is. 54195; .54199 — .54195=4; and 4 -r 12^-, the tab, diff,, gives 3 to 
 to be apended to 3.483, making 3.4833, for the 5th root of 512.8. 
 
 k 
 
 5,if2^«02. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 T 
 
 
 
 THE COMMOH OR BRIGGS LOGARITHMS 
 
 
 —OF THE— . 
 
 
 
 
 iT-A.rrxTie-A.ij 3sr"U-3iv^BEies 
 
 
 
 
 FROM 1 TO 10000. 
 
 
 
 
 
 I— 100. 
 
 
 
 
 H 
 
 loS 
 
 If 
 
 log 
 
 ir 
 
 log 
 
 N 
 
 log 
 
 N 
 
 log 
 
 I 
 
 0. 00 000 
 
 21 I 
 
 32 222 
 
 41 
 
 I. 61 278 
 
 61 I 
 
 78533 
 
 81 
 
 I. 90 849 
 
 2 
 
 0. 30 103 
 
 22 I 
 
 34 242 
 
 42 
 
 
 62325 
 
 62 I 
 
 79 239 
 
 82 
 
 I. 91 381 
 
 3 
 
 0. 47 712 
 
 23 I 
 
 36 173 
 
 43 
 
 
 63347 
 
 63 I 
 
 79 934 
 
 83 
 
 I. 91 908 
 
 4 
 
 0. 60 206 ■ 
 
 24 I 
 
 38021 
 
 44 
 
 
 64345 
 
 64 I 
 
 80618 
 
 84 
 
 I. 92 428 
 
 5 
 
 0. 69 897 
 
 25 I 
 
 39 794 
 
 45 
 
 
 65 321 
 
 65 I 
 
 81 291 
 
 85 
 
 I. 92 942 
 
 6 
 
 0. 77 815 
 
 26 I 
 
 41 497 
 
 46 
 
 
 66 276 
 
 66 I 
 
 81 954 
 
 86 
 
 I. 93 450 
 
 7 
 
 0. 84 510 
 
 27 I 
 
 43 136 
 
 47 
 
 
 67 210 
 
 67 I 
 
 82 607 
 
 87 
 
 I- 93 952 
 
 8 
 
 0. 90 309 
 
 28 I 
 
 44 716 
 
 48 
 
 
 68 124 
 
 68 I 
 
 ^3 251 
 
 88 
 
 I. 94 448 
 
 9 
 
 0. 95 424 
 
 29 I 
 
 46 240 
 
 49 
 
 
 69 020 
 
 69 I 
 
 S3 885 
 
 89 
 
 I- 94 939 
 
 lO 
 
 I. 00 000 
 
 30 I 
 
 47 712 
 
 50 
 
 
 69897 
 
 70 I 
 
 84 510 
 
 90 
 
 I. 95 424 
 
 II 
 
 I. 04 139 
 
 31 I 
 
 49 136 
 
 51 
 
 
 70757 
 
 71 I 
 
 05 126 
 
 91 
 
 I. 95 904 
 
 12 
 
 I. 07 918 
 
 32 I 
 
 50515 
 
 52 
 
 
 71 600 
 
 72 I 
 
 85 733 
 
 92 
 
 I. 96 379 
 
 13 
 
 I. II 394 
 
 33 I 
 
 51 851 
 
 53 
 
 
 72428 
 
 73 I 
 
 86 332 
 
 93 
 
 I. 96 848 
 
 14 
 
 I. 14 613 
 
 34 I 
 
 53 148 
 
 54 
 
 
 73 239 
 
 74 I 
 
 86923 
 
 94 
 
 I. 97313 
 
 15 
 
 I. 17 609 
 
 35 I 
 
 54407 
 
 55 
 
 
 74036 
 
 75 I 
 
 87506 
 
 95 
 
 I. 97 772 
 
 16 
 
 I. 20 412 
 
 36 I 
 
 55630 
 
 56 
 
 
 74819 
 
 76 I 
 
 88 081 
 
 96 
 
 I. 98 227 
 
 17 
 
 I. 23 045 
 
 37 I 
 
 56 820 
 
 57 
 
 
 75587 
 
 77 I 
 
 88 649 
 
 97 
 
 I. 98 677 
 
 18 
 
 I. 25 527 
 
 38 I 
 
 57978 
 
 58 
 
 
 76 343 
 
 78 I 
 
 89 209 
 
 98 
 
 I. 99 123 
 
 19 
 
 I. 27 875 
 
 39 I 
 
 59 106 
 
 59 
 
 
 77085 
 
 79 I 
 
 89763 
 
 99 
 
 I. 99 564 
 
 20 
 
 I. 30 103 
 
 40 I 
 
 60 206 
 
 60 
 
 I- 77815 
 
 80 I 
 
 90309 
 
 100 
 
 2. 00 000 
 
 N 
 
 log 
 
 N 
 
 log 
 
 H 
 
 
 log 
 
 H 
 
 log 
 
 V 
 
 log 
 
N 
 
 
 
 1 
 
 % 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 8 
 
 9 
 
 1) 
 
