IMAGE EVALUATION TEST TARGET (MT-S) ^ ^^%. 1.0 I.I 1.25 ;f i^ iiiiiM ■^ 1^ III 2.2 ^. lia IIIIIM 1.8 U 111 1^ V <^ /; ^. Photographic Sciences Corporation 23 WEST MAIN STREET WEBSTER, N.Y. 14580 (716) 872-4503 CIHM/ICMH Microfiche Series. CIHIVI/ICMH Collection de microfiches. Canadian Institute for Historical Microreproductions / Institut Canadian de microreproductions historiques II Technical and Biblicgraphic Notes/Notes techniques et bibliographiques The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below. L'Institut a microfilm^ le meilleur exemplaire qu'il lui a 6t6 possible de se procurer. Les details de cet exemplaire qui sont p3ut-dtre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la mdthode normale de filmage sont indiqu6s ci-dessous. n n D Coloured covers/ Couverture de couleur Covers damaged/ Couverture endommagde □ Covers restored and/or laminated/ Couverture restaurde et/ou pelliculde Cover title missing/ Le titre de couverture manque I I Coloured maps/ Cartes gdographiques en couleur □ Coloured ink (i.e. other than blue or black)/ Encre de couleur (i.e. autre que bleue ou noire) Coloured plates and/or illustrations/ Planches et/ou illustrations en couleur Bound with other material/ Reli6 avec d'autres documents r~l Tight binding may cause shadows or distortion along interior margin/ Lareliure serr^e peut causer de I'ombre ou de la distortion le long de la marge intdrieure Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ II se peut que certaines pages blanches ajout6es lors d'une restauration apparaissent dans le texte, mais, lorsque cela dtait possible, ces pages n'ont pas 6t6 filmdes. D D Coloured pages/ Pages de couleur Pages damaged/ Pages endommagdes Pages restored and/or laminated/ Pages restaur^es et/ou pellicul6es Pages discoloured, stained or foxed/ Pages d6color6es, tachet6es ou piqudes □ Pages detached/ Pages d6tach6es BShowthrough/ Transparence I I Quality of print varies/ D D Qualitd indgale de I'impression Includes supplementary material/ Comprend du materiel supplementaire Only edition available/ Seule Edition disponibie Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont 6X6 filmdes d nouveau de facon 6 obtenir la meilleure image possible. D Additional comments:/ Commentaires suppl^mentaires; This item is filmed at the reduction ratio checked below/ Ce document est filmd au taux de reduction indiqud ci-dessous. 10X 14X 18X 22X 26X 30X 12X 16X 20X 24X 28X 32X The copy filmed here has been reproduced thanks to the generosity of: The R.W.B. Jackson Library. The Ontario Institute for Studies in Education. The Images appearing here are the best quality possible considering the condition and legibility of tiid original copy and In keeping with the filming contract specifications. L'exemplaire filmd fut reproduit grdce A la g6n6rosit6 de: The R.W.B. Jackson Library. The Ontario Institute for Studies in Education. Les images suivantes ont 6t6 reproduces avec le plus grand soln, compte tenu de la condition et de la nettetd de l'exemplaire film6, et en conformltd avec les conditions du contrat de filmage. Original copies In printed paper covers are filmed beginning with the front cover and ending on the last page with a printed cr illustrated Impres- sion, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impres- sion, and ending on the last page with a printed or illustrated Impression. The last recorded frame on each microfiche shall contain the symbol — ♦- (meaning "CON- TINUED"), or the symbol V (meaning "END"), whichever applies. Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method: Les exemplaires origlnaux dont la couverture en papier est Imprimde sont filmis en commenpant par le premier plat et en terminant solt par la dernldre page qui comporte une empreinte d'Impresslon ou d'illustration, solt par le second plat, selon le cas. Tous les autres exemplaires origlnaux sont film6s en commenqant par la premldre page qui comporte une empreinte d'Impresslon ou d'illustration et en terminant par la dernldre page qui comporte une telle empreinte. Un des symboles sulvants apparaitra sur la dernldre Image de cheque microfiche, selon le cas: le symbole — ► signifie "A SUIVRE ", le symbole V signifie "FIN". Les cartes, planches, tableaux, etc., peuvent §tre filmds i des taux de reduction diff6rents. Lorsque le document est trop grand pour dtre reproduit en un seul cliche, 11 est filmd d parvir de Tangle sup^rieur gauche, de gauche d droite, et de haut en bas, en prenant le ncmbre d'Images ndcessaire. Les diagrammes suivants illustrent la m^thode. 1 2 3 1 2 3 4 5 6 1 fM.Tr. wmm mmm w liiHiiilii w mmfmif^m ^ \{ It kt rif — all <' — ,V^' — 20H<' ; 31§fi - 12^6 - \^Y - n^d - 33^ ; 2^l^a - ^/> - A^c - A^{u - 1 3f e ; lOfa + 2|A _ l|Jc - 1 iV? - 7^ ; ^a + 8|6 + 42o + 0.^(/ — 4^6^ ; 0. 18. i. ; a ; ^(Ht/,"). ii. 2G«" ; a 4- a?. EXERCISE XVII [6]. ^Page 30.) 1. 6, 18. 4. 4, 3, 10. 7. 120, 137, 163. 10. 1840. 13. 34. 16. 7 months. 19. $100. 3. 30, 40. 5. 8, 40, 13. 8. 130. 11. 7, 43. 14. .$138|, $236^. 17. 450, 180, 140. 20. 13{33it--j5r(30 3. 35, 65. 6. 500. 9. 30 minutes. 13. $33, $36, $44. 15. £1300. 18. 300. 33a;) } = 44a; , a; = i\. EXERCISE XVIII. (Page 41.) 1. a^ + 6'^ _ c^ - c/'-i ; a'-V ^ d" + d\ 3. a" - 36' + c\ 3. 2m — ?i + 6. 4. — 2a; — 3y — 2z. 5. l^a; — 4|y + \\z. EXERCISE XIX. (Page 43.) 1. — 3a + ^x + 36. 3. a + 6 + c. 3. 3a6 + 46'. 4. — 3a? — 2/ + 40. 5. 5 — 4a;. 6. 3a — 36 — 3c + Ad. 7. —4a. 8. —a;— 102/ + 30. 9. — 3a; + 3i/. 10. 3a; — Qy — my + 4a6 — 5. 11. 3a — 56 — c. 13. 0. 13. -\y. 14. ^a-2h. 15. \x. 16. 9. EXERCISE XX. (Page 44.) 1. i. a; — (a + 6) ; a; — (a + 36 — 2y). ii. X — (2m -2n); x — (36 — 3c — 5d). iii. X — (3m + 3a — 26) ; a; — (6 — a — c — w + w). iv. a; — (a + 6 — c — 12); a; — |(a + 6) + (p + g) + (m — n)\. ELEMENTS OF ALOEBKA. X. several re- -e iniites. I;i6, 144. r !6« + c\ i - 3c + 4d. • — c. 16. 9. (m — w)}. 2. i. (2a — 46 — 3c) a; — (6a + 3c) // + (46 — ac) z. ii. (a — 6 + c) a? — (a 4- 6 — r) /y — (a — 6 — c) ^. iii. (12a — 15c) x — (12a + 46 + 6c) ij — (126 + 8c) z. 8. i. 2 + (7 - 2c) X + (lia - 3) a.'-" + (9a - 7) x\ ii. (2c — a") it^ + (a — 36) x* + {1 — m) a;' + (4c — 3a6) x. iii. (1 - a) it-* 4- (1 - 6 + c) aj^" + (6 ~ 1) a;^ + (a - 7) a; + 2. 4. i. - (3c' - 5a) a; - (a6c - 7) ai^* - (a6 - 7) a;". ii. 1 - (a — 1) a; - (1 - 6) x' _ (a - c + 1) a;" - (a-6 - 1) x* iii. - (a - 36') a;* - (1 - c) a;' — (1 + 5c') aj' - (6 + c) a;. 5. i. (a — c + 1) a;' — (a + 26 + 1) a;' + (6 + c) a; + 3. ii. (5a + 4c) x^ + (7c - 66 + 3a) a;' + (2a - 76) x. iii. (a — 6 + c) a;' — 2 (a 4- 6 + c) a? + a6 — 6c — ca. 6. i. 6: 6. ii. -17; _9. iii. — 1 ; — 56. 7. (a + 6 + c) (x-\-ij + z). 8. —^a — rx — (2 — 6) a;' + (4a — jo — 1) x^ + 2x* 9. (6^ + 1) i»' — (^ + 2^) X* — (2z + ^. EXERCISE XXI [6J. (Page 48.) 1. 36: -48: 5: 9: -168 180. 2. i. m^xyz ; a6ca!' ; — 24a'6^ ii. — 36a®m* ; — aHi^e^x^y^z^. iii. — 14a'6'.z;' ; — 18a;^^'2r* ; — 5a;'yV. 8. i. 40; -63; -2; —37. ii. 130; —880: 0. iii. \\ 29. EXERCISE XXII [6]. (Page 49.) 1. a^¥c — ab* + dbc^ ; — fa;' + ^xy + V'^. 2. Mhxy + Mcxz + 15aa: ; 9a;V'^' — \2xHfz'^ + \^x'^yz\ 3. — 15a;*2^ — 10a;*y/' + 35a;V' — 5^V' ; 3a* + 2a'6 — a''6'. 4. ^xYz — SxYz + Sxhfz* — 12x* y*z' ; ^a'^x — -^^abx - ^cx. 5. — 2a'a;' + la*x* + a^x* ; — x^'y" + ^^x'lf. 6. ^x*y''z'' - f aj'y^^' + IvYz"" — ^""fz^ ; |<**'^'' - W^^ + «'^*- 2 (a + 6)* + 2 (a + 6)" 3 (a - 6)=* - 2 (a - hy 8. (m" — ny + (w' - nf ; 3 (a + 6)«+i + 2 (a 4- 6)"+*. 9. {a 4- 6)'»+' 4- (a 4- 6)'"+' ; (a - 6)"+' - (a - 6)"+». ^ -'. HINTS AND ANSWERS. fl i B 1. 3. 5. 8. 10. 13. 15. 16. 17. 18. 20. 21. 22. 23. 24. 26. 28. 30. 31. 34. EXERCISE XXIII. (Page 50.) ex"" — Vdxy + ^y'. 2. ISai" — ^x'y — ^bx -i- hy. x^ — 9a^x. 4. - 106' - 15a6^ + Uab' + 21a'-^6 a" + b\ 6, a' - b\ 7. a" - 6«. ^f _ 5if + 3^2 + 6?/ — 4. 9. a« + -^/a'6 + ia6 — 2ab'' - l6^ (a'^ - b"") x''+\ 11. a;* — a\ 12. 1 - x\ y" + 2y* - 72/' - 16. 14. ^x* + y\ am + {an — bm) x + {ap — 6w) re'' — bpx^. a — (a^ — b)x + cx^ — (ac — b'^^ x"^ a- bcx*. x^ — Sx' — Sic" + Gx" + 4x* — n «3 + 63 _ c" + 3a6c. 19. 0;=' + y' + 3a?2/ — 1 18a.'« +27a;' + 7x'' + dx^ - 2x* + 65.«'' + lloic' + (x + yy -(z + a)\ 16a'' + 24ab + 96' - 4c' - 4c(^ - c^'. 