TOF I ORNLP 1556 . 3 - . 13 i! 4 5 50 156 * 1 .25 1.14 1.1.6 MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS – 1963 02м 4-й рrs-L ROUGH DRAFT 8/6/65 CONF-650806-6 OBSERVATION OF A MIRROR-LIKE INSTABILITY IN A HOT ELECTRON PLASMA= SEP 21 1965 W. B. Ard and R. A. Dandi Oak Ridge National Laboratory Oak Ridge, Tennessee, U. S. A. and R. F. Stetson Florida Atlantic University Boca Raton, Florida, U. S. A. Abstract Iwo types of instabilities have been observed in a hot electron plasma produced by electron-cyclotron heating in a magnetic mirror. One type results in radial loss of particles across magnetic field lines and appears to be due to the growth of flutes. The other results primarily in loss along magnetic field lines and appears to be due to the mirror instability. Both types are accompanied by RF oscillations and result in the loss of ~ 10% of the energy stored in the plasma. MELLASED FOR ANNOUNCEMENT AN NUCLEAR SCIENCE ABSTRACTS Research sponsored by the U. S. Atomic Energy Commission under contract with the Union Carbide Corporation. ROUGH DRAFT 8/6/65 p www : .... OBSERVATION OF A MIRROR-LIKE INSTABILITY IN A HOT ELECTRON PLASMA= o sitions i kommer malinkan perinteine anderemo .. W. B. Ard and R. A. Dandl Oak Ridge National Laboratory Oak Ridge, Tennessee, U. S. A. and mode ing de residence that wonder R. F. Stetson Florida Atlantic University Boca Raton, Florida, U. S. A. het mome Hot electron, plasmas produced in magnetic mirrors by radiation at the voidaat wordt electron-cyclotron frequency have been found to be unstable under certain conditions!' The evidence indicating the presence of instability in this plasma was the observation of large bursts of x rays accompanied by sudden vall decreases in stored plasma energy. Recent investigations of the plasma has : shown that these x-ray bursts are due to two different types of electron here there losses. In one type of loss the electrons cross the magnetic field lines RA T U . . " and strike the wall on the midplane of the mirror field. In the other type of loss the electrons leave the plasma along the magnetic field lines. A diagram of the apparatus is shown in Fig. 1. The region between the magnetic mirrors is enclosed by a perforated copper liner. The liner serves to confine the microwave heating power to the region containing the plasma. A plasma is produced if the magnetic field intensity is 3750 gauss at same place in the liner. This is the field that gives an electron-cyclotron frequency of 10.6 KMC, the frequency of the microwave power source. Under typical operating conditions, the hot electron component of the plasma has the following properties. The total energy stored in the plasma . .. .. ... . . . . .. A . KA . . 1 Research sponsored by the U. S. Atomic Energy Commission under contract with the Union Carbide Corporation. Sa. is 9 joules. The average electron energy is from 50 to 100 keV. The plasma volume is about 4 x 103 cc. This gives a density of from 1.5 to 3 x 1044/cc and a B of 0.06. The plasma is maintained by a continuous l'eed of neutral gas into the region occupied by the plasma and continuous feed of microwave energy into the same region. The pressure outside the plasma is typically about 10") torr. There is therefore a background density of much cooler electrons always present in the plasma. The density of cooler electrons is estimated to be about the same as that of the hot electrons. This estimate is based on the current collected by probes outside the magnetic mirrors. Also shown in Fig. 1 is the arrangement of various probes for investi- gating instabilities. Fast electrons lost along field lines are detected by silicon solar cells placed outside tne mirrors. The four solar cells are positioned on field lines that come through holes in the end of the liner at VT-i n 0, 1, 2, and 3 inches from the magnetic axis. The cells are shielded from the plasma by thin aluminum