 100 
 
 00 000 
 
 00043 
 
 po 087 
 
 00130 
 
 00 173 
 
 00 217 
 
 00 260 
 
 00 303 00 346 
 
 00 389 
 
 43 
 
 lOI 
 
 00432 
 
 00475 
 
 00 518 
 
 00 561 
 
 00 604 
 
 00 647 
 
 00 689 
 
 00 732 00 775 
 
 00 817 
 
 43 
 
 I02 
 
 00860 
 
 00903 
 
 00945 
 
 00988 
 
 01 030 
 
 01 072 
 
 01 115 
 
 01 isf 61 199 
 
 01 242 
 
 42 
 
 103 
 
 01 284 
 
 01 326 
 
 01 368 
 
 01 410 
 
 01 452 
 
 01 494 
 
 01536 
 
 01 578 01 620 
 
 01 662 
 
 42 
 
 104 
 
 01 703 
 
 01 745 
 
 01787 
 
 01 828 
 
 01 870 
 
 01 912 
 
 01953 
 
 01 995 02 036 
 
 02 078 
 
 42 
 
 105 
 
 02 119 
 
 02 160 
 
 02 202 
 
 02 243 
 
 02 284 
 
 02325 
 
 02 366 
 
 02 407 02 449 
 
 02 490 
 
 41 
 
 106 
 
 02531 
 
 02572 
 
 02 612 
 
 02653 
 
 02 694 
 
 02735 
 
 02776 
 
 02 816 02 857 
 
 02 898 
 
 41 
 
 107 
 
 02938 
 
 02979 
 
 03019 
 
 03 060 
 
 03 100 
 
 03 141 
 
 03 181 
 
 03 222 03 262 
 
 03302 
 
 40 
 
 108 
 
 03342 
 
 03383 
 
 03423 
 
 03 463 
 
 03503 
 
 03543 
 
 03583 
 
 03 623 03 663 
 
 03703 
 
 40 
 
 109 
 
 03743 
 
 03782 
 
 03 822 
 
 03 862 
 
 03902 
 
 03941 
 
 03 981 
 
 04021 04060 
 
 04 100 
 
 40 
 
 110 
 
 04139 
 
 04179 
 
 04 218 
 
 04258 
 
 04297 
 
 04336 
 
 04376 
 
 04415 04454 04493 
 
 39 
 
 III 
 
 04532 
 
 04571 
 
 04 610 
 
 04 650 
 
 04 689 
 
 04727 
 
 04766 
 
 04 805 04 844 04 883 
 
 39 
 
 112 
 
 04 922 
 
 04961 
 
 04999 
 
 05 038 
 
 05 077 
 
 05 115 
 
 05 154 05 192 05 231 
 
 05 269 
 
 39 
 
 113 
 
 05 308 
 
 05 346 05 385 
 
 05423 
 
 05 461 
 
 05500 
 
 05538 05 576 05 614 
 
 05652 
 
 38 
 
 114 
 
 05 690 
 
 05729 
 
 05767 
 
 05805 
 
 05 843 
 
 05 881 
 
 05 918 
 
 05 956 05 994 
 
 06 032 
 
 38 
 
 115 
 
 06 070 
 
 06 108 
 
 06 145 
 
 06 183 
 
 06 221 
 
 06 258 
 
 06 296 
 
 06333 06371 
 
 06408 
 
 38 
 
 116 
 
 06 446 06 483 
 
 06 521 
 
 06558 
 
 06595 
 
 06 633 06 670 
 
 06 707 06 744 06 781 
 
 37 
 
 117 
 
 06819 
 
 06856 
 
 06 893 
 
 06 930 
 
 06 967 
 
 07004 
 
 07041 
 
 07 078 07 ii5 
 
 07 151 
 
 37 
 
 118 
 
 07 188 
 
 07 225 
 
 07 262 
 
 07 298 
 
 07335 
 
 07372 
 
 07 408 
 
 07 445 07 482 
 
 07518 
 
 37 
 
 119 
 
 07555 
 
 07 591 
 
 07 628 
 
 07 664 
 
 07 700 
 
 07 737 
 
 07773 
 
 07 809 07 846 
 
 07882 
 
 36 
 
 120 
 
 07 918 
 
 07 954 07 990 
 
 08 027 
 
 08063 
 
 08 099 
 
 08135 
 
 08 171 08 207 
 
 08 243 
 
 36 
 
 121 
 
 08 279 
 
 08 314 
 
 08350 
 
 08386 
 
 08 422 
 
 08458 
 
 08493 
 
 08 529 08 56S 
 
 08 600 
 
 36 
 
 122 
 
 08 636 
 
 08 672 
 
 08 707 
 
 08743 
 
 08778 
 
 08814 
 
 08849 
 
 08 884 08 920 
 
 08955 
 
 35+ 
 
 123 
 
 08 991 
 
 09 026 
 
 09 061 
 
 09 096 
 
 09132 
 
 09 167 
 
 09 202 
 
 09237 09 272 
 
 09307 
 
 35 
 
 124 
 
 09342 
 
 09377 
 
 09 412 
 
 09447 
 
 09 482 
 
 09517 
 
 09552 
 
 09 587 09 621 
 
 09 656 
 
 35 
 
 125 
 
 09 691 
 
 09 726 
 
 09 760 
 
 09795 
 
 09830 
 
 09 864 
 
 09899 
 
 09 934 09 968 
 
 10003 
 
 35 
 
 126 
 
 10037 
 
 10 072 
 
 10 106 
 
 10 140 
 
 10 175 
 
 10 209 
 
 10243 
 
 10 278 10 312 
 
 10 346 
 
 34 
 
 127 
 128 
 
 10 380 
 10 721 
 
 10 415 
 10755 
 
 10449 
 10 789 
 
 10483 
 
 10517 
 10857 
 
 10551 
 10 890 
 
 10 585 
 10924 
 
 i4o 619 10 653 
 10958 10992 
 
 10687 
 II 025 
 
 34 
 34 
 
 10823 
 
 129 
 
 II 059 
 
 1 1 093 
 
 II 126 
 
 II 160 
 
 II 193 
 
 II 227 
 
 11 261 
 
 II 294 II 327 
 
 II 361, 
 
 33+ 
 
 130 
 
 II 394 
 
 II 423 
 
 II 461 
 
 1 1 494 
 
 II 528 
 
 II 561 
 
 II 594 
 
 II 628 II 661 
 
 11 694 
 
 33 
 
 131 
 
 11727 
 
 11 760 
 
 II 793 
 
 II 826 
 
 II 860 
 
 II 893 
 
 II 926 
 
 II 959 II 992 
 
 12 024 
 
 33 
 
 132 
 
 12057 
 
 12 090 
 
 12 123 
 
 12 156 
 
 12 189 
 
 12 222 
 
 12 254 
 
 12 287 12 320 
 
 12352 
 
 33 
 
 ^33 
 
 12385 
 
 12 418 
 
 12450 
 
 12483 
 
 12516 
 
 12548 
 
 12 581 
 
 12 613 12 646 
 
 12 678 
 
 32+ 
 
 134 
 
 12 710 
 
 12743 
 
 12775 
 
 12808 
 
 12 840 
 
 12872 
 
 12905 
 
 12937 12969 
 
 13 001 
 
 32 
 
 135 
 
 13033 
 
 13066 
 
 13098 
 
 13 130 
 
 13 162 
 
 13 194 
 
 13226 
 
 13 258' 13 290 
 
 13322 
 
 32 
 
 ^3^ 
 
 13354 
 
 13386 
 
 13 418 
 
 13450 
 
 13 481 
 
 13 513 
 
 13545 
 
 13577 13609 
 
 13 640 
 
 32 
 
 137 
 
 13672 
 
 13 704 
 
 13735 
 
 13767 
 
 13799 
 
 13830 
 
 13862 
 
 13893 13925 
 
 1395^ 
 
 31+ 
 
 ^38 
 
 13988 
 
 14 019 
 
 14 051 
 
 14082 
 
 14114 
 
 14 145 
 
 14 176 
 
 14 208 14 239 
 
 14270 
 
 31 
 
 139 
 
 14301 
 
 14333 
 
 14364 
 
 14395 
 
 14426 
 
 14457 
 
 14489 
 
 14520 14 551 
 
 14582 
 
 31 
 
 uo 
 
 14613 
 
 14644 
 
 14675 
 
 14706 
 
 14737 
 
 14768 
 
 14799 
 
 14829 14860 
 
 14 891 
 
 31 
 
 141 
 
 14922 
 
 14953 
 
 14983 
 
 15 014 
 
 15 045 
 
 15076 
 
 15 106 
 
 15 137 15 168 
 
 15 198 
 
 31 
 
 142 
 
 15229 
 
 15259 
 
 15 290 
 
 15320 
 
 15 351 
 
 15 381 
 
 15 412 
 
 15 442 15 473 
 
 15503 
 
 30+ 
 1 
 
 143 
 
 15534 
 
 15564 
 
 15594 
 
 15625 
 
 15655 
 
 15685 
 
 15 715 
 
 15 746 15 776 
 
 15 806 
 
 30 
 
 144 
 
 15836 
 
 15866 
 
 15897 
 
 15927 
 
 15957 
 
 15987 
 
 16 017 
 
 16047 16077 
 
 16 107 
 
 30 
 
 145 
 
 16 137 
 
 16 167 
 
 16 197 
 
 16227 
 
 16 256 
 
 16286 
 
 16316 
 
 16346 16376 
 
 16 406 
 
 30 
 
 146 
 
 16435 
 
 16465 
 
 16495 
 
 16524 
 
 16554 
 
 16584 
 
 16613 
 
 16 643 16 673 
 
 x6 702 
 
 30 
 
 147 
 
 16732 
 
 16 761 
 
 16 791 
 
 16820 
 
 16850 
 
 16 879 
 
 16 909 
 
 16 938 16 967 
 
 16997 
 
 29+ 
 
 148 
 
 17 026 
 
 17056 
 
 17085 
 
 17 114 
 
 17 143 
 
 17 173 
 
 17 202 
 
 17 231 17 260 
 
 17289 
 
 29 
 
 149 
 
 17319 
 
 17348 
 
 17377 
 
 17406 
 
 17435 
 
 17464 
 
 17493 
 
 17522 17551 
 
 17580 
 
 29 
 
 150 
 
 17609 
 
 17638 
 
 17667 
 
 17696 
 
 17725 
 
 17754 
 
 17782 
 
 17 811 17 840 
 
 17 869 
 
 29 
 
 N 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 8 
 
 9 
 
 
N 
 
 12 3 4 
 
 5 6 7 8 9 
 
 D 
 
 150 
 
 17609 17638 17667 17696 17.725 
 
 17754 17782 17811 17840 17869 
 
 29 
 
 151 
 
 17898 17926 17955 17984 18 013 
 
 X804X 18070 18 099 18 127 18x56 
 
 29 
 
 152 
 
 18 184 18213 18241 18270 18298 
 
 X8327 18355 18384 184x2 18 44X 
 
 28+ 
 
 153 
 
 18469 18498 18526 18554 18583 
 
 18 6x1 18639 18667 18696 18724 
 
 28 
 
 154 
 
 18752 18780 18808 18837 18865 
 
 18893 18 921 18949 18977 19005 
 
 28 
 
 155 
 
 19033 19 061 19089 19 117 19 145 
 
 19173 19 201 19229 19257 19285 
 
 28 
 
 156 
 
 19 312 19340 19368 19396 19424 
 
 19 451 19479 19507 19535 19562 
 
 27 
 
 157 
 
 19590 19 618 19645 19673 19700 
 
 19728 19756 19783 X981X X9 838 
 
 28 
 
 158 
 
 19866 19893 19 921 19948 19976 
 
 20003 20030 20058 20085 20x12 
 
 27 
 
 159 
 
 20 140 20 167 20 194 20 222 20 249 
 
 20276 20303 20330 20358 20385 
 
 27 
 
 160 
 
 20412 20439 20466 20493 20520 
 
 20548 20575 zo 602 20629 20656 
 
 27 
 
 161 
 
 20683 20710 20737 20763 20790 
 
 208x7 20844 20871 20898 20925 
 
 27 
 
 162 
 
 20952 20978 21005 21032 21059 
 
 21 085 2X XX2 21 139 21 X65 21 I92 
 
 27 
 
 ^63 
 
 2x2x9 2x245 21272 2x299 21325 
 
 21352 2x378 2x405 21431 21458 
 
 27 
 
 164 
 
 21484 21 511 21537 21564 21590 
 
 21 6x7 21 643 21 669 21 696 21 722 
 
 26 
 
 165 
 
 21 748 21 775 21 801 21 827 2X 854 
 
 21 880 21 906 21 932 21 958 2X 985 
 
 26 
 
 166 
 
 220x1 22037 22063 22089 22 115 
 
 22 141 22 167 22 194 22 220 22 246 
 
 26 
 
 167 
 
 22 272 22 298 22 324 22 350 22 376 
 
 22401 22427 22453 22479 22505 
 
 26 
 
 168 
 
 22531 22557 22583 22608 22634 
 
 22 660 22 686 22 712 22 737 22 763 
 
 26 
 
 169 
 
 22 789 22 814 22 840 22 866 22 89I 
 
 229x7 22943 22968 22994 23019 
 
 26 
 
 170 
 
 23045 23070 23096 23 121 23147 
 
 23 172 23 198 23 223 23 249 23 274 
 
 25 
 
 171 
 
 23300 23325 23350 23376 234OX 
 
 23426 23452 23477 23502 23528 
 
 25 
 
 172 
 
 23553 23578 23603 23629 23654 
 
 23679 23704 23729 23754 23779 
 
 25 
 
 173 
 
 23 8o5 23 830 23 855 23 830 23 905 
 
 23930 23955 23980 24005 24030 
 
 25 
 
 174 
 
 24055 24080 24105 2413,0 24x55 
 
 24180 24204 24229 24254 24279 
 
 25 
 
 175 
 
 24304 24329 24353 24378 24403 
 
 24428 24452 24477 24502 24527 
 
 25 
 
 176 
 
 24551 24576 2460X 24625 24650 
 
 24674 24699 24724 24748 24773 
 
 25 
 
 177 
 
 24797 24822 24846 24871 24895 
 
 24920 24944 24969 24993 25018 
 
 24+ 
 
 178 
 
 25 042 25 066 25 09X 25 115 25 139 
 
 25 164 25 188 25 2X2 25 237 25 261 
 
 24 
 
 179 
 
 25285 25310 25334 25358 25382 
 
 25406 25431 25455 25479 25503 
 
 24 
 
 180 
 
 25527 25551 25575 25600 25624 
 
 25 648 25 672 25 696 25 720 25 744 
 
 24 
 
 181 
 
 25 768 25 792 25 8x6 25 840 25 864 
 
 25888 25912 25935 25959 25983 
 
 24 
 
 182 
 
 26007 26031 26055 26079 26x02 
 
 26 126 26 150 26 174 26 198 26 221 
 
 24 
 
 183 
 
 26245 26269 26293 26316 26340 
 
 26364 26387 26411 26435 26458 
 
 24 
 
 184 
 
 26482 26505 26529 26553 26576 
 
 26 600 26 623 26 647 26 670 26 694 
 
 23+ 
 
 185 
 
 26717 26741 26764 26788 26811 
 
 26834 26858 26881 26905 26928 
 
 23 
 
 186 
 
 26951 26975 26998 27021 27045 
 
 27 068 27 091 27 114 27 138 27 x6i 
 
 23 
 
 187 
 
 27 184 27 207 27 231 27 254 27 277 
 
 27300 27323 27346 27370 27393 
 
 23 
 
 188 
 
 27416 27439 27462 27485 27508 
 
 27531 27554 27577 27600 27623 
 
 23 
 
 189 
 
 27646 27669 27692 27715 27738 
 
 27761 27784 27807 27830 27852 
 
 23 
 
 190 
 
 27875 27898 27 921 27944 27967 
 
 27989 28012 28035 28058 28081 
 
 23 
 
 191 
 
 28 103 28 126 28 149 28 171 28 194 
 
 282x7 28240 28262 28285 28307 
 
 23 
 
 192 
 
 28330 28353 28375 28398 28421 
 
 28443 28466 28488 28 511 28533 
 
 23 
 
 193 
 
 28556 28578 28601 28623 28646 
 
 286-68 28691 28713 28735 28758 
 
 22+ 
 
 194 
 
 28 780 28 803 28 825 28 847 28 870 
 
 28892 28914 28937 28959 28981 
 
 22 
 
 195 
 
 29 003 29 026 29 048 29 070 29 092 
 
 29 115 29137 29x59 29181 29203 
 
 22 
 
 196 
 
 29226 29248 29270 29292 29314 
 
 29336 29358 29380 29403 29425 
 
 22 
 
 197 
 
 29447 29469 29491 29513 29535 
 
 29557 29579 2960X 29623 29645 
 
 22 
 
 198 
 
 29 667 29 688 29 7x0 29 732 29 754 
 
 29776 29798 29 S20 29842 29863 
 
 22 
 
 199 
 
 29885 29907 29929 29951 29973 
 
 29994 300x6 30038 30060 30081 
 
 22 
 
 200 
 
 30 103 30 12S 30 146 30 168 30 190 
 
 30 211 30233 30255 30276 30298 
 
 22 
 
 N 
 
 12 3 4 
 
 5 6 7 8 9' 
 
 
N 
 
 12 3 4 
 
 5 6 7 8 9 
 
 1) 
 
 200 
 
 30 T03 30 125 30 146 30 168 30 190 
 
 30 211 30233 30255 30276 30298 
 
 22 
 
 20I 
 
 30320 30341 30^63 30384 30406 
 
 30428 30449 30471 30492 30514 
 
 22 
 
 202 
 
 30535 30557 30578 30600 30621 
 
 30643 30664 30685 30707 30728 
 
 21+ 
 
 203 
 
 30750 30771 30792 30814 30835 
 
 30856 30878 30899 30920 30942 
 
 21 
 
 204 
 
 30 963 30 984 31 006 31 027 31 048 
 
 31 069 31 091 31 112 31 133 31 154 
 
 21 
 
 205 
 
 31 175 31 197 31 218 31 239 31 260 
 
 31 281 31 302 31 323 31 345 31 3^^ 
 
 21 
 
 206 
 
 31 387 31 408 31 429 31 450 31 471 
 
 31492 31 513 31534 31555 31576 
 
 21 
 
 207 
 
 31 597 31 618 31 639 31 660 31 681 
 
 31 702 31 723 31 744 31 765 31 785 
 
 21 
 
 208 
 
 31 806 31 827 31 848 31 869 31 890 
 
 31 911 31931 31952 31973 31994 
 
 21 
 
 209 
 
 32015 32035 32056 32077 32098 
 
 32 1X8 32 139 32 160 32 181 32 20I 
 
 21 
 
 210 
 
 32 222 32 243 32 263 32 284 32 305 
 
 32325 32346 32366 32387 32408 
 
 21 
 
 211 
 
 32 428 32 449 32 469 32 490 32 510 
 
 32531 32552 32572 32593 32613 
 
 20+ 
 
 212 
 
 32 634 32 654 32 675 32 695 32 715 
 
 32736 32 756 32777 32797 32818 
 
 20 
 
 213 
 
 32 838 32 858 32 879 32 899 32 919 
 
 32 940 32 960 32 980 33 001 33 021 
 
 20 
 
 214 
 
 33 041 33 062 33 082 33 102 33 122 
 
 33 143 33 ^^3 33 ^^3 33 203 33 224 
 
 20 
 
 215 
 
 33 244 33 264 33 284 33 304 33 325 
 
 33 345 33 365 33 385 33 405 33 425 
 
 20 
 
 216 
 
 33 445 33 465 33 486 33 506 33 526 
 
 33 546 33 566 33 586 33 606 33 626 
 
 20 
 
 217 
 
 33 646 33 666 33 686 33 706 33 726 
 
 33 746 33 766 33 786 33 806 33 826 
 
 20 
 
 218 
 
 33 846 33 866 33 885 33 905 33 925 
 
 33 945 33 9^5 33 985 34 oo5 34 025 
 
 20 
 
 219 
 
 34044 34064 34084 34104 34124 
 
 34143 34163 34183 34203 34223 
 
 20 
 
 220 
 
 34242 34262 34282 34301 34321 
 
 34341 34361 34380 34400 34420 
 
 20 
 
 221 
 
 34 439 34 459 34 479 34 498 34 5^8 
 
 34 537 34557 34577 34596 34616 
 
 20 
 
 222 
 
 34635 34655 34674 34694 34713 
 
 34 733 34 753 34 772 34 792 34 811 
 
 19+ 
 
 223 
 
 34830 34850 34869 34889 34908 
 
 34928 34 947 34967 34986 35005 
 
 19 
 
 224 
 
 35 025 35 044 35 064 35 083 35 102 
 
 35 122 35 141 35 160 35 180 35 199 
 
 19 
 
 225 
 
 35218 35238 35257 35276 35295 
 
 35 315 35 334 35 353 35 372 35 392 
 
 19 
 
 226 
 
 35 411 35 430 35 449 35 468 35 488 
 
 35 507 35 526 35 545 35 564 35 583 
 
 19 
 
 227 
 
 35 603 35 622 35 641 35 660 35 679 
 
 35 698 35 717 35 736 35 755 35 774 
 
 19 
 
 228 
 
 35 793 35813 35832 35851 35870 
 
 35 889 35 908 35 927 35 946 35 965 
 
 19 
 
 229 
 
 35984 36003 36021 36040 36059 
 
 36078 36097 36 116 36135 36154 
 
 19 
 
 230 
 
 36173 36192 36 211 36229 36248 
 
 36267 36286 3630^ 36324 36342 
 
 19 
 
 231 
 
 36361 36380 36399 36418 36436 
 
 36455 36474 36493 36 511 36530 
 
 19 
 
 232 
 
 36549 36568 36,586 36605 36624 
 
 36642 36661 36680 36 6g8 36717 
 
 19 
 
 233 
 
 36 T36 36 754 36 773 36 791 36 810 
 
 36829 36847 36866 36884 36903 
 
 19 
 
 234 
 
 36922 36940 36959 36977 36996 
 
 37014 37033 37051 37070 37088 
 
 18+ 
 
 235 
 
 37 107 37 125 37 144 37 162 37 181 
 
 37 199 37 218 37 236 37 254 37 273 
 
 18 
 
 236 
 
 37291 37310 37328 37346 37365 
 
 37383 37401 37420 37438 37 457 
 
 18 
 
 237 
 
 37475 37 493 37 511 37 53o 37 548 
 
 37566 37585 37603 37621 37639 
 
 18 
 
 238 
 
 37 658 37 676 37 694 37 712 37 731 
 
 37749,37767 37785 37803 37822 
 
 18 
 
 239 
 
 37 840 37 858 37 876 37 894 37 912 
 
 37 931 37 949 37 967 37 985 38 003 
 
 18 
 
 240 
 
 38021 38039 38057 38075 38093 
 
 38 112 38 130 38 148 38 166 38 184 
 
 18 
 
 241 
 
 38 202 38 220 38 238 38 256 38 274 
 
 38292 38310 38328 38346 38364 
 
 18 
 
 242 
 
 38382 38399 38417 38435 38453 
 
 38471 38489 38507 38525 38543 
 
 18 
 
 243 
 
 38561 38578 38596 38614 38632 
 
 38 650 38 668 38 686 38 703 38 721 
 
 18 
 
 244 
 
 38739 38757 38775 38792 38810 
 
 38828 38846 38863 38881 38899 
 
 18 
 
 245 
 
 38917 38934 38952 38970 38987 
 
 39005 39023 39041 39058 39076 
 
 18 
 
 246 
 
 39094 39 III 39 129 39 146 39 164 
 
 39182 39199 39217 39235 39252 
 
 18 
 
 247 
 
 39270 39287 39305 39322 39340 
 
 39358 39 375 39 393 39 4io 39428 
 
 18 
 
 248 
 
 39445 39463 39480 39498 39515 
 
 39 533 39550 39568 39585 39602 
 
 17+ 
 
 249 
 
 39620 39637 39655 39672 39690 
 
 39 707 39 724 39 742 39 759 39 777 
 
 17 
 
 250 
 
 39 794 39 811 39829 39846 39863 
 
 39.881 39898 39915 39 933 39950 
 
 17 
 
 N 
 
 12 3 4 
 
 5 6 7 8 9 
 
 
250 
 
 251 
 252 
 
 253 
 254 
 
 255 
 256 
 
 257 
 258 
 
 259 
 
 260 
 
 26l 
 
 262 
 
 263 
 264 
 
 265 
 
 266 
 
 267 
 
 268 
 
 269 
 
 270 
 
 271 
 272 
 273 
 274 
 
 275 
 276 
 
 277 
 278 
 279 
 
 280 
 281 
 282 
 283 
 284 
 
 285 
 286 
 287 
 288 
 289 
 
 290 
 
 291 
 292 
 
 293 
 294 
 
 295 
 296 
 
 297 
 298 
 
 299 
 
 300 
 
 39 794 
 39967 
 
 40 140 
 40312 
 40483 
 
 40654 
 
 40 824 
 
 40993 
 
 41 162 
 
 41330 
 
 41 497 
 41 664 
 41 830 
 
 41 996 
 
 42 160 
 
 42325 
 42488 
 
 42 651 
 42813 
 42975 
 
 43 136 
 43 297 
 43 457 
 43616 
 
 43 775 
 
 43 933 
 44091 
 44248 
 44404 
 44560 
 
 44716 
 44871 
 45025 
 45 179 
 45332 
 
 45 484 
 45 637 
 
 45788 
 
 45 939 
 
 46 090 
 
 46 240 
 46389 
 
 46538 
 46687 
 
 46 835 
 
 46 982 
 
 47 129 
 47 276 
 47422 
 47567 
 47 712 
 
 
 
 398II 
 39985 
 40157 
 40329 
 
 40 500 
 
 40 671 
 
 40 841 
 
 41 010 
 
 41 179 
 41347 
 
 4^ 514 
 41 681 
 
 41 847 
 
 42 012 
 42 177 
 
 42341 
 42504 
 42 667 
 
 42 830 
 42991 
 
 43 152 
 43313 
 43 473 
 43 632 
 
 43 791 
 
 43949 
 
 44 107 
 
 44 264 
 44420 
 44576 
 
 44731 
 44886 
 
 45 040 
 45 194 
 45 347 
 45 500 
 45652 
 45803 
 
 45 954 
 
 46 io5 
 
 46255 
 46 404 
 
 46553 
 
 46 702 
 46850 
 
 46997 
 
 47 144 
 47 290 
 47436 
 47582 
 
 47727 
 
 39 829 39 846 39 863 
 
 40 002 40 019 40 037 
 40 175 40 192 40 209 
 40346 40364 40381 
 40518 40535 40552 
 40 688 40 705 40 722 
 
 40 858 40 875 40 892 
 
 41 027 41 044 41 061 
 41 196 41 212 41 229 
 41 Z^2, 41 380 41 397 
 
 41 531 41 547 41 564 
 41 697 41 714 41 731 
 
 41 863 41 880 41 896 
 
 42 029 42 045 42 062 
 42 193 42 210 42 226 
 
 42357 42374 42390 
 42521 42 537 42 553 
 42 684 42*700 42 716 
 
 42 846 42 862 42 878 
 
 43 008 43 024 43 040 
 
 43 169 43 185 43 201 
 
 43329 43345 43361 
 
 43 489 43505 43 521 
 
 43 648 43 664 43 680 
 
 43 807 43 823 43 838 
 
 43 96S 43 981 43 996 
 44122 44138 44154 
 44279 44295 44 311 
 44436 44451 44467 
 44592 44607 44623 
 
 44 747 44762 44778 
 44902 44917 44932 
 
 45 056 45071 45 086 
 45 209 45 225 45 240 
 45 362 45 378 45 393 
 
 45515 45530 45 545 
 45 667 45 682 45 697 
 45 818 45 834 45 849 
 
 45 969 45 984 46 000 
 
 46 120 46 135 46 i5o 
 
 46 270 46 285 46 300 
 46 419 46 434 46 449 
 46 568 46 583 46 598 
 46 716 46 731 46 746 
 
 46 864 46 879 46 894 
 
 47 012 47 026 47 041 
 47 159 47 173 47 188 
 47305 47319 47 334 
 47451 47465 47480 
 47596 47 611 47 625 
 
 47 741 47 756 47 770 
 
 39881 39898 39915 
 40 054 40 071 40 088 
 40 226 40 243 40 261 
 40398 40415 40432 
 40569 40586 40603 
 
 40 739 40 756 40 773 
 
 40 909 40 926 40 943 
 
 41 078 41 095 41 III 
 41 246 41 263 41 280 
 41 414 41 430 41 447 
 
 41 581 41 597 41 614 
 41 747 41 764 41 780 
 
 41 913 41 929 41 946 
 
 42 078 42 095 42 III 
 42 243 42 259 42 275 
 
 42 406 42 423 42 439 
 
 42 570 42 586 42 602 
 
 42 732 42 749 42 765 
 
 42 894 42 911 42 927 
 
 43 056 43 072 43 088 
 
 43217 43233 43 249 
 43 377 43 393 43 409 
 43 537 43 553 43 569 
 43696 43 712 43 727 
 
 43 854 43 870 43 886 
 
 44 012 44 028 44 044 
 
 44 170 44 185 44201 
 44326 44342 44358 
 44483 44498 44514 
 44638 44654 44669 
 
 44793 44809 44824 
 
 44948 44963 44 979 
 
 45 102 45 117 45 ^Z?, 
 45 255 45 271 45 286 
 45 408 45 423 45 439 
 
 45561 45576 45591 
 
 45 712 45 728 45 743 
 
 45 864 45 879 45 894 
 
 46 oi5 46 030 46 045 
 46 165 46 180 46 195 
 
 46315 46330 46345 
 
 46 464 46 479 46 494 
 
 46 613 46 627 46 642 
 
 46 761 46 776 46 790 
 
 46 909 46 923 46 938 
 
 47 056 47 070 47 085 
 47 202 47 217 47 232 
 47 349 47 363 47 378 
 47 494 47 509 47 524 
 47 640 47 654 47 669 
 
