LIBRARY 
 
 OF THE 
 
 UNIVERSITY OF CALIFORNIA. 
 Ctes 
 
PROPERTIES 
 
 OF 
 
 STEEL SECTIONS 
 
 A REFERENCE BOOK FOR 
 
 STRUCTURAL ENGINEERS AND 
 ARCHITECTS 
 
 INCLUDING TABLES OF MOMENTS OF INERTIA AND 
 RADII OF GYRATION OF BUILT SECTIONS, EXAMPLES 
 OF SECTIONS SELECTED FROM MONUMENTAL STRUC- 
 TURES, UNIT STRESSES, SAFE LOADS FOR COLUMNS, 
 PLATE GIRDER DESIGN, DESIGN IN TIMBER, ETC., WITH 
 ONLY SUFFICIENT TEXT TO EXPLAIN THEIR APPLICATION 
 
 BY 
 
 JOHN C. SAMPLE, C.E., M. ARCH. 
 
 Architectural Engineer, New York 
 
 NEW YORK 
 
 McGRAW PUBLISHING COMPANY 
 
 114 LIBERTY STREET 
 
 1905 
 

 COPYRIGHT, 1905 
 
 BY THE 
 
 McGRAW PUBLISHING COMPANY 
 NEW YORK 
 
PREFACE 
 
 THERE is a tendency at the present time to call for designs to be submitted on short 
 notice. Should the design be properly made, it requires rapid and often laborious 
 calculations. It is hoped the designer will be able to select directly from the tables 
 here given such sections as will meet his special requirements, thus saving the energy 
 ordinarily spent in preliminary figuring for more important parts of design. 
 
 A portion of the material here presented was originally prepared for the author's 
 own use as designer for a structural steel plant. When it was decided to publish the 
 tables additional sections were included. The aim has been to cover the particular 
 field as thoroughly as possible without producing too large a volume. It has not 
 been considered to be within the scope of this book to treat the subjects involved 
 from a theoretical standpoint, only sufficient text being presented to explain the ap- 
 plication of the tables. 
 
 All values have been calculated and checked independently, and may be relied 
 upon as correct. 
 
 Sufficient time has been taken in preparing these tables to permit the author to 
 add such sections as are in use. He has aimed to confine himself to those sections 
 which are necessary to good design and such shapes as are carried in stock by most 
 large structural steel plants, it being the desire to avoid unnecessary refinements. 
 
 Common usage will account for the appearance of some of these sections. 
 
 Properties of patented sections are omitted. They may be obtained by applying 
 to the manufacturer. 
 
 Where possible all controverted points have been avoided. There is a diversity 
 of practice as to how much the back to back of angles should exceed the width of the 
 plate for plate girders and columns, the practice being about equally divided between 
 \" and y. The author has used \" for all sections with less than 42" plates, since 
 this is on the safe side for those using %". Where cover plates are not used, it is un- 
 necessary to chip the web plate, and it is seldom necessary to chip where cover plates 
 are used unless it be for very long web plates. 
 
 It is not intended to recommend any particular set of specifications, or to present 
 a text on design in steel. With the exception of the chapter giving safe loads of col- 
 umns, the material is general and capable of being applied to any specification. 
 
 The author acknowledges his gratitude to those who have assisted him in pro- 
 
 ? 
 
iv PREFACE 
 
 viding material for the chapter on Monumental Structures, pages 56 to 66. He will 
 appreciate suggestions tending to add to the value of future editions of the book. 
 Chapters will be revised at intervals determined by the advance in the particular 
 subject. 
 
 Special acknowledgment is due Mr. H. R. Bradley for carefully checking all the 
 material. 
 
CONTENTS 
 
 PAGE 
 MOMENT OF INERTIA AND RADII OF GYRATION - 
 
 Explanatory notes and examples of application i 
 
 TABLE No. i Two angles, unequal legs, long legs outstanding 4 
 
 2 " equal legs 6 
 
 3 " unequal legs, short legs outstanding 8 
 
 4 " "Star Struts," equal legs 10 
 
 5 " unequal legs n 
 
 6 Four angles, Axis AA, unequal legs, long legs outstanding 12 
 
 7 " equal legs 14 
 
 8 unequal legs, short legs outstanding 16 
 
 9 Axis BB, unequal legs, long legs outstanding .... 17 
 
 10 " equal legs 20 
 
 11 " " unequal legs, short legs outstanding .... 22 
 
 12 Moment of Inertia of one plate, Axis AA 23 
 
 13 of one plate, Axis BB 24 
 
 14 of two cover plates for angle columns 26 
 
 15 " of two cover plates for zee-bar columns .... 28 
 
 1 6 Two Angles and one plate, T-shaped section 29 
 
 1 7 Four zee-bars and one plate 30 
 
 18 Two channels laced, flanges in 31 
 
 19 " " flanges outstanding 32 
 
 20 (flanges outstanding) and one beam 34 
 
 21 " " (flanges in) and one beam 38 
 
 22 Three beams, H-section 39 
 
 23 Two channels and two cover plates 40 
 
 24 " one cover plate 46 
 
 25 One channel and one plate 49 
 
 26 " and one angle 50 
 
 27 Four angles, one plate, and one channel 51 
 
 VALUES OF COLUMNS FROM LARGE BUILDINGS 
 
 28 List and properties of sections 54 
 
 Columns having one web plate 56 
 
 two web plates 57 
 
 three web plates 58 
 
 Miscellaneous types 59 
 
vi CONTENTS 
 
 PAGE 
 VALUES OF TOP CHORDS FROM LARGE BRIDGES 
 
 TABLE No. 29 List and properties of sections 55 
 
 Laced top and bottom, two webs 61 
 
 " three webs 62 
 
 " " four webs 63 
 
 Cover plate on top, two webs 63 
 
 four webs 64 
 
 Miscellaneous types 66 
 
 UNIT STRAINS - 
 
 Strains under dynamic loads 67 
 
 Unit strains in compression members 68 
 
 Summary of compression formulae 70 
 
 30 Values from compression formulae, reduced to 16,000 base unit . . 72 
 Curves derived from compression formulae, reduced to 16,000 base 
 
 unit 73 
 
 31 Values corresponding to compression formulae 74 
 
 Curves corresponding to compression formulas 75 
 
 Railroad bridge, highway bridge, and building specifications ... 76 
 
 SAFE LOADS FOR COLUMNS 
 
 32 Two angles 78 
 
 33 Four angles and an 8-inch plate 80 
 
 34 " and a 12-inch plate 81 
 
 35 and an i8-inch plate 82 
 
 36 and a 24-inch plate 83 
 
 .37 Two channels laced 84 
 
 STRESS DUE TO WEIGHT OF SECTION - 
 
 38 Extreme fiber stress due to weight of angles 86 
 
 39 AREA OF ONE PLATE 87 
 
 40 AREA IN SQUARE INCHES DEDUCTED FOR ONE 
 
 HOLE 90 
 
 NET AREA OF ONE ANGLE 
 
 41 Deducting one, two, and three f-inch holes 91 
 
 42 " |-inch holes 92 
 
 43 " " " i-inch holes 93 
 
 NET VALUES OF SECTIONS 
 
 44 Net values of beams 94 
 
 45 " " channels 95 
 
 46 " " cover plates for beams and channels 96 
 
CONTENTS VU 
 
 PAGE 
 PLATE GIRDERS 
 
 Graphics in design of plate girders 97 
 
 Three examples illustrating application of tables 99 
 
 Resistance of web plate to bending stress 100 
 
 TABLE No 47 Moment of inertia of one web plate for plate girders 102 
 
 48 " " of four angles deducting one hole 103 
 
 49 " " " two holes 104 
 
 50 . " " " " three holes 105 
 
 51 " " of two cover plates, deducting two holes . . . 106 
 
 TIMBER COLUMNS, BEAMS, AND FLOORING 
 
 General notes on strength of timber no 
 
 52 Safe working stresses for various timbers 113 
 
 53 Ultimate breaking stresses for various timbers 114 
 
 54 Safe loads for columns 115 
 
 55 " (uniformly distributed) for beams i inch thick .... 116 
 
 56 (uniformly distributed) for beams of various thickness . 117 
 
 57 Safe bending moments for beams in foot-pounds 119 
 
 58 Bending moments in foot-pounds for uniform loading 120 
 
 59 Thickness of flooring for uniform loading 121 
 
General Notes Governing Tables 
 
 THE shapes used in the tables throughout are manufactured by the Carnegie Steel 
 Co. as given in the Pocket Companion for 1903. It has been the object to supple- 
 ment the Pocket Companion and not to include any information given in it. 
 
 The values of all sections except for net values of beams, channels, and cover 
 plates, pages 94-96; net sections of angles, pages 91-93; and plate girders, pages 
 97-109, are based upon their gross area. Should it be required to use net sections in 
 other cases, due allowance must be made for deductions by rivet holes. 
 The following notation is used throughout : 
 
 Areas of sections are square inches in cross-section. 
 Weights of sections are pounds per lineal foot. 
 Dimensions are in inches unless noted. 
 
 L = unsupported or unbraced length in feet. 
 / = unsupported or unbraced length in inches. 
 x = unknown distance in feet to point in question. 
 w = uniform load in pounds per lineal foot of span. 
 W = total load in pounds. 
 P = safe stress in pounds per square inch. 
 B = bending moment in inch pounds. 
 R = extreme fiber stress in pounds per square inch. 
 b = thickness in inches. 
 h = depth in inches. 
 
 A = total area of cross-section in square inches. 
 I moment of inertia. 
 M r = moment of resistance in inch pounds. 
 r = radius of gyration in inches. 
 
 e = distance in inches of extreme fiber from neutral axis. 
 b. to b. = back to back in inches. 
 
 C = coefficient of strength for fiber stress of 16,000 pounds per square inch. 
 
 5 = section modulus. 
 
 5 and C are with neutral axis perpendicular to web at center. 
 
 ix 
 
MOMENTS OF INERTIA AND RADII OF GYRATION OF COLUMNS 
 
 AND STRUTS 
 
 THE values of all sections in this chapter are based on the gross sections, no deduc- 
 tions being made for rivet holes. Bending produces tension in one side of a column 
 and increases the compression in the other, but the tension is only sufficient to reduce 
 the compression, or in rare cases to produce a slight tension. Should such a case be 
 possible that tension determines the section, where the member has a strut action it 
 would be necessary to use the net values of the section. 
 
 A column of such proportions should be selected as to be of nearly the same strength 
 about both axes for the particular loading and bracing. Such relative values of /, r, 
 and / should be examined as will show the column weakest. 
 
 The application of the tables of Moments of Inertia and Radii of Gyration is 
 shown by the following examples. The sections will be determined in accordance 
 with the requirements of the New York Building Law. The allowable strain in 
 pounds per square inch for compression members, P = 15,200 58 - . The ratio 
 
 of - must not exceed 120. 
 
 r 
 
 In each example the unsupported length about both axes is 20 feet. To this 
 
 maximum ratio of - = 120, corresponds the minimum value of r = = 
 
 r 120 
 
 = 2.0. The minimum value of r may therefore be determined for this 
 
 1 20 
 
 ratio of - by pointing off one decimal place in the value of / in feet. By examination 
 of the tables it is seen that a large number of sections have a value of r equal to or 
 greater than 2.0 The sections used in the examples have values of r much greater 
 than 2.0, and it is important to select such sections as will give the greatest value of 
 r for a given area, provided the requirements or conditions will permit the use of such 
 a section. 
 
 Let A required area of column in square inches. 
 W = total direct load in pounds. 
 B = bending moment in inch pounds. 
 P = safe load in pounds per square inch. 
 
 e = distance in inches from the neutral axis to the ' extreme 
 fiber on the side in which the bending produces compression. 
 
MOMENTS OF INERTIA AND RADII OF GYRATION 
 
 The values of compound sections may be found by combining the values of ele- 
 mentary parts. This is illustrated by a column shown in the accompanying figure, 
 the values of which are tabulated below. The column is composed of four angles 
 6 X 4 X f > l8 i" b - to b., l n g kg 8 outstanding, an 18" X " web plate, and two 
 14" X i" cover plates. 
 
 SECTION. 
 
 AREA. 
 
 TABLE. 
 
 I ABOUT 
 Axis AA. 
 
 TABLE. 
 
 I ABOUT 
 Axis BB. 
 
 4 LL 6x4 x| 
 
 i PL i8"Xi" 
 2 Pis. I4"X|" 
 
 23-44 
 Q.OO 
 17.50 
 
 6 
 12 
 13 
 
 206.13 
 .19 
 285.84 
 
 9 
 
 *3 
 
 14 
 
 1,566.08 
 243.00 
 
 *559- a 3 
 
 Totals 
 
 49-94 
 
 
 492.16 
 
 
 3.368-31 
 
 
 
 
 
 
 
 v/'- 
 
 
 
 / 492.16 
 
 J 
 
 3368.31 Q n 
 
 -\ A 
 
 
 
 3- I 4 
 49.94 
 
 V 
 
 49.94 
 
 The safe direct load for this column according to the New York Building Law for 
 an unbraced length of 20 feet is 
 
 W 
 
 / l\ I 2 4 0\ 
 
 = A 15,200 - 58-] = 49-94 i5. 200 - 5 8 ) = 5377 pounds. 
 
 V r ) \ 3- I 4/ 
 
 General form of Example i. This form is for direct loading only, i.e. the loading 
 is balanced about any horizontal axis through the center of gravity of the column. 
 This is a general case and applicable to all sections. The form becomes 
 
 W W 
 
 15,200 50 - 
 
 General form of Example 2. This form is for combined direct load with eccentric 
 loading or bending. This is a general case and is applicable to all sections. The 
 form becomes 
 
MOMENTS OF INERTIA AND RADII OF GYRATION 
 
 W 
 
 l Be 
 
 A = 
 
 Example i. Required a channel column capable of carrying a direct or balanced 
 load of 230,000 pounds. To obtain the approximate area required, assume an allow- 
 able strain of 12,000 pounds per square inch. 230,000 -^- 11,000 = 19.2 square inches. 
 From the table 23 the area of two 10* 15-pound channels and two 12" x 1* plates = 
 20.92 ; the least r = 3.68. Applying the general form, 
 
 W 230.000 230,000 
 
 A = _ . = _ - = ^ - = 20.2. 
 
 / 240 11,400 
 
 15,200 58 - 15,200 58 
 r 3.68 
 
 The section assumed has an excessive area of .72 square inch, and is capable of 
 being reduced by approximately that amount. 
 
 Example 2. Required a channel column capable of carrying a balanced load of 
 200,000 pounds, and having in addition a bending of 120,000 inch pounds. To ob- 
 tain the approximate area required, assume an allowable extreme fiber strain of 10,000 
 pounds per square inch for the direct load. 200,000 -j- 10,000 = 20.0 square inches. 
 From the table 23 the area of two 10* 15-pound channels and two 12" x \" plates = 
 20.92 ; the least r = 3.68. Turn the column so it will most effectively resist the 
 bending, by placing the axis AA parallel to the plane of bending force. The value 
 of I about the axis AA = 464.8. Applying the general form, 
 
 W 100,000 200,000 
 
 / A Be ( 2 4 o\ 
 
 (^5,200- 58 -J- y ^5,200-58 j- 
 
 120,000 x 5-5 10,000 
 464.8 
 
 square inches required. The section assumed has an excessive area of .92 square 
 inch and is capable of being reduced by approximately that amount. 
 
 * NOTE : It will be seen by referring to the table of specifications under the chapter on 
 Unit Strains that the practice varies ; some add the total extreme fiber stress due to bending, 
 while others add | of the extreme fiber stress, to the direct stress. 
 
 3 
 
TABLE 1 
 
 TWO ANGLES, UNEQUAL LEGS, 
 
 SIZE. 
 
 TOTAL SECTION. 
 
 Axis BB. 
 
 Axis AA. 
 
 o" b. to b. 
 
 f" b. to b. 
 
 T y b. to b. 
 
 Weight 
 
 Area. 
 
 I 
 
 r 
 
 I 
 
 r 
 
 I 
 
 r 
 
 I 
 
 r 
 
 7X3ix f 
 
 49-8 
 
 14.62 
 
 12. l6 
 
 .91 
 
 i7 2 -34 
 
 3-43 
 
 187.21 
 
 3-58 
 
 189.79 
 
 3.60 
 
 *% 
 
 46.0 
 
 13.50 
 
 11.38 
 
 .92 
 
 158.20 
 
 3-42 
 
 171.84 
 
 3-57 
 
 174.20 
 
 3-59 
 
 x I 
 
 42.0 
 
 12.34 
 
 10.56 
 
 93 
 
 143.22 
 
 3-4i 
 
 155-55 
 
 3-55 
 
 !57- 6 9 
 
 3-57 
 
 x& 
 
 38.0 
 
 II. 18 
 
 9.72 
 
 93 
 
 129.06 
 
 3-40 
 
 140.14 
 
 3-54 
 
 142.06 
 
 3-56 
 
 x \ 
 
 34-0 
 
 10.00 
 
 8.82 
 
 94 
 
 114.83 
 
 3-39 
 
 124.67 
 
 3-53 
 
 126.38 
 
 3-55 
 
 x& 
 
 30.0 
 
 8.80 
 
 7.90 
 
 95 
 
 IOO.I2 
 
 3-37 
 
 108.68 
 
 3-5 1 
 
 110.17 
 
 3-54 
 
 
 
 
 
 
 o" b. to b. 
 
 i" b. to b. 
 
 T y b. to b. 
 
 6x 4 x i 
 
 47-2 
 
 13.88 
 
 *7-36 
 
 1. 12 
 
 109.07 
 
 2.80 
 
 116.50 
 
 2.90 
 
 118.43 
 
 2.92 
 
 xtt 
 
 43-6 
 
 12.82 
 
 16.22 
 
 J -I3 
 
 100.04 
 
 2-79 
 
 106.85 
 
 2.89 
 
 108.61 
 
 2.91 
 
 x I 
 
 40.0 
 
 11.72 
 
 15.04 
 
 -I3 
 
 90.44 
 
 2.78 
 
 96.57 
 
 2.87 
 
 98.16 
 
 2.89 
 
 x& 
 
 36.2 
 
 10.62 
 
 13.82 
 
 I.I4 
 
 81.43 
 
 2.77 
 
 86.93 
 
 2.86 
 
 88.36 
 
 2.88 
 
 x i 
 
 32.4 
 
 9.50 
 
 12.54 
 
 I-I5 
 
 72.42 
 
 2.76 
 
 77-30 
 
 2.85 
 
 78-56 
 
 2.88 
 
 x^ 
 
 28.6 
 
 8.36 
 
 1 1. 20 
 
 1.16 
 
 63.04 
 
 2-75 
 
 67.26 
 
 2.84 
 
 68.36 
 
 2.86 
 
 X f 
 
 24.6 
 
 7.22 
 
 9.80 
 
 1.17 
 
 54-n 
 
 2.74 
 
 57-73 
 
 2.83 
 
 58.67 
 
 2.85 
 
 5X3ix f 
 
 33-6 
 
 9.84 
 
 9.66 
 
 99 
 
 5 2 -5 
 
 2.31 
 
 56-83 
 
 2.40 
 
 57-96 
 
 2-43 
 
 x& 
 
 30.4 
 
 8.94 
 
 8.90 
 
 1. 00 
 
 47.29 
 
 2.30 
 
 5!-i9 
 
 2-39 
 
 52.20 
 
 2.42 
 
 x * 
 
 27.2 
 
 8.00 
 
 8.10 
 
 I.OI 
 
 42.02 
 
 2.29 
 
 45-47 
 
 2.38 
 
 46.37 
 
 2.41 
 
 x^ 
 
 24.0 
 
 7.06 
 
 7.26 
 
 1. 01 
 
 36-56 
 
 2.28 
 
 39-54 
 
 2-37 
 
 40.33 
 
 2-39 
 
 x I 
 
 20.8 
 
 6.10 
 
 6.36 
 
 1. 02 
 
 3 J -37 
 
 2.27 
 
 33-92 
 
 2.36 
 
 34-59 
 
 2.38 
 
 X& 
 
 17.4 
 
 5.12 
 
 5-44 
 
 1.03 
 
 26.14 
 
 2.26 
 
 28.26 
 
 2-35 
 
 28.81 
 
 2-37 
 
 4X3X& 
 
 24.6 
 
 7.24 
 
 5-32 
 
 .86 
 
 24.29 
 
 1.83 
 
 26.85 
 
 I -93 
 
 27-53 
 
 J -95 
 
 x * 
 
 22.2 
 
 6.50 
 
 4.84 
 
 .86 
 
 21.60 
 
 1.82 
 
 23.86 
 
 1.92 
 
 24.46 
 
 1.94 
 
 x& 
 
 IQ.6 
 
 5-74 
 
 4-3 6 
 
 .87 
 
 18.74 
 
 1.81 
 
 20.70 
 
 1.90 
 
 21.21 
 
 1.92 
 
 x f 
 
 17.0 
 
 4.96 
 
 3-84 
 
 .88 
 
 16.05 
 
 i. 80 
 
 17.71 
 
 1.89 
 
 18.15 
 
 1.91 
 
 x& 
 
 14.2 
 
 4.18 
 
 3-30 
 
 .89 
 
 13.40 
 
 1.79 
 
 14.78 
 
 1.88 
 
 IS.I4 
 
 1.90 
 
 3X2JX \ 
 
 17.0 
 
 5.00 
 
 2.60 
 
 .72 
 
 9.16 
 
 I 3S 
 
 10.49 
 
 i-45 
 
 IO.84 
 
 1.47 
 
 x& 
 
 15.2 
 
 4.44 
 
 2.36 
 
 73 
 
 8.02 
 
 i-34 
 
 9.18 
 
 1.44 
 
 9-49 
 
 1.46 
 
 x I 
 
 13.2 
 
 3.84 
 
 2.08 
 
 74 
 
 6.86 
 
 i-34 
 
 7.84 
 
 i-43 
 
 8.10 
 
 1.45 
 
 x& 
 
 II.O 
 
 3.24 
 
 i. 80 
 
 74 
 
 5- 6 4 
 
 1.32 
 
 6-45 
 
 1.41 
 
 6.66 
 
 i-43 
 
 x i 
 
 Q.O 
 
 2.62 
 
 1.48 
 
 75 
 
 4-5 1 
 
 i-3i 
 
 5-i5 
 
 1.40 
 
 5-32 
 
 1.42 
 
 2$X2X f 
 
 10.6 
 
 3.10 
 
 1.02 
 
 58 
 
 3-96 
 
 *-*3 
 
 4-65 
 
 1.22 
 
 4.84 
 
 1.25 
 
 x& 
 
 9.0 
 
 2.62 
 
 .90 
 
 58 
 
 3-3 
 
 1. 12 
 
 3-87 
 
 1.22 
 
 4.03- 
 
 1.24 
 
 x t 
 
 7-4 
 
 2.12 
 
 74 
 
 59 
 
 2.62 
 
 I. II 
 
 3-07 
 
 1. 2O 
 
 3.20 
 
 1.23 
 
 x& 
 
 5-6 
 
 1.62 
 
 58 
 
 .60 
 
 1.96 
 
 1. 10 
 
 2.29 
 
 I.I9 
 
 2.38 
 
 1. 21 
 
 (4) 
 
UNIVERSITY I 
 
 TABLE 1 (Continued} 
 
 LONG LEGS OUTSTANDING 
 
 Axis AA. 
 
 V b. to b. 
 
 f" b. to b. 
 
 f ' b. to b. 
 
 I" b. to b. 
 
 i b. to b. 
 
 I 
 
 r 
 
 I 
 
 r 
 
 I 
 
 r 
 
 I 
 
 r 
 
 i 
 
 r 
 
 192.40 
 
 3.63 
 
 197.71 
 
 3-68 
 
 203.12 
 
 3-73 
 
 208.65 
 
 3-78 
 
 214.30 
 
 3-83 
 
 1 76.59 
 
 3-62 
 
 181.46 
 
 3-67 
 
 186.42 
 
 3-72 
 
 191.50 
 
 3-77 
 
 196.68 
 
 3-82 
 
 159-85 
 
 3-60 
 
 164.25 
 
 3-65 
 
 168.74 
 
 3-70 
 
 1 73-34 
 
 3-75 
 
 178.02 
 
 3-80 
 
 144.01 
 
 3-59 
 
 J 47-97 
 
 3-64 
 
 152.01 
 
 3-69 
 
 156.14 
 
 3-74 
 
 160.36 
 
 3-79 
 
 128.10 
 
 3-58 
 
 131.62 
 
 3-63 
 
 135-21 
 
 3-68 
 
 138.88 
 
 3-73 
 
 142.63 
 
 3-78 
 
 111.67 
 
 3-56 
 
 II4-73 
 
 3-6i 
 
 117.86 
 
 3-66 
 
 121.05 
 
 3-7i 
 
 124.32 
 
 3-76 
 
 |" b. to b. 
 
 &" b. to b. 
 
 \" b. to b. 
 
 I" b. to b. 
 
 " b. to b. 
 
 120.38 
 
 2-95 
 
 122.36 
 
 2-97 
 
 124-37 
 
 2-99 
 
 128.47 
 
 3-04 
 
 132.67 
 
 3-09 
 
 110.40 
 
 2-93 
 
 112. 21 
 
 2.96 
 
 114.05 
 
 2.98 
 
 117.80 
 
 3-03 
 
 121.65 
 
 3-o8 
 
 99-77 
 
 2.92 
 
 ICI.4I 
 
 2.94 
 
 103.07 
 
 2-97 
 
 106.45 
 
 3-oi 
 
 109.93 
 
 3-o6 
 
 89.80 
 
 2.91 
 
 91.27 
 
 2-93 
 
 92.76 
 
 2.96 
 
 95-8o 
 
 3-oo 
 
 98-93 
 
 3-05 
 
 79.84 
 
 2.90 
 
 81.15 
 
 2.92 
 
 82.47 
 
 2-95 
 
 85.16 
 
 2-99 
 
 87.94 
 
 3-04 
 
 69.47 
 
 2.88 
 
 70.60 
 
 2.91 
 
 7i-75 
 
 2-93 
 
 74.09 
 
 2.98 
 
 76.50 
 
 3-03 
 
 59.62 
 
 2.87 
 
 60.59 
 
 2.90 
 
 6i-57 
 
 2.92 
 
 63-57 
 
 2-97 
 
 65-63 
 
 3.02 
 
 59.12 
 
 2-45 
 
 60.29 
 
 2.48 
 
 61.48 
 
 2.50 
 
 63.91 
 
 2-55 
 
 66.43 
 
 2.60 
 
 53-24 
 
 2-44 
 
 54-29 
 
 2.46 
 
 55-36 
 
 2.49 
 
 57-55 
 
 2-54 
 
 59.81 
 
 2-59 
 
 47-29 
 
 2-43 
 
 48.22 
 
 2.46 
 
 49.16 
 
 2.48 
 
 51.11 
 
 2-53 
 
 S3-" 
 
 2.58 
 
 41.12 
 
 2.41 
 
 4L93 
 
 2-44 
 
 42.75 
 
 2.46 
 
 44-44 
 
 2.51 
 
 46.18 
 
 2-56 
 
 35-27 
 
 2.40 
 
 35-96 
 
 2-43 
 
 36.66 
 
 2.45 
 
 38.11 
 
 2.50 
 
 39.60 
 
 2-55 
 
 29.38 
 
 2.40 
 
 2 9-95 
 
 2.42 
 
 30-53 
 
 2-44 
 
 31-73 
 
 2.49 
 
 32.97 
 
 2-54 
 
 28.21 
 
 1.97 
 
 28.92 
 
 2.OO 
 
 29.63 
 
 2.02 
 
 31.11 
 
 2.07 
 
 32.64 
 
 2.12 
 
 25.07 
 
 1.96 
 
 25.69 
 
 1.99 
 
 26.33 
 
 2.OI 
 
 27-64 
 
 2.06 
 
 29.00 
 
 2. II 
 
 21.74 
 
 i-95 
 
 22.28 
 
 1.97 
 
 22.83 
 
 1-99 
 
 23-96 
 
 2.04 
 
 25.14 
 
 2.O9 
 
 18.60 
 
 1.94 
 
 19.06 
 
 1.96 
 
 19-53 
 
 I. 9 8 
 
 20.50 
 
 2.03 
 
 21.51 
 
 2.08 
 
 I5-52 
 
 J-93 
 
 15.90 
 
 J -95 
 
 16.29 
 
 1.97 
 
 17.10 
 
 2.02 
 
 J 7-93 
 
 2.07 
 
 II. 21 
 
 1.50 
 
 "59 
 
 J-5 2 
 
 11.97 
 
 1-55" 
 
 12.77 
 
 1. 60 
 
 13.61 
 
 1.6 5 
 
 9.8l 
 
 i-49 
 
 10.14 
 
 i-5i 
 
 10.48 
 
 1-54 
 
 u. 18 
 
 i-59 
 
 11.91 
 
 1.64 
 
 8.38 
 
 1.48 
 
 8.66 
 
 1.50 
 
 8-94 
 
 i-53 
 
 9-54 
 
 1.58 
 
 10.16 
 
 1.6 3 
 
 6.89 
 
 1.46 
 
 7.12 
 
 1.48 
 
 7-35 
 
 i-5i 
 
 7.84 
 
 1.56 
 
 8.36 
 
 1.61 
 
 5-50 
 
 i-45 
 
 5-68 
 
 1.47 
 
 5-87 
 
 1.50 
 
 6.26 
 
 i-55 
 
 6.67 
 
 i. 60 
 
 5-03 
 
 1.27 
 
 5-23 
 
 1.30 
 
 5-44 
 
 1.32 
 
 5-87 
 
 1-38 
 
 6.32 
 
 i-43 
 
 4.19 
 
 1.26 
 
 4-35 
 
 1.29 
 
 4-52 
 
 J-3 1 
 
 4.88 
 
 1-36 
 
 5-26 
 
 1.42 
 
 3-33 
 
 1.25 
 
 3-46 
 
 1.28 
 
 3-59 
 
 1.30 
 
 3-88 
 
 i-35 
 
 4.18 
 
 1.40 
 
 2-47 
 
 1.24 
 
 2-57 
 
 1.26 
 
 2.67 
 
 1.28 
 
 2.88 
 
 i-33 
 
 3- 11 
 
 1.38 
 
 (5) 
 
TABLE 2 
 
 TWO ANGLES, 
 
 SIZE. 
 
 TOTAL SECTION. 
 
 Axis BB. 
 
 Axis AA. 
 
 o" b. to b. 
 
 f" b. to b. 
 
 &" b. to b. 
 
 Weight. 
 
 Area. 
 
 I 
 
 r 
 
 i 
 
 r 
 
 I 
 
 r 
 
 i 
 
 r 
 
 8x8x1 
 
 102.0 
 
 30.00 
 
 177.96 
 
 2-44 
 
 346.47 
 
 3-40 
 
 374.i8 
 
 3-53 
 
 379-01 
 
 3-55 
 
 xtf 
 
 96.0 
 
 28.24 
 
 168.66 
 
 2-44 
 
 323.29 
 
 3.38 
 
 349.06 
 
 3-52 
 
 353-55 
 
 3-54 
 
 x 1 
 
 QO.O 
 
 26.46 
 
 159.16 
 
 2-45 
 
 301-58 
 
 338 
 
 325-53 
 
 3-5 1 
 
 329.70 
 
 3-53 
 
 xH 
 
 84.0 
 
 24.68 
 
 149.42 
 
 2.46 
 
 279.98 
 
 3-37 
 
 302.13 
 
 3-50 
 
 305-99 
 
 3-52 
 
 x f 
 
 77-8 
 
 22.88 
 
 139.48 
 
 2.47 
 
 258.42 
 
 3-36 
 
 278.79 
 
 3-49 
 
 282.34 
 
 3-5 1 
 
 x& 
 
 71.6 
 
 21. 06 
 
 129.28 
 
 2.48 
 
 235-9 
 
 3-35 
 
 254-41 
 
 3-48 
 
 257.63 
 
 3-5o 
 
 x f 
 
 65.4 
 
 19.22 
 
 118.84 
 
 2-49 
 
 214.42 
 
 3-34 
 
 231.17 
 
 3-47 
 
 234.09 
 
 3-49 
 
 x& 
 
 59-0 
 
 17.36 
 
 108.18 
 
 2.50 
 
 192.97 
 
 3-33 
 
 207.97 
 
 3-46 
 
 210.58 
 
 3-48 
 
 x I 
 
 52.8 
 
 15.50 
 
 97.26 
 
 2-50 
 
 171.60 
 
 3-33 
 
 184.87 
 
 3-45 
 
 187.19 
 
 3-48 
 
 6x6x f 
 
 57-4 
 
 16.88 
 
 56-30 
 
 1.83 
 
 109.78 
 
 2-55 
 
 121.64 
 
 2.68 
 
 I2 3-73 
 
 2.71 
 
 x& 
 
 53-0 
 
 15.56 
 
 52-38 
 
 1-83 
 
 100.03 
 
 2-54 
 
 110.79 
 
 2.67 
 
 112.69 
 
 2.69 
 
 x I 
 
 48.4 
 
 14.22 
 
 48.32 
 
 1.84 
 
 90.88 
 
 2-53 
 
 100.60 
 
 2.66 
 
 102.32 
 
 2.68 
 
 x& 
 
 43-8 
 
 12.86 
 
 44-14 
 
 1.85 
 
 81.74 
 
 2.52 
 
 90.44 
 
 2.65 
 
 91.98 
 
 2.67 
 
 x * 
 
 39-2 
 
 11.50 
 
 39-82 
 
 1.86 
 
 72.28 
 
 2.51 
 
 79-93 
 
 2.64 
 
 81.28 
 
 2.66 
 
 x& 
 
 34-4 
 
 IO.I2 
 
 35-36 
 
 1.87 
 
 63-25 
 
 2-50 
 
 69.90 
 
 2.63 
 
 71.08 
 
 2-65 
 
 x f 
 
 29.6 
 
 8.72 
 
 30.78 
 
 1.88 
 
 54-23 
 
 2-49 
 
 59-9 
 
 2.62 
 
 60.91 
 
 2.64 
 
 
 
 
 
 
 o" b. to b. 
 
 i" b. to b. 
 
 &" b. to b. 
 
 4X4X f 
 
 31.4 
 
 9.22 
 
 13-32 
 
 i. 20 
 
 27.27 
 
 1.72 
 
 30-25 
 
 1.81 
 
 31.04 
 
 1.83 
 
 x& 
 
 28.6 
 
 8.36 
 
 12.24 
 
 1. 21 
 
 24.48 
 
 1.71 
 
 27.14 
 
 i. 80 
 
 27.84 
 
 1.83 
 
 x i 
 
 25.6 
 
 7-50 
 
 II. 12 
 
 1.22 
 
 21.56 
 
 1.70 
 
 23-89 
 
 1.78 
 
 24.51 
 
 1.81 
 
 x& 
 
 22.6 
 
 6.62 
 
 9-94 
 
 1.23 
 
 18.85 
 
 1.69 
 
 20.87 
 
 1.78 
 
 21.41 
 
 i. 80 
 
 x f 
 
 19.6 
 
 5.72 
 
 8.72 
 
 1.23 
 
 16.15 
 
 1.68 
 
 17.87 
 
 1.77 
 
 18.33 
 
 1.79 
 
 x& 
 
 I6. 4 
 
 4.80 
 
 7.42 
 
 1.24 
 
 13-44 
 
 1.67 
 
 14.86 
 
 1.76 
 
 15.24 
 
 1.78 
 
 3X3X \ 
 
 18.8 
 
 5.50 
 
 4-44 
 
 .90 
 
 9.20 
 
 1.29 
 
 10.56 
 
 I -39 
 
 10.93 
 
 1.41 
 
 x& 
 
 16.6 
 
 4.86 
 
 3-98 
 
 .91 
 
 8.00 
 
 1.28 
 
 9.19 
 
 I -37 
 
 9-5 1 
 
 1.40 
 
 x f 
 
 14.4 
 
 4.22 
 
 3-52 
 
 .91 
 
 6.86 
 
 1.28 
 
 7.87 
 
 J-37 
 
 8.14 
 
 !-39 
 
 x& 
 
 12.2 
 
 3.56 
 
 3-02 
 
 .92 
 
 5-7i 
 
 1.27 
 
 6-54 
 
 1.36 
 
 6-77 
 
 1.38 
 
 x i 
 
 9.8 
 
 2.88 
 
 2.48 
 
 93 
 
 4-51 
 
 1.25 
 
 5-i6 
 
 i-34 
 
 5-34 
 
 1.36 
 
 2iX2iX& 
 
 13-6 
 
 4.00 
 
 2.22 
 
 74 
 
 4-65 
 
 i. 08 
 
 5-5o 
 
 1.17 
 
 5-73 
 
 1.20 
 
 x f 
 
 n.8 
 
 3-46 
 
 1.96 
 
 75 
 
 3-96 
 
 1.07 
 
 4.67 
 
 1.16 
 
 4.86 
 
 I.I 9 
 
 x& 
 
 10.0 
 
 2.94 
 
 1.70 
 
 76 
 
 3-3i 
 
 i. 06 
 
 3-90 
 
 i*S 
 
 4.06 
 
 1.18 
 
 x i 
 
 8.2 
 
 2.38 
 
 1.40 
 
 77 
 
 2-63 
 
 1.05 
 
 3.10 
 
 1.14 
 
 3-23 
 
 1.16 
 
 x& 
 
 6.2 
 
 i. 80 
 
 1. 10 
 
 .78 
 
 1.96 
 
 1.04 
 
 2.30 
 
 MJ 
 
 2-39 
 
 "5 
 
 2X2Xfk 
 
 8.0 
 
 2.30 
 
 .84 
 
 .60 
 
 1.70 
 
 .86 
 
 2.08 
 
 .95 
 
 2.19 
 
 .98. 
 
 x* 
 
 6.4 
 
 1.88 
 
 .70 
 
 .61 
 
 i-35 
 
 85 
 
 1.66 
 
 94 
 
 i-75 
 
 .96 
 
 x& 
 
 5-0 
 
 1.44 
 
 56 
 
 .62 
 
 1.03 
 
 85 
 
 1.26 
 
 93 
 
 1.32 
 
 .96 
 
TABLE 2 (Continued*) 
 
 EQUAL LEGS 
 
 Axis AA. 
 
 \" b. to b. 
 
 f " b. to b. 
 
 I" b. to b. 
 
 I" b. to b. 
 
 i" b. to b. 
 
 I 
 
 r 
 
 I 
 
 r 
 
 1 
 
 r 
 
 I 
 
 r 
 
 I 
 
 r 
 
 383-89 
 
 3-58 
 
 393-83 
 
 3.62 
 
 404.01 
 
 3-67 
 
 414.42 
 
 3-72 
 
 425-07 
 
 3.76 
 
 358-10 
 
 3-56 
 
 367-35 
 
 3-61 
 
 376.82 
 
 3-65 
 
 386.52 
 
 3-/0 
 
 396.43 
 
 3-75 
 
 333-93 
 
 3-55 
 
 342-53 
 
 3.60 
 
 35J-34 
 
 3- 6 4 
 
 360.36 
 
 3.69 
 
 369-58 
 
 3-74 
 
 309.90 
 
 3-54 
 
 317.86 
 
 3-59 
 
 326.02 
 
 3-63 
 
 334-37 
 
 3.68 
 
 342.91 
 
 3-73 
 
 285-93 
 
 3-54 
 
 293.26 
 
 3.58 
 
 300.76 
 
 3.63 
 
 308.44 
 
 3-67 
 
 3J6-3I 
 
 3-/2 
 
 260.91 
 
 3-5 2 
 
 267.57 
 
 3-56 
 
 274.40 
 
 3 .6l 
 
 281.39 
 
 3-66 
 
 288.55 
 
 3-7o 
 
 2 37-o5 
 
 3-5i 
 
 243.08 
 
 3.56 
 
 249.27 
 
 3 .60 
 
 255.60 
 
 3-65 
 
 262.08 
 
 3-69 
 
 213.24 
 
 3-50 
 
 218.64 
 
 3-55 
 
 224.18 
 
 3-59 
 
 229.86 
 
 3-64 
 
 235-67 
 
 3-68 
 
 189.54 
 
 3-5 
 
 J 94-33 
 
 3-54 
 
 199.24 
 
 3-59 
 
 204.27 
 
 3-63 
 
 209.42 
 
 3-68 
 
 125.86 
 
 2-73 
 
 130.21 
 
 2.78 
 
 134.69 
 
 2.82 
 
 J 39-30 
 
 2.87 
 
 144.05 
 
 2.92 
 
 114.62 
 
 2.71 
 
 118.57 
 
 2.76 
 
 122.64 
 
 2.81 
 
 126.84 
 
 2.86 
 
 131-15 
 
 2.90 
 
 104.07 
 
 2.71 
 
 107.64 
 
 2-75 
 
 m-33 
 
 2.80 
 
 ii5-i3 
 
 2.85 
 
 119.03 
 
 2.89 
 
 93-54 
 
 2.70 
 
 96.74 
 
 2-74 
 
 100.04 
 
 2-79 
 
 103.45 
 
 2.84 
 
 106.95 
 
 2.88 
 
 82.66 
 
 2.68 
 
 85-48 
 
 2-73 
 
 88.38 
 
 2-77 
 
 91.38 
 
 2.82 
 
 94-47 
 
 2.87 
 
 72.28 
 
 2.67 
 
 74-73 
 
 2.72 
 
 77-27 
 
 2.76 
 
 79.88 
 
 2.81 
 
 82.58 
 
 2.86 
 
 61.93 
 
 2.66 
 
 64.02 
 
 2.71 
 
 66.18 
 
 2-75 
 
 68.41 
 
 2.80 
 
 70.71 
 
 2-85 
 
 I" b. to b. 
 
 T y b. to b. 
 
 \" b. to b. 
 
 f " b. to b. 
 
 I" b. to b. 
 
 i 
 
 
 
 
 
 
 
 
 
 31-85 
 
 1.86 
 
 32.67 
 
 1.88 
 
 33-52 
 
 1.91 
 
 35-26 
 
 1.96 
 
 37-07 
 
 2.01 
 
 28.57 
 
 1.85 
 
 29.30 
 
 1.87 
 
 30.06 
 
 1.90 
 
 31.62 
 
 i-94 
 
 33-24 
 
 1-99 
 
 25-15 
 
 1.83 
 
 2 5.79 
 
 1.85 
 
 26.46 
 
 1.88 
 
 27.83 
 
 !-93 
 
 29.26 
 
 1-97 
 
 21.96 
 
 1.82 
 
 22.52 
 
 1.84 
 
 23.10 
 
 1.87 
 
 24.29 
 
 1.92 
 
 25-54 
 
 I. 9 6 
 
 18.80 
 
 1.81 
 
 19.28 
 
 1.84 
 
 19.77 
 
 1.86 
 
 20.79 
 
 1.91 
 
 21.85 
 
 J -95 
 
 J 5- 6 3 
 
 i 80 
 
 16.02 
 
 1.83 
 
 16.43 
 
 1.85 
 
 17.27 
 
 1.90 
 
 18.15 
 
 1.94 
 
 11.31 
 
 i-43 
 
 11.70 
 
 1.46 
 
 12.10 
 
 1.48 
 
 12.93 
 
 J -53 
 
 13.81 
 
 1.58 
 
 9-83 
 
 1.42 
 
 10.17 
 
 i-45 
 
 10.52 
 
 i-47 
 
 11.24 
 
 1.52 
 
 I2.0O 
 
 1-57 
 
 8.42 
 
 1.41 
 
 8.71 
 
 1.44 
 
 9-00 
 
 1.46 
 
 9.62 
 
 *-5 x 
 
 10.27 
 
 1.56 
 
 7.00 
 
 1.40 
 
 7.24 
 
 i-43 
 
 7-49 
 
 i-45 
 
 8.00 
 
 1.50 
 
 8-54 
 
 !-55 
 
 5-5 2 
 
 1.38 
 
 5-7 1 
 
 1.41 
 
 5-90 
 
 i-43 
 
 6.31 
 
 1.48 
 
 6-73 
 
 1-53 
 
 5-96 
 
 1.22 
 
 6.21 
 
 J - 2 5 
 
 6.46 
 
 1.27 
 
 6-99 
 
 1.32 
 
 7-56 
 
 J -37 
 
 5-07 
 
 1. 21 
 
 5-27 
 
 1.23 
 
 5-49 
 
 1.26 
 
 5-94 
 
 i-3i 
 
 6.42 
 
 1.36 
 
 4-23 
 
 1.20 
 
 4.40 
 
 1.22 
 
 4-58 
 
 1.25 
 
 4.96 
 
 1.30 
 
 5-36 
 
 i-35 
 
 3-36 
 
 I.I 9 
 
 3-50 
 
 1. 21 
 
 3- 6 4 
 
 1.24 
 
 3-94 
 
 1.29 
 
 4-25 
 
 i-34 
 
 2-49 
 
 1.18 
 
 2-59 
 
 1.20 
 
 2.69 
 
 1.22 
 
 2.91 
 
 1.27 
 
 3-14 
 
 1.32 
 
 2.30 
 
 I.OO 
 
 2.42 
 
 ' 1-03 
 
 2-54 
 
 1.05 
 
 2.80 
 
 I.IO 
 
 3-07 
 
 1.16 
 
 1.84 
 
 99 
 
 !-93 
 
 1. 01 
 
 2.03 
 
 1.04 
 
 2-23 
 
 1.09 
 
 2-45 
 
 1.14 
 
 !-39 
 
 .98 
 
 1.46 
 
 I.OI 
 
 !-53 
 
 1.03 
 
 1.68 
 
 i. 08 
 
 1.85 
 
 I-!3 
 
 (7) 
 
TABLE 3 
 
 TWO ANGLES, UNEQUAL 
 
 SIZE. 
 
 TOTAL SECTION. 
 
 Axis BB. 
 
 Axis AA. 
 
 o" b. to b. 
 
 i" b. to b. 
 
 T y b. to b. 
 
 
 Weight 
 
 Area. 
 
 I 
 
 r 
 
 I 
 
 r 
 
 i 
 
 r 
 
 i 
 
 r 
 
 7X3^X f 
 
 49-8 
 
 14.62 
 
 71.98 
 
 2.22 
 
 23-23 
 
 1.26 
 
 28.51 
 
 1.40 
 
 29.49 
 
 1.42 
 
 x& 
 
 46.0 
 
 13.50 
 
 66.94 
 
 2.2 3 
 
 21.13 
 
 1.25 
 
 25.91 
 
 !-39 
 
 26.80 
 
 1.41 
 
 x f 
 
 42.0 
 
 12.34 
 
 61.72 
 
 2.24 
 
 18.86 
 
 1-24 
 
 23.09 
 
 J -37 
 
 23-87 
 
 i-39 
 
 x& 
 
 38.0 
 
 ii. 18 
 
 56.36 
 
 2.25 
 
 16.88 
 
 1.23 
 
 20.62 
 
 1.36 
 
 21.32 
 
 1.38 
 
 x i 
 
 34-0 
 
 10.00 
 
 50.82 
 
 2.25 
 
 14.90 
 
 1.22 
 
 18.18 
 
 i-35 
 
 18.79 
 
 1-37 
 
 x^ 
 
 30.0 
 
 8.80 
 
 45-12 
 
 2.26 
 
 12.85 
 
 1. 21 
 
 J 5-63 
 
 r -33 
 
 16.16 
 
 J -35 
 
 
 
 
 
 
 o" b. to b. 
 
 \" b. to b. 
 
 - t V' b. to b. 
 
 6x 4 x | 
 
 47-2 
 
 13.88 
 
 49.02 
 
 1.88 
 
 33-55 
 
 !-55 
 
 37-5i 
 
 1.64 
 
 38.57 
 
 1.67 
 
 xH 
 
 43-6 
 
 12.82 
 
 45-64 
 
 1.89 
 
 30.62 
 
 i-55 
 
 34-22 
 
 1.63 
 
 35-18 
 
 1.66 
 
 x 
 
 40.0 
 
 11.72 
 
 42.14 
 
 1.90 
 
 27.47 
 
 J -53 
 
 30.67 
 
 1.62 
 
 3 r -53 
 
 1.64 
 
 x& 
 
 36.2 
 
 10.62 
 
 38.52 
 
 1.90 
 
 24.65 
 
 1.52 
 
 27.50 
 
 1.61 
 
 28.26 
 
 1.63 
 
 x i 
 
 32.4 
 
 9.50 
 
 34.80 
 
 1.91 
 
 21.85 
 
 1.52 
 
 2 4-35 
 
 i. 60 
 
 25.02 
 
 1.62 
 
 xA 
 
 28.6 
 
 8.36 
 
 30.92 
 
 1.92 
 
 18.90 
 
 1.50 
 
 21.04 
 
 J -59 
 
 21.62 
 
 1.61 
 
 x I 
 
 24.6 
 
 7.22 
 
 26.94 
 
 i-93 
 
 16.18 
 
 1.50 
 
 17.99 
 
 1-58 
 
 18.48 
 
 i. 60 
 
 5X3^x f 
 
 33.6 
 
 9.84 
 
 24.06 
 
 1.56 
 
 18.54 
 
 !-37 
 
 21.03 
 
 1.46 
 
 21.70 
 
 i-49 
 
 x& 
 
 30.4 
 
 8.94 
 
 22.06 
 
 i-57 
 
 16.63 
 
 1.36 
 
 18.85 
 
 i-45 
 
 J 9-45 
 
 i-47 
 
 x i 
 
 27.2 
 
 8.00 
 
 19.98 
 
 1.58 
 
 14.72 
 
 1.36 
 
 16.67 
 
 1.44 
 
 17.19 
 
 1.47 
 
 x^ 
 
 24.0 
 
 7.06 
 
 17.80 
 
 i-59 
 
 12.73 
 
 i-34 
 
 J 4-39 
 
 i-43 
 
 14.84 
 
 i-45 
 
 x f 
 
 20.8 
 
 6.10 
 
 15-56 
 
 i. 60 
 
 10.87 
 
 i-34 
 
 12.28 
 
 1.42 
 
 12.66 
 
 i-44 
 
 x& 
 
 17.4 
 
 5.12 
 
 13.20 
 
 1.61 
 
 9-05 
 
 !-33 
 
 IO.2I 
 
 1.41 
 
 10.52 
 
 1-43 
 
 4X3X& 
 
 24.6 
 
 7.24 
 
 II. IO 
 
 1.24 
 
 io-55 
 
 1. 21 
 
 12. 2O 
 
 1-30 
 
 12.65 
 
 1.32 
 
 x i 
 
 22.2 
 
 6.50 
 
 IO.IO 
 
 1.25 
 
 9-3 2 
 
 1.20 
 
 10.77 
 
 1.29 
 
 ii. 16 
 
 J-3 1 
 
 x^ 
 
 IQ.6 
 
 5.74 
 
 9.04 
 
 1.25 
 
 8.03 
 
 1.18 
 
 9.27 
 
 1.27 
 
 9.61 
 
 1.29 
 
 x I 
 
 17.0 
 
 4.96 
 
 7.92 
 
 1.26 
 
 6.86 
 
 1.18 
 
 7.90 
 
 1.26 
 
 8.19 
 
 1.28 
 
 x& 
 
 14.2 
 
 4.18 
 
 6.76 
 
 1.27 
 
 5-7i 
 
 1.17 
 
 6-57 
 
 1-25 
 
 6.81 
 
 1.28 
 
 3X2^X 1 
 
 17.0 
 
 5.00 
 
 4.16 
 
 .91 
 
 5-4i 
 
 1.04 
 
 6-43 
 
 LI3 
 
 6.71 
 
 1.16 
 
 x& 
 
 I5.2 
 
 4.44 
 
 3-76 
 
 .92 
 
 4-73 
 
 1.03 
 
 5-6i 
 
 1. 12 
 
 5-85 
 
 *"*S 
 
 x f 
 
 13.2 
 
 3.84 
 
 3-32 
 
 93 
 
 4.02 
 
 1.02 
 
 4.76 
 
 I. II 
 
 4.96 
 
 1.14 
 
 xA 
 
 II.O 
 
 3-24 
 
 2.84 
 
 94 
 
 3-30 
 
 I.OI 
 
 3-9 
 
 1. 10 
 
 4.07 
 
 1. 12 
 
 x 1 
 
 9.0 
 
 2.62 
 
 2-34 
 
 95 
 
 2.62 
 
 1. 00 
 
 3-09 
 
 1.0 9 
 
 3-23 
 
 I. II 
 
 2^X2X | 
 
 10.6 
 
 3.10 
 
 1.82 
 
 77 
 
 2.06 
 
 .82 
 
 2.56 
 
 .91 
 
 2.70 
 
 93 
 
 x& 
 
 9.0 
 
 2.62 
 
 1.58 
 
 .78 
 
 1.72 
 
 .8l 
 
 2.13 
 
 .90 
 
 2.24 
 
 93 
 
 x i 
 
 7-4 
 
 2.12 
 
 1.30 
 
 .78 
 
 1.36 
 
 .80 
 
 1.68 
 
 .89 
 
 1.77 
 
 .91 
 
 x& 
 
 5-6 
 
 1.62 
 
 i. 02 
 
 79 
 
 I. CO 
 
 79 
 
 1.23 
 
 -87 
 
 1.30 
 
 .90 
 
 (8) 
 
TABLE 3 (Continued} 
 
 LEGS, SHORT LEGS OUTSTANDING 
 
 Axis AA. 
 
 i" b. to b. 
 
 " b. to b. 
 
 \" b. to b. 
 
 I" b. to b. 
 
 i" b. to b. 
 
 I 
 
 r 
 
 I 
 
 r 
 
 I 
 
 r 
 
 I 
 
 r 
 
 I 
 
 r 
 
 3o-5 
 
 1.44 
 
 32.60 
 
 i-49 
 
 34.82 
 
 i-54 
 
 37.I5 
 
 i-59 
 
 39.60 
 
 i-55 
 
 27.72 
 
 i-43 
 
 29.62 
 
 1.48 
 
 31.64 
 
 i-53 
 
 33-76 
 
 1.58 
 
 35-98 
 
 1.63 
 
 24.69 
 
 1.41 
 
 26.39 
 
 1.46 
 
 28.18 
 
 i-5i 
 
 30.07 
 
 1-56 
 
 32.06 
 
 1.61 
 
 22.05 
 
 1.40 
 
 2 3-56 
 
 i-45 
 
 25.16 
 
 1.50 
 
 26.84 
 
 i-55 
 
 28.61 
 
 I.OO 
 
 iQ-43 
 
 !-39 
 
 20.76 
 
 1.44 
 
 22.16 
 
 i-49 
 
 23-64 
 
 i-54 
 
 25.20 
 
 i-59 
 
 16.70 
 
 1-38 
 
 17-83 
 
 1.42 
 
 19.04 
 
 1.47 
 
 20.31 
 
 1.52 
 
 21.65 
 
 i-57 
 
 I" b. to b. 
 
 A" t>- to b. 
 
 i" b. to b. 
 
 f " b. to b. 
 
 f " b. to b. 
 
 39-66 
 
 1.69 
 
 40.77 
 
 1.71 
 
 41.91 
 
 1.74 
 
 44-27 
 
 1.79 
 
 46.74 
 
 1.84 
 
 36.17 
 
 1.68 
 
 37-iS 
 
 1.70 
 
 38.22 
 
 J-73 
 
 40-37 
 
 1.77 
 
 42.62 
 
 1.82 
 
 32.41 
 
 1.66 
 
 33-3i 
 
 1.69 
 
 34-24 
 
 1.71 
 
 36-16 
 
 1.76 
 
 38.18 
 
 1.80 
 
 29.05 
 
 1.65 
 
 29.85 
 
 1.68 
 
 30.68 
 
 1.70 
 
 32-39 
 
 i-75 
 
 34-19 
 
 1.79 
 
 25-7I 
 
 1.65 
 
 26.42 
 
 1.67 
 
 27-15 
 
 1.69 
 
 28.66 
 
 1.74 
 
 30.24 
 
 1.78 
 
 22.21 
 
 1.63 
 
 22.82 
 
 1-65 
 
 23-44 
 
 1.67 
 
 24.74 
 
 1.72 
 
 26.10 
 
 1.77 
 
 18.98 
 
 1.62 
 
 19.49 
 
 1.64 
 
 20.02 
 
 1.67 
 
 21-13 
 
 1.71 
 
 22.28 
 
 1.76 
 
 22.39 
 
 i-5i 
 
 23.10 
 
 *-53 
 
 23.83 
 
 1.56 
 
 25-34 
 
 1.60 
 
 26.94 
 
 1.65 
 
 20.06 
 
 1.50 
 
 20.70 
 
 1.52 
 
 21-35 
 
 i-55 
 
 22.70 
 
 i-59 
 
 24.12 
 
 1.64 
 
 17-74 
 
 1.49 
 
 18.29 
 
 i-5i 
 
 18.86 
 
 i-54 
 
 20.06 
 
 1.58 
 
 21.31 
 
 1-63 
 
 I 5-3 
 
 1.47 
 
 15-78 
 
 1.50 
 
 16.27 
 
 1.52 
 
 17.30 
 
 i-57 
 
 18.38 
 
 1.61 
 
 13-05 
 
 1.46 
 
 13.46 
 
 i-49 
 
 13.88 
 
 i-5i 
 
 14.75 . 
 
 i-55 
 
 15.66 
 
 1.60 
 
 10.85 
 
 1.46 
 
 ii. 18 
 
 1.48 
 
 11.52 
 
 1.50 
 
 12.24 
 
 i-55 
 
 13.00 
 
 i-59 
 
 13.11 
 
 i-35 
 
 J 3-59 
 
 i-37 
 
 14.08 
 
 !-39 
 
 15.10 
 
 1.44 
 
 16.18 
 
 1.50 
 
 "57 
 
 i-33 
 
 11.99 
 
 1.36 
 
 12.42 
 
 1.38 
 
 I 3-3 2 
 
 i-43 
 
 14.28 
 
 1.48 
 
 9.96 
 
 1.32 
 
 10.32 
 
 i-34 
 
 10.69 
 
 1.36 
 
 11.46 
 
 1.41 
 
 12.28 
 
 1.46 
 
 8.48 
 
 -3 
 
 8-79 
 
 i-33 
 
 9.10 
 
 r -35 
 
 9.76 
 
 1.40 
 
 10.46 
 
 i-45 
 
 7-05 
 
 1.30 
 
 7-30 
 
 1.32 
 
 7-56 
 
 i-35 
 
 8.ii 
 
 i-39 
 
 8.68 
 
 1.44 
 
 6-99 
 
 1.18 
 
 7.29 
 
 1. 21 
 
 7.60 
 
 1.23 
 
 8.24 
 
 1.28 
 
 8-93 
 
 i-34 
 
 6.10 
 
 1.17 
 
 6.36 
 
 1.20 
 
 6.62 
 
 1.22 
 
 7.19 
 
 1.27 
 
 7-78 
 
 1.32 
 
 5-i7 
 
 1.16 
 
 5-39 
 
 1.18 
 
 5-62 
 
 1. 21 
 
 6.09 
 
 1.26 
 
 6.60 
 
 i-3i 
 
 4.24 
 
 1.14 
 
 4-42 
 
 1.17 
 
 4.60 
 
 I.I 9 
 
 4-99 
 
 1.24 
 
 5-4i 
 
 1.29 
 
 3-36 
 
 i-i3 
 
 3-5o 
 
 1.16 
 
 3-65 
 
 1.18 
 
 3.96 
 
 1.23 
 
 4-29 
 
 1.28 
 
 2.85 
 
 .96 
 
 3.00 
 
 .98 
 
 3-i6 
 
 I.OI 
 
 3-49 
 
 '1.06 
 
 3-85 
 
 i. ii 
 
 2.36 
 
 95 
 
 2-49 
 
 97 
 
 2.62 
 
 I.OO 
 
 2.89 
 
 1.05 
 
 3-!9 
 
 1. 10 
 
 1.86 
 
 94 
 
 1.96 
 
 .96 
 
 2.06 
 
 99 
 
 2.28 
 
 1.04 
 
 2-5 1 
 
 1.09 
 
 x -37 
 
 .92 
 
 1.44 
 
 94 
 
 1.52 
 
 97 
 
 1.68 
 
 1.02 
 
 1.85 
 
 1.07 
 
 (9) 
 
TABLE 4 
 
 STAR STRUTS 
 
 TWO ANGLES, EQUAL LEGS 
 
 SIZE. 
 
 TOTAL SECTION. 
 
 Axis CC. 
 
 Axis AA. 
 
 Weight. 
 
 Area. 
 
 I r 
 
 8x8x1 
 
 102.0 
 
 30.00 
 
 282.50 
 
 3-7 
 
 
 x|| 
 
 96.0 
 
 28.24 
 
 268.02 
 
 3.08 
 
 
 x I 
 
 90.0 
 
 26.46 
 
 253-I4 
 
 3-9 
 
 
 XT! 
 
 84.0 
 
 24.68 
 
 237.87 
 
 3.10 
 
 For I and r about axis AA, see 
 
 x f 
 
 77-8 
 
 22.88 
 
 222.2O 
 
 3.12 
 
 Table 2. 
 
 XT$ 
 
 71.6 
 
 21. 06 
 
 206.12 
 
 3- J 3 
 
 
 x| 
 
 65.4 
 
 19.22 
 
 189.61 
 
 3-i4 
 
 
 x& 
 
 59-0 
 
 17.36 
 
 172.69 
 
 3.15 
 
 
 x * 
 
 52.8 
 
 15.50 
 
 I55-32 
 
 3-17 
 
 
 6x6x f 
 
 57-4 
 
 1 6.88 
 
 89.39 
 
 2.30 
 
 
 XTS 
 
 53-0 
 
 15.56 
 
 83-25 
 
 2.31 
 
 
 x f 
 
 48.4 
 
 14.22 
 
 76.89 
 
 2-33 
 
 
 X& 
 
 43-8 
 
 12.86 
 
 70.31 
 
 2-34 
 
 
 x * 
 
 39-2 
 
 11.50 
 
 63-49 
 
 2-35 
 
 
 XTS 
 
 34-4 
 
 10.12 
 
 56.44 
 
 2.36 
 
 
 x I 
 
 29.6 
 
 8.72 
 
 49.14 
 
 2-37 
 
 
 4X4X | 
 
 3L4 
 
 9.22 
 
 2I.O4 
 
 r . 5 , 
 
 
 X& 
 
 28.6 
 
 8.36 
 
 19.40 
 
 1.52 
 
 
 x i 
 
 25-6 
 
 7.50 
 
 17.66 
 
 1.53 
 
 
 X T5 
 
 22.6 
 
 6.62 
 
 15.82 
 
 1.55 
 
 
 x I 
 
 19.6 
 
 5.72 
 
 13.89 
 
 1.56 
 
 
 x& 
 
 16.4 
 
 4.80 
 
 11.85 
 
 ^57 
 
 
 3X3X i 
 
 18.8 
 
 5.50 
 
 6-99 
 
 1.13 
 
 
 XTS 
 
 16.6 
 
 4.86 
 
 6.31 
 
 1.14 
 
 
 X | 
 
 14.4 
 
 4.22 
 
 5-59 
 
 1.15 
 
 
 Xfk 
 
 12.2 
 
 3.56 
 
 4.81 
 
 1.16 
 
 
 x 1 
 
 9.8 
 
 2.88 
 
 3-97 
 
 1.17 
 
 
 21X2JX& 
 
 13.6 
 
 4.00 
 
 3-49 
 
 93 
 
 
 x I 
 
 u.8 
 
 3-46 
 
 3.11 
 
 95 
 
 
 x& 
 
 10.0 
 
 2-94 
 
 2.69 
 
 .96 
 
 
 x i 
 
 8.2 
 
 2.38 
 
 2.24 
 
 97 
 
 
 x& 
 
 6.2 
 
 i. 80 
 
 1.74 
 
 .98 
 
 
 2X2X& 
 
 8.0 
 
 2.30 
 
 1.32 
 
 .76 
 
 
 x i 
 
 6.4 
 
 1.88 
 
 1. 10 
 
 77 
 
 
 X* 
 
 5-0 
 
 1.44 
 
 .87 
 
 .78 
 
 
 (10) 
 
4- 
 
 ! \ 
 
 TABLE 5 
 
 STAR STRUTS 
 
 TWO ANGLES, UNEQUAL LEGS 
 
 
 TOTAL SECTION. 
 
 Axis CC. 
 
 
 SIZE. 
 
 
 
 AXES AA AND BB. 
 
 
 Weight. 
 
 Area. 
 
 I 
 
 r 
 
 
 6x 4 x f 
 
 40.0 
 
 11.72 
 
 48.97 
 
 2.04 
 
 
 x& 
 
 36.2 
 
 10.62 
 
 44.85 
 
 2.o6 
 
 
 X J 
 
 32.4 
 
 9-50 
 
 40-57 
 
 2.07 
 
 
 xA 
 
 28.6 
 
 8.36 
 
 36.13 
 
 2.08 
 
 
 x I 
 
 2 4 .6 
 
 7.22 
 
 3L52 
 
 2.09 
 
 
 
 
 
 
 
 For I and r about axis AA, see 
 
 4X3X \ 
 
 22.2 
 
 6.50 
 
 12.32 
 
 1.38 
 
 Table 3. 
 
 x 
 
 IQ.6 
 
 5-74 
 
 11.07 
 
 1-39 
 
 
 xf 
 
 17.0 
 
 4.96 
 
 9-74 
 
 1.40 
 
 For I and r about axis BB, see 
 
 x& 
 
 14.2 
 
 4 .l8 
 
 8-33 
 
 I.4I 
 
 Table i. 
 
 3X2JX& 
 
 15-2 
 
 4.44 
 
 4.90 
 
 1.0 5 
 
 
 x| 
 
 13.2 
 
 3.84 
 
 4-35 
 
 1. 06 
 
 
 x& 
 
 II.O 
 
 3-24 
 
 3-75 
 
 1. 08 
 
 
 y 1 
 
 Q.O 
 
 2.62 
 
 3.10 
 
 1.00 
 
 
 (II) 
 
TABLE 6 
 
 , L. J 
 
 r T 
 
 UNEQUAL LEGS, 
 
 
 
 Axis AA. 
 
 SIZE. 
 
 
 f " b. to b. 
 
 A" b. to b. 
 
 \" b. to b. 
 
 
 Weight. 
 
 Area. 
 
 I 
 
 r 
 
 I r 
 
 I 
 
 r 
 
 7X3*X f 
 
 9Q.6 
 
 29.24 
 
 374-43 
 
 3-58 
 
 379-59 
 
 3.60 
 
 384.81 
 
 3-63 
 
 xH 
 
 92.0 
 
 27.00 
 
 343-67 
 
 3-57 
 
 348.40 
 
 3-59 
 
 353-19 
 
 3.62 
 
 x I 
 
 84.0 
 
 24.68 
 
 311.10 
 
 3-55 
 
 3I5-38 
 
 3-57 
 
 3J9-7 1 
 
 3-60 
 
 x& 
 
 76.0 
 
 22.36 
 
 280.28 
 
 3-54 
 
 284.13 
 
 3-56 
 
 288.02 
 
 3-59 
 
 x i 
 
 68.0 
 
 2O.OO 
 
 249.34 
 
 3-53 
 
 252-75 
 
 3-55 
 
 256.21 
 
 3-58 
 
 x& 
 
 60.0 
 
 17.60 
 
 217.36 
 
 3-5i 
 
 220.33 
 
 3-54 
 
 223-34 
 
 3-56 
 
 
 
 
 i" b. to b. 
 
 T y b. to b. 
 
 f " b. to b. 
 
 6X4X 
 
 94.4 
 
 27.76 
 
 233.01 
 
 2.90 
 
 236.86 
 
 2.92 
 
 240.77 
 
 2-95 
 
 xft 
 
 87.2 
 
 25.64 
 
 213.69 
 
 2.89 
 
 217.22 
 
 2.91 
 
 220.79 
 
 2-93 
 
 x I 
 
 80.0 
 
 23-44 
 
 I93-J4 
 
 2.87 
 
 196.31 
 
 2.89 
 
 J 99-54 
 
 2.92 
 
 x& 
 
 72.4 
 
 21.24 
 
 173.86 
 
 2.86 
 
 176.71 
 
 2.88 
 
 179.61 
 
 2.91 
 
 x i 
 
 64.8 
 
 19.00 
 
 . 154-59 
 
 2.85 
 
 157.12 
 
 2.88 
 
 159.69 
 
 2.90 
 
 x^ 
 
 57-2 
 
 16.72 
 
 134-53 
 
 2.84 
 
 136.72 
 
 2.86 
 
 i3 8 -95 
 
 2.88 
 
 x I 
 
 49.2 
 
 14.44 
 
 115.46 
 
 2.83 
 
 H7-33 
 
 2.85 
 
 119.24 
 
 2.87 
 
 5X3ix | 
 
 67.2 
 
 19.68 
 
 113.67 
 
 2.40 
 
 "5-93 
 
 2-43 
 
 118.23 
 
 2-45 
 
 x& 
 
 60.8 
 
 17.88 
 
 102.37 
 
 2 -39 
 
 104.41 
 
 2.42 
 
 106.48 
 
 2.44 
 
 x i 
 
 54-4 
 
 16.00 
 
 90.94 
 
 2.38 
 
 92.74 
 
 2.41 
 
 94-57 
 
 2-43 
 
 x^ 
 
 48.0 
 
 14.12 
 
 79.09 
 
 2-37 
 
 80.65 
 
 2-39 
 
 82.24 
 
 2.41 
 
 x I 
 
 41.6 
 
 12.20 
 
 67.84 
 
 2.36 
 
 69.18 
 
 2.38 
 
 7-54 
 
 2.40 
 
 x& 
 
 34-8 
 
 10.24 
 
 5 6 -5 2 
 
 2-35 
 
 57-63 
 
 2-37 
 
 58.75 
 
 2.40 
 
 4X3X& 
 
 49.2 
 
 14.48 
 
 53-7 
 
 i-93 
 
 55-5 
 
 !-95 
 
 56.43 
 
 1.97 
 
 x 1 
 
 44.4 
 
 13.00 
 
 47.72 
 
 1.92 
 
 48.92 
 
 i-94 
 
 50.14 
 
 1.96 
 
 x^ 
 
 39-2 
 
 11.48 
 
 4i-39 
 
 1.90 
 
 42.42 
 
 1.92 
 
 43-48 
 
 !-95 
 
 x f 
 
 34-0 
 
 9.92 
 
 35-42 
 
 1.89 
 
 36-30 
 
 1.91 
 
 37.20 
 
 1.94 
 
 x& 
 
 28.4 
 
 8.36 
 
 29.56 
 
 1.88 
 
 30.29 
 
 1.90 
 
 31.04 
 
 1-93 
 
 3X2^X i 
 
 34-0 
 
 IO.OO 
 
 20.98 
 
 i-45 
 
 21.69 
 
 1.47 
 
 22.42 
 
 1.50 
 
 x& 
 
 30.4 
 
 8.88 
 
 18.36 
 
 1.44 
 
 18.98 
 
 1.46 
 
 19.62 
 
 1.49 
 
 x I 
 
 26.4 
 
 7.68 
 
 15.68 
 
 i-43 
 
 16.21 
 
 i-45 
 
 l6 -75 
 
 1.48 
 
 x& 
 
 22. 
 
 6.48 
 
 12.89 
 
 1.41 
 
 J 3-33 
 
 i-43 
 
 J 3-77 
 
 1.46 
 
 x i 
 
 18.0 
 
 5-24 
 
 10.29 
 
 1.40 
 
 10.64 
 
 1.42 
 
 10.99 
 
 i-45 
 
 2^X2X | 
 
 21.2 
 
 6.20 
 
 9.29 
 
 1.22 
 
 9.67 
 
 1-25 
 
 10.06 
 
 1.27 
 
 x& 
 
 18.0 
 
 5.24 
 
 7-74 
 
 1.22 
 
 8.05 
 
 1.24 
 
 8-37 
 
 1.26 
 
 x i 
 
 14.8 
 
 4.24 
 
 6.15 
 
 1. 2O 
 
 6.40 
 
 1.23 
 
 6.65 
 
 1.25 
 
 x& 
 
 II. 2 
 
 3.24 
 
 4-58 
 
 I.I 9 
 
 4-76 
 
 1. 21 
 
 4-95 
 
 1.24 
 
 (12) 
 
TABLE 6 {Continued) 
 
 ANGLES, LACED 
 
 LONG LEGS OUTSTANDING 
 
 Axis AA. 
 
 f " b. to b. 
 
 i" b. to b. 
 
 I" b. to b. 
 
 i" b. to b. 
 
