La 
 
 367 
 34 
 
 UC-NRLF 
 
 SEM 
 
L. P. SHIDY 
 
FORMULAS AND TABLES 
 
 ARCHITECTS AND ENGINEERS 
 
 CALCULATING THE STRAINS AND CAPACITY 
 
 OP 
 
 STRUCTUKES IN IRON AND WOOD, 
 
 BY 
 
 F. SCHUMANN, C. E. 
 
 ILLUSTRATED WITH MORE THAN THREE HUNDRED DIAGRAMS, DESiGSEL .uSi> 
 ENGRAVED ESPECIALLY FOR THIS WORK BY J. C. LYONS. 
 
 WASHINGTON CITY: 
 
 WARREN CHOATE & CO. 
 
 1873. 
 

 Entered according to Act of Congress, in the year 1873, by 
 
 F. SCHUMANN, 
 In the Office of the Librarian of Congress, at Washington. 
 
 IN ME?/!Of?IAM 
 
 KL 
 
 STEREOTYPED BY 
 
 tt OILL A WITHEROW, 
 
 WASHINGTON, D. C. 
 

 
 THIS VOLUME 
 
 is 
 RESPECTFULLY DEDICATED 
 
 TO 
 
 A. B. MULLETT, 
 
 gUPERVISING ARCHITECT OF THE U. 8. TREASURY DEPARTMENT, 
 
 BY THE AUTHOR. 
 
 (iii) 
 
CONTENTS. 
 
 EEEATA. 
 
 On page 4, 10th line from bottom, read - - instead of 30. 
 
 On page 4, 10th line from bottom, read 10.0036 instead of 
 10.036. 
 
 a 
 On page 4, 14th, 15th, and 16th lines from bottom, read - 
 
 instead of a. 
 
 On page 32, Fig. 70, insert I = distance between supports. 
 
 On page 34, Fiq. 72, insert I = distance between supports. 
 
 On page 34, Fig. 74, insert I = length of beam. 
 
 On pages 38 and 39 w = total weight of beam between supports. 
 
 On page 39, 5th line from top, read 1099000 instead of 1000000. 
 
 On page 39, 5th line from top, read 1754 instead of 1757. 
 
 On pages 144 and 145, in formulas for H n , change places of last 
 minus sign with foregoing plus sign. (See 13th line from top.) 
 
 Page 145, lines 1 to 7 from bottom, ~| Change places of Cand T 
 
 Page 146, lines 1 to 3 from top, > under strains in Figs. 
 
 Page 146, lines 13 to 22 from top, J 225, 226, 227, and 228. 
 
 On page 149, 1st line from bottom, read -- instead 
 
 //, 
 
 of- 
 
 N 
 
 On page 197, 7th line from bottom, read 3.14159 instead of 
 1.14159. 
 On page 204, 1st line from bottom, read A-\- A, instead ofAA,. 
 
 Static and moving loads on bridges of wrought iron.,,... 192, 193 
 (vii) 
 
CONTENTS. 
 
 PAGES. 
 
 Summary of definitions and general principles 1-5 
 
 ^Moments of inertia and resistance of various sections.... 5-25 
 
 Strength of materials, &c 26-29 
 
 Resistance to cross-breaking and shearing 29 
 
 Capacity and strength of beams 29-99 
 
 Pressure on supports 100-102 
 
 Compressive strains and pressure on supports 102 
 
 Sloping beams, rafters, &c 102-103 
 
 Resistance to crushing 103 
 
 Strength of columns, pillars, and struts 103-110 
 
 Parallelogram of forces Ill 
 
 Strains in frames 112-114 
 
 Strains in boom derricks 114-115 
 
 Strains in trusses.... 115-121 
 
 Strains in trussed beams 122-125 
 
 Strains in trusses with parallel booms 126-146 
 
 Strains in parabolic curved trusses 147 
 
 "Bow-string girders" 147-153 
 
 Capacity and strength of parabolic arched beams or ribs 
 
 originally curved 153, 154 
 
 Strains in a polygonal frame 154, 155 
 
 Strains in roof trusses 156-178 
 
 Pressure of wind on roofs 178, 179 
 
 Pressure of snow on roofs 180 
 
 Tie rods and bars 181, 183 
 
 Joints or connections in iron constructions 184-186 
 
 Dimensions of bolts and nuts 187, 188 
 
 Compound strain in horizontal and sloping beams 188-190 
 
 Weight of moving loads 191 
 
 Static and moving loads on bridges of wrought iron 192, 193 
 
 (vii) 
 
Vlll CONTENTS. 
 
 MISCELLANEOUS. 
 
 PAGES. 
 
 Geometry 197-201 
 
 Center of gravity of planes 202-204 
 
 Trigonometrical formulas 205 
 
 Trigonometrical functions 206-217 
 
 Circumference, area, and cubic contents of circles 218-223 
 
 Specific gravities of materials 224-226 
 
 Weight of a superficial inch of wrought and cast iron... 227 
 
 Weight per square foot of metals 228 
 
 Weight of a lineal foot of flat and square bar iron 229-233 
 
 Weight of a lineal foot of rolled round iron 234 
 
 Weight of bolts, nuts, and heads 235-237 
 
 Weight of materials used in building 238 1 
 
 Divisions of a foot expressed in equivalent decimals 239 
 
 Table for comparing measures and weights of different 
 
 countries 240, 241 
 
 To cut the strongest and stiffest beam from a log 242 
 
FORMULAS AND TABLES 
 
 FOR 
 
 ARCHITECTS AND ENGINEERS. 
 
 Summary of Definitions and General Principles. 
 
 EXTERNAL FORCES are those forces (loads, &c.) which cause or 
 tend to cause the rupture of a structure. 
 
 INTERNAL FORCES are those forces which resist the external 
 forces; when one balances the other, the structure is said to pos 
 sess Stability 
 
 EXTERNAL FOKCKS. INTERNAL FORCES. 
 
 Compressive strain. Resistance to Compression. 
 
 Tensional strain. Resistance to Tension. 
 
 Shearing strain. Resistance to Shearing. 
 
 Cross-breaking strain. Resistance to Cross-breaking. 
 
 COMPRESSION causes the material to fail by crushing or buck 
 ling, or both. 
 
 RESISTANCE to direct Crushing: In case pillars, blocks, struts, 
 or rods, along which the strains act, are not so long in propor 
 tion to their diameter as to have a tendency to give way by 
 bending sideways. This includes 
 
 Stone and brick pillars and blocks, of ordinary proportions; 
 Pillars, struts, and rods of cast iron, in which the length is 
 not more than five times the diameter, approximately; 
 
 Pillars, struts, and rods of wrought iron, in which the length 
 is not more than ten times the diameter, approximately ; 
 
 Pillars, struts, and rods of dry timber, in which the length is 
 not more than twenty times the diameter. 
 Let W == Crushing load in Ibs. 
 
 C= Ultimate resistance of material to crushing in 
 
 Ibs. per square inch. 
 A = Sectional area of pillar, &c., in square inches. 
 
 Then will TP = A X C; and A = -^- 
 
 C 
 
 TENSION, causes the material to be torn asunder. 
 (1) 
 
AND GENERAL PRINCIPLES. 
 
 Resistance of bars, &<?., to teaiing: the ultimate strength of a 
 bir (co :te.fcring) is : whssa 
 
 T= Ultimate resistance of the material to tearing, in 
 
 Ibs. per square inch. 
 W= Tearing load in Ibs. 
 A = Sectional area of bar, in square inches. 
 
 W 
 Then will TF= A X T; and A = 
 
 SHEARING causes the fibres of the material to be shorn by each 
 other ; when a bolt pulls out of its nut, the threads of the screw 
 are said to be sheared. 
 
 Resistance of bars, bolts, &c., when sheared at one place, is: 
 when 
 
 S = Ultimate resistance, of material to shearing, in 
 
 Ibs. per square inch. 
 W= Shearing load in Ibs. 
 A = Sectional area of bar, &c., in square inches. 
 
 W 
 
 Then will W= A X 8; and A = -~ 
 
 o 
 
 CROSS-BREAKING a beam, &c., supported at one or both ends, 
 with a force at right angles to its length, sufficient to cause rup 
 ture, is said to be broken across. 
 
 Resistance to cross-breaking is the resistance of the material 
 to compression, tension, and shearing combined ; . 
 
 The flanges or booms, in beams or trusses, resist the bending 
 moment, or moment of rupture. 
 
 The web or braces, in beams or trusses, resist the shearing 
 forces. 
 
 CAPACITY means the load or pressure a structure is capable of 
 sustaining with safety. 
 
 DEFLECTION is the displacement of a beam from a horizontal, 
 caused by its own weight or the applied load, or both. 
 
 CAMBER is given a beam to counter balance the deflection, so 
 that the beam may be horizontal when loaded ; the camber should 
 be equal to the computed deflection. 
 
 To find the effect of combining several loads on one beam, whose 
 separate actions are known: for each cross section, the shearing 
 force is the sum of the shearing forces, and the bending moment 
 the sum of the bending moments, which the loads would produce 
 separately. 
 
 When a load on a structure is partly static and partly moving, 
 multiply each part of the load by its proper factor of safety, and 
 
DEFINITIONS AND GENERAL PRINCIPLES. 
 
 add together the products : the sum will be the load to which the 
 structure is to be adapted. 
 
 For a Bridge with two platforms, one carrying a road and the 
 other a railway, those two loads are to be combined. 
 
 Of Iron Ties, Struts, and Beams. 
 
 In designing ordinary structures of wrought iron, it saves time 
 and expense to use iron bars of such forms of cross section as are 
 usually to be met with in the market. An engineer should 
 avoid introducing new sections for bars into his designs, except 
 when, by so doing, some important purpose is to be served, or 
 some decided advantage to be gained. The most common forms 
 of rolled bars is shown by the following enumerated figures : 
 
 No. of 
 figure. 
 
 Name of Form. 
 
 Applicable for 
 
 4 
 
 Square iron 
 
 Ties. 
 
 13 
 
 Round iron 
 
 Ties, bolts, and rivets. 
 
 2 
 
 Flat iron 
 
 Ties. 
 
 29 
 
 I or double T-iron 
 
 Beams rafter* and struts 
 
 30 
 
 Channel iron . 
 
 Rafters and struts. 
 
 37 
 
 T-iron 
 
 Rafters and struts 
 
 47 
 
 L or angle iron 
 
 Various purposes. 
 
 1 
 
 Deck Beam 
 
 Beams and rafters 
 
 
 
 
 Avoid the use of cast iron for ties, also trussed cast-iron beams. 
 
 When a member of a structure acts alternately as a strut and 
 as a tie, it must have sufficient total sectional area, and sufficient 
 stiffness, to resist the greatest compressive strain that can act, and 
 sufficient effective sectional area to resist the greatest tensional 
 strain which can act along it. 
 
 Let all pins, bolts, rivets, &c., exposed to a shearing strain, 
 fit tight in its hole or socket. 
 
 Roof trusses, the divisions of a rafter, and also the struts, may 
 be considered as hinged at the ends. 
 
 In members under a compound strain, as for instance a trussed 
 beam with a distributed load, be careful to take into account the 
 additional compression, caused by the bending moment. 
 
 The best distribution of the material in a section of a cast-iron 
 
 T s Q 
 
 beam, for cross-breaking, is that = ; or = - 
 
 s s / s T 
 
 When T= Ultimate resistance of the material to tension. 
 
 C= Ultimate resistance of the material to compression. 
 
 s Distance from neutral axis to most extended fibres. 
 
 s, = Distance from neutral axis to most compressed fibres. 
 
 That is, the fibres most in tension should be nearest the neutral 
 
 axis of beam. 
 
DEFINITIONS AND GENERAL PRINCIPLES. 
 
 In wrought-iron beams, the section may be made alike above 
 and below the neutral axis. 
 
 THE MODULUS OF RUPTURE should be applied to beams with 
 full section, or beams with continuous web only ; for all open web 
 beams, or beams with very thin web, the resistance of the mate 
 rial to crushing or tearing, respectively, must be used instead. 
 
 EXPANSION AND CONTRACTION of long beams, which arise from 
 the changes of atmospheric temperature, are usually provided for 
 by supporting one end of each beam on rollers of steel or hard 
 ened cast iron. The following table shows the proportions in 
 which the length of a bar of certain materials is increased by an 
 elevation of temperature from the melting point of ice (32 Fahr., 
 or Centigrade) to the boiling point of water under the mean 
 atmospheric pressure, (212 Fahr., or 100 Cent.;) that is, by an 
 elevation of 180 Fahr., or 100 Cent,: 
 
 METALS. 
 
 Brass 0.00216 
 
 Bronze 0.00181 
 
 Copper 0.00184 
 
 Cast iron 0.00111 
 
 Wrought iron 0.00120 
 
 Tin 0.00225 
 
 Zino 0.00294 
 
 Lead 0.00290 
 
 EARTHY MATERIALS. 
 
 Brick, common 0.00355 
 
 Brick, fire 0.00050 
 
 Cement 0.00140 
 
 Glass, average 0.00090 
 
 Granite 0.00085 
 
 Marble 0.00087 
 
 Sandstone 0.00105 
 
 Slate 0.00104 
 
 Reference. 
 Let u Value given in above table, for a certain material. 
 
 I Length of a bar at Centigrade, 
 
 and Z x its length at a given number of degrees Centigrade. 
 a Given number of degrees, at which I, is required. 
 A = Superficial area of a plate ; 
 and A, its area at a given number of C. 
 
 B = Cubic contents of a body, 
 and .#,= its contents at a given number of C. 
 Then will I, = I (1 +au); 
 A, = A(l + 2au) , 
 B / = B (1 -j- 3 a u). 
 
 Example : A bar of wrought iron 2 inches square, is 10 feet 
 long at a temperature of Centigrade ; what is its length at an 
 increased temperature of 30 ? 
 
 Ans : I, = 10 (1 + 30 X 0.00120) = 10.036 feet. 
 
 THE NEUTRAL Axis, in a cross section of a beam, is that layer of 
 fibres which are neither in compression or tension, by the action 
 of a load on the beam ; it always passes through the centre of 
 gravity of the section : provided the limits of elasticity of the 
 material is not exceeded. A beam supported at both ends, with 
 a load acting perpendicular between the supports, will cause the 
 fibres above the neutral axis to be compressed, and those below, 
 extended: the farther from the fibres to the neutral axis, the 
 greater the stress. 
 
MOMENTS OF INERTIA AND RESISTANCE. 5 
 
 Under MOMENT OF INERTIA of a cross section, may be under 
 stood : an internal force at rest ; a static force resisting an exter 
 nal force; it means the sum of all the area elements, multiplied 
 by the square of their perpendicular heights from the neutral 
 axis of the section. The moment of inertia, which we have 
 denoted with I, depends on the form and dimensions of the cross 
 section, and is expressed in square inches. 
 
 MOMENT OF RESISTANCE of a cross section is that static force 
 resisting an external force of compression or tension ; it is equal to 
 the moment of Inertia divided by the distance of the most ex 
 tended or compressed fibres, respectively, from the neutral axis. 
 
 MOMENTS OF INERTIA AND RESISTANCE OF VARIOUS 
 SECTIONS. 
 
 To find the moment of inertia of any given cross section 
 FIRST. Divide the section into as many simple figures as possi 
 ble. (See diagram, fig. 1.) 
 
 SECOND. Find the moment of inertia of each of the simple figures 
 about its own neutral axis, and insert the value in the following 
 formula : 
 
 Reference. 
 
 Letters A, A /t A //t = area of simple figure, respectively; and 
 d, d /t d //t = its distance from its centre of gravity 
 
 to that of the whole section. 
 
 i Vi V/ = moment of inertia of simple figures, re 
 spectively. 
 
 For neutral axis see centre of gravity. 
 Fig. 1. B y 
 
 Formula. 
 
 1= (i + dU) + (v + d,*A,) + 
 (i // -{- djfAji) + <fcc., = moment 
 of inertia of whole section. 
 
 MOMENTS OF INERTIA I AND MOMENTS OF RESISTANCE 
 
 I 
 
 Reference. 
 
 m n = neutral axis of section. 
 r = radius. 
 s = distance from neutral axis to most compressed or 
 
 extended fibres. 
 6, h, &c. = dimensions. 
 A = area. 
 
MOMENTS OF INERTIA AND RESISTANCE. 
 
 No. of Figure. 
 
 Form of Section. 
 
 2 and 3 
 
 
 It 
 
 Tfo 
 
 LJL7I 
 
 JHfr 
 
 m 
 
 n 
 
 771 
 
 
MOMENTS OF INEETIA AND EESISTANCE. 
 
 Moment of Inertia 7. 
 
 Moment of Resistance- 
 
 = T v Ah* 
 
 bh* 
 
 h* 
 
 6 
 
 12 
 
 h* - 
 
 Qh 
 
 12 
 
 1/2 
 
MOMENTS OF INERTIA AND RESISTANCE. 
 
 No. of Section. 
 
 VI. 
 
 No. of Figure, 
 
 Form of Section. 
 
 VII. 
 
 VIII. 
 
 10 
 
 IX. 
 
 11 
 
 12 
 
MOMENTS OF INERTIA AND RESISTANCE. 
 
 Moment of Inertia /. 
 
 Moment of Resistance - 
 
 A 
 
 A 
 
 A 1 
 
 A 
 
 jly 6^3 = 
 
10 
 
 MOMENTS OF INERTIA AND RESISTANCE. 
 
 No. of Section. No. of Figure. 
 
 XI. 
 
 13 
 
 Form of Section. 
 
 XII. 
 
 14 
 
 XIII. 
 
 XIV. 
 
 15 
 
 16 
 
 XV. 
 
 17 and 18 
 
MOMENTS OF INERTIA AND RESISTANCE. 
 
 11 
 
 Moment of Inertia /. 
 
 Moment of Resistance JL 
 
 } TT r = J Ar 
 
 J 
 i* 
 
 s = 0.576/fc = (1 A_ ) h 
 
12 
 
 MOMENTS OF INERTIA AND RESISTANCE. 
 
 No. of Section. No. of Figure. 
 
 XVI. 
 
 19 
 
 Form of Section. 
 
 XVII. 
 
 20 
 
 XVIII. 
 
 21 
 
 XIX. 
 
 XX. 
 
 22 
 
 23 
 
 TTU 
 
 - - 
 
MOMENTS OF INERTIA AND RESISTANCE. 13 
 
 Moment of Inertia /. 
 
 Moment of Resistance 
 
 - bh* = & Alt 
 
 
 15 - 10 
 
MOMENTS OF INERTIA AND RESISTANCE. 
 
 No. of Section. 
 
 No. of Figure. 
 
 Form of Section. 
 
 XXI. 
 
 24 
 
 XXII. 
 
 XXIII. 
 
 25 
 
 26 
 
 
 ? /* 
 
 / 
 
 XXIV. 
 
 27 
 
 XXV. 
 
 28, 29, and 30 
 
MOMENTS OF INERTIA AND RESISTANCE. 15 
 
 Moment of Inertia /. 
 
 Moment of Resistance - 
 
 I A [i V cos*u + Jf A 2 sin*v] 
 
 A [A 2 cos 2 ?; + V siri*v] 
 
 12 
 
 I 
 */, 
 
16 
 
 MOMENTS OF INERTIA AND RESISTANCE. 
 
 No. of Section. 
 
 No. of Figure. 
 
 Form of Section. 
 
 XXVI. 
 
 31 
 
 XXVII. 
 
 XVIII. 
 
 32 
 
 33 
 
 fel kM 
 
 XXIX. 
 
 34 
 
 XXX. 
 
 35 
 
MOMENTS OF INERTIA AND RESISTANCE. 17 
 
 Moment of Inertia /. 
 
 12 
 
 Moment of Resistance . 
 