 47 784 47 799 47 813 
 
 39 933 
 
 40 106 
 40 278 
 
 40449 
 40 620 
 
 40790 
 
 40 960 
 
 41 128 
 41 296 
 41 464 
 
 41 631 
 41 797 
 
 41 963 
 
 42 127 
 42 292 
 
 42455 
 42619 
 
 42 781 
 42943 
 
 43 104 
 
 43 265 
 43425 
 43584 
 43 743 
 
 43 902 
 
 44059 
 44217 
 
 44 373 
 44529 
 44685 
 
 44840 
 
 44 994 
 
 45 148 
 45301 
 45 454 
 45 606 
 45 758 
 
 45 909 
 
 46 060 
 46 210 
 
 46359 
 46509 
 46657 
 
 46 805 
 46953 
 
 47 100 
 47 246 
 47392 
 47538 
 47683 
 
 47828 
 8 
 
 39950 
 40 123 
 40 295 
 40 466 
 40637 
 
 40 807 
 40976 
 
 41 145 
 41 313 
 41 481 
 
 41 647 
 41 814 
 
 41 979 
 
 42 144 
 42 308 
 
 42 472 
 42 635 
 
 42 797 
 42959 
 
 43 120 
 
 43 281 
 43441 
 43 600 
 43 759 
 43917 
 
 44075 
 44232 
 
 44389 
 44545 
 44700 
 
 44855 
 45 010 
 45 163 
 45 317 
 45469 
 45 621 
 45 773 
 
 45 924 
 
 46 075 
 46 225 
 
 46374 
 46532 
 46 672 
 
 46 820 
 46967 
 
 47 114 
 47 261 
 
 47 407 
 47 553 
 47698 
 
 47842 
 9 
 
N 
 
 12 3 4 
 
 5 6 7 8 9 
 
 D 
 
 300 
 
 47 712 47 727 47 741 47 75^ 47 77© 
 
 47 784 47 799 47 813 47 828 47 842 
 
 14+ 
 
 301 
 
 47857 47871 47885 47900 47914 
 
 47 929 47 943 47 958 47 972 47 986 
 
 14 
 
 302 
 
 48 001 48 015 48 029 48 044. 48 058 
 
 48 073 48 087 48 loi 48 116 48 130 
 
 14 
 
 303 
 
 48 144 48 159 48 173 48 187 48 202 
 
 48 216 48 230 48 244 48 259 48 273 
 
 14 
 
 304 
 
 48287 48302 48316 48330 48344 
 
 48359 48373 48387 48401 48416 
 
 14 
 
 305 
 
 48 430 48 444 48 458 48 473 48 487 
 
 48501 48515 48530 48544 48558 
 
 14 
 
 306 
 
 48572 48586 48601 48615 48629 
 
 48643 48657 48671 48686 48700 
 
 14 
 
 307 
 
 48 714 48 728 48 742 48 756 48 770 
 
 48785 48799 48813 48827 48841 
 
 14 
 
 308 
 
 48855 48869 4888s 48897 48 911 
 
 48 926 48 940 48 954 48 968 48 982 
 
 14 
 
 309 
 
 48996 49010 49024 49038 49052 
 
 49 066 49 080 49 094 49 108 49 122 
 
 14 
 
 310 
 
 49 136 49 150 49 164 49 ^78 49 192 
 
 49 206 49 220 49 234 49 248 49 262 
 
 14 
 
 311 
 
 49276 49290 49304 49318 49332 
 
 49346 49360 49 374 49388 49402 
 
 14 
 
 312 
 
 49415 49429 49 443 49457 49471 
 
 49485 49 499 49513 49527 49541 
 
 14 
 
 3'^3 
 
 49 554 49568 49582 49596 49610 
 
 49624 49638 49651 49665 49679 
 
 14 
 
 314 
 
 49 693 49 707 49 721 49 734 49 748 
 
 49 762 49 776. 49 790 49 803 49 817 
 
 14 
 
 315 
 
 49831 49845 49859 49872 49886 
 
 49900 49 9U 49927 49941 49955 
 
 14 
 
 3^6 
 
 49969 49982 49996 50010 50024 
 
 50037 50051 50065 50079 50092 
 
 14 
 
 317 
 
 50 106 50 120 50 133 50 147 50 161 
 
 50174 50188 50202 50215 50229 
 
 14 
 
 3i« 
 
 50243 50256 50270 50284 50297 
 
 50 311 50325 50338 50352 50365 
 
 14 
 
 319 
 
 50379 50393 50406 50420 50433 
 
 50447 50461 50474 50488 50501 
 
 14 
 
 320 
 
 50515 50529 50542 50556 50569 
 
 50583 50596 50610 50623 50637 
 
 14 
 
 321 
 
 50651 50664 50678 50691 50705 
 
 50718 50732 50745 50759 50772 
 
 13+ 
 
 322 
 
 50786 50799 50813 50826 50840 
 
 50853 50866 50880 50893 50907 
 
 13+ 
 
 323 
 
 50920 50934 50947 50961 50974 
 
 50987 51 001 51 014 51028 51 041 
 
 13 
 
 324 
 
 51 055 51 068 51 081 51 095 51 108 
 
 51 121 51 135 51 148 51 162 51 175 
 
 13 
 
 325 
 
 51 188 51 202 51 215 51 228 51 242 
 
 51 255 51 268 51 282 51 295 51 308 
 
 13 
 
 326 
 
 51322 51335 51348 51362 51375 
 
 51388 51402 51 415 51428 51 441 
 
 13 
 
 327 
 
 51455 51468 51 481 51495 51508 
 
 51 521 51534 51548 51 561 51574 
 
 13 
 
 328 
 
 51 587 51 601 51 614 51 627 51 640 
 
 51 654 51 667 51 680 51 693 51 706 
 
 13 
 
 329 
 
 51720 51 733 51 746 51759 51 772 
 
 51 786 51 799 51 812 51 825 51 838 
 
 13 
 
 330 
 
 51 851 51865 51878 51 891 51904 
 
 51917 51930 5x943 51957 51970 
 
 13 
 
 331 
 
 51983 51996 52009 52022 52035 
 
 52 048 52 061 52 075 52 088 52 lOI 
 
 13 
 
 332 
 
 52 114 52 127 52 140 52 153 52 166 
 
 52 179 52 192 52 205 52 218 52 231 
 
 13 
 
 333 
 
 52 244 52 257 52 270 52 284 52 297 
 
 52310 52323 52336 52349 52362 
 
 13 
 
 334 
 
 52 375 52 388 52 401 52 414 52 427 
 
 52440 52453 52466 52479 52492 
 
 13 
 
 335 
 
 52504 52517 52530 52543 52556 
 
 52569 52582 52595 52608 52621 
 
 13 
 
 33(^ 
 
 52 634 52 647 52 660 52 673 52 686 
 
 52 699 52 711 52 724 52 737 52 750 
 
 13 
 
 337 
 
 52 763 52 776 52 789 52 802 52 815 
 
 52827 52840 52853 52866 52879 
 
 ^3' 
 
 338 
 
 52892 52905 52917 52930 52943 
 
 52956 52969 52982 52994 53007, 
 
 13 
 
 339 
 
 53020 53033 53046 53058 53071 
 
 53 084 53 097 53 "o 53 122 53 135 
 
 13 
 
 340 
 
 53 148 53 161 53 173 53 186 53 199 
 
 53 212 53 224 53 237 53 250 53 263 
 
 13 
 
 341 
 
 53275 53288 53301 53314 53326 
 
 53 339 53352 53364 53377 53390 
 
 13 
 
 342 
 
 53403 53 4^5 53428 53441 53453 
 
 53466 53479 53491 53504 53517 
 
 13 
 
 343 
 
 53529 53542 53555 53567 53580 
 
 53 593 53605 53618 53631 53643 
 
 13 
 
 344 
 
 53 656 53 668 53 681 53 694 53 706 
 
 53 719 53 732 53 744 53 757 53 769 
 
 13 
 
 345 
 
 53 782 53 794 53 807 53 820 53 832 
 
 53845 53857 53870 53882 53895 
 
 13 
 
 346 
 
 53908 53920 53 933 53 945 53 958 
 
 53970 53983 53 995 54008 54020 
 
 12+ 
 
 347 
 
 54033 54045 54058 54070 54083 
 
 54095 54108 54120 54133 54145 
 
 12+ 
 
 348 
 
 54158 54170 54183 54195 54208 
 
 54220 54233 54245 54258 54270 
 
 124- 
 
 349 
 
 54283 54295 54307 54320 54332 
 
 54 345 54 357 54 37© 54382 54 394 
 
 12 
 
 350 
 
 54407 54419 54432 54 444 54456 
 
 54469 54481 54494 54506 54518 
 
 12 
 
 N 
 
 1 2 3 4 
 
 5 6 7 8 9 
 
 
N 
 
 12 3 4 
 
 5 6 7 8 9 
 
 1) 
 
 350 
 
 54407 54 4^9 54432 54 444 54 45^ 
 
 54469 54481 54494 54506 54518 
 
 12 
 
 351 
 
 54531 54 543 54 555 54 568 54580 
 
 54 593 54605 54617 54630 54642 
 
 12 
 
 352 
 
 54654 54667 54679 54691 54704 
 
 54716 54728 54741 54 753 54765 
 
 12 
 
 353 
 
 54777 54790 54802 54814 54827 
 
 54839 54851 54864 54.876 54888 
 
 12 
 
 354 
 
 54900 54913 54925 54 937 54 949 
 
 54962 54 974 54986 54998 55 on 
 
 12 
 
 355 
 
 55 023 55 035 55 047 55 060 55 072 
 
 55084 55096 55 108 55 1.21 55 133 
 
 12 
 
 356 
 
 55 145 55 157 55 ^^9 55 182 55 194 
 
 55206 55218 55230 55242 55 255. 
 
 12 
 
 357 
 
 55267 55279 55291 55303 55315 
 
 55328 55340 55352 55364 55376 
 
 12 
 
 358 
 
 55 Z^^ SS 400 55 413 55 425 55 437 ' 
 
 55 449 55 461 55 473 55 485 55 497 
 
 12 
 
 359 
 
 55509 55522 55534 55546 55558 
 
 55570 55582 55594 55606 55618 
 
 12 
 
 360 
 
 55 630 55 642 55 654 55 666 55 678 
 
 55 691 55 703 55 715 55 727 55 739 
 
 12 
 
 361 
 
 55751 55763 55 775 55 787 55 799 
 
 55 811 55823 55835 55847 55859 
 
 12 
 
 362 
 
 55871 55883 55895 55907 55919 
 
 55931 55 943 55955 55967 55 979 
 
 12 
 
 363 
 
 55991 56003 56015 56027 56038 
 
 56050 56062 56074 56086 56098 
 
 12 
 
 364 
 
 56 no 56 122 56 134 56 146 56 158 
 
 56 170 56 182 56 194 5*6 205 56 217 
 
 12 
 
 365 
 
 56 229 56 241 56 253 56 265 56 277 
 
 56289 56 301 56 312 56324 56336 
 
 12 
 
 366 
 
 56348 56360 56372 56384 56396 
 
 56407 56419 56431 56443 56455 
 
 12 
 
 367 
 
 56467 56478 56490 56502 56514 
 
 56526 56538 56549 56561 56573 
 
 12 
 
 368 
 
 56585 56597 56608 56620 56632 
 
 56644 56656 56667 56679 56691 
 
 12 
 
 369 
 
 56703 56714 56726 56738 56750 
 
 56761 56773 56785 56797 56808 
 
 12 
 
 370 
 
 56820 56832 56844 56855 56867 
 
 56879 56891 56902 56914 56926 
 
 12 
 
 371 
 
 56937 56949 56961 56972 56984 
 
 56996 57008 57019 57031 57043 
 
 12 
 
 372 
 
 57 054 57 066 57 078 57 089 57 loi 
 
 57 113 57 124 57 136 57 148 57 159 
 
 12 
 
 373 
 
 57 171 57 ^^2, 57 i94 57 206 57 217 
 
 57 229 57 241 57 252 57 264 57 276 
 
 12 
 
 374 
 
 57287 57299 57310 57322 57334 
 
 57 345 57 357 57 368 57380 57 392 
 
 12 
 
 375 
 
 57 403 57 415 57 426 57 438 57 449 
 
 57461 57 473 57484 57496 57507 
 
 12 
 
 376 
 
 57519 57530 57542 57 553 57565 
 
 57576 57588 57600 57 611 57623 
 
 11+ 
 
 377 
 
 57 634 57 646 57 657 57 669 57 680 
 
 57 692 57 703 57 715 57 726 57 738 
 
 "+ 
 
 378 
 
 57 749 57 761 57 772 57 784 57 795 
 
 57807 57818 57830 57841 57852 
 
 "+ 
 
 379 
 
 57864 57875 57887 57898 57910 
 
 57921 57 933 57 944 57 955 57 967 
 
 
 380 
 
 57978 57990 58001 58013 58024 
 
 58035 58047 58058 58070 58081 
 
 
 381 
 
 58092 58 104 58 115 58 127 58 138 
 
 58 149 58 161 58 172 58 184 58 195 
 
 
 382 
 
 58 206 58 218 58 229 58 240 58 252 
 
 58263 58274 58286 58297 58309 
 
 
 383 
 
 583^0 58331 58343 58354 58365 
 
 58377 58388 58399 58410 58422 
 
 
 384 
 
 58433 58444 58456 58467 58478 
 
 58490 58501 58512 58524 58535 
 
 
 385 
 
 58546 58557 58569 58580 58591 
 
 58602 58614 58625 58636 58647 
 
 
 386 
 
 58659 58670 58681 58692 58704 
 
 58715 58726 58737 58749 58760 
 
 
 387 
 
 58771 58782 58794 58805 58816 
 
 58827 58838 58850 58861 58872 
 
 
 388 
 
 58883 58894 58906 58917 58928 
 
 58939 58950 58961 58973 58984 
 
 
 389 
 
 58995 59006 59017 59028 59040 
 
 59051 59062 59073 59084 59095 
 
 
 390 
 
 59 106 59 118 59 129 59 140 59 151 
 
 59162 59173 59184 59195 59207 
 
 
 391 
 
 59218 59229 59240 59251 59262 
 
 59273 59284 59295 59306 59318 
 
 
 392 
 
 59329 59340 59351 59362 59373 
 
 59384 59 395 59406 59417 59428 
 
 
 393 
 
 59439 59450 59461 59472 59483 
 
 59494 59506 59517 59528 59 539 
 
 
 394 
 
 59550 59561 59572 59583 59594 
 
 59605 59616 59627 59638 59649 
 
 
 395 
 
 59660 59671 59682 59693 59704 
 
 59 715 59 726 59 737 59 748 59 759 
 
 
 396 
 
 59770 59780 59791 59802 59813 
 
 59824 59835 59846 59857 59868 
 
 
 397 
 
 59879 59890 59901 59912 59923 
 
 59 934 59945 59956 59966 59 977 
 
 
 398 
 
 59988 59999 60010 60021 60032 
 
 60 043 60 054 60 065 60 076 60 086 
 
 
 399 
 
 60 097 60 108 60 119 60 130 60 141 
 
 60 152 60 163 60 173 60 184 60 195 
 
 
 400 
 
 60206 60217 60228 60239 60249 
 
 60260 60271 60282 60293 60304 
 
 
 N 
 
 12 3 4 
 
 5 6 7 8 9 
 
 
N 
 
 12 3 4 
 
 5 6 7 8 
 
 9 
 
 » 
 
 400 
 
 60 206 60 217 60 228 60 239 60 249 
 
 60260 60271 60282 60293 
 
 60304 
 
 II 
 
 401 
 
 60314 60325 60:^^6 60347 60358 
 
 60369 60379 60390 60401 
 
 60 412 
 
 II 
 
 402 
 
 60423 60433 60444 60455 60466 
 
 60477 60487 60498 60509 
 
 60 520 
 
 II 
 
 403 
 
 60531 60541 60552 60563 60574 
 
 60584 60595 60606 60617 
 
 60 627 
 
 II 
 
 404 
 
 606^8 60649 60660 60670 60681 
 
 60692 60703 60713 60724 
 
 60735 
 
 II 
 
 405 
 
 60 746 60 756 60 767 60 778 60 788 
 
 60799 60810 60821 60831 
 
 60 842 
 
 II 
 
 406 
 
 60853 6086^ 60874 60885 60895 
 
 60906 60917 60927 60938 
 
 60 949 
 
 II 
 
 407 
 
 60959 60970 60981 609.91 61002 
 
 61 013 61 023 61 034 61 045 
 
 61 055 
 
 II 
 
 408 
 
 61 066 61 077 61 087 61 098 61 109 
 
 61 119 61 130 61 140 61 151 
 
 61 162 
 
 II 
 
 409 
 
 61 172 61 183 61 194 61 204 61 2l5 
 
 61 225 61 236 61 247 61 257 
 
 61 268 
 
 II 
 
 410 
 
 61 278 61 289 61 300 61 310 61 321 
 
 61 331 61342 61 352 61 s6s 
 
 61 374 
 
 II 
 
 411 
 
 61 384 61 395 61 405 61 416 61 426 
 
 61 437 61 448 61 458 6x 469 
 
 61 479 
 
 II 
 
 412 
 
 61 490 61 500 61 511 61 521 61 532 
 
 61 542 61 553 61 563 61 574 
 
 61584 
 
 10+ 
 
 413 
 
 61 595 61 606 61 616 61 627 61 637 
 
 61 648 61 658 61 669 61 679 
 
 61 690 
 
 10+ 
 
 414 
 
 61 700 61 711 61 721 61 731 6i 742 
 
 61 752 61 763 61 773 61 784 
 
 61 794 
 
 10+ 
 
 415 
 
 61 805 61 815 61 826 61 836 61 847 
 
 61857 61868 61878 61888 
 
 61 899 
 
 10+' 
 