 I 
 
 r 
 
 I 
 
 r 
 
 I 
 
 r 
 
 I 
 
 r 
 
 395-41 
 
 3 .68 
 
 406.24 
 
 3-73 
 
 417-30 
 
 3-78 
 
 428.59 
 
 3-83 
 
 362.91 
 
 3-67 
 
 372-85 
 
 3-72 
 
 382.99 
 
 3-77 
 
 393-35 
 
 3.82 
 
 328.50 
 
 3-65 
 
 337-49 
 
 3-7 
 
 346.67 
 
 3-75 
 
 356-05 
 
 3-80 
 
 295.94 
 
 3- 6 4 
 
 304.02 
 
 3-69 
 
 312.29 
 
 3-74 
 
 320.72 
 
 3-79 
 
 263.24 
 
 3-63 
 
 270.42 
 
 3-68 
 
 277.76 
 
 3-73 
 
 285.26 
 
 3-78 
 
 229.46 
 
 3.61 
 
 235-7I 
 
 3-66 
 
 242.11 
 
 3-7i 
 
 248.64 
 
 3-76 
 
 A" b. to b. 
 
 \" b. to b. 
 
 'f " b. to b. 
 
 f " b. to b. 
 
 244-73 
 
 2-97 
 
 248.75 
 
 2.99 
 
 256.94 
 
 3-04 
 
 265-35 
 
 3-09 
 
 224.42 
 
 2.96 
 
 228.10 
 
 2.98 
 
 235-60 
 
 3-03 
 
 243-3 
 
 3.08 
 
 202.81 
 
 2.94 
 
 206.13 
 
 2-97 
 
 212.90 
 
 3.01 
 
 219.86 
 
 3.06 
 
 182.55 
 
 2 -93 
 
 185-53 
 
 2.96 
 
 191.61 
 
 3-oo 
 
 197.86 
 
 3-05 
 
 162.29 
 
 2.92 
 
 164.93 
 
 2-95 
 
 170-33 
 
 2 -99 
 
 I75-87 
 
 3-4 
 
 141.21 
 
 2.91 
 
 143-50 
 
 2-93 
 
 148.19 
 
 2.98 
 
 i53-oo 
 
 3-03 
 
 121.17 
 
 2.90 
 
 123.14 
 
 2.92 
 
 127.14 
 
 2-97 
 
 131.27 
 
 3-02 
 
 120.57 
 
 2.48 
 
 122.95 
 
 2.50 
 
 127.83 
 
 2-55 
 
 132-85 
 
 2.60 
 
 108.58 
 
 2.46 
 
 110.72 
 
 2.49 
 
 115.10' 
 
 2-54 
 
 119.63 
 
 2-59 
 
 96-43 
 
 2.46 
 
 98-33 
 
 2.48 
 
 102.21 
 
 2-53 
 
 106.22 
 
 2-58 
 
 83.86 
 
 2.44 
 
 85-5i 
 
 2.46 
 
 88.88 
 
 2.51 
 
 92-36 
 
 2.56 
 
 71.92 
 
 2-43 
 
 73-33 
 
 2-45 
 
 76.21 
 
 2.50 
 
 79.19 
 
 2-55 
 
 59-90 
 
 2.42 
 
 61.07 
 
 2.44 
 
 63.46 
 
 2-49 
 
 65-94 
 
 2-54 
 
 57.83 
 
 2.OO 
 
 59-27 
 
 2.02 
 
 62.22 
 
 2.07 
 
 65-29 
 
 2.12 
 
 51-38 
 
 1.99 
 
 52-65 
 
 2.01 
 
 55-27 
 
 2.06 
 
 57-99 
 
 2. II 
 
 44-5 6 
 
 1.97 
 
 45-66 
 
 1-99 
 
 47-93 
 
 2.04 
 
 50.29 
 
 2.09 
 
 38.12 
 
 I. 9 6 
 
 39.06 
 
 1.98 
 
 41.00 
 
 2-03 
 
 43.01 
 
 2.08 
 
 31.80 
 
 i-95 
 
 32-58 
 
 1.97 
 
 34-19 
 
 2.O2 
 
 35-87 
 
 2.07 
 
 2 3-i7 
 
 1.52 
 
 2 3-95 
 
 i-55 
 
 25-55 
 
 1. 60 
 
 27-23 
 
 1.65 
 
 20.28 
 
 i-5i 
 
 20.95 
 
 i-54 
 
 22.35 
 
 i-59 
 
 23.82 
 
 1.64 
 
 I7-3I 
 
 1.50 
 
 17.88 
 
 -53 
 
 19.08 
 
 1.58 
 
 20.33 
 
 1.6 3 
 
 14.23 
 
 1.48 
 
 14.70 
 
 -S" 
 
 15.68 
 
 1.56 
 
 16.72 
 
 1.61 
 
 11.36 
 
 1.47 
 
 "73 
 
 1.50 
 
 12.51 
 
 *5S 
 
 J 3-33 
 
 i. 60 
 
 10.46 
 
 1.30 
 
 10.87 
 
 1.32 
 
 "73 
 
 1.38 
 
 12.64 
 
 1-43 
 
 8.71 
 
 1.29 
 
 9-5 
 
 1-31 
 
 9-76 
 
 1.36 
 
 10.52 
 
 1.42 
 
 6.91 
 
 1.28 
 
 7.19 
 
 1.30 
 
 7-75 
 
 i-35 
 
 8-35 
 
 1.40 
 
 5-14 
 
 1.26 
 
 5-35 
 
 1.28 
 
 5-77 
 
 i-33 
 
 6.21 
 
 1.38 
 
 
 
 
 
 
 
 
 (13) 
 
u 
 r" n" 
 
 TABLE 7 
 
 FOUR 
 
 EQUAL 
 
 
 
 Axis AA 
 
 SIZE. 
 
 TOTAL SECTION. 
 
 i" b. to b. 
 
 iV" b. to b. 
 
 \" b. to b. 
 
 
 Weight. 
 
 Area. 
 
 I 
 
 r 
 
 I 
 
 r 
 
 I 
 
 r 
 
 8x8x1 
 
 204.0 
 
 6O.OO 
 
 748.37 
 
 3-53 
 
 758.oi 
 
 3-55 
 
 767.78 
 
 3-58 
 
 xtf 
 
 192.0 
 
 56.48 
 
 698.13 
 
 3-52 
 
 707.10 
 
 3-54 
 
 716.19 
 
 3-56 
 
 x I 
 
 iSo.O 
 
 52.92 
 
 651-05 
 
 3-5 1 
 
 659.40 
 
 3-53 
 
 667.85 
 
 3-55 
 
 xif 
 
 168.0 
 
 49.36 
 
 604.26 
 
 3-5o 
 
 611.98 
 
 3-52 
 
 619.80 
 
 3-54 
 
 x 1 
 
 155.6 
 
 45.76 
 
 557-57 
 
 3-49 
 
 564.67 
 
 3.51 
 
 57I-87 
 
 3-54 
 
 xft 
 
 143.2 
 
 42.12 
 
 508.81 
 
 3-48 
 
 515-27 
 
 3-5 
 
 521.81 
 
 3-52 
 
 x f 
 
 130.8 
 
 38.44 
 
 462.33 
 
 3-47 
 
 468.18 
 
 3-49 
 
 474.10 
 
 3.51 
 
 x^ 
 
 118.0 
 
 34.72 
 
 4I5-93 
 
 3-46 
 
 421.17 
 
 3-48 
 
 426.47 
 
 3-5 
 
 x * 
 
 105.6 
 
 31.00 
 
 369-75 
 
 3-45 
 
 374-38 
 
 3-48 
 
 379.08 
 
 3-5 
 
 6x6x | 
 
 114.8 
 
 33.76 
 
 243.28 
 
 2.68 
 
 247.47 
 
 2.71 
 
 251.72 
 
 2-73 
 
 xft 
 
 106.0 
 
 3LI2 
 
 221.58 
 
 2.67 
 
 225.38 
 
 2.69 
 
 229.24 
 
 2.71 
 
 x f 
 
 96.8 
 
 28.44 
 
 201.21 
 
 2.66 
 
 204.64 
 
 2.68 
 
 208.14 
 
 2.71 
 
 x& 
 
 87.6 
 
 25.72 
 
 180.88 
 
 2.65 
 
 183.96 
 
 2.67 
 
 187.09 
 
 2.70 
 
 x 1 
 
 78.4 
 
 23.00 
 
 I59-85 
 
 2.64 
 
 162.56 
 
 2.66 
 
 165-31 
 
 2.68 
 
 Xik 
 
 68.8 
 
 20.24 
 
 139.80 
 
 2.63 
 
 142.16 
 
 2.65 
 
 144.56 
 
 2.67 
 
 x 1 
 
 59-2 
 
 17.44 
 
 119.80 
 
 2.62 
 
 121.81 
 
 2.64 
 
 123.86 
 
 2.66 
 
 
 
 
 $" b. to b. 
 
 T y b. to b. 
 
 |" b. to b. 
 
 4X4X f 
 
 62.8 
 
 18.44 
 
 60.50 
 
 1.81 
 
 62.08 
 
 1.83 
 
 63-69 
 
 1.86 
 
 x& 
 
 57-2 
 
 16.72 
 
 54.28 
 
 1.80 
 
 55.69 
 
 1.83 
 
 57-13 
 
 1.85 
 
 x i 
 
 51-2 
 
 15.00 
 
 47-79 
 
 1.78 
 
 49.02 
 
 1.81 
 
 50.29 
 
 1.83 
 
 x rV 
 
 45.2 
 
 13.24 
 
 41.74 
 
 1.78 
 
 42.82 
 
 i. 80 
 
 43-92 
 
 1.82 
 
 x f 
 
 39.2 
 
 11.44 
 
 35-75 
 
 1.77 
 
 36.66 
 
 1.79 
 
 37.60 
 
 r.8i 
 
 x& 
 
 32.8 
 
 9.60 
 
 29.72 
 
 1.76 
 
 30.48 
 
 1.78 
 
 31-25 
 
 i. 80 
 
 3X3X i 
 
 37.6 
 
 11.00 
 
 21.12 
 
 i-39 
 
 21.86 
 
 1.41 
 
 22.62 
 
 i-43 
 
 X A 
 
 33-2 
 
 9.72 
 
 18.37 
 
 i-37 
 
 19.01 
 
 1.40 
 
 19.67 
 
 1.42 
 
 x f 
 
 28.8 
 
 8.44 
 
 15-73 
 
 1.37 
 
 16.28 
 
 1.39 
 
 16.84 
 
 1.41 
 
 x& 
 
 24.4 
 
 7.12 
 
 13.09 
 
 1.36 
 
 J3-54 
 
 1.38 
 
 14.00 
 
 1.40 
 
 x i 
 
 19.6 
 
 5.76 
 
 10.32 
 
 i-34 
 
 10.68 
 
 1.36 
 
 11.04 
 
 1.38 
 
 2jX2iX^ 
 
 27.2 
 
 8.00 
 
 10.99 
 
 1.17 
 
 n-45 
 
 1.20 
 
 n-93 
 
 1.22 
 
 x f 
 
 23.6 
 
 6.92 
 
 9 : 34 
 
 1.16 
 
 9-73 
 
 I.I9 
 
 10.13 
 
 1. 21 
 
 x& 
 
 20.0 
 
 5-88 
 
 7.80 
 
 MS 
 
 8.12 
 
 1.18 
 
 8.46 
 
 1.20 
 
 x i 
 
 16.4 
 
 4.76 
 
 6. 20 
 
 1.14 
 
 6-45 
 
 1.16 
 
 6.72 
 
 I.I9 
 
 x& 
 
 I2. 4 
 
 3-60 
 
 4-59 
 
 1-13 
 
 4-78 
 
 I-I5 
 
 4-97 
 
 1.18 
 
 2X2X& 
 
 16.0 
 
 4.60 
 
 4.16 
 
 95 
 
 4-38 
 
 .98 
 
 4.61 
 
 I.OO 
 
 x i 
 
 12.8 
 
 3.76 
 
 3-32 
 
 -94 
 
 3-49 
 
 .96 
 
 3-67 
 
 99 
 
 x& 
 
 10.0 
 
 2.88 
 
 2.51 
 
 93 
 
 2.64 
 
 .96 
 
 2-77 
 
 .98 
 
 (14) 
 
ANGLES, LACED 
 LEGS 
 
 TABLE 7 {Continued} 
 
 Axis AA. 
 
 | " b. to b. 
 
 \" b. to b. 
 
 I" b. to b. 
 
 i" b. to b. 
 
 I 
 
 r 
 
 I 
 
 r 
 
 i 
 
 r 
 
 i 
 
 r 
 
 787.67 
 
 3-62 
 
 808.02 
 
 3-67 
 
 828.84 
 
 3-7 2 - 
 
 850.13 
 
 3-76 
 
 734-7 
 
 3-6i 
 
 753-65 
 
 3-65 
 
 773-03 
 
 3-70 
 
 792.87 
 
 3-75 
 
 685.06 
 
 3-6o 
 
 702.68 
 
 3-64 
 
 720.71 
 
 3-69 
 
 739-i6 
 
 3-74 
 
 635-73 
 
 3-59 
 
 652.04 
 
 3-63 
 
 668.74 
 
 3-68 
 
 685.82 
 
 3-73 
 
 586.52 
 
 3-58 
 
 601.52 
 
 3-63 
 
 616.89 
 
 3-67 
 
 632.61 
 
 3-72 
 
 535-M 
 
 3.56 
 
 548.79 
 
 3-6l 
 
 562.78 
 
 3-66 
 
 577-09 
 
 3-7o 
 
 486.17 
 
 3-56 
 
 498.53 
 
 3-60 
 
 511.20 
 
 3-65 
 
 524-17 
 
 3-69 
 
 437.28 
 
 3-55 
 
 448.37 
 
 3-59 
 
 459-72 
 
 3-64 
 
 471-35 
 
 3-68 
 
 388.66 
 
 3-54 
 
 398.48 
 
 3-59 
 
 408.53 
 
 3-63 
 
 418.84 
 
 3-68 
 
 260.42 
 
 2.78 
 
 269.38 
 
 2.82 
 
 278.60 
 
 2.87 
 
 288.10 
 
 2.92 
 
 237-M 
 
 2.76 
 
 245-29 
 
 2.81 
 
 253-67 
 
 2.86 
 
 262.31 
 
 2.90 
 
 215.29 
 
 2 -75 
 
 222.66 
 
 2.80 
 
 230.25 
 
 2-85 
 
 238.07 
 
 2.89 
 
 !93-49 
 
 2.74 
 
 20O.09 
 
 2 -79 
 
 206.89 
 
 2.84 
 
 213.90 
 
 2.88 
 
 I70-95 
 
 2-73 
 
 176.77 
 
 2-77 
 
 182.77 
 
 2.82 
 
 188.95 
 
 2.87 
 
 149.47 
 
 2.72 
 
 154-54 
 
 2.76 
 
 J 59-77 
 
 2.81 
 
 l6 5-i5 
 
 2.86 
 
 128.05 
 
 2.71 
 
 *32-37 
 
 2-75 
 
 136-83 
 
 2.80 
 
 141-43 
 
 2-85 
 
 T y b. to b. 
 
 i" b. to b. 
 
 |" b. to b. 
 
 f " b. to b. 
 
 65-34 
 
 1.88 
 
 67.03 
 
 1.91 
 
 70-51 
 
 1.96 
 
 74.14 
 
 2.01 
 
 58.61 
 
 1.87 
 
 60.12 
 
 1.90 
 
 63.24 
 
 1.94 
 
 66.48 
 
 1-99 
 
 51-59 
 
 1.85 
 
 52-9 1 
 
 1.88 
 
 55-65 
 
 i-93 
 
 58-51 
 
 1.97 
 
 45-05 
 
 1.84 
 
 46.20 
 
 1.87 
 
 48.59 
 
 1.92 
 
 51.08 
 
 1.96 
 
 38.56 
 
 1.84 
 
 39-54 
 
 1.86 
 
 41.58 
 
 1.91 
 
 43-7 
 
 i-95 
 
 32-05 
 
 1.83 
 
 32.86 
 
 1-85 
 
 34-54 
 
 1.90 
 
 36-3 
 
 1.94 
 
 23.40 
 
 1.46 
 
 24.20 
 
 1.48 
 
 25.86 
 
 J-53 
 
 27.61 
 
 1.58 
 
 20.34 
 
 i-45 
 
 21.04 
 
 1.47 
 
 22.49 
 
 1.52 
 
 24.01 
 
 i-57 
 
 17.41 
 
 1.44 
 
 18.01 
 
 1.46 
 
 19.24 
 
 i-5i 
 
 ^o-55 
 
 1.56 
 
 14.48 
 
 i-43 
 
 14.97 
 
 i-45 
 
 16.00 
 
 1.50 
 
 17.08 
 
 i-55 
 
 11.42 
 
 1.41 
 
 11.80 
 
 1-43 
 
 12. 6l 
 
 1.48 
 
 13.46 
 
 i-53 
 
 12.42 
 
 1-25 
 
 12.93 
 
 1.27 
 
 !3-99 
 
 1.32 
 
 15.11 
 
 !-37 
 
 IO -55 
 
 1.23 
 
 10.98 
 
 1.26 
 
 u.88 
 
 J-3 1 
 
 12.83 
 
 1-36 
 
 8.80 
 
 1.22 
 
 9.16 
 
 1.25 
 
 9.91 
 
 1.30 
 
 10.71 
 
 !-35 
 
 6-99 
 
 1. 21 
 
 7.28 
 
 1.24 
 
 7.87 
 
 1.29 
 
 8-51 
 
 i-34 
 
 5-J7 
 
 1.20 
 
 5-38 
 
 1.22 
 
 5-82 
 
 1.27 
 
 6.28 
 
 1.32 
 
 4.84 
 
 1.03 
 
 5-o8 
 
 1.05 
 
 5-59 
 
 I.IO 
 
 6.14 
 
 1.16 
 
 3-86 
 
 I.OI 
 
 4-05 
 
 1.04 
 
 4.46 
 
 1.09 
 
 4.90 
 
 1.14 
 
 2.91 
 
 I.OI 
 
 3-o6 
 
 1.0 3 
 
 3-36 
 
 i. 08 
 
 3-69 
 
 1-13 
 
S 
 2 
 
 00 
 
 W 
 PQ 
 
 * M S" 
 
 t^ t^- O 
 
 . O <"O ** O 
 
 VO VO Tf Tt 
 
 ON 
 Tj- 
 
 ON <N *> M IT) 
 
 M O ON 00 
 
 % 
 
 od 
 
 O ON t^ vO u-> 
 
 ON 
 co 
 
 ^- ro f*5 * t/i oONvot^fO 
 ONOOl>.vO^Ovorl- 10 Tf ^ PO fj 
 
 
 
 ONOOt^.to 
 
 <N rj- CO vO ON OO vo 
 
 co ^j- ^- *o w co o 
 
 'd-rOWMO 
 
 
 rO-3-voOOCOCO 
 
 -3-voO 
 'tPOO 
 
 od 4 6 
 
 OOOOONOTj- 
 VOOOOMNN 
 
 ^ t^ T*- <S O 
 (N N N N N 
 
 vq q q q o q 
 
 O\ N ^ vO 00 O 
 O> O 00 l> vO vo 
 
 JiL 
 
 i 
 
 X X X X X X 
 
 xxxxxxx xxxxxx 
 
 ^- HN 
 
 X 
 
 (16) 
 
TABLE 9 (Continued on pp. 18 and 19) 
 
 POUR ANGLES, LACED 
 
 UNEQUAL LEGS, LONG , LEGS OUTSTANDING 
 
 SIZE. 
 
 TOTAL SECTION. 
 
 Axis ED. 
 
 7i" b. to b. 
 
 8" b. to b. 
 
 iol" b. to b. 
 
 Weight. 
 
 Area. 
 
 I 
 
 r 
 
 I 
 
 r 
 
 I r 
 
 7X3*x f 
 xH 
 x I 
 x& 
 x * 
 
 6x4 x I 
 xft 
 x I 
 x& 
 x * 
 x& 
 x } 
 
 5X3}X f 
 x& 
 x * 
 x& 
 x i 
 x& 
 
 4x3 x& 
 
 xi 
 
 x^ 
 x| 
 xA 
 
 3X2JX i 
 
 x& 
 x I 
 x* 
 
 x i 
 
 9Q.6 
 92.0 
 84.0 
 76.0 
 
 68.0 
 60.0 
 
 94.4 
 87.2 
 80.0 
 72.4 
 64.8 
 57-2 
 49.2 
 
 67.2 
 60.8 
 
 54-4 
 48.0 
 41.6 
 34-8 
 
 49.2 
 44.4 
 39-2 
 34-0 
 28.4 
 
 34-0 
 30.4 
 26.4 
 
 22.0 
 
 18.0 
 
 29.24 
 27.OO 
 24.68 
 22.36 
 20.00 
 17.60 
 
 27.76 
 25-64 
 23.44 
 21.24 
 19.00 
 16.72 
 14.44 
 
 19.68 
 17.88 
 
 16.00 
 14.12 
 
 12.20 
 IO.24 
 
 14.48 
 13.00 
 11.48 
 9.92 
 8.36 
 
 10.00 
 
 8.88 
 7.68 
 6.48 
 5.24 
 
 266.85 
 249.83 
 233.00 
 214.03 
 194.06 
 174.20 
 
 3.02 
 3-4 
 3-07 
 3-9 
 3.12 
 
 3-!5 
 
 334-12 
 
 312.35 
 
 290.70 
 266.64 
 241.42 
 216.28 
 
 3.38 
 3-40 
 3-43 
 3-45 
 3-47 
 3-5 1 
 
 553-7 1 
 516.20 
 
 478-52 
 437.70 
 395-22 
 352-68 
 
 4-35 
 4-37 
 4.40 
 4.42 
 
 4-45 
 4-48 
 
 
 8V' b. to b. 
 
 io" b. to b. 
 
 
 
 313-68 
 293.36 
 273.12 
 250.61 
 227.00 
 203.38 
 177.81 
 
 3-36 
 3.38 
 3-4i 
 3-43 
 3-46 
 3-49 
 3-5 1 
 
 488.93 
 456.12 
 
 423-15 
 387-30 
 349-95 
 312.45 
 272.51 
 
 4.20 
 4.22 
 
 4-25 
 4.27 
 4.29 
 4-32 
 4-34 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7i" b. to b. 
 
 8}" b. to b. 
 
 io". b. to b. 
 
 173.61 
 1 59-99 
 145-25 
 130-83 
 114.62 
 
 97-59 
 
 2-97 
 2.99 
 3.01 
 3-4 
 3-07 
 3-9 
 
 217.71 
 200.32 
 181.58 
 163.20 
 142.77 
 121.38 
 
 3-33 
 3-35 
 3-37 
 3-40 
 3-42 
 3-44 
 
 362.35 
 332.45 
 300.46 
 268.96 
 234.64 
 198.90 
 
 4-29 
 4-3 1 
 4-33 
 4.36 
 4-39 
 4.41 
 
 6" b. to b. 
 
 8i" b. to b. 
 
 ioj" b. to b. 
 
 94.04 
 85.81 
 
 77-63 
 68.20 
 
 58-43 
 
 2-55 
 2-57 
 2.60 
 2.62 
 2.64 
 
 l6 5-95 
 150.82 
 
 135-64 
 118.68 
 101.26 
 
 3-39 
 3-4i 
 3-44 
 3-46 
 3-48 
 
 275.27 
 249.49 
 223.46 
 194.96 
 165.88 
 
 4-36 
 4-38 
 4.41 
 
 4-43 
 4-45 
 
 Si" b. to b. 
 
 ~8i" b. to b. 
 
 ioi" b. to b. 
 
 45.20 
 
 40.95 
 36.12 
 
 3i-37 
 25-85 
 
 2.13 
 
 2.15 
 2.17 
 
 2.20 
 2.22 
 
 119.11 
 
 107.07 
 
 93-73 
 80.50 
 65.87 
 
 3-45 
 3-47 
 3-49 
 3-52 
 3-55 
 
 196.61 
 176.25 
 153-86 
 I3L63 
 107.43 
 
 4-43 
 4-45 
 4-48 
 4oi 
 4-53 
 
 (17) 
 
L 
 
 r 
 
 j 
 
 TABLE 9 {Continued) 
 
 FOUR ANGLES, 
 
 UNEQUAL LEGS, LONG 
 
 
 
 Axis BB. 
 
 SIZE. 
 
 
 i2" b. to b. 
 
 i Si" b. to b. 
 
 i8" b. to b. 2ii" b. to b. 
 
 
 Weight. 
 
 Area. 
 
 I 
 
 r 
 
 I 
 
 r 
 
 I 
 
 r I 
 
 r 
 
 ' 7X3*X f 
 
 9Q.6 
 
 29.24 
 
 831.78 
 
 5-33 
 
 J 358-54 
 
 6.82 
 
 2016.88 
 
 8.31 
 
 2806.80 
 
 9.80 
 
 xft 
 
 92.0 
 
 27.00 
 
 774-os 
 
 5-35 
 
 1262.08 
 
 6.84 
 
 1871.60 
 
 8-33 
 
 2602.63 
 
 9.82 
 
 x I 
 
 84.0 
 
 24.68 
 
 715-69 
 
 5-39 
 
 1164.00 
 
 6.87 
 
 !7 2 3-37 
 
 8.36 
 
 2393.81 
 
 9-85 
 
 x& 
 
 76.0 
 
 22.36, 
 
 6 53-47 
 
 5-41 
 
 1060.98 
 
 6.89 
 
 1569.11 
 
 8.38 
 
 2177.86 
 
 9-87 
 
 x } 
 
 68.0 
 
 20.00 
 
 589.02 
 
 5.43 
 
 954-72 
 
 6.91 
 
 1410.42 
 
 8.40 
 
 1956.12 
 
 9^9 
 
 x& 
 
 60.0 
 
 17.60 
 
 524.28 
 
 5-46 
 
 847.68 
 
 6-94 
 
 1250.28 
 
 8-43 
 
 1732.08 
 
 9.92 
 
 
 
 
 12!" b. tob. 
 
 151" b. to b. 
 
 i8i" b. to b. 
 
 2ii" b. to b. 
 
 6x 4 x J 
 
 94.4 
 
 27.76 
 
 741.27 
 
 5.i7 
 
 1223.88 
 
 6.64 
 
 1831.40 
 
 8.12 
 
 2563-85 
 
 9.61 
 
 xft 
 
 87.2 
 
 25.64 
 
 690.21 
 
 5.i9 
 
 II 37-5 
 
 6.66 
 
 1700.17 
 
 8.14 
 
 2378.22 
 
 9-63 
 
 x.f 
 
 80.0 
 
 23-44 
 
 638.56 
 
 5.22 
 
 1049.58 
 
 6.69 
 
 1566.08 
 
 8.17 
 
 2188.06 
 
 9.66 
 
 x& 
 
 72.4 
 
 21.24 
 
 583-35 
 
 5-24 
 
 957.06 
 
 6.71 
 
 1426.36 
 
 8.19 
 
 1991.24 
 
 9 .68 
 
 1 x i 
 
 64.8 
 
 19.00 
 
 526.08 
 
 5.26 
 
 861.52 
 
 6-73 
 
 1282.47 
 
 8.22 
 
 1788.91 
 
 9.70 
 
 xA 
 
 57-2 
 
 16.72 
 
 468.44 
 
 5- 2 9 
 
 765.14 
 
 6.76 
 
 1137.08 
 
 8.2 5 
 
 1584.25 
 
 9-73 
 
 x I 
 
 49.2 
 
 14.44 
 
 407.81 
 
 5-3i 
 
 664.91 
 
 6.79 
 
 987.00 
 
 8.27 
 
 1374.06 
 
 9-75 
 
 
 
 
 i2|" b. to b. 
 
 i5i" b. to b. 
 
 i8J" b. to b. 
 
 2ii"b..tob. 
 
 5 X 3*X | 
 
 67.2 
 
 19.68 
 
 546.36 
 
 5-27 
 
 896.17 
 
 6-75 
 
 1334-55 
 
 8.23 
 
 1861.48 
 
 9-73 
 
 x& 
 
 60.8 
 
 17.88 
 
 5oo-35 
 
 5-29 
 
 819.24 
 
 6-77 
 
 1218.59 
 
 8.26 
 
 1698.40 
 
 9-75 
 
 x 1 
 
 54-4 
 
 16.00 
 
 45 I 34 
 
 5-3 1 
 
 737-66 
 
 6.79 
 
 1095.98 
 
 8.28 
 
 1526.30 
 
 9-77 
 
 x^ 
 
 48.0 
 
 14.12 
 
 402.96 
 
 5-34 
 
 656.91 
 
 6.82 
 
 974.40 
 
 8. 3 I 
 
 !355-43 
 
 9.80 
 
 x f 
 
 41.6 
 
 12.20 
 
 350-9 1 
 
 5.36 
 
 571.06 
 
 6.84 
 
 846.10 
 
 8-33 
 
 1176.05 
 
 9.82 
 
 x& 
 
 34.8 
 
 10.24 
 
 296.90 
 
 5.38 
 
 482.29 
 
 6.86 
 
 7 J 3-77 
 
 8-35 
 
 991.32 
 
 9.84 
 
 
 
 
 i2i"b. tob. 
 
 i Si" t>. to b. 
 
 i8i" b. to b. 
 
 2ii" b. to b. 
 
 4x3 x& 
 
 49-2 
 
 14.48 
 
 413-56 
 
 5-34 
 
 675.28 
 
 6.83 
 
 1002.17 
 
 8-32 
 
 1394.21 
 
 9.81 
 
 x| 
 
 44.4 
 
 13.00 
 
 374-i6 
 
 5-36 
 
 609.92 
 
 6.85 
 
 904.17 
 
 8-34 
 
 1256.93 
 
 9-83 
 
 x^ 
 
 39-2 
 
 11.48 
 
 334-24 
 
 5-40 
 
 543-47 
 
 6.88 
 
 804-35 
 
 8-37 
 
 1116.89 
 
 9.86 
 
 x| 
 
 34-0 
 
 9.92 
 
 291.08 
 
 5-42 
 
 472.47 
 
 6.90 
 
 698.50 
 
 8-39 
 
 969.17 
 
 9.88 
 
 x& 
 
 28.4 
 
 8.36 
 
 247.23 
 
 5-44 
 
 400.59 
 
 6.92 
 
 59I-58 
 
 8.41 
 
 820.18 
 
 9.90 
 
 
 
 
 12!" b. to b. 
 
 iSi" b. to b. 
 
 i8i" b. to b. 
 
 
 3X2}X | 
 
 34-0 
 
 10.00 
 
 294.11 
 
 5-42 
 
 477.86 
 
 6.91 
 
 706.61 
 
 8.41 
 
 
 x& 
 
 30.4 
 
 8.88 
 
 263.18 
 
 5-44 
 
 426.88 
 
 6-93 
 
 630-55 
 
 8-43 
 
 
 x f 
 
 26.4 
 
 7.68 
 
 22 9'35 
 
 5-46 
 
 371-40 
 
 6-95 
 
 548.00 
 
 8-45 
 
 
 x& 
 
 22.0 
 
 6.48 
 
 I95-72 
 
 5-50 
 
 3*6.15 
 
 6-99 
 
 465-74 
 
 8.48 
 
 
 x i 
 
 18.0 
 
 5-24 
 
 159.46 
 
 5.52 
 
 257.16 
 
 7.01 
 
 378.44 
 
 8.50 
 
 
 (18) 
 
TABLE 9 {Continued) 
 
 LACED 
 
 LEGS OUTSTANDING 
 
 Axis BB. 
 
 241" b. to b. 
 
 28i" b. to b. 
 
 32|" b. to b. 
 
 3 6i" b. to b. 
 
 i 
 
 r 
 
 I 
 
 r 
 
 i 
 
 r 
 
 i 
 
 r 
 
 3728.30 
 
 11.29 
 
 5161.64 
 
 13.29 
 
 6828.91 
 
 15.28 
 
 8730.09 
 
 17.28 
 
 3455- I 5 
 
 11.31 
 
 4780.85 
 
 I3-3 1 
 
 6322.55 
 
 X 5-30 
 
 8080.25 
 
 I7-30 
 
 3I75-3 
 
 H-34 
 
 4390-05 
 
 13-34 
 
 5802.24 
 
 '5-33 
 
 7411.87 
 
 17-33 
 
 2887.24 , 11.36 
 
 3989-58 
 
 I3-36 
 
 5270.81 
 
 X 5-3S 
 
 6730-92 
 
 17-35 
 
 2591.82 ! 11.38 
 
 3579-42 
 
 I3-38 
 
 4727-02 
 
 '5-37 
 
 6034.62 
 
 17-37 
 
 2293.08 ' 11.41 
 
 3164.28 
 
 i3-4i 
 
 4176.28 
 
 15.40 
 
 5329-08 
 
 17.40 
 
 24}" b. to b. 
 
 28}" b. to b. 
 
 32i" b. to b. 
 
 3 6i" b. to b. 
 
 3421.22 ii. 10 
 
 4758.70 
 
 13.09 
 
 6318.25 
 
 I 5-og 
 
 8099.89 
 
 17.08 
 
 3171-65 
 
 II. 12 4409.04 
 
 13.11 
 
 5851-55 
 
 15.11 
 
 7499.17 
 
 17.10 
 
 29J5-52 
 
 11.15 4049-55 
 
 I3-J4 
 
 537i-io 
 
 !5-i4 
 
 6880.16 
 
 I7-I3 
 
 2651.70 
 
 11.17 3680.99 
 
 13.16 
 
 4880.20 
 
 15.16 
 
 6249-33 
 
 i7-!5 
 
 2380.86 
 
 11.19 
 
 3303- 1 2 
 
 13.18 
 
 4377-38 
 
 15.18 
 
 5603.64 
 
 17.17 
 
 2106.67 
 
 11.23 
 
 2920.26 
 
 13.22 
 
 3867.62 
 
 15.21 
 
 4948-73 
 
 17.20 
 
 1826.11 
 
 11.25 
 
 2529.91 
 
 13.24 
 
 3349-24 
 
 15-23 
 
 4284.08 
 
 17.22 
 
 24V b. to b. 
 
 28!" t>. to b. 
 
 
 
 
 
 2476.97 
 
 11.22 
 
 3435-39 
 
 13.21 
 
 
 
 
 
 2258.67 
 
 11.24 
 
 3130-85 
 
 13-23 
 
 
 
 
 
 2028.62 
 
 11.26 
 
 2810.38 
 
 !3- 2 5 
 
 
 
 
 
 1709.99 
 
 11.29 
 
 2491.59 
 
 13.28 
 
 
 
 
 
 1560.90 
 
 II. 3 I 
 
 2159-43 
 
 13-30 
 
 
 
 
 
 1314.96 
 
 n-33 
 
 1818.15 
 
 !3-3 2 
 
 
 
 
 
 24i" b. to b. 
 
 
 
 
 
 
 
 1851.42 
 
 11.31 
 
 
 
 
 
 
 
 i668.!8 
 
 "33 
 
 
 
 
 
 
 
 1481.09 
 
 11.36 
 
 
 
 
 
 
 
 1284.47 
 
 11.38 
 
 
 
 
 
 
 
 1066.40 
 
 11.40 
 
 
 
 
 
 (19) 
 
L- 1 -1 
 
 rT" i 
 
 TABLE 10 
 
 FOUR ANGLES, 
 
 EQUAL 
 
 SIZE. 
 
 "OTAL SECTION. 
 
 Axis BB. 
 
 
 i6|" b. to b. 
 
 18}" b. to b. 
 
 2i}" b. to b. 
 
 
 Weight. 
 
 Area. 
 
 I 
 
 r 
 
 I 
 
 r 
 
 I 
 
 r 
 
 i 
 
 r 
 
 8x8x i 
 x& 
 x I 
 x 
 x i 
 xft 
 x f 
 x& 
 x i 
 
 6x6x 
 xtf 
 
 x f 
 x& 
 x i 
 x& 
 x i 
 
 4X4X | 
 x& 
 x i 
 xA 
 x f 
 x& 
 
 3X3X i 
 x& 
 x 1 
 x& 
 x* 
 
 2^X2jX^ 
 
 x| 
 x& 
 xl 
 x 
 
 204.0 
 192.0 
 iSo.O 
 
 168.0 
 
 155-6 
 143.2 
 130.8 
 118.0 
 105.6 
 
 114.8 
 106.0 
 96.8 
 87.6 
 78.4 
 68.8 
 59-2 
 
 62.8 
 
 57-2 
 51-2 
 45-2 
 39-2 
 32.8 
 
 37-6 
 33-2 
 28.8 
 24.4 
 19.6 
 
 27.2 
 23.6 
 
 20.0 
 
 16.4 
 12.4 
 
 60.00 
 56.48 
 52.92 
 49.36 
 45-76 
 42.12 
 38.44 
 34-72 
 3I.OO 
 
 33.76 
 3LI2 
 28.44 
 25.72 
 23.00 
 20.24 
 17.44 
 
 18.44 
 16.72 
 15.00 
 13.24 
 11.44 
 9.60 
 
 11.00 
 9-72 
 
 8.44 
 7.12 
 5.76 
 
 8.00 
 6.92 
 5-88 
 4-76 
 3-60 
 
 1 *' 
 
 2430.38 
 2310.06 
 2179.25 
 2046.31 
 1909.89 
 1774-88 
 1630.76 
 1483.00 
 1332-95 
 
 6.36 
 6.40 
 6.42 
 6.44 
 6.46 
 6.49 
 6. 5 I 
 
 6-54 
 6.56 
 
 3093.72 
 
 2937-45 
 2768.94 
 2598.06 
 2423.00 
 
 2249-39 
 2065.16 
 1876.57 
 1685.44 
 
 7 .l8 
 7.21 
 7-23 
 7-25 
 7.28 
 
 7-3 1 
 7-33 
 7-35 
 7-37 
 
 4444.62 
 4214.18 
 39 6 8.37 
 37J9-77 
 3465-64 
 3212.88 
 2946.78 
 2674.96 
 2400.15 
 
 8.61 
 8.64 
 8.66 
 8.68 
 8.70 
 
 8-73 
 8.76 
 8.78 
 8.80 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 i2"b.tob. 
 
 i Si" b. to b. 
 
 1 8}" b. to b. 
 
 21}" b. to b. 
 
 787.16 
 
 734-94 
 677.68 
 618.41 
 
 559-99 
 497.14 
 432.20 
 
 4-83 
 4.86 
 4.88 
 4.90 
 
 4-93 
 4.96 
 
 4-98 
 
 1265.98 
 1178.89 
 1084.96 
 988.15 
 
 892-53 
 790.88 
 686.26 
 
 6.12 
 
 6.15 
 6.18 
 6. 20 
 6.23 
 6.25 
 6.27 
 
 I933-9 2 
 
 1797.40 
 1651.91 
 1502.42 
 1354-48 
 1198.62 
 1038.64 
 
 7-57 
 7.60 
 7.62 
 7.64 
 7.67 
 7.70 
 7.72 
 
 2753-78 
 
 2555-95 
 2346.84 
 2132.43 
 1919.94 
 1697.43 
 1469.50 
 
 9-3 
 9.06 
 9.08 
 9.11 
 9.14 
 9.16 
 9.18 
 
 
 8J" b. to b. 
 
 io" b. to b. 
 
 12}" b. to b. 
 
 
 
 194.82 
 .179.00 
 163.61 
 146.30 
 128.09 
 108.89 
 
 3- 2 5 
 3-27 
 3-3 
 S-S 2 
 3-35 
 3-37 
 
 306.39 
 
 280.75 
 
 255- 6 9 
 228.03 
 199.11 
 168.82 
 
 4.08 
 4.10 
 4-13 
 4-15 
 4.17 
 4.19 
 
 468.48 
 428.39 
 389.04 
 346.26 
 3Q I -73 
 255-32 
 
 5-4 
 5.06 
 
 5-09 
 5- 11 
 
 5-i4 
 5.16 
 
 
 
 
 
 
 
 . . . 
 
 
 
 
 6i"b.tob. 
 
 8i" b. to b. 
 
 ioi" b. to b. 
 
 12}" b. to b. 
 
 68.09 
 61.18 
 
 54-05 
 
 46.37 
 38.41 
 
 2-49 
 2.51 
 
 2-53 
 2-55 
 2.58 
 
 121.17 
 108.43 
 
 95-37 
 81.48 
 67.12 
 
 3-32 
 3-34 
 3-36 
 3-38 
 3-4i 
 
 202.46 
 180.65 
 158.41 
 
 !34-95 
 110.72 
 
 4.29 
 4-3 1 
 4-33 
 4-35 
 4-38 
 
 35-75 
 272.31 
 
 238-34 
 
 202.66 
 
 165.84 
 
 5-27 
 5-29 
 
 5-3 1 
 5-33 
 5-37 
 
 5i"b.tob. 
 
 8}" b. to b. 
 
 ioi" b. to b. 
 
 12$" b. to b. 
 
 35-49 
 3I-32 
 27.16 
 22.42 
 17.48 
 
 2. II 
 
 2.13 
 
 2-15 
 2.17 
 
 2. 2O 
 
 93-95 
 82.28 
 70.77 
 
 57-99 
 44.68 
 
 3-43 
 3-45 
 3-47 
 3-49 
 3-52 
 
 155-47 
 !35-77 
 116.46 
 95.16 
 73.01 
 
 4.41 
 4-43 
 4^-45 
 4-47 
 4-50 
 
 232-99 
 203.10 
 
 I 739 I 
 
 141.86 
 108.54 
 
 5-40 
 5-42 
 5-44 
 5.46 
 5-49 
 
 (20) 
 
TABLE 10 (Continued) 
 
 LACED 
 
 LEGS 
 
 Axis BB. 
 
 2 4 J" b. tO b. 
 
 28i" b. to b. 
 
 32}" b. to b. 
 
 36i" b. to b. 
 
 I 
 
 r 
 
 I 
 
 r 
 
 I 
 
 r 
 
 i 
 
 r 
 
 6065.52 
 
 10.05 
 
 8646.72 
 
 12.00 
 
 11707.92 
 
 13-97 
 
 15249.12 
 
 15-94 
 
 5745-07 
 
 10.09 
 
 8181.61 
 
 12.04 
 
 11070.00 
 
 14.00 
 
 14410.23 
 
 15-97 
 
 5405-94 
 
 IO.II 
 
 7 6 93-!5 
 
 1 2. 06 
 
 10403.71 
 
 14.02 
 
 J3537-63 
 
 J 5-99 
 
 5o63-59 
 
 10.13 
 
 7200;88 
 
 1 2. 08 
 
 9733-05 
 
 14.04 
 
 12660.10 
 
 16.02 
 
 4714.20 
 
 10.15 
 
 6699.27 
 
 12. IO 
 
 9050.42 
 
 14.06 
 
 11767.65 
 
 16.04 
 
 43 6 5-9 2 
 
 10.18 
 
 6198.14 
 
 12.13 
 
 8367-32 
 
 14.09 
 
 10873.46 
 
 16.07 
 
 4001.38 
 
 10.20 
 
 5676.60 
 
 12.15 
 
 7659-33 
 
 14.12 
 
 9949-59 
 
 16.09 
 
 3629-59 
 
 IO.22 
 
 5 J 45-46 
 
 12.17 
 
 6939.10 
 
 14.14 
 
 9010.49 
 
 1 6. 1 1 
 
 3254.35 
 
 10.25 
 
 4610.29 
 
 12.20 
 
 6214.23 
 
 14.16 
 
 8066.17 
 
 16.13 
 
 24i" b. to b. 
 
 28i" b. to b. 
 
 32^" b. to b. 
 
 361" b. tob. 
 
 3725-56 
 
 I0.5O 
 
 5257-59 
 
 12.48 
 
 7059-7 
 
 14.46 
 
 9131.89 
 
 16.45 
 
 3454-54 
 
 10-54 
 
 4870.50 
 
 12.51 
 
 6535-42 
 
 14.49 
 
 8449.30 
 
 16.48 
 
 3 l6 9-75 
 
 10.56 
 
 4466.05 
 
 12-53 
 
 5989.86 
 
 I4-5 1 
 
 7741.20 
 
 16.50 
 
 2878.19 
 
 10.58 
 
 4052.56 
 
 I2 -55 
 
 5432-70 
 
 14-53 
 
 7018.59 
 
 16.52 
 
 2588.89 
 
 10.61 
 
 3641.83 
 
 12.58 
 
 4878.77 
 
 14.56 
 
 6299.71 
 
 l6 -55 
 
 2287.33 
 
 10.63 
 
 32I5-53 
 
 12.60 
 
 4305.66 
 
 J4-59 
 
 5557-7 1 
 
 l6 -57 
 
 1978.83 
 
 10.65 
 
 2780.02 
 
 12.63 
 
 3720.74 
 
 14.61 
 
 4800.97 
 
 16.59 
 
 i Si" b. to b. 
 
 18!" b. to b. 
 
 2ii" b. to b. 
 
 24}" b. tob. 
 
 
 
 
 
 
 
 i 
 
 780.76 
 
 6.51 
 
 1176.02 
 
 7-99 
 
 1654.27 
 
 9-47 
 
 2215.49 
 
 10.96 
 
 712.55 
 
 6-53 
 
 1071.94 
 
 8.01 
 
 1506.58 
 
 9-49 
 
 2016.45 
 
 10.98 
 
 645-3 1 
 
 6.56 
 
 969.09 
 
 8.04 1360.36 
 
 9-5 2 
 
 1819.14 
 
 II.OI 
 
 573- 2 6 
 
 6.58 
 
 859.84 
 
 8.06 1206.00 
 
 9-54 
 
 1611.74 
 
 11.03 
 
 498.55 
 
 6.60 
 
 746.86 
 
 8.08 
 
 1046.64 
 
 9-56 
 
 J397-9 1 
 
 11.05 
 
 421.06 
 
 6.62 
 
 630.01 
 
 8.10 
 
 882.15 
 
 9-59 
 
 1177.50 
 
 11.07 
 
 i Si" b. to b. 
 
 i8i" b. to b. 
 
 
 
 
 
 5 OI -93 
 
 6-75 
 
 747-62 
 
 8.24 
 
 
 
 
 
 446.25 
 
 6.78 
 
 663,93 
 
 8.27 
 
 
 
 
 
 389.88 
 
 6.80 
 
 579-40 
 
 8.29 
 
 
 
 
 
 330-93 
 
 6.82 
 
 49!- 2 3 
 
 8.31 
 
 
 
 
 
 270.13 
 
 6.85 
 
 400.33 
 
 8-34 
 
 
 
 
 
 (21) 
 
o 
 
 1 1 
 
 3 I 
 
 Oi w 
 
 o 
 
 5 
 
 ...4- ff 
 
 JL 
 
 
 XJ 
 
 o 
 
 Btf 
 
 vO 00 HI Tt- vO ON 
 vo vo t^. r^. t^- r^ 
 
 VO VO vo VO vo vo 
 
 ,0 
 
 8 
 
 vO 00 M co 10 00 O 1 
 M M ot cs cq w co 
 
 vO vd vO vo vC5 vO vO 
 
 xi 
 
 
 M CO VO OO O <N 
 
 vo vo vo vo vO vO 
 
 
 XJ 
 
 H-* 
 
 vo 
 
 <yj 
 
 HH 
 
 O I s * vO CM CM CM 
 >3- vo ON OO t-~ M 
 ro M 4 v6 10 r- 
 t^.- * ON co vo 00 
 MO O to ON co 
 
 XJ 
 
 V 
 
 iHHt 
 
 vO 
 f/j 
 
 CO vO ON cs co O O 
 \O vo co ON O ON >O 
 4 OO vO cs vd O vo 
 ^T O vo ON *H co CO 
 <N t^. M VO O 'tf- OO 
 
 xi 
 
 H* 
 M 
 
 VO CO ^t 00 00 !> 
 M ON t^ CS ^- t-^ 
 
 CO 4 t>- cvi M ON 
 Tf- f^ 00 O O 00 
 
 M t CO O VO HI 
 
 
 
 
 >o vo > ^ 
 
 
 
 
 ^T C j C j CO CM ON 
 
 
 X> 
 
 
 ON M Tj- VO 00 M 
 
 vO t^~ t^- t~> r^ OO 
 
 XJ 
 
 t^ ON <N Tf O ON <N 
 M M (N (M M M CO 
 
 xi 
 
 -<t vo O oi -f 
 vo vo vo vO vo NO 
 
 
 3 
 
 
 CO co CO co co co 
 
 2 
 
 4444444 
 
 O 
 
 CM CM (N N CM CM 
 
 
 x> 
 
 
 O t- 2 s co CM W 
 O 00 X CM w 10 
 
 X3 
 
 CO ON 00 vo t^ vO M 
 O rf O t> t^ VO Tj- 
 
 xi 
 
 CO Tt- 00 ON vo t^ 
 CO CO ON O ON CO 
 
 
 H^t 
 N 
 PO 
 
 h- 1 
 
 v6 C>i 9 co 00 f^ 
 
 t^ t^ .J CO ON VO 
 
 ^j- o ^L <N t^ co 
 
 vo vo ^ "3- co oo 
 
 i-H 1 
 (S 
 ro 
 
 <* co M 00 to O Os 
 r^ o ^- o O M vo 
 vo M t-^ co 00 * ON 
 vo vo "3- ^t CO CO CN 
 
 Hh* 
 
 00 
 N 
 
 vO CO vo O *-i vo 
 OO M (M ^- "3- co 
 O OO vo CM ON vO 
 CO CN CM CM M HI 
 
 
 xi 
 2 
 
 - 
 
 CM TJ- r^ ON M Tf 
 t^. t^. t^ t^ OO OO 
 
 X> 
 
 2 
 
 ON M Tf O ON N Tt 
 
 H (N CN <N M CO CO 
 <N (N CS <N c5 N CS 
 
 xi 
 
 
 TJ- vO 00 M TJ- vO 
 vo vo vo vO vo vO 
 
 666666 
 
 
 .0 
 
 
 M r-~ S? co CM N 
 
 CO H ~ VO VO t^ 
 
 xi 
 
 W vn ON O M ON vo 
 vo vo cq vo vo M OO 
 
 xi 
 
 to ON CM vo CM O 
 ON t^ (N 00 O ON 
 
 
 H* 
 00 
 
 w 
 
 4 6 2 06 o od 
 
 H M IL O ON O 
 O J^ ^5 M *^ * 
 
 rHN 
 ^ 
 
 vo co co TJ- r~>. o t~- 
 
 N W M ON O co ON 
 
 M OO VO M CO VO M 
 
 rtHi 
 ^ 
 
 VO Tj- CM O O CM 
 
 00 ON ON ON 00 vO 
 HI ON t^ vo co HI 
 
 
 
 
 TT fO CO CI C4 
 
 
 ^- O CO O CN C>l (N 
 
 
 
 
 ,0 
 
 
 vO 00 ^ * \O ON 
 
 t^ t^. . oo oo oo 
 
 XJ 
 
 N Tt t^ ON M 10 t^ 
 W M M N CO CO CO 
 
 xi 
 
 vO 00 O co vo 00 
 
 
 o 
 
 
 6^ 6V ^ ON d\ ON 
 
 p 
 
 6666666 
 
 o 
 
 ON ON ON ON ON ON 
 
 
 4-* 
 
 
 
 
 
 
 
 CQ 
 
 XJ 
 
 
 IO <* OO O <N M 
 
 vO <* vO r^- ON t^. 
 
 X5 
 
 CO PI co t- vo t>. O 
 
 O t^ O M <N ^ OO 
 
 & 
 
 "3- vo O vo N O 
 t^ l^ ON O vo co 
 
 P3 
 
 1 
 
 ~ 
 
 LT> CO O W M O 
 
 00 00 t^ vO rf <N 
 t^ VO CO M ON t- 
 
 H^H 
 
 Tf 
 
 (S 
 
 ON 00 co O M O\ M 
 ON 00 r^ vo <N 00 vo 
 00 O * M O f- vo 
 
 HT 
 
 (N 
 
 VO Tf VO OO CM CM 
 M t^. CM *~ CN VO 
 
 vO Tt- co M O 00 
 
 X 
 
 
 
 ^ ^ 
 
 
 
 
 
 < 
 
 x> 
 
 u 
 
 M CO vO 00 O CO 
 CO co co co -^ Tj- 
 
 XJ 
 
 o 
 
 to t^ O N 't CO O 
 t^. t^ OO OO OO OO ON 
 
 x> 
 
 ON M co vO 00 O 
 vo vO vO vO vo t^- 
 
 
 
 
 
 4* 
 
 OO OU OQ CXJ OU OO CO 
 
 
 
 
 XJ 
 
 
 \O O IO N <M N 
 
 \O t^ t^ r^ <N H 
 
 XJ 
 
 ON "- 1 ON Tf O M oO 
 
 ON CM CO TJ- CO <N O 
 
 xi 
 
 ON f^- 00 ON CN ON 
 
 O M VO l> M l^ 
 
 
 H* 
 
 M 
 
 "- 1 
 
 t^ N rt O ci <N 
 
 M t~. <N t^ M IO 
 
 O OO 1> 'O ^ W 
 
 ^ 
 
 rth* 
 
 TJ- cs vo co vQ r^ co 
 CM f^ M vo OO M Tt" 
 
 M ON 00 vO * CO H 
 
 rth* 
 00 
 
 co vo M OO O 1^ 
 CO CO CO CM CS O 
 M O ON CO t* vO 
 
 
 fN 
 
 
 C< M H M W M 
 
 N 
 
 
 
 
 
 XJ 
 
 h 
 
 t^- ON co 10 t>> O 
 
 00 CO ON ON ON O 
 
 xi 
 
 ON HH rf r-- ON CM ^~ 
 <N co co co co Tj- Tj- 
 
 XJ 
 
 co vo t^- O CM "t 
 
 M M HI Cl CM CM 
 
 
 o 
 
 
 \O O O vO vO t> 
 
 +> 
 
 
 
 vO vo vO vO O vO 
 
 
 .0 
 
 
 VO N ON O W <N 
 (N TJ- OO co to !> 
 
 xi 
 
 co 00 CO 00 vO O co 
 00 O <N 00 <N CO 
 
 xi 
 
 8vo vo t^ ci vo 
 O CM O vo co 
 
 
 00* 
 
 M 
 
 M CO CO ON M <N 
 
 OO OO OO t- l^ O 
 
 CO N M O ON OO 
 
 H^i 
 00 
 
 vo M ^ O O ON 
 t^. t^ vO vo co CM ON 
 <^- co CM M O ON *"* 
 
 < 
 
 in 
 
 ON vo O\ co CM CN 
 co *>. O Tf t~* CN 
 t^ vO vo vo "tf- co 
 
 
 M 
 
 
 M tH M M 
 
 
 
 
 
 
 xi 
 o 
 
 h 
 
 CO O ON H co O 
 
 M M H <N W <N 
 
 & 
 o 
 
 vo OO M co vo OO O 
 
 00 00 ON ON ON ON O 
 
 XJ 
 
 o 
 
 ON M Tt t^ ON M 
 
 vO t> t^ t^. J>. CO 
 
 
 
 
 to 10 10 10 vo vo 
 
 -M 
 
 
 
 
 
 XI 
 
 *< 
 
 
 t^- ON ON 1O M ~^- 
 
 t^ vO ON vO N CO 
 
 x> 
 
 *. 
 
 oo co vo O w CM r-~ 
 
 vo CO O !> ON Th vo 
 
 XJ 
 
 f^ ON ^ ON <N O 
 Tt- co ON 00 CO O 
 
 
 HN 
 
 Tf 
 
 M 
 
 
 O t-~ co vO t> t^ 
 
 t^ H vO O ^f OO 
 r^ r^ MO vO SO *T 
 
 1-t* 
 
 10 
 
 M vo 00 O <N 00 6 
 VO 00 M Tf t^ ON <N 
 ON 00 00 t>- VO vo VO 
 
 H-* 
 N 
 
 CO t-. 00 O CN t-~ 
 CO ON vo M r^. CO 
 rj- co co co CM CM 
 
 
 
 
 
 . 
 
 t^ O co vo t^ O N 
 
 n 
 
 
 
 
 ^ 
 
 
 x> 
 o 
 
 vo O vo M3 vo t^- t~>. 
 
 
 
 CO ON ON ON ON O 
 
 
 
 
 
 
 
 ^- J 
 
 
 
 
 
 
 X) 
 
 vO <N M OO O vo CM 
 
 XJ 
 
 
 
 
 
 
 5 
 
 t^ Tj- t^ 00 Tt- VO M 
 
 
 M O HI VO t^ VO 
 
 
 
 
 
 rs 
 
 OO T)- O vo M vo (N 
 
 O 
 
 ON t^ 1- c-i CN vO 
 
 
 
 
 
 
 
 
 
 
 
 rt 
 
 M O O ro O vO 
 
 
 vO Th Tf TI- o N rj- 
 !> vO Tj- (N O 1> Tf 
 
 
 00 00 O N O ^t 
 vO CO O M fN fN 
 
 
 I 
 
 < 
 
 O l> Tl- N O 1> 
 
 
 t^. \n ro M o\ vo <* 
 
 
 O\ JN vd 4 <S 6 
 
 | 
 
 H 
 
 
 
 
 (S (N N N M M M 
 
 
 
 
 
 u 
 u 
 
 ^ 
 
 vO 
 
 
 ^ N O Tf 00 N N 
 
 
 N 00 Tf O vo 00 
 
 
 
 
 
 ;$ 
 
 
 Tf t>- O N Tj- 1> O 
 
 O* 00 00 t^ vO V) -<t 
 
 
 1> O ^ 00 M Tj- 
 
 VO vo IO Tt" "t CO 
 
 
 u 
 
 N 
 
 c/3 
 
 
 c ** 1 35 "* H5 "** H5 
 X X X X X X 
 
 He* 
 
 CO 
 X 
 
 t* 
 
 
 ^ H Mioo .jo HN _| e*o 
 
 X X X X X X 
 
 1 
 
 
 .doe jg He. tJg KM ^te 
 
 X X X X X X 
 
 PO 
 X 
 IO 
 
 (22} 
 
TABLE 12 
 
 MOMENT OF INERTIA OF ONE PLATE ABOUT 
 AXIS AA 
 
 III 
 
 J2* 
 
 THICKNESS OF PLATE IN INCHES. 
 
 i 
 
 A 
 
 1 
 
 A 
 
 i 
 
 A 
 
 i 
 
 H 
 
 i 
 
 H 
 
 1 
 
 tt 
 
 i 
 
 4 
 
 .01 
 
 .01 
 
 .02 
 
 03 
 
 .04 
 
 .06 
 
 .08 
 
 .11 
 
 .14 
 
 .18 
 
 .22 
 
 .27 
 
 33 
 
 5 
 
 .01 
 
 .01 
 
 .02 
 
 03 
 
 5 
 
 .07 
 
 .10 
 
 .14 
 
 .18 
 
 .22 
 
 .28 
 
 34 
 
 .42 
 
 6 
 
 .01 
 
 .02 
 
 3 
 
 .04 
 
 .06 
 
 .09 
 
 .12 
 
 .16 
 
 .21 
 
 .27 
 
 33 
 
 .41 
 
 5o 
 
 7 
 
 .01 
 
 .02 
 
 3 
 
 5 
 
 .07 
 
 .10 
 
 .14 
 
 .19 
 
 25 
 
 31 
 
 39 
 
 .48 
 
 58 
 
 8 
 
 .01 
 
 .02 
 
 .04 
 
 .06 
 
 .08 
 
 .12 
 
 .16 
 
 .22 
 
 .28 
 
 36 
 
 45 
 
 55 
 
 .67 
 
 9 
 
 .01 
 
 .02 
 
 .04 
 
 .06 
 
 .09 
 
 J 3 
 
 .18 
 
 .24 
 
 3 2 
 
 .40 
 
 50 
 
 .62 
 
 75 
 
 10 
 
 .01 
 
 03 
 
 .04 
 
 .07 
 
 .10 
 
 15 
 
 .20 
 
 27 
 
 35 
 
 45 
 
 56 
 
 .69 
 
 83 
 
 ii 
 
 .01 
 
 3 
 
 05 
 
 .08 
 
 .11 
 
 .16 
 
 .22 
 
 3 
 
 39 
 
 49 
 
 .61 
 
 .76 
 
 .92 
 
 12 
 
 .02 
 
 3 
 
 5 
 
 .08 
 
 13 
 
 .18 
 
 .24 
 
 32 
 
 .42 
 
 54 
 
 .67 
 
 .82 
 
 I.OO 
 
 13 
 
 .02 
 
 03 
 
 .06 
 
 .09 
 
 .14 
 
 .19 
 
 .26 
 
 35 
 
 .46 
 
 .58 
 
 73 
 
 .89 
 
 i. 08 
 
 14 
 
 .02 
 
 .04 
 
 .o5 
 
 .10 
 
 i5 
 
 .21 
 
 .28 
 
 38 
 
 49 
 
 63 
 
 .78 
 
 .96 
 
 1.17 
 
 15 
 
 .02 
 
 .04 
 
 .07 
 
 .10 
 
 .16 
 
 .22 
 
 3 1 
 
 .41 
 
 53 
 
 .67 
 
 .84 
 
 1.03 
 
 1.25 
 
 16 
 
 .02 
 
 .04 
 
 .07 
 
 .11 
 
 i7 
 
 .24 
 
 33 
 
 43 
 
 56 
 
 72 
 
 .89 
 
 ' 1. 10 
 
 i-33 
 
 i7 
 
 .02 
 
 .04 
 
 .07 
 
 .12 
 
 .18 
 
 25 
 
 35 
 
 .46 
 
 .60 
 
 .76 
 
 95 
 
 1.17 
 
 1.42 
 
 18 
 
 .02 
 
 05 
 
 .08 
 
 J 3 
 
 .19 
 
 2 7 
 
 37 
 
 49 
 
 63 
 
 .80 
 
 I.OO 
 
 1.24 
 
 1.50 
 
 iQ 
 
 .02 
 
 5 
 
 .08 
 
 J 3 
 
 .20 
 
 .28 
 
 39 
 
 5 1 
 
 .67 
 
 85 
 
 i. 06 
 
 1.30 
 
 1.58 
 
 20 
 
 3 
 
 5 
 
 .09 
 
 .14 
 
 .21 
 
 30 
 
 .41 
 
 54 
 
 .70 
 
 .89 
 
 1. 12 
 
 i-37 
 
 1.67 
 
 21 
 
 3 
 
 S 
 
 .09 
 
 15 
 
 .22 
 
 31 
 
 43 
 
 57 
 
 74 
 
 94 
 
 I.I7 
 
 1.44 
 
 i-75 
 
 22 
 
 3 
 
 .06 
 
 .10 
 
 15 
 
 23 
 
 33 
 
 45 
 
 .60 
 
 77 
 
 .98 
 
 1.23 
 
 i-5i 
 
 1.83 
 
 23 
 
 3 
 
 .06 
 
 .10 
 
 .16 
 
 .24 
 
 34 
 
 47 
 
 . .62 
 
 .81 
 
 1.03 
 
 1.28 
 
 1.58 
 
 1.92 
 
 24 
 
 3 
 
 .06 
 
 .11 
 
 *7 
 
 25 
 
 36 
 
 49 
 
 65 
 
 .84 
 
 1.07 
 
 i-34 
 
 1-65 
 
 2.00 
 
 25 
 
 03 
 
 .06 
 
 .11 
 
 J 7 
 
 .26 
 
 37 
 
 Si 
 
 .68 
 
 .88 
 
 1. 12 
 
 1.40 
 
 1.72 
 
 2.08 
 
 26 
 
 3 
 
 .07 
 
 .11 
 
 .18 
 
 2 7 
 
 39 
 
 53 
 
 .70 
 
 .91 
 
 i.z6 
 
 i-45 
 
 1.79 
 
 2.17 
 
 27 
 
 .04 
 
 .07 
 
 .12 
 
 .19 
 
 .28 
 
 .40 
 
 55 
 
 73 
 
 95 
 
 1. 21 
 
 i-5i 
 
 1-85 
 
 2.25 
 
 28 
 
 .04 
 
 .07 
 
 .12 
 
 .20 
 
 .29 
 
 .42 
 
 57 
 
 .76 
 
 .98 
 
 1.25 
 
 1.56 
 
 1.92 
 
 2-33 
 
 29 
 
 .04 
 
 .07 
 
 r 3 
 
 .20 
 
 30 
 
 43 
 
 59 
 
 79 
 
 1.02 
 
 I. 3 
 
 1.62 
 
 1.99 
 
 2.42 
 
 30 
 
 .04 
 
 .08 
 
 !3 
 
 .21 
 
 3 1 
 
 44 
 
 .61 
 
 .81 
 
 1.05 
 
 i-34 
 
 1.67 
 
 2.06 
 
 2.50 
 
 32 
 
 .04 
 
 .08 
 
 .14 
 
 .22 
 
 33 
 
 47 
 
 .65 
 
 .87 
 
 1. 12 
 
 1-43 
 
 1.79 
 
 2.20 
 
 2.67 
 
 34 
 
 .04 
 
 .09 
 
 !5 
 
 .24 
 
 35 
 
 5 
 
 .69 
 
 .92 
 
 1.20 
 
 1.52 
 
 1.90 
 
 2 -33 
 
 2.83 
 
 36 
 
 OS 
 
 .09 
 
 .16 
 
 25 
 
 38 
 
 53 
 
 73 
 
 97 
 
 1.27 
 
 1.61 
 
 2.01 
 
 2.47 
 
 3.00 
 
 38 
 
 5 
 
 .10 
 
 *7 
 
 .27 
 
 .40 
 
 56 
 
 77 
 
 1.03 
 
 i-34 
 
 1.70 
 
 2.12 
 
 2.61 
 
 3-i7 
 
 40 
 
 5 
 
 .10 
 
 .18 
 
 .28 
 
 .42 
 
 59 
 
 .81 
 
 i. 08 
 
 1.41 
 
 1.79 
 
 2.23 
 
 2-75 
 
 3-33 
 
 42 
 
 OS 
 
 .11 
 
 .18 
 
 .29 
 
 44 
 
 .62 
 
 85 
 
 1.14 
 
 1.48 
 
 1.88 
 
 2-34 
 
 2.88 
 
 3-5 
 
 44 
 
 .06 
 
 .11 
 
 .19 
 
 3 1 
 
 .46 
 
 65 
 
 .90 
 
 1.19 
 
 i-55 
 
 1.97 
 
 2.46 
 
 3.02 
 
 3-67 
 
 46 
 
 .06 
 
 .12 
 
 .20 
 
 32 
 
 .48 
 
 .68 
 
 94 
 
 1.25 
 
 1.62 
 
 2.06 
 
 2-57 
 
 3-i6 
 
 3-83 
 
 48 
 
 .06 
 
 .12 
 
 .21 
 
 33 
 
 5 
 
 7i 
 
 .98 
 
 1.30 
 
 1.69 
 
 2.15 
 
 2.68 
 
 3-3 
 
 4.00 
 
 50 
 
 .07 
 
 !3 
 
 .22 
 
 35 
 
 52 
 
 74 
 
 I.O2 
 
 i-35 
 
 1.76 
 
 2.23 
 
 2.79 
 
 3-43 
 
 4.17 
 
 54 
 
 .07 
 
 .14 
 
 .24 
 
 38 
 
 56 
 
 .80 
 
 1. 10 
 
 1.46 
 
 1.90 
 
 2. 4 ! 
 
 3.01 
 
 3-7i 
 
 4-5 
 
 60 
 
 .08 
 
 15 
 
 .26 
 
 .42 
 
 63 
 
 .89 
 
 1.22 
 
 1.62 
 
 2. II 
 
 2.68 
 
 3-35 
 
 4.12 
 
 5.00 
 
 (23) 
 
B 
 
 L^\DL^IL, 1O 
 
 B 
 MOMENT OF INERTIA OI 
 
 ~o c ,; 
 
 s' s 
 
 THICKNESS OF PLATE IN INCHES 
 
 SSc 
 &<~ 
 
 4 
 
 fV 
 
 t 
 
 TV 
 
 i 
 
 A 
 
 f 
 
 4 
 
 i-33 
 
 1.67 
 
 2.00 
 
 2-33 
 
 2.67 
 
 3-oo 
 
 3-33 
 
 5 
 
 2.60 
 
 3.26 
 
 3-9 1 
 
 4-56 
 
 5-21 
 
 5-86 
 
 6.51 
 
 6 
 
 4-5 
 
 5.63 
 
 6-75 
 
 7.88 
 
 9.00 
 
 10.13 
 
 11.25 
 
 7 
 
 7-15 
 
 8.93 
 
 10.72 
 
 12.51 
 
 14.29 
 
 16.08 
 
 17.86 
 
 8 
 
 10.67 
 
 13-33 
 
 16.00 
 
 18.67 
 
 2i-33 
 
 24.00 
 
 26.67 
 
 9 
 
 *5-*9 
 
 18.98 
 
 22.78 
 
 26.58 
 
 30-38 
 
 34-17 
 
 37-97 
 
 10 
 
 20.83 
 
 26.04 
 
 31-25 
 
 36.46 
 
 41.67 
 
 46.88 
 
 52.08 
 
 ii 
 
 2 7-73 
 
 34.66 
 
 41-59 
 
 48.53 
 
 55-46 
 
 62.39 
 
 69-32 
 
 12 
 
 36.00 
 
 45.00 
 
 54-00 
 
 63.00 
 
 72.00 
 
 8 1. oo 
 
 90.00 
 
 13 
 
 45-77 
 
 57-2i 
 
 68.66 
 
 80. 10 
 
 9i-54 
 
 102.98 
 
 114-43 
 
 14 
 
 57-17 
 
 71.46 
 
 85-75 
 
 100.04 
 
 IJ 4-33 
 
 128.63 
 
 142.92 
 
 15 
 
 70.31 
 
 87.89 
 
 105.47 
 
 123.05 
 
 140.63 
 
 158.20 
 
 175.78 
 
 16 
 
 85-33 
 
 106.67 
 
 128.00 
 
 M9-33 
 
 170.67 
 
 192.00 
 
 213.33 
 
 17 
 
 102.35 
 
 127.94 
 
 J53-53 
 
 179.12 
 
 204.71 
 
 230.30 
 
 255-89 
 
 18 
 
 121.50 
 
 151.88 
 
 182.25 
 
 212.63 
 
 243.00 
 
 273-38 
 
 303-75 
 
 iQ 
 
 142.90 
 
 178.62 
 
 214.34 
 
 250.07 
 
 285-79 
 
 321-52 
 
 357-24 
 
 20 
 
 166.67 
 
 208.33 
 
 250.00 
 
 291.67 
 
 333-33 
 
 375-00 
 
 416.67 
 
 21 
 
 192.94 
 
 241.17 
 
 289.41 
 
 337.64. 
 
 385.88 
 
 434-n 
 
 482.34 
 
 22 
 
 221.83 
 
 277.29 
 
 332-75 
 
 388.21 
 
 443-67 
 
 499. J 3 
 
 554.58 
 
 23 
 
 253-48 
 
 316.85 
 
 380.22 
 
 443-59 
 
 506.96 
 
 570.33 
 
 633-70 
 
 24 
 
 288.00 
 
 360.00 
 
 432.00 
 
 504.00 
 
 576.00 
 
 648.00 
 
 720.00 
 
 25 
 
 3 2 5-52 
 
 406.90 
 
 488.28 
 
 569.66 
 
 651.04 
 
 732.42 
 
 813.80 
 
 26 
 
 366.17 
 
 457-7 1 
 
 549-25 
 
 640.79 
 
 732-33 
 
 823.88 
 
 915.42 
 
 27 
 
 410.06 
 
 512.58 
 
 615.09 
 
 717.61 
 
 820.13 
 
 922.64 
 
 1025.16 
 
 28 
 
 457-33 
 
 57I-67 
 
 686.00 
 
 800.33 
 
 914.67 
 
 1029.00 
 
 JI 43-33 
 
 29 
 
 508.10 
 
 635-13 
 
 762.16 
 
 889.18 
 
 1016.21 
 
 1143-23 
 
 1270.26 
 
 30 
 
 562.50 
 
 7 3-!3 
 
 843-75 
 
 984.38 
 
 1125.00 
 
 1265.63 
 
 1406.25 
 
 32 
 
 682.67 
 
 853.33 
 
 1024.00 
 
 1194.67 
 
 !3 6 5-33 
 
 1536.00 
 
 1706.67 
 
 34 
 
 818.83 
 
 1023.54 
 
 1228.25 
 
 1432.96 
 
 1637.67 
 
 1842.38 
 
 2047.08 
 
 36 
 
 972.00 
 
 1215.00 
 
 1458.00 
 
 1701.00 
 
 1944.00 
 
 2187.00 
 
 2430.00 
 
 38 
 
 ii43-i7 
 
 1428.96 
 
 I7U.75 
 
 2000.54 
 
 2286.33 
 
 2572-13 
 
 2857.92 
 
 40 
 
 1333-33 
 
 1666.67 
 
 2000.00 
 
 2333-33 
 
 2666.67 
 
 3000.00 
 
 3333-33 
 
 42 
 
 !543-5 
 
 1929.38 
 
 23I5-25 
 
 2701.13 
 
 3087.00 
 
 3472.88 
 
 3858-75 
 
 44 
 
 1774.67 
 
 2218.33 
 
 2662.OO 
 
 3105.67 
 
 3549-33 
 
 3993.00 
 
 4436.67 
 
 46 
 
 2027.83 
 
 2534.79 
 
 3 4L75 
 
 3548-7 1 
 
 4055-67 
 
 4562.63 
 
 5069.58 
 
 48 
 
 2304.00 
 
 2880.00 
 
 3456.00 
 
 4032.00 
 
 4608.00 
 
 5184.00 
 
 5760.00^ 
 
 50 
 
 2604.17 
 
 3255-21 
 
 3906.25 
 
 4557-29 
 
 5208.33 
 
 5859-38 
 
 6510.42 
 
 54 
 
 3280.50 
 
 4100.63 
 
 4920.75 
 
 5740.88 
 
 6561.00 
 
 738i-i3 
 
 8201.25 
 
 60 
 
 4500.00 
 
 5625.00 
 
 6750.00 
 
 7875-00 
 
 9000.00 
 
 10125.00 
 
 11250.00 
 
 (24) 
 
TABLE 13 (Continued} 
 
 ONE PLATE ABOUT AXIS BB 
 
 THICKNESS OF PLATE IN INCHES. 
 
