IMAGE EVALUATION
TEST TARGET (MT-S)
^ ^^%.
1.0
I.I
1.25
;f i^ iiiiiM
■^ 1^ III 2.2
^. lia IIIIIM
1.8
U 111 1^
V
<^
/;
^.
Photographic
Sciences
Corporation
23 WEST MAIN STREET
WEBSTER, N.Y. 14580
(716) 872-4503
CIHM/ICMH
Microfiche
Series.
CIHIVI/ICMH
Collection de
microfiches.
Canadian Institute for Historical Microreproductions / Institut Canadian de microreproductions historiques
II
Technical and Biblicgraphic Notes/Notes techniques et bibliographiques
The Institute has attempted to obtain the best
original copy available for filming. Features of this
copy which may be bibliographically unique,
which may alter any of the images in the
reproduction, or which may significantly change
the usual method of filming, are checked below.
L'Institut a microfilm^ le meilleur exemplaire
qu'il lui a 6t6 possible de se procurer. Les details
de cet exemplaire qui sont p3ut-dtre uniques du
point de vue bibliographique, qui peuvent modifier
une image reproduite, ou qui peuvent exiger une
modification dans la mdthode normale de filmage
sont indiqu6s ci-dessous.
n
n
D
Coloured covers/
Couverture de couleur
Covers damaged/
Couverture endommagde
□ Covers restored and/or laminated/
Couverture restaurde et/ou pelliculde
Cover title missing/
Le titre de couverture manque
I I Coloured maps/
Cartes gdographiques en couleur
□ Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Reli6 avec d'autres documents
r~l Tight binding may cause shadows or distortion
along interior margin/
Lareliure serr^e peut causer de I'ombre ou de la
distortion le long de la marge intdrieure
Blank leaves added during restoration may
appear within the text. Whenever possible, these
have been omitted from filming/
II se peut que certaines pages blanches ajout6es
lors d'une restauration apparaissent dans le texte,
mais, lorsque cela dtait possible, ces pages n'ont
pas 6t6 filmdes.
D
D
Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagdes
Pages restored and/or laminated/
Pages restaur^es et/ou pellicul6es
Pages discoloured, stained or foxed/
Pages d6color6es, tachet6es ou piqudes
□ Pages detached/
Pages d6tach6es
BShowthrough/
Transparence
I I Quality of print varies/
D
D
Qualitd indgale de I'impression
Includes supplementary material/
Comprend du materiel supplementaire
Only edition available/
Seule Edition disponibie
Pages wholly or partially obscured by errata
slips, tissues, etc., have been refilmed to
ensure the best possible image/
Les pages totalement ou partiellement
obscurcies par un feuillet d'errata, une pelure,
etc., ont 6X6 filmdes d nouveau de facon 6
obtenir la meilleure image possible.
D
Additional comments:/
Commentaires suppl^mentaires;
This item is filmed at the reduction ratio checked below/
Ce document est filmd au taux de reduction indiqud ci-dessous.
10X 14X 18X 22X
26X
30X
12X
16X
20X
24X
28X
32X
The copy filmed here has been reproduced thanks
to the generosity of:
The R.W.B. Jackson Library.
The Ontario Institute for Studies in Education.
The Images appearing here are the best quality
possible considering the condition and legibility
of tiid original copy and In keeping with the
filming contract specifications.
L'exemplaire filmd fut reproduit grdce A la
g6n6rosit6 de:
The R.W.B. Jackson Library.
The Ontario Institute for Studies in Education.
Les images suivantes ont 6t6 reproduces avec le
plus grand soln, compte tenu de la condition et
de la nettetd de l'exemplaire film6, et en
conformltd avec les conditions du contrat de
filmage.
Original copies In printed paper covers are filmed
beginning with the front cover and ending on
the last page with a printed cr illustrated Impres-
sion, or the back cover when appropriate. All
other original copies are filmed beginning on the
first page with a printed or illustrated impres-
sion, and ending on the last page with a printed
or illustrated Impression.
The last recorded frame on each microfiche
shall contain the symbol — ♦- (meaning "CON-
TINUED"), or the symbol V (meaning "END"),
whichever applies.
Maps, plates, charts, etc., may be filmed at
different reduction ratios. Those too large to be
entirely included in one exposure are filmed
beginning in the upper left hand corner, left to
right and top to bottom, as many frames as
required. The following diagrams illustrate the
method:
Les exemplaires origlnaux dont la couverture en
papier est Imprimde sont filmis en commenpant
par le premier plat et en terminant solt par la
dernldre page qui comporte une empreinte
d'Impresslon ou d'illustration, solt par le second
plat, selon le cas. Tous les autres exemplaires
origlnaux sont film6s en commenqant par la
premldre page qui comporte une empreinte
d'Impresslon ou d'illustration et en terminant par
la dernldre page qui comporte une telle
empreinte.
Un des symboles sulvants apparaitra sur la
dernldre Image de cheque microfiche, selon le
cas: le symbole — ► signifie "A SUIVRE ", le
symbole V signifie "FIN".
Les cartes, planches, tableaux, etc., peuvent §tre
filmds i des taux de reduction diff6rents.
Lorsque le document est trop grand pour dtre
reproduit en un seul cliche, 11 est filmd d parvir
de Tangle sup^rieur gauche, de gauche d droite,
et de haut en bas, en prenant le ncmbre
d'Images ndcessaire. Les diagrammes suivants
illustrent la m^thode.
1
2
3
1
2
3
4
5
6
1
fM.Tr.
wmm
mmm
w
liiHiiilii
w
mmfmif^m
^
\{
It kt
rif — all <' — ,V^' — 20H<' ;
31§fi - 12^6 - \^Y - n^d - 33^ ;
2^l^a - ^/> - A^c - A^{u - 1 3f e ;
lOfa + 2|A _ l|Jc - 1 iV? - 7^ ;
^a + 8|6 + 42o + 0.^(/ — 4^6^ ; 0.
18. i. ; a ; ^(Ht/,"). ii. 2G«" ; a 4- a?.
EXERCISE XVII [6]. ^Page 30.)
1. 6, 18.
4. 4, 3, 10.
7. 120, 137, 163.
10. 1840.
13. 34.
16. 7 months.
19. $100.
3. 30, 40.
5. 8, 40, 13.
8. 130.
11. 7, 43.
14. .$138|, $236^.
17. 450, 180, 140.
20. 13{33it--j5r(30
3. 35, 65.
6. 500.
9. 30 minutes.
13. $33, $36, $44.
15. £1300.
18. 300.
33a;) } = 44a; , a; = i\.
EXERCISE XVIII. (Page 41.)
1. a^ + 6'^ _ c^ - c/'-i ; a'-V ^ d" + d\ 3. a" - 36' + c\
3. 2m — ?i + 6. 4. — 2a; — 3y — 2z. 5. l^a; — 4|y + \\z.
EXERCISE XIX. (Page 43.)
1. — 3a + ^x + 36. 3. a + 6 + c. 3. 3a6 + 46'.
4. — 3a? — 2/ + 40. 5. 5 — 4a;. 6. 3a — 36 — 3c + Ad.
7. —4a. 8. —a;— 102/ + 30. 9. — 3a; + 3i/.
10. 3a; — Qy — my + 4a6 — 5. 11. 3a — 56 — c.
13. 0. 13. -\y. 14. ^a-2h. 15. \x. 16. 9.
EXERCISE XX. (Page 44.)
1. i. a; — (a + 6) ; a; — (a + 36 — 2y).
ii. X — (2m -2n); x — (36 — 3c — 5d).
iii. X — (3m + 3a — 26) ; a; — (6 — a — c — w + w).
iv. a; — (a + 6 — c — 12); a; — |(a + 6) + (p + g) + (m — n)\.
ELEMENTS OF ALOEBKA.
X.
several re-
-e
iniites.
I;i6, 144.
r
!6« + c\
i - 3c + 4d.
• — c.
16. 9.
(m — w)}.
2. i. (2a — 46 — 3c) a; — (6a + 3c) // + (46 — ac) z.
ii. (a — 6 + c) a? — (a 4- 6 — r) /y — (a — 6 — c) ^.
iii. (12a — 15c) x — (12a + 46 + 6c) ij — (126 + 8c) z.
8. i. 2 + (7 - 2c) X + (lia - 3) a.'-" + (9a - 7) x\
ii. (2c — a") it^ + (a — 36) x* + {1 — m) a;' + (4c — 3a6) x.
iii. (1 - a) it-* 4- (1 - 6 + c) aj^" + (6 ~ 1) a;^ + (a - 7) a; + 2.
4. i. - (3c' - 5a) a; - (a6c - 7) ai^* - (a6 - 7) a;".
ii. 1 - (a — 1) a; - (1 - 6) x' _ (a - c + 1) a;" - (a-6 - 1) x*
iii. - (a - 36') a;* - (1 - c) a;' — (1 + 5c') aj' - (6 + c) a;.
5. i. (a — c + 1) a;' — (a + 26 + 1) a;' + (6 + c) a; + 3.
ii. (5a + 4c) x^ + (7c - 66 + 3a) a;' + (2a - 76) x.
iii. (a — 6 + c) a;' — 2 (a 4- 6 + c) a? + a6 — 6c — ca.
6. i. 6: 6.
ii. -17; _9.
iii. — 1 ; — 56.
7. (a + 6 + c) (x-\-ij + z).
8. —^a — rx — (2 — 6) a;' + (4a — jo — 1) x^ + 2x*
9. (6^ + 1) i»' — (^ + 2^) X* — (2z + ^.
EXERCISE XXI [6J. (Page 48.)
1. 36: -48: 5: 9: -168
180.
2. i. m^xyz ; a6ca!' ; — 24a'6^ ii. — 36a®m* ; — aHi^e^x^y^z^.
iii. — 14a'6'.z;' ; — 18a;^^'2r* ; — 5a;'yV.
8. i. 40; -63; -2; —37. ii. 130; —880: 0. iii. \\ 29.
EXERCISE XXII [6]. (Page 49.)
1. a^¥c — ab* + dbc^ ; — fa;' + ^xy + V'^.
2. Mhxy + Mcxz + 15aa: ; 9a;V'^' — \2xHfz'^ + \^x'^yz\
3. — 15a;*2^ — 10a;*y/' + 35a;V' — 5^V' ; 3a* + 2a'6 — a''6'.
4. ^xYz — SxYz + Sxhfz* — 12x* y*z' ; ^a'^x — -^^abx - ^cx.
5. — 2a'a;' + la*x* + a^x* ; — x^'y" + ^^x'lf.
6. ^x*y''z'' - f aj'y^^' + IvYz"" — ^""fz^ ; |<**'^'' - W^^ + «'^*-
2 (a + 6)* + 2 (a + 6)"
3 (a - 6)=* - 2 (a - hy
8. (m" — ny + (w' - nf ; 3 (a + 6)«+i + 2 (a 4- 6)"+*.
9. {a 4- 6)'»+' 4- (a 4- 6)'"+' ; (a - 6)"+' - (a - 6)"+».
^
-'.
HINTS AND ANSWERS.
fl
i
B
1.
3.
5.
8.
10.
13.
15.