 416 
 
 61 909 61 920 61 930 61 941 61 951 
 
 61 962 61 972 61 982 61 993 
 
 62003 
 
 10 
 
 417 
 
 62 014 62 024 62 034 62 045 62 055 
 
 62 066 62 076 62 086 62 097 
 
 62 107 
 
 10 
 
 418 
 
 62 118 62 128 62 138 62 149 62 159 
 
 62 170 62 180 62 190 62 201 
 
 62 211 
 
 10 
 
 419 
 
 62 221 62 232, 62 242 62 252 62 263 
 
 62 273 62 284 62 294 62 304 
 
 62315 
 
 10 
 
 420 
 
 62325 62335 62346 62356 62^66 
 
 62 377 62 387 62 397 62 408 
 
 62 418 
 
 10 
 
 421 
 
 62 428 62 439 62 449 62 459 62 469 
 
 62 480 62 490 62 500 62 511 
 
 62 521 
 
 10 
 
 422 
 
 62531 62542 62552 62562 62572 
 
 62 583 62 593 62 603 62 613 
 
 62 624 
 
 10 
 
 423 
 
 62 634 62 644 62 655 62 665 62 675 
 
 62 685 62 696 62 706 62 716 
 
 62 726 
 
 10 
 
 424 
 
 62 737 62 747 62 757 62 767 62 778 
 
 62 788 62 798 62 808 62 8i8 
 
 62829 
 
 10 
 
 425 
 
 62 839 62 849 62 859 62 870 62 880 
 
 62 890 62 900 62 910 62 921 
 
 62931 
 
 10 
 
 426 
 
 62941 62951 62961 62972 62982 
 
 62992 63002 63012 63022 
 
 63033 
 
 10 
 
 427 
 
 ^3 043 ^3 053 (^3 °^3 63 073 6s 083 
 
 63094 63 104 63 114 6s 124 
 
 63134 
 
 10 
 
 428 
 
 63 144 6^ 155 63 i65 63 175 6s 185 
 
 6s 195 63 205 6s 215 63 225 
 
 63236 
 
 10 
 
 429 
 
 63 246 6s 256 6s 266 6s 276 6s 286 
 
 63296 6s 306 63317 63327 
 
 63 337 
 
 10 
 
 430 
 
 63347 63357 6s 367 63377 63387 
 
 63397 63407 63417 63428 63438 
 
 10 
 
 431 
 
 63 448 63 458 6s 468 6s 478 63 488 
 
 63498 63508 63518 63528 
 
 63538 
 
 10 
 
 432 
 
 63 548 63 558 6s 568 63 579 63 589 
 
 63 599 63 609 63 619 63 629 
 
 6s6s9 
 
 10 
 
 433 
 
 63 649 ^3 659 ^3 669 6s 679 6s 689 
 
 63699 63 709 63 719 63 729 
 
 63739 
 
 10 
 
 434 
 
 63 749 63 759 63 769 6s 779 63 789 
 
 63 799 63 809 63 819 63 829 
 
 63839 
 
 10 
 
 435 
 
 6s 849 63 859 6s 869 6s 879 6s 889 
 
 63 899 6s 909 6s 919 6s 929 
 
 63939 
 
 10 
 
 436 
 
 63 949 63 959 63 969 63 979 6s 988 
 
 63998 64008 64018 64028 
 
 64038 
 
 10 
 
 437 
 
 64048 64058 64068 64078 64088 
 
 64098 64108 64 118 64128 
 
 64 137 
 
 10 
 
 438 
 
 64147 64157 64167 64177 64187 
 
 64197 64207 64217 64227 
 
 64237 
 
 10 
 
 439 
 
 64246 64256 64266 64276 64286 
 
 64296 64306 64316 64326 
 
 64335 
 
 10 
 
 440 
 
 64345 64355 64365 64375 64385 
 
 64395 64404 64414 64424 
 
 64434 
 
 10 
 
 441 
 
 64444 64454 64464 64473 64483 
 
 64493 64503 64513 64523 
 
 64532 
 
 10 
 
 442 
 
 64542 64552 64562 64572 64582 
 
 64591 64601 64 611 64621 
 
 64631 
 
 10 
 
 443 
 
 64 640 64 650 64 660 64 670 64 680 
 
 64689 64699 64709 64719 
 
 64729 
 
 10 
 
 444 
 
 64738 64748 64758 64768 64777 
 
 64787 64797 64807 64816 
 
 64826 
 
 10 
 
 445 
 
 64836 64846 64856 64865 64875 
 
 64885 64895 64904 64914 
 
 64924 
 
 10 
 
 446 
 
 64933 64943 64953 64963 64972 
 
 64982 64992 65002 65 on 
 
 65 021 
 
 10 
 
 447 
 
 65 °3i 65 040 65 050 6^ 060 65 070 
 
 65 079 65 089 65 099 65 108 
 
 65 118 
 
 10 
 
 448 
 
 65 128 65 137 65 147 65 157 65 167 
 
 65 176 65 186 65 196 65 205 65 2l5 
 
 10 
 
 449 
 
 65 225 65 234 65 244 65 254 65 263 
 
 65 273 65 283 65 292 65 302 
 
 65312 
 
 10 
 
 450 
 
 65321 65331 65341 65350 65360 
 
 65 369 65 379 65 389 65 398 65 408 
 
 10 
 
 N 
 
 12 3 4 
 
 5 6 7 8 
 
 9 
 
 
N 
 
 12 3 4 
 
 5 6 7 8 9 
 
 D 
 
 450 
 
 65 321 65 331 65 341 65 350 65 360 
 
 65 369 65 379 65 389 65 398 65 408 
 
 10 
 
 451 
 
 65 418 65 427 65 437 65 447 65 456 
 
 65 466 65 475 65 485 65 495 65 504 
 
 10 
 
 452 
 
 65 514 65 523 65 533 65 543 65 552 
 
 65562 65571 65581 65591 65600 
 
 10 
 
 453 
 
 65 610 65 619 65 629 65 639 65 648 
 
 65 658 65 667 65 677 65 686 65 696 
 
 10 
 
 454 
 
 65 706 65 715 65 725 65 734 65 744 
 
 ^5 753 65 763 65 772 65 782 65 792 
 
 10 
 
 455 
 
 65 801 65 811 65 820 65 830 65 839 
 
 65 849 65 858 65 868 65 877 65 887 
 
 9+ 
 
 456 
 
 65 896 65 906 65 916 65 925 65 935 
 
 65 944 65 954 65 963 65 973 65 982 
 
 9+ 
 
 457 
 
 65992 66001 66 on 66020 66030 
 
 66039 66049 66058 66068 66077 
 
 9+ 
 
 458 
 
 66 087 66 096 66 106 66 ii5 66 124 
 
 66 134 66 143 66 153 66 162 66 172 
 
 9+ 
 
 459 
 
 66 181 66 191 66200 66210 66219 
 
 66229 66238 66247 66257 66266 
 
 9+ 
 
 460 
 
 66276 66285 66295 66304 66314 
 
 66323 66332 66342 66351 66361 
 
 9 
 
 461 
 
 66370 66 sSo 66389 66398 66408 
 
 66417 66427 664^6 66445 66455 
 
 9 
 
 462 
 
 66 464 66 474 66 483 66 492 66 502 
 
 66 511 66521 66530 66539 26549 
 
 9 
 
 463 
 
 66558 66567 66577 66586 66596 
 
 66605 66614 66624 66 6^^ 66642 
 
 9 
 
 464 
 
 66652 66661 66671 666S0 66689 
 
 66699 66708 66717 66727 66736 
 
 9 
 
 465 
 
 66 745 66 755 66 764 66 773 66 783 
 
 66792 66801 66 811 66820 66829 
 
 9 
 
 466 
 
 66 8^9 66848 66857 66867 66876 
 
 66885 66894 66904 66913 66922 
 
 9 
 
 467 
 
 66 932 66 941 66 950 66 960 66 969 
 
 66978 66987 66997 67006 67015 
 
 9 
 
 468 
 
 67025 67034 67043 67052 67062 
 
 67 071 67 080 66 089 67 099 67 108 
 
 9 
 
 469 
 
 67 117 67 127 67 136 67 145 67 154 
 
 67 164 67 173 67 182 67 191 67 201 
 
 9 
 
 470 
 
 67 210 67 219 67 228 67 237 67 247 
 
 67 256 67 265 67 274 67 284 67 293 
 
 9 
 
 471 
 
 67302 67 311 67321 67330 67339 
 
 67348 67357 67367 67376 67385 
 
 9 
 
 472 
 
 67394 67403 67413 67422 67431 
 
 67 440 67 449 67 459 67 468 67 477 
 
 9 
 
 473 
 
 67 486 67 495 67 504 67 514 67 523 
 
 67 532 67 541 67 550 67 560 67 569 
 
 9 
 
 474 
 
 67578 67587 67596 67605 67614 
 
 67624 6"] 6;^^ 67642 67651 67660 
 
 9 
 
 475 
 
 67 669 67 679 67 688 67 697 67 706 
 
 67715 67724 67733 67742 67752 
 
 9 
 
 476 
 
 67 761 67 770 67 779 67 788 67 797 
 
 67 806 67 815 67 825 67 834 67 843 
 
 9 
 
 477 
 
 67 852 67 861 67 870 67 879 67 888 
 
 67897 67906 67916 67925 67934 
 
 9 
 
 478 
 
 67943 67952 67961 67970 67979 
 
 67988 67997 68006 68015 68024 
 
 9 
 
 479 
 
 68034 68043 68052 68061 68070 
 
 68079 68088 68097 68106 68 115 
 
 9 
 
 480 
 
 68 124 68 133 68 142 68 151 68 160 
 
 68 169 68 178 68 187 68 196 68 205 
 
 9 
 
 481 
 
 68215 68224 68233 68242 68251 
 
 68 260 68 269 68 278 68 287 68 296 
 
 9 
 
 482 
 
 68305 68314 68323 68332 68341 
 
 68350 68359 68368 68377 68386 
 
 9 
 
 483 
 
 68395 68404 68413 68422 68431 
 
 68 440 68 449 68 458 68 467 68 476 
 
 9 
 
 484 
 
 68485 68494 68502 68 511 68520 
 
 68529 68538 68547 68556 68565 
 
 9 
 
 485 
 
 68574 68583 68592 68601 68610 
 
 68619 68628 68637 68646 68655 
 
 9 
 
 486 
 
 68 664 68 673 68 681 68 690 68 699 
 
 68 708 68 717 68 726 68 735 68 744 
 
 9 
 
 487 
 
 68753 68762 68771 68780 68789 
 
 68797 68806 68815 68824 68833 
 
 9 
 
 488 
 
 68842 68851 68860 68869 68878 
 
 68 886 68895 68904 68913 68922 
 
 9 
 
 489 
 
 68931 68940 68949 68958 68966 
 
 68975 68984 68993 69002 69 01 1 
 
 9 
 
 490 
 
 69 020 69 028 69 037 69 046 69 055 
 
 69 064 69 073 69 082 69 090 69 099 
 
 9 
 
 491 
 
 69 108 69 117 69 126 69 135 69 144 
 
 69 152 69 161 69 170 69 179 69 188 
 
 9 
 
 492 
 
 69 197 69 205 69 214 69 223 69 232 
 
 69 241 69 249 69 258 69 267 69 276 
 
 9 
 
 493 
 
 69285 69294 69302 69 311 69320 
 
 69329 69338 69346 69355 69364 
 
 9 
 
 494 
 
 69373 69381 69390 69399 69408 
 
 69417 69425 69434 69443 69452 
 
 9 
 
 495 
 
 69461 69469 69478 69487 69496 
 
 69504 69513 69522 69531 69539 
 
 9 
 
 496 
 
 69548 69557 69566 69574 69583 
 
 69592 69601 69609 69618 69627 
 
 9 
 
 497 
 
 69636 69644 69653 69662 69671 
 
 69679 69 688 69 697 69705 69714 
 
 9 
 
 498 
 
 69 723 69 732 69 740 69 749 69 758 
 
 69 767 69 715 69 784 69 793 69 801 
 
 9 
 
 499 
 
 69810 69819 69827 69836 69845 
 
 69854 69862 69871 69880 69888 
 
 9 
 
 500 
 
 69897 69906 69914 69923 69932 
 
 69 940 69 949 69 958 69 966 69 975 
 
 9 
 
 N 
 
 12 3 4 
 
 5 6 7 8 9 
 
 
N 
 
 12 3 4 
 
 5 6 7 8 9 
 
 D 
 
 500 
 
 69 897 69 906 69 914 69 923 69 932 
 
 69 940 69 949 69 958 69 966 69 975 
 
 9 
 
 501 
 
 69984 69992 70001 70010 70018 
 
 70027 70036 70044 70053 70062 
 
 9 
 
 502 1 70070 70079 70088 70096 70105 
 
 70 114 70122 70 131 70140 70148 
 
 9 
 
 503 70157 70165 70174 70183 70 191 
 
 70200 70209 70217 70226 70234 
 
 9 
 
 504 
 
 70243 70252 70260 70269 70278 
 
 70286 70295 70303 70312 70321 
 
 9 
 
 505 
 
 70329 70338 70346 70355 70364 
 
 70372 70381 70389 70398 70406 
 
 9 
 
 506 
 
 70415 70424 70432 70441 70449 
 
 70458 70467 70475 70484 70492 
 
 9 
 
 507 
 
 70501 70509 70518 70526 70535 
 
 70544 70552 70561 70569 70578 
 
 9 
 
 508 
 
 70586 70595 70603 70612 70621 
 
 70629 70638 70646 70655 70663 
 
 «+ 
 
 509 
 
 70672 70680 70689 70697 70706 
 
 70714 70725 70731 70740 70749 
 
 8+ 
 
 510 
 
 70757 70766 70774 70783 70791 
 
 70800 70808 70817 70825 70834 
 
 8+ 
 
 511 
 
 70842 70851 70859 70868 70876 
 
 70885 70893 70902 70910 70919 
 
 8+ 
 
 512 
 
 70927 70935 70944 70952 70961 
 
 70969 70978 70986 70995 71003 
 
 8+ 
 
 513 
 
 71 012 71020 71029 71037 71046 
 
 71054 71063 71 071 71079 71088 
 
 8+ 
 
 514 
 
 71 096 71 105 71 113 71 122 71 130 
 
 71 139 71 147 71 155 71 164 71 172 
 
 8 
 
 515 
 
 71 181 71 189 71 198 71 206 71 214 
 
 71 223 71 231 71 240 71 248 71 257 
 
 8 
 
 516 
 
 71 265 71 273 71 282 71 290 71 299 
 
 71307 71 315 71324 71332 71 341 
 
 8 
 
 517 
 
 71349 71357 71366 71374 71383 
 
 71 391 71399 71408 71 416 71425 
 
 8 
 
 518 
 
 71433 71 441 71450 71458 71466 
 
 71475 71483 71492 71500 71508 
 
 8 
 
 519 
 
 71 517 71525 71533 71542 71550 
 
 71 559 71 567 71 575 71 584 71 592 
 
 8 
 
 520 
 
 71 600 71 609 71 617 71 625 71 634 
 
 71642 71650 71659 71667 71675 
 
 8 
 
 521 
 
 71 684 71 692 71 700 71 709 71 717 
 
 71 725 71 734 71 742 71 750 71 759 
 
 8 
 
 522 
 
 71 767 71 775 71 784 71 792 71 800 
 
 71809 71 817 71825 71834 71842 
 
 8 
 
 523 
 
 71850 71858 71867 71875 71883 
 
 71892 71900 71908 71 917 71925 
 
 8 
 
 524 
 
 71933 71 941 71950 71958 71966 
 
 71975 71983 71 991 71999 72008 
 
 8 
 
 525 
 
 72 016 72 024 72 032 72 041 72 049 
 
 72057 72066 72074 72082 72090 
 
 8 
 
 526 
 
 72 099 72 107 72 115 72 123 72 132 
 
 72 140 72 148 72 156 72 165 72 173 
 
 8 
 
 527 
 
 72 181 72 189 72 198 72 206 72 214 
 
 72 222 72 230 72 239 72 247 72 255 
 
 8 
 
 528 
 
 72 263 72 272 72 280 72 288 72 296 
 
 72304 72313 72321 72329 72337 
 
 8 
 
 529 
 
 72346 72354 72362 72370 72378 
 
 72387 72395 72403 72 411 72419 
 
 8 
 
 530 
 
 72 428 72 436 72 444 72 452 72 460 
 
 72469 72477 72485 72493 72501 
 
 8 
 
 531 
 
 72509 72518 72526 72534 72542 
 
 72550 72558 72567 72575 72583 
 
 8 
 
 532 
 
 72591 72599 72607 72616 72624 
 
 72 632 72 640 72 648 72 656 72 665 
 
 8 
 
 533 
 
 72673 72681 72689 72697 72705 
 
 72 713 72 722 72 730 72 738 72 746 
 
 8 
 
 534 
 
 72 754 72 762 72 770 72 779 72 787 
 
 72795 72803 72 811 72819 72827 
 
 8 
 
 535 
 
 72835 72843 72852 72860 72868 
 
 72 876 72 884 72 892 72 900 72 908 
 
 8 
 
 536 
 
 72916 72925 72933 72941 72949 
 
 72957 72965 72973 72981 72989 
 
 8 
 
 537 
 
 72997 73006 73014 73022 73030 
 
 73038 73046 73054 73062 73070 
 
 8 
 
 538 
 
 73078 73086 73094 73102 73 III 
 
 73 "9 73 127 73 135 73 i43 73 151 
 
 8 
 
 539 
 
 73 159 73 167 73 175 73 183 73 191 
 
 73199 73207 73215 73223 73231 
 
 8 
 
 540 
 
 73 239 73 247 73 255 73 263 73 272 
 
 73280 73288 73296 73304 73312 
 
 8 
 
 541 
 
 73320 73328 73336 73 344 73352 
 
 73360 73368 73376 73384 73392 
 
 8 
 
 542 
 
 73 400 73 408 73 416 73 424 73 432 
 
 73 440 73 448 73 456 73 464 73 472 
 
 8 
 
 543 
 
 73480 73488 73496 73504 73512 
 
 73520 73528 73536 73 544 73552 
 
 8 
 
 544 
 
 73560 73568 73576 73584 73592 
 
 73 600 73 608 73 616 73 624 73 632 
 
 8 
 
 545 
 
 73 640 73 648 73 656 73 664 73 672 
 
 73679 73687 73695 73703 73 7" 
 
