CIHM Microfiche Series (l\/lonographs) ICMH Collection de microfiches (monographies) |i| Canadian tnstitute for Historical Microreproductions / Institut Canadian da microreproductioni historiques K -l.^.tj: I?" ;-, i J .ii'. 'i-*** "ii'i. ••ZiiiM- ..»*■,•. j*wj« , ' . :'--'ita -^ = ' Technical and Bibliographic Notes / Notes techniques et bibliographiques The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may bo bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below. Coloured covers / Couverture de couleur □ Covers damaged / Couverture endommag6e □ Covers restored and/or laminated / Couverture restaurde et/ou peiiicul^e I I Cover title missing / Le titre de couverture manque I I Coloured maps / Cartes g^ographiques en couleur □ Coloured ink (i.e. other than blue or black) / Encre de couleur (i.e. autre que bleue ou noire) I I Coloured plates and/or illustrations / D D a □ D Planches et/ou illustrations en couleur Bound with other material / Reli6 avec d'autres documents Only edition available / Seuie Edition disponible Tight binding may cause shadows or distortion along interior margin / La reliure serrde peut causer de I'ombre cj de la distorsion le long de la marge int6rieure. Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / II se peut que certaines pages blanches ajout^es lors d'une restauration apparaissent dans le texte, mais, lorsque cela 6tait possible, ces pages n'ont pas 6t6 fiimSes. Additional comments / Commentaires suppl6mentaires: LInstitut a microfilms le meilleur exemplaire qu'il lui a M6 possible de se procurer. Les details de cet exem- plaire qui sont peut-Stre uniques du point de vue bibli- ographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la mStho- de nomale de filmage sont indiqufis ci-dessous. I I Coloured pages / Pages de couleur I I Pages damaged / Pages endommagSes □ Pages restored and/or laminated / Pages restaurtes et/ou pelliculSes Q Pages discoloured, stained or foxed / Pages d6color6es, tachet6es ou piquSes I I Pages detached / Pages dfetachSes \y\ Showthrough / Transparence □ Quality of print varies / Quality indgale de I'impression □ Includes supplementary material / Comprend du materiel supplSmentaire I I Pages wholly or partially obscured by en^ta slips, — ' tissues, etc., have been returned to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont 4t6 fiimSes k nouveau de fafon k obtenir la meilleure image possible. j I Opposing pages with varying colouration or ' discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des decolorations sont fllmSes deux fois afin d'obtenir la meilleure image possible. Thli Kwn i> turned « tlw r*<:'jction ntlo chackad Mow / Ce ctocumnt Mt film* tu Uux d* rMucUon Indlqirf cl-dn«ou«. lOx 14x 18x 12x 16x 20x 22x 26x 30x 24x 2Sx □ 32x The copy ftlmtd h«r« had b««n rtproduetd thinks to th* gantrosity of: Queen's University Dept. of Geological Sciences Library Th* image* appaaring hara ara tha bast quality poaaibia conaidaring tha condition and iagibility of tha original copy and In kaaping with tha filming contract apaclficatlona. Original copias in printad papar covar* ara fllmad beginning with tha front covar and anding on tha laat paga with a printad or illuatratad Impraa- sion, or tha back covar whan appropriate. Alt othar original copiaa ara fllmad beginning on the first paga with a printad or Illuatratad Imprea- aion, and anding on the last paga with a printad or Illuatratad Impression. The laat recorded frame on eech microfiche shall contain the symbol ^^ (meaning "CON- TINUED"), or the symbol V (meaning "END"), whichever eppllea. Mapa. platea, charta. etc., may be filmed at different reduction ratioa. Those too large to be entirely Included In one axpoaure are filmed beginning In the upper left hand corner, left to right and top to boRom, as many frames aa required. The following diagrama illustrate the method: 1 2 4 5 L'ocmplair* filmt fut reproduit grica 1 la gtntroaitA da: (kjeen*s University Oept. of Geological Sciences Library Laa imagai luivantaa ont M raproduitaa avac la plua grand aoin. compta tanu da la condition at da la nattati da I'axamplaira 1i\mt. at »n conformitt avac laa condltiona du contrat da filmaga. Laa axamplairaa originaux dont la couvanura an papiar aat imprimAa . MINKS BRANCH Booiin Haaicb, P»p., DincToi. rBTO4JtTlNNo.au Mineral Springs of Canada. IN TWO PARTS PART a. The Chemical Character of atMiM Canadian Mineral Sprinft*. R. T. Elworthy, B.8c. % OTTAWA GovtaiMBlIT PlICDHe BOH^O Mil \^ i^'j^'yT^ - dt ' I #^ ^. Wy^.J':- "^JiCT >m^^ CXNADA I) I !• A R T M i; N r O I M I N E S Nov Maiitin llimiM.i. MiNnnn K li. McCcinnili, DtPUTV MmiHtm, MINES BRANCH Kit-KNi-- ![\ANhi. I'M I) . DmKcroK, fBlUXETIN No.liil Mineral Springs of Canada. liV TW(> HARTS PART II. The Chemical Character of some Canadian Mineral Springs. R. T. Elwortliy, B.Sc. ottav;a floVKRNMENT PRU'TISfi Ill'REAL 191S LETTER OF TRANSMITTAL. RUIIKNF. Haanii., I'llT). Oir cr Mines Branch, I department of Mineti, Ottawa. Sir- I beg to submit the results of an iiivcsliKation of the chemical character of Home Canadian miner \l npriniia, lonstilulinH ''art II of the rq>ort on "Mineral Springs of C ada" Part I, entilleil "The Radioactivity of some Canadian Minem -rings", is now in the press. These two reports contain the complete results of the work that has thus far been undertaken. (*.Hi CONTENTS. Page Introductory Definltlona In connexion with mineral waters. What is meant by mineral water . Diatinction between spring and well water Distinction between mineral and sanitary analyKiA The constituents of a mineral water Statement of the results of a water analysis. Statement in ionic form superior to statement of lijpoilKtiriil combinm; Reacting values Oasslflcatlon of the waters. Chase Palmer's classiiicatioii , Haywood's classification Collection of samples, and the methods of analysis. Procedure in the field Field observations and measurements Methods of analysis , , Accuracy of the analyses Description of Springs, and tabulated analyses. Eastern Ontario . Western Quebec Alberta tl3 Relation of chemical constituents to geologic formations tSl Therapeutics of mineral waters 154 Economic value of the springs. Statistics 156 Development of Canadian Mineral Waters I0(> Canadian Mineral Spring Pesorts 164 Table of Springs, arranged according to class 166 Bibliography of methods o4 clsMification of mineral waters 108 ILLUSTRATIONS. Photographs. Page 34 44 I. Carlsbad Springs, Ont 11. Sulphur and Saline springs; Caledonia Springs, Prescott co., Ont . III. Gas spring: Caledonia Springs, Prescott co., Ont 44 IV. La Providence spring, St. Hyacinthe, Que 96 V. St. Leon (Lupien) spring, Que M VI, Spring at B. nhier, Que 106 VII. Middle spring and Cave, Banff, Alberta 134 VIII. Cave spring, Banff, Alberta 136 IX. Basin spring, Banff, Alberta 136 X. Government swimming bath, Banff, Alberta 142 Drawings. Fig, 1. Sketch map of Carlsbad Springs, Ont 34 , 2. Sketch map of Banff, Alberta U7 '*-ir *ri.ii"iii^' i?rS3S5IT^l?kSSTsrS^ ■1-S:?> 'iit'^mA'' n ,;i^^/ i- TV. PART n. CHEMICAL CHARACTER OF THE WATERS. ^ 'd'^-' nmm SOME DEFINITIONS IN REGARD TO MINERAL WATERS. WHAT IS MEANT BY MINERAL WATERS. In its original signification the tt'rni "mineral water" was restricted to those natural spring waters which were supposed to possc^s medicinal properties, either by reason of certain salts or mineral constituents which they contained in solution, or on account of gases with which they were saturated. Yet some springs, having considerable economic importance, yield waters of lower mineral content than water supplies of many cities, and, in fact, owe their vakie to their great purity. The term mineral water has a wider interpretation to-day, and is commonly accepted as including almost all waters which are bottled and sold as drinking waters, even though they have a low mineral content. The International Food Congress, held in Paris in 1909, adopted as a definition: "A mineral water is a natural water proposed for consumption on account of its special therapeutic or hygienic properties." This definition has been adopted by the United Stales Bureau of Chemistry, in the various reports they have published on American Mineral Waters, and is also used in the U.S. Mineral Resources Reports, deaUng with mineral water statistics. Since it is a well established fact that almost all fresh water springs are radioactive, such waters might easily be classed as mineral waters under the old definition that mineral waters possess some propmrty of therapeutic import.' ze. Fresh water springs, however, seldom contain any permanent radioactive properties, and the definition would be no longer satisfactory after the water had l>een bottled for a little time, when the radium emanation would have almost completely died away. Several other points of interest in regard to the definition of mineral waters and of natural waters were also discussed by the International Food Congress already mentioned. A brief summary of them is given in .i bulletin' published by the U. S. Department of Agriculture. They refer, chiefly, to regulations fixing the names of mineral waters; pr venting confusion between natural and artificial waters; and dealing with t! latural salts obtained from the springs by evaporation. DISTINCTION BET'VEEN SPRING AND WELL WATER. A spring is usually defined as a w^ater rising naturally to the earth's surface, with sufficient volume to cause a distinct current and overflow. A boring in the ground, sometimes only a few feet in depth, sometimes hundreds of feet, which taps the underground water circulation, constitutes a well, An artesian well is one in which the water flows naturally to the surface, and is therefore an artificial spring. Often a spring and a well, situated in close proximity, may yield waters of similar composition. Yet 'U. S. l>em. ot An-.-,. Bur. of Chfni.. Bui. 139. Amerkan Mineral Waters. Tlie New Enelaiid Slate* p. 9. 1911. ,J^ ,„■.', V. it U an undoulitwl fact that a walir advertised asa spring water haa greater popularity tlian if its sourto is knc.wii to Ik; a well ; and many waters obtained from wells are for this reason, sokl as spring waters. 1 1 is unlikely, however that any d.lference will exist l«twcen the therapeutic properties pos.essea l>y two similar w.iters, one issuing from a spring and the nthcr from a well, providwl thai both sources are satisfactory from a sanitary standpoint. THK DISTINCTION BETWEEN A MINERAL AND A SANITARY ANALYSIS. It was si,itc* rocks surh a** Kr^nit**** ^nd gneisses, the chief conatitutnts will Yte Modiuni and potassium carbonates, and bicar- honatcs; but If Mdimentary formations have Ijecn traversed, calcium and magnesium salts will Ix; predominant. Much sodium chloride or common lalt in a water will inf.icate that its circulation has In-en in therieighboarhood of marine deposits containing Wds of salt. The histoiy of the underground course of a water, however, is very complex, since many chemical reactions may take place between the constituents of the water \nd those of rocks over which it flows. Se\'eral of the springs in Quebec and Ontario were the subject of study by Dr. Sterry Hunt.' many years ago, and the probable origin of the constituents and the changes in composition that the waters undergo were considered. Comparison between the analyses made by Sterry Hunt and those tabulated in the report show that little change has taken place during the hst thirty years, and that the constituents, in the waters, owe their presence to the same processes as described by him. ' for information on uniitTBround water ciri; illation, tlie reader ii referred to; — Kins. Franklin HiTuiii. ' Printiples and conditioiu of the movements of urouiid water", U G*?ol. SjiV I9th Ann. Rep., Pt. 11, pp. ftl--|84, imn. G«ikie. A.. '"Tenboolf of Gcolosy," 4ih i-diiion. vol. I. pp. 46S-S. Mager. Henri. "1*8 Eaux Soaterniines ft Its inoyens de le3 dfcouvrir." chapter* 1, I, and 3. PaHi, lou. Von Heimhalt. Hani Hofer. GrundwaMer und Quellcn. Braiin«-hweiK. 1912. Also many of the papers on water supply, published by the United States Geolotiit:al Survey. ■* Sterry Hunt, Chemical and Geolosical Eesavs. chaciters 4. 5. and 6. IS7K. ^*i. t The following substances, either iheniral elements or "individualm," or associations of elements railed radiili . have been sought for in the waters, and in most cases the prupijrtlon^ in which they are present have been determined: — Element or radicle. A I teal ii'!.. Scxiium , Potaiwium Lithium AmmoniLm Allcalinf earths. Calcium Strontium Barium Magnesium Hy(lrn)(en and metals. Hydrosen . . Iron (lerniua) Aluminiinii Manganese Strong and radicles. Chlorine Bromine. Iodine Sulphuric arid Nitric acid Weak acid radicles. Bicarbonic acid Carbonic acid . . . Sulphide rhoBphoric acid ... Metaboric acid . . Considered as Silica , Alumina Ferric oxide . - . . (lases in soluti Carbon dioxide Hydrogen sulphide , Symbol. Nil K Mg H Fe Al Mn CI Br I SO, NO, CO. s FO, BO, present in SiOi Al,0, Fe,0, COi H,S Atomic or molecular Valence. ReaclittK weight. iWUi. ciwflicictit . IJ IJIi 04J5 i»> lit 0256 6 1)4 1441 IK 01 0554 40 07 049<) 117 W 022» 1.17 37 (■ 0146 24 ,12 0822 1 OOK 9921 .55 84 U 0358 27 1 1107 54 93 0^64 .15 46 0282 79 92 0128 126 92 0079 98. 06 0020? 52 01 0161 61 01,i 00164 60 005 033.) J2 06 0624 95 04 316 4J 0232 the colloidal state: — Other elfments undoubtedly Tal cdinplrx <)rj;aiiir .u iil>. ArMtiii is iK-casittnally prt'wnt in water;*, v>vn in nitdiiinal dnwH: a> for cxamplr in I^a HoiirlM)nU' f^prin^; in the >nulli of Kraiui-, in whiih it i«i urn Id the extent (if st'ven part.s pt-r niitlion parts (if water, wi'n» Ukc, Clif^irnia. Joi Chem. Soc. >^. i K>4. I'lO'i 'GaatiTT and Clauiiman, Compt. Ri-nd., 1S8-1,6JJ, 19H; alio Gil, J.T.S., Aba, ii. KO. l';06. STATCMl NI (»■ I 111: KKsn.rsoK A ( III'MK Al, ANAI.VSIS. IONIC FOKM MI'KHIDK TO IIYPOTIIK'IICAI. <:0\IBI\ATICIN!l. In c.iriviriK out ,i (lu-niiiMl .ln.lK^i^ c.( a niini r.il w.ilrr. lli- (|u.inliiu', c'f llii' v.irioiw i-lilmnts or urmip- eif ('It'ini'MI:-. •■iirh as >(«rimi, iMliium. or in.n, llu- rarl»in.it<>, Ihi- »ul|)h.4lc, or tin- nilralr raiiicU', arr fniinil liy arliial i'X|iiTitmnt. Thi- Inlal amiiunl iil niiniTal matdr in solution i« aUo clin.dy ililiTniinicI, liiit lH'\onil ihisc ilala. ordinary ilivmiral mani- piilalions sulxlanios do ttnl oxist in llii' (orni of imtipouniU in thi' water, hut an' entirely dissiK'i ited into eliTlriially iharKid particles or ion». Thus, a pinch of common salt (siwlium chlorid<'i 'i-solvcrl in a nallon of water, imnii^tialely ilisscK-i.ilcs into s.slium ion: wlaili is sodium metal hound up with a jxisitive charge of electricity ,ind chlorine ion. th.it is chlorine carrying a negative charge. Iioth enliri'ly ditlen nl. however, to the elements siKlium and chlorine as we know them in the free st.itc; the first, hcini; a silver-like met.il which reailily decomposes water, the second, a Kreenish-yellow Ras. with a choking, disagreeable ixloui. In a water suppo,seestiin.iti jt there is no way of telling what is the ex.icl distribution ol ihe iotis. Th 'nly rational w.ty is to report the amount of each ion present ; a ■ atcmen, vhich is the result of .ictlial experiments, attd cannot be disputed. Thus the water coniitdered alK)ve will crmtain the ba.sic ions sodium, pot.tssitim. magnesium, and calcium, and the negative ions chlorine and bicarbonic acid. .\gain. the therapeuti* ro[x>r ,. s of a mintral water .ire due chiefly to the individual properties of the i : for example lithium will have the same effect wiiethcr it is administere,. as a solution of lithium chloride, lithium sulphate, or lithium carbonate. For this re.ison it is more s.uis- f.iclory to know t'le ionic composition of a water. With a view to enabling those who are not .iccustomed to this form of representation to obtain some idea of the composition of a water from the .m.ilysis, hypothetical combinations have been calculated. Rules for such cileulations are based on the -espcctiM- solubilities of the crunponent s.ilts. Over forty sets of such rules exist; .iccountiug for the confusion that h.is often existed InHween analyses of one spring by different analysts, u.sing dilTerent rules. The followii ,. ndopte;' by the Hureau of Chemistry of the l',S. Department of .Agricull iire. have been used throughout. Sodium {•< tirnt rninhiTK'it Midi nitriiii>, n<(rir in t MiiiMiti'cl with i'Kliiii', .md bnitiiint', Ainniotiiuin, liihiurn, ■iiiJ {>')(, i-~iutii nvii^noiiini. • .iliiiiin, '•trnntiiiin .ir>' mil iiii-t,iliorif .u'uU. I'l.i.iHsMim .inrir ,h it|. iri! .i'T.ii,Mii»l III ( lilt.riiif. S.Nliiim, thi>n (mIi ul.iti'il t iiiIhim' with chl'irinr, -.ilphalf, Mr.irlmn.ili', .iml cirlinnaU' i'ln-, n ^ih i )i\. |\ , It thrn- in .III lACf-iH of l.iiMrlKMiin- inn. the iron (tnm'ilu-r with ,iliiniiniiiin if i( liiM Urn fitinia'i-(l with the irnni i-* cilriil.itnl tci lnriii ffrnm- liii.irlMin- atr. OthiTwi-t', f.'rrir <.\ii|i' .itiit .iltimina art- ron-itUn-d i>i U- prc-cnt. prnhahtv i[i ihi- rnllniilal fnrni a*, -iliia is u-iially nin-idirtii tn he. Soim-- timi's, siliia ncturs in th<' furni nf a -alt a-. r.iU iiini -■'i' ate. luii ii ha> ticviT bt'iMi found a-. Mich it) any water ini liidol hvTv. Hut thfM- riiU-s arc biiscil nn fal-*)- assumptinn-, iH-ran-i ihr -.ilMlMlity of carh salt whrn alone in -oUition i-dirf.rt:nt from it> >.oluhiliry in a solution of other ^alts.' SiK h -oluhiliiif, . .m niilv l.e found by individual < oimi.lcr- ation of the system under examination. The enml)iii.itir)n« >liould re[)resent the wiliil-i thai pre( l[)itate out wlien -m h a solution is evapor.iled. The amount of l«iih i(iii> and In ()otluii(al eondiiualions are given in parts per million by weight. Thu-, if a water eonlain^ 401) [lari- per niillion of calcium ion, a million pounds f>f the water h of calcium inn it) Milution; a tnillion milligrams— practically efjual to otie litre if the water under ronsideration is* of low specific gravity —contains 4(KI ^lII!i^,'rams of calcium ion. Seeing that most niinera! water:^ ha\e a >-[Hi itlc yraviiy of 1-005 io 1 001, the amount of a constituent in parts per niillinn nia\- In- con>idered without sfrious error as eriuivalent lo the anuutnt expressed in milligrams (kt litre. The expression of water analy>i's in oarts per million is . riiversalK' adopted by sanitary and technical chenii>ts Io-d.|^, and the exduMve cm|)loyiiient of this unit indu-trially i>, a- K H. Dole -t 'is,- delayed only by more or less objectionable preiedent. » » riainly the average person, results stated in grains per K''"*"i i'f H" n.ore intelligible th.in wlu ft expressed in parts per millitsn. To transform parts per tnillion into grains per iminrial gallon for an approximate result, the (juantity of a constituent cxiiressod in parts per million must U- multiplied by 007, since there are "0,000 j^rains in an imjM'rial pallnn. The amount of each <'nnslitiUTil calculated as ;i percent. ij;e of the lotal innrKMuic material in solution will also be stated. In another colunm. the reacting values of each substance present U ^;iven: calculated to a per- centage basis by means of the concentration vahn — which is simply the sum of the i.ctual re,u liny wilues, A-^ far as possiltle, pre\i.iu comparison. Most of the-e h. iM,il\-es h.ive been included for the sake of ' Iwen recalculati-d to the ionic inrm, from iTurrcniirii-. The Cumi,o(ini<. R. B. Dole. Ilyiiuihf.iial Co I of r, S. Siilim-s, Ji.iir. In.l. Kne. ( lirni, 7. i>. ftv-j, \: iliinatioiia in Wjier Auaiysis. Jour. Iml. Emk. Clii-m. rauTid Waters ai Konh Crmrui tr;d:aiia. U i[. i ^,.i. f>. \'. 710. 1414. statements nf the rnnipoimils grains jht Kallon. *imuil !•> Ik- present, often only ^ive* in BKACIINO VAl.tES. The statement of llie anafyli.al results, as the .|uantity (if ions or radiiles present, in parts per million, does not a.leqiiately express all the information that ran he obtained from the analysis of ,i water. Such results only show the physical weinht of the various constituents, and thus Rive no indication of their chemical value. Therefore, the proportional reaction capacities or reactinj; values of the radicles arc tabulated with the ionic results. Sudi reaction capacities or reactinu values are calculated by dividiii); the weight of each railicle found by analysis, by its eiiuivaleiit combiniuK weitiht. Kinhl parts of osyncn unite with 2.i parts of sodium, ,W parts of potassium, 2(1 parts of calcium, and 12 16 parts of magnesium. These are the cfpiivalent combining weights of the aliovemcntioncd de- ments, and the reacting values are olitained by dividing the quantity of each radicle or element present in the water by its combining weight. The reciprocalsof the I'quivalentcombining weights are more often employed, as suggested bv Herman Stabler,' and are terme.1 by him reacting coeffi- cients. I'he reacting coefficient of a radicle may, therefore, \k di'fined as the r.itio of the reaction capacity of 1 part of that radicle to the reaction capai il\- of eight parts of oxygen. A list of the reacting coellicients of the various elements or radicles commonly estimated in the mineral analysis of a water is given cm page 6. Ihis form of expressio-. is convenient in several ways;' it alTords a scheme of classilication which will be explained later, and allows the potency of the water as a geologic agent to lie studied as well as giving information of its past history; it serves, mor.-over, as a check on the a( . uracy of the anal>-is. since the sums of the acidic and of llie b.isic radicles must neces- sarily be ecp.al, at least williin tlie range of ev|)c>riment.il c:rror. with the excc|ition of one or two cases, such as waters in which free, strong acids are [iresent. enRiniH.r. Kt'H- New- V.,1. Ml. ii tsc, V>i)^ Al«i Cliatiift oil U"" imlii«ri.il ui>|.li' No, iT4, !■ IC'S. l"ll Itlll 47 '1, 1 lilt ■■- |..«y. Vol Mip. U u 1015. THK {'I.ASSIKKATION OF THK WATKKS. Almost rvi-ry !)ook or hullrliii nn mint'ral sprinj;;s ailvncatcs its own method of rlassification: (IcninnsTralinj; the (iirticiilty of nndiii^ a satis- fact<)ry rlassifuation for suhjiitn of such romplcx (.haractir as naiiiral watrrs. It is not [)ropoM(l lo (H^niss the ^ iHous nu-thods Iutc, although a list of the chief attt-iiipis is incIiKkd in the appentlix. Two methods have Ix-en adopted in tliis report: one sn^nested by Chase Fahner based on the reaeiinu value (jf the constiturnts of the water, and most useful from a geoIoj,'ieal standpoint; and the other a scheme proposed by J. K. Hay- wood.' The first methtxi is of the nifist value, si-eing that it pives evidence of the nature of the strata throu^jh which the water has passed, and of the solvent of the water on the rocks composing *hc strata. It shows the nature and amount ot the predominant constituents also. The second method more readily indicates the actual elements present, and Rives infornialion concerning the therapeutic value of the water. CHASE PALMER'S CLASSIFICATION. The radicles are dividi-d, aecur^iin^; to their chemical nature, into certain ^jroups. Thus, sodium, potassium, and lithium — called the alkalies or primary bases— are associated. They occur to^jether in nature; are mutually intcrch.uiKeable in minerals; have the similar chemical characters; and are meml>ers of the same chemical family. .