 b (h* - A/) 
 ~~~~ 
 
 1 
 
 ~o/r 
 
18- 
 
 MOMENTS OF INERTIA AND RESISTANCE. 
 
 No. of Section. 
 
 XXXI. 
 
 XXXII. 
 
 No. of Figure. 
 
 36 and 37 
 
 38 
 
 Form of Section. 
 
 FF^li 
 
 . V \ . A . 
 
 XXXIII. 
 
 XXXIV. 
 
 XXXV. 
 
 39 
 
 41 
 
 -^~"~^j3i 
 
MOMENTS OF INERTIA AND RESISTANCE. 19 
 
 Moment of Inertia /. 
 
 Moment of Resistance - 
 
 A ( bh * + W) 
 
 6/1 
 
 A (*6 + &,*) 
 
 hb* + 
 
 66 
 
 A l(**S 3625 A 
 
 A t^/ 4 
 
 6 s &/ 
 
 (A Z)) 4 s ] 0.049 Id* 
 
 IT 
 
20 
 
 MOMENTS OF INERTIA AND RESISTANCE. 
 
 No. of Section. 
 
 Nj. of Figure. 
 
 Form of Section. 
 
 XXXVI. 
 
 42 
 
 XXXVII. 
 
 XXXVIII. 
 
 XXXIX. 
 
 XL. 
 
 44 
 
 45 
 
 46, 47, and 48 
 
MOMENTS OF INERTIA AND RESISTANCE. 
 
 21 
 
 Moment of Inertia I. 
 
 Moment of Resistance - 
 s 
 
 - V) 
 
 A 
 
 __ 
 
 1*7 
 
 12(M" 6, 
 
22 
 
 MOMENTS OF INERTIA AND RESISTANCE. 
 
 No. of Section 
 
 No. of Figure. 
 
 Form of Section. 
 
 XLI. 
 
 49, 50, and 51 
 
 XL1I. 
 
 XLIII. 
 
 52 
 
 53 
 
 -i 
 
 XLIV. 
 
 XLV. 
 
 55 
 
MOMENTS OF INERTIA AND KESISTANCE. 
 
 23 
 
 Moment of Inertia /. 
 
 (bh* - 6 A 2 ) 2 - *&/*&/ 
 
 12 
 
 ^ r* \X3~0.5413r 4 
 
 Moment of Resistance 
 
 (bh*- b^/) *- 4bhb / h / (h-h / ) > 
 
 = O.G381 
 
 = 0.5413 (r* r/) 
 
 = 6381 (?* r/) 
 
MOMENTS OF INERTIA AND RESISTANCE. 
 
 No. of Section. No. of Figure. 
 
 XLVI. 
 
 XLVII. 
 
 XLVIII. 
 
 56 
 
 57 
 
 58 
 
 Form of Section. 
 
 ^ 
 T I 
 
 i 
 
 ""7 
 
 - A 
 
 XLIX. 
 
 59 
 
 \ I 
 
 
 
 L. 
 
 60 
 
MOMENTS OF INERTIA AND RESISTANCE. 
 
 25 
 
 Moment of Inertia J. 
 
 Moment of Resistance I . 
 s 
 
 n / = number of sides. 
 ^j w/r 4 sin . v (2 -f- cos . v) 
 
 A n / r3 s ^ ?l v (^ 4~ cos v ) 
 
 n / = number of sides. 
 b = length of a side. 
 
 TV ^ (3/& 2 -}~ J O 2 ) 
 
 ^1 
 i _^ (3^2 ^_ 1 12) 
 
 h 
 
 oJfi b/hf -j- b/h/fi 
 
 w _ w ; w 
 
 12 
 
 6A 
 
 2b^hh // " " 
 
 / 
 
 / 
 
 
 7 
 
 // 
 
26 
 
 STRENGTH OF MATERIALS. 
 
 STRENGTH OF MATERIALS, &o. f 
 
 In H>s., avoirdupois, per square inch of cross-section. 
 
 Materials. 
 
 rt ^j 
 o| 
 
 "5 
 
 Ultimate Resistance to 
 
 Modulus of 
 elasticity. 
 
 Tearing. 
 
 Crushing. 
 
 Shearing. 
 
 Oross-br k 
 Modulus o 
 Rupture. 
 
 METALS. 
 Brass, ca^t, average 
 
 505.7 
 533 
 524 
 
 537 
 540 
 
 18000 
 40000 
 30000 
 
 10000 
 
 30000 
 
 3;ooo 
 
 00000 
 105(10 
 13400 
 to 
 20000 
 
 10300 
 
 
 
 9170000 
 14230000 
 9900000 
 
 17000000 
 17000000 
 14000000 
 to 
 22900000 
 
 29000000 
 
 25300000 
 
 15000000 
 
 29000000 
 to 
 42000000 
 
 720000 
 4000000 
 13000000 
 
 1000000 
 1350000 
 
 " wire. 
 
 
 
 Bronze or gun metal, (cop 
 per 8, tin 1) 
 Copper cast 
 
 
 
 
 117000 
 
 
 
 " she^t 
 
 " bolt** 
 
 " \viro 
 
 
 Iron ca^t avcnvo 
 
 445 
 4)54 
 to 
 
 450 
 
 112000 
 80000 
 to 
 115000 
 
 27700 
 
 
 " various 
 
 " beams, average.. 
 
 
 28800 
 17000 
 33000 
 to 
 43500 
 
 38000 
 
 
 
 
 
 " solid rect. bars, 
 various quailities. 
 
 Iron, wrought, average 
 
 
 
 
 
 481 
 
 05000 
 
 30000 
 to 
 40000 
 
 50000 
 
 plates 
 joints, d ble 
 riveted. 
 Iron, wrought, joints, single 
 riveted. 
 Iron, wrought, bars and 
 bolts. 
 
 hoop, best best 
 wire 
 
 
 51000 
 35700 
 
 28000 
 GdOOO 
 
 
 
 
 to 
 70000 
 04000 
 70000 
 to 
 100000 
 00000 
 
 
 
 
 wire ropes.... 
 
 
 
 
 
 Steel, average 
 
 490 
 
 
 
 
 80000 
 
 " bars 
 
 
 100000 
 to 
 130000 
 80000 
 3:500 
 
 4(300 
 7000 
 to 
 8oOO 
 
 17000 
 
 0300 
 11500 
 
 12000 
 
 7730 
 15500 
 
 15000 
 
 " plates 
 
 
 
 Lead, sheet 
 
 712 
 
 402 
 430 
 
 47 
 43 
 
 Tin, cast 
 
 
 
 Zinc 
 
 
 
 TIMBER, (well seasoned and 
 dry.) 
 Ash 
 
 9000 
 9300 
 
 1400 
 
 12000 
 to 
 14000 
 
 9000 
 to 
 20000 
 
 Bamboo 
 
 Beech 
 
 
STRENGTH OF MATERIALS. 
 
 27 
 
 Materials. 
 
 Weight of a 
 cubic foot. 
 
 Ultimate resistance to 
 
 If 
 
 Tearing. 
 
 Crushing. 
 
 Shearing 
 
 Cross-br k 
 Modulus o 
 Rupture 
 
 || 
 
 TIMBER Continued. 
 Birch 
 
 44 
 80 
 
 33.4 
 
 34 
 
 74.5 
 37 
 
 37 
 33 
 
 52 
 47 
 52.5 
 44 
 62 
 35 
 
 49 
 52.5 
 
 47.4 
 
 15000 
 
 200O( 
 100O( 
 
 to 
 1300< 
 140iK 
 
 120CX 
 
 to 
 14000 
 12401 
 
 9QOC 
 
 to 
 10* -00 
 25000 
 20000 
 23400 
 1COOO 
 ll.XOO 
 8000 
 to 
 21800 
 10600 
 10000 
 o 
 19800 
 
 6400 
 
 10300 
 
 5300 
 
 10300 
 
 19-)00 
 
 5375 
 to 
 6200 
 
 5900 
 
 5570 
 
 11000 
 7300 
 
 9000 
 9900 
 8200 
 
 6500 
 10000 
 
 7700 
 6100 
 6000 
 5300 
 5400 
 12000 
 12000 
 
 11000 
 6500 
 4000 
 
 550 
 to 
 800 
 1100 
 1700 
 417 
 to 
 612 
 
 
 11701 
 1086 
 
 6004 
 
 to 
 
 2700 
 7 UK 
 to 
 9541 
 990, 
 to 
 1 JjOt 
 50. < 
 to 
 10001 
 
 1735! 
 1 1 ..00 
 1200 
 10000 
 
 10000 
 to 
 13(00 
 87 0< 
 
 10601) 
 
 9600 
 12000 
 to 
 
 17460 
 6600 
 
 1645000 
 1140000 
 
 700000 
 to 
 1340000 
 
 146 000 
 to 
 1900000 
 UOO 00 
 to 
 1800000 
 900000 
 to 
 1 .".60000 
 10-tUOOO 
 
 1255000 
 
 1200000 
 to 
 1750000 
 
 21 50000 
 2400000 
 
 Box.... .... 
 
 
 Chestnut 
 
 Elm 
 
 1400 
 
 Ebony, West Indian.... 
 Fir Red Pine .. 
 
 500 
 to 
 8(iO 
 600 
 
 970 
 to 
 1700 
 
 " Spruce 
 
 " Larch 
 
 Hickory 
 
 Hornbeam 
 
 Lance wood 
 Locust 
 
 Lignum vitse 
 
 
 Mahogany 
 
 Maple...... 
 
 2300 
 
 Oak, British 
 
 " Dantzic 
 
 " American white.... 
 
 42 
 54 
 346 
 
 29 
 37 
 
 48 
 
 62.5 
 
 18000 
 10250 
 11500 
 15000 
 13000 
 15000 
 
 
 red 
 
 Pine, American, white 
 
 
 " yellow 
 Sycamore 
 Teak, Indian 
 
 Water gum 
 
 
 Walnut 
 
 40 
 25 
 50 
 
 125 
 
 135 
 37.5 
 
 loo 
 
 8000 
 14000 
 8000 
 
 280 
 to 
 300 
 
 
 Willow, various 
 
 Yew 
 
 
 STOXES, (natural and arti 
 ficial.) 
 Brick, weak red 
 
 " strong red 
 
 " fire 
 
 " work 
 
 Cement 
 
 89 
 
 280 
 to 
 300 
 
 
STRENGTH OF MATERIALS. 
 
 Materials. 
 
 Weight of a 
 cubic foot. 
 
 Ultimate resistance to 
 
 Modulus of 
 elasticity. 
 
 Tearing 
 
 Crushing. 
 
 Shearing. 
 
 >oss-br k. 
 Jodukis ot 
 Rupture. 
 
 STONES Continued. 
 Chalk 
 
 145.5 
 173 
 
 168 
 
 118 
 9400 
 
 330 
 
 
 
 8000000 
 
 13000000 
 to 
 16000000 
 
 Glas=! 
 
 Granite 
 
 5500 
 
 
 2360 
 
 1100 
 5000 
 
 Limestone marble 
 
 172 
 
 
 to 
 11000 
 5500 
 4000 
 to 
 4500 
 
 About 
 4-10 cut 
 stone. 
 5500 
 3300 
 to 4400 
 
 " granular 
 
 197 
 
 100 
 to 
 170 
 50 
 
 
 109 
 116 
 
 Rubble masonry 
 Sandstone, strong ") 
 
 " ordinary ( 
 
 144 
 
 
 
 " weak ) 
 
 
 Slate 
 
 178 
 
 9600 
 to 
 12800 
 
 25000 
 14000 
 6300 
 4200 
 5200 
 7700 
 
 
 
 MISCELLANEOUS. 
 Flaxen yarn 
 
 
 
 Hempen ropes... 
 
 
 Hide, ox undressed ... 
 
 
 Leather ox 
 
 
 Silk fibre 
 
 
 Whalebone 
 
 
 
 
 MODULUS OF RUPTURE R. 
 
 According to Professor Rankine, the modulus of rupture is 
 eighteen times the weight that is required to break a bar of a 
 given material one inch square (section) and one foot between 
 supports, the weight concentrated at the middle. 
 
 MODULUS OF ELASTICITY E 
 
 Is that power (in Ibs. generally) through which a prismatic body 
 of a given material, of section = 1, is assumed to be extended 
 double its length, or compressed to 0. 
 
 Let A = Sectional area of a rod of the material. 
 
 W= Weight or power in Ibs., which causes the extension 
 
 or compression of the rod. 
 
 I = Length in inches of rod before W is applied. 
 Y = The extension or compression of the rod in inches, 
 caused by W. 
 
 Wl W 
 
RESISTANCE TO CROSS -BREAKING AND SHEARING. 29 
 
 FACTORS OF SAFETY k. 
 The ultimate resistance of material should be divided by 
 
 A Wrolgift t I 1 e on nd For Proof stren S th - Foi> Working Stress. 
 
 Steady load 2 
 
 Moving load 4 to 6 
 
 Cast Iron. 
 
 Steady load 2 to 3 3 to 4 
 
 Moving load 6 to 8 
 
 Timber. 
 Average 3 8 to 10 
 
 RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 CAPACITY AND STRENGTH OF BEAMS. 
 
 Reference. 
 
 A = Area of cross-section of beam. 
 D Deflection of beam from a horizontal. 
 E = Modulus of elasticity. 
 
 J= Moment of inertia of cross section. 
 M Maximum moment of rupture, or bending moment. 
 R = Modulus of rupture. 
 
 S = Vertical shearing force. 
 
 V = Pressure on supports. 
 W= Capacity or weight of load, 
 c, d, I == Dimensions in units of length. 
 
 k = Factor of safety. 
 
 w = Weight of load per unit of length. 
 
 = Moment of resistance of cross-section. 
 
 I 
 
 R I 
 
 For the stability of a beam : M=. K = . . 
 
 k s 
 
 The web of a metal beam must have sufficient area to resist the 
 
 shearing force 8; that is, A = -rrr-: : : 
 
 Ultimate resistance to shearing. 
 
 The weight of the beam must be added to W, except in small 
 beams, under 60 Ibs. per lineal foot, when it may be disregarded. 
 
 [NOTE. Always use the same units of dimensions or weight.] 
 
30 RESISTANCE TO CROSS BRKAKING AND SHEARING. 
 
 No. of Figure. 
 
 Manner of loading and fastening beams. 
 
 61 
 
 . -P " " " V x 
 
 62 
 
 63 
 
 64 
 
 . 
 
 If 
 
 
 
 o 
 p 
 
 xim 
 ent 
 ure 
 
 W.I 
 
 - 
 
 W. 
 
 W. 
 
 5.333 
 
 ity 
 sec 
 
 K 
 
 I 
 
 4 K 
 
 ~ 
 
 5.333- 
 
 K- ------ - ------- - 
 
 .65 
 
 
 r "V 
 
RESISTANCE TO CROSS BREAKING AND SHEARING. 
 
 31 
 
 Maximum deflec 
 tion D. 
 
 Distance from 
 A to point of 
 maximum/). 
 
 Shearing force S. 
 
 Pressure on sup 
 ports V. 
 
 W I 3 
 
 .EM 3 
 
 J 
 
 At any point. 
 W 
 
 W 
 
 W I s 
 E I 8 
 
 I 
 
 At any point. 
 w .d 
 
 W 
 
 W p 
 
 - lO ls" 
 
 z 
 
 2 
 
 At any point. 
 IF 
 
 ~Y 
 
 V - V - W 
 
 1/1 - ^2--^ 
 
 IF Z 3 
 "J 0.00931 
 J-j. J. 
 
 0.553J 
 
 1 TT.-L 
 
 ".-".-?- 
 
 & W P 
 
 2 
 
 "T 
 
 At any point, 
 d<d / ; 
 
 (i-0 
 
 fi-F._i 
 
 8 E.I 48 
 
32 RESISTANCE TO CROSS-BREAKING AND SHEARING: 
 
 66 
 
 68 
 
 69 
 
 Manner of loading and fastening beams. 
 
 Maximum mo 
 ment of rup 
 ture M. 
 
 \ 
 
 
 /MM 
 
 A 
 
 ^ <rl- 
 
 A 
 
 w|< \ \ 2- - 
 
 ^ 
 
 \-L 
 
 r*-f * i 
 
 
 
 ^ -------- _ ------ ^ 
 
 
 - 
 
 IF. 
 12 
 
 W .1 + 
 
 W 
 tion. 
 
 Capaci 
 any 
 
 8. 
 
 12 "T- 
 
 -.K 
 
RESISTANCE TO CROSS BREAKING AND SHEARING. 
 
 
 |CQ 
 
 
 
 ^"S 
 
 
 Maximum deflec 
 tion D. 
 
 11 
 p r 
 
 Shearing force 5. 
 
 Pressure on sup 
 ports F. 
 
 
 "DQTJH C 
 
 
 
 
 P 
 
 
 
 W Z 3 
 
 j 
 
 ir 
 
 W 
 
 E.I 4.48 
 
 O 
 
 ^ 
 
 
 W Z 3 
 00 r )4 
 
 Q. 572.1 
 
 n tt 1 " ,T\ 
 
 v v w 
 
 E.I 
 
 ( 8 1 
 
 
 W P 
 
 l 
 
 *<** 
 
 
 E.I 8.48 
 
 o 
 
 -(!-) 
 
 ^ 
 
 (Irr) + 
 
 
 At any point be 
 
 
 / W l ^ 3 > 
 
 i 
 
 tween loads. 
 
 
 ( y - ~ ) ~t~ 
 
 ^ 
 
 S= W .S l = 
 
 II 1 \\ l \ n 2 
 
 /.J. ) 
 
 
 ~m~ _i_ ~nr ^ 
 
 
 (\ 
 
 
 W 4- w l + W z 
 
 
 E.I ~3") 
 
 
 
 
 
 
 At any point and 
 
 
 
 
 under any load. 
 
 
 
 
 _ }y 1 2 
 
 V -?- W 
 
 W /3 72/2 
 1 fj 6j 
 
 
 I 
 
 1 
 
 E.I 3 I 2 I 2 
 
 
 Constant bet, A & IF 
 
 J 
 
 
 
 s w ll 
 
 V 2 = 1- W 
 
 
 
 Constantbet. Z?& IF 
 
 
3-1 RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 i Maximum moment of 
 Manner of loading and fastening beam?, j rupture M. 
 
 A 
 
 x:.:v ^ /C>v rrK I 
 
 1 m ^ l ^ 
 
 
 T^ ! 
 
 IF./, 
 
 W.I, 
 
 When ^>^ 
 
 [(4-) - . ] 
 
 When Z < Zi \/8 ; 
 
RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 35 
 
 
 
 ^"c 
 
 
 
 Capacity W of any 
 section. 
 
 Maximum 
 deflection D. 
 
 sll 
 I s ! 
 
 Shearing 
 force 8. 
 
 Pressure 
 on sup 
 ports V. 
 
 
 
 5 
 
 
 
 
 W 
 
 
 
 
 
 E.I 
 
 
 
 
 K 
 h 
 
 a 
 
 2 
 
 W 
 
 w 2 
 
 
 h 
 
 
 
 
 
 i 2 
 
 
 
 
 
 
 
 w l * 
 
 F 1= = 
 
 Kl 
 
 
 
 
 ~~i~w 
 
 ^( 1 -^) 
 
 
 
 1 1 
 
 2 Ti 
 
 
 
 
 1 
 
 i w 
 
 
 W 1 2 t l 
 
 
 
 
 
 - 8 E.I 
 
 
 
 
 K 
 
 Wl^ 
 
 
 w 
 
 F! = F 2 
 
 h 
 
 D,- l 
 
 
 
 W 
 
 
 \ 2 3 
 
 
 
 
 2 (1 + ^i) g 
 
 
 
 
 
 (4) - .- 
 
 
 
 w .l or 
 
 
 
 
 
 w.-JL- 
 
 W 
 
 
 
 
 The greater 
 value to be 
 
 2 
 
 
 
 
 taken. 
 
 
 2(1+21,) K 
 
 
 
 
 
 " 
 
36 RESISTANCE TO CROSS- BREAKING AND SHEARING. 
 
 Manner of loading and fastening beams. 
 
 Maximum moment of 
 rupture M. 
 
 When c? >(Z c) ; 
 
 w- 
 
 W- 
 
 78 
 
 1^ (!+,)] 
 
RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 37 
 
 Capacity W of any 
 section. 
 
 MAximum 
 deflection D. 
 
 S oq 
 lag 
 
 a| 
 
 1-1 
 |^l 
 
 Shearing 
 force 8. 
 
 Pressure 
 on sup 
 ports F". 
 
 1 K 
 
 
 
 
 e (l__d) A 
 
 2K 
 
 (l-r-d)* 
 
 213 E 
 
 W 
 
 
 
 -^ 
 
 3 E.I 
 IS(1IJ 
 
 1^(31-1^(1-1^) 
 
 I 2 
 
 P K 
 
 
 
 
 Vff-y" 
 
 
 
 
 
 
38 EESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 EXAMPLE. Capacity of wrought-iron l-shaped beams; top and 
 bottom flange alike ; load equally distributed ; ends not fixed. 
 
 Dimensions of Cross-section. 
 
 h = Height = 10 inches. 
 b = Width of flange 4 inches. 
 t = Thickness of flange = 0.8 inches. 
 t / = Thickness of web = 0.5 inches. 
 7t /= = h 2t; b, = b t,. 
 
 Distance between supports = 20 feet = 240 inches. Factor of 
 safety = 3. 
 
 MOMENT OF RESISTANCE. 
 
 _Z_ ft/* 3 M/ 3 4 x 1Q 3 3.5 X 8.4* _ 
 V = 6* ~ 6 X 10 
 
 Capacity W. 
 w = (4 X 0.8 X 2 + 8.4 x 0.5) x 240 X 0.28 = 712.32 Ibs. 
 
 K=*. ^J*. 32.09 = 406473.33. 
 . k s 3 
 
 W=8^--w^8.~^ -- 712.32 = 12836.72 Ibs. 
 
 li ^41) 
 
 EXAMPLE. Capacity of cast-iron i-shaped beams; load equally 
 distributed; ends not fixed; flange down. 
 
 Dimensions of Cross- section. 
 
 Let h = Height = 18 inches. 
 
 b = Width of flange = 9 inches. 
 t = Thickness of flange = 1.25 inches. 
 t / = Thickness of web = 1 inch. 
 7i / = h t; by = b t/. 
 
 Area = 28 square inches. Distance between supports = 20 
 feet = 240 inches. Factor of safety k = 4. 
 
 MOMENT OF RESISTANCE. 
 
 sh, (h h,Y 
 
 * L bh 2 2b / hh / + b,h/ 
 
 -*[- 
 
 2b / hh / + 
 (9 x 18 2 8 x 16.752)2 
 
 9 X 18 2 2 X 8 X 18 X 16.75 + 8 X 16.75 2 
 4X9X18X8X 16.75 (18 16.75) 2 
 
 9 X 18 2 2 X 8 X 18 X 16.75+8 X 16. 
 
 5) 2 n 
 6.75 2 J 
 
RESISTANCE TO CROSS-BREAKING AND SHEARING. 39 
 
 _ rj452256.25_ _135675.00_-] = 15- 
 * L 336.5 336 5 J . 
 
 
 
 Capacity W. 
 w = 28 x 240 X 0.261 = 1754. lbs. 
 
 JT^;* J- = -^-. 157 = 1099000. 
 k s 4 
 
 JF= 8 A - = 8 . -- ~S" - 1757 = 34879 lbs - 
 
 For light beams no attention need be paid to weight of beam w. 
 
 CAPACITY If OF ROLLED I -SHAPED BEAMS. 
 Load equally distributed. 
 
 The calculations are based upon (lie patterns or section* used 
 by the Phcenixville Iron Company. Practically this applies to 
 all similar beams rolled in the United States, the difference in the 
 profile of section being slight. 
 
 In the following table the factor of safety k = 2.53: 
 
 Reference. 
 
 W= Load in tons of 2,000 lbs., equally distributed. 
 w = Weight of beam in tons of 2,000 lbs. 
 L = Distance between supports in feet. 
 I = Distance between supports in inches. 
 iu / = Weight per square foot of floor. 
 
 W,= Capacity of coupled or trebled beams in tons of 2,000 lbs. 
 D = Deflection in inches at centre, between supports. 
 d = Distance between centres of beams, when spacing for 
 floors, in feet. 
 
 W W, r> W+w J? 
 
 7.0 tons, d -- , or d= - -, D f . . 
 
 L.to, L.w / &.L 4b 
 
 K 1 = Constant, computed by formulas. (See under examples.) 
 
40 
 
 RESISTANCE TO CROSS -BREAKING AND SHEARING. 
 
 The rivets for coupled or trebled beams should be about inch 
 
 in diameter, and 8 inches apart. 
 
 Trebled Beams. 
 
 Coupled Beams. 
 
 W,= WX 5.33. 
 
 :JQ ; = 17.2 tons. This is also found at the intersection of 
 
 Fig. 79. 
 
 Examples explanatory of the following Table. 
 
 EXAMPLE.- What is the capacity of a 15-inch light beam, load 
 equally distributed, distance between supports = 20 feet? 
 
 7-1 /f 8 1 TT7 Kl K 1 
 
 A = r^ , and W ; for 15-inch light beam ----- = 
 -Li J_j 
 
 345. 19 
 20 ~ 
 20 feet and column under capacity W. 
 
 EXAMPLE. What distance apart should 9-inch medium beams 
 be placed, the distance between supports being 20 feet, and to 
 carry a total load of 140 Ibs. per square foot of floor surface? 
 
 Ans. 4.4 feet; being found at the intersection of the horizontal 
 line from 20 feet and the vertical column under 140 Ibs. 
 
 EXAMPLE.- What is the capacity of 12- inch light beams trebled . 
 load equally distributed, distance between supports = 25 feet? 
 
 Ans. W for 12-inch light beam == 9.19 and W, = W X 5.33 = 
 9.19 X 5.33 = 48.98 tons. 
 
RESISTANCE TO CROSS-BREAKING AND SHEARING. 41 
 
 CAPACITY OF ROLLED BEAMS. 
 
 Explanation of Tables for I Beams. 
 
 The first column gives the distance between supports in feet. 
 
 The second column gives the capacity in tons of 2,000 Ibs., 
 equally distributed. 
 
 The third column gives the deflection in inches at centre of 
 beam. 
 
 The fourth column gives the weight of beam in Ibs. for length 
 between supports. 
 
 The fifth to fifteenth column (inclusive) gives the distance in 
 feet that the beams should be spaced from centre to centre, for 
 weight in Ibs., per sq. ft. of surface for floors. 
 
 Pounds in decimals of a ton. 
 
 Ibs. tons. 
 
 GO == 0.03 
 
 70 = 0.035 
 
 80 = 0.0-1 
 
 90 = 0.045 
 100 = 0.05 
 140 = 0.07 
 160 = 0.03 
 180 = 0.085 
 200 = 1 
 250 = 0.125 
 300 == 0.15 
 
 In using these beams for floors, with brick arching, the ends 
 resting on supports should have a bearing of about 8 inches, 
 resting on a cast-iron plate, 8 X 12 in. sq,, by 1 in. thick. 
 
 Tie rods should be used where floors are subject to heavy con 
 centrated moving loads, (as trucks with merchandise, &c.;) these 
 rods should be about 8 times the depth of beam apart, fastened 
 about -J from the bottom of beam. 
 
 When beams are used to support walls, or as girders to carry 
 floor beams, and put side by side (II,) they should be fastened to 
 gether with cast-iron blocks, fitting between the flanges, so as to 
 securely combine the two beams. The blocks may be put about 
 the same distance apart as the tie-rods. 
 
42 
 
 RESISTANCE TO CROSS BREAKING AND SHEARING. 
 
 Fig. 81. 
 
 15" "Heavy " Beam. Weight per If. = 66.66 Ibs. 
 
 Sectional area = 20.0" 
 
 Moment of inertia / = 652.42 
 Constant # =434.95 
 
 K 
 W . 
 
 L 
 
 s "S 
 5 
 
 a 
 
 fl 
 05 
 
 Deflec. in inches. 
 
 Weight in Ibs. 
 1 
 
 Distance d bet. centres of beams in feet, for 
 weight in Ibs. per sq. foot of 
 
 1 
 8 
 
 i 
 
 .0 
 
 i 
 
 
 o 
 
 | 
 
 GO 
 .D 
 
 g 
 
 <n 
 .0 
 
 j 
 
 B 
 
 1 
 
 8 
 
 i 
 
 8 
 
 i 
 
 i 
 
 1 
 
 20.1 
 17.6 
 14.7 
 12.8 
 
 io!2 
 
 8.9 
 8.0 
 7.2 
 6.7 
 5.9 
 5.5 
 50 
 4.7 
 4.2 
 3.9 
 3.6 
 3.4 
 3.2 
 3.0 
 2.8 
 2.6 
 2.5 
 2.3 
 2.2 
 2.1 
 2.0 
 1.9 
 1.8 
 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 
 72.49 
 62.13 
 54.35 
 4832 
 43.48 
 39.54 
 36.24 
 33.45 
 31.05 
 28.99 
 27.18 
 2558 
 24.16 
 22.89 
 21.73 
 20.71 
 19.58 
 18.91 
 18.12 
 17.39 
 16.72 
 16.10 
 15.53 
 14.99 
 14.49 
 14.03 
 13.59 
 13.17 
 12.79 
 12.42 
 12.08 
 11.75 
 11.43 
 11.15 
 10.87 
 
 0.037 
 0.050 
 0.065 
 0.084 
 0.104 
 0.126 
 0.150 
 0.177 
 0.205 
 0.236 
 0.270 
 0305 
 0.342 
 0.383 
 0.426 
 0471 
 0.515 
 0.569 
 0.623 
 0.677 
 0.735 
 0.795 
 0860 
 0.925 
 0.994 
 1.067 
 1.141 
 1.219 
 1.304 
 1.384 
 1.473 
 1.564 
 1.656 
 1.754 
 1.854 
 
 400.0 
 466.6 
 5333 
 600.0 
 666.6 
 733.3 
 800.0 
 866.6 
 933.3 
 1000.0 
 1066.6 
 1133.3 
 1200.0 
 1266.6 
 1333.3 
 1400.0 
 1466.6 
 1533.3 
 1600.0 
 1666.6 
 1733.3 
 1800.0 
 1866.6 
 1933.3 
 2000.0 
 2066.6 
 2133.3 
 2200.0 
 2266.6 
 2333.3 
 2400.0 
 2466.6 
 2533.3 
 2600.0 
 2666.6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 20.9 
 17.7 
 15.5 
 13.5 
 12,0 
 10.7 
 9.6 
 8.6 
 7.9 
 7.1 
 6.7 
 6.0 
 5.6 
 5.2 
 4.7 
 4.4 
 4.1 
 3.8 
 3.6 
 3.3 
 3.1 
 3.0 
 2.8 
 2.6 
 2.5 
 2.4 
 2.2 
 2.1 
 
 
 
 
 
 
 
 
 
 22.1 
 19 > 
 
 
 
 
 
 
 
 
 79 3 
 
 
 
 
 
 
 
 21.2 
 19.6 
 16.7 
 15.2 
 13.5 
 12.5 
 ll.l 
 10.5 
 9.4 
 8.6 
 8.0 
 7.4 
 6.9 
 6.8 
 6.0 
 5.6 
 5.3 
 4.9 
 4.7 
 4.4 
 4.1 
 39 
 3.7 
 3.5 
 3.3 
 
 18.8 
 17.0 
 14.9 
 13.4 
 12.0 
 11.5 
 9.8 
 9.4 
 8.3 
 7.7 
 7.2 
 6.7 
 6.2 
 5.7 
 5.3 
 5.0 
 4.7 
 4.4 
 4.1 
 3.9 
 37 
 3.5 
 3.3 
 3.1 
 2.9 
 
 LG.9 
 15.0 
 13.4 
 12.0 
 10.8 
 9.8 
 8.9 
 8.2 
 7.5 
 6.9 
 6.4 
 5.9 
 5.5 
 5.1 
 4.8 
 4.5 
 4.2 
 3.9 
 3.7 
 3.5 
 3.3 
 3.1 
 3.0 
 2.8 
 2.7 
 
 
 
 
 
 
 21.4 
 19.1 
 17.6 
 15.5 
 14.7 
 127 
 11.8 
 10.7 
 10.2 
 9.2 
 8.5 
 7.9 
 7.4 
 6.9 
 6.4 
 6.0 
 5.7 
 53 
 5.0 
 4.7 
 4.4 
 4.2 
 4.0 
 3.8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2-i o 
 
 19 7 
 
 21.7 
 19.7 
 17.8 
 17.1 
 15.1 
 14.4 
 12.8 
 11.9 
 11.0 
 10.7 
 9.8 
 9.0 
 8.4 
 7.9 
 7.5 
 7.1 
 6.6 
 
 e.3 
 
 6.0 
 5.7 
 5.4 
 
 
 
 
 
 
 21.0 
 18.8 
 17.3 
 16.7 
 14.9 
 13.8 
 12.9 
 12.0 
 11.3 
 10.0 
 9.9 
 9.4 
 8.8 
 8.4 
 7.9 
 7.5 
 7.1 
 6.7 
 
 18.9 
 16.7 
 15.5 
 15.2 
 13.4 
 12.3 
 11.5 
 10.7 
 10.0 
 9.4 
 8.8 
 8.2 
 7.9 
 7.4 
 7.0 
 6.6 
 6.3 
 6.0 
 
 21.4 
 19.8 
 18.2 
 17.2 
 16.1 
 15.0 
 14.0 
 13.3 
 12.5 
 11.8 
 11.1 
 10.8 
 10.0 
 9.5 
 9.0 
 
 21.5 
 19.9 
 18.3 
 17.1 
 15.8 
 14.8 
 13.8 
 12.9 
 12.0 
 11.4 
 10.7 
 10.1 
 9.5 
 9.1 
 8.5 
 8.1 
 7.7 
 
RESISTANCE TO CROSS BREAKING AND SHEARING. 
 
 43 
 
 Fig. 82. 
 
 15" "Light" Beam. Weight per If. = 51.66 Ibs. 
 
 Sectional area = 15.5" 
 
 Moment of inertia / 517.78 
 Constant K =345.19 
 
 K 
 W =-. 
 
 L 
 
 3 
 
 00 
 
 <D 
 
 
 Distance d bet. centres of beams in feet, for 
 
 o 
 
 a 
 
 c 
 
 o 
 
 00 
 
 weight in Ibs. per sq. foot of 
 
 
 d 
 
 
 
 
 
 
 CO CJ 
 
 ^ 
 
 a 
 
 3 
 
 
 
 
 
 
 
 
 
 
 
 
 |.s 
 
 | 
 
 i 
 
 lip 
 
 | 
 
 .0 
 
 Ul 
 
 .C 
 
 Vl 
 
 .0 
 
 ?] 
 
 | 
 
 & 
 
 JS 
 
 j5 
 
 09 
 
 X3 
 
 72 
 
 & 
 
 ft 
 
 1 
 
 ^c 
 
 <S 
 
 9 
 
 8 
 
 o 
 
 
 
 
 
 Srj 
 
 o 
 & 
 
 1 
 
 >g 
 
 1 
 
 CM 
 
 1 
 
 6 
 
 57.52 
 
 0037 
 
 310.0 
 
 
 
 
 
 
 
 
 
 
 
 
 7 
 
 49.31 
 
 0.050 
 
 361.6 
 
 
 
 
 
 
 
 
 
 
 
 
 8 
 
 43.13 
 
 0.065 
 
 413.3 
 
 
 
 
 
 
 
 
 
 
 
 
 9 
 
 38.35 
 
 0.084 
 
 4650 
 
 
 
 
 
 
 
 
 
 
 
 
 10 
 
 34.50 
 
 0.103 
 
 51 6.6 
 
 
 
 
 
 
 
 
 
 
 
 23.0 
 
 11 
 
 31 .38 
 
 0.124 
 
 567.3 
 
 
 
 
 
 
 
 
 
 
 22.9 
 
 19.0 
 
 12 
 
 28.76 
 
 0.150 
 
 620.0 
 
 
 
 
 
 
 
 
 
 
 19 T15.9 
 
 13 
 
 26.55 
 
 0.176 
 
 671. 6 
 
 
 
 
 
 
 
 
 22.7 
 
 ^0 4 
 
 164 13.6 
 
 14 
 
 24. G5 
 
 0.205 
 
 793 ^ 
 
 
 
 
 
 
 
 22.0 
 
 19.5 
 
 17.6 14.0 11.7 
 
 15 
 
 23.01 
 
 0.236 
 
 775.0 
 
 
 
 
 
 
 21.9 
 
 19.1 
 
 17.0 
 
 15.3 12.3 10.2 
 
 16 
 
 21.57 
 
 0.269 
 
 806.6 
 
 
 
 
 
 
 19.2 
 
 16.8 
 
 14.9 
 
 13.4 10.71 8.9 
 
 17 
 
 20.30 
 
 304 
 
 858.3 
 
 
 
 
 
 
 17 9 
 
 14.9 
 
 13.2 
 
 11.9 95! 7.Q 
 
 18 
 
 19.16 
 
 OJ341 
 
 830.0 
 
 
 
 
 
 21.3 
 
 15^2 
 
 13.3 
 
 11.8 
 
 10.6 
 
 8.5 j 7.1 
 
 19 
 
 18.15 
 
 0.381 
 
 981.6 
 
 
 
 
 21.3 
 
 19.1 
 
 13.6 
 
 11.9 
 
 10.6 
 
 9.5 
 
 7.6 
 
 6.3 
 
 20 
 
 17.24 
 
 0.424 
 
 1033.3 
 
 
 
 21.5 
 
 19.1 
 
 17.2 
 
 12.3 
 
 10.7 
 
 9.5 
 
 8.6 
 
 6.9 
 
 5-7 
 
 21 
 
 16.43 
 
 0.469 
 
 1085.0 
 
 
 
 19.5 
 
 17.4 
 
 15.6 
 
 11.1 
 
 9.8 
 
 8.7 
 
 7.8 
 
 6.2 
 
 5.2 
 
 22 
 
 15.68 
 
 0.515 
 
 1136.6 
 
 
 20.3 
 
 17.8 
 
 15.8 
 
 14.2 
 
 10.1 
 
 8.9 
 
 7.9 
 
 7.1 
 
 5.7 
 
 4.7 
 
 23 
 
 15.00 
 
 0.565 
 
 1187.3 
 
 21.7 
 
 18.7 
 
 16.3 
 
 14.5 
 
 13.0 
 
 9.3 
 
 8.1 
 
 7.2 
 
 6.5 
 
 5.2 
 
 4.3 
 
 24 
 
 14.38 
 
 0.620 
 
 1240.0 
 
 19.9 
 
 17.1 
 
 14.9 
 
 13.3 
 
 11.9 
 
 8.5 
 
 7.4 
 
 6.6 
 
 59 
 
 4.8 
 
 3.9 
 
 25 
 
 13.80 
 
 0.674 
 
 1291.6 
 
 18.4 
 
 15.8 
 
 13.8 
 
 12.3 
 
 11.0 
 
 7.8 
 
 6.9 
 
 6.1 
 
 5.5 
 
 4.4 
 
 3.6 
 
 2(5 
 
 13.27 
 
 0.732 
 
 1343.3 
 
 17.0 
 
 14.5 
 
 12.8 
 
 11.3 
 
 10.2 
 
 7.2 
 
 6.3 5.6 
 
 5.1 
 
 4.0 
 
 3.4 
 
 27 
 
 12.78 
 
 0.791 
 
 1395.0 
 
 15.7 
 
 13.6 
 
 11.8 
 
 10.5 
 
 9.4 
 
 6.7 
 
 5.9 5.2 
 
 4.7 
 
 3.7 
 
 3.1 
 
 28 
 
 12.32 
 
 0.855 
 
 1446.6 
 
 14.6 
 
 12.5 
 
 11.0 
 
 9.7 
 
 8.8 
 
 6.2 
 
 5.5 
 
 4.8 
 
 4.4 
 
 3.5 
 
 2.9 
 
 29 
 
 11.93 
 
 0.921 
 
 1498.3 
 
 13.7 
 
 11.8 
 
 10.2 
 
 9.1 
 
 8.2 
 
 5.8 
 
 5.1 
 
 4.5 
 
 4.1 
 
 3.2 
 
 2.7 
 
 30 
 
 11.50 
 
 0.989 
 
 1550.0 
 
 12.7 
 
 10.9 
 
 9.5 
 
 8.5 
 
 7.6 
 
 5.4 
 
 4.7 
 
 4.2 
 
 3.8 3.0 
 
 2.5 
 
 31 
 
 11.13 
 
 1.060 
 
 1601.6 
 
 11.9 
 
 10.3 
 
 8.9 
 
 8.0 
 
 7.1 
 
 5.1 
 
 4.4 
 
 3.9 
 
 3.5 2.8 
 
 2.3 
 
 32 
 
 10.78 
 
 1.133 
 
 1653.3 
 
 11.2 
 
 9.( 
 
 8.4 
 
 7.4 
 
 6.7 
 
 4.8 
 
 4.2 
 
 3.7 
 
 3.3 26 
 
 2.2 
 
 33 
 
 10.46 
 
 1.211 
 
 1705.0 
 
 10.5 
 
 9.0 
 
 7.9 
 
 7.0 
 
 6.3 
 
 4.5 
 
 3.9 
 
 3.5 
 
 3.1 
 
 2.5 
 
 2.1 
 
 34 
 
 10.14 
 
 1.292 
 
 1750.6 
 
 9.9 
 
 8.5 
 
 7.4 
 
 6.6 
 
 5.9 
 
 4.2 
 
 3.7 
 
 3.3 
 
 2.9 
 
 2.3 
 
 1.9 
 
 35 
 
 9.86 
 
 1.375 
 
 1808.3 
 
 9.3 
 
 8.( 
 
 7.0 
 
 6.2 
 
 5.6 
 
 4.0 
 
 3.5 
 
 3.1 
 
 2.8 
 
 2.2 
 
 1.8 
 
 36 
 
 9.58 
 
 1.463 
 
 1860.0 
 
 8.8 
 
 7.6 
 
 6.6 
 
 5.9 
 
 5.3 
 
 3.8 
 
 3.3 
 
 2.9 
 
 2.6 
 
 2.1 
 
 1.7 
 
 37 
 
 9.32 
 
 1.553 
 
 1911.6 
 
 8.3 
 
 7.2 
 
 6.2 
 
 5.6 
 
 5.0 
 
 3.5 
 
 3.1 
 
 2.7 
 
 2.5 
 
 2.0 
 
 1.6 
 
 38 
 
 9.08 
 
 1.645 
 
 1963.3 
 
 7. 
 
 6.8 
 
 5.9 
 
 5.3 
 
 4.7 
 
 3.4 
 
 2.9 
 
 2.6 
 
 2.3 
 
 1.9 
 
 1.5 
 
 39 
 
 8.85 
 
 1.742 
 
 2015.0 
 
 7!5 
 
 6.5 
 
 5.6 
 
 5.0 
 
 4.5 
 
 3.2 
 
 2.8 
 
 2.5 
 
 2.2 
 
 1.8 
 
 1.4 
 
 40 
 
 8.62 
 
 1.841 
 
 2066.6 
 
 7.1 
 
 6.1 
 
 5.3 
 
 4.7 
 
 4.3 
 
 3.0 
 
 2.6 
 
 2.3 
 
 2.1 
 
 1.7 
 
 1.4 
 
RESISTANCE TO CROSS- BREAKING AND SHEARING. 
 
 Fig. 83. 
 
 12" "Heavy" Beam. Weight per If. = 56.66 Ibs. 
 
 Sectional area = 17.0" 
 
 Moment o l inertia / = 373.53 
 
 Constant K = 311.28 
 
 K 
 W = . 
 
 g 
 
 d 
 
 00 
 
 
 Distance d bet. centres of beams in feet, for 
 
 o 
 
 ft . 
 
 
 G 
 
 x> 
 
 weight in Ibs. per sq. foot of 
 
 ft-g 
 
 d 
 
 d 
 
 "-I 
 
 
 2 
 
 u 
 
 d 
 
 .2 
 
 
 
 
 
 
 
 
 
 
 
 
 I S 
 
 o 
 
 Gj 
 
 6 
 
 o 
 
 I 
 
 
 
 00 
 
 32 
 
 _Q 
 
 OQ 
 
 & 
 
 i 
 
 
 
 A 
 
 J 
 
 
 
 | 
 
 n 
 ft 
 
 C3 
 
 
 o 
 
 ft 
 
 o 
 
 o 
 
 o 
 
 
 
 
 o 
 
 o 
 
 o 
 
 o 
 
 g 
 
 
 
 
 
 1 
 
 6 
 
 51.88 
 
 0.046 
 
 340.0 
 
 
 
 
 
 
 
 
 
 
 
 
 7 
 
 44.54 
 
 0.063 
 
 396.6 
 
 
 
 
 
 
 
 
 
 
 
 
 8 
 
 38.70 
 
 0.082 
 
 453.3 
 
 
 
 
 
 
 
 
 
 
 
 
 <) 
 
 34.58 
 
 0.105 
 
 510.0 
 
 
 
 
 
 
 
 
 
 
 
 
 10 
 
 31.12 
 
 0.131 
 
 566.6 
 
 
 
 
 
 
 
 
 
 
 
 20.7 
 
 
 28.29 
 
 0.158 
 
 623 ? 
 
 
 
 
 
 
 
 
 
 
 " 
 
 17.1 
 
 12 
 
 25.9^ 
 
 0.188 
 
 680.0 
 
 
 
 
 
 
 
 
 
 21.6 
 
 17.2 
 
 14.4 
 
 -iq 
 
 23.94 
 
 0.222 
 
 736.6 
 
 
 
 
 
 
 
 23.0 
 
 20.4 
 
 18.4 
 
 14.7 
 
 12.2 
 
 lo 
 14 
 
 22/22 
 
 258 
 
 793.3 
 
 
 
 
 
 
 22.( 
 
 19.8 
 
 17.6 
 
 15.8 
 
 12.6 
 
 10*.5 
 
 15 
 
 20.75 
 
 0.297 
 
 850.0 
 
 
 
 
 
 
 10 7 
 
 17.2 
 
 15.3 
 
 138 
 
 11.0 
 
 9.2 
 
 16 
 
 19*.5( 
 
 0.339 
 
 906.6 
 
 
 
 
 
 
 17.4 
 
 15.2 
 
 13.5 12.1 
 
 9.7 
 
 8.1 
 
 17 
 
 
 0.383 
 
 963*3 
 
 
 
 
 
 21.5 
 
 15.3 
 
 13.4 
 
 11.9 10.7 
 
 8.6 
 
 7.1 
 
 18 
 
 17/29 
 
 0.431 
 
 1020.0 
 
 
 
 
 21. P 
 
 19.2 
 
 13.7 
 
 12.0 
 
 10.6 9.6 
 
 7.6 
 
 6.4 
 
 19 
 
 16.38 
 
 0.481 
 
 1076.6 
 
 
 
 21.5 
 
 19.1 
 
 17.2 
 
 12.3 
 
 10.7 
 
 9.5 8.6 
 
 6.8 
 
 5.7 
 
 20 
 
 15.61 
 
 0.538 
 
 1133.3 
 
 
 
 19.5 
 
 17.: J 
 
 15. ( 
 
 11.1 
 
 9.7 
 
 8.6 
 
 7.8 
 
 6.2 
 
 5.2 
 
 21 
 
 14.82 
 
 0.592 
 
 1190.0 
 
 
 20.1 
 
 17. ( 
 
 15.( 
 
 14.1 
 
 10.0 
 
 8.8 
 
 7.8 
 
 7.0 
 
 5.6 
 
 4.7 
 
 22 
 
 14.1-1 
 
 0.652 
 
 1246.6 
 
 21.4 
 
 18.3 
 
 16.( 
 
 142 
 
 12.8 
 
 9.1 
 
 8.0 
 
 7.1 
 
 6.4 
 
 5.1 
 
 4.2 
 
 23 
 
 13.53 
 
 0.717 
 
 1303.3 
 
 19.0 
 
 16.8 
 
 14."~ 
 
 130 
 
 11.7 
 
 8.4 
 
 7.3 
 
 6.5 
 
 5.8 
 
 4.7 
 
 3.9 
 
 24 
 
 12.9" 
 
 0.786 
 
 1360.0 
 
 18.0 
 
 15.4 
 
 13.5 
 
 12.( 
 
 10-8 
 
 7.7 
 
 6.7 
 
 6.0 
 
 5.4 
 
 4.3 
 
 3.6 
 
 25 
 
 12.4 
 
 0.855 
 
 1416.6 
 
 16.6 
 
 14.2 
 
 12.4 
 
 11.0 
 
 9.r 
 
 7.1 
 
 6.2 
 
 5.5 
 
 4.9 
 
 3.9 
 
 3.3 
 
 26 
 
 11.9 
 
 0.927 
 
 1473.3 
 
 15.3 
 
 13.1 
 
 11.5 
 
 10.1 
 
 9.1 
 
 6.5 
 
 5.7 
 
 5.1 
 
 4.G 
 
 3.6 
 
 3.0 
 
 27 
 
 11.5 
 
 1.003 
 
 1530.0 
 
 14.2 
 
 12.1 
 
 10.0 
 
 9.4 
 
 8-5 
 
 6.C 
 
 5.3 
 
 4.7 
 
 4.2 
 
 3.4 
 
 2.8 
 
 28 
 
 11.1 
 
 1.084 
 
 1586.6 
 
 13.2 
 
 11 .f 
 
 9.9 
 
 8.8 
 
 7-i 
 
 5.C 
 
 4.9 
 
 4.4 
 
 3.9 
 
 3.1 
 
 2.6 
 
 29 
 
 10.7 
 
 1.170 
 
 1643.3 
 
 12.3 
 
 10.5 
 
 9.2 
 
 8.2 
 
 7.4 
 
 5.2 
 
 4.0 
 
 4.1 
 
 3.7 
 
 2.9 
 
 2.4 
 
 30 
 
 10.3 
 
 1.257 
 
 1700.0 
 
 11.5 
 
 9.8 
 
 8.0 
 
 7.G 
 
 6.9 
 
 4.! 
 
 4.3 
 
 as 
 
 3.4 
 
 2.7 
 
 2.3 
 
 31 
 
 10.0 
 
 L350 
 
 1756.6 
 
 10. 
 
 9.2 
 
 8.0 
 
 7.1 
 
 6.4 
 
 4.C 
 
 4.0 
 
 3.6 
 
 3.2 
 
 2.5 
 
 2.1 
 
 32 
 
 9.7 
 
 1.443 
 
 1813.3 
 
 10.1 
 
 8.6 
 
 7.5 
 
 67 
 
 6.0 
 
 4.3 
 
 3.7 
 
 3.4 
 
 3.0 
 
 2.4 
 
 2.0 
 
 33 
 
 9.4 
 
 1.546 
 
 1870.0 
 
 9.5 
 
 8.2 
 
 7.1 
 
 6.P 
 
 5.7 
 
 4.( 
 
 3.5 
 
 3.1 
 
 2.8 
 
 2.2 
 
 1.9 
 
 34 
 
 9.1 
 
 1.650 
 
 1926.6 
 
 8.9 
 
 7.6 
 
 6.7 
 
 5.9 
 
 5.3 
 
 3 .8 
 
 3.8 
 
 2.9 
 
 2.6 
 
 2.1 
 
 1.7 
 
 35 
 
 8.8 
 
 1.758 
 
 1983.3 
 
 8.4 
 
 7.2 
 
 6.; 
 
 5.( 
 
 5-0 
 
 3.f 
 
 3.1 
 
 2.8 
 
 2.5 
 
 2.0 
 
 1.6 
 
 36 
 
 8.6 
 
 1.871 
 
 2040.0 
 
 8.0 
 
 6.8 
 
 6.0 
 
 5.3 
 
 4.8 
 
 3.4 
 
 3.0 
 
 2.6 
 
 2^4 
 
 1.9 
 
 1.6 
 
 37 
 
 8.4 
 
 1.987 
 
 2096.6 
 
 7.5 
 
 6.4 
 
 5.6 
 
 5.0 
 
 4.5 
 
 3.L 
 
 2.8 
 
 2.5 
 
 2.2 
 
 I .s 
 
 1.5 
 
 38 
 
 8.1 
 
 2.104 
 
 2153.3 
 
 7.1 
 
 6.1 
 
 5.3 
 
 47 
 
 4.3 
 
 3.( 
 
 2.6 
 
 2.3 
 
 2.1 
 
 1.7 
 
 1.4 
 
 39 
 
 7.9 
 
 2.234 
 
 2210.0 
 
 6.8 
 
 5.8 
 
 5.1 
 
 4.5 
 
 4.0 
 
 2.9 
 
 2.5 
 
 2.2 
 
 2.0 
 
 l.C 
 
 1.3 
 
 40 
 
 7.7 
 
 2.336 
 
 2266.6 
 
 6.4 
 
 5.5 
 
 4.8 
 
 4.3 
 
 3.8 
 
 &u 
 
 2.*4 
 
 2.1 
 
 1.9 
 
 1.5 
 
 1.2 
 
RESISTANCE TO CROSS BREAKING AND SHEARING. 
 
 45 
 
 Fig. 84. 
 
 12" "Light" Beam. Weight per If. =41.66 Ibs. 
 
 Sectional area = 12.5" 
 
 Moment of inertia 1= 275.92 
 
 Constant K = 229.94 
 
 K 
 
 1 
 
 CB 
 
 d 
 
 
 
 Distance d bet. centres of beams in feet, for 
 
 ft^5 
 
 3 
 d 
 
 .2 
 
 1 
 
 weight in Ibs. per sq. foot of 
 
 CO O 
 
 
 
 d 
 
 6 
 
 d 
 
 
 
 
 
 
 
 
 GO 
 
 
 GO 
 
 
 ^ 
 
 o! 
 
 CD 
 
 P 
 
 
 CO 
 
 CO* 
 
 GO 
 
 .0 
 
 ja 
 
 J3 
 
 
 .0 
 
 JO 
 
 ,0 
 
 ft 
 
 1 
 
 1 
 
 
 
 .Q 
 
 i 
 
 1 
 
 i 
 
 g 
 
 8 
 
 o 
 
 1 
 
 | 
 
 o 
 
 I 
 
 1 
 
 6 
 
 39.31 
 
 0.047 
 
 250.0 
 
 
 
 
 
 
 
 
 
 
 
 
 7 
 
 32.84 
 
 0.063 
 
 291.6 
 
 
 
 
 
 
 
 
 
 
 
 
 8 
 
 28.74 
 
 0.083 
 
 333.3 
 
 
 
 
 
 
 
 
 
 
 
 24.0 
 
 9 
 
 25.54 
 
 0.105 
 
 375 
 
 
 
 
 
 
 
 
 
 
 23.0 
 
 18.9 
 
 10 
 
 22.98 
 
 0.131 
 
 416.6 
 
 
 
 
 
 
 
 
 
 22.0 
 
 18.3 
 
 15.3 
 
 11 
 
 20.90 
 
 0.158 
 
 458.3 
 
 
 
 
 
 
 
 23.0 
 
 21.0 
 
 19.0 
 
 15.2 
 
 12.6 
 
 12 
 
 19.16 
 
 0.189 
 
 500.0 
 
 
 
 
 
 
 22.0 
 
 19.9 
 
 17.7 
 
 15.9 
 
 12.7 
 
 10.6 
 
 13 
 
 17.68 
 
 0.222 
 
 541.6 
 
 
 
 
 
 
 10 4 
 
 17.0 
 
 15.1 
 
 13.6 
 
 10.9 
 
 9.0 
 
 14 
 
 16.42 
 
 0.258 
 
 583.3 
 
 
 
 
 
 
 16.7 
 
 14.6 
 
 13.0 
 
 
 9.3 
 
 7.8 
 
 15 
 
 15.32 
 
 0.297 
 
 625.0 
 
 
 
 
 22.0 
 
 20.0 
 
 14.5 
 
 12.7 
 
 11.3 
 
 iol2 
 
 8.1 
 
 6^7 
 
 16 
 
 14.37 
 
 0.339 
 
 666.6 
 
 
 
 22.0 
 
 19.9 
 
 17.9 
 
 12.8 11.2 
 
 9.9 
 
 8.9 
 
 7.1 
 
 5.9 
 
 17 
 
 13.52 
 
 0.383 
 
 708 3 
 
 
 
 19.9 
 
 17.7 
 
 15.9 
 
 11.3 9 9 
 
 8.8 
 
 7.9 
 
 6.3 
 
 5.3 
 
 18 
 
 12.77 
 
 0.431 
 
 750.0 
 
 
 20.0 
 
 17.7 
 
 15.7 
 
 14.1 
 
 10.1 
 
 8.8 
 
 7.8 
 
 7.1 
 
 5.6 
 
 4 .7 
 
 19 
 
 12.10 
 
 0.481 
 
 791.6 
 
 21.0 
 
 18.3 
 
 15.9 
 
 14.2 
 
 12.7 
 
 9.1 
 
 7.9 
 
 7.0 
 
 6.3 
 
 5.1 
 
 4.2 
 
 20 
 
 11.48 
 
 0.538 
 
 833.3 
 
 19.1 
 
 16.4 
 
 14.3 
 
 12.7 
 
 11.4 
 
 82 
 
 7.1 
 
 6.3 
 
 5.7 
 
 4.5 
 
 3.8 
 
 21 
 
 10.94 
 
 0.592 
 
 875.0 
 
 17.3 
 
 15.0 
 
 13 
 
 ll.( 
 
 10.4 
 
 7.4 
 
 6 5 
 
 5 7 
 
 5 2 
 
 4 1 
 
 3.4 
 
 22 
 
 10.44 
 
 0.652 
 
 916.6 
 
 15.8 
 
 13^5 
 
 111 8 
 
 me 
 
 9^5 
 
 G!? 
 
 5.9 
 
 5.2 
 
 4.7 
 
 3.7 
 
 3.1 
 
 23 
 
 9.99 
 
 0.717 
 
 958.3 
 
 14.4 
 
 12.5 
 
 10.8 
 
 9.7 
 
 8.6 
 
 6.2 
 
 5.4 
 
 4.8 
 
 4.. 
 
 3.4 
 
 2.8 
 
 24 
 
 9.58 
 
 0.786 
 
 1000.0 
 
 13.3 
 
 11.4 
 
 9.9 
 
 8.8 
 
 7.9 
 
 5.7 
 
 4.9 
 
 4.4 
 
 3.9 
 
 3.1 
 
 2.6 
 
 25 
 
 9.19 
 
 0.855 
 
 1041.6 
 
 12.2 
 
 10.5 
 
 9.1 
 
 8.2 
 
 7.3 
 
 5.2 
 
 4.5 
 
 4.0 
 
 3 ( 
 
 2.9 
 
 2.4 
 
 26 
 
 8.84 
 
 0.927 
 
 1083.3 
 
 11.3 
 
 9.7 
 
 8.5 
 
 7.5 
 
 6.8 
 
 4.8 
 
 4.2 
 
 3.7 
 
 3.4 
 
 2.7 
 
 2.2 
 
 27 
 
 8.51 
 
 1.003 
 
 1125.0 
 
 10.6 
 
 9.0 
 
 7.8 
 
 7.0 
 
 6.3 
 
 4.5 
 
 3.9 
 
 3.5 
 
 3.1 
 
 2.5 
 
 2.1 
 
 28 
 
 8.21 
 
 1.084 
 
 1166.6 
 
 9.7 
 
 8.3 
 
 
 6.5 
 
 5.8 
 
 4.1 
 
 3-.C 
 
 3.2 
 
 2.9 
 
 2.3 
 
 1.9 
 
 29 
 
 7.92 
 
 1.170 
 
 1208.3 
 
 9.1 
 
 7.8 
 
 6.8 
 
 6.1 
 
 5.4 
 
 3.8 
 
 3.4 
 
 3.( 
 
 2 .7 
 
 2.1 
 
 1.8 
 
 30 
 
 7.66 
 
 1.257 
 
 1250.0 
 
 8.5 
 
 7.2 
 
 6.3 
 
 5 ( 
 
 5.1 
 
 3.6 
 
 3.1 
 
 2.8 
 
 2.f 
 
 2.0 
 
 1.7 
 
 31 
 
 7.41 
 
 1.350 
 
 1291.6 
 
 7.9 
 
 6.8 
 
 5.9 
 
 5^3 
 
 4.8 
 
 3.4 
 
 2.9 
 
 2,( 
 
 2.3 
 
 1.9 
 
 1.5 
 
 32 
 
 7.18 
 
 1.443 
 
 1333.3 
 
 7.4 
 
 6.4 
 
 5.6 
 
 4.9 
 
 4.4 
 
 3.2 
 
 2.8 
 
 2.4 
 
 2.2 
 
 1.7 
 
 1.4 
 
 33 
 
 6.96 
 
 1.542 
 
 1375.0 
 
 7.C 
 
 6.0 
 
 5.2 
 
 4.7 
 
 4.2 
 
 3.0 
 
 2.6 
 
 2.3 
 
 2.1 
 
 i.r 
 
 1.4 
 
 34 
 
 6.75 
 
 1.645 
 
 1416.6 
 
 6.6 
 
 5.6 
 
 4.9 
 
 4.4 
 
 3.9 
 
 2.8 
 
 2.4 
 
 2.2 
 
 2.0 
 
 1.5 
 
 1.3 
 
 35 
 
 6.57 
 
 1.754 
 
 1458.3 
 
 6.2 
 
 5.3 
 
 4.7 
 
 4.1 
 
 3.7 
 
 2.6 
 
 2.3 
 
 2.0 
 
 1.8 
 
 1.5 
 
 1.2 
 
 36 
 
 6.38 
 
 1.871 
 
 1500.0 
 
 5.9 
 
 5.0 
 
 4.4 
 
 3.9 
 
 3.5 
 
 2.5 
 
 2.2 
 
 1.9 
 
 1.7 
 
 1.4 
 
 1.1 
 
 37 
 
 6.21 
 
 1.987 
 
 1541.6 
 
 5.5 
 
 4.8 
 
 4.2 
 
 3.7 
 
 3.3 
 
 2.3 
 
 2.0 
 
 1.8 
 
 1.6 
 
 1.3 
 
 1.1 
 
 38 
 
 6.05 
 
 2.109 
 
 1583.3 
 
 5.3 
 
 4.5 
 
 3.9 
 
 3.5 
 
 3.1 
 
 2.2 
 
 1.9 
 
 1.7 
 
 l.f 
 
 1.2 
 
 1.0 
 
 39 
 
 5.89 
 
 2.229 
 
 1625.0 
 
 5.0 
 
 4.J 
 
 3.7 
 
 3.3 
 
 3.0 
 
 2.1 
 
 1.8 
 
 1.6 
 
 1.4 
 
 1.1 
 
 1.0 
 
 40 
 
 5.74 
 
 2.366 
 
 1666.6 
 
 4.7 
 
 4.1 
 
 3.5 
 
 3.1 
 
 2.8 
 
 2.0 
 
 1.7 
 
 1.5 
 
 1.3 
 
 1.0 
 
 0.9 
 
46 
 
 RESISTANCE TO CROSS BREAKING AND SHEARING. 
 
 10.5 
 
 Fig. 85. 
 
 10.5" Seam. Weight per If. = 35 Ibs. 
 
 Sectional area = 10.5" 
 
 Moment of inertia I = 179.44 
 
 Constant K =170.903 
 
 K 
 
 -2 
 
 c 
 
 
 
 Distance d bet. centres of beams in feet, for 
 
 g; , 
 
 c 
 
 d 
 
 
 
 weight in Ibs. per sq. foot of 
 
 E" 
 
 c 
 
 
 "7 
 
 
 2 
 
 c5 
 1 
 
 c 
 
 c5 
 o 
 
 09 
 
 1 
 
 K 
 
 A 
 
 .c 
 
 <R 
 
 J 
 
 | 
 
 | 
 
 | 
 
 1 
 
 | 
 
 0* 
 
 & 
 
 3 
 
 Q 
 
 s 
 
 o 
 Q 
 
 
 
 I 
 
 I 
 
 o 
 
 00 
 
 I 
 
 I 
 
 
 
 I 
 
 I 
 
 1 
 
 I 
 
 1 
 
 6 
 
 2U8 
 
 0.053 
 
 2100 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2L41 
 
 0.072 
 
 2450 
 
 
 
 
 
 
 
 
 
 
 
 23.2 
 
 8 
 
 21.3(5 
 
 0.095 
 
 280.0 
 
 
 
 
 
 
 
 
 
 
 21.3 
 
 17.8 
 
 9 
 
 18 OS 
 
 0.120 
 
 315.0 
 
 
 
 
 
 
 
 
 23.4 
 
 21.1 
 
 17.0 
 
 14.0 
 
 10 
 
 17.09 
 
 0.149 
 
 350.0 
 
 
 
 
 
 
 
 21 3 
 
 18 9 
 
 17.0 
 
 13.6 
 
 11.4 
 
 11 
 
 15.53 
 
 0.181 
 
 385.0 
 
 
 
 
 
 
 20.1 
 
 17.6 
 
 15.6 
 
 14.1 
 
 11.3 
 
 9.3 
 
 12 
 
 14.21 
 
 0.216 
 
 420.0 
 
 
 
 
 
 
 1(5.9 
 
 14.8 
 
 13.1 
 
 11.8 
 
 9.4 
 
 7.9 
 
 13 
 
 13 14 
 
 0.254 
 
 455.0 
 
 
 
 
 20,6 
 
 202 144 
 
 12.6 
 
 11.1 
 
 10.1 
 
 8.1 
 
 6 7 
 
 14 
 
 12.2(1 
 
 0.295 
 
 490.0 
 
 
 
 21.7 
 
 19.2 
 
 17.4 
 
 12.4 
 
 10.9 
 
 9.6 
 
 8.7 
 
 6.9 
 
 5*.8 
 
 15 
 
 11.38 
 
 0.340 
 
 525.0 
 
 
 21.9 
 
 18.9 
 
 17.0 
 
 15.1 
 
 10.8 
 
 9.4 
 
 8.4 
 
 7.5 
 
 6.0 
 
 5.0 
 
 16 
 
 1068 
 
 0.389 
 
 560.0 
 
 22.2 
 
 19.0 
 
 16.6 
 
 14.9 
 
 13.3 
 
 9.5 
 
 8.3 
 
 7.4 
 
 6.6 
 
 5.3 
 
 4.4 
 
 17 
 
 10.05 
 
 0.439 
 
 595.0 
 
 19.7 
 
 17.0 
 
 14.7 
 
 13.2 
 
 11.8 
 
 8.4 
 
 7.3 
 
 6.5 
 
 5.9 
 
 4.7 
 
 3.9 
 
 18 
 
 9.49 
 
 0.494 
 
 630.0 
 
 17.5 
 
 15.0 
 
 131 
 
 11.7 
 
 10.5 
 
 7.6 
 
 6.5 
 
 5.8 
 
 5.2 
 
 4.2 
 
 3.5 
 
 19 
 
 8.99 
 
 0.553 
 
 6650 
 
 15.7 
 
 13.0 
 
 11.7 
 
 10.5 
 
 9.4 
 
 6.7 
 
 5.9 
 
 5.2 
 
 4.7 
 
 3.7 
 
 3.1 
 
 2) 
 
 8.54 
 
 0.614 
 
 700.0 
 
 14.2 
 
 12.2 
 
 10.6 
 
 9.4 
 
 85 
 
 6.1 
 
 5.3 
 
 4.7 
 
 4.2 
 
 3.4 
 
 2.8 
 
 21 
 
 8.13 
 
 0.681 
 
 735.0 
 
 12.9 
 
 11.1 
 
 9.6 
 
 8.6 
 
 7.7 
 
 5.5 
 
 4.8 
 
 4.3 
 
 3.8 
 
 3.1 
 
 2.5 
 
 22 
 
 7.75 
 
 0.752 
 
 770.0 
 
 11.7 
 
 10.0 
 
 9.1 
 
 7.8 
 
 7.0 
 
 5.0 
 
 4.4 
 
 3.9 
 
 3.5 
 
 2.8 
 
 2.3 
 
 2> 
 
 7.43 
 
 0.823 
 
 805.0 
 
 10.7 
 
 9.2 
 
 8.0 
 
 7.2 
 
 6.4 
 
 4.6 
 
 4.0 
 
 3.5 
 
 3.2 
 
 2.5 
 
 2.1 
 
 24 
 
 7.12 
 
 0.903 
 
 840.0 
 
 9.8 
 
 8.4 
 
 7.4 
 
 6.5 
 
 5.9 
 
 4.2 
 
 3.7 
 
 3.2 
 
 2.9 
 
 2.3 
 
 1.9 
 
 25 
 
 6.83 
 
 0.980 
 
 875.0 
 
 9.1 
 
 7.8 
 
 6.8 
 
 6.0 
 
 5.4 
 
 3.9 
 
 3.4 
 
 3.0 
 
 2.7 
 
 2.1 
 
 1.8 
 
 2 , 
 
 657 
 
 1.067 
 
 910.0 
 
 8.4 
 
 7.2 
 
 6.3 
 
 5.6 
 
 5.0 
 
 3.6 
 
 3.1 
 
 2.8 
 
 2.5 
 
 20 
 
 1.6 
 
 27 
 
 G.32 
 
 1.154 
 
 945.0 
 
 7.8 
 
 6.7 
 
 5.8 
 
 5.2 
 
 4.6 
 
 3.3 
 
 2.9 
 
 2.6 
 
 2.3 
 
 1.8 
 
 1.5 
 
 28 
 
 6.10 
 
 1.251 
 
 980.0 
 
 7.2 
 
 6.2 
 
 5.4 
 
 4.8 
 
 4.3 
 
 3.1 
 
 2.7 
 
 2.4 
 
 2.1 
 
 1.7 
 
 1.4 
 
 2!) 
 
 5.89 
 
 1.346 
 
 1015.0 
 
 6.7 
 
 5.8 
 
 5.0 
 
 4.5 
 
 4.0 
 
 2.9 
 
 2.5 
 
 2.2 
 
 2.0 
 
 1.6 
 
 1.3 
 
 30 
 
 5.69 
 
 1.450 
 
 1050.0 
 
 6.3 
 
 5.4 
 
 4.7 
 
 4.2 
 
 3.7 
 
 2.7 
 
 2.3 
 
 2.1 
 
 1.8 
 
 .5 
 
 1.2 
 
 31 
 
 5.51 
 
 1.556 
 
 1085.0 
 
 5.9 
 
 5.1 
 
 4.4 
 
 3.9 
 
 3.5 
 
 2.5 
 
 2.2 
 
 1.9 
 
 1.7 
 
 A 
 
 1.1 
 
 32 
 
 5.31 
 
 1.672 
 
 1120.0 
 
 5.5 
 
 4.7 
 
 4.1 
 
 3.7 
 
 3.3 
 
 2.3 
 
 2.0 
 
 1.8 
 
 1.6 
 
 .3 
 
 1.1 
 
 33 
 
 5.17 
 
 1.783 
 
 1 155.0 
 
 5.2 
 
 4.4 
 
 3.9 
 
 3.4 
 
 3.1 
 
 2.2 
 
 1.9 
 
 1.7 
 
 1.5 
 
 .2 
 
 1.0 
 
 34 
 
 5.02 
 
 1.906 
 
 1190.0 
 
 4.8 
 
 4.2 
 
 3.6 
 
 3.2 
 
 2.9 
 
 2.1 
 
 1.8 
 
 1.6 
 
 1.4 
 
 !T 
 
 
 35 
 
 4.88 
 
 2.033 
 
 1225.0 
 
 4.6 
 
 4.0 
 
 3.4 
 
 3.1 
 
 2.7 
 
 1.9 
 
 1.7 
 
 1.5 
 
 1.3 
 
 .1 
 
 
 36 
 
 4.69 
 
 2.143 
 
 1200.0 
 
 4.3 
 
 3.7 
 
 3.2 
 
 2.8 
 
 2.6 
 
 1.8 
 
 1.6 
 
 1.4 
 
 1.3 
 
 1.0 
 
 
 37 
 
 4.61 
 
 2.297 
 
 1295.0 
 
 4.1 
 
 3.5 
 
 3.1 
 
 2.7 
 
 2.4 
 
 1.7 
 
 1.5 
 
 1.3 
 
 1.2 
 
 
 
 38 
 
 4.50 
 
 2.444 
 
 1330.0 
 
 3.9 
 
 3.3 
 
 2.9 
 
 2.6 
 
 2.3 
 
 1.6 
 
 1.4 
 
 1.3 
 
 1.1 
 
 
 
 39 
 
 4.38 
 
 2589 
 
 1365.0 
 
 3.6 
 
 3.2 
 
 2.8 
 
 2.5 
 
 2.2 
 
 1.6 
 
 1.4 
 
 1.2 
 
 1.1 
 
 
 
 40 
 
 4.20 
 
 2.711 
 
 1400.0 
 
 3.5 
 
 3.0 
 
 2.6 
 
 2.3 
 
 2.1 
 
 1.5 
 
 1.3 
 
 1.1 
 
 1.0 
 
 
 
RESISTANCE TO CROSS- BREAKING AND SHEARING. 
 
 47 
 
 Fig. 80. 
 
 9 /x " Heavy" Beam. Weight per If. = 50 Ibs. 
 
 Sectional area = 15.0" 
 
 Moment of inertia / = 188.55 
 
 Constant /f 209.50 
 
 K 
 
 
 
 03 
 
 03 
 
 
 Distance d bet. centres of beams in feet, for 
 
 N 
 
 o 
 
 fl 
 
 C 
 
 03 
 
 weight in Ibs. per sq. foot of 
 
 3 o 
 
 O3 O 
 
 U 
 
 "3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 J.S 
 
 6 
 
 6 
 
 o 
 
 il 
 
 03 
 
 a 
 
 
 
 03 
 
 g 
 
 03 
 
 OB 
 
 w 
 
 g 
 
 JC 
 
 -A 
 
 ,0 
 
 .2 
 
 Q 
 
 ft 
 
 CS 
 
 o 
 
 o 
 Q 
 
 I 
 
 p 
 
 ,Q 
 
 O 
 
 So 
 
 i 
 
 8 
 
 O 
 
 1 
 
 1 
 
 8 
 
 1 
 
 
 6 
 
 36.91 
 
 0.065 
 
 300.0 
 
 
 
 
 
 
 
 
 
 
 
 
 7 
 
 29.92 
 
 0.084 
 
 3500 
 
 
 
 
 
 
 
 
 
 
 
 
 8 
 
 26.1 8 
 
 0.111 
 
 400.0 
 
 
 
 
 
 
 
 
 
 
 
 21.8 
 
 9 
 
 23.27 
 
 0.141 
 
 450.0 
 
 
 
 
 
 
 
 
 
 
 20. (i 
 
 17.2 
 
 10 
 
 20.95 
 
 0.174 
 
 500.0 
 
 
 
 
 
 
 
 
 23.2 
 
 20.9 
 
 16.7 
 
 13.9 
 
 11 
 
 19.01 
 
 0.211 
 
 550.0 
 
 
 
 
 
 
 
 21.6 
 
 19.1 
 
 17.3 
 
 13.7 
 
 11.5 
 
 12 
 
 17.45 
 
 0.253 
 
 600.0 
 
 
 
 
 
 
 20.7 
 
 18.1 
 
 16.1 
 
 14.5 
 
 11.6 
 
 9.6 
 
 13 
 
 16.11 
 
 0297 
 
 650.0 
 
 
 
 
 
 
 17.C 
 
 15.4 
 
 13.8 
 
 12.3 
 
 9.9 
 
 8.2 
 
 14 
 
 14.96 
 
 0.345 
 
 700.0 
 
 
 
 
 
 21.3 
 
 15.2 
 
 13.3 
 
 11.8 
 
 10.C 
 
 8.5 
 
 7.1 
 
 15 
 
 13.96 
 
 0.398 
 
 750.0 
 
 
 
 
 20.6 
 
 18.0 
 
 13.2 
 
 11.6 
 
 10.3 
 
 9.3 
 
 7.5 
 
 6.2 
 
 16 
 
 13.09 
 
 0.454 
 
 800.0 
 
 
 
 20.4 
 
 19.5 
 
 16.3 
 
 ll.(j 
 
 10.2 
 
 9.0 
 
 8.1 
 
 6.5 
 
 5.4 
 
 17 
 
 12.32 
 
 0.515 
 
 850.0 
 
 
 20.7 
 
 18.1 
 
 16.1 
 
 14.5 
 
 10.3 
 
 9.0 
 
 8.0 
 
 7.2 
 
 5.7 
 
 4.8 
 
 18 
 
 11.63 
 
 0.580 
 
 900.0 
 
 21.5 
 
 18.4 
 
 16.1 
 
 14.3 
 
 12.9 
 
 9.2 
 
 8.0 
 
 7.1 
 
 6.4 
 
 5.1 
 
 4.3 
 
 19 
 
 11.02 
 
 0.648 
 
 950.0 
 
 19.3 
 
 16.5 
 
 14.5 
 
 12.8 
 
 11.6 
 
 8.2 
 
 7.2 
 
 6.4 
 
 5.8 
 
 4.6 
 
 3.8 
 
 20 
 
 10.47 
 
 0.722 
 
 1000.0 
 
 17.4 
 
 14.9 
 
 13.0 
 
 11.4 
 
 10.4 
 
 7.4 
 
 6.5 
 
 5.8 
 
 5.2 
 
 4.1 
 
 3.4 
 
 21 
 
 9.97 
 
 0.799 
 
 1050.0 
 
 15.8 
 
 13.5 
 
 11.8 
 
 10.5 
 
 9.4 
 
 6.8 
 
 5.9 
 
 5.2 
 
 4.7 
 
 3.4 
 
 3.1 
 
 22 
 
 9.52 
 
 0.883 
 
 11000 
 
 14.4 
 
 12.3 
 
 10.3 
 
 9.6 
 
 8.2 
 
 6.1 
 
 5.4 
 
 4.8 
 
 4.3 
 
 3.4 
 
 2.8 
 
 23 
 
 9.10 
 
 0.968 
 
 1150.0 
 
 13.1 
 
 11.3 
 
 9.8 
 
 8.7 
 
 7.9 
 
 5.6 
 
 4.9 
 
 4.3 
 
 3.9 
 
 3.1 
 
 2.6 
 
 24 
 
 8.72 
 
 1.002 
 
 1200.0 
 
 12.1 
 
 10.3 
 
 9.0 
 
 8.0 
 
 7.2 
 
 5.1 
 
 4.5 
 
 4.0 
 
 3.6 
 
 2.9 
 
 2.4 
 
 25 
 
 8.34 
 
 1.152 
 
 1250.0 
 
 11.1 
 
 9.5 
 
 8.3 
 
 7.4 
 
 6.6 
 
 4.7 
 
 4.1 
 
 3.7 
 
 3.3 
 
 2.G 
 
 2.2 
 
 26 
 
 8.05 
 
 1.258 
 
 1300.0 
 
 10.3 
 
 8.8 
 
 7.7 
 
 6.8 
 
 6.1 
 
 4.4 
 
 3". 8 
 
 3.4 
 
 3.0 
 
 2.4 
 
 2.0 
 
 27 
 
 7.75 
 
 1.363 
 
 1:550.0 
 
 9.5 
 
 8.0 
 
 7.1 
 
 6.3 
 
 5.7 
 
 4.1 
 
 3.5 
 
 3.1 
 
 2.8 
 
 2.2 
 
 1.9 
 
 28 
 
 7.48 
 
 1.477 
 
 1400.0 
 
 8.9 
 
 7.6 
 
 6.6 
 
 5.9 
 
 5.3 
 
 3.8 
 
 3.3 
 
 2.9 
 
 2.6 
 
 2.1 
 
 1.7 
 
 29 
 
 7.22 
 
 1.593 
 
 1450.0 
 
 8.3 
 
 7.2 
 
 6.2 
 
 5.5 
 
 4.9 
 
 3.5 
 
 3.1 
 
 2.7 
 
 2.5 
 
 1.9 
 
 1.6 
 
 30 
 
 6.98 
 
 1.718 
 
 1500.0 
 
 7.7 
 
 6.6 
 
 5.8 
 
 5.1 
 
 4.6 
 
 3.3 
 
 2.9 
 
 2.5 
 
 2.3 
 
 1.8 
 
 1.5 
 
 31 
 
 6.75 
 
 1.846 
 
 1550.0 
 
 7.3 
 
 6.2 
 
 5.4 
 
 4.8 
 
 4.3 
 
 3.1 
 
 2.7 
 
 2.4 
 
 2.1 
 
 1.7 
 
 1.4 
 
 32 
 
 6.54 
 
 1.982 
 
 1GOO.O 
 
 6.7 
 
 5.8 
 
 5.1 
 
 4.4 
 
 4.0 
 
 2.9 
 
 2.5 
 
 2.2 
 
 2.0 
 
 1.6 
 
 1.3 
 
 33 
 
 6.34 
 
 2.119 
 
 1650.0 
 
 6.4 
 
 5.6 
 
 4.8 
 
 4.2 
 
 3.8 
 
 2*.7 
 
 2.4 
 
 2.1 
 
 1.9 
 
 1.5 
 
 1.2 
 
 34 
 
 6.16 
 
 2.265 
 
 1700.0 
 
 6.0 
 
 5.1 
 
 4.5 
 
 4.0 
 
 3.6 
 
 2.5 
 
 2.2 
 
 2.0 
 
 1.8 
 
 1.4 
 
 1.2 
 
 35 
 
 5.98 
 
 2.416 
 
 1750.0 
 
 5.6 
 
 4.8 
 
 4.2 
 
 3.7 
 
 3.4 
 
 2.4 
 
 2.1 
 
 1.8 
 
 1.7 
 
 1.3 
 
 1.1 
 
 36 
 
 5.81 
 
 2.577 
 
 1800.0 
 
 5.3 
 
 4.6 
 
 4.0 
 
 3.5 
 
 3.3 
 
 2^3 
 
 2^0 
 
 1.7 
 
 1.6 
 
 1.2 
 
 1.0 
 
 37 
 
 5.66 
 
 2.742 
 
 1850.0 
 
 5.0 
 
 4.3 
 
 3.8 
 
 3.3 
 
 3.0 
 
 2.1 
 
 1.9 
 
 1.6 
 
 1.5 
 
 1.2 
 
 
 38 
 
 5.51 
 
 2.918 
 
 1900.0 
 
 4.8 
 
 4.1 
 
 3.6 
 
 3.2 
 
 2.9 
 
 2.0 
 
 1.8 
 
 1.6 
 
 1.4 
 
 1.1 
 
 
 39 
 
 5.37 
 
 3.098 
 
 1950.0 
 
 4.5 
 
 3.9 
 
 3.4 
 
 3.0 
 
 2.7 
 
 1.9 
 
 1.7 
 
 15 
 
 1.3 
 
 1.1 
 
 
 40 
 
 5.27 
 
 3.289 
 
 2000.0 
 
 4.3 
 
 3.7 
 
 3.2 
 
 2.9 
 
 2.6 
 
 1.8 
 
 1.6 
 
 1.4 
 
 1.3 
 
 l.C 
 
 
43 
 
 RESISTANCE TO CROSS BREAKING AND SHEARING. 
 
 9" " Medium" Beam. Weight per If. = 30 Ibs. 
 
 Sectional aren = 9.0" 
 
 Moment of inertia I = 111.32 
 
 Constant K = 123.09 
 
 K f 
 
 
 
 oc 
 p 
 
 <D 
 
 
 Distance d bet. centres of beams in feet, for 
 
 o 
 
 
 
 
 1 
 
 weight in Ibs. per sq. foot of 
 
 <n 
 
 i 
 
 ft 
 
 .2 
 
 
 ~j 
 
 
 
 
 
 
 
 
 
 
 G5 S 
 .0 
 
 O 
 
 9 
 
 Itf) 
 
 J 
 
 d 
 
 g 
 
 " 
 
 J3 
 
 | 
 
 00 
 
 JO 
 
 s 
 
 JO 
 
 1 
 
 n 
 
 .0 
 
 s 
 
 6 
 
 O 
 
 ft 
 
 9 
 
 p 
 
 o 
 
 
 
 s 
 
 8 
 
 
 
 8 
 
 1 
 
 
 1 
 
 1 
 
 6 
 
 20.00 
 
 0.062 
 
 1800 
 
 
 
 
 
 
 
 
 
 
 
 22 
 
 7 
 
 17.07 
 
 0.085 
 
 210.0 
 
 
 
 
 
 
 
 
 
 25.0 
 
 20. ( 
 
 16.0 
 
 8 
 
 15.40 
 
 0.111 
 
 240.0 
 
 
 
 
 
 
 
 21.0 
 
 21.0 
 
 in n 
 
 15.0 
 
 12^0 
 
 9 
 
 13.74 
 
 0.141 
 
 270.0 
 
 
 
 
 
 
 21.0 
 
 19.0 
 
 100 15.0 
 
 11.0 
 
 10.0 
 
 10 
 
 12.36 
 
 0.174 
 
 300.0 
 
 
 
 
 
 
 17.0 
 
 15.0 
 
 13.0 12.0 
 
 9.8 
 
 8^2 
 
 11 
 
 11.24 
 
 0.211 
 
 330.0 
 
 
 
 
 22.0 
 
 20.0 
 
 14.0 
 
 12.0 
 
 11.01 10.0 
 
 8.1 
 
 6.8 
 
 12 
 
 10.30 
 
 0.252 
 
 300.0 
 
 
 
 21.0 
 
 19.0 
 
 17.0 
 
 12.0 
 
 10.0 
 
 9.5 1 8.5 
 
 6.8 
 
 5.7 
 
 13 
 
 9.51 
 
 0.297 
 
 390.0 
 
 
 2J.O 
 
 18.0 
 
 10.0 
 
 14.0 
 
 10.0 
 
 9.1 
 
 8.1! 7.3 
 
 5.8 
 
 4.8 
 
 14 
 
 8.83 
 
 0.345 
 
 420.0 
 
 21.0 
 
 18.0 
 
 15.0 
 
 14.0 
 
 12.0 
 
 9.0 
 
 7.8 
 
 7.0i 6.3 
 
 5.0 
 
 4.2 
 
 15 
 
 8.24 
 
 0.398 
 
 450.0 
 
 18.0 
 
 15.0 
 
 13.0 
 
 12.0 
 
 10.0 
 
 7.8 
 
 6.8 
 
 6.11 5.4 
 
 4.3 
 
 3.6 
 
 16 
 
 7.73 
 
 0.455 
 
 480.0 
 
 10.0 
 
 13.0 
 
 12.0 
 
 10.0 
 
 9.6 
 
 6.9 
 
 6.0 
 
 5.3; 4.8 
 
 3.8 
 
 3.2 
 
 17 
 
 7.21 
 
 0.511 
 
 510.0 
 
 14.0 
 
 12.0 
 
 10.0 
 
 9.4 
 
 8.4 
 
 6.0 
 
 5.3 
 
 4.7i 4.2 
 
 3.2 
 
 2.8 
 
 18 
 
 6.87 
 
 0.580 
 
 540-0 
 
 12.0 
 
 10.0 
 
 9.5 
 
 8.4 
 
 7.6 
 
 5.4 
 
 4.7 
 
 4.2^ 3.8 
 
 3.0 
 
 2.5 
 
 19 
 
 6.51 
 
 0.650 
 
 570.0 
 
 11.0 
 
 9.7 
 
 8.5 
 
 7.0 
 
 6.8 
 
 4.8 
 
 4.2 
 
 3.8 3.4 
 
 2.7 
 
 2.2 
 
 20 
 
 6.18 
 
 0.722 
 
 000.0 
 
 10.0 
 
 8.8 
 
 7.7 
 
 6.8 
 
 6.1 
 
 4.4 
 
 3.8 
 
 3.4 
 
 3.0 
 
 2.4 
 
 2.0 
 
 21 
 
 5.88 
 
 0799 
 
 630.0 
 
 9.3 
 
 8.0 
 
 7.0 
 
 6.2 
 
 5.6 
 
 4.0 
 
 3.5 
 
 3.1 
 
 2.8 
 
 2.2 
 
 1.8 
 
 22 
 
 5.02 
 
 0.884 
 
 660.0 
 
 8.5 
 
 7.2 
 
 6.3 
 
 5.0 
 
 5.1 
 
 3.6 
 
 3.1 
 
 2.8 
 
 2.5 
 
 2.0 
 
 1.7 
 
 23 
 
 5.37 
 
 0.969 
 
 6DO.O 
 
 7.7 
 
 6.6 
 
 5.8 
 
 5.1 
 
 4.6 
 
 3.3 
 
 2.9 
 
 2.5 
 
 2.3 
 
 1.8 
 
 1.5 
 
 24 
 
 5.15 
 
 1.065 
 
 720.0 
 
 7.1 
 
 6.1 
 
 5.3 
 
 4.7 
 
 4.2 
 
 3.0 
 
 . 2.0 
 
 2.3 
 
 2.1 
 
 1.7 
 
 1.4 
 
 25 
 
 4.94 
 
 1.157 
 
 750.0 
 
 6.5 
 
 5.6 
 
 4.9 
 
 4 3 
 
 3.9 
 
 2.8 
 
 2.5 
 
 2.1 
 
 1.9 
 
 1.5 
 
 1.3 
 
 26 
 
 4.83 
 
 1.277 
 
 780.0 
 
 6.1 
 
 5.3 
 
 4.6 
 
 4J 
 
 3.7 
 
 2.6 
 
 2.3 
 
 2.0 
 
 1.8 
 
 1.4 
 
 1.2 
 
 27 
 
 4.58 
 
 1.365 
 
 810.0 
 
 5.6 
 
 4.8 
 
 4.2 
 
 3.7 
 
 3.3 
 
 2.4 
 
 2.1 
 
 1.8 
 
 1.6 
 
 1.3 
 
 1.1 
 
 28 
 
 4.41 
 
 1.476 
 
 840.0 
 
 5.2 
 
 4.5 
 
 3.9 
 
 3.5 
 
 3.1 
 
 2.2 
 
 1.9 
 
 1.7 
 
 1.5 
 
 1.2 
 
 1.0 
 
 29 
 
 4.20 
 
 1.593 
 
 870.0 
 
 4.8 
 
 4.1 
 
 3.6 
 
 3.2 
 
 2.9 
 
 2.0 
 
 1.8 
 
 1.6 
 
 1.4 
 
 1.1 
 
 
 30 
 
 4.12 
 
 1.718 
 
 900.0 
 
 4.5 
 
 3.9 
 
 3.4 
 
 3.0 
 
 2.7 
 
 1.9 
 
 1.7 
 
 1.5 
 
 1.3 
 
 1.0 
 
 
 31 
 
 3.99 
 
 1.846 
 
 930.0 
 
 4.2 3.0 
 
 3.2 
 
 2.8 
 
 2.5 
 
 1.8 
 
 1.6 
 
 1.4 
 
 1.2 
 
 1.0 
 
 
 32 
 
 3.80 
 
 1.982 
 
 900.0 
 
 4.0 3.4 
 
 3.0 
 
 2.6 
 
 2.4 
 
 1.7 
 
 1.5 
 
 1.3 
 
 1.2 
 
 
 
 33 
 
 3.74 
 
 2.119 
 
 9900 
 
 3.7 
 
 3.2 
 
 2.8 
 
 2.5 
 
 2.2 
 
 1.0 
 
 1.4 
 
 1.2 
 
 1.1 
 
 
 
 34 
 
 3.03 
 
 2.235 
 
 1020.0 
 
 3.5 
 
 3.0 
 
 2.6 
 
 2.3 
 
 2.1 
 
 1.5 
 
 1.3 
 
 1.1 
 
 1.0 
 
 
 
 35 
 
 3.53 
 
 2.416 
 
 1050.0 
 
 3.3 
 
 2.8 
 
 2.5 
 
 2.2 
 
 2.0 
 
 1.4 
 
 1.2 
 
 1.1 
 
 1.0 
 
 
 
 36 
 
 3.43 
 
 2.577 
 
 1080.0 
 
 3.1 
 
 2.7 
 
 2.3 
 
 2.1 
 
 1.9 
 
 1.3 
 
 1.1 
 
 1.0 
 
 
 
 
 37 
 
 3.34 
 
 2.742 
 
 1110.0 
 
 3.0 
 
 2.5 
 
 2.2 
 
 2.0 
 
 1.8 
 
 1.2 
 
 1.1 
 
 1.0 
 
 
 
 
 38 
 
 3.25 
 
 2.918 
 
 1140.0 
 
 28 
 
 2.4 
 
 2.1 
 
 1.9 
 
 1.7 
 
 1.2 
 
 1.0 
 
 
 
 
 
 39 
 
 3.17 
 
 3.098 
 
 1170.0 
 
 2.7 
 
 2.3 
 
 2.0 
 
 1.7 
 
 1.6 
 
 1.1 
 
 1.0 
 
 
 
 
 
 40 
 
 3.09 
 
 3.289 
 
 1200.0 
 
 2.5 
 
 2.2 
 
 1.9 
 
 1.6 
 
 1.5 
 
 1.1 
 
 
 
 
 
 
RESISTANCE TO CROSS BREAKING AND SHEARING. 
 
 Fig. 88. 
 
 9" "UgU" Beam. Weight per If. = 23.33 Ibs. 
 
 Sectional area = 7.0" 
 
 Moment of inertia /== 91.00 
 
 Constant K r =101.2 
 
 K 
 
 3 
 
 CQ 
 
 e 
 
 CO 
 
 o 
 
 
 Distance d bet. centres of beams in feet, for 
 
 1 
 
 3 
 .5 
 
 JG 
 
 o 
 
 c 
 
 rc 
 
 ,Q 
 
 weight in pounds per sq. foot of 
 
 CO 0) 
 
 
 G 
 
 fl 
 
 
 
 
 
 
 
 
 
 
 
 
 J.S 
 
 o 
 
 d 
 
 HP 
 
 a! 
 
 i 
 
 -; 
 
 02 
 
 1 
 
 .0 
 
 | 
 
 ,0 
 
 1 
 
 .a 
 
 JD 
 
 01 
 
 ft 
 
 6 
 
 ft 
 
 8 
 
 
 
 
 
 i 
 
 8 
 
 5 
 
 g 
 
 1 
 
 g 
 
 1 
 
 i 
 
 1 
 
 g 
 
 16.86 
 
 0.002 
 
 140.0 
 
 
 
 
 
 
 
 
 
 
 22.0 
 
 18.7 
 
 7 
 
 14.45 
 
 035 
 
 103.3 
 
 
 
 
 
 
 
 i;> 5 
 
 79 () 
 
 20.0 
 
 .0.0 
 
 13.7 
 
 
 12.05 
 
 0.111 
 
 180.0 
 
 
 
 
 
 
 25.0 
 
 19.7 
 
 17.5 
 
 15.8 
 
 [2.0 
 
 10.5 
 
 9 
 
 11.24 
 
 0.141 
 
 21o o 
 
 
 
 
 
 
 17.8 
 
 15.6 
 
 13.8 
 
 
 10.1 
 
 8*.6 
 
 10 
 
 10.12 
 
 0.175 
 
 233.3 
 
 
 
 
 22.0 
 
 20.0 
 
 14.4 
 
 12.0 
 
 11.2 
 
 iai 
 
 8.0 
 
 6.7 
 
 11 
 
 9.20 
 
 0.212 
 
 250.0 
 
 
 
 21.0 
 
 18.7 
 
 10.7 
 
 11.9 
 
 10.4 
 
 9.2 
 
 8.3 
 
 0.7 
 
 5.5 
 
 12 
 
 8.43 
 
 0.253 
 
 280.0 
 
 23.0 
 
 20.0 
 
 17.5 
 
 15.0 
 
 14.0 
 
 10.0 
 
 8.7 
 
 7.8 
 
 7.0 
 
 5.6 
 
 4.6 
 
 13 
 
 7.78 
 
 0.297 
 
 303.3 
 
 19.9 
 
 17.9 
 
 14.9 
 
 13.4 
 
 11.9 
 
 8.5 
 
 7.4 
 
 0.0 
 
 5.9 
 
 4.8 
 
 3.0 
 
 14 
 
 7.22 
 
 0.345 
 
 320.0 
 
 17.1 
 
 14.7 
 
 12.8 
 
 11.4 
 
 10.3 
 
 7.3 
 
 0.4 
 
 5.7 
 
 5.1 
 
 4.1 
 
 3.4 
 
 15 
 
 6.74 
 
 0.398 
 
 350.0 
 
 14.9 
 
 12.9 
 
 11.2 
 
 10.0 
 
 8.9 
 
 6.4 
 
 5.0 
 
 5.0 
 
 4.5 
 
 3.0 
 
 2.$ 
 
 16 
 
 6.31 
 
 0.453 
 
 373.3 
 
 13.1 
 
 11.2 
 
 9.8 
 
 8.7 
 
 7.8 
 
 5.0 
 
 4.9 
 
 4.3 
 
 3.9 
 
 3.1 
 
 2.6 
 
 17 
 
 5.95 
 
 0.510 
 
 390.0 
 
 11.6 
 
 10.0 
 
 8.7 
 
 7.8 
 
 7.0 
 
 5.0 
 
 4.3 
 
 3.8 
 
 3.5 
 
 2.8 
 
 2.3 
 
 18 
 
 5.02 
 
 0.579 
 
 420.0 
 
 10.4 
 
 8.9 
 
 7.8 
 
 0.9 
 
 0.2 
 
 4.4 
 
 3.9 
 
 3.4 
 
 3.1 
 
 2.5 
 
 2.0 
 
 19 
 
 5.32 
 
 0.048 
 
 443.3 
 
 9.3 
 
 8.0 
 
 7.0 
 
 0.2 
 
 5.0 
 
 4.0 
 
 3.5 
 
 3.1 
 
 2.8 
 
 2.2 
 
 1.8 
 
 20 
 
 5.00 
 
 0.721 
 
 466.6 
 
 8.4 
 
 7.2 
 
 03 
 
 5.0 
 
 5.0 
 
 3.0 
 
 3.1 
 
 2.8 
 
 2.5 
 
 2.0 
 
 1.0 
 
 21 
 
 4.81 
 
 0.797 
 
 490.0 
 
 7.6 
 
 G.5 
 
 5.7 
 
 5.1 
 
 4.5 
 
 3.2 
 
 2.8 
 
 2.5 
 
 2.2 
 
 1.8 
 
 1.5 
 
 22 
 
 4.59 
 
 0.879 
 
 513.3 
 
 0.9 
 
 5.9 
 
 5.2 
 
 4.0 
 
 4.1 
 
 2.9 
 
 2.0 
 
 2.3 
 
 2.1 
 
 1.7 
 
 1.3 
 
 23 
 
 4.40 
 
 0.908 
 
 536.6 
 
 0.3 
 
 5.5 
 
 4.7 
 
 4.2 
 
 3.8 
 
 2.7 
 
 2.3 
 
 2.1 
 
 1.9 
 
 1.5 
 
 1.2 
 
 24 
 
 4.21 
 
 1.000 
 
 500.0 
 
 5.8 
 
 5.0 
 
 4.3 
 
 3.8 
 
 3.5 
 
 2.5 
 
 2.1 
 
 1.9 
 
 1.7 
 
 1.4 
 
 1.1 
 
 25 
 
 4.04 
 
 1.151 
 
 583.3 
 
 5.3 
 
 4-G 
 
 4.0 
 
 3.5 
 
 3.2 
 
 2.3 
 
 2.0 
 
 1.7 
 
 1.0 
 
 1.2 
 
 1.0 
 
 26 
 
 3.89 
 
 1.254 
 
 GOO.G 
 
 4.9 
 
 4.2 
 
 3.7 
 
 3.3 
 
 2.9 
 
 2.1 
 
 1.8 
 
 1.0 
 
 1.4 
 
 1.1 
 
 
 27 
 
 3.74 
 
 1.359 
 
 030.0 
 
 4.0 
 
 3.9 
 
 3.4 
 
 3.0 
 
 2.7 
 
 1.9 
 
 1.7 
 
 1.5 
 
 1.3 
 
 10 
 
 
 28 
 
 3.00 
 
 1.400 
 
 653.3 
 
 4.2 
 
 3.0 
 
 3.2 
 
 2.8 
 
 2.5 
 
 1.8 
 
 1.0 
 
 .4 
 
 1.2 
 
 1.0 
 
 
 29 
 
 3.48 
 
 1.582 
 
 676.6 
 
 4.0 
 
 3.4 
 
 3.0 
 
 2.0 
 
 2.4 
 
 1.7 
 
 1.5 
 
 .3 
 
 1.1 
 
 
 
 30 
 
 3.37 
 
 1.711 
 
 700.0 
 
 3.7 
 
 3.2 
 
 2.8 
 
 2.5 
 
 2 2 
 
 1.0 
 
 1.4 
 
 1.2 
 
 1.1 
 
 
 
 31 
 
 3.20 
 
 1.837 
 
 723.3 
 
 3.5 
 
 3.0 
 
 2.0 
 
 23 
 
 2.1 
 
 1.5 
 
 1.3 
 
 .1 
 
 1.0 
 
 
 
 32 
 
 3.10 
 
 1.968 
 
 746.6 
 
 3.2 
 
 2.8 
 
 2.4 
 
 2.1 
 
 1.9 
 
 1.4 
 
 12 
 
 l.o 
 
 
 
 
 33 
 
 3.00 
 
 2.104 
 
 770.0 
 
 3.0 
 
 2.0 
 
 2.3 
 
 2.0 
 
 1.8 
 
 1.3 
 
 1.1 
 
 
 
 
 
 34 
 
 2.97 
 
 2.250 
 
 793.3 
 
 2.9 
 
 2.4 
 
 2.1 
 
 1.9 
 
 1.7 
 
 1.2 
 
 l.o 
 
 
 
 
 
 35 
 
 2.89 
 
 2.399 
 
 810.G 
 
 2.7 
 
 2.3 
 
 2.C 
 
 1.8 
 
 1.0 
 
 1.1 
 
 
 
 
 
 
 36 
 
 2.81 
 
 2.505 
 
 840.0 
 
 2.0 
 
 2.2 
 
 1.9 
 
 1.7 
 
 1.5 
 
 1.0 
 
 
 
 
 
 
 37 
 
 2.73 
 
 2.723 
 
 803.3 
 
 2.4 
 
 2.1 
 
 1.8 
 
 1.0 
 
 1.4 
 
 
 
 
 
 
 
 38 
 
 2.06 
 
 2.898 
 
 880.6 
 
 2.3 
 
 2.0 
 
 1.7 
 
 1.5 
 
 1.4 
 
 
 
 
 
 
 
 39 
 
 2.59 
 
 3.070 
 
 910.0 
 
 9 9 
 
 1 
 
 i r 
 
 1 4 
 
 1 .} 
 
 
 
 
 
 
 
 40 
 
 2.52 
 
 3.250 
 
 
 2.1 
 
 1.8 
 
 1.5 
 
 1.4 
 
 1.2 
 
 
 
 
 
 
 
50 
 
 RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 8" Beam. Weight per If. -= 21.66 Ibs. 
 
 Soctionnl area = 6.5" 
 
 Moment of inertia I = 05.09 
 
 Constant, K = 82.49 
 
 K 
 
 -2 
 "tf 
 
 =Q 
 
 C 
 
 o> 
 
 
 Distance d bet. centres of beams in feet, for 
 
 p. 
 
 P.*- 
 
 c c 
 
 3 
 
 "3 
 
 c 
 
 ri 
 
 JB 
 
 weight in pounds per pq. foot of 
 
 "c c 
 ffi 
 
 c; 
 
 c 
 d 
 
 09 
 
 32 
 
 e 
 2 
 
 tC 
 
 1 
 
 1 
 
 1 
 
 Ja 
 
 J 
 
 | 
 
 5 
 
 B 
 
 _C 
 
 i 
 
 1 
 
 w 
 
 X> 
 
 cr 
 
 s 
 
 6 
 
 & 
 
 3 
 
 i 
 
 
 
 55 
 
 i 
 
 
 
 1 
 
 g 
 
 i 
 
 o 
 o 
 
 i 
 
 1 
 
 G 
 
 13.74 
 
 0.070 
 
 130.0 
 
 
 
 
 
 
 
 
 
 oo 9 
 
 18 3 
 
 Ti 
 
 7 
 
 11.78 
 
 0.095 
 
 151.6 
 
 
 
 
 
 
 
 21. 
 
 18. "> 
 
 10.8 
 
 13.-; 
 
 11.2 
 
 g 
 
 10.30 
 
 0.124 
 
 173.3 
 
 
 
 
 
 >- Y 
 
 18.3 
 
 1 0.0 
 
 14. 3 
 
 12.8 
 
 10.3 
 
 8.5 
 
 9 
 
 9.16 
 
 0.158 
 
 195.0 
 
 
 
 
 
 . ().:> 
 
 1 l.fi 
 
 12.7 
 
 11.3 
 
 10.1 
 
 8.1 
 
 6.7 
 
 10 
 
 8.23 
 
 0.198 
 
 216.6 
 
 
 
 J0.5 
 
 1X.3 
 
 10.4 
 
 11.7 
 
 10.2 
 
 9.1 
 
 8.2 
 
 6.5 
 
 5.4 
 
 11 
 
 7.49 
 
 0.238 
 
 238.3 
 
 22.C 
 
 19.4 
 
 17.0 
 
 15.1 
 
 l:j.G 
 
 9.7 
 
 8.5 
 
 7.5 
 
 6.8 
 
 5.4 
 
 4.5 
 
 12 
 
 6.87 
 
 0.284 
 
 260.0 
 
 19.0 
 
 163 
 
 L4.8 
 
 12.7 
 
 11.4 
 
 8.1 
 
 7.1 
 
 6.3 
 
 5.7 
 
 4.5 
 
 3.8 
 
 13 
 
 634 
 
 0.335 
 
 281.6 
 
 16.2 
 
 14.0 
 
 12.1 
 
 10.9 
 
 7 
 
 0.9 
 
 6.0 
 
 5.4 
 
 4.8 
 
 3.9 
 
 3.2 
 
 14 
 
 5.89 
 
 0.390 
 
 303.3 
 
 14.0 
 
 12.0 
 
 10.5 
 
 9.:} 
 
 8.4 
 
 0.0 
 
 5.2 
 
 4.0 
 
 4.2 
 
 3.3 
 
 2.8 
 
 15 
 
 6.49 
 
 0447 
 
 325.0 
 
 12,2 
 
 10.5 
 
 9.1 
 
 8,1 
 
 7.3 
 
 5.2 
 
 4.5 
 
 4.0 
 
 3.6 
 
 2.9 
 
 2.4 
 
 16 
 
 5.15 
 
 0.511 
 
 346.6 
 
 10.7 
 
 9.1 
 
 8.0 
 
 7,1 
 
 6.4 
 
 4.5 
 
 4.0 
 
 3.6 
 
 3.2 
 
 2.5 
 
 2.1 
 
 17 
 
 4.85 
 
 0.580 
 
 368.3 
 
 9.5 
 
 .0 
 
 7.1 
 
 6.3 
 
 5.7 
 
 4.0 
 
 3.7 
 
 3.2 
 
 2.8 
 
 2.3 
 
 1.9 
 
 18 
 
 4.58 
 
 0.653 
 
 390.0 
 
 8.4 
 
 7.2 
 
 6.3 
 
 5.6 
 
 5.1 
 
 3.8 
 
 3.1 
 
 2.7 
 
 2.5 
 
 2.0 
 
 1.7 
 
 19 
 
 4.34 
 
 0.731 
 
 411.6 
 
 7.6 
 
 65 
 
 5.7 
 
 5.1 
 
 4.5 
 
 3.3 
 
 29 
 
 B5 
 
 22 
 
 1.8 
 
 1.5 
 
 20 
 
 4.11 
 
 0.810 
 
 433.3 
 
 6.8 
 
 5.8 
 
 5.1 
 
 4.5 
 
 4.1 
 
 29 
 
 2.5 
 
 2.2 
 
 2.0 
 
 1.6 
 
 1.3 
 
 21 
 
 3.92 
 
 0.898 
 
 455.0 
 
 0.2 
 
 5.3 
 
 4.6 
 
 4.1 
 
 3.7 
 
 2.6 
 
 2.3 
 
 2.0 
 
 1.8 
 
 1.4 
 
 1.2 
 
 22 
 
 3.73 
 
 0.989 
 
 476.6 
 
 5.6 
 
 4.8 
 
 4.2 
 
 3.7 
 
 3.4 
 
 2.4 
 
 2.1 
 
 1.8 
 
 1.6 
 
 1.3 
 
 1.1 
 
 23 
 
 358 
 
 1.090 
 
 498.3 
 
 5.1 
 
 4.4 
 
 3.8 
 
 3.4 
 
 3.1 
 
 2.2 
 
 1.9 
 
 1.7 
 
 1.5 
 
 1.2 
 
 1.0 
 
 24 
 
 3.42 
 
 1.192 
 
 520.0 
 
 4.7 
 
 4.0 
 
 3.5 
 
 3.1 
 
 2.8 
 
 2.0 
 
 1.7 
 
 1.5 
 
 .4 
 
 1.1 
 
 
 25 
 
 3.29 
 
 1.300 
 
 541.6 
 
 4.3 
 
 3.7 
 
 3.2 
 
 2.9 
 
 2.6 
 
 1.8 
 
 1.5 
 
 1.4 
 
 1.3 
 
 1.0 
 
 
 26 
 
 3.17 
 
 1.417 
 
 563.3 
 
 4.0 
 
 3.4 
 
 3.0 
 
 2.7 
 
 2.4 
 
 1.7 
 
 1.4 
 
 1.3 
 
 1.2 
 
 
 
 27 
 
 3.05 
 
 1.536 
 
 585.0 
 
 3.7 
 
 3.2 
 
 2,8 
 
 2.5 
 
 2.2 
 
 1.6 
 
 1.4 
 
 1.2 
 
 1.1 
 
 
 
 28 
 
 2.94 
 
 1.602 
 
 606.6 
 
 3.5 
 
 3.0 
 
 2.6 
 
 2.3 
 
 2.1 
 
 1.5 
 
 1.3 
 
 1.1 
 
 1.0 
 
 
 29 
 
 2.84 
 
 1.795 
 
 628.3 
 
 3.2 
 
 2.8 
 
 2.4 
 
 2.1 
 
 1.9 
 
 1.4 
 
 1.2 
 
 1.0 
 
 
 
 30 
 
 2.73 
 
 1.923 
 
 650.0 
 
 3.0 
 
 2.6 
 
 2.2 
 
 2.0 
 
 1.8 
 
 1.3 
 
 1.1 
 
 
 | 
 
 
 31 
 
 2.66 
 
 2.080 
 
 671.6 
 
 2.8 
 
 2.4 
 
 2.1 
 
 1.9 
 
 1.7 
 
 1.2 
 
 1.0 
 
 
 
 
 
 
 2.56 
 
 2.219 
 
 693.3 
 
 2.6 
 
 2.2 
 
 2.0 
 
 1.7 
 
 1.0 
 
 1.1 
 
 
 
 
 
 
 33 
 
 2.49 
 
 2.383 
 
 715.0 
 
 2.5 
 
 2.1 
 
 1.8 
 
 1.6 
 
 1.4 
 
 1.0 
 
 
 
 
 
 
 34 
 
 2.42 
 
 2.550 
 
 736.6 
 
 2.3 
 
 2.0 
 
 1.7 
 
 1.5 
 
 1.4 
 
 
 
 
 
 
 
 35 
 
 2.35 
 
 2.722 
 
 758.3 
 
 2.2 
 
 1.9 
 
 1.6 
 
 1.4 
 
 1.3 
 
 
 
 
 
 
 
 36 
 
 2.29 
 
 2.907 
 
 780.0 
 
 2.1 
 
 1.8 
 
 1.5 
 
 1.4 
 
 1.2 
 
 
 
 
 
 
 
 37 
 
 2.22 
 
 3.084 
 
 801.6 
 
 2.0 
 
 1.7 
 
 1.5 
 
 1.3 
 
 12 
 
 
 
 
 
 
 
 38 
 
 2.17 
 
 3.290 
 
 823.3 
 
 1.9 
 
 1.6 
 
 1.4 
 
 1.2 
 
 1.1 
 
 
 
 
 
 
 
 39 
 
 2.11 
 
 3.484 
 
 845.0 
 
 1.8 
 
 1.5 
 
 1.3 
 
 1.2 
 
 1.0 
 
 
 
 
 
 
 
 40 
 
 2.06 
 
 3.702 
 
 866.6 
 
 1.7 
 
 1.4 
 
 1.2 
 
 1.1 
 
 1.0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ] 
 
 
 
BESISTANCE TO CEOSS-BBEAZING AND SHEABING. 
 
 51 
 
 Fig. 90. 
 
 7" Seam. Weight per If. = 18.33 Ibs. 
 
 Sectional area == 55" 
 
 Moment of inertia / = 44.84 
 
 Constant # =64.06 
 
 K f 
 
 e 
 
 jj 
 
 02 
 
 
 Distance d bet. centres of beams in feet, for 
 
 O 
 
 p. 
 
 1 
 
 A 
 o 
 
 m 
 
 .0 
 
 weight in Ibs. per sq. foot of 
 
 13 O 
 
 2 
 
 .s 
 
 """ 
 
 
 OD CD 
 
 5 
 
 c5 
 
 
 
 d 
 
 JbK) 
 
 03 
 
 
 
 so 
 
 , 
 
 | 
 
 t 
 
 | 
 
 .JO 
 
 i 
 
 i 
 
 X 
 
 s 
 
 OS 
 O 
 
 
 1 
 
 i 
 
 | 
 
 i 
 
 O 
 05 
 
 3 
 
 
 
 1 
 
 1 
 
 1 
 
 
 
 
 
 6 
 
 10.67 
 
 0.080 
 
 110.0 
 
 
 
 
 
 
 25.4 
 
 22 2 
 
 H).7 
 
 17.7 
 
 14.2 
 
 11 8 
 
 7 
 
 9.15 
 
 0.109 
 
 
 
 
 
 
 
 18.6 
 
 16.3 
 
 14/> 
 
 13,0 
 
 10.5 
 
 8 .7 
 
 8 
 
 8.00 
 
 0.143 
 
 14&6 
 
 
 
 25. 6 
 
 22.2 
 
 20. (! 
 
 14.2 
 
 12.5 
 
 11.1 
 
 10.0 
 
 8.0 
 
 6.6 
 
 9 
 
 7.11 
 
 0.181 
 
 165.0 
 
 
 2*2.9 
 
 19.7 
 
 17.5 
 
 16.8 
 
 11.2 
 
 9.8 
 
 8.7 
 
 7.9 
 
 6.3 
 
 5.2 
 
 10 
 
 6.40 
 
 0.224 
 
 183.3 
 
 2L3 
 
 18.2 
 
 16.0 
 
 14.2 
 
 12.8 
 
 9.1 
 
 8.0 
 
 7.1 
 
 6.4 
 
 5.1 
 
 4.2 
 
 11 
 
 5.82 
 
 0.272 
 
 201.6 
 
 17.6 
 
 15.3 
 
 13.2 
 
 11.7 
 
 10.5 
 
 7.5 
 
 6.6 
 
 5.8 
 
 5.2 
 
 4.2 
 
 3.5 
 
 12 
 
 5.33 
 
 0.325 
 
 220.0 
 
 14.8 
 
 12.6 
 
 11.1 
 
 9.8 
 
 8.8 
 
 6.3 
 
 5.5 
 
 4.9 
 
 4.4 
 
 3.5 
 
 2.9 
 
 13 
 
 4.92 
 
 0.382 
 
 238.3 
 
 12.6 
 
 10.9 
 
 9.4 
 
 8.3 
 
 7.5 
 
 5.4 
 
 4.7 
 
 4.1 
 
 3.7 
 
 3.0 
 
 2.5 
 
 14 
 
 4.56 
 
 0.444 
 
 256.6 
 
 10.8 
 
 9.3 
 
 8.1 
 
 7.2 
 
 6.5 
 
 4.6 
 
 4.0 
 
 3.6 
 
 3.2 
 
 2.6 
 
 2.1 
 
 15 
 
 4.27 
 
 0.513 
 
 275.0 
 
 9.4 
 
 8.2 
 
 7.1 
 
 6.3 
 
 5.7 
 
 4.0 
 
 35 
 
 3.1 
 
 2.8 
 
 2.2 
 
 1.8 
 
 16 
 
 3.99 
 
 0.585 
 
 293.3 
 
 8.3 
 
 7.1 
 
 6.2 
 
 5.5 
 
 4.9 
 
 3.5 
 
 3.1 
 
 2.7 
 
 2.4 
 
 1.9 
 
 1.6 
 
 17 
 
 3.76 
 
 0.665 
 
 311.6 
 
 7.3 
 
 6.5 
 
 5.5 
 
 4.9 
 
 4.4 
 
 3.1 
 
 2.7 
 
 2.3 
 
 2.1 
 
 1.7 
 
 1.4 
 
 18 
 
 3.55 
 
 0.749 
 
 330.0 
 
 6.5 
 
 5.6 
 
 4.9 
 
 4.3 
 
 3.9 
 
 2.8 
 
 24 
 
 2.1 
 
 1.9 
 
 1.5 
 
 1.3 
 
 19 
 
 3.37 
 
 0.840 
 
 348.3 
 
 5.9 
 
 5.1 
 
 4.4 
 
 3.9 
 
 3.5 
 
 2.5 
 
 2.2 
 
 1.9 
 
 1.7 
 
 1.4 
 
 1.1 
 
 20 
 
 3.20 
 
 0.936 
 
 366.6 
 
 5.3 
 
 4.5 
 
 4.0 
 
 3.5 
 
 3.2 
 
 2.2 
 
 2.0 
 
 1.7 
 
 1.6 
 
 1.2 
 
 1.0 
 
 21 
 
 3.05 
 
 1.038 
 
 385.0 
 
 4.8 
 
 4.1 
 
 3.6 
 
 3.2 
 
 2.9 
 
 2.0 
 
 1.8 
 
 1.6 
 
 1.4 
 
 1.1 
 
 
 22 
 
 2.91 
 
 1.146 
 
 403.3 
 
 4.4 
 
 3.7 
 
 3.3 
 
 2.9 
 
 2.6 
 
 1.8 
 
 1.6 
 
 1.4 
 
 1.3 
 
 1.0 
 
 
 23 
 
 2.78 
 
 1.257 
 
 421.6 
 
 4.0 
 
 3.4 
 
 3.0 
 
 2.7 
 
 2.4 
 
 1.7 
 
 1.5 
 
 1.3 
 
 1.2 
 
 
 
 24 
 
 2.66 
 
 1.381 
 
 440.0 
 
 3.6 
 
 3.1 
 
 2.7 
 
 2.4 
 
 2.2 
 
 1.6 
 
 1.3 
 
 1.2 
 
 1.1 
 
 
 
 25 
 
 2.56 
 
 1.504 
 
 458.3 
 
 3.4 
 
 2.9 
 
 2.5 
 
 2.2 
 
 2.0 
 
 1.5 
 
 1.2 
 
 1.1 
 
 1.0 
 
 
 
 26 
 
 2.45 
 
 1.630 
 
 476.6 
 
 3.1 
 
 2.6 
 
 2.3 
 
 2.0 
 
 18 
 
 1.4 
 
 1.1 
 
 
 
 
 
 27 
 
 2.37 
 
 1.775 
 
 495.0 
 
 2.9 
 
 2.5 
 
 2.1 
 
 1.9 
 
 1.7 
 
 1.3 
 
 1.0 
 
 
 
 
 
 28 
 
 2.27 
 
 1.871 
 
 513.3 
 
 2.7 
 
 2.3 
 
 2.0 
 
 1.8 
 
 1.6 
 
 1.2 
 
 
 
 
 
 
 29 
 
 2.20 
 
 2.075 
 
 531.6 
 
 2.5 
 
 2.1 
 
 1.8 
 
 1.7 
 
 1.5 
 
 11 
 
 
 
 
 
 
 30 
 
 2.12 
 
 2.229 
 
 550.0 
 
 2.3 
 
 2.0 
 
 1.7 
 
 1.5 
 
 1.4 
 
 1.0 
 
 
 
 
 
 
52 
 
 RESISTANCE TO CROSS- BREAKING AND SHEARING. 
 
 6" Seam. Weight per If. = 13.33 Ibs. 
 
 I 0.28" 
 
 ^pfc 
 
 Sectional area =. 4.0" 
 
 Moment of inertia I = 22.5 
 
 Constant K = 37.64 
 
 K 
 W . 
 
 - 
 
 K 
 
 or: 
 
 0) 
 
 
 Distance d bet. centres of beams in feet, for 
 
 a . 
 
 1 
 
 
 
 00* 
 
 weight in Ibs. per sq. foot of 
 
 * 
 
 d 
 
 .5 
 
 s 
 
 
 ?c 
 
 
 
 d 
 
 d 
 
 
 
 
 
 
 
 
 
 
 
 
 ".S 
 
 05 
 
 6 
 o 
 
 a 
 
 n 
 
 J 
 
 j 
 
 
 
 03 
 
 jQ 
 
 > 
 
 JO 
 
 2 
 
 J 
 
 J 
 
 
 
 s 
 
 Bi 
 
 o 
 
 o 
 Q 
 
 1 
 
 i 
 
 i 
 
 i 
 
 o 
 
 Ci 
 
 8 
 
 o 
 
 o 
 
 CD 
 
 
 
 1 
 
 1 
 
 1 
 
 6 
 
 6.27 
 
 094 
 
 80.0 
 
 
 
 
 23.2 
 
 20.9 
 
 14.9 
 
 13.0 
 
 11.6 
 
 10.4 
 
 8.3 
 
 6.9 
 
 7 
 
 5.37 
 
 o!l28 
 
 93.3 
 
 
 
 19.1 
 
 17.3 
 
 L5.3 
 
 lo .o 
 
 9.5 
 
 8.4 
 
 7.6 
 
 6.1 
 
 5.1 
 
 8 
 
 
 .168 
 
 106^6 
 
 19.5 
 
 16.8 
 
 14.6 
 
 13.0 
 
 11.7 
 
 8.5 
 
 
 6.5 
 
 5.8 
 
 4.7 
 
 3.9 
 
 9 
 
 4J8 
 
 0.213 
 
 120.0 
 
 15.4 
 
 13.4 
 
 11.6 
 
 10.4 
 
 9.2 
 
 6.6 
 
 sis 
 
 5.1 
 
 4.G 
 
 3.7 
 
 3.1 
 
 10 
 
 3.75 
 
 0.263 
 
 133.3 
 
 12.5 
 
 10.7 
 
 9.3 
 
 8.3 
 
 7.5 
 
 5.3 
 
 4.7 
 
 4.1 
 
 3.7 
 
 3.0 
 
 2.5 
 
 11 
 
 3.42 
 
 0.320 
 
 146.6 
 
 10.3 
 
 9.0 
 
 7.7 
 
 6.9 
 
 6.2 
 
 4.4 
 
 3.8 
 
 3.4 
 
 3.1 
 
 2.4 
 
 2.0 
 
 12 
 
 3.13 
 
 0.382 
 
 160.0 
 
 8.6 
 
 7.0 
 
 6.5 
 
 5.7 
 
 5.2 
 
 3.7 
 
 3.2 
 
 2.9 
 
 2.6 
 
 2.0 
 
 1.7 
 
 13 
 
 2.89 
 
 0.450 
 
 173.3 
 
 7.4 
 
 6.4 
 
 5.5 
 
 4.9 
 
 4.4 
 
 3.1 
 
 2.7 
 
 2.4 
 
 2.2 
 
 1.7 
 
 1.4 
 
 14 
 
 2.68 
 
 0.524 
 
 186.6 
 
 6.3 
 
 5.4 
 
 4.7 
 
 4.2 
 
 3.8 
 
 2.7 
 
 2.3 
 
 2.1 
 
 1.9 
 
 1.5 
 
 1.2 
 
 15 
 
 2.51 
 
 0.607 
 
 200.0 
 
 5.5 
 
 4.8 
 
 4.2 
 
 3.7 
 
 3.3 
 
 2.3 
 
 2.1 
 
 1.8 
 
 1.6 
 
 1.3 
 
 1.1 
 
 16 
 
 2.34 
 
 0.689 
 
 213.3 
 
 4.8 
 
 41 
 
 3.6 
 
 3.2 
 
 2.9 
 
 2.0 
 
 1.8 
 
 1.6 
 
 1A 
 
 1.1 
 
 
 17 
 
 2.21 
 
 0.786 
 
 226.6 
 
 4.3 
 
 3.7 
 
 3.2 
 
 2.8 
 
 2.5 
 
 1.8 
 
 1.6 
 
 1.4 
 
 1.8 
 
 
 
 18 
 
 2.09 
 
 0.888 
 
 240.0 
 
 3.8 
 
 3.3 
 
 2.9 
 
 2.5 
 
 2.3 
 
 1.6 
 
 1.4 
 
 1.2 
 
 1.1 
 
 
 
 19 
 
 1.98 
 
 0.995 
 
 253.3 
 
 3.4 
 
 3.0 
 
 2.6 
 
 2 3 
 
 2.1 
 
 1.4 
 
 1.3 
 
 1.1 
 
 
 
 
 20 
 
 1.88 
 
 1.110 
 
 266.6 
 
 3.1 
 
 2.7 
 
 2.3 
 
 2.1 
 
 1.8 
 
 1.3 
 
 1.1 
 
 
 
 
 
 21 
 
 1.79 
 
 1.231 
 
 280.0 
 
 2.8 
 
 2.4 
 
 2.1 
 
 1.9 
 
 1.7 
 
 1.2 
 
 1.0 
 
 
 
 
 
 22 
 
 1.70 
 
 1.350 
 
 293.3 
 
 2.5 
 
 2.2 
 
 1.9 
 
 1.7 
 
 1.5 
 
 1.1 
 
 
 
 
 
 
 23 
 
 1.63 
 
 1.493 
 
 306.6 
 
 2.3 
 
 2.0 
 
 1.7 
 
 1.5 
 
 A 
 
 1.0 
 
 
 
 
 
 
 24 
 
 1.56 
 
 1.641 
 
 320.0 
 
 2.1 
 
 1.8 
 
 1.6 
 
 1.4 
 
 .3 
 
 
 
 
 
 
 
 25 
 
 1.50 
 
 1.787 
 
 333.3 
 
 2.0 
 
 1.7 
 
 1.5 
 
 1.3 
 
 .2 
 
 
 
 
 
 
 
 26 
 
 1.44 
 
 1.950 
 
 346.6 
 
 1.8 
 
 1.5 
 
 1.3 
 
 1.2 
 
 .1 
 
 
 
 
 
 
 
 27 
 
 1.39 
 
 2.129 
 
 360.0 
 
 1.7 
 
 1.4 
 
 1.2 
 
 1.1 
 
 
 
 
 
 
 
 
 28 
 
 1.33 
 
 2.286 
 
 373.3 
 
 1.5 
 
 1.3 
 
 1.1 
 
 
 
 
 
 
 
 
 
 29 
 
 1.29 
 
 2.489 
 
 386.6 
 
 1.4 
 
 1.2 
 
 1.0 
 
 
 
 
 
 
 
 
 
 30 
 
 1.25 
 
 2.698 
 
 400.0 
 
 1.3 
 
 1.1 
 
 
 
 
 
 
 
 
 
 
RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 53 
 
 CAST-IRON BEAMS. 
 
 Factor of rupture for cast-iron beams of various sections. 
 The factor C is based on practical experiments by Hodgkinson- 
 Its value alters with the different proportions of the cross-sections 
 of beam. 
 
 Beam supported at the ends ; load concentrated at the center. 
 
 Reference. 
 
 = Factor of rupture. 
 W= Breaking weight in Ibs. 
 A = Sectional area of beam in square inches. 
 I = Distance between supports in inches. 
 h = Height of beam in inches. 
 
 Dimensions in inches. 6 = Thickness of web at center is the 
 unit. 
 
 Fig. 92. 0.32 = 0.726 
 
 5.125 = 11.646 
 
 0.44=6 
 
 0.47 = 1.066 
 10.52 = 1.186 
 
 Fig. 93. 
 
 2.27 = 5.156 
 . = 3.20 (7=27292 
 
 1.74 = 5.86 
 JJT 
 
 5.125 = 17.086 
 
 .0.26 = 0.866 
 
 0.30 = 6 
 
 . 55 = 1.736 
 
 l. 78~="5?936 
 = 2.73 (7=28513 
 
BESISTANCE TO CEOSS-BEEAKING AND SHEAEING. 
 
 Fig. 2^. 1.07 = 3.346 
 
 =0.946 
 
 5.125 = 166 
 
 2.10 = 6.566 
 = 2.88 (7=30330 
 
 . 95. 
 
 1.6 = 4.216 
 " 
 
 5.125 = 13.486 
 
 . 315 = 0.826 
 
 0.38 = 6 
 
 0.53 = 1.396 
 
 Fig. 96. 
 
 4.16 = 10.946 
 4.33 C= 35262 
 
 2.33 = 8.756 
 
 5.125=19.266 
 
 0.31 = 1.166 
 
 = 6 
 
 = 2.486 
 
 6.67 = 25.076 
 6.23 (7=44176 
 
RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 55 
 
 10 
 r^ 
 
 CD 
 CO 
 
 a 
 
 (M 
 
 JO O 
 
56 
 
 EESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 -5 ^ 
 
 o"* 
 
 C -<3j 
 rn ~ 
 
 & 
 
 S 
 
 jo O 
 