16.
17.
18.
20.
21.
22.
23.
24.
26.
28.
30.
31.
34.
EXERCISE XXIII. (Page 50.)
ex"" — Vdxy + ^y'. 2. ISai" — ^x'y — ^bx -i- hy.
x^ — 9a^x. 4. - 106' - 15a6^ + Uab' + 21a'-^6
a" + b\ 6, a' - b\ 7. a" - 6«.
^f _ 5if + 3^2 + 6?/ — 4. 9. a« + -^/a'6 + ia6 — 2ab'' - l6^
(a'^ - b"") x''+\ 11. a;* — a\ 12. 1 - x\
y" + 2y* - 72/' - 16. 14. ^x* + y\
am + {an — bm) x + {ap — 6w) re'' — bpx^.
a — (a^ — b)x + cx^ — (ac — b'^^ x"^ a- bcx*.
x^ — Sx' — Sic" + Gx" + 4x* — n
«3 + 63 _ c" + 3a6c. 19. 0;=' + y' + 3a?2/ — 1
18a.'« +27a;' + 7x'' + dx^ - 2x* + 65.«'' + lloic' +
(x + yy -(z + a)\
16a'' + 24ab + 96' - 4c' - 4c(^ - c^'.
16a' - 24c?6 + 96' - 4c' + 4cd - d\
n>* J^ Oi-3 1 ^2 ^,4 I Oi.3 i/2 OR
12a; + 6.
-1.
+ 49;i; + 6.
x* + 2x^ + ic' — 2/' + 2y' — 2/'.
81ir*
2ma\
9^4 S^/v.3
25. a" 4- 86^ - 27c' + 18a6c.
27. x' + 2a;'2/' + y\
|aif^ + ^a'a?' — %a\ 29. a;*^ — a«.
^2^m+2 ^ tj55.^n+2 _^ Q^2,^~+3 _^ ft2^n+3 _ J^H _ ^^2_
^2m _,_ j^.2m^m _ ^m^ _ ^^Sm^ 32^ ,^8 _ ^8^8^ 33^ ^^^ _ \^
x^ + x*a* + «'. 35. X* — y* — 42/' - 62/' — 4^/ — 1.
EXERCISE XXIV [a]. (Page 53.)
2. a;" — 3.r* + 3ir' — 1.
1. a;' — 5a;* + 10a;' - 10a;' -!- 5a; — 1.
3. 2a;' — 18a;* + 39a;' — 25a;' + a; + 1.
4. 4a;« - 5a;' + 8a;* - 10a;' - 8a;' — 5a; — 4.
5. 21a;« + Ux' — 49a;« — 8a;' — 10a;* + 41a;' — a;' — 14a; + 2.
6. Sa;" + 7a;' — 12a;* + 2a^' — 3a;' + 13a; — 6.
7. 4a;'' — 8a;' + 4a;* — 12a;' + 12a;' — 6a; + 9.
8. x^ - 3a;« + 6a;* - 7a;' + 3. 9. a;" - 57a;* -r «oo
10. 18a;« + 21a;' + 8a;° + a;' + 63a;' + 96a;' + 43a; + 6.
11. a;" — 3a;*a' 4- 3a;'a* — a\ 12. 1 — x\
13. 4 - 12a + 5a' + 14a' - 11a* — 4a* + 4a«.
14. 1 + a; + a;' + x* + x'\
— 57a;* + 266a!' - 1.
ia
50.)
)bx -\- by.
+ Uah' + 21a%
7. a" — 6".
lb — 2ab^ - ^b\
13. l — x'.
+ 6.
-1.
+ 49.1; + 6.
' - 27c' + ISabc.
33. x'^~l.
- 62/« - 4y - 1.
53.)
x* + 3;r'' — 1.
14ic + 2.
66a;'^ — 1.
6.
ELEMENTS OF ALGEBRA. i
15. ahx' + {al + 6A;) iK* + {am + 6Z + cA) a;" + {an + 6m + c?) x'
{bn + cwi) a; + cw.
3 0. 3. t/*-72/^ + 10. 5. 729a;'' - 117649.
6. 2a' - 2ap - 2a^n + p' + 2a7ip - 2an + np -^ 2an\
7. 0, put a = & + c.
EXERCISE XXV. (Page 56.)
1. 3a;; 7a!; - 3a;^ - 5a;^ 2. - aV ; a*; - 7a'6V.
3. 3a''; -2a!; - 2a!'^^ 4. Za'b'c; Ixy; -\x.
5. - a'c ; - a^^ ; ax\ 6. - 2a'»-'6"-^ ; - a ; ma ; - 2a5'''+''.
7. 3a'»-"p"-» ; 4a^ {x - y)"^' ', - {a + 6)""'".
8. - 4?/ia!* -^ 5a'' ; -3a6-i-4c; 12a -r-c.
9. a'd" -^ 6 ; — a"^' ; af-* -^ y""*. 10. maf -t- wjT ; a''6''c'-r■a;^
EXERCISE XXVI. (Page 57.)
1. a!-2y; -a!" + 2/'; «'& - «•
2. 1 - 3aa; — 4a V ; - 1 -t- a! + 2a6a!.
3. -ti + ft + c; -a + 64-6^ ia!y-i.
4. - 3?na;™-" + 2a7?i=' — ^a*mxP-^.
5. (a + 6); 4(a-&)^ a-« + a»-\
6. _ ^xY + K2/ - 2y ; 3a:'' - 1|2/ + 4.
7. _ a" - 0! ; a''" - a'-a;" + a!^". 8. 6a''a;2/ - 5ay' + ^a'^xy - ^ay\
9. -ix'^y-^ K - K?/" + K-
2 3 4 - » 3
10.
11.
12.
_f_ _ — + ^ ; 4a!« - a;' 4- iT^-
5c'' 5a'' 5a'' ' 235"
""4^ "^4 42/' a!" a!" a?
.|. + 3 + ^,;(«-6)"-.
3^'
2a'' 2a
13. |(a + &)='-(« + &)+i- 14. a— -(a-
15. 2 (a; + 2/)"^' {x - yT'' - (^ + ^)"-' (^ " 2/)'"'-
16. (a + 6)"^^ (a - 6)"-" -{a^ 6)-" (a - 6)'»-^
&)
,ni— n
8
HINTS AKL ANSWERS.
EXERCISE XXVII. (Page 60.)
il
1.
5.
9.
13.
17.
20.
23.
26.
28.
30.
33.
35.
37.
1.
3.
4.
5.
2. a — 6.
6. 3ir-7.
10. x — l.
14. 9ic' -f iy".
18. 03^ 4- 3a; + 1.
21. %ah.
3. 3a; — 2.
7. 3ic + 2.
11. 3a; + 4.
15. 8a; + 3^.
19. a' + ^-l.
22. a" — 36a' + 2b''a.
4. a — 24.
8. 4a; + 3. .
12. 5a; -1.
16. x' + Ux.
24. a;'' — 5a; + 6. 25. a;'— 2.x' + 2 ; —100a;.
27. x^ + xif + lax.
29. 'W — rib' + dc\
31. a — b — c. 32. 5a' + 3a;'.
34. a;' — wta; + ??i' — w ; (nf — ni'^) x.
36. a;"* — 2af ?/" + y
2n
6.
3.
5.
7.
9.
10.
11.
12.
13.
14.
15.
16.
a; + 7.
3a; + 1.
3a; — 2y.
x^ — 2/'.
4a;' — X.
a'a;' + aa; + 1.
a;' + "Ixu + 2if
24a;' - 2aa; — 35a'.
- 5a' + \bd - ^cf.
OX X -\- li,
2fq + ^p(f + 2(f.
^ + 2/ ; iT^^ + 2xif.
ax" — 6a;' — a'x + a6a; + a^ — a'6. (Read a^6' for a'6' in text.)
EXERCISE XXVIII. (Page 61.)
a^ + 6^ + C — a6 + 6c 4- ca. 2. a;' — (a + 6) a; + a6.
2/* — (m — 1) 2/^ — (w — ?^ — 1) 2/' — (wi — 1) y + 1.
jp2 + g2 ^. ^.2 ^ j^g _|_ g^, _ j,p
1 — a; 4- 2?/ + a;' + 2a;?/ 4- 42/', 1 4- ^k — 22/ 4- ic' 4- 2a;2/ 4- 42/'.
a;' 4- 2/' + ^"^ 4- 1. 7. 3a;' — a; — 2, rem 2a; + l. 8. 2a;'— a;4-l.
EXERCISE XXIX. (Page 64.)
2a;' 4- 3a;' 4- 4a; + 7. 2. a;' — 2x 4- 4.
5a;' — 10a; 4- 2, 3a;' — 10a; 4- 1. 4. x^ — 3a;' 4- Sa- - 1.
4a;=' - 3a;' + 2a; 4- 2. 6. 5a;' — V2x 4- 12, 12a; -72.
5a;' + 10.f + 5, -5a;'-10a;4-27. 8. 10a;^ lOa;* - 100.
1 - 2a^ + 3a;' - 4a;=' 4- 5a;* ; a* 4- 2a' + 3a' 4- 4a + 5.
a;' 4- 2xy 4- 32/' ; m' — 2m 4- 3.
a;* + 2a;' 4- 3.2;' 4- 2a; 4- 1 ; a* - 2a'6 4- 3a'6' - 2a6' 4 6*.
3a;* — 2a!' _ 2a; + 3.
a;* — 3a;' — 4a; 4- 15, 54a;' — 56,2; 4- 27.
oc^ _ 3^-4 _ 2a'' 4- 2a;' + 3.i" - 1 , 5,r.
2x^ — .r' - 2a' 4- 4, 24.c- - 12a! + lo. '
X* 4- 4a;' 4- 6a;' 4- 9,r — 4, rem. 5. 17. 2a;' — 4a; 4- 3.
ELEMENTS OF ALGEBKA.
1)
4. a — 24.
8. 4x + S.
13. 5a; -1.
16. x" + Ux.
ha"" + 262^.
1*^^ + 2; -lOOiC.
ax.
r a'6Mn text.)
I.)
X + ab.
1.
h 2xy + 4y\
8. 2*-'^— ^+1.
5^-1.
13, 12iC-73.
-100.
5.
>' "+ 6*.
18. .-•' — 3re" + 3a;* — 2a;' + 1 ; a;* — a;' + a-' — x + 1.
19, a;' + (« + 6) a; + «6 ; a;'' — aa; + 6^ — ""wi.^ 20. '2if — tuj — h i'.
31. 5a;' — 34a;' + 99a;' — 400a; + 1601, rem. - 6400.
33. a?'" — X* — x^ + a;' -f 2a; + 1, rem. 101.
33. 2a;* — a;' + 3a;' — 3a; + 1, rem. 10.
34. ^x^ + ix* — x\+ ^x" + t, rem. — 3a.-' + 21a'- - 3.i; + 14 ; take
factor 3 out of divisor and divide resulting- ([uotieut by 3.
EXERCISE XXX.
1. 8. 3. 1. 3. 4w'-18. 4.
7. 3. 8. 4. 9. 13. 10.
11. {n — h + a?)-r-{a — m + 3a6 + c).