 H 
 
 1 
 
 H 
 
 i 
 
 it 
 
 ; I 
 
 -h 
 
 3-67 
 
 4.00 
 
 4-33 
 
 4.67 
 
 5.00 
 
 ' 5-33 
 
 33 
 
 7.16 
 
 7.81 
 
 8.46 
 
 9.11 
 
 9-77 
 
 10.42 
 
 65 
 
 12.38 
 
 13-50 
 
 14.63 
 
 15-75 
 
 16.88 
 
 18.00 
 
 "3 
 
 19.65 
 
 21.44 
 
 23.22 
 
 25.01 
 
 26.80 
 
 28.58 
 
 1.79 
 
 29-33 
 
 32.00 
 
 34-67 
 
 37-33 
 
 40.00 
 
 42.67 
 
 2.67 
 
 41.77 
 
 45-56 
 
 49-36 
 
 53-i6 
 
 56.95 
 
 60.75 
 
 3.80 
 
 57- 2 9 
 
 62.50 
 
 67.71 
 
 72.92 
 
 78.13 
 
 83-33 
 
 5-2i 
 
 76.26 
 
 83.19 
 
 90.12 
 
 97-05 
 
 103.98 
 
 110.92 
 
 6-93 
 
 99.00 
 
 108.00 
 
 117.00 
 
 126.00 
 
 135-0 
 
 144.00 
 
 9.00 
 
 125.87 
 
 *37-3* 
 
 148.76 
 
 160.20 
 
 171.64 
 
 183.08 
 
 11.44 
 
 157.21 
 
 171.50 
 
 l8 5-79 
 
 200.08 
 
 214.38 
 
 228.67 
 
 14.29 
 
 193-36 
 
 210.94 
 
 228.52 
 
 246.09 
 
 263.67 
 
 281.25 
 
 17-58 
 
 234-67 
 
 256.00 
 
 277-33 
 
 298.67 
 
 320.00 
 
 341-33 
 
 21-33 
 
 281.47 
 
 307.06 
 
 332-65 
 
 358-24 
 
 383-83 
 
 409.42 
 
 25-59 
 
 334-13 
 
 364-5 
 
 394.88 
 
 425-25 
 
 455.63 
 
 486.00 
 
 30-38 
 
 392.96 
 
 428.69 
 
 464.41 
 
 500.14 
 
 535-86 
 
 57I-58 
 
 35-72 
 
 458-33 
 
 500.00 
 
 541-67 
 
 583-33 
 
 625.00 
 
 666.67 
 
 41.67. 
 
 530-58 
 
 578.81 
 
 627.05 
 
 675.28 
 
 723-52 
 
 771-75 
 
 48.23 
 
 610.04 
 
 665.50 
 
 720.96 
 
 776.42 
 
 831.88 
 
 887-33 
 
 55-46 
 
 697.07 
 
 760.44 
 
 823.81 
 
 887.18 
 
 950-55 
 
 1013.92 
 
 63-37 
 
 792.00 
 
 864.00 
 
 936.00 
 
 1008.00 
 
 1080.00 
 
 1152.00 
 
 72.00 
 
 895.18 
 
 976.56 
 
 1057.94 
 
 1139.32 
 
 1220.70 
 
 1302.08 
 
 81.38 
 
 1006.96 
 
 1098.50 1190.04 
 
 1281.58 
 
 I 373- I 3 
 
 1464.67 
 
 9J-54 
 
 1127.67 
 
 1230.19 
 
 J 332.7o 
 
 1435.22 
 
 1537-73 
 
 1640.25 
 
 102.52 
 
 1257.67 
 
 1372.00 
 
 1486.33 
 
 1600.67 
 
 1715.00 
 
 1829.33 
 
 "4-33 
 
 1397.29 
 
 I524-3 1 
 
 1651.34 
 
 1778.36 
 
 !905-39 
 
 2032.42 
 
 127.03 
 
 1546.88 
 
 1687.50 
 
 1828.13 
 
 1968.75 
 
 2109.38 
 
 2250.00 
 
 140.63 
 
 1877-33 
 
 2048.00 
 
 2218.67 
 
 2389-33 
 
 2560.00 | 2730.67 
 
 170.67 
 
 2251.79 
 
 2456.50 
 
 2661.21 
 
 2865.92 
 
 3070.63 | 3275.33 
 
 204.71 
 
 2673.00 
 
 2916.00 
 
 3159.00 
 
 3402.00 
 
 3645.00 3888.00 
 
 243.00 
 
 3 I 43-7 I 
 
 3429.50 
 
 3715.29 4001.08 
 
 4286.88 
 
 4572-67 
 
 285-79 
 
 3666.67 
 
 4000.00 
 
 4333-33 ! 4666.67 
 
 5000.00 
 
 5333-33 
 
 333-33 
 
 4244.63 
 
 4630.50 
 
 5016.38 
 
 5402.25 
 
 5/88.13 
 
 6174.00 
 
 385.88 
 
 4880.33 
 
 5324.00 
 
 5767-67 
 
 6211.33 
 
 6655.00 
 
 7098.67 
 
 443-67 
 
 5576.54 
 
 6083.50 
 
 6590.46 
 
 7097.42 
 
 7604.38 
 
 8111.33 
 
 506.96 
 
 6336.00 
 
 6912.00 
 
 7488.00 
 
 8064.00 
 
 8640.00 
 
 9216.00 
 
 576.oo 
 
 7161.46 
 
 7812.50 
 
 8463-54 
 
 9114.58 
 
 9765-63 
 
 10416.67 
 
 651.04 
 
 9021.38 
 
 9841.50 
 
 10661.63 
 
 11481.75 
 
 12301.88 
 
 13122.00 
 
 820.13 
 
 12375.00 
 
 13500.00 
 
 14625.00 
 
 15750.00 
 
 16875.00 
 
 18000.00 
 
 1125.00 
 
 (25) 
 
OQ 
 
 I? 
 
 
 
 
 NO NO NO NO NO NO NO 
 
 
 
 II 
 
 
 
 H 
 
 O 
 
 q 
 
 ro 
 
 HI co co HI 00 00 O 
 ON vo O rt IO CO t^. 
 
 CS ON t IO rt CO CS 
 
 M 
 
 
 
 pi 
 
 co t^. !>. co co r^ u- 
 
 O rt rt O NO NO HI 
 
 HI CO CO M ON ON M 
 
 HI OO NO 10 co cs ts 
 
 3 
 
 00* 
 PJ 
 
 VO M M IO t>- NO 6 
 
 HI rt ON NO NO ON vo 
 t-- t^ ON rt rt VO CO 
 ON t- vo rt CO CS HI 
 
 
 
 
 
 
 
 
 
 
 
 in 
 
 !>. NO rt CO M 00 CO 
 
 
 O t> vo CS CO rt rf 
 
 i *n 
 
 CS ON VO CS vo ON VO 
 
 
 oho 
 
 ro 
 
 O vo O 10 NO OO co 
 * ON ON IO IO O HI 
 
 NO CS HI CO HI M CS 
 
 HI ON t^. 10 rt CO CS 
 
 i 6 
 
 rt (N HI O rt CO t^< 
 t^ NO ON NO ON NO NO 
 CO CS CO t^ NO t^ ON 
 O 00 NO rt CO CS Hi 
 
 PJ 
 
 vo 
 PJ 
 
 t^ ON CS IO CS r^ Hi 
 t^ CS ON NO CO HI CS 
 O CS IO M CS rt t> 
 ON f>- VO rt CO CS M 
 
 
 
 O 
 
 VO l~- O <N rt HI CO 
 00 ON H CS ON rt NO 
 
 
 vo vo vo vo O vo O 
 
 NO NO NO NO rt M ON 
 
 O 
 
 rt M ON NO vo 00 NO 
 rt co M O 00 CO M 
 
 
 H. 
 
 
 vo cs cs co NO cs ON 
 VO rt 00 t^- VO 00 rt 
 
 00 NO NO ON 00 00 O 
 
 
 ON CS ON O CO CS HI 
 rt OO co cs cs NO cs 
 
 NO NO ON rt rt vo 00 
 
 IO 
 
 4 
 
 CO CS !> OO ON M rt 
 rt t^ M CO ON CS VO 
 
 
 
 
 M 
 
 
 
 
 
 
 
 
 t^ HI \O O O CS NO 
 vN HI ON 00 O 00 CS 
 
 
 cs t~s. cs t-^ co ON NO 
 O l~- vo CS co co rt 
 
 in 
 
 NO CS 00 CO NO f^ 10 
 
 t~ rt O 1>- NO ON NO 
 
 
 $ 
 
 1 
 
 \O VO * rt HI OO CO 
 rt ON t^. ON NO vo OO 
 8 ON HI IO VO NO OO 
 t^. NO rt CO CS M 
 
 t 
 
 O NO M rt vo CO CO 
 CO O ON 00 NO NO t^ 
 ON M rt O HI co NO 
 00 IN vo rt CO CS HI 
 
 pi 
 
 CO 00 10 co ON t^ 00 
 
 M HI O t^- NO NO NO 
 
 00 CS 00 10 l^ O rt 
 t^ NO rt CO CS CS M 
 
 
 
 
 IH HI HI HI NO HI NO 
 
 O O O O cs O cs 
 
 o 
 
 CS CS CS CS CS CS CS 
 
 
 
 CO co CO co 00 co 00 
 
 
 MM 
 
 t 
 
 cs cs CO O CO CO ON 
 rt IO t^ CS NO CO CS 
 
 o 
 rt 
 
 vo vo t~* HI to r* t~>- 
 
 M CO rt vo O NO co 
 
 q 
 
 M 
 
 CO OO NO CS HI NO rt 
 
 00 HI HI 00 rt ON rt 
 
 i 
 
 
 
 
 
 
 
 
 5 
 
 
 10 
 
 t> NO NO vo co ON cs 
 
 O NO cs CO t*- ON NO 
 
 9 
 
 vo O vo O NO cs ON 
 ON r^ rt CS t-. CO 00 
 
 IO 
 
 CO rt rt VO ON NO VO 
 
 oo r^. NO vo t^ NO M 
 
 1/3 
 
 -<|tO 
 
 it 
 
 co co cs CO CO ON cs 
 
 rt t^ Hi CO ON CS IO 
 
 00 NO 10 co cs cs M 
 
 pi 
 PJ 
 
 rt t^ NO HI t-^ co t** 
 
 O NO O cs rt r~ ON 
 VO ON NO rt NO ON CO 
 t^ IO rt CO CS M HI 
 
 * 
 
 NO HI O CO NO NO CO 
 
 NO CS CO ON Hi CS CS 
 
 10 cs O ON co t^ cs 
 NO vo rt cs cs HI H* 
 
 _) 
 
 
 o 
 
 HI rt NO ON OO CO CS 
 
 9 
 
 00 00 00 00 co 00 co 
 
 o 
 
 rt CS ON i s > r^ CO rt 
 vo ON CS VO O CS HI 
 
 o 
 
 1 
 
 "* 
 
 10 
 
 pi 
 PJ 
 
 ON O O M CS rt 00 
 
 rt 00 ON CO ON O HI 
 NO O NO rt NO O rt 
 t^ NO rt CO CS CS M 
 
 8 
 
 ON rt ON rt CO M O 
 ON O NO ON ON OO NO 
 t** rt M O CO t^* CS 
 NO IO rt CO CS HI M 
 
 M 
 
 ON 00 00 t^ rt ON CO 
 rt CS rt O ON VO O 
 ON t-* NO t- O 10 M 
 VO rt CO CS CS HI HI 
 
 H 
 fc 
 
 M 
 
 
 10 
 
 CO CS CS Hi ON O CO 
 
 O HI cs co M cs co 
 
 o 
 
 ON rt ON rt HI t^. CO 
 NO rt HI ON VO O NO 
 
 10 
 
 NO NO t-> OO CS rt CO 
 CO t~-. M IO OO ON ON 
 
 fl 
 
 HS 
 
 o 
 PJ 
 
 M HI CO * ON CS NO 
 
 NO vo O M O ON NO 
 00 rt CS M rt t^. CS 
 NO VO rt CO CS HI HI 
 
 00 
 
 H 
 
 tvo NO O HI co vo 
 OO t^. t^ HI VO HI 
 rt CO CS CS HI HI 
 
 10 
 
 NO ON ON rt co co rt 
 CO co NO CS t^. ON 00 
 CO CS CS rt OO co ON 
 vo rt co CS HI HI 
 
 
 
 o 
 
 HI HI HI HI NO HI NO 
 
 ON ON ON ON Hi rt NO 
 
 g 
 
 00 00 CO 00 00 00 00 
 VO VO IO vo VO VO VO 
 
 g 
 
 NO NO NO NO HI NO HI 
 
 cs cs cs w O t^ vo 
 
 
 H 
 
 o 
 
 00 
 
 t- NO ON NO ON CS NO 
 
 t> CS HI IO CS OO HI 
 O OO l- *>. M VO M 
 NO rt CO CS CS HI H! 
 
 NO 
 
 M O NO O cs NO cs 
 
 O ON O vo ON O ON 
 rt CS CO rt CO rt ON 
 10 rt CO CS M HI 
 
 4 
 
 M 
 
 t- rt CO rt NO O 00 
 
 CS IO ON rt VO CO NO 
 
 !> r^ CO M NO (N oo 
 
 rt CO CS CN) M HI 
 
 
 
 10 
 
 CS \O O vo rt M NO 
 O co t > * O cs co cs 
 
 i 
 
 CO 00 co 00 rt O NO 
 M OO NO co rt vo 10 
 
 IO 
 
 rt ON 10 O CO ON r^. 
 cs co vo *- NO NO OO 
 
 
 * 
 
 10 
 
 O ** O O CS 10 ON 
 O O rt O vo t^ NO 
 co cs cs rt OO co ON 
 vo rt CO CS HI HI 
 
 4 
 
 H 
 
 M ON O CO NO M HI 
 
 HI ro 00 CO rt CS NO 
 
 t^ t^ 00 M NO CS 00 
 rt CO CS CS Hi M 
 
 PJ* 
 
 M 
 
 cs cs O NO O ON co 
 CS t-~ CS NO rt NO vo 
 HI CS VO OO rt O t** 
 
 rt CO CS M HI HI 
 
 
 
 g 
 
 10 CO O co 10 M co 
 CO rt NO t-. rt ON M 
 
 o 
 
 M M HI HI NO HI NO 
 
 co co co co O CO vo 
 
 O 
 
 t^ IO CS O CO HI ON 
 
 CS M O ON NO t^ O 
 
 
 M|QO 
 
 HI 
 
 t^ CS IO NO CO O rt 
 CS ON NO rt t^. t^ CS 
 vo vo t- O vo M CO 
 rt CO CS CS HI HI 
 
 PJ 
 
 M 
 
 rt CO 00 ON CO O CS 
 CS ON VO M O rt CO 
 O HI rt 00 rt O t^- 
 
 rt CO <N HI M HI 
 
 
 
 HI rt HI HI t^. O O 
 cs ON vo ON CS HI rt 
 IO t^ HI vo Cs ON NO 
 
 CO CS CS M M 
 
 
 
 10 
 
 ON co 1>- cs rt 00 vo 
 
 00 CS VO ON *- HI CS 
 
 g 
 
 cs *- cs t^. co O NO 
 M CO NO co rt vo vo 
 
 vo 
 
 NO M t^. CS CO M NO 
 
 CO vo NO 00 HI 00 00 
 
 
 < 
 
 
 ON CS rt NO t^ ON HI 
 10 00 ON ON O NO CO 
 r^ ON cs NO CO ON NO 
 CO CS CS HI Hi 
 
 O 
 
 HI 
 
 CS O ON OO Cs M vo 
 rt vo CO O NO NO O 
 
 co NO O 10 HI 00 NO 
 
 CO CS CS HI M 
 
 IN 
 
 00 
 
 rt ON rt ON t^ CO ON 
 Cs Hi OO HI M VO CS 
 ON CO t^ CO O t^ VO 
 
 O CS HI M M 
 
 
 
 1 
 
 
 
 
 
 ,,: 
 
 
 
 .-t>* 
 
 h 
 
 
 H 
 
 
 h 
 
 
 
 
 J 
 
 
 J 
 
 
 
 
 
 
 
 
 
 
 
 
 * 
 
 
 
 
 O PJ 00 Tt- M CO to 
 
 
 O PJ 00 Tl- M 00 IO 
 
 
 O PJ 00 Tf M 00 10 
 
 SHiV'I 
 HO H1U1 
 
 I 
 AY 
 
 ^ 
 
 >0 <U ->.-'; 
 
 
 o ^ ^ ^ 1 
 
 
 ; 
 
 
 
 
 M - 
 
 
 
 
 M 
 
s 
 
 w 
 
 PQ 
 
 00^ O O 
 t^ O -<t 
 
 o o 
 
 PO P 
 
 N 10 O 
 O TJ- o 
 
 Q 
 
 PO O to 
 
 PI 1-1 M 
 
 M 00 -tO Tj- Tt 
 
 io q o PI q to oo o 
 r^-dco PO -<i- pi 06 . 
 O PO M o r^. t^ to PI 
 OPOMQPOt^WPO 
 
 O O Tf PO P M MOO 
 
 PO PO PO PO 00 PO 00 
 
 
 OOMt>~piioo 
 
 t^-OOMOMfN 
 
 PO <N N 1-1 M 
 
 00 to T}- to tr O 00 M 
 
 10 * PO PI M M M 
 
 M\O M 
 fOM 
 
 \O MOO 10M 
 
 O O 
 00 W ro 
 
 ro-^-d d 
 
 fOOO O 
 toOO M\O 
 
 C* M M H 
 
 O O 
 OO TJ- 
 *>. 10 
 
 OOO O>- H-I 
 Ooo <N for^. 
 
 00 
 
 in 
 
 
 
 oooooooocooo 
 
 oooo 
 
 0\^- 
 
 NsO 
 M>O 
 
 O 10^-0000 
 O\t^ro\O t>- 
 
 <T)O wvO ^O ro 
 
 OOO r^r^MO M 
 
 \O ^ fO N N M M 
 
 M O O 
 
 totototoO too to 
 
 'f to 4 O rj- 
 r M to O PO 
 
 POOO 
 
 MO 
 >0 Tf 
 
 O\M POlOtOPOOO O 
 vooO O WOO POO ^ 
 
 t>.O 
 
 POO 
 
 PO 
 
 8 
 
 MOO 10MOO IOPON 
 
 too M O OOOM 
 O <* PO Pi 
 
 M M M 
 
 O M PO to O M o 
 
 pp oo PJ o q "^ o 
 
 -* to O 
 
 MT^-Ot^ 
 0-tOO 
 
 POOOOOOMPOt^ 
 
 to PO PO N M M 
 
 s, 
 
 PO 
 
 PO 
 
 MCIC^OO 
 POOO ** P) O 
 tOMOOO * 
 
 ION O^O wooo t* 
 Ttrfpopo - 
 
 .f^. M M IO 
 
 O O to 00 
 
 totoO r^-O O 
 M O^fOfOf^^O 
 IOOIOMOOO 
 
 <N M M M 
 
 m 
 
 <*00 
 CO I-H 
 
 r-cooco 
 
 to d to d >- *> 
 
 O PO O l>. to Tf 
 
 s 
 
 <S t^POw POMO 
 OOOO MO NOO to 
 
 Tt PO M N M M 
 
 MO M TfQ\CNOOO 
 
 C< lOOMOO OOO M 
 N POtOQs^M t^t 
 
 "^ PO CS M M M 
 
 M PO-^- 
 
 t^OPOOM 
 
 OOOOO 
 
 to O O 
 PO t^ PO 
 
 O^S 
 
 MOOOt^ 
 
 OOO M M 
 
 -^-o POIO 
 
 totototooo 
 
 00 POOOO -^- 
 POM VOt^O 
 O -5tOO POO 
 
 PO W M M M 
 
 tOP< P 
 
 ppq M 
 o 
 
 P< 
 
 P4 M M 
 
 q 
 
 d POO 
 
 toOP< 
 
 PO 
 
 MO 
 
 O P PO 
 
 O OOO W 
 
 p t^poo 
 
 Pi M M M 
 
 vO o M t-. oo PO 
 V> 00* ^ M 00 O 
 
 to O 
 
 3 
 
 00 PO CO 
 
 POtOO toO 
 M 1~N.P<00 i^. 
 
 T}-M OO IOPOP1 
 
 sHivnd 
 o 
 
B -* 
 
 TABLE 15 
 
 MOMENT OP INERTIA OF TWO COVER 
 PLATES FOR Z-BAR COLUMNS 
 
 ABOUT AXIS BB 
 Thickness of plate equals thickness of Z-bar 
 
 1 
 
 N 
 
 N| 
 
 |. 
 
 
 THICKNESS OF COVER PLATES IN INCHES. 
 
 
 h* 
 
 "35 
 
 
 
 
 A 
 
 i|* 
 
 S^ 
 
 
 
 
 
 
 
 
 O. 
 
 
 a 
 
 * 
 
 d. 
 
 I 
 
 ^ 
 
 | 
 
 1 
 
 I 
 
 8 
 
 i 
 
 Q 
 
 ^ rt 
 
 
 
 
 
 
 
 
 
 6 
 
 
 
 17 
 
 I2f 
 
 
 746.14 
 
 95-3 6 
 
 .1161.84 
 
 1380.70 
 
 1607.03 
 
 6 
 
 H 
 
 16 
 
 " 
 
 
 702.25 
 
 894.45 
 
 1093.50 
 
 1299.48 
 
 1512.50 
 
 6 
 
 if 
 
 15 
 
 
 
 .... 
 
 658.36 
 
 838-55 
 
 1025.16 
 
 I2I8.27 
 
 1417.97 
 
 
 J 
 
 14 
 
 u 
 
 .... 
 
 614.47 
 
 782.65 
 
 956.81 
 
 II 37-5 
 
 1323-44 
 
 5 
 
 i 
 
 14 
 
 iol 
 
 332.23 
 
 452.87 
 
 578.59 
 
 709.49 
 
 845-63 
 
 987.11 
 
 5 
 
 i 
 
 13 
 
 " 
 
 308.50 
 
 420.52 
 
 537-27 
 
 658.81 
 
 785-23 
 
 916.60 
 
 5 
 
 i 
 
 14 
 
 ioi 
 
 310.45 
 
 423-5 
 
 541-47 
 
 664.45 
 
 792.52 
 
 925-75 
 
 5 
 
 i 
 
 13 
 
 (1 
 
 288.27 
 
 393- 2 5 
 
 502.80 
 
 616.99 
 
 735-9 1 
 
 859-63 
 
 (28) 
 
"E 
 
 00 
 
 < 
 
 < 
 
 
 X 
 
 < 
 
 u 
 
 "q q q^ 
 
 
 vO 11 O t> 
 
 w M q q 
 
 
 00 O Tf M 
 
 t^ 1^ l^. t^ 
 
 
 00 to CO H, ! 
 CO co CO co 
 
 
 co H, 00 % C 
 
 q q ON q\ 
 
 
 
 
 
 
 
 
 
 
 - 
 
 M Tf O 
 
 O CO M 
 
 CO M 1-4 
 O 00 r^ 
 
 M to <*5 O 
 
 co o *>. t^. 
 
 o M d c> 
 o co t^ 10 
 
 M <r> ro to 
 ro O fO CO 
 ^ M IO CO 
 
 Tf Tf CD M 
 
 00 00 t^. 00 
 
 Tf CO 1-4 
 
 O 00 to 
 M M M Hi 
 
 M co O O 
 
 M Tf \O Hi 
 
 d oo vd to 
 
 M 
 
 
 
 X 
 
 ; 
 
 
 
 810 co 
 C> 
 
 CN 10 M O 
 
 O O O CO 
 
 \O <*5 HI CO 
 
 HI HI M O 
 
 t^ Tf M Cs 
 rf Tf Tf CO 
 
 10 CO O CO 
 
 vO vO vO to 
 
 
 oc 
 
 H 
 
 
 V. 
 
 M 
 
 
 a, 
 
 V 
 
 1-1 
 
 
 0, 
 
 % 
 
 CO CO co CO 
 
 h 
 
 co Tf Tf 
 MOM 
 to to to 
 
 O "- M M 
 IO VO IO >O 
 
 to 10 to to 
 
 t^ t-~ 00 00 
 IO to to to 
 
 4444 
 
 CO 00 
 \O vO O O 
 
 4444 
 
 Tf Tf 10 O 
 
 r^ t^. t~- r^ 
 
 co co co CO 
 
 
 10 O CO 
 
 to vq > 
 
 IO M 4 
 
 CN 
 
 o to Tf 
 
 to O ** vO 
 C\ fO w f^ 
 
 <i- M TJ- to 
 
 Qs VO O* M 
 VO tO Tj- Tj- 
 
 t Tf \O O 
 
 M O t~- C\ 
 r*> to to to 
 
 M 00 Tj- O 
 tO M M M 
 
 to co M CO 
 M O 00 CO 
 
 \d d to 
 
 O X^ CO O 
 CO M M HI 
 
 00 co co to 
 CO CO co M 
 10 VO 00 CN 
 
 co HI o t>- 
 
 HI HI 
 
 _: 
 < < 
 
 - ~ 
 
 
 
 r^ O 
 
 Tf 10 q 
 
 to d 06 
 n n M 
 
 r<. O * t^- 
 
 C^ tr> M O\ 
 
 M 00 \O rO 
 
 M M M Hi 
 
 O M fO HI 
 
 to O r^ CO 
 
 to fO HI ON 
 
 8O C\ t>. 
 to to oq 
 4 M d 06 
 
 O Tf O M 
 
 <O co O O 
 
 ON od vd to 
 
 "cl 
 "in 
 
 < 
 
 < 
 
 to 
 X 
 
 < 
 
 V. 
 
 Tf O^ t-- 
 
 M q q 
 
 
 to O 00 \O 
 
 M M M HI 
 
 
 CO to <D O 
 
 00 00 00 00 
 
 
 to co O CO 
 
 Tf Tf Tf CO 
 
 
 CO 10 co O 
 
 q q q q 
 
 
 
 
 "5, 
 
 r-l 
 
 ~* 
 
 
 "E. 
 
 "M 
 
 -. 
 
 
 u 
 
 "c 
 
 
 - 
 
 10 M 00 
 
 q\ co M 
 
 t^. M M 
 
 O CO t 
 
 \O M HI 00 
 
 t- vq *T- o 
 
 \C5 cJ O ON 
 
 o oo t> .to 
 
 C\ HI M Tf 
 M O rO CO 
 G*- cJ to CO 
 Tf Tf CO M 
 
 to O to t- 
 
 Tf CO VO HI 
 
 \O M CO to 
 
 M M H4 HI 
 
 -4 M C 1 - O 
 
 M TJ- vq HI 
 d 06 vd to 
 
 n 
 
 PQ 
 
 r. 
 
 1 
 
 V 
 
 r^ f*5 M 
 O 
 
 vO M O\ t^ 
 
 O O 00 00 
 
 IO M O *^ 
 
 M HI M O 
 
 CO fO O rO 
 
 t^ rf M O 
 co co co co 
 
 CO CO co co 
 
 !>- O O Tf 
 qv oc oq oq 
 
 M M M M 
 
 <* * < ^- 
 
 a. 
 urj 
 
 CO c*5 ro ro 
 
 u 
 
 M -3- Tt 
 M M M 
 
 4-^-4 
 
 to O r~ t^- 
 
 ^t Tf Tj- Tf 
 
 4444 
 
 M CO fO Tf 
 IO to to to 
 ro <O CO fO 
 
 CO CO Tf Tf 
 
 vq \q o \o 
 
 co <O <O co 
 
 Tf Tf IO O 
 
 q q q q 
 
 co co co fO 
 
 l-H 
 
 10 CO VO 
 
 Tf 00 
 
 odd 
 
 M Tj- O 
 Tf ro CO 
 
 \O t^. vC ^O 
 ro O to to 
 r^. r^. r^- vd 
 
 M PO O tO 
 
 ^- CO M M 
 
 ? ?? & 
 
 CO fO M O 
 
 t^ 10 CO M 
 
 M HI to O 
 
 CO HI M M 
 
 4 to to to 
 
 \C Tf M O 
 HI HI HI HI 
 
 CO HI t^ 
 
 CO CO M 00 
 
 HI d d^ t^- 
 
 00 t^ 10 rf 
 
 J 
 
 u 
 
 E-< 
 
 O O 00 
 
 vc q o 
 
 ro 6^ ^ 
 
 M t-i M 
 
 O O N IO 
 HI O CN 00 
 
 O HI O **- 
 
 q co o co 
 
 o oo *o 
 
 10 O Tf ON 
 
 M d o ^ 
 
 M HI 
 
 M C^ t^ N 
 
 oq to co HJ 
 
 00 *^ o" to 
 
 
 
 
 H 
 
 >! 
 
 < 
 
 <; 
 
 X 
 
 / 
 
 < 
 
 U 
 
 ro t^ 10 
 
 n M M 
 
 
 VC H, CO 
 
 fO rp M OJ 
 
 
 IO <N C^ t~~ 
 
 O O OC CO 
 
 
 to M O ** 
 IO IO to Tf 
 
 
 to HI oo o 
 M -4 q o 
 
 
 
 
 
 
 
 
 
 
 - 
 
 O\ CO O 
 
 00 *7" **. 
 
 t>> M M 
 
 O CO t> 
 
 M 
 
 O O ON l^ 
 
 *^ to O O 
 
 vO M O d^ 
 , O 00 I s - to 
 
 t^ O >-> Tf 
 
 M q to co 
 c^ o< to od 
 
 Tf Tf CO C 
 
 w Tf Tf r^ 
 
 Tf COO M 
 
 O M OO' to 
 <N HI Hi 
 
 O\ M 00 vO 
 
 HI Tf O HI 
 
 d od \d to 
 
 to 
 
 
 
 5 
 
 M 
 
 <; 
 
 4) 
 
 xo O C\ 
 
 M M l-l 
 
 
 M OO to f) 
 
 O O O O 
 
 co O 00 O 
 
 IO IO Tf Tf 
 
 00 VC Tf HI 
 
 CO co CO CO 
 
 CO M CO -O 
 M M HI ^ 
 
 co PO rc 
 
 0. 
 
 ^ 
 
 PO M M <N 
 
 & 
 
 "o 
 
 H 
 
 M f>5 M W 
 
 o. 
 "o 
 
 M M M 
 
 "5. 
 
 00 
 
 M M M M 
 
 _ 
 
 CO O O 
 
 M M f) 
 
 rO co ro 
 
 M M r*5 ^J- 
 * Tt *<* 
 
 CO <*5 *5 **5 
 
 CO Tf IO to 
 
 oq oo oq oq 
 cJ e! M M 
 
 O O 
 to to vO NO 
 M M M M 
 
 Tf 10 \O \O 
 
 CO CO co co 
 M M M M 
 
 HH 
 
 t^ M t^ 
 
 \O M ro ro 
 
 <O C^ to HI 
 
 HI M M O 
 
 c\ M co o 
 
 to 6s t>- 
 
 ro CO O 
 
 M M P- 
 
 
 ro M d co 
 
 M CO vO rO 
 
 W M M HI 
 
 
 Tf M O\ t^ 
 
 o c\ >. o 
 
 
 CO to vO t^- 
 
 t-<. \O tO Tf 
 
 
 CO f>" HI IO 
 
 Tf CO CO M 
 
 J2 
 
 M C t>. 
 t-. 10 ro 
 
 M |>. VO 
 
 M M H 
 
 M O M M 
 
 M IO 'O l> 
 
 ST S 
 
 8Tf 10 tO 
 Tf 00 N 
 
 CO M CN 00 
 M M 
 
 800 Tf O 
 vQ <O C\ 
 M ON CO 
 
 Tf Tf Tf M 
 
 C> CO t^ vO 
 
 * o to 4 
 
 SHIONV 
 
 dO VHHV 
 
 (SON NOON OVOON o^-ooo ^^^N 
 wio-; t^mro<s 9911 K 11 ^^ 1 ^ -toowvo 
 
 4-MO M^OQIN 001>OIO vdlOTJ-r}- rfrOfON 
 
 M M M M 
 
 fed 
 
 O H 
 
 !i 
 
 w< 
 
 ox-r.,^* *c^^c*o HN^KW,^ HN^ntao,^ ^rtoo^H* 
 
 XXX XXXX XXXX XXXX XXXX 
 
 * X $ y 
 
 * x * X 
 

 
 < 
 
 > 
 
 co O 
 ro co 
 
 
 
 
 ro ro 
 
 
 
 
 10 CO O 01 
 
 Tt Tt ON O 
 CN CN M *- 
 
 > 
 
 - 
 
 
 
 n 
 
 X 
 
 "H 
 
 rp co 
 
 O O 
 
 Tt Tt 
 
 
 
 
 10 10 
 
 ro co 
 OI OI 
 
 
 
 
 10 Tt ON CO 
 Tt T}- Tt T; 
 
 oo' 06 c^ 6 
 
 M M IO 1^ 
 
 I 
 
 
 
 I 
 
 Es 
 
 - 
 
 <O 00 
 t-. 00 
 
 Tt CO 
 
 
 
 iu 
 
 Tt 
 00 Tt 
 
 ro ro 
 
 
 
 1 
 
 00 Tt ro ^C 
 co ro ro oi 
 
 
 
 
 * 
 
 X 
 
 - 
 
 M M 
 
 
 
 *+ 
 
 O ON 
 
 oo o 
 
 CN ON 
 
 r^. oo 
 ro CN 
 
 
 
 ' ;; 
 
 00^ ON -. u C 
 
 oi 1-^. r^ d 
 
 CN 04 CO Tt 
 OI CN M M 
 
 
 
 
 
 
 i 
 1 
 
 i 
 Q 
 
 IO W 
 
 CO M 
 
 oi M 
 
 
 
 
 
 O IO 
 
 10 Tt 
 
 OI O 
 
 
 
 
 00 01^ 
 
 t> ON IO O 
 
 ON O". O O 
 
 MM MM 
 
 
 
 
 
 ^ 
 
 - 
 
 ro co 
 
 
 CO co 
 
 
 IO CO 
 
 M M 
 
 co ro 
 
 
 
 
 ro IO io t- 
 10 10 CO CO 
 
 oi oi MM 
 
 
 
 
 
 
 1 
 
 * 
 
 co M 
 
 II 
 
 
 oi M 
 
 IO IO 
 
 
 \O vO 
 
 10 10 
 
 O4 O 
 
 OI O 
 
 
 
 
 t^ r>. MO 
 
 O O O O 
 o! oi CO 00 
 MM Tt Tt 
 
 
 
 *- 
 
 gg 
 
 M 
 
 c: 
 
 PQ 
 
 - 
 
 Ov ro 
 
 1 
 
 Tt 00 
 Tf CO 
 
 3 
 
 OJ 
 
 o< o 
 ON IO 
 CO ro 
 
 
 
 I 
 
 M ON ON t- 
 O^ Tt ro CN 
 ro ro ro oi 
 
 
 
 5 
 
 o; 
 " 
 
 : 
 
 z 
 
 M 
 
 X 
 
 - 
 
 00 O 
 10 O 
 
 CO Tt 
 O Tt 
 
 ^ 
 
 N O 
 
 H N 
 
 ro ON 
 
 ^ 
 
 10 Tt 
 
 q 10 
 
 ro ON 
 
 
 
 
 O ON 00 -t 
 
 O t^ IO M 
 
 OO MM 
 
 <!!-, MM 
 
 
 
 a 
 
 
 
 K = 
 
 i 
 
 I 
 j 
 
 < 
 
 i 
 { 
 
 If 
 
 
 q 10 
 
 
 ? V 
 
 W W 
 
 cs cs 
 
 
 
 
 of T S~o^ 
 
 ^ *> Tt CO 
 
 
 
 si 
 
 i 
 
 
 
 - 
 
 ro co 
 
 
 ro 
 
 *>. oq 
 
 co co 
 
 
 o ^o 
 
 M M 
 
 ro ro 
 
 
 M ON 
 CO co 
 
 
 CO M CO M 
 
 Tt 10 00 O 
 
 oi oi MM 
 
 
 K* 
 
 N * 
 
 fV H 
 
 * 
 
 i 
 i 
 
 K ^% 
 
 M 
 
 X 
 
 - 
 
 t^. 
 
 CO co 
 
 
 oq" oq 
 
 IO IO 
 IO IO 
 IO IO 
 
 
 CO r^ 
 
 O\ ON 
 IO IO 
 
 00 00 
 
 M t t 
 
 
 CN O 
 
 oq oq 
 
 ro ro 
 
 
 00 r- ro 01 
 
 t^ t^ oo oo 
 
 ON CJN oi oi 
 
 CO 00 Tt Tt 
 
 
 r^ O 
 
 oq oq 
 o o 
 
 
 
 2 
 
 H 
 
 
 
 M IO 
 
 00 ON 
 
 $ 
 
 vO*00 
 
 c 
 
 O^ ^O 
 
 5 
 
 * 
 
 1 
 
 CO M CO 01 
 
 ON 10 Tt 
 
 l 
 
 CN O 
 
 00 Tt 
 
 
 i S 
 
 M 
 
 
 Tt CO 
 
 & 
 
 Tt ro 
 
 
 ro rO 
 
 g 
 
 co co 
 
 1^1 
 
 co ro ro ro 
 
 a 
 
 co co 
 
 
 
 t/; 
 X 
 
 M 
 
 ON ON 
 10 CO 
 
 rto 
 
 q io 
 
 00 10 
 
 CCiOC 
 
 M 
 00 M 
 
 810 
 ro 
 
 CO 04 
 
 t. 
 
 Tt 
 
 ON 10 
 
 6 >- 
 
 *O 10 
 
 Tt ro 
 
 
 r>. O io M 
 O O oi r^. 
 
 O) M MM 
 
 
 00 M 
 
 Tt oq 
 oi od 
 r^. 00 
 ro Ol 
 
 
 
 I 
 I 
 
 4 
 
 | 
 
 1! 
 
 
 s & 
 
 6V 06 
 
 co ro 
 
 
 O ro 
 Tt 
 
 ON ON 
 
 
 O Tt 
 
 10 ON 
 
 M 6 
 
 CO CO 
 
 
 0) M MO 
 
 O ro M 00 
 
 Tt Tt Oi M 
 
 
 00 0) 
 10 O 
 10 10 
 
 O) CN 
 
 
 
 4J 
 
 - 
 
 rO co 
 
 
 00 10 
 O t-~ 
 
 ro co 
 
 
 IO CO 
 
 q q 
 
 co ro 
 
 
 ON IO 
 
 ro ro 
 
 
 ro O ro O 
 
 Tt Tt 00 CO 
 
 oi oi MM 
 
 
 O ro t^ O 
 
 IO IO OO OO 
 
 (N Oi MM 
 
 s 
 
 
 0) 
 
 x 
 
 
 
 
 
 oq oq 
 
 C*T 00 
 O) ON 
 
 
 O) OI 
 
 
 ON M 
 
 M M 
 
 
 OO t> 
 IO IO 
 
 oi oi 
 
 
 00 00 
 O O ro ro 
 CO CO oi oi 
 O O ro ro 
 
 
 MO ro n 
 
 CO 00 O O 
 
 M M CO CO 
 Tt Tt O O 
 
 ^ 
 
 
 D 
 
 CO 
 0Q 
 
 * 
 
 ro t^. 
 
 00 ON 
 
 Tt CO 
 
 1 
 
 i>- oo 
 
 Tt ro 
 
 0) 
 
 ON 10 
 
 ro co 
 
 
 
 Tt 04 
 
 00 Tt 
 
 co co 
 
 1 
 
 IO ro IO Tt 
 ON 10 Tt O 
 
 ro ro ro ro 
 
 3 
 
 " 
 
 ro ro ro oi 
 
 a 
 
 * 
 
 x 
 
 ff 
 
 ON ON 
 
 CN q 
 
 10 t^- 
 
 M CO 
 
 10 CO 
 
 N 
 
 O 00 
 
 oq q 
 
 Jod 
 M 
 10 
 
 ^ 
 
 t^. ON 
 IO ON 
 
 ; - 
 
 00 f^ 
 O t^- 
 
 M 0)' 
 
 Tt ro 
 
 -,-r 
 
 <O O ON O 
 
 00 M ON O 
 
 M oi Tt o' 
 
 CO Tt M 00 
 
 -' 
 
 O 10 0) O 
 
 q Tt oq TJ- 
 
 ro OO MO 
 ro 10 O 10 
 CO OJ 01 M 
 
 I T i 
 
 
 J 
 
 
 M VO 
 
 
 ON 
 
 
 ON 
 
 
 O 
 
 CN t^. 
 
 
 Tt ON ro 00 
 
 O ro O ro 
 
 
 v? ? ^ ^ 
 
 ff J g. 
 
 
 I 
 
 
 oi M 
 
 
 CO CO 
 
 
 SO iO 
 
 
 00 t^- 
 <N 0) 
 
 
 M M ON ON 
 
 M M 
 
 
 oi oi 2 ir 
 
 .,JL_ 
 
 tdjo 
 
 
 AV 
 
 2 || 
 
 
 o oo || 
 
 M || 
 
 
 50 1> | 
 
 
 00 n 
 
 
 t^ ^vo 
 
 
 00 JN t^ so 
 
 i | 
 
 q-z jt 
 
 qjd 
 
 3 d 
 
 vo|| 
 
 
 vo | 
 
 I 
 
 IO IO 
 
 
 to io|| 
 
 
 Tt Tt ro ro || 
 
 
 Tt Tt ro ro 
 
 (30) 
 
J 
 
 TABLE 18 
 
 TWO CHANNELS LACED, FLANGES IN 
 
 SIZE OF 
 CHANNEL. 
 
 TOTAL SECTION. 
 
 Axis BB. 
 
 Axis AA. 
 
 ^ 
 
 j7 
 
 . 
 
 
 
 | 
 
 Jc 
 M 
 
 
 
 i 
 
 < 
 
 io"b. tob. 
 
 u" b. to b. 
 
 i2"b. to b. 
 
 I 
 
 r 
 
 I 
 
 r 
 
 I 
 
 r 
 
 r 
 
 r 
 
 15 
 
 55 
 
 no 
 
 32.36 
 
 860.4 
 
 5-16 
 
 588.98 
 
 4-27 
 
 732.23 
 
 4-76 
 
 891.67 
 
 5-25 
 
 " 
 
 50 
 
 100 
 
 29.42 
 
 805.4 
 
 5- 2 3 
 
 54067 
 
 4.29 
 
 671.50 
 
 4 . 7 8 
 
 817.04 
 
 5-27 
 
 
 
 45 
 
 90 
 
 26.48 
 
 750.2 
 
 5.32 
 
 490.36 
 
 4.30 
 
 608.51 
 
 4-79 
 
 739-9 1 
 
 5.29 
 
 " 
 
 40 
 
 80 
 
 23.52 
 
 695.0 
 
 5-43 
 
 437.04 
 
 4-3 1 
 
 542.10 
 
 4.80 
 
 658-93 
 
 5.29 
 
 " 
 
 35 
 
 70 
 
 20.58 
 
 640.0 
 
 5.58 
 
 381.90 
 
 4-3 1 
 
 473-7 
 
 4.80 
 
 575-8o 
 
 5-29 
 
 " 
 
 33 
 
 66 
 
 19.80 
 
 625.2 
 
 5-62 
 
 366.73 
 
 4-30 
 
 454.96 
 
 4.79 
 
 553-09 
 
 5-29 
 
 
 
 
 
 
 
 9" b. to b. 
 
 10" b. to b. 
 
 ii" b. tob. 
 
 12 
 
 40 
 
 80 
 
 23.52 
 
 394-0 
 
 4.09 
 
 348.97 
 
 3.85 
 
 443-71 
 
 4.34 
 
 550.20 
 
 4.84 
 
 M 
 
 35 
 
 70 
 
 20.58 
 
 358.6 
 
 4.17 
 
 309.91 
 
 3-88 
 
 393-39 
 
 4-37 
 
 487.15 
 
 4.87 
 
 it 
 
 30 
 
 60 
 
 17.64 
 
 3 2 3-4 
 
 4.28 
 
 268.23 
 
 3-9 
 
 340.08 
 
 4-39 
 
 420.75 
 
 4.88 
 
 " 
 
 25 
 
 50 
 
 14.70 
 
 288.0 
 
 4-43 
 
 223.79 
 
 3-90 
 
 283.65 
 
 4-39 
 
 350.86 
 
 4-89 
 
 if 
 
 20.5 
 
 4i 
 
 12.06 
 
 256.2 
 
 4.61 
 
 181.60 
 
 3.88 
 
 230.39 
 
 4-37 
 
 285.22 
 
 4.86 
 
 
 
 
 
 
 
 9" b. tob. 
 
 10" b. to b. 
 
 n" b. tob. 
 
 10 
 
 25 
 
 50 
 
 14.70 
 
 182.0 
 
 3-52 
 
 228.10 
 
 3-94 
 
 288.81 
 
 4-43 
 
 356-87 
 
 4.93 
 
 M 
 
 20 
 
 40 
 
 11.76 
 
 I 57-4 
 
 3.66 
 
 183-75 
 
 3-95 
 
 232.44 
 
 4-45 
 
 287.02 
 
 4-94 
 
 
 
 15 
 
 30 
 
 8.92 
 
 133.8 
 
 3-87 
 
 I 37-57 
 
 3-93 
 
 174.24 
 
 4.42 
 
 215-37 
 
 4.91 
 
 
 
 
 
 
 
 8" b. to b. 
 
 9" b. to b. 
 
 10" b. to b. 
 
 9 
 
 20 
 
 40 
 
 11.76 
 
 121. 6 
 
 3-2i 
 
 142.05 
 
 3-48 
 
 185.15 
 
 3-97 
 
 234-13 
 
 4.46 
 
 M 
 
 15 
 
 30 
 
 8.82 
 
 101.8 
 
 3-40 
 
 106.46 
 
 3-47 
 
 138-74 
 
 3-97 
 
 !75-43 
 
 4.46 
 
 " 
 
 13.25 
 
 26.5 
 
 7.78 
 
 94-6 
 
 3-49 
 
 93-n 
 
 3-46 
 
 121.45 
 
 3-95 
 
 153-68 
 
 4-44 
 
 
 
 
 
 
 
 8" b. to b. 
 
 9" b. to b. 
 
 10" b. to b. 
 
 8 
 
 16.25 
 
 32.5 
 
 9.56 
 
 79.8 
 
 2.89 
 
 116.95 
 
 3-50 
 
 152-27 
 
 3-99 
 
 192.36 
 
 4-49 
 
 " 
 
 13.75 
 
 27-5 
 
 s.os 
 
 72.0 
 
 2.98 
 
 98.88 
 
 3-50 
 
 128.72 
 
 3-99 
 
 162.60 
 
 4.49 
 
 a 
 
 11.25 
 
 22.5 
 
 6.70 
 
 64.6 
 
 3-" 
 
 81.21 
 
 3-48 
 
 105.83 
 
 3-97 
 
 133-79 
 
 4-47 
 
< 
 
 < 
 
 * 
 
 X 
 
 < 
 
 ,0 
 
 O 
 fj 
 
 ,0 
 
 "a 
 
 - 
 
 s tovo O to r^. GO to PO T)- to \o vO O PO fO to ON ON M 
 POfOPOPOPOrOCNCMCMCNCM MHM HMM OOM 
 
 JD 
 
 5 
 
 X5 
 
 to t^ ON to n- to 
 
 ooo ooo 
 
 * Tf Tf Tt TJ- Tj- 
 
 to to IO to to to IO to to to to to to to IO to to IO to to 
 
 t I 
 
 OO QO T)- POO CO PO O O ON N toO to GO M to rj- PO s 
 
 CMtoQCMOPOOOCMM^f-MOM ON ^ Tj- ON to CM 
 
 CM O to (N ON M 
 M CM CM -sf to (N 
 
 M ON M tO CM M Tj-toPOPO^fCMCMOOOCMO to ON tO 
 
 Tt- rfo to ON to too OOOPOONMtOPOO rt- O to 
 GNCQ tovo totoOto^h^POPOPOCM co W CM CM CM M 
 
 V. 
 
 Tj- ON to tO O OO 
 rt M ON CM O to 
 
 MM MM 
 
 U2 
 
 o 
 
 ,> 
 
 ^ 
 
 bo 
 
 - 
 
 O CO to to loco 00 to -5f Tt- to to\o C\ <O ^O DON 
 OOOCOCOCX300 tot^t^t^t^-oovo OvOxO vOvOO 
 
 ,a 
 
 3 
 
 ^5 
 
 i> 
 
 OO to ON O ^NO CM CM 
 tototo tototo toto 
 
 
 cOfOfO fOfOTO roro 
 
 - 
 
 M <N ro to VO M O\ toOO 1LOOO \O <N O <N <N r^ O CNO 
 M M\OOO ONlOvO CM n tosO IT) IO IO w (O O 00 ON 
 
 to O fO ^- ONOO O 2l 
 CMONO\Otow to. 
 
 to M to\o CO M to to\O O ^ O iO\O CNI ONOO CNI O W 
 to O CN IOCO to POxO ON fT> to W IO ON U^OO O O to -rf- 
 to t^vO lO^'^-lO'^-fOfOCNl frjCSIM CNIMM CNIMM 
 
 M CM CO O to 6 ^0^2- 
 
 M ON to ON tovQ O 
 
 JO 
 
 S 
 ,d 
 
 "K 
 
 ||| 
 
 H ONOO 00 00 ON ONO vo VOOO OOtoQ ^rf\O OOM 
 
 rj 
 
 ONOO O \O IO to CM fO O 
 OOM OOO OO 
 
 - 
 
 COCO to ro T)- * M ON O'O O CM lO M Tfrj-toeooNto 
 MM-^-CMU^XOU-)toM\OO>fO<N^t-Mrj-toCOOCN 
 
 
 
 n 
 
 tOOtoCOGNfOCOfS to 
 to TtOO ^ lo fO9 00 
 
 ON lo, to O W^ M CN POCO XOOOTftoMIHTj-OvOfO 
 
 CM vO O ' u ~> ONOO fDtoMO<N voOiOOtoroOrOw 
 
 "in 
 
 CMCOTJ- MtorfooJ^lo. 
 OONOtOtotO 1 ^ 'f-' CM 
 
 
 ,Q 
 o 
 
 ,0 
 
 < 
 
 vb 
 
 - 
 
 CM O ON ON O O O to\O vOONCOOOM -^-lOtoHMfT 
 ON ONOO CO ONONOO tor^r^r^vOO tovOOO OvOO 
 
 XJ 
 
 o 
 o 
 
 O O- M to\o to p<-) rf M 
 O tovO to to to to to to 
 CMCMCN CMCMCM CNCN1 CM 
 
 POPOfOfO^OPO rorOPnf^PO COCOPO fOfOfO fj f5 fJ 
 
 - 
 
 fO ^ ^"OO CMtoONfOCMCMOO fOto(M rj- tovO VT> PO Tf 
 rOONtorD'^-'^- OO ONONCM ^-OO to O vo to rf fO fd 
 
 OOONM TfOOMD OCMO 
 
 torOONlOTl-toONM Tl- 
 
 totoOOCNM ONCMCOtoCO ONOO CM O to ^ r^ VOOO 
 ON^OIOMQ fOONTj-OtoCNU-)CM lOMQ CMQOO 
 
 V 
 
 OOOOOO OOM COIOCN 
 tO-^-fDtOrJ-rOfOCM M 
 
 e*)f*> co 
 
 ,0 
 
 3 
 j=> 
 
 "in 
 
 - 
 
 ro<NOOw<N MOOtotoQ ONONCS xovO 00 CM CM rt 
 
 . 
 
 MMfOCNtoON^ttoCM 
 
 rorococororo rrjcofOfOPO CTJfifO cOfO^O fOfOPO 
 
 3 
 
 ,Q 
 ""fO 
 
 CMtM-CM CMCMCM CMCM CM 
 
 ~ 
 
 M M 1000 OOO rOOtoro<M OtoON,-^Mrtri-Mio 
 toTtOO CM lOfO -<ttoTj- VOO ONfOT)-^ H \O 00\O O 
 
 tO ON CM CMtOtoOOONO 
 to ONOO CM IO to O f5 O 
 OO M to POO O CM \O CM 
 OOPOCM COCMCM CMM M 
 
 M PT>vO CNONM toMOOtoM ONCNCM^COOO CMOOO 
 CO -^-OtorofO XOCMOO vofO ^M Q\ "oCto ON to\o 
 POrOPOCMCMCM CMCMMMM MM 
 
 ,d 
 
 5 
 ,e 
 
 V 
 
 M 
 
 
 
 \O to CO 
 
 tot^t^OOO NO\O\O 
 
 & 
 
 B 
 
 n 
 
 IO to to 
 
 CMCMCN CMCMCM CSCNCN 
 
 MMM 
 
 HH 
 
 * ' MIOCMCOtoCN) CMfOCM 
 torot^. TtO ^ O ONM 
 
 M CO 
 
 ONO CM 
 
 to LOO **5 ^OO VO to to 
 
 *(N 
 
 CM ON to 
 
 H 10 LO 
 
 
 
 % 
 
 M 
 
 X 
 
 <! 
 
 la 
 
 O tT) CM fOOO CM ON looO row CM\OtoMOON ONOO M OONCM POMTfroiO-O 
 M CM <T> Tf 10 VO O M CM TfrvO IOO 00 CMTtTl-OOONlH lOlOtoMCMCOOOONlO 
 
 
 1 1 
 
 ^1-^-CMOOCM OOTt-OCM O -^-00 OOOvOOOOvO Tj-TtCNivOCMOCOOO\O 
 
 O tO O to O to ^tOO fOOO O CMtorOMMTJ-ONCMTf TfOO CM Tf O \O to T^- t>. 
 VOQtOON^fCM ONtOCMOOtOOOtOfOCNOONto foO lOTj-Tj-rOfOCM MM 
 
 00 00 to\o OvO rorofOCMCN MMM MM 
 
 SECTION. 
 
 < 
 
 M 
 
 OS 
 
 < 
 
 SONOONOOO NOOTl-OvO OONvOMOONOOOe OOOO -TfOO vO O O O 
 
 ro ^- "^ in moo in invo i> o io j> & t^cc t^moto \oNtovOMtoroOM 
 
 (S ONVO roOOcoOCoT}-(S Tj-MOO MQOto o\00 vo 
 
 oo t*if> tovo -^ in PO r^ 
 
 
 j 
 
 1 
 
 XHOIHM 
 
 oooooo ooooo ooo oomminin inininooo oo in 
 
 OOOOO^O OOOOw OOO OOO (N^N O\^^vOM\OOOfOO 
 
 M o o>oo t^vo oo t^vo m^in^co'^-fOtN COCNN <SCNM (NNM MM M 
 
 M M 
 
 ISlZE OK 
 
 CHANNEL. 
 
 LHOIH^V 
 
 ininmm mtnin in 
 in (NNixN iNNt^in in<s 
 
 inoinoinro oinoino inoin oinro\oroM TJ-NON <r>ooo ao in 
 
 HidHQ 
 
 in^. v~s.~ fs v. >.>.. Ov.^. o\x. s. oo .. to,. ^ vo ^. m~ ^ 
 
 (32) 
 

 PQ 
 H 
 
 3 
 
 
 oq oq oq co oc oq 
 06 od 06 od 06 od 
 
 O -3- 
 
 NO M 
 
 PO 0* to PONO t^ 
 
 ^f O NO PO O ^*" 
 
 VO PO O 00 NO vo 
 
 N o w M M M 
 
 00 00 00 00 00 00 
 
 NO O 
 NO VO 
 
 d O OO NO ^" PO 
 
 oq oq oq oq oq oq t^- 1>. r>. r-. t>- 
 
 IOION t^OO 
 o6 6 
 
 HH M PO O 
 
 t^. t^ O O ^t"NO *-i 
 
 pooq q oq q -^t- r^- 
 
 O O O NO ONO PO 
 
 O ^ O O vo O NO PONO ^" C 
 
 00 O vo vo voO t>. Tf c ro\O vO vooO 
 
 M o\O 
 PO M O 
 
 t>. vo vo\O t 
 
 (N VOOO NO O VO fO Tf POOO O C\OO ^- N M f5 
 
 \& >* \O PO\O M POOCNON ONOW I^VOM 
 
 M PO f>- vo\o 1-1 p^ d^od N d M vood w ON 
 
 NMOOOOOOOt^. t^OO O t^ t^-OO t^ I s * 
 
 M O OOO t^.NO t^NO VOTj-TfTj-PCM POCI 
 
 vO <SOO NOO O 
 rO ^ M W C^ M 
 
 NONvONOO OOO 
 
 ^ ^ ^ * * 
 
 o o 
 
 Iqqqqqq qqqqq qqq qqio 
 idddddNO O o O O H odd ddvd 
 
 M O OvOO t^NO 00 t^NO 1O^ lO^-ro ^-CON 
 
 -LHOI3 \\ 
 
 O1OOlOOlOr<5 ^-pj 
 
 (SN(SM(SMM MM 
 
 (33) 
 
TABLE 20 
 -B TWO CHANNELS (FLANGES OUTSTANDING) 
 AND ONE BEAM 
 
 CHANNEL. 
 
 BEAM. 
 
 TOTAL SEC. 
 
 Axis BB. 
 
 Axis AA. 
 
 DEPTH. 
 
 WEIGHT. 
 
 a 
 
 H 
 
 0, 
 W 
 
 p 
 
 WEIGHT. 
 
 WEIGHT. 
 
 AREA. 
 
 I 
 
 r 
 
 I 
 
 r 
 
 15 
 
 55 
 
 15 
 
 42 
 
 I52.OO 
 
 44.84 
 
 875.02 
 
 4.42 
 
 2707.73 
 
 7-77 
 
 " 
 
 
 
 12 
 
 31-5 
 
 I4L50 
 
 41.62 
 
 869.90 
 
 4-57 
 
 1746.65 
 
 6.48 
 
 " 
 
 * 
 
 IO 
 
 25 
 
 135-00 
 
 39-73 
 
 867.29 
 
 4-67 
 
 1243.72 
 
 5-6o 
 
 
 
 " 
 
 9 
 
 21 
 
 131.00 
 
 38.67 
 
 865-56 
 
 4-73 
 
 1026.18 
 
 5-i5 
 
 (4 
 
 " 
 
 8 
 
 18 
 
 128.00 
 
 37.69 
 
 864.18 
 
 4-79 
 
 834.02 
 
 4.70 
 
 " 
 
 " 
 
 7 
 
 15 
 
 125.00 
 
 36.78 
 
 863.07 
 
 4.84 
 
 665.33 
 
 4-25 
 
 (( 
 
 U 
 
 6 
 
 12.25 
 
 122.25 
 
 35-97 
 
 862.25 
 
 4.90 
 
 S*9-*3 
 
 3-8o 
 
 15 
 
 50 
 
 15 
 
 42 
 
 142.00 
 
 41.90 
 
 820.02 
 
 4.42 
 
 2492-35 
 
 7.71 
 
 tt 
 
 
 
 12 
 
 3i.5 
 
 I3L50 
 
 38.68 
 
 814.90 
 
 4-59 
 
 1599.82 
 
 6-43 
 
 
 
 
 
 10 
 
 25 
 
 125.00 
 
 36.79 
 
 812.29 
 
 4-7 
 
 1135-25 
 
 5-55 
 
 " 
 
 " 
 
 9 
 
 21 
 
 121.00 
 
 35-73 
 
 810.56 
 
 4-76 
 
 934-68 
 
 5- 11 
 
 
 
 
 
 8 
 
 18 
 
 IlS.OO 
 
 34-75 
 
 809.18 
 
 4-83 
 
 758.02 
 
 4.67 
 
 
 
 
 
 7 
 
 15 
 
 115.00 
 
 33.84 
 
 808.07 
 
 4.89 
 
 603.38 
 
 4.22 
 
 " 
 
 
 
 6 
 
 12.25 
 
 112.25 
 
 33.03 
 
 807.25 
 
 4-94 
 
 469.74 
 
 3-77 
 
 15 
 
 45 
 
 15 
 
 42 
 
 I32.0O 
 
 38.96 
 
 764.82 
 
 4-43 
 
 2281.22 
 
 7-65 
 
 " 
 
 
 
 12 
 
 31.5 
 
 121.50 
 
 35-74 
 
 759-70 
 
 4.61 
 
 1456.50 
 
 6.38 
 
 " 
 
 
 
 10 
 
 25 
 
 115.00 
 
 33.85 
 
 757-09 
 
 4-73 
 
 1029.78 
 
 5-52 
 
 tt 
 
 " 
 
 9 
 
 21 
 
 1 1 1. 00 
 
 32.79 
 
 755-36 
 
 4.80 
 
 845.94 
 
 5-o8 
 
 " 
 
 tt 
 
 8 
 
 18 
 
 ioS.OO 
 
 3I.8l 
 
 753-9 8 
 
 4-87 
 
 684-53 
 
 4.64 
 
 " 
 
 tt 
 
 7 
 
 15 
 
 105.00 
 
 30.90 
 
 752.87 
 
 4-94 
 
 543-67 
 
 4.19 
 
 II 
 
 " 
 
 6 
 
 12.25 
 
 102.25 
 
 30.09 
 
 75 2 -o5 
 
 5-oo 
 
 422.34 
 
 3-75 
 
 15 
 
 40 
 
 15 
 
 42 
 
 122.00 
 
 36.00 
 
 709.62 
 
 4-44 
 
 2074.14 
 
 7-59 
 
 tt 
 
 " 
 
 12 
 
 31.5 
 
 111.50 
 
 32.78 
 
 704.50 
 
 4.64 
 
 1316.71 
 
 6-34 
 
 " 
 
 " 
 
 10 
 
 25 
 
 105.00 
 
 30.89 
 
 701.89 
 
 4-77 
 
 927.46 
 
 5-48 
 
 " 
 
 " 
 
 9 
 
 21 
 
 IOI.OO 
 
 29.83 
 
 700.16 
 
 4.84 
 
 760.13 
 
 5-5 
 
 " 
 
 
 
 8 
 
 18 
 
 98.00 
 
 28.85 
 
 698.78 
 
 4.92 
 
 6i3-75 
 
 4.61 
 
 " 
 
 " 
 
 7 
 
 15 
 
 95.00 
 
 27.94 
 
 697.67 
 
 5-0 
 
 486.43 
 
 4.17 
 
 " 
 
 (i 
 
 6 
 
 12.25 
 
 92.25 
 
 27.13 
 
 696.85 
 
 5-07 
 
 377-i8 
 
 3-73 
 
 15 
 
 35 
 
 15 
 
 42 
 
 112.00 
 
 33.06 
 
 654.62 
 
 4-45 
 
 1872.66 
 
 7-53 
 
 " 
 
 " 
 
 12 
 
 31.5 
 
 101.50 
 
 29.84 
 
 649-5 
 
 4-67 
 
 1181.30 
 
 6.29 
 
 " 
 
 
 
 IO 
 
 25 
 
 95-00 
 
 27.95 
 
 646.89 
 
 4.81 
 
 828.75 
 
 5-45 
 
 " 
 
 <( 
 
 9 
 
 21 
 
 91.00 
 
 26.89 
 
 645.16 
 
 4.90 
 
 677.56 
 
 5-02 
 
 U 
 
 " 
 
 8 
 
 18 
 
 88.00 
 
 25.91 
 
 643.78 
 
 4.98 
 
 545-85 
 
 4-59 
 
 It 
 
 U 
 
 7 
 
 15 
 
 85.00 
 
 25.00 
 
 642.67 
 
 5-07 
 
 431-74 
 
 4.16 
 
 
 If 
 
 6 
 
 12.25 
 
 82.25 
 
 24.19 
 
 641.85 
 
 5- J 5 
 
 334-22 
 
 3-72 
 
 (34) 
 
TABLE 20 {Continued) 
 TWO CHANNELS (FLANGES OUTSTANDING) AND ONE BEAM 
 
 CHANNEL. 
 
 BEAM. 
 
 TOTAL SEC. 
 
 Axis BB. 
 
 Axis AA. 
 
 Q 
 
 1 
 WEIGHT. 
 
 DEPTH. 
 
 WEIGHT. 
 
 WEIGHT. 
 
 AREA. 
 
 I 
 
 r 
 
 I 
 
 r 
 
 15 
 
 33 
 
 15 
 
 42 
 
 I08.00 
 
 32.28 
 
 639.82 
 
 4-45 
 
 1820.21 
 
 7-51 
 
 " 
 
 " 
 
 12 
 
 31-5 
 
 97.50 
 
 29.06 
 
 634.70 
 
 4 .6 7 
 
 1146.20 
 
 6.28 
 
 " 
 
 " 
 
 10 
 
 25 
 
 QI.OO 
 
 27.17 
 
 632.09 
 
 4.82 
 
 803.25 
 
 5-44 
 
 II 
 
 
 
 9 
 
 21 
 
 87.00 
 
 26.11 
 
 630.36 
 
 4.91 
 
 656.28 
 
 5-oi 
 
 " 
 
 " 
 
 8 
 
 18 
 
 84.00 
 
 25.13 
 
 628.98 
 
 5-00 
 
 528.41 
 
 4-59 
 
 II 
 
 " 
 
 7 
 
 15 
 
 Sl.OO 
 
 24.22 
 
 627.87 
 
 5-09 
 
 4I7-74 
 
 4-15 
 
 " 
 
 
 
 6 
 
 12.25 
 
 78.25 
 
 23.41 
 
 627.05 
 
 5-18 
 
 323-27 
 
 3-72 
 
 12 
 
 40 
 
 12 
 
 31-5 
 
 IH.50 
 
 32.78 
 
 403.50 
 
 3-5 1 
 
 1291.82 
 
 6.28 
 
 ii 
 
 " 
 
 10 
 
 25 
 
 105.00 
 
 30.89 
 
 400.89 
 
 3-6o 
 
 905-43 
 
 5-41 
 
 " 
 
 
 
 9 
 
 21 
 
 101.00 
 
 29.83 
 
 399.16 
 
 3-66 
 
 739-53 
 
 4-98 
 
 11 
 
 " 
 
 8 
 
 18 
 
 98.00 
 
 28.85 
 
 397.78 
 
 3-7i 
 
 594-59 
 
 4-54 
 
 u 
 
 
 
 7 
 
 IS 
 
 95.00 
 
 27.94 
 
 396.67 
 
 3-77 
 
 468.71 
 
 4.10 
 
 " 
 
 u 
 
 6 
 
 12.25 
 
 92.25 
 
 27.13 
 
 395-85 
 
 3.82 
 
 360.89 
 
 3-65 
 
 12 
 
 35 
 
 12 
 
 31-5 
 
 101.50 
 
 29.84 
 
 368.10 
 
 3-5 1 
 
 1149.78 
 
 6.21 
 
 " 
 
 " 
 
 10 
 
 25 
 
 95.00 
 
 27.95 
 
 3 6 5-49 
 
 3-62 
 
 801.14 
 
 5-35 
 
 (i 
 
 " 
 
 9 
 
 21 
 
 91.00 
 
 26.89 
 
 3 6 3-76 
 
 3-68 
 
 651.90 
 
 4.92 
 
 " 
 
 
 
 8 
 
 18 
 
 88.00 
 
 25.91 
 
 362.38 
 
 3-74 
 
 522-15 
 
 4.49 
 
 M 
 
 
 
 7 
 
 15 
 
 85.00 
 
 25.00 
 
 361.27 
 
 3.80 
 
 409.99 
 
 4-05 
 
 
 
 < 
 
 6 
 
 12.25 
 
 82.25 
 
 24.19 
 
 360.45 
 
 3.86 
 
 3 J 4-43 
 
 3-6i 
 
 12 
 
 30 
 
 12 
 
 31.5 
 
 91.50 
 
 26.90 
 
 332.90 
 
 3-5 2 
 
 1012.65 
 
 6.14 
 
 
 
 " 
 
 10 
 
 25 
 
 85.00 
 
 25.01 
 
 330.29 
 
 3-63 
 
 701.03 
 
 5-29 
 
 
 
 
 
 9 
 
 21 
 
 81.00 
 
 23.95 
 
 328.56 
 
 3-70 
 
 568.10 
 
 4-87 
 
 " 
 
 " 
 
 8 
 
 18 
 
 78.00 
 
 22.97 
 
 327.18 
 
 3-77 
 
 453.18 
 
 4-44 
 
 
 
 " 
 
 7 
 
 15 
 
 75.oo 
 
 22.06 
 
 326.07 
 
 3-84 
 
 354-39 
 
 4.01 
 
 " 
 
 
 
 6 
 
 12.25 
 
 72.25 
 
 21.25 
 
 325-25 
 
 3-9i 
 
 270.72 
 
 3-57 
 
 12 
 
 25 
 
 12 
 
 31.5 
 
 81.50 
 
 23.96 
 
 297.50 
 
 S-S 2 
 
 880.42 
 
 6.06 
 
 " 
 
 u 
 
 10 
 
 25 
 
 75.oo 
 
 22.07 
 
 294.89 
 
 3-66 
 
 605.08 
 
 5-24 
 
 " 
 
 " 
 
 9 
 
 21 
 
 71.00 
 
 21.01 
 
 293.16 
 
 3-74 
 
 488.09 
 
 4.82 
 
 M 
 
 " 
 
 8 
 
 18 
 
 68.00 
 
 20.03 
 
 291.78 
 
 3-82 
 
 387-65 
 
 4.40 
 
 II 
 
 
 
 7 
 
 15 
 
 65.00 
 
 19.12 
 
 290.67 
 
 3-90 
 
 301.86 
 
 3-97 
 
 " 
 
 
 
 6 
 
 12.25 
 
 62.25 
 
 18.31 
 
 289.85 
 
 3-98 
 
 229.72 
 
 3-54 
 
 12 
 
 20.5 
 
 12 
 
 31.5 
 
 72.50 
 
 21.32 
 
 265.70 
 
 3-53 
 
 765.64 
 
 5-99 
 
 " 
 
 " 
 
 10 
 
 25 
 
 66.00 
 
 19.43 
 
 263.09 
 
 3-68 
 
 522.30 
 
 5-i8 
 
 " 
 
 
 
 9 
 
 21 
 
 62.00 
 
 18.37 
 
 261.36 
 
 3-77 
 
 419.32 
 
 4.78 
 
 ii 
 
 < 
 
 8 
 
 18 
 
 SQ.oo 
 
 17.39 
 
 259.98 
 
 3-87 
 
 33I-58 
 
 4-37 
 
 " 
 
 
 
 7 
 
 15 
 
 56.00 
 
 16.48 
 
 258.87 
 
 3-96 
 
 257.16 
 
 3-95 
 
 " 
 
 
 
 6 
 
 12.25 
 
 53.25 
 
 15.67 
 
 258-05 
 
 4.06 
 
 195.08 
 
 3-53 
 
 (35) 
 
St 
 
 TABLE 20 (Continued) 
 
 TWO CHANNELS (FLANGES OUTSTANDING) 
 AND ONE BEAM 
 
 CHANNEL. 
 
 BEAM. 
 
 TOTAL SEC. 
 
 Axis BB. 
 
 Axis AA. 
 
 DEPTH. 
 
 WEIGHT. 
 
 DEPTH. 
 
 WEIGHT. 
 
 WEIGHT. 
 
 AREA. 
 