■\11 these metals decompose water, and form similar salts with acids. Similarly calcium, strontium, and magnesium — the alkaline earths or secondary bases — are comparatively similar in their chemical behaviour and are Ki^'oloji;ically associated. Hydro- gen and the metals form a third class of positive I>ases. The acid radicles fall into two groups: strong acid radicles, such as hydrochloric or muriatic (C!'); sulphuric (SO4") : and weak acid radicles (e.g. blcarbonic acid HCO3'); cartKjnic (COj"); ;ind metaboric (IK)/) acids. According to the relative values of the several groups just referred to, ail natural waters fall into one of the following classes: — Class 1. Value of strong acids (e.g. SO*, CI), less than value of alkalies (e.g. Na. K). , 2. \'alui- of strong acids equal to value of alkalies. , 3. Value of strong •.rids greater than value of alkalieiL hut less than alk.ilies plus alkaline earths. „ 4. V^.ihie of strong acids eqiuU to value of alkalies plus alkaline earths. „ 5. Value of strong acids exceeds \alue of alkalies plus alkaline earths. ' H.»ywood. J. K,, and Smith, n, H.. Bill. •n. ii[>. K-ll, I'JO;, Al-iij. .AiiiL-ticin riieim. Hill. H'J, up. IS-'O. I'Jlt. 1, r.S. I>ri,i. A>:r , KS. l)..pt. Aitr. .Etut. 12 Classes 2 and 4 seldom occur, and arc included chieHy for the sake of completeness. These main classes can be again subdivided by considering the nature of the salts formed by balancing up the various groups. The bases and strong acids combine to form salts which, dissolved in water, give it the property of salinity. Primary salinity is the salinity caused b> the solution of strong acid salts of the alkalies, such as sodium and potassium chlorides or sulphates; secondary salinity, by the soluti. Solutions of weak acid salts, such as sodium carbonate, possess the property of alkalinity, e.g., tlu-y turn red litnuis, blue; or methyl- orange. \ellow: to mention two of the cliief indicators which are u^ed in determining the reaction of a solution. Primary all ninily, is caused by the solution of weak acid sails of the alkalies, chieHy sodium and potassium carbf)natesor biearbonates; secondary alkalinity, by the solution of weak acid salts of the alkaline earths such as calcium bic.irbonate; and tertiary alkalinity, by the solution of weak aciri sah> of the iniscellaiu-ous group of positive radicles such as liy('roi;i n and the melals. Thi' following t.ibK'«-x[irt>^es ihi--e ,-tatements more gr.iphically: — Sirong atids. frg. (1, S<>4. NOi) Weak iifids. (f.g, CO,,. HCO.) AlL.IUs if.K- Na, K. Li.l . Alkiiliiu-t-arihs ii-.i;. l."ii, Mj;. Sr.j. Metai.s (e.g. H, Ke.J Primary s^illnlty, S'toniiary „ Ttrtiary „ Primary alkalinity. Secondary' „ Tertiary „ When a water needs much soap to produce a lather, it is said to Iw 'hard'. It may be either temporarily hard, when the hardness can be dissipated by boihng: or it may be permanently hard — a property not removed by boiling, only by chemical treatment. Temporary hardness is due to the property of secondary alkalinity, e.g.. calcium or magnesium bicarbonate present in water; while permanent hardness results from the property of scctmdary salinity, e.g., cilcium or magnesium sulphate in solution. To obtain the amounts of these various properties from the analytical results, the reacting values are considered, calculated on a percentage basis. The sum of the reacting values of the members of each group gives the value for the alkalies, alkaline earths, strong acids, and weak acids, respectively. 13 Then the value for the strong j;roiip is halaiui-tl ;i, the procedure: — Lithia Spring. Carlsbad Sjirings. I'.iris ;icr million. Reacting values. Reacting values. Per cent. Sulphuric acid (SOi) 2 4 75U trace trace 2,,MIJ 12 5 5 12 7 2 1 trace 57 - trace 47. 15 50 1 1,608. 2 6 05 12 .ill 65 00 15 0,1 Bicarboiiic acid (Haw Cart)onic acid (COj) Nitric acid (NO,) Nitrous acid (NO,) MetalHjri.; acid (BO,) (CI) 12 0.1 10 Hroniinc (Hr) Iodine (1) (SiO.) 7H.40 .50 00 Silica 08 2.85 .1 86 (1 21 1.28 70 00 14 Iron Aiurtiinium Manganese Calcium (Fc) -i (AD 1 (Mn) 05 (Ca) 1.82 Strontium (Sr) Magnesium (Mb) 2 46 013 0-82 44 6,! 09 Lithium (I.i) .... Potassium (K) Sodium (Na) Ammonium (NH.) Total 4.8S6 4 78 42 ,50 OO Strong acids 42 03 + 010 + 003 = 42 16 Weak acids j_ j ^^ Alkalies 44-63 + 82 + 13*0. 09 = 45.67 •Alkaline earths 182 + 246 + 005= 4.33 Propertiw — Primary salinity, Value of strong acids + equal amount of allcalies, 4216 + 42-16 = 84 32 Primary alkalinity— Kenuinder of alkali value + equal amount of weak acids, (4567-4216) - 351 + 351 - 7-02 Secondary alkalinity — Remainder of weak acid value + equal amount of alkaline earths, (7 84-3. 51) = 4 33 + 4. 33 = 866 These statements give the following information : sodium salts of strong acids form 84 per cent of the total solids; sodium carbonate or bicarbonate constitute 7 per cent; while calcium and magnesium bicarbonates make up the remainder. These quantities agree fairly well with the hypothetical combinations. HAYWOOD'S CLASSIFICATION, The second form of classification suggr^ted by Haywood possesses more value from a therapeutic standpoint, in that it readily indicates the chief constituents of the water. Four main classes: alkaline, alkaline-saline, saline, and .uid waters, are each divided into several sub-cla^si-.s. These sub-classe^j are again (|ualified by the names of the medicinally important radicles. The classi- fication is as follows: — Carbonated or bicarbonaied ermal Alkaline Bora ted Silicated Sulphated Sodic Lithic Potaasic Calcic N'on-gaseou* or hermal II. .Alkaline-sa ine Muriated Nitrated Sulphated Magncsic Ferruginous .Muminic Arsenic Carbondioxated Sulphuretted Azotised Carburetted Ill Saline Muriated Nitrated Sulphated Broniic Inrlic Siliceous Boric Oxygenated IV Acid Nitrui nl Thermal waters are defined as those which issue from the ground at a temperature of 70°F., and higher. Of such waters those from 70° to 90''F., are considered warm or tepid, while those with a temperature above 90°F., are termed hot springs. Alkaline waters are those which turn methyl-orange, yellow, and red litmus, blue, and therefore have an alkaUne reaction. The alkalinity is usually due to the piesence of sodium carbonate or bicarbonate. Alkaline-saline waters are those which contain both strong acid radicles (bulphuric, hydrochloric or nitric ions), and carbonic or bicarbonic acid ions, or more rarely boric or silicic acid ions; both strong and weak acids 15 being present as predominatinK constituents. Thus, such waters have both alkaline and saline properties, and contain salts of carbonic oi hicar- bonic acid, together with salts of the strong acids. Primary alkalinity is usually p-esent in small amount, while in alkaline waters it is consider- ably greater— ranging from 40 to 100 per cent. Many of the springs, the subject of thi- report, belong to the alkaline-saline class of waters. Salme waters are th^se which have an alkaline or neutral reaction, and contain sulphuric, muriatic, or nitric acid inns in predominating quantities. Acid waters have an acid rt-aclinn, and contain sulphuric or muriatic acid. They are seldom met with, e\ccpt in the neighbourhood of iron- pyrites deposits, where they contain iron sulphate; or in regions where volcanic agencies arc active. No springs belonging to this class are included in this report, though several exist in Canaes often present in mineral waters define the terms: — Non-gaseous water contains no gas. Carbondioxated Sulphuretted Azotised Carburet ted Oxygenated carbon dioxide, hydrogen sulphide, nitrogen, methane, rxygen. A few examples of the application of this classification to waters in the report will illustrate ii- use. The Sanitaris Mineral Water (page 28) is a sodic, magnesic, calcic, muriated alkaline-saline water. "Magi" Caledonia, Caledonia Saline Spring, (page 45) is a stxlic, muriated alkaline-saline carbondioxated water. Viauvtlle Mineral Water is a sodic, muriated sulphated saline (bromic, sulphuretted) water. ' Sterry Hunt. Oeologv oi Canada, p. 545. lHft3. ON THK rOU.ECTION OF SAMIM.ES, AM' MKI'IIODS OF ANALYSIS. PROCEDURE IN THE FIELD. It h.is be..ii already staled th.it thi- .-xaminaticn „( tlie sprinns for ra,lioa>-tivo properties formed <,ne of the main feature, of the invest.Rat.on and on that account centres were selected, within easy access of the pnnc.pal groups <,f springs, to which w.Ucr samples were (luickly taken after a.llect.un to ensure the radioactive e.iaminati.)n beins made with as little delay as possible At the same time, as samples for the radioactive tests were obtained, water for chemical analysis was also collected. To contain the samples, new five-Kallon t-lass demijohns were e,ni,ln;c.imples were collected in Winchester quart bottles, or in ^l.i--. gas-sample tul)es. In the former case, a large metal funnel wa^ in-i rted in the neck of the bottle, and the whole carefully filled with water, taking especial care toexpel all air tu.bliles. Then, with the neck and funnel under the surface, the bottle was inverted over the stream of gas bul)bles which ascrndcil and displaced the water. The stopper was carefully replaced. lea\ing a little water ctiverlng the stopper to act as a seal, tlie fK)ttle being transported in an inverted po'^ition. The gas sample tulws were attached to the funnel by rublx.'r tubing, and the wliole system filled with water. When tlie lower tap of the sample tube i>_ opened, water will only run out as fast as gas enters frtjui t!ie funnel at tl, '^ ther end — pro\'idcd everything is air tight. Measurements of the radioactive content of one sample were carried out by the usual methods.* The second sample was analysed for its main constituents, oxygen, nitrogen, carbon dioxide, methane, and hydrogen. No determinations were made of the rare gases of the atmosphere, which exist at h.-ast in traces in all radioactive natural gases, except in one case — that of the gas evolved from the Basin Spring at Banff, Alberta (page 142). ' Sutton, v.. Handbook of Volur ' Winkler. I., W.. Z. atiKCW Chcm • I-or a discuHaion of tht various Ellms. J. W.. anrt BptiekT. J. C 23-405, ITOl. Forbei, F, B., and Vi, Soc, 25-742, IWJ. Juhiiion, J.. The deietminaiion of cattit WHtTs; Jiiiir, Am. Cheni. Soc, .iN-y47, Itlti. • VoiuTxietric Aiialv*sis, p. iid. IW7. • Thi' Kadioartivity ot some Canadian Minenil Spri ■trie Atialysia, Ninth Edition. I'J \"nl. 29, p, 335. 1916. pthodg of detcrmininB carbon dio Thp Miimation of carbon diojid H., The detertDination of carbonic acid in dti acid, combined and frrc, in s I Branch, Bui. 16, pp.. ''-17, 1017. THE METHODS OF ANALYSIS. It is not intended to «ivt' a detailed deMTiption of the methods of analysis that have been employed. They are, for the most part, those descriU'd In I'.S. Department of A^riciiltiire, Bureau of Chemislry, Bulletin Ql; and in the 'Standard Methods of Water Analy--is, pul)lishe Hariiim Wiis seldom (ii-tcitcil, cm n s|k-( Irnsnip'cally. U'liiii it w.!** prest'tit in siitfuii-iit .iinnuni it w.i^ M-parattd Imni strdiiiiiiiii jik! t.iltiutii hy tilt- anitiuiniiim biclirotnatr iiu-th(iy thi- well known aniyl alc^ diterniined usint; '>iie or other i>f the spei IniM-opie mctIio.i~ outlined in a huUetin- on the speetroseupir .leterriiin.iiion of lilliium l.y \V. W. Skiiinrr and \V. 1). Collins. A c: tlorimetrie method rei' 'tly proposed hy Winkler' was fount! to lie the nt I ronvenient for the c >.mation of phosphoric acid. One c.e. of a 1(1% ferric chlurifle solution, and 2 e.e. of a 10' ; alum solution are nfUleii to 1 to 5 litres of the water to Ik- tested, and the whole Iwiletl fl)datc; this is filtered off. dissolved in ammonia, more aninionium mol>l)date solution added, and the yellow colour of the solution compared with a potassium chromate solution correspon{linn to a definite concentration of phosphorous pcntoxide. No tests, save in a fiw inst.mces, were carrietl out for the presence of arsenic, copper, lead, fluorine, or selenium. Spectroscopic tests were made on all residues and preci[)itates, checking the presence of the several elements, which yive flame spectra, and affording some indication of the completeness of the separations. Many of the springs, especially those rising in the vicinity of peat bogs (such as the groups of springs at Caledonia and Carlsbad), contain organic compounds, which is the cause of the yellow colour of the waters. On tlie continent of Europe such organic substances are often determined, but in America little attention has been paid to them. They are present in small amount, possess a complex composition, and have; no impoitance from a therapeutic st.indpoint. Therefore, no at tempt was made to estimate them (ir determine their nature, interesting; as such work would be. The results of the radioactive determinations are rightly included in the statement of analyses. Details of the methods adopted for these determlt.ations are given in full in Part I* of this report. The total solid matter in solution was obtained by evaporating 100 c.c. of the water in a platinum dish, and drying at tOO"C., to a constant weight. The dish was then gently ignited, and the residue on ignition determined. Sulphuric acid was added, and the solution evaporated, and finally heated ' Trm.Iw.-11. Analytical Clu-mi, 'Skinner, W. W.. and Colliria. 153. r>12, ' Winkler, I.. W , Z. atiKew. Chpr 'S^iiiiTly, J., and Klw.irthy, R. Mir r-il Spring? M::\^s Brsnth. H; stry, V.i W. D.. il. n. ■llli editiurl, I-JIS, [.. 5J. Eh-leritiination of Litiiium. I'. S. Di-i.i. Mi., Bur. Clicm.. Hu T Mil 22, 1'- -JNM. I'JIS. Atntrua in Juur.. Si,c, (itral Simnns of Canj.la. t*an I. RadloaL !;.. 2(1. 12-lfi. i'.'!7. CliciTi. lid,, p. J4J, mi: livity uf Somt Cai.rtdia 20 ti. .1 ilull ri-cl h.Mt. until all llu- I 1M•^ w.-ri' i-ciiiviTtid tci sulph.ili-ti. A Utile iiimiifMliimi I .irl'on.HL- \v.i> .nMcd I.) i-ti^iirr llir roniiilttc (•nii\iT>ii>[i of .icitl alkjli sulph.il.^ 1.1 lli.nii.il Milphali >. 'llu' ili-lus win' (ikiIiiI and «i-ij;lir.l and rci^jnllcd till ronf.t.mt urij;ht was (il)iaini.d. Thr rc^idiit" rntirtt \k llt-ati'tl tn a sut'lui.nt ti'ilipcratiirc In CiirniTt tin- iron >ulpli.ill' pn-si-nt to frrric oxidf ACCURACY OK TIIK ANAI.YSKS. Thf cktiTniinaliiin ju»t di-MriUcI alTorik a iliL'ck on the a( rurai y iif the various ^•^tiIll.ltion9. as the weijlht of the l>.isis as sulphates pre>eut in a milli.iii p.irls III water sllouhl a^ree with the i .ileulated value hi.w p.rlVrI ■•c|iilv,ili'iMi', liiii ih.r.' .h,,iil,i If coniii.ir.itii.ly liltl.' di- iiKn-MiU'Ot. the .iriu.il aimiiait il.|i,n.liii« l.ir^i Iv c.n llu- mrii i nlr.ici.in ci( Ihi- waliT. I'.ir .: »,iUT ...iil.ii.iiii.; ,,l.„rl 1,1111(1 |i.,ii, |„.r milium niimT,il m.itlcr in si.liiti n ilir MhuiTi,,ii,.i., .,1 l,.,,ir .,m\ ,.f t\v .uiilir i,.ns -lioiild not ililTcr liy innrr ihaii 2 .ir .1' , . ( inaiir cliMTip.inry inilic.iti's a f.iiiily (liliTiiiiii.iliiin. iir Muni- crmr in i .ilnil.iiinri. || is ncrossary lli.it ihc snnim.iciims U- l,,il,ini>il lor llu- |Mii|in-i-, ,,( ,mI, nl.ill.m i.f ihc v.nidiis anil liyiii.l!;i>ti(,,l ini,il,ii,.iti(.ii-. and fcnir ccmrsis an- pns- flassiticalion: siliK-.' (i) Tho i-mir may In- propurtinnalily sliarid l.y all llic rnnstiluints. (ii) ll may Iw assumi-d tn lie in llu- ilclcrminaliim tif me has anil nnc acidic radicle, anil rlividcil ii|iially iHtwi-cn Ihcm. (iii) Itmaydopcndon tliudclcrminalinnijf one radicle, such as hiiarlmn.uc or siKlium. (iv) No alteration need !»■ made, in which ca-e one property of the water cannot lie deduced. In the following analyses .my di^crcp.inry has usually tieen attributed to icccuracies in the determinalion of the liicarhonatc radicle, especially in waters in which it incurs in con-ideralile quantity. These two checks on the .ircur.icy of the various determinations are of course not entirely independent of each other, as an error in the estimation of one of the bases— niaRnesiiim, for exampje, will allect both c.ilculations. If the sum of the bases calcidated as -ulphates agrees with the value found by experiment, and yet the sum of rcuting values of the basic ions dillers froir the sum of the reai tins \ ,ilues of the acidic ions, it is probable th.lt an error exists in the amount of one of the acidic ions. On the other h.md, agreement between the bases as sulph.ites. c.dcul.ited ,md found, m ci|uili- brium between acidic and b.lsic ions, formiasalisf.ictory verilication of the accuracy of analytical processes. Comparison between the sum of the constituenN found by analysis .ind the amount nf solid m.itter. dried at lOO'C, .ilTords no check whatever. Bicarlmnates give off carUm dioxide, .imm.inium chloride and cdcium carbonates decompose e.ich other. ;ind other salts Ix-come b.isic. All lliese Closes lend to make the total solids found b>- experiment lower Ih.ui the -uni of the sever.illy determined constituents. 22 UKSCKiniON OK SPRIN<;s AM) TABl lATKD ANAI YSRS. In thr fnllowinn p.it;fs ihc an.ilys(". of fifty spiitin w.iti'r^arc t.il)ulatf havt- U-cn diMuwsrd. and sonic tApt.in.itinn ^;i\t■Il of tfic <|ium liirarhonatt's. The amounts of the constituents as ions or radicles are Ki\en in jiarts fHT million, also in [)crrentanes of the ttital inorv:.mic matter in solu'Ion. Previous analyses, when they exist, are presenti-d for comparison. The re.ictinK value of ihe constituents, worked out to a perrentage basis, occupies the fourth column at the foot of which the concentration value is placed. This numl)er is the sum of actual reacting values of the constituents of the water, and from it the percentage reacting values may easily Im- calculated to their true values. After the statement of the (juantity of the total solids and gases in solution in the waters the hypothetical combinations worked (tut frrim the results of analysis by means of th' r: '. s;ive:i or \:'yv 20, are apjK'nded in parts per million, and as percentages of tt.e total inorganic matter in solution. TemperatuiTs are stated on both ("entigrade and Fahrenheit dej^^rces. Radioactivity, due to emanation in the water or in the gases evolved from some springs, is expressetl in terms of a unit,' which is 1 x 10-'* curie per litre, nr that amount of radium emanatif water ilrrivatinn al llu- pro- otioliltu-nls ;ili salts (if ry '•aliriity, ni I III nr ides alkalinity li\tlv. C-K-, rlxjiiati's. en t[i parts in sohiKnn. 'ison. The Ottawa Frr»Mt. Ciciucf-tti-r township. CiHiion inuiily. and is alioiit Mvrn mile^ away frotn Ottawa, The water is rdlUrletl in a l>ri(ke'l well n( .1,(HK) yalUiMs cipaiity, whii h whrn piini(H'(| iirhooolid> in soluliun, while magnesium bicarbonate forms '* jht cent. HOKTHWKK MINERAL SfHlNC, Laboratoty No. 6. Sample collected June. 1*>17 Temperature 10-5"C. (50*ri-'.) Flow Small Taste Salt and pleasant Reaction Alkaline Specific Rravity at IS^C . , , , 1 007 Radioactivity Kmanation 140 units Dissolved radium 8-4 „ Emanation in gas evolved. Properties of reaction in per cent. Primary salinity 90 ■.16 Secondary salinity. ... 1 06 Primary alkalinity Sicondary alkalinity, . 8-58 '^ 24 Analysis. toiislilupiits; — analysis,' Tot,d inorRanic matter in solution. ReactinK value. Parts [X-r million. j Per cent. Per cent. Sulphuric acUi (SO,) liicarliollic acid (Hl'O.I farbonic acid (CO.) . . Nitric acid (NO.) Nitrous acid (NO,) Phoephoric acid (PO.) Metaboric acid (HOi) 7 4 9.54 trace 01 lieavy trace 5,910 12 S 6 17 2 5 2 005 39 2 4 188. IS 70 8 3 , 740 3 6 399 5 7,2.5~ 36 6 70 140 3 29 7 138 4 78.5 4,400 (17 4 29 53 96 12 01 15 05 36 02 1 72 Ul 65 ,34 15 03 07 8 71 45 (>3 IJromine (Br) (J4 Iron (Fe) \ Aluminium (Al) f Manganese (Mn) Calcium (Ca) Strontium (Sr) Magnesium (Mg) 05 53 4 24 006 I'otassium (K) 50 44 57 Ammonium (NH*) 20 Total 10,952 2 1,058 12,550 100 00 100 ()0 Total solids in solution, residue Concentra- tion value. .i64 92 (■ai«8: Carlxsn Dioxide COi . . . Hydrogen Sulphide H»S . c,c. iier litre. 11 3 Parts per million. 22 2 ■ by J. llakct E4«ard», Ph.D.. 1' C.S.. Montreal, 1H> 25 liM'OTIlKrH Al (OMiU NATIONS. Sodiu. .-. -. (NaNO,) Sodium nitrate N.iN(^) Ammonium rhloride (NH4CI) . Potassium iodide (Kl) Potassium bromide (KBr) Lithium chloride (i.iCI) Potasaium chloride (KCl) Sodium chloride (NaCl) MaRnesium chloride (MgCl-J Calcium chloride (CaClj) Strontium sulphate (SrSO,) Mai^ncsium sulphate (MgSO<) Calcium sulphate (CaSO*) Sodium bicarbonate (NaHCdi) Magnesium bicarbonate! Mg( I K"Oj)z), . Calcium bicarbonate (Ca(UCOi),). . . Strontium bicarbonate (Sr(HCv^)j). . . Strontium chloride (SrClj) Ferrous bicarbonate (Fe(HCO,)i) . . . Calcium phosphate (Cai(P04)i). . . . Ferric oxide. . (Fe»Oj) Alumina (AIjOj) Silica (SiO,). Magnesium iodide and bruniidc . Parts per million. Total inorKanic matter in solution. Previous analysis. Pe cent . 10 70 83 17.85 8. 02 122 93 9,513 87-69 984 73 157 95 10 0-01 17 08 112 86.88 80 9 00 1 44 03 ISO 11,210 310 210 40 280 220 70- 40. DOMINION SPRING. PAKENHAM, ONT. (13) This spring, situated en the farm of \V. Gillan, Fitzroy township, Carleton county, Ont., has bern known for many years, and was first analysed by Sterry Hunt in 1851, whostated that the water rises from the Chazy or Calciferous formation. At one time the spring was used for medicinal purposes and a hoti-l finiirished at Pakenham, two miles away. To-day little use is made of it. The water is pumped from i well, 14 feet deep, and there is a small natural flow. A considerable quantity of hydro- gen sulphide ga> is prc>ent in the water, and a turbidity due to precipitated sulphur soon arises when tlie water slands for a short time exposed to the air. The chief constituents may Ik.' considered to Ik* sodium chloride which fortns 7S per cent of tlie lotal inorganic matter in solution and magnesium bicarbonate ( 1 3 per cent) . The water may be classified as a sodic, magnesic, muriated saline water, and is very similar in composition to the Borthwick Sp.'ing Water. '*%.,^., 26 The following results were obtained as a result of analysis: — DOMINION SPRING. Laboratory No. 13. Samples collected July, 1914. Temperature 10*C. {500°F.) Flow Small Taste Slightly salt Reaction Specific gravity at 15**C 1 0065 Radioactivity Emanation 22 units Dissolved radium 0-8 „ Emanation in gas evolved Properties of reaction in per cent. Primary salinity 84-3 Secondary salinity. ... 1-3 Primary alkalinity. . . . Secondary alkalinity. .14-4 'mliLMMll 27 Analysis. Constituents: — Previous analysis.* Total inorganic matter in solution. Reacting value. Parts per million. Per cent. Per cent. i 7 1,41(1 17 (14 4.870. 6 (1 6 47 20 16 807 102 243. 003 126- 3. 044 32 tl7 98 4 7 2 4,019 3 16 9 2-7 19 133 trace 2 1 60 trace 225- 60 7 2,834.5 04 14 26 18 49 26 06 08 48 I) 01 08 1 03 2 46 30 79 003 Bicarbonic odd (HCOi) 7 19 Nitric acid (NO,) Nitrous acid (NO,) Phosphoric acid (PO,) 008 Chlorine (CI) 42. 68 02 Iodine (I) Oxygen to form (Al,0,) ca (SiO,) Iron (Fe) 02 Aluminium (Al) 159 Magnesium (Mg) Lithium (Li) Potassium (K) 6 24 1 00 41. 15 Ammonium (NH,),., 9.887 93 9,272 8,347 3 100 00 100 00 ' solids in solution, residui. ' It 110' C Concentra- tion value 321-46 Gases: Carbon Dioxide COj, . . . Hydrogen Sulphide HjS. c.c. per litre. OS Parts p< ' million. •By Dr. Stcrry Hunt Gwlogy of Canada, n, SW, IMi p*'' 28 HYPOTHETICAL COMBINATIONS. Parts per niillion. iota I inorganic matter in solution. Previous analysis. Sodium nitrite (NiNO^i Sodium nit r,ite lN.tN(_)ji. . . -. Ammoniuni chloride (NH,(.!) ., Putiissiuin iodide (KI 1 Potassium Iiromidc (KBr) Lithium chloride ^LiC'l, Potassium chloride (,KCi) Sodium chloride (NaCII Magnesium chloride (M^t h) Calcium chloride (CaCI,) Sodium Buiphate (Na^SO*) MaRnesium sulphate ( MrSO,) ... Calcium sulphate (('3804) e,idium bicartxjnate (NaHCOj) Magnesiuml>icarl>onate(MR;^i . Ferrous hicarhonate ll'ciHC')- ' .1 . . Calcium phosphate (Ca3(l*04i:i , . Ferric oxide (Pe/).,). .... Alumina (All),,) Silica i^iO.) trace H t> 21 »,f SW 1 17 ?M 13 i.in l,S 1)2 iO 4 63 1.31,1 1 88 1 413,0! 1 5 07 US I'l ..17 01 09 2 37 ;»,14 94 13 29 4,18 11, IN 11)11 llil DIAMOND P.\RK .SPRING, ,\RNPRIOR, ,S,\NIT.\RI.S W.VrUR, Thi^ ^pnng lies at the foi.t nl a liill ,iliout ,S0 yards from tin- Mailawask.i river on lot 26, concession XII, Pakenliam township, Lanark coinity, Ontarif analysis — DIAMOND PARK SI'RINt.. Laboratory No. 14. Sample collected July, I')14. Temperature V'C . (4K°F.) Flow 5 gallons p<*r minute. Taste Slishtly salt Reaction Alkaline Specific gravity at 15°C 1 002 Radioactivity F.manation 226 units Dissolved radium 1 ■ ^ r Kmanation in :;as olveii. Properties of reaction in per cent. Primary salinity 86-26 Secondary salinity. . . Primary alkalinity. .. . 1)()4 SecuTjdary alkalinity. , 1.V70 Analysis. Total Previous morKame React mg Constituents; — analysis.* matter m solution. Parts IKT million. Per cent. Pel cent. (SO.I .... Hi trace 47 30 Bicarbonic acid (HC0,,1 701). 719 2 13 64 C-irbonic acid (CO,) ... _,. Nitric acid (NO,) 2 + Nitrous acid (NO,) tr..ce Phosphoric acid (PO.) 04 (BO,) trace (CI) 2537 2488.45 49-37 42-77 (Br) 6.0 1-24 0-12 0-04 (I) 0.4.S trace Oxygen to form (A1,0.) 0-44 001 ~~ Silica (SiO.) 250 18.73 0.49 Iron (Fc) j. 0-54 0.01 Aluminium (M) (Mn) b-;mm (Ca) 73.0 54-90 142 2-18 Strontium (Sr) (Mg) 950 81-50 (Li) 02 Potassium (K) 33- 1 22-43 064 ( 51 (Na) 1640- 1650-3.5 31. 92 (NH.) 001 0-39 5137.77 5037-73 100. 00 lOO-OO Total solids in solution, residue Concentra- dried at 110°C 4814 tion value 167-28 Gases : Carbon Dioxide COt Hydrogen Sulphide H^S c.c. per litre. Parts per million. ■ Aoalyiia by Prof. R. F. Ruttan, McGiU L'niveraitj-, 1111. 30 HYPOTHETICAL COMBINATIONS. Const tucnt : — Parts per million. To 1 inorKa. 'c matter in solution. Previnus analysis. Per cent . Soilium nitrilf Sodium nitrate (NaNO,) (NaNO,) (NH.CI) trace 3-29 0-03 0-S8 8 92 1-23 57 32 4135. 