foils. Since signals were observed from the solar cells only when they were placed along the field lines that came through a hole in the liner, it was determined that the signals were due to fast elec- trons and not x rays. The cells were operated short circuited so as to give a current output proportional to the incident flux. The response time of the cells operated in this way is less than 1 usec. A collimated x-ray detector was used to detect x rays from electrons striking the liner in the mirror region. The response time of the x-ray detector was 0.02 usec. An rf pickup loop was placed just inside the liner on the midplane in order to look for oscillations at very high frequency. Lower frequency oscillations could be detected by the current probe located just outside the mirror. The stored plasma energy was measured with a diamag- netic loop /27. Since the loop was wound around the copper liner, its response time was much too long to follow the change in energy during an instability. However, the response time was considerably shorter than the plasma build-up time so that the total energy lost during the instability could be measured quite accurately. The times involved were as follows: duration of instability - several microseconds, response time of diamagnetic loop - 10 milliseconds, plasma During one of the types of instability observed, the solar cells detected bursts of energetic electrons that lasted for from about 2 to 20 microseconds. All four of the cells gave signals at the same time; however, variations in siga . nal level during the bursts were not well correlated between the detectors 10- cated on different field lines, although the beginnings and ends of the signal from the cells were well correlated. During the time that the solar cells indi- cated a large flux of energetic electrons out the mirror, the current probe showed a decrease of plasma current out the mirrors. Radiation was detected on the rf loop during the bursts. The radiation was in a frequency band about 50-mc wide, centered near 5.3 KMC. This frequency is half of the frequency of the microwave power source used to heat the plasma. Figures 2 and 3 show 'typical responses of the solar cell (upper traces) and the microwave receiver (lower traces) during an instability. The large variation in output from the receiver is mostly due to the frequency of the oscillation drifting out of the bandwidth of the receiver. In order to determine whether or not the 5.3 KMC oscillation was a plasma resonance driven by the microwave source, the source was turned off as soon as the electron burst could be detected. The source could be turned off less than 0.5 ubec after the burst started. The result was that the bursts continued for several microseconds and the 5.3 KMC radiation also continuea. There was apparently no change in either the intensity or the spectral char- acter of the rt with or without the microwave source on. While this shows that the oscillation is not just a parametric amplification of the applied microwave radiation, it does not rule out the possibility that the oscillation is triggered by the presence of the applied microwave power. The average time interval between the bursts could be made arbitrarily long. This time was essentially determined by the magnitude of the static magnetic field intensity. In fact, if the field were set below a critical value, no bursts were observed. The fact that the instability is influenced by the magnitude of the mag- netic field suggests that the important parameter is the location in the mirror field of the region where the electron-cyclotron frequency is resonant with the microwave power source. The onset of the instability occurred when the minimum field in the mirror, B., was 0.8 times the resonant field, Bp. If we assume that electrons gain energy from the microwave source only when they are in resonance and that they only gain energy