 I 
 
 r 
 
 I 
 
 r 
 
 10 
 
 25 
 
 12 
 
 31.5 
 
 81.50 
 
 23.96 
 
 191.50 
 
 2.83 
 
 866.82 
 
 6.01 
 
 
 
 M 
 
 IO 
 
 25 
 
 75.00 
 
 22.07 
 
 188.89 
 
 2-93 
 
 593-19 
 
 5-i8 
 
 
 
 ii 
 
 9 
 
 21 
 
 71.00 
 
 21.01 
 
 187.16 
 
 2.98 
 
 477-05 
 
 4-77 
 
 M 
 
 (C 
 
 8 
 
 18 
 
 68.00 
 
 20.03 
 
 185.78 
 
 3-05 
 
 377-46 
 
 4-34 
 
 
 
 " 
 
 7 
 
 15 
 
 65.00 
 
 IQ.I2 
 
 184.67 
 
 3-n 
 
 292.52 
 
 3-91 
 
 < 
 
 M 
 
 6 
 
 12.25 
 
 62.25 
 
 I8.3I 
 
 183-85 
 
 3-17 
 
 221.23 
 
 3-48 
 
 IO 
 
 20 
 
 12 
 
 31.5 
 
 7i.5o 
 
 21.02 
 
 166.90 
 
 2.82 
 
 735-16 
 
 5-9i 
 
 (4 
 
 
 
 10 
 
 25 
 
 65.00 
 
 19.13 
 
 164.29 
 
 2 -93 
 
 497.78 
 
 5.10 
 
 
 
 
 
 9 
 
 21 
 
 6 1. oo 
 
 18.07 
 
 162.56 
 
 3-oo 
 
 397-56 
 
 4.69 
 
 M 
 
 " 
 
 8 
 
 18 
 
 58.00 
 
 17.09 
 
 161.18 
 
 3-07 
 
 312.42 
 
 4.28 
 
 (| 
 
 
 
 7 
 
 15 
 
 SS.oo 
 
 16.18 
 
 160.07 
 
 3-15 
 
 240.45 
 
 3-86 
 
 " 
 
 u 
 
 6 
 
 12.25 
 
 52.25 
 
 15.37 
 
 !59- 2 5 
 
 3-22 
 
 180.67 
 
 3-43 
 
 IO 
 
 15 
 
 12 
 
 31.5 
 
 61.50 
 
 18.18 
 
 I43-30 
 
 2.81 
 
 6I3-56 
 
 5.81 
 
 
 
 " 
 
 10 
 
 25 
 
 55.oo 
 
 16.29 
 
 140.69 
 
 2.94 
 
 410.34 
 
 5-02 
 
 ( 
 
 
 
 9 
 
 21 
 
 51.00 
 
 15-23 
 
 138.96 
 
 3-02 
 
 325-07 
 
 4.62 
 
 M 
 
 
 
 8 
 
 18 
 
 48.00 
 
 14.25 
 
 I37-58 
 
 3-n 
 
 253-46 
 
 4.22 
 
 
 
 " 
 
 7 
 
 15 
 
 45-00 
 
 13.34 
 
 i3 6 -47 
 
 3.20 
 
 193.61 
 
 3.81 
 
 " 
 
 
 
 6 
 
 12.25 
 
 42.25 
 
 12-53 
 
 I35-6S 
 
 3-29 
 
 144.52 
 
 3-40 
 
 9 
 
 20 
 
 10 
 
 25 
 
 65.00 
 
 19.13 
 
 128.49 
 
 2-59 
 
 493.82 
 
 .5.08 
 
 " 
 
 " 
 
 9 
 
 21 
 
 61.00 
 
 18.07 
 
 126.76 
 
 2.65 
 
 393-88 
 
 4.67 
 
 
 
 " 
 
 8 
 
 18 
 
 58.00 
 
 17.09 
 
 125-38 
 
 2.71 
 
 309.02 
 
 4.25 
 
 11 
 
 " 
 
 7 
 
 15 
 
 SS.oo 
 
 16.18 
 
 124.27 
 
 2.77 
 
 237-34 
 
 3.83 
 
 " 
 
 " 
 
 6 
 
 12.25 
 
 52.25 
 
 15.37 
 
 123-45 
 
 2.83 
 
 177.84 
 
 3-40 
 
 9 
 
 15 
 
 10 
 
 25 
 
 55-00 
 
 16.19 
 
 108.69 
 
 2-59 
 
 401.61 
 
 4.98 
 
 " 
 
 11 
 
 9 
 
 21 
 
 51.00 
 
 15-13 
 
 106.96 
 
 2.66 
 
 3I7-3 1 
 
 4.58 
 
 ii 
 
 " 
 
 8 
 
 18 
 
 48.00 
 
 14-15 
 
 105-58 
 
 2-73 
 
 246.62 
 
 4.17 
 
 " 
 
 " 
 
 7 
 
 15 
 
 45-00 
 
 13.24 
 
 104.47 
 
 2.81 
 
 187.64 
 
 3.76 
 
 " 
 
 
 
 6 
 
 12.25 
 
 42.25 
 
 12.43 
 
 103-65 
 
 2.89 
 
 J 39-37 
 
 3-35 
 
 9 
 
 13.25 
 
 10 
 
 25 
 
 5i.5o 
 
 I5.I5 
 
 101.49 
 
 2-59 
 
 370-23 
 
 4-94 
 
 
 
 (I 
 
 9 
 
 21 
 
 47.50 
 
 14.09 
 
 99.76 
 
 2.66 
 
 29I-35 
 
 4-55 
 
 " 
 
 
 
 8 
 
 18 
 
 44.50 
 
 13.11 
 
 98.38 
 
 2-74 
 
 225.57 
 
 4-15 
 
 
 
 M 
 
 7 
 
 15 
 
 41.50 
 
 12.20 
 
 97.27 
 
 2.82 
 
 170.97 
 
 3-74 
 
 
 
 " 
 
 6 
 
 12.25 
 
 38.75 
 
 11-39 
 
 96-45 
 
 2.91 
 
 126.56 
 
 3-33 
 
 (36) 
 
TABLE 20 (Concluded) 
 
 TWO CHANNELS (FLANGES OUTSTANDING) 
 AND ONE BEAM 
 
 CHANNKI.. 
 
 BEAM. 
 
 TOTAL SEC. 
 
 Axis BB. 
 
 Axis AA. 
 
 DEPTH. 
 
 WEIGHT. 
 
 DEPTH. 
 
 WEIGHT. 
 
 WEIGHT. 
 
 AREA. 
 
 I 
 
 r 
 
 I 
 
 r 
 
 8 
 
 16.25 
 
 9 
 
 21 
 
 53.50 
 
 15.87 
 
 84.96 
 
 2.31 
 
 332.84 
 
 4.58 
 
 " 
 
 
 
 8 
 
 18 
 
 SO-SO 
 
 14-89 
 
 83.58 
 
 2-37 
 
 258.90 
 
 4.17 
 
 
 
 " 
 
 7 
 
 15 
 
 47.50 
 
 13.98 
 
 82.47 
 
 2,43 
 
 I97-03 
 
 3-75 
 
 " 
 
 " 
 
 6 
 
 12.25 
 
 44-75 
 
 13.17 
 
 81.65 
 
 2.49 
 
 146.25 
 
 3-33 
 
 8 
 
 13-75 
 
 9 
 
 21 
 
 48.50 
 
 14.39 
 
 77-16* 
 
 2.32 
 
 294.63 
 
 4-52 
 
 " 
 
 " 
 
 8 
 
 18 
 
 45.50 
 
 13.41 
 
 75-78 
 
 2.38 
 
 227.79 
 
 4.12 
 
 " 
 
 " 
 
 7 
 
 15 
 
 42.50 
 
 12.50 
 
 74.67 
 
 2-44 
 
 172.29 
 
 3-71 
 
 
 
 " 
 
 6 
 
 12.25 
 
 39-75 
 
 11.69 
 
 73-85 
 
 2-5 1 
 
 127.13 
 
 3-30 
 
 8 
 
 11.25 
 
 9 
 
 21 
 
 43.50 
 
 13.01 
 
 69.76 
 
 2.32 
 
 260.19 
 
 4-47 
 
 " 
 
 M 
 
 8 
 
 18 
 
 40.50 
 
 12.03 
 
 68.38 
 
 2.38 
 
 199.86 
 
 4.08 
 
 
 
 " 
 
 7 
 
 15 
 
 37.50 
 
 II. 12 
 
 67.27 
 
 2.46 
 
 150.17 
 
 3-67 
 
 " 
 
 " 
 
 6 
 
 12.25 
 
 34-75 
 
 10.31 
 
 66.45 
 
 2.54 
 
 110.14 
 
 3-27 
 
 7 
 
 M.75 
 
 8 
 
 18 
 
 47-50 
 
 14.01 
 
 58.18 
 
 2.04 
 
 238.21 
 
 4.12 
 
 
 
 
 
 7 
 
 15 
 
 44.50 
 
 13.10 
 
 57-07 
 
 2.09 
 
 180.32 
 
 3-7 1 
 
 " 
 
 
 
 6 
 
 12.25 
 
 4L75 
 
 12.29 
 
 5 6 - 2 5 
 
 2.14 
 
 I33-07 
 
 3-29 
 
 7 
 
 12.25 
 
 8 
 
 18 
 
 42.50 
 
 12.53 
 
 52.18 
 
 2.04 
 
 206.90 
 
 4.06 
 
 " 
 
 ( 
 
 7 
 
 15 
 
 39.50 
 
 11.62 
 
 5!- 7 
 
 2.10 
 
 155-40 
 
 3-66 
 
 " 
 
 " 
 
 6 
 
 12.25 
 
 36.75 
 
 I0.8l 
 
 5- 2 5 
 
 2.16 
 
 113.80 
 
 3-24 
 
 7 
 
 9-75 
 
 8 
 
 18 
 
 37.50 
 
 11.03 
 
 45-98 
 
 2.O4 
 
 176.66 
 
 4.00 
 
 ti 
 
 " 
 
 7 
 
 15 
 
 34-50 
 
 IO.I2 
 
 44.87 
 
 2. II 
 
 i3!-47 
 
 3.60 
 
 " 
 
 M 
 
 6 
 
 12.25 
 
 3L75 
 
 9.31 
 
 44-05 
 
 2.l8 
 
 95-43 
 
 3.20 
 
 6 
 
 13 
 
 7 
 
 15 
 
 41.00 
 
 12.06 
 
 37- 2 7 
 
 I. 7 6 
 
 161.62 
 
 3-66 
 
 a 
 
 M 
 
 6 
 
 12.25 
 
 38.25 
 
 11.25 
 
 36.45 
 
 1. 80 
 
 118.44 
 
 3-24 
 
 6 
 
 10.5 
 
 7 
 
 15 
 
 36.00 
 
 10. 60 
 
 32-87 
 
 1.76 
 
 136.99 
 
 3-59 
 
 n 
 
 " 
 
 6 
 
 12.25 
 
 33.25 
 
 9-79 
 
 32-05 
 
 i.8r 
 
 99-39 
 
 3-J9 
 
 6 
 
 8 
 
 7 
 
 15 
 
 31.00 
 
 9.18 
 
 28.67 
 
 i-77 
 
 114.41 
 
 3-53 
 
 " 
 
 " 
 
 6 
 
 12.25 
 
 28.25 
 
 8.37 
 
 27.85 
 
 1.82 
 
 82.08 
 
 3-!3 
 
 (37) 
 
O 
 vO 
 
 <N CO CO P o N OJ (N M CJH 
 
 OsONONO 
 OO -sf M 
 
 O io O 
 <fr rO CO 
 
 CM M OO 
 
 ON 
 
 <f Tf rf ^- Tf ** 
 
 vO 
 O 
 
 N 00 
 Ox OO 1 
 
 o t> m <s 
 
 ro d fS o^ 
 
 ? ? ? ". 
 
 N M O O 
 
 in in 10 10 in in 
 
 ininininvoininminw M 
 o o^oo J>o t^vo inmm 
 
 in in in in in in 
 
 oinoinoinoininroinoinincofOM M 
 
 ^t* ^O ^O W^CS^MMM f^ f^ M M M M M M 
 
 00 
 
 100000 tnvoiovomoooooo 
 
 q oo o o oq 
 6 
 
 00 
 
 
 3 
 
 CO C4 (N M M M 
 
 ON 
 
 O 
 
 8 
 
 Tft^. OONlOUOVO O 
 
 OlO ONONOH^iOO 
 
 B3JV 
 
 O\O OOOO OO (SCO Tf-00 
 OAOAOON OOMMinvO 
 
 Tl-00 Tj-\O 00 
 
 N\O NOO 
 
 ininininm inininininminin 
 
 1> vO 
 
 Tj-rONMO (SMOONOO cONMOO\iHOO\OOI>00 
 
 omoin*^) oinom omo 
 in^-^-'Oco TfcoroN N mTf^ 
 
 in in 
 
 inro omoindm 
 
 oin 
 
 <s M 
 
 PA 
 
 
 (38) 
 

 
 ZTi 
 
 TABLE 22 
 
 THREE BEAMS 
 
 BEAM "C." 
 
 BEAM " E." 
 
 TOTAL SECTION. 
 
 Axis BB. 
 
 Axis AA. 
 
 DEPTH. 
 
 WKIGHT. 
 
 DEPTH. 
 
 WEIGHT. 
 
 WEIGHT. 
 
 AREA. 
 
 I 
 
 .r 
 
 I 
 
 r 
 
 15 
 
 60 
 
 20 
 
 65 
 
 I8 5 
 
 54-42 
 
 1245.86 
 
 4-79 
 
 4967.10 
 
 9-55 
 
 " 
 
 " 
 
 18 
 
 55 
 
 175 
 
 51.27 
 
 1239.19 
 
 4.92 
 
 3900.79 
 
 8.72 
 
 " 
 
 M 
 
 15 
 
 42 
 
 162 
 
 47.82 
 
 1232.62 
 
 5-o8 
 
 2640.95 
 
 7-43 
 
 
 
 M 
 
 12 
 
 3i.5 
 
 I5L5 
 
 44.60 
 
 1227.50 
 
 5-25 
 
 1668.14 
 
 6.12 
 
 15 
 
 50 
 
 20 
 
 65 
 
 165 
 
 48.50 
 
 994.66 
 
 4-53 
 
 43 IO -i3 
 
 9-43 
 
 " 
 
 
 
 18 
 
 55 
 
 155 
 
 45-35 
 
 987.99 
 
 4-67 
 
 33 6 o.74 
 
 8.61 
 
 
 
 " 
 
 15 
 
 42 
 
 142 
 
 4I.QO 
 
 981.42 
 
 4.84 
 
 2254-07 
 
 7-33 
 
 u 
 
 " 
 
 12 
 
 3L5 
 
 I3L5 
 
 38.68 
 
 976.30 
 
 5-02 
 
 1407.79 
 
 6.03 
 
 15 
 
 45 
 
 2O 
 
 65 
 
 155 
 
 45.56 
 
 939.46 
 
 4-54 
 
 3970.81 
 
 9-34 
 
 " 
 
 11 
 
 18 
 
 55 
 
 US 
 
 42.41 
 
 93 2 -79 
 
 4.69 
 
 3081.51 
 
 8.52 
 
 " 
 
 tt 
 
 15 
 
 42 
 
 132 
 
 38.96 
 
 926.22 
 
 4.88 
 
 2053.96 
 
 7.26 
 
 " 
 
 " 
 
 12 
 
 31-5 
 
 I2I.5 
 
 35-74 
 
 921.10 
 
 5-o8 
 
 1273-57 
 
 5-97 
 
 15 
 
 42 
 
 20 
 
 65 
 
 149 
 
 44.04 
 
 911.26 
 
 4-55 
 
 3798.22 
 
 9.29 
 
 " 
 
 11 
 
 18 
 
 55 
 
 139 
 
 40.89 
 
 904.59 
 
 4.70 
 
 2939-75 
 
 8.48 
 
 
 
 
 
 15 
 
 42 
 
 126 
 
 37-44 
 
 898.02 
 
 4.90 
 
 1952.74 
 
 7.22 
 
 " 
 
 " 
 
 12 
 
 31-5 
 
 H5.5 
 
 34-22 
 
 892.90 
 
 5-n 
 
 1206.05 
 
 5-94 
 
 12 
 
 40 
 
 18 
 
 55 
 
 135 
 
 39.61 
 
 558-99 
 
 3-76 
 
 2840.59 
 
 8.47 
 
 " 
 
 " 
 
 15 
 
 42 
 
 122 
 
 36.16 
 
 55 2 -42 
 
 3-9i 
 
 1884.27 
 
 7.22 
 
 
 
 " 
 
 12 
 
 3i.5 
 
 III-5 
 
 32.94 
 
 547-30 
 
 4.08 
 
 1162.51 
 
 5-94 
 
 12 
 
 35 
 
 18 
 
 55 
 
 125 
 
 36.51 
 
 477-79 
 
 3-62 
 
 2564-45 
 
 8.38 
 
 " 
 
 " 
 
 15 
 
 42 
 
 112 
 
 33-06 
 
 471.22 
 
 3-78 
 
 1687.74 
 
 7.14 
 
 
 
 
 
 12 
 
 31-5 
 
 IOI.5 
 
 29.84 
 
 466.10 
 
 3-95 
 
 1031.64 
 
 5.88 
 
 12 
 
 3i-5 
 
 18 
 
 55 
 
 118 
 
 34.45 
 
 452.79 
 
 3-63 
 
 2373-63 
 
 8.30 
 
 < 
 
 " 
 
 15 
 
 42 
 
 105 
 
 31.00 
 
 446.22 
 
 3-79 
 
 I 55 I -63 
 
 7.07 
 
 " 
 
 
 
 12 
 
 3i.5 
 
 94-5 
 
 27-78 
 
 441.10 
 
 3-98 
 
 940.98 
 
 5.82 
 
 10 
 
 30 
 
 18 
 
 55 
 
 n5 
 
 33-57 
 
 289.59 
 
 2.94 
 
 2312.89 
 
 8.30 
 
 
 
 " 
 
 15 
 
 42 
 
 IO2 
 
 30.12 
 
 283.02 
 
 3-7 
 
 1510.36 
 
 7.08 
 
 " 
 
 " 
 
 12 
 
 3i.5 
 
 91-5 
 
 26.90 
 
 277.90 
 
 3.21 
 
 915.21 
 
 5-83 
 
 10 
 
 25 
 
 18 
 
 55 
 
 105 
 
 30.67 
 
 26 5-39 
 
 2.94 
 
 2044.80 
 
 8.17 
 
 " 
 
 " 
 
 15 
 
 42 
 
 92 
 
 27.22 
 
 258.82 
 
 3-9 
 
 1319.23 
 
 6.96 
 
 
 
 12 
 
 31-5 
 
 81.5 
 
 24.00 
 
 253-70 
 
 3-25 
 
 787.99 
 
 5-73 
 
 (39) 
 
P" TABLE 23 
 
 TWO CHANNELS AND 
 
 Thickness of Pis. 
 
 A 
 
 1 
 
 , 7 ( , 
 
 i 
 
 Area of 2-18" Pis. 
 
 11.25 
 
 13.50 
 
 15.75 
 
 18.00 
 
 SECTION. 
 
 AKHA 
 OF a[s 
 
 11. TO B. 
 
 01' fs 
 
 Axis. 
 
 i 
 
 r 
 
 I 
 
 r 
 
 I 
 
 r 
 
 I 
 
 r 
 
 Channel. 
 
 Pl.it.-. 
 
 15" { 
 55.* S 
 
 18" 
 
 32.36 
 
 10.5 
 
 BB 
 AA 
 
 1519.94 
 1521.61 
 1464.94 
 1404.10 
 1409.74 
 1330-11 
 
 I 354-54 
 1251.01 
 1299.54 
 1167.36 
 1284.74 
 1136.04 
 
 5-90 
 
 5-9 1 
 6.00 
 5-88 
 6.ii 
 5-94 
 
 6.24 
 6.00 
 
 6-39 
 6.06 
 
 6-43 
 6.05 
 
 1658.37 
 1582.36 
 1603.37 
 1464.85 
 1548.17 
 1390.86 
 
 1492.97 
 1311.76 
 
 1437-97 
 1228.11 
 
 1423.17 
 1196.79 
 
 0.0 I 
 
 5-87 
 
 6.ii 
 5-84 
 
 6.22 
 
 5-90 
 
 6.35 
 
 5-95 
 6.50 
 6.00 
 6-54 
 
 5-00 
 
 1799.02 
 1643.11 
 1744.02 
 1525.60 
 1688.82 
 1451.61 
 
 1633.62 
 
 I 372-5i 
 1578.62 
 1288.86 
 1563.82 
 J257-54 
 
 6.12 
 
 5-84 
 
 6.21 
 
 5.81 
 6.32 
 
 5-86 
 
 6-45 
 5-9 1 
 6-59 
 5-96 
 6.63 
 
 5-95 
 
 1941.90 
 1703.86 
 1886.90 
 
 1586.35 
 1831.70 
 1512.36 
 
 1776.50 
 1433.26 
 1721.50 
 1349.61 
 1706.70 
 1318.29 
 
 6.21 
 
 5.82 
 6.31 
 5.78 
 
 6.42 
 
 5.83 
 
 6.54 
 
 5.88 
 
 6.68 
 
 5-9i 
 6.72 
 
 5-91 
 
 IS"{ 
 5o#$ 
 i5" { 
 45M 
 
 18" 
 
 29.42 
 
 10.5 
 
 BB 
 AA 
 BB 
 AA 
 
 18" 
 
 26.48 
 
 10.75 
 
 
 
 
 
 
 i5" ( 
 40// S 
 
 18" 
 
 23.52 
 
 II 
 
 BB 
 
 AA 
 
 i5"^ 
 35#S 
 
 18" 
 
 20.58 
 
 11.25 
 
 BB 
 AA 
 
 15" { 
 33#S 
 
 1 8" 
 
 19.80 
 
 11.25 
 
 BB 
 
 AA 
 
 Thickness of Pis. 
 
 A 
 
 I 
 
 A 
 
 i 
 
 Area of 2-16" Pis. 
 
 IO.OO 
 
 I2.OO 
 
 14.00 
 
 16.00 
 
 IS"} 
 
 55* S 
 
 1 6" 
 
 32.36 
 
 8-5 
 
 BB 
 AA 
 BB 
 AA 
 
 1446.66 
 1070.51 
 
 1391.66 
 986.95 
 1336.46 
 
 939- 7 8 
 
 1281.26 
 888.56 
 1226.26 
 
 833-52 
 1211.46 
 811.23 
 
 5-84 
 5-3 
 5-94 
 5.00 
 6.05 
 5-o8 
 
 6.18 
 5-iS 
 6-33 
 5.22 
 6.38 
 
 5-22 
 
 1569.71 
 1113.18 
 
 I5H-7 1 
 1029.62 
 
 I459-5 1 
 982.45 
 
 1404.31 
 93 I - 2 3 
 J349-3 1 
 876.19 
 
 I334-5 1 
 853-90 
 A 
 
 5-95 
 S-oi 
 6.05 
 4.99 
 6.16 
 5-5 
 
 6.29 
 5.12 
 6.44 
 
 5-19 
 6.48 
 5.18 
 
 1694.73 
 1155-84 
 l6 39-73 
 1072.28 
 
 1584-53 
 1025.11 
 
 I 5 2 9-33 
 973.89 
 1474-33 
 918.85 
 
 J 459-53 
 896.56 
 
 6.05 
 
 4-99 
 6.15 
 
 4-97 
 6.26 
 
 5-03 
 
 6.38 
 5-09 
 6-53 
 5-15 
 6-57 
 5- J 5 
 
 1821.73 
 1198.51 
 1766.73 
 1114.95 
 
 ^"SS 
 1067.78 
 
 1656.33 
 
 1016.56 
 
 1601.33 
 961.52 
 1586.53 
 939-23 
 
 6.14 
 4.98 
 6.24 
 4-95 
 6-35 
 5.01 
 
 6-47 
 5-07 
 6.62 
 
 5-!3 
 6.66 
 5.12 
 
 IS" 
 
 5o#S 
 
 16" 
 
 29.42 
 
 8.5 
 
 I3TJ 
 
 45* S 
 
 16" 
 
 26.48 
 
 8.75 
 
 BB 
 AA 
 
 
 
 
 
 
 15"* 
 
 40* S 
 
 16" 
 
 23.52 
 
 9 
 
 BB 
 AA 
 
 15" { 
 35M 
 
 16" 
 
 20.58 
 
 9.25 
 
 BB 
 AA 
 
 IS** 
 
 33#S 
 
 16" 
 
 19.80 
 
 9.25 
 
 BB 
 AA 
 
 Thickness of Pis. 
 
 i 
 
 I 
 
 A 
 
 Area of 2-16" Pis. 
 
 8.00 
 
 10.00 
 
 I2.OO 
 
 14.00 
 
 12" > 
 
 40#S 
 
 16" 
 
 23.52 
 
 8.75 
 
 BB 
 AA 
 
 694.17 
 794.96 
 658-77 
 737-67 
 623-57 
 676.97 
 
 588.17 
 612.83 
 
 556.37 
 553-86 
 
 4-69 
 
 5.02 
 4.80 
 5-08 
 
 4-93 
 
 5- J 4 
 
 5-09 
 5-20 
 5-27 
 5- 2 5 
 
 773-07 
 837.63 
 737.67 
 780.33 
 702.47 
 
 7J9-63 
 
 667.07 
 655-50 
 
 635-27 
 596.52 
 
 4.80 
 
 5.00 
 4.91 
 5-05 
 5-4 
 5.10 
 
 5-20 
 
 5-15 
 
 5-37 
 5.20 
 
 853.56 
 880.30 
 818.16 
 823.00 
 782.96 
 762.30 
 
 747.56 
 698.17 
 7I5-76 
 639.19 
 
 4.90 
 4.98 
 5.01 
 5-3 
 5-i4 
 5-7 
 
 5-29 
 5-n 
 5-45 
 5-i5 
 
 935-64 
 922.96 
 900.24 
 865.67 
 865.04 
 804.97 
 
 829.64 
 740.83 
 
 797-84 
 681.86 
 
 4-99 
 4.96 
 5.10 
 5.00 
 5-23 
 5-4 
 
 5-38 
 5.08 
 
 5-53 
 5- 12 
 
 12" I 
 
 35#S 
 
 16" 
 
 20.58 
 
 9 
 
 BB 
 AA 
 BB 
 AA 
 
 IF] 
 
 30# S 
 
 16" 
 
 17.64 
 
 9.25 
 
 
 
 
 
 
 12" J 
 
 25#S 
 
 16" 
 
 14.70 
 
 9-5 
 
 BB 
 AA 
 
 !2"> 
 
 20.5 S 
 
 16" 
 
 1 2.O6 
 
 9-75 
 
 BB 
 AA 
 
 Thickness of Pis. 
 
 i 
 
 A 
 
 I 
 
 A 
 
 Area of 2-14" Pis. 
 
 7.00 
 
 8.75 
 
 10.50 
 
 12.25 
 
 l*> 
 
 40# S 
 
 14" 
 
 23.52 
 
 6.75 
 
 BB 
 AA 
 
 656.65 
 
 5 22 -39 
 621.25 
 
 488.13 
 
 4-64 
 4.14 
 
 4-75 
 
 4- 21 
 
 725.69 
 
 550.97 
 690.29 
 
 516.71 
 
 4.74 
 4-13 
 4-85 
 4.20 
 
 796.12 
 
 579-55 
 760.72 
 
 545- 2 9 
 
 4-83 
 4-13 
 4-95 
 4.19 
 
 867.94 
 608.13 
 832.54 
 
 573-88 
 
 4-93 
 4.12 
 5.04 
 4.18 
 
 12' > 
 
 3sn 
 
 MT 
 
 20.58 
 
 7 
 
 BB 
 AA 
 
 (40) 
 
TABLE 23 
 
 TWO COVER PLATES 
 
 A 
 
 I 
 
 B 
 
 I 
 
 1 
 
 i 
 
 
 20.25 
 
 22.50 
 
 24-75 
 
 27x10 
 
 3i-5<> 
 
 36XM> 
 
 i 
 
 r . 
 
 I 
 
 r 
 
 i 
 
 r 
 
 I 
 
 r 
 
 I 
 
 r 
 
 I 
 
 3167.40 
 ::,_ S( 
 3112.40 
 2072.35 
 3057-20 
 998-36 
 3002.00 
 ; 1 9.5 ' 
 2947-00 
 835-61 
 2932.20 
 1804-29 
 
 t 
 
 2087.03 
 1764.61 
 2032,03 
 1647.10 
 1976.83 
 1575-- 1 
 1921.63 
 1494-01 
 1866.63 
 1410.36 
 1851.83 
 
 1379-04 
 
 6.30 
 
 5-79 
 6.40 
 
 5-76 
 6.50 
 5.80 
 6.63 
 5-84 
 6.76 
 
 5-88 
 6.80 
 
 5-87 
 
 2234.42 
 1825.36 
 2179.42 
 707.85 
 2124.22 
 1633-86 
 
 2069.02 
 
 rr , : , : 
 
 2014.02 
 1471.11 
 
 1999.22 
 
 J439-79 
 
 6.38 
 
 5-77 
 6.48 
 
 5-74 
 6-59 
 5-78 
 6.71 
 
 '." 
 6.84 
 
 5-84 
 6.87 
 
 5-83 
 
 384.10 
 
 :-..'/ :: 
 2329.10 
 768.60 
 2273.90 
 694.61 
 2218.70 
 1615-51 
 2163-70 
 1531-86 
 2148.90 
 1500-54 
 
 6^6 
 
 5-75 
 
 5-7 1 
 6.66 
 
 5-75 
 6.78 
 
 5-79 
 6-91 
 5-8i 
 
 6-95 
 
 5 .8c 
 
 2536-09 
 946.86 
 2481-09 
 
 829-35 
 2425-89 
 
 1755-36 
 2370.69 
 1676-26 
 
 2315-69 
 
 ->; 6] 
 2300-89 
 1561.29 
 
 6.54 
 
 5-73 
 6-63 
 
 5-69 
 6-74 
 
 5-73 
 6.85 
 5-7^ 
 6.98 
 
 5-79 
 
 7.01 
 
 5-78 
 
 2847,03 
 2068.36 
 2792-03 
 950-85 
 
 --/ '\ 
 1876-86 
 
 2681.63 
 
 797 '/- 
 2626.63 
 1714.11 
 
 2611-83 
 
 ^:.-- 
 
 6.68 
 5-69 
 6-77 
 
 5-66 
 6-87 
 5-69 
 6.98 
 5-72 
 7.10 
 
 5-74 
 7-i4 
 5-73 
 
 6-81 
 5-66 
 6.90 
 
 5^3 
 
 7.00 
 
 s-66 
 
 7.1 
 5-68 
 7.22 
 
 5-7 
 7-25 
 
 :/-, 
 
 & 
 
 1 
 
 & 
 
 1 
 
 1 
 
 i 
 
 18.00 
 
 20.00 
 
 22.00 
 
 24-00 
 
 28.00 
 
 ytjoo 
 
 1950.74 
 1241.18 
 1895.74 
 1157.62 
 1840.54 
 1110.45 
 
 1785-34 
 1059.23 
 
 i730'34 
 1004.19 
 
 I7IS-54 
 981.90 
 
 6.22 
 4.96 
 6-32 
 
 4-94 
 6.43 
 5.00 
 
 6.56 
 
 5-05 
 6.70 
 
 : - - 
 74 
 5-io 
 
 2081.75 
 1283.84 
 2026.75 
 1200.28 
 
 i97i-55 
 
 1153.11 
 
 1916.35 
 
 1101.89 
 1861.35 
 1046.85 
 1846.55 
 1024.56 
 
 & 
 
 - :- 
 
 4-95 
 6.40 
 
 4-93 
 6-51 
 4-98 
 6.64 
 5-03 
 6-77 
 5-o8 
 
 5-07 
 
 ' --- 
 
 2214.80 
 
 ':-' r - 
 
 2159-80 
 1242.95 
 2104.60 
 "95-78 
 2049.40 
 
 ' : 44 ; '- 
 
 1994.40 
 
 co8( -: 
 
 .... fa 
 1067.23 
 
 6.38 
 4-94 
 6.48 
 4.92 
 6-59 
 4-97 
 6.71 
 5-oi 
 6.84 
 
 . , , 
 5-5 
 
 2349-90 
 1365 iG 
 2294-90 
 1285.62 
 2239.70 
 1238.45 
 2184.50 
 3 : g J ; ; 
 :::; r, 
 
 1I32-I9 
 
 2114.70 
 1109-90 
 
 6^6 
 +93 
 
 6-55 
 
 : ': 
 
 4-95 
 6.78 
 5-00 
 6-93 
 5-04 
 6-95 
 
 m 
 
 2626-30 
 
 1454-51 
 2571.30 
 
 1370-95 
 2 5 it ic 
 
 1323.78 
 
 2460.90 
 
 1272.56 
 
 2405 -^ 
 1217.52 
 
 2391-10 
 "95-23 
 
 6.60 
 4-91 
 6.69 
 4-89 
 6-80 
 
 4-93 
 
 6-91 
 
 4-97 
 7-04 
 5-01 
 
 7-07 
 
 2911^07 
 1539-84 
 
 2^56.07 
 
 I40.2S 
 2800-87 
 1409.11 
 
 2745-^ 
 1357-89 
 . 690 '' 7 
 1302-85 
 2675^87 
 12*0.56 
 
 6-73 
 
 4-89 
 
 6-82 
 
 4*7 
 
 6.92 
 4-91 
 
 7^>3 
 4-95 
 7-*5 
 
 4^98 
 
 7.19 
 1-97 
 
 i 
 
 I 
 
 tt 
 
 1 
 
 1 
 
 I 
 
 1 6.00 
 
 18.00 
 
 20.00 
 
 22.00 
 
 24.00 
 
 28-00 
 
 32-00 
 
 IOI 9-33 
 965.63 
 
 9 8 3-93 
 908-33 
 948.73 
 
 847-63 
 913-33 
 
 783-50 
 881.53 
 
 724-52 
 
 5.08 
 4-94 
 5-19 
 4-98 
 
 5-3* 
 
 5-02 
 
 5-45 
 S'5 
 5.60 
 5-o8 
 
 1104.65 
 1008.30 
 1069.25 
 
 "-;-'-- 
 890.30 
 998-65 
 826.17 
 966.85 
 767.19 
 
 :' 
 
 4 : 
 5 . 2 e 
 
 4-9< 
 
 r : 
 
 5-00 
 
 5-53 
 S'3 
 5.67 
 5-05 
 
 ; ] : 6c 
 1050.96 
 
 ] : - ' : c 
 
 II2I.OO 
 
 932-97 
 
 1085.60 
 868.83 
 1053.80 
 809.86 
 
 x ; : 
 
 r 34 
 
 4-95 
 5-46 
 4^8 
 
 5-59 
 5-00 
 
 5-73 
 
 5-03 
 
 1280.21 
 1093.63 
 1244.81 
 
 1209.61 
 
 975-63 
 1174.21 
 911.50 
 1142.41 
 
 852.52 
 
 5-3 
 
 x ;,'. 
 5-43 
 4-93 
 5-52 
 4-96 
 5-66 
 4.98 
 
 5-79 
 
 15-00 
 
 1370.50 
 1136-30 
 i335-io 
 : '. - ; '.<-. 
 1299-90 
 1018.30 
 1264.50 
 
 954-17 
 1232.70 
 895.19 
 
 5-37 
 4-89 
 
 1556-14 
 1221-63 
 1520.74 
 H64-33 
 1485-54 
 1103-63 
 1450-14 
 
 1039-5 
 
 1418-34 
 9*>.52 
 
 4-87 
 5-59 
 -:-'- 
 5-71 
 4^92 
 
 4-93 
 5-95 
 4-95 
 
 1748.67 
 
 1306.96 
 
 1713-27 
 
 1249.67 
 1678-07 
 1188-97 
 1642-67 
 1124-83 
 1610-87 
 1065.86 
 
 5-6i 
 4*5 
 
 5-7i 
 flftft 
 
 4^92 
 W5 
 
 4^95 
 5-72 
 441 
 5-85 
 4^9* 
 
 5-8i 
 4.80 
 
 $-93 
 
 4^91 
 6-05 
 4^92 
 
 I 
 
 & 
 
 1 
 
 tt 
 
 f 
 
 i 
 
 I 
 
 14.00 
 
 15-75 
 
 17-50 
 
 19.25 
 
 21.00 
 
 24-50 
 
 28.00 
 
 941.17 
 636.72 
 
 905-77 
 
 602.46 
 
 5-oi 
 4-12 
 5-12 
 
 4.17 
 
 1015.82 
 665.30 
 980.42 
 
 631.04 
 
 5-09 
 4.12 
 
 5-i9 
 
 4.17 
 
 1091-90 
 693,88 
 1056.50 
 659-63 
 
 5-16 
 4-n 
 
 5-27 
 4.16 
 
 1169.44 
 
 722-47 
 1 134-04 
 
 688.21 
 
 5-23 
 4-n 
 
 S-34 
 
 4-16 
 
 1248-44 
 
 75 lJ 5 
 1213^04 
 
 716.79 
 
 5-3 
 4-n 
 
 5-4 
 4-15 
 
 1410.88 
 
 808.22 
 1375-48 
 773-96 
 
 5-42 
 4-io 
 
 5-52 
 4-J4 
 
 1579-33 
 865.39 
 
 1543-93 
 831-13 
 
 5-54 
 4-M 
 
 = .*4 
 4-34 
 
 (41) 
 
TABLE 23 (Co?itinued) 
 
 TWO CHANNELS AND 
 
 Thickness of Pis. 
 
 i 
 
 ft 
 
 I 
 
 ft 
 
 Area of 2-14" Pis. 
 
 7.00 
 
 8.75 
 
 10.50 
 
 12.25 
 
 SECTION. 
 
 AREA 
 
 OF 2 [s 
 
 B. TO B 
 
 OF [S 
 
 Axis. 
 
 I 
 
 r 
 
 I 
 
 r 
 
 I r 
 
 I r 
 
 Channel. 
 
 Plate. 
 
 12" ? 
 
 30#S 
 
 14" 
 
 17.64 
 
 7.25 
 
 BB 
 AA 
 
 586.05 
 451.22 
 550-65 
 411.62 
 
 518-85 
 375-Q2 
 
 4.88 
 4.28 
 
 5-4 
 4-36 
 
 5-22 
 4.44 
 
 6 55-o9 
 
 479.80 
 619.69 
 440.20 
 587.89 
 403.60 
 
 4.98 
 4-26 
 5-14 
 4-33 
 5-32 
 4-40 
 
 725-52 
 508.39 
 690.12 
 468.79 
 658-32 
 432.18 
 
 5.08 
 4-25 
 5- 2 3 
 4-3 1 
 5-40 
 4-38 
 
 797-34 
 536-97 
 761.94 
 
 497-37 
 73- I 4 
 460.77 
 
 5.16 
 4.24 
 5-32 
 4-3 
 5-48 
 4-35 
 
 12"? 
 
 25^ S 
 
 14" 
 
 14.70 
 
 7-5 
 
 BB 
 AA 
 
 12" / 
 20.5# ( 
 
 14" 
 
 1 2. 06 
 
 7-75 
 
 BB 
 AA 
 
 Thickness of Pis. 
 
 1 
 
 ft 
 
 1 
 
 7 
 TS 
 
 Area of 2-14" Pis. 
 
 7.00 
 
 8.75 
 
 10.50 
 
 12.25 
 
 10" ? 
 
 25#S 
 
 14" 
 
 14.70 
 
 8 
 
 BB 
 AA 
 
 365-89 
 434-89 
 341-29 
 383-58 
 317.69 
 
 332.I4 
 
 4.II 
 
 4.48 
 4.27 
 4-52 
 
 4-47 
 4.57 
 
 414.70 
 463.48 
 390.10 
 412.17 
 366.50 
 360.72 
 
 4.21 
 
 4-45 
 4-36 
 4.48 
 
 4-55 
 4-52 
 
 464.08 
 492.06 
 440.08 
 
 440-75 
 416.48 
 
 389-3I 
 
 4-29 
 4.42 
 
 4-45 
 4-45 
 4-63 
 4-48 
 
 5I5-83 
 520.64 
 
 49 I - 2 3 
 469-33 
 467.63 
 417.89 
 
 4-37 
 4.40 
 
 4-52 
 4.42 
 4.70 
 4.44 
 
 10" ? 
 
 20# $ 
 
 14* 
 
 11.76 
 
 3.25 
 
 BB 
 AA 
 
 10" 
 
 i5#S 
 
 14" 
 
 8.Q2 
 
 8.5 
 
 BB 
 AA 
 
 Thickness of Pis. 
 
 1 
 
 ft 
 
 1 
 
 ft 
 
 Area of 2-12" Pis. 
 
 6.00 
 
 7-50 
 
 9.00 
 
 10.50 
 
 10"? 
 
 25! S 
 
 12" 
 
 14.70 
 
 6 
 
 BB 
 AA 
 
 339.62 
 
 271-43 
 315-02 
 241.67 
 291.42 
 211.51 
 
 4-05 
 3.62 
 4.21 
 
 3- 6 9 
 4.42 
 
 3-77 
 
 381.46 
 289.43 
 356.86 
 259.67 
 333-26 
 229.51 
 
 4-i5 
 3.61 
 
 4-3 
 3-67 
 4-51 
 3-74 
 
 424.3 
 307-43 
 399.70 
 277.67 
 376.10 
 
 247-5 1 
 
 4-23 
 3.60 
 
 4-39 
 3-66 
 4-58 
 3-72 
 
 468.14 
 325-43 
 443-54 
 295.67 
 419.94 
 265-5! 
 
 4-3 1 
 3-59 
 4.46 
 
 3-64 
 4-65 
 3-7o 
 
 10" ? 
 
 20#S 
 
 12" 
 
 11.76 
 
 6.25 
 
 BB 
 AA 
 
 Vfl 
 
 i5#S 
 
 12" 
 
 8.Q2 
 
 6.5 
 
 BB 
 AA 
 
 Thickness of Pis. 
 
 | 
 
 ft 
 
 1 
 
 ft 
 
 Area of 2-12" Pis. 
 
 6.00 
 
 7-50 
 
 9.00 
 
 10.50 
 
 9 "/ 
 
 20#S 
 
 12" 
 
 11.76 
 
 6.25 
 
 BB 
 AA 
 
 249.97 
 
 238-77 
 230.17 
 205.96 
 222.97 
 198.90 
 
 3-75 
 3-67 
 3-94 
 3-73 
 4.02 
 3-8o 
 
 284.26 
 256.77 
 264.46 
 223.96 
 257.26 
 216.90 
 
 3-84 
 3-65 
 4-03 
 3-7o 
 4.10 
 
 3-77 
 
 319.46 
 274.77 
 299.66 
 241.96 
 292.46 
 234-90 
 
 3-92 
 3-64 
 4.10 
 3-68 
 4.17 
 3-74 
 
 355-57 
 292.77 
 
 335-77 
 259.96 
 
 328.57 
 252.90 
 
 4.00 
 
 3-63 
 
 4.17 
 
 3-67 
 4.24 
 
 3-72 
 
 tfl 
 
 i5#S 
 
 12" 
 
 8.82 
 
 6.5 
 
 BB 
 AA 
 
 9V 
 
 13-25 S 
 
 12" 
 
 7.78 
 
 6.75 
 
 BB 
 AA 
 
 Thickness of Pis. 
 
 i 
 
 
 
 1 
 
 ft 
 
 Area of 2-11'' Pis. 
 
 5.50 
 
 6.88 
 
 8.25 
 
 9.63 
 
 gr'j 
 
 20#S 
 
 II" 
 
 11.76 
 
 5.25 
 
 BB 
 AA 
 
 239.28 
 
 181.53 
 219.48 
 
 J 57-75 
 212.28 
 
 J53-33 
 
 3-72 
 3-24 
 3-9 1 
 3-32 
 4.00 
 3-40 
 
 270.71 
 195.40 
 250.91 
 171.61 
 
 243-7 1 
 167.19 
 
 3.81 
 
 3-24 
 4.00 
 
 3-3i 
 4.08 
 
 3-38 
 
 302.97 
 209.26 
 283.17 
 185.48 
 
 275-97 
 
 181.05 
 
 
 
 f 
 
 3-89 
 3-23 
 4.07 
 
 3-30 
 4-15 
 3-36 
 
 336-07 
 
 223-13 
 316.27 
 
 J 99-34 
 309.07 
 194.92 
 
 3-96 
 3-23 
 4.14 
 
 3-29 
 4.21 
 
 3-35 
 
 9" > 
 
 i5#S 
 
 II" 
 
 8.82 
 
 5.50 
 
 BB 
 
 AA 
 
 9V 
 13-25 S 
 
 II" 
 
 7.78 
 
 5-75 
 
 BB 
 AA 
 
 Thickness of Pis. 
 
 i 
 
 4 
 
 ft 
 
 A 
 
 Area of 2-12" Pis. 
 
 6.00 
 
 7.50 
 
 9.00 
 
 10.50 
 
 8"? 
 16.25 \ 
 
 12" 
 
 9.56 
 
 6.50 
 
 BB 
 AA 
 
 181.92 
 214.04 
 
 3-42 
 
 3-7 1 
 
 209.42 
 
 232.04 
 
 3-5 
 3-6q 
 
 237.72 
 
 250.04 
 
 3-58 
 3-67 
 
 266.84 
 268.04 
 
 3-65 
 3.66 
 
TABLE 23 (Continued) 
 
 TWO COVER PLATES 
 
 \ 
 
 A 
 
 | 
 
 H 
 
 f 
 
 I 
 
 14.00 
 
 15-75 
 
 17.50 
 
 19.25 
 
 21.00 
 
 24.50 28.00 
 
 I 
 
 r 
 
 i 
 
 r 
 
 5-32 
 4.22 
 
 5-47 
 4.27 
 5.62 
 
 4-3 2 
 
 I 
 
 r 
 
 i 
 
 r 
 
 I 
 
 r 
 
 I r I r 
 
 870-57 
 565-55 
 835-17 
 525-95 
 803.37 
 489.35 
 
 5- 2 5 
 4-23 
 
 5-39 
 4.28 
 
 5-55 
 4-33 
 
 945-22 
 594-14 
 909.82 
 
 554-54 
 878.02 
 
 517-93 
 
 1021.30 
 622.72 
 985.90 
 583-12 
 954.10 
 546.52 
 
 5-39 
 4.21 
 
 5-53 
 4.26 
 5.68 
 4-3 
 
 1098.84 
 
 651-3 
 1063.44 
 611.70 
 1031.64 
 
 575-Jo 
 
 5-46 
 4.20 
 5-60 
 4.24 
 
 5-74 
 4.29 
 
 1177.84 
 679.89 
 1142.44 
 640.29 
 1110.64 
 603.68 
 
 5-52 
 4.19 
 5.66 
 
 4-23 
 5 .8o 
 4.27 
 
 1340.28 5.64 1508.73 5.75 
 737.05 4.18 794-22 4.17 
 1304.88 5.77 1473-33 5-87 
 697.45 4.22 754.62! 4.20 
 1273.08 5.90 1441.53 6.00 
 660.85 4- 2 5 718.02 4.23 
 
 1 
 
 A 
 
 I 
 
 ft 
 
 1 
 
 
 
 14.00 
 
 15.75 
 
 17.50 
 
 19.25 
 
 21.00 
 
 568.17 
 549-23 
 
 543-57 
 497.92 
 
 5*9-97 
 446.47 
 
 4-45 
 4-37 
 4-59 
 4-40 
 4-76 
 4.41 
 
 621.71 
 577-8i 
 
 597- 11 
 526.50 
 
 573-51 
 475-o6 
 
 4-52 
 4-36 
 4.66 
 
 4-37 
 4.82 
 
 4-39 
 
 676.46 
 606.39 
 651.86 
 555-o8 
 628.26 
 503-64 
 
 4-58 
 4-34 
 4-72 
 4-36 
 4.88 
 
 4-37 
 
 732-45 
 634-98 
 707-85 
 583-67 
 684.25 
 532.22 
 
 4.64 
 4-32 
 4-78 
 4-34 
 4-93 
 4-35 
 
 789.69 
 663-56 
 765.09 
 612.25 
 741.49 
 560.81 
 
 4.70 
 
 4-3 1 
 4-83 
 4-32 
 4.98 
 
 4-33 
 
 | 
 
 A 
 
 1 
 
 H 
 
 I 
 
 12.00 
 
 13.50 
 
 15.00 
 
 16.50 
 
 18.00 
 
 S^-oo 
 343-43 
 488.40 
 
 3I3-67 
 
 464.80 
 
 283-51 
 
 4-38 
 3-59 
 4--S3 
 3-63 
 4.71 
 3-68 
 
 558.89 
 361-43 
 534-29 
 
 33!- 6 7 
 510.69 
 
 3 I -5 I 
 
 4-45 
 3-58 
 4.60 
 3-62 
 4-77 
 3-67 
 
 605.83 
 379-43 
 581-23 
 349-67 
 557-63 
 S^-S 1 
 
 4-5 2 
 3-57 
 4.66 
 3.61 
 4-83 
 3-65 
 
 653.82 
 
 397-43 
 629.22 
 
 367-67 
 605.62 
 
 337-5 1 
 
 4-58 
 3-57 
 4-72 
 3-6i 
 4.88 
 3-64 
 
 7 02.8 7 
 
 4I5-43 
 678.27 
 
 385-67 
 654.67 
 
 355-5 1 
 
 4.64 
 3.56 
 4-77 
 3-6o 
 
 4-93 
 3-63 
 
 i 
 
 A 
 
 f 
 
 H 
 
 1 
 
 I2.0O 
 
 13-50 
 
 15.00 
 
 16.50 
 
 18.00 
 
 392.60 
 
 3 IO -77 
 372.8o 
 277.96 
 365.60 
 270.90 
 
 4.06 
 3-62 
 4-23 
 3-65 
 4-3 
 3-7 
 
 430-57 
 328.77 
 410.77 
 295.96 
 
 403-57 
 288.90 
 
 4-i3 
 3-6i 
 4.29 
 
 3-64 
 4-35 
 3-68 
 
 469.49 
 
 346.77 
 449.69 
 
 3 J 3-9 6 
 442.49 
 306.90 
 
 4.19 
 3=6o 
 4-34 
 3-63 
 4.41 
 
 3-67 
 
 509-37 
 364-77 
 489-57 
 
 33J-96 
 482.37 
 324.90 
 
 4-25 
 3-59 
 4.40 
 3.62 
 4.46 
 3-66 
 
 550.22 
 
 382.77 
 530-42 
 349.96 
 523-22 
 342.90 
 
 4-3 
 3-59 
 4-45 
 3-6i 
 4-51 
 3-65 
 
 \ 
 
 A 
 
 i 
 
 H 
 
 I 
 
 11.00 
 
 12.38 
 
 13.75 
 
 15.13 
 
 16.50 
 
 370.02 
 236.99 
 350.22 
 213.21 
 343-02 
 208.78 
 
 4-03 
 
 3-23 
 4.20 
 3-28 
 4-27 
 3-33^ 
 
 404.82 
 250.86 
 385.02 
 227.07 
 377-82 
 222.65 
 
 4.10 
 3.22 
 4.26 
 3-27 
 4-33 
 3-32 
 
 440.50 
 264.72 
 420.70 
 240.94 
 413-50 
 236.51 
 
 4.16 
 
 3-22 
 4-32 
 3-27 
 4.38 
 
 3-3 1 
 
 477.06 
 278.59 
 457.26 
 254.80 
 450.06 
 250.38 
 
 4.21 
 3.22 
 
 4-37 
 3-26 
 
 4-43 
 3-3 1 
 
 514-5 
 292-45 
 494.70 
 268.67 
 487.50 
 264.24 
 
 4-27 
 
 3-22 
 
 4-42 
 3-26 
 4-48 
 3-30 
 
 * 
 
 A 
 
 I 
 
 
 12.00 
 
 13-50 
 
 15.00 
 
 296.80 
 286.04 
 
 3-7i 
 
 3-64 
 
 327.60 
 
 304.04 
 
 3-77 
 3-63 
 
 359-25 
 322.04 
 
 3.82 
 3.62 
 
 (43) 
 
TABLE 23 (Continued} 
 
 TWO CHANNELS AND 
 
 Thickness of Pis. 
 
 i 
 
 TTT 
 
 i 
 
 Area of 2-12" Pis. 
 
 6.00 
 
 7.50 
 
 9.00 
 
 SECTION 
 
 AREA 
 
 OF 2 [s. 
 
 B. TO B. 
 
 OF[S. 
 
 Axis. 
 
 i 
 
 r 
 
 I 
 
 r 
 
 i 
 
 r 
 
 Channel. 
 
 Plate. 
 
 8V 
 13-75 S 
 
 12" 
 
 8.08 
 
 6-75 
 
 BB 
 AA 
 
 174.12 
 
 200.02 
 166.72 
 l8 5-97 
 
 3-52 
 
 3-77 
 3.62 
 
 3-83 
 
 201.62 
 2l8.02 
 194.22 
 203.97 
 
 3.60 
 3-74 
 3-70 
 3-79 
 
 229.92 
 236.02 
 222.52 
 221.97 
 
 3.67 
 
 3.72 
 
 3.76 
 3-76 
 
 8V 
 
 11.25 S 
 
 12" 
 
 6.70 
 
 7 
 
 BB 
 AA 
 
 Thickness of Pis. 
 
 i 
 
 T* 
 
 f 
 
 Area of 2-10" Pis. 
 
 5.00 
 
 6.25 
 
 7.^-0 
 
 8V 
 16.25 \ 
 
 10" 
 
 9.56 
 
 4.50 
 
 BB 
 AA 
 
 164.90 
 120.50 
 157.10 
 114.23 
 149.70 
 107.72 
 
 3-37 
 2.88 
 
 3-47 
 2.96 
 
 3-58 
 3-03 
 
 187.82 
 130.91 
 l8o.02 
 124.64 
 172.62 
 Il8.I4 
 
 3-45 
 2.88 
 
 3-54 
 2-95 
 3-65 
 3.02 
 
 211.40 
 
 J 4i-33 
 203.60 
 i35-o6 
 196.20 
 128.55 
 
 3.52 
 
 2.88 
 3.61 
 2-94 
 3-72 
 3.01 
 
 8V 
 13-75 ) 
 
 10" 
 
 8.08 
 
 4-75 
 
 BB 
 AA 
 
 8" ? 
 11.25 S 
 
 10" 
 
 6.70 
 
 5 
 
 BB 
 AA 
 
 Thickness of Pis. 
 
 i 
 
 S 
 
 i 
 
 Area of 2-10" Pis. 
 
 5.00 
 
 6.25 
 
 7.50 
 
 T'\ 
 14-75 S 
 
 10" 
 
 8.68 
 
 4-75 
 
 BB 
 AA 
 
 120.13 
 
 117.97 
 114.13 
 110.06 
 107.93 
 100.94 
 
 2.96 
 2.94 
 3.06 
 
 3-0 
 3.18 
 
 3-7 
 
 138.00 
 128.39 
 132.00 
 120.48 
 125.80 
 111.36 
 
 3-4 
 2-93 
 3- J 3 
 2.99 
 
 3-24 
 3-05 
 
 i5 6 -47 
 138.80 
 
 150-47 
 130.90 
 144.27 
 121.77 
 
 3-n 
 2-93 
 3.20 
 2.98 
 3-3 1 
 3-4 
 
 Ti 
 
 12.25 $ 
 
 10" 
 
 7.20 
 
 5 
 
 BB 
 AA 
 
 7*1 
 
 9.75 S 
 
 10" 
 
 5.70 
 
 5-25 
 
 BB 
 AA 
 
 Thickness of Pis. 
 
 i 
 
 5 
 
 $ 
 
 Area of 2-0" Pis. 
 
 4. co 
 
 5.63 
 
 6.75 
 
 r l 
 
 14.75 s 
 
 9" 
 
 8.68 
 
 3-75 
 
 BB 
 AA 
 
 IJ 3-55 
 
 83-59 
 I0 7-55 
 78.77 
 
 101.35 
 73.00 
 
 2.94 
 2.52 
 3-3 
 2-59 
 3-i5 
 2.68 
 
 129.64 
 91.18 
 123.64 
 
 86.36 
 
 117.44 
 
 80.59 
 
 3.01 
 2.52 
 3.10 
 2-59 
 
 3-22 
 
 2.67 
 
 146.26 
 98.78 
 140.26 
 
 93-96 
 134.06 
 88.19 
 
 3.08 
 2-53 
 3-!7 
 2.60 
 3.28 
 2.66 
 
 7V 
 12.25 S 
 
 9" 
 
 7.20 
 
 4 
 
 BB 
 AA 
 
 7V 
 9-75 S 
 
 9" 
 
 5.70 
 
 4.25 
 
 BB 
 AA 
 
 Thickness of Pis. 
 
 
 
 T 5 * 
 
 f 
 
 Area of 2-10" Pis. 
 
 5-00 
 
 6.25 
 
 7.50 
 
 6V 
 
 I3# S 
 
 10" 
 
 7.64 
 
 5 
 
 BB 
 AA 
 
 83-45 
 JI 3-35 
 79-05 
 103.89 
 
 74-85 
 93-87 
 
 2 -57 
 2-99 
 2.66 
 
 3-5 
 2-77 
 3.10 
 
 96.91 
 123.76 
 
 92-51 
 114.31 
 88.31 
 104.29 
 
 2.64 
 
 2.98 
 2-73 
 3-03 
 2.83 
 3.08 
 
 110.89 
 134.18 
 106.49 
 
 I2 4-73 
 102.29 
 114.70 
 
 2.71 
 2.98 
 
 2-79 
 3.02 
 2.89 
 3.06 
 
 6V 
 io.5# S 
 
 10" 
 
 6.18 
 
 5.25 
 
 BB 
 AA 
 
 6V 
 8#$ 
 
 10" 
 
 4.76 
 
 5-5 
 
 BB 
 AA 
 
 Thickness of Pis. 
 
 \ 
 
 1 
 
 
 
 Area of 2-8" Pis. 
 
 4.00 
 
 5-00 
 
 6.00 
 
 6V 
 
 I3#S 
 
 8" 
 
 7.64 
 
 3 
 
 BB 
 AA 
 
 73.68 
 
 54-55 
 69.28 
 51.08 
 65.08 
 47.19 
 
 2.52 
 2.16 
 2.61 
 2.24 
 
 2-73 
 2.32 
 
 84.45 
 59.89 
 
 80.05 
 56.41 
 75-85 
 52.53 
 
 2-58 
 2.18 
 2.68 
 
 2.25 
 
 2-79 
 2-32 
 
 95-63 
 65.22 
 91.23 
 6i.75 
 87-03 
 57.86 
 
 2.65 
 2.19 
 2.74 
 2.25 
 2.84 
 2-32 
 
 6V 
 io.5# S 
 6V 
 8#j 
 
 8" 
 
 6.18 
 
 3-25 
 
 BB 
 AA 
 
 8" 
 
 4.76 
 
 3-5 
 
 BB 
 
 AA 
 
 (44) 
 
TABLE 23 (Concluded) 
 
 TWO COVER PLATES 
 
 T'S 
 
 i 
 
 fV 
 
 i 
 
 10.50 
 
 12.00 
 
 13.50 
 
 15.00 
 
 I 
 
 r 
 
 I 
 
 r 
 
 I 
 
 r 
 
 I r 
 
 259.04 
 254.02 
 251.64 
 239-97 
 
 3-73 
 3-7o 
 3-82 
 3-74 
 
 289.00 
 272.02 
 
 281.60 
 257-97 
 
 3-79 
 3-68 
 3-88 
 3-7i 
 
 319.80 
 290.02 
 312.40 
 275-97 
 
 3-85 
 3.67 
 
 3-93 
 
 3-70 
 
 351.45 3.90 
 308.02 3.65 
 344.05 3.98 
 
 293-97 3-68 
 
 TV 
 
 i 
 
 A 
 
 f 
 
 8.75 
 
 10.00 
 
 H.25 
 
 12.50 
 
 235- 6 7 
 I 5 I -75 
 227.87 
 145.48 
 220.47 
 I38-97 
 
 3-59 
 2.88 
 
 3-68 
 2-94 
 3-78 
 3.00 
 
 260.63 
 162.16 
 252-83 
 155-89 
 245-43 
 149-39 
 
 3-65 
 2.88 
 
 3-74 
 2-94 
 3-83 
 2-99 
 
 286.30 
 
 172.58 
 278.50 
 166.31 
 271.10 
 159.80 
 
 3-7i 
 2.88 
 3-8o 
 2-93 
 3-89 
 2.98 
 
 312.68 3.76 
 183.00 2.88 
 304.88 3.85 
 176.73 2.93 
 297.48 3.94 
 170.22 2.98 
 
 TV 
 
 ^ 
 
 T* 
 
 
 8.75 
 
 10.00 
 
 11.25 
 
 !75-54 
 149.22 
 169.54 
 141.31 
 
 163-34 
 132.19 
 
 3- J 7 
 2-93 
 3-26 
 2.98 
 3-36 
 3-02 
 
 195-23 
 159.64 
 
 189.23 
 
 151-73 
 183-03 
 
 142.61 
 
 3-23 
 2.92 
 
 3-32 
 2-97 
 3-4i 
 3.01 
 
 215-55 
 170.05 
 
 209-55 
 162.15 
 
 203-35 
 153-02 
 
 3-29 
 2.92 
 
 3-37 
 2.96 
 
 3-46 
 3-oo 
 
 TV 
 
 i 
 
 s 
 
 7.88 
 
 9.00 
 
 10.13 
 
 163-43 
 106.37 
 
 J57-43 
 iQi-55 
 I 5 I - 2 3 
 95-78 
 
 3-M 
 2-53 
 3-23 
 2.60 
 
 3-34 
 2.66 
 
 181.15 
 113.96 
 
 *75-*S 
 109.14 
 168.95 
 103.38 
 
 3-20 
 2-54 
 3-29 
 2.60 
 
 3-39 
 2-65 
 
 J 99-43 
 121.56 
 
 193-43 
 116.74 
 187.23 
 110.97 
 
 3.26 
 2-54 
 3-34 
 2.60 
 
 3-44 
 *.6 5 
 
 TV 
 
 * 
 
 T 9 * 
 
 
 8.75 
 
 IO.OO 
 
 11.25 
 
 
 1 2 5-39 
 144.60 
 120.99 
 
 I35-M 
 
 116.79 
 125.12 
 
 2-77 
 2-97 
 2.85 
 3.01 
 2-94 
 3-4 
 
 140.43 
 155-01 
 136.03 
 145-56 
 131-83 
 135-54 
 
 2.82 
 2.96 
 2.90 
 3-oo 
 2-99 
 3-3 
 
 156.02 
 
 165.43 
 151.62 
 
 J 55-98 
 147.42 
 
 J 45-95 
 
 2.87 
 2.96 
 2-95 
 2-99 
 3-3 
 3.02 
 
 
 Tff 
 
 \ 
 
 S 
 
 
 7.OO 
 
 8.00 
 
 9.00 
 
 
 107.23 
 
 70-55 
 102.83 
 67.08 
 98.63 
 63.20 
 
 2.71 
 
 2.20 
 
 2-79 
 
 2.26 
 2.90 
 2.32 
 
 119.27 
 
 75-89 
 114.87 
 72.41 
 110.67 
 68.53 
 
 2.76 
 
 2. 2O 
 
 2.8 5 
 2.26 
 2.94 
 2.32 
 
 I 3 I -74 
 81.22 
 127.34 
 
 77-75 
 123.14 
 73.86 
 
 2.81 
 
 2.21 
 2.90 
 2.26 
 
 2-99 
 
 2-32 
 
 
 (45) 
 
S13NNVH3 
 HO 
 
 ox -a 
 
 NOIXDHg 
 
 HO vany 
 
 1VXOJ, 
 
 S1HNNVHQ 
 HO 
 
 a ox -a 
 
 NOIXDHg 
 
 HO VHHy 
 
 1VXOJ, 
 
 MCS MCI 
 
 (NNCStNMM 
 
 ON NW^-O 
 
 xxxxxx xxxxxx xxxxxx 
 
 OOONOOON ON^ONTJ- ONTfON'"*- 
 
 t^ OO 
 
 MvOt^Tj- 
 OOO^ 
 
 M<N'M(N 
 
 Ot~~O\vO HON^OiOiOPD MOOiO^row 
 
 \Ovou->vo OO\ONONC^ON Tj-fpfOrOrOrO 
 MMHM WM'HMMM cici(NcJcN<N 
 
 Cj ro 
 t- r^ 
 
 ONfO^^ 
 oOOi-tt^ 
 
 MXOOCrOt^-O\ 
 
 in in 10 10 v> v> 
 
 NNM NNM 
 
 OOOOO \OvOvOOOOOOO 
 ^-Ov^OOOfC N1>NVOMVO 
 
 OOOOO 
 
 XXX X XXXXXX XXXXXX XXXX 
 <00 00 O M .00 O N ONTfONTt ONTfO 
 
 (46) 
 
w 
 J 
 
 PQ 
 < 
 H 
 
 TWO CHANNELS AND ONE COVER PLATE 
 
 B 
 
 X 
 
 - 
 
 00 
 
 g. 
 
 o 
 
 -9 
 
 v> 
 
 CO 
 
 Tj- NO VO NO ON O 
 
 co^-^-t^M ^ MC 
 
 CO 
 
 co 
 
 4 
 
 IO 
 
 o 
 
 4- 
 
 vo 
 
 co ^ vo CO ^" vo 
 
 TI-IONO ^VONO ^-vo 
 
 NO 
 
 - 
 
 r^. 
 
 VO 
 
 q 
 
 
 
 
 00 
 
 q 
 cc 
 
 IO 
 
 'JC 
 
 1 
 
 g\ 1^ P. 
 
 NOlOOOOVOPOMON 
 
 VOONM O POCS COO 
 
 cT 
 
 O w O\ *"- ^O cs 
 
 00 00 O 00 O fO 
 
 UEti 
 
 c? 
 
 
 
 
 
 
 
 
 5 
 
 tn 
 X 
 
 - 
 
 NO 
 
 M 
 
 -si 
 
 
 
 I 1 
 
 c 
 
 
 
 00 ^* O ^ W O^ 
 
 SN ScO^C^g OO" S 
 
 ^ 
 
 PO 
 
 o 
 
 
 
 *) 
 
 o 
 
 CO 
 
 CO CO PO PO CO PO 
 
 COPOCOPOPOPOPOPO 
 
 - 
 
 oo 
 
 ft 
 
 2* 
 
 
 
 M 
 
 5c 
 
 ^0 
 
 IH vo CNJ TJ- ON VO 
 CO vo M PO M CO 
 
 00-<1-POMTJ-ONl-lt^ 
 
 u 
 
 2 
 
 o 
 
 M 
 
 g 
 
 ^ 
 
 -i 
 
 co 
 
 VO NO NO NO t^ 00 
 
 <N cocovoO I^CO ON 
 
 
 
 
 
 
 
 
 
 
 
 00 
 
 dq 
 
 * 
 
 
 
 i/". 
 
 10 00 
 
 CN) ON ^ 00 vo O 
 t^- OO O vo r^- ON 
 
 ONO CNINO r^OO covo 
 
 CO 
 
 
 S1HNNVH3 
 
 dO 
 
 a ox -a 
 
 * 
 
 a 
 
 M 
 
 in 
 
 in 
 
 in 
 
 in in in 
 
 in in in 
 
 in in in N M N 
 
 (S 
 
 NO 
 
 00 
 
 
 
 M 
 
 vO 00 O vO 00 O 
 
 OOOfNOOONOOO 
 
 NOIXDHS 
 
 ao VHMV 
 
 o 
 
 (S 
 
 S 
 
 o 
 
 00 
 
 in 
 
 ^ 
 
 
 
 (S O 1> fO O 00 
 
 t^N t^M\o *-* vno 
 
 in 
 
 M 
 
 M 
 
 (N 
 
 <N 
 
 rO 
 
 Tj- 
 
 N PO CO PO Tj- Tf 
 
 TfTj-mt^i>oo o\o 
 
 (S 
 
 
 
 
 
 
 
 
 
 &*1 
 
 MM 
 
 X 
 
 rr;- 
 
 X 
 
 Tf 
 
 ~ A 
 
 X 
 
 
 
 NM 
 
 X 
 
 *e 
 X 
 
 <t 
 
 rtoo 
 
 X 
 
 rtoo rtoo rtoo rtoo rtao rtoo 
 X X X X X X 
 N -<fr vO N Tj- vo 
 
 XX XXXXXX 
 
 Woo 
 
 X 
 
 
 X 
 
 - 
 
 S 
 
 {^ 
 
 S 
 
 X- 
 
 J^ 
 
 o 
 
 ON Tf 00 ON NO CM 
 
 00 t^ vo r^ NO vo 
 
 ^0 ^ J^O .0 
 
 co 
 
 PO 
 
 - 
 
 10 
 
 eo 
 
 * 
 
 VO 
 
 PO ^- VO PO *3- vo 
 
 TtVONQ rJ-lOvO TtlO 
 
 NO 
 
 - 
 
 ON 
 
 ^ 
 
 & 
 
 8 
 
 DO 
 
 NO 
 
 o M oo NO co TJ- 
 
 ON 00 CNJ Ov NO O 
 
 NO VO NO NO NO ON 
 
 
 cs 
 
 i 
 
 :;. 
 
 {J2 
 
 j 
 
 f r 
 
 J^ 
 
 
 02 
 M 
 
 X 
 
 - 
 
 cs 
 
 S 
 
 J 
 
 M 
 
 5> 
 
 N 
 
 CN) O OO NO vo ** 
 
 NO NO IO VO VO VO 
 
 O O ONOOOOOC t^-t 
 
 ^ 
 
 co co co co CO CO 
 
 TtTj-POPOPOPOPOPO 
 
 PO 
 
 - 
 
 00 
 
 
 
 
 IO 
 
 VO 
 
 CO NO PO O CS ON 
 ON CNI M t^ rf NO 
 
 00 PO- PO 00 ONCSNO 
 
 VO 
 
 8: 
 
 o' 
 
 o 
 
 6 
 
 M 
 
 
 
 O NO M ON vo O 
 rj- Tj- vo 'sj- vo NO 
 
 ONNO WOO VOCNINO Tf 
 
 ^ 8 S S o? cT c?^ 
 
 c 
 
 . 
 
 CO 
 
 4 
 
 
 
 M 
 
 ? 
 
 ? 
 
 ON ^ ** l^- w rj- 
 S Tt- 10 M CO * 
 
 TfCNCMOO O CNI ON 
 
 g 
 
 S13NNVH3 
 HO 
 
 a ox -a 
 
 K 
 
 o 
 
 M 
 
 in 
 
 m 
 
 in 
 
 in in in 
 
 in in in 
 
 in in in <s <s N 
 
 <S 
 
 NO 
 
 co 
 
 
 
 M 
 
 vO 00 O vO 00 O 
 
 OOONOOONOOO 
 
 
 
 MOIXDHg 
 dO V3HV 
 
 -ivxoj. 
 
 R 
 
 o 
 
 (N 
 
 g. 
 
 c 
 
 % 
 
 ? 
 
 00 00 00 <N N N 
 l> (S t 00 ro 00 
 
 g. o\ 5. N f.^ s R 
 
 S 
 
 
 
 
 
 O 
 
 M 
 
 M 
 
 (S 
 
 O M M M N N 
 
 N N romtnvOOOOO 
 
 O> 
 
 
 
 
 
 
 
 
 
 O, 
 
 X 
 
 X 
 
 "t 
 
 X 
 
 NO 
 
 X 
 
 (N 
 
 X 
 
 X 
 vO 
 
 X X X X X X 
 N Tj- vO N * vo 
 
 xxxxxxxx 
 ^vooo ^VOQO ^vo 
 
 x 
 
 00 
 
 
 1 CHANNELS. 
 
 ^ 
 
 m 
 
 M 
 M 
 
 5 
 
 2 
 
 m 
 
 f~ 
 
 5 
 
 2 
 
 in 
 
 po 
 
 M 
 
 in- ^ o- m.- 
 
 s 
 
 ,,d, a 
 
 00 
 
 s 
 
 5 
 
 00 
 
 s 
 
 ^ 
 
 Ov - ^ O> 3 ^ 
 
 2 - - o - 
 
 
 
 
 
 (47) 
 
S1HNNVHO 
 HO 
 
 a ox -a 
 
 NOIXDHg 
 
 HO vaay 
 -ivxoj, 
 
 S1HNNVH3 
 HO 
 
 a ox -a 
 
 NOIXDHg 
 
 HO V3HV 
 
 IVXOJ, 
 
 ^OtHMOONOWO M 
 MMQs<NOOOMOOO M 
 
 u->MvOOOu->M 
 
 Tt-^-Tj-^-tf-TtTfTt 
 
 00 O ^f O Tf <N OOt^OOOO 
 QQ OO 00 GO 00 00 r-.r-.t-.t~-.t~-.!>. 
 
 IO VO VO IO IO to VO to to to tO IO 
 
 MO <-O OO CO <N 
 
 i/)ini/)ioi/)ioioioio 
 
 1/51010 
 
 OOOOOOOOO (SNNOOOOOO 
 OOOOOOiniOlO lOiniOTfrfrl- 
 
 H5H5H5H5H5H5H5H5H5 HH*HHHH* H* H H H H H 
 
 xxxxxxxxx xxxxxx xxxxxx 
 voooovoooovoooo OOONOOON OOONOOON 
 
 voONOOvO 
 
 OsOO 
 MO 
 
 io<NvOOO MO IOC^MO WOO 
 
 MXOONOM 
 
 O^ oo t . o ^O o *^t" to to O C^ oo t o to o t^ t^ t-- co oo 
 ^^'^'^ T i"'i'" : f'^' T i" totoioiototo totototototo 
 
 
 TtOrfO 
 
 
 101010 
 
 to M ro I/) 
 
 cO <"O fO <"O *^ f^5 
 
 ^H< I-HI rtH" r4* H^ i-H * >-+* H* 05|o8 c*io c*o c*c * csloo * nice crtoo c*e ccloo fcloo 
 
 XXXXXXXXX XXXXXX XXXXXX 
 vOOOO^OOOOvOOOO OOOMOOON OOONOOON 
 
 l> , IQ 
 
 in - - in - .. 
 
