... 2% ENé. 10200 -R/v. 1 BNL 10200-R, Vol. BROOKHAVEN NATIONAL LABORATORY SELECTED CRYOGENIC " "º DATA NOTEBOOK WOLUME | SECTIONS |-|X Compiled and Edited by J.E. Jensen W.A. Tuffle R.B. Stewart' H. Brechnd” ENGR. LIBRARY A.G. Prode|| MAY 21 1981 UNIV. OF WASH. 1. Worcester Polytechnic Inst. and National Bureau of Standards, Cryogenic Division 2. Institute of Technology, Rupperswil, Switzerland Revised August 1980 B R O O KH A V E N N AT I O N A L L A B O R AT O RY A S S O C I AT E D UN | V E R S I T | ES, IN C. UNDER CONTRACT NO. DE-ACO2-76CHOOO16 WITH THE UN | T E D STATES DE PA R T M E N T OF E N E R GY UNIVERSITY OF MICHIGAN 3 9015 08645 41.65 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their em- ployees, makes any warranty, express or implied, or assumes any legal liability or re- sponsibility for the accuracy, completeness, or usefulness of any information, appara- tus, product, or process disclosed, or represents that its use would not infringe pri- vately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency, contractor or subcontractor thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency, contractor or subcontractor thereof. Printed in the United States of America Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 Price: Printed Copy $28.00; Microfiche $3.50 I. II. III. IV. VI. VII. VIII. IX. XI. XII. XIII. XIV. XV. XVI. XVII . XVIII . SUBJECT INDEX INTRODUCTION PROPERTIES OF HELIUM PROPERTIES OF HYDROGEN PROPERTIES OF DEUTERIUM PROPERTIES OF NEON PROPERTIES OF NITROGEN THERMAL CONDUCTIVITY OF SOLIDS SPECIFIC HEAT OF SOLIDS THERMAL EXPANSIVITY OF SOLIDS ELECTRICAL RESISTIVITY MECHANICAL PROPERTIES INSULATION PROPERTIES THERMOCOUPLE EMF's DENSITY THERMAL DIFFUSIVITY HEMI SPHERICAL TOTAL EMITTANCE SURFACE TENSION APPEND ICES iii I. INTRODUCTION The Selected Cryogenic Data Notebook has been designed to meet the general needs of the engineers and scientists working with cryogenic systems at Brookhaven National Laboratory. The objective in the preparation of this collection of data tables and charts, is to present in a summary manner the best information available on those properties and materials adjudged to be of continuing importance. The needs for thermophysical property data for materials of importance in cryogenic systems are constantly expanding, and the availability of additional information makes it possible to continually increase both the depth and the bread th of a note book of property data. The growing availability of new information also makes it possible to continually improve the accuracy of the property data. With additional study of the available information, the uncertainty of data tables may also be defined. This work is , there fore, issued in loose-leaf form to permit frequent expansion and improvement of the data tabulations. - The editors wish to give particular recognition to the Data Compilation Program of the Cryogenic Data Center of the National Bureau of standards. The Cryogenic Data Center issued a compendium” of the properties of materials at low temperatures in l960 from which many of the data sheets in this notebook have been derived. This data compilation program is a continuing effort for the critical evaluation and compilation of data on the thermodynamic, transport, and other thermophysical properties for the principal fluids used at low temperatures. The work of *A Compendium of the Properties of Mater ials at Low Temperatures (Phase I). Victor J. Johnson, General Editor, Wright Air Development Division Technical Report 60-56 (July, l960 ) ; and UPhase II ), Richard B. Stewart and Victor J. Johnson, General Editors, (Dec. 1961). INTRO-1 the Cryogenic Data Center, in addition to providing a basic collection of cryogenic property data, has also provided the information for the subsequent expansion and improvements on many of the data tabulations included in this notebook. This notebook is composed of a series of individual data sheets, on which information is presented for a particular property of a selected material. These data sheets are arranged using materials as the primary index for data on fluids, and using properties as the primary index for data on solids. The format of the individual data sheets is as follows: Source of Data: Literature references to the selected data are listed chronologically. Other References: Other references to the subject are given. Comments: Explanatory notes are included which may summarize the contents of each reference, relate information on purity of the sample for which data are given, provide esti- mates of the uncertainty of the data, etc. Data Tables: Tabulations of the data are given. For subjects where only limited information is available, all of the measured values may be given. More extensive tabulations, and in particular data tables which are adopted from other data compilations, are summarized by skeleton tables. Graphs: The data are illustrated graphically wherever the properties are available as functions of a dependent property. INTRO-2 Footnote S : Footnotes are used to reference other data compilations which have been adopted as the data source. In this issue of this notebook, it has been necessary to include some mater ial which may not represent the best information available. In some instances new data may already be available which has not been incorporated into the present data sheets. In other cases, additional study and correlation of available data would greatly improve the utility of the data tables. However, in order to include some information on most of the subjects indexed, it has been necessary to incorporate available data sheets. It was also found difficult in this issue to present many of the data sheets in the format outlined above. The editors acknowledge the necessity to revise many of those data sheets, and it is intended that this collection of data sheets will be improved in accordance with our objectives of presenting a summary of the best data for all of the properties and materials indexed, in a cons is tent format. In this introduction it has been noted that the data sheets are only summaries of the available information. It is emphasized that the user requiring additional information should consult the data sources listed on the data sheets. Reference is also made to the availability of bibliographic information on the properties of materials from the Cryogenic Data Center of the National Bureau of Standards, Boulder, Colorado. In particular this Data Center is equipped to prepare custom bibliographies for specific topics or for broad subject areas from an automated bibliography storage and retrieval system. INTRO-3 In conclusion, the editors wish to acknowledge the assistance received from the Cryogenic Data Center of the National Bureau of Standards. The many publications issued by this Data Center have been particularly useful in assembling this collection of data sheets. Several individuals at Brookhaven National Laboratory have also contributed significantly to this work. In particular, the editors wish to acknowledge the continuous encouragement and advice given by Dr. R. P. Shutt. The editors also wish to thank Anne M. Flood for coordinating the clerical and administrative efforts, and the Bubble Chamber Group Electrical Drafting Section under the direction of Louis F. Both and the ISABELLE Drafting Section under the direction of Donald Gilzinger for the drafting, checking and proofreading required for the preparation of the graphs. The Editors INTRO–4 : II . PROPERTIES OF HELIUM CONTENTS Vapor Pressure Density of Liquid Helium (At Saturation) Compressibility Factor Specific Heat l. Liquid Helium (At Saturation) 2. Cp of Helium Heat of Vaporization Enthalpy Thermal Conductivity l. Liquid Helium l At Saturation) 2. Gaseous Helium Dielectric Constant l. Liquid Helium 2. Gaseous Helium Surface Tension Liquid Helium Visco sity l. Liquid Helium 2. Gaseous Helium Velocity of Sound 1. Liquid Helium 2. Gaseous Helium He at Transfer II–INDEX Xe ‘38ſilvö3dW31 S’9 G t? 9. 2 | O |OOO ‘O “O OO'O GOOO"O |O ‘O Wſ)|TEH G|ſhū)|T JO |OO ‘O 38ſ, SSE3d SOdV/\ O'O GO'O SOO ‘O | "O P OD Oſ) | O’O O C ‘O - In -U DU Tn to § O Cº. 20 GO’O Tn | 3. O | "O – * *2 "G G "O 'O | O' | – "O2 O'2 O'S O'OS O'OO) T-W-II WAPOR PRESSURE of LIQUID HELIUM Source of Data; Clement, J. R., et al., Phys. Rev. 100, 743-li (Oct. 1955) Other References: Berman, R. and Swenson, C. A., Phys. Rev. 95, No. 2, 311-ll (July 1954) Erickson, R. A. and Roberts, L. D., Phys. Rev. 93, 957-62 (Mar. 1954) Gratch, S., Trans. ASME TO, 631-10 (Aug. 1918) Van Dijk, H. and Durieux, M. , Progress in Low Temperature Physics, Wol. II, North Holland Publishing Co., Amsterdam, The Netherlands, (1957) l;80 pp. Van Dijk, H. and Shoenberg, D., Nature, lºli, 151 (July 1919) Worley, R., D., Zemansky, M. W. and Broose, H. A., Phys. Rev. 93, No. 1, (Jan. 1954) Comments: The Absolute temperature scale (0°C = 273.16°K) was used in the table Of Selected values below. Temp. Pressure Temp. Pressure °K *R mm Hg lb/in? °K *R mm Hg lb/in? l l.8 O. l.2 || 0.002 31 || 3.2 || 5.76 213 l!.68 l. 2 2.16 O.62 O. Oll 9 3.l. 6. 12 316 6.09 l.H. 2. 52 2.l O.OliO l; 3.6 6.18 l,02 7.71, l.6 2.88 5.7 O. lol 3.8 6.7l. 503 9.68 l.8 3.21. l2.5 O.2kl li.O 7.2 619 ll.9 2. O 3.6 23.8 O. l;58 H.2 7.56 753 l!.5 2.2 3.96 Hl. O.790 H.H. 7.82 900 lT. 3 2. li. l. 32 6l. l. 23 lº.6 8.28 1080 2O.8 2.6 l; .68 9l, l.8l l; .8 8.6l. l270 21.5 2.8 5.0l 134 2.58 5.0 9.00 ll.90 28.7 3.0 5.l.0 | 183 3.53 5.2 9.36 172O 33.1 Reprinted from WADD TECH. REPORT 60-56 II—A-2 . O. O, 15 O. 14 O.13 H O. 2 O.I.O O.O9 O.O8 DENSITY of SATURATED LIQUID HELIUM 4 TEMPERATURE, *K II–B–1 DENSITY of LIQUID HELIUM (At Saturation) Source of Data: Berman, R. and Mate, C. F., Phil. Mag. (8) 3, 461-69 (May 1958) Other References: Kerr, E. C., J. Chem. Phys. 26, 511-1} (Mar. 1957) Ham, N. S., Roy. Australian Chem. Inst. J. & Proc. 17, 273-83 (miyigo) Keller, W. E., Phys. Rev. 91, No. 1, 1–8 (Jan. 1955) Dash, J. G. and Taylor, R. D., Phys. Rev. 107, No. 5, 1228-1237 (Sept. 1957) Borelius, G., Arkiv. Fysik, Band l3, No. 29, 369-378 (Jan. 1958) Keesom, W. H., Helium, Elsevier, Amsterdam, (1942) p. 9k Temp. Density Temp. Density * | * | * | *; 2.2 O.ll." 3.8 O. l.22 2.3 0.11:6 l.00 O. l.29 2.l. o.16 lº.2 O. l.25 2.6 O.lkl; l.l. O. l.22 2.8 O.lk3 l;.6 O.ll.T 3.00 0.lkl lº.8 O. lll 3.2 O. lºº 5.0 O.l.0l 3.4 0.137 5.15 0.087 3.6 0.13% 5.18 O.079 Reprinted from WADD TECH. REPORT 60-56 II—B-2 COMPRESSIB|LITY FACTOR [P= Pressure, (atm); for HELI UM Z = Compressibility Foctor ] Density Temperature, *K Density gm/cc 2O 25 30 l;0 50 60 TO 8O 90 lCO l2O ll,0 160 18O 22O 260 3OO gm/cc P l.067 l.231 | P . OOO2 Z. l. OOl l. OOl Z. . OOO2 P l.ll.9 l.311, l. l;78 l.806 2.135 2. lºé3 || P .oOol . 1.031 lºo, i.o.o. i. ool i. 331 i.o.o. || 2 | * OOl.0 P l.026 l.232 l. l;38 l.6ll, l.850 2.056 2. l;67 2.879 3.290 3.7Ol l. 523 5.3k6 6.168 P OOlC) § Z. l.OOl l.002 l.002 l.002 l.003 l.003 l.003 l.003 l.003 l.003 l.003 l.003 l.003 || Z * OOl2 P l.232 l. lº&b l. 727 l.97b, 2.221 2. l;68 2.962 3. l;56 3.950 l. lll: 5. l. 31 6. lºl9 7.106 || P OOl2 & Z. l.OOl l.OO2 l.OO3 l.003 l.OO3 l.003 l.003 l.003 l.003 l.003 l.003 l.003 l.003 || Z & OOll, P l.ll.9 l. l;38 l. T27 2.016 2.30l., 2.593 2.881 3.1,58 l;.034 h.6ll 5.187 6.310 7. 1,93 8.6l,5 | P .OOll, º Z l.OOO l.OO2 l.003 l.003 l.OOl; l.00l, l.OOl; l.00l. l.00l. l.OOl; l.00l, l.0Ol; l.OOl; l.00l. Z {e OOl6 P l. 313 l.6ll, l.97b, 2.305 2.635 2.965 3.295 3.95); l.6l3 5.273 5.932 7.250 8.568 9.886 || P OOl6 e Z. l.OOl L.OO2 l.OO3 l.OOl; l.OOl; l.OOl; l.OOl; l.005 l.OO5 l.005 l.OO5 l.005 l.OO5 l.OO5 Z tº OOl8 P l. 101, l. l;77 l. 850 2.222 2.591, 2.966 3.337 3. 709 l;. l;5l 5.193 5.935 6.677 8.161 9.6ll, ll. 13 | P OOl8 © Z .9975 l.OOl l.003 l.OOl; l.OOl; l.005 l.005 l.005 l.005 l.005 l.005 l.005 l.005 l.005 l.005 Z e OO2O P l.02O l.227 l. 612 2.056 2. h70 2.881, 3.297 3.710 l. l.23 l;.9l8 5. 773 6.598 7.1.23 9.073 lo. 72 lz. 37 | P OO2O e Z. ..991.8 .9975 l.OOl l.OO3 l.OOl; l.005 l.005 l.OO5 l.OO6 l.006 l.006 l.006 l.OO6 l.006 l.006 l.006 || Z e OOl;0 P l. 619 2.037 2. l. SB 3.292 l; .129 l; .961; 5.798 6.630 7.1.6l 8.292 9.953 ll.6l 13.27 ll.93 l8.25 21.57 21.89 || P OOl.0 e Z | . )872 .9933 .9978 l.OOl; l.007 l.009 l.010 l. Oll l.0ll l.0ll l.0ll l. Oll l.0ll l.0ll l. Ol2 l.012 l. Ol2 | Z * OO60 P 2. l;23 3.055 3.688 l;.956 6.22l 7. lºël, 8.71,3 lo.00 ll.26 lz.5l 15.02 17.52 20.02 22.53 27.53 32.5i, 37.55 | P OO60 e Z | .9848 .9932 .9993 l.007 l. Oll l.0ll, l.015 l.016 l.017 l.017 l.017 l.017 l.017 l.017 l.017 l.017 l.018 || Z g OO8O P | 3.226 l;.075 ly.928 6.633 8.335 lo.03 ll. 72 lix. lil 15.09 le. 78 20.ll, 23.50 26.86 30.21 36.93 k3.65 50.37 | P OO8O e Z | .9835 .9939 l.OOl l. Oll l.Ol6 l.Ol.9 l.02l l.022 l.023 l.023 l.023 l.023 l.023 l.023 l.023 l.02l, l.02k | Z º Ol OO P | 1.031 5. lol 6.l75 8.326 lo. l;7 lz.6l ll. 71, 16.86 l8.98 2.l.09 25.32 29.55 33.77 37.99 lºé. lºl, 51.89 63.31, P Ol OO g Z | .9829 .9952 l.OOl; l.Ol; l.02l l.025 l.027 l.028 l.028 l.029 l.029 l.029 l.029 l.029 l.030 l.030 l.030 Z. g Ol2O P l!.837 6.132 7. 132 lo. Ol; l.2.63 lb. 21 l'7.78 20.35 22.9l 25. 1,6 30.57 35.67 lºo. 77 l; S.87 56.O7 66.27 76. 18 P Ol2O $ Z | .9829 .9969 l.007 l.020 l.027 l.03l l.033 l.031, l.035 l.035 l.035 l.036 l.036 l.036 l.036 l.036 l.036 | Z * Oll;0 P | 5.6l;5 7. 169 8.7OO ll. 76 lb.8l 17.85 20.87 23.88 26.89 29.89 35.88 lil.86 l;7.85 53.8l, 65.82 77.80 89.79 || P Oll,0 © Z | .983, .9991 1.010 l.025 l.032 l.036 l.039 l.0l.0 l.0ll l.0ll l.0l.2 l.01.2 l.01.2 l.0l.2 l.01.2 l.013 l.0l.3 Z * Ol60 P | 6.1.58 8.2ll, 9.979 l; .5l 17.02 20.52 23.99 27. 1,6 30.9l 34.36 l;1.25 l;8.ll, 55.03 61.9l 75.70 89.19 P Ol6O t Z | .981.3 l.OO2 l.Oll, l.030 l.038 l. Ol;2 l. Olºff l. Ol;6 l.Ol;7 l. Olib l. Olíð l. Olib l. Olć l.Ol.9 l.Ol;9 l. Ol.9 Z. e Ol&O P 7.271, 9.266 ll.27 15.27 19.26. 23.22 27.15 31.08 31, .99 38.89 l;6.70 5l. l;9 62.29 70.09 85. 70 P Ol&O ū Z .9855 l.OOl; l.018 l.035 l.oll, 1.Ol.9 l.05l l.053 l.053 l.05l, l.oSl; l.055 l.055 l.055 l.056 Z. e O2OO P | 8.095 lo. 33 12.57 17. O6 2.l. 52 25.95 30.36 34.7l, 39.12 lºs. 18 52.2l 60.93 69.65 78. 38 95.81, P (2O & Z | .9870 l.OO7 l.022 l.Ol;0 l.050 l.055 l.058 l.059 l.060 l.060 l.06l l.06l l.062 l.062 1,062 Z e O2l;0 P 9.75l l?. 1,8 l; .22 20.69 26.13 31.52 36.88 l;2.2l l;7.53 52.8l, 63.15 74.06 84.67 95.29 P O2lQ e Z | .9909 l.Oll, l.031 l.05l l.062 l.068 l.07l l.072 l.073 l.071, l.075 l.075 l.075 l.O76 Z e O28O P ll. l;2 lll .67 l7.92 2k. lºl 30.85 37.21, 1,3.57 l;9.88 56.l7 62. l;5 7l.99 87.5l. P O28O º Z .9957 l.022 l.0lo l.063 l.075 l.08l. 1.08, l.086 l.087 l.088 l.089 l.089 Z, g O32O P l3.ll, l6.90 20.68 28.23 35.70 l;3. 10 50.15 57.75 65. Ol; 72.31 86.85 P O32O .03 Z | l.OOl l.030 l.05l l.076 i.088 l.095 l.099 l. loo l. lo2 l. lo2 l. lo3 Z. .03 O36O P ll.88 19.18 23.5l 32.ll, lºo.68 l;9. 13 57.5l 65.8l. 71.15 82. l;5 99.05 P O360 tº Z | 1.008 l.039 l.062 l.089 l. lo2 l. log l.ll3 l. ll; l. ll6 l. ll" l.ll& Z | * Ol;OO P l6.6l, 21.5l 26. lºl 36.16 l;5.8O 55.32 6l. 76 7l. 15 83.52 92.88 P Ol;00 § Z l.015 l.019 1.073 l. 102 l.ll 7 l. l.2, l. l.28 l. l.20 l. lx2 l. l;3 Z. g Oll;0 P | 18. l;5 23.90 29.38 l;0.29 5l.06 61.69 72.22 82.70 93.16 P Oll,0 * > Z | l.023 l.060 l.086 l. ll'7 l. lx2 lll:0 l. lll: l. ll:6 l. ll:8 Z e Ol;8O P | 20.29 26.31; 32.43 blº.5l, 56. l;7 68.26 79.93 91.5l. P OlćO g Z | l.031 l.07l l.099 l. lx2 l. ll:8 l. lj6 l.lé0 l. lé3 7, e P 22.17 28.85 35.57 l;8.9l 62.06 75.02 87.85 P ‘92° | 2 | Tölö i.03% i.ii. i.i.17 lić, iſ im; i.im 2 || 0520 P 26.07 31.07 l;2.10 58.07 73.73 89.16 P .06OO Z | l.060 l. loë l. lll l. l80 l. l.99 l.208 Z .0600 P | 31.22 lºl. Ol 50.86 70.31, 89.10 P ‘97° || 2 || 333 ... Íial j .33 2 || 0700 P 36.73 l;8.5l 60.31, 83.66 P •9999 || 2 | "...ſº, Tiš I.333 ſº . . .0800 P l;2.66 56.65 TO.66 98.21 P .9999 || 2 | 1.56 (.333 .276 (.33, . . .0900 P | 1.9.10 65.52 8l.96 P ... loCO Z | l. lg8 l.278 l. 333 Z. ..] OOO P 56.12 75.28 91... l;2 P ..ll.OO Z l.2kl; l. 335 l. 396 Z . llOO P 63.84 86.08 P ... l.2OO Z l.297 l. l;00 Z . 12OO P | 72.38 98.13 P ..l.3OO Z l. 358 l. l. T3 Z . l.200 P 81.93 P ..ll:00 Z | l. l.27 Z ..ll.00 P 92.72 P . 15OO Z l. 508 Z. . l;OO Reprinted from: "Compressibility Factor for Helium", Data Sheet il.001 in A Compendium of the Properties of Materials at Low Temperature (Phase II) by the National Bureau of Standards, Cryogenic Engineering Laboratory, R. B. Stewart and W. J. Johnson, General Editors; Wright Air Development Division, U. S. A. F., WADD Technical Report 60-56 II-C-1 OOH OO" | t» O'|| 8 O’] 2 ['| ‘8010 V3 AllT18ISS38dWOO CN: CO * O to cu cu cu Z (O ro O ty" | †; tvº | 8 țº'|| 29" | 9 Gº ! O 9" | 96 OOły | 9 9 OO £ | O 8 OO2|| 9 / OO | | 89 OOO ! O 9 OO 6 Sºuºudsouļo º 3&nSSE HA 9 9298 țºț» ț» O O 9OO /. D! Sd º BAJOSSB&J d O tº 9 22 28 2ty 2O 2 oo / uu6 9OO” O = OO9 -opduoſopº ſapinog"- - - - - Á uoſ o loqo'n ôu Jººuſ ſõug oſua 5 OK 19 Sp … Opu D ļS Į O n D 04ng| Duo ! ! DN L& /^d = Z W [] | Tl 3 H \} O -3 }} O L OV7 - Ål | Tl | 8 || SSB &]d WOO OO9OOț»OO2 OO2 OO | 9 6° O O O’] ſy O' | 8 O^ | Qo I - Vapor Pressure # \ts Dr. - - E. \- III II – l Atmosphere O z 225 >\Ts III - 2. h7 Atmospheres O - º N - 5.5 Atmospheres O - 200 Y g tº-N Li QUID d iſs | | > 1.6 2.4 3.2 4.O 4.0 TEMPERATURE, ok .don 4 - 13 - 61 Pellam and Squire, working at normal evaporation pressures found no dis- continuity, and concluded that their results were due to the lack of higher pressures as used in the experiments of Findlay et al. On Strictly theoretical grounds, using numerous assumptions, Pippard con- cluded that the anomalous behavior at the X. point was due to inclusions of He II in He I immediately above the X point, and inclusions of He I in He II immediately below the X point. Pippard also stated that these inclusions should have a mean radius of 2.l. x 10-7 cm, each consisting of about 850 atoms, in order to explain the curves. In this way the absence of the discontinuity required by Ehrenfest could be accounted for. Atkins and Osborne determined the velocities below the X point. Atkins and Chase determined the velocity curve both above and below the X point and found no discontinuity. Their velocities were slightly lower than those of Findlay et al. near the X point. Atkins and Stasior observed no discontinuities for the series of velocity—temperature curves at constant pressure reported here. The work of Chase published in 1953 and in 1958 is in close agreement with that of Findlay et al. Van Itterbeek, Forrez and Teirlinck made measurements on the velocity of Sound in liquid hºlium in the neighborhood of l’K with frequencies of 200, 500, 600, 800, and 1500 kilocycles per second. A small minimum was observed at 800 kilocycles per second for the velocity as a function (Continued on following page) II-K-l. 2 VELOCITY of SOUND in LIQUID HELIUM (Cont.) Comments: (cont.) of frequency which does not appear at the boiling point. These values are tabulated in Tables IV and W. Wan Itterbeek, Forrez and Teirlinck in a second article made the observations listed in Table WI, and stated that the velocity as a function of frequency is constant to With- in one part in 2400, and that the velocity seems to be constant as a function of temperature. At the boiling point they found no difference in the velocity using two frequencies, as shown in Table VII. Table I. The Welocity of Sound for Saturated Liquidº Temperature Velocity °K m/sec He I lº.22 l'79.8 l.0 - l89.2 3.6 2O6.5 2.5 223.3 2.20 22l. 2 He II w 2.18 22l. T 2.0 225.3 l. T6 231. H. * Findlay, Pitt, Smith and Wilhelm Table II. Velocity of Sound in Helium II* Temp. Welocity Temp. Welocit, °K (m/sec) °K jj 1.3 236.73 l.9 229. l;7 l.l. 236.35 2.0 226.68 l. 5 235.66 2.05 221.90 l.6 231.6l. 2.l.0 222.72 l.T 233.28 2. lº 220.2O l.8 231.70 2.l79 218.00 * Chase (Continued on following page) II-K-1. 3 VELOCITY of SOUND in LIQUID HELIUM (Cont.) Comments: (cont.) Table III. The Velocity of First Sound in Liquid Helium+ Velocity of Sound, m/sec Temp. Pressure, atm. O Vapor K press. | *-2 || 2 lo l; 20 25 30 || ||O || 50 | 60 | TO l.25 || 237 257 273 || 300 326|| 3116 || 365 l. 50 || 235 | 256 272 299 || 325 || 31.5 362 l. 75 233 252 270 298 || 323 31.2 355 l.80 232 25l 269 297 || 32l 339 || 352 l.90 229 || 21:9 || 267 295 || 318 || 333 ||3|8 || 372 2. OO 227 21,7| 265 292 || 312 || 336 || 358 379 2. lo 222 210 || 259 || 288 || 317|3|O || 361 || 382 2. 20 219 210 || 259 293 || 322 || 31|| || 366 || 385 || ||l.9 2.25 22O 21:2 26l 295 || 323 || 31.5 367 386 || ||2O 2.50 222 2ll 265 298 || 326||3|8 || 369 || 388 || ||22 || ||5l * 3.00 218 21.2 26|| || 298 || 327 || 319 || 37O || 389 || ||23 l;52 || ||81 || 510 3.50 2O6 230 || 256 296 || 325 || 31.9 || 37O || 389 || ||23 l;52 | 181 || 510 l.00 l90 216 2116 290 32l | 31||7 || 369 || 388 || ||23 || ||52 | 181 || 510 li. 20 18O 206 || 21, l 285 || 318 31.5 || 368 || 387 || ||22 l;52 l;81 || 510 Values above the line in the table are for Helium II, and below the line for Helium I. - * Atkins and Stasior Table IV. Variation of Velocity of Sound with Frequency} Temp. | Press. Wel. Frequency Temp. Press. Wel. Frequency °K mm Hg m/sec Kc/sec °K mm Hg m/sec Kc/sec l.076 .2ll 238.05 218.59 l.ll6 .336 237.75 218.63 l.l.08 .315 238.05 218.56 l.l.23 .357 238.05 218.56 l.08l .250 237.75 513.12 l.ll6 .336 237. l;0 813.76 l.08l .250 237.75 512.76 l.ll:6 . l.20 237.22 813. lil; l.08l .250 237.57 621.Ol l.l.23 .357 237.78 ll lºg.28 l.090 .273 237. l;8 800.33 l. 123 .357 237.69 ll. T6.O5 l.O76 .2ll 237.8l ll,81.92 l.ll6 .336 237.6l. ll. T6.05 l.099 .291, 237.68 ll,76.05 * Van Itterbeek, A., Forrez, G. and Teirlinck, M.; Physica 23, 63 (1957) (Continued on following page) II-K-1.4 Comments: (cont.) VELOCITY of SOUND in LIQUID HELIUM (Cont.) Table W. Variation of Welocity of Sound with Frequency, for Saturated Liquid:# Temp. Pressure Velocity Velocity% Frequency °K mm Hg m/sec m/šec Kc/sec li.221 763.3 18O.38 l80.32 ll,69.92 l.216 761.2 l80.39 18O.18 ll,8l. 78 l; .222 761.3 18O.O8 18O.O5 8ll.lº l; .223 765.l lT9.9l 179.9l 799.83 lº.222 76/.3 l8O.68 l80.65 623.60 l; .218 76.L.5 l80.37 18O.22 512.7O H.2ll; 758.50 l8O. 5l. 180.21; 218.33 lº.226 767. Hl l80.Ol l80. LO 218.2l * Wan Itterbeek, A., Forrez, G. and Teirlinck, M. ; Physica 23, 63 (1957) * - * Corrected to h.223°K Table VI. Variation of Velocity of Sound with Frequency}} Temp. Press. Velocity | Frequency Temp. | Press. Velocity | Frequency °K mm Hg m/sec Ke/sec °K mm Hg m/sec Kc/sec O.985 ..l.05 238.5l. 218.2% O.985 ..l.05 237.63 226.212 O.985 ..l.05 238.35 218. Ol? O. 985 ..l.05 237.63 523.03 O.985 ..l.05 238.27 2ll. 257 O.985 ..l.05 237.53 8OO. 37), O.985 ..l.05 237.8l 226.385 O.997 .ll;6 237.73 ll.95.76 O.985 . 105 237.65 226.2kl - - Table VII. Velocity of Sound at l; .223°K++ Frequency Velocity Ke/sec m/sec 217.97 l80.69 226.7O6 l8O. l;9 226. |85 l8O.75 226.706 l8O. 59 Reprinted from WADD TECH. REPORT 60-56 * Van Itterbeek, A., Forrez, G. and Teirlinck, M.; Physica 23, 905 (1957) II-K–1, 5 | 700 500 VELOCITY OF SOUND |6OO |N L|QUID HELIUM |500 450 SOLIDIFICATION CURVE —||400 400 |3OO | 200 350 2O.O At m. || OO |5. O |OOO 3OO 90O 25O 8OO H ELI UM DI HEL | UM I 7OO 2OO SATURATED VAPOR PRESSURE 600 |.O 2.O - 3 O 4.O TEMPERATURE, *K II-K–1. 6 WELOCITY of SOUND in GASEOUS HELIUM ources of Data: Van Itterbeek, A. and Keesom, W. H., Communs. Phys. Lab. Univ. Leiden Commun. No. 209c (1930); Wis-en Natuurk. Tijdschr. 5, 69 (1930) Keesom, W. H. and Van Itterbeek, A., Koninkl. Ned. Akad 31, 20' (1931); Communs. Phys. Lab. Univ. Leiden Commun. No. 213b (1931) Wan Itterbeek, A. and Thys, L., Physica 5, 889 (1938) Van Itterbeek, A. and Van Doninck, W., Proc. Phys. Soc. (London) 58, 615 (1916) Van Itterbeek, A. and Van Doninck, W., Proc. Phys. Soc. (London) 62B, 62 (1919) - - Schneider, W. G. and Thiessen, G. J., Can. J. Research 28A, 509 (1950) Van Itterbeek, A. and Forrez, G., Physica 20, 767 (1954) Van Itterbeek, A. and De Laet, W., Physica 21, 59 (1958) ther References: Keesom, W. H. and Wan Itterbeek, A. , Koninkl, Ned Akad. Wetenschapen, Proc. 33, lilio (1930); Communs. Phys. Lab. Univ. Leiden Commun. No. 209a (1930) Omments: The values of the velocity of sound in gaseous helium are presented here as functions of temperature and pressure, from temperatures of 2.078°K to 290°K, and pressures from 0 to l atmosphere. The velocity of Sound at the vapor pressure at various temperatures is also given. The data tabulated below and illustrated on the graphs are from the references listed above under "Sources of Data". The data illustrated in the graph of velocity of Sound versus temperature and tabulated below are from Keesom and Wan Itterbeek; Van Itterbeek and Keesom; Wan Itterbeek and Van Doninck; Wan. Itterbeek and Thys; and Schneider and Thiessen. All of the above investigators report that all values were obtained at nearly atmospheric pressures. No mention is made by any of the above authors of the purity of the experimental samples used. The data reported by Keesom and Van Itterbeek are estimated by the authors to have a maximum error of 0.1%. The frequency of the sound used is not given. Wan Itterbeek and Keesom report a maximum error in their observations of 0.15%, and again no mention is made of the frequency of the sound used. Wan Itterbeek and Van Doninck report a frequency of 523.78 kilocycles per second used in their determinations of velocity of sound, but they make no specific claims on the accuracy of their data. Schneider and Thiessen; and Wan Itterbeek and Thys used ultrasonics of unreported frequency in their experiments and did not estimate the accuracy of their observations. Wan Itterbeek and Forrez; and Wan Itterbeek and De Laet report velocities of sound at various constant temperatures below 5°K as a function of (Continued on following page) II-K-2, i WELOCITY of SOUND in GASEOUS HELIUM (Cont.) Comments: (cont.) pressure. These data are tablulated below and illustrated in the graph of velocity of sound versus pressure, together with the velocity of sound at the vapor pressure as reported by Wan Itterbeek and De Laet. Wan Itterbeek and Forrez report using a quartz crystal with a frequency of 510 kilocycles per second to propagate the sound waves through their experimental sample. Using audible sound, Wan Itterbeek and De Laet measured the velocity of sound in helium gas at very low temperatures and pressures. Using these data they extrapolated the velocity of sound to the vapor pressure at various temperatures. A graphical comparison was made between Keesom and Van Itterbeek's observations at l; .247° K and Van Itterbeek's values at H.228°K. The agreement between these two sets of data is very good. No information is given by any of the investigators mentioned above as to the purity of their experimental samples. The units of the velocity of sound in helium gas used in the tabulations below and on the graphs are: temperature in degrees Kelvin (O°C = 273.16°K), pressure in atmospheres (g = 980.665) and the velocity of sound in meters per second. Velocity of Sound in Gaseous Helium as a Function of Temperature near One Atmosphere Pressure Temperature Velocity Temperature Velocity °K m/sec °K m/sec Wan Itterbeek & Keesom Van Itterbeek & lj. l8l 229. l Van Doninck l.T. l86 2lili.2 20.3 265.9 l8. l;2|| 253. l 75 509.9 20. l.29 266.2 8O 526.9 20.519 266.2 85 5112.9 90 559.5 Van Itterbeek & Thys 90.2 559.5 290.6 997. O Schneider & Thiessen Keesom & Wan Itterbeek l911.99 822.5 li. 21.7 103.911 273.1 973.9 (Continued on following page) II-K–2. 