7 35 8 1-22 571-7 295- 5 012 12 0-17 25 n (1-06 0-01 0-17 02 1 12 80 SO 70 02 11 14 5-75 02 49 (Kl) . . Potassium broniidt (KBr) (LiCI) 1 59 (KCl) 42 88 (NaCI) (MgCI,) (Na^SO*) Calcium sulphate Sodium birarlKJnate Magnesium bicarbonate (CaSO*) (NaHCO,) {Mg(HCO,):) (Ca(HCOi)i) 189 9 495 8 221 9 (Sr(HCO,)a) (Fe(HCO,)i) (Ca,(PO,),) . . , , (FeiO.) } 0-54 18 73 (AlsOi) Silica (SiO.) 5137.78 100-00 5037. 34 RUSSELL HTHIA SPRING. (17) Several springs are found in the neighbourhood of Bourget, Clarence township, Russell county, Ont. The Russell Lithia Mineral Water Co, own two of these on loi 20, concession II. Both were drilled and are 200 yards apart. Water from one boring is pumped by means of a windmill into tanks from which it is drawn to be bottled as Russell Lithia Water; the other flows naturally at the rate of 15 gallons per minute from a stand pipe. This water is pleasantly saline to the taste, and contains a consider- able quantity of mineral matter in solution, having specific gravity of 1 -0065 at 15°C. Much gas bubbles up with the water, and also issues from pools in the swamp aiound the spring. Analysis showed the gas to be chiefly methane or "marsh gas" and that it was radioactive, possessing an iictivity of 540 units. Two other springs of similar chaiacter were inspected on the farm of A. Martel, about two miles from the Russell Lithia Spring- Both were bored wells, with a natural flow. One was 96 feet deep while the other was drilled to a depth of 136 feet. The water from each had a pleasantly saline taste. J^J^^^^l^BHK -is»_p ^^y^^r^^r^'^^^^^^ wm^ 31 The following anal\sis shows that sfxiium chloride fornix 82 jxt cent of the total inorganic matter in solution while magnesium bicarbonate amounts to almost 10 per cent. Three per cent of sodium carbon.ite sivea the water an alkaline reaction, accounting for a primar>' alkalinity of 2-48 per cent. The quantity of potassium is comparatively high, forming almost 3 per cent of the alkalies. The water may be classified as a sodic, muriatcd, aikaline -saline (carbon- dioxated) water. RUSSELL LITHL^ W.VrEK. Laboratory No. 17. Sample collected June Temperature Flow Taste Pleasantly : Reaction Alkaline Specific gravity at 1S°C t -005 Radioactivity Emanation 109 units Dissolved radium 2-5 „ Emanation in gas evolved. Properticj of reaction in per cent. Primary salinity 87-84 Secondary salinity. . . . Primary alkalinity. .. . 2-48 Secondary alkalinity . . 9-68 1917. .!0-0'C*. (50°F.) aline ='w-'i4dl^ W^: ' X : A 32 Analysis. I Tola! inorKanc Keaeiing matle ii. ' \L'lut'. M]Iu> ? Tt'dF^" JSJ 33 HYI'OrilLTl(.AL (UMBl NATIONS. 4.( ^5 05 111 4 1(1 117 u m 44 11 U (19 Constituent: — Parts per million. Total inorganic matter in solution. Previoui analysis. Percent. Sodium nitrite (NaNO;) trace trace t2 3U 1 66 H-28 7 22 162 41 6509 4 26 262 on 789 .4U 130 41 4.1Q 10 68 10 30 05 3 015 02 018 09 2 OS 82 21 05 3 31 Ar.mc 'ium chluride (NH.Cl) 3 4 Potassium chloride (KCI) 440 8396. 6 157.4 Calcium chloride (CaClj) PotaxHium Hulphate IK^SO,) Calrium sulphate (CaS(),) 3 5 170 9. 97 : 1 65 ! 05 FfTous lii.,irlHirKiiE! U'f(HCUi)j) 013 ' Ft-rric oxide (FrA),> Alumina (AM>,) Siiira (Si(),l 1 13 : 62 01 , 7, 918. 64 100 00 1 0.024. I CARLSBAD SPRINGS, RUSSELL COUNTY, ONT. A group of seven saline springs arc situated at Carlsbad Spring?;, a s' (tion on the Grand Trunk line from Ottawa Ut Montreal, and eight naU's by road from Ottawa. A commodious sanitarium with accommodation for 175 guests was erected \n 1909 by Mr. Thomas Boyd, who owns six of the springs. The s;..iitarium is open during the summer months and suitable provision is made for visitors to obtain hot sulphur baths and to drink the waters from the various sources. The springs lie together in a small area, bounded on one side by the road and sanitarium and on the other by a creek. The i incipal sources arc enclosed in small summer houses, and rise in earthenware wells about 2 feet in diameter and several feet deep, the overflow running into tlie creek nearby. The six waters show considerable difference in concentration and in properties. In this respect as well as in possessing similar constituents, they U'ar a resemblance to the group of waters at Caledonia Springs. u I o 35 The 9nnU spring h.i> .i primary .tlkalinlty of 40 por r^-nt, thai is stxlium bi<'.irtH)naU' forms ,i l.irni' pr n'ni.iry alkalinii\ but 74 [HT (tilt primary 'aluiity, and 25 |m r crnt Mt^idary •.aliniiy Tht- expUnatiim of thiMlilVrt'nci lit pni(Krtics is t(j Ik.- frumd in the fail that t' ■■ waters arc niixturt s of waters from dilTircnt strata, thi' mus^t rtmrfntratt-tl and .valine watt-r n-inj; from tlu- nr^'-itot rjfplh, and mixing; with U*ss contTntratt'd anfl alkaline watrr., at other Kwls in varying proporii-.n-. Thus the Manic water eonv-s from a well 24lt t. el deep; the I.ithi < waier \^ a mixture of this water and .i less concentrated soluli' ii, coming ironi a vein (lO fct-I deep. The Sulphur and Sixia contain still larger proportions of the lesj* concentrated water, having sodium hicarUmate as il- principal con- stituent. The waters rise from the Trenton limestone; the same formation from which the Caledonia springs issue; and Sterr>' Hunt's explanation of the different projxTlies nf those waters, lying ho lU.s*- together, holds similarly for the Carlsbarl waters. It is of interest to note that the water from the greatest depth contains the larj^est amount of radium. It i^ to be expected that the stxl.i would Ik; the most temporarily radioactive but th- re is no evidence of this, (ias is evolved fr^-m the springs in considerable quantity, ■■stwcially from the Soda and I-ithia Springs. Analysis of a sample ga\e the following results: — Radioactivity, 230 units. Constituents — Methane (I'H,) 91-7 percent. Carbon dioxide (COi) 06 per cent. Oxygen (0,1 8 per cent. Nitrogen (N'l) 6-9 per cent. The following results were obtained on analyiii^ of the waters: — MAGIC SPRING. Laboratory No. 16. Sample collected June, 1917 Temperature S-S'C (47-3T). Flow Taste Very salt and bitter. Reaction Alkaline. Specific gravity at IS^C 1-015. Radioactivifv Emanation 87 units. Dissolved radium 25 „ Emanation in gas evolved. 36 Proporeics of reaction in per cent. Primary salinity 7.1-84 Secondary salinity 25-22 Primary allialinity Secondary allcalinity 0-94 Analysis. Sulphuric acid Bicarljonic acid Cartjonic acid Nitric acid Nitrous acid Phosplioric acid Metalioric acid Chlorine Drotnine Iodine Silica Iron Aluminium Manganese Calcium Strontium Magnesium Lithium Potaa«ium Sodium Ammonium (SO.i . (HCO.) . (CO.)... (NO,)... (NO,)... (PO,)... (BO,)... (CO.... (Br).... (I) (SiO,). . (Fc) . . (At) . . , (Mn).. (Ca),.. (Sr)... (Mi).. (uy. . . (K).... (Na). . (NH.). Total. Previous analysia* Parts per million- trace trace 12,520 100 00 2 10 7 15 8 8 1,250 17-3 368. . 3 3 160. 5,960 7 3 Total solids in solution, residue dried «t 110"C.. ,. 20,618 9 11 7 102 3 9 24 5 12 Total inorganic matter in solution. Per cent. 1 , 553 484. 82 6 7,465 Cdnes : Curlmn Dioxide CO, Hydrogen Sulphide 1I,S. c.c. per litre. 21. 1 2 04 97 60 72 48 01 OS 008 Reacting value- 02 47 49. 34 17 100 00 Concentration value. Parts per millic -•i^' j¥'t 37 HYPOTHETICAL COMBINATIONS. 02 47 CoriMtitucnl: — Paris (XT million. Total inorgan matter sululiti c n rrcvioua I'lt cci Sodium nitrite (NaNOj) trace 21 40 1-66 148 75 19. 97 212 .?.* 15,152 00 1,442 67 i,3I.i 90 12 24 21t 14 20 96 49 84 10 70 H9 Potasoium iodide (Kl) 001 72 10 1 0.* ".rso 7 DO 10 07 Lithium chloride (LiCI) I'otasaiuni chloride (KCl) Sodium chloride (NaCl) 157 7 IS.osii Calcium chloride (CaCI,) Sodium sulphate (Na.S04) Magnesium sulphate CMgSO<) Calcium sulphate (CaSO,) 4.16") 2 19 9 Sodium bicarbonate (NaHCO.) 1 02 10 24 05 121 Ferric oxide (FeiO*) 3t 1 Silica (SiO,) Manganous bicarbonate(Mn(HCOt)i) 9 20,618 45 100 00 25,462 8 Analysis shows this to Ik a strongly mineralized sodic muriatcd saline (bromic) water. It was one of the most concentrated waters examined. The chief constituents may be considered to Iw stxiiuni chloride (7,5 per cent of the total mineral mattiT in solution), magnesium chloride (7 per cent), and calcium chloride (16 per cent). The water appears to he less concentrated than it was in 1875, when a B.imple was analysi^d by Dr. C. Hoffmann of the C.eological Survey. SULPHUR SPRINC. Laboratory No. 15. Sample collected June, 1917. Tcm]>erature S'A". (48°F.) I* low 2 Kallnns per minute. '''^'*'' Sli;.;hl indication of hydrogen sulphide. Re.iclion .Mk.iline. Specific gravity at \S°C 1 ml Radioactivity Km.ui.ition 90 units. Dissolved radium Emanation in gas evol\e(1. ^^ >'.■!' i-3feft«^ ^T Properties of reaction in per cent. Primary salinity 78-48 Secondary salinity Primary alkalinity 16-42 Secondary alkalinity 5-10 Analysis. Constituents :- (SO, (HCO,) (CO.) (iNO.) (NO,) Sulphuric acid Bicarbonic acid Carbonic acid Nitric acid Nitrous acid , „ Phosphoric acid (PO,) Metaboric acid (BO,) Chlorine (CI) Bromine (Br) Iodine (I). Oxygen toformFejOj&AljO) Silica IrOR Aluminium Manganese Calcium Strontium Magnesium Lithium Potassium Sodium Ammonium Total, Total solids in solution, residi dried at I ICC 2 , 964 Carbon Dioxide C0», . . . Hydrogen Sulphide HjS. .c. per litre. 8-8 13 Parts per million. 17-3 2-2 • Atwlysa by C. Hoflmann, Ann, Rep. Geol. Surv.. 1874-75. p. JW m^^w^m^mri^- .jM*' !5!?359 p* -i«& •Y-'ii 39 HYPOTHETICAL COMBINATIONS. 01 2 m 10 1 02 46 74 09 Const! tuent: — Parts per million. . Total inorganic matter in solution. Previous analysis. Per cent. (NaNOi) 6" 4 81 0-83 7- 1.1 4 25 71 W 2,225 00 4 97 690 00 152 90 31 59 1 U4 5 34 trace 10 8 02 015 003 22 013 2-23 69-30 15 21-49 4-76 98 03 17 34 (NaNOi)... (NH.CI) (KI). . (LiCI) (KCl) (NaCI) Magnesium chloride Calcium chloride (MgCI,) (CaCl,) Sodium sulphate (Na,SO,) (KiSO.) 3 3 (CaSO.) (NaHCO.) . . . 816 5 (Mg(HCO,),) (Ca(HCOj)i) 54-9 Strontium bicarbonate Ferrous bicarbonate (Sr(HCO.),) (Fe(HCO,),) (Ca,(P04).,) trace 6 6 Ferric oxide Alumina (Fe,0,) (AliOa). . Silica (SiO,) 12-4 3,210!)0 10000 3,283-0 The Carlsbad Sulphur water may be classified as a sodic, muriated alkaline-saline (sulphuretted) water. The primary alkalinity is 16-4 per cent higher than any of the others, except the Soda water. Sodium bicarbonate may be considered to form 21 per cent of the total solids in solution, while the remainder is largely sodium chloride. The overflow from this spring runs into a storage tank, and the watet" is used for hot sulphur baths. Very little change in composition has taken place since the analysis by Dr. Hoffmann was made in 1875, as is shown by a comparison of the analyses. LITHIA SPRING. Laboratory No. 20. Sample collected June, 1917. Temperature 9-0°C. (48-2°F.) Flow 6 gallons per minute. Taste Saline. Reaction Alkaline. v^am^imzss^^-7r^^wmiPmBmmmmsmM^m''-^^,i3Ti - # '•i 40 Specific Rravity at 1S°C 1-0026. Radioactivity Emanation 70 units. Dissolved radiutn .^.1 " Kmanation in gas evolvt-d. Properties of reaction in per cent. Primary salinity 84.32 Secondary salinity Primary allcalinity 702 Secondary alkalinity 8-66 Analysis. Constituents; — Previous analysis Total inorganic matter in solution. Reacting value. Parts per million. Per cent. Per cent. Sulphuric acid (S()t) . 2 4 750 trace heavy trace 2 ,340. 12.5 5 127 2 1 trace .57. trace 47.' IS 50 1 1,608 2.6 05 15 35 47 89 026 01 26 04 117 «6 0.1 102 32.90 OS 003 7-84 Bicartjonic acid (HCO,) Cartwnic acid (CO,) , Nitric acid (NO,) Nitrous acid. (NO,) . Pliosptioric acid (PO,). . Clilorine (CI)... 42 03 010 Iodine (I) Silica (SiO,) Iron (Fe) 1 Aluminium (AI) ManzanMe (Mn). .. OS Calciiim iCa) 1.82 Strontium (Sr) . . . Magnesium (Me) 2 46 13 82 44 63 09 Lithium (Li) PoUssium (K) . . Sodium (Na) Total 4,886 4 100. 00 10000 Concentra- tion value Total solids in .solution, residue dried at 110° C Carbon Dioxiile CO, Hydrogen Sulijl.ide HiS. . per litre. 16 5 3 Parts per million. .12 S 5 ^i ■w;,r- ■'!/.■ TT IIVrOTllETlCAL COMBINATIONS. Consul uent; — Parts per million. Total inorgan!:. mailer in solution. Prr\ ious analysis. Per cent. trace trace 7. 49 66 17. 85 8 92 8419 3,768 OU 3 55 464 50 282-40 230. 00 trace 6-23 12-70 15 01 0J7 0-18 1-72 77.11 007 9 51 5-78 471 013 26 Potassium iod'de (ICI) Lithium chloride (LiO) Potassium chloride {KCl Magnesium chloride (MgClj) Magnesium sulphate (MgSOi) Calcium sulphate (CaSO«) , Calcium bicarbonate (Ca(HCOj)j) Ferrous bicarbonate (Fe(HCOi)j) Ferric oxide (FejOi) . . Silica (SiO,) 4,886 47 100 UO The Lithia water can be classified as a sodic, muriated alkaline-saline water. Lithium is present in small amount, but in no greater quantity than in the other waters. The chief salts in solution may be assumed to be sodium chloride (77 per cent), sodium bicarbonate (9-5 per cent), calcium and magnesium bicarbonates (each about 5 per cent). SODA SPRING. Laboratory No. 19. Sample collected June, 1917. Temperature SOT. (46-5°F.) Flow 2 i,'alliHi> per minute. Taste Slightly alkaline. Reaction Alkaline. Specific gravity at 15°C 1 0008. Radioactivity Emanation 81 units. Dissolved radium 1-1 „ Emanation in gas evolved . 230 „ .« \ .:■% ■ |i"-V, ^sm i*i«i" 1 ■ I. 42 Properties of reaction in per cent. Primary salinity 56-46 Secondary salinity Primary alltalinity 40-52 Secondary alkalinity 3-02 Analysis. " ~ . — Constilut-nts:— Previous analysis. , Total inorganic matter in solution. Reacting value. Parte per million. Per cent. Per cent. Sulphuric acid (SOi) 7 526. 02 heavy trace 394. 6 1 trace 10.4 2 9 trace 3.8 3.8 11 1« 8 426 45 05 37 73 28. 26 44 75 0-21 027 27 08 1 35 30 ,56 003 Bicarbonic acid (HCO,).. Carbonic acid (COi) 002 21 77 Nitric acid (NO,)... Nitrous acid (NO,) Pliosphonc acid (PO,* Metaboric acid (BO,) . . . Chlorine (CI) Bromine (Br) 28. 01 Iodine (I) 020 Silica (SiO,).,.. '/<'"■. . (Fe) i Aluminium (Al) ' Manpneae (Mn) 025 Calcium (Ca) Strontium (Sr) 048 M-'ignesium (Mg). Lithium (Li) 0.78 Potassium (K), 40 Sodium (Na) 1 21 Ammonium (NH,) 46 81 07 Total solids in solution, residue dried at 110° C... 1,394. 07 1,170. 100 00 100. 00 Gases: Carbon Dioxide CO, Hydrogen Sulphide H,S . c-cp. ■r litre. 7 3 Parts per 13 million. 1 t ^ 43 HYPOTHETICAL COMBINATIONS. Constituent: — Sodium nitrite Sodiutn nitrate. Ammonium chloride Potassium iodide Potassium bromide I.itliium cliloridc Potassium chloride Sodium chloride Magnesium chloride Calcium chloride Sodium sulphate Magnesium sulphate Calcium sulphate Sodium bicarlx)iiate Magnesium bicarbonate Calcium bicarbonate Strontium Ijicarbonate Ferrous bicarbonate Calcium phosphate Ferric oxide Alumina Silica (NaNO.) (NaNO.) (NH.Cl) (KI) (KBr) (l.iCI) (KCI) (NaCI) (MgCi.) (CaCI,) (Na,SO,) (MgSO.) (CaSO.) (NaHCO,).... (Mg(HCO,),).. (Ca(HCO,),). . (Sr{HCO,),)... (Fe(HCO.).).. (Ca.tPO,),)... (Fe,0,) (A1,0.) (Sift) Parts per irillion. Total inorganic matter in .-•ilution. 674 00 22 68 15 -i') 8 90 trace I'tTcenr. Previoui analysis. 1 60 11 trace 9 52 68 6 80 49 29 m 2-14 014 30 44. 05 48 40 1 63 MO 1,394 10 Water from the Soda spiing is the least mineralized of all the Carlsbad waters, and probably is the alkaline water which in the other springs mingles v.ith a more concentrated saline water, in varying proportions. Its primary alkalinity is high— over 40 per cent, another way of stating that sodium bicarbonate is a predominant constituent (48 per cent of the solids in solution). The water is not quite as pleasant to drink as the Sulphur or the Lithia water, on account of its slightly alkaline taste. Analysis shows it to be a sodic, bicarbonated, muriated water of the alkahne-saline type. VICTORIA SULPHUR SPRING. CARLETON COUNTY, ONT. (22) This is a disused spring at the side of Green's creek, two miles from Ottawa, near the Montreal Road. It is situated on the bank of the creek rising in an old wooden well, and flows at a rate of 250 gallons per hour. A considerable quantity of hydrogen sulphide is contained in the gas given off from the water, and by the action of the air it is decomposed forming a flW'^Ff'^Tl^* .Ai 44 sulphur deposit around the spring. The chief constituent of the gas is methane. The radioactivity of the gas was found to be 800 units. Water from the spring was once in great demand and a sanitarium built near had a considerable reputation, but it is now in ruins and the spring is in a neglected condition and disused. No complete analysis has been made but the following particulars were ascertained : — Sample collected July 1914. Temperature, Q-l^C Flow, 4 gallons per minute. Taste, strong sulphur. Specific gravity at 15°C., 10u4. RadioactivitN-, Emanation 112 units. Dissolved radium, trace. Emanation in gas evolved, SCO units. Hydrogen sulphide in water, 8-8 c.c. per litre. PLANTAGENET MINERAL SPRING, PRESCOTT COUNTY, ONT. (31) This is an old spring mentioned by Sterry Hunt in (Icology of C'an.-ida, p. 541, 1886. He stated that it rises from the lower Silurian formation. It is strongly saline and possesses a specific gravity of 1-0085, approximately equivalent to a sodium chloride content of 10,000 parts per million. It lises in a wooden cased well close to Plantagenet station, but water from it is seldom used to-day, and no analysis has, as yet, been made of this water. Radioactive measurements show a temporary r.idioactivity of 104 units per li..'e. CALEDONIA SPRINGS, PRESCOTT COUNTY, ONT. (35, 26, and 37) The waters at Caledonia Springs form one of the best known group of springs in Canada. They were know n to the settlers in the Ottawa Valley as early as 1806 and well patronized by them. The residents of Montreal and Ottawa also visited them and had a considerably more arduous journey than their descendants to-day, who now reach the springs in an hour and a half from Montreal or Ottawa, travelling in a comfortable, well-equipped train. In those days, visitors from Montreal had to take the train to Lachine, thence by steamer through Lake St. Louis and Lake of Two Mountains, to Carillon; again by train to Grenville, where a boat was taken to I'Orignal. From this place the ten-mile journey to the springs was completed by stage. Accounts still exist of the various events of those days, horse races, walking contests, miraculous cures, and hotel fires, and m'any interesting stories are told. In recent years, the Canadian Pacific ■ A" 4 A iSrT^ ■wnc O'w:, V 'W jM^yzs^^zr^i:::: jjprr 4S Railway Co. ha» ilfVi'loivil thi- .hi.f spriiiKS and inanauwl an oxr.ll.nl h.iti-1, allhnuKh it has Ufn cl(i«d mmci- tin- uull>r.ak (.1 llir war. Alt(iK>'th.r, »i-vi-n separate s.iurn'H ,if water exi,! within a small ana, and the eishth— the Duncan SprinR— i»i,nly two milesaway. Of the .seveij sources, three are IliiwinK sprinns .,nd f.air ,.re artesi.in wells. Th,- three sprinus: the Saline, the Sulphur, and the C.is Spring, lie quite elns,. tn- Kelher, the Sulphur .md Saline cnly ,, few feel ap.irl. The sprinas haw tjcen the subject of several analyses, d.itini; luck from IK.f.i, wlu-n they were examined by Dr. James \Villi..nis,,n. Iwi, e Dr. Sierrv Hum made analyses of the waters, in 1X47 and in IWi.S. In 1>)I)1.|W)7, I'rnfessor R. F. Ruttan of McC.ill University cirried out a rareful Inv-jstiRation lor the Cali-donia SprinKs Mineral Water Co. They were again analyse.l as detailed in this report in 1916. The chief constituent of all the waters may be consi.lered to Ix- smiium chloride, and several of them show considerable similarity in .omposition. The waters from the spriiiKs are of consider.ible Iher.ipeutie value and many cures have been etTecled by the use of them, ;\n ititerestini; paper' wa.s written on the Iher.ipi-utic pro|HTties of the (..ilerloni,! Springs by Dr. K. S. Ilardinn, l)..\., M.I)., sometime risiilent phvsiiian, and the statements t'iven, coneernini; the indivi.Iiial waters, are taken ham it. Aceordinii to Sterry llnnl. they rise from the Trenton liniest.in.- foim.i- tion, ihoUKh he considered tlul three of the waters at least were formed by the mmt-lini! of a concentrated saline water with water eonlaininn alkaline carlxmate such as would \k derived from argillaceous sediments, similar to those composing the Itica and Hudson River formations. S.M.INE SPRING, C.VI.r.DONI.A SPRINt.S. The Saline, .md the Sulphur Springs, issue only a few feet apart. The sulphur water comes from a fissure in the rock, 14 feet down, while the saline water proceeds from the junction of the clay and the rock. In 1915, the outlet of these tw.) springs was cleaned up, and white tiled partitions built, so that the two w.iiers arc entirely separated. The saline water is carbonated and bottled, and has an exte-sive sale imder the name of 'Magi' Caledonia water. It constitutes a wry pleasant and at the same time beneficial beverage. The water m,iy be classified as a sodic, muriated, alkaline-saline water. (Slightly sulphuretted and carbondioxated). It contains small amounts of biomides and iodides, which have so"te therapeutic importance, besides the larger amounts of magnesium (10'6 p<:r cent), and calcium bicarbonates (2 per cent), and sodium chloride (8.i per cent of the total inorganic matter in solution). ,,ir.-' "'"*'"'■ ^ ^ ' '^^ Treaonent of Rheumatism at Cak^Iot.ia S[.rmai. Montreal .Medical Journal. April. 4« Tho folLwing |Mrticul.ir» were obl.iined upon analy.i,:— SALINK Si'RING. Laboratory No. 3S. Sample cc.MiTted 0.t..lKT, lOlS. Tcmiwrature 8S°C. (47 -.rp.) i. 2 tjallcins ptTminu(o. „"•"•' Pleasantly (.aline. '*'-''":""n Alkaline. Specific itravity at 15°C 1 0063 Radi,)activity Kmanation 70 unit.. Di.wnlvetl radium 5.6 Emanation in (jas evolved. Jroi-iT'ics nf reaction in per cent. IViniary ^,llinity 88-60 Si-condary salinity. . . . Primary alkalinity.. . . 0')4 Secondary alkalinity. .10-46 •* 47 AnalytU. Total "" I'rrvinua inorganic Reaninn l'oniliiu«nl«: — analyiia.* matter m out u linn value, t'artii (NT million. Per cent. Vvx cent. Sulphuric arid (SO.) . , 2 1 01 02 Hicarbonic acid llKO,). '>.«) 11 40 .< 7(1 Carbof'- ^cid {((),) — j Situ -3.! Nitric... )■( (NO,) _„ " ~ (s. Nitnm-.ati.l (N<),) (,.U|. 1 Pht-M.horic aci.l (I'O,)., .. trace _^_ ^ MriiUwic add IKO,).. rr.ue \ Ihlorine (CI) i.l'n 4,1, VI ri4 ,M f)ft 44 i\ Hromiiie (Hr) luo 15 it! 1) 12 1)1 I.xline (I) 1 r> 1 20 ri 112 Oxygen to form (AI,0,). , , 11)8 SZl Silica (SiO,),,,. IS II 2K 18 Iron (Fr) 1 2 (1 \ m 02 Aluminium (AI) (1 21 89 Manaanc«e (Mn) , . - . t rarr <".ilcium (ta) 41 It 5.1 US 51 0-77 Sirontium (Sr) 2 •» 04 03 Magnesium (Me) Lithium (Li) I4.t II 127 21 176 4 41 2 4 II 0.1 0.13 Potawium (K) 7X 4 ivz^ 0.07 0-76 Sodium (Na) 2,691 4 2,76S 4.i .VM5 4,V78 Ammonium (NH4). . - . Total 4 M 4 m <)(. 10 8, tl8'2tl ^ '■''^ i^i' 100 00 Km 00 Concentration Total »olid) in wlution, residue value. dried at UO'C 1.1 f>l 266 65 Oases : Carbon Dioxide COi. . c.c. per L.ire. 20 6 Parts per million. 40.-^ 1 Hydrogen Sulphidt- HiS ts 7 .- Prr4. R p R-jiUt:. McGil: L'n: 48 HYPOTHETICAL COMBINATIONS. Sodium nitrite Sod'utn nitrate Ammonium chloride Potassium iodide Potassium bromide Lithium chloride Potassium chloride Sodium chloride Magnesium chloride Calcium chloride Sodium sulphate Magnesium sulphate Calcium sulphate Sodium bicarljonate Magnesium bicarbonate Calcium bicarbonate Strontium bicarbonate Ferrous bicarbonate Calcium phosphate Ferric oxide Alumina Silica (NaNO,) (NaNO.) (NH.Cl) (KI) (KBr) (LiCl) (KCl) (NaCl) (MgCI,) (CaCl,) (Na,SO,) (MgSO.) (CaSI),) (NaHCO,) .. (MgCHCO.),). (Ca(HCO.I,),. (Sr(HCO,),).. (Fc;HCO,),).. (Ca,(PO,),),.. (Fe,ft) (A1,0,) (SiO,) Parts p<'r million. trace 14 .l-S 2 m 14-88 14 58 1.19 ..M 6,766 00 860 166 6 3 39 15 , Total inorganic 1061 2. 04 08 05 001 018 8,118 15 100 (Kl Previous analysis. THi: SULPMUK SPRING, (26) The Sulphur Sprint; watur differs .siij;litly from the Saline water, in holding; a large amount of hydrogen sulphide gas in solution, and in con- taining only 4 per cent of sodium bicarlxmate, giving it a higher primary alkalinity. It also contains a smaller amount of mineral matter in solu- tion— 6231 parts per million, as compared with 8118 parts per million. The analysis shows it to be a sodic, muriated, carbonated, alkaline-saline water (sulphuretted). It owes its thercapeutic properties, in part, to the presence of hydrogen sulphide, ami is used largely in the treatment of rheuinatisni. Analysis gave the following particulars: — SULPHUR SPRI.NG. Laboratory No. 26. Sample collected October, 1915. Temperature 8-3°C. (46-9°F.) '^'°*' 2 to 3 gallons per minute. '.l-t- ,nA !H WTWM% •■^JA wsm 'iimi '"'•» 49 revious nalysis. Taste Slightly saline, with indication uf hydrogen sulphide. Reaction Alkaline. Specific gravity at 15*C 1-0059 Radioactivity Emanaticm 73 units Dissolved radium 5-6 „ Fmanation in gas evolved. Properties of reaction in per cent. Primary salinity 86 04 Secondary salinity. . . , Primary alkalinity 3-24 Secondary alkalinity. .10-72 Analysis. Iter, in in con- irimary 1 Bolu- nillion. i-saline to the lent of Total Previous morganic Reacting Constituents: — analysis.' matter in solution. value. Parts pe million. Per ct-nt. Per cent. Sulphuric acid (SO.) .13 6-54 05 03 Bicarbonic aci.i (HCO,) . , . 