 (48) 
 
TABLE 25 
 
 ONE CHANNEL AND ONE PLATE 
 
 G EQUALS GAUGE OF CHANNEL 
 
 CHANNEL. 
 
 M 
 
 H 
 
 5 1 
 5 * 
 
 O 
 
 AREA 
 OF SEC- 
 TION. 
 
 Axis AA. 
 
 Axis BB. 
 
 G 
 
 s 
 
 be 
 
 
 
 e 
 
 I 
 
 r 
 
 e' 
 
 I 
 
 r 
 
 9 
 
 13.25 
 
 8x | 
 
 6.89 
 
 2.04 
 
 8405 
 
 3-5 
 
 94 
 
 18.77 
 
 1.6 5 
 
 if 
 
 " 
 
 " 
 
 8x& 
 
 6.39 
 
 1.82 
 
 80.31 
 
 3-55 
 
 .91 
 
 16.00 
 
 I. 5 8 
 
 
 " 
 
 M 
 
 8x* 
 
 5.89 
 
 i-57 
 
 75-56 
 
 3-58 
 
 .87 
 
 13.22 
 
 1.50 
 
 c 
 
 8 
 
 11.25 
 
 8x | 
 
 6.35 
 
 1.98 
 
 60.08 
 
 3-o8 
 
 .89 
 
 18.05 
 
 1.6 9 
 
 I* 
 
 " 
 
 " 
 
 8x& 
 
 5.85 
 
 1.78 
 
 57-05 
 
 3.12 
 
 .86 
 
 i5-3i 
 
 1.62 
 
 
 
 1 
 
 " 
 
 8xi 
 
 5-35 
 
 J-54 
 
 53-62 
 
 3.i7 
 
 .83 
 
 I2 -57 
 
 i-53 
 
 " 
 
 7 
 
 9-75 
 
 8xA 
 
 5-35 
 
 1.71 
 
 38. 9 2 
 
 2.70 
 
 .88 
 
 14.97 
 
 1.67 
 
 "1 
 
 " 
 
 11 
 
 8x i 
 
 4-85 
 
 1.49 
 
 36.55- 
 
 2.74 
 
 .84 
 
 12.23 
 
 J -59 
 
 u 
 
 " 
 
 
 
 7X^ 
 
 5-04 
 
 i-59 
 
 37-66 
 
 2-73 
 
 -85 
 
 10.52 
 
 i-45 
 
 tf 
 
 
 
 " 
 
 7X J 
 
 4.60 
 
 1.38 
 
 35-36 
 
 2-77 
 
 .81 
 
 8.67 
 
 i-37 
 
 . " 
 
 6 
 
 8 
 
 7Xtk 
 
 4-57 
 
 i-5i 
 
 24-37 
 
 2.31 
 
 .81 
 
 10.05 
 
 1.48 
 
 I* 
 
 " 
 
 u 
 
 7X i 
 
 4-13 
 
 1.32 
 
 22.86 
 
 2-35 
 
 -77 
 
 8.22 
 
 1.41 
 
 11 
 
 u 
 
 
 
 6x i 
 
 3-88 
 
 1. 21 
 
 21.99 
 
 2.38 
 
 75 
 
 5-54 
 
 i.ig 
 
 
 
 (49) 
 
TABLE 26 
 
 ONE CHANNEL AND ONE ANGLE 
 
 LONG LEG OF ANGLE PERPENDICULAR TO WEB OF CHANNEL 
 BACK OF ANGLE FLUSH WITH FLANGE OF CHANNEL 
 
 CHANNEL. 
 
 SIZE OF 
 ANGLE. 
 
 TOTAL 
 AREA. 
 
 Axis BB. 
 
 Axis A A. 
 
 J 
 
 o 
 Q 
 
 1 
 
 e' 
 
 I 
 
 r 
 
 e 
 
 
 
 r 
 
 12 
 (i 
 
 20.5 
 tt 
 
 5X3ix& 
 4x3 x& 
 
 8.59 
 
 8.12 
 
 1-54 
 1-35 
 
 178.67 
 172.37 
 
 4-5 6 
 4.61 
 
 + .02 
 + .20 
 
 19.97 
 13.28 
 
 1.52 
 1.28 
 
 10 
 en 
 
 15 
 
 
 
 5X3ix& 
 4x3 x& 
 
 7.02 
 6-55 
 
 1.52 
 
 *-3S 
 
 97-77 
 94.13 
 
 3-73 
 3-79 
 
 -17 
 
 + .0 3 
 
 16.98 
 10.81 
 
 I. 5 6 
 1.28 
 
 9 
 
 
 
 13-25 
 
 u 
 
 5X3jXfk 
 4x3 xA 
 
 6.45 
 5.98 
 
 i-45 
 -3 
 
 70.70 
 67.97 
 
 3-3 1 
 3-37 
 
 -.26 
 
 -5 
 
 15.82 
 9.89 
 
 T -57 
 1.29 
 
 8 
 
 11.25 
 
 4x3 x^ 
 3X2^X i 
 
 5-44 
 4.66 
 
 1.24 
 .94 
 
 47.46 
 43-55 
 
 2-95 
 3.06 
 
 -!3 
 + .16 
 
 9-5 
 4-58 
 
 1.29 
 99 
 
 7 
 
 
 9.75 
 
 4x3 x^ 
 
 3X2JX i 
 
 4.94 
 4.16 
 
 1.16 
 .89 
 
 31.80 
 29.08 
 
 2-54 
 2.64 
 
 .22 
 + .0 9 
 
 8.29 
 4-05 
 
 1.30 
 99 
 
 6 
 
 n 
 
 8 
 
 4x3 x& 
 
 3X2JX i 
 
 4-47 
 3.69 
 
 1.05 
 83 
 
 20.23 
 18-37 
 
 2.13 
 2.23 
 
 -3 1 
 
 + .01 
 
 7-59 
 
 3-59 
 
 1.30 
 99 
 
 (50) 
 
A 
 
 TABLE 27 
 
 FOUR ANGLES, ONE PLATE, AND ONE 
 CHANNEL 
 
 Back to back of Angles = width of Plate + i" 
 
 L indicates long leg of Angles " E " in contact with channel 
 
 S indicates short leg of Angles " E " in contact with channel 
 
 SIZE 
 
 OF 
 
 PLATE. 
 
 SIZE OF 
 ANGLES 
 " C." 
 
 SIZE OF 
 ANGLES 
 "E." 
 
 CHANNEL. 
 
 TOTAL 
 AREA. 
 
 Axis AA. 
 
 Axis BB. 
 
 H 
 
 ~2 
 
 "5; 
 e 
 < 
 
 JB 
 
 Q. 
 
 (5 
 
 4 
 
 c 
 
 I 
 
 r 
 
 I 
 
 r 
 
 e 
 
 3 6x| 
 
 6x6 x| 
 
 6x6 x| 
 
 15 
 
 33 
 
 60.84 
 
 528.62 
 
 2 -95 
 
 12785.41 
 
 14.50 
 
 15.64 
 
 
 36xj 
 
 6x6 x 
 
 6x6 x$ 
 
 15 
 
 33 
 
 SO.QO 
 
 478.29 
 
 3-07 
 
 10759.02 
 
 14.54 
 
 15.08 
 
 
 3 6x| 
 
 6x6 x| 
 
 6x6 x| 
 
 15 
 
 33 
 
 40.8 4 
 
 432.5 6 
 
 3-25 
 
 8625.16 
 
 J4-53 
 
 14.23 
 
 
 30X| 
 
 6x6 xf 
 
 6x6 xf 
 
 i.S 
 
 33 
 
 57-09 
 
 528.50 
 
 3-4 
 
 8389.78 
 
 12.12 
 
 12.97 
 
 
 30x4 
 
 6x6 xi 
 
 6x6 xl 
 
 15 
 
 33 
 
 47-90 
 
 478.22 
 
 3-16 
 
 7074.84 
 
 12.15 
 
 12.48 
 
 
 3ox| 
 
 6x6 x| 
 
 6x6 xf 
 
 15 
 
 33 
 
 38.59 
 
 43 2 -54 
 
 3-35 
 
 5682.11 
 
 12.14 
 
 n-75 
 
 
 30X| 
 
 6x4 x| 
 
 6x4 x| 
 
 15 
 
 33 
 
 52.09 
 
 526.11 
 
 3-i8 
 
 7841-38 
 
 12.27 
 
 12.73 
 
 L 
 
 30XJ 
 
 6x4 x 
 
 6x4 xi 
 
 15 
 
 33 
 
 43.90 
 
 477.85 
 
 3-30 
 
 6618.33 
 
 12.28 
 
 12.20 
 
 L 
 
 3ox| 
 
 6x4 xf 
 
 6x4 xf 
 
 15 
 
 33 
 
 35-59 
 
 43L97 
 
 3-48 
 
 53 2 7-84 
 
 12.23 
 
 !*-43 
 
 L 
 
 24Xi 
 
 6x4 x| 
 
 6x4 xj 
 
 15 
 
 33 
 
 40.90 
 
 477-7 8 
 
 3-42 
 
 3997-7 1 
 
 9.89 
 
 9.69 
 
 L 
 
 2 4 Xf 
 
 6x4 xf 
 
 6x4 xf 
 
 15 
 
 33 
 
 33-34 
 
 43J-94 
 
 3-6o 
 
 3224.18 
 
 9-83 
 
 9.04 
 
 L 
 
 24X| 
 
 5X3M 
 
 5X3ixi 
 
 12 
 
 20.5 
 
 34.03 
 
 196.38 
 
 2.40 
 
 3I93-45 
 
 9-69 
 
 10.51 
 
 S 
 
 2 4 Xf 
 
 5X3ix| 
 
 5X3ixf 
 
 12 
 
 20.5 
 
 27.23 
 
 176.53 
 
 2-55 
 
 2572.07 
 
 9.72 
 
 9.98 
 
 S 
 
 2 4 Xt 
 
 6x4 x 
 
 4x3 xj 
 
 12 
 
 20.5 
 
 34.03 
 
 237-I4 
 
 2.64 
 
 3387-15 
 
 9.98 
 
 11.28 
 
 L 
 
 2 4 Xf 
 
 6x4 xf 
 
 4x3 xf 
 
 12 
 
 20.5 
 
 27.21 
 
 206.43 
 
 2-75 
 
 2738.78 
 
 10.03 
 
 10.71 
 
 L 
 
 21X5 
 
 6x4 xj 
 
 6x4 x^ 
 
 15 
 
 33 
 
 39.40 
 
 477-75 
 
 3-48 
 
 2958.90 
 
 8.67 
 
 8.46 
 
 L 
 
 2lXf 
 
 6x4 x| 
 
 6x4 xf 
 
 15 
 
 33 
 
 32.22 
 
 43J-93 
 
 3-66 
 
 2389.51 
 
 8.61 
 
 7.88 
 
 L 
 
 2IX 
 
 5X3M 
 
 5X3M 
 
 12 
 
 20.5 
 
 32.53 
 
 I 9 6 -35 
 
 2.46 
 
 2348.64 
 
 8.50 
 
 9.20 
 
 S 
 
 2lXf 
 
 5X3ixf 
 
 5X3ixf 
 
 12 
 
 20.5 
 
 26.11 
 
 176.51 
 
 2.60 
 
 l8 95-95 
 
 8.52 
 
 8.72 
 
 S 
 
 2IXJ 
 
 6x4 x 
 
 4x3 xi 
 
 12 
 
 20.5 
 
 32.53 
 
 237.11 
 
 2.70 
 
 2505-38 
 
 8.78 
 
 9.87 
 
 L 
 
 2lXf 
 
 6x4 x| 
 
 4x3 xf 
 
 12 
 
 20.5 
 
 26.09 
 
 206.41 
 
 2.81 
 
 2029.79 
 
 8.82 
 
 9-36 
 
 L 
 
 i8x 
 
 6x4 xj 
 
 6x4 x 
 
 15 
 
 33 
 
 37.90 
 
 477-72 
 
 3-55 
 
 2091.22 
 
 7-43 
 
 7-25 
 
 L 
 
 i8xf 
 
 6x4 xf 
 
 6x4 xf 
 
 15 
 
 33 
 
 31.09 
 
 431.92 
 
 3-73 
 
 1691.84 
 
 7.38 
 
 6.75 
 
 L 
 
 i8xi 
 
 6x4 x* 
 
 4x3 xj 
 
 10 
 
 15 
 
 29.46 
 
 161.98 
 
 2-34 
 
 1626.05 
 
 7-43 
 
 8-95 
 
 S 
 
 i8xf 
 
 6x4 x| 
 
 4x3 xf 
 
 10 
 
 15 
 
 23-39 
 
 135-08 
 
 2.40 
 
 1315.82 
 
 7-50 
 
 8-57 
 
 S 
 
 i5Xi 
 
 6x4 xi 
 
 4x3 x| 
 
 10 
 
 15 
 
 27.96 
 
 161.94 
 
 2.41 
 
 1070.58 
 
 6.19 
 
 7-5 
 
 S 
 
 iSXf 
 
 6x4 x| 
 
 4x3 xf 
 
 10 
 
 IS 
 
 22.27 j 
 
 i35- 7 
 
 2.46 
 
 870.01 
 
 6.25 
 
 7.17 
 
 S 
 
 (51) 
 
SECTIONS OF COLUMNS, 
 SECTIONS OF TOP CHORDS, 
 
 Selected from some of the Largest Buildings 
 and Bridges in the United States 
 
 The values of the sections covered by the tables on Moments of Inertia 
 and Radii of Gyration are suitable for structures of ordinary proportions. 
 The variety of ways in which standard shapes are used to compose sec- 
 tions of monumental structures, has made it necessary to treat this class 
 separately. The sections here given are selected from some of the largest 
 buildings and bridges in the United States. The types show what is 
 customary as well as what can be done when circumstances and condi- 
 tions demand it. It is necessary to be acquainted with these conditions 
 in order to compare intelligently the values of these sections. They are 
 classified and tabulated here in order to more readily serve as a guide in 
 the design of new structures. 
 
 (53) 
 

 
 33 
 
 Tf XO 
 
 CO ON 
 ON 
 
 
 xo 
 
 
 
 
 
 
 co vo 
 
 CO co 00 M 
 xo ^ co t^. 
 
 XO Tj- 
 
 -fr ^ 
 
 CO Tf 
 
 4 1 
 
 * 
 
 t- vo 
 
 t- * 
 
 
 vO xo 
 
 t^ ON 00 ON 
 
 h- 1 
 
 3- 2 
 
 M XO 
 
 CO co 
 
 o o 
 
 00 xo 
 O 00 
 M CO 
 
 
 
 o 
 
 | 
 
 M 
 M 
 
 3- 0, 
 
 CO 00 
 
 M O 
 
 
 
 00 t^ 
 
 00 co 
 
 
 
 
 XO <N 
 
 ON CO 
 ON xo 
 
 O 
 
 CN1 
 
 
 
 M 
 
 o o o 
 
 CO O ON 
 ON CO M 
 XO CO CO 
 
 CO M 
 
 4 
 
 00 00 
 
 Tf CO 
 
 t^. (N 
 
 00* 
 
 CO 
 
 \o o ^o 
 
 fO ^O O 
 
 10 06 6 
 
 ? co" 
 
 CO co 00 
 
 co q t^- 
 
 \O t^ O 
 
 $ 
 
 <N 
 
 M 
 
 ?i* 
 
 ^ 
 
 00000 
 t~- CO M vO CO vO 
 
 M co vO ON xo IH 
 
 11 
 
 M 0* 
 
 O O 
 
 xo CO 
 CO 
 
 
 U 
 
 ON CO 
 
 | 
 
 M 
 
 ct 
 
 | 
 
 vO 3 
 
 O O 
 ^" t^ 
 0) CO 
 
 WEIGHT. 
 
 ON 
 
 ro t^ 
 
 10 
 
 ro O 00 
 
 ro vo 
 
 
 vO ro 
 
 N 
 
 
 
 vO ON 
 
 1$ 
 IO 10 
 
 l> vo 
 10 ON 
 Tj- IO 
 
 vO 
 
 VO^ 
 
 | 
 
 10 i> 
 
 |8 
 
 
 ro N 
 
 V? 
 
 
 
 M 
 
 ON ON 
 00 00 
 ro vO 
 
 W 
 
 H M 
 M VO 
 
 M O 
 
 IO IO 
 
 00 
 
 g 
 
 fcfc 
 
 *0 
 
 
 (N 
 
 g 
 
 1> 
 
 M 
 
 00 M 
 
 IO ON 
 
 ON <N 
 
 IO ts. 
 
 S K 
 
 a 
 
 IO 
 
 IO 00 
 
 ON N 
 
 M (S 
 
 ro M 
 
 
 2<S 
 
 (S M 
 
 8 
 
 M 
 
 
 
 si 
 
 
 
 
 NAME OF BUILDING. 
 
 
 
 
 
 
 
 
 ' ' 
 
 
 
 
 
 
 o o 
 
 bJD CJO 
 cJ rt 
 
 (J O 
 
 IS IS 
 
 
 ^ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ' 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 , 
 
 
 
 Miscellaneous Types, 
 umn 280 Waldorf-Astoria Hotel, New York 
 
 go | 
 
 8-| 
 
 66 
 
 66 
 
 'o ^ 
 
 CJ 
 
 c/5 & 
 f .23 
 
 ' | 
 
 hH ^ 
 S S 
 
 C C 
 
 
 s s 
 
 Columns having One Web Plate. 
 First National Bank Building, Chicago . . . . 
 Frick Building, Pittsburg 
 
 CJ U 
 
 too bC 
 C G 
 
 is is 
 
 '3 '3 
 
 O 0} 
 
 O U 
 
 t r-| f p 
 
 O O 
 ^ >* 
 
 p^ p^ 
 
 ^^ 
 ^ ^ 
 
 =y y 
 U U 
 
 ^- N 
 
 
 2, 3, 
 "o "o 
 U U 
 
 . "^ 
 
 15 
 
 s 
 
 ' ,0 
 
 (U 
 
 ' ^ 
 
 
 
 
 
 Web Plates 
 
 ^J 
 
 :| 
 
 ^ 
 o 
 
 M 
 
 o 
 
 be 
 
 C 
 
 is 
 
 '3 
 
 PS 
 c 
 
 M 
 
 C 
 
 5 
 
 
 
 :| 
 
 . . 
 
 ILand Title Building, Philadelphia 
 Columns having Two 
 
 & 
 
 c 
 ^ 
 
 c 
 
 .2 
 
 ll 
 
 r* bB 
 
 61 
 
 3 
 b w 
 
 II 
 
 '3 || 
 w ^ 
 
 c 
 W g 
 
 "^ -3 
 
 rt O 
 PH O 
 
 IWanamaker Building, New York 
 Adams Building, Chicago .... 
 
 Columns having Three 
 
 mers' Bank Building, Pittsburg 
 umn i Waldorf-Astoria Hotel, K 
 
 6 
 
 6 
 
 6 
 
 66 
 
 (54) 
 
s 
 
 O o 
 
 WJ f * 
 
 n 
 
 tM S 
 
 o S 
 
 S ^ 
 
 s 
 
 s i 
 
 a 
 
 CM S 
 
 o * 
 
 a fc 
 
 w 
 J 
 on 
 < 
 I- 
 
 PQ 
 
 M 
 
 HI 
 
 S3 
 
 6 o\ 
 
 M 
 
 H]* cc 5 
 
 HI C4 
 
 - 4 
 
 M 
 
 
 oq" M" 
 o\ o 
 
 
 co to co 
 
 6 6v 
 
 M M 
 
 M O vO co 
 
 O ON ON co 
 M 00 4 4 
 
 
 co O" 
 O\ to 
 
 3 - 
 
 
 
 M 
 
 O NO 
 vo vO 
 
 vO W 
 
 C4 NO 
 M 
 
 & 
 
 
 to 
 
 
 
 
 1 1 
 
 M 
 
 
 O O 
 
 04 10 O 
 
 8 S 8,5- 
 
 M r^ O t^. 
 
 C1 vO -* OO 
 C* M ^O ^O 
 
 
 SN 3- 
 
 ON vO 
 
 
 S 
 
 co to 
 
 o 
 
 \O N 
 
 CO 
 
 
 ,,3 
 
 
 M N O 
 
 O * co 
 
 r** O O Ov 
 
 Tj- 00 ON to 
 
 
 rf 10 
 
 \ 
 
 ON 
 
 O O 
 
 M M 
 
 M Ht 
 
 " 
 
 
 H HI 
 
 
 *>. OO O\ 
 
 HI CO O M 
 
 
 O to 
 H 
 
 M 
 
 
 
 M M 
 
 O O 
 
 co ON 
 
 I 
 
 M 
 
 
 vgvg 
 
 cTS- 
 
 to to 
 
 
 O 
 
 ON M vo 
 M OO to 
 ^t ON ON 
 
 to o o 
 00 00 vo 
 
 c^lcol 
 
 
 Tj- CO 
 
 CO 
 
 H 
 
 in 
 
 ** 
 
 M in 
 
 in 
 
 
 oo o 
 
 
 0- - "; 
 
 in o ** 
 
 
 ** 
 
 5 
 B 
 
 1 
 
 M f^ 
 
 M SO 
 
 t^ M 
 
 H 
 
 
 
 
 M 00 
 
 
 11^ 
 
 f^ M fS PO 
 VO ** OV M 
 M 
 
 
 M- - 
 
 . 
 
 
 
 8 
 
 sa 
 
 B 
 
 
 in o 
 
 
 vO vO 00 
 C4 W ro 
 
 <s o in <s 
 
 ^ M o in 
 
 
 SS 
 
 i 
 
 9 
 
 S? 
 
 M M 
 
 M PO 
 
 * 
 
 
 O (S 
 
 in oo 
 
 N (S 
 
 
 ^^2 
 
 M M 
 
 OO M i^ PO 
 
 --<-<"-, 
 
 
 M M 
 PO M 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 00 
 
 
 
 
 
 
 
 
 
 
 E 
 
 H 
 
 
 
 
 
 S ' 
 
 i 
 
 
 n 
 
 
 CO " * 
 
 
 K* 
 
 h 
 
 
 
 C 
 
 
 ^ en 
 
 ^ 
 
 
 
 
 
 
 ft 
 
 D 
 1 
 
 M 
 
 fr 
 
 . 
 
 ^ rt 
 
 i- 
 
 
 
 O 
 H 
 
 1 ' ' 
 
 * oc ' 
 8 
 
 1 
 
 s . 
 
 O 
 
 i 
 s 
 
 H 
 
 Laced Top and Bottor 
 Williamsburg Bridge, New York 
 
 |) C/2 
 C ^ 
 
 ^^3 
 
 8 J 
 
 HI 
 
 1 International Bridge, Buffalo . . 
 Monongahela Bridge, Pittsburg . 
 
 1 Laced Top and Bottom 
 Niagara Cantilever Bridge, Niaga 
 
 Laced Top and Bottom 
 
 (Memphis Bridge, Memphis, Tenr 
 Thebes Bridge, Thebes, 111. . . 
 
 Cover Plate on Top 
 
 New Omaha Bridge, Omaha, Nel 
 Cairo Bridge, Cairo, Kentucky . 
 International Bridge, Buffalo . . 
 
 Cover Plate on Top 
 Sixth Street Bridge, Pittsburg . . 
 Bellefontaine Bridge, Alton, 111. . 
 Monongahela River Bridge, Pittst 
 Rankin Bridge, Rankin, Pa. . . 
 
 Miscellaneous 
 
 : 
 |: 
 
 
 
 < ' 
 
 -2 
 
 I! 
 
 55 C/2 
 
 ^ & 
 
 2 * 
 
 H "C 
 
 ' 
 ^ 
 
 O 13 
 & c3 
 
 ^3" fjj 
 
 (55) 
 
SECTIONS OF COLUMNS 
 
 FIRST NATIONAL BANK BUILDING, 
 CHICAGO 
 
 41L-8" X8"X if' 
 
 i PI. - 17- x i" 
 
 6 Pis. - 1 8" X if" 
 
 FRICK BUILDING, PITTSBURG 
 
 4li-8" x 8" xif' 
 6 Pis. - 18" x if" 
 i PI. - 17" X |" 
 
 COLUMN 43, C. & N. W. R'Y OFFICE 
 BUILDING, CHICAGO 
 
 6 Pis. - 1 6" x i" 
 2 Pis. - 1 6" x H" 
 
 2 pis. - 12$" x r 
 
 4 Li - 6" x 6" x f ' 
 
 COLUMN 24, C. & N. W. R'Y OFFICE 
 BUILDING, CHICAGO 
 
 6 Pis. - 1 8" x |" 
 4 Pis. - 18" X H" 
 
 2 PIS. - I2|" X I" 
 
 4 1! - 8" x 6" X f " 
 
 (56) 
 
SECTIONS OF COLUMNS 
 
 LAND TITLE BUILDING, PHILADELPHIA 
 
 4li-8"x 8"x if" 
 2 Pis. - if x I" 
 8 Pis. - 1 8" x 44" 
 
 ROCK ISLAND RAILWAY STATION, 
 CHICAGO 
 
 4li-5"X3i"xi" 
 
 2 PIS. - 12" X \" 
 2 Pis. - IS" X I" 
 
 PARK ROW BUILDING, NEW YORK 
 
 6 Pis. - 24" x f " 
 4li-6" x 4" X I" 
 
 2 PIS. - 1 6" X f" 
 
 2 Pis. - 6" x I" 
 2 Pis. - 1 8" x *" 
 
 COLUMN (a), IVINS BUILDING, 
 NEW YORK 
 
 4l-6" x 6" x \" 
 2 Web Pis. - 24" x I" 
 2 Side Pis. - 22" x |" 
 2 Side Pis. - 12" x |" 
 6 Cover Pis. - 24" x f " 
 
 (57) 
 
SECTIONS OF COLUMNS 
 
 7iTJ 
 
 WANAMAKER BUILDING, NEW YORE 
 
 4l!-6" x 6" x I" 
 6 Pis. - 28" x ft" 
 
 6 Pis. - 22" X H" 
 2 Pis. - 10" X I" 
 
 2 Pis. - 8J" X |" 
 
 <*>! 
 
 ,_. 
 
 ADAMS BUILDING, CHICAGO 
 
 3 - i3"[ 5# 
 6 Pis. - 18" x i" 
 2 Pis. - \2\" x |" 
 
 FARMERS' BANE BUILDING, 
 
 PITTSBURG 
 
 6 Pis. - i 3 "x \" 
 8IJ.-6" x 4" X I" 
 2 Pis. - 24" x \\" 
 4 Pis. - 24" X f" 
 
 COLUMN 1, WALDORF-ASTORIA HOTEL, 
 NEW YORE 
 
 4- 15" [* 55# 
 
 2 Pis. - i 4 \" xf" 
 
 6 Pis. - 20" x |" 
 
 (58) 
 
SECTIONS OF COLUMNS 
 
 
 M* 
 * 
 
 
 ^v 
 
 
 A , 
 
 
 1! 
 
 
 
 =i 
 
 ^if* 
 
 COLUMN (b), IVINS BUILDING, 
 NEW YORK 
 
 3 Web Pis. -24" xH" 
 
 4 Cover Pis. - 28" X H" 
 8|-6"x6"xH" 
 
 COLUMN 280.WALDORF-ASTORIA 
 HOTEL, NEW YORK 
 
 10 Pis. - 32$" X |" 
 4 Pis. - 36" X I" 
 
 4t!-6"X4"xH" 
 8ll -6"x 3 i"xf" 
 
 COLUMN (a), ILLINOIS STEEL 
 COMPANY, CHICAGO 
 
 (59) 
 
SECTIONS OF COLUMNS 
 
 COLUMN (b), ILLINOIS STEEL CO., CHICAGO 
 
 (60) 
 
SECTIONS OF BRIDGE CHORDS 
 
 WILLIAMSBURQ BRIDGE, 
 NEW YORK 
 
 300-FOOT SPAN, BOONE 
 VIADUCT, BOONE, IOWA 
 
 4 [*_ _ 6 /r x 4" X I" 
 4 LS. - 6" X 4" X T V 
 2 Pis. - 30" X f" 
 2 Pis. - 1 8" X |" 
 
 PANTHER HOLLOW STEEL 
 ARCH, PITTSBURG 
 
SECTIONS OF BRIDGE CHORDS 
 
 INTERNATIONAL BRIDGE, 
 BUFFALO 
 
 4[i 6" x 6" x f " 
 2 Pis. 40" x \" 
 2 Pis. - 27 Y f x I" 
 
 2 PIS. - tf" X T y 
 
 MONONGAHELA 
 
 BRIDGE, 
 PITTSBURG 
 
 4 li. - 8" x 8" x i" 
 
 2 Pis. 2O" X l" 
 
 2 pis. - 3 6- x 3r y 
 
 NIAGARA CANTI- 
 LEVER BRIDGE, 
 NIAGARA FALLS 
 
SECTIONS OF BRIDGE CHORDS 
 
 MEMPHIS BRIDGE, 
 MEMPHIS, TENN. 
 
 81s. - 6" X4" X |" 
 8 Pis. - 30" x H" 
 
 -^l 
 
 //f ; //* j. /** 
 
 .^V- 
 
 THEBES BRIDGE, 
 THEBES, ILL. 
 
 NEW OMAHA BRIDGE, 
 OMAHA, NEB. 
 
 1 PL - 28" x \" 
 
 2 Pis. - i8"x i" 
 2 PIS. - 10" X f" 
 
 2 Pis. - 5" x f " 
 
 (63) 
 
SECTIONS OF BRIDGE CHORDS 
 
 //* 
 
 CAIRO BRIDGE, 
 CAIRO, KENTUCKY 
 
 INTERNATIONAL BRIDGE, 
 BUFFALO 
 
 1 -. 
 
 /-S" /-S 
 
 SIXTH STREET BRIDGE, 
 PITTSBURG 
 
 LoceJ 
 
 (64) 
 
SECTIONS OF BRIDGE CHORDS 
 
 BELLEFONTAINE 
 BRIDGE, ALTON, 
 ILLINOIS 
 
 _ iJf MONONGAHELA 
 RIVER BRIDGE, 
 PITTSBURG 
 
 RANKIN BRIDGE, 
 RANKIN, PA. 
 
SECTIONS OF BRIDGE CHORDS 
 
 
 - I" ' 
 
 ROOF TRUSS, WALDORF-AS- 
 TORIA HOTEL, NEW YORK 
 
 I2 |_s__6"x 4"X \" 
 ioPls.-29j // x f" 
 2 Pis. - 3 6""x J" 
 
 EADS BRIDGE, ST. LOUIS 
 
 (66) 
 
UNIT STRAINS 
 
 The following data on unit strains, pages 67, 68, 69, 70, 71, and 73, is 
 taken from Bulletin No. 41 of the American Railway Engineering and 
 Maintenance of Way Association, published in 1903. 
 
 STRAINS UNDER DYNAMIC LOADS 
 
 The subject of unit strains in iron and steel structures is, as said before, so closely 
 related to the quality and strength of material used, and the loading which the struc- 
 ture has to carry, that the three must be studied together. 
 
 The quality and strength of material to be used in the structure is well known 
 from the numerous tests made on both specimens and full-sized structural members 
 in the last fifty years, during which period iron and steel have been used for struc- 
 tures of various kinds. 
 
 The load which the structure may have to carry during its service is, c n the con- 
 trary, more or less an assumption at the time the structure is designed. 
 
 If this is a railroad bridge, we assume that it shall carry a load represented by a 
 typical train. The static load applied on the bridge from this typical train may closely 
 represent the static load of the heaviest actual train passing over the bridge when in 
 service, but we are still in doubt how much this static load should be increased to 
 closely represent the dynamic load from the moving train. 
 
 It is on the question how to provide for this dynamic load of the moving train 
 that the engineers who design bridges differ, and there is a wide field for the investi- 
 gator to determine by experiments and observation what the relations are between 
 the static train load and the load produced by the moving train for various lengths of 
 spans and for the various members of the bridge. Such investigation, if carefully 
 made and of sufficient extent, would be of great value to both the designers ajid the 
 purchasers of bridges. The Committee is now making some investigations in this 
 direction in connection with the subject of impact. 
 
 Two distinct methods are used to provide for the excess of the dynamic load above 
 the assumed static load. The first method, which we may say has been used ever 
 since bridge designing became a science, and which is still adhered to by many engi- 
 neers, is to vary the unit strains in the different members of the structure according to 
 some rule.. Some engineers vary the unit strains according to the relation between 
 
 (6?) 
 
UNIT STRAINS 
 
 live and dead load, or total load and dead load; some use different fixed unit strain 
 for the different members of the structure; and some use different unit strains for live 
 load and for dead load. 
 
 The second method, which has lately found favor with and has been adopted by 
 many of the American engineers, is to use a constant unit strain for the same grade of 
 material and provide for the dynamic effect of the load by increasing the static live- 
 load strains according to impact formulas. 
 
 This last method seems to be the most rational, as it treats the dynamic increment 
 of the load as a load, and not as a decreased strength of material. 
 
 It has been thoroughly demonstrated, by experiments, that when a piece of iron 
 or steel is strained above its elastic limit, but below its ultimate strength, it will finally 
 break if the strain is repeated a sufficient number of times, and that the nearer this 
 strain is kept to the elastic limit, the larger is the number of repetitions of the strain 
 that are required to break the piece, and that when this repeated strain is close above 
 the elastic limit, the number of repetitions required to break the piece rapidly ap- 
 proaches infinity. It is therefore reasonable to assume that a piece strained below 
 the elastic limit will stand any number of repetitions of the strain without being in- 
 jured or reduced in strength. 
 
 If, therefore, all the possible strains with their dynamic increment to which the 
 various members of the structure will probably be subjected are found, and if such 
 perfect workmanship is possible that each piece in a member is strained equally per 
 unit with every other piece in the same member, and the material is free from defects, 
 then it would be safe to use a unit strain equal to that required to strain the member 
 up to the elastic limit. The material may have defects not discovered by the in- 
 spection and the workmanship is not perfect. The pieces forming the member will, 
 therefore, not be equally strained in the finished structure. Some pieces may have 
 to be stretched considerably before other pieces take any of the strain. 
 
 How much additional section should be allowed for these defects in material and 
 workmanship depends on the care taken in the manufacturing at mills and shops, and 
 on the thoroughness of inspection. If the section is increased seventy-five per cent., 
 it seems reasonable to assume that these defects have been provided for very liberally. 
 This would give an allowable unit strain equal to four-sevenths of the elastic limit. 
 
 UNIT STRAINS IN COMPRESSION MEMBERS 
 
 There is much diversity of opinion in regard to unit strains for compression mem- 
 bers. Numerous tests have been made, the results plotted on diagrams, and formulas 
 
 (68) 
 
UNIT STRAINS 
 
 devised to agree as closely as possible with the average of the results of tests. Most 
 of these formulas, when reduced to the same base unit, follow each other closely within 
 the limits for length of member divided by least radius of gyration of cross-section of 
 member that are used in good designing. 
 
 The attached diagram (page 73) gives the allowed unit strains, derived from 
 some well-known formulas for the various relations of "1 over r," reduced to a base 
 unit strain of 16,000 pounds per square inch. 
 
 The straight-line formula, first proposed by Thomas H. Johnson, and used, among 
 others, by Theodore Cooper in his specifications, is very simple, and gives values that 
 are no doubt as close to the actual conditions as any of the other more complicated 
 formulas, within the limits for the relation "1 over r" used in good designing. 
 
 This formula discourages inexperienced designers from using long and flimsy 
 compression members, which they are very apt to do when they use a formula which 
 will allow comparatively high unit strains for high values of the relation "1 over r." 
 
 The earlier formulas always made a distinction between members with pin end 
 connections and members with riveted end connections, but the later formulas make 
 no such distinction. 
 
 A member with pin end connections is not as rigid as a member with riveted end 
 connections; but, on the contrary, pin connections do not transmit the secondary 
 bending strains, caused by the deflection of the structure, to their member as much as 
 riveted connections. It seems, therefore, as if the advantage of stiffness in a member 
 with riveted end connections is, at least to some extent, counterbalanced by the dis- 
 advantage of transmitted bending strains, and that there is practically no difference 
 in strength between the two members, if of same section but with the above difference 
 in end connection. 
 
 Our knowledge is still limited in regard to the effects of alternating and com- 
 bined strains. As the members subject to these strains are very few in an ordinary 
 structure, we can afford to be liberal with material in proportioning them. 
 
 The large number of bridges are of so short spans that the lateral and sway bracing 
 should be proportioned to resist the effect of the swinging and swaying of the trains 
 rather than the effect of the wind pressure. The term "wind bracing" is misleading, 
 except for long spans. There is no reason why the unit strains allowed on these parts 
 of the structure should be different from those previously given. 
 
 (69) 
 
SUMMARY OF COMPRESSION FORMULAE 
 
 From Bulletin No. 41 of the American Railway Engineering and Maintenance of 
 
 Way Association 
 
 A Gordon 's Formula. 
 Square bearing. 
 
 50000 
 
 B " 1 J2 
 
 I + 
 
 36000 
 
 "B Gordon 's Formula. 
 
 Pin and square bearing. 
 
 50000 
 
 i + 
 
 24000 
 
 C Gordon 's Formula. 
 Pin bearing. 
 
 50000 
 
 i + 
 
 18000 r 2 
 
 D American Bridge Co. 
 
 Standard specifications railway bridges. 
 
 15000 
 
 13500 r* 
 
 Boston & Maine R. R. 
 
 Standard specifications riveted members. 
 
 8700 
 
 10000 i + 
 
 28000 r 2 
 
 Boston & Maine R. R. 
 
 Standard specifications pin members. 
 
 14000 
 
 G J- B. Johnson's Formula. 
 Riveted ends. 
 
 H J. B. Johnson's Formula. 
 Pin ends. 
 
 (70) 
 
SUMMARY OF COMPRESSION FORMULA (Continued) 
 
 From Bulletin No. 41 of the American Railway Engineering and Maintenance of 
 
 Way Association 
 
 I Max von Leber's Formula. 
 
 In Bulletin of European Railway Congress. 
 
 P, = 
 
 o.oi - 
 
 r 
 
 J Cooper's Formula. 
 
 Chord segments. Live load strains. 
 
 10000 - 45 - 
 
 K Cooper's Formula. 
 
 Posts of through bridges. Live load strains. 
 
 P a = 8500-45^ 
 
 L Cooper's Formula. 
 
 Posts of deck bridges. Live load strains. 
 
 Pi = 9000 40 - 
 
 M Formula recommended by the 
 
 Committee on Iron and Steel Structures. 
 
 P t = 16000 - 70- 
 
 P = Base unit strains in Ibs. per square inch. 
 PI = Allowable unit strains in Ibs. per square inch. 
 1 = Unsupported length in inches, 
 r = Least radius of gyration in inches. 
 E = Modulus of elasticity = 29,000,000. 
 f = Elastic limit = 28,000. 
 
 a = Values given in table in Boston & Maine R. R. speci- 
 fications for metal bridges, 1896. 
 s = Factor of safety. 
 
 (71) 
 
w 
 j 
 n 
 
 * 
 
 JO O O O 
 PO NO ON CNI 
 to rf CO PO 
 
 8 
 
 to 
 
 <N 
 
 1 
 
 8 
 
 M 
 
 !. 
 
 O ON 
 
 O O 
 O PO 
 
 ON 00 
 
 Jo 
 SN 
 
 t NO 
 
 NO 
 
 8 8 
 
 to oo 
 
 10 rf 
 
 8 8 
 rf PO 
 
 80 
 o 
 
 CM CM 
 
 
 
 
 
 
 - 
 
 JO O O 
 ON OO *> NO 
 CN! to OO M 
 to rf PO PO 
 
 1 
 
 CM 
 
 s 
 
 
 
 O ON 
 
 SNC^ 
 
 00 M 
 
 oo oo 
 
 R. NO 
 
 CO t- 
 
 t^ NO 
 
 I 
 
 
 
 CO CM 
 CO NO 
 
 2 8 
 
 ON CM 
 PO PO 
 
 O O 
 
 ON C0_ 
 
 CM IH 
 
 
 
 
 
 
 M 
 
 JO O O O 
 tO W NO M 
 H CO rf NO 
 to rf PO CNI 
 
 0^ 
 
 M 
 
 
 
 CM 
 
 8" 
 
 | 
 
 o 
 
 O O 
 
 CM 00 
 CM PO 
 
 ON 00 
 
 o o 
 
 PO 00 
 
 tO NO 
 
 
 
 rf .ON 
 00 ON 
 to rf 
 
 O 
 
 rf 
 
 80 
 to 
 
 % ct 
 
 JO 
 to 
 ^ 
 
 M 
 
 
 
 rf 
 
 
 
 
 
 -' 
 
 JO O O 
 OO NO rf CM 
 CN! to OO M 
 IO rf PO PO 
 
 8 
 
 CM 
 
 M 
 
 I 
 
 O 
 
 rf (N 
 CM to 
 
 ON 
 
 Jc/0 
 o 
 
 OO OO 
 
 N8 rf 
 
 ro O 
 t^* \O 
 
 
 
 ON 
 to 
 
 O 00 
 10 rf 
 
 if 
 
 PO PO 
 
 
 
 CM O 
 
 CO NO 
 
 CM IH 
 
 
 
 
 
 
 M 
 
 JO O O O 
 to PO IH PO 
 to PO PO rf 
 rf CO O) *H 
 
 
 
 
 
 
 
 
 ON 
 
 
 
 ON CM 
 CO rf 
 CO 00 
 
 Jo 
 O) 
 
 
 
 t- NO 
 
 RNO* 
 
 
 
 !>. 
 
 NO 
 NO 
 
 O 
 to 
 
 NO" NO 
 
 8,2 
 
 to to 
 
 
 
 CM PO 
 10 PO 
 
 to to 
 
 
 
 
 H 
 
 JNO NO CO rf 
 to to to to 
 
 
 to 
 
 
 
 
 to 
 
 CO) 
 
 CO PO 
 
 O O 
 
 ON NO M t 
 CO PO 00 CM 
 M CM M M 
 
 R 
 
 Q\ vQ 
 M \Q 
 
 O ON 
 
 M 
 
 ! 
 
 ON 00 
 
 si 
 
 CO t- 
 
 
 
 
 
 
 
 
 
 O 
 
 NO to to to to 
 
 o 
 
 PO 
 to 
 
 
 
 ON 
 
 LO 
 
 OOO 
 
 ON NO CM 
 rf rf rf 
 
 ia 
 
 PO PO 
 
 O CO 
 
 PO CM 
 
 a 
 
 CM 
 
 
 
 M CO 
 
 CO PO 
 
 rf 8 
 
 8" V 
 
 
 
 CO NO 
 8 NO 
 ON 
 
 
 * 
 
 O O O O O 
 
 CM <N CO 00 ON 
 ON 00 to O rf 
 PO PO PO PO CM 
 
 
 
 oo 
 
 p^ 
 
 
 
 
 
 <-0 
 
 
 O O 
 
 to oo 
 
 ON 00 
 
 o o_ 
 
 H rf 
 00 t^ 
 
 N8 2 
 
 s g 
 
 1 
 
 10 
 
 O 
 
 PO ON 
 to rf 
 
 O 
 
 rf 
 
 tO CM 
 rf rf 
 
 
 
 ON M 
 CO NO 
 PO PO 
 
 
 
 
 
 w 
 
 O O O 
 
 CM J>> CM ON t^ 
 
 ON 00 !> rf M 
 PO PO PO PO PO 
 
 t 
 
 <N 
 
 O 
 
 CO to 
 
 CO 00 
 CM M 
 
 PO O 
 PO CO 
 
 
 
 NO CM 
 CM t~ 
 
 O ON 
 
 ON CO 
 
 ON 00 
 
 N 
 
 CO 
 
 O O 
 CM r> 
 
 O O 
 to to 
 
 00 rf 
 NO NO 
 
 Jo 
 <"O 
 t*> 
 IO 
 
 
 
 
 
 
 Q 
 
 Jo o o o 
 00 to O PO 
 to to to rf 
 
 O 
 
 O PO 
 
 tO NO 
 PO CM 
 
 
 
 O 
 to O 
 
 < 8 
 
 N| 
 
 ON 00 
 
 O O 
 t^. t^ 
 
 
 
 PO 
 
 NO^ 
 
 Jo 
 CM 
 I/J 
 
 >a 
 
 to rf 
 
 rf 
 r?^ 
 
 
 
 
 
 
 (J 
 
 JO O O O 
 M to rf ON 
 ON NO CM NO 
 to to to rf 
 
 
 to 
 
 o 
 
 
 
 ro 
 
 ro 
 
 & 
 
 10 
 
 Jo 
 PO 
 
 
 
 00 I- 
 CM to 
 
 O ON 
 
 IH 
 
 to 
 IO 
 (N 
 CO 
 
 t^ 
 
 
 
 M M 
 
 S 
 
 s. 
 
 NO tO 
 
 
 
 ^O ON 
 \J~> rt 
 
 
 
 
 
 
 pa 
 
 JO O O O 
 CO rf CM O 
 IO to to IO 
 
 1 
 
 O 
 
 O 
 CO 
 
 | 
 
 n 
 
 PO 
 
 
 
 % 
 
 
 
 ON rf 
 CM NO 
 IH 
 
 
 
 O ON 
 O PO 
 
 ON 
 
 o 
 
 M 
 
 28 
 
 1 1 
 
 CO t^ 
 
 
 
 NO IH 
 CM 00 
 t^ NO 
 
 O O 
 ro O 
 
 \o ^ 
 
 
 
 
 
 
 
 
 < 
 
 Jo o o o 
 NO CM H CM 
 ON 00 NO PO 
 to to to to 
 
 i 
 
 0_ 
 
 f 
 
 
 
 ON NO 
 to O 
 
 CO CO 
 
 O 
 
 CM OO 
 to ON 
 CM M 
 
 
 
 CO ON 
 
 ^ 
 
 & 
 
 5 
 
 o o o o 
 
 to to 00 CM 
 
 00 co CO rf 
 ON ON 00 00 
 
 
 
 ON 00 
 ON to 
 
 
 
 
 
 
 
 
 
 1 - 
 
 00000 
 M <S rf) Tj- 
 
 s, 
 
 * 
 
 R 
 
 &l 
 
 8 2 
 
 
 (S ro 
 
 3- 
 
 O O 
 IO vO 
 
 Z& 
 
 O O 
 ON 
 
 
 
 
 
 
 
 (72) 
 
CURVES DERIVED FROM FORMULAE ON PAGES 70 AND 71 
 REDUCBD TO 16,000 BASE UNIT 
 
 From Bulletin No. 41 of the American Railway Engineering and Maintenance of 
 
 Way Association 
 
 ^ 
 
 1 
 
 ** 
 
 
 
 1 1 1 
 
 (73) 
 
OQ 
 
 x 
 
 Jo o o o 
 o o o o 
 PO NO ON N 
 \O ^ PO PO 
 
 80000 
 0000 
 
 O OO M Tf t> 
 <N M M ON 
 
 O O O O O 
 
 o o o o o 
 
 O PO NO ON M 
 ON OO I s * NO NO 
 
 80 o o o o 
 00000 
 
 10 00 M Tf t^ O 
 
 vo ^ ^ ro N N 
 
 
 
 
 
 
 J 
 
 88888 
 
 O O <N 00 -* 
 
 ON 00 OO t- t^ 
 
 O NO <N OO ^ - 
 
 t^. NO NO 10 vo 
 
 O O O O O 
 
 o o o o o 
 
 O NO N OO ^ - 
 
 >o * ^- to to 
 
 O O O O O O 
 O O O O O O 
 O NO <N CO * O 
 
 CO W M M M 
 
 M 
 
 80000 
 10 O 10 O 
 vo O O w t^ 
 OO OO t- t^ vO 
 
 o b o o o 
 
 IO O IO O >O 
 
 <N 00 rO ON <* 
 NO IO IO ^- ^~ 
 
 00000 
 O vo O vo O 
 
 O vo HI \O <M 
 ^ CO PO CS d 
 
 o o o o o o 
 
 VO O vo O vo O 
 
 f^- fO CO ^ 1 vo 
 
 " 4 
 
 O 
 O vo O vo O 
 
 O VO M \O M 
 
 O O ON 00 00 
 
 M 
 
 o o o o o 
 
 10 O 10 O 10 
 
 r^ rO 00 ^f ON 
 
 t>- t~^ NO O VO 
 
 O 
 O 10 O 10 O 
 vo O NO M t^ 
 
 10 10 * Tf CO 
 
 O O O O O O 
 vo O vo O vo O 
 
 (N 00 fO ON Tf O 
 CO <N <M h-l M M 
 
 K 
 
 O O O O O 
 
 O OO ^f NO vo 
 O ON C\ 00 J>- 
 
 o o o o o 
 
 M NO OO CO t^- 
 NO * (N O 00 
 
 5- 2 g.^ SN 
 
 NO 't M ON NO 
 
 O O 
 
 NO PO M ON ON O 
 
 
 
 
 
 
 o 
 
 o o o o o 
 
 O ON NO 1-1 ^t" 
 O ON ON ON OO 
 
 r*- NO NO NO NO 
 
 00000 
 10 10 ro ON Tf 
 r^ NO 1O rO <N 
 
 00000 
 00 M CO 10 NO 
 O ON t>. to fO 
 vO IO VO IO VO 
 
 O 
 t^ CO ON O M PO 
 
 M ON t^- NO "^ (S 
 VO Tf Tj- rj- Tt rt 
 
 fc 
 
 O O O 
 10 NO ON NO M 
 O ON O N *> 
 
 PO <N CNl N| M 
 
 O 
 t^ OO t>- *O *- 
 O ^O NO ON <N 
 1-1 O ON 00 00 
 
 O O O 
 
 M O PO M Tf 
 
 NO O ^ ON Tf 
 t^ r-~ NO vo vo 
 
 O O 
 
 M 1H NO Tt VO 00 
 
 O NO <NI ON NO PO 
 vo >* ^t PO PO PO 
 
 
 
 
 
 
 K 
 
 O O O O O 
 
 >O O ** ^ vo 
 O O 00 NO PO 
 PO PO <S N N 
 
 O 
 
 CO NO M oj r< 
 
 ON >O M \O M 
 M M HI O O 
 
 O 
 
 CNI M o rt- CO 
 >O M \O w \O 
 ON ON OO OO t> 
 
 000000 
 
 Tj- M W VO O t^ 
 
 <N oo -3- o t^ PO 
 
 t^ NO NO NO vo vo 
 
 
 
 
 
 
 Q 
 
 O O O O O 
 80s r^ NO M 
 00 vo O * 
 vo T}- T} <j- PO 
 
 O 
 
 NO * M CO t^ 
 
 vO CO O M PO 
 oj M H ON 
 
 O O O O O 
 
 (N M NO NO N 
 NO ON ^ NO w 
 CO *~- t~~ NO NO 
 
 O O O O O O 
 PO 00 00 M 00 ON 
 NO M r^ Tt o t^- 
 
 VO vo TJ- -<t -^J- ro 
 
 
 
 
 
 
 O 
 
 8 8 2 8 8 
 
 O *"* ON NO ON 
 O ON OO t~. vo 
 
 O O O O O 
 
 O t^ O 00 00 
 ON NO <r> 00 * 
 ro M ON O Tf 
 
 o o o o o 
 
 "t 00 ON Tf 
 
 M ON t^* t^* ON 
 
 (N ON t^ to ro 
 
 O O O O O O 
 
 N rt ON NO Tt" Cl 
 NO M OO NO vo 
 <M O ON !> O VO 
 
 
 
 
 
 
 M 
 
 O O O O O 
 
 O ON OO O OO 
 O t*- M N CO 
 O ON ON 00 NO 
 
 XO Tj- -^ Tj- Tf 
 
 O O O O O 
 
 CO 00 <N 00 CO 
 <N Tt- to <* ro 
 
 IO PO M ON t^ 
 
 ^t rj- ^ ro to 
 
 8O O O O 
 Tf vo rf N 
 fO M c^ ro vo 
 vo PO M ON t> 
 ro to fO M N 
 
 000000 
 
 M ON ON CO t^ VO 
 
 OO M NO CN ON t^- 
 >-) rh N M ON 00 
 
 CN] (N CN CN) M M 
 
 <5 
 
 O O O O O 
 
 O NO xo 00 00 
 O 00 TJ- t^ 00 
 O ON ON 00 t 
 
 o o o o o 
 
 t^ \O M IO M 
 
 *> * O -^ 00 
 
 NO IO rl- N O 
 
 O O 
 
 ro M O) ro r-^. 
 
 M Tj- t^ O fO 
 
 ON t^ vo rj- M 
 
 000000 
 t^. <s Tf M r-~ CO 
 f^. M l>- PO ON O 
 O ON t> NO rf PO 
 
 
 
 
 
 PO <N N (N <N <N 
 
 i i- 
 
 O O O O O 
 
 M <S CO "t 
 
 S>vB Reg & 
 
 00000 
 
 O M (S CO Tf 
 
 O O O O O O 
 
 WO t^ 00 ON O 
 
 
 
 
 
 
 (74) 
 
CURVES CORRESPONDING TO FORMULA ON PAGES 
 70 AND 71 
 
 1 
 
 I I 
 
 5 * 
 
 1 1 
 
 s ^ * > 
 
 sfujs 41 un 9/qoMO/iy 
 
 I I 
 
 (75) 
 
RAILROAD BRIDGE SPECIFICATIONS 
 
 NAME. 
 
 H 
 < 
 M 
 
 >< 
 
 GRADE OF 
 STEEL. 
 
 ELASTIC 
 LIMIT. 
 
 SAFE 
 TENSION. 
 
 SAFE COMPRESSION. 
 
 SAFE 
 STRESS 
 COMBINEUJ 
 
 American Bridge Co. 
 Theodore Cooper 
 The Osborn Eng. Co. 
 *A.R.E. &M.ofW.A. 
 
 Pennsylvania R.R. 
 
 N.Y.C. & H.R. R.R. 
 Missouri Pacific 
 
 I9OO 
 I9OI 
 1903 
 1903 
 
 I9OI 
 
 I9O2 
 I9O2 
 
 52000-62000 
 60000-70000 
 
 540OO-62OOO 
 60000-67000 
 
 52OOO-62OOO 
 60000-70000 
 
 55000-65000 
 52000-62000 
 
 56000-64000 
 
 52000-62000 
 60000-70000 
 
 * Ult. 
 
 JUlt. 
 32000 
 
 35000 
 28000 
 
 28000 
 33000 
 
 $Ult. 
 
 15000 
 17000 
 
 Variable 
 
 15000 
 17000 
 
 16000 
 15000 
 
 L.L. - 8000 
 D.L. 16000 
 
 15000 
 
 {15000 17000 
 
 D+f B 
 D+B 
 
 D+IB 
 
 D+B 
 
 P P 
 
 13500^ iiooor 
 Straight line-Variable 
 ( i 5000 i 7000 
 
 \ P P 
 
 L X ' 36ooor 2 ' 36ooor 2 
 16000 70- 
 
 r 15000 
 
 il * 
 
 13500- 
 f 8000 16000 
 
 il P H P 
 
 I iSooor 2 iSocior 2 
 17000-80- 
 
 D = direct stress in pounds per square inch. 
 B = extreme fiber stress in pounds per square inch. 
 L.L. = live load. 
 D.L. = dead load. 
 * American Railway Engineering and Maintenance of Way Association 
 
 (76) 
 
HIGHWAY BRIDGE SPECIFICATIONS 
 
 NAME. 
 
 K 
 
 M 
 
 GRADE OF 
 STEEL. "" 
 
 ELASTIC 
 LIMIT. 
 
 SAFE 
 TENSION. 
 
 SAFE COMPRESSION. 
 
 SAFE 
 STRESS 
 COMBINED. 
 
 American Bridge Co. 
 
 1901 
 
 52000-62000 
 60000-70000 
 
 i Ult. 
 
 15000 
 17000 
 
 {1 5000 1 7000 
 
 D+l B 
 
 P P 
 
 I 35 oor2 ' nooor 2 
 
 Theodore Cooper 
 
 1901 
 
 54000-62000 
 60000-68000 
 
 iUl, 
 
 Variable 
 
 Straight line-Variable 
 
 D + B 
 
 The Osborn Eng. Co. 
 
 I9OI 
 
 52000-62000 
 60000-70000 
 
 32000 
 35000 
 
 2OOOO 
 22000 
 
 f 20000 22OOO 
 
 D + B 
 
 < P P 
 
 I 36ooor 2 ] 36000^ 
 
 BUILDING SPECIFICATIONS 
 
 NAME. 
 
 o5 
 
 <: 
 
 H 
 > 
 
 GRADE OF 
 STEEL. 
 
 ELASTIC 1 
 LIMIT. 1 
 
 SAFE 
 TENSION. 
 
 SAFB COMPRESSION. 
 
 SAFB 
 STRESS 
 COMBINED^ 
 
 Charles Evan Fowler 
 
 I9OI 
 
 55000-65000 
 
 iuit. 
 
 15000 
 
 I 
 12500 41.7- 
 
 . . . 
 
 C. C. Schneider 
 
 1904 
 
 55006-65000 
 
 28000 
 
 16000 
 
 16000 70 - 
 
 D+$B 
 
 New York Bldg. Law 
 
 l8 99 
 
 54000-64000 
 
 32000 
 
 16000 
 
 15200-58 - 
 
 - 
 
 Chicago Bldg. Law 
 
 1903 
 
 . . . 
 
 
 
 15000 
 
 15000 reduced 
 
 . . . 
 
 D = direct stress in pounds per square inch. 
 
 B = extreme fiber stress in pounds per square inch. 
 L.L. = live load. 
 D.L. = dead load. 
 
 (77) 
 
TABLE 32 
 
 SAFE LOADS OF TWO ANGLES 
 
 T 
 
 Short legs outstanding 
 
 Safe Loads are based on the New York Building Law Formula, P 15200 58 - 
 
 Safe Loads given are total safe loads in thousand pounds 
 
 For sections to the left of the heavy line - is less xiian iao 
 
 LEAST. 
 r 
 
 TOTAL 
 AREA. 
 
 SIZE 
 OF ANGLES. 
 
 b. TO b. 
 
 OF 
 
 ANGLES. 
 
 UNBRACED SPAN IN FEET. 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 10 
 
 I.4Q 
 
 14.62 
 
 7X3X f 
 
 1 
 
 194.9 
 
 188.1 
 
 181.2 
 
 174.4 
 
 167.6 
 
 160.8 
 
 J53-9 
 
 1.48 
 
 13.50 
 
 xtt 
 
 f 
 
 179.8 
 
 J 73-5 
 
 167.1 
 
 160.8 
 
 154-4 
 
 148.1 
 
 141.7 
 
 I. 4 6 
 
 12.34 
 
 x f 
 
 1 
 
 164.0 
 
 158.2 
 
 !5 2 -3 
 
 146.4 
 
 140.5 
 
 134.6 
 
 128.7 
 
 1.40 
 
 II.lS 
 
 xA 
 
 1 
 
 147.7 
 
 142.1 
 
 136.6 
 
 131.0 
 
 125-5 
 
 119.9 
 
 114-3 
 
 1-39 
 
 10.00 
 
 x i 
 
 i 
 
 132.0 
 
 127.0 
 
 I22.O 
 
 116.9 
 
 111.9 
 
 106.9 
 
 101.9 
 
 1-35 
 
 8.80 
 
 xA 
 
 A 
 
 115.6 
 
 in. i 
 
 106.5 
 
 IO2.O 
 
 97-5 
 
 92.9 
 
 88.4 
 
 1.79 
 
 13.88 
 
 6x4 x f 
 
 f 
 
 189.4 
 
 184.0 
 
 178.6 
 
 J 73-2 
 
 167.8 
 
 162.4 
 
 I 57- 
 
 1.77 
 
 12.82 
 
 x& 
 
 f 
 
 174.7 
 
 169.7 
 
 164.6 
 
 159.6 
 
 J54-5 
 
 J 49-5 
 
 144-5 
 
 1.76 
 
 11.72 
 
 x f 
 
 1 
 
 159.6 
 
 !55- 
 
 !5o-3 
 
 J 4S-7 
 
 141.1 
 
 136.4 
 
 131.8 
 
 1.70 
 
 10.62 
 
 xA 
 
 \ 
 
 144.0 
 
 139-7 
 
 !35-3 
 
 131.0 
 
 126.6 
 
 122.3 
 
 118.0 
 
 1.69 
 
 9-50 
 
 x i 
 
 i 
 
 128.8 
 
 124.8 
 
 120.9 
 
 117.0 
 
 113.1 
 
 109.2 
 
 I0 5-3 
 
 1.65 
 
 8.36 
 
 xA 
 
 A 
 
 113.0 
 
 109.5 
 
 105.9 
 
 102.4 
 
 98.9 
 
 95-3 
 
 91.8 
 
 1.62 
 
 7.22 
 
 x f 
 
 1 
 
 97-3 
 
 94.2 
 
 91.1 
 
 88.0 
 
 84.9 
 
 81.8 
 
 78.7 
 
 1.56 
 
 9.84 
 
 5X3^X f 
 
 1 
 
 132.0 
 
 127.6 
 
 123.2 
 
 "118.8 
 
 114.4 
 
 IIO.I 
 
 I0 5-7 
 
 1-55 
 
 8.94 
 
 xA 
 
 i 
 
 119.8 
 
 115.8 
 
 iii.8 
 
 107.8 
 
 103.8 
 
 99-8 
 
 95-8 
 
 1.54 
 
 8.00 
 
 x * 
 
 } 
 
 167.1 
 
 I0 3-S 
 
 99-9 
 
 9 6 -3 
 
 9 2 .7 
 
 89.1 
 
 85-4 
 
 1.50 
 
 7.06 
 
 x& 
 
 A 
 
 94.2 
 
 90.9 
 
 87.6 
 
 ' 84-4 
 
 81.1 
 
 77-8 
 
 74-5 
 
 1.46 
 
 6.10 
 
 x I 
 
 1 
 
 81.1 
 
 78.2 
 
 75-3 
 
 72.4 
 
 69-5 
 
 66.6 
 
 63.6 
 
 1-43 
 
 5.12 
 
 xA 
 
 A 
 
 67.9 
 
 65-4 
 
 62.9 
 
 60.4 
 
 57-9 
 
 55-4 
 
 52-9 
 
 1.24 
 
 7-24 
 
 4x3 XA 
 
 A 
 
 93-8 
 
 89.7 
 
 85-7 
 
 81.6 
 
 77-5 
 
 73-5 
 
 69.4 
 
 1.25 
 
 6.50 
 
 x i 
 
 i 
 
 84-3 
 
 80.7 
 
 77.1 
 
 73-5 
 
 69.8 
 
 66.2 
 
 62.6 
 
 1.25 
 
 5-74 
 
 xA 
 
 A 
 
 74-5 
 
 7i-3 
 
 68.1 
 
 64.9 
 
 61.7 
 
 58.5 
 
 55-3 
 
 1.26 
 
 4.96 
 
 x f 
 
 1 
 
 64.4 
 
 61.7 
 
 59- 
 
 56.2 
 
 53-5 
 
 50-7 
 
 48.0 
 
 1.27 
 
 4.18 
 
 xA 
 
 A 
 
 54-4 
 
 52.1 
 
 49.8 
 
 47-5 
 
 45-2 
 
 42.9 
 
 40.6 
 
 .91 
 
 5.00 
 
 3X2^X \ 
 
 \ 
 
 60.7 
 
 5 6 -9 
 
 53-i 
 
 49.2 
 
 45-4 
 
 41.6 
 
 37-8 
 
 .92 
 
 4-44 
 
 x^ 
 
 A 
 
 54-1 
 
 5-7 
 
 47-3 
 
 44.0 
 
 40.6 
 
 37-3 
 
 33-9 
 
 93 
 
 3.84 
 
 x f 
 
 1 
 
 46.9 
 
 44.0 
 
 41.1 
 
 38-3 
 
 35-4 
 
 32-5 
 
 29.6 
 
 94 
 
 3.24 
 
 xA 
 
 A 
 
 39-7 
 
 37-3 
 
 34-9 
 
 3 2 -5 
 
 30.1 
 
 27.7 
 
 25-3 
 
 95 
 
 2.62 
 
 x \ 
 
 A 
 
 32.1 
 
 30.2 
 
 28.3 
 
 26.4 
 
 24-5 
 
 22.5 
 
 20.6 
 
 77 
 
 3.10 
 
 2$X2X f 
 
 1 
 
 35-9 
 
 33-i 
 
 30.3 
 
 27-5 
 
 24.7 
 
 21.9 
 
 19.1 
 
 .78 
 
 2.62 
 
 x^ 
 
 A 
 
 30-5 
 
 28.1 
 
 25.8 
 
 23-5 
 
 21. 1 
 
 18.8 
 
 16.5 
 
 .78 
 
 2.12 
 
 x i 
 
 A 
 
 24.7 
 
 22.8 
 
 20.9 
 
 19.0 
 
 I7.I 
 
 15.2 
 
 13.3 
 
 79 
 
 1.62 
 
 XA 
 
 \ 
 
 18.9 
 
 J 7-5 
 
 16.1 
 
 14.6 
 
 I3.'2 
 
 n.8 
 
 10.4 
 
 (78) 
 
 
TABLE 32 (Continued} 
 AS COLUMNS OR STRUTS 
 
 Short legs outstanding 
 
 Safe Loads are based on the New York Building Law Formula, P 15300 58 - 
 
 Safe Loads given are total safe loads in thousand pounds 
 
 For sections to the left of the heavy line - is less than 120 
 
 UNBRACED SPAN IN FEET. 
 
 II 
 
 12 
 
 14 
 
 16 
 
 18 
 
 20 
 
 22 
 
 24 
 
 26 
 
 28 
 
 30 
 
 147.1 
 
 140.3 
 
 126.6 
 
 113.0 
 
 99-3 
 
 85.6 
 
 72.0 
 
 58-3 
 
 44-7 
 
 
 
 135-4 
 
 129.0 
 
 116.3 
 
 103.6 
 
 90.9 
 
 7 8.2 
 
 65.5 
 
 52.8 
 
 40.1 
 
 
 
 I22.Q 
 
 II7.O 
 
 105.2 
 
 93-4 
 
 81.7 
 
 69.9 
 
 58.1 
 
 46.4 
 
 34-6 
 
 
 
 108.8 
 
 103.2 
 
 92.1 
 
 81.0 
 
 69.9 
 
 58.8 
 
 47-7 
 
 36.5 
 
 25-4 
 
 
 
 96.9 
 
 91.9 
 
 81.9 
 
 71.9 
 
 61.9 
 
 51-9 
 
 41.8 
 
 31,8 
 
 21.8 
 
 
 
 83-9 
 
 79-3 
 
 70.2 
 
 61.2 
 
 52-1 
 
 43-o 
 
 34-o 
 
 24.9 
 
 15.8 
 
 
 
 151.6 
 
 146.2 
 
 r 35-4 
 
 124.6 
 
 113.8 
 
 103.0 
 
 92.2 
 
 81.4 
 
 70.7 
 
 59-9 
 
 49.1 
 
 J39-4 
 
 134-4 
 
 124-3 
 
 114.2 
 
 104.1 
 
 94-o 
 
 84.0 
 
 73-9 
 
 63.8 
 
 53-7 
 
 43-6 
 
 127.2 
 
 122.5 
 
 "3-3 
 
 104.0 
 
 94-7 
 
 85-4 
 
 76.2 
 
 66.9 
 
 57-6 
 
 48.4 
 
 39-i 
 
 113.6 
 
 109.3 
 
 100.6 
 
 91.9 
 
 83.2 
 
 74-5 
 
 6 5-9 
 
 57-2 
 
 48.5 
 
 39-8 
 
 3i-i 
 
 101.4 
 
 97-4 
 
 89.6 
 
 81.8 
 
 74-o 
 
 66.1 
 
 58.3 
 
 5-5 
 
 42.7 
 
 34-8 
 
 27.0 
 
 88.3 
 
 84.8 
 
 77-7 
 
 70.7 
 
 63.6 
 
 56-5 
 
 49-5 
 
 42.4 
 
 35-4 
 
 28.3 
 
 21-3 
 
 75-6 
 
 72-5 
 
 66.3 
 
 60. i 
 
 53-9 
 
 47-6 
 
 41.4 
 
 35-2 
 
 29.0 
 
 22.8 
 
 16.6 
 
 101.3 
 
 96.9 
 
 88.1 
 
 79-3 
 
 7o-5 
 
 61.8 
 
 53-o 
 
 44.2 
 
 35-4 
 
 
 
 91.7 
 
 87.7 
 
 79-7 
 
 71.7 
 
 63.6 
 
 55-6 
 
 47-6 
 
 39-6 
 
 3i-5 
 
 
 
 81.8 
 
 78.2 
 
 71.0 
 
 63.8 
 
 56.5 
 
 49-3 
 
 42.1 
 
 34-8 
 
 27-6 
 
 
 
 7*-3- 
 
 68.0 
 
 61.4 
 
 54-9 
 
 48.3 
 
 41.8 
 
 35-2 
 
 28.7 
 
 22.1 
 
 
 
 60.7 
 
 57-8 
 
 52-0 
 
 46.2 
 
 40.4 
 
 34-6 
 
 28.7 
 
 22.9 
 
 I 7 .I 
 
 
 
 50-4 
 
 47-9 
 
 42.9 
 
 38.0 
 
 33-o 
 
 28.0 
 
 23.0 
 
 18.0 
 
 13.0 
 
 
 
 65-4 
 
 61.3 
 
 53-2 
 
 45-o 
 
 3 6 -9 
 
 28.8 
 
 
 
 
 
 
 59-o 
 
 55-4 
 
 48.1 
 
 40.9 
 
 33-7 
 
 26.4 
 
 
 
 
 
 
 52-1 
 
 48.9 
 
 42.5 
 
 36-1 
 
 29.7 
 
 23-3 
 
 
 
 
 
 
 45-3 
 
 42.5 
 
 37-o 
 
 31.6 
 
 26.1 
 
 20.6 
 
 
 
 
 
 
 38-3 
 
 36.1 
 
 31-S 
 
 26.9 
 
 22.3 
 
 17.7 
 
 
 
 
 
 
 33-9 
 
 30.1 
 
 22.5 
 
 
 
 
 
 
 
 
 
 30.6 
 
 27.2 
 
 20.5 
 
 
 
 
 
 
 
 
 
 26.8 
 
 23-9 
 
 18.1 
 
 
 
 
 
 
 
 
 
 22.9 
 
 20.5 
 
 J 5-7 
 
 
 
 
 
 
 
 
 
 18.7 
 
 16.8 
 
 12.9 
 
 
 
 
 
 
 
 
 
 (79) 
 
cn 
 H 
 
 3 
 
 PL, 
 
 g 
 5 
 
 CO 
 
 ^ 
 , nO ^S fl 
 
 
 i-^ vo vo M co oo r~- 
 
 
 
 04 
 
 vo to Tj- vo TJ- oc Tt 
 
 ON vO V M ON vO Tj- 
 
 CM CM CM CM MH M 
 
 
 
 
 VO O\ O\ M 01 Tj- ON 
 
 
 
 rt 
 
 CM O 00 00 vo ON co 
 M 00 10 CM O t^ 10 
 CO CM CM CM CM HI M 
 
 
 
 
 CM CO rj- M CM M CM 
 
 
 
 
 
 ON vC CO M 06 O co 
 CM ON t^ Tf M ON vO 
 CO CM M CM CM M M 
 
 
 
 
 ON t- 00 O M t^ rt 
 
 rt CM VO CO vQ Tf 
 
 
 o 
 
 N 
 
 O W t> tf O O N 
 
 ^ w oo vo PC O r^. 
 
 fO fO d CS <N (N M 
 
 rf t^. OO vo CM O 
 
 CM ON t> VO CO M 
 
 CM M HI M M M 
 
 
 
 O M ro o M -^- r^ 
 
 vo 00 HI vo vo t^ 
 
 
 H > 
 
 iS __ 
 
 N t>. M t>. M M 
 
 ^0 W O VO rf M- oo 
 
 PO CO CO CM CM CM HH 
 
 ON O H vO CM 00 
 
 CO M ON VO * M 
 CM CM H HI M H 
 
 
 5 vo 
 
 * ^ *;- ON q M q 
 
 vO co t^ *> co O 
 
 ON 00 co 00 O 
 
 M 
 
 t>. Tj- M t^. 1O CM ON 
 
 VO CM O t^. VO CM 
 
 O vo CO M ON 
 
 Tf 
 
 VO t^ M CM O CM O 
 
 ON IO CO ON O ro O 
 
 ON *^ vO ON CM VO 
 
 ^ s 5 * ^ r? 
 