 8 
 
RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 57 
 
 o 
 
 CD 
 
 
 r-i W) ^ T3 
 
 2 >> fl 
 
 Cf- -FH -ua o O> 
 
 00 
 
 ^D 
 
 
 S 1 
 
 f 1 IS! 
 
 3 
 
 -s 
 
 a 
 
 
 
 
 
 CX .2 cj a K 
 
 ^ 
 
 T 1 
 
 2 H H g^ 
 
 
 O 
 
 rH 
 
 
 
 
 a g 
 
 
 5 .2 
 
 CN O - 
 
 
 
 1-1 -Is 
 
 I S r& O 
 
 CD CD CQ 
 
 T-\ "* " 
 
 ^ 
 -j 
 e8 
 
 | 
 
 a 
 
 3 
 
 1 S 
 
 
 S 
 
 o 
 CD 
 
 
 O M 
 
58 RESISTANCE TO CROSS- BREAKING AND SHEARING. 
 
 Load concentrated at center: W= r-, or K l L W. 
 
 t 
 
 Beam fixed at one end; principal flange at top. 
 Load equally distributed: TF= -^-p or JT 1 = 2 .1. W. 
 
 . V 
 
 K l 
 
 Load concentrated at free end: W -7-7-, or K l = 4 .1. W. 
 
 . 4 .1 
 
 [NOTE. The more the sectional area is contained in coefficient ITi, the 
 more is the section economical.] 
 
 EXAMPLE. Section No. 34. Load equally distributed; beam 
 supported at both ends; thickness of web = 1 inch: thickness 
 of flange = 1} inch; height = 10 inches; width of flange = 5.9 
 inches. Distance between supports = 20 feet = 240 inches. 
 
 K l 658 
 W = -jy- = ^- = 5.48 tons capacity. 
 
 T Tfi 
 
 The moment of resistance of cross-section = - r- 
 
RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 
 Number of 
 section. 
 
 ^3 
 
 2P-S 
 
 |IB 
 
 Sectional 
 area in 
 square 
 incnes. 
 
 Coefficient 
 K.I 
 
 Fig. 102. 
 
 1 
 
 6 
 
 5.0 
 
 10.0 
 
 238 
 
 
 
 2 
 
 6} 
 
 5.2 
 
 10.7 
 
 280 
 
 ^ ft 
 
 
 ^ i 
 
 3 
 
 7 
 
 5.5 
 
 11.5 
 
 322 
 
 
 ^ j 
 
 
 
 
 
 
 
 JT 
 
 4 
 
 7} 
 
 5.7 
 
 12.2 
 
 364 
 
 
 1 
 
 5 
 
 8 
 
 6.0 
 
 13 
 
 420 
 
 N**. 
 
 
 
 
 
 
 
 _Z"]lpl^iP^ _.$., 
 
 6 
 
 gi 
 
 6.2 
 
 13.7 
 
 476 
 
 Fig. 103. 
 
 7 
 
 9 
 
 6.5 
 
 14.5 
 
 532 
 
 \ 
 
 lj. 
 
 
 
 8 
 
 9} 
 
 6.7 
 
 15.2 
 
 602 
 
 
 
 
 9 
 
 10 
 
 6.9 
 
 15.9 
 
 672 
 
 
 
 4c 
 
 10 
 
 10} 
 
 7.1 
 
 16.6 
 
 742 
 
 
 
 
 11 
 
 11 
 
 7.4 
 
 17.4 
 
 812 
 
 
 > 
 
 ^^^i _ N /___ 
 
 12 
 
 11} 
 
 7.6 
 
 18 1 
 
 882 
 
 K""*" -4 
 
 13 
 
 12 
 
 79 
 
 18.9 
 
 966 
 
 Fig. 104. 
 
 
 
 
 
 
 t27 
 
 14 
 
 12} 
 
 8.1 
 
 19.6 
 
 1050 
 
 ! 
 
 * 
 
 15 
 
 13 
 
 8.4 
 
 20.4 
 
 1134 
 
 ^ 
 
 i 
 
 16 
 
 13} 
 
 8.6 
 
 21.1 
 
 1232 
 
 % 
 
 \ . ~ 
 
 17 
 
 14 
 
 8.8 
 
 21.8 
 
 1316 
 
 % 
 
 i 
 
 1 Q 
 
 1/11 
 
 
 
 
 5^^^4^~. 1 " 
 
 lo 
 
 14} ; 
 
 9.0 
 
 22.5 
 
 1428 
 
 k-"--B -i" 
 
 19 
 
 15 
 
 9.3 
 
 23.3 
 
 1526 
 
 Fig. 105. 
 
 20 
 
 15} 
 
 9.5 
 
 24.0 
 
 1624 
 
 
 : * I F 
 
 21 
 
 16 
 
 9.8 
 
 24.8 
 
 1750 
 
 
 .: 1 I 
 / ! \ -\ 
 
 22 
 
 16} 
 
 10.0 
 
 25.5 
 
 1848 
 
 
 \k 
 
 I ! 
 
 23 
 
 17 
 
 10.3 
 
 26.3 
 
 1960 
 
 
 1 ! 
 
 24 
 
 17} 
 
 10.5 
 
 27.0 
 
 2086 
 
 
 _ .. J. " ;/;:,;% * 
 
 
 
 
 
 
 [ 
 
 jg ->;_ 
 
 25 
 
 18 
 
 10.8 
 
 27.8 
 
 2212 
 
60 
 
 RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 
 Number of 
 section. 
 
 .2 
 
 Width B 
 of lower 
 flange in 
 inches. 
 
 Sectional 
 area in 
 square 
 inches. 
 
 Coefficient 
 K.i 
 
 Fig. 106. 
 
 26 
 
 6 
 
 4.5 
 
 10.4 
 
 224 
 
 
 i- --> 
 
 27 
 
 6} 
 
 4.6 
 
 11.1 
 
 266 
 
 
 t i 
 
 28 
 
 7 
 
 4.8 
 
 11.8 
 
 322 
 
 
 y- 
 
 29 
 
 7j 
 
 5.0 
 
 12.5 
 
 364 
 
 
 - \ 
 
 
 
 
 
 
 
 
 P 
 
 30 
 
 8 
 
 5.2 
 
 13.2 
 
 420 
 
 
 31 
 
 gl 
 
 5.4 
 
 13.9 
 
 476 
 
 Fig. 107. 
 
 32 
 
 2 
 
 9 
 
 5.6 
 
 14.7 
 
 532 
 
 \J"/ 
 
 33 
 
 9} 
 
 5.7 
 
 15.4 
 
 588 
 
 P 
 
 -- -y 
 
 34 
 
 10 
 
 5.9 
 
 16.2 
 
 658 
 
 " 
 
 
 35 
 
 10$ 
 
 6.1 
 
 16.9 
 
 728 
 
 
 
 36 
 
 11 
 
 6.3 
 
 17.6 
 
 798 
 
 | 
 
 i 
 
 
 
 
 
 
 
 1 
 
 37 
 
 11} 
 
 6.5 
 
 18.3 
 
 882 
 
 ,- k >^- >; 
 
 38 
 
 12 
 
 6.7 
 
 19.1 
 
 952 
 
 Fig. 108. 
 
 39 
 
 12} 
 
 6.9 
 
 19.8 
 
 1036 
 
 ^ 
 
 ir 
 
 40 
 
 13 
 
 7.1 
 
 20.6 
 
 1134 
 
 
 
 
 
 
 
 
 | 
 
 i 
 
 41 
 
 13} 
 
 7.3 
 
 21.3 
 
 1218 
 
 
 rr 
 
 , 
 
 42 
 
 14 
 
 7.5 
 
 22.1 
 
 1316 
 
 
 I 
 
 
 
 
 
 
 ^ 
 
 1 ! 
 
 43 
 
 14} 
 
 7.7 
 
 22.8 
 
 1414 
 
 E]l^ 
 
 !< 
 
 :. -#- >! ?* 
 
 44 
 
 15 
 
 7.9 
 
 23.6 
 
 1512 
 
 Fig. 109. 
 
 45 
 
 15J 
 
 8.0 
 
 24.3 
 
 1610 
 
 
 
 
 
 
 
 
 >i \/gi 
 
 i IT 
 
 46 
 
 47 
 
 16 
 16J 
 
 8.2 
 8.4 
 
 25.1 
 25.8 
 
 1722 
 1834 
 
 
 i 
 
 48 
 
 17 
 
 8.6 
 
 26.5 
 
 1946 
 
 
 1 * 
 
 
 
 
 
 
 
 ^ 1 
 
 1 
 
 49 
 
 1VJ 
 
 8.8 
 
 27.2 
 
 2072 
 
 
 sk 
 
 KA 
 
 I Q 
 
 9.0 
 
 28.0 
 
 2198 
 
 
 ,_..-S- H- 
 
 O\J 
 
 J.O 
 
 
 
 
RESISTANCE TO CKOSS-BREAKING AND SHEAEING. 
 
 61 
 
 
 
 Number of 
 section. 
 
 Height H 
 in inches. 
 
 *!t 
 
 Sectional 
 area in 
 square 
 inches. 
 
 Coefficient 
 Ji 
 
 I 
 
 ig. 110. 
 
 51 
 
 6 
 
 4.2 
 
 10.5 
 
 224 
 
 \ 
 
 2 ! 
 
 
 
 
 
 
 
 1" T 
 
 52 
 
 6} 
 
 4.3 
 
 11.4 
 
 266 
 
 
 1 \ 
 % i 
 
 53 
 
 7 
 
 4.5 
 
 12.3 
 
 308 
 
 
 " f 
 
 54 
 
 7} 
 
 4.6 
 
 12.9 
 
 364 
 
 
 ^ I 
 
 55 
 
 8 
 
 4.7 
 
 13.6 
 
 406 
 
 z^flltll 
 
 ^ 
 
 
 
 
 1 A O 
 
 
 K 
 
 B > 
 
 56 
 
 8 i 
 
 4.8 
 
 14.3 
 
 462 
 
 I 
 
 fy. 111. 
 
 57 
 
 9 
 
 5.0 
 
 15.0 
 
 532 
 
 V 
 
 7 
 
 58 
 
 91 
 
 5.1 
 
 15.7 
 
 588 
 
 m 
 
 % 
 
 
 
 
 
 
 1 
 
 \ 
 
 59 
 
 10 
 
 5.3 
 
 16.5 
 
 658 
 
 1 
 
 J 
 
 60 
 
 10} 
 
 5.4 
 
 17.2 
 
 728 
 
 1 
 
 \ 
 
 \ 
 
 r^r, 
 
 61 
 
 11 
 
 5.6 
 
 17.9 
 
 798 
 
 
 
 62 
 
 11} 
 
 5.7 
 
 18.6 
 
 868 
 
 * 
 
 ^-- - 
 
 63 
 
 12 
 
 5.9 
 
 19.4 
 
 952 
 
 f 
 
 7 ^. 112. 
 
 
 
 
 
 
 
 
 64 
 
 12} 
 
 6.0 
 
 20.1 
 
 1036 
 
 p"~* 
 
 ^ 
 
 65 
 
 13 
 
 6.3 
 
 20.9 
 
 1120 
 
 
 3T 
 
 66 
 
 13} 
 
 6.4 
 
 21.6 
 
 1204 
 
 M 
 w 
 
 ! 
 
 67 
 
 14 
 
 6.6 
 
 22.4 
 
 1302 
 
 W 
 
 1 ^ 
 
 \ -** 
 
 
 
 
 
 i A f\r\ 
 
 HHf 
 
 wSm^. 
 
 68 
 
 14} 
 
 6.7 
 
 23.1 
 
 14UU 
 
 <_ J 
 
 J- >| 
 
 69 
 
 15 
 
 6.9 
 
 23.8 
 
 1498 
 
 J 
 
 V 113. 
 
 70 
 
 15} 
 
 7.0 
 
 24.5 
 
 1610 
 
 \jj 
 
 _^ 
 
 
 i f 
 
 hf Q 
 
 oc q 
 
 i >7ns 
 
 1 
 
 
 
 lo 
 
 / .4 
 
 ZiO . O 
 
 1 <UO 
 
 1 
 
 \ 
 
 72 
 
 16} 
 
 7.3 
 
 26.0 
 
 1820 
 
 i 
 
 
 
 73 
 
 17 
 
 7.5 
 
 26.8 
 
 1932 
 
 i 
 
 } 
 
 
 
 
 
 
 1 
 
 
 74 
 
 17} 
 
 7.7 
 
 27.5 
 
 2058 
 
 
 4^ 
 
 
 
 
 
 
 fer-L 
 
 B- ! 
 
 75 
 
 18 
 
 7.9 
 
 28.3 
 
 2184 
 
62 RESISTANCE TO CROSS -BREAKING AND SHEARING; 
 
 
 o . 
 
 ^g 
 
 c^c 
 
 -so 
 
 tt 
 
 
 s 
 
 ^ o 
 
 31&I 
 
 SM 1 
 
 I SgJ 
 
 o^ 
 
 
 * 
 
 a> 
 
 W.S 
 
 
 1 * %- 
 
 o 
 o 
 
 Fig. 114. 
 
 
 
 
 
 
 I frr? 
 
 76 
 
 6 
 
 4.0 
 
 12.0 
 
 224 
 
 i 
 
 77 
 
 7 
 
 4.1 
 
 13.1 
 
 308 
 
 i 
 
 
 
 
 
 
 * 
 
 78 
 
 8 
 
 4.2 
 
 14.4 
 
 406 
 
 -F?>. 115. 
 
 79 
 
 9 
 
 4.4 
 
 15.7 
 
 518 
 
 VT 
 
 
 
 
 
 
 ~A~ 
 
 
 
 
 
 
 1 i 
 
 80 
 
 10 
 
 4.6 
 
 17.1 
 
 644 
 
 * 
 
 
 
 
 
 
 | I 
 
 81 
 
 11 
 
 4.8 
 
 18.6 
 
 784 
 
 "|P|| ~~] I 
 
 
 
 
 
 
 i *- -H 
 
 82 
 
 12 
 
 5.0 
 
 20.0 
 
 938 
 
 %, 116. 
 
 
 
 
 
 
 1" ^ "" 
 
 i 
 
 83 
 
 13 
 
 5.2 
 
 21.4 
 
 1106 
 
 aJ, 
 
 
 
 
 
 
 ^ 
 
 84 
 
 14 
 
 5.5 
 
 22.9 
 
 1288 
 
 1 
 
 
 
 
 
 
 TS2P 7 
 
 
 
 
 
 
 <L jB >| 
 
 85 
 
 15 
 
 5.7 
 
 24.4 
 
 1484 
 
 Fig. 117. 
 
 
 
 
 
 
 ^ ^T- 
 
 86 
 
 16 
 
 5.9 
 
 25.8 
 
 1694 
 
 1 1 1 
 
 
 
 
 
 
 i 1L 
 
 87 
 
 17 
 
 6.2 
 
 27.3 
 
 1918 
 
 1 1 i 
 
 
 
 
 
 
 i_ 
 
 88 
 
 18 
 
 6.4 
 
 28.8 
 
 2156 
 
 ^---^""^ 
 
 
 
 
 
 
RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 63 
 
 
 Number of 
 section. 
 
 51 
 
 II 
 
 "o 
 
 gj 
 
 (33 ^ fl 
 
 5 -^ rf^ 
 
 Sectional 
 area in 
 square 
 incnes. 
 
 Coefficient 
 JZX 
 
 Fig. 118. 
 
 89 
 
 6 
 
 5.6 
 
 12.9 
 
 294 
 
 W. ^ 
 
 90 
 
 6} 
 
 5.8 
 
 13,8 
 
 336 
 
 I U I I 
 
 91 
 
 7 
 
 6.0 
 
 14.7 
 
 392 
 
 B 
 
 
 
 
 
 
 _ 
 
 92 
 
 ff 
 
 6.2 
 
 15.5 
 
 448 
 
 v 
 
 93 
 
 8 
 
 6.4 
 
 16.4 
 
 518 
 
 j0gH|BHB-i* -. 
 
 94 
 
 ii 
 
 6.6 
 
 17.3 
 
 588 
 
 s \e. .ft _>| 
 
 
 2 
 
 
 
 
 Fig.V&l 
 
 95 
 
 9 
 
 6.9 
 
 18.3 
 
 658 
 
 . // 
 
 96 
 
 9} 
 
 7.1 
 
 19.2 
 
 742 
 
 T 
 
 97 
 
 10 
 
 7.4 
 
 20.2 
 
 826 
 
 & 
 
 98 
 
 10} 
 
 7.6 
 
 21.1 
 
 910 
 
 
 99 
 
 11 
 
 7.9 
 
 22.1 
 
 1008 
 
 i 
 
 100 
 
 Hi 
 
 8.1 
 
 23.0 
 
 1106 
 
 . 
 
 101 
 
 12 
 
 8.4 
 
 23.9 
 
 1204 
 
 Fig. 120. 
 
 102 
 
 
 8.6 
 
 24.8 
 
 1302 
 
 
 w~ \~ 
 
 103 
 
 13 
 
 8.9 
 
 25.8 
 
 1414 
 
 
 ^ 7T 
 
 m JL 
 
 104 
 
 13} 
 
 9.1 
 
 26.7 
 
 1526 
 
 
 1 t - ^-" : 
 
 I ! 
 
 105 
 
 1 HA 
 
 14 
 
 9.4 
 
 9r> 
 
 27.7 
 
 1652 
 
 1 7/2/1 
 
 
 i&" 
 
 lUb 
 
 *?J 
 
 . b 
 
 28.5 
 
 1754: 
 
 
 E- -J5- r^- 
 
 107 
 
 15 
 
 9.8 
 
 29.4 
 
 1890 
 
 Fig. 121. 
 
 \% " \%? 
 
 108 
 
 15} 
 
 10.0 
 
 30.3 
 
 2030 
 
 
 ITT 
 
 109 
 
 16 
 
 10.3 
 
 31.3 
 
 2156 
 
 
 % \ 
 
 
 
 
 
 
 
 | i 
 
 110 
 
 16} 
 
 10.5 
 
 32.2 
 
 2296 
 
 
 tj *i 
 
 111 
 
 17 
 
 10.8 
 
 33.2 
 
 2436 
 
 
 1 ! 
 
 112 
 
 171 
 
 11.0 
 
 34.1 
 
 2590 
 
 
 -i 
 
 113 
 
 18 
 
 11.3 
 
 35.0 
 
 2730 
 
 <____JB V; 
 
64 
 
 RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 I 
 
 \ 
 
 ig. 122. 
 
 2%r 
 
 Number of 
 section. 
 
 1 
 
 X3 O bJD _e 
 
 T3~ G ^ 
 
 Sectional 
 a r e a i n 
 square 
 inches. 
 
 Coefficient 
 jffl. 
 
 114 
 115 
 116 
 
 6 
 6} 
 7 
 
 5.3 
 5.4 
 5.6 
 
 13.6 
 14.4 
 15.3 
 
 280 
 336 
 392 
 
 I 
 
 
 
 
 
 
 
 
 
 J5 
 
 r 
 
 117 
 
 7} 
 
 5.7 
 
 16.1 
 
 448 
 
 M 
 
 
 
 
 
 
 
 118 
 119 
 120 
 
 8 
 3} 
 9 
 
 5.9 
 6.0 
 6.2 
 
 17.0 
 
 17.8 
 18.7 
 
 518 
 588 
 658 
 
 ^^iltl^^s 
 v 
 
 Fig. 123. 
 
 \ 
 
 S- 
 
 
 
 -* 121 
 
 9 i 
 
 6.4 
 
 19.6 
 
 742 
 
 
 1 
 
 
 
 
 122 
 
 10 
 
 6.6 
 
 20.5 
 
 814 
 
 
 
 
 
 
 r |l23 
 
 10} 
 
 6.8 
 
 21.4 
 
 910 
 
 
 v 
 
 
 
 
 ; 124 
 
 11 
 
 7.0 
 
 22.4 
 
 994 
 
 T&T 4 l ^H i 
 
 125 
 126 
 127 
 128 
 
 11} 
 12 
 12} 
 13 
 
 7.2 
 7.4 
 7.6 
 7.8 
 
 23.3 
 24.2 
 25.1 
 
 26.1 
 
 1092 
 1190 
 1288 
 1400 
 
 Fig. 124. 
 
 
 \ 
 
 A 
 
 
 
 
 
 ^ 
 
 J 
 
 r 
 
 
 
 
 129 
 
 13} 
 
 8.0 
 
 27.0 
 
 1512 
 
 H 
 
 i 
 
 1 
 
 
 
 
 130 
 131 
 132 
 
 14 
 14} 
 15 
 
 8.2 
 8.4 
 8.6 
 
 27.9 
 28.8 
 29.8 
 
 1624 
 1750 
 1876 
 
 
 i ;!%* 
 
 . ~i 
 
 5 
 
 
 
 
 Fig. 125. 
 \5/? \5/ o y 
 
 133 
 
 15} 
 
 8.8 
 
 30.7 
 
 2002 
 
 
 = 
 $ 
 
 
 /a 
 
 t-x 
 
 
 134 
 
 16 
 
 9.0 
 
 31.6 
 
 2142 
 
 1 
 
 ~ 
 
 
 | 
 
 | 
 
 
 135 
 
 16} 
 
 9.2 
 
 32.5 
 
 2282 
 
 1 
 
 < 
 
 ^ 
 
 
 
 k 
 
 136 
 137 
 138 
 
 17 
 
 18 
 
 9.4 
 9.6 
 9.8 
 
 33.5 
 34.4 
 35.3 
 
 2422 
 
 2562 
 2716 
 
 
 
 B- 
 
 
 
 
EESISTANCE TO CROSS-BREAKING AND SHEARING. 65 
 
 Jf 
 
 I 
 
 Fig. 127. 
 W 
 
 Fig 128. 
 
 . 129. 
 
 o . 
 
 II 
 
 C o 
 
 I s 
 
 139 
 
 140 
 
 141 
 
 142 
 
 143 
 
 144 
 
 145 
 
 146 
 
 147 
 
 148 
 
 149 
 
 150 
 
 151 
 
 10 
 
 11 
 
 12 
 
 13 
 
 14 
 
 15 
 
 16 
 
 17 
 
 18 
 
 5.0 
 
 5.1 
 
 5.3 
 
 5.5 
 
 5.7 
 
 6.0 
 
 6.3 
 
 6.5 
 
 6.8 
 
 7.4 
 
 7.7 
 
 8.0 
 
 15.0 
 
 16.4 
 
 18.0 
 
 19 7 
 
 21.4 
 
 23.2 
 
 25.0 
 
 26.8 
 
 28.6 
 
 30.5 
 
 32.3 
 
 34.2 
 
 36.0 
 
66 
 
 RESISTANCE TO CROSS -BREAKING AND SHEARING. 
 
 
 
 VH 
 
 N 
 
 ( 
 
 
 ^> 
 
 
 
 2 d 
 
 2 
 
 2*00 
 
 ^ .5 2 cr 
 
 d 
 
 2 
 
 
 
 jo^ 
 
 ^"o 
 
 Z 1^2 
 
 J CJ ^J 
 
 jj>jj 
 
 
 
 E "^ 
 
 
 
 
 
 
 
 
 
 
 
 c 
 
 
 
 
 
 
 
 o 
 
 
 
 5 
 
 WH.m 
 
 J 
 
 CC * " " 
 
 
 
 Fig. 130. 
 
 152 
 
 6 
 
 6.3 
 
 16.2 
 
 336 
 
 \ 
 
 8 A 
 
 153 
 
 6} 
 
 6.5 
 
 17.2 
 
 406 
 
 
 1 
 
 154 
 
 7 
 
 6.7 
 
 18.3 
 
 476 
 
 
 
 155 
 
 7} 
 
 6.9 
 
 19.3 
 
 546 
 
 
 ^ts i 
 
 
 
 
 
 
 
 
 156 
 
 8 
 
 7.1 
 
 20.4 
 
 616 
 
 T / Tl^ 
 
 ~^1 
 
 
 
 
 
 
 ^~_lMi__ 
 
 ,) v/ 
 
 157 
 
 8} 
 
 7.3 
 
 21.5 
 
 700 
 
 (<.__-.._ >i 
 
 
 
 
 
 
 -F 
 
 </. 131. 
 
 158 
 
 9 
 
 7.5 
 
 22.6 
 
 784 
 
 \ 7^ 
 
 / 
 
 159 
 
 91 
 
 7.7 
 
 23.6 
 
 882 
 
 
 : 
 
 A 
 
 
 
 
 
 
 
 : 
 
 JB: 
 
 160 
 161 
 
 10 
 
 8.0 
 8.2 
 
 24.7 
 
 25.8 
 
 980 
 1078 
 
 
 ; 
 
 
 162 
 
 11 
 
 8.4 
 
 26.9 
 
 1190 
 
 ""// 
 
 //^i " .- " 
 
 l ~~ 7 ~ r ] w 
 
 163 
 
 11} 
 
 8.6 
 
 28.0 
 
 1302 
 
 !<- j 
 
 5 -->; 
 
 164 
 
 12 
 
 8.9 
 
 29.1 
 
 1428 
 
 fty. 132. 
 \& / 
 
 165 
 
 12} 
 
 9.1 
 
 30.1 
 
 1554 
 
 P 
 
 
 ~A~ 
 
 166 
 
 13 
 
 9.3 
 
 31.2 
 
 1680 
 
 
 
 IT 
 
 167 
 
 13} 
 
 9.5 
 
 32.3 
 
 1806 
 
 P 
 
 
 
 168 
 
 14 
 
 9.8 
 
 33.5 
 
 1960 
 
 %, 
 
 1S>F 
 
 169 
 
 14} 
 
 10.0 
 
 34.6 
 
 2100 
 
 \<-jB >i 
 
 170 
 
 15 
 
 10.3 
 
 35.7 
 
 2254 
 
 
 g. 133. 
 
 171 
 
 15} 
 
 10.5 
 
 36.8 
 
 2408 
 
 1 ? 
 
 
 it - 
 
 172 
 
 16 
 
 10.8 
 
 38.0 
 
 2562 
 
 1 
 
 
 1 i 
 
 ^ ! 
 
 173 
 
 16} 
 
 11.0 
 
 39.1 
 
 2730 
 
 i 
 
 
 | J 
 
 174 
 
 17 
 
 11.3 
 
 40.2 
 
 2912 
 
 1 
 
 
 1 ! 
 
 175 
 
 17} 
 
 11.5 
 
 41.3 
 
 3080 
 
 
 1 1 i_ 
 
 176 
 
 18 
 
 11.8 
 
 42.5 
 
 3262 
 
 -a 5.; 
 
RESISTANCE TO CEOSS-BEEAKING AND SHEARING. 67 
 
 
 
 Number of 
 section. 
 
 b/Ofl 
 
 w.s 
 
 *! 
 
 Sectional 
 area in 
 square 
 inches. 
 
 Coefficient 
 AI. 
 
 
 Fig. 134. 
 
 "WJT~ -: 
 
 177 
 
 6 
 
 6.0 
 
 18.0 
 
 336 
 
 
 \ x 
 
 178 
 
 7 
 
 6.1 
 
 19.7 
 
 402 
 
 ^1 
 
 m v 
 
 179 
 
 8 
 
 6.3 
 
 21.6 
 
 602 
 
 ,,- 
 
 Fig. 135. 
 
 180 
 
 9 
 
 6.6 
 
 23.6 
 
 770 
 
 
 ~ ~ /T" 
 
 VOX 1 ; j 
 
 
 
 
 
 
 
 A- x 
 
 181 
 
 10 
 
 6.9 
 
 25.7 
 
 966 
 
 *1 
 
 
 182 
 
 11 
 
 7.2 
 
 27.9 
 
 1176 
 
 
 
 
 
 
 
 
 
 Fig. 136. 
 
 183 
 
 12 
 
 7.5 
 
 30.0 
 
 1400 
 
 1 
 
 f 
 
 184 
 
 13 
 
 7.8 
 
 32.2 
 
 1652 
 
 ^t 
 
 ft 
 
 185 
 
 14 
 
 8.2 
 
 34.4 
 
 1932 
 
 
 
 
 
 
 
 
 fc~ 
 
 ^.^...^" 
 
 186 
 
 15 
 
 8.5 
 
 36.7 
 
 2212 
 
 
 Fig. 137. 
 
 
 
 
 
 
 V%t/ 
 
 ^ 
 
 W 
 ^ 
 
 % ! 
 
 187 
 
 16 
 
 8.9 
 
 38.8 
 
 2534 
 
 1 
 
 ^ * 
 
 188 
 
 17 
 
 9.2 
 
 41.0 
 
 2370 
 
 
 ^ 
 
 
 
 
 
 
 to 
 
 v 
 
 189 
 
 18 
 
 9.6 
 
 43.2 
 
 3220 
 
 <-_.- 
 
 "3- > 
 
 
 
 
 
 
68 
 
 RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 
 
 Number of 
 section. 
 
 ta5 
 
 ^ o> 
 
 Xi^C SJC^ 
 
 Sectional 
 area in 
 square 
 inches. 
 
 Coefficient 
 Kl. 
 
 
 Fig. 138. 
 
 190 
 
 6 
 
 7.0 
 
 21.0 
 
 392 
 
 
 H -A- 
 
 
 
 
 
 
 
 ^^ *i 
 
 191 
 
 7 
 
 7.1 
 
 23.0 
 
 532 
 
 2 
 
 i 
 
 192 
 
 8 
 
 7.4 
 
 25.2 
 
 714 
 
 
 Fig. 139. 
 
 193 
 
 9 
 
 7.7 
 
 27.6 
 
 896 
 
 
 ^ f 
 
 194 
 
 10 
 
 8.0 
 
 30.0 
 
 1120 
 
 2" 
 
 i ^ 
 
 195 
 
 11 
 
 8.4 
 
 32.5 
 
 1372 
 
 
 -%. 140. 
 
 196 
 
 12 
 
 8.8 
 
 35.0 
 
 1638 
 
 i 
 
 fil ^ 
 
 I ! 
 
 197 
 
 13 
 
 9.1 
 
 37.5 
 
 1932 
 
 
 .,: J.^._ 
 
 198 
 
 14 
 
 9.6 
 
 40.1 
 
 2240 
 
 
 ^ig^jr 1 
 
 199 
 
 15 
 
 10.0 
 
 42.7 
 
 2590 
 
 
 Fig. 141. 
 
 
 
 
 
 
 ^ 
 
 
 
 ^"/ M/e"/ 
 
 \ IT 
 
 1 -^f 
 
 200 
 201 
 
 16 
 17 
 
 10.4 
 10.8 
 
 45.2 
 
 47.8 
 
 2954 
 3346 
 
 
 v 
 
 202 
 
 18 
 
 11.2 
 
 50.4 
 
 3766 
 
 
 22* >i 
 
 
 
 
 
 
RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 
 
 
 Number of 
 section. 
 
 ^ 03 
 
 ill 
 
 Sectional 
 area in 
 square 
 incnes. 
 
 Coefficient 
 JO. 
 
 
 
 ^. 142. 
 
 
 
 
 
 
 
 
 L5$ 
 
 203 
 
 6 
 
 8.0 
 
 24.0 
 
 448 
 
 
 
 /</ : . A 
 
 
 
 
 
 
 
 
 ^8 
 
 
 
 
 
 
 
 
 i 
 
 204 
 
 7 
 
 8.1 
 
 26.2 
 
 616 
 
 
 
 3T 
 
 
 
 
 
 
 
 
 r /.,,/ 
 
 yjjl \ 
 
 205 
 
 S 
 
 8.4 
 
 28.8 
 
 812 
 
 
 ,u^ 
 
 -B ->" " 
 
 
 
 
 
 
 
 , J 
 
 ^. 143. 
 
 206 
 
 9 
 
 8.8 
 
 31.5 
 
 1036 
 
 
 1 
 
 2", 
 
 
 
 
 
 
 
 
 P ! 
 
 207 
 
 10 
 
 9.1 
 
 34.3 
 
 1274 
 
 
 
 pP 
 
 
 
 
 
 
 
 
 ^ -9" 
 
 
 
 
 
 
 
 
 ft i 
 
 208 
 
 11 
 
 9.6 
 
 37.1 
 
 1554 
 
 I 
 
 
 
 i 
 
 
 
 
 
 
 
 ;-- 
 
 -^- H 
 
 209 
 
 12 
 
 10.0 
 
 40.0 
 
 1862 
 
 
 
 %. 144. 
 
 
 
 
 
 
 
 2" 
 
 
 
 
 
 
 
 
 m 
 
 A 
 
 210 
 
 13 
 
 10.4 
 
 42.9 
 
 2198 
 
 
 fc 
 
 \ 
 \ 
 
 
 
 
 
 
 
 te 
 
 
 211 
 
 14 
 
 10.9 
 
 45.8 
 
 2562 
 
 
 
 j ^ 
 
 212 
 
 1 ^ 
 
 11.4 
 
 48.7 
 
 2954 
 
 
 E, 
 
 \ 
 
 Fig. 145. 
 
 
 
 
 
 
 \ 
 
 2 ? 
 
 \J 7_ 
 
 213 
 
 16 
 
 11.8 
 
 51.7 
 
 3374 
 
 
 <l 
 
 1 t 
 
 
 
 
 
 
 
 | 
 
 1 i 
 
 
 
 
 
 
 
 If 
 
 :|jg- 
 
 214 
 
 17 
 
 12.3 
 
 54.6 
 
 3822 
 
 
 ^ 
 
 1 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ? C > ^y 
 
 215 
 
 18 
 
 12.8 
 
 57.6 
 
 4298 
 
 
 ,-- 
 
 ! 
 
 
 
 
 
 
70 
 
 EESISTANCE TO CROSS- BREAKING AND SHEARING. 
 
 
 Number of 
 section. 
 
 ^ 03 
 -C O 
 
 ^ oqs.rt 
 
 2 1|| 
 
 Sectional 
 area in 
 square 
 inches. 
 
 Coefficient 
 JT1. 
 
 Fig. 146. 
 
 1 
 
 6 
 
 6 
 
 1.4 
 
 11.4 
 
 294 
 
 r 
 
 2 
 
 6 
 
 7 
 
 1.9 
 
 12.9 
 
 336 
 
 1 
 
 3 
 
 6 
 
 8 
 
 2.3 
 
 14.3 
 
 392 
 
 1/7 1 ^\ 
 
 4 
 
 6 
 
 9 
 
 2.7 
 
 15.7 
 
 448 
 
 ^ 
 
 5 
 
 6 
 
 10 
 
 3.1 
 
 17.1 
 
 504 
 
 ^^y^fr^- 
 
 6 
 
 6 
 
 11 
 
 36 
 
 18.6 
 
 560 
 
 Fig. 147. 
 
 7 
 
 6 
 
 12 
 
 4.0 
 
 20.0 
 
 602 
 
 *y52i , 
 
 8 
 
 6 
 
 13 
 
 4.4 
 
 21.4 
 
 658 
 
 
 
 
 
 
 
 
 \ . j 
 
 9 
 
 6 
 
 14 
 
 4.9 
 
 22.9 
 
 714 
 
 r\ # 
 
 10 
 
 6 
 
 15 
 
 5.3 
 
 24.3 
 
 770 
 
 **.* ^ ,i 
 
 11 
 
 6 
 
 16 
 
 5.7 
 
 25.7 
 
 826 
 
 
 1 9 
 
 & 
 
 1 7 
 
 69 
 
 97 9 
 
 QGQ 
 
 Fig. 148. 
 
 l^j 
 
 13 
 
 o 
 6 
 
 1 < 
 
 18 
 
 . /a 
 
 6.6 
 
 At.Zi 
 
 28.6 
 
 ODO 
 
 924 
 
 -*! __ 
 
 14 
 
 7 
 
 6 
 
 1.2 
 
 12 2 
 
 350 
 
 1 ! 
 
 15 
 
 7 
 
 7 
 
 1.7 
 
 13.7 
 
 420 
 
 Jr 
 
 2-1 
 
 16 
 
 7 
 
 8 
 
 2.1 
 
 15.1 
 
 490 
 
 % 
 
 I i ^ 
 
 17 
 
 H 
 
 9 
 
 2.6 
 
 16.6 
 
 560 
 
 ^i r _Z" 
 
 18 
 
 7 
 
 10 
 
 3.0 
 
 18.0 
 
 616 
 
 [^ JFJ. ^j ^>. 
 
 
 
 
 
 
 
 Fig. 149. 
 
 19 
 
 7 
 
 11 
 
 3.4 
 
 19.4 
 
 686 
 
 k^^l i^.^^, 
 
 20 
 
 7 
 
 12 
 
 3.9 
 
 20.9 
 
 756 
 
 i^S ^wiffi 
 
 21 
 
 7 
 
 13 
 
 4.3 
 
 22.3 
 
 826 
 
 1 ff" 
 
 22 
 23 
 
 7 
 7 
 
 14 
 15 
 
 4.8 
 5.2 
 
 23.8 
 25.2 
 
 896 
 966 
 
 L-LJ 
 
 24 
 
 7 
 
 16 
 
 5.7 
 
 26.7 
 
 1022 
 
 ^/" ^ \ /./ : 
 
 25 
 
 7 
 
 17 
 
 6.1 
 
 28.1 
 
 1092 
 
 
RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 
 Number of 
 section. 
 
 ^ o5 
 
 gc. 
 
 it ll 
 
 5 2* 
 
 CS 2 JQ 
 
 Coefficient 
 *> 1 
 
 Fig. 146. 
 
 26 
 
 7 
 
 18 
 
 6.5 
 
 29.5 
 
 1162 
 
 .rfeipi A" 
 
 27 
 
 8 
 
 6 
 
 1.0 
 
 13.0 
 
 434 
 
 
 28 
 
 8 
 
 7 
 
 1.5 
 
 14.5 
 
 504 
 
 r ( *" 
 
 29 
 
 8 
 
 8 
 
 1.9 
 
 15.9 
 
 588 
 
 1 
 
 30 
 
 1 
 
 8 
 
 9 
 i n 
 
 2.4 
 
 20 
 
 17.4 
 
 I Q Q 
 
 672 
 
 k Br- >i 
 Fig. 147. 
 
 ol 
 32 
 
 8 
 
 1U 
 11 
 
 .0 
 
 3.3 
 
 lo .0 
 20.3 
 
 826 
 
 .. te--5->! 
 
 33 
 
 8 
 
 12 
 
 3.7 
 
 21.7 
 
 910 
 
 j 
 
 i i 
 
 34 
 
 8 
 
 13 
 
 4.2 
 
 23.2 
 
 994 
 
 
 35 
 
 8 
 
 14 
 
 4.6 
 
 24.6 
 
 1078 
 
 . 7v 1 , , x ,.. .! 
 
 36 
 
 8 
 
 15 
 
 5.1 
 
 26.1 
 
 1148 
 
 j[" \% , \~fy 
 
 O>J 
 
 
 i A 
 
 c c 
 
 9^7 ^ 
 
 1 9Q9 
 
 f \, _____ ZJ_ .>,.[ 
 
 ( 
 
 
 lo 
 
 O . O 
 
 Zit.O 
 
 IZtoZi 
 
 jFi$r. 148. 
 
 38 
 
 8 
 
 17 
 
 6.0 
 
 29.0 
 
 1316 
 
 [*&] 
 
 39 
 
 8 
 
 18 
 
 6.4 
 
 30.4 
 
 1386 
 
 z;-j 
 
 40 
 
 9 
 
 7 
 
 1.3 
 
 15.3 
 
 588 
 
 77" 
 
 -,/^ tt 
 
 41 
 
 9 
 
 8 
 
 1.7 
 
 16.7 
 
 686 
 
 
 
 
 
 
 
 
 
 
 42 
 
 9 
 
 9 
 
 2.2 
 
 18.2 
 
 784 
 
 l^^iliil[i$ltl F 7" 
 
 43 
 
 9 
 
 10 
 
 2.6 
 
 19.6 
 
 868 
 
 Fie;. 149. 
 
 44 
 
 9 
 
 11 
 
 3.1 
 
 21.1 
 
 966 
 
 k^ * K ^ y 
 
 45 
 
 9 
 
 12 
 
 3.5 
 
 22.5 
 
 1064 
 
 - /; j^^ A"" 
 
 46 
 
 9 
 
 13 
 
 4.1 
 
 24.1 
 
 1162 
 
 f^\m i ^j ^*. 
 
 
 
 
 
 
 
 // /^/; % // 
 
 47 
 
 9 
 
 14 
 
 4.5 
 
 25.5 
 
 1246 
 
 ^| -f" |^ 
 
 48 
 
 9 
 
 15 
 
 4.9 
 
 26.9 
 
 1344 
 
 1 1 1 
 
 49 
 
 9 
 
 16 
 
 5.4 
 
 28.4 
 
 1442 
 
 :;;:/ ;: ^/^tff^ 
 
 
 
 
 
 
 
 <:&->] 
 
 50 
 
 9 
 
 17 
 
 5.8 
 
 29.8 
 
 1526 
 
RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 
 
 
 
 . 
 
 tH fl 
 
 ^ S 
 
 ^.2 .fS-S . 
 
 C <D 
 
 "3 
 
 
 
 
 
 O) O 
 
 
 
 
 
 
 
 
 
 *c "^ 
 
 -G O 
 
 ,2 kJU: 
 
 -^ M),c 
 
 o ct ^ J; 
 
 JG& 
 
 
 
 
 
 Is 
 
 5 -rH 
 
 iol.s 
 
 r % . 
 
 * 
 
 ?2 5< 
 
 s 
 
 
 
 
 
 55 
 
 W.^H 
 
 * 
 
 
 .g C3 OQ--H 
 
 
 
 Fig. 146. 
 
 51 
 
 9 
 
 18 
 
 6.3 
 
 31.3 
 
 1624 
 
 v 
 
 ^-b->\ 
 
 
 
 
 
 
 
 
 
 J 
 
 
 
 A 
 
 52 
 
 10 
 
 7 
 
 1.1 
 
 16.1 
 
 672 
 
 
 
 i 
 
 
 i 
 
 
 
 
 
 
 
 
 
 1 
 
 
 i 
 
 53 
 
 10 
 
 8 
 
 1.5 
 
 17.5 
 
 784 
 
 
 1" 
 
 1 
 
 
 ZT 
 
 54 
 
 10 
 
 9 
 
 2.0 
 
 19.0 
 
 896 
 
 
 
 1 
 
 
 i 
 i 
 
 55 
 
 10 
 
 10 
 
 2.4 
 
 20.4 
 
 1008 
 
 "fi 
 
 - 
 
 
 . 
 
 1 
 
 i 
 
 x/ 
 
 56 
 
 10 
 
 11 
 
 2.9 
 
 21.9 
 
 1106 
 
 K -X>-, H 
 
 
 Fig. 147. 
 
 57 
 
 10 
 
 12 
 
 3.3 
 
 23.3 
 
 1218 
 
 J? 
 
 
 
 "^"" 
 
 58 
 
 10 
 
 13 
 
 3 8 
 
 24.8 
 
 1330 
 
 
 i 
 
 
 
 i 
 
 59 
 
 10 
 
 14 
 
 4.3 
 
 26.3 
 
 1428 
 
 
 r" - 
 
 
 
 i 
 
 
 
 
 
 
 
 
 
 
 
 TJ 
 
 60 
 
 10 
 
 15 
 
 4.7 
 
 27.7 
 
 1540 
 
 r 
 
 ^ 
 
 y //y////y 
 
 ~ 
 
 i 
 
 61 
 
 10 
 
 16 
 
 5.2 
 
 29.2 
 
 1652 
 
 * J 
 
 Fia. 148 
 
 ; 
 
 >i 
 
 63 
 
 10 
 10 
 
 18 
 
 5.7 
 6.1 
 
 30.7 
 32.1 
 
 1750 
 
 1862 
 
 
 
 <-&>\ 
 wmi"*" 
 
 64 
 
 11 
 
 8 
 
 1.3 
 
 18.3 
 
 896 
 
 
 ^ 
 
 "* ! 
 
 
 
 65 
 
 11 
 
 9 
 
 1.7 
 
 19.7 
 
 1008 
 
 
 " 
 
 j 
 
 
 
 
 
 
 
 
 
 r 
 
 
 JT 
 
 
 
 66 
 
 11 
 
 10 
 
 2.2 
 
 21.2 
 
 1134 
 
 
 ? 
 
 i 
 
 
 
 67 
 
 11 
 
 11 
 
 2.7 
 
 22.7 
 
 1246 
 
 
 
 
 ^ 
 
 5" 
 
 68 
 
 11 
 
 12 
 
 3.1 
 
 24.7 
 
 1372 
 
 k jj >i 
 
 
 
 
 
 
 
 
 .%. 149. 
 
 69 
 
 11 
 
 13 
 
 3.6 
 
 25.6 
 
 1498 
 
 Kjh !<<>! 
 
 70 
 
 11 
 
 14 
 
 4.1 
 
 27.1 
 
 1610 
 
 i tir 
 
 "~A~^ 
 
 ~ 
 
 JZS53TTH 
 
 2y/tdJL 
 
 71 
 
 11 
 
 15 
 
 4.5 28.5 
 
 1736 
 
 // 
 
 
 - 
 
 | 
 
 < 
 
 ,, 
 
 72 
 
 11 
 
 16 
 
 5.0 
 
 30.0 
 
 1862 
 
 % 
 
 
 
 T 
 
 | 
 
 \ 
 
 73 
 
 11 
 
 17 
 
 5.5 
 
 31.5 
 
 1974 
 
 
 
 
 i 
 
 
 
 74 
 
 11 
 
 18 
 
 5.9 
 
 32.9 
 
 2100 
 
 
 
 ./__ 
 
 . \ 
 
 75 
 
 12 
 
 8 
 
 1.1 
 
 19.1 
 
 994 
 
 * 
 
 ^^^ 
 
 -3> 
 
EESISTANGE TO CROSS-BREAKING AND SHEARING. 
 
 73 
 
 
 
 Number of 
 section. 
 
 o 
 
 ^ oc. 
 
 *|s 
 
 Sectional 
 area in 
 square 
 inches. 
 
 Coefficient 
 Ki. 
 
 Fig. 146. 
 
 
 76 
 
 12 
 
 9 
 
 1.5 
 
 20.5 
 
 1120 
 
 S^ U ~b ; 
 
 "A" 
 
 77 
 
 12 
 
 10 
 
 2.0 
 
 22.0 
 
 1260 
 
 1 
 
 
 78 
 
 12 
 
 11 
 
 2.5 
 
 23.5 
 
 1400 
 
 ^1 
 
 i 
 
 79 
 
 12 
 
 12 
 
 2.9 
 
 24.9 
 
 1526 
 
 1 
 
 i 
 
 80 
 
 12 
 
 13 
 
 3.4 
 
 26.4 
 
 1666 
 
 
 1 
 
 
 
 
 
 
 
 
 i 
 
 
 
 
 
 
 
 
 
 
 19 
 
 
 3.9 
 
 97 Q 
 
 1 ROfi 
 
 JSflr. 147. 
 
 
 82 
 
 .LvH 
 
 12 
 
 15 
 
 4.3 
 
 at j 
 
 29.3 
 
 J.OUO 
 
 1932 
 
 ^JjJ"*1_.- 
 
 
 83 
 
 12 
 
 16 
 
 4.8 
 
 30.8 
 
 2072 
 
 ./.jp 
 
 ! u 
 
 84 
 
 12 
 
 17 
 
 5.3 
 
 32.3 
 
 2198 
 
 f\ 
 
 i 
 
 85 
 
 12 
 
 18 
 
 5.7 
 
 33.7 
 
 2338 
 
 v 
 
 i 
 
 
 
 
 
 
 
 ^^ 
 
 t 
 
 86 
 
 13 
 
 9 
 
 1.3 
 
 21.3 
 
 1232 
 
 
 V 1 
 
 
 
 
 
 
 
 IL ^^^MM^M 
 
 [i 
 
 07 
 
 1 3 
 
 1 A 
 
 i 8 
 
 99 ft 
 
 1 QQA 
 
 ~ j<e-_j5 -> 
 
 ! 
 
 o / 
 
 10 
 
 iv 
 
 
 
 
 loob 
 
 jPia. 148. 
 
 
 88 
 
 13 
 
 11 
 
 2.2 
 
 24.2 
 
 1540 
 
 -->! 
 
 
 89 
 
 13 
 
 12 
 
 2.7 
 
 25.7 
 
 1680 
 
 rPl 
 
 
 90 
 91 
 
 13 
 13 
 
 13 
 14 
 
 3.2 
 3.7 
 
 27.2 
 28.7 
 
 1834 
 1988 
 
 1 j 
 
 
 92 
 
 13 
 
 15 
 
 4.1 
 
 30.1 
 
 2128 
 
 
 r 
 
 93 
 
 13 
 
 16 
 
 4.6 
 
 31.6 
 
 2282 
 
 P . II s 
 
 j%. 149. 
 
 
 94 
 
 13 
 
 17 
 
 5.1 
 
 33.1 
 
 2422 
 
 k3-* i/ 
 
 
 95 
 
 13 
 
 18 
 
 5.5 
 
 34.5 
 
 2576 
 
 i lBl ~*~1P 
 
 w%r 
 
 96 
 
 14 
 
 9 
 
 1.1 
 
 22.1 
 
 1358 
 
 "J if 
 
 /!t J5t ?| 
 " :% i 
 
 
 97 
 98 
 
 14 
 14 
 
 10 
 11 
 
 1.5 
 
 2.0 
 
 23.5 
 25.0 
 
 1512 
 1680 
 
 i ! i 
 
 
 
 
 
 
 
 
 1 ! t. 
 
 
 99 
 
 14 
 
 12 
 
 2.5 
 
 26.5 
 
 1834 
 
 nnnnn^i 
 
 
 
 
 
 
 
 
 <. _g. 5,1 
 
 
 100 
 
 14 
 
 13 
 
 3.0 
 
 28.0 
 
 2002 
 
74 
 
 RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 
 Number of 
 section. 
 
 tB a 
 
 ^ CD 
 
 -C O 
 
 B.S 
 
 11 
 
 ^ ol.S 
 
 Sectional 
 area in 
 square 
 inches. 
 
 Coefficient 
 J2X 
 
 Fig. 146. 
 
 101 
 
 14 
 
 14 
 
 3.4 
 
 29.4 
 
 2170 
 
 -A" 
 
 102 
 
 14 
 
 15 
 
 3.9 
 
 30.9 
 
 2324 
 
 
 103 
 
 14 
 
 16 
 
 4.4 
 
 32.4 
 
 2492 
 
 ^| 2 r 
 
 104 
 
 14 
 
 17 
 
 4.8 
 
 33.8 
 
 2660 
 
 | 
 
 105 
 
 14 
 
 18 
 
 5.3 
 
 35.3 
 
 2814 
 
 
 
 
 
 
 
 
 7/ 7 ill HI v 
 
 106 
 
 15 
 
 10 
 
 1.3 
 
 24.3 
 
 1638 
 
 !<: jg- >{ 
 
 
 
 
 
 
 
 Fig. 147. 
 
 107 
 
 15 
 
 11 
 
 1.8 
 
 25.8 
 
 1820 
 
 >J<--5->! 
 
 108 
 
 15 
 
 12 
 
 2.3 
 
 27.3 
 
 2002 
 
 /" |p """ ^"" 
 
 
 
 
 
 
 
 m 
 
 109 
 
 15 
 
 13 
 
 2.7 
 
 28.7 
 
 2170 
 
 p ! 
 
 
 
 
 
 
 
 J" ifi "// 
 
 110 
 
 15 
 
 14 
 
 3.2 
 
 30.2 
 
 2352 
 
 ^ 1 
 
 
 
 
 
 
 
 P 
 
 111 
 
 15 
 
 15 
 
 3.7 
 
 31.7 
 
 2520 
 
 
 
 
 
 
 
 
 ^P 
 
 112 
 
 15 
 
 16 
 
 4.2 
 
 33.2 
 
 2702 
 
 .Fie/. 148. 
 
 113 
 
 15 
 
 17 
 
 4.6 
 
 34.6 
 
 2884 
 
 |-5^j 
 
 114 
 
 15 
 
 18 
 
 5.1 
 
 36.1 
 
 3052 
 
 ^*. | 
 
 115 
 
 16 
 
 10 
 
 1.1 
 
 25.1 
 
 1764 
 
 rl k 
 
 116 
 
 16 
 
 11 
 
 1.6 
 
 26.6 
 
 1960 
 
 I 
 1 
 
 ^ ! --- 
 
 117 
 
 16 
 
 12 
 
 2.0 
 
 28.0 
 
 2156 
 
 7" 
 
 118 
 
 16" 
 
 13 
 
 2.5 
 
 29.5 
 
 2338 
 
 j< _^, ;>i v >- 
 
 
 
 
 
 
 
 ^. 149. 
 
 119 
 
 16 
 
 14 
 
 3.0 
 
 31.0 
 
 2534 
 
 i<3>- K^^- 
 
 120 
 
 16 
 
 15 
 
 3.5 
 
 32.5 
 
 2730 
 
 i ^ """" 
 
 121 
 
 16 
 
 16 
 
 3.9 
 
 33.9 
 
 2912 
 
 /7 | | /, 
 
 122 
 
 16 
 
 17 
 
 4.4 
 
 35.4 
 
 3108 
 
 1 p 
 
 123 
 
 16 
 
 18 
 
 4.9 
 
 36.9 
 
 3290 
 
 
 124 
 
 17 
 
 11 
 
 1.3 
 
 27.3 
 
 2100 
 
 J" V:M$s. 
 
 
 
 
 
 
 
 K- --S- H 
 
 125 
 
 17 
 
 12 
 
 1.8 
 
 28.8 
 
 2310 
 
EESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 75 
 
 
 Number of 
 section. 
 
 S 
 W.2 
 
 ^*0?B ^ 
 
 s||| 
 
 5 _, ~f c5 
 
 J J_ CT p 
 
 X! * K ~ < 
 
 Coefficient 
 
 jsn. 
 
 Fig. 146. 
 
 126 
 
 17 
 
 13 
 
 2.3 
 
 30.3 
 
 2506 
 
 
 
 
 
 
 
 
 
 127 
 
 17 
 
 14 
 
 2.8 
 
 31.8 
 
 2716 
 
 r| jr 
 
 
 
 
 
 
 
 I 
 v ^ 
 
 128 
 
 17 
 
 15 
 
 3.2 
 
 33.2 
 
 2926 
 
 " !< 3%- >{ 
 
 Fig. 147. 
 
 129 
 
 17 
 
 16 
 
 3.7 
 
 34.7 
 
 3122 
 
 ,jn ^ 
 
 Jll f" -TT 
 
 L 5p ^n 
 
 130 
 
 17 
 
 17 
 
 4.2 
 
 36.2 
 
 3332 
 
 y//, \ 
 
 ?3LmmA 
 
 131 
 
 17 
 
 18 
 
 4.7 
 
 37.7 
 
 3542 
 
 ">-- -=# ->s 
 
 132 
 
 18 
 
 11 
 
 1.1 
 
 28.1 
 
 2240 
 
 ^. 148. 
 
 
 
 
 
 
 
 jlilz-*- 
 
 133 
 
 18 
 
 12 
 
 1.6 
 
 29.6 
 
 2464 
 
 1 * s 
 
 
 
 
 
 
 
 ^1 f 
 
 134 
 
 18 
 
 13 
 
 2.0 
 
 31.0 
 
 2688 
 
 1 \ 
 
 IOC 
 
 1 R 
 
 1 A 
 
 2)T 
 
 on c 
 
 OQQQ 
 
 ^^^^^^[^^| 7" 
 
 loO 
 
 lo 
 
 14: 
 
 . O 
 
 6Z. O 
 
 /jbyo 
 
 fc 33 >j " 
 Fig. 149. 
 
 136 
 
 18 
 
 15 
 
 3.0 
 
 34.0 
 
 3122 
 
 &--^ j s^ 
 
 137 
 
 18 
 
 16 
 
 3.5 
 
 35.5 
 
 3346 
 
 *\ ^ 
 
 138 
 
 18 
 
 17 
 
 4.0 
 
 37.0 
 
 3556 
 
 
 139 
 
 18 
 
 18 
 
 4.4 
 
 38.4 
 
 3780 
 
 fcr& >\ 
 
 
 
 
 
 
 
76 
 
 RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 
 
 
 
 o 
 
 ^i 
 
 ^s.s . 
 
 o *-> a 
 g33 . 
 
 -^ a 
 
 a 
 
 o 
 
 
 
 
 
 c o 
 
 
 
 
 JJH -i-i i-i y 
 
 
 
 
 
 
 X3-r3 
 
 
 
 
 
 r-T 
 
 
 
 
 
 |1 
 
 ..5 
 
 S^ 1 
 
 Svilfl 
 
 *3 * ^ e 
 
 ffi*l 
 
 
 
 
 
 g" 
 
 K.S 
 
 > o.~ 
 
 ^ CqS.- 
 
 cS .S 
 
 
 O 
 
 
 JFfy 
 
 150. 
 
 
 140 
 
 6 
 
 5 
 
 1.3 
 
 12.5 
 
 280 
 
 
 . i< 
 
 #^->j 
 
 
 
 A 
 
 f> 
 
 -j >7 
 
 1 A. A 
 
 QQJ 
 
 
 J/M 
 
 ;/ < :\ 
 Wm 
 
 t 
 
 
 
 D 
 
 1 . / 
 
 11 . D 
 
 
 
 
 w 
 // 
 
 I 
 
 142 
 
 6 
 
 7 
 
 2.1 
 
 16.7 
 
 406 
 
 
 J 
 
 % 
 
 i 
 
 143 
 
 6 
 
 8 
 
 2.5 
 
 18.8 
 
 462 
 
 
 
 f 
 
 ~\ 
 
 
 
 
 
 
 
 ^ 
 
 
 p 
 
 \ 
 
 144 
 
 6 
 
 9 
 
 2.9 
 
 20.9 
 
 518 
 
 jffc 
 
 
 
 ~\ * 
 
 14 r 
 
 
 
 
 q 9 
 
 99 o 
 
 KQO 
 
 
 ^ 
 
 151. 
 
 
 146 
 
 6 
 
 11 
 
 O . 2 
 
 3.6 
 
 & . o 
 
 24.9 
 
 JOO 
 
 644 
 
 
 ^ Y~O 
 
 i 
 
 
 147 
 
 6 
 
 12 
 
 4.0 
 
 27.0 
 
 714 
 
 
 7 1 / 
 
 WT 
 
 
 
 
 
 
 
 
 J 
 
 i^,_ 
 
 A I 
 
 
 148 
 
 6 
 
 13 
 
 4.4 
 
 29.1 
 
 770 
 
 
 A 
 
 1 
 
 f 
 
 
 149 
 
 6 
 
 14 
 
 4.8 
 
 31.2 
 
 826 
 
 
 i 
 
 
 
 150 
 
 6 
 
 15 
 
 5.2 
 
 33.3 
 
 896 
 
 1 
 
 IF; 
 
 vf 
 
 1 
 
 151 
 
 6 
 
 16 
 
 5.5 
 
 35.3 
 
 952 
 
 
 K_. 
 
 x> 
 
 
 
 
 
 
 
 
 : 
 
 % 
 
 152. 
 
 
 152 
 
 6 
 
 17 
 
 5.9 
 
 37.4 
 
 1022 
 
 1 
 
 *-Z^i 
 
 
 
 153 
 
 6 
 
 18 
 
 6.3 
 
 39.5 
 
 1078 
 
 
 "TH: 
 
 if 
 
 
 154 
 
 7 
 
 5 
 
 1.2 
 
 13.3 
 
 364 
 
 
 i 
 
 | 
 
 
 
 
 
 
 
 
 n 
 
 i 
 
 
 
 155 
 
 7 
 
 6 
 
 1.6 
 
 15.4 
 
 434 
 
 J 
 
 
 
 ^ 
 
 JBT 
 
 
 
 
 
 
 
 
 
 i 
 
 1 
 
 \ 
 
 
 156 
 
 7 
 
 7 
 
 2.0 
 
 17.5 
 
 518 
 
 
 
 . 
 
 \l / 
 
 157 
 
 7 
 
 8 
 
 2.4 
 
 19.6 
 
 602 
 
 1 
 
 
 \ -> 
 
 i """ 
 
 158 
 
 7 
 
 9 
 
 2.8 
 
 21.7 
 
 686 
 
 
 Fig. 
 
 153. 
 
 
 
 
 
 
 
 
 1 A 
 
 I 
 
 
 Jj 
 
 159 
 
 7 
 
 10 
 
 3.2 
 
 23.8 
 
 756 
 
 *Ti^ 
 
 
 
 fir" 
 
 160 
 
 7 
 
 11 
 
 3.7 
 
 26.1 
 
 840 
 
 
 
 
 /r^ i 
 
 
 
 
 
 
 
 /A 
 
 
 /, 
 
 I ij 
 
 161 
 
 7 
 
 12 
 
 4.1 
 
 28.2 
 
 924 
 
 // 
 ^ 
 
 v 
 
 Ji 
 
 j ^ 
 
 162 
 
 7 
 
 13 
 
 4.5 
 
 30.3 
 
 1008 
 
 
 
 
 1 S 
 
 163 
 
 7 
 
 14 
 
 4.9 
 
 32.4 
 
 1092 
 
 
 
 
 1 ^ 
 
 
 
 
 
 
 
 
 .__^ 
 
 5~. 
 
 si 
 
 164 
 
 7 
 
 15 
 
 5.3 
 
 34.5 
 
 1162 
 
 1 
 
 
 
 1 
 
 
 
 
 
 
 
RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 
 
 Number of 
 section. 
 
 ^*.S 
 
 . C b/D i 
 
 "!r^ 
 
 Sectional 
 area in 
 square 
 inches. 
 
 Coefficient! 
 
 an. 
 
 Fig. 150. 
 
 165 
 
 7 
 
 16 
 
 5.7 
 
 36.6 
 
 1246 
 
 J?tP 
 
 i" "* 
 
 166 
 
 7 
 
 17 
 
 6.1 
 
 38.7 
 
 1330 
 
 3 
 
 
 167 
 
 7 
 
 18 
 
 6.5 
 
 40.8 
 
 1414 
 
 ^ i 
 
 J2" 
 
 168 
 
 8 
 
 5 
 
 1.1 
 
 14.2 
 
 1022 
 
 u I 
 
 j 
 
 169 
 
 8 
 
 6 
 
 1.5 
 
 16.3 
 
 546 
 
 IfeWiiim 
 
 1 
 
 
 Q 
 
 7 
 
 2.0 
 
 18 ^ 
 
 644 
 
 Fig. 151. 
 
 171 
 
 O 
 
 8 
 
 i 
 
 8 
 
 2.4 
 
 o . u 
 
 20.6 
 
 742 
 
 ^ j<-5-> 
 
 i 
 
 172 
 
 8 
 
 9 
 
 2.8 
 
 22.7 
 
 840 
 
 jf/WflfjW 
 
 NT" 
 
 
 
 
 
 
 
 ^nlr 
 
 1 i 
 
 173 
 
 8 
 
 10 
 
 3.2 
 
 24.8 
 
 938 
 
 
 * 
 
 174 
 
 8 
 
 11 
 
 3.6 
 
 26.9 
 
 1036 
 
 j 
 
 i 
 
 175 
 
 8 
 
 12 
 
 4.1 
 
 29.2 
 
 1148 
 
 
 
 176 
 
 8 
 
 13 
 
 4.5 
 
 31.3 
 
 1246 
 
 ^. 152. 
 
 177 
 
 8 
 
 14 
 
 4.9 
 
 33.4 
 
 1344 
 
 f^T^I 
 
 
 178 
 
 8 
 
 15 
 
 5.3 
 
 35.5 
 
 1442 
 
 
 
 -- 
 
 : \ 
 
 179 
 
 8 
 
 16 
 
 5.7 
 
 37.6 
 
 1540 
 
 
 1 
 
 
 
 
 
 
 
 
 J 
 
 Z7" 
 
 180 
 
 8 
 
 , 17 
 
 6.2 
 
 39.8 
 
 1638 
 
 
 ll 
 
 I 
 
 181 
 
 8 
 
 18 
 
 6.6 
 
 41.9 
 
 1750 
 
 
 B 
 
 
 
 
 
 
 
 
 
 
 ini-S 
 
 182 
 
 9 
 
 5 
 
 1.0 
 
 15.0 
 
 518 
 
 { J5- 
 
 
 183 
 
 9 
 
 6 
 
 1.4 
 
 17.1 
 
 644 
 
 .%. 153. 
 
 
 
 
 
 
 
 
 
 184 
 
 9 
 
 7 
 
 1.9 
 
 19.4 
 
 770 
 
 *&! 
 
 
 
 
 
 
 
 
 Si 
 
 ,/ 
 
 r" 
 
 185 
 
 9 
 
 8 
 
 2.3 
 
 21.5 
 
 882 
 
 
 
 K ! 
 
 
 
 
 
 
 
 
 
 
 ^ 
 
 186 
 
 9 
 
 9 
 
 2.7 
 
 23.6 
 
 1008 
 
 1 
 
 I 
 
 ^^ *77^ 
 
 -</3 *;>, -fi^ 
 
 B i 
 
 187 
 
 9 
 
 10 
 
 3.1 
 
 25.7 
 
 1120 
 
 
 
 i 
 
 
 
 
 
 
 
 
 
 1 
 
 188 
 
 9 
 
 11 
 
 3.6 
 
 27.9 
 
 1246 
 
 
 4^ 
 
 k ;B >j 
 
 189 
 
 9 
 
 12 
 
 4.0 
 
 30.0 
 
 1358 
 
78 
 
 RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 
 
 
 
 Number of 
 section. 
 
 I! 
 
 fe o ? 
 
 -2 b/D J= 
 
 1 
 
 .> 03 CC-rH 
 
 Coefficient 
 -1. 
 
 
 % 
 
 150. 
 
 
 190 
 
 9 
 
 13 
 
 4.4 
 
 32.1 
 
 1484 
 
 
 /ii 
 
 -~>j 
 
 -j 
 
 191 
 
 9 
 
 14 
 
 4.9 
 
 34.4 
 
 1610 
 
 
 
 
 i 
 
 i 
 i 
 
 192 
 
 9 
 
 15 
 
 5.3 
 
 36.5 
 
 1722 
 
 
 -/ 
 
 1 
 
 i 
 
 193 
 
 9 
 
 16 
 
 5.7 
 
 38.6 
 
 1848 
 
 
 
 1 
 
 ^^~ 
 
 j 
 
 194 
 
 9 
 
 17 
 
 6.2 
 
 40.8 
 
 1960 
 
 Jfi 
 
 
 
 i 
 
 lOK 
 
 
 1 S 
 
 6/5 
 
 A O Q 
 
 
 " 
 
 i^ 
 
 g ^ 
 
 
 iyo 
 
 
 lo 
 
 . O 
 
 4^. y 
 
 2086 
 
 
 Fig 
 
 151. 
 
 
 196 
 
 10 
 
 6 
 
 1.3 
 
 18.0 
 
 756 
 
 
 ..M 
 
 ->| 
 
 
 197 
 
 10 
 
 7 
 
 1.7 
 
 20.1 
 
 896 
 
 .. .J 
 
 PI 
 
 pTT 
 i 
 
 
 198 
 
 10 
 
 8 
 
 2.2 
 
 22.3 
 
 1036 
 
 
 // 
 
 i 
 
 
 
 
 
 
 
 
 
 I\ 
 
 ^* 
 
 
 199 
 
 10 
 
 9 
 
 2.6 
 
 24.4 
 
 1176 
 
 
 
 
 
 _ i 
 
 
 200 
 
 10 
 
 10 
 
 3.1 
 
 26.7 
 
 1316 
 
 J/ 
 
 
 
 H 
 
 201 
 
 10 
 
 11 
 
 3.5 
 
 28.8 
 
 1456 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig 
 
 152. 
 
 
 
 202 
 
 10 
 
 12 
 
 3.9 
 
 30.9 
 
 1596 
 
 l ( 
 
 -&->!_ 
 
 
 
 203 
 
 10 
 
 13 
 
 4.4 
 
 33.1 
 
 1736 
 
 
 I 
 
 It 
 
 
 204 
 
 10 
 
 14 
 
 4.8 
 
 35.2 
 
 1876 
 
 
 1 
 
 i 
 i 
 
 
 
 
 
 
 
 
 1 
 
 ^ : 
 1 
 
 > 
 
 
 205 
 
 10 
 
 15 
 
 5.2 
 
 37.3 
 
 2016 
 
 
 i 
 
 i 
 i 
 
 
 206 
 
 10 
 
 16 
 
 5.7 
 
 39.6 
 
 2156 
 
 
 
 /:U [ 
 
 i^ 
 
 207 
 
 10 
 
 17 
 
 6.1 
 
 41.7 
 
 2296 
 
 
 fc~- ii 
 
 J ^.j 
 
 
 208 
 
 10 
 
 18 
 
 6.5 
 
 43.8 
 
 2436 
 
 
 % 
 
 153. 
 
 
 
 
 
 
 
 
 /, 
 
 
 H 
 
 q 
 
 209 
 
 11 
 
 6 
 
 1.2 
 
 18.8 
 
 854 
 
 
 
 I 
 
 BT" 
 
 210 
 
 11 
 
 7 
 
 1.6 
 
 20.9 
 
 1022 
 
 >V2|%f 
 
 
 
 ^i j 
 
 
 
 
 
 
 
 
 
 J 
 
 i 
 
 211 
 
 11 
 
 8 
 
 2.1 
 
 23.2 
 
 1176 
 
 2 
 
 
 /I 
 
 "77" 
 
 
 
 
 
 
 
 *\ 
 
 
 % 
 
 1 
 
 212 
 
 11 
 
 9 
 
 2.5 
 
 25.3 
 
 1344 
 
 
 
 i 
 
 J 
 
 213 
 
 11 
 
 10 
 
 3.0 
 
 27.5 
 
 1498 
 
 
 
 
 4/ 
 
 
 
 
 
 
 
 K 
 
 ? j 
 
 3-> 
 
 
 214 
 
 11 
 
 11 
 
 3.4 
 
 29.6 
 
 1666 
 
RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 79 
 
 
 
 
 
 
 
 
 o . 
 tj fl 
 
 c "S 
 
 ^ s 
 
 -its 
 
 t I,* y 
 
 i S ^ 1 
 
 fficient 
 K l. 
 
 
 
 
 
 
 
 
 y 
 
 K 
 
 g^.2 
 
 p3.s 
 
 3> CS ^- 
 
 o 
 O 
 
 
 J^ 
 
 9 
 
 ,] 
 
 [50. 
 
 
 
 215 
 
 n 
 
 12 
 
 3.8 
 
 31.7 
 
 1820 
 
 
 ., ^ 
 
 
 
 I 
 
 ^ 
 
 
 
 216 
 
 -, ^ 
 
 13 
 
 4.3 
 
 34 
 
 1974 
 
 mt 
 
 1 
 
 n 
 
 
 
 
 
 217 
 
 11 
 
 14 
 
 4.7 
 
 36.1 
 
 2128 
 
 
 
 // 
 
 x -. 
 
 
 
 \ 
 
 
 
 
 
 
 
 
 ^ 
 
 7 
 
 1 
 
 
 
 f 
 
 218 
 219 
 
 n 
 11 
 
 15 
 
 16 
 
 5.2 
 5.6 
 
 38.3 
 40.4 
 
 2296 
 2464 
 
 ify 
 
 
 
 > 
 
 I 
 
 ^^ 
 
 ^1 
 I 
 
 ! 
 
 990 
 
 
 1 7 
 
 fi 1 
 
 4-9 7 
 
 2618 
 
 
 ^ 
 
 ,7 
 
 S 
 
 ; 
 
 L51. 
 
 
 
 //^.iW 
 
 221 
 
 . 
 11 
 
 i / 
 18 
 
 U . JL 
 
 6.5 
 
 jt^ . < 
 44.8 
 
 2786 
 
 
 i<- 
 
 J 
 
 -^ 
 
 I 
 
 
 
 222 
 
 12 
 
 6 
 
 1.0 
 
 19.5 
 
 966 
 
 2 
 
 P 
 
 1 
 
 i 
 
 h 
 
 
 
 223 
 
 12 
 
 7 
 
 1.5 
 
 21.8 
 
 1148 
 
 
 / 
 
 | 
 
 
 k 
 
 r 
 
 
 224 
 
 12 
 
 8 
 
 1.9 
 
 23.9 
 
 1330 
 
 
 
 | 
 
 
 
 
 
 225 
 
 12 
 
 9 
 
 2.4 
 
 26.1 
 
 1512 
 
 8 
 
 ^ 
 
 v 
 
 i 
 
 ! 
 
 ^ 
 
 H 
 
 226 
 
 12 
 
 10 
 
 2.8 
 
 28.2 
 
 1680 
 
 
 
 
 / 
 
 ! 
 
 
 
 
 
 
 
 
 
 
 
 
 JLi 
 
 s 
 
 
 1 
 
 227 
 
 12 
 
 11 
 
 3.3 
 
 30.5 
 
 1862 
 
 
 F 
 
 
 
 L52. 
 
 
 
 
 
 
 
 
 
 i 
 
 r^i 
 
 >i 
 
 
 
 
 
 228 
 
 12 
 
 12 
 
 3.7 
 
 32.6 
 
 2044 
 
 
 
 i 
 
 T 
 
 ^ A 
 
 
 
 
 
 
 
 
 
 i 
 
 
 
 
 2 
 
 h 
 
 
 
 229 
 
 12 
 
 13 
 
 4.2 
 
 34.8 
 
 2226 
 
 w 
 
 i 
 
 
 
 ! 
 
 
 
 230 
 
 12 
 
 14 
 
 4.6 
 
 36.9 
 
 2408 
 
 J | 
 
 i* 
 
 
 
 
 -^ 
 
 
 
 
 
 
 
 
 
 
 1 
 
 
 
 j 
 
 
 
 231 
 
 12 
 
 15 
 
 5.1 
 
 39.2 
 
 2590 
 
 
 v : 
 
 
 
 i 
 
 
 . 
 
 
 
 
 
 
 
 
 
 I 
 
 ; 
 
 d 
 
 
 T- /SL 
 
 232 
 
 12 
 
 16 
 
 5.5 
 
 41.3 
 
 2772 
 
 
 . _ 
 
 ^ 
 
 ^~ 
 
 
 >\ 
 
 
 233 
 
 12 
 
 17 
 
 6.0 
 
 43.5 
 
 2954 
 
 
 
 
 i 
 
 53. 
 
 
 
 
 
 
 
 
 
 gi 
 
 
 
 
 
 
 Lj 
 
 234 
 
 12 
 
 18 
 
 6.4 
 
 45.6 
 
 3136 
 
 l?W 
 
 
 
 
 
 e 
 
 ^TA"" 
 
 235 
 
 13 
 
 7 
 
 1.4 
 
 22.6 
 
 1274 
 
 
 
 
 
 n 
 
 ? 
 
 i i 
 
 1 
 1 
 
 236 
 
 13 
 
 8 
 
 1.8 
 
 24.7 
 
 1470 
 
 
 
 
 
 4 
 
 , 
 
 ^ 
 
 1 
 
 237 
 
 13 
 
 9 
 
 2.3 
 
 27.0 
 
 1680 
 
 ^ 
 
 
 
 
 
 
 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 \ 
 
 238 
 
 13 
 
 10 
 
 2.7 
 
 29.1 
 
 1876 
 
 
 ^ 
 
 ./ 
 
 ^ 
 
 
 
 ^ 
 
 J 
 
 
 
 
 
 
 
 H 
 
 - 
 
 - t 
 
 5 
 
 
 
 \ 
 
 
 239 
 
 13 
 
 11 
 
 3.2 
 
 31.3 
 
 2072 
 
80 
 
 RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 
 
 
 Number of 
 section. 
 
 J3 O 
 
 ^IS 
 
 pi! 
 
 
 Coefficient 
 
 /ri. 
 
 Fig. 150. 
 
 240 
 
 13 
 
 12 
 
 3.6 
 
 33.4 
 
 2282 
 
 j%m 
 
 V~ >| 
 
 
 241 
 
 13 
 
 13 
 
 4.1 
 
 35.7 
 
 2478 
 
 ^Ma 
 
 t 
 
 *" 
 
 I 
 
 
 242 
 
 13 
 
 14 
 
 4.5 
 
 37.8 
 
 2674 
 
 
 
 i 
 
 
 
 
 
 
 
 j 
 
 1 
 
 i 
 
 243 
 
 13 
 
 15 
 
 5.0 
 
 40.0 
 
 2884 
 
 
 1 
 
 "i 
 
 
 
 
 
 
 
 
 1 
 
 
 244 
 
 13 
 
 16 
 
 5.4 
 
 42.1 
 
 3080 
 
 * 
 
 
 1 ! 
 
 
 
 
 
 
 
 J$2tH 
 
 
 
 245 
 
 13 
 
 17 
 
 5.9 
 
 44.4 
 
 3276 
 
 Fig. 151. 
 
 246 
 
 13 
 
 18 
 
 6.3 
 
 46.5 
 
 3486 
 
 -^ ^~~O 
 
 
 
 247 
 
 14 
 
 7 
 
 1.2 
 
 23.3 
 
 1400 
 
 
 1 t 
 
 
 248 
 
 14 
 
 8 
 
 1.7 
 
 25.6 
 
 1624 
 
 "I 
 
 j 
 
 jjr 
 
 
 249 
 
 14 
 
 9 
 
 2.1 
 
 27.7 
 
 184? 
 
 p 
 
 ! 
 
 
 250 
 
 14 
 
 10 
 
 2.6 
 
 29.9 
 
 2058 
 
 ^K 
 
 . -i" 
 
 
 251 
 
 14 
 
 11 
 
 3.0 
 
 32.0 
 
 2282 
 
 i< - 
 
 J3- 
 
 ->i 
 
 252 
 
 14 
 
 12 
 
 3.5 
 
 34.3 
 
 2506 
 
 _Ficr 
 
 . 152. 
 
 
 
 
 
 
 
 
 *--! 
 
 
 
 253 
 
 14 
 
 13 
 
 3.9 
 
 36.4 
 
 2730 
 
 
 3 
 I 
 
 IT" 
 
 
 254 
 
 14 
 
 14 
 
 4.4 
 
 38.6 
 
 2954 
 
 i 
 
 1 
 i 
 
 4 
 
 
 255 
 256 
 
 14 
 14 
 
 15 
 
 16 
 
 4.9 
 5.3 
 
 40.9 
 43.0 
 
 3178 
 
 3388 
 
 f"T< 
 
 
 i 
 
 
 
 
 
 
 
 
 
 
 x ,i l7# 
 
 257 
 
 14 
 
 17 
 
 5.8 
 
 45.2 
 
 3612 
 
 f J 
 
 ?-- 
 
 258 
 
 14 
 
 18 
 
 6.2 
 
 47.3 
 
 3836 
 
 Fio 
 
 153. 
 
 
 
 
 
 
 
 
 
 
 _ n 
 
 259 
 
 15 
 
 7 
 
 1.1 
 
 24.2 
 
 1526 
 
 /,! 
 
 
 6 > 
 
 
 
 
 
 
 
 
 
 
 if 
 
 260 
 
 15 
 
 8 
 
 1.5 
 
 26.3 
 
 1764 
 
 " p 
 
 
 
 ^ 
 
 261 
 
 15 
 
 9 
 
 2.0 
 
 28.5 
 
 2016 
 
 1 
 *\ 
 
 
 
 4 
 
 \ ^ 
 
 262 
 
 15 
 
 10 
 
 2.4 
 
 30.6 
 
 2254 
 
 i. 
 
 
 
 \ 
 
 
 
 
 
 
 
 . " ! 
 
 
 
 \ 
 
 263 
 
 15 
 
 11 
 
 2.9 
 
 32.9 
 
 2492 
 
 p 
 
 
 
 264 
 
 15 
 
 12 
 
 3.4 
 
 35.1 
 
 2744 
 
 :. ^ 
 
 3- 
 
RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 81 
 
 
 o . 
 
 t~i C 
 
 ?l 
 
 33 III 
 
 *lo 
 
 13 s ? . 
 
 9 
 
 
 sf 
 
 JJJ: 
 
 53 g.G 
 
 ^ ^"c| 
 
 2 ^ ?~~ 
 
 eS; 
 
 
 s ^ 
 
 S.S 
 
 >OCC.S 
 
 ~ c<n.S 
 
 |S? 
 
 o 
 
 Fig. 150. 
 
 265 
 
 15 
 
 13 
 
 3.8 
 
 37.2 
 
 2982 
 
 7 
 
 266 
 
 15 
 
 14 
 
 4.3 
 
 39.5 
 
 3220 
 
 ""~ IIP \ 
 
 267 
 
 15 
 
 15 
 
 4.7 
 
 41.6 
 
 3472 
 
 J \ 
 
 
 
 
 
 
 
 j[ 
 
 268 
 
 15 
 
 16 
 
 5.2 
 
 43.8 
 
 3710 
 
 i 
 
 269 
 
 15 
 
 17 
 
 5.7 
 
 46.1 
 
 3948 
 
 </ 
 
 270 
 
 1 ^ 
 
 18 
 
 a i 
 
 48.2 
 
 4no 
 
 Fig. 151. 
 
 271 
 
 i <j 
 16 
 
 8 
 
 u . 1 
 
 1 4 
 
 27.1 
 
 Tt^,UV 
 
 1918 
 
 ^ j<-J-> 
 
 272 
 
 16 
 
 9 
 
 1.8 
 
 29.2 
 
 2184 
 
 JuW^yj/MA "A ~ 
 
 
 
 
 
 
 
 ^ i 
 
 273 
 
 16 
 
 10 
 
 2.3 
 
 31.5 
 
 2450 
 
 ;! fr 
 % T 
 
 274 
 
 16 
 
 11 
 
 2.8 
 
 53.7 
 
 2702 
 
 3g 
 
 -, i 
 
 275 
 
 16 
 
 12 
 
 3.2 
 
 35.8 
 
 2968 
 
 itmimim 
 
 276 
 
 16 
 
 13 
 
 3.7 
 
 38.1 
 
 3234 
 
 j< _2. i>; 
 
 
 
 
 
 
 
 -Pfyr. 152. 
 
 277 
 
 16 
 
 14 
 
 4.1 
 
 40.2 
 
 3500 
 
 k-^j 
 
 278 
 
 16 
 
 15 
 
 4.7 
 
 42.6 
 
 3766 
 
 
 1^ i 
 
 279 
 
 16 
 
 16 
 
 5.2 
 
 44.8 
 
 4018 
 
 2 
 
 4 
 
 280 
 
 16 
 
 17 
 
 5.7 
 
 47.1 
 
 4284 
 
 
 
 281 
 
 16 
 
 18 
 
 6.1 
 
 49.2 
 
 4550 
 
 
 ^^^SMlT^ 
 
 282 
 
 17 
 
 8 
 
 1.2 
 
 27.8 
 
 2072 
 
 i -J3-- ->j ^ 
 
 283 
 
 17 
 
 9 
 
 1.7 
 
 30.1 
 
 2352 
 
 Fig. 153. 
 
 
 
 
 
 
 
 -y "7 
 
 284 
 
 17 
 
 10 
 
 2.1 
 
 32.2 
 
 2632 
 
 //.-I-! i^-5 
 
 
 
 
 
 
 
 JJM 
 
 \ Pf" 
 
 285 
 
 17 
 
 11 
 
 2.6 
 
 34.4 
 
 2926 
 
 
 t\ 
 
 286 
 
 17 
 
 12 
 
 3.1 
 
 36.7 
 
 3206 
 
 k 
 
 
 287 
 
 17 
 
 13 
 
 3.5 
 
 38.8 
 
 3486 
 
 
 ^ ^ 
 
 
 
 
 
 
 
 
 y I 
 ^ %. i 
 
 288 
 
 17 
 
 14 
 
 4.0 
 
 41.0 
 
 3766 
 
 4/__ 
 
 \ 
 
 c _ J3-.-H 
 
 289 
 
 17 
 
 15 
 
 4.5 
 
 43.3 
 
 4060 
 
82 RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 
 
 
 
 
 . 
 
 ^i 
 
 ^ . 
 
 5.S . 
 
 ~z c o 
 
 -g 
 
 
 
 
 
 
 II 
 
 -3 ~ 
 
 3! 
 
 - iio o 
 
 ^ ~ t/.^r 
 
 "* " ^ ti 
 
 CJ-H* 
 
 
 
 
 
 
 
 
 ^ 5 c 
 
 
 
 
 
 
 
 
 
 S" 
 
 a.s 
 
 
 :"c. 
 
 1 ?.s 
 
 r o 
 
 Fig. 150. 
 
 290 
 
 17 
 
 16 
 
 4.9 
 
 45.4 
 
 4340 
 
 J 
 
 i C 
 
 - 
 
 si""" 
 
 ^ 
 
 
 
 
 
 
 
 
 
 
 
 
 291 
 
 17 
 
 17 
 
 5.4 
 
 47.6 
 
 4620 
 
 
 jf 
 
 
 
 X 
 
 
 
 
 
 
 
 M 
 
 IP 
 
 
 - 
 
 
 292 
 
 17 
 
 18 
 
 5.9 
 
 49.9 
 
 4000 
 
 *!< =3 >! 
 Fig. 151. 
 !,_A_Vi 
 
 293 
 
 18 
 
 8 
 
 1.1 
 
 28.7 
 
 2226 
 
 . 
 
 5p 
 
 IX 
 
 m \ 
 
 ~ 
 
 291 
 
 18 
 
 9 
 
 1.5 
 
 30.8 
 
 2520 
 
 
 1 
 
 
 j 
 
 i 
 1 
 
 T 
 
 295 
 
 18 
 
 10 
 
 2.0 
 
 33.0 
 
 2828 
 
 
 Fi 
 
 
 152. 
 
 -H 
 
 296 
 
 18 
 
 11 
 
 2.5 
 
 35.3 
 
 3136 
 
 k- 
 
 7r->\ 
 
 
 
 
 297 
 
 18 
 
 12 
 
 2.9 
 
 37.4 
 
 3430 
 
 
 V 
 
 ~~L 
 
 & 
 
 1 
 
 
 
 
 
 
 
 
 
 
 
 
 - 
 
 ! 
 
 
 
 
 
 
 
 
 j 
 
 ,- 
 
 
 
 i 
 H 
 
 
 298 
 
 18 
 
 13 
 
 3.4 
 
 39.6 
 
 3738 
 
 
 1 
 
 
 
 \ 
 
 
 
 
 
 
 
 
 
 1 
 
 
 
 i 
 
 ^ 
 
 299 
 
 18 
 
 14 
 
 3.9 
 
 41.9 
 
 4056 
 
 
 . _j> _>; 
 
 .%. 153. 
 
 300 
 
 18 
 
 15 
 
 4.3 
 
 44.0 
 
 4354 
 
 
 
 
 t 
 
 H 
 
 
 
 
 
 
 
 v, 
 
 
 
 
 <T 
 
 301 
 
 18 
 
 16 
 
 4.8 
 
 46.2 
 
 4648 
 
 
 
 
 
 i 
 
 ^ ! 
 
 
 
 
 
 
 
 4 
 
 
 
 
 
 ^ 
 
 |i| 
 
 18 
 
 17 
 
 5.3 
 
 48.5 
 
 4956 
 
 
 ^ 
 
 
 
 
 f j 
 
 
 
 
 
 
 
 
 I 1 303 
 
 18 
 
 18 
 
 5.7 
 
 50.6 
 
 5269 
 
 i 
 
 
 -E 
 
 r- 
 
 -! 
 
 
 
 
 
 
RESISTANCE TO CROSS- BREAKING AND SHEARING. 
 
 
 
 
 
 
 
 
 Number of 
 section. 
 
 Height 11 
 in inches. 
 
 -^ c ^^ 
 
 S gjt 
 
 |B| 
 
 G 
 
 Fig. 154. 
 
 304 
 
 6 
 
 7 
 
 1.8 
 
 17.7 
 
 378 
 
 
 -._ 
 
 
 
 ^ 
 
 ~ -. 
 
 
 
 305 
 
 6 
 
 8 
 
 2.2 
 
 19.8 
 
 448 
 
 
 
 
 
 
 
 A" 
 
 
 
 
 
 
 
 
 
 
 
 ^ 
 
 _\ 
 
 
 i 
 
 306 
 
 6 
 
 9 
 
 2.5 
 
 21.8 
 
 504 
 
 
 2 
 
 / 2 
 
 ^ 
 
 
 
 -fr 
 
 307 
 
 6 
 
 10 
 
 2.9 
 
 23.9 
 
 574 
 
 ^ 
 
 
 
 
 
 
 \ 
 
 \ 
 
 308 
 
 6 
 
 11 
 
 3.3 
 
 26.0 
 
 630 
 
 %2 
 
 " 
 
 ;- 
 
 / 
 
 M 
 
 
 I i_ 
 
 309 
 
 6 
 
 12 
 
 3.7 
 
 28.1 
 
 686 
 
 Fig. 155. 
 
 -310 
 
 6 
 
 13 
 
 4.1 
 
 30.2 
 
 756 
 
 *LMH 
 
 311 
 
 6 
 
 14 
 
 4.5 
 
 32.3 
 
 812 
 
 1 
 
 > r/ r 
 
 
 
 
 
 
 ^ 
 
 
 
 
 
 
 
 
 
 
 , 
 
 , 
 
 
 i 
 
 312 
 
 6 
 
 15 
 
 4.9 
 
 34.4 
 
 882 
 
 
 71 
 
 
 
 
 
 i 
 
 
 
 
 
 
 
 
 jy 
 
 ,,_:, 
 
 
 
 
 ir 
 
 313 
 
 6 
 
 16 
 
 5.2 
 
 36.3 
 
 938 
 
 
 
 
 
 
 
 
 i 
 
 
 
 
 
 
 
 
 
 , 
 
 
 
 
 i 
 
 i 
 
 314 
 
 6 
 
 17 
 
 5.6 
 
 38.4 
 
 1008 
 
 .^ 
 
 
 
 
 
 
 . i 
 
 
 
 
 
 
 
 JB 
 
 
 M i 
 
 315 
 
 6 
 
 18 
 
 6.0 
 
 40.5 
 
 1064 
 
 Fig. 156. 
 
 316 
 
 7 
 
 7 
 
 1.6 
 
 18.9 
 
 490 
 
 
 H 
 
 5- 
 
 ^\ 
 
 -\ - 
 
 * 
 
 
 
 317 
 
 7 
 
 8 
 
 2.0 
 
 21.0 
 
 574 
 
 
 
 I 
 
 _^_ 
 
 -k 
 
 ~"i 
 
 
 
 318 
 
 7 
 
 9 
 
 2.4 
 
 23.1 
 
 658 
 
 I 
 
 |< 
 
 | 
 
 JT 
 
 319 
 
 7 
 
 10 
 
 2.8 
 
 25.2 
 
 742 
 
 
 
 1 
 
 
 
 ] 
 
 
 
 320 
 
 7 
 
 11 
 
 3.3 
 
 27.5 
 
 826 
 
 
 
 
 " 
 
 1 
 
 TT 
 
 ~ 
 
 J| 
 
 321 
 
 7 
 
 12 
 
 3.7 
 
 29.6 
 
 896 
 
 *Fig. 157. 
 
 
 322 
 
 7 
 
 13 
 
 4.1 
 
 31.7 
 
 980 
 
 gfj 
 
 
 
 
 
 I \ 
 J\ 
 
 323 
 
 7 
 
 14 
 
 4.5 
 
 33.8 
 
 1064 
 
 "A 
 
 
 
 
 
 
 
 8 : * 
 
 324 
 
 7 
 
 15 
 
 4.9 
 
 35.9 
 
 1148 
 
 * 
 
 : 
 
 
 
 
 I 
 
 ; 
 
 
 325 
 
 7 
 
 16 
 
 5.3 
 
 38.0 
 
 1232 
 
 A 
 
 
 
 
 
 * 
 
 
 ^ 
 
 326 
 
 7 
 
 17 
 
 5.7 
 
 40.1 
 
 1302 
 
 
 ; 
 
 
 
 
 
 -;. 
 . 
 
 
 327 
 
 7 
 
 18 
 
 6.1 
 
 42.2 
 
 1386 
 
 
 .. > 
 
 
 -i 
 
 
 
 
 
 
 
 ,___^.__.J 
 
 328 
 
 8 
 
 8 
 
 1.9 
 
 22.4 
 
 714 
 
RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 
 
 Number of 
 section. 
 
 HI 
 
 5 
 
 ^11 g 
 
 iKl 
 
 Sectional 
 area in 
 square 
 inches. 
 
 Coefficient 
 Ki. 
 
 
 Fig. 154:. 
 
 329 
 
 8 
 
 9 
 
 2.3 
 
 24.5 
 
 812 
 
 J 
 
 ^? ^ 
 
 330 
 
 8 
 
 10 
 
 2.7 
 
 26.6 
 
 910 
 
 ; --.v 
 
 p|f^ 
 
 i ! 
 
 331 
 
 8 
 
 11 
 
 3.1 
 
 28.7 
 
 1008 
 
 
 7/P 
 
 332 
 
 8 
 
 12 
 
 3.6 
 
 30.9 
 
 1106 
 
 
 s 
 
 333 
 
 8 
 
 13 
 
 4.0 
 
 33.0 
 
 1218 
 
 3f 
 
 3 I 
 
 334 
 
 8 
 
 14 
 
 4.4 
 
 35.1 
 
 1316 
 
 ! 
 
 Fig. 155. 
 
 335 
 
 8 
 
 .15 
 
 4.8 
 
 37.2 
 
 1414 
 
 n 
 
 ! 7 1 
 
 336 
 
 8 
 
 16 
 
 5.2 
 
 39.3 
 
 1512 
 
 ]} 
 
 j"^ "^* 
 
 
 
 
 
 
 
 V* 
 
 ,- 
 
 ~ vO& 
 
 337 
 
 8 
 
 17 
 
 5.7 
 
 41.6 
 
 1610 
 
 
 IP 
 
 
 
 
 
 
 
 
 *l Jr 
 
 338 
 
 8 
 
 18 
 
 6.1 
 
 43.7 
 
 1708 
 
 
 rf i 
 
 339 
 
 9 
 
 8 
 
 1.7 
 
 23.6 
 
 840 
 
 -i 
 
 pp 
 
 
 
 
 
 
 
 
 D i 
 
 340 
 
 9 
 
 9 
 
 2.1 
 
 25.7 
 
 966 
 
 1 
 
 ^. 156. 
 
 341 
 
 9 
 
 10 
 
 2.6 
 
 27.9 
 
 1092 
 
 
 K-^->j 
 
 342 
 
 9 
 
 11 
 
 3.0 
 
 30.0 
 
 1204 
 
 
 ]/j,"* 
 
 
 
 
 
 
 
 
 1^ 
 
 343 
 
 9 
 
 12 
 
 3.4 
 
 32.1 
 
 1330 
 
 TA/ 
 
 ~jr 
 
 il . 
 
 344 
 
 9 
 
 13 
 
 3.9 
 
 34.4 
 
 1442 
 
 
 SH 
 
 345 
 
 9 
 
 14 
 
 4.3 
 
 36.5 
 
 1568 
 
 
 isiliil^ 
 
 346 
 
 9 
 
 15 
 
 4.7 
 
 38.6 
 
 1694 
 
 
 Fig. 157. 
 
 347 
 
 9 
 
 16 
 
 5.1 
 
 40.7 
 
 1806 
 
 
 4! 
 
 348 
 
 9 
 
 17 
 
 5.6 
 
 42.9 
 
 1932 
 
 
 "" 
 
 349 
 
 9 
 
 18 
 
 6.0 
 
 45.0 
 
 2044 
 
 "1 
 
 
 
 350 
 
 10 
 
 8 
 
 1.5 
 
 24.8 
 
 980 
 
 
 1 
 
 351 
 
 10 
 
 9 
 
 2.0 
 
 27.0 
 
 1120 
 
 ,^. | 
 
 ^ 1 
 
 352 
 
 10 
 
 10 
 
 2.4 
 
 29.1 
 
 1260 
 
 i 
 
 1 v 
 
 
 
 
 
 
 
 
 
 ____^B____.> 
 
 353 
 
 10 
 
 11 
 
 2.8 
 
 31.2 
 
 1400 
 
RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 85 
 
 
 
 
 Number of 
 section. 
 
 II 
 
 ^11 g 
 
 g .S j 
 
 Sectional 
 area in 
 square 
 inches. 
 
 Coefficient 
 KI. 
 
 
 / 
 
 V 154. 
 
 354 
 
 10 
 
 12 
 
 3.3 
 
 33.5 
 
 1540 
 
 j 
 
 1: 
 
 *^T 
 
 355 
 
 10 
 
 13 
 
 3.7 
 
 35.6 
 
 1680 
 
 300 j 
 
 
 F 
 
 356 
 
 10 
 
 14 
 
 4.1 
 
 37.7 
 
 1820 
 
 
 7, 
 
 *J i 
 
 357 
 
 10 
 
 15 
 
 4.6 
 
 39.9 
 
 1960 
 
 ^ 
 
 
 H i 
 
 358 
 
 10 
 
 16 
 
 5.0 
 
 42.0 
 
 2100 
 
 %j$ 
 
 i 
 
 
 359 
 
 10 
 
 17 
 
 5.5 
 
 44.3 
 
 2240 
 
 "" i< 
 
 
 _J3^ _>; 
 
 
 
 
 
 
 
 
 j 
 
 ^. 155. 
 
 360 
 
 10 
 
 18 
 
 5.9 
 
 46.4 
 
 2380 
 
 j, 
 
 !<- 
 
 --i 
 
 361 
 
 11 
 
 9 
 
 1.8 
 
 28.2 
 
 1288 
 
 JK 
 
 Pf 
 
 "T 
 
 
 
 
 
 
 
 r " 
 
 
 ^v^ 
 
 I i 
 
 362 
 
 11 
 
 10 
 
 2.2 
 
 30.3 
 
 1442 
 
 
 8 
 
 J^r 
 
 363 
 
 11 
 
 11 
 
 2.6 
 
 32.4 
 
 1610 
 
 .... 
 
 
 i | 
 
 364 
 
 11 
 
 12 
 
 3.1 
 
 34.7 
 
 1764 
 
 7^1 
 
 r 
 
 1 
 
 365 
 
 11 
 
 13 
 
 3.5 
 
 36.8 
 
 1932 
 
 A- i 
 
 
 -j> 
 
 
 
 
 
 
 
 * 
 
 J 
 
 ty. 156. 
 
 366 
 
 11 
 
 14 
 
 4.0 
 
 39.0 
 
 2086 
 
 
 
 &^ 
 
 367 
 
 11 
 
 15 
 
 4.4 
 
 41.1 
 
 2240 
 
 
 1 
 
 
 568 
 
 11 
 
 16 
 
 4.9 
 
 43.4 
 
 2408 
 
 ^ 
 
 | 
 
 1 
 
 369 
 
 11 
 
 17 
 
 5.3 
 
 45.5 
 
 2562 
 
 
 
 
 370 
 
 11 
 
 18 
 
 5.8 
 
 47.7 
 
 2730 
 
 
 
 5 Sv5^3^ 
 
 371 
 
 12 
 
 9 
 
 1.6 
 
 29.4 
 
 1442 
 
 
 
 __._g_ >t r^ 
 
 
 
 
 
 
 
 
 j 
 
 V- 157. 
 
 372 
 
 12 
 
 10 
 
 2.0 
 
 31.5 
 
 1624 
 
 i "fa 
 
 i 
 
 4! 
 
 373 
 
 12 
 
 11 
 
 2.5 
 
 33.8 
 
 1806 
 
 --XjjL 
 
 
 j 
 
 
 
 
 
 
 
 
 
 pr*" 
 
 374 
 
 12 
 
 12 
 
 2.9 
 
 35.9 
 
 1988 
 
 
 
 // ^ 
 
 375 
 
 12 
 
 13 
 
 3.4 
 
 38.1 
 
 2170 
 
 /y 
 
 
 IB jr 
 
 
 
 
 
 
 
 
 
 
 376 
 
 12 
 
 14 
 
 3.8 
 
 40.2 
 
 2352 
 
 \ 
 
 
 %. 
 
 377 
 
 12 
 
 15 
 
 4.2 
 
 42.3 
 
 2534 
 
 1 
 
 w- 
 
 ;./^^ v 
 
 
 
 
 
 
 
 i 
 
 
 ..JB....^ 
 
 378 
 
 12 
 
 16 
 
 4.7 
 
 44.6 
 
 2716 
 
86 
 
 RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 
 
 . 
 
 ^, c 
 
 ^ 
 
 ^5.5 . 
 
 ^.5 . 
 
 3 G0 
 
 a 
 
 
 
 C5 O 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 "S 
 
 fcC^C 
 
 ;"" c~ 
 
 "3 " Z~ 
 
 5 o c^ SEfcd 
 
 
 
 r 3 K 
 
 ^ c 
 
 ^ * _C 
 
 ^c^.5 
 
 O cS 0, -5 
 
 
 
 
 
 ^ 
 
 K.-, 
 
 ^ 
 
 ^* 
 
 
 o 
 
 Fig. 154. 
 
 
 379 
 
 12 
 
 17 
 
 5.1 
 
 46.7 
 
 2898 
 
 jrf^i-" 
 
 ~- 
 
 380 
 
 12 
 
 18 
 
 5.6 
 
 48.9 
 
 3066 
 
 
 
 w 
 
 \ 
 
 381 
 
 13 
 
 10 
 
 1.8 
 
 32.7 
 
 1806 
 
 
 p 
 
 t 
 
 
 
 
 
 
 
 Hi 
 
 ; 
 
 J&~ 
 
 382 
 
 13 
 
 11 
 
 2.2 
 
 34.8 
 
 2002 
 
 
 I 
 
 W/, 
 
 \ 
 
 383 
 
 13 
 
 12 
 
 2.7 
 
 37.1 
 
 2212 
 
 
 li 
 
 384 
 
 13 
 
 13 
 
 3.2 
 
 39.3 
 
 2408 
 
 Fig. 155. 
 
 
 385 
 
 13 
 
 14 
 
 3.6 
 
 41.4 
 
 2618 
 
 f-^3 
 
 
 
 386 
 
 13 
 
 15 
 
 4.1 
 
 43.7 
 
 2814 
 
 w 1 
 
 vr-^ 
 
 % 
 
 
 387 
 
 13 
 
 16 
 
 4.5 
 
 45.8 
 
 3010 
 
 , j|! 
 
 
 J 
 
 388 
 
 13 
 
 17 
 
 5.0 
 
 48.0 
 
 3220 
 
 | 
 
 % 
 
 
 389 
 
 13 
 
 18 
 
 5.4 
 
 50.1 
 
 3416 
 
 J%E 
 
 ] i 
 
 390 
 
 14 
 
 10 
 
 1.6 
 
 33.9 
 
 1988 
 
 "< JB >! 
 
 
 
 
 
 
 
 Jfy. 156. 
 
 
 391 
 
 14 
 
 11 
 
 2.0 
 
 36.0 
 
 2212 
 
 K-J^j 
 
 
 392 
 
 14 
 
 12 
 
 2.5 
 
 38 . 3 
 
 2436 
 
 
 pa/**" 
 
 
 
 
 
 
 
 
 
 r 
 
 1 
 
 
 393 
 
 14 
 
 13 
 
 2.9 
 
 40.4 
 
 2660 
 
 IS 
 
 ,->, 
 
 i 
 
 
 C94 
 
 14 
 
 14 
 
 3.4 
 
 42.6 
 
 2870 
 
 
 
 \ 
 
 
 
 
 
 
 
 
 
 ft 
 
 i 
 
 
 
 395 
 
 14 
 
 15 
 
 3.9 
 
 44.9 
 
 3094 
 
 
 .,..v : l ; 
 
 <\l/ 
 
 396 
 
 14 
 
 16 
 
 4.3 
 
 47.0 
 
 3318 
 
 {< _B 
 
 >>P^ 
 
 
 
 
 
 
 
 .%. 157. 
 
 
 397 
 
 14 
 
 17 
 
 4.8 
 
 49.2 
 
 3542 
 
 -7 , I T | 
 
 //rl-i Mr i 
 
 398 
 
 14 
 
 18 
 
 5.2 
 
 51.3 
 
 3766 
 
 
 
 M]~A" 
 
 399 
 
 15 
 
 11 
 
 1.8 
 
 37.2 
 
 2408 
 
 H 
 
 if 
 
 
 400 
 
 15 
 
 12 
 
 3.3 
 
 39.7 
 
 2660 
 
 /^P 
 
 A~f~* 
 
 ] 
 
 
 
 
 
 
 
 y 
 
 $ 
 
 
 401 
 
 15 
 
 13 
 
 2.7 
 
 41.6 
 
 2898 
 
 P 
 
 B 
 
 
 402 
 
 15 
 
 14 
 
 3.2 
 
 43.8 
 
 3136 
 
 ! 
 
 1/2 
 
 : 
 
 403 
 
 15 
 
 15 
 
 3.7 
 
 46.1 
 
 3388 
 
 -&* 
 
RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 87 
 
 
 
 o . 
 
 ^ c 
 
 ^i 
 
 SS.S,. 
 
 .S . 
 
 3.22,- 
 
 G 
 
 .2 
 
 
 
 
 .S S 
 
 c c fcc<- 
 
 ^ ^J= 
 
 3 c3 ^ i 
 
 Jc 
 
 
 
 P 
 
 s s 
 
 H^ll 
 
 Jsll 
 
 |lrl 
 
 P 
 
 
 Jfy. 154. 
 
 404 
 
 15 
 
 16 
 
 4.1 
 
 48.2 
 
 3626 
 
 __ 
 
 J<;--5-! 
 
 405 
 
 15 
 
 17 
 
 4.6 
 
 50.4 
 
 3864 
 
 J} 
 
 -^ j - , : :/ : | A 
 
 
 
 
 
 
 
 
 """ PI i 
 
 406 
 
 15 
 
 18 
 
 5.0 
 
 52.5 
 
 4116 
 
 
 -Z/r -L 
 
 407 
 
 16 
 
 11 
 
 1.6 
 
 38.4 
 
 2618 
 
 
 *i i 
 
 408 
 
 16 
 
 12 
 
 2.1 
 
 40.7 
 
 2884 
 
 -__ 
 
 Y//A ! 
 
 
 
 
 
 
 
 2/2% 
 
 ! i 
 
 409 
 
 16 
 
 13 
 
 2.5 
 
 42.8 
 
 3136 
 
 *" ; K 
 
 J3 ->; 
 /%. 155. 
 
 410 
 
 16 
 
 14 
 
 3.0 
 
 45.0 
 
 3402 
 
 
 
 j<--^-5>i 
 
 411 
 
 16 
 
 15 
 
 3.4 
 
 47.1 
 
 3668 
 
 ^ 
 
 :ra 
 
 412 
 
 16 
 
 16 
 
 3.9 
 
 49.4 
 
 3934 
 
 j 
 
 ^1 ^ 
 
 413 
 
 16 
 
 17 
 
 4.4 
 
 51.6 
 
 4186 
 
 
 ^P 
 
 414 
 
 16 
 
 18 
 
 4.8 
 
 53.7 
 
 4452 
 
 BF 
 
 ^siik 
 
 415 
 
 17 
 
 12 
 
 1.8 
 
 41.7 
 
 3108 
 
 It 
 
 ^D > 
 
 
 
 
 
 
 
 
 ^. 156. 
 
 416 
 
 17 
 
 13 
 
 2.3 
 
 44.0 
 
 3388 
 
 
 i^L^__ 
 
 417 
 
 17 
 
 14 
 
 2.8 
 
 46.2 
 
 3682 
 
 
 llH^lj 
 
 418 
 
 17 
 
 15 
 
 3.2 
 
 48.3 
 
 3962 
 
 
 i ! 
 
 
 
 
 
 
 
 Z^ 
 
 | Jr 
 
 419 
 
 17 
 
 16 
 
 3.7 
 
 50.6 
 
 .4242 
 
 
 : 3 
 
 ill . 
 
 420 
 
 17 
 
 17 
 
 4.2 
 
 52.8 
 
 4522 
 
 
 
 421 
 
 17 
 
 18 
 
 4.6 
 
 54.9 
 
 4816 
 
 
 i< -& >\ ^ 
 
 Fig. 157. 
 
 422 
 
 18 
 
 12 
 
 1.6 
 
 42.9 
 
 3332 
 
 i o 
 
 i M\ 
 
 423 
 
 18 
 
 13 
 
 2.1 
 
 45.2 
 
 3626 
 
 _ _//_! g 
 
 ~~2 \ 
 
 
 
 
 
 
 
 
 ^pj" A" 
 
 424 
 
 18 
 
 14 
 
 2.5 
 
 47.3 
 
 3934 
 
 
 vV^ 
 
 
 
 
 
 
 
 *| 
 
 )> fy 
 
 425 
 
 18 
 
 15 
 
 3.0 
 
 49.5 
 
 4242 
 
 
 1 
 
 426 
 
 18 
 
 16 
 
 3.5 
 
 51.8 
 
 4550 
 
 1 
 
 P 
 
 
 
 
 
 
 
 
 
 427 
 
 18 
 
 17 
 
 3.9 
 
 53.9 
 
 4858 
 
 | 
 
 i^iiiti v 
 
 
 
 
 
 
 
 K 
 
 -s- H 
 
 423 
 
 18 
 
 18 
 
 4.4 
 
 56.1 
 
 5152 
 
RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 
 
 
 
 
 
 Numberof 
 section. 
 
 a! 
 
 ii 
 
 " 5 c. 
 
 " 3 "c 
 
 Coefficient 
 JTi. 
 
 
 
 **j 
 
 7- 
 
 158. 
 
 
 429 
 
 6 
 
 6 
 
 1.5 
 
 18.0 
 
 336 
 
 
 4 
 
 .t 
 
 B 
 
 7) 
 
 ; 
 - 
 
 
 M 
 
 430 
 
 6 
 
 7 
 
 1.8 
 
 20.6 
 
 392 
 
 
 
 A 
 
 1 
 
 
 
 ! 
 
 431 
 
 6 
 
 8 
 
 2.2 
 
 23.4 
 
 462 
 
 
 
 74 
 
 
 
 i 
 
 432 
 
 6 
 
 9 
 
 2.5 
 
 26.0 
 
 518 
 
 
 
 
 
 
 i 
 
 
 
 
 
 
 
 
 
 
 V ! K 
 
 
 i 
 i 
 
 433 
 
 6 
 
 10 
 
 2.8 
 
 28.6 
 
 588 
 
 s" 
 
 ? 
 
 1 
 
 
 
 
 j 
 
 434 
 
 6 
 
 11 
 
 3.2 
 
 31.4 
 
 624 
 
 
 *" 
 
 -F7 
 
 3 
 
 7. 
 
 159. 
 
 
 435 
 
 6 
 
 12 
 
 3.5 
 
 34.0 
 
 714 
 
 
 -t 
 
 ^ 
 
 -> 
 
 
 
 436 
 
 6 
 
 13 
 
 3.8 
 
 36.6 
 
 770 
 
 
 
 
 :" 
 
 
 ^" 
 
 
 
 
 
 
 
 2 
 
 
 - 
 
 
 
 
 437 
 
 6 
 
 14 
 
 4.2 
 
 39.4 
 
 840 
 
 
 7// 
 
 ,., 
 
 
 
 ^ 
 
 438 
 
 6 
 
 15 
 
 4.5 
 
 42.0 
 
 896 
 
 
 
 < 
 . 
 
 
 
 
 439 
 
 6 
 
 16 
 
 4.8 
 
 44.6 
 
 952 
 
 5" 
 
 , 
 
 
 - 
 
 PI 
 
 , r 
 
 440 
 
 6 
 
 17 
 
 5.2 
 
 47.4 
 
 1022 
 
 u 
 
 ,- 
 
 
 3- 
 
 y. ] 
 
 i60. 
 
 
 441 
 
 6 
 
 18 
 
 5.5 
 
 50.0 
 
 1078 
 
 
 *! 
 
 5~ 
 
 _ 
 
 
 
 442 
 
 7 
 
 7 
 
 1.8 
 
 22.1 
 
 532 
 
 
 | 
 
 2 
 
 ^ 
 
 "] 
 
 
 443 
 
 7 
 
 8 
 
 2.2 
 
 24.9 
 
 616 
 
 4 
 
 1 
 
 
 
 JT 
 
 
 444 
 
 7 
 
 9 
 
 2.6 
 
 27.7 
 
 714 
 
 
 p 
 
 
 
 \ 
 
 
 445 
 
 7 
 
 10 
 
 2.9 
 
 30.3 
 
 798 
 
 
 
 :___ 
 
 
 ~OL 
 
 jl" 
 
 446 
 
 7 
 
 11 
 
 3.3 
 
 33.1 
 
 882 
 
 
 c 
 
 fi* 
 
 ?. J 
 
 161. 
 
 
 447 
 
 7 
 
 12 
 
 3.7 
 
 35.9 
 
 966 
 
 ; i 
 
 5 ; 
 
 
 
 1 
 
 ii 
 
 448 
 
 7 
 
 13 
 
 4.0 
 
 38.5 
 
 1050 
 
 H 
 
 1 
 
 
 
 | 
 
 r 
 
 449 
 
 7 
 
 14 
 
 4.4 
 
 41.3 
 
 1134 
 
 
 
 
 
 /I 
 
 i 
 
 i 
 
 450 
 
 7 
 
 15 
 
 4.7 
 
 43.9 
 
 1218 
 
 \ 
 
 
 
 
 %| 
 
 \ rjr 
 
 
 
 
 
 
 
 4 
 
 1 
 
 
 
 * 
 
 
 451 
 
 7 
 
 16 
 
 5.1 
 
 46.7 
 
 1302 
 
 
 
 
 
 
 
 
 
 1 *7 
 
 5pr 
 
 AQ ^ 
 
 1 38ft 
 
 
 
 
 -2 - 
 
 
 
 452 
 
 7 
 
 17 
 
 .O 
 
 ly . o 
 
 1OOO 
 
 
 !<- 
 
 ___ 
 
 -^_ 
 ^ 
 
 
 
 453 
 
 7 
 
 18 
 
 5.8 
 
 52.1 
 
 1470 
 
RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 89 
 
 
 
 
 
 
 
 o fl . 
 
 ^i 
 
 *%a . 
 
 r* O~ """ </ 
 
 ?a . 
 
 2 
 
 
 
 
 
 
 
 
 
 
 Q.O & 
 
 
 
 
 
 
 
 
 
 
 X! 
 
 
 ** S**lc 
 
 
 
 
 
 
 
 
 
 g o 
 
 teja 
 
 r^ |~ 
 
 
 3 o 
 
 fj^ 
 
 
 
 
 
 
 
 K 
 
 W.S 
 
 ^ o.~ 
 
 ^o. 
 
 I 05 "- 5 
 
 u 
 
 
 
 Ft 
 
 7- 
 
 158. 
 
 
 454 
 
 8 
 
 7 
 
 1.8 
 
 23.6 
 
 686 
 
 
 
 
 2- 
 
 
 
 455 
 
 8 
 
 8 
 
 2.2 
 
 26.4 
 
 714 
 
 1 
 
 ? 7 
 
 h 
 
 ; 
 
 I*" 
 
 t i 
 
 
 
 
 
 
 
 
 
 
 
 jS 
 
 \ 
 
 456 
 
 8 
 
 9 
 
 2.5 
 
 29.0 
 
 896 
 
 
 
 % 
 
 | 
 
 
 f 
 
 457 
 
 8 
 
 10 
 
 2.9 
 
 31.8 
 
 1008 
 
 
 
 
 n 
 
 
 
 458 
 
 8 
 
 11 
 
 3.3 
 
 34.6 
 
 1120 
 
 2"\ 
 
 X- v 
 
 I 
 
 a 
 
 \,, 
 
 * 
 
 ^ 
 
 459 
 
 8 
 
 12 
 
 3.7 
 
 37.4 
 
 1232 
 
 7 
 
 
 K 
 
 B- 
 
 ? 
 
 159. 
 
 
 460 
 
 8 
 
 13 
 
 4.1 
 
 40.2 
 
 1344 
 
 
 
 ^ 
 
 > 
 
 
 
 
 461 
 
 8 
 
 14 
 
 4.5 
 
 43.0 
 
 1456 
 
 " 
 
 T 
 
 
 "^ 
 - 
 
 
 A" 
 
 
 
 
 
 
 
 
 
 1 
 
 r~ 
 
 I 
 
 i 
 i 
 
 462 
 
 8 
 
 15 
 
 4.9 
 
 45.8 
 
 1554 
 
 
 
 
 
 
 i 
 
 
 
 
 
 
 
 
 $ 
 
 ^ 
 
 > 
 
 
 
 463 
 
 8 
 
 16 
 
 5.2 
 
 48 4 
 
 1666 
 
 
 
 1 
 
 
 
 i 
 
 464 
 
 8 
 
 17 
 
 5.6 
 
 51.2 
 
 1778 
 
 Ff 
 
 i. 
 
 n 
 
 
 M 
 
 i 
 
 465 
 
 8 
 
 18 
 
 6.0 
 
 54.0 
 
 1890 
 
 !< 
 
 
 
 3- 
 
 160. 
 
 
 466 
 
 9 
 
 7 
 
 1.7 
 
 24.9 
 
 826 
 
 
 
 . 
 
 2 
 
 """A"" 
 M A 
 
 
 467 
 
 9 
 
 8 
 
 2.1 
 
 27.7 
 
 966 
 
 
 
 gsa 
 
 
 1 
 
 
 468 
 
 9 
 
 9 
 
 2.5 
 
 30.5 
 
 1106 
 
 a 
 
 V. 
 
 I 
 
 
 
 > 
 
 
 469 
 
 9 
 
 10 
 
 2.9 
 
 33.3 
 
 1232 
 
 
 1 
 
 
 
 1 
 
 
 
 
 470 
 
 9 
 
 11 
 
 3.3 
 
 36.1 
 
 1372 
 
 
 v- ; 
 
 ;; : > 
 
 ^^ 
 
 / \ 
 
 
 
 
 
 
 
 
 
 i 
 
 
 m 
 
 , 
 
 
 471 
 
 9 
 
 12 
 
 3.7 
 
 38.9 
 
 1498 
 
 
 <- 
 
 
 B 
 
 5 
 
 i 
 
 
 
 
 
 
 
 
 
 
 i- 
 
 161. 
 
 
 472 
 
 9 
 
 13 
 
 4.1 
 
 41.7 
 
 1638 
 
 ! 
 
 i 
 
 
 
 \ 
 
 Ii 
 
 473 
 
 9 
 
 14 
 
 4.5 
 
 44.5 
 
 1778 
 
 :?i 
 
 1 
 
 
 
 1 
 
 w 
 
 474 
 
 9 
 
 15 
 
 4.9 
 
 47.3 
 
 1904 
 
 :. , j 
 
 
 
 
 ,J 
 
 
 475 
 
 9 
 
 16 
 
 5.3 
 
 50.1 
 
 2044 
 
 3, 
 
 1 
 
 
 
 %$ 
 
 \ 3T 
 
 
 
 
 
 
 
 /i 
 
 
 
 
 \ 
 
 Z -MJ- 
 
 l 
 
 476 
 
 9 
 
 17 
 
 5.7 
 
 52.9 
 
 2184 
 
 
 1 
 
 S 
 
 n 
 &. 
 
 9m 
 
 Li 
 
 477 
 
 9 
 
 18 
 
 6.1 
 
 55.7 
 
 2310 
 
 
 
 
 - 
 
 
 
 
 4 
 
 478 
 
 10 
 
 7 
 
 1.6 
 
 26.2 
 
 980 
 
90 
 
 RESISTANCE TO CROSS- BREAKING- AND SHEARING. 
 
 
 
 
 
 
 
 
 o . 
 
 !-. G 
 
 ?2 
 
 ^ S ,- 
 
 O - fl 
 
 -co . 
 
 d 
 
 o 
 
 
 
 
 
 
 
 
 |1 
 
 |1 
 
 I cll 
 
 ;h!l 
 
 o ce ^ 2 
 Jo " " ~ 
 
 f 
 
 
 
 F < 
 
 / 
 
 158 
 
 
 
 479 
 
 10 
 
 8 
 
 2.0 
 
 29 
 
 1134 
 
 
 -7 
 
 - 
 
 c^^ 
 
 
 -- 
 
 -r 
 
 480 
 
 10 
 
 9 
 
 2.4 
 
 31.8 
 
 1302 
 
 
 - 
 
 - L 
 
 
 i 
 
 
 
 481 
 
 10 
 
 10 
 
 2.8 
 
 34.6 
 
 1456 
 
 
 
 7/ ~ 
 
 
 
 
 S 
 
 482 
 
 10 
 
 11 
 
 3.2 
 
 37.4 
 
 1624 
 
 
 
 
 
 
 
 
 483 
 
 10 
 
 12 
 
 3.6 
 
 40.2 
 
 1778 
 
 2" 
 
 
 
 
 
 
 
 484 
 
 10 
 
 13 
 
 4.0 
 
 43.0 
 
 1946 
 
 
 
 
 a 
 
 
 
 
 
 
 
 
 
 
 
 
 K 
 
 I 
 / 
 
 159 
 
 
 
 485 
 
 10 
 
 14 
 
 4.4 
 
 45.8 
 
 2100 
 
 
 
 i* 
 
 __^ 
 
 . 
 
 
 
 486 
 
 10 
 
 15 
 
 4.9 
 
 48.8 
 
 2268 
 
 "a_ 
 
 I 
 
 
 
 r 
 
 
 
 487 
 
 10 
 
 16 
 
 5.3 
 
 51.6 
 
 2422 
 
 
 7/ 
 
 r 
 
 
 
 t 
 
 k 
 
 488 
 489 
 
 10 
 10 
 
 17 
 
 18 
 
 5.7 
 6.1 
 
 54.4 
 57.2 
 
 2590 
 2744 
 
 s 
 
 
 
 
 
 i 
 
 
 
 490 
 
 11 
 
 8 
 
 1.9 
 
 30.3 
 
 1316 
 
 
 
 i 
 
 .i 
 
 
 
 
 
 
 
 
 
 
 
 5~" 
 
 ~ 
 
 i 
 
 J* 
 
 .> 
 7. 
 
 160 
 
 7J 
 
 
 491 
 492 
 
 11 
 11 
 
 9 
 10 
 
 2.3 
 
 2.7 
 
 33.1 
 35.9 
 
 1512 
 1694 
 
 
 
 
 -? 
 
 "t 
 
 
 
 493 
 
 11 
 
 11 
 
 3.1 
 
 38.7 
 
 1876 
 
 j/ s 
 
 <-> 
 
 
 
 JT 
 
 
 
 494 
 
 11 
 
 12 
 
 35 
 
 41.5 
 
 2072 
 
 
 
 
 
 ! 
 
 
 
 495 
 
 11 
 
 13 
 
 4.0 
 
 44.5 
 
 2254 
 
 1 i 
 
 ^~ 
 
 
 /."> 
 
 r. ] 
 
 L61. 
 
 >| 
 
 
 
 496 
 497 
 
 11 
 11 
 
 14 
 15 
 
 4.4 
 
 4.8 
 
 47.3 
 50.1 
 
 2436 
 2632 
 
 \4 
 
 
 
 
 
 
 5 ; 
 
 498 
 
 11 
 
 16 
 
 5.2 
 
 52.9 
 
 2814 
 
 31 
 
 . 
 | 
 
 
 
 
 ^ 
 
 ^ 
 
 IT" 
 
 499 
 
 11 
 
 17 
 
 5.6 
 
 55.7 
 
 2996 
 
 . 
 
 
 
 
 3* 
 
 
 
 
 500 
 
 11 
 
 18 
 
 6.1 
 
 58.7 
 
 3192 
 
 41 
 
 { 
 
 
 
 
 | 
 
 ff 
 
 501 
 
 12 
 
 8 
 
 1.7 
 
 31.4 
 
 1512 
 
 
 , 
 
 B 
 
 1 
 
 
 
 1 
 
 i 
 
 502 
 
 12 
 
 9 
 
 2.1 
 
 34.2 
 
 1722 
 
 
 
 
 :3 
 
 
 t 
 
 
 503 
 
 12 
 
 10 
 
 2.6 
 
 37.2 
 
 1932 
 
RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 91 
 
 
 
 . 
 
 !2 a. 
 
 53 *- a 
 
 5 ~ 
 
 1 c 
 
 
 
 
 fc. S3 
 
 
 
 
 
 o 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 a 
 
 tfifl 
 
 7." 5^ 
 
 "^C -"^ 
 
 r ? r,^ 
 
 GS 
 
 
 
 
 "^ M 
 
 o ^ 
 
 ;>! "S .S 
 
 -"" 1 "c is 
 
 r ~ ^ c 
 
 5 
 
 
 
 
 ^ 
 
 S.S 
 
 ^ 
 
 * 
 
 /} H 
 
 ^ 
 
 Fig. 
 
 158. 
 
 504 
 
 12 
 
 11 
 
 3.0 
 
 40.0 
 
 2142 
 
 ~r; ^ 
 
 
 If *~ 
 
 505 
 
 1^ 
 
 12 
 
 3.4 
 
 42.8 
 
 2366 
 
 j 
 
 1 
 
 
 506 
 
 12 
 
 13 
 
 3 9 
 
 45.8 
 
 2576 
 
 JJi 
 
 4 
 
 jar 
 
 507 
 
 12 
 
 14 
 
 4.3 
 
 48.6 
 
 2786 
 
 
 I 
 
 
 508 
 
 12 
 
 15 
 
 4.7 
 
 51.4 
 
 2996 
 
 *fd 
 
 
 
 I 
 
 509 
 
 12 
 
 16 
 
 5.2 
 
 54.4 
 
 3220 
 
 &--> 
 
 
 
 
 
 
 
 
 Fig. 
 
 159. 
 
 510 
 
 12 
 
 17 
 
 5.6 
 
 57 2 
 
 343 J 
 
 *b 
 
 -* 
 
 
 511 
 
 12 
 
 18 
 
 6.0 
 
 60.0 
 
 3640 
 
 2T 
 
 
 -..5 
 
 
 
 512 
 
 13 
 
 8 
 
 1.6 
 
 32.7 
 
 1680 
 
 i/ 
 
 
 
 w 
 
 513 
 
 13 
 
 9 
 
 2.0 
 
 35.5 
 
 1932 
 
 / 
 
 ; 
 
 
 M. 
 
 
 
 
 
 
 
 
 
 
 
 514 
 
 13 
 
 10 
 
 2.4 
 
 38.3 
 
 2170 
 
 ~ 2 "r~ 
 
 
 \ \> 
 
 515 
 
 13 
 
 11 
 
 2.9 
 
 41 3 
 
 2408 
 
 K J3- ->j 
 
 Fig. 160. 
 
 516 
 
 [3 
 
 12 
 
 3.3 
 
 44.1 
 
 2646 
 
 J4--g-- 
 
 i 
 
 
 517 
 
 13 
 
 13 
 
 3.8 
 
 47 . 1 
 
 2884 
 
 
 1 
 
 1 
 
 j 
 
 \ 
 
 518 
 
 13 
 
 14 
 
 4.2 
 
 49.9 
 
 3122 
 
 /; 
 
 I 
 
 
 
 JT 
 
 519 
 
 13 
 
 15 
 
 4.6 
 
 52.7 
 
 3360 
 
 
 i 
 
 
 
 ! 
 
 520 
 
 13 
 
 16 
 
 5.1 
 
 55.7 
 
 3598 
 
 
 ~ 
 
 
 r.oi 
 
 i ^ 
 
 
 K C~) 
 
 CO K 
 
 
 1 ^ 
 
 
 161. 
 
 <J 1 
 
 522 
 
 io 
 13 
 
 18 
 
 o . y 
 
 5.9 
 
 Oo .O 
 
 61.3 
 
 4088 
 
 14 
 
 
 i ; 
 
 523 
 
 14 
 
 9 
 
 1.9 
 
 36.8 
 
 2142 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 j|| 
 
 524 
 
 14 
 
 10 
 
 2.3 
 
 39.6 
 
 2408 
 
 
 , 
 
 
 
 , i 
 
 i ! 
 
 525 
 
 14 
 
 11 
 
 2.7 
 
 42.4 
 
 2674 
 
 1 
 
 ; 
 
 
 
 II 
 
 i * 
 
 526 
 
 14 
 
 12 
 
 3.2 
 
 45.4 
 
 2940 
 
 
 
 
 
 
 i 
 
 
 
 
 
 
 
 
 
 
 
 
 x i 
 
 | ! 
 
 527 
 
 14 
 
 13 
 
 3.6 
 
 48.2 
 
 3206 
 
 
 K 
 
 -^ 
 
 r 
 
 
 528 
 
 14 
 
 14 
 
 4.1 
 
 52.2 
 
 3472 
 
92 
 
 RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 
 
 o . 
 
 !- 
 
 H} 
 
 *Z2 
 
 -|.S 
 
 -r a a> 
 
 a 
 
 
 
 11 
 
 -S S 
 
 SS, )* 
 
 ** _ a 
 
 ^ ^ * 
 
 O j-i 
 
 
 
 g O 
 
 tf-C 
 
 ~~ c ~ 
 
 3 ^ G "O 
 
 - 3 s^ 
 
 
 
 
 
 
 
 
 
 "5 ^ a^o 
 
 
 
 
 ^ 
 
 W.S 
 
 ^o_ 
 
 -^ o<e.~ 
 
 3D * co< - 
 
 a 
 
 Fig. 158. 
 
 529 
 
 14 
 
 15 
 
 4.5 
 
 54.0 
 
 3738 
 
 Jjj 
 
 |P"t 
 
 530 
 531 
 
 14 
 14 
 
 16 
 
 17 
 
 4.9 
 5.4 
 
 56.8 
 59.8 
 
 4004 
 4270 
 
 <# 
 
 1 *" 
 
 532 
 
 14 
 
 18 
 
 5.8 
 
 62.6 
 
 4536 
 
 
 i ^ 
 
 533 
 
 15 
 
 9 
 
 1.7 
 
 37.9 
 
 935 
 
 *H1 
 
 
 534 
 
 15 
 
 10 
 
 2.2 
 
 40.9 
 
 264(3 
 
 ;. J5......J- 
 
 
 7. 159. 
 
 535 
 
 15 
 
 11 
 
 2,6 
 
 43.7 
 
 2940 
 
 h-d 
 
 ->i 
 
 536 
 
 15 
 
 12 
 
 3.0 
 
 46.5 
 
 3234 
 
 "> r (l 
 j.M| 
 
 I ! 
 
 537 
 
 15 
 
 13 
 
 3.5 
 
 49.5 
 
 3528 
 
 4*1 
 
 i*| 
 
 538 
 
 15 
 
 14 
 
 3.9 
 
 52.3 
 
 3822 
 
 -TIT " 
 
 ! 
 
 1 --VVM ! 
 
 539 
 
 15 
 
 15 
 
 4.4 
 
 55.3 
 
 4116 
 
 2 |^, 
 
 
 540 
 
 15 
 
 16 
 
 4.8 
 
 58.1 
 
 4410 
 
 K ^ 
 
 7n 
 
 jed. 
 
 541 
 
 15 
 
 17 
 
 5.3 
 
 61.1 
 
 4704 
 
 & 
 
 jphr 
 
 542 
 
 15 
 
 18 
 
 5.7 
 
 63.9 
 
 4998 
 
 
 ! 
 
 543 
 
 16 
 
 9 
 
 1.6 
 
 39 2 
 
 2562 
 
 
 
 
 
 
 
 
 
 
 J^P 
 
 ff 
 
 544 
 
 16 
 
 10 
 
 2.0 
 
 42.0 
 
 2884 
 
 p 
 
 
 545 
 
 16 
 
 11 
 
 2.5 
 
 45.0 
 
 3206 
 
 2 " 
 
 546 
 
 16 
 
 12 
 
 2.9 
 
 4.7 X 
 
 
 ^ 
 
 , 161. 
 
 547 
 
 16 
 
 13 
 
 3.4 
 
 T: 1 . O 
 
 50.8 
 
 3850 
 
 j |i 
 
 i|j 
 
 548 
 
 16 
 
 14 
 
 3.8 
 
 53.6 
 
 4172 
 
 
 if" 
 
 549 
 
 16 
 
 15 
 
 4.3 
 
 56.6 
 
 4494 
 
 
 ^ 
 
 
 
 
 
 
 
 <^ 3 
 
 ^ 
 
 ftp ^r 
 
 550 
 
 16 
 
 16 
 
 4.7 
 
 59.4 
 
 4816 
 
 
 P 
 
 j; 
 
 551 
 
 16 
 
 17 
 
 5.2 
 
 65.4 
 
 5138 
 
 m 
 
 
 551 
 
 16 
 
 18 
 
 5.6 
 
 62.2 
 
 5460 
 
 ^r. 
 
 & >\ 
 
 552 
 
 17 
 
 10 
 
 1.9 
 
 43.3 
 
 3150 
 
RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 93 
 
 
 
 
 Number of 
 section. 
 
 ^1 <3J 
 
 S 
 W.S 
 
 J|| 
 
 |||| 
 
 Sectional 
 area in 
 square 
 inches. 
 
 Coefficient 
 ** \ 
 
 
 
 %. 158. 
 
 554 
 
 17 
 
 11 
 
 2.3 
 
 46.1 
 
 3486 
 
 : 
 
 S 
 
 ii ! 
 
 555 
 
 17 
 
 12 
 
 2.8 
 
 49.1 
 
 3836 
 
 
 * 
 
 ^S ^y 
 
 556 
 
 17 
 
 13 
 
 3.2 
 
 51.9 
 
 4186 
 
 
 
 ft 
 
 
 
 
 
 
 
 3 
 
 r 
 
 | 
 
 557 
 
 17 
 
 14 
 
 3.7 
 
 54.9 
 
 4536 
 
 I 
 
 - 
 
 ._^. j, 
 
 
 
 
 
 
 
 
 
 Ft^. 159. 
 
 558 
 
 17 
 
 15 
 
 4.1 
 
 57.7 
 
 4872 
 
 2 
 
 "L 
 
 1 
 
 559 
 
 17 
 
 16 
 
 4.6 
 
 60.7 
 
 5222 
 
 
 6 
 
 1 "f 
 
 560 
 
 17 
 
 17 
 
 5.0 
 
 63.5 
 
 5572 
 
 j" 
 
 >:, 
 
 Ixi^ i 
 
 561 
 
 17 
 
 18 
 
 5.5 
 
 66.5 
 
 5922 
 
 
 
 
 
 
 
 
 
 
 f 
 
 
 Fig. 160. 
 
 562 
 
 18 
 
 10 
 
 1.6 
 
 44.2 
 
 3346 
 
 
 
 t 
 
 
 
 
 
 
 
 
 <-/ 
 
 fepr 1 
 
 563 
 
 18 
 
 11 
 
 2.1 
 
 47.2 
 
 3724 
 
 /; 
 
 1 
 
 "^ 1 
 
 564 
 
 18 
 
 12 
 
 2.6 
 
 50 2 
 
 4102 
 
 -^ 
 
 if 
 
 *r 
 
 
 
 
 
 
 
 
 
 mm^m- 
 
 565 
 
 18 
 
 13 
 
 3.0 
 
 53.0 
 
 4480 
 
 
 g 
 
 
 
 
 
 
 
 
 
 < 
 
 33 3>i 
 
 566 
 
 18 
 
 14 
 
 3.5 
 
 56.0 
 
 4868 
 
 
 
 %. 161. 
 
 
 
 
 
 
 
 h 
 
 i 
 ^ 
 
 ^L... 
 
 567 
 
 18 
 
 15 
 
 3.9 
 
 58.8 
 
 5236 
 
 21 
 
 
 f 
 
 568 
 
 18 
 
 16 
 
 4.4 
 
 61.8 
 
 5628 
 
 3 
 
 
 3,j^ . 
 
 
 
 
 
 
 
 
 
 
 
 569 
 
 18 
 
 17 
 
 4.9 
 
 64.8 
 
 6006 
 
 
 i 
 
 
 570 
 
 18 
 
 18 
 
 5.3 
 
 67.6 
 
 6384 
 
94 
 
 RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 
 
 
 
 
 
 Number of 
 section. 
 
 tec 
 "9 
 
 ^^^ c 
 
 gtg C 
 
 1-2 2 * 
 
 C5 ~ 
 
 Coefficient 
 .121. 
 
 Fig. 102. 
 
 571 
 
 6 
 
 9 
 
 2.3 
 
 26.6 
 
 504 
 
 ~2 
 
 E 
 
 
 ] 
 
 
 i 
 
 572 
 
 6 
 
 10 
 
 2.7 
 
 29.4 
 
 574 
 
 
 
 
 
 
 
 ! 
 
 573 
 
 6 
 
 11 
 
 3.0 
 
 32.0 
 
 630 
 
 . . 
 
 2 
 
 
 
 
 
 -2" 
 
 574 
 
 6 
 
 12 
 
 3.3 
 
 34.6 
 
 700 
 
 
 
 
 
 
 -1 1 
 
 575 
 
 6 
 
 13 
 
 3.7 
 
 37.4 
 
 756 
 
 
 
 
 
 
 1 
 1 ^ 
 
 
 
 
 
 A C\ C\ 
 
 OO/j 
 
 Fig. 163. 
 
 576 
 577 
 
 6 
 
 15 
 
 4 .0 
 4.3 
 
 40. U 
 42.6 
 
 bZb 
 
 882 
 
 "F 
 
 P: 
 
 * 
 
 _.. 
 
 ... 
 
 ~ 
 
 578 
 
 6 
 
 16 
 
 4.7 
 
 45.5 
 
 952 
 
 i 
 
 4 
 
 ir 
 
 
 
 i 
 
 579 
 
 6 
 
 17 
 
 5.0 
 
 48.0 
 
 1008 
 
 2 
 
 p 
 
 
 
 
 & 
 
 580 
 
 6 
 
 18 
 
 5.3 
 
 50.6 
 
 1064 
 
 
 - 
 
 
 
 
 
 
 
 
 
 
 
 JW 
 
 
 ^v" 
 