16a' - 24c?6 + 96' - 4c' + 4cd - d\ n>* J^ Oi-3 1 ^2 ^,4 I Oi.3 i/2 OR 12a; + 6. -1. + 49;i; + 6. x* + 2x^ + ic' — 2/' + 2y' — 2/'. 81ir* 2ma\ 9^4 S^/v.3 25. a" 4- 86^ - 27c' + 18a6c. 27. x' + 2a;'2/' + y\ |aif^ + ^a'a?' — %a\ 29. a;*^ — a«. ^2^m+2 ^ tj55.^n+2 _^ Q^2,^~+3 _^ ft2^n+3 _ J^H _ ^^2_ ^2m _,_ j^.2m^m _ ^m^ _ ^^Sm^ 32^ ,^8 _ ^8^8^ 33^ ^^^ _ \^ x^ + x*a* + «'. 35. X* — y* — 42/' - 62/' — 4^/ — 1. EXERCISE XXIV [a]. (Page 53.) 2. a;" — 3.r* + 3ir' — 1. 1. a;' — 5a;* + 10a;' - 10a;' -!- 5a; — 1. 3. 2a;' — 18a;* + 39a;' — 25a;' + a; + 1. 4. 4a;« - 5a;' + 8a;* - 10a;' - 8a;' — 5a; — 4. 5. 21a;« + Ux' — 49a;« — 8a;' — 10a;* + 41a;' — a;' — 14a; + 2. 6. Sa;" + 7a;' — 12a;* + 2a^' — 3a;' + 13a; — 6. 7. 4a;'' — 8a;' + 4a;* — 12a;' + 12a;' — 6a; + 9. 8. x^ - 3a;« + 6a;* - 7a;' + 3. 9. a;" - 57a;* -r «oo 10. 18a;« + 21a;' + 8a;° + a;' + 63a;' + 96a;' + 43a; + 6. 11. a;" — 3a;*a' 4- 3a;'a* — a\ 12. 1 — x\ 13. 4 - 12a + 5a' + 14a' - 11a* — 4a* + 4a«. 14. 1 + a; + a;' + x* + x'\ — 57a;* + 266a!' - 1. ia 50.) )bx -\- by. + Uah' + 21a% 7. a" — 6". lb — 2ab^ - ^b\ 13. l — x'. + 6. -1. + 49.1; + 6. ' - 27c' + ISabc. 33. x'^~l. - 62/« - 4y - 1. 53.) x* + 3;r'' — 1. 14ic + 2. 66a;'^ — 1. 6. ELEMENTS OF ALGEBRA. i 15. ahx' + {al + 6A;) iK* + {am + 6Z + cA) a;" + {an + 6m + c?) x' {bn + cwi) a; + cw. 3 0. 3. t/*-72/^ + 10. 5. 729a;'' - 117649. 6. 2a' - 2ap - 2a^n + p' + 2a7ip - 2an + np -^ 2an\ 7. 0, put a = & + c. EXERCISE XXV. (Page 56.) 1. 3a;; 7a!; - 3a;^ - 5a;^ 2. - aV ; a*; - 7a'6V. 3. 3a''; -2a!; - 2a!'^^ 4. Za'b'c; Ixy; -\x. 5. - a'c ; - a^^ ; ax\ 6. - 2a'»-'6"-^ ; - a ; ma ; - 2a5'''+''. 7. 3a'»-"p"-» ; 4a^ {x - y)"^' ', - {a + 6)""'". 8. - 4?/ia!* -^ 5a'' ; -3a6-i-4c; 12a -r-c. 9. a'd" -^ 6 ; — a"^' ; af-* -^ y""*. 10. maf -t- wjT ; a''6''c'-r■a;^ EXERCISE XXVI. (Page 57.) 1. a!-2y; -a!" + 2/'; «'& - «• 2. 1 - 3aa; — 4a V ; - 1 -t- a! + 2a6a!. 3. -ti + ft + c; -a + 64-6^ ia!y-i. 4. - 3?na;™-" + 2a7?i=' — ^a*mxP-^. 5. (a + 6); 4(a-&)^ a-« + a»-\ 6. _ ^xY + K2/ - 2y ; 3a:'' - 1|2/ + 4. 7. _ a" - 0! ; a''" - a'-a;" + a!^". 8. 6a''a;2/ - 5ay' + ^a'^xy - ^ay\ 9. -ix'^y-^ K - K?/" + K- 2 3 4 - » 3 10. 11. 12. _f_ _ — + ^ ; 4a!« - a;' 4- iT^- 5c'' 5a'' 5a'' ' 235" ""4^ "^4 42/' a!" a!" a? .|. + 3 + ^,;(«-6)"-. 3^' 2a'' 2a 13. |(a + &)='-(« + &)+i- 14. a— -(a- 15. 2 (a; + 2/)"^' {x - yT'' - (^ + ^)"-' (^ " 2/)'"'- 16. (a + 6)"^^ (a - 6)"-" -{a^ 6)-" (a - 6)'»-^ &) ,ni— n 8 HINTS AKL ANSWERS. EXERCISE XXVII. (Page 60.) il 1. 5. 9. 13. 17. 20. 23. 26. 28. 30. 33. 35. 37. 1. 3. 4. 5. 2. a — 6. 6. 3ir-7. 10. x — l. 14. 9ic' -f iy". 18. 03^ 4- 3a; + 1. 21. %ah. 3. 3a; — 2. 7. 3ic + 2. 11. 3a; + 4. 15. 8a; + 3^. 19. a' + ^-l. 22. a" — 36a' + 2b''a. 4. a — 24. 8. 4a; + 3. . 12. 5a; -1. 16. x' + Ux. 24. a;'' — 5a; + 6. 25. a;'— 2.x' + 2 ; —100a;. 27. x^ + xif + lax. 29. 'W — rib' + dc\ 31. a — b — c. 32. 5a' + 3a;'. 34. a;' — wta; + ??i' — w ; (nf — ni'^) x. 36. a;"* — 2af ?/" + y 2n 6. 3. 5. 7. 9. 10. 11. 12. 13. 14. 15. 16. a; + 7. 3a; + 1. 3a; — 2y. x^ — 2/'. 4a;' — X. a'a;' + aa; + 1. a;' + "Ixu + 2if 24a;' - 2aa; — 35a'. - 5a' + \bd - ^cf. OX X -\- li, 2fq + ^p(f + 2(f. ^ + 2/ ; iT^^ + 2xif. ax" — 6a;' — a'x + a6a; + a^ — a'6. (Read a^6' for a'6' in text.) EXERCISE XXVIII. (Page 61.) a^ + 6^ + C — a6 + 6c 4- ca. 2. a;' — (a + 6) a; + a6. 2/* — (m — 1) 2/^ — (w — ?^ — 1) 2/' — (wi — 1) y + 1. jp2 + g2 ^. ^.2 ^ j^g _|_ g^, _ j,p 1 — a; 4- 2?/ + a;' + 2a;?/ 4- 42/', 1 4- ^k — 22/ 4- ic' 4- 2a;2/ 4- 42/'. a;' 4- 2/' + ^"^ 4- 1. 7. 3a;' — a; — 2, rem 2a; + l. 8. 2a;'— a;4-l. EXERCISE XXIX. (Page 64.) 2a;' 4- 3a;' 4- 4a; + 7. 2. a;' — 2x 4- 4. 5a;' — 10a; 4- 2, 3a;' — 10a; 4- 1. 4. x^ — 3a;' 4- Sa- - 1. 4a;=' - 3a;' + 2a; 4- 2. 6. 5a;' — V2x 4- 12, 12a; -72. 5a;' + 10.f + 5, -5a;'-10a;4-27. 8. 10a;^ lOa;* - 100. 1 - 2a^ + 3a;' - 4a;=' 4- 5a;* ; a* 4- 2a' + 3a' 4- 4a + 5. a;' 4- 2xy 4- 32/' ; m' — 2m 4- 3. a;* + 2a;' 4- 3.2;' 4- 2a; 4- 1 ; a* - 2a'6 4- 3a'6' - 2a6' 4 6*. 3a;* — 2a!' _ 2a; + 3. a;* — 3a;' — 4a; 4- 15, 54a;' — 56,2; 4- 27. oc^ _ 3^-4 _ 2a'' 4- 2a;' + 3.i" - 1 , 5,r. 2x^ — .r' - 2a' 4- 4, 24.c- - 12a! + lo. ' X* 4- 4a;' 4- 6a;' 4- 9,r — 4, rem. 5. 17. 2a;' — 4a; 4- 3. ELEMENTS OF ALGEBKA. 1) 4. a — 24. 8. 4x + S. 13. 5a; -1. 16. x" + Ux. ha"" + 262^. 1*^^ + 2; -lOOiC. ax. r a'6Mn text.) I.) X + ab. 1. h 2xy + 4y\ 8. 2*-'^— ^+1. 5^-1. 13, 12iC-73. -100. 5. >' "+ 6*. 18. .-•' — 3re" + 3a;* — 2a;' + 1 ; a;* — a;' + a-' — x + 1. 19, a;' + (« + 6) a; + «6 ; a;'' — aa; + 6^ — ""wi.^ 20. '2if — tuj — h i'. 31. 5a;' — 34a;' + 99a;' — 400a; + 1601, rem. - 6400. 33. a?'" — X* — x^ + a;' -f 2a; + 1, rem. 101. 33. 2a;* — a;' + 3a;' — 3a; + 1, rem. 10. 34. ^x^ + ix* — x\+ ^x" + t, rem. — 3a.-' + 21a'- - 3.i; + 14 ; take factor 3 out of divisor and divide resulting- ([uotieut by 3. EXERCISE XXX. 1. 8. 3. 1. 3. 4w'-18. 4. 7. 3. 8. 4. 9. 13. 10. 11. {n — h + a?)-r-{a — m + 3a6 + c). (Page 69.) 3. 5. 2. 6. 1. (a' + ab + b') ■T- 3 (6/ + 3). 13. 13. 15. 16. 17. 19 30. 73 31. ^ 33. 3; 24. (be — ab) -T- {a -f c + 6' 4- (fl^ — cf]. (a" + 6' + ab) -r- (a -f 6). 14. 6c -^ (30 — 11a + 36 + 3c). xz=^{a ■\-b)\ write P for a; — a, and Q for x — b, and equa- tion becomes P^-t-Q^= {P— (a — b)\-~\Q + {a — b)\, and on clearing of fractions P^ — Q'^ will prove to be a factor; .-. P' -Q'' = 0, P + Q = 0, etc. Or, multiply out. (c' — a&) -j- (a + 6 — 3c) ; equation is (x -{■ a) — (x + b) = {2x + a + c) -r- (3a; + b -\- c); complete the divisions, square and transpose ; .-. {c ^b)-i-{x + b) = (a — b) -T- (2x + b + c), etc. 18. 9. 19. 9. remove brackets and combine numerical quantities. 33. 4. ('(luanon is ^\x + y^a; + fc - Ux = A + ^ 4- A 4- 1. ; or Ifla- — ffa- = 8051 -j- 66 x 91 ; ^■. e. 8051a; ^ 77 x 334 = 8051 -r (2rfb'' - rm) -^ (2a — 2b + 3). v + 3. 5. 7. 9. 340. na^ nb Price =3 |(23a' ^2U)y^ 80a; (x - n^ = A + f + 3 IT + i: -66 X 91, etc. 35. 8. >CI. (Page 72.) ^ miles. 4. 8 men. EXERCISE XXXI. 8. 12 miles. 3. -a. 6. mn (a — b) -\- (mn — m — n). 2). 8. 50tral. One-tliird. 10. 188 oz.; ^(.^c 4- 32) = ^J^ (a- — 56), where a; = \vt. of lump. 10 HINTS AND ANSWERS. 11. 30 eggs. 12. 4. 13. 40. 14. $78|. 15. 16300, 23000. 16. 63. 17. 30 gal. . 18. 1080 -r- 351 miles. 19. B in ac -f- (a — b) days, Amac-T-{c — a + b). 30. 33 gals., 95. 31. $3. 23. 37,38,39. 33. 6,9,18. 34. 335. 35. Let X = increase of rate, then c-T-a + x = c-i-a — b, x^a^b -T- (c — ab). 36. 7, 8, 9. 37. 2pqr -i- {j)q + qr + rp). 28. {ma — 6) -f- (m — 1), m (b — a)—- {m — 1). 39. 433. 30. n{m~p)-r-p. 31. 30|, 24f , 11|, 44| ; if a; = 1st part, a; + 4 = 2(1, i^ (a;+2) = 3d, 2 (if + 2) = 4th, and their sum is 100. EXERCISE XXXII [6]. (Page 78.) 1. 169a'' — 53a + 4a'» ; 335a;'' — 15a^ + ^a"" ; UlxY + 12Qx''y + 9a!^ ; lUa%* — lUa^h'c + 30«*6V. 3. |a;* + i^V' + -^jiV* ; 18-ri-ga*6^ - 2a'b' + i^Sa'b* ; 389irV"2'' — 2xYz'' + ifir^'y"^*. 3. 1,024,144; 1,096,004; 13331; 5635; 3401. 4. 35(i"''6" + 60a»*'*6'^ + SOa'^^ft'" ; a^^^ - 3a" '6^" + b'" ; 5939a'" + 13553a"6«« + 77446'^". 5. mx" - 4 ; }aj= - ^ ; 4^* - ^l^i/. 6. 49a;'* — 256a;Y ; ^.^'^ - ^-^xY' ; i^"* - y""- 7. 999,856 ; 9879 ; 4875 ; 2499. 8. a;"* — V ; 25a"''6'** - 36a''=&"* ; 5929a"^'' - 77446''''. 9. 4a;^ 10. a" ^rb"" Jr Mb — a^ ; x"" — 2x1/ + y"" — 2\ 11. 4a^ - 6^ + 66c - 90" ; y^ - 4x'' + 12xz - 92\ 13. {w + yy -(x + zf ; (* + tf - (u + r)\ 13. (a + cf)' - (26 - dcy ; (3^ + .?)'' -(x- 2k)\ 14. 3m' + Qms — 8jf + 4pk — 12ps— 2mk. EXERCISE XXXIII [a]. (Page 80.) 6. 1 + 3a; + 2x^ + 2a;=' + a;* ; 1 — 2a; -f 3a;^ - 2a;' + x* ; 1 + 4a; + 6a;' + 4a;' + a;* ; 1 — 4a; + 6a;' — 4a;' + x*. 7. 16 + a?' + 4y' + 8a; - 16y/ - 4a'/y; 35 + ?/'+92''-10^-305'4-6y^; 1 - 3a; - a;' + 2x'' + x* ; a;* + y* + ^* + 3a;'y' + 3.yV' + 32rV. ELEMENTS OF ALGEBRA. 11 14. I78i 1080 -T ). - 251 miles. > h 9, 18 . 24. 235. ^ = c~- a — b, 1 E 78.) + nGa*b-o\ ^b'"- r44b"\ — z' 80.) X* -\-x\ S. 1 + 2a;' + 6:1;^ + a;* + 6a;^ + Oa;" ; 1 — 2.^' + 60;^ + a;* — 6a;' + 9a;« ; 4 _ 4?/ + 9?/' - 4?/ + 4?/* ; 4a;* + i/ + 1 + 4a;''2/ - 2^/ - 4a;^ 9 1 _ 2a; + 5a;' - 4a;« + 4a;^ 1+ 2a; - 5a;' - 6a;^ + 9a;* ; 4a* - 7a' + 4 - 4ci^ + 4a ; 1 + 2a' + 2a),+ 2a'^ + c^. ,0. 1 + a;' + 6'2/' + 2a; + 26?/ + 26a;2/ ; ^'^ 1 + a'a;' + 6't/' + 2aa; + 262/ + 2a&a;i/ ; 1 + a/x^ + 6'/ — 2aa; - 26?