 O Tf CO CM HI 
 00 vo rf CM O 
 
 
 
 
 
 
 <t vo rf ^J- ON M O\ 
 
 CM VO vo *>. H XO 
 
 10 O * VO CM 
 
 & 2 
 
 * to 00 ON H 00 Tj- 
 O O PO ON t^- fj O 
 
 t^. Tj- CM rf t^ ON 
 
 t^ Tf CM ON VO CO 
 
 t^ M ON t^ vQ 
 00 t^. * CM O 
 
 
 00 CO VO O\ ON Tf VO 
 
 t^ ^- OO co O t> 
 
 t^. ts. ^- ON 00 
 
 M 
 
 CM ro vo vo t^ fO ON 
 
 IH 1^ Tf O *> * O 
 
 ^" HI OO O CM CO 
 OO vo CM O t^ '^f 
 
 T^- t^. VO CM O 
 
 ON t'* vo co M 
 
 
 M O 00 Tf ON t^- M 
 
 CO HI O ON ON 00 
 
 ON ^ Tf CM co 
 
 M 
 M 
 
 M M CM CM CO OO ^J" 
 CM 00 VO M 00 Tf M 
 
 rj- f5 ro ro CM CM CM 
 
 CM 00 VO VO VO t^ 
 ON vo co O l>- Tf 
 CM CM CM CM M M 
 
 M T}- HI OO VO 
 
 800 vo co HI 
 . HI M HI HI 
 
 
 VO t^ M 00 ON O 00 
 
 t^. ON co O OO O 
 
 O CM Tf VO 00 
 
 o 
 
 M 
 
 ON 00 O 00 ON Tf 00 
 CM OO VO M OO VO M 
 
 ON Tfr M M M CM 
 ON vO rf M 00 vo 
 
 ON M t^ CO ON 
 
 o ON vo n- M 
 
 
 
 
 
 
 ON r}- ro fO 00 * rf 
 
 CO t^ VO CM 00 CM 
 
 CM ON vo OO CO 
 
 a 
 
 CO ON vO CM ON vo CM 
 Tf CO CO CO CM CM CM 
 
 O t Tt HI 00 VO 
 
 M ON t^ ^ CM 
 
 
 
 
 
 t* 
 
 M 1^ T}- M OO ^ N 
 OO t^. t^- t^ vo vO vO 
 
 00 VO CM 00 VO CO 
 CM CM CM HI M M 
 
 ON vO co O *>. 
 t>. t^ t^ t^ O 
 
 < 
 4 
 
 CM CM CM CM CM CM CM 
 
 CM CM CM CM CM 
 
 M HI M HI HI 
 
 B 
 x 
 
 CO vO \O M CM O t> 
 VO t^ O vO O CM CM 
 
 0X Q IH M t^ 10 
 
 ON 00 Tt ON vo VO 
 
 Tj- -^ HI Tf HI 
 CO t^ VO CM CO 
 
 <; ~ 
 
 VO VO CO VO VO HI ON 
 
 vO co M 00 vo * M 
 
 ^^ O OO co O t- 
 
 CM M ON OO t^ VO 
 
 ON CM Tt t^ O 
 VO vo rf CO CO 
 
 
 
 
 
 
 S. co 
 
 
 
 * 
 
 CO 
 
 HI CM 
 
 HI CM 
 
 PQ 
 
 
 
 CO ' * ' co 
 
 2 
 
 00 CM 00 * "* * 
 vO O t^ ON co O CO 
 
 t^ VO M t>. t^. CM 
 
 CO vO ON 00 t^ *> 
 
 00 vo O 00 O 
 
 CM HI CO VO VO 
 
 <! "" 
 
 VO O ON M 00 CM co 
 
 Tf H CM M 00 Tt- 
 
 t^. CM Tf rf Tf 
 
 00 t^ vo co M 
 
 d 
 
 fc?*8 S 5 
 
 00 O <S O ^~ 
 O 00 O VO N t^ 
 
 00 O 00 (S NO 
 ^ O O\ O\ 00 
 
 o a 
 H 
 
 CO O 00 1O CO O ^> 
 
 TJ- M o t^ in <s 
 
 00 t^ <* N O 
 
 HiVajHO 
 SSHNHDIHJ, 
 
 osH* idoo KSlao HN HIN t-]2 w|Q8 
 
 Off, HN HN t-|2 *o o|2 
 
 HM H t-|2 roK |* 
 
 SIZE OF 
 ANGLES. 
 
 nH< ,-*o K*C gjto HN jjo |oe i 
 X X X X X X X 
 
 ? 
 
 vO 
 
 0100 HS HN HS **" H2 
 
 X X X X X X 
 
 tn 
 ro 
 X 
 
 in 
 
 HS-^HS^HS 
 
 X X X X X 
 
 ro 
 X 
 * 
 
 (80) 
 
32.2 | 
 
 if 3 
 
 as* 
 
 s 2 S 
 Ss 
 
 a % * S 
 
 ^5g ^ 
 
 S 
 
 *** S 
 
 NO 
 
 to M \O Ol O ^ co 
 M C*N NO* to ^ r" M 
 M r^ to en o t^ to 
 
 CO 01 01 01 01 M M 
 
 
 
 
 to ^ o r^ to vo 00 
 
 
 
 " 
 
 8>S % 17 c8* NO* 
 
 CO 01 0) CM 01 HI M 
 
 
 
 
 10 1^ VO 01 HI VO CO 
 
 
 
 " 
 
 ON PO ON "* HI HI d 
 Tf- M CO vo PO O t- 
 PO PO Ol Ol O O HI 
 
 
 
 
 to O O- CO NO vo 00 
 
 00 * ON CO O t^ 
 
 
 O 
 M 
 
 CO HI vo 00 rj- PO 01 
 NO PO O O rt HI 00 
 PO PO PO 01 01 01 HI 
 
 00 00 ON -^- HI NO 
 
 CO O CO NO * M 
 Ol Ol HI HI HI HI 
 
 
 
 vo 01 PO PO HI O CO 
 
 N OO Tj- CO CO PO 
 
 
 K M 
 
 H 
 
 f co 01 PO co vo PO 
 
 CO rf Ol CO vo CM ON 
 
 NO PO * t^ 01 NO 
 VO Ol O t^- to Ol 
 
 
 fa 
 
 NO vo 00 00 r^ NO ON 
 
 t^ co OO t- NO ON 
 
 M HI ^t t^ 
 
 M 
 
 z 
 
 O VO CO *> HI t-^ PO 
 O NO PO Ov I s ** PO O 
 
 $ CO <? o? d 
 
 PO ON OO O PO to 
 
 t^ CO HI ON NO CO 
 
 Ol Ol O M HI HI 
 
 t>. Ol O O- CO 
 
 t>. NO Tf HI ON 
 HI HI HI M 
 
 
 NO OO Ol Tf d t^> Tf 
 
 HI OO PO t^ CO to 
 
 ON ON PO ON ^ 
 
 4- 
 
 u 
 
 vo d vo d vo ON '*' 
 d 00 to HI 00 Tt HI 
 
 HI Tf CO PO Tf VO 
 
 Ov to PO O t^- ^ 
 
 CO t^ ^- M ON 
 ON t^ vo CO O 
 
 
 M ^J* TJ- \o O 4 s ** ^O 
 
 OO 10 VO HI VO PO 
 
 PO ON ^ HI t>* 
 
 P M 
 
 XO t-t PO ON W to C^ 
 
 ON oi O O O O 
 
 ON O * HI 00 to 
 
 01 10 M OO Tf 
 
 O 00 vo PO M 
 
 
 
 
 
 HI 
 
 vO IH IN- O^ 00 t*** O\ 
 
 Tf 6 M \6 00 M Tj- 
 
 co O r*- O \d to 
 O r^ rt HI oo to 
 
 t^ 00 NO Tj- H, 
 
 d PO co" ^f d 
 
 HI ON VO Tf 01 
 
 
 
 
 
 
 _ t^ Qx M 10 t^ M 
 
 01 ON O HI CO ON 
 
 HI t^ t^ NO ^l- 
 
 M 
 M 
 
 rf GO O\ ^t" 10 t^ O 
 
 t^ t"* VO PO HI ON 
 HI t^ VO Ol ON to 
 
 ON Hi VO O to 
 
 HI O *"** VO Ol 
 
 
 NO PO M Th CO t- Tf 
 
 O t* 01 vO ^J- t^ 
 
 Tf O Ov 00 *^ 
 
 O 
 
 M 
 
 PO t CO HI O PO vo 
 
 NO HI OO rf HI t- PO 
 
 vO VO 01 ON t^^ ^ 
 
 01 CO O 01 Ov NO 
 
 t > * ON Ol vo O 
 01 O CO VO PO 
 
 
 HI O PO t^ HI 00 NO 
 
 t^ ^ Tf M VO 
 
 oo to O HI M 
 
 0> 
 
 PO NO NO CO ON ON O 
 r>. 01 ON ^ HI r^. ^f 
 ^ ^* CO PO PO 01 Ol 
 
 rj- CO ON NO PO ON 
 CO Ov NO PO O NO 
 PO Ol Ol Ol Ol HI 
 
 to t>. O co vo 
 
 PO M ON NO PO 
 (M Ol HI HI HI 
 
 . 
 
 \O vo VQ \o vo vo to 
 
 t> to 01 oo NO co 
 
 HI i-i i-i o O O 
 
 O *^ co HI 00 
 t^ NO NO NO to 
 
 
 
 
 
 8 
 
 r^ Tf Tf vo O ON ON 
 t^ CO HI vo O 01 01 
 
 *"* vo NO ^" ON vO 
 O CO Tj- ON to NO 
 
 O co ^ to 
 3- t NO Ol co 
 
 < 
 
 \0 vo PO vo vo M ON 
 
 NO PO HI 00 vO rj- HI 
 
 Ol Ol Ol HI HI M HI 
 
 CO 00 PO *^ 
 
 01 HI o co t^ to 
 
 ON 01 ^ t^ O 
 to to rj- co CO 
 
 
 HI . Tj- 
 
 Tf * 
 
 r^* . M 
 
 w 
 
 00 ON 
 
 oq ON 
 
 CO ON 
 
 
 
 
 
 9 
 
 t^ HI NO VO OO ^ HI 
 
 M Ol to PO O ^ CO 
 
 O 10 -^f "O M O 
 
 CO co PO Qs O^ O^ 
 
 NO NO Tf 00 PO 
 
 to M 01 o 01 
 
 < 
 
 ON O 00 VO CO HI HI 
 
 3- CO 01 vo ON PO O 
 
 \O W CO 10 Tf M 
 
 rO t^** cs \O O ^" 
 
 to NO t^ to 01 
 
 CO ^t* ON ^ ON 
 
 
 
 \O 10 10 -^ ^ PO 
 
 
 U 
 
 2 rt & S 
 
 <g r^ o g 
 
 00 O O N M 
 
 -* q t^ ^ M 
 
 II 
 
 NO co o t^ in M oo 
 
 t^ c*5 N O* NO c*5 
 
 0\vO Tf N 
 
 
 
 
 
 HiVlfJ HO 
 SSHMM3IHX 
 
 <~ ~ <*"*"*"-|2 <* 
 
 ^H.H.^.*^ 
 
 H^H.^^^ 
 
 SIZB 
 
 OF 
 
 ANGLES. 
 
 X X X X X X X 
 
 X 
 
 NO 
 
 X X X X X X 
 
 X 
 in 
 
 X X X X X 
 
 X 
 
 (81) 
 
IB 
 
 *i | 
 
 as 
 
 II- 2 
 
 O * i* 3 5 
 O 23 * 
 
 CO rrt O 
 
 s| s 
 
 Sf I 
 
 s u i 
 
 
 
 <s 
 
 PJ ON 00 O M -tf- c< 
 ro vd ro ON l>- 00 C 
 ro ON *>- ro M (X) v 
 PO P PI PI O4 M H 
 
 -2 
 
 
 00 Pl co O H t^ J 
 
 p 
 
 * 
 
 10 t^ ro vo co PI 
 
 10 M ON 10 CO O J 
 CO CO <N O) PI M 
 
 N 
 
 ^ 
 
 H 
 
 
 >t 10 00 O <N O P 
 
 
 N 
 M 
 
 ti 
 
 oo r^. M co ON i~~ v 
 
 t^ rO M t^ Tt- M OC 
 
 CO CO CO PI CS W H 
 
 
 * 8 
 
 M t^. <N O\ VO M t- 
 
 O 10 fO 00 O fO C 
 rj- fj fC C N P t- 
 
 ON ^ IO t-~. M IO 
 
 ^ 10 P o i^~ 10 P 
 
 PI Cl P4 M M M 
 
 
 t^ M OO ON <N IO l- 
 
 < PI t-^ VO M O M 
 
 00 
 
 en M 
 
 ro 00 M O "- 1 10 C 
 t^ u-) O 00 "3- H 
 ' rf fO rO rO W W C 
 
 ) O <N Pi ro >O l^ 
 
 * 00 -* ON VO ro 
 
 1 P) PI P) M M M 
 
 NO 
 M 
 fc 
 
 *5 Tf- *5 ON f) OO u 
 
 MO 00 M CO 1>- ^ C 
 
 T}- QS r> n Q\ \r> p 
 TJ- ro ro ro N d C 1 
 
 -> CO M M OO l^ t^ 
 
 H M 6 06 od 06 
 
 i ^t r- * 
 
 ro P< PI P) M M 
 
 
 Ov t>- 00 00 ro O C 
 
 . Tl- 10 vO 10 Tt ro 
 
 It 
 
 M 
 
 00 00 O O fD rj- u 
 
 \O M O ^ l-l t^. P 1 
 
 Tf ^ ro fO f5 M P 
 
 -> PI ON t- ^ P4 O 
 > P) t^. to P) O 1 . O 
 
 ro P) P) Pt HI M 
 
 
 XO O\ fO 00 Tt- rO T 
 
 t- 10 o H cs o oo 
 
 P* 
 
 M 
 
 M 00 O t^ ON 00 f 
 
 ro 00 >0 O vO M 
 
 
 
 < ro P P) P) P4 M 
 
 
 M (N 00 00 * O C 
 
 Js VO ^ O ON t^ Tf 
 
 O 
 
 M 
 
 Tf C\ ON Tt 10 CS C 
 M uo M t^ rf O V" 
 uo rf- rj- CO ro CO c 
 
 > Tf \O <N 10 ON ro 
 >O M ON vo M 00 
 l ro ro w P Pi M 
 
 
 rt- ro 00 00 ro O f 
 
 rf ro ON vo ro M 
 
 < 
 l 
 
 CN ON C4 <N CS <N C 
 
 PI p] M M M M 
 
 VI 
 
 M 
 
 < 
 
 OO t^ t>. M (N ro o 
 
 O\ Qs N t>- M CO f 
 LO vo fO vo vo M c 
 
 vo ro M oO O Tf H 
 
 O4 M <N M M M H 
 
 1 ON M p< 00 P< t^ 
 M ON. 10 ON vo \O 
 ^ 00 O CO ro 6 f^ 
 W w ON 00 t^ 10 
 
 |M 
 
 aa 
 
 O r< 
 ro * 
 r^. t- 
 
 D 00 .... ON 
 PJ ro 
 - *> * ' * * r^ 
 
 M 
 
 O PJ ro O r>- O u 
 O ON 00 ro Tf t>~ P 
 
 ~> O ON 00 PI in Tf 
 ro 10 ON O ro vo 
 
 X 
 
 <! 
 
 LO ro ON ON 10 ON C 
 O\ O O MD M Tj- VC 
 M O OO vO 10 ro H 
 
 roo M oo r>. oo 10 
 ro O ro 00 P O 
 \O ^t ro M O 00. 
 
 
 
 
 j 
 
 <! < 
 H M 
 
 ^vSSivg s 
 
 K S8 8 8 % 
 
 g 
 
 M so -<t O 00 ^- i- 
 Tf PO ro rv) (S M r> 
 
 O VO IO <N 00 IO 
 
 CO N (S (S M M 
 
 HiViJ HO 
 SSHNJOIHJ, 
 
 ccH< iota lajoo HM H<N t-^2 ^ 
 
 o wloo HN HM r-|* c*c io|2 
 
 sJ 
 
 |l| 
 
 ccHi Hto idao ^jto HN ^ * 
 X X X X X X X 
 
 1 
 
 o *0o]2 ^^ "^HS 
 
 X X X X X X 
 HIN 
 f) 
 X 
 IO 
 
 (82) 
 
or THE 
 ( UNIVERSITY ) 
 
 IUFORK\L 
 
 S 
 
 < 
 
 n 
 
 i 
 
 J 
 
 .2 * 
 
 !! 
 
 3 
 o ^i 
 
 a 
 
 - ^ 
 
 53 
 
 I?3 
 
 r 
 
 si 
 
 s s 
 ^S 
 
 ?! 
 
 If 3 
 
 5 S 
 
 <a ;3 
 
 3 ^ 
 
 I I 
 
 la 
 
 3 * 
 
 3 C 
 
 sS 
 
 a - 
 
 I! 
 
 S ti 
 
 
 ON NO NO ^- TJ- t^ vO 
 
 
 * 
 
 HI M O\ O 00 t^ 00 
 10 M 00 10 N ON NQ 
 CO co o N W M M 
 
 
 
 "$ O N O O co O 
 
 
 * 
 
 00 NO O f- * <*3 
 t^ m M t^. * M oo 
 
 PD CO <""3 W W M 
 
 
 
 CO ON O *< O 10 ' 
 
 
 n 
 
 , " 
 
 ^t Ov * ON 10 O ** 
 O 10 T> 00 O ro O 
 ^ c*3 f) N C* M 
 
 
 ! 
 
 N O O ^- \O O"> 
 M ro t>- Ov "4" *^- M 
 ro CO 10 O 00 TT M 
 Tj- CO f5 PO N N N 
 
 r^ r> to O O vo 
 
 10 06 06 ON 
 
 t^. f> w CO NO *5 
 
 W 1-1 M M 
 
 z 
 
 t^ IO OO M W **> 
 
 CO <N O VO M M 
 
 oo 
 
 CO M 
 
 t^ O O 00 PO Tf O 
 IO O CO W OO M 
 
 8O C^ r^ **- NO 
 NO r*5 O *> * 
 
 C 
 
 
 
 i 
 
 "2 
 
 pa 
 
 M O O\ * 00 00 00 
 
 TJ- 6\ cJ 06 M d 6 
 
 00 O * d 00 <* 
 
 O 00 00 O N ON 
 NO M 6^ NO PO ON 
 <N CO IO M ON vo 
 
 z 
 
 
 
 i-J 
 
 10 TJ- \O O * * 
 
 M ro 10 NO Tf NO 
 
 * 
 
 M 
 
 O fO vo 00 O t^. 10 
 M 10 N vO Tl- ON 10 
 
 M CO O ^- ON ro 
 vo O 00 rj- O t^ 
 
 
 
 vJ vJ 
 
 
 O O <T> O M O t>. 
 
 fO Ov w vo fO 
 
 (i 
 
 M 
 
 t^. vO 00 r- ON * ON 
 rO t^ TT CO 10 M O 
 10 rj- rt f> rf) fO 
 
 NO rf M ro vo i 
 
 t^- CN| O NO CS OO 
 
 ro ro CO M W M 
 
 
 * * ON CO NO M 
 
 * * ON NO NO M 
 
 
 
 M 
 
 <r> o o t- *> o * 
 
 NO O t- O t^ PO CO 
 10 10 * * fO rO 
 
 M \O M Hi M M 
 
 O rt Ct CO rf O 
 Tf CO fO N W W 
 
 . 
 
 IH M NO NO M CO NO 
 
 rj- ^- co PO **J N d 
 
 M CO CO VO CO O 
 
 ON ON CO 00 00 CO 
 
 < 
 
 f 
 
 
 
 !/> 
 
 ON ON ON 00 00 00 * 
 
 M O *5 ** M CO fO 
 
 M t^- CO co Tj- ON 
 CO ON vo O NO NO 
 
 < 
 
 NO NO ro O vo M ON 
 NO **5 M OO NO * M 
 
 <S N <N^(IH M M M 
 
 00 O CO Tf O t^ 
 C M ON CO t^ 10 
 
 h 
 H 
 
 00 <N 
 
 NO co 
 
 ON ON 
 
 O . . . . w 
 
 r-. 
 CN ' ' * ' 6\ 
 
 s 
 
 <N to N O NO t^ M 
 
 NO VO t^. OO NO M 
 
 t^ r^ ci o\ O NO 
 
 ON NO NO ON ON ON 
 
 S. ~ 
 
 10 M VO t^ NO O 00 
 
 00 ON ro <N vo M vo 
 CO NO cs ON' NO M 
 TJ- CO rO CO M M N 
 
 NO * -<t CO W rj- 
 CN co O O ON f- 
 
 M CO NO co ON NO 
 
 CO P4 N N M M 
 
 si 
 
 r^ O ^t N O N rj- 
 
 00 CO O <N O Tt 
 vO 00 O vo <N 1> 
 
 & 
 
 I/} O 00 ro M t^. ro 
 
 ^- ^- co ro ff) N N 
 
 * OA 00 ^t M Is. 
 ro <S N <S D M 
 
 3XV-IJ HO 
 SSHMMDIHJ, 
 
 H* <ei ** HN Hn t-f5 "** 
 
 K*C -* HN t-j* * io(2 
 
 S 
 
 !] 
 
 "*"" ^2 "^ HS HN H2 W|0 
 
 X X X X X X X 
 
 ? 
 
 vO 
 
 "** HS ^ H2 "*" H2 
 
 X X X X X X 
 
 HN 
 
 *J 
 X 
 VO 
 
 (83) 
 
TABLE 37 
 
 SAFE LOADS FOR 
 
 Safe loads are based on New York Building Law Formula 
 Safe loads given are total safe loads in thousand pounds 
 For sections to the left of the heavy line, - is less than xao 
 d = Distance back to back in inches to make r equal about both 
 axes 
 
 SIZE OP 
 CHANNEL. 
 
 TOTAL 
 AREA. 
 
 r ABOUT 
 Axis BB. 
 
 d. 
 
 UNBRACED SPAN IN FEET. 
 
 
 
 Js 
 
 M 
 
 "5 
 
 8 
 
 10 
 
 12 
 
 M 
 
 15 
 
 55 
 
 32.36 
 
 5.16 
 
 8-53 
 
 457-o 
 
 448.2 
 
 439-5 
 
 430.8 
 
 | 
 
 50 
 
 29.42 
 
 5- 2 3 
 
 8.71 
 
 4I5-9 
 
 408.0 
 
 400.2 
 
 392.4 
 
 M 
 
 45 
 
 26.48 
 
 5-32 
 
 8.92 
 
 374-3 
 
 367.8 
 
 360.9 
 
 354-0 
 
 
 
 40 
 
 23.52 
 
 5-43 
 
 9-J5 
 
 333-4 
 
 3 2 7-4 
 
 321-3 
 
 3!5-3 
 
 ( 
 
 35 
 
 20.58 
 
 5-58 
 
 9-43 
 
 292.3 
 
 287.1 
 
 282.0 
 
 276.8 
 
 
 
 33 
 
 19.80 
 
 5.62 
 
 9-5 
 
 281.3 
 
 276.4 
 
 27i-5 
 
 266.6 
 
 12 
 
 40 
 
 23.52 
 
 4.09 
 
 6.60 
 
 325-5 
 
 317-5 
 
 39-5 
 
 301-5 
 
 " 
 
 35 
 
 20.58 
 
 4.17 
 
 6.81 
 
 285-3 
 
 278-5 
 
 271.6 
 
 264.7 
 
 " 
 
 30 
 
 17.64 
 
 4.28 
 
 7.07 
 
 245.2 
 
 239-4 
 
 233-7 
 
 228.0 
 
 
 
 25 
 
 14.70 
 
 4-43 
 
 7-36 
 
 205.0 
 
 200.3 
 
 195-7 
 
 191.1 
 
 
 
 20.50 
 
 1 2. 06 
 
 4.61 
 
 7.67 
 
 168.7 
 
 165.1 
 
 161.5 
 
 157-8 
 
 10 
 
 25 
 
 14.70 
 
 3-52 
 
 5-67 
 
 200. 2 
 
 194.4 
 
 188.6 
 
 182.7 
 
 
 
 20 
 
 11.76 
 
 3.66 
 
 5-97 
 
 160.9 
 
 156.4 
 
 iS 1 ^ 
 
 147.4 
 
 
 
 15 
 
 8.92 
 
 3-87 
 
 6-33 
 
 122.7 
 
 "9-5 
 
 116.3 
 
 113.1 
 
 9 
 
 20 
 
 11.76 
 
 3-21 
 
 5.12 
 
 I58-3 
 
 153-2 
 
 148.2 
 
 I43- 1 
 
 
 
 15 
 
 8.82 
 
 3-40 
 
 5-49 
 
 II9.6 
 
 1 1 6.0 
 
 112.4 
 
 108.8 
 
 
 
 13.25 
 
 7.78 
 
 3-49 
 
 5-63 
 
 105.8 
 
 102.7 
 
 99.6 
 
 96.5 
 
 8 
 
 16.25 
 
 9.56 
 
 2.89 
 
 4-54 
 
 126.9 
 
 122.3 
 
 117.7 
 
 113.1 
 
 
 
 13-75 
 
 8.08 
 
 2.98 
 
 4-72 
 
 107.7 
 
 103.9 
 
 100.2 
 
 96.4 
 
 < 
 
 11.25 
 
 6.70 
 
 3-n 
 
 4-94 
 
 89.8 
 
 86.8 
 
 83.8 
 
 80.8 
 
 7 
 
 14-75 
 
 8.68 
 
 2.50 
 
 3-8o 
 
 112. 6 
 
 107.8 
 
 IO2-9 
 
 98.1 
 
 ii 
 
 12.25 
 
 7.20 
 
 2-59 
 
 3-99 
 
 94.0 
 
 90.1 
 
 86.2 
 
 82.4 
 
 " 
 
 9-75 
 
 5-70 
 
 2.72 
 
 4.22 
 
 75-o 
 
 72.1 
 
 69.1 
 
 66.2 
 
 6 
 
 13 
 
 7.64 
 
 2.13 
 
 3-9 
 
 96.2 
 
 91.2 
 
 86.2 
 
 81.2 
 
 (C 
 
 I0.5O 
 
 6.18 
 
 2.21 
 
 3.28 
 
 78.4 
 
 74-5 
 
 70.6 
 
 66.7 
 
 11 
 
 8 
 
 4.76 
 
 2-34 
 
 3-52 
 
 61.0 
 
 58-2 
 
 55-4 
 
 52-5 
 
 5 
 
 9 
 
 5.30 
 
 1.8 3 
 
 2-56 
 
 64.4 
 
 60.4 
 
 56.4 
 
 52-3 
 
 M 
 
 6.50 
 
 3.90 
 
 1-95 
 
 2-79 
 
 48.1 
 
 45-4 
 
 42.6 
 
 39-8 
 
 4 
 
 5-25 
 
 3.10 
 
 1.56 
 
 2.06 
 
 36.1 
 
 33-3 
 
 30-5 
 
 27.8 
 
 (84) 
 
TABLE 37 (Continued) 
 
 LACED CHANNEL COLUMNS 
 
 Safe loads are based on New York Building Law Formula 
 
 Safe loads given are total safe loads in thousand pounds 
 
 For sections to the left of the heavy line, - is less than 120 
 
 d = Distance back to back in inches to make r equal about both axes 
 
 UNBRACED SPAN IN FEET. 
 
 16 
 
 18 
 
 20 
 
 22 
 
 24 
 
 26 
 
 28 
 
 30 
 
 422.0 
 
 4I3-3 
 
 404.6 
 
 395-9 
 
 387-1 
 
 378.4 
 
 369-7 
 
 360.9 
 
 384.5 
 
 376-7 
 
 368.9 
 
 361.1 
 
 353-2 
 
 345-4 
 
 337-6 
 
 3 2 9-7 
 
 347-1 
 
 340.1 
 
 333-2 
 
 326.3 
 
 3!9-4 
 
 312.4 
 
 305-5 
 
 298.6 
 
 309-3 
 
 303-2 
 
 297.2 
 
 291.2 
 
 285.1 
 
 279.1 
 
 273.1 
 
 267.1 
 
 271.7 
 
 266.6 
 
 261.5 
 
 256-3 
 
 251-2 
 
 246.1 
 
 240.9 
 
 235-8 
 
 261.7 
 
 256.8 
 
 25 * -9 
 
 247.0 
 
 242.1 
 
 237-2 
 
 232.3 
 
 227.4 
 
 293-5 
 
 285-5 
 
 277-5 
 
 269.5 
 
 261.5 
 
 253-5 
 
 245-4 
 
 237-4 
 
 2 57-9 
 
 251.0 
 
 244.1 
 
 237-2 
 
 230.4 
 
 223-5 
 
 216.6 
 
 209.8 
 
 222.2 
 
 216.5 
 
 210.8 
 
 205.0 
 
 199-3 
 
 J93-5 
 
 187.8 
 
 182.1 
 
 186.5 
 
 181.9 
 
 177-3 
 
 172.6 
 
 1 68.0 
 
 163.4 
 
 158.8 
 
 154.2 
 
 154.2 
 
 150.5 
 
 146.9 
 
 143-3 
 
 139.6 
 
 136.0 
 
 132-3 
 
 128.7 
 
 176.9 
 
 171.1 
 
 165.3 
 
 I 59-5 
 
 J53-7 
 
 147.9 
 
 142.1 
 
 136.2 
 
 143.0 
 
 138-5 
 
 134.0 
 
 129.6 
 
 125.1 
 
 120.6 
 
 116.1 
 
 111.7 
 
 lOQ.Q 
 
 106.7 
 
 103.5 
 
 100.3 
 
 97.1 
 
 93-9 
 
 90.7 
 
 87-5 
 
 138.0 
 
 132.9 
 
 127.8 
 
 122.7 
 
 117.6 
 
 112.5 
 
 107.4 
 
 102.3 
 
 IO5.2 
 
 101.6 
 
 98.0 
 
 94-3 
 
 90.7 
 
 87.1 
 
 83-5 
 
 79-9 
 
 93-4 
 
 90-3 
 
 87.2 
 
 84.1 
 
 81.0 
 
 77-9 
 
 74-8 
 
 71.7 
 
 108.5 
 
 103.9 
 
 99-3 
 
 94-7 
 
 90.1 
 
 85-4 
 
 80.8 
 
 
 02 6 
 
 88.8 
 
 8c T 
 
 81 1 
 
 77 C 
 
 7? 8 
 
 7O O 
 
 
 77-9 
 
 74-9 
 
 05.1 
 71.9 
 
 01.^5 
 68.9 
 
 //5 
 65-9 
 
 IS- 
 62.9 
 
 59-9 
 
 56.9 
 
 93-3 
 
 7 Q g 
 
 88.4 
 
 JA f\ 
 
 83.6 
 
 78.8 
 66 n 
 
 73-9 
 
 
 
 
 7 5 -5 
 63-3 
 
 74.O 
 6O.4 
 
 70.7 
 
 57-5 
 
 uu.y 
 
 54.6 
 
 63.0 
 51-6 
 
 48.7 
 
 
 
 76.2 
 
 71.2 
 
 66.2 
 
 
 
 
 
 
 
 62.8 
 
 58.9 
 
 55-o 
 
 51-1 
 
 
 
 
 
 49-7 
 
 46.9 
 
 44-o 
 
 41.2 
 
 
 
 
 
 48.3 
 
 44.3 
 
 
 
 
 
 
 
 37-o 
 
 34-2 
 
 
 
 
 
 
 
 
 
 (85) 
 
TABLE 38 
 
 STRESS DUE TO WEIGHT OP SECTION 
 
 The extreme fiber stress due to the weight of a member may be determined by the formula given 
 below. The general formula and table are based on the member acting as a beam supported at 
 the two ends. The bending produced for the horizontal span L is the same whether the member 
 is horizontal or inclined. 
 
 Let R = extreme fiber stress in pounds per square inch, 
 
 L = simple horizontal span in feet, 
 
 r = radius of gyration of section about axis at right angles to load, 
 e = distance in inches from neutral axis to extreme fiber in question, 
 
 Then 
 
 R = 
 
 5.1 el* 
 
 Since bending produces compression in the upper fiber and tension in the lower fiber; for mem- 
 bers having direct compressive stress, R for the upper fiber is added to the direct compression in 
 pounds per sq. in.; for members having direct tensile stress, R for the lower fiber is added to the 
 direct tension in pounds per sq. in. See combined stresses under specifications. 
 
 In the above formula R varies directly as e and inversely as r 2 ; it is therefore important that 
 r should be as large as possible and that e should be as small as possible for a given section. 
 
 The following table gives values of R for tension and compression members. For angles sub- 
 ject to direct compression the angle is placed thus For angles subject to direct tension the 
 angle is placed thus 
 
 tfd 
 
 STRESS DUE TO WEIGHT FOR ANGLES 
 
 EXTREME FIBER STRESS IN POUNDS PER SQUARE INCH 
 
 SIZE 
 OF ANGLE. 
 
 < 
 
 
 
 <j 
 
 
 
 SIMPLE HORIZONTAL SPAN IN FEET. 
 
 e 
 
 r 
 
 6 
 
 8 
 
 10 
 
 12 
 
 14 
 
 16 
 
 18 
 
 20 
 
 22 
 
 24 
 
 26 
 
 28 
 
 30 
 
 6x4 x f 
 
 5-86 
 
 2.03 
 
 .90 
 
 IOO 
 
 180 
 
 290 
 
 410 
 
 560 
 
 740 
 
 93 
 
 II5O 
 
 1390 
 
 1650 
 
 1940 
 
 2250 
 
 2580 
 
 x } 
 
 4-75 
 
 99 
 
 .91 
 
 100 
 
 1 80 
 
 280 
 
 400 
 
 55 
 
 710 
 
 900 
 
 IIIO 
 
 135 
 
 1600 
 
 1880 
 
 2180 
 
 2500 
 
 x^ 
 
 4.18 
 
 .96 
 
 .92 
 
 IOO 
 
 170 
 
 270 
 
 390 
 
 53 
 
 690 
 
 880 
 
 1080 
 
 1310 
 
 1560 
 
 1830 
 
 2120 
 
 2440 
 
 x I 
 
 3.61 
 
 .94 
 
 93 
 
 IOO 
 
 170 
 
 270 
 
 380 
 
 520 
 
 680 
 
 860 
 
 1060 
 
 1280 
 
 ^3 
 
 1790 
 
 2080 
 
 2390 
 
 5X3ix * 
 
 4.00 
 
 .66 
 
 58 
 
 1 20 
 
 220 
 
 34o 
 
 490 
 
 660 
 
 870 
 
 I IOO 
 
 1360 
 
 1640 
 
 !95 
 
 229O 
 
 2660 
 
 3050 
 
 x^ 
 
 3-53 
 
 63 
 
 59 
 
 1 20 
 
 2IO 
 
 33 
 
 470 
 
 650 
 
 840 
 
 1070 
 
 1320 
 
 1590 
 
 1900 
 
 2220 
 
 2580 
 
 2960 
 
 x I 
 
 3-05 
 
 .61 
 
 .60 
 
 1 20 
 
 2IO 
 
 320 
 
 460 
 
 630 
 
 820 
 
 1040 
 
 1280 
 
 !55 
 
 1850 
 
 2170 
 
 2520 
 
 2890 
 
 x& 
 
 2.56 
 
 59 
 
 1.61 
 
 no 
 
 200 
 
 310 
 
 450 
 
 610 
 
 800 
 
 IOIO 
 
 1250 
 
 1520 
 
 1800 
 
 2120 
 
 2450 
 
 2820 
 
 4x4 x j 
 
 3-75 
 
 .18 
 
 1.22 
 
 150 
 
 260 
 
 400 
 
 580 
 
 790 
 
 1030 
 
 1310 
 
 l62O 
 
 1960 
 
 233 
 
 2730 
 
 3170 
 
 3640 
 
 XA 
 
 x f 
 
 lil 
 
 .16 
 
 .14 
 
 23 
 2 3 
 
 140 
 
 140 
 
 250 
 250 
 
 39 
 380 
 
 5 6o 
 
 550 
 
 770 
 
 75 
 
 IOOO 
 
 980 
 
 1270 
 1240 
 
 1560 
 1540 
 
 1890 
 1860 
 
 2250 
 
 2210 
 
 2640 
 2600 
 
 3070 
 3010 
 
 3520 
 3460 
 
 XA 
 
 2.40 
 
 .12 
 
 .24 
 
 130 
 
 24O 
 
 37 
 
 530 
 
 73 
 
 95 
 
 1200 
 
 1480 
 
 1800 
 
 2I4O 
 
 25IO 
 
 2910 
 
 3340 
 
 4x3 x^ 
 
 2.87 
 
 3 
 
 2 5 
 
 J 5 
 
 270 
 
 420 
 
 610 
 
 830 
 
 1090 
 
 1370 
 
 I7OO 
 
 2050 
 
 2440 
 
 2870 
 
 33 20 
 
 3820 
 
 x I 
 
 2.48 
 
 .28 
 
 .26 
 
 J 5 
 
 260 
 
 410 
 
 59 
 
 810 
 
 1050 
 
 *33 
 
 1640 
 
 1990 
 
 2370 
 
 2780 
 
 322O 
 
 3700 
 
 x& 
 
 2.09 
 
 1.26 
 
 1.27 
 
 140 
 
 260 
 
 400 
 
 57o 
 
 780 
 
 1020 
 
 1290 
 
 1590 
 
 1930 
 
 2290 
 
 2690 
 
 3I2O 
 
 358o 
 
 3x3 x f 
 
 2. II 
 
 .89 
 
 .91 
 
 200 
 
 35 
 
 55 
 
 790 
 
 1070 
 
 1400 
 
 1780 
 
 2190 
 
 2650 
 
 3l6o 
 
 3700 
 
 4300 
 
 493 
 
 x& 
 
 .78 
 
 .87 
 
 .92 
 
 190 
 
 34 
 
 520 
 
 750 
 
 1030 
 
 1340 
 
 1700 
 
 2100 
 
 2540 
 
 3020 
 
 3540 
 
 4IIO 
 
 4720 
 
 x \ 
 
 44 
 
 .84 
 
 93 
 
 1 80 
 
 320 
 
 500 
 
 710 
 
 970 
 
 1270 
 
 1600 
 
 1980 
 
 2400 
 
 2850 
 
 335 
 
 3880 
 
 4460 
 
 3X2JX f 
 
 .92 
 
 .96 
 
 93 
 
 2OO 
 
 360 
 
 57 
 
 820 
 
 i no 
 
 145 
 
 1830 
 
 2260 
 
 2740 
 
 3260 
 
 3830 
 
 4440 
 
 5090 
 
 XA 
 
 .62 
 
 93 
 
 .94 
 
 190 
 
 340 
 
 540 
 
 770 
 
 1050 
 
 1380 
 
 1740 
 
 2150 
 
 2600 
 
 3090 
 
 3630 
 
 4210 
 
 4830 
 
 x 1 
 
 31 
 
 '.91 
 
 95 
 
 190 
 
 33 
 
 5 10 
 
 740 
 
 IOIO 
 
 1320 
 
 1670 
 
 2O60 
 
 2490 
 
 2960 
 
 347 
 
 4030 
 
 4630 
 
 2*X2X& 
 
 I-3I 
 
 .81 
 
 .78 
 
 24O 
 
 440 
 
 680 
 
 980 
 
 1330 
 
 1740 
 
 2200 
 
 272O 
 
 3290 
 
 3910 
 
 459 
 
 5320 
 
 6110 
 
 x i 
 
 i. 06 
 
 79 
 
 .78 
 
 240 
 
 420 
 
 660 
 
 95 
 
 1300 
 
 1700 
 
 2150 
 
 2650 
 
 3200 
 
 3 8lO 
 
 4480 
 
 5 J 9Q 
 
 5960 
 
 (86) 
 

 (Q 
 
 
 
 88888 
 
 88888 
 
 88888 
 
 88888 
 
 
 
 O & 00 t~- NO 
 
 m ^- to N M 
 
 O ON 00 t* NO 
 
 m Tf to N M 
 
 
 
 
 
 
 
 
 M*0 
 
 VO M 00 <<f O 
 
 CNI co to TJ- in 
 
 O CO ON m M 
 
 m NO O t^ oo 
 
 00 ^t O NO to 
 00 ON O O M 
 
 ON vn M 00 rf 
 
 M W CO CO Tl- 
 
 
 HN 
 
 O in ** co o* 
 
 M O ON 00 t^. 
 
 NO in in ^f co 
 
 3. g. 3. ^^ 
 
 
 
 
 in m * TJ- Tt- 
 
 
 
 
 HOC 
 
 O to vo 00 O 
 m O r- oo O 
 <N M O o\ Q\ 
 m m m rj- M- 
 
 co m oo O to 
 
 M N co m NO 
 
 4 ^^ 5 
 
 m oo O <*5 vn 
 *> oq q w <N 
 
 tO N P* M O 
 Tj- Tj- Tj- Tj- ^ 
 
 co O to in oo 
 to vn NO *^ CO 
 
 ON 00 l>- NO in 
 
 to co to to to 
 
 
 nfco 
 
 r^rt 
 
 in TJ- to M O 
 
 r^. ON w co m 
 
 od r>- r>- O in 
 
 $. ^ ?? 
 
 rj- CO CO N! M 
 
 co M O ON 00 
 
 NO 00 O HI fO 
 
 6 ON & CO* t^- 
 
 NO VO Tt tO M 
 
 m t^ ON M to 
 
 NO in rj- T}- CO 
 
 
 
 
 
 
 
 
 
 
 8 in O vn O 
 w in t~ O 
 
 *o O ^o O vo 
 c* in t^ O w 
 
 O m O vn O 
 in t^ O w m 
 
 m o vn o vn 
 t^. O <N m t^ 
 
 
 
 in rt- co cs w 
 
 M O ON ON 00 
 
 t-^ NO NO m TJ- 
 
 to to ci M o 
 
 
 
 
 
 
 
 
 r-*0 
 
 m so oo ON O 
 in oo M in 
 
 i-i co Tf in NO 
 
 OO M * t- O 
 
 00 ON O i-i to 
 fO NO O to NO 
 
 TJ- in NO CO ON 
 ON <M vn CO M 
 
 
 J*5 
 
 w O ON ON 00 
 rf ^t fO to to 
 
 t^ t^ NO m m 
 
 to to to fO to 
 
 &s> $<%<% 
 
 
 
 O OO in to O 
 
 in co <NI NO O 
 
 oo m to O oo 
 to t>- M m oo 
 
 m to o oo m 
 
 CS NO O tO t^ 
 
 to O 00 vo fO 
 
 M m oo cs NO 
 
 H 
 
 
 r^. NO \O in in 
 co to co to to 
 
 Tj- CO CO <N1 M 
 
 to to to to to 
 
 w ON 00 
 tO to CO M CS 
 
 00 > NO NO vo 
 CM W W <N N 
 
 l < 
 j 
 
 OH 
 
 1* 
 
 m ON to NO O 
 
 *" M NO O VO 
 
 Tf 00 M in ON 
 ON to 00 W NO 
 
 to NO O * 00 
 M m o ^ oo 
 
 M in ON to NO 
 
 CO t^ M NO O 
 
 
 
 *P 
 
 to co N N M 
 to to CO CO to 
 
 O O ON ON 00 
 CO to <N N <N 
 
 oo t^ t^ NO in 
 
 N N N W 
 
 m TJ- TJ- co to 
 
 W <N <M M <S 
 
 a 
 
 2 
 
 M 
 
 
 8O O O O 
 in o vn O 
 
 O O O O O 
 
 in O *n O vn 
 
 8O O O O 
 in o vo O 
 
 O O O O 
 in o vo o vn 
 
 
 
 5 
 
 f-H 
 
 
 a g^ ^ 3 
 
 t^ r^ NO NO m 
 
 <N (N CN) C< CS 
 
 m * * co to 
 
 N N O (N N 
 
 C4 C4 M M O 
 
 N <N M CN1 N 
 
 
 JC 
 
 m M oo rf O 
 
 W OO CO O\ IO 
 
 NO to ON m M 
 O NO M t-~ co 
 
 00 Tf O NO to 
 oo Tf O vn w 
 
 ON m M 00 * 
 NO N 00 to ON 
 
 
 >! 
 
 \O in m TJ- rj- 
 
 
 
 ON ON 00 00 *- 
 
 
 
 
 
 
 
 
 
 O to m oo O 
 in M t^. to o 
 
 to m oo O to 
 NO N oo in M 
 
 m oo O fO vn 
 t^ to o NO N 
 
 oo O to vn oo 
 00 vn M i>- co 
 
 
 
 C* N M M W 
 
 O O ON ON ON 
 
 00 00 00 t- t^ 
 
 NO NO NO in in 
 
 
 
 
 
 
 
 
 
 
 in TJ- co w O 
 
 t^ ^- HI oo m 
 
 ON 00 NO in rj- 
 M co in w ON 
 
 to M O ON 00 
 NO fO O NO CO 
 
 \O m <* to M 
 O t^ * M oo 
 
 
 
 M M M M M 
 
 
 
 
 
 H* 
 
 8 in O m O 
 t^ m N o 
 
 in O *o O vo 
 
 O in O vn O 
 
 in O vn o vo 
 
 cs o r*- vn w 
 
 
 
 
 
 
 
 
 
 
 m O oo ON O 
 w O oo O m 
 
 M CO Tj- VO NO 
 
 to M ON t^- in 
 
 00 ON O HI co 
 CO M O 00 NO 
 
 ^- m NO co ON 
 
 rj- <M O 00 NO 
 
 
 ^ 
 
 M M 
 
 O O ON ON ON 
 
 ON ON ON 00 00 
 
 00 00 00 t^ t^ 
 
 
 
 
 
 
 
 
 
 O oo in to O 
 
 in r o ci >-i o 
 
 oo m to o oo 
 
 co t^. NO m co 
 
 m co O oo m 
 
 <N M O CO t^ 
 
 co o oo m co 
 \O m to w M 
 
 
 
 
 NO NO NO NO NO 
 
 NO NO NO m vn 
 
 in in in in m 
 
 
 HS 
 
 m o <~o 
 I s - <5 O in m 
 
 CO to to to 
 
 -t OO M in ON 
 
 t '? *? C .' I 
 
 to CO CO CO co. 
 
 to NO O ^f oo 
 M o q o^ oq 
 
 co CO co <NJ ci 
 
 M in ON to NO 
 00 t^- NO \q vo 
 
 N) W N CNJ <N 
 
 1 
 
 ixvnj 
 
 iO 
 
 ' ' n 
 
 O O 00 IN O 
 vo in in 10 in 
 
 tO ^ f*5 N M 
 
 10 in to in vo 
 
 O OX 00 ^ vO 
 10 "fr * * Tt 
 
 in TJ- to <s M 
 t ^- ^ * -^ 
 
 (87) 
 
w 
 j 
 
 CQ 
 < 
 H 
 
 
 
 88888 
 
 88888 
 
 88888 
 
 88888 
 
 
 
 O ON 00 t- NO 
 
 ^~ to to to to 
 
 vo ^ to cs H 
 
 O ON 00 t^ NO 
 to cs cs cs cs 
 
 IO T}- tO CS HI 
 CS CS CS <N CS 
 
 
 se 
 
 O NO fO ON 10 
 
 VO IO NO NO I s - 
 t>- NO IO ^f fO 
 
 to to to to to 
 
 00 00 ON O O 
 
 cs M d d 6\ 
 to to to to cs 
 
 CO ON 10 HI CO 
 
 HI IH CS fO fO 
 
 CO t- NO vo 1 ^- 
 
 cs cs cs cs cs 
 
 -3- O NO fO ON 
 TJ- VO VO NO NO 
 
 CO CS M O ON 
 CS CS CS CS M 
 
 
 
 8 fO vo 00 O 
 H CS fO IO 
 
 to vo CO O to 
 
 NO t^ 00 O HI 
 
 VO 00 O fO 10 
 
 cs to 10 NO r^ 
 
 OO O to vo OO 
 
 00 O Hi (N to 
 
 
 
 vo rt fO CS HI 
 
 to to to to to 
 
 O ON CO 00 t^- 
 
 to cs cs cs cs 
 
 NO IO ^ tO CS 
 CS <N CS CS CS 
 
 HI M O ON 00 
 CS CS CS HI Hi 
 
 
 as 
 
 O ON 00 NO 10 
 10 NO 00 O CS 
 
 Tt fO HI O ON 
 
 Tt NO 00 O M 
 
 oo NO io T)- to 
 
 tO VO t^ ON HI 
 
 M O ON CO NO 
 tO vo NO CO O 
 
 
 
 CS HI O O ON 
 
 00 *> NO NO vo 
 cs cs cs cs cs 
 
 Ti" tO CS HI HI 
 CS CS CS CS CM 
 
 O ON 00 t^ t^ 
 
 <M M IH HI HI 
 
 
 * 
 
 810 O vo O 
 cs 10 r^ q 
 
 O ON OO *~- *> 
 
 to cs cs cs cs 
 
 10 O vo O vo 
 CS VO t^ O CS 
 
 NO IO TJ- "t CO 
 CS CS <N CS CS 
 
 O vo O vo O 
 vo t^ O cs vo 
 
 CS M M O ON 
 CS CS <N CS HI 
 
 vo O vo O vo 
 t^ O cs vo > 
 
 00 00 !> NO VO 
 
 
 * 
 
 O HI to ^ vo 
 vo 00 HI rj- f^ 
 
 ^ ^^ 8 Z> 
 
 ^~ to cs cs HI 
 
 fO Tf VO NO CO 
 
 NO O\ cs vo CO 
 O ON ON CO I~- 
 
 ON O HI to Tl- 
 HJ VO CO M rl- 
 1> NO IO IO ^t 
 
 
 
 
 
 
 
 
 MM 
 
 800 10 fO O 
 CO t~^ HI IO 
 
 oo 10 to o oo 
 
 OO CS NO O to 
 M M O ON 
 
 VO tO O CO vo 
 !>. HI IO OO CS 
 
 CO 00 !> NO NO 
 
 to o co io to 
 NO O to r- M 
 
 VO vo ^ fO to 
 
 
 
 
 
 
 
 PLATE. 
 
 HS 
 
 O * 00 HI vo 
 VO ON to OO CS 
 
 cs HI M d d 
 
 ON fO NO O Tj- 
 
 NO HI 10 O Tj- 
 
 ON ON 00 CO t^. 
 
 00 M 10 ON to 
 00 fO l> M NO 
 
 NO NO vo vo ^i- 
 
 NO O ^ 00 HI 
 
 O vo ON to OO 
 ^- to cs cs M 
 
 s 
 
 
 
 
 
 
 | 
 
 H 
 
 
 ooooo 
 
 O vo O vo O 
 
 OOOOO 
 vo O vo O 10 
 
 80 O 
 vo O vo O 
 
 OOOOO 
 vo O vo O vo 
 
 2 
 M 
 
 
 ON ON 00 00 
 
 r^ t^. NO NO 10 
 
 VO ^J" ^" to to 
 
 CS CS HI HI O 
 
 O 
 
 
 
 
 
 
 
 
 O NO to ON vo 
 vo O NO H l> 
 
 M oo "tf- O NO 
 to 00 * O vo 
 
 to ON vo HI OO 
 
 M NO CS OO fO 
 
 <t O NO to ON 
 ON vo O NO HI 
 
 
 
 t- t~~ NO NO IO 
 
 vo r}- -^- TJ- to 
 
 CO CS CS HI M 
 
 O ON ON 
 
 
 
 
 
 
 
 
 
 8 to vo CO O 
 NO cs CO vo 
 
 fO 10 00 O to 
 M t^ to O NO 
 
 vo CO O to vo 
 
 CS OO IO M t^ 
 
 00 O fO vo 00 
 co O NO cs oo 
 
 
 mw 
 
 VO Tf Tt* to to 
 
 to cs cs cs M 
 
 M ON 
 
 ON ON 00 00 t- 
 
 
 
 
 
 
 
 
 
 
 O ON 00 NO 10 
 10 HI CO 10 CS 
 
 ^ fO HI O ON 
 ON NO fO O NO 
 
 00 NO 10 'd- fO 
 
 fO O **** "^" HI 
 
 Hl O ON 00 NO 
 CO VO M OO IO 
 
 
 "H 
 
 CS CS M HI M 
 
 O O O ON 
 
 ON ON CO CO CO 
 
 t^ r^ t^ NO NO 
 
 
 
 
 
 
 
 
 
 810 O vo O 
 t^ vo cs O 
 
 vo O vo O vo 
 t^ vo cs O i>- 
 
 O vo O vo O 
 vo cs O t^ vo 
 
 vo O vo O vo 
 cs o t^ vo cs 
 
 
 
 O ON ON ON ON 
 
 M 
 
 00 00 oo CO t^ 
 
 t^ t^ t-~. NO NO 
 
 NO NO IO IO IO 
 
 
 -JO 
 
 O HI CO -3- 10 
 
 10 fO M ON !> 
 
 NO 00 ON O M 
 10 fO HI O 00 
 
 fO * vo NO CO 
 
 NO TJ- CS O CO 
 
 ON O HI to "^ 
 NO IO fO HI ON 
 
 
 "h 
 
 t- t- J^VO NO 
 
 NO NO NO NO vo 
 
 VO vo IO VO ^~ 
 
 * * Tl- Tj- CO 
 
 
 Hw 
 
 800 10 to o 
 CO t^ NO IO 
 
 00 vo to O 00 
 to cs HI O 00 
 
 10 fO O 00 10 
 t^ NO VO fO CS 
 
 fO O 00 vo to 
 
 HI O CO t^ NO 
 
 
 
 
 
 
 
 
 HS 
 
 O ^ CO HI IO 
 
 ON to NO O ^ - 
 M HI O O ON 
 
 CO HI IO ON fO 
 CO OO t^ NO NO 
 
 NO O * 00 HI 
 vo vo Tt CO fO 
 
 
 
 
 
 
 
 I 
 
 JlVIjI 
 JO 
 
 o o\ oo t^ NO 
 
 IO ^- CO (S M 
 
 O ON 00 IN vO 
 
 IO Tf CO N M 
 
 N N <N (S N 
 
 (88) 
 
THICKNESS OF PLATE. 
 
 M 
 
 8888 
 
 8 
 
 8 i 8 8 8 
 
 8 8 
 
 8 8 8 
 
 8 
 
 8 8 
 
 8 8 
 
 10 
 
 10 
 IO CN 
 
 ON CO f- 
 
 NO 
 
 IO Tf PO CN Hi 
 
 ON CO ^ NO 
 
 10 
 
 Tf PO 
 
 <N M 
 
 
 
 
 
 
 10 M 00 Tf 
 
 r>. CO CO ON 
 
 CO t^- NO 10 
 
 8 
 
 to 
 
 \O PO ON tO HI 
 
 q M M to 
 
 4 PO PI M 
 
 ^ ? 
 
 ON 00 
 
 O NO PO 
 IO IO NO 
 
 t^. NO 10 
 
 # 
 
 VO M 
 
 *T co 
 
 CO 04 
 
 ? 
 
 
 
 t^. co 
 
 
 
 
 HOC 
 
 O PO to CO 
 
 10 NO r- oo 
 r-^ NO* to Tf 
 
 
 
 CO 10 00 O PO 
 
 M CN CO 10 NO 
 
 co CN M d ON 
 
 vo CO 
 t^ 00 
 
 O co to 
 
 '<% 
 
 O co 
 
 IO NO 
 
 VO CO 
 t^ CO 
 
 
 
 5 3 
 
 CO t^ 
 
 t^ NO to 
 
 Tf 
 
 PO CN) 
 
 M 
 
 
 
 
 
 
 32 
 
 10 Tf CO M 
 PJ Tf \O 00 
 NO 10 Tf PO 
 
 8 
 
 CO 
 
 ON 00 NO to Tf 
 M PO VO t>- ON 
 
 PO HI 
 HI CO 
 
 2^28 
 
 NO 
 
 O 
 
 VO Tf 
 
 PI Tf 
 
 PO HI 
 
 NO oo 
 
 NO 
 
 5- 8 
 
 CN M O ON 00 
 
 co t^ 
 
 NO IO Tf 
 
 Tf 
 
 CO P* 
 
 M 
 
 
 
 
 
 
 ** 
 
 1 
 
 10 O 10 
 CN \o r^ 
 
 to Tf co P 
 
 8 
 
 CN 
 
 to O 10 O to 
 PJ 10 t>. O PI 
 
 M d ON ON 00 
 
 10 
 10 t^ 
 
 810 o 
 CN IO 
 
 10 
 
 810 
 IN 
 
 O to 
 10 r^ 
 
 NO 
 
 to 
 
 % 2* 
 
 t^ NO 
 
 NO 10 Tf 
 
 CO 
 
 CO CN 
 
 IH 
 
 
 
 
 
 
 32 
 
 10 NO 00 ON 
 r* O co NO 
 
 8 
 
 M PO Tf VO NO 
 
 CO NO ON P IO 
 
 00 ON 
 OO HI 
 
 O HI PO 
 10 00 HI 
 
 Tf 
 
 IO NO 
 
 t^ O 
 
 CO ON 
 PO NO 
 
 PI 
 
 10 
 
 Tf ^ 
 CO M 
 
 CO CO <N1 M 
 
 M 
 
 ON CO 00 t^ 
 
 NO NO 
 
 10 Tf Tf 
 
 CO 
 
 w 
 
 M 
 
 
 
 
 
 , 
 
 O CO to PO 
 10 CO <N NO 
 
 8 
 
 00 10 CO O 00 
 PO t HI 10 00 
 
 to PO 
 
 CN NO 
 
 800 10 
 PO t^ 
 
 PO 
 
 00 
 vo CO 
 
 10 CO 
 
 PI NO 
 
 * 
 
 M \O 
 CO M 
 
 2 M M 2 
 
 
 
 ON CO CO t-~ NO 
 
 NO tO 
 
 IO Tf CO 
 
 CO 
 
 CN M 
 
 HI 
 
 H2 
 
 Xg?^ 
 
 8 
 
 rf 00 HI to ON 
 
 Tf CO CO t^ HI 
 
 CO NO 
 
 NO 
 
 O Tf CO 
 
 10 ON PO 
 
 CO 
 
 pj 
 
 IO ON 
 
 CN O 
 
 PO NO 
 HI VO 
 
 CN 
 
 CO Tf 
 PI M 
 
 H. d 
 
 ON 
 
 CO ^- t^ NO NO 
 
 10 10 
 
 Tf PO PO 
 
 CN HI 
 
 
 
 
 * 
 
 80 o o 
 10 O 10 
 
 O O\ O\ OO 
 
 8 
 
 OO' 
 
 O O O O O 
 10 O 10 O 10 
 
 80 
 10 
 
 O 10 O 
 
 
 to 
 
 80 
 10 
 
 8O 
 10 
 
 co 
 
 CO 
 
 10 PO 
 CN HI 
 
 t^ t^. NO NO to 
 
 VO Tf 
 
 Tf PO co 
 
 CN 
 
 PI -. 
 
 M 
 
 
 
 H2 
 
 10 H, 00 Tf 
 
 8 
 
 NO CO ON to M 
 
 10 HI \O PI 00 
 
 00 Tf 
 
 CO ON 
 
 O NO PO 
 
 vo O NO 
 
 O\ 
 
 VO IH 
 
 t^ CO 
 
 00 Tf 
 CO Tf 
 
 PO 
 CO 
 
 C. M 
 
 00 00 r^ t^. 
 
 *" 
 
 NO NO 10 10 Tf 
 
 Tf CO 
 
 co co PI 
 
 CN 
 
 HI M 
 
 
 
 
 rspo 
 
 O PO to 00 
 
 tO HI f^ PO 
 
 8 
 
 CO 10 CO O PO 
 
 NO P 00 10 HI 
 
 IO CO 
 t^ co 
 
 SCO vo 
 NO PI 
 
 CO 
 00 
 
 O co 
 
 10 HI 
 
 10 CO 
 
 r^ PO 
 
 co 
 
 CN 
 
 5r 8* 
 
 
 H2 
 
 IO Tf PO HI 
 
 8 
 
 ON CO NO to Tf 
 NO PO O - TJ- 
 
 CO M 
 
 HI CO 
 
 O O\ CO 
 
 IO M CO 
 
 NO 
 10 
 
 IO Tf PO HI 
 
 PI ON NO PO 
 
 PO 
 CN 
 
 NO CO 
 HI 
 
 NO 10 10 10 
 
 to 
 
 Tf Tf Tf PO CO 
 
 CO 
 
 CN CN HI 
 
 HI 
 
 M 
 
 
 
 
 ~ 
 
 8u> o to 
 t^ 10 CN 
 
 8 
 
 vo O to O 10 
 
 O to 
 
 8to O 
 
 to 
 
 8VO 
 t^ 
 
 O to 
 
 10 CN 
 
 ON 
 
 PO NO 
 HI 
 
 
 * 
 
 tO NO OO ON 
 
 t> If) PO HI 
 
 8 
 
 M CO Tf VO NO 
 
 00 NO Tf CN Q 
 
 S8# 
 
 O M PO 
 IO CO HI 
 
 ON 
 
 10 \O 
 
 r^ 10 
 
 CO ON 
 
 CO HI 
 
 J 
 
 
 
 CO co co co 
 
 co 
 
 PI CN CN O) CN 
 
 HI HI 
 
 HI IH M 
 
 
 
 
 
 
 H. 
 
 O 00 10 co 
 10 CO PI M 
 
 8 
 
 00 10 CO O 00 
 
 00 t^ NO 10 PO 
 
 to co 
 
 CN HI 
 
 800 vo 
 00 f^ 
 
 CO 
 NO 
 
 2><?o 
 
 10 CO 
 
 8" 
 
 3 ? 
 
 
 * 
 
 10 ON PO NO 
 
 pj HI M q 
 
 8 
 
 Tf CO HI vo ON 
 ON CO CO f"** NO 
 
 CO NO 
 NO IO 
 
 Tf 00 
 10 Tf PO 
 
 PO 
 
 vo ON 
 
 CN HI 
 
 PO NO 
 
 M . 9 
 
 to 
 
 q 
 
 PO PI 
 
 q q 
 
 
 
 
 
 
 J.O 
 
 Hxai\\ 
 
 o o* co t^ 
 
 O 
 
 1C Tf ro rs M 
 
 o o> oo t^ NC 
 
 M 
 
 in 
 
 ^f CO 
 
 <S M 
 
 * 
 
 ** 
 
 
 
 
 (89) 
 
3 
 
 w 
 
 _) 
 
 CQ 
 < 
 H 
 
 
 H 
 
 PO 10 00 O 
 
 O <N GO VO 
 O M M Oi 
 
 fO 10 oo O 
 M t--. ro O 
 fO ro ^)- 10 
 
 fO vo 00 O 
 
 NO (N 00 vo 
 10 NO O t^ 
 
 fO vo 00 O 
 
 M t>. ro O 
 
 OO CO ON O 
 
 rO vo 00 O 
 
 NO M OO VO 
 O HI M M 
 
 PO vo 00 O 
 
 M t^- PO O 
 
 PO PO Tf VO 
 
 
 
 
 
 
 M 
 
 
 
 
 35 
 
 ON t^ vO * 
 in M t^ ro 
 
 M H N 
 
 fO N O ON 
 
 ON IO M >O 
 
 M CO Tt Tf 
 
 t^- vO vo fO 
 N 00 Tf O 
 vo vo vO *- 
 
 <N O ON 00 
 vO M t^ ro 
 r. oo CO ON 
 
 vO vo ro ci 
 
 ON VO M t^ 
 
 ON M M 
 
 O ON 00 VO 
 PO 00 'I- O 
 N N PO Tf 
 
 
 
 
 
 
 
 
 
 
 H* 
 
 VO ON * ON 
 
 10 O H 
 O H l-l O 
 
 fO 00 rO 00 
 t^ w OO ro 
 M fO CO r}- 
 
 (N t- N O 
 
 ON Tf O vo 
 Th VO NO VO 
 
 M vO O vo 
 M VO <N l^ 
 t^ t-~ 00 00 
 
 O "* ON Tl- 
 rO 00 ro ON 
 ON ON O O 
 
 00 PO 00 PO 
 "t O VO M 
 M C4 N PO 
 
 
 
 
 
 
 
 
 
 
 $5 
 
 M <N <N PO 
 10 O 10 O 
 
 Tj- VO IO O 
 10 O vo O 
 
 t^ 00 ON ON 
 vo O vo O 
 
 O I-H (N ro 
 
 O M vO i-i 
 
 PO Tf vo vO 
 
 vO w vO t i 
 
 VO t^ 00 ON 
 vO IH vO M 
 
 
 
 
 
 
 
 H 
 
 M M M M 
 
 
 c* 
 
 t- Tf M 00 
 
 T|- ON Tf 00 
 
 O H M 
 
 Tf M 00 VO 
 
 fO OO M t>- 
 w M rr> ro 
 
 W ON vO ro 
 01 vO w vO 
 
 Tf Tj- VO VO 
 
 ON VO fO O 
 O vo O vo 
 
 O vo r^- t^ 
 
 t^. ^ M CO 
 
 ON Tf ON ro 
 ^- 00 00 ON 
 
 rf M OO vo 
 
 OO PO t-- CS 
 ON M 
 
 
 
 
 
 
 
 
 M M M 
 
 
 35 
 
 PO O O N 
 
 * oo <N r>~ 
 
 O M M 
 
 VO 00 M Tf 
 
 w 10 O rf 
 <N <N PO ro 
 
 r^ O ro vo 
 
 00 <"O !> M 
 
 fO Tf Tt VO 
 
 ON <N vo OO 
 vo O "^ OO 
 vo vO vO vO 
 
 ro vO ON 
 rO l>. IH vo 
 r^. t^ OO CO 
 
 N VO OO M 
 
 a^i- co PO 
 ON ON O 
 
 $ 
 
 
 
 
 
 
 
 M 
 
 u 
 2 
 
 *o 
 
 O 00 t^ vO 
 PO t^ M vo 
 
 O O M M 
 
 vo Th ro ro 
 ON fO !> M 
 M M W KJ 
 
 <N M O ON 
 vo ON fO vO 
 fO (T> Tj- rj- 
 
 CO t- vO vo 
 
 O Tf 00 IN 
 
 vo vo vo vO 
 
 ^ PO O) M 
 
 vo o n- oo 
 
 vo *> t-- t- 
 
 O ON 00 00 
 PX vo ON PO 
 
 CO 00 00 ON 
 
 
 
 
 
 
 
 
 
 
 w 
 
 _3 
 
 X 
 
 a. 
 
 <! 
 
 VO O *O M 
 
 PO r^ O TJ- 
 O O H M 
 
 M VO M 
 t>- M Tf OO 
 M <N N Ol 
 
 O C) t^ M 
 M vo OO N 
 fO fO rO Tj- 
 
 t^ (N t^ ro 
 vo ON <N NO 
 
 Tt -5J- VO VO 
 
 CO fO OO PO 
 ON PO O O 
 vo vO vO t^- 
 
 00 PO ON rj- 
 PO t^ O ^t- 
 r^ t^- oo oo 
 
 M 
 
 U 
 
 H 
 
 -ic-i 
 
 I-H PO ri- vo 
 PO O ON N 
 O O O M 
 
 O 00 ON O 
 
 VO 00 M VO 
 M M M (M 
 
 M ro Tf ir> 
 00 M rl- r^ 
 <N ro ro ro 
 
 vO 00 ON O 
 O fO O O 
 rt rj- rj- vo 
 
 H PO ^t VO 
 
 PO VO ON W 
 vo vo vo vO 
 
 vO 00 ON O 
 vo 00 M vo 
 
 vo vo t~- r^ 
 
 g 
 
 
 
 
 
 
 
 
 Q 
 
 * 
 
 r- vo w ON 
 
 <N VO CO O 
 M 
 
 t^ if I-" ON 
 
 ro VO ON M 
 
 O fO HI 00 
 
 Tf t^ O <N 
 
 VO PO O 00 
 
 vo CO M ro 
 
 vo w O t^ 
 
 VO ON IN rf 
 
 Th N ON VO 
 t^ O P^ vo 
 
 vo vO vo vO 
 
 
 
 
 
 
 
 
 
 
 t 
 
 CO t~ O * 
 
 d Tj- J>- ON 
 
 0000 
 
 t-. M Tj- OO 
 M Tt VQ 00 
 
 M rf 00 M 
 M ro vo OO 
 M (Nl (N <N 
 
 vo OO vo 
 O N vo r> 
 
 CO ro PO PO 
 
 OO N vo ON 
 
 ON <N Tj- VO 
 PO Tj- <^ Tj- 
 
 w vO ON PO 
 ON M ro VO 
 ^- vo vo vo 
 
 
 
 
 
 
 
 
 
 
 uJ 
 
 O ON Ox 00 
 
 oo t^ i^ NO 
 
 VO 10 VO Tf 
 
 rt ro <T> rO 
 
 (N W M M 
 
 O O ON O- 
 
 
 !- 
 
 o o o o 
 
 8 s M J? ^? 
 
 M M N Ol 
 
 W N (N ro 
 
 PO PO PO PO 
 
 rt- Tf Tf Tf 
 
 
 
 
 
 
 
 
 
 
 4* 
 
 vOtnr--.ro 
 M PO *f vO 
 
 00 ^f ON 10 
 t^ ON O N 
 
 M VO N 00 
 
 t vo r^. 00 
 
 PO ON r|- O 
 O M ro vo 
 
 VO M ^. PO 
 
 VO 00 ON M 
 
 00 Tf ON vo 
 M TJ- vo t-~ 
 
 
 
 
 
 
 
 
 
 
 fi 
 
 M PO vo t^ 
 
 M (N ro <t 
 O O O O 
 
 ON O rf 
 
 o o-8 o^ 
 
 VO f- ON M 
 O w (N Tj- 
 
 CM "t vO 00 
 vo vo r^ CO 
 
 ON H PO Tj- 
 
 QS M N PO 
 
 vo 00 O M 
 ?! vo r^ 00 
 
 
 
 
 
 
 
 
 
 
 Hie 
 
 oo vo PO M 
 
 O M W ro 
 O O O O 
 
 ON t^. vo PO 
 ro rt vo O 
 0000 
 
 O 00 NO * 
 
 S-S^^ $ 
 
 (N ON t^ vo 
 
 O O M <N 
 
 PO M 00 NO 
 PO Tt- Tf vo 
 
 ^- c-i O CO 
 
 VO t^ 00 CO 
 
 
 
 
 
 
 
 
 
 
 * 
 
 rh OO W O 
 
 8O *H M 
 O O O 
 
 O <*i f i-i 
 
 N <M M ff) 
 O 
 
 vo ON PO t^ 
 
 2 ? ? g- 
 
 M vo ON PO 
 vo vo vo vO 
 0000 
 
 vO O "t 00 
 vO l^ t^ * 
 O O 
 
 M NO O 'I" 
 
 " 8 8 s 8 s 
 
 
 
 
 
 
 
 
 
 1 M-l 
 
 x o- 
 
 Sa: 
 
 = 
 g| 
 
 H5**P H * 
 
 HS ( *^ HB ' 
 
 R "** * ^ 
 
 3S Hx 2|2 
 
 *^* 
 
 L ,|so rtoo ,j!o HN 
 
 r- s * 
 
 ^ c 
 
 -: 
 
 
 
 
 
 
 
 (90) 
 
TABLE 41 
 
 NET SECTION IN SQ. IN. OF ONE ANGLE DEDUCTING ONE f" HOLE 
 
 Thickness. 
 
 i 
 
 ft 
 
 f 
 
 ft 
 
 i 
 
 A 
 
 1 
 
 tt 
 
 I 
 
 it 
 
 . I 
 
 if 
 
 I 
 
 Deducted. 
 
 .IQ 
 
 23 
 
 .28 
 
 .33 
 
 .38 
 
 .42 
 
 47 
 
 52 
 
 56 
 
 .61 
 
 .66 
 
 .70 
 
 75 
 
 8x8 
 
 
 
 
 
 7 37 
 
 8 26 
 
 9.14. 
 
 IO OI 
 
 10 88 
 
 1 1.73 
 
 12. 57 
 
 13.42 
 
 14.2 s 
 
 7X^i 
 
 
 
 
 4O7 
 
 A. 62 
 
 517 
 
 r 70 
 
 6 23 
 
 6 7C 
 
 7 26 
 
 7 76 
 
 8 27 
 
 8.?q 
 
 6x6 
 
 . 
 
