mam aesM mm vm GIFT OF A consideration of various factors affecting the net duty of irrigation water Philip Rowland Roosegaarde Bisschop B . S . ( Uni v ersity of South' , jAtfr'i c a,) 9 18 In *e*da^ *l^^:v^^ THESIS Submitted in partial satisfaction of the requirements for the degree of MASTER OP SCIENCE in Civil Engineering in the GRADUATE DIVISION of the UNIVERSITY OP CALIFORNIA Approved _ . ______ ^/Tinstructor in Charge Deposited in the University Library Librarian 81 ej? ?frjK>JWl. ,,, ,-!. * to. a .a" ' a ic ed* lo lo iti Letter of Transmittal Prof. Charles Derleth, Jr., Dean of the College of Civil Engineering, University of California. Dear Sir: In accordance with the regulations of the College of Civil Engineering, I herewith beg to submit to you for your approval my Thesis for the degree of Master of Science. I remain, Sir, Yours faithfully, Berkeley, April 30th, 1921. llvlO '10 sgsIloO oriJ- lo .nso isO lo ^*lfldvlc siii ri'^iw sortsfcicoos I nlgna HviO lo aselloO srl* lo Ivoiqqa r iwot 'icl flb^ o. a lo is^BBM lo f * 1 a 1 a*t wo TABLE OP CONTENTS p Letter of Transmittal. Chapter I Introduction Definition of net duty and max- imum economical duty Chapter II The Texture and Structure of the Soil . , Grades of soil Structure of the soil The moisture contained in the soil Chapter III 28 The Climate ......... ......................... The annual precipitation and its distribution ........ . ................. The start of the Irrigation System ....... Chapter IV 34 Moisture Distribution in the Soil ............ Downward, upward and lateral movement of soil moisture ............ The extent of distribution ............... Results of field experiments ............. Conclusions reached ...................... Chapter V 5^ Character of Soil and Subsoil ................ Hardpans ................................. Gravel and sandy subsoils ................ Chapter VI 67 Ejrapj)ration, Percolation and Surf ace. J/asJbe Losses ...................................... The process of evaporation ............... Cultivated and uncultivated soils ..... Mulching .............................. Furrow irrigation ..................... The effect of the type of soil on per- colation losses ......................... Size of irrigation head .................. Frequency of application .............. Length of run ......................... Lateral percolation in furrows ........ Surface waste ..... DOS -;t0b rfsn. lo . -le a I IOB srtt lo lios srf- it-- fbsniacffioo si. 03 .... a : act I ,f>n-? .no .u jaio/n IIoa ic tnsr.i.svo oW.tjdl'T-taxb lo ^nsctxe sir.i'ioqxs Mail 'to a^ . . b 9ri o B e^c 3 no 1 s .0 1 one U bed' av Mi Page Chapter VII 93 The Fertility of the Soil Need of fertilizers The function of organic matter in the soil Cover crops Chapter VIII 99 The Crops Plant growth The effect of irrigation at different periods of plant growth American irrigation practice on dif- ferent crops Diversification of crops Chapter IX ]_ 9 Yields of Various Crops under :...VaryJLn Amounts of Irrigation Applications Results of experiments on ( 1 ) Alfalfa (2) Potatoes (5) Cereals (4 ) Citrus fruits (5) Deciduous fruits Chapter X Tabled" (1) The net and gross duty of various irrigation projects for the year 1917 (2) Distribution of irrigation water for net duty on various projects for the years 1912-1919 (3) Average seasonal duty of water on various Irrigation Projects for the years 1912-1917.... - r ii?) no soicfo^i.q n . . . , aqoto e ox SI r ro ^ tsf ** v ^ o T / ct^//fe -^ o rr ^ i r- " taw noli^'-I/nJ: 1o nol BIBLIOGRAPHY (References are indicated by number.) 1. Soils Lyon, Pippin and Bucionan. 2. Principles of Irrigation PracticeWidtsoe. 3. Irrigation and Drainage- -King . 4. Irrigation Management- -Newell. 5. Irrigation in the United States--Teele. 6. Irrigation Practice and Engineering, Vol.I?-Etchevery. 7. Soils--Hilgard. 8. Physics of Agriculture --King. 9. Evaporation from Irrigated Soils--Portier and Beckett --United States Department of Agriculture ,, Bulletin 248. 10. Distribution of water in the soil in Furrow Irrigation --Loughridge and Portier, United States Department of Agriculture, Bulletin 203. 11. Irrigation and Soil Moisture Investigations in Western Oregon--W. L. Powers, Oregon Agricultural Experiment Station, Bulletin 122. 12. Duty of Water investigationsDon H. Bark, Ninth Bi- ennial Report of the State Engineer of Idaho. 13. The Duty of Water in Cache Valley, UtahHarris, Utah Agricultural College and Experiment Station, Bulletin 173. 14. The Movement of Water in Irrigated Soils Widtsoe and McLaughlin. Utah Agricultural College, Experiment Station, Bulletin 115. 15. Yields of Crops with Different Quantities of Irriga- tion Water--Widtsoe and Kerrill, Utah Agricultural College Experiment ^tateion, Bulletin 117. Em- nlqq Jt'3. , no -&I - -a I ioS I oJt:*Ai8l--xiI lo aalqloalil -2 ifiB no i 4s si- IT: I -S -3 -8 rrt * I -.01 9LjS5"i. JJtTJ-' J.//0 L'l V axe I loci bne 30 1: .321 i J-'iTa L. - -,:'.3;t "u , \; '</*'? 4 o + '* "^^fc^'^" 16. Methods for Increasing the Crop Producing Power of Irrigation Water--Widtsoe and Merrill. Utah Agricultural College, Experiment Station, Bulletin 118. 17. Studies on Capacities of Soils for Irrigation Water--0. W. Israelsen--Journal of Agricultural Research, Vol. XIII, No. 1. 18. Investigations of the Economical Duty of Water for Alfalfa in the Sacramento Valley- -E. R. Adams. 19. Report on Irrigation Investigations nn the North Side Minnidoka Project. Harding. 20. Water Requirements of Soils in the Sunnyside Valley Irrigation DistrictHarding. 21 Report on Irrigation Investigations at Billings, Montana- -Harding . 22. Flow of Irrigation Water over Soils in Different Methods of Application- -Harding. 25. The Use of Water from the Tuolumne by the Modesto and Turlock Irrigation Districts Etcheverry and Means . 24. Depths to which different Soils may be wetted by Irrigation Water 0. W. Isrelsen. 25. The_ Capillary Movement of Soil Moisture--W. W. McLaughlin, United States Department of Agriculture, Bulletin 855. 26. Annual Reports of the Reclamation Service, 1912--1919. 27. Experiments of the Economical Use of Irrigation Water in IdahoDon H. Bark, United States Department of Agriculture, Bulletin 539. 28. Soil Moisture Studies Under IrrigationHarris and Bracken- -Utah Agricultural College Experiment Sta- tion, Bulletin 159. 39. Irrigation Projects Data E. A. Moritz, Vol. 9, No. 11, Reclamation Record. jrf I ^ cmoT ^oiO sr 1 "^ -a-niaaoiorfl iol arsciiJefci .61 W . ' .81 lA tol rc0, anol-^slJaeviil a t'? ailob. t oS Io e*nraMli;peH -le^sW .02 no let as XT'* I no tftoqaH 12 '" J:U nJ: > Tic- isvo 'ie^sW ccold-esilil /io wol r 'i .32 . ^rl^-TiT --aclctctoilqqA 'Io sbotl^s./t rjoil -jectsW Io es.U siTT .^: "eiG no i .t*^ii f sl xcoliJjT bne , . ;9 ., 9 ., f 9c . .W ,0--19^^^ J ilTlI 21 1 CHAPTER I INTRODUCTION It is well recognized that, regardless of the crop irrigated, a proper knowledge of the duty of water is essential to both the Farmer and the Engineer. Such, es- pecially, is the case in newly developing irrigated and ir- rigable districts. With the growth and development of the irrigated sections the question of advantageously and eco- nomically using the limited amount of irrigation water is becoming more and more apparent. As the irrigable lands become more settled, more frequently is it asked just how much water is necessary to produce a good crop, and under what conditions of irrigation can the largest returns per acre foot of water as well as pe r acre be expected. In South Africa especially, in its present period of development, is it essential that more definite informa- tion on which to base an answer to these questions, be ob- tained. It is a matter of extreme regret that up to the present no experiments, to determine the water Duty of our South African crops under the many varying climatic condi- tions, have as yet been undertaken. It is essential to the farmer and irrigator to lo asslbifl^sT . -tar-d- fossirsfooe-i llsw al tfl ai locfsvir Ic "^cfx/b ec'-t to Qgbei^cni. i^qc--iq s ^fcsct-s^liii qoio -39 ,fiow2 ,i3srii,iiii aiict bi:& r f9rri r iB'>j. srl xl^ocf od 1 -ii brtB bsctjagiiTii gciqolsvab ^Xwsrt nl 0aeo axid 1 ai sxi* lo -oos bitfj Yia^cQ^fid-nsvbs lo rcoictaaup srl^ enoJWaes JJ ai -iod;.8w ncl.jB3ii r ii lo cj-m/ofon bs^lmll srW gniaw ^ a>nx?I aldB^iiiJ: s/'uf sA . ctaeiaqqa SIOJB bne eiorvi tebror .bxiB ',qo r io Loorv^ aouboiq o.t Y~ ssa 3osn ai ioc sni.^31 d 693^^1 siicf HBO nolJs^iiil lo anold'ibfioo- .bsdoec^xa sJ S-TOB -i sq as Xiew SB IS^BW lo c^ool 9105 be it d-rfeaoiq a-j i n^.r^-L 210 ^^ BoxilA ii^efi nl -aitnolnx scf inilsb s-xont d-Brf* Icid-nsass tfi ai tdroiuqclovab lo -do 3o r , aaolj39JJp seerld- o^ iswsns HB as ,-ioldvr no rscid- sx^ o-j qu Jsxid- ;t9 r i33'! o^sictxe .lo f i: rj si tfl ..bsrxiBJ tcro. lo '^jyG loijew srf^ snim- ' xs on Jaag- -tbnoo pid-Birrilo ^nlvr 1 ^^ &&& ^ -' I3 naoiilA xiv baa - OB 30 ax have this information that he may make the arrangement for an adequate water supply, that he may avoid injury of his soil through the application of too much water, and that he may adjust to his land the amount available to him, so as to obtain the largest possible returns per acre foot of water applied. Further, he should have an of under standing /the underground movement of the water after its application, that he may be sure, on the one hand, that excessive losses are not occurring through deep per- colation, and, on the other hand, that the irrigation wa- ter is penetrating into the soil sufficiently deep to give proper nourishment to the feeding roots of his crop. It is essential to the Engineer to have such in- formation at his disposal in order that he may determine how large a canal to build to supply a definite area, or, having determined the quantity of water available and the cost of bringing it to the tract to be irrigated, he could not decide upon the practicability of his scheme because of his inability to determine how large an area the water supply is able to serve. The Engineer, too, should have an accurate know- ledge of the factors that influence the amount of water d7i9i::9 gneiss erid Q'Aan *Bm eii tfsitt nold'amio'irii aldd" biovfi -sjjsm 9rf tferfd 1 . ijlqqtfe letfaw stffiifpsbjs IIB tol jsw rloxiTH ood' lo nc/.o3CJcIqqs grid 1 jigxroidd' lioa sir! io aidi^aoq cJ-sssiBi axfcf rriacfcfo oct as oa ,miii rus svsrl blucila a;i (-is-dchritfi .bsllaqs r fs.tw Io oool lo ij lo in9:,.avo;ri bajjO'i^-iaL.'.;. 9 ^ .'.";:. .:J'L ; 3 '': xl ario s;y no ,31; /a -3d %&& && ^Bitcf , noli JB oil qqs aJi o'ir'j yiliij/ooo ooc sis asaacl eviaaco.'.o l-aifcf -aw ncid-a^iiil o^d" j/saj ,>isri laxid-o arid- nc -bas -a vig ocf qsoa ^XofiDioillua Ixos end 1 o^ii gxiio^'icJ-onsq si .qo r io a In io aci-co'i gnibosl sricj 1 o^ drxamfiaiixfor: r ioqoiq rcl :, ; ojya avjezl od" issrii^n^-sii'd- od l^l^neeas si ctl n gxi $s:L - r iobio ni laaoqaib aiif ;ts noictfir.^ol .B3 r xs sciini'lab a ^Xqqire od" bii0d od" iBnflo B 93'i.el won' >HB 9lcfGllj8v 'isd-sw I'o Tj^l^nBjjp &d$ bsnliTrssd-ab aniVBri 9. r [ .bod-js -.t'l-rl 9cJ od". d'oaid' sild 1 od* ctl ':icf lo d-soo % 9axjBostf sKtsifoa aiii lo Y*-^--^ 30 ^^ 03 '^? d ^ noqjj sbioab ^ort isdsw eti* asTB ne 9316! wod = '..ia'ani aid lo - . t Ids ai T iq worpi ad'B'-iDOOB HB o . . , ' ._ orJT lo r: - odoaz ssij lo 9? used to mature a crop after its application to the soil. Such matters as the spacing of the furrows in orchard ir- rigation, the length of run and the corresponding most economical head of water to be used, frequency of applica- tion are of vital interest to the success of an irrigation scheme. Again, we shall not be able to place on our statute books more logical laws concerning the proper use of water, or to enable our judges to render more satisfac- tory decisions in water disputes, until we have gathered a large amount of data, under properly controlled conditions, relative to the behaviour of water when brought upon soils for the production of crops. The "duty of water" is a phrase which expresses the relationship existing between a given quantity of water and the area of land that it is made to serve. This amount may vary between the wasteful application of water on pre- pared lands in an unscientific way to the highly refined experimental methods as used for instance in Southern Cali- fornia, Where according to P. R. Adams "the water carried has the exceptional agricultural value of one thousand dol- lars per miner's inch." .Hoe add bd- noJtd-jeolIgqa a*! isdlB qo-xo -3 oii^jsm orf jci awoiiul arid- lo gnloflqs slid- a.s gnlbnoqasiioo erfd' bna run lo xidgnal iiqqB Ic vons/fpsil ^>9au ecf o-t isd-ow lo S i na lo aasooua artt oi d-asiodnJ: Isd"iv lo no 903lq el slc f s 9C r d"oit Ilsxie aw niBgA B.C- laci^ol 9-io,it asioocf Oi oct a93&i(t ' I00 Icfsn9 o* 10 ,/ied-j3w lo ii aiv Ifdnxr ,39-d-yqaiJb rred-flw r;i anoi^Ioal) ' q isfenir ,, ed-sb lo alloa fioqu drl^.uoid neilw is^sw lo i0oJ:VBii3G f arid- .aco^o lo ncldojyfcotq siicf aesaatqxe ifola'w safi'iriq B el " f is>;tsw lo xod-Aw lo ^d-ld-iuawp 9vl3 s usswa-sc -niiOBta aliffi .evioa oj 9.0 BHI ai dl d-erid- fcrtfil lo BSIS edd -6'iq nc 'lodsw lo rioictBDlIqq'B l.olsJesw 3.ij n ocf V 1 - 07 bsiil9i TjIiisM 9fd o* -^sw bilid03ian0 JSB nl Bbasl fi -iiaD aiedd-jyoS ni sooed'snl 10! t: . ; a .oond-sin Isduamiis. W Slid''' 8BU3&A -S -"5 O* OOOS ai9U>Y ,BirftOl lo e, :oldqsox9 9fct ari la' 1 - aisi 4 It is therefore, in order to be more definite, perhaps advisable to use the phrase "the reasonable water requirements," which may be defined as "the use of that .",'iat by e quantity of water which represents good practice when the character of the soil, topography of the land, value of the water, crop and other economic conditions are taken into consideration." It is in general that quantity of water with which the average farmer should obtain the best results without undue waste. iJ.Cii an ir- It is, of course, obvious that this quantity cannot possibly be permanently fixed and must necessarily vary not only with the physical and topographical condi- tions under which the water is applied, but also upon the economic conditions affecting the value of the water and the resultant crop. It may be expressed as the number of acres that may be irrigated by a definite quantity of water, usually a second foot or eusec, flowing continuously throughout the irrigation season. The most "commonly used unit is. however, the acre foot, which represents a volume of water equivalent to a depth of one foot on an area of one acre. The Gross Duty for an entire System is made up , sdlrrilab siom sd od rtsbio ol t e-so'i9'rorid- ai dl . : arid" 1 ' as bsiillsb ac' . xioi.rfw ",aJn3rii3-_ lct nouw eoi^os-iq boog e^iiaasiqai 4o>nw tad-jaw lo ^i^nawp 3itf lo ijflqflisoqod 1 Iioe orfd 1 lo nsJoaisnp t 3-iB anoint iDrroo olirtonooe isrlcto >HJS qoio ,'13-lsw orld" lo ^d-id-iiewp ^snd- I.eisri93 at. 8,1 W " .nold-aisblerioc ochii cf sxlit nisd-do blnca'a isnTifll ggaisva arid- xloitlw u'dlvf isdsw sJr.'id: uB^io ewoivoo ,. saitfoo lo ,ai n ctawrsi bns baxil Y-t ;i ' nsrism ' :9C i 9( ^ ^ -Ibnoc Ir;o.r:Iqj3 r isoqod- brus iBCie-jdq &tii dd"iw ^Ino don *^^ v grid ncqu oalB dnd ,&9llqqjs ei 'isd^jsw edd 1 ifoliiw leJbru; aflold bits 'iodBw arid lo saLav orld gnid-osllfl anoidibnoo olntoaooe a 91 os lo iscL-jm ild a^ L . ^a oci -^JSK dworf^wcirfd fclarrour ' ' -1 bncog-j a , el ' . ' ' ' 'figxiii e e.: - ; " ..... ;OS 3/ld t i:: a: --'-. ' . - :oiO 9.. of the net Duty and the Loss in transmission. The net Duty represents the actual amount of water delivered to the land and includes such losses as that by evaporation, percolation and waste, in addition to the actual amount that is absorbed by the plant. The Gross Duty is the relation between the to- tal irrigated area under the System and the amount of wa- ter diverted from the source of supply. The factors that influence the gross or entire duty of a Scheme are as many and as varied as the conditions under which an ir- rigation scheme operates. An attempt to summarize all shown in the following table: ni 3sod ailct bna 'tfsjQ $&n srld 1 lc lo cfnifOffiB Lsirtos aJd- ed-rtsesiqsi Y*& cJ-grt sal as a323oi rfox/a asiu/IonJL bns bnsl sifct od ba r i9vlle nl t 3oasw bn& nolctBlooisq tnc.f.jjs'ioqsvo Tjcf d- q 9.ci^ ^jcf bscfioads a I JailS driuoms isxjd'Ofl 9ilj -ocf 9ilct ns8wd-sd noi^jsl.s r i 9.ci^ ax lo drii/onfl 9ilct bnjs ^scfaYS erld- 91 IT .vlqqjLra lo 301003 8iW rrtorrl bect'isvib 3.3 o f i3 s.rteno^ B lo ^tub s-ildrie r io 03013 -ii HJS iJoirlw -isbrtL- anoicf Lbrioo sri^ as bei'-xsv aa b nA . 'i 9rid- n nworfs ( ( OJ (Distribution ( ( (Factors ( . f , , (Quantity ( (Rainfall (Distrlt)ution * (which ( (Clear (can be (Water (Fertilizing silt ( ( carried in suspension (consid- ( ( (Humidity vered as ( (Wind movement (fixed (Climate fgggg?& Irri _ ven quantity of ( ( ( gation Season (Altitude (Losses in (Seepage (Storage (Evaporation ( ( (1. Distance from the i i j. j-i i ( ( stream to the land (Losses in ( (2. Soil through which (Transmis- ( &l ( the ditch is built ( sion (S. Kinds of (Lined & Unlined FACTORS (Factors ( ( ( ditch (Cross Section ( ( INFLUEN- (which ( (Canal (Evaporation( Lateral CING THE (may be ( ( (Field ditch DUTY OF (modified" (Rotation or contin- ( ( ( uous use WATER (Irriga- (Method of applica- ( tion ( tion ( Practice (Head used ( ( (Waste water (Length of run ( (Cultiva- (Dry mulch ( tion (Ordinary cultivation (Cover crop ( (Configuration of Surface (Irrigable (Soil and subsoil ( lands (Reparation of the land ( (Ground water level fcroos (Length of growing season ( (Diversified or not V (Factors (Faulty adjudication (Appropriation and granting flnrl P.nm->+'. Hvi^avo I ~f _. _i_j j ( ( and Court Orders (which ( (may be ( (cor- (methods of ( rected( payment -_ rights to more water ( than is needed (Based on quantity rate (Based on flat rate . - 'jtfaJ ) nc.~ tflH Jlla gni. ' noianaqawa nl bslTrso ) ' *3tS nac; . ' ) 9 - flral - a ) baxil; nc... jiic r fl >n.sl sHd- od" mBaid-e rlpldw ilsi/ortrid- IloS.2) j'll.acf al ilocfJ.fc srfcf ) ^ bsniajlo afcnlA.5) fi 3GC r iO) rfo-j-iJb ) Jnl . c, } . a riocMb Msf*) -rrl^rtoo 9Bi/ S.U00 ) -BOilqqB 10 bofef8M) no 1*. ) riolrlw) -ffaiLrattl ) ) ) gcf vant) 3HT OHIO 10 H3TAW no 10 rlolara noJt*BvicMx;o Tjna CO^O 13VOO) ) 90Bl'^;Jci lloadua bna 1J bnsi eil^ 1o noi a&niJl ) I9V91 19JJ8V. ) ^c .. * bna noxjfliiqo'f od- ) ) / 6s6 er J-HB.C/P nc i no . All these factors do much to increase or de- crease the area that may be served by a given quantity of water. There remains, as a disturbing factor, the law that the more water that is added to a crop, the smaller will become the yield per unit of water served. This law of increasing water cost raises the question of whether the water should be used to obtain the largest possible 50 acre 'Inches 'Yield 'Total 'Price 'Grose ' t M.et yield per acre or whether moderate quantities shall be used to obtain the largest yield per acre foot of water served. There is a depth of water for each type of land, crop and water conditions, which will provide a maximum profit. When water is added to a greater or less extent the amount of profit will vary accordingly. It is only with an increase of our knowledge of the duty of water that this point of "optimum" water, or of maximum benefici- al use, can be determined for different crops and climatic conditions. The following example will illustrate this point more clearly. (&) A beet field is supplying beets to the factory at a contract price of five dollars per ton. The total cost of producing the crops, including interest on the in- -01) 'jo sajsaionl: od rloim cfc 2 f otfOB'i 939110 1IA lo ySlSttBUp nevig B ^d sviea ad ~am Jfliid arid" .lodoBl gnidiLtfaib & a 3 . arciamei r.e add" qoio B ci beabs ai d-BdJ isdav; siorci arid- d-jsifd" elriT .&9visa isdsv; lo dir/xr isq blsl^ sifd 1 smooedllxv; isrid-QjiIw lo noidae-up srld aoa'ifl'i daoo 'isd-BW giiiaaoionl "io sidlsaoq dasgial sild- nlsdcfo od bsan sd bijjoxie isd-aw arid sd IlBrfa seidid-nsup 3d\srisbom isrfd-aifv; 10 o dool 3-1 OB i aq blc-l^ d-asgiBl arid niadco od Ic sq-od- doss iol lad-sr lo ddqsb B ai irjjm'J:x.3fTi B abivciq IIi s ,v riolu'w t ano id Imc o tedaw br.a qoio dnadxe aasl i-j isd-ssis a od bsibbs el isdav." neiiW .d-llo'iq ^Ino ai dl .YlsniE^eooa -^isv Uiw diloiq lo dm/orris add- ^^dsw lo ^d;/5 sr!d lo egbslworal IJLTO lo sasetonl ns rfdiw -ioilsnsd murrixn-rr lo ^o ,iedsw "loxjircid-qo 11 lo dnioq siiid- dsad oidamilo bnB aqoio dasisllxb c iol benxmisd-sb ed HBO , aexr IB d;nioq aiad sdBid-sx/ili Iliw .:g gniwoliol . 'i'cd-ofll arid od adssd s^- ;3 2 - t -A ladod c .nod i9q o " --" 3 ; -rti grid" nc ' ' ^^ C0 ' 8 vestment, may be assumed to be thirty dollars per acre. Tabler I may be then constructed on the basis of the crop yield in the Utah experiments (see Bulletin 115, 116 and 117 Experiment Station) on the effect of varying quanti- ties of water on the growth of crops. 50 acre inches applied over 1 'inches 'Yield 'of wa- 'of 'ter on 'beets 'each 'per acre 'acre '(tons) i T" Total 'Price yield 'paid of 'for beets 'ton (tons)'of 'beets i 1 Gross in- come from beets , i Cost per acre : J i To- 'Net tal 'in- cost 'come 'from 'beets i llet in- come from acre 1 acre r 30" '21.0 t 21 ' $5 i |105 r $60 i $ 60' $45 i $45 2 acres 3 acres 4 acres i 15" '19.5 i 10" '18.6 i 7.5" '16.3 59 ' 5 i 56 ' 5 , i 65 ' 5 195 280 325 60 60 60 'i 1 120 ' 75 t 180 ' 100 c ' 240' 85 ' 37.50 33.33 21.25 Prom the above, it will be seen, that the largest net aggre- gate income, was obtained when the 30 acre Inches were spread over three acres. When spread over more or less land this amount decreased. The largest profit per acre was obtained with a thirty inch application, being seven and one-half dol- lars above that with the fifteen inch application. In the table the cost of the water has not been taken into account, 19 q 3i.3l lob 1*1 irf* 9tf o*. benttraea ad \;3;r; t qoio 34* ID a laser end- so bsda/rliaxioo tterfcfr ecf .^sm I baa 811 .311 aitellwH $aa) stfitemtiiaqxe dad-Li 9di at Ic do ell 9 arid no AaoWa*3 ^nerfiittcqxa VII Ic ddviroig arid 1 ac IS^BW lo 3-3 id- -ftl' -Hi' ante o raoTtl' 9'tOB 1 smo o moil' ad29d' T t~" ' ' lO'lfl -at 9i ftOO MOfl i I T _. ! oa 03. 75 ' S'-'T . j -j 3V ' 021 ' 03 ' 3GI ! ! I ' 082 001 ' 081 i i 3&.-.I2JL 08 ' .dSSS .bxsq 1 2d99d -A. -A QS 83. SO- blalZ' ae/foj-il 1 si os OS -JW-lo' asrlofii T9d' 5DlIqqB ric 9'J ' Q-IOJ3 I "T O.IS' -;;_;!: . - r S| OS 8.8I j r A^MLie.. 3310JS 2 33-10B 5 a.9'i9a ^ Jan ctasaisl 3dd osncJ .ri^sa ad Xllw d~i <9vocfa arid 1 si 9 '.T aaxlonl 9'ioa OS eifd rt9riw banlsjcfo asw ,3i?too: ild- brial aaal 10 siorn isvo bJ39iqa fiadtf .as^oa 99ic!cf -IQVO asw 8'ioa-/i9q d-lloiq dassial 9rfT .ftdaaonosf) iiroras -Io& llaxl-aao bits navsa 3ni9d ^nold-aoilqqB rloni' ^d-ix .noWaolIqqa danl nse tiw d-arf* svodfi a-xsl oini najiad need .ton a- i i r arid lo iaoo grid- 9 and the question of what is the maximum economical yield will therefore be dependent on whether the surplus profit of seven and one-half dollars will compensate for the cost of the extra fifteen Inches of water applied. Similarly in the fifteen and ten inches application, the maximum economical duty will be decided on whether the surplus prof- it of four dollars and thirteen cents will compensate for the cost of the extra five inches of water applied. The differences between the net duty, the water requirement for maximum per acre yield and the water re- quirement for maximum economical per acre yield, should therefore be clearly kept in mind. "The conect water requirement for maximum per acre yield is that quantity of water which is necessary to produce a maximum yield per acre, when the losses of water by percolation, evaporation and waste, which can be controlled by skilful meth- ods of irrigation and cultivation, have been eliminated. The water requirement for maximum econom- ical yield from a limited water supply is that quantity of water which correctly used will give the maximum total net re- turns from a limited water supply and is dependent on the value of the water, the value of the land, the cost of irrigating, the cost of producing the crop and the value of the crop. The net duty merely represents the volume of water which is used according to the available water sup- ply, the judgment and the skill of the blsJhj laointofloos ntoralxsm O al cMw 1o no id" as yp an r * frets dlloiq siflq'iwa 9<id idddsiCw no dnefcnsqsfr eef diciatsd* llltr daco arid 10! acUansqj-noo Illw a-islfofc llcii-eflo brt^ nsvsa lo .>8ilqqs is* aw Is aaiioni nss^'iil eicfxa artt lo m arid- t noWJ3olIqqs asrfoai ns* fons 0e*tll eiij nl <yffl 'iol sd-sansqfttco II ivy scfneo aesd-'x brus sisllob ^wol lo Jl .bsiXqqjB iscfsw lo assort! svil BI^XS sdd-.lo d-aos arid arid .YJW& d3a sad- i9d-xjw arid 5ns biai^ 9-1 os i^q leoinrorroos mxBfiJtxam 10! .nJt:.i nJt dqail \;Iis9lo acf nujTilxfim lo'i d-n9m3 r ili/p9T: -ledsA' dooaoo i?jsw lo \;didfiEwp datfd- ai blai^ S'loa tixefii s 30i/I>oiq od ^saaeoon el lo aesaol add nauw ,aioa taq fjlai\" -cfcrem Iw'ilixa ^d bsllo-idnoo ad 0ao rfoirlw avsil t rt'f ~ '3 ':?"' : U Jt) . flmll a notl &. io Y ;i . ei bn ^laqws ory . ' . 319H1 . II doJ ' ^ i ' 10 Irrigator. Where water Is cheap and abundant throughout the irrigation season, the net duty will often exceed the water requirement for maximum per acre yield, because the consequent low price does not enforce careful irriga- tion and cultivation methods. Where water is scarce and therefore valuable, which is the usual case for a great part of the arid region, the net duty will approach the correct water require- ment for maximum total economic yield. "(>) The amount of water that will produce the largest per acre yield of a certain crop is by no means at any time the most economic Duty. It becomes therefore imperative to undertake sufficient experiments to obtain this information for all the standard crops. Theoretically, the aim in irrigation should be to obtain the highest possible efficiency out of every inch of rainfall and every supplementary acre inch of irrigation, and to use the least amount of the latter necessary to main- tain a favourable moisture content throughout the main part of the growing season, while still permitting the soil to dry out sufficiently to mature the crop. Irrigation should be applied when the soil moisture content drops to near the wilting point, and in just a sufficient amount to raise the moisture content to the maximum usable water capacity of the soil throughout the root zone. bos qssifo al i noWaai'rxi 9rfd d-jjoifcjjjciild- dnabaxjda gsoxs hed-lo IlJw T#JJ6 don siid <noe392 isq nuralXBrtt ic'i driameiiwpsT: isdsw sdd wo I dngupgonco arid 1 ascreoadF 5l9l^ eios las ion secb Jtd-evld-I.t/o fta 9rcl9 j i3f-d' brrfl ^; s -iol saeo lauaw sxit al I9>iw d-osi'ioo eri* rfosoiqqa olmonoos lactod" nLurnixsrn to'l o'iq II lw -**dcr ted-aw lo d-ax/oms erJT d-a arrasm on ^d a.t qoic nlad-ieo JB lo blsx^ 910.3 13 q oj 9Vld-Bi6qiJt 9101919^ 39aoo9cf *I . ^ojjQ olmoaoos cfaont airid nl^tcio o^ ^JHami^sqxs dt9ioJtllua gaiadi .aqo r io bi3ijnBd'3 sxi-J 9d bli/oda noid-asliil nx ^is srid rtfllaoxc^oeriT 1p ;tuo YO9ii' 3t ' 1 slcfJtasoq daadaix; axid rtlflddo lo rioni 9-ros ijiB^nsmel qq.ua ^isvs OHB ila'iriis'i -nJtsm od" 11BE390S0 isdd-dl 1 9iid lo cto/ohta dsasl erld- oau iiaq niaw. ri* Jijor^o^r^ Jnsdaco 9*ruJai'oio aldati)Vfll od- lioa 9dS jjnijdiimtsq lllda ellrfw v i, gnlwois 9l: blwoxia notd-esliil , .<JP'io add- etufBin od \ ' olllwe dwo - 9 {d ia9a. od sqoib dast^mo etwdaiaia II neriw arid lo ^dlaaqao ts^aw o* *B^ftps aiwteion r erJ :*!. lioe 11 Proper irrigation supplies a favourable moisture condition and encourages the growth of feeding roots, bac- terial activity, and the liberation of plant food. Im- proper irrigation checks these processes and often causes unfavourable soil temperature and drainage problems, or the leaching of plant food. Proper irrigation tends to produce optimum moisture content conditions. Again, there is always a tendency under irrigation to compact the soil and to exclude the air. It is exceedingly important , there- fore, to practice rotation, including soil building crops which will offset this tendency of the soil to compact and make it practicable to maintain a high state of tilth with a high percentage of organic matter. It is the intention to discuss in this thesis these influences which may modify the net JXity of water, rather than the many, varied and com- plex factors, enumerated above, which go together to form the Gross Duty of an Irrigation System. That it is well worth our time to give careful study and investigation to this particular phase of the question is b orne out by the following general figures of the disposal of irrigation water after its application to the soil. II slcfaii/cvsl s asllqqi/e uoi3&% r ii -oacf . a.j-001 anlbeol lo ifcj-woig 9i# aa.gBtucone 5ns -ml .bool drialq lo aoirffliecfil 3rio l Jbae nsi'io >n.3 aaaaeociq sasdd- a^ioado 9g^nJ:2i5 frna -3'fi/-j-ei3qnt3cf Iloa nol-te5i r rti Taqo'rl .boo'i cfnalq lo .snoid-Jtbnoo ^nsvincc siwctaiom miflRid'qo SOJJDO-ICV Iloa siil dottqinoo oi xiol-tsali'il i^bnx/ ^onsDnad' . a a^jswla ai ^Ignlfiaeox-i al ctl .'xia arW ebuloxe ol >nB Ilca ^riibji'Ioni tKoid'ScJ'oi soidosiq o;f .910! .-? toaq.Ttoo od- Jioo 9;.{ j Ic ^onsSne^ aMd" d'ael'io IIlv? rlolxfw lo 3d -Su d'oia. s n.a.jnicra oJ slcfao.ttooiq ctl s^lBfli is-tril odj- ai ,tl .is^^sra olaagio lo ss*^ 60 ' 10 ^ ^gl^i J3 ifoiiiw ssonsullni assrll alasriit airi^ ni adooaio oct moo .bna JjsJ-rjBVi^msm e^Ict naa^ isactei t r i3t9\7 ic ^jwd-'^sn d^ tiriol ol i^ii 330.1 og iicl'flw .. 9voo^ Jb3o oisnujns ta^ipd'os'i xalq .:9^aY2 nolcrasi^nl ne 'lo ^ud aaoiD srlci liria'iao svi^ oo' & (:!* 11/0 [^*iow Ilsw al .^1 **lT srf* lo easrlq islsjQlitaq airfj- od 1 rcol-tngi739vni >as *.- ' ' -7 lo ssiw^il laisnas si^lw'ollol 9^ orrio cf ei ricW od 1 noid'sollviqs adi ^ectla isdaw . -ri lo laaoqalJD .a 12 Surface waste 5- -15 percent Deep percolation losses 20--50 Soil evaporation 10--20 Total " S5--85 " Amount available for plant transpiration 65--15 It will be seen that even under the best of conditions, the losses will usually amount to thirty-five percent of the water applied. "While these losses appear high and while they can be reduced under proper methods of irrigation, the expense of their re- duction may, in many localities, exceed the present value of the water saved. Where the losses are excessive, the best crops are usually not secured and it will pay to improve the method used and reduce the losses to reasonable amounts, " Whilst it is unquestionable that the major part of this loss is due rather to the mechanical factors of the application of the water to the landfactors which even under the very best of conditions are often not prac- ticable to modify a greatly increased efficiency of the water should be obtained from a proper knowledge of the more theoretical considerations of the question. It is rather with this part of the problem to which this discus- sion will be limited. Any improvement on the practical 21 jrreoisq SI 2 sctss?