2 VELOCITY of SOUND in GASEOUS HELIUM (Cont.) Comments: (cont.) Velocity of Sound in Gaseous Helium as a Function of Pressure (Continued on following page) Wan Itterbeek and De Laet Pressure Velocity Pressure Velocity Pressure Velocity atm. m/sec atm. m/sec atm. m/sec l; .228°K .39|| 106.25 . OBO8 911.27 . l;29l lCŞ. lil . O669 93.63 o 121-99 || 56.3 lo3.31 .0813 93.15 . Ol.95 l2O.87 - - sº .5563 lol.86 .0923 t 92.66 .03116 l20.69 - - - .ll.96 91. 72 . OB28 l2O. l;7 3.18.1% K º, , . . . . . - . O837 l2O. Ol O lO5. Ol 2.359 & .1285 ll.9.3|| .0350 lol. 28 O 88. || . l80l. ll 8.5l. . OTO8 lO3. 33 .O226 87.92 . 2305 ll 7.75 ..l.098 l.02.29 .0269 87.8O .2991 ll6.63 . 15ll; lOl. lo .0335 87.56 .3700 llj. l;6 ..l.913 99.88 .039.l 87.28 ... lilj9 ll3.9l .21,87 98. Ol, ... Ol;55 87. OO .5513 ll2. l6 2.821° K . O506 86.76 º; º || 0 || 33.3% 2.2.18°K .8828 lol. 78 . O23l 98.21, O 87.6l, .0311 98.03 .O256 87. ll 3.760°K . Ol;37 97.7l, .03ll; 86.7O O ll. 12 . O683 96.9l; .0382 86.21, . Olš3 ll. ll .l.071, 95.58 . Oll,6 85.7O .0255 ll3.92 .ll;82 911.06 O .O378 ll3.70 O 2. OT8°K 2.612°K .O873 ll2.80 O 81.85 . l.227 ll2. lo O 95.65 . Ol&2 81.25 .l721, lll .12 . Oló9 95. 55 . 02/15 83.93 o . O2O7 95. 16 .0298 83.59 .2923 lC3.63 .3531; lO7.2l . O285 95. l.9 e .0390 9].76 Wan Itterbeek and Forrez Pressure Velocity Pressure Velocity atm. m/sec atm. m/sec • . 3.582°K 3.582°K O lll .3 .25l'ſ lO6.5 . 1275 lO9.l .3206 lC5.6 .l653 lO8.8 .3876 lOl.l .2ll;3 lO8.2 . 1,318 lC2.5 .52Ol. lOO ... O II-K–2. 3 VELOCITY of SOUND in GASEOUS HELIUM (Cont.) Comments: (cont.) Velocity of Sound in Helium Gas at the Wapour Pressure Wan Itterbeek and De Laet Temperature Pressure Welocity °K atm. m/sec l; .228 l.0ll6 lol.96 3.760 O.6288 99.62 3.18l. 0.31 l8 95.37 2.82k 0.1823 92.62 2.6l;2 0.1336 90.08 2.259 0.0615 || 86.l2 2.218 O.0558 81.83 2.078 0.0392 82.7l Reprinted from WADD TECH. REPORT 60-56 II-K–2.4 | 20 ||5 || O | O5 |OO 95 90 85 O] O2 2.2 |8 °K 2.O78 °K O2 PRESSURE, psia O.4 O.6 O.8 I.O 2 4. 6 8 |O O4 T = 4.228° K 3.582 °K 3. |84 ° K SATURAT VAPOR 2.642 °K PRESSURE VELOCITY OF SOUND |N GASEOUS HELIUM O6 O8 O. O 2 O.4 O 6 O.8 PRESSURE, atmospheres 40O 390 38O 37O 36O 35O 3 4. O 3 3 O 3 2 O 3|O 3OO 29O 28O 28O |O II-K–2.5 |OOO 32OO VELOCITY OF SOUND |N 3OOO 900 GASEOUS HELIUM near one otmosphere 28OO 800 26OO 24 OO 7OO 22OO 6OO 2OOO | 8 OO 500 | 6 OO | 4 OO 400 | 200 3OO | OOO 8OO 2OO 6 OO 40O |OO O 5C |OO |50 2OO 250 3OO TEMPERATURE, o K II-K–2.6 – TTTTTTTT T-TTTTTTTT T I I ITT.II *m. Peak Nucleate Boiling — 2^ - —i. 4 Re=10% * | O – p = O.3 MN/m? -- – T= 4.2K – *= D = 2 x ſoºm I - Re=109 }- p=0.3 MN/m2 º: . - T=4.2K * - uper r - D= 2xloºm E Helium > ... -- T , , , 3 — 3. IO* E 49 * E. T e 2. — # }* Kopitzd Conductonce £" 4% / - }* (Typical value for . º -sº * Copper to Helium at -º }*== |.9 K). — Re=|ot \ p- O.3 MN/m? loº - T= 4.2 K – ºssºmo D= 2x IO*m *- jº Kutafeladze Correlation assº *=> for nucleate boiling tºmº df O. | MN/m IO' | | | | | | | || | | | | | | | || | | | | | | | | | .O. O. | |O "wall-Tb K DMPARISON OF VARIOUS MODES OF HELIUM HEAT TRANSFER II-L-3 I . III. PROPERTIES OF HYDROGEN CONTENTS P-p-T of Normal and Para-hydrogen at the Triple Point, Boiling Point, and Critical Point. - Ortho-Para Hydrogen Composition at Equilibrium vapor Pre S.Sure l. Vapor Pressure Normal Hydrogen 2. Vapor Pressure Para-Hydrogen 3. Vapor Pressure Difference Density of Liquid H2 (At Saturation) 1. Normal Hydrogen 2. Para-Hydrogen 3. Density Differences Compressibility Factor for Normal Hydrogen Specific Heat l. Specific Heat of Liquid Para-Hydrogen - 2. Specific Heat of Normal Gaseous Hydrogen 3. Reduced Specific Heat Differences Heat of Vaporization - w l. He at of Vaporization Normal Liquid Hydrogen 2. Differences in Latent Heat Enthalpy and Entropy - l. Temperature Entropy Chest for Normal Hydrogen 2. Tabulated Properties of Normal Hydrogen Vapor and Liquid and Saturated Vapor of Para-hydrogen 3. Tabulated Properties of Liquid and Vapor Para- hydrogen - 4. Temperature Entropy Chart for Para-hydrogen 5. Enthalpy–Entropy Chart for Para-hydrogen 6. Reduced Entropy. Differences Thermal Conductivity l. Thermal Conductivity of Liquid Hydrogen 2. Thermal Conductivity of Gaseous Hydrogen 3. Thermal Conductivity Ratio of Para to Normal Hydrogen III-INDEX-1 Dielectric Constant l. Liquid Hydrogen 2. Gaseous Hydrogen Surface Tension l. Liquid Hydrogen Viscosity l. Viscosity of Liquid Para-hydrogen 2. Viscosity of Gaseous Normal Hydrogen 3. Viscosity Differences Velocity of Sound l. Velocity of Sound in Liquid Para-hydrogen 2. Velocity of Sound in Para-hydrogen 3. Velocity of Sound in Hydrogen General III–INDEX-2 P-p-T OF NORMAL AND PARAHYDROGEN AT THE TRIPLE POINT, BOILING POINT, AND CRITICAL POINT Source of Data: COmments: R. B. Stewart and H. M. Roder Chapter ll. Properties of Normal and Parahydrogen. p. 379-404 in Technology and Uses of Liquid Hydrogen, Pergamon Press, New York (1964) These values were calculated from data referenced in the Stewart and Roder paper. Normal Hydrogen Parahydrogen Triple Point Pressure, atm 0.071 O ... O 695 Temperature *K l3 = 947 13 . 803 Density (Solid) g mole/cm3 0.0430l. 0.04291 Density (Liquid) g mole/cm O ... O 3830 O , 0.3821 Density (Vapor) g mole/cm3 0.000063 l 0.0000624 oiling Point (l atm) Temperature, *K 20 - 380 20 - 268 Density (Liquid) g mole/cm3 0.0352 0.035 ll Density (Vapor) g mole/cm3 0.000 6606 O . 00.06636 ritical Point Pressure, atm l2. 98 12 - T59 Temperature, OK 33 - 18 32 . 976 Density, g mole/cm3 0.01494 O . Olb59 ol. Wt. = 2.01594 g/g mole, based on the C+2 = 12.000 scale ecently adopted. III-A The equilibrium concentration of ortho and para hydrogen in the ideal gas state has been calculated by Woolley, Scott, and Brickwedde (1948), J. Res. Natl. Bur, std. ºl, 379-475. The effect of pressure on these equilibrium concentrations is considered to be negligible. These values are tabulated and illustrated graphically below. was used in this table. |OO 75 5O 25 The NBS-1939 Temperature Scale Ortho-Para Composition at Equilibrium Temp. Percentage °K in para form for H2 lO 99.9999 2O 99.82l 30 97.02l l:0 88.727 50 77.05"; 60 65.569 70 55.991 8O l,8.537 90 l;2.882 lOO 38.620 l2O 32.959 lSO 28.603 2OO 25.974 250 25.26; 300 25.072 O | OO TEMPERATURE , orTHo - PARA HYDROGEN COMPOS |T| ON AT EQUI LI BRIUM 2OO • K Reprinted from NBS Report 8812 3 OO III-B VAPOR PRESSURE NORMAL HYDROGEN |O |5 2O TEMPERATURE, *k 25 3O 35 III–C–1. 1 VAPOR PRESSURE NORMAL HYDROGEN Source of Data: Table II A, Chapter ll "Technology and Uses of Liquid Hydrogen", 381, Pergamon Press - Temperature Pressure °K atm l3. 947 O. O.7l l4 O ... O 73 l5 O. l.25 l6 0.202 17 0.310 18 0.456 19 0.648 20 0.891 20 .380 l.000 2l l. l.96 22 l. 569 23 2.018 24 2.551 25 3 - 178 26 3. 906 27 4. 746 28 5. 705 29 6. T94 30 8 . 023 31 - 9 .410 32 10.94 33 12. 65 33. 18 12.98 III–C–1.2 | VAPOR PRESSURE PARA - HYDROGEN |5 2O TEMPERATURE, *K 25 3O 35 III–C–2. 1 VAPOR PRESSURE PARA-HYDROGEN Source of Data: Table II A, Chapter ll "Technology and Uses of Liquid Hydrogen", 381, Pergamon Press Temperature Pressure, atm °K l3. 803 O ... O 69 l4 O ... O 77 l5 O. l32 l6 0.212 17 0.325 l8 O .475 19 O . 672 20 0.922 20. 268 l. 000 21 l. 233 22 l. 612 23 2 ... O 69 24 - 2. 610 25 - 3.245 26 3.981 27 4.828 28 . 5 - 793 29 6. 886 30 8. Ll 7 31 9 - 500 32 ll. 05l 32. 976 l2.759 III–C–2.2 O £ XI o ‘ 38 n.lv 83d W31 92O2 sı * y~Y (tz96|) 'ID 49 × 90q2044I uDA O ( 8 tº 6 ] ) T O £9 K9||OOM W7 N B 9) O 8C])\H TV/ VN H ON O NV \/\]\7c] CJ || T. O | T N E ENA 138 E O N B \} E - -| |C |E \}[^SSE? Jc3 (JOd V/A O9 OO | O9|| EONE 833 - |Q 3 - ſl SSE - d 8 Oc VA d d Reprinted from NBS Report 8812 6H ſo uu" H- III-C-3 O.O39 O,O38 O.O37 O.O36 O.O35 O.O34 O.O33 O.O32 O.O3] O.O3O O,O29 O.O28 O.O27 O.O26 O.O25 O.O24 O.O22 O,O2| O.O. 9 O.O18 O.OI7 O.O. ooia; O DENSITY of NORMAL L|QUID HYDROGEN 2O TEMPERATURE, *K |505 |43O |355 |28O I2O5 ||3O |O55 98O 905 83O 755 68O 6O5 53O 455 38O 3O5 23O 155 º III–D–l. 1 DENSITY OF NORMAL LIQUID HYDROGEN Source of Data: R. B. Stewart and H.M. Roder, Chapter ll. Comments: Properties of Normal and Parahydrogen. p. 379-404 in Technology and Uses of Liquid Hydrogen, Pergamon Press, New York (1964) These values were calculated from data referenced in the Stewart and Roder paper. Temperature Density, g mole/emº °K Sat. Liquid Sat. Vapor l3 . 947 0.03830 6.3 x 10-5 14 0.03828 6.4. " 15 O . O3 786 10 : 4 " I.6 0.03 742 l5.9 ; : l 7 O . 03695 23.2 ! I 18 0.03647 32 - 7 ". 19 O. O.3595 44 - 7 " 2O 0.03540 59 - 5 |f 20 - 380 0.03519 66 - O " 2l 0.03483 77. 6 | 22 0.03421 99.5 lºt 23 0.03355 l25. 7 | || 24 O . O3.285 l56 . 9. " 25 0.03209 l.93 . 8, " 26 - 0.03127 237. 7 | ? 27 O . O3036 290 ... O " 28 . O . 02935 352. 7 | | 29 0.02821 429. O " 30 O ... O 2689 524 . l. " 3l O 0.25 28 648.2 i 32 0.023 l 2 33 O . Ol.903 33. 18 0.014.94 1494.0 # III–D–1.2 O.O39 O.O38 DENSITY of LIQUID O.O37 PARA - HYDROGEN O,O36 158O O,O35 15O5 O.O34 |43O oos3 |355 O.O32 |280 O.O3| |2O5 O.O3O ||3O O.O29 |O55 O,O28 98O O.O27 905 O,O26 83O O.O25 755 O.O24 68O 6O5 O.O22 53O O.O2| 455 O.O2O 38O O.O19 3O5 O,OI8 23O O.OI7 |55 O.O16 8O O.O15 5 |O 15 2O 25 3O 35 TEMPERATURE, "K III–D–2. 1. Source of Data: comments: DEN SITY OF LIQUID PARA-HYDROGEN R. B. Stewart and H.M. Roder Chapter ll. Properties of Normal and Parahydrogen. p. 379-404 in Technology and Uses of Liquid Hydrogen, Pergamon Press, New York (1964) These values were calculated from data referenced in the Stewart and Roder paper. Temperature Density, g mole/em” °K Sat. Liquid Sat. Vapor l3,803 0.03821 6.24 x 10^* l4 0.03812 6.90 " 15 O . O3 770 ll.04 " l6 O . O3726 l6 = 78 " 17 O ... O 3679 24.40 " l8 O.03631 34. 20 " 19 0.03580 46.53 " 20 0.035.26 61 - 76 " . 20. 268 0.035ll 66 - 36 " 2l 0.03469 80 - 30 " 22 0.03409 102.7. º 23 0.03344 l29 , 6. $1 24 0.03.274 16l. 5 I 25 O ... O 31.99 l99 - 3 11 26 0.03 ll 7 244 . l. If 27 0.03026 297. 6 Jº 28 O . 0.2925 362.0 JI 29 0.028.10 440.8 | 30 O. O.2675 540. l. 11 31 O ... O 2509 671 .. 7 !? 32 0.02281 868 - O I 32 . 976 O - O L559 1559 - O i. III–D–2.2 » . ' 3&nıww3aw31 Oº9 2O 29 | O i O ~CJ Y(~|~ } /~– -< C2 -r] ozo ) 20 rrı |2 O rrı |-SS |së |} og o $ ( 196 I º ‘Io ſº uļnapoo9)> N E 9 O MJQ \ H \}\}\/d C] NVĒ TV/ VN MJON O | T O IT CJ E 1 V/ AJO LV/S |- O SE O N B \\ 3 -l-. | Q /\ L ] SNEC] Reprinted from NBS Report 8812 III--D-3 ; N O O. I sometric Specific Volume Density Line cc/gm cc/mole gm/cc O | 3708 1854 1 113 556.3 278. 1 13. 89 14. 14 14.38 7476. 3.738 2243 1121 561. 373. 280. 224. 29 . OOO2697 . OOO5393 . 0008989 .001798 - 003595 . UO5393 . 00719.1 .008989 . 0.1079 . 01258 .01438 - 01618 .01798 .01977 . 02157 . 02337 . 025 17 .02697 ... O 2876 . O3056 .03236 .03416 - 0.3595 .03775 .03955 .04 135 .04315 .04494 . O7754 .07608 . O74.67 .07331 . 07.200 . 07074 . O6952 773.4 *Density, gm/cm3 * density, Amagat x 8.9886 x 10-5 O2 O4 O6 O8 |O PRESSURE 6O 8O KOO 4. 6 8 PRESSURE, at , psid 2OO |O mospheres 2O 40 6O E . SOLID LINES - | Sotherms (T = C) BROKEN LINES - Isometrics (V = C COMPRESSIBILITY FACTO FOR NORMAL HYDROGEN Z = P V / RT Notion of Bureou of St and or d8 Cryogenic Engineering Laboratory iOO 2OO 4OO 6OO 800 N TTTTTTTTTTTTTTTTTTTTTTTTTTI, SPECIFIC HEAT (Co) of L|QUID PARA HYDROGEN of so turqtion Z J’ DATA of SM ITH, ET AL. 21 JOHNSTON, ET A L. - º: * 15 2O 25 3O TEMPERATURE, *K III–F–1. 1 SPECIFIC HEAT (cc) of LIQUID PARA HYDROGEN (At Saturation) Sources of Data : Johnston, H. L., Clarke, J. T., Rifkin, E. B. and Kerr, E. C., J. Am. Chem. Soc. 72, 3933 (1950) Smith, A. L., Hallett, N. C. and Johnston, H. L., J. Am. Chem. Soc. T6, ll:86 (195l.) Other References : Bonnhoefer, K. F. and Harteck, P., Naturwiss. 17, 182 (1929) Clusius, K. and Hiller, K., Z. physik. Chem. Blº, 158 (1929) Dewar, J., Proc. Roy. Soc. (London) A76, 325 (1905) Eucken, A., Verhandl. deut. physik. Ges. 18, k-17 (1916) Keesom, W. H., Comm. Phys. Lab. Univ. Leiden 137e (1911) Simon, F. and Lange, R., Z. Physik. 15, 312 (1923) Comments: Heisenberg, Z. Physik. 38, lºll (1926); Hund, Z. Physik. lºz, 93 (1927); and Dennison, Proc. Roy. Soc. (ionoſ.) All 5, 183 (1927) predicted the existence of two forms of molecular hydrogen on the basis of quantum theory. Shortly thereafter methods were developed for catalyzing the conversion. Since then heat capacity measurements have been carried out on known concentrations of the two varieties. Prior to 1929 all work was based on normal hydrogen (75% ortho and 25% para). Data for the curves were derived under conditions of saturation vapor pressure (Cs). Data of Johnston, Clarke Data of Smith, Hallett Rifkin and Kerr. and Johnston. J. Am. Chem. Soc. T2, J. Am. Chem. Soc. T6, 3933 (1950). ll:86 (1951). Temp. Co Co Temp. Co C5 *K cal x cal °K cal cal mole "K gm "K mole "K gmT"K 15.15 3.52 l.7l;6 18.28 l!.18 2.073 15.30 3.5l. l.T56 2O. lºº l;.7l 2.336 l6.05 3.67 l.82O 22.7l 5.33 2.6ll, l6.26 3.66 l.815 25.00 6.03 2.991 17.03 3.81 l.890 26.0l. 6.16 3.2Ol; 17.31 3.85 l.910 28.2O 7.85 3.891; 17.98 l!.03 l.999 30.10 9.9l; l; .931 18.27 H.10 2.03! 31.19 ll. .56 7.222 l8.89 li. 2; 2.103 l8.99 l; .32 2.ll.3 Reprinted from WADD TECH. REPORT 60-56 III–F–1.2 SPECIFIC HEAT (Cp) of NORMAL HYDROGEN CAS Sources of Data: Eucken, A., Sitzber. kgl. preuss. Akad. Wiss. lºl (1912) Hilsenrath, J., et al., Nat. Bur. Standards Cir. 56t, 282 (1955) Scheel, K. and Heuse, W., Ann. Physik. (h) lºo, kT3 (1913) Workman, E. J., Phys. Rev. (2) 37, 1345 (1931) Comments: The above articles were all used by the NBS staff in compiling the data for Circular 561. Accordingly the present curves have been constructed using these same data. We have been unable to discover anything more recent. When more does appear, it should take into account the exist- ence of ortho and para-hydrogen. Table of Selected Weilues C C C C P p p P Temp. Sp cal. Cp cal Cp cal Sp cal R gm"K R gm"K R gm"K R K O Atºm l Atm * 10 Atm lOO . Atm 2O 2.50 2.1,613 30 2.50 2.lºél:3 2.628, 2.590l. l;0 2.50l 2.11653 2.56; 2.527l 3.1.63 | 3.k135 50 2.505 || 2.lić92 || 2.5l 3| 2.5067 || 2.917 | 2.90l.9 60 2.519 2.14830 |2.5ll; 2.5076 || 2.780 2.7l:03 || 3.957 || 3.9005 70 2.5l;7 | 2.5106 || 2.565| 2.5283 || 2.732 2.6930 || 3.786 || 3.7319 8O 2.591 || 2.5510 |2.605| 2.5678 2.723 2.6841 || 3.56], 3.5131 90 2.6l. 8 || 2.610 2.658| 2.6200 || 2.7l,7| 2.7077 3.366 || 3.3179 LOO 2.7lk | 2.6752 |2.722, 2.6831 2.790 2.750l 3.295 || 3.21.79 l2O 2.857 || 2.8162 2.862 2.82.ll 2.905 2.8635 | 3.2h 2 | 3.1957 ll:0 2.993 || 2.9502 2.996 2.9532 3.026 2.98.28 3.26|| || 3.21.7% 160 3.108 || 3.0636 |3.lll| 3.0665 || 3.135 | 3.0902 || 3.326|| 3.2785 18O 3.20% 3.1582 |3.206| 3.1602 || 3.226 3.1800 || 3.377 || 3.3287 2OO 3.280 || 3.2331 |3.282. 3.235l 3.296 || 3.2489 || 3.413 || 3.361.2 22O 3.340 3.2923 ||3.341| 3.2933 || 3.355 3.3071 || 3.45|| || 3.kolić 240 |3.387 || 3.3386 |3.388| 3.3396 || 3.399 || 3.35ol, 3.486 || 3.4362 260 |3.424 || 3.375l |3.h.25| 3.3761 || 3.133 || 3.3839 || 3.5ol, 3.1539 270 3.438 || 3.3889 |3.139| 3.3899 || 3.kló | 3.3968 || 3.510 || 3.4598 28O 3.450 | 3.4007 ||3.1:51, 3.4017 | 3.458 || 3.8086 || 3.516 || 3.1,658 3OO 3.469 || 3.419' 3.170| 3.l;20l. 3.l76|| 3.4263 || 3.526||3.3756 Bee next two pages for graphical presentation of the data. Reprinted from WADD TECH. REPORT 60-56 III–F–2.1 SATURATED VAPOR LINE 2O 25 3O SPECIFIC HEAT OF NORMAL HYDROGEN GAS AT CONSTANT PRESSURE ITICAL LINE - 12.98 Afrn. 5 Arm. - cp = 58 AT 34°K. 20 Atm. - Cp = 34.5 AT 36 °K 4. 196 Atm. ſo Atm- 4.84 Afrn. At m. 35 4 O 45 5 O 55 TEMPERATURE, *K 6O III–F–2. 2 O82 Xa ‘Bºn Lw&3dWEL O92Oº?O22OO2O8|| N 39 O AJO Å H TV/W (HON SQO ESV79) ļo (do) Lv3H 3)||-||9|EdS O9|| Oſ?| O2|| ’uuļV OZ OO! O8 ' uuļ\7 9| 'uu 4\7 96]*>2 ». uſ / 100 “do III–F–2. 3 º O CA. 2. O .O O Cº- .O REDUCED SPECIFIC HEAT DIFFERENCES BETWEEN EQUILIBRIUM , NORMAL, OR THO, AND PARA HYDROGEN IN THE IDEAL GAS STATE O cº + (Equil.) - + (Po ro) cº cº p 9 R (Normal) - R ( Por Q ) c; cº, +(or tho) - T ( Pard) | OO 2OO 3OO TEMPERATURE , * K ; LATENT HEAT of NORMAL HYDRO GEN |3 |4 15 |6 17 | 8 19 2O 2] 22 23 24 25 26 27 28 29 3O 3. TEMPERATURE, 9K III–G–1.1 NORMAL, HYDROGEN - HEAT OF WAPORIZATION Source of Data: R. B. Stewart and H. M. Roder Chapter ll. Properties of Normal and Parahydrogen. p. 379-401; in Technology and Uses of Liquid Hydrogen, Pergamon Press, New York (1961) Comments: These values were calculated from data referenced in the Stewart and Roder paper. Latent Heat of Normal Hydrogen Heat of Temperature? Vaporization °K cal/g mole l3.9lF7 219.8l. ll. 219.89 l; 220.68 l6 22l.l.0 * 17 22l.09 18 220.60 l9 219.58 2O 217.97 20.380 217.19 2l 215.7l 22 212.72 23 208.92 21; 2011.2l 25 - 198.1.6 26 l9l. 5l 27 l63.ll 28 l'72.97 29 160.60 30 ll.9.25 3l 125. H2 * Temperatures adjusted to NBS-1955 Temperature Scale. III–G–1. 2 O º XI o ‘ 38 n.lv (J3d W31 92O 2 9 | (#961 º dºpo}} pup ! : D NA 94S) N B 9 O MJ O JŲ H \/\}\/& CINV7 TIV7!N MJON O | ſn O|TT -¿O 1\/EH LNB.LV/T NI BONE MJ3||-||-||0 O 2 Oº Oſſy O’G O’9 alou b/ Ibo "T-" Sapnasaa Ald Lwah LNalvi Reprinted from NBS Report 8812 III–G–2 HYDROGEN TEMP-ENTROPY CHART. O° - 15Oo K TAKEN FROM NBS RESEARCH PAPER RP 1932 {} 9 |O ENTROPY CAL GM'DEG" 230 NATIONAL BUREAU OF STANDARDS CRYOGENIC ENGINEERING Division . BOULDER, COLORADO III–H-1. 1 29O 3OO 27 O 26O 25O 24O 23O 22O 2 O 2OO | 9 O | 8 O | 6O |2 |3 |4 ENTROPY, cal/gm "K TEMPERATURE • ENTROPY CHART FOR normal-HYDROGEN TAKEN FROM NATIONAL BUREAU OF STANDARDS RESEARCH PAPER RP S32 (1948) BY WOOLEY, SCOTT, AND BRICKWEDDE, Fig 32. PRESSURE º Of m DENSITY (p amogo? (density, gm/cm3 = density, amagot x 8.9886x O-°) TEMPERATURE °K ENTHALPY (H) col /gm ENTROPY cal/gm *K 2O III–H–1. 2 HYDROGEN TEMP-ENTROPY CHART 28O 9 – 6OOo K TAKEN FROM NBS RESEARCH PAPER RP 1932 NATIONAL BUREAU OF STANDARDS CRYOGENIC ENGINEERING Division BOULDER, COLORADO * IO || |2 |3 |4 |5 I6 17 |8 19 ENTROPY GAL GM"DEG' III–H–1. 3 NORMAL HYDROGEN Properties of Vapor" Temp P = l atm P = 2 atm P = 5 atm P = 10 atm P = l; atm °K (Sat temp = 20.39°K) (Sat temp = 22.97°K) (Sat temp = 27.29°K) (Sat temp = 31.41°K) T V h S V h S v h S V h S v h S cm”/g j/g j/g°K cm”/g J/g j/g°K cm^/g J/g j/g°K cm”/g J/g j/g°K cm”/g j/g j/g°K (Sat Vapor) 75l. 1 718 39.16 398.7 729 37.16 l62.7 730 31, .21 70.89 69] 31.02 22 827.2 737 39.9l, 2l, 917.6 760 ll.00 l, 25.0 7l;2 37.7l 26 1006 782 ll.93 h7.h 767 38.72 28 1091, 8Ol, 2.75 522.0 79] 39.60 172.l. 7l;2 3, .6l. 30 ll&O 826 l. 3.50 | 568.2 8ll, l, O. l;0 l97.2 77', 35.72 35 l393 88O l, 5.16 680.1 871 l;2.13 251.0 8/12 37.81 10l.'ſ 78: 33.75 37. 29 636 28.5l l;O l603 Q33 l,6.58 788.7 926 l;3.60 299.5 903 39. l;5 135.2 86O 35.86 8l. 2; 812 33.3% l, 5 l8lſº 985 l, 7.8% | 895.5 979 lily. 87 31,5.8 96l l,0.82 162.3 928 37.116 lOO .. 2 89] 35.22 5O 2019 1038 l,8.92 || 100l lo32 l;6.OO 390.5 lol'ſ l;2. Ol l87.0 990 38.78 ll.9.2 962 36.7l 60 21:31 lll: 3 50.8l l210 ll39 l, 7.93 l,77.6 ll 27 lil, .02 233.6 ll.08 l,0.92 152.l. 1088 39.02 70 28, 2 12,8 2. l;6 lll& 121,5 l;9.57 562.8 l236 l, 5.69 278. l l22]. l;2.67 l83. l; l2O7 l, O.8l. 8O 3252 135l, 53.88 | 1621, l352 5l. OO 616.9 l3,5 l; 7.15 321.5 l33l, lili. 17 213. l l323 h2. 39 90 366] ll,63 55.16 || 1829 \l,61 52.28 730.3 ll,56 l,8. l. 5 36l. 2 ll, l;6 l;5.50 21, 2.2 ll, 38 l, 3.7l, 1OO l,070 l;71, 56.32 | 2031, 1572 53.h5 813.3 l;68 l, 9.63 l,06.5 156] l;6.70 271.0 l;5l. l;l, .97 l2O l,886 l8Ol, 58. l.2 21, lºl, l803 55.55 978.3 l8OO 5l. 71, h90.1 1796 lić.8h 327.5 l?%l l, 7.12 ll. O 5702 2Ol;6 60.28 2852 2Ol;5 57. lºl lll:3 2013 53.6l 57.8 2Ol;0 50.72 382.9 2037 l;9.02 160 65.17 2298 61.97 || 3260 2297 59.10 || 1307 2296 55.31 655. I, 2295 52.h3 l, 38.l. Ø293 50. 73 18O 7332 2559 63.50 || 3668 2558 60.6l, ll,70 2558 56.85 737.6 2557 53.97 l;93. H 2556 52.28 2OO 8ll, 7 2826 61.9l || ||O76 2826 62.05 || 1631, 2826 58.26 819.'ſ 2826 55. 39 5h8.3 2826 53. 70 22O 896] 3100 66.21 || || || 8l. 31OO 63. 35 | 1797 3100 59.57 901.6 3100 56.70 603.l 3lCl 55. Ol 2L, O 97.76 3377 67. 12 l;891 3378 6|, .56 | 1960 3378 60.78 || 983. l; 3379 57.9l 657.8 3380 56.23 26O lO589 3658 68.55 || 5298 3658 65.69 2123 3659 61.90 | 1065 3661 59. Ol; 712.3 3663 57.36 28O lll:Ol 39/11 69.60 | 57Ol, 39;2 66.7|, |2286 39;3 62.95 lll:7 391.5 60.09 766.7 39,7 58. lil 300 l2219 l, 227 70.58 || 6ll3 l,228 57.72 2,50 l,229 63.9l | 1228 l,231 6l. O7 821.3 l,233 59. HO Temp P = 20 atm P = l;0 atm P = 60 atm P = 80 atm P = 100 atm °K 30 1l, .27 l;23 l9.7l, l3.76 l:30 l9.ll l3.25 l,50 19. 12 35 15.57 l,88 21.75 ll. .67 l;92 2l, lº ll.ll. 502 20.68 l;0 50.2% ‘fl; / 30.89 17.87 568 23.9l l6.19 563 22.99 15. 20 567 22.38 l,5 7O. Of 853 33.1,2 28.50 TO7 28.25 20.26 665 26.09 18.26 61; 3 2l; .86 16.55 6, O 21, . 10 50 85.36 933 35. 10 36.95 819 30.6l 25. El 75l. 28.08 20.82 729 26.67 18. 27 719 25.76 6O ll 2. O 1069 37.59 52. l;9 991, 33.80 34.56 935 31. Hl 26.95 900 29. T9 22.95 881 28.6l, (O l36.1 ll.93 39.50 66.12 ll39 36. Ol, l, 3.9l logl 33.85 33.65 lC6l 32.28 28. Ol 10HO 3l. Q9 8O 159. l 1312 lil. 09 78.66 l271 37.8O 52.63 1236 35.76 l;0.20 1210 3, .27 33. l.2 ll.92 33. l.2 90 18l. 1, ll;29 l;2. l;7 90.56 l397 39.29 60.87 l370 37.33 l;6. l;6 13h9 35.9l 38.12 133l, 31, .. 79 lOO 203.2 ljl, 7 l, 3.7l 102. l. 1522 l,0.60 68.82 lSOl 38.70 52.53 ll,8l, 37. 33 l;2.99 ll,71 36.21, l2O 246. O 1787 l, 5.89 l2l, .3 1771 l, 2.87 8l. O8 1758 ll. O5 6l. 20 lTh8 39.73 52. HO l?l;O 38.69 ll;O 288. O 2O35 l, 7.80 ll;6.O 2025 lily. 82 98.8l. 2O17 l, 3. Ol, 75. ho 2Oll lil. 76 6l. l; 7 2008 l,0.75 160 329.9 2291 l, 9.52 l67.3 2286 l,6.58 113.3 2282 lil, .82 86. 39 228] l;3.56 70.32 228O l; 2.57 l8O 37 l. l. 2556 51.08 188. I, 255, l,8.15 127.5 2551, l;6. l;2 97.17 2555 l, 5.18 79. O3 2557 lil; .20 2OO lil 2.7 2826 52.50 209.3 2827 l;9.59 lil.6 2831 l, 7.87 lo'ſ .8 2832 h6.6l, 87.60 2837 l, 5.68 22O l,53.9 3102 53.82 230.1 3105 50.92 l;5.6 3ll0 l;9.20 ll 8. l; 3lll, l, 7.98 96.09 312O l, Y. O3 2l;0 l;95. O 3381 55.03 250.8 3387 52.ll. l69.5 3392 50. lil, l28.9 3399 h9.22 10k.5 31,07 l,8. 2'ſ 260 535.9 366), 56, 16 27 l. l. 3671 53.28 l83.3 3679 51.58 139. 3 3686 50.3'ſ ll2.9 3695 h9. l;2 28O 576.8 391.9 57.22 292. O 3957 5l. 3, 197.1 3966 52.65 ll.9.7 3975 5l. Ll, l2l. 2 398, 50.50 3OO 6] 7.8 l,236 58.21 312.6 l, 21.5 55.33 210.9 l, 25l. 53.6l, l60.0 l,261, 52. lºl, l29.5 l, 275 5l. 50 " From published data, National Bureau of Standards, Technical Note 120 (Nov 1961) Conversions for Units, to Equivalent in British System of Units: To convert temperature in degrees Kelvin (“K) to degrees Rankine (*R), multiply (“K) by l.8 To convert pressure in atmospheres (atm) to (psia), multiply (atm) by ll: .696 . To convert volume (v) in cubic centimeters per gram (cm”/g) to (cu ft/lb), multiply (cm”/g) by .010018 To convert density (p) in Amagat to density º: ft), multiply Amagat by .0056ll To convert enthalpy (h) in joules per gram (J/g) to (Btu/lb), multiply (j/g) by . 12993 To convert enthalpy (h) in calories per gram (cal/gm) to (Btu/lb), multiply (cal/gm) by l.8 To convert entropy (s) in joules per gram “K (j/g°K) to (Btu/lb “R), multiply (j/g°K) by .23885 Entropy (s) in calories per gram *K (cal/gm"K) is equal to (Btu/lb “R) PARAHYDROGEN Properties of Saturated Liquid and Saturated Vapor *t Temp Pressure Volume (cm"/g) Enthalpy (j/g) Entropy (j/g “K) Temp Pressure Volume (cm/g) Enthalpy (j/g) Entropy (j/g °K) K atm Sat Sat Sat Sat Sat Sat K atm Sat Sat Sat Sat Sat Sat Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid | Vapor Liquid Vapor l3.8O3" | O. O695 || 12.98 7966 –3O8.92 ll, O.30 l; .961 37.520 23 2.062 l; .83 J. .9 –226.37 200.52 9.287 27.856 ll, 0.0778 l3. Ol 72O3 -307.63 ll, 2.13 5.055 37.188 2l, 2.6ll lS. 15 3OT. 3 -213.92 202.66 9.783 27. 152 l; O. l.23 l3.16 lil,89 -300.7l 15l.ll 5. 527 35.650 25 3.2h5 15.5l 249.0 -200.52 | 203.60 | 10.289 26.1% 16 O. 213 13. 32 2955 -293.39 l;9.60 5.993 31, .305 26 3.982 15.9l 203.2 -l35.99 203. 10 | 10.810 25.787 17 O. 325 13.118 2032 –285.60 l67.58 6. l;5|| 33. lls 27 H.829 l6. 39 l66.7 -170.2] | 200.87 ll. 356 25. 108 l8 O. l;76 13.66 ll, lºg -277.27 l7l.97 6.92l 32. Ol;8 28 5. 