861- 443 84 13 82 fa 98 Carbonic acid (CO,) Nitric acid (NO.) Nitrous acid (NOa) Phosphoric acid (PO.) trace Metaboric acid (BO,) trace Chlorine (CI) i.086. 2,836 34 40. 52 42 90 Bromine (Br) 14.5 1 23 023 09 Iodine (I) 2-5 4H 04 Silica (SiO,) 17-9 53-95 0-28 Iron (Fe) I traces trace Aluminium (Al) ! 048 Mangar^^ (Mn) Calciun:^ (Ca) i9 H 124 12 64 98 Strontium (Sr) o.« 01 01. Magnesium (Mg) Lithium (Li) lo«.o .54 98 173 4 37 IS 03 13 57-2 14 ()5 92 0.72 Sodium (Na) 2,034 6 1,923 14 32 65 43 -67 Ammonium (NH») 4.J7 2. 73 07 012 Total 6, 231. 77 5.463 21 100 00 100 00 Total solids in solution, residue tion value. dried at HOT 5,870 202 63 c.c. p< r litre. Parts per million. Gases : Carbon Dioxide COt , . 00 61 Hydrogen Sulphide Hi 6 94 • By Prof. R. F. Rutton, McGill Univer«ity, 1903. HYPOTHETICAL COMBINATIONS. Constituent: — Total fam per inorganic million. I matter in solution. Sodium nitrite Sodium nitrate Ammonium chloride Potassium iodide Potassium bromide Lithium chloride Potassium chloride Sodium chloride Magnesium chloride Calcium chloride Sodium sulphate Magnesium sulphate Calcium sulphate Sodium bicarbonate Magnesium bicarbonate Calcium bicarbonate Strontium bicarbonate Ferrous bicarbonate Calcium phosphate Ferric oxide Alumina Silica (NaNO,).. .. (NaNO,).... (NH.C1).... (KI) (KBr) (LiCI) (KCI) (NaCI) (MgCI,) (CaCl,) (Na,SO,) (MkSO,) (CaSO.) (NaHCO,)... (MgCHCO,),) . (Ca(HCO,),).. (Sr(HCO,),) . . (Fe(HCO,),).. (Ca.(PO.),),.. 'Fe,0,)....... (•\1.0,) (SiO,) 12 3 21 10 94 4,982 Per cent. 270. 9 649.8 161 2 19 trace 4-35 10 43 2.59 003 Previous analysis. THE GAS SPRING. »7) The Gas Spring is also a sodic, muriated, alkaline-saline water and 1 sT cTr V H^'""' r'" '" contposition, .hough the flowTs , ghtly less. Gas ts evolved rom the water, which rises in a circular glav -anned cement well, and was found to possess a radioactivity of 306 unUs ' ' Analysis by Prof. Ruttan gave:— Methane, CH, ,, ,„ Ethane,c,H. :.:::::::::::::::: "o:)"""""'- Carbon monoxide, CO j.qq " Carbon dioxide, COi q gp " '^"■■°K™'N. '.'.'.'.'.'.'.'.'.'.'. 33-60 I The relatively high percentage of carbon monoxide mav account for the aleged n,ght-mare.g,ving properties of the water. The ' therap^utTc use of the water t. due mostly to the presence of carbonic acid and The 510"^ bonates, making it of value in gastric conditions. "^z^' •* <»;:yy ivJi > wmm •^-«^?3fe^.-^ ^o^s ysis. The following data were obtained upon analysis:— THE CAS SPRING. Laboratory No. 27. Sample collected October, 1915. Temperature 7-9°C. (46 -2°^'.) '^°'*' 2-3 gallons per minute. Taste Slightly saline. Reaction Alkaline. Specific gravity at 15°C 1 . 0063 Radioactivity Emanation 9() Dissolved radium 8 ■ Emanation in g,is evolved 306 Properties of reaction in per cent. Primary salinity 89- 12 Secondary salinity. . . . Primary alkalinity. .. . 0-24 Secondary alkalinity. ,10-64 and itly ped -1E^' Congtituents: — (SO.) . . (HCO.), (CO.) . . (NO.), . (NO,)... Sulphuric acid Bicarbonic acid Catlionic acid Nitric acid Nitrous acid , „ Phosplioric acid (PC.) Metaboric acid (BOt) Chlorine (CI) . . Bromine (Br) Iodine U) . . . Oxygen to form(AI,0,), Silica Iron Aluminium Manganese Calcium Stronti.i.n Magnesium Lithium Potassium Sodium Ammonium Total, . . (SiO,;. (Fe) . . (Al) . , . (Mn). (Ca)... (Sr) , . , (Mg),. (Li) . . , (K),.,, (Na).,, (NH.) , 52 Analysis. Previous analysis. Parts per million. Total solids in solution, residue dried at 1 lO'C 2 1 925 14 10 trace 4,412 2.4 6 3 1 17. 1 6 35 70 8 2 1 137 47 60-9 2,808 94 5, 81 8. 457. 79 53 468 27 4,212 02 13 46 98 30 82 64 97 trace 57 74 120 77 13 12 2, 779. 78 4 91 . Total inorganic matter in solution. Per cent. 7, 704. 02 02 10 94 84 002 1 62 Reacting value. 01 5 44 44 S3 01 100 00 (Toncentra- tion value. Carbon Dioxide CO, , . Hydrogen Sulphide H,S . :. per litre. 19. 5 4 Parts per million. 38. 5 03 4 5,1 HVTOTUKTICAL COMBINATIONS. >'0I I 04 127 1-56 i.77 I 11 Constituent: — Parts per million. Total inorganic matter in solution. Previous analysis. Percent. Sodium nitrite (NaNO,).. 21 17 28 SJ .V57 28. 'i2 ll.i 76 7,123 00 3 48 26 88 824. 00 284. 12 S03 1 87 1 60 6 60 17 10 D 20 001 004 34 135 84 22 04 32 9 74 3-36 06 02 02 08 20 Ammonium chloride (NH<:"™ Alkaline. Specific gravity at IST l-OO?) Radioactivity Kn.anation 53 unit» Dissolved radium 5.5 . , Emanation in gas evolved 204 » Properties of reaction in per cent. Primary salinity 88'06 Secondary salinity. . . . Primary alkalinity 3-34 Secondary alkalinity. . 8-60 Analysis. e» : Carbon Dioxide CO, Hydrogen Sulphide HsS • Bv p„r R r R,,..m:,. MjCII lniVU«l,. iwj. Piirts per million. 48 7 :^mjmiimLiM'mi^^''!im^m-w''-^m'W^S!^t^mxi HYPOTHliTRAL COMBINATIONS. 02 5 97 Constituent: — Parts per million. Total inorganic matter in solution. Pre\'iouii analysis. Per cent. Sotlium nitrite (NaNOil. 31 94 2 00 14.88 104 42 154 07 8,100 J4 5 04 40.i 76 872 30 173 18 4 ,10 4 lli> 1 91 49 10 90 18 31 02 15 1 04 1 54 81 0,1 005 4 63 8. 71 1 73 04 04 01 10 I 1 Sodium nitrate (N.iNO,). . Ammonium chloritJe (NH.CI) Potassium iodide (Kl) - , Potassium bromide (KBr) Litllium cliloridc (LiCI) Potassium chlfride (KCI) Sodium chloride ,),) (FedlC ().!,) (Ca,(i'0,),) (Fe,0,) (Al,0,,) (SiO,) (MndlCO,),) lO.IXKI 86 100 00 j THE ARTESIAN SULPHUR SPRING. (M) The Artesian sulphttr water is obtained from an artesian well, on the other sitie of the track from the hotel. The well is drilled 168 feet, the first 68 feet being through clay. The water is less mineralized than the others, contains much more hydrogen sulphide gas and has high primary alkalinity (U per cent). It can be classified as a sodic, muriatcd, bicarbonated. alkaline-saline (sttlphuretted) water. The w.iter is pumped acro.ss to the hotel, where it is largely used for sulphur baths. The following analysis, the first that has ever been made of the water, gave these particulars: — THE ARTESIAN SLLPHCR SPRING. Laboratory No. 29. Sample collected October, 1915. Temperature 9-4°C. (48-9°F.) Flow Small. I"***^.- Slightly saline and hycIroRen sulphide. '**"'ict'"n Alkaline. Specific Rravity at 15*C 10024 Radioactivity Emanation 56 units. Dissolved radium 1-7 Kmanation in fjiis evolved Properties of reaction in per cent. Primary salinity 79-94 Secondary salinity Primary alkalinity 11-30 StionHary alkalinity 8-76 Analysis. Consiituems: — Sulphuric acid Bicarbonic acid Carbonic acid Nitric acid Nitrous acid Phosphoric acid Meta boric acid Chlorine Bromine Iodine Oxygen for Silica Iron Aluminium Manganese Calcium Strontium Magnesium I-ithiuni Potassium Sodium Ammonium (SO.) . . . (HCO,). (CO,).,. (NO,)... (NO,)... (PO.) (BO,) . . (CI).. . , (Br). ... (I) (AW,). . Previous analysis. Parts per million. (SiO,). (Fe)... (Al).., (Mn).. (Ca)... (Sr)... (Mg).. (I,i)... (K).... (Na)... (NH.). <>8 6 645 3 2 trace 1,418.5 4 8 trace 4 09 21-7 10 4-6 04 27.7 21 38 5 16 37.5 1,076. 2 1 77 Total. Total solids in solution, residu drit^ at llO'C 3,106 Total inorg.inic matter in solution. Per cent. 2 91 19 04 41 88 14 64 03 13 82 06 1 14 005 1 11 < 31 . 7,S j ()6 Reacting value. I 95 10 0] 37 90 06 I 31 004 ,^ 00 22 01 44 40 09 100 00 lice nt rat ion value. Carlxin Diuxido CO,. . Hydrogen Sulphide H,S, . per litrp, 15 4 6 8 Parts per million, 30 4 10 9 57 HYPOTHETICAL COMBINATIONS. Constituent : — Sodium nitrite Sodium nitrate Ammonium chloride PotaHHium ioilide Potaitsium bromide I.ithium chloride PotaHHium chloride Sodium chloride Magnesium chloride Calcium chloride So<)ium Hulphute MaRnesium sulphate Calcium sulphate Sodium hirarbonate MaRnesium bicarbonate Calcium bicarbonate Strontium bicarbonate Ferroud bicarbonate Calcium phosphate Ferric oxide Alumina Silica Manganous bicarbonate (NaNOO , , (NaNO,).. . . (NH.CI).... (KI) (KBr) (LiCl) (KCM (NaCl) fMRCI,) (CaCi,) (NaiSO,),... (MrSO«).. .. (CaSO,) (NaHCO.) ,. (Mg(HCOi)i) (Ca(HCO j). (Sr(HCO,),), (Fe{HCO,),) (Ca,(PO,),)., (Fe,0,) (AliO.) (SiC) (Mn(HCO,M I'artB per million. 5 24 015 trace 7 14 21 61 2« 67 20 1 98 265. 70 66 90 Total inorganic matter in sf^ltition. Per V •nt. 408 70 14 7.1 2.11 6(1 6.84 112 18 3 3\ 5 03 15 3 20 10 8 69 26 21 70 64 Previous analyki., CURD'S SALINE WATERS, CALEDONIA SPRINGS. (33-34) Charles Gurd and Co. of ^fontreaI, own two artesian wells, situated some 250 yard« from the main Rroup of the chief Caledonia springs. The two wells— 20 feet apart, are both 68 feet deep, sunk through clay to (he rock. Barrel loads of the less saline water are taken tcj Montreal each week. The more salim' water contains almost twice as much mineral matter in solution as the less saline, and is nearly as concentrated as the Duncm water; but it differs from it in having sulphuric acid in noticeable quantity, and containing less bicarbonic acid. It can be classified as a sodic. miiriated, sulphaleil saline water, and would no doubt have consider, able value as a purgative water. Magnesium sulphate to the extent of 2-S per cent and 4-2 per cent magnesium bicarbonate are present in the water, while the principal constituent is sodium chloride (84%). 58 The (ollowini! results were obtainni upon analysis;— CURDS SAI.INK. 1915. . (44S°F.) saline. Laboratory No. 33. Sample collected fk-tob Temperature 8-H°(". Fl"* Small. TasK- Slr.inKlv> R'-'aftiun Alkaline. Specific KMvity at 15°C 1 .0071 Radioactivity Kmanation so units. Dissolved radium . , 1 7 n , Kni.ination in gas evolved. Properties of reaction in per cent. Primary salinity 87 52 Sirondary salinity ft. 40 Primary alkalinity Sirondary alkalinity 6 08 ^ Anatysig. Constituents: — Sulphuric acid Bicartmnic acid Carbonic acid Nitric acid Nitrous acid Phosphoric acid Metatjoric acid Chlorine Bromine Iodine Oxygen to form Silica Iron Aluminium Manganese Calcium strontium Magnesium Lithium Potassium Sodium Ammonium Total (SO,). (HCO,) (CO,) ., (NO.)... (NO... (PO.). . (110,).., (CI). ,. (Br).... (I) (A1,0,).. (SiO,). . . (Fc) (Al) t).. .. rhoophoric acid (1*0,) Met.ilwric acid (Hf),)... t hlorine (CI) Hromine (Br). ..!!!. lodint' (I) 70S TT 0-05 trace 2,622- 6 4 84 16-7 6 15 10 2.i-8 7 1 70 IS 78-9 1,77A 2 6 1 09 13 15 IJ 48 70 Oil 01 01 31 01 01 S3 013 130 003 1 47 33 l«l 01 70 6 69 07 42 50 04 Oxygen to form M,Oi . . ^'■''" (SiO.) '/"" . , (Fe) Aluminium (Al) Marjtaneae (Mn) Calcium (Ca) Strontium (Sr) Magnesium (Mg). . . . ! ! Lithiun; (Li) 01 83 (19 3 31 Hotawium (K)., Sodium (Na) Ammonium {SHt) 44 47 01 Total 5.384 64 5,017 100 00 Total solids in solution, residue dried at llOX Concentra- tion value. 173. 76 Parts per million. 43-5 ■ima- tm>fmt 1 61 MVI'OIUKTl^ Al. ( OMIilNATIuNS. Conttitucnl: — Sodium nitrite ScxJium nitrate Amniuniiiiii chloride t'liMMsiuni ioijidf rur.ti»iurii lironiiilc l.ithiiini chloridr PutaMiiiin chloride Sjdiuin L'hiorkle MaKncNium rhluride Caliiimi chloride StKliuiii iiulphate MjfliK'sium mil: ii r..'- t'alcium sutph '" Sodium l)irar'...n .u, .MuKneflium hii.irlnm.a" Calcium bicii. '■>rntc Strontium I h ,i; Imn.ite KiTroim bic.ifl'i.iaii- Calcium phuspr.iii- Kfrric oxide Alumina Si lien Manganous bicarbonatp (NaNO,, . (NaNOiJ-.. (NH.CI) .., (KIi 'Kl(r) M II I, 'talj i':ii.-\l (.\I«(I,) (iiiiUi (NaiSO.),.,. iMkso.) ... (NafK (),).. (Mk'MCO,).) r..['((ii, , ;',-(fi''') ! ,: l!tO,,,i '< .. I't,p,), 'I' ".) .'.,('.1. iMnini'O,!,) million. Total innricanic mitittrr in Kjluiiun, IVr rent. (1 ()■ V (16 18 1 7') 0.1 U 5(1 U HI H V.t i; ■1 10 17 I'M 'XI 2 M 4,IVi 52 77 «i »6 ;u 1 61 354 70 6 5« til m 7 82 116 1.,, 2 17 16 O.i .11 1 87 04 1 70 01 16. 70 .11 J5 5.384 M 100 Of PrrviouB .iiulyiiK. ADAN.\( H'RING, LOrJICET. ONT. Ml.^'s This is a fresh wuUt spriiij: uu nc.l b> the Ciilnlr, Water Co. It was discoverotl duriiiK lie i iinslructit- I'j'.i.a Canadian I'acific railroad, and was soon utilized. T . ,n.. in a large white tiled well, and a sulstanlial lious. n , »i-. : every precaution has lieen taken to avid pollution. Most of the hii;h land in the .uMKlihourhoixl is of ,i sapt. probably the spring is a surface water, filtered through the ■ ■, The radioactivity is comparatively high, but there is only a tr.ice of salts in solution. Similar statements can be made about many waters. The following particulars were obtained upon examination:— ADANAC Sl'RING. I aboratory No. 30. '^ 'mple collected August. 1914. Temperature u°c. (51 -S" F.) ^"'^ 10 Eallons per minute. ■y Goil. radium surface 'kiiiT.'.' 62 Taste Fr„h. Reaction Alkalint-. Spcrific gravity at 15°C 1 0(102 Radioactivity ICmanation 202 units. Dissiilvud raclium 0.3 „ Kmanation in gas uvoivt'd. Properties of reaction in per cent Primary salinity 31-6 Secondary salinity Trimary alkalinity 5-8 Secondary alkalinity 62.6 AnalyaU. (.'onstiluents: — Pre-vious analysis.* Total inofKanic inatttT in solution. Reacting value. I'arts (XT million. Per cent. Per cent. Sulphuric acid (SO,) BicarlKHiic acid (H{"0»), .. tarlx)nicacid (CO,) Nitric acid (NO.) Nitrounacid (\0,) Phosphoric acid (F'OJ.. Metalxiric acid (BO,) Chlorine (CI), . . Bromine (Br) Iodine (jj ' ' ' -;^*''ca (SiC) '7" . . (Ke) Aluminium (.^|) Mangaiii.«i (Mn)''!!! talciuni (Caj Strontium (^r) , ! Magnt'sium (Mk). . . Lithium (lij /_ ' Potassium (Kl Sodium iSu)... Ammonium (NH4) . 5 68 t.? 48 1').7 10 n 24 i 2 .'4 loos 4 5 36 15 6 8 10 2 1 ; 15 2 7 J4 2 6 8 6.3 27 ,) 4 U 18 7 Total Tot.il .^)li,iH in solution, r^siijut- ■ Im.lal lll,-C , 120 4H IIX) 100 00 (ion value. 1 Casi's : C.irlK.n Dimi,!,. Co, llyclroKiiiSuliiliiile ll,S P.irt.s i>er million. • Bv rii.1. T. ,\ S.4rk,.y. McGiU Vnn v-reity. Montreal. 63 HYrOTllETRAl. COMniNATIONS. Calcium carlionate Maijncsium carUmate Sodium carlxinale Sodium sulphate Sodium nitrate Sodium chloride (CaCO,), (MrCO,! (NaCO.) . i (Na,so.) ::.:i (NaNO,) (NaCI) 61) 9 7 78 5 9 S 4 27 Ifi 5 126. 48 Total inorganic matter in solution. Per cent. 48 2 6 1 4 7 6 6 21 .1 1.1 1 ■ Oil Previou* analysis. The water is a very liKhlly miaerali/i-d, calcic, bicarllonated. alkaline water. Westkrn Qi |.;i)|.:c. GUARANTEED PURE MII.K COS. WELL, MONTREAL. IJ51 This well was one of the deep wells indudeil in the investiRalion of the radioactivity of waters in tlie nelKhlKnirluKHl of Montre.il. The water flows naturally from a well which was drilled to a depth of 151 feet, though by pumptnK, 60 gallons |x-r minute ran be obtained. .Analysis shows this to be a calcic, smlic, sulphated, alkaline-saline water. Calcium bicarbonate forms 45 per cent of the total solid matter m solution, and calcium sulphate 27 |x-r cent, while 11 per cent of.s(xlium chloride is also present. It Ix-longs to a sroup of wells which are all hi,i;h in calcium .ind situated in Itie same neighbourhood. The following particulars were ohlained upon analysis:— r.UARANTKKO i'lKK jIll.K ((Is. UKI.I.. Laboratory No. 35. Sample collected .\ubus1, |()|4. Temperature ll).5°l'. (.ill.()° K.) '■''"* 6llKall..nsprr niinule. '■-''•te Fresh. '^'•''<^/''" .Alkaline. Specific gravity at 15°(: 1 (1006 Kac'ioactivity l-aiianalion 170 units. Dissolved radium lananatinn in gas evolved. 64 Properties of reaction in per cent. Primary salinity 21-34 Sfconilary salinity 35-90 Primary alkalinity Secondary alkalinity 42-76 Analysis. Sulphuric acid lS(^<) Bicarlmnic- acid iH<0,)., ' arbonii- acid (CO)). . Nitric acid (NOi) , . . Nitrous acid (NOa).. . Phosphoric acid (POj)... -Mctalwric acid (BO,) . , . Chlorine ^Cl) Bromine (Sr) . . IcKline (I) ... Silica Iron Aluminium Manganese Calcium Sirontium Maf{ne- Metaboric acid {BO,i Chiorinc (CI), . BromiiM- (Br), if'dine (|),. itxvgen lor Fe,C>a iS A),0. Silica (SiO,).. Iron (Fe).... Aluminium (Al). . . . , Mao^aijcse (Mn),.'. Calcium (Cjp Strontium (Sr* Matinesiuni (Mg , I-ithium {Li; FotaaBium (K). . Sodium (N'a).. . , Ammoiuum iiJlH«). . To^ Total mlide in sototion, residn dried dt 110° C Previoui analysis. Parts per million. 240 U 125. 5 Tutal inorganic matter in Mlution. Per cent. 22 3 21 7 II ') 14 4 10 6 0-7 55 ! 1 « 1 « 2 5.4 4 « 15 i 14 Rearting value. 15 4 11-8 12 9 7-9 i 9 I Concentra- tion value. Gasea: C^irbon I>toxif|p ( O, MoHiros'n bulphid^H-S. c.c. per litre. 76-6 Parts per million. •By J. T. Donald. Montreal. 1«15. 68 HYPOTHETICAL COMBINATIONS Constituent; — Part** per tnillion. Total inorganic matter in solution. Previous analyuA, Per crnt. Sodium nitrite (NaNO,) 188 6 354 6 221 S 92 J 208. 2 3 11 1 17-5 32 9 20 6 8.5 19 3 0.2 10 Sodium nitrate (NaNOi) Ammonium chloride (\H4CI) Potasaium iodide (Kl) Potassium bromide (KBr) Lithium chloride (LiCI) Potassium chloride (KCl) Sodium chloride (NaCl) Maftnesium chloride (MgCI.) Cal^ ,um chloride (CaCI,) Sodium sulphate (NajSO*) Magnesium sulphate (Mg^iO*) Calcium sulphate (CaSOi) . Sodium carbonate (VaaCOi) Magnesium bicarbonate (Mk(HCO,),) Calcium bicarbonate {Ca(HCO,),). , Strontium bicarbonate (Sr(HCC),),) Ferrous bicarbonate (Fe(HrOa),) Calcium phosphate (Ca.tPO,),). . . Ferric oxide {Fe,Oi) I Alumina {A1,0.) f Silica isio,) ::::;::: 1.078 7 100 SALINE WELL, 111 BEAUDRY STREET, MONTREAL. (37) This well is the property of Messrs. Charles Gurd and Co. Water was struck at a depth of 318 feet, and rose to within .SO feet of the sui^ace. and when pumped flows at a rate of 8 Rations per minute. .^nalysis shows the water to be a sodic, calcic, sulphated, bicarbonated, alkaline-saline water. Sodium sulphate forms 28 per cent of the total solids present, the other chief constituents are calcium and magnesium bicarbonates, and sodium chloride. It hears a resemblance to the Laurentian Spring Water (No. 36). SALINE WELL. Laboratory \o. 37. Sample collected August, 1914. Temperature 10-5°C. (509°F.) Flow Pumped. Tasle Fresh. f'"'i<'fi"n Alkaline. Spt — Sodium nitrite Sodium nitrate \niruonium thluride Pwasiiuiii ,o.liile Potassium I'roniiiJL' Lithituii .hloriile Potassium ililoridc Soilium chloride "■' nesium chloride - ^Icidm chloride N>dium sulphate Maijuesium suipltatc talciuin sulphate Sodiutn hicArtx)nate Magnesium bicarbonati Calcium bicarbonate Stroiuium bicarboi>a:v Kerrous bicarbonate Calcium phospha^^ Ferric oxide Alumina Silica (NaNO,!. . (NaNOil (NHiCli, (KI) , OSStV lCaV>.) (XaHCci.) . , VlilHCO.),) iCalHCO.!,)., (SrlHCO,),). (KeCHCO.),). lCa,lPO,)i) ,. (Fe.O.) (AI,0,1 (SiOt) trace (I 1 1 4 3 32 i US 6 12,18 188 3 346 Total inorganic matter in solution. Per cent. ,i6 2 08 11 J3 10 30 IJ 64 28 T) Previous analysis. WATSON FOSTER CO'S. WELL, MAISONNEUVE, MONTREAL. (43) This is another of the ileep wells i)f Montreal, examined especially for its radioactivity. It is drilled to a depth of 750 feet, and is pumped into a large storage tank. No estimate of the flow was i>l)tainable. The water is moderately mineralised, and can be classified as a stxiic, bicarlKmated, alkaline water. St>dium bicarbonate :;cd sodium , .irbonate form 64 per cent .if the total solids, while sodium sul.)l, 'te and sodium chlo- ride constitute the m.ijor portion i^f the remainiUR constituents. WATSON FO-iTKR COS. WELL. Laboratory No. 4,?. Sample (nllecteil \tiKUst, 1014. Temperature 1.3-0°C', (S(>°f'.) Flow — T.lsle Fresh. Reaction .Mk.aline. Specific gravity at 15°C' 1 0009. 71 Radioactivity Emaaation 42 unim Dissolved radium — Emanation in gas evolved. Properties of reaction in per cent. Primary salinity 39-34 Secondary salinity Primary alkalinity 57-70 Secondary alkalinity 2-*6 Analysis. Gases: Carbon Dioxi-ie rO|. . Hydrogt-n Sulphide HjS . :. per litre. 11 24 * tf 27 8J 2') 21 8.S 27 411 ■ 2.'! toil no 100 00 C oneeiirra- tkil value. 41 12 Parts pe 18 mil' 72 HYPOTHETICAL COMBINATIONS. Comtttucnt:- Sodium nitrite (NaNO»l . . Sodium nitrate (NaNOi) . . Ammonium ciiloride (NH«CI) Potaaeium iodide iiUaiy alkalinity 9-16 Analysis. Conitituenti: — I'reviou* .inalyaia.* Total inorgamt: matter in solution. Keael in? value. Parts |)c million. IVr cent. Per cent. Suiphurif acid (SOi) Bicarbonic acid (HCO,) . . . Carbonic acid (COi) . , 2 486 71 « 718 f T) 314 M <) 45 10 24 60 364 .16 33 / 46 1 03 1 37 89 53 007 13 02 Nitric acid (NO.J SilrouBacid (NO,) Phosphoric acid (I'0«) Meubont. acid (BO.) Chlorine (CI). ... Bromin« (Br) .13 01 ^ili'^a ,SiO,J Iron (Ke) 1 27 20 05 1" ' 14 30 10 633 201 .M 103 03 2 21 2. 34 02 44 Aluminium (Al) / Manganese (Mn) Calcium (Ca) Strontium (Sr) M.t^ne8ium (Mg) l.trhniin CI ;r Potasaiuni Ik)/.... Salium (Na) Ammonium (NH«) 05 1 09 Total Total solids in solution, residue dried at IIO'C. 1,976 79 ! 601 48 i i 1 855 I lOO 00 100 OO Cor entra- tiua value. 61 31 Carbon Dioxide C0| Hydrogen Sulphide H|S. c.c. per litre. 76 Parts per million. 15 * By J. T. Dould. Maotnal, 1911. ^ur. MlC»OCOfV RESOLUTION TKT CMAKT lANSlondtSOfESr CHAftTNo 2t 1.0 JrE 1^ U 1.25 It 1^0 1.8 ^ i^ »^ APPLIED (fvMGE In, ('1«1 288- 5989- 74 HYPOTHETICAL COMBINATIONS. Constituent : — Parts per million. , Total inorganic matter in solution. Previow analjrsB. Per cent. Sodium nitrite (NaNOi) 3 06 0-59 20 22 1,1640 3 06 127. 432-8 105-2 109-8 2-06 015 03 1 02 58-90 015 6 42 21 90 5 .^3 5-55 O-IO Sodium nitrate (NaNOi) Lithium chloride (LiCl) Potassium chloride (KCl) Sodium chloride (NaCI) ... Magnesium chloride (MgCIj) Calcium chloride (CaCI,) Sodium sulphate (NaiSO,) Magnesium sulphate (MgSO*) Calc:um sulphate {CaS04) Sodium carbonate {Na»COi) Sodmm bicarbonr.te (NaHCOj). Magnesium bicarbonate {Mg(HCO,)j) Calcium bicarbonate (Ca(HCOjJj) Strontium bicarbonate (Sr(HCOil)) , . . Ferrous bicarbonate (Fe(UCC^)j) Calcium phosphate (Ca,(PO<)j). . Ferric oxide (FeiOj) . . . Silica (SiOs) 1, 970-79 10000 MONTREAL JOCKEY CLUB WELL, BLUEBONNETS. (J«) This water was investigated in connexion with the ladioactivity exam- ination. The well is 203 feet deep, and yields water at the rate of 132,000 gallons a day. The drilling penetrates the rock for a few feet. Analysis shows the water to be a lightly mineralized sodic bicarbonated alkaline water. Bicarbonates and carbonates of the alkalies and alkaline earths form over 70 per cent of the total solids. The following particulars were obtained : — MONTREAL JOCKEY CLUB WELL. Laboratory No. 50. Sample collected August, 1914. Temperature 8-3°C. (47° F.) Flow — Taste Fresh. Reaction Alkaline. i 75 Specific gravity at 15°C . , . i . 0005 '^"'^^^'-''y E„,ana-tio„ „ „„,, Dissolved radium r> • , . Emanation in gas evolved Properties of reaction in per cent. <^voivcu. Primary salinity 24-96 Secondary salinity Primary alkalinity 5J-28 Secondary alkalinity 21-76 Analysis. ConstituentB: — Sulphuric acid Bicarbonic acid Carbonic acid Nitric acid Nitroua acid Phosphoric acid Metaboric acid Chlorine Bromine loi-line Silica Iron Aluminium Man^neae Calcium Strontium Magnesium Lithium Potassium Sodium Ammonium Toul. , (SO,) . . . (ilCO,)., (CO,)... (NO.)... (NO.)... (PO,)... (BO,) . . , (CI) (Br) (1) (SiO,). (Fe)... (AI).... (Mn). . (Ca)... (Sr).... (Lif.... (K).... (Na)... (NH,).. Total solids in solution, residue dried at HO'C Gases: Carbon Dioxide CO, Hydrogen Sulphide H,S. Previous analysis. Parts per million. 37 9-6 0.92 4 5 12 7 trac-e 9.4 102. 2 0.02 432 42 Total inorganic matter;.! solution. Per cent. 10 9.S 42 33 10 41 04 01 Reacting value. r cent. 8. 24 25. 08 12. 54 001 I 8S 872 2. 00 37.12 10000 Concentra- tion value 11. 97 c.c. per litre. Parts per million. 76 HYPOTHETICAL COMBINATIONS. No.M. Coiwtituent : — Sodium nitrite Sodium nitratt Ammonium chloride Potassium iodide Potassium bromide Lithium chloride Potassium chloride Sodium chloride Magnesium chloride Calcium chloride Sodium sulphate Magnesium sulphate Calcium sulphate Sodium carbonate Sodium bicarbonate Magnesium bicarbonate Calcium bicarbonate Strontium bicarbonate Ferrous bicarbonate Calcium phosphate Ferric oxide Alumina Silica (NaNO,) (NaNO,) (NH.Cl) (KI) (KBr) (LiCI) (KCl) (NaCl) (MgCI,) (CaCW (Na,SO.) (MgSO,) (CaSO.) (Na,CO>) (NaHCO,).. . (Mg(HCO,),). (Ca(HCO,),).. (Sr(HCO.)i).,. (Fe(HCO,),) . . (Ca,(PO.)!). (Fe,0.) (AW.) (SiO,) Total Parts per inorganic liltion. matter in solution. 