 
 4.08 
 
 4-73 
 
 5-37 
 
 6.01 
 
 6.64 
 
 7.26 
 
 7.88 
 
 8.48 
 
 9.08 
 
 9.67 
 
 10.25 
 
 6x4 
 
 . . 
 
 
 3-33 
 
 3-85 
 
 4-37 
 
 4.89 
 
 5-39 
 
 5.89 
 
 6.38 
 
 6.86 
 
 7-33 
 
 7 .80 
 
 8.25 
 
 5X3i 
 
 . . 
 
 2-33 
 
 2.77 
 
 3.20 
 
 3-62 
 
 4-05 
 
 4-45 
 
 4.85 
 
 5-25 
 
 5-64 
 
 6.01 
 
 
 
 4x4 
 
 
 2.17 
 
 2.58 
 
 2.98 
 
 3-37 
 
 3.76 
 
 4.14 
 
 4-5 1 
 
 4.88 
 
 5-23 
 
 
 
 
 4 X3 
 
 
 1.86 
 
 2. 2O 
 
 2.54 
 
 2.87 
 
 3.20 
 
 3-5i 
 
 3-82 
 
 4.13 
 
 4.42 
 
 
 
 
 3 X3 
 
 1.25 
 
 i-55 
 
 1.83 
 
 2.10 
 
 2-37 
 
 2.64 
 
 2.89 
 
 
 
 
 
 
 
 3 X2j 
 
 1. 12 
 
 J-39 
 
 1.64 
 
 1.89 
 
 2.12 
 
 2.36 
 
 
 
 
 
 
 
 
 2^X2^ 
 
 I.OO 
 
 1.24 
 
 1-45 
 
 1.6 7 
 
 1.8 7 
 
 
 
 
 
 
 
 
 
 
 2$X2 
 
 .87 
 
 i. 08 
 
 1.27 
 
 1-45 
 
 1.62 
 
 
 
 
 
 
 
 
 
 2 X2 
 
 75 
 
 .92 
 
 1. 08 
 
 1.23 
 
 
 
 
 
 
 
 
 
 
 NET SECTION IN SQ. IN. OF ONE ANGLE DEDUCTING TWO " HOLES 
 
 Thickness. 
 
 \ 
 
 A 
 
 1 
 
 A 
 
 A 
 
 A 
 
 I 
 
 H 
 
 I 
 
 H 
 
 I 
 
 if 
 
 i 
 
 Deducted. 
 
 .38 
 
 47 
 
 .56 
 
 .66 
 
 75 
 
 .84 
 
 94 
 
 1.03 
 
 1-13 
 
 1.22 
 
 1-31 
 
 1.41 
 
 1.50 
 
 8x8 
 
 
 
 
 
 7.00 
 
 7.84 
 
 8.67 
 
 9."\O 
 
 10.31 
 
 II. 12 
 
 I I.Q2 
 
 12.71 
 
 1 3.^0 
 
 7X^1 
 
 
 
 
 3 74 
 
 42 5 
 
 47 - 
 
 523 
 
 572 
 
 6 18 
 
 6 6<: 
 
 71 1 
 
 7.^6 
 
 8 oo 
 
 6x6 
 
 
 
 3-8o 
 
 4.40 
 
 5.00 
 
 5-59 
 
 6.1 7 
 
 6-75 
 
 7-3i 
 
 7.87 
 
 8-43 
 
 8.96 
 
 9-5 
 
 6x4 
 
 . . 
 
 
 3-05 
 
 3-52 
 
 4.OO 
 
 4-47 
 
 4.92 
 
 5.38 
 
 5-8i 
 
 6.25 
 
 6.68 
 
 7.09 
 
 7-5 
 
 5X3i 
 
 
 2.09 
 
 2-49 
 
 2.8 7 
 
 3-25 
 
 3-63 
 
 3-98 
 
 4-34 
 
 4.68 
 
 5-3 
 
 5-36 
 
 
 
 4X4 
 
 
 i-93 
 
 2.30 
 
 2.6 5 
 
 3.00 
 
 3-34 
 
 3-67 
 
 4.00 
 
 4-31 
 
 4.62 
 
 
 
 
 
 4 X3 
 
 . 
 
 1.62 
 
 1.92 
 
 2.21 
 
 2.50 
 
 2.78 
 
 3-4 
 
 3-3 1 
 
 3-56 
 
 3.81 
 
 
 
 
 3 X 3 
 
 1. 06 
 
 i-3i 
 
 J -55 
 
 1.77 
 
 2.OO 
 
 2.22 
 
 2.42 
 
 
 
 
 
 
 
 3 X2i 
 
 93 
 
 "S 
 
 1.36 
 
 I. 5 6 
 
 i-75 
 
 i-94 
 
 
 
 
 
 
 
 
 2^X2^ 
 
 .81 
 
 I.OO 
 
 1.17 
 
 i-34 
 
 1.50 
 
 
 
 
 
 
 
 
 
 2^X2 
 
 .68 
 
 .84 
 
 99 
 
 1. 12 
 
 1.25 
 
 
 
 
 
 
 
 
 
 2 X2 
 
 56 
 
 .68 
 
 .80 
 
 .90 
 
 
 
 
 
 
 
 
 
 
 NET SECTION IN SQ. IN. OF ONE ANGLE DEDUCTING 
 THREE f" HOLES 
 
 Thickness. 1 f 
 
 ft 
 
 \ 
 
 ft 
 
 1 
 
 tt 
 
 I 
 
 if 
 
 I 
 
 if 
 
 I 
 
 Deducted. 
 
 .84 
 
 .98 
 
 1-13 
 
 1.27 
 
 1.41 
 
 1.55 
 
 1.69 
 
 1.83 
 
 1.97 
 
 2.12 
 
 2.25 
 
 8x8 
 6x6 
 
 3-52 
 
 4.08 
 
 6.62 
 4.62 
 
 7.41 
 5.16 
 
 8.20 
 
 5-70 
 
 8.98 
 6.23 
 
 9-75 
 6-75 
 
 10.51 
 7.26 
 
 11.26 
 
 7-77 
 
 12.01 
 
 8.26 
 
 I2 -75 
 8-75 
 
 (90 
 
TABLE 42 
 
 NET SECTION IN SQ. IN. OF ONE ANGLE DEDUCTING ONE 
 
 HOLE 
 
 THICKNESS. 
 
 | 
 
 A 
 
 I 
 
 5 
 
 i 
 
 A 
 
 1 
 
 H 
 
 I 
 
 it 
 
 1 
 
 H 
 
 i 
 
 DEDUCTED. 
 
 .22 
 
 .27 
 
 33 
 
 .38 
 
 44 
 
 .49 
 
 55 
 
 .60 
 
 .66 
 
 71 
 
 77 
 
 .82 
 
 .88 
 
 8x8 
 
 
 
 
 
 7 31 
 
 8 in 
 
 9 06 
 
 Q Q-2 
 
 10 78 
 
 1 1 63 
 
 12 46 
 
 i ^ 30 
 
 14 I 2 
 
 7X3? 
 
 
 
 
 4.02 
 
 4-5 6 
 
 5.10 
 
 5-62 
 
 6.1 5 
 
 6.65 
 
 7.16 
 
 7.65 
 
 8.15 
 
 8.62 
 
 6x6 
 
 . . 
 
 
 4-03 
 
 4.68 
 
 5-31 
 
 5-94 
 
 6.56 
 
 7 .l8 
 
 7.78 
 
 8.38 
 
 8. 97 
 
 9-55 
 
 10.12 
 
 6x4 
 
 
 
 3.28 
 
 3.80 
 
 4-3 1 
 
 4.82 
 
 5-3 1 
 
 5 .8l 
 
 6.28 
 
 6.76 
 
 7.22 
 
 7.68 
 
 8.12 
 
 5*3l 
 
 
 2.29 
 
 2.72 
 
 3- J 5 
 
 3.56 
 
 3-98 
 
 4-37 
 
 4-77 
 
 5-i5 
 
 5-54 
 
 5-9 
 
 
 
 4x4 
 
 
 
 2.13 
 
 2-53 
 
 2 -93 
 
 3-3i 
 
 3-69 
 
 4.06 
 
 4-43 
 
 4.78 
 
 5-i3 
 
 
 
 
 4 X3 
 
 
 1.82 
 
 2.15 
 
 2.49 
 
 2.81 
 
 3-i3 
 
 3-43 
 
 3-74 
 
 4-03 
 
 4-32 
 
 
 
 
 3 X3 
 
 1.22 
 
 I-5 1 
 
 1.78 
 
 2.05 
 
 2.31 
 
 2-57 
 
 2.81 
 
 
 
 
 
 
 
 3 X2j 
 
 1.0 9 
 
 !-.35 
 
 I -S9 
 
 1.84 
 
 2.06 
 
 2.29 
 
 
 
 
 
 
 
 
 2^X2^ 
 
 97 
 
 1.20 
 
 1-40 
 
 1.62 
 
 1.81 
 
 
 
 
 
 
 
 
 
 2jX2 
 
 .84 
 
 I.O4 
 
 1.22 
 
 1.40 
 
 1.56 
 
 
 
 
 
 
 
 
 
 2 X2 
 
 .72 
 
 .88 
 
 1.0 3 
 
 1.18 
 
 
 
 
 
 
 
 
 
 
 NET SECTION IN SQ. IN. OF ONE ANGLE DEDUCTING TWO \" HOLES 
 
 THICKNESS. 
 
 \ 
 
 A 
 
 f 
 
 A 
 
 i 
 
 & 
 
 1 
 
 H 
 
 I 
 
 if 
 
 1 , 
 
 it 
 
 i 
 
 DEDUCTED. 
 
 .44 
 
 55 
 
 .66 
 
 77 
 
 .88 
 
 .98 
 
 1.09 
 
 1.20 
 
 I-3I 
 
 1.42 
 
 1-53 
 
 1.64 
 
 1-75 
 
 8x8 
 
 
 
 
 . . 
 
 6.87 
 
 7.70 
 
 8.52 
 
 9-33 
 
 10.13 
 
 10.92 
 
 11.70 
 
 12.48 
 
 13-25 
 
 7X3i 
 
 
 
 
 3-63 
 
 4.12 
 
 4.6l 
 
 5.08 
 
 5-55 
 
 6.00 
 
 6-45 
 
 6.89 
 
 7-33 
 
 7-75 
 
 6x6 
 
 
 
 3-7 
 
 4.29 
 
 4.87 
 
 5-45 
 
 6.02 
 
 6.58 
 
 7-!3 
 
 7.67 
 
 8.21 
 
 8-73 
 
 9- 2 5 
 
 6x4 
 
 
 
 2-95 
 
 3-4i 
 
 3-87 
 
 4-33 
 
 4-77 
 
 5-21 
 
 5-63 
 
 6.05 
 
 6.46 
 
 6.86 
 
 7-25 
 
 5X3i 
 
 . . 
 
 2.01 
 
 2-39 
 
 2.76 
 
 3.12 
 
 3-49 
 
 3-83 
 
 4.17 
 
 4-5 
 
 4-83 
 
 5-i4 
 
 
 
 4X4 
 
 
 
 1.85 
 
 2.20 
 
 2-54 
 
 2.87 
 
 3.20 
 
 3-52 
 
 3-83 
 
 4-13 
 
 4.42 
 
 
 
 
 4 X 3 
 
 . 
 
 i-54 
 
 1.82 
 
 2.10 
 
 2-37 
 
 2.64 
 
 2.89 
 
 3-14 
 
 3-38 
 
 3.61 
 
 
 
 
 3 X3 
 
 I.OO 
 
 1.23 
 
 1-45 
 
 1.66 
 
 1.87 
 
 2.08 
 
 2.27 
 
 
 
 
 
 
 
 3 X2i 
 
 .87 
 
 1.07 
 
 1.26 
 
 i-45 
 
 1.62 
 
 i. 80 
 
 
 
 
 
 
 
 
 2jX2^ 
 
 75 
 
 .92 
 
 1.07 
 
 1.23 
 
 i-37 
 
 
 
 
 
 
 
 
 
 2^X2 
 
 .62 
 
 .76 
 
 .89 
 
 I.OI 
 
 1. 12 
 
 
 
 
 
 
 
 
 
 2 X2 
 
 5 
 
 .60 
 
 .70 
 
 79 
 
 
 
 
 
 
 
 
 
 
 NET SECTION IN SQ. IN. OF ONE ANGLE DEDUCTING THREE |" HOLES 
 
 THICKNESS. 
 
 f 
 
 A 
 
 | 
 
 s 
 
 | 
 
 i* 
 
 t 
 
 if 
 
 i 
 
 if 
 
 i 
 
 DEDUCTED. 
 
 .98 
 
 i.iS 
 
 I-3I 
 
 1.48 
 
 1.64 
 
 i. 80 
 
 1.97 
 
 2.13 
 
 2.30 
 
 2.46 
 
 2.63 
 
 8x8 
 6x6 
 
 3-38 
 
 3-9 1 
 
 6-44 
 4-44 
 
 7.20 
 
 4-95 
 
 7-97 
 5-47 
 
 8-73 
 5-98 
 
 9-47 
 6.47 
 
 10.21 
 6.96 
 
 10.93 
 
 7-44 
 
 11.66 
 7.91 
 
 12.37 
 8-37 
 
 (92) 
 
TABLE 43 
 
 NET SECTION IN SQ. IN. OF ONE ANGLE DEDUCTING ONE 1" HOLE 
 
 Thickness 
 
 \ 
 
 A 
 
 * 
 
 A 
 
 I 
 
 A 
 
 1 
 
 tt 
 
 | 
 
 H 
 
 1 
 
 if 
 
 i 
 
 Deducted. 
 
 25 
 
 31 
 
 38 
 
 44 
 
 50 
 
 56 
 
 .63 
 
 .69 
 
 75 
 
 .81 
 
 .88 
 
 94 
 
 1. 00 
 
 8x8 
 
 
 
 
 
 72^ 
 
 8 12 
 
 898 
 
 o 8d 
 
 10 69 
 
 ii ^ 3 
 
 12 1Z 
 
 ii 18 
 
 14 OO 
 
 7x3* 
 
 
 
 
 3-9 6 
 
 4-5 
 
 5-03 
 
 5-54 
 
 6.06 
 
 6.56 
 
 7.06 
 
 7-54 
 
 8.03 
 
 8.50 
 
 6x6 
 
 
 
 3-98 
 
 4.62 
 
 5-25 
 
 5.87 
 
 6.48 
 
 7.09 
 
 7.69 
 
 8.28 
 
 8.86 
 
 9-43 
 
 IO.OO 
 
 6x4 
 
 . . 
 
 
 3-23 
 
 3-74 
 
 4.25 
 
 4-75 
 
 5-23 
 
 5-72 
 
 6.19 
 
 6.66 
 
 7.11 
 
 7-56 
 
 8.00 
 
 5X3i 
 
 . . 
 
 2.25 
 
 2.67 
 
 3-9 
 
 3-5 
 
 3-9 1 
 
 4.29 
 
 4.68 
 
 5.06 
 
 5-44 
 
 5-79 
 
 
 
 4x4 
 
 
 2.09 
 
 2.48 
 
 2.87 
 
 3-25 
 
 3.62 
 
 3-98 
 
 4-34 
 
 4.69 
 
 5-03 
 
 
 
 
 4 X 3 
 
 . . 
 
 1.78 
 
 2.10 
 
 2.43 
 
 2-75 
 
 3-o6 
 
 3-35 
 
 3-65 
 
 3-94 
 
 4.22 
 
 
 
 
 3 X3 
 
 I.I 9 
 
 1.47 
 
 J-73 
 
 1.99 
 
 2.25 
 
 2.50 
 
 2-73 
 
 
 
 
 
 
 
 3 X2| 
 
 1. 06 
 
 i-3* 
 
 i-54 
 
 1.78 
 
 2.00 
 
 2.22 
 
 
 
 
 
 
 
 
 2*X2i 
 
 94 
 
 1.16 
 
 i-35 
 
 1.56 
 
 i-75 
 
 
 
 
 
 
 
 
 
 2^X2 
 
 .81 
 
 1. 00 
 
 1.17 
 
 1-34 
 
 1.50 
 
 
 
 
 
 
 
 
 
 2 X2 
 
 .69 
 
 .84 
 
 .98 
 
 1. 12 
 
 
 
 
 
 
 
 
 
 
 NET SECTION IN SQ. IN. OP ONE ANGLE DEDUCTING TWO 1" HOLES 
 
 Thickness 
 
 1 
 4 
 
 -h 
 
 1 
 
 A 
 
 i 
 
 & 
 
 1 
 
 H 
 
 t 
 
 H 
 
 7 
 5 
 
 if 
 
 i 
 
 Deducted. 
 
 50 
 
 .63 
 
 75 
 
 .88 
 
 1. 00 
 
 1.13 
 
 1.25 
 
 1.38 
 
 1.50 
 
 1.63 
 
 i-75 
 
 1.88 
 
 2.00 
 
 8x8 
 
 
 
 
 
 6.7q 
 
 7.CC 
 
 8 16 
 
 91 r 
 
 Q Qd. 
 
 IO 71 
 
 ii 48 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7X^i 
 
 
 
 
 j C2 
 
 A OO 
 
 4 d6 
 
 A. O2 
 
 e 77 
 
 s 81 
 
 
 6 67 
 
 
 
 
 
 
 
 
 
 
 
 
 D- 
 
 
 
 fMf 
 
 o u 
 
 6x6 
 
 
 . . 
 
 3.61 
 
 4.l8 
 
 4.75 
 
 5-3 
 
 5-86 
 
 6.40 
 
 6.94 
 
 7.46 
 
 7-99 
 
 8-49 
 
 9.00 
 
 6x4 
 
 
 
 2.86 
 
 3-3 
 
 3-75 
 
 4.18 
 
 4.61 
 
 5-5 
 
 5-44 
 
 5-84 
 
 6.24 
 
 6.62 
 
 7.00 
 
 5X3i 
 
 . . 
 
 !-93 
 
 2.30 
 
 2-65 
 
 3.00 
 
 3-34 
 
 3-67 
 
 3-99 
 
 4-3 1 
 
 4.62 
 
 4.92 
 
 
 
 4x4 
 
 
 
 1.77 
 
 2. II 
 
 2-43 
 
 2-75 
 
 3-05 
 
 3-36 
 
 3-65 
 
 3-94 
 
 4.21 
 
 
 
 
 4 X3 
 
 . 
 
 1.46 
 
 i-73 
 
 1.99 
 
 2.25 
 
 2.49 
 
 2-73 
 
 2.96 
 
 3-19 
 
 3-40 
 
 
 
 
 
 3 X 3 
 
 94 
 
 "S 
 
 1.36 
 
 i-55 
 
 i-75 
 
 J-93 
 
 2. II 
 
 
 
 
 
 
 
 3 X2j 
 
 .81 
 
 99 
 
 1.17 
 
 i-34 
 
 1.50 
 
 1.65 
 
 
 
 
 
 
 
 
 2$X2i 
 
 .69 
 
 .84 
 
 .98 
 
 1. 12 
 
 1.25 
 
 
 
 
 
 
 
 
 
 2jX2 
 
 56 
 
 .68 
 
 .80 
 
 .90 
 
 I.OO 
 
 
 
 
 
 
 
 
 
 2 X2 
 
 44 
 
 5 2 
 
 .61 
 
 .68 
 
 
 
 
 
 
 
 
 
 
 NET SECTION IN SQ. IN. OF ONE ANGLE DEDUCTING THREE 1" HOLES 
 
 Thickness 
 
 1 
 
 ik 
 
 i 
 
 & 
 
 1 
 
 H 
 
 I 
 
 if 
 
 1 
 
 if 
 
 I 
 
 Deducted. 
 
 1-13 
 
 i-3i 
 
 1.50 
 
 1.69 
 
 1.88 
 
 2.06 
 
 2.25 
 
 2.44 
 
 2.6 3 
 
 2.81 
 
 3.00 
 
 8x8 
 
 
 
 6 2S 
 
 6 OQ 
 
 771 
 
 8 47 
 
 
 
 
 
 
 6x6 
 
 3-23 
 
 3-75 
 
 4-25 
 
 4-74 
 
 1 6 
 5-23 
 
 5-72 
 
 *v 
 
 6.19 
 
 y.yu 
 6.65 
 
 7-II 
 
 11.31 
 
 7.56 
 
 8.00 
 
 (93) 
 
m 
 
 w 
 
 CO o 
 
 M a 
 
 ' 
 I 
 
 *HH 
 
 
 POTj-rtvOONON O O M t^ 
 
 t-*iofooo loioiovo fOTf^o ^ONOON 
 
 
 5: 5 ^% Sj gj ^ ^p 
 
 SM^M"^? 2"^MM 2^ ^ *> "> 
 
 I] . 
 
 39 
 
 tooooo oooo 
 ooooo oooo 
 
 8 ooo oooo ooo ooo 
 ooo oooo ooo ooo 
 
 t~N.(N\OO MvoeqrooOOvo ^-NOOO 
 
 
 
 
 
 OONO"3-roONOO ^NMO 
 
 ON OO t^* *> IO l^i ^O ^ rO f^O fO CN) H rt 
 
 
 <N M t-- 
 
 M vo oo -<t 
 
 t 
 
 vd--~i^' r^--- 
 
 ro-"- n--- M-- M~~ 
 
 ^ 
 
 H W rj 
 
 8 8 8 
 
 8888 
 
 P 
 
 IO T}~ CN 
 
 ^ ^r ^a M" 
 
 Q 
 
 O O O 
 
 ro cq M 
 
 SHIOfJ HO 
 
 
 
 HHXHWVIQ 
 
 
 
 XHAI^ HO 
 
 
 
 MHXHWVIQ 
 
 
 
 . 'XHOIH^ 
 
 ioomoiOM oiooio 
 
 10OIOM lOrOOOO OI>1O I^Tt<S 
 
 < 
 
 
 
 pg 
 
 (!.> O-^-. 
 
 
 
 
 
 
 to \0 t-CO M H N ro -t w 
 
 10VONO CN^OONt-OfOt-OO^rt 
 
 Z c/2 
 
 ^^^NS lo ^5^^^ 
 
 HOO QNOOOOi>-OOt^t^t^.\OiOiOiO 
 
 
 
 
 b 
 O 
 
 | 
 
 Joooo ooooo 
 oooo ooooo 
 
 M 10 OO <N vooO rooo fOOO 
 
 Joo oooo oooooooo 
 OO OOOO OOOOOOOO 
 fOt^oOr^-vOON rOMONTJ-T^-MOOON 
 
 MHO ONONOOOO OOOOOOt^-NONOiOtO 
 
 << 
 
 
 
 > 
 
 OfOoO<^0 10 to 10 TJ- 
 
 VOIO<N <N^-t-XOt-.MXOtOrtOOWM 
 
 w ,_, 
 
 
 MOO OOt^t^*O \OtOVOtOTrrJ-cOfO 
 
 ~. 
 
 Os .0 
 
 TT > to 10 
 
 J 
 o 
 
 M M 
 
 M" M CN ^- 
 
 ffi 
 
 o 
 
 8Q 
 o 
 
 8888 
 
 Q\ s. N. M -^ %. >+ t^- s* S. - ^t* % >* N* 
 
 
 
 H 
 
 M---- &*'*'*'* 
 8 M^ 
 
 10 cs O OO 
 
 5 
 | 
 
 ro ro 
 
 Tt* M l/> O 
 
 Q 
 
 M M 
 
 M M 
 
 SH-IOH * 
 
 
 
 HHXHWIVIQ 
 
 
 
 XHAI>I HO 
 
 
 
 aHxawviQ 
 
 
 
 J. 
 
 OIOO1OO OtOOlOO 
 OOOOOOO OOvOvOOOO 
 
 M M 
 
 moio omoio looiooiootoN 
 
 
 ^- O . 
 
 00 10 
 
 qjdaa 
 
 rt 5 * * 5 (S,---- 
 
 M M 
 
 (94) 
 
TABLE 45 
 
 NET VALUES OF CHANNELS. ABOUT AXIS BB 
 
 Deducting one hole in top flange and one hole in bottom flange, using 
 standard gauge and maximum size rivet 
 
 CHANNEL. 
 
 li 
 
 s. 
 
 DEDUCT FOR HOLES. 
 
 NET VALUBS OF CHANNEL 
 
 Depth. 
 
 Weight. 
 
 I 
 
 C 
 
 s 
 
 I 
 
 C 
 
 S 
 
 15 
 
 55 
 
 1 
 
 I 
 
 56.6 
 
 80400 
 
 7-5 
 
 373-6 
 
 53 I 5 
 
 49-9 
 
 M 
 
 50 
 
 " 
 
 " 
 
 " 
 
 " 
 
 " 
 
 346.1 
 
 492300 
 
 46.2 
 
 " 
 
 45 
 
 11 
 
 " 
 
 H 
 
 " 
 
 " 
 
 3 l8 -5 
 
 453100 
 
 42-5 
 
 " 
 
 40 
 
 " 
 
 M 
 
 59.1 
 
 84100 
 
 7-9 
 
 288.4 
 
 410100 
 
 38.4 
 
 II 
 
 35 
 
 " 
 
 " 
 
 " 
 
 " 
 
 " 
 
 260.9 
 
 370900 
 
 34-8 
 
 " 
 
 33 
 
 " 
 
 " 
 
 n 
 
 " 
 
 " 
 
 253-5 
 
 360400 
 
 33-8 
 
 12 
 
 40 
 
 I 
 
 
 
 27-3 
 
 48500 
 
 4-5 
 
 169.7 
 
 301700 
 
 28.3 
 
 M 
 
 35 
 
 " 
 
 " 
 
 " 
 
 M 
 
 " 
 
 152.0 
 
 270300 
 
 25-4 
 
 " 
 
 30 
 
 " 
 
 " 
 
 " 
 
 " 
 
 11 
 
 134-4 
 
 238900 
 
 22.4 
 
 " 
 
 25 
 
 " 
 
 u 
 
 " 
 
 " 
 
 " 
 
 116.7 
 
 207600 
 
 19.5 
 
 " 
 
 20.50 
 
 u 
 
 " 
 
 " 
 
 " 
 
 u 
 
 100.8 
 
 179300 
 
 16.9 
 
 10 
 
 25 
 
 f 
 
 I 
 
 15.2 
 
 32400 
 
 3-o 
 
 75-8 
 
 161700 
 
 15.2 
 
 " 
 
 20 
 
 " 
 
 " 
 
 17.5 
 
 37300 
 
 3-5 
 
 61.2 
 
 130700 
 
 12.2 
 
 " 
 
 15 
 
 " 
 
 " 
 
 " 
 
 u 
 
 " 
 
 49-4 
 
 105400 
 
 9-9 
 
 9 
 
 20 
 
 f 
 
 1 
 
 12.2 
 
 28900 
 
 2 -7 
 
 48.6 
 
 115200 
 
 10.8 
 
 " 
 
 15 
 
 " 
 
 " 
 
 I3.I 
 
 31100 
 
 2.9 
 
 37-8 
 
 89400 
 
 8.4 
 
 " 
 
 I3-25 
 
 " 
 
 M 
 
 M 
 
 " 
 
 " . 
 
 34-2 
 
 81100 
 
 7-6 
 
 8 
 
 16.25 
 
 f 
 
 1 
 
 9-5 
 
 25400 
 
 2.4 
 
 30-4 
 
 81000 
 
 7-6 
 
 " 
 
 13-75 
 
 " 
 
 " 
 
 " 
 
 " 
 
 " 
 
 26.5 
 
 70600 
 
 6.6 
 
 " 
 
 11.25 
 
 " 
 
 " 
 
 M 
 
 " 
 
 " 
 
 22.8 
 
 60700 
 
 5-7 
 
 7 
 
 14-75 
 
 f 
 
 f 
 
 5-7 
 
 17400 
 
 1.6 
 
 21.5 
 
 65400 
 
 6.2 
 
 M 
 
 12.25 
 
 " 
 
 " 
 
 " 
 
 " 
 
 " 
 
 I8. 5 
 
 56300 
 
 5-3 
 
 " 
 
 9-75 
 
 " 
 
 " 
 
 u 
 
 " 
 
 M 
 
 15-4 
 
 49400 
 
 4-4 
 
 6 
 
 13 
 
 f 
 
 f 
 
 4.1 
 
 14700 
 
 i-4 
 
 13.2 
 
 46900 
 
 4-4 
 
 " 
 
 10.50 
 
 " 
 
 " 
 
 M 
 
 " 
 
 " 
 
 n.o 39100 
 
 3-6 
 
 " 
 
 8 
 
 " 
 
 " 
 
 " 
 
 " 
 
 u 
 
 8.9 3 I 5 
 
 2.9 
 
 
 
 
 
 
 
 
 
 
 (95) 
 
Q \ 
 
 TABLE 46 
 
 NET VALUES OF COVER PLATES 
 
 About axis BB. The value of d is such that the plates may 
 be used as cover plates for beams and channels 
 
 l 
 
 J 
 
 LMETER 
 
 RIVET. 1 
 
 LMETER I 
 
 HOLES. I 
 
 NET 
 
 AREA 
 
 OF 
 
 NET 
 VALUE 
 
 OF 
 
 M 
 
 w H 
 
 LMETER 1 
 
 RIVET. I 
 
 LMETER 1 
 
 HOLES. 1 
 
 AREA 
 
 OF 
 
 NET 
 
 VALUE 
 
 OF 
 
 
 CflPM 
 
 Q 
 
 P 
 
 PLATES. 
 
 PLATES. 
 
 I 
 
 
 
 C/20H 
 
 <q 
 
 Q 
 
 PLATES. 
 
 PLATES. 
 I 
 
 24 
 
 8xi 
 
 "7 
 
 I 
 
 14.00 
 
 2188.7 
 
 15 
 
 8xi 
 
 1 
 
 7 
 
 14.25 
 
 913.2 
 
 " 
 
 8x1 
 
 " 
 
 (4 
 
 12.25 
 
 1895.8 
 
 M 
 
 8x| 
 
 " 
 
 " 
 
 12.47 
 
 786.4 
 
 " 
 
 8x| 
 
 " 
 
 " 
 
 10.50 
 
 1608.4 
 
 " 
 
 8xj 
 
 (4 
 
 " 
 
 10.69 
 
 663.3 
 
 " 
 
 8x| 
 
 
 
 " 
 
 8-75 
 
 1326.8 
 
 " 
 
 8xf 
 
 (4 
 
 (4 
 
 8.91 
 
 543-9 
 
 " 
 
 8x 
 
 " 
 
 (4 
 
 7.00 
 
 1050.6 
 
 u 
 
 8x 
 
 " 
 
 " 
 
 7.13 
 
 428.1 
 
 
 
 
 
 
 
 " 
 
 8x| 
 
 " 
 
 (4 
 
 5-34 
 
 3I5-9 
 
 24 
 
 7x1 
 
 i 
 
 I 
 
 12.00 
 
 1876.0 
 
 
 
 
 
 
 
 " 
 
 7X1 
 
 
 " 
 
 10.50 
 
 1624.9 
 
 15 
 
 6xi 
 
 f 
 
 1 
 
 10.25 
 
 656.8 
 
 " 
 
 7 X I 
 
 14 
 
 (4 
 
 9-00 
 
 1378.6 
 
 " 
 
 6x1 
 
 " 
 
 " 
 
 8.97 
 
 565-6 
 
 " 
 
 7 x f 
 
 (4 
 
 " 
 
 7-50 
 
 1137.2 
 
 " 
 
 6xf 
 
 " 
 
 " 
 
 7.69 
 
 477-i 
 
 " 
 
 7X| 
 
 " 
 
 " 
 
 6.00 
 
 900.5 
 
 
 
 6xf 
 
 u 
 
 " 
 
 6.41 
 
 391.2 
 
 
 
 
 
 
 
 " 
 
 6x^ 
 
 u 
 
 " 
 
 5- I 3 
 
 307-9 
 
 20 
 
 8xi 
 
 1 
 
 I 
 
 14.00 
 
 1544.7 
 
 " 
 
 6x| 
 
 " 
 
 " 
 
 3-84 
 
 227.2 
 
 " 
 
 8x1 
 
 " 
 
 " 
 
 12.25 
 
 1335-3 
 
 
 
 
 
 
 
 " 
 
 8x| 
 
 " 
 
 " 
 
 10.50 
 
 1130.7 
 
 12 
 
 8X| 
 
 f 
 
 1 
 
 10.69 
 
 434-8 
 
 " 
 
 8xf 
 
 " 
 
 14 
 
 8-75 
 
 930.8 
 
 " 
 
 8x| 
 
 " 
 
 " 
 
 8.91 
 
 355-2 
 
 " 
 
 8x^ 
 
 " 
 
 " 
 
 7.00 
 
 735-6 
 
 " 
 
 8xi 
 
 " 
 
 " 
 
 7.13 
 
 278-5 
 
 
 
 
 
 
 
 " 
 
 8xf 
 
 * 
 
 (4 
 
 5-34 
 
 204.6 
 
 20 
 
 6xi 
 
 1 
 
 I 
 
 IO.OO 
 
 1103-3 
 
 " 
 
 8x1 
 
 " 
 
 " 
 
 3.56 
 
 J33-7 
 
 
 
 6x1 
 
 M 
 
 " 
 
 8.75 
 
 953-8 
 
 
 
 
 
 
 
 " 
 
 6x| 
 
 " 
 
 it 
 
 7.50 
 
 807.6 
 
 12 
 
 6xf 
 
 f 
 
 1 
 
 7.69 
 
 312.8 
 
 
 
 6xf 
 
 
 
 U 
 
 6.25 
 
 664.9 
 
 " 
 
 6x| 
 
 " 
 
 " 
 
 6.41 
 
 255-5 
 
 " 
 
 6x^ 
 
 " 
 
 " 
 
 5.00 
 
 525-4 
 
 u 
 
 6x 
 
 " 
 
 " 
 
 5- J 3 
 
 200.3 
 
 
 
 
 
 
 
 11 
 
 6x| 
 
 11 
 
 11 
 
 3-84 
 
 147.2 
 
 18 
 
 8xi 
 
 1 
 
 I 
 
 14.00 
 
 1264.7 
 
 " 
 
 6x1 
 
 u 
 
 " 
 
 2.56 
 
 96.1 
 
 " 
 
 8x| 
 
 " 
 
 11 
 
 12.25 
 
 1091.8 
 
 
 
 
 
 
 
 " 
 
 8xf 
 
 " 
 
 11 
 
 10.50 
 
 923-3 
 
 10 
 
 6x| 
 
 f 
 
 1 
 
 6.41 
 
 181.0 
 
 M 
 
 8x| 
 
 " 
 
 " 
 
 8.75 
 
 759- 1 
 
 (4 
 
 6xJ 
 
 u 
 
 " 
 
 5.13 
 
 141.4 
 
 " 
 
 8xJ 
 
 " 
 
 u 
 
 7.00 
 
 599- 1 
 
 " 
 
 6x| 
 
 (I 
 
 M 
 
 3-84 
 
 103-5 
 
 
 
 
 
 
 
 
 
 6X1 
 
 " 
 
 " 
 
 2.56 
 
 67-3 
 
 18 
 
 6xi 
 
 1 
 
 I 
 
 IO.OO 
 
 903-3 
 
 
 
 
 
 
 
 " 
 
 6x1 
 
 " 
 
 11 
 
 8.75 
 
 779-9 
 
 9 
 
 6x| 
 
 f 
 
 1 
 
 6.41 
 
 148.6 
 
 " 
 
 6xf 
 
 " 
 
 " 
 
 7.50 
 
 659-5 
 
 " 
 
 6x 
 
 " 
 
 (4 
 
 5.13 
 
 II5-7 
 
 " 
 
 6x| 
 
 " 
 
 " 
 
 6.25 
 
 542-2 
 
 " 
 
 6x| 
 
 " 
 
 " 
 
 3-84 
 
 84-5 
 
 " 
 
 6x1 
 
 " 
 
 
 5.00 
 
 427.9 
 
 " 
 
 6x1 
 
 
 
 2.56 
 
 54-8 
 
 (96) 
 
PLATE GIRDERS 
 
 GRAPHIC IN DESIGN OF PLATE GIRDERS 
 
 Uniform loading. The equation for bending moment in inch-pounds for uniform 
 loading is, 
 
 (a) B = -wD - 6 wx*,* 
 where B bending moment in inch-pounds, 
 
 w = load in pounds per lineal foot of girder, including weight of girder, 
 
 L span in feet, 
 
 x = distance in feet of section of moments from center of girder. 
 
 A J 
 
 Equation (a) is a parabola and represents a curve of the form RAS, Fig. i. Such 
 a curve may be made the basis of graphical design, if vertical distances from the curve 
 to the line RS represent bending moments for that point in the span. 
 
 The equation for moment of resistance is, 
 
 (6) M r = ^, 
 
 where Mr = moment of resistance, 
 
 R = safe extreme fiber stress in pounds per sq. in., 
 7 = moment of inertia, 
 e = distance in inches of extreme fiber from neutral axis. 
 
 * Equation (a) is usually written 
 
 Where B~=. bending moment in foot-pounds. 
 
 The values of the other terms are the same as in equation (a) . Reducing the bending moment to inch- 
 pounds by multiplying equation (a') by 12 gives equation (a). 
 
 Where the value of *=o at the center of the span, equation (a') becomes B = W , or reducing this 
 value to inch-pounds, B = f wL 2 . 
 
 (97) 
 
PLATE GIRDERS 
 
 From equation (V), R and e being constants, / varies directly as M r - It is then at 
 once possible from a moment diagram such as Fig. i exhibits to scale the values of I 
 by changing the scale of the figure by the proper ratio of multiplication. 
 
 To make an application of the above to a particular loading and span, plot a curve 
 similar to RAS, Fig. i, to any convenient scale, using the following values which are 
 computed for a typical parabola. 
 Let L 24 feet, w = 20,000 pounds, 
 
 then for x= o, B = 17,280,000 
 
 x= i, 5 = 17,160,000 
 
 2, 16,800,000 
 
 3, 16,200,000 
 
 4, 15,360,000 
 
 5> 14,280,000 
 
 6, 12,960,000 
 
 11,400,000 
 9,600,000 
 7.560,000 
 
 5,2oO,000 
 
 II, 2 760,000 
 
PLATE GIRDERS 
 
 Compute the moment at the center of the span from equation (a) which for this 
 point reduces to B = -| wl?. Conditions of design will give the depth of girder from 
 
 which the value of e is obtained, whence / = ~ may be computed. 
 
 K 
 
 The curve, in connection with the tables for plate girders may now be made the 
 basis of further determinations as follows, see Fig. 2. Draw the radial line xx repre- 
 senting I above determined, to a convenient scale. In a similar manner draw yy to rep- 
 resent half the span to a convenient scale. Proceed as in the following case in which the 
 required moment of inertia at the center of the girder is 97,000, and the span 480 inches. 
 
 Uniform Loading 
 
 (i) Assume that no part of the web acts as flange, and a girder depth of 60 J 
 inches back to back of flange angles. From table No. 49 the value of four 8 X 8 X f 
 angles, 6oJ inches back to back, is 31,384, which leaves 65,616 to be provided for in 
 cover plates. From table No. 51 for two 20-inch cover plates on angles 6oJ inches 
 back to back, the nearest value is 65,677 for two i| inch plates. This can be made 
 up of six 20 X f-inch plates, three on top and three on bottom. From the same table 
 the value of two 20 X f-inch plates is 21,017,* and two 20 X i^-inch plates is 42,903^ 
 
 Fig. 3- 
 
 * It is seen from the tables that the value of two plates ij inches thick is greater than twice the value of 
 two f-inch plates with the same distance back to back, since the value of e is greater for the thicker plates; 
 the values should therefore be taken as the value of two plates of the total thickness of each flange plate. 
 
 (99) 
 
PLATE GIRDERS 
 
 Represent these values to scale on the line xx and draw lines parallel to RS until they 
 intersect the curve RAS. From these points of intersection draw vertical lines to 
 intersect yy, from which the length of the cover plates may be scaled. The cover 
 plates shown in the figures are allowed to extend beyond this point 18 inches. This 
 distance is an arbitrary figure, and will depend on the distance required to develop 
 the plate, and the inclination of the curve. The web plate and stiffener angles are not 
 considered in this example, as the tables give values for flanges only. The required 
 girder is therefore made up of four angles, 8 X 8 X f , 6o inches back to back, and 
 six cover plates, 20 X f inches as flanges. 
 
 (2) Assume the same conditions as in example (i), except that J of the 60 X f 
 inch web plate is considered as flange. See Fig. 3. From table No. 47, the value 
 of a 60 X inch plate with 8X8 inch flange angles is 8801; the value of four 8 X 8 X J 
 inch flange angles 60 J inches back to back is 31,384; as given in example (i), the re- 
 
 Fig. 4- 
 
 mainder of 56,460 is made up of cover plates in the same manner as in example (i). 
 Lines are drawn from xx to " CL of Girder " parallel to RS', from this line all lines 
 parallel to the line representing the value of the web until they intersect the curve 
 RAS; the remainder of the operation is the same as in example (i). 
 
 (100) 
 
PLATE GIRDERS 
 
 Concentrated Loading 
 
 (3) Assume a girder of 480 inches span, supporting two concentrated loads, re- 
 quiring a moment of inertia shown in Fig. 4 and bounded by the lines RBS. The 
 uniform load diagram is bounded by the lines RCS. Combining these diagrams by 
 adding the ordinates, for example, AD = CD + BD, the diagram RAS is obtained. 
 By laying off to scale on a vertical line 57" the values of flange angles and cover 
 plates and drawing lines parallel to RDS, the length of the cover plates is deter- 
 mined as shown in the figure. 
 
 RESISTANCE OF WEB PLATE TO BENDING STRESS 
 
 B 
 
 Fig. 5- 
 
 The general formula for moment of resistance is M r = RI -f- e. This equation 
 becomes M r = RAh+6foT the rectangle shown ; where h = depth of web in inches 
 and A = area of section in square inches = bh. Therefore the resistance of a web 
 plate to bending is equivalent to a flange of ^ of the area of the web concentrated at 
 each edge of the web plate. 
 
 If it be assumed that an equivalent to \ of the web be cut away for rivets, the equa- 
 tion takes the form M r = RAh-~ 8, or its resistance is equivalent to a flange of J of 
 the area of the web concentrated at each edge of the web plate. 
 
 The assumption is made in the discussion above that there is no shearing stress 
 in the web, and hence is only applicable at the center of plate girders carrying uniform 
 loads where the web plate is fully spliced. 
 
 The following table, giving moment of inertia of web plates, is based on of the 
 area of the web plate as effective flange at the center of gravity of each pair of flange 
 angles. 
 
 (101) 
 
-f 
 
 TABLE 47 
 
 a 
 
 MOMENT OF INERTIA OF ONE WEB PLATE FOR PLATE GIRDERS 
 
 ABOUT AXIS BB 
 
 | of area of web considered as effective flange at center of gravity of each pair of flange angles 
 Long leg of angles outstanding 
 
 FLANGE ANGLES. 
 
 THICKNESS OF WEB IN INCHES. 
 
 H 
 Ed 
 
 * 
 
 h 
 X 
 
 H 
 JL 
 
 M 
 
 Q 
 
 Size. 
 
 Back 
 to 
 Back. 
 
 1 
 
 A 
 
 I 
 
 A 
 
 i 
 
 A 
 
 I 
 
 H 
 
 ! 
 
 I 
 
 i 
 
 4X3X^ 
 
 i8i 
 
 ' 78 
 
 97 
 
 117 
 
 136 
 
 156 
 
 J 75 
 
 195 
 
 214 
 
 234 
 
 273 
 
 312 
 
 18 
 
 
 
 24i 
 
 I 9 2 
 
 240 
 
 289 
 
 337 
 
 385 
 
 433 
 
 481 
 
 529 
 
 577 
 
 673 
 
 770 
 
 24 
 
 " 
 
 30| 
 
 385 
 
 481 
 
 577 
 
 673 
 
 770 
 
 866 
 
 962 
 
 1058 
 
 "54 
 
 1347 
 
 1539 
 
 30 
 
 " 
 
 361 
 
 675 
 
 844 
 
 1013 
 
 1182 
 
 J 35i 
 
 1520 
 
 1688 
 
 1857 
 
 2026 
 
 2364 
 
 2701 
 
 36 
 
 5X3ix^ 
 
 18! 
 
 7 6 
 
 96 
 
 "5 
 
 J 34 
 
 J 53 
 
 172 
 
 191 
 
 210 
 
 229 
 
 268 
 
 306 
 
 18 
 
 " 
 
 24i 
 
 IQO 
 
 237 
 
 285 
 
 332 
 
 379 
 
 427 
 
 474 
 
 522 
 
 569 
 
 664 
 
 759 
 
 24 
 
 
 
 3oi 
 
 38o 
 
 476 
 
 57i 
 
 666 
 
 761 
 
 856 
 
 95i 
 
 1046 
 
 1141 
 
 J 33 2 
 
 1522 
 
 30 
 
 
 
 36i 
 
 669 
 
 836 
 
 1004 
 
 1171 
 
 1338 
 
 1506 
 
 1673 
 
 1840 
 
 2007 
 
 2342 
 
 2677 
 
 36 
 
 " 
 
 421 
 
 1089 
 
 1362 
 
 1631 
 
 1906 
 
 2178 
 
 245 1 
 
 2723 
 
 2995 
 
 3268 
 
 3812 
 
 4357 
 
 42 
 
 6X4X 
 
 241 
 
 1 86 
 
 232 
 
 279 
 
 325 
 
 372 
 
 418 
 
 465 
 
 511 
 
 558 
 
 651 
 
 744 
 
 24 
 
 " 
 
 301 
 
 375 
 
 468 
 
 562 
 
 656 
 
 749 
 
 843 
 
 937 
 
 1030 
 
 1124 
 
 1311 
 
 1498 
 
 30 
 
 
 
 36i 
 
 66 1 
 
 826 
 
 99 1 
 
 1156 
 
 1321 
 
 1486 
 
 1652 
 
 1817 
 
 1982 
 
 2312 
 
 2642 
 
 36 
 
 u 
 
 42i 
 
 1077 
 
 J 347 
 
 1616 
 
 1886 
 
 2155 
 
 2424 
 
 2694 
 
 2963 
 
 3 2 32 
 
 377i 
 
 43 10 
 
 42 
 
 
 
 48 
 
 1623 
 
 2029 
 
 2435 
 
 2840 
 
 3246 
 
 3 6 52 
 
 4058 
 
 4463 
 
 4869 
 
 5681 
 
 6492 
 
 48 
 
 6x6x& 
 
 24i 
 
 163 
 
 203 
 
 244 
 
 285 
 
 325 
 
 366 
 
 407 
 
 447 
 
 488 
 
 569 
 
 651 
 
 24 
 
 H 
 
 301 
 
 337 
 
 422 
 
 506 
 
 59i 
 
 675 
 
 759 
 
 844 
 
 928 
 
 IOI2 
 
 1181 
 
 !35 
 
 30 
 
 U 
 
 36i 
 
 606 
 
 758 
 
 909 
 
 1061 
 
 1213 
 
 i3 6 4 
 
 1516 
 
 1667 
 
 1819 
 
 2122 
 
 2425 
 
 36 
 
 (( 
 
 42i 
 
 1002 
 
 I2 53 
 
 !53 
 
 1754 
 
 2005 
 
 2255 
 
 2506 
 
 2756 
 
 3007 
 
 3508 
 
 4009 
 
 42 
 
 11 
 
 4 8i 
 
 I5 2 4 
 
 !95 
 
 2286 
 
 2667 
 
 3048 
 
 3429 
 
 3810 
 
 4191 
 
 4572 
 
 5335 
 
 6097 
 
 48 
 
 
 
 541 
 
 22OI 
 
 2752 
 
 3302 
 
 3853 
 
 4403 
 
 4953 
 
 5504 
 
 6054 
 
 6604 
 
 775 
 
 8806 
 
 54 
 
 u 
 
 6o 
 
 3054 
 
 3818 
 
 4582 
 
 5345 
 
 6109 
 
 6873 
 
 7636 
 
 8400 
 
 9163 
 
 10691 
 
 12218 
 
 60 
 
 fi 
 
 721 
 
 5369 
 
 6711 
 
 8053 
 
 9395 
 
 I0 737 
 
 12079 
 
 13421 
 
 14764 
 
 l6lo6 
 
 18790 
 
 21474 
 
 72 
 
 8x8x 
 
 42i 
 
 945 
 
 1181 
 
 1417 
 
 l6 53 
 
 1889 
 
 2125 
 
 2362 
 
 2598 
 
 2834 
 
 33o6 
 
 3779 
 
 42 
 
 u 
 
 48^ 
 
 1448 
 
 1810 
 
 2172 
 
 2534 
 
 2896 
 
 3258 
 
 3620 
 
 3982 
 
 4344 
 
 5068 
 
 5792 
 
 48 
 
 " 
 
 54* 
 
 2104 
 
 2630 
 
 3156 
 
 3683 
 
 4209 
 
 4735 
 
 5261 
 
 5787 
 
 6 3 J 3 
 
 73 6 5 
 
 8417 
 
 54 
 
 it 
 
 60^ 
 
 2934 
 
 3667 
 
 4401 
 
 5J34 
 
 5867 
 
 6601 
 
 7334 
 
 8068 
 
 8801 
 
 10268 
 
 IJ 735 
 
 60 
 
 (( 
 
 72* 
 
 5!93 
 
 6491 
 
 7789 
 
 9087 
 
 10386 
 
 11684 
 
 12982 
 
 14280 
 
 15578 
 
 18175 
 
 20771 
 
 72 
 
 (102) 
 
TABLE 48 
 
 B 
 
 -JiL 
 
 MOMENT OF INERTIA OF FOUR ANGLES 
 
 ABOUT AXIS BB DEDUCTING ONE HOLE FROM EACH ANGLE 
 One 3" hole deducted for angles less than f" thick 
 One \" hole deducted for angles over T y thick 
 Long legs of angles outstanding 
 
 SIZE OF 
 ANGLES. 
 
 TOTAL SECTION. 
 
 BACK TO BACK OF ANGLES IN INCHES. 
 
 Gross 
 Weight 
 
 Net 
 Area. 
 
 i8i 
 
 24i 
 
 3oi 
 
 36* 
 
 42* 
 
 48} 
 
 54* 
 
 6oi 
 
 72* 
 
 4X3X& 
 
 28.4 
 
 7.28 
 
 5i6 
 
 947 
 
 1409 
 
 2202 
 
 
 
 
 
 
 x I 
 
 34-0 
 
 8.60 
 
 607 
 
 i"5 
 
 1777 
 
 2595 
 
 
 
 
 
 
 x& 
 
 39-2 
 
 9.96 
 
 699 
 
 1286 
 
 2053 
 
 3098 
 
 
 
 
 
 
 x * 
 
 44.4 
 
 11.24 
 
 783 
 
 1444 
 
 2307 
 
 3372 
 
 
 
 
 
 
 x& 
 
 49.2 
 
 12.52 
 
 868 
 
 1602 
 
 2562 
 
 3747 
 
 
 
 
 
 
 5X3ix& 
 
 34-8 
 
 9.16 
 
 640 
 
 1177 
 
 1880 
 
 2748 
 
 3827 
 
 
 
 
 
 x I 
 
 41.6 
 
 10.88 
 
 756 
 
 !393 
 
 2227 
 
 3256 
 
 4536 
 
 
 
 
 
 x& 
 
 48.0 
 
 12.60 
 
 871 
 
 1608 
 
 2571 
 
 3762 
 
 5243 
 
 
 
 
 
 x * 
 
 54-4 
 
 14.24 
 
 977 
 
 1807 
 
 2894 
 
 4236 
 
 5908 
 
 
 
 
 
 x& 
 
 60.8 
 
 15.92 
 
 1087 
 
 2013 
 
 3226 
 
 4725 
 
 6 59i 
 
 
 
 
 
 x i 
 
 67.2 
 
 17.16 
 
 1166 
 
 2162 
 
 3467 
 
 5081 
 
 7091 
 
 
 
 
 
 6x4x1 
 
 49.2 
 
 13.12 
 
 
 1661 
 
 2660 
 
 3894 
 
 5432 
 
 7I 4 8 
 
 
 
 
 x& 
 
 57-2 
 
 15.20 
 
 . . 
 
 1917 
 
 3072 
 
 4501 
 
 6280 
 
 8267 
 
 
 
 
 x 1 
 
 64.8 
 
 17.24 
 
 
 2163 
 
 3470 
 
 5087 
 
 7102 
 
 9352 
 
 
 
 
 x& 
 
 72.4 
 
 19.28 
 
 
 2410 
 
 3869 
 
 5 6 75 
 
 7926 
 
 I044I 
 
 
 
 
 x f 
 
 80.0 
 
 20.92 
 
 . . 
 
 2605 
 
 4186 
 
 6144 
 
 8583 
 
 II309 
 
 
 
 
 xM 
 
 87.2 
 
 22.88 
 
 . . 
 
 2834 
 
 4559 
 
 6695 
 
 9359 
 
 12337 
 
 
 
 
 x I 
 
 94-4 
 
 24.76 
 
 . . 
 
 3055 
 
 4919 
 
 7228 
 
 10108 
 
 J 3327 
 
 
 
 
 C6x 4 x | 
 
 49.2 
 
 13.12 
 
 . 
 
 1415 
 
 2 335 
 
 349i 
 
 4946 
 
 6584 
 
 
 
 
 =3 Xfg 
 
 57-2 
 
 15.20 
 
 . . 
 
 1632 
 
 2696 
 
 4034 
 
 57i8 
 
 7614 
 
 
 
 
 I x \ 
 
 64.8 
 
 17.24 
 
 . . 
 
 1840 
 
 344 
 
 4558 
 
 6465 
 
 8612 
 
 
 
 
 1 x& 
 
 72.4 
 
 19.28 
 
 
 2050 
 
 3393 
 
 4984 
 
 7214 
 
 9613 
 
 
 
 
 x f 
 
 80.0 
 
 20.92 
 
 . 
 
 2216 3672 
 
 554 
 
 7812 
 
 10413 
 
 
 
 
 1 XH 
 
 87.2 
 
 22.88 
 
 . . 
 
 2409 
 
 3897 
 
 5996 
 
 8517 
 
 "357 
 
 
 
 
 t x f 
 
 94.4 
 
 24.76 
 
 
 2596 
 
 43 11 
 
 6472 
 
 9197 
 
 12268 
 
 
 
 
 6x6 x f 
 
 59-2 
 
 16.12 
 
 
 1834 
 
 2993 
 
 4442 
 
 6261 
 
 8302 
 
 10634 
 
 13256 
 
 J 937i 
 
 x^ 
 
 68.8 
 
 18.72 
 
 
 2121 
 
 3565 
 
 5 X 46 
 
 7255 
 
 9624 
 
 12329 
 
 !537 2 
 
 22469 
 
 x i 
 
 78.4 
 
 21:24 
 
 . . 
 
 2 397 
 
 3919 
 
 5824 
 
 8214 
 
 10899 
 
 13967 
 
 17417 
 
 25463 
 
 x& 
 
 87.6 
 
 23.76 
 
 . . 
 
 2666 
 
 43 6 4 
 
 6490 
 
 9160 
 
 12160 
 
 15587 
 
 19442 
 
 28434 
 
 x I 
 
 96.8 
 
 25.92 
 
 . . 
 
 2897 
 
 4747 
 
 7064 
 
 9973 
 
 13242 
 
 16978 
 
 21180 
 
 30984 
 
 xH 
 
 106.0 
 
 28.36 1 
 
 . . 
 
 3157 
 
 5178 
 
 7709 
 
 10889 
 
 14462 
 
 18546 
 
 23140 
 
 3386o 
 
 x i 
 
 114.8 
 
 30.76 
 
 . . 
 
 3405 
 
 595 1 
 
 833 
 
 "773 
 
 !5 6 43 
 
 20067 
 
 25045 
 
 36661 
 
 8x8 x \ 
 
 105. 6 
 
 2O.24. 
 
 
 
 
 
 10817 
 
 14424 
 
 18^7 
 
 23217 
 
 341 jc 
 
 xA 
 
 v^^.vx 
 
 118.0 
 
 "y * et ^ 
 22.76 
 
 
 
 
 
 I2OQ3 
 
 16130 
 
 x/0 / 
 
 207^7 
 
 O 1 
 
 2CQ74 
 
 O^ J 
 
 38776 
 
 ' lo 
 
 x 
 
 no 8 
 
 O'*'. / v 
 5C Q2 
 
 
 
 
 
 ^^"yo 
 I 3232 
 
 i?6?; 
 
 / / 
 
 22724 
 
 ^OV /T- 
 28430 
 
 o / 
 
 41810 
 
 XN 8 
 
 Xtt 
 
 A ^VJ.VJ 
 
 143.2 
 
 oo.y^ 
 79.76 i 
 
 
 
 
 
 *-o*o* 
 14468 
 
 / 00 
 
 19309 
 
 *"*( **+ 
 
 2481:9 
 
 "~"tjy 
 3III7 
 
 4^7^9 
 
 ' N 16 
 
 x 1 
 
 ^O ** 
 
 i.6 
 
 OV*O X ' 
 
 42.76 
 
 
 
 
 
 KJ667 
 
 yo y 
 20918 
 
 *T OV 
 2694O 
 
 O / 
 33731 
 
 T^O / 0V 
 
 49622 
 
 4 
 
 Xtt 
 
 OO " 
 
 168.0 
 
 T.^* / ^^ 
 
 46.12 
 
 
 
 
 
 3 I 
 
 16861 
 
 22520 
 
 2QOOQ 
 
 OOl O A 
 
 36328 
 
 ^34^7 
 
 16 
 
 X i 
 
 180.0 
 
 if W. i ^ 
 
 4 0.4.O 
 
 
 
 
 
 18021 
 
 24076 
 
 y^^v 
 31021 
 
 O"v)^ W 
 
 3881:1; 
 
 Ootj / 
 C.7IQO 
 
 ^* 8 
 
 x4| 
 
 102 o 
 
 ^.y .i^.vj 
 
 C2 72 ' 
 
 
 
 
 
 10180 
 
 m^prfu 
 
 2c64<; 
 
 33O5I 
 
 J^^JJ 
 4I4O^ 
 
 / A y'-' 
 5ooco 
 
 ^16 
 X I 
 
 A vy ^ . w 
 204.0 
 
 O-^* /* 
 56.00 
 
 
 
 
 . . 
 
 iy i<jy 
 20317 
 
 * J^T-J 
 27165 
 
 oO^j- 1 
 
 352i 
 
 T-^T-^O 
 43884 
 
 ^^yjy 
 64636 
 
 (103) 
 

 L. 
 
 TABLE 49 
 
 MOMENT OF INERTIA OF FOUR ANGLES 
 
 ABOUT AXIS BB DEDUCTING TWO HOLES FOR EACH ANGLE 
 Two |" holes deducted for angles less than |" thick 
 Two i" holes deducted for angles over T y thick 
 Long legs of angles outstanding 
 
 SIZE OF 
 ANGLES. 
 
 TOTAL SECTION. 
 
 BACK TO BACK OF ANGLES IN INCHES. 
 
 Gross 
 Weight. 
 
 Net 
 Area. 
 
 i8i 
 
 24i 
 
 30j 
 
 36* 
 
 42i 
 
 48i 
 
 54* 
 
 60 } 
 
 72* 
 
 4x3 x& 
 
 28.4 
 
 6.16 
 
 438 
 
 802 
 
 1278 
 
 1864 
 
 
 
 
 
 
 x I 
 
 34-0 
 
 7.28 
 
 5 J 5 
 
 945 
 
 1506 
 
 2198 
 
 
 
 
 
 
 x& 
 
 39-2 
 
 8.40 
 
 59i 
 
 ^1086 
 
 1732 
 
 2530 
 
 
 
 
 
 
 x \ 
 
 44.4 
 
 9.48 
 
 662 
 
 1219 
 
 1947 
 
 2845 
 
 
 
 
 
 
 x& 
 
 49.2 
 
 10.56 
 
 734 
 
 1353 
 
 2163 
 
 3162 
 
 
 
 
 
 
 5X3?x^ 
 
 34-8 
 
 8.04 
 
 563 
 
 io35 
 
 l6 53 
 
 2413 
 
 336o 
 
 
 
 
 
 x f 
 
 41.6 
 
 9.56 
 
 666 
 
 1226 
 
 1958 
 
 2862 
 
 3987 
 
 
 
 
 
 x^ 
 
 48.0 
 
 11.04 
 
 765 
 
 1411 
 
 22 55 
 
 3298 
 
 4595 
 
 
 
 
 
 x \ 
 
 54-4 
 
 12.48 
 
 858 
 
 1586 
 
 2538 
 
 37i5 
 
 5*79 
 
 
 
 
 
 x& 
 
 60.8 
 
 13.96 
 
 955 
 
 1767 
 
 2831 
 
 4i45 
 
 5782 
 
 
 
 
 
 x I 
 
 67.2 
 
 14.68 
 
 1000 
 
 1853 
 
 2969 
 
 435 
 
 6069 
 
 
 
 
 
 6x4 x | 
 
 49.2 
 
 II.So 
 
 
 1496 
 
 2394 
 
 354 
 
 4887 
 
 643 1 
 
 
 
 
 x^ 
 
 57-2 
 
 13.64 
 
 . . 
 
 1623 
 
 2 759 
 
 4041 
 
 5638 
 
 742i 
 
 
 
 
 x * 
 
 64.8 
 
 15.48 
 
 
 1944 
 
 3118 
 
 457 
 
 6 379 
 
 8400 
 
 
 
 
 x& 
 
 72.4 
 
 17.32 
 
 
 2167 
 
 3478 
 
 5101 
 
 7123 
 
 9382 
 
 
 
 
 x f 
 
 80.0 
 
 18.44 
 
 . . 
 
 2300 
 
 3 6 94 
 
 54i9 
 
 7569 
 
 9972 
 
 
 
 
 xft 
 
 87.2 
 
 20. 12 
 
 
 2496 
 
 4013 
 
 5892 
 
 8234 
 
 10852 
 
 
 
 
 x f 
 
 94.4 
 
 21.76 
 
 
 2689 
 
 4327 
 
 6 357 
 
 8887 
 
 11717 
 
 
 
 
 6x4 x f 
 
 49.2 
 
 II.SO 
 
 
 1278 
 
 2105 
 
 3 J 45 
 
 4454 
 
 59 2 7 
 
 
 
 
 1 XA 
 
 57-2 
 
 13.64 
 
 . . 
 
 1471 
 
 2426 
 
 3626 
 
 5 J 37 
 
 6839 
 
 
 
 
 *i 
 
 64.8 
 
 15.48 
 
 . . 
 
 1660 
 
 2740 
 
 4100 
 
 5812 
 
 7740 
 
 
 
 
 x& 
 
 72.4 
 
 17.32 
 
 
 1849 
 
 3056 
 
 4575 
 
 6489 
 
 8644 
 
 
 
 
 3 x f 
 
 80.0 
 
 18.44 
 
 
 1963 
 
 3246 
 
 4861 
 
 6896 
 
 9189 
 
 
 
 
 I xH 
 
 87.2 
 
 20.12 
 
 
 2130 
 
 3526 
 
 5284 
 
 75i 
 
 9998 
 
 
 
 
 t x t 
 
 94.4 
 
 21.76 
 
 
 2294 
 
 3801 
 
 5700 
 
 8095 
 
 10793 
 
 
 
 
 6x6x | 
 
 59-2 
 
 14.80 
 
 
 1689 
 
 2753 
 
 4084 
 
 5753 
 
 7627 
 
 9768 
 
 12176 
 
 17790 
 
 x^ 
 
 68.8 
 
 I7.l6 
 
 
 i95 
 
 3182 
 
 4723 
 
 6656 
 
 8828 
 
 11308 
 
 14097 
 
 20602 
 
 x i 
 
 78.4 
 
 19.48 
 
 
 2205 
 
 3601 
 
 5348 
 
 7540 
 
 10003 
 
 12816 
 
 15980 
 
 23360 
 
 x& 
 
 87.6 
 
 2 1. 80 
 
 
 2 453 
 
 4011 
 
 5962 
 
 8412 
 
 11164 
 
 14308 
 
 17845 
 
 26096 
 
 x f 
 
 96.8 
 
 23.44 
 
 . . 
 
 2629 
 
 4302 
 
 6 397 
 
 9028 
 
 11984 
 
 15362 
 
 19163 
 
 28028 
 
 x& 
 
 106.0 
 
 25.60 
 
 
 2860 
 
 4684 
 
 6969 
 
 9839 
 
 13065 
 
 16751 
 
 20898 
 
 3575 
 
 x f 
 
 114.8 
 
 27.76 
 
 
 3083 
 
 55 6 
 
 7529 
 
 10636 
 
 14129 
 
 18121 
 
 22613 
 
 33097 
 
 8x8x i 
 
 105.6 
 
 27.48 
 
 . 
 
 .- . : 
 
 
 
 10178 
 
 *35 6 7 
 
 !745 2 
 
 21831 
 
 32074 
 
 x& 
 
 118.0 
 
 30.80 
 
 
 
 
 
 11382 
 
 15178 
 
 19528 
 
 24433 
 
 35905 
 
 
 
 
 
 x I 
 
 130.8 
 
 33-44 
 
 
 
 
 
 I2 335 
 
 16452 
 
 21171 
 
 26492 
 
 38940 
 
 
 
 
 
 xft 
 
 143.2 
 
 36.60 
 
 . . 
 
 
 
 . . 
 
 i347i 
 
 J 7973 
 
 23134 
 
 28953 
 
 42568 
 
 x f 
 
 155-6 
 
 39.76 
 
 
 
 
 
 14587 
 
 19470 
 
 25069 
 
 3^84 
 
 46160 
 
 
 
 
 
 xtf 
 
 168.0 
 
 42.84 
 
 
 
 
 
 15683 
 
 20939 
 
 26967 
 
 33766 
 
 49676 
 
 
 
 
 
 x I 
 
 180.0 
 
 45.92 
 
 
 
 
 
 16774 
 
 22402 
 
 28858 
 
 36140 
 
 53183 
 
 
 
 
 
 XH 
 
 192.0 
 
 48.96 
 
 
 
 
 
 17845 
 
 23840 
 
 30717 
 
 38476 
 
 56636 
 
 
 
 
 
 XI 
 
 20.40 
 
 52.00 
 
 
 
 
 
 18892 
 
 2525 
 
 32545 
 
 40775 
 
 60044 
 
 (104) 
 

 T" 
 
 TABLE 50 
 
 MOMENT OF INERTIA OP FOUR ANGLES 
 
 ABOUT AXIS BB, DEDUCTING THREE HOLES FOR EACH ANGLE 
 Three \" holes deducted for angles less than f" thick 
 Three i" holes deducted for angles over T y thick 
 
 SIZE OF 
 ANGLES. 
 
 TOTAL SECTION. 
 
 BACK TO BACK OF ANGLES IN INCHES. 
 
 Gross 
 Weight. 
 
 Net 
 Area. 
 
 24i 
 
 3oi 
 
 36} 
 
 42* 
 
 4 8i 
 
 54i 
 
 6oJ 
 
 72* 
 
 6x6x | 
 
 59-2 
 
 13.50 
 
 1546 
 
 2516 
 
 373 
 
 5253 
 
 6963 
 
 8916 
 
 IIII2 
 
 16233 
 
 x i% 
 
 68.8 
 
 15.65 
 
 1785 
 
 2908 
 
 43*3 
 
 6077 
 
 8057 
 
 10319 
 
 12863 
 
 l8 795 
 
 x \ 
 
 78.4 
 
 17.75 
 
 20l6 
 
 3288 
 
 4880 
 
 6878 
 
 9122 
 
 11685 
 
 I 45 68 
 
 21292 
 
 x& 
 
 87.6 
 
 IQ.Sl 
 
 2237 
 
 3653 
 
 5426 
 
 7652 
 
 IOI 53 
 
 13010 
 
 16224 
 
 23722 
 
 x f 
 
 96.8 
 
 20.94 
 
 2359 
 
 3854 
 
 5725 
 
 8075 
 
 10716 
 
 J 3734 
 
 I7I29 
 
 25049 
 
 x& 
 
 106.0 
 
 22.87 
 
 2567 
 
 4196 
 
 6237 
 
 8801 
 
 11683 
 
 I497 6 
 
 l868l 
 
 27326 
 
 X \ 
 
 114.8 
 
 24.76 
 
 2762 
 
 4522 
 
 6727 
 
 9499 
 
 12614 
 
 16175 
 
 20l82 
 
 29532 
 
 8x8x \ 
 
 105 6 
 
 2C 7cr 
 
 
 
 
 0^40 
 
 12726 
 
 16^66 
 
 2O4.6o 
 
 30067 
 
 x A 
 
 118 o 
 
 28 81 
 
 
 
 
 10661 
 
 1421 1 
 
 18280 
 
 22868 
 
 3-2CQQ 
 
 x f 
 
 130.8 
 
 30.94 
 
 . 
 
 
 . . 
 
 H43 1 
 
 15240 
 
 19606 
 
 24529 
 
 36046 
 
 x 44 
 
 IA-3 2 
 
 H.8? 
 
 
 
 
 12486 
 
 16652 
 
 214.27 
 
 26813 
 
 3O4I2 
 
 x 2 
 
 tee 6 
 
 36 76 
 
 
 
 
 1 3^07 
 
 18022 
 
 23IQQ 
 
 2OO37 
 
 4.2600 
 
 xH 
 
 168.0 
 
 39.61 
 
 
 
 
 14523 
 
 19383 
 
 24956 
 
 31242 
 
 45953 
 
 
 
 
 X 1 
 
 180.0 
 
 42.4.2 
 
 
 
 
 I ^^IO 
 
 2O7IQ 
 
 26683 
 
 334IO 
 
 4O I <4 
 
 x 44 
 
 IO2 O 
 
 4^.23 
 
 
 
 
 1651 i 
 
 22O5O 
 
 284.O3 
 
 7C C7O 
 
 r 2 347 
 
 X I 
 
 2O4.O 
 
 48.00 
 
 
 
 
 17466 
 
 23335 
 
 30069 
 
 37666 
 
 55453 
 
 
 
 (105) 
 
TABLE 51 
 
 MOMENT OF INERTIA OP 
 
 ABOUT AXIS BB, DEDUCTING 
 d = distance back to back of flange angles 
 A = net area of two plates 
 
 1 1 WIDTH OF PLATE! 
 
 S_2hO| IN I NCHF ,S. 
 
 BACK TO BACK 
 J> OF FLANGE Is 
 n IN INCHES. 
 
 Two |" holes deducted for plates less than f " thick 
 " i'' " " " " over T V' thick 
 If 4 one-inch holes are deducted, use values of plates 2 inches less in width 
 
 THICKNESS OF PLATE IN INCHES. 
 