(Page 69.)
3. 5. 2.
6. 1.
(a' + ab + b')
■T- 3 (6/ + 3).
13.
13.
15.
16.
17.
19
30.
73
31.
^
33.
3;
24.
(be — ab) -T- {a -f c + 6' 4- (fl^ — cf].
(a" + 6' + ab) -r- (a -f 6). 14. 6c -^ (30 — 11a + 36 + 3c).
xz=^{a ■\-b)\ write P for a; — a, and Q for x — b, and equa-
tion becomes P^-t-Q^= {P— (a — b)\-~\Q + {a — b)\, and
on clearing of fractions P^ — Q'^ will prove to be a factor;
.-. P' -Q'' = 0, P + Q = 0, etc. Or, multiply out.
(c' — a&) -j- (a + 6 — 3c) ;
equation is (x -{■ a) — (x + b) = {2x + a + c) -r- (3a; + b -\- c);
complete the divisions, square and transpose ;
.-. {c ^b)-i-{x + b) = (a — b) -T- (2x + b + c), etc.
18. 9. 19. 9.
remove brackets and combine numerical quantities.
33. 4.
('(luanon is ^\x + y^a; + fc - Ux = A + ^ 4- A 4- 1. ; or
Ifla- — ffa- = 8051 -j- 66 x 91 ;
^■. e. 8051a; ^ 77 x 334 = 8051 -r
(2rfb'' - rm) -^ (2a — 2b + 3).
v + 3.
5.
7.
9.
340.
na^ nb
Price =3 |(23a' ^2U)y^ 80a; (x
- n^ = A + f +
3
IT
+ i:
-66
X 91, etc.
35.
8.
>CI.
(Page 72.)
^
miles. 4.
8
men.
EXERCISE XXXI.
8. 12 miles. 3.
-a. 6. mn (a — b) -\- (mn — m — n).
2). 8. 50tral.
One-tliird. 10. 188 oz.; ^(.^c 4- 32) = ^J^ (a- — 56), where
a; = \vt. of lump.
10
HINTS AND ANSWERS.
11. 30 eggs. 12. 4. 13. 40. 14. $78|.
15. 16300, 23000. 16. 63. 17. 30 gal. . 18. 1080 -r- 351 miles.
19. B in ac -f- (a — b) days, Amac-T-{c — a + b).
30. 33 gals., 95. 31. $3. 23. 37,38,39. 33. 6,9,18. 34. 335.
35. Let X = increase of rate, then c-T-a + x = c-i-a — b,
x^a^b -T- (c — ab).
36. 7, 8, 9. 37. 2pqr -i- {j)q + qr + rp).
28. {ma — 6) -f- (m — 1), m (b — a)—- {m — 1).
39. 433. 30. n{m~p)-r-p.
31. 30|, 24f , 11|, 44| ; if a; = 1st part, a; + 4 = 2(1, i^ (a;+2) = 3d,
2 (if + 2) = 4th, and their sum is 100.
EXERCISE XXXII [6]. (Page 78.)
1. 169a'' — 53a + 4a'» ; 335a;'' — 15a^ + ^a"" ;
UlxY + 12Qx''y + 9a!^ ; lUa%* — lUa^h'c + 30«*6V.
3. |a;* + i^V' + -^jiV* ; 18-ri-ga*6^ - 2a'b' + i^Sa'b* ;
389irV"2'' — 2xYz'' + ifir^'y"^*.
3. 1,024,144; 1,096,004; 13331; 5635; 3401.
4. 35(i"''6" + 60a»*'*6'^ + SOa'^^ft'" ; a^^^ - 3a" '6^" + b'" ;
5939a'" + 13553a"6«« + 77446'^".
5. mx" - 4 ; }aj= - ^ ; 4^* - ^l^i/.
6. 49a;'* — 256a;Y ; ^.^'^ - ^-^xY' ; i^"* - y""-
7. 999,856 ; 9879 ; 4875 ; 2499.
8. a;"* — V ; 25a"''6'** - 36a''=&"* ; 5929a"^'' - 77446''''.
9. 4a;^ 10. a" ^rb"" Jr Mb — a^ ; x"" — 2x1/ + y"" — 2\
11. 4a^ - 6^ + 66c - 90" ; y^ - 4x'' + 12xz - 92\
13. {w + yy -(x + zf ; (* + tf - (u + r)\
13. (a + cf)' - (26 - dcy ; (3^ + .?)'' -(x- 2k)\
14. 3m' + Qms — 8jf + 4pk — 12ps— 2mk.
EXERCISE XXXIII [a]. (Page 80.)
6. 1 + 3a; + 2x^ + 2a;=' + a;* ; 1 — 2a; -f 3a;^ - 2a;' + x* ;
1 + 4a; + 6a;' + 4a;' + a;* ; 1 — 4a; + 6a;' — 4a;' + x*.
7. 16 + a?' + 4y' + 8a; - 16y/ - 4a'/y; 35 + ?/'+92''-10^-305'4-6y^;
1 - 3a; - a;' + 2x'' + x* ; a;* + y* + ^* + 3a;'y' + 3.yV' + 32rV.
ELEMENTS OF ALGEBRA.
11
14.
I78i
1080 -T
).
- 251 miles. >
h 9, 18
. 24. 235. ^
= c~-
a — b, 1
E 78.)
+ nGa*b-o\
^b'"-
r44b"\
— z'
80.)
X*
-\-x\
S. 1 + 2a;' + 6:1;^ + a;* + 6a;^ + Oa;" ;
1 — 2.^' + 60;^ + a;* — 6a;' + 9a;« ;
4 _ 4?/ + 9?/' - 4?/ + 4?/* ; 4a;* + i/ + 1 + 4a;''2/ - 2^/ - 4a;^
9 1 _ 2a; + 5a;' - 4a;« + 4a;^ 1+ 2a; - 5a;' - 6a;^ + 9a;* ;
4a* - 7a' + 4 - 4ci^ + 4a ; 1 + 2a' + 2a),+ 2a'^ + c^.
,0. 1 + a;' + 6'2/' + 2a; + 26?/ + 26a;2/ ; ^'^
1 + a'a;' + 6't/' + 2aa; + 262/ + 2a&a;i/ ;
1 + a/x^ + 6'/ — 2aa; - 26?/ + 2a6a;?/ ;
1 - 2aa;' + 26a;« + a'a;* - 2a6a;' + 6'a;«.
A 1 + 2a; + 3a;' + 43;" + 3a;* + 2a;'^ + a;« ;
1 _ 6a; + 15a;' - 20a;« + 15a;* - 6a;^ + a;« ;
1 — 2a; - a;' + 3a5* + 2a;'* + x\
12 1 - 4aa; -h lOa'a;' - 12a^a;'' + 9a*aJ* ;
^6 __ 6a;'' + 13a;* ~ 14a;' + 10a;' - 4a; + 1 ;
x^ — 4a;' + 10a;* - 4a;« - 7a;' + 24a; + 16.
13. 4a' 4- 6' + 4c' — 4a6 + 8ac — 46c ;
a^ + lb"" + K - a6 + ac -■|6c ;
^^2 _|. ^^2 + c^ _ ^a6 - 6c + ac ;
^a' + 6' + ic' - a6 - f 6c + \aG.
[6.]
1 (2a; + 2/)'-^-160. 2. (a + 6-c)'-100. 3. (a; + 2i/ + 3i^^+40)'
4. 6 (a6 + 6c - ca)\ 6. 4 (t^' + a;' + 2/^ + z\ 7. 8a;'2/.
8. «« + 2a'' + 3a* + 2a' + 1.
10. 2a'6' + 26'c' + 2c'tt' _ a* - 6* - c* ; see Ex. 3, p. 128.
EXERCISE XXXIV [6]. (Page 84.)
4. (3a; + 4?/)' - 25^' ; (2a + 4c)' - 96'.
5. \{x^ + 2a;' + 4) - 3a;} x K^' + 2a;' + 4) - 5a;}
= «;'' + 4a;' - 4a;* — 8a;' + 31a!' - 32a; + 16 ;
\{x-^z^w)^-y\\{x-vz\ w) + ^y}
= (x + z + wy + 4y{x + z + uf) + dy\
6. x' + 9a;' + 26a; + 24 ; a;' + 14a!' -r 55a! + 42 ;
x^ + 9itf + 23a! + 15.
7. x^ - 9a;' + 26a; - 24 ; a'' - 14.1;' + 55a; - 42 ;
.^3._9^j.-2 ^ 23a!-15.
8. a;'-' + 3ii;' - 10a; - 24 ; x^ - t2.t'^ + 29.'« + 42 ;
^■.' 4-0;'- 17.1; + 15.
la
HINTS AND ANSWEKS.
9. 8a;' + ISa;" + 22a; + 6 ; 8a;'' - 12a;'^ + 22a; - 6 ;
8a;' — Ax"" — lOo; + 6.
10. X* -{-x^(y + z + w + k) -{■ x^ iwy -{- wz + wh ■\- yz -\- yk + zJc)
+ X (yztv + yzJc + zwk + ykw) + yzwk ;
X* — {a + h -^-c + d)x'^ + {ah -\- ac + ad ■\- he -{- hd -\- cd) x'
— {ahc + ahd + acd + hcd) x + ahcd.
11. 10^ + Qw^r + 'Swr'' + r' ; w* + iiv^r + ^iv'^r'^ 4- 4^^r' + r* ;
8m;» + l^ijfr + Qwr^ + r' ; ?^;* + 8?/'V + 24?//'/'' + 32w;r'4-16;'';
12. A;"* + 15A;*6' + 90^V + 270^;'^*' + 405A-.S-* + 2436-'^ ;
a" — 12a'6 + 60a*6'^ - leOa'fe' + 240a'6* — 192a6' + 646" ;
8a' — %ahv + faw'' - ^iv^ ; |a' + ^a'w + 6a«^;'' + 8t<;' ;
27a'' — 9a* + a-- ^V-
13. 1320aW; - 22680a*6' ; - 2aV.
14. 1485a''6'^' + 55a6" + h^" ; 2145a;Y* + 66a;,y''* + 2/"" ;
- eeSSa" 4- 121a - 1.
15. 54a'^6'; 540a'6='; 1680a*. 16. 1.21662924 ; 1.7101875.
EXERCISE XXXV [a]. (Page 87.)
1. «* + 2a;' - 85a;' - 86a; + 1680.
3. Write A; for a; + a, rn for x -V h, .-. product = k* + k'^m'^ + w*
= 3a;* + 6a:' (a + h) + x" {la"" + 4a6 + 76')
+ X (4a' + 2a''6 + 2a6' + 46') + (a* + a'6' + 6*).
3. a'^6'^ + c'rf' - o'g' — ¥d\ 4. a' + 6' + C - 3a6c.
5. x^ —px* + qx^ — qx^ +px—l,
6. a' (a;' — l) - «« ^^.s ^^''-2) -{-a {ix'' + 3a; + 2) - 3 (a; + 1).
7. w'' — z\ 8. 8a;'. 9. 24a;y^. 10. zw + xy.
11. 6a;y^. 12. 4a;y. 13. See p. 85, H, (3).