 ~~~ 
 
 1 
 
 i 
 i 
 
 581 
 
 7 
 
 9 
 
 2.3 
 
 28.6 
 
 686 
 
 Ej^ 
 
 
 
 
 
 ~i^ 
 
 582 
 
 7 
 
 1 
 
 2.7 
 
 31.4 
 
 770 
 
 -%. 164. 
 
 583 
 
 / 
 
 7 
 
 11 
 
 3.0 
 
 34.0 
 
 854 
 
 U--Z 
 
 -, 
 
 
 
 
 
 584 
 
 7 
 
 12 
 
 3.4 
 
 36.8 
 
 938 
 
 
 f \ 
 
 
 _?-. 
 
 t 
 
 
 
 585 
 
 7 
 
 13 
 
 3.8 
 
 39.6 
 
 1036 
 
 f/ 
 
 
 
 
 
 
 
 586 
 
 7 
 
 14 
 
 4.1 
 
 42.2 
 
 1120 
 
 2 
 
 s 
 ^ 
 
 
 
 T 
 
 
 
 587 
 
 7 
 
 15 
 
 4.5 
 
 45.0 
 
 1204 
 
 
 
 
 
 1 
 
 
 
 
 
 588 
 
 7 
 
 16 
 
 4.9 
 
 47.8 
 
 1288 
 
 
 
 M 
 
 m 
 
 i 
 
 1 
 
 2" 
 
 589 
 
 7 
 
 17 
 
 5.2 
 
 50.4 
 
 1372 
 
 -%. 165. 
 
 590 
 
 i 
 
 7 
 
 18 
 
 5.6 
 
 53.2 
 
 1456 
 
 , ^ , 
 
 
 
 
 
 
 5 
 
 591 
 
 8 
 
 9 
 
 2.2 
 
 30.4 
 
 868 
 
 ?L 
 
 
 
 
 
 ^~^r 
 
 592 
 
 8 
 
 10 
 
 2.6 
 
 33.2 
 
 980 
 
 IIP 
 
 
 
 
 
 
 P ! 
 
 593 
 
 8 
 
 11 
 
 2.9 
 
 35.8 
 
 1092 
 
 . .- 
 
 << 
 
 
 
 7 
 
 | 
 
 ! 
 
 594 
 
 8 
 
 12 
 
 3.3 
 
 38.6 
 
 1204 
 
 
 
 
 
 
 
 i 
 i 
 
 595 
 
 8 
 
 13 
 
 3.7 
 
 41.4 
 
 1302 
 
 
 
 
 
 
 | 
 
 i 
 
 596 
 
 8 
 
 14 
 
 4.1 
 
 44.2 
 
 1414 
 
 
 - 
 
 s 
 
 ? 
 
 
 .. 
 
 
 597 
 
 8 
 
 15 
 
 4.5 
 
 47.0 
 
 1526 
 
 fr 
 
 - 
 
 ^.. 
 
 -- 
 
 -*_ 
 
RESISTANCE TO CROSS BREAKING AND SHEARING. 
 
 95 
 
 
 
 
 
 mberof 
 action. 
 
 5j 
 
 -H* 
 
 5 1|| 
 
 |||| 
 
 a 
 
 
 
 
 
 J 
 
 si.S 
 
 ^ c.= 
 
 $ Cq5 
 
 s-5 
 
 o 
 
 
 jz 
 
 ?. 162. 
 
 
 598 
 
 8 
 
 16 
 
 4.9 
 
 49.8 
 
 1638 
 
 
 
 -g->_ 
 
 
 
 
 
 
 
 
 2 
 
 " /7 r 
 
 
 ~~^" 
 
 599 
 
 8 
 
 17 
 
 5.3 
 
 52.6 
 
 1750 
 
 
 _!_, 
 
 if 
 
 ! 
 
 600 
 
 8 
 
 18 
 
 5.7 
 
 55.4 
 
 1848 
 
 
 2" 
 
 m 
 
 JZ" 
 
 601 
 
 9 
 
 9 
 
 2.1 
 
 32.2 
 
 1064 
 
 
 
 9 
 
 i 
 
 
 
 
 
 
 
 3F 
 
 
 
 i 
 
 602 
 
 9 
 
 10 
 
 2.5 
 
 35.0 
 
 1204 
 
 "if 
 
 ~ 
 
 
 |^- 
 
 603 
 
 9 
 
 11 
 
 2.9 
 
 37.8 
 
 1330 
 
 
 2^ 
 
 g. 163. 
 
 
 604 
 
 9 
 
 12 
 
 3.3 
 
 40.6 
 
 1470 
 
 
 "6 
 
 >\ 
 
 
 605 
 
 9 
 
 13 
 
 3.7 
 
 43.4 
 
 I^Qft 
 
 1 
 
 1 
 
 w\ 
 
 ! 
 
 606 
 
 9 
 
 14 
 
 4.1 
 
 46.2 
 
 1736 
 
 2 
 
 p 
 
 
 -^ 
 
 607 
 
 9 
 
 15 
 
 4.5 
 
 49.0 
 
 1876 
 
 ~/T(^ 
 
 1 
 
 %%%%^ 
 
 
 608 
 
 9 
 
 16 
 
 4.9 
 
 51.8 
 
 2002 
 
 11 
 
 
 
 
 i 
 
 609 
 
 Q 
 
 n 
 
 r q 
 
 KA_ f> 
 
 
 i< 
 
 j 
 
 
 " 
 
 
 U 
 
 
 O . o 
 
 O . O 
 
 2142 
 
 
 F* 
 
 1. 164. 
 
 
 610 
 
 9 
 
 18 
 
 5.7 
 
 57.4 
 
 2282 
 
 !<--Z 
 
 ,._,,, 
 
 
 
 611 
 
 10 
 
 10 
 
 2.4 
 
 36.8 
 
 1414 
 
 
 
 1 
 
 IT 
 
 
 612 
 
 10 
 
 11 
 
 2.8 
 
 39.6 
 
 1582 
 
 "H 
 
 
 i 
 
 
 613 
 
 10 
 
 12 
 
 3.2 
 
 42.4 
 
 1736 
 
 2 1 
 
 
 "F 
 
 
 614 
 
 10 
 
 13 
 
 3.6 
 
 45.2 
 
 1904 
 
 Hf 
 
 
 i 
 
 
 615 
 
 in 
 
 i d. 
 
 4 A 
 
 AQ r\ 
 
 _ 
 
 1 
 
 M 
 
 / <MftMWf/t 
 
 2" 
 
 
 IU 
 
 1 
 
 .0 
 
 4o . U 
 
 2058 
 
 
 
 
 
 616 
 
 10 
 
 i ^ 
 
 A A 
 
 50 H 
 
 o o o/~ 
 
 
 7 
 
 j > 
 
 
 
 1 U 
 
 
 T: . TC 
 
 
 
 
 ^c 
 
 ^ 
 
 . 165. 
 
 
 617 
 
 10 
 
 16 
 
 4.8 
 
 53.6 
 
 2380 
 
 J 
 
 
 JJ 
 
 i 
 
 M 
 
 ! 
 
 618 
 619 
 
 10 
 10 
 
 17 
 
 18 
 
 5.2 
 5.7 
 
 56.4 
 59.4 
 
 2595 
 
 2702 
 
 
 
 1 
 
 //I 
 
 
 620 
 
 11 
 
 10 
 
 2.2 
 
 38.4 
 
 1638 
 
 7 "i 
 
 
 7 | 
 
 JZ" 
 
 621 
 
 11 
 
 11 
 
 2-6 
 
 41.2 
 
 1820 
 
 I 
 
 
 i 
 
 
 622 
 
 11 
 
 12 
 
 3.0 
 
 44.0 
 
 2016 
 
 m 
 
 8 
 
 i 
 
 
 623 
 
 11 
 
 13 
 
 3.5 
 
 47.0 
 
 2198 
 
 j<- 
 
 i 
 
 3 > 
 
 
 624 
 
 11 
 
 14 
 
 3.9 
 
 49.8 
 
 2380 
 
96 
 
 RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 
 
 
 
 
 
 Number of 
 section. 
 
 ^ S 
 
 *| 
 
 .?5I| 
 
 Sectional 
 area in 
 square 
 inches. 
 
 Coefficient 
 X 
 
 Fig. 162. 
 
 625 
 
 11 
 
 15 
 
 4.3 
 
 52.6 
 
 2576 
 
 g 
 
 
 /. 
 
 w 
 
 3 
 
 
 
 "T 
 
 626 
 
 11 
 
 16 
 
 4.7 
 
 55.4 
 
 2758 
 
 
 
 
 
 
 t 
 
 627 
 
 11 
 
 17 
 
 5.1 
 
 58.2 
 
 2954 
 
 t 
 
 2 
 
 ^ 
 
 
 
 JL 
 
 628 
 
 11 
 
 18 
 
 5.6 
 
 61.2 
 
 3136 
 
 
 
 ,. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 11. 
 
 629 
 630 
 
 12 
 12 
 
 11 
 12 
 
 2.4 
 2.9 
 
 42.8 
 45.8 
 
 2086 
 2296 
 
 Fig. 163. 
 
 631 
 
 12 
 
 13 
 
 3.3 
 
 48.1 
 
 2506 
 
 ~?W 
 
 o 
 
 ~7/ / 
 
 %jjr 
 
 _._ 
 
 . 
 
 -A 
 
 632 
 
 12 
 
 14 
 
 3.7 
 
 51.4 
 
 2716 
 
 J 
 
 
 2 
 
 
 
 1 
 
 633 
 
 12 
 
 15 
 
 4.1 
 
 54.2 
 
 2940 
 
 
 
 
 
 
 
 s 
 
 634 
 
 12 
 
 16 
 
 4.6 
 
 57.2 
 
 3150 
 
 
 
 
 
 
 1 
 
 
 
 
 
 
 
 
 \ % 
 
 
 
 
 1 
 
 635 
 
 12 
 
 17 
 
 5.0 
 
 60.0 
 
 3360 
 
 JmMM^m^ 
 
 j 
 
 
 
 
 
 
 
 m 
 
 
 
 %%; 
 
 
 -y- 
 
 636 
 
 12 
 
 18 
 
 5.4 
 
 62.8 
 
 3570 
 
 !< jg 
 
 > 
 
 
 
 
 
 
 
 
 Fig. 164. 
 
 637 
 
 13 
 
 11 
 
 2.2 
 
 44.4 
 
 2338 
 
 
 ,-N| 
 
 
 
 
 
 638 
 
 13 
 
 12 
 
 2.7 
 
 47.4 
 
 2576 
 
 
 < 
 
 . 1 
 
 ii 
 
 ~2 
 
 T 
 
 
 
 639 
 
 13 
 
 13 
 
 3.1 
 
 50.2 
 
 2814 
 
 | 
 
 fa, 
 
 i 
 
 640 
 641 
 
 13 
 13 
 
 14 
 15 
 
 3.5 
 4.0 
 
 53.0 
 56.0 
 
 3052 
 3290 
 
 
 w. 
 
 y 
 
 
 
 i 
 
 i 
 
 
 
 642 
 
 13 
 
 16 
 
 4.4 
 
 58.8 
 
 3528 
 
 
 / 
 
 t\ 
 
 
 2" 
 
 
 
 
 m 
 
 & 
 
 j 
 
 
 643 
 
 13 
 
 17 
 
 4.9 
 
 61.8 
 
 3780 
 
 Fig. 165. 
 
 644 
 
 13 
 
 18 
 
 5.3 
 
 64.6 
 
 4018 
 
 i J-i 
 
 
 
 
 
 5 1 
 
 645 
 
 14 
 
 11 
 
 2.0 
 
 46.0 
 
 2604 
 
 
 
 
 
 
 
 646 
 
 14 
 
 12 
 
 2.5 
 
 49.0 
 
 2870 
 
 
 
 
 
 : 
 
 i~r 
 
 647 
 
 14 
 
 13 
 
 2.9 
 
 51.8 
 
 3136 
 
 
 ,1 
 
 
 
 n 
 i 
 
 1 
 
 i 
 
 648 
 
 14 
 
 14 
 
 3.4 
 
 54.8 
 
 3402 
 
 
 
 
 
 
 :: 
 
 i 
 
 649 
 
 14 
 
 15 
 
 3.8 
 
 57.6 
 
 3668 
 
 
 
 
 
 
 i 
 
 
 650 
 
 14 
 
 16 
 
 4.2 
 
 60.4 
 
 3934 
 
 ^ 
 
 & 
 
 : -^ 
 
 
 
 
 <~ 
 
 
 ; v 
 
 .y _ 
 
 651 
 
 14 
 
 17 
 
 4.7 
 
 63.4 
 
 4208 
 
 <- 
 
 
 
 B- 
 
 
 
 -> 
 
 1 
 
RESISTANCE TO CROSS-BREAKING AND SHEARING. 
 
 
 
 Number of 
 section. 
 
 j="o 
 
 .Sf.S 
 5 ^ 
 
 -Ifs 
 
 ~ G 
 T3 ^ 5="^ 
 
 c rt * J 
 
 Coefficient 
 Jp. 
 
 
 Fig. 162. 
 
 652 
 
 14 
 
 18 
 
 5.1 
 
 66.2 
 
 4152 
 
 
 f 
 
 653 
 
 15 
 
 12 
 
 2.3 
 
 50.6 
 
 3164 
 
 
 l^M^I 1 
 W# : 
 
 654 
 
 15 
 
 13 
 
 2.7 
 
 51.4 
 
 3444 
 
 
 
 
 
 
 
 
 
 
 
 <2 ||p -uL 
 
 655 
 
 15 
 
 14 
 
 3.2 
 
 56.4 
 
 3738 
 
 
 %ss 1 
 
 
 
 
 
 
 
 
 
 656 
 
 15 
 
 15 
 
 3.6 
 
 59.2 
 
 4032 
 
 yOC . 
 
 Fig. 163. 
 
 657 
 658 
 
 15 
 15 
 
 16 
 
 17 
 
 4.1 
 4.5 
 
 62.2 
 65.0 
 
 4296 
 4606 
 
 
 }<- $--->! 
 
 659 
 
 15 
 
 18 
 
 4.9 
 
 67.8 
 
 4900 
 
 
 T 
 
 
 
 
 
 
 
 
 
 660 
 
 16 
 
 13 
 
 2.5 
 
 55.0 
 
 3742 
 
 
 sm & 
 
 661 
 
 16 
 
 14 
 
 3.0 
 
 58.0 
 
 4074 
 
 
 \WM \ 
 
 
 
 
 
 
 
 
 j%^ \ 
 
 662 
 
 16 
 
 15 
 
 3.4 
 
 60.8 
 
 4396 
 
 
 
 
 663 
 
 16 
 
 
 Q Q 
 
 CO 
 
 4.71 Q 
 
 
 Fig. 164. 
 
 664 
 
 16 
 
 17 
 
 O . <J 
 
 4.3 
 
 DO . O 
 
 66.6 
 
 tfc / io 
 
 5026 
 
 i 
 
 ^^~ - K- 
 
 665 
 
 16 
 
 18 
 
 4.8 
 
 69.6 
 
 5348 
 
 
 m^\ j : 
 
 666 
 
 17 
 
 13 
 
 2.3 
 
 56.6 
 
 4060 
 
 
 
 w 
 
 
 
 
 
 
 
 2 
 
 m & 
 
 667 
 
 17 
 
 14 
 
 2.8 
 
 59.6 
 
 4410 
 
 
 fm 
 
 
 
 
 
 
 
 
 m \ 
 
 668 
 
 17 
 
 15 
 
 3.2 
 
 62.4 
 
 4760 
 
 
 mm%^^%^\ / ^~ 3 it 
 
 
 
 
 
 
 
 
 tm^mM/2/m- 
 
 669 
 
 17 
 
 16 
 
 3.7 
 
 65.4 
 
 5110 
 
 
 Fig. 165. 
 
 670 
 
 17 
 
 17 
 
 4.1 
 
 68.2 
 
 5460 
 
 
 
 I \ \b \ 
 
 671 
 
 17 
 
 18 
 
 4.6 
 
 71.2 
 
 5810 
 
 
 EJ { ^~\ 
 
 672 
 
 18 
 
 13 
 
 2.1 
 
 58.2 
 
 43^2 
 
 tr 
 
 v- % > . \>j^""^~" 
 
 
 
 
 
 
 
 .H 
 
 ^ ! 
 
 673 
 
 18 
 
 14 
 
 2.5 
 
 61.0 
 
 4746 
 
 
 //( * 
 
 
 
 
 
 
 
 
 ^ 41 
 7 I TT 
 
 ^ IT 
 
 674 
 675 
 
 18 
 18 
 
 15 
 16 
 
 3.0 
 3.4 
 
 64.0 
 66.8 
 
 5124 
 5502 
 
 
 ^ ^ 
 
 
 
 
 
 
 
 
 ^illlil^ltllll; 
 
 676 
 
 18 
 
 17 
 
 3.9 
 
 69.8 
 
 5080 
 
 
 .. 
 
 
 
 
 
 
 
 
 >--B H 
 
 677 
 
 18 
 
 18 
 
 4.4 
 
 72.8 
 
 6258 
 
RESISTANCE TO CROSS BREAKING AND SHEARING. 
 
 STRENGTH OF WOODEN BEAMS. 
 
 Capacity W in Ibs. of American white and yellow pine beams, joists, 
 &c., from 1" x 1" to 15 x 15 in. 
 
 The modulus of rupture is taken at- 
 
 - = 1250 Ibs.. or 8 times safety, 
 
 K = tabulated coefficient, to be divided by 
 
 I = distance between supports in inches, or length of beams in inches 
 from support to free end of beam. 
 
 a 
 
 Coefficient 
 
 11 
 
 Height in 
 
 "o c 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 1 
 
 1666 
 
 6666 
 
 15000 
 
 26666 
 
 41666 
 
 60000 
 
 81666 
 
 1_1^ 
 
 2500 
 
 10000 
 
 22500 
 
 39999 
 
 62499 
 
 90000 
 
 122499 
 
 2 
 
 3333 
 
 13333 
 
 30000 
 
 53333 
 
 83333 
 
 120000 
 
 163333 
 
 2*^ 
 
 4166 
 
 16666 
 
 37500 
 
 66666 
 
 104166 
 
 150000 
 
 204166 
 
 3 
 
 5000 
 
 19999 
 
 45000 
 
 80000 
 
 124999 
 
 180000 
 
 244999 
 
 31^ 
 
 5833 
 
 23333 
 
 52700 
 
 93333 
 
 145833 
 
 210000 
 
 285833 
 
 4 * 
 
 6666 
 
 26666 
 
 60000 
 
 106666 
 
 166666 
 
 240000 
 
 326(566 
 
 41^ 
 
 7499 
 
 29999 
 
 67500 
 
 119999 
 
 187499 
 
 270000 
 
 367499 
 
 5 
 
 8333 
 
 33333 
 
 75000 
 
 133333 
 
 208333 
 
 300000 
 
 408333 
 
 5% 
 
 9166 
 
 36666 
 
 82500 
 
 146666 
 
 229166 
 
 330000 
 
 449166 
 
 6 
 
 10000 
 
 39999 
 
 90000 
 
 159999 
 
 249999 
 
 360000 
 
 489999 
 
 6% 
 
 10833 
 
 43333 
 
 . 97500 
 
 173333 
 
 270833 
 
 390000 
 
 530833 
 
 7 
 
 11666 
 
 46666 
 
 105000 
 
 186666 
 
 291666 
 
 420000 
 
 571666 
 
 71^ 
 
 12500 
 
 49999 
 
 112600 
 
 199999 
 
 312499 
 
 450000 
 
 612499 
 
 8 
 
 13333 
 
 53333 
 
 120000 
 
 213333 
 
 333333 
 
 480000 
 
 653333 
 
 8 14 
 
 14166 
 
 566(56 
 
 127500 
 
 22(5666 
 
 354166 
 
 510000 
 
 694166 
 
 9 " 
 
 14998 
 
 59999 
 
 135000 
 
 239999 
 
 374999 
 
 540000 
 
 734999 
 
 9% 
 
 15831 
 
 63333 
 
 142500 
 
 253333 
 
 395833 
 
 570000 
 
 775833 
 
 10 
 
 16666 
 
 66(566 
 
 150000 
 
 266666 
 
 416666 
 
 600000 
 
 816666 
 
 10/4 
 
 17500 
 
 69999 
 
 157500 
 
 279999 
 
 437499 
 
 630000 
 
 857599 
 
 11 
 
 18333 
 
 73333 
 
 1(55000 
 
 293333 
 
 458333 
 
 660000 
 
 898533 
 
 11*^ 
 
 19166 
 
 76666 
 
 172500 
 
 306666 
 
 479166 
 
 690000 
 
 939366 
 
 12 * 
 
 20000 
 
 79999 
 
 180000 
 
 319999 
 
 499999 
 
 720000 
 
 979999 
 
 12^4 
 
 20833 
 
 83333 
 
 187500 
 
 333333 
 
 520833 
 
 750000 
 
 1020833 
 
 13 " 
 
 21666 
 
 86066 
 
 195000 
 
 346666 
 
 541666 
 
 780000 
 
 1061666 
 
 1314 
 
 22500 
 
 89)99 
 
 202500 
 
 359999 
 
 562499 
 
 810000 
 
 1102499 
 
 14 
 
 23333 
 
 93333 
 
 210000 
 
 373333 
 
 583333 
 
 840000 
 
 1143333 
 
 14K 
 
 24166 
 
 96(566 
 
 217500 
 
 386666 
 
 604166 
 
 870900 
 
 1184166 
 
 15 * 
 
 25000 
 
 99099 
 
 225000 
 
 399999 
 
 624999 
 
 900000 
 
 1224999 
 
RESISTANCE TO CEOSS- BREAKING AND SHEARING. 
 
 BEAMS SUPPORTED AT THE ENDS. 
 
 K 
 Load equally distributed, W = or K f = I W. I 
 
 K 
 
 Load concentrated at centre, W== or K 21W. 2 
 
 21 
 
 BEAMS FIXED AT ONE END. 
 
 K 
 
 Load equally distributed, W = or Kf UW. 3 
 
 K 
 
 Load concentrated at free end, W = or K = SI W. 4 
 
 inches. 
 
 8 
 
 9 
 
 10 
 
 11 
 
 12 
 
 13 
 
 14 
 
 15 
 
 106666 
 
 135000 
 
 166666 
 
 201757 
 
 240000 
 
 281666 
 
 326666 
 
 375000 
 
 159999 
 
 202500 
 
 249999 
 
 302636 
 
 360000 
 
 422499 
 
 489999 
 
 562500 
 
 213333 
 
 270000 
 
 333333 
 
 403515 
 
 480000 
 
 563333 
 
 653333 
 
 750000 
 
 266666 
 
 337500 
 
 416666 
 
 504393 
 
 600000 
 
 704166 
 
 816666 
 
 937500 
 
 319999 
 
 405000 
 
 499999 
 
 605272 
 
 720000 
 
 844999 
 
 979999 
 
 1125000 
 
 373333 
 
 472500 
 
 583333 
 
 706151 
 
 840000 
 
 985833 
 
 1143333 
 
 1312500 
 
 426666 
 
 540000 
 
 666666 
 
 807030 
 
 960000 
 
 1126666 
 
 1306666 
 
 1500000 
 
 479999 
 
 607500 
 
 749999 
 
 907908 
 
 1080000 
 
 1267499 
 
 1469999 
 
 1687500 
 
 533333 
 
 675000 
 
 833333 
 
 1008787 
 
 1200000 
 
 1408333 
 
 1633333 
 
 1875000 
 
 586666 
 
 742500 
 
 916666 
 
 1109666 
 
 1320000 
 
 1549166 
 
 1796666 
 
 2062500 
 
 639999 
 
 810000 
 
 999999 
 
 1210545 
 
 1440000 
 
 1689999 
 
 1959999 
 
 2250000 
 
 693333 
 
 877500 
 
 1083333 
 
 1311423 
 
 1560000 
 
 1830833 
 
 2123333 
 
 2437500 
 
 746666 
 
 945000 
 
 1166666 
 
 1412302 
 
 1680000 
 
 1971666 
 
 2286666 
 
 2625000 
 
 799999 
 
 1012500 
 
 1249999 
 
 1513181 
 
 1800000 
 
 2112499 
 
 2449999 
 
 2812500 
 
 853333 
 
 1080000 
 
 1333333 
 
 1614060 
 
 1920000 
 
 2253333 
 
 2613333 
 
 3000000 
 
 906666 
 
 1147500 
 
 1416666 
 
 1714938 
 
 2040000 
 
 2394166 
 
 2776666 
 
 3187500 
 
 959999 
 
 1215000 
 
 1499999 
 
 1815817 
 
 2160000 
 
 2534999 
 
 2939999 
 
 3375000 
 
 1013333 
 
 1232500 
 
 1583333 
 
 1916696 
 
 2280000 
 
 2675833 
 
 3103333 
 
 3562500 
 
 1066666 
 
 1350000 
 
 1666666 
 
 2017575 
 
 2400000 
 
 2816666 
 
 3266666 
 
 3750000 
 
 1119999 
 
 1417500 
 
 1749999 
 
 2118453 
 
 2520000 
 
 2957499 
 
 3429999 
 
 3937500 
 
 1173333 
 
 1485000 
 
 1833333 
 
 2219332 
 
 2640000 
 
 3098333 
 
 3593333 
 
 4125000 
 
 1226666 
 
 1552500 
 
 1910666 
 
 2320211 
 
 2760000 
 
 3239166 
 
 3756660 
 
 4312500 
 
 1279999 
 
 1620000 
 
 1999999 
 
 2421090 
 
 2880000 
 
 3379999 
 
 3919999 
 
 4500000 
 
 1333333 
 
 1687500 
 
 2083333 
 
 2521968 
 
 3000000 
 
 3520833 
 
 4083333 
 
 4(587500 
 
 1386666 
 
 1755000 
 
 216(5666 
 
 2622847 
 
 3120000 
 
 3661666 
 
 4246666 
 
 4875000 
 
 1439999 
 
 1822500 
 
 2249999 
 
 2723726 
 
 3240000 
 
 3802499 
 
 4409999 
 
 5062500 
 
 1493333 
 
 1890000 
 
 2333333 
 
 2824605 
 
 3360000 
 
 3943333 
 
 4573333 
 
 5250000 
 
 1546666 
 
 1957500 
 
 2416666 
 
 2925483 
 
 3480000 
 
 4084166 
 
 4736(566 
 
 5437500 
 
 1599999 
 
 2025000 
 
 2499999 
 
 3026362 
 
 3600000 
 
 4224999 
 
 4899999 
 
 5625000 
 
100 
 
 PEESSURE OF SUPPORTS. 
 
 PRESSURE ON SUPPORTS. 
 REACTION OF SUPPORTS. 
 
 For a continuous beam, horizontal or inclined. Load W, 
 equally distributed, and supports equal distance apart. Appli 
 cable to trussed beams, rafters, or beams supported by three or 
 more supports. 
 
 Reference. (Fig. 166.) 
 W/ = Weight of load per unit of length in Ibs. 
 
 L = Distance between supports in units of length. 
 P t Pi, P-2, = Pressure on supports in Ibs., counting frorn end 
 
 support to center of beam. 
 
 M t M lt M 2 = Moments of rupture over supports. 
 ra, m 11 m 2 = Moments of rupture between supports. 
 
 I, l l} 1 2 = The distance from a support to section where 
 moments m, m lt m z occur. 
 
 By this table the pressure upon any support, from 3 to 9 in 
 number, can be ascertained; also the moments of rupture. The 
 table is used in calculating the strains in roof trusses, &c. 
 
 Fig. 166. 
 
 Reactions 
 or pressure. 
 
 Number of Supports. 
 
 3 
 
 4 
 
 5 
 
 7 
 
 9 
 
 P 
 
 I 
 
 0.375 W t L 
 1.25 W,L 
 
 0.4 W,L 
 1.1 W,L 
 
 0.3929TF, 
 1.1429 W,L 
 0.9286 W,L 
 
 0.3942 W,L 
 1.1346 W t L 
 0.9615 W,L 
 1.0192 W,L 
 
 0.3^43 W,L 
 1.13401^^ 
 0.9G29 W t L 
 U)103W,L 
 0.9948 W t L 
 
 
 
 
 
 
 
 
 
 
 M l 
 M 2 
 M 3 
 Ml 
 
 0.125 W,L2 
 
 0.1 17^2 
 
 0.1071 W,L2 
 0.0714 W t L 2 
 
 0.1058 WL 2 
 0.0769 W t L 2 
 0.0865 W t L 2 
 
 0.1057 W t L 2 
 0.0773 W t L 2 
 0.0850 IF, L 2 
 0.0824^1/2 
 
 
 
 
 
 
 
 
 
 
PRESS flUE ON SUPPORTS. 
 
 101 
 
 Reactions 
 or pressure. 
 
 Number of Supports. 
 
 3 
 
 4 
 
 5 
 
 7 
 
 9 
 
 m 
 mi 
 
 W*2 
 
 m s 
 
 0.0703 W t L 2 
 
 0.08 W t L i 
 0.025 W,Li 
 
 0.0772^1,2 
 0.0364^,1,2 
 
 0.0777 IF, 2 
 0.0340^1,2 
 0.0434:^1/2 
 
 0.0777 W 4 L 2 
 0.0339 ir,L 2 
 0.04381^1-2 
 0.0412 W t L 2 
 
 
 
 
 
 
 
 
 
 I 
 
 1 
 
 0.375 L 
 
 0.4 L 
 
 0.5 Z, 
 
 0.3928 
 0.535 L 
 
 0.3942 ^ 
 0.5288 L 
 0.4903 
 
 0.3943 I/ 
 0.5283 L 
 0.4922 
 0.5025 L 
 
 
 
 
 
 
 
 
 
 Reference. (Figs. 167, 168, and 169.) 
 W, TTj, PT 2 = Load in Ibs. 
 
 ^, ^ 1} 1 2 = Dimensions in units of length. 
 P, P 1} P 2 = Pressure on supports in Ibs. 
 
 Three supports, 
 unequal distances 
 apart. 
 
 Fig. 168. 
 
 Load equally distributed: 
 
 One support, and 
 fixed at one end. 
 
102 COMPRESSIVE STRAIN AND PRESSURE ON SUPPORTS. 
 
 ig. 169. 
 
 Load concentrated at free end: 
 
 One snpport, 
 and fixed at 
 one end. 
 
 COMPRESSIVE STRAIN AND PRESSURE ON SUPPORTS. 
 
 SLOPING BEAMS, RAFTERS, &c. 
 
 Load W equally distributed. 
 
 For the cross- breaking strain, the rafter, &c., is to be treated 
 as a horizontal beam of the length I. (See Compound Strains in 
 Beam, &c.) 
 
 Reference. 
 
 C= Compression in direction of beam. 
 jy= Horizontal strain acting on support. 
 V= Pressure on supports. 
 
 Lower end supported vertically and horizontally ; upper end 
 resting on inclined support : 
 
 Fig. 170. 
 
 (7 = - sin . v 
 
 W 
 
 H= - sin.-y cos.-y 
 2 
 
 W 
 x =-^- (cos.-y) 2 
 
RESISTANCE TO CRUSE ING. 
 
 Upper end fized; lower end supported horizontally : 
 Fig. 171. 
 
 103 
 
 w 
 
 ~2~ 
 
 Upper end resting against a vertical surface ; lower end sup- 
 >orted vertically and horizontally : 
 
 port 
 
 rtically and horizontally 
 Fig. 172. 
 
 2 sin. u 
 
 W 
 H=- cotg v 
 
 RESISTANCE TO CRUSHING. 
 
 STRENGTH OF COLUMNS, PILLARS, AND STRUTS. 
 
 Reference. 
 
 A = Area of cross-section in inches. 
 
 C== Coefficient, depending on the material. 
 
 I = Least moment of inertia of cross-section. 
 W = Capacity of column, pillar, or strut in Ibs. 
 
 a = Coefficient, depending on the material in respect to flexure. 
 
 c = Coefficient, depending on the material. 
 
 h = The least dimension across the section in inches. 
 
 k = Factor of safety. 
 
 I = Length of column, &c., in inches. 
 
 r = Least radius of gyration. 
 
104 
 
 RESISTANCE TO CRUSHING. 
 
 To find the square of the radius of gyration (r 2 ) of a plane 
 about a given axis, divide the least moment of inertia by the 
 
 sectional area of the plane ; that is, r 2 = . 
 
 Values of For Malleable Iron. For Cast Iron. 
 
 C= 36,000 Ibs. 80,000 Ibs. 
 
 c= 36,000 " 3,200 " 
 
 a== 0.000333 0.0025 
 
 For Dry Timber. 
 
 7,200 Ibs. 
 3,000 " 
 0.004 
 
 The factor of safety k should be, for wrought iron = 6; for cast 
 iron = 8; for timber = 10. This applies to moving loads. 
 
 Case 1. 
 
 Rounded or hinged at both ends, as per 
 Fig. 173. 
 
 For square, rectangular, or circular cross-section : 
 
 ir=i._ c ^_ 
 
 For any other cross-section: 
 
 = ~l 7^" 
 
 i+-5r 
 
 Case 2. 
 
 Fixed, or having a flat base at one end, and rounded or hinged 
 at the other, as per 
 Fig. 174. 
 
 For square, rectangular, or circular cross-section : 
 
 W = A 
 
 k p 
 
 For any other cross-section: 
 1 CA 
 
 1 + 
 
 16 J 2 
 9.c.r 2 
 
RESISTANCE TO CRUSHING. 
 
 105 
 
 Case 3. 
 
 Fixed, or having flat bases at both ends, as per 
 Fig. 175. 
 
 For square, rectangular, or circular cross-section : 
 1 CA 
 
 l+aJ ^- 
 
 For any other cross-section: 
 1 OA 
 
 1 + 
 
 EXAMPLES. 
 
 Case 1. 
 Rounded at both ends: 
 
 What is the capacity of a u rought-iron strut of the annexed 
 figure and dimensions? 
 
 I = 10 feet = 120 inches. 
 A = 4.68 inches. 
 
 r __ 0.9 X 3.58+5.1x0.38 
 
 36000 X 4.68 
 
 1 + 
 
 120 2 
 
 36000 X 0.689 
 
 12 
 
 168480 
 
 57600 
 ~^~ 124804" 
 
 = 3.227 
 
 "37322" 
 
 The same as above, in Case 3, fixed at both ends: 
 36000 x 4.69 168480 
 
 1 + 
 
 168480 
 
 36000 x 0.689 
 
 1 + 
 
 14400 
 24804 
 
106 
 
 RESISTANCE TO CRUSHING. 
 
 For the annexed figure and dimensions ; otherwise, same as 
 above : 
 
 A = 7 inches. 
 
 Case 1. 
 
 \2: T- 1 X 43+3 x I 3 
 
 Rounded at both ends : 
 Fig. 177. 
 
 1 = 
 
 12 
 
 = 5.( 
 
 36000 x 7 , 252000 
 -T*-1W~ = * 8 = 21 00 lbs 
 
 . ^ A. ^ v O 
 
 X _ 
 
 ^ ^ 36000 X 0.8 
 
 Same as above, in Case 3, fixed at both ends : 
 36000 x 7 252000 
 
 i_i 
 
 36000 X 0.8 
 
 - = 1- - ~-r = 42 > 000 lbs - 
 1 . o 
 
 Fixed ends : 
 
 Case 3. 
 
 What is the capacity of a cast-iro7i pillar of the annexed figure 
 and dimensions? 
 
 1= 10 feet= 120 inches. 
 A = 11 inches. 
 
 i X 4 3 7 X 3 3 
 
 = 26.9 
 
 80000 X 11 880000 
 
 ~T90~ * S~25" = 
 
 1+0.0025 r-f- 
 
RESISTANCE TO CRUSHING. 
 
 107 
 
 For the annexed figure and dimensions; otherwise, same as 
 above. 
 
 Fig. 179. 
 
 V 
 
 TP=J- 
 
 A 28 inches. 
 80000 X 28 
 
 
 . 
 
 1 + 0.0025 J- 
 
 _2240000_ = 179)200U)3 . 
 1.5625 
 
 For the annexed figure and dimensions; otherwise, same as 
 above. 
 
 Fig. 180. 
 
 A = 22 inches. 
 
 80000 X 22 
 
 120 2 
 1 + 0.0025- 
 
 1760000 
 1.5625 
 
 = 140,800 Ibs. 
 
 To find the capacity of a Column, Pillar, or Strut of any 
 cross-section by the following Table : 
 
 Find how many times the least dimension h across the section 
 
 is contained in the length I of column, &c. that is, then 
 
 multiply the corresponding number on the same horizontal line, 
 under K" , by the sectional area of cross-section. This gives the 
 capacity in tons of 2,000 Ibs. 
 Let I = Length of column, &c. 
 
 h = Least dimension of cross-section. 
 
 K" = Capacity in tons of one square inch of cross-section, to 
 be multiplied by sectional area of desired cross- 
 section. 
 
 Various sections for which this table is applicable: 
 Fig. 181. Fig. 182. 
 
108 RESISTANCE TO CEUSHING. 
 
 Fig. 183. Fig. 184. 
 
 Fig. 186. 
 
 Fig. 185. 
 
 Fig. 187. 
 
 Fig. 188. 
 
 [NOTE. This table is strictly correct, only for columns, Ac., with circular 
 or rectangular cross-section. As the error is small, it may be used for 
 any cross-section.] 
 
 Example explanatory of the following table. 
 
 What is the capacity of a cast-iron column 10 feet = 120 inches 
 long, fixed at both ends, and of the annexed cross-section and 
 dimensions? 
 
 Fig. 189. 
 
 7 19() 
 
 -f- = -=- = 40 K" for 40=1.000 tons. 
 h 3 
 
 Area= 6 inches. 
 
 W=. 6 X 1 = 6 tons, 8 times safety. 
 
BESISTANCE TO CRUSHING. 
 
 Column, &c., fixed at both ends. 
 
 109 
 
 Cast Iron eight times safety. 
 
 Wrought Iron six times safety. 
 
 I 
 h 
 
 K" 
 
 I 
 h 
 
 K" 
 
 I 
 
 h 
 
 K" 
 
 I 
 h 
 
 K" 
 
 I 
 
 ~h 
 
 K" 
 
 I 
 
 
 K" 
 
 
 Tons. 
 
 
 Tons. 
 
 
 Tons. 
 
 
 Tons. 
 
 
 Tons. 
 
 
 Tons. 
 
 1 
 
 4.987 
 
 25 
 
 1.951 
 
 49 
 
 0.714 
 
 1 
 
 2.999 
 
 25 
 
 2.487 
 
 49 
 
 1.674 
 
 o 
 
 4.950 
 
 26 
 
 1.858 
 
 50 
 
 0.689 
 
 2 
 
 2.996 
 
 26 
 
 2.452 
 
 50 
 
 1.644 
 
 3 
 
 4.890 
 
 27 
 
 1.771 
 
 51 
 
 0.666 
 
 3 
 
 2.991 
 
 27 
 
 2.418 
 
 51 
 
 1.615 
 
 4 
 
 4.807 
 
 28 
 
 1.689 
 
 52 
 
 0.644 
 
 4 
 
 2.984 
 
 28 
 
 2.383 
 
 52 
 
 1.585 
 
 5 
 
 4.705 
 
 29 
 
 1.611 
 
 53 
 
 0.623 
 
 5 
 
 2.975 
 
 29 
 
 2.348 
 
 53 
 
 1.557 
 
 6 | 4.587 
 
 30 
 
 1.538 
 
 54 
 
 0.603 
 
 6 
 
 2.964 
 
 30 
 
 2.313 
 
 54 
 
 1.529 
 
 7 | 4.450 
 
 31 
 
 1.469 
 
 55 
 
 0.584 
 
 7 
 
 2.953 
 
 31 
 
 2.277 
 
 55 
 
 1.501 
 
 8 I 4.310 
 
 32 
 
 1.404 
 
 56 
 
 0.565 
 
 8 
 
 2.938 
 
 32 
 
 2.242 
 
 56 
 
 1.474 
 
 9 
 10 
 
 4.158 
 4.000 
 
 33 
 
 34 
 
 1.343 
 
 1.285 
 
 57 
 58 
 
 0.548 
 0.531 
 
 9 
 10 
 
 2.921 
 2.905 
 
 33 
 
 34 
 
 2.206 
 2.172 
 
 57 
 
 58 
 
 1.4-18 
 1.422 
 
 11 
 
 3.838 
 
 35 
 
 1.230 
 
 59 
 
 0.515 
 
 11 
 
 2.885 
 
 35 
 
 2.136 
 
 59 
 
 1 396 
 
 12 
 
 3.676 
 
 36 
 
 1.179 
 
 60 
 
 0.500 
 
 12 
 
 2.863 
 
 36 
 
 2.101 
 
 60 
 
 1.371 
 
 13 ! 3.514 
 
 37 
 
 1.130 
 
 61 
 
 0.485 
 
 13 
 
 2.841 
 
 37 
 
 2.067 
 
 01 
 
 1.347 
 
 14 i 3.355 
 
 38 
 
 1.084 
 
 02 
 
 0.471 
 
 14 
 
 2.817 
 
 38 
 
 2.032 
 
 62 
 
 1.323 
 
 15 I 3.200 
 
 39 
 
 1.041 
 
 63 
 
 0.457 
 
 15 
 
 2.792 
 
 39 
 
 1.998 
 
 63 
 
 1.299 
 
 If. 3.048 
 
 40 
 
 1.000 
 
 64 
 
 0.445 
 
 16 
 
 2.766 
 
 40 
 
 1.963 
 
 64 
 
 1.276 
 
 17 
 
 2.902 
 
 41 
 
 0.961 
 
 65 
 
 0.432 
 
 17 
 
 2.738 
 
 41 
 
 1.930 
 
 65 
 
 1.253 
 
 18 
 
 2.762 
 
 42 
 
 0.924 
 
 66 
 
 0.420 
 
 18 
 
 2.711 
 
 42 
 
 1.896 
 
 66 
 
 1.228 
 
 19 
 
 2.628 
 
 43 
 
 0.889 
 
 67 
 
 0.409 
 
 19 
 
 2.680 
 
 43 
 
 1.863 
 
 67 
 
 1.209 
 
 20 
 
 2.500 
 
 44 
 
 0.856 
 
 68 
 
 0.398 
 
 20 
 
 2.650 
 
 44 
 
 1.831 
 
 68 
 
 1.187 
 
 21 
 
 2378 
 
 45 
 
 0.824 
 
 69 
 
 0.387 
 
 21 
 
 2.619 
 
 45 
 
 1.798 
 
 69 
 
 1.167 
 
 22 
 
 2.252 
 
 46 
 
 0.794 
 
 70 
 
 0.377 
 
 22 
 
 2.586 
 
 46 
 
 1.767 
 
 70 
 
 1.146 
 
 23 
 
 2.152 
 
 47 
 
 0.766 
 
 71 
 
 0.367 
 
 23 
 
 2.554 
 
 47 
 
 1.735 
 
 71 
 
 1.126 
 
 24 
 
 2.049 
 
 48 
 
 0.739 
 
 72 
 
 0.358 
 
 24 
 
 2.520 
 
 48 
 
 1.704 
 
 72 
 
 1.107 
 
110 
 
 KESISTANCE TO CRUSHING. 
 
 Strength of Columns, Pillars, or Struts, of seasoned wood, round or 
 
 square section. 
 
 Fixed at both ends. All dimensions in inches. 
 Find how many times the least dimension across the section is 
 
 TT 
 
 contained in the length or height of column, &c.; that is, - ; 
 
 then multiply the corresponding figures on the same horizontal 
 line under K" by the sectional area of cross-section. This gives 
 the capacity of column, &c., in tons of 2,000 Ibs., 10 times safety. 
 
 Reference. 
 
 H= Length of column, &c. 
 D = Least dimension of cross-section. 
 
 K" = Capacity in tons of one square inch of cross-section, to 
 be multiplied by sectional area of desired cross-section. 
 
 The coefficient C for white and yellow pine in the following 
 table is taken at - h -f {} = 600 Ibs. for safety : 
 
 For oak at S -J{J-- = 800 Ibs. per square inch for safety. 
 EXAMPLE. What is the capacity of a pillar of oak, section 
 4x6 inches, length = 12 feet = 144 inches ? 
 
 
 for 36 _. o.064 x 4 X 6 = 1.536 tons. 
 
 Capacity K f/ of one square inch in tons of 2,000 Ibs. 
 
 White and Yellow Pine. 
 
 Oak. 
 
 H 
 
 ~D " 
 
 j\" 
 
 H 
 ~D = 
 
 K" 
 
 H 
 
 ~D ~ 
 
 E 
 
 H 
 
 ~D ~ 
 
 K" 
 
 1 
 
 0.299 
 
 26 
 
 0.081 
 
 1 
 
 0.399 
 
 26 
 
 0.108 
 
 2 
 
 0.2:)5 
 
 27 
 
 0.076 
 
 2 
 
 0.394 
 
 27 
 
 0.102 
 
 3 
 
 0.289 
 
 28 
 
 0.072 
 
 3 
 
 0.386 
 
 23 
 
 0.096 
 
 4 
 
 0.282 
 
 29 
 
 0.068 
 
 4 
 
 0.376 
 
 29 
 
 0.091 
 
 5 
 
 0.272 
 
 30 
 
 0.065 
 
 5 
 
 0.363 
 
 30 
 
 0.086 
 
 6 
 
 0.262 
 
 31 
 
 0.061 
 
 6 
 
 0.349 
 
 31 
 
 0.082 
 
 7 
 
 0.251 
 
 32 
 
 0.058 
 
 7 
 
 0.334 
 
 32 
 
 0.078 
 
 8 
 
 0239 
 
 33 
 
 0.056 
 
 8 
 
 0,319 
 
 33 
 
 0.074 
 
 9 
 
 0.226 
 
 34 
 
 0.053 
 
 9 
 
 0.302 
 
 34 
 
 0.071 
 
 10 
 
 0.214 
 
 35 
 
 0.050 
 
 10 
 
 0.285 
 
 35 
 
 0.067 
 
 11 
 
 0.202 
 
 36 
 
 0.048 
 
 11 
 
 0239 
 
 36 
 
 0.064 
 
 12 
 
 0.190 
 
 37 
 
 0.046 
 
 12 
 
 0.254 
 
 37 
 
 0.061 
 
 13 
 
 0.179 
 
 38 
 
 0.044 
 
 13 
 
 0.238 
 
 38 
 
 0.059 
 
 14 
 
 0.168 
 
 39 
 
 0.042 
 
 14 
 
 0.224 
 
 39 
 
 0.056 
 
 15 
 
 0.158 
 
 40 
 
 0.040 
 
 15 
 
 0.210 
 
 40 
 
 0.054 
 
 16 
 
 0.148 
 
 41 
 
 0.038 
 
 16 
 
 0.197 
 
 41 
 
 0.051 
 
 17 
 
 0.139 
 
 42 
 
 0.037 
 
 17 
 
 0.185 
 
 42 
 
 0.049 
 
 18 
 
 0.130 
 
 43 
 
 0.035 
 
 18 
 
 0.174 
 
 43 
 
 0.047 
 
 19 
 
 0.123 
 
 44 
 
 0.034 
 
 19 
 
 0.163 
 
 44 
 
 0.045 
 
 20 
 
 0.115 
 
 45 
 
 0.033 
 
 20 
 
 0.154 
 
 45 
 
 0.044 
 
 21 
 
 0.108 
 
 46 
 
 0.031 
 
 21 
 
 0144 
 
 46 
 
 0.042 
 
 22 
 
 0.102 
 
 47 
 
 0.030 
 
 22 
 
 0.136 
 
 47 
 
 0040 
 
 23 
 
 0.096 
 
 48 
 
 0.029 
 
 23 
 
 0.123 
 
 48 
 
 0.039 
 
 21 
 
 0.030 
 
 49 
 
 0.088 
 
 24 
 
 0.121 
 
 49 
 
 0.037 
 
 25 
 
 0.085 
 
 50 
 
 0.027 
 
 25 
 
 0.114 
 
 50 
 
 0.036 
 
 
PARALLELOGRAM OF FORCES. 
 
 Ill 
 
 PARALLELOGRAM OF FORCES. 
 COMPOSITION AND RESOLUTION OF FORCES. 
 
 Reference. 
 
 A, B, C = Forces, cr strains, acting on a single point, 
 y, i/, = angles. 
 
 Fig. 190. 
 
 A = 
 
 (7sin. v, 
 sin. (v + v,) 
 
 _ Csin.v . 
 
 B = - ; -, when v = v /y A = B 
 
 sin. (v + ^/) 
 
 sec. v; 
 
 whenv+^<90 C = 
 when t> -f u y > 90 /?_ 
 
 cos. (v + v,) 
 
 = 90 
 = C cos. v 
 = C sin. v 
 (7 = 
 
112 
 
 STRAINS IN FRAMES. 
 
 STRAINS IN FRAMES. 
 
 Reference. 
 
 C = Compressive strain in units of weight, 
 T= Tensile 
 F= Vertical 
 H= Horizontal " 
 W= Load in units of weight. 
 I = Dimensions in units of length. 
 v = Angle between horizontal and inclined member. 
 For 01 oss-breaking strain, see "Resistance to cross-breaking. 
 
 Fig. 193. 
 
 W 
 
 2 sin. v 
 
 W 
 y x = cotg. v = H 
 
 Fig. 194. 
 
 C / = H = ij W cotg.v = cross-breaking strain at H. 
 
 H / = -j- H = j^. j- TP r cotg. v = tension in H/. 
 I I 
 
 H H, = \\. ( -- ) W cotg. v = compression in 
 F= U W. \ I J 
 
STRAINS IN" FRAMES. 
 
 113 
 
 Fig. 195. 
 
 T7 TT - 
 
 V = H / tang, y = - tang, y 
 
 = compression. 
 
 W.I 
 
 cos. y 1^, , cos. y 
 
 nressiou. 
 
 //= W.I. 
 
 When I > ^ 3 the portion t // is in tension = V W = 
 W Ltang.y-l) 
 
 \ Ijj I 
 
 When I < Z 3 the portion l y/ is in compression = IF F = 
 
 F/ = . TF= tension, 
 
 v 
 
 /* /. 107. 
 
 Ends of beams built into wall or fixed- 
 F= -L W 
 
 V, = V- W = (,--} W, = T, (tension) = C, (. 
 
 V V 
 
 pression.) 
 
Ill STRAINS IN BOOM DERRICKS. 
 
 C= ( J = (compression) = T (tension.) 
 
 V 21, J sin. v 
 
 II f~ \ TFcotg. v = (tension) = H, (compression.) 
 
 Ends of beams not built into wall or fixed: 
 
 T/ /r= v W= ( / ) W = C / (compression) = T, 
 (tension.) 
 
 0= = = T (tension.) 
 
 sin. v I, sin. v 
 
 H= Fcotg. v = TFcotg. v = (tension) = H / (compression.) 
 
 STRAINS IN BOOM DERRICKS. 
 
 Reference. 
 
 C = Compression in boom. 
 
 C / = Compression in mast. 
 
 T= Tension in tackling. 
 
 T,= Tension in guy. 
 
 t = Tension in runner from mast head to weight. 
 
 t / = Tension in runner from boom head to weight. 
 W = Weight or load. 
 H = Horizontal strain. 
 
 V = Vertical strain. 
 v, v lt v 2 = Angles. (See Figure.) 
 
 Fifj. 198. 
 
STEAINS IN TRUSSES. 
 
 115 
 
 TTsin. v 1 
 
 sin. (v + Vj 
 
 F"== / cosin. v 1 
 
 (7= Fcosec. v 2 
 
 T= Fcosec. v 
 
 TFsin. v 
 sin. (v + v x 
 
 *,= 
 
 <?,= PF 
 
 2^= Fcotg. -y 3 sec. v 4 
 
 STRAINS IN TRUSSES. 
 Zoac? equally distributed. 
 
 Reference. 
 
 W= Load equally distributed in Ibs. 
 I = Distance between abutments. 
 v = Angle between horizontal and diagonal. 
 0= Compression in Ibs., (denoted by thick lines.) 
 T= Tension in Ibs., (denoted by thin lines.) 
 
 2 Bays = 4- 
 
 Fig. 199. 
 
 T- 
 
 -* ~ T6 - 
 
 3 Bays = 
 
 . 200. 
 
116 
 
 STEAINS IN TRUSSES. 
 
 4 Bays 
 
 Fig. 201. 
 
 C- W 
 
 C 2 
 
 3(7 2 
 
 cotg. 
 
 Fig. 202. 
 
 C = T 6C 2 cotg. v 
 (?!= T 1 = 2(7 2 cotg. t? 
 
 W 
 
 2 rT 2 = ^ cosec. v 
 
m 
 
 STRAINS IN TRUSSES. 
 I 
 
 0= T = 
 
 90 
 
 2 
 8C, 
 
 2 
 
 5 a 
 
 cotg. v 
 cotg. v 
 
 a 
 
 2 
 
 5(7 3 
 
 65 " "~T~ 
 
 T 3 = j cosec. 
 
 ^4 = 3 ^3 
 
 TABLE OF CONSTANTS, BASED ON FOREGOING FORMULA. 
 Load equally distributed. 
 
 Table of constants for strains in respective member of trusses, 
 from 2 to 6 bays, with diagonals inclined from 5 to 45 : 
 
 Reference. 
 
 W = Load in Ibs., equally distributed over whole length of 
 truss, to be multiplied by constant for strain in re- 
 pective member. 
 
 v = Angle between horizontal and diagonal. 
 0= Compression in Ibs. in respective member. 
 T= Tension in Ibs. in respective member. 
 EXAMPLE. Required, the strain in the various members of a 
 truss of 4 bays. Length = 40 feet ; load W = 80,000 Ibs. ; angle 
 v = 20. 
 
 Members. Constants. W. Strains. 
 
 C = T = 1.372 x 80,000 = 109,760 Ibs. 
 c i= TI= 1.029 X 80,000 = 82,320 
 <7 2 =0.25 x 80,000= 20,000 
 <7 3 = 0.375 x 80,000 = 30,000 
 T 2 = 0.365 x 80,000= 29,200 
 T 3 = 1.095 x 80,000 = 87,600 
 
 [NOTE. When the trusses are inverted, the strains change in kind, but 
 not in amount] 
 
118 
 
 STRAINS IK TRUSSES. 
 
 2 Bays = - 
 
 Fig. 204. 
 
 3 Bays = 
 Fig. 205. 
 
 V 
 
 O 
 
 C l 
 
 T 
 
 (7= T 
 
 Ci 
 
 Tl 
 
 5 
 
 3.572 
 
 0.625 
 
 3.584 
 
 3.810 
 
 0.333 
 
 3.820 
 
 6 
 
 2.972 
 
 " 
 
 2987 
 
 3.170 
 
 " 
 
 3.186 
 
 7 
 
 2.544 
 
 < 
 
 2.562 
 
 2.713 
 
 
 
 2.733 
 
 8 
 
 2.225 
 
 " 
 
 2.244 
 
 2.370 
 
 M 
 
 2.393 
 
 9 
 
 1.972 
 
 " 
 
 1.997 
 
 2.103 
 
 " 
 
 2.130 
 
 10 
 
 1.772 
 
 (C 
 
 1800 
 
 1.890 
 
 M 
 
 1.920 
 
 11 
 
 1.610 
 
 " 
 
 1.640 
 
 l.MO 
 
 " 
 
 1.747 
 
 12 
 
 1.469 
 
 " 
 
 1.500 
 
 1.570 
 
 M 
 
 1.603 
 
 13 
 
 1.353 
 
 " 
 
 1.390 
 
 1.444 
 
 " 
 
 1.483 
 
 14 
 
 1.253 
 
 < 
 
 1.290 
 
 1.333 
 
 
 
 1.376 
 
 15 
 
 1.166 
 
 1 
 
 1.210 
 
 1.243 
 
 " 
 
 1.286 
 
 16 
 
 1.087 
 
 " 
 
 1.134 
 
 1.160 
 
 ( 
 
 1.210 
 
 17 
 
 1.022 
 
 " 
 
 1.070 
 
 1.090 
 
 M 
 
 1.140 
 
 18 
 
 0.959 
 
 " 
 
 1.013 
 
 l.<23 
 
 " 
 
 1.080 
 
 19 
 
 0.906 
 
 H 
 
 0.959 
 
 0.970 
 
 " 
 
 1.023 
 
 20 
 
 0.859 
 
 " 
 
 0.912 
 
 0.917 
 
 " 
 
 0.973 
 
 21 
 
 0.813 
 
 " 
 
 0.872 
 
 0.866 
 
 " 
 
 0.930 
 
 22 
 
 0.778 
 
 " 
 
 0.834 
 
 0.823 
 
 
 
 0.890 
 
 23 
 
 0.734 
 
 
 
 0.790 
 
 0.783 
 
 : 
 
 0.853 
 
 24 
 
 0.703 
 
 ( 
 
 0.765 
 
 0.750 
 
 
 
 0.810 
 
 25 
 
 0.668 
 
 " 
 
 0.738 
 
 0.713 
 
 " 
 
 0.786 
 
 26 
 
 0.641 
 
 
 
 0.712 
 
 0.685 
 
 
 
 0.760 
 
 27 
 
 0.613 
 
 " 
 
 0.687 
 
 0.653 
 
 
 
 0.730 
 
 28 
 
 0.587 
 
 ( 
 
 0.666 
 
 0.626 
 
 " 
 
 0.701 
 
 29 
 
 0.562 
 
 <C 
 
 0.644 
 
 0.600 
 
 .( 
 
 0.686 
 
 30 
 
 0.541 
 
 (( 
 
 0.625 
 
 0.643 
 
 M 
 
 0.666 
 
 31 
 
 0.519 
 
 
 
 0.606 
 
 0.555 
 
 " 
 
 0.646 
 
 32 
 
 0.500 
 
 M 
 
 0.591 
 
 0.533 
 
 M 
 
 0.630 
 
 33 
 
 0.481 
 
 it 
 
 0.575 
 
 0.513 
 
 
 
 0.613 
 
 34 
 
 0.463 
 
 
 0.559 
 
 0.493 
 
 
 0.596 
 
 35 
 
 0.447 
 
 
 
 0.544 
 
 0.476 
 
 " 
 
 0.580 
 
 36 
 
 0.431 
 
 
 
 0.531 
 
 0.460 
 
 
 
 0.566 
 
 37 
 
 0.416 
 
 " 
 
 0.519 
 
 0.444 
 
 " 
 
 0.553 
 
 38 
 
 0.400 
 
 " 
 
 0.506 
 
 0.426 
 
 M 
 
 0.540 
 
 39 
 
 0.384 
 
 < 
 
 0.497 
 
 0.410 
 
 
 
 0.530 
 
 40 
 
 0.372 
 
 
 
 0.487 
 
 0.396 
 
 " 
 
 0.520 
 
 41 
 
 0.359 
 
 
 
 0.475 
 
 0.385 
 
 " 
 
 0.506 
 
 42 
 
 0.347 
 
 H 
 
 0.466 
 
 0.370 
 
 
 
 0.496 
 
 43 
 
 0.334 
 
 
 
 0.456 
 
 0.357 
 
 " 
 
 0.486 
 
 44 
 
 0.322 
 
 < 
 
 0.450 
 
 0.343 
 
 
 
 0.480 
 
 45 
 
 0.312 
 
 " 
 
 0.444 
 
 0.333 
 
 " 
 
 0.473 
 
STRAINS IN TRUSSES. 
 