transverse to the magnetic field, then the ratio 16 determined by the ratio Electrons whose turning points in the mirror are at a field less than B, do not gain energy until they scatter enoigh to have their turning points in the resonant region. Electrons whose turning points lie at fields larger than By gain transverse energy until their turning point is at B. This assumption seems reasonable if, for those elec- trons that traverse the resonant region, ( ak from interaction with the micro- wave field is larger than · /from scattering. If most of the energetic 5 electrons turn at B = By, then we have the relation E/8,- (B/B. - TJ : · As B. is incre increases rapidly. The fact that the instability sets in as Bo is increased suggests that the instability is due to temperature anisotropy. The finite B of the plasma further suggests the "mirror instabil- ity":/3/. The condition for this instability in an infinite plasma is given by 2 B (E./E, - 1) >1. For B = 1.25, is 4. This gives a critical B of 0.17. This is about 3 times the observed B. However, we think that the observations are consistent with the "mirror instability." The result of this instability would be a magnetic compression of the plasma towards the midplane of the mirror. While the plasma is compressed, the cold plasma current out the mirror should be very small. As the plasma surface moves toward the midplane, the oscillation frequency of the electrons between their turning points in the mirror field resulting from the instability would rise rapidly. We propose that when this frequency reaches the motion of the electrons between the mirror is coupled to the transverse motion of the electron at the cyclotron frequency. A modulation of the compres- sion field at the cyclotron frequency would couple in this way. (It is analogous to the case of a weight supported by a string hanging from a vertically oscillating rod. The string will oscillate if the natural frequency of the string is hall the frequency of the rod.) The result of this type of oscillation is to convert trans- verse elėctron energy to parallel energy. This could account for the observed enhanced loss of electrons out the mirrors. The compression field collapses due to the decrease in transverse energy and the increase in the parallel pressure. However, the total transverse energy lost during the instability is never more than about 10% of the total transverse energy. This measurement is made by measuring the total change in the magnetic moment of the plasma. We have not determined what fraction of this loss is due to actual particle loss and what fruction is due to increased parallel energy of the remaining plasma. A second type of instability observed appears to be the same as one ob- served by Post in a hot electron plasma /47, 15/. This instability is charac- terized by a loss of energetic electrons to the wall at the midplane of the field. The electrons that strike the wall are detected by looking at the wall with a collimated x-ray detector. The drift velocity of the electrons across the field lines is much smaller than their precessional velocity due to the gradient in the magnetic field. In fact, a scraper extending about an inch inward from the liner intercepts all the electrons that are lost radially from the plasma. Oscillating electric fields are observed when the plasma is subject to this instability. Oscillations have been observed with frequencies from 3 me up to about 30 mc. The oscillations last for a few microseconds and may recur several times within a period of about 50 usec. Frequencies around 10 mc seem to be most prevalent. Bursts of x rays from the scraper usually accompany these oscillations. In fact, the x-ray intensity from the scraper can be modulated at the same frequency as the electric field fluctuations. Figure 4 is a photograph of the output from the x-ray detector and the signal from an electrostatic probe just