\
m^
EXERCISE XXXVI [6]. (Page 88.)
7. a + 6 - c ; a; - 2y — 3z. 8. a^ — 2a6 + 6'' ; a' + a6 + 6^
9. 1 + 2a; + 3a;'^ ; Ba^ + 2a -f 3. 12. a; + 4 ; 2a; - 36.
13. a + 86 ; 2a — 76. 14. 1 + a\ 15. a;'' - 2a; + 1.
5
a
3a_
• "5 3a' 26
2;
8m
dw
[c]
+ 2.
ELEMENTS OF ALGEBRA.
13
J;
' + y2 -\-yk + zk)
■be + bd + cd) x'^
+ 4ivr'^ + r* ;
r^ — Awr^ + r*.
is";
192«6' + 646" ;
Qaw'' + Sw^ ;
+ y''i
; 1.7101875.
GE 87.)
= k* + k'^nf + lit
I. ^x^^-^x-X'^x" ^x-^'^x'^^x + l.
4y
X
+ 6*).
— Mho.
-2)-3(a;+l)
v + xy.
(3).
lGE 88.)
^ a' + a6 -1- ft'*
2a; — 36.
-2x + \,
3. 2a^ + 3y-5^; 2x^-x + \. 4. -^ - 4 + ^ ; o)- 2
1
o.?-i.^;|.2.
5 ?^_1 + ?^. 6. 4a-36; ;^-3a;.
^- 6 5 3« ^
7. l-2;i! + 3x^-, -^'-l. 8. a + 26-c'. „. ^
10. Cube both sides by formula G (2), p. 85.
EXERCISE XXXVII.
1 a'6 + 6^a; a(« + 6)^ + 6(6 + a)^;
^5 (6 _ c) + he (c - a) + ca (« - 6) ; a%o + 6^ca + c^a6 ;
a (6 4- c) + 6 (c + a) + c (a + 6).
3 («_6)(6-c) + (6-c)(c-a) + (c-«)(«-6);
^^ (6 - c) + 6^^ (c - a) + c« (a - 6) ;
«(6_n)''4-6(c-a)^ + c(a-6)^ _
ix-d)(b-e)'^-ix-h){e-ay^{x-c){a-h)..
3. a' + 6^ + c« + cZ^
a'^ (6c + hd + cri) + 6^ {ac + «f/ + ccZ)
+ c'^(«6 + «^ + &c)+^^(«6 + 6c + «c);
«. (6 + c + cZ) + 6^ (c + c? + a) + cnrf + « + &) + ^' (a+6+c) ;
a + 6 + a + c + a + rZ + 6 + c + 6 + 6Z + o + r7;
a6 + ac ■\- ad -\- he -r hd + cd ;
lalhf \\a - c)3 + (^ - ^« + (6 - cf + (b-d? + (c-cZ)'.
4 («_6)X6-e)^ + («-c)^ (e_.?)H(a-6)^ ^^-^^^^^^-^ f-'?;.'
13. a,6, -c;a, -6,c;a, -6, -c. 14. a, 6, c ; a, 6
15 a,6,c;a,6; a, -6. 16. «^, 6, c ; 6^^ and 6y, a; and y.
17. a and 6 ; a, 6, c. 18. a, 6, c. 19. «,&;«'^-
90 ^ ft r 31. a%. 22. a^ a='6, a'h\ abc .
23 aj" a^V a^^- ^^' '^'^- ^^- "^^ ' ""
26*. ^;^ ^^'.. 2^- ^^ -'y ^ -^ ^^^' ^^^^ ^ "^' f ^; ^T;
28. x\ x-y, xyz. 29. a*, a% a^b\ a^he ; ^^ x% x^yz, x^z, x z .
30. a\ a% abc ; x\ x'y, x'y\ xUf-
31. a' + 6' + c' + cZ' - 3 {ahe + «6d + 6cf/ + cda).
^•KW,
w
^
14
32.
HINTS AND ANSWERS.
a + b — c •, a — h + n; — a -f b -{■ c \ a — b — c-
33. if{(a-by + (b + cy + ic + af\;
^{(a + by + (b + cy + (c-ay\;
^{(a + br + (b-cy + (c + ar\;
^\(a + br + (b-cy + (c-\-ar\;
the three expressions are derived from the first by, respect-
ively, substituting — c for c, —b for b, — a for a ; observe,
also, that (—a^cy = + ia + c)'.
(Page 96.)
3. 2 {xy + 'i/z + zx).
EXERCISE XXXVIII.
1. 3 {a" + 6' + c'') - 2 {ab + &c.). 2. 0.
4. 6 (./' + 6' + c'') - 2 {ab + 6c + ca).
5. 2 (a;'* + y"^ -{■ z"^ — yx — yz — zx).
6. 14 {a" ■\-b'' + C-) - 14 {ab + 6c + ca).
7. 4 {a" + 6^ + c' + rf'). 8. 4 (a'V + 6^'^ + c^^"^).
9. 2 (a' + 6» + c^*) + 6 {a'b + etc.) - 13a6c.
10. a'' + 6' + c' + d\ 11. 3 (a'' + 6" + c- + (/-) + 3 {ah + etc.).
12. 0. 13. 6a6c. 14. ahc{a -\-b + c).
15. 4 {x* + 2/* + 0*) + 24 (a^6^ + 6^6-- + d'a"").
16. Note.— The first term in each of the binomial factors should
have index 2 ; i. e., a"^ for a, etc. Multiply out, or use identity,
x^ + y^ + z^ — Sxyz = {x -i- y + z) {x^-\-y'^-\-z-—xy—yz—zx).
17. Multiply out and subs, for 5.
18. rs = {a-^-by — (e — d)"^^ the other pairs by symmetry ; result
is 4 {ab + ac + ad + be + bd + cd).
20. Type terms are a^ 2a^(6 4-c), a^b"^^ and both expressions
reduce to same form. Or, use identity, Ex. 7, p. 105, put-
ting a — 6 for a, 6 — c for 6, and .-. a — c for a -f b.
EXERCISE XL.
1. {a-b){x-{-2y).
3. {a ■\- x){a — b).
5. {m -!- n) {x^ — a).
7. {a + 6) (3.« -h y).
9. (,^ _ 6) (,; + y).
11. (3a — 6) (ic — ?/),
(Page 98.)
2.
{a
-f b) {2x -
-m
4.
{('
- (Z) {ab -
-c).
6.
{a
-f6)(a-
■0).
8.
(a
- ?>rr) (1 -
-x).
10.
in
+ ;r) (a -1- b).
12.
(7
- X) {a -
- 6c).
ELEMENTS OP ALCfEBRA.
15
c-
^rst by, respect-
'iov a\ observe,
: 96.)
' {^y + y2 ■\- zx).
f-'z').
+ 3 (a6 + etc.).
factors should
or use identity,
'—Xy—ljZ—ZX).
nmetry ; result
'th expressions
7, p. 105, put-
2x - dy).
lb — c).
2 — c).
(1 - X).
% + h).
1 — he).
■I
13. (r-s)(3i) + (/).
15. (3.1; - a) (3.*; + Z/).
17. (^- -1) (36^-1).
19. (a-l)(«' + l).
21. ix" + a') {a - 3ft).
23.
25.
37.
39.
31.
33.
35.
37.
{x" - 1) (3«*^ - 1).
ia'x' - c) {a'^x"- - b).
(^a _ a") {x"" + ax + a""),
{a + b) (ax + b!/ + c).
(a -l){a + 6).
(1 _6)(a — & + c).
(1 _ x") {1 +X'' +P + q)-
{a ■\-b — c){(l-e +./).
14. (l-«)(l-6).
10. (a'-'i){(i + 1).
18. {xy — z) {a + be).
30. {x+f){2a + b).
33. ix-y){x-S).
34. (6-l)(c-l).
36. (3?>^-l)(l-3«').
38. {a-b){x-y + z).
30. (aof - b) (6af + «)•
33. (3 + a;") (3 - y").
34. (« — a;) (3it>9 - 36/).
36. (3i)» - 3^") (r" - 35").
38. (1 +jO + g)(l-« +6).
EXERCISE XLI. (Page 100.)
m \ 2
\b (^1
13. (a; + 2/ + ^)'; (P-^i + ^')'.
14. (a-36 + 3c)^ (l-'^ + yy-
15. (3a + 36 + cy ; (3a^ - 3a + 4)^ 16. (3aa; + 36^ + cz) .
17. (3a^ - 36 + 4cy ; {a' -b'- g^.
18. ±4a;y; ± a;y ; a; Y ; -10a;?/; ± 4a;Y.
19. ±6a2/; ± 10a^& ; ±13.-^;^; ±3a"6« ; a\
30. a-, 0- i; i; 4; 6^ 31. i6-, ±460;^/- ±3; ±3; x\
33. 7; i; 6^ -^ 4a^ ; 35-4; 49-4.
23. 81 -^ 16 ; x' + 4:; x' + ld: - c + ^6^ •
EXERCISE XLII [6]. (Page 103.)
Note.— The two factors in each case are expressed with the
double sign ± .
1. a + 6±c; 2(x + y)±z; a^±(y + ^)\ 3 ± (a + 6).
2. p + 2q±r ; ix ± {a + 36) ; 2m ± (p - g) ; 2x (- 4?/).
3';i±(6_c); a + 6 + c±^; (8 + a;) (10 -(T) ; 6-c ±(a-a;).
16
HINTS AND ANSWERS.
4. 3 |2 (a' - be) ± (b' - ac) \; a -- nb ± 1 -, 1 ± (x - y + z) ; V
(a* + b*) {a' + b") (a + b)(a-b); (a- 3c) {a + 4b + 3c). >
5. (_ a + 6 — 4c) (3a — 56 + 4c) ;
(1 _ a + ?,) (1 _ a - 6) (1 + 2a - a^ + 6") ;
(12a; - 1) (2^ + 7).
6. ix-z±y){x + z±y); 4(x + z)(y + ti)',
{x±{y + z)\{x±{y-z)\.
7. {x-z)±(y-'u); a±{x-y); x ± (y -{■ z).
8. x±(y-z)', x±(y + z)', x + z±y', x:' ± {x - 1).
9. {x + a) ± (y + z); ia — c)±(b — (T);
(a' + 6«) {a* + b*) {a' + b') (a + b) {a -b);
(a'' + 6« + 5) (a'' + 2a + 3).
10. a - 6 ± (a; -^ y) ; a' + a ± (?'" - 6).
11. (x -i- b) (a ± X) ; {a- d ± {b - c)}; ab ±c(a — b).
12. \c±(a-b)\\a + b±c\- x'' -\- y' ± (z' + 1) ; a - d ± (b - c).
13. 2« ± (6 - 3c) ; 6 ± {2a - 3c) ; 2a ± (6 + 3c).
14. 3c ± (2a - 6) ; (a + c) ± (6 + rZ) ; (a + (Z) ± (b + c).
15. (6 + c) ± (a + cT) ; (a + r?) ± (26 — 3c).
16. 3c + rf ± (« — 26) ; (a - 3c) ± (26 - c?).
17. {a + d±{b-c)\ {b + c±{a-d)\.