 119 
 
 4 Bays = 
 Fig. 20(>. 
 
 V 
 
 C = T 
 
 CV-5T! 
 
 C 2 
 
 Cs 
 
 T 2 
 
 T 3 
 
 5 
 
 5.720 
 
 4290 
 
 0.250 
 
 0.375 
 
 1.434 
 
 4.032 
 
 6 
 
 4.700 
 
 3.570 
 
 " 
 
 11 
 
 1.200 
 
 3.600 
 
 7 
 
 4.008 
 
 3.051 
 
 " 
 
 " 
 
 1.025 
 
 3.075 
 
 8 
 
 3.500 
 
 2.070 
 
 
 " 
 
 0.897 
 
 2591 
 
 9 
 
 3.1G4 
 
 2.373 
 
 * 
 
 ;; 
 
 0.799 
 
 2.397 
 
 10 
 
 2.8-^2 
 
 2.124 
 
 
 
 0.720 
 
 2.160 
 
 11 
 
 2.508 
 
 1.926 
 
 ; 
 
 
 0.655 
 
 1.965 
 
 1 2 
 
 2.388 
 
 1.791 
 
 
 
 
 0.601 
 
 1.803 
 
 13 
 
 2.164 
 
 1623 
 
 
 
 0.556 
 
 1.608 
 
 14 
 
 2.000 
 
 1.500 
 
 
 
 
 0.516 
 
 1.548 
 
 15 
 
 1.804 
 
 1.398 
 
 
 
 0.482 
 
 1.446 
 
 1C 
 
 1.7-10 
 
 1.305 
 
 
 
 0.454 
 
 1.362 
 
 17 
 
 i.632 
 
 1.224 
 
 
 
 
 0.428 
 
 1.284 
 
 18 
 
 1.532 
 
 1.149 
 
 
 
 0.405 
 
 1.215 
 
 19 
 
 1.448 
 
 1.086 
 
 
 
 
 0.384 
 
 1.152 
 
 20 
 
 1.372 
 
 1.029 
 
 " 
 
 
 0.365 
 
 1.095 
 
 21 
 
 1.300 
 
 0.975 
 
 " 
 
 
 
 0.349 
 
 1.047 
 
 22 
 
 1.23G 
 
 0.927 
 
 ; 
 
 
 
 0.334 
 
 1.002 
 
 23 
 
 1.172 
 
 0.879 
 
 
 " 
 
 0.32) 
 
 0.960 
 
 24 
 
 1.124 
 
 0.843 
 
 ; 
 
 " 
 
 0.306 
 
 0.918 
 
 25 
 
 1.008 
 
 0801 
 
 
 
 
 
 0.295 
 
 0.885 
 
 26 
 
 1.024 
 
 0.708 
 
 
 * 
 
 0.285 
 
 0.855 
 
 27 
 
 0.080 
 
 0.735 
 
 
 
 
 0.275 
 
 0.825 
 
 2-i 
 
 0.940 
 
 0.705 
 
 
 
 " 
 
 0.266 
 
 0.798 
 
 2y 
 
 0.900 
 
 0.675 
 
 1 
 
 
 0.258 
 
 0.774 
 
 30 
 
 0.804 
 
 0.048 
 
 
 
 
 
 0.250 
 
 0.750 
 
 31 
 
 0.823 
 
 0.621 
 
 
 
 
 0.243 
 
 0.729 
 
 32 
 
 0.800 
 
 O.COO 
 
 
 
 
 
 236 
 
 0.708 
 
 H,i 
 
 0.708 
 
 0.576 
 
 
 
 0.230 
 
 0.690 
 
 34 
 
 0.740 
 
 0.655 
 
 * 
 
 
 0.224 
 
 0.672 
 
 35 
 
 0.720 
 
 0.540 
 
 " 
 
 * 
 
 0.218 
 
 0.654 
 
 36 
 
 0.088 
 
 0.516 
 
 
 
 0.212 
 
 0.636 
 
 37 
 
 O.G04 
 
 0.498 
 
 
 
 
 0.207 
 
 0.621 
 
 38 
 
 0.640 
 
 0.480 
 
 " 
 
 
 0.203 
 
 0.009 
 
 39 
 
 0.016 
 
 0.462 
 
 
 
 
 0.199 
 
 0.597 
 
 40 
 
 0.000 
 
 0.450 
 
 ; 
 
 
 
 0.195 
 
 0.585 
 
 41 
 
 0.576 
 
 0.432 
 
 
 
 
 0.190 
 
 0.570 
 
 42 
 
 0.500 
 
 0.420 
 
 
 
 
 0.186 
 
 0.558 
 
 43 
 
 0.536 
 
 0.402 
 
 
 
 0.183 
 
 0.549 
 
 44 
 
 0.520 
 
 390 
 
 
 
 
 0.180 
 
 0.540 
 
 45 
 
 0.500 
 
 0.375 
 
 ^ 
 
 " 
 
 0.177 
 
 0.531 
 
STRAINS IN TRUSSES. 
 
 V 
 
 e-jr 
 
 C i = Ti 
 
 C 2 
 
 ^3 
 
 Tz 
 
 n 
 
 5 
 
 6.858 
 
 4.572 
 
 0.200 
 
 0.400 
 
 2.294 
 
 4.588 
 
 6 
 
 5.706 
 
 3.804 
 
 " 
 
 
 
 1.912 
 
 3.824 
 
 7 
 
 4.884 
 
 3.256 
 
 
 
 
 1.640 
 
 3.280 
 
 8 
 
 4.272 
 
 2.848 
 
 
 " 
 
 1.436 
 
 2.872 
 
 9 
 
 3.786 
 
 2.524 
 
 
 . 
 
 1.278 
 
 2.556 
 
 10 
 
 3.402 
 
 2.268 
 
 
 i 
 
 1.152 
 
 2.304 
 
 11 
 
 3.084 
 
 2.056 
 
 
 
 1.048 
 
 2.0 )6 
 
 12 
 
 2.820 
 
 1.880 
 
 
 " 
 
 0.962 
 
 1.01:4 
 
 13 
 
 2.598 
 
 1.732 
 
 " 
 
 " 
 
 0.890 
 
 1.780 
 
 14 
 
 2.406 
 
 1.604 
 
 M 
 
 
 0.826 
 
 1.C.52 
 
 15 
 
 2.238 
 
 1.492 
 
 
 
 " 
 
 0.772 
 
 1.544 
 
 16 
 
 2.088 
 
 1392 
 
 
 " 
 
 0.726 
 
 1.452 
 
 17 
 
 1.962 
 
 1.308 
 
 " 
 
 " 
 
 0.684 
 
 1.3(58 
 
 18 
 
 1.842 
 
 1.228 
 
 " 
 
 
 
 0.648 
 
 1.296 
 
 19 
 
 1.740 
 
 1.160 
 
 M 
 
 " 
 
 0.614 
 
 1.228 
 
 23 
 
 1.650 
 
 1.100 
 
 " 
 
 " 
 
 0.584 
 
 1.168 
 
 21 
 
 1.560 
 
 1.040 
 
 
 
 
 0.558 
 
 1.116 
 
 22 
 
 1.482 
 
 0.988 
 
 " 
 
 
 
 0.534 
 
 1.068 
 
 23 
 
 1.410 
 
 0.940 
 
 1 
 
 
 
 0.512 
 
 1.024 
 
 24 
 
 1.350 
 
 0.900 
 
 
 41 
 
 0.490 
 
 0.980 
 
 25 
 
 1.284 
 
 0.856 
 
 
 " 
 
 0.472 
 
 0.944 
 
 26 
 
 1.230 
 
 0.820 
 
 
 
 0.456 
 
 0.912 
 
 27 
 
 1.176 
 
 0.784 
 
 
 " 
 
 0.440 
 
 0.880 
 
 28 
 
 1.128 
 
 0.752 
 
 
 
 " 
 
 0.426 
 
 0.852 
 
 29 
 
 1.080 
 
 0.720 
 
 
 
 
 
 0.412 
 
 0.824 
 
 30 
 
 1.038 
 
 0.692 
 
 
 
 
 
 0.400 
 
 0.800 
 
 31 
 
 0.996 
 
 0.664 
 
 " 
 
 
 0.388 
 
 0.776 
 
 32 
 
 0.960 
 
 0.640 
 
 
 
 
 
 0378 
 
 0.756 
 
 33 
 
 0.924 
 
 0.616 
 
 " 
 
 
 
 0.368 
 
 0.736 
 
 34 
 
 0.888 
 
 0.592 
 
 " 
 
 
 
 0.358 
 
 0.716 
 
 35 
 
 0.858 
 
 0.572 
 
 " 
 
 
 0.348 
 
 0.696 
 
 36 
 
 0.828 
 
 0.552 
 
 " 
 
 i 
 
 0.340 
 
 0.680 
 
 37 
 
 0.798 
 
 0.532 
 
 " 
 
 
 0.332 
 
 0.664 
 
 38 
 
 0.768 
 
 0.512 
 
 ; 
 
 
 0.324 
 
 0.648 
 
 39 
 
 0.738 
 
 0.492 
 
 " 
 
 
 
 0.318 
 
 0.636 
 
 40 
 
 0.714 
 
 0.476 
 
 M 
 
 
 
 0.312 
 
 O.C24 
 
 41 
 
 0.690 
 
 0.460 
 
 " 
 
 
 
 0.304 
 
 0.608 
 
 42 
 
 0.666 
 
 0.444 
 
 
 
 
 0.298 
 
 0.596 
 
 43 
 
 0.642 
 
 0.428 
 
 " 
 
 
 0.292 
 
 0.584 
 
 44 
 
 0.618 
 
 0.412 
 
 " 
 
 
 
 0.288 
 
 0.576 
 
 45 
 
 0.600 
 
 0.400 
 
 " 
 
 
 0.284 
 
 0.568 
 
STRAINS IN TRUSSE.S 
 
 121 
 
 V 
 
 t7- T 
 
 Pi -21 
 
 Cj 2*2 
 
 % 
 
 <7 4 
 
 e 5 
 
 1 
 
 T. 
 
 T 4 
 
 T-, 
 
 5 
 
 8.5G8 
 
 7.G16 
 
 4.760 
 
 0.1 66 
 
 0.250 
 
 0.416 
 
 0.952 
 
 2.856 
 
 4.760 
 
 G 
 
 7 
 
 7.123 
 G.102 
 
 6.336 
 5.424 
 
 3.960 
 3.390 
 
 
 n 
 
 u 
 
 0.680 
 
 2.379 
 2.041 
 
 3.965 
 3.402 
 
 8 
 
 5.337 
 
 4.744 
 
 2.965 
 
 ; 
 
 M 
 
 " 
 
 0.596 
 
 1.788 
 
 2.980 
 
 g 
 
 4.023 
 
 4.200 
 
 2.G25 
 
 
 " 
 
 " 
 
 0.530 
 
 1.590 
 
 2.650 
 
 10 
 
 4.218 
 
 3.776 
 
 2.360 
 
 " 
 
 " 
 
 M 
 
 0.478 
 
 1.434 
 
 2.390 
 
 11 
 
 3.852 
 
 3.424 
 
 2.140 
 
 
 " 
 
 " 
 
 0.435 
 
 1.305 
 
 2.175 
 
 12 
 
 3.519 
 
 3.128 
 
 1.955 
 
 
 
 
 " 
 
 0.399 
 
 1.197 
 
 1.995 
 
 13 
 
 3.240 
 
 2.880 
 
 1.800 
 
 " 
 
 
 
 
 
 0.369 
 
 1.107 
 
 1.845 
 
 11 
 
 3.006 
 
 2.672 
 
 1.670 
 
 " 
 
 
 " 
 
 0.343 
 
 1.029 
 
 1.715 
 
 15 
 
 2.799 
 
 2.488 
 
 1.555 
 
 
 
 
 
 0.320 
 
 0.960 
 
 1.600 
 
 1C 
 
 2.610 
 
 2.320 
 
 1.450 
 
 < ; 
 
 
 " 
 
 0.301 
 
 0.903 
 
 1.505 
 
 17 
 
 2.448 
 
 2.176 
 
 1.360 
 
 " 
 
 1 
 
 " 
 
 0.284 
 
 0.852 
 
 1.420 
 
 18 
 
 2.304 
 
 2.048 
 
 1.280 
 
 
 
 
 " 
 
 0.269 
 
 0.807 
 
 1.345 
 
 if) 
 
 2.1G9 
 
 1.928 
 
 1.205 
 
 " 
 
 
 
 " 
 
 , 0.255 
 
 0.765 
 
 1.275 
 
 ft) 
 
 2.001 
 
 1.832 
 
 1.145 
 
 
 
 " 
 
 " 
 
 0.242 
 
 0.726 
 
 1.210 
 
 21 
 
 1.944 
 
 1.728 
 
 1080 
 
 " 
 
 
 
 " 
 
 0.231 
 
 0.693 
 
 1.155 
 
 22 
 
 1.854 
 
 1.G48 
 
 1.030 
 
 
 
 
 " 
 
 0.221 
 
 0.663 
 
 1.105 
 
 2:> 
 
 1.7G4 
 
 1.568 
 
 0.980 
 
 
 
 
 " 
 
 0.212 
 
 0.636 
 
 1.060 
 
 21 
 
 1.G83 
 
 1.496 
 
 0.935 
 
 " 
 
 
 
 " 
 
 0.203 
 
 0.609 
 
 1.015 
 
 23 
 
 1.G02 
 
 1.424 
 
 0.890 
 
 " 
 
 1 
 
 " 
 
 0.196 
 
 0.588 
 
 0.980 
 
 2; 
 
 1.539 
 
 1.368 
 
 0.855 
 
 
 " 
 
 " 
 
 0.189 
 
 0.567 
 
 0.945 
 
 27 
 
 1.4G7 
 
 1.304 
 
 0.815 
 
 " 
 
 " 
 
 
 
 0.182 
 
 0.546 
 
 0.910 
 
 28 
 
 1.404 
 
 1.248 
 
 0.780 
 
 
 
 t 
 
 
 0.177 
 
 0.531 
 
 0.885 
 
 29 
 
 1.350 
 
 1.200 
 
 0.750 
 
 " 
 
 " 
 
 
 
 0.171 
 
 0.513 
 
 0.855 
 
 30 
 
 1.2)6 
 
 1.152 
 
 0.720 
 
 " 
 
 " 
 
 
 0.166 
 
 0.498 
 
 C.830 
 
 :>L 
 
 1.242 
 
 1.104 
 
 0.690 
 
 M 
 
 
 
 
 
 0.161 
 
 0.483 
 
 0.805 
 
 32 
 
 1.197 
 
 1.0G4 
 
 0.665 
 
 " 
 
 " 
 
 
 
 0.156 
 
 0.468 
 
 0.780 
 
 33 
 
 1.152 
 
 1.024 
 
 0.640 
 
 
 M 
 
 
 
 0.152 
 
 0.45G 
 
 0.760 
 
 34 
 
 1.107 
 
 0.984 
 
 0.615 
 
 " 
 
 < ; 
 
 
 
 0.148 
 
 0.444 
 
 0.740 
 
 35 
 
 1.071 
 
 0.952 
 
 0.595 
 
 
 M 
 
 
 0.144 
 
 0.432 
 
 0.720 
 
 30 
 
 1.035 
 
 0.920 
 
 0.575 
 
 M 
 
 " 
 
 
 
 0.141 
 
 0.423 
 
 0.705 
 
 37 
 
 0.999 
 
 0.888 
 
 0.555 
 
 M 
 
 
 
 
 
 0.138 
 
 0.414 
 
 0.690 
 
 88 
 
 0.954 
 
 0.848 
 
 0.530 
 
 M 
 
 
 
 
 
 0.134 
 
 0.402 
 
 0.670 
 
 39 
 
 0.918 
 
 0.816 
 
 0.510 
 
 
 H 
 
 
 0.132 
 
 0.396 
 
 0.660 
 
 40 
 
 0.891 
 
 0.792 
 
 0.495 
 
 
 i- 
 
 t 
 
 0.129 
 
 0.387 
 
 0.645 
 
 41 
 
 0.8G4 
 
 0.768 
 
 0.480 
 
 
 
 
 
 0.126 
 
 0.378 
 
 O.C30 
 
 42 
 
 0.823 
 
 0.736 
 
 0.460 
 
 M 
 
 a 
 
 
 0.123 
 
 0.369 
 
 0.615 
 
 4:5 
 
 0.801 
 
 0.712 
 
 0.445 
 
 
 " 
 
 
 0.121 
 
 0.363 
 
 0.605 
 
 44 
 
 0.774 
 
 0.688 
 
 0.4 JO 
 
 " 
 
 
 
 M 
 
 0.119 
 
 0.357 
 
 0.595 
 
 45 
 
 0.747 
 
 0.664 
 
 0.415 
 
 " 
 
 " 
 
 " 
 
 0.118 
 
 0.354 
 
 0.590 
 
122 STRAINS IN TRUSSED BEAMS. 
 
 STRAINS IN TRUSSED BEAMS. 
 
 When a beam supported at the ends, is required to carry a 
 greater load than its given capacity, and trussing is resorted to, 
 it may become necessary to find what portion of the load is borne 
 by the different members of the trussed beam. 
 
 Reference. 
 
 Let IF = Load acting on truss at a supported point. (See figure.) 
 W l = That portion of IFacting on diagonals. 
 W. 2 = That portion of IF" acting on beam. 
 A i = Sectional area of diagonal. 
 A 2 = Sectional area of beam. 
 
 E l = Modulus of elasticity of material in diagonals. 
 E 2 = Modulus of elasticity of material in beam. 
 
 a = Length of diagonal. 
 
 b = Distance between center of beam and point of support. 
 
 c = Distance between abutment and point of support. 
 
 { = Depth of beam. 
 = Depth of truss. 
 / = Distance between center of beam and abutment. 
 
 [NOTE. Use the same unit of length and weight.] 
 
 No. 1. 
 
 Fig. 209 
 
 a 3 / 2 A 2 E 2 
 
 . -/I. A.. JIM 
 
 Wj. a 3 / 2 <4 2 ^ 2 
 
STRAINS IN TEUSSED BEAMS. 
 
 - . TF 
 
 When load is equally distributed W becomes | TF. 
 No. 2. 
 
 Fig. 210. 
 
 211. 
 
 W<2 2 a 
 
 123 
 
 2 a 3 * / 2 A, 
 >m a3 / 2 ^ 2 
 
 A, 
 
 2 Wi a 3 / 2 
 
 a 3 * / 2 
 
 TFl= 
 
 "n7 "" 
 
 PP, 
 
 + 1 
 
 When load is equally distributed W becomes f TF. 
 
124 
 
 STRAINS IN TRUSSED BEAMS. 
 
 No, 3. 
 
 Fig. 212. 
 
 A l 
 
 W 2 
 
 
 
 a (a* X 
 
 _ 
 h* (Vb^c E l 
 
 w l 
 
 w l 
 
 *. w 
 +1 
 
 When load is equally distributed IF becomes f PP". 
 
STRAINS IN TRUSSED BEAMS. 
 
 125 
 
 No. 4. 
 
 Figs. 213 and 214. 
 
 h* (I 2 - 6 2 ) c A l E l 
 
 2/2 a(a 2 +6c) 
 
 ^ _ 
 " 
 
 A 
 
 A, 
 
 / 2 
 ~~ 
 
 h* (Pb*)c 
 
 2W L / 2 a(a 2 +6c) 
 
 W l 
 
 . W 
 
 W 
 
 -+1 
 
 When load is equally distributed TF becomes f W. 
 
126 STRAINS IN TRUSSES WITH PARALLEL BOOMS. 
 
 STRAINS IN TRUSSES, WITH PARALLEL BOOMS. 
 (Caused by Static and Moving Loads) 
 
 The strain in the upper boom is always compressive. 
 * The strain in the lower boom is always tensile. 
 
 All braces inclined down from the nearest abutment are in 
 tension. 
 
 All braces inclined up from the nearest abutment are in com 
 pression. 
 
 The strains in the verticals and diagonals increase from the 
 center of truss to abutment. 
 
 The strains in the booms decrease from the center of truss to 
 abutment. 
 
 A moving load, advancing over a truss, &c., causes the maxi 
 mum moment of rupture (which under an equally distributed 
 load is at the center of truss) to shift to one side of the center, 
 thereby changing the nature and amount of strain in web only. 
 This requires either the enlargement of those members consti 
 tuting the web or the addition of so-called counters, (braces, 
 struts, or ties.) 
 
 To find the point from center of truss to where the addition ol 
 counters must commence, the following formula is used : 
 
 Let d = Distance from center of truss to point where, 
 maximum moment of rupture occurs, and where 
 counter bracing must commence. 
 
 d / = Distance from nearest abutment to ditto. 
 
 Anad /= J d = -^- 
 
 2 W / 
 
 These results will be found to agree with formulas for " Counter 
 Strains" when V m becomes negative. 
 
 Reference. 
 
 N = Total number of bays in a truss. 
 HK = Horizontal strains in booms. 
 
 F n = Strains in verticals. 
 
 y n = Strains in diagonals. 
 
 V m = Vertical strains acting on counters Y m . 
 
 Y m = Strains in counters, opposite in kind to Y n . 
 
STRAINS IN TRUSSES WITH PARALLEL BOOMS. 127 
 
 IF = Weight of static load, equally distributed over whole 
 
 length of truss. 
 
 W,= "Weight of moving load, equally distributed over whole 
 length of truss. 
 
 h = Height or depth of truss between the center of gravity of 
 booms. 
 
 I = Span or length of truss from abutment to abutment. 
 
 n Number of member, counting from abutment A. 
 in = Number of member, between center and abutment B. 
 
 r = Half the length of a panel or bay. 
 
 s = Length of a panel or bay. 
 
 w = Weight of static load per unit of length I. 
 iv / = Weight of moving load per unit of length I. 
 
 v = Angle between horizontal and diagonal. 
 For other designations, see diagrams and examples. 
 
 The angle v for Howe Truss is generally 45. 
 The angle v for Whipple Truss is generally 45. 
 The angle v for Lattice Truss is generally 45. 
 The angle v for Warren Truss is generally 60. 
 
 The proportion of height h to span I is from 4 to -^ gener 
 ally T v 
 
128 
 
 STRAINS IN TRUSSES WITH PARALLEL BOOMS. 
 
STRAINS IN" TRUSSES WITH PARALLEL BOOMS. 129 
 
 HOWE TRUSS. (Figs. 215, 216, 217, and 218.) 
 
 Additional Reference. 
 
 ,T n Distance from abutment A to center of bay. 
 y n Distance from abutment A to apex of bay. 
 
 Static or Permanent Load, equally distributed over whole length of 
 Truss, 
 
 Strains in Booms. 
 
 w w 
 
 Strains in Verticals. 
 
 w w 
 F.= - --- -*. 
 
 Strains in Diagonals. 
 ^n= V n cosec. v. 
 
 Moving and Static Load, each equally distributed per unit of 
 length. 
 
 ~ 
 
 Strains in Booms. 
 
 w+w, 
 
 ~2h~ 2hl~ 
 
 Strains in Verticals. 
 
 Strains in Diagonals. 
 Y n = F" n cosec. v. 
 
 Strains in Counters. 
 
130 STRAINS IN TRUSSES WITH PARALLEL BOOMS. 
 
 EXAMPLE. (Figs. 215, 216, 217, and 218.) 
 
 Moving Load, (as railway train passing over bridge.) 
 We will assume W = 50,000 Ibs. 
 Wt= 100,000 Ibs. 
 I = 100 feet. 
 h = 10 feet. 
 v = 45, (cosec. = 1.414.) 
 
 Horizontal Strains in Booms, (compression inupper, tcnsionin lower.) 
 
 W-\- Wi JF + TFi 2 __ 50UOO+ 100000 
 
 //a = 2/i y " ~ 2hl 2/n = ~20 
 
 50000 + 100000_ 2 __ _ ^ 5 2 
 
 yn ~~ 2000 ~~ y& ~~ J/a 0-2/n 
 
 //! = 7500 . 10 75 . 100 = 67,500 Ibs. 
 II 2 = 7000.20 75.400 = 120,000 Ibs. 
 11. 3 = 7000.30 75.900 = 157,500 Ibs. 
 7/ t = 7500.40 75.1600 = 180,000 Ibs. 
 J1 5 = 7500.50 75.2500 = 187,500 Ibs. 
 
 Strains in Verticals. 
 
 W W Wl ,\2__ 500 22__ 5000 
 
 n i> r ** "*" W ^ ". ^ 2 100 
 
 .(^ .rj 2 = 25000 500. .T n H 
 
 Strains in Figs. 215 210 217 218 
 
 F 1 = 25000 500.5 +5. 05*= 67625 Ten. Ten. Corn. Com. 
 F 2 = 25000 500. 15 4-5. 85 2 = 53625 " 
 F, = 25000 500. 25+5. 7r> a = 40625 " 
 F 4 = i ) 5000 500. 35 + 5. ()5 2 = 28625 " 
 Vl = 25000 500. 45 +o.55 2 = 17625 " 
 
 Counter Strains (V m ) for Strains in Counters. 
 V 6 = 20000 500.55 + 5.45* = 7625. 
 F 7 = 25000 500.65 + 5.85 = 5625. 
 
 Strains in Diagonals. 
 Y n = F n cosec v. 
 
 Strains in Figs. 215 210 217 218 
 
 y\ = 67625 . 1.414 = 1)5,620 Ibs. Com. Com. Ten. Ten. 
 Y 2 == 53625 . 1.414 = 75,826 Ibs. 
 F 3 = 40625 .1 414 = 57,44 i Ibs. 
 F 4 = 28625 . 1.4 14 = 40,476 Ibs. " 
 F 5 = 17625 . 1.414 = 24,922 Ibs. 
 
 Strains in Counters, (dotted lines, Fig. 215, for example.) 
 Yn = F m cosec. v. 
 
 Strains in Figs. 215 210 2L7 218 
 
 F G = 7625 . 1.414 ^r 10,762 Ibs. Com. Com. Tun. Ten. 
 F 7 =5625 . 1.414= 7,954 Ibs. 
 
STRAINS IN TRUSSES WITH PARALLEL BOOMS. 
 
 131 
 
 Pig. 219. LATTICE TRUSS WITH VERTICAL NUMBERS. 
 
 sssvs. 
 
 Fig. 219. Load on either Boom. 
 
 To compute the strains in this truss, the 
 easiest method is to find the values of /f n , F n , 
 F m , F n , and F m for a Howe Truss, (Figs. 215, 
 ( 216, 217, and 218 ) loaded in the same man- 
 | ner, (upper or lower boom.) These values in 
 the following formulas for the above truss will 
 i give the required strains: 
 
 Strains in Booms. (8.) 
 
 <?!=- 
 
 4*2~T" jC *8 /^ n r/ -"n l~ 
 
 : , generally o n =: f 
 
 Strains in Verticals. (U.) 
 Upper boom loaded compression. 
 Lower boom loaded tension. 
 
 W l 
 
 constant. 
 
 Strains in End Post ( U .) 
 
 Upper boom loaded. 
 U = U -f- ^1= compression. 
 
 Lower boom loaded. 
 U = Si^= compression. 
 
 Strains in Diagonals. (D.) 
 
 D *=^~ 
 
 I?_ 
 
 2 
 Y* 
 
 Generally D n = 
 
 i 
 
 Strains in Counters. 
 Generally Z> m = 
 
132 STRAINS IN TRUSSES WITH PARALLEL BOOMS. 
 
 Fig. 220. WARREN TRUSS. 
 
 Fig. 220. Lower Boom Loaded. 
 
 Additional Reference. 
 #n = Distance from abutment A to center 
 
 of diagonal. 
 3/n = Distance from abutment A to apex 
 
 of bay of upper boom. 
 2n = Distance from abutment A to apex 
 
 of bay of lower boom. 
 
 Static or Permanent Load, equally distributed 
 
 over whole length of Truss. 
 
 Strains in Booms. 
 
 Upper. 
 
 77 W W 2 
 
 ^ = -ir-2Ar* 2 
 
 Lower. 
 
 W W 
 
 Strains in Verticals. 
 
 K = --- a? n ( F n acts at the end 
 
 - I 
 
 of ar n .) 
 
 Strains in Diagonals. 
 Y^ ==. F n cosec. v. 
 
 Moving and Static Load, each equally dis 
 tributed per unit of length. 
 
 Strains in Booms. 
 Upper. 
 
 Lower. 
 
 Strains in Verticals. 
 
 --?-? +5 " 
 
 Strains in Diagonals. 
 Y* = F n cosec v. 
 
STRAINS IX TRUSSES WITH PARALLEL BOOMS. 133 
 
 Strains in Counters. 
 
 EXAMPLE. (Fig. 220.) 
 Moving Load (as railway train passing over bridge) on lower Bocm. 
 
 We will assume W = 50,000 Ibs. 
 Wi= 100,000 Ibs. 
 I = 100 feet. 
 A = 10 feet. 
 ?; = 63 20 , (cosec. = 1.12.) 
 
 _ 
 
 Horizontal Strains in Upper Boom. (Compression.) 
 W+Wi ^ 2 __ 50000 + 100000 
 
 2h 2hl 2.10 
 
 50000 + 100000 2 _ 150000 
 Zn ~~ 2.10 . 100 ** ~ ~~20 2n ~~ 
 
 HI = 7500 . 10 75 . 100 = 67,500 Ibs. 
 #2 = 7500.20 75.400 = 120,000 Ibs. 
 H 3 = 7500.30 75.900 = 157,500 Ibs. 
 H 4 = 7500.40 75. 1600 = 180,000 Ibs. 
 H 6 = 7500.50 75.2500 = 187,500 Ibs. 
 
 Horizontal Strains in Lower Boom. (Tension.) 
 
 i JF-f Jh 50000 + 100000 
 
 " 
 
 2A 2hl 2.10 
 
 50000 -f- 100000 f 2 _ 150000 150000 
 2.10 .~100~ -2/n ~ 20 ^ n 2000~ 
 
 75.25 = 37500 1875= 35,625 Ibs. 
 #2 = 7500.15 75.225 =112500 16875= 95,6251bs. 
 H 3 = 7500 . 25 75 . 625 = 1 87500 46875 = 140,625 Ibs. 
 Jff 4 = 7500.35 75. 1225 = 262500 91875 = 170,625 Ibs. 
 H 6 = 7500.45 75.2025 = 337500 151875 = 185,623 Ibs. 
 
134 
 
 STRAINS IN TRUSSES WITH PARALLEL BOOMS. 
 
 Strains in Verticals. 
 YU = F n cosec. v. 
 
 W W W, , 50000 
 
 Fn = .rr n + -nT-(J *) = o 
 
 2 2 2 
 
 50000 
 
 "Too" 
 
 r n + ^^T-( 100 *u) 2 = 25 000 500,r n + 5. (100 x u )* 
 
 v, 
 
 ss 
 
 25000 
 
 500 
 
 . 2.5 + 
 
 5 . 
 
 , 9506.25 
 
 = 
 
 71281.25. 
 
 r. 
 
 5= 
 
 25000 
 
 500 
 
 . 7.5 + 
 
 5 , 
 
 , 8556.25 
 
 = 
 
 64031.25. 
 
 F~ 
 
 S=9 
 
 25000 
 
 500 
 
 . 12.5 + 
 
 5 . 
 
 7656.25 
 
 = 
 
 57031.25. 
 
 P 
 
 as 
 
 25000 
 
 500 
 
 . 17.5 + 
 
 5 , 
 
 , 6806.25 
 
 = 
 
 50281.25. 
 
 F 8 
 
 
 
 25000 
 
 500 
 
 . 22.5 + 
 
 5 , 
 
 . 6006.25 
 
 = 
 
 43781.25. 
 
 ^ 
 
 = 
 
 25000 
 
 500 
 
 . 27.5 + 
 
 5 
 
 , 5256.25 
 
 
 
 37531.25. 
 
 [ J _ 
 
 
 
 25000 
 
 500 
 
 . 32.5 + 
 
 5 . 
 
 . 4556.25 
 
 = 
 
 31531.25. 
 
 P- 
 
 _-r^= 
 
 25000 
 
 500 
 
 . 37.5 + 
 
 5 
 
 . 3906.25 
 
 
 
 25781.25. 
 
 p* 
 
 
 
 25000 
 
 500 
 
 . 42.5 + 
 
 5 , 
 
 . 3306.25 
 
 SBB 
 
 20281.25. 
 
 l n 
 
 ( == 
 
 25000 
 
 500 
 
 . 47.5 + 
 
 5 , 
 
 . 2756.25 
 
 = 
 
 14031.25. 
 
 F! j= 25000 - 
 Fj 2 = 25000 - 
 F! 3 = 25000- 
 
 = 71281.25 , 
 = 64031.25 
 = 57031.25 
 = 50281.25 , 
 = 43781.25 
 = 37531.25 , 
 = 31531.25 
 = 25781.25 
 = 20281.25 
 n = 14031.25 , 
 
 Counter Strains. ( F m .) 
 
 500 . 52.5 4- 5 . 2256.25 = 
 
 500 . 57.5 + 5 . 1806.25 = 
 
 500 . 62.5 + 5 . 1406.25 = 
 
 Strains in Diagonals. 
 Y" n = F" n cosec. v. 
 
 10031.25. 
 
 528125. 
 781.25. 
 
 1.12 = 79,835 Ibs. 
 1. 12 = 71, 715 Ibs. 
 1.12 = 63,875 Ibs. 
 1.12 = 56,315 Ibs. 
 1.12 = 49,035 Ibs. 
 1.12 = 42,035 Ibs. 
 1.12 = 35,315 Ibs. 
 1.12 = 28,875 Ibs. 
 1.12 = 22.715 Ibs. 
 1.12 = 15,715 Ibs. 
 
 Compression in Y l and F 2 , 
 Tension in Y 2 and Y 19 . 
 Compression in Y 3 arid Y li 
 Tension in Y and ]T 17 . 
 Compression in Y 5 and Y 1 
 Tension in Y 6 and Y 15 . 
 Compression in F" 7 and y r 
 Tension in Y s and ]T 13 . 
 Compression in Y g and Y l 
 Tension in Y lo and Y ll . 
 
 Counter Strains. 
 
 = T/ m COS6C - 
 
 FH= 10031.25 . 1.12 = 11,235 Ibs. Compression in 
 F 12 = 5281.25.1.12= 5,915 Ibs. Tension in Y 9 i 
 F 13 = 781.25 . 1.12= 875 Ibs. Compression in 
 
 i and . 
 
 lif j 
 
STRAINS IN TRUSSES WITH PARALLEL BOOMS. 135 
 
 Fiy. 221. WARREN TRUSS. 
 
 Fig. 221. Upper Boom Loaded. 
 
 Additional Reference. 
 = Distance from abutment A to center 
 
 of bay of upper boom. 
 2/n = Distance from abutment A to apex of 
 
 bay of upper boom. 
 
 2 n = Distance from abutment A to apex of 
 bay of lower boom. 
 
 Static or Permanent Load, equally distributed 
 over whole length of Truss. 
 
 Strains in Booms. 
 Upper. 
 / W 
 
 Wr* 
 
 Lower. 
 
 w 
 
 2h *"" 
 
 Strains in Verticals. 
 _ W W 
 
 T a J #n 
 
 i I/ 
 
 Strains in Diagonals. 
 Y n = V a cosec. v. 
 
 p Moving and Static Load, each equally dis 
 tributed per unit of length. 
 
 Strains in Booms. 
 Upper. 
 
 w+Wl ( w + w, 
 
 ^ 2n, a " ( 2hl * H 
 
 2hl 
 Lower. 
 
 TT+TF, 
 
136 STRAINS IN TRUSSES WITH PARALLEL BOOMS. 
 
 Strains in Verticals. 
 
 - 
 
 Strains in Diagonals. 
 T n = F n cosec. v. 
 
 Strains in Counters. 
 
 w w w 
 
 --- *-^"" (l ~* 
 
 = 7 m cosec. 
 
 EXAMPLE. (Fig. 221.) 
 Moving Load (as railway train passing over bridge) on Upper Boom. 
 
 We will assume W = 50,000 Ibs. 
 W l = 100,000 Ibs. 
 I = 100 feet. 
 h = 10 feet. 
 v = 63 20 , r = 5 feet. 
 
 Horizontal Strains in Upper Boom. (Compression.) 
 jT+JFi rjF+TPi 2 ,(W+W } )r*-}_ 
 
 2/i n L 2M <2a H 2AZ J "" 
 
 lupOOO_ ^ 2 150000. 5* 1 _ 
 ~200(r~ Zn ^ ^000 J ~ 
 
 J50000_ rluOOO 
 
 20 Za 
 
 7500. 2 n [75.2 n 2+ 1875] 
 
 jff 1= =7500.5 
 H 2 = 7500.15 
 ,= 7500.25 
 
 75.25 -f 1875" 
 75.225 + 1875 : 
 75.625 -f 1875 
 
 
 H= 7500.35 [75.1225 -j- 1875 
 H 5 = 7500.45 [75.2025 + 1875; 
 
 = 33,750 Ibs. 
 = 93,750 Ibs. 
 = 138,750 Ibs. 
 = 168,750 Ibs. 
 = 183,750 Ibs. 
 
 Horizontal Strains in Lower Boom (Tension.) 
 
 - . 
 
 ^==7500.10 75.100 = 67,500 Ibs. 
 H,= 7500.20 75.400 = 120,000 Ibs. 
 Hl= 7500.30 75.900 = 157,500 Ibs. 
 J/ 4 == 7500.40 75.1600 = 180,000 Ibs. 
 JI 5 = 7500.50 75.2500 = 187,500 Ibs. 
 
STRAINS ITS TRUSSES WITH PARALLEL BOOMS. 137 
 
 Strains in Verticals. 
 
 F n = -J---^.* + _|L(Z_a; n ) 2 = 25000-500.* + 
 5.(Z z n ) 2 
 
 F 1= = 25000 500.5 + 5.95 2 = 67,625 Ibs. 
 F 2 = 25000 500.15 + 5.85* = 53,625 Ibs. 
 F 3 == 25000 500.25 + 5.75 2 = 40,625 Ibs. 
 F 4 = 25000 500.35 + 5.65 2 = 28,625 Ibs. 
 F 5 = 25000 500.45 + 5.55 2 == 17,625 Ibs. 
 
 Counter Strains. 
 F G = 25000 500.55 + 5.45* = 7,625 Ibs. 
 
 Strains in Diagonals. 
 
 F n = Fn cosec. 
 Y 1 = 67625 . 1.12 = 75,740 Ibs. Tension in Y l and F 10 ; 
 
 compression in F a and Y A . 
 Y 2 = 53625 . 1.12 = 60,060 Ibs. Tension in Y 2 and F 9 ; 
 
 compression in F b and F b . 
 F 3 = 40625 . 1.12 = 45,500 Ibs. Tension in F 3 and Y 6 - 
 
 compression in Y c and Y . 
 F 4 = 28625 . 1.12 = 32,060 Ibs. Tension in F 4 and 7 7 ; 
 
 compression in F d and F d . 
 F 5 = 17625 . 1.12 = 19,740 Ibs. Tension in F 5 and F 6 ; 
 
 compression in F e and F e . 
 
 Counter Strains. 
 F m = F m cosec. v. 
 
 F 6 = 7625 . 1.12 = 8,540 Ibs. Compression in F 5 and F 6 ; 
 tension in F fl and F. 
 
133 
 
 STRAINS IN TUUSSES \VIT11 PARALLEL BJOMS. 
 
8TEAINS IN TRUSSES WITH PARALLEL BOOMS. 139 
 
 LATTICE TRUSS. (Figs. 222, 223, and 224.) 
 Lower Boom Loaded. 
 
 Additional Reference. 
 r= Half the length of a bay of simple truss. (Figs. 222 
 
 and 223.) 
 
 x n = Distance from abutment A to center of bay of lower boom. 
 2/ n Distance from abutment A to apex of bay of upper boom. 
 z n = Distance from abutment A to apex of bay of lower boom, 
 
 The formulas are for the strains in the simple trusses, (Figs. 
 222 and 223.) Fig. 224 shows the simple trusses combined, con 
 stituting the Lattice Truss. . 
 
 When the upper boom is loaded, treat the strains as acting up 
 ward and the truss inverted: the strains will be of the same 
 amount in each member, but different in kind. 
 
 Static or Permanent Load, equally distributed over whole length of 
 Truss. 
 
 Strains in Booms. 
 Upper. 
 
 H W ( 4- T \ - W (-I- T V-U Wr2 
 
 u ~ "2A r n+ TV ~~ 2/iI V B ~*" ~2~) + W 
 
 Lower. 
 
 _ W f r \ W f r \2 STFr 2 
 
 n ~~^" V^ u 2 / 2/iI \^ m 2 / ~ 8/ti 
 Strains in Verticals. 
 
 Fn = "4 2T * n 
 
 Strains in Diagonals. 
 
 Moving and Static Load, each equally distributed per unit of 
 
 length. 
 Strains in Booms. 
 
 Upper. 
 n _ W +W(.i r \ W+Wi ( , r \2 (TF+TFi)r 2 
 
 Lower. 
 
 // _TF-f-IF L / __L\___^ I ^i / _ r V- 3(ir-h)rTF* 
 
140 STRAINS IN TRUSSES WITH PARALLEL BOOMS, 
 
 Strains in Verticals. 
 W W Wi 
 
 Strains in Diagonals. 
 Y n = Vr, cosec v. 
 
 Strains in Counters. 
 W W W l 
 
 = Fm cosec< v - 
 
 [NOTE. The strains in Fa.b.c, .... are equal in amount, but different 
 in kind to the strains in H,2, 3, .... 
 
 EXAMPLE. (Figs. 222, 223, and 224.) 
 
 Moving Load (as railway train passing over bridge) on Lower Boom. 
 
 We will assume W = 50,000 Ibs. 
 Wi= 100,000 Ibs. 
 I = 100 feet. 
 h = 10 feet. 
 v = 63 20 , (cosec. = 1. 12.) r = 5 feet.. 
 
 Horizontal Straws in Upper Boom. (Compression. Fig. 224.) 
 
 = 7500(z n + 2.5) -75(2 n + 2.5) 2 + 468.75 
 
 H Q = 7500 . ( + 2.5) 75 . ( + 2.5) 2 + 468.75 = 18,750 Ibs. 
 l= 7500 . ( 5 + 2.5) 75 . ( 5 + 2.5) 2 + 468.75 = 52,500 Ibs. 
 //= 7500 . (10+ 2.6) 75 . (10 + 2.5) 2 + 468.75 = 82,500 Ibs. 
 /= 7500 . (15 + 2.5) 75 (15 + 2.5) 2 + 468.75 = 108,750 Ibs. 
 JI 4 = 7500 . (20 + 2.5) 75 . (20 + 2.5) 2 + 468.75 = 131,250 Ibs. 
 //.= 7500 . (25 + 2.5) 75 . (25 + 2.5) 2 + 468.75 = 150,000 Ibs. 
 l/ ( .= 7500 . (30 + 2.5) 75 . (30 + 2.5) 2 + 468.75 = 165,000 Ibs. 
 H 7 = 7500 . (35 + 2.5) 75 . (35 + 2.5) 2 + 468.75 = 176,250 Ibs. 
 /7 8 ==7500 . (40+2.5) 75 . (40+ 2.5) 2 + 468.75^ 183,750 Ibs. 
 Hf= 7500 . (45 + 2.5) 75 . (45 + 2.5) 2 + 458.75 == 187,500 Ibs. 
 
STRAINS IN TRUSSES WITH PARALLEL BOOMS. 
 
 141 
 
 Horizontal Strains in Lower Boom. (Tension. Fig. 224.) 
 
 _ 
 
 -n a = - 
 
 2h V n I 
 
 1 1 2hl V yu " 
 
 3(17+ i 
 
 7\t 
 
 
 
 V 75QO (y 
 
 , 2.5) 75 . (y n 2.1 
 
 Shi 
 
 
 fli = 7500 
 
 .( 5_25) 75. 
 
 ( 5 2.5)21406.25 = 
 
 H 2 = 7500 , 
 
 ,(10 2.5) 75. 
 
 (10 2.5)21406.25 = 
 
 #, = 7500 
 H\ = 7500 
 
 . (15 2.5) 75. 
 .(20 2.5) 75. 
 
 (15 2.5) 2 1406.25 = 
 (202.5)21406.25 = 
 
 H 5 = 7500 , 
 
 .(25 2.5) 75. 
 
 (252.5)21406.25 = 
 
 H 6 = 7500 , 
 
 , (30 2.5) 75. 
 
 (302.5)21406.25 = 
 
 HI = 7500 
 
 .(35 2.5) 75. 
 
 (352.5)21406.25 = 
 
 HS = 7500 
 
 .(40 2.5) 75. 
 
 (402.5)21406.25 = 
 
 T 9 = 7500 
 # 10 = 7500 
 
 .(45 2.5) 75. 
 .(50 2.5) 75. 
 
 (45_ 2.5)2 1406.25 = 
 (502.5)21406.25 = 
 
 2.5) 2 1406.25 
 
 16,875 Ibs. 
 
 50,625 Ibs. 
 
 80,625 Ibs. 
 106,875 Ibs. 
 129,375 Ibs. 
 148.125 Ibs. 
 163,1 25 Ibs. 
 174,375 Ibs. 
 181,875 Ibs. 
 185,625 Ibs. 
 
 SIMPLE TRUSS. (Fig. 222.) 
 Strains in Verticals. (F n .) 
 
 "T 
 
 IT 
 
 - ( l ~ **) 2 = 125 - 
 
 2.5 .(Z-* n )2 
 
 II II II II II 
 
 tTuV^V 
 
 12500 
 12500 
 12500 
 12500 
 12500 
 
 250 , 
 250 
 250 , 
 250 . 
 250 . 
 
 + 
 
 .10 + 
 , 20 + 
 30 + 
 40 + 
 
 2.5 . 
 2.5 . 
 2.5 . 
 
 2.5 . 
 
 2.8 . 
 
 100 2 
 90 2 
 
 80 2 
 70 2 
 60 2 
 
 = 
 
 37,250 Ibs. 
 30,250 Ibs. 
 22,500 Ibs. 
 17,250 Ibs. 
 11, 500 Ibs. 
 
 Com. in U. 
 
 Counter Strains. (F m .) 
 
 F 6 = 12500 250 . 50 + 2.5 . 50 2 = 6,250 Ibs. 
 F 7 = 12500 250 . 60 + 2.5 . 40 2 = 1,500 Ibs. 
 
 Y 1 
 
 Strains in Diagonals. 
 
 Y n= V n C0sec - 
 
 Tension in Y 1 and F 10 ; 
 
 37250 . 1.12 = 41,720 Ibs. 
 compression in F a and Y 
 
 Y 2 = 30250 . 1.12 = 33,880 Ibs. 
 compression in Y* and Y^. 
 
 Tension in Y 2 and F 9 
 
142 STRAINS IN TRUSSES WITH PARALLEL BOOMS. 
 
 compression in Y e and Y . 
 F 4 = 17250 . 1.12 = 19,320 Ibs. Tension in F 4 and F 7 ; 
 
 compression in F d and F d . 
 F 5 = 11500 . 1.12 = 12,880 Ibs. Tension in Y 5 and F 6 
 
 compression in F e and F e . 
 
 Counter Strains. 
 Y m= V m cosec. v. 
 
 F 6 = 6250 . 1.12= 7,000 Ibs. Compression in F 5 and F 6 ; 
 tension in F e and Y e . 
 
 = 1,680 Ibs. Compression in F 4 and F 7 ; 
 
 SIMPLE TRUSS. (Fig. 223.) 
 Strains in Verticals. ( F n .) 
 
 l\ 12500 250 . 5 + 2.5 . 95 2 = 33812 .5. 
 Vf= 12500 250 . 15 + 2.5 . 85 2 = 26812.5. 
 T 7 12500 250 . 25 + 2,5 . 75 2 = 20312.5. 
 F 4 = 12500 250 . 35 + 2.5 . 65 2 == 14312.5. 
 F 5 = 12500 250 . 45 + 2.5 . 55 2 = 8812.5. 
 
 Counter Strains. (V m .) 
 T 7 G = 12500 250 . 55 + 2.5 . 45 2 = 3812. 
 Strains in Diagonals. 
 F n = V n cosec. v. 
 
 F 1= 33812.5 . 1.12 = 37,870 Ibs. Compression in Y } and F IO: 
 
 tension in F a and F a . 
 Y,= 26812.5 . 1.12 = 30 ; 030 Ibs. Compression in F, and F {) ; 
 
 tension in F b and F b . 
 Y, 20312 5 . 1.12 = 22,750 Ibs. Compression in F, and F s ; 
 
 tension in F c and F c . 
 F 4 r= 14312.5 . 1.12 = 16,030 Ibs. Compression in F 4 and F 7 : 
 
 tension in F d and F d . 
 F 5 = 8812 5 . 1.12 = 9,870 Ibs. Compression in F 5 and F fi ; 
 
 tension in F e and F e . 
 
 Counter Strains. 
 
 Y m = V m cosec - v - 
 
 Y^-= 3812.5 . 1.12 = 4,270 Ibs. Tension in F 5 and F 6 ; com 
 pression in F e and F e . 
 
STRAINS IN TRUSSES WITH PARALLEL BOOMS. 
 
 143 
 
 Fly. 225. 
 Lower boom loaded. 
 
 t 
 
144 STRAINS IN TRUSSES WITH PARALLEL BOOMS. 
 
 WHIPPLE TRUSS. (Figs. 225, 226, 227, and 228.) 
 
 Additional Reference. 
 # n , y n = Distance from abutment A to end of bay. 
 
 Static or Permanent Load, equally distributed over whole length oj 
 Truss. 
 
 Strains in Booms. 
 W W sW sW 
 
 a = "2JT yB ~ W y + ~2hT **- ~4T 
 
 Strains in Verticals. 
 
 T7- W W 
 
 Kn ~~l 2T 
 
 Strains in Diagonals. 
 Y n = V n cosec. v. 
 
 Moving and Static Load, each equally distributed per unit of 
 length. 
 
 Strains in Booms. 
 
 2hl~ * 2hl 
 
 s(W+W 1 ) 
 
 Strains in Verticals. 
 TF TF 
 
 Strains in Diagonals. 
 F n = F n cosec. v. 
 
 Strains in Counters. 
 
STRAINS IN TRUSSES WITH PARALLEL BOOMS. 
 
 145 
 
 EXAMPLE. (Figs. 225, 226, 227, and 228.) 
 
 (With 20 Bays.) 
 Moving Load, (as railway train passing over bridge.) 
 
 Let W = 50,000 Ibs. 
 W l = 100,000 Ibs. 
 I = 100 feet. 
 h = 10 feet, s = 5 feet. 
 v 45. (End diagonals v = 26 30 .) 
 
 Horizontal Strains in Booms. (Compression in upper, tension in 
 lower.) 
 
 27. 
 
 S (W + 
 
 "l) h-crnn .. nr o 
 
 OfTK a, 1 
 
 i ft 
 
 T 
 
 11 = 
 
 7500 . 
 
 
 
 75. O 2 
 
 375 
 
 yn ~ 
 o + 
 
 y\i \ 
 
 18750 = 
 
 - JLo 
 18 
 
 7C 
 
 ,7. 
 
 RY= 
 
 7500 . 
 
 5 
 
 75, 
 
 . 5 2 
 
 375 
 
 . 5 + 
 
 18750 = 
 
 52 
 
 , r > 
 
 JL= 
 
 7500 . 
 
 10 
 
 75, 
 
 . 10 2 
 
 375 , 
 
 , 10 + 
 
 18750 = 
 
 82 
 
 ,51 
 
 | 3 = 
 
 7500 . 
 
 15 
 
 75 
 
 . 15 2 
 
 375 
 
 . 15 + 
 
 18750 = 
 
 108 
 
 ,7. 
 
 
 7500 . 
 
 20 
 
 75 . 
 
 20 2 
 
 375 . 
 
 20 + 
 
 18750 = 
 
 131 
 
 ,& 
 
 // 5 = 
 
 7500 . 
 
 35 
 
 75 . 
 
 25 2 
 
 375 , 
 
 , 25 + 
 
 18750 = 
 
 150 
 
 ,CM 
 
 H { ~ 
 
 7500 . 
 
 30 
 
 75 , 
 
 . 30 2 
 
 375 , 
 
 , 30 + 
 
 18750 = 
 
 165 
 
 , !)( 
 
 H 1 = 
 
 7500 . 
 
 35 
 
 75 
 
 . 35 2 
 
 375 , 
 
 , 35 + 
 
 18750 = 
 
 176 
 
 ), 
 
 HX 
 
 7500 . 
 
 40 
 
 75 , 
 
 , 40 2 
 
 375 , 
 
 , 40 + 
 
 18750 = 
 
 183 
 
 i < 
 
 J/ 9 = 
 
 7500 . 
 
 45 
 
 75 
 
 . 45 2 
 
 375 , 
 
 . 45 + 
 
 18750 = 
 
 187 
 
 ft 
 
 
 _ / 
 
 jfefe^A-ii 
 
 
 8* 
 
 r" 
 
 
 
 
 
 
 Strains in Verticals. 
 
 ~ 
 
 = 75,000 Ibs. 
 
 Fi= 
 
 F 2 = 
 F 3 = 
 V= 
 F 5 = 
 F 6 = 
 F 7 = 
 
 Strains in Figs. 2: 
 12500 250 . + 2.5 . 100 2 = 37,500 Ibs. C 
 12500 250. 5+25. 95 2 = 338121bs 
 12500250.10+2.5. 90 2 = 30,250 Ibs. 
 12500 250.15+2.5. 85 2 =r 26,812 Ibs. 
 12500 250 . 20 + 2.5 . 80 2 = 23,500 Ibs. 
 19^nn o^n of\ i o o ^7 ~9 OA 01 o i u 
 
 5 223 227 22 
 . C. T. T 
 
 zouu zou . zo + A.A . 7o 2 = 20,312 IDS. 
 
 1 9 : >r>n 9^0 QH 1 9 Pi *7A2 1 n Of^A 11 ( 
 
 
 izouu z,o(j . 6(J + Z.o . 70 2 = 17,250 Ibs. 
 10 
 
 
146 
 
 STRAINS IN TRUSSES WITH PARALLEL BOOMS. 
 
 Strains in Figs. 225 225 227 228 
 V s = 12500 250 . S5 + 2.5 . 65 2 = 14,312 Ibs. C. C. T. T. 
 
 V g = 12500 250 . 40+ 2.5 . 60 2 = 11,500 Ibs. " 
 
 F 10 = 12500 250 . 45+ 2.5 . 55 2 = 8, 812 Ibs. " " <l " 
 
 F n = 12500 250 
 F r ,= 12500 250 , 
 F w = 12500 250 . 
 
 V m Acting on Counters. 
 
 , 50+2.5 . 50 2 = 6,250 Ibs. 
 55+2.5 . 45 2 = 3, 812 Ibs. 
 60+25 . 40 2 = 1,500 Ibs. 
 
 Strains in Diagonals. 
 
 J n K n cosec. v. 
 
 Strains in Figs. 225 
 
 Y l = 37500 . 1.117 = 41,887 Ibs. Ten. 
 F 2 = 33812 . 1.414 = 47,810 Ibs. 
 F 8 = 30250 . 1.414 = 42,773 Ibs. 
 F 4 = 26812 . 1.414 = 37,913 Ibs. 
 F 5 = 23500 . 1.414 = 33,229 Ibs. 
 F 6 = 20312 . 1.414 = 28,722 Ibs. 
 7, = 17250 . 1.414 = 24,391 Ibs. 
 F 8 = 14312 . 1.414 = 20,238 Ibs. 
 F 9 = 11500 . 1.414 = 16,261 Ibs. 
 * 10 = 8812 . 1.414 = 12,461 Ibs. 
 
 Strains in Counters. 
 
 F u = 6250 . 1.414 = 8,837 Ibs. 
 F 19 = 3812 . 1.414 = 5,391 Ibs. 
 F,;= 1500 . 1.414 = 2,121 Ibs. 
 
 223 
 
 Ten. 
 
 227 
 Com. 
 
 223 
 Com. 
 
 [NOTE. If counter braces are not inserted, Vn, F"i2,and T r i3,andl r 8> 
 Yg, and Y\Q will have an additional strain, opposite in kind and equal 
 to V\ i, V\ 2, and V\ 3, and Y\\, ^12? and Y\ 3 ; but if counters are used, 
 the strain V\\4 F"i2and Vis will n t occur in the structure, but will 
 be necessary to determine the strain in FH, Fi 2 ,and F\ 3 only. FH, 
 FI 2 , and FI 3 will then be inclined in the same direction as the diago 
 nals from abutment A to center of truss, the character of strain being the 
 same. (See also "Howe Truss") 
 
 Keep in mind that each half truss, as to the character and amount of 
 strain in the respective members, is alike.] 
 
STRAINS IN PARABOLIC CURVED TRUSSES. 147 
 
 STRAINS IN PARABOLIC CURVED TRUSSES " BOW 
 STRING GIRDERS." 
 
 (Figs. 229, 230, 231, 232, 233, and 234.) 
 
 The strains in the lower boom (when horizontal) are the greatest, 
 and equal in every bay, when the load is equally distributed over 
 the whole length. 
 
 The strains in the arch or upper boom are also greatest when 
 the load is equally distributed over the whole length; the strains 
 gradually increasing from the middle to the supports. 
 
 The strains in the diagonals, whether single or double, in a 
 bay are, when the load is equally distributed, everywhere null. 
 When the load is unequally distributed, and one diagonal to each 
 bay is used, they will be either in compression or tension. The 
 character of the maximum of strains will be as follows: Assume 
 the left half of truss to be loaded. All diagonals inclined up from 
 left to right abutment are in tension; if inclined down, in com 
 pression. The character of strains will be vice versa when the 
 right half only is loaded. 
 
 The strains in verticals are either compression, tension, or null. 
 The maximum of compressive strain occurs when the diagonals 
 in connection are under the greatest strain; that is, under an 
 unequally distributed load. For other explanation, see diagram 
 under variously-disposed loads. 
 
 In the following formulas and examples the diagonals (for a 
 moving load) resist a tensional strain only, and the verticals a 
 compressive. This would not be the case if one diagonal to each 
 bay were used. In the latter case the diagonals and verticals 
 would have to resist an alternate compressive and tensional strain. 
 When the trusses are inverted, the strains are different in kind, 
 but not in amount. 
 
 Reference. 
 A, B = Reaction of support. 
 
 (7= Compression in arch or upper boom. 
 T Tension in lower boom. 
 D and H = Rise of arch. 
 F and / = Vertical forces. 
 
 W= Weight of moving and static load per unit of span 
 
 or length. 
 
 V= Strain in verticals. 
 N = Total number of bays. 
 a = Length of a bay. 
 c = Length of a diagonal. 
 d and h = Ordi nates to parabola. 
 
 I = Distance between supports or span. 
 k = Total number of verticals = N 1. 
 m = Number of bays between support and F n . 
 
148 STRAINS IN PAEABOLIC CURVED TRUSSES. 
 
 n = Number of a member, counting from support to 
 
 middle of truss. 
 t = Tension in diagonal. 
 
 v and z = Angle between horizontal and member of polygon. 
 w = Weight of static load per unit of span or length. 
 w/= Weight of moving load, equally distributed per 
 
 unit of span or length. 
 u, x, y = Abscissas. 
 
 In the following diagrams, one-half of truss only is shown, the 
 strains being alike in the respective members of each half: 
 
 Fig. 229. 
 
 Lower Boom Horizontal. 
 To find the ordinates h when H is given : 
 
 The value of T given, to find h: 
 
 Fig. 230. 
 
 Lower Boom Curved. 
 To find the ordinates h or d when H or D is given: 
 
 12 d = ~ % 
 
STRAINS IN PAEABOLIC CURVED TRUSSES. 
 
 14ST 
 
 The value of T given, to find h: 
 W(la)x n 
 
 w 
 
 ~m~ 
 
 Load equally distributed Static Load. (Figs. 231 and 232.) 
 W = The weight of construction and applied load. 
 
 Fig, 231. 
 
 IF/ 2 
 
 Wl * 
 
 Lower Boom Loaded. 
 
 , Wl 
 
 wl 
 
 H 
 
 = (7 V= - = tension 
 
 Loaded. 
 
 F=null. 
 
 Fig. 232. 
 
 Upper Boom Loaded. (C=T.) 
 Wl 2 Wl 2 
 
 V = = tension. 
 
150 
 
 STRAINS ITS PARABOLIC CURVED TRUSSES. 
 
 Load unequally distributed Moving Load. (Figs. 233 and 234.) 
 
 (Strains in Booms, same as for Static Load.) 
 
 Fig. 233. 
 
 w/l 
 - 
 
 Lower Boom Loaded. 
 
 Fn= ^n A= compression. 
 
 Boom Loaded. 
 
 TFZ 
 
 T7 
 
 V n = -- = compression. 
 
 . 234. 
 
 n = r = compression 
 
 D) 
 
STRAINS Iff PARABOLIC CURVED TRUSSES. 151 
 
 EXAMPLE. (Fig. 233.) 
 
 Moving Load on Lower Boom. 
 
 Reference. 
 
 = 64 feet. c 1= 8.7 i eet. w = 125 Ibs. 
 
 H= 8 feet, c 2 = c 3 = 10.0 feet. 10,= 625 Ibs. 
 
 a = 8 feet, c 4 = c-= 10.9 feet. W=w + w,= 750 Ibs. 
 
 2V = 8, & 7. c 6 = 11.3 feet. 
 
 4 v 8 v 3(64 8^ ^i 8.0 8 = Ofeet. 
 
 A 1= = X X --4^~ -== 3.5 feet, M 2 = 19.2 16= 3.2 feet. 
 
 W3= 40.0 24 = 16.0 feet, 
 ^= 128.0 -32 = 96.0 feet, 
 
 4X8X16(64-16) 
 
 2== " 2 - = 
 
 . 
 
 A 4 = IT =8.0 feet. 
 Tang. t 1= ^ = = 23 
 
 Tang. v,= h ~^ = ^-^ = 3 34 30". 
 
 y 1= 3,5 x 2.28 = 8.0 feet. y s = 7.5 X 5.37 = 40.0 feet. 
 2/2= 6.0 X 3.20 = 19.2 feet. y 4 = 8.0 X 16.00 = 128.0 feet. 
 
 . = 48,000 Ibs. 
 
 (7 n = C sec. v n . 
 
 Q= 48000 Xl090=52,3201bs. C 3 = 48000 x 1.017 =48,816 Ibs. 
 (72=48000x1-047=50,256^8. C 4 = 48000 X 1.0019 = 48,091 Ibs. 
 
 *=*%$%-* 8.7 = 5437.5 lb, ,,- 
 tf= t s = ^-^- X 10.0 = 6250.0 Ibs. 
 
152 STRAINS IN PARABOLIC CURVED TRUSSES. 
 
 625 x 64 
 
 **= ** = o^o X 10.9 == 6802.5 Ibs. 
 X o 
 
 625 x 64 
 
 ^ --- X 11-3 = 7062.5 Ibs. 
 
 = 2625 
 
 2x 8 
 
 I = 1875 
 
 = 1250 
 
 j= 8(125+ 625)-- = 750 
 2 = 8 (125 + 625) [-^yj-] = 2250 
 ,= 8(125 -J 625) [J^t^L] = 45 00 
 4 = 8 (125 + 625) I" JL-t^^_"j = 7500 
 
PAKABOLIC ARCHED BEAMS OR BIBS. 153 
 
 / 4 = 750 ( -- )= 562.5 
 
 V 96 -f 4 X 8 / 
 
 F 1= 6000 =6,000 Ibs. F 3 = 9000 500 =8,500 Ibs. 
 F 2 = 7812.5 312.5= 7,500 Ibs. F 4 = 9375 562.5 = 8,812.5 Ibs. 
 
 CAPACITY AND STRENGTH OF PARABOLIC ARCHED 
 BEAMS OR RIBS ORIGINALLY CURVED. 
 
 Reference. (All dimensions in inches.) 
 
 A = Sectional area of beam. 
 C = Compressive strain in direction of arch. 
 E = Modulus of elasticity. 
 
 H = Horizontal thrust at abutment, or tension on tie rod. 
 /= Moment of inertia of cross-section of beam. 
 R = Resistance of material to crushing, (to be divided by factor 
 
 of safety.) 
 
 W = Concentrated load at crown of arch. 
 a = Vertical deflection at crown. 
 b = Horizontal deflection at abutments. 
 h = Rise of arch. 
 
 21 = Distance between abutments = span. 
 s = Distance between neutral axis and farthest edge of section. 
 w = Load per unit of length, equally distributed horizontally. 
 x = Vertical distance from crown to point of arch, intersected 
 
 by y, say at on diagram. 
 y = Horizontal distance .from middle of arch to section where 
 
 the amount of strain is desired. 
 v = Angle between horizontal and tangent to curve. 
 
 Horizontal Thrust, (resisted either by abutments or tie rod.) 
 Fig. 235. (All dimensions to line of pressure.) 
 
154 STKAINS IN A POLYGONAL FRAME. 
 
 To determine the curve or line of pressure: 
 x 7/ 2 y 
 
 =|r -f 
 
 2x 2<//^T~ 
 Tang, v at any point = - = ^ 
 
 y i 
 
 2h 
 
 Tang, v at abutment = ^ 
 t 
 
 . Load concentrated at crown or middle of arch: 
 
 ,_25Z_ A fty 25%2 
 
 " V 64/i 5(5Z n ^ 32Z 3 / 
 
 __ 25^ IF 81 PF/s 
 
 ** "cTT A T 
 
 1600J 
 25Z X 1600J 
 
 64A( 16007 
 Load equally distributed: 
 
 _ + _ / . 
 
 27* p ;^ l- 
 
 STRAINS IN A POLYGONAL FRAME IN EQUILIBRIUM. 
 
 Load equally distributed over members of Frame. 
 
 Reference. 
 
 H = Horizontal strain in units of weight at foot. 
 F n = Vertical strain in units of weight at foot. 
 (7 n = Compressive strain in units of weight in direction of 
 
 member. 
 
 TF n = Load in units of weight, equally distributed over a mem 
 ber of the polygon. 
 fl n = Angle between horizontal and member. 
 
PARABOLIC ARCHED BEAMS OR RIBS. 155 
 
 Fig. 236. 
 
 H J TFcotg. v n (7 n = F n cosec. v a 
 
 2 2 
 
 IT.+ 
 
 , 3 _ , . . 
 
 1 s ^ + 2 z 2 2 
 
 _TFi , 
 " 
 
 2 
 W. 
 
 2 
 For the equilibrium, v l being given : 
 
 Tang. v 4 = -^r = tang. ^ 
 .a 
 
 
 2 + TF 3 ) + 
 
 H 
 
 The above can be used to compute the strains in ribs for dome 
 construction. 
 
156 STRAINS IN ROOF TRUSSES. 
 
 STRAINS IN ROOF TRUSSES. 
 
 Reference. (Figs. 237 to 255.) 
 C Weight of construction. } 
 
 TF = < Pressure of wind. > Load in units of 
 
 ( Pressure of snow. J 
 
 weight, equally distributed over one rafter. 
 (See Fig. 238.) 
 
 C= Compression of member in units of weight. 
 T Tension of member in units of weight. 
 L = Total span, or distance between abutments in 
 
 units of length. 
 
 d, h, I, and S = Dimensions in units of length. (See Figures.) 
 v, y Angles. (See Figures.) 
 
 The diagrams show only one-half of truss, (except Fig. 238.) 
 the thick lines indicating compression, and the thin ones tension. 
 (See "Reaction of Supports " for pressure on joints ; also " Compound 
 Strains in Trussed Beams") 
 
 Compression in Rafters. (Trusses Nos. 1, 3, and 4.) 
 
 The compressive strain in the rafter gradually increases from 
 ridge to abutments. Let x = Horizontal distance from abutment 
 
 to point where the strain is desired, and I half the span = - . 
 
 tg. v 
 
 C for Truss No. 1 = IF sin. v (l ) + -HL 
 
 Cfor Truss No. 3 = IF sin. v(l } + -^ 
 
 1/2 tg. (v -|- i\) 
 
 C for Truss No. 4 = JFsin. v(l } + - 
 V I n 2 ig.(v~ Vl ) 
 
 In the following examples the maximum of C is given : 
 
 Truss No. 1. 
 
 Fig. 237. 
 
 W cos. v 
 C=W&m. 
 
 2 tg.t; 
 
 W 
 
 T= cotg.v 
 
STEAINS Itf ROOF TRUSSES. 157 
 
 EXAMPLE. 
 Let W 8,000 Ibs. 
 v = 26 30 . 
 
 C= 8000 X 0.44619 + -^ S5T = 10 666 lbs Com 
 
 7 8000 
 
 When a; = ~ then will C = - 7^7777^ = 8,968 Ibs. Com. 
 
 A 2. X v^.TCTrOiy 
 
 j_ 80Q 2.00 = 8,000 Ibs. Tension. 
 
 Truss No. 2. 
 
 Fig. 238. 
 
 W W 
 
 T= sin. v cos. v = sin. 2v 
 
 2 4 
 
 EXAMPLE. 
 
 Let TT= 8,000 Ibs. 
 v = 26 30 . 
 
 8000 
 C= - X 0.4462 = 1,785 Ibs. Compression. 
 
 a 
 
 C 1 = 8000 X 0.895 2 = 6,568 Ibs. Compression. 
 
 8000 
 T= -^ X 0.7986 = 1,597 Ibs. Tension. 
 
 [NOTE. When the rafters are fastened together at the ridge, they are 
 under a cross-breaking strain only. Consequently there is no horizontal 
 thrust at the abutments ; that is, T=0, and the compression in <?i == W.] 
 
158 
 
 Fig. 239. 
 
 STRAINS IN ROOF TRUSSES. 
 
 Truss No. 3. 
 
 n TT7 . W cos. 
 
 C = IF sin. v -\ 
 
 2 t.^- 
 
 W cos. 
 
 2 sin. (v + Vj) 
 
 fy. 240. 
 
 Truss No. 4. 
 
 0= Ws m.v 
 
 W cos. v 
 
 2 
 
 cos. v 
 
 2 sin.(v Vj) 
 
 T,= TF-^-~ ^~ 
 sm.(v vj 
 
 Let TF= 8,000 Ibs. 
 v = 26 30 X . 
 v 1= = 5 O x . 
 
 C = 8000 X 0.44619 + 
 
 EXAMPLE. 
 
 = 12,653 Ibs. Coin. 
 
 ?1 = 9,920 Ibs. Tension. 
 
 0.087 
 
 O.ooo 
 
 Bl|7201bB> Tension . 
 
STRAINS IN HOOF TRUSSES. 
 
 159 
 
 Truss No. 5. 
 
 Fig. 241. 
 
 = ifTFcosec. <y Ci= J TP cotg. v T= jl + -^-- TPcotg. v 
 
 When there is no tie T, (7 3 is under a tensile strain == n~, 
 
 4/& 
 
 7i being the height from C l to ridge. 
 
 EXAMPLE. 
 Let TT= 8,000 Ibs. 
 ? = 22.36 feet. 
 / L== 11.18 feet. 
 
 v = 26 3CK. 
 
 C= -}-|8000 X 2.241 14,566 Ibs. Compression. 
 Q % 8000 X 2. = 8,OQO Ibs. Compression. 
 
 T= } (l + ) 8000 X 2. 9 12,000 Ibs. Tension. 
 \ ^ii.oo / 
 
 Truss No. 6. 
 
 Fig. 242. 
 
160 
 
 STEAINS IN ROOF TRUSSES. 
 
 ,== 2(Wi\ W) -- 
 
 EXAMPLE. 
 Let TF= 8,000 Ibs. 
 Z = 20 feet. 
 / 1= = 20.6 feet. 
 h = 10 feet. 
 A!= 5 feet. 
 == 22.36. 
 
 8000 x 500 1 500 (500 10 X 5) 
 
 5 X 2236 - -^^ = 29,264 Ibs. Com. 
 
 Q= 0.625 x SOOOfg = 10,000 Ibs. Compression. 
 1500) JL = 26,780 Ibs. Tension. 
 
 _ K 
 
 Tj= 2(8000 1500) 
 
 = 13,000 Ibs. Tension. 
 
 Truss No. 7. 
 
 Fig. 243. 
 
 = W ~9J- - 
 
 M sin. v 
 (?!= if- IF cosec. v 
 
 Let W= 8,000 Ibs. 
 Z = 20 feet. 
 
 sin. 2v 
 
 EXAMPLE. 
 
 h = 10 feet, v = 26 30 . 
 
 Z x = 11.18 feet. vi== 26 30 7 . 
 
STRAINS IN EOOF TRUSSES. 
 
 161 
 
 n gQOO 
 
 9Q 
 
 - 
 2 X 20 X 0.44619 
 
 = 8,964 Ibs. Compression. 
 
 08125 X 8000 X 2.2411 = 14,567 Ibs. Compression. 
 2== 0.625 X 8000 X 1-12 = 5,600 Ibs. Compression. 
 = 0.625 X 8000 = 5,000 Ibs. Tension. 
 
 (7 
 
 G = : 
 
 T= . , . 
 
 2i= 0.8125 X 8000 X 2.0 = 13,000 Ibs. 
 
 Truss No. 8. 
 
 Fig. 244. 
 
 c -= . = w 
 
 2sin.v 2^sin 
 
 
 s m.(v 
 
 = | T7 2 
 h 
 
 sin - ^ i 
 
 cos, vain. fa i 
 
 "1 _ 
 
 J ~ 
 
 Let TF^8,000 Ibs. 
 v = 26 30 / . 
 t;!= 9 20 . 
 up= 19 . 
 11 
 
 EXAMPLE. 
 
162 STRAINS IN ROOF TRUSSES. 
 
 9000 + 0.375 x 8000 
 
 C= - - = 13,452 Ibs. Compression. 
 
 0.892 
 
 Ci 0.812 X 8000 ~r = 21,710 Ibs. Compression. 
 u.zyo 
 
 0. 2 = 0.625 X 8000 A 8 ^ = 7,535 Ibs. Compression. 
 
 T = 812 X 8000 -~- = 19,702 Ibs. Tension. 
 (j.2t Jo 
 
 Truss No. 9, 
 
 5i<7. 245. 
 
 C= if fF_J: f IF sin. v 
 
 sin. v 
 
 1 
 
 (;, j| FF--^ = -^fTFcosec. v 
 
 r j\= |f 17 cotg. v T V IF cotg. v = -}- IF cotg. v 
 T,= i IWcotg.v 
 
 EXAMPLE. 
 Let TF^ 8,000 Ibs. 
 
 v = 26 30 7 . 
 
 C = 0.812x 8000 x 2.241 0.625 X 8000 X 0.4 16 = 12,336 Ibs. 
 Compression. 
 
 Ci= 0.812 X 8000 X 2.241 = 14,56G Ibs. Compression. 
 
 C 2 0.625 X 8000 X 0.895 4,475 Ibs. Compression. 
 
 T 0.312 X 8000 X 2. = 4,992 Ibs. Tension. 
 
 2\= 0.812 X 8000 X 2 0.312X 8000X 2. = 8,0001bs. Tension. 
 
 T 2 = 0.812 X 8000 X 2. = 12,992 Ibs. Tension. 
 
STRAINS IN ROOF TRUSSES. 163 
 
 Truss No. 1O. 
 
 Fig. 246. 
 
 ~~N I IF sin. v 
 
 <7 2 =f JFcos.v. 
 
 T _ COS. V COS. Vi 
 
 2\= if W^^--~ Tcos. (2v vi) -I Wain. cos. v 
 
 W I 
 
 EXAMPLE. 
 
 Let TF= 8,000 Ibs. Vl = 9 20^ A = 10 feet 
 
 v = 2630 / . 1 = 20 feet. A,= 2 feet. 
 
 (7=0.8125 X 8000 -- 0.625 x 8000 X 0.446 = 19,517 Ibs. 
 
 Compression. 
 
 987 
 (7i= 0.8125 X S 000 ^ 1 ^- == 21.747 Ibs. Compression. 
 
 OF= 0.625 x 8000 x 0.895 = 4,475 Ibs. Compression 
 
 o, 2 5 X 3000 x 
 
 0.895 2 ] = 7,163 Ibs. Tension. 
 
164 STRAINS IN ROOF TRUSSES. 
 
 Tl = _ X -j- = 10,000 Ibs. Tension. 
 
 T= 0.8125 X 8000 = 19,720 Ibs. Tension. 
 
 Truss No. 11. 
 
 Fig. 247. 
 
 (7=13 IF . C S - Vl -- - f TF sin. * 
 
 
 cos. y 
 T=^W (- 1 / - [-5 cos. v\ 
 
 ~W I cos. v 
 
 2 h hi sin.^ Vi) 
 
 EXAMPLE. 
 
 Let W= 8,000 Ibs. y == 50. h = 10 feet. I = 20 feet. 
 v = 2630 / . w 1 =920 / . Ai=2feet. S = 22.36 feet. 
 
 (7= 0.8325X8000 ^ ^ 0.625 X 8000 X 0.446 = 19,517 Ibs. 
 Compression. 
 
 = 0.8125 X 8000 ~- = 21,747 Ibs. Compression, 
 u.^yo 
 
 = 0.366 x 8000 %~. = 4,070 Ibs. Compression. 
 
STRAINS IN EOOF TRUSSES. 
 
 165 
 
 2- = 0.125 X 8000 (6.5 . + 5 . 0.894) = 11,050 Ibs. 
 
 Tension. 
 
 7i= 19486 X 0.986 7421 x 0.723 4930 X 0.446 = 10,000 Iba. 
 Tension. 
 
 S94 
 
 Tf= 0.812 X 8000 -^-^ = 19,486 Ibs. Tension. 
 0.29o 
 
 Truss No. 12. 
 
 Fig. 248. 
 
 Let P7= 8000 Ibs. 
 Z = 20 feet. 
 
 EXAMPLE. 
 
 A = 10 feet. 
 /S = 22.36 feet. 
 
 20 
 C7 1= 0.366 X 8000 = 5,856 Ibs. Compression. 
 
 8000 22 sr 
 
 (7 2 = 0.366 X -- 5 ~ = 3,280 Ibs. Compression. 
 
 10 
 
 = 0.866 X 
 
 10 
 
 20,992 Ibs. Tension. 
 
 3;= 1.23 X 8000 = 9,840 Ibs. Tension. 
 
166 
 
 STRAINS IN EOOF TRUSSES. 
 
 Truss No. 13. 
 
 Fig. 249. 
 
 ?i=*T- 
 
 cos. v t 
 
 C,^ f| W : -. 
 
 - - 1 J 01 r> It, 
 
 e 4 = ft x 
 
 sin.(D L 
 
 A. 
 
 A. 
 
 k 
 
 T- Wk * W 
 2 ~T i? w 
 
 EXAMPLE. 
 
 Let TF= 20,000 Ibs. h = 20 feet, v = 21 40 X . 
 
 2 = 50 feet. 1 2 = 53.8 feet. v = 0. 
 
 CO O 
 
 C = 0.5 X 20000 - = 26,900 Ibs. Compression. 
 (7 1= 0.683 X 20000 ~ = 37,018 Ibs. Compression. 
 C 2 = 0.866 X 20000 * = 46,937 Ibs. Compression. 
 
 (7 3 =0.55 x 20000 -^-i- = 11,770 Ibs. Compression. 
 
 Q=0.55 x 20000 4^ =9,900 Ibs. Compression. 
 
STRAINS IN EOOF TRUSSES. 
 
 167 
 
 T= 0.683 X 20000 X 2.517 = 34,382 Ibs. Tension. 
 T^= 0.866 X 20000 X 2.517 = 43,594 Ibs. Tension. 
 
 20000 X 20 = 14)666 lbg> Tensiont 
 
 20 
 T 3 = 0.183 X 20000 = 3,660 Ibs. Tension. 
 
 Truss No. 14. 
 
 Fig. 250. 
 
 h h 
 
 rp n ^2 
 
 J-b O 6 T 
 
 EXAMPLE. 
 
 Let TF= 24,000 Ibs. Span = 100 feet 1= Z 1= Z 2 = ? 3 = 1.25 feet. 
 A = 20 feet. JJ^O. ^^53.85 feet. 
 
168 
 
 STRAINS IN ROOF TRUSSES. 
 
 53 85 
 Q= 12000 x ~ = 32,310 Ibs. Compression. 
 
 <7 2 = 49088 - 0.228 X 24000 ^L = 41,728 Ibs. Com. 
 
 C 8 = 58320 0.286 x 24000 ^L = 49^88 Ibs. Com. 
 ^ X 20 
 
 4 = 21600 -^0-- = 58,320 Ibs. Compression. 
 
 C 5 = (5801 + 0.286 X 24000) ~^-- = 12,493 Ibs. Com. 
 
 Q= 3432 + 5484 ~~- = 9,282 Ibs. Compression. 
 
 13 47 
 0,= 0.286 X 24000 ~^~ = 9,245 Ibs. Compression. 
 
 T,= (24000 0.1 x 24000) -^- = 54,000 Ibs. Tension. 
 7!,= 5 1000 0.286 x 21000 -~- = 45,420 Ibs. Tension. 
 
 7!,= 45120 9282 --f\ 3 8> 170 Ibs. Tension. 
 In 
 
 7^=24000 -121000= 19,200 Ibs. Tension. 
 
 r 5 = 9282 J- = 5,801 Ibs. Tension, 
 lo 
 
 T G = 0.286 x 24000 ~ = 3,432 Ibs. Tension. 
 
 Truss No. 15. 
 
 Fig. 251. 
 
 y i F 
 
 
STRAINS IN ROOF TRUSSES. 169 
 
 C= if W --- L^_^ -- | TFsin. v JJ TFcos. v cotg. (v vj 
 
 __ 
 sin. (v ^) 2 (A 
 
 --.- tang. yi T 5 = \$W . , 
 
 (h -A x ) sm.( y -yj) 
 
 EXAMPLE. 
 
 Let W= 20,000 lbs. h = 20 feet. v 1= = 0. 
 
 I = 50 feet, v = 21 40 . -v 2 = 46 30 . 
 
 tf = 0.866 X 20000 * 0.733 X 20000 X 0.369 0.183 X 
 0.369 
 
 20000 X 0.929 x 2.517 = 32,959 lbs. Compression. 
 
 C 1= = 0.866 X 20000 X - A ~T^ 0.366 X 20000 x 0.369 
 
 0.369 
 
 = 44,236 lbs. Compression. 
 C. 2 = 0.866 X 20000 X 7^7- = 46,937 lbs. Compression. 
 
 Q= 0.55 x 20000 X 0.929 = 10,219 Ibs. Compression. 
 C 4 = 0.366 X 20000 X 0.929 = 6,800 Ibs. Compression. 
 
 40 
 T= 20000 X -T^- X tang, v = Null. 
 
 = 1 0,9201bs. Ten SIO n. 
 Tf= 0.183 X 20000 X 2.5 = 9,150 Ibs. Tension. 
 TZ= 10000 X -2Q^ = 25 -00 lbs - Tension. 
 
 T,= 0.683 X 20000 X 2.5 = 34,150 lbs. Tension. 
 2^= 0.866 X 20000 X 2.5 = 43,300 lbs. Tension. 
 
170 
 
 STRAINS IN ROOF TRUSSES. 
 
 Truss No. 16. 
 
 Fig. 252. 
 
 C 4 =f JFcos.v. 
 
 Q= j|> JFcos. v + f- IF cos. v = JfTFcos. v 
 
 - 
 sm.(2v 
 
 W_ __l_ 
 ~T h 
 
 F 9 TJ7" 
 
 ^4= TO W ~Z 
 
 sin.^ Vi) 
 cos. v 
 
 sin. (v 
 
 EXAMPLE. 
 
 Let TT= 20,000 Ibs. A = 20 feet. AI= 0. 
 
 I = 50 feet. T; = 21 40 7 . vi.= 0. 
 
 0= 41885 0.286 X 20000 x 0.369 = 39,774 Ibs. Compression. 
 Cj= 43567 0.228 X 20000 X 0.369 = 41, 885 Ibs. Compression. 
 
STEAINS IN ROOF TRUSSES. 171 
 
 <7 2 = 48780 5213 = 43 ; 567 Ibs. Compression. 
 (7 3 = 0.9 X 20000 = 48,780 Ibs. Compression. 
 
 <?== 0.286 X 20000 X 0.929 = 5.213 Ibs. Compression. 
 Q= 0.514 X 20000 X 0.929 = 9,550 Ibs. Compression. 
 
 T== ( 0.9 X 20000 -~ - 0.8 X 20000 X 369* 0.1 X 
 \ 0.369 
 
 20000) * = 20,000 Ibs. Tension. 
 / 0.686 
 
 2i= T T 5 = 20000 7188 = 12,812 Ibs. Tension. 
 