79, l6.96 l37.0 -lj2.90 196.5l ll. 926 21, .. l l 3 19 O.673 l3.86 1065 –268.39 l8l.67 7.382 31.076 29 6.887 l7.66 ll2.5 -l33.60 | 189.5l | 12.536 23.68|| 2O 0.923 ll. O7 8Ol. 7 || –258.9l | 187.67 7.853 30.188 30 8.ll 8 l8.5l, 91.86 -lll. 67 || 178.79 13.2Ol 22.890 20.268" | 1.000 ll. l.2 7, 7.6 | –256.29 | 189.36 7.977 29.969 3l 9.50l 19.77 73.86 - 85.78 |162.57 13.965 2l. 977 2l l. 233 ll; .30 617.8 || -2,8.79 || 193.03 || 8.325 29.371, 32 ll. O5l 21.7l, 57.16 || - 52.2b 136.08 11.923 20.8ll 22 l.6l3 ll. 56 l,82.9 || -237.98 || 197.25 8.8Ol 28.595 32.976 | 12.759 31.82 31.82 38.27 | 38.27 17.567 l?. 567 * From published data, National Bureau of Standards Monograph 94 (Aug 1965). t See Table 28 on page 59 for properties of liquid and vapor parahydrogen. * Triple point. Normal boiling point. * Critical point. III–H–2 PARAHYDROGEN Properties of Liquid and Vapor”f Temp P = l atm atm P = 5 atm P = 10 atm P = 15 atm °K (Sat temp = 20.27°K) (Sat temp = 22.86°K) (Sat temp = 27.19%) (Sat temp = 31.3 °K.) T v h s v h 8 y h 8 v h S V h S cm”/g J/g j/g°K cm”/g J/g J/g"K cm”/g J/g J/g"K cm”/g j/g j/g°K cm”/g | }/g J/g"K (Sat Liq) ll; .2b -258 8. Ol, ll.9l –230 9. 29 16.62 -168 ll. 55 2O. l;7 -76 ll. 37 (Sat Vapor)| 753.l. l9l 30.2l 398.3 2O2 28.18 162.0 2O2 25.18 68.75 156 21.80 15 l3.25 -3O2 5. 55 l3.23 – 30l 5.5l, l3.19 –298 5.50 l3.ll. -292 5. l;3 13. Ol, -287 . 16 2O ll. l8 –26l T.9l lº.15 =260 7.8 ll. O7 –257 7.82 l3.95 -252 7.72 l3.83 –2, 7 7.62 25 97O.O 23|| 32.18 l,53.7 229 29.35 lj .53 –2Ol # 15.27 -l98 lC. ll lj.05 -l95 9.94 30 ll.90 30l. 34.66 572.9 290 31.5l. lº.7 amº . 32 l8.2l -lló l3.07 l7.38 -l2l l2.62 35 ll, Ol, 355 36.33 | 685.5 31,6 33.29 253.0 317 28.9l, ſloš.1 35; 2.63 l, 7.28 ll, l; 2O. 57 l,O 1616 H09 37.76 795.0 l,02 3, .76 30l.9 379 30.58 l36.5 336 26.98 80.18 286 . 39 50 2O35 515 l;0.13 || 1009 510 37.18 393.5 l;91, 33.16 188.3 l,67 29.9l l2O. l l, 39 .83 60 2,51 623 l, 2.08 || 1220 618 39.16 l,8l.2 6O7 35.2l 235.3 587 32.10 lS3.5 568 . 18 70 2865 732 l, 3.78 ll;29 729 l,0.86 567.l 72O 36.96 28O. J. 705 33.92 l8l. .6 690 O7 8O 3278 8||7 l, 5.31 | 1636 815 l;2. lil 651.8 838 38.53 323.8 826 35.53 2ll, .6 815 .78 l'OO l;102 llCl l,8.ll; 2050 lC39 l, 5.21, 819.6 logl lºl. 39 || 1,09.l. lo&7 38. lul, 272.9 1080 .68 l2O l,887 1378 50. l;l 21, hi, l377 l;7.5l. 978.3 l373 l, 3.73 l,89.9 1368 l, O.82 327.2 1363 . 10 ll;0 5703 l688 52.80 2853 l687 l, 9.93 lll:3 l685 l;6.13 572.6 l681 l;3.23 382.6 l678 .52 160 6518 2012 5l.96 || 3261 2Oll 52.09 l307 2010 l,8.30 655.2 2008 l;5.ll l, 38.1 2OO6 . (l l8O 7333 2339 56.89 || 3669 2339 54.02 ll;70 2338 50.23 737. H 2337 l, 7.3, l, 93.2 2335 .65 2OO 8ll,8 2663 58.60 | 1,077 2663 55.73 l63, 2663 5l.9l, 819.5 2662 l, 9.06 5H8. O 266: 7.37 22O 8962 2982 60. ll lil,8l. 2982 57.25 1797 2982 53.h6 90l. I, Ø982 50.59 6O2.8 £982 3.90 21:0 9777 3291. 6l. l; 7 || ||892 329, 58.6l 1960 3295 5l.82 983.2 3295 5l.95 657.5 3296 .26 260 10590 3600 62.70 || 5298 36Ol 59.8l. 2123 36O1 56.05 || 1065 36O2 53.18 Tl2. O 36O1, .50 28O lll,03 3902 63.82 5705 3902 60.95 2286 3903 57.17 | lll:6 3905 5l. 3O 766.5 3900 .62 3OO l222O l;2Ol 6l. 85 6lll, l;2Ol 61.98 21,50 l,202 58.2O | 1228 l;2Ol; 55. 33 821.l l;2O6 53.65 Temp P = 20 atm = H0 atm P = 60 atm 80 atm P = 100 atm °K 15 l2.97 -281 5.29 2O l3. T3 –2H2 7.52 l3.36 –221 7.19 l3. O7 –200 6.9l l2.82 -l'79 6.67 12.60 -l97 6. l;5 25 ll.85 -191 9.79 ll; .25 -l?l, 9.30 l3.62 | -155 8,92 l3.l;6 -lj 8.60 l3. l'7 —llj 8.33 30 l6.82 -122 l2.30 lS. 55 -ll, ll.liff ll.8.l. -loo lC).9l lb. 29 -83 lo. l;8 l3.88 -65 lC). 13 35 22.96 O 16. Ol lT.66 -39 l3.78 16.22 -35 l2.92 15. 37 –23 12.31, ll. T7 -8. l l ll.88 l:0 5l. 30 223 22. Ol 21.63 6l l6.l;5 l8.28 l;3 ll.99 l6.8l l,6 ll. .18 lj.90 56 l3.59 50 85.98 lilo 26.22 37.31 296 21. TO 25.37 231 l9.16 2l. 15 212 l'7.76 l9.03 202 l6.86 6O 7 548 28.7l, 52.90 l,73 2ly.9l, 34.89 lºló 22.5l. 27.25 381 20.93 23. 32 36, l9.80 70 lo. 1 676 30. l;2 66.58 622 27.2l, lil; .22 577 25. Ol, 33.9l 51,5 23.17 28. 27 525 .29 8O l60.2 813 32. l;2 79.22 762 29. ll 53. OO 728 27.05 l, O.l,7 TOl 25.55 33.36 682 . 39 1OO 2Ol. 6 lo'72 35. 1,2 lo2.8 lol,7 32.28 69.38 1025 30.37 52.9l 10O8 28.98 l;3.29 996 .89 l2O 2h5.9 l359 37.87 l21.3 l342 34.8l. 81.09 l329 33. Ol 64.25 l319 31.69 52. H6 l3ll .65 ll;0 287.9 l675 l, O.30 ll, 5.9 l66l, 37. 32 98.83 | 1656 35.53 75. lil, 1651 31.25 6l. 53 | 1648 .2l l60 329.7 2OOl, l, 2.50 167.3 1997 39.5l. ll3.3 l993 37.78 86. , 3 l992 36.52 70, 38 l99l .5l. 18O 371.2 233; lib.hl, 188.3 233l lºl. 5l 127.5 2331 39.77 97.22 2332 38.53 79.08 233, .56 2OO l, 12.5 2662 l;6.17 209.3 2662 l;3.25 ll, 1.6 2665 lºl. 53 107.9 2667 l:0.29 87.65 267] . 33 22O l,53.7 2983 l;7. To 23O. l 2985 lil, .79 155.6 2989 l;3.08 llö. I, 299; l;1.85 96.15 3OOO .90 2l, O !,91,.8 3.297 l;9. OT 250.8 3301 l,6. 16 l69.5 3306 lily. l;6 128.9 33l3 l, 3.21, 10, .6 3321 .29 260 535.8 3605 50. 30 27 l. l. 3611 l,7. I,0 l83.3 36.18 l, 5.70 139. 3 3606 lili. H9 ll2.9 363, .55 28O 576. ( 3908 5l. l;2 292.0 3915 l,8.53 l97.1 3923 l,6.8l, 11,9.7 3932 l;5.63 l2l. 3 39;2 .69 3OO 617.7 l,208 52.l,6 312.5 l,216 l, 9.57 210.9 l,225 l, 7.88 160.l l,235 l;6.67 129.6 l, 21.5 .7l, Temp P = ll;0 atm P = 200 atm P = 2,0 atm P = 300 atm P = 310 atm °K 2O 12.2l, –ll, 6.08 ll.8l -50 5.62 2 12.7O -71, 7.87 l2.18 -l2 7.32 ll.9l 29 7. Ol ll. 56 90 6.62 ll. 36 l 31 . 39 3O l3.27 –27 9.57 12.62 32 8.92 l2.28 72 8.57 ll. 88 l32 8. l2 ll.65 l?l .86 35 l3.9l, 26 ll. l.9 l3.12 81 10. lil, l2. Tl ll.9 l(), Ol, l2.23 l?8 9.23 ll. 87 216 9.25 l;0 ll. 71, 8l, 17.75 l3.69 l35 ll. 88 l3.20 171 ll. H3 l2.63 228 10.87 l2. 32 269 . 55 50 l6.77 215 15.67 15.05 25l. ll. .53 ll. 33 286 13.98 13.53 337 l3. 32 13. 12 373 .9l 60 19. l;0 360 l8.31 16.7l 386 16.93 lj.67 lil 3 16.28 la .58 l,58 15.52 ll. Ol. 1,9] . 20 70 22.50 5ll 20.65 18.63 526 19.09 l'7. l.9 5 u8 l8, 36 15. 75 588 l'7.5l 15.06 618 7.05 8O 25.81, 666 22.70 2O.7l, 673 21.06 18.87 690 20.27 l?.03 726 19.3% l6. 16 793 18.86 lCO 32.7l 983 26.2% 25.25 986 2h. 5, 22. 18 998 23. 70 19.79 lO27 22. (l 18.5 L | 1991 22. 17 * Data from 15 to loo"K, from published data, National Bureau of Standards Monograph 94 (Aug 1965). Data from 120 to 300°K, published data from National Bureau of Standards, Technical Note 130 (Dec 1961). f See Table 27 on page 55 for properties of saturated liquid and saturated vapor parahydrogen. Bold horizontal line indicates phase change (liquid above, vapor below the line) Conversions for Units, to Equivalent in British System’ of Units: To convert temperature in degrees Kelvin (“K) to degrees Rankine (“R), multiply (°K) by 1.8 To convert pressure in atmospheres (atm) to (psia), multiply (atm) by 11.696 To convert volume (v) in cubic centimeters per gram (cm"/g) to (cu ft/lb), multiply (cm”/g) by .016018 To convert enthalpy (h) in joules per gram (J/g) to (Btu/lb), multiply (J/g) by . .2993 To convert entropy (s) in joules per gram “K (J/g°K) to (Btu/lb"R), multiply (3/g’K) by .23885 III–H–3 90 8O 7O 6 O 5 o s l TEMPERATURE- , ENTROPY CHART FOR PARAHYDROGEN PRESSURE (P) of m. DENSITY (p) g mole / cm” ENTHALPY (H) Joules/g mole Notional Bureau of Sfondords Cryogenics Division Boulder, Colorado % 2" 2O 3O 4O 5O 6O 7O ENTROPY, Joules /g mole *K H=500 Joul s/g mole . | # - ~ + • – ? – - - III–H–4. 1 * | INTERIM T-S CHART FOR PARAHYDRO GEN TEMPERATURE * K (P) atm. (p) gm/cm’ 275 PRESSURE DENSIT Y ENT HALPY ENTROPY Notional Bureau of Stondards Cryogenic Engineering Loboratory Boulder, Colorado (H) Joules/gm Joules/gm *K 25O 2OO | 75 |50 |25 |OO 8O 25 3O 35 40 45 ENTROPY, III–H-4. 2 5O 55 6O 65 Joules/gm -*K Prepared for: National Bureau of Standards, Technical Note, TN 130 (PB161631) December 1961, "Provisional Thermodynamic Fur.ctions for Parahydrogen", H. M. Rode D. Goodwin; by the Cryogenic Data Center, National Bureau of Standards, Boulder, Colorado, from property functions reported in RBS TS 130. These functions were used to calculate terperature and entropy for all intersections of isobars and 1 senthalps and for intersections of isobars and isometric lines. Add : . ional pºints were also calculated as necessary to complete the precise definition of the property i Ine 8. R. B. Stewart, R. D. McCarty, T. W. Griffith (December 1961) 900 8OO 7OO 6OO 5OO 4OO 3OO 2OO |OO — |OO – 200 – 30O — 40O — 5OO – 6OO 2O 3O *- - - - - - - - +— - — — ----------> CRITICAL POINT - - - - + -ENTHALPY - ENTROPY CHART- FOR PA R A HYDROGEN 4O ENT ROPY, Joules/g mole “K , TEMPERATURE (T) o K PRESSURE (P) Of m DENSITY (p) g mole/cm” Nof iono | Bureau of Stond ords Cryogenics Division Boulder , Colorado 50 6O “, ſº I’, 3 tº ": Nºt I h;4] fºur-au : : "...an . . . t. F: , p: “t i. : H iſ “hyd º-ri '• Atm . Ły II. M. 2.1% ‘. . . . Gv. - in . ºn I jh ſ" -- } M. : * | * * * *- -- , a. Siºl 1 Jr… 1 Bureau ºf 3 tinndis: dº, , ix-ulie ( , C - 1 ; : . . . . , ;", tº : Li, ſº l; , , ſº * ... ; : ‘ f 1, t t ) J3 °F. ... t. - - * h . ( i t . a. [ . . ; ; y th ( 7O Tº “f* . P: . . ui it. . . . . . ºn tº r , y: "'t, I ynan:! And 11 . . III–H-5 XI o ‘ 3&nLw&J3d W31 OO2 - OO| | E_1V_1S SV79) TV E O || E. H. 1 N | N3908C]ÅH VAJVd C] NV º OHL AJO * T w W&JON ‘ Wn 188 ITIQOE NEENA LEG SE ON 38 3-d-l ICJ Å d'O !! 1 N E GJEOQC1E?) S- }}}} | ~--~( ou od ) (± – (Oų44O) + ~ >< <> (oued) # – vùnba) º. oS, oS O (NJ 8/.SW ‘S30N383.33IQ AdOSIN3 Q30ſhC38 Reprinted from NBS Report 8812 III–H-6 HTTTTTTTTTTTTTTTTTTTTTTTTTL * THERMAL CONDUCTIVITY *mººd == of LIQUID HYDROGEN ( Normal dnd Pord) 2 O 25 TEMPERATURE, *k 3O III–I-1. 1 Source of Data : THERMAL CONDUCTIVITY of LIQUID NORMAL and PARA HYDROGEN Powers, R. W., Mattox, R. W., and Johnston, H. L., Other References: Comments: J. Am. Chem. Soc. 76, 5968 and 5972 (1951). Borovik, E., Matveev, A. and Panina, E., J. Tech. Fºys. (U.S.S.R.) lo, 998 §: Schaefer, C. A., and Thodos, G., Ind. Eng. Chem. 50, 1585 (1958). The only available information on the thermal conductivity of liquid hydrogen is that of Powers, Mattox and Johnston, who find that there is no significant difference between the conductivity of normal and of para hydrogen. They reduced their data to a straight line curve having the equation k = (1.702 + 0.05573 T) x lo-" cal cm−1 sec-1 deg". Data for both normal and para hydrogen are shown on this curve of ex- perimental points, and the probable error of 2% is greater than the differences in the conductivities of the normal and para forms. In the measurements, corrections were made in the case of normal hydrogen, for the heat liberated in the spontaneous conversion of the normal to the para form. The curve has a positive slope showing that the thermal conductivity increases with temperature. This contrasts with the change of thermal conductivities of other low boiling liquids N2, CO, CH, and and C2H), previously investigated, which show a decreasing conductivity with rising temperature as shown by the work of Powers, Mattox and Johnston, and by Borovik, Matveev and Panina. + * Schaefer and Thodos have developed curves showing a Reduced Thermal Conductivity Correlation for gaseous and liquid hydrogen, using data of other investigators. No data on thermal conductivity of solid hydrogen has been found. Thermal conductivity values computed from the equation: k = (1.702 + .05573 T) lo-" cal/cm secºk Temp. K k Temp. K k °K Watts cal °K watts cal Cºa *f; Cººl secº sm ºf: cm secº 16 10.85 x lo-" 2.593 x 10T 2l; 12.72 x lo-" 3.01.0 x lo-" 17 ll.08 | | 2.6l.9 ! I 25 12.95 !! 3.095 !? 18 ll. 32 1 2.705 ! ? 26 l3.18 II 3.15l ! I 19 ll. 55 ! I 2.76l 11 27 13.H2 f : 3.2O7 tº 2O ll. 79 ! { 2.817 ! . 28 13.65 ! ! 3.262 | | 2l l2.02 ! I 2.872 ! ! 29 13.88 ! ! 3.318 ! ! 22 12.25 11 2.928 ! ! 30 ll.lz ti 3.37k !! : 23 12.18 ! I 2.981; | ? Reprinted from WADD TECH. REPORT 60-56 III–I–1.2 2.O .2• I.O 3O THERMAL CONDUCT | V | TY of GASEO US HYDROGEN of one dtmosphere pressure ( Norm o I and Poro ) 6O 90 |2O 15O | 80 TEMPERATURE, "K Norm a 2|O 24 O 27O 3OO III–I-2. 1 THERMAL CONDUCTIVITY of GASEOUS HYDROGEN (Normal and Para) Sources of Data: • , ,Ortho-Para Hydrogen and Heavy Hydrogen, Cambridge University Press (1935) ge. gººd Hilsenrath, J., et al., Nat. Bur. Standards Cir. 56, 285 (1955) Other References: Andrussow, L., J. Chim. Phys. 52, 295 (1955) Godridge, A. M., Bull. Brit. Coal Utilisation Research Assoc. 18, 1 (1954) Johnston, H. L. and Grilly, E. R., J. Chem. Phys. 1, 233 (1916) Schaerer, C. A. and Thodos, G., Ind. Eng. Chem. 50, 1585 (1958) #;" D. H. and Hershey, R. L., Cryogenic Eng. Conf. Proc., Paper 2.02 Comments: The lower curve, being that for normal hydrogen, represents the data given in the Nat. Bur. Standards Cir. 56!. - Table l. Selected Values of Thermal Conduc- Table 2 / - tivity from Circular 564 for Gaseous Mormal #: kn alues computed Hydrogen and Corresponding Values Computed for - by Farkas Gaseous Para Hydrogen - y k k Temp. Il Tº Temp. O milliwatt *p milliwatt *p K E.T.: kn am sk °K kn l'O O.O7l; l. OOO O.O7l; 30 l. OOO 2O O. lj 5 l. OOO 0.155 30 O. 229 l. OOO O. 229 l:0 l.OOl l:0 0.293 l.OOl 0.298 5O l.OOl; 5O 0.362 l.004 0.363 6O 0.422 l. Ol'7 0.1129 75 l.05l 3O 0.5H2 l.066 O. 578 lOO l.l36 lOO 0.664 l, lj6 O.75l. l25 l.l.96 l2O 0.7995 l.l.90 0.94l : ll:0 0.9l8 l.204 l. 105 . lBO l. 203 l60 l.043 l. 195 l. 246 l60 l. 166 l. 167 l. 36l 175 l.l75 2OO l.l 2OO l. 282 l. l.25 l. HB5 35 220 l. 398 l, l03 l. 542 22 l.096 240 l. 507 l.076 l'Éls 5 09 200 l. 613 l.055 l.TO2 250 l.065 270 l. 665 l. Ol;6 l. 7:15 273 l. Olil; 28O l. 717 l,039 l.784 3OO l. 8165 l.027 l.8655 298 1.028 Reprinted from WADD TECH. REPORT 60-56 III–I-2. 2 XI o ‘3&n1w 8 Bd W31 OO | (u) g gz:2 + '"'ºo ººx (4),(d) 8 GZ^2 + ‘‘OX N30O8QAH T V W HON O L \/\]\/d -JO O I.LV/?] Å LI /\|_LO0Q NOO TV/WHEH L OOI O 1"| O2"| (d), , , X / 'X' " Ol. LV8 Reprinted from NBS Report 8812 u) ~)º AllA 110ſ]ONOO TVW 8.3HL III–I-3 Source of Data : DIELECTRIC CONSTANT OF LIQUID HYDROGEN Stewart, J. W. (1961), The Dielectric Polarizability of Fluid Parahydrogen. , J. Chem. Phys. (in press). Other References: COmments: Breit, G., and Onnes, H. K. (1924), Preliminary Measurements Concerning the Dielectric Constant of Liquid Hydrogen and Liquid Oxygen and Its Dependence on Temperature as Regards the Latter Substance, , Kon. Akad. Wetenschap. Amsterdam 33, 705-8; Proc. Acad. Sci. Amsterdam 27, 617–20 (193); Communs. Phys. Lab. Univ. Leſden No. 171a (1921); C.A. 19, 758 (T325). Wolfke, M., and Onnes, H. K. (1921), On the Dielectric Constant of Liquid and Solid Hydrogen. , Kon. Acad. Sci. Amsterdam 33, 701-h; Proc. Acad. Sci. Amsterdam 27, 627-30 (1921); Communs. Phys. Lab. Univ. Leiden 171c (1921); C.A. 19, 758 (1925). Werner, W., and Keesom, W. H. (1925), The Variation of the Dielectric Constant of Liquid and Solid Hydrogen with Temperature. , Kon. Acad. Wetenschap. Amsterdam 3, 745-54; Communs. Phys. Lab. Univ. Leiden No. 178a (1926); C.A. 20, 1168 (1926). Guillien, R. (1939), The Dielectric Constants of Hydrogen. , Rev. Sci. TI, 575; Chem. Zentr. 1910, II, 1839; C.A. 36, 685l (1912). Guillien, R. (1910), La Constante dielectrique au Voisinage du Point de Fusion. (The Dielectric Constant in the Vicinity of the Fusion Point.), J. Phys. radium (8) 1, 29-33; C.A. 31, 311.5 (1910). Van Itterbeek, A., and Spaepen, J. (1912), Détermination de la Constante Dielectrique du Deuterium Liquide. (Determination of the Dielectric Constant of Liquid Deuterium.), Physica 9, 339-lilº; C.A. 37, 5292 (1943). Maryott, A. A., and Smith, E. R. (1951), Table of Dielectric Constants of Pure Liquids. , National Bureau of Standards Circular No. 5ll; C. A. H6, 2357 (1952). Stewart reports the dielectric constant of parahydrogen for the range 21, to 100°K at densities up to 0.08 g/cm". The experiment shows that the dielectric constant depends only on density. Tabular values are presented as calculated from the following equation: (e + 2) pſ(e - i) = 0.99575 - 0.09069p + 1.1227.p" with p in g/cm". Since the values are tabulated as a function of density the usual distinction between gas and liquid could not be accomplished and so all of the values are tabulated as liquid hydrogen data. The earliest measurements on the dielectric constants of saturated liquid hydrogen were made by Breit and Onnes. They report values for 7 to 76 cm Hg and ll. l.2 to 20.38°K. Wolfke and Onnes continued the above work and obtained additional values over the same range. From a series of experiments at various dates, Werner and Keesom concluded that the best value of the dielectric constant of hydrogen at 20.36°K (the boiling point) was l.231 l to an accuracy of 0.02%. They also report ll values between ll.lo and 20.49°K. Guillien used a wave length of 2.250 m and reported values from ll.OO to 20.60°K. Van Itterbeek and Spaepen report a value of l.226 at 755 mm of Hg and 20.35°K. Maryott and Smith have selected the value of l.228 at 20.1 °K and l atmosphere. III—J-l. 1 DIELECTRIC CONSTANT OF LIQUID HYDROGEN (cont.) Stewart (1961) Densit Dielectric tº Constant O,005 l. Oljlj O. Olo l.03016 O.Ol; 1.04591; 0.020 l.06158 0.025 l.07739 0.030 l.09336 O.035 l. 10950 O.Ol:0 l. 12580 O.Ol;5 l.ll;226 O.050 l. 15889 O.O55 l.l7569 O.060 l. 19265 O.O65 l. 20977 O.OTO l.22705 O.O.75 l. 21,1,1,9 O.08O l.262.10 Taken from NBS Report 8252 III—J–1.2 Dielectric constant and Clausius-Mossotti function for fluid para-hydrogen. Density Temp. Dielectric Ap/p Corr. CM Density Temp. Dielectric Ap/p Corr. CM (10-'g/cm3) °K Constant % cm3/g (10-'g/cm3) °K Constant % cm3/g 0.016765 28 1.00505 +0.036 1.00228 0.358512 80 1. 11219 —0.024 1.00576 0025715 28 1.00776 +0.039 1.00304 0360054 50 1. 11269 +0.008 1.00541 0026519 40 1.00801 +0.030 1.00359 0398586 65 1.12530 —0.026 1.00611 0034449 28 1.01041 +0.035 1.00339 04.00016 42 1. 12579 0 1.00600 0037412 32 1.01132 +0.024 1,004:49 04.00223 70 1.12579 —0.015 1.00567 0050222 50 1.01521 +0.004 1.00421 0401574 40 1.12634 +0.061 1.00569 0056184 38 1.01702 +0.029 1.00374 0404005 55 1. 12710 — 0.005 1.00613 0056650 80 1.01717 –0.007 1.00481 0405146 50 1. 12741 +0.009 1.00548 00571.70 33 1.01733 +0.035 1.00455 0407482 60 1. 12817 —0.004 1.00556 0059522 80 1.01805 —0.027 1.00495 04.09102 100 1.12870 —0,070 1.00617 006015.3 32 1.01825 +0.036 1.00505 040918.5 46 1.12880 0 1.00608 0060244 55 1.01826 +0.003 1.00413 04:18687 55 1. 13187 +0.002 1.00566 0067.220 65 1.02040 —0.036 1.00506 0421467 38 1. 13300 +0.087 1.00635 007.5221 40 1.02284 +0.038 1.00390 0422553 48 1. 13321 +0.014 1.00602 007.77.18 100 1.02362 –0.029 1.00546 0423174 34 1. 13359 +0. 167 1.00578 0079296 90 1.02410 —0.041 1.00527 0423378 80 1. 13340 —0.031 1.00589 008:1568 42 1.02478 0 1.00441 0423652 80 1. 13350 — 0.026 1,00588 0088321 32 1.02692 +0.042 1.00669 0430.425 90 1. 13572 –0.041 1.00600 0089202 60 1.02712 —0.005 1.00449 04357.56 33 1. 13761 +0. 110 1.00537 0090032 46 1.02739 0 1.00491 0449143 70 1. 14189 —0.013 1.00564 0092.193 55 1.02807 —0.004 1.00537 04.50937 55 1. 14527 —0.002 1.00606 00945.74 48 1.02879 +0.011 1.00499 0465613 55 1. 14736 +0.004 1.00554 0098575 70 1.03002 —0.014 1.00515 0466349 60 1.14758 –0.003 1.00546 0.104944 34 1.03204 +0.061 1.00639 0474182 32 1. 15050 +0.090 1.00653 01.15753 32 1.03545 +0.068 1.00837 0478433 90 1. 15162 —0.040 1.005.94 0115854 50 1.03534 +0.003 1.00498 0482057 44 1. 15290 +0.021 1.00578 01.23237 80 1.03764 —0.010 1.00466 0483.569 80 1. 15333 —0.025 1.00577 0.12557.1 37 1.03839 +0.074 1.00544 048.5595 80 1. 15399 —0.020 1.00566 0.126507 55 1.03865 +0.003 1.00533 0489.245 100 1. 15517 –0.098 1.00620 0.136309 80 1.041.69 —0.030 1.00578 0491.168 40 1. 15598 +0.034 1.00592 0141772 40 1.04337 +0.051 1.00456 0505522 55 1. 16073 —0.002 1.00593 0.148742 65 1.04557 –0.033 1.00634 0506885 90 1. 16110 — 0.039 1.00580 0.149419 32 1.04601 +0. 119 1.00888 0508042 60 1. 16147 —0.003 1.00536 0.151000 44 1.04624 +0.035 1.00490 0508572 55 1. 16168 +0.004 1.00547 0160449 100 1.04918 —0.034 1.00561 0511043 46 1. 16260 –0, 002 1.00608 0.163584 90 1.0501.7 –0.043 1.00592 0511195 33 1. 16276 +0.044 1.00627 0173114 80 1.05316 —0.013 1.00584 0511906 42 1. 16289 —0.003 1.00606 0.173229 33 1.05325 +0.219 1.00459 0513428 34 1. 16371 +0.062 1.00726 0180477 38 1.05551 +0. 132 1.00530 0516423 65 1. 16433 —0.021 1.00580 0186.593 46 1.05743 0 1,00667 0516663 70 1. 16435 —0.012 1.00540 0195968 55 1.06033 —0.013 1.00607 O520167 37 1. 16575 +0.043 1.00612 0.196746 42 1.06064 0 1.00698 0527490 40 1. 16813 +0.023 1.00586 0205823 80 1.06341 —0.033 1.00608 0529592 38 1. 16888 +0.033 1.00595 0206474 50 1.06362 +0.009 1.00560 0535897 55 1. 17085 +0.002 1.00541 0210203 34 1.06496 +0.286 1.00536 0536103 100 1. 17082 —0. 100 1.00591 0218806 70 1.06748 —0.017 1.00555 0540023 33 1. 17240 +0.037 1.00597 0220768 90 1. 06812 —0.047 1.00621 0541.247 34 1. 17283 +0.032 1.00607 0221520 60 1.06833 –0.005 1.00530 0541535 80 1. 17271 ––0.022 1.00546 0221767 48 1.06850 +0.015 1.00646 054557.7 80 1. 17406 —0.017 1.00534 0223416 34 1.06941 +0.518 1.00689 0546103 48 1. 17438 +0.006 1.00589 0224424 65 1.06926 —0.032 1.00585 0547645 30 1. 17521 +0.078 1.006.79 0225.738 100 1.06968 — 0.037 1.00590 0555.256 40 1. 17748 +0.019 1.005.75 0238542 80 1.07374 —0.016 1.00587 0556653 55 1. 17790 —0.001 1.00568 0249848 55 1.07734 —0.014 1.00609 0567377 44 1. 18155 +0.010 1.00563 0253596 40 1.07861 +0.091 1.00596 0567641 70 1. 18151 — 0.010 1.00517 0.264823 46 1,08216 0 1.00656 0574922 33 1. 18415 +0.025 1.00570 0281923 80 1.08753 —0.030 1.00592 0576415 32 1. 18479 +0.023 1.00637 0283158 37 1.08817 —H·0.224 1.00607 0577663 40 1. 18507 +0.016 1,00570 0286633 90 1.08904 —0.047 1.00611 0580169 30 1. 18614 +0.054 1.00645 0293817 50 1.091.33 +0.009 1.00546 0587536 34 1. 18860 +0.029 1.00641 0296.176 55 1.092.13 –0.007 1.00605 0597621 40 1, 19185 +0.014 1.00561 0300691 42 1.09362 0 1.00644 0597998 33 1. 19200 +0.020 1.00564 0301.108 80 1.09367 — 0.018 1,00576 0599697 80 1. 19238 —0.009 1.00496 0309977 65 1.09653 —0.031 1.00601 0601563 70 1. 19302 —0.010 1.00497 0315579 60 1.09831 –0.005 1.00549 0606167 38 1. 19478 +0.016 1.00565 0316387 44 1.09863 +0.048 1.00556 0606252 65 1. 19467 — 0.019 1.00533 0326522 100 1. 10184 — 0.048 1.00598 0606256 55 1. 19473 —0.001 1.00542 0328298 48 1. 10248 +0.019 1.00598 0613601 28 1. 19744 +0.029 1.00604 0336164 70 1.10495 — 0.017 1.00562 0614400 42 1, 19758 — 0.002 1.00559 0346550 55 1. 10838 –0.006 1.00616 0615782 46 1. 19803 —0.001 1.00559 0.347869 80 1. 10875 –0.030 1.00586 0622470 34 1. 20050 +0.022 1.00620 0348913 90 1. 10908 –0.045 1.00596 0625155 34 1. 20128 +0.013 1.00563 0349320 55 1. 10922 +0.006 1.00553 0626175 70 1. 20141 —0.010 1.00483 III—J-1. 3 Density Temp. Dielectric Ap/p Corr, CM Density Temp. Dielectric Ap/p Corr. CM (10-)g/cm3) °K ConStant % cin’/g (10-'g/cm3) °K Constant % cm”/g 06.271.71 48 1.20192 —H·0.003 1.00548 07.14887 46 1.23222 —0.001 1.00499 0628268 26 1.20247 --0.036 1.00596 07.17522 34 1.23318 ––0.006 1.00506 0629.227 32 1, 20277 --0.012 1.00606 07 19501 28 1.23391 +0.015 1.00513 0637022 26 1. 20547 --0.034 1.00589 0720832 24 1.234.43 --0.015 1.00536 0637244 30 1. 20556 –-0.033 1.00597 0721993 26 1.23.477 --0.015 1.00507 063996.1 3S 1. 20635 --0.013 1.00552 0722890 38 1.23506 +0.004 1.00508 0647953 34 1. 20924 –H 0.018 1.00604 0725677 34 1.23615 --0.009 1.00547 06:4S389 28 1. 20933 +0.019 1.00577 0.731547 48 1.23801 0 1.00478 06-19919 44 1. 20972 +0.005 1.00527 0732545 30 1.23852 +0.017 1.00523 0651773 26 1.2105.2 +0.028 1.00579 07.32894 44 1.23847 --0.002 1.00471 0600S6S 32 1.21365 --0.011 1.00586 07:482.11 48 1.24381 () 1.00455 0662032 55 1.21407 —0.003 1.00515 07:492.59 24 1. 24.433 +0.012 1.00501 ()670511 3S 1. 21689 --0.010 1.00542 0750821 33 1. 24.477 --0.004 1.00466 ()671388 48 1.21713 --0.001 1.00527 0752291 32 1.24538 +0.005 1.00501 0677296 34 1. 21936 --0.014 1.00588 07:56042 44 1. 24654 +0.002 1.004-42 0677346 37 1.21926 --0.011 1.00543 0756764 26 1. 24687 --0.012 1.00460 067.9330 26 1.22000 +0.026 1.00548 0757.538 37 1.24716 -–0.005 1.00.472 06S0691 33 1.22038 --0.010 1.00525 0763224 28 1.24916 --0.007 1.00467 06S3305 28 1.22137 --0.014 1.00550 0764242 30 1.24958 +0.008 1.00490 0684323 65 1.22147 —0.022 1.00482 0765562 48 1.24986 —0.004 1.00430 0.691.192 44 1.22397 --0.005 1.00504 0770045 44 1.251.43 –0.001 1.00422 0.691725 38 1.22422 +} 008 1.00528 0.774111 37 1.25297 — 0.001 1.00.459 O695061 30 1.22549 +0.020 1.00561 0777903 .25 — 0.001 1.0()409 0696.403 2. 1.22598 ––0.018 1,00570 #; ; ; ; I. º. 069S405 48 1. 22649 +0.001 1,00512 0781763 34 i.25562 Töö. iodiss 07.02519 34 1.22809 ––0.012 1.00566 . ZSS +0.002 nº 0703164 32 1.22827 –-0.006 1.00554 0789785 26 1.25847 +0.006 1.00439 07.09360 38 1.23034 +0.00S 1.00513 0790084 28 1.25859 +0.004 1.00435 0713561 42 1.23176 —0.001 1.00501 0792892 32 1. 25962 0 1.00453 07.13744 55 1.23174 – 0.006 1.00474 0796441 42 1.26071 — 0.001 1.00391 Taken from R. B. Stewart and H.M. Roder, chapter il. Properties of Normal and Parahydrogen. p. 379-404 in Technoloby and Uses of Liquid Hydrogen, Pergamon Press, New York (1964) III—J–1. 