outside one of the magnetic mirrors. The surface of the plasma is apparently rippled and the variations in x-ray intensity is due to the precession of the ripples around the magnetic axis. The frequency of precession around the magnetic axis is I mc for a 100 keV electron. Since frequencies of several megacycles are prevalent, modes with m > 1 predaninate. This instability can be suppressed by increasing the neutral gas pressure in the region of the plasma. This suggests that the instability is suppressed by increasing the conductivity of the plasma to the copper end walls of the vacuum liner. This behavior also agrees with Post's observations and we, too, believe this to be a flute instability. If the neutral gas pressure is low enough and the rati low enough, the plasma is subject to both types of instability and both types are observed to occur more or less at random. When the plasma is compressed during the "mirror" instability, it is unstable to the flute. This is probably due to the greatly decreased conduc- tivity to the end walls. The flutes that occur during this time begin to grow T. IV. a microsecond or so after the electrons start leaving the plasma along the field lines. The x rays from the wide wall often appear toward the end of the mirror instability. See Fig. 5. It is likely that the increased electron loss due to the flute helps to terminate the compression. However, in many instances, the compression continues after the losses due to the flute have stopped. 1. Aman SA C . REFERENCES 1. R. A. Dandl et al., Nuclear Fusion 4, 344 (1964). 2. W. B. Ard et al., Camptes Rendus de la vie Conférence Internationale sur les phénomènes d'Ionisation dans les Gaz, Paris 1963, Vol. IV, p. 75. 3. H. P. Furth, Phys. Fluids 6, 48 (1963). 4. R. F. Post and W. A. Perkins, Phys. Rev. Letters 6, 85 (1961). 5. W. A, Perkins and R. F. Post, Phys. Fluids 6, 1537 (1963). - - - FIGURE CAPTIONS Fig. 1 Heating cavity showing location of detectors. Solid lines are flux lines; dashed lines are lines of constant-B. Fig. 2 Upper trace: Solar cell signal. Lower trace: Micro- wave receiver output with tuning at 5300 Mc. weep rate: 2 usec/cm. Fig. 3 Upper trace: Solar cell signal. Lower trace: Micro- wave receiver onput with tuning at 5300 M. Sweep . rate: 2 usec/cm. Fig. 4 Upper trace: Current probe RF signal. Lower trace: X-ray detector signal. Sweep rate: 0.2 usec/cm. · Upper trace: Solar cell signal. Lower trace: X-ray detector signal. Sweep rate: 2 usec/cm. X-RAY DETECTOR FIELD COILY -LEAD SHIELD -CURRENT PROBE SOLAR CELLS Trauma Ir. RF PROBE- LPLASMA SCRAPER Fig. 1. Heating cavity showing location of detectors. Solid lines are flux lines; dashed lines are lines of constant-B. . .. - ' ; - VAAN IL LUU . - - - ..... SZ . Et . . . . .. . . . . MNR 12 LEI F1 . N IS L . 2 . 17. . . . - * O 004. P . vo 04 A NI. . . 6 it .. 121 A. MOON 1 $ . I . . OL . . . CO CN . imri: .. Fig. 2. Upper trace: 'Solar cell signal. Lower trace: Microwave receiver output with tuning at 5300 Mc. Sweep rate: 2 usec/cm. . . . ., , . . . . .. . .. . ...... . . . - .-- . -- ! . . .. ::.: - - - - . . . . . ' . . . . ** . 1. 11 " 1 . . - . .. . . . . LIB R AIR T My TEN 1 A . . . ot M . . . ." . 4 - N + . 12 ! La ZA . 17 . . .. . . 2 - 1 . AP . . . . 1 1. . ! . . 6 . . . V 17 IN. LT- . . ! ELU . i * . .... TIS . . . . . . . .* . . . AN . . 1. T!. # P WHO . . . i . . . . !.. *.t. . CHP It ( 7. URL NI.. +1 2 12.16 6 Z . TUT . . DO . . I . . . . . 11 * . . . . ! . . . . . . . . . . Y * . . . . ut 1 * * . .. . to/. 4 . . . " . . - . . . * . I - . + . . . .. . . . ! . - . . . t * . . . . N • . . . . . .. .. t . rt! . . • . . LIEBE 10 - 7 - ..ON .. . . . . . . # - ... ! + 7 L . . PO 1 . . . . . . . ! . - . . 1 . 1 . . . . . . . 11 * . . V . M . . 1 - . - .1 : . . RS .. . . . ST 0 I . . . a 1 * I 14. 1 . . 14. 75 11 . . IN . * 1 . 1. .. * . 7 LI + . . TITO 2 . . 41 T ! 3 II. . OT II 1 . . + 7 . . . . . . IS . . 