 _ 
 
 2 20 
 
 99 
 
 T 3 = T T 5 = 0.757 X 20000 = 38,1 18 Ibs. Tension. 
 
 U.oo 3 
 
 D99 
 T= 0.9 X 20000 - - = 45,306 Ibs. Tension. 
 
 f= T fi = T T l= 7,188 Ibs. Tension. 
 6 = T^= 7,188 Ibs. Tension. 
 
 Truss No. 17. 
 
 Fig. 253. 
 
 When the^ rafter is resting on joint A: 
 
 n _ W _ TFcos. v cos.^ -y) 
 
 -- - r - Go -% -- ; - - - 
 
 4 sin. v sm. v l 
 
 W 
 
 C? 1 =- r -T - r 
 4 sin.-v 
 
 , TT cos. 
 
 l= 0, cos. 
 
 sm. ^ 
 Bending moment at point B C! 2 sin. v, . J. 
 
172 STRAINS IN ROOF TRUSSES. 
 
 When rafter is fixed at joint A: 
 
 _ 
 
 C - 
 
 W 
 
 - r - 
 
 4 sin. v 
 
 _ W cos. v cos. (i\ v) 
 
 Go - % - : -- 
 
 sm. v 1 
 T= JPFcotg. VI+TI 
 
 T } = ^- cotg. v 
 
 IF 
 Bending moment at B = - . 
 
 
 
 Truss No. 18. 
 
 Fig. 254. 
 
 TFcos. 
 
 ri i 
 
 T=Q 
 
 Ti= C 3 cos. v 4- C 2 cos. 
 
STRAINS IN ROOF TRUSSES. 
 
 173 
 
 Truss No. 19. 
 
 Fig. 255. 
 
 C = \W cosec. v 
 . v 
 C 2 = Jf W cosec. v 
 
 a= w cotg. v 
 
 ^i= f TFcotg. v + JTF tang, 
 T 2 = flF cotg. v 
 
 EXAMPLE. 
 Let W= 20,000 Ibs. v = 21 40 . t> 1= = 56 
 
 C 27,000 Ibs. 
 C } = 36,900 Ibs. 
 <7 2 = 46,800 Ibs. 
 C 3 = 33,466 Ibs. 
 Q= 6,867 Ibs. 
 
 Compression. 
 Compression. 
 Compression. 
 Compressian. 
 Compression. 
 
 (7 5 = 3,533 Ibs. 
 (7 6 = 6,666 Ibs. 
 T= 6,666 Ibs. 
 7\= 37,000 Ibs. 
 r 2 = 41,831 Ibs. 
 
 Compression. 
 Compression. 
 Tension. 
 Tension. 
 Tension. 
 
174 
 
 STRAINS IN ROOF TRUSSES. 
 
 M 
 
 <S 2 
 II 8? 
 >S 
 
 0> 
 
 o 
 
 5.S 
 
 bJD j: 
 
 s 
 
 w 
 
 
 
 "p 
 
 g 
 
 c 
 
 r 
 
 5 
 H 
 
 | 
 
 O 
 
 r I 
 
 CO O 
 1^ 
 
 CD to 
 
 CD CM 10 
 
 OS CD Ci 
 Ci 
 
 TO O 
 
 Ci O O 
 r- ( to 1^ 
 
 ^ 
 
 1 
 
 1 1 
 
 1 
 
 cq (M 
 
 II 
 
 O O O 
 II II II 
 
 OC5BH 
 
 ^ CM co 
 
 ii ii r 
 
 O^fH 
 
 C 
 
 j 
 
 a 
 I 
 
 o 
 
 co 
 
 1>- O 
 
 rH IO 
 
 Tin CM 
 
 OO 04 10 
 
 O 
 
 T 1 Ci r 1 
 
 ^ O to 
 iO 1C 1^ 
 
 r^ CM co 
 
 ^ 
 
 -< 
 
 CM 
 
 | 
 
 CM CM 
 
 11 
 
 O 
 
 II II II 
 
 OC5^ 
 
 CO CM CO 
 
 II II II 
 
 O<o^ 
 
 a 
 ^ 
 
 D 
 
 I 
 
 -< 
 
 v 
 1C 
 
 O 
 
 ^ 
 
 1 1 
 
 1 
 
 38 
 
 T 1 O 
 
 CM CM 
 
 11 
 
 CO O Ci 
 CM ^( T I 
 
 T i Ci T i 
 
 odd 
 
 II II II 
 
 O<o^ 
 
 iO O O 
 
 r-H O O 
 
 CO O O 
 CO CM CO 
 it H II 
 O^^H 
 
 ^ 
 I 
 
 1 
 
 o 
 
 
 
 Ci O 
 
 $8 
 
 CD tO r-l 
 
 co CM re 
 
 T ! C2 -H 
 
 ^ o >o 
 
 t^ O r^i 
 
 Ci 1- CD 
 
 o 
 
 .< 
 
 o 
 
 1 
 
 JIJI 
 
 >s 
 
 O 
 
 II II II 
 
 OC5^i 
 
 <M T-I CM 
 II II II 
 
 oo^ 
 
 c: 
 
 "1 
 
 K^ 
 
 ) 
 
 I 
 
 8 
 
 o 
 
 CO 
 
 ]j 
 
 CD O 
 ^H O 
 r- 10 
 
 
 
 33 
 
 Jr- CM Ci 
 
 to o ^ 
 
 T 1 Ci i-H 
 
 odd 
 II II II 
 
 ocS 1 ^ 
 
 CD 
 I>- O O 
 tQ to Csj 
 
 CM T-H CM 
 
 II II II 
 OCJS-i 
 
 tr 
 
 1 
 
 1 
 1 
 
 V 
 
 >0 
 ^t 1 
 
 o o 
 
 CO to 
 tO CM 
 
 to co c>q 
 co co lr- 
 
 rH OO T 1 
 
 MH O to 
 
 Ci to r- 
 
 r-.(N 00 
 
 S 
 
 1 
 
 r-( 
 
 (M 
 
 H 
 
 53 
 
 O O 
 II II II 
 
 ^>C5^ 
 
 CM r-l r-l 
 
 Ii II II 
 
 OOS-H 
 
 T^ 
 
 I 
 
 - 
 
 o 
 
 CO 
 
 CO O 
 CO O 
 CO 
 
 CO O O 
 CM O Ci 
 
 CM OO r- 1 
 
 O O O 
 CM O O 
 X) O O 
 
 ^ 
 
 < 
 
 CD 
 01 
 
 n 
 
 34 
 
 O O O 
 II II II 
 
 OO^i 
 
 TiTiTT 
 
 OtfS-H 
 
 o- 
 | 
 
 i 
 
 
 
 Tfl 
 
 VO O 
 1^10 
 
 T 1 J>- 
 
 r^ CM i i 
 
 i^ Ci CD 
 CM CD CM 
 
 tO O uO 
 CD tO CM 
 rt i"- T I 
 
 ^ 
 
 .< 
 
 CO 
 
 CO 
 
 1! 
 
 i 
 
 i-( O 
 
 13 
 
 000 
 II II II 
 
 OO^ 
 
 rH O r-H 
 II II II 
 
 OO^ 
 
 05 
 \ 
 
 ^ 
 
 I 
 
 < 
 
 o 
 
 tO 
 Tf 
 
 II 
 
 5^> 
 
 CD O 
 to 
 
 11 
 
 co O O 
 
 to o to 
 
 CO tO CM 
 
 d d o 
 
 II II 1! 
 
 GCj&i 
 
 CD O O 
 
 to o to 
 
 Tti to t^ 
 
 111 
 
 OC5TSs 
 
 
 g 
 
 
 i-i t-T 
 
 s?~~ 
 
 O r-J" 
 
 
 REFERENCE 
 
 "FlfiTTRTCR 
 
 ; 
 
 6 ^o 
 to .^-2 
 
 s^s. 
 
 S ci 
 
 |e a 
 
 il|S 
 i? 
 
 25 s - 
 
 d ^ci 
 fe^S 
 
 S^S) 
 
 Ssa 
 as 
 
STRAINS IN EOOF TRUSSES. 
 
 175 
 
 O 1O OC tO 
 1O CM 00 CM 
 
 rH r-l rH CD 
 
 CM CM tC CM 
 
 CO r-H 01 CO 
 rH CO CO O 
 
 CM CO <M O rH 
 CO r-H CD O rH 
 rH CO 1C 1C rH 
 
 CO CM rH 1C CO 
 CM iC ^H 1^- CO 
 
 r^ oo co co oq 
 
 oo ro oo T i 
 
 II II II II 
 
 0^5^^ 
 
 r}H T-H O rH 
 
 II IL" Ii 
 
 ^5^^H ^ 
 
 HH O rH CM rH 
 
 II II I 1 Ii II 
 ^Sjgjiiii 
 
 CO rH O CO rH 
 II II II II II 
 
 o^cS^s^ 
 
 rh CM O 1C 
 (M ^H 01 01 
 
 1C OC CO CO 
 
 TTI ^rr LO CO 
 
 1C xH Ol LQ 
 1.^ *5f CO CO 
 
 rf O CD O rH 
 
 1C rH O 1C CD 
 
 i CO rH CM CO 
 
 o T i m o oo 
 
 CO 1C rH 1C CO 
 
 o cc GO i^ oq 
 
 1- <M 1> rH 
 
 II 1! II II 
 
 ^CJ^H^ 
 
 CO CO 
 
 II II II II 
 
 ^^^^r 
 
 CO O r-i (M CO 
 II II II I! II 
 
 OO^K ^i 
 
 CO rH O LC rH 
 II II II II II 
 
 OCJO^iS7 
 
 CO O O 1C 
 
 rH o co oq 
 LC ic rH co 
 
 CD Oq CO rH 
 
 II II II 1! 
 
 o^J 1 ^^ 
 
 co UC UC 
 JL^ 71 IO 
 CO 01 CO CM 
 
 co -i O co 
 
 ii 11 il IL 
 
 . -^j^e-i^ 
 
 CO CO O O !> 
 r-i O 5 Q 1 
 
 co co CM o oq 
 
 TO O CM CO 
 
 II II II II II 
 
 >^Ji2li 
 
 CO CO I- 1C CO 
 CO rH rH 04 CO 
 CO rH 1- rH oq 
 
 1C rH O 1C rH 
 
 II II II II II 
 
 ojg^liS 
 
 rH CO OO CM 
 
 O r-< F- 
 
 "^ ^f iC co 
 i- ^ CM rH 
 
 O r-l CO OC 
 
 T 1 O rH O O 
 1:- O CO 1C CO 
 
 O CO O 1^ OO 
 
 O O O O CO 
 
 oo co r- o co 
 
 X^ Oq CD 1C CM 
 
 1C CM l-C rH 
 
 il i! ii ii 
 
 t>cS^^ 
 
 <n -- i o CM 
 
 II II II II 
 
 55 O&f6>i 
 
 CM O rH rH 01 
 
 II 1! 1 II II 
 
 OO^^^T 
 
 rH rH o rH rH 
 II II II II II 
 
 O C?0^ s 
 
 iC iC O 
 CO - i - Ol 
 
 r-i CO 1 CO 
 
 C r-H rH r- 1 
 II II II II 
 
 06^ 
 
 ic i- uc r- 
 
 1^- CO CM CO 
 1C Ot> CO rJH 
 
 01 o o oi 
 
 II 11 II Ii 
 
 <oQj-i E>T 
 
 1C rH 1 O 1C 
 
 1- CO CO O rH 
 <C iC CO 1C rH 
 
 01 o o T-H oq 
 
 II II II II II 
 
 Q^Mj^E? 
 
 O O O iC CO 
 i- O C^ J>- CO 
 
 rH rH 1C X) Oq 
 rH rH O CO rH 
 II II II II II 
 
 o^cS ^^T 
 
 "-0 CO O 1C 
 CO CO 00 0] 
 CO 1C i i CO 
 
 ^ -^f to r- 1 
 
 CO rH Ol CO 
 
 r- OC COO 
 
 rri rH O T i 
 CO CO GO 1C CO 
 
 r- LC i oq o 
 
 CO 1C rH O CO 
 
 1C rH CO 1C CO 
 
 ic o rH oq oq 
 
 rH 1 rH T 1 
 
 II II Ii II 
 
 ^CJ^^H 
 
 CM O O CM 
 
 i! II II II 
 
 C C^^ 
 
 CM o o r-i oq 
 
 II II II II II 
 ercSNesw 
 
 CO O CO rH 
 
 II II II II II 
 
 ooo^^ 4 
 
 ?6 o ft cl 
 o 01 oq co 
 
 CO r- 1 OO T 1 
 
 il II II II 
 C0~^^ 
 
 O O iC iC 
 
 01 o CM o~i 
 
 00 L- CO CO 
 
 T O T-H 
 
 II II II II 
 
 ^^?^^ 
 
 O CO iC O 1C 
 CM iC CM O CM 
 CO 1C CO O CO 
 
 r-- O O rH rH 
 
 II II II II II 
 
 c5XS^^Ts 
 
 CO 01 O O CO 
 
 CO CO rH 01 CO 
 
 CO 1>- rH CO Oq 
 
 oq o o oq T-H 
 
 II II II II II 
 
 ^^cJ^^ 
 
 . I CO 1C 
 
 1C CO Cl 01 
 
 0> Ci rH CO 
 
 CM O CM r-4 
 
 II II II II 
 
 oo^^r 
 
 01 o ic co 
 
 CO CO CM ( 
 
 rf o CO CM 
 
 T-H O CD T-H 
 
 11 II, II il 
 
 t5>v>5-i ^ 
 
 Cl O CO O CO 
 
 co oq CD ic I-H 
 
 rH 1C rH t^- CM 
 T O O rH 
 II II II II \l 
 
 CJ^NK w 
 
 co c; co o co 
 co rH oq o co 
 oo ic co o CM 
 
 01 O O CM rH 
 
 II II II II II 
 
 OOCD^^T 
 
 rt< ic ic ic 
 co CM oq oq 
 
 CM CO CO CO 
 
 iC C * C 0^ 
 rr rH 1 r- 1 
 
 i. ^ CO CO 
 
 iC Oj Ol O CM 
 
 rH rH rH O rH 
 r rH CO iC OO 
 
 CM CO CO 1C CO 
 OO CO 1C i^ CO 
 
 co co oq co CM 
 
 <M O r- 1 r-i 
 
 II !LJI 11 
 
 O ^5^ E>T 
 
 1111 
 
 cc ^K" 
 
 r- O O 
 
 II II II II II 
 
 ^j^j ^^r^ 
 
 T-H O O rH rH 
 
 II II II II II 
 ?iS25iS 
 
 co eT 
 
 1- ill 
 
 II $ 
 
 "- 381 
 
 H& 
 
 ^ 2^ 
 
 5 51 
 
 II fe ^ 
 
 1 S^S: 
 
 > M Oi c3 
 
 S A 
 
 Hi 
 
 C5 5 
 
 l.lt 
 
 m ^ ?n 
 
 II* 
 
 SStf 
 
 fi-*3 
 
 II s^l 
 
 4, r ^ 0, 
 -, V 
 
176 
 
 STRAINS IN ROOF TRUSSES. 
 
 J _V (.1.) U.J +JJ TiJ L 
 
 H GO CO TtH CO 1^ r 
 
 O CO T+i O O 
 
 ^H O 
 
 
 
 * r-H T^H O CO CO 
 3 OO rH O 1C Tt< 
 ) CO CM CO CM r-H 
 
 "fOOO^OOCOO 
 
 O O O O -N~t 
 
 n O O CO CO O O 
 
 II II 11-11 ILILIL 
 
 * 
 
 Cxi O O O 
 
 I I I 
 
 CO O O CM 00 
 
 O O O 00 C.I CM O O 
 
 H, li, IL 1 1 IL i IL IL 1 
 
 
 
 
 
 O 11 r-1 TTI CO -Hi CO 
 
 1-^ OO CO O -^ 00 CO 
 rH 1^ CO CO O 1- r-1 
 
 co o o cq co o o 
 
 COOOOCOCMCMOOO 
 
 I iL i UUL UULJl 
 
 O O i c_; co -^r oo 
 ^ O CO O O CO CO 
 
 r- o o c: co i^ T-H 
 
 00 CO CO rH O O CO O CO CO 
 
 CM O O r-i 01 O O 
 
 II \\\\ II 
 
 CMOOOCMCMr-HOOO 
 
 IL IL I ULJLUl UL 
 
 CO "ti O i-^ O -m CO 
 CO O5 Ci O CO CO -00 
 CO IO ^ !> i > i^ T > 
 
 N Q Q rH o4 O O 
 
 01 TO *... r 
 
 O O o tx t 
 
 O T ( CO CO O CO CO O CO CO 
 CO CM CO CO O CO CO O lO ^t 1 
 
 r^i jo co co CM co o co CM -H 
 
 CMOOOCMr-Hr-HOOO 
 
 CMOOOr-H -HT-HOOO 
 
 lULUL UUL LUl 
 
 * " " " 
 
 CO O O rf CO TI 00 
 LO CO OO CM CO CO >0 
 lO -^ CO O CM t 
 
 T-H O O i T-^ O O 
 
 O CO O J^- O CO i O CO CO 
 
 ci j>- o o o co CM o ic ^f 
 
 CO rt" CC CM OO T iCOCOCMr-H 
 
 11111111 
 
 
 
 CM 
 
 1 
 
 r-1 ^ r CO CO ^T CO 
 r-H O CO CO CC CO X) 
 CM -^ OJ CO CO 1- r-1 
 
 OO O O CO O 1 < i O CO CO 
 CO CM CO O O lO 00 O O rti 
 CM T*H CM 04 OO I - CO CO OJ T i 
 
 r-^oo oooo ooo 
 
 ll, IL ILJLJL IL ILJLJL 
 
 REFE 
 FI 
 
 iH * 
 
 Si to a; c 
 
 p 
 
 ^, CO 
 
 H ^ 
 
 
STRAINS IN ROOF TRUSSES. 
 
 CD CM iO O <M tO iO iO 1>- 1 - 
 
 J>- O^> LO iO O O CO 
 CO lO CO Ol 1C OO O 
 LO CO CO CO CM O Ci 
 
 CO^fCDociOOiOO 
 CO CO iO CO CM O O CO 
 
 lit 1 till 
 
 O GO (M i i-^fO-^HCC 
 !> CM lO T 4 -rf lO O -rH 
 T IIOCOI>-CD1^^O 
 
 co o o o o T-H oi co 
 
 ^H (M ^H Cvj LO O iO O 
 Oq O O O O rH Cq 01 
 
 (MOOOOr-l iCI 
 
 1! II II 11 II II II 1! 
 
 " " 
 
 T ( O O O O i i i ( 
 
 II II II II II II II II 
 
 -r^w^ 
 
 I 
 1 
 
 T-HCMlOOOrHCM^HOCDCC 
 
 ^OO^ IT ((MCO^OO 
 
 II 1! II II II II II II H II 
 
 OOicoOOOOO^OC. 
 iO I>- CO O 1^ O O O CO TO 
 
 COOO^OT-ICVICMOO 
 
 II II II II II II II II II II 
 
 CO CD I>- O -^H IO >O IO IO i ." 
 
 <M o o r-J o T-^ r-i oi o o 
 
 - ILOCDOr I O O O CO CO 
 
 C^OOOOr-HT-i^OO 
 
 II II II II II II II II II II. 
 
 qOOO 
 
 I II II II 
 
 OiCMcOOIr-OOOcO 
 
 CDOCDOiOOOO^- 
 
 d C^J CO TjH Ol lO t Ot) T I T 
 
 r-iOOOOOOOOc 
 
 IIILUJMI .11,11 " - 
 
 12 
 
 177 
 
178 
 
 PRESSURE OF WIND ON ROOFS. 
 
 EXAMPLE TO TABLE OF CONSTANTS. (Tniss No. 13.) 
 
 What is the amount of strain in the various members of a truss, 
 according to Fig. 249, of the following dimensions, viz: Span 60 
 feet, distance between trusses 10 feet, height at center 10 feet, 
 weight to be carried, including weight of construction, 66| Ibs. 
 per square foot horizontally; hence total weight on one rafter 
 = 30 X 10 X 66} = 20,000 Ibs.? 
 
 L = 60 feet. r 6Q v = 18 20 . 
 
 h = 10 feet. = = 6. W = 20,000 Ibs. 
 
 ^ 
 
 o" 
 
 Member. Constant. W Strains. 
 
 C 2 = 2.745 x 20,000 = 54,900 Ibs. 
 C, = 0.660 X 20,000 = 13,200 Ibs. J. Compression. 
 C = 0.567 X 20,000 = 11,340 Ibs. } 
 T = 1.956 x 20,000 = 39,120 Ibs. 
 T. = 2.606 x 20,000 == 52,120 1 
 K = 0.734 x 20,000 = 14^680 Ibs. , 
 T a 0.183 X 20,000 = 3,660 Ibs. J 
 
 Tension. 
 
 [NOTE. la the foregoing table the proportion of 7i to L is approximate. 
 The constants are based on the angles.] 
 
 PRESSURE OF WIND ON ROOFS. 
 
 In the following table the maximum pressure of wind is taken 
 at 50 Ibs. per square foot: 
 
 The angle between horizontal and direction of wind is generally 
 10 00 r . (See diagram.) 
 
 Fig. 256. 
 
 Reference. 
 
 F = Force of wind in Ibs. = 50. 
 
 w, = Pressure at right angles to surface per square foot in Ibs. 
 
 w // = Pressure, vertical, per square foot in Ibs. 
 
 w / = F sin. 2 (v + 10) 
 
 w, 
 w^= 
 
 COS. V 
 
PRESSURE OF WIND ON ROOFS. 
 
 Proportion of 
 height h to 
 span I. 
 
 Angle v. 
 
 Pressure w, 
 in Ibs. 
 
 Pressure w tl 
 in Ibs. 
 
 
 
 90 00 
 
 50.00 
 
 0.00 
 
 *4 
 
 45 00 
 
 33.53 
 
 47.40 
 
 &=4- 
 
 33 41 50" 
 
 23.80 
 
 28.60 
 
 z 
 
 26 33 50" 
 
 17.64 
 
 19.70 
 
 *=-g- 
 
 21 48 
 
 13.83 
 
 14.80 
 
 ;t =4 
 
 18 26 
 
 11.23 
 
 11.80 
 
 z 
 
 "7 
 
 15 54 40" 
 
 9.46 
 
 9.80 
 
 A=-L 
 
 14 02 10" 
 
 8.56 
 
 8.80 
 
 * = -r 
 
 12 31 40" 
 
 7.29 
 
 7.40 
 
 i-i 
 
 11 18 40" 
 
 6.51 
 
 6.60 
 
180 
 
 PEESSUEE OF SNOW ON EOOFS. 
 
 PRESSURE OF SNOW ON ROOFS. 
 
 The average pressure of snow on a level surface, in the United 
 States, is about 15 Ibs. per square foot. 
 
 The following table gives the pressure per square foot on 
 various inclined surfaces : 
 
 Reference. 
 
 P = Pressure per square foot in Ibs. = 15. 
 
 p 1 = Vertical pressure in Ibs. 
 
 p z = Pressure at right angles to surface in Ibs. 
 
 v = Angle between surface and horizontal. 
 
 p 1 = P cos. v. 
 
 Proportion of 
 height h to 
 span I. 
 
 Angle v. 
 
 Pressure PI 
 in Ibs. 
 
 Pressure P 2 
 in Ibs. 
 
 I 
 ~2~ 
 
 45 00 
 
 10.60 
 
 7.49 
 
 --r 
 
 33 41 50" 
 
 12.48 
 
 10.38 
 
 * T 
 
 26 33 50" 
 
 13.42 
 
 12.00 
 
 *=4- 
 
 21 48 
 
 13.93 
 
 12.94 
 
 *=4- 
 
 18 26 
 
 14.23 
 
 13,50 
 
 *=4 
 
 15 54 40" 
 
 14.41 
 
 13.86 
 
 *=i 
 
 14 02 10" 
 
 14.52 
 
 . 14.05 
 
 *=4- 
 
 12 31 40" 
 
 14.64 
 
 14.29 
 
 h== Jo 
 
 11 18 40" 
 
 14.71 
 
 14.43 
 
 I 
 
 00 00" 
 
 15.00 
 
 15.00 
 
TIE RODS AND BARS. 
 
 TIE BODS AND BARS. 
 
 Capacity and Proportional Dimensions of Wrought-iron Tie Rods 
 Tie Bars, and Pins or Bolts. 
 
 Ultimate resistance to tearing = 60,000 Ibs. = 30 tons pei 
 square inch. 
 
 Ultimate resistance to shearing = 50,000 Ibs. = 25 tons pe: 
 square inch. (See Fig. 258.) 
 
 Capacity of tie or bar. 
 
 t 
 d 
 
 inches, 
 d. 
 
 Dimension of 
 flat bars in in., 
 uniform thick 
 ness. 
 
 Diamete 
 D of pii 
 or bolt. 
 
 
 2 1 
 
 d C 
 
 
 
 
 
 
 
 en 
 
 4 
 
 o> 
 
 O SJO 
 
 CO b 
 
 3 times safety. 
 
 5 times safety. 
 
 "ol C 
 
 g.rH 
 O 
 
 ** 2 
 Q.,-1 
 
 Jj! 
 
 
 rO 
 
 
 
 
 O p 
 
 ci 
 
 Lbs. 
 
 Tons. 
 
 Lbs. 
 
 Tons. 
 
 1 
 
 CO 
 
 1 
 3 
 
 I- 
 
 I" 8 
 
 OJ 
 
 a cc 
 
 PH c 
 C X 
 -^ 
 
 5,000 
 
 2.50 
 
 3,000 
 
 1.50 
 
 0.25 
 
 0.56 
 
 
 
 1 
 
 0.75 
 
 0.62 
 
 0.4 
 
 6.200 
 
 3.10 
 
 3.720 
 
 1.86 
 
 0.31 
 
 0.62 
 
 
 \\/ 
 
 0-93 
 
 0.69 
 
 0.4 
 
 7,400 
 
 3.70 
 
 4,440 
 
 2.22 
 
 0.37 
 
 0.70 
 
 << 
 
 11 A 
 
 1.12 
 
 0.75 
 
 0.5 
 
 8,000 
 
 4.30 
 
 5,160 
 
 2.58 
 
 0.43 
 
 0.74 
 
 " 
 
 1^4 
 
 1.31 
 
 0.80 
 
 0.5 
 
 10,000 
 
 5.00 
 
 6,000 
 
 3.00 
 
 0.50 
 
 0.79 
 
 " 
 
 2 
 
 1.50 
 
 0.88 
 
 0.0 
 
 11.200 
 
 5.00 
 
 6,720 
 
 3.36 
 
 0.56 
 
 0.84 
 
 " 
 
 2i/ 
 
 1.68 
 
 0.92 
 
 0.0 
 
 12,400 
 
 6.2D 
 
 7,440 
 
 3.72 
 
 0.62 
 
 0.89 
 
 
 
 2\s 
 
 1.87 
 
 0.97 
 
 o.o 
 
 13,000 
 
 6.80 
 
 8.160 
 
 3.88 
 
 0.68 
 
 0.93 
 
 " 
 
 2 ^4 
 
 2.06 
 
 1.01 
 
 0.7 
 
 15,000 
 
 7.50 
 
 9,000 
 
 4.50 
 
 0.75 
 
 0.97 
 
 " 
 
 3 
 
 2.25 
 
 1.08 
 
 0.7 
 
 7,400 
 
 3.70 
 
 4,440 
 
 2.22 
 
 0.37 
 
 0.68 
 
 % 
 
 1 
 
 0.75 
 
 0.75 
 
 0.6 
 
 9,200 
 
 4.60 
 
 5,520 
 
 2.76 
 
 0.40 
 
 0.76 
 
 
 
 \\s 
 
 0.93 
 
 0.83 
 
 O.o 
 
 11,200 
 
 5.00 
 
 6,720 
 
 3.36 
 
 0.56 
 
 0.84 
 
 " 
 
 l 1 ^ 
 
 1.12 
 
 0.92 
 
 0.0 
 
 13,000 
 
 0.50 
 
 7,800 
 
 3.90 
 
 0.65 
 
 0.91 
 
 " 
 
 ]^ 
 
 1.31 
 
 0.99 
 
 0.7 
 
 15,000 
 
 7.50 
 
 9,000 
 
 4.50 
 
 0.75 
 
 0.97 
 
 " 
 
 2 
 
 1.50 
 
 1.08 
 
 0.7 
 
 10,800 
 
 8.40 
 
 10,080 
 
 5.04 
 
 0.84 
 
 1.04 
 
 " 
 
 2/4 
 
 1.68 
 
 1.13 
 
 0.8 
 
 18,000 
 
 9.30 
 
 11,100 
 
 5.58 
 
 0.93 
 
 1.09 
 
 " 
 
 2/^ 
 
 1.87 
 
 1.19 
 
 0.8 
 
 20,000 
 
 10.30 
 
 12,300 
 
 6.18 
 
 1.03 
 
 1.15 
 
 " 
 
 2^4 
 
 2.06 
 
 1.24 
 
 0.8 
 
 22,400 
 
 11.20 
 
 13,440 
 
 6.72 
 
 1.12 
 
 1.19 
 
 " 
 
 3 
 
 2.25 
 
 1.29 
 
 0.9 
 
 10,000 
 
 5.00 
 
 6,000 
 
 3.00 
 
 0.50 
 
 0.79 
 
 1 A 
 
 1 
 
 0.75 
 
 0.88 
 
 0.0 
 
 12,400 
 
 6.20 
 
 7,440 
 
 3.72 
 
 0.02 
 
 0.88 
 
 tf 
 
 
 0.93 
 
 0.97 
 
 0.0 
 
 15,000 
 
 7.50 
 
 9,000 
 
 4.50 
 
 0.75 
 
 0.97 
 
 
 
 |i/ 
 
 1.12 
 
 1.08 
 
 0.7 
 
 17,400 
 
 8.70 
 
 10,440 
 
 5.02 
 
 0.87 
 
 1.05 
 
 M 
 
 l^i 
 
 1.31 
 
 1.16 
 
 0.8 
 
 20,000 
 
 10.00 
 
 12,000 
 
 6.00 
 
 1.00 
 
 1.13 
 
 " 
 
 2 
 
 1.50 
 
 1.24 
 
 O.S 
 
 22,400 
 
 11.20 
 
 13,440 
 
 6.72 
 
 1.12 
 
 1.20 
 
 " 
 
 214 
 
 1.68 
 
 1.32 
 
 0.9 
 
 25,000 
 
 12.50 
 
 15,000 
 
 7.50 
 
 1.25 
 
 1.26 
 
 " 
 
 2M 
 
 1.87 
 
 1.39 
 
 0.9 
 
 27.400 
 
 13.70 
 
 16,440 
 
 8.22 
 
 1.37 
 
 1.32 
 
 " 
 
 2% 
 
 2.00 
 
 1.45 
 
 1.0, 
 
 30^000 
 
 15.00 
 
 18,000 
 
 9.00 
 
 1.50 
 
 1.39 
 
 " 
 
 3 
 
 225 
 
 1.52 
 
 1.0 
 
 12,400 
 
 6.20 
 
 7,440 
 
 3.72 
 
 0.62 
 
 0.90 
 
 % 
 
 1 
 
 0.75 
 
 0.98 
 
 0.0 
 
 15.600 
 
 7.80 
 
 9,300 
 
 4.68 
 
 0.78 
 
 1.00 
 
 " 
 
 \\s 
 
 0.93 
 
 1.09 
 
 0.7 
 
 18,600 
 
 9.30 
 
 11,160 
 
 5.58 
 
 0.93 
 
 1.09 
 
 * 
 
 \\ 
 
 1.12 
 
 1.20 
 
 0.8, 
 
 21,800 
 
 10.90 
 
 13,080 
 
 6.54 
 
 1.09 
 
 1.18 
 
 M 
 
 ]%/ 
 
 1.31 
 
 1.29 
 
 0.91 
 
 25,000 
 
 12.50 
 
 15,000 
 
 7.50 
 
 1.25 
 
 1.26 
 
 M 
 
 2 
 
 1.50 
 
 1.39 
 
 0.9! 
 
 28,000 
 
 14.00 
 
 16,800 
 
 8.40 
 
 1.40 
 
 1.34 
 
 " 
 
 2/4 
 
 1.08 
 
 1.47 
 
 1.0 
 
 30,533 
 
 15.27 
 
 18,720 
 
 9.36 
 
 1.56 
 
 1.41 
 
 " 
 
 2V 
 
 1.87 
 
 1.54 
 
 l.OJ 
 
TIE RODS AND BARS. 
 
 Capacity of tie or bar. 
 
 
 g 
 
 
 
 
 ft 
 
 a 
 
 c . 
 
 rt C 
 
 Dimension of 
 flat bars in in., 
 uniform thick 
 ness. 
 
 Diameter 
 D of pin 
 or bolt. 
 
 
 
 7. jn 
 
 .5 o 
 
 GO 
 
 
 
 
 
 
 * bb 
 
 3 times safety. 
 
 5 times safety. 
 
 ol C 
 
 " 
 
 fl 
 
 V H 
 
 * .: 
 
 * c 
 
 || 
 
 If 
 
 Lbs. 
 
 Tons. 
 
 Lbs. 
 
 Tons. 
 
 I 
 
 s 
 
 li 
 
 H 
 
 t* 
 
 ^ c 
 
 ol 
 
 l| 
 
 1 
 
 34,200 
 
 17.10 
 
 20,520 
 
 10.26 
 
 1.71 
 
 1.48 
 
 ~% 
 
 2% 
 
 2.06 
 
 1.62 
 
 1.14 
 
 37,500 
 
 18.75 
 
 22,440 
 
 11.22 
 
 1.87 
 
 1.54 
 
 " 8 
 
 
 2.25 
 
 1.69 
 
 1.20 
 
 15,000 
 
 7.50 
 
 9,000 
 
 4.50 
 
 0.75 
 
 0.98 
 
 % 
 
 1 
 
 0.75 
 
 1.08 
 
 0.76 
 
 18,600 
 
 9.30 
 
 11,160 
 
 5.58 
 
 0.93 
 
 1.09 
 
 M 
 
 
 0.93 
 
 1.20 
 
 0.85 
 
 22,400 
 
 11.20 
 
 13,440 
 
 6.72 
 
 1.12 
 
 1.19 
 
 " 
 
 \\/ 
 
 1.12 
 
 1.31 
 
 0.93 
 
 26,200 
 
 13.10 
 
 15,720 
 
 7.86 
 
 1.31 
 
 1.30 
 
 " 
 
 1& 
 
 1.31 
 
 1.41 
 
 1.00 
 
 30,000 
 
 15.00 
 
 18,000 
 
 9.00 
 
 1.50 
 
 1.39 
 
 " 
 
 2 
 
 1.50 
 
 1.52 
 
 1.08 
 
 33,600 
 
 16.80 
 
 20,160 
 
 10.08 
 
 1.68 
 
 1.46 
 
 " 
 
 
 1.68 
 
 1.62 
 
 1.14 
 
 37,400 
 
 18.70 
 
 22,440 
 
 11.22 
 
 1.87 
 
 1.54 
 
 " 
 
 2V" 
 
 1.87 
 
 1.69 
 
 1.20 
 
 41,200 
 
 20.60 
 
 24,720 
 
 12.36 
 
 2.06 
 
 1.62 
 
 " 
 
 2% 
 
 2.06 
 
 1.77 
 
 1.26 
 
 45,000 
 
 22.50 
 
 27,000 
 
 13.50 
 
 2.25 
 
 1.69 
 
 " 
 
 3 
 
 2.25 
 
 1.86 
 
 1.32 
 
 17,400 
 
 8.70 
 
 10,440 
 
 5.22 
 
 0.87 
 
 1.05 
 
 % 
 
 1 
 
 0.75 
 
 1.16 
 
 0.82 
 
 21,800 
 
 10.90 
 
 13,080 
 
 6.54 
 
 1.09 
 
 1.18 
 
 
 
 0.93 
 
 1.29 
 
 0.91 
 
 26,200 
 
 13.10 
 
 15,720 
 
 7.86 
 
 1.31 
 
 1.29 
 
 
 
 1|| 
 
 1.12 
 
 1.41 
 
 1.00 
 
 30,600 
 
 15.30 
 
 18,360 
 
 9.18 
 
 1.53 
 
 1.40 
 
 
 
 
 1.31 
 
 1.53 
 
 1.08 
 
 34,800 
 
 17.40 
 
 20,880 
 
 10.44 
 
 1.74 
 
 1.49 
 
 " 
 
 2 4 
 
 1.50 
 
 1.63 
 
 1.16 
 
 39,200 
 
 19.60 
 
 23,520 
 
 11.76 
 
 1.96 
 
 1.58 
 
 " 
 
 2*4 
 
 1.68 
 
 1.73 
 
 1.23 
 
 43,600 
 
 21.80 
 
 26,160 
 
 13.08 
 
 2.18 
 
 1.66 
 
 11 
 
 2/lz 
 
 1.87 
 
 1.82 
 
 1.29 
 
 48,000 
 
 24.00 
 
 28,800 
 
 14.40 
 
 2.40 
 
 1.75 
 
 " 
 
 2% 
 
 2.06 
 
 1.89 
 
 1.34 
 
 52,400 
 
 26.20 
 
 31.440 
 
 15.72 
 
 2.62 
 
 1.83 
 
 " 
 
 3 
 
 2.25 
 
 2.00 
 
 1.42 
 
 20,000 
 
 10.00 
 
 12,000 
 
 6.00 
 
 1.00 
 
 1.13 
 
 1 
 
 1 
 
 0.75 
 
 1.39 
 
 0.80 
 
 25,000 
 
 12.50 
 
 15,000 
 
 7.50 
 
 1.25 
 
 1.26 
 
 " 
 
 i/4 
 
 0.93 
 
 1.45 
 
 0.98 
 
 30,000 
 
 15.00 
 
 18,000 
 
 9.00 
 
 1.50 
 
 1.39 
 
 " 
 
 \\z 
 
 1.12 
 
 1.52 
 
 1.08 
 
 35,000 
 
 17.50 
 
 21,000 
 
 10.50 
 
 1.75 
 
 1.49 
 
 " 
 
 \3S 
 
 1.31 
 
 1.64 
 
 1.16 
 
 40,000 
 
 20.00 
 
 24,000 
 
 12.00 
 
 2.00 
 
 1.60 
 
 " 
 
 2 
 
 1.50 
 
 1.75 
 
 1.24 
 
 45,000 
 
 22.50 
 
 27,000 
 
 13 50 
 
 2.25 
 
 1.70 
 
 " 
 
 2/4 
 
 1.68 
 
 1.86 
 
 1.32 
 
 50,000 
 
 25.00 
 
 30,000 
 
 15.00 
 
 2.50 
 
 1.79 
 
 M 
 
 2V^ 
 
 1.87 
 
 1.96 
 
 1.39 
 
 55,000 
 
 27.50 
 
 33,000 
 
 16.50 
 
 2.75 
 
 1.87 
 
 " 
 
 2% 
 
 2.06 
 
 2.05 
 
 1.45 
 
 60,000 
 
 30.00 
 
 36,000 
 
 18.00 
 
 3.00 
 
 1.96 
 
 * 
 
 3 
 
 2.25 
 
 2.15 
 
 1.52 
 
 28,000 
 
 14.00 
 
 16,800 
 
 8.40 
 
 1.40 
 
 1.34 
 
 iy & 
 
 VA 
 
 0.93 
 
 1.47 
 
 1.04 
 
 33,600 
 
 16.80 
 
 20,160 
 
 10.08 
 
 1.68 
 
 1.47 
 
 " 
 
 i/^ 
 
 1.12 
 
 1.60 
 
 1.13 
 
 39,600 
 
 19.80 
 
 23,520 
 
 11.76 
 
 1.98 
 
 1.58 
 
 " 
 
 i?^ 
 
 1.31 
 
 1.73 
 
 1.23 
 
 45,000 
 
 22.50 
 
 27,000 
 
 13.50 
 
 2.25 
 
 1.69 
 
 " 
 
 2 
 
 1.50 
 
 1.86 
 
 1.32 
 
 50,600 
 
 25.30 
 
 30,360 
 
 15.18 
 
 2.53 
 
 1.80 
 
 " 
 
 2/4 
 
 1.68 
 
 1.97 
 
 1.39 
 
 56,200 
 
 28.10 
 
 33,720 
 
 16.86 
 
 2.81 
 
 1.89 
 
 " 
 
 2V^ 
 
 1.87 
 
 2.09 
 
 1.48 
 
 61,800 
 
 30.90 
 
 37,080 
 
 18.54 
 
 3.09 
 
 1.98 
 
 " 
 
 2% 
 
 2.06 
 
 2.18 
 
 1.54 
 
 67,400 
 
 33.70 
 
 40,440 
 
 20.22 
 
 3.37 
 
 2.08 
 
 " 
 
 3 
 
 2.25 
 
 2.26 
 
 1.60 
 
 73,000 
 
 36.50 
 
 43,800 
 
 21.90 
 
 3.65 
 
 2.16 
 
 * 
 
 3/4 
 
 2.43 
 
 2.36 
 
 1.67 
 
 78,600 
 
 39.30 
 
 47,160 
 
 23.58 
 
 3.93 
 
 2.24 
 
 " 
 
 3/^j 
 
 2.62 
 
 2.45 
 
 1.74 
 
 84,200 
 
 42.10 
 
 50,520 
 
 25.26 
 
 4.21 
 
 2.32 
 
 * 
 
 3^4 
 
 281 
 
 2.53 
 
 1.80 
 
 90,000 
 
 45.00 
 
 54,000 
 
 27.00 
 
 4.50 
 
 2.40 
 
 
 
 4 
 
 3.00 
 
 2.63 
 
 1.86 
 
 31,200 
 
 15.60 
 
 18,720 
 
 9.36 
 
 1.56 
 
 1.41 
 
 li,/ 
 
 |i/ 
 
 0.93 
 
 1.54 
 
 1.09 
 
 37,400 
 
 18.70 
 
 22,440 
 
 11.22 
 
 1.87 
 
 1.55 
 
 w 
 
 li^ 
 
 1.12 
 
 1.69 
 
 1.20 
 
 43,600 
 
 21.80 
 
 26,160 
 
 13.08 
 
 2.18 
 
 1.67 
 
 
 
 1% 
 
 1.31 
 
 1.82 
 
 1.29 
 
 50,000 
 
 25.00 
 
 30,000 
 
 15.00 
 
 2.50 
 
 1.79 
 
 
 
 2 
 
 1.50 
 
 1.96 
 
 1.39 
 
 56,200 
 
 28.10 
 
 33,720 
 
 16.86 
 
 2.81 
 
 1.89 
 
 (t 
 
 2/4 
 
 1.68 
 
 2.09 
 
 1.48 
 
 62,400 
 
 31.20 , 
 
 37,440 
 
 18.72 
 
 3J2 
 
 1.99 
 
 " 
 
 2 /^ 
 
 1.87 
 
 2.19 
 
 1.55 
 
TIE HODS AND BARS. 
 
 Capacity of tie or bar. 
 
 cr 
 
 CO 
 
 (J 
 
 03 ^ 
 
 o 
 
 a - 
 
 Dimension of 
 flat bars in in., 
 uniform thick 
 ness. 
 
 Diameter 
 D of pin 
 or bolt. 
 
 3 times safety. 
 
 5 times safety. 
 
 S o 
 
 1! 
 
 00 
 
 tn . 
 0> ~ 
 
 *>: 
 
 *! 
 
 t 
 
 if 
 
 
 
 O 
 
 <>-. 
 1 
 
 g 
 
 | 
 
 "2 
 
 si 
 
 iis 
 
 O J3 
 
 
 
 
 
 Lbs. 
 
 Tons. 
 
 Lbs. 
 
 Tons. 
 
 CB 
 
 Q 
 
 ~ 
 
 g 
 
 2 
 
 03 
 
 G co 
 
 0=3 
 
 _,*- 
 
 ^ 
 
 68,600 
 
 3430 
 
 41,160 
 
 20.58 
 
 3.43 
 
 2.10 
 
 i l /4 
 
 2% 
 
 2.06 
 
 2.29 
 
 1.62 
 
 75,000 
 
 37.50 
 
 45,000 
 
 22.50 
 
 3.75 
 
 2.19 
 
 " 
 
 3 
 
 2.25 
 
 2.40 
 
 1.70 
 
 81,200 
 
 40.60 
 
 48,720 
 
 24.36 
 
 4.06 
 
 2.27 
 
 
 
 3/4 
 
 2.43 
 
 2.49 
 
 1.7G 
 
 87,400 
 
 43.70 
 
 52,440 
 
 26.22 
 
 4,37 
 
 2.36 
 
 " 
 
 31^ 
 
 2.62 
 
 2.60 
 
 1.84 
 
 93,600 
 
 46.80 
 
 56,160 
 
 28.08 
 
 4.68 
 
 2.44 
 
 " 
 
 3% 
 
 2.81 
 
 2.68 
 
 1.89 
 
 100,000 
 
 50.00 
 
 60,000 
 
 30.00 
 
 5.00 
 
 2.53 
 
 " 
 
 4 
 
 3.00 
 
 2.77 
 
 1.96 
 
 41,200 
 
 20.60 
 
 24,720 
 
 12.36 
 
 2.06 
 
 1.62 
 
 Jg 
 
 ^A 
 
 1.12 
 
 1.77 
 
 1.26 
 
 48,000 
 
 24.00 
 
 28,800 
 
 14.40 
 
 2.40 
 
 1.75 
 
 " 
 
 1/4 
 
 1.31 
 
 1.89 
 
 1.34 
 
 55.000 
 
 27.50 
 
 33,000 
 
 16.50 
 
 2.75 
 
 1.87 
 
 " 
 
 2 
 
 1.50 
 
 2.05 
 
 1.45 
 
 61,800 
 
 30.90 
 
 37,080 
 
 18.54 
 
 3.09 
 
 1.98 
 
 
 
 2// 
 
 1.68 
 
 2.18 
 
 1.54 
 
 68,600 
 
 31.30 
 
 41,160 
 
 20.58 
 
 3.43 
 
 2.09 
 
 < 
 
 2/<2 
 
 1.87 
 
 2.29 
 
 1.62 
 
 75,600 
 
 37.80 
 
 45.360 
 
 22.68 
 
 3.78 
 
 2.19 
 
 
 -% 
 
 2.06 
 
 2.41 
 
 1.71 
 
 82,400 
 
 41.20 
 
 49,440 
 
 24.72 
 
 4.12 
 
 2.29 
 
 
 3 
 
 2.25 
 
 2.51 
 
 1.78 
 
 89,200 
 
 44.60 
 
 53,520 
 
 26.76 
 
 4.46 
 
 2.38 
 
 
 3/4 
 
 243 
 
 261 
 
 1.85 
 
 96,200 
 
 4810 
 
 57,720 
 
 28.86 
 
 4.81 
 
 2.47 
 
 
 3^2 
 
 2.62 
 
 2.71 
 
 1.92 
 
 103,000 
 
 51.50 
 
 61,800 
 
 30.90 
 
 5.15 
 
 2.56 
 
 
 3% 
 
 2.81 
 
 2.81 
 
 1.99 
 
 110,000 
 
 55.00 
 
 66,000 
 
 33.00 
 
 5.50 
 
 2.65 
 
 
 4 
 
 3.00 
 
 2.90 
 
 2.05 
 
 45,000 
 
 22.5 
 
 27,000 
 
 13.50 
 
 2.25 
 
 1.70 
 
 1 A 
 
 \y 
 
 1.12 
 
 1.86 
 
 1.32 
 
 52,400 
 
 26.20 
 
 31.440 
 
 15.72 
 
 2.62 
 
 1.83 
 
 
 1^4 
 
 1.31 
 
 2.00 
 
 1.42 
 
 60,000 
 
 30.00 
 
 36,000 
 
 18.00 
 
 3.00 
 
 1.96 
 
 
 2 
 
 1.50 
 
 2.15 
 
 1.52 
 
 67,400 
 
 33.70 
 
 40,440 
 
 20.22 
 
 3.37 
 
 2.07 
 
 
 2/4 
 
 1.68 
 
 2.27 
 
 1.61 
 
 75,000 
 
 37.50 
 
 45,000 
 
 22.50 
 
 3.75 
 
 2.19 
 
 
 2Vo 
 
 1.87 
 
 2.40 
 
 1.70 
 
 82,400 
 
 41.20 
 
 49.440 
 
 24.72 
 
 4.12 
 
 2.29 
 
 
 2% 
 
 2.06 
 
 2.51 
 
 1.78 
 
 90,000 
 
 45.00 
 
 54,000 
 
 27.00 
 
 4.50 
 
 2.40 
 
 
 3 
 
 2.25 
 
 2.63 
 
 1.86 
 
 97,400 
 
 48.70 
 
 58.440 
 
 29.22 
 
 4.87 
 
 2.49 
 
 
 3/4 
 
 2.43 
 
 2.73 
 
 1.93 
 
 105,000 
 
 52.50 
 
 63,000 
 
 31.50 
 
 5.25 
 
 2.59 
 
 
 3/^2 
 
 2.62 
 
 2.84 
 
 2.01 
 
 113,400 
 
 56.20 
 
 67,440 
 
 33.72 
 
 5.62 
 
 2.67 
 
 
 3% 
 
 2.81 
 
 2.93 
 
 2.08 
 
 120,000 
 
 60.00 
 
 72,000 
 
 36.00 
 
 6.00 
 
 2.77 
 
 
 4 
 
 3.00 
 
 3.03 
 
 2.15 
 
 127,400 
 
 63.70 
 
 76.440 
 
 38.22 
 
 6.37 
 
 2.85 
 
 
 4/4 
 
 3.18 
 
 3.12 
 
 2.21 
 
 135 000 
 
 67.50 
 
 81,000 
 
 40.50 
 
 6.75 
 
 2.93 
 
 
 41^ 
 
 3.37 
 
 3.22 
 
 2.28 
 
 142,400 
 
 71.20 
 
 85,440 
 
 42.72 
 
 7.12 
 
 3.01 
 
 
 4/4 
 
 3.55 
 
 3.30 
 
 2.34 
 
 150,000 
 
 7500 
 
 90,000 
 
 45.00 
 
 7.50 
 
 3.10 
 
 
 5 
 
 3.75 
 
 3.39 
 
 2.40 
 
181 JOINTS OR CONNECTIONS IN IRON CONSTRUCTION. 
 
 JOINTS OR CONNECTIONS IN IRON CONSTRUCTION. 
 PROPORTIONS OF BOLTS, NUTS, RIVETS, &c. 
 
 Reft re nee. 
 
 A = Sectional area of bolt, rivet, or pin. 
 AI= Sectional area of all rivets in a joint. 
 A% Sectional area of one plate. 
 D = Diameter of bolt, rivet, or pin. 
 
 S= Ultimate resistance to shearing of material. 
 
 T = Ultimate resistance to tearing of material. 
 
 TI= Tensional strain on joint, &c. 
 
 a = Number of times that a bolt, &c., will have to be sheared- 
 (See 2 on Fig. 258.) 
 
 d = Distance between centres of rivets. 
 
 k = Factor of safety. 
 
 I = Overlap, approximately If d to If d. 
 m = Number of rivets in a joint. 
 
 n = Number of lines of rivets in a joint at right angles to strain. 
 
 t = Thickness of a plate. 
 
 RIVETS. 
 Fig. 257. 
 
 For tension in direction of rivet: 
 
 -J- 
 
 T 0.7854 
 
 For shearing at right angles : 
 
 If at one place D= I - Tl *__ 
 
 N S 0.7854 
 
 If at two places D 
 
 = I _ ?L 
 
 >J S 1.5 
 
 __ 
 .5708 
 
 Approximately : I = 3t D = 3t 
 
JOINTS OR CONNECTIONS IN IRON CONSTRUCTION. 
 
 PIN, &o., IN TIE BARS. 
 
 Fig. 258. 
 
 PLATE JOINTS. 
 
 No. I. Plate Joint Overlapped, four lines of Rivets. 
 
 Fig. 259. 
 
 - *. ; d =-- D + -L (0.7854 JDn) 
 
 o . d 
 
 .# i- Approximately c? = 1.5i to 2t 
 
 i^-ct- cJ--ci->i ft A A 
 
 (t)-^- 
 
 4V 
 
 ^0.7854 
 
 __ 
 
 2mtS 
 
 2. Ptafe Jbm^ Overlapped, single line of Rivet 
 Fig. 260. (Same as No. 1.) 
 
186 
 
 JOINTS OR CONNECTIONS IN IRON CONSTRUCTION. 
 
 No. 3. Plate Joint Overlapped, two lines of Rivets. 
 
 Fig. 261. (Same as No. 1.) 
 
 o o 
 
 No. 4. Fish Joints, two lines of Rivets. 
 Fig. 262. 
 
 One fish plate. (Same as No. 1.) 
 
 Two fish plates. 
 
 Thickness of each fish plate = J t. 
 
 />_-!_ /__**. 
 
 m ** 1.570. 
 
 L.5708 
 (Otherwise same as No. 1.) 
 
DIMENSIONS OF BOLTS AND NUTS. 
 
 187 
 
 DIMENSIONS OF BOLTS AND NUTS. 
 
 (Whitworth s proportions.) 
 Figs. 263, 264, 265, 266, 267, 268, 269, 270, and 271. 
 
 Inch. 
 
 3 
 
 21 
 
 2} 
 
 21 
 2 
 
 If 
 
 H 
 
 i 
 
 I 
 
 A 
 
 I 
 
 A 
 
 Dimension of Nuts and Heads. 
 
 . -^ 
 
 Inch. 
 
 p ? 
 
 Inch. 
 
 Inch. 
 
 Inch. 
 
 4J 
 
 5.18 
 
 5 
 
 7.07 
 
 4J 
 
 4.76 
 
 4J 
 
 6.37 
 
 3| 
 
 4.33 
 
 4J 
 
 5.83 
 
 3| 
 
 3.89 
 
 3| 
 
 5.30 
 
 3 
 
 3.46 
 
 3| 
 
 4.76 
 
 2f 
 
 3.17 
 
 3 
 
 4.24 
 
 2f 
 
 3.03 
 
 21- 
 
 3.89 
 
 ^1 
 
 2.88 
 
 2| 
 
 3.71 
 
 2J 
 
 2.59 
 
 21 
 
 3.53 
 
 2 
 
 2.30 
 
 21 
 
 3.18 
 
 H 
 
 2.16 
 
 2 
 
 2.82 
 
 11 
 
 1.87 
 
 IF 
 
 2.64 
 
 1} 
 
 1.73 
 
 If 
 
 2.29 
 
 !& 
 
 1.51 
 
 H 
 
 2.12 
 
 1* 
 
 1.38 
 
 1A 
 
 1.86 
 
 1 
 
 1.15 
 
 1A 
 
 1.67 
 
 | 
 
 1.01 
 
 i 
 
 1.41 
 
 i 
 
 0.86 
 
 1 
 
 1.23 
 
 t 
 
 0.86 
 
 f 
 
 1.06 
 
 A 
 
 0.64 
 
 I 
 
 1.06 
 
 TV 
 
 0.50 
 
 A 
 
 0.79 
 
 f 
 
 0.43 
 
 A 
 
 0.79 
 
 Dia. of No. Threads 
 Core. per inch* 
 
 Inch. Inch, 
 
 3 
 
 2 
 
 .57 
 
 3. 
 
 5 
 
 1 
 
 .50 
 
 2f 
 
 2 
 
 .35 
 
 3 
 
 .5 
 
 1 
 
 .75 
 
 2J 
 
 2 
 
 .13 
 
 4, 
 
 ,0 
 
 2 
 
 .00 
 
 21 
 
 1 
 
 .91 
 
 4, 
 
 ,0 
 
 2 
 
 .12 
 
 2 
 
 1 
 
 .69 
 
 4, 
 
 5 
 
 2 
 
 .25 
 
 If 
 
 1 
 
 .58 
 
 4 
 
 .5 
 
 2 
 
 .37 
 
 If 
 
 1 
 
 .47 
 
 5, 
 
 ,0 
 
 2 
 
 .50 
 
 If 
 
 1 
 
 .36 
 
 5. 
 
 ;0 
 
 2 
 
 .75 
 
 If 
 
 1 
 
 .25 
 
 6 
 
 
 
 3 
 
 .00 
 
 If 
 
 1 
 
 .14 
 
 6, 
 
 ,0 
 
 5 
 
 .25 
 
 It 
 
 1 
 
 .08 
 
 7, 
 
 ,0 
 
 3 
 
 .50 
 
 H 
 
 
 
 .92 
 
 7, 
 
 ,0 
 
 4 
 
 .00 
 
 l 
 
 
 
 .81 
 
 8. 
 
 
 
 5 
 
 .00 
 
 i 
 
 
 
 .70 
 
 9. 
 
 
 
 6 
 
 .00 
 
 i 
 
 
 
 .59 
 
 10 
 
 ,0 
 
 6 
 
 .00 
 
 i 
 
 
 
 .48 
 
 11, 
 
 ,0 
 
 7 
 
 .00 
 
 9 
 T6 
 
 
 
 .42 
 
 11. 
 
 
 
 7 
 
 .00 
 
 J 
 
 
 
 .37 
 
 12. 
 
 
 
 8 
 
 .00 
 
 TV 
 
 
 
 .31 
 
 14, 
 
 ,0 
 
 8 
 
 .00 
 
 1 
 
 
 
 .26 
 
 16. 
 
 
 
 9 
 
 .00 
 
 * 
 
 
 
 .20 
 
 18 
 
 .0 
 
 9 
 
 .00 
 
 i 
 
 
 
 .15 
 
 20 
 
 .0 
 
 10 
 
 .00 
 
188 STRAINS IN HORIZONTAL AND SLOPING BEAMS. 
 
 Fig. 272. 
 
 Approximate proportions of bolts, nuts, and 
 beads in incbes: 
 
 d = 1.4 D -\- 0.25 = Inscribed circle. 
 h = D = Height of nut. 
 /*!= 0.7 D = Height of head. 
 
 COMPOUND STRAINS IN HORIZONTAL AND SLOPING 
 BEAMS. 
 
 (Load equally distributed or between supports.) 
 
 Area of Cross-section necessary to resist a Cross-breaking and 
 Compressive Strain in Beams acting as a Boom in Trusses, &c,, 
 or Beams acting as Rafters, &c. 
 
 Reference. 
 
 rii = Bending moment (See Page 100.) 
 C= Compressive strain. (See Roof and Simple Trusses.) 
 g = A factor depending on form of cross-section. 
 /= Moment of inertia of cross-section. 
 8 = Distance from neutral axis to most compressed fibres. 
 A = Sectional area of beam, &c. 
 h = Depth of beam, &c. 
 p = Resistance to compression with safety per square inch of 
 
 section. 
 
 W= Total load. 
 I = Length of beam, &c. 
 
 _ 
 
STRAINS IN HORIZONTAL AND SLOPING BEAMS. 189 
 
 For horizontal beams, &c. : 
 
 For sloping beams, &c., v = angle between horizontal and beam: 
 
 W r 1 / 1 \\ I cos. v~\ 
 
 A = -- LT (-sTnTV + sm - v ) + T2?T J 
 
 RAFTER OF A ROOF TRUSS. 
 Fig. 273. 
 
 EXAMPLE. 
 
 Reference. 
 W = 2.5 tons. = 2.8 tons. I = 10 feet. v = 26 30 
 
 p =. 5 tons per square inch. 
 
 We will assume a Phoenix Go s six-inch beam of the following 
 dimensions: h = 6 inches; A = 4 inches; J= 22.5 
 
 showing that the six-inch beam has a greater sectional area than 
 required. 
 
 If the load is concentrated at the apex of roof, the compressive 
 strain C= 2.8 tons, and the area necessary to resist this strain 
 
 2 8 
 
 would be (taking p at five tons per square inch) - 0.56 sq. 
 
 D 
 
 inches, provided this is able to resist buckling. 
 
 By comparing this with the above result, it will be seen how 
 much greater the sectional area will have to be to resist a cross - 
 breaking strain, caused by the load being distributed. These 
 remarks also apply to simple trusses. 
 
190 STRAINS IN HORIZONTAL AND SLOPING BEAMS. 
 
 SIMPLE TRUSS, (BEAM CONTINUOUS OVER STRUT.) 
 Fig. 274. 
 
 EXAMPLE. 
 
 Reference. 
 W = 20 tons. I = 20 feet, v = 15 p = 5 tons per sq. inch. 
 
 We will assume a Phoenix Go s twelve-inch beam of the fol 
 lowing dimensions: 
 
 h = 12 inches. J= 275.92 
 
 A = 12.5 inches. s = 6 inches. 
 
 275.92 
 
 = 
 
 0.5 X 12 X 12.5 
 
 m=0.0703xlXl20 2 = 84.36 (See Reaction of Supports.) 
 C= 23.32 tons. 
 
 84.36 \ , 46.26 
 
 0.306x12 
 
 ) +23.32=- =9.25 inches. 
 
 Consequently the sectional area of the twelve-inch beam is 
 amply sufficient. 
 
 [NOTE. The formulas for horizontal beams are also applicable to rafters 
 of roof trusses, m and C being given. For the bending moments (m) 
 the various distances are the horizontal projections of those on the rafter 
 from abutment to ridge. 
 
 The loregoing formulas also apply to beams under a cross-creaking and 
 tensional strain. If the truss (Fig. 274) is inverted, the horizontal member 
 will be in tension. Hence, insert the resistance of the material to tension 
 instead of compression, and put tensional for compressive strain; other 
 wise, the formulas remain the same.] 
 
WEIGHT OF MOVING LOADS. 
 
 191 
 
 WEIGHT OF MOVING LOADS. 
 
 Variable and Accidental Loads. 
 (Weight of construction not included.) 
 
 Character of 
 structure. 
 
 How loaded. 
 
 Weight in Ibs. per square 
 foot of surface. 
 
 Street bridges for 
 horse cars and 
 heavy traffic. 
 
 Crow d with per 
 sons. 
 
 Minimum 
 
 40 Ibs. 
 120 " 
 
 80 " 
 
 Maximum 
 
 Average 
 
 
 Street bridges for 
 general traffic, 
 foot passengers, 
 &c. 
 
 Persons, animals, 
 and wagons. 
 
 Public travel.... 
 Private travel... 
 Heavy business 
 wagons 
 
 80 Ibs. 
 
 40 " 
 
 80 " 
 40 " 
 
 Light business 
 wagons 
 
 
 Floors, &c 
 
 Crowded public 
 places. 
 
 Dwellings 
 
 Minimum 
 
 40 Ibs. 
 
 120 " 
 80 " 
 40 " 
 
 80 " 
 100 " 
 
 200 " 
 250 " 
 f200 
 \ to " 
 (400 
 80 " 
 
 Maximum 
 Average 
 
 
 Churches, court 
 rooms, theatres, 
 and ball-rooms. 
 Storage of grain... 
 General merchan 
 dise 
 
 
 
 
 
 Warehouses 
 
 
 Factories. 
 
 
 Hay- lofts 
 
 
 
 
192 
 
 STATIC AND MOVING LOADS ON BRIDGES. 
 
 STATIC AND MOVING LOADS ON BRIDGES OF 
 WROUGHT IRON. 
 
 The following table gives an approximate weight per lineal 
 foot in pounds of the static load or weight of construction complete 
 for Single-Line Railway Bridges, supported at the ends, from ten 
 to four hundred feet span; also the weight of the moving load 
 per lineal foot of span, based on the assumption that the heaviest 
 locomotives exert a pressure of three thousand pounds per lineal 
 foot between their extreme bearings. 
 
 The table is applicable in computing the strains in all trusses 
 with parallel booms mentioned in this work. 
 
 Weight of Construction and Moving Load of Wrought- Iron Single- 
 Line Railway Bridges for the heaviest traffic. 
 
 (From 20 to 400 feet span.) 
 
 Weight of construction complete, 
 including cross-ties and rails. 
 
 Weight of moving load equal to 3,000 
 Ibs. per lineal foot of load. 
 
 
 
 Weight in 
 
 d 
 
 Weight in 
 
 d 
 
 Weight in 
 
 jj 
 
 Weight 
 in Ibs. 
 
 .2 
 
 Ibs. per 
 
 .2 
 
 Ibs. per 
 
 .2 
 
 Ibs. per 
 
 .2 
 
 
 a 
 
 lineal foot 
 
 a 
 
 lineal foot 
 
 a 
 
 lineal foot 
 
 23 
 
 per lin. 
 
 1 
 
 of span. 
 
 a 
 
 r Sl 
 
 of span. 
 
 c3 
 A 
 V) 
 
 of span. 
 
 a 
 
 CO 
 
 span. 
 
 10 
 
 427 
 
 210 
 
 1,891 
 
 10 
 
 6,300 
 
 210 
 
 2,535 
 
 20 
 
 500 
 
 220 
 
 1,964 
 
 20 
 
 5,370 
 
 220 
 
 2,495 
 
 30 
 
 573 
 
 230 
 
 2,037 
 
 30 
 
 4,250 
 
 230 
 
 2,455 
 
 40 
 
 646 
 
 240 
 
 2,110 
 
 40 
 
 3,780 
 
 240 
 
 2,375 
 
 50 
 
 719 
 
 250 
 
 2,183 
 
 50 
 
 3,550 
 
 250 
 
 L ,335 
 
 60 
 
 792 
 
 260 
 
 2,256 
 
 60 
 
 3,400 
 
 260 
 
 2,290 
 
 70 
 
 865 
 
 270 
 
 2,329 
 
 70 
 
 3,300 
 
 270 
 
 2,245 
 
 80 
 
 938 
 
 280 
 
 2,402 
 
 80 
 
 3,250 
 
 280 
 
 2,200 
 
 90 
 
 1,011 
 
 290 
 
 2,475 
 
 90 
 
 3,180 
 
 290 
 
 2,160 
 
 100 
 
 1,084 
 
 300 
 
 2,548 
 
 100 
 
 3,120 
 
 300 
 
 2,120 
 
 110 
 
 1,157 
 
 310 
 
 2.621 
 
 110 
 
 3,050 
 
 310 
 
 2,080 
 
 120 
 
 1,230 
 
 320 
 
 2,694 
 
 120 
 
 3,000 
 
 320 
 
 2,045 
 
 130 
 
 1,303 
 
 330 
 
 2,767 
 
 130 
 
 2,930 
 
 330 
 
 2,010 
 
 140 
 
 1,380 
 
 340 
 
 2,840 
 
 140 
 
 2,880 
 
 340 
 
 1,975 
 
 150 
 
 1,453 
 
 350 
 
 2,913 
 
 150 
 
 2,820 
 
 350 
 
 1,940 
 
 160 
 
 1,526 
 
 360 
 
 2,986 
 
 160 
 
 2,760 
 
 360 
 
 1,910 
 
 170 
 
 1,599 
 
 370 
 
 3,059 
 
 170 
 
 2,700 
 
 370 
 
 1,880 
 
 180 
 
 1,672 
 
 380 
 
 3,132 
 
 180 
 
 2,655 
 
 380 
 
 1,850 
 
 190 
 
 1,745 
 
 390 
 
 3,205 
 
 190 
 
 2,615 
 
 390 
 
 1,820 
 
 200 
 
 1,818 
 
 400 
 
 3,278 
 
 200 
 
 2,575 
 
 400 
 
 1,890 
 
STATIC AND MOVING LOADS ON BRIDGES. 
 
 193 
 
 The following gives the actual weight of some well-known 
 Bridges (single line) in America, Germany, and England: 
 
 Name of Bridge. 
 
 System. 
 
 a 
 
 Weight of con 
 struction per 
 lineal foot. 
 
 6 <jj 
 
 <4_T3~0 
 
 ^ 
 
 .5 *" 
 
 c O ^ 
 CO 
 
 
 
 a 
 
 CO 
 
 Lbs. 
 
 Lbs. 
 
 Lbs. 
 
 "Brenz," near 
 Konigsbronn... 
 
 "Colomak" 
 
 "Iser," near Mu 
 nich 
 
 | Open Web, ^ 
 { parallel booms, f 
 
 63.0 
 111.0 
 164.7 
 
 760 
 1,090 
 1,770 
 
 3,131 
 3,067 
 3656 
 
 7,530 
 9,516 
 8,532 
 
 "Donau," near 
 Ingolstadt 
 
 "Elb,"nearMei- 
 
 ssen 
 
 < 
 
 178.0 
 179 
 
 1,954 
 1 324 
 
 3,312 
 2 783 
 
 8,532 
 10390 
 
 "Rhine," near 
 Mainz 
 
 {"Pauli s," par- ") 
 abolic arched > 
 
 345 
 
 2 170 
 
 1 970 
 
 11 660 
 
 "Royal Albert," 
 near Saltash... 
 
 "Boyne" 
 
 booms. J 
 Lattice..**... 
 
 455.0 
 264.0 
 
 4,418 
 3225 
 
 2,240 
 
 9,954 
 
 " Leven " 
 
 
 36 
 
 566 
 
 
 
 "Kent" 
 
 M 
 
 36 
 
 580 
 
 
 
 "Harper s Ferry" 
 
 Truss 
 
 124.0 
 
 770 
 
 
 
 
 
 
 
 
 
 13 
 
MISCELLANEOUS. 
 
 (195) 
 
QEOMETRY. 
 
 LONGIMETEY AND PLANIMETRY. 
 (Lines and Areas.) 
 
 Reference. 
 A = Area. 
 
 - = Periphery of circle = 3.14159 when diameter = 1. 
 r = Radius of circle. 
 G = Length of cord of segment. 
 p = Circumference of circle for given diameter. 
 I = Length of circle arc, &c. 
 h = Height of segment. 
 
 v = Angles, expressed in decimals, as 15 30 / = 15.5. 
 For other designations, see Figuies. 
 
 [NOTE. Always use the same unit for dimensions.] 
 
 t 
 
 Values cj TT. 
 
 - = \14159 x 
 
 2~ = 6.28319 ~ = 1.04720 
 
 = 0.31831 TT 
 
 * = 0.78540 
 
 = 0.15915 ;r 
 
 --= 0.52360 
 
 1 
 
 __ = 0.10132 - 2 = 9.86960 
 
 -3 _ 31.00628 
 
 =0.63662 ^1= L77245 
 
 &-= 1.46459 
 
 (197) 
 
198 
 
 LONGIMETRY. 
 
 Fig. 275. 
 
 p = 
 
 Fig. 276. 
 
 360 1 " " 360 
 I 
 
 180 
 
 v = - 180 
 TTr 
 
 180 ^ 
 
 7T 
 
 r. 277. 
 
 = 2(180 
 
 Fig. 278. 
 
 8h " 2h 
 
 . 279. 
 
LONGIMETRY. 
 
 199 
 
 Fig. 280. 
 
 Fig. 281. 
 Ellipse. 
 
 Fig. 282. 
 
 [7)2 
 1+ ^ 
 
 - + 1 
 
 256 n "J 
 
 When n = , ; 
 
 a -\- b 
 
 b = \/a z c* 
 a = \/6 2 -f c 2 
 
 Fig. 283. 
 
 
 . 284. 
 
 c 2 a 2 Z> 2 
 ~26~ 
 
200 
 
 PLANIMETRY. 
 
 85. (Circle plane.) 
 
 286. (Circle ring.) 
 
 . 287. (Sector.) li 
 
 = 0.008727 w 2 . 
 
 / 360 . 
 r== N/~T~~~ 
 
 288. (Segment.) 
 
 A = 
 
 ?; sin.v) 
 
 (0.017453 v sin. ) - 
 
 2 
 
 Fig. 28$. (Circle ring sector) 
 
 360 V1 
 : 0.008727 ^(ry 2 r 2 2 ) 
 
PLANIMETRY. 
 
 Fig. 290. (Ellipse.) 
 
 A == nab 
 
 Fig. 291. (Square.) 
 
 Fig. 292. (Rectangle.) 
 
 A = a 2 
 
 Fig. 293. (Parallelogram.) 
 
 = a sn. v 
 
 294. (Triangle.) 
 
 A = = be sin. v 
 
 2 2 
 
 c 2 sin. v sin. Vj 
 
 2 sin. v 2 
 
 When the three sides are given: 
 Let a + b + c = s 
 
CENTER OP GRAVITY OF PLANES. 
 
 CENTER OF GRAVITY OF PLANES. 
 Reference. 
 
 x = Distance from a fixed base to center of gravity. 
 r = Radius. 
 c = Chord. 
 b,p, h = Dimensions. 
 A = Area. 
 v = Angle. 
 
 Fig. 295. (Quadrangle.) 
 
 Fig. 296. (Triangle.) 
 
 Fig. 297. (Half circle, or 
 elliptic plane.) 
 
 a and b parallel. " 
 
 h h ( b a \ 
 X 2 6" Vfi+o J 
 
 - = radius = r 
 
 l 
 
 x = 0.4244r 
 
 Fig. 298. (Concentric ring.) 
 
 4 sin. Ji; r 3 r^ 
 
 "" ~3 v r 2 r, 2 
 
CENTER OF GRAVITY OF PLANES. 
 
 203 
 
 Fig. 299. (Circle, or elliptic 
 arc.) 
 
 
 re 2 sin. 
 
 V 
 
 JF%,300. (Half circumfer 
 ence of circle or ellipse.) 
 
 x = r = 0.6366r 
 
 7T 
 
 Fig. 301. (Circle sector. 
 
 4 sin. -Jv 
 
 * 
 
 Fig. 302. (Circle segment.) 
 
 . = Area. 
 
 Fig. 303. (Parabola.) 
 
204 
 
 CENTER OF GRAVITY OF PLANES. 
 
 Fig. 305. (Half parabola.) 
 
 Fig. 305. 
 
 Of any section, composed of any 
 number of simple figures: 
 
 Additional Reference. 
 
 A, -4,, -4//= Sectional areaof simple 
 
 figures. 
 
 X = Distance from center of 
 gravity of whole sec 
 tion to axis ran. 
 
 x t x /t // = Distance from center of 
 gravity of a simple 
 figure to a fixed axis 
 mn. 
 
 Y ^ X ~^~ ^ /x/ ~^~ A//x/ + &c- 
 
TRIGONOMETRICAL FORMULAS. 
 
 205 
 
 TRIGONOMETRICAL FORMULAS. 
 
 Reference. 
 
 a, 6, c = Length of sides. 
 A, B t C= Angles opposite to a, &, c respectively. 
 
 Right Angle Triangle. 
 
 Fig. 306. 
 
 cos. C 
 b = a cos. C 
 b = c cot. (7 
 b = a sin. B 
 b = c tang. B 
 c = b tang. 
 c = a sin. 
 
 Tang. (7=4-== n 
 
 b cos. 
 
 "cot. (7 
 
 Cotang. C= 
 Secant (7 = 
 Cosec. C = 
 
 cos. (7 
 sin. C 
 
 1 
 
 cos. (7 
 
 1 
 
 sin. 
 
 ~ tang. C 
 
 Cos.(7= - 
 a 
 
 Oblique Angle Triangle. 
 
 Fig. 307. 
 
 B) 
 
 a = \/6 2 + c 2 26c cos. 
 c sin. 5 
 
 Sin. (7= 
 Sin. 4 = 
 
 c sin. 
 
 6 
 a sin. C 
 
 b 
 
 c sin. A 
 a 
 
TRIGONOMETRICAL FUNCTIONS. 
 NATURAL SINE 
 
 
 Minutes. 
 
 Deg. 
 
 
 
 5 
 
 10 
 
 15 
 
 20 
 
 25 
 
 30 
 
 
 
 .00000 
 
 .00145 
 
 .00291 
 
 .00436 
 
 .00582 
 
 .00727 
 
 .00873 
 
 1 
 
 .01745 
 
 .01891 
 
 .02036 
 
 .02181 
 
 .02327 
 
 .02172 
 
 .02618 
 
 2 
 
 .03490 
 
 .03635 
 
 .03781 
 
 .03926 
 
 .04071 
 
 .04217 
 
 .04302 
 
 3 
 
 .05234 
 
 .05379 
 
 .05524 
 
 .05669 
 
 .05814 
 
 .05960 
 
 .06103 
 
 4 
 
 .00976 
 
 .07121 
 
 .07266 
 
 .07411 
 
 .07556 
 
 .07701 
 
 .07846 
 
 5 
 
 .08716 
 
 .08860 
 
 .09005 
 
 .09150 
 
 .09295 
 
 .09440 
 
 .09585 
 
 6 
 
 .10453 
 
 .10597 
 
 .10742 
 
 .10887 
 
 .11031 
 
 .11176 
 
 .11320 
 
 7 
 
 .12187 
 
 .12331 
 
 .12476 
 
 .12620 
 
 .12764 
 
 .12908 
 
 .13053 
 
 8 
 
 .13917 
 
 .14061 
 
 .14205 
 
 .14349 
 
 .14493 
 
 .14637 
 
 .14781 
 
 9 
 
 .15643 
 
 .15787 
 
 .15931 
 
 .16074 
 
 .16218 
 
 .16361 
 
 .16505 
 
 10 
 
 .17365 
 
 .17508 
 
 .17651 
 
 .17794 
 
 .17937 
 
 .18081 
 
 .18224 
 
 11 
 
 .19081 
 
 .19224 
 
 .19366 
 
 .19509 
 
 .19652 
 
 .19794 
 
 .19937 
 
 12 
 
 .20791 
 
 .20933 
 
 .21076 
 
 .21218 
 
 .21360 
 
 .21502 
 
 .21644 
 
 13 
 
 .22495 
 
 .22(537 
 
 .22778 
 
 .22 )20 
 
 .23062 
 
 .23203 
 
 .23345 
 
 14 
 
 .24192 
 
 .24333 
 
 .24474 
 
 .24615 
 
 .21756 
 
 .24897 
 
 .25038 
 
 15 
 
 .25882 
 
 .20022 
 
 .25163 
 
 .26303 
 
 .20443 
 
 .20584 
 
 .26724 
 
 16 
 
 .27564 
 
 .27704 
 
 .27843 
 
 .27983 
 
 .28123 
 
 .28202 
 
 .28402 
 
 17 
 
 59237 
 
 .29376 
 
 .29515 
 
 .29654 
 
 .29793 
 
 .29932 
 
 .30071 
 
 18 
 
 .30902 
 
 .31040 
 
 .31178 
 
 .31316 
 
 .31454 
 
 .31593 
 
 .31730 
 
 19 
 
 .32567 
 
 .32694 
 
 .32832 
 
 .32969 
 
 .33106 
 
 .33244 
 
 .33381 
 
 20 
 
 ,342i)2 
 
 .34339 
 
 .34475 
 
 .34612 
 
 .34748 
 
 .34884 
 
 .35021 
 
 21 
 
 .35837 
 
 .35973 
 
 .36108 
 
 .36244 
 
 .36379 
 
 .36515 
 
 .36650 
 
 22 
 
 .37461 
 
 .37595 
 
 .37730 
 
 .37865 
 
 .37999 
 
 .38134 
 
 .38268 
 
 23 
 
 .39073 
 
 .39207 
 
 .39341 
 
 .39474 
 
 .39608 
 
 .39741 
 
 .39875 
 
 24 
 
 .40674 
 
 .40806 
 
 .40939 
 
 .41072 
 
 .412 4 
 
 .41337 
 
 .41469 
 
 25 
 
 .42232 
 
 .42394 
 
 .42525 
 
 .42657 
 
 .42788 
 
 .42920 
 
 .43051 
 
 26 
 
 .43837 
 
 .43968 
 
 .44098 
 
 .44229 
 
 .44359 
 
 .44494 
 
 .44620 
 
 27 
 
 .45399 
 
 .45529 
 
 .45658 
 
 .45787 
 
 .45917 
 
 .46046 
 
 .46175 
 
 28 
 
 .46947 
 
 .47076 
 
 .47204 
 
 .47332 
 
 .47460 
 
 .47588 
 
 .47716 
 
 29 
 
 .48481 
 
 .48608 
 
 .48735 
 
 .48862 
 
 .48989 
 
 .49116 
 
 .49242 
 
 30 
 
 .50000 
 
 .50126 
 
 .50252 
 
 .50377 
 
 .50503 
 
 .50628 
 
 .50754 
 
 31 
 
 .51504 
 
 .51628 
 
 .51753 
 
 .51877 
 
 .52002 
 
 .52120 
 
 .52250 
 
 32 
 
 .52992 
 
 .53115 
 
 .53238 
 
 .53361 
 
 .53484 
 
 .53607 
 
 .53730 
 
 33 
 
 .54464 
 
 .54586 
 
 .54708 
 
 .54829 
 
 .54951 
 
 .55072 
 
 .55194 
 
 34 
 
 .55919 
 
 .56040 
 
 .56160 
 
 .56280 
 
 .56401 
 
 .56521 
 
 .56641 
 
 35 
 
 .57358 
 
 .57477 
 
 .57596 
 
 .57715 
 
 .57833 
 
 .57952 
 
 .58070 
 
 36 
 
 .58779 
 
 .58869 
 
 .59014 
 
 .59131 
 
 .59248 
 
 .59365 
 
 .59482 
 
 37 
 
 .00182 
 
 .60298 
 
 .60414 
 
 .60529 
 
 .60(545 
 
 .60761 
 
 .60876 
 
 38 
 
 .61566 
 
 .61681 
 
 .61795 
 
 .61909 
 
 .62024 
 
 .62138 
 
 .62251 
 
 39 
 
 .62932 
 
 .63045 
 
 .63158 
 
 .63271 
 
 .63383 
 
 .63496 
 
 .63608 
 
 40 
 
 .64279 
 
 .64390 
 
 .64501 
 
 .64612 
 
 .64723 
 
 .64834 
 
 .64945 
 
 41 
 
 .65606 
 
 .65716 
 
 .65825 
 
 .65935 
 
 .66044 
 
 .66153 
 
 .66202 
 
 42 
 
 .66913 
 
 .67221 
 
 .67129 
 
 .67237 
 
 .67344 
 
 .67452 
 
 . 67559 
 
 43 
 
 .68200 
 
 .68306 
 
 .68412 
 
 .68518 
 
 .68624 
 
 .68730 
 
 .68835 
 
 44 
 
 .69466 
 
 .69570 
 
 .69675 
 
 .69779 
 
 .69883 
 
 .69987 
 
 .70091 
 
 Deg. 
 
 60 
 
 55 
 
 50 
 
 45 
 
 40 
 
 35 
 
 30 
 
 
 Minutes. 
 
 NATURAL COSINE. 
 
TRIGONOMETRICAL FUNCTIONS. 
 NATURAL SINE. 
 
 Minutes. 
 
 
 
 
 
 
 
 Deg. 
 
 35 
 
 40 
 
 45 
 
 50 
 
 55 
 
 GO 
 
 
 .01018 
 
 .01164 
 
 .01309 
 
 .01454 
 
 .01000 
 
 .01745 
 
 89 
 
 .02703 
 
 .02908 
 
 .03054 
 
 .03199 
 
 .03345 
 
 .03490 
 
 88 
 
 .04507 
 
 .04053 
 
 .04798 
 
 .04913 
 
 .05088 
 
 .05234 
 
 87 
 
 .06250 
 
 .00395 
 
 .06540 
 
 .06685 
 
 .06831 
 
 .00970 
 
 86 
 
 .07991 
 
 .08130 
 
 .08281 
 
 .08426 
 
 .08571 
 
 .08710 
 
 85 
 
 .09729 
 
 .09874 
 
 .10019 
 
 .10104 
 
 .10308 
 
 .10453 
 
 84 
 
 .11405 
 
 .11009 
 
 .11754 
 
 .11898 
 
 .12043 
 
 .12187 
 
 83 
 
 .13197 
 
 .13341 
 
 .13485 
 
 .13029 
 
 .13802 
 
 .13917 
 
 82 
 
 .14025 
 
 .15009 
 
 .15212 
 
 .15356 
 
 .15500 
 
 .15043 
 
 81 
 
 .10048 
 
 .10792 
 
 .16935 
 
 .17078 
 
 .17222 
 
 .17305 
 
 80 
 
 .18307 
 
 .18509 
 
 .18652 
 
 .18795 
 
 .18938 
 
 .19081 
 
 79 
 
 .20079 
 
 .20222 
 
 .20364 
 
 .20507 
 
 .20649 
 
 .20791 
 
 78 
 
 .21780 
 
 .21928 
 
 .22070 
 
 .22212 
 
 .22353 
 
 .22495 
 
 77 
 
 .23480 
 
 .23627 
 
 .23769 
 
 .23910 
 
 .24051 
 
 .24192 
 
 76 
 
 .25179 
 
 .25320 
 
 .2.5460 
 
 .25601 
 
 .25741 
 
 .25882 
 
 75 
 
 .23804 
 
 .27004 
 
 .27144 
 
 .27284 
 
 .27421 
 
 .27504 
 
 74 
 
 .28541 
 
 .28080 
 
 .28820 
 
 .28959 
 
 .29098 
 
 .29237 
 
 73 
 
 .30209 
 
 .30348 
 
 .30486 
 
 .30625 
 
 .30703 
 
 .30902 
 
 72 
 
 .31808 
 
 .32006 
 
 .32144 
 
 .32282 
 
 .32419 
 
 .32057 
 
 71 
 
 .33518 
 
 .33655 
 
 .33792 
 
 .33929 
 
 .34005 
 
 .34202 
 
 70 
 
 .35157 
 
 .35293 
 
 .35429 
 
 .35565 
 
 .35701 
 
 .35837 
 
 69 
 
 .30785 
 
 .36921 
 
 .37056 
 
 .37191 
 
 .37320 
 
 .37401 
 
 68 
 
 .38403 
 
 .38537 
 
 .38671 
 
 .38805 
 
 .38939 
 
 .39073 
 
 67 
 
 .40008 
 
 .40141 
 
 .40275 
 
 .40408 
 
 .40541 
 
 .40074 
 
 66 
 
 .41002 
 
 .41734 
 
 .41866 
 
 .41998 
 
 .42130 
 
 .422i2 
 
 65 
 
 .43182 
 
 .43313 
 
 .43445 
 
 .43575 
 
 .43700 
 
 .43837 
 
 64 
 
 .44750 
 
 .44880 
 
 .45010 
 
 .45140 
 
 .45209 
 
 .45399 
 
 03 
 
 .40304 
 
 .46433 
 
 .46561 
 
 .46690 
 
 .40819 
 
 .40947 
 
 62 
 
 .47844 
 
 .47971 
 
 .48099 
 
 .48226 
 
 .48354 
 
 .48481 
 
 61 
 
 .49309 
 
 .49495 
 
 .49622 
 
 .49748 
 
 .49874 
 
 .50000 
 
 60 
 
 .50879 
 
 .51004 
 
 .51129 
 
 .51254 
 
 .51379 
 
 .51504 
 
 59 
 
 .52374 
 
 .52498 
 
 .52821 
 
 .52745 
 
 .52809 
 
 .52992 
 
 58 
 
 .53853 
 
 .53975 
 
 .54097 
 
 .54220 
 
 .54342 
 
 .54404 
 
 57 
 
 .55315 
 
 .55436 
 
 .55557 
 
 .55678 
 
 .55799 
 
 .55919 
 
 56 
 
 .50700 
 
 .56880 
 
 .57000 
 
 .57119 
 
 .572:38 
 
 .57358 
 
 55 
 
 ,58189 
 
 .58307 
 
 .58425 
 
 .58543 
 
 .58001 
 
 .58779 
 
 54 
 
 .59599 
 
 .59716 
 
 .59832 
 
 .59949 
 
 .60065 
 
 .00182 
 
 53 
 
 .60991 
 
 .61107 
 
 .61222 
 
 .61337 
 
 .61451 
 
 .61560 
 
 52 
 
 .62305 
 
 .62479 
 
 .62.395 
 
 .62706 
 
 .62819 
 
 .62932 
 
 51 
 
 .63720 
 
 .63832 
 
 .63944 
 
 .64056 
 
 .64107 
 
 .64279 
 
 50 
 
 .65055 
 
 .65166 
 
 .65276 
 
 .65386 
 
 .65496 
 
 .65000 
 
 49 
 
 .66371 
 
 .66480 
 
 .66588 
 
 .66097 
 
 .66805 
 
 .00913 
 
 48 
 
 .67600 
 
 .67773 
 
 .67880 
 
 .07987 
 
 .68093 
 
 .08200 
 
 47 
 
 .68941 
 
 .69046 
 
 .69151 
 
 .09256 
 
 .69361 
 
 .69466 
 
 46 
 
 .70195 
 
 .70238 
 
 .70401 
 
 .70505 
 
 .70008 
 
 .70711 
 
 45 
 
 23 
 
 21 
 
 15 
 
 10 
 
 5 
 
 
 
 
 MintitPs. 
 