/ + 2a6a;?/ ; 1 - 2aa;' + 26a;« + a'a;* - 2a6a;' + 6'a;«. A 1 + 2a; + 3a;' + 43;" + 3a;* + 2a;'^ + a;« ; 1 _ 6a; + 15a;' - 20a;« + 15a;* - 6a;^ + a;« ; 1 — 2a; - a;' + 3a5* + 2a;'* + x\ 12 1 - 4aa; -h lOa'a;' - 12a^a;'' + 9a*aJ* ; ^6 __ 6a;'' + 13a;* ~ 14a;' + 10a;' - 4a; + 1 ; x^ — 4a;' + 10a;* - 4a;« - 7a;' + 24a; + 16. 13. 4a' 4- 6' + 4c' — 4a6 + 8ac — 46c ; a^ + lb"" + K - a6 + ac -■|6c ; ^^2 _|. ^^2 + c^ _ ^a6 - 6c + ac ; ^a' + 6' + ic' - a6 - f 6c + \aG. [6.] 1 (2a; + 2/)'-^-160. 2. (a + 6-c)'-100. 3. (a; + 2i/ + 3i^^+40)' 4. 6 (a6 + 6c - ca)\ 6. 4 (t^' + a;' + 2/^ + z\ 7. 8a;'2/. 8. «« + 2a'' + 3a* + 2a' + 1. 10. 2a'6' + 26'c' + 2c'tt' _ a* - 6* - c* ; see Ex. 3, p. 128. EXERCISE XXXIV [6]. (Page 84.) 4. (3a; + 4?/)' - 25^' ; (2a + 4c)' - 96'. 5. \{x^ + 2a;' + 4) - 3a;} x K^' + 2a;' + 4) - 5a;} = «;'' + 4a;' - 4a;* — 8a;' + 31a!' - 32a; + 16 ; \{x-^z^w)^-y\\{x-vz\ w) + ^y} = (x + z + wy + 4y{x + z + uf) + dy\ 6. x' + 9a;' + 26a; + 24 ; a;' + 14a!' -r 55a! + 42 ; x^ + 9itf + 23a! + 15. 7. x^ - 9a;' + 26a; - 24 ; a'' - 14.1;' + 55a; - 42 ; .^3._9^j.-2 ^ 23a!-15. 8. a;'-' + 3ii;' - 10a; - 24 ; x^ - t2.t'^ + 29.'« + 42 ; ^■.' 4-0;'- 17.1; + 15. la HINTS AND ANSWEKS. 9. 8a;' + ISa;" + 22a; + 6 ; 8a;'' - 12a;'^ + 22a; - 6 ; 8a;' — Ax"" — lOo; + 6. 10. X* -{-x^(y + z + w + k) -{■ x^ iwy -{- wz + wh ■\- yz -\- yk + zJc) + X (yztv + yzJc + zwk + ykw) + yzwk ; X* — {a + h -^-c + d)x'^ + {ah -\- ac + ad ■\- he -{- hd -\- cd) x' — {ahc + ahd + acd + hcd) x + ahcd. 11. 10^ + Qw^r + 'Swr'' + r' ; w* + iiv^r + ^iv'^r'^ 4- 4^^r' + r* ; 8m;» + l^ijfr + Qwr^ + r' ; ?^;* + 8?/'V + 24?//'/'' + 32w;r'4-16;''; 12. A;"* + 15A;*6' + 90^V + 270^;'^*' + 405A-.S-* + 2436-'^ ; a" — 12a'6 + 60a*6'^ - leOa'fe' + 240a'6* — 192a6' + 646" ; 8a' — %ahv + faw'' - ^iv^ ; |a' + ^a'w + 6a«^;'' + 8t<;' ; 27a'' — 9a* + a-- ^V- 13. 1320aW; - 22680a*6' ; - 2aV. 14. 1485a''6'^' + 55a6" + h^" ; 2145a;Y* + 66a;,y''* + 2/"" ; - eeSSa" 4- 121a - 1. 15. 54a'^6'; 540a'6='; 1680a*. 16. 1.21662924 ; 1.7101875. EXERCISE XXXV [a]. (Page 87.) 1. «* + 2a;' - 85a;' - 86a; + 1680. 3. Write A; for a; + a, rn for x -V h, .-. product = k* + k'^m'^ + w* = 3a;* + 6a:' (a + h) + x" {la"" + 4a6 + 76') + X (4a' + 2a''6 + 2a6' + 46') + (a* + a'6' + 6*). 3. a'^6'^ + c'rf' - o'g' — ¥d\ 4. a' + 6' + C - 3a6c. 5. x^ —px* + qx^ — qx^ +px—l, 6. a' (a;' — l) - «« ^^.s ^^''-2) -{-a {ix'' + 3a; + 2) - 3 (a; + 1). 7. w'' — z\ 8. 8a;'. 9. 24a;y^. 10. zw + xy. 11. 6a;y^. 12. 4a;y. 13. See p. 85, H, (3). \ m^ EXERCISE XXXVI [6]. (Page 88.) 7. a + 6 - c ; a; - 2y — 3z. 8. a^ — 2a6 + 6'' ; a' + a6 + 6^ 9. 1 + 2a; + 3a;'^ ; Ba^ + 2a -f 3. 12. a; + 4 ; 2a; - 36. 13. a + 86 ; 2a — 76. 14. 1 + a\ 15. a;'' - 2a; + 1. 5 a 3a_ • "5 3a' 26 2; 8m dw [c] + 2. ELEMENTS OF ALGEBRA. 13 J; ' + y2 -\-yk + zk) ■be + bd + cd) x'^ + 4ivr'^ + r* ; r^ — Awr^ + r*. is"; 192«6' + 646" ; Qaw'' + Sw^ ; + y''i ; 1.7101875. GE 87.) = k* + k'^nf + lit I. ^x^^-^x-X'^x" ^x-^'^x'^^x + l. 4y X + 6*). — Mho. -2)-3(a;+l) v + xy. (3). lGE 88.) ^ a' + a6 -1- ft'* 2a; — 36. -2x + \, 3. 2a^ + 3y-5^; 2x^-x + \. 4. -^ - 4 + ^ ; o)- 2 1 o.?-i.^;|.2. 5 ?^_1 + ?^. 6. 4a-36; ;^-3a;. ^- 6 5 3« ^ 7. l-2;i! + 3x^-, -^'-l. 8. a + 26-c'. „. ^ 10. Cube both sides by formula G (2), p. 85. EXERCISE XXXVII. 1 a'6 + 6^a; a(« + 6)^ + 6(6 + a)^; ^5 (6 _ c) + he (c - a) + ca (« - 6) ; a%o + 6^ca + c^a6 ; a (6 4- c) + 6 (c + a) + c (a + 6). 3 («_6)(6-c) + (6-c)(c-a) + (c-«)(«-6); ^^ (6 - c) + 6^^ (c - a) + c« (a - 6) ; «(6_n)''4-6(c-a)^ + c(a-6)^ _ ix-d)(b-e)'^-ix-h){e-ay^{x-c){a-h).. 3. a' + 6^ + c« + cZ^ a'^ (6c + hd + cri) + 6^ {ac + «f/ + ccZ) + c'^(«6 + «^ + &c)+^^(«6 + 6c + «c); «. (6 + c + cZ) + 6^ (c + c? + a) + cnrf + « + &) + ^' (a+6+c) ; a + 6 + a + c + a + rZ + 6 + c + 6 + 6Z + o + r7; a6 + ac ■\- ad -\- he -r hd + cd ; lalhf \\a - c)3 + (^ - ^« + (6 - cf + (b-d? + (c-cZ)'. 4 («_6)X6-e)^ + («-c)^ (e_.?)H(a-6)^ ^^-^^^^^^-^ f-'?;.' 13. a,6, -c;a, -6,c;a, -6, -c. 14. a, 6, c ; a, 6 15 a,6,c;a,6; a, -6. 16. «^, 6, c ; 6^^ and 6y, a; and y. 17. a and 6 ; a, 6, c. 18. a, 6, c. 19. «,&;«'^- 90 ^ ft r 31. a%. 22. a^ a='6, a'h\ abc . 23 aj" a^V a^^- ^^' '^'^- ^^- "^^ ' "" 26*. ^;^ ^^'.. 2^- ^^ -'y ^ -^ ^^^' ^^^^ ^ "^' f ^; ^T; 28. x\ x-y, xyz. 29. a*, a% a^b\ a^he ; ^^ x% x^yz, x^z, x z . 30. a\ a% abc ; x\ x'y, x'y\ xUf- 31. a' + 6' + c' + cZ' - 3 {ahe + «6d + 6cf/ + cda). ^•KW, w ^ 14 32. HINTS AND ANSWERS. a + b — c •, a — h + n; — a -f b -{■ c \ a — b — c- 33. if{(a-by + (b + cy + ic + af\; ^{(a + by + (b + cy + (c-ay\; ^{(a + br + (b-cy + (c + ar\; ^\(a + br + (b-cy + (c-\-ar\; the three expressions are derived from the first by, respect- ively, substituting — c for c, —b for b, — a for a ; observe, also, that (—a^cy = + ia + c)'. (Page 96.) 3. 2 {xy + 'i/z + zx). EXERCISE XXXVIII. 1. 3 {a" + 6' + c'') - 2 {ab + &c.). 2. 0. 4. 6 (./' + 6' + c'') - 2 {ab + 6c + ca). 5. 2 (a;'* + y"^ -{■ z"^ — yx — yz — zx). 6. 14 {a" ■\-b'' + C-) - 14 {ab + 6c + ca). 7. 4 {a" + 6^ + c' + rf'). 8. 4 (a'V + 6^'^ + c^^"^). 9. 2 (a' + 6» + c^*) + 6 {a'b + etc.) - 13a6c. 10. a'' + 6' + c' + d\ 11. 3 (a'' + 6" + c- + (/-) + 3 {ah + etc.). 12. 0. 13. 6a6c. 14. ahc{a -\-b + c). 15. 4 {x* + 2/* + 0*) + 24 (a^6^ + 6^6-- + d'a""). 16. Note.— The first term in each of the binomial factors should have index 2 ; i. e., a"^ for a, etc. Multiply out, or use identity, x^ + y^ + z^ — Sxyz = {x -i- y + z) {x^-\-y'^-\-z-—xy—yz—zx). 17. Multiply out and subs, for 5. 18. rs = {a-^-by — (e — d)"^^ the other pairs by symmetry ; result is 4 {ab + ac + ad + be + bd + cd). 20. Type terms are a^ 2a^(6 4-c), a^b"^^ and both expressions reduce to same form. Or, use identity, Ex. 7, p. 105, put- ting a — 6 for a, 6 — c for 6, and .-. a — c for a -f b. EXERCISE XL. 1. {a-b){x-{-2y). 3. {a ■\- x){a — b). 5. {m -!- n) {x^ — a). 7. {a + 6) (3.« -h y). 9. (,^ _ 6) (,; + y). 11. (3a — 6) (ic — ?/), (Page 98.) 2. {a -f b) {2x - -m 4. {(' - (Z) {ab - -c). 6. {a -f6)(a- ■0). 8. (a - ?>rr) (1 - -x). 10. in + ;r) (a -1- b). 12. (7 - X) {a - - 6c). ELEMENTS OP ALCfEBRA. 15 c- ^rst by, respect- 'iov a\ observe, : 96.) ' {^y + y2 ■\- zx). f-'z'). + 3 (a6 + etc.). factors should or use identity, '—Xy—ljZ—ZX). nmetry ; result 'th expressions 7, p. 105, put- 2x - dy). lb — c). 2 — c). (1 - X). % + h). 1 — he). ■I 13. (r-s)(3i) + (/). 15. (3.1; - a) (3.*; + Z/). 17. (^- -1) (36^-1). 19. (a-l)(«' + l). 21. ix" + a') {a - 3ft). 23. 25. 37. 39. 31. 33. 35. 37. {x" - 1) (3«*^ - 1). ia'x' - c) {a'^x"- - b). (^a _ a") {x"" + ax + a""), {a + b) (ax + b!/ + c). (a -l){a + 6). (1 _6)(a — & + c). (1 _ x") {1 +X'' +P + q)- {a ■\-b — c){(l-e +./). 14. (l-«)(l-6). 10. (a'-'i){(i + 1). 18. {xy — z) {a + be). 30. {x+f){2a + b). 33. ix-y){x-S). 34. (6-l)(c-l). 36. (3?>^-l)(l-3«'). 38. {a-b){x-y + z). 30. (aof - b) (6af + «)• 33. (3 + a;") (3 - y"). 34. (« — a;) (3it>9 - 36/). 36. (3i)» - 3^") (r" - 35"). 38. (1 +jO + g)(l-« +6). EXERCISE XLI. (Page 100.) m \ 2 \b (^1 13. (a; + 2/ + ^)'; (P-^i + ^')'. 14. (a-36 + 3c)^ (l-'^ + yy- 15. (3a + 36 + cy ; (3a^ - 3a + 4)^ 16. (3aa; + 36^ + cz) . 17. (3a^ - 36 + 4cy ; {a' -b'- g^. 18. ±4a;y; ± a;y ; a; Y ; -10a;?/; ± 4a;Y. 19. ±6a2/; ± 10a^& ; ±13.-^;^; ±3a"6« ; a\ 30. a-, 0- i; i; 4; 6^ 31. i6-, ±460;^/- ±3; ±3; x\ 33. 7; i; 6^ -^ 4a^ ; 35-4; 49-4. 23. 81 -^ 16 ; x' + 4:; x' + ld: - c + ^6^ • EXERCISE XLII [6]. (Page 103.) Note.— The two factors in each case are expressed with the double sign ± . 1. a + 6±c; 2(x + y)±z; a^±(y + ^)\ 3 ± (a + 6). 2. p + 2q±r ; ix ± {a + 36) ; 2m ± (p - g) ; 2x (- 4?/). 3';i±(6_c); a + 6 + c±^; (8 + a;) (10 -(T) ; 6-c ±(a-a;). 16 HINTS AND ANSWERS. 4. 3 |2 (a' - be) ± (b' - ac) \; a -- nb ± 1 -, 1 ± (x - y + z) ; V (a* + b*) {a' + b") (a + b)(a-b); (a- 3c) {a + 4b + 3c). > 5. (_ a + 6 — 4c) (3a — 56 + 4c) ; (1 _ a + ?,) (1 _ a - 6) (1 + 2a - a^ + 6") ; (12a; - 1) (2^ + 7). 6. ix-z±y){x + z±y); 4(x + z)(y + ti)', {x±{y + z)\{x±{y-z)\. 7. {x-z)±(y-'u); a±{x-y); x ± (y -{■ z). 8. x±(y-z)', x±(y + z)', x + z±y', x:' ± {x - 1). 9. {x + a) ± (y + z); ia — c)±(b — (T); (a' + 6«) {a* + b*) {a' + b') (a + b) {a -b); (a'' + 6« + 5) (a'' + 2a + 3). 10. a - 6 ± (a; -^ y) ; a' + a ± (?'" - 6). 11. (x -i- b) (a ± X) ; {a- d ± {b - c)}; ab ±c(a — b). 