4. rce of ata: e Iſ e CeIl Ce S : DIELECTRIC constanT OF GASEOUS HYDROGEN stewart, J. W. (1961), The Dielectric Polarizability of Fluid Parahydrogen. , J. Chem. Phys. (in press). Boltzmann, L. (1875), Pogg. Ann. Physik 155, 103-22. - clemencic, J. (1885), Exuers Rep. 21, 5th-611; Akad. Wies. Wien. 91 II, Tl2. Scheel, K. (1907), Bestimmung der Brechungsexponenten von Gasen bei Zimmertemperatur und bei der temperatur der Flussigen Luft. (Determination of the Index of Refraction of Gases at Room Temperature and at the Temperature of Liquid Air.), Verhandl, deut. Physik. Ges. 9, 24-36; C. A. l., 1823 (1907). Tangl, K. (1908), tiber Die Dielektrizitätskonstante einiger Gase bei hohem Druck. (Regarding the Dielectric Constants of Several Gases at High Pressure.), Ann. Physik 26, 59-78; C.A. 2, 2492 (1908). *Cuthbertson, C., and Cuthbertson, M. (1910), On the Refraction and Dispersion of Air, Oxygen, Nitrogen and Hydrogen and their Relations. , Proc. Roy. Soc. (London) 83A, 151; P.A. 13, 362 (1910). *Koch, J. (1913), The Dispersion of Gaseous Substances in the Ultraviolet Spectrum., Arkiv Mat. Astron. Fysik 8, No. 20; C. A. I, 2711 (1913). *Koch, J. (1913), The Dispersion of Light in Gases in the Ultraviolet Region. , Arkiv Mat. Astron. Fysik 9, No. 6; P.A. 17, 233 (1911). Occhialini, A. (1911), The Dielectric Constant of Hydrogen at High Pressures. , Atti Accad. Lincei 22 II, 1,82-84; C. A. 8, 1370 (1911). Occhialini, A. (1914), The Dielectric Constant of Some Strongly Compressed Gases and the Mossotti-Clausius Relation. , Nuovo cimento I, 108-26; C. A. 8, 2518 (1911). Riegger, H. (1919), tiber die Temperaturabhängigkeit der Dielektrizitätekonstanten von Gasen. (Concerning the Temperature Dependence of the Dielectric Constant of Gases.), Ann. Physik 59, 753–60; C. A. ll, 877 (1920). *Kirn, M. (1921), The Dispersion of Hydrogen in the Ultraviolet. , Ann. Physik 6l., 566; C.A. 15, 22.7 (1921). Fritts, E. C. (1923), The Measurement of the Dielectric Constant and Magnetic Susceptibility of Gases by High Frequency Methods. , Phys. Rev. 21, 198. Fritts, E. c. (1921), A Determination of the Dielectric Constants of Five Gases by a High Frequency Method. , Phys. Rev. 23, 345-56; C.A. 18, 11.23 (1924). Zahn, C. T. (192h), The Electric Moment of Gaseous Molecules of Halogen Hydrides. , Phys. Rev. 2k, l,00-17; C.A. 19, 126 (1925). Watson, H. E., Rao, G. G., and Ramaswamy, H. L. (1931), The Dielectric Coefficients of Gases. Part I: The Rare Gases and Hydrogen. , Proc. Roy. Soc. (London) 132A, 569–85; C.A. 25, 5320 (1931). &- Uhlig, H. H., Kirkwood, J. G., and Keyes, F. G. (1933), The Dependence of Dielectric Constants of Gases on Temperature and Density. , J. Chem. Phys. 1, 155-59; C.A. 27, 1790 (1933). - Michels, A., Sanders, P., and Schipper, A. (1935), The Dielectric Constant of Hydrogen at Pressures up to ll:25 Atm and at Temperatures of 25°C and 100°C., Physica 2, 753-6; C.A. 30, 919 (1936). - Wan Itterbeek, A., and Spaepen, J. (1913), Mesures sur la Constante Diélectrique de Quelques Gaz non Polaires (Hº, D", He, of et l'Air) et Co Entre la Température Ordinaire et 20°Abs. (Measurements of the Dielectric Constants of Several Non-polar Gases (H2, D2, He, Oa and Air) and Co Between Ordinary Temperature and 20°Abs.), Physica lo, 173–84; C.A. 38, 5kk2 (19bl.). III—J–2. 1 DIELECTRIC CONSTANT OF GASEOUS HYDROGEN (cont.) Hector, L. G., and Woernley, D. L. (1916), The Dielectric Constants of Eight Gases., Phys. Rev. 69, 101-05; C.A. |0, 2266 (1916). Van Itterbeek, A., and de Clippeleir, K. (1916), Mésures Sur la Constante Diélectrique de l'Anhydride Carbonique, de l'Ammoniaque Ainsi que de Mélanges. (Measurement of the Dielectric Constants of Carbonic Anhydride, of Ammonia as Well as of Mixtures.), Physica 12, 97-104; C.A. lo, 56.13 (1916). Wan Itterbeek, A. , and de Clippeleir, K. (1918), Measurements on the Dielectric Constant of Gaseous NHa, CO, and Ha as a Function of Pressure and Temperature., Physica ll, 349-56; C. A. l.2, 8036 (1918). tºº Miller, J. G. (1918), VI - Dielectric-Constant and Refractivity Data. , Trans. A.S.M.E. 70, 61,5-h9; C. A. l.2, 7ll7 (1918). Zieman, C. M. (1951), Dielectric Constants of Various Gases at 91.70 Mc., Phys. Rev. 83, 243; C. A. lić, 6ll.9 (1952). Ishiguro, E., Arai, T., Kotani, M., and Mizushima, M. (1952), Polarizability of the Hydrogen Molecule. , Proc. Phys. Soc. (London) 65A, 178-87; c.A. l,6, 1829 (1952). Zieman, C. M. (1952), Dielectric Constants of Various Gases at 91.70 Mc., J. Appl. Phys. 23, 154; C. A. Ló, 6419 (1952). Essen, L. (1953), The Refractive Indices of Water Vapour, Air, Oxygen, Nitrogen, Hydrogen, Deuterium and Helium. , Proc. Phys. Soc. (London) 66B, 189-93; C. A. l. 9083f (1953). 9 >+” *I, Maryott, A. A., and Buckley, F. (1953), Table of Dielectric Constants and Electric Dipole Moments of Substances in the Gaseous State. , Natl. Bur. Standards. Circ. 537; C. A. l.T 10928 (1953). Comments: Both Boltzmann and Clemencic found the value of the dielectric constant of hydrogen at 0 °C and l atm pressure to be l.000261. Scheel reports a dielectric constant of l.00027166 at 0°C and l atm. Tangl made experimental determinations at pressures from 20 to 100 atmospheres and by extrapolation found the value at 20°C and l atm. to be l.000273. To substantiate their value they show the complete agreement of their measurement with the Cauchy relation, by which the square of the index of refraction at 20°C and l atm. and infinite wave length is equal to the dielectric constant. nº = l.000136 and nº, a l.000273. Occhialini found that the value of the relation (D - 1)/p(D + 2) of Clausius-Mossotti (D is dielectric constant and p is density) is more nearly constant than (D - 1)p. They call the former relation by the name of Lorenz-Lorentz. In Occhialini's second article previous observations are confirmed and he gives a value of l.0002705 for hydrogen at 0°C and 76 cm Hg. Riegger made measurements at -191°C at pressures of 100, 600, and 760 mm Hg. His final result calculated for 16.5°C and 760 mm Hg is 1.000253. Fritts reported a value of l.00022l at 0°C and l atm. in 1923 and a value of l.000263 + 0.0000015 in 1921. He used a beat frequency method operating at 0.8 Mc. III—J–2.2 DIELECTRIC CONSTANT OF GASEOUS HYDROGEN (cont.) Zahn found l.000265 as the average of 19 readings at 0°C and l atmosphere. Watson et al. measured the dielectric constant by the heterodyne beat method at 25 and -191°C. They report values of l.0002518 and l.0002515 for 25°C and 760 m, determined from measurements at 25 and -191°C respectively. They also report values of 1.0002749 and l.0002716 for oºc and 760 mm, determined from measurements at 25 and -191°C respectively. These values are compared with those given by optical methods where the square of the index of refraction at 0°C as measured at infinite wavelength is given as l.0002716. Uhlig et al. report values determined by a heterodyne beat method at 0 and 100°C for pressures from 30 to 150 atmospheres. Van Itterbeek and Spaepen report values at temperatures from 20.3 to 293.3°K. Michels et al. report values of dielectric constant for pressures up to l!25 atm and temperatures from 25 to loo”C. Only the 25°C isotherm is given here. Hector and Woernley report a value of l.OOOO2721, it O.OOOOOOlo at 0°C and l atmosphere obtained by a heterodyne beat method. Miller presents a review of dielectric constant and refractivity data. He includes a compilation of dielectric constant values for 0 °C and l atmosphere. Because index of refraction data extrapolated to infinite wavelength are regarded as a more accurate source of dielectric constant values, Miller gives for comparison values of n. Preliminary values of Van Itterbeek and de Clippeleir published in 1916 at 0.8 Mc are reported for a pressure of l atm. and temperatures between 0 and 90°C. * In 1918 the above authors published data at pressures from 760 to llooo m Hg in three temperature ranges, namely 0, 20, and loo"C. Ishiguro et al. applied the variation method to calculate the polarizability O. using a modification of the wave function of James-Coolidge. Matrix elements of C. were calculated by the use of the Morse function and its characteristic functions. On this basis they calculated the dielectric constant of hydrogen to be l.0002666. They quote earlier experimental values of l.000273, l.000263, l.000259, and l.000265. Zieman made use of a cavity comparator and a microwave refractometer in his measurements at 91.70 Mc and reported a value of l.OOC355 + 0.000005 at STP (0°C and l atm.). As this value is well above all earlier measurements, and does not agree with the square of the index of refraction at infinite wave length, its accuracy should be questioned. Essen reports the index of refraction of gaseous hydrogen at 0°C and 760 mm of Hg as l.OOOl360. Using the relation e = n , we obtain e = l.0002720. Maryott and Buckley made a critical review of dielectric constants obtained by radio frequency, microwave and optical methods and recalculated by one of two systematic procedures in order to place the work of various experimentors on a more comparable basis than exists in the literature. They recommend a value of l.0002538 + 0.0000003 at 20°C and l atmosphere. t Stewart reports the dielectric constant of parahydrogen for the range 21 to 100°K at densities up to 0.08 g/cm”. The experiment shows that the dielectric constant depends only on density. Tabular values are presented as calculated frºm the following equation: (e 2) pſ(e - i) = 0.99575 - 0.09069p + 1.12279 with p in g/cm”. Since the values are tabulated as a function of density the usual distinction between gas and liquid could not be accomplished and so all of the values are tabulated as liquid hydrogen data. III—J–2. 3 DIELECTRIC CONSTANT OF GASEOUS HYDROGEN Michels et al. (1935) Temp. P(atm) Dielectric °C Constant 21.92 l. 15 l.OOO28 1? 7.96 l.00l.92 ! ! l3. H7 l.0032! 11 l8.95 l.001,66 $1 24.53 l.006Ol 11 30.03 l.OO730 11 31.68 l.008),3 t? 35.52 l.00861, f'ſ ll.00 l.00995 !? l;6. H2 l. Oll25 ºf 5l.89 l.01252 !? 57.36 l.01379 —II 6l.53 l. Oll;75 f : 88.13 l.02083 ! ! lll .67 l.O2668 11 lºl. 36 l.0324h —II 168.07 l.03810 ! ! l91.87 l. Ol;370 t! 22l. Hl l.O.H.885 ºf 21.8.l.9 l.O5398 |t 27].88 l,05900 7t 255. Ol; l.055 l;0 ! I 367.15 l.O7535 11 l,78.78 ‘l. O9310 -TI 590.53 l. 10925 ! I 7O2.2O l.l21,33 11 8ll.62 l.l3766 fi 926.05 l.ljoll! 11 lo37.86 l.l6157 21.86 1032.7l, l. 16077 ! ! l229.25 l. 17920 11 ll;25.36 l. 19500 III—J–2.4 : Original and Corrected Data from Two Older Sources As originally reported As corrected by Van Urk et al. As corrected in this Note al In error. T h H °t P., Y H Y .. H P. *v Y 3 3 K 3 3 ° K CIY). CII). g/cm g/cm dyne s/cm CIY). dyne s/cm (NBS 1955) cm g/cm g/cm dynes/cm Ø ºr, Kamerlingh Onnes and Kuypers [1914] ; O 16. 16 2. 0.64 2. 23 1 O. O75 1 0. 0003 2. 9 1 2. 169 2. 631 16. 198 O. O7524 O. 0.0035 . 634 tr; 9 Values H f gº * 2. . O733 . 00 e © e e O tº ºf . & 17. 99 1. 869 02 I 0733, O 0.05 2 57; 1. 962 2 319s 18. O 50 Van Urk O7345 OOO 67 . 3 17 ; 18. 70 1. 794 1. 94 l . 07.26 . 0008 2.43 1. 883 2. 194 18. 764 et al. . O727 1 . 00085 . 196 5. . 8 5 adopted 2. 20. 40 l. 6 16 l. 749 . 0708 . 0013 2. 126 l. 694 1. 9 10 20. 453 . 07084 . 00 136 . 9 10 H H KO Van Itterbeek [1940.] c H 17. 72 1. 540s 1.65s . 0740 *. 0.061 2. 66 17. 747 1. 697 . 07375 . 00061 . 393 tj 20. 32 1. 323s 1.44, . 0708 . 0 0 13 2. 19 20.354 1. 457 . O709 6 . 00 132 . 956 É :0 O É Should be 0.0006 1 Reprinted from NBS TECH.NOTE 322 SURFACE TENSION LIQUID HYDROGEN 27 D Onnes 8. Kuypers n-H, o Van Itter beek n-H, D — Grigor'ev 26 H. 25 H. E C) ^ wn 24 H Q) Cº. > ~5 - 2.3 H 2 O 2 22 H Lil H. Lu 2. H C) <ſ Li- Orº Yº- Im) 2O Oſ) |.9 H. |.8 | _l | | | 6 | 7 |8 |9 2O 2| TEMPERATURE, o K Figure 2. Corrected experimental surface tension points of Kamerlingh Onnes and Kuypers and of Van Itterbeek and straight lines rep- resenting the experimental points of Grigor'ev. Reprinted from NBS TECH. NOTE 322 G PO G. CŞ2 - '9 | III-K-1. 2 §§É8 § 8 : § § 5 VISCOSITY OF LIQUID PARAHYDROGEN viscosity, g/cm sec xlo' - - N) 9 3 3. 3 § § § : Uſ) Fº - Cº. > 0 Nº. - rin O ſ: O C. C Reprinted from R. B. Stewart and H.M. Roder, Chapter ll. Properties of Normal and Parahydrogen. p. 379-404 in Technology and Uses of Liquid Hydrogen, Pergamon Press, New York (lº 64) III–L-1. 1 VISCOSITY Of GASEOUS NORMAL HYDROGEN AT ATMOSPHERIC PRESSURE O TEMPERATURE, *K III-L-2. 1 VISCOSITY OF GASEOUS NORMAL HYDROGEN Source of Data: AT ATMOSHPERIC PRESSURE R. B. Stewart and H.M. Roder Chapter ll. Properties of Normal and Parahydrogen. p. 379-404 in Technology and Uses of Liquid Hydrogen, Pergamon Press, New York (lo 64) Comments: These values were calculated from data referenced in the Stewart and Roder paper. Temperature Viscosity Temperature Viscosity °k g/cm sec °K g/cm sec lC) 5.10 × 107° l60 58.52 x 107° 2O l0. 93 170 6l. 00 30 l6. O7 l80 63.43 40 20.67 l90 65 - 80 50 24.89 200 68. 13 60 28. 76 210 70 . 43 70 32 . 37 220 72 - 68 8O 35 - 79 230 74 - 90 90 39 . O3 240 77. O8 100 42. ll 250 79 - 23 ll.0 45 - O 7 260 8l. 35 l2O 47 - 93 27 O 83 .45 l30 50 - 70 280 85 - 52 l40 53. 38 290 87. 57 150 55 . 98 300 89 - 59 III-L-2. 2 VISCOSITY DIFFERENCES Data Sources: Becker, E. W., and Stehl, O. (1952), Ein Zähigkeitsuntershied von Ortho- und Para- Wasserstoff bei Tiefen Temperaturen. (Viscosity Difference between Ortho and Para Hydrogen at Low Temperatures), Z. Physik l;3, 615-28. Webeler, R., and Bedard, F. (1961), Wiscosity Difference Measurements for Normal and Para Liquid Hydrogen Mixtures, Phys. Fluids li, 159-60. Diller, D. E. (1965), Measurements of the Viscosity of Parahydrogen, J. Chem. Phys. l.2, 2O89 - 21OO o Comments: The viscosity differences of gaseous Ortho and para hydrogen determined by Becker and Stehl (1952) are small, approaching l'É near the triple point. Liquid values, however, differ by larger amounts with differences of about 5% at saturation near the triple point. Diller (1965) points out that the liquid differences are nearly zero when compared at the same densities rather than the same temperature. The results of Becker and Stehl (1952) indicate the viscosity of gaseous para hydrogen to be larger than gaseous normal hydrogen; while the results of Diller show the normal hydrogen values to be larger than the para hydrogen values in the liquid region. Becker and Stehl (1952) measured the difference in viscosity between various mixtures of Ortho and para hydrogen with a capillary bridge arrangement. Webeler and Bedard (1961) measured a quantity equal to the product of viscosity and density of liquid para and Ortho hydrogen with a piezoelectric alpha quartz torsional oscillator. They found that the value of np for 69% orthohydrogen at temperatures from l3.8 to llº.5 °K is about lºft larger than the corresponding values for 28% ortho hydrogen. The precision of the values of np is given as 0.2%. Diller (1965) also used a torsional crystal method to make extensive measurements on para hydrogen. He included a few points for normal hydrogen along the saturated liquid line. All of the data are analytically represented with a mean deviation of 0.7%. An accuracy of 0.5% is claimed. The tables that follow include Diller's saturation data only. Reprinted from NBS REPORT 8812 III-L-3. 1 Becker and Stehl (1952) Gaseous Hydrogen (nx - na) 100/in Percent Para Hydrogen 99.8 62.2 50.2 l;2.7 90.l 0.ll6 O.O75 O.055 0.039 77.3 0.139 O.089 O.O65 O.0l.9 63.2 O.l75 O.ll.0 O.079 O.058 20.3 0.56l 0.323 0.231 0.162 lj.O 0.712 O. 376 O.258 0.182 mx = Wiscosity of ortho-para hydrogen mixture mn = Wiscosity of normal hydrogen Diller (1965) Viscosity of saturated liquid (Micropoise) T, “K Normal Para Difference ll. 26l. 3+ 250.7 l3.6 l; 230.2 22l. 3 8.9 l6 2O3.9 l97.5 6.l. l'7 l82.9 177.7 5.2 18 l65.6 l60.5 5.l l9 lºl. 5 ll;7.0 lº.5 2O l39.2 l35. It 3.8 2l l28. It l25.3 3.l 22 ll&.7 ll6.l 2.6 23 ll.0.5 lo8.l 2. l; 2k 102.6 lCO.8 l.8 25 95.7 93.5 2.2 26 89.0 87.2 l.8 * This value has been corrected for a typo- graphical error. III–L–3. 2 PERCENTAGE DIFFERENCE IN VISCOSITY OF MIXTURES OF ORTHO AND PARA HYDRO GEN : O4 i FROM NORMAL HYDRO GEN (Becker and Stehl, 1952) > Percent Parahydrogen O 99.8 D 50.2 A 62.2 K» l;2. T º s T- T- T- :- H 25 5O 75 TEMPERATURE, * K 95 Xa º 38 ſa Lv 83d W31 92�2| 22 9 | ſ» | \sſ ( G96|| ‘ : 0 | | | Q ) N B 9) O H Cl V, H \/\)] \/d C] NV/ T] \/ W M’ONC] | [] O i T O E_1\/\ſ][^1\/S N B E WA 138 30 NE|}}|E|-||-||C] /\1||SO0 SIA O | !»| asſodololu " ("u-"u) apNagasalo Alisopsia III-L-3.4 VELOCITY OF SOUND IN LIQUID PARAHYDROGEN | 800 |600 Speed of sound as a function of density showing isotherms. The dashed lines are calcu- lated values." The heavy lines indicate phase boundaries. The open circles indicate location of the measurements. For reference, the den- sities of the critical point and triple point are indicated on the abcissa. |2OO |OOO 8OO 6OOH- 4 OO sº }* Criticol Point Triple Point gº 20C) 1 l —l- ! I l —1– | | 1 l I l 1 1 _l l OOO O.OI OC2 O.O3 O.O4 OO5 OO6 O.O7 O.C.8 OO9 DENSITY, gm /cm” 13OO TI -T- —I- T T I I -T I T T I T I I I I I -I- |2OOH- * | |OOH- * O : KOOOH- tºº ^ sº H * Q) 'o Speed of sound in satu- E 900H * rated liquid normal hydrogen and º parahydrogen. The open circles > |- * are for normal hydrogen. For ref- - º erence, the locations of the boilin 5 sooH º point and triple point are indicat O on the abcissa. —l }- Lil - > 7OOH- sº |- º 6OOH- * 5OOH- * b. p. !. p. l 1 l l —1– | 1 I l 1— L _l | 1– l 1– L | —1. JO4O O44 .O48 .O52 .O56 .O6O .064 .O68 .O72 O76 .O8O º DENSITY, gm/cm * Reprinted from Young love, B. A. . III–M-l VELOCITY OF SOUND IN PARAHYDROGEN 8 O O ºme - * 4th |4 OO * -4 |2 OO H * 8OOH- 6| OOOOO 17 4. O O Pºme 2OO ſ I | 1– 1 | | I | 4 20 3 O 4O 5 O 6O 7 O 80 90 |OO TEMPERATURE. "K The velocity of sound in para-hydrogen, from Goodwin, et al. [9]. (ML, SL, and SV refer to melting line, saturated liquid and saturated vapor, respectively.) Reprinted from R. B. Stewart and H.M. Roder Chapter ll - Properties of Normal and Parahydrogen p. 379-404 in Technology and Uses of Liquid Hydrogen, Pergamon Press, New York (1964) III–M-2 VELOCITY OF SOUND IN HYDROGEN Data Sources: Van Itterbeek, A., Van Dael, W., and Cops, A. (1961), Velocity of Ultrasonic Waves in Liquid Normal and Para Hydrogen (ll-20°K), Physica 27, lll-ló. Van Itterbeek, A. , Van Dael, W., and Cops, A. (1963), The Velocity of Sound in Liquid Normal and Para Hydrogen as a Function of Pressure, Physica 29, 965-73. Younglove, B. A. (1965), Ultrasonic Velocity in Fluid Parahydrogen, Manuscript submitted for publicatiºn. Comments: The velocity of Sound of liquid normal and para hydrogen has been accurately determined by both Van Itterbeek, et al. (1961, 1963) and Young Love (1969) belºw 20°K. The agree- ment of these difference:3 from these sources is excellent. The differences in the gaseous states are not , however, well known. One may estimate these differences from the thermo- dynamic relationship , C* = v(2P/ap)T where C = velocity of sound, Y = CP/CV, and P, T, and p are pressure, temperature and density, respectively. It is known from P-W-T measurements that the values of (AP/ap) of normal and para cannot t, 2 rºch different. Thus in regions where the differences in C /Cy are large such as around 150 °K one can estimate the percentage difference in velocity of sound as one half the percentage difference in the specific heat ratio of normal and para hydrogen. d liquid normal gth interfer- pe 3 m/sec y estimate the uncertainty at 0.2%. Van Itterbeek, et al. (1963) extended the above work tº pressure c o difference between normal and para hydrogen at low pressures is less article by the same authors. f 2.0 kg/cmº. The 3 than in the pre-riºus Younglove (1965) made velocity of Sound measurements on fluid para hydrogen with a pulsed sound technique. Measurements were made from 15 to 100°K and up tº 350 atmospheres, and are claimed to be accurate to 0.05%. Reprinted from NBS REPORT 8812 III–M-3. 1 Van Itterbeek, et al. (1961) Velocity of Sound in Saturated Liquid Normal Hydrogen 0.996 me/sec l.91.5 mc/sec l.90, mc/sec Temp. Velocity Temp. Velocity Temp. Velocity of Sound of Sound of Sound °K m/sec °K m/sec °K m/sec 20.37 ll2O. T. 20. l;2 lll.9.2 20. lºl, lll.9. l. l9.97 ll3l. T 2O. lo ll28.6 l9.08 ll.96.8 19.67 ll.0.3 19.85 ll36.0 l8. l.2 llT1.6 19. 37 ll.9.9 l9.58 lll;2.6 l8. Ol, ll32.3 18.93 ll.99.7 l9. 32 llSO. l. l?. l;5 ll.9l, .5 18.6l ll66.7 l9.02 ll:57. l; 17. Ol, l2O3. l 18.18 ll'76.9 l8.7O ll65.8 l6.57 l2ll. 7 l'7.72 ll37.9 l8.35 ll'73.9 lS.98 l227.6 l'7.15 l2OO. 3 l?.95 ll63.5 lº. 32 l210.2 l6.6l l2ll. 5 l?.52 ll.93.2 l3.23 l2ll. 2 l6.0l. l221.3 17.50 l2O3.9 ll. .59 l25l. 3 lS. 15 l2];2.8 l6. l.9 l2ll.9 ll.ls l262.3 ll. 59 l25l. I, lj.92 l227.3 ll.l3 l263.6 lj. Ivl, l237. l. ll.89 l217.8 ll. 52 l255.0 ll.ll l262.6 Velocity of Sound in Saturated Liquid Para-Hydrogen 0.987 me/sec l.937 mc/sec l,.869 mc/sec Temp. Velocity Temp. Velocity Temp. Velocity of Sound of Sound of Sound °K m. Sec °K m/sec °K m/sec 20.36 llll .3 20. ll lllO.9 2O. lo lllj. 3 2O.O8 ll22.5 l9.9l ll25.3 19. 1,6 ll 37.9 l9.77 ll 30.8 l9.53 ll31.8 l6.92 ll.jl. l l9.55 ll36.9 l9.06 ll. 6.2 l8.21, ll68.l l9. 29 lliºl. I, l8.62 ll 57. 9 l'7.66 ll&2.l l8.87 llji. 6 18.13 ll68.5 l6.99 ll.96.9 l8. 18 llól, l l?.53 ll&3. l l6.52 l2Ol. 3 l8.02 ll 75. l. l6.9l ll.96.5 lS. 88 l220.5 l'7.52 ll36.3 l6. 38 l2O8. T lj. 33 l23O. l l6.9l l2OO. l lS. 76 l22l. 7 ll.83 l210. 7 l6.2O l2ll.9 lS.O8 l231, .. 3 ll. 38 l21.9.2 lS. 29 l232.5 li. 63 l243.2 ll.06 l255.9 ll.l7 l250.8 20. 10 llll .8 l9.76 ll28.2 19. 13 ll 38.7 19.00 ll.9.0 18.55 ll 59. C l?.96 ll 71.3 l'7. l;3 ll 88.5 l6.93 ll.99.6 l6.32 l2O8.5 15.59 l225. l. ll.85 l210. l. ll.06 l253.6 III–M-3. 2 Van Itterbeek, et al. (1963) Velocity of Sound in Liquid Hydrogen T = 20.50°K T = 19.17°K n-B2 e-Ha n-H2 e-Ha P Velocity P Velocity P Velocity P Velocity of Sound of Sound of Sound of Sound kg/cm" m/sec kg/cm." m/sec kg/cm" m/sec kg/cm" m/sec 236.0 l712.l 210.0 l'718.6 177.5 1617. l. 188.5 1667.6 230.0 l?32.7 229.0 l'729.3 lT0.3 l633.3 183.5 l658. l. 220.3 l'715. It 22 l.O lTll.9 l60.9 l615.6 175.O l6l;2. li. 210.1; l697.3 2ll .5 l698.7 150.5 1591.0 170.0 l631.8 200.9 l679.9 202.3 1680.5 139.7 1571. H. l6l.0 l6ll. It 190.6 l660.7 l92.5 l663.l l30.O l:519.6 ljl. O lj93.7 180.5 l6hl.6 l8l.5 l6hl. 3 l2O.3 l;28.0 ll.0.5 1571. li. 170.6 l622.0 | 1.7l.5 l622.5 ll.0.0 lSOO.0 l30.2 ljl;9.6 l60.2 l60l.0 16l.2 l60l.l 100.3 ll,80.6 120.0 1526.l 150.6 1580.9 150.5 l;78.6 90.8 ll;56.l. 109.5 lSO2.3 llºl.2 1560. l. llil.0 1558. l; 80.5 ll;29.7 100.5 ll,79.5 l30.8 1537.l l3l.5 l;37.6 70.00 ll.00.6 90.7 ll;55.3 l2O.7 ljl3.0 l2l. 5 l;13.6 60.50 l327.5 80.5 ll;28. l; llo. 6 ll,89. l; lC9.7 ll,85.2 50.50 l341.3 71.50 ll;03.2 lOO .. 7 ll;65.3 lCO. 7 lić3.l l;0.50 l309.5 6l.00 l372.6 90.5 ll 38.5 9l. O ll;37. l 29.20 l27O .2 5l. 25 l342. It 80.7 lill. 6 79.0 ll,04.7 2l. 60 l241.l l;2.90 l3llº. 6 70.50 l382.l 68.75 l371.5 l2.95 l2O6.3 34.20 l285.0 6l.05 l353.6 6O.OO l317.6 6.25 ll 77.3 26.10 l25l.9 50.85 l320.7 50. HO 1315.7 l. TO ll.95.5 18.10 l22l.l ll.lº 1287.2 l,0.50 l281.6 10.30 ll.92.6 31.10 1250.O 3O.75 l2k5.5 6.20 ll'73.2 23.00 l218.l. 20.85 1205. l. 2.05 ll33.9 l'7.25 ll.93. li. 12.05 lló6. l. l. 50 llºl. 3 ll.80 lló9.l. 7.10 ll!2.3 8. l;0 ll;2.6 2.75 lll.9.6 l!.95 ll35. It l. 20 llll .5 l. HO lll 7.5 T = 18.25 °K T = 16.7l “K n-H2 e-H2 n-He e-He P Velocity P Velocity P Velocity P Velocity Of Sound of Sound of Sound of Sound kg/cm3 m/sec kg/cm3 m/sec kg/cm’ m/sec kg/cm’ m/sec l27.0 1575.3 ll:6. It lj92.0 90.l. ll,86.6 85.O ll:68.2 135.5 1571.9 137.0 lS7l.9 88.7 ll:81.2 78.O ll.90.9 128.5 l356.7 l29.0 lS53.9 8l.O ll:69. H. 68.90 ll;26.7 ll3.5 lj B5. l ll&.5 lj Bl, l 71.80 llilić.0 6O.25 ll.03.2 108.0 ljlO.9 108.5 1507.7 65. 10 ll;20.9 5O.75 l375.8 97.3 ll;85.3 99.5 ll,86.8 55. 10 l393.2 ll. HO 1347.6 87.2 ll;59.3 90.0 ll,62.8 l,5.90 1365. l. 31.50 1316.3 87.O ll,59.3 79.5 ll.36.5 37.00 l338.0 2l. 35 1282. 3 78.7 ll;37.7 7O. l;O llilo. 7 26.85 1305.6 13. lo 1252.6 69. 30 lill. 2 60.50 l382.6 l9.60 l280.5 8. 3O 1234. H. 60.55 l387. l; 50.50 l352.7 13.50 1259.l 2.60 l2ll. 7 50.55 l357.3 l,0.70 l32.l.. O 6.80 1233.8 l. HO 12O7. O HO. HO l325. l 30.60 1287. l. l. 60 l212.9 31.00 1291. It 20. 1,5 1250.6 22.2O 1263.6 12.75 l22l. 2 lj.OO l235.9 6.60 ll.95.3 8. 30 l2O8.5 2. lo ll'77. It 2.30 ll.83.3 l. 50 llT3 ..l III–M-3. 3 Van Itterbeek, et al. (1963) (cont.) Velocity of Sound in Liquid Hydrogen T = lé.O.9°K T = 15.35°K n-H2 e-H2 n-H2 e-He P Velocity P Velocity P Velocity P Velocity of Sound of Sound of Sound of Sound kg/cmſ m/sec kg/cmſ m/sec kg/cm’ m/sec kg/cm” m/sec 60.50 lliló.5 65. 10 ll;26.8 2O. 55 l308.9 38.50 l360.7 55.00 ll,02. l; 60.50 ll.13.6 l7.50 1298.6 36.20 1353.9 l;9.90 l387.7 55. l;5 ll.00.l ll.90 l290.0 32.15 l3ll.5 l;5.10 l373.7 50.30 l385.O l2.50 1282.2 28.05 l329. l 35.30 l3llº. 5 40.60 l356.6 7. l;0 l263.0 2l. HO l308.2 30.15 l328. l; 35.60 l3+1.6 5. lº 1256.8 17.30 l293.9 25.10 l312.6 30.60 l326.0 3.95 l25l.l lS.05 1286. l. 20.35 l296.2 25.35 l309.l 2. lo l2ll!.6 l2.00 l276.l lj. lo l278. l. 2O. 70 l292.8 l. HO l2ll.5 9.85 l268.7 lC). 20 l261.6 15.60 1275. l; 6.55 l256.7 5.95 l215.3 10.60 l257.2 lº.10 1217.3 2.05 l230. l; 5.50 1238.3 l. TO l238.2 2.05 l221.8 T = 15. ll; “K n-H2 e-He P Velocity P Velocity Of Sound of Sound kg/cmſ m/sec kg/cmſ m/sec 28.70 l338.9 29.70 l336.5 26.70 l332.3 26.90 l327.7 23.10 l322.7 23.10 1315.6 2O. lº l313. O 20. 10 l305.6 17.20 l302.2 l'7.00 l295.8 ll.00 l291. 7 ll.05 l285.O ll. 10 l28l. 3 ll. 25 l275.7 8.50 l272.3 8.90 l267.2 5.90 l263.2 6.15 1257.2 3.80 l255.l 3. OO l21.6.0 l. 50 l217.1 O. 25 l235.2 III–M-3. 4 Younglove (1965) Velocity of Sound in Saturated Liquid Hydrogen T, “K Density, g/cm” Velocity of Sound, m/sec Para Normal Para Normal ll.5 O.O76ll l2ll.9 l; O.O7599 0.07632 1232.6 12ll.8 l6 O.O7510 O.O75l.3 1212.8 1221.8 l? O.O7I117 O.07||19 ll.9l.7 1200.6 l8 0.07319 O.O7350 ll69.0 ll 77.9 l9 O.O7216 O.O721.6 llll .6 ll.93.5 2O O.O7108 O.O7137 lll&.5 ll.27.0 2l O.06992 O.O7O2O lC90.3 lC99.3 22 O.O687O O.O6896 1060.0 loé9.l 23 C.O6739 O.O676l. 1027.3 1036.5 2l. 0.06599 0.06622 992.0 lCOl. 3 25 O.O6ll,7 O.O6l,69 953.6 963.l 26 O.O6282 O.06302 911.8 92l. 7 27 0.06100 0.06120 866.O 876.3 28 O.O5897 O.05917 815.2 826.1 29 O.O5665 O.O5687 758.2 77O.O 29.5 0.05536 O.O5559 726.6 739.0 30 O.05391, O.05l/20 692.6 705.6 30.5 0.05236 655.3 3l O.O5058 O.O5095 613.2 629.2 31.5 O.Ol;819 O.Ol;898 566.5 583.8 32 0.0l,592 O.Ol;66l 509. 2 530. l; 32.25 0.0ll, 33 l,70.5 32.5 O. Ol:353 l;90.2 Velocity of Sound in Liquid Parahydrogen T = 15.OOO “K T = l'.OOO “K T = 19.000°K T = 20.500 °K P Velocity P Velocity P Velocity P Velocity of Sound of Sound of Sound of Sound atm m/sec atm m/sec atm m/sec atm m/sec 31.52 l35l. 6 8l. 36 ll,58. 3 l'7l. 39 l6l. 8.3 229.88 l'739.8 22. Ol l3ll. H. 5l. 68 l375.3 l35.67 1567.2 l95. 19 1676.7 8.8l l265.3 30.15 1306.3 99.56 ll,8l. 6 l;0.62 l;85.5 6. Ol, l215.8 73.99 llil 3.0 124.12 1525.3 lili. 23 l32.l.. l 91.73 llil;2.8 l;0. 