 8 
 
 546 
 
 73 719 73 7.27 J73 735 73 743 73 75^ 
 
 73 759 73 767 73 775 73 783 73 79^ 
 
 8 
 
 547' 
 
 73 799 73 807 73 8i5 73 823 73 830 
 
 73^3^ 73846 73854 73862 73870 
 
 8 
 
 548 
 
 73878 73^86 73894 73902 73910 
 
 73918 73926 73 933 73941 73 949 
 
 8 
 
 549 
 
 73 957 73965 73 973 73 981 73989 
 
 73997 74005 74013 74020 74028 
 
 8 
 
 550 
 
 74036 74044 74052 74060 74068 
 
 74076 74084 74092 74099 74107 
 
 8 
 
 5f 
 
 1 2 3 4 
 
 5 6 7 8 9 
 
 
N 
 550 
 
 1 
 
 3 3 
 
 4 
 
 5 6 7 8 9 
 
 D 
 
 74036 74044 
 
 74052 74060 
 
 74068 
 
 74076 74084 74092 74099 74107 
 
 8 
 
 551 
 
 74 115 74123 
 
 74 131 74139 
 
 74147 
 
 74155 74162 74170 74178 74186 
 
 8 
 
 552 
 
 74194 74202 
 
 74 210 74 218 
 
 74225 
 
 74233 74241 74249 74257 74265 
 
 8 
 
 553 
 
 74273 74280 
 
 74 288 74 296 
 
 74304 
 
 74312 74320 74327 74335 74343 
 
 8 
 
 554 
 
 74351 74359 
 
 74367 74 374 
 
 74382 
 
 74390 74398 74406 74414 74421 
 
 8 
 
 555 
 
 74429 74 437 
 
 74445 74 453 
 
 74461 
 
 74468 74476 74484 74492 74500 
 
 8 
 
 556 
 
 74507 74515 
 
 74523 74531 
 
 74 539 
 
 74 547 74 554 74 562 74 57o 74 578 
 
 8 
 
 557 
 
 74586 74 593 
 
 74601 74609 
 
 74617 
 
 74624 74632 74640 74648 74656 
 
 8 
 
 558 
 
 74663 74671 
 
 74679 74687 
 
 74695 
 
 74702 74710 74718 74726 74 733 
 
 8 
 
 559 
 
 74741 74749 
 
 74 757 74764 
 
 74772 
 
 74780 74788 74796 74803 74 81 1 
 
 8 
 
 560 
 
 74819 74-827 
 
 74834 74842 
 
 74850 
 
 74858 74865 74873 74881 74889 
 
 8 
 
 561 
 
 74896 74904 
 
 74912 74920 
 
 74927 
 
 74935 74943 74950 74958 74966 
 
 8 
 
 562 
 
 74 974 74981 
 
 74989 74 997 
 
 75005 
 
 75 012 75 020 75 028 75 035 75 043 
 
 8 
 
 563 
 
 75051 75059 
 
 75 066 75 074 
 
 75082 
 
 75089 75097 75 io5 75 113 75 120 
 
 8 
 
 564 
 
 75 128 75 136 
 
 75 143 75 151 
 
 75 159 
 
 75 166 75 174 75 182 75 189 75 197 
 
 8 
 
 565 
 
 75 205 75 213 
 
 75 220 75 228 
 
 75236 
 
 75 243 75 251 75 259 75 266 75 274 
 
 8 
 
 566 
 
 75 282 75 289 
 
 75 297 75 305 
 
 75312 
 
 75320 75328 75335 75343 75351 
 
 8 
 
 567 
 
 75358 75366 
 
 75 374 75 381 
 
 75389 
 
 75 397 75404 75412 75420 75427 
 
 8 
 
 568 
 
 75 435 75 442 
 
 75 450 75 458 75 465 
 
 75 473 75 481 75 488 75 496 75 504 
 
 8 
 
 569 
 
 75 511 75519 
 
 75526 75 534 
 
 75542 
 
 75 549 75 557 75 565 75 572 75 580 
 
 8 
 
 570 
 
 75587 75 595 
 
 75 ^03 75 610 
 
 75618 
 
 75 626 75 633 75 641 75 648 75 656 
 
 8 
 
 571 
 
 75664 75671 
 
 75 679 75 686 
 
 75694 
 
 75 702 75 709 75 717 75 724 75 732 
 
 8 
 
 572 
 
 75 740 75 747 
 
 75 755 75 762 
 
 75 770 
 
 75 778 75 785 75 793 75 800 75 808 
 
 8 
 
 573 
 
 75815 75823 
 
 75831 75838 75846 
 
 75 853 75 861 75 868 75 876 75 884 
 
 8 
 
 574 
 
 75 891 75 899 75906 75 914 
 
 75921 
 
 75 929 75 937 75 944 75 952 75 959 
 
 8 
 
 575 
 
 75967 75 974 
 
 75982 75989 
 
 75 997 
 
 76005 76012 76020 76027 76035 
 
 7+ 
 
 576 
 
 76 042 76 o5o 
 
 76 057 76 065 76 072 
 
 76080 76087 76095 76103 76 no 
 
 7+ 
 
 577 
 
 76 118 76 125 
 
 76 133 76 140 
 
 76 148 
 
 76155 76163 76170 76178 76185 
 
 7+ 
 
 578 
 
 76 193 76 200 
 
 76 208 76 215 
 
 76223 
 
 76 230 76 238 76 245 76 253 76 260 
 
 7+ 
 
 579 
 
 76 268 76 275 
 
 76 283 76 290 
 
 76 298 
 
 76305 76313 76320 76328 76335 
 
 7+ 
 
 580 
 
 76343 76350 
 
 76358 76365 76373 
 
 76380 76388 76395 76403 76410 
 
 7+ 
 
 581 
 
 76 418 76 425 
 
 76433 76440 
 
 76448 
 
 76455 76462 76470 76477 76485 
 
 7+ 
 
 582 
 
 76492 76500 
 
 76507 76515 
 
 76522 
 
 76530 76537 76545 76552.76559 
 
 7+ 
 
 583 
 
 76567 7.6574 
 
 76582 76589 76597 
 
 76 604 76 612 76 619 76 626 76 634 
 
 
 584 
 
 76641 76649 76656 76664 76671 
 
 76 678 76 686 76 693 76 701 76 708 
 
 
 585 
 
 76 716 76 723 
 
 76 730 76 738 76 745 
 
 76753 76760 76768 76775 76782 
 
 
 586 
 
 76 790 76 797 
 
 76805 76812 
 
 76819 
 
 76827 76834 76842 76849 76856 
 
 
 587 
 
 76864 76871 
 
 76879 76886 
 
 76893 
 
 76901 76908 76916 76923 76930 
 
 
 588 
 
 76938 76945 76953 76960 
 
 76967 
 
 76975 76982 76989 76997 77004 
 
 
 589 
 
 77012 77019 
 
 77026 77034 
 
 77041 
 
 77048 77056 77063 77070 77078 
 
 
 590 
 
 77085 77093 
 
 77 100 77 107 
 
 77 115 
 
 77 122 77 129 77 137 77 144 77 151 
 
 
 591 
 
 77 159 77 166 
 
 77 173 77 181 
 
 77188 
 
 77195 77203 77210 77217 77225 
 
 
 592 
 
 77 232 77 240 
 
 77 247 77 254 
 
 77262 
 
 77269 77276 77283 77291 77298 
 
 
 593 
 
 77305 77313 
 
 77320 77327 
 
 77335 
 
 77342 77 349 77 357 77 364 77 37i 
 
 
 594 
 
 77 379 77386 
 
 77 393 77401 
 
 77408 
 
 77415 77422 77430 77337 77444 
 
 
 595 
 
 77452 77 459 
 
 77466 77 474 
 
 77481 
 
 77488 77495 77503 77510 77517 
 
 
 596 
 
 77525 77532 
 
 77 539 77546 
 
 77 554 
 
 77561 77568 77576 77583 77590 
 
 
 597 
 
 77 597 77 605 
 
 77612 77619 
 
 77627 
 
 77634 77641 77648 77656 77663 
 
 
 598 
 
 77670 77677 
 
 77 685 77 692 
 
 77699 
 
 77706 77714 77721 77728 77 735 
 
 
 599 
 
 77 743 77 75o 
 
 77 757 77 764 
 
 77772 
 
 77 779 77786 77793 77801 77808 
 
 
 600 
 
 77815 77822 
 
 77830 77837 77844 
 
 77851 77859 77866 77873 77880 
 
 7 
 
 N 
 
 1 
 
 2 3 
 
 4 
 
 5 6 7 8 9 
 
 
N 
 
 1 2 
 
 3 4 
 
 5 6 7 8 9 
 
 1) 
 
 600 
 
 60 1 
 602 
 603 
 604 
 
 77815 77822 77830 77837 77844 
 77887 77895 77902 77909 77916 
 77960 77967 77974 77981 77988 
 78032 78039 78046 78053 78061 
 78104 78 III 78 118 78125 78132 
 
 77851 77859 77866 77873 77880 
 77924 77931 77938 77945 77952 
 77996 78003 78010 78017 78025 
 78068 78075 78082 78089 78097 
 78 140 78 147 78 154 78 161 78 168 
 
 605 
 606 
 607 
 608 
 609 
 
 78 176 78 183 78 190 78 197 78 204 
 78247 78254 78262 78269 78276 
 78319 78326 78333 78340 78347 
 78390 78398 78405 78412 78419 
 78 462 78 469 78 476 78 483 78 490 
 
 78 211 78219 78226 78233 78240 
 78283 78290 78297 78305 78312 
 78355 78362 78369 78376 78383 
 78426 78433 78440 78447 78455 
 78497 78504 78512 78519 78526 
 
 
 610 
 
 611 
 612 
 
 613 
 614 
 
 78533 78540 78547 78554 78561 
 78604 78 611 78618 78625 'jsess 
 78675 78682 78689 78696 78704 
 78746 78753 78760 78767 78774 
 78817 78824 78831 78838 78845 
 
 78569 78576 78583 78590 78597 
 78640 78647 78654 78661 78668 
 78 711 78718 78725 78732 78739 
 78781 78789 78796 78803 78810 
 78852 78859 78866 78873 78880 
 
 
 615 
 616 
 617 
 618 
 619 
 
 78 888 78 895 78 902 
 78958 78965 78972 
 79029 79036 79043 
 79099 79 106 79 113 
 
 79 169 79 176 79 ^^3 
 
 78 909 78 916 
 78979 78986 
 79050 79057 
 
 79 120 79 127 
 79 190 79 197 
 
 78923 78930 78937 78944 78951 
 78993 79000 79007 79014 79021 
 79064 79071 79078 79085 79092 
 79 134 79 141 79 148 79 ^55 79 162 
 79204 79 211 79218 79225 79232 
 
 
 620 
 
 621 
 622 
 623 
 624 
 
 79 239 79 246 79 253 
 79309 79316 79323 
 79 379 79386 79 393 
 79 449 79456 79463 
 79518 79525 79532 
 
 79 260^79 267 
 
 79330*79337 
 79400 79407 
 
 79470 79 477 
 79 539 79546 
 
 79274 79281 79288 79295 79302 
 79 344 79351 79358 79365 79372 
 79414 79421 79428 79435 79442 
 79484 79491 79498 79505 79 511 
 79 553 79560 79567 79 574 79 581 
 
 
 625 
 626 
 627 
 628 
 629 
 
 79588 79595 79602 
 79657 79664 79671 
 79727 79734 79741 
 79 796 79803 79810 
 79865 79872 79879 
 
 79 609 79 616 
 79678 79685 
 79 748 79 754 
 79817 79824 
 79886 79893 
 
 79623 79630 79637 79644 79650 
 79692 79699 79706 79713 79720 
 79 761 79 768 79 775 79 782 79 789 
 79831 79837 79844 79851 79858 
 79900 79906 79913 79920 79927 
 
 
 630 
 
 631 
 632 
 
 634 
 
 79 934 79941 79948 79955 79962 
 80003 80010 80017 80024 80030 
 80072 80079 80085 80092 80099 
 
 80 140 80 147 80 154 80 161 80 168 
 80209 80216 80223 80229 80236 
 
 79969 79 975 79982 79989 79996 
 80037 80044 80051 80058 80 o65' 
 80 106 80 113 80 120 80 127 80 134 
 80 175 80 182 80 188 80 195 80 202 
 80243 80250 80257 80264 80271 
 
 
 635 
 636 
 
 637 
 638 
 
 639 
 
 80 277 80 284 80 291 
 80346 80353 80359 
 80414 80 421 80 428 
 80482 80489 80496 
 80550 80557 80564 
 
 80 298 80 305 
 80366 80373 
 80434 80441 
 80502 80 509 
 80570 80577 
 
 80312 80318 80325 80332 80339 
 80380 80387 80393 80400 80407 
 80 448 80 455 80 462 80 468 80 475 
 80516 80523 80530 80536 80543 
 80584 80591 80598 80604 80 611 
 
 
 640 
 
 641 
 642 
 
 643 
 644 
 
 80618 80625 80632 80638 80645 
 80686 80693 80699 80706 80713 
 80 754 80 760 80 767 80 774 80 781 
 80821 80828 80835 80841 80848 
 80889 80895 80902 80909 80916 
 
 80652 80659 80665 80672 80679 
 80 720 80 726 80 733 80 740 80 747 
 80787 80794 80801 80808 80814 
 80855 80862 80868 80875 80882 
 80922 80929 80936 80943 80949 
 
 
 645 
 646 
 
 647 
 648 
 649 
 
 80 956 80 963 80 969 
 
 81 023 81 030 81 037 
 81 090 81 097 81 104 
 81 158 81 164 81 171 
 81 224 81 231 81 238 
 
 80 976 80 983 
 
 81 043 81 050 
 81 III 81 117 
 81 178 81 184 
 81 245 81 251 
 
 80990 80996 81003 81 010 81 017 
 81 057 81 064 81 070 81 077 81 084 
 81 124 81 131 81 137 81 144 81 151 
 81 191 81 198 81 204 81 211 81 218 
 81 258 81 265 81 271 81 278 81 285 
 
 
 650 
 
 81 291 81 298 81 305 
 
 81 311 81 318 
 
 81325 81 331 81338 81345 81 351 
 
 7 
 
 N 
 
 12 
 
 3 4 
 
 5 6 7 8 9 
 
 
N 
 
 12 3 4 
 
 5 6 7 8 9 
 
 D 
 
 650 
 
 651 
 652 
 
 653 
 654 
 
 81 291 81 298 81 305 81 311 81 318 
 81358 81365 81 371 81378 81385 
 81 425 81 431 81 438 81 445 81 451 
 81 491 81 498 81 505 81 511 81 518 
 81558 81564 81 571 81578 81584 
 
 81325 81 331 81338 81345 81 351 
 81 391 81398 81405 81411 81418 
 81 458 81 465 81 471 81 478 81 485 
 81 525 81 531 81 538 81 544 81 551 
 81 591 81 598 81 604 81 611 81 617 
 
 
 655 
 656 
 
 657 
 658 
 
 659 
 
 Bl 624 81 631 81 637 81 644 81 651 
 81 690 81 697 81 704 81 710 81 717 
 8x757 81763 81770 81 776 81783 
 81 823 81 829 81 8^6 81 842 81 849 
 81 889 81 895 81 902 81 908 81 915 
 
 81 657 81 664 81 671 81 677 81 684 
 81 723 81 730 81 737 81 743 81 750 
 81 790 81 796 81 803 81 809 81 816 
 81 856 81 862 81 869 81 875 81 882 
 81 921 81 928 81 935 81 941 81 948 
 
 
 660 
 
 661 
 662 
 
 664 
 
 81 954 81 961 81 968 81 974 81 981 
 
 82 020 82 027 82 033 82 040 82 046 
 82 086 82 092 82 099 82 105 82 112 
 82 151 82 158 82 164 82 171 82 178 
 82 217 82 223 82 230 82 236 82 243 
 
 81 987 81 994 82 000 82 007 82 014 
 
 82 053 82 060 82 066 82 073 82 079 
 82 119 82 125 82 132 82 138 82 145 
 82 184 82 191 82 197 82 204 82 210 
 82 249 82 256 82 263 82 269 82 276 
 
 6 
 
 6+ 
 
 665 
 666 
 667 
 668 
 669 
 
 82 282 82 289 82 295 82 302 82 308 
 82347 82354 82360 82367 82373 
 82 413 82 419 82 426 82 432 82 439 
 82 478 82 484 82 491 82 497 82 504 
 82543 82549 82556 82562 82569 
 