/ 03- -OS aaeacl col;*J8lqojsq qegtl QS OI noid-3'oqsv9 Iio3 38- -32 51 --co ,aao loir-no c "io craed Silct -isjsm/ nevs "to ^nooiLi vll-\d'-ix;:fd' o~ ^xu/oma ici D^cfsllayje tauiom fioi^/Jtlqana r ict j-fislq ness sd II lw d~x IIlw -aoaaoi sdcfr ell.iw afcon/sw -o-i 'li aaaaol io Iliw < 9 c iii saeaol aiij e'i. Liw f>o c iwos.fcj ton ^Il3.ua;; '913 aqoio I>nB bsau ho;iy&m Siitf avoiquti p^ x o^ asasol lo a r tcoOB'l--f)ruI srW o-l xq uO0 ns-Jlo SIB aitold-lBiic * lo ^oneioills fosaasioci lo s;^I)9iwonji igqciq a ewb a.t aaol airict 'Io lo noWfioilqqs srid- nsve ai \t no Ji j 2 9 l. f p 9ilo o QfiC u* rfo!4 od- msldoiq a SIOQflj sq aMcf rCcfiw 9JliKil sd Iliw coia 13 side is an entire local question, to be solved by each individual project according to the prevailing conditions, A discussion of this side of the question could at the very best only be most indefinite. On the other hand theoretical considerations lead to definite principles which if followed expeditiously should help to secure not only a higher increased Duty on existing schemes, but al- so give much more definite information as to the probable irrigable area under a projected scheme. rioss TO' bavioa od od" t nol;ra9up laoql atlctna B si 9-cW o* p i63(,oiq MX/CO noid'asi/p 9ji* lo s&la aiitt lo Hc tsrSto sif^ nO .stinllsbni *aom ad Tjlno cfaecf -^ beal anoictB^sfiisnoo Isold'9 > ' ten sijjosa o^ ql.ri bIifOB'3 ^awoWlfisq^s bewollol li -Is cl-t/d t astaeiloa 3ni--tax>:e no Y*^ baafleioni isrigM a 9iCct o* as xiold-sfmolxil acHnll-^b siosi ilown svig os s r i >s 14 CHAPTER II . - i <*'..% vvr i rc, v>- . J , > * 7< "-' .-.. r- T ' -. * f- THE TEXTURE AND STRUCTURE OF THE SOIL It is now perhaps universally recognized that the character of the soil has more influence upon the Duty of water, in the sense of the reasonable water requirement, than any other factor. It is the texture and structure of the soil which to a large extent determines the amount of water that is lost by deep percolation, carrying with it below the root zone a considerable amount of valuable plant food. It is also the texture and structure of the soil which determines the lateral movement of the water for equal distribution under furrow irrigation, as well as the upward movement with its consequent evaporation. A brief survey of some of the importance characteristics of soils will help in obtaining a clearer perspective of the various influences to which irrigation water is subjected. Arbitrarily speaking, soils may be divided into seven grades or "separates", com- '-'"--; i ' - "X . . prising fine gravel, coarse sand, medium sand, fine sand, very fine sand, silt and clay. This grouping, established by the United States Bureau of Soils, is dependent on the size or tecture of the soil particles, varying from 2 1 mms. in diameter for fine gravel to diameters below .005 mms. for clay. II lo "10 cf-1 JIGS 3H1 ld- beslnnoosi -\jIlBai3 vim/ aqsitaaq won al d 1 ! ^d-wCI arid- noq> soaewllnjt a'xora BBC! lioa srfd- lo 3idBnoajS9Tc &d3 lo eartsa exio nl i9ctaw lo iudxscf srij- ai *I .lod-oal isacto Y^B aadcf sill a9nlw9*efc J-JisJze s^isi s otf rlolrivr lioa sad- qeeb ^cf tfsol. al rfsrld- r i^-3v/ a snos d-ooi add 1 wolod lioa 5:id lo 3'i.udoxnd-e Jbn-c 9i.ad;x8d- sifd- oals ai .i>coi tol T9d-.3w slid- io d-nsmsvom Isisd-sl eif* asnim-isd-sb foiil\v i; 3/ict as Ilav lc Y9\nua Isiid A ni qisri Iliw alio^ lc oct aaonswllni awclisv erid- lo 9Vjd-o3 ..^niaiaaqa ^Il'ia-itlcTiA .bs^oaccfi/a ai -tdd-s-J iroW33Ttl xfolri* -moo ^'as'ts-ieqaa" 10 asbBta nsvse od-ni bscivlp sd Tfsrr silos .&JXSB anil bnB3 miribsftt .,bnjaa saiBOO ,l9VBis snil tin ' JXla *&rt*e snn v;o f i r ii;'i 90C08d--ioqmi add 'ic srrtoa rto a,Tjr t 1 2 moil 10! ei , lo f air ull 15 As these groups vary in size they exhibit properties, especially in regard to the moisture content, which vary widely, which again are imparted to the soil V 1 ,.\ ;-'--- f", '' , <~ of which they are members. These clay particles are very minute, jagged and angular in outline. They are highly plastic, and when rubbed together become sticky and impervious. They shrink on drying and re-expand on being melted. The finer part of the clay consists of colloids, which, because of their fineness of division, exhibit certain well defined proper- ties, of which absorption of moisture and high plasicity and cohesion are the most important. Silt exhibits the V' ' ; i <; '. 'i .: ':' same qualities, but to a much less marked extent. The presence of clay imparts to it a heavy texture, with a ten- dency to very slow water and air movement. Its water hold- ing capacity is high. The soil is highly plastic, becomes sticky when too wet and hard and cloddy when too dry. The sands and the gravels function more as separ- ate particles. They are irregular and rounded, exhibit very low plasticity and cohesion and as a consequence are little Influenced by changes in water content. Their water holding capacity is low, and because of the large individual size of the pore space the passage of water is rapid. In esia at Y <*ri9;tiioo siirtaiom ertf o* Iloa* eil* o* b3*-ieqmi 9ifi -blorl fens oi^afilq aquoig saarf* sA nl ^Ilaxoeqas <ss W riolrfw ,^Isbiw Ytav i arts cl 4 T-'il 3iH' .&9-tls>^ 55flll9l> ilow ftJ rigirl barf sv' :S 1*3 9:TfCO no im.3qx-9*x bita sptTtb *idMx <ftoalvxb lo a a or, on il 'io nox*qio8cfs doJWj? lo .331* 11-',?^ 3281 ilojjra s o* *trcf ,aax*ll30p rstea 1-^ , 9itr*X9* Y^ 3 1 '' B '-'"^ ;:! ' s*%eq;ftl ^slo lo eonsao'iq 3'/r 3*1 .*ri3ittevcni ils bit-? ie*BW wola TJTTSV o* .oWasIq ^I;.i3^I ax ixcs sdT .dslii'a.i . 5 t risriw T ^bbolo Jbfls 5*iBi{ bite *9tf oo* o'iofn noiioayl alaivsig sxi* 5xis abrtsa 9d wo I vi-sv eX**ii 9on9.vpsanoo B 32 bne aolas ilsiIT .*nad-n:oo is^sw at 16 regard to structure-- or the arrangement of the soil par- ticles in the soil--a wide variance is met as well. It is a well known fact that the soil particles are not homogeneous in size; neither do all the particles function as simple grains , being gathered together in groups called granules or crumb structure. A small particle of soil may be made up of a number of very small grains placed in between somewhat larger particles, resulting in a reduction of the pore space. A soil having such restricted pore space is said to be in a puddled condition. The condi- tion is detrimental to plant growth, impeding the root de- velopment, but also preventing the circulation of air and water; a most necessary function for plant growth. On the other hand, when a soil is made up of com- plexes of soil granules an increased pore space will occur. There will therefore be a very wide ranpe of pore space rang- ing for the different types of soils as shown by Table II. Ixoa ertt lo ^nanissnsiis arl* io--s r ii/o o.uid-3 o;t 13391 tf as d-3iK al sonslisv sblw js--lioa s-ctt ni ee Xloa srict cterfcf d-osi riworui llov/ e al d"i exld IX s oi> iferWisn ^e^ia 1 a.uosnsBpmori cton nl i9d*9aod- Bs'isrictag ^iiierJ aixisi^ slqinls aa nol^ q Il^i'ta A " .0'iwd-o.tn ia cfnujio r io asiynsig Jjsli.30 jqijoig salaia Ilyiaa Y'^sv lo 'iscfnwa a lo qw bam scf ^sm XI oj 'io B ni yj!iit/33 r i t 33loid't:Jq is^iBi cJ-eiiwsmca noswct-ad ni b^o^iq fis^oii^ae^ doi/a -uilv-ui lie 2 ..t .SOBOB 9ioq srtt io noJ l>noo oiTI' .ncinifjnoo boXM)jJc s nl sd o* biea a I 9-0 aq a 8-ioq -8b d-co'i 3iicf ^il&sqrai ,Tl*woi-^ itrwlq oi Xa^ng^l'id-ob a I bna iii io nol,-t.ai00TJ.o. e:i^ 3fil*rj9V9iq oaXa ^twcf ^^nam .rld-vroi^ :trt>3lq -iol noi*oitJ/i Y 1 ^ aasosxi ^- M s l^ 9 -;uoo lo qjj 9&o.E al iica B nsrlw ,nsi isrid-o arid n-u .T:.UOOO XXI. v aosqe 9ioq tsa^a-ionl HB aaXi/nais lioa i soaqa yioq io 9-;,ftfli afcl'w ^sv a 9tf ' sip'lsisri* XXlw .IX aXdai' ^d nwoiia aa aXioa lo asq"^* dnsialllt) 9.1; 17 TABLE II nt. Percentage of Pore Space for Different Soils (King) Sandy soil 52.49 Loam 54.49 Heavy loam 44.15 Loamy clay soil 45.52 Clay loam 47.10 Clay 48.00 Very fine clay 52.94 The pore space in any of these soils is natural- ly subject to considerable fluctuation, especially in the surface soil, due to tillage and the amount of organic matter present. When, however, soils are in the physical .iota lr..ar<st*fcd grant: *-,- :icu. " &ac -'-.:oe tin condition for the best plant growth, it will be found that the finer the soil, the greater will be the pore space. In a soil the pore space is occupied by water and air. If the water content is low, the pore space is large and vice versa. Thus the relationship of the aggre- gate pore space and the size of the individual spaces to the amount of contained air and water, to their movement through the soil, to root extension, to soil aeration, to II iLldAT ic -1. eo Gi-.SS 11 o a e&.i'S 51 - KU501 33;G 1X02 'J8lQ 01 . V msol 00.3^ . 9S9i-:d- lo V*' 1 ^ - nl ^ll.-.lo^i-.cis ..ni: I.t3u.-foi;_l slcfe'is^i^noo c* d-03{,cf0a ^1 oJfisri'to lo .-i-nucra;?. silvt OHB 9 -3.8 111.* o" .swb txJ:o5 eoBl'i/js i^v;Tc D-" ni 01^ slxoa fi3V9 r crr , ne^iW .^naagtq Ta^J-^jtr onu-l scf ill.*- -ti .^.vo'i^ d-Hslq ctaed at TOI noi^lcnoo is TB/f -;cf balquooo w.c 3C3qs stoq arid- llc^ s ni ai 90-cj 9'ioq adj t wol ai J-ns^noo i9*a-w siicf II .-lie D^ 133^ e.^ f lo qiriarscWalsi arf^ eucfT .sai^v DO!V bc^f s^'i- o* aaoaqa Lat&tvttnl srtt lo daJa 9iJ bns eoaqi: 9-100 svom ilgiicf oct ^is-lsjif ixct? iJts b.sol s-i no r: .rtoId-siaB lioa o^ ,nolsrt9jjt; ^001 oJ ,llo,; 18 bacterial activity become apparent. The factors which control the soil structure are plasticity and cohesion. As these increase, there is. with an excess of water, a tendency towards puddling. Oh the other hand, when too dry clodding will result. 'A diminution of these factors in heavy soils will give a better granulation of the soil particles. Granulation is "nothing more or less than a condition brought about by the force exerted by a variable water film and the pulling and binding capacities of col- loidal matter, operating at numberless localized foci. It is evident that any influence or change in the soil which will cause a greater localization of these forces v/ill pro- mote increased granulation." And since the optimum moisture condition of a soil for tillage is also fortunately the op- timum condition for plant growth, careful attention should be paid to the effect of alternate wetting and drying of the soil, ploughing, freezing and thawing, and the addition of organic matter and lime, upon the granulation of the soil particles. The moisture contained in the soil may be hygro- scopic, capillary and gravitational. Hygroscopic moisture is the moisture which a soil dried by artificial heat will 81 snoosd ^cMvj-^ofi laliectocd 'S lice erlj Ici^aop rlelrlw a-iotfojel snT saje'ionl s^aii* sA .nclaerlco bits Y^-^-^BBlq 9is abiewoci Y 3 ^ 9 - - " 9 ^ 8 is*aw lo aascxo ns riiiw .3! A' .^Iwas-r jil-w grijb>clo Y*I^ cod" asdw , firxsrf isn'^c 9r& nO a BV 1% liJtw aiioa ^vesa ni aic^osl sascid' lo rtolJwnJtfaib . :;9lol.iisq lios exit lo no Id- si was 135 isJiscf s rxB/iT aa?i -T:C 9 r rcin j^nliid'c lcfalisv -3 ^cf te^iexe aoicl srfd- -Ico lc a-:'i^iojsc30 jjnibxil-:- br.a l .loci I)9slleocl 8asi c i3CJnwn ;Ioxa.v Uou srit al s^nsrio 10 al ed* bas mill 'io^aw ..'is Jaxtf JneoiV3 ai IIlv; ^Vc 91-ucJ-sicfr. ffu/.Tiioqo ori^ on>u brtA tv .nolj lortBig baaBe'-ioni gj-om -qo Oil* ^i9.t3niKHol odla cil as-- 1 - 1 ^^ lol Iloa fl lo noictlbfjoo biwoas fiol^froJ^s iL-lsT-'O <ii^v/ci3. Jnslq iol nolJlbnoo mi/mlct 9ii* lo 3niY*xo i> B snlJiav/ 9d-oms^i lo tfoel'le srfv cd" blsc ac? lc ncl^lbba 9iIJ boe t get 1 wad* boa gnisseil . ^clils^olq I lea oiIJ lo floijolirnana arid noqjj 1 9 ml I bna ni f i bas ,olqo-oa IIlw rfelilv? a^ ' ;n srfj a 19 absorb from a saturated atmosphere. Due to the absorptive capacity of the soil particles, this moisture will exist round the particles in the form of a thin film, being held partly by the surface tension of the film and partly by the molecular attraction of the moisture molecules. The amount of hygroscopic moisture increases with the total surface exposed or the fineness of the particles. Any practice that will increase the colloidal materialthe humous, colloids being very susceptible to an increase-- the higher will be the percentage of hygroscopic moisutre. This is well illustrated in Table III. TABLE III Hygroscopic Capacity of Various Soils Soil Percent clay Hygroscopic remaining in Water ex- suspension pressed in after stand- percent ing 24 hours 15 clays 7 clay loams 9 loams 5 sandy loams 4 sands Hygroscopic water is held so rigidly to the soil particle that it is in no way available to the plant. As this zone 51.97 10.45 17.15 6.06 12.06 5.18 7.39 2.50 2.95 2.21 61 IX iw Mar! gniscf ,itiin ni aidft a9l a Tto raicl ed^" a ,cfa 'qj eoaliua sxlct sdtf lc eaensctil sxl* 10 foasoqxs iBoioIIoo add" easeionl IlJt* <tfijrf^ aa o3 eldid-qsoai/E Y^ev iolloo ^aoorritrxl iri oJ:qooco'ig^fi lo eafi^nsoieq c- XII.', 1 taxlglrl orf.^ .lli-oldisT nl i>e^B^jj!Il Hew si alriT III 3JHAT al ni S&.OI VS. IS 80. 3 31.71 81. 5 50.21 06 . 2 es.v aruaol c i vjhn&& S - . encs a 20 increases, due to an increase in the moisture content, a thickness of moisture film is reached in which the molecu- lar movement is perfectly free and unimpeded. These two zones, one in which capillary movement is more or less free, and the other a comparatively thin film in which molec- ular movement keeps the moisture attached to the soil parti- cle, gradually merge into one another. As more water is added and the film thickness round the soil grains, the outer layers are held with de- creasing force, and a point is reached at which plants are able to procure all the moisture needed. At this point, ac- cording to Dr. Widtsoe, the film water is held so loosely that it moves freely from soil particle to soil particle, being termed the Lento capillary point. Above this point the water is readily available to plants and constitutes the main supply of water for plants under irrigated conditions. Hence the following coefficients are well estab- lished (1) The hygroscopic coefficient is the percent of moisture, based on the dry weight of a soil, that a dry soil will absorb when placed in a saturated atmosphere. (2) The wilting coefficient is the percent of moisture, based on the dry weight of the soil, which remains in the soil when the plant has reached a condition of permanent wilting. OS JB tCJTxeJaoo e r u>ueom s -iroslom 90* doidw xsl ai ctfct 9E9iiT .babsqmifttf bne 33 si 10 eiom al .tasraevora ~. oolo.il ifoiriw ni rrdl'l nidi ^Isvld'flijsqsaoo * a sri.t od- 591103*^3 s^i^taioat edi snc oc?:'. f . r. no raiol^* mill w bfi bebfcB ai . -o> rliis filsxf 9iB aiSTje-t 10*00 9^ 9 r u8 ao'itslq rlola'v,' d-a fiaflo^ oa <ctnioq aii .bsfcsan oa fcisu c.1 --lod-fiw ralll silct t eot- e Hoc; oct slol^i.yq Iloa mc'il ,*nloq xxIIiqa- art* asuijj-ld-sfioo bfiJB sJoBlq o* sld- Haw 91 s 1o *nsDT-9q srW si Iloa Y* 3 ^ s cted* ,.Iloe aiffi ^2) .etsdqaoatfs an'* no bassd , s.d- nsdw Ilo suall iw dioao'a s/wway Me &rmj of wa' J J t t 1. J I * a4 f *" f ? ' 21 For successful plant growth, the moisture con- tent should never be allowed to approach the wilting coef- ficient. According to the researches of Briggs and Shantz the hygroscopic coefficient is about .68 as great as the wilting coefficient or the wilting coefficient is about 1.50 times the hygroscopic coefficient. The finer the texture of a soil, the greater is the number of angles between the particles in which a film of capillary water may be held; also, the actual amount of surface exposed by the particles is immensely larger than in a coarse soil. Due to these two conditions a soil of fine texture will contain considerably more capillary water than one of which the texture is coarse. See Fig. I. The structure of the soil, or the arrangement of the particles, will become a factor in the capillary capaci- ty in so far as it affects the amount of surface exposed to capillary action. Hence the granulation of a clay soil, by producing a crumb structure and by increasing the exposed surface, tends to increase its water holding capacity. On the other hand the compacting of a sand, by increasing both the effective surface as well as increasing the possible number of angles for capillary concentration, will have the same effect. See Fig. II. Organic matter has a great capil- - 19V3H f. .ta< j JB 3. . 3u 3LCT i Sii 3< o jt.i"jacf aJ: ,i/rifl f i^ fc l 22 lary capacity. Not only its porosity but also its col- loidal content exerts a very high affinity for capillary water. Capillary water moves from a wetter or thicker moisture film to a drier or thinner water film. The water will rise to a greater height on a fine textured soil tham on a coarse textured soil, although its rate of progress is much greater in the latter. Lyon and Pippin give the following Table. TABLE IV Capillary Rise in Inches for Different Lengths of Time/^/ 1 Soil |$ hr 1 hr 1 2 hrs r 1 day 3 days 3 days 13 days 19 days Silt and very fine ' sand '2.7 i 4.7 7.0 20.0 30.0 45.0 52.0 56.0 Very fine ' sand '7.6 i 10.0 12.4 21.0 23.0 26.0 27.5 28.5 Pine sand '9.0 i 9.5 10.0 11.6 13.0 14.3 15.2 16.0 Coarse " and medi- ' urn sand '5.8 i 6.0 6.3 7.5 9.0 10.0 11.5 t 12.5 Fine gravel '4.0 i 5.0 5.3 i 6.4 I 8.0 9.0 10.0 10.8 22 ' Id" j'o fl moi aevora siiT .mill iecfw isaniffi tf Iloa bsi-t-'^xscf- . anil a rtc d-rigJ o s ori* 9V I? n &HG ' ! _. ~A rfr *^ riff v , -f '- LljD I! Ou nXJ.il 3 j.jJJ i.j.vm tecfrfiaia s oct sell. II iw 3 JDSIJJ^X' S fiO axi^ ni i: si vi r~ ~r~ ~r~ T r c* PI r *T ^ * i ' 1 " eiy siy ; -T ' ' - ! 1 1 , T i 1 o.aa'o.s o.oe 0.02' a. 1 i i ,.V2 : 0. 0. 0. 1 s.^i ' o.5i e.ii' o.oi r r ' r o r O Ui : t 8.0 O.OI' I ! i : e- 3V -.3 a . srtl^I 11 9313OO 1 -J.b9.T- 25 With a further increase in the water content, a point will be reached when new additions of water will simply slide off the existing film and be drawn off by gravity. Dr. Widtsoe has called this point the point of maximum capillary capacity. Any existing water above this is termed Gravitational water. See Pig. III. It moves slowly downward through the pores and tubes of the soil until it is all absorbed by the lower drier soil or until it communicates with the standing water table. When gravi- tational water begins to appear, an adverse condition to plant growth is obtained. The proper aeration oi the soil is much hampered, the roots are deprived of their oxygen and toxic materials tend to accumulate. It is therefore evident that there must be some moisture condition in a soil which is best for the development of the plants, of- ten termed the optimum content. i The total range of available moisture does not of course represent this condition. In practice the mois- ture content will fluctuate considerably, forty to sixty percent of the pore space being considered essential for best growing conditions. It should be the object of every irrigator to apply just such an amount of water to his land as to bring the water moisture content as high as ijcf lie nweib sd bit lo tfaioq 9tt ctnloq al.:. - . 2! alc'd" svcda. lod-sw ariirfeJbcs -fiA .^' aavom d 1 ! ..Ill .3!^ S>oQ .lajsw IB;. lloa arid" lc aecfjjd- bits ESIOG aifct r^i 10 lisa isi'iib lewcl szi-i T c^ & - ns-iW .olc r -d- iQ.ja-w ^nibnBd-a sr'j i o^ noi-libnco siiovfoB rte ,iiiaqqs od" Bf..' Ixoa 9t(- lo' nold-a'-isfi nsqc'io adT . L x^ild" lc bexrl-iCjOi) .9*1.3 e^ooi 8u iaiW ax il .ed--yrtuJ03^ o* &nsi B nl nci^ib'floo sii/^aio^ emoa acf cfairm - r lo t 8-*oslq sad' lo alorit .9il^ eoitosiq al .nol-jibnco ^txls oi ^*io't t ^IdJ3T9blaffoa *^- sol I ' . ,aa 5'. as tfsJuI aa ctna 24 possible without experiencing deep percolation losses, and at such periods that the minimum water content just before irrigation does not approach the wilting coeffici- ent. The extent to which this is achieved in practice is illustrated by the experiments of P. R. Adams on Sacramento Valley Soils. Fig. IV shows the percentages of soil mois- ture in a fine sandy loam soil before and after irrigation for various depths. The diagram showsthat the moisture percentage reached or closely approached the wilting point in the upper three feet of soil before each irriga- tion, but that it was well above the wilting point through- out the season in the third, fourth and fifth feet below the surface. The results of a considerable number of experi- ments conducted on the moisture properties of soils under field conditions of irrigation are summarized in Table V. 3 i lo aa /y fj'9il - wol9c r cfsol rfctll'i 3 1C ;u aiic-i 25 TABLE V Character of soil Usual ave rage percent of total moisture i At wilt- ing point i When irriga- tion is de- sirable \ After irriga- tion when free to drain "" Sandy soil , | 3 ^ , 5 8 Sandy loam 5 9 13 Pine sandy loam 6 ^ 12 18 Loam 8 14 21 Silt loam 10 16 22 Light clay loam ? 13 17 22 Clay loam 14 18 22 Heavy clay loam 16 19 23 Clay 18 20 24 It is evident that, even after a heavy irrigation, the aver- . ; j * . rr.ted cenc^ ttcn, the fl^'-d age percentage of water held in a soil to a depth of ten feet is far below the maximum capillary water content. In- variably only the top foot or often the top layer contains that quantity. With increasing depth, there is invariably a decrease in moisture content until about eight to fifteen feet, it is very little above the point of slow capillary 52 v au 9lird-aiQ.n Isd-oS lo drigo-raq as^iavs lawsU HOB lO 13^O r I . i i -s^iitl TscfXA 1 -sgliil nsrfW 1 -ollw dA 1 9911 nadir rtoW 1 -afi si iiolJ-' taioq gal 1 jBtB'jS oc? 1 9lcfsila' > ' 8 ' - S ' ! 1 ' -Iloa ^f)ns3 SI ' 9 ' i ttisol ^foasS 81 ' d ] niaol ^brtas snl'i 12 '*!'&' i i ntsoJ 22 ' 01 ' , 01001 " i3 1 ' Gl ' i . ' ms o I '^ o 1 o drfg IvI 22 GI *! aisol Tjal'J ' 91 SI 1 . ! OTBOl ^SlO YVJ 39 ^ 2 02 ' 81 ; ^jgXO -lave arfct . ncl^s?;! ill /V-sSil B isdls navs ,: Kaxid' dTi5)lV9 si SI 119 j 'lo iiJcisb s od lioi. is rsl 5l9l ifd-aw le aqacfneo-ieq 930 -nl. .dnsstnoo -ladsw -^filliqjso mi/^lxsc: 9d3 wo led i.sl al d^ss'i 10 crcol qod" si esdIJ:! od- drig-ts d-ycdfl IWtti/ ^elota ni aaasto^b a 26 TABLE VI Table showing; the distribution of moisture after irrigation (Widtsoe) Depth Depth of Water Applied In the Spring 7.5 inches 5 inches 2.5 inches 1 25.80 ' ' - 23.56 18.57 18.42 2 21.88 20.73 13.81 17.49 3 20.17 i 19.09 13.53 15.65 4 17.72 17.84 13.46 14.07 5 15.91 16.29 12.32 13.98 6 14.55 15.83 11.81 13.14 7 14.21 15.60 12.31 13.26 8 14.15 14.81 12.70 12.93 Dr. Widtsoe has termed the percentage of moisture held in field soils to a depth of eight to ten feet, with the top foot in a saturated condition, the field water capacity of a soil. In general it has been found that it does not vary very much from the optimum water content for plant growth. For various soils Dr. Widtsoe gives the following values. iv ,** ^ HI ; tolLV* ,.*.. 10 XH { SoFf"37v ! 06. 52 | 1 1 3 .2 1 aa.'ioni 5' s^ ! ' ' V3.U1 ' 55.52 ' -. i ' 13. Si ' 5V. C- i i ' 83.12 ' 2 ,T3 y r i GO.G-i. OG.^jj. WU.i VI. 02 t 5 VO.M ; 9^.51 ; 8. VI | 2?. vi ; * 86. ol So. 31 ' b2.c_ ! .1 i xe.51 ' 5 1.81 -11 58.61 ' i 53. M ; 6 &2.51 Ii.21 ! . OS. 51 1S.M | ^ .21 IS.M : 51. M 8 lo e^^^aeo-ioq 9iW beifirrai a.ari gild- Ml:. *9dl nsd- ccT juals lo dtfqab oct dlloe blsii lo iccJ-ioaqso i-?*aw blaJt'l sxfct t na&ifcnQO bs^Bi^sa B nl docl don aacb cM tfartj fcnwcl nasd aBii dl Isisasg nl .Lion a gniwollol arW asvlg eoarffilf .-tO. slioa p^oliov io r d .rid 1 wots .ae.yl.av 27 Soil to a depth of 8 feet Field water capacity expressed as a per- cent by weight i 'Registered moisture 'percent by w eight on 'the basis of forty 'to sixty percent 'moisture content and 'thirty percent pore 'space i Clay 19 i 1 1625 i Clay loam 18 1 9.414 Loam t 1617 1 913 i Sandy loam 14.5 ' 1015 i Very sandy loam 14 1 710 i " ' -. J- - 1 no d-ilgis # vcf JKso-ioq' -i&q, ^cf'ic'i 1o elascf s^tf 1 ctnsoisci YJ"- 51 -* 3 Q^ brt.'^ cfnscirioo oiw^siorn 3 i>Ci d'iisot^ 1 ^ ^lirW i I iqjgo istfsw'&.XeJre ' dd-qsl i . . /CO ^3- : - ' i i > a otf Iio2 d-901 8 lo 62--31 i i e-x t- 5101 1 01 --? 1 T ex ' i 81 i . -i r -i r 1 vl 91 ! 3.M -1 ' ITtBOl 1 meol Y 3 -^ 1 ^ rrtsci '-^bnaS 28 CHAPTER III THE CLIMATE The first factor, influencing the net Duty of water, that will be considered is the Climate under which irrigation takes place. The annual precipitation and its seasonal dis- tribution, together with the temperature, humidity and wind movements, have a very marked and evident effect up- on the amount of water required for crop product! on, length of irrigation season and the number of irrigations that are applied. The climate .affects not only the total seasonal duty but is also mainly instrumental in determining the actual monthly distribution of the water requirement- -a most vital factor to be considered in the design of the distribution system. The monthly requirements are con- trolled by the crops grown and the locality under consider- ation. Alfalfa or pasture in any arid region usually re- '.$:r *.tfc c: . gg - -:-'* quires water throughout the growing season, or from early spring until late autumn, while a grain crop requires water during not more than the first half or two- thirds of the season. Potatoes require water throughout the season, but Ill H221AHO io ^cfoa 3s>tt 6i& BnionsJJlnx tiocroe cE-i 9dT oJsfltlXO add 1 ' aJ. bsisbienoo 0d ^ lb lanoaaDe ad-x ba,- nolt.d-iqiog-ic Lsaaaa bns ^d-iJbitrujii sijjctaioqnis^ sdd- .Ictivr nsddsaoJ- ,nold-ucfJtid )C--iq qcio 'icl bs-iiupsi 'isd-.aw lo dm;o::u3 sd, "no J-3iId- aaol-J33ii r ix Io -iscifta/n sricr bna aoasaa nolJagjrcii lo ..bellqqa edi ^Xo tort ilool'l'-i nx Ijed-rriiiiui 3d-3Tr sxl.t Io srio lo iigiasb sr{j nx bs-isblenoo ad o?- 10 Jo/si -noo 91 ' acfneKisrriifpa'i Ylrd-noa\ aixiT .fn&d-e^e noict'JJcf TC3i)ianoo i?baw -^liapcl sxld bus nvfo'i^ aqoio sii^ ^'cf ball -91 vLL&u&u noxriai blifi ^os ai a r rwaaq 10 s'lIfillA .aoiJa 10 .noasaa 30 .twig 84* ^wodsiioi'rid- tsd-atf aaiinp qoio nxs^a eliriw tajKOd-i/a si^X XiJ-ru; gnx id Io Bbnixld-owd- 10 'iXsi ;teixl ifi itda'u siost droc ytlii/b .~t-:- 29 do not need it so early as grains. Orchards on the other hand when well cultivated need little water in the early summer, the greater part of their requirement occuring dur- ing the latter part of summer and early autumn. The following two Tables, taken from the report of Don. H. Bark are typical of the irrigated sections of Idaho. The crops and soils were divided into two classes 1911 ' 18 ' . ' . 325 ' . 52 * ' . ZO? . 945 ' . 750 ". 199 ' .' ' r. . 73 (1) Grain on medium clay and sandy loam, (la) Alfalfa grain on medium clay and sandy loam. (2) Grain on porous sand and gravelly soil, (2a) Alfalfa and clover on porous sand and gravelly soil. TABLE VII Summary of Depths of Water Applied by Months to 122 Fields of Grain on medium clay and sandy soils f/zj Season ~T~ No. of 'April plots '15-30 r~ ~ i May 'June i i ~r~ JulyjAug. i t Sep. 'Sep. 1-15 '15-30 i 1 'Total 'for 'season 'feet feet 'feet feet 'feet feet 'feet 'feet 1910 39 ' .00 i .320 '.645 T .495 '.095 i i .00 '.00 1 i ~ '1.556 i 1911 49 ' .00 i .021 '.717 i .428 '.006 i .00 '.00 1 '1.172 i 1912 34 ' .00 i .000 '.914 i .650 '.059 .00 '.00 1 '1.623 i Average : ' .00 i " t .114 ' . 759 i . 524 ' . 053 t .00 '.00 1 '1.450 i Percen- tage of Total i lit I i it 1 ' .00' "7.86 '.52.34 ' i i 36.14 '3.06 1 1 .00 '.00 i '100.00 adi no abiarionO .anlaig a ^Iies oa 11 b,99n Ion ob 9& nl -tecfaw sl^ll baa ba^viciluo llsw naiiw lo cf'isq tenets I lo anol^osa fisiaaiiii sri* lc Ijsolqipt sic ah*a .H .noQ lo pw* -oinl bstivlb srcsw alloa ana aqoio ^11' .oriebl ,mQoJ -^fcrtaa bn ^B!O ns/ibam no alBiO (1) bnc ^alo nu/lbom MO 'nisi^ ells'UA (si) ,1103 ^ilsv.313 bn.3 bGJBa eiro-ioq xio nis-iS bna auo-'tcc no isvclo baa BlXallA . i ioa , J.3AT, .T 1 .qaa' .q92' .guA 1 ^Itfl/ sitt/L'-S*^ 1 Xi f ; [ " ' r^F "^ r' - r r ' i i 1 1 - _^-^_ -- - T, - jrf. V i_!^_ -'S ^-fej-iE "^ ; T^ oo. 'oo. 'eeo.'aeK'a^e.'oesJ oo. es 00. '00. ' 300.' 8S.' V..7 .' ' ' '.' . 6 n J . ' '00. ' - ! I ' ' i it I I I I ' -.: ! 30 TABLE VIII Summary of Depths of Water Applied by Months to 46 Fields &f Alfalfa on Medium Clay and Sandy Loam/fr?; Sea- son No. of plxts April 1-15 April 16-50 May l . June July Aug. Sep. 1-15 Sep. 16-30 Total 1910 17 .055 ,018 .531 .720 .002 .551 .004 r .000 2.54 1911 18 .00 .025 . 525 .308 .945 .750 .199 .051 2.78 1912 11 .00 .000 .508 .445 .697 .474 .038 _ .000 2.10 Aver- age r 3 .t .018 ! .014 .521 .490 .748 .592 .100 .010 2.50 Per- . 1 cen- tage of To- tal f~ ' '* f .72 : .56 , 20.90 29.05 , 30.00 25.75 4.02 .40 100. Irrigation water is usually applied during that part of the year which corresponds in general with the period of plant growth. The time to start irrigation is largely dependent on the initial amount of moisture present in the soil due either to winter rainfall or fall irriga- tion, the available water supply and the crops to be grown. Soils which have a good water retentive power and which have been subjected to either fall irrigation or winter precipi- OS HIV ^gA . -. S8V.S 001.2 Oo.2 00.001 1 -i ""i I "I ~r~ -,. ' _ ' 1, A 1 -rr f ~ ' . T 1 , : , 1 1 r , L S.u 1 "l | 1 1 ,_. II..-,.* l/^\ I3c . ' 200 . CSV.' ise. l~ i BIO. 1 S30. I VI oivr i .. 11. ria I 3AO UG i o 4r - 80S. 1 S23. 320.' 00. 81 IIQI ! i ;o . &Y ! V8d. S^ . ' 803 . 000.' 00. II 2191 i 1 i 1 *I3VA >i . 263 ' 8V ( r Q6. ! xsg. MO. 1 SIO. 63J3 i i i i i ' i i i i i i lo i i -. -o'r ). 5V.S2 1 OC.X 30.6E' 09.02 z- r - QV C?O . -i * I3-T t i 1 el nellqqB -^llB0afJ el -is^sw noi*?^fxl jijr is-isnss nl sbno^si-xoo doldw "iss^ ed^ lo d-xad-a o^ atnld- siff .d^wbig .tnelq lo le *luttB l*lilai 9d^ no tfnebnsqeb vli to Ilalrc-Ui tsctni* od- ^xedtls ewfc II aqoio arl^ bn/; ^iqqtie I9v^w sldsllave 3i'ct_ r svsrl ilolriw fcna lowoq 9vJ:d'n9d' r r r i : -s ovsti i.- -Iqioeiq o I bs: 51 tation, will generally be found to have sufficient initial water in the soil to start plant growth. This is due to the fact, as already shown, tiiat the water may be stored in soils to a considerable depth as a film surrounding the soil particles. At Utah, where most of the precipitation comes in winter, it was found that in the spring most of the water that fell during the preceding winter was held in the upper eight feet (See Table VI). The quantity held in the soil varied with the percentage of water in the soil in the autumn. If the soil went into the winter in a dry condition, practically all of the winter precipitation was found in the spring in the upper eight feet. If, on the other hand, the soil was well filled with water in the fall, a relatively small quantity of the winter precipitation w as found in the upper eight feet of soil. The upper couple of feet were, in both instances, fully saturated, and the percentage dimin- ished steadily with increasing depth. Hence it is clear that when the soil was fairly completely saturated in the iur r '-i-- ; :;c< c-iuy evepoi^.-te tc^.r-r. Iiave fcii<j fall, the winter precipitation passed down beyond the eight feet limit or the root depth. Prom 1902 to 1907 the per- centage of winter precipitation found stored in the soils in the spring--the soil going into the winter in a dry condition --varied from sixty- three to ninety-eight percent. It is wi fl *iB*a o* lioa 9 :tt n is nif>^o^' 3 ntin a SB d*qeb elda-isbianoo B o^ alloa lioa o iaom ^oliqa srtt n ^aiflt on.'o'i asw *1 .leiniw ni ao:noo * ni bled BBW i^nlw rjflJtbaow artf 'anlnuB liai *U B fll folea ^i^xrp aid! .tJV eld-T 9 " Iloa a s^ cl tb a nl ts^iw sdi o^al *naw iioa 3 rl: . ni tool aawnoldc^lQioa-sq *nl ail* lo Ila it ,6flad -xarfio aitt no . evitEis-r s ,ifi i ai ' '' Jioa - w Ilsma ni .aw isello alqoo la^qw oifl 1 .lioa lu Joal *rfsl ( - ao t b9*is-rtE Tfllwl .asonactanl HOB SCSI ^o^ ..ri*qab *ooi a*W 10 *l^ lo .iiv-- 32 evident therefore that in districts where the precipitation comes in winter, early spring irrigation may have but lit- ijRer - ! 