72 1309.7 63.5l l360.2 22.9l, l243. H III–M-3. 5 XI o ‘ 38 n.lv 83d W31 9 2O29 | |„—Ģ-- N===))! Tº- ( G96|| ‘ 9 AO I Ďuno), ) N39 O8QAH \78 wd QNV Twº W HON C||0||0||T. OB 1\/\ſ][^1\/S NE BAWA 138 ONTOS -}O \ _1 | O OT] BA N | B O N B \} E - -| | 0 O | 9 | O2 oss/ u ‘‘o-"o 39N383.341G GNnos 30 Alloonaa III-M-3. 6 IV. PROPERTIES OF DEUTERIUM CONTENTS A. Vapor Pressure B. Density of Liquid Deuterium (At Saturation) C. Heat of Vaporization IV- INDEX Sources of Data: NORMAL DEUTERIUM – LIQUID WAPOR PRESSURE Friedman, A. S., White, D., and Johnston, H. L., "The Direct Determination of the Critical Temperature and Critical Pressure of Normal Deuterium. Vapor Pressures between the Boiling and Critical Points", J. Am. Chem. Soc. 73, 1310-ll (1951), C.A. h5, 5992 i. Grilly, E. R., "The Vapor Pressure of Hydrogen, Deuterium and Tritium up to Three Atmospheres", J. Am. Chem. Soc. T3, 843 (1951). Hoge, H. J., and Arnold, R. D., "Vapor Pressures of Hydrogen, Deuterium, and Hydrogen Deuteride and Dew Point Pressures of their Mixtures", J. Res. Natl. Bur. Std. li.T., 63-71; (1951). Other References: Brickwedde, F. G. , Scott, R. B. , and Taylor, H. and Para Deuterium", J. Chem. Phys. 3, 653–60 (1935). S., "The Difference in Vapor Pressures of Ortho Newman, R. B., and Jackson, L. C., "The P, T, x Relationships of Hydrogen plus Hydrogen Deuteride and Hydrogen plus Deuterium Mixtures between 18° and 28°K", Trans. Faraday Soc. 5l, 1181-91. (1958). Comments: The table was obtained by a least squares fit to (l) of the experimental data with a weight propor- tional to pressure. ln P = A # + Aa + AAT' + A, (T")* + As(T’)* + Asſt") * The uncertainty Of the Smoothed value is estimated to be + O.Ol ‘’K. (l) TABLE l. Vapor Pressure of Liquid n-Dº (for interpolation) 200/T Temp logio P A Temp 360/T l/°K °K mm Hg atm psia °R l/°R 10 - 7 l 8, 692 2. 1038 -0. 7771 O. 3901 337 33. 645 10, 7 10 - 6 18. 868 2. 1376 -0. 74 33 0.4239 338 33 e 962 10.6 10 - 5 19.048 2. 1714 -0. 7094 O. 4578 339 34 • 286 10.5 10 - 4 19. 231 2. 2054 -0. 6754 O. 4918 339 34 - 6 15 10. 4. 10 - 3 19.4 17 2. 2394 -0.64 14 O. 5258 340 34 e 951 10, 3 10, 2 19, 608 2. 2735 - 0. 6073 0 , 55.99 34 1 35 e 294 10, 2 10 - 1 19. 802. 2. 3077 -0.573 l O. 594 l 342 35, 644 10 - 1 10 * 0 20,000 2. 34 19 -0. 5389 0. 6.283 342 36 e 000 10. 0 9 • 9 20, 202 2. 3762 - 0 , 50.46 0.6626 343 36 s 364 9, 9 9 • 7 20 - 6 19 2.4451 -0.4357 0.7315 345 37 e l l 3 9 e 7 9 - 6 20, 833 2,4796 - 0, 4012 O , 7660 34.5 37 e 500 9 • 6 9 • 5 21,053 2.5 142 -0, 36.66 0 < 8006 34.6 37 e 895 9. S 9 • & 2 le 277 2.54 88 -0, 3320 0 , 8.352 34 7 38 e 298 9 • 4. 9 • 3 2 1 , 505 2,5836 -0. 2972 O - 8 700 34; 7 38. 71 O 9 • 3 9 • 2 21 739 2 - 6 184 - 0.2624 O. 904 8 348 39 e 130 9, 2 9. 1 21 978 2, 6532 - 0 , 22.76 O. 9396 34.9 39 e 560 9, 1 9 • 0 22, 222 2.6 882 -0. 1927 0. 9745 349 40,000 9 • O 8 ~ 9 22.472 2.72.32 -0. 1577 l. 009.5 350 40 e 4 & 9 8 e 9 8.8 22.727 2. 7582 -0. 1226 1.0446 351 40 e 909 8 * 8 8 . Y 22,989 2. Y933 -0.08 75 1 , 0.797 351 4 1 s 379 8, 7 8 - 5 23.529 2. 86 38 -0.01 70 l. 15O2 353 4.2 s 353 8 s 5 8. & 23, 8 10 2.8991 0.01 83 l 1855 353 & 2 e 85.7 8, 4. 8 - 3 24 • O96 2.9345 0.0537 l. 2209 354, 43 e 2 73 8. 3 8 s 2 24 • 390 2.96.99 0.089 l l 256 3 355 4 3 2 902 8 - 2 8 - 1 24 • 691 3.0055 0, 1247 l. 29.19 355 44 e 44 & 8 - 1 8.0 25.000 3.04 l 1 0. 1603 1. 3275 356 45,000 8 - O IV—A-1 TABLE 1. (Continued) 200/t Temp logio P ^ Temp l/*K °K mm Hg atm psia * R L/ R 7. 9 2 5 - 3 16 3. 0.768 O. 1960 l .. 36 3.2 357 45 - 57C 7. 9 7, 8 25, 6 & 1 3 , l l 25 O - 23 l 7 l. 398 9 358 46 , 15 & 7, 8 7. Y 25, 97& 3, 14 8& O - 26 76 l ; 4 3 & 8 35 Q 4, 6 - 75.3 7 - 7 7, 6 26 - 3 16 3, 1843 0 , 30 35 l ; 4 707 359 & W - 3 & 8 7. 6 7. 5 26 . 66 7 3. 2204 0. A 39 5 1 - 506 7 360 4 8. 000 7, 5 7, & 27. 027 3. 2565 (). 3 75 7 1 - 5 & 29 36 | & 8 - 6 & 9 7. 4 7. 3 27, 397 3. 2927 0 , 4 l l 9 l , 5.79 l 36 2 4 Q - 3 15 7 - 3 7. 2 27. / 78 3. 329 l 0. & 4 83 l . 6 155 36 4 50, 000 7. 2 7. 1 28 - 169 3. 36.56 O. 48 48 l , 65.20 36 5 50 - 704 7 - 1 7. J. 28.57 l 3. 4022 O. 52 l 4 l . 6, 886 366 5 i , 429 19 6 - 9 28, 986 3. 4 390 0 , 55.82 1 - 7254 36 8 $2 . I 74 6 9 6. 8 29, 4 1 2 3, 4 759 0 , 5.95 l l , 7.62 3 36 Q 5.2 . Q & 1 6 - 8 6 - 7 29.85 l 3, 5 l 3 l O. 6 3 22 1 .. 7994 371 53 . Y. 3 1 6 - 7 6 . 6 3 O. 303 3 - 55 0 & 0 - 6 6 @ 5 1 - 8 36 7 37 3 5 & . * * 5 6 .. 6 6 - 5 3 0 , 769 3. 58 79 0 , 707 l l - 8 74 3 3 y 5 6', . , 8 º' 6 - 5 6 . 4 3 l .. 250 3.. 6 256 (). Y 4 & 8 1 , 9 l 20 37 7 56 e 25 C 6 - 4 6 - 3 3 l .. 746 3.. 66 3.6 O. 78 28 1 . 9500 380 5 7. 1 4 3 & = 3 6 , 2 3 2. 258 3, 70 l 8 0. 82 1 0 1 , 988 2 38.2 58 ... O 6 5 6 - 2 6 - 1 3 2. 787 3 - 7 & O & O - 859 & 2 - O 26 8 385 5 Q. 01 6 6 - 1 6 - 0 33 - 3 33 3 - 7792 0 , 8984 2. 06'56 388 60 . OOC 6 . () 5. Q 33. 898 3 - 8 l 8 & O. 93 76 2. 104 8 392 6 1 - 0 1 7 5 - 9 5 - 8 34 . 4 83 3 , 8.5 Y 9 Q , 977 l 2. 1 & 4 3 395 62. 069 5 - 8 5. 7 35 - 0 88 3, 89 /8 l . 0 | TO 2. l 84 2 399 6 3, 158 5. 7 5, 6 3.5 - 7 1 & 3. Q 3 8 || 1 - 05 T 3 2 - 22 & 5 4 () 3 6 & . 286 * ... 6 5 - 5 36 - 3 & 4 3 2 9 T 88 l , 0.980 2. 265 2 40 7 6 5 4 & 5 º 5 5. 4 3 7.0 3 7 & ... O 1 99 l . 1 39 l 2, 3 Q 6 3 & 1 1 66 - 66 7 & 5, 3 3 . 736 4 - 06 l 4 1 - 1806 2. 34 78 4 15 6 Y. 925 3 5. 2 38 . 462 4 - 1 0 33 l - 22 25 2. 38 97 4 l G 6 9 - 23 1 2 5. 1 39 s 216 & . 1 & 56 l , 26 & 8 2. 4 3 20 & 2 3 70 , 588 l 7ARLF . . Yaper Fre's sure ºf Liquid n-De at Integral Temperatures Temp Prº - sure Temp ^ K a tim §ºm Hg * : 1 a ^R l 8, 7.20 O. 1692 l 28 . 6 2. & 8 7 3.3 - 696 1 9. OOO Q , i. 9 1 3 1 & 5 - 4 2.8 l 1 34 - 200 2 O. OOO O - 289 l 2 19 - 7 4 - 2 & 9 36 e OOO 2 1 - 000 0 - 4 21 8 3.20. 6 6 - 1 99 37 - 8 OO 22, 000 0 e 596 5 & 53 - 3 8 - 766 39 - 600 23.000 0. 8204 6 23.5 12,057 & 1 - & 00 24. OOO 1 - 10 1 2 8 36 - 9 1 6 - 18 3 & 3 - 200 25. O00 1 - 4 & 6 3 1 O 99 - 2 21 .. 256 & 5. OOO 26 - 000 1 e 86 35 14 16 . 3 27, 386 & 6 - 8 OO 27, 000 2. 3605 1794 - O 34 - 690 48 - 600 28.000 2, 94.5 3 2238 - 4 & 3 - 284 50. 400 29. OOO 3 - 6 26 3 2756 - O 53 - 292 52 - 200 30, 000 4 - 4 l 21 3 353 - 2 6 4 - 84, 1 54 - 000 3 1. OOO 5. 31.23 40 37, 3 78 - O TO 55 - 8 OO 32. OOO 6 - 3 36 7 4, 8 l 5, 9 93 e 1 2 4 57 s 600 33. 000 7 * 4, 959 56 96 e 8 1 1 0 = 1 5 9 59 - 4 OO 3 4. Q00 8. 8009 66 88. T 129 - 3 38 6 1 - 200 3 5. OOO 1 0 , 26.32 7800. 1 15 O e 829 63.000 3 6. 000 1 1 , 89 & 2 90 39 - 6 1 74 - 79.8 64 - 800 3 7. OOO l 3. 7046 104, 15, 5 20 l = 403 66 - 600 38. Q00 1 5 e 7038 1 1934 - 9 230 e 78 3 68 - 4 OO 38. 350 16 e 4 & 95 1 250 1 e T 24, 1 - 742 69.030 Taken from Cryogenic Data Center Memorandum M l, Cryogenic Division of National Bureau of Standards, Boulder, Colorado. IV-A-2 24O |6 ��) O LLI 0, I DE C/O C/O LLI Or, Cl- 0, CD Q_ 23O —] <[ > Cr O 2 Q 1. O G –1 | 5 > I-D 0, u_j #- -D Li ] C) 22O 2 |O | 4 2OO | 3 | 90 | 8C) |2 (sºu ºudsouļo) BºnSSEMJd E. LOTOSgw «),OOD , OON-(O OO •O | 70 | 6O |50 | 4 O | 3O | 20 |OO (DISd) BºnSSE&Jd B LnTOSSV 8O 7O 60 5o 4 O 2O TEMPERATURE, *K IV-A-3 NORMAL DEUTERIUM - SATURATION DENSITY OF LIQUID Sources of Data: Clusius, K., and Bartholome, E., "Calorische und Thermische Eigenschaften des Kondensierten Schweren Wasserstoffs" (Calorimetric and Thermal Properties of Condensed Heavy Hydrogen), Z. physik. Chem. B30, 237-57 (1935). Kerr, E. C., "Molar Volumes of Liquid Deuterium and of a l to l Mixture of Tritium, Deuterium, 19.5 to 21.5°K", J. Am. Chem. Soc. Th, 824-25 (1952). Friedman, A. S., Trzeciak, M., and Johnston, H. L., "Pressure-Wolume-Temperature Relationships of Liquid Normal Deuterium", J. Am. Chem. Soc. 76, 1552-53 (1951). Comments: Clusius and Bartholome (1935) represent their experimental data by w = 22.9758 + 0.2472 ( T – 18) + 0.0137 (T - 18)*. They found the molar volume at the triple point (18.65°K) to be 23.ll, cm”. Kerr (1952) combined his experimental values with those of Clusius and Bartholome by the least squares method to obtain the equation - V. (cm"/mole) = 18.555 + 0.1291, T + 0.001:203 Tº which has a standard deviation from experimental points of 0.04%. [The deuterium was 99.6% pure, with 0.1% hydrogen as the impurity]. Friedman, et al. (1954) made P-V-T measurements with liquid normal deuterium between the triple and critical points. The isotherms were extrapolated to the saturation line to obtain the values of density listed in the tables of experimental values. Tables of Experimental Values . Clusius & Bartholome (1935) Kerr (1952) Friedman, Trzeciak, Johnston (1954) T, “K v,cm”/mole p, g/cm" T, “K v,cm”/mole p,g/cm” T, “K v,cm”/mole p, g/cm” l8.8O 23.l79 0.1737; l9.5l 23. lill . 1721 35.17 33.52 . l.2O2 l8.97 23.235 O. 17332 2l.ll. 23.889 .1687 30.52 28. l;3 .ll l8 l9.2l; 23.298 O. l'7285 22.375 2|, .281 .1660 27.2l 26.32 ..l.531 l9.6l. 23. l.27 O. l'7190 23. lil 2|, .620 .ló37 23.52 21.66 .l634 2O.O5 23.5ll O. lT107 2l. 205 21.905 ..l618 20.33 23.57 ..l710 20.07 23.535 0.l71ll 20. Hl 23.657 0.17023 20.53 23.687 O. l'700l The following table of selected values for saturation density of liquid n-deuterium have been determined graphically from the experimental data. Uncertainty for the temperature range lº” to 35°K, the range of the data, is 0.6% in molar volume. Above 35°K, large changes in volume occur for small differences in temperature and the uncertainty in volume or density becomes larger. Table of Selected Values T, “K v,cm”/mole p,g/cm” T, “K v,cm”/mole p,g/cm” l9 23.25 ..l733 29 27.38 .ll,72 2O 23.5l. ..l712 30 28. O2 .ll:38 2l 23.85 .1690 3l 28.76 .ll.0l 22 2l.l7 .1667 32 29.6l .l36l 23 21.52 ..lólil: 33 30.6l .l:317 : 21.90 .l618 3|| 3l. 75 .l.269 25. 32 ..lj9l 35 33.25 . 1212 26 25.78 .l:563 27 26.28 ..l.933 28 26.80 ..l.90l. Taken from Cryogenic Data Center Memorandum M4, Cryogenic Division of National Bureau of Standards, Boulder, Colorado IV–B–1 SPECIFIC DENSITY OF LIQUID NORMAL DEUTERIUM |5 2O 25 3O 35 4 O TEMPERATURE ("K) IV-B-2 | 2O SPECIFIC VOLUME OF LIQUID NORMAL DEUTERIUM 25 3O TEMPERATURE ("K) 35 4 O IV-B-3 EQUILIBRIUM DEUTERIUM – HEAT OF VAPORIZATION Sources of Data: Kerr, E. C., Rifkin, E. B., Johnston, H. L., and Clarke, J.T., "Condensed Gas Calorimetry. II. He at Capacity of Ortho- Deuterium between l3. l and 23.6°K, Melting and Boiling Points, Heats of Fusion and Vaporization. Vapor Pressure of Liquid Ortho-Deuterium", J. Am. Chem. Soc. 73, 282–89 (1951). White, D., Hu, J.H., and Johnston, H.L., "The Heats of Vapor- ization of Para-Hydrogen and Ortho-Deuterium from their Boiling Points to their Critical Temperature", J. Phys. Chem. 63, ll&l–83 (1959). COmments: Kerr, et al. (1951) determined the heat of vaporization for 20.4°K equilibrium deuterium (97.8% o-deuterium) with a sample containing 0.6% HD. This value of the heat of vapor- ization at the boiling point (23.59°K) is 292.3 + 1.5 cal/mole. Another determination with a sample containing l. l mole per- cent HD gave a value for heat of vaporization of the boiling point of 293.93 + 0.5 cal/mole. Corrections were made for the amount of HD in each case. - º White, et al. (1959) used deuterium containing 0.99% HD impurity which was catalyzed to 20.4 °K equilibrium (97.8% O-deuterium and 2.2% p-deuterium). A correction was made for the impurity. Uncertainties in the heat of vaporization may be as much as 5% at temperatures approaching critical due to uncertainties in density obtained by extrapolating P-V-T data of Friedman” to the saturation line . Experimental Values Kerr, et al. (1951) White, et al. (loº 9) Temp. Heat of Vaporization Tamp. Heat of Vaporization °K cal/mole joules/gm K cal/mole joules/gm 23.59 292 .. 3 3O3 .. 5 24.25 287 - 7 298 - 7 23.59 293 - 9 305 - 2 26.83 275 . T 286. 3 28 - 58 262.5 272 . 6 30 - 53 245.9 255. 3 32.48 224. l 232. 7 34 . lo l98.4 206. O 35.43 173 - 5 180 . 2 36 . 57 l50.3 156. l 37 - 52 l20.0 l24.6 * Friedman, A.S., Trzeciak, M., and Johnston, H. L., J. Am. Chem. Soc. #3, iáš’ (iššāj IW-C-1 32O HEAT of VAPORIZATION of EQUILIBRIUM DEUTERIUM O - KERR (1951) 3OO A - WHITE (1959) 28O 26O 24 O 22O 2O O | 8 O | 6O | 4 O | 20 2O 25 3O 35 4O 45 TEMPERATURE, *K IV–C–2 V. PROPERTIES OF NEON CONTENTS Vapor Pressure Density of Saturated Vapor and Liquid Compressibility Factor Specific Heat l. Saturated liquid 2. Gas Heat of Vaporization Enthalpy Thermal Conductivity l. Liquid 2. Gas Dielectric Constant l. Liquid 2. Gas Surface Tension of Liquid Viscosity l. Liquid 2. Gas Velocity of Sound l. Gas W– INDEX Source of Data: VAPOR PRESSURE LIQUID NEON R. D. McCarty Properties of Neon from 25 to 300 K Between 0. l and 200 Atmospheres", Cryogenics Division and R. B. Stewart, National Bureau of Standards Temperature Pressure °K (atm) 25 0. 50366 26 O . 70902 27 0. 97255 28 l. 3037 29 l. 7124 30 2 . 2088 31 2.803 l 32 3. 5061 33 4.3286 34 5. 28.18 35 6. 3773 36 7. 6271 37 9. O439 38 l0. 64l 39 12.432 40 l4.434 4l l6. 66l 42 l9. 133 43 21.867 44 24 . 887 44.4 26. 19 "Thermodynamic W–A–1 2O,O : 3O.O |O.O 9.O 8.O 7.O 6.O 5.O 4.O 3.O 2.O |O O.9 O.8 O.7 O.6 O.5 O4 25 3O VAPOR PRESSURE L|QUID NEON 35 4O TEMPERATURE , o K 45 V-A-2 DENSITY OF SATURATED WAPOR AND LIQUID NEON Source of Data: R. D. McCarty and R. B. Stewart, "Thermodynamic Properties of Neon from 25 to 300°K Between 0. l and 200 Atmospheres", Cryogenics Division National Bureau of Standards Saturated Saturated Vapor Liquid T O O emperature 3 4 3 °K (g/cm ) x 10 (g/cm ) 25 5 l. Ol.9 l. 24020 26 69. 708 l. 223 70 27 93. 109 l. 20640 28 121.95 l. 18850 29 157.02 l. 17000 30 l99. 23 l, l'E080 3 l 249 .58 l. l.2 100 32 309 . 26 l. ll030 33 379 . 65 l. O8880 34 462.43 l. 06640 35 559 , 61 l. 04280 36 673 - 68 l. 01800 37 807. 73 0.99.156 38 965 - 67 O . 96.319 39 ll 52.6 O . 93 235 40 1375 - 5 O - 89822 4l l645. 1 O - 85944 42 1981 .. 6 O .. 81338 43 2434.5 O .. 753 63 44 3224.0 O . 65.096 44.4 4830 . O O .48300 W–B–1 . 2O 25 DENSITY Of SATURATED LIQUID NEON 3O 35 4O TEMPERATURE, *K 45 W–B–2 Z ‘80LOW3 ALITIGISS38dWOO op o ſolo o º „epin og Kuo, duoqo:n ôuļ u seuſ du 3 oquebo 4 m o $ på 0 pu o į Sy o no º ang| Duoſ į DN _L}} / /\ d = Z NOEN HO-ſ }}O_LOV/-] /\ L | Tl||8 ISSE (HdWOO Sºuºudsouļo º 3&nSS38d | Dļsd º 3&nSSB Hod Z ‘HOLOW3 ALITIGISS38d WOO W–C–1 SPECIFIC HEAT (C6) OF SATURATED LIQUID NEON Source of Data: Gladun, C. "The Specific Heat at Constant Volume of Liquid Neon", Cryogenics, Vol.6, 27–30 (1966) Temperature C. °K joules/g °K 25 1.80 26 l. 82 27 l. 85 28 l. 88 - 29 1.92 i 30 l. 96 3 l 2.0l 32 2.06 33 2. 12 34 2. l.9 35 2. 27 36 2.36 37 2.47 38 2.58 39 2.77 40 2 . 97 4l 3. 27 42 - 3. 77 43 4.96 V-D-1. 1 i 25 SPECIFIC HEAT (co-) Of SATURATED L|QUID NEON 3O 35 4O TEMPERATURE, * K V–D–1.2 45 5O SPECIFIC HEAT of GASEOUS NEON Source of Data : Keesom, W. H. and van Lammeren, J. A. , Physica l, llól-70 (1934). Comments: Holborn, L. and Otto, J., Z. Physik 33, 1-12 (1925) give a value of Cp /Cv at 0°C and l atm of 1.66. Michels, A. and Gibson, R. O., Ann. Physik (*), 87, 850-76 (1928) give a value of Cp /cy at 0°C and Tatm of l.65. Ramsay, W., Proc. Roy. Soc. (London) 86, lOO (**) gives a value of Cp /cy at 19°C and Tatm of l. 614. Table of Selected Values C C Temp. Pressure P V C °K tm gal cal cal cal -:- * |g-male "K | ET"K |gºalsTºk | ET"K V 26.25 | O.6 5.36 O.266 3.07 o.152 l.7ll; 26.25 O.l. 5.22 0.259 3. Oli O. ljl l.T17 26.25 O. 2 5.08 0.252 3.00 0.149 l.692 26.25 0.0 l;.95 O.2l,8 2.97 O.ll,7 l.669 27.8O l.O 5.55 O.275 3.ll. O.156 l.TTl 27.80 O.8 5.l:3 0.269 3.ll 0.15l. 1.718 27.80 0.6 5.31 0.263 3.07 O. l;2 l.T26 27.80 O. l; 5.19 O.257 3. Oli O. ljl l.TO6 27.8O O. 2 5.07 0.25l. 3. Ol 0.149 l.687 27.80 O.O l.95 O.2k5 2.97 0.117 1.669 62.5l. O.978); 5. Ol O.2l;8 2.99 O. ll:8 l.677 7l.ll O.8152 l;.99 || 0.2i;7 2.98 O. ll:8 1.673 90.21; O.9581 l.97 0.216 2.97 O.ll,7 1.671, 17O.O O.9822 l!.96 0.2116 2.97 O.lk/ l.67O 273.1 O.8797 l.96 0.2116 2.98 O. ll:8 l. 668 Taken from WADD TECH. REPORT 60-56 V–D–2. 1 : 5C) 150 T E M PERATURE •K SPECIFIC Of Of 2OO HEAT GAS EOUS NEON On 2 at mosphere 25O : SOurce of Data: HEAT OF WAPORIZATION OF NEON R. D. McCarty and R. B. Stewart, "Thermodynamic Properties of Neon from 25 to 300°K Between 0. l and 200 Atmospheres", Cryogenics Division National Bureau of Standards Temperature °K joules/ g 25 88 . 67 26 87. 52 27 86. 23 28 84.80 29 83. 23 30 8l. 51 31 79.62 32 77.55 33 75 - 31 34 72.86 35 70 - 20 36 67.3 l 37 64. lº 38 60 . 69 39 56.90 40 - 52. 69 4l - 47.91 42 42.23 43 34.8l 44 22. 12 44.4 O W–E–1 i 25 HEAT of VAPORIZATION Of NEON 3O 35 4 O TEMPERATURE 2K 45 50 NEON Properties of Saturated Liquid and Vapor" Temp Pressure Volume (cm/g) Enthalpy (J/g) Entropy (j/g “K) Temp Pressure | Volume (cm”/g) Enthalpy (J/g) Entropy (j/g °K.) K atm Sat Sat Sat Sat Sat Sat K atm Sat Sat Sat Sat Sat Sat Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid || Vapor Liquid Vapor 2|, .5ll,” . l.273 | .8016 227.9 .03 89.20 O 3.633 35 6.377 .9590 17.87 22.7l, 92.9l, .7l,8 2.75l, 25 . 5037 .8063 196.0 .90 89.57 .035 3.582 36 7.627 .9823 ll. 81, 25.19 92.50 .8ll, 2.683 26 . 7090 | .8172 ll;3.5 2.83 90.35 ..ll.0 3. l. T6 37 9. Oll, l.009 l2.38 27.7O 91.85 .878 2.612 27 b .9726 .8289 lo'7. l; l; .83 91.06 . 18, 3.378 38 lo.6l. l.038 lo. 36 30.28 90.97 .9l 3 2.5l.O 27.092 l. OOO .83OO lol. 7 5.02 9l. l.2 ..l.9l 3.369 39 l2.h3 l.073 8.676 || 32.93 89.83 l.OO7 2. l;66 28 l. 30l. .8hll, 82. OO 6.89 91.69 .258 3.287 l;0 ll.l. 3 l.ll3 7.27O || 35.69 88.38 l. O71 2.388 29 l. Til2 .85l,7 63.69 9. OO 92.23 .331 3.201 lil l6.66 l.l6l. 6. OT3 38.67 86.58 l. lg8 2. 307 3O 2. 209 .8690 50. 19 |ll. 16 92.67 .l,03 3. l.20 l;2 l9. l3 l. 229 5. Ol;6 l;2. O5 8l. 28 l.212 2.218 3l 2.803 .8812 l, O.O7 || 13.38 93.00 . l; 7l, 3.01.2 l, 3 21.87 l. 327 l; .108 || ||6.32 8l. 13 l. 30l. 2. lll: 32 3. 506 .9007 32.3L | 15.65 93.20 .5ll, 2.968 lil; 2.89 l. 536 3. lo2 || 53.39 75.5l l. l;57 l.960 33 l; .329 .9l8l. 26.3|| || 17.96 93.27 .6l3 2.895 lil; ..l.” 26.19 2. O70 2. O7O 31, 5.282 .9377 21.62 | 20.33 93.19 .681 2.82, * From Published, data, Advances in Thermophysical Properties at Extreme Temperatures and Pressures, American Society of Mechanical Engineers, New York (1965) pp 81-97. * Triple point. Normal boiling point. Critical point. Properties of Liquid and Vapor" Temp = O. l atm P = 1 atºm P = 2 atm P = 5 a.fm’ P = ln atm °K (Sat temp = 27.09°K) (Sat temp = 29.60°K) (Sat, temp = 33.72°K) (Sat temp = 37.61°K) T v h B V h s V h S v h S v h S cm”/g j/g j/g°K cm”/g j/g j/g°K emº/g J/g j/g°K cm”/g j/g j/g°K cm”/g j/g j/g°K (Sat Liq) .8300 5.0 .191 .8632 LO .3 .375 .932]. l9.7 .662 l.O26 29.3 .9l8 (Sat Vapor lol, .7 9.l.l 3.369 55.09 92.5 3. l;2 22.84 93.2 2.8ll, ll. O9 91.3 2.568 25 1Oll 90.1 l; .259 .8061 .9 .03! .8056 l. O -1933– .8Ol;2 l.l . O30 .8Ol.9 l. H .025 30 1216 95.2 | H. l. l;" | ll'7.3 9l; .2 3. HT3 56.05 93.0 3.167 .8669 ll .3 . 399 .8633 I ll.5 .39]. l,O 1621, los. 6 l; .7ll, 159.6 lCl.9 3.781, 78.27 10l.O 3. l;86 29.31, lol. 3 3.061, l2.77 95.7 2.68l. 50 2O3]. ll 5.9 l; .97 l; 201. 3 llS. l; li. Olg 99.6l ll. 8 3.725 38.6l ll2.9 3.321, l8.26 109.7 2.991, 60 2l;39 126.2 5. 162 2h 2.6 l25.8 l; .209 120.6 l25.3 3.918 l;7.39 l21.0 3.525 23. Ol 121.7 3.213 8O 3253 ll;6.8 5. l. 59 || 32|, .. 7 ll;6.6 l; .508 l62.0 ll;6.3 l; .219 6l. 39 ll. 5. l. 3. 831, 31.88 llil.0 3.535 90 3660 157. l. 5. 580 365.6 156.9 l, .630 l82.5 lj6.7 l; .31.2 72.75 156.0 3.958 36.17 15l.9 3.663 lCO l,067 l67. l; 5.689 || HO6. l. l67. 3 l; .739 203. l l67.l H. H.5l 81.06 l66.5 l, . O69 l, O. lil 165.6 3.776 llO lil, T 3 177.7 5.787 ll:7.2 177.6 li. 837 223.5 l77. l. l; .550 89.33 177.0 li. 169 lil, .6l lT6.2 3.877 l2O l,880 l88. O 5.876 || ||88. O l87. 9 l.927 2. li. O l87.8 l; .6l;0 97.58 l87. l; l; .260 l,8.79 186.8 3.969 ll.0 569, 2O8.6 6. O35 | 569.5 2O8.6 5.086 281.8 208.5 || |, .800 ll.0 208.2 li. H2O 55.09 207.8 H. l?l l60 6507 229. 2 6.173 || 65|l.O 229. 2 5.22h 325.6 229. l l; .938 130. l; 229.0 l, .558 65.35 228.7 ! .270 l8O T32]. 2k9.9 6.291, 732. l; 21,9.8 5.31, 5 366. , 21,9.8 5.059 ll, 6.8 21,9.7 l; .680 73.58 Øl;9.5 l, .393 2OO 813 l; 270.5 6.l.02 || 813.8 270. l; 5. 1,51, l,07. l 27O. l; 5.168 l63.l 270.3 l, .789 8l. 79 : "YO.2 h. 502 22O 89, 3 291. 1 6.5Ol | 895.3 291.0 5. 552 l, l, T.8 291. O 5.266 179.5 29.l.. O l, .888 89.98 291.0 l, .60l 2l O 97.0l 3.11.7 6.590 976. T 3ll. 7 5.6l. 2 l,88.6 3 ll. T 5.356 l25.8 3ll. 7 l, .978 98.15 3.11.7 | .691 260 loş75 332.3 6.673 |1058 332.3 5. 721, 529.3 332.3 5.h38 || 212. l 332.3 5. O60 106.3 33%'. l; i. ſ.ſ.l., 28O ll 388 352.9 6.7 lig |ll39 352.9 5.8OO 570.O 352.9 5.515 228. H. 353.0 5.137 lll .. 5 373. O h .850 3OO l22Ol 373.5 6.82O | 1221 373.5 5.87l 610. 7 373.5 5.586 ſºll, .7 373.6 5.208 22.7 373.7 'i. 922 Temp P = 20 atm P = l;0 atm P = 60 atm P = 80 atm = 100 atm °K (Sat temp = u2.33°K) (Sat Liq) l.25 7 || || 3.3 1.2110 (Sat Vapor) l, . 732 83. l; 2. l86 25 .7975 2. O . Oll, 30 .8568 ll.9 . 377 .8l 50 l2.9 . 350 .83/18 l3.8 . 325 .8258 ll; .8 . 302 8.177 lº.8 . 280 liO l.089 35.2 1. Ol;2. l. O32 3, . H. .97O .9966 31, l; .9l8 .97)5 3]; .7 .875 .9l89 35.2 .839 50 8.060 | 102.5 2.607 2.602 79.8 l.959 l. 50l. 63.0 l. 5,8 l.238 58.3 l. 39ö l. 19, 56.5 |l.3Ll 60 lo.87 ll?.O || 2.873 l; .856 lO7. l; 2. l;70 2.872 96.6 2. ló5 2.057 88.0 l.940 l.697 82.8 |l. 791 8O 15.66 lil. H 3.22h 7.623 l36.l. 2.89.l l; .987 l3l.9 2.679 3.693 l27.6 2.518 2.915 l23.7 2.3% 90 17.9l l;2.7 3.358 8.833 ll,8.8 3.037 5.847 1H 5.3 2.837 l, .375 l!2.l 2.639 3.509 139.2 |2.568 lOO 20. ll l63.8 3. l. Tº 9.997 l60.7 3.162 6.660 lj7.9 2.970 5. Olo l35.3 2.828 l, .033 153.l 2.715 l].O 22.27 l?lk.8 3.579 ll. 13 lT2.2 3.271 7. Lill, 169.9 3.081, 5.616 167.8 2.947 l, .530 166.l 2.838 l2O 21, , lil 185. 6 3.673 12.21, l83. l; 3.369 8,208 181.5 3.186 6.2Ol, 179.9 3.052 5. Olc lT 3.l, 2.91.6 ll;0 28.6l. 206.9 3.838 ll. l;2 2O5.5 3.539 9.696 2Ol; .2 3.360 7.3/12 2O3. l 3.23.l 5.936 2O2.l 3. l 29 l60 32.82 228.l 3.979 16.56 Ø27. l. 3.68, ll. 15 226.3 3.508 8. I, 50 ^25.6 3. 381 6.832 323.0 |3. 281 l8O 36.98 || 2H9.l li.lo3 || 18.68 2,8.5 3.800 12.58 Øl,8. O 3.636 9.537 2,7.6 3.5ll 7.7ll l; 7.3 3.}l3 2OO lil. 12 || 270.0 || || .213 | 20.78 269.7 3. 922 ll.00 269.5 3. 7, 9 l(). 61 *99. 3 3.625 8.577 60.2 3.528 22O l;5. 21. 290.9 l, .313 22.86 290.8 l, .022 15. HO 290.8 3.850 ll. 6” 29O. 8 3.727 9. 1, 31. 290.9 3.631 21:0 l; 9. 35 311. 7 li. HO3 2l; .9l; 3ll.8 H. lll: 16.80 3ll.9 3.943 2.73 312. l 3.82O 10. 28. 312. 3 3. T 25 26O 53. l;6 332.5 l, . , 86 27. Ol 332.7 li.l.97 l8.19 333.0 l, .027 l3. T8 333.3 3.905 ll. l 3 333.7 3.81C 28O 57.56 353.2 l, .563 29.08 353. 6 l; .275 19.58 35l... O H.loš ll. 82 35l. 5 3.983 ll.97 35l. 9 || 3.889 3OO 6l. 65 37l.O l, .635 3l.ll. 371,. 5 l; .317 20.96 375. O H.l77 15.87 375.5 l, . O56 l2.8l 376. 1 || 3.962 * From published data, Advances in Thermophysical Properties at Extreme Temperatures and Pressures, American Society of Mechanical Engineers, New York (1965) pp 81-97. - Bold horizontal line indicates phase change (liquid above, vapor below the line). Conversions for Units, to Equivalent in British System of Units: To convert temperature in degrees Kelvin (“K) to degress Rankine (“R), multiply (“K) by l.8 To convert pressure in atmospheres (atm) to (psia), multiply (atm) by ll. 696 To convert volume (v) in cubic centimeters per gram (cm”/g) to (cu ft/lb), multiply (cm/g) by .016018 To convert enthalpy (h) in joules per gram (J/g) to (Btu/lb), multiply (J/g) by . l.2993 To convert entropy (s) in joules per gram “K (j/g°K) to (Btu/lb “R), multiply (j/g°K) by .23885 [B-62362 W–F–1 3OO 29O 28O 27O 26O 25O 24O 23O 22O 2 O 2OO × • | 9 O | 8 O | 70 i | 6 O | 50 | 4 O | 3O | |O | OO 90 TURE –ENTROPY FOR NEON PRESSURE , (P) O ! m. DENSITY, (p) g/cm3 ENTHALPY, (H) Joules /g Notional Bur edu of Sfondor ds Cryogenic Engineering Laboratory Boulder, Colorado 2.O 3.O 4.O ENT ROPY, Joules/g ° K H #230 Joules /g 22O 5.O 6,O 7.O H.printed frºg, "Therºdynamic Propertiea or Neod from 25 ° tº: 3.x *k between 0.1 and 200 at tº aphores, by R. L. McCarty and 3. B. Stewart. Paper premented at the Third Symposium or. There.physical Prºperti ee, Purdue University, March 32-2t, 1965, Lafayette, Indiana. Published in Aazaaces ºn Thºreºphysical fºrgºerties at Extreme Tetºperatures, Serge Gratch, editor; put: 1shed by Azer: can S3:1°ty of Mechanical Engineers, New York, N. Y. 1965). W–F–2 TEMPERATURE-ENTROPY CHART FOR NEON PRESSURE , (P) O 1 m. DENSITY, (p) g/cm3 ENTHALPY , (H) Joules /g Notion q | Bur equ of St on dor ds Cryogenic Engineering Laboratory Boulder, Colorado H = 65 Joules /g H= 105 Joules /g |O 2O 3O 4.O 50 5.6 ENT ROPY, Joules/g ° K , Serge Gråtº h, k, R. Y. #. USCCºd - MBS-BL W–F–3 THERMAL CONDUCTIVITY OF LIQUID NEON Source of Data: Lochtermann, E., "Thermal Conductivity of Liquid Neon", Cryogenics 3, 44–45 (1963) Temperature K °K 107° W/cm *k 25 l. 17 26 1.15 27 l. 13 27. 5 l. 125 28 l. 13 28 - 5 l, ll 29 l. 07 30 0.91 Table constructed from data taken from smoothed curve in source. W–G–1.1 |.2O |..] 5 |, |O |.O5 i.OO O.95 O.90 25 26 HERMAL CONDUCTIVITY of LIQUID NEON 27 30 29 TEMPERATURE, *K W–G–1. 2 (at One Atmosphere) urces of Data 3 Amdur, I., J. Chem. Phys. 16, 190-l. (1918) - Kannuluik, W. G. and Carman, E. H., Proc. Phys. Soc. (London) 65B, 701-9 (1952) Srivastava, B. M. and Saxena, S. C., Proc. Phys. Soc. (London) TOB 369-78 (1957) Thomas, L. B. and Golike, R. C., J. Chem. Phys. 22, 300-5 (195k) Weber, S., Ann. Physik. 5k, 325, 137, h91 (1917) Weber, S., Proc. Roy. Acad. Sci. Amsterdam 21, 342 (1919( Weber, S., Verslag Akad. Wetenschappen Amsterdam 26, 1338-53 (1918) mments : Conversions from 0°C to “K in the table below are based on a value of the ice point of 273.09°K used by the Leiden Laboratory in 1917 and 1918. The disagreement with the currently accepted value, 273.15°K is of no consequence because of the small temperature dependence of thermal conductivity and the relative uncertainty of the conductivity measurements. Taken from WADD TECH. REPORT 60-56 * Presented as KT/Ko where Ko = ll. Oli cal/cm-sec -*K at 0°C Temperature Thermal Cond. Temperature Thermal Cond. °C °K cal/cm-sec -*K °K cal/cm-sec -“K -213.09 6O +3.79 x 10-5 173.09 | * 8.13 x 10-5 –2O3.09 70 %l. 17 ! { 18O + 7.32 1ſ -l93.09 8O %l. 53 ! ? 