12. \c±(a-b)\\a + b±c\- x'' -\- y' ± (z' + 1) ; a - d ± (b - c). 13. 2« ± (6 - 3c) ; 6 ± {2a - 3c) ; 2a ± (6 + 3c). 14. 3c ± (2a - 6) ; (a + c) ± (6 + rZ) ; (a + (Z) ± (b + c). 15. (6 + c) ± (a + cT) ; (a + r?) ± (26 — 3c). 16. 3c + rf ± (« — 26) ; (a - 3c) ± (26 - c?). 17. {a + d±{b-c)\ {b + c±{a-d)\. 18. (a;^ + 1 -f- ^'^) (a; + 1 -^ y) (a: - 1 -4- 2/) ; i»* ± tV. etc.; x" (x* - 25) - ^ (a;* - 25) = {x* - 25) (x^ - ^), etc. ; {X* - 16) (a;^' + 1), etc. EXERCISE 1. 3a;^ + 2/' ± xy. 3. 3a'' + 6' ± 5a6. 5. aj" + 1 ± a;. 7. a;' + 25 ± 5x. 9. a;' — ?/- ± 3a;y. 11. a'' — 7f±2ay. 13. 9a'' + 6' ± 3a6. 15. ^p" -^q" ±pq. 17. 2a;'' — 1 + 2a;. 19. oc' + 2a''y'' ± 2a.:cy. XLIII. (Page 105.) 2. 4a'-6'±3a6. 4. 6. 8. 10. 12. 14. 16. IP. 20. Vrnf 4- 4«^ ± 7/nw. a;' + 4 ± 2a;. ^+ I ± t«. X' + -g^- ."X ■ja;. m^. — M* ± 4»i??. 4a^ + 6^^ ± 6a6. 9.r"' — y^± 4xy. ia;^ + ;y' ± xy. 2a'±y'±^ay. ELEMENTS OF ALOEBUA. 17 (x-y ^z); (« + 46 + 3c). ). [X - 1). a — d ± {h — c). {h + c). '^, etc.; I), etc.; .05.) 3a6. ± Imn. imn. ixy. vy. lay- 21. a:* + 2/* ± a^Y, <^tc. ; x* + } ± ^'^ 23. a'x* + 1 ± «^"^ ; '^* + ''^y' ± 2^^- 23. (a + 6)^ + c'±3c(a + 6); 1 + 2a;^ ± 2a^. 24 4a!^ + 2(2/-2r)^±r,^(//-^)' 1 + •''>^* ± ^^'• 25. l + 2a*±3a^; a^ + 96^ ± »«&• (a + by + {a- by ± (a^ - &")• 28. c' + 2(a4-6)='±2c(«^ + 6); 1 -t- a^ + 1 - ^'.^ ± ^ 3 ^ a^ + 1 -T- 6'^ ± 3 -r a6. -r-a6; EXERCISE XLIV [u]. (Page 108.) 17. C?)!" + 21) (w^* + 19). 19. (af + 7) (af + 12). 18. {a'x + 29) {a^x + I). 20. (05 + 17) (^ + 33). 21. (af + 12)(a5" + 4). 23. («•+ 27) («-''+ 13). 25. (a'aj + 81)^ 28. (a;-19)^ 31. {x'-S)(x'-2n). 33. {x-Vdyy. 35. (a -276) (a -26). 37. (26-a6)(5-a6). 39. a;\+l± V-«- n, 41. 3a; (a? - 2) (a; - 8) 22. (a; + 33) (a; + 27). 24. {a + lSby. 26. (a; -4)^ 29. (a? -20)^ 27. (a; -15)' 30. (a; -50)'^ ■U.U' 43. a;':l-60±17a5. 45. (a + 6-4) (a + 6- 3) 82. {m - 17/1) (m - 5??). 34. (a;-^ - S//'^) (a;' - 42/'0. 36. (4 -a;) (3 -a;). 38. (a - 25) (a - 15). ±:£ 40. (a;'' - 27) (a;^ - 8). ^--^ 42. a(a; — 5)(a;-6). ^:r/ 44. (a;» - 7) (af' - 37) 46. (13-aa;)(ll-«i^). 47. il-SxY)0--^^^y Y). 48. (a -276)' xUa-^tnbx){a-bbx). 50. (m-19) 49. 51. ip-mf 52.. U^-2/) [6.] (Page 109.) -v)"-33i {{x-yr-'^^' 1. (a» + 1) (a' - 2). 3. (a; - 3) (a; + 2). 5. (a; 4- 12) (aJ - 7). 2. (a + 3)(«-2). 4. {X — 16) (a; + 3). 6. (^ 4- 12) (*/ - 5). 18 HINTS AND ANSWERS. ■J i \ ., ./'• 7. {a + 30) {a - 7). 9. {x+ 13) (a; -11). 11. (//' - 10^/^) (//' + 5a0- 13. S (az'' - U) (az'' + \). 15. {aha + n){(ihc-2). 17. Or' - 48) (x' + 8). 19. (x + y-m{x + y + \S). 21. (aj'-"* + 4) Of'^" - 3). 23. (13 - ah) (5 + «6). 25. 3y (rt + 146ic) (a — 26ii!). 27. (3a; + 7) (3.t; + 5). 29. {7a--Sbf. 31. a;* (82/» - 10^)'. 33. {a' - 34. 3 (a;" + 2/') (Ba;' - 4,^') : w 35. (Saf* — 36") (8.t'» + ?/'). 37. (f« + 76) (|rt - 86). 8. (a + 25b) (a- 136). 10. (u! - 10) {X + 2). 13. (ah - 4) {^;6 + 1). 14. (a* - 30) (a* + 5). 16. {a'b' - 30) («"6'' + 3). 18. (of — 16) (O!" + 3). 20. {a-30(6+6')H« + 13(64-c) 23. (30 + rt)(19-a). 24. (13-7/0(17 4- w). I 30. (3a; + 7) {2x -{- 5). 28. {2x''y - 7-2-") (3a;''?/ + O^-^). 30. X (36 - y) (36 - 5y). - 406^) (a' + 56^). 33. (llo;'^ here x = a — b and y = ''• 36. (^a;' + 7) (ia;' - 6). - e-)(:-«)- / 39. (^. + l^)(^-2^)- ^^- (•">.*'' + ''il)('^>^''- '^D- EXERCISE 1. (3a; + 1) (3a; + 3). 3. (3a.' + 3) (5a; + 4). 5. (3a; + 5) (3a; + 4). 7. (4a + 9)(« + l). 9. (a; + 5) (4a; + 3). 11. (4a; - 3) (3a; + 3). 13. (4a; + 7) (3a; - 5). 15. (3a; + 3) (3a; — 1). 17. (3a; + 4) (5a; - 3). 19. (5a; + 3,v) (3a; - 52/). 21. (dm + 20) (2wi - 19). 23. (3a; + 7^/) (4a; — 5y). 25. (5a;'' - 1) (4.^•^ + 1). 27. (13a; - 7) (3a; + 3). 29. (8a + 6) (3a — 46). - XLV. (Page 112.) 2. (4.a; + 1) (x + 3). 4. (3a; + 3) (3a; + 1). 6. (3a; + 7y) (4a; + 3^/). 8. (1 + m) (7 + dm). 10. (a; + 7) (3a; + 2). 12. (4a; + 3) (3a; - 2). 14. (4a! - 7) (3a! + 5). 16. (5a; - 1) (2.1! - 3). 18. (a; - 7) (7a; - 1). 20. (a'-- - 19) (a'^ + 17). 23. (2a + 20) (3a— 19). 24. (3 - 12a;) (5 + 11a;). 26. (15a _ 1) (a + 15). 28. (6-»/)(3-52/). 30. (8 - 97/) (3 + 8y). Vly)' 1* S I I i;ij:.mi:nts ok alcjkhua. 10 (a -12b). r + 2). 'lb + 1). (n* + 5). ) (a'b-' + 3). , (*•" + n). I l+f)} \a + \2{b+c)\. 19 -a). / |(17 + ^/0. / '^ ^- 5). i'^b ~ ny). 33. {Ux'-V^yf. »>(1 y=:c. h'^^ - 6). (•^o;'^ - 31). 112.) » + 3). 5« + 1). 'M + Zy). + 3;/0. + 2). » + 5). »--3). -1). '^ + 17). ia-19). > + llic). + 15). %). 81. 183. 5. i7. J9. 41. 43. 45. 47. 1. 3. 5. i. 9. 11. 13. 15. 17. 19. 21. 23. 1. 3. 5. 7. 9. 11. 13. 15. (2H.T^ - 25) (^' + 5). 4(7.c — 5^)(2.f — //). (8« - 56) (7« - 'Uj). (8?/ + 52-) (Oy - 82-). (50^''' -H 4Z;'0 (r/' - 56"). {Ux + 12//)(3aJ— 4y). (39.<;— 2G)(.r + I). (l-13.r-)(l + 11 ir'). (3.f='-21)(4.i;' + 11). {x EXERCISE a){x'' — 2x — 1). (my — n) (ay^ + by - c). x"^ —X — 1 32. 4 ('14.?'+ ryy){x- y). 34. 4(H.r— 5//) (.r + //). 3(J. 2(28.y + 1) (/y- 10). 38. ({)// + 3r0 (4// - 5a). 40. (50^ — 56) {(( — 46). 42. (3.r + v/)(13,c- 11//). 44. {VZx -\' Vdy) {nx — Hy). 40. (a" — 136") (//" + 116"). 48. (\7x-\}(x+ 17). XLVI. (Page 114.) 2. (x — a) (X- — />^ + (j). 4. (26 — c) (ic" — 26a' + 6). (7ix — a) (x"^ i)- 6. (6a; — a) {{m + 1)6V + (m + 1)(». + ^)(ibx + (y^ + !)«=[ multiply out, take v^i-torms for one group, etc. 7. (y-b)Oj-rry 8. (x — 6) {X — a) (x + 26). (x+p + q) (x + q—p) (x—2q). 10. (x — a) (x + 6) (a; + 3). (x+b) \x(x—l)—a(x-\-l)\. 12. (2x - a) (2x'' + 4x — S). (pi/-^q)iy''-y + i)- 14. (mx — n) {pxr + qx — r). {mx — n) {ax^ — cx — b). 10. (/;.*; — q) {^x"^ — cx — b). (x^—px + q){ax''-\-bx—a). 18. (2a; + 3c) (a;' + 0^.^ — 26). (2a; + 3c) (x" — 2ax + 36). 20. (ap — bq) (2p^ + ?ypq + q"). (ap — bq) (np' —pq — 2q'^). 22. {ax + b) {ex"" + rZa; + c). (aa; + 6) (2ca;' - dx — 3c). 24. (3y — «6) (3v/ — 6c) (3i/ + 5). EXERCISE XLVII. (Oa; - y + 1) (a; - Oy - 1). (4a + 56 + 4) (3a — 46 — 5) (3a; 4- 2/ + 3) (.7; - 3^ + 9). (3a -6- 7) (4a -36 + 8). (a + 37/)(a-4y-5). (Page 118.) 2. (3a; + 2y + 1) (2a; — 3y — 1). 4. (a; — y + 3^) (a? + 2y — 2-). 0. (2a — 56 + Oc) (3a + 46— 8c). 8. (7a;-.v-l)(a;-2/ + 3). 1 0. {2x — 5/y — Iz) (2x + 3,y + 3^). (3a; + y — 4^) (3a; — 3//— 2^). 12. (3a; — 2// + 3^) (2.a;— 3// + 2^). (5a; — 3y + 2^) (a; — // — 2-) . 14. (a — 26 + 3c) ( 14a — 6 — c). (2a - 6 - 3c) (4« - 36 - c). 10. (1 - 3a; + 4y) (1 + 7a; - 5y). 30 HINTS AND ANSWERS. EXERCISE XLVIII. (Page 122.) 7. 8. 8. —8a\ 9. -205. 10. 1. 11. a^+pa^^qa + r. 12. —36. 13. 1555. 14. X + 2, X- 3. 15. (X + 1) (Hx + 2) {2x — 1). 16. Last term should be 52^1 18. (x — 2) {x — 5) (x + 7). 19. -535. .20. -800. 21. 101. 22. 115. 23. — a^ —pa^ — qa — r. 24. dbc — Aah (a + 6). 29. -1. 32. 2. 34. 2 (a + 6)1 35. 0. 39. 0. 40. 0. 41. yes ; put 1 for a; + //. 42. 0. 44. a^+pa + q, a'' +p'a + q'. EXERCISE XLIX. (Page 126.) 5. (p - ly -(p-l)(q + l) + (q + If ; a» - 6". 6. x'° ~ x'a' + a'" ; 1 - (a-b) + (a -by - {a-b)\ 7. ie' — 1 + 1 -=- a?'' ; x' — 2x'' + 'Sx* — 2a;' + 1. 8. x'' + y''±xy; (a- + 4b') (a + 26) (a - 26) ; 2x {x" + 12^^^). 9. {a + b){a' + ¥±ab)- x" — 2y^ and x^ + 2a;y + 4a; V' + SxY + Uy\ 10. (a' + be) (a* + we - Aa'bc) ; {x + 1)^ {x - 1)« ; {x+\){x-\){x' + \)(x' + \). 11. «^-(26^)='=^a-26^H«' + 2«6^ + 46'»}; («-6)«6. 12. Expression=(4a'-96'^)(a:^-8a='),ete. ; la - ^\la' -^ i + _L\ . 1 5. Expression = {x"" — y"") {x — yf = 128a='6=' {a- + 6'-'). 16. a? — 1, factor dividend. 17. (a* - aV + x") (a« + a'x' + x^). 19. Factor and divide hy a -\- \ -^ a, .-. «'■ — i + i -j. ^^^ = o .•.a' + -^-, = l, .-. «=+^^ + 2 = 3, etc. 20. Expression = ( 1 — ,'c) (1 — ,»;«). 21. Divisor — (x — \) (x' ~x + 1) and ^nveu expression vanishes for each of these factors. 22. i^r - y) (x:" + y') (x' + y*). ELEMENTS OF ALGEBRA. U tE 122.) 1. 1555. ') {2x - 1). -•5)(.T + 7). 115. EXERCISE (a + b). 39. 0. 42. 0. 126.) ■b\ i — b)'\ ix(x^ + 12y2). X — 6) a6. 1 ^a' = 0, ression vaiiislie.s L [a]. (Page 129.) 2. (a-6)(6-c)(a-c). 4. (a-6)(6-c)(c-a). 6. 3 (a' - 6^) (6^ - f^ (0' - «')■ 1. 3(aJ + ?/)(2/ + ^)(^ + ^)- 3. (a_?>)(6-c)(a-c). 8. _(a-6)(6-c)(c-«)(fl'. + & + C). «). (a_6)(6-e)(^^-«)(«^ + ^ + ^)- 10. (a. + 2/)(y + .)(^ + ^). 11- 3(««-6)(6^-c)(c'-a). 13 («. + 6 + c)(a^ + &-^+c^). 14. (x + y + ^y. 15. (« + 6 + c)-'. 16. 