11 blo" th'it vh-leh tie value. On the other hand, where the winters are dry and the summers wet, early spring irrigation should prove very profitable. Porous, coarse, sandy or gravelly soils, which have but little retentive power, will require early irriga- tion and for new crops may even require irrigation before planting. The effect that the rainfall, which falls during plant growth, will have depends largely on the amount of precipitation and the relative humidity of the district. It has for instance been shown in Idaho, "that a light summer rainfall has but very little influence on the IXity of water, most of it being evaporated. Heavy rains of .5 of an inch or more at a time seem to have beneficial effects, but the Idaho atmosphere during summer is so dry and the soil is so warm that lighter rains than this seem to do more harm than good, for they not only evaporate before they have had time to penetrate into the root zone, but effectually destroy any soil mulch that may have been formed by cultivation." The beginning of the irrigation season, may in some cases, also be considerably affected by the temperature iq axicfr s^eiiw atfoistfaJLb al tfsrict a-xclaiarld- ctaa>iv9 _4 vsm ridds^-Liii s^-toq 2 Y-t** 39 tistfniw ni asntoo ) sis Bi9d:ni?F slid- aigrlw t briB{ -isd^o arid- rtO .at/lev eld fclcorle aoltfaglfi.t gnliqa Y-^^ 39 t* 91 * ai^rnmwa srfct . Dieted- llptq- iiw allo8 Y-t-t 9 ^' 3 * 1 ? ^o Y^ 11 - 32 *93iJ3oo tS^oioi 9''lil/pS1 iliW (TQ'flDQ OVl +113^91 SlC^li *Od SVBii 0i'V9 ijsm aqo r io wan io'i bne noid 1 ellsl riolrfw t llalrilai d-oaTls exH lo jiOJOffiB 9ilJ no ^is^tol 35n.9q9r) sVBrl II iw ,f*v70'i3 sii) ail* lo v^ifjlmwri 9vioBlsi 9/Id 1 bnw n -xlgil - 3 tsrW" .c/JcpI ni rr,'/o;la naod gonB^a^x 10! 1'lni slJail i r i6V. ;t0d SBX! lo 3. lo snlai TjvsaH .bata'toqeva ^niad J lo cfaom ,8^05119 leioi'isnscf ev/3i{ od- ntsaa amlo :s *s s'torrt to oa ai Xlou sj^ct one *^i6 oa si narwyja gnliub sisi jiailct rtwaxl aiom ob od- msps sirfd- nsiid" aalBi isd-d^II tarid- .i , anos -tool arfd" otnl sd'BTd'snoq cd 1 nJE Y fi!n -. add; ila vi . i .00 dd CS!B . 2981-0 cioa of the water. Cold water, if applied in large quantities, will lower the temperature of the soil below that which is best for plant growth. Hence if the soil has sufficient water for plants to thrive on, it will be detrimental for the <U?fcMbut,! JT plant growth to apply irrigation water cf a temperature be- low that of the optimum soil temperature. id fit fcallqqfl 11 t i9^s?/ bloO . wolstf Ilos sxid- lo txtffii9.q- r ra^ a .j . -to' d Cliw *1 no evhxrtt o* ;ae-i Ioe ntwmi^qo eel* lo ct^tid wol 34 CHAPTER IV MOISTURE DISTRIBUTION IH THE SOIL mea;;j) It will be well, before discussing the question of the distribution of the moisture throughout the soil, to take up the question of moisture movement. The moisture in the soil is subjected to various forces of which the following are the most active. (1) Gravity G. (2) Capillarity C. (5) Film Forces, such as molecular attraction, surface tension, etc...F. In an air dried soil there is a condition of equilibrium. The moisture contai ned has distributed itself according to the forces acting on it, in this case being primarily film forces. If the hygroscopicity of the soil is satisfied, the moisture acting under capillarity and film forces will distribute itself uniformly throughout the mass. If now this state of equilibrium is disturbed, as by the addition of water or by evaporation from the top soil, the soil moisture will tend to redistribute itself to the new conditions bringing about thereby a movement in the soil moisture. iv.oisture will always move from the wetter to the drier soil or from the thicker to the thinner VI /IS aar *r arid 1 gnlaauoalb atolscf ^II?w 9d \Iioa 9itf d-wodawo-tt** ai^eioni arid- lo nojt*i/dln;tell> 9& .ctnQfr.evont sti/cteioiTE lo noiJaawp 3:Irf qw ajiad- ocr awoii.sv oc^ bsctostcfwa ai Itoa 9/a nJ sii/ctaloa siff J-aonx erict si-a :^i-.7ollci oai 39010! ........... .-tfsv^. , iqai) . ''i ;$) loRt lo rtci.Uiiuoo 3'ai- aiedJ- I toa bsJtib lis K/S nl i bactwdlid-alfi ajarf -ban -tetnoo siwj-aloir, . gnclea' 32^0 si--- ..-ti no yild-os aeofio'l ild 1 oct ^a I to a W lo -cJioqooaot^. -I .aso^icl mill ^ bus ^1'iBlIlcflo -isbnjj yiictos s^urfal-cm .3lcitae al j ^imtoliru/ 'ilaacM scfLrcJi^alD II iv as one al fauJncflilupe lo ets.ia sixi* won II .aaflia srict qocr 3:1* rno'il nold-s'xoqs-vo .' ^cf ic is-isw lo noid-lfs&B srict ^d aa o* llee*! stfxfdiTKtelbet o* bngi Iiv/ snu^alqia Iloa sxl: J ni ^nsmsvom B ^daiaiit *uods golsai^jd-^anoi^lbrtoo wan arid arid- moil 9vom a^awls lilw e-u-- . 3i.udelo. lioe orii iioa isi^b srii cct 35, film the affinity between soil particle and moisture be- ing so much greater in the latter case. And once contact by this means has been established, it is surface tension that drags or pulls the other particles along. the lento If the moisture content is somewhere near /capil- lary point, the movement and the distribution will be primarily due to P,G and C. When the maximum retaining capacity of the soil has been reached any further addition of moisture simply slides off the already present moisture film, --neither capillarity nor film action having any hold on the water, gravity alone acting. The lateral movement of moisture is dependent not so much on the result of capillarity, film action and gravity, but to a greater extent on the first two only. The result, as will naturally follow, is less than in the case of downward movement. Gravity will rather tend to spread the laterally moving water downward in a fan- like formation, giving thus a uniform distribution only below the topmost surface. The upward movement of the moisture is entirely identical to the downward movement, except that in this case the action is a pains t gravity, whilst in the former case it is aided by gravity. As the particles in the top -ed a . '.onx bns sloWiaq HOB neswdsd -tflnttla ad* Mil *3s*nco 90no bnA .sacs <i9**i5l erf* ai 1,8*39*13 do0m oe nolaflg* doalioa ai *i <d3ild**39 n&dd Siiit au^sm aid* anolfi aslold'i.'sq I8d*o 04* ailwq 10 agenl) * ;:G2 ..." ctuecfiicc st?/*aiont ad* II ad lliw ^oi.t'^Jcfl^dei5 srl^ bne ^ns-Ttavom 9Jf t ctnioq .-i jnuKJtXJMi srl* nedW .0 &ns 0,/9 ocT girb ^Ili -iul ^rifl fo9Jlo--9i naacf sBxi I JOB eifct lo aiOM ctnsastq ^se'xijs sd^ Tio aafilie ijlqat JE e^ujaioa: lo ii noi-ioa nilJl ion &tialLtq*o lariJlen--. .mill .^nicfOB enol3 ^ctivaig ts*aw 9d* no cfnsbns'-jsfi ax 9 r in*slom lo Jxisir.svom Isisctal 9ifT >ns nol*3fl mill t TC*liBlIlqoo lc lluaai sri* no rfowni oa . ovtf *aill 9dJ no tfcelxs leJseia B ocf ^ 0cj 9330 an* ni nsrl* aasi al .woilol ^IlJB*w;*sn illw ae ct 5ns* 1911*31 lllv? iptlvfiiO .*n9fn9vom b^awrrwof) lo a. nl 6iJ8.wn-*o& -i3*Bw ^nivom ^Hai9*fll sri* * r ** s ami* 9d* lo *q93xs , "-^ o*. 1^: j ' ' r\f\ qo* 36 surface dry out as by evaporation, there will be a gradual readjustment of the moisture particles from the thicker to the thinner films. But as evaporation is a continuous action, so too will be the movement of the soil moisture from the bottom towards the top, until the loss of moisture will be felt throughout the entire soil mass. The problem that the irrigation engineer faces, is to be able to tell to what extent this moisture movement will take place in various types of soil or what the dis- tribution through the mass will be. It is essential for him to know these matters, since whilst for one type of soil the water applied will wet the mass throughout the root zone, on another soil the larger portion may be lost by deep percola- tion, the film action and capillarity being too small to store the water. It is evident that the degree of success which the individual irrigator attains is directly propor- tional to his ability to grow satisfactory crops by using reasonable quantities of water. Irrigation water which passes below the root zone of ordinary crops carries with it in solution valuable plant foods, thus tending to ultimately render the soil infertile, or, as often happens, if the downward leaching is checked by an impervious strata, a water-logged condition results, fa- ^ as slo.ti artf lo airojjnltfnoo ^ si nold-B*ioqBve> se JxrtJ . sell. ia Ixo3 wi* lo ^nsmavonv srl^ acf 11 iw oo^ oa m lo saol eii? Ii*ra; ,qc; M sbie Ki Jloa aewtdvom yxi-.^sJtoKt eliJ ^rrsJxo ^aw o* ilai ot glda .-afi an'* -td.'iw rcc iio^ 10 asqtf awoliBV nl ao^lq ails* Iliw loi lal^neaaa el *I -ad illw aaam Siio il. llos Ic aa^i SKO -io'i *BllrIw sorrla ,.ai9J*cir. 9aa/id-. woroi srtt ctaw 111* no -alooisq qesfo od- IIr;r.2 oo-t ^nlod ^ta'-J^-ta^ 80 ^i-a uoWoa ;rJ11 exit aasooua lo aeigeb ari" *.^# tftwfilva el *I .is*w *d* rfolrlw -loqoiq \; %d aqoi .'ie-Js-,v lo asid"! tfooi srid wof&d aaassq riolri* 'xad'aw aoljss^^ 1 eirfaxilBv noljftloa nJL *I. tfTJtir a^insaf eqoto Y^^-^O ^ Iloa aiit isbori ^Is?=my * Sftlfcna? eurij .abool i a ifi?/ob sxl^ IT ,an3:,q-a a 37 v curing the rapid accumulation of alkali and hastening, to a marked degree, the non- productiveness of the soil, and thereby the failure of the irrigator. Consequently the importance of gathering information concerning the depth to which soils may be wetted by irrigation cannot be overestimated. The extent to which moisture will distribute it- self after irrigation is dependent on the frictional resis- tance which the water has to overcome. As soon as the frictional resistance of the soil particles to the moisture becomes greater than the forces bringing about the moisture movement, the distribution will decrease rapidly and further penetration into the soil stopped. The cause of the fric- tional resistance becoming greater than the movement forces, must be sought in the theory that the water is gradually used up in the form of films in its downward mavement. The finer the texture of the soil, the greater will be the ag- gregate surface exposed by the soil particles and the great- er therefore will b e the moisture distribution. If, there- fore, a definite quantity of water is applied, it will be used up to a much larger extent in the topmost layers by the finer grained soils. A point will hence be reached where there is no longer a sufficient supply of moisture to satis- lo aaanovld-oubc'iq-non arid- . seigab beiiiBia B o* ettf lo anuila'l erf* YCfe r i* boa nl ^ol'iarWas 1 eonarfioqml eri* sd Jo/no noWslitl YO r 0j**o-ff &d ^aia ailoa do Id* atire sis vo Jilw laaoiJoJ-tl eiW no as nooa aA .anwo-isvo oJ z#d is*e - saonol arid" na.x i^9'ts estnooad .CIlw ncWxnJi^eib srict t *nainavom a3iiv.o srfT qqcte Iloa arf^ otfr.l RClcTa ,aamel Jnsrr.&voir. .^itt r< 'tS isctsaia yilir.ooed ' aon^aiaai XlI*J^>fii-= ai 10*8* sdcf c^iit vio*^ 9xid fl-t'^uca sd eriT .In&rwv-on; IwuwnwoS all rtl amlil lo mTO -38 9rfJ ad 'iJtw laJaaia sri^ Iioe srl^ 'io a;*xe* -jB9'ig srfci- bna eeio^'iaq iica ed? ^d basoqxs 90fl.l*swe -0OJ* .11 .nol^dxiieib a-x^alom eri* edlllw ^cl^- . ec r iliw *i .beiiqqva ai iscfsw lo ^ ; i*jctswp s^l eridr ^<J a^iavBl ^oomqo* .ari* :st *ne-lx& i3S*tai dou.r. a -a 1*33 o-t 9iwJaJt0ffl--lo ^Iqqws ioelpniwe B issnoX oa si 38 fy the wants of film action, frictional resistance will increase rapidly and the distribution of the moisture diminish abruptly Table IX shows the result of a laboratory exper- iment on sandy loam. In a -glass jar some one and one-half inches in diameter a celluloid lining was tightly placed. The whole was filled with sandy loam, and sufficient water was added to give an irrigation equivalent to one and one- half inches of water in depth. The jar was then covered with a paper to prevent evaporation. At the end of a week the soil column was taken out of the cylinder and unrolled. Samples were taken at the various depths indicated, oven dried, and the amount of water present at each given depth, calculated. Table IX shows the results obtained. ili* Qonatfslas-'i ii;noiJoi'il <noWo;j mill lo edtffiw ectt sift io noJt*i><JJfettfaJti> apd- bna y to ^- tjj ' aeri 3il ^ swede XI forK >no Oiito^ i^t asaiiyfl nl .;naol \fcxiaa xio .baoelq ^1*118^ asw gninli ololwlloo a istfa;nBib nl ie*fl.w ^nsioi'Il^a bfl o ,mecl u&rias rf^Jtv 1)91111 a.sa sloii 1 ? -sno an^ aao oi ^naiavlups nci^e^/'nl ns svlg o* bsbc-s a**w bsidvoo nerid- a BY; '. oill 1 ..laqai, ai oetfsw lo aarioci Had >I56%' 3 'io baa srLt cfA .nclcffi'ioqava *ndvnq o^ aaqsq a rid .&.[ I cam/ bn-2 -'fsbiil ) 'rf 'io iwo nsjis^ asv; nrrj/Ioo lioa arid xisvo .bs-J-O-L-JuI aitfcjsij awoltuv ad* ^3 n cavig not jaeiv, i&*^\v lo jciaoaxa arid bne t jli/aa--: 3-?oia .XI sicfB 1 :? 39 TABLE IX Depth from surface in inches Percent water present Hyg. coef- ficient Net capillary water _ h 1 14.35 2.04 12.31 2 12.97 2.04 10.93 3 14.13 2.04 12.09 4 13.63 2.04 11.59 5 ^ 15.03 2.04 14.99 6 13.22 2.04 11.18 7 11.88 2.04 9.84 8 ^ / 9.04 i 2.04 7.60 The results show a very uniform moisture dis- tribution in the part of the curve AB, and the abrupt de- cline of penetration after the point b has been passed. Similar experiments conducted through a longer period show that with an increase in time the moisture distribution followed roughly in the way indicated, always converging towards the point c. These conditions are not necessarily met with in field practice, the part be of the curve having been forced down to a much greater depth by either the rainfall or ex- : -Isoo . -alib 9iwi i ! ; tfoeeotq 15. 21 ! t \.o O / 3T'J . 3-3. M se. 01- i 0.3 ve.2i eo. 21 !>0 . 2 51. M 63. 11 J^C. 53. SI ok. 1 . SO. 31 81. 11 ; *c . t 22.51 MS. e : be i 88.11 t Oc>. v ' 1 K>.S ; K>. ' ^ i rale ^ .-^clix ijj ~<ri 3V - 13 .woiJa 3ilW89l'^ M f>n.-i ,9A 3V100 a:Ii lo diiq 9ii J sio'il . :aa .p9aa-'c n^ocf a bol-tsq ic^i-jo cf drJoq 8 cij'sri^s.rraq' lo snllo ' -Ji. cl noacf JSrfT tt - oo.". blsll ia iloum a oct. nwofc 40 cessive irrigation. But it is abundantly clear that the distribution when the soil is in an air dry condition stops at a very marked depth, where the frictlonal resis- tance becomes greater than the forces tending to distribute the moisture. Greater attention should be paid to lighter irrigations so that the total distribution abod may be kept within the root zone, rather than forcing it beyond that depth by excessive applications of irrigation water- The frictional resistance will be a large ex- tent be dependent upon the initial amount of water present. The greater this amount, the smaller will be the frictional resistance and the greater will be the downward penetration, and the abrupt change in moisture distribution. It is a matter of common experience, the farmer finding that the water does not penetrate the soil deeply during the first year of irrigation; but, as time goes on, the soil becomes wetter to greater depths, and at the same time less water is required by his crops. The moisture content of the native undisturbed soil in arid regions is usually below the point of lento capillarity. The first water added is used to bring the moisture content up to this point, and as this is accom- plished, water moves downward freely; the plants being en- abled to secure their water supply with a corresponding d-axfcf isslo ^Xcfiusbiurda al d-x *S .noldflgxTix sviaaso n. ' ; iis ns ni al Ixoa said 1 naifw ncld-wo'lndexi) oJ gnibnsd' asoiol s.ril ncrW iscta^ asmoosd feisq scf bluoiia noii'nad-^a. na^asiO .aiwd-alom srfj > " qasi ed ^sr.T f50;Jr nol^udiiJtalJb Iccto* ari* ctsrlcf oa ' -dl ^nicyicl nsrid" isr.utei t enos d~oo .19*3W noits^irti 'io anoijjeoliqqa sviaasoxs ^d- rfcfqeo -x-3 e^tsl &=..(.-t3v: Lily son 3^.3 ia.3'i Isnoi^olil sriT lo 3-rtuoffw Xeirfinl arid- noqu dxittJbflsqsfo-iacf eo r Xiiw nsllwiia edt ^nwo.TCS elrf^ biejm/oi; sri^ scf iiiw is^fiotg erf.! bna licfaib .9^ r.'^ a lorn nl o^riBrfo iqmdB 9fi;t 13)7^31 s-rlct .eoriaiiaoxs nommoo lo . Iqasb lloa srf^ sie'id'snaq ^on asob aemooscf Ijoa s^tt ,no eeos smx* aa . d-wd joolctflgxTiJ: lo aasl emid- ssise sa'd da |jEj t aildqe5 TS^BSIS ^ i .eqoio aid wd-eifonw svlcfsn arid 1 lo drisdnoo r sriT % NVsx ic .tnioq slid woled \LLstU3 iJ &iiB ni lloa nlrtd d bsau ai fcsbbs riT .\^lrrslllqflo oo com -ns anls adrtsq s .:i isaw :aa 41 smaller expenditure of energy. At the Experimental Farm at Davis the results obtained are given in Table X. TABLE X Depth T~ T 1 .5' 1.5 i i 2.5 3.5 4.5 1 5.5 i j Dry at i t i Percent vie: i , Moisture on 1 ! i ovendried t 1 O | tl basis | i 1 1 . ^| i ( i Boring I '21.05 '18.16 15.33 17.04 20.48*14.29 6 ft. t i Boring II '20. 49 ! 20.39 19.06 19.04 23.19 '14.74 5.9 ft. t i i Boring III '20. 55 '17. 92 '16.04 i i i 18.19 '13.26 '12.55 i i 6.4 ft. fl*n9Jtidxa sitt *A .Tranone 16 .X alcteT ai rtavlg e-xa fcanlacKfo X is I lama riJ 1 a P- , ; .- * "T t i . . . - . -y " ' ' ' . "- Id '5.3 '3.*> ' 3.5 'B..S ' 1 1 3.1 '3. ' r^qsa i i ..... t 1 1 i t ! t 1 1 ' cms 01 si 1 ' * no yxud'aloM 1 * C~ t- ' "~ * ^ t i ; i * alaaa' i i ! ! . 1 ' 6S.M 1 8.Q 1 : 4-O.VI' S5.3I i . 31. 31 ! 50'. 12" I giioa 1 frO.QI 1 80.61 es.os 1 Gi>.o2 ! ii saiioa ^ 1 1 ~~ t ! I ; Oi -> -i o > ' ao s* r OO . i>-U Oi. .<JJL i i 1 ! ; 29. VI 1 3-3. OS 1 III sniioS i i ' 41a These results were obtained under typical field practice conditions, the samples being taken in an orchard. sn imiretti.ec! dx;ty of th* svsiiat.v y. The results closely follow those obtained in the laboratory. Is there then for every soil a definite quan- tity of water which will distributees moisture uniformly throughout the soil mass to just a sufficient degree and depth to prevent any deep percolation loss and be of maxi- mum use to the plant? It is still too early in these in- v various soils-* JbErrvs'. < :n- cl tns r^si* : te vestigations, which are being carried on at present, to ar- rive at any definite conclusions. One fact is however ap- parent, that whilst we may increase the duty of water very considerably from purely scientific considerations, it is more the mechanical application of the water in field prac- tice which retards the obtaining of any such increased ef- ficiency of the water. The tremendous waste, due to the improper levelling of the land, the loss at the head of the border or check, the waste at the end of that border or check, the skill of the irrigator and so many other mechan- ical factors are the more responsible elements for the low duty realized. Even if it were possible to apply water in such quantities as would be befct from the preceding con- siderations, it will always be the mechanical factors to 90 ' - - cfc na .J&2J8 98orfd- woiiol ^isaolo aiiirasi -rump gjtattob a Iloa -fi e-wtfaxoai alt e^-dlid-aifi IIlw iloiiiw i9*.ew ic JnaloJtni;a 5 *awt orf'aaaai o 9d bru aaol nci^i-loo^^q qssb oo J llita si -qj 13V97/O.H ai ctoBl anO .acoieul-onco **lnil9& Tflcifl 2" dt . anolljsisblanoo oJtlid-nsxoa ~^i9iwq moil -p3iq Mail nx isdrsw arid lo noldspiiqqa laolrMffoe. w 9'io r r * -4- -lo baaas-'iorii iioi ^nc lc ^iiniad-do and aDiadoi noxr. QOXJ t __ 1*V arid lo bagj sxfd- dB o,cl sdJ- .finai 9rld lo aftlilaval igqoiqwl ic i9biod dsdd lo bns arid 1 d;*' adaaw eifcf ioedp 10 i9b-i' :3Bt o^ bn;a lolu^i'til sdd Ic XiJbls ado t ii03iiO )JO;3l i^JOl r,4 aa e.onp r ioi ajnameig 9iai- I9*w \lqqa od- slcJiaaoq 9i9w 41*- 41 -nco 3ilc909ic sdd 2101! *9d 8 SB aoictldrisup dp^a ni ^j- n-to<*^ r'anir . ..iis.il i'.T dl ^ 42 which prime attention will have to be given for obtain- ing an increased duty of the available water supply. The California Branch of Irrigation Investiga- tions of the United States Department of Agriculture has, in co-operation with the State Engineering Department and the Agricultural Experimental Station at Davis, studied during the past three years the distribution of irrigation v/ater in various soils. Observations of the results, which may be regarded as those of typical irrigated soils, will be presented. The observations were made under two somewhat distinct conditions. First, .studies were made upon various farms in the Sacramento River Valley, on fields producing alfalfa (lucerne). Soil types represen- tative (according to the Bureau of Soils U. S. D. A.) of extensive areas in the valley, were chosen. The other conditions are those at the University Farm at Davis, where alfalfa was grown upon one-fourth acre square lots. The surface two feet of soil is a loam of remarkable uniformity, and the third to eighth foot sections consist of a sandy loam of recent origin, pocketed at irregular intervals with coarse sand or clay loam. This fine sandy loam lies upon an undulating clay which extends from nine feet to a depth of twenty or more feet below the surface. avail Hi* noiJ-nsioB a^iJtoq tfoidw n" o lo *.-.._ -<!-'" f as^sicl bftctlnJ sil^ lo a c srfd- rlJiw noWiJiaqo-co ax t alvsa *s 9T; srl* lo anoWsv^aacTC .aiioa awol-i v rtl i3*. sIJtoa bsrfc^liil Isolq-?* lo asocfd- as fesiji^adi .sd ^m rfoldw acf Iliw no <Y 3 - t - BV 'ts'vi/i c*n?r.ia-ioj3C srU nl annal awol-iav noqw asq-^f lio; .Om^o.c/I; sliollB griiot/boiq lo (.A .G. .o' .u alloS lo ;j33 r j;jtl axi^ od 1 j^nibioooti) enT .nsaorio 3-isw ,^3! Lav siicf ni 33313 svi tol 9-^fiypa 9ioa ii^-iMol-.eno noqu nvfois aa\7 all.aiis alcfs^ismai lo KISO! G al lloa lo tea*! owl aoBl-ius >tcol ddjiis od 1 b'l.t-.J srid" bna JHOCU as II fOBo! Tjbuae suil airfp . ^slc -ie nBa eetBoo ( a -':rfw ^ ! lo aaWsiwbnw.afl 39l S^Ofll 10 VdTIdWd' 10 43 Sacramento Valley Experiments Silt Loam Soils. In Table Xi and Figure V are presented results of moisture determinations upon three tracts, classed as silt loam soils, which are based upon one hundred thirty-eight six feet and thirty- six nine feet borings. The curves of the silt loam soils converge gradually from the surface of the soil downward. This may be due to a large extent to the fact that these soils do not dry out as rapidly at great depths as to the more porous sandy loam 'soils. The average amount of water held after irrigation was 5.20 inches per foot, or enough to fill fifty- one percent of the pore space. _g_l 30- ' * QCt ^ ' .7 . ai ' le 5 io t -- en xJe-Yd'Tci^* bns ctasl xla *ri8l9--*Tld* fcsibn; 3: . elios HtBol ctlla sdrf- 10 SSVIJLTO sdT .asni^ocf : IT .Mswnwob lioa eri^ Io 9Blwa xf;t fflo-': - ^rW- -tool s-ffcf oJ- ^nsct-xa osl B od-.e- as s j^rri;oma saflisva erfS .alloe* MBO! io <ct-ool 'isq ssifonl OS.S BBW i ' s r ioq sriJ lo ctnc- . , . ;. . . 44 H a 4 > H> ct CD CD H) o > M < a CD O 1 4 N> CD to CD H) O tc ^S t? M a o ^ ct CB CD H) a O Ji M CD CD to to ct H* H S P CD O CD *"^ t~$ P CD ^ ^ M CD CD w **j c^ a* ct* P CO M CD 09 P CD CO M O ff& P ro M CD - < CD P o *w C^ CD *"i M ra *J M O CD CD i-J M 4 C^ *~i *~$ 4 4 CD * KJ J CQ CD C/3 CD H* *~^ H* i^j H h* M ;-; 09 H- 09 H o H* S I I-, S <H P 09 P CO P 09 O P H* * a ct P ct P Ct P M JS^ Q I- 1 CD H ct H- ct H* ct H* CD C5* CD a O H O H" O H- a CQ ct a O a J O O CQ ? iOTTinr a CQ g 1 P- 0) to Oi to Ol Ol to to O CO O !2! 9 CD 1 P O! to H Ol to Ol ro O 01 Ol M to iL to Ol Ol ^ 00 ^ Ol "3 ro O) o 01 ro Ol ro Ol ro H- oo Ol o> ro to 01 O> 0> ro 00 o> CD I t Ol ro 01 ro Ol ro CD to to o> o o> -^ o 3 3 o 't O w Ol ro Ol ro Ol ro P ct en to Ol o> o Ol o o ^ * 03 Ol ro oo CD ct Ol ro Ol ro 01 to ct H- Ol Ol ro Ol O) o o K Ol ro to O H^ Jt* Ol ro Ot to Ol 01 CO ^ O CD i^ Ol CD O> o if^ if" Ol 1-1 H" to M to O to to I- 1 w to l i * i H , Ol to Ol ro w 01 M O 4h ( to Ol to -a Ol 01 _, *? 03 ro tf* rf* o> to 03 to to Ol Ol w ro Ol Ol * Ol O) o> M Ol o to to Ol ro 03 ro Ol o o Ol Ol Ol w 01 Ol CD w Ol o> ro to Ol g o to o Ol o Ol 01 o ro Ol Ol ro 00 to ro + Ol to i P- Ct h3 CD CD O rf*. 03 Ol Ol o -3 G> j to 00 01 to- tn 85. .. .: to 4 ct ct P tr P_HL ct j 9 i i tl- , <n Q? 4f O' M f/^ H C/J 6- R3 ^ S S. ~o * '%. ' * CO '''- t~ ct> en ' K> 0? O - CA so - to o *Q P- ^4f 3> CO -4* OD 4 fO 'H . *.** * *: C/*^ JO "*" (O 5O t* O OJ C4 M W ' CO f3 ^ 4 w eo t^ C> t .fly O) W rO fO M 1b"" To" ^ % - M n? 50 Q? !> CO 01 . * y ro W 45 In the case of the Bundy tract, four irrigations were given of 17.22, 12.20, 11.55 and 7.77 acre inches per acre respectively. The moisture determinations indicating that the following amounts were retained in the upper six Irrigation in Acre inches per acre Percent acre inches per acre retained on top 6 feet Percent re- tained Percent lost 17.22 :; 4.01 i ; 23 77 12.20 3.27 27 * ;j 73 11.55 4.05 35 65 7.77 4.73 61 39 The Table shows that in this case for a total depth of nine feet only 5.13 acre inches per acre was retained or 44.4 percent of the total, 55.6 percent being lost beyond the root zone. In the Hofhenke tract, the following additional results were obtained./^ ch - ol 1 VV.V >n3 oo. Cl .02.21 .22. VI 'io nsvig stevr 9iJ.rcta.tom erfT S2 16 ' asrJoni ctoel 10. V2 . ?, S0.fr 3V . - lo rWqsi) la-cfod- IG! .> to bonie^oi UBW 3ios 'ieq Isno lwollol <o octet srtf -i 1 9 r ioA ni no Id 1 ag it'll no 1 as. vi ' 0'2 . SI ! 32.11 i I rcr* v os 51. 5 ^Lao sdJ lo ^aoiaq oH aticf nl .srtos ;toc i T 46 Acre per tion inches applied acre per irriga- r~ Acre inches per acre retained in the upper 6 feet " Percent re- tained r~ Percent lost 18.76 5.42 29 71 15.74 5.78 24 I 76 18.86 5.36 28 72 13.22 3.50 26 74 The results show the obvious fact that the quanta ties applied were much too great, the losses by deep perco- lation being in all cases excessive. -5 ' <VT * .gs^l ^g q aoiioni 6 r ioA fcoxi ; ill 9rj S10~-' -B'3. t l''lJt '"19q 9" '*ss 1 S ID ecu; 9ii^' I r i - I" " ' 92 i l S*.2 ev f 2 l ! 8V. 5 ' *V.3I i SV * 82 1 as. 3 ' es.ei 1 1 Y ' SS 1 03.5 | 22. SI i 1 . - -** -" sil* *dd* ^ojsl a'jjolvclo srW woila 3^10331 -ooiaq qs.aD ^d 2 9 aaol snct ^ss'ig ood io;.m: aisw bellqqs asW .9V.cieeo;:9 asaso 11^ ni salad nol;fe-X 47 J> O a t ct H! <j CD M CD J * ^ GO CD M > CO H H > tO CD M > W K D *O 3 P^ CD >-$ H)CD M H) CD i-J P Hi CD P Q ct" CD H) P O ct Hi CD O c+ Hi* c+ H) H- P* Ct o to 4 CD O > 4 CD O 4 CD O 4 ^ O 4 CD CD 4 4 CD 4 4 tT* CD 4 4 * P H) CD W P CD S P CD O P CD 4 ct I 1 W M CQ H tQ CQ H O CD CQ O M CD 4 M O CD ^ M CD 4 H 4 g 9 O 4 4 P> I-J HJ tg 3 P h H- 4 H H- ^ O H* 4 p b H J Ci H- 09 Qtj H- P PCS 3 OT H-M P TO H* OT H- P P CKJ PI ^ o CD P ,_, p. J. O P ct P P. c+ P P c+ P "3 3 P ct H* ct H- c+ H* c+ CQ CJ H- H- O H- CQ H- P O P P P P P ^ 1 a- JQ t2j X) O COCO H I- 1 t> rt* to to Hi 3 <J-3 to to COCO ~J -3 e+ tt M O CD Hi CO M Ol to M rf*- IO H Ol IO I- 1 Ol H CJI Oi M -oo to O Oi Oi Oi I ' ^ Oi K O OO -3O W -3 ->3 CO rf^ Oi o H- CQ . pr 3 Ol 10 Ol O! to M | i d -3 ro >> CD 4 CD Ol Ol CO W rf^ CD COO Oi CJl CD Ol 4 CD CO Oi O Oi Oi COM W {> o to to Ol tO o to to to to 4 CD ct Ol CO Ol to CO Oi Ol H Oi co coo Oi O rt^ -J -3 O Ol if' O WO -3 CJI CD O ct Ol IO Ol tO Ol to to to Ol ct h" * * Jj > O Ol Ol tO Oi -J \-> rf^ O -3 Oi CJI O o o o Ol to -3 01 -3^ Ol I- 1 CD H) J> O C04 O CD Ol to Ol to 01 to Ol OI (* H* * I- 1 M 01 to co tO -3 Oi tO O o to to CJI P WO-3 Oi O ^ H- -3 Oi OHM O P* CD 01 to 01 to Ol to Ol Ol CJI w ff tO CD * M -3 Ol tO Oi O rf^ Ol Ol M CD -3 Oi CD tO if*h [ J -^3 -3 tM- 1 1 i 1 i M M IO M H H 1-3 Ol CO Ol Ol CD Ol rf^O 01 tO -3 ! O * * C^" CD I- 4 Ol Ol H tt^ ^ fO CD Oi tf* -3 P ^ CD Ol o to to to 01 01 ( M -3 H o c O H H ' ^ '~ .Q ' M 1 U o> -b ^p CJ -t-> 1 +> *H O +7 *H 1"} *H "t^ HO W H O H O -H 9 *^ CJ 1 1 U , ' 03 C/J 4*4\ MM co co CJl "tD K^ O- 03 CD W Ol C- p- I 1 1 . 1 fci| HW-I 05 W c/i 4 -H ei so H A 4 * 'i RST -4 ^ u- { rt3 <?5 ft) O fO 4i CO O C^ C- O5 O ^* *""( ^O H5 i &3 O C- O O O fr* X -H ' 05 % t* ^ , 5 D M <-( on K> (O cfl to . . . '4f v ^ <?> t ro 00 fO fl> O 00 CO W M CD ff> (O O iO ^ ro "^ W M f o o <$L MO O H 3 p 01 O5 Ol O5 O C/I fO C/j C3 =-j + O - r-3 1 <r> ! PJ O 4 W ^ O rt) <t> ' { fO W -^" I i^*i c- o w o t- 1- O CO CO ">* -t^ oU . K y^- > ' t3 O3 D5 r O W W C1 i . t * * * '^ CO - O *4< M O- ^O .-^-fO QJ '-1 TO ^< > 5O g~ ci ro o o o ; _ _ N Pv5 O1 FO M - * * * * . * " * * Q tO CA O O O f O w^ - . ^ . . ro to O5 w R3 fO 4 O <t) c <H -4 C- & H * Oil HH MOJ j o 4) t- OI . * . 4 * . ! ro I . . ' -'a jp JCr <v as- fa TST ? -fr-tf- 48 Clay Loam Soils In Table XII and Figure VI are given the quantities of water held before and after irrigation on a number of farms having typical clay loam soils as determined by two hundred ninety-six six feet borings. The Figure represents the average results. The increase in moisture varies from 1.35 in the surface to .28 in the sixth foot, as compared to a variation of 1.15 to .44 in the silt loam soils. The in- crease in convergence of curves with depth as the texture of the soil increases in fineness is apparent. The water con- tent decreases appreciably after irrigation with the depth of the soil. It is therefore doubtful if the maximum capil- lary capacities of these soils were satisfied. The average amount of water held by the clay loams after irrigation was 3.49 inches per foot or enough to fill fifty-eight percent of the pore space as compared to fifty- one percent in the case of the silt loam. The following additional results are given to this type of soils. f/8) v' iix -.!>> cct E . c xiojS* a.-DViuo 'io soriD3 < -i5vnci2 lii a; ^ssrt^nil ni asas&ioxti lio'i a-flp f-f Hi? *) >T CJG 15 cJ'^ci ' -^ v w i,^-J . W v? X ^1*3 *^ 0*10 Is'i sa d" a.i >tl _.Iica 9J silos osaf.*^ lo .g-@l^l5>aq*jo Io sndS vcf jbl?ri T j-ne 91 &q sno --r j'l i" 49 Farm 'I 's ;s rrigation in .ere inches er acre Acre inches per acre retained in top 6 feet Percent retained Percent Lost O'Hair 6.24 pr ^"i 5.58 ,, j r , 57. * 45 I T 5.18 2.11 66. 54 .: mount 5.24 2.14 66. 54 Guile 7.28 4.05 <c 55. 45 5.94 5.41 91. \ 9 Geer 24.00 t 5.59 25. 77 ,. 18.19 c 5.28 18. 82 12.15 5.57 -+ 44. 56 p a |- 24.54 h 5.76 15. 85 A striking condition was obtained in the case of the O'Hair field in that, while the percentage of the irrigation water applied retained in the soil decreased with the depth, the amount of moisture in the soil before irrigations actually increased with the depth, apparently due to the capillary use of ground water, which stood seven to nine feet below the surface. In the case of the Guile field, very little water penetrated below the sixth foot. At the time of the first cutting the moisture content of the soii was so low, that 1 28 .81 as - M 28 .51 Xe'a 13q cfc^f r i j*" ^_/ X V. 7 * I * Li 1 rrc.tt r Q t' jDSfii&d'S 0- at ' ^ W*? a&r : onl ' 31 ; *ert c- qod ni 1 31 OB I * -1 35., 5 ' ^2.8 : I . 11. S 81.6 ' 1. 2 ; & - ! i so. & 82. V t i 1 r^ _, te.a 1 ! ee. c 00 . ->S 1 i 8S. T, 91.81 , i | ! 1 ^ ^ 2 ' P r c 1 r Go. . AJL 1 1 i 1 ev. o i-5 . i?2 1 1 1 -, pfpi *> *D rr F- ^T.^R & - fTie'-I . 59 g .16 VV ' - ' ' ner lo e-.^sctrisoisq Qtid- 31 It;,; ^sr-d- nl Mall .iiaH'0 silt lo lies 9;i:i ' . -:ct9i bsllqqs. floe sri-1 n- 9'-j:;?3. f oni lo juwoftus srl qqs ^rf^qsfc erfd rld-i^r fceae$*onl ^llAStos anoictB^l'iii nevsa 600*3 dalrlw ^s^sw bm/ois lo saw ^Bll|q0& erl-l c; iwe 9i* wolftd cfssl snin oit srl- 'io sml* 9x5^ *A .*ocl rf&xie 94* olsd ,wol oa asw Iloa orid- lo : . o siuctaiom add" 50 nowhere In the upper six feet was it much, if any, above c ; :^ :" > the wilting point. The same conditions were approximated at subsequent irrigations. This no doubt accounts for the large percentage retained, showing again the influence of the initial amount of water present. The smaller the amount of initial moisture present the greater will be the amount retained and kept uniformly distributed. On the other hand the greater the amount of initial moisture pres- ent the greater will be the downward penetration of any subsequent additions of water. Another very striking result from the above Table is the large amount lost beyond the root zone (assumed to be six feet deep) in the case of the Geer tract. This is unquestionably due to the large amount of water used, which should not be mistaken for a large head of water. It is but logical, that once sufficient water has been applied to satisfy the capillary capacity of the soils, any further ad- dition of water will increase that amount which penetrates past the sixth foot in depth, decreasing thereby the percen- tage retained. 9-iaw afloWJ-anoo er.B3 aril- .Jnloq snl*IJw artt on siriT .enold-ajjl-nl l wfcf nifiSfl 3fJt ^rla ' . a I^WiriJ 9 d. eitt tellflAB 3^ .*nea9'iq to^aw ic invar. a I^ i r, Isl ild- riO nncm; tns >9ni^9'i aaiq 9iu*aioni Jajtdiai lo cfm/anw sucf - lo noWeiJsfiaq Biewnwob orW ed II-U ifslc .-r,^j3w lo anoi-Ubbs bsnuass) onou Jcoi eiict bno^u .Isol Jnwomo 9^-1 sr al si ei a i^ .*o*rt islo wl* -o S3^o oiict nl <q&ab *oal xa rieldSr" ,fc9a ie*aw lo imro.iur 9?,-*? I 9itt o* ewb ^I^n *ud ul *1 .i9*'fi* lo bssii 931^ B -icl nsAi^alK sd *oa 07 bsllcofl need 3-ri 'i^ctsw iasioilltja 90no d-siid ,I*olaoI -ha isxaiJJl -^ ,21103 3^ lo ^loaqBO ^.