194.59 8.76 ! -lö3 .09 90 %| ,86 | | 1911.59 + 8.85 | 1 -lô3.09 90 H.93 H! 198.72 8.79 | | -182.97 90 - 12 l; .89 | 1 2OO 8.82 ! { -l92.97 90. 12 %5.OO ! I 2OO 7.78 | | –28l. 13 91.66 H.99 | ? 223.09 | * 9.67 ! ! -181. H. 91.69 *l.99 ! I 273.09 | *ll.Ol; | | -173.09 l_OO %5.19 ti 273.09 10.87 * ! -l93.09 l2O %5.78 1 : 273.09 ll. 10 ! ! -150 l23.09 6.31 ! { 273.09 : *ll. 13 ! } -l93.09 ll. O *6.33 ! ! | 3O8.7 Fºll.99 ! { —ll3.09 160 +6.8l. 11 310 #12. Oló | 1 * Calculated Values #: Interpolated Values * + .20% W–G–2. 1 O.50 | i O.45 O4 O O.35 O.30 O.25 O.2O O. : 5 THERMAL CONDUCTIVITY of GASEOUS NEON of one of mosphere | OO | 50 2OO TEMPERATURE, *K 25O 3OO W–G–2. 2 HERMAL CONDUCTIVITY of GASEOUS NEON (at 271.79°K and 373.09°K) Sources of Data ; Kannuluik, W. G. and Carman, E. H., Proc. Phys. Soc. (London) 65B, 701-9 (1952) Kannuluik, W. G. and Martin, L. H., Proc. Roy. Soc. (London) Allº!, l;96-513 (1934) cº-º-º: Weber, S., Ann. Physik. 82, h79-503 (1927) Comments: Values of the thermal conductivity at 273.09°K and l atmosphere are 10.9l x 10-2 g-cal/cm Bec “K [Bannawitz, E., Ann. Physik. H8, 577-92 (1915)], 10.92 x 10-2 g-cal/cm sec “K [Curie, M. and Lepape, M., Compt. rend. 193, 842-3 (1931) 1, 11.10 x 1072 g-cal/cm, sec “K [Kannuluik, W. G. and Cºgn; E. G., Proc. Phys. Boc. (London) 65B, 701-9 (1952)], ll.12 x 1072 g-cal/cm sec “K [Kannuluik, W. G. and T Martin, L. H., Proc. Roy. Soc. (London) Allili, h96-513 (1934) 1, and 10.87 x 10” g-cal/cm sec “K [Weber, S., Verslag Akad. Wetenschappen Amsterdam 26, 1338-53 (1918)]. A value of 11.0 x 10° g-cal/cm sec “K given by Weber is considered to be the best value at 273.09°K and l atmosphere. Table of Selected Walues T = 27/1.79°K T = 373.09°K+ Press. Thermal Cond, Press. Thermal Cond. cm/Hg cal/cm-sec-°K cm/Hg cal/cm-sec-‘K 67.0 ll. 28 x 10-5 75.07 l3.58 x 10-5 67.0 ll. 28 !! 66.13 l3.59 ſt 55.6 ll. 29 ſt 57, l;2 l3.59 !! 12. It ll. 29 " 50.15 l3.57 " 30.6 ll. 30 71 ll.89 13.17 ºt 19.l. ll. 30 1t 33.82 13.56 77 19. H. **ll. 31 f 25.56 13.58 11 17.10 l3.60 77 * mean gas temperature = 371.l.9°K ** mean gas temperature = 27/1.19%K Taken from WADD TECH. REPORT 60-56 W–G–2.3 Source DIELECTRIC CONSTANT LIQUID NEON of Data: Bewilogua, I., et al., "Measurements on Liquid Neon", Cryogenics, Vol. 6, (1966) —tº rising O T fal T (‘’K) € T (‘K) € 26. 50 l. 1897 28.87 l. 1828 26 - 75 l. 1889 28. 61 l. 1836 27.00 l. 1883 28 . 37 l. l843 27. 25 l. 1876 28. 10 l. 1850 27. 50 l. 1868 27 - 86 l. 1858 27. 75 l. 1861 27. 62 l. 1865 28 . OO l, l854 27 - 38 l. 1872 28 - 25 l. 1846 27. ll l. l880 28 - 5 O l. 1839 26.86 l. 1887 28. 75 l. 183 l 26.62 l. 1893 29.00 l. 1824 26 - 38 l. 1900 26. ll l. 1907 21–24 W–H-1. 1 DIELECTRIC CONSTANT OF LIQUID NEON | 1-195 1.190 1.185 o Run 1 O e Run 2 Q O O e Run 3 e Run 5 O e Run 6 - O 1-18O 25 26 27 28 29 T (°K) Dielectric constant of liquid neon (24.5–29.8° K) | 1180 117O N toll—A 1.15O * 1140 1.130 He o Run 2 • Run 4 e Run 5 º 1.12O 3O 35 4 O 45° T (°K) Dielectric constant of liquid neon (29.8–44.2° K) V—H-1. 2 DIELECTRIC CONSTANT OF GASEOUS NEON Sources of Data: Bryan, A. B. (1929), The Dielectric Constants of Argon and Neon. , Phys. Rev. 3, 615-17; C.A. 24, l259 (1930). Watson, H. E., Rao, G. G., and Ramaswamy, K. L. (1931), The Dielectric Coefficients of Gases. Part I. The Rare Gases and Hydrogen., Proc. Roy. Soc. (London) l;2A, 569-85; C.A. 25, 5320 (1931). tº º- Cuthbertson, C., and Cuthbertson, M. (1932), The Refraction and Dispersion of Neon and Helium., Proc. Roy. Soc. (London) l;5A, 40; C.A. 26, 2093 (1932). Hector, L. G., and Woernley, D. L. (1916), The Dielectric Constants of Eight Gases. , Phys. Rev. 69, lol-5; C.A. 10, 2366 (1946). Jelatis, J. G. (1948), Measurements of Dielectric Constant and Dipole Moment of Gases by the Beat-Frequency Method. , J. Appl. Phys. 19, 19-25; C.A. l.2, 6593 (1918). Comments: Using the heterodyne-beat method, Bryan found the value of the dielectric constant for neon at one atmosphere and 0°C to be l.000ll;8 after calibrating his instrument with air assuming its dielectric constant to be 1.000589. Using the same general method, Watson et al. reported values of l.OOOl31, and 1.0001316 for O’C and l atmosphere, determined from measurements at 25 and -l91°C respectively. They also report values for 25°C of l.000l.229 determined from measurements at 25°C and l.000l.233 determined from measurements at -191°C. Cuthbertson and Cuthbertson report an index of refraction which through the Cauchy relation is equivalent to a dielectric constant of l.000133 at 0°C and l atmosphere. Hector and Woernley made a study of dielectric constants primarily to determine whether there was a marked difference between values obtained by static techniques and by high frequency techniques. They observed no such difference. Measurements of the dielectric constant of neon yielded the value of l.00012.7l f 0.000005 at 0°C and l atmosphere. Jelatis concluded that the wide discrepancies in the data of previous observers are due in part, at least, to the neglect of certain stray components in the circuits involved. He gives values of l.0001337 and l.000131 l resulting from six and five determinations respectively at STP (Probably 0°C and l atmosphere). Reprinted from NBS Report 8.252 W–H–2 SURFACE TENSION of SATURATED LIQUID NEON Sources of Data: Guggenheim, E. A. , J. Chem. Phys. 13, 253-6l (1915) Wan Urk, A. T., Keesom, W. H. and Nijhoff, G. P. , Proc. Acad. Sci. Amsterdam 35, 182-1 (1926) Table of Selected Values Temperature Surface Tension °K (ſ), dyne/cm 2l, 5.90% 21.8 5.6l3: 25 5.50++ 25.7 5.33% 26 5.15% 26.6 l.99% 27 lº.8O ++ 27.l. lº.69% 28 lº. l. Bººk 28.3 lº. lºl, * * Experimental values ** Smoothed values Taken from WADD TECH. REPORT 60-56 W-I-1 62 Xa º 38 n.lv 83d W31 Uſ) 2 `NŲ `№, `Q. (<ų > / - |W - — 3 7. 2 Yºº / MELTING RANGE 1670- 173O KT y IO-5 | | | | | || | | | | | | | | | | | | | | | | | | | | | | | | | _1_ |O - 1 2 3 5 7 | 2 3 5 7 |O 2 3 5 7 |O-2 2 3 5 7 IO-3 2 3 5 TEMPERATURE, k THE RMAL CONDUCT | V | T Y OF STA|N LESS STEEL 3O4A : Temperature, F - 450 - 400 – 30O – 200 -|OO 32 | | | | |OO 2. _T O. | |O |OO 3OO Temperature, K THERMAL conDucTIVITY VERSUs TEMPERATURE FORTYPE 316 STAINLEss stEEL VII-Q–6 7O 60 --~~~~ 2T \conotion UNKNOWN 21 [317] 5O 21 `condition UNKNown [1092] 4 O 3O |- - - - - - 2O H-—--- - |O }- - - - -- - - - - - - ~~~~~~<----------- ===-- - - - - -— * ~ **-* **-** -------- *- - , – -- a----------- ~~ º -zoo -200 -ico o |OO 2CO 3OO 4CO 5CO . TEMPERATURE, *F THERMAL CONDUCTIVITY OF 7O / 3O BRASS VII-R-l THERMAL CONDUCTIVITY, BTU/hr ft.*R XI o ‘Bºn Lv 83dW31 OOº.OOZOO! O8O9O ț> .O2O]89tz 9 O ' 8 O ' | OO ^ SÅ OTT V/ S T O AJ NJE-J 2 °-; O Å L | /\|_LO T O NO OTvw!!3HL 2OOO 9OO 8OO’ | O’ 3ųou2nO“ JOº/), Q !2O ÇO’ ț7 O’ 9Oſ 9 O’ 8Oº OO (O uſ) ºf NO Dº/, l 'O QT1|VN | EV/SQ O2 O 2 O | B\/S O2 O £7 O9 — co Go to ºt to OO9 OO tºOOÇOO。2 O9||OZ | OO |O8O9Oţ»O9,O2 8 | 9 | tw | 2 |O|| 6 8 8 •“ 38 n.Lv 8.3d WBL 2OO’ țz OO’ 9 OO.’ We us/LLVM'All AllOſhCNOO TVW83HL VII-S-1 VIII. SPECIFIC HEAT OF SOME SOLIDS CONTENTS Aluminum Copper Indium Iron (a) , (Y) Tan talum Activated Charcoal ICe Polyethylene Teflon Rubber, Buna-s, Kel-F Rubber, Natural Quart Z Vitreous Silica (Silica Glass, Quartz Glass) Arald ite, Epoxies Niobium, Niobium-Titanium, Titanium Carbon Stainless Steel Beryllium T in Lead Additional Reference to Entire Chapter: NBS Monograph 21. VIII–INDEX SPECIFIC HEAT, ENTHALPY of ALUMINUM Sources of Data: Giauque, W. F. and Meads, P. F., J. Am. Chem. Soc. 63, 1897-1901 (1911) Maier, C. G. and Anderson, C. T., J. Chem. Phys. 2,513-27 (1934) Phillips, N. E., Low Temperature Physics and Chemistry, Univ. Wisconsin Press (1958) Other References: Behn, U., Ann. Physik Beiblatter 25, 178 (1901) Goodman, B. B., Compt. rend. 2d., 2899 (1957) Griffiths, E. G. and Griffiths, E., Phil. Trans. Roy. Soc. London A90, 557 (1915 . Kok, J. A. and Keesom, W. H., Physical, 835 (1937) Koref, F., Ann. Physik (li) 36, h9 (1911) - Nernst, W., Ann. Physik (li) 26, 395 (1911) Nernst, W. and Lindemann, F.A., Z. Elektrochem. 17, 817 (1911) Nernst, W. and Schwers, F., Sitzber. kgl. preuss. Akad. Wiss. 355 (1911) Richards, T. W. and Jackson, F. G., Z. physik. Chem. 70, lill (1910) Schmitz, H. E., Proc. Roy. Soc. (London) 72, 177 (1903) Tilden, W. A., Proc. Roy. Soc. (London) Tl, 220 (1903) Table of Selected Values Temp. Cp H Temp. °p H °K J/gm-°K J/gm °K J/gm-‘K J/gm l O.OOO LO+ 6O 0.211. 3.6l, l .OOO O5l || O.OOO O25 70 .287 6.15 2 .OOO 108 .000 loš 8O .357 9.37 3 OOO 176 .OOO 216 90 . l.22 l3.25 l, .OOO 26l .000 l;63 lOO . 1,81 lT. 76 6 .OOO 50 .OOl 21 l2O .58O 28. l; 8 .OOO 88 .002 6 ll.0 .65l. l,0.7 LO .OOl l; .001, 9 l6O . 713 5l. l; l; .OOl; O .Ol& l8O . 760 69.2 2O .OO8 9 .Ol;8 2OO .797 81.8 25 . Ol'7 5 ..ll2 22O .826 1Ol.O 30 .031 5 .232 210 .8l. 9 ll 7.8 35 .O.5l 5 . l.26 26O .869 l35.0 l;0 .O77 5 .755 28O . 886 152.5 5O ..ll;2 l.85 300 .902 l7O. l. * Superconducting Reprinted from WADD TECH. REPORT 60-56 VIII—A-1 º ; . : O8 O 6 O4 O3 O2H O8 O6 HTT TEMPERATURE, *K SPECIFIC HEAT * of ALUM | NUM - (I• - loo K ) - — / —- / / ºs- / *- 7 – / * / — / *- / *- Z * Z 2 3 4 | O VIII—A-2 TEMPERATURE, *R 2O 4O 6O 8 O |OO 2OO 4OO i O.6 O.4 O.2 O. .O6 .O4 . O2 .O | . OO6 . OO4 .OO2 .OO | SPECIFIC HEAT OF A LUM | NUM (IO 9 - 3OO°K) 2O 3O 4 O 6O TEMPERATURE, *K 8 O |OO 2 OO O.2 O. | .O6 .O 4 .O2 .OI .OO6 .OO4 OO2 .OO | .OOO 6 . OOO 4 3OO TEMPERATURE, *R 4 |O 8 6 CD Of ENTHALPY ALUM | NUM (a_OI (, OI ^ q ÁId ! ! ! nu) q ! / n La “Aanw H1N 3 (NJ•-8<ſ C CN= OOO Á q ÁId !! 1 nu) u 6 / sa i noſ “A d n w H I N 3 .O6 .O2 | O TEMPERATURE, *k VIII—A-4 ENTHALPY, BTU/lb OOº. o O | OOI OO2 O O ſº OO | O O 2 XI o ‘38 n.lv (J3d W31 O8 O9O ty OO!O8 Ho ‘3&n.Lv 83d W3L O9 OºO2O | | O’ |’O rn 2 -| ·r· ]]> r- -u | * (5° C= 5 �� ~, © o | B ( X • OOº - o Ol ) WQ N | Wºn TV7 -JO A dT\/H1N E OOI O ºO2 VIII—A-5 SPECIFIC HEAT OF COPPER T *K cº, cal g’k T CK cº, cal gº' K' 0. 1 2. 70 x 1077 300 9. 23 x 10~ * 0.2 5.30 400 9. 46 0.3 7. 95 500 9. "1 0.4 1. 05 x 10 ° - 600 9.95 0. 5 1. 32 700 1.02 x 10 | 0. 6 1. 59 800 1. 04 0.7 1. 88 900 1. 07 0.8 2. 15 1000 1. 09 O. 9 2.46 1100 l, ll l 2.75 1200 1. 14 2 6. 59 1300 l. 16 3 1.26 x 10 ° (s) 1356 1. 18t 4 2. 17 (1) 1356 (1.18) 5 3. 45 1400 (1.18) 6 5.45 1500 (1.18) 7 8. 00 - 1600 (1.18) 8 1. 14 x 10 * 1700 ( 1.18) 9 1. 56 1800 (1.18) 10 2. 05 1900 (1.18) 15 6. 63 2000 (1.18) 20 1.76 x 1073 2 100 (1.18) 30 6. 53 2200 (1.18) 40 1.42 x 10 ” 2300 (1.18) 50 2. 36 2400 (1.18) 60 3.45 2500 (1.18) 70 4. 10 2600 (1.18) 80 4. 35 2700 (1.18) 90 5. 50 2800 (1.18) 100 6. 06 2900 (l. 18) 200 8. 55 3000 (1.18) Investigators: Avramescu, A. (34) [373-1273K); Bell, I. P. (35) [288-701K); Booker, J., et al (36) ( 727-1210K) ; Butler, C. P., and Inn, E. C. Y. (37) [337–946K) ; Dockerty, S. M. (38) [201-38983 ; Dockerty, S. M. (39) [28–194K); Eder, F.X. (40) [30–300K) ; Esterman, I., et al (41) [2.2–3. 6K) ; Eucken, A., and Werth, H. (42) [94-219K); Fieldhouse, I. B., et al (43) [811-1311K); Fieldhouse, I. B., et al (44) [1366–1922K] ; Giauque, W. F., and Meads, P. F. (45) [15–300K) ; Howse, P. T., et al (46) (366–544K); Jaeger, F. M., et al (47) [573–1173K); ºsm-ºsmºs "Estimated (5) VIII-B-1 SPECIFIC HEAT, ENTHALPY of COPPER (l” to 10°K) Sources of Data: Corak, W. S., Garfunkel, M. P., Satterthwaite, C. B. and Wexler, A., Phys. Rev. 98, lê99–1707 (1955) Rayne, J. A., Australian J. Phys. 9, 189-97 (1956) Other References: r Esternann, I., Friedberg, S. A., and Goldman, J. E., Phys. Rev. § 532 (1953; Kok, J. A. and Keeson, W. H., Physica 3, 1035-15 (1936) Phillips, N. E. , ,Low_Temperature Physics and Chemistry, Univ. Wisconsin Press (1958) pp. Ilu-7 Corºnents: For the temperature range 0° to 10°K, the specific heat follows the equation: 3 - : -6 T z _o ºp 10.8 x lo T + 30.6 [sº] j/gm K Table of Selected Values Temp. Cp H. * *K J/gm-"K J/gn O.OOO Ol2 O.OOO OO6 2 .OOO O28 .OOO O25 3 .000 053 .OOO O6); l, .OOO O91 .OOO l3 6 .OOO 23 .OOO lil; 8 .OOO l;7 .OOl l2 lC) .OOO 86 .002 l; T * B = !. Cp dT Reprinted from WADD TECH. REPORT 60-56 VIII-B-2 Temperature , F –459 - 455 - 450 | - | | ſ M– / / : " 2% i 24,/ | | || *ºſ / º / Ž 99.999 Cu J/ — O. ZJ/ O.O4 O . I | |O Temperature , K SPECIFIC HEAT VERSUS TEMPERATURE FOR COPPER VIII-B-2. 1 º SPECIFIC HEAT of COPPER ( [• - || O 9 K ) TEMPERATURE, *k VIII-B-3 SPECIFIC HEAT, ENTHALPY of COPPER (lo” to 300°K) Sources of Data: Oth Dockery, S. M., Can. J. Research 15A, 59-66 (1937) - r References: Acyara, S. and Kanda, E., J. Chem. Soc. Japan 62, 312-15 (1911) Seºn, U., Ann. Physik u. Chem. (3) 66, 237-lil (1898) Bronson, H. L., Chisholm, H. M. and Doc':erty, S. M. , Can. J. Research 8, 282-303 (1933) - - Eucken, A. and Werth, H., Z. anorg. allgem. Chem. l88, Schenck Fest- schrift, l;2-72 (1930) *-*- Giauque, W. F. and Meads, P. F., J. Am. Chem. Soc. 63, 1897-190l (1911) Keesom, W. H. and Onnes, H. K. , Communs. Phys. Lab. Univ. Leiden No. li:Ta, 3 (1915) Koref, F., Ann. Physik 36, h9-73 (1911) Neinst , W. , Sitzber. kgl. preuss. Akad. Wiss. 262 (lglO) Nernst, W., Sitzber, kgl. preuss. Akad. Wiss. 306 (1911) Nernst, W. and Lindemann, F. A. , Z. Elektrochen. lī, 817 (1911) Schimpff, H., Z. physik. Chem. Ti, 257 (1910) Table of Selected Walues Temp. Cp H+ Temp. °p H+ °K j/cm-‘K j/gn °K j/gr-‘K j/gm lO O.OOO 86 || O.OO2l, lOO 0.25l. 10.6 ls .OO2 7 . Oloſſ l2O .288 l6.l 2O .OO7 7 .034 ll.0 . 313 22. l 25 .016 .090 l60 .332 28.5 30 .O27 . 195 l8O .346 35.3 l;O . O60 .6l 2OO .356 l;2.l. 50 .099 l.lio 22O .36]; l;9.6 60 . 137 2.58 2lQ .37l 56.9 70 ..l73 li.l? 26O .376 6l.l. 8O .205 6.02 28O .381 72.O 90 .232 8.22 3OO .386 79.6 f T * H = | C 5T ° o P Reprinted from WADD TECH. REPORT 60-56 VIII–B–4 i O4 O2 Ol Y Q E gº Uſ) GA) T-5 C4 .9. & oz }- <ſ lu I .O | Q u- O ul Cl 90 004 .OO2 OO | 2O 3O 4O 60 TEMPERATURE, *k 8O SPECIFIC HEAT of COPPER (IO* - 3OO° K ) |OO 2OO SPECIFIC HEAT OF COPPER TEMPERATURE, K II I II II I I I I I I I I I II | m L. I QUID ems --- º _-T = |-> 2^ em M- / º |- % em F I me ſ em |- | º |- / - |-> M. P. 356 K t- | | | | I | | | | | | | | | | | | || º | O . . 2 3 5 7 IO 2 3 5 7 |OO 2 3 5. 7 IOOO 2 3 5 i TEMPERATURE, *R >= á ſí –1 Cl- <£ © IC GS ğ º ū 5 .O6 O 4 (, -OI Kq anı da ÁIdųInuu) ql / n lg ' AdTv H1N3 CN]-| Co. -D > S. | O = 5 6 E t Cº. * * 3 -> O • * UPERCO 2 > 0. —l <ſ sº |- 2 O.6 Li) OJ O.4 O.S D6 O2 JO3 O .O2 .O 1; 2 3. 4 6 8 IO TEMPERATURE, *k VIII-C-4 ENTHALPY, BTU/lb Xa º 3 & n 1 vº 3 d'W BL- OOº.OO2OO |O8O 9O ºO 2O2O | 2ț»C 9 O ț»| ‘O 9Oſ 2O | O tº O 2O 9 O ţ»O| 9.O 2 | � 2 9 {»O | 9( XoOO9 -•OI) W ſn | O N |J OO 2 O | ,\ d T \7 H L N E O tz O2 OO2OO|O9O9Oț»OºO2 80 ° 38'n Lv 83 d w 3 L ‘A d TV H1N3 ufi/sal noſ VIII-C-5 SPECIFIC HEAT and ENTHALPY of Cy-IROM Sources of Data : Duyckaerts, G., Physica 6, 401-8 (1939) Keesom, W. H. and Kurrelmayer, B., Physica. 6, 633 (1939) Kelley, K. K., J. Chem. Phys, ll, 16-8 (1913) Other References : Austin, J. B., Ind. Eng. Chem. 2k, 1225 (1932) Behn, U., Ann. Physik (3) 66, 237 (1898) Duyckaerts, G., Mem. soc. roy. Bci. Liege 6, 193 (1995) Eucken, A. and Werth, H., Z. enorg. u. aligem. Chem. 188, 152 (1930) Griffiths, E. G. and Griffiths, E., Phil. Trans. Roy. Soc. London A2lk, 319 (19.j and Proc. Roy. Soc. (London) A90, 557 (191b) eº º º .Gunther, P., Ann. Physik (b) 51, 828 (1916) Richards, T. W. and Jackson, F. G., Z. physik. Chem. To, lºll (1910) Rodebush, W. H. and Michalek, J. C., J. Am. Chem. Soc. T., 2117 (1925) Schmitz, H. E., Proc. Roy. Soc. (London) T2, 177 (1903) Simon, F., Z. angew. Chem. lil, lll:3 (1928) Simon, F. and Swain, R. C., Z. physik. Chem. B28, 189 (1935) Comments : o: -Iron is the form that is stable up to the Curie point at 760°C. It has a body-centered cubic lattice. T Cp H T °p H *K j/gm-*K j/gm °K j/gm-°K j/gm l O.000 O90 O.OOO Ol;5 70 O. l.2 l 2. l;6 2 .OOO l83 .OOO 18l 8O .15k 3.81, 3 .OOO 279 .000 hl.2 90 .186 5.55 l, .000 382 .OOO 7l;2 lOO ,216 7.56 6 .OOO 615 .OOl 73 l2O .267 12.40 8 .OOO 90 .003 23 11:0 .307 18.16 10 .00l 21, .005 37 160 .339 21.63 15 .002 lºg .Oll, 5 18O .364 31.67 2O .OOl; 5 .031 6 2OO .38l; 39.2 25 .OO7 5 .06l 22O .k0l. l;7.O 3O .012 l; .ll.O 2lQ .k15 55.2 l;O .029 .31 260 ..lp28 63.6 50 .055 .73 28O .k39 72.3 60 .087 l.l:3 3OO ..lºl,7 8l.l Reprinted from WADD TECH. REPORT 60-56 VIII-D-1 : i º . i i O. .O8 O7 .O6 .O5 |O4 .O 3 O2 .O |5 SPECIFIC HEAT of a | RON (I* - IO* K ) 2 3 4 TEMPERATURE, *K VIII–D–2 T E M P E RATURE , *R 4 OO 2O O | O O 8 O 6 O 4O 2O O4 Q9 ·H- <ſ uJ ~~ 2 O 0, © ��→ O SPECIF | C SPECIFIC HEAT (COE), BTU/lb ºR Of^) · QO rº)●-)))* O8C » º uſ / sa Ino | *(db) ıv = H O 1310 aas 3OO 2O O | OO 8 O 6 O 4 O TEMPERATURE, *K 3O 2O | O VIII–D–3 * i 55 5O 3O 2 O TEIAPERATURE, *R 4. | O 18 6 8 TITI | I | | | I | I | | I | II I T I 2O ENT HAL PY —ls of a | RON — (1° - IO* K) | T – —lio / T / —ls y — Z * L+T – ——TT --- 2 3. 4 5 6 7 8 9 ...” T E M PERATURE, *k i VIII–D–4 X e “Bunlww3dwal OOI O6 O0 O1 O9OGOt»OºO2O | | O O’ | OO”2OOH �OOſ 2OO, t»OOº| Off | Oº2O ��Oſ run 2 O2 „C)•{ S vol'Oș Pr- ºo CD TOZO|× >= % 20$O75 –1 <£ șO5. E| 2 2•à. LI I !(X • OO9 -•OI)2B 2NO MJ || p 30� vÅ d TV/H LNB O | O |O2 O2Oț» Ot» OOI OOț»OOZOO!O8O9 O ț»O2 B • ‘38 mlwg3d.w3ı IQ Iºfſ VIII–D–5 SPECIFIC HEAT, ENTHALPY of y - IRON Sources of Data: Eucken A. and Werth, H., Z. anorg. u. allgem. Chem. 188, 152-72 (1930). Comments : The values of specific heat for pure y iron were calculated by Eucken and Werth by application of the Kopp-Neumann principle to their specific heat measurements on a 30% Min-Fe alloy and 19.1% Mn-Fe alloy. In view of this procedure, the values tabulated below should be regarded as an approximation only. T Cp H-HoO •K j/gm-‘K J/gm 2O O.OO7 3O .016 O.ll l;O .0ll O. 39 50 .090 l.02 60 .137 2 •l6 70 .180 3-75 8O .218 5.7; 90 .255 8.11 LOO .288 10.8 12O .345 17 -l ll:0 •386 24. l60 .#2% 32.6 2OO .l76 50.6 R757JJG Issued: 9-2-59 VIII-D-6 O3 O2 O. : O8 O6 O4 O3 O2 D ! ()O8 2O 4 O 3O 6 O TEMPERATURE, *R 8 O |OO 4 O 60 80 TEMPERATURE, *K 2OO SPECIFIC HEAT of y - IRON |OO 3OO 2OO VIII-D-7 TEMPERATURE, *R ( Ho 9€ 40 O = H ) * ql / n.Lg º Adºn w H1NE (O= Cl- –1 <[ ~~ H- 2 Li ] 4 O 6 O 60 4 O 2O 3O OQOQ O C) LLI C) –1 CD > O4 CN- r, c 4- 9 C - § 3. 3 3 3 § 3 Sº 9 — CO (O Sf (NJ 3 3 3 3 (NJ e C Q O o o o a 9 g g g g x. uſ / sainoſ (40) ‘lväH 91.4103ds g : VIII–L–2 (Silica Glass, Quartz Glass) Sources of Data: Simon, F., Ann. Physik (,) 58, 241-80 (1922) Simon, F. and Lange, F., Z. physik. 38, 227-36 (1926) Westrum, E. F., data reproduced in Lord, R. C. and Morrow, J. C., J. Chem. Phys. 26, 230 (1957) Other References: SPECIFIC HEAT and ENTHALPY of WITREOUS SILICA Nernst, W. , Sitzber. kgl. preuss. Akad. Wiss. , 306 (1911) Table of Selected Values Temp. Cp - H. Temp. * H. °K j/gm-°K J/gm °K J/gm-“K J/gm lO O.OOl;5 O. Oll LOO O.268 ll. 57 15 .01.26 O.O52 l2O .33l l". 56 2O .02kl; O. ll:3 ll.0 .391 2l. 77 25 .0379 0.299 l6O ... lil,6 33.ll. 30 .0519 O. 521, l8O ..l.97 l;2.6 l:0 .O8O8 l. 186 2OO .5ll, 53.0 50 •lll, 2. l; 22O .588 61.3 6O .lkl 3. lil 21:0 .629 76.5 70 ..l72 l; .97 260 . 668 89.5 8O .2Ol; 6.85 28O .7Ol; lC3.2 90 .236 9.05 300 .738 ll 7.6 Reprinted from WADD TECH. REPORT 60-56 VIII–M-1 3OO O. 6 O.O 24. O. O 6 O 2 .O | .OO6 .OO4 | O SPECIFIC HEAT Of VITREOUS SILI (IO* - 3OO o K) 2O 3O 4O 6O TEMPERATURE, *K 8O |OO 2OO i lo' TTTTTTTTIII TTTTTTTT| || I | | | | | || = 2. — — – — PIOT' – – - E – T]-10-2 - – . – ) – 7 ă E. : ſº gºmºsºm. I T —l - ? F- HIO*: — I & Pºmºmº – Oſ) T – T To- | | | | | | | | | | | | | | | | | | | | || | | | | | | | | | | |Ol Temperature, *K | O2 |O3 SPECIFIC HEAT OF UNFILLED EPOXY RESINS VIII-N-1 6O O Al 8 OO T-T-TTTTTTTT || T-I-T-TTTTTTTT I 4 OO I Z 2OO ºm * |O O : 3 : 2 O - | O | . EPON 828 GLASSFIBER 55991, HTS FINISH NOM. DENSITY = 1.83 gem"; GLASSFILL O.636 VOL. : Fº * O.5 O.4 O.3 O.2 º- * O. : | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 2 3 4 5 |O 2O |OO 200 3OO Temperature , K SPECIFIC HEAT VERSUS TEMPERATURE FOR GLASSFIBER REINFORCED EPOX|ES VIII-N-2 SPECIFIC HEAT, ENTHALPY of ARALDITE (TYPE I) Source of Data : Parkinson, D. H. and Quarrington, J. E., Brit. J. Appl. Phys. 5, 219–20 (1951) Comments : Sample prepared according to manufacturer's directions. Table of Selected Values Temp. Cp H *K J/gn—"K J/gm. l. 5 O.OOO O6 O.OOO Ol 2 .OOO 21, .OOO O3 3 .OOO 89 .OOO 60 l; .OO2 25 .OO2 lo 6 .OO8 2 .0ll 7 8 .016 9 .036 7 lO .027 2 .080 7 15 .05l. 2 .284 2O .081 l .623 RJC/JJG Issued: 12-18-59 VIII-N-3. 1 TEMPERATURE, *R (c)Ol Kº ºn 10^ Kid!\lnu) && ql / n lg '(do) Lv3H OIB10Bas 2O | O O2 CO= }=QO º *= u Li-H- Q_)a5© S2Lu |–1 Q-<ſ (/)CC O O<ſ = |- LJ |- C) –1 <, 0, <ſ O CNJ (ç-OI Kq enIDA ÁIdį įInuu) qI/ n lg 'AdTvALNE .■OOO OOO ~ -> (< 2), Q $ 3 E| O 4.- *** O ~º O.3 (, oi KQ ºnida Kıdışınu ) de ql/ nie '(ºo) Ivº H 01.4103&s QN-voło º Bºniv dBd W3L OOº.OOZOO|O8O9O ț»O £ OzO | �» OO| Oſ ZO | Oſ -t» O' zo t» O'l'O -º �~~~~ ·2O ~ I’O P O OţO | zo >= O. –) tº O| <ſ Ē( X o OOº - o OI) 2•-2 uU |W f\ | 8 O IN -ț» 240 Åd TVH1N3| ° �O | O 2 O | O ț» O2 OO!»OOº.OO。2O O |O 8O 9O ț»OºO 2 Boº Bºn Ivº 3d W31ø uff/Soſnoſ "Ad TVH1N3 VIII–0–1. 5 |O2 |O |O O |O 2 SPECIFIC HEAT VERSUS TEMPERATURE FOR NB 51 Ti 49 I TT|T|| || || I ITTTTTTIII L TTTTTTTT = Eº ame Q º … • * – — A4" *º- ſºme As - smºs A. — / - O T lºgº — ºmºsºme - ſºme – Mºmº O tºº. – T k- O * — *l == º f — ºss * — = O — *= s' — ºms Q O mm. O & – 3. – H. Q - gºme O sº |- () — ? * E / — }*s f *m. gººms. d * / O – I E 0 H. O *= I l sm }* 0. ammº ºmº O – | — jº O | | | | || | | | | | | | | | | | | | | | | | | | | | * |O |OO 4 OO Temperature, *K VIII–0–2 SPECIFIC HEAT, ENTHALPY of TITANIUM Sources of Data : Aven, M. H., Craig, R. S., Waite, T. R. and Wallace, W. E., Phys. Rev. 102, 1263 (1956) Kothen, C. W. and Johnston, H. L., J. Am. Chem. Soc. 75, 31Ol (1953) cº- - ;” N. M., Conf. de Physique des Basses Teººperatures, Paris 1955 Other References : Estermann, I., Friedberg, S. A. and Gold:can, J. E., Phys. Rev. à, 332 (1953) Kelley, K. K., Ind. Eng. Chem. 36, 865 (19b];) Table of Selected Velues Temp. Cp H Temp. Cp H °K J/gm-*K J/gn °K J/g-"K J/g, l O.OOO O7] O.OOO O35 | 70 O.189 l; .27 2 .OOO ll:6 .OOO 1113 8O .230 6.37 3 .OOO 226 .OOO 329 90 .267 8.86 l, .OOO 317 .OOO 599 lOO . 3OO ll.69 6 .OOO 5l. .OOl l;5 l2O • 352 l8.2i; 8 .OOO 81, .OO2 81 | ll;0 .39l 25.69 lO .OOl 26 .OOl; 89 l60 .l;22 33.8l; 15 .003 3 ..Ol; 6 l8O ..lil;6 l;2.5l. 2O .OO7 O .Ol;0 200 ...h65 51.66 25 .013 l; .090 22O . l;8O 6l.ll 30 .O21, 5 . 182 2l;O .l.93 70.8; l;O .057 l .58l 260 .5Ol; 8O.82 50 .099 2 l. 358 28O .5ll, 91.Ol 6O ..ll;6 7 2. 592 3OO .522 || 101.39 RJC lssued: l 2-lé-59 VIII–0–3. 1 | 8 TEMPERATURE, * R 2.O O. 4 O.3 H- <ſ LJ I > =2 2 <ſ H- H- SPECI FI C of ( O ç- CN O oo O ( ç_O ! A q O | K q Á | d | 4 | nuu) \{ a, q ! / n 1 g OO CO coe ut/ So I noſ ‘(*2) 1 wa H on 3 oads §: VIII-0-3. 3 X • ‘3 & n 1 v J 3 d. W 31 OOº.OO2OO|O8ſ OSOț»OºO 2 | Oſ £ ~ | Q ~) }= ÇÃO >^ O. –) ! 1 ~~ |- 2 UJ ( X o O O £ - o O 1 ) O i}^N ( | N V L | 1 } 0 /\ d Ti V H L N 3 O O | OOț»OOÇOOZOO |Ö8O9O t> ·O £ 8 • ’ 38 n.L w 8 Bd W31 O2 O | C - O OO ! u 6/ s a no ſ “A div H1N3 VIII–0–3. 4 SPECIFIC HEAT, ENTHALPY of CARBOR (GRAPHITE) Sources of Data: Keesom, P. H. and Pearlman, N.; Phys. Rev. 99, lll:9-21, (1955) De Sorbo, W. and Tyler, W., J. Chem. Phys. 21, 1660-3 (1953) Other References: Bergenlid, V. , Hill, R. W., Webb, F. J. and Wilks, J., Phil. Mag. H5, 85l-l. (1954) * , - Dever, J., Proc. Foy. Soc. (London) A76, 325 (1901) Ewald, R., Ann. phys. (k) 1213 (1911) Jacobs, C. J. and Parks, G. S., J. Am. Chem. Soc. 56, 1513 (1931.) Koref, F., Ann. Phys. (li) 36, h9 (1911) Richards, T. W. and Jackson, F. G., Z. physik. Chem. TO, lill (1910) Comments: - - - For O 3 T 3 2 °K °p = l62 (T/391)? + 2.6 x lo-6 T j/gm-“K Temp. Cp H Temp. - °p H °K 3/gº-'k | }/gm || “K 3/sn-ºk 3/s: l .OOO OO5 .OOO OO2 TO .oT7 l. 87 2 .OOO O27 .OOO Ol6 8O .097 2.7l, 3 .OOO O70 .OOO O62 90 .ll.8 3.8l l, .OOO lll: .OOO l68 LOO .ll.0 5. 10 6 .OOO 33 .000 6l l2O .188 8.37 8 .OOO 6l. .OOl 56 ll.0 .2l;0 l2.65 lO .OOl ll, .003 3 l60 .296 l8.0 l; .003 3 . Oll; 2 l8O .355 2l;.5 2O .OO6 3 .038 2OO ... lill, 32.2 25 ..Old 3 .O79 22O . l;71, ll.l 30 . Olj 5 .ll.3 2lQ .535 5l. 2 l;0 .O27 .36 260 .595 62.5 50 .Ol;2 . 70 28O .656 75.0 6O .O58 l, 2O 3OO . 716 88.7 KJC/JJGTIssued; i3-ić; T Revised: 5–20–60 VIII-P-1 |O |8 TEMPERATURE, *R CN O ( c OI ^q ºn 10^ Áld!, ¡nu ) 8. ql / nulg '(do) Lv3H 01-loads -ÇO Iº) —! “— — O >- Dr. liſ CD # 8 : 3 O (O * 33 3 & 8 a.3; ; § 33; ×e u5 / seinoſ (do) “lvah ol-loads e Te VIII-R-3 (ş Oſ Áq ºn 10a Kid!! I nu) ql / n lg ‘Ad (ivALNE «N -COKO<!-ÇNJ OOC•OCD |8 |O |O 0, co © uī> Ž0; = …»–1 }<-e-a--- - - - - - - ---- Table of Selected values superconiucting transition te:perature kjc ls ºu 3 d : Ray 5 cºl 3 £6% Cp, j/E-‘K H, j/gn Teip. Cp, j/E-‘K ---------|- sº- Super-" Normal super- Normal Sup: e °K Norººl conducting - conducting O.OOO Ol"O || O.OOO OOl;l O.OOO OO79 || 0.000 OOO9 || 60 O. ll:8 .OOO Ol;7 .OOO Ol;3 .OOO O333 .OOO O228 || 70 .162 .OOO 109 .OOO lºl .OOO ll3 .OOO ll6 8O . 173 .OOO 198 .OOO 285 . OOO 22] .OOO 270 90 .162 .OOO 245 .OOO 283 LOO . 189 .COO 51; .OOO 65 l2O ..l.93 .OOl 27 .OO] 5l. ll.O .2Ol; .OOl. 2 .OO6 8 l60 .2O3 .OO3 l . Ol.9 O 18O . 212 .022 6 .093 2OO .2ll; . Ol;O .25l. 22C) .216 . O58 .l.98 24O .213 .076 .831; 26O . 220 . 106 l.T 5 23O . 22] . 130 2.93 | 3CO .222 . ...