 82 315 82 321 82 328 82 334 82 341 
 82 380 82 387 82 393 82 400 82 406 
 82445 82452 82458 82465 82471 
 82510 82517 82523 82530 82536 
 82575 82582 82588 82595 82601 
 
 6+ 
 6+ 
 6+ 
 6+ 
 6+ 
 
 670 
 
 671 
 
 672 
 
 673 
 674 
 
 82 607 82 614 82 620 82 627 82 6^3 
 82 672 82 679 82 685 82 692 82 698 
 82 737 82 743 82 750 82 756 82 763 
 82802 82808 82814 82821 82827 
 82866 82872 82879 82885 82892 
 
 82 640 82 646 82 653 82 659 82 666 
 82 705 82 711 82 718 82 724 82 730 
 82 769 82 776 82 782 82 789 82 795 
 82 834 82 840 82 847 82 853 82 860 
 82898 82905 82 911 82918 82924 
 
 6+ 
 
 6+ 
 
 6+ 
 
 6 
 
 6 
 
 675 
 676 
 
 677 
 678 
 679 
 
 82 930 82 937 82 943 82 950 82 956 
 
 82 995 83 001 83 008 83 014 83 020 
 8s 059 83 065 83 072 83 078 83 085 
 
 83 123 83 129 83 136 83 142 83 149 
 83 187 83 193 83 200 83 206 83.213 
 
 82 963 82 969 82 975 82 982 82 988 
 
 83 027 83 033 83 040 83 046 83 052 
 83 091 83 097 83 104 83 no 83 117 
 83 155 83 161 83 168 83 174 83 181 
 83 219 83 225 83 232 83 238 83 245 
 
 6 
 6 
 6 
 6 
 6 
 
 680 
 
 681 
 682 
 683 
 684 
 
 83 251 83 257 83 264 83 270 83 276 
 83315 83321 83327 83334 83340 
 8337^ 83385 83391 83398 83404 
 83 442 83 448 83 455 83 461 83 467 
 83506 83512 83518 83525 83531 
 
 83 283 83 289 83 296 83 302 83 308 
 
 ^3 347 83 353 ^3 359 ^3 3^^ ^3 372 
 83 410 83 417 83 423 83 429 83 436 
 ^3 474 ^3 480 83 487 83 493 83 499 
 83 537 ^3 544 ^3 55° ^3 55^ S3 563 
 
 6 
 6 
 6 
 6 
 6 
 
 685 
 686 
 687 
 688 
 689 
 
 ^3 569 83 575 83 582 83 588 83 594 
 83632 83639 83645 83651 83658 
 83 696 83 702 83 708 83 715 83 721 
 83759 83765 83771 83778 83784 
 83 822 83 828 83 835 83 841 83 847 
 
 83 601 83 607 83 613 83 620 83 626 
 83 664 83 670 83 677 83 683 83 689 
 S3 727 83 734 83 740 83 746 83 753 
 83 790 83 797 83 803 83 809 83 816 
 83 853 S3 860 83 866 83 872 83 879 
 
 6 
 6 
 6 
 6 
 6 
 
 690 
 
 691 
 692 
 
 693 
 694 
 
 83 885 83 891 83 897 83 904 83 910 
 
 83 948 83 954 83 960 83 967 83 973 
 
 84 01 1 84017 84023 84029 84036 
 84073 84080 84086 84092 84098 
 84 136 84 142 84 148 84 155 84 i6i 
 
 83 916 83 923 83 929 83 935 83 942 
 83979 83985 83992 83998 84004 
 84042 84048 84055 84061 84067 
 84105 84 III 84 117 84123 84130 
 
 84 167 84 173 84 180 84 186 84 192 
 
 6 
 6 
 6 
 6 
 6 
 
 695 
 696 
 697 
 698 
 699 
 
 84198 84205 84 211 84217 84223 
 84261 84267 84273 84280 84286 
 84323 84330 84336 84342 84348 
 84386 84392 84398 84404 84410 
 84448 84454 84460 84466 84473 
 
 84 230 84 236 84 242 84 248 84 255 
 84292 84298 84305 84311 84317 
 84354 84361 84367 84373 84379 
 84417 84423 84429 84435 84442 
 84479 84485 84491 84497 84504 
 
 6 
 6 
 6 
 6 
 6 
 
 700 
 
 84510 84516 84522 84528 84535. 
 
 84541 84547 84553 84559 84566 
 
 6 
 
 - 
 
 12 3 4 
 
 5 6 7 8 9 
 
 
N 
 
 12 3 4 
 
 5 6 7 8 9 
 
 D 
 
 700 
 
 84510 84516 84522 84528 84535 
 
 84541 84547 84553 84559 84566 
 
 6 
 
 701 
 
 84572 84578 84584 84590 84597 
 
 84603 84609 84615 84621 84628 
 
 6 
 
 702 
 
 84634 84640 84646 84652 84658 
 
 84665 84671 84677 84683 84689 
 
 6 
 
 703 
 
 84696 84702 84708 84714 84720 
 
 84726 84733 84739 84745 84751 
 
 6 
 
 704 
 
 84757 84763 84770 84776 84782 
 
 84788 84794 84800 84807 84813 
 
 6 
 
 705 
 
 84819 84825 84831 84837 84844 
 
 84850 84856 84862 84868 84874 
 
 6 
 
 706 
 
 84880 84887 84893 84899 84905 
 
 84 911 84917 84924 84930 84936 
 
 6 
 
 707 
 
 84942 84948 84954 84960 84967 
 
 84973 84979 84985 84991 84997 
 
 6 
 
 708 
 
 85 003 85 009 85 016 85 022 85 028 
 
 85 034 85 040 85 046 85 052 85 058 
 
 6 
 
 709 
 
 85 065 85 071 85 077 85 083 85 089 
 
 85 095 85 loi 85 107 85 114 85 120 
 
 6 
 
 710 
 
 85 126 85 132 85 138 85 144 85 150 
 
 85 156 85 163 85 169 85 175 85 181 
 
 6 
 
 711 
 
 85 187 85 193 85 199 85 205 85 211 
 
 85 217 85 224 85 230 85 236 85 242 
 
 6 
 
 712 
 
 85 248 85 254 85 260 85 266 85 272 
 
 85 278 85 285 85 291 85 297 85 303 
 
 6 
 
 713 
 
 85309 85315 85321 85327 85333 
 
 85 339 85 345 85 352 85 358 85 364 
 
 6 
 
 714 
 
 85 370 85 376 85 382 85 388 85 394 
 
 85 400 85 406 85 412 85 418 85 425 
 
 6 
 
 715 
 
 85 431 85 437 85 443 85 449 85 455 
 
 85 461 85 467 85 473 85 479 85 485 
 
 6 
 
 716 
 
 85 491 85 497 85 503 85 509 85 516 
 
 85 522 85 528 85 534 85 540 85 546 
 
 6 
 
 717 
 
 85552 85558 85564 85570 85576 
 
 85 582 85 588 85 594 85 600 85 606 
 
 6 
 
 718 
 
 85 612 85 618 85 625 85 631 85 637 
 
 85 643 85 649 85 655 85 661 85 667 
 
 6 
 
 719 
 
 85 673 85 679 85 685 85 691 85 697 
 
 85 703 85 709 85 715 85 721 85 727 
 
 6 
 
 7^ 
 
 85 733 85 739 85 745 85 751 85 757 
 
 85 763 85 769 85 775 85 781 85 788 
 
 6 
 
 721 
 
 85 794 85 800 85 806 85 812 85 818 
 
 85 824 85 830 85 836 85 842 85 848 
 
 6 
 
 722 
 
 85 854 85 860 85 866 85 872 85 878 
 
 85 884 85 890 85 896 85 902 85 908 
 
 6 
 
 723 
 
 85 9H 85 920 85 926 85 932 85 938 
 
 85 944 85 950 85 956 85 962 85 968 
 
 6 
 
 724 
 
 85 974 85 980 85 986 85 992 85 998 
 
 86004 86010 86016 86022 86028 
 
 6 
 
 725 
 
 86034 86040 86046 86052 86058 
 
 86064 86070 86076 86082 86088 
 
 6 
 
 726 
 
 86 094 86 100 86 106 86 112 86 118 
 
 86 124 86 130 86 136 86 141 86 147 
 
 6 
 
 727 
 
 86 153 86 159 86 165 86 171 86 177 
 
 86 183 86 189 86 195 86 201 86 207 
 
 6 
 
 728 
 
 86213 86219 86225 86231 86237 
 
 86 243 86 249 86 255 86 261 86 267 
 
 6 
 
 729 
 
 86273 86279 86285 86291 86297 
 
 86303 86308 86314 86320 86326 
 
 6 
 
 730 
 
 86332 86338 86344 86350 86356 
 
 86362 86368 86374 86380 86386 
 
 6 
 
 731 
 
 86392 86398 86404 86410 86415 
 
 86421 86427 86433 86439 86445 
 
 6 
 
 732 
 
 86451 86457 86463 86469 86475 
 
 86481 86487 86493 86499 86504 
 
 6 
 
 733 
 
 86510 86516 86522 86528 86534 
 
 86540 86546 86552 86558 86564 
 
 6 
 
 734 
 
 86570 86576 86581 86587 86593 
 
 86599 86605 86 611 86617 86623 
 
 6 
 
 735 
 
 86629 86635 86641 86646 86652 
 
 86658 86664 86670 86676 86682 
 
 6 
 
 736 
 
 86 688 86 694 86 700 86 705 86 711 
 
 86 717 86 723 86 729 86 735 86 741 
 
 6 
 
 737 
 
 86 747 86 TS3 86 759 86 764 86 770 
 
 86 776 86 782 86 788 86 794 86 800 
 
 6 
 
 738 
 
 86806 86812 86817 86823 86829 
 
 86835 86841 86847 86853 86859 
 
 6 
 
 739 
 
 86864 86870 86876 86882 86 888 
 
 86894 86900 86906 86 911 86917 
 
 6 
 
 740 
 
 86923 86929 86935 86941 86947 
 
 86953 86958 86964 86970 86976 
 
 6 
 
 741 
 
 86 982 86 988 86 994 86 999 87 005 
 
 87 on 87017 87023 87029 87035 
 
 6 
 
 742 
 
 87 040 87 046 87 052 87 058 87 064 
 
 87 070 87 075 87 081 87 087 87 093 
 
 6 
 
 743 
 
 87 099 87 105 87 III 87 116 87 122 
 
 87 128 87 134 87 140 87 146 87 151 
 
 6 
 
 744 
 
 87 157 87 163 87 169 87 17s 87 181 
 
 87 186 87 192 87 198 87 204 87 210 
 
 6 
 
 745 
 
 87 216 87 221 87 227 87 233 87 239 
 
 87 245 87 251 87 256 87 262 87 268 
 
 6 
 
 746 
 
 87 274 87 280 87 286 87 291 87 297 
 
 87303 87309 87315 87320 87326 
 
 6 
 
 747 
 
 87332 87338 87344 87349 87355 
 
 87361 87367 87373 87379 87384 
 
 6 
 
 748 
 
 87 390 87 396 87 402 87 408 87 413 
 
 87419 87425 87431 87437 87442 
 
 6 
 
 749 
 
 87 448 87 454 87 460 8y 466 87 471 
 
 87 477 87 483 87 489 87 495 87 500 
 
 6 
 
 750 
 
 87506 87512 87518 87523 87529 
 
 87535 87541 87547 87552 87558 
 
 6 
 
 N 
 
 12 3 4 
 
 5 6 7 8 9 
 
 
N 
 
 12 3 4 
 
 5 6 7 8 9 
 
 D 
 
 750 
 
 87506 87512 87518 87523 87529 
 
 87535 87541 87547 87552 87558 
 
 6 
 
 751 
 
 87564 87570 87576 87581 87587 
 
 87 593 87 599 87 604 87 610 87 616 
 
 6 
 
 752 
 
 87 622 87 628 87 633 87 639 87 645 
 
 87651 87656 87662 87668 87674 
 
 6 
 
 753 
 
 87679 87685 87691 87697 87703 
 
 87 708 87 714 87 720 87 726 87 731 
 
 6 
 
 754 
 
 87 737 87 743 87 749 87 754 87 760 
 
 87766 87772 87777 87783 87789 
 
 6 
 
 755 
 
 87795 87800 87806 87812 87818 
 
 87823 87829 87835 87841 87846 
 
 6 
 
 756 
 
 87 852 87 858 87 864 87 869 87 875 
 
 87881 87887 87892 87898 87904 
 
 6 
 
 757 
 
 87910 87915 87921 87927 87933 
 
 87 938 87 944 87 950 87 955 87 961 
 
 6 
 
 758 
 
 87 967 87 973 87 978 87 984 87 990 
 
 87996 88001 88007 88013 88018 
 
 6 
 
 759 
 
 88 024 88 030 88 036 88 041 88 047 
 
 88 053 88 058 88 064 88 070 88 076 
 
 6 
 
 760 
 
 88081 88087 88093 88098 88104 
 
 88 no 88 116 88 121 88 127 88 133 
 
 6 
 
 761 
 
 88 138 88 144 88 150 88 156 88 161 
 
 88 167 88 173 88 178 88 184 88 190 
 
 6 
 
 762 
 
 88195 88201 88207 88213 88218 
 
 88 224 88 230 88 235 88 241 88 247 
 
 6 
 
 763 
 
 88 252 88 258 88 264 88 270 88 275 
 
 88281 88287 88292 88298 88304 
 
 6 
 
 764 
 
 88309 88315 88321 88326 88332 
 
 88 338 88 343 88 349 88 355 88 360 
 
 6 
 
 765 
 
 88366 88372 88377 88383 88389 
 
 88395 88400 88406 88412 88417 
 
 6 
 
 766 
 
 88 423 88 429 88 434 88 440 88 446 
 
 88451 88457 88463 88468 88474 
 
 6 
 
 767 
 
 88480 88485 88491 88497 88502 
 
 88508 88513 88519 88525 88530 
 
 6 
 
 768 
 
 88536 88542 88547 88553 88559 
 
 88564 88570 88576 88581 88587 
 
 6 
 
 769 
 
 88593 88598 88604 88610 88615 
 
 88621 88627 88632 88638 88643 
 
 6 
 
 770 
 
 88 649 88 655 88 660 88 666 88 672 
 
 88 677 88 683 88 689 88 694 88 700 
 
 • 6 
 
 771 
 
 88705 88 711 88717 88722 88728 
 
 ^ 88 734 88 739 88 745 88 750 88 756 
 
 6 
 
 772 
 
 88762 88767 88773 88779 88784 1 88790 88795 88801 88807 88812 
 
 6 
 
 773 
 
 88818 88824 88829 88835 88840 j 88846 88852 88857 88863 88 868 
 
 6 
 
 774 
 
 88874 88880 88885 88891 88897 88902 88908 88913 88919 88925 
 
 6 
 
 775 
 
 88930 88936 88941 88947 88953 j 88958 88964 88969 88975 88981 
 
 6 
 
 776 
 
 88 986 88 992 88 997 89 003 89 009 
 
 89014 89020 89025 89031 89037 
 
 6 
 
 777 
 
 89 042 89 048 89 053 89 059 89 064 
 
 89070 89076 89081 89087 89092 
 
 6 
 
 778 
 
 89 098 89 104 89 109 89 ii5 89 120 
 
 89 126 89 131 89 137 89 143 89 148 
 
 6 
 
 779 
 
 89 154 89 159 89 165 89 170 89 176 
 
 89 182 89 187 89 193 8g 198 89 204 
 
 6 
 
 780 
 
 89209 89215 89221 89226 89232 
 
 89 237 89 243 89 248 89 254 89 260 
 
 6 
 
 781 
 
 89265 89271 89276 89282 89287 
 
 89293 89298 89304 89310 89315 
 
 6 
 
 782 
 
 89321 89326 89332 89337 89343 
 
 89348 89354 89360 89365 89371 
 
 6 
 
 783 
 
 89376 89382 89387 89393 89398 1 89404 89409 89415 89421 89426 
 
 5+ 
 
 784 
 
 89432 89437 89443 89448 89454 
 
 89459 89465 89470 89476 89481 
 
 5+ 
 
 785 
 
 89 487 89 492 89 498 89 504 89 509 
 
 89515 89520 89526 89531 89537 
 
 5+ 
 
 7S6 
 
 89542 89548 89553 89559 89564 
 
 89570 89575 89581 89586 89592 
 
 5+ 
 
 787 
 
 89597 89603 89609 89614 89620 
 
 89625 89631 89636 89642 89647 
 
 5+ 
 
 788 
 
 89 653 89 658 89 664 89 669 89 675 
 
 89680 8g686 89691 89697 89702 
 
 5+ 
 
 789 
 
 89 708 8g 713 89 719 89 724 89 730 
 
 89 735 89 741 89 746 89 752 89 757 
 
 5+ 
 
 790 
 
 89 763 89 768 89 774 89 779 89 785 
 
 89790 89796 89801 89807 89812 
 
 5+ 
 
 791 
 
 89818 89823 89829 89834 89840 
 
 89845 86851 89856 89862 89867 
 
 5+ 
 
 792- 
 
 .89873 89878 89883 89889 89894 
 
 89900 89905 89 911 89916 89922 
 
 5+ 
 
 793 
 
 89927 89933 89938 89944 89949 
 
 89955 89960 89966 89971 89977 
 
 ■5+ 
 
 794 
 
 89 982 89 988 89 993 89 998 90 004 
 
 90009 90015 90020 90026 90031 
 
 5+ 
 
 795 
 
 90037 90042 90048 90053 90059 
 
 90 064 90 069 90 075 90 080 90 086 
 
 5+ 
 
 796 
 
 90091 90097 90102 90108 90 113 
 
 90 119 90 124 90 129 90 135 90 140 
 
 5+ 
 
 797 
 
 90 146 90 151 90 157 90 162 90 168 
 
 90 173 90 179 90 184 90 189 90 195 
 
 5 
 
 798 
 
 90200 90206 90 211 90217 90222 
 
 90227 90233 90238 90244 90249 
 
 5 
 
 799 
 
 90255 90260 90266 90271 90276 
 
 90282 90287 90293 90298 90304 
 
 5 
 
 800 
 
 90309 90314 90320 90325 90331 
 
 90336 90342 90347 90352 90358 
 
 5 
 
 N 
 
 12 3 4 
 
 5 6 7 8 9 
 
 
N 
 
 
 