^IlxqBO aricr vlal^a ll* ie*w lo noJ nl *ocl HJxla 9i ^ : aaq c 51 s I? H>tt? O tJ H 1 CO H* 4 M > W CD M > tO ct CD *Ci 3 P P H) CD 4 P H> CD ct P H) CO P, CO ct CD O ct l*b P O ct H) M ct Hb<<J P Ct *i CD o OP *"i CD O CD *-j CD O < ^ O * CD ^ ^ CD CD 4 ^ CD *"i *^ CD P H) P CD W P CD S P CD SS *"i ct B H KM H- ID M H- CO to o CD ^ M CD 4 H M CD 4 H t-' P O H-4 4 =* t- 4 ^ t- H-4 P"H^ O ct (W H- 0^1 H* ^ te^ Q fo OQ P OQ CO p OQ CO CD p* H- ct P ct P ct p P H- ct Hrt H- ct CO (jt) O H- H- O h* P P ^ P P H P P 1 P. ~- * - ' . CO SZ p O iN >> M M to to Hi *5 W W CO CO ct I- 1 O CD H> to (-> W M \-> W M MWM K -3O W Ol O ^ <JO W Ol o H- M Ol Ol co co o W W O CO CD ^ ro to to to to M M 4 CD w tf* o 01 <JO M H CO Ol > -3 M > M O CD w ro co CD ct to to to to ro to CD (O ^J B to 01 w o oo oo to 01 w CO Ol O"> H Ol W tO M CO Ol ct o ro to to to to ro w 1. 1 r o * * 1 Hi tt> OCO -3 <l O W M CO Ol O -3 00 w CD ro Ol o O/T\ IP H* w w w w W w jfi * 1 u) O H^- > M to if- I- 1 Ol -3 Jl O to to rfi. W CO Ol -3 rfi. H w w H -3 CO w w O Ol rf 5 * WOW Ol Ol W CD tO (> ro oo O Ol Ol ^ J o (-3 H M 1 j i ^f M H 1 O tO CD Ol ro CD 01 i- 1 oo 01 01 ct * P too co CO O H rf^ O Ol Hi O Ol Ol W Ol W CDOi-CJ rh 1 1 en o M K M 1 1 ,H H *? 5 W4 f j r,* f , "'". V - ' t I <n / < > r" f < i . VR S) * M , M ! 4 - :H < *< MOJ 5^ 3 f. M*P 't ^ S'-gjE -gi;^ 1 ^ 5 , co PO '-' f ^ j " f:? +-J t}| ^ ;_i -f> --i -t-. H 23 Q ."HO . 'H . .. - - - : 33 M tfH > CO r | ^. oi 01 '-'-' ^ ^ * _ ! ' o H "1 -< -*! O rr - r - - ,_i L H M TO M M '-^3 H . ... ro! W r - - r ''' c> o -o ^> o QJ QJ n, 1 ; ro M .__ -- ------ 1 03 p M M tg B tf o < r ~ ~ r t c., ^^ . & . >c/ ! . ro' 0> - o !>> 9^*t GJ <yj ro S3 O M ^i - L _ - - - ^ '~> ff) -rt L o O O3 03 Cfl CX5 M c>1 4. g^ ;^SS ^SS i t '"* ioi c'. c/ c/i ci w ro! l> <o CO M p^ ^0 p Crt O> fO -4l M C-- . ^ O C- i i""~l *~f i (OW ^ . . ... . , u-} ''( ro o> 5'.') 4i ' 1 . . . . . rol fO O fO 4i rO O O ' 4i ( | C' r ^ M ~ MM ' M fO rO CD CA . "* * M . -; C'i fO rt) O 52 Clay Soils In clay soils the maximum water holding capacity is sometimes limited by the pore space. This condition seems to apply to the soils described below, the volume weights of which were found to be very high. The total ex- ternal surface area of these soils is in all probability very high, to judge from their mechanical analysis, which showed 24.54 percent of total sand, 40 percent silt and 34.84 percent clay. Yet the quantities of water found in them both before and after irrigation were extremely low . The observations made upon Clay soils are present- ed in Table XIII and Figure VII. Figure VII is based upon 86 six feet borings and Figure VII contains the averages of 568 borings. The Table reveals at a glance the striking fact that the surface foot of soil was appreciably moistened by the irrigation water. It is doubtful if the capillary capacity of the wetter section was entirely satisfied; yet it held after irrigation 5.06 inches of water or enough to fill 64.3 percent .of its pore space. The sixth foot, which was kept moist by the ground water table, contained no gravi- ty water, but eight-six percent of its pore space was occupied by capillary water, leaving only sixteen percent of pore space. The Purdy field was irrigated four times in the ;od 19 Jew ffurniixafs arfct alloe ^elo r*I no' ) aldl 1 .aoeqs 9toq ail* ijd be^lmx! aairtidsisoa al - t wcl9d bsclioaeb a^ioe sdct- od" ^Iqq^ o: amsse -X9 Isd-o* erff .rfBirf ^sv scf oi bnu-ol siaw rloldw Ic adrl law v^llJtdedcnq Ila ni ax ^lioa asorl* 'io. BD-IS soBl'iwa iBina* rlolxlw .aia^IaniJ Itoinjeriag.'a -lisrit moil 33^^C o* *^3^ T? 9V bns .d-'JCia *asoieq 'O* 1 ^- r i a s i^cto.i lo dnso-ioq ^6.^2 bsworla ixi bsutdft. is^-3-.v 'iu aat'rid-aaAr iel .^lo drteoisq ^S.I'S i . wl ^Is.'nsi^xs eiew aoiJ.gr-l-iii nsrfla brts eaclad iWocf ntsrl^ J-iisss-iq s s i3 alloa ^fliO noqw 9bm axiolcfsvisBd'o odT noqi; boesd ai 1IV 9iJj;9i r i .ilV strjgi^ fon^ IIIX sIcfsT nl >e 3iW BKlsd-nso .iw^W 6na s^nliocf *S3l xie S8 arid- gonsl3 s ^.s. ais-svai elcfB'i 1 sxfD .33x11^10.^.8! HOB Ic ctcol oojaltae of> ai ' ^*aw no aaw rroWoaa ie**9W- siid" lo ol rfguons f io isie^ lo ssxfonl DO. 5 ooWssiTil T9*l-s rlolrfw ,^co1 ri^xla arffi . aoccs yioq a^ lo, fcrtsoisq <S.^<3 lili -Ivaig on b-enisctaoo t io'J3^ tsd'aw _i?nwc- . . Y<^ J'siom ^qdi asw belqwooc a.sw eosqa sioq act! lo ^nsoiaq xia-^rf^ie ^xrrf .tecfaw ij* rfrk-^nt*! 1 tTT''* f VG .908O3 9ioq zo jn . -->- i?osw ^li-ixx^-j \,i> nl adnrW " ^^ Yfcii^ 3iiT 55 season. Of the 7.08 inches In depth applied in the first irrigation about twelve percent entered and was retained in the upper three feet of soil, of which about eleven per- cent was in the upper foot. In other words, practically no moisture penetrated below twelve inches. "In the second ir- rigation a depth oi 4.55.inches was applied, nearly all of which penetrated the soil and of which about forty-five percent remained in the upper foot. In the third irrigation a depth of 4.80 inches was applied, of which approximately one-third remained in the upper foot, with no increase below the second foot. The moisture determinations before and af- ter the fourth and last irrigation, when a depth of 5. 84 inches was applied, indicated that the soil became more impervious to water as the season advanced, for about sixty-six percent of the amount applied was retained in the first foot, with no significant increase below that. The soil of the Tattle field is similar to that of the Purdy field, but slightly coarser in texture and a little more open and permeable. Moisture determinations were made from ten borings before and after irrigation the second irrigation and nine before and after the third irrigation, a depth of 4.08 inches being applied in the first case and 4.16 inches in the second and third irrigation. At bs Jtlqqfi.rttqob.nl agrfoni 80.7 artf $Q bn^ beiaottS d-neoieq ovlewct twocfs , iiil cte rloiiiw lo *Iloa lo cfesl se^itt isqqu srf* nl . ab-xow isii^o I .^ocl loqqjJ sxl* ni saw we lac? 1 bnco33 9 -e .as lo ila ^Iiasn. .bailqcB BBIT asiionJ-.Se'.^ l ^0co r fi riolrlw Ic bar. Iloa sri* ps^Bi^snsq ifolrlw * -rf* ni .?oo_1 leqqw edo nl fcsniBnisi ctnso'iaq rlelrfw lo ,nail^qa SBW aailonx 08.^ lo diqab B on -la Bas.-sioletf anoi^onlnweiab etu^aloni aif! .rfool bnoosa ssrtonl^S.S lo d*qeb smaoa-. srW cfcrid- bs*aolbI ,69ilqqa BBW" xi8-\>txis j;;ccfs 'rol .beortavbu aoaiaa srtt 33 IB^BW ocf dctlw ,-iocl *eill srf^ ni b9nia*oi aaw bs^lqqB drtuorfts add .jisnJ- vYoied aase-ioni d-naolllnsia on od- i-Ilwia ai bie'll si^ctisff srl* lo Iloa srff bno eitrtalpIL .eldaeiffisq bna sqo isd'lB buB siolsd STUiliocf us? moil e . 1m 1 ; ' 9-f- srf- ' rf^qab a t n ' liil ol^je^lii: J i asrionl 31.* bnc seao 54 the second Irrigation ninety-three percent of the water applied was found to enter the first three feet of soil, about one-half being retained in the first foot. In the third irrigation forty-four percent was retained in the first six feet, three-fourths of which remained in the first foot. lo d r n'dori: .cfoo SBW rioj: .<t< -f o ": asrfonl o--S - TABLE XIV Irrigation Treatment T 1 'Time of 'No. of 'Sampling 'samples Moisture content in acre Depth at which sam- ples were taken feet .5 i i 1.5 ' 2.5 i i i i 3.5 ' 4.5 ' 5.5 2 6 inches 'Before Ir*- i t t i i i 'Mgation ' 14 i 1.78 2.03' 2.14 2.46 ' 2.37 '2.13 Plot B 'After Ir- 1 t i i 'rigation ' 14 3.26 2.99 ' 2.86 2.69 ' 2.75 '2.19 'Increase ' 1.48 .96' .72 . 25 i . 56 ' .06 i i i i 3 6 inches 'Before^ 1 i i 'rigation ' 21 1.68 1.93' 1.91 1.80' 1.43 '1.29 II Plot C 'After Ir- 1 t * 'rigation ' 21 3.54 2.99 ' 2.82 2.45 ' 2.10 '1.86 'Increase ' 1.66 1.06' .91 .65' .67 ' .57 i i i i t 4 6 inches 'Beforeli* 1 i i i 'rigation ' 28 1.76 2 . 06 ' 2 . 06 1.87 ' 1.59 '1.49 Plot D 'After Ir- 1 t i i 'rigation ' 28 3.30 3.06 ' 2.75 2.26 ' 2.02 '1.87 'increase ' 1.54 1.00' .69 .39 ' .43 ' .38 i t i i i 4-7-5inches 'Before IP-' i i i 'rigation ' 28 1.95 2 . 16 ' 2 . 08 1.85 1 1.73 '1.63 Plot E 'After Ir-i i i i 'rigation ' 28 3.20 3.16 ' 2.95 2.60 ' 2.40 '2.19 'Increase ' 1.25 1 . 00 ' .87 .75" .67' .56 i i i t t 4- -9 inches 'Before :&>' i .' V 'rigation ' 28 1.85 2.04' 1.92 1.76 ' 1.87 '1.59 Plot P 'After Ir- 1 t i t 'rigation ' 28 3.17 3.10 ' 2.82 2.52 ' 2.57 '2.34 'Increase ' 1.52 1.06' .90 .76 ' .70' .75 t t i i i 4-12 inches 'Before Ir-' i i i 'rigation ' 28 1.91 2.18' 2.05 1.96 ' 2.11 '2.32 Plot G 'After Ir- i i i 'rigation ' 28 3.24 3.30' 3.04 2.99' 3.25 '3.41 'Increase ' 1.33 1.12' .99 1.03 ' 1.12 '1.09 i i i i i Averages 'Before Ir 1 t t t 'rigation ' 147 1.82 2 . 07 ' 2 . 02 1.95' 1.85 '1.74 'After Ir-' i i i 'rigation ' 147 3.25 3.10' 2.87 2.58' 2.51 '2.31 'Increase ' 1.43 1 . 03 ' .85 .63 ' .66 ' .57 i t t i it r 56 55 Lnches per acre Foot of Soil Total Wa- ter at Depth of Total percent- age of water retained i i i i 6.5 ' 7.5 ' 8.5 9.5 10.5 11.5 0-6ft '0-12it i t t i I ! ; i 12.91' i 1 1 1 ! t 1 , 16.72 ' 3.81' 31.7 ! 1 1 . i < i t t r f 10.04' i I i i '. t , 15.56 t 5.52| 30.7 ? I 5 i f ! 1 t 1 ' : 10.83' i - 1 1 1 t 1 ! 4 15.26 ' 4.43' i 18.4 1 t i 1.47' 2.81' 3.24 i 3.63 4.25 . 5.10 11.40 '31.93 i t 2.21' 3.64' 4.18 .74' .83' .94 i i 4.22 .59 t 4.52 .27 4.66 .44 16.50 '39.93 5. 10* 8.00 i 26.7 i t - i i 2.56 ' 3.38' 2.84 4.04 4.53 4.69 11.03*33.07 i I 3.33' 4.08* 3.98 .77* .70* 1.14 t t 4.49 .45 5.08 .55 5.15 .46 16.52 '42.63 5.49' 9.56 i 26.6 '- i i : t 3.37 ' 3.16 ' 2.94 i i 3.88 3.86 4.46 12.53*34.20 i 1 4.22 ' 3.77 ' 3.76 .85' .61' .82 i t 4.32 .44 4.32 .46 4.92 .46 19. 21 '44. 52 6.68 '10.32 i 21.5 * i 1 2.47' 3.12' 3.01 t i : 3.85 4.21 4.75 i 11.46 '32.86 t t 3.26 ' 3.83' 3.97 .79' .71* .97 t i 4.34 .49 4.64 .43 4.91 .16 16.63*41.58 5.17* 8.72 i 3 .1 : Davis foot of IB increase xre set )f plot B Decially ? content i the soil discrep- 3 for. A b C became accounts by plot C Lty after st were mois likely that lot G by re- itational wa tione till irrigations stween the i, in the V.IS '20 o 1 : ; ?c. w ; v.ss 'oo. a ' II 4 i i ox.a'es.is 1 I I ! _ | I "I .' SS. . ' . '35, .',5*. 5. IS ' t ' dS.. i !..' 3S. . t c . . 56 Experiments at the Agricultural College at Davis The amounts of water held at each foot of soil before and after irrigation and the average increase which were found for the various applications are set forth in Table XIV and Figure VIII. The soil of plot B being finer in texture than that of plot D, especially below three feet, accounts for the higher water content both before and after irrigation. Variation in the soil of plot B is probably the cause of an apparent discrep- ancy in the relative amounts of water accounted for. A comparison of plots C and D indicates that plot G became drier before irrigation than did plot D, which accounts for the greater amount of water being retained by plot C since each plot contained about the same quantity after irrigation. In plots E and G the upper six feet were mois- tened to their full capillary capacity. It is likely that the clay loam stratum of the seventh foot in plot G by re- tarding the downward movement caused some gravitational wa- ter to be held in the fifth and sixth foot sections till the time of sampling. The effect of the large irrigations of plot G is evident in the great difference between the moisture contained, before and after irrigation, in the siicf bete no id 63 Jit 1 'igctl-s 6ns S'lolscf iioa -solloqjs ai/cliav Sitf iol Jbm;o1 s'isw lie ' ^ orf? .IIIV 9i/j^i'5 ens VIX sIcfflT ni 39 ,0. iolq 'io cterfcr njSiii siL^xad' qi.'rcanM -Tt: *^ . - . 'isiBw igrisJtfl adcf xol actrtwoooa ,^93! ss'irii wo . . ' '; s.1. nolcfeii^V .noi-Tsgiiil TacMa Dxts siolad i - ) tfnsiflcpqs HJS "io aai/so sdi vlciucfoTq aJt Q' .d'olq - fo'l bactnuoooB i9d".sw lo sctnwoiTtG sv.td'olai sfll ni v - f ctolq d'BzW .aad'soibnl C ana D aoolq Ic noai-. - J 5 Y^ bsnls.ts'-i gniscf necfov/ lo dra/o."afl n .fl Y^i^^ 8W P Oi~n.jsa sri-j" J.uqcf^ bsnlBcfnop dx. :ow J33'i xle tsqqy odd" O btis 2 s-lolq al xi 2i cfl .vctlosaso ^'iBlIicso II.f/1 il .... . 57 third to sixth foot sections. The twelve inch irrigation of plot G caused slightly greater increases than the nine inch application of plot P in the second to seventh foot. The upper six feet of the water content curve in Figure VIII plotted from the averages in Table XIV are based on 294 borings; the section seven to nine feet is based upon 120 borings and the depth from nine to twelve feet represents averages of 48 borings. Adams summarizes the results obtained as follows:/^/ "Not counting the experimental plots at Davis and Willows, moisture determinations were made chiefly on 15 fields, of which 13 were of silt loams or clay loams. In the case of all but one of these loam soils, for which one the full capacity of the soil to retain water was not satisfied, the average quantity of irriga- tion water retained per irrigation in the upper six feet of soil was equivalent to a depth of only 4.51 inches, or only 52.6 percent of the average individual applications, and only .72 acre inch per acre per foot in depth of the soil. Although the roots of the alfalfa pene- trate in these soils to a greater depth than six feet, it is plain that a considerable por- tion of the irrigation water went below the zone of greater root activity and was largely or whol- ly wasted. Considering the quantities of irrigation water retained in the upper six feet of soil for all of the field for which soil moisture deter- minations were made, it is found that the aver- age quantity retained in the lighter and more permeable soils was .92 acre inch per acre for each in depth of soil, whereas the clay soils absorbed an average of only .37 acre inch per each acre foot of soil, or at the rate of only .axfold-oss tfool rttxia oA biicfcf lo .'.B o* briooaa d 9Visw aw ad*, to ctsel xle i^qqir nl asgsisvs sii* moll bectd-olq IIIV eiwsW nl ot nev?a noWosa ecfet jagnitocf ^es .no baaed * aoln inotl itfqefc 9ii* 5ns a^nliocf 021 aoqu antsbA .a^nJttod 8^ lo easftisvB scTn&aaiqsi ' a^olq Isctnsmiioqxs sii^t .ilflpi&*ei*) aiw^sicm ^swoIiiW ferns si377 SI rioiiiw lo ,abl9Jtl 21 .no ^Ilsirfo Ii;' lo saco srl^ nl -atttfiol YSlo -10 amool ctl -cmo ;Ic>Mvr -fol ,Blioa maoi 9aorf-')- lo aric j8w *xe^aw niB*ei oct lioa srCct ic ^lo^qJbo 11.01 -jnJmi lo Y*i* nBU P QB^av 5 rl * -.ba iscqju sii.-t nl oolisaiTSi r ieq b9fiij3*3 f i j? oct tn3lfivl-yp9 saw lioe lo : - 10 B.Ct s .IiO3 - 58 2t acre inches for six acre feet; due to their great imperviousness in their present condi- tions. In the surface foot, however, the light soils retained an average of I.o4 acre inches per acre foot of soil as compared to 1.71 acre inches per acre foot held by the clay soils, this being in accordance with the well known fact that clay soils, when once thoroughly wetted, will hold much more soil water than soils of coarser or lighter tex- ture. Averaging the quantities of irrigation water retained by each field for which moisture determinations were made, it is found that the maximum quantities retained per acre foot of soil per irrigation were 1.02 acre inches for the silt loams with fine sandy subsoils, .75 acre inch for the silt loams without fine san- dy subsoils, .78 acre inch for the clay loams and .49 acre inch for the clays. Considering only the moisture determina- tions from the surface foot of soil of the 15 farms, it is plain that, in the case of the typical silt loam soils of the Sacramento Val- ley, single applications of irrigation water, exceeding depths of one to one and one-half inches per foot in depth of soil it is necess- ary to moisten, accomplish no useful purpose. While the typical clay loams and clays of the valley will retain against gravity in their normal growing condition as much as It 1 3/4 acre inches of irrigation water per acre foot of soil, over and above the amount normally found in such soils under Sacramento Valley field conditions, that amount of irrigation water will not be absorbed by these soils un- less it is applied very slowly. The wilting percentages for the Sacra- mento Valley soils under investigation ranges from 10.35 in the case of the silt loams of the experimental irrigation tract on the Uni- versity Farm at Davis, to 16.59 in the case of clay loam on the same tract. The average wil- . hi -s. ,^ . _A.X -< W **-j*.^^ lo ctool 9*108 iQq.asdoni ; Jool 9ios isq i l?.l .^.j." . . JOOB rtJ gni^d alxlcf ' *allo_p .. e>r fr ve is i : f r-o^i , :t rloc/m blori II1 "1 ic 1S8TU500 lo'alioa - brtfjol ai d"! ,9i)ffi a r iaw j o : -10J3 ieq LaniBd'9 r i aslcJ'icJTtsi/p fawnilXBm 10! 36iloni 9103 20.1 ais aoiiaal'iii iaq Iloa oV. 3lloacfwa ^fcrusa ariil rttlw airmol His edd -/lo ail* ici rioiil S^OJB 8V. .sllosdwa -. 51 sn'd- lo'Iloa Ic ^ool 90 situs erli mo-il d^ lo 33flO d^ 01 ^ail* rtielq el ^1 8Rrxa' amaios^ 9i lo aIoB...na'ol ills taolq^ HoJt-tBgJtui lo anoi^soilqqa eAgala , anc 5r^ anc oJ suo lo siUqeb slfiisec al Jl 1102 lo tfJcreb nl dcol "isq .. q iJJlssw on cEsilq^oooc ^jtaiom o^ rf^ lo s-iBlo bna airusol \-B!O Isoiq^ s;* "ilsrict nl ^Ivs'is tfenisga nifivtei lliw ^\3 I il a a iloum sc |otibooo salwoig I 1 9ios i 9 q i*flw rrcJt: Mil Ic aaiforci e 3 'ISVO ,1 ' ' i o ci le ad ' i saol 59 ting percentages for the several types of soil under observation were 10.65 for the silt loams with fine sandy subsoils, 15.12 for the other silt loams, 14.21 for the clay loams and 13.06 for the clays. The approximate quantities of water neces- sary to apply to thoroughly dry soils of the types listed to bring tne moisture content up to the wilting points given are in inches in depth per foot of soil, 1.5 for the silt loams with fine sandy sub- soils, 2 for other silt loams, 2.3 for the clay loams and 2.6 for the clay. The op- timum percentage of available soil mois- ture for Sacramento Valley alfalfa soils over and above the percentage at which wilting occurs, seems to average between 4 and Q%. This is equivalent to depths of from .6 to .9 inch of irrigation water per foot of soil for loam soils and of from .7 to 1.2 inches per foot of soil for the heavier clay loams and clays. Alfalfa planted on very open and very impervious soils should be irrigated more than once between cuttings. This is nec- essary in the case of the open soils because of the inability of such soils to retain all of the moisture needed to mature a crop, and in the case of the impervious clay soils in order to accomplish deeper penetration of the irrigation water into them. In case of the latter soils it is very desirable that the moisture supplied by winter rains shall be supplemented by irrigation water suffici- ently early in the spring to prevent drying out. The frequent use by irrigators on such soils of a soil auger is to be urgently recommended, the investigations having demon- strated that penetration of irrigation water into the clay soils is very much less than irrigation usually realize. It will be noticed that the curves plotted from the foregoing result do not bear the same character- 10! e w'rtcjtd' 'o lebnu dtflw atr_ecl 31 la lertfo srtt iel SI . 51 1 ' '--ol ^sJo 3-:^ aB0p sctKirdxo'iqqjs orfT ; oct ^Zqqc Oo visa .u novi.. afrnloq -^liJlivr srW ocf qL- a. I , r'ios 'io *ool i3q xWqsb nJt a^^ro.nJ -cf.f/a ^fcnjsa anil fitl^ arose I *J !e *rfd aclj tol S.2 t arrtol d-Ii^ 10' -GO srfT .vBlo sd* 10! 8.S bns aniaol ^ei -eiom lie a sid^Ixsva lo s allca slisllB ^slicV o-JriS ioinv: ^B o^B^naoisq ail* dvods brrs 'i naow^sd sgii^ava cj smase t aiwooo grtiJ 'io arld-qsb o* toslsvii/pe al .3irfT .^3 6n--i sq --led-sw nold-egJt-iii -lo doni 6. o* 6. UKrrl . "moil Io SOB sliQe nTBol ioi lioa 'Io --ic'i lioa Io -creel isq asifonl 3.1 oct fteqo "'f^ v ao bsf^-q 3-rofti b 9-^375 .ttii scf ftlja:bi-a aiioa JLioa naqo srH Io 9830 ?^Ict rJ i ocr alioa rfe.aa Io ^' lie fene t qorfo o etifctBt od" bebssn si^J-aicin nl alioa T ^.elo aL'oivisqrrsi Silct Io SSBO 9dJ "io noJttsi*9nq laqssfi dsilqmoooa bet isbio io 9-iG o al" .fnsifd odnl a^ctsw noj do i/a no a . ;tcic 2 ' fYft- . ' 60 istics of an abrupt diminution of soil moisture at a fairly definite depth as the experiments quoted previous- ly did. The explanation of this is to be found in two factors'. In the first .instance the initial water content, especially at the lower depths, is much higher than in the first case, where practically air dried soil was used. This will have the effect of decreasing appreciably the frictional resistance that the irrigation water has to overcome in its downward penetration, since the initial water distributes itself as films round the soil particles. The water that is added therefore is under a much smaller influence of soil affinity and the other film forces. There is therefore a greater tendency towards the sliding off from the already existing water films. The higher the initial percentage of water present the greater is the amount that will penetrate downward. In the theoretical diagram, if the initial water percentage is kf.. the amount of water that will be dis- tributed uniformly is cde, whilst if the initial percentage is kg, the excess amount of chj--and the resulting curves before and after irrigation will be as shown- -the two curves converging with an increase in depth. In view of the results obtained from these experiments and the assumed lOKi ilos lo nol^ualfalo (J-qwids OB lo ED Ida! -3juolV9tq berfotfp acffls-ul-i 3.^x0 sxio se fl-Joso a^iotlsfc ^1^1 owd- nJt.uouol.ed ctf ai eiitf lo flottMWlqxa aJT .Jblfc ^1 d-xts^noo is^xvff tiitini stiJ aons^aai. ^siil 9lc> nl nx rtsii^ 'isri^lxl riowtft al ta^Ilosb tsvrol 9dJ ^ta -^iiclosqas ii- asw lloe belrci)" iJt ^IIaol*oai 9iadw -eeao ia-i Ylcfj3io3iqqs 4rilasa r i ; 39& lo uos'ils .scl^ evsil lliw alxfT asxf t3?BW nol.is^jtiti sxid- tc-IcJ- 9oxr.i3i39i isnoJtcfrolil JIrti edi son.ta , noi.-t^ij-sneq 6ijewnwo> adi nl s.:.iooTfsvo HOB ai-d ont'o^ a.^tlil as llsail 39*.oclli,iaib ^actsw /3.Ti3 rIo0f : T Q isbnw ti g^c'Iana^ bso;:.-- si lo-rld" aactfiw erIT .39010! fitl.fl i&r.'-'to c?/t bn-5' ,;?! I'll 3 Iioa lo aonDwJlni 'lia 3iW d :.>!; 7/0 ct -.on^brtS-} rrcteo c,a A siolsigiid" al o-isaT j-I^irf edT' .arrrll'i tel^w v'^^slxe '^Bg'ilfl 9;fd- moil .Tlo .i.i al Tscf '-3^3 -srfd' d-nsaeaq isd'^w lo s^ed-aao^eq Islcflnl nag IlJTw d'arlcJ' jnwc;,t8 q Lsid'lnl artt 11. islirivr ,e&o al ^lnrrollnw fis-tj/dlT:^ 30V1UO ^nltl/jaei sifct bn--{,rfs lo in.croffi'; c-.asoxa siict . ^3i el lo w.9lv nl .rf^qab ni aeaaapnl. n T ^tl"ji9vricc a-avitro 60a theory it follows that it is not the soil moisture which distributes itself according to the root system of the crops, but it is rather the root system of the crops that distributes itself according to the distribution of the soil moisture. There is a very mistaken fallacy abroad (especi- ally is this the case in alfalfa) that the soil should be wetted to the depth of the roots, and alfalfa being deep rooted, sufficient water should be applied to penetrate to that depth. But since it is a well known fact that the roots rather distribute themselves according to the prevalent moisture, it follows that any excess water specially applied . for deeprooted plants, say below the sixth foot, is practic- ally an entire waste. It has been noted by various authori- ties that on an average the following percentages of the en- tire root system for alfalfa penetrate to the depths indi- cated. 1 foot deep 27 percent 2 feet " 43 " 3 " 12 " 4 " " 10 " 5 " " 7 " beyond 5 " " 1 -T-o-Dcrsg) baotdB vosliel aa^B^fc-ira --1^ * si i '\ vj d"O.S'X CIWOpl Ii3tf S 3X 9x1* o^ ^alb-iooos asvisancs Ilciceqa t9ctsTr aaeoxa al . ^oo'i dcr:<J:e sii.-t yd bs^on rtaed aed ^1 .9 91 B1 II^HRSI mm\ 51 CHAPTER V CHARACTER OF SOIL AND SUBSOILS Apart from the actual texture and structure of the soil, there are various conditions that are met with which influence the application of water to a very large extent. Foremost of these is the layer of hard consolidated soil particles, known as hardpan. See Fig. IX. Hardpan is the result, to a large extent, of soil weathering. The finer the particles are broken up, the nearer do they approach that class of soil termed clay. The particles are subjected to percolating water, and the soluble constituents may be taken into solution. Thus we have solutions of sodium carbonate and various silica salts, associated more or less with other products of rock decomposition. It is in the surface soil that these solutions are chiefly formed. And according as their descent into the substrata is unchecked, or is li- able to be arrested at any particular level, whether by pre-existing close grained layers or by the cessation of the rainfall, the subsequent penetration of air and evapora- tion of the water alone by shallow rooted plants, may cause the accumulation of the dissolved matter at a particular 9-I.J . ' IC f| : . Cfn< :xc3 o<n a^'oiisv bns s i3^o rfdlff aeal'ic lioa sosliwa erl^ nl -slo ^srfd foeoiQ.qs ^srtd i bs^oscfwa 91^ asIpijJriaiii $rIT ."^ali 62 level, year by year. The action is largely accentuated by the filtering action of the minute clay particles which have originally been washed down. The water, charg- ed with these minute particles, precipitates them whilst passing through the accumulated layer already laid down by the percolating water. It therefore is of an accumulative order, the greater the amount of colloidal matter washed down the more extensive will be the filtering action and the thicker will be the resulting hard impervious layer. Once the layer has become impervious the descending water is either used up in transpiration by the plants or by evaporation into the air. The dissolved salts are hence crystallized out and will act as a cementing agent, be it siliceous, calcareous or ferruginous in the consolidation of the accumulated layer. The ultimate result is a hard, consolidated layer known as hardpan. According to the cementing agent, hardpans will either be an iron, lime or siliceous hardpan. The iron hardpans are exceedingly heavy and much more compact than the lime hardpan. It has the fortunate characterictic that when once broken up by dynamite or some other method, there is but small danger of it reconsolidating. On the lime other hand/nardpan, which is readily recognized by its lighter colour and by its rapid disintegration by dilute ew fissc T^wn^o averi rfoifiw ild 1 ilctir bs >rfo <=< e .a ' >'' > O 1 VJ M * J - *i .isd'ew flooA jjnis ori.t 3d IlJtw svisne^xs sioia srftf xwob oivisqjni Mi-n 30 Wins 91 srf^t sJ Illw nsoaai) Qrf* aucivasqmi emoosd a ^Cf -io s^nfllq 9^ ^J noi-tJB-xIqarwi* nl qw b.au i-arttls ai sonl 9iJ3 a*Ifls fiovloaslb 9-T il ecf ^osa si*nsnteo B SB C^OB A*. \\>V- vi"V. feilosnoo wtf rxi Bflo^*wl- r ro auoe ..Msri a el JlJre'&i 9*raJt^lM grfT .I^B! Be^sXiR^ooB ei!* lo .nsqbtan ae nwcml -i^^X b*BDlIoaiieo .*asBe inl^neweo sd* o^ gru. auceolXJ^a no will ,toil as d writfls Jilw -oo^Y* af'R rOll ...-TB ^vBsn vi ~jj;j"xoi S^ afiil ^1 stftiX 93-3 *- .^TA. x '-o-s- t-ttismrfs :o f sono iio:!^ ^ 63 acid, may be reformed by the descending water in time to a second hardpan layer. The iron and silica salts, once precipitated out, do not readily redissolve. It is fairly well established that the lessen -//,' -.,>- the rainfall, the smaller the depth at which hardpan is found and the softer in texture it probably will be. In general, hardpan may be encountered from twelve to twenty- _ four inches below the surface. If at a greater depth, it will usually be due to the formation of a more recent soil layer on top of the original surface. It is evident that when such an impermeable layer is allowed to remain near the surface it produces serious results. ,^,f . (1) By the failure to absorb the greater part of the water, thus permitting it to flow to the lower part of the orchard and out into the adjoining lands, (2) by facilitating sideway surface percolation from the fur- rows and exposing a greater area to evaporation by the heat of the sun,(3> by holding the water near the surface and thus causing its loss by evaporation before the soil is cultivated, (4) by preventing access of the water to the roots of the trees, if any, lying below the hardpan, (5) by preventing proper ventilation and aeration of the sub- soil. ef> extJ ^cf ber.nolsi sd ijs u'.; o j?l ciid dnrf-t fostfal-I a'edss liaw ^L^iffl 2! el ruaq.b'xs.u riolifv; do iidqaJb srid naJIiiwa ed*- lllali 01 . eel lllw vlcfodoiq dl aif^XBd ril isdlca a^i -ijdne^d od 9v4*v/-d .tto'i'i bs dl ,i{jqsb Tsd'&s'is 3 d,-j 11 . eoe'n^a std wolacf aarlonl iirol lic<3 drisos't 9*iont s lo rtcid^fmol arid' od swb scf vilctfew Illw 'iiigiio 9fd lo qod .' iid dns&ivs al. dl :nan nisnts-i od 1 ftswoIXs al cfioadc od" ^iilici and ^d (I) iswol arid oj well ol di gnlcJ^lnnaq awxid t i9^sw arid- "io (Si \abrxBi 3nlnlc'.;/ ^xid odnl dro bne bisrioio erid lo -iwl slid nwil aci: ..'looieq' 90*lii/a -^waiile snidB^tllO -florl arfd" -^cf nolcraioqev* ocf saia isd'aeia a gfllaoqxe &no d* isen lodsw eta- gaib oil ^d ^5K ft: al IJtoa eitt eiol-ed rxoidsioqavs YCf saol a*l gnlax/ao e. od lad's-* srid lo a .loe 64 Soils underlaid with hardpan should therefore be irrigated very continuously a more moderate quantity more frequently applied than for deeper soils being the best practice. It may often be profitable to blast occasional holes through the hardpan to serve as outlets for the excess water that stands on the hardpan. Such blasting, to be ef- fective, should occur frequently, in which case the process becomes highly expensive. Before undertaking this measure, it certainly is advisable to make a thorough examination of the extent of the hardpan, its nature and depth and the type of soil underlying the layer. If underlaid by a heavy sub- stratum like clay, blasting is inadvisable. The extent will not so much be that of opening the soil by cracks and crevices, but rather that of forming a watertight compartment, the clay being compacted all round by the force of the explosion. The effect of the texture of the subsoil on the use of water is quite material. A heavy soil strata occurring at depths of three to six feet is of much aid both in retaining moisture and in the cross percolation of furrows. The heavy subsoils are in general not entirely impervious to water, the irrigation water penetrating them but the .rate at which such water escapes by deep percolation is materially reduced so that the moisture is held for longer periods within reach of gcf >ii/cfe nsqfctBa rfd'lw 9 f iont e *39d arid- ^nled eIJtos leqssc 'iol nsiid- >allqqj3 iBnoiaeooo ctasia' od- slctectlloiq 9d uecTlc -^sm *1 aasoxs sd$ 'io1 sd'al.iwo ae avtaa act nsg.En.sd snct -Is 9d ol ^grtid'ajsicf rfbx/C .K&vjjnati adct no ar-nsda eeioil eaao ; nl iwooo lo airict >HB t evict 09! asmooscf xfeiJo^or;d e ocj- alo^s a s/ct 'ic drisctxe lioa lo lo d-tulj so' LTic'i 'io J-BiI ilfi }9ctoeqmoo os -dua ^vj39il ^ Y O/ ii-jsiisibnj/ 11 . IlJtw chisctxe ^:fr . slc^iaivb-anl al ,aeoi:v9 r ic> feris a:-;oe'io ^d 1." :t valo 9ii3- , d-nsmJ-ijaqnioo d-iisid-isctfiw s .nclaofqr.e 9ili 'ic 9010! s&j 9ao' erfcf no I^oarJ^a OiU "io err^xect srict Ic Jo9lle j"fi ^niiiijooo act_vjya lies *^ve.9d A .Ici'jcsd'a.Ti sctiwp al ^ninJBtsi ni dtfod &!B rioJOTT lo E! igel xla od 9Sirld; lo il arT . swoiitfl Ic nclcH'Ioo'iaq aao'io fct fli bne ts*jaw oct awciv^aitrl .