07 21 06 trace 17 93 14-74 79 SO 142 70 76-50 18-19 2 92 Per cent. 02 05 0-01 4 ;; 3 41 18-38 33 00 17-68 4-21 68 Previoui analysis- VIAUVILLE MINERAL WATER, MAISONNEUVE, MONTREAL. (42) The Viauville mineral water is obtained from a deep boring, drilled in the hope of striking natural gas. Good water was met with at 450 feet, which rose to within 10 feet of the surface- At 1190 feet, a strong flow of saline water containing much hydrogen sulphide was c-.countered. Drill- ing waj continued however to 1370 feet. Trentn" limestone was the only formation traversed - The water has a strong sal' . taste, together with the disagreeable odour and flavour of hydrogen sulphide gas, which it contains in consider- able quantity. The well is owned by Mr. Daniel Bergevin, and the water is bottled under the name of "Radium" water. The radioactivity is low and no radium salts in solution could be detected, therefore, the bottled water after a few days will possess no radioactivity whatever. These results confirm those of Dr. Mcintosh of McGiU University, who found about as much radium emanation present as is found in St. Lawrence River water. The following results were obtained upon analysis:— 77 VIAUVILLE MINERAL WATER Laboratory No. 42. Sample collected October, 1914, Temperature 12-5°C, (54-5"'F,) Flow Ta^"^ Strong sulphur. ■^^action Alkaline. Specific gravity at 1S°C 1 ,0063, Radioactivity Emanation 11,2 units Dissolved radium Emanation in gas e\oIved. Properties of reaction in per cent. Primary salinity 93-34 Secondary salinity Primary alkalinity 1 . IQ Secondary alkalinity 5.56 Analysis. Constituents: — 1 Previous 1 analysis. Total inorganic matter in solution. Reacting value. Parts per million. Per cent. Per cent. Sulphuric acid (SO).., Bicarbonic acid (HCOj), Carbonic acid (C0») , 2,.i4;.0 641 U 23 21 6 34 34 70 19 10 005 63 002 065 04 34 33 72 01 15. 40 3 30 Nitric acid (NO,) 3,509. 19 0.25 104 4-68 01 64 3 2 15 65 6 4 34. 1 3.408- 1.52 Nitrous acid (NO,). Phosphoric acid (PO.) Metaboric ■ (BO,) . . Chlorine (CI) Bromine (Br) . . 31 20 Iodine (I) 07 Silica (SiO,)... 1™ (Fe) i Aluminium (A!),. Manganese (Mn).,.. 05 Calcium (Ca) Strontium (Sr) 101 Magnesium (Mg) Lithium (Li) 1-72 Potassium (K) Sodium (Na) 28 Ammonium (NH,) 46. 74 10,11101 9,890. 100 OC Total solids in solution, residue dried at llO'C... 100-00 Concentra- tion value. _-__ 317 06 ^ases: Carbon Dioxide CO, Hydrogen Sulphide HiS. c.c, per litre, 18 5 30 5 Parts per million, 36 4 460. -jHOB.'w^iimm r 3^ 78 HYPOTHETICAL COMBINATIONS. Coofltituent : — Parts per million. Total inorpanic matter in solution. Previoiia analysis. Per cent. 4 51 32 28-3 24-3 47 6 5,7100 05 28 0-24 47 56 47 34 32 1 36 3 93 2. 58 OS 15 10 Ammonium chloride tNH4Clj Lithium chloiide (LiCl) Sodium chloride ""'aCl) Sodium sulphate (NajSO*) 3,4700 138 397 (t 260 5 5-2 14. 9 10-4 Calcium sulphate (CaSOt) Magnesium bicarbonate (Mg(HCOi),) Olcium phosphate (Ca»(POt)i) Ferric oxide (FeiOi) Silica (SiOi) 10, 111. 03 too 00 The analysis shows that the water is a sodic, muriated, sulphated (bromic, sulphuretted) water of the saline type. The chief constituents may be considered to be sodium chloride (56 per cent of total solids), and sodium sulphate (34 per cent). Hydrogen sulphide occurs in notable amount, and it is probable that traces of alkali sulphides are present. Dr. G. H. Baril' of Laval University, Montreal, has pointed out the resemblance between the Viauville water and the Uriage water, a celebrated French medicinal spring. The following table enablescomparisonof the chief constituents of the two springs to be made: — Parts per million. Hydrogen sulphide Sodium chloride Potassium chloride Lithium chloride Cilcium sulphate Sodium sulphate Sodium bicarbonate Total m-neral matter in solution 460- 5,7100 47 6 24-3 3,4700 138 10,11103 ^^_ • Bttrfl. G. H., L'Eku Mln«nk de VlauTlUe. L'Unloa MCdkale ^u Caiuda, VoL 45. No. 1. p. 36T, 1916. "'^.fiiSiL mmF^- 79 The Uriage waters are chiefly used in the treatment of scrofula chronic sk,n d,«.a.,e. and for .yphiiis, especially in association wUh mercurill treatment. Dr. BanI states that Viauvillo wat«r has been used iTsTmUa cases with success. " simuar ABENAKIS SPRINGS, QLE. (44 ami 4S) The Atenaki.s Springs are situated near St. Fran-ois du I ac Yamisk-, Z2T- '" '"' ^■■'"^^ "' '"' "■ ^'""^"^ -"• ^-v-i.hrn,ii;r;::m A modern and well equipped hotel has iK-en eslabli hed under the ,„,„ agement of Mr. W.E.Vatt.and special attention ha bien n^d n th^t ^' In the west house the well is 1 2 feet deen arH il„„„ »„., bormg 60 fee. deep, from which wa.er fllt'^^aTut , ty /r ^^of ^ an hour. ,n the east house is another flowing wl^ ',2 c« deep' tT waters probably rise from the Hudson River form-, inn .„ ,7' t sahne constituents from beds of alkaline a„d"lk:[n"^^^^^^^^^^ limestone. The following results were obtained :- SPRING IN WEST HOUSE. Laboratory No. 44. Sample collected August, 1914 Temperature U .5°c! (48'F ) Flow 1'^^": Strongly saline. f"*'^'""' Alkaline. Specific gravity at 15°C 1-0106 ^'°-^^-'^ Em.a„ation 62 units. Dissolved radiur.; ........ 0-5 . . Emanation in ga^ evolved, l^roperties of reaction in per cent. Primary salinity 79 . 74 Secondary salinity 16-20 Primary alkalinity Secondary alkahnity 4. OS •0 AnalysU. Con«tituent«:— Previous analysis. Total inorganic matter in solution. Reacting value. Parts per million. I'er cent. Per cent. 754. 588 2 5 01 17 trace 7,522- 15 5 21 62 19 22 5 21 S 5 479- 3 8 292 7 10 95 1 4,285 7 65 5 34 4 16 02 iTso 11 015 14 00.1 15 3-40 04 2 07 001 067 30 36 05 332 Bicarbonic acid (HCO,) Carbonic acid (COt) 2 03 Nitric acid (NOg) Nitrous acid (NO,) 44 62 04 Iodine (I) Oxygen for Fe,0, & Al,Oi Silica (*>iOj) Iron (Fe) , 5 5 .19 04 01 06 01 M 3,1 09 Total 14,116 57 14,298 100 00 lOOOO Total solids in solution, residue dried at llCC Concentra- tion value. 474 93 Gases: Carbon Dioxide COi. . . . Hydrogen Sulphide HiS. c.c. per litre. t.7 Parts per million, 3-3 at H\ HETICAL COMBINATIONS. Cofiititucnt:— Parts per mili^on. Total inorganic matter in Aulution. Previoua analysifl. Per cent. trace i 40 22-74 66 02 16 16 (M 1 19 77 19 7 70 54 6 97 5 45 10 Sodium nitrate (NaNOi) . . , Ammonium chloride (NH«CI) Potauium iodide rKI) . . Lithium chloride (LiCI) Potawium chloride (KCI) 167 ii 1 087 12 Sodium chloride (NaCI), . , . Magnesium chloride (MgClj) Calcium chloride (CaClj) 75 76 98 J 40 769 U Sodium sulphate (Na,SO() Magnesium sulphate (MgSOi) Calcium sulphate (CaSO,). . . Sodium bicarbonate (NaHCOi) Magnesium bicarbonate (MgfUCO,),) Calcium bicarbonate (Ca{HCO,),) . Strontium bicarbonate (Sr(HCOi)i). . . Ferrous bicarbonate {Fe(HCO,),) , 14 04 Calcium phosphate (CatCPOj),) Ferric oxide (Ke»Oi) 7 16 05 2y 14 4111 19-22 Silica (Sio,) ,:::::;::;:: 14,116 56 1 10000 SPRING IN EAST HOUSi:. Laboratory No. 45. S^^mple collected August, 1914. r^mperature 11 -ST. {4S°F.) flow Taste Saline. Reaction Specific gravity at 15°C 1 -0108 Radioactivity Emanation 62 units, Dissolved radium 0-5 „ Emanation in gas evolver* Properties of reaction in per cent. Primary salinity 79-08 Secondary salinity 16-98 Primary alkalinity Secondary alkalinity 3-94 ^WiM . 82 Analyili. Conilituenti:— Previous analysis.* Tot. inorganic matter in solution. Reacting value P Is per million. Per cent. i'er cent Sulphuric acid {'<\) Bicrhonic acid (HCO,) . Carbonic aci.1 (COi) Nitric acid (NO.) Nitrous a-id (.NO,),., Phoiphoric acid (PO,).... Metalwricaiid (RO,),, Chlorine (CI) Bromine (Br) Iodine (I) Oxygen for F.!,Oi & AIA Silica (SiO,). . Iron (Fe) Aluminium (Al) Manganev; (Mn) Calcum (Ca) Strontium (Sr) Magnesium (Mg) Lithiu- (Li) Potassium (K) Sodium (Na Ammonium (NH*) . , , , 7ii 1,1 1 4 411 i; trace 7, 300 ,W 8 16 Ois n 3S 3 75 U. 20 40 485 3 : 12 29J 7 13 68 92 4,169 3 2 ,55 772 1 478 6 8,106 tt.icc trace 13 9 1 trace 499, 32S 5 40 4,578,3 5 25 4 06 001 SJ..53 22 01 012 08 ()3 12 3 53 05 2 14 01 50 30 22 002 3 24 1 97 44~7I 08 5 21 04 S 21 04 38 39 09 03 Total 13,749,75 14,«18 100 00 100 00 Concentra- tion value. 463 90 Total lolidt in solution, residue dried at 110°C Carbon Dioxide C0» . , . Hydrogen Sulphide HjS. c.c. per litre. 10 2 Parts pel 20 1 • By MUtOQ Herwy. Montreal. 190*. HVOTIIETICAL COMBINATIONS. ronitituenl;- xjium nitrite .xxjium nitrate Ammonium chlo. de Potawiuni iodide Pdl.isnijm Iiromide lilhiiim cliluride PotiiRsium rhloride Sodium chloride Majtnpiium rhloride Calcium chloride Soiiium Rulphute MiiKnesium sulphate Calcium Bulphnte So itttrry nunt, :!;: consl.::^ th:t the w,..er rL .r„m the Utica or Hudson River forma- tion a supposition the recent analysis confirms^ . They are the property of Mes.,rs. Charles Gurd and ro. of Montreal but wat. r is seld<,m Ixittled, and the springs have fallen into disuse. The sDrine investigated rises in a well made by an earthenware pipe, .tO in hcs Imeter and 10 or 12 feet deep. A considerable evolution of gas, hiefly merhlne "curs. The radioactivity of .• sample of the gas was ''.und to b. ™0 unk per litre. The radioactivity of the water is high, compare . with most of th'e results obtained, but the dissolved ra.iium content is low, and the water would soon lose its r.idif --vity when bottled. The water may be classified a. . strongly mineralized, ^'-■'"-«"'^'' muriltti alkalineiline water. StKiium chloride e—tes 4 per «nt of the mineral matter in solution, and magnesium btcarbonate 10 per cent^ The water should be valuable from a therapeutic standpoint. It bears some resemblance to the springs at Kissingen in Bavaria. The results cf the analysis are as follows-.— VARENNES SPRING. Laboratory No. 48. Sample collected '^^^^'1% Temperature Flow Taste Reaction Specific gravity at 15°C. 8.6°C. (47.5°F.) Considerable, Sahne. .Alkaline. .1009 ""•"~"'''">- Emanation muni,, OiiMilvcd radium.. 9J Kmanation in gat ovolvi-d 810 Pnipr 'ties o( reaction III per crn I. " Primary salinity 8882 Secondary salinity. . 22 ""rimary alk.Jinity !iecondary alltalinity .10 96 Analyih. Conitituentt:- Siilphurir .u;i(l Birarbontf ai id Carljonir ai id Nirrif acid Nitrouii acid I'hoiiphoric acid Mpliilioric acid ( hlorine Bromine I<)dine Onygen for AliOi, . Silifa Iron Alum ium Man^aneae Calcium StTOiitium Magneaium Lithium Potamuni Sodium Ammonium Total (SO.) . (HCO,) (CO,) (NO,) (NO,) . (iM.) , (HO,) . (CD.. . (Br) (I) , (WO,) (Fe)., (Al)., (Mn).. (Ca) . (Sr) ... (Mg).. (Li) . . . (K) .. (Na)... (NH.). Total „|id, i„ „imio„ residue dried at llO'C Previous analysis. Parts per millio I .1 1,28! 060 5 in 7 3 2S 1$ « 7 .17 06 99 5 12 200. 4 6 84.5 3, 858. 2 11,6J4 01 11,220 Carbon Dioxide CO, Hydrogen Sulphide H,S. c.c. per litre. Total inorganic matter in solution. Per cent. 01 11 US 32 08 1! 14 0] 86 01 1 72 04 7.1 3.M5 Per cent. 001 5 4S 44 4S 06 1 JO 4 28 17 56 4.1 68 lOO IH) Concentra- tion value. 384 09 Parts per million. u. ■■J,' '* '^ -■"• *; 36 HYPOTHETICAL COMBINATIONS. CooBtituent :^ Parts per minion. Total inorganic matter in solution. Previous analysis. Per cent. Sodium nitrite (NaNOi) 07 1 00 26 77 27 .Q2 144 23 9,810 00 18 06 1 86 1,173 10 402 % 2 W 2 23 6 98 15 80 18 01 23 24 1 24 84. 13 l.S 02 10 08 3 46 002 002 II T'l , ; Sodium nitrate {NaNO») Ammonium chlorif^s {NH«C1) Potassium iodide (Kl) Potassium 'jromide (KBr) Lithium chloride (LiCI). . . . Potassium chloride (KCl) Sodium chloride (NaCI) Magnesium chloride (MgClj). . Calcium chloride (CaCU) Sodium sulphate (NaiSO*) Magnesium sulphate (MgSO*) Calcium sulphate (CaSOi) . Sodiur bicarbonate (\aHCO,). Magnesium bicarbonate {Mg(HCO,),) Calcium bicarbonate {Ca(HCO,),) Strontium bicarbonate (SrCHCO,,),) Ferrous bicarbonate (Fe(HCOi)») Calcium phosphate (Cai(POOt). . . Feme oxide (Fc,0|V. Alumina (AI,0,j Silica (SiOj) Manganous bicarbonate (Mn(HCOi)O. 11,634 01 1 100 00 RICHELIEU SPRING, GRAND COTEAU, CHAMBLY BASIN, QUE. This spring is situated on a plateau, in area ahout two acres. Bcliiw the sprinR the ground is marshy, and slopes gradually to the Richciitu river. The water rises in a cement pit about fifteen Icct in depth, which penetrates the clay overlying the Hudson River formation. The well has a capacity of ,3000 gallons, and if pumped dry, takes two days to refill. The spring was the property of Mr. George Tetreau of Montreal. It was the subject of examination by Dr. Sterry Hunt on th.ec occasions, in 1851, 1852, and 1864, when slight changes of concentration were observed. Prof. G. H. Baril.of Laval University, Montreal, carried out an exhaustive analysis in 1913, and his results, compared with those obtained recently, show similar slight variations. The water is a moderately mineralized, sodic, muriated, bicarbonated water of the alkaline-saline type. The chief constituents may be consider- ed to be sodium bicarbonate (58 per cent), ai.d sodium chloride (33 per cent). Prof. Baril states that the water is of value in the treatment of urinary diseases and of the digestive organs— sodium chloride stimulating the stcre- tion of the glands. It is also prescribed for diseases of the biliary or renal lithiasis, chronic rheumatism, gout, and obesity. »^. •■V- J k IV 87 RICHELIEU SPRING. Laboratory No. 49. Sample cullucted Aukum, 1QI4. Ti-miwrature 9.4°^ (4i),o°F ) F'"»' Small. ^''^"^: SliKhlly swwt and pleasant. •*'■■"■""" .Mkaline. Specifir gravity at 15°C 1 0028 Radi.iactivity Kmanation Dissolved radium , , Kmanation in gas evolved Properties of reaction in per cent. I'rimarj' salinity. . . Secondary salinity. Primary alkalinity 51-80 Secondary alkalinity 600 Analysis. 104 units. .42-20 Constituents; — Sulphuric acid (SO«) . .. BiLarbonic acid (MCO,).. C'ar[>onic acid (t'Oj) Nitric acid (NO;). Nitrous acid (NO3) , Phosphoric acid (FO^) Metalraric acid (BO^) , Chlorine (CI) Bromine (Brj Mine (I)... "■■ Oxygen to form Al,0, I'rr\-i<)ii9 1 analysi:,.* Pan' per nulli()n. X'* \22S .■•KO 00 , Total inorganic matter in r^oliition. cr cent, 01 47 «0 React ing value. Per cent. 0,: 2« QO Silica (SiOj),. Iron (Fe) Aluminium (AD... Manganese. (Mn).... (Ca). Strontium Magnesium Lithium (Sr) (Mk) (Li) Poiassiiini (K) Sodium (Na).. Ammonium (NIL) free carbon dioxide.. . Total Total sftlids in solution, residue dried at UO''C Gases; Carbon Pioxide COj Hydrogen Sulphide HjS. • Analydig by G, II. Baril, Ijival fii :. per litre. Parts per millioii. No. 49. 88 HYPOTHETICAL COMBINATIONS. Sodium nitrite Sodium nitrate Ammonium chloride Potassium iodide Potassium bromide Lithium chloridf Potassium chloride Sodium chiofide Magnesium chloride Calcium chloride Sodium sulphate Magnesium sulphate Calcium sulphate Sodium bicarbonate Magnesium bitarljonate Calcium bicirlionate Strontium bicarbonate Ferrous bicarbonate Calcium phosphate Ferric oxide Alumina Silica RADNOR FORGES SPRING. CHAMPLAIN COVKTV, QUE. (S2) ». ■ ■ 7T' ' ■°'" ""'' T'"^ '" '"'"'■'' ^^ ""= ^^'^"°' Water Co., of Montreal whir^l ,T "^^'"- " "^' f™" " <^""'"8 '2 feet in the rock »h,ch wa> put down to .ncrcase the flow of the original source, and it issue under considerable pressure with a steady flow of 1500 gallons per hour 11 3 38 3 269 10,809 650 1,544. 70 508.68 681 trace 4 29 23 00 31 50 015 01 043 03 028 02 1 93 7-.J4 4 66 11. 07 3 64 05 03 0-16 23 Previous analysis. POTTON SPRING, POTION TOWNSHIP. BROME CO., QUE, (54) This sulphur spring flows frotn ■^ crevice in tlie mountain side close to Pot on Spnngs station, on the Canaulan Pacific railway branch ine'te^Teen ^~Meip^h:i^j:r ™' "' '"^ ''''""""'■ -' -''■- ^'^"^^" A sanitorium has been built by Mr. J. A. Wright, near the spring and numerous visitors take the cure. The water is lightly mineralLd and Z Hnlei^th-'"''",!"™"' °' '■^''™«^" sulphide^n 'spite of slate type^'the' ht'Zhit-'°l'^ ' calcic, sodic bicarbona.ed water of the alkaline ZTJ ^ P"'''^"'^^' ~n>binations indicate that calcium, magnesium and ^sodtum bicarbonates, together form 7S per cent of the t,;tal s'olidT,: -i POTTON SPRIN(;. Laboratory No. 54. Sample collected SoptemlxT, 1914. Temperature 100°C. (50°F.) ''"*' 1 gallon por minute. I^^'': Siitiht taste of hy.lroRcn sulphide Reaction Alkaline. Specific gravity at 1S°C 1 0002. Radioactivity Emanation Dissolved radium. . . . Emanation in gas evolved. Properties of reaction in per cent. Primary salinity 19-30 Secondary salinity Primary alicalinity 1 1 . 70 Secondary alkalinity 69 00 Analysis. 280 units. Constituent: — Sulphuric a id icid id 1 acid cid (S0«) . Bicarbonic Carbonic ai (IICO,).... (CO,) Nitric acid (NO,) Nitrous aci (NO,) Piiocphoric (PO,)... Metaboric r (BOi) Chlorine (CI).. Bron-.ipe Iodine (I). .:::::: Silica (SiO,) Iron. (Fe) :) Aluminium Manga neae (Al) (Mn) Calcium (Ca) Strontium (Sr) Magnesium (.Mr) Lithium (Li). : Potassium (K)... Sodium (Na) Ammonium (NH.) Total. . Total solida dried at in solution, resic lo'c ; ue Previous analyds. Parts per million. Gases: Crirbon Uioxide CO, Hydrogen Sulphide HiS. .5 7 123. 9 13 23-6 61 0.01 96 17. 16 DOS C.C. per litre. 14 4 6 Total inorganic matter in -solution. Per cent. 1. 84 61 3(1 4-93 6S 11 73 3. 04 048 8 56 02 100 00 Reacting vuiue. 1 5.5 40 35 23. 53 10 05 002 48 14-94 0-06 100 00 Concentra- tion value. 500 Parts per million. 33 1-0 No. M. 94 HYPOTHETICAL COMBINATIONS. Constituent: — Parts per million. Sodium nitriit; Sodium nitrate Ammonium rltioritle Potajisium ioUido PotUftaium brotni.JL' l-ltliium rMoriiif l'ol.i>.^iu.u ililuridc Stxiiuiii , III,,, 1,1,. Mamn-smiii I hl.jtidf t alcium chloride SiHlium sulphate .Maitne.siiim .sulphate ' .lIlilllM Milph.ii,. M. I 1,1, irl„, t'ahl h'le.^i I l,i,., ,rl».i irlHinale Strontium bii..,tKjnate rcrrous l,t,,,rtMtiiatL- Calcium phosph.ite 1-errie oxide Alumina Silica (NaNOj) . l.N'a.NI),)... I.MIiCI) ... IKll IKHr) Il.illl . . (Kl'l) .... (Natl) . (.mkci,) ...: (CaCI,) ( Na.SO.) IMrSI).).... IC.i'^D.l . IN.ilH IJ.l l.\l|i HO),),) (t alllll),),). ISrlHCO.),). (KelliCO,!,) «'a,,lPO.),).. (Fc,IJ,) (AW.) (SiO,) I ;7 15 06 1 «J 74 Total inornanit IVevioM inariiT in analyort. S8 07 n 0,1 I (t 91 I 10 M 24 61 U 2.1 .16 70 18 .10 •>S SS 47 5J 2f) 65 PH.LUDOR SPRING. ST. HVACINTHE, ST. HYACINTIIE CO.. t,l,E. (5S) Several springs occur in the neighbourhood of St. Hyacinlhc Philt.rfor Naptiloon S,lt. ,n Iht- parish of S,. Hyacin.ho k- ConfLcur. It is" cs Ss^:;,x=;ij— -t,t;x=-;£s . . Analysis shtjws the water to Ix; a motleratcly ntiner.-.lizetl sodic muriated I car,,„„„ rf, alkatne-saline water. Sodium chloride forms 65 p r „t con, I I f , '" ?'"''"'■ ■"^'K""'"'" -J calcium bicarbonate. 12^ cent, and sodium bicarbonate 18 per cent. ^ . e ^jIv z iiii «::yi-v:. tsi . ^.-■;j-:) - 95 , t . PMILInOR SPRINT, Laboratory No. S5. S,m,pk. cllecu-d S..p„.n,lH.r, 1014 rempc-raeurc ^.^,^. „^ riow. ... A II j.^^^^ A Kulliin ixT miniilp. ■ Slighily s.line with indinitions „f Reaction... I'Vlrot.™ sulphi,!... SpocihcKravity at 15°C.. | n(,4,, ''*^"'™^ ;rr"" ""*"'-■ IJiss<»lvt*(l radium 4^ n • , f'.-ni.inalidii in gas t-vnlvrd Properties of reaction in per rent. Primary salinity "5(10 SiTondary sa'inily Piimary alkalinity i,j.i;x Seeonda'y alkalinity l\':,l A.ialysls. Constituents: — .'iulphuric acid Biinrtionic acid t-'arbonic acid Nitric acid Nitrons acid i'hosphnric arid Mftalioric acid ( hloriiie t^romitie Iodine Silica Iron Aluminiutn Man;-anese falcium Strontium .^Iagncsium I ithium Potasriium Sodium .Anmior-.inm (SO.)... (HCO,)., (CO,).. (NO,)... (NO,)... (I'O,).. (B(J,).. (CI). .. (Br).. (I) (SiO,) (Ke).. (Al).. (Mn). (Ca) . (Sr) . . (Me).. (I.i)... (K).... (.Va) .. (NH,). Previous anal>tii9. Parts per million. Total Inorganic .iiattcr in solution. Total. Total solids in solution, residu dried at llO°r t^artion Dioxide CO,. Hydrojjcn Sulphide H,S. 19 5 1,130 liW.iO 7 14 S I 6 j4 f trace 64 1 SO.i I 1.48.V4 ,1 ..I 4,;«i).68 React in, value. Pe nt. 41 2S SO 40 ,57 15 ,10 10 01 1 14 1 OS .11 01 27 12 .SO 37 (to 06 1 84 3 56 87 43 62 100 00 100 1)0 t^'onceiitra- I tion vjilue. : HS U Parts per million. # . •:_, . _ 96 HYPOTHETICAL COMBINATIONS. Coiuiituenl;— IMrt» per million. , Total inorijanic matter in solution. Prevjoua analyiii. Percent. Sxlium nifrilc (NaNO»).. . Soiliiim nitra'i (NaNOi) trace 21 58 01 10 J6 SO 8 3,132-5 28 82 868. 5 385.7 221 trace 14-95 14 5 i 'pccific gravity at 13*C | .0025 Radioactivitv. . i.-™ „ .■ ^ tmana.Mm ,,2 unit. Utssolvid radium o-5 » r. [)crtie!. of reaction in per cent. " I'rim.iry salinity 44-80 Sccomljry salinity Primary alkitliniiy. . . . 5206 Secondary alkalinity. .. 3.14 Analyiit. fomtituent*:— Siil|.hiiriracid (licarlionic arid Cartjonic acid Nitric acid Nitrou* arid Phosphoric ari<| M<-t,i[>oric acid Chlorine Bromine Iodine Oxygtn for Ft,0, & AI,0,. Pilira Iron Aluminium Manganese Calcium Stroniiiini Magnexiiim Lithium * PotasHi ,pj Sodium Ammoniupi (SO.l.. (HCO.) «'(),).. (NO,).. («)■).. (BO,).. (CJ).... (Br),.,, (I) (A!) . . (Mn). . (Ca),., (Sr).,. (Ms).. (Li).., (K),.,, (Na), , , (NH,). Total.. '■■olal solij, in solution, residue! dried at 110°C ' Carbon Dioxide CO,. Hydrogen Sulphide H,S. Prvvinu^ analyi,. Parti per million. a OS l,JW- S 4 trace trare Ml- trace 14 6 11.0 2,986 52 C.C. per litre. 1-2 Total inorganic matter in ■olution. Pert ?nt. II 117 45 84 ll, 49 024 I J7 n w 29 7(1 01 Keacting value. Per cent. II 115 27 60 44 0,1 47 50 100 00 I 10(1, 00 Concentra- tion value. Parta per million IIYI'OTUKTICAL (OMBINATIONS. S..liiliiiiMlril,. S>liuin iiiir.Ltr Atiinioiiiiini ( hliiriile l'<.t,.»»iui„ i,«li,l,. l'c.l..sMiiiii limriiin ymmi,. I.ii,,tl>(.iial( I'alciuiu |.li.)sphalc ' uiiiiua >ilic (NaNO,) (NaNO,) (NH,CI) (KI) (KItr) (l.iCI) (KCl) (Nail) (MkII.) (CiClJ INa.SO,), (MliSO,). . . «'aM),) (N'alK <),),.. iHiualc (MkIIH'<),,)j). I< .illK O,),) . l^i(Hr( ),],!. , (IVllllO,!,),. Ua.d'O,),)... (I-V.,),) 1 (AMM / ■■■ (Sil),) TariH |H-r 56 I ; 1,015 .»! 7,fi (H) Total iuotKunic tuatter in bolutiun. I'er ccril. IS 7.! 14 60 P 25 0.(U 1 xs .14 (1(1 59 sn 2 26 (I 'J6 53 Previous analyiiis. ST. I.EON SPRING, (LUPIEN), MASKINONGE COUNTY, (JUE. (57) Thi^s|,riiij;is„nlhonirm„fMr, I!, l,u|m-ti, ^nd walcr fnin. it is hottk-d l>y Mr. J. C. R„i,..,.sc,,„, „f ■n,r,.e KivcTs, .is "St. Leon" mineral water. It IS line nnie farther up the Kiviere-iiu-l.nnp tlian the i.riKinal St. I.eiin sprins (.\'ii. .S.i), ,111(1 like it rises fr.im tlielliiilson River fdrmaliiin. There re two sprniKs, l.S feet ap.irt, .iiiil elns,' to the river liaiik; llie liow finii.''e,irh is small. W.iter is pinnped from the deeper spring into liarrels for si.ip|,in,i!. (.as is evolved from liolli waters and a sample eolleeled in Scptenilier I'llt, posse.ssed 14S iinils of .r.idioaelivitv. Tlie water is a sironKly mineralized, sodie, muriated, alkaiim'-s.iline (liromie, earliurelleil) water. Sodmm ami polassiiim elilorides eoii^tilute 77 per eeiil of the total solids the rem.iinder is eomjiosed of ealeium ,iiid numieslum l.ir.irhon.iles. .\n.ilysi, «,ive ihe followiiii; p.irlieul.irs: - >■ -\:"^AW ^T • I- I I 99 ST. LEON SPRING, (LUPIEN.) Laboratory No. 57. Sample collected September, 1914 Temperature 8-3°C. (47.8° F.) ^];=*^' Small. ' i,„ .• Strongly .saline. Keaction Specific gravity at 15°C 1 010.1 '^■■"''""''"'y .Emana'tion 148 u Dissolved radium o-8 D ^- r Emanation in Kas evolved 4fin Properties of reaction in per cen t. ' Primary salinity 81-12 Secondary salinity 0'62 Primary alkalinity Secondary alkalinity 17-26 Analysis. Total soliJs in solution, residue dried at llO'C | Gases ; Cirbon Dioxide rOj Hydrogen Sulphide H,i. Parts per million. 1-7 100 No. 57. H\TOTHETirAL COMBINATIOXS. Sodium nitrite Sodium nitraie Ammonium < hloiide Potassium iodide Potassium bromide I-iihium chloride Potassium chloride Sodium chloride Magnesium chloride Calcium ch'oride Sodium Bulpiiate Miignesium sulphate Calcium Bulphdte Sodium bicarbonate Magnesium bicarbonate Calcium birjirbonate Strontium bicarbonate terrous liicarbonate Calcium phosphate Ferric oxide Alumina Silica AETNA SPr™g, ST. SEVERE. ST. SEVERE TOWNSHIP. ST. MA^.CE CO.. (58) Lnivcrsity in 1887. -""'Jms d> trot. t. Fafard of Laval The following results were obtained:— .tv^. 101 AETNA SPRING. i Laboratory No. 58. Sai mple collected Scp.emher, 1914. Temperature S-O'C. (47^ ) I}<"^ Small. Taste ^r ,. „ . V ery saline. Reaction Specific gravity at 1S°C 1 -0132. Radioactivity. . . [.■„.,„ ".- ' r-manation gy Hissolved radium 2-8 D .• r I'-manation in gas evoK cd Properties of reaction in per cent. >-von>a. Primary salinity 85-64 Secondary salinity 3.(^0 Primary alkalinity Secondary alkalinity 10 . 76 Analysis. Gases: Tarbon Dioxide CO.. Hydrogen Sulpliide Vj,S ' By F. Fafard. Laval i: 102 HYPOTHETICAL CO.MBI.NAl IONS. Constituent: Parts per million. Total inorganic tnatter in solution. ^diuni nitrite Sodium nitrate Ammonium chloride Potassium iodide Sodium iodide Potassium bromide l-ithium chloride Potassium chloride Sodiuri. chloride Magnesium chloride Calcium chloride Sodium hroinide Magnesium sulphate Cult mm sulphate Sodium bicarbonate Magnesium bicarbonate < alcium bicarbonate Strontium bicarbonate JeTOUs bicarbonate Sodium phosphate rerric oxide Alumina Silica Manganous bicarbonate (Na.Na,). (.ViXO.i. (.NH.CIJ (Kl) (Nal).... (Kflr) (l-iCD... . (KCl) (NaCI). . , . (MgCl.) (CaCU) (.NaBr) (MgSO.),.. . (CaSO,). . (NaHCO,). (N:g(HCO,),). (CalHCO,),),. (Sr(HCO.),).. (Fe(HCO.),).. (Nu,(PO,)... (Fe.,0,), . . (.Al,0,l. , iSiU.,) (.MndlCO,),) Per cent. 9 ,«.9 65-4 11 7 2! i 23. 1 2W 5 14, 540. 