18. (a;^ + 1 -f- ^'^) (a; + 1 -^ y) (a: - 1 -4- 2/) ; i»* ± tV. etc.;
x" (x* - 25) - ^ (a;* - 25) = {x* - 25) (x^ - ^), etc. ;
{X* - 16) (a;^' + 1), etc.
EXERCISE
1. 3a;^ + 2/' ± xy.
3. 3a'' + 6' ± 5a6.
5. aj" + 1 ± a;.
7. a;' + 25 ± 5x.
9. a;' — ?/- ± 3a;y.
11. a'' — 7f±2ay.
13. 9a'' + 6' ± 3a6.
15. ^p" -^q" ±pq.
17. 2a;'' — 1 + 2a;.
19. oc' + 2a''y'' ± 2a.:cy.
XLIII. (Page 105.)
2. 4a'-6'±3a6.
4.
6.
8.
10.
12.
14.
16.
IP.
20.
Vrnf 4- 4«^ ± 7/nw.
a;' + 4 ± 2a;.
^+ I ± t«.
X' + -g^- ."X ■ja;.
m^. — M* ± 4»i??.
4a^ + 6^^ ± 6a6.
9.r"' — y^± 4xy.
ia;^ + ;y' ± xy.
2a'±y'±^ay.
ELEMENTS OF ALOEBUA.
17
(x-y ^z);
(« + 46 + 3c).
).
[X - 1).
a — d ± {h — c).
{h + c).
'^, etc.;
I), etc.;
.05.)
3a6.
± Imn.
imn.
ixy.
vy.
lay-
21. a:* + 2/* ± a^Y, <^tc. ; x* + } ± ^'^
23. a'x* + 1 ± «^"^ ; '^* + ''^y' ± 2^^-
23. (a + 6)^ + c'±3c(a + 6); 1 + 2a;^ ± 2a^.
24 4a!^ + 2(2/-2r)^±r,^(//-^)' 1 + •''>^* ± ^^'•
25. l + 2a*±3a^; a^ + 96^ ± »«&•
(a + by + {a- by ± (a^ - &")•
28. c' + 2(a4-6)='±2c(«^ + 6); 1 -t- a^ + 1 - ^'.^ ± ^
3 ^ a^ + 1 -T- 6'^ ± 3 -r a6.
-r-a6;
EXERCISE XLIV [u]. (Page 108.)
17. C?)!" + 21) (w^* + 19).
19. (af + 7) (af + 12).
18. {a'x + 29) {a^x + I).
20. (05 + 17) (^ + 33).
21. (af + 12)(a5" + 4).
23. («•+ 27) («-''+ 13).
25. (a'aj + 81)^
28. (a;-19)^
31. {x'-S)(x'-2n).
33. {x-Vdyy.
35. (a -276) (a -26).
37. (26-a6)(5-a6).
39. a;\+l± V-«- n,
41. 3a; (a? - 2) (a; - 8)
22. (a; + 33) (a; + 27).
24. {a + lSby.
26. (a; -4)^
29. (a? -20)^
27. (a; -15)'
30. (a; -50)'^
■U.U'
43. a;':l-60±17a5.
45. (a + 6-4) (a + 6- 3)
82. {m - 17/1) (m - 5??).
34. (a;-^ - S//'^) (a;' - 42/'0.
36. (4 -a;) (3 -a;).
38. (a - 25) (a - 15).
±:£ 40. (a;'' - 27) (a;^ - 8).
^--^ 42. a(a; — 5)(a;-6).
^:r/ 44. (a;» - 7) (af' - 37)
46. (13-aa;)(ll-«i^).
47. il-SxY)0--^^^y
Y). 48. (a -276)'
xUa-^tnbx){a-bbx). 50. (m-19)
49.
51. ip-mf
52.. U^-2/)
[6.] (Page 109.)
-v)"-33i {{x-yr-'^^'
1. (a» + 1) (a' - 2).
3. (a; - 3) (a; + 2).
5. (a; 4- 12) (aJ - 7).
2. (a + 3)(«-2).
4. {X — 16) (a; + 3).
6. (^ 4- 12) (*/ - 5).
18
HINTS AND ANSWERS.
■J
i
\
., ./'•
7. {a + 30) {a - 7).
9. {x+ 13) (a; -11).
11. (//' - 10^/^) (//' + 5a0-
13. S (az'' - U) (az'' + \).
15. {aha + n){(ihc-2).
17. Or' - 48) (x' + 8).
19. (x + y-m{x + y + \S).
21. (aj'-"* + 4) Of'^" - 3).
23. (13 - ah) (5 + «6).
25. 3y (rt + 146ic) (a — 26ii!).
27. (3a; + 7) (3.t; + 5).
29. {7a--Sbf.
31. a;* (82/» - 10^)'. 33. {a' -
34. 3 (a;" + 2/') (Ba;' - 4,^') : w
35. (Saf* — 36") (8.t'» + ?/').
37. (f« + 76) (|rt - 86).
8. (a + 25b) (a- 136).
10. (u! - 10) {X + 2).
13. (ah - 4) {^;6 + 1).
14. (a* - 30) (a* + 5).
16. {a'b' - 30) («"6'' + 3).
18. (of — 16) (O!" + 3).
20. {a-30(6+6')H« + 13(64-c)
23. (30 + rt)(19-a).
24. (13-7/0(17 4- w). I
30. (3a; + 7) {2x -{- 5).
28. {2x''y - 7-2-") (3a;''?/ + O^-^).
30. X (36 - y) (36 - 5y).
- 406^) (a' + 56^). 33. (llo;'^
here x = a — b and y = ''•
36. (^a;' + 7) (ia;' - 6).
- e-)(:-«)-
/
39. (^. + l^)(^-2^)- ^^- (•">.*'' + ''il)('^>^''- '^D-
EXERCISE
1. (3a; + 1) (3a; + 3).
3. (3a.' + 3) (5a; + 4).
5. (3a; + 5) (3a; + 4).
7. (4a + 9)(« + l).
9. (a; + 5) (4a; + 3).
11. (4a; - 3) (3a; + 3).
13. (4a; + 7) (3a; - 5).
15. (3a; + 3) (3a; — 1).
17. (3a; + 4) (5a; - 3).
19. (5a; + 3,v) (3a; - 52/).
21. (dm + 20) (2wi - 19).
23. (3a; + 7^/) (4a; — 5y).
25. (5a;'' - 1) (4.^•^ + 1).
27. (13a; - 7) (3a; + 3).
29. (8a + 6) (3a — 46). -
XLV. (Page 112.)
2. (4.a; + 1) (x + 3).
4. (3a; + 3) (3a; + 1).
6. (3a; + 7y) (4a; + 3^/).
8. (1 + m) (7 + dm).
10. (a; + 7) (3a; + 2).
12. (4a; + 3) (3a; - 2).
14. (4a! - 7) (3a! + 5).
16. (5a; - 1) (2.1! - 3).
18. (a; - 7) (7a; - 1).
20. (a'-- - 19) (a'^ + 17).
23. (2a + 20) (3a— 19).
24. (3 - 12a;) (5 + 11a;).
26. (15a _ 1) (a + 15).
28. (6-»/)(3-52/).
30. (8 - 97/) (3 + 8y).
Vly)'
1*
S
I I
i;ij:.mi:nts ok alcjkhua.
10
(a -12b).
r + 2).
'lb + 1).
(n* + 5).
) (a'b-' + 3). ,
(*•" + n). I
l+f)} \a + \2{b+c)\.
19 -a). /
|(17 + ^/0. /
'^ ^- 5).
i'^b ~ ny).
33. {Ux'-V^yf.
»>(1 y=:c.
h'^^ - 6).
(•^o;'^ - 31).
112.)
» + 3).
5« + 1).
'M + Zy).
+ 3;/0.
+ 2).
» + 5).
»--3).
-1).
'^ + 17).
ia-19).
> + llic).
+ 15).
%).
81.
183.
5.
i7.
J9.
41.
43.
45.
47.
1.
3.
5.
i.
9.
11.
13.
15.
17.
19.
21.
23.
1.
3.
5.
7.
9.
11.
13.
15.
(2H.T^ - 25) (^' + 5).
4(7.c — 5^)(2.f — //).
(8« - 56) (7« - 'Uj).
(8?/ + 52-) (Oy - 82-).
(50^''' -H 4Z;'0 (r/' - 56").
{Ux + 12//)(3aJ— 4y).
(39.<;— 2G)(.r + I).
(l-13.r-)(l + 11 ir').
(3.f='-21)(4.i;' + 11).
{x
EXERCISE
a){x'' — 2x — 1).
(my — n) (ay^ + by - c).
x"^ —X — 1
32. 4 ('14.?'+ ryy){x- y).
34. 4(H.r— 5//) (.r + //).
3(J. 2(28.y + 1) (/y- 10).
38. ({)// + 3r0 (4// - 5a).
40. (50^ — 56) {(( — 46).
42. (3.r + v/)(13,c- 11//).
44. {VZx -\' Vdy) {nx — Hy).
40. (a" — 136") (//" + 116").
48. (\7x-\}(x+ 17).
XLVI. (Page 114.)
2. (x — a) (X- — />^ + (j).
4. (26 — c) (ic" — 26a' + 6).
(7ix — a) (x"^
i)-
6. (6a; — a) {{m + 1)6V + (m + 1)(». + ^)(ibx + (y^ + !)«=[
multiply out, take v^i-torms for one group, etc.
7. (y-b)Oj-rry
8. (x — 6) {X — a) (x + 26).
(x+p + q) (x + q—p) (x—2q). 10. (x — a) (x + 6) (a; + 3).
(x+b) \x(x—l)—a(x-\-l)\. 12. (2x - a) (2x'' + 4x — S).
(pi/-^q)iy''-y + i)-
14. (mx — n) {pxr + qx — r).
{mx — n) {ax^ — cx — b). 10. (/;.*; — q) {^x"^ — cx — b).
(x^—px + q){ax''-\-bx—a). 18. (2a; + 3c) (a;' + 0^.^ — 26).
(2a; + 3c) (x" — 2ax + 36). 20. (ap — bq) (2p^ + ?ypq + q").
(ap — bq) (np' —pq — 2q'^). 22. {ax + b) {ex"" + rZa; + c).
(aa; + 6) (2ca;' - dx — 3c). 24. (3y — «6) (3v/ — 6c) (3i/ + 5).
EXERCISE XLVII.
(Oa; - y + 1) (a; - Oy - 1).
(4a + 56 + 4) (3a — 46 — 5)
(3a; 4- 2/ + 3) (.7; - 3^ + 9).
(3a -6- 7) (4a -36 + 8).
(a + 37/)(a-4y-5).
(Page 118.)
2. (3a; + 2y + 1) (2a; — 3y — 1).
4. (a; — y + 3^) (a? + 2y — 2-).
0. (2a — 56 + Oc) (3a + 46— 8c).
8. (7a;-.v-l)(a;-2/ + 3).
1 0. {2x — 5/y — Iz) (2x + 3,y + 3^).
(3a; + y — 4^) (3a; — 3//— 2^). 12. (3a; — 2// + 3^) (2.a;— 3// + 2^).