 NATURAL COMNE. 
 
TRIGONOMETRICAL FUNCTIONS. 
 NATURAL SINE. 
 
 
 Minutes. 
 
 Deg. 
 
 
 
 5 
 
 10 
 
 15 
 
 20 
 
 25 
 
 30 
 
 1 
 
 45 
 
 .70711 
 
 .70813 
 
 .70916 
 
 .71019 
 
 .71121 
 
 .71223 
 
 .71325 
 
 46 
 
 .71934 
 
 .72035 
 
 .72136 
 
 .72230 
 
 .72337 
 
 .72437 
 
 .72,337 
 
 47 
 
 .73135 
 
 .73234 
 
 .73333 
 
 .73432 
 
 .73531 
 
 .73629 
 
 .73728 
 
 48 
 
 .74314 
 
 .74412 
 
 .74509 
 
 .74000 
 
 .74703 
 
 .74799 
 
 .74890 
 
 49 
 
 .75471 
 
 .75506 
 
 .75661 
 
 .75756 
 
 .75851 
 
 .75940 
 
 .70041 
 
 50 
 
 .76604 
 
 .76698 
 
 .76791 
 
 .76884 
 
 .76977 
 
 .77070 
 
 .77102 
 
 51 
 
 .77715 
 
 .77806 
 
 .77897 
 
 .77988 
 
 .78079 
 
 .78170 
 
 .78201 
 
 52 
 
 .78801 
 
 .78891 
 
 .78980 
 
 .79069 
 
 .79158 
 
 .79247 
 
 .79335 
 
 53 
 
 .79804 
 
 .79951 
 
 .80038 
 
 .80125 
 
 .80212 
 
 .80299 
 
 .80380 
 
 54 
 
 .80902 
 
 .80987 
 
 .81072 
 
 .81157 
 
 .81212 
 
 .81327 
 
 .81412 
 
 55 
 
 .81915 
 
 .81999 
 
 .82082 
 
 .82105 
 
 .822i8 
 
 .82330 
 
 .82413 
 
 56 
 
 .82904 
 
 .82985 
 
 .83006 
 
 .83147 
 
 .83228 
 
 .83308 
 
 .83389 
 
 57 
 
 .83807 
 
 .83946 
 
 .84023 
 
 .84104 
 
 .84182 
 
 .84201 
 
 .84339 
 
 58 
 
 .84805 
 
 .84882 
 
 .84959 
 
 .85035 
 
 .85112 
 
 .85188 
 
 .85204 
 
 59 
 
 .85717 
 
 .85792 
 
 .85866 
 
 .85941 
 
 .86015 
 
 .80089 
 
 .80103 
 
 60 
 
 .8(5003 
 
 .80075 
 
 .80748 
 
 .80820 
 
 .86892 
 
 .80904 
 
 .87036 
 
 61 
 
 .87402 
 
 .87532 
 
 .87003 
 
 .87073 
 
 .87743 
 
 .87812 
 
 .87882 
 
 62 
 
 .88295 
 
 .88363 
 
 .88431 
 
 .88499 
 
 .88566 
 
 .88634 
 
 .88701 
 
 63 
 
 .89101 
 
 .89167 
 
 .89232 
 
 .89238 
 
 .89303 
 
 .89428 
 
 .89493 
 
 64 
 
 .89879 
 
 .89943 
 
 .90007 
 
 .90070 
 
 .90133 
 
 .90190 
 
 .90259 
 
 65 
 
 .90631 
 
 .90692 
 
 .90753 
 
 .90814 
 
 .90875 
 
 .90936 
 
 .90996 
 
 66 
 
 .91355 
 
 .91414 
 
 .91472 
 
 .91531 
 
 .91590 
 
 .91648 
 
 .91706 
 
 67 
 
 .92.)50 
 
 .92107 
 
 .92164 
 
 .92220 
 
 .92276 
 
 .92332 
 
 .92388 
 
 68 
 
 .92718 
 
 .92773 
 
 .92827 
 
 .92381 
 
 .92935 
 
 .92088 
 
 .93042 
 
 69 
 
 .93358 
 
 .93410 
 
 .93462 
 
 .93514 
 
 .93565 
 
 .93016 
 
 .93667 
 
 70 
 
 .93969 
 
 .94019 
 
 .94068 
 
 .94118 
 
 .94167 
 
 .94215 
 
 .94264 
 
 71 
 
 .94552 
 
 .94599 
 
 .94046 
 
 .94093 
 
 .94740 
 
 .94786 
 
 .94832 
 
 72 
 
 .95106 
 
 .95150 
 
 .95191 
 
 .95240 
 
 .95284 
 
 .95328 
 
 .95372 
 
 73 
 
 .95630 
 
 .95673 
 
 .95715 
 
 .95757 
 
 .95799 
 
 .95841 
 
 .95882 
 
 74 
 
 .96196 
 
 .96166 
 
 .90206 
 
 .90246 
 
 .90235 
 
 .90324 
 
 .96363 
 
 75 
 
 .96593 
 
 .96630 
 
 .90667 
 
 .96705 
 
 .90742 
 
 .90778 
 
 .96815 
 
 76 
 
 .97030 
 
 .97065 
 
 .97100 
 
 .97134 
 
 .97109 
 
 .97203 
 
 .97237 
 
 77 
 
 .97437 
 
 .97470 
 
 .97502 
 
 .97534 
 
 .97566 
 
 .97598 
 
 .97030 
 
 78 
 
 .97815 
 
 .97845 
 
 .97875 
 
 .97905 
 
 .97934 
 
 .97963 
 
 .97992 
 
 79 
 
 .98163 
 
 .98190 
 
 .98218 
 
 .98245 
 
 .98272 
 
 .98299 
 
 .98325 
 
 80 
 
 .98481 
 
 .98506 
 
 .98531 
 
 .98506 
 
 .98580 
 
 .98004 
 
 .98629 
 
 81 
 
 .98769 
 
 .98791 
 
 .98814 
 
 .98836 
 
 .98858 
 
 .98880 
 
 .98902 
 
 82 
 
 .99027 
 
 .99047 
 
 .99067 
 
 .99087 
 
 .99106 
 
 .99125 
 
 .99144 
 
 83 
 
 .99235 
 
 .99272 
 
 .99290 
 
 .99307 
 
 .99324 
 
 .99341 
 
 .99357 
 
 84 
 
 .99452 
 
 .99467 
 
 .99482 
 
 .99497 
 
 .99511 
 
 .99526 
 
 .99540 
 
 85 
 
 .99619 
 
 .99632 
 
 .99644 
 
 .99657 
 
 .99668 
 
 .99080 
 
 .99092 
 
 86 
 
 .99756 
 
 .99766 
 
 .99776 
 
 .99786 
 
 .99795 
 
 .99804 
 
 .99813 
 
 87 
 
 .99863 
 
 .99870 
 
 .99878 
 
 .99885 
 
 .99892 
 
 .99898 
 
 .99905 
 
 88 
 
 .99939 
 
 .99944 
 
 .99949 
 
 .99953 
 
 .99958 
 
 .99962 
 
 .99906 
 
 89 
 
 .99985 
 
 .99987 
 
 .99989 
 
 .99991 
 
 .99993 
 
 .99995 
 
 .99996 
 
 
 60 
 
 55 
 
 50 
 
 45 
 
 40 
 
 35 
 
 30 
 
 Deg 
 
 
 
 
 
 
 
 
 
 Minutes. 
 
 NATURAL COSINE. 
 
TRIGONOMETRICAL FUNCTIONS. 
 NATURAL SINE. 
 
 Minutes. 
 
 
 35 
 
 40 
 
 45 
 
 50 
 
 55 
 
 60 
 
 Deg. 
 
 .71427 
 
 .71529 
 
 .71630 
 
 .71732 
 
 .71833 
 
 .71934 
 
 44 
 
 .72637 
 
 .72737 
 
 .72837 
 
 .72937 
 
 .73036 
 
 .73135 
 
 43 
 
 .73826 
 
 .73924 
 
 .74022 
 
 .74123 
 
 .74217 
 
 .74314 
 
 42 
 
 .74992 
 
 .75088 
 
 .75184 
 
 .75280 
 
 .75375 
 
 .75471 
 
 41 
 
 .76135 
 
 .76229 
 
 .76323 
 
 .76417 
 
 .76511 
 
 .76004 
 
 40 
 
 .77255 
 
 .77347 
 
 .77439 
 
 .77531 
 
 .77023 
 
 .77715 
 
 39 
 
 .78351 
 
 .78442 
 
 .78532 
 
 .78622 
 
 .78711 
 
 .78801 
 
 38 
 
 .79424 
 
 .79512 
 
 .79300 
 
 .79088 
 
 .79776 
 
 .79804 
 
 37 
 
 .80472 
 
 .80558 
 
 .89644 
 
 .80730 
 
 .80816 
 
 .80902 
 
 36 
 
 .81496 
 
 .81580 
 
 .81664 
 
 .81748 
 
 .81832 
 
 .81915 
 
 35 
 
 .82495 
 
 .82577 
 
 .82659 
 
 .82741 
 
 .82822 
 
 .82904 
 
 34 
 
 .83469 
 
 .83549 
 
 .83629 
 
 .83708 
 
 .83788 
 
 .83807 
 
 33 
 
 .84417 
 
 .84495 
 
 .84573 
 
 .84050 
 
 .84728 
 
 84805 
 
 32 
 
 .85340 
 
 .85416 
 
 .85491 
 
 .85507 
 
 .85642 
 
 .85717 
 
 31 
 
 .86237 
 
 .86317 
 
 .80384 
 
 .80457 
 
 .86530 
 
 .80003 
 
 30 
 
 .87107 
 
 ,87178 
 
 .87250 
 
 .87321 
 
 ,87391 
 
 .87462 
 
 29 
 
 .87959 
 
 ,88020 
 
 .88089 
 
 .88158 
 
 .88226 
 
 .88295 
 
 28 
 
 .88768 
 
 .88835 
 
 88902 
 
 .88968 
 
 .89035 
 
 .89101 
 
 27 
 
 .89558 
 
 .8962:3 
 
 .89687 
 
 .89752 
 
 .89816 
 
 .89879 
 
 26 
 
 .90321 
 
 .90383 
 
 .90446 
 
 .90507 
 
 .90569 
 
 .90631 
 
 25 
 
 .91056 
 
 .91116 
 
 .91176 
 
 .91236 
 
 .91295 
 
 .91355 
 
 24 
 
 .91764 
 
 .91822 
 
 .91879 
 
 .91936 
 
 .91994 
 
 .92050 
 
 23 
 
 .92444 
 
 .92499 
 
 .92554 
 
 .92609 
 
 .92064 
 
 .92718 
 
 22 
 
 .93095 
 
 .93148 
 
 .93201 
 
 .93253 
 
 .93306 
 
 .93358 
 
 21 
 
 .93718 
 
 .93709 
 
 .93819 
 
 .93809 
 
 .93919 
 
 .93969 
 
 20 
 
 .94313 
 
 .94301 
 
 .94409 
 
 .94457 
 
 .94504 
 
 .94552 
 
 19 
 
 .94878 
 
 .94924 
 
 .94970 
 
 .95015 
 
 .95001 
 
 .95106 
 
 
 .95415 
 
 .95459 
 
 .95502 
 
 .95545 
 
 .95588 
 
 .95030 
 
 17 
 
 .95923 
 
 .95904 
 
 .96005 
 
 .9GC46 
 
 .90086 
 
 .90120 
 
 16 
 
 .96402 
 
 .96440 
 
 .96479 
 
 .96517 
 
 .90555 
 
 .90593 
 
 15 
 
 .96851 
 
 .90887 
 
 .96923 
 
 .96959 
 
 .90994 
 
 .97030 
 
 14 
 
 .97271 
 
 .97304 
 
 .97338 
 
 .97371 
 
 .97404 
 
 .97437 
 
 13, 
 
 .97661 
 
 .97092 
 
 .97723 
 
 .97754 
 
 .97784 
 
 .97815 
 
 12 
 
 .98021 
 
 .98050 
 
 .98079 
 
 .98107 
 
 .98135 
 
 .98103 
 
 11 
 
 .98352 
 
 .98378 
 
 .98404 
 
 .98430 
 
 .98455 
 
 .98481 
 
 10 
 
 .98652 
 
 .98676 
 
 .98700 
 
 .98723 
 
 .98746 
 
 .98709 
 
 9 
 
 .98923 
 
 .98944 
 
 .98965 
 
 .98986 
 
 .99006 
 
 .99027 
 
 8 
 
 .99163 
 
 .99182 
 
 .99200 
 
 .99219 
 
 .99237 
 
 .99255 
 
 7 
 
 .99374 
 
 .90390 
 
 .99406 
 
 .99421 
 
 .99437 
 
 .99452 
 
 6 
 
 .99553 
 
 .99567 
 
 .99580 
 
 .99594 
 
 .99007 
 
 .99019 
 
 5 
 
 .99703 
 
 .99714 
 
 .99725 
 
 .99736 
 
 .99746 
 
 .99756 
 
 4 
 
 .99822 
 
 .99831 
 
 .99839 
 
 .99847 
 
 .99855 
 
 .99863 
 
 3 
 
 .99911 
 
 .99917 
 
 .99923 
 
 .99929 
 
 .99934 
 
 .99939 
 
 2 
 
 .99969 
 
 .99973 
 
 .99976 
 
 .99979 
 
 .99982 
 
 .99985 
 
 1 
 
 .99997 
 
 .99998 
 
 .99999 
 
 1.00000 
 
 1.00000 
 
 1.00000 
 
 
 
 25* 
 
 20 
 
 15 
 
 10 
 
 5 
 
 
 
 
 Minutes. 
 
 
 NATURAL COSINE. 
 
210 
 
 TRIGONOMETRICAL FUNCTIONS. 
 NATURAL TANGENT. 
 
 
 Minutes. 
 
 Deg. 
 
 
 
 5 
 
 10 
 
 15 
 
 20 
 
 25 
 
 30 
 
 
 
 0.0000 
 
 0.0014 
 
 0.0029 
 
 0.0044 
 
 0.0058 
 
 0.0073 
 
 0.0087 
 
 1 
 
 0.0175 
 
 0.0189 
 
 0.0204 
 
 0.0218 
 
 0.0233 
 
 0.0247 
 
 0.0262 
 
 2 
 
 0.0349 
 
 0.0364 
 
 0.0378 
 
 0.0393 
 
 0.0407 
 
 0.0422 
 
 0.0437 
 
 3 
 
 0.0524 
 
 0.0539 
 
 0.0553 
 
 0.0508 
 
 0.0582 
 
 0.0597 
 
 0.0612 
 
 4 
 
 O.OG99 
 
 00714 
 
 0.0728 
 
 0.0743 
 
 0.0758 
 
 0.0772 
 
 0.0787 
 
 5 
 
 0.0875 
 
 0.0889 
 
 0.0904 
 
 0.0919 
 
 0.0933 
 
 0.0948 
 
 0.0963 
 
 6 
 
 0.1051 
 
 0.1066 
 
 0.1080 
 
 0.1095 
 
 0.1110 
 
 0.1125 
 
 0.1139 
 
 7 
 
 0.1228 
 
 0.1243 
 
 0.1257 
 
 0.1272 
 
 0.1287 
 
 0.1302 
 
 0.1316 
 
 8 
 
 0.1405 
 
 0.1420 
 
 0.1435 
 
 0.1450 
 
 0.1465 
 
 0.1480 
 
 0.1495 
 
 9 
 
 0.1584 
 
 0.1599 
 
 0.1014 
 
 0.1029 
 
 0.1644 
 
 0.1058 
 
 0.1073 
 
 10 
 
 0.1763 
 
 0.1778 
 
 0.1793 
 
 0.1808 
 
 0.1823 
 
 0.1838 
 
 0.1853 
 
 11 
 
 0.1944 
 
 0.1959 
 
 0.1974 
 
 0.1989 
 
 0.2004 
 
 0.2019 
 
 0.2034 
 
 12 
 
 0.2120 
 
 0.2141 
 
 0.2150 
 
 0.2171 
 
 0.2186 
 
 0.2202 
 
 0.2217 
 
 13 
 
 ((.2309 
 
 0.2324 
 
 0.2339 
 
 0.2355 
 
 0.2370 
 
 0.2385 
 
 0.2401 
 
 14 
 
 0.2493 
 
 0.2509 
 
 0.2524 
 
 0.2540 
 
 0.2555 
 
 0.2571 
 
 0.2586 
 
 15 
 
 0.2679 
 
 0.2695 
 
 0.2711 
 
 0.2726 
 
 0.2742 
 
 0.2758 
 
 0.2773 
 
 16 
 
 0.2867 
 
 0.2883 
 
 0.2899 
 
 0.9915 
 
 0.2930 
 
 0.2946 
 
 0.2962 
 
 17 
 
 0.3057 
 
 0.3073 
 
 0.3089 
 
 0.3105 
 
 0.3121 
 
 0.3137 
 
 0.3153 
 
 18 
 
 0.3249 
 
 0.3265 
 
 0.3281 
 
 0.3297 
 
 0.3314 
 
 0.3330 
 
 0.3346 
 
 10 
 
 0.3443 
 
 0.34(50 
 
 0.3470 
 
 0.3492 
 
 0.3508 
 
 0.3525 
 
 0.3541 
 
 20 
 
 0.3640 
 
 0.3656 
 
 0.3073 
 
 0.3089 
 
 0.3706 
 
 0.3722 
 
 0.3739 
 
 21 
 
 0.3839 
 
 3855 
 
 0.3872 
 
 0.3889 
 
 0.3905 
 
 0.3922 
 
 0.3939 
 
 22 
 
 0.4040 
 
 0.4057 
 
 0.4074 
 
 0.4091 
 
 0.4108 
 
 0.4125 
 
 0.4142 
 
 23 
 
 0.4245 
 
 0.4262 
 
 0.4279 
 
 0.4296 
 
 0.4314 
 
 0.4331 
 
 0.4348 
 
 24 
 
 0.4452 
 
 0.4470 
 
 0.4487 
 
 0.4505 
 
 0.4522 
 
 0.4540 
 
 0.4557 
 
 25 
 
 0.4663 
 
 0.4681 
 
 0.4698 
 
 0.4716 
 
 0.4734 
 
 0.4752 
 
 0.4770 
 
 26 
 
 0.4877 
 
 0.4895 
 
 0.4913 
 
 0.4931 
 
 0.4950 
 
 0.4968 
 
 0.4986 
 
 27 
 
 0.5095 
 
 0.5114 
 
 0.5132 
 
 0.5150 
 
 0.5169 
 
 0.5187 
 
 0.5206 
 
 28 
 
 0.5317 
 
 0.5336 
 
 0.5354 
 
 0.5373 
 
 5392 
 
 0.5411 
 
 0.5430 
 
 29 
 
 0.5543 
 
 0.5502 
 
 0.5581 
 
 0.5600 
 
 05619 
 
 0.5638 
 
 0.5658 
 
 30 
 
 0.5774 
 
 0.5793 
 
 0.5812 
 
 0.5832 
 
 0.5851 
 
 0.5871 
 
 0.5891 
 
 31 
 
 0.6008 
 
 0.6028 
 
 0.0048 
 
 0.6068 
 
 0.6088 
 
 0.0108 
 
 0.6128 
 
 32 
 
 0.6249 
 
 0.6269 
 
 0.0289 
 
 0.6309 
 
 0.0330 
 
 0.0350 
 
 0.6371 
 
 33 
 
 0.64!)4 
 
 0.6515 
 
 0.0535 
 
 0.0550 
 
 0.6577 
 
 0.6598 
 
 0.6619 
 
 34 
 
 0.0745 
 
 O.G70G 
 
 0.6787 
 
 0.6809 
 
 0.6830 
 
 * 0.0851 
 
 0.0873 
 
 35 
 
 0.7002 
 
 0.7024 
 
 0.7045 
 
 0.7007 
 
 0.7089 
 
 0.7111 
 
 0.7133 
 
 36 
 
 0.7205 
 
 0.7288 
 
 0.7310 
 
 0.7332 
 
 0.7355 
 
 0.7377 
 
 0.7400 
 
 37 
 
 0.7530 
 
 0.7558 
 
 0.7581 
 
 0.7604 
 
 0.7027 
 
 0.7050 
 
 0.7073 
 
 38 
 
 0.7813 
 
 0.7836 
 
 0.78GO 
 
 0.7883 
 
 0.7907 
 
 0.7931 
 
 0.7954 
 
 39 
 
 0.8098 
 
 0.8122 
 
 0.8146 
 
 0.8170 
 
 0.8195 
 
 0.8219 
 
 0.8243 
 
 40 
 
 0.8391 
 
 0.8410 
 
 0.8441 
 
 0.8466 
 
 0.8491 
 
 0.8510 
 
 0.8541 
 
 41 
 
 0.8693 
 
 0.8718 
 
 0.8744 
 
 0.8770 
 
 0.8795 
 
 0.8821 
 
 0.8847 
 
 42 
 
 0.9004 
 
 0.9030 
 
 0.9057 
 
 0.9083 
 
 0.9110 
 
 0.9137 
 
 0.9103 
 
 43 
 
 0.9325 
 
 0.9352 
 
 0.9380 
 
 0.9407 
 
 0.9434 
 
 0.9402 
 
 0.9490 
 
 44 
 
 0.9057 
 
 0.9085 
 
 0.9713 
 
 0.9742 
 
 0.9770 
 
 0.9798 
 
 0.9827 
 
 
 60 
 
 55 
 
 50 
 
 45 
 
 40 
 
 35 
 
 30 
 
 Deg. 
 
 
 
 
 
 
 
 
 
 Minutes. 
 
 NATCBAL COTANGENT. 
 
TRIGONOMETRICAL FUNCTIONS. 
 NATURAL TANGENT. 
 
 Minutes. 
 
 
 
 
 
 
 
 Deg. 
 
 35 
 
 40 
 
 45 
 
 50 
 
 55 
 
 60 
 
 
 0.0102 
 
 0.0116 
 
 0.0131 
 
 0.0145 
 
 0.0160 
 
 0.0175 
 
 89 
 
 0.0276 
 
 0.0291 
 
 0.0305 
 
 0.0320 
 
 0.0335 
 
 0.0349 
 
 88 
 
 0.0451 
 
 0.0466 
 
 0.0480 
 
 0.0495 
 
 0.0509 
 
 0.0524 
 
 87 
 
 0.0626 . 
 
 0.0641 
 
 0.0655 
 
 0.0670 
 
 0.0685 
 
 0.0699 
 
 86 
 
 0.0802 
 
 0.0816 
 
 0.0831 
 
 0.0846 
 
 0.0860 
 
 0-0875 
 
 85 
 
 0.0978 
 
 0.0992 
 
 0.1007 
 
 0.1022 
 
 0.1036 
 
 0.1051 
 
 84 
 
 0.1154 
 
 0.1169 
 
 0.1184 
 
 0.1198 
 
 0.1213 
 
 0.1228 
 
 83 
 
 0.1331 
 
 0.1346 
 
 0.1361 * 
 
 0.1376 
 
 0.1391 
 
 0.1405 
 
 82 
 
 0.1509 
 
 0.1524 
 
 0.1539 
 
 0.1554 
 
 0.1569 
 
 0.1584 
 
 81 
 
 0.1688 
 
 0.1703 
 
 0.1718 
 
 0.1733 
 
 0.1748 
 
 0.1763 
 
 80 
 
 0.1868 
 
 0.1883 
 
 0.1899 
 
 0.1914 
 
 0.1929 
 
 0.1944 
 
 79 
 
 0.2050 
 
 0.2065 
 
 0.2080 
 
 0.2095 
 
 0.2110 
 
 0.2126 
 
 78 
 
 0.2232 
 
 02247 
 
 0.2263 
 
 0.2278 
 
 0.2293 
 
 0.2309 
 
 77 
 
 0.2416 
 
 0.2432 
 
 0.2447 
 
 0.2462 
 
 0.2478 
 
 0.2493 
 
 76 
 
 0.2602 
 
 0.2617 
 
 0.2633 
 
 0.2648 
 
 0.2664 
 
 0.2679 
 
 75 
 
 0.2789 
 
 0.2805 
 
 0.2820 
 
 0.2836 
 
 0.2852 
 
 0.2867 
 
 74 
 
 0.2978 
 
 0.2994 
 
 0.3010 
 
 0.3026 
 
 0.3041 
 
 0.3057 
 
 73 
 
 0.3169 
 
 0.3185 
 
 0.3201 
 
 0.3217 
 
 0.3233 
 
 0.3249 
 
 72 
 
 0.3362 
 
 0.3378 " 
 
 0.3394 
 
 0.3411 
 
 0.3427 
 
 0.3443 
 
 71 
 
 0.3558 
 
 0.3574 
 
 0.3590 
 
 0.3607 
 
 0.3623 
 
 0.3640 
 
 70 
 
 0.3755 
 
 0.3772 
 
 0.3789 
 
 0.8805 
 
 0.3822 
 
 0.3839 
 
 69 
 
 0.3956 
 
 0.3973 
 
 0.3990 
 
 0.4006 
 
 0.4023 
 
 0.4040 
 
 68 
 
 0.4159 
 
 0.4176 
 
 0.4193 
 
 0.4210 
 
 0.4228 
 
 0.4245 
 
 67 
 
 0.4365 
 
 0.4383 
 
 0.4400 
 
 0.4417 
 
 0.4435 
 
 0.4452 
 
 66 
 
 0.4575 
 
 0.4592 
 
 0.4010 
 
 0.4628 
 
 0.4645 
 
 0.4(363 
 
 65 
 
 0.4788 
 
 0.4805 
 
 0.4823 
 
 0.4841 
 
 0.4859 
 
 0.4877 
 
 64 
 
 0.5004 
 
 0.5022 
 
 0.5040 
 
 0.5059 
 
 0.5077 
 
 0.5095 
 
 63 
 
 0.5224 
 
 0.5243 
 
 0.5261 
 
 0.5280 
 
 0.5298 
 
 0.5317 
 
 62 
 
 0.5448 
 
 0.5467 
 
 0.5486 
 
 0.5505 
 
 0.5524 
 
 0.5543 
 
 61 
 
 0.5677 
 
 0.5696 
 
 0.5715 
 
 0.5735 
 
 0.5754 
 
 0.5774 
 
 60 
 
 0.5910 
 
 0.5930 
 
 0.5949 
 
 0.5969 
 
 0.5989 
 
 0.6008 
 
 59 
 
 0.6148 
 
 0.6168 
 
 0.6188 
 
 0.6208 
 
 0.6228 
 
 0.6249 
 
 58 
 
 0.6391 
 
 0.6412 
 
 0.6432 
 
 0.6453 
 
 0.6473 
 
 0.6494 
 
 57 
 
 0.6640 
 
 0.6661 
 
 0.6682 
 
 0.6703 
 
 0.6724 
 
 0.6745 
 
 56 
 
 0.6894 
 
 0.6916 
 
 0.6937 
 
 0.6959 
 
 0.6980 
 
 0.7002 
 
 55 
 
 0.7155 
 
 0.7177 
 
 0.7199 
 
 0.7221 
 
 0.7243 
 
 0.7265 
 
 54 
 
 0.7422 
 
 0.7445 
 
 0.7467 
 
 0.7490 
 
 0.7513 
 
 0.7536 
 
 53 
 
 " 0.7696 
 
 0.7720 
 
 0.7743 
 
 0.7766 
 
 0.7789 
 
 0.7813 
 
 52 
 
 0.7978 
 
 0.8002 
 
 0.8026 
 
 0.8050 
 
 0.8074 
 
 0.8098 
 
 51 
 
 0.8268 
 
 0.8292 
 
 0.8317 
 
 0.8341 
 
 0.8366 
 
 0.8391 
 
 50 
 
 I* 0.8566 
 
 0.8591 
 
 0.8617 
 
 0.8642 
 
 0.8667 
 
 0.8693 
 
 49 
 
 I > 0.8873 
 
 0.8899 
 
 0.8925 
 
 0.8951 
 
 0.8978 
 
 0.9004 
 
 48 
 
 0.9190 
 
 0.9217 
 
 0.9244 
 
 0.9271 
 
 0.9298 
 
 0.9325 
 
 47 
 
 0.9517 
 
 0.9545 
 
 0.9573 
 
 0.9601 
 
 0.9629 
 
 0.9657 
 
 46 
 
 0.9856 
 
 0.9884 
 
 0.9913 
 
 0.9942 
 
 0.9971 
 
 1.0000 
 
 45 
 
 25 
 
 20 
 
 15 
 
 10 
 
 5 
 
 
 
 
 
 
 
 
 
 
 Deg. 
 
 Minutes. 
 
 NATURAL COTANGENT. 
 
212 
 
 TRIGONOMETRICAL FUNCTIONS. 
 NATURAL TANGENT. 
 
 
 Minutes. 
 
 Deg. 
 
 
 
 5 
 
 10 
 
 15 
 
 20 
 
 25 
 
 30 
 
 45 
 
 1.0000 
 
 1.0029 
 
 1.0058 
 
 1.0088 
 
 1.0117 
 
 1.0146 
 
 1.0176 
 
 46 
 
 1.0355 
 
 1.0385 
 
 1.0416 
 
 1.0446 
 
 1.0477 
 
 1.0507 
 
 1.0538 
 
 47 
 
 1.0724 
 
 1.0755 
 
 1.0786 
 
 10818 
 
 1.0850 
 
 1.0881 
 
 1.0913 
 
 48 
 
 11106 
 
 1.1139 
 
 1.1171 
 
 1.1204 
 
 1.1237 
 
 1.1270 
 
 1.1303 
 
 49 
 
 1.1504 
 
 1.1537 
 
 1.1571 
 
 1.1606 
 
 1.1640 
 
 1.1674 
 
 1.1708 
 
 50 
 
 1.1917 
 
 1.1953 
 
 1.1988 
 
 1.2024 
 
 1.2059 
 
 1.2095 
 
 1.2131 
 
 51 
 
 1.2349 
 
 1.2386 
 
 1.2423 
 
 1.2460 
 
 1.2497 
 
 1.2534 
 
 1.2572 
 
 52 
 
 1.2799 
 
 1.2838 
 
 1.2876 
 
 1.2913 
 
 1.2954 
 
 1.2993 
 
 1.3032 
 
 53 
 
 1.3270 
 
 1.3311 
 
 1.3351 
 
 1.3302 
 
 1.3432 
 
 1.3472 
 
 1.3514 
 
 54 
 
 1.3764 
 
 1.3806 
 
 1.3848 
 
 1.3891 
 
 1.39^4 
 
 1.3976 
 
 1.4019 
 
 55 
 
 1.4281 
 
 1.4326 
 
 1.4370 
 
 1.4415 
 
 1.4460 
 
 1.4505 
 
 1.4550 
 
 56 
 
 1.4826 
 
 1.4872 
 
 1.4919 
 
 1.4966 
 
 1.5013 
 
 1.5061 
 
 1.5108 
 
 57 
 
 1.5399 
 
 1.5448 
 
 1.5497 
 
 1.5547 
 
 1.5597 
 
 1.5647 
 
 1.5697 
 
 58 
 
 1.6003 
 
 1.6055 
 
 1.6107 
 
 1.6160 
 
 1.6212 
 
 1.6265 
 
 1.6318 
 
 59 
 
 1.6643 
 
 1.6698 
 
 1.6753 
 
 1.6808 
 
 1.6864 
 
 1.6920 
 
 1.6976 
 
 60 
 
 1.7320 
 
 1.7379 
 
 1.7437 
 
 1.7496 
 
 1.7556 
 
 1.7615 
 
 1.7675 
 
 61 
 
 1.8040 
 
 1.8102 
 
 1.8165 
 
 1.8228 
 
 1.8291 
 
 1.8354 
 
 1.8418 
 
 62 
 
 1.8807 
 
 1.8873 
 
 1.8940 
 
 1.9007 
 
 1.9074 
 
 1.9142 
 
 1.9210 
 
 63 
 
 1.9626 
 
 1.9697 
 
 1.9768 
 
 1.9840 
 
 1.9912 
 
 1.9984 
 
 2.0057 
 
 64 
 
 2.0503 
 
 2.0579 
 
 2.0655 
 
 2.0732 
 
 2.0809 
 
 2.0887 
 
 2.0965 
 
 65 
 
 2.1445 
 
 2.1527 
 
 2.1609 
 
 2.1692 
 
 2.1775 
 
 2.1859 
 
 2.1943 
 
 66 
 
 2.2460 
 
 2.2549 
 
 2.2637 
 
 2.2727 
 
 2.2817 
 
 2.2907 
 
 2.2998 
 
 67 
 
 2.3558 
 
 2.3654 
 
 2.3750 
 
 2.3847 
 
 2.3945 
 
 2.4043 
 
 2.4142 
 
 68 
 
 2.4751 
 
 2.4855 
 
 2.4960 
 
 2.5065 
 
 2.5171 
 
 2.5279 
 
 2.5386 
 
 69 
 
 2.6051 
 
 2.6165 
 
 2.6279 
 
 2.6394 
 
 2.6511 
 
 2.6628 
 
 2.6746 
 
 70 
 
 2.7475 
 
 2.7600 
 
 2.7725 
 
 2.7852 
 
 2.7980 
 
 2.8109 
 
 2.8239 
 
 71 
 
 2.9042 
 
 2.9180 
 
 2.9319 
 
 2.9456 
 
 2.9600 
 
 2.9743 
 
 2.9886 
 
 72 
 
 3.0777 
 
 3.0930 
 
 3.1084 
 
 3.1240 
 
 3.1397 
 
 3.1556 
 
 3.1716 
 
 73 
 
 3.2708 
 
 3.2879 
 
 3.3052 
 
 3.3226 
 
 3.3402 
 
 3.3580 
 
 3.3759 
 
 74 
 
 3.4874 
 
 3.5067 
 
 3.5201 
 
 3.5457 
 
 3.5656 
 
 3.5856 
 
 3.6059 
 
 75 
 
 3.7320 
 
 3.7539 
 
 3.7760 
 
 3.7983 
 
 3.8208 
 
 3.8436 
 
 3.8667 
 
 76 
 
 4.0108 
 
 4.C358 
 
 4.0611 
 
 4.0867 
 
 4.1126 
 
 4.1388 
 
 4.1653 
 
 77 
 
 4.3315 
 
 4.3604 
 
 4.3897 
 
 4.4194 
 
 4.4494 
 
 4.4799 
 
 4.5107 
 
 78 
 
 4.7046 
 
 4.7385 
 
 4.7729 
 
 4.8077 
 
 4.8430 
 
 4.8788 
 
 4.9152 
 
 79 
 
 5.1445 
 
 5.1848 
 
 5.2257 
 
 5.2671 
 
 5.3093 
 
 5.3521 
 
 5.3955 
 
 80 
 
 5.6713 
 
 5.7199 
 
 5.7694 
 
 5.8197 
 
 5.8708 
 
 5.9228 
 
 5.9758 
 
 81 
 
 6.3137 
 
 6.3737 
 
 6.4348 
 
 6.4971 
 
 6.5605 
 
 6.6252 
 
 6.6912 
 
 82 
 
 7.1154 
 
 7.1912 
 
 7.2687 
 
 7.3479 
 
 7.4287 
 
 7.5113 
 
 7.5957 
 
 83 
 
 8.1443 
 
 8.2434 
 
 8.3450 
 
 8.4490 
 
 8.5555 
 
 8.6648 
 
 8.7769 
 
 84 
 
 9.5144 
 
 9.6493 
 
 9.7S82 
 
 9.9310 
 
 10.0780 
 
 10.2290 
 
 10.3850 
 
 85 
 
 11.4300 
 
 11.6250 
 
 11.8260 
 
 12.0350 
 
 12.2510 
 
 12.4740 
 
 12.7060 
 
 86 
 
 14.5010 
 
 14.6060 
 
 14.9240 
 
 15.2570 
 
 15.6050 
 
 15.9690 
 
 16.3500 
 
 87 
 
 19.0810 
 
 19.6270 
 
 20.2060 
 
 20.8190 
 
 21.4700 
 
 22.1640 
 
 22.9040 
 
 88 
 
 28.6360 
 
 29.8820 
 
 31.2420 
 
 32.7300 
 
 34.3680 
 
 36.1780 
 
 38.1880 
 
 89 
 
 57.2900 
 
 62.4990 
 
 68.7500 
 
 76.3900 
 
 85.9480 
 
 98.2180 
 
 114.5900 
 
 
 60 
 
 55 
 
 50 
 
 45 
 
 40 
 
 35 
 
 30 
 
 Deg. 
 
 
 
 
 
 
 
 
 
 Minutes. 
 
 NATURAL COTANGENT. 
 
TBIGONOMETKICAL FUNCTIONS. 
 NATURAL TANGENT. 
 
 Minutes. 
 
 
 
 
 
 
 
 Deg. 
 
 35 
 
 40 
 
 45 
 
 50 
 
 55 
 
 60 
 
 
 1.0206 
 
 1.0235 
 
 1.0265 
 
 1.0295 
 
 1.0325 
 
 1.0355 
 
 44 
 
 1.05G8 
 
 1.0590 
 
 1.0630 
 
 1.0661 
 
 1.0692 
 
 1.0724 
 
 43 
 
 1.0945 
 
 1.0977 
 
 1.1009 
 
 1.1041 
 
 1.1074 
 
 1.1106 
 
 42 
 
 1.1336 
 
 1.1369 
 
 1.1403 
 
 1.1436 
 
 1.1470 
 
 1.1504 
 
 41 
 
 1.1743 
 
 1.1778 
 
 1.1812 
 
 1.1847 
 
 1.1882 
 
 1.1917 
 
 40 
 
 1.2167 
 
 1.2203 
 
 1.2239 
 
 1.2276 
 
 1.2312 
 
 1.2349 
 
 39 
 
 1.2609 
 
 1.2647 
 
 1.2685 
 
 1.2723 
 
 1.2761 
 
 1.2799 
 
 38 
 
 1.3071 
 
 1.3111 
 
 1.3151 
 
 1.3190 
 
 1.3230 
 
 1.3270 
 
 37 
 
 1.3555 
 
 1.3597 
 
 1.3638 
 
 1.3680 
 
 1.3722 
 
 1-3764 
 
 36 
 
 1.4063 
 
 1.4106 
 
 1.4150 
 
 1.4193 
 
 1.4237 
 
 1.4281 
 
 35 
 
 1.4595 
 
 1.4641 
 
 1.4687 
 
 1.4733 
 
 1.4779 
 
 1.4826 
 
 34 
 
 1.5156 
 
 1.5204 
 
 1.5252 
 
 1.5301 
 
 1.5350 
 
 1.5399 
 
 33 
 
 1.5747 
 
 1.5798 
 
 1.5849 
 
 1.5900 
 
 1.5952 
 
 1.6003 
 
 32 
 
 1.6372 
 
 1.6426 
 
 1.6479 
 
 1.6534 
 
 1.6588 
 
 1.6643 
 
 31 
 
 1.7033 
 
 1.7090 
 
 1.7147 
 
 1.7205 
 
 1.7263 
 
 1.7320 
 
 30 
 
 1.7735 
 
 1.7795 
 
 1.7856 
 
 1.7917 
 
 1.7979 
 
 1.8040 
 
 29 
 
 1.8482 
 
 1.8546 
 
 1.8611 
 
 1.8676 
 
 1.8741 
 
 1.8807 
 
 28 
 
 1.9278 
 
 1.9347 
 
 1.9416 
 
 1.9486 
 
 1.9556 
 
 1.9626 
 
 27 
 
 2.0130 
 
 2.0204 
 
 2.0278 
 
 2.0353 
 
 2.0428 
 
 2.0503 
 
 26 
 
 2.1044 
 
 2.1123 
 
 2.1203 
 
 2.1283 
 
 2.1364 
 
 2.1445 
 
 25 
 
 2.2028 
 
 2.2113 
 
 2.2199 
 
 2.2286 
 
 2.2373 
 
 2.2460 
 
 24 
 
 2.3090 
 
 2.3183 
 
 2.3276 
 
 2.3369 
 
 2.3464 
 
 2.3558 
 
 23 
 
 2.4242 
 
 2.4342 
 
 2.4443 
 
 2.4545 
 
 2.4648 
 
 2.4751 
 
 22 
 
 2.5495 
 
 2.5605 
 
 2.5715 
 
 2.5826 
 
 2.5938 
 
 2.6051 
 
 21 
 
 2.6865 
 
 2.6985 
 
 2.7106 
 
 2.7228 
 
 2.7351 
 
 2.7475 
 
 20 
 
 2.8370 
 
 2.8502 
 
 2.8636 
 
 2.8770 
 
 2.8905 
 
 2.9042 
 
 19 
 
 3.C032 
 
 3.0178 
 
 3.0326 
 
 3.0475 
 
 3.0625 
 
 3.0777 
 
 18 
 
 3.1877 
 
 3.2041 
 
 3.2205 
 
 3.2371 
 
 3.2539 
 
 3.2708 
 
 17 
 
 3.3941 
 
 3.4124 
 
 3.4308 
 
 3.4495 
 
 3.4684 
 
 3.4874 
 
 16 
 
 3.6264 
 
 3.6471 
 
 3.6680 
 
 3.6891 
 
 3,7105 
 
 3.7320 
 
 15 
 
 3.8900 
 
 3.9136 
 
 3.9375 
 
 3.9616 
 
 3.9861 
 
 4.0108 
 
 14 
 
 4.1921 
 
 4.2193 
 
 4.2468 
 
 4.2747 
 
 4.3029 
 
 4.3315 
 
 13 
 
 4.5420 
 
 4.5736 
 
 4.6057 
 
 4.6382 
 
 4.6712 
 
 4.7046 
 
 12 
 
 4.9520 
 
 4.9894 
 
 5.0273 
 
 5.0658 
 
 5.1049 
 
 5,1445 
 
 11 
 
 5.4397 
 
 5.4845 
 
 5.5301 
 
 5.5764 
 
 5.6234 
 
 5.6713 
 
 10 
 
 6,0296 
 
 6.0844 
 
 6.1402 
 
 6.1970 
 
 6.2549 
 
 6.3137 
 
 9 
 
 6.7584 
 
 6.8269 
 
 6.8969 
 
 6.9682 
 
 7.0410 
 
 7.1154 
 
 8 
 
 7.6821 
 
 7.7703 
 
 7.8606 
 
 7.9530 
 
 8.0476 
 
 8.1443 
 
 7 
 
 8.8918 
 
 9.0098 
 
 9.1309 
 
 9.2553 
 
 9.3831 
 
 9.5144 
 
 6 
 
 10.5460 
 
 10.7120 
 
 10.8830 
 
 11.0590 
 
 11.2420 
 
 11.4300 
 
 5 
 
 12.9470 
 
 13.1970 
 
 13.4570 
 
 13.7270 
 
 14.0080 
 
 14.3010 
 
 4 
 
 16.7500 
 
 17.1690 
 
 17.6110 
 
 18.0750 
 
 18.5640 
 
 19.0810 
 
 3 
 
 23.6940 
 
 24.5420 
 
 25.4520 
 
 26.4320 
 
 27.4900 
 
 28.6360 
 
 2 
 
 40.4360 
 
 42.9640 
 
 45.8290 
 
 49.1040 
 
 52.8820 
 
 57.2900 
 
 1 
 
 137.5100 
 
 171.8800 
 
 229.1800 
 
 343.7700 
 
 687.5500 
 
 
 
 
 25 
 
 20 
 
 15 
 
 10 
 
 5 
 
 
 
 
 
 
 
 
 
 
 Deg. 
 
 Minutes. 
 
 NATURAL COTANGENT. 
 
214 
 
 TRIGONOMETRICAL FUNCTIONS. 
 NATURAL SECANT. 
 
 
 Minutes. 
 
 Deg. 
 
 
 
 5 
 
 10 
 
 15 
 
 20 
 
 25 
 
 30 
 
 
 
 1.0000 
 
 1.0000 
 
 1.0000 
 
 1.0000 
 
 1.0000 
 
 1.0000 
 
 1.0000 
 
 1 
 
 1.0001 
 
 1.0002 
 
 1.0002 
 
 1.00C2 
 
 1.0003 
 
 1.0003 
 
 1.0003 
 
 2 
 
 1.0006 
 
 1.0007 
 
 1.0007 
 
 1.0008 
 
 1.0008 
 
 1.0009 
 
 1.0009 
 
 3 
 
 1.0014 
 
 1.0014 
 
 1.0015 
 
 1.0016 
 
 1.0017 
 
 1.0018 
 
 1.0019 
 
 4 
 
 1.0021 
 
 1.0025 
 
 1.0021 
 
 1.0027 
 
 1.0023 
 
 1.0030 
 
 1.0031 
 
 5 
 
 1.0038 
 
 1.0039 
 
 1.0041 
 
 1.0042 
 
 1.0043 
 
 1.0045 
 
 1.0046 
 
 6 
 
 1.0055 
 
 1.0057 
 
 1.0058 
 
 l.OOGO 
 
 1.0061 
 
 1.0063 
 
 1.0065 
 
 7 
 
 1.0075 
 
 1.0077 
 
 1.0079 
 
 1.0080 
 
 1.0082 
 
 1.0084 
 
 1.0086 
 
 8 
 
 1.0098 
 
 1.0 LOO 
 
 1.0102 
 
 1.0104 
 
 1.0107 
 
 1.0109 
 
 1.0111 
 
 9 
 
 1.0125 
 
 1.0127 
 
 1.0129 
 
 1.0132 
 
 1.0134 
 
 1.0136 
 
 1.0139 
 
 10 
 
 1.0154 
 
 1.0157 
 
 10159 
 
 1.0162 
 
 1.0165 
 
 1.0167 
 
 1.0170 
 
 11 
 
 1.0187 
 
 1.0190 
 
 1.0193 
 
 1.0196 
 
 1.0199 
 
 1.0202 
 
 1.0205 
 
 12 
 
 1 0223 
 
 1.022ii 
 
 1.0229 
 
 1.0233 
 
 1.02:56 
 
 1.0239 
 
 1.0243 
 
 13 
 
 1.0263 
 
 1.0266 
 
 1.0270 
 
 1.0274 
 
 1.0277 
 
 1.0280 
 
 1.0284 
 
 14 
 
 1.0306 
 
 1.0310 
 
 1.0314 
 
 1.0317 
 
 1.0321 
 
 1.0325 
 
 1.0329 
 
 15 
 
 1.0353 
 
 1.0357 
 
 1.0361 
 
 1.0365 
 
 1.0369 
 
 1.0373 
 
 1.0377 
 
 16 
 
 1.0403 
 
 1.0407 
 
 1.0412 
 
 1.0416 
 
 1.0420 
 
 1.0425 
 
 1.0429 
 
 17 
 
 1.0457 
 
 1.0461 
 
 1.0466 
 
 1.0471 
 
 1.0476 
 
 1.0480 
 
 1.0485 
 
 18 
 
 1.0515 
 
 1.0520 
 
 1.0525 
 
 1.0530 
 
 1.0535 
 
 1.0540 
 
 1.0545 
 
 19 
 
 1.0577 
 
 1.0581 
 
 1.0587 
 
 1.0592 
 
 1.0598 
 
 1.0G03 
 
 1.0608 
 
 20 
 
 1.0642 
 
 1.0647 
 
 1.0653 
 
 1.0659 
 
 1.0664 
 
 1.0ti70 
 
 1.0676 
 
 21 
 
 1.0711 
 
 1.0717 
 
 1.0723 
 
 1.0729 
 
 1.0736 
 
 1.0742 
 
 1.0748 
 
 22 
 
 1.0785 
 
 1.0792 
 
 1.0798 
 
 1.0804 
 
 1.0811 
 
 1.0817 
 
 1.0824 
 
 23 
 
 1.0864 
 
 1.0870 
 
 1.0877 
 
 1.0884 
 
 1.0891 
 
 1.0897 
 
 1.0904 
 
 24 
 
 1.0946 
 
 1.0953 
 
 1.0961 
 
 1.0968 
 
 1.0975 
 
 1.09S2 
 
 1.0989 
 
 25 
 
 1.1034 
 
 1.1041 
 
 1.1049 
 
 1.1056 
 
 1.1064 
 
 1.1072 
 
 1.1079 
 
 20 
 
 1.1126 
 
 1.1134 
 
 1.1142 
 
 1.1150 
 
 1.1158 
 
 1.11 (56 
 
 1.1174 
 
 2T 
 
 1.1223 
 
 1.1231 
 
 1.1240 
 
 1.1248 
 
 1.1257 
 
 1.1265 
 
 1.1274 
 
 28 
 
 1.1326 
 
 1.1334 
 
 1.1343 
 
 1.1352 
 
 1.1361 
 
 1.1370 
 
 1.1379 
 
 29 
 
 1.1433 
 
 1.1443 
 
 1.1452 
 
 1.1461 
 
 1.1471 
 
 1,1480 
 
 1.1489 
 
 30 
 
 1.1547 
 
 1.1557 
 
 1-1566 
 
 1.1576 
 
 1.1586 
 
 1.1596 
 
 1.1606 
 
 31 
 
 1.1666 
 
 1.1676 
 
 1.1687 
 
 1.1697 
 
 1.1707 
 
 1.1718 
 
 1.1728 
 
 32 
 
 1.1792 
 
 1.1802 
 
 1.1830 
 
 1.1824 
 
 1.1835 
 
 1.1846 
 
 1.1857 
 
 33 
 
 1.1923 
 
 1.1935 
 
 1.1946 
 
 1.1958 
 
 1.1969 
 
 1.1980 
 
 1.1992 
 
 34 
 
 1.2002 
 
 1.2074 
 
 1.2068 
 
 1.2098 
 
 1.2110 
 
 1.2122 
 
 1.2134 
 
 35 
 
 1.2208 
 
 1.2220 
 
 1.2233 
 
 1.2245 
 
 1.2258 
 
 1.2270 
 
 1.2283 
 
 36 
 
 1.2361 
 
 1.2374 
 
 1.2387 
 
 1.2400 
 
 1.2413 
 
 1,2427 
 
 1.2440 
 
 37 
 
 1.2521 
 
 1.2535 
 
 1.2549 
 
 1.2563 
 
 1.2577 
 
 1.2591 
 
 1.2605 
 
 38 
 
 1.2690 
 
 1.2705 
 
 1.2719 
 
 1.2734 
 
 1.2748 
 
 1.2763 
 
 1.2778 
 
 39 
 
 1.2867 
 
 1.2883 
 
 1.2898 
 
 12913 
 
 1,2929 
 
 1.2944 
 
 1.29GO 
 
 40 
 
 1.3054 
 
 1.3070 
 
 4.3086 
 
 1.3102 
 
 1.3118 
 
 1.3134 
 
 1.3151 
 
 41 
 
 1.3250 
 
 1.3267 
 
 1.3284 
 
 1.3301 
 
 1.3318 
 
 1.3335 
 
 1.3352 
 
 42 
 
 1.3456 
 
 1.3474 
 
 1.3492 
 
 1.3509 
 
 1.3507 
 
 1.3540 
 
 1.3563 
 
 43 
 
 1.3673 
 
 1.3692 
 
 1.3710 
 
 3,3729 
 
 1,3748 
 
 1.3767 
 
 1.3786 
 
 44 
 
 1.3902 
 
 1.3921 
 
 1.3941 
 
 1.3960 
 
 1.3980 
 
 1.4000 
 
 1.4020 
 
 
 60 
 
 55 
 
 50 
 
 45 
 
 40 
 
 35 
 
 30 
 
 Deg. 
 
 
 
 
 
 
 
 
 
 Minutes. 
 
 NATURAL COSECANT. 
 
TRIGONOMETRICAL FUNCTIONS. 
 NATURAL SECANT. 
 
 Minutes. 
 
 
 
 
 
 
 
 L>eg. 
 
 35 
 
 40 
 
 45 
 
 50 
 
 55 
 
 60 
 
 
 1.0000 
 
 1.0001 
 
 1.0001 
 
 1.0001 
 
 1.0001 
 
 1.0001 
 
 89 
 
 1.0004 
 
 1.0004 
 
 1.0005 
 
 1.0005 
 
 1.0005 
 
 1.0(OG 
 
 88 
 
 1.0010 
 
 1.0011 
 
 1.0011 
 
 1.0012 
 
 1.0013 
 
 1.0014 
 
 87 
 
 1.0019 
 
 1.0020 
 
 1.0021 
 
 1.0022 
 
 1.0023 
 
 1.0024 
 
 86 
 
 1.0032 
 
 1.0033 
 
 1.0034 
 
 1.0036 
 
 1.0037 
 
 1.0038 
 
 85 
 
 1.0048 
 
 1.0049 
 
 1.0050 
 
 1.0052 
 
 1.0053 
 
 1 .0055 
 
 84 
 
 1.00G6 
 
 1.0008 
 
 1.0070 
 
 1.0071 
 
 1.0073 
 
 1.0075 
 
 83 
 
 1.0088 
 
 1.0090 
 
 1.0092 
 
 1.0094 
 
 1.0096 
 
 1.0098 
 
 82 
 
 1.0113 
 
 1.0115 
 
 1.0118 
 
 1.0120 
 
 1.0122 
 
 1.0125 
 
 81 
 
 1.0141 
 
 1.0145 
 
 1.0146 
 
 1.0149 
 
 1.0152 
 
 1.0154 
 
 80 
 
 1.0173 
 
 10176 
 
 1.0179 
 
 1.0181 
 
 1.0184 
 
 1.0187 
 
 79 
 
 1.0208 
 
 1.0211 
 
 1.0214 
 
 1.0217 
 
 1.0220 
 
 1.0223 
 
 78 
 
 1.0246 
 
 1.0249 
 
 1.0253 
 
 1.0256 
 
 1.0260 
 
 1.0263 
 
 77 
 
 1.0288 
 
 1.0291 
 
 1.0295 
 
 1.0298 
 
 1.0302 
 
 1.0306 
 
 76 
 
 1.0333 
 
 1.0337 
 
 1.0341 
 
 l.< 345 
 
 1.0349 
 
 1.0353 
 
 75 
 
 1.03S2 
 
 1.0386 
 
 1.0390 
 
 1.0394 
 
 1.0399 
 
 1.0403 
 
 74 
 
 1.0434 
 
 1.0438 
 
 1.0443 
 
 1.0448 
 
 1.0452 
 
 1.0457 
 
 73 
 
 1.0490 
 
 1.0495 
 
 1.0500 
 
 1.0505 
 
 1.0510 
 
 1.0515 
 
 72 
 
 1.0550 
 
 1.0555 
 
 1.0560 
 
 1.0565 
 
 1.0571 
 
 1.0577 
 
 71 
 
 1.0644 
 
 1.0619 
 
 1.0625 
 
 1.0630 
 
 1.0636 
 
 1.0642 
 
 70 
 
 1.0082 
 
 1.0688 
 
 1.0694 
 
 1.0699 
 
 1.0705 
 
 1.0711 
 
 69 
 
 1.0754 
 
 1.0760 
 
 1.0766 
 
 1.0773 
 
 1.0779 
 
 1.0785 
 
 68 
 
 1.0830 
 
 1.0837 
 
 1.0844 
 
 1.0850 
 
 1.0857 
 
 1.0864 
 
 67 
 
 1.0911 
 
 1.0918 
 
 1.0925 
 
 1.0932 
 
 1.0939 
 
 1.0946 
 
 66 
 
 1.0997 
 
 1.1004 
 
 1.1011 
 
 1.1019 
 
 1.1026 
 
 1.1034 
 
 65 
 
 1.1087 
 
 1.1095 
 
 1.1102 
 
 1.1110 
 
 1.1118 
 
 1.1126 
 
 64 
 
 1.1182 
 
 1.1190 
 
 1.1198 
 
 1.1207 
 
 1.1215 
 
 1.1223 
 
 63 
 
 1.1282 
 
 1.1291 
 
 1.1299 
 
 1.1308 
 
 2.1317 
 
 1.1326 
 
 62 
 
 1.1388 
 
 1.1397 
 
 1.1406 
 
 1.1415 
 
 1.1424 
 
 1.1433 
 
 61 
 
 1.1499 
 
 1.1508 
 
 1.1518 
 
 1.1528 
 
 1.1537 
 
 1.1547 
 
 60 
 
 1.1616 
 
 1.1626 
 
 1.1636 
 
 1.1646 
 
 1.1656 
 
 1.1666 
 
 59 
 
 1.1739 
 
 1.1749 
 
 1.1760 
 
 1.1770 
 
 1.1781 
 
 1.1792 
 
 58 
 
 1.1808 
 
 1.1879 
 
 1.1819 
 
 1.1901 
 
 1.1912 
 
 1.1923 
 
 57 
 
 1.2004 
 
 1.2015 
 
 1.2027 
 
 1.2039 
 
 1.2050 
 
 1.2062 
 
 56 
 
 1.2146 
 
 1.2158 
 
 1.2171 
 
 1.2183 
 
 1.2195 
 
 1.2208 
 
 55 
 
 1.2296 
 
 1.2309 
 
 1.2322 
 
 1.2335 
 
 1.2348 
 
 1.2361 
 
 54 
 
 1.2453 
 
 1.2467 
 
 1.2480 
 
 1.2494 
 
 1.2508 
 
 1.2521 
 
 53 
 
 1.2619 
 
 1.2633 
 
 1.2647 
 
 1.2661 
 
 1.2676 
 
 1.2690 
 
 52 
 
 1.2793 
 
 1.2807 
 
 1.2822 
 
 1.2837 
 
 1.2852 
 
 1.2867 
 
 51 
 
 1.2975 
 
 1.2991 
 
 1.3006 
 
 1.3022 
 
 1.3038 
 
 1.3054 
 
 50 
 
 1.3167 
 
 1.3184 
 
 1.3200 
 
 1.3217 
 
 1.3233 
 
 1.3250 
 
 49 
 
 1.3369 
 
 1.3386 
 
 1.3404 
 
 1.3421 
 
 1.3439 
 
 1.3450 
 
 48 
 
 1.3581 
 
 1.3GOO 
 
 1.3618 
 
 1.3636 
 
 1.3655 
 
 1.3073 
 
 47 
 
 1.3805 
 
 1.3824 
 
 1.3843 
 
 1.3863 
 
 1.3882 
 
 1.3902 
 
 46 
 
 1.4040 
 
 1.4056 
 
 1.4081 
 
 1.4101 
 
 1.4122 
 
 1.4142 
 
 45 
 
 25 
 
 20 
 
 15 
 
 10 
 
 5 
 
 
 
 Dee 
 
 Minutes. 
 
 NATURAL COSECANT. 
 
216 
 
 TRIGONOMETRICAL FUNCTIONS. 
 NATURAL SECANT. 
 
 
 Minutes. 
 
 Deg. 
 
 
 
 5 
 
 10 
 
 15 
 
 20 
 
 25 
 
 30 
 
 45 
 
 1.4142 
 
 1.4163 
 
 1.4183 
 
 1.4204 
 
 1.4225 
 
 1.424G 
 
 1.4267 
 
 46 
 
 1.4395 
 
 1.4417 
 
 1.4439 
 
 1.44G1 
 
 1.4483 
 
 1.4505 
 
 1.4527 
 
 47 
 
 1.46G3 
 
 1.4G86 
 
 1.4709 
 
 1.4732 
 
 1.4755 
 
 1.4778 
 
 1.4802 
 
 48 
 
 14945 
 
 1.4969 
 
 1.4993 
 
 1.5018 
 
 1.5042 
 
 1.50G7 
 
 1.5092 
 
 49 
 
 1.5242 
 
 1.5268 
 
 1.5294 
 
 1.5319 
 
 1.5345 
 
 15371 
 
 1.5398 
 
 50 
 
 1.5557 
 
 1.5584 
 
 1.5011 
 
 1.5639 
 
 1.5GGG 
 
 1.5G94 
 
 1.5721 
 
 51 
 
 1.5890 
 
 1.5919 
 
 1.5947 
 
 1.5976 
 
 1.6005 
 
 l.GO:54 
 
 1.6064 
 
 52 
 
 1.6243 
 
 1.6273 
 
 1.6303 
 
 1.6334 
 
 1.6365 
 
 1.6396 
 
 1.6427 
 
 53 
 
 1.6616 
 
 1.6648 
 
 1.GG81 
 
 1.6713 
 
 1.6746 
 
 1.6779 
 
 1.6812 
 
 54 
 
 1.7013 
 
 1.7047 
 
 1.7081 
 
 1.7116 
 
 1.7151 
 
 1.7185 
 
 1.7220 
 
 55 
 
 1.7434 
 
 1.7471 
 
 1.7507 
 
 1.7544 
 
 1.7581 
 
 1.7018 
 
 1.7655 
 
 56 
 
 1.7883 
 
 1.7921 
 
 1.7960 
 
 1.7999 
 
 1.8039 
 
 1.8078 
 
 1.8118 
 
 57 
 
 1.8361 
 
 1.8402 
 
 1.8443 
 
 1.8485 
 
 1.8527 
 
 1.8569 
 
 1.8G11 
 
 58 
 
 1.8871 
 
 1.8915 
 
 1.8959 
 
 1.9004 
 
 1.9048 
 
 1.9093 
 
 1.9139 
 
 59 
 
 1.9416 
 
 1.9463 
 
 1.9510 
 
 1.9558 
 
 1.9606 
 
 1.9C54 
 
 1.9703 
 
 60 
 
 2.0000 
 
 2.0050 
 
 2.0102 
 
 2.0152 
 
 2.0204 
 
 2.0256 
 
 2.0308 
 
 61 
 
 2.0(527 
 
 2.0681 
 
 2.0735 
 
 2.0790 
 
 2.0846 
 
 2.0901 
 
 2.0957 
 
 62 
 
 2.1300 
 
 2.1359 
 
 2.1418 
 
 2.1477 
 
 2.1536 
 
 2.1596 
 
 2.1657 
 
 63 
 
 2.2027 
 
 2.2090 
 
 2.2153 
 
 22217 
 
 2.2282 
 
 2.2346 
 
 2.2411 
 
 64 
 
 2.2812 
 
 2.2880 
 
 2.2949 
 
 2.3018 
 
 2.3087 
 
 2.3158 
 
 2.3228 
 
 65 
 
 2.3662 
 
 2.3736 
 
 2.3811 
 
 2.3886 
 
 2.3961 
 
 2.4037 
 
 2.4114 
 
 66 
 
 2.4586 
 
 2.4G6G 
 
 2.4748 
 
 2.4829 
 
 2.4912 
 
 2.4995 
 
 2.5078 
 
 67 
 
 2.5593 
 
 2.5G81 
 
 2.5770 
 
 2.5859 
 
 2.5949 
 
 2.G040 
 
 2.6131 
 
 68 
 
 2.G695 
 
 2.G791 
 
 2.6888 
 
 2.6986 
 
 2.7085 
 
 2.7185 
 
 2.7285 
 
 69 
 
 2.7904 
 
 2.8010 
 
 2.8117 
 
 2.8225 
 
 2.8334 
 
 2.8444 
 
 2.8554 
 
 70 
 
 2.9238 
 
 2.9355 
 
 2.9474 
 
 2.9593 
 
 2.9713 
 
 2.9835 
 
 2.9957 
 
 71 
 
 3.0715 
 
 3.0S4G 
 
 3.0977 
 
 3.1110 
 
 3.1244 
 
 3.1379 
 
 3.1515 
 
 72 
 
 3.23G1 
 
 3.250G 
 
 3.2G53 
 
 3.2801 
 
 3.2951 
 
 3.3102 
 
 3.3255 
 
 73 
 
 3.4203 
 
 3.4366 
 
 3.4532 
 
 3.4G97 
 
 3.4867 
 
 3.5037 
 
 3.5209 
 
 74 
 
 3.6276 
 
 3.6464 
 
 3.GG51 
 
 3.68-10 
 
 3.7031 
 
 3.7224 
 
 3.7420 
 
 * 75 
 
 3.8G37 
 
 3.8848 
 
 3.9061 
 
 3.9277 
 
 3.9495 
 
 3.9716 
 
 3.9939 
 
 76 
 
 4.1330 
 
 4.1578 
 
 4.1824 
 
 4.2072 
 
 4.2324 
 
 4,2579 
 
 4.2836 
 
 77 
 
 4.4454 
 
 4.4736 
 
 4.5021 
 
 4.5331 
 
 4.5604 
 
 4.5901 
 
 4.6202 
 
 78 
 
 4.8097 
 
 4.8429 
 
 4.8765 
 
 4.9106 
 
 4.9452 
 
 4.9802 
 
 5.0158 
 
 79 
 
 5.2408 
 
 5.2803 
 
 5.3205 
 
 5.3G12 
 
 5.4020 
 
 5.4447 
 
 5.4874 
 
 80 
 
 5.7588 
 
 5.80G7 
 
 5.8554 
 
 5.9049 
 
 5.9554 
 
 5.99G3 
 
 6.0588 
 
 81 
 
 6.3924 
 
 6.4517 
 
 6.5121 
 
 6.5736 
 
 6.6363 
 
 6.7003 
 
 6.7655 
 
 82 
 
 7.1853 
 
 7.2604 
 
 7.3372 
 
 7.4156 
 
 7.4957 
 
 7.5776 
 
 7.6613 
 
 83 
 
 8.2055 
 
 8.3C39 
 
 8.4046 
 
 8.5079 
 
 8.6138 
 
 8.7223 
 
 8.8337 
 
 84 
 
 9.5608 
 
 9.7010 
 
 9.^391 
 
 9.9812 
 
 10.1270 
 
 10.2780 
 
 10.4330 
 
 85 
 
 11.4740 
 
 11.6680 
 
 11.8680 
 
 12.07GO 
 
 12.2910 
 
 12.5140 
 
 12.7450 
 
 86 
 
 14.3350 
 
 14.6400 
 
 14.9580 
 
 15.2900 
 
 15.6370 
 
 16.0000 
 
 16.3800 
 
 87 
 
 19.1070 
 
 19.G530 
 
 20.23(10 
 
 20.8430 
 
 21.4940 
 
 22.18GO 
 
 22.9250 
 
 88 
 
 28.6540 
 
 29.8990 
 
 31.2570 
 
 32.7450 
 
 34.3820 
 
 36.1910 
 
 38.2010 
 
 89 
 
 57.2990 
 
 62.5070 
 
 68.7570 
 
 76.3960 
 
 85.9460 
 
 98.2230 
 
 114.5900 
 
 
 GO 
 
 55 
 
 50 
 
 45 
 
 40 
 
 35 
 
 30 
 
 Deg 
 
 
 
 
 
 
 
 
 
 Minutes. 
 
 NATURAL COSECANT. 
 
TRIGONOMETRICAL FUNCTIONS. 
 NATURAL SECANT. 
 
 Minutes. 
 
 35 
 
 40 
 
 45 
 
 50 
 
 55 
 
 60 
 
 1.4288 
 
 1.4310 
 
 1.4331 
 
 1.4352 
 
 1.4374 
 
 1.4395 
 
 1.4550 
 
 1.4572 
 
 1.4595 
 
 1.4617 
 
 1.4640 
 
 1.4663 
 
 1.4825 
 
 1.4849 
 
 1.4873 
 
 1.4897 
 
 1.4921 
 
 1.4945 
 
 1.511G 
 
 1.5141 
 
 1.5166 
 
 1.5192 
 
 1.5217 
 
 1.5242 
 
 1.5424 
 
 1.5450 
 
 1.5477 
 
 1.5503 
 
 1.5530 
 
 1.5557 
 
 1.5749 
 
 1.5777 
 
 1.5805 
 
 1.5833 
 
 1.5862 
 
 1.5890 
 
 1.G093 
 
 1.6123 
 
 1.6153 
 
 1.6182 
 
 1.6212 
 
 1.6243 
 
 1.6458 
 
 1.6489 
 
 1.6521 
 
 1.6552 
 
 1.6584 
 
 1.6616 
 
 1.6845 
 
 1.6878 
 
 1.6912 
 
 1.6945 
 
 1.6979 
 
 1.7013 
 
 1.7256 
 
 1.7291 
 
 1.7327 
 
 1.7362 
 
 1.7398 
 
 1-7434 
 
 1.7693 
 
 1.7730 
 
 1.7768 
 
 1.7806 
 
 1.7844 
 
 1.7883 
 
 1.8158 
 
 1.8198 
 
 1.8238 
 
 1.8279 
 
 1.8320 
 
 1.8361 
 
 1.8654 
 
 1.8G97 
 
 1.8740 
 
 1.8783 
 
 1.8827 
 
 1.8871 
 
 1.9184 
 
 1.9230 
 
 1.9276 
 
 1.9322 
 
 1.9369 
 
 1.9416 
 
 1.9752 
 
 1.9801 
 
 1.9850 
 
 1.9900 
 
 1.9950 
 
 2.0000 
 
 2.0360 
 
 2.0413 
 
 2.0466 
 
 2.0519 
 
 2.0573 
 
 2.0627 
 
 2.1014 
 
 2.1070 
 
 2.1127 
 
 2.1185 
 
 2.1242 
 
 2.1300 
 
 2.1717 
 
 2.1778 
 
 2.1840 
 
 2.1902 
 
 2.1964 
 
 2.2027 
 
 2.2477 
 
 2.2543 
 
 2.2610 
 
 2.2676 
 
 2.2744 
 
 2.2812 
 
 2.3299 
 
 2.3371 
 
 2.3443 
 
 2.3515 
 
 2.3588 
 
 2.3662 
 
 2.4191 
 
 2.4269 
 
 2.4347 
 
 2.4426 
 
 2.4506 
 
 2.4586 
 
 2.5163 
 
 2.5247 
 
 2.5333 
 
 2.5419 
 
 2.5506 
 
 2.5593 
 
 2.G223 
 
 2.6316 
 
 2.6410 
 
 2.6504 
 
 2.6599 
 
 2.6695 
 
 2.7386 
 
 2.7488 
 
 2.7591 
 
 2.7694 
 
 2.7799 
 
 2.7904 
 
 2.8666 
 
 2.8778 
 
 2.8892 
 
 2.9006 
 
 2.9122 
 
 2.9338 
 
 3.0081 
 
 3.0206 
 
 3.0331 
 
 3.0458 
 
 3.0586 
 
 3.0715 
 
 3.1653 
 
 3.1792 
 
 3.1932 
 
 3.2074 
 
 3.2216 
 
 3.2361 
 
 3.3409 
 
 3.3565 
 
 3.3722 
 
 3.3881 
 
 3.4041 
 
 3.4203 
 
 3.53S3 
 
 3.5559 
 
 3.5736 
 
 3.5915 
 
 3.6096 
 
 3.6279 
 
 3.7617 
 
 3.7816 
 
 3.8018 
 
 3.8222 
 
 3.8428 
 
 3.8637 
 
 4.0165 
 
 4.0394 
 
 4.0625 
 
 4.0859 
 
 4.1090 
 
 4.1336 
 
 4.3098 
 
 4.3362 
 
 4.3630 
 
 4.3901 
 
 4.4176 
 
 4.4454 
 
 4.6507 
 
 4.6817 
 
 4.7130 
 
 4.7448 
 
 4.7770 
 
 4.8097 
 
 5.0520 
 
 5.0886 
 
 5.1258 
 
 5,1636 
 
 5.2019 
 
 5.2408 
 
 5.5308 
 
 5.5749 
 
 5.6197 
 
 5.6653 
 
 5.7117 
 
 5.7588 
 
 6.1120 
 
 6.166 1 
 
 6,2211 
 
 6.2772 
 
 6.3343 
 
 6.3924 
 
 6.8320 
 
 6,8998 
 
 6.9690 
 
 7,0390 
 
 7.1117 
 
 7.1853 
 
 7.7469 
 
 7.8344 
 
 7.9240 
 
 7.9971 
 
 8.1094 
 
 8.2055 
 
 8.9479 
 
 9.0651 
 
 9.1855 
 
 9.3092 
 
 9.4362 
 
 9.5668 
 
 10.5930 
 
 10.7580 
 
 10.9290 
 
 11.1040 
 
 11.2080 
 
 11,4740 
 
 12.9850 
 
 13.2350 
 
 13.4940 
 
 13.7630 
 
 14.0430 
 
 14.3350 
 
 16.7790 
 
 17.1980 
 
 17.6390 
 
 18.1030 
 
 18.5910 
 
 19.1070 
 
 23.7160 
 
 24,5620 
 
 25.4710 
 
 26.1500 
 
 27.5080 
 
 28.6540 
 
 39.9780 
 
 42,9760 
 
 45.8400 
 
 49.1140 
 
 52.8910 
 
 57.2990 
 
 137.5100 
 
 171.8900 
 
 229.1800 
 
 343.7700 
 
 687.5500 
 
 00 
 
 25 
 
 20 
 
 15 
 
 10 
 
 5 
 
 
 
 Minutes. 
 
 NATURAL COSECANT, 
 
218 CIRCUMFERENCE, AREA, AND CUBIC CONTENTS OF CIRCLES. 
 
 
 l- 5 8 
 
 i^l^OOOlOlG^^O^i-^lOCCJOr-lrtlOCO C^r-lOl 
 
 
 lefll 
 
 SSS&SSSSSgoo^SSSS Sco^S 
 
 
 
 
 
 .2 J 
 c* ^ 
 
 4) S y 
 
 CDi^^j -HCOOOOOOl^l^OcOGOCOr- 1 CM 1-^ CD oo Tft ^ti 
 
 CDlOCOCOr iLOr lOSI^i-^-C^ Or iOOCD>OCDCOCMl>- 
 
 l^COr-^Cit^CDCDCDl--C^ -- ( ^ OOOlCC Oir^Tti--^ait^ 
 
 DQ 
 
 r.7] 
 
 < .s 
 
 Ut)lOCDCDCDi^i--t-i-COOOCCCSa^OOO -lrHr-lCM 
 
 ^ } 
 
 
 
 
 
 r-H 
 
 .2 
 
 V C"T- 
 
 o -^f i^ r i rf oo r . 10 cc 01 o as 01 cc o c-t. cc o co i>- o 
 -rf co co co 01 01 01 i i * . o o as o o oo GO co r^ t^ i~ 
 
 
 
 cooocoasasasasasoooooo r-ir-^r-ir-icMoq 
 
 f=< 
 
 iS 
 
 
 O 
 
 CO 
 
 EH 
 
 3 
 
 Wmw\ 
 
 ^s^^sr^ co dr ^^f 5?jfe o ^o i !fe^s r ^o ^ 
 
 w 
 
 CH 
 
 }z< 
 
 I -" " c; 
 
 r li^ocS OocococDcoi^-asaiioai loccooco^f 
 
 
 O 
 Q 
 
 ^**- tS C 
 
 c c ^ 
 
 -2s^SS8S?gS^^^gggSSS 
 
 t i 
 PQ 
 P 
 
 
 
 .2 g * 
 
 ooaSr-j^HOiOoiT IT icoooooicSoi co r^ CM co 
 TF CM i i>- co CD o O co r- ^ -^ oo cc o O ^c co r- i 
 
 q 
 525 
 
 ^ StS 
 
 ^^^^cqcMCMoqoqcMcococococo^^^^OO 
 
 i 
 < 
 
 ill 
 
 O O ^ 1~^- - ^T CO r-i O CO CM lO Oi CM CC. Cu CO CC O CO 1"- 
 0-1 CD 01 CO lO rH t 1^ O CD CO OS O 01 CO rf 1- -t^ O CD 
 
 H 
 
 -H 
 
 S g 
 
 ^ ^ ^ ^ o to to 10 cc CD CD CD cc ^^r^i^^ co co 
 
 *S 
 
 saqoutui 
 
 ^Ix^H^^H^HSwl^H^^ix H;M *&-*> W E^ ^HwtoHrtp*,*^ 
 
 P3 
 
 O 
 
 je^iuuui 
 
 
 4 
 
 H 
 
 tf 
 
 H 
 
 c.Sc 
 
 0! ^ "" o CO 
 
 c |^SJ 
 
 oi . t: r - ^ 
 
 co CM do o co co ^ ^ i o 10 cc *^-< So co -rf i^ i>- 01 ^ CM co 
 
 CD 1"- C5 O iC. co CD CM T ( rt< i " LO OO rf Oi GO O CD iO 
 
 co ^ co co CM 01 o 10 GO Go o o CM > co CM oo 01 OD oq co 
 
 Pq 
 3 
 
 |g|5 
 
 OOOOO-^^^CO^OCD^CCCtO^CO^CO 
 
 p 
 
 o 
 
 
 (-H 
 O 
 
 C 0) OQ 
 
 1- t i 1 Oi O O CO 1C O O CM O O <M Ct O -^ 01 CO OO i^ 
 O CM CC O I"- -^f CO OO K"; CO CM t^- -^ 07 CM TJ-I CD O O * i OS 
 CO CN !> OS CD O O CD CC CD r r 1 GO T t O O r -C -f i>- J>- CM 
 
 O O O O O T 1 r 1 r ( CM CO CO ^ LO >O CD i>> GO OS rH CM CO 
 
 ^ y^ 1 
 
 <^ 
 
 OOOOOOOOOOOOOOOOOOrHrHrH 
 
 ^*~S ! 
 
 .2 
 
 OO t"- O ^T< i r- ( ^( CO i ( lO CO Ol iO O5 CM CD C^ CO CO O CO 
 
 
 
 OOOOO^rHrHrHrHCM.MCMCMO.COCOCOO.CO^ 
 
 
 *S9ijom ui 
 
 hS ,.,hO ,r,KO .^I -O -.lO H|O i<C & F3 ^O ^IfO ^pO 
 
 rH j r _ lr H^c ^|i-irHl * 1 H 5 ^! 00 (nr-ijc^ |r-(i|30HH?5]^ < ri] -<HxH rH ""-""^0 "HH* H 
 
 
 J9^9lU13lQ 
 
 
CIRCUMFERENCE, AREA, AND CUBIC CONTENTS OF CIRCLES. 
 
 > < S CO S O S 8 0> O K co CO j^ 1^ 
 
 O5 CD CO O J>- -^ T i GO tO CM Oi CD CO O 1"- ^f T O, IO (M CO CD 
 T ir^l>O(MlOOOOCOCOOO^-^i--OiC\|iOl^OCOOCO 
 CD IO rti XJH CO C<1 i T I O <?> OO OO i CD lO UO TJI CO CO Cl O 
 
 
 
 saqoui ui 
 
 H|N>a|flOM|i i>|oo 
 
 ^ OO CO T i CM (_- T 1 - 
 ^CCl>-C^O(^CD 
 O O O r- 1 O CD CJ 1 - 
 
 : O r-i CD r-( LO OO T 
 
 ooirHoci^ci-H 
 
 IT- OO O O5 O -i T- i CM CO OO O O CO Oi T-H CM r*i CD J 
 
 O5 O 
 ic<ioo 
 
 gfS 
 
 ^^.s 
 
 rt* O Oi <M O^ Oi 0-D O T i O CO O 01 ir- 1- C 
 CO TtH Cvl CO Tfi i^ CJ 00 IO CO CO 1 CD O O C 
 
 Or lOOr ( 
 
 OS CQ 1C O L 
 
 ^ O ^CrH^ G 
 
 CD CO O co J>- CD 1^- T-H cc 1 CO CM CO 1^ CO rH 
 
 CO O O 
 "M -^ CO 
 
 C]GO 
 
 O^rHriHJ^r--l^OO C 1 1 
 
 Ilj 
 
 fca 
 
 Q^"" 
 
 seqoutui 
 
 ,0-52^ 
 
 iO OO O 1 
 
 CiOi " O O 
 
 200 
 
 H CM M 
 
 ilj 
 111 
 
 O Q> "" 
 
 r 
 O ^ ^ ^ CO CO CN| C5 (N rH rH r 
 
 soqouiui 
 
220 CIRCUMFERENCE, AREA, AND CUBIC CONTENTS OF CIRCLES. 
 
 ^ H co cS o u5 o o cS CM o co o CM 56 GO TH co co co o i^ 
 
 COCiTf*<X>OOCOOSCMCOOCOCOCOOCO -- CSCDfMCOTlGO 
 
 1^1 -.= 
 
 aS i CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM "M CM co co co co co 
 u 
 
 r> r i CM CM CM CM CM CM CM CM CM ?M CM CM CM CM CM CM <*M <M <M CM 
 
 ^foOCMCOO^ooCMi O-^HI^T-HiOCJSCOt^T (T^CiCOt- 
 
 OiCiOO^^i I i C 
 ^ Tti O lO ~ 
 
 IO >O CO CD CO CO CO CD CO CD i>- i>- i>- i>> J>- !> !> !"- CO CO OO CO 
 
 o .2 .2 . i^ o i^- "^ o - CM i>- cb o cs CM cx> T t oo o >-^ " ~ ~ " 
 
 "S S ^ .2 O5 (M iO CO i rfl C30 T I ^J OO *- , J*- CO .t^ ^ -OO OQ O Oi O? C6 C* 
 
 Q O"" ^_- l ^-| r -i T -H^- l ^| r -|^ r - Hr Ji T -(^-i^.io|(>qoqeqc^(fqffq C 
 
 rH^COGOCXDCO^OC1CD^c5cO^C^O^r-<i^-OiCO 
 
 55 op O co_ O op o co c^ oo as CM ^ -t^por iB~>ococ;i7ti 
 ?. .1? 
 
 ^> co O i^- -rft - oooi -iococooi^ 
 s <y_q 
 
 ^H^THT^T^^fi-^Flr^TtlTiHTJHTflTh 
 
 saqout ni 
 jg^tuuiri 
 
 . . j_, O CO "^71 Oi [.NI r i LO O CD 05 CO ^ O O C 
 
 fl O 5 -^ -^ 
 
 "fl2 G ^.S C^^OOCpopT 
 
 O Q^ 1 . 
 
 Oi lO LO O^ i>. O OO C^LOCO lOCOr IT^OT i i CDOCiCM 
 
 lOOO^CMLOCOlO^-*COOOCJ5-^coJt^OCOCDOOLOCOCM 
 Tl^tHaiCOCDOOCOOOCMCDcOCOlOC^CDtOI- 1 CO^ I>- O5 
 
 ff-S 
 
 COO^OOOOO56iO5oadiOOOO^-^rHr-(CM(M<MCMCO 
 
 OC^OOi^l^COiOLO^OOCMOl^OC^CiGOt^CDcb^Ttl 
 
 cococococoa^coooa^cocococococococococoo jr^Tti 
 O OO O Q O* < O ? T-< rH r-T^? ^ ^H ^-r^?CM CM^CM CM^CM^fc^CM 
 
CIRCUMFERENCE, AREA, AND CUBIC CONTENTS OF CIRCLES. 221 
 
 cqoocoocoiOT-HcocirHOi^oocooocooi 1 1 " 
 
 W>3 O 
 rt O G ^ 
 
 O O^ " 
 
 (Mr-Hi (r I O O O O O T li-HC^CNCOCO^lOCOi^C^Or-* 
 ^ -rft Tf -rH ^-H iQ >O iQ >O >O i-O >O i-O iQ >O CQ CD CO CD CD CO CO 
 
 ^ 
 
 seqouiui 
 
 .S 
 1 
 
 D^H 
 
 ^^^ LOtOCDJr^oo .. ..,_ .. _, ,__-. 
 