495-3 2,OS3 2» 2 11 5 6 19.6 Hi 22 0.(6 06 12 OH 1 u7 81 05 2. 76 II 60 1 60 06 03 11 0-21 Previous analysis. 91 7 104 550 5 7,870 6 S,M) 2 21 3 5,690 6 1,707 9 122 .i 25. 7 U 7 ST. GENEVIEVE DE BATISCAN, QUE. (59) vievf tnT"' f ""''''' '•'""" 'P""«' ""■ l^"™" '" >ht' vicinity of St Gene ^s;^ i :^r„;:rr;;r^'- , " ;■ -'"'"' "- '- ^'^^^ -^ ^ ^ vicvc It i t! "'*-"' '"'''"S ^"'«" '" "l<-' village of St CetH- water. « ,a„o„, "^un;;;," tl,^;;ir'° "'"'""' "^ "'''"-'"" '" '"^ AnaMs .hewed the ,as uM ZtJ::^!:::^ '""'' '" ^"" ^ «^'^ ™«-- ilar re!;m:';:;';^::^™;'t„'^>,^r^V Httnt ...fore ,863, with very sitn- centage .,f iodine (0.063 pt'ent! he it' Z,;'"^"'"",' '" ''^' "'"' P"' What ^.wer r..o,t is .ho^-n ^i^ , ;^ 7^ ;:;t:T\^ ^'T ..sue. fron, the Lower Silurian Ii,„e.t,„.e fortnalitl ' ""■ ^^^ ""'" ^^^^Anaiysts .how. it to be a strongly n,i„eralized, «,die, muriated. saline 103 Alkaline- chlorides form over 82 per .en, „f ,hc ,„,,,! solid n,a,eri>l- in sfKlrum and niaRnesium eliloridc 116 n.r cent It ,lo.. ul ,',''"■ '" of the s,ro„Kly .aline European spa wat^r. l"'k ,s ,t V h T ""T Pyrmontand Bourbonne L Bains '"'''""'■ '^""^'™h. 91 7 104 550 5 7,870 6 KM) 2 21 3 5,690 6 1,707 122 .i 25. 7 U 7 ■ST.^R" MI.NKRAl. WATKR. Laboratory No. 59. Sample collected Septetnlnr, 1914. lempcrature 8.3°r (47°F ) Flow. . , Q II ~ ° gallons per minute, rill"'- ^'^Ty S'llt and bitter, ^'•""'™ .Alkaline. Specific gravity at 15°C \n2-iQ '*''''™"'^'"' 'H-i™ ,4, „„;,, Dissolved ratlium 0-8 t> , , Emanation in gas evolved Properties of reaction in per cent. Primary salinity H20S Si'condar iry salinity 14.40 Primary alkalinity Secondary alkalinity 3-52 (S(),). .. (HtO,).. (CO,) , , . (NO,)... (N'O,)... (BO,)... {("!) (Br).... (I) Sulphurk .Kid Bitarfionif ;uid Carfxinic ;icid Nitric acid Nitrous acid Phosphorir acid Metaltoric acid (.'hloritic Bromint' lodip" Oit»-i-ii for Al,0, Silica Iron Alumintiirn ManKancs^- Calcium Strontium Magnesium Lithium Potassium Sodi Ait. allium Barium Total Total solida in solution, residu dried at IIO'C (SiO,). (Fc) , (Al) . , (Mn) ,, (fa) . . , (Sr).,. (K). , (Na)... (NH.) . 104 Analyala. PrfviouB unulysis.* i'arts per million. 2 95 1,12.! 6 trace trace 16,850. J4 7 It 110 17 2 10 2 02 289 6 7 J2 891 1 01 282 9,090- 55 28,680 99 29,260 . Total inorganic ntatter in solution. 26 5 4 8 5 696 4 20J 909 5 2 3 .! ',829 84.2 I Per cent. 01 3 91 58 77 12 02 OJ 04 06 03 1 01 02 3 11 98 31 70 19 Reacting value. Per cent. 48. 20 04 1 46 02 100 00 Concentra- tion value. 988 28 Gases; Carbon Dioxide CO, . . Hydrogen Sulphide HiS. c.c. per litre, trace Parts per million, trace HVIIITIIETICAL C0M4INATI0NS. Constituent: — Sodium nitritr Sodium nitrate Ammonium chloride Potassium iodide Potassium bromide Lithium ciiioiide Potassium chloride Sodium chloride Magnesium chloride Barium chloride Sodium sulphate Magnesium sulphate <'alcium sulphate Sodium bicarbonate Magnesium bicarbonate Calcium bicarbonate Strontium bicarbonate Strontium chloride I;VrrouB bicarbonate Sodium phosphate Ferric oxide Alumina Silica Manganous bicarbonate (NaNO;).. (XaXO.,).. (NH.CI). (Kl) (KBr)., (UCl) . . , , (KCl),.. (NaCI) (BaCI,), ' (.Na.SO.) (MgSO.) (CaSO.) (NaHCO.) ,. (Mg(H(-0,),) ((■a(HCO.),) (SrIHCO,),) (SrCI,) (Fe(HCO.),) (Na,(PO,) (Fe,0,) (A1,0,) (SiO,l (MnlHCO.), SPRING AT BERTHIER. BERTHIER CO., QUE. (il) River at Fcrnt.t^tllc, A wooden tub surrountls it, and there is a consider^ aWe evolut„,n o ^as with the water. The ..range situation of the ,pr „g L In wtnter and sprtng the ..ource is covered by the depth of riv.-r water but whe vtstted tn the summer of 1914 there was a strong fiow from the sp ing bg rivlTaTer'"*"""' ""''"■'^' '™ '™'" """"""^'^ -"■ ""^ --"-d.' Sterry Hunt stjpposed it to ascend from the Lower Silurian limestones. carbu etl7 '7' b """"''^"■':'- '•"'l'^' ■""■•^'•^"■'J. alkaline saline (bromic, earburetted) water, having a primary alln>iii..r..M.-. I'Nasantly •.aliiii-. Alkaline, 1()i)4y, [•'"■'"'•f'"" 112 units ni-.-olvcii radium traru. p Kmanarion in gas tv..lvT.i, 4,^0 tTopcrtiis of rcartum m per ant. Primary salinity 81-82 St'condary sal'pity Primary alkalinity 5.74 SiTdndarj alkalinity n-44 Analysis. Sulphuric acid Bicarljonic acid Carlwuic acid Nitric acid Nitrous acid Phosphoric acid Metalxiric acid Chlorine firomi.ie Iodine Oxygen for Silica Iron Aluminium Mangane&e Calcium Stroniium Magnesium Lithium Potassium Sodium Ammonitini (SO,... , (HCO,) 1.21.S (CO,) . (.NO,) (NO,),.. (I'o,i. ! tl 1 (BO:).. 1 (CIl.. J. in. (Hr) . .0 (1 (I) , tl I) (Al,0,) 4 44 (SiO;).. ' .15 5 1 16 (Al).... 5 (11 (Mn) . . (t.S (C%}.. (Sr) ... 2 12 (Mb). 146 ) (1.1) ... 42 (K) ..,: 2 85 (.\a) , 2,202 2 (■VH.) , 6 50 Total n 02 i 17.7.1 to 06 "52 002 U7 45 I) 04 i 2 \.i I (> 01 04 ' M-i}() ■ uy 01 9 o** 40 70 (I JQ Total solids in soti dried at 110%", . tion, residue Gases ; Carbon Dioxidf CO- Uydrogt-n Sulphide }I,S . per litre. 7(1 0.(M 5 47 hi U.^ 4.1 56 16 100 00 lOnnntra- 21 9.80 Parts ptT million. 100 00 No. U. m; IIVF'(]|Ml:il( M "Mills \ric)\s V.mn iTor inilli.ir, Total ifiitrK.tiiii' lll.lltiT ill ■<(lij:iuij. f.r ,vM~ I'rfvjoti* N« "im niirii,. iN.,\(),| J^ "im niirau. :\.,\(;^, p" """"■■km.lu :\H.(I, !■■ ",';,' I"'''', "^'' I , '1 '"';■ '•''■'I'" .,'"''" ;•"<■:, (l.iCIl W .„ „,l,,l,.,„,. lN,„s,,,, (■,,',:"i ■,"'"''■'"■■ '^i«"'".' ^.uim 'III;- :;■"'""'■"" im«iii<-im„ ^B- ^^■■■■: Mjn8.,„„us bicarbonalo (M^lico,,,, SPRING AT MASKINO.NCE. MASKINONCE CO., QUE. .,., . <") ini.. spring was disCDvcml hv Mr I T r ..„ ""li. It rises in a small „„„1 , h f , f ,T' *,"' '" ^ ''™ "^"'"^ '" Rive, Maskinong... al.: r' „ ; ''l^ ,", "'" '"■".f '>' '■'"P'"« ''-"I' "' th. .. pleasant .aline'a^te. reLm, ;:^' , '^^.^c^T "''"■ '"''^'^ "'"" ^^"l water, when e.xa„,ined in S^.p^c^b ^ , Jl'f ^"'"'""'^ '^^'"' "^ ""■ '^•"'"- ^n.-^^"^.:;x::,t:^:t™;;::si— 1 .'S 11 0> 7 yit 11 ii M -. It is the property of Alfred ^erland, and is bottled by the Canadian Aerateti Co., of Montreal Acrord- ilig to Sterry Hunt the origin of the water is the Potsdam formation (Geology of Canada 186,1, p. 542). Anal; sis shows the water to be a moderatdy mtnerahzed, sod.r, muriated water of the -aline type. The ehief compounds assurned to 1* present ares.,,Hum chloride, 77.6 per eent, magnesium ehlor- ■ile, 10 per cent, calcium chloride and calcium sulphate-both aboiii i per cent. ST. BENOIT SPRING. Laboratory No. M. Sample collected September, 1914. Temperature 10- 5°C. (S1°F.) Flow Small. ^^'i"^ Slightly saline. Reaction SpcciSc gravity at 15°C 1 004. no Kadionctivity Emanation 28 units Dissolved radium — I'-"ianation in ^as evnl\ vd. t roperties of reaction in per cent. IViniary salinity 78-88 Secondary salinity 19-14 Primary alkalinity Secondary alkalinity 198 Analysis. Sulphuric acid Hicarlxinio acid Carbonic acid Nitric acid Nitrous arid Phosphoric acid Mctalxjric acid Chlorine Bromine lodinL- Silica Iron Aluminium Manganese Calcium Strontium Magnesium Lithium I'otasHium Sodium Aminoniuni Total Total solids in solulion. residue dried at 1 lOV riases: Carlwn Dioxide COj, . . U\droffen Sulphide HjS Total ! inorganic i Reacting matter in i value. solution, i Per cent. Per 2 20 i 2 O'J I 99 58 >t 47 6t 23 08 02 14 C 11 Oil OS a. 82 4 08 03 02 2 68 6.35 t]3 n 10 84 (>2 30. 54 .38 55 oot 17 too 00 ! too. 00 roiictnfra- Parts tier million. 44. 3 8 HVPOTHETR-.M. COM BINATIONS. Constituent:— Parts per million. . Total ! inoFRanic Previous matter in I analysis. "^•(lium nitrite ^t'lliiim nitrate Ammonium ciiloritie Pot.issiuni iodide Pmassium bromide Lithium fhlorido Potassium chloride Niijium chloride .Matinesium chloride C.dcium chloride Sonat(. C.ikium birarlionato (M^;,HrO,M (ralHCO,,)j) Slroiiiiur Mcarhonate (Sr'MCOa).) Ferrous bicailtoiidte Calcium phosphate Ferric oxide (F.iIKO,!,) «a.,a'f»4],) (Fe..Oil, . . V Alumina (AUih) 1 Silica (sioi) :| .1.279 4S UH) Al.KCRIA Siyral ..trontjly sulin.. sprij.K- im kncmn in M,,< kcnzk^ l,.,.i„, and have teen referred to in ge«l„Kical reports l,y Sir J. Rkhardst.n. Mr. R. G Mc- Cr^nell ,„d m^. c. Can.seli. TItey have n.orc rerently Ixen described by Mr L H. Lole who Knes complete references to earlier descriptions, but no analyses ha\ e previously been made. In 1916. Mr. Charles Camsell of the Geological Survev ma.ii an exam- mation of the gypsum Ijcds exposed on the lower part of the Peace river on Slave river and on Salt -.iver in northern .AlU-rta, and in the course of h.s work collected samples from several sprinRS rising in that region, with the object ,f ascertaining the possibility of potassium salt deposits being .tssociated with the gypsum. Of the five springs of which analvses were made, three arc brines; and Mr. Camsril states his opinion that the saline constituents are derived from the solution of salt crystal dissi'minated tnrough the gypsum rather than from interstratified salt beds, the more usual ongm of brine springs. Ic™.';, ",'J1' ^',°"»»l" °' f«"»dium nitrate Ammonium chloride (N-NO,) iNaNO.J (NH/.i). . . . 800 ? 56, 300 4,200 O-.l 97. 7 3 1 16 I'uta^tHium itxlidc (Kl) Potassium bromide Lithium chloride Polawium chloride ScHlium chloride (KHr) (l.iCI) IKCI) iNaCi) MaRtiesium chloride (MgClr Cal< ium rhIori.!lini- .Hid hill, r. Reactlitn Ni-iitr.il Sporifir ijravity al 15'C 1 2112. Radioailivily Kmanaliun. Dissnivcd ratljiim. I'iiiaiialioii ill ^as cviilvi-il. I'riipertii> of ri-ariicii in pi-r am, I'riniarx saliiiily STiimlary salinity. I'riniary alkalinity Sromlary alkalinity Analysis. l'8 lol.il ri;.iriir Kt-.iilinn ni.iltvr ill v.iiiic. Mtluliiin. ■Millilliirir ,11 id Hn.irlHuiie .u-illll 100 too 7(10 4 7 1 2 2 in 4 (1 1 49 (1 100 KH) t'onct'ntra- tion valui". 120 HVKJTHKTICAL COMBINATIONS. (.'uiutitucnt:— Sodium nitrite Stxlium nitratr Ainmnnium chloiide I'olaMiiuni iiMlidr PotaMium I)rnmi(lf Lithium rtiloridr I'oti'wiuin chloride SHJiuiii chloride Mugnesiuni chloride Cakium chloride Sodium sulphate Magnewutil fiulphato CiAlciuni sulphate Sodiutll hii-arlionate Magneji'im hirarlionate Calcium bicarlMnate Strontium hirarbonalo FerrritiB bicarbonate Cakium phosphate Ferric oxide Alumiita Silica (NaNO,) (NaNO.) (NH,CI) . . (Kl) iKUr) (l.iCI) (KCI) (NaCI) (MgCI,) (CaCI,) ,, . (Na.SO,; IMgStJ.) ICaSO,) (NallCO,). . (MgdiCO,),), I'adKlW,)., lSr(H((»,),) (Fc(H(0,),), (Ca,(PO.),) . (FcO.) (A1,0,) (SiO,) . I'arts per million. tS6.0m 800 Total inorganic matter in solution. Per cent. I) .1 97 ; U i II I 16 Previous analysis. 121 srr.piii K POINT M'nrN(; SUuoM ,m Ih, nulk ,hn, „f UrKi! Slae, Uhi. laboratory No. 24S 2— 1916. Sampli- c«llcct.-d AuKU~l 4. V>U,. Tiniprratun? *■'"* 2 Ballmi^ a minu.,-^ i""'*: Strcinijly sulphunius. Reuctton Specific uravily at U'C I (XU Radinaclivily Kmanati<,n l)i>M,lvi-il r.Kliui], Km.in.ititjn in gas evc.lv-i-,!. I rnpertics of rfaction in per t ciif . IViiii.iry salinity 202 S6S ;,cl al Vermilwn Chatcs „ Sample colk-cte.1 |„|y ,, ,y,f, Tcm[K'rature ,v 5°c (42° F ) ■•- (jalluns a mimili'. Salint' ant! ^truii^K- j)!' Iiy- tlniKi-ti siilphidt'. Flow Taste Reaction S[x-ilfic gravity at 1,S°C ] .im Raclioaelivity Kmanation. Dissolved radium Properties of reactii >n in per ( i tu. manation in Ras eyoKed. Primary salinity 87 Secondary salinity 12 ■ Primary alkalinity Secondary alkalinity Analysis. ■ ^ Parts [v lOU S,,i4n. im \m \l 4. -60 Prcviuus analysis. r iiiillidn. .tolaf" ini)r>;.inic Milution. t'onstilucnts; — Reacting value. Per cunt . .,. Si (.huricacid (SO,) . iii. arbonic acid (HCO.) t .irlwnic acid (CO,) 1) ; 60 9 2 1 14 0.1 ,!4 H 04 Nitric acid (No,) Nitrous acid (NO,) I'liosplioric acid (PO,) . M. Mljiiric acid (BO,) '''I'"-!'"-- (CI) j In.iiiiiie (Br).., '"'I""- (1) ■; 49.6 Silica (SiO,) 1""' (Kc),, Ml iiilniiiiii (;\|) M.II1K.II1CSC (Mn) •■■'i™"" (Ca) v.;.' sinintiiim (Sr). . 3.0 M.HiicMuiii (Mg).... I.ithiiiiii ([ j) i'"i.i,"i,im IK,;;; ^"1""". (Na) Tola! . . ''drld'aMIOT""""'""' "^"'^"1 3 2 2 43 6 IJ.MII. 1 IS.i.SO IIH) too ;ascs; r-arlion Dioxide CO,. Hjclrogei, Sulphide H,S ; : c.c. per litre 25U 'arts per iiiiUi 400. on. 124 HYPOTHETICAL COMBINATIONS. No. 345 I. Constituent: — Parts per million. Total inorganic matter in solution. Prevloub analysis. Pei i-ent. Sodium nitrite (NaNO,) 22 12,Ui(i 688 143 02 88-4 S 4 5 10 Ammonium chloride (NH,CI). . Lithium chloride (LiCl) Sodium chloride (NaCI). . . MaRnesium chloride (MrCI^) Sodium sulphate (Na,S04) Calcium sulphate (CaSO*).. . Sodium bicarbonate (NaHCO,) Magnesium bicarbonate (MgfHrOji))) Calcium bicarbonate (Ca(MCO))i). . Ferrous bicarbonate (Fe(HCO,)v) Calcium phosphate (CaifPO*)!) Silica (SiOi) 13.692 1000 SULPHUR SPRING, JASPER PARK. ALBERTA. (140) The following analysiy is a sample of water coUectcd from a newly dis- covered spring in Fiddle Creek Canyon, Jasper Park. Alberta. Only a trace of hydrogen sulphide was detected in the water owing to the fact that three month? had elapsed since the collection of the sample. It resembles some of the Banff waters in being a calcic, sutphated, saline (sulphuretted) water. 125 Laboratocy No. 140. Sample collected Temperature .... Flow Taste SULPHUR SPRING. .May, 1915. Slight taste of hydrogen sulphide. l*"-'"''™ Alkaline. Specitir gravity at 1S°C 1 -0004. Radioactivity Emanation Dissolved raflium Emanation in gas evolved 1 roperties of reaction in per cent. Primary salinity 26-20 Secondary salinity 18-16 Primary alkalinity Secondary alkalinity 55-64 Analysis. Not tested. Carbon Dioxide COi , , , Hydrogen Sulphide HiS Parts per million. 126 HYPOTHETICAL COMBINATIONS. Constituent: — Sddiuni nitrite Sotliiim nitr.ili' Aninioniitm rhioridc Potiissiimi ifjdide I'oI.TSsiuiii liromidu Lithium (-hioricJL' Potiissium rhloridu' Sodium ciiloridc' Magnesium cilloride Cakium chloride Sodium sulphate Magnesium sulphate Caleium sulphate Sodium bicarbonate Magnesium bicarlionate Calcium birarbonate Strontium bicarlxinate Kerrous bicarbonate Calcium phosphate Ferric oxide Alumin.i Silica (N.iNO,) . (NaNO,).. .. INH.ll). . , , (Kl). .. iKBr) (I.iH) (KCI) (NaCl) (MgCl,).. . (CaCI,) (Na.SO,), .. (MgSO.).... (CaSOJ . . (MaHCO,) ... (MgCHCO,),) (CadlCO,),). (Sr(HCO,),). (KetHCO.),). (Ca,(PO,).).. (Fe,0,) (Al,0.,) (SiO,) Parts twr million. .54 4 100 13 3 J4'( 7 3 8 9 Total inorganic 2 2 56 7 12 14 Previous analysis. I THK HOT SULPHl'R SPRINGS AT BANFF, ALBERTA. Si'vi-n hoi springs in the neighbourhood of Banll in the Rocky Mountains National Park, form the ihird group of spring.s investigated. They were visited in Novemlter and December, 1916, when many tests were carried out— especially in connexion with other radioactive properties. As the famous Harrison Hot Springs anarka Branch, p. IS, 1914. 127 128 The radioactive determinations show the Banff Springs to be the most activeof any yet examined in Canada,' although the results obtained are not as high as many of the most important European springs. Individual descriptions of the springs follow. There is a great rimilar- ity between the waters from the various sources, a>. mi^ht be expected. They may all be classified as moderately mineralized, calcic, suipliatcd. saline (sulphuretted) waters. Save in the Basin Spring water, calcium sulphate forms about 60 per cent, magnesium sulphate 18 per cent, and calcium bicarbonate about 15 per cent of the total solid matter in solution. The waters somewhat resemble those of the famous Bath Hot Springs in Kngliml, and wouM, therefore, be of similar therapeutif v.ilue. Some notes on the therapeutic properties uf sulphur springs arc included after the analyw-s, and a brief account of the way in which the Bath waters are employed in the treatment of disease. THE UPPER HOT SPRING. The Upper Hot Spring rises on the northeast side of Sulphur mountain' at an altitude of 5,000 feet above sea-lc\el, and about 500 fit i aliove the valley of the Bow river, it is therefore, the most elevated of .my of the spring.?, and was called the Upper Hot Spriri; to distinguish It Irom those lower down the mountain. This sprinij; was the tirst to be used by invalids, who bathed in a hole dug in the ground close to the source of the water. In the early days, many a discarded crutch was to be found in the vicinity, bearing eloquent testimony of the healing powers, of the hot sulphur waters. Tin- spring is reached to-day, by a well-made road windini; up the pine covered slopes of Sulphur mountain— a pleasant three mile walk or drive from the town. Starting from Banff avenue, one cntssos the Bow bridge, turns to the left along Spray avenue — the road to the Banff Springs Hutel-- tiil a road branching off to the right is r. ached. This road, called Mountain avenue, is followed, winding up the mountain with many a curve and lurn, passing the Club House of the Alpine Club of Canada, aiiout a mile from the fork of the road, until the Hot Spring is reached. Rustic pavilions along the roadside afford both shade and r-^st. There is also a pony trail through the wood, which can be followed. The road ends at the I pper Hot Springs Bath House, but a bridle path continues for another two mites to ai. jser- vatory on the summit of Sulphur mountain, 9,484 feet above sea-level. In this building self-registering instruments record the temperature, barometric pressure, and other data which prove of great meteorological value. The instruments have to \)C attended to every week, and one can well imagine that the trip from the town in the depth of winter can hardly be enjoyable. The summit of Sulphur mountain is a favourite spot for all night excursions to witness the sun's rising, an experience well worth the exertion of the climb. 'SattiTly and Elworthy. Mineral SprinBs of Canada, Springs, Minea Braitth. Bui. 10. p. 39, 1917. Pt. I.— The Radioactivity of Some Canadia 129 Vi Jv-n""' ^P""«\"''"l-whi.-h is open all tho y...,r r,M,„,l, and (iran.l V.C.W Villa, a summer hntc.|, are bo,h situated close t„ the I'pper H„t Sprine' s,de of the r,,ad. The v.ew from the site of the I ppir Hot Spring looking down the valley of the Bow river is magnifi.-i nl. The .prins itself rise, in a briek.-d well about thr,-.. f, , , .q„are, and is the only spnnK source at Banff which has in any wa^ hen nxed „p jL ma,n volume of the wat.r is carried l,y a pipe for about (iftv feet down hill and across the road, where i, runs into the swimnung p„ul of the fpn-'r Hot SpnuK bath house. Another pipe, three-fourths of a mile in Ict^h .onye>^ the water ,„ the B.,n,r SpriuKs Hotel swimming bail,, and to the Brett Hospttal. When the flow fron, the sprin, is a, its nuximun, these p.pes do not carry away all th.. water, but an ovc-rllow runs in ., strean d™" the h,l s,de. I he channel of this stream is lined with a vellowish, s 1 h m ■ke suostance f,,rnu.d by d.posi.ion of material from the water. T e W f const„uents of th.s substan.e ate calciun, carbonate or limestone, cal ium sulphate or gypsum, and sulphur, together with organic material con i Z of the algae, which espetialK' aboun.l in sulphur sprints. The swimming pool is about 20 feet wide, a,.,l -10 fee, lonj;. Although heat ,s lost tn the passage of the water from the soune in,,, ,l,e ba,h ii. almost as hot as one can U'ar, its temperature being about 'J^.'Ib'V There ::^:: :n- :t" '^"^'- '- '"-" ''■"-"'■ '-"■ -■"■"■' "- ^- -"r>hur Th,. following par,icul,,rs were „l„ain,.,l a- ., r.'.ul, of ,h.. .v.mination and analysis of the water frem the Upper Hut Spring:- '""'"•""-" THK UPPER HOT SPRI.NG. Laboratory No. 6S. P.ampl,.s collect,.,! ' DecemlKT. lOK,, ,„„l J.inuarv. VH7 l.-mperatur,' 46°C. (115°K.) n Taste 120 gallons pir niinule. Flat with slight evi,ience of hydriigen sul|>hi,li-. Ke.ictuin Specific gravity at 15°t" 1 002. Radioactivity Emanation 221 Dissolved radiiun 8- . Emanation in gas e\-,jlve,l. Properties of reaction in per cent. Primary salinity 2 Secondary salinity . Primary alkalinity.. . Secuiida"/ a!kaiinil\ , 16 .8.1 42 .I592 130 Analysli. Total j tonslitutn inorKanic I Keacting Previous matter in value. analysis.* solution. Parts per million. Percent. Percent. Sulphuric acid ISO,) . 6i4. 660 57 60 42 14 Biciirbatiicacid (HCO.) Ui- 12 OK 6 96 Carljonic acid ICOil , , Nitric acid (NO,) .. ^^ Nilrousacid (NO:).. Phosphoric acid (TO,). , Mclaiwric acid (Bt),) , . Chlorine Bromi (CI)... (Br).. 10 6 91 90 Iodine (1) ■ Silica (SiO,).. 31 33 2 H2 Iron (Kc). . .1 Aluminium (Al). . / 17 15 19 ManjianeHC (Mn).. . 01 Calcium (Ca). . 239- 254 21 71 38 07 Strontium (Sr). .. V2 29 23 Magnesium (Mg) . 39 7 41 6 3 61 10 43 Lithium (l.i) 1 decided trace ') 04 Potassium (K) 3 7 } 6 6 034 . „0 So^lium (Na) .. Si 048 73 Ammonium (NH,).. 1 01 01 Total I.IOO 81 1.001 2 100 OO lOO 00 Concentra- Total solids in S4)! lion, residue. tion value. dried at 1 IO°C . ..... i 1,(WS. 1 31 34 Carbon Dioxide COj Hydrogen Sulphide HiS c.c. per litre. 25 3 12 Parts per million. 49 8 1 SJ • By Dr. A. McGUI. OtUwa. 1696. HVPOTHETICAf. ( OMBINATIONS. Conatitupni: — Swliiiin nitrite Sodium nitratf Ammonititn chloride 1'otas.sium icxiidc I'otaitHium hromidc l.ithiiim chinridc Potiissium rhioride S'Klimn chloride Majjnesiiitti chloride falcium chloride Sidium sulphate M.-iKni-8iuni sulphate (-alciiim sulphate Sodium bicarbonate (N'aNO,).. (NaNO,).. (NH.rij.., , iK\) (KHr) (I.iCh (KCIj ... (NuCI)..., (MrCI.) ((-■afi,) (Na.SO.)., .. ,),) (alcium bicarbonate (CalHCOa),) ' Strontium birarbonati KiTrous bicarl>onat( Ciilcium phosphate Ferric ..xid" Alumina Silica (Sr(H((),),). (KedU'O,),). K'a.tl'-l,),),. (Fe^Oj) (AM),) (SiO:) _ Tote! 7." '*'' inorganic milhon. matter in I solution. Per cent, 27 5'J 7 OK 9 82 4 4(] 106 SO 672 20 IfiS 80 7-65 I 5 4,1 Previoua anulynik. 05 M 8'; 15 07 W 49 THE KIDNEY SPRING. (66) «nl> a .hort ,),). (fiUHCO,!,) (Sr(M(0,),j. (FedlCC),),).. (C"a,(F'0,),).,. (Fi'/)i) , , , , (AI,0,) (sio,). . ..,: Total inorganic ttiatter in solution. Percent. Previout analysii 59 .1 HO 10 17 1 S2 615 87 196 42 8 28 2 22 06 J6 96 14 IS 00 58 00 18 51 78 21 1,001 46 100 00 THE MIDDLE SPRINGS. (67) In f.II"',h!^v''!.t ^Trr ""•""^'^^d, an* encountered V „ 1 1 '''VP""8s. The accompanying photograph (Plate VII) "^LT t, f "^ "PP" ^'"P<^ "< Su-^hur mountain. The ;. w 1 ^^ .?f ""*' '"" ""■ ™"^" '" " '"-" «h-- ■" spread! •he vln'v J A 7 "".' '"'■•■'" '™'''"« '^"*" ™ BanIT and across The waters innuc from (wo sourrt's; ont*. in a ra\r. rininji; in a ptMil, the surface of which x* coniilantty aKit;,(t-(l by ritilntt bubhtcH of K^t^i the other, even more voliirninouM. from uruler a lar^e rock 4it the mouth of the rave. The streams join, t jmhlinj; in a ^leep dewent, till ihey run a more leisurely course over the terraii' and less steep slci|H-fs of the lower mountain lo the river, Varieties of al^ae, vcKetable Krowths, that es[H'( iaily abound in the waters of hot sulphur sprintts, euat the sides of th<- ihatinels, and adorn the rocks with v.iri-eoloured filaments. IVrhaps ntme of the spriuK^ '" Han'.i can comfH'te with the Br)rneous » olourings of the famous paint [mts of thr Vellowstone National Park. Tlir -ireanis are usualK too rapid to allow of much KHiwth. The follow' ^ olwrvation-- l)y \V M. WVed.' writing; ol the alKae abounding in the H tlow>tone I'ark. apply to the Hanfi springs- Thr ni^ntT ,1 -. ;..iii:.- lit riiliMiri i» wrll iMiHtr.itcil liy ttir iMrurntui' uf ■•m ti jjrowth" in ovitHow ■tnaci \ uh a lonhiant voUinir, inch ^ii tlu' outli t .i( the hlink s,inH (.1 '•firioK in Ytrlliiwitonc I'ark/. As the wiiler frnm this ^|>ririhc iIum ilutix ir-< < li.iiinri it in rapiilly chillfil liy lonuct with the air and l>y t'v-ii[»raiujii, .irid \> mkhi t (riii|)i-f.itLtrf. Thi'w appear first in skt'irm of ilclicalc whiti- tiLuiifnt^ which tfaduaUy t han)(i' lo p;ik- Hrsh-pitik further duwnNtrcam. A^ the water iHtoim-!* cijcik-r thin pink Lerunu-n ik'C'iNT, and a brtt(tii orange, and clo«.'ly adherent fuuy growth, rari-ly filanit>ntnuN, apjiears at the lx>rtkT of th4 stream, and finally rcplal fri-h- w.tlt-r alK-ic !■> Ihc ipiii't w^ttiTnof tin- iKHiMcd liy this <4t ream the .il^.n' priMiit a ililfireni dcvi'lupnu'nt, toinniiK leathery sheet" of IhiikIi Kelalimms in.iten.il with u>n, and this to brown at the Imrder uf the spring. Around huch springs the growth at the margin often forms a raised rim ui flponKv, HtilT jelly, doiiiettnieH almost rubber-like in consistency, and red or brown in colour. THE MIDDLKSPRINd. Laboratory No. 67. Sample collt-cted DeccmlK'r. 1916. Temperature 33-5V. (Q2°F.) Flow 50 gallons per minute. Taste Slight taste of hydrogen sulphide. Reaction Neutral. Specific gravity at 15°C 1-0017 Radioactivity Emanation 294 units Dtssolve Magnesium chloride (MkC!,) 1 Calcium chloride (I'lt 1 I ' Sotlium sul|)halc (Xa.SO.l j Alagneslum sulphate (MgSOi) f (alcium sulphate (CaSO,), .'/, j N»dium bicarljonate (NaHCO,) ' Magnesium bicarbonate (.