^Xa-ildrsa ^on Isiaxies ni ois alicedtra lo -30 ic -isritf 65 the plant roots. Such a condition is more favourable than an impervious layer like hardpan as in the latter case great care is required to prevent water-logging of the soil. Where there is no heavy subsoil to assist in cau- sing lateral percolation, the ease with which moisture can pass downward lessens the extent of lateral percolation and a closer spacing of furrows is required to secure an even distribution. A large part of the water applied may also un- der these circumstances be lost by deep percolation in the upper part of the furrow before the water has reached and ir- rigated the lower portion. When the soil is underlaid with gravel, or if gravel seams pass through it within ten feet of the surface, the nor- mal distribution of the soil moisture is disturbed. If gravel is mixed uniformly with the soil from the surface downward, or at varying depths, the soil may be looked upon as being contin- uous so far as the distribution of water is concerned. When water, moving downward, reaches a layer of loose gravel, the descent of the moisture film is first arrested, then the film is -thickened until the lower soil pores are filled and, if irrigation is continued, gravitational water drips from the soil into the gravel below. The water which thus passes in- to the gravel cannot move back by capillary means and usually narf* Idsii/cv.sl eiora al noicriDnco rio8 .etfooi Jtnslq arid nl as neqlii&ii 6iiH te^al awclvisqml lie .Iloa sr# lo ryiissof-ioJaw tfn^vefq o bgiltfpdt si eiao -wao-nl d-elaas o$ Ileadwa xvB^xi on sJ: siarW e-xerflT HBO siijtfaloai doliiw xiJxv eaa afltf .naiifiloowq Iflne*2l gnla >ns noWalooisq XBisctoI "lo Jaetfxo arfd ansaasl fctawdwoJ aesq H0vs nfi etjjose oct X>eniup9x el ewo-i-utt ^o anlo^qa teeolo fl < -nj; oals ^flm bellqqe isctsw edct lo *iaq egisJ. A . sri^ nl noWe-Ioo**^ qesb ^ ^20! eJ eoon^a^o'ii -il bnJ3 bsrioaei aaci locta.w and. o'lolocf Yron-ro't 9iU "10 is we! 11 ^o t l9Vi?ig rlcHw blel'iabrtc/ al l.'-.cs aud" -ion oi-y ,90BliwB 9r lo C5-S31 ne* nlildiw -11 ^g^ I3V31.S II .bscfiurfalb 2! e-utfaloia lioa eiW lo riold-i/dii^s-lj 10 .bi.ewrrwofo so^/lii. r a 9;ii nto'M iioa yiii ri^lw .Ylirnolim; baxlm el ai npqv befool ocf -?Btn Jlloa srtt t sri*qofj a:: is^isw lo nclludlid-alb afit* ae nsl oa saocl lo i9"i-3l a ssrioan .biawmrob anivom ,id-sw necIW .bs^aoii^ d-aill al fftlil 9urtaic0 otl* lc tfrteoseb exit . bellii a*j2 ayioq Iloa i9*ci 94^ IWnu beaa^ol4J- al mill noil aqlib IS^BW I^aodd^lvsi^ ,b9WHl<tnoo -el nclis^liil 11 * -rtl aaaesQ awrfi told le^aw 9ilT .wolsd iavGig DriJ orfnl boa BflBaic 3 &<* VP^ Jomiso levBi 3 ertt o-t 66 drains away into the subsoil and is lost to the plant. Soils, in which such gravel seams occur, should therefore be irrigated lightly. Not enough water should be added to allow any part to move into the subsoil. Un- der such conditions more frequent applications of water be- come necessary. oct ctsol ai fens HoacUra erf* o*nl ^aws dowa a'olriw 01 ,ello2 svom o.J ^-xaq ^/IB woXI* o^ f>sS6fl 9d lo anoliftsllqqfl d-^swpeil enom anoim>xioo rio;ju -^9b .iKaasosn srnco 67 CHAPTER VI EVAPORATION, PERCOLATION AND SURFACE WASTE LOSSES The water applied either by precipitation or by irrigation to the land is disposed of in two ways: part of it runs off and is wasted, and part of it soaks into the ground. This latter part is disposed of in three ways (1) by plant transpiration (2) by evaporation and (3) by per- colation. In irrigation it is the object to reduce the sur- face run-off, evaporation and percolation losses as far as practicable, thereby keeping a maximum amount of the water applied stored in the soil within reach of the roots until such time as it is needed by the plant. Evaporation. Immediately after the water has been applied to the soil, evaporation begins at the surface and, in time, if not checked, the loss in moisture will be felt throughout the root zone . The movement of water, as' already explained, is from the thicker to the thinner water film or from the wet- ter to the drier parts of the soil. When therefore the im- mediate top layers of the soil lose their moisture by evapora- tion, there is a tendency to partly replace this loss by an upward movement of water from soil particle to soil particle from the wetter subsoil. IV .JO dia. :e\'w owd nl Ic baaoqs a n* eiq v- i9*- r di9 & isdaw d. od- add otni a^oa it lo *isq bns .bsitaew ai 5ns llo aaxn *i U) a^w 991, i* ni lo Dsaoqaib a I ctiaq ledrfal sixfT -isq ^ tS) bns nciiaioqBvs ^d (S) ' Hol^ailqerwi* *nslq -IJJ3 srict 90-ubsi od- cro3f,cfo arid 1 ai di aoide3itii ni BS IB! SB ssaaol no'ld-jBloO'isc bnc ncl-^aioqavs / IQ^BW su'cr lo. *nbota nujfiiixam a gnlqeeil ^cJe'ierid 3^0 ^ aitt '^d bebssn ai 3i SB siplct rlo^s t bns soc'liui 9dd dj sniped noidsioqsvs ,Iioa 9xJd od bsilqqs d-131 sd II iv; siirfslom ni saol oiid ,bsj(oerio ^on 'ii ,emil ni ai ,benir:Iqx9 TfbB9il3 ae iodaw lo dnsmevoin sdT r * f A i*^f- r!'*^ r* fS^* fff^iff *T f sild mo'i'i 10 ffdi'i lodew isnniiid sad od is^oiiio saff -mi er& eiolsisrid- nrIW .lioa arid lo sd"isq i^lib arid od id ? d 9'iwdaiom lisrld gaol lioa &d$ lo ais^s! qod Y5J >aad ^ ai >drriY lo J ORt .:v r :.i 68 As evaporation proceeds from the top soil, the water in every soil layer diminishes to the full depth of the root zone. Dr. Widtsoe likens the action to that of cotton packed loosely in a box. By removing a small quantity, the remainder expands occupying the same volume as before, but in a looser condition. In soils a similar condition is met, when part of the moisture is extracted, there is a thinner moisture film condition throughout the entire mass. But the de- gree of drying out is not uniform throughout the soil. It is only in the topmost layers that the process may extend to such a degree that the moisture film is reduced to a minimum for capillary movement. As the {tS/ff/ffo- capillary point is approached, the upward movement becomes more and more sluggish, and it is very difficult to reduce the low- er soil layers below this point even though the upper lay- ers may have a considerably decreased moisture content. To stop this upward movement and thereby the surface evapora- tion is a chief consideration in irrigation farming where water economy is a vital factor. The nature of the soil is of considerable impor- tance. The finer the texture of the soil the more rapidly will be the upward movement of the moisture to be changed -fto J3 rxi a istinirict H ai sisrit .b -sf> eii^ *ua .aaflfli sil^ns adct ^worf^wcrrdj nol d-I .lloa fjjtf* *or3J/oid-d- iRiolJUoj d-on ai ctwo ' l mill i>n- 91 OKI siftmo - vo I S'itJ ?0!/f5S'i oci" j'lt/ol'iilD ""(T^rsv ax -I --;el 'i9c A ci/ srl^ rfejjoifd 1 nsv? Snloq el of .inoctnoo - Bob i^^^s^i 21 " 00 G ' l nl .lo^asl IJB ISIiEiESES mat m mm mm, m i n !n /<s /a to ste e* as as 30 w. mmr^mu ililiil ' wm II . ,..''-' 69 Into vapour. The darker the colour, the more heat it ab- sorbs and hence the greater the evaporation. The richer the soil is in soluble salts, the slower is the evapora- tion of water into the air. Of the meteorological factors, the evaporation is most largely influenced by the temperature, sunshine, relative humidity, wind and rainfall. The higher the tem- perature, the more rapid is the conversion of water into v/ater vapor. Much more water is lost from a wet soil on a sunny day than on a cloudy day. The drier the air, the more rapidly will the air take up water vapour. Winds, likewise, exert a strong drying efi'ect on soils, especial- ly in the case of relatively dry wind. It has also been shown that the wetter the soil is st the surface the more rapidly will be the water evaporated therefrom. The evap- oration of water from a soil varies as the initial percen- tage of the soil moisture. The results of the observations at six stations at which evaporation experiments were conducted under Dr. For- tler are shown in Tables XVI and XVII. The saving by cul- tivation is also clearly shown in Figure IX. loo srfct isiteBb 3iff .li/oqev odrtJ &n"cf isJ-flais ft eorxeri fens adioe $ tafias 3lcl;;ioa nl si .Ilos srtf .lifl arl;? otfni isctew lo no let BO igoXOIC SJ-9M 8ftt 10 vet be 0x191/1 In Jt *il3il etaom al ^ ana bxilw ^cJ-lfclntucf fioiaisvnoo arid- al biqa-i siora 3ilo , a^/ moil a<iol ai IOJST/ siora do.o-M .'toqjev 18 lt> srfT .^so i^wol o s no nail* \'b qu ejle* 'ila arid- Uxw ^iblqai 9-ront 'inoi^a s d-isxa . ' o'alfl aBil $L . Dniw v;iL> ^Idvi^alei lo seso arid- d-^ ai lioa eri./ 'isdMsw 3ii^ d-srld- ftwoxle jy OS^B^OqBVS 'Xdd"BW SXitf 0d II 1W as saiisv lies B nio-tl IS^BVT lo a-'i.oitaiOiTi lioa sric i*B\xia d-B arxoilavisacfo 9ifd lo aJIx/8d'i sxfT - . Cisr ft 'JT \ * p< -" '-^ ^r-f "sn Y " " " .-r^ r{ f> ? :&& eJH .IIVX bxia IVX 3 nl nwoxia eiB ieid al xiworia vi oala ai.nol*. 70 w Q H- P CD 13 ct O H> ct O ct P O to CO O 10 1-3 P > 00 O TO <j Ct (D <D -P- - - CO H) tO O 03 <o cn Oi W 03 00 <JCDCOOO-<I<DODOO M I- 1 M I- 1 H 1 M GJ to W O O H IO O I CO O *O P O ct S CD CD H H) CD CD O *O CD CD t* 4 *<J C ct I I !- CD 3 Fto ^ o < H- O CD H 1-+) CD 4 P M CD 4 Pi CO t-t> to c+ P H) P CD 4 OO44^O P'CD I P 3 CD I CO 01 00 IO cn to to to" to CD to Oi I- 1 to IO W o h: CD CD 4 ct I IO tO tO IO tO M tO tO * o >r CD CD "X l-t p. to to w p. H to J? A O cn w P p. cr D CD P ^ I tO W lO WOl lO CD CD P CO # tr* r -t Ol W * to <O l> 1 '.' _ _ - JL" a H CA ^* C3 .'If CO ^* fO ""^ 1 ... - p 8) 0) <O t> . <0 <9 <0 <0 <D M 4 fO ro CO O i - - - M a? t- W W &- rj ' . K> O =H-V b 4< W "^i to 4 * o> o 00 M M &5 01 fi) 11 r i * 4 oo > i r- co <* oj co M _ .. co co oj p- co o> co c-. CD o{ (O O fO O> SO Ol . MJ . M M M M M -M Mi Q> tj ' 'H M <V M O O C-> Cfl O; ^ QJ 00 00 > W Crt M CJ VI h- 8 ^ r ' $ W -! '1 Kb fO PO ro W c/J QJ CO [O C- I-H C^ O> ^ E^ fO 1 >~ M h tn \ r^- " H~ 5 ^ O fc> fO W ^ ^" "*~ > i -S O rO fU x ^ ^ '-* O^l" c/5 ; +T l Ql .-', / - T-i " w 6 M c/5 o^ M ci ^ CQ. fO ^ JO O ? W ' H COj C % ^"b!" "^; T O ff)j tO C/i M M OJ 'H .M "l fjj '4 Q3 C'J 0". O CO C-! GC i- - - t 'fr r ( ^" M- " ~ r U JO o; c5 ro K> O5 W 1 W M j ^P ! BJJ OJ t- fO OJ M P- .'* .- t i -i -D H ' J i ^V~ M i >-( M eo ** /* o w co c * a in 6 " > * ***v cS <O CO fO CO M ro <^> Ij S 4! . m C- tr f>i -: -; ; :o ft^ >H M OT f. 4) OJ fO O <O . CO 4il K 1 ja to o hg 3>0 p* O CD M CD O ct P ct H- P Ct H- < < CO <J p CD CD ct '"j Ct M CD JO CD CD 4 O P CD H>P ct I-+I pi O O ct ct 4 p" H- 1 P CD CD I- 1 Cn ct ct CO H O O Ct H) tO tO P ^ tO cn M o CD 3 to CD tQ H- ct CO *O M P* P* CD CI> O 1 =3 O ca o P CD CD P p. I-J Cf , | rf, tfA CT CT ^^ h* H- P < ct P P H- ct CD 4 CD -i Pi P r QJ oq ta o P o < ct H- CD H. M M P, 2 * >D ct cr p CD 1 -i j-j. M M P 4 CD 09 CD hS W IO CD cn O ct Cn to p 1 & cn CD *<{ CO o Hi I- 1 fD O ct4 3 H- O < CD ct P P P- ct ct CD H- 03 O !> o H f CO O O 09 P CD JO C N 1 j t-j H P JE> CD 1 i p. Pi O H* P < 3 CD S? < tn ^ cn CD 09 CD > to ct 1 p CD I-J h- 1 -3 H* p P * * ct H CD O Pi ct W fe! <$ P CD H- CD r^ *-^ | 1 s. O O !S P M H. P P CD h- 1 Pi I-+) p CO ct N ta Bo * ? CT *z-i 4 |_! to to to 10 M P \-> o to H) 1 o 'G P (-3 Ol Oi -3 <j cn a* a> CD CD ct CD O l> rf*t to o> rf* en !__, . . _' t-V P 4 P 3 ct 1 ^ D to if 5 ' en to O* Cn to CD CD lilt-- 1 M P P P O J 1 O M H ct w CO Cn 1 I w p 1 | i P p en CD -*3 ri^ CD o o CD 1 M in H l_j H o ( O tn H ^ >r< o <J l O5 CO IO O) CD 0) O P P 4 1 P 4 H- ct C w CD 1 to CD co o Ct 1 I-J CD CD en I- 1 00 cn O N ~"^ ^^3 CT" *y *^ CT* C^! M P P CD 4 4 H- < oo if 5 * I- 1 CD 00 CO -3 O O 4 CD O O P 3* CD CD 3 P *b rf^ tn | i CD ^ *> to CD to O ( CO W H CD H Cn CO ^ ^ ^ p p 1 1 t H w <^ o H) tr* j to f > t i H 1 l i f i P O P 4 C O H- ct M O re en w Cd CD O Ol t. p 1 M CD ct 3 ta 00 <J ( i CD (J) -^3 CD tn Pi H- to i ] H- tn ct d H) f P H-P 4 to to 1 1 to 1 i H tO o H <! o o tn P 1 " P 3 to * co Cn M^ en CD ^ CD to ct t- 1 tf* to CO to H <J ta CD i Pi a ct o C- to to i i to to to tf* CD H- P O> ( 1 O3 H ^3 oo o ^ O I- 1 < O P ct CD if* to oo O 00 to OJ CD H pi P < ct P 0" 1 ^ O P Ct CD P. ta P ct P H O to ta ct P ct O P to H3 s- M CD O h* ct p- CD O to ta CD ta i CD CD P ct CD ta P O CD i P ct CD Pi < H k > O OJ 03 51 tH I <n f o o H -t-> M cr e 1 (vj rt tf O J o> a? r tt M 3 *H O" <fl *M M ff) gH O Rl g' C <H <D .-T) 5 cvj *> OJ . $S O -3) at M io t! > > -H -t? 1 tJ! _^ , I JIV C 4 > 0! i ^ ^^r f i v -. ts 1 "*"" y a? s t? r=s -! _>;7 (0 M ir* 35 -H M 3 23 !H ft tQ M <R ^ | M . ^Q o ir* ti G #< fc i O oQ tf"^ * rg i_j 'q f H 00 'to -^ M i I-H ov 01 <v 00 13 ^ "t^ ] (H n i j eg v-' en 5) O "H rO P i" "" *" 03 f- . o SH 8} S ? ^ g &i 4 S 1 !-) ca ID -H H *-* ?% J o <r> H, <D <fi 01 10 , <y; ^' t; o as o 1 ^ T5 H iQ G $ r > ,Q o ea - _ - - - - '"I ... .- ! *H i "^ '^! o o ;o 'H fO o> w 'rj 0} s * . <R O -O CD -4 r> QJ | M (T! t^ -a ? J3 r p- ~ 03 :-' 3! !rs i H M O* O '"I t; o <"' o <^> c^ co '0 ^ . t5 -H M FT > ? Q? Wl T3 +1 ff> <D t H *?!. O CO flD 'CO W ; O ^ CP ff\ t-J 4> -i-H ,_ .-, ! iQ OJ O I" "V^,^_ a? F >M M q o .-* | ffH ^ , rf ( *^~|( I f t 1 3> a? G- ^ o a> t 4 o o' t- a? CO OJ M 44 H "S t) i (0 O <'3* tj to ir 1 M CD 0/1 -4i -4t CO !-J 6 J B: t2 03 rO H Cy '-H d oj .-H CH ij f d ; a? J F ff) f " 3> 5 ; ' 1 01 PI 5 Jr 1 ttt ~S -H -?-> 6 V H CO C O co > OJ -H ^ q o tl M M H M OJ j., o ;_j ^q WOO? to to 1 ro <r> 'H '' -9 f-3 rO P 5 ^" tj HiQrlO) p-CO> i -i !>O rj ! 20 " "'-i'lH Jn"l_5 o t! ' a? O > W . M M C/J H CJ tj CJ l ) ""Cj * j-^ /jij ij3j ' 1*15 ^!i ' rt3 O? ', ft rt.t t3 j a & 4 PO i<nca C^MMCI Q?CA ^ K ^ 4 } tQ S M OJ O B S *> " , . <^l O5 C1 C/5 "H <y5 a O 00 t> '--I 5O M S -^ <n > . *i '"cl G ^ IOWCOO GQC/i < ?*, <I5 +j -f^ t! H - ' O 72 The process is not difficult to understand. Water moving toward the soil surface must pass from parti- cle to particle through 1iie various films at the points of contact of the soil particles. The smaller or the fewer these points of contact, the more difficult will be the up- ward movement of the water. When the top soil is loosened, the points of contact between the loose soil above and the compacted soil below become reduced, and hence the ascend- ing water finds it difficult to pass through the fewer points of contact. The more thorough the cultivation, or the fewer the points of contact, the more difficult will be the upward movement and the greater will be the reduction in evaporation losses. It therefore follows that the deeper the mulch, a greater saving can be expected. That this is the case is shown by Table XVIII which shows the average losses by evaporation from a free water surface and from tanks with mulches of different depths at five different stations. ai aaa e lioe artt biowocJ- gaivom 1; q 9rtf rffi- amlll awoiiav srr .rfsuoiiitf aloi*naq 73! acfi 10 isllsma erff .aslold-^q 'lioe erf* Ic -qu 9d* ed Iliw d-Iwolllil) siora srf^ ^oadrioo lo . s^nxoq aa ^dsnsaool al liob qorf neclff' .'-isd-aw sxlct lo *aravom srfct bna SVodfi Iloa aaool srld" nsswd-scf ctofitriGQ 1o aJnioq smoosd 'wolac! HOB bsJ-os 19W31 9iid- dgjjoirict aaev oi d-Iwoi'il.cb rfx sfcnil isctaw ic t noi^svJWIwo aild- rigwoioxtf eiont srfT .ctoatfrtoo *I wo 111 15 9tc;n siij .d-oscJ-noo lo a-'tnioq arii rW scf iiiv; i3*J9 r is 9^ & a ^ itnaflievoM d av/QlIol ato'isisili ctl .asaaol nol^B'ioqava nl ai aijtt dexfT .09^0-30x9 ad aso gnivoa '13*3313 3 ,iiol.vrit 9iicf s^iova sifi aworie lioifivr IIIVX alefBT ^Q r rcworia si sao eii* Bioil fjn^ soj3A-iira ia*i!w edil s motl noioflioq^vs -^ef 39330! llb svi'l Je aa'*q?I> Jno'isllii) 'io a ado I urn d^Zw aatrtad 1 73 TABLE XVI 1 1 / Period . Days i Loss from ' LOSS froir [ Soil 1 No 'Mulch i 3" Mulch 5 " Mulch I g II Mulch Inches 'Pounds Pounds Pounds Pounds First 3 r~ i .86 ' 9.6 i 1.9 .48 .48 Second 4 .95 ' 5.1 i 2.1 .56 .56 Third 3 ' .87 ' 3.7 r i 1.6 .63 .25 Fourth 4 .95 ' 3.6 r i 2.3 * .89 .43 Fifth 3 .97 ' 2.3 i 1.5 1.08 . 53 Sixth 4 .99 ' 3.1 i 2.4 1.73 1.07 Total 21 r i 5.59 ' 27.4 11.8 5.37 3.32 Equiva- lent loss in inches t i ' 1.75 t .75 .34 .22 ffable XVIII and Figure X show that from an open unmulched soil surface for a period of three weeks the aver- age loss was 27.4 pounds, which is equivalent to 1.75 inches of water. The percentage saved from each depth is shown in Table XIX. naqc ns iuc'il tfBiicr v/oue X s^wgJ^ fo^ts IIlV>i -IJVB sxi^ 3X95W 3a E t r ;cf lo boii-w-q TO! eoal'iijje iioe- 1 xe<i ' 1 1 1 61 ' ? .8 ' >j J_ i i . *"-o ' 3t <j J3*liT. . 1 95 . 1.2 I as. 6. ' 3.1 ' ?- ' i i i V8- ' 5 ' fi'ilifT .*.- | .2 ' 0.5 ! 1 ! 1 on r I ;s r ' ^ Q ' . _i. G i. vj * ve. 5 ' Jt^ii^ i vo.'i 22. | SV.,t 1>.2 l.S I K. i 95. c IS 1 L&3oT V5.3 ' S.ii ' ^.V2 | , i , i t 1. ! ' -.. c r>O vy -f ' ?V f ' ' I rtj- QRCJL 5V. i oj ^aeiavlwps ai rfojtriw t abowoq fr;VS BQW aaoi 33* nwoiia ai ilJ-qefi .dose iucil bsvaa sssJaa^tsq exfi? .-istav lo .XIX s. 74 TABLE XIX (9j Condition of Sod Evaporation loss Percent of saving on evaporation from unmulched soil ~^ Inches Percent of wa- ter applied No mulch 1.75 29.2 00 3" mulch .75 12.5 57.0 6" mulch .34 5.7 81.0 9" mulch .22 3.65 87.5 The saving therefore of a six inch mulch and a nine inch mulch varies but little and it is questionable whether it is .economical to go beyond the six inch depth. In localities where the available water supply is limited and where the duty of water is high, conditions have forced the irrigator to resort to methods of irrigation which will result in a lesser waste of water than that of flooding the entire surface. In orchard irrigation expeci- ally, but also very extensively in all crops that are grown in rows, furrow irrigation has been largely adapted. The present tendency is to use deeper furrows than formerly used. The reason of this practice is not far to seek, in that it is quite evident that under such conditions a smal- ler percentage of moisture will rise by capillarity to the surface to be evaporated. I . . S.Q2 3.21 V.S 33.5 1 5 - ;i B 6nB riolxmt rfoaJt xie a lo d- '9i9lw sltfanolcraswp aJt d 1 !' fin* eXWll ..dd-qsb rfonx xla add- bno^ed 03 al ^Iqqi/a laiaw sldsllsva orl^ yxaa 'io ctsfjj nfcit-l ista- i JLogoxe nold-os s n 3-i. : ruarii c . acai ". ' ' ' D . J . fl/rrenrf af ' rar/ws eff/o/Stf. ;:<?:"' 75 Tables XX and XXI give the result of the exper- iments conducted by Dr. Fortier to determine the saving of water by various depths of furrows. The tanks receiv- ed a six inch depth of irrigation water, followed by a six inch mulch as soon as the soil could receive it. The results are illustrated in Figure XI. - rloni xie 76 Equivale t-< f-3 O CO c^ CO P M CD<jO>Olrf^WlOI-' Period g ct M O to to 10 CD ^Wrfi-Wrf^W^W I CO H- P I_U K- 1 O HI-'l-'MHJ-'HI-' H- H) 4 y p JB o o <+ P (D (D tr* o CO CO .nches rf^ o> rf^O^MCftrooiM o<i<jrooooo to * Hi *1 i H to H M H- 1 H M W <O H *=j M O> Oi CDMt-'l-'J-'CDI-'I- 1 ioioioocnW-4rf> o CO i * o o DJ 10 Ui to M H M H 1 I- 1 tO W D o >rj (D (D w u B P <0*>-tOtOlOOtf^-3 P T et I Js H CJi Ol 10 M t- 1 M M tO Ol rf^totoa>i-'woi<D OlOlOOCJlCDXIOl t^ o to M P <D CD !- O> M M H M I- 1 tO O> o *d ^ 4 Cft UlOWCDtO<J<lW P ^ d- 1 O i CO M rf=> i^ H H M I- 1 M to , * OOHOiOi^CJiO CDOCJiCDOOJOO & 1 CO to a> Hj c: i rf^ M H M H H 1 tO rf^ *** -3 . H IO CD M. Ol. -3 W O hJ 0) CD P 4 Ct 1 i irrows t w o H I- 1 M H H 1 tO * <|tOOI- J (X)O>CDCD OlOCDtOOiMOiOl t- 1 i CO to 9 <i to o o H 1 M H M IO O * -JWtOlOCO-OOO O *fl (D Cl> y *T! ct i .rrows . . CO tf. 'H <D M L O 01 -1 S* M L_l ^ ) ^ i < L t M --H M o H M I a fO C/J <O *1 ~M 01 r-- O -^ c- o CO tl C* fa I J) 1 ~~ ~~ f" H ' "i M M M H H H 0> o * * * CO M jrj. CO M * t < * ri | O 01 W CO 01 <tf -4 - tr 1 Oi '(A 01 o> <o C/J M M ^ ro of - * i +>\ c- <* O C/5 O1 O1 -4i . QJ f H *>! -j ro M M M ' ) *H S j o . . * . * i * ai 03 j Q> ro fO IX 8 CO i"/5 O OJ 0? 4< O fO CD . rr o <O C/J i-H H M H M > * W !> <A V to O ro i CO, -j ^ C/J M M M H S 1 O . * J i O ro =0 O O i CO ro O O CO T* O H ._, ,. M - '-c_j *, ^ , * . . P3t 1 to ro >+ : CO C/i M f"_ S! < QJ -%: -*i 0, * oj co co co co L - o ro o fO to fO CrJ CO >i tO 01 --^ M M.. ^ I 'Hi W j Oi W t 77 TABLE XXI fr) i T i Loss 'Amount sav- 'Amount sav- 'Amount sav- 'Amount by 'ed over 'ed over 'ed over 'saved evapo- 'free water 'flooded 'surface ir- 'over ration 'surface 'surface 'rigated 'surface ' t i 'with 'irrigat- i ' '3" furrows 'ed t i ' '6 "furrows Inohe s 'Inches ' Per- 'Inches Per- r lnche s Per- 'ifiches "Per- i i cent t cent t cent 1 'cent ( i "T T~ i i Water i i 1 1 i i surface 10.46 t i 1 _ _ i _ _ _ _ MV i t 1 1 i i Flooding 1.25 ' 9.21 ' 88.0 t __ _ _ _ _ i i 3 Inch i 1 1 i i furrows .98 ' 9.48 90.6 ' .27 21.6 1 < i t G Inch i i ' t i i furrows .86 1 9.60 ' 91,8 ' .39 31.2 .12 12.2 i t y Inch 1 t i 1 i t furrows .72 9.74 ' ! t 93.0 . 53 i 42.4 ' .26 26.5 ' .14 '16.3 i i -VBS -V.83 -VB asoJ* jo 1 .: :0 >3 99<il' -oqi . itx/s 1 nci; 5.61 t i 1 __ ' -- ' 3.12' V2 i .21' SI. ! S.lS'y 1 ' - ! . I 3S r SS. ! .2 ! , 0.88 o . OG s.ie t soxfonl 6*. 01 06. e r as. is. e cs.i ' 1 nonl S dcnl 3 rfonl f awc.Tii/l 75 78 Percolation. Of all the losses in the applica- tion of water to the land, deep percolation generally ac- counts for the greatest portion. As stated 'before the probable loss by deep percolation is generally from twen- ty to fifty percent of the water applied. As shown by Table XIV diagrams of the moisture de- terminations on the alfalfa experiments at Davis farm, given previously, for the various irrigations fifty-seven, seventy- four, and fifty-four percent of the water applied percolated 1;G 5.52 6.60 '. 06 -.1 below the first six feet with an average of 68.8 percent. Table XXII has been compiled for the various soils on which the alfalfa experiments were conducted, showing 2.20 5.23 the loss by deep percolation. .1 398G01 9do 113 10 -.-T-i ;"-"l' ~"~~i~~ ~J " _ r ' '+ v* ^rra-rsns^ 3l aoWalooiaq qeeb Tjd 230! sldsdotq me - J. j,j.j. *w ^m ocf ^ lom srf* lo au-u3Bl& VIX 3-CdflT ^ n^crfe aA a i* a*na ra liaqxa BlIallB a^t no a * ax lo cfn 8.63 lo asaw ^ ridiw' *aal xia * B all adJ silos no 79 TABLE XXII i Class of Average Quantity 'Quantity 'Percent- Loss due to Soil depth ap- retained 'of water 'age re- deep perco- plied per by upper 'retained 'tained lation be- irrigation six feet 'including 'including low six of sod 'probable 'probable foot limit 'evapora- 'evapora- Percent 'i tion 'tion 'losses "losses i Silt loam i t with sandy i ' loam sub- i i soil 15.02 5.52 6.60 ' 45.9 56.1 i i Silt loam 12.81 4.24 1 5.52 1 41.5 58.5 i i Clay loam 8.78 5.50 1 4.56 i ' 52.0 I 48.0 Clay 4.72 " 2.20 1 5.28 ' 69.4 30.6 i i Very heavy i Clay 3.67 1.06 1 2.14 58.5 41.7 i As was to be expected the results show that the percolation losses were rather heavier on the lighter silt loam soils than on the clay soils. Percolation may be look- ed upon as capillary movement of water aided by 'gravity, and since any capillary movement is dependent on the texture of the soil, so too is the rate of percolation to a large ex- tent proportionate to the texture of the soil. Measurements have been made which show an absorption on blow sand soils ev lo aa.elO -9- S -9 ' ' '*, b~ ... ~ L fl xis KO ! 31 i.t X ;; G 1 r: i ^; 9lrfBcJ ^! boe *! 'ncl?; noi.*; ; agaaol] a38aoi i RlBOl i i -cfjja aisol .8 . 23.3 ' 20.31 lioa i t SSS.3 ^2.^ 13. SI i a. 85 e.i^ 0.8* 0.23 8S . 02.2 -2V. . M.2 t ! * 9/:d Jot.* -woila 3.? JXJta 19*113!! .3iW ao isivasd lerictai 919 ff 29520! ttoi*fllo.oi9q .alioe lo d-nsacyom -fxalllqao a,/3 aoqi; lo -rsmtfxatf oilt no J-nasnaqab ai *effleyoi^;^i-i'lqo T i"^ ao -X3 931.3! B o^ ooWalooiaq lc ' 9^.1 3ii*%el oo.t oe ,ltoe lo ai^xscf ^xtt ^oc e wolrf nc fltoWi. 80 of as much as twelve feet of depth of water in twenty- four hours. On the other hand it has been found that in the case of a well dug in heavy clay in the Sacramento Valley, the water had not yet percolated twelve inches laterally in a week's time. The general rates of perco- lation to be expected in depth- of water in foot per twenty-f our hours {Mm/fay} Ledium heavy soils 1 foot Clay loams 2 feet Loam 3 " Sandy soils 5 " With light soils it is difficult to cover the surface suf- ficiently quickly so that no part will absorb more than can be retained; with heavy soils the difficulty is to se- cure full absorption of the water to the required depth. It follows therefore that where for instance for alfalfa on a sandy loam the best practice would require four to seven and one-half inches irrigations (assuming a maximum beneficial seasonal use of thirty inches), it would be best to apply eight to three and three- fourths ir- rigations in the case of sandy soil and clay soils, --in the first case to prevent deep percolation loss, in the second Jool 1 silos ^vs9x; lye soeliua odd" TOVCO ot tfljcroJtllI& 2! fi.t eioin fHcecfs 11/w d'lf on if s rid" BS O - ! t; X Y"^ .riitqssb ks-Yhjpot etitf o.t ti'd-sw 9& lo / iol ^onJSJartJt lo'i 81 to secure full absorption. The most common method of ap- : j. .:r 1;- etui be plying the water to the land is by spreading it over a slightly sloping surface. Under such conditions the dis- tribution of the water should theoretically, be somewhat '--s'l '- - -'-'-. /-. r as shown in Figure XII. lie area Hfi C D, Hi D. The depth of initial absorption efba represents the minimum depth of irrigation with which the land can be covered under any conditions. As the water travels over the check, the depth of absorption from the flowing stream will be proportional to the time during which each part of the check is covered, being greatest at the upper end, as shown by fgb gb being somewhat concave upward as the water will travel more rapidly at the upper end. When the water '- ' * -" T .- > ft 01X^3 '. v ch has reached the lower end or often somewhat before it has reached the end, the supply is shut off. For a short period all of the area would be covered and absorption takes place uniformly over the whole check- as shown by chcb. Gradually however the upper end will become unwatered and the water on the check will recede toward the lower end, the absorption being greatest at the lower end where the water remains the longest as represented by hdc. The total depth at the top of the check will hence be eh and will necessarily be a function of the length of the check or ea. If therefore it should oc- . 2 od :lq it .1 noiJq r ioacfs lc rfd'aab a$d t^. :h smlJ- 3ilJ ocl- Xjsnoid- scJ I- cf cf3-- as . 3 1 o. '~v.' D-. ." '- , wruj c 19V9W64 ; jiosifo sir e j^3'd-B r r- ; 0."---' 82 cur that at the head of the check water is lost by deep percolation, this can be considerably diminished by divid- ing the check into a number of subsections, obtaining a dis- tribution as on Figure XIII. The dotted lines shows the distribution with an undivided check. The saving in water is therefore represented by the area HHu Dn D t Hi D. Don. H. Bark has conducted extended experiments illustrating these relations. An experiment was conducted on a strip of clover 45.9 feet wide and 2559 feet long. The strip was divided into seven equal divisions 337 feet long and a head of ap- proximately three cusecs was turned into the upper end of the strip. The head was held constant and the length of time that was required for the water to advance across each successive division as the stream advanced down the border check was noted. The results in Table XXIII were obtained. lad- aw iosifo siIJ Ic >,- Ed 1 -bivib ^cf bs s sn.Zni^cfo .anoid-osadwa lo isdinun JB o^nl iloerfo arid iti'grxlv^a axiT .:ioe.iip bebivlfjru; m iictiw noicfjjcJind'slb .a iH i G lid it HH .usi'fi sxld- Y'^ becf-xi9a9--;q3 c i s-iolgiarid- a I ^iisxg bsbne^xe bgd-owbnco a^rf ^icfl .H .noQ levoio To q.Md-3 s nc bgloiibnoo ew toafitiiaqxe nA saw Gi'i.ta iol J-sal Q3S2 bna gblw sal 6.5 -qjs lo basxl B biu ^nol j-oel VSS. anol^lvll) Isx/pa nsvsa 'lo bne igqqy 9j&t ojr.i bgfr^wd" saw aosejjo agifld- 9fid- >ise. drted-anoo blaxl ajsvy b^sn arfT .qiida 9iid- aaoioa oo -icd 0rid nwob bsonsvbe msa'id-a arfd" au noialvib sviaaaoous iad-tf 9 r i9^ I1IXX 9ldJ3T ni ad 85 TABI XXII I Division number Length of run feet Irrigated area acres - Time required ~r~ Acre 'Average feet 'depth Applied 'in feet Hours Minutes 1 537 .38 1 7 i .28 ' .73 i 1--2 674 .77 2 30 .63 ' .82 1--3 1011 1.15 4 00 1.01 ' .88 1 1--4 1348 1.55 5 40 1.43 ' .93 i 1--5 1685 . 1.92 8 25 2.12 ' 1.11 t 1--6 2022 2.30 11 30 2.90 ' 1.26 i 1--7 2559 2.68 ' 15 i 40 3.95 ' 1.47 i The Table shows clearly that the amount of water that is required for the irrigation of gravelly soils increases greatly with the distance over which the water is flood- ed. Had this strip been divided into seven sections by the construction of six cross ditches, the time required would have been only seven times as long as that required by the first strip, or only seven hours and forty-nine minutes, as compared to the fifteen hours and forty min- utes that were required. Also an average depth of applica- tion of only .733 feet would have been required as against the 1.47 feet which were required when it was flooded the . ' ' 5V. ' ' 1 I r 8 . i i 23. t OS * .v . 78 | ! i . J t oo ; A f. .- l . .1 ' f ' & 1 1 1 II. 2 ' 22 ' i 1 SJG.l i ' ' X . '. ' ' OS ' 11 ' OS.S 3 i i 1 1 i . .5 0* ' 31 ' 86.2 . t 1 t i 3 ^ lo ^nircrts sxf; assssiortl alio^ -^IlavBis lo ncl- -booll el ne^ew srf* lioli^w isvo s-- qaolooei: nsvo3 o^nl fesbivID rrescT c. bs^iiupsi srai.i sriJ t aQrfocH) aaoio xla lo b';li/p9'i d-axid- afi anol as a: ;?v9a ", snlct-YJiol bnfl 8'iiKjii nsvse Tjlno ic -nJ - brt aiwcrl n-a&d 1 '!!'! :- -BO.' i sni;ivV;i ru3 oalA . ' !! ft; fHHM r.BH HBBBBBBBBBBBBB* *BBBBr 'iBBB :. r IRWI I7JI IE: M IB BBVBI | BKBBBBtBBBBBBH| IflBBBBBBBBBBB IBVBBBBBBMBI BBBBBBBBBBflrjBBBBBBJ IBBBBBBB* IBBBBBB^B BBBBB'JMBBBBBBBBBl BBBBBBBIBV. BBBBBrBBBBBBBBBBfll IBBBBBP. BBBBB IBBBBr'^kBBBBB . ::' entire length of the 2359 foot border. A total saving of fifty percent in the time water used would have re- ''AC'ce i'^et of 'Correspond in- sulted. The results emphasize the fact that the econom- ical irrigation of especially porous soils can only be effected by flooding comparatively short distances at a time. The effect of varying the size of head was in- vestigated by the United States Reclamation Service in 1910 and 1911. The curves in Figure XIV show the rela- tion between the number of acre feet on the tract and ' the duration of the irrigation, which depends on the head of water used. Table XXIV has been compiled for Kingsbury Tract No. 8, assuming various times in which the irrigation was .;.? a tei o-jt.k of 1 rr '.: I c-n "savr:- UM- acr nd to take place. lo .Iiei arrs 0X61 ii sricf lo ncld;xiijyi> ^iL-o r a?iiJi 10^ b-jllqnoo nostf a^xf YIXX. sl.dxsT ficitv^.I'nj: Si-J xioiil.f xii ascili si/oi-iuv 3xlKC/ee 85 TABLE Time Acre feet of water registered i Corresponding head in cusecs i 5 2.60 6.25 8 5.70 5.60 10 16 k 4.0 < '; V- 0' * 4.5 4.8 3.02 20 4.7 2.85 60 5.9 1.17 The results show that decreasing the size of irrigation head, causes a proportionately larger increase in the time necessary to obtain a complete irrigation, and therefore requires a greater depth of irrigation water per acre and a greater loss by deep percolation. The degree to which these principles have been adopted in practice is shown to some extent by the follow- ing. Usually checks vary from three hundred thirty to thirteen hundred twenty feet in length, six hundred sixty being typical for medium soils. The width of the check is adjusted to the soil, slope and size of irrigating head. The r.idths vary from thirty to one hundred feet for differ ?? ent slopes and sizes of head, the ~ .arrow er checks being ... -AT 3S.9 ce.2 OS. 3 ov.s a.* 0.^ 1 SO o s.> 1 38. S 1 I VI. 1 1 e.s I 3 ' oi ; OS ] : r ^ ! lo 9iis adj :^ftiaR9ip9o d-sdtf v/oda ad'J oionl iQ^ial ^IsdBfio.t^icqo'iq s aa Dd-slqraoo s rtlsd-cfo oJ ii io dd-qeb r iacTB9iS ^loo c i?5C! Q'psb "^cf seol sv ^d sslqi3ni':c: =>?.->: '.3 rioia- oct 991^ idd- ^cf d-nsd-xs s^oa o*. m/oiis el eoid-osi oct vd-tid* beifjiijjd astr.'