 \ A 
 
 f Aj_T_j_5_LJ 
 
 tt 
 
 * 
 
 = 3.63 
 
 4-53 
 
 5.44 
 
 6.34 
 
 7.25 
 
 8.16 
 
 8-75 
 
 9-63 
 
 10.50 
 
 
 i8i 
 
 24i 
 
 3oi 
 
 310 
 
 544 
 843 
 
 39 
 683 
 
 1058 
 
 472 
 824 
 
 1275 
 
 554 
 967 
 1494 
 
 637 
 
 IIIO 
 
 1714 
 
 722 
 1256 
 1936 
 
 780 
 
 J 354 
 
 2086 
 
 863 
 
 J 497 
 2304 
 
 948 
 
 1641 
 
 2523 
 
 10 
 IO 
 
 <l 
 tt 
 
 A = 
 
 = 4-13 
 
 5.56 
 
 6.19 
 
 7.22 
 
 8.25 
 
 9.28 
 
 10.00 
 
 11.00 
 
 12. OO 
 
 13-00 
 
 i8i 
 241 
 301 
 36* 
 
 353 
 619 
 
 959 
 J 374 
 
 444 
 778 
 1204 
 
 J 7 2 3 
 
 537 
 938 
 
 I 45 I 
 2075 
 
 630 
 
 1 100 
 
 1700 
 2429 
 
 725 
 1264 
 
 !95 
 2786 
 
 821 
 1429 
 2203 
 3J45 
 
 891 
 
 1547 
 2384 
 
 3400 
 
 987 
 1711 
 2633 
 
 3753 
 
 1084 
 1876 
 2884 
 4108 
 
 1182 
 2042 
 
 3i37 
 4465 
 
 12 
 
 A = 
 
 = 5-13 
 
 6.41 
 
 7.69 
 
 8.97 
 
 10.25 
 
 H.53 
 
 12.50 
 
 13.75 
 
 15.00 
 
 16.25 
 
 12 
 
 it 
 
 n 
 
 24! 
 30| 
 36* 
 42* 
 48* 
 
 769 
 1192 
 
 1707 
 2342 
 3045 
 
 966 
 1496 
 2141 
 2936 
 3816 
 
 1166 
 
 1803 
 2578 
 3533 
 
 459 1 
 
 J 3 6 7 
 
 2112 
 30l8 
 4134 
 5370 
 
 !57 
 2423 
 346i 
 4738 
 6i53 
 
 J775 
 2737 
 397 
 5346 
 6940 
 
 J 934 
 2979 
 4250 
 5812 
 
 7542 
 
 2138 
 3291 
 4691 
 6412 
 8317 
 
 2 345 
 
 3605 
 
 5i35 
 7oiS 
 9097 
 
 2553 
 3921 
 
 558i 
 7622 
 9880 
 
 14 
 
 A = 
 
 = 6.13 
 
 7.66 
 
 9.19 
 
 10.72 
 
 12.25 
 
 13.78 
 
 15-00 
 
 16.50 
 
 18.00 
 
 19.50 
 
 14 
 
 ti 
 tt 
 
 n 
 
 24i 
 3Qi 
 36i 
 
 42i 
 
 48* 
 
 54i 
 6oi 
 
 919 
 1424 
 2040 
 2798 
 3 6 39 
 459 
 5 6 5 r 
 
 "55 
 1788 
 
 2559 
 35o8 
 
 45 61 
 
 575i 
 7079 
 
 J 393 
 2154 
 3081 
 4222 
 
 5487 
 6917 
 8512 
 
 l6 33 
 2524 
 3607 
 4941 
 6418 
 8088 
 995 1 
 
 1876 
 2896 
 4i3 6 
 5663 
 
 7353 
 9264 
 11396 
 
 2122 
 
 3271 
 4669 
 6389 
 8294 
 10446 
 12847 
 
 2321 
 
 3575 
 5100 
 
 6975 
 9050 
 11396 
 14012 
 
 2566 
 
 3949 
 5629 
 
 7695 
 998i 
 12564 
 15444 
 
 2813 
 
 4325 
 6161 
 
 8419 
 10916 
 13738 
 
 16883 
 
 3 6 3 
 475 
 6698 
 
 9 J 47 
 11856 
 14916 
 18327 
 
 16 
 
 A = 
 
 = 7-13 
 
 8.91 
 
 10.69 
 
 12.47 
 
 14.25 
 
 I6.O3 
 
 17.50 
 
 19.25 
 
 21.00 
 
 22.75 
 
 16 
 
 ti 
 
 tt 
 
 ii 
 (i 
 (i 
 
 24! 
 3oi 
 36* 
 
 4 2* 
 
 48} 
 54* 
 60* 
 
 1069 
 l6 57 
 2373 
 3255 
 4233 
 5339 
 6 574 
 
 1343 
 
 2080 
 
 2977 
 4081 
 
 5305 
 6690 
 8234 
 
 1620 
 2506 
 
 3584 
 4912 
 
 6383 
 8046 
 9901 
 
 1900 
 2936 
 4196 
 
 5747 
 7466 
 9408 
 11576 
 
 2183 
 
 33 6 9 
 4812 
 
 6587 
 8554 
 10777 
 
 13256 
 
 2468 
 3 8o6 
 5432 
 7432 
 9648 
 I2I52 
 14944 
 
 2708 
 4171 
 595 
 8i37 
 I0 559 
 13295 
 16347 
 
 2994 
 4607 
 6567 
 8977 
 11644 
 14658 
 18018 
 
 3282 
 5046 
 7188 
 9822 
 
 !2735 
 16027 
 19697 
 
 3574 
 5489 
 7814 
 10671 
 13832 
 17402 
 21382 
 
 18 
 
 ~7S 
 
 K 
 
 <t 
 
 tt 
 
 <t 
 
 A = 
 
 = 8.13 
 
 10. 16 
 
 12.19 
 
 14.22 
 
 16.2^ 
 
 18.28 
 
 20.00 
 
 22.00 
 
 24.00 
 
 26.00 
 
 36i 
 
 42i 
 48i 
 54i 
 60* 
 
 72* 
 
 2706 
 3712 
 4827 
 6089 
 
 7497 
 10751 
 
 3394 
 4654 
 6050 
 7628 
 
 939 
 13461 
 
 4087 
 5601 
 7278 
 
 9 J 75 
 11291 
 16181 
 
 4785 
 6 554 
 8513 
 10729 
 13200 
 18911 
 
 5487 
 75 12 
 9754 
 12289 
 
 15^7 
 21649 
 
 6194 
 8476 
 IIOO2 
 
 13857 
 17042 
 
 24397 
 
 6800 
 9300 
 12067 
 
 I5J95 
 18682 
 
 26737 
 
 7505 
 10259 
 13308 
 16752 
 20592 
 29461 
 
 8215 
 11225 
 I455S 
 18317 
 22511 
 
 32195 
 
 8930 
 12195 
 15808 
 19888 
 24437 
 34937 
 
 (106) 
 
TABLE 51 (Continued) 
 
 TWO COVER PLATES 
 
 TWO HOLES FROM EACH PLATE 
 
 d = distance back to back of flange angles 
 A = net area of two plates 
 
 Two I" holes deducted for plates less than f" thick 
 
 " i" " " " " over T y thick 
 
 If 4 one-inch holes are deducted, use values of plates 2 inches less in width 
 
 THICKNESS OF PLATE IN INCHES. 
 
 i 
 
 if 
 
 I 
 
 I| 
 
 ii 
 
 If 
 
 i* 
 
 if 
 
 if 
 
 If 
 
 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 14.00 
 
 15.00 
 
 16.00 
 
 1281 
 2211 
 
 3392 
 
 4825 
 
 1382 
 2380 
 3 6 49 
 5i87 
 
 1484 
 
 2552 
 3908 
 
 5552 
 
 17.50 
 
 i8.75 
 
 20.00 
 
 22.50 
 
 25.00 
 
 27.50 
 
 30.00 
 
 2763 
 4240 
 6031 
 8232 
 10667 
 
 2975 
 45 61 
 6484 
 8846 
 11458 
 
 3190 
 4885 
 6940 
 
 9463 
 12253 
 
 3625 
 5540 
 7860 
 10708 
 13855 
 
 4068 
 6205 
 
 8793 
 11967 
 
 !5473 
 
 4520 
 6881 
 9738 
 13240 
 17107 
 
 4980 
 
 7567 
 10695 
 
 J 45 2 7 
 i8757 
 
 21.00 
 
 22.50 
 
 24.00 
 
 27.00 
 
 30.00 
 
 33-00 
 
 36.00 
 
 39-00 
 
 42.00 
 
 45-00 
 
 48.00 
 
 - 33 l6 
 5088 
 
 7237 
 9879 
 12800 
 16100 
 19778 
 
 357 
 5473 
 7781 
 10615 
 
 r 375 
 17289 
 21234 
 
 3828 
 5862 
 8328 
 
 Ir 35 6 
 14704 
 18484 
 22696 
 28.00 
 
 435 
 6648 
 
 9432 
 
 12850 
 16626 
 20889 
 25 6 37 
 
 4881 
 7446 
 
 I0 55! 
 14360 
 18568 
 
 233 J 5 
 28603 
 
 5423 
 8257 
 11685 
 15887 
 20528 
 25763 
 3i59i 
 
 5975 
 9080 
 12833 
 J743 2 
 22508 
 28232 
 34604 
 
 6538 
 9916 
 
 T 3997 
 18993 
 24507 
 30723 
 37640 
 
 7111 
 10765 
 
 !5!73 
 20572 
 26526 
 
 33235 
 40701 
 
 7694 
 11626 
 16367 
 22168 
 28564 
 35769 
 43785 
 
 8287 
 12499 
 
 J 7575 
 23782 
 30622 
 38326 
 46894 
 
 24.50 
 
 26.25 
 
 3L50 
 
 574 
 7756 
 11004 
 
 14991 
 !9397 
 24370 
 29910 
 
 35-00 
 
 38.50 
 
 42.00 
 
 45-50 
 
 49.00 
 
 52.50 
 
 56.00 
 
 3868 
 
 5935 
 8444 
 
 "525 
 14934 
 18783 
 
 23074 
 
 4165 
 
 6385 
 9077 
 12384 
 16041 
 20170 
 24772 
 
 4466 
 6839 
 9716 
 13248 
 
 I 7 I S4 
 21564 
 26478 
 
 5695 
 8687 
 12310 
 
 16753 
 21662 
 27201 
 33369 
 
 6327 
 
 9633 
 13632 
 
 18535 
 23949 
 30056 
 36856 
 
 6971 
 10594 
 14972 
 20337 
 26259 
 
 32937 
 4037 1 
 
 7627 
 11569 
 16329 
 22159 
 28591 
 35843 
 439 J 3 
 
 8295 
 12558 
 17703 
 24001 
 30946 
 38774 
 47484 
 
 8976 
 13563 
 J 9095 
 25863 
 33324 
 4i73i 
 51082 
 
 9668 
 14582 
 20504 
 27745 
 35725 
 447 1 3 
 5479 
 
 28.00 
 
 30.00 
 
 32.00 
 
 36.00 
 
 40.00 
 
 44.00 
 
 48.00 
 
 52.00 
 
 56.00 
 
 60.00 
 
 64.00 
 
 9650 
 13172 
 17067 
 21467 
 26370 
 37689 
 
 I0 374 
 14154 
 18333 
 23052 
 28312 
 40450 
 
 11103 
 
 i5 J 4i 
 19605 
 24645 
 30261 
 43221 
 
 12576 
 
 !7!33 
 22168 
 
 27852 
 34183 
 48790 
 
 14068 
 19146 
 24756 
 31086 
 38136 
 54396 
 
 i558o 
 21183 
 27370 
 
 3435 
 42121 
 60040 
 
 17111 
 23242 
 30010 
 37642 
 46138 
 65722 
 
 18662 
 
 25324 
 32676 
 40963 
 50187 
 71442 
 
 20232 
 27429 
 35367 
 443 1 3 
 54267 
 77199 
 
 21823 
 
 29557 
 38084 
 
 47692 
 58379 
 82994 
 
 23433 
 31708 
 40828 
 51100 
 62524 
 88828 
 
 (107) 
 
TABLE 51 (Continued) 
 
 a o 
 
 MOMENT OF INERTIA OF 
 
 ABOUT AXIS BB, DEDUCTING 
 
 d = distance back to back of flange angles 
 A = net area of two plates 
 Two |" holes deducted for plates less than f" thick 
 " x" ' ' " " over ft" thick 
 If 4 one-inch holes are deducted, use values of plates 2 inches less in width 
 
 S. 
 
 * 
 
 >2 
 
 HZ 
 
 
 
 20 
 20 
 
 M 
 
 
 (1 
 
 BACK TO BACK 
 OF FLANGES [s_ 
 IN INCHES. 
 
 
 THICKNESS OF PLATE IN INCHES. 
 
 i 
 
 A 
 
 i 
 
 A 
 
 4 
 
 A 
 
 f 
 
 H 
 
 1 
 
 tt 
 
 A = 
 
 7oT 
 
 42* 
 48 -V 
 54i 
 6oi 
 724 
 
 = 9-13 
 
 11.41 
 
 13.69 
 
 15.97 
 
 18.25 
 
 20.53 
 
 22.50 
 
 24.75 
 
 27.00 
 
 29.25 
 
 339 
 4169 
 5422 
 6838 
 8419 
 12074 
 
 3812 
 5227 
 6794 
 
 8567 
 10546 
 15118 
 
 4590 
 6290 
 
 8174 
 10304 
 12681 
 18173 
 
 5374 
 7360 
 956i 
 12049 
 14825 
 21238 
 
 6162 
 8436 
 
 i955 
 13802 
 16977 
 243 1 4 
 
 6956 
 
 95 J 9 
 12356 
 
 15563 
 I 9 I 39 
 27400 
 
 7649 
 10462 
 
 T 3575 
 17094 
 21017 
 30079 
 
 8443 
 11542 
 
 14971 
 18846 
 23167 
 
 33 J 44 
 
 9242 
 12628 
 
 16374 
 20606 
 
 25324 
 36219 
 
 10046 
 13720 
 17784 
 22374 
 27491 
 39304 
 
 22 
 22 
 
 
 
 
 
 
 A = 
 
 = 10.13 
 
 12.66 
 
 .15.19 
 
 17.72 
 
 20.25 
 
 22.78 
 
 25.00 
 
 27.50 
 
 30.00 
 
 32.50 
 
 36i 
 
 424 
 48i 
 54i 
 6o 
 72i 
 
 337 2 
 4626 
 6016 
 
 7588 
 9342 
 13397 
 
 4230 
 5800 
 
 7539 
 9506 
 11701 
 16775 
 
 5093 
 6980 
 9070 
 
 11434 
 14071 
 20165 
 
 5963 
 8167 
 10609 
 
 i337o 
 16449 
 23566 
 
 6838 
 9361 
 12156 
 
 I S3 I S 
 18838 
 26979 
 
 7719 
 10562 
 13710 
 17268 
 21236 
 30403 
 
 8499 
 11624 
 15084 
 18993 
 23353 
 3342i 
 
 938i 
 12824 
 16635 
 20940 
 
 25741 
 36827 
 
 10269 
 14031 
 18193 
 22896 
 28138 
 40243 
 
 1163 
 
 15244 
 19760 
 24860 
 30546 
 43672 
 
 24 
 
 A = 
 
 =11.13 
 
 13-91 
 
 16.69 
 
 19.47 
 
 22.25 
 
 25.03 
 
 27.50 
 
 30.25 
 
 33-00 
 
 35-75 
 
 2 4 
 u 
 
 M 
 
 36* 
 
 42* 
 484 
 544 
 604 
 72^ 
 
 3705 
 5083 
 6610 
 
 8337 
 10264 
 14720 
 
 4648 
 6372 
 8284 
 
 10445 
 12857 
 18432 
 
 5596 
 7669 
 9966 
 12563 
 15460 
 22156 
 
 655 1 
 8974 
 11657 
 14690 
 18074 
 25893 
 
 75 J 3 
 10286 
 
 !335 6 
 16827 
 20699 
 29643 
 
 8481 
 11605 
 15064 
 18974 
 
 2 3334 
 334o6 
 
 9349 
 12787 
 16592 
 20892 
 25688 
 36763 
 
 10319 
 14107 
 18298 
 23034 
 38315 
 40509 
 
 11296 
 
 J 5434 
 20013 
 25185 
 30952 
 44268 
 
 12279 
 16769 
 21736 
 27346 
 336oo 
 48039 
 
 26 
 
 A = 
 
 
 
 
 
 
 
 
 30.00 
 
 33-00 
 
 36.00 
 
 39-00 
 
 26 
 
 
 
 
 
 42i 
 48^ 
 544 
 604 
 
 72i 
 
 13949 
 18101 
 22792 
 28023 
 40106 
 
 15389 
 19962 
 25128 
 30889 
 44192 
 
 16837 
 21832 
 
 27475 
 33766 
 48292 
 
 18293 
 23712 
 29832 
 
 36655 
 52406 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 : 
 
 
 
 
 
 
 28 
 
 38 
 
 
 ( 
 
 A = 
 
 32.50 
 
 35-75 
 
 39-00 
 
 42.25 
 
 424 
 484 
 54i 
 604 
 72^ 
 
 15112 
 19609 
 24691 
 
 3035 8 
 43448 
 
 16671 
 21625 
 
 27222 
 
 33463 
 47874 
 
 18240 
 23651 
 29764 
 36580 
 5 2 3 l6 
 
 19817 
 25688 
 32318 
 39709 
 56773 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 32 
 
 A = 
 
 I 
 
 
 
 
 
 
 37.50 
 
 41.25 
 
 45-00 
 
 48.75 
 
 32 
 
 
 
 
 (( 
 
 424 
 48| 
 54i 
 6o 
 
 72* 
 
 J 7437 
 22626 
 28490 
 35029 
 50132 
 
 19236 
 24952 
 31410 
 38611 
 55240 
 
 21046 
 27290 
 
 34344 
 42207 
 60365 
 
 22866 
 29639 
 37290 
 45818 
 
 65507 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (108) 
 
TABLE 51 (Continue 
 
 TWO COVER PLATES 
 
 TWO HOLES FROM EACH PLATE 
 
 d = distance back to back of flange angles 
 A = net area of two plates 
 Two J" holes deducted for plates less than f" thick 
 
 " i" " " " " over T V thick 
 
 If 4 one-inch holes are deducted use values of plates a inches less in 
 
 width 
 
 THICKNESS OF PLATE IN INCHES. 
 
 I \ if 
 
 I 
 
 1| 
 
 ii 
 
 if 
 
 ii 
 
 if 
 
 if 
 
 i* 
 
 2 
 
 31.50 
 
 33-75 
 
 36.00 
 
 40.50 
 
 45.00 
 
 49.50 
 
 54.00 
 
 58.50 
 
 63.00 
 
 67.50 
 
 72.0O 
 
 10856 
 14818 
 19201 
 24150 
 29666 
 42400 
 
 11671 
 
 15923 
 20625 
 
 25934 
 31851 
 
 45507 
 
 12491 
 
 !734 
 22056 
 27726 
 
 34044 
 48624 
 
 14148 
 19274 
 
 24939 
 3 J 333 
 38456 
 54889 
 
 15827 
 21540 
 27851 
 34972 
 42903 
 61196 
 
 17527 
 23831 
 30792 
 38644 
 47387 
 67545 
 
 19250 
 26147 
 33761 
 42347 
 5*905 
 
 73937 
 
 20994 
 28489 
 36760 
 46083 
 56460 
 80372 
 
 22761 
 
 30857 
 39788 
 49852 
 61050 
 86849 
 
 24550 
 3325 1 
 42845 
 53653 
 65677 
 93368 
 
 26362 
 35671 
 
 4593 1 
 57487 
 70339 
 9993 1 
 
 35-00 
 
 37.50 
 
 40.00 
 
 45-00 
 
 50.00 
 
 55-00 
 
 60.00 
 
 65.00 
 
 70.00 
 
 75.00 
 
 80.00 
 
 12062 
 16465 
 21334 
 26833 
 3 2 9 6 3 
 47111 
 
 12968 
 17692 
 22916 
 28815 
 35390 
 50563 
 
 ^879 
 18926 
 
 24506 
 30806 
 37826 
 54026 
 
 15720 
 21416 
 27710 
 34814 
 42729 
 60987 
 
 17585 
 2 3933 
 30945 
 38858 
 47670 
 67995 
 
 19475 
 26478 
 
 34213 
 42937 
 52652 
 
 7505 
 
 21388 
 29052 
 375*2 
 47052 
 57672 
 82152 
 
 23327 
 31655 
 40844 
 51203 
 62733 
 89302 
 
 25290 
 34286 
 44208 
 55391 
 67833 
 96498 
 
 27278 
 36946 
 47605 
 59614 
 72974 
 103742 
 
 29291 
 39634 
 5 I0 34 
 63874 
 78i54 
 111034 
 
 38.50 
 
 41.25 
 
 44.00 
 
 49.50 
 
 55-00 
 
 60.50 
 
 66.00 
 
 7L50 
 
 77.00 
 
 82.50 
 
 88.00 
 
 13268 
 18111 
 23467 
 295 i 7 
 36259 
 51823 
 
 14265 
 19461 
 25208 
 3 l6 97 
 38929 
 556i9 
 45-00 
 
 15267 
 20819 
 26957 
 33887 
 41609 
 59429 
 
 17292 
 
 23557 
 30481 
 38296 
 47001 
 67086 
 
 19344 
 26326 
 
 34040 
 42744 
 52437 
 74795 
 
 21422 
 29126 
 37634 
 47231 
 57917 
 82555 
 
 23527 
 3*958 
 41264 
 51758 
 63440 
 90368 
 
 25659 
 34820 
 44928 
 
 56324 
 69006 
 98232 
 
 27818 
 
 37714 
 48629 
 60930 
 74616 
 106148 
 
 30005 
 40640 
 52337 
 65576 
 80271 
 114116 
 
 32227 
 43605 
 
 56145 
 70269 
 
 85977 
 122145 
 
 42.00 
 
 48.00 
 
 54.00 
 
 60.00 
 
 66.00 
 
 72.00 
 
 78.00 
 
 84.00 
 
 90.00 
 
 96.00 
 
 J 975 8 
 25601 
 32200 
 39555 
 56534 
 
 21230 
 27499 
 34578 
 42467 
 60676 
 
 22711 
 29407 
 36967 
 
 4539 1 
 64831 
 
 25699 
 33252 
 41777 
 5 I2 74 
 73i85 
 
 28719 
 
 37 J 34 
 46629 
 
 57204 
 8i594 
 
 3*774 
 41055 
 
 5 J 525 
 63182 
 90060 
 
 34863 
 45 OI 5 
 56463 
 69207 
 
 98583 
 
 37985 
 49013 
 6i444 
 75279 
 107162 
 
 4U43 
 53050 
 66469 
 81400 
 115798 
 
 44334 
 57125 
 
 7*537 
 87568 
 124490 
 
 4756i 
 61241 
 76649 
 93785 
 133241 
 
 45.50 
 
 48.75 
 
 52.00 
 
 58.50 
 
 65.00 
 
 7L50 
 
 78.00 
 
 84.50 
 
 91.00 
 
 97.50 
 
 104.00 
 
 21404 
 
 27734 
 34883 
 42852 
 61245 
 
 22999 
 29791 
 3746o 
 46006 
 65732 
 
 24604 
 31858 
 40048 
 49 J 74 
 70234 
 
 27840 
 36023 
 45258 
 55548 
 79284 
 
 3i"3 
 
 40229 
 
 505*5 
 61971 
 88394 
 
 34422 
 44476 
 558i8 
 68447 
 97565 
 
 37768 
 48766 
 61168 
 
 74974 
 106798 
 
 4H5 1 
 53097 
 66564 
 
 81552 
 116092 
 
 44571 
 57470 
 72007 
 88183 
 125447 
 
 48029 
 61886 
 77498 
 94865 
 134864 
 
 5*524 
 66344 
 83036 
 101600 
 144344 
 
 52.50 
 
 56.25 
 
 60.00 
 
 67.50 
 
 75.00 
 
 82.50 
 
 90.00 
 
 97.50 
 
 105.00 
 
 112.50 
 
 120.00 
 
 24697 
 32001 
 40250 
 
 49444 
 70667 
 
 26538 
 34374 
 43223 
 53084 
 75844 
 
 28389 
 
 36759 
 46209 
 
 56739 
 81039 
 
 32123 
 
 41565 
 52221 
 
 64093 
 91481 
 
 35899 
 46418 
 58287 
 
 7^05 
 101993 
 
 397 i 7 
 5^9 
 64405 
 78977 
 
 H2575 
 
 43578 
 56268 
 70578 
 86508 
 123228 
 
 47481 
 61265 
 76805 
 94099 
 I 3395 2 
 
 51428 
 66311 
 83085 
 101749 
 144746 
 
 55417 
 71406 
 89420 
 109459 
 155613 
 
 5945 
 7655 
 95810 
 117230 
 166550 
 
 (109) 
 
TIMBER COLUMNS, BEAMS, AND FLOORING 
 
 STRENGTH OF TIMBER 
 
 The following data on strength of timber, pages no to 114, are taken 
 from the Report of a Committee of the American International Associa- 
 tion of Railway Superintendents of Bridges and Buildings on " Strength 
 of Bridge and Trestle Timbers." The report was made in 1895. 
 
 The test data at hand and the summary of criticisms of leading authorities seem 
 to indicate the general correctness of the following conclusions: 
 
 (1) Of all structural materials used for bridges and trestles, timber is the most 
 variable as to the properties and strength of the different pieces classed as belonging 
 to the same species; hence it is impossible to establish close and reliable limits for each 
 species. 
 
 (2) The various names applied to one and the same species in different parts of 
 the country lead to great confusion in classifying or applying results of tests. 
 
 (3) Variations in strength are generally directly proportional to the density or 
 weight of timber. 
 
 (4) As a rule, a reduction of moisture is accompanied by an increase in strength; 
 in other words, seasoned lumber is stronger than green lumber. 
 
 (5) Structures should be, in general, designed for the strength of green or moder- 
 ately seasoned lumber of average quality and not for a high grade of well-seasoned 
 material. 
 
 (6) Age and use do not destroy the strength of timber unless decay or season check- 
 ing takes place. 
 
 (7) Timber, unlike materials of a more homogeneous nature, as iron and steel, 
 has no well-defined limit of elasticity. As a rule, it can be strained very near to the 
 breaking point without serious injury, which accounts for the continuous use of many 
 timber structures with the material strained far beyond the usually accepted safe 
 limits. On the other hand, sudden and frequently inexplicable failures of individual 
 sticks at very low limits are liable to occur. 
 
 (8) Knots, even when sound and tight, are one of the most objectionable features 
 of timber, both for beams and struts. The full-size tests of every experimenter have 
 demonstrated not only that beams break at knots, but that invariably timber struts 
 will fail at a knot or owing to the proximity of a knot, by reducing the effective area 
 of the stick and causing curly and cross-grained fibers, thus exploding the old prac- 
 tical view that sound and tight knots are not detrimental to timber in compression. 
 
 (no) 
 
TIMBER COLUMNS, BEAMS, AND FLOORING 
 
 (9) Excepting in top logs of a tree or very small and young timber, the heart wood 
 is, as a rule, not as strong as the material farther away from the heart. This becomes 
 more generally apparent, in practice, in large sticks with considerable heart wood 
 cut from old trees in which the heart has begun to decay or been wind shaken. 
 Beams cut from such material frequently season check along middle of beam and fail 
 by longitudinal shearing. 
 
 (10) Top logs are not as strong as butt logs, provided the latter have sound timber. 
 
 (n) The results of compression tests are more uniform and vary less for one spe- 
 cies of timber than any other kind of test; hence, if only one kind of test can be made, 
 it would seem that a compressive test will furnish the most reliable comparative results. 
 
 (12) Long timber columns generally fail by lateral deflection or "buckling" when 
 the length exceeds the least cross-sectional dimensions of the stick by 20; in other 
 words, when the column is longer than 20 diameters. In practice the unit stress for 
 all columns over 15 diameters should be reduced in accordance with the various rules 
 and formulae established for long columns. 
 
 (13) Uneven end bearings and eccentric loading of columns produce more serious 
 disturbances than are usually assumed. 
 
 (14) The tests of full-size long compound columns, composed of several sticks 
 bolted and fastened together at intervals, show essentially the same ultimate unit 
 resistance for the compound column as each component stick would have if consid- 
 ered as a column by itself. 
 
 (15) More attention should be given in practice to the proper proportioning of 
 bearing areas; in other words, the compressive bearing resistance of timber with and 
 across grain, especially the latter, owing to the tendency of an excessive crushing 
 stress across grain to indent the timber, thereby destroying the fiber and increasing 
 the liability to speedy decay, especially when exposed to the weather and the con- 
 tinual working produced by moving loads. 
 
 The aim of your committee has been to examine the conflicting test data at hand, 
 attributing the proper degree of importance to the various results and recommenda- 
 tions, and then to establish a set of units that can be accepted as fair average values, 
 as far as known to-day, for the ordinary quality of each species of timber and corre- 
 sponding to the usual conditions and sizes of timbers encountered in practice. The 
 difficulties of executing such a task successfully can not be overrated, owing to the 
 m eagerness and frequently the indefiniteness of the available test data, and especially 
 the great range of physical properties in different sticks of the same general species, 
 not only due to the locality where it is grown, but also to the condition of the timber 
 as regards the percentage of moisture, degree of seasoning, physical characteristics, 
 grain, texture, proportion of hard and soft fibers, presence of knots, etc., all of which 
 affect the question of strength. 
 
 (in) 
 
TIMBER COLUMNS, BEAMS, AND FLOORING 
 
 Your committee recommends, upon the basis of the test data at hand at the present 
 time, the average units for the ultimate breaking stresses of the principal timbers 
 used in bridge and trestle constructions shown in the accompanying table. 
 
 Attention should also be called to the necessity of examining the resistance of a 
 beam to longitudinal shearing along the neutral axis, as beams under transverse load- 
 ing frequently fail by longitudinal shearing in the place of transverse rupture. 
 
 In addition to the ultimate breaking unit stress the designer of a timber structure 
 has to establish the safe allowable unit stress for the species of timber to be used. This 
 will vary for each particular class of structures and individual conditions. The selec- 
 tion of the proper "factor of safety" is largely a question of personal judgment and 
 experience, and offers the best opportunity for the display of analytical and practical 
 ability on the part of the designer. It is difficult to give specific rules. The following 
 are some of the controlling questions to be considered: 
 
 The class of structure, whether temporary or permanent, and the nature of the 
 oading, whether dead or live : if live, then whether the application of the load is 
 accompanied by severe dynamic shocks and pounding of the structure. Whether the 
 assumed loading for calculations is the absolute maximum, rarely to be applied in 
 practice, or a possibility that may frequently take place. Prolonged heavy, steady 
 loading, and also alternate tensile and compressive stresses in the same place will call 
 for lower averages. Information as to whether the assumed breaking stresses are 
 based on full-size or small-size tests, or only on interpolated values, averaged from 
 tests of similar species of timber, is valuable in order to attribute the proper degree 
 of importance to recommended average values. The class of timber to be used and its 
 condition and quality. Finally, the particular kind of strain the stick is to be sub- 
 jected to and its position in the structure with regard to its importance and the possible 
 damage that might be caused by its failure. 
 
 In order to present something definite on this subject, your committee presents 
 the accompanying table, showing the average safe allowable working unit stresses for 
 the principal bridge and trestle timbers, prepared to meet the average conditions 
 existing in railroad timber structures, the units being based upon the ultimate break- 
 ing unit stresses recommended by your committee and the following factors of safety, 
 
 Tension with and across grain 10 
 
 Compression with grain 5 
 
 Compression across grain 4 
 
 Transverse rupture, extreme fiber stress 6 
 
 Transverse rupture, modulus of elasticity 2 
 
 Shearing with and across grain 4 
 
 (112) 
 
s 
 
 
 
 03 
 
 < 10 
 
 t* M 
 
 O 
 
 1 
 
 o 
 
 w . 
 
 I 
 
 w" ,,- 
 
 W S5 
 
 8 
 
 2 * 
 
 ^ 
 
 o 1 
 
 5.S 
 
 Modulu 
 Elastici 
 
 el 
 
 s-i 
 IS 
 
 MMM 
 
 oo ooooo 'oooooooo 
 
 OO OOOOO .OOOOOOioO 
 
 t^ N MOOOOOt^ OOt^\OOOCOOt^OO 
 
 cu CX 
 
 is 
 
 U 
 
 . a 
 
 
 2 . 
 " _c 
 
S g 
 
 S ^ 
 
 ffl 
 < 
 H 
 
 J* 
 
 fc P? 
 O W 
 W 
 
 3 I 
 
 w H 
 
 M 
 
 sj 
 
 03 
 
 O t> 
 
 l'| 
 
 I I 
 S3 
 
 81 
 
 W W 
 W Q 
 H 
 
 O M 
 M 
 
 g 
 
 W 
 
 RSE 
 RE. 
 
 b2 
 <o 
 
 
 
 ij 
 
 s 
 
 "8 
 
 
 O to to to 
 
 II 
 
 8 8 
 
 . to to 
 
 I? 
 
 I '&. 
 
 ^ , . o *a 
 
 
 
 X 13 a ' ^ 's 1 
 
 l S|l jf JJ 
 
 a O &II1I 
 
 ("4) 
 
TABLE 54 
 
 SAFE LOADS FOR WOOD COLUMNS 
 OT POUNDS PER SQUARE INCH OF CROSS-SECTION 
 
 The following safe loads are obtained from the formula 
 p = p 700+ *5 c 
 
 700 + 15 c+ c* 
 
 where P = allowable working stress in Ibs. per sq. in. for long columns. 
 F = allowable working stress in Ibs. per sq. in. for short columns. 
 c = unbraced length in inches divided by least cross-sectional dimen- 
 sion in inches. 
 
 VALUES OF F. 
 
 
 VALUES OF F. 
 
 C 
 
 700 
 
 800 
 
 900 
 
 1000 
 
 1200 
 
 
 C 
 
 700 
 
 800 
 
 000 
 
 IOOO 
 
 1200 
 
 I 
 
 699 
 
 799 
 
 899 
 
 999 
 
 1198 
 
 
 21 
 
 488 
 
 558 
 
 627 
 
 697 
 
 837 
 
 2 
 
 696 
 
 796 
 
 895 
 
 995 
 
 "93 
 
 
 22 
 
 476 
 
 544 
 
 612 
 
 680 
 
 816 
 
 3 
 
 692 
 
 790 
 
 889 
 
 988 
 
 1186 
 
 
 23 
 
 465 
 
 S3 1 
 
 598 
 
 664 
 
 797 
 
 4 
 
 686 
 
 783 
 
 881 
 
 979 
 
 "75 
 
 
 2 4 
 
 454 
 
 5i8 
 
 583 
 
 648 
 
 777 
 
 5 
 
 678 
 
 775 
 
 872 
 
 969 
 
 1162 
 
 
 25 
 
 443 
 
 506 
 
 569 
 
 632 
 
 759 
 
 6 
 
 669 
 
 765 
 
 86 1 
 
 95 6 
 
 1148 
 
 
 26 
 
 432 
 
 494 
 
 555 
 
 617 
 
 74i 
 
 7 
 
 660 
 
 754 
 
 848 
 
 943 
 
 1131 
 
 
 27 
 
 422 
 
 482 
 
 542 
 
 603 
 
 723 
 
 8 
 
 649 
 
 742 
 
 835 
 
 928 
 
 1113 
 
 
 28 
 
 412 
 
 47 1 
 
 529 
 
 588 
 
 706 
 
 9 
 
 638 
 
 729 
 
 820 
 
 912 
 
 1094 
 
 
 29 
 
 402 
 
 460 
 
 5i7 
 
 574 
 
 689 
 
 10 
 
 626 
 
 716 
 
 805 
 
 895 
 
 1074 
 
 
 30 
 
 393 
 
 449 
 
 55 
 
 56i 
 
 673 
 
 ii 
 
 614 
 
 702 
 
 790 
 
 877 
 
 I0 53 
 
 
 32 
 
 375 
 
 428 
 
 482 
 
 535 
 
 642 
 
 12 
 
 602 
 
 688 
 
 773 
 
 859 
 
 1031 
 
 
 34 
 
 358 
 
 409 
 
 460 
 
 5 11 
 
 614 
 
 13 
 
 589 
 
 673 
 
 757 
 
 841 
 
 1009 
 
 
 36 
 
 342 
 
 39 1 
 
 440 
 
 489 
 
 587 
 
 14 
 
 576 
 
 658 
 
 74i 
 
 823 
 
 987 
 
 
 38 
 
 328 
 
 374 
 
 421 
 
 468 
 
 56i 
 
 15 
 
 563 
 
 644 
 
 724 
 
 804 
 
 965 
 
 
 40 
 
 3'4 
 
 359 
 
 403 
 
 448 
 
 538 
 
 16 
 
 55 
 
 629 
 
 707 
 
 786 
 
 943 
 
 
 42 
 
 301 
 
 344 
 
 387 
 
 43 
 
 5i6 
 
 i7 
 
 537 
 
 614 
 
 691 
 
 768 
 
 921 
 
 
 44 
 
 289 
 
 33 
 
 371 
 
 4i3 
 
 495 
 
 18 
 
 525 
 
 600 
 
 675 
 
 75o 
 
 900 
 
 
 46 
 
 278 
 
 317 
 
 357 
 
 397 
 
 476 
 
 19 
 
 512 
 
 585 
 
 659 
 
 732 
 
 878 
 
 
 48 
 
 267 
 
 305 
 
 343 
 
 38i 
 
 458 
 
 20 
 
 500 
 
 57i 
 
 643 
 
 7M 
 
 857 
 
 
 50 
 
 257 
 
 294 
 
 33 
 
 367 
 
 441 
 
 
 
 
 
 
 
 
 60 
 
 215 
 
 246 
 
 277 
 
 308 
 
 369 
 
 
 
 
 
 
 
 
 70 
 
 184 
 
 211 
 
 237 
 
 263 
 
 3i6 
 
 Example i. Required the size of a Southern Pine column capable of supporting a direct load of 
 40.000 pounds, the unbraced length of the column being 16 feet. Solution: Assuming an 8 X 8, c = 
 iQ2 -7- 8 = 24, F = loop for Southern Pine. From the above table for these values of c and F, P = 648. 
 Let /" = load applied in pounds per square inch, A area of cross-section of column in square inches, 
 W = total load applied in pounds, then P 1 = W -f- A = 40,000 -f- 64 = 625. Since the load applied is 
 less than the allowable load, the column is safe. 
 
 Example 2. Required the size of a Southern Pine column capable of supporting a load of 40,000 
 pounds, so applied as to produce a bending moment of 18,000 inch-pounds, the unbraced length of the 
 column is 16 feet. Solution: Assuming an 8 X 10, =24, F= looo, P=648, A = 80. Placing the 
 column so that the lo-inch dimension will be effective in resisting bending, 7 = 667, 6=^5. Then 
 
 l8 ' 0><5 ^ 635 - Since P' is less than P, the column is safe. 
 
TABLE 55 
 
 SAFE LOADS (UNIFORMLY DISTRIBUTED) FOR BEAMS 1" THICK 
 
 Based on extreme fiber stress of 100O pounds per square inch. The table is for total 
 uniform loads in pounds, for beams one inch thick. The values are for an actual depth of \ 
 inch less than the nominal depth, or a 4-inch beam is reduced to 3! inches deep. 
 
 IB 
 
 tfL 
 
 NOMINAL DEPTH OF BEAM. 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 10 
 
 12 
 
 14 
 
 16 
 
 18 
 
 20 
 
 22 
 
 24 
 
 4 
 
 391 
 
 627 
 
 918 
 
 1265 
 
 1668 
 
 2127 
 
 2640 
 
 3835 
 
 5268 
 
 6891 
 
 8752 
 
 10835 
 
 I3J4 1 
 
 15668 
 
 5 
 
 3*3 
 
 Soi 
 
 735 
 
 IOI2 
 
 1334 
 
 1701 
 
 2112 
 
 3068- 
 
 4201 
 
 55i2 
 
 7000 
 
 8668 
 
 10512 
 
 I2 535 
 
 6 
 
 260 
 
 418 
 
 612 
 
 844 
 
 III2 
 
 1418 
 
 1760 
 
 2557 
 
 35i2 
 
 4594 
 
 5834 
 
 7224 
 
 8760 
 
 10446 
 
 7 
 
 223 
 
 358 
 
 5 2 5 
 
 723 
 
 953 
 
 1215 
 
 1508 
 
 2191 
 
 3001 
 
 3937 
 
 5001 
 
 6191 
 
 759 
 
 8953 
 
 8 
 
 195 
 
 3i3 
 
 459 
 
 633 
 
 834 
 
 1063 
 
 1320 
 
 1918 
 
 2634 
 
 3446 
 
 4375 
 
 54i8 
 
 6570 
 
 7834 
 
 9 
 
 174 
 
 279 
 
 408 
 
 563 
 
 741 
 
 944 
 
 H73 
 
 1704 
 
 2341 
 
 3 6 3 
 
 3889 
 
 4815 
 
 5840 
 
 6964 
 
 10 
 
 156 
 
 251 
 
 367 
 
 5 06 
 
 667 
 
 851 
 
 1056 
 
 *534 
 
 2IOO 
 
 2756 
 
 35 
 
 4334 
 
 5256 
 
 6267 
 
 ii 
 
 142 
 
 228 
 
 334 
 
 460 
 
 607 
 
 774 
 
 9 60 
 
 J 394 
 
 1910 
 
 2505 
 
 3182 
 
 3940 
 
 4778 
 
 5698 
 
 12 
 
 130 
 
 209 
 
 306 
 
 422 
 
 556 
 
 709 
 
 880 
 
 1278 
 
 I75 6 
 
 2297 
 
 2917 
 
 3612 
 
 4380 
 
 5 22 3 
 
 13 
 
 1 20 
 
 i93 
 
 283 
 
 389 
 
 5 T 3 
 
 654 
 
 812 
 
 1180 
 
 1616 
 
 2120 
 
 2692 
 
 3333 
 
 4043 
 
 4821 
 
 14 
 
 112 
 
 179 
 
 262 
 
 362 
 
 477 
 
 608 
 
 754 
 
 I0 95 
 
 1500 
 
 1968 
 
 2500 
 
 395 
 
 3754 
 
 4477 
 
 15 
 
 IO4 
 
 167 
 
 245 
 
 338 
 
 445 
 
 567 
 
 704 
 
 4023 
 
 1400 
 
 1838 
 
 2333 
 
 2889 
 
 3504 
 
 4178 
 
 16 
 
 9 8 
 
 r 57 
 
 230 
 
 3 l6 
 
 417 
 
 532 
 
 660 
 
 959 
 
 W7 
 
 1723 
 
 2188 
 
 2709 
 
 3285 
 
 39*7 
 
 17 
 
 
 147 
 
 216 
 
 2 9 8 
 
 393 
 
 500 
 
 621 
 
 902 
 
 1236 
 
 l62I 
 
 2059 
 
 2549 
 
 3092 
 
 3687 
 
 18 
 
 
 i39 
 
 204 
 
 28l 
 
 37i 
 
 472 
 
 587 
 
 852 
 
 1170 
 
 1531 
 
 1944 
 
 2408 
 
 2920 
 
 3482 
 
 i9 
 
 
 132 
 
 J 93 
 
 266 
 
 35 1 
 
 448 
 
 556 
 
 807 
 
 1106 
 
 145 I 
 
 1842 
 
 2281 
 
 2767 
 
 3299 
 
 20 
 
 
 125 
 
 184 
 
 253 
 
 334 
 
 425 
 
 528 
 
 767 
 
 io54 
 
 1378 
 
 J 75 
 
 2167 
 
 2628 
 
 3*34 
 
 21 
 
 . 
 
 . 
 
 J 75 
 
 241 
 
 3i8 
 
 405 
 
 53 
 
 730 
 
 IOOO 
 
 1312 
 
 1667 
 
 2063 
 
 2503 
 
 2984 
 
 22 
 
 
 
 167 
 
 230 
 
 303 
 
 387 
 
 480 
 
 697 
 
 955 
 
 1253 
 
 !59 J 
 
 1970 
 
 2389 
 
 2849 
 
 23 
 
 
 
 160 
 
 220 
 
 290 
 
 37 
 
 459 
 
 667 
 
 917 
 
 1198 
 
 1522 
 
 1884 
 
 2286 
 
 2724 
 
 24 
 
 
 . . 
 
 i53 
 
 211 
 
 278 
 
 354 
 
 440 
 
 639 
 
 878 
 
 1149 
 
 1458 
 
 1806 
 
 2190 
 
 2611 
 
 25 
 
 
 
 
 203 
 
 267 
 
 340 
 
 423 
 
 614 
 
 840 
 
 IIO3 
 
 1400 
 
 J 734 
 
 2IO2 
 
 2507 
 
 
 
 
 26 
 
 
 
 
 IQC 
 
 2C7 
 
 327 
 
 406 
 
 CQO 
 
 808 
 
 Io6o 
 
 1 34.6 
 
 1667 
 
 2O22 
 
 241 1 
 
 27 
 
 
 
 
 A VO 
 l8 7 
 
 j 1 
 247 
 
 o / 
 315 
 
 39i 
 
 jy^ 
 5 68 
 
 780 
 
 1021 
 
 L o i t w 
 1296 
 
 1605 
 
 1947 
 
 **T* * 
 
 2321 
 
 
 
 
 28 
 
 
 
 
 181 
 
 2 3 8 
 
 34 
 
 377 
 
 548 
 
 75 
 
 984 
 
 1250 
 
 1548 
 
 1877 
 
 2238 
 
 
 
 
 2O 
 
 
 
 
 
 23O 
 
 2Q3 
 
 364. 
 
 C2Q 
 
 724. 
 
 Q^O 
 
 I 2O7 
 
 I4Q4. 
 
 1812 
 
 2164 
 
 -r 
 
 30 
 
 
 
 
 
 ^o w 
 222 
 
 *7J 
 
 283 
 
 O^"r 
 352 
 
 o y 
 
 5 11 
 
 / ^f 
 
 700 
 
 yj** 
 
 919 
 
 *\j 1 
 1167 
 
 "T^VT- 
 
 1444 
 
 !7S 2 
 
 2089 
 
 
 
 
 To obtain the safe load concentrated at the center of beam, divide the safe load given in 
 the above table by two. 
 
 (116) 
 
u 
 
 go 
 
 W | 1-3 
 
 X? 5 2 
 
 9 H its 
 
 < 
 
 H il 
 
 2 s * 
 
 ^" o a 
 
 P "g 
 
 S S 5 S-2 
 
 B I! ps 
 
 2 II |Is 
 5 h| 
 
 IH |S SIS' 
 
 3 H 5 a 
 
 
 
 = 
 
 ^ - = 
 
 O jg 4J 43 - 
 
 s 
 
 si ^-^s 
 
 squ 
 
 o 3 
 Jq II 
 
 aj * 
 
 
 
 ^ 
 
 *> p 
 
 
 vC 
 
 0000000 
 
 HI ft Tf IO H- M O 
 
 O * PO H. 10 
 POOO 10 CD 1-1 O O* 
 
 O O O O O 
 vO ^00 t^ "* 
 
 f^vO 10 M 
 
 OO *> t^-\O O 
 
 8,8 2 5-8 
 
 t^ rf H. 00 O 
 10 10 * * 
 
 OO OC O p*"iOO 
 PT5 HI O 00 O 
 Tj- -^- Tf PO PO 
 
 00000 
 
 Tj- 1- O t^- *^ 
 10 Tf <N HI O 
 
 CN 
 
 <* 
 
 O O O 
 rj- t-~ PO\O r^ N rt 
 PO N t^.\C 00 M 
 10 w O 00 tNC NO 
 
 o o o o o 
 
 00 H, M 00 
 10 HI t^. r*5 o 
 * "3- Tf 
 
 O O 
 
 ^- HI (-1 CO t^. 
 
 00 \C Tf N O 
 
 PO fO PO PO ro 
 
 8g,^^ 
 
 C\ r^-O 10 T}- 
 
 C4 C4 C4 C4 C 
 
 Ng.g,8> 
 
 PO (N HI HI O 
 
 W N N 
 
 
 ff. 
 
 O O O O 
 H* O t^ t^ 10 HI O 
 10 P NO vo *^ - vO 
 
 O O 
 
 OO rr> rj- o t^ 
 HI OO 10 ts O 
 
 00000 
 00 H. o w O 
 00 r-~ 10 1- PO 
 
 &8,88* 
 
 O O O O O 
 t^ -t fO 
 t^. t^.NO 10 10 
 
 
 
 M 
 
 
 
 
 
 
 t* 
 
 o o o o o o o 
 
 r- rr 00 rj- r>. 
 
 NO M M r*500 * O 
 
 OvO O O 10 
 
 f^ IO ^C H4 O 
 
 O O O O O 
 W H, PO 
 
 OOO t^O 10 
 
 O O O O O 
 
 o o POOO PO 
 
 o o o o o 
 
 00 * O vO 
 
 
 
 
 
 
 
 
 
 <t 
 
 ^S,^ft8g8 
 
 10 Tl- O O ^ \C W 
 
 O O O 
 
 Tf M IO <N N 
 
 00 o cs o 00 
 
 o o o o o 
 
 Tj-00 10 <N H, 
 
 NO Tf PD M M 
 
 2 8 3 a 
 
 O OOO t^O 
 
 Jo o o o 
 NO HI NO HI 
 1010 ^ * 
 
 
 
 M 
 
 
 
 
 
 o 
 
 <T! 
 
 o o o o o o o 
 
 TfOO M \C W t->. 
 O - "5 10 o m -" 
 
 O 
 
 OO ^j- -*J-vO HI 
 
 OO O ^ W HI 
 
 o o o o o 
 
 00 O vO t^OO 
 OOO t^.O IO 
 
 2 s a 
 
 10 ^ PO PO e* 
 
 So o o o 
 t^ PO OvO 
 
 W HI HI O O 
 
 
 
 
 
 
 
 
 
 n 
 
 O O O O 
 
 00 W <N N rf 10 -1 
 N N tO O O f*5 HI 
 
 8v 8 2 2 
 
 O t^vO 10 Tf 
 
 O O O 
 
 <N Tf t^. M \O 
 PO W HI HI O 
 
 O O O 
 
 HI \O <S OO IO 
 
 000 00 
 
 O O O 
 
 Hi OO IO PO O 
 
 OO t^ t^ r^ t> 
 
 
 
 
 
 
 
 
 
 -t 
 
 O O 
 
 t^ * 10 w ^\C t^ 
 
 \c <r> TJ-OO <r; c-o 
 
 O O O O O 
 pr, N u^ H. oo 
 
 Tj- C4 O O t^ 
 
 R&88 
 
 NO 10 TJ- TT ro 
 
 O O O O 
 
 t^. Hi \C HI t^. 
 C* M M O 
 
 O O O 
 PO O IO N O 
 
 O O O OOO 
 
 
 
 
 
 
 
 
 oo 
 
 T. 
 
 O ^"^ O w O 
 O rCOO vr. N O 
 
 80 o o o 
 t^ Tj- CD Tfr 
 
 00 O 10 * <*5 
 
 O 
 1000 H! 10 O 
 
 d HI M O O 
 
 O O O 
 10 H. r^ PO O 
 
 O OOO 00 00 
 
 O O 
 
 *^ ^ HI O *" 
 
 r^ t^t^.NO NO 
 
 
 
 
 
 
 
 
 
 M 
 
 O O O O O 
 
 ?t t^ N M r^.00 ro 
 rOO N OO TJ- ro 
 
 (*5 N N M M M M 
 
 O 
 
 HI HI rr; 10 c> 
 N H. o OOC 
 
 O O O 
 
 fO Cs rj- O t>- 
 00 !> t> t-~O 
 
 o o o o o 
 
 Tj- M CO O PO 
 
 NO NO 10 10 10 
 
 8g<8>8^ 
 
 10 Tf ^t * * 
 
 
 
 
 
 
 
 
 
 
 O O O O 
 
 10 rJ-00 00 N O 
 
 O O O 
 
 O N IO C\ ^*" 
 
 O 
 O IO HI OC IO 
 
 ,8^N8 : 
 
 
 
 
 t-. N 00 ro C4 HI 
 
 O OOO t t^ 
 
 NO o \o 10 o 
 
 IO IO ^J- ^ 
 
 
 
 
 
 
 
 
 
 CD 
 
 
 
 
 
 
 
 
 (S 
 
 O O 
 Tt t^ w 10 o N f*5 
 
 O 
 
 f^. H. t^ N O 
 
 S ^2 g,R 
 
 s>8,8 2 ; 
 
 
 
 
 M HI HI M 
 
 
 
 PO PO PO PO 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ^t 
 
 
 OO rO <S VO O 10 HI 
 
 cgvo* 5-8 2 
 
 o .... 
 
 
 
 
 O 
 
 
 
 
 
 
 
 
 
 
 
 
 
 / 
 < 
 - 
 j 
 
 
 * IOO t^OO O\ O 
 H 
 
 M N PO Tj-lO 
 
 \0 t^OO 00 
 
 ____', 
 
 M W tr> ^-U) 
 W W <S N N 
 
 vo t>oo ao 
 
 N fS <S N CO 
 
 (II?) 
 
i 
 
 s 
 
 w 
 
 _. 
 CVJ 
 
 oooo 
 
 M M oO CN 
 O O *-. 
 
 oo ooo 
 
 OO O O -3- PO 
 t-O M PO O 
 
 8 8 
 
 OO 
 
 O "t 
 O PO 
 
 O OOOOO 
 
 Tf t- PO POOO PO 
 
 OOOOOOO OOOOO 000 
 to t~**O to ci rf* "^ t^OO O O) cq M to O 
 oOOtoO"*tOio 
 
 OC PO OJ XO O IO M 
 
 O OOOOO OOOOO 
 
 f^ W PO <N Tf M POOO O !> M 
 
 000000 
 
 M M Tt 10 M 
 
 O O PO M toe 
 to <N PO t^. 
 
 O to -<t PO PO 
 
 o o 
 
 o"o" 
 
 PO M 
 
 00 OOOOO OOOOO 
 r^. PO toOtooOOO P) O ^)- O 
 to PO W W TfO O POOO POOO ^ - 
 GOt^-Oto-rJ-POPOMMMOO 
 
 O P< O 
 
 o ooo 
 
 OOOO OOOOO OOOOO OOOOO OOO 
 MtoPOO OOtoOO PO too too O to PO 10 O oO' OC O 
 O^POO O to M O O M POO O to O o M r^ rf O *~^ tr 
 
 t- t->. !>. t>- 
 
 OOOOOOO OOOOO OO'OO 
 
 M o "*3" O O PO *** ^* O PO to Tf 
 
 O O PO O to to O x^*O x^* O PO t^- P^ 
 
 tooO POOt^-to-^- W M O O OOOOO 
 
 PO<NOJCSMMM MMHM 
 
 OOOOOOO OO 
 
 OOOOfOf^O to toe 
 
 n o to o M o to to t~>- 
 
 O M t^ to fO M o OOO 
 
 000 OOOO 
 _MoroioOt^r^-r^- 
 
 lOO lOMOOlON Ot^-tOfO 
 
 OOOOO 
 
 Tfotocso 
 
 OOO t^-O to 
 
 O O to 10 to 
 
 OOOOOOO OOOOO OOOOO OOOOO OOOOO 
 o tooo toco to N N ooo t^ to ooo M o 1-1 IOMOOM ^too ^000 
 
 tOO^Ot^-r^<NO OM ^OO POOO -rfiHOOtOM O 1>-O rf W O OOO O 
 
 CO to ^O W M O OOO t^t--OOO 
 
 OOOOOOO OOOOO OOOOO OOOOO OOOO 
 
 OO<NOt~^OPOM MO^^OO tOTj-OOO MMOOM c<-rt-r>.O 
 ~ -*-- ~ - "SO ^J- P^ O O **** O to ^i" PO n M O O O 
 
 ^ 
 
 O OOO 
 
 OOOOOOO OOOOO OOOOO OOOOO OOOOO 
 MMt^MO^oOOTt-OOO 0<NCsrt<N o^-Ot^^t- tooc O ^ O 
 OcsOOoOOO ^toi>-O'^'O - ^OOPOOt^toMOOOOioPON 
 
 MIOMOOIO^N MOO OOO *" **- t^O O O lOlOlOtO '^^fTj-'rt-TJ- 
 POMNMMMM MM 
 
 00 OOOOO 
 
 o o -t w o o o 
 
 O O^OPOTJ-\O O 
 M O ^ <N O OOO 
 
 ON M M M M 
 
 JOOOOOO OOOOO OOOOO OOOOO OOOOO 
 O^-OO<NO POr-toOO IOMMWO O^-IOPOW (N^tot^O 
 
 lOlOTl-TtrfPOPOPOPOPOPONNMCS 
 
 OOOOO OOOOO OOOOO OOOOO 
 
 CSMPOOO POt^^MM OM POO OO N O O to O 
 
 OO to w O OO O ^ 
 
 PO PO PO PO N CN 
 
 M o OOO t^-O O to to rj- 
 
 MNCO'^-IO'O 1>00 OO MNrOTf 
 
 MMMMM MMMM<S(S(SM(S 
 
 (n8) 
 
 O\ O 
 
 III 
 
 cu.S 
 
 d 
 
 - "" 
 
 C ri ,_, 
 rt y 
 
 ^ *" o 
 
 w .3 
 
 O j 
 
 o cu 
 co DT 
 
CQ 
 H 
 
 i 
 
 5 = 
 
 n 
 
 6 j 
 
 o 
 
 NOMINAL DEPTH OF BEAM. 
 
 Jf 
 
 M rf NO r- <* oo w 
 O oc r-~ NO ro w o 
 r--. Tf SO N CO NO ^J- 
 ^- vo V> O t^ CO ON 
 
 
 
 
 
 <N ON CO NO O ^ * 
 rf Q\ N VO t- C* CO 
 ON vo Qs N VO <N CO 
 CO <! * vO t^ t~ 
 
 8 
 
 1H N f*5 Tf CO ON M 
 10 ON O PO M 10 O 
 CJ t^. O <*5 "^ ON VO 
 CO f*5 ^- Tj- IO IO \O 
 
 00 
 H 
 
 \O fO M M \O fO M 
 M \O CO O 4 s * M VO 
 \O O W 10 fT) OO N 
 N CO PO PO rj- Tt 10 
 
 NO 
 
 M 
 
 t^. <N Tj- \O VO O ^*" 
 
 \O M CO VO * ON fO 
 
 O Tt VO i^ Tj- t>. M 
 
 <s N o* cs ro fO r*- 
 
 ^ 
 
 M 
 
 vO CO O w \O CO 11 
 t^ ro vO O N CO vo 
 vo CO ON M \O CO 1-1 
 M M M (N d M ro 
 
 N 
 
 M (S CO Tf CO ON M 
 vo Tj- CO PO M O O 
 
 M ro TJ- vo ON "- **i 
 
 M ,_, M M HI M C4 
 
 
 
 M 
 
 Tf O O O rj- 
 ON <N ON vo N vo GO 
 
 t^- ON ON O *5 * vo 
 
 t* 
 
 CO * CO M ro O vO 
 er> T^- ON vo NO t^ t>- 
 
 \o t^ r^ co o i N 
 
 00 
 
 M rt NO t- Tf CO M 
 CO N NO PO M 
 VO VO NO NO GO ON O 
 
 t* 
 
 O fO vo NO PD NO ON 
 CO <* t> O fO ON vo 
 ro ^ ^- vo O O t-^ 
 
 vO 
 
 NO M Tj- t^ ON vo w 
 l-~ w -<t NO vo O vo 
 <N ro f*5 fJ * vo vo 
 
 ID 
 
 CO ON vo M co vo NO 
 CO M *i vo M "t t-> 
 M N <N fO PO rO 
 
 "t 
 
 !>. t^ vO NO vo vo rt 
 M to * vo ON w ro 
 
 M M M (H M W 
 
 m -os 
 
 HHd f NI 
 SSHMiS H3H 
 -Id 3K3M.L 
 -X3 3HVS 
 
 JO VO O O O O 
 l> ^ 00 O M N 
 
 5 c 
 
 C M 
 
 ll 
 
 12 
 
 S " 
 
 lh 
 
 111 
 
 i! 1 
 
 J!S1 
 
 111 
 153 
 
 It! 
 ^i 
 
 "c -I* -S3 
 
 =0.13 
 
 N 
 
 il! 
 
 2 S3 
 g ? 
 
 - s 
 
 Sis 
 
 U 
 
 181 
 
 2. * ^2 
 
 ill 
 
 8 C 
 
 "Ij 
 -55 
 
 1* !J 
 
 E-S5 
 1 S * 
 
 ha 
 
 Hi 
 
 Hi i 
 
 b S 8.8 
 
 .^5* 
 
 l^l 
 
 1 
 
 ts s 
 5B 
 
 (119) 
 
BENDING MOMENTS IN FOOT-POUNDS 
 
 For the following uniform loads, the joists being spaced 24 inches centers 
 
 LOAD IN POUNDS PER SQUARH FOOT. | 
 
 O 
 
 in 
 
 (S 
 
 O fO O O O co O 
 
 8O toO O O to 
 to CM O O O CM 
 
 M HI CM CO "3- tOO 
 
 CO O co O co 
 
 O O O too 
 
 IO O to CM O 
 
 M M M 
 
 JcO O co O 
 O toO Q 
 OO O CNJ to 
 H M CM CM CM 
 
 CO O co O co 
 O toO O O 
 to CM O O O 
 
 t*>- O COO ON 
 
 CM CO CO CO CO 
 
 O co O co O 
 too O O to 
 CM to O to CM 
 CM to ON CM O 
 Tf T)- Tf to IO 
 
 
 
 (N 
 
 JO 
 to o to o to o 
 CM OO "^ CM O O 
 HI M CM CO ^J- IO 
 
 O O 
 to O to O to 
 
 O CM TfOO CM 
 O t^-CO ON M 
 
 JO O 
 to O to O 
 Tj- CM O O 
 
 CM TJ-O OO O 
 
 M H M M CM 
 
 O O 
 to O to O to 
 
 O CM TfOO CM 
 CM CM CM CM CO 
 
 JO O O O 
 to O to O 
 ^t CM O O 
 COO ON CM to 
 CO co CO * * 
 
 m 
 
 r^ O to M oo to co 
 
 M M (N CM CO -^ 
 
 ON t^ Tj- 
 CM CO CO tOOO 
 
 IOO t^OO ON 
 
 8^ to TJ- O 
 "t t> ON O 
 CM O M t^- IO 
 M CM Tj- to t^ 
 
 Tf 10 "Sf O * 
 
 ON *^ Tt- O Tj- 
 CM M M CM CO 
 ON M CO 10 I-* 
 M CM CM CM CM 
 
 tO Tt" O ^ tr- 
 t^* ON O ON t^ 
 tOOO CO t^ co 
 
 ON M rfO s 
 CM CO CO CO CO 
 
 & 
 
 00 00 
 O co to rj- O co to 
 
 O ON COOO ^ O t^. 
 H H CM CO CO 
 
 to ^ CO CO rf 
 
 * too t^co 
 
 too o oo o 
 CO to CO O 
 00 M to O 
 O CM CO IO 
 
 00 O 00 O 00 
 CO to CO O CO 
 
 to M oo o rj- 
 
 O 00 ON M CO 
 
 O CO O CO O 
 to co O co to 
 co co T*- to r^ 
 to t^- ON M co 
 
 
 
 
 in 
 
 CM 
 
 M 
 
 OO CM CO O CO CM 
 IO t^ M to O to M 
 
 M M CM CM CO 
 
 00 CM CO 
 t^ 10 CM M O 
 CO <t toO *> 
 
 CO CM OO O 
 O M CM IO 
 ON O M CM 
 
 OO <N co O co 
 t^ M to O to 
 
 CO toO 00 ON 
 
 00 CM 
 M t> IO CM HI 
 HI CM "3-O CO 
 
 
 
 O to O to O to O 
 
 O CM O <N O CM O 
 
 T}-O O\ <M O O to 
 
 M M CM CM 
 
 to O to O to 
 
 CM O CM O CM 
 CO CO ^ Tj- to 
 
 O to O to O 
 O CM O CM O 
 ^- CM M O O 
 O t^OO ON O 
 
 M 
 
 to O to o in 
 
 CM O <N O CM 
 
 O HI CM TtO 
 M CM CO ^ to 
 
 HI M M M M 
 
 8 to O to O 
 CM O CM O 
 
 ON CM O O to 
 
 O 00 ON M <N 
 M HI HI CM CM 
 
 $ 
 
 CM O CM OO CO <N O 
 CO to !% ON CM O O 
 M M CM 
 
 O O 
 
 CM CO 00 CM O 
 Tj-00 CO ON to 
 CM CM CO CO Tt" 
 
 O 
 
 CM 00 00 CM O 
 M !>. ij- CM O 
 
 to too t^oo 
 
 O 
 
 CM OO CO CM O 
 CO O to to IO 
 
 CO ON O Hi CM 
 
 o o o o o 
 
 CM OO OO CM O 
 
 to too CO O 
 CO ^ toO 00 
 
 
 
 m 
 
 O ON IO ON O ON IO 
 O O r~- M O HI t^ 
 CO ^O ON CM IOOO 
 
 M M H 
 
 CM t^ H O CM 
 CM CM CO CO ^T 
 
 JON 10 ON O 
 M f^O O 
 ^J- O *> to 
 * toO O t^ 
 
 ON to ON O ON 
 
 CM O ONOO 
 00 ON ON O M 
 
 to ON O ON to 
 t*>-O O O *> 
 O O r>- r^-oo 
 
 CM CO ^ tOO 
 
 
 
 o 
 
 O 00 O CO O CO O 
 CO CO CO to CM H to 
 CM TJ-O OO HI Tj- t^. 
 M M M 
 
 00 O 00 O 00 
 
 HI CM 10 CO CO 
 HI to ON ^ ON 
 CM CM CM CO CO 
 
 O 00 O CO O 
 oo to t>- M o 
 Tf O O co O 
 T}" IO tOO t~* 
 
 00 O 00 O 00 
 
 t^OO ON O O 
 
 O 00 O 00 O 
 
 CO to CM M to 
 
 M CM CO ^ to 
 
 
 
 s 
 
 O to O to O to O 
 
 Tf t^ ^- COO M O 
 
 CM CO to t^ ON CM to 
 
 to O to O to 
 
 M o co ^ r-. 
 OO M to ON co 
 M CM CM CM CO 
 
 O to O to O 
 
 co ^ ^ toO 
 
 to O to O to 
 
 M O co rt t> 
 
 O CM, ONO co 
 O t^ t^OO ON 
 
 O to O to O 
 
 ^ COO HI O 
 Hi ON r>*O to 
 
 O O HI CM co 
 
 
 
 
 
 in 
 
 O CO O CO O co O 
 
 CO O CO O CO 
 
 O co O co O 
 
 CO O CO O CO 
 
 O co O co O 
 
 CM CO ^O 00 O CM 
 M M 
 
 M M CM CM CM 
 
 CM O O to O 
 CO CO Tf- ^t to 
 
 to O O CM CO 
 too O t^- r^* 
 
 00 ON ON M 
 
 M 
 
 * 
 
 O O O O O O O 
 
 M CM co "tvO 00 O 
 
 O 
 
 M ^- ONO to 
 CM T}-O ON CM 
 M M M M CM 
 
 O O 
 
 O ON <* M O 
 
 toco CM O O 
 
 CM CM CO CO Tt- 
 
 00000 
 
 HI T!r ONO to 
 TtoO CM r^. CM 
 TJ- ^- to too 
 
 O O 
 
 O ON *t HI O 
 *> CM OO ^J" O 
 
 O t^- 1>-CO O^ 
 
 a 
 
 O 00 O 00 O 00 O 
 
 CM OO r^O OO O to 
 
 M M CN CO ^"O t^- 
 
 00 O 00 O CO 
 O 00 O r^oo 
 
 ON O CM ^f O 
 
 O 00 O 00 O 
 CM O co O O 
 
 M <N CM CM CO 
 
 CO O OO O OO 
 O coo CM OO 
 
 COO ON COO 
 CO co co 't rj- 
 
 O 00 O 00 O 
 t^O OO O to 
 O rfoO **5 r^ 
 to to toO O 
 
 in 
 
 8O too O O to 
 to CM O O O <N 
 
 M M CM CO Tf tOO 
 
 O O O toO 
 to O to CM O 
 
 JO too O 
 O CM to O 
 OO O CM to 
 
 O toO O O 
 to CM O O O 
 
 t^ O COO ON 
 
 too O O to 
 
 CM IO O to CM 
 
 CM to ON CM O 
 
 
 
 O to O to O to O 
 
 00 CM 00 * CM O O 
 M M CM CO Tf IO 
 
 to O to O to 
 
 O CM TfOO CM 
 O t^OO ON M 
 
 O to O to O 
 
 00 -<t CM O O 
 CM TJ-O OO O 
 
 >-l t-t M H CM 
 
 to O to O to 
 
 O CM rfOO CM 
 
 CM CM CM CM CO 
 
 O to O to O 
 00 *t CM O O 
 COO ON CM to 
 CO co CO ^ rr 
 
 m 
 
 O "3" to rj- O ^ to 
 
 O ON COOO "^ O f^ 
 M M CM co co 
 
 * O ^ to TJ- 
 to rj- co co Tj- 
 
 O Tf to rj- O 
 O 00 M to O 
 s O fNi co to 
 
 "3- to TJ- O ^f 
 
 to HI co o TJ- 
 
 O CO ON HI CO 
 
 to Tf O * to 
 
 CO CO ^ to t^ 
 
 to !> ON HI CO 
 
 
 
 
 Id MI 
 
 rj- mvo i^oo o\ o 
 
 M (S ro -3- in 
 
 vO t^CX) O\ O 
 
 M N fOTj-m 
 
 VO i>00 & O 
 
 
 
 
 
 (120) 
 
TABLE 59 
 
 THICKNESS OP WOOD FLOORING 
 
 Based on a safe extreme fiber stress of 1000 pounds per square inch, the flooring assumed in 
 simple spans. To the thickness given below add \" to obtain the nominal thickness. 
 
 ll 
 
 * 
 
 UNIFORM LOAD IN POUNDS PER SQUARE FOOT. 
 
 15 
 
 20 
 
 25 
 
 30 
 
 40 
 
 50 
 
 60 
 
 70 
 
 75 
 
 80 
 
 100 
 
 I2 5 
 
 ISO 
 
 175 
 
 200 
 
 250 
 
 12 
 
 .11 
 
 12 
 
 .14 
 
 15 
 
 J7 
 
 .19 
 
 .21 
 
 2 3 
 
 .24 
 
 2 5 
 
 .27 
 
 3i 
 
 34 
 
 36 
 
 39 
 
 43 
 
 16 
 
 .14 
 
 .16 
 
 .18 
 
 .20 
 
 23 
 
 .26 
 
 .28 
 
 3 1 
 
 32 
 
 33 
 
 37 
 
 .41 
 
 45 
 
 .48 
 
 5 2 
 
 58 
 
 18 
 
 .16 
 
 .18 
 
 .21 
 
 2 3 
 
 .26 
 
 .29 
 
 3 2 
 
 34 
 
 36 
 
 37 
 
 .41 
 
 .46 
 
 50 
 
 54 
 
 58 
 
 65 
 
 24 
 
 .21 
 
 25 
 
 .27 
 
 3 
 
 35 
 
 39 
 
 .42 
 
 .46 
 
 47 
 
 49 
 
 55 
 
 .61 
 
 .67 
 
 7 2 
 
 77 
 
 87 
 
 30 
 
 .27 
 
 3 1 
 
 34 
 
 38 
 
 43 
 
 .48 
 
 53 
 
 57 
 
 59 
 
 .61 
 
 .68 
 
 77 
 
 .84 
 
 .91 
 
 97 
 
 i. 08 
 
 36 
 
 32 
 
 37 
 
 .41 
 
 45 
 
 5 2 
 
 .58 
 
 .64 
 
 .69 
 
 7i 
 
 73 
 
 .82 
 
 92 
 
 I.OI 
 
 1.09 
 
 1.16 
 
 1.30 
 
 42 
 
 37 
 
 43 
 
 .48 
 
 53 
 
 .61 
 
 .68 
 
 74 
 
 .80 
 
 83 
 
 .86 
 
 .96 
 
 1.07 
 
 1.17 
 
 1.27 
 
 1.36 
 
 1.52 
 
 48 
 
 .42 
 
 49 
 
 55 
 
 .60 
 
 .69 
 
 77 
 
 85 
 
 .92 
 
 95 
 
 .98 
 
 I.IO 
 
 1.22 
 
 i-34 
 
 i-45 
 
 !-55 
 
 i-73 
 
 60 
 
 53 
 
 .61 
 
 .68 
 
 75 
 
 87 
 
 97 
 
 i. 06 
 
 I - I 5 
 
 1.19 
 
 1.22 
 
 i-37 
 
 !-53 
 
 1.68 
 
 1.81 
 
 1.94 
 
 2.17 
 
 72 
 
 .64 
 
 73 
 
 .82 
 
 .90 
 
 1.04 
 
 1.16 
 
 1.27 
 
 I -37 
 
 1.42 
 
 1.47 
 
 1.64 
 
 1.84 
 
 2.OI 
 
 2.17 
 
 2.32 
 
 2.60 
 
 84 
 
 74 
 
 .86 
 
 .96 
 
 1.05 
 
 1. 21 
 
 1.36 
 
 1.48 
 
 i. 60 
 
 1.66 
 
 I. 7 I 
 
 1.92 
 
 2.14 
 
 2-35 
 
 2.54 
 
 2.71 
 
 3-03 
 
 96 
 
 85 
 
 .98 
 
 I.IO 
 
 1.20 
 
 I -39, !-55 
 
 1.70 
 
 1.83 
 
 1.90 
 
 1.96 
 
 2.19 
 
 2-45 
 
 2.68 
 
 2.90 
 
 3.10 
 
 3-46 
 
 To obtain the required thickness for loads concentrated at center of span, divide the concen- 
 trated load per foot of' width of flooring by one-half of the span in feet ; the resulting value is the 
 equivalent uniform load in pounds per square foot. 
 
 The above values were obtained from the following formula: 
 Let h = thickness of flooring in inches, 
 
 w = uniform load in pounds per square foot, 
 
 / = simple span in inches, 
 
 R = safe extreme fiber stress in pounds per square inch = 1000 in above table. 
 
 Then 
 
 h = 
 
 (121) 
 
THIS BOOK IS DUE ON THE LAST BATE 
 STAMPED BELOW 
 
 AN INITIAL FINE OF 25 CENTS 
 
 WILL. BE ASSESSED FOR FAILURE TO RETURN 
 THIS BOOK ON THE DATE DUE. THE PENALTY 
 WILL INCREASE TO SO CENTS ON THE FOURTH 
 DAY AND TO $1.OO ON THE SEVENTH DAY 
 OVERDUE. 
 
 
 MAY 17 1933 
 
 APR 
 
 JANOI 
 
 2003 
 
 LD 21-50m-8,'32 
 
^w 
 
 YC 13412