(5a; — 3y + 2^) (a; — // — 2-) . 14. (a — 26 + 3c) ( 14a — 6 — c).
(2a - 6 - 3c) (4« - 36 - c). 10. (1 - 3a; + 4y) (1 + 7a; - 5y).
30
HINTS AND ANSWERS.
EXERCISE XLVIII. (Page 122.)
7. 8. 8. —8a\ 9. -205. 10. 1.
11. a^+pa^^qa + r. 12. —36. 13. 1555.
14. X + 2, X- 3. 15. (X + 1) (Hx + 2) {2x — 1).
16. Last term should be 52^1 18. (x — 2) {x — 5) (x + 7).
19. -535. .20. -800. 21. 101. 22. 115.
23. — a^ —pa^ — qa — r.
24. dbc — Aah (a + 6).
29. -1. 32. 2. 34. 2 (a + 6)1 35. 0. 39. 0.
40. 0. 41. yes ; put 1 for a; + //. 42. 0.
44. a^+pa + q, a'' +p'a + q'.
EXERCISE XLIX. (Page 126.)
5. (p - ly -(p-l)(q + l) + (q + If ; a» - 6".
6. x'° ~ x'a' + a'" ; 1 - (a-b) + (a -by - {a-b)\
7. ie' — 1 + 1 -=- a?'' ; x' — 2x'' + 'Sx* — 2a;' + 1.
8. x'' + y''±xy; (a- + 4b') (a + 26) (a - 26) ; 2x {x" + 12^^^).
9. {a + b){a' + ¥±ab)-
x" — 2y^ and x^ + 2a;y + 4a; V' + SxY + Uy\
10. (a' + be) (a* + we - Aa'bc) ; {x + 1)^ {x - 1)« ;
{x+\){x-\){x' + \)(x' + \).
11. «^-(26^)='=^a-26^H«' + 2«6^ + 46'»}; («-6)«6.
12. Expression=(4a'-96'^)(a:^-8a='),ete. ; la - ^\la' -^ i + _L\ .
1 5. Expression = {x"" — y"") {x — yf = 128a='6=' {a- + 6'-').
16. a? — 1, factor dividend.
17. (a* - aV + x") (a« + a'x' + x^).
19. Factor and divide hy a -\- \ -^ a, .-. «'■ — i + i -j. ^^^ = o
.•.a' + -^-, = l, .-. «=+^^ + 2 = 3, etc.
20. Expression = ( 1 — ,'c) (1 — ,»;«).
21. Divisor — (x — \) (x' ~x + 1) and ^nveu expression vanishes
for each of these factors.
22. i^r - y) (x:" + y') (x' + y*).
ELEMENTS OF ALGEBRA.
U
tE 122.)
1.
1555.
') {2x - 1).
-•5)(.T + 7).
115.
EXERCISE
(a + b).
39. 0.
42. 0.
126.)
■b\
i — b)'\
ix(x^ + 12y2).
X — 6) a6.
1 ^a' = 0,
ression vaiiislie.s
L [a]. (Page 129.)
2. (a-6)(6-c)(a-c).
4. (a-6)(6-c)(c-a).
6. 3 (a' - 6^) (6^ - f^ (0' - «')■
1. 3(aJ + ?/)(2/ + ^)(^ + ^)-
3. (a_?>)(6-c)(a-c).
8. _(a-6)(6-c)(c-«)(fl'. + & + C).
«). (a_6)(6-e)(^^-«)(«^ + ^ + ^)-
10. (a. + 2/)(y + .)(^ + ^). 11- 3(««-6)(6^-c)(c'-a).
13 («. + 6 + c)(a^ + &-^+c^). 14. (x + y + ^y. 15. (« + 6 + c)-'.
16. 6a6c. Insert in text - (a + &)^ and read - before (c + «)^
17. (a — 6) (6 — c) (c - ^f) (^'^ + ^'^ + c*^)-
[6.] (Page 130.)
By symmetry ; or formula (H) (4), p. 85.
By symmetry ; or transpose dabc, then « is a factor, etc.
5(^ + ^)(^ + 0)(0 + a-)(x^+/+^^ + a.-2/ + F + ^^)-
(a + b-c){a' + ¥ + a' - ah + hc + ca) ;
(^a + b + c)ia' + b"- + c' + ab-bc + ca) ;
(^-a-b + c){a'' + b' + c'-ab-^bc-\-ca).
12f ; 2d term should be 13a;'.
Use synthetic division ; 4m — 12 = 0, m - 3.
Given expression = (a; - 3) {x + 2) (a. - 5), which is true for
all values of x, :. coefficient of like powers of x are equal ;
1 e.,a=-6, 6 = 1, c = 30.
5:=_6,c = 5,a = 12. 11. l-r-(« + 6 + c).
2 ; dividend is 2 (divisor). 13. 16a&c (6 - c) (« - c) {a - h).
-abc{b-G){c-d)(a-b).
- abc (a + 6 + c) (6 - c) (c - a) (a - 6) .
2.
3.
4.
5.
6.
7.
8.
9.
12.
15.
16.
EXERCISE LII [a]. (Page 133.)
1. ax-, x + 2; 2{x-y)\ 2. 2(.^-«); ah(x^a)(x^h).
r + 3; .t: + 9. 4. .^-2; x + 2.
5 ,, + ?>; .'1- + 1; .'-3. 6. .-^ + 5: ^ + 4; (^ + 1)'.
7 ^ + 3;^--ll^ «• 3(a;+t/); (a; + y)^^'' + 4.
3
PX'V
n
HINTS AND ANSWERS.
Q. X + 2 , X -{■ a. 10. X — a ; X — y..
11. a; + 3^; a + 3. 12. a — 1 ; r» — a — 4.
13. a + b^ c; a + b + c. 14. a + b + x + y\ x -\- a.
15. a; — «; 8(a; — 3?/); a; + «. 16. a? + « ; a; — 5 ; ((t— a:V''
17. ic'' + icy 4- 2/' ; ir'^ + «' ; a;^ - y'.
18. 3 (^ - y) (a! + 2^) ; 3 (a + &) {a^ + 6").
19. 5(i?-^)(p + g); a3 + y.
20. X + y.
22. 2a + 5 ; « + 5.
24. a^ +ab + b^; a -\- b.
26. x"" (Sx + 2).
28. 3iC + 4a ; unity.
30. a^ + V
32. 2a + 36 — c.
34. mx -\- m — X.
86. a; + 2a6 ; omit a in ax^.
88. 3 (2a - 7).
89. (2aa; — y) ; last term of 2nd expression should be 3y'
40. (x-iy.
21. 3a; + 1 ; SiC — 1.
23. a; + 3 ; (a; — 1)'.
25. 2a; + 1 ; x^ -\- y.
27. a;'' + 2y^ — 2a;2/.
29. 4; 1 +-••
a
31. 2a; — 1.
33. 5 (a; + 2y).
35. ap — bq.
37. (a — b) (X + a).
EXERCISE
1. 2 (a; + 1)'. 2. x
4. 7a' + 3a - 1. 5. y'
7. x"" -2x- 3. 8. a;'
10. 3a;' — 2xy + y\ 11. a;
13. a; (2a;' + 2a;j^ — 2/').
15. (a; -l)(x + 1) or a;' —
LI 1 1 [a]. (Page 141.)
1.
3. a' - 8
5. 12a; + 5.
cT' — 3.'^ 4- 2.
2
-5.
" 2x' - 3a; - 1
' + 82/-
2.
6. 2/' -32/ -5.
-3.
9. 5a;' -1.
-1.
12. ix + 2)".
14.
X —
2.
1.
[h.]
2.
x'-
- 13a; + 5.
4.
(X-
- 3).
6.
2x'
— 4a;' + .t; — 1.
ELEMENTS OF ALGEBRA.
23
-y.
'' + y, X + a,
-5; ((t~a:)5.
\x — 1.
'2xy,
+ a).
uld be dy^.
s 141.)
2x' — ^x -
-1
y"" - 32/ -
5.
hx^ - 1.
(a; + 2)".
5.
%i. ic'^ + 3a; + 5.
a^ — a" — a — 1.
\\. 2x'' -dx — 1.
Sx — 5a.
Is. x-'-lx-d.
8. (a; + 1) (X'' + 1).
10. 2y'' — 7.
12. 03" + x"" — 6x + 3.
14. 20?" (2a; + 9).
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
2.2a^
A2a^¥
y.xY
EXERCISE LIV [a]. (Page 143.)
2a;' -6^0; ah-cx^y, a-12a¥ ; Az-lxhjz.
4?/ -a;*; y-10x*y'; Sc-la'b'c'.
2'da'b^; 7a'-36^2; ab-c.
2y'Sx'y-2; Sy'-lx*y; 2'2xY-2xy; ax'-Qxij. .
2.3a6c-2; S-ix'^y-Sy, p-Qpq^-p-, ax^-by\
1 . a'&^c* ; xy' • irya'x'y ; n'' • dm'p* ; i?"g".
3a; (a - a;) ; Sa'^b (a + &) ; a (a - &') ; ahc {a' - c%
Aa'x (a + X) ; 21 {x + y) (a + b) ; a{p + q) {p - q\
a (a+&) (b+G) ; x (a;+l) ; x' (a.--3) ; (aJ-1) (.x' + l) ; «=• {a-bf
ah {x + a) (^ + &) ; «& («' - «') I (a; - 1) (^ + !)•
(a: - 2) (OJ - 1) ; 21 {x - 2) (a; + 2) ; x (a;+l) (a-+2) ; {x + yY
{X + 1) (a; + 2) {X + 3) (a; + 4) ; (a + b) {a - b).
X (3a3 - 2) (2a; - 5) (a; + 7) ; x'y {a' - 6^).
^3 (-^2 _ ^2) . a;3 (a? _ «) (a; - 6) (aj - c).
6(a;-2/)^ 6 (a; + 2/)^ (a; + 6) (a;'' - «')•
(2a: - 5) (9x' - 1) ; a' (a + Sf ; (a - 6)^ (« + bf.
{a + by {a - xy ; {a + bf (a' + b').
(^ _ xy {b - yf ; 6 {a + 1)' (« - !)'•
- (1 - 2a;) (1 + 2a;) ; (a;^ - y'Y ; a'*?'^^- 1) (& + 1).
- 6a"6" (6^ - 1) ; x'-y' ; (a;^ - 1) (^' + 1) or a;* - 1.
[&.] (Page 144.)
f X — 1.
21. a6(4a''-l); 6a; (3a; - 1) ; a; (a; - 2) (a; + 2).
22. (x + 1) (a; - l)'^ ; {x - 1) (a; - 2) (a; - 4) ;
{X ~ 1) (a; + 2) (a; - 3).
23. (a; + 3) (a; + 4) (a; + 5) ; (x - 1)' (a; + 2).
24. ia-r)(a- 2) (a + 2) ; {x' - fY or {x - yf {x + yY
24
HINTS AND ANSWERS.
25. (X + 2){x- 4) {X - 10) (X + 12) ; (a; + 3) (« - 3) (x - 12).