6a6c. Insert in text - (a + &)^ and read - before (c + «)^ 17. (a — 6) (6 — c) (c - ^f) (^'^ + ^'^ + c*^)- [6.] (Page 130.) By symmetry ; or formula (H) (4), p. 85. By symmetry ; or transpose dabc, then « is a factor, etc. 5(^ + ^)(^ + 0)(0 + a-)(x^+/+^^ + a.-2/ + F + ^^)- (a + b-c){a' + ¥ + a' - ah + hc + ca) ; (^a + b + c)ia' + b"- + c' + ab-bc + ca) ; (^-a-b + c){a'' + b' + c'-ab-^bc-\-ca). 12f ; 2d term should be 13a;'. Use synthetic division ; 4m — 12 = 0, m - 3. Given expression = (a; - 3) {x + 2) (a. - 5), which is true for all values of x, :. coefficient of like powers of x are equal ; 1 e.,a=-6, 6 = 1, c = 30. 5:=_6,c = 5,a = 12. 11. l-r-(« + 6 + c). 2 ; dividend is 2 (divisor). 13. 16a&c (6 - c) (« - c) {a - h). -abc{b-G){c-d)(a-b). - abc (a + 6 + c) (6 - c) (c - a) (a - 6) . 2. 3. 4. 5. 6. 7. 8. 9. 12. 15. 16. EXERCISE LII [a]. (Page 133.) 1. ax-, x + 2; 2{x-y)\ 2. 2(.^-«); ah(x^a)(x^h). r + 3; .t: + 9. 4. .^-2; x + 2. 5 ,, + ?>; .'1- + 1; .'-3. 6. .-^ + 5: ^ + 4; (^ + 1)'. 7 ^ + 3;^--ll^ «• 3(a;+t/); (a; + y)^^'' + 4. 3 PX'V n HINTS AND ANSWERS. Q. X + 2 , X -{■ a. 10. X — a ; X — y.. 11. a; + 3^; a + 3. 12. a — 1 ; r» — a — 4. 13. a + b^ c; a + b + c. 14. a + b + x + y\ x -\- a. 15. a; — «; 8(a; — 3?/); a; + «. 16. a? + « ; a; — 5 ; ((t— a:V'' 17. ic'' + icy 4- 2/' ; ir'^ + «' ; a;^ - y'. 18. 3 (^ - y) (a! + 2^) ; 3 (a + &) {a^ + 6"). 19. 5(i?-^)(p + g); a3 + y. 20. X + y. 22. 2a + 5 ; « + 5. 24. a^ +ab + b^; a -\- b. 26. x"" (Sx + 2). 28. 3iC + 4a ; unity. 30. a^ + V 32. 2a + 36 — c. 34. mx -\- m — X. 86. a; + 2a6 ; omit a in ax^. 88. 3 (2a - 7). 89. (2aa; — y) ; last term of 2nd expression should be 3y' 40. (x-iy. 21. 3a; + 1 ; SiC — 1. 23. a; + 3 ; (a; — 1)'. 25. 2a; + 1 ; x^ -\- y. 27. a;'' + 2y^ — 2a;2/. 29. 4; 1 +-•• a 31. 2a; — 1. 33. 5 (a; + 2y). 35. ap — bq. 37. (a — b) (X + a). EXERCISE 1. 2 (a; + 1)'. 2. x 4. 7a' + 3a - 1. 5. y' 7. x"" -2x- 3. 8. a;' 10. 3a;' — 2xy + y\ 11. a; 13. a; (2a;' + 2a;j^ — 2/'). 15. (a; -l)(x + 1) or a;' — LI 1 1 [a]. (Page 141.) 1. 3. a' - 8 5. 12a; + 5. cT' — 3.'^ 4- 2. 2 -5. " 2x' - 3a; - 1 ' + 82/- 2. 6. 2/' -32/ -5. -3. 9. 5a;' -1. -1. 12. ix + 2)". 14. X — 2. 1. [h.] 2. x'- - 13a; + 5. 4. (X- - 3). 6. 2x' — 4a;' + .t; — 1. ELEMENTS OF ALGEBRA. 23 -y. '' + y, X + a, -5; ((t~a:)5. \x — 1. '2xy, + a). uld be dy^. s 141.) 2x' — ^x - -1 y"" - 32/ - 5. hx^ - 1. (a; + 2)". 5. %i. ic'^ + 3a; + 5. a^ — a" — a — 1. \\. 2x'' -dx — 1. Sx — 5a. Is. x-'-lx-d. 8. (a; + 1) (X'' + 1). 10. 2y'' — 7. 12. 03" + x"" — 6x + 3. 14. 20?" (2a; + 9). 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 2.2a^ A2a^¥ y.xY EXERCISE LIV [a]. (Page 143.) 2a;' -6^0; ah-cx^y, a-12a¥ ; Az-lxhjz. 4?/ -a;*; y-10x*y'; Sc-la'b'c'. 2'da'b^; 7a'-36^2; ab-c. 2y'Sx'y-2; Sy'-lx*y; 2'2xY-2xy; ax'-Qxij. . 2.3a6c-2; S-ix'^y-Sy, p-Qpq^-p-, ax^-by\ 1 . a'&^c* ; xy' • irya'x'y ; n'' • dm'p* ; i?"g". 3a; (a - a;) ; Sa'^b (a + &) ; a (a - &') ; ahc {a' - c% Aa'x (a + X) ; 21 {x + y) (a + b) ; a{p + q) {p - q\ a (a+&) (b+G) ; x (a;+l) ; x' (a.--3) ; (aJ-1) (.x' + l) ; «=• {a-bf ah {x + a) (^ + &) ; «& («' - «') I (a; - 1) (^ + !)• (a: - 2) (OJ - 1) ; 21 {x - 2) (a; + 2) ; x (a;+l) (a-+2) ; {x + yY {X + 1) (a; + 2) {X + 3) (a; + 4) ; (a + b) {a - b). X (3a3 - 2) (2a; - 5) (a; + 7) ; x'y {a' - 6^). ^3 (-^2 _ ^2) . a;3 (a? _ «) (a; - 6) (aj - c). 6(a;-2/)^ 6 (a; + 2/)^ (a; + 6) (a;'' - «')• (2a: - 5) (9x' - 1) ; a' (a + Sf ; (a - 6)^ (« + bf. {a + by {a - xy ; {a + bf (a' + b'). (^ _ xy {b - yf ; 6 {a + 1)' (« - !)'• - (1 - 2a;) (1 + 2a;) ; (a;^ - y'Y ; a'*?'^^- 1) (& + 1). - 6a"6" (6^ - 1) ; x'-y' ; (a;^ - 1) (^' + 1) or a;* - 1. [&.] (Page 144.) f X — 1. 21. a6(4a''-l); 6a; (3a; - 1) ; a; (a; - 2) (a; + 2). 22. (x + 1) (a; - l)'^ ; {x - 1) (a; - 2) (a; - 4) ; {X ~ 1) (a; + 2) (a; - 3). 23. (a; + 3) (a; + 4) (a; + 5) ; (x - 1)' (a; + 2). 24. ia-r)(a- 2) (a + 2) ; {x' - fY or {x - yf {x + yY 24 HINTS AND ANSWERS. 25. (X + 2){x- 4) {X - 10) (X + 12) ; (a; + 3) (« - 3) (x - 12). 26. (x - 2) (a; - 4) (x - 7) ; {x + 1) {x + 3) (.i^ - 4). 27. (a; + a) {x' - ¥) ; (1 - a;) (1 + xy. 28. (a; — a) (ic + a) (a? — 6) ; (a + 6 — c) (a + 6 + c)'. 29. (X - 2)' (X + 2y ; (x + S) {x - 3) {2x - 1). 30. (2/ + 2)iy- 3) (3// + 1) ; (2a; + 3) (2x - 3) (3a; - 2). 81. (2a; + Sy) (2a; - 3y) (3a; - 2y); 3 (a; - 1) (3a7 - 1) (3a; + 2). 32. 20aV (4a - 1) (pa + 1) (3a + 1) ; (4a - 1) (4a + 1) (5a + 1) 33. (a; + 2) (x - 2) (Sx - 7) ; x"" - y''^. 34. {X — 2) {x - 3) (a; - 4) (-i; — 5) ; 2a?/' (4a;— 1) (a;+3) (3a*-2j 35. (,r ^y){x- y) [x" + ?/") ; 12 (a;' - l)^ 86. (a; — a)' {x + a)" or (a;' — a^f ; — 12a; {x — 1) (a; + l)^ 37. 6c {a' - ¥) ; a;'^ (a; - l)'^ (a; + 1)'. 38. (x + 2/) (x'' + xy + y"") {oc — y) or {x^y) (x^—y') ; 24 (1— a;^ 39. a*x* — h*y* ; a" — b\ 40. 12a'' (a"" — y'), (a;« + a'). 41. 1 —x'-, (1 - 2a;)^ (1 + 2a: + 4a;') ; (x + yy (a;=' + ' (x + a) (a; + c) (X - c)^ a; -2c' (x + a)(x-b){x + b)' xj- b X ■]- c (x + 2)', i-l so' I ', H'h L-^" 35J HINTS A XI) AXSWKUS. [&.] 1. 8. 5. 6. (X X + a a • I x — a' b x-'ix-l)^ a' {x + 1305) ~W(x — 'ia) 2. 1 a . (a^'-l)(.r+ l) ' (^ - 7) (i» - 5)"^ — 6 2r/// rt + 6' 15ct/" \1H , {mxyT ; Tj + -, - 1 a' put a; for a in first term of numerator and a for a" in second terra Kfift 7. a + b b — c — a 1. 625^ 8 i?* + i>^' + q EXERCISE LXI [a]. (Page 176.) . 4a — 3 8a 4- 1 a; — 3 a^ — be a'' 1 • - • • • . . • rth " ' 28 ' 6 ' b' ' b*' 2. 16 ' 28 ' 6 ' b"" 2(a — b) ^ 16 + x Qx — 2 ^ 2a; — 5 12a; — 8 3 ' 16-a;' 12a; + 5' x - 10 ' 12.i; + 9" X , o^ 2 46 + 9a a;^ -^ *• &'' 12a + 86' ^'M^' ^° %1 ELEMENTS OF ALGEBRA. 33 5. 1). ■')' 6. 7. 8. rator and a 9. '>■ 10. 11. a ax—1 1 2ax 2x — 35 a — ax+1' a' d^ -f- x^ ' a;» - 2ic' — 3 1 X' — - - ; " ; a + X. x^ (3 - X) (3 + av a; a* JfX^ — a" 12 X a^ + x^ — x^' (x — 1) (a; — 2) ' (a — 6)" _2ah^_ 4abia -' +_h')_ (a' + b') (a* + Uffh'' + b*) a' 4- 6" ' a* + 6a''6'' + 6* ' 2ab (3a* + aoa'^6'^ + ;5>/) ' 6 — g + 4 6a <'" 6 — aTs' r^;*;' g' + fe" , ab + 6c + (to b ^ a * a^ +~a6^+~6o^ ' [6.] 4ab (a + b) 4 (ax'' — 4) (a-b) (a» + 2a'-'6 + ab'' - a'^ZT^'^) ' x' {dx - 2) (3a; + 3) ' 1 + X 1 + X' 2. 1 2 a — S (^' - 2/' - '£'') (^' + ;y' - 2'') ' 63 ' (a _ 1) (a + 3)' b^ — ab a' + ab ^ • x'+l' x* + dx'' + l' 6. 0; ^-^1+-^ ' 8^(y + 6) 8. 5. 1; 1 a'^ft (6 - a) 1 + 2iz; (a + a;) (a" — iB') ' x 2 + 3a; 9 -i^^ . 1 1. 1 ; a + b. 4 ^-y . ^JT^. x-\-y' 4 4- 4a;" 2. 16a; + 11//. 5. 1. 3. T^x + ll.y. o. 00 34 hijn'TS and ansvveks, 7. (^.). . 8. ^. 9. -^*,. 10. 2. 11. — ^or— /y. 12. c, 16. Take the fractions in pairs, thus : /.j_ + _j_\ + /^^ n = .£ I \s — a s — hi \s — c sf {s — a) {s — b) s {s —c) ' by substituting for 25, etc. 17. a. 20. Multiply given relations out and transpose, a + & 4- 6' 4- ri = dbc + abd + bod + acd = abed { 4- etc. l etc. \« 7 EXERCISE LXII. (Page 185.) 21. 1. 1 ■\- X + x" + x^ + X* + ^. 1 4- 3ic 4- Ca;' 4- 27a;=' 4- 81iB* 4- 3. \ — X + x^ — x^ ■\- X* — 4. l — ^x + ^x"" — 27^5" 4- 81a;* — ' - a" a'b a'b^ a'b' a'b* 5. — ■{ — 2 H ;- H 4- — r + X X^ X^ X* x" ^ X^ , X^ X* x'' a a^ a^ a* 7. a + abx + ab^x^ + ab^x^ + ab*x* + ^ , 2x Sx^ 4x^ 6x* a a^ a^ a* 9. 1 i- x — x^ — x* + x'^ + ,, . 10. 1 4- ttic 4- a V + a^x"" 4- a*x* 4- 27 ^^ + y' ■_ (^ + yf - ^^y i^ + y) ^ ^^^ • x'-y'^ (X - ijf + dxy {X - y) Substitute from given conditions. EXERCISE LXII I [a]. (Page 191.) 1. x = 7. 2. x= 1^. 3. x = 2. 4- ^ = 3. 5. X = 4. 6. x~ f I, read x for 2x, 7. x = ^. S. x = 5. 9. X = 6. «(l + 6) da-b 10. ^=-^^^-^- 11. ^ = -^ • 12. .. = 1. • ELKMEKTS OP ALGEBRA. 35 18. x = 16. x = _ a''{b- a) b{a + hj' d{a + c) 6 14. x = 3a -6 4 15. X = 2ab 17. x = b. 19. X 22. X 25. x = 28. x = 31. iB = 33. x=z 35. ic = 38. x = 3 4* ^ 1. ab 20. a- = 3. 23. x= — ^, a' a + b — c 7 TS"' 26. a; = 29. x = bn + d 7 n+a mn + cmn b + d + am ■i-'cn acn—abn— abm — bcm nb — no — ma — mc 7. 36. a; = 3. f 39. a; = 11. b — a 3 a + 6 18. a; = 9. 21. a; = 60. 24. a; = - f 27. a; = — ^. 30. a; = 3a. 32. aj= 14. 34. a;=3a; right mem. sh. be 2^. 37. a; = 3. 40. a; =-6. / b 1. X 4. a; ifi 3. [6.J 2. a; = — 107. b{a—b+c) 7. a; = or -^ 44, 5. a? = 8. a; = - ^T a 3. X 6. a? _ a+6+c+c2 w — «i 9. a? = — 10. a; 13. X 16. a; 18. X 20. a; : 15. 01 ^~2~* 1 = and 4aj^ + 5a; + 3 = 0. 11. a; = 3. 14. x = — 6. 17. aj= ± 3 or oo = 2. 21. x = a. 12. X 15. a? 19. X 22. a; a& m c H- 7. a + 6. 