\lg(Hro.l,) , ; t aicmm bicarbonate (CaCHfO,),) Strontmm bicarbonate (Sr(Ha),l,) I H-rrous birarl)onate (FeCHCO,),) , I I alcium phosphate (Cai(PO,),i Ferric oxide (Ke^,, | ™,C™"" (Al,0,) . ^'I"a (SiO,) . 1 1<> ( j; 7 ■8J 9 02 114 M 5W «4 iro S7 14 46 4 SO It Hi 76 S8 IX S7 5-. 77 16 59 1 41 46 TIIK BASIN SPRING. (69) '"H..X "f ho, „alc.r bul,l,linK up fr„m hclow a/ , he ' v "'^' f ""« ':T.:;Tt '-'■ T '"' 7-----^ ■''- ^K^rttS: 11.™.,,, h. Ih- ..vcflow, „t.,,rK „s sreat a. from the Cave sprin. M.™. „,,,. the mw sw„n„„„« p„„l „„i „1,| bath, at the opposite enti ,,f the ;..-. .ha, was used p. „„us to „,c eontplctiot, of the Z^^^:::^!:^ c 1 I - ■ "•'*'"*' " '"'"^'^ '" ""^- "•■•-"' "he ^■t■ar round J 140 The wait-r v( the Basin Spring was found to contain a larger proportion of constituents than the other sprinK^. and approximates, closely, to the water of the King's Spring, Bath, in its composition. The following particulars were obtained on examination: — THE BASIN SPRING. Laboratory No, 69. Sample collected January, 1916. Temperature M-5X'. (94'F.) Flow 150 gallons p<;r minute. Taste Flat, with evidence of hydrogen sul- phide. Reaction Specific gravity at 1S°C 10026 Radioactivity Emanation 232 units Dissolved radium 8-5 „ Emanation in gas evolved. 2370 „ Properties of reaction in per cent. Primary salinity 1-50 Secondary salinity 87-64 Primary alkalinity — Secondary alkalinity 10-86 14t Analytlt. CoiwtituentB:- Stilphurlc acid (S().), .. Bicarbonic acid (tICO,) C.irlKinii- arid (fO,) Nirric iiiid (NO.) . Nitron, arid (Nf),!.. Phosphitrir arid (I'O.I Mil.iljoric a, ,d (BO,),. t-h.'orinc «'l). . , , Bromine IBr)... Iodine (1) Silirj (Sio,) . Iron (Fe)...\ Aluminium (.AD . ; Manganese (Mn). . Strontium (Sr) Magnesium (Mg) . . I.ithinm (l.iT,. Potassium (K) SotJium (\ji Ammonium (Nil,).. Total Total solids in sol ution, residue dried at llOX. I'.irtB per million. 1,121) OU 175 31. 4 II 4011 « 71.0 3 i 6.3 04 Total inorRariic Ki uiiiiK m.uipr in M:>tuliun. I'lTicnt, I'lr ccnl. bl 2H 5S 44 0'» S 4J -— 1 — — — ^ . - — V) 4K — 1 71) 2J 17 .'1 -SS 1) 44 37 70 3.S 3H« 11 ()3 ]H 1) J.) 02 ()3 It) II 52 ()4 Carbon Diuxidp CO*. . . ijydrc^n Sulphide H|S. c.c. per iitn 20- 3-2 Parts per million, .W 4 4 '89 U2 HVI1)THF:Ti( Al. I'OMBINATIONS. CiinNtituint : Nktiiini tiirriii- NhIihiii (liir.itc iiMhli.ruIr Ml- I'.! I'..l...~luni l«..ri>iiM.' NHliiiin.lil..n.l,' M.,Kil.-i»i" . IiIhii.I.' C.il. iuill .lll..ri,ll; S..IIM... .I.l|,l..ll>' \;,,KM,-rU.,i -Nl|.l.,,U. Cil. iiiiii ^ul|.h..U' SkI I.i. .irlN»i.ili' M.iKi"*i'ii" liii.irlNin.il < .il. Sir.. (iTrii Alun.i Silka irlH irlKiiiiti . |.l„„|,h„ iNaNO,! (N.iNO.) . (MMII iKIl iKIIri Il i( Il iKl II .. iNaCI) .. iMuCI,),. il ill.l iNajNU,) i\Ik^).) U aM),l l\alll(),l .■ lM]illl(2 11 IK I Twal innrKailk nulItT in MilKlHjn. Ppr c*nl 1.828 Ul I II 1)1 II 14 11 4.1 II '4 1') 24 M 57 11 61 1 in II 4,1 GASES EVOLVED FROM THE BASIN POOL. A con side rabk' quantitj- of gas buhhle.-* up in the H.imk: tlir amount, it is ^.ii(i. is dt'pi'mlrnt to sonu- t-xlunt on the h;trttmctric pn >^llrl'. TIk- ^.ls was found to Ix* radioactive, that is containing radium t-nian- ation. The value for its radioa* tivily ohtaim'd was 2..*70 unit^. Analysis of the K'ls showed il to lie mainly c<'nipo^«'d of nitrojien. almut W, ; while the reniainini; (onsiiiut-nis were carhon dioxide, nuthane, r>xyiien. and a •.race of hydrogen. On account of ihe larne p< rcmiaKe of nitromn and its radioactive character, it seemed of interoi to e\anirne it for the presence of the rare ^ases of the atmosphere, esiK-cially for heliiMii, which heinij one of the priKiucts of radioactive decump(jsiti almo.-.t cer'ain to l>e present. As a result of tests it was proveil that about 1 -.V '. of the nitrogen was ar^;()n. the tir>t of the rare ^ases of iht- atmosphere -in which it occurs to the t-Ment of O-'J.i \()lunu's per huudr. d \-o!un-. ■> ,,i air — to W discovered by Sir William Ram-^ay and Lord Rayleij;!! in 1894. A trace of helium was also detected in the jjas. The complete analysis of ihe gan-s trom the lla^in. ilie (\i\e, and xlo Middle Sprin^i^. is j^iven Ih-1ov/, together with an ai\alysis r.f fne ^-as from the KinK.- Well. Bath. particul_irs of which have already Ixen staled: — 143 Middle. Mdlianc i I, .1 "jdroKen [': o,,, Oxvk™ . [ „„, iartjon dioxide. ... I t IM NilroKi-n '.'.'.'.'.'.'.'.'] Argon and helium H King's* Well, Bath. Oil 09 45 1 II 98 24 19 04 .W 1 J4 3 60 96 6« 95 45 1 25 95 A study of ihe comprisition of iht'se gasfs loatls t„ the cnnrli,.i„„ that of iron pyr„o. and of orKanic matter with whici, i, eontes i„ ,, ,, l^ Vi," relat vely ntore eoncentrated in the ,.a,ses which (inalK- en„. J The Kreater argon mirogen ratio of the gas compared to the proportion" ,' which .hey ex.. ,n the atmosphere is owing to the greater solu, .'ih-tv „ g^ t THE CAVE AND BA.SIN SWI.MMINC BATH. In 1014 a magnilicent swimming pool was completed by the Rockv Monntams National Park authorities. The bath is Is fee, wife hy SO allowing fulvtew of the snow-capped mountains iK-yond T>v„ rrace^ run the full length of the opp„si,e side, under which are the ume" .ast end of the pool, a sun room alTor.ls a pleasant resting plac- ,f -r le :;;re:;;,^^.^:tth"'-"'"-"" --— .M^,::e.r:;;: Ihe water of the luth. at a lentperalurv of OIPK. .,„d „f vtrvinL. hue n,m a^nul y ..pphire l.ue to a ,leep emerahl green, constanti; ^..^'^^ h. o erilows from the ( ave an,l tlie Basin Springs is most invitine Th b..h is sa,.i „. Ik. .me of the tines, in AmerC. and i" is " ; ,,,/,^ swtmnung pool co„l,i have n,„re pic„„cs,|ue surroundings.' WA-«.\I .SPRING ON A, TO.MOBII.i; ROAD. l70i T« 1, other springs exis, within a shot, disiance of Hanff, which hiye also been examined. One of ,hese, a sulphur spring, rise-s close to the sh-'re ol 144 Vermilion lake on the side of the automobile road, three miles out of Banff. Its flow is not large, and its temperature as well as its compositon are lowered by the influx of colder surface water. It rises in a small pool, and spreads out into a wide marsh, seldom freezing over even in the coldest weather. On this account it proves an attractive watering place for animals. During the winter months mountain sheep may constantly be seen in its vicinity. Particulars of the examination made upon it are as follov/s: — WARM SPRING ON AUTOMOBILE ROAD. Laboratory No. 70. Sample collected December, 1916. Temperature 19-4''C. (67^.) Flow 50 gallons per minute. Taste Fiat with slight indication of hydrogen >nlphide. Reaction Alk.iline. Specific gravity at 15X. . 1 ftOlS Radioactivity Kmanation 640 units. Dissolved radium 23-5 „ Emanation in gas evolved. Properties of reaction in per cewf. Primar\- salinity 1-94 Serondar\' salinity 60-70 Primary alkalinity — Secondary alkalinity 37-36 145 Analysis. Constituents: — Previous analysis. Total inorua nil- matter in solution. Re.K ting Parts per million. Per cent. Per cent. Sulphuric acid (SOO, , , Bicarbonic acid (HCO,). ... Carbonic acid (COji . 147-5 15.S. trace trace 42 12-4 0.7 95-0 trace 115 1-1 2 (1 3 30 -Tf 32 .;: S-77 2 ^0 (I 14 4 Ml; 11-23' 0-42 II or) 22 62 IK 68 Nitric aad (NOji Nitrons acid (NO.) Phosphoric acid {PO,], . Chlorine (CI).... —— Bromine (Brj Iodine (I),,. — — Silica (SiOj). Iron (Fe) \ Aluminium (AI) / Manganese (Mn) 0.18 Calcium (Ca). Strontium (Sr) MaKHCsium (Mg) Lithium (Li) .., Sodium fNa).,. Ammonium (NH*) Total 1 Total solids in solution, residuo' dried at 110°C 470.05 i 434 ! ii'uod too 00 ( oncenlra- tion value. 13-60 Oases: Carbon Dioxide COj. Hydrogen Sulphide HjS. . . c.c. per litre 5-0 04 Harts per million. 63 3.\.if:"mi. 146 HVI>()THr.TirAI- rOMBINATIOSS. Sofiiiini nirriu- Sodium niir.iif Ammonium i-hlnriiit> Potassium i.Mli(|.- Pi)r;i!<>inni liroiiiult' Lithium chliiridi' Pot.i»ium rliliiriilr Sodium ,),).. , 20J.-9 42 52 'Sr IHCO,),) , Fo'HCO,),). •23 046 !<'.„(PO,l,). lFe;(>,) lAliO..) (SiO,l 12 4 2. 59 Previaya unalyitn. It i> rcadilv seen In- the analysis, that thi?. wat^r resembles, to sutne exteii!, the uthcr water^^ in ennipositiun ; but it i> li .-s ( onccntrated anrl coniiiiii- a rclati\'-K- greater amniint of c.ilrium bicirbonate, ^riiuntini; f(»r the !iii>:her sermwt.iry alkalinity. ! he radi"artivit\- i-. riimi)arativeK hijih, Imt --uch surface vaters cfii-n loiil.iin rclativxlv lariie amounts nl rman^ticn. ALPINK CLUB SPRINC {7V 1 Ills :-[)rini;. rinf..- ..l-an lifty \ariU up iIk> mountain side at the bark "i il,r r'inneeted n' the uiiitif linn- whrn tlif ^pr'nu \va>- examined. Tlu' !l(i\\- \v,i- ilu-n about ISd -altons jtut i.oiir 'I here wa no taste of In (lroi;,ii -iilphide iiii^. and \\\v renn>*-r<>iurc n' il.- vv,ii*-r was that of an ordinary r.M sprini^. The -prini; i^ probably of ..^i-ilU.w or surfatv oriyin, and iikr many ^-prinfjs nt that n-.ture. [j.^sesM.'s .i 'omf^.rativeK hi^U tenipi'iarv ra(!ioartivity, but no rr.n nf di.ssotved radium. IIh' iiartieuLirs are a.> tolltiw^, — J47 AI.PINECI I f. Sr'RIN'G, Laboratory No. 71. Sample colir-ted IWn.U-r. 1916 FIoT''"''"'* 7°C.(40-,, Xis„. ^*5--3f*KaiIons per minute. „" Frt-sh. (. ■ . Alkaline. ^IKHihr j.ravity ai ISX .. . j -001 ^ Kmanation 475 „nit- iJlss/Jved radium Pn.iH.r.i w .■ • ^-man^fK.n in ^.i^ fvolv,^. I n.iMTlir nt reacUon in per cfnt. Frimar. -aliriji, 96- '^cf>ndary >aliite.'. jg,^ '^rimar\ alkalinitv ^'■'■ondary alkalinii;, 522 Constitiwms '■iiiphurii- acic (SQ.j i ,,. Hicartjonir acid (rtCO,. > 710 '-arbonic acid (('O,) I Mtrir aciV) ■ .\0]) ' ■ ■ ■ | Nitrrms arid .\0-^ "" Pilosphoric .icid PQ.'' Metat„.ricad.| (BO,;,; ' i ( hlonnt- (ri).._. ■ I . _ Dmniint; (|^; "'"' Iodine ([ I Aluininrum r^j) M MangaticBP (\in) ' ' ("alciiim () ,,| ^itrontium (Srj Magnesium (Mej "-i?** i;'"'i"m (Llf-;; I "■ lotassium fK) I'l ^lium fNa);::" I 151 I Ammonium iNH,). fti ■''°"' ! ^;^' Total jwlid, i„ „!„,! resi.luei dned a. IIOX\__ J--__ll_^^«l I U«: Cartan n,„xi,ic TO, ' '' •"',??■ Hydrogen Sulphide H.S -_ PrevKMni Pans per iBttiion. Total mofganic »k,^in, matter in •-.liw. solution. I'ert 4.1 05 2-49 0-22 I U 81 111 IIX) IKJi PW C**»»T it J if. I ir 4 48 Pans per million. 24.; KKI < nnrentra- linii value. IJ 67 HVPOTHF.TICAI- COMBINATIONS. Total Parts per mofRanic Previous Constiiiient;— million. matter in solution. analysis. IVr cent Sodium nitrite (NaNOi) Sodium nitrafp (NaNOj) Ammonium chloride (NH.CI) 26 05 (KI) (KBr) Lithium chloride (l.iCI) (KCl) Sodium chlor"''f (NaCU 3. 80 75 Magnesium chloride (MgClj) (.alcium chloride (CaCh) Sodium sulphate (Na.SO,) 42 00 Magnesium sulphate (MuSO,) 143 50 2S 34 Calcium sulphate (CaSO,) 14-56 Sodium bicarlmnatc (NaHCOO Magnesium bicarbonate (Mg(HCOi)i). . Calcium bicarbonate (Ca(HCO.)j)... 286 20 56 52 Strontium bicarbonate (Sr(HCO,)i). . . Ferrous bicarbonate (FL-(HCOi),)... .V47 068 Calcium phosphate 'iH' Had, SpriuK. have Ix-en inve.,i«aled l,v Pr,fe.s„r h,r Jame. Dewar, wh„ ,ien,„ns,rated .he presen-e ,?. rl, , ndTio Z'^ -;; -'--.he rare «ase. „, .he a.^c.^phe;, i!, ZZ ami later 1,> S,r VVilharn Ramsay, who showed their high radio utivilv The compns.t.on of .he BanlT ^ases is almost simil ,r "^"/■"""""^">- p.Ke ,43 show. Therefore, al, \u.a appli^'.^thH ™d w ,:::' ofl^h IS equally true of the Banff waters. VALUE OF THE .SULPHUR SPRIN<;.S AT BANFF. The ^alue of the sulphur springs al M.mff m,,v be estimated from two "th h: sZt h"Iv ; " "Z ""' ""^"' ™P™v™en,s inVonnexl™ Xst ,„ r , n^ , "■■"" ""'■ ■'■'" ^"" ''«"'■"« -.nl.li.hment* rust on the Lor.tmen.-one m.i;ht almost say in the world-.h m tf* -^ -d B-'" P'-''. and the swimmin. baths at th.- Banff S ri„ "„ ,^ surrounded a.s ,Wv .n- l,y Ri^antic peaks an,l sn„„.eap,„ m, un.a n ' and led by con.mual streams of warm sulphur «.„er But thee may also be considered from ihe m,di.„,,,I stmd-K.int ;:::™ >: Vf -' i'" ^^•■™' ^"'™''"« 'feir radio" ^n": with the .^''^"'•" ,■?"'"- 'h^-r.-.Peu.ic valu,- o, the sulphur waters. ,o,. her »..h the bracmR chmate ol the mountain-, combine to make Banll one o the finest health resorts in America. THE THERAPELTICS OF SULPHUR SPRrNG WATERS. .A brief outline„f the therapeutic value of eert.un waters. ,Iue ,o their wil 'n tT rT'"'' '■■" ■''"■"''>■ '«■" «'^""' -''■ 'h-efore, bis .,''« .11 not be further irea.ed. The following; remarks, howev-er. on .he^ise Thrro is. of rnuvM; nn .li.ui.t ih.u ilu> drinking nf lart:,-' nu mfiii -. nf vvMtrr than usual has nrnM-K-rahlc hvnvln-iA * tT. , '. ''^'^S:* ■ quantili. s of i..".w,inK ntruMdal fMert- m w ishmj; out the piled by John Uaitoi of tlio Bntlis. ' Th^ H.n Springs of Bath Dei;[»-hc« Jlaiierbuoh ISO alimentary lanal, and in tht' ih)utiiu!ihur J^prin^ water, it seems to \v (li no impt>rtanee whether sulphur i* mnlained in the K>mi of free hydrogen sulphide or ot sulphitks. In the Banff watvi^ it tx-curs as hydrdgen sulphide). In Kith ea^ •-, sulphur is .d>st>rK\l tr.,m the stomaeh and intestines. In the U'h >l water lor baths, it is as.-.uniod that hydrogen sulphid ■ enters intc iN.- ImkK throunh th*- skin. In \he blocHi iron sulphide will be fnrrmxi through the iron of the NVxxi an^l ecnsequently a normal reformation of Nt)od gltpbules will Ix- quick*, m'd ind assiniulatitm stimulated. At tht same time, a strong inHiKMi.-e takes place upon the liver, the bile seereti'in hetnii; greatly inrrfasi-i) It , nbahle that mim*ral nuiriiiK-nt can be given to the system by the o'hcr usual constituents of suli»hi-'' waters, such as calcium salts and silic Fntni 100 to MXK) r.c.. x»p ti., two pints) of water is the usual amoii ; drunk d,oK at contiiKUtal >p.^s. taken cold or warm, sometimes with hot milk. Baths are tafcen at a temperature of 90°F. to QST., and of different duration; Ixtikwn 10 and 40 minutes. Pndonned baths for three hours, as are us.^.ti at some health resorts in Switzerland, are not given in Oermanv. lUhough it is said they have an antimierobic effect, and so prolongcti sulphur baths have had a high reputation for ages as a \ iluahk rtmedv for wounds. THE THER.\PEUTIC L'SE OF THE HOT SPRINGS AT BATH. Attention has already been drawn to ihr similarity of the Bath and the Banfl w, iters, and. therefore, the observations that ha^■e l>een made on the value .tnd use of the Bath hot spring waters apply equally to Banff. The folkmin^ extract is from a report on the springs, published by "The Lancet" the chief British medical journal: — The thermal waters of Bath exert a distinct solvent action on unr acid. In rrnr experiments, for example, it was shown that Bath water dissolved ovir live times tiic amount of iiric acid that distilled water would similarly take up al bleed heat, i.e.. just under lUOT. Since the waters .in* drunk hoi and used hot fot 'athin, purpose", thi* fact niay have an iTTi[K)rtant relation to the therapeutics of Bath waters in rli' treatment of chronic gouty atTections and rheumatism. It has been pointed out by Hr. Luff' that, owing to the undoubted fact that sodium .salts are dircct!> detrimental to the removal of gouty deposits, those spriiii:s should Ix' axuided which owe their acti\ity to thu^t salts \\\\vu the removal of the deposits is the main obit it ti- be attaimd. The springs which contain no smliuni -alts or trace uiiiy are the ones suital>le for surli cases. Hath water-- ha\*e a coniparati\el\' Inw -ndium content, and in the Banff waters, stxlium is yet less in amount. The inferince is simple. ' Gout. Its FiillitiluKv and Treaimenc. 151 baths, holding 800 In 900 galhms of water: re.lini„K baths; various form. .If continental douches; and vapour baths; b-'sides lar,;e swimming baths In tf,,. Grand Pump Room, reminiscent of the historic .lays .,f ,he e.ght...nth century, drinking water is s,.rved from a n.anv s,,ray,.,l f.umlain supphe, ,l,re,., from the Ki„/s spring. During the sUM,n„ r seas.,n, wate .s serve,! from the (.olonn.ule fountain, in the Institution gar,!,,,. The Kadnnn Inhalaloriun, eont.iins ,.|,|Mr.,lu. I.y « hi. h Ih,. r,„li.,aetivc water, ,,tom,ze,l l,y stent, ,,ir, or even 1,n ,h,. n,,tur.,l ra.li.,.,. tiv,- gas,.s themselves, can be tnhaled. Other fornts ..nable nasal spra>s an.l .loueh,:. car and eye douches to Ik.' similarly Kiven. All th.>e ways of u.-ing the hot sulphur waters can Ih' ...lualK w.U adopK.l at RanlT when the .lemand arises. In a young country like Can.ul,,, no leisur,,! class v.t evi-t- from at Banff will cater more to the tourisi than to the inv,,li,l, Th.T,. ar,- niiil nuidituins obtain. we-lt^h^'!" ■"''"''''■ I'""',"" '"' """'""""'I'- ■'■"' "I'M lrav,.lling, tnany wcJ hy tour.sts ami .ek. r. after health n,ay l,e ..ttrac.e.l fron, the aMi<.d p.,ss,.d in i,s u,„!ergrou,„| p.,,.,,^,., ,,n,l t her, fore some smnlanty would be anticipat.-.l l„.,w,.en ,l„. subst.m.v. pr,..e„t in 1 u wat.-r an,l the consl.tuents of th,- n„ks. But th,- nvulions ll,,,t ,.,ke pla,e when w„t,r from one formation pen, tr;,t,> r,..-f f ,1,11, rent , om- posltiou, ,,re eompkx, an,l can only be Mu,lie,l in indivl.hi,,! ,;,m . I . U. Cl.trke' states; — lli-,.M-,T,iinKly,li||K.|,lt ,',K>'n,T,lia-on„.|,„i,„K|„,„,,,..,,i|,. ,.,„,„,, ..■„„. , , ^' .;;:."tti':;n- , i;u;:':r "'''i' '"'■■ "'"' "-" ^"'" ""■ '-'" •-""' ■■•-'^ ■.„rf.,cc. A s,„,„g „,ay be a bl.-nd („,„, ,lifl,r,,„ „„r.,..- -.,i,|,„ ., ,,„„ , ' :" "„ ,' , sol„„„„ tram which ingredfe,l,h.,v,. I., .„r.,„.,v,,l-„„li, , K , , m iri„rpr,-l.,li„„„[,he|ihci, uij,,„,l,cl „|. ' " "'" " '''"" " S,.v,Tal broa.l gener.iliza.ions, ho>„ v,-, . m.,v 1„- -Uiu-.l. Waters from se unentary ..rmations are usually mo,e e -entrated. and ..o;,,!:™ ma'tiCl '■■ "'"'"'""'"•■ •*'■'" «■"•■- i-"inK from ign,.,a,s for- 'F, W. C'lait.-. Dalaol i^t htmiatry. Hu|. ivi, Jnd c tS2 Primary and secondary salinity are thr principal pnipt-rtipH | ^>>*"*sfd by waters fn.ni linu-^lonc strata, that is, .xliuin. calcium ami nia^;ru'!*iuni salts of the stronjt acids, hydrm-hloi u and sulphuric, prcddniinati , while in waters frotn arRillaceouH strata, hicirlKmatcs nf the alkalies .md the alkali earths— resulting' in the properties primary and s*^cnndary alkalinity — are found in K"Mter iiuantity. Most of the waters treatefl in this re[>ort arc -ituated in (he great paleozoic plain, forming the basin of the St. Lawrence and the |,ow,r Ottawa Valley. They especially (H'cnr in the more distributed eastern reKiim. Kewer sprinRs exisi in the Ic^s di^turk-d western area; those ■ St, Catharines, Preston, and Mallowell. JK-lnR the chi. f. Dr. Sterry Hunt exhaustively studied the oriicin of ni.iny of the eastern waters, as outlined in the chapter on niimrul -^prtPMs in "The ( ieolo^y uf Canada," 18ft.?; and as developed more extensiveh in ,i series of ess.tys, entitled Chemical and Crf-oloRical Kssays. (Scientihc Publishing Company, New York. 1897). C.msideration of the recent an.dyses amply confirms hi- statements and opinions. The chief formations of the I'pper Cambrian and theOnlovician und< r- lyinK the St. l-awrence plain are the followinR, in descendinK order Lorraine or Hudson Kiver: .-^liyhtlv biiuminous >amly shal. - and thinly Uvlded lime^loms. I'lica shale: thinly lamin.in d. black and brownish shah -. Trenton ^roup; dark urey liniestMnes, with some ar^'illaceous material. Chazy limestone: ^rey. semi-cr\staHine limestone, with interstr.itified, shah' la\ers. Beekmantf)wri or Calciferous sand rock: greyish, semi-crystalline dnl(»- mite, ^;enerally arenaceous, iind sometimes a^^,'illaceous. Potsdam; largely evenly straii'^ed. finejirained quartzose .sandstone. Kxiendcd descriptions of these formations are yiven in "The Geology of Canada" 186.1. chapters 3, 4, 5. ft. 7, 8, 9, 10, and 13. and in other reports' issued by the Ceolojjic.il Survey, since that date. Dr. Sterry Hunt ■-hows that the normal reaction of surface water in argillaceous strata will Ik' conducive to the retention of principall" alkali and alkali-earth carlxmates in the water, while the -ource of the neutr, ' salts which consist of alkaline and alkaline-earth chlorides is the limestone and other strata from the Potsdam to the Trenton. He .supposes that most of the rnin'^ral sprinK?^ are combinations of the two classes of water, and proposes a classification- based tm this assumption, which is quite satis- factory from a geochcmical standpoint. Springs are often found risint; in 1 Kll3, R. W., Rppurt on a portion of the Province of Qurbcc. comprurd in thp wiuthwcsl gheet of ihe EaPt-Tii lowTistiips. C*ol, Siirv. Can.. Vol. VM. 1896. pp. 44-.'!0, 74-7.''. RS-86, Ella, K. W,, Report on the (Wnjloay of a ponion of Runteri) Ontario, Ann. Rep., Vol. XIV. Pari J. IW4. Adam*, F, D , and LrRoy, O. E. The .^rWHian and otiier deep wclU on the (aland of Montreal. PartO Ann. Rep . Vol. XIV, vm. [.p. It-li. ' Steriy Hunt. Chenuial and Geoloitu-al Esuya. p 1 14, and I S.I cliwi- prcxihniy, an.l yi^l ^liowins- «"■>< ■liir,nn(f in , ,.iii|,.r,ili..i Ihi, .s .•xpl .im-,i l,y ,h.. f,.,., ,1,.,, ■- l,il,. ,«.rlu|,s „„ly ., I, , f.,., ,„„„ , ,1, . ,1^. r„ni ihihnnl -iMt... ..r ni.,r, . ,|„.„ an. mixiur,., ..| wut.T- lr,„„ il,.. ,|,ll, „.„t lnrn,,it„,n>. Thv Kmup .„ Cil.-ilonu SprinKs hIutc ., -ylphiir ,,r..i ,, „,< „e spnriK n>.. iIom- CLKithi-r. ull.,r,ls an ilUi»lraii„n. Tlu- ,|,i,„i,., ai I .,.1 „| Sprinnr. cilTiT ani.lhcr ami .vm nuiri- »lriliinK fxanipli- Th, Maui v, mr fr.m,a,onsid..ral.^.>l^.plh,is«lr.,nKl^ valine, wliil,. iw.-nty var.i, awav! iho shara.li r The ^lilpliur and l.ithia arc iMt.Tm..lial,- in nl. Icily arc lilcraU „l ihc -aline ami the alkaliri. wal.r. The f„ll„«i„K ,al,lc Kivcs the pr.,l,al,le K,.„|„Ki,- f„nnali„n l,..n; which the varum, waters i-Mic, an,l a!-,, include, their cla>.i|-,cal...n ac,,.„linB .,. OuH. I'alim.r'v meth,»l, < la.. I contain, alkahne ,i. ,, alkal, ,li„e water.; ( la.. Ill .alim water.. \„ other t>|., . were found, lh..UKh sexcral are ..n the U.rder line „i I. U-iuK tm.re m.irlv .aline than alkalincalinc Acconhnu to the p-neralization ju.t |>ul forwar.l, water, ri .iiiu Ironp HmUon Riwr or rtica .hale, .hould ,1' lall int.. (la.. I. while tho..- i-M.Mle from lin,e.t..ne. .h..nhl !«■ .aline ,.r . .Ml water., Thi- l„,l.l. lor the .,,rin..» ri.uiK front Ih, .hale., I,nt then ,• ,„,„„ exception. i„ ,h,. ca.. ,.f w,,ters li.ivinK their orimn in the rrenl..ii linie.li ... .. Ilii.i...n Kivt-ror llh.i stiiiU-. v., I c ■ llas.i- ^°- i h[>r"ig. licaiiciii. 10 |Carl..b.id .Vxl,! [ IS . Suli.tii]. 1 2" . LitliM I Ift - Magic Ill •; iRumcl l.ithia I 'Ai? mar j 44 Abenaki- \\V,*t House,., HI fo ,- " ^■-•'"' *'""'* "I 4n IVarennes. , . i i 49 [Richelieu i 5J !St. Leon icM) |[| 57 St. Leon (Lupien) [l| 55 |St. Hyacinthe, Philudor , I La Providence | I 58 St V'vere ■ jji 50 ,Blii.'l)onnets. , , I ■ 46 [St. Bruno j 63 Maskimm^e. ... | , ClasHi- ! licaliiin.' 6 Horili«i.k, Ill Lt :l)ominHif] HI 14 SaniliiriH . 2ft taUdonia Sulphur . J 25 1 » Saline 27 i „ (.,-,s I 2« r Dunran. ^'* - Arteoian Sulphur 1 III ,*,( <.iinl s more Siiline HI •U l.uril's less Saline. . 1 42 iViauvillc, , I St La'irenlian Spring, I $2 5Q Railnor lU Si. (Vfnevieve b2 64 BtTthicr - St. Bennit HI III 65 UanH, Cpjxr Hot Sprini;. 66 . „ Ki.lnt-v III 67 1 . Middie _ . HI 68 - Cave W „ Basin „ , 10 , Auto Road „ , HI 71 fl Alpine Club „ ... HI ' According to Chucc Paliii.-i « method. MICBOCOFY RISOIUTION TBT CHART (ANSI ond ISO TEST CHART No 2i 1.0 If I- 1^ ^ ^" III 1.8 1:25 ■ 1.4 1.6 ^ .APPLIED irvUGE ' ! '-M ■ ■ ■) 154 Although it is conjectured that the Trenton formation was put down under long-continued and oceanic conditions, it contains a considerable amouni of argillaceous material, in many cases even forming thin layers. These strata would be less permeable to water than limestone, and thus would react relatively longer with the circulating water than the lime- stone. Therefore such a cause might be put forward to account for the frequent addition of alkaline constituents to an otherwise saline water. Relations between radioactivity and geologic formation have been sought for, but as tl - waters principally issue from two sedimentary for- mations, the I'tica shale or Trenton limestone, both of which have a very small and similar radium content — Professor A. S. Eve' of McGill Uni- versity found 0-92 units radium per gram of rock for the Trenton lime- stone in the neighbourhood of Montreal — little radioactivity would be expected. It has been shown^ that the most radioactive waters rise from primary formations. THE THERAPEUTIC VALUE OF MINERAL SPRINGS. From the earliest times mineral springs have been known for their curative properties. Greek and Roman liti rature contains many references to the value and use of such springs, and at no time in history have mineral waters been held in such high repute as they were in the davn of the Roman Empire. Remains of magnificent baths built by the Roman invaders are found to-day at many of the principal mineral sprini; resorts in Europe, and arc eUHjuent proof of their habitual use of such waters as remedial agents. Almost every mineral spring of note is the subject of innumerable legends and tales, telling of its discovery by wandering hunters or Inilians, and relating the miraculous restoration to health of all invalids carried to the source to be cured by its healing waters. The beneficial effects of mineral waters, however, have been much overrated in the past, though nowadays there is, pcrhapr,, a tendency to minimize their therapeutic value; a reaction in this scientific age against the atmosphere of quackery so often surrounding mineral spring resorts. The mineral constituents of spring waters are often accredited with the sole responsibility, when the beneficial effects contributing to speedy restor- ation to health have been due to other potent influences. Change of air, of scenery, of climate, of habits, of diet, and especially stimulated auto- suggestion, play a not inconsideral>le part in the work of recovery; potent influences that have received tor Httle attention in the past. One of the chief curative agencies of mineral waters i^, undoubtedly, the water itself. A greatly increased amount of water is imbibed by the patient at a spring resort; an action itself attended by good results. It is a ' Eve. A. S. Phil. Mag.. Aug.. p. 231, IWT. ■ Part I of this report, pane 48. i''^„:iL.