26. (x - 2) (a; - 4) (x - 7) ; {x + 1) {x + 3) (.i^ - 4).
27. (a; + a) {x' - ¥) ; (1 - a;) (1 + xy.
28. (a; — a) (ic + a) (a? — 6) ; (a + 6 — c) (a + 6 + c)'.
29. (X - 2)' (X + 2y ; (x + S) {x - 3) {2x - 1).
30. (2/ + 2)iy- 3) (3// + 1) ; (2a; + 3) (2x - 3) (3a; - 2).
81. (2a; + Sy) (2a; - 3y) (3a; - 2y); 3 (a; - 1) (3a7 - 1) (3a; + 2).
32. 20aV (4a - 1) (pa + 1) (3a + 1) ; (4a - 1) (4a + 1) (5a + 1)
33. (a; + 2) (x - 2) (Sx - 7) ; x"" - y''^.
34. {X — 2) {x - 3) (a; - 4) (-i; — 5) ; 2a?/' (4a;— 1) (a;+3) (3a*-2j
35. (,r ^y){x- y) [x" + ?/") ; 12 (a;' - l)^
86. (a; — a)' {x + a)" or (a;' — a^f ; — 12a; {x — 1) (a; + l)^
37. 6c {a' - ¥) ; a;'^ (a; - l)'^ (a; + 1)'.
38. (x + 2/) (x'' + xy + y"") {oc — y) or {x^y) (x^—y') ; 24 (1— a;^
39. a*x* — h*y* ; a" — b\
40. 12a'' (a"" — y'), (a;« + a').
41. 1 —x'-, (1 - 2a;)^ (1 + 2a: + 4a;') ; (x + yy (a;=' + '').
42. (a; + 1) (a;' — a; + l) (a;' + a: + 1) or {x + 1) (x* + a;'' + 1) ;
(a; - y) (a;* + a;^' + 2/')-
43. (x" — 2/') (a;* + x-y"" + y') or a;" - y" ; (a; + 4)" (a;'— 4a; + 16)
(a;" — 1) (a;" + 1).
44. 1 + a;' + a;* ; (a;' — y') (a;* + a;-//' + 2/*) or (a;' - y^) {x" + ?/=':
or x^ — y^.
45. - (a - 6) (6 - c) (c - a) ; - (.//' - ^') (a;' - ?/') (a-'' - 2-').
EXERCISE LV. (Page 145.)
1. (a; + 1) (a; + 2) (a; + 3) {x + 5) (a- - 5) (a;
2. (a; + 1) (a;' + 1) (6a;' + 5a;' + 2a; - 1).
3. (a; + 2) (a; + 3) (a- + 4j (a; + 5).
4. {X + 3) (a; + 4)' {x + 5).
5. 3 (2a; + 3) (2a; + 5) (a-- - x - 4).
6. X {x - 1) (a; - 4) (1 - 2a) (1 + 2a).
7. 6 {x - \y {x - 2) (a; + 3) (a- - 4).
8. {x + 4) (a;' - 2) (4a;' 4- 2a; + 5).
9. {x + 5)(.2;' - a; + l)(3a'' + n.v 4- 0).
6).
ELEMENTS OF ALUEBKA.
25
3) (X - 3) (a; - 12).
(X - 4). •
1).
3) (Sx - 2).
(3^ - 1) (3^ + 2). I
1) (4a + 1) (5a + 1). |
■ll.
'~1) (x-i-S) {dx-2). 'S.
-|8.
a{a + 5) {7a + 96) {4a" + Sa + 9).
(x-l) {2x + 3) {^x - 2) (.f-' - X + 1).
(x-l)(x- 3) {x + 3) Of- — 3) {x" - 2x + 3).
(dx'' + 2^ + 1) {Sx^ — 2x^ + 2^' - 1) (2a'' + 3.t- - 2x + 1).
(x + l){x + 2) (a; 4- 3) (a; + 4)-.
{x + l){x- 3) (3a;'' - 4a; + 6) (3a;- - 6a- + 4).
EXERCISE LVI [a]. (Page 146.)
— 30. 2. 20. 3. a = b = 12. 4. 10.
a= -10 and 6 = -1. 6. -114. 7. 13.
c = 22, a = 48. 9. l-a. 10. b = 2. 11. c = 6''(l-«).
Divisor = {x — ay) (x — 6z), and dividend vanishes for each
of these factors ; i. e., for x = ay, x = bz, substitute and
subtract.
Substitute x = —a in each expression ; subtract and a =j9— 1;
substitute this in a} — qa -{■ \ =^ 0.
Remainders on dividing by x + ^ is zero. First quotient
=l{x -\- a — c), which multipled into x"^ + a'x + 6', gives
required expression.
Unity. 7. 3a;' + 2a; + 1.
r (a;' - y^) (x^ + y^^ 8. 2a; (4a;'' + 1) (nx!' - If (5a;'' + x + 1).
EXERCISE LVII [a]. (Page 153.)
« + & 6 — r?, a; 4- 1 a; — 1 3a; + 2 xy + 1 xhi — 1
^" - 1) (a; + 1)«.
(«'-2/'); 34(l~a!^). I
■I
is.
2^' 0»' + y""). J
i-l)(a;* + a;'' + l); . 1.
■ + 4)»(a;'^_4a::+lG);
6.
- 2/') ix' - ^^'j. 1
1
145.)
-6).
2
a
a;
X
X
X
X
a;" + a; + 1 a" — a — \ a* + a' + 1 6a;^ + 4a;
,.2
X a a^ 2x
2x + 1^ 2a;' + a; — 2^ '6x^ — x"- + 2 3f/'6' - 1
a; ' a; ' a; ' «6
a; 3.j; — 5^ a;' (4a;=' + 3) a;(a;3 + 1)
5.
6.
x-l' x—1' x^ + \ ' a;' + 1
(g + 6 + c ) ((2 4-6 — c)_ (6 4-^c — a ) (a — 6 + c) a;" + 1
2«6 ' 2
(x + a) (a; + c)
(X - c)^
a;
-2c' (x + a)(x-b){x + b)'
xj- b
X ■]- c
(x + 2)', i-l
so'
I
',
H'h
L-^"
35J
HINTS A XI) AXSWKUS.
[&.]
1.
8.
5.
6.
(X
X + a a
• I
x — a' b
x-'ix-l)^
a' {x + 1305)
~W(x — 'ia)
2. 1
a
. (a^'-l)(.r+ l)
' (^ - 7) (i» - 5)"^
— 6 2r///
rt + 6' 15ct/"
\1H ,
{mxyT ; Tj + -, - 1
a'
put a; for a in first term of numerator and a
for a" in second terra
Kfift
7.
a + b
b — c — a
1.
625^
8
i?* + i>^' + q
EXERCISE LXI [a]. (Page 176.)
. 4a — 3 8a 4- 1 a; — 3 a^ — be a''
1 • - • • • . . • rth
" ' 28 ' 6 ' b' ' b*'
2.
16 ' 28 ' 6 ' b""
2(a — b) ^ 16 + x Qx — 2 ^ 2a; — 5 12a; — 8
3 ' 16-a;' 12a; + 5' x - 10 ' 12.i; + 9"
X
, o^ 2 46 + 9a a;^ -^
*• &'' 12a + 86' ^'M^' ^°
%1
ELEMENTS OF ALGEBRA.
33
5.
1).
■')'
6.
7.
8.
rator and a
9.
'>■
10.
11.
a
ax—1 1
2ax 2x — 35
a — ax+1' a' d^ -f- x^ '
a;» - 2ic' — 3 1
X'
— - - ; " ; a + X.
x^ (3 - X) (3 + av a;
a* JfX^ — a" 12
X
a^ + x^ — x^' (x — 1) (a; — 2) '
(a — 6)"
_2ah^_ 4abia -' +_h')_ (a' + b') (a* + Uffh'' + b*)
a' 4- 6" ' a* + 6a''6'' + 6* ' 2ab (3a* + aoa'^6'^ + ;5>/) '
6 — g + 4 6a <'"
6 — aTs' r^;*;'
g' + fe" , ab + 6c + (to
b ^ a * a^ +~a6^+~6o^ '
[6.]
4ab (a + b)
4 (ax'' — 4)
(a-b) (a» + 2a'-'6 + ab'' - a'^ZT^'^) ' x' {dx - 2) (3a; + 3) '
1 + X
1 + X'
2.
1
2
a — S
(^' - 2/' - '£'') (^' + ;y' - 2'') ' 63 ' (a _ 1) (a + 3)'
b^ — ab
a' + ab ^
• x'+l' x* + dx'' + l'
6. 0; ^-^1+-^
' 8^(y + 6)
8.
5. 1;
1
a'^ft (6 - a)
1 + 2iz;
(a + a;) (a" — iB') ' x
2 + 3a;
9 -i^^ . 1
1. 1 ; a + b.
4 ^-y . ^JT^.
x-\-y' 4 4- 4a;"
2. 16a; + 11//.
5. 1.
3. T^x + ll.y.
o.
00
34 hijn'TS and ansvveks,
7. (^.). . 8. ^. 9. -^*,.
10. 2. 11. — ^or— /y. 12. c,
16. Take the fractions in pairs, thus :
/.j_ + _j_\ + /^^ n = .£ I
\s — a s — hi \s — c sf {s — a) {s — b) s {s —c) '
by substituting for 25, etc.
17. a. 20. Multiply given relations out and transpose,
a + & 4- 6' 4- ri = dbc + abd + bod + acd = abed { 4- etc. l etc.
\« 7
EXERCISE LXII. (Page 185.)
21. 1. 1 ■\- X + x" + x^ + X* +
^. 1 4- 3ic 4- Ca;' 4- 27a;=' 4- 81iB* 4-
3. \ — X + x^ — x^ ■\- X* —
4. l — ^x + ^x"" — 27^5" 4- 81a;* — '
- a" a'b a'b^ a'b' a'b*
5. — ■{ — 2 H ;- H 4- — r +
X X^ X^ X* x"
^ X^ , X^ X* x''
a a^ a^ a*
7. a + abx + ab^x^ + ab^x^ + ab*x* +
^ , 2x Sx^ 4x^ 6x*
a a^ a^ a*
9. 1 i- x — x^ — x* + x'^ + ,, .
10. 1 4- ttic 4- a V + a^x"" 4- a*x* 4-
27 ^^ + y' ■_ (^ + yf - ^^y i^ + y) ^ ^^^
• x'-y'^ (X - ijf + dxy {X - y)
Substitute from given conditions.
EXERCISE LXII I [a]. (Page 191.)
1. x = 7. 2. x= 1^. 3. x = 2.
4- ^ = 3. 5. X = 4. 6. x~ f I, read x for 2x,
7. x = ^. S. x = 5. 9. X = 6.
«(l + 6) da-b
10. ^=-^^^-^- 11. ^ = -^ • 12. .. = 1. •
ELKMEKTS OP ALGEBRA.
35
18. x =
16. x =
_ a''{b- a)
b{a + hj'
d{a + c)
6
14. x =
3a -6
4
15. X =
2ab
17. x = b.
19. X
22. X
25. x =
28. x =
31. iB =
33. x=z
35. ic =
38. x =
3
4*
^ 1.
ab
20. a- = 3.