76c 96 + 4c'' 1. aj = 13 ; second numerator should be 3. 3. (x _ 3) (2a; - 5) = ; x= 3. 4. a; = 41, ;,_>, 5. x = —i 2. ic = — 9. 36 HINTS AXD ANSWERS. ah — he — ea 6. a; = — it! = a(a — h)(a~ c) e {a + b) {a + c) 8. 05 = 0. 9. a; = 5. 10. x{h — a) = 0; whence x = 0, unless h — a = 0, in that case X may have any finite value. ,^ 11. x = ^^/r^orO. 12. x = c. V^'L^^-N-*^^-^*^ 13. x(2x + o) = ; .-. X = or — 2|. 14. a; = a + & + c. 15. a; = a'' + 6" + cr. 16. a; = a*. (First numerator on right hand should be x — 1.) 17. Take in pairs the fractions with like numerators ; _ np (c — a) + inp (a — b) + m7i j h — c) ~~ m{a — c)+n(b — a)+p ( c — 6) (_ 7a; + 49) \ - — ^ - —~- — -- i = ; ^ ^lx' + x — 2 x'+x—\2) .-. X = 7 or 00 . 19. Complete the divisions, cancel and transpose ; ^11 ■i% 18. or a? — 4 1 1 X 4 x—2 X — T) a; — 4' whence (x — 8) (x — 4) = ; .*. a; = 8. The value 4 is not admissible. 20 X = ^^^ ^ ^ ~^^ ^^ ~^ ^ + ap(q- ii) (m — n) 6 {q —p) {m —p) + a{q — n) {m — n) 21. a; = |m (6 — c) — ?i (a + «) f -;- (m — w) 22. (a'^x + b^x - a^b - ah'' - ft'^c + a'^c) x i i ^ Uo {{x — a) {x — b) {x — a — c)(x — b + c) ) .: X = {a"" (b-c) + b^ {c + a)\ -r- (a" + 6''). 23. (a — b){ 1 = 0, a; = ■ \n — o p — qf p — q 24. ^ '- 1 4- anal. + anal. = 0, whence b + c — a {x — a — b — v)\ h anal. + anal. >■ = ; {b + G — a S x = a + b + c. ELEMENTS OF ALGEBRA. 3t hat case 25. a — x a^ — he a + 6 + c 4- &c. + &c. = 0, or a6 + 6c + ca — (a + 6 + c) a? , r—^ — Y-— 7 h anal. + anal. 03 = (a6 + 6c + ca) -T- (a + 6 + c). = 0; 1. lO^'y dozen. 4. $300. EXERCISE LXIV [a]. PROBLEMS. 2. $36000. ma — 126 5. (Page 198.) 3. 12 years. 6. "*" 12 — m "' 6 + c 7. 754. 8. $3.75. 9. 142857. 10. $8000. 11. I9O3-W bushels. 12. 90 and 91. 13. Equation reduces to (4 — • 4) re + 40 = ; a; = 00 ; i. e., condi- tions of problems are inconsistent. In fact, area will always he 45 ft. less, under the given conditions; for using 45 for 85, the resulting equation is an identity. 14. $1857.35|f| and $142.64|ff. 15. 857142 ; x representing number, equation is TT {X — 2) + 200,000 = ^x. 16. $7.60. 1. 4. 17. 550 ; read 6 in first line ; 4 times and 6 cts. in second line. 18. 13|- feet and 16^ feet. 19. A, $2800 ; B, $3900 ; C, $5138 ; D, $2196 ; E, $2966. 30. -fH. y ( [6.] 960 gallons. 2. 420 acres. 3. $1280, 7|^. , , g(100 4-^?)~100p ,. Gain or loss io = ^^ , according as ^ < 100 + n 5. B makes 1740 yds. in 4 m. 34 sec; C makes 1700 yds. in 4 m. 32 sec. Let x = time in min. from starting at which A overtakes B, then -^-1760 = 20 + t^- 1740, a;=l|^min., distance 775^^ yds. from start. Similarly A is found to pass C in 3f^ m. ; distance 1456^^ yds. from start. 38 HINTS AND ANSWERS. 6. lOi's^r miles. 7. 5 gal. 8. $7400. 9. 57 miles. 10. mnpqr -^ {mnpq — mpq — npq — mnq — mnp). 11. 484. 12. 1, 2, and 3. 13. 12000 sq. yds.; 45 cts. 14. 189. ■it ^- 4r ^1, 2a? X , px — x 15. aj = distance; then -^ = h^—i 6 op op 16. Let 2aJ and x be digits ; (2001a;)' - (10020?)" = 2999997a;» = W X 749,999^^. 17. 180,000. p{ll7n — 21n) 18. (^1)""' 19. 20 {7n — 71) 20. Regular rate 40 miles, diminished rate 38,^ miles ; 100 miles. ap — a7i 21. 221 : 273 187 : 231. 23. 7n — 7i 23. f 24. 14172. EXERCISE LXVII. 1. a; = 3 ; y = 2. 2. x = d. x=:l ; y — S. 4. x = 5. X = 4: ; y = — ii. 6. x = 7. x = l; y = 2. 8, a; = (Page 212.) 6; y=-4. 5 ; y = 4. -2; y = B. -20|; y=-lH. 9. a; = 10; y = Q. • 10. a^ = m; 2/ = iHI- EXERCISE LXVII I. (Page 213.) 1. a; = 2; y = S. 3. ^ = H; y = -¥. 3. a; = 3; y = -2. 4. a; = 5 ; y = — 5. 5. a; = 4; 2/ = 4. 6. a;^i?^; 2/ = -i|. 7. a; = 3: y = 2. 8. a; = 3; 2/ = 1- 9. a; = 4; 2^ = -3. 10. a; = 3i; y = ^. EXERCISE LXIX. (Page 214.) 1. X — 5; y = 7. 2. a; = l ; y= —1. 3. a; = 2; y = -3. 4. a!=-2|i; 2^ = S^f . 6. a; = 5; y = — 4. 6. a; = f; 2^ = |. 7. a' = iAV; y = ^^' 8. a; = 5 ; 2/ = ^■ 9. «=iW; y^- ■1t%- 10. x=Q^; y = -d^. ELEMENTS OF ALGEBRA. 39 iles. 7a;' 00 miles. 4. 14173. 19f f EXERCISE LXX. (Page 216.) a + b a 1. x = —,r-\ y — — 2 2 1 _ 62 a6 - 1 2. 03 = ^; y = a — b a — b mp — nq _np — mq 4. a; = 1 ; y = 1. _ 6(46'~7a '') 2 y 7. x — y — 9. x — y — 10. a; 5. a; = a.+ 6; y = — 1. 8. aj = ^w + ?i ; y = m — n. a + c _ a {bc—^ac—c^—a'^ + 3a6) ^ 2(2a6 + 6c— ac— c") ; y a {Za^ ■\-ab-\- 4ac + ac'^—bc) 2"(2a6 + 6c— ac-rc') EXERCISE LXXI [a]. (Page 218.) 1. a; = 6; y = 12. 3. x = 7; 2/ = 10. 5. a; = 6 ; 2^ = 12. 7. a; = 8 ; y = —^. 9. x = y = ^. 11. a; = 8^; y = -i. ^ „ 2mw (n" — m') 13. a; = —J — T^-5-^ ^ • n* + 6?7i.W + w 4, y 14. a; = a" y = a — b''^ b — a 15. a; = 4 ; y = l. 17. a; = — 2 ; y = 4. 2. a? = 4 ; y = 3. 4. a;=13T8j,; y=-4i|. 6. a; = 4/^; y = — 12. 8. aj = 2 ; y=7. 10. a; = 4 ; y = 5. 12. x = y = a'^ + b^ n* — m* n* + Qni^n^ + m* 16. a; = 6 ; y = — 2. 18. a; = 3; y = — 4. [6.] 1. x = y = ^\. 2. a; = 14 ; y = — 14. 3. a;=:4^; 2/=ll^. 4. a; = 21; y = 20. 5. a; = 3; y^l. 40 HINTS AND ANSWERS. X=: a6~l (l-a)a-- 6) ; y a — h ah H- 4iy — ?-: 7. X — —T — I — ^7- ; y = ab — b + 2a' ^ 8. x—±^\ y=±3. 10. a; = 9; 2^ — ^' 12. a; = 8; 2/ = 2. ... 6 + c' -a — ./ V 4{bc — ac!) ■ ^ 14. ^=-3f; y = -6f 16. aj = 6f; y = S. b'c - be' {l-a)(l-b) a' + 2a + ac— ab + b — c ab — b + 2a 9. x — a; y = b. a 11. x= r ; y = . a — b'^ a + 6 15. x — y = d^. 17. a; = a6' - a'6 'h ' y ac' — a'c obT^a/b' 1. a; = y = 00 , and the equations are inconsistent ; thus, put a — =: — z=k, and .-. a = A;a', 6 = kb', and substituting these a values of a and b m ax ^by=. c, we get a'x + b'y z=~ , n which is inconsistent with the second given equation. 2. x = y = %, i. e. the equations are not independent ; thus, put —= — =- = m. Then a = ma', b = mh', c = mc\ and a' b' & substituting in (1), we get ma'x + mb'y = mc', which is a multiple of the second given equation. EXERCISE LXXII. (Page 222.) 1. x — S;y = Q. 2. 0! = ^; y = l. 3. a5 = i; i/ = l. 4. a? = — 2 ; y = f . 5. ^ = -1; y = h 6. x=-^- y = l. 7. x = y = a + b. 6(a»-6c) cia'^—bc) a—c 9. «' = -tV; y = Th- 10. .i; = y = -- ^ . _ ELEMENTS OP ALGEBRA. 41 EXERCISE LXXIII [a]. (Page 233.) 1. x = y =z — 4,, 3. X=\^^, y=-l^; ^=-H 5. x=:lS', y= — 122; z=-'.9. 7. a; = 4; 2/ = 5; ^ = 6. 9. x=l; y = 2; B — d. 11. x=:S; y = 2i; = - 3. 12. a; = 3. IS. x = e; y=8; z = 10. U. x = 6; y= -2; z 15. a? = 3; y = 6; 2- = 8. 16. a." =-5; y = 9; ^ 17. x=-4\, y=-il ^=-s^. 2. a.«=l|; y/ = 7i; ^: 4. a; = 3 ; 2/ = — 3 ; 5' 6. a; = 4; .y = 3; ^ :=z 5. X--= -1; y/=_2; 10. = - Ifi . = -2|. 2- — 5. = -3. = -8. ■be) 1. a; = |^; y = ^; z = — :^, Divide through by xyz in each equation. 2. iB = 5; y = li; 2- = ^- 3. ^ = 1]^; y = -|; ^ = 2|. ^ 1 1 a; a- " 6' a6 4- c<2 — 6c 2a 1 = -• c 2/ and ^ symmetrically. 6. 2' = 3«6c -^ (c — «)(& + c), aj and 2^ symmetrically. 7. ic = a — 6; y =:h — c\ z = c — a, S. x = 2a -^ (6 4- c —a) ; y and symmetrically. 9. x = \ -rr {a — h) {a — c)] y and 2' symmetrically. 10. 12. 13. 14. 15. ^ = li 11. 05 = ^; 2^ = ^; ^=1-. rfl a^ a? = «'' — 6" ; y z=ilf — c^-^ z = c ^ = ^ (a + & + y symmetry. 6. a? = ^ (a + cZ) ; y, z, u, and d by symmetry. 7. a; = 30 ; ^ = 20 ; = 42 ; ?* = 72 ; (y should by in second equation.) 8. x = a + b + c, y, z, &q., by symmetry. 9. x=:^{a + b + G + d + e — 4/) ; y, z, «&c., by symmetry. 10. Divide each side of every equation by xyz ; x = l-hb — o; y and z by symmetry. EXERCISE LXXV [a]. (Page 229.) 1. 03 = 714285; ?/ = 142857. 2. a; = 40; y = 65. 8. Willie 4; Charlie 8. 4. a? = 1.234; y = 5.678. 5. a; = 147; 2/ = 63. 6. 76. 7. 13 : 17. 8. 73. 9. 480 gallons; 400 gallons; 560 gallons. 10. $10260; $7560. 11. |. 12. 10a; + y = 6 (a; + y) ; .-. 4a; = 5?/; .-. 10y+a;=9a;=5a;+52/, etc. 13. 98 or 89. 14. A, 200 lbs. ; B, 250 lbs. ; C, 350 lbs. ll 1' 21 2J ELEMENTS OF ALGEBRA. 43 15. 82 apples; gave away 2. 16. $5000; .$3000; $4000. 17. 40; 88; 104. 18. 486. a(b — c)^ h{c — a) ^^ .. 2h 26 19 20. x = y 31. I, h b~a b — a 1 — a' " 1+a 22. A, 105; B, 52^; C, 210 minutes; A, B, and C in 30 minutes. 1. First, 220 gallons ; Second, 100 gallons. 2. 3674. 3. A, $40; B, $24; C, $16. 4. d(m ■{■ n) -T- 2mn ; d{n — m) -r- 2mn. 5. X + y : x — y : xy :: 5 : 1 : 18; x = 9', y = Q. _l(m — l){q — mr) — (1 — mn) (mp — Iq) ~ mH {\ — n)-\- mnl (1 — m) — in (1 — mn) 7. 130. 8. 315 miles. 9. 9; 8^\ miles per hour. 10. a; = (p + 1) w ; y = (pq — l)n;z—(q-\-l)n. 11. x = l^; 2/ = 2f; ;? = - 12. ^^ cj(« + &) c(6_-a), 13. _^!:!!L_ hours. 