* cio'tl ^TSV a^osdo ^IXsoaiJ ni ctos'i ^*naw * lo l*ftiw :1 l.soiq^ 86 used on steeper slopes with smaller head. Checks 66 x 660 contain one acre and are typical of the practice under conditions suited to border irrigation. The size of the stream varies from about .02 to .15 cusec per foot width of check or from two to ten cusecs,--the most usual condi- tions being .08 to .10 cusec per foot width of check. The slopes to which this method is best adapted varies from two inches to one foot per hundred feet, slopes of four to six inches being the most usual. In furrow irrigation it is difficult to obtain a uniform application throughout the length of the furrow. The best method to obtain a fairly uniform distribution is to either reduce the total length of the furrow, or to in- crease the length of the furrov/s in the lower portions of the fields by zigzagging them in orchards or building small basins for ponding purposes. The size of the furrows can be adjusted to the slope and head in each furrow, in light soils using as large furrov/s and heads as will not cause erosion; on heavy soils, smaller and longer furrov/s with corresponding longer "sets" should be used. The lateral percolation in furrov/s has been ex- tensively studied by Dr. Loughridge. The water applied moves not only vertically downward, but in every direction from the q M '.1 aoq 08C * >o asia s& . s^s asoWi '-xeq OWW5I. o*. SO.**** ntc-il ^1 -10 :.o 3 ;;o lo io rlw.cl -isq oa^o 01. od 80. yilsd v baqb ^^ Bl boxtt^ alrict dblxiw o^ aaqoia xle 07 iflol lc aeqcl , ^ lio^ual ^isq oo sno o^ S8:ioni ra srl* gnletl nl ^ 10 -io ^ S nal ^ ^ ^ib ; ' , nl^do o^ borf^^aed siIT so^Doi isil^o o* Ilena anlfcIJtd tc a cf *o awo-ri^ lc 3sla adl .asaoq^q Sfiibncq ,ol IIlw 'SB afc9.i bns awoii^l 93 ;-:3 no-scf asil avwii.ul ni Arfn 3 ballqg* ISJBW sai .3 ^ibnoqe 01100 o^ o*. 87 wetted furrow. The downward movement, aided by gravity, will be the most rapid, diminishing as it becomes more and more horizontal. This is very clearly brought out by the experiments of Dr. Loughridge and McLaughlin, quoted pre- viously. TABLE Water removed from tanks 'by days expressed in percentages of amount in thirty days. Days 1 Decomposed light san- dy soil 20 Loam 31 , ., f ,. ' Heavy ' clay loam i Sand and gravel wash 70 Heavy lava ash 90 1 17 22 i ' 26 t 18 17 3 30 36 1 42 i 30 29 5 38 42 ' 51 i 36 37 10 53 58 1 67 52 53 t 15 67 70 ' 78 i 64 67 20 81 81 1 86 79 81 30 100 100 1 100 i 100 100 Table XXV shows the great uae of water during the first days of the experiment. In all cases more than one- half the total quantity of water used in thirty days was used in the first ten days or one- third of the time. The ( i be ssstqx 3Y*& ^c: a^iti^d- mo'il & . e^B*? ^'tirfct ni ;s 1 levaia' ^slo ' 1 lias* 1 col I r-i ri VI Si ' 82 ' 22 i es . os ; SA ; os vs i ' * j& Ox* ^ ' t i S3 1 se ve so i t Vo 1 j>a sv ov 13 QV as ' is 1 ( 001 1 001 001 \ '.- 001 1 1 3 . ' ,.'/.' j .-: .' 88 lighter the soil the smaller the relative percentage of water used during the first days, and the heavier the soil the greater the relative use of water during the first few days. Figure XV from the experiments of LicLaughlin shows thattiae heavier the soil the less extended will be the wetted area with the lapse of time. Therefore, a light soil will "sub" much farther in a horizontal direction than a heavy soil. The law of lateral distribution of the moisture is in general of the same nature as for downward movement i. e. the water will tend to distribute itself inversely with the distance of the soil particle from the source of supply. ;ST: 9Q.3 eitf iftoil VX n grit tf arid- i a nl isea-ial iiO"ra "cfwa !J II iw .1103 1JVB3. "ic wsl sdT SB SI^SJH si,-^ a arf* 'lc laiauss ni bnsd- lllw is Iloa sxio r io eo 89 TABLE Distribution of moisture in horizontal flumes Light sandy soil Loam 'Heavy clay 'loam Heavy lava ash Dis- tance Inches Average percent of moisture Dis- trict Average 'Dis- 'trict i Average Dis- trict Average 3 f ~ 24.38 f* 9 22.85 3 44.58 5 31.07 9 20.85 22 23.10 ' 12 43.61 9 28.85 i 21 20.81 34 21.25 ' 34 40.49 18 27.21 45 18.22 52 19.50 30 39.43 30 26.40 69 16.70 64 15.85 33 [ 36 . 33 42 25.57 81 14.24 ' 54 25.47 i; ti i 93 " 14.18 ' 72 20.49 1 105 12.36 '. ' 84 22.57 i 111 10.54 1 96 19.20 u i 117 ' 7.56 i i i:- ' i Observations on medium heavy soils in the Sunny- side project indicate that by six days after irrigation the moisture will be relatively uniform across furrow spacings as wide as six feet where water had run in the furrows for twenty-four hours. It was also found that fairly uniform moisture distribution was secured within forty- eight hours after irrigation with twelve hour sets on four feet furrow spacings. With sandy soils without heavy subsoils where the .1 a 9*3 itfaloH! lo noi^wdxitfa.a - naoJ T ^brisa drlgiJ. i , ^ !r - T . . >3*- av^ i -J^, J^Jyq' 9 iJ. i ' ^ ' 1 lo 1 asrionl , ! i i giinJ-elog " f ' ' "\ - .,.___. -T VO.XS 3 [ 85. * 5 | 23. 22 6 SS.^S i 38. 85 ' S.S^ OX.oS; ' 22 38.02 | G . vs -,' ! Q o^ ' ^s ' o2.!2 ' *S : IS. 02 ' 12 - i " * A . 1 , ! i r.-> i -.g ' Si..GG ' OS ' 03.91 ' 23 ' 2S.8X ' T ! Vo. ! ' 2 ' oS.So ' GS ' 1 ! ee.SX ! 4-S ' 07. OX ' 63 i . _ 1 1 I i 1 iv>c ' a II 1 i fa*'. OS ' 2V ! ' ' GI.-M ' S8 i . OS.2X ' 30X V3 . 22 ; 8 i i , Ni.OX ' XXX uS.tX ov; I ' * _ i 05. V ; 1 J i HX BXioi rcic'ilni/ -^Iiiul Jsii* bra/ol o&Is ii <jjc>ri .Wgie-Y*^^ 'itriiJtw I>ewo8 ac "'- ' oi no a^as t-' '* fldl 90 furrow spacing exceeded three feet heavy downward move- ments occurred before the moisture met laterally between furrows with heavy subsoils at depths of from four feet. Pour feet spacing of furrows gave good results. The trend of practice is in favour of a smaller number of furrows of greater depth, in which small streams of water are permitted to run fifty to seventy hours. This increase in the "sets" has not increased the total quantity applied in any one season for there has been a corresponding decrease in the number of irrigations. This method not only reduces the amount of moisture lost through evaporation by upward capil- lary movement, but also distributes the water in the subsoil more evenly and produces a greater sideway absorption. It also tends to produce a deeper root system in the crops. The size of head or the flow turned into each fur- row should be adjusted to the soil, slope and length of run --as pointed out previously. The best results are secured by using larger heads until the stream has worked through to near the end of the furrow and then reducing the amount in order to prevent excessive waste. The size of the stream used In each furrow is most conveniently expressed by giving the number of furrows which would be set with a flow of one cusec. On heavy soils one rn-YoiJ t viMi osal e jnirf i,ai> 3 9O*a 3h.t 'XXa*i9osX d-sra OTirtBioK slid" 910 lad ba'ii^ooo yl rnoil lo axid-qeo d-B aXioad.. lo awciiirt: lo iedi-,tuit -islloma a lo wcv^i n ai eo^ miq sis 'is^^v/ lo ai^e^le Ilmua do I AT nl .d*qeo ! ' 3 *9s" 9drf rti safis'ionx aiJT .a-iucr: ^inovau o,t ^11 3iio ' ' odct nx oil* 2 nl :)3i J arui' -Xlqso bisvrqjr ^d n loocf^ siW al ^*av .o cfi .noWqioads ^ .aqb'io 9i -i mscfa^a Jooi -ir'l iio29 oJni bsm^d woll sri mi- lo rU3^sI bn^ e iio3 d~aoX a'iwd'aJ'.om lo o. .1,3 j.ac tonsmevon. B aaojJbo'ic i*ns X-^^^v 3 isb B sojjboiq od 1 sbn9J caXo bBQil lo 9Sl3 9dT o:r bsd-uxribfi 9C i bXwcria v/o r i srlT .TgXatfoIve^i/ d^jjo bs^nioq ao-- r T rjrf-f rfrj' f" 1 9 ^ r t O ">' 3*',Ci ntSSld^B 9liJ Xi'Tilj-' 3'E>XJCi- '- ""-^ X> u ni ctnwoKto 9fi^. ^niowbst na/f*. bxis -woiiiA ' ed*'' lo bn; evxasscxs *-KDV9 r iq od- :Ja SJEtd" lo ss.ta 9ffT LmY a'aroiTirl lc i 2rlo" T^nxvis b9JG9-:ciX9 Y P 9 i woitt/i rioes ni Q blwow. 91 hundred to one hundred fifty furrows per cusec are often used. On the heaviest types which absorb water slowly, two hundred furrows per cusec are not unusual and on steep slopes this may reach five hundred in extreme cases. On sandy soil the head used per furrow is generally l/ioo Where the slope is flat larger heads are preferable, 1/60 cusec being an average. Surface Waste. This loss is largely dependent on the skill and care taken in the preparation of the land for irrigation and in the application of the water. The run off collects in hollows or cuts channels to connect it with the larger bodies of surface water. When water is applied by the flooding method, it is relatively easy to control the run- off by building levees around the field-- as in the Border and Check methods. In such cases the waste should be negligible in amount. Flooding methods will on an aver- age give a ten percent waste and furrow irrigation, due to the greater difficulty in obtaining a uniform distribution, will generally have a somewhat larger waste. In any case, the run-off water should be carefully and skilfully used on lower fields. The problem is one which must be solved on its merits on each individual farm. No general rules can be laid down for using the run-off, as necessarily this use etfo uq awoiiirl ^dlil baribnuri ano od" bsibru/rf svr d-'ioads rielxlw aoq^d craolvssil sild x$0 .bsai; no bus XawaucuJ don 913 osawo iiq awoiml b9 r tbm;ri owd n avll roflex ol 190 bsaw 6as:i_ ^i Iloa ;h:ll ai oqols no *eii9q8l> ^1981-^1 ai a iol bn^X sii^ lc noWaieqs ic a.: nl n?^j O'IBO brw lliila arid" .i9d-3 d-os:-noo od .ji onnoiio atuo 10 awoXXoii nl E^osIIoo llo al isd-flvr riari.? .i9*fiw ooBl-i.ua lo aslbcd 1331 oX sitt od '^aso ^XsvWaXsi al 31 t boxi*s:s gnibooXl 3a" ^d' 9itf rxi BB~5X9n 9^^ bfOfoi/i assvsl gitibXlud X^ He -run bXi/oi-ia sctajBw.Siid- asaao aowc nl .sboil -isvB iiiJ no jiiv,' eborid-sm ^ixbooXfi ,.;tiuoaia n eXdlglXaen 9-J od- ajoi) .aoWasli'J'J: woiii* 1 ! bns 9cJ-SJ3w dnsoisq nsJ- s 9vl3 333 ,Hoi*.wdIiJalI) raio^lfliJ a gnlnlsddo r;x ^Xuol"il.t5 .19-0913 t es0 Y ^ -siaaw lagi^X iariwge^os a averf ^llBiinss - no bsajj ^iii/iiiaia 5a ^XXi/A9ieo 3d bXuorla isd'sw llo-nui sad- no bsvXoa 9d *auffi_doliff ano al BXdoiq 9ifi .abXsil iswol TJ_>~ ^aryri ij3i3n9H oil 92 will depend largely on the layout of the individual farms. Table XXVII shows the average waste from fields at Billings, Montana, for different crops and soils in percent of total water received. TABLE XXVII Average waste from fields under different crops at Billings, Montana. ( Harding )/2/J Crop Heavy Soil I i Medium Soil 'Ligh Soil ' All Soils No. of 'Mean obser- 'per- va ti ore' cent - 'age 'of 'waste i No. of 'Mean 'No. of obser- 'per- 'obser- vations'cent- 'vations 'age 'of 'waste ' t Mean per- cent- age of waste II o. of r Mean obser- 'per- vatione'cent- 'age 'of 'waste i Alfalfa Grain Cultivated Crop 56 ' 19 * \ 15 ' 15 i 13 i 20 t 78 36 20 i 4.5 ' 20 ! 5.5 ' 11 i i .6 ' 6 t 5.7 14.3 9.2 i 154 ' 10 i 62 '9.4 i ! 39 '8. 5 Mean for all . i i 84 18.5 134 ! J 4.5 ' 37 t 9.0 i i 255 '9.7 i . llIJ Iscto; no yLaaizI. bnoqsu III* B sMsi'l noil 9^ saw 93313 vs orfcJ aworla IIVXX staaoisq. nl alioa brtB aqoio tasisllib 10 1 IIVXX cfs accio driSisTlilb ablsil moil aisaw .. ,--* .- - '-: -*,. 1 -r^-j ' fff, f^ 1 lice. r.u/i>8fcl --!-- "^ lioc croiO -.oil 1 nflM|lo .0'^ rt,39- t lo ,,oi : ; -^neo'snoid-Bv 1 -cfaso'ancid-.sv' -^nso'aioloBv lo i .ip 'i 3daBW ocrasv,' SJas : ' ' nsasl' ic.oll v 13 fl "i' ctrioo ctici'JijV ' , ! 1 IO 1 SCfSBW , - i AO i r \ ! QV ! .D i i gg airl-slXA 01 31 ! ^.^ o* , i . ' ! j ^ k S 1 So ' S.-M' 11 ' S.S ' 55 ' i i i ; j e .s; es ' &, : > ; a. ; oa ; 02 j si ; " - *o , , ! ! i i ' ' io1 asaM 'j 1 r * IT' ' V ! \S" r ' f> ft f ' -!^i ' LS.& V.6 y-* . v ^ , * , ^ ^'0* , , 93 CHAPTER VII THE FERTILITY OP THE SOIL * It is often taken for granted that irrigated lands do not require any artificial fertilizer because of the fact that the water itself furnishes the required fertility. While a good irrigation system does have great advantages and while the silty waters used in irrigation frequently carry valuable fertilizing material (See Table XXVIII), dependence for maintaining and increasing the fer- tility of arid lands cannot be placed wholly upon the ap- plied irrigation water. TABLE XXVIII Showing the amount of fertilizing silts in various rivers of the U.S.A. (Etcheverry) River 'Pounds of Pot- ash per acre foot of water Pounds of Phos- phoric acid per acre foot of water Pounds of Nitro- gen per acre foot of water Rio Grande Salt River Colorado River 325.5 265, 16.34--444.60 31.4 10.5 2.26 43.56 24.4 9 1.03--69.7 I1V /ii Jios YTLHTHSS: SET r xci lo se-aeoscf r iesill;t'i3l -s grief aaj-i^ avsri asc.b nsd-3'is n ai fjo nectio si tfl eii^pe-i ctcm o> -qs noqw ^liorf?/ >90iilq sc 'ri oc a sii^lV .^J ^ctlle siid" sli^w arus r io'l abnsi t (IIIVXX lo IIIVXX >i auoi r fav rxi a^Iis gnisilx .A. 2.0 9iut 10 lo oittfi srl* -o'; _ T _ 1 ajjfijjo'i ' -aorf'i Ic sbiiijoi isq n' T3a fjioa ol'ioilq 10 d-OOl' "lo J-QOl 3--I0.8 -loi lo abrtwoi 3-10.3 isq riss iscfflv/ lo ctool TM 8 5 . OX i -SO.f ' Ar>.^.A__AQ Q s.ass s^iasiO oiH lavifi ctlaS 94 Even in Egypt, where the Kile sediment has a high fertil- izing capacity, it lias been found that manure and artifi- cial fertilizers should be used. Sir William Willcocks in his "Egyptian Irrigation" says 4-) "It would be a healthy innovation, indeed, if the provision of suitable manures were to be considered as an essential part of the project for providing perennial irri- gation. The day is not distant, I believe, when governments which provide irrigation works will also provide manures, and sell the water and manures together, one being as essential as the other. I know well, from observation, that a well manured field needs only half the water that a poorly manured field does; and in years of drought and scarcity manures almost take the plsce of irrigation. Why should there not be a manure rate as well as a water rate?" Organic matter, especially when it lias been redu- ced to the form of humus, has a great capillary capacity, far excelling in this regard the mineral constituents of the soil. Its porosity affords an enormous internal surface, \ while its colloids exert an affinity for moisture which raises its water capacity to a very high degree. Its tenden- cy to swell on wetting is but a change in condition when ap- proaching its maximum moisture content. The following data, taken from Lyon Pippin and Buckman, give an idea of the capil- lary capacity of the soil organic matter. ni n*v3 liJ^iB ftn.3 s'lirnam d-B-ckt brtwol nasd as:! d 1 . ^dloaqflo gnlsl aaioeoIIlW raallliW il3 .beau scf bluorfo artsailW'isl leio 3-33 "noi.l-BSiiil ixaWq^-^a" alii nl ,t-99l>nJt .noi-favor^ii ^dcfljssif JB scf 5Iuo-r ctl" s^aw as^jt/rtem oicfsctiifu lo nolaivoiq arid lo d'l/sq Ie-i.Jno2a9 rt.s as fisneblsncd scf od" laliine'xoq ^rxlclvoiq to' .tl) .Ion ul xiolrfw II 3 j DIIJ: a giJjroiK 9ibl:vc r iq oale IIlw 2ii eno . r i9...'d i 9od 1 ae^i/iis \YODi .-lOif-ic 8111 2G blsll !>0rtJjjctBtr: IIsw a daiid ^1 iooq s dsrict. 'i9j. f . % ,v; arid- ilsd vino ^jfl^i-oif) lo 'six: 9',: rri bun jascri blsll b5 f iUxaK. 90-:Ia sild- aiiBd" ^ccrrtls ca^jmom v^loisoa bna B sd -ion sister oluorid -jT*J .noWs^liil lo CJ3 liO'.Y 2-3 -9 2&& tSimttJii- lo KPio'l siiJ od 1 lo slnDi-'^l^anoo Is'isijlci.. odd biegs'i alrlct n jinlllsoxs ^ul ijja I.-iiriidr.'.! siicftrrons m; cjbicTl^ Y^-soicq ad"! .Ioa arlj- > doi^ivf 9t/- f d"aloisi ic'i ^diai'lls JIB tfiaxo .abiol.loo .a^J: aliiiw ail .ggisab ilgM ^xev J3 oj Y*^ 05 "^ isd-aw aii ^o^i^ v noi ibnoo ni a'snf^io a ctwo" al snid-iow no Ilawa od- ^o -Ilqao 9d*' lo a&bl W avlg ,nii.r4fojjQ I i' ; i .i^d-sm oi. 3ii, f 95 Percentage of water Humous extract from peat 1200 Non-acid extract from peat 645 Vegetable mold 509 ' _' '__ Peat 190 Garden loam 7$ humus 96 Illinois prairie soil 57 Field loam 3.4$ humus 52 1 61.0 . Mountain Valley loam 1.2% humus 47 Even after allowance has been made for an in- creased hygroscopic coefficient due to an increase in or- 50 63. ! S0._4 9.7 -JL* JLj&ljk*3+ ganic matter, the effect of the latter is very strongly marked on the capillary capacity of a soil. It is equally evident that with a well manured soil there will as a con- : rr.c reculr.fa shavr : ' F^-" 1 sequence be a marked economy in the amount of water used to procure a reasonable crop. The experiments at Utah on grain and stover gave the following result s--an average of six years. j&vq. raoil tfojBiJX9 awomi/ii eos Mora (V irasol IJtos sitlBiq alonllll -ul na r io'i 9bsai c - 9aa9-r.!>ol na ct swb .JnsloiTlsoo ai i9Jda! sxi^ lo ^oori9 9^ t8;ttBm no lo ^loaq*o - -rxoo a a* ill* 9io,ut lioa b^-mam Ii*w a rWlw Jaile lo cTnworffi srli ni ^raoncss Jos^a.Tt a scf .qo-io aXcfanouaet '3 siwooiq od" ' no dscTJ --j 8-ja9fltil9<lX9 9rrr 3'i sotwo.IIol 9-W 96 TABLE Irri- gation ap- plied Grain ~. . Bushel s per A ~T ' ere Stov i i i er Tons per Acre Inches No manure 5 tons manure 15 Tons manure Aver- 'No age 'manure i 5 tons manure . 15 tons 'Aver- manure 'age i Hone 5 10 20 30 57.9 61.0 59.7 67.6 65.1 73.3 86.1 83.0 87.7 90.4 75.9 91.4 92.5 99.1 95.7 i 67.0' 2.11 79.5' 2.32 i 78.4' 2.55 t 84 . 8 ' 2 . 81 i i 83.1' 2.86 3.25 3.77 3.73 ~ 4.04 4.19 t 3.92 '3.09 i 4.48 '3.53 4.25 '3.51 i 4.85 '3.90 i 4.77 '3.94 1 63.9 I. 1" 83.8 90.0 79 . 2 ' 2 . 88 i 4.07 t 4.50 '3.81 t The results show the highest yield of grain with a twenty inch irrigation duty; more than this quantity of ?<ater de- creased the yield, and with as much as forty inches of water there was slightly less grain than with five inches. A some- what higher yield of stover was obtained with thirty inches than with twenty inches of water, but the yield was decreased with forty inches. The average of six years shows that water applied in excess of twenty inches to corn was not only wasted but was postively injurious to the yield of grain. The yield of both grain and stover was decidedly increased by manure, the stover showing the effect considerably more than the grain-. "T~ snoA -taq snoT 'xsvcd'o i 1 -Ill I i . . \ -q* _ 1 b9llq -19VA 1 3fiOJ 31 BitOd" 5 oVi f -- r iev. r ancT 31 7 anod' a 9.aonl SIJJTIBJtV t i i i 1 i r~ ~~l " i i ' t 1 60 . O vkC O 1 32. ' O.Vc- ' 6.3V i> STI VJ . **> ! 6.V3 ' eno a ; | ' ! 3 . ' OZ* . \ i . O sc. '3.9V ' *.I6 1.38 . 0-13 ' 3 1 i 1 t 1 T3 .5' 32. & 1 sv.s 33. 2 '.6V ' 3.2G .<SS 1 Vt 03 1 \ . yc 01 1 1 .S' 38. 1 >0. 16. s.^8 i.e 7.V3 D.V6 ' 02 i 1 1 { 1 i & .5' YV . 1 91. 38. S '1.38 ' V.S8 ^.oe 1.58 ' OS ! i i t 1 r c JL* S! r\~3 A 1 70. * 88. 0.06 3.38 1 C.S6 ' 1 i i -r ! .:* a rtf^v ni-3-i!i 'ic bisi^ -30 lo Siiio'a -'- aeiloni arW woila aj'lw&oi adT v,.!nJt ifortl aasi ; . sild" d"wd t'isd'av/ lo asiioni awoua a'laav xia lo sgJisve sifT .8" d'on ac irico cd 1 ssiionl vd/ii^./d' lo uasoxa nl * u _* --- bi8l^ siLJ od' aiJoliJL'^nl svitaoq as\7 oso a^Jw i3vcd"d tn niJ3^3 rid'od lo .3 .zUid-'anlwotia ivo 97 The increase was much greater for each ton of manure with the five ton than with the fifteen ton application. Most of the soils of the irrigated regions are deficient on humus and organic matter,, and it should always be the first object to supply this necessary amount of fer- tilizer. This is usually done by the growth of alfalfa, clover, peas or some other legume, turning in the green crop and thus putting the nitrogenous matter directly into the ground. It is often desirable and necessary to supplement this by some form of fertilizer, usually the ordinary stable or barnyard manure. If leguminous, it is generally grown as a cover crop during the non-irrigated months of the year. Much of the success of this method is dependent on the skilfull handling of the water supply. During winter months the cover crop will receive all the necessary water from the rainfall, but great care must be exercised during the summer months that the water intended for the main crops is not absorbed by the cover crop to the detriment of the first. In some lo- calities an extra amount of water is put on the .land especi- ally for the cover crop, --being in addition to the required amount of the main crops. In other districts again, it is the practice, to apply only sufficient water for the main crops and to let the cover crops care for themselves. It is rf*iv; wnflm lo noa dose iol *e*fl9iB down BOT oaaeionl .nol*sollqqj8 no* neatflil srfd" ii*lw afi* no* avll anoJb?*-! had-asiTil 3*i* 1 alloe 9ii* to *ioM a Muoria ^1 bns ,-19.** SKI oinagio bi aj/nunl no 10 Jmroiaa rx^aeodn 3l:W ^Iqqwa ocf ^osLcfo *a-ill allallfl lo Jiiwoi3 silcr Yd snob ^IlBysw a sirTI . qo-^o 99t3 dto nl snlq;cu* , 9,-,-iuaeI -leitto s.uoa ^xc aaeq odnl ^l B-.t a-o-oneo^in sitt snld*i/q euri* sl-drfa Tt^nlfi'io eu& sldeiiasb nsJlo al II .6110013 lo nno'i omoa ^d aid* 1 3V oo 3 as oio lo rfo-j., -1B3- a:* lc a^nom Ilulliiie ail* no Ju,.baaqsb al boifjsn alii" la aasoowa <i9vco sd a;-ncr.i r; oto Us avlsoe'i Ulw qoio 3iI i l-^o &9aloi3xs sti ^^r:: 9i*?o *fl9'3 ; arnca nl .*3<ill 3d* lo *ns;nl-i*3D sri* o* qo'io ad* *q al ia*svs lo jiUJOfftB Bijxo nxj 801*11*0 ao.l T lfc&c nl 3filsd-- t qoio .levco ad* 'icl rn 3d* io c* 98 only by experience that one can obtain the best practice --each district having its own individual merits. The amount of organic matter can be greatly in- creased by always ploughing in the stubble of the previous crop. On no account should it be burnt. By burning all the nitrogen is taken away by oxidation and only ash left. A thorough rotation of crops also greatly helps in retaining the amount of organic matter. Experimenting in Oregon Professor W. L. Powers states that "It is probable that the water requirement may be decreased one- third where a good crop rotation is practiced. " ic. cJasd ari* n.U;tcfo oao enc tad* sousl'isqxs -fcf .astern Xejj&iviinJt nfo .eJJt 3 aiv.ail cfolidsik ,1 -ai Tgld-fiS'-is 9cJ HBO isJctani olaag'io lo Jjoyq sd^ lo slo'cfucts 9ilc ; - nJt s Ha gaimwd ^Q .dT^;d 3d ii blworia Jnyooo.s on nG .c .dial XI'BJS ^Ino 6'rua noJWsbixo vd ^ws no2,8* ai ns aq.Csii -;Id-J3ei5 oel.'s aqoia. lo noWjMtorc ifeuoio:- 1 -'. o Ic *nuoi-.w sxi^ sninlcdsi nl si il" *a*^ asJ.srJs a^s^o-l .1 . ictiesloTi nogs-iO nl ni ctnaffioiii/pai i9*BW sri; cfaiid ca^q al nol^scfcg: qcio 60. ps 99 CHAPTER VIII THE CROP In one of the previous chapters it was stated that under ideal conditions, irrigation should take place when the soil moisture has reached a point somewhat above the wilting- coefficient, and that the frequency of appli- cation would be dependent on the time taken by the soil to "dry up" after the application of water to the next stage just above the wilting point. This applies, of course, on- ly theoretically. In practice it is necessary to take into consideration, in addition to the above, the effect of such waterings on the crop itself, at the particular period at which the water is applied. It is not so much the case of obtaining, by irrigation, a maximum sjnount of dry matter per cusec of water applied, but rather a maximum yield of the useful part of the crop. It is hence of importance to know in what way the general growth of the plant is affected by a variable application of v/ater. Assimilation and other processes favouring plant growth are especially rapid after an irrigation, gradually diminishing in intensity and almost ceasing before the next irrigation. In the Utah experiments it was found that during n: . --J- 10HO 3HT BJBW tfl Bietfqsiio ai/olvsiq sild- lo scto rtl lo 'iOflbtfpsi^ 9ild-.*ai D . ao S^Y; 'lo :LBd e.;txl,sr;> cfnsbnsqsft sc! fjlwcir noicfso w-woo lo t 3 * ." odnl. SJiarf cd- ^3aa&03n al dU solJo^q nl' .^IIsoWs^ rioua'io oell ari. -svods ad.t ' od npJtdloDa nl ' ' " no lo 38-GO siid- dowci oa c^n laJda.-n '^b 10 Jnwont: arlcr Ic M&l-j i^'lx^i B i9fsi ducf" Vbsllqqe I^^BW' lo oeawo won:! ^ 9ori*ioqn.I lo sousii si cfl .qo^o siW lo al dnclq 9i-J. lo ^v;qi 3 B9ja Uw nl .i^w lo noi?J3olIqqB slcfaiiav s i3ild:c p. ._ a f* JIG - 100 the first week after the irrigation of peas, more than five hundred pounds of dry matter were added to the weight, and of oats, more than seven hundred pounds of dry matter were added to the acre. The vigour and general condition of the plant de- pends largely upon the development of a good, deep root system. In the early stages of growth, the plant uses most of the materials gathered from the air and soil for the de- velopment of its root system. When these are well develop- ed, carbon assimilation by the leaves is hastened and the growth is increased rapidly. Later in the life of the plant, the root growth becomes less, and the energies of the plant are more largely directed to the development of the parts above ground. When at last the sterns are well develop- ed and a sufficient quantity of material has been .stored in the various plant organs the growth diminishes, first flowers and then seeds being developed. It is important, therefore, that as early as possible the root system be made large and well developed. To obtain this condition it is essential to keep the soil moderately wet in early spring. In districts retentive where the winter rainfall is large, deep/soils will usually have sufficient water for the initial root development and no irrigation need be applied. If however the climate con- ditions are such that at seeding time the soil is not well tf eiora ,aseq lo slid 1 o* bsbbe -if) Ib afomroq ini 9tt idd-ls aioaw d-aill grid- m ^if> 10 aoruroq bsibn^ii itevga rtaifd- s-iom t cd-so lo .9102 Sn':" lo noWJtLnoo cssb ,Loo?, fi lo aa^0 d-fljaXq 9l* ircis l sricf lo'i Hod i)hfl IXB 9.ad- uio'il bensxafls alBli9*Bm arid- lo tsw sic 939:.* -ns^W .rn9d-a^3 Jobi 3*1 lo d-nsmqolsv dd- ncq.u fil abnsq ai grid- lc sill arid- r:J I?*- lc s&ls'iang etl* Sn , .aaeJ aaaocscf sitf lo d-nomqol9vsb 9ild- od- osd-oe-rlfi . i cclovsfc II 9w 91 B sms-j-a eild 1 d-asl * ns , d-uoi siid- ,*nslq sic;:: sir. d"nelq -I 3.,oda 'i t s.3ritiJ:nlmx.o rid-woin sxj armgio driBlq a:/clii:v arid- .d-nj3d"ic; k .-.i ai JI .isqoisvai; snlsd a.Bssa nerld- bns *rf ~,i=d-?vs jcoi sxi* aldlaaoq aa vll* 2^ --^d- ill^ Jeje.' -' - " .in9.ias ai *1 nold-lbnod Blffd- nlad-dc cT .Beqolovsf) Ilavr I d-aib al ' .^niiqa \Iiae nl d-'sw ^Id-i9bom iioa srld- q '-f r r fW aansl a^ II'lnls-r iOvi.;.cv.' 51^ 9i9- r lw OJtt ^'a sis 101 is not well filled with water, thorough irrigation immedi- ately before or after planting is essential to a proper root development. The part of the plant above ground is al- so definitely affected by the quantity of water applied. As the water applied to the soil increases, the plant be- comes longer. With a lack of water the plant remains short. Not only the stalks but also the proportion of leaves is distinctly affected by the amount of irrigation water applied. In a grain crop the value of the straw is small in comparison with that of the seed. Hence as much of the plant as possible should be converted at harvest time into seed. On the other hand when a crop is grown for forage it is de- sirable to secure the largest proportions of leaves. The following extracts from various reports and papers fairly es- tablishes the practices governing these basic principles of plant growth. Alfalfa. "Where the winter and spring pre- cipitation is sufficient, or where winter irrigation has been practiced, soils which have good soil moisture retentive power need no irrigation before seeding the first crop, which in most localities generally occurs in the spring months after the d&nger of kill- ing frosts is passed. Porous soils which have little retentive power for soil moisture usually require irrigation before seeding. After seeding the young alfalfa plants should receive no further irrigation until the plants show the need for water or even not until they show signs of suffering for lack of moisture; this is desirable to develop the root system ilcflw bellil Haw don si isqoiq s od- JJal^nSiUS al ?;ni^n'slq iscM:? -10 s^cclaci - -is ai bflJUOT-p, avodB dri-ilq oJd 1 'lo d^i^q sifj? ,rfr:e;,tqoi9V9f) .ballqqa iscfsw lo tt'ltxaup srW ^d L'sJoaTia ^lacMnllsb oe -scf cfnalq oild- (S^aBs-ionl lioa . erW c-i bsilqqs lactsw snct aA druaiq ed^ r isc}-BW lo ;-lO3l 2 if.j-iW .lesnol aantoo IJ S ^ i 'lo Jrtuoms 3iJ -jc! b9cios'i r i.j3 ^I ai wa'icfa srl* lo 9.c/I?.v arid" qo-io niai^ & nl nc fiBlq 9fj "io ilojjn: aa eonoH .bssa srlct lo .59.33 oo'ni sfi-l-d- uasv: 1 : d..j siisvneo .scf Blwoila siu'laacq as -si) ai it 3g*iol 'io'i nv/oi3 al qo'. r o a nsrfv; adT . ssvn^I lo 3ncJ:T r ioqo r ;q J-s^gisI 3uj as -;i r :i.3l a-';?qsq Lrca c, Jioca-i ajjci r i^v nto .'1 aJ- lo aslc Ior.i f iq oxasc.' oaeiid gnin'iovoa aeoiaO-Jiq :-. ,.aiw exit pnorii" . 913- .'.v -iv. .di-sioiilwa ai nol-isjiqio fcisan 'lowoq gsviin^is'i eij^aloct iioa .1x^05 evsii oc r io d-erril o/ii sai^Dss d-iclscf asid.c3iiii on T 1 r^\ r* v*r- e*r~r v r> - 'i of - r*/- * 1-1 - " " liolrlw alioa sjuoio*i .baaaaq si 1 ;inl 91 llO3 'lol T9WOq ?V ' "j 11 SV6.CI 32 -.sd-'iA :.n t->v ;n srlj 2 .artgia 102 downward instead of confining it to the surface, as may occur with too early ir- rigation. The root system can be fur- ther strengthened by cutting the young alfalfa when eight inches high. When the alfalfa has established a well -developed root system thecommon practice on reten- tive soil is to ap ply one irrigation be- fore or after cutting. On gravelly por- ous soils and on shallow soils, two or even tiiree irrigations for each cutting may be necessary.^/ Cereals. "The soil should contain suf- ficient moisture at the time of seeding to germinate the seed and to start the plants growing. No irrigation before seeding is required for a retentive soil when winter precipitation is not too small, or when the soil moisture has been supplied by winter irrigation. Irriga- tion before seeding is necessary for a soil which is too dry because of defici- ent winter precipitation or irrigation. Where irrigation before seeding will keep the ground wet too long and delay the seeding, it may be necessary to irrigate immediately after planting. This prac- tice is objectionable for soils that have a tendency to bake; it increases the evapo- ration loss and requires an earlier second irrigation. After the plants have germinated, the first irrigation should not be applied until the plants require it, but before the plants be- gin to suffer for moisture, which for a moderately retentive soil will be tv/o or three months after seeding when the plants shade the ground and have grown to a height of six to nine inches. A second irrigation is usually necessary when the heads just begin to form, and a third irrigation is often desirable when the heads are filling out. The practice will vary especially with the character of the soil and the time and extent of precipitation; a good reten- ei:d- o* J-l gnlnllnoo lc bsetfanx crr ; -itft sd'nso'niad-aie *oorc 9rTi ; '.J :*'& iisil< . riT ill B9rlonx Jili9 r; bsqoi'9Vb- 1I9-.7 s 6l3iXda*88- aaii nc soid-os-iq noffimoogiid -9d''hc.iJ-*5"". illi WIQ Tu-tq OJ 5 * si i-i ca sv - r --oc llav/i^' n'C .^rijocf.uo r i3d"i.e r io : - , aiioa v/cll o ifoBS "rol anc -Iwa ni^^rtvO biwoJifi Ilos 0-1T Ic srf.icJ 9il--- *.s 3i^sior. a oct bna bssa adi'^i .: r i3S o* Biolsd aclJB3.Txi o'/i .gniwcia al lioe 5V.tci-ne75 r i : r id Lj-iJr^pai tl oo* tfcn 3i nolo l B"lqlo9'iq lo^ni ? nsaw aari s'irJaio::i Hoi srl* nn'vr ^c ,1.1 iflsimi r i^ ' lo 9s,u.3osd V-t^ oo:J a * iloMw lioa Jtiii 'io rtcii Iqioaiq Illr ^nibe-32 9*1 clod noliflgx-rrl 9'i9--',V -flleb I>ac aaol oo* Jgw broraig sii* o+ ^-laassosn. 9(5 ^an cfl iiT J .'snIdTi--.iq 10*!^ ^leJslbanmti aiioa r iol slcf^ncid-oe'Qo'.o si 90! s's 3nl *1 { 93ffld ocf ^onsbnsd ru 2?tiJJp3-i bar sad nci'i -sd aixiBlq srLi sclscf *urf .*! eii a ic! ifoirlw t 9i*axom tol is!'.. a^rcla slid" nsd'.? ?vxi&99<3 13^13 a.linofti B^'od- 'ivtl fcno39a A .as^oci r xia lo *. 3ild 9ii.? ; - TjII^WSiJ 31 i OT --r ' -- : - 103 tive deep soil with a moderate winter and spring precipitation may require only one late irrigation when the heads just begin to form; a porous soil may require four light irrigations."