9 . IN . + + . . . N # . - IN - ! ! . . . . - NON 2 . 1 . . + . • . . . I + . N . . !O . . . TP . A Se TOYU. . E . . . . . . T . .- . . RA ! . I * , . 9 . ON. - . T 1. ! NU NA 1 N 07 AVA 32 . INT . . . . . .. . . . . 1: - - . . NA . . ." • SU .. . . * * . + . * . . - . + IV. . . . CHAK . . . 1 ME ! ! . 1 .NO 1. ! - r TRIP 1 + N . . . et + . . THAT .. N TV IX . . 3 I A11 . N " . uit .. . i . .. T . ! . + .. + . . 79 1 Vi4 1 O 19 . 1. . . - - .. NATIN 6 + .I . . 1 . N . . + 1 . # ! . + 1+ . • IK IISUT PPT . 1 * . !! N NOI . 14. * I M OTPITT TO . !! • i . . . . . R + • * . #IM . 2 U 01. . . . 0 Y . 1 $ II. I . 1 . 1 1 1 IPPO . . . . 1. I LIKES 1 . I . . 4 . 10$ . ION 7 ! 1 P 2 . . M . . . . . I . . 11, 6711 - 4 . . 1 1 O ' 1 . . 1 . . . I FIDAN . II + 1 . ! 11 . ! * . . . * . . I 1 . . IU . : . . . . A .N UN . ICA 1 ' 1 . . **** . IN . . . L1.. 200 RT 11 . 11 PE IT . . Y . . II. 6 1IR . . 11. . . .. 1 # OU * TYTT No11 114 20 . . 1 . . 1 PIP . 2 1 II. I OLA NO N4 TV S 2 . + YT 1 w TO . 1 1 . 10 . TO 1 111 NR. T 4. . 6 ILL . .. . . N 1 PT . 11 * M I H ! . 46 . . : 12. . . . 1 16 * . . . 191 LO. . NO - 10 100 Ort . t T : 1114 -01.. 721 + N 1 + . + 7 IN VI NA . 5 . . 1 . EN A 1 2 * 1 TITLE . 4 . 10 7 . 12. . UL IP 1 Y II. 19 . UZ . . I . 1271 17 19. . 1 14 . . 1. . T . . P- . - . . N TE 11 75 IA . IT 114. . 1 ! . C1 . TI .. . KOLE . . . . NO . . . . . . . .. ON . 4 6 . LO U * . . . . 2016 . . . . . 14 INA 1 . .RU - OR TS . NAS . + 19 . . . VOIY . * US S 14.0 . 1. . 10 NI . KI N . WY . . 10 . OP ! 2 . . . 1 CHI 24. . LN 11 . - ! 1 PI. . #1 . I . A101 I O NA . ! 1 .. . .. . I 47 UA. . . . i. . . . 1 11 . . . . . " . . . . . . . . . . . 1 H . ... . . * . . . 1 . T . . . + 4 . .... . . .. . . SI .44 S.NO . I . E . U . . . . . O . . . . .. . 1 1 19 . IN4 .. ! . . . . K 6 M . Othe T O . . . . . i OLIS 1 . . . I 5 . . - A . .. .. . .NL 1 . . . . .. . . . . + N A . - . . 4 . IN + . . . . O 1 E . . TOR . . . . . M . . O . " 143!.. . . ! . . . - 7 - . 1 . . . 4 ! . . .. N S I !. * . - . . . . . . . 46. . VODI * N . - . Rei . . * . * 2 TI . . . . . - . . . . ' 11 . . 1. - . . + • .. . . . . . * - -' I. Ur . * . . - . . . . . . . . N . I! t . . * + F . . . . S 1 4 . - : + 1 SIPUT . 2 . OUT . .. , . - .. 1 .. . 24 6 . AI II. . ! ! . . . . . . LEI - MAA . . N . # ', . NE 1 . . . . - I . . . ! . H27 S . . 1 1 . ! - ! 1 7 19 NINO 1 LA I . 19 1 ON+ AN PA 4 90 O COIIII . . ! ! 11 T . + It H . L H . 1 11!. + 2 . L Ori ! DT ! .. . ott IX 13 4 . 1 .tr ON . . 44.. . . + II. . T . ts . 19 H . . . + " 19t Ps . I . . TI! 17 VA LU - ! . L!" 11. ! 1" POT **!t . . N 19 N * * 10 1 SE . . . . 1 IAL 24. . UK 2 14-1 . 4 LAL . AM . EU 11 .1 . . ( . . . . . L . . 4 1 . . . . . N .. 1 THOS . ... . 1 ORI 11 . .. .. . 9 . . . 1 ! . 6N . TO TX It! I . 4 SON . IRUN WIN 402 TI . " CIM IN PUIN . 2. . . . . A. 1 -TP .IS CUR . TO . 15 INITI IN . T 7 A . NYT SS. . AL > LIPOII! 701 LO TIIN 1 2 . . IAS I 10 TA 1917. 1.76771 11.11 . P . . . . 1 It . . . 3 . . VY / . . ...i + . . " 1 PI ATIA . . . . . ! 1 37 . . . . NI Fig. 3. Upper trace: Solar cell signal, Lower trace: Microwave receiver onput with tuning at 5300 Mc. Sweep rate: 2 usec/cm. it TE 11.16 7 4 . 1 . . . 1 + . AR * ! 12 . . . . WHAT IN 11! . . ! ! . A . . TO 165 SPM NIM . #ION . OM li . 4. . • 11 24 . . 1 PO 1 . K7 . W14 . 6 14 PI -NH II . . . . nii "- . . . P. . . 1 I R . - MM . M + 6724 KO . OPE . . ST . . SIN 12 12 . 11 . II 1 . 11 T. 1 . 1911 4 + . LII. T S JI. 11 IIIN . 17 I . - V .. STERN 1 . . . . . . " . . . . ! 4 RI . 111 IVOT . . r SM1 1 ' . IN 1. . . : . ! . CO2 . ! 21. I . 11 . . . . 1 1 ! 4 PO4 :: . . .. 11 . T YE . * . . .ON IN 4 . N ! - . 1 1 119 . . . . 41 1. ! . - . . 15 12.. . . 4 . : 1 T OSTS III # N # 11. 11 1. 4 . . . . . . . T " . . ! . . . .A .. . • . . . 17. . 2 . . TI 1 it. . . 1 . 2 . . Y . . . . . . . - + ! . 4 2 . . . . . 11 1 H 10... t . 2. . W . . . . 4 . THI ORAL ES . P 11 22 . . . . . IN L 11. 19 1. .. RI . . BIL V1 NO A . 