2ab 2ab qr—ps 14. A, $2.60; B, $1.26f ; C, 61^ cts. 15. ^m*. 3^ miles. 16. 3000 ft. from first station; x = distance from first station; y = A's rate per second ; ^r = B's rate ; ,, 4000 4000 >n ^ ^ on then — = 40 ; = 30 ; y z y z substitute in this the value of , viz. ^^, y z equation and x = 3000. 17. Gold coin, $2 ; silver, $1. 18. 11|^ miles; 7 miles; and 5| miles. 20. x = time for A, y for B, f or C ; from first 19. $5200; $2480. ^, 11 m 111 ml w + 1 then -+-= — , or -++-=— + -= ; y z X X y z x X x ... ^ + 1 =, ^y + yz + z ^ similarly for n + 1 and^. + 1. yz 44 HINTS AND ANSWERS. 21. x = rate of locomotive, y = rate of coach, z = distance; then Qx + Sy = z=:mx+1 f) + 7^ (y + 1|) = T^V (^ - H) + ^tV 'y - H) ; ^' = 38^, y = 7,z = 387. ^/iler should be befo7'e in first line of equation. 32. Let m, n be the required dividends; m n then given fraction =.: + 33 Multiply out and equate coefficients, and we get 6w + dn = 37, 7m + 4n = 34; m = 2, n=z 3. be — ad ab — be ^. 9 6 3 cf—de'' cf—de 35. 16, 30, 43. 34. 8aj-7' 5a? -4' 3a;- l' EXERCISE LXXVI. (Page 339.) 6. -I, -10; ±(a-6); ± (1 - a) ; ± a + |. 7. ±(3«-26); ±— t-^; 3, f. 8. 36, -3a; ±133; ±375. 10. ±3; ±3^; ± 3^. 13. ±5; ±|a; ±(a: 13. ±^{mn)\ f|, |; ». 16. ± /^(ac) -r- y^(6f^) ; ± ^(flft); ± 1. 17. ± 1 ; 3a, 36. 18. ± y'im" + w«) ; ± , 35. See Ex. 8; n, -, —n± ^{n'' — 1). It/ 48 HINTS AND ANSWERS. EXERCISE LXXXI [a]. (Page 264.) 1. 11 or - 24. 2. 26 and 19. 4. ^(^5-l)a, i(3-^5)a. 6. 50 coffee, 60 raisins. 8. 100. 9. 12. 11. A, 11 miles; B, 10. 3. ^ or - 6f 5. 16^. 7. $240. 13. 25 cts. 16. 7. 18. $90 or $10. 21. $3. 23. 2.414 inches. 14. 4c?. a dozen. 10. ^11 vases. 12. 3, 4, and 5 15. 3 and 18. 17. A, 72 miles ; B, 54 miles. 20. A, $1800; B, $1600. 22. ^ { y'(2/i'^ -d') +d\,:^{ y/i^h'' - d') - d\. 19. '-. 5 3. 63. 5. ^6"ti^ / /St [6.] (Page 266.) 1. 3 hours and 5 hours. 2. 36 and 30. 4. _i(a + 6) ±y/^^ + ^V(« + *)=)• 6. 4200 ; read 780 in question. 7. 14 acres at $75. 8. 10 seconds. 9. 5f miles. 10. 5 miles an hour. 11. 15 miles. 12. If X be cost and s selling price, then x = s -{- -— ; on solving it is seen that 4s cannot be greater than 100 ; see Art. 175 (i). 13. $333^, $666|. 14. 72, 12, 8 ; Let x"^ = number remaining in smaller bag after handful is taken ; then x^ is left in Imager bag, and x^ = number in handful, and a;* is number in larger after second lot is taken out ; then x^ + .-r'* = |- {x^ + x^)^ and a; = 2, etc. 15. If X represents per cent, then 620 = 82a; + (3790 + 82;f) — ^• X =3 22. x = 5. 16. Let 2x = distance, then ■ H X — b X — 6 _3^. 7 ' x~-^' ELEMENTS OF ALGEBRA. 49 17. Let X = rate backwards, Ax = rate forwards, tlien • d\. i + ^ , i.e. j\x = J + , ^^ e. yVa; = -— ^ — - ^ 5:.. • i mile an hour. X " 4a; + 3 it' — i 18. 90. 19. 4900 ; x^ being number of lines, equation is \%\ {X - 10) p = 2 {a;" - ^^ {x - 10) f , or 601a;^ - 20a;. 3254 = — 100.49-43; a; = 70. 20. A, half -past 4 o'clock ; B, 5 o'clock. EXERCISE LXXXII \a\ (Page 273.) 1. 3. X X \,V = \, -If 5. X — ±6, y = a± h. 3, ■ 4, -10^,2/ = 5, -13H- ± 20, 2/ = ± 16. 30, 10, y = 10, 30. 7. X 9. a; 11. a;:-3, -3|, 2/ = 4, Q19 13. a; = l, -f, 2/ = 2, 2f 15. a; = 7, - 4|, y = 3, - 2|. 17. a; = ±7, ±5, 2/=±ll, ±9. 19. a; = 2, 5, y = 6, 3. 21. a; = 7, 1, 2/ = 3, 9. 23. a; = 3, y = l. 3. a; = ± 6, y = a^^h. 4. a; = 3, - 2^, 2/ = 3, - 8. 6. a; = ± 7, 2/ = ± 3. 8. a; = ±15, 2/= ±3. 10. a; = l, — 5, 2/= — li 12. a; = 2, - i, 2/ = 3, f . 14. 16. 18. 20. 22. 24. 'i. a; = 10, 115, 2/ = 6, -69. x = \, -If, 2^ = -4, HH- a; = 2, 3, 2/ = 5, 4. a; = 5, I, 2/ = 3, - 1^. a;= ± ^13, 2/= ± 'v/13. i« = 3, f , 2/ = - 'J',- 1 1. a; 3. a; 5. X 7. a;: 9. X 11. a; 12. a; = 13. X 15. a; = 16. X — 17. a; = [&■] = ± 5, 2/ = ± 1. 2. a; = ± 11, 2/ = ± 2. = 0, ±2, 2/ = ± V-B^, ±1. 4. a; = 0, ± 3, 2/ = ± B, ± 9, = ± 3, ± i[, 2/ = ± 5, ± -V. 6. a; = 0, ± 1, 2/ = V?' ± 1- = ± 2i, 2/ = ±i. 8. a; = ± 3 ./f , 2/ = ± i Vt = ±2^, ±1, 2/=±l, T3. 10. a; = ±7, ±3, 2/ =±3, ±6, = ±1, ±H, 2/=±5, =Flf. = ± « -^ V(^ + 6), 2/ = ± & ^ V(^ + ^)- = ± 6, 2/ = ± 3. 14. a; = ± 3, ± 8, 2/ = ± 5. ± 2, ± v'f , 2/ = ± ^, T 3 ^|. ± 4, ± 3 -v/3, y = ± 5, ± ^3. 7, 4, 2/ = 4, 7. 18. a; = 7, - 5, y = 5, - 7. 50 19. 21. 23. 25. 27. 29. 1. 3. 5. 7. 8. 9. 10. 12. 14. 15. 16. 18. 19. 20. 21. 22. 23. 24. 25. 27. 29. 31. HINTS AND ANSWERS. / x= ±5, ±S, y x = 4, j/ = S. a; = 5, 4, y = 4, 5. a; = 4, y = 3. X = 13, 9, y = 9, 13. a? = 3, 1, y = 1, 3. ± 2, 7. 20. x= ± 5, ± 4, 2^ = ± 3. 22. X = 14, 19, y = 19, 14. 24. a; = 4, 2, y = 2, 4. 26. a; = 3, 2, y = 2, 3. 28. a; = 7, 4, y = 4, 7. 30. a; = 3, 2, y = 2, 3. EXERCISE LXXXIII [a]. (Page 277.) a5 = 2, 1, 2/ = -l, — 2. 2. a: = 4, — 3, y= — 3, — 10. ^= ±1, Ti, y = |, 0. 4. x=±l,y=±7. x=±5,y=±2. 6. a;= ±1, y= ±^. « = i(a±26), 2/ = |(a=F26). a; = ± (a + &), y= ±(a — b). x= ± a=» + 6' , 2a6 y = ± 1- a — a; = 6^, y = If ± 9, ± 5, 2/ = .-t 5, ± 9. «' = i>y = f 11- x = 0, a, y = a, 0. 13. a; a? = ± 7, ±3, y=±3, ±7. ^=±4, ±3, y=±3, ±4. ;r = 2, -1, y = l, — 2. 17. ir = ll, y = 9. a;=-2, -3, 3±i^ ^56, y=-S, -2,STi ^5Q. ^ = 5, -1, ^(±^41 + 5), y = l, -5, i(± v'41-5). Treat x + y rs the unknown ; x = }{a± ^(a^ — 48) f , y = i{aT ^{a^ - 48) f , where a = ^ (- 3 ± ^853). ^ = i(9±V-47, ^ = ^(9^^-47). a! = 5, -2, -^(l±y^41), y = 2, -5. ^ = 17, - 6, ± V(118) - 4, y = 3, - 8f 2 ± i ^^118. a;=5, P, 7, 8, y = S, 7,6, 5. a; = ±13v/^, y=±7^/^j. 36. a; = 4, 2, y = 2, 4. ic = l, 10, y=10, 1. 28. a? = 3, 2, 2/ = 2, 3. a; = 8, 4, y = 4, 8. 30. a; = 1, 1^, y = 2, -^i,. (a'c - a&y + {ah' - a'h) {b'c - be') = 0. 3. 5. 6. 7. 8. 9. 10. 12. 14. 15. 16. 17, 18. 19. 20. ELEMENTS OF ALGEBRA. 51 (Page 281.) x= ±4, ±9, y=±Q, etc. £» = !, 2/ = 2, 2- = 3. EXERCISE LXXXIV. 1. a; = 8, 2, 2^ = 4, = 2, 8. 2. 3. a; = 7, y = Q, z = 5. 4. 5. ic = f y = *, ^ = 4. 6. a; = ± t V'S, ?/ = ± .^3, = ± 2 ^3. 7. a; = 4, — 7, ?/ = 3, — 8, ^ = G, 28, - 2^ in text. 8. a? =1,9, y=±4, = 2, -G. 9. a; = 2, - 14, v/ = 3, - 15, z = \, - 16. 10. a;=l, y=z—2, z = 4. 11. a? = 4, y = — 5, 2r = 7. 12. a; = 2,. 7, y = 3, = 7,2. 13. x = y = z= ±1 -^ ^2. 14. a; = 2a6c -j- (ac + be — ab), y, z symmetrical. 15. a; = ± a'^ -T- '\/(a'' + 6' -I- c"), ?/, z by symmetry. 16. a; = ± ^{ (a + 6 — c) (a + c — 6) -4- 2 (6 + c — a)\, y, z by symmetry. 17. a; = a6c -r- («6 + «c — 6c), ?/, by symmetry. 18. X — ^ \{e + a — b) {a -\-b — c) -^ {b -^ G — a)\. 19. Add 71^ to each equatior and factor ; x= — n ±{a + n){t + 'n)-^{b-{- n), y, z by symmetry. 20. a; = ± a /y/Kft + c — a) -^ [(a + 6 — c) (a — 6 + c)][, y, by symmetry. 21. a; = (6c + ca + a6) -^ a, ; y, zhy symmetry. 22. a; = l, 2, 4, 2/ = 2, 4,1, = 4,1,2. 33. x=i ±{—m -if-n +p)-i- /y/2 (??i + ti + ^) ; y, zhy symmetry. 24. x= ± (— be + ca + ab) -^ y'(2^^^) I Vi ^^Y symmetry. 25. a; = 0, or ± 1 -T- (c — a) ; y, zhy symmetry. 26. x = -y/(6V -f- a) ; y, z by symmetry. EXERCISE LXXXV [a]. . (Page 285.) 1. Ml + V^), H3 -f V^)- 2. i ± ^ ^2193, -^±1 V2193. 3. 36, 16, or - 36, - 16. 4. ± ^(pq), ± ^{p -r- q). 5. 20. 6. ± i (P + g) VC^ -^M), ± i (P - 9) V(^ -^i'?)- 7. 7, 21, 35. 8. 343, 64. 11. 34, 17, 51, or - 204, 612, - 306. 13. ^M. 9. 4, 10. 36. 5^ hf ,'^^H 13 pj'^H ^''^H 14 i-*<'i ' .i^^^H |f'?H 16 18 fI 20 I'l 22 l"l 24 4. 5. 7. 9. 10. 11. 13. 14. 15. 16. 17. HINTS AND ANSWERS. 'V^llO ± ^ y'6 ^ y'llO. Add and subtract the equations. 8 ft., 10 ft. 15. 88 yds., 55 yds. 63 ft., 45 ft. 17. 20 m., 30 m. 6^,7^. 19. 102 from length, 114 to width. 18, 9-6. 21. 100 at $75 each. 13, 10. 23. A 40 at $1.20, B 30 at $1.60. 3, 5, 10. 25. 3, 4, 5. [6.] Edges (x, y, 0) are 1, 2, 4 ; x + 7j + z=7, a;'^ + 2/' + ^' = 21, x^ + y^+z' = 73. Cube first equation by formula H (3), p. 85, and substitute from third, second, and square of first. 864. 3. 2, 5, 8. See Ex. LXXXV, 16. Add first two equations and subtract third, then symmetry. 76 ; the one digit remainder is of course 9. $2145, 2f years. ' 6. 4, 7, 10. 290 yds. 8. 48, 10. 8, 9, 10 ; see Ex. 4, p. 284. 342 ; in last line of problem read 29. 12, 4, 3. 12. 3, 6, 9. See LXXXIV, 19. ^{h±^(c-a')\ :^{a±^(c-b')\ :: ^{aTV(^-^")\ x= ^1(1 + «) (1 + b) -r-{l + c)\, y and z by symmetry. See 4, p. 284. 