 ? u .rt lOOOOOOCpT^CO^^C^J^CpOp ^<5>riHOCO !!> 
 
 Q ~ l 
 
 cS ^J 
 
 1 1; 
 sli 
 
 9 
 
 CO CO CO CO CO CO CO CO C 
 
 soqouiui 
 
 g o^o a 
 
 o fl S "- 1 
 
 o ^* 
 
 LCC-llOCO-t CDi IT (COl^COlOC^iLOCOCOlOOOiOlCCl 
 O^i^rHOqj^COO^rtlOOLO ^lOasCDlOCDOCD^tHCDCi 
 
 .^^ T (i lOO 1 5O^COl>-COCDlO ^COCOQT IrHOOiCOpOI^CO 
 
 ^^ 2 ao a>oa 52 d S^ o? 05 crt xH^H ^ 
 
 10 10 >o >o *o co co co co co co co co co co co co co co co co c 
 
 (NC^C^tMCMC^C^C^CS) 
 
222 CIRCUMFERENCE, AREA, AND CUBIC CONTENTS OF CIRCLES 
 
 T. >"~ l o on 
 
 il- -p 
 
 *H ob co *^ oo i> to o ^ co cp ^S o ** co cp o *H 
 
 CM i O i I O i-~ T-H CO CO i I 1 O t-t O !> O-l 
 
 O <M CO lO C 
 
 JCOCOCOCOC 
 
 OO O <M CO lO CO OO O i CO IO CD OO O CM CO O I- O O <M 
 
 CO O I- O O <M 
 
 OiOLOuO<X)CD 
 
 tO O CO - 
 
 eo co co co co co co co co co co co T 
 
 > co ix^ o^ oa - 
 
 <^ *" til s " 
 
 (J^TtlT-IOOlOCvJOt^OCOOQOCOlOCOrHOCil CD 
 
 CO QO i^ CO <NI CO Oi O O5 CO t-H ^ CD C 
 
 " 
 
 _ 
 
 o C 
 Jj 
 
 cooo^cococooocococococococococococococo^-^ 
 
 CO * O O <^ CO < ^*< O Ui ^ OO - CO CO rH J? r- CO CO C*l 00 
 
 rHr-HOCDGi^H IQOCO^DI^lOCMCDCOOOLOr-i-^llO^tiO 
 
 CO OD 00 CO CO 1^- O i- O JC* CO CO 00 CD CO CO 1>- O H 1> 
 
 C^lOCOr^TtlCDOir^C-O^CDl^OOOOr-lr-tC-lCMCMrH 
 
 CD^fCMOoOCDCOi 
 
 <MCDO^t | oO(MTMO co" 
 
 ii^cMoocooo ^ai ^O 
 
 OOi^LO^rlCMT-HaSOOi 
 
 fOOCD^CMOOOiOCOT < 
 
 saqouiui 
 
 c^^cococococococooocococococococooococococo 
 
CIRCUMFERENCE, AREA, AND CUBIC CONTENTS OF CIRCLES. 
 
 223 
 
 I ij 
 
 saqout ui 
 
 a ff o 
 
 C > 
 0- 
 
 is! 
 IP 
 
 saqouiui 
 
 (M CO O ^f OO CM iO 
 
 OOOr 1 !>1 <M C5 LO OO O i lC3t!LOOC 
 
 iO Ci OQ 10 i O. C\l O 1^ oo O C-1 C 
 cOOO50OQOO5T-ilCCir 
 
 r-r 
 rH ^ co j o <NI 10 *vo5 rH ^i cp oo - eo Q oo o eg 
 
 ^t 1 rjH Tf ^t 1 lO 1C IQ lO O CO CD CO CO .t^ I~ L^- !> GO CO 
 fN C<I (M <M 01 C^l 01 (M (M (M (M (M CM !M O1 <M C\l CM Oq 
 
 CO OO CO GO CO GO CO GO CO OO CO 
 
 rtir^oDt^^cioa xricor-icoOcMCMOco 
 O rjH^co^cscoTicoO *it^i--iOi t^ 
 rHoooooor- iiofMOOCsjiocDi^cot^Oi 
 
 COJ^C^t-tMl.^. CNoOCOOiiOOCD 
 CNOt^O^C-J^t^OiCMTHl^OiCM^i-^C^CvIiOl^ 
 
 ^TH^JHrt<lOLOlOLOCOCOCCCOI^-t^l^J:^OOCX5OO 
 CM CM CM CM M CM <M CNJ CM (M CM Ol CM CM CM CM CM CM C>q 
 
 CN-rtlCOGOOC sJ rtlCOOOOCM-rtHcO 
 OOOOr- 1 i i I i iT-HfM(MC<l<M 
 
 CM CM CM CM CM cq 
 
 C" "^ 
 CMl^ 
 
 HCMCMCMC^JCOCOCOCOTH^f"^H < ^HiOO 
 
 10 co 
 i 110 
 
 r- 
 Oi O O 
 
 T i CM ci 
 
 111 
 <3>.i 
 
 (N 1O l~ -- 1 ^ O Ttl CO I- CO O-l t^ rH CM r-H O5 1C CD rH 
 
 O T i CM CO ^ O O UD LO O O TtH T}H !|O CM O CD l- CO 
 
 G& O C>4 tQ o> rH O ^ *C> ^ Tt* *Q J>> O ^< G> ^$* i( O3 
 
 CCC 
 
 co co co i 
 
 L- i co co co co co as as as CD as 
 
 i CO CO IO -^H Oq r-H C^> OO CO LO CO CM O Gi J-^ C 
 
 
 setpui ui 
 
221 
 
 SPECIFIC GRAVITIES OF MATERIALS. 
 
 SPECIFIC GRAVITIES OF MATERIALS. 
 
 Weight of 
 
 a cubic foot 
 
 in Ibs. 
 
 GASES at 32 Fahr., and under the pressure of on 
 atmosphere of 2116.4 Ibs. on the square foot: 
 Air 
 
 e 
 
 0.080728 
 
 Carbonic acid 0.12344 
 
 Hydrogen 0.005592 
 
 Oxygen 0.089256 
 
 Nitrogen 078596 
 
 Steam (ideal) 0.05022 
 
 ^Ether vapor (ideal) . 02093 
 
 Bisulphuret-of-carbon vapour (i 
 
 ieal) 2137 
 
 079R 
 
 
 LIQUIDS at 32 Fahr. (except water, 
 which is taken at 39.4 Fahr.): 
 Water, pure, at 39.4 
 
 Weight of a 
 cubic foot in Ibs. 
 avoirdupois. 
 
 Specific 
 gravity, pure 
 water = I. 
 
 62.425 
 64.05 
 49.38 
 57.18 
 44.70 
 848.75 
 52.94 
 58.68 
 57.12 
 57.62 
 54.31 
 54.81 
 
 187.3 
 125 to 135 
 112 
 117 to 174 
 120 
 100 
 77. 4 to 89. 9 
 62.43 to 103. 6 
 162.3 
 164.2 
 
 1.000 
 1.026 
 0.791 
 0.916 
 0.716 
 13.596 
 0.848 
 0.940 
 0.915 
 0.923 
 0.870 
 0.878 
 
 3.00 
 2 to 2. 167 
 1.8 
 1.87 to 2. 78 
 1.92 
 1.602 
 1.24 to 1.44 
 1.00 to 1.66 
 2.6 
 2.63 
 
 " sea ordinary 
 
 Alcohol pure 
 
 proof spirit 
 
 ^Ether . 
 
 Mercury 
 
 Naphtha 
 
 Oil, linseed 
 
 " olive 
 
 " whale 
 
 " of turpentine 
 
 
 SOLID MINERAL SUBSTANCES, non- 
 metallic: 
 Basalt 
 
 Brick 
 
 Brickwork 
 
 Chalk . .... 
 
 Clay 
 
 Coal anthracite 
 
 " bituminous . 
 
 Coke , 
 
 Felspar 
 
 Flint.. 
 
SPECIFIC GRAVITIES OF MATERIALS. 
 
 225 
 
 SOLID MINERAL SUBSTANCES con 
 
 Weight of a 
 cubic foot in Ibs. 
 avoirdupois. 
 
 Specific 
 gravity, pure 
 water = 1. 
 
 tinued: 
 Glass crown average 
 
 156 
 
 2 5 
 
 11 flint 
 
 187 
 
 3.0 
 
 " green 
 
 169 
 
 2.7 
 
 " plate 
 
 169 
 
 2 7 
 
 Granite 
 
 164 to 172 
 
 2.63 to 2.76 
 
 Gypsum 
 
 143.6 
 
 2.3 
 
 Limestone, (including marble)... 
 magnesian 
 
 169 to 175 
 
 178 
 
 2. 7 to 2.8 
 
 2.86 
 
 Marl ... . 
 
 100 to 119 
 
 1 6 to 1 9 
 
 Masonry 
 
 116 to 144 
 
 1.85 to 2 3 
 
 Mortar 
 
 109 
 
 1.75 
 
 Mud 
 
 102 
 
 1 63 
 
 Quartz 
 
 165 
 
 2 65 
 
 Sand (damp) .... 
 
 118 
 
 1 9 
 
 " (dry). . 
 
 88.6 
 
 1 42 
 
 Sandstone average 
 
 144 
 
 2 3 
 
 " various kinds . 
 
 130 to 157 
 
 2 08 to 2 52 
 
 Shale 
 
 162 
 
 2 6 
 
 Slate 
 
 175 to 181 
 
 2 8 to 2 9 
 
 Trap... 
 
 170 
 
 2 72 
 
 METALS, solid: 
 Brass, cast 
 
 487 to 524.4 
 
 7 8 to 8 4 
 
 " wire. 
 
 533 
 
 8 54 
 
 Bronze 
 
 524 
 
 8 4 
 
 Copper, cast 
 
 537 
 
 8 6 
 
 " sheet 
 
 549 
 
 8 8 
 
 " hammered 
 
 556 
 
 8 9 
 
 Gold 
 
 1186 to 1224 
 
 19 to 19 6 
 
 Iron, cast various 
 
 434 to 456 
 
 6 95 to 7 3 
 
 average 
 
 444 
 
 7 11 
 
 Iron, wrought various 
 
 474 to 487 
 
 7 6 to 7 8 
 
 average 
 
 480 
 
 7 69 
 
 Lead 
 
 712 
 
 114- 
 
 Platinum 
 
 1311 to 1373 
 
 21 to 22 
 
 Silver 
 
 655 
 
 10 ^ 
 
 Steel 
 
 487 to 493 
 
 7 8 to 7 9 
 
 Tin 
 
 456 to 468 
 
 7 3 to 7 5 
 
 Zinc 
 
 424 to 449 
 
 6 8 to 7 2 
 
 TIMBER:* 
 Ash 
 
 47 
 
 7^3 
 
 Bamboo 
 
 25 
 
 4 
 
 Beech 
 
 43 
 
 69 
 
 15 
 
 
 
226 
 
 SPECIFIC GRAVITIES OF MATERIALS. 
 
 TIMBER :* continued. 
 Birch . .. 
 
 Weight of a 
 cubic foot in Ibs. 
 avoirdupois. 
 
 Specific 
 gravity, pure 
 water = 1. 
 
 44.4 
 52.5 
 60 
 65.3 
 56.2 
 30.4 
 33.4 
 36.2 
 74.5 
 34 
 30 to 44 
 30 to 44 
 29 
 31 to 35 
 62.5 
 57 
 54 
 47 
 47 
 57 
 42 to 63 
 
 41 to 83 
 44 
 35 
 53 
 49 
 57 
 43 to 62 
 54 
 36 
 60 
 37 
 41 to 55 
 61 
 62 to 66 
 62.5 
 25 
 50 
 
 0.711 
 0.843 
 0.96 
 1.046 
 0.9 
 0.486 
 0.535 
 0.579 
 1.193 
 0.544 
 0.48 to 0.7 
 0.48 to 0.7 
 0.46 
 0.5 to 0.56 
 1.001 
 0.91 
 0.86 
 0.76 
 0.76 
 0.92 
 0.675 to 1.01 
 
 0.65 to 1.33 
 0.71 
 0.56 
 0.85 
 0.79 
 0.92 
 0.69 to 0.99 
 0.87 
 0.58 
 0.96 
 0.59 
 0.66 to 0.88 
 0.98 
 0.99 to 1.06 
 1.001 
 0.4 
 0.8 
 
 Blue-gum 
 
 Box 
 
 Bullet- tree 
 
 Cabacalli 
 
 Cedar of Lebanon 
 
 Chestnut 
 
 Cowrie 
 
 Ebony, West Indian 
 
 Elm 
 
 Fir, red pine 
 
 " spruce 
 
 " American yellow pine 
 
 
 Greenhart 
 
 Haw thorn 
 
 Ha*zel 
 
 Holly 
 
 Hornbeam 
 
 Laburnum 
 
 Lancewood 
 
 Larch. (See "fir".) 
 Lignum-vitae 
 
 Locust 
 
 Mahogany, Honduras 
 
 Spanish . 
 
 Maple 
 
 Mora 
 
 Oak European 
 
 " American red 
 
 Poon 
 
 Saul 
 
 Sy cam ore 
 
 Teak Indian 
 
 11 African 
 
 Tonka 
 
 Water-gum 
 
 Willow 
 
 Yew 
 
 
 *The timber in every case is supposed to be dry. 
 
WEIGHT OF A SUPERFICIAL INCH. ETC. 
 
 227 
 
 WEIGHT OF A SUPERFICIAL INCH OF WROUGHT AND 
 CAST IRON. 
 
 (From one-sixteenth to one-inch thickness.) 
 
 Thickness in 
 inches. 
 
 WROUGHT IRON. 
 Cubic foot = 480 Ibs. 
 
 CAST IRON. 
 Cubic foot = 450 Ibs. 
 
 Weight in Ibs. 
 
 Weight in Ibs. 
 
 A 
 
 0.017356 
 
 0.0163 
 
 i 
 
 0.0347 
 
 0.0326 
 
 A 
 
 0.0520 
 
 0.0489 
 
 i 
 
 0.0694 
 
 0.0652 
 
 T 5 6 
 
 0.0867 
 
 0.0815 
 
 1 
 
 0.1041 
 
 0.0978 
 
 ft 
 
 0.1214 
 
 0.1141 
 
 i 
 
 0.1388 
 
 0.1304 
 
 T 9 * 
 
 0.1562 
 
 0.1467 
 
 i 
 
 0.1735 
 
 0.1630 
 
 
 
 0.1909 
 
 0.1793 
 
 1 
 
 0.2082 
 
 0.1956 
 
 n 
 
 0.2256 
 
 0.2119 
 
 i 
 
 0.2429 
 
 0.2282 
 
 it 
 
 0.2603 
 
 0.2445 
 
 i 
 
 0.2777 
 
 0.2608 
 
228 
 
 WEIGHT PEE SQUARE FOOT IH POUNDS AVOIRDUPOIS. 
 
 WEIGHT PER SQUARE FOOT IN POUNDS AVOIRDUPOIS. 
 
 Thickness in 
 inches. 
 
 Wrought 
 Iron. 
 
 Cast Iron. 
 
 Copper, 
 sheet. 
 
 Lead. 
 
 Zinc. 
 
 480 Ibs. per 
 cubic foot. 
 
 450 Ibs. per 
 cubic foot. 
 
 549 Ibs. per 
 cubic foot. 
 
 712 Ibs. per 
 cubic foot. 
 
 436 Ibs. per 
 cubic foot. 
 
 TV 
 
 2.50 
 
 2.34 
 
 2.86 
 
 3.71 
 
 2.27 
 
 * 
 
 5.00 
 
 4.69 
 
 5.72 
 
 7.42 
 
 4.54 
 
 T 3 6 
 
 7.50 
 
 7.03 
 
 8.58 
 
 11.12 
 
 6.81 
 
 i 
 
 10.00 
 
 9.37 
 
 11.44 
 
 14.83 
 
 9.08 
 
 ft 
 
 12.50 
 
 11.72 
 
 14.30 
 
 18.54 
 
 11.35 
 
 1 
 
 15.00 
 
 14.06 
 
 17.16 
 
 22.25 
 
 13.62 
 
 ft 
 
 17.50 
 
 16.41 
 
 20.02 
 
 25.96 
 
 15.89 
 
 
 
 20.00 
 
 18.75 
 
 22.88 
 
 29.66 
 
 18.16 
 
 ft 
 
 22.50 
 
 21.09 
 
 25.74 
 
 33.37 
 
 20.43 
 
 1 
 
 25.00 
 
 23.44 
 
 28.60 
 
 37.10 
 
 22.70 
 
 H 
 
 27.50 
 
 25.78 
 
 31.46 
 
 40.79 
 
 24.97 
 
 f 
 
 30.00 
 
 28.12 
 
 34.32 
 
 44.50 
 
 27.24 
 
 it 
 
 32.50 
 
 30.47 
 
 37.18 
 
 48.20 
 
 29.51 
 
 * 
 
 35.00 
 
 32.81 
 
 40.04 
 
 51.91 
 
 31.78 
 
 it 
 
 37.50 
 
 35.16 
 
 42.90 
 
 55.62 
 
 34 05 
 
 i 
 
 40.00 
 
 37.50 
 
 45.75 
 
 59.33 
 
 36.33 
 
WEIGHT OF A LINEAL FOOT, ETC. 
 
 229 
 
 WEIGHT OF A LINEAL FOOT OF FLAT AND SQUAKE 
 BAR IRON IN POUNDS AVOIRDUPOIS. 
 
 (480 pounds per cubic foot.) 
 
 Breadth in 
 inches. 
 
 Thickness in 
 inches. 
 
 Weight in Ibs. 
 
 d 
 5 2 
 ll 
 
 
 
 Thickness in 
 inches. 
 
 Weight in Ibs. 
 
 Breadth in 
 inches. 
 
 Thickness in 
 inches. 
 
 Weight in Ibs. 
 
 i 
 
 i 
 
 0.104 
 
 ij 
 
 1 
 
 5.000 
 
 2J 
 
 1 
 
 1.875 
 
 
 
 0.208 
 
 
 H 
 
 5.625 
 
 
 | 
 
 2.813 
 
 1 
 
 1 
 
 0.208 
 
 " 
 
 if 
 
 6.250 
 
 " 
 
 
 3.750 
 
 
 
 0.416 
 
 " 
 
 if 
 
 6.874 
 
 " 
 
 
 4.687 
 
 " 
 
 1 
 
 0.832 
 
 " 
 
 if 
 
 7.500 
 
 M 
 
 
 5.624 
 
 1 
 
 | 
 
 0.312 
 
 it 
 
 4 
 
 0.739 
 
 
 
 
 6.562 
 
 
 I 
 
 0.624 
 
 
 i 
 
 1.459 
 
 11 
 
 1 
 
 7.500 
 
 (( 
 
 I 
 
 0.937 
 
 " 
 
 I 
 
 2.187 
 
 " 
 
 li 
 
 8.437 
 
 (( 
 
 
 1.249 
 
 * 
 
 
 2.916 
 
 " 
 
 H 
 
 9.374 
 
 II 
 
 .| 
 
 1.562 
 
 <( 
 
 1 
 
 3.646 
 
 rt 
 
 If 
 
 10.310 
 
 (( 
 
 j 
 
 1.874 
 
 
 
 i 
 
 4.375 
 
 " 
 
 If 
 
 11.250 
 
 1 
 
 i 
 
 0.416 
 
 " 
 
 - 
 
 5.103 
 
 " 
 
 If 
 
 12.190 
 
 " 
 
 
 0.833 
 
 
 
 
 5.833 
 
 11 
 
 If 
 
 13.120 
 
 <( 
 
 -1 
 
 1.249 
 
 
 
 
 
 6.562 
 
 
 
 l| 
 
 14.060 
 
 M 
 
 j 
 
 1.667 
 
 H 
 
 u 
 
 7.291 
 
 11 
 
 o 
 
 15.000 
 
 
 
 -1 
 
 2.089 
 
 " 
 
 if 
 
 8.020 
 
 H 
 
 2J 
 
 15.940 
 
 
 
 t 
 
 2.500 
 
 " 
 
 if 
 
 8.750 
 
 11 
 
 2i 
 
 17.810 
 
 11 
 
 7 
 F 
 
 2.916 
 
 " 
 
 if 
 
 9.478 
 
 2} 
 
 | 
 
 1.041 
 
 (t 
 
 1 
 
 3.333 
 
 u 
 
 it 
 
 10.930 
 
 
 
 2.089 
 
 11 
 
 i 
 
 0.521 
 
 2 
 
 1 
 
 833 
 
 " 
 
 | 
 
 3.125 
 
 
 | 
 
 1.041 
 
 " 
 
 I 
 
 1.667 
 
 11 
 
 1 
 
 4.166 
 
 (i 
 
 f 
 
 1.562 
 
 
 
 3 
 8" 
 
 2.500 
 
 " 
 
 I 
 
 5.208 
 
 
 
 
 2.Q89 
 
 11 
 
 | 
 
 3.333 
 
 " 
 
 I 
 
 6.250 
 
 II 
 
 
 2.603 
 
 11 
 
 
 4.166 
 
 11 
 
 i 
 
 7.291 
 
 <( 
 
 
 3.124 
 
 11 
 
 
 
 5.000 
 
 " 
 
 
 8.333 
 
 
 
 
 3.646 
 
 c 
 
 I 
 
 5.833 
 
 " 
 
 li 
 
 9.398 
 
 <( 
 
 1 
 
 4.166 
 
 " 
 
 
 6.666 
 
 11 
 
 
 10.410 
 
 ii 
 
 1* 
 
 4.687 
 
 11 
 
 If 
 
 7.500 
 
 " 
 
 If 
 
 11.460 
 
 <( 
 
 li 
 
 5.728 
 
 " 
 
 l| 
 
 8.333 
 
 " 
 
 IJ 
 
 12.500 
 
 i| 
 
 J 
 
 0.624 
 
 11 
 
 If 
 
 9.156 
 
 (1 
 
 If 
 
 13.540 
 
 (i 
 
 \ 
 
 1.250 
 
 u 
 
 if 
 
 10.000 
 
 " 
 
 If 
 
 14.580 
 
 11 
 
 i 
 
 1.875 
 
 11 
 
 If 
 
 10.830 
 
 
 
 If 
 
 15.620 
 
 ii 
 
 
 2.500 
 
 11 
 
 If 
 
 11.660 
 
 11 
 
 2 
 
 16.660 
 
 
 
 
 3.125 
 
 M 
 
 li 
 
 12.500 
 
 " 
 
 a 
 
 17.710 
 
 ii 
 
 
 3.750 
 
 M 
 
 2 
 
 13.330 
 
 (( 
 
 2i 
 
 18.750 
 
 ii 
 
 
 4.375 
 
 2i 
 
 4 
 
 0.937 
 
 " 
 
 2| 
 
 20.820 
 
230 
 
 WEIGHT OF A LINEAL FOOT, ETC. 
 
 Breadth in 
 inches. 
 
 Thickness in 
 inches. 
 
 Weight in Ibs. 
 
 Breadth in 
 inches. 
 
 Thickness in 
 inches. 
 
 Weight in Ibs. 
 
 Breadth in 
 inches. 
 
 Thickness in 
 inches. 
 
 Weight in Ibs. 
 
 2J 
 
 2f 
 
 19.800 
 
 3J 
 
 2 
 
 21.660 
 
 4 
 
 2 
 
 26.660 
 
 2J 
 
 ^ 
 
 1.146 
 
 
 i 
 
 24.370 
 
 " 
 
 21 
 
 30.000 
 
 
 i 
 
 2.292 
 
 " 
 
 2 
 
 27.080 
 
 " 
 
 i 
 
 33.330 
 
 1 
 
 ^ 
 
 3.437 
 
 11 
 
 2| 
 
 29.790 
 
 M 
 
 2f 
 
 36.660 
 
 4 
 
 | 
 
 4.583 
 
 " 
 
 3 
 
 32.500 
 
 u 
 
 3 
 
 40.000 
 
 1 
 
 -| 
 
 5.729 
 
 41 
 
 3i 
 
 24.200 
 
 M 
 
 31 
 
 43.330 
 
 1 
 
 J 
 
 6.874 
 
 3i 
 
 i 
 
 2.916 
 
 " 
 
 3* 
 
 46.660 
 
 1 
 
 I 
 
 8.020 
 
 
 i 
 
 5.833 
 
 11 
 
 3| 
 
 50.000 
 
 * 
 
 1 
 
 9.154 
 
 u 
 
 i 
 
 8.750 
 
 " 
 
 4 
 
 53.330 
 
 * 
 
 H 
 
 10.310 
 
 " 
 
 
 11.660 
 
 $ 
 
 i 
 
 3.541 
 
 1 
 
 u 
 
 11.460 
 
 11 
 
 H 
 
 14.580 
 
 
 
 7.082 
 
 
 
 if 
 
 12.600 
 
 11 
 
 U 
 
 17 500 
 
 " 
 
 | 
 
 10.620 
 
 
 
 i| 
 
 13.750 
 
 M 
 
 if 
 
 20.430 
 
 M 
 
 1 
 
 14.160 
 
 1 
 
 i| 
 
 14.900 
 
 11 
 
 2 
 
 23.330 
 
 M 
 
 It 
 
 16.800 
 
 1 
 
 ij 
 
 16.030 
 
 " 
 
 2 
 
 26.250 
 
 
 
 H 
 
 21.330 
 
 1 
 
 1J 
 
 17.190 
 
 
 
 2J 
 
 29.160 
 
 
 
 If 
 
 24.780 
 
 
 
 2 
 
 18.330 
 
 M 
 
 2f 
 
 32.080 
 
 i 
 
 2 
 
 28.330 
 
 
 
 2J 
 
 19.480 
 
 " 
 
 3 
 
 35.000 
 
 i 
 
 2| 
 
 31.870 
 
 
 
 i 
 
 20.620 
 
 M 
 
 3| 
 
 37.910 
 
 1 
 
 1 
 
 35.410 
 
 c 
 
 1 
 
 21.770 
 
 
 
 3 ! 
 
 40.830 
 
 1 
 
 i 
 
 38.950 
 
 1 
 
 2^ 
 
 22.910 
 
 3f 
 
 
 3.125 
 
 
 
 3 
 
 42.500 
 
 1 
 
 2| 
 
 24.060 
 
 
 j 
 
 6.250 
 
 
 
 3J 
 
 46.030 
 
 1 
 
 2| 
 
 25.200 
 
 11 
 
 j 
 
 9.375 
 
 1 
 
 3 
 
 49.570 
 
 3 
 
 i 
 
 2.500 
 
 it 
 
 i 
 
 12.500 
 
 ( 
 
 3| 
 
 53.120 
 
 
 
 
 5.000 
 
 " 
 
 14 
 
 15.620 
 
 1 
 
 4 
 
 56.660 
 
 1 
 
 i 
 
 7.500 
 
 " 
 
 1} 
 
 18.750 
 
 
 
 
 
 60.200 
 
 1 
 
 i 
 
 10.000 
 
 M 
 
 if 
 
 21.870 
 
 IF 
 
 i 
 
 3.750 
 
 1 
 
 ia 
 
 12.500 
 
 " 
 
 2 
 
 25.000 
 
 
 
 
 7.500 
 
 1 
 
 i? 
 
 15.000 
 
 " 
 
 2* 
 
 28.120 
 
 y 
 
 | 
 
 11.250 
 
 
 
 if 
 
 17.500 
 
 
 
 2J 
 
 31.250 
 
 M 
 
 1 
 
 15.000 
 
 ".": :, 
 
 2 
 
 20.000 
 
 
 
 2f 
 
 34.370 
 
 " 
 
 it 
 
 18.750 
 
 1 
 
 2} 
 
 22.500 
 
 " 
 
 3 
 
 37.500 
 
 ! 
 
 9 
 
 22.500 
 
 1 
 
 2J 
 
 25.000 
 
 M 
 
 31 
 
 40.620 
 
 1 
 
 if 
 
 26.250 
 
 
 
 2| 
 
 27.500 
 
 " 
 
 3^ 
 
 43.750 
 
 
 
 2 
 
 30.000 
 
 
 
 3 
 
 30.000 
 
 " 
 
 3f 
 
 46.860 
 
 1 
 
 ^ 
 
 33.750 
 
 3| 
 
 | 
 
 2.708 
 
 4 
 
 i 
 
 3.330 
 
 1 
 
 ^ 
 
 37.500 
 
 
 
 5 416 
 
 " 
 
 i 
 
 6.660 
 
 < 
 
 2f 
 
 41.250 
 
 C "**; 
 
 |. 
 
 8.124 
 
 " 
 
 f 
 
 10.000 
 
 f 
 
 3 
 
 45.000 
 
 !t .**.] 
 
 1 
 
 10.830 
 
 * 
 
 
 13.330 
 
 
 
 5i 
 
 48.750 
 
 ..;_ ;,. 
 
 H 
 
 13.500 
 
 " 
 
 11 
 
 16.660 
 
 1 
 
 3J 
 
 52.500 
 
 4 
 
 1| 
 
 16.250 
 
 M 
 
 1 
 
 20.000 
 
 M 
 
 si 
 
 56.250 
 
 t 
 
 If 
 
 18.950 
 
 a 
 
 If 
 
 23.330 
 
 N 
 
 4 
 
 60.000 
 
WEIGHT OF A LINEAL FOOT, ETC. 
 
 231 
 
 
 
 5 * 
 
 1 
 
 a/ G 
 t, 1 - 1 
 
 PQ 
 
 Thickness in 
 inches. 
 
 Weight in Ibs. 
 
 a 
 
 5s 
 
 ~Q-Z 
 06 
 
 P 
 
 PQ 
 
 Thickness in 
 inches. 
 
 J5 
 
 3f 
 
 
 Breadth in 
 inches. 
 
 co 
 CJ <P 
 g-g 
 
 !s-S 
 
 ^ 
 
 Weight in Ibs. 
 
 4J 
 
 4} 
 
 63 . 750 
 
 5i 
 
 i 
 
 8.753 
 
 5| 
 
 i 
 
 4.788 
 
 
 4 
 
 67.500 
 
 
 -1 
 
 1-3.130 
 
 
 i 
 
 9.587 
 
 4f 
 
 1 
 
 3.953 
 
 I 
 
 
 17.500 
 
 ( 
 
 1 
 
 14.370 
 
 
 i 
 
 7.910 
 
 1 
 
 H 
 
 21.870 
 
 i 
 
 1 
 
 19.160 
 
 " 
 
 i 
 
 11.860 
 
 1 
 
 H 
 
 26.250 
 
 i 
 
 1} 
 
 23.950 
 
 
 
 
 15.830 
 
 1 
 
 if 
 
 30.620 
 
 i 
 
 li 
 
 28.750 
 
 ti 
 
 I* 
 
 19.760 
 
 f 
 
 2 
 
 35.000 
 
 1 
 
 I 
 
 33.540 
 
 
 
 li 
 
 23.750 
 
 IJ 
 
 m 
 
 39.370 
 
 
 
 2 
 
 38.330 
 
 < 
 
 If 
 
 27.700 
 
 u 
 
 2i 
 
 43.750 
 
 " 
 
 2t 
 
 43.120 
 
 
 
 2 
 
 31.670 
 
 1 
 
 2| 
 
 48.110 
 
 c< 
 
 2J 
 
 47.910 
 
 i 
 
 2i 
 
 35.620 
 
 
 
 3 
 
 52.500 
 
 M 
 
 2| 
 
 52.700 
 
 1 
 
 2i 
 
 39.580 
 
 1 
 
 3J 
 
 56.680 
 
 ( 
 
 3 
 
 57.500 
 
 1 
 
 2| 
 
 43.540 
 
 
 
 3i 
 
 61.250 
 
 1 
 
 3i 
 
 62.300 
 
 1 
 
 3 
 
 47.500 
 
 1 
 
 3| 
 
 65.620 
 
 4 
 
 3i 
 
 67.080 
 
 1 
 
 P 
 
 51.460 
 
 4 
 
 4 
 
 70.000 
 
 ( 
 
 3f 
 
 71.860 
 
 M 
 
 31 
 
 55.410 
 
 | 
 
 4} 
 
 74.370 
 
 4 
 
 4 
 
 76.650 
 
 (i 
 
 3| 
 
 59.370 
 
 
 
 4| 
 
 78.750 
 
 4 
 
 H 
 
 81.450 
 
 
 
 4 
 
 63.330 
 
 4 
 
 4f 
 
 83.110 
 
 1 
 
 4J 
 
 86.240 
 
 
 
 4} 
 
 67.290 
 
 
 
 5 
 
 87.500 
 
 
 
 4f 
 
 91.030 
 
 M 
 
 4 
 
 71.250 
 
 ! 
 
 5J 
 
 91.860 
 
 4 
 
 5 
 
 95.820 
 
 
 
 4| 
 
 75.200 
 
 5J 
 
 J 
 
 4.587 
 
 4 
 
 5t 
 
 100.600 
 
 5 
 
 1 
 
 4.166 
 
 
 i 
 
 9.164 
 
 ( 
 
 5} 
 
 105.400 
 
 M 
 
 i 
 
 8.330 
 
 44 
 
 1 
 
 13.750 
 
 4 
 
 5| 
 
 119.700 
 
 i 
 
 1 
 
 12.500 
 
 " 
 
 1 
 
 18.330 
 
 6 
 
 J 
 
 10.000 
 
 1 
 
 1 
 
 16.660 
 
 " 
 
 H 
 
 22.900 
 
 4 - 
 
 1 
 
 20.000 
 
 1 
 
 li 
 
 20.830 
 
 u 
 
 
 
 27.500 
 
 M 
 
 li 
 
 30.000 
 
 4 
 
 li 
 
 25.000 
 
 II 
 
 If 
 
 32.080 
 
 44 
 
 2 
 
 40.000 
 
 
 
 li 
 
 29.160 
 
 M 
 
 2 
 
 36.660 
 
 44 
 
 2J 
 
 50.000 
 
 4 
 
 2 
 
 33.330 
 
 11 
 
 2J 
 
 41.250 
 
 44 
 
 3 
 
 60.000 
 
 
 
 21 
 
 37.500 
 
 u 
 
 2i 
 
 45.830 
 
 
 
 3J 
 
 70.000 
 
 1 
 
 2i 
 
 41.660 
 
 " 
 
 2} 
 
 50.310 
 
 44 
 
 4 
 
 80.000 
 
 4 
 
 2| 
 
 45.830 
 
 11 
 
 3 
 
 55.000 
 
 44 
 
 4 
 
 90.000 
 
 1 
 
 3 
 
 50.000 
 
 
 
 3i 
 
 59.570 
 
 44 
 
 5 
 
 100.000 
 
 < 
 
 3} 
 
 54.160 
 
 11 
 
 3J 
 
 64.160 
 
 tc 
 
 5J 
 
 110.000 
 
 1 
 
 31 
 
 58.330 
 
 11 
 
 3| 
 
 68.740 
 
 
 
 6 
 
 120.000 
 
 i 
 
 3f 
 
 62.500 
 
 (( 
 
 4 
 
 73.330 
 
 6J 
 
 i 
 
 10.830 
 
 
 
 4 
 
 66.660 
 
 11 
 
 4J 
 
 77.910 
 
 
 
 21.660 
 
 t 
 
 4J 
 
 70.830 
 
 11 
 
 4J 
 
 82.500 
 
 44 
 
 li 
 
 32.500 
 
 1 
 
 4^ 
 
 75.000 
 
 " 
 
 4| 
 
 87.080 
 
 44 
 
 2 
 
 43.330 
 
 4 
 
 4 
 
 79.160 
 
 " 
 
 5 
 
 91.560 
 
 44 
 
 2i 
 
 54.160 
 
 4 
 
 5 
 
 83.330 
 
 u 
 
 5| 
 
 96.240 
 
 44 
 
 3 
 
 65.000 
 
 H 
 
 i 
 
 4.376 
 
 M 
 
 5J 
 
 100.600 
 
 ii 
 
 3i 
 
 75.830 
 
232 
 
 WEIGHT OF A LINEAL FOOT, ETC. 
 
 Breadth in 
 inches. 
 
 Q 
 ? A 
 
 C 03 
 C 
 
 Jifl 
 
 Weight in Ibs. 
 
 Breadth in 
 inches. 
 
 Thickness in 
 inches. 
 
 Weight in Ibs. 
 
 c 
 
 
 
 j| 
 
 c 
 
 Jl 
 
 c- .2 
 
 H 
 
 Weight in Ib.s. 
 
 6 ; > 
 
 4 
 
 86.66 
 
 8 
 
 4 
 
 106.60 
 
 9 
 
 8} 
 
 255.00 
 
 
 4J 
 
 97.50 
 
 " 
 
 4.1 
 
 120.00 
 
 " 
 
 9 
 
 270.00 
 
 it 
 
 5 
 
 108.30 
 
 " 
 
 5" 
 
 133.30 
 
 9} 
 
 } 
 
 15.83 
 
 M 
 
 5 
 
 119.10 
 
 " 
 
 5} 
 
 146.60 
 
 
 1 
 
 31.66 
 
 
 
 6 
 
 130.00 
 
 (i 
 
 6 
 
 160.00 
 
 " 
 
 1} 
 
 47.50 
 
 " 
 
 6} 
 
 140.80 
 
 " 
 
 8} 
 
 173.30 
 
 M 
 
 2 
 
 63.33 
 
 7 
 
 i 
 
 11.66 
 
 u 
 
 7 
 
 186.60 
 
 " 
 
 2} 
 
 79.16 
 
 " 
 
 1 
 
 23.33 
 
 
 
 7} 
 
 200.00 
 
 " 
 
 S 
 
 95.00 
 
 " 
 
 u 
 
 35.00 
 
 " 
 
 8 
 
 213.30 
 
 " 
 
 3^ 
 
 110.80 
 
 " 
 
 2 
 
 46.66 
 
 8| 
 
 } 
 
 14.16 
 
 " 
 
 4 
 
 126.60 
 
 
 
 2J 
 
 58.33 
 
 
 
 28.33 
 
 " 
 
 4} 
 
 142.50 
 
 11 
 
 3 
 
 70.00 
 
 u 
 
 1J 
 
 42.48 
 
 M 
 
 5" 
 
 158.30 
 
 11 
 
 3J 
 
 81 66 
 
 11 
 
 2 
 
 56.66 
 
 " 
 
 5-^r 
 
 174.10 
 
 " 
 
 4 
 
 93.33 
 
 u 
 
 2J 
 
 70.83 
 
 H 
 
 6 
 
 190.00 
 
 
 
 4} 
 
 105.00 
 
 11 
 
 3 
 
 85.00 
 
 " 
 
 6J 
 
 205.80 
 
 " 
 
 5 
 
 116.60 
 
 " 
 
 3} 
 
 99.16 
 
 " 
 
 7 
 
 221.60 
 
 u 
 
 5J 
 
 128.30 
 
 " 
 
 4 
 
 113.30 
 
 " 
 
 7i 
 
 237.60 
 
 
 
 6 
 
 140.00 
 
 " 
 
 4J 
 
 127.50 
 
 " 
 
 8 
 
 253 . 30 
 
 " 
 
 6J 
 
 151.60 
 
 " 
 
 5 
 
 141.60 
 
 " 
 
 8J 
 
 269.10 
 
 " 
 
 7 
 
 163.30 
 
 u 
 
 5} 
 
 155.80 
 
 " 
 
 9 
 
 285.00 
 
 n 
 
 i 
 
 12.50 
 
 (i 
 
 6 
 
 170.00 
 
 11 
 
 9J 
 
 300.80 
 
 
 1 
 
 25.00 
 
 u 
 
 6| 
 
 184.10 
 
 10 
 
 1 
 
 16.66 
 
 " 
 
 U 
 
 37.50 
 
 u 
 
 7 
 
 198.30 
 
 " 
 
 1 
 
 33.33 
 
 M 
 
 2 
 
 50.00 
 
 " 
 
 7} 
 
 212.50 
 
 " 
 
 1} 
 
 50.00 
 
 ii 
 
 2 
 
 62.50 
 
 11 
 
 8 
 
 226.60 
 
 11 
 
 2 
 
 66.66 
 
 tl 
 
 3 
 
 75.00 
 
 M 
 
 8} 
 
 240.70 
 
 " 
 
 2^- 
 
 83.33 
 
 
 
 3} 
 
 87.50 
 
 9 
 
 i 
 
 15.00 
 
 " 
 
 3" 
 
 100.00 
 
 11 
 
 4 
 
 100.00 
 
 < 
 
 i 
 
 30.00 
 
 " 
 
 3^ 
 
 116.60 
 
 " 
 
 4i- 
 
 112.50 
 
 11 
 
 u 
 
 45.00 
 
 11 
 
 4 
 
 133.30 
 
 " 
 
 5 
 
 125.00 
 
 11 
 
 2 
 
 60.00 
 
 11 
 
 4J 
 
 150.00 
 
 M 
 
 5} 
 
 137.50 
 
 " 
 
 2J 
 
 75.00 
 
 M 
 
 5 
 
 166.60 
 
 11 
 
 6 
 
 150.00 
 
 11 
 
 3 
 
 90.00 
 
 " 
 
 5} 
 
 183.30 
 
 ii 
 
 6J 
 
 162.50 
 
 " 
 
 3i 
 
 105.00 
 
 (f 
 
 6 
 
 200.00 
 
 " 
 
 7 
 
 175.00 
 
 u 
 
 4 
 
 120.00 
 
 
 
 6} 
 
 216.60 
 
 M 
 
 7^ 
 
 187.50 
 
 11 
 
 4 
 
 135.00 
 
 1 
 
 7 
 
 233.30 
 
 8 
 
 | 
 
 13.33 
 
 11 
 
 5 
 
 150.00 
 
 
 
 7* 
 
 250.00 
 
 11 
 
 1 
 
 26.66 
 
 11 
 
 5} 
 
 165.00 
 
 
 
 8 
 
 266.60 
 
 11 
 
 H 
 
 40.00 
 
 " 
 
 6 
 
 180.00 
 
 1 
 
 8 
 
 283.30 
 
 11 
 
 2 
 
 53.33 
 
 11 
 
 61 
 
 195.00 
 
 1 
 
 9 
 
 300.00 
 
 " 
 
 2J 
 
 66.66 
 
 " 
 
 y 
 
 210.00 
 
 ( 
 
 9J 
 
 316.60 
 
 M 
 
 3 
 
 80.00 
 
 " 
 
 7* 
 
 225.00 
 
 1 
 
 10 
 
 333.30 
 
 " 
 
 31 
 
 93.33 
 
 " 
 
 8 
 
 240.00 
 
 10} 
 
 i 
 
 17.50 
 
WEIGET OF A LINEAL FOOT, ETC. 
 
 233 
 
 Breadth in 
 inches. 
 
 Thickness in 
 inches. 
 
 Weight in Ibs. 
 
 Breadth in 
 inches. 
 
 Thickness in 
 inches. 
 
 Weight in Ibs. 
 
 Breadth in 
 inches. 
 
 Thickness in 
 inches. 
 
 Weight in Ibs. 
 
 10} 
 
 1 
 
 35.00 
 
 11 
 
 n 
 
 55.00 
 
 11} 
 
 H 
 
 57.50 
 
 1 
 
 1} 
 
 52.50 
 
 " 
 
 2 2 
 
 73.33 
 
 
 2 
 
 76.66 
 
 4 
 
 $ 
 
 70.00 
 
 " 
 
 2} 
 
 91.56 
 
 44 
 
 2J 
 
 95.83 
 
 1 
 
 2} 
 
 87.50 
 
 11 
 
 3 
 
 110.00 
 
 (< 
 
 3 
 
 115.00 
 
 ! 
 
 3 
 
 105.00 
 
 11 
 
 3J 
 
 128.30 
 
 44 
 
 3} 
 
 134.10 
 
 f 
 
 3} 
 
 122.50 
 
 " 
 
 4 
 
 146.60 
 
 " 
 
 4 
 
 153.30 
 
 1 
 
 4 
 
 140.00 
 
 M 
 
 4J 
 
 165.00 
 
 " 
 
 4J 
 
 172.50 
 
 ! 
 
 4J 
 
 157.50 
 
 11 
 
 5 
 
 183.30 
 
 
 
 5 
 
 191.60 
 
 ( 
 
 5 
 
 175.00 
 
 M 
 
 51 
 
 201.60 
 
 " 
 
 51 
 
 210.80 
 
 1 
 
 5} 
 
 192.50 
 
 44 
 
 6 
 
 220.00 
 
 11 
 
 6 
 
 230.00 
 
 1 
 
 6 
 
 210.00 
 
 " 
 
 6J 
 
 238.30 
 
 < 
 
 ^} 
 
 249.10 
 
 ! 
 
 6J 
 
 227.50 
 
 " 
 
 7 
 
 256.60 
 
 " 
 
 7 
 
 268.30 
 
 1 
 
 7 
 
 245.00 
 
 M 
 
 7} 
 
 275.00 
 
 
 
 71 
 
 287.50 
 
 1 
 
 7} 
 
 262.50 
 
 M 
 
 8 
 
 293.30 
 
 cJ :; 
 
 8 
 
 306.60 
 
 i 
 
 8 
 
 280.00 
 
 it 
 
 8J 
 
 311.60 
 
 " 
 
 8i 
 
 325.80 
 
 ! 
 
 8} 
 
 297.50 
 
 11 
 
 9 
 
 330.00 
 
 M 
 
 9 
 
 345.00 
 
 ! 
 
 9 
 
 315.00 
 
 44 
 
 9} 
 
 348.30 
 
 M 
 
 91 
 
 364.10 
 
 1 
 
 9J 
 
 332.50 
 
 " 
 
 10 
 
 366.60 
 
 " 
 
 10" 
 
 383.30 
 
 1 
 
 10 
 
 350.00 
 
 " 
 
 10} 
 
 385.00 
 
 M 
 
 10} 
 
 402.50 
 
 
 
 10} 
 
 367.50 
 
 11 
 
 11 
 
 403.30 
 
 M 
 
 11 
 
 421.60 
 
 11 
 
 i 
 
 18.33 
 
 11* 
 
 J 
 
 19.16 
 
 " 
 
 11} 
 
 440.70 
 
 
 1 
 
 36.66 
 
 
 1 
 
 38.33 
 
 12 
 
 12 
 
 480.00 
 
234 
 
 WEIGHT OF A LINEAL FOOT, ETC. 
 
 WEIGHT OF A LINEAL FOOT OF ROLLED ROUND 
 IRON IN POUNDS AVOIRDUPOIS. 
 
 (480 pounds per cubic foot.) 
 
 Diameter in 
 inches. 
 
 1 
 Weight in Ibs. 
 
 Diameter in 
 inches. 
 
 Weight in Ibs- 
 
 Diameter in 
 ineher. 
 
 Weight in Ibs. 
 
 Diameter in 
 inches. 
 
 Weight in Ibs. 
 
 A 
 
 0.010 
 
 03 
 
 ^8 
 
 14.77 
 
 Bf 
 
 82.79 
 
 8J 
 
 206.2 
 
 4 
 
 0.041 
 
 2} 
 
 16.36 
 
 6| 
 
 86.52 
 
 9 
 
 212.2 
 
 A 
 
 0.091 
 
 2| 
 
 18.04 
 
 5{ 
 
 90.34 
 
 01 
 
 y f 
 
 218.0 
 
 I 
 
 0.163 
 
 2J 
 
 19.80 
 
 6 
 
 94.26 
 
 9V 
 
 223.9 
 
 iV 
 
 0.255 
 
 91 
 
 "8 
 
 21.64 
 
 6J 
 
 98.18 
 
 ^8 L 
 
 230.1 
 
 I 
 
 0.3 68 
 
 3 
 
 23.56 
 
 B| 
 
 102.20 
 
 9} 
 
 236.2 
 
 A 
 
 0.501 
 
 3J 
 
 25.56 
 
 8| 
 
 106.40 
 
 9| 
 
 242.5 
 
 i 
 
 0.655 
 
 31- 
 
 27.64 
 
 6.V 
 
 110 60 
 
 
 
 248.9 
 
 A 
 
 0.828 
 
 3| 
 
 29.82 
 
 61 
 
 114.90 
 
 ^1 
 
 255.2 
 
 I 
 
 1.022 
 
 3J 
 
 32.07 
 
 81 
 
 119.30 
 
 10 
 
 261.7 
 
 
 
 1.237 
 
 3| 
 
 34.39 
 
 6} 
 
 123 . 70 
 
 10} 
 
 268.4 
 
 I 
 
 1.473 
 
 3J 
 
 36.81 
 
 7 
 
 128.30 
 
 iQi 
 
 275.0 
 
 
 
 1 . 728 
 
 3| 
 
 39.30 
 
 n 
 
 132.90 
 
 10| 
 
 281.8 
 
 i 
 
 2.004 
 
 4 
 
 41.88 
 
 7} 
 
 137.60 
 
 10.} 
 
 288.6 
 
 
 
 2.301 
 
 45- 
 
 44.57 
 
 71 
 
 142.30 
 
 10| 
 
 295.6 
 
 i 
 
 2.618 
 
 4} 
 
 47.28 
 
 7-V 
 
 147.30 
 
 10| 
 
 302.5 
 
 if 
 
 3.310 
 
 4| 
 
 50.10 
 
 71 
 
 152.20 
 
 10^- 
 
 309.5 
 
 i} 
 
 4.094 
 
 4f 
 
 53.02 
 
 7-1 
 
 157 20 
 
 11 
 
 316.8 
 
 is 
 
 4.950 
 
 4l 
 
 56.03 
 
 n 
 
 162.40 
 
 114 
 
 323.9 
 
 ij 
 
 5.885 
 
 4J 
 
 59.05 
 
 8 
 
 167.50 
 
 lit 
 
 331.3 
 
 if 
 
 6.911 
 
 H 
 
 62.17 
 
 8i 
 
 172.80 
 
 HI 
 
 338.7 
 
 ij 
 
 8.018 
 
 5 
 
 65.49 
 
 S| 
 
 178.20 
 
 11 J 
 
 346.2 
 
 i| 
 
 9.205 
 
 5J 
 
 68.71 
 
 8J 
 
 183.60 
 
 n! 
 
 353.7 
 
 2 
 
 10.470 
 
 5} 
 
 72.13 
 
 a} 
 
 189.10 
 
 iif 
 
 3G1.5 
 
 2J 
 
 11.820 
 
 5| 
 
 75.65 
 
 81 
 
 194.80 
 
 ill 
 
 369.1 
 
 2} 
 
 13.250 
 
 5* 
 
 79.17 
 
 8f 
 
 200.40 
 
 12 
 
 376.9 
 
BOLTS, NUTS, AND HEADS. 
 
 235 
 
 BOLTS, NUTS, AND HEADS. 
 (Whitworth s Proportions.) 
 
 Weight in Ibs. of Heads and Nuts. 
 
 Diameter of 
 bolt in in. 
 
 Hexagonal. 
 
 Square. 
 
 Hexagonal. 
 
 Square. 
 
 Head. 
 
 Nut. 
 
 Head. 
 
 Nut. 
 
 Two 
 Heads. 
 
 Head 
 &Nut. 
 
 Two 
 Heads. 
 
 Head 
 & Nut. 
 
 i 
 
 0.008 
 
 0.005 
 
 0.022 
 
 0.019 
 
 0.017 
 
 0.013 
 
 0.044 
 
 0.041 
 
 A 
 
 0.014 
 
 0.007 
 
 0.027 
 
 0.021 
 
 0.029 
 
 0.022 
 
 0.055 
 
 0.048 
 
 I 
 
 0.029 
 
 0.017 
 
 0.061 
 
 0.049 
 
 0.057 
 
 0.046 
 
 0.122 
 
 0.110 
 
 A 
 
 0.059 
 
 0.040 
 
 0.069 
 
 0.050 
 
 0.119 
 
 0.101 
 
 0.138 
 
 0.119 
 
 I 
 
 0.068 
 
 0.041 
 
 0.104 
 
 0.076 
 
 0.136 
 
 0.109 
 
 0.208 
 
 0.181 
 
 
 0.104 
 
 0.065 
 
 0.157 
 
 0.118 
 
 0.208 
 
 0.169 
 
 0.315 
 
 0.276 
 
 
 0.151 
 
 0.097 
 
 0.246 
 
 0.193 
 
 0.302 
 
 0.248 
 
 0.493 
 
 0.440 
 
 
 0.254 
 
 0.161 
 
 0.362 
 
 0.269 
 
 0.508 
 
 0.415 
 
 0.724 
 
 0.631 
 
 
 0.367 
 
 0.219 
 
 0.551 
 
 0.408 
 
 0.734 
 
 0.586 
 
 1.102 
 
 0.959 
 
 i 
 
 0.546 
 
 0.326 
 
 0.683 
 
 0.463 
 
 1.092 
 
 0.872 
 
 1.366 
 
 1.146 
 
 i 
 
 0.724 
 
 411 
 
 1.109 
 
 0.797 
 
 1.448 
 
 1.135 
 
 2.217 
 
 1.906 
 
 i! 
 
 1.060 
 
 0.630 
 
 1.400 
 
 0.971 
 
 2.120 
 
 1.690 
 
 2.800 
 
 2.371 
 
 it 
 
 1.330 
 
 0.759 
 
 1.949 
 
 1.379 
 
 2.660 
 
 2.088 
 
 3.898 
 
 3.328 
 
 i 
 
 1.840 
 
 1.098 
 
 2.625 
 
 1.883 
 
 3.680 
 
 2.938 
 
 5.250 
 
 4.508 
 
 if 
 
 2.460 
 
 1.517 
 
 3.135 
 
 2.192 
 
 4.920 
 
 3.977 
 
 6.270 
 
 5.327 
 
 if 
 
 2.920 
 
 1.742 
 
 3.704 
 
 2.532 
 
 5.840 
 
 4.662 
 
 7.409 
 
 6.236 
 
 u 
 
 3.440 
 
 1.991 
 
 4.725 
 
 3.276 
 
 6.880 
 
 5.431 
 
 9.450 
 
 8.001 
 
 2 
 
 4.370 
 
 2.611 
 
 6.384 
 
 4.625 
 
 8.740 
 
 6.981 
 
 12.77 
 
 11.00 
 
 2J 
 
 6.150 
 
 3.645 
 
 8.858 
 
 6.353 
 
 12.30 
 
 9.795 
 
 17.71 
 
 15.21 
 
 2} 
 
 8.480 
 
 5.045 
 
 11.91 
 
 8.476 
 
 16.96 
 
 13.52 
 
 23.82 
 
 20.39 
 
 2J 
 
 11.32 
 
 6.747 
 
 15.59 
 
 9.019 
 
 22.64 
 
 18.06 
 
 31.18 
 
 24.61 
 
 3 
 
 14.72 
 
 8.783 
 
 21.00 
 
 15.06 
 
 29.44 
 
 23.50 
 
 42.00 
 
 36.06 
 
 
 1 
 
 
 
 
 
 
 
236 
 
 WEIGHT IN POUNDS OF HOUND IRON, ETC. 
 
 WEIGHT IN POUNDS OF ROUND IRON FOR 
 
 Diameter 
 in inches. 
 
 Length in inches. 
 
 N 
 
 K 
 
 % 
 
 K 
 
 % 
 
 H 
 
 y* 
 
 i 
 
 2 
 
 3 
 
 i 
 
 0.002 
 
 0.003 
 
 0.005 
 
 0.007 
 
 0.008 
 
 0.010 
 
 0.012 
 
 0.014 
 
 0.027 
 
 0.041 
 
 A 
 
 0.003 
 
 0.005 
 
 0.008 
 
 0.011 
 
 0.013 
 
 0.016 
 
 0.019 
 
 0.021 
 
 0.043 
 
 0.064 
 
 1 
 
 0.004 
 
 0.007 
 
 0.011 
 
 0.015 
 
 0.019 
 
 0.023 
 
 0.027 
 
 0.031 
 
 0.062 
 
 0.093 
 
 A 
 
 0.005 
 
 0.010 
 
 0.016 
 
 0.021 
 
 0.026 
 
 0.031 
 
 0.036 
 
 0.042 
 
 0.084 
 
 0.126 
 
 i 
 
 0.007 0.014 
 
 0.021 
 
 0.027 
 
 0.034 
 
 0.041 
 
 0.048 
 
 0.055 
 
 0.110 
 
 0.166 
 
 
 0.009 
 
 0.017 
 
 0.026 
 
 0.035 
 
 0.043 
 
 0.052 
 
 0.061 
 
 0.069 
 
 0.139 
 
 0.208 
 
 
 0.011 
 
 0022 
 
 0.032 
 
 0.043 
 
 0.054 
 
 0.065 
 
 0.076 
 
 0.087 
 
 0.174 
 
 0.261 
 
 
 0.015 
 
 0.031 
 
 0.046 
 
 0.062 
 
 0.077 
 
 0.093 
 
 0.108 
 
 0.124 
 
 0.249 
 
 0.373 
 
 1 
 
 0.021 
 
 0.042 
 
 0.063 
 
 0.084 
 
 0.105 
 
 0.126 
 
 0.148 
 
 0.170 
 
 0.338 
 
 0.508 
 
 
 0.027 
 
 0.055 
 
 0083 
 
 0.110 
 
 0.138 
 
 0.165 
 
 0.193 
 
 0.221 
 
 0.442 
 
 0.663 
 
 H 
 
 0.035 
 
 0.070 
 
 0.105 
 
 0.140 
 
 0.185 
 
 0.210 
 
 0.245 
 
 0.280 
 
 0.560 
 
 0.840 
 
 4 
 
 0.043 
 
 0.087 
 
 0.131 
 
 0.173 
 
 0.217 
 
 0.262 
 
 0.304 
 
 0.347 
 
 0.695 
 
 1.043 
 
 it 
 
 0.053 
 
 0.104 
 
 0.157 
 
 0.209 
 
 0.261 
 
 0.314 
 
 0.366 
 
 0.418 
 
 0.836 
 
 1.255 
 
 if 
 
 0.062 
 
 0.124 
 
 0.186 
 
 0.249 
 
 0.311 
 
 0.373 
 
 0.435 
 
 0.497 
 
 0.995 
 
 1.493 
 
 it 
 
 0.072 
 
 0.143 
 
 0.215 
 
 0.287 
 
 0.358 
 
 0.430 
 
 0.502 
 
 0.584 
 
 1.168 
 
 1.752 
 
 if 
 
 0.084 
 
 0.168 
 
 0.253 
 
 0.337 
 
 0.421 
 
 0.506 
 
 0.590 
 
 0.677 
 
 1.354 
 
 2.032 
 
 if 
 
 0097 
 
 0.194 
 
 0.291 
 
 0.389 
 
 0.486 
 
 0.583 
 
 0.680 
 
 0.778 
 
 1.555 
 
 2.333 
 
 2 
 
 0.111 
 
 0.221 
 
 0.332 
 
 0.442 
 
 0.553 
 
 0.663 
 
 0.774 
 
 0.884 
 
 1.770 
 
 2.654 
 
 21 
 
 0.140 
 
 0.280 
 
 0.420 
 
 0.560 
 
 0.700 
 
 0.840 
 
 0.980 
 
 1.120 
 
 2.240 
 
 3.360 
 
 2} 
 
 0.174 
 
 0.347 
 
 0.521 
 
 ; 695 
 
 0.869 
 
 1.042 
 
 1.216 
 
 1.390 
 
 2.781 
 
 4.172 
 
 2| 
 
 0.209 
 
 0.418 
 
 0.627 
 
 0.836 
 
 1.045 
 
 1.254 
 
 1.463 
 
 1.673 
 
 3.346 
 
 5.019 
 
 3 
 
 0.250 
 
 0.500 
 
 0.750 
 
 1.000 
 
 1.250 
 
 1.500 
 
 1.750 
 
 1.990 
 
 3.981 
 
 5.972 
 
 EXAMPLE. Required, the weight of a bolt 1J inches diameter, 
 4 inches between inside of head and nut. 
 
 Weight of bolt = 1.39 
 Weight of square head = 1.40 
 Weight of hexagonal nut = 1.06 taken as a hexagonal head 
 
 Ans. 3.85 Ibs. 
 
WEIGHT IN POUNDS OF ROUND IKON, ETO. 
 
 237 
 
 BOLTS, ETC., BETWEEN HEAD AND NUT. 
 
 Diameter 1 
 in inches. 
 
 Length in inches. 
 
 4 
 
 5 
 
 6 - 
 
 7 
 
 8 
 
 9 
 
 10 
 
 11 
 
 12 
 
 i 
 
 0.055 
 
 0.069 
 
 0.082 
 
 0.096 
 
 0.110 
 
 0.124 
 
 0.137 
 
 0.151 
 
 0.165 
 
 A 
 
 0.086 
 
 0.107 
 
 0.128 
 
 0.150 
 
 0.171 
 
 0.192 
 
 0.214 
 
 0.235 
 
 0.257 
 
 1 
 
 0.124 
 
 0.155 
 
 0.186 
 
 0.217 
 
 0.248 
 
 0.279 
 
 0.311 
 
 0.342 
 
 0.373 
 
 A 
 
 0.167 
 
 0.209 
 
 0.251 
 
 0.293 
 
 0.335 
 
 0.377 
 
 0.419 
 
 0.461 
 
 o.5oa v 
 
 1 
 
 0.221 
 
 0.276 
 
 0.331 
 
 0.386 
 
 0.442 
 
 0.497 
 
 0.552 
 
 0.607 
 
 0.663 : 
 
 
 0277 
 
 0.347 
 
 0.416 
 
 0.486 
 
 0.555 
 
 0.624 
 
 0.694 
 
 0.763 
 
 0.833 
 
 
 0.347 
 
 0434 
 
 0.521 
 
 0.608 
 
 0.695 
 
 0.782 
 
 0.869 
 
 0.956 
 
 1.043 
 
 
 0.497 
 
 0.622 
 
 0.746 
 
 0.871 
 
 0.995 
 
 1.119 
 
 1.244 
 
 1.368 
 
 1.493 
 
 
 0.677 
 
 0.846 
 
 1.016 
 
 1.185 
 
 1.354 
 
 1.524 
 
 1.693 
 
 1.862 
 
 2.032 
 
 i 
 
 0.884 
 
 1.105 
 
 1.326 
 
 1.548 
 
 1.769 
 
 1.990 
 
 2.211 
 
 2.432 
 
 2.654 
 
 U 
 
 1.120 
 
 1.400 
 
 1.680 
 
 1.960 
 
 2.240 
 
 2.520 
 
 2.800 
 
 3.080 
 
 3.360 
 
 li 
 
 1.390 
 
 1.738 
 
 2.085 
 
 2.433 
 
 2.781 
 
 3.128 
 
 3.476 
 
 3.823 
 
 4.172 
 
 If 
 
 1.673 
 
 2.091 
 
 2.510 
 
 2.928 
 
 3.346 
 
 3.765 
 
 4.182 
 
 4.601 
 
 5.019 
 
 li 
 
 1.990 
 
 2.488 
 
 2.985 
 
 3.483 
 
 3.981 
 
 4.478 
 
 4.976 
 
 4.973 
 
 5.972 
 
 
 2.336 
 
 2.920 
 
 3.504 
 
 4.088 
 
 4.673 
 
 5.257 
 
 5.841 
 
 6.425 
 
 7.010 
 
 If 
 
 2.709 
 
 3.386 
 
 4.064 
 
 4.741 
 
 5.418 
 
 6.096 
 
 6.773 
 
 7.450 
 
 8.128 
 
 ll 
 
 3.111 
 
 3.888 
 
 4.666 
 
 5.334 
 
 6.221 
 
 6.999 
 
 7.777 
 
 8.547 
 
 9.333 
 
 2 
 
 3.538 
 
 4.423 
 
 5.307 
 
 6.192 
 
 7.077 
 
 7.961 
 
 8.846 
 
 9.730 
 
 10.610 
 
 2} 
 
 4.480 
 
 5.600 
 
 6.720 
 
 7.840 
 
 8.960 
 
 10.080 
 
 11.200 
 
 12.320 
 
 13.440 
 
 2J 
 
 5.562 
 
 6.953 
 
 8.343 
 
 9.734 
 
 11.120 
 
 12.510 
 
 13.910 
 
 15.290 
 
 16.690 
 
 2f 
 
 6.692 
 
 8.365 
 
 10.040 
 
 11.710 
 
 13.380 
 
 15.060 
 
 16.730 
 
 18.400 
 
 20.070 
 
 3 
 
 7.962 
 
 9.953 
 
 11.940 
 
 13.930 
 
 15.920 
 
 17.910 
 
 19.910 
 
 21.890 
 
 23.890 
 
WEIGHT OF MATERIALS USED IN BUILDING. 
 
 WEIGHT OF MATERIALS USED IN BUILDING. 
 
 (Per square foot from one inch thickness to a cubic foot.) 
 
 Stones, Earths, &c. 
 
 
 9 
 
 tt. 
 
 
 Brick. 
 
 
 
 
 
 
 
 
 
 
 
 
 0) 
 
 
 M 
 
 pj 
 
 
 <o 
 
 
 
 
 fl 
 
 i.3 
 
 9 
 
 cS 
 g" 
 
 averaj 
 
 
 
 SH 
 
 
 fi Jj 
 
 of Parii 
 
 1 
 
 a 
 
 1 
 
 | 
 
 
 
 1 
 
 B.C 
 
 C 
 
 73 
 
 * 
 
 i 
 
 9 
 
 2 
 
 el 
 8s 
 
 1 
 
 o 
 S 
 
 o 
 
 
 
 cT 
 1 
 
 1 
 
 d 
 
 jj> 
 
 
 e" 
 
 <J 
 
 S 
 
 
 
 a 
 
 5 
 
 a 
 
 
 1 
 
 1 
 
 1 
 
 
 i 
 
 6.58 
 
 14.58 
 
 8.50 
 
 11.41 
 
 9.33 
 
 6.12 
 
 9.08 
 
 16.5 
 
 14.08 
 
 8.16 
 
 8.5 
 
 10.83 
 
 2 
 
 13.16 
 
 29.1C 
 
 17.00 
 
 22.83 
 
 18.66 
 
 12.25 
 
 18.16 
 
 33.0 
 
 28.16 
 
 16.33 
 
 17.0 
 
 21.66 
 
 3 
 
 19.74 
 
 43.74 
 
 25.50 
 
 34.24 
 
 28.00 
 
 18.36 
 
 27.24 
 
 49.5 
 
 42.25 
 
 24.50 
 
 25.5 
 
 32.49 
 
 4 
 
 26.32 
 
 58.32 
 
 34.00 
 
 45.66 
 
 37.33 
 
 24.50 
 
 36.33 
 
 66.0 
 
 56.32 
 
 32.66 
 
 34.0 
 
 43.33 
 
 6 
 
 32.90 
 
 72.90 
 
 42.50 
 
 57.08 
 
 46.66 
 
 50.61 
 
 45.41 
 
 82.5 
 
 70.40 
 
 40.83 
 
 42.5 
 
 54.16 
 
 6 
 
 39.48 
 
 87.48 
 
 51.00 
 
 68.50 
 
 56.00 
 
 J6.74 
 
 54.50 
 
 99.Q 
 
 84.48 
 
 49.00 
 
 51.0 
 
 65.00 
 
 7 
 
 46.06 
 
 102.00 
 
 59.50 
 
 80.00 
 
 65.33 
 
 42.86 
 
 63.60 
 
 115.5 
 
 98.56 
 
 57.16 
 
 59.5 
 
 75.83 
 
 8 
 
 52.64 
 
 116.64 
 
 68.00 
 
 91.32 
 
 74.66 
 
 49.00 
 
 72.66 
 
 132.0 
 
 112.64 
 
 65.32 
 
 68.0 
 
 86.66 
 
 9 
 
 59.22 
 
 131.22 
 
 76.50 
 
 102.75 
 
 84.00 
 
 55.10 
 
 81.75 
 
 148.5 
 
 126.72 
 
 72.50 
 
 76.5 
 
 97.50 
 
 10 
 
 65.80 
 
 145.80 
 
 85.00 
 
 114.16 
 
 93.33 
 
 61.23 
 
 90.83 
 
 165.0 
 
 140.80 
 
 81.66 
 
 85.0 
 
 108.33 
 
 11 
 
 72.38 
 
 160.38 
 
 93.50 
 
 125.60 
 
 102.6(5 
 
 67.35 
 
 99.13 
 
 181.5 
 
 154.90 
 
 89.82 
 
 93.5 
 
 119.16 
 
 12 
 
 79.00 
 
 175.00 
 
 102.00 
 
 137.00 
 
 112.00 
 
 73.50 
 
 109.00 
 
 198.0 
 
 169.00 
 
 98.00 
 
 102.0 
 
 130.00 
 
 Stones, Earths, &c. 
 
 
 -^ 
 
 
 
 
 i 
 
 
 
 
 
 Granite. 
 
 
 fl 
 
 a 
 
 o 
 
 
 
 7j 
 
 S 
 
 > 
 
 a 
 
 
 
 g 
 
 S: 
 
 o 
 
 
 
 
 
 
 C3 
 
 <n . 
 
 11 
 
 a> 
 o 
 
 tJ 
 a 
 
 
 
 bO 
 
 
 
 5 
 1 
 
 I? 
 
 1 
 
 a 
 
 
 
 
 o 
 
 d 
 
 1 
 
 1 
 
 73 si 
 
 OS 
 
 73 
 
 & 
 
 0? 
 
 I 
 
 5* 
 
 
 
 S 
 
 3 
 
 1 
 
 s 
 
 | 
 
 H 
 
 1 
 
 53 
 
 5 
 
 O 
 
 
 
 1 
 
 1 
 
 1 
 
 s 
 
 
 02 
 
 3 
 
 1 
 
 6.75 
 
 11.16 
 
 10.0 
 
 12.91 
 
 10.41 
 
 11.41 
 
 13.75 
 
 8.66 
 
 12.25 
 
 13.75 
 
 14.08 
 
 5.21 
 
 2 
 
 13.50 
 
 22.33 
 
 20.0 
 
 25.82 
 
 20.83 
 
 22.83 
 
 2750 
 
 17.33 
 
 24.50 
 
 27.50 
 
 28.16 
 
 10.42 
 
 3 
 
 20.25 
 
 33.50 
 
 30.0 
 
 38.73 
 
 31.25 
 
 34.25 
 
 41.25 
 
 26.00 
 
 36.75 
 
 41.25 
 
 42.24 
 
 15.62 
 
 4 
 
 27.00 
 
 44.66 
 
 40.0 
 
 51.64 
 
 41.66 
 
 45.66 
 
 55.00 
 
 34.66 
 
 49.00 
 
 55.00 
 
 56.32 
 
 20.83 
 
 5 
 
 33.75 
 
 55.83 
 
 50.0 
 
 6455 
 
 52.08 
 
 5708 
 
 6875 
 
 4333 
 
 61.25 
 
 68.75 
 
 70.40 
 
 26.04 
 
 6 
 
 40.50 
 
 67.00 
 
 60.0 
 
 77.46 
 
 64.50 
 
 68.50 
 
 82.50 
 
 52.00 
 
 73.50 
 
 82.50 
 
 84.48 
 
 31.24 
 
 7 
 
 47.25 
 
 78.16 
 
 7Q.O 
 
 90.37 
 
 73.00 
 
 80.00 
 
 96.25 
 
 60.66 
 
 85.75 
 
 96.25 
 
 98.56 
 
 36.45 
 
 8 
 
 54.00 
 
 89.33 
 
 800 
 
 103.28 
 
 83.32 
 
 91.32 
 
 110.00 
 
 69.22 
 
 98.00 
 
 110.00 
 
 112.64 
 
 41.66 
 
 9 
 
 60.75 
 
 100.50 
 
 90.0 
 
 116.19 
 
 93.75 
 
 102.75 
 
 123.75 
 
 80.00 
 
 110.25 
 
 123.75 
 
 126.72 
 
 4687 
 
 10 
 
 67.50 
 
 111.66 
 
 100.0 
 
 129.10 
 
 104.16 
 
 114.16 
 
 137.50 
 
 86.66 
 
 12250 
 
 13750 
 
 140.80 
 
 52.08 
 
 11 
 
 74.25 
 
 122.83 
 
 110.0 
 
 142.01 
 
 114.57 
 
 125 57 
 
 150.25 
 
 95.32 
 
 134.75 
 
 150.25 
 
 154.88 
 
 57.28 
 
 12 
 
 81.00 
 
 134.00 
 
 120.0 
 
 155.00 
 
 125.00 
 
 137.00 
 
 165.00 
 
 104.00 
 
 147.00 
 
 165.00 
 
 169.00 
 
 62.50 
 
DIVISIONS OF A FOOT, ETC. 
 
 239 
 
 w 
 w 
 
 Q 
 
 52; 
 
 CDl^-r^OOOOr-ifMCOCOLOiOCDt^oOO^ 
 
 co co o :N 10 *- as i co LO r- o^ r-i co o i 
 
 T-H ^ rr< Jt. <N;t>; <N !> CO OO CO CO <Q OS rt* ai -^ 
 
 r 
 OOGOOOGOCOOOGOGOGOOOOOCOOOO^aiOi 
 
 CO " CO i i C 
 
 cococDCDcocoi t 
 
 r- 
 
 GO OC Ot) Oi O O i-H T i C^l CO CO r}H TH tO IO CD 
 lOiOlOOCDCDCDCDCDCDCDCDCDCDCDCD 
 
 (M^CDoOOCVJ^CDoOOCSIiOt-OirH 
 lOOlOOCDr-- fCDr ICD(MI^CVJ1>.C\IOO 
 - 
 
 
 COOiOOr-tCvlCOTjHKDCD 
 CO IO 1> O5 i iCOlOtOCvjTtiCDOOOC^lTtH 
 COOOCOOOrt<a5TtiailOOlOOiOi iCDrH 
 COCO *"T^lOiOCDCDt^OOOOaiO^OOr-l 
 COCOCOCOCOCOCOCOCOCOCOCOCO-^TjHrtl 
 
 gOto Ocor- CDr-icDC^r^eqt-c 
 CDCDJ^J>-OOOOO^CiOOT (r (C 
 <M<N(MC^l(M(M(MCq(MCMcOCOCOCOC 
 
 CDi li^<Mr-<Mt COCOCOOOCOOi ^Ci rJH 
 CDi>-t OOOOOiOiOOr- IT ((MCMCOCO^i 
 T _, T _ HrHr _, T _( T _i^_ i<M(M(M(M(M<M<MC^c<j 
 
 r 
 
 D^CS^Ci 
 iOOT .i-HC 
 
 Ot IT I <M CO ^}H lO CD CO 1>- COO^OrHClCO 
 < 
 
240 
 
 TABLE FOR COMPARING MEASURES AND WEIGHTS. 
 
 TABLE FOR COMPARING MEASURES AND WEIGHTS 
 OF DIFFERENT COUNTRIES. 
 
 Weights. 
 
 UNITED 
 STATES AND 
 ENGLAND. 
 
 PRUSSIA. 
 
 AUSTRIA. 
 
 BADEN AND 
 SWITZERLAND. 
 
 FRANCE. 
 
 Pound. 
 
 Pound, Z. V. 
 
 Pound. 
 
 Pound. 
 
 Kilogra e. 
 
 1 
 
 0.9072 
 
 0.8100 
 
 
 0.4536 
 
 1 . 1023 
 
 1 
 
 0.8928 
 
 Same as 
 
 0.5000 
 
 1.2346 
 
 1 . 1200 
 
 1 
 
 Prussia. 
 
 0.5600 
 
 1.2346 
 
 1.1200 
 
 0.9999 
 
 
 0.5600 
 
 2.2046 
 
 2.0000 
 
 1.7857 
 
 
 1 
 
 Measures of Length. 
 
 Foot. 
 
 Foot. 
 
 Foot, 
 
 Foot, 
 
 Meter. 
 
 = 12 inches. 
 
 = 12 inches. 
 
 = 12 inches. 
 
 ==10 inches. 
 
 = 100 Centi. 
 
 1 
 
 0.9711 
 
 0.9642 
 
 1..0160 
 
 0.3048 
 
 1.0297 
 
 1 
 
 0.9929 
 
 1.0462 
 
 0.3138 
 
 1.0371 
 
 1.0072 
 
 1 
 
 1.0537 
 
 0.3161 
 
 0.9843 
 
 0.9559 
 
 0.9490 
 
 1 
 
 0.3000 
 
 3.2809 
 
 3.1862 
 
 3.1635 
 
 3.3333 
 
 1 
 
 Measures of Surface Square Measure. 
 
 Square foot. 
 
 Square foot. 
 
 Square foot. 
 
 Square foot. 
 
 Sq. Meter. 
 
 1 
 
 0.9431 
 
 0.9297 
 
 1.0322 
 
 0.0929 
 
 1.0603 
 
 1 
 
 0.9858 
 
 1.0945 
 
 0.0985 
 
 1.0756 
 
 1.0144 
 
 1 
 
 1.1103 
 
 0.0999 
 
 0.9688 
 
 0.9137 
 
 0.9007 
 
 1 
 
 0.0900 
 
 10.7643 
 
 10.1519 
 
 10.0074 
 
 11.1111 
 
 1 
 
TABLE FOB COMPARING .MEASURES AND WEIGHTS. 
 
 Cubic Measure. 
 
 UNITED 
 STATES AND 
 ENGLAND. 
 
 PEUSSIA. 
 
 AUSTRIA. 
 
 BADEN AND 
 SWITZERLAND. 
 
 FRANCE. 
 
 Cubic foot. 
 
 Cubic foot. 
 
 Cubic foot. 
 
 Cubic foot. 
 
 Cubic meter 
 
 1 
 
 0.9159 
 
 0.8964 
 
 1.0487 
 
 0.0283 
 
 1.0918 
 
 1 
 
 0.9787 
 
 1 . 1450 
 
 0.0309 
 
 1.1156 
 
 1.0217 
 
 1 
 
 1.1699 
 
 0.0316 
 
 0.9535 
 
 0.8733 
 
 0.8548 
 
 1 
 
 0.0270 
 
 35.3166 
 
 32.3459 
 
 31.6578 
 
 37.0370 
 
 1 
 
 Weight per Unit of Length. 
 
 Lbs. per 
 lineal foot. 
 
 Lbs. per 
 lineal foot. 
 
 Lbs. per 
 lineal foot. 
 
 Lbs. per 
 lineal foot. 
 
 Kil. per 
 lineal meter 
 
 1 
 
 0.9342 
 
 0.8400 
 
 0.8929 
 
 1.4882 
 
 1.0705 
 
 1 
 
 0.8993 
 
 0.9559 
 
 1.5931 
 
 1.1904 
 
 1.1120 
 
 1 
 
 1.0629 
 
 1.7716 
 
 1.1199 
 
 1.0462 
 
 1.9408 
 
 1 
 
 1.6667 
 
 0.6720 
 
 0.6277 
 
 0.5645 
 
 0.6000 
 
 1 
 
 Weight per Unit of Surface. 
 
 Lbs. per 
 square inch. 
 
 Lba. per 
 square inch. 
 
 Lbs. per 
 square inch. 
 
 Lbs. per 
 square inch. 
 
 Kil. per 
 square cent. 
 
 1 
 
 0.9619 
 
 0.8712 
 
 1 . 2656 
 
 0.0703 
 
 1.0396 
 
 1 
 
 0.9057 
 
 1.3157 
 
 0.0731 
 
 1.1478 
 
 1.1041 
 
 1 
 
 1.4526 
 
 0.0807 
 
 0.7902 
 
 0.7601 
 
 0.6884 
 
 1 
 
 0.0556 
 
 14.2223 
 
 13.6811 
 
 12.3910 
 
 18.0000 
 
 1 
 
 16 
 
242 
 
 RESISTANCE TO CROSS-BKEAKING. 
 
 RESISTANCE TO CROSS-BREAKING. 
 
 To Cut the Strongest and Stiffest Rectangular Beam from a Log, 
 Fig. 308. (Strongest.) 
 
 The diameter aa = d, divided into three equal parts, with per* 
 pendiculars J d from a erected thereon, intersecting the circle at 
 b, will give section for greatest capacity. 
 
 Fig. 309. (Stiffeet.) 
 
 The diameter aa = d, divided into four equal parts, with per- 
 
 rndiculars J d from a erected thereon, intersecting the circle at 
 , will give section with least deflection, but less capacity than 
 Fig. 308. 
 
INDEX. 
 
 Area, circumference, and cubic contents of circles 218 
 
 Axis, neutral 4 
 
 Bars, tie rods, &c 181 
 
 resistance of, to tearing 2 
 
 Beams, capacity and strength of 29 
 
 of rolled 39 
 
 of cast-iron 57 
 
 TFof rolled l-shaped 39 
 
 and strength of parabolic arched 153 
 
 cast-iron 53 
 
 iron ties, struts, and 3 
 
 sloping rafters and 102 
 
 strains in trussed 122 
 
 horizontal andsloping 188 
 
 strength of wooden 88 
 
 Bolts and nuts, dimensions of. 187 
 
 nuts, and heads 235 
 
 Boom derricks, strains in 114 
 
 Booms, strains in trusses with parallel 126 
 
 Bow-string girders 147 
 
 Bridges, static and moving loads, of wrought iron 192 
 
 Camber 2 
 
 Capacity 2 
 
 and strength of beams 29 
 
 W of rolled l-shaped beams 39 
 
 of rolled beams 41 
 
 of cast-iron beams 57 
 
 and strength of parabolic arched beams..... 153 
 
 Cast-iron beams 3, 53 
 
 Center of gravity of planes 202 
 
 Circumference, area, and cubic contents of circles 218 
 
 Columns, pillars, and struts, strength of 110 
 
 Composition and resolution of forces Ill 
 
 Compound strains in horizontal and sloping beams 188 
 
 Compression 1 
 
 Compressive strain and pressure on supports 102 
 
 Contraction and expansion 4 
 
 (243) 
 
244 INDEX. 
 
 MOB, 
 
 Constants for strain in trusses 117 
 
 roof trusses 174 
 
 Connections in iron construction, joints or 184 
 
 Cross-breaking 2 
 
 and shearing, resistance to 29 
 
 Crushing, resistance to 103 
 
 direct 1 
 
 Deflection 2 
 
 Derricks, strains in boom 114 
 
 Dimensions of bolts 187 
 
 Divisions of a foot, expressed in equivalent decimals 239 
 
 Expansion and contraction 4 
 
 External forces .T^J/i 
 
 Factors of safety 29 
 
 Forces external ., ..r 1 % 
 
 internal 1 
 
 composition and resolution of. Ill 
 
 parallelogram of Ill 
 
 Frame, strains in polygonal 154 
 
 Functions, trigonometrical 207 
 
 Geometry 197 
 
 Girders, strains in parabolic and bow-string 147 
 
 Gravities of materials, specific 224 
 
 Heads, nuts, and bolts 235 
 
 Horizontal and sloping beams, compound strains in 188 
 
 Howe truss 129 
 
 Inertia and resistance o various sections, moments of 5 
 
 Internal forces 1 
 
 Iron beams, capacity of cast 57 
 
 cast 53 
 
 bridges, static and moving loads, of wrought 192 
 
 construction, joints or connections in .-. 184 
 
 ties, struts, or beams 3 
 
 Joints or connections in iron construction 184 
 
 Lattice truss 139 
 
 with vertical members 131 
 
 Longimetry and planimetry 197 
 
 Materials, &c., strength of 26 
 
 Miscellaneous , 195 
 
IffDEX. 245 
 
 Modulus of rupture 4 
 
 Moment of inertia and resistance of various sections 5 
 
 Moving loads, weight of. 191 
 
 Natural sine, cosine, &c 306 
 
 Neutral axis 4 
 
 Nuts, heads, and bolts 235 
 
 dimensions of... 187 
 
 Parallelogram of forces..... Ill 
 
 Parallel booms, strains in trusses with 126 
 
 Parabolic arched beams, capacity and strength of. 153 
 
 curved trusses, strains in 147 
 
 Planimetry, longimetry, &c 197 
 
 Pillars, columns, and struts, strength of 110 
 
 Pins, &c., in tie bars 185 
 
 Polygonal frame, strains in ,. 154 
 
 Pressure on supports 100 
 
 compressive strain and 102 
 
 of snow on roofs 178 
 
 of wind on roofs 180 
 
 Rafters, &c., sloping beams _. 102 
 
 Reactions of supports 100 
 
 Resistance to direct crushing 1 
 
 of bars, &c., to tearing 2 
 
 to cross-breaking and shearing 29 
 
 crushing 103 
 
 Resolution of forces, composition, &c Ill 
 
 Rolled beams, capacity of. 41 
 
 l-shaped beams, capacity of. 39 
 
 Rods and bars, tie 181 
 
 Roof trusses..., 3 
 
 strains in 156 
 
 constants for strains in 174 
 
 Roofs, pressure of wind on 178 
 
 of snow on 180 
 
 Rupture, modulus of. 4 
 
 Shearing 2 
 
 and cross-breaking, resistance to 29 
 
 Sloping beams, rafters, &c 102 
 
 and horizontal beams, compound strains in 188 
 
 Specific gravities of materials 224 
 
 Static and moving loads of wrought-iron bridges 192 
 
 Strength of materials 26 
 
 wooden beams 98 
 
 columns, pillars, and struts 110 
 
246 INDEX. 
 
 PAGE. 
 
 Strength of beams, capacity, &c 29 
 
 Strains in frames 112 
 
 boom derricks 114 
 
 trusses 115 
 
 trussed beams 122 
 
 trusses with parallel booms 126 
 
 parabolic curved trusses, or bow-string girders.... 147 
 
 polygonal frame 154 
 
 roof trusses 156 
 
 constants for 174 
 
 trusses, constants for 117 
 
 Strongest and stiffest rectangular beam from a log, to cut the.. 242 
 
 Struts and beams, iron ties 3 
 
 Supports, reaction of. ... 100 
 
 compressive strain and pressure on 1 02 
 
 Table for comparing measures and weights 240 
 
 Tearing, resistance of bars, &c., to 2 
 
 Tension 1 
 
 Tie rods and bars 181 
 
 Trigonometrical functions 207 
 
 formulas 205 
 
 Truss, Howe 129 
 
 Warren 132 
 
 Whipple 144 
 
 lattice 139 
 
 with vertical members 131 
 
 Trusses parallel booms, strains in 126 
 
 parabolic curved, or bow-string 147 
 
 constants for strains in roof 1 74 
 
 constants for strains in 117 
 
 strains in 115 
 
 roof 156 
 
 Trussed beams, strains in 122 
 
 Warren truss , 132 
 
 Weight of moving loads 191 
 
 static and moving loads of wrought-iron bridges... 192 
 
 a lineal foot of flat or square bar iron 229 
 
 rolled round iron 234 
 
 materials used in building 238 
 
 superficial inch of wrought and cast iron 227 
 
 rolled round iron for bolts 236 
 
 heads and nuts 235 
 
 per square foot of metals 228 
 
 Whipple truss 144 
 
 Wooden beams, strength of. . 98 
 
1 388 
 
 CO 
 
 O 
 
 O 
 oc 
 
 O 
 
 co 
 
 CM