2 . I ++ * . . .. 17 . . , . . . . - 1 O . 14 IN14. 1 .17 ! it! . . 0 1 1 H + +M . . t* . 11 1 &TIT . 2 . . ! 1 . 1 . 0 . . . + 1 P + . 1 IS. + . " ILLIC . - . 1 . . . TY HO + ILIM 20 . I . NU . 1 " . 21:49 0019 HT NO NINA . .. . 1 . F! PH + 1111 + ! . 1. TO . . . . . HUM . . . ! ! ! . ISO IND I . . . . ..IPSI . . . . . . . . . . . 4 41 . 1.. . IP 2 .ti. . IN . . . . . I . . . O Thi . VIII • ! . . . . T 22. Kina. 11. • • . . 6 . .I . Wy 4 ' 1 1 t . + . . + HE LOR IOTO O . HIHIN . 1 . . 4 12 . 11 . ' . 11 2 . . . LE + + # 0 . . 1 . . I . 1 * SI 1 14 . . . . . . .17 le 2 . No. . 1 . . PL . 19. IN . : . 1 : ' 21 USI .:. . - 28 SAN ON 11.) . Di + O + . i . SI MUE 11 . . i . . . . . . IS . . . . ! .. . . 12 . 11 - . + * 177 . 1 TPI . M + . . . SI . T . . I II ...!!! ! SANA i . IT . 03 N . ht . . . ! .! It TN ! .? . . . . . VOITURE 5 . 1 . . r . 2 1 Y 11. . . Di 2. 1... . A . . 1 . O. 1 AN . . . 4 . . . . WHO 2012 . 1 115 . 1 TO .. . .. IS 1 KY TI RA LR 11: KA STUS . ! I . . . . . 6 I 71 1 $ 18 IN! . ' 1 LI I . 9 0 11 . , . . . • +1:00 . 1 1 i . 4 2 . . . * TI I . . 14. .. 1 T . 12 it . 6 AL HD . . LES 1170 1" i . . T . . 1 TUT . N . . St . . . 2 - te!! . 2 : . . III 4 . . . - * WUN - . . . - . + 1 974 . 112 . 41 1 ! TS- 17 SPILL . T . . 4 i + . . IN O . . .1 24 + . . . 14 # 1 . - NIM LIGI . . .. . 7 . ! 2G 46ABEN 61 . P . M 1 . . 1 . VO 11! ! 2 . L ..NI. M 6. " ...WOOL ILTA. ON 1 ... . 1 11 . ! NO . .. 2 . . . . 1 . . . + '77 . . . ! . TATTOOS . . . . N . St. ! . . . . 11 . OS 5. . al . SI 1 . . . TOO! . . IA- . ! . . . . 1211K LY I . 1. . ! . . * ! *** 12.16 YRIUS 1 . .1 1 . . . .. 1... ? . 1 . . I 16' . . . NY OS 4 1 II 114 I IRA . 17. SIL . . NY 6. II . .. . 1. . . . . . . . O . .. . . . $16 . . 111 . 10 . . . + . . . 1 1 710 . . ! ty . T 12 . . ! 14 . L- . . . TUR . . . . La I. . . IN I R .. . . . 22. . : I + 1 1 . 3 . 15 . 6. . IS 7. . K . * 74 I . . . 4.1 . HOITA . H 19 ' .. t .IN . . 16. IT 1 . . .. . . . 1 13 . 10 II. . . DIS 2 11 . . . 1 . - . EN . . . . III. 47 ORT + A . M . .. . +11 -VARI . .- 2 . . 1 . . . 17 . L *** - - . - . . O . . 1 . . . . 1 . . DI . . 4 . .t 044 . • II . . . . 14 . 1 . . . . . 1 . . .. t . . SOLA. ' 702AN 16 .. . 2 1 . 11 UNI 1 1 7 1 I 1. . 1 1 IYU ! . ut .. NA . 17 A . . . TON 5 . TIN 1 i INION 601 1:16 1L1 TEUR COPY . . u AT P9' . . . . . 9 . 70 . tutti . N 77 . i .. .NO LO . 1 . 17 T . . . 1 TT . 2.1 1 UNT . OU 4 NITI . + - . . DAT US TOO X ATO A TOTO. . . HUNT . O « Nr . . . '. . . 45. II . . ii . . . UP . IN !!! . PY ! A 11 AN 100 AT . 1SMUL WR THIS . + SI . + ES . . 1 1 .... . I. O NO .LT USE 41 27 1 . . 14 . . . . I . 12 NA . . . 1 20T ROL I !!.TIT N " 10 ... . ..AT 2 A N . ON . * . . 21+ . S LI HIMIN IN I . ++ TIT . SI . ti. 1 It. Y . . DIR . i . . a . . INI 1 * " " . NU PN PI . 11 .. . . . . . ! PA 1 . . ! . It . . . 1 17 . . . 1 ! 17. 1. . ! - . . - 1 . 1 . . . 4 . 1 . . . . 1TB 1 10 . . 11 . . . . .. IND 11 1724 DUT OURT . . 10 REF I! 1 . T ! ! . . . 11.N A . WIL 17 . T f . .. *I* . . 101 URI . . . , 14. . 11 . . . . . OM . . LI . STO . . TT i * . . TR . + . 11 . NIE 12 6 WA T . . a -- I . . . . 1. TEXT . . IN . : . . - I 190 . . . C . . 10 . 1 . 1 LU! . . . NUN . . .. 74 . SO . . . . 5. IL INTI! 21 TVA . . . : . 1 . + 1 KA . ++ 1. I . 29 I 19: SIA II 14 . A . ASIAT . 51 1 ' . . 1 .1 . M . . ... . . + 1 + N I ...OTTO NU 2 REIRO . ...100 . . O10 I 1 . 11 114 : . . . . INI I + . ! ITXX . - . . 19 . DONN 14 11 . . $ IT 414 Mor . LA 7 1 LIDT . L- 17 . . 3 . . 1 . . * HVI DIO M ... T 70 * ! "ITT THYL " 46 . IN 1 10 . 17 . NR L M741 ! * M DU . . 4 . . + att! I N . La . . A T + . 50 N KS ve ! . DAY 2 11 1 R7 4 . 9 1 . . ►N O . EX 0 2 . 47 IN d HU . an 2 TRO . 11 2 . . PS. . P + . . ht . . . . 19 . . . . . 12 . INT IT . I . . . . . 1 NO . 44 VO . + . NO P . . - . 14. 10 IN4 . . . . ht SITI . . + 2 . . . . M. HR . .. . . 11 A . . 2 " . te! TO .14 1 + . . . 1 . ? . ON . . . .- . EY . .. 14 .. . . > . . 