— . . - ** 932) ; &*© VIII-S-1 4 6 8 TEMPERATURE, * R SPECIFIC HEAT (, OI ÁG Áld!, ¡nu ) da qI/ n La ‘ (ºo) º Lv3H 013103ds CO ·(O - Nº(NJ• "Ad TivKłl N3 tuf / sai noſ VIII-S-5 º : i ſ)O4 .OO2 O6 O4 O. .O6 .O4 O2 o TEMPERATURE, * R 2 3 4 6 8 | O SPECIFIC HEAT of LEAD | (I• - 10°k ) NORMAL SUPER CONDUCTING | 2 3 4. TEMPERATURE, *K O 6 O.4 O.2 T o 9 > Jº > O6 ºn E O4 E Crº O -O - N ()2 D H CO Tºl .O | Q H. <ſ li) OO6 T C oo.4 ºt O LU Cl (ſ; OO2 —H.OO .OOO6 |O VIII-T-1 º ɧ § 3 § 3 g 3 3 3 § 3 SPECIFIC HEAT (q.), BTU/lb "R g Uſ) < Lu –1 <![ > QC LU IC |- O 3 O ALUMINUM Of -30 |OO |5 O 2 OO 25O 3 O O TEMPERATURE, *K 5 O IX-B-2 O29) O-O O Į į Ķ OTTIV Wn NIWTTW HO-, EHn LV HECHWEL STIS HEA NOIS’N Vd XE TV W BEH1 ył º 9 un 4 Du 3d uu a L O82O #72O O 2O9||O 2 |O8O #7 - - ----ț7 °C) — „ærſ Lºr „ºr2° O – - Lº, _^2^ »*2. ‘O – _^ J^ „”• »^|’ O – »^ !O ||||| ‘O 29.OO|-O O 2–OO2 –OOț7 – { In 1 D. 1 ad uſ a 1 juao.1ad ‘uo Supdx3 loula ul IX—B-3 THERMAL EXPANSION OF BERYLLIUM Sources of Data: Erfling 1939 Hidnert and Sweeney l927 Other References: Head and Laquer l952 Discussion: Anisotropic. The above values were cal- culated from the relation, Mean Value = 1/3 (l)+2/3 (-L ), where ( 11) and ( L ) signify the the same property measured parallel and per- pendicular, respectively, to the trigonal (Sb, Bi) or hexagonal (Be, Cd) axis. Table of Selected Values º: º - PT # *g. º - PT # # 293 per K 293 per ‘’K 0 |131 x 107* | 0. 140 |119 x 10-3 | .34 x 10-4 20 | 13 l " 0.001 x 16° || 160 llll . .47 11 ; O || 131. " . OO3 " l80 || 100 " . 59 º o 131 " , OO 7 " 200 || 87.3 " . 7l ! 0 llāl " ... O Lº " 220 | 72 ... O " . 82 tº J O || 131 " .02 Jſ 240 || 54. 6 " . 92 | '0 |130 " .04 | || 260 35. 2 " l.0l | || }0 | 130 " • 06 273 || 21.8 " l.06 | }O | 129 " . 09 280 14 - 3 " l. 08 | 1 0 |128 " . 13 293 O ... O " l. 12 | || 'O |l 24 " • 22 || || 300 || - 7 - 9 " l. lº | || Ren from NBS 29 IX-C-l |,35 |35 |.2O |2O |.05 |O5 O.90 CD OD (g (3_OI Áq ønıda ÁſdųInuu) ». Jød ºLP UOO №(o OO uſ)O ſ^-(O _O! Kq enĮDA ÁIdųInuu) Tp LO < uJ –1 CC Lıl TI H- BERYLLIUM Of 3OO 25O 2OO |50 |OO 5O TEMPERATURE, *K IX-C-2 Sources of Data ; THERMAL Other References: Beenakker and Swenson l955 EXPANSION OF BERYLLIUM COPPER Discussion: 2 Be, 0.3 Co, bal. Cu (BERYLCO 25). Originally half-hagd, then he at treated for 2 hours at 200 C. No observable difference was found in the thermal expansions for the two states of hardness. Table of Selected Values - | Temp. L – L l dB Temp. L - L l dB °k #. T L d'T °K #. T L GT ‘293 per OK 293 ~er 9K - –5 –5 –5 O 316 x lo 0. l40 23 l x lo l. 24 x 10 lO || 316 " 0.004 x 10* || 160 | 206 l. 32 ! I 20 316 | || . OO 9 | || 180 179 | || l. 38 | || - 30 3 l 6 | || .05 | | 200 l61 ! I l .45 | 1 40 315 | | . 14 | || 220 l2l | | l. 52 ! I 50 | 313 " . 27 | || 240 90 " l. 60 | 60 309 | || . 43 | 1 260 57 | 1. 67 D | 70 304 | || . 65 | || 273 35 | || l. 72 I 8O 296 | || .84 | | 28O 23 | l. 74 | | 90 287 I . 96 ! I 293 O ! I l. 79 | 1 100 277 | l.04 | 3OO — lº ! I l. 81 | | 120 255 | | l. lo | | *aken from NBS 29 IX-D-1 ; # 34O 3OO 25O 2OO |50 |OO 5O – 20 THERMAL EXPANSION of BERYLLIUM COPPER 5O |OO |5O 2OO TEMPERATURE , *K 25O |.7O |.5O |, 25 |.OO O.75 o s _J|H. ~5 ITU —|—|| O.5C) O.25 3OO IX-D-2 ; O. –O. —O.2 -- I emperature, r – 4 OO – 30O –2OO — OO 32 | T. | | | 2^ 2: 2. ~~ J’ P’ LT - _LT _L-T 4 O 8O |20 | 6O 2OO 24O 28O Temperature, K THERMAL EXPANSION VERSUS TEMPERATURE FOR COPPER ALLOY 98 CU-2 BE 32O soo, ſo: 80O 7OO 6CO H--- 5OO 4 OO 3OO } --—— FOR 2 HR AT 392 °F (1088] Tº ---------- - - - - - - --- --- +- - - - - ------------4----- – — — . --- - - - - - -----——l------------ — — — ... —--— — 4 -—- — . . . + 1 A, [137] H, [137] ORIGINALLY /2 H THEN HEAT TREATE CONDITION UNKNOWN, [333, 768, 625, 627] - `s A `s Vº ---------- - - - - - -------------- 2 + 3OO } – … % THE BE FRY L.L. 1UM, ------ •-º-----> . ~~~~~ r - -- - - - - - - - - - - ---- - -- J - - - - - - } -- - 200 - |OO O |OO 2OO 3CO 4 OO -- sco TEMPERATURE, * F THERMAL EXPANSION OF BERYLCO” 25 CORFORAT CN OF AM,'E R1CA TX-D-4 THERMAL EXPANSION OF BRASS (YELLOW) Sources of Data: Altman, Rubin, and Johnston l954 Beenakker and Swenson 1955 Fraser and Hollis-Hallet lºs 5 Henning l907 Keyston, MacPherson, Other References: and Guptill l959 Discussion: 65 Cu, 35 Zn. Table of Selected Values ºp. +293 - PT # # tºp. P293 - PT # # --- *293 per 9K *293 per ‘’K O 384 x 107* | 0 140 269 x 10−9 |1.54 x 10-5 1O || 384 ° 0.001 x 10° || 160 |237 " l. 63 '' 20 383 " . 05 || l80 204 '' l. 69 " 30 382 " . l8 | I 2OO | 169 '' l. T 4. '' 40 380 " . 37 | 220 | 134 " l. 78 " 50 375 " . 58 240 || 98.4 " l. 81. " 60 3.68 " . 76 | | 260 | 61.8 " L. 85 " 70 360 " . 92 | || 273 || 37.3 " 1. 87 " 80 350 " l.06 | || 280 | 24. 6 " L. 88 " 90 339 " l. 18 | | 293 O ... O " L. 90 " lOO 3.26 " l. 29 | 300 | – l 3 - 3 '' 1 - 9 l " l2O 299 " l. 44 Taken from NBS 29 IX-E-1 |.95 390 |.75 350 |,50 3OO |.25 25O (g_OI Áq øn|DA ÁIdųInuu) ».,Jądº LP OU(T) ON; ----CD 2OO 15O (g_O|Áq anĮDA KĻdųInuu)l Tp gez-ı -ı_26z-ı O.5O 2 C CO ā C\, >< LLI –1 <ſ > 0,2 u l- ~~ H- |OO ! O –1 –1 Lu | >t (/) C/> <[ CC CO ©) » O O.25 5O –2O |OO |50 2OO 25O 3OO TEMPERATURE , 5O •K IX-E-2 600, 16% 5CO 4 OO } - COND|T |ON UNKNOWN Z (*- / - / 2OO }… -- ! -----------4----- | OO } – ---4---------- H -----—# ------------- § 2^s. tº J - 200 F. : . . .<--------> - - - - - - - - - - - - - - -* * 2T T- | |- - T - - - - - - - - - 3 OOH - ---------- ~~~~ 2* ---------------------------- - - - - - - - - - - - - - --~~~~~ *-** -- * : * ~ * ---------~~~~~ -- - - - - - -, -, -e-. . --------- ~~~~$-------~~~. = ------ - - - - - - - - - - - -----------|---------> -- . . ... -----...- -- . º 4 CO X- - - - - - - - * -- w .-- * ****** *-* * * * *-** --- *-* - ~ *-* *-*-*-* -- * * * *-* * * - - - - 3. . *. ------ sº 5OO * : * : * * *---> * - - - - ---. - - - - - - - - - - - - - - - - - - - - - - - - - -º-º-º-º-º-º: “ * 6GO - * : * -------- ~ * * * * - - - - - - - - ------ gº 7CO }* - - - - - - - y. --- - - - – -- - - - - --... a = * * * * *-**-* - : *.*... → ... • *s º 8CO * * * * * * * *-*-** *- - - - - ----- - - $- - ---------- ~~~~ . . . . . . . . . . ... -------------- $... ---...- - - ----- - ---. § - - - ,----- --—------J - ---------------- * * → • - - - SC1) - –!--...- - 460 - 4, CO • * ** * * * * - -ºº ºmºsº. *- : * * * * * *** ****-* * * - sco -200 - |OO O |OO 2OO 3CO . 4 OO • * * * sco TEMPERATURE, *F • ‘ THERMAL, EXPANSION OF 70/30 BfNASS IX-E-3 Sources of Data ; THERMAL, EXPANSION OF CONSTANTAN Other References: Discussion: Adyama and Ito l939 Krupkowski and dePiaas l928 Henning 1907 Krupkowski l929 50 Cu, 50 Ni. The name Constantan is applied to binary alloys in the range, 60 to 45 Cu, 40 to 55 Ni. The most common composition is 55 Cu, 45 Ni. The above ex- pansion data should represent all Constantan within a few percent. of magnetic origin occur in this system . fegromagnetic Curie points rangg from about 0 K for 40% Ni to roughly 150 K for 55% Ni Table of Selected Values Small expansion anoma º: º T # # *. º PT # 293 per 9K 293 per 20 269 x 107* 180 148 x 107* | 1.21 × 107 60 258 " 0.46 × 10^* || 200 | 124 1 - 26 '' 70 253 " , 56 " 220 98 - 1 '' l. 30 " 80 24, 7 " .66 " 240 7] e 8 " l. 33 " 90 240 " . 75 " 260 45 - O " 1 - 35 " 100 232 " , 83 " 273 27, 3 " l. 36 " i.20 | 214 " , 9 6 " 280 17 - 8 " 1 - 37 '' 1 4 0 || || 94. " 1.06 " 293 O ... O " 1.37 " 1.60 | 1.72 " l, lºſ. " 300 – 9 - 6 '' l. 38 '' Taken from NBS 29 Th IX-F-1 (g-OIKq enĮDAÁIdųInuu)yļa, º uºd ºLP 1 LO N- G |,35 |.25 |.OO O,50 O.25 2OO 25O 3OO |50 CONSTANTAN TEMPERATURE, Of 2 Q (f) ź OL >< Li ] –1 <[ > 0, LLI TC H- |OO 5O 27O 25O 2OO |50 |OO 5O O — |O 262-) (5_OI Áq en da ÁſdųInu) 1 -- … C`º 2 --_. -- o K IX-F-2 THERMAL EXPANSION OF COPPER Source of Data : Rubin, T., Altman, H.W. and Johnston, H. L., J. Am. Chem • Soc. 76, 5289–93 (1954) Other References: Simmons, R.O. and Balluffi, R.W., Phys. Rev. loS, 278-80 (1957) Beenakker, J. J.M. and Swenson, C.A., Rev. Sci. Instr. 26 l2O4 (1955) Bijl, D. and Pullan H. , Physica 21, 285 (1955) Fraser, D. B. and Hollis-Hallet, A. C., Proc. 9th Intern . Congr. Refrig. 1, 1065 (1955) Nix, F.C. and MacNair, D., Phys. Rev. 60, 597–605 (1941) Adyama, S. and Ito, T., Sci. Repts. Tohoku Univ. 27, 348-64 (lº 39) Adenstedt, H., Ann. Physik 26, 69–96 (1936) Simon, F. and Bergmann, R., Z. Physik Chem. 8, 255–80 (1930) Krupkowski, A. and DeHaas, W. J. , Communs. Phys. Lab . Univ. Leiden l94b (1928) Keesom, W.H., Van Agt, F. P.G. and Jansen, A.T. J., Proc. Acad. Sci. Amsterdam 29, 786–91 (1926) Buffington, R.M. and Latimer, W.M., J. Am. Chem. Soc. 48 2305–19 (1926) - Borelius, G. and Johansson, C. H., Ann. Physik 75, 23–36 (1924) Lindemann, C. L., Phys. Z. l.2, ll.97–99 (1911) Henning, F. , Ann. Physik (4) 22, 631-39 (1907) Dorsey, H. G., Phys. Rev. 25, 88–102 (1907) Keyston, MacPherson and Gupstill (1959) Table of Selected Values mp - L – L l di. Temp. L - L l dI. 293 T L dº °k #. T L d; 293 per K 293 per K -5 --5 – 5 O 3.26 x 10 O –5 l2O | 260 x 10 l. 20 x lo O 3.26 | | 0.004 x 10 l40 || 235 | ? l. 32 | | O 3.26 § { , 0.3 $ 8 l60 | 208 | || l. 4l i O 3 25 § { • 10 1 l80 l79 § l. 47 || || O 3.24 11 • 23 | | 200 || 149 iſ $ l. 52 | || O 3.21 ! I • 38 11 220 l l 8 § { l, 56 | || O 3 l 6 ! I , 55 § { 240 87 § j l. 59 | || O 3 l O . TO | 260 55 I l. 62 | 1 O 3 O 2 I .84 | | 273 33 | 1 l. 64 I O 293 , I , 95 | | 280 22 † : l, 65 | 1 O 283 | || | l . O5 | 1 293 O l, 67 i 1 300 — ll | ? - 1 - 68 1 I en from NBS 29 IX—G-1 | 70 34O | 50 3OO |.25 25O ( g_O|Á q a n | D A Á | d | | | nuu)», uad‘ =ī5T LO O№- C)C | – ---- –- ---- 2 OO |50 ( o o ! Kq anſ da ÁId !!!nu ) 19 TT O,50 |OO çez q T=T) sz+ O.25 5 O 2 Q C/O 2 <ſ Cl- >< Li ] –1 Cr, Li ] IC H- COPPER Of –2O |OO |5 O 2OO 25O 3OO TEMPERATURE ,°K 50 IX-G-2 THERMAL EXPANSION OF CROWN C-1 GLASS Sources of Data: Molby l949. Other References: Dorsey 1907. Discussion: Bausch and Lomb Co. designation. Composition was not given. Table of Selected Values Tâmp. P293 - PT ||Tâmp. 1293 - PT R L K L 293 293 -5 –5 80 | 134 x 10 220 || 55 x 10 90 || 130 " 240 || 4 l " 100 l26 " 260 || 26 " l2O ll 6 '' 273 || 16 " 14 O | 105 " 280 | LO " l60 95 " 293 O " l80 82 " 3OO || -- 6 " 2O O 69 " Taken from NBS 29 IX—H-1. 1 |35 | ; # |25 |OO 7 5 5 O 25 50 THERMAL EXPANSION Of OPTICAL GLASS CROWN C-1 (BAUSCH & LOMB CO., DESIGNATION) |OO |50 2OO TEMPERATURE, *K 25O 3OO IX—H-1. 2 THERMAL EXPANSION OF OPTICAL GLASS BSC-l Sources of Data: Other References: Discussion: Molby 1949. Dorsey l907. Bausch and Lomb Co. designation. Composition was not given. Table of Selected Values º: *293 - "T º: *293 - PT *293 *293 80 133 x 107* || 220 53 x 10 Tº 90 l 28 " 240 || 39 ''' lOO | 124 '' 260 25 " l2O ll 4 " 273 || 15 . " l40 LO4 " 280 | 10 " l60 92 " 293 || 0 " 18O 80 " 300 || – 6 " 200 67 " Taken from NBS 29 IX—H-2. 1 |35 f |25 |OO 75 5O # 25 5O THERMAL EXPANSION of OPTICAL GLASS BOROSILICATE CROWN BSC-I (BAUSCH 8 LOMB CO., DESIGNATION) |OO |50 2OO TEMPERATURE, *K 25O 3OO IX—H-2. 2 THERMAL EXPANSION OF OPTICAL, GLASS BSC-2 Sources of Data: Other References: Discussion: Molby 1949. Dorsey l907. Bausch and Lomb Co. designation. Composition was not given. Table of Selected Values º L t- © tº- "3"|P: P293 - PT ||"E.P. P293 - PT K L K | – 293 293 –5 -5 80 ll 2 x 10 220 45 x 10 90 109 " 240 33 " 100 105 " 260 2l " l2O 97 " 273 13 " l40 88 " 280 8 " l60 77 m 293 O " l80 66 " 3OO –5 " 200 57 m Taken from NBS 29 IX-H-3.1 ||5 ; # |OO 75 5O 25 5O THERMAL EXPANSION Of OPTICAL GLASS BOROSILICATE CROWN BSC-2 (BAUSCH & LOMB Co., DESIGNATION) |OO |50 2OO TEMPERATURE, *K 25O 3OO IX—H-3. 2 THERMAL EXPANSION OF OPTICAL, GLASS LBC- 2 Sources of Data: Molby 1949. Other References: Dorsey 1907. Discussion: Bausch and Lomb Co. designation. Composition was not given. Table of Selected Values *. *293 - "T *. *293 - "T *293 *293 80 137 x 107* || 220 54 x 10^* 90 132 " 240 40 " 100 128 " 260 25 " l20 117 " 273 15 " lAO 106 " 280 10 ” l60 95 " 293 O " l80 82 " 300 –5 " 200 68 " Taken from NBS 29 IX—H-4. 1 |40 | ; # |25 |OO 75 5O 25 THERMAL EXPANSION of OPTICAL GLASS LIGHT BARIUM CROWN LBC-2 (BAUSCH 8 LOMB CO., DESIGNATION) |OO |50 2OO TEMPERATURE, *K 25O 3OO IX—H-4. 2 THERMAL EXPANSION OF OPTICAL GLASS DBC-l Sources of Data: Molby 1949. Other References: Dorsey l907. Discussion: Bausch and Lomb Co. designation. Composition was not given. Table of Selected Values Tâmp. P293 - *T Tamp. *293 - PT K L K L 293 293 so | 110 × 10^* | 220 || 44 x 10–9 90 107 " 240 || 33 " 100 | 104 " 260 21 '' l2O 95 " 273 || 13 " l40 87 " 280 8 " l60 77 m 293 O " 180 67 " 300 – 5 " 200 56 " Taken from NBS 29 IX–H–5. 1 |||O | ; # |OO 75 50 25 THERMAL EXPANSION of OPTICAL GLASS DENSE BARIUM CROWN DBC-I (BAUSCH 8 LOMB CO., DESIGNATION) 5O |OO |50 TEMPERATURE, 2K 2OO 25O 3OO IX—H-5. 2 THERMAL EXPANSION OF OPTICAL GLASS DBC-3 Sources of Data: Molby l949. Other Reference S : Dorsey l907. Discussion: Bausch and Lomb Co. designation. Composition was not given. Table of Selected Values Tâmp. P293 - PT || TºmP: P293 - PT K L K L 293 293 –5 –5 80 lO5 x 10 220 || 42 x lo 90 | 101. " 240 || 3 | " l OO 98 " 26O 20 " 120 90 " 273 || 12 " l40 82 " 280. 8 " l60 73 " 293 O " 180 63 " 300 | – 4 " 200 53 " Taken from NBS 29 IX—H-6. 1 |||O | ; ; |OO 7 5 5O 25 5O THERMAL EXPANSION of OPTICAL GLASS DENSE BARIUM CROWN DBC-3 (BAUSCH & LOMB CO., DESIGNATION) |OO |5O 2OO TEMPERATURE, "K 25O 3OO IX—H-6. 2 THERMAL EXPANSION OF OPTICAL GLASS DF2 Sources of Data: Other References: Discussion: Molby l949. Dorsey loo7. Bausch and Lomb Co. designation. Composition was not given . Table of Selected Values tºp. *293 - PT º: *293 - PT *293 *293 80 | 136 × 107* || 220 52 x 107* 90 | 131 " 240 38 '' LOO | 126 " 260 || 24 " 120 115 " 273 || 15 " l40 l04 " 280 | | L60 92 '' 293 O " 18O || 79 " 3 OO | – 5 " 200 | 66 '' Taken from NBS 29 IX—H-7. 1 |40 | ; # | 25 |OO 75 5O 25 5O THERMAL EXPANSION Of OPTICAL GLASS DENSE FLINT DF2 (BAUSCH 8 LOMB CO., DESIGNATION) |OO |50 2OO TEMPERATURE, *K 25O 3OO IX—H-7. 2 THERMAL EXPANSION OF OPTICAL GLASS EDF-3 Sources of Data : Other References: Discussion: Molby lo/9 Dorsey l907 Bausch and Lomb Co. designation. Composition was not given. Table of Selected Values TºmP. P293 - PT ||Tâmp. P293 - PT K L K L 293 293 –5 –5 80 | 139 x 10 220 | 53 x 10 90 l35 " 24O || 39 '' LOO || 130 " 260 25 " 12 O ll 8 '' 273 || 15 " 140 l06 " 280 | LO " 160 94 " 293 O " 180 || 8 l " 3OO | – 5 " 2OO || 67 " Taken from NBS 29 IX—H-8. 1 |40 | ; # |25 |OO 75 5O 25 5O THERMAL EXPANSION of OPTICAL GLASS EXTRA DENSE FLINT EDF-3 (BAUSCH 8 LOMB CO., DESIGNATION) |OO |50 2OO TEMPERATURE, *K 25O 3OO IX—H-8. 2 THERMAL EXPANSION OF OPTICAL GLASS BF-l Sources of Data: Molby 1949. Other References: Dorsey l907. Bausch and Lomb Co. designation. Composition was not given . Discussion: Table of Selected Values L – L L – L Temp. 293 T Temp. 29.3 T °K L °K L 293 293 –5 —5 8O l42 x 10 220 56 x 10 90 137 | 1 240 4l | | 100 l33 | 260 26 l2O l22 | || 273 l6 ! I l40 lll | 280 10 | || l60 98 | 293 O | 18O 85 | | 300 –5 | || 200 71 || Taken from NBS 29 IX—H-9. 1 |60 | † # —l |25 |OO 7 5 5O 25 –2O 5O THERMAL EXPANSION Of OPTICAL GLASS BARIUM FLINT BF-1 (BAUSCH & LOMB CO., DESIGNATION) |OO |50 2OO TEMPERATURE, *K 25O 3OO IX—H-9. 2 THERMAL EXPANSION OF OPTICAL GLASS CF-l Sources of Data: Molby 1949. Other References: Dorsey l907. Discussion: Bausch and Lomb Co. designation. Composition was not given. Table of Selected Values tºp. º - PT º: º - PT 293 293 80 |llo x 10^* 220 44 x 107* 90 | 107 " 240 33 " lOO | 104 " 260 21 " l2O | 95 " 273 13 " l4O | 87 " 280 . 8 " l60 77 " 293 o " 180 || 67 " 3 OO –5 " 200 || 56 " Taken from NBS 29 Ix-H-10.1 |||O | * # |OO 75 5 O 25 5O THERMAL EXPANSION of OPTICAL GLASS CROWN FLINT CF-1 (BAUSCH & LOMB Co., DESIGNATION.) |OO |50 TEMPERATURE, *K 2OO 25O 3OO IX—H-10. 2 THERMAL EXPANSION OF OPTICAL GLASS NO. ll Sources of Data: Molby 1949 Other References: Dorsey l907 Discussion: Eastman Kodak Co. designation. Composition was not given. Table of Selected Values Temp. *293 - PT Temp. |*293 "T °K L °k L 293 293 –5 –5 80 l00 x 10 220 42 x 10 90 97 | || 240 3 l || loo 94 " 260 20 || l2O | 88 | | 273 l2 | 14 O | 80 | 28O 8 | || 160 | 72 I 293 O | l80 | 63 | || 300 –4 200 || 53 | | Taken from NBS 29 IX-H-11. 1 |||O | ; # |OO 7 5 5O 25 5O THERMAL EXPANSION of OPTICAL GLASS GLASS No. 1 (EASTMAN KODAK CO., DESIGNATION) |OO |50 2OO TEMPERATURE, *K 25O 3OO IX—H-11.2 THERMAL EXPANSION OF OPTICAL GLASS NO. 32 Sources of Data: Molby l949. Other References: Dorsey l907. Discussion: Eastman Kodak Co. designation. Composition was not given . Table of Selected Values tºp. *293 - PT º: *293 - PT *293 *293 80 |102 x 107* 220 42 x 107* 90 99 " 240 3 l " lOO 96 " 260 2O " l2O 89 " 273 12 " l40 81 " 280 || 8 " l60 72 m 293 O " 18O 63 " 300 –4 " 200 53 " Taken from NBS 29 IX—H-12. I |||O | ; # |OO 7 5 5 O 25 5O THERMAL, EXPANSION of OPTICAL GLASS GLASS NO. 32 (EASTMAN KODAK CO., DESIGNATION) |OO |50 2OO TEMPERATURE, *K 25O 3OO IX-H-12.2 THERMAL EXPANSION OF OPTICAL GLASS NO 33 Sources of Data: Molby 1949. Other References: Dorsey l907 Discussion: Eastman Kodak Co. designation. Composition was not given. Table of Selected Values TÉ P. P293 - PT || Tºp: I.293 - IT K | – K L 293 293 –5 –5 80 || 92 x 10 220 || 39 x 10 90 90 " 240 || 29 " LOO 87 " 260 18 " 120 | 83 " 273 || 11 " 140 || 74 " 280 || 7 " 160 | 66 " 293 O " l80 58 ! I 300 –4 | 200 || 49 " Taken from NBS 29 IX—H-13. 1 |||O | i # |OO 75 5 O 25 5O THERMAL EXPANSION Of OPTICAL GLASS NO, 33 (EASTMAN KODAK CO, , DESIGNATION) |OO |50 TEMPERATURE, *K 2OO 25O 3OO IX—H-13. 2 THERMAL EXPANSION OF OPTICAL GLASS NO. 45 Sources of Data: Molby 1949. Other References: Dorsey l907. Discussion: Eastman Kodak Co. designation. Composition was not given . Table of Selected Values ºne. *293 - PT ºp. *293 – PT K *293 K *293 80 96 x 10^* 220 42 x 10"? 90 94 " 240 31 " LOO || 9 || " 260 | 20 " l2O 85 " 273 12 " 140 78 " 280 8 " 160 70 m 293 O " l80 62 " 300 –4 " 200 52 " Taken from NBS 29 IX—H-14. 1 |||O iº ; ; |OO 7 5 5 O 25 5O THERMAL EXPANSION Of OPTICAL GLASS GLASS No. 45 (EASTMAN KODAK CO., DESIGNATION) |OO |50 2OO TEMPERATURE, *K 25O 3OO IX—H-14. 2 THERMAL EXPANSION OF PYREX Sources of Data: Head and Laquer l952 Other References: Buffington and Latimer l926 Tool and Saunders l948 Winter-Klein l950 Discussion: Table of Selected Values ºp. *293 - PT º *293 - PT *293 *293 o |54.7 x 107* || 180 |32.2 x 10"? 20 55.7 " 2OO 27 . 2 " 40 || 56 - 7 " 220 |21. 7 '' 60 || 56 - 2 " 24 O | 15 - 7 " BO 53. 7 " 260 | 10. 2 " 100 || 50 - 2 " 273 || 6 - 2 " 120 || 46. 2 " 280 || 4 - 2 " 140 || 4 l. 7 " 293 || O ... O " 160 | 37.2 " 300 | – 2. 3 '' Taken from NBS 29 IX—H-15. 1 66 * # 6O 5O 4 O 3 O 2O 5O THERMAL EXPANSION of PYREX |OO |50 TEMPERATURE, *K 2OO 25O 3OO THERMAL EXPANSION OF SILICA GLASS Sources of Data: Discussion: Other References: Keesom and Doborzynski l934 Scheel and Heuse l'914 The thermal expansion of silica glass (fused silica, vitreous silica) quartz glass), though small, is variable from sample to sample. The above values are thought to be fairly representative of average behavior. The temperature of minimum length can vary from 180 to 230 K. Variations from the above values as large as 2x107* below 180°K and 50% from 180 to 300°K are possible - Beattie et al. 194l Dorsey lºC)7. Head and Laquer lºS2, Henning l907, Scheel 1907, Scott lº 33, Sosman l927, Souder and Hidnert lº26, Valentiner and Wallot l915. Table of Selected Values L - L O - 293 T º L PT L 293 293 20 40 60 8O lOO l2O l40 l60 –8 x 10-9 || 180 | 2.32 x 10-5 –6. 60 | 200 2. 36 ! I –4. 90 | 220 2. l8 –3.02 ! | 240 l. 81 | | -l. 4l | | 260 l. 26 –0. l.2 | | 273 0.8l ! I +O . 87 | || 28O 0.54 1 l. 6l || 293 0.0 2. O8 | | 300 |-0 . 29 ! I Taken from NBS 29 IX—H-16. 1 |: ; # tº- 2 , - 4 5O |OO THERMAL EXPANSION of SILICA GLASS |5O - 2OO TEMPERATURE, *K 25O 3OO IX—H-16.2 THERMAL EXPANSION OF INCONEL Sources of Data: Altman, Rubin, and Johnston l952 Other References: Lucks and Deem l958 Discussion: 80 Ni, la Cr, 6 Fe. Table of Selected Values tºp. *293 - "T ## tºp. *293 - PT ## *293 per 9K *293 per ‘’K o 229 x 107* | 0. 140 174 x 107* | .91 x 10"? LO 229 " 16O | lS4 " 1. OO " 20 229 " 0.003 x 16°|| 180 | 134 " l. O 7 " 3O 229 " .03 " 200 | 112 " l. 12 " 40 228 " ... lo " 220 | 89. l. " l. 16 " 50 227 " . 19 " 240 || 65 - 6 " l. 20 " 60 224 " . 28 " 260 || 4l. 4 " 1.23 " 7O 22 l " . 38 " 273 || 25 - 2 " 1 - 25 " 80 217 " . 48 " 280 | 16. 6. " l. 26 " 90 2ll. " . 57 " 293 O - O " l. 29 '' LOO | 205 " ... 65 " 300 | – 9 - O " 1 - 30 " 120 | 19 l " ... 79 " Taken from NBST29 IX-I-1 23O 225 2OO |75 |50 |25 |OO ; # 75 5O 25 5O THERMAL EXPANSION Of INCONEL |OO |5O TEMPERATURE, *K 2OO 25O |.38 |,35 |.20 |.O5 O.90 O,75 O 6 O = s —|| — O,45 O.30 O, 5 — O, O6 3OO IX—I-2 Source of Data: Other References: THERMAL EXPANSION OF INDIUM Swenson l955. Hidnert and Blair 1943. Discussion: In the two investigations above, the ex- perimental methods and sample purities were very similar. Yet the two points by Hidnert tº tº- L d (L - L and Blair, (+273 º L 95% 273 an ( 2ZE s3)/ *273' are respéâtively 7% afid 4% less a ſl Swenson's corresponding points. Swenson's data have been adopted solely because they include more points over a wider temperature range . Table of Selected Values L º O - L Temp: P293- PT l, di. Temp. L293 - PT l di. °K —H L d; °K L L dT 293 per K 293 per OK –5 - –5 * –5 O 706 x 10 0. l2O 500 x 10 2.52 x 10 10 || 706 " o.2 x 107* l40 || 448 | | 2 . 63 " 2O 7 Ol ! ! O .. 7 l60 394 | | 2. 72 | 30 69 l | l. 3 | || 18O 339 2 . 79 40 |676 " l. 7 | || 200 282 | 2 . 86 " 50 658 ! I l.9l I 220 224 I 2.93 ! I 60 638 | 2.04 | 240 l65 | 1 3. Ol || || 70 617 | || 2. lb | | 260 lC4 I 3. O 8 8O 595 | || 2.24 | | 273 63 | || 3. l.2 | | 90 572 | || 2. 32 280 42 | | 3. lS 10 O 549 ! . 2. 39 || || 293 O | | 3. 20 300 –22 3. 22 | 1 Taken from WADD 60-56 IX-J-1 | i # 85 O 8 OO 7 OO 6O O 500 4 OO 3 O O 2 OO |OO - 5 O 5 O THERMAL EXPANSION of IND|UM | O O |5 O 2 O O TEMPERATURE, *K 25 O 3, 4 3.2 2.8 2 4 2 O : 6 O. 8 3 O O IX—J-2 THERMAL EXPANSION OF INVAR Sources of Data : Other References: Discussion: Beenakker and Swenson l955 Chevenard l9 la Gregg l954 Masumoto l934 Molby 1912 Scheel l92l The expansions of the Invar alloys are sensitive to composition and he at treat- ment. The above data are for an alloy believed to be 42 Ni, 0.8 Mn, bal. Fe, annealed (Lloyd B. Nesbitt, Private Communication). Although Beenakker and Swenson referred to this as "Invar", this composition approximates the alloy, Dumet, used for sealing to glass. In the iron- nickel alloy system, the minimum value of room temperature expansion coefficient occurs at about 36% Ni . Table of Selected Values tºp. º - PT tºp. º - LT 29.3 29.3 O 52 x 10"? l40 39 x 10^* l0 52 !! l60 34 | 1 20 52 | || 18O 29 | | 30 52 ! I 20 O 23 40 52 | 220 18 ! I 50 52 § 1 240 l4 | | 60 52 | || 260 8 . 6 '' 70 51 | || 273 5. 2 " 80 50 | 1 28O 3.4 " 90 49 | || 293 O lOO 47 | | 300 —l. 8 '' l2O 43 | || Taken from NBS 29 IX-K–1 56 ; # 5O 40 3O 2 O 5O THERMAL EXPANSION Of |NVAR |OO |50 TEMPERATURE, *K 2OO 3OO IX-K-2 Sources of Data: Other References: THERMAL EXPANSION OF IRON Ebert l928, Nix and MacNair l94l Adenstedt l936, Dorsey l907, Simon and Bergmann l930 - Owen and Williams lºs4. Table of Selected Values ºp. º - PT ## º: º - PT # # 293 perOK 293 per ‘’K o 198 x 107* | 0 l40 156 × 10^*| 0.76 x 107* 2O | 198 " 0.01 x 10° || 160 l40 | 1 O - 86 " 3 O | 198 " ... O 3 " 18O l22 | O .94 " 40 197 " ... O 7 " 200 102 | | l. OO " 5 O 196 " . 13 " 220 82 | | l. O5 '' 60 195 " . 20 " 240 60 | || l. O 9 " 70 | 192 " . 28 260 38 " | 1.13 8O | 189 " . 35 " 273 23 | l. la " 90 185 " . 42 28O 15 l. 15 " 100 | 181 " . 49 " 293 O | || l. 16 " 12O 170 " . 63 300 –8 | l. 17 " Taken from NBS 29 IX-L-1 ; | # 225 2OO |75 |50 |25 |OO 7 5 5O 25 5O |OO THERMAL EXPANSION Of IRON |50 TEMPERATURE, *K 2OO 25O |.35 |.2O |.O5 O90 O.75 O,3O O.15 3OO §: IX-L-2 THERMAL EXPANSION OF LEAD Sources of Data: Dheer and Surange l958, Ebert l928, Nix and MacNair l942, Olsen and Rohrer 1957. Other References: Dorsey l908, Gruneisen l910, Head and Laquer l952, Lindemann l9 ll, McLennan, Allen and Wilhelm lº 3 l . Discussion: Superconducting lead has a slightly greater volume and a slightly smaller expansion coeffi- cient than normal lead according to data by Olsen and Rohrer covering the region from lo to the transititon temperature, 7.2°K. For example, the difference in expansion coeffi- cients at 5°K is about 10%. Table of Selected Values tºp. º - PT # # tºp. *293 - PT ## 293 per OK *293 per OK o 708 x 107* | 0 120 477 x 107* | 2.56 × 107° 5 708 " 0.03 x 10^*|| 140 425 | | 2.63 " 10 || 707 '' O - 32 '' L60 | 372 | || 2 . 68 '' 2O || 7 OO " l. 1 ! I 180 || 318 | || 2 . 72 " 3 O | 686 " l. 7 | || 200 || 263 | 1 2. 75 " 4 O | 667 '' 2.0 | I 220 | 208 | | 2. 78 " 50 | 646 " 2.2 [ ] 240 l52 | 2 . 82 '' 60 | 624. " 2.3 ! I 260 96 | I 2.85 " 70 | 60 l " 2.4 | || 273 58 | | 2.88 '' 80 577 " 2.4 | 28O 38 ! I 2.89 '' 90 552 " 2.5 | || 293 O 2.9 | || LOO || 5 28 " 2.5 | 300 || – 20 2.9 | | Taken from NBS 29 IX-M-1 3.4 85O 3.2 8OO 2.8 7OO 6OO (5_OI ÁG 2O 5OO enĮDA Áļdų[nuu) ył., uºdº 4 OO 3OO (4_Oſ Áq ønIda KidųInu) 1. P. l. ~] p | oo O 2OO 262-) L-|- 262-) O,4 2 Q (/) 3 Cl- >.< Li ] –1 <ſ > 0, LLI I |- |OO CD <[ Lu | –1 ��~ O —50 |OO |50 2OO 25O 3OO TEMPERATURE, *K 5O IX-M-2 Sources of Data ; THERMAL EXPANSION OF MAGNESIUM Other References: Ebert 1928 Goens and Schmid l936 Head and Laquer l952 Gruneisen l9 lo Hidnert and Sweeney lº28 Discussion: Anisotropic. The above values were calculated from the relation, Mean Value = l/3 ( || ) + 2/3 (–L), where ( || ) and (-L) signify the same property measured parallel and perpendicular, respectively, to the hexagonal axis. Table of Selected Values Temp. L. - L l di. Temp. L - L l du °k #. T L d'T °k #. T L dT 293 per 9K 293 per ‘’K –5 –5 –5 0 || 490 x 10 0. l40 || 356 x 10 l. 94 x lo lC) || 490 " 0.005 x 10° || 160 | 316 " 2. lo " 2O 4.90 | .04 || l80 273 | | 2 - 22 30 || 489 " . lé | 200 227 in 2 - 32 '' 40 48 6 | | . 33 | | 220 180 | 2. 39 § { 5 O 482 | | . 57 | 240 l32 | 2.44 | 60 4.75 | .8l | | 260 82.9 " 2.48 | 70 466 tº l. 03 | | 273 5 O - 4 " 2.5l | || 80 454 f : l. 22 | | 28O 32 . 9 in 2.52 | 90 44l | | l. 39 | 293 O ... O iſ 2.54 | | lOO 427 | } l. 54 | || 3OO – l 7 . 