/^ "In a number of irrigation experiments with grain the best results were obtain- ed both in quantity and quality of yield with three irrigations at the jointing, booting and soft dough periods. At the jointing the embryo head is forming, at the booting it is about to emerge and at the soft dough the kernel is f illing. "At the Utah Station the growth of wheat was divided into four stages (1) when five leaves had developed and the plants were 6" 8" high (2) the early boot stages when the plants were just swelling preparatory to heading (3) the bloom stage, when most of the plants v/ere in bloom and (4) when the plants were in the dough stage. The experiments were con- ducted on a loam soil. The experiments were conducted on a loam soil. The pre- cipitation averaged 17.8 inches and 37.3 bushels per acre wer-e raised without ir- rigation. The highest yield of wheat was produced with three irrigations of five inches each applied at the five leaf, the early boot and the bloom stages. Irriga- tion applied after seeding before the grain was up and that applied after the dough stage, decreased the yield. Where only one irrigation was given the best time to give it was at the five leaf stage; where two irrigations were used the five leaf stage and boot stage were best; where three irrigations, the five leaf, boot and bloom stages were best." ' Potatoes. "Retentive soil except for late planting is usually sufficiently moist from the winter and spring precipi- tation to require no irrigation before - . ,artWrtlot 9^* * a anolcfr a^Tii aid* a d-A .a&ol'ie- dw '*s ,snl.7.icl a I ossrl o^tftro sd ' 3/1 j d-s bna 9^1 sine od" ctrods 2! *i snl^oocf al isnioii srict rfai/ob ilw lo rfctwoi* erW nol^s^a rte^U sri* rtsriw U) W>i -wol oinl bsbivlfc. saw q artt bn b?co.^vei ! Soocf ^lijao srfo IS) ^S-^i 3-- lairt 9^3" ; aJnslfl ad; nicolcr srij- (S) gt iiasi-'O.* i^ o / a ' ia nx d-iaw a-^nslq sri* lo taotn neaw ,s^e^a at *^w.e*n*Jq )* nffW{-*) ftoa nwold Rtt^E^ft>^ ^^ '.IlOB ' SIBOl B HO -o-ic "adr" ..Iloa m&ol B no 9^cw& 6.t*5*f>ni asrlDnJt-.- 8. VI be^isv^ noilBd lit *trorf^Jtw beBijri 9--ewWss i-3q al aaif tfaariv? lo blsl^ Iso^lrJ sriT .noj evil Ic anblt?giiil sarfiid' rldiw bowbciq arlj ,lsei wrll ^1 ^ b^ilqqs iffl9 8?noi -aglTil .333^3 -^ 1 t? " 4 siict en^ls'J -^JLoaa i9*la b&iiqq* 1 lad-la beiiqqa iartt bno qi; a lalv ' o.r- jaw nclj;'3i': 6V f'l 9:13 is 33W itl C ' ; ^^ ~ J ,lJ39 . 2_ js ' 104 seeding. Dry soil must be irrigated be- fore planting. Planting in dry hot soil, followed immediately by irrigation is not desirable. Daring the first stages of growth throughout cultivation is more im- portant than irrigation, and no irrigation may be necessary until July. Too early ir- rigation after planting may compact and bake the soil around the roots. Potato vines are shallow rooted and frequent irri- gations, especially early in the season when the water is cold, will retard the growth; for this reason some irrigators prefer to apply the water at night, when the soil and water have had all day to warm up in the sun. The moisture in the soil should be kept fairly uniform until the tu- bers begin to form, when a heavier irriga- tion is generally required. The soil should not be allowed to harden around the roots. The last irrigation should be applied before the growth of the tuber ceases, in order to give about 1&--2 months for ripening in dry earth. The number of irrigations will vary from two to four for sandy loam and from four to six light irrigations for a porous sandy soil or a shallow soil. The need of irrigation may be indicated by the appear- ance of the plants; dark leaves indicate a lack of moisture, light yellowish green leaves indicate an excess. An examination of the soil where the tubers form is an- other good indication. A sandy soil is in good condition when a ball of earth squeezed in the hand will retain its shape. Cotton. "Soils for cotton should be given sufficient moisture for germination before planting. With cultivation no further ir- rigation should be required for six weeks to two months. From two to four light irri- gations are given during the period of plant growth. Too heavy irrigations at this time results in excessive vegetative growth at the expense of crop production. After about July 1st, the crop on most soils will re- , r j. OC J j e * r 3T.J. - ' -11 ' . : -1 ane 3 si LJ- nl ^I-xjse t^i* hDt Iliw t biOO;..M **.* y: i. - IlOB -r- r, jr[ 9V^ri 13^B Ci &isj*sioK srH .nua .add 1 nl -rid 1 sri* iiiriu .-incline; ^Itisl i^^-i s-cf bl; ^ - M 'art 1 i noicJ' biWGirS Ij-Oti Sill ,^9'"iWp3'T \. 4-- .a*oo^ s* bni/ciB n8 9-iolecf boiicce ad bloods r.eiJ -L - " a -,c-i -ri viAv Il^'.v aoi*aslJt lo i3d:f on- Ttfiof i,bnaa io'i iifol o*. owd" ffioit awo^oq a io r i ancl*33xiix ^rfgxl xxa od- lo D93JK adT .xioa wcILeria lioe ^JSS^JJ^SSTt-hSyTeSiJ . . < _ nssia dfilwoIII : v ai Jalom ic iiafliijujr.s riA .USQOXS B soifini av~ -ns si mol j'-iscf.od- 9dff siSiJ / ai Hoe ^hfisa A .ccoi-J coxSruL uc 19J 1 n owd od 1 d-fi 0: e 10'5 quire irrigations at ten to fifteen days intervals. While some wilting in the early season may not be harmful, at the flowering period moisture should be maintained so that no wilting will occur. One or two irrigations after the first picking are usual . n Orchards. Deciduous trees are deep rooted when the soil conditions are favourable; they require less water than other irrigated crops and for that reason the need for irrigation is not so apparent. Citrus trees are not as deep rooted as deciduous trees; they are evergreen and therefore the evaporation from their leaves is continuous and the max- imum moisture need for fruit growth is in the fall; for these reasons citrus trees require more irrigation than deciduous trees. Pall and winter irrigation is very advantageous in the maintenance of orchards, where the greater part of the rainfall does not occur in these periods. As a general rule trees must not be irrigated, or very cautiously, when they are in bloom, for such early irrigation is said to in- terfere with the setting of the fruit. "Orchard soils should not be allowed to dry out too much for an excessive dry- ness in early or middle summer will in- jure the tree for the whole season. On the other hand, over- irrigation tends to decrease fruit production and delay the ripening . Y& i owe? 'io " .ler/a.u SIB gniilolq w aaa 3' xol boen-artf i ct :; o-: aq to bs^aai-iii tsrii; oa $ ai no b-13 awowxiWi:-0 ai aevesl noljaioqavs -ni oct i -'V ax no I" ifi'iti- *r sdrii .<; c*n^3 IIsU -.r.r n.'' -1JJ.OG ^OXI 1 2'0b ilBlillBI .3ilj v . J W i^.V^ ;3.id 9G d'Ofl 'JflSSJTii aSSMC 9ri* io s ' rf^i'.-r >jjjorfs ai. 'otO" 106 The last irrigation is given in the first week of September, so that the new wood may have a chance to mature before any freezing occurs. This late irrigation also has the advan- tage of keeping the leaves somewhat longer on the trees, aiding thereby the formation of the new wood. Young trees should not be irrigated .more than once or twice a season. This is essential to the formation of a deep drought resisting root system. Professor Wickson draws the following conclusions: "For deciduous fruit trees on deep soils, fairly retentive, ten inches of irrigation water, applied at the proper time, during five months of growth and fruiting, accom- panied by good cultivation, is sufficient, even when the rainfall is only about enough to prevent drying out during the winter. For citrus trees twenty inches of irriga- tion water is usually sufficient where the rainfall is considerable and for the more retentive soils, ten inches applied at the right time may be adequate." A diversification of the irrigated crops will usu- ally result in an increased duty. The reasonable water re- quirement should not be based on the needs of the crop of maximum water requirement but rather on the average water re- quirement for the entire ares, --the average being of course proportional to the areas which each type of crop occupies. By diversifying his. crops the farmer's need for water will be Jo aaw d-aill nl nevJig - ' ; o* c- * aal* a0i*-*ii*l **! sMJ? ,?ue? - - r-.^ .>oow wan ad* lo K - - fl 310..1 be*3i'n. scf *on bluoiia aas^* gm/oY aJtJ-aiffxcl ad* c* Icl*rtaaae a I airCP .ncasss B goiw* 10 aono .alioa qs-3i> no easid- cJ-li/il airofrbios z: :ii lo aerlonl ' . . ' . lo o-'icrfs en* ^ol brua si'"' arid- *.3 b9ilqq a arise Jt ns* ,sj.ioa 3jjp3&j8 d lilw aqoio be^agliii 9*W xo nclJaoll i 'istfiw sldBKoaae'i sill .^*ufe &*a9-ic lo qo'io Sii* lo ab^sn erfcf no baaad : r j?ctBf srssisvs stW ac I ar ^1 III ": iiniinn '. ; '. , v '- '' : ' 107 more uniform and constant, instead of the greatest need for water falling within a comparatively short period. The same applies to an entire irrigation project, helping materially in the proper distribution of water by rotation. The greater the diversification of the crop the more uni- form will be the required capacity of the main canal. i. x : --T,' if k->tc*-tl-<U If a majority of the acreage of any project is planted to one particular crop, say alfalfa, it is impos- sible to serve adequately all of the land in that crop at the time of greatest demand, unless the canal has been de- signed with a large excess capacity for that particular pur- pose. Most of the other crops such as grains, potatoes, corn, beans, cotton, etc., have a lower water requirement and their maximum demands do not extend over as long an in- terval of time as that of alfalfa or are not of the same magnitude. The results from the Cache Valley experiments illustrate this very clearly. (See Figure) In fact some of the crops of low water requirement such as fall planted grains, early potatoes, strawberries, etc., may be cared for entirely before the time of peak load. Other crops of low total water requirement, but which may require water during the peak of the season, are corn, beans, sorghums, etc. Po- tatoes and sugar beets may require as much water as alfalfa jllttSJ 9 .ii ailta* flB od- asllqqs irEE J *tI6 taoi erf* nl -?IIlid*fli lo o'jwsi miol lo Us -^Is^ajjpsfcB sviaa oct oldia anso aiirf aislro; '.bnBKSl) rf a ad- 0913 Ho sfiilcr aiW aaaoxs 'syisl s xlctlw a^ ^o^- aqoio lorid-o srict to ^aoM ,.aoq ^wol a sviiii t.od-f^ ,nodd-oo . a.osscf t rnoo aol s^ lave bnsd-xo Jon o& abruajaei) mwml3tm ilarfJ baa jriJ Ir- J-QU e-se ic B'iisliB lo d-ajd- a^ ami* lo Ifiv-'isJ r io-^xe ; i9ilsV silosQ stfo mpil a.lx/aai Jo^l nl V 3 r i^3^ sea.) .-ci'i-'-alo \-csv a I Hal ao rlotia jj 5 .lupai' isctaw woX 'lo aq.o r io 3iict ... . - - - s. 108 during the two months of the peak loads, but on a given farm are not likely to require service at the same time. In crop selection and carefully planned crop ro- tation may be found one of the most practical means of re- ducing the peak load of an irrigation system and maintaining a generally high water duty. If this peak can be distributed through the season, it will result in a lower construction cost, and in many economies in operation and maintenance. jq srj . brtis nolJ^osUea qcio JB me-arja noWaglnii xi^ lo baol ^asq srtt .^ni nso aUsq uirf^ 11 .^Jub is*ow rl^Irl TjIlBiane^ a -isvrel u ni ^Iwaan 11 1W *1 ,noaBS3 add dg m nl bru 109 CHAPTER IX YIELD OP VARIOUS CROPS UNDER VARYING AMOUNTS OF IRRIGATION APPLICATIONS Under the direction of Dr. Harris of Utah a very complete set of experiments has been conducted to determine the effect of varying quantities of water on the crop yield. The experiments were conducted in Cache Valley, Utah, and extend over a period of some fourteen to seventeen years, hilst of course these results are ^strictly only of practic- al benefit to the area concerned, it nevertheless gives an accurate reflection of conditions under which a maximum of various crops may be obtained. The results obtained are re- produced below, together with results obtained from various other sources. Irregularities in yield are often traceable to the fact that the complete series were not run through all the years. It must, therefore, be kept in mind that exact yields cannot be given too much weight. It will be much sa- fer to take the results as a whole rather than any one fig- ure or point on the curves. In the case of the Utah curves the actual average yield for the different irrigations are shown by the dotted lines, while the heavy line represents a medium yield obtained by considering the average of the great- . jlrfAV "50 CLI2 j liedU lo ax-naB . ivl lo' ncxdos-rlf) add 1 3r;x,.:'isd9 od fcatfojjfcfloo rxoocf e.sxi. BctirarclisqKa lo dsa sdslqmoo .M9X7 oio srld no 'isdsw lo asididnawp 3ni^iB'v lo i/ol &;noa lo boiisc a . iav fj* 3^^ ad-iwasi ns asylg aaalsif^isvsn -t beui&oaoo aaiB siiJ oJ ^ilanscf Is lo mjjtilxjs.-n B rlolrlw xofim/ anoirHLrtoo lo nol*09il9 r i -91 yin )9flc^C0 3-U39-'I 3f .>3fi 9Cf i-o^l bsuls^dc "aJli/asi ilctlv isiid-dgod 1 .wolstf si a'^soB'id- nsd-lc -5^.3 blaxY nx iiguoi/a- xxirt don sta'v 20x192 gdelqntoo sd* dsrid /Ofll *".'. d-iwid bnim rtl dqsx 9d ,9-iol9'i9iid t d;affl a -lou.i ad IlJtw dl .drfgisw rlom:; ood nevig ecf donrtco B3 iid al .aavi. - 7 no crnloq 19 9llx5 siSd 1 i i- 1 egsieva I^tfd.oa rid J7af - 110 er number of tests to be nearer to the true average than the average of a fewer number and weighing accordingly. A one year test is not given the same weight in arriving at a point for the heavy curve to pass through as a test covering several years. The following table shows the average of a total of one hundred seventy-six trials extending through fourteen years. vnfAv <=tfr:t Piftt OJ I -.J 3J-4W V* 9no A . ' ^OOB ;-. ' uoe i d-e sniviiiB 01 .trig; rtsvis ^on e' "oo dasJ B afi rl0oiil* 3aaq oct avii'.o '^v^s. . dfij a . ' 39^ 1 jcf B'lo a^jsisvs sd* ewoxla sicfjsj gnlwollol Yi rl3woia^ gni&nsd-xs alali* xla-^nsvea I>9ibrLri Ill The Utah results are tabulated in Table XXX and illustrated in Figure XVII. Alfalfa (Lucerne J Acre inches water Number of trials Number of years Yield in tons per acre ,. 14 r ij LW } 11 2,655 5 36 7 i 3,233 10 28 - 11 3.923 12.5 3 3 3,783 15 30 14 4,294 20 5 12 -. 12 4.165 22.5 1 1 4.090 25 14 12 , 4.544 30 10 - 10 4.515 32.5 2 4.841 35 3 3 : 4.198 37.5 1 1 4.400 40 4 4 3.740 45 2 2 4.613 50 _ 8 , 8 5.355 52.5 2 2 3.718 60 1 1 4.691 65 -i 1 3.399 67.5 1 1 4.230 75 1 1 5.007 90 1 1 1 4.520 97.5 1 1 3.768 ;.* o ii 6 21 01 o 1 G 03 SI 01 01 2.21 er 02 CO A 4 e.vs A w * 112 - . to o ct-Oq H- p O 1 CO H-fe! hs o H- Ol 10 CO -3 Ol Ol 01 Ol 1 1 H- ci-OQ H CD o. o i 40 P W Oi o CD Ol o to H 00 to 1 H-tJ O H- ti* CD ft) p, 1 W c+ 1 CD ^ Ol Ol CD * Ol Ol o o 1 1 CO CD Ol M CO M o CD P. O P ca 1 CO Ol to CD W CO Oi co OJ CD 1 1 -3 Ol to Ol co M CO I- 1 H oo CO CD CD -3 01 Ol CD to -3 01 w co w o ro Ol H Oi to -3 CD CO -3 01 01 > to H CO H w to Oi -H* 1 < O CD "P 01 to to to co CO k- 1 o Ol CD co Ol CD M -3 Ol CO co Ol 00 o ro Ol CD to CO ca H CO 01 CD CD oo -3 Ol rf*. to co H Ol 01 Ol O Ol o> ca to CD o Ol Ol 00 CO CO CO < Ol Ol w CD CO to o to to -3 CD CO o ro 00 o Ol w ro ro Ol 00 * co 01 01 co CO Ol to oo Ol Ol o o co JU ro -3 * H Ol ct"*3 P P *O ^ O CD e+ O CD P <j CD P >^ 0*3 <J CD CD 1 to CO to CO o to -3 co 01. to 01 Ol to to to H CD w Ol I- 1 Ol w ro <3 P *Cfl QJ O O O 0) l Htj O >-j 4 o to & CD cH-*C( ch O P > m < CD CD to CO Ol o w Ol co w w Ol w to to to to 03 to Ol to ro w O CD ^ CD Average profit 3 CO c+ on P O O* c+ P C!) P ct P < H ca P 4 CD P ca O S3 ca i H rO OP A ro fi rd 1 CO Crt g <o CO CD O 1 w H ro a? H CO ro CO i i CO o C^ * ro to ^u '^3 CO rO i 2 9 . I ~^~ I- 7o~ QJ ^ LJ j*j r> * ro W i t Jl") ro O> ro C/J l l t ^ 1 * i rO <0 >. .') o> CJ co 3 01 1 01 ro H O1 C.'i M to CO S H tO 3" " w " 4< rO <0 fr CO CO i> H S M r> W ro fO O? s C- Of CO' d fO 5 g M H . CJ M c/5 QJ Hi CO fO CO fO -1) O 01 tO -J CO ? Crt * ) o ! -J M 4 ro i> CO .co CO rb PI M ro ro ro CO CO (D c^ 5O rO ' 5 Si r "' .13 <D >- CO Ql QJ CO i> 1 ^-t M a CD ft*) co L _' i 5 CO O l"^ r/j QJ 00 - O Crt- Crt j > PC> Cfl ( > O +3 O O C- P.? QJ t- m n.> C/J o CD W 03 t ( J <T> > M i <r> ?r* i-i , ff> -> M r^ <u o CO cs? H QJ , C2 !-X ftj O < M 1 1 1 ' 5 OT. C" 1 H rr < o . o i- f co ^ * "M t- 1 tj r> * o O1 OS C1 01 fj 01 CJ c-> i ' ? j co w 01 ^ * C1 o> 01 to Crt K3 to s w o C.1 o> ro O 113 In the Modesto Turlock district investigations were conducted during the years 1916, 1917 and 1918. The results are shown in the following Table. TABLE XXXII/?3,/ Check No. 1916 1917 1918 Amount Total 'Amount Total Amount 'Total of water applied inches yield tons per acre of water applied inches yield tons per acre of wa- ter ap- plied inches yield tons per acre 1 50.04 7.68 -- - 41.86 6.64 2 56.05 8.74 68.44 6.75 55.01 5.06 5 22.06 8.01 29.42 6.92 45.44 6.17 4 17.21 7.91 * 21.59 6.94 18.45 6.41 5 25.25 8.91 29.75 6.96 58.71 6.58 / 22.59 8.75 55.12 7.09 28.11 6.75 7 29.41 9.52 44.42 7.00 47.75 6.45 8 28.95 9.56 45.64 7.64 56.99 6.65 9 26.72 8.9 47.77 4.25 . . 41.95 5.71 In Oregon--at Corvallis similar experiments were conducted for the purpose "of determining the value of irri- gation for increasing and insuring productiveness of the agricultural lands in the semi-humid Willamette Valley." f od-aefioM $d$ ni nworia oiei viex .,-oIbi .OH >iO 1 1 "too" ~IatfoT| ''Ttw&J?~ * m70 ??! Moiif ~ ai * ^ c >IexY ( .i SiBW lO bi9I : i' "ISJflW iO^ ^ j ' C- J3 '"1 9 cf bs ii'^cjB 1 1 ?c Quoct bsilqcjB xc ! e-io.a' 1 1 1 1.1 1 __ - T T " T " 1 5.6 ' 36.1 ' 85. V O.OS r t i i eo.s ev.e .jo- ' n"<- ^ i rTi"" ! Q i vi. D ' *.c ' se.c 1 ! 2-^.K' 10.: dO.22 ' S , i rjL a I g&.SI ! ^9.0 ' 63. IS ' I6.V IS. VI ' ! 1 ae.e v.ss ! se.a 3V. 62 52. e,2. 3V . 5 &0 . i ? 2i.se. ' c;v.s se.s-> i o>.3 ' 6V.V>> ' 00. V ' t ' . i i so. a | ee.ee ^a.v ; o.e^ ' ae.e se.ss j a IV. S ' 56. I* 53. vv.v^ ' e.e ' 2v. 32 : e i i < cvioO d-B--noBSi'- r:I ^o' 1 e srftf icl bsoo.obnoo aricf lo caorrsviJoi-'bo'io >^ni r ix'2nl bn? gr^EBsioni 'to'l nolctiig *.TrrreV ft;'- : ' J ' sr'J -x' ibnnl 114 The following Table shows the results on Alfalfa TABLE XXXIII //// Year and Treatment Total yield in tons per acre A. Value of harrowing and irrigating for B. new seeding 1911 (seeded 1909 without irrigation) 1911 (seeded 1909 with irrigation harrowed) 1911 (seeded 1909 with irrigation unharrowed) 1912 (seeded 1909 without irrigation) 1912 (seeded 1909 with irrigation harrowed) 1912 (seeded 1909 with irrigation unharrowed) Irrigation before and after cutting 2.17 4.16 4.08 4.00 5.42 4.10 G. 1911 6" before cutting 1911 6" after cutting 1912 2 irrigations of 5" before cutting 1912 2 irrigations of 5" after cutting Furrows versus flooding 4.41 4.59 10.37 10.30 D. 1912 one 5" irrigation with furrows 1912 one 5" irrigation with furrows Amount of irrigation 6.37 5.17 1911 2 irrigations of 4", total 8" 1911 3 irrigations of 4", total 12" 1912 2 irrigations of 4", total 8" 1912 2 irrigations of 6", total 12" 1915 (seeded 1909 without irrigation) 1913 1 irrigation of 4", total 4" 1913 1 irrigation of 6", total 6" 1913 2 irrigations of 4", total 8" 4.51 5.22 6.70 7.75 2.15 3.80 4.22 4.22 Alfalfa was weighed as green feed in 1912 and as cured hay in 1911 and 1913. -. r .cr m'i ' nJ: 1 t __a OS. 01 ' liJ - . -S-3Li 7 .? '* it r o ' i inoJtissJtTii Jwjia-Jtv QO^l bs&ssa; 1181 rot-jt Tliii utlw kOUl nsfises; life! i'f ', oWsil-iil ciJiv; eO'21 ^slbose) 1161 ' , ^ oidJ8^i?i *uc-rttl ^061 osJb^ea) SI81 ' . ! I*.* 95 * Id 3iv*l 2 3 ' "awo'iiwl il^iv; no rid 1* noJtfasM^ "5 eno 2JI. "^ lo sfiottu-'itiJt 2 J S'f . si IQJ* -'^ lo BfioWiglTil "W SJ'^ i '8 I^Jdoi , ;i ^ lo snciri^gl^ti 2 SIS! t Is^od- t "0 lo anoWasliti 2 2161 lK>.T33.JT*-t d ' ; . "^"lad'j*: t 11 * ' ; "8 Isdo^ t rt ^ r io a.'.. .Mil 2 S a* Bs.i-j.fsv/ asw a .S13I bns 1181 nl 115 The experiments conducted at Idaho during 1910 1914 give the following summarized results. TABLE 'Class of 'soil i i Average depth of water ap- plied in feet Average yield in tons per acre i 'Clay loam 'areas i 'Areas making 'maximum 'yield in eact 'experiment I 2 . 40 ." 2.73 i 4.91 5.47 An examination of the results for alfalfa shows that this crop can profitably use much larger quantities of water than most other crops grown under irrigation. There is a decline in yield after a certain maximum amount of wa- ter is applied, but the decline is slow. Alfalfa is seen to i- be much less sensitive to over irrigation than potatoes and cereals. The Utah results show a maximum yield with fifty acre inches, although twenty- five inches gave very nearly the same amount i. e. a saving of fifty percent of water gave only a 15.2 percent decrease in crop yield. In the case of the Davis experiments at the end of the six year experimental period, the stand on the areas given the heaviest irrigations was only 27 percent of the original stand, the excess use having enabled grass to come 0161 sniiwb oiifibl *fl e J ftnod ni' -qs <SD*SVI lp f liosj 1 18.* 0.2 i ; I I ' u r 39 Kl biSi'^' ( i . VA a - ' sv . S *jaaail*i*qxe ! I ' lf ^ ad-lwse-i 9i. : lc no lo rtsrf* -3W Ic *rtr;cina munilXBfit nxsjtso n 19*1^ blsJtY cl enllo^fa- a si * nssa al BllBll. .woJla si sniloab 5>r< *w<J ..ballqaa ai s.90*s-ro&. nsr:^ acl.-rorsl'iii n-svc cJ sviJlanse aa^i dofffii ec' lo *n90 r i;?q ^*'lilL "io gr.iv^s s .9 . j. .blsi 1 " qoio nl ssBgioafc dnsoisq S.SI vino asy-iB axi* no ins* a ail* ,.boiisq Is*npmiioc-xe ir.s^ xia arfo s r{7 -'TLgq V2 "^ino SBV? aaoi^s^i'^'xi jaoivsaxf and' n9vi sax; aa6o:;o 9il* bfLS*a 116 into the alfalfa. The best stands at the end v/ere areas given thirty to thirty- six inches of water, --which is un- doubtedly the most desirable quantity for the irrigation of alfalfa under general Sacramento Valley and San Joaquin Valley conditions. In 1918 the best yield at Modesto was with a to- tal depth of 28.11 inches. In Oregon Professor Powers conies to the follow- ing conclusion, "The maximum yield of alfalfa in all trials has been secured in the dry seasons with ten or twelve in- ches of water, but in wet seasons with six inches of water. The most economical increase in yield with irrigation has been secured with four to six inches of water." Potatoes. Table XXXV and Figure XVIII show the Utah results for this crop. Although considerable variation is noted in the trials during the different years (the ex- periments extended through fourteen years and the Table shows the average of two hundred sixteen trials), the general ten- dencies are distinct. The most favourable amount of water for potatoes seems to be between thirty and forty inches. For applications above sixty inches the yield drops very rapidly. This is probably due in part to the fact that excessive water prevents the tubers from securing the supply of air needed for optimum growth. a.-.: al ox-aV-- t i9d-J3-7 lo &9doni xla- J otf :viq nc/ ' craom srIJ- oL XLO fens ^II^V odrtsrr, Bile. .. ' 3l a rttlw' a6v/ od-ae.bo,,l d-s blsiij cfaacf odd- SI .39.iionl II. 8S lo dd-qsb f ^ cwf aemoo siawoi toaesloT-I n:" lalij ll ni-*'ilj3ii.3 lo >isiY niwr.ixBnt 9dT M ,, ! orxoo gni -nl 9 r /l9i-?J- rep nad- xl^iw snots.a9a ^b aii^ nl >9i^oa ctsecJ . '!d-fiw lo as^orl xid rfd-iiT anoaaea J-gw nl d'jycf ttod-flw lo L asd ricld-JB^i'iii rfdl.v blai^ nJ s^es'-ionl iaoirrionoos . ".-jsd'aw lo aarioni xls od- ixrol riai-sr 01. 9xiJ^ 'Toria IIIVX 9'ijjni r i bxue VX>-JC alcIoT iJ-sx^ay si fJaie bianco fin-fJcildlA .q<yio alrJ-t -21/50^ d-rroi3'ilJ-> aad 1 ^rslij/ft aljBxid- arid- nl . el da aidrt-T 9-fd- 5nu ai.^s^ nascHx'ol .ri^oi^d- osbne -J! acid- tislsiid 1 nssd-xla ba'i^ri^ri ow. lo 0-ruj-o.Tts elcfjeiwcvsl d-aorn srfi 1 . . . :. r is a: b LlexY -' .-scf:.;d- a; mmmmmmm mmmmmm mr.nmmmm vzmmmmm mmmmmmm B I var/ot/s -V 117 TABLE XXXV faj Acre inches applied 'No. of 'trials No. of years 'Yield in bushels per acre None 12 12 117.37 2.5 4 4 157.19 5.0 -- J . . 39 14 162.23 7.5 20 9 165.38 10 12.5 39 4 14 r W I 4 217.24 284 . 87 15 39 14 228.62 17.5 1 1 1 293.75 20 13 13 266.53 22.5 2 2 2 321.18 25 4 4 204.02 27.5 2 2 345.50 30 7 7 269.92 * 52.5 4 4 377.59 40 - 2 . 2 341.44 45 8 8 271.39 50 1 1 83.45 55 3 3 240.00 60 fi ? ^ 304 . 00 65 1 1 246.00 67.5 1 1 245.00 75 1 1 149.00 82.5 97.5 2 1 2 1 149.00 85.00 9 SI ee.ivs s 0.3 OS G.V 01 t 1 3 . 21 95 ' '. ! ol 1 ' ! c.?I SI 02 t ' i r> I i t 5.22 i i 32 i y I i r 03 110 The Oregon results are as follows: TABLE XXXVI/'// Year and Treatment Yield in bushels per acre 1911--a dry season Dry 135.1 3 irr igations of 1" * \ 250.9 1 ii it 3" 176.4 2 ti ti 2|f" 240.7 i 1 n ii 5" 190.9 5 ti ti 2 " 254.9 2 it n 3" 258.1 2 n 3" 308.5 3 n n 3" 292.5 1913--wet season Dry 109.8 1 Irrigation of 2 n 172.2 1 ii n 5 ii 213.3 2 n n 2 n 145.2 The average results with potatoes at Gooding, Idaho, for the four years, 1910--1914 are in Table XXXVII 39 Hi fclelY 1 d"n i i.sex ' srnosai'J? briw issY a 5P J8--1ISI ^u 8.052 ' "I 1 o.aaoWaaJt'rtl 5- ^ r | it V '' i 7.0i>9 ' i "Is " 11 o "5 " it e.^cs ' 1 11 o " S as ' "S 2 5. 60S "S ' ii o 3.2G2 "S . 3 i ' 3.QOI ' ,a03J833 J-9W _5I_^I. n on ; ' M >o rvn ? -f nvi Nw ^ . ;is S t! i- i! !( 2 9'i* 119 TABLE XXXVI I //J 1 No. of irriga- tions r Total water applied in feet Yield tons per acre 2 1 .69 - 3.2 4 1.72 6.75 6 2.85 6.7 In Oregon the maximum yield for the wet season was with three inches of water, while in the dry season it was with six inches of water. The most economical yield of potatoes obtained in the course of the experiments was se- cured with the aid of three one inch irrigations, applied ten days apart, giving a yield of 58.6 bushels per acre inch . In Idaho, the conclusion was reached that it would not be advisable or profitable to apply more than two to two and one-half acre feet per acre on clay loam soils. Cereals. Experiments at Utah on corn were conduct- ed through a period of seventeen years with the following re- sults, given in Table XXXVIII and Figure XIX. laiBfi l^'JcT 1 -B'^iTix lo . oM* aiioici' . t t "J "C j s.e -=Y 93. ' S ! ' 57 . S 2V. i 1 ! v,o t 58.2 .3 | noassa *9ff ' ofiUt tci bi9i-\ r ftiumlxjim ad* 'ttojasiO nl noaaaa ^i& edi al sii-.w t -i9^ew' lo es^Dfti 99-tu* fWi.T saw fc'slY iBolaionoos cfaom onT .rcsd-cw v io- asrioni xie fit iff aaw sijistixs o.-'i lo Scisi/oo 9iJ nl benia^do MB . ; j.fQ^- ae'i -* lo bi QiiJ iU---' 3i9flai/d 6.3S io blsl^ -sa aew .rloni acls.nlonoo sxii ,OrlBbI ftl si^w moo no d-nasiiisq>:H lo >oJt be ?io 120 TABLE Acre inches applied f No . of trials ft'o . of years 'Yield in bu- shels per acre Hone 13 13 57.33 5 13 13 61.39 7.5 8 8 79.14 10 17 17 77.23 15 8 8 93.93 20 17 17 81.80 25 8 8 99.16 30 17 17 81.49 40 , 9 9 65.30 55 8 8 ' 96.78 On the San Joaquin and King's River Canal system the follov/ing results were obtained. TABLE XXXIX fear ' Depth plied of water ap- in feet J 1907 2.13 '1908 1.65 1911 1.38 Aver age 1.72 V3 SI i GS. 16 ' i SI SI | *I. ,ev ' 8 i S2. ,vv ' VI VI | se .5* ; g O 08 .18 ' VI | V X i 1 61 .69 ' 8 8 i l i 6 .16 VI ' VI ' OS .56 ' 6 8V .36 8 8 JBO a^n bna .b^ila fdo 6Tew i X -40 -48 $6 6+ 72 *mm m m :i *+ ** ft '* : jv ; ; ''"''' 121 The Utah results on wheat, extending through a period of thirteen years are given in Table XL and Figure XX. Acre inches applied No. of trials r 'Ho. of years i Yield per acre Grain 'Straw bushels' pounds None 9 9 "i 38.37' 3982 i 5 34 13 38.23 ' 3540 i 7.5 18 9 41.54' 3301 i 10 38 13 42.90' 4142 i 15 34 13 47.10 '-4796 i 20 4 -J - 4 45.70 ' 5940 i 22.5 4 4 , ', 44.60 ' 6757 1 25 18 9 46.46 ' 4311 t i 35 18 9 48.55' 4755 i 45 4 4 45.80 ' 6250 i 50 18 9 49.38 ' 5332 t 67.5 4 4 43.50 ' 5794 i boxieq .XX. '*3,I* ' i l OS.2i> ' i i N ' Si 51 ? r e Si 8S SI si 51 02 Srk *T Oi .i 122 The experiments at Gooding, Idaho, gave the follow- ing results. TABLE XLI No. of ir- rigations Total water absorbed per acre foot per acre Yield of grain bushels per acre - 13.3 i . .36 23.3 3 .75 28.7 4 1.23 31.8 6 1.76 33.1 8 2.27 36.0 9 2.94 27.5 t Results on wheat experiments at Davis, California, during 1912-1914 gave the following: r . Jl ! !!. i - r _ '"- - Pi - i * '"Isd'BW XjSd'oS -TEX 'lO .O*I t 7. w . ~, ^ ceq Sacfioa-cfB 1 ' anoWagii . i 3. [9 i* 1 d-ool sio.3 1 t f __ - ^iO^JS^ ! s. ^ r i v>i- i i J i * s. (52 ! as. i i ! ! . . S2 : uV . 6. i v c> r ' ' k Oi J. r ! 1 1 . So ' 8T.i . a 1 . ee vs.s s i . V2 ; ^\i' . 2 ' S ! 1 . * r .-r c , alvBu d-s a^ne;iti'X3UX6 .issiiw no 123 TABLE XLII No. of ir- rigations Depth ap- plied Yield ir ger a L pounds ere 1 inches Hay Grain -- 2703 657 1 6.0 t 4267 1157 2 10.1 6100 1529 2 15.5 5050 1029 Typical practice is represented by Table XLIII which shows the net duty on grain in the San Joaquin Valley TABLE XLIII Year 'Depth applied ft. i 1907 ' .74 i 1908 ' .84 i 1911 ' .96 i 1915 ' 1.11 i Average .91 ft At Utah, oats gave the following results for a period of six years- -Table XLIV and Figure XXI. 1 1 OB" JbJ-alY -q -ioc.9u. -TJ lo .oM t riJ 1 asiioni 1 ~~~i ! "~ i i 1 ?5o oOVS ' ' I ! ! van ' r-t rvO K I \ oaJ/ u o i 1 ! i 1 S23I ' 0015 1. 01 ' s 1 i ; J ' 201 ' 3.31 ' 2 9ic : s r i vci bodnaas-i^s-j: a r .il bBsL...^ 1 i 1 - - " T~ ~~l Y. VOb'.I ' i i ^8. 1 8061 ' t ' ' i ^Q 1 nei ! 1 i i 1 1.1 1 <SlSl ' i j-l IS . 03B1-3VA z ic'l j^Iwas,''! 'ir;J:vToIlo j. Si-'J ovs^ ac ^.^sx brt^ VIJX slds ; r--ai^9 xia lo 124 TABLE r r~ Acre No. of i No. of . - Yield per acre inches trials i years applied ' Grain in Straw in i bushels pounds i None 6 i 6 50.57 1876 t < 5 . 21 i 6 ,. 57.51 2077 B i ' J 10 r 18 i 6 60,18 2107 i 15 18 i 6 72.82 2563 i 20 6 t 6 74.40 2725 \ 50 C! 3 \ 3 79.90 2774 i 45 6 i 76.68 3149 i On the whole it will be seen th- t the yield of cereals is not nearly so much affected by irrigation as is the case with potatoes and alfalfa. In the case of the Utah experiments on wheat, for instance, fifteen inches of water gave almost as high a yield as any treatment and yet the yield kept up fairly well with the very heavy irriga- tions. It will be noted that where no irrigation water was applied the yield of wheat were fairly satisfactory. There- fore, in practice, it is doubtful whether more than fifteen inches of water would pay for the extra yield obtained. Oats is a plant which is more sensitive to mois- ture than wheat. In the Utah results, there is a gradual VL1X -JL1 : r~ ~r~ 1c old ' lo .otf ' 9ioA ---' r - :,i i i i ~T*i i r "i3xlqCB al vrs-ictc. nx rtxfli-^ 1 8V'8X ' V5.05 ' i i 3 onoVI j t IS. 75 i i 5 xS ^' t i VOX 2 8X40 B 3 ' 31 01 i ^PQ ' QO QV ' O G i* _A O -* 1 \ \ 3 81 ' 31 r I 32VS Oi.^V S ' 02 ! I \ rtr>o ' OP ^V -^| ^ ^i W ^* w 1 S ' 5 ' OS : i QMS O.^V 3 Si- i . -- j _._ . clef ttssa 3d II lw J'i slou'v 9,tl nO [ x,9Cf03ii^ :Ioum ca ui^an cTcn al SXBSISO lo saso sitf nl .liflllJ3 Dai: aso^-sctpq ittiw 9a.eo 1c ac^onx r.-srfin.soneiaiil loi. .*^sijw rto s-taeinliscxe *ns:s*B9i* vn.^ as >ielT a ^^ 2^ Jaoinla svs 3 : w -x*aw .10 Id- 33111! Qn 9-ia.oAV cfBd* becton ad. XIIw cH ' 9ii^ bial 1 ? BI^XD 9*tt_ Wi ^aq biuow is 125 increase in the yield with an increase in water up to thirty inches, above which the yield decreases slightly. The yields were not greatly different for quantities of wa- ter between fifteen and forty- five acre inches. The results on corn show the highest yield with twenty-five inches of water, although yields are almost the same for all quantities of water between fifteen and thirty inches. While the yields were somewhat reduced by exces- sively large irrigation applications, this w-.s not nearly so much the case as with potatoes. Citrus Fruits. In the State Engineers Report (California) for 1912- -1914, the following data of the net duty on citrus fruits to Southern California are given. '9*sw til 33^9'ioni rta ridiv; b.,3i^ 3ild~ at .^1 .-Mail a BsajBaiosb D-isl^ 3i# rfoirfw avcdr. t asr:or;i -aw lo asl^ld-iwwp tol 9V 11 -\cHol bxifi 99J'i.c'i rfcf iw blelY -ta^risin tW -'foii^ ntoo no siluao-: 9xiT arl* J-^oiniB SIB a&lai-z r^-jil JI c , r i3*-'w lo 29::oni av ^ ^liif* bua nosoili rwewd-su' -13* - *c- aaWi^iiaup ii.