52 . . NY! . . . . ... I .. . . . . . . .. . P. . .. . ] . 1 . 4N . . . . . 4 . . . . . . . . . . . . . . . . . . . . . . . . . . - . . . - de teatre maintain a n d maintain continue readine Santos and v i deos a tt inn i n en ternetinin numai in sammans schimmentionem consideration and . . ... . . ... Lower trace: 0.2 use signal. Sweep rate: X-ray detector signal. Fig. 4. Upper trace: Current probe 112 . 11 . . . . . . + . ** . o . . 4 * DON. ittit . . ON 14 + . 2 : 3. N wrw A . P . 1 EX DON CH . . R 47 kil 14 Site 1 . . . . . : * ** . * . . *** . VO 2 . . H EI sen B LIP .LT 1191 . M . . :64 . Shin SO la IN IN .. . S 2. . * - O . TI NR 4 . . . . . I . . .. OC . 94 . . . . 20 ON .. . . . . TO 2 ** .. . 27 S.CO . . • R . . . . .- ' . - - . . . . . . . . . . . . . .. .. .. - MZE .ALH A M . -- --- .. . > . . 1 11 . . . .. S . . . 1 .. . . . HA . 2 . 1 : . VE 1 . . . . VA . LU 4 ... . . . . . .. .. T . . 1 . . . . 1954 17 I . I . ni.. A NY 1 LA TU , . . DV UN net 4 + + . . 2 EPSI . .71 t . to . . 6 .. . . 4 . ' N ZAPYTA NR. W HILTI .. 2 . M .. . . . 17 S1 11. 2 . . . ! - . ! ARU . . I - . D N . . . 11.12 . . . . . . IT OR .. . . . MIT • 401 tu 14 + . 5W . TV . A M . .. ! " . . T . 16 .. S ! . . . + S . . r 126- 92. . 5 EN *. rs M 1 $ LA I . T Sri 1 s IN . . II I. 24 . . . 1 ! .! . 4. Y • N . IU E- . Tu A ..!! G . . 1 . .. !!*45V NA . 1 , :7 . : . 22 . . . . . $ * . . . 1 . .TO .. * . ! . . . . . . . 2 R . . .1 'S . NINI. ! * I. . . . .... ! . .. ni! m . . * ! C . . * .. . • . . . . . ! . .. P . . 1 ! .. 4 .. I . PY ! " 1 . : " . . . . . . 1 . - Co 2 1 . . N 12 . .. .1 1 1 . . Les 1 . . ... . . . .. IM . .. 1 1 + SM V . . ! . . . . . . T . i + N " : ? X-ray U 10 X ** . 2 e. - . Tn . . NA TO 1 2 . O TU . 11. . . Pt. 1 . : . 4 . O' . LOT . 1 . UM ' . NA N LILII . . 4 . . ie! OUR! .... . 0 . . . IA! 1IT 1 IV 117 . . t ' . . . TA . i . . 1 Cat 1 L . . .. . . . . . . . ' . ' , ! 19 . . 1 . . 14 . . I . 0 . . . WRI . . . I .. . . XIX : . . ! 2 . TL ! . . 7 II . . . . . D . ! .. U Tr. .. . . . ! . VI 1 . . Li ! ! . ! . - . .s 1 A ! . ..25 . ! . TE .. i 19Turi 1 . r : . N PS . . 6 . . . . . . . 1 . ! 17. . P 1 . . . * 11 ! . 1 1 1 .. . . 4 . . 1 INCS . 15 I UI 1 . 1 , 11 ru . "." IN . . IM LET . .. . . . - 11. . . . 11 . . I . . . . . . . . . . S . . 11- V I . :!?.. N . . . .I .. YUR 9 .. . . i . . . . : . . 1 WS ... T ". ! . 1. WINPOR . 14. ". .. R ' 17 . 1 . - . . . . 6 ... . . . M . • . : 1NN II. . ! LT 1.All 7 ! . .1 . ! IM .3. - 6 . ..! 7 . . + " . 16, TO ' . , . .' . . 1 & S .: + . 1 ! . T3 . .. ! I " . 4 .. . C 1 IST . . 7 15111 t . .. . . N . T ! I .. .. . . L 11. . VAN .. . ..SIN 21 . . - . SA . 1 . 16. ti -'. . . . * .. . 1 44 + - . * 4 . . . . AL U . . . . . . I W N1.. . . * . . . . . - . TT. A 49 P1 4 11 . . . 1 SH FILM - ! . . - . X .. . . " * . . . ' T 15.11 1* . . . . 1. Toni .. 7 * IRI 10,7 H . 126 2 SIN 14.1 127 . . . 1 *S7 11 . .. . . 5 . 3: LUI: . . . Iue . 1 - : PI-PO- 4 . ". '. ..' IL . , PA. . UN SIIN . . 1 IL . ' 11 . . LI NI 14 • IN . !. . . ! . 7 17.4!.. . . . 1. N 1 . ,! . .... .! . IT . . " . . . 1 . . T . . > I .. - . * iN. I' . . . . . ... ..' 1 . . * . 0 ! . ' .. . . . - . 1. 11, N . : . . - . i T . . . . 7 . * . 14 . . 1 i 11. .. ! . - . . ! . 3 . - . - . . . . . - . ' . 1 - ' . . . . . 1 . 1 . - dieren in van manera : . - . ilU I . . . 11. . S 11: a . . . t2 i . 24 ! * . . . ! 'n . ..:: . . * ! . . PO i . . . 1 - .. . . ! . OL IV. . . . . 1 . . ht I. .. ! . . S . - . . . . . . . + : . 1 . UN . . . . . . . . 14- . . . .. . .. 7 ► 10 ! N + . .. . . . . . 4 . . . > . . . Lower trace: Solar cell. signal. detector signal. Sweep rate: 2 usec/m. Upper trace: Fig. 5. TE . HN 3 - . 17 . .* :::::: . N . . . 1 ' . . . . . . . 4 A . A 1 P . .. .. . AR . - ! N . NOT 19 ., . . . T . 1 10 * ' . * A . NIX II. :22 . 27. P . . 6 . ' N 12 . * . 1. +. Ud. 4 . . . . INS 14 . ! ! . TE 4 It # !! . INFO . # 4 I . ' . . A . . - . . * . 5 .. : . . A 4. .I. . . . . . . . TEA . it RA.. TY 4i . . . S - ! 