 1 
 
 2 3 4 
 
 5 6 7 8 
 
 9 
 
 D 
 
 800 
 
 90309 
 
 90314 
 
 90320 90325 90331 
 
 90336 90342 90347 90352 
 
 90358 
 
 5 
 
 8oi 
 
 90363 
 
 90369 
 
 90374 90380 90385 
 
 90390 90396 90401 90407 
 
 904x2 
 
 5 
 
 802 
 
 90417 
 
 90423 
 
 90428 90434 90439 
 
 90445 90450 90455 90461 
 
 90 466 
 
 5 
 
 803 
 
 90472 
 
 90477 
 
 90 482 90 488 90 493 
 
 90499 90504 90509 90515 
 
 90 520 
 
 5 
 
 804 
 
 90 526 
 
 90531 
 
 90536 90542 90547 
 
 90553 90558 90563 90569 
 
 90574 
 
 5 
 
 805 
 
 90 580 
 
 90585 
 
 90590 90596 90601 
 
 90607 90612 90617 90623 
 
 90 628 
 
 5 
 
 806 
 
 90634 
 
 90639 
 
 90644 90650 90655 
 
 90660 90666 90671 90677 
 
 90 682 
 
 5 
 
 807 
 
 90 687 
 
 90693 
 
 90 698 90 703 90 709 
 
 90714 90720 90725 90730 
 
 90736 
 
 5 
 
 808 
 
 90 741 
 
 90747 
 
 90752 90757 90763 
 
 90768 90773 90779 90784 
 
 90789 
 
 5 
 
 809 
 
 90795 
 
 90 800 
 
 90806 90 811 90816 
 
 90822 90827 90832 90838 
 
 90843 
 
 5 
 
 810 
 
 90 849 
 
 90854 
 
 90 859 90 865 90 870 
 
 90875 90881 90886 90891 
 
 90897 
 
 5 
 
 811 
 
 90 902 
 
 90907 
 
 90913 90918 90924 
 
 90929 90934 90940 90945 
 
 90950 
 
 5 
 
 812 
 
 90956 
 
 90 961 
 
 90 966 90 972 90 977 
 
 90 982 90 988 90 993 90 998 
 
 91 004 
 
 5 
 
 813 
 
 91 009 
 
 91 014 
 
 91 020 91 025 91 030 
 
 91 036 91 041 91 046 91 052 
 
 91057 
 
 5 
 
 814 
 
 91 062 
 
 91 068 
 
 91 073 91 078 91 084 
 
 91 089 91 094 91 loo 91 105 
 
 91 no 
 
 5 
 
 815 
 
 91 116 
 
 91 121 
 
 91 126 91 132 91 137 
 
 91 142 91 148 91 153 91 158 
 
 91 164 
 
 5 
 
 816 
 
 91 169 
 
 91 174 
 
 91 180 91 185 91 190 
 
 91 196 91 201 91 206 91 212 
 
 91 217 
 
 5 
 
 817" 
 
 91 222 
 
 61 228 
 
 91 233 91 238 91 243 
 
 91 249 91 254 91 259 91 265 
 
 91 270 
 
 5 
 
 818 
 
 91 275 
 
 91 281 
 
 91 286 91 291 91 297 
 
 91 302 91 307 91 312 91 318 
 
 91323 
 
 5 
 
 81.9 
 
 91328 
 
 91334 
 
 91339 91344 91 350 
 
 91 355 91360 91365 91 371 
 
 91376 
 
 5 
 
 820 
 
 91 381 
 
 91387 
 
 91 392 91 397 91 403 
 
 91 408 91 413 91 418 91 424 
 
 91429 
 
 5 
 
 821 
 
 91434 
 
 91 440 
 
 91 445 91 450 91 455 
 
 91461 91466 91471 91477 
 
 91 482 
 
 5 
 
 822 
 
 91487 
 
 91 492 
 
 91 498 91 503 91 508 
 
 91 514 91 519 91 524 91 529 
 
 91535 
 
 5 
 
 823 1 91 540 
 
 91 545 
 
 91 551 91556 91561 
 
 91 566 91 572 91 577 91 582 
 
 91587 
 
 5 
 
 824 
 
 91 593 
 
 91598 
 
 91 603 91 609 91 614 
 
 91 619 91 624 91 630 91 635 
 
 91 640 
 
 5 
 
 825 
 
 91645 
 
 91 651 
 
 91 656 91 661 91 666 
 
 91 672 91 677 91 682 91 687 
 
 91693 
 
 5 
 
 826 
 
 91 698 
 
 91 703 
 
 91 709 91 714 91 719 
 
 91 724 91 730 91 735 91 740 
 
 91 745 
 
 5 
 
 827 
 
 91 751 
 
 91 756 
 
 91 761 91 766 91 772 
 
 91 777 91 782 91 787 91 793 
 
 91 798 
 
 5 
 
 828 
 
 91803 
 
 91 808 
 
 91 814 91 819 91 824 
 
 91 829 91 834 91 840 91 845 
 
 91 850 
 
 5 
 
 829 91 855 
 
 91 86i 
 
 91 866 91 871 91 876 
 
 91 882 91 887 91 892 91 897 
 
 91 903 
 
 5 
 
 830 91908 
 
 91 9^3 
 
 91 918 91 924 91 929 
 
 9^ 934 91 939 9^ 944 9^ 95© 
 
 91955 
 
 5 
 
 ^3^ 
 
 91 960 
 
 91965 
 
 91 971 91 976 91 981 
 
 91 986 91 991 91 997 92 002 
 
 92 007 
 
 5 
 
 832 
 
 92 012 
 
 92 018 
 
 92 023 92 028 92 033 
 
 92 038 92 044 92 049 92 054 92 059 
 
 5 
 
 833 
 
 92065 
 
 92 070 
 
 92 075 92 080 92 085 
 
 92 091 92 096 92 loi 92 106 
 
 92 III 
 
 5 
 
 834 
 
 92 117 
 
 92 122 
 
 92 127 92 132 92 137 
 
 92 143 92 148 92 153 92 158 
 
 92 163 
 
 5 
 
 835 
 
 92 169 
 
 92 174 92 179 92 184 92 189 
 
 92 195 92 200 92 205 92 210 
 
 92215 
 
 5 
 
 836 
 
 92 221 
 
 92 226 
 
 92 231 92 236 92 241 
 
 92 247 92 252 92 257 92 262 
 
 92267 
 
 5 
 
 837 
 
 92273 
 
 92 278 
 
 92 283 92 288 92 293 
 
 92 298 92 304 92 309 92 314 
 
 92319 
 
 5 
 
 838 
 
 92324 
 
 92 330 
 
 92 335 92 340 92 345 
 
 92350 92355 92361 92366 
 
 92371 
 
 5 
 
 839 
 
 92376 
 
 92381 
 
 92387 92392 92397 
 
 92 402 92 407 92 412 92 418 
 
 92423 
 
 5 
 
 840 
 
 92 428 
 
 92433 
 
 92 438 92 443 92 449 
 
 92 454 92 459 92 464 92 469 
 
 92474 
 
 5 
 
 841 
 
 92 480 
 
 92485 
 
 92 490 92 495 92 500 
 
 92 505 92 511 92 516 92 521 
 
 92526 
 
 5 
 
 842 
 
 92531 
 
 92536 
 
 92 542 92547 92552 
 
 92 557 92562 92567 92572 
 
 92578 
 
 5 
 
 843 
 
 92583 
 
 92588 
 
 92 593 92 598 92 603 
 
 92 609 92 614 92 619 92 624 
 
 92 629 
 
 5 
 
 844 
 
 92 634 
 
 92639 
 
 92 645 92 650 92 655 
 
 92 660 92 665 92 670 92 675 
 
 92 681 
 
 5 
 
 845 
 
 92686 
 
 92 691 
 
 92 696 92 701 92 706 
 
 92 711 92 716 92 722 92 727 
 
 92732 
 
 5 
 
 846 
 
 92 737 
 
 92 742 
 
 92 747 92 752 92 758 
 
 92 763 92 768 92 773 92 778 
 
 92 783 
 
 5 
 
 847 
 
 92 788 
 
 92 793 
 
 92 799 92 804 92 809 
 
 92 814 92 819 92 824 92 829 
 
 92834 
 
 5 
 
 848 
 
 92 840 
 
 92845 
 
 92 850 92 855 92 860 
 
 92865 92870 92875 92881 
 
 92 886 
 
 5 
 
 849 
 
 92 891 
 
 92 896 
 
 92 901 92 906 92 911 
 
 92 916 92 921 92 927 92 932 
 
 92937 
 
 5 
 
 850 
 
 92942 
 
 92947 
 
 92952 92957 92962 
 
 92967 92973 92978 92983 
 
 92988 
 
 5 
 
 N 
 
 
 
 1 
 
 2 3 4 
 
 5 6 7 8 
 
 9 
 
 
N 
 
 12 3 4 
 
 5 6 
 
 7 8 9 
 
 D 
 
 850 
 
 851 
 852 
 853 
 854 
 
 92 942 92 947 92 952 92 957 92 962 
 
 92 993 92 998 93 003 93 008 93 013 
 
 93 044 93 049 93 054 93 ©59 93 064 
 93 095 93 100 93 105 93 no 93 115 
 93 146 93 151 93 156 93 161 93 166 
 
 92 967 92973 
 93018 93024 
 
 93 069 93 075 
 93 120 93 125 
 93 171 93 176 
 
 92 978 92 983 92 988 
 
 93 029 93 034 93 039 
 93 080 93 085 93 090 
 93 131 93 136 93 141 
 93 181 93 186 93 192 
 
 5 
 5 
 5 
 5 
 5 
 
 855 
 856 
 
 857 
 858 
 
 859 
 
 93 197 93 202 93 207 93 212 93 217 
 93 247 93 252 93 258 93 263 93 268 
 93298 93303 93308 93313 93318 
 93 349 93 354 93 359 93 3^4 93 3^9 
 93 399 93 304 93 409 93 4i4 93 420 
 
 93222 93 227 
 93 273 93 278 
 93323 93328 
 93 374 93 379 
 93 425 93 430 
 
 93 232 93 237 93 242 
 93 283 93 288 93 293 
 93 334 93 339 93 344 
 93 384 93 389 93 394 
 93 435 93 440 93 445 
 
 5 
 5 
 5 
 5 
 5 
 
 860 
 
 861 
 862 
 863 
 864 
 
 93 450 93 455 93 460 93 465 93 470 
 93500 93505 93510 93515 93520 
 93551 93556 93561 93566 93571 
 93601 93606 93 611 93616 93621 
 93651 93656 93661 93666 93671 
 
 93 475 93480 
 93526 93531 
 93576 93581 
 93 626 93 631 
 93 676 93 682 
 
 93 485 93 490 93 495 
 93 536 93 541 93 546 
 93586 93591 93596 
 93 63^ 93 641 93 646 
 93 687 93 692 93 697 
 
 5 
 5 
 5 
 5 
 5 
 
 865 
 866 
 867 
 868 
 869 
 
 93 702 93 707 93 712 93 717 93 722 
 93 752 93 757 93 762 93 767 93 772 
 93802 93807 93812 93817 93822 
 93852 93857 93862 93867 93872 
 93902 93907 93912 93917 93922 
 
 93 727 93 732 
 93 777 93 782 
 93827 93832 
 93877 93882 
 93927 93932 
 
 93 737 93 742 93 747 
 93 787 93 792 93 797 
 93 837 93 842 93 847 
 93 887 93 892 93 897 
 93 937 93942 93 947 
 
 5 
 5 
 5 
 5 
 5 
 
 870 
 871 
 872 
 
 873 
 874 
 
 93952 93 957 93962 93967 93972 
 94002 94007 94012 94017 94022 
 94052 94057 94062 94067 94072 
 94 loi 94106 94 III 94 116 94 121 
 94 151 94156 94 161 94166 94 171 
 
 93 977 93 982 
 94027 94032 
 94077 94082 
 
 94 126 94 131 
 94 176 94 181 
 
 93 987 93 992 93 997 
 94037 94042 94047 
 94086 94091 94096 
 
 94 136 94 141 94 146 
 94 186 94 191 94 196 
 
 5 
 5 
 5 
 5 
 5 
 
 87s 
 876 
 
 877 
 878 
 
 879 
 
 94201 94206 94 211 94216 94221 
 94250 94255 94260 94265 94270 
 94300 94305 943^0 94 3^5 94320 
 94 349 94 354 94 359 94364 94369 
 94 399 94404 94409 94414 94419 
 
 94226 94231 94236 94240 94245 
 94275 94280 94285 94290 94295 
 94325 94330 94335 94340 94 345 
 94374 94379 94384 94389 94 394 
 94 424 94 429 94 433 94 438 94 443 
 
 5 
 5 
 5 
 5 
 5 
 
 880 
 881 
 882 
 883 
 884 
 
 94448 94453 94458 94463 94468 
 94498 94503 94507 94512 94517 
 94 547 94552 94 557 94562 94567 
 94596 94601 94606 94 611 94616 
 94645 94650 94655 94660 94665 
 
 94 473 94478 
 94522 94527 
 94571 94576 
 94621 94626 
 94670 94675 
 
 94483 94488 94 493 
 94532 94 537 94542 
 94581 94586 94591 
 94630 94635 94640 
 94 680 94 685 94 689 
 
 5 
 5 
 5 
 5 
 5 
 
 885 
 886 
 887 
 888 
 889 
 
 94694 94699 94^04 94709 94714 
 94 743 94 748 94 753 94 758 94 763 
 94792 94797 94802 94807 94812 
 94841 94846 94851 94856 94861 
 94890 94895 94900 94905 94910 
 
 94719 94724 94729 94 734 94738 
 94768 94 773 94778 94783 94787 
 94817 94822 94827 94832 94836 
 94866 94871 94876 94880 94885 
 94915 94919 94924 94929 94 934 
 
 5 
 5 
 5 
 5 
 5 
 
 890 
 
 891 
 892 
 893 
 894 
 
 94 939 94944 94 949 94 954 94 959 
 
 94 988 94 993 94 998 95 002 95 007 
 
 95 036 95 041 95 046 95 051 95 056 
 95 085 95 090 95 095 95 100 95 105 
 95 134 95 139 95 143 95 148 95 i53 
 
 94963 94968 94 973 94978 94983 
 95012 95017 95022 95027 95032 
 95061 95066 95071 95075 95080 
 95 109 95 114 95 119 95 124 95 129 
 95 158 95 163 95 168 95 173 95 177 
 
 5 
 5 
 
 5 
 5 
 5 
 
 895 
 
 896 
 897 
 898 
 899 
 
 95 182 95 187 95 192 95 197 95 202 
 95 231 95 236 95 240 95 245 95 250 
 95 279 95 284 95 289 95 294 95 299 
 95 328 95 332 95 337 95 342 95 347 
 95 376 95 381 95 386 95 390 95 395 
 
 95 207 95 211 95 216 95 221 95 226 
 
 95 255 95 260 95 265 95 270 95 274 
 95303 95308 95313 95318 95323 
 95352 95357 95361 95366 95371 
 95 400 95 405 95 410 95 415 95 419 
 