8 '' 2. 55 | | l2O 393 || l. 76 | || Taken from NBS 29 IX-N-1 ; |º # 54O 500 4OO 3OO 2OO |OO – 4O 5O THERMAL EXPANSION of MAGNESIUM |OO |50 2OO TEMPERATURE, *K 25O 2.7 2.5 2.O |.O i # s —| — O,5 3OO IX-N-2 Sources of Data : Other References: THERMAL EXPANSION OF MONEL Altman, Rubin, Ackerman l936 and Johnston l952 Aoyama and Ito l939 Fraser and Hollis-Hallet l'955 Krupkowski and de Haas lº28 Discussion: 67 Ni, 30 Cu, l. 5 Fe, "cold-rolled". Table of Selected Values tºp. º - PT # º: º - PT # 293 per K 293 per K O 251 x 107* | 0. 140 | 187 x 107* | 0.99 x 10"? 10 || 25l. " 0.003 x 107*|| 160 | 167 " l. O8 '' 20 25l. ! ! .02 | | 18O l44 I l. lº | | 30 251 | | .06 | | 200 l2l | | l. 20 | || 40 250 | | . 14 | | 220 96.4 " l. 25 | | 50 248 | || . 23 | | 240 70.9 " l. 29 | | 60 245 ! { . 34 I 260 44 . 7 '' l. 33 70 244 | | .46 | | 273 27. 1 " l. 35 ! I 80 236 j} . 57 | | 28O l5. 1 '' l. 36 | 90 230 | . 67 || 293 O ... O " l. 38 | lOO 223 | | . 75 | || 300 – 9 - 7 '' l. 39 | 1 l2O 206 | || . 89 | | Taken from NBS 29 IX-0–1 Kq ºn I DA ÁIdi 11 nuuu ºd• LP la (g–OlQſeº,|d|4|nuu) yła,Tp | N- O |,40 |, 25 |,OO O,50 O, 25 2OO 25O 3OO |50 TEMPERATURE, *K 2 C (Á) 2 $ >< Li ] –1 0, LJ 2 C H- |OO 5O 28O 25O 2OO |50 |OO c6z- (5_ol Kq ønıda KidųInu)Tī£5ā IX-0-2 Sources of Data: Other References: THERMAL EXPANSION OF NICKEL Krupkowski and DeHaas lº28, Nix and MacNair lº! l. Adenstedt l936, Altman, Rubin and Johnston l954, Aoyama and Ito l939, Disch l92l, Henning l907, Simon and Bergmann l930. Table of Selected Values Tâmp. P293 - PT l di. TÉmp : P293 - PT | 1 dB K L d'T K L dº L O L K 293 per K 293 per - –5 –5 –5 0 |224 x lo 0. 140 l71 x lo 0.88 x lo 20 224 | || 0.02 × 10^* l60 l52 | O . 98 '' 3 O 224. " .05 " 180 l32 | | l. O5 " 40 223 | ... 10 " 200 lll | 1. 10 . " 50 22 l " . 19 " 220 88 | 1 l. LS '' 60 219 '' . 28 '' 240 65 ! I l. 19 " 70 216 " . 38 '' 260 4l | || l. 22 " 80 || 2 ll. " . 47 " 273 25 | || 1 - 23 '' 90 206 " . 55 " 28O l6 | l. 24 " LOO | 20 l " . 6l. " 293 O ! I l. 26 | 1 l2O | 187 | | . 75 " 300 –9 | l. 26 " Taken from NBS 29 IX-P-1 ; | # 225 2OO I75 |5O |25 |OO 75 5O 25 THERMAL EXPANSION of NICKEL |OO |50 2OO TEMPERATURE, *K |.35 |.2O |O5 O.90 O.75 O,6O O45 O.30 O.[5 3OO e s l— IX-P-2 THERMAL EXPANSION OF NIOBIUM Sources of Data: Erfling l942. Other References: Hidnert and Krider lº 33. Discussion: Also termed columbium. Table of Selected Values sº º - PT # # *. *293 - PT ## 293 per"K *293 per ‘’K o 143 x 107* | 0. 140 | 99.4 x 10°l .56 × 10^* lO 16O || 87.7 " . 59 ° 20 143 '' .03 x 107*|| 180 | 75.5 " . 62 " 3 O || 143 '' ... O 9 tº 2OO | 63.0 " . 64 40 || 14 l " . 17 m 220 || 50.0 " . 66 50 139 " . 24. " | 60 || 137 " . 31. " 240 || 36.7 " . 67 " ' 7O | 133 " . 36 " 260 || 23 . l " . 68 " 80 | 129 " . 40 " 273 || 14 . 1 " . 69 " 90 | 125 " . 44 " 28O 9 . 2 " . 69 " OO | 121 " .47 m 293 O ... O . 70 " 2O lll. " . 52 300 | – 5 - O . 70 " |Ken from NBS 29 IX-Q–1 17O |50 |25 |OO 75 ; # 5O 25 5O THERMAL EXPANSION Of NIOBIUM |OO |5O TEMPERATURE, *K 2OO 25O |,O2 O.90 O.75 O,6O : O,45 – #5 ~ || “O O.30 O. 5 3OO IX-Q-2 f O.O 2 O.O2 O.O 4 O O 6 O. O.8 | r—ſ T-IT-TTTT i T-I-T-I-T-I-TTT T I-I-I-I }*-*s s- — tºº sº — Nb - 33 °/o Ti * | *4 Nb – 26 % Ti *= § b - $8 °/o Ti Gº |-- Nb - 9%. Ti —ſ |-sº Nb – 45%. Ti — * 3- - |- nº-asy, Tſ - – |--|--|--|--|--|- | | | | | | | | | | | I | 1 || | 2 3 4 5 6 7 8 9 |O 2O 3O 4 O 50 | OO 2 OO 3OO 4 OO Temper of ure, K THERMAL EXPANSION VERSUS TEMPERATURE FOR NB-T I-A LLC) YS THERMAL EXPANSION OF ARALDITE NO. 501 Sources of Data: Other References: Discussion: Laquer and Head l952. Epoxy casting resin made by Ciba Co. 40 g of the material was catalyzed with 2 ml triethanolamine . Cured 8 hr. at l20° C and then 24 hr. at 180° C. Table of Selected Values tºº. º - PT *gº. º - PT 293 293 O |1061 x 10-5 200 | 505 x 10-5 20 1051. " 220 || 4 lo " 40 || 1022 " 240 || 308 " 60 983 " 260 | 199 " 8O 935 " 273 || 122 " l00 880 " 280 81 " l2O 819 " 293 O " l40 75l. " 300 || – 46 " l60 676 " l80 594 " Taken from NBS 29 IX-R-l. 1 |[5O | f ; |||OO |OOO 900 8OO 7OO 6OO 5OO 4OO 3OO 2OO |OO –5O 5O THERMAL EXPANSION of ARALDITE NO, 50| |OO |50 TEMPERATURE, * K 2OO 25O 3OO IX-R-1. 2 THERMAL EXPANSION OF FLUCROTHENE or KEL-F Sources of Data: Other References: Discussion: Laquer and Head l952. Polychlorotrifluoroethylene. The samples were , respectively, from a 5 in . diameter rod of Fluorothene made by Union Carbon and Carbide and from a l/16 in . thick sheet of Kel-F made by M.W. Kellog and Co. - Table of Selected values *gº. º - PT º: º - PT 293 293 0 |1135 x 107* || 180 604 x 107* 20 lll.4 " 200 517 " 40 1070 " 220 424. " 60 || 1019 '' 240 3.24. " 80 962 " 260 214 " lOO 900 " 273 134 " l2O 834 . " 280 90 " l40 763 " 293 O " l60 686 " 300 - 52 '' Taken from NBS 29 IX-R-2. 1 ||50 |. i # |||OO |OOO 900 8OO 7OO 6OO 5OO 40O 3OO 2OO – 5O 5O THERMAL EXPANSION of FLUOROTHENE or KEL-F |OO |50 2OO TEMPERATURE, *K 25O 3OO IX-R-2. 2 THERMAL EXPANSION OF LUCITE Sources of Data: Laquer and Head l952. Other References: Discussion: Polymethylmethacrylate. "Probably DuPont Lucite". Average of two samples from rod stock. Table of Selected Values º: *293 "T º: *293 "T *293 *293 o 1134 x 107*|| 180 | 632 x 107* 2O ll 23 '' 2OO || 54 O " 40 | LO 92 '' 220 || 44 l " 60 | 1048 " 240 || 335 " 80 995 " 26O 22O " 100 936 " 273 || 136 " 120 869 " 280 91. " 140 796. " 293 O " l60 717 m 3OO | – 53 '' Taken from NBS 29 IX-R-3. 1 ||5O | ; ; |||OO |OOO 900 8OO 7OO 6OO 5OO 40O 3OO 2OO |OO –5O 50 THERMAL EXPANSION of LUCITE |OO |50 2OO TEMPERATURE, *K 25O 3OO IX-R-3. 2 THERMAL EXPANSION OF NYLON Sources of Data ; Laquer and Head l952. Other Reference S : Discussion : From 3/4 inch diameter rod. "Probably E. I. DuPont de Nemours and Co. grade FM-l". Table of Selected Values tºp. º - PT tºp. º - PT 293 293 o 1389 x 10^* || 180 789 x 10−9 2O |l 379 " 2OO || 673 " 40 || 1352 '' 22O 548 " 6 O || 1308 " 240 || 4 l 2 " 80 | 1247 '' 260 265 " 100 |1172 " || 273 161 " l2O || 1088 " 280 | LO 7 " l40 996 " 30 O O " 160 | 896 " – 6l. " Taken from NBS 29 IX-R-4. 1 |7OO ; | |6OO |400 |200 |OOO 8OO 600 # 4OO 2OO — |OO O 5O THERMAL Of NYLON |OO EXPANSION |5O TEMPERATURE, *K 2OO 25O 3OO IX-R-4. 2 THERMAL EXPANSION OF PIEXIGLAS Sources of Data: Other References: Discussion: Data from Laquer and Head l952. (In addition to the substances listed in the table, data have been given for lo specially compounded rubbers by Dunsmoor et al. 1958 and Trepus et al. 1959. These data consist mainly of values of (L -L-...) L 293 293 T78 Wood, Bekkedahl and Peters l939 a Polymethylmethacrylate made by Rohm and Haas CO . Lyon and Fritz lºs 2. Table of Selected Values Data from Giauque, Geballe, tºp. *293 T *T tºp. *293 - PT *293 *293 0 |1220 x 10"? 200 590 x 10−9 2O | 1210 " 22 O || 490 " 40 ll 60 " 240 370 " 60 lll O " 260 24 O " 80 | 1050 " 273 15 O " 1OO || 990 " 28 O || 99 " l2O 93 O " 293 O " 140 || 860 " 298 160 780 " 3 O O || – 55 " 18O 690 " Taken from NBS 29 IX-R-5. 1 |350 | | ; |2OO |OOO 8OO 6OO 4OO 2OO —IOO 50 THERMAL EXPANSION of PLEXIGLAS |OO |50 2OO TEMPERATURE, *K 25O IX-R-5. 2 THERMAL EXPANSION OF POLYSTYRENE Sources of Data: Other References: Discussion: Laquer and Head l952. (In addition to the substances listed in the table, data have been given for lo specially compounded rubbers by Dunsmoor et al. 1958 and Trepus et al. 1959. These data consist mainly of values of (*293-47s)/*293. Wood, Bekkedahl and Peters l939. Average of two samples from rod stock, both "probably American Phenolic Corp. grade 912A. Table of Selected Values Tamp. P293 - PT || Tân P: P293 - PT K L K L 293 293 0 1550 x 107* || 200 626 x 1075 2O | 1552 " 220 499 " 40 || 1466 " 240 3.68 " 60 1394 " 260 232 " 80 lº O8 " 273 l4 l " l00 l2ll " 28O 93 " l2O || 1105 " 293 O " l40 992 '' 298 160 | 874 " 300 –5 l " l60 752 " Taken from NBS 29 IX-R-6. 1 7OO ; ; | i. 6OO 4OO 200 |OOO 8OO 6OO 400 2OO H. — |OO O 5O THERMAL EXPANSION of POLYSTYRENE |OO |5O TEMPERATURE, *K 2OO 25O 3OO IX-R-6. 2 THERMAL EXPANSION OF POLY THENE jources of Data: - Laquer and Head l952. (In addition to the substances listed in the table, data have been given for lo specially compounded rubbers by Dunsmoor et al. 1958 and Trepus et al. l.959. These data consist mainly of values of (+293-178)/*293 )ther References: Wood, Bekkedahl and Peters lº 39. )iscussion: Polyethylene made by E. I. Du Pont de Nemours and Co. . Molded under 2000 psi pressure at 150°C for 10 min. Directional variations were negligible. See also Hunter and Oakes l945. Five filled polythenes were measured by Head and Laquer l952. Table of Selected Values *. º - PT º: º - PT 293 293 O 244.9 x 10-5 200 1439 x 10−9 2O 2439 ! I 22O |ll 99 " 40 2404 | | 240 || 919 " 60 23.49 || 260 594 " 8O 2279 | ? 273 || 359 " lOO 2194 !! 280 239 " l20 2089 tº J 293 O " l40 l964 | || 298 |160 l8l4 | 300 – 13 l " l60 1639 | | Taken from NBS 29 IX-R-7. 1 27OO | 25OO 2OOO |500 |OOO ; # 500 –2OO O 5O THERMAL EXPANSION of POLYTHENE |OO 150 TEMPERATURE, *K 2OO 25O 3OO : Temper at ure , F O.5 — 4 OO – 30 O –2OO — | OO 32 e | | | | O Jº – O.5 º Tron S verse —r __ — O k-mm Longitud in a _T — |.5 –2.O O 4 O 8 O |2 O | 6 O 2 OO 24 O 28O THERMAL ExPANSION VERSUS TEMPERATURE FOR POLYETHYLENE Temper a ture , K 32O Sources of Data: Other References: Discussion: THERMAL EXPANSION OF TEFLON Laquer and Head l952 Dunsmoor et al. l.958 Trepus et al. 1959 - Wood, Bekkedahl and Peters l939. Polytetrafluoroethylene. Extruded and annealed sample measured by Kirby lºS 6. He found that strained samples could have expansions larger or smaller than those of annealed Teflon, the differences being as large as 20%. Laquer and Head (1952) measured two samples of DuPont Teflon rod taken normal and parallel to the extrusion direction. The expansions parallel were roughly lS7% larger than those normal, and the average is lo to l8% larger than the the above data by Kirby. The data of Laquer and Head were used only to guide the extrapolation of Kirby's values below 80°K. Teflon has a first order transition at 20°C. Therefore we use 25° C as a reference temperature and tabulate 105 (+29s-PT) *298 above . Table of Selected Values Temp. *293 tº PT Tâmp. *293 º PT O L K L 293 293 –5 –5 O 2l 40 x lo l60 l540 x 10 20 2ll0 ! { l80 l400 | || 40 2060 | | 200 l240 | | 60 2000 | 220 lO50 | | 80 1930 | || 240 85.5 | || lOO 1850 | | 260 645 | | l20 1760 | 273 500 | l40 l660 | 1 298 O | || Taken from NBS 29 IX-R-8. 1 22OO ; | 3. –2OO O 2OOO |75O |500 |250 |OOO 750 5OO 25O 5O THERMAL EXPANSION of TEFLON |OO |50 TEMPERATURE, *K 2OO 25O 3OO IX-R-8.2 Sources of Data: Other References: THERMAL EXPANSION OF PIATINUM Nix and MacNair l942. Dorsey l907. Henning loo7. Onnes and Clay log 6. Scheel lS07. Scheel and Heuse lºC)7. Valentiner and Wallot l915. Discussion: Table of Selected Values . L – L l dI. Temp. – L dL º #. T I, at sº º T # 293 per OK 293 per K O 195 x 10^* ! 0. 140 | 132 x 107* | 0.77 x 10"? lO L95 | || 0.008 x 10^*|| 160 | 116 '' . 80 . " 20 195 | || . O5 | | l80 99 - 4 " . 83 '' 30 194 I . lS J1 200 82.4 " . 85 " 40 l92 | . 26 | | 220 65 ... O " . 86 " 50 189 | || . 38 | || 240 47.5 " . 87 " 60 185 | .47 | || 260 29 - 6 " . 88 '' 70 l80 | | .54 ! I 273 l3 ... O " . 88 '' 80 l'74 . 60 | 28O ll. 6 " . 89 " 90 168 | | . 65 293 O ... O " . 89 " l00 l6l | . 68 | 300 – 6.4 " . 89 " l2O l47 ! I . 73 | | Taken from NBS 29 IX—S-1 ; ; 23O 225 2OO | 75 |50 |25 |OO 75 50 25 5O THERMAL EXPANSION of PLATINUM |OO |50 2OO TEMPERATURE, *K 25O O.92 O,90 O.80 O,7O O,6O O.5O O,4O O.[O 3OO | IX-S-2 THERMAL EXPANSION OF QUARTZ (CRYSTALLINE || ) Sources of Data: Buffington and Latimer l926 Dorsey 1908 Lindemann l912 Nix and MacNair l94l Scheel l907 Sosman l927 Other References: Measured parallel to the optic axis. Nix and MacNair measured expansions perpendi— cular to the optic axis but presented only a coarse graph of the results, from which the following values of lo (dL/LdT) were taken: 7 at loo°K, 10 at 150°, 12 at 2009, 13 at 250°, 14 at 300°K. Discussion: Table of Selected Values tºp. º tºº PT # # tºp. º tº-e PT ## 293 per 9K 293 per ‘’ 90 | 107 x 107* | 0.27 x 10" 240 || 36.7 x 10T 0.64 x 10" lOO | 104 " • 3 l " 260 || 23 - 6 " 68 " l2O 97.7 " . 37 " 273 || 14. 6 " 7 l. " l40 89. 8 '' . 42 " 280 9. 6. " 72 " l60 80. 9 " . 47 '' 293 O ... O " . 75 " l80 7 l. 2 " . 51. " 3OO 5.3 " 76 " 200 60 - 5 " . 55 " 220 49. L. " . 59 " Taken from NBS 29 IX-T-1 |||O O,88 |OO O.80 75 o,60” º C O > -C, > -C, Q) Q) E E g O > _2^ > 2. S. Tº + E -, * 5 5O O.4 O X. O 5 H. —l a. |_| 3 #| || El's CN —l -|_| 25 O, 20 THERMAL EXPANSION of QUARTZ or CRYSTALLINE, I (MEASURED PARALLEL TO OPTIC AXIS) O O - O –O,O8 O 5O |OO |5O 2OO 25O 3OO TEMPERATURE, *K IX-T-2 Sources of Data: Other References: THERMAL EXPANSION OF SILVER Ebert l928, Nix and MacNair l942. Ayres 1905, Buffington and Latimer l926, Dorsey l907, Henning l907, Keesom and Jansen l927, Lindemann l9 ll. Keesom and Kohler l933 . Owen and Williams l954. Shearer l950. Table of Selected Values º: º *T # tºp. º *T ## 293 per 293 per 9K o 413 x 107* | 0 120 308 x 107* | 1.59 x 107* 10 || 4 13 " 0.01 x 10^*|| 140 276 | | l. 65 " 2O || 412 '' •l ſº I l60 | 242 | l. 69 " 3 O || 4 10 " ... 3 | || l80 || 2:08 | || l. Tº 3 '' 40 405 " ... 6 ! ! 200 173 | || l. 77 . " 50 || 398 " ... 8 | || 220 l37 || || l. 81 '' 60 | 389 " l.0 | | 240 | 100 ! I 1 - 85 " 7O 378 " l. 2 260 63 1 - 88 '' 80 || 366 " l. 3 | || 273 38 | || 1 - 9 O " 90 353 " l. 36 " 28O 25 | | l. 9 l " lOO || 339 " l. 46 " 293 O I l. 92 '' 300 l3 | l. 93 '' Taken from NBS 29 IX—U-1 45O 40O 35O 3OO º C F 250 Q) E d > _> 2. 2OO Tr; E |50 H. —l ro ...] & 3| } (NJ — |OO 50 O –2O 5O THERMAL EXPANSION of SILVER |OO |50 TEMPERATURE, *K 2OO 25O 2,25 2,OO 1.75 |.25 |.OO O,75 O.5O O.25 3OO | —l{H s * IX—U-2 Sources of Data ; Other References: Dorsey l907 THE MAL EXPANSION OF SOFT SOLDER Discussion: 50 Pb, 50 Sn. Table of Selected Values Temp. L – L l di. Temp. L - L l di. °K #: T L dT °K # T L dT 293 per OK 293 per 9K –5 –5 –5 –5 90 467 x lo l. 96 x lo 220 182 x 10 2.41 x 10 l00 447 | | 2.00 Ji 240 l33 2.46 | | l2O 407 D D 2.07 260 83 | 2 .50 | l40 3.65 | | 2. l., | | 273 5 l | 2. 52 ! I 160 321 | 2. 22 | 280 33 | 2.53 | | l80 276 | 2. 29 | 293 O | 2.54 | 200 229 | 2.35 | | 300 — l8 | 2. 55 Taken from NBS 29 IX-V-1 46O 450 400 350 3OO 250 2OO |50 ; # |OO 5O –2O 5O THERMAL EXPANSION of SOFT SOLDER |OO |50 TEMPERATURE, *K 2OO 25O 4,OO 3,50 3,OO 2.50 2,OO |.5C) º |.OO O,50 3OO §: § IX-V-2 THERMAL EXPANSION OF STEEL AISI 304 Sources of Data ; Other References: Discussion : Altman, Rubin, and Johnston l954 Beenakker and Swenson l955 Fontana lº & 8 Fontana, Bishop, and Spretnak l953 Furman l950 Composition limits for this alloy are: 0.08 max. C, 2 max. Mn, l max. Si, l8-20 Cr, 8– ll Ni. Altman et al., found small irreversible effects and, below 35°K, small negative values of expansion coefficient. While we have given their results inferior weight in this region, the effects were undoubtedly real and attribut- able to martensitic transformation on cooling (Reed and Mike sell, l958). In this alloy the extent of transformation that is produced by cooling is sensitive to composition and has been found to vary from zero to about 50%. (R. P. Reed, private communication) . Complete transformation would be accompanied by a mean increase in linear dimension of roughly 1% (Ward, Jepson, and Rait, l052; and Fiedler, Averbach, and Cohen, l055.) Table of Selected Values **. º - PT ## º: º - PT # # 293 per TK 293 per 9K O | 296 x 1075 0. 140 218 x 107* 1.20 x 10"? 10 || 296 " 0.001 x 10°ll 160 | 193 | l. 28 '' 20 296 " ,002 " 18O l 67 I l. 34 " 30 296 " ... O 62 " 200 l39 | || l a 40 " 40 || 296 " , ll | || 220 lll ! } l. 45 " 5 O 294 " . 23 | || 240 || 8 l. 7 '' l. 49 " 60 29]. ” .43 | || 260 || 51 - 4 " l. 53 '' 7O || 285 " .6l | 273 || 3 l - 4 " l. 55 " 80 || 279 " . 75 | || 280 || 20 - 5 " 1. 56 " 90 271 " . 87 | || 293 O ... O " l. 59 " lOO || 26l. " .96 | 300 || – ll. l " l. 60 " 120 24 l " l.09 | Taken from NBS 29 IX—W-1. 1 | ; 32O 3OO 25O 2OO |50 |OO 5O – 40 O 5O THERMAL EXPANSION of STEEL A. l. S. I. 3O4 |OO |50 2OO TEMPERATURE, *K 25O |,92 | 80 |.5O |.2O O.90 O.6O O3O 3OO —i. ~5 ~5 —|| —l IX—W-1. 2 | § : § O of---------- --------- | C C --- CJ H------- - - - - - - - ------ ** *** *... • *- *-* * * * * - - - - - - sº * - - - - - - - - - , ... • *-*. . . --- ----- | \ C O **, *-** rC) | *~~~ * ------- ( ) - . --- *** Ç. H K; | • **** *** **-*---- c | CNJ O | judo a od ‘uoſsu DJ: 3 | Dull ot!...I. g s : § 9 ; CJ 11 : ſ }• * ; i. º ; i #. i | | f IX—W-l. 3 THERMAL EXPANSION OF STEEL AISI 310 Sources of Data: Furman l950 Other References: Discussion: 0. ll C, l. 5l Mn, 0.42 si, 0.0l S, 0.02 P, 27. 2 Cr, 21.6 Ni, bal. Fe. Annealed 30 min. at 1950° F and water quenched . Table of Selected Values tºp. º PT # # tºp. º PT # ; 293 per K 29.3 per K 90 246 x 107* |0.89 x 107* || 220 | 101 x 107* | 1.32 x 10^* lCO 237 " .9l | || 240 74.5 " l. 36 " l2O 218 " . 98 I 260 46 - 9 '' l. 40 " l4O | 198 '' l. 07 | | 273 28 - 6 '' l. 42 " l60 || 176 " l. 14 | || 280 l8. 7 " 1.43 " 180 152 " l. 21 I 293 O ... O '' 1 .45 " 200 127 " l. 27 " || 300 -10.2 " l. 46 '' Taken from NBS 29 IX—W-2. 1 26O 25O | ; ; 2OO |50 |OO 50 5O THERMAL EXPANSION Of STEEL A. J. S. I. 3|O |OO |50 2OO TEMPERATURE, *K 25O |,56 |,50 |.2O O.90 O.6O O.30 3OO #5 "C "cy IX—W-2. 2 : - 3 ! O. f -ol - O.2 - O.3 - O.4 Tempero lure, F – 4 OO – 30O - 200 — (OO 32 O I- y I Y Y I y I I | I | | : . : - i ! ! : : - : $ - - g - - *. - t t I . i i * t * - | } t : | | $ t f { ! Y : i n . : t | t t l g : : i P i } 2^ ſ : 2T } | | : } { _^ * ſ h t - _^ - } ! - y ! - - & 3. t 2- ‘. $ | - . { * - $ ! . . ł * i i _^ | i ~ | . : - \ - t . ! t t | | . : > | t : i : : ; | - - i i . { . i _T $ . | . = -T - i : - ; i ! ! ! ! ; - ſ - - } t i $ t | – : * - i ! : \ i } ! i º : ; i t ! º . } : i ! ! f - i & O CO *_º - tº º T- ºr y A' exp A N G Cº 2 O O 2 . O 2 B O 2 O SO K Temper cture, V = ~, o s -- ", n = PA+, − = - or, TY pr: a to STA N LESS STEEL Sources of Data: Other References THERMAL EXPANSION OF STEEL AISI 316 Beenakker and Swenson 1955. Furman l950 Lucks and Deem lºS8 Discussion: Composition and heat treatment of sample not stated. Composition limits for this alloy are : 0.10 (max.) C, 2 (max.) Mn, l (max.) Si, lo-l9 Cr, l0–l4 Ni, 2-3 Mo, bal. Fe. Table of Selected Values Temp. L – L l dB Temp. L. – L l dB °k #. T L dT °k * T L d; 293 per Ok 293 per K –5 –5 –5 O 297 x lo 0. 140 214 x lo l. 21 x lo lO 297 " 0.004 x 10°ll 160 | 189 " l. 27 . " 20 297 | || . OO 9 | || 18O l63 | 1 l. 32 | | 30 297 | || . O5 | || 200 l36 | | l. 36 | | 40 296 | | . 14 | 220 lO9 | || l. 4l | 1 5 O 2.94 | || . 27 | 1 240 80 - 1 '' l. 45 | 60 290 .43 | 260 50 - 6 " l. 50 ! { 70 285 | | . 65 273 30.9 " l. 53 | | 8O 277 | || . 82 | | 28O 20. 2 " l. 54 | | 90 269 | || .94 | || 293 O ... O " l. 57 | || lC)0 259 | || 1.02 | | 300 —ll. O " l. 58 | 1 l2O 23.7 | | l. 13 ! Taken from NBS 29 IX—W-3. 1 32O 3OO 25O 2OO 15O | |OO ; # 50 5O THERMAL EXPANSION of STEEL A.I.S.I. 3|6 |OO |50 TEMPERATURE, *K 2OO 250 1.92 |.8O |,50 O.90 O.6O O3O 3OO | —J|H ~5 Iro —|—| IX-W-3. 2 O29) TBELS SSET NIV i S 9 | 8 = c. Al H O -i = & fil. V d'Ed W. El Sf. S ti = A NO ISN V ∈ XE T, v w ŁE, , , , ył º 9 u n ≠ 0 ) a du 9 li O Q?O tº 2OC) ZO9||O 2 |O 8O iz ſº-º-º- - - - - - -- ~~~ . ... • - ?-, -- *** --------- a --... - ~- famº --------------- * ** -ºs--- --- *------------ - }||{: }}}||· {-}*{ #|}:| _)~~) • ► ||}|__)+” |{t■—*} - {4&·Lºrſd! {;!·w*| !! m.-{! }-}-}! ||- •}į |{į*!į!« |į| ____^.í;| ||:Lºr:*+ |{||}}- }}{ |i;! :||}}}| ||| }||- }{ ... • -- * * * * * * * * * * *.*-- * - - - - - - - - - - - - - - - , , we - - \ -- - - - wº-- }*----------- - - ------ **~~ |-- }** -- - - - - - - - - - - - - - - - - - - - - - --~... ---- |---- - *- M--------- { !|-| | 1|||–||| 22O O|-OO2 -O O2 -O Oſº ~ + '3 → n | 0 || 3 duu 31. vºo- |U OO Jºd ‘uo!3 uod (3 |Du Jaul IX-W-3. 3 THERMAL Sources of Data: Other References: EXPANSION OF STEEL AISI 347 Furman l950. Lucks and Deem l958. Discussion: 0.07 C, l. 74 Mn, 0.56 Si, 0.006 S, 0.019 P, 18.65 Cr, ll. 3 Ni, 0.77 Nb, bal. Fe. Annealed 30 min. at 1950° F and water quenched . Table of Selected Values Temp. L – L l di. Temp. L – L l dB °k #2 T L dT °k #. T L dT 293 per ‘’K 293 per ‘’K –5 –5 –5 –5 90 262 x 10 0.94 x lo 220 lO9 x 10 1.40 x 10 1 OO 253 . 98 | || 240 80 - 2 '' l. 46 ! I l2O 233 | l. O5 | | 260 5 O - 6 " l. 50 | 1 14 O || 2 ll. " 1. 13 '' 273 3 O - 9 '' 1.53 " l60 187 | | l. 21 280 20 - 2 " l. 54 | | l8O 163 ! I l. 28 | | 293 O ... O " l. 56 | || 20 O 136 | | l. 34 300 —ll ... O " l. 57 | || Taken from NBS 29 IX-W-4. 1 | ; # 270 25O 2OO |5O |OO 5O –2O () 50 THERMAL EXPANSION of STEEL. A.I.S. ſ. 347 |OO |50 TEMPERATURE, *K 2OO 25O |.62 |,50 |,2O O.90 O,6O O.30 3OO | tle ~5 to IX-W-4. 2 T331S S SETNI VLS I 39 Ed AL E O = E&HfI_LVE Ed WEL STIS BEA NO I SNV ci XE T, VA L-LI-, , , O??O8 2 X ‘9 a n | O || 9 du 3 I. O ț7 2O O 2O9||O 2 |O8O vO |*țz 'O'- -| } | Ç’O- _º^2. ‘O -- | 1:0- | 0 ||| |}} || –i i|–|—) ro 29.OO | –O OZ-O O 2 -O Ot» – - º a un in 1 ad ula . 4uaoua d ' uols updx E | D u uaul IX-W-5 Sources of Data: Other References: THERMAL EXPANSION OF STEEL, S.A. E. lo20 Altman, Rubin and Johnston l952 Beenakker and Swenson 1955 Dorsey l910 Cast Gregg l954 Discussion: 0.18 C, 0.33 Mn, 0.0l Si, bal. Fe. According to Beenakker and Swenson, iron had the same thermal expansion as lo20 steel within their experimental uncertainty of #3x107° in AL/L. Table of Selected Values Temp. L — L l di. Temp. L – L l di. °K #: T L d'ſ, °k # T L d'T 293 per K 293 per ‘’K –5 —5 –5 O 202 x 10 0. l40 l55 x 10 O . 78 x 10 lO 160 | 138 " . 87 " { – 5 30 20 l | . 03 | 200 lCl | . 99 | | 40 201 . O8 | 220 80. 7 " l.04 | 1 5 O 200 | | . 14 | || 240 59. 6. " l. 08 | 60 198 |l • 23 | 260 37.7 " l. ll U 70 195 " . 31 | 273 22.9 " l. 14 " 80 l92 | || . 40 | || 28O lS. l " l. 15 || || 90 187 | . 48 293 O ... O " l. 17 | || lOO 182 | } . 55 ! { 3OO –8. 3 '' l. l.9 | | l. 20 170 I . 68 DJ Taken from NBS 29 IX-X-1 (4_OI Kq enība KidųInu) ». Jød• LP} Tp ĻOO\OOuſ) •----•),OOOOOOO 3OO 25O z 92O 5 8Q C/O---- 2 . §! Lu § <ſ LL] (/)3 – –1 <[ u ] > Lų Or H- u I C/D TOEO H− +3Q CD uſ) O 75 5O 25 O —|O ! OO!!OOuſ)CD Q\!ON-U OC\fO Q\!CN}<æ»-•--• 262-1 _O! Kq 9nĮDA Á{d}|}|nuu)TF26z- (g TEMPERATURE, *K IX-X-2 : O. —O. I —O. 2 — O.3 —O.4 – 4 OO – 30 O – 2 OO —IOO 32 | | _T -> Double norm a ſized and tempered 4 O 8O | 2 O - | 6O 2 OO 24 O Temperature, K THERMAL EXPANSION VERSUs TEMPERATURE FOR 9 NI STEEL 28O 32O THERMAL EXPANSION OF TANTALUM Sources of Data: Nix and MacNair l942 Disch l92l Hidnert l'º 29 Other References: Table of Selected Values º: º - PT # tºp. º - PT # 293 per K 293 per K O 143 x 10-9 || 0. 140 95.1 x 10^*lo.58 x 10^* l0 143 '' 0.005 x 16°ll 160 | 83.5 59 " 20 143 " .04 | 180 || 71.5 " . 60 " 30 lA 2 '' •ll ! I 200 59.3 " ... 61 " 40 14 l " . 20 220 47 ... O " . 62 '' 50 138 '' . 28 ! } 240. 34.4 " . 63 '' 60 135 . 35 | | 260 21.6 " . 65 " 70 l31 " . 41 | 1 273 || 13.1 " . 65 " 80 127 | .45 | || 280 8.5 " . 66 '' 90 122 " . 49 | || 293 O - O " 66 '' lOO 117 " . 52 | 1 300 | – 4 - 6 " . 66 '' l2O 106 . 55 | | Taken from NBS 29 IX-Y-1 17O 15O |25 º C > -Cl $ OO TS > P .0- T-5 E 75 ; # 5O 25 5O THERMAL EXPANSION Of TANTALUM. |OO |50 TEMPERATURE, *K 2OO 25O O,6O O,5O O3O O.2O O,O 3OO O,40 O.68 El's To TC IX-Y-2 Sources of Data : Other References: Discussion: THERMAL EXPANSION OF TIN (WHITE) Erfling l939 Cohen and Olie l910 Dorsey 1907 Gruneisen l910 Anisotropic. The above values were calculated from the relation, Mean Value = 1/3 ( !! ) + 2/3 ( L ), where ( || ) and (-L) signify the same property measured parallel and perpendicular, respect L yely, to the tetragonal axis. Thewlis and Davey (1954) measured the lattice parameter of grey tin, a brittle form with diamond-type lattice that is stable below 18°C. Their data cover the range , -l 30 to +20°C, and are, represented by a constant expansion co- efficient, dT/LdT = 4.7 x 107°deg-lc. See also Cohen and Olie (1910). The ordinary ductile variety (white tin) if pure may transform to grey tin at low ambient temperatures, but is stabilized by impurities. - Table of Selected Value S º: º - "T # # º: *293 "T # # 293 per O K *293 per 9K O 447 x 10"? 140 290 x 107* | 1.71 x 107* lC) 447 | 07 x 107*|| 160 255 " l. 77 " 20 445 | || ... 3 § 1. 180 219 '' l. 82 " 30 44l | | ... 6 | | 200 | 183 '' l. 87 '' 40 43.3 | || . 9 | | 22O | 1.45 " l. 9] " 5 O 423 1 | •l | 240 | LO 6 " l. 95 " 60 412 | | • 2 | | 260 66 e 7 " l. 99 '' 70 399 | | l. 3 | || 273 4 O - 7 " 2. Ol " 8O 385 | || l. 42 " 28O 26 - 5 " 2 . O 3 '' 90 37 l | l. 5 O " 29.3 O ... O " 2 . O5 " lOO 356 | | l. 56 " 300 | –l4.4 " 2 - O 6 " l2O 3.24 | || l. 64 " Taken from NBS 29 IX-Z—l 2.25 45O 2.OO 4 OO |.75 350 (e_O! Kq ønIda Kid!\nu) ». Jød º # LO CN] • •■ 1,50 (5_Oſ Áq anſ da ÁIdųInu) O O 2OO H. p —|—|| O.75 p 26z- 15O l-i_26z- O.5O |OO 2 Q (/) ? Cl- >< Li ] –1 Cr LLI ~~ H- O,25 5O |OO |50 2OO 25O 3OO TEMPERATURE, * K 5O –3O IX—Z-2 THERMAL ExPANSICN of ZINC (Cont.) Table II AVERACE EXPA:SIC; of ZIłC+ Teip. Tº - a ſlai, º, ..]|Teº ||23 = F | lar, r. º. *K L293 || L dT *K L233 L dT o | 685 - 10-3 || 0 || 120 || 92, loº 2.53 × 10^9 | 10 633 w og X 10° ll;0 || || ||O " 2.63 " 20 | 682 " .3 " 160 336 " | 2.73 " 30 677 § 1 .8 ( ) 18X) 33l ! . 2.8.l. t? l;0 | 667 " l. 3 § 1 2CO 27] " 2.87 " 50 || 652 " 1.7 " 22O 216 " 2.9l " 60 633 ! 2. i | | 2.0 157 | 1 2.9}; * } 70 6l. " 2.2 ! I 260 98 " 2.96 " 80 588 " | 2.3 " 273 || 60 " | 2.9'ſ " 90 565 $$. 2.36 § 7 2&O 39 | | 2.93 * : loo 5.1 §§ 2. l;2 § 1 293 O 2.99 ! { -- 3CO | -2l " 3.CO " cassº ºn tº tº G. W. G. :) - tº º, IX-AA-1 700 35 6OO 3O 5OO 2.5 'o P- * * 400 20 0 g C s > > -O 2. g .9. S *- > > > 5 3OO 1,5 5. H. =} E 7|3: * Y |- O —l th- - 2OO I.O. § —J H. "O -o - || – | OO O.5 THERMAL EXPANSION of Z N C O O - 4 O - O2 * O | OO 2OO 3OO TEMPERATURE, *k IX-AA-2