-i -101 onaa n arv 2^^ ,a as saso 3iIJ iloum oa r ic fl i3 9*10 sirrro-iJLBU n-i^i^waJ ataiiwTl a-ui^ic no TABLE XLV 126 Location and Source of Supply i 1 Year i . J i i Acreage Depth of wa- ter applied feet Gage Canal and Riverside Water Companies i i '1899-1905 i 80,667 2.25 Riverside Water Company '1901-1908 i 9,000 2.29 Riverside Water Company '1912 i 31.5 4.10 Riverside Water Company '1912 i 19 2.58 Santa Ana Valley Canal '1912 20 1.79 Santa Ana Valley Canal |1912 18.4 1.52 Del Monte Irrigation Company '1906 i 2,000 .73 Del Monte Irrigation Company '1907 : i 2,000 1.10 Del Monte Irrigation Company '1908 i 2,000 - .73 Del Monte Irrigation Company '1909 i 2,000 ; ,.73 Palomares Irrigation Company '1906 i 600 .71 Palomares Irrigation Company '1907 i 600 .83 Palomares Irrigation Company '1908 t 600 .83 Palomares Irrigation Company '1909 ! ^ i 600 . .83 .1 rj-OX *' vlCtqj/ci lo ao'iwoJi bos nol^eooJ -BTST lo t ' ball 4 1 ' 1 1 .- ~ f 1 i : eJilsiavlrt bns IBOSO S 3 B3 3S.2 v.oe.os' soux-^si' 1 i aalxwqmoG ia*aW es.2 ooo t e 'soei- Yn':cinoO isJeM sbisisviH 01. 3.15' ' 2JWI 1 TCnaqpioO i^^ifc' sbiai.vLi 85.2 91 21iil ' i vitsctiitoO i^d'JjW s&isisvi)"! ev.i 02 ' sjyi 1 i I anaO ^ailjaV crtfi &$a& 23.1 5V. ^.81 ' -iei* 000,2 | 3061 | laaaO -^sllBV cnA uctnafi ^nsqmoO noi*3^1iil sinoM IsQ 01.1 5V. 1 000,2 ' VO^'I' i ' 000,2 ] 3091 1 -^naqmoO nolJs^.tTil a^noM IsQ YrtsqruoO ncivt^nliil SocioM -IsQ SV. 000.2 eoai' ' t ^oaqmoO aol^.saiiil 9-tnoM lad IV. i - >~\ r - r\ '. .' r * OOo cuwx YT-O'ttoO HOlJSS^' 1 -'- BS'IB'TtOlflu 58. 006 VOt'l 1 , i VjOi-jqmoO noittsgl'-rij. -io*X3ntol3i '58. ' 008 S06I' i i 50 . OOS ' GO'GI 5 > i ^nBuMoC nol-tjs^lTiI esianiol*? 127 Deciduous Orchards and Vineyards TABLE XLVI Location and source of supply Year Acreage 'Depth applied feet r Remarks Sierra Foothills South Yuba Water Co. 1909 6,900 2.62 Bear River Canal 1909 5,000 2.62 t i Sacramento JValley ! Palermo Land & 1 Water Co. 1912 33 .75 'Prunes Palermo Land & i Water Co. 1912 10.5 1.64 'Olives Palermo Land & t Water Co. 1912 10 .80 'Olives and i 'Peaches t i Yolo Water & Power Co.'l913 14.2 2.29 'Prunes i i Orland Project '1914 14.2 .25 'Young Almonds i i San Joaquin Valley i Turlock Canal '1909 37.8 .38 'One irrigation Pumping plants at t L.adera '1910 222 .86 'No irrigation Fresno Canal '1910 160 .49 *0ne irrigation San Joaquin & Kings '1906 t River Canal '--07 104 2.64 t San Joaquin & Kings '1907 t River Canal ' 08 15 2.38 t Pumping plants at i Friant '1912 20 .83 'Two irrigations Pumping plants at i Friant '1912 150 .06 t i i Southern California i Santa Ana Valley i Canal '1912 15 4.83 'Walnuts Santa Ana Valley i Canal '1912 t 21 3.18 'Walnuts t 3i' 10 S3'I.c;C3 .Ofl," -, ' , " 1 ooe t 8' ec . .o: ooo. a 1 eoer ; u ! ( . I 59vllO' 8.1 '6.01 '21 A , .bfijB as\ ' 08. 01 ' 2XQi : .00 86 " aafu^ti' t?2.2 2.1-1 ' iiei'.oO t? -L r i : it i - i sbnomlA r^ni/oY' 52. ' 2.M ' XC1' \ i i vrrv rfff-o^ ,; 8. ! 8.vs | eoei 1 d~js 38. ' 01 G. 0?)1 ' OIC1' ' 0061' 6.2 : - ' 7061' 85.2 51 '80-- : ! t It otfT ! 56. 02 ; Siei ; '80. ' 031 ' 2j i i ' ' i i ' 8 . 31 ' 2J 1 , -, . , 128 Carlsbad Truckee Carson North Platte Minnidoka South Minnidoka North Boise Project Or land Project K! I* $ < CD ^ Ctf J M ct a H* < CD ^ Project scheme CO Ol > M CO Ol ro 01 w v rf^ w ro w CD 03 jto CD Ol w to w oo < 00 00 o> * Ol V* w O5 H 1 Oi oo Ol * to o CJi -3 ^ n o w to w w -0 it Ol CO -3 CD CD t^ V <1 w CXI Amount divert- ed | H v* H 1 *> rf^ en w s O w Oi rt * 10 00 to to to ^ to rfi. M <} fa CD rf^- W H O) V* oo Ol oo CD ^ w <J 03 I- 1 M Ol V -3 H Ol 10 to * o Oi -<J H) P 3 > CD JB -3 CD 4 CO O d- CD ct CD 3 Pi C+ Oi rf^ ii ^ Oi w oo 01 ** to H v 00 rf^ CD 00 <J V* rf w M < 00 % rf^ <l f>- to o CD v* oo Oi ^ to o > to M O CD Ol * w Ol I- 1 tf^ w Ol * H Ol Ol Hi CO M > CD O 3 CD ^ CO O ct- CD ct- g cf- w CD \* 01 00 co I- 1 10 Ol s w <! Ol M <I <I \ rf^ -4 to M to CD to *- ro M ^3 CD s O M rf^ W Ol 00 X* tf^ oo w rf^ rf>- % ^ i^ CD M 03 Oi <* Ol w M 01 w -3 Ol H 1 H Amount applied acre feet M Ol CD 00 10 tfc. * M CD to 00 w ! to o w rf^ W to to Ol O n *^ -3 CD H \-> OJ > Ol 00 Oi M to V* J to CO w Ol > CO 8 to O t~> Ol o M r Acerage n '\ *> M Ol rt" -3 Oi tf^ Ol Ol * o ^ CD M Oi M W Oi o H 1 ^ o Ol Ol >F O jn o hi M^d CD CD H- 1 ft 4 ct- t p. M to 10 O (- \-> w 03 CD W to to CD M to 01 w t^ to to M CD 3 o hJT PJ CO CD (l> oa 3 4 ct- d- i i Ol -CJ ro w to * w rf^ M to w o> -3 rf^ 00 CD W Ol oo to <3 w to Ol to M^ W -3 M"O hrfl O CD <D CO ^ Ct C+ I Ol 01 w O) Ol w rf^ Ol 00 Ol Ol rf" -0 to > Ol o to Ol CD to H o Ol Ol ^ CD W R ct-0 <! w CO to O3 w w * H M to M W to CO CD W Ol Ol w -3 w rf^ co w * -4 o to Ol -a P. te{ C CD c+ ct- H o H* ct CD O CO CO I p CD Ct Ha o p O H' 4 O ct co CD H CD H* P OT ^i P I I { U CD O *O CD O ct CO 3 ct CD CJ en o ^rffcrf E g M M (-3 M M H H p,-) C/5 W CO to o? W ro ^ ^ * y? tO O3 <X5 <TL. M CA ro . s : I> W 5O M o i> w } -rc M > '*' CO - (A ro 4i . A\ o O >H W -4) . 1 C-~ f O ^O 1- o o TO 10 co e/J j\j t< C^i IT"; fO O O > 'JP' r *5 L^** o ro 41 ^ ^V co O 4 r^ C^ Cl iO ^U ^t tO 0? M tO ro H fO 'H ^H H " M ro > Ol r-- <yi to '' {> <0 ^ C3 OJ OJ C" ro O3 w ' * * * H .-00 4- A K5 -*ft '}( O 01 CO "H 4< c- t- or , i-i -: ..33 ro ^ C1 01 ro <* Crt . I O tO 'H M ro c/-. *H ro *^' <D Q &"i CO O rtj fo cy t- i& -44 C'S C/I PO 1 O ro a? CO C- <V o Q? ''O in <D QJ <C< Q3 O fO C1 M o es bf" n.5 4 fO cQ ^4i ro "'^ ^ >. ^ O^ 1 Ji ^ O i_i Qj ^ ( fO H tS ' ' *g * ' EO "i"feSi " ~t 3" O1 C'5 W C/I O O3 O fe 1 ) t ~O~ ~ "^i" " ~O" ~i~ ro~ n> CT^ i*> C-i f-- i C- C4 fO H 4 ro ro > CS> no 129 CD 4 ct-e-i. H O P. o o g CD 4 _ 1 CO CO H H CD 00 co co I- 1 H -3 CD CD CO Ol rf^ H H CO CD cxi to CO CC CO CO H H CO CO H H I^J LJ CO CO HH Oi t> M CO H 0' H CD H to p Ol rf^ tO CD CO -3 CD i cn ^ O5 01 CXI tO CD CO to to -3 Ol H CC H ct 4 CD ct CD H- P p pi 1 H tO-d-3CXICOCX)CDtO bcnfooitooiHOj C5,i%cQ.-<i.cafe.-3.Q. ro &> CD# i! Co to .^L CD Ol .-a a> < CD CD H> P & PI CD Pi CD O CQ H- PI H CD ^i CD ^ 3 Ct CD CD Hi CD 004 ct *^ ct P H- & ct ct P ct CD <j a P O CO o o o o O W O ro cxi CXI O ^ o -d CXI O Ol O 00 H CO COO Ol O Ol <1 co to -d to coo CD -d 6 3 tfc. O CO rfi. tO Ol CO rt* CXI i^ CO O CO CD H- H H 0101 Ol O H CXI CD 0} rf* CD CO CD Ol O) -3 CD P 4 ct CD g PJ CO ct CD H- O H ct P ct H*<<3 a P <3 1 H 1 o cxi O oo (f* O CD Ol CXI O -3 O tf- O CO -3 Ol O CD O O H ^ to H tO -d co Ol CXI CXI CD M CXI COH CD Oi M M ro CXI to to CXI tf CXJrf, cxi ex) a to cxi CXI CXI CXI CXI Hi ct CD pi P O *-l CD i P.S CQ $ JO *^J h4j J> O CD CD O 4 4 CD 4 CD ct CD CO CO OiH ifc-O CD -3 rf^ O O CD O CO O O Ol CDCXJ 00 -d to O CXI CD *> CD 0) cn CO H H tOH 1 1 CD H) 4 P H3 P P a o H H- a ct H a & P 1 p H cow CO CXI cxi oo rf*- O -3 CXI H- 01 to a H tO H ro 00 O CXI to CD O CO ro CD "d H) CO CO OQ H- CD CD P 4 CD a P ct 4 Ct 1 H- H B ' H* PI i CD 0> P 1 H CO Rain- 'Percentage of area in different 'fall ' crops tO CD rt^ t- 1 Ol H H CD to to CD CD tO CD H. _ ,<< H tO -d rf^ H tO CO O cxi to 010 o to CD W CXI IO o co CXI H o 1 1 H ct ct ion tO CD CXI CXI M tO CD tfi. ro Oi CD CQ P CD a CD PI P. CD CD Ol CD -300 H CD CO CD to 01 l-rf CD CO -d Oi P - -Pi to to -d >> Oi -d Ol Ol O CO 05 CC 01 CD P H) (?} O CD 4 p9 |T| a P M, ** Ki O M CXI O Ct 1 1 1 1 1 1 1 1 1 1 1 1 B ct CQ P fxj PI P h* ct - rf* to H H CO H H CD CD P. CXI H tOH ~. CXI ct P 3 'Vege- 'tables i to 1 1 1 1 1 M Oi Ol h- 1 -3 cx) ro H ro H-d 01 ro p P- y CQ CD O CD CQ 1 ct CO 8S 1-^ P TO ct CD pi ""i CD ct O P a H* < CD P Pi o a Hi CQ O 4 P 4 ct i i- i i. (fi O pa 11^ 1^, ^ >TJ CD O P CO O CD ct ct CD CQ O xj H- H- ct- a & CD CD CD CD ct M H COct P a P. ct ct CD H- CD ct P H- 4 O CQ a H O CD H. tO H- I 4 H H- COOT H P CO I id H O as o to I* t ~ -i <TJ I J3 ]-'* ^ o tj : <D <D s o ,' ...J t._J w_4 "" 0> O> G> ! ' i ' i ' i C/i ft_5 4i Rj <(.,!> 0.) ^ O . M H MJ O (O *> <D t- CO Q> O1 f It _.- . .F- > :- t- -4s CD ; Si nj. ro -,' c- -^ O O G? C ^i ro J> M O W O tO O O O> ; o -<4 o to o ' J--cOf- - OrO T> M fO TO -4i C/5 4t', O O Gj ^ 00 fO) co o so w o I> '-( fti 0? ^ :o c-, ^_: c, o ro O P- O *4- O O .0 h-f E- c- ro r : "- r- -; v o-o -,< ;o u o . to w _4i 01 <y. _) ^ o -4< a? o? O C- O *H roi OJOCrtfOOIMOl'H -M 5.,> o CO '.j fO 00 fO Q?: R3 O O *'' O iC ' C- Ci.CI rj O -44 iO to t> 4i ^ iQ tf" io> 9".a" i o> ff> <n ; o O W .O oi M Ci ; L-I D o-J f/5 M <-i rl f-> Cli a> o^;^ o co 4< L- '- o -a> to tn iu -"i -; -ii* fi :,' rf-i q c? G O r 1 O &", ;o ^ to PO CO O <^ <O Cf -! o O i (-> M I '"> K> ro .".i ro &1 O5' - ro ^ C-- CO O O 'Ct. i t* I I I I I I I i I I I I : -; I ro c-; i i O O 'O c ". C'i ro ro ro CA -^t- --\ O "H P 1 130 CD ^ o O H- ^ oq "a o c CD 4 4 ! O S3 o o a> p 3 i i i flf tei MMH'l-'l-'MMI- 1 COcOCDCDCOtOtDCO K>- I-* H! ->+- *--H COCDCDCDCDCDCOCD H'l-'l-'l-'l-'t-'l-'H 1 OOOiWM-JtOO OJ H-jn 1-3 f 4 4 c+ 4 0) c+ <0 H- J P3 p. 1 H COC>oa>tOM-ClO COlOOlOCOtO^O MOMOlOtOOlO) Hi P h$ CDOCD 0)^0 Ct CD c+ ji ca i i 44 gc+ ci- 3 P P 0) p, JB c+H w w to to i- 1 1- 1 Ol O> ~3 M CQ tO CD o to CD o ro I I tf* CO CT> Ol tO CT> CO O O1 CO H 1 tf. W -3 CO Cn -^ rf^ MWWtOtOH'h-'l- 1 CDCftM<DW-3CnOl O-JOCDt-'MOW CO PO O H-VJ O CD 4 4 < P Cf- cf-CD 3 0) D, J3 P 03 4 CO c+ H CD 1 H- p, 1 WWWWtOlOtOI- 1 W-3OCJICOO1WCO il^WtOOOlOOCD tOOC^COCJlOlCOH 4 CO H 1 ^ 4 CD ^ Pi H- CD c+ CD CQ < H M H O O> O <I M C55 to Ol CO Ol O <! I CD P P H O CD M H- 3 ct C+M y c P 1 P M M0 to g ^ O CD p CD CD CD p, P 1 PI H CQ CDGJI-'Cnoil-'CDtO p Ht, g pq OT o p S CD W rf^ IO P p ct- p,P CD H- d- P ct < >-i p p CD P P. tfOT O I- 1 CD 1 H 1 1 1 II CD M g O P CD H- p: 3 H to CO 1 1 1 CD CD CD hJ CD o O H-b O P CQ CD P CO O U i -~i O> 1C f-- M <D O TO . < 6- >H CO <D O O H C/l =H CO O O -4C- .'0.0-OO IH I l 01 it- ro C/; O ro -+ O M * to r- to C' to o '-HMO? i. " - Ctf O C1 C". <?* t HO fO !>--> MM O 1 !? ' t> Ol O o GO CO O O ro o cu to * D il o d CO W <c to "O O1> fy o> 03 to H i"0 p- rj -4i fp '-"I t- o O ft/ 0> .:-> nj r 1 i r,i o 05 o rr; <'5C!t < *!^fl>O<f> - , **-i t ?r Pu f" 1 Q '?? t < O iC - * J H C HT ro co f> *k '.1? fO ro ^ CO X) <^j nj ro m <t> 01 1 O> k) 4t1>4< C1 it? ro <4i CO C- C- ^ GO O <7> ' ^ --ri 4 ro . ' : J O > ^i O O ^ " ro ^4, . > i Oi '^ CJ ;-J5 i -H C; i CO JO iO -4) fO W fO I M I I i H I : i : i 131 CD *T) CD P3 g ITJ O T 4 H- I-* CD 4 d- O < M O tlj. l (xf* c+tj. -I---- - _ __!_ p K a 4 O d^-J" CD CD CO CO H CO 1 J 1 j II 1 1 I J 1 _J 1 _ T I [ f 1 | 1 j 1 [ CDCDCDCDCD CDCDCDCDCDCD cnoirf^wro co oo <l cn 01 tl^ CD CD M to P to to Oi \- H M M M M M M Olrf^tOtO CD CO CO CO 00 -3 cn M Ct ;--' 09 I ~1 CD d- Ol CD 00^ rf^ W O Ol 00 OlMtOOlW WtOMCDtOO Mcoorf^oi Mcntooocn COWMOltO O fO tO O W CD <3 CO CO to Ol P, -3 <3 w o MM CD f rf^ ^ W W W W W if* M tO ->3 W Ol W cn M CD H, p CD CD 4 d- CD H CD tf Q <f P d- P -3 CD -3 to Ol t> CO cn MOtoroto cncDoiorf^oi W^--3Cnoi WOOCn^CDCD ODMcn-<jcn ootowrf*-<ioi 05 CO 0) o Ol cn DO a H 1 a. Hi h* 1 1 H- 1 to M P w to ro to M to W tO M tO g M O M M -3 rf^ ro to CD CD T3 g H n o M h* rt- ' : P o J P d- H m rf*> CD oo O (0 <3CD-3WrOCQ -3MtOMO)rt. ooocn^coo ooco-^towto O^OCC>WCD oitOff^wif^CD _ - _ _ _M- ______ H (JO 00 m Pi 1 -' o i P >" d- M H- 1 H P M M M M M M H M) pj ct (T, CD P a CD O CD 4 CD cn > 00 Cn-300COCOO CnOMMCD^ coootowP rf^cntoto-s3w Cn 01 rt". 00 CQ p 1 1 1 H M CD CD p H- g Hi p O 3 CT" r-* ^ -300 -3 en WWMCDtJ^H'COOCDCOiJ^O Mrf^tocncny Mcn--3-<j>Kw _ _ _ _ _C3L _ _ _ o ^ Ol to P P M | 1 |_U I | H) CO CQ C+ M ; ' fjf M) pj tt^ cn -^ M 01 03 OOM-vioowP 01 cn w cn H > -3 rf^rfi.--3rf^--3MCnCntf>.MCDOl CN ro CD to CD 3 P tr t; 1 ' i H* .-' q I M H- M W CD I-" 0- 00 towoicnooco wrf^wwww oicDcncncDP -JoiooMW^ ____ p___ __ w <5 w o CO CD ct> ! CD p CO O CB 1 CD H- O CD cn o cn 3) <3 -3cnif>.WM oirf^rf^www OiOWi^OD'CDtOtOCD-<300 CD _ _ _ _ -CD _ - _ Oi M w o p "CD H o 1 B 0; K P H) CD CD d- 4 P CD fK) i i i i I 1 i CQ 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 I 1 1 1 ! 1 ct 1 H- d- 3 CD d- O H) O P MM M IMMIM IIOWMIOW 1 1 1 ro to d" P 3 P P Oi o tt c? H a) p 1 CD OT CD 1 . CQ CD P 1 1 1 I i M MtO tO 10 1 1 1 1 1 if* M -3 CD 00 Ol 1 1 1 1 1 00 w 00 CD o CQ H ^ 1 CD 1 H* CQ 1 -4 M M- '-; : H o r-- C1 M '(I -i M Cfl (O M M nj ' .4* O O? M r j *i to fOM'iO CO CO ^ -'i ^) i> o -it c/J - r> oci c- <t> <C ro r.- -4i ft? Crt i"C ^O i"'5 CT 01 M C/J Ol C/1 fO M <3i -4s C- M M O M S! C/J M Crt ,fv) M fl> M . ^ ' '"H !<. - ' -it M <t >0 M C/S M !> tO Ot fO C-- (Q P- M O> 4l ^> M (.I >J '-" C- T! -n O O? -1< <O O O O? O O JO c) -"", ' '< ' *o <n ro ?) C * o 'V o o O <D ': v 1 O f O tl , a St c! M -ft iM S I r M l_) 1_< l_< 1 j 1 j U.-J U^ vj4 rC' 4 O? M M O <O O o!) Q* CO O <O O <O CO OD O ni C- 01 C'l fi.- 4 J ro f/! O O CO M CO -^i _ _ _,"_ _ -. -. .. I i_j L_( ^^ i_j ~|. ti'M M 1 M ' o> o o; L . - ->_ - 3 ^i Sr* w - ' c o, ... ^i ^ c pr M i o 8 fi oi a> iu t- t; M i -H t; i -t^ c/1 oj ro M ; o ir 1 oi <u ; C <D C! (D I 03 Q <D <D -(i ,t*H , -H M oj ^3 <o t ^- -^ 4i >'O M C- >O t^5 PO ' i ro f'? "( "O M 'S- cc (O ro r/i O '-i o i> 4< : ~>. (ft i-.: - 6:0 ot>- o>w ^ cy;u > ^ h 03 I I I I I I I I ' ! 1 1 I I I I I I i I I I I I I I I I I I I I I i-H V, GV-O C/i ^4 (.5 M I M I M t I -O <A Cj\ C J M -M CT) CO "" 0"< -Q-' !> M '4i 'I i I' I I J i I I I ' .1 132 T) W ' M K IT 1 CD *3 d- O CD O O O O 3 M ^ d-e-J. 1 1 CD _ _ l_ _OL _ _T. M M M M M M MM COCOtOtDCOCOCOCO MMMMMMMM a> oo CO CO 3 MI-'l-'l-'MI-'HI-' CD<DCOCDDCDCOCD MI-'MI-'h-'h-'MM CD >-d ^ e+ i!ai f CO tO M M 09 H- JB (-3 J 4 4 c+ 4 CD c+ CD H- PB ps P. 1 M OMO-3OU1OO1 COCnCJlMMtDCDfO to tO IO M M a> oo (jo W -3 M w 01 ro CD CD W CD tO JD 4 M, ct- CD <rh ct p. CD p, p c+ M H- pj H- 1 CO 1 1 1 CD IO P ct- M <D p O H-<J tO W CO Ul CO M tOO fOMtOOiOWOCO CD ^ c+ CD P c+ M < CD 4 CD d- M 1 H- P. 1 MMMMMMMM MH-'HI-'HI-'I-'M POO^CDOCDCDO 3 CD M 4 ^ CD 4 Pi H- CD ct- CD to <J 1 OCDMtOOll-'rOtO CD CD d- p p M H- M 3 1 P C J3 d- S P p M Htra co p, MP M P 4 O CD P CD CD CD PI p i PI M TO C/KWcotocntoto CD H) p W 2 P ^ Pi<1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i i i i i i i i i i i i i i P d-p. CO H- d- d- P d- < M 1 tO M M W M M Ml W IO W OI O? rf*. p PJ cry* M CD ^ fll ' M 1 1 .[y 1 [_,, f 1 1 II I I I 1 1 M M 1 1 1 1 II 1 1 1 1 CD M g O P CD H- P 3 M eo co i i I CD PI O H CD H) P H> d- 0) P CD "CD d- O o *"i p *C CD co p : 83 1 ) 1 < 'J'fo '.-> V ^ o o Ji i ti rf-j-h _ -r>- _ _ M - M M M rr r,- ,&, j- r . . && . L,^ i M ' 1 M M M '-i M M C^ so 4i ro 't> C- CO rtj M N . i tQ -, ^ _.L^.^F M MM ro .C- ro Oi fO ro M <^. '* *r C- ^ > O j ---ii r- C/J M V *o O' . '^ ?] . " 4 " t" i 4t t, i J.^ g f-. n\ f\ H 1 -) .Q -H 13 Q CJ C- 1 1 1 CJ o M 05 w ra - *- J *> ?o L -l W Cl ^4; O( v - ',"' fO O ro S> C -i 4 O C- <H M M -li '-i C.1 0> H M ro ro o o O ii iJa'-H 6 " O O M M M M O5 t* I* ^ O' MM M *4t ro Ct> M 4 c V > . * , M -J-j t 1 iO M 4 TJ > O M O M >H Crt oyj CO Q? l>- J> t- C/l eO <<*< O' OJ iQ C) -!> ^ . C 3 O O <D. i 1 O r ' IT 1 til f ir* M ff> fc* M M M M M M M M M M MM M M M M i > P- fO C- M 01 '0 -< O. 1 M M -4) O CA fO CO O . M fO rc -It C- M i> .-Vi Ci? r/i no C-- u -i r/t to 1C-* 15 V -* 1 * (H : s =j si H M <B t ( ij < j M MM '-< M ! U ^ ^ 03 O 0? K5 ^ CO ru <C M . w o-s ^ rt? GI -; a* o 'rO o> M -4< 't; i> M C- O <0 CO O '"3 W CO O f i ,Q -{ *- { iT'^ W CJ ',*""! tl > i -i M 2 l - 4 ^ i O c, ';> iC tO ru M M rj *4< Ai. ' ' -H f ' ^->; 5OO-4fOtOa>CC- CO <O Q> O W tO !> rO O W O? S3 ro CA ^ ^> t" 1 <^ M <n o t; o . ' . I 03 ,Q 5) !> t-^ -; r;. 05 95 fO - -O- O 4< ro **! -4< f j ^J i ^ 53 ; .O 1 _ _ _ _ .. ^ i-* ^ " o K> 'A ,'O fO <'- > E- '"" m .Zg-L ^V- *??*??+?; -- (. '-it- O -t .'-. .'/I O! ro ' rO (O & -ir* <n af. i i t i i i i i I 1 ' 1 1 1 1 ! i O ! 1 1 1 1 1 1 1 1 1 1 1 1 i ^i '--j 'O 'O O5 ro i '-i i ^_. M M W 1 - 1 -' C1 1 1 M ; t! -=* O M ff) H J 3 o 1 ! i : M '-i I i W M C i5 I'll it 1 | | nv 1 fh | 1 t 1 *H 155 CD 4 O P CD 4 O O 3 4 CD P CK^ I O . _ _ I- _ - _ _ l_ J-'MMI-'l-'H'Hh- 1 COCQCOCOCOCOCDCO tOMCOOCOOlOlOl .4^ i-j to o en t- 1 -3 o "oi'torotototoh^to" totowoocoto-31-' OlOlOitOWOCO-3 WtOWWtOWtOtO OCOMOlCOtOtOOi OOtOCOOOiCOtOM OJO3cotOtO-300W OOOOOOOOOOCDOOOD l I l I I l I I I t I I I I totototooifOMio I I Oi I I II II l-'l-'MI-'t-'MMl- 1 COCDCDCOCDCDCOCD I i t t . i i i i i i i j i . CDOO<JCJ>O1rt ! 'O3lO COCDOO-3--3OO1O1 CO-3WO1OOOO rt^CDioO>OOiOOtO HOo^OWtOOl OOOOoaOOtOcOO W 00 to rfi. to to CO M CD O3 ^ Ol -3 CD CD IO H CO O Ol O Ol 00 00 ( 00 W O CO O Ol 00 tO IO I- 1 I O O -3 O5 CO Ol 00 f- 1 01 CD to i O5 I ' W V* . co > to < M 00 Ol IO1 CD M tOtOtOlOMlOtOtO to H W CO rf= tO 00 00 tO CO Oi COOCDOOCOOOWOi CTJC^OOOiM^rf^Oi Mt^-JO^WOlOtO woioorf^o-aw wwtowwwwoi OOOlCDOitOOOOW rfi if. ({^ CJi Ol O> tO 00 CD O to O I I I I I I I I I I I I I I I I OOCOCDWWtOWtO H 1 I- 1 M M to -3 w to w oo <J CD *"i o o rj 09 H- P K) P 4 4 O ch ^ CD ct CD H- P P DJ I I- 1 H^ P *"^{ 1-^ CD O CD O CD 4 O ^ C+ CD c+ P. co CD <} c+ ct-tQ 1-3 CD CD <<1 O ^4 P cl- CD PI P C+ pYr* I Jr* i i H)P H) CD O p c+ CD 3 c+ O PJ O CD P. 3 ^ CD ct CD I H- P. I -> P cfr CD O 4 CD P. p. P *d HI > CD O CD CD O H CD ct CD I CD P P 3 C? 5-HJ3 p 1-" Hj CO CQ c+CKJ CD O CD H- P 3 P o i d- i 3 H- H- p, H) ^ 4 y ji p p ^ i i-J S" to P t^ CD 3 < p H K CD P. O CD I P n CD H) P o 3 c+p, F H H- C+ ff n> i CD CD CD I CD M O O P CD 3 M CO I I CD P, 1 ^ h" O H, CD Hh H CD ct 4 p CD CKJ 3 CD ct O O H> O P *U hJ cn CD P S O . a* o; H |M i CA ' M S -to -ft <T> -b O .i.) | -M ,C) <-! ^ I I if) CO .Q? i O to I I I I : rs -i L O ib 7 (D t 1 03 i_J t_.| i_j <-r--! OVO1 -i 4. t- C,- O C- O O ro >- (I: i 1 ; "1* t- .-1 --H rj 00 -H r, -i. C- M O H QJ ro &- O C/l O' tO f O C-J CA C/i M C/3 M V. CO fc H H O I 'H H H i- I- 01 -4t \j) fO " ! -i !'> V, ro cy o- r ;> r o ro i r- ~t >-H >-i , * <0 1C- 0? Q) C". O ro O ^ - ^ "--I .W C^ O 4 O O (T3 *>j j'H < ) I' t' n ! O <$ t^ ''J : f, -H i *-: 11 *, . .1 . . _ -i ' cj r e ej <D <o t; o i^ , i 23 iQ a> 1 H ^^ I IO CO O C/! nj ' Jr 1 id ; KJ ;<5 -M U _ .. 1 p- h* _. O Ci O o; .'.0 C-" ?'SS i t i i i i i I I I I I ! I I QJ f3 1- i * l i - -J 4< Q> <fc ', M -^i -i -1 M -i r^ r- i- oj c^ to w o O C-' EO 'H C CO O fv? M fO nj fO ci so -o w> ro ro O l M O c/t TI r^ 1 ft^ O "^ O 4< Crf OJ rj O O> CT o? -: -o <c i- "H ' I' * f f I I I ! I ! Pi C-5 TO C1 fO >O O ^} OJ Ol <-! C/1 TO C-l CI Ol O5 H M <H M JH CO ro &5 ro C- 61 I I !*J 134 CD Ct 9 o C_I. 1 Rio Grande ' CD O ct 'D O t_i. 1 CCO p) JD PI^ M to i o o etc-" CD CD I f | | CO CD CD CD M M -3 CD M H CD CD i j I f Ol t* CD CD M M w to M H CD CD CD CO H H CD CC H \-> H M CD CD Ol *> CD CD O3 tO CD' p -3 CD O > CD CD Ol tO Ol IO Ol CD to to <I Oi tO M O CD CD CD H 1 M 01 to M M 0J p H- p t-g o-a M CD tO M CO Ol CO if* -3 rf^ CD 10 tO M OlOl Ol ( Ol to CD CD COO to o rf^ CD -3 CD 00 to * CD Ol O CO ct CD p. 4 CD ct H- P p 1 i CD CD OM CD >. ^ CD CD CO to to OlM CD CD M CO rf^CD H 1 CD O Ol Ol <JCD CD-<3 coco CD Ol CD O CD ^ Ct CO CD O O *^ ct < ct (1> CD ct <<j rj cT -4 CD MOJ MOD o to <3CD 01 CD M CD CD 10 CD O CD tO M O O CD _ _M O CD Ol tO O CO -J CD O Ol CO Ol O OO Ol O CD CD O CD . PI & H- to i CD P.H. P ct M 1 H- 1 rf^CD 01 > 01 to to o 1 I 1 t CD CD CO M to^p CO-3 CD O to Ol CD O Ol Ol Ol CD Hi CD . CD P H) O P O H* ^ & P ct CO tO rf^ CO 01 CD w CD CD rf^ tO CD CO Ol Ol Ol to to CD ct O O & Ol P CQ -< 1 CD W Ol CD Ol O Ol Ol Coco co to CD CD OlO -a o o -a * CD C1 v> CD p. t-a p P CD ct M l H- to 01 CD CD Ol Ol P 1 to to to to to to to to p Ct CD O 4 CD p.p CD O CD CD 4 CD 4 OlOl -3 Ol <J CD tO CO CD O CD > H! O O W o1 K W CO tO CD to P> H* CD ct CD M P H H MH MM CD p H 09 I.T' PPG CD CD toco 01 CD tf=> Ol CO rt^ Ol IO Ol M CD *<l Ol O) CDrt* tV) CD CD CD OlOl 01 co to o 00 CD Ct M r* p ct P tf P 1 p M M M O I- 1 H MM M H> to to ctCW p. p. pTnT^ CO CD Ol Ol ^ to <J rt* O ct M O - -P Ol CD CD 10 tO CD COOl to to tO M M CD <3 Ol ct 1 I i P P P ^ M H* 1 M 3 0101 to to CD CD to to O Ol H tO P co to 5 p. to Ol CD Ol to CD -<J IO M -a to to 01 CD CD CO CD CD P. P CD Pi P CQ o CD 1 CD H- Hi CD CD Ol to o ( CD Ol O) <3 CD to -j o -3 ^3 ct tO ct Ol Ol Ol Ol Ol rf^ CD <J >3 Ol rt> Ol CD to CD H) P o B P ^ H) P CD ct *~f P Ol M to to to to to to to CD CD -Pi I I 1 1 1 1 J | ro M 4 P. B ct P CD ct O O H) O P CD Ol 1 CD CD CD Ol M 1 1 M 1 i i t i I i truck i . P or p, CD to ct < P CD 1 OQ CD 1 o "i tO CD p M CD to i <3 i 1 1 1 1 * -3 M tO coco M Ol Ol tO M iK. t jj rr* r^ CD M Sg to i ^ CD H- M to '' 1 1 1 HH' 1 - i IT* G* GIG? O !- .y 01 0' - *^_ C- s r i flQ *-j T > i i L- | | L-{ i i j b f t* -I fO *"' i . MCv! - Crt CO J>- O j _> 5} H O A\ ~j\ ft- 4 L H ' '-2 ro CO Q? f> GJ O O O O C4 i ro to 01 "CO CO 'H w r> i '.' or' CO CO CO ]>- O G> SB q fc -t-} -t-j m -> ro cO C' I 1 ro ro "H (> KJ tO O t.O .... ro *' ,., ; H CO c ? to 00 fO CO M ro b w H 1 -H tQ -H S O O O ro *'< H 1 CT CJ -. O tO ~- C? CO CO 03 O o 6 G) O '-1 M O o GO ^ iH CU-f} -.^ -to i<- C$ (H j O tt i^-H o <3 c ff> ;;> to 10 c/5 4i to fa Si- > t 4 f Ci '." <? C> CO O O' 1 H 6 "H H c; o !': '. d M rtl JM+vC) .H 5 C- O 0> 00 TO ro H i <n cO 4i O fO CO u) iQ ^A ^t\ O C^* C'j O fOOJ ro ffl ro p G? 05 o 4 CO !>> W> 01 QJ ro o <r> i ^ fi> <r" ^ -t in r-1 01 CA -r.i :! c* CD -^i O -< <yj 01 1 CJ 4. ro CO CO ro 01 > - a; to -^i -. -4i to 10 C"! 4) 4i ro r O a H iH ^ cc O C/! ' ro t a 1 f? M -! i +3 O c/t ro re r^ r --"> ."-l .f fO CO &f* I--. CO s CO ro O CO o:> w H 'H ! -; i^ r r i o Q c o> >-i d ro w : M i -1-3 ' r j C- ' -i'CA r*"j CO co ro U\ CO *' " b % ; o! O '.' fq 03 <r> -i> t; <n :o c^ '-i M c/i PO > l 9 iCJ fl <O tC: t- t- t> Cfl i4 o OJ C/1 M C'5 c; o Cl C.1 rO 7 j H ro fO 4t & CO 4< .d< ^tQ t: 1 o i 01 a? ro c- 4* ro ro ro fO ro o r> C'5 b r> t- 01 C^ :_ j t _, 1 1_J | -0 1 -^ i i i t i M ff) OS OJ C/J 01 01 Cfl H w I' <n ; i i i L. j v_( i _j i s^ i o & q ii i : i o co _o i i i i -4 CD CO C'"'. 1 (6 o? j > "i <r> '1; S 2 H C1 M (75 >H : ' M -4l W fO CO GO C- O 5O ! 1 1 Oi Q> H 155 ct- t_5* g ct _ l_ (D 4 etc-* CDCOCOCOCDCOCDCO l-'l-'h-'l-'f-'MHM l-'l-'Hh-'HI-'Ht- 1 CDCDCOCOCOCDCOCO WWWtototoi-'to cotowwrorfs-coco wotoooooo WO<IOOOOO JB 4 ^ c+ ^ CD c+ a> H- to po P- 1 H H (-> M> P H) < ct- SBcl- P P> COCOWOCOrt.OO CJltOCftH-atOOCO oojoooocooi-3 CDMCD-aW-^CntO OlOi<JOWtOOiOi Orf^-OCDWCOfOOi et cl- ct- P, (B PJ S ct !- H- P, H- I H- ca t i i CD oioiwtowwtoto CfttotocoootocD OOOOtOlOMCO OlMWCnOlWtOCD ooiocnoiooicn CD P> O CD 4 4 ct CD 3 CO i O *$ JO ct CD P, i ^J CD Ct h- 1 CD 1 H* Pi I MM M M I- 1 M M IO O> CD IO tO 0> W i- 1 co w <} H w en i 1 1 CD CO CO CO W CD tf=> M co at rf* w H>ctCD pjJB^O M)>. P9O4CDOCDCDO 4 CD H ^ ^ CD 4 P. H- CD ct CD CO < \ CD {D P9 tT CD H" H- P ct CtM 1 JD MtOMtOtOtOCjlO) OCDMWCOMOOtO to 01 w w 01 ro to i to ro OCDH- CDPJBO ct 1 P H- H p. tOtOWrfi.rf4.WWW CnCOCDMOWWtf" CO P 4 O CD P CD CD CD PI (D 1 P. e COCDCOCDCDCDCOCO (o H> j re CT P> CD 4 p,<! jn hrj 1 1 1 1 1 1 1 1 1 1 1 1 I 1 ct Pi to ?9 I- 1 IO tO tO W to i w to w rf* 01 ro 1 ct p a 1 ct H 3 M JO CD P PJ CD 1 OT ro CD 1 o 1 1 1 1 CD 1 1 1 1 MtOWMWMlOtO CD M O T O p <0 H> fi p !- ro CO 1 1 1 p- H K> CD ct O o *0 CO hi CD O ct p a <^ i-, ii a P I I H <H H M ^ ' H - O 01 CO O !> O <-*o fO <O ft? rb U3 >-t C or 01 ro '_ .':- 00 O1 to r.-/ i"> o <: o -I CO FO o: o ro ^i ry O C *4< a? o .'O CO O O- C~ '-H O E> r^ in o O o C- t-O O ^-! Crt C-5 O O O O > I C- ro rO (D r3 ' H ITJ C- - i- O M "H P- C-1 M O Q5 ?O fO <O C/5 OJ OC <t) O C- i O iO O &- O [.I T-J OJ t^ ^ ^ <n o o! * ^POt*0l<B 4 - -H tj 3 ^ i-O <D -t 'Ty O v4 en O 3 ^H JO O1 Ol - ro h ha tj co ci r- co c- en C/1 fO I CTi I i i i i C/l f fl C 1 H I I i : i 136 F a> tJ) CD p 1 1 0) M M M M M MM M CD CD CO CD CD COCO CD M M M M M MM M CD 03 <J Oi Ol *CKI tO MHI-'l-'l-'HI-'M CDtDCOCDtDCDCDCO MHMMI-'l-'Ml- 1 CO 4 O O p Ol Oi CD -3 ->3 CD ^ O CO CD CDIOOOOOOO P ct CD P. p. (D d 1-3 o ct to ro to WM M H) < ct-cfiQ ** CO O CD CD ct ct _, P. CD P. O P ct P P 01 CD 1 M M M tO M COOCOCOCOOMCO COWCDOCnOCOO OiWOMCDWCOrt*. -3COOO1OO1O3O rf^-^Jl-'l-'rf^tOWW O Ol W OJ CD 0~> rfi. CD H) P H) ct M ctiQ 1-3 CD O p O H-V4 tf O CD ct CD CO P Ct CD P. P P 4 CO ct M CD I H P< I M tOrOtOtOMM M M OCDCDOCDCDOirf^ OiCDtO M M M PO^CDOCDCOO 3 CD M 4 4 CD ^ PI H- ct CD CQ < M M M M M M CD P CD M C"f I"* > 3 o J 'P ct 3 P I P M M M CJl O Oi CD i^. CO H) tfl CO ctOJCJ H- H- CD O CD H- P ^ P CD P P O I "^ OT J^ P P 7 M P to I- 1 tO M M IO -3 10 tQ P 4 O at p CD CD CO PI P 1 P, M CO P Hs P W CK5 P P CD l_ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ct P. CO MMMMMMtOM ct P O* ct < ^ P M P CD P Pi CD 1 0?J O CO CD CD M tO tO tO 1 1 1 1 a> M i i to a> o p ce P M W M CQ ll hi CD P- O H) CO L_K y CD cf ^ P CD ;TtJ O O H) O P W CD P o V -M t- C t- ei - - "-' fr* - C. <Jj iO a- .''5 o -H 01 <y. c ' -4< ro iO i" 1 c/J iO a> 'H - "3 3l *'H CTJ v- --If C' C" QO O ^ H w a~ --i o G) o a; ;". Cfl n.J) i'J' W ro ^ s P* <C- '.jj CO O tl* C? O 0? ^ >H CJ '-i O C- W CO -^ C-.O f- <C. i5 tv C? O fr.J O E-- M O >.* fO C/> -H <H -i - t- X! O '-i ^ -r- <r- ca '^> f' <T; b CM o t Q >H -H |- e:> ^i al <^; o. ro ** -^ co ' to o ro :- ro '>'. '-* oj ro "' o or/ ro o r- f-l 61 ^ *" f" -M - I i : I 1 i i M C- S T~t- I I -! (O i I 157 < H- M P P 3 H t-"d I- 1 CD CO ^ O O ' CD CD 4 O CD CO "H" to H t-> CD CD H 1 H 1 <! O> CD CD H H Ol rf*. COCO CDCDCOCDCDCDCDCD i i i i i * i i i 00000 W W tO to fO I 'I ' 01 CO Ol M O MCOrOCOOltOCDO) CD M Ol Ol -3 O O W IO to CD tOO rfs- tO -3 O> CD CO Ol M P c+ CD P- 4 CO cfr P p 1 1 1 1 1 1 CDtOOOlOll-'COCD I I v \* 't* > \* \ <* ^ Hb < c+ c+iQ 1-3 CD O CD CD *<\ g O ^ ^ ^ JB C- Ct Ct ^ S $D Pi CD PJ J ct M H- PJ H- 1 H- en i i i CD W W W W W Oi OS Ol W Ol O> . O Crt CO CO Oi Ol Ol (N Ol W H CD -3 CD W -4 ff 10 i CO tO Ol CO CD tO COCOCO-3CDCOa>O CD O p O H-<3 S O CD "^ 4 < J ci- ci-CD 3 CD P^tS !B 10 ^ CD Ci- H 1 CD 1 H" P. 1 to w tO tO tO tO 10 10 10 M CO tO OtOI-'Wl-'WOOl w I \s* i U-* r- VA^ -'VU^'^MlVJU-'UJUi CD P i i i i i i i o cn en O3 -^ rf^ rf^ en rf^ ->3 00 ^D "*^ CO h~* CD c+ M H) CO CD ctW H- H H>c+CD pjjft*d H)> JDO4CDOCDCDO ^ CD h- 1 4 ^ CD 4 PJ H- CD <rl- CD CO < ^ P (-3 PS a o H- 3 c+ 3 )= 5C I (D H 1 1 1 1 i 1 IO 01 01 ro co <i 01 CD a P o i jet i a h* J ___-.- 1. IMP W W O5 W to W CO W O CO 01 tO W W rf 5 ' i^- Ol Oi ^ O M tO CO tO CD <J to to to to t-> \-> i- 1 I 1 1 1 I 1 1 1 Ol Ol to to to (- to p 4 o I CD a o> o CD P. P I & M CO OQ CD 4 Pi<l a P sa ct PJ M a- P 4 a M P CD P PI CD I (W O CO CD ' to 01 w w if* M i CD H ^ O P O H* a M cn CO 1 1 1 xl CD P. ^ H- CD rt- ^ P CD ro a CD O O H) O P CO CD P .<_f I o'o <fi V (- I M <| Ol */> O> ft) K3 -4i O C . - CB C/1 fU Q? Crt 9} M / ,- V .' W ' ' ' * C/1 &' OJ tO &- <X' CO 4t CO Q f> <D Q 0) &: " -b -b M +> e< tO ITS .Q H I -H > H U i t i ra -4l (TO O> Ci? <"/> M <"- >i QJ 00 -< rU fO O C/l 0.' PO 23 f-- u' ^ '^J ' ; H O O QJ O ?O *"C M v ^ i I I I I i I i i I i i i I . - - \~ - i f/5 *3i iO ni O- (O CO P- O C/1 -^ O GO -4t PO &- SO O <t> <( 5O C- O> O O .0? <O > 00 CO '} ' - H to ro 4i rp to *o M 4i c-- fO co -C* 'i 1 c rp ro o) co -1< O C ? O - I o> 01 tV p.. 1 ) i_^ ,-/j 25 ( to O QJ - o; 9 I M 4; C- K? !U fU O' t^ '.V CO [- C!M .1 - (T 1 i" ift O -H S3 c^ H ' PJ OJ (JH, ), F-? I t r.-i ^;i i i i o r 1 i e? )O ~ v{"' ro ^ ;S en ', (D rj ry r'O -*? / r- a- t, ts O (H O 1 i i : i i i t ) i i : i r i t i .J- a ; (r- iq 5 . M i -.-?! i M " 1 1- <C 138 K) H CB Ct O 3 to O'J H-fJ Pjg CD 5 <! CD 4 O cte-j. 1 H't-'l-'MH-'l-'h-'l- 1 CDCDCOCDCDCDCDCD COCO-3OlOli-I^WtO CDCOCDCDCDCDCOCD | i ij i j I J 1 i 1 __i j ^t I t COCO-<3GlOii-WtO CD totototototOHi- 1 -3OlOlG3tOOCDOl COCDCD<IO1O1O1O1 Ot^OOJCOOltJ^io 09 CD 1 Total area irri- O^rf^OOOl--3O OOOOOOOlO oooooooco OOlOiOCOOirf^CO OOlOOrf^tOOO OOOOOOlOO CQCDCD-<IGiaiOli , COOOO1FO-3CO-3 t^rf^WWtOO'O'W tOH-COrf^-SOtOO MOlOlCDtOCDO-^ CD O CD CD O444 Ct Ct PJ CD p, H- P, H- to i i CD r Total quanti- ty wa- tOtOWCDO-3OiOl K>CO-3MOCOO-3 WO-3H- ) OCOCOOl WOMtOrf^CDOlOi O1CO-3O1OOHCO rf^-3cOtOMO5fOOl -JOlOitl^^tf^rf^W Otf^^JcDOWtOrf^ tOtOtOtOMtOtOM CDCOO1O3O1OOCO oiorf^cocorf^^ro H) P H> ct I- 1 ctiQ 1-3 CD O ED O H-<J Ci O CD 4 4 < P Ct ct CD g CD Pi ! P cn 4 CD ct M CD 1 H- P. * -^JOW^WOOirf^ <3OlH- > H J -<3CDWrf : ' OlCOCOlOOlcOCDOl tOOlfOCDCOOlCOCD MOCOCOOlOrf^CO OltOOCOlOrf^OW tOtOtOtOMtOtOlO WOJWWtOWWW H, ct CD PJ P P O 4 CD O 4 CD M 4 3 P. H CD CD < Acre 'Total feet 'annual oer rain- Olrf^tOI-'CDOtOtO towoioitf^co-^co tO ^ h- 1 fO rf^ O 1 ' h" 1 -3WO1COO1-3CD-3 H H) H) CD P CD M ..i. ii OI^OI<JOCOOICD -3oicooii-'ioa>ai if^i^^OlOlOlOi^l WO1O1OCOCD-31O H) to to ctCR H- H- CD O CD H- P 4 P CD tJ P O 1 4 OT Ct 1 P H- P P 4 H H- i 1 tO M tO tO l\D M tO 1 CO O H W Ol CD O l-'tOh-'tOtOt^.tOrfi. tfs>ff^~CJOOll J ODtO MlOtOtOtOlOtOI-' ->3l- 1 tOOiCOv>OOl ^oiwoiCDtooo CO P 4 O CD J3 CD CD CD PI P 1 to Percentage of area in different crops CDOlrf 5 'CDOlOlH- l CO OlOiOiOiOiOiOlOl OtOOOl^CDOO ps H, p (u (K5 O P P tO tO tO I- 1 M CO-dtOCOtOOlOltO MMMtOI-'l-'HI- 1 -3OltOtOCOCOCOOl 3 P *ij ctP- P_ A M I- 1 IO OJ rfi. tf^<lOCOWWI ' H- ' I- 1 M O>COH J -3CDCOI-'CO ct p a 1 ct < 4 P M P CD j5 PJ CD 1 OQ O tQ CD tO 1 tO M IO tO 0? K> K 1 Ol H -3 ' I I- 1 1 ' Ol 1 1 CD t- 1 O t^ O P CD H* & P M to CO 1 1 1 t f F F o -1 -h) J> o .Q i i O H d i . ti i o io a o o *^ ^ ^ ^ * i OB <: :; - << ^; O C3 O ro O O O O O (X) O O O O O O O M W To C/i SO fO <4 <4< ' wfc" 4< i> O & C/T 0? ro ro-<-t p-CDt>OiroOOaj ro ro OJ * OJ ~< O W -C ro t- O O? M C"> C-s to H o O to c- cy .:. > o ao o M t^ co ci "O O1 -O "H OJ Ci> C- 1) ro Q> CO O L -! t- O CO H Q-h> -H -f-j <*-< <n fin O 5 h-H O UJ O <D =J tj ,Q F: fl> H 1 <I> 1 vQ o '"(D r. ^ H <n H v-' ' t <y H : -i C/J Ol -H Cfl Cfl tl-Ci I oj 4 ^n CO 0? -4i o ro -': '.i ro o '."y C-- << O i> cy to CO CO v ro 01 -^ o 6 fO * M O t> '.0 4 O ro OJ 3 O <-i -'i* ': ." > -i--i .O > \- O -* C'J CO O M ro 53 u> '^> CO OJ CO CO <u " * I CO CO fO M SO SO IO W C'J C/1 M 'H d O1 W O' ! > u <T> -fj C) H >} i *-H M o A- <v? M -it &j 01 c/j o ai M c<i '^ io o- co t- fC a? r: ro r> a> c- a? -^ ro ro ro r '- Sn a) JH jtH cH i ^ 3 tj M "t> M 8 1 M "^ t- rs CK c5 ' ; - ro 'O T. . rr, ^ r v ; -j rO !> 4l C'J ^!i r/5 C1 M C'J C5 >-. C! <"' 1 C*1 ) rti O? .0 - -! TO O t- '< -'i > J - -H O C? ' !r* ^ ci 9 '" : ej ' r ..; ; -H O -H rj (I) -^-i (j; ~ *">! cT* ro ^O ' * *^ - O ^"i ~ *'." Oi -* C^ ? !lm O O Ci? -4i <O O u-i O \S : H ro ro 00 4* ro Q> t *^^ '.o L ~ _-._.. "5 C ; 'j> O> CA ' - i*; j> 01 rO <0 d CO d t- ft) :.' '.d i'; { <D 1} o 7H ' i-j ^ O> - jJ a: t- ro 10 CO O C- -^ I ' 1 1 .3 V j (O *H M 1 ' C- M fO C': 55 ri O'i -H Ci I Crt 1 ' 1 139 > 0> 4 P OT 0> Oi Ol to Oi w Oi to -3 to 01 -3 Oi M Oi to o w Hrl- MOctMCD w(S'p'H | -i O'CD O p o OJi ^ P* CD PJ CD OcHO P c+ P ^ CD CO O OO JVfsr pp CO & O O i-j ct C+ P & CQ ^ CD CO O O O Ul W O -3 MO M 00 Scheme -a to o Oi tf* W ... (D O tO M O" M O rf^ - \^r M ^ H O -3 <O O Oi O W tO CD Oi Oi Ol Gi 8 O O H J- 1 H to W W 01 Q t^>^ Oi <J <D Ol O tOCD<JCOOiOi(-'(- ) CDOO > ^ rf^ Ol Ol W W W 00 W Ol ff" W OiOiWl- J h-'<JOl-3OlU!OOOl M tO Ol I- 1 Oi H -3 Ol Ol Oi M to O Oi W * Ol to Ol O rf^ Oi O ^ CD Oi t^. W 1 to i^ rf^ -3 tO Oi I- 1 CD.O Oi Oi -3lOl- J COOi-3OiCD H-'tOWI-'l-'OOOitOtOOlO OOOWOitO-3t^rf^W OOOlOlH'tOrf^M-jH'CDODOl OOtOCOOlMGitOtOlt^H 1 Cfl CD too 01 rfi. M >T IO M O Oi O 00 P QO O O O 10 tO O O OlOiM O Ol MM Ol IO tD MO M Ol tOtOWtOMOiOiOltOWtOM M MtOrf^tOOlWWtO M Ol tf^ W Oi CD CD -3 10 Ol tO W rfs. tO CD -3 CO tO W Oi M O CD & O O c+ o i-~ o (i CD 4 P 09 CO 0) P CO o g ct ct (1) P 4 ^ i i. ^s [-^ H- O 3 o en M 0) H- O <J M CD fD 3 P IP CD O CD "0 CD O C+ CD M tO M to I M K * i -<^ c "-* to -^ PV * '-' C * '""' * n l O ^3 ^^ op "i i -h> -b P . - * O OT C-- Oj ."' ? ste g wiij ( (- :/i ?O O O M 4t -H i cc : ft C: 3> tr i^ 'O W O3 < I -j " I O O O W 4 CD 4i 8 O > ., o '< 4< O ro C-- O 00 C1 ... r6 ^ rc . ! P .-___. " - ^ M O --H "' !> C -\ O *-! 'H "; ^ 00 ''JI >H O Crt r;^ ii Oi r -4l H-noSa r-coci -4i >- M fO 0-) O -41 PO r,. J>- .'. ;u 4s t- ro O (O CA C- 07 rj5 (-5 O -"-;!> O.OJ V o .! ; . co 01 (> .'-i ^ O O O O ' O M (V5 Q O C/J: O o- r-c/i ^r X^ coo^ 9 M 4i ;o i -i . >| l_j 1_| Q ; ' ro M O O "H ci ; -.J --- --- -- ___ ___________ ---- . -| c Crt 4yj <H H M c ' .c- '.j - r/i 1 5 . * _* * ^ <y> 01 4< M a} ; - O H C aj| o ! "< r- RETURN CIRCULATION DEPARTMENT TO- + 202 Mqinjjbrory. LQANTPERIOD T 3CS^55-aL-!= FORM NO. DD6, 'UNIVERSITY OF CALIFORNIA, BERKELEY BERKELEY, CA 94720 ^ , U.C. BERKELEY LIBRARIES NON-CIRCULATING BOOK UNIVERSITY OF CALIFORNIA LIBRARY