 5 
 5 
 5 
 5 
 5 
 
 900 
 
 95 424 95 429 95 434 95 439 95 444 
 
 95 448 95 453 
 
 95 458 95 463 95 468 
 
 5 
 
 N 
 
 12 3 4 
 
 5 6 
 
 7 8 9 
 
 
N 
 
 12 3 4 
 
 5 6 7 8 9 
 
 D 
 
 900 
 
 95 424 95 429 95 434 95 439 95 444 
 
 95 448 95 453 95 458 95 463 95 468 
 
 5 
 
 901 
 
 95 472 95 477 95 482 95 487 95 492 
 
 95 497 95 501 95 506 95 511 95 5^6 
 
 5 
 
 902 
 
 95521 95525 95530 95535 95540 
 
 95 545 95 550 95 554 95 559 95 564 
 
 5 
 
 9°3 
 
 95 569 95 574 95 578 95 583 95 588 
 
 95 593 95 598 95 602 95 607 95 612 
 
 5 
 
 904 
 
 95 617 95 622 95 626 95 631 95 636 
 
 95 641 95 646 95 650 95 655 95 660 
 
 5 
 
 90s 
 
 95 665 95 670 95 ^74 95 679 95 684 
 
 95 689 95 694 95 698 95 703 95 708 
 
 5 
 
 906 
 
 95 713 95 718 95 722 95 727 95 732 
 
 95 737 95 742 95 746 95 751 95 756 
 
 5 
 
 907 
 
 95 761 95 766 95 770 95 775 95 780 
 
 95 785 95 789 95 794 95 799 95 804 
 
 5 
 
 908 
 
 95 809 95 813 95 818 95 823 95 828 
 
 95 832 95 837 95 842 95 847 95 852 
 
 5 
 
 909 
 
 95 856 95 861 95 866 95 871 95 875 
 
 95 880 95 885 95 890 95 895 95 899 
 
 5 
 
 910 
 
 95 904 95 909 95 914 95 9^8 95 923 
 
 95 928 95 933 95 938 95 942 95 947 
 
 5 
 
 911 
 
 95952 95 957 95961 95966 95971 
 
 95 976 95 980 95 985 95 99o 95 995 
 
 5 
 
 9T2 
 
 95 999 96 004 96 009 96 014 96 019 
 
 96 023 96 028 96 033 96 038 96 042 
 
 5 
 
 913 
 
 96047 96052 96057 96061 96066 
 
 96071 96076 96080 96085 96090 
 
 5 
 
 914 
 
 96 095 96 099 96 104 96 109 96 114 
 
 96 118 96 123 96 128 96 133 96 137 
 
 5 
 
 915 
 
 96 142 96 147 96 152 96 156 96 161 
 
 96 166 96 171 96 175 96 180 96 185 
 
 5 
 
 916 
 
 96 190 96 194 96 199 96 204 96 209 
 
 96213 96218 96223 96227 96232 
 
 5 
 
 917 
 
 96237 96242 96246 96251 96256 
 
 96 261 96 265 96 270 96 275 96 280 
 
 5 
 
 918 
 
 96 284 96 289 96 294 96 298 96 303 
 
 96308 96313 96317 96322 96327 
 
 5 
 
 919 
 
 96332 96336 96341 96346 96350 
 
 96355 96360 96365 96369 96374 
 
 5 
 
 920 
 
 96379 96384 9^3^^ 9^393 96398 
 
 96402 96407 96412 96417 96421 
 
 5 
 
 921 
 
 96426 96431 96435 96440 96445 
 
 96 450 96 454 96 459 96 464 96 468 
 
 5 
 
 922 
 
 96473 96478 96483 96487 96492 
 
 96497 96501 96506 96 511 96515 
 
 5 
 
 923 
 
 96520 96525 96530 96534 96539 
 
 96544 96548 96553 96558 96562 
 
 5 
 
 924 
 
 96567 96572 96577 96581 96586 
 
 96591 96595 96600 96605 96609 
 
 5 
 
 925 
 
 96614 96619 96624 96628 96633 
 
 96658 96642 96647 96652 96656 
 
 5 
 
 926 
 
 96 661 96 666 96 670 96 675 96 680 
 
 96 685 96 689 96 694 96 699 96 703 
 
 5 
 
 927 
 
 96 708 96 713 96 717 96 722 96 727 
 
 96 731 96 736 96 741 96 745 96 750 
 
 5 
 
 928 
 
 96 755 96 759 96 764 96 769 96 774 
 
 96 778 96 783 96 788 96 792 96 797 
 
 5 
 
 929 
 
 96802 96806 96 811 96816 96820 
 
 96 825 96 830 96 834 96 839 96 844 
 
 5 
 
 930 
 
 96848 96853 96858 96862 96867 
 
 96872 96876 96881 96886 96890 
 
 5 
 
 931 
 
 96 895 96 900 96 904 96 909 96 914 
 
 96918 96923 96928 96932 96937 
 
 5 
 
 932 
 
 96942 96946 96951 96956 96960 
 
 96965 96970 96974 96979 96984 
 
 5 
 
 933 
 
 96988 96993 96997 97002 97007 
 
 97 on 97016 97021 97025 97030 
 
 5 
 
 934 
 
 97 035 97 039 97 044 97 o49 97 ^53 
 
 97058 97063 97067 97072 97077 
 
 5 
 
 935 
 
 97 081 97 086 97 090 97 095 97 100 
 
 97 104 97 109 97 114 97 118 97 123 
 
 5 
 
 936 
 
 97 128 97 132 97 137 97 142 97 146 
 
 97 151 97 155 97 160 97 165 97 169 
 
 5 
 
 937 
 
 97 174 97 179 97 183 97 188 97 192 
 
 97 197 97 202 97 206 97 211 97 216 
 
 5 
 
 938 
 
 97 220 97 225 97 230 97 234 97 239 
 
 97 243 97 248 97 253 97 257 97 262 
 
 5 
 
 939 
 
 97 267 97 271 97 276 97 280 97 285 
 
 97 290 97 294 97 299 97 304 97 308 
 
 5 
 
 940 
 
 97313 97317 97322 97327 97331 
 
 97336 97340 97 345 97350 97 354 
 
 5 
 
 941 
 
 97 359 97364 97368 97 373 97 377 
 
 97382 97387 97391 97396 97400 
 
 5 
 
 942 
 
 97405 97410 97414 97419 97424 
 
 97428 97 433 97 437 97 442 97447 
 
 5 
 
 943 
 
 97 451- 97 456 97 460 97 465 97 470 
 
 97 474 97 479 97 483 97 488 97 493 
 
 5 
 
 944 
 
 97 497 97502 97506 97 511 97 5^6 
 
 97520 97525 97529 97 534 97 539 
 
 5 
 
 945 
 
 97 543 97548 97552 97 557 97562 
 
 97566 97571 97 575 97580 97585 
 
 5 
 
 946 
 
 97 589 97 594 97 598 97 603 97 607 
 
 97 612 97 617 97 621 97 626 97 630 
 
 5 
 
 947 
 
 97 635 97 640 97 644 97 649 97 653 
 
 97658 97663 97667 97672 97676 
 
 5 
 
 948 
 
 97 681 97 685 97 690 97 695 97 699 
 
 97 704 97 708 97 713 97 717 97 722 
 
 5 
 
 949 
 
 97727 97731 97736 97740 97745 
 
 97 749 97 754 97 759 97 763 97 768 
 
 5 
 
 950 
 
 97772 97777 97782 97786 97791 
 
 97 795 97 800 97 804 97 809 97 813 
 
 5 
 
 N 
 
 12 3 4 
 
 5 6 7 8 9 
 
N 
 
 13 3 4 
 
 5 6 7 8 9 
 
 D 
 
 950 
 
 ■97 772 97 777 97 782 97 786 97 791 
 
 97 795 97 800 97 804 97 809 97 813 
 
 5 
 
 951 
 
 97818 97823 97827 97832 97836 
 
 97841 97845 97850 97855 97859 
 
 5 
 
 952 
 
 97 864 97 868 97 873 97 877 97 882 
 
 97 886 97 891 97 896 97 900 97 905 
 
 5 
 
 953 
 
 97 909 97 914 97 918 97 923 97 928 
 
 97932 97 937 97941 97946 97950 
 
 5 
 
 954 
 
 97 955 97 959 97 9^4 97 9'^^ 97 973 
 
 97978 97982 97987 97991 97996 
 
 5 
 
 955 
 
 98000 98005 98009 98014 98019 
 
 98 023 98 028 98 032 98 037 98 041 
 
 4+ 
 
 956 
 
 98 046 98 050 98 055 98 059 98 064 
 
 98068 98073 98078 98082 98087 
 
 4+ 
 
 957 
 
 98 091 98 096 98 100 98 io5 98 109 
 
 98 114 98 118 98 123 98 127 98 132 
 
 4+ 
 
 95S 
 
 98 137 98 141 98 146 98 150 98 155 
 
 98 159 98 164 98 168 98 173 98 177 
 
 4+ 
 
 959 
 
 98 182 98 186 98 191 98 195 98 200 
 
 98 204 98 209 98 214 98 218 98 223 
 
 44- 
 
 960 
 
 98 227 98 232 98 236 98 241 98 245 
 
 98 250 98 254 98 259 98 263 98 268 
 
 4+ 
 
 961 
 
 98 272 98 277 98 281 98 286 98 290 
 
 98295 98299 98304 98308 98313 
 
 4+ 
 
 962 
 
 98318 98322 98327 98331 98336 
 
 98340 98345 98349 98354 98358 
 
 4+ 
 
 963 
 
 98363 98367 98372 98376 98381 
 
 98 385 98 Z9° 98 394 9^ 399 98 403 
 
 4+ 
 
 964 
 
 98408 98412 98417 98421 98426 
 
 98 430 98 435 98 439 98 444 98 448 
 
 4+ 
 
 965 
 
 98453 98457 98462 98466 98471 
 
 98 475 98 480 98 484 98 489 98 493 
 
 4+ 
 
 966 
 
 98498 98502 98507 9851T 98516 
 
 98520 98525 98529 98534 98538 
 
 4+ 
 
 967 
 
 98543 98547 98552 98556 98561 
 
 98565 98570 98574 98579 98583 
 
 4+ 
 
 968 
 
 98588 98592 98597 98601 98605 
 
 98610 98614 98619 98623 98628 
 
 4+ 
 
 969 
 
 98632 98637 98641 98646 98650 
 
 98 655 98 659 98 664 98 668 98 673 
 
 4+ 
 
 970 
 
 98677 98682 98686 98691 98695 
 
 98 700 98 704 98 709 98 713 98 717 
 
 4+ 
 
 971 
 
 98722 98726 98731 98735 98740 
 
 98 744 98 749 98 753 98 758 98 762 
 
 4+ 
 
 972 
 
 98 767 98 771 98 776 98 780 98 784 
 
 98 789 98 793 98 798 98 802 98 807 
 
 4+ 
 
 973 
 
 98811 98816 98820 98825 98829 
 
 98834 98838,98843 98847 98851 
 
 4+ 
 
 974 
 
 98856 98860 98865 98869 98874 
 
 98878 98883 98887 98892 98896 
 
 4+ 
 
 975 
 
 98 900 98 905 98 909 98 914 98 918 
 
 98923 98927 98932 98936 98941 
 
 4+ 
 
 976 
 
 98 945 98 949 98 954 98 958 98 963 
 
 98967 98972 98976 98981 98985 
 
 4 
 
 977 
 
 98 989 98 994 98 998 99 003 99 007 
 
 99012 99016 99021 99025 99029 
 
 4 
 
 978 
 
 99034 99038 99043 99047 99052 
 
 99056 99061 99065 99069 99074 
 
 4 
 
 979 
 
 99 078 99 083 99 087 99 092 99 096 
 
 99 100 99 io5 99 109 99 114 99 118 
 
 4 
 
 980 
 
 99 123 99 127 99 131 99 136 99 140 
 
 99 145 99 149 99 154 99 158 99 162 
 
 4 
 
 981 
 
 99 167 99 171 99 176 99 180 99 185 
 
 99 189 99 193 99 198 99 202 99 207 
 
 4 
 
 982 
 
 99 211 99 216 99 220 99 224 99 229 
 
 99 233 99 238 99 242 99 247 99 251 
 
 4 
 
 983 
 
 99 255 99 260 99 264 99 269 99 273 
 
 99277 99282 99286 99291 99295 
 
 4 
 
 984 
 
 99300 99304 99308 99313 99317 
 
 99322 99326 99330 99335 99ZZ9 
 
 4 
 
 98s 
 
 99 344 99348 99352 99357 99361 
 
 99366 99370 99 374 99 379 99383 
 
 4 
 
 986 
 
 99388 99392 99396 99401 99405 
 
 99410 99414 99419 99423 99427 
 
 4 
 
 987 
 
 99 432 99 436 99 441 99 445 99 449 
 
 99 454 99458 99463 99467 99471 
 
 4 
 
 988 
 
 99 476 99 480 99 484 99 489 99 493 
 
 99498 99502 99506 99 511 99515 
 
 4 
 
 989 
 
 99520 99524 99528 99533 99.537 
 
 99542 99546 99550 99555 99 559 
 
 4 
 
 990 
 
 99564 99568 99572 99577 99581 
 
 , 99 585 99 590 99 594 99 599 99 603 
 
 4 
 
 991 
 
 99607 99612 99616 99621 99625 
 
 99 629 99 634 99 638 99 642 99 647 
 
 4 
 
 992 
 
 99651 99656 99660 99664 99669 
 
 99673 99677 99682 99686 99691 
 
 4 
 
 993 
 
 99 695 99 699 99 704 99 708 99 712 
 
 99717 99721 99726 99730 99 734 
 
 4 
 
 994 
 
 99 739 99 743 99 747 99 752 99 756 
 
 99 760 99 765 99 769 99 774 99 778 
 
 ■ 4 
 
 995 
 
 99782 99787 99791 99 795 99800 
 
 99804 99808 99813 99817 99822 
 
 4 
 
 996 
 
 99826 99830 99835 99839 99843 
 
 99848 99852 99856 99861 99865 
 
 4 
 
 997 
 
 99870 99874 99878 99883 99887 
 
 99891 99896 99900 99904 99909 
 
 4 
 
 998 
 
 99913 99917 99922 99926 99930 
 
 99 935 99 939 99 944 99 948 99 952 
 
 4 
 
 999 
 
 99 957 99961 99965 99970 99974 
 
 99978 99983 99987 99991 99996 
 
 4 
 
 1000 
 
 00000 00004 00009 00013 00017 
 
 00 022 00 026 00 030 00 035 00 039 
 
 4 
 
 N 
 
 12 3 4 
 
 5 6 7 8 9 
 
 
Answers. 
 
 Page 4. 
 
 II. 
 
 276 
 
 3. 
 
 2.6888+ 
 
 4. 
 
 1. 10065+ 
 
 
 I. 34 
 
 12. 
 
 408 
 
 4. 
 
 .8298+ 
 
 5- 
 
 3-8645+ 
 
 
 2. .45 
 
 
 Page 8. 
 
 5- 
 
 1.7099+ 
 
 6. 
 
 163 
 
 
 3. 36 
 
 I. 
 
 1296 
 
 6. 
 
 1.6509+ 
 
 7. 
 
 88888 
 
 
 4- 74 
 
 2. 
 
 4445 
 
 7. 
 
 3-4956+ 
 
 8. 
 
 90647 
 
 
 5- 73 
 
 3. 
 
 3507 
 
 8. 
 
 2.8189+ 
 
 9- 
 
 22216 
 
 
 6. 78 
 
 4- 
 
 5104 
 
 9- 
 
 1.2599+ 
 
 10. 
 
 12345 
 
 
 7. .014 
 
 5- 
 
 60.84 
 
 10. 
 
 1.4422+ 
 
 
 Page 18. 
 
 
 8. .029 
 
 9. .043 
 10. .085 
 
 6. 
 
 7. 
 8. 
 
 91.052 
 
 II. 
 12. 
 13. 
 
 3.4622+ 
 
 1.5874+ 
 2.2239+ 
 
 I. 
 2. 
 3- 
 4. 
 5. 
 6. 
 
 7. 
 
 8. 
 
 9. 
 10. 
 
 $47.70 
 74.90 
 61 
 
 
 11. 1.30 
 
 12. 9.80 
 
 Page 6. 
 
 1. 439 
 
 2. 141 
 
 3- 147 
 4. 726 
 
 5- 3-43 
 
 6- 115 
 
 9- 
 10. 
 
 12. 
 
 2. 
 3. 
 4. 
 5. 
 
 1-3 
 ^% 
 
 M 
 
 3.8 
 
 2.8 
 
 I33-I 
 13-25 
 9V, 
 
 14. 
 15. 
 
 16. 
 
 17. 
 18. 
 19. 
 20. 
 21. 
 
 2. 1 1 79+ 
 
 2.08008+ 
 
 1. 91 29+ 
 
 7.6288+ 
 
 66.9792+ 
 
 5.0528+ 
 
 .7528- 
 
 1.8171+ 
 
 Page 12. 
 
 78.40 
 50.72 
 
 55.31 
 
 17.40 
 
 713.66 
 
 213-44 
 
 469.92 
 
 Page 19. 
 
 
 7. 238 
 
 6. 
 
 4.02 
 
 
 
 I. 
 
 $46.25 
 
 
 8. 20.50 
 
 
 Page 10. 
 
 I. 
 
 32 
 
 2. 
 
 35.085 
 
 
 9. 9.04 
 
 I. 
 
 •5555+ 
 
 2. 
 
 1.2624+ 
 
 3- 
 
 62.05 
 
 
 to. 8.25 
 
 2. 
 
 1.3444+ 
 
 3. 
 
 1.2950+ 
 
 4. 
 
 5-21 
 
 ^ 
 
 
-vi 
 
 
 14 DAY USE 
 
 RETURN TO DESK FROM WHICH BORROWED 
 
 LOAN DEPT. 
 
 This book is due on the last date stamped below, 
 or on the date to which renewed. Renewals only: 
 
 Tel. No. 642-3405 
 Renewals may be made 4 days priod to date due. 
 Renewed books are subject to immediate recall. 
 
 Ill 
 
 LD- 
 
 SENT ON ILL 
 
 AUG 2 3 1995 
 
 U. C. BERKELEY 
 
 Jl 
 
 ,xT^?o^i^n^9^;^'"!i°^o UniSS of cSrnia 
 
 (N8837sl0)476 — A-32 Berkeley 
 
LIBRARY USE 
 
 RETURN TO DESK FROM WHICH BORROWED 
 
 LOAN DEPT. 
 
 THIS BOOK IS DUE BEFORE CLOSING TIME 
 ON LAST DATE STAMPED BELOW 
 
 '■IBRARY 
 
 mi 
 
 OCT 18 
 
 U 
 
 D LP 
 
 |ia'64-iOPM 
 
 ni l ttRY USE 
 
 0CT2i, ' 64 
 
 f" R efe? t > L.D 
 
 ocDgr-.avsf.iM 
 
 LD 62A-50m-2,'64 
 (E3494sl0)9412A 
 
 General Library 
 
 University of California 
 
 Berkeley