^. Again, many mineral waters contain substances whieh reiHilv ..t .he ,n,es„nes, stimulating the kidneys ::„J bowels, and .1 ere fore e^e n" bo,j:;:a;tsrrei-:,"^ -"™"'^"- - ^-^ ^n -. metabolism, augment the action nf, I, lI^ «tomach, mcrease deposits, especiX i lithil ' ^"'"''y^' ''"'' '"^^"'^"^ ""<: acid alkalies presfnttn^hJaterTt"" ' t^'^r''^ '"«'' "^"P""'"" "' 'he conditions of th mucrs memlr n7"' "T^"'""' ^'"'■■«>- "^^'^ '" "''-hal The most celebrated ^ro^r ^a^^^ "onrr afe" AK^'^ T^T rilir^-n?"- P; - -^ '" ^™»V, and Vich^^^^^r! E^^^^tj Eur<::r':r^eX^:^^t;;::sX rt;'* ^"^-' --'^"^ <- mostly nearly approach ''hV"' '"'" '"'' '-''"'™"^" Spring waters .. j.kaH^ ~o!::„:::^Sbr^-!rc2::j"- acid tonf c"S Tyn^re^l-'-'^V'^^^"^ ^^'^ '°" ^^ -™^ in catarrhal condi&nT IftheT '' "^'■^■""l"'"^' P°^^- -l-dal value biliary passages, a^Turinarv tracTT-d "T ""'■' '*'""''^' '"'^■^''"-=. andpow'erof'dige til ThVrugmemte'fl '";''" ''''"' '"^ ^P'"""^ ofthe mucous membrane anr/oroTlt a^\t th:;irrs:d^r;re ^J?L^- "■ ™'°- "• "'»-' ^»'^- o' "" V.,,^ S..,„ .^ c™... CH.p„„ . „, . ,™ •See pay i60. - -. -"^ini.,, 156 treatment of scrofula, gout, chronic rheumatism and tlyspepsia. The mosi notable foreign waters are those at Kissingen, Homburg, NauheJm, Wies- baden and Baden Baden in Germany, Bourhonne les Bains, Royat and La Bourboule in France, and Saratoga Springs in the United States. Many springs of this class occur in Canada, the chief of which arc the Sanitaris, ( 'arlsbad Lithia, Russell Lithia, Caledonia Saline — bottled as Magi — Caledonia water, Caledonia Sulphur and Gas, Richelieu. Philuclor at St. Hyacinthe, Maskinonge, Varennes and Laurentian waters. Man\- inuriated, strongly saline watcis occur in Canada: such waters increase the appetite and have a general stimulating effect on the organs of the digestion. Some, containing principally the sulphate radicle or, magnesium, have a cathartic effect, and are much used as purgatives. The Caledonia Duncan water Is a good example of this type of water. The most widely known European waters of this character are Aesculap Apenta, and Hunyadi Janos. No chalybeate springs are included in the report, thougn such springs occur in Canada, at Tuscarora. These waters find their principal applic- ation in anaemia, and general debility. Sulphur waters, such as the well known Banff Springs, are found in considerable frequency. The chief therapeutic agent is assumed to be the hydrogen sulphide gas, the substance responsibk for the unpleasant "bad egg" smell and flavour. Such sulphur waters are taken internally or are applied externally by bathing in the heated water. The chief ailments for which sulphur waters are stated to be efficacious are: diseases of the skin, gout, chronic rheumatism, and syphilis, for the treatment of stiff joints, and gunshot wounds, besides in cases of chronic poisoning by mercury or lead. The Banff waters, Potton. Viauville, Caledonia Sulphur, and Carls- bad Sulphur, are waters of this nature. Fu'ther details on the medicinal value of sulphur waters will be found on pages (149-150), describing the Banff springs. The subject of the therapeutic value of springs, on account of their radioactive properties, is treated in Part I of this report, pages 50-51. THE ECONOMIC VALUE OF CANADL^N MINERAL WATERS. STATISTICS.— The value' of mineral water shipped from mineral springs in bottles or barrels during 1916. amounted to $127,806. as compared with 8115,274 in 1915; $134,111 in 1914; £173,677 in 1913; and S172.465 in 1912. These figures do not include the value of the mineral waters used at spring resorts for drinking or bathing purposes, nor, of courM\ the money spent by visitors to such resorts, primarily attracted there by the proximity of the springs. ' John McLeigh, Annual Wpport a Dept. of Mines. the Mineral Production of Canada during 1916; Canada Mines Branch, 157 PhL' imports of mineral and at-rateil waters durhnr ,h,. n i i n,in::^,:;.:;rS^„rwe;:^'r;L'::'si'; ""■"'"'■ ^^r t^^ "' in 191,S; S2,367 in 19H; and S^We in ,,1 5 ' "'"''••■"■•' *'"■ «■'•"'< '■""herstatisticsoithepRKluction, imports, and exports are .iv Mitsr[^:™-™rr''''-''"" •"---••■------ denoted by a dagger have ...n analysed t the^^re^lnhist:': "' """ 99 Ij ,> i'i i i gSt-ga.g _i ; 3-6 ■ = m ■y=? !-3 .-If ■ :S,^i_) adjj- s^i m h^ m SI :"" I? ■ Jl|fip||||£| III ^ .! II sill 11 I 111 1 ^3Sj£j£l I I X I 56i ;s<2s Soils s 5-; - I jfSiJSjsl? i5 5 •< 159 3 J I Hi M ^ .5 u -3 III , IH ■1^ 9 ■ i r :!i s ^ J -^1 1 ' " I I a 5 c o 3 S t l^JE 160 IHK DKVELOl'MKNT OF CANADIAN MINKRAI. WATERS. In fomparatively newly st'ttled countrit-s, such as the Tnilt'd Slates and Canail.i, mineral springs are eonsitiered much less* worthy of attetiiion than they ari' in I iiro[x'. Many springs wht(:h are allowed to run to wa^tc in Canada w^ulil U- oi considerable value in (jermany. France, or Italy. They form a small hut not inconsiderable fraction of the natural weiilth of a country, and the lime is opportune to draw attention to "ossibililiis of development of (ini.iiliaii mineral sprin^;s. Mineral springs may l>e developed in two direetiuii,--: water from the springs may Ik bottled and sold as table or aperient waltr. according to its compf)sition. or sanitoria may be established near the --prinns to enable patients to drink the waters at the source. The waters may sometimes be used for baths, especially in the case of sulphur 'vai^rs. I'nfortunately, there are no statistics to show the relati\e value of 'he two methcKls. In Europe it is probable that greater financial return^ a-;' obtained from the development of mineral springs as health resorts or spas. Vet some oi the European bottling plants have a ver>' large trade. In 1''12 for example, the Apollinaris Company in (Germany had an output of thiity-seven million bottles of water. MinerpI waters, both table and aperient waters, have been imported into Canada in increasingly large amounts, especially from Kuropi', and a glance at the statistic-t shows that e\"n now the value of the imported waters is greater than that of the domestic waters consumed. In this report, it is shown that attempts have been made to Pnd Canadian waters of equal value, which can replace the impf)rtcd waters. A list has already Ix'en given of the chief proiiucers of bottled mineral waters in Canada, and re.'ercnce has been made to such of those waters as have been analysed in the course of this mvestigation, and which are on the market. The chief of these are Borthwick, Saniiaris. Rusf^ell Lithia, Caledonia. Magi, Adanac and Duncan, Laurentian, (iurd's Caledonia water, V'iauville, Richelieu, Radnor, St. l-eon, St. Severe, and St. Genevieve. These arc chiefly used as table waters, especially after they have l[)ecn carbonateout 400 parts per million. None of the waters included i his report have a similar composition. The three principal springs at Vichy are the Grand Cirille. Hfipital, and Celestins, all under the control of the Frencli Government. They yield thermal waters which contain much free ' irbon dioxide, but little mineral matter in solution. Springs of smiiLir composition, unless they were also the thermal, might fail to attract attention in Canada. It is not improbable, however, that similar waters exist. j^\ /;.* •^„.^*r. lii Analyim of Imr .d Table Waten. Hypolhcdiiil ('ombination!*' Sodium thliiridf So<]iiini sulphate Sodiiini phiMphate. ..'...,. PotasBium hicarbonate Sodium bicariionale Magnesium bicarbonate . , . Caleium bitarbonate Strontium bicarbonate. Ferroun bicarlionutc. Silica Vichy* (t'eleBtinfl). Parta per miltitj Ajmliinaris. f .ill l> 111 6 5 1 18 m 7 2(,-4 .1 .1 .14 411 4.« li7 2,015 «S(i 4(IU S4 .111 Parts [jer million. Sulphuric acid Bicarhonic acid PhoKfjhoric acid Chlorine Silica Iron Calcium Strontium Magnesium Potassium Sodium (SO.).., (HCO.). . (PO,). ... (CD (SiO,).. (Fe). .. (Ca)... (Sr)... (Mg).. (K).,,. (.Vi). 11 2 258 6 3 18 6 ,i.4 1 6 5 1 .1 ; 7 90 4 Reacting values IJCr cent. Parts pir million. 2.2b 41 72 09 52 04 ,M9 167 2,,S,(8 1 265 4 30 26 4 98 8 141 6 804 7 Reacting values JXT cent. .1 30 39 60 7 10 89 4 69 II 09 .53. 33 Concentration value Properties of K^actioii :^~ Primary s.-i'inity . . Secondary '"ilinity Primary alkalinity Per cent 16 56 Secondary alkalinity ...... ! '.'//,', [^ Analyst Per cent 20 SO 45 86 33 34 b^ C A.'S^KSrS^^Slt^^S^I';^;^?^ fZ ■- ^■'"-' -«' derated Water,, flbiJ: reference to analysis by Kyll (1907), p. 29. the Mineral VVater.s of the Unitt-d States," issued by the U.S Den Agriculture, Bureau of Chemistry, 1907. " Several of the Canadian waters already examined, have a somewhat similar eomposition to the well known imported Ap„Ilinaris water, though con:,itue:f "',"' "•"" r''''' '^ ^"P''-"^'' ""»'"-'"»= '"e numerous constituents of a mineral water and the complex conditions of its formation 'Mi 162 While the inrip.il rcinstitutnt uf Apollinaris water may lie tnn»i'. The lic'st known Kuropean waters of this character are .Apc^nta. Hunyadi Janos, and Aesculap, the sources of which are all situ- ated in Hungary, These have l»eu imported in larnc (luantilies, and have had a considerable sale. Pluto conccntrati-d w.iter— the source ol which is at French Lick, Indiana— is also popular. (Jther imported American aperient waters are Red Raven, and Moun- Clemens. All these walers are concentrated, and conta;:' large quantities of magne.ium and sodium sitlphates. No sin 'ar Canadian walers have as yet been examined. Vi.iuville ■'■Iter, Montreal, somewhat resembles them, though it is much less concentrated, and cont.iins a larger proportion of scxiium chloride. Concentrated Caledonia Duncan water is, however, successfully replac the foreign waters to some extent. Curd's Provide; lacnig 163 Hypothetical (^"omhi nations, Srolium sulphiirt' .. Putassiuni milphatP, Magn«jiirtnulphitt- Calcium Niilph.itv Lithii iilphau- ., .. . Swiiti ..lionalc .... t alciuititarbonate Magnesium cartwnatr Manganout carbonate. rerroufl c.irUinaie. ^wdiiim liii.ir(«^nate f alciuni hirarUinate >'ronmmi hit arbonate, hLTmut l>n.irl«jnate -Todium cJilariiJc Magneuuni bromide Alumina Silica j^^ rf Imported Aperient Watere. I I .. ... : ^ ^^~ —' Apcnta.l |R.MCtingj I Reading I g^r cent:^ rin-.ary salinity Secondary salinity Piimary alltalinity Sx-condary alkalinity 40 90 56. 56 : Analysis by Mohr. n. 5J ...... Waters K.f (^~ a""\/^'/'. ^^ munoti waters, by c. A. MncheH, expressed i : Analysis by Mohr. p. 22 ,„ .^ , Ibid: Analysis >y Tichbourne, p. 22 Rcfert'nrt' h.ij» alrcaijy IxM'n madt' to the nimilarity of ntmw of tne. Mtroiinly -.ilitir WiitiT-", «U('h .l^ tin- AU-niiki« watrrx, Si. (ii-ncvii-vc, St. S'MTc. Nan-nr:'-'.. .itid St. Leon, to thf htronKl>' ^.ilini' Kuroptan waters, partkul.irly tho»i> at HonilmrK, Kiff*inKi'n, and Naulu'im. W'hfii niorc of the prinrip.J Canadian niini-ral !>priiiK!t have Ufn examined --t-stM-ciaMy those in the Niagara (H'ninNula. and in British ("olum- Ilia— it irt prolial)!f th.it I'anadian waters ^ill Im- found e(|iial tn e\ery ri'sfxct to any of the fariir)u?* Kuroptan wateri* aljove r'ferred to, ( ANADIAN MINERAL SI'klNCi RESORTv Not more than a df)/en mineral sprinn rt'Sfirts In Canada are open at the pft'M tn lime. Several have Ix-en temporarily ti^ines>> due to war conditions. Many of rhi- following sprin^^H at which -sanitriria have Irhmj c>een done by the Mmes Branch on these waters, nor on the Preston mineral springs, which are a group of sulphur waters situated in Waterloo county, Ontario. A sanitorium is also situated in Winnipeg: the Winnipeg Mineral Springs Sanitorium, under the direction of Dr. A. D. Carscalten. No examination of these springs has yet been made. The most famous of all Canadian springs is undoubtedly the group of hot sulphur springs at Banff, Alberta, full details of which have already been given, and attention has been drawn to the great possibilities of Banff as a health resort, combining as it does magnificent scenery, bracing climate. wjr ^l^^ ML-MmZ^W^'^d^' h'''f^i f*- W>r.n«-M„„l,' M„.„u„f,l„,,.,i (.'r *"•>"•""■•""' '"-l.- ... Il..nll ■" pr.s..,„ i,..,„„ ,„,„ _ ,:'„;;''^';'' ■'"''''•''■''''''"' ""• ■^'""■•■«i' -PnriK-. Ili~,i,>ir.il.ic||^ 'I'Uiin-Mlu.lUHl .11 In.th 1,1 |,.f " ';," ''''"•l"l™'-nl .,n,i i,n|m,v,.,n, „!., hnw.v.-r will I l«-l"r.- ihcs,. iiiimT.i sprint n-s ,ri» .. ""«'X|Kr„.,l ,|,;,t in s„ ■iWy with similar l-„rn,».,n «.■ .,. r V .' ''"' »■"''•- ''■'"Par.. fav.M.r- -Mfidala,,r.,,.M-,„,s Tu. ::„C' ^'l' ;"-" . ""l ''" '•> -is-.s, such I- <.-.al.lislu.,l. '"'■'"" ''""■'^' """'"'"•' ■'n.i Lalhs will s„„„ 166 Table of Springs Arranged According to Class. FACE Alkaline: Bicarbonated — Watson Foster Well, Montreal, No. 43 70 Bluebonncts Well, „ No. 50 74 Celestins Springs, Vichy, France 160 Calcic — Adanac, Bourget No. 30 61 Guaranteed Niilk Go's Well, Mon- treal. No. 35 63 Potton Sulphur Spring No, 54 92 Alkaline-Saline: Muriated — Sodic. Bcrthier, Que No. 62 105 Caiedonia, Artesian Sulphur No. 29 55 „ Duncan No. 28 53 „ Gas No. 27 50 „ Saline No. 25 45 „ Sulphur No. 26 48 „ Gurd's less saline Wo. 34 59 Carlsbad Lithia No. 20 39 Soda No. 19 41 „ Sulphur No. 15 37 Laurentian Spring, Montreal, No. 36 65 Maskinonge, Que., No. 63 107 Mount St. Bruno, Que., No. 46 72 Richelieu, Chambly, Que., No. 49 86 Russell Lithia, Bourget, Ont., No. 17 30 Sanitaris, Ont., No. 14 28 St. Hyacinthe, Que., Philudor No. 55 94 „ Que., La Providence, No. 56 9f) St. Leon, (Lupien), Que., No. 57 98 St. Severe, Que., No. 58 100 Varcnnes, Que., No. 48 84 Sodic and calcic — Gurd's well, Beaudry St., Montreal, No. 37 68 Saline : Sulphatfd — Calcic. Banflf, Alpine Club Spring, No. 71 146 „ Automobile Rd. Spring, No. 70 143 „ Cave Spring, No. 68 137 167 Banff. Basin Sprinfi, j,,.,, g, " Kidney Spring, N„. fifi '" „ Middle Spring, No. 67 „ » Upper Hot Spring, \o. 65 ,,„ Jas,K.r Park, Fiddle Creek Spring,No. 140 „ Muriatod — IM .Sodic. Abenakis Spring. Que., West HouseNo 44 Ab™akisSpring,Que.,E,astH,)UseNo. 45 I, Borthwick Spring, Ont., No 6 Caledonia, (lurd's strong saline. No.' 3i 11 Carisbad Magic Spring, N„ jg ^° Dominion Spring, Pakcnhani, Ont.No 13 „ Hudson's Bay Spring, Peace River, in,-. No. 245-4.... ,,. Lafleur Spring, Labelle Co., Que., \„. 152 , Mission Spring, Peace River No 245- i , I Radnor Forges, Que., No. 52 '', Snake Mountain Spring, Peace River, r. „ . No. 245-5.., no S-Benoi,,Que., n„, « [^ St. (^enevieve, Que., Nn 50 St.Le„n,Que., No' 53 '"' Viauville Spring, Montreal, No 42 !? Vermilion Chutes, Peace Uiver, No. 245-1. '.'.'.'. ,33 168 BIBLIOGRAPHY OF METHODS OF CLASSIFICATION OF MINERAL WATERS. FRENCH AND ENGLISH CLASSIFICATIONS. Based on the predominating constituents of the italers. Ingram and Roy'e. "Natural Mineral Waters: their properties and uses," 12th edition, London, 1911. Mitchell C. Ainsworth, "Mineral and Aerated Waters," Van Nostrand, 1913. Dictionnaire des Eaux Min^rales, Paris, I860. Mayer, Henri, "Les Moyens de d^-couvoir les Eaux souterraines et de les utilizer," Paris, 1912. GERMAN CLASSIFICATIONS. Fourteen or fifteen classes depending on the predominating constituents. Hans Hofer von Heimhalt "Grundwasser und Quellen," Braunsweig, 1912. Deutsches Baderbuch, 1912. Ishizu "The Mineral Springs of Japan," Tokyo Imperial Hygienic Laboratory, 1914. AMERICAN CLASSIFICATIONS. Walton, "The Mineral Springs of the United States and Canada," p. 34 1892. Ander&on, "Mineral Springs and Health Resorts of California," pp. 21-38, 1892. Crook, T. K. "Mineral Waters of the United States and their Therapeutic Uses." p. 30, 1890. Schweitzer. "Geological Survey of Missouri, vol. Ill; Report on Mineral Waters." pp. 23-25, 1892. Peale, A. C, "A System of Physiologic Therapeutics," edited by S. S. Cohen, p. 302, vol. 9. Haywood. J. K. "Mineral Waters of the United States," U. S. Dept. Agr., Bur. of Chem.. Bui. 91, p. 9, 1907. Skinner, W. W. "American Mineral Waters: The New England States," U.S. Dept. Agr., Bur. of Chem.. Bui. 139, 1911. ^«JI'j ■^ ^ 169 INDEX. and, les ). 34 1-38, ;utic leral i. S. Vgr., tes," au 1- ■ ^ Page Abenaki3 Bpnngg -o g. i * Adunac spring, Bourget 'V. «J, 164 /Etna spring. St. Severe ,°J. Alberta : saline springB J™ Alkaline springs J *J n saline springs. . . J^ Alpine Club spring, ^anff '.'. JJJ Analysis: Abenakia springs en o? » accuracy of 9n Adanac spring, Bourget. ..'.'.'.'.'.'. TX /Etna spring water .Sf Alpine Club spring. Banff i^l artesian sulphur spring. Caledonia Springs. , . s= el Kanff : warm spring on automobile road. . , iic Basin spring, BanlL !*J Berthier spring :7* Borthwick mineral spring ^xj Bowman township spring , , J Carlsbad lithia spring .'.'...'. in magic spring '■■...'.....'.'.'.'.'.'.'. za " f, soda spring .^ > n sulphur spring ... ,u Cave spring, Banff .^l „ distinction between mineral and sanitary . ? „ Dominion spring Jt Duncan spring, Caledonia Springs.".'.'. t^ ii Elizabeth spring, Homburg ^'*' 21 Gaa spnng, Caledonia Springs =n ^7 ga«;3, Basin .spring, Banff ^"',? , -. » Cave spring, Banff Ji, „ King's well. Bath lli „ ' J- '^''^*^'^ ^P""g' ^''"'ff 141 n Ourd 3 less saline water, Caledonia 5[ irings. . In „ saline water, Caledonia Springs « Guaranteed Pure Milk Co.'s well ... *, 25 Hudson Bay springs, Salt river °"*',?t imported aperient waters ,i^ . .« mineral waters Iftf « ionic form of *°i Kidney spring, Banff „5 La Providence spring gi Laurentian spring, Montreal rt? «? Magi water 7Ci Maskinonge spring ,no methods of . ... ,,^"^ Middle spring, Banff '■\\l Mission springs. Salt river t,7 Montreal Jockev- Club well 7, Mount Bruno Floral Go's well 7, » Philudor spring Li „ Potton spring o^ ., Raduor Forges spring oq B Richelieu spring 07 Russell lithia water. ... \i St. Benoit spring ['_ .^f. St. Genevieve water ',['/, .AT „ St. Leon spring ' ^X: c ,■ " . " (I'Upien) 00 , Saline spring, Caledonia Springs '.'.'.'.'.[" 47 Ik 170 Page Analysis: Saline well, 112 Beaudry St., Montreal W „ Sanitaris water 29 , Snake Mountain springs 1 19 „ statement of rc^^ults of chemical 8 „ Sulphur Point spring 121 „ Sulphur spring, Cal^onia Springs 49 „ n 1 Jasper park 125 „ Upper hot spring, Banlj 130 , Varennes spring 85 „ Vermilion Chutes spring 123 „ Viauville mineral water 77 „ Victoria sulphur spring 44 „ Watson, Foster Co.'s well, Montreal 71 Arsenic iii mineral waters 7 Artesian sulphur spring, Caledonia Springs 55 B Banff and Bath hot springs: resemblance 118 „ cave and basin swimming bath 143 „ future of 151 „ hot sulphur springs - . 126 „ rare gases of atmosphere absent 17 „ springs: most famous in Canada 164 „ sulphur springs; value .... 149 „ warm spring on automobile road 143 Baril. Dr. G. H. — analysis made of Richelieu spring , , . , , 86 „ n resemblance between Viauville and I'riagt- waters 78 Basin spring, Banff 139 Bath hot springs, England 148 Bell, Wallace: well at St, Bruno drilled by 72 Bergeyin, Daniel: owner V'iauville mineral well 76 Berthier: mineral spring at ■ 105 Bibliography 168 ' " " ■ ■ ■ "■ ' " 74 22 23 Bluebonnets: Montreal Jockey Club well. . Borthwick mineral spring „ Wm. — owner mineral spring. . Bowman tp. — spring in Boyd, Thomas: owner Carlsbad spring,- Caledonia Springs 44, 164 „ Mineral Water Co 45, 61 Camsell, Charles: samples collected in Alberta 113 Canadian Aerated Co ■ 109 Carlsbad Springs 33, 164 Cave and basin springs, Banff 136 Chambly Basin, Que. — Richelieu spring 86 Chemical elements in mineral waters 6 „ tests -_ 16 Clarke, F. W. — relation of chemical constituents to geologic formations 151 Cole, L. H. — saline springs in Alberta U3 Diamond Park spring, Arnprior. . . , Divina mineral water Dominion spring, Pakenham Duncan spring, Caledonia Springs 28 100 25 53 Economic value of Canadian mineral waters . Eve, Prof. A. S. — radium in Trenton limes'' 156 154 Fafard, Prof. F. — ^tna spring water analysed by 100 Ferland, Alfred: spring at St. Benoit 109 171 Fluorine prpsfiu in most mineral waters ^'*' hreseniusr conslitucnu o( mineral waters ..'.'.'. ' 6 C Galatly, Mr.— guide cave spring, Banff Oas: St. Genevieve mineral spring used to run' enirine '" (.as spring, Caledonia Springs u tun engine i,,, ( . ises evolved from Basin pool, Banff 50 t..lian, \V.— owner Dominion sprinir 142 Guaranteed Pure Milk Co.s »i.|| 25 Gur"> |-a i rovidence: spring at. . "^ Ill Laurcntian spring water, Montreal '6 Lemyre,J. T. -Divina water bottled by 65 LupienfB.-spri^Kill'^P'S'i:^!^"™''"''^' ■■■•■••■-:■■ ^^ !S? 93 Mcintosh, Dr.-radium in ViauviUe water Magi mineral water -uviue water . MflEnnir'"'"""' ?P™S'o„ farm of ! ! . Masknonge; mineral spring at. . Middle .springs, Banff. Mineral springs: descriptions of'.'. ' '. " « develonment of. . . resorts.. M table of arranged according to class, classification of 76 15.45 20 30 107 133 22 160 164 166 11 " .. constituents of. definition of 4 " n economic value. , 3 " list of producers, 156 „. ; : f£^i;;!/5sr''=™='''"=«^"»»'°8i''<>™a.k,n..:;:;::::; !|? Mission springs. Salt river. Alberta. ..;,.; ; "4 172 Page Montreal Jockey Club well. DluebonnetB 74 Mount Bruno Floral Co.'i well, St. Bruno 72 Muriatcd springs 167 Organic compounds in eonie waters . Palmer, Chase; method of classification W Philudor sprinij, St. Hyacinthe 94 Plantagenet mineral spring 44 Potton spring, Potton tp 92, 164 Preston mineral springs 164 Radicles: present in mineral waters. . Radioactive tests "Radium" water Radnor Forges spring, {Jue „ mineral water , , . . „ Water Co Reacting values Richelieu spring, Chambly Basin, Qw Rousseau, J. C. — St. Leon mineral water , Russell Lithia Mineral Water Co. . „ lithia spring Ruttan, Prof. R. F. — analysis Duncan spring, Caledonia Springs, . „ „ „ gas spring, Caledonia Springs a a investigation Caledonia Springs waters . . . . 6 16 76 10 86 98 30 30 55 SO 45 St. Benoit spring St. Bruno; Mount Bruno Floral Co.'s well . St. Catherines mineral springs St. Francois du Lac; Abenakis springs St. Genevieve de Batiscan St. Hyacinthe Mineral Water Co. . St. Leon Philudor spring 94 Mineral \V'ater Co 90 109 72 164 79 102 94 94 90 100 45 166 68 „ sprmg „ „ (Lupien) St. Severe: /Etna sprin,^ Saline spring, Caledonia Springs „ springs „ well, Montreal Salt: gathered from scline springs in Alberta 114 „ made from mineral spring at St. Genevieve 102 Samples, collecti >i of 16 Sanitaria mineral wa* ..r 15, 28 „ Mineral Water Co 28 Sisters of La Metairie: spring on farm of 96 Snake Mountain springr. ! 19 Soils, Napoleon : Philudor spring on farm of 94 Spring water as distinguished from well water 3 Star mineral water 102 Sulphur Point spring, Alberta 121 „ spring, Caledonia Springs 48 „ , Jasper Park, Alberta 1 24 Tetreau, George: owner Richelieu spring 86 Therapeutic value of mineral spr'.igs, 154 Therapeutics of sulphur spring 'vaters 149,150 17i Upper hot ■pring, Banff. . . ''"'' I2g V Varennes spring Vdlkt L). and Co.-8pring ai St. (Wnrvievt, \ , *• Vermilion Chutes mineral water '02 ,,, ",„ •• spring 114 Viauville mineral water 123 Victoria Sulphur spring. Caricton (.o. . ' 15, 76 W S";";;/?""- Co', well, Maiwnneuve «alt W . E.— Abenaki, springs. . ") Sk.''' "-''-alBac of Yellowstone p.irk: :; ," \\ nte, Robe.-t and Co.-owners Laurentian spring ' JJ |&S;i^;^;gyiisii;sLS'''"^---"' ■■ ■ •■ ^^ ^ ,« wnght, J. A.— aanitoriura at Potton Springs. ... ^ . . '" •ttm^KT^