28 workmen, each 45 lbs. , or 36 workmen and each 77 lbs. ; X — number of workmen, y lbs. carried each load, z number loads in one hour ; then ^xyz is whole weight moved, and 7 (ic + 8) (y - 5) 2r = Myz = 9 (^ - 8) (y + 11)^. — — ^- ^-^ = 5i_ £ii where p = product of ex- a - ^{a' -Ap) 6 + ^{h' - 4p) tremes (or means), and = (a^ -+- b^ — <■) -4- 3 (« + b). Of the first, 135, 62; of the second, 182, 57, (yds.). 18. 126. 1. 3. 5. 6. 8. 10. 16. 2. 4. 8. 13. ELEMENTS OF ALGEBRA. 53 EXERCISE LXXXVI [a]. (Page 296.) 1. 05' — 2a7 — 2 = 0. 2. f|. 3. 32i»'' - 1412aj - 23205 = 0. 4. x''-a^b.=zO. 5. p^-q; Pip""- dq) ; (p' - 2q) -^ g^ ; see Art. 178. 6. x" - (4a _ 66) a; + 9a' - 10a6 + 86' = 0. 7. 3 • 14159. 8. Positive for all values of x, expression = {x—2^y. 9. 789|f . 10. p-2q + 3r. 11. See Ex. 1, p. 294. 16. Assume of* = Ax + Bq, then, since a, /? are values of x, «" — A;r + Bq, and /?" = A^ + Bg, whence A and B. 2. 6' — ac = 0. 4. i. a'a3' - (6' - 2ac) a; + c' = ; j^. ^V — (p' — 2g') i» + 1 = ; .?. x^ — (p"" — q) X + q (p"" — 2q) = 0; 4. os' + \p~^(p'-4q)\x-p^/(p'-^4q) = 0. 8. ec' — aa' = 0, 6'c -\-a'b = Q. [c] 4. 579 and 135 are the roots of the first equation, 579 and — 135 those of the second. 12. 4a6' + a'c — aa'c' = ; let roots of first equation be a, /?, of second a + in, ^ + m ; form equations from relations of roots and coefficients and eliminate 7a. 13. (Right side of first equation should be 1.) Substitute for y m second equation, and apply condition of equal roots to resulting equation in ic. ^1 EXERCISE LXXXVI I [4 (Page 300.) 1. Min. 4. 2. Min. - V- 3- Max. f 4. Min. tV. 5. Min. -g^. 6. Min. - ||^f . 7. Min. f. 8. Min. 2. 9. Min. -J, Max. J. 10. Max. 36 area, i.e. line is bisected. '\i% 54 HINTH ANJ> ANHWJiUb. 3. 81. B. Min. i«', i. e. lino in biwsctod. 4. ^a ^^2, the Hidos arc equal. 0. (a 4- ff)'^ -^ 4a/>. 7. il// numbers between ^ and 3. 8. | /y/1 -f |. 11. (6' - 4ac) -^ a' = (/*' - 4mr) + 7W». 13. ^ = 6, or g. 8. EXERCISE LXXXVIII [a]. (Paoe 305.) 1. 1. 3. 346". 3. 5. 4. 1. 6Vr/^6; y^^ ^6 ^c ; ^«« ^?/ <^c">. 7. i. a'ft-"; a-'6-'c; a^6-» ; 7aW ; a-'-ft-"; a'ft'; « 111 711 5 6__ a-6-v' ^-fftHc** 3^-8 ' 1. [6.] 1. (a' -6")"; {x-\-y)'^', {x-yf. 8. iT^ — Ax^ ; at?> - af 6" + ^a%^ ; a6^ -\- a^ — fi'h^ — a^b^. - _c a _6 1 c feW 1 • a'6'' 6»-^^ ^V' 3S"^^"^/J a^h* b^c' ' ay y+'' ryx 7. ^^+_^^_>^i7; .^.^..^1/^; 31 V^ 2. fa^; 1. X^ffyl liLKMKf^TS or AI/n-'-HUA. 56 ■ 'v^a'^^^ '^//^ ^li' ^a" 0-8; A; A; A; Vi; %- 13. 244140035; 2. 10. 1024a; « -j- 32. 12. (7a; -0^/)-"; (5a- 76)'. 14. 0. [c] (Page 806.) arAr. 2. re'-'--'; a^^S ; 1. ^J; aW, ?1^; .A. . .«^.; eW. ^^^-, 3. a'*6-"; ajfr-^ ; Fj . 4. a'i'-""; 6 TO"— nn a llmnp ; «* .mi--mn mn _1 ^ 5. a~T; a'^i"; ar V ; a """ -6 " . 6. a"6V; a''6"c. EXERCISE LXXXIX [a]. (Page 309.) m:» 2. 2""; -t; (a«.6"V'. 8. 3^ + ic* + a;^ + 2a;« + a;§ + a;''' + aj^^ + a; + 1 aj + y. 4. Q^ — \f^ 5. ic* + ^x^y^ + y* — ^!/] ^^ — ^^y + y"^ x" + 2/'' 6. 4a''-6' 7. 2a;'"' — 42 - 9a;" + 6ar'-"» + liar" ; 4a;' im 9y' 2p 8. a' + a"" — 2 — ai — a"§ + 2ai l_ 9. a;' + 4a: V"^ — Ax^y — IGajyt + 16a;yff — Uy 10. 3 + 2a;~^ + 2a;^ + or" + a;" ; aW — h\ 11. a;^ — 2/i ; a; + y + s^^y* + x^y^. f^ — or^vz — o'Jiiz 4- ?y* 12. x^ — xhjt + x^y^ — x^y^ + yi ; Sa"' + 7a-' + 6, 13. 56^ + 46^ + 36"^ + 26"i 56 HINTS AND ANSWERS. 14. x~^ + X »y a -I- x~^y~f 4- x sy-' + x »y s + yl -^ oT^ - 2a-''b^ + 4arh^ - 8a-'b + 16arh^ - 326^. 15. x^ — 4x + lOajt _ iQx^ + 19 — lQx~^ + 10a?~l — ix-' + x~^. 16. (at — it'^y^ + y^) (x's + x'syn + y^); (x^ — 2x^y~^ + 2y~^) (x^ + 2x^y~^ + 2y~^). 17. (x^ — 8) (a;^ + 7) ; (Sx^ — ?/^) (Sx^ + 2.v^). 18. (x —l)(x — xi + l); {Sx^ - 2j/i) {2x^ — 3y^). /a\i(»»+l) 19. —a~^{l + &-*), b~^ in denominator; 1^1 ; a'a -f- 6¥ + c^ — a^feT _ ft^ci — c^^t I 71 1 ' ' 30. a6-' + 1 + «-'&. 21. at + 2a^2^^ + 3y^. [6.] (Page 310.) 1. ; expression = {ab — a-^b~^) {ab + ar^b'^) — ab (ab-^ + ar^b) + a-'b-"^ (a-'b + ab-') = (ab-a-'b-') {ab + a-'b-')^ (ab-' + a-'b) X (ab-a-'b-')={ab - a-'b-') (ab + a-'b-' - ab-' - a-'b)=0. 2. See last question. 3. For last term read a^. Arts, a^ — 2a* + a*. 4. {x^'y*^)^. 5. 2x (3 + x"") -v- (1+ xf. 6. air _ 2a6^ + 3a^6 — 2a^bi + 6^; in divisor read 2afe^. 7. X* + 2^" - 8a;' — Qx-\. 8. ax^ — aa^r = a^x {a^x"^ — 1), and second factor of this is con- tained in the product of the other two quantities, .-. L. C. M. = a^x (aV - 1). 9. ab-' + 1 — ^a-'b; in second term in text read b^ for 6~'. 10. tV; in first term read al TJETi 11. (x — ai) (x + a) X — a in second term of numerator read a. 1. 12. '^(xY) -f- ^(a'b'). ELEMENTS OF ALGEBRA. 57 13. Expression = a^ («« + 6f)s + fta (^^J _|. 6a)a =; etc. ( m — n n— m'\ Denominator = same factor x (if" + or), 15. a^ + a"'-" + a*'-""" + «.=^-="' + a""-*" + a'-'" + a-**. 16. abcde ; divisor = rf'" (say) = rZ'" x d^, apply Law IV. 17. x^ + (1 — m) a^x^ + a. 18. Expr(3Ssion = x^ — y" — (y-" — xr"^) = icy (icy-* — x-^y) — xrHj-^ {xy-^ — x-^y), etc. 19. a'-^rc + 2 ; second remainder is — 5 (ax^ + 7a^u; + 10) = — 5 {a^x + 3) (a^ic + o), and H. C. F. is a^ic + 2. 20. (aa;" - 1) {ax" + 1) (aV - 1) = a'a;'" - a'aj" - a'x* + 1. 21. 1 - i^a-^x\ 22. asa; {a^x — 1) -;- i^d'^x — 1 ; read x^ in first term of numerator ; denominator = {M^x + 1) {2a^x — 1) ; (1 — a^)-^ |a(5a + a^)}; 3 1 1 denominator = d^{a + a^) (5a + a^). ' ^-y + ^=-\ jpz:c)'(c^) "^ ((^:::6)^6^^) "^ (a-6) (c-a) f = 0; ^ . — (a — 6) (6 — c) (c — a) . Expression = —r^ — r-77 -7 r— = 1. ^ (a — 6) (6 — c) (a — c) 23 24. (a + 6) 2?nn EXERCISE XC. (Page 313.) 1. ^x'; H^ixy'); ^^{xY)\ 6^(a;Y); ^/{a'b*)- 2. 27T; 512^; H; (#; si 3. i. -1(6")^; iia'h'f; (4-")^; UA)'}^) (a'^-'O^. ^. -|(6-«)-i; |(a-«6-^^)-i; (4")-i; KY)*f"*; (a-*ftV)-i. 58 HINTS AND ANSWERS. 6. v^(a"6); v^(a'»+»); ^| (a» - a^T (« + <») f ; 7. Sy^lO; 5^5; 3^5; 9^6; 18^2; f^l2; 7^. 8. 8^2; 6^48; 2^5; 2^3; 10^3; 2; 2^18; 12; ab^b. 10. 1^150; ^375; a« (aj + 5) ; (^- f y) ^(aj - y). 11. (a; - a) /^K^ + a) («'-«')}; a;i (a; + y) ; 2(a-b)^(ab). 12. 10 ^3, J V3, 1^ ^3, ^ V3, i V3- 13. 4^,3^; 8*, 6^; 10,000^, lOOoi ; 33^,32^; 80^,50^; as, a^ ; a^, a^ ; a^, a^. 14. 2^3 = 24f; 3^2 = 181; 24t = 576^ ; 18^ = 5832^; and I ^i = (244^^)1 EXERCISE XCI. (Page 317.) 1. 2^2; 8^5. 2. - 12^ ^3 ; llf <^9. 3. 60y'3; 80^3; 24. 4. 6-5^6; 6 y3 + 3 ^30. 5. —32. 6. iV2 + iV3 + 2V5; i V6 + f ^32 + I <^120. 7. f(V"^ + -v/3); i(7 + 8>y/5). 8. ^(17-3y'5; i(16-13y^2); ^ (7 y^l4 - 13) ; 20" - 1 + 2a y(a» - 1). 9. 288 *^72 ; see 4, p. 316. lO: x + y + z + 2 ^{xy) - 2 ^{xz) - 2 y'Cy^) ; 13a;'' + 4 + 12a; ^{x" + 1). 11. ^/x — A^a\ ict - {xa)^ — a^', a — ^{ah) + b ; ^(25~6y'2)(3-^2). ELEMENTS OF ALGEBRA. 59 12. Square and transpose radicals, square again, then {ax + bi/ + (izf — 4 {ahxy + hcAjz + mtxz) 4- 8 ^{ahcxyz) \ ^{ax) -f- ^Khij) + ^Jiliz)\, etc. 13. Rationalize. 14. 3.1003. 15. 3.160. 16. (/y/S + 1) {4 - ^('10 + 3 ^5)} -I- 4 ; |« + ^{a" - a;')} -r- x. 17. 4aj ^(a;» - 1) ; 1 -v- (1 - a;'). 18. %x^ -f- a^ 19. a ; rationalize and substitute. 20. /y/(a — a?) -J- (y'a + ^x) ; factor out y^Ca + x) in denomi- nator of first fraction and rationalize, resulting numerator cancels denominator of last fraction, etc. 20. lOf. EXERCISE XCII \a\ (Page 320.) 1. V3 + V'^. 2. y/\{ ^- \/2. 3. VlO - \/6- 4. 2 4- V2. 5. Vll + V^' 6. VS 4- Vs. 7. V^ + 1- 8. 2 + V^' 9. 2^/3 + 3 Vs. 11. ^7-^/d. 10. X4(^7_V3. 'V/2 12. 3 — V^ ; change 13 to 11. 13. 3 VS — 3. 14. 3 Vll - a/41. 15. V^ - V^- 1. -^3 (1 + ^/2). 4. 5 + V^. 7. v^6 (1 + V2). [ft.] 2. ^5 (1 + V^). 3. -^2 ( V3 - a/2)- 5. V^ - "^^ 6- Vl7 + \/l9. 8. 'V^2 (V^ - a/2). 9. 3^/5 + 6 a/S. 10. ^ (a/3 - a/I). 11- V^O - A/f 13. \/2 + ^^. 13. v^3 (1 + a/3). 14. a/(«* - «*') - a/(«&'). Vr-Hr + a/H^. 16. 3 A/m - 5 a/^T. 18. ^{x + 2/) + /v/(^ - y)' 15. 2 17. • I- 10. j!^^ ^7^ f '' ^"^^ ^y formula G (2), p. 85. 18. — t'sVt' ~ HM 5 divide by right member, and /I + rr\ 1 3 /I - a;\^ , .31,^ • (^— --r H 1: 1 = li or v/ + —. = 1, etc. 61 EXERCISE XCIV [a]. (Page 327.) 4« -3ir' + 2.T — 1. 2. 8a;' - 12ii;' + 6a? — 1. ,. 8u. — 12a;V + 6a:.y' — y\ 4. .^•« — 2x''y + 2xif — ?y\ T). 2 — 3.r — a?' 4- 2a;\ Q. x* — 2x^y + 3d;y' — y\ [6.] (Page 328.) 1. x"^ — X ■\-\ 3. 1 + 3.X' — a?'. 5. x^ — a;',y 4- ^y'^ + y^ 7. 1 +^a;-^a;' + A^''- 2. 2 — 4a7 4- a; . 4. y-'-y + 2 6. a' - ^a-' + ^a-'. 1. If. O 1 1 5. (a* - -;■#• ■ f:- X ^^BIPPP /