2 . . . ! . . O . . ! . . . . . . . . * . . . TA" ! 1 1 01 . . ! * , . .... . 4 . * ! 4 . . . . . . IN .. ! . .. 22 . . . .. . . .:: 1 . + + TIP! . .5 . 11: 1 . . . NAI. . . . . . *** . . . . !! * " .. . . . ii. 4- ! 2. 1 1 . 7 . . . 1 . * . .. 1 . I. IR 110! . ! . . . 1 ! 07.16 *. . ** . 1 ! . ! 1 . .. . . . .. . ITUS X4 1 . . . . " . . . . . , . . . 406 . . . . . . . - . 12. . . A . . ! I . . . . + . . . 1 . iina . . .. . TOM. 1 • 4. - 4 . . . . . WARNI .. . 14 . N ..1917 . . 1 1 4 17 . . I . . TV . . 9 . . OOP . i . . 7 - .! " " N itine 79 . ..+14. 1 . .. . - . . . 1. . . 1. . . . UTK! . 1: T ' + . - . . . N . + . TI . . V *** . CAVA .. . . OL . . . AS" . 7 S . GO . . 4 . $ r . . . . . M . . 4 . . 11 .. . $1. . # 01.! . .- 1. . . . . . * . . . ZVS . + DIT . + . . . . T ti . " N - . . 1 . . . . ! . . . . * . . . 1 ' . . A . . . " . 2 . . . . 4 . . . . . .. .. ATHI A . . . . . ut. 1 . . . - 1.. - L1 I. U N . 4 . 1 . . . . M . A117 .. SV 1 i . Y . . . N . .. . . . + . AYAK . 1 . T ! . 2 . . . : 4 t N A n . N . 03 .: . ! ! III . O + 11 . VVV . ! . T . Y . T * 1. . . 1 . 2 YA I' . .. 1.1 17" . . .. . . . . A . 15: + iu . . . I . 1: ... . 1.65 . Pn . 1 . . . . . . " . i . . . . . . * ... 1.1 . . . . 2 40.- . . + . . . " PI ht' 1 N . + 1 . 1 . 21 . ! 1 TI I . * 16. ... . . 17!! . 1 . 1 . . - .. SI 11 . : 4 T ' IN J . . . SA! IN 28 31 . " .." 1 . . UT1 . . I . . . . . 1 . " AA . .. . * : SYN D FI • A > . . 11 12 Art . t . . . . - Y . . : . . . . NOS # . ir . ! . . 4 . ! . ! ! 2 .. - . . ONS . .ti . : . . . . P. KUTUL . . . . . 43 . LEN 11. * . 1 + I .! . . i. . .. . . . • S . . • ' INTI . . . . . ! ON .. . ' :.:. ' Pov12 i . .. . ' . . . 1 OI N 6 1. T. .. ! . . . . STI : * . . A .. . 1 . & . ! . . I . .14. . . ! .. 17 I O .. - !! * i 17 9 . VO .12 . .. . . NSSIL . ! ! - 11. ! SI U A ! ON - . . . . HI . .4 **. : !! *** . . . .. 1 . I. .. !. . . la . . . It . ! TO . # 1 . i . . . . . . * . . > 10 16. 11 . . PSS . * . .. 4. . INICS XL . . US !111 . . . . is. . ... . 16 # . . . . . . . . . 150 .. ! . . , 14 POST . , . . IN . ** 2 . 1 LO Shu * . . 1 it L - .SI O .. . 1 . . A .. . IU' - 1 0 1 1 . . . . + 1 VI + . . . ID 2 RIS Pint . 13 I O N1 : . 13 . . . . . . ' . 1 . YOUTH . C . i 2007 . I . . 19 . 1. 1 1 ! .1 . + IN 1 1 II. . 11 • ita . . . .. . . . .. 14 . . 5741 Isi 1 4 M17 . 1 1 1 INI ! NTV 1 12 14 • 17." ! 1114 .. XT . 14 4 LY . Y . . Hi . • . AN 4 . L ! 1 41 Y 12 T JON 1 . - ' . i L . 2 ..12 . * : 11 ... PO . . I. II. . . ) . . TAILS H . .. : . . . . he . .. . . . I 13 S11 TWITT 14 . . 1 T UT ! . SI 1 24 - . - IV T. . at 5 AR - . . 1:11 ! ) 4 ST ...11 0 . 11 . . ' * . H . " . I . # WINOWE 111 17 * oll 11! 1 . PLUR . + . . . HII.. . .. . ! . .. m 1LA .. . C . w . > N O 1 . C X 1 OSNO 1 . 11. . . . . III ! IS . . . . WORDT BTS ! 1 !!! . RIS LI 2:21 . . . . . . IN! . LE UR. Tul .. . . .! ! 1 . M : . . . To . . . > .NO . S " . L . . " H I .' 14 H N . . . . Try** is 1 4 . . E4 . . 1 . 1 2 ! ? . ! .. . . . + 11. 1 ** . LINII * . .. - . . ! Le ! . . . . 1 * .* ** ! ! . : 1 . . ' T m MATTRO 4 ROCK # 1 NANO i. 2U .. . 11 . 11 WS . l . K SNOW 4 . . #251 . . 15 . V . . . . . t! 1 : . . . .. Hi! . RA . . . 1 . . . 17 . MO . . . te Ai .. . 11 * A . . 14. ! .t . VO . 9. . r 1 . 1 . 11 VOX . . 1 . HAI. LA . . . , * 1 N * 4 . . . . 4 i 1 AN . . . 21.11 2 L M .6 int! . 1721 . . LS . 11 . . . . . . 05 il 4 RCE . 1 16 . NY N UT. ALL 12 . . -TS 1..11 G LT C TU 11 U "KIT11 M. : 1. ILL Y . SW N1 FOTO . 4. NIMA M Mr.4 15 + 1 . T Art WURA " . . 7 2,5 12 . . t SY 1 MISMO PE . 1 VR . - 1 . ..N + ia P M . 6 . 2. . INST T . HA ITU. .. . 1 14. It 21 ori • R * . .6 N . . Na ! N . . RI R UAIS t * SSR IT . * T . I . *.. . # NA. : . . R . . . TITA .. N661 . IS + . . . . 1045 2 T1 ON . 11:15 . MI1 . . .. 1 . . ... I . . . . . FO 4 PS A. 22 IAK. . . . 4 .. . . re . . 1 . 22 . 2 . 1 . .... - 1 . . 9 6 1 .. ROLI .. . .1 . . 2. . 1 . . L . .: - END IS - y DATE FILMED 3/ 3 / 66 . Wis . .