23. x= — ^,
a'
a + b — c
7
TS"'
26. a; =
29. x =
bn + d 7 n+a mn + cmn
b + d + am ■i-'cn
acn—abn— abm — bcm
nb — no — ma — mc
7. 36. a; = 3.
f 39. a; = 11.
b — a
3
a + 6
18. a; = 9.
21. a; = 60.
24. a; = - f
27. a; = — ^.
30. a; = 3a.
32. aj= 14.
34. a;=3a; right mem. sh. be 2^.
37. a; = 3.
40. a; =-6. / b
1. X
4. a;
ifi
3.
[6.J
2. a; = — 107.
b{a—b+c)
7. a; = or -^ 44,
5. a? =
8. a; = - ^T
a
3. X
6. a?
_ a+6+c+c2
w — «i
9. a? = —
10. a;
13. X
16. a;
18. X
20. a;
: 15.
01
^~2~*
1 = and 4aj^ + 5a; + 3 = 0.
11. a; = 3.
14. x = — 6.
17. aj= ± 3 or oo
= 2.
21. x = a.
12. X
15. a?
19. X
22. a;
a&
m
c
H-
7.
a + 6.
76c
96 + 4c''
1. aj = 13 ; second numerator should be 3.
3. (x _ 3) (2a; - 5) = ; x= 3.
4. a; = 41, ;,_>, 5. x = —i
2. ic = — 9.
36
HINTS AXD ANSWERS.
ah — he — ea
6. a; = —
it! =
a(a — h)(a~ c)
e {a + b) {a + c)
8. 05 = 0. 9. a; = 5.
10. x{h — a) = 0; whence x = 0, unless h — a = 0, in that case
X may have any finite value. ,^
11. x = ^^/r^orO. 12. x = c. V^'L^^-N-*^^-^*^
13. x(2x + o) = ; .-. X = or — 2|.
14. a; = a + & + c. 15. a; = a'' + 6" + cr.
16. a; = a*. (First numerator on right hand should be x — 1.)
17. Take in pairs the fractions with like numerators ;
_ np (c — a) + inp (a — b) + m7i j h — c)
~~ m{a — c)+n(b — a)+p ( c — 6)
(_ 7a; + 49) \ - — ^ - —~- — -- i = ;
^ ^lx' + x — 2 x'+x—\2)
.-. X = 7 or 00 .
19. Complete the divisions, cancel and transpose ;
^11
■i%
18.
or
a? — 4
1
1
X
4 x—2 X — T) a; — 4'
whence (x — 8) (x — 4) = ; .*. a; = 8.
The value 4 is not admissible.
20 X = ^^^ ^ ^ ~^^ ^^ ~^ ^ + ap(q- ii) (m — n)
6 {q —p) {m —p) + a{q — n) {m — n)
21. a; = |m (6 — c) — ?i (a + «) f -;- (m — w)
22. (a'^x + b^x - a^b - ah'' - ft'^c + a'^c) x
i i ^ Uo
{{x — a) {x — b) {x — a — c)(x — b + c) )
.: X = {a"" (b-c) + b^ {c + a)\ -r- (a" + 6'').
23. (a — b){ 1 = 0, a; = ■
\n — o p — qf p — q
24. ^ '- 1 4- anal. + anal. = 0, whence
b + c — a
{x — a — b — v)\ h anal. + anal. >■ = ;
{b + G — a S
x = a + b + c.
ELEMENTS OF ALGEBRA.
3t
hat case
25.
a — x
a^ — he a + 6 + c
4- &c. + &c. = 0,
or
a6 + 6c + ca — (a + 6 + c) a? ,
r—^ — Y-— 7 h anal. + anal.
03 = (a6 + 6c + ca) -T- (a + 6 + c).
= 0;
1. lO^'y dozen.
4. $300.
EXERCISE LXIV [a].
PROBLEMS.
2. $36000.
ma — 126
5.
(Page 198.)
3. 12 years.
6. "*"
12 — m "' 6 + c
7. 754. 8. $3.75. 9. 142857.
10. $8000. 11. I9O3-W bushels. 12. 90 and 91.
13. Equation reduces to (4 — • 4) re + 40 = ; a; = 00 ; i. e., condi-
tions of problems are inconsistent. In fact, area will
always he 45 ft. less, under the given conditions; for
using 45 for 85, the resulting equation is an identity.
14. $1857.35|f| and $142.64|ff.
15. 857142 ; x representing number, equation is
TT
{X — 2) + 200,000 = ^x.
16. $7.60.
1.
4.
17. 550 ; read 6 in first line ; 4 times and 6 cts. in second line.
18. 13|- feet and 16^ feet.
19. A, $2800 ; B, $3900 ; C, $5138 ; D, $2196 ; E, $2966.
30. -fH. y
( [6.]
960 gallons. 2. 420 acres. 3. $1280, 7|^.
, , g(100 4-^?)~100p ,.
Gain or loss io = ^^ , according as
^ < 100 + n
5. B makes 1740 yds. in 4 m. 34 sec; C makes 1700 yds. in
4 m. 32 sec. Let x = time in min. from starting at which
A overtakes B, then -^-1760 = 20 + t^- 1740, a;=l|^min.,
distance 775^^ yds. from start. Similarly A is found to
pass C in 3f^ m. ; distance 1456^^ yds. from start.
38
HINTS AND ANSWERS.
6. lOi's^r miles. 7. 5 gal. 8. $7400. 9. 57 miles.
10. mnpqr -^ {mnpq — mpq — npq — mnq — mnp).
11. 484. 12. 1, 2, and 3.
13. 12000 sq. yds.; 45 cts. 14. 189.
■it ^- 4r ^1, 2a? X , px — x
15. aj = distance; then -^ = h^—i
6 op op
16. Let 2aJ and x be digits ; (2001a;)' - (10020?)" = 2999997a;»
= W X 749,999^^. 17. 180,000.
p{ll7n — 21n)
18. (^1)""'
19.
20 {7n — 71)
20. Regular rate 40 miles, diminished rate 38,^ miles ; 100 miles.
ap — a7i
21. 221 : 273
187 : 231.
23.
7n — 7i
23. f 24. 14172.
EXERCISE LXVII.
1. a; = 3 ; y = 2. 2. x =
d. x=:l ; y — S. 4. x =
5. X = 4: ; y = — ii. 6. x =
7. x = l; y = 2. 8, a; =
(Page 212.)
6; y=-4.
5 ; y = 4.
-2; y = B.
-20|; y=-lH.
9.
a; = 10;
y = Q.
•
10. a^ = m; 2/ = iHI-
EXERCISE
LXVII I. (Page 213.)
1.
a; = 2;
y = S.
3. ^ = H; y = -¥.
3.
a; = 3;
y = -2.
4. a; = 5 ; y = — 5.
5.
a; = 4;
2/ = 4.
6. a;^i?^; 2/ = -i|.
7.
a; = 3:
y = 2.
8. a; = 3; 2/ = 1-
9.
a; = 4;
2^ = -3.
10. a; = 3i; y = ^.
EXERCISE
LXIX. (Page 214.)
1.
X — 5;
y = 7.
2. a; = l ; y= —1.
3.
a; = 2;
y = -3.
4. a!=-2|i; 2^ = S^f .
6.
a; = 5;
y = — 4.
6. a; = f; 2^ = |.
7.
a' = iAV; y = ^^'
8. a; = 5 ; 2/ = ^■
9.
«=iW; y^-
■1t%-
10. x=Q^; y = -d^.
ELEMENTS OF ALGEBRA.
39
iles.
7a;'
00 miles.
4. 14173.
19f
f
EXERCISE LXX. (Page 216.)
a + b a
1. x = —,r-\ y — —
2
2
1 _ 62 a6 - 1
2. 03 = ^; y =
a — b
a — b
mp — nq _np — mq
4. a; = 1 ; y = 1.
_ 6(46'~7a '')
2
y
7. x — y —
9. x — y —
10. a;
5. a; = a.+ 6; y = — 1.
8. aj = ^w + ?i ; y = m — n.
a + c
_ a {bc—^ac—c^—a'^ + 3a6) ^
2(2a6 + 6c— ac— c")
; y
a {Za^ ■\-ab-\- 4ac + ac'^—bc)
2"(2a6 + 6c— ac-rc')
EXERCISE LXXI [a]. (Page 218.)
1. a; = 6; y = 12.
3. x = 7; 2/ = 10.
5. a; = 6 ; 2^ = 12.
7. a; = 8 ; y = —^.
9. x = y = ^.
11. a; = 8^; y = -i.
^ „ 2mw (n" — m')
13. a; = —J — T^-5-^ ^ •
n* + 6?7i.W + w
4, y
14. a; =
a"
y =
a — b''^ b — a
15. a; = 4 ; y = l.
17. a; = — 2 ; y = 4.
2. a? = 4 ; y = 3.
4. a;=13T8j,; y=-4i|.
6. a; = 4/^; y = — 12.
8. aj = 2 ; y=7.
10. a; = 4 ; y = 5.
12. x = y =
a'^ + b^
n* — m*
n* + Qni^n^ + m*
16. a; = 6 ; y = — 2.
18. a; = 3; y = — 4.
[6.]
1. x = y = ^\.
2. a; = 14 ; y = — 14.
3. a;=:4^; 2/=ll^.
4. a; = 21; y = 20.
5. a; = 3; y^l.
40
HINTS AND ANSWERS.
X=:
a6~l
(l-a)a-- 6)
; y
a — h
ah H- 4iy — ?-:
7. X — —T — I — ^7- ; y =
ab — b + 2a' ^
8. x—±^\ y=±3.
10. a; = 9; 2^ — ^'
12. a; = 8; 2/ = 2.
... 6 + c' -a — ./ V
4{bc — ac!) ■ ^
14. ^=-3f; y = -6f
16. aj = 6f; y = S.
b'c - be'
{l-a)(l-b)
a' + 2a + ac— ab + b — c
ab — b + 2a
9. x — a; y = b.
a
11. x= r ; y = .
a — b'^ a + 6
15. x — y = d^.
17. a; =
a6' - a'6
'h '
y
ac' — a'c
obT^a/b'
1. a; = y = 00 , and the equations are inconsistent ; thus, put
a
— =: — z=k, and .-. a = A;a', 6 = kb', and substituting these
a
values of a and b m ax ^by=. c, we get a'x + b'y z=~ ,
n
which is inconsistent with the second given equation.
2. x = y = %, i. e. the equations are not independent ; thus,
put —= — =- = m. Then a = ma', b = mh', c = mc\ and
a' b' &
substituting in (1), we get ma'x + mb'y = mc', which is a
multiple of the second given equation.
EXERCISE
LXXII. (Page 222.)
1.
x — S;y = Q.
2. 0! = ^; y = l.
3.
a5 = i; i/ = l.
4. a? = — 2 ; y = f .
5.
^ = -1; y = h
6. x=-^- y = l.
7.
x = y = a + b.
6(a»-6c)
cia'^—bc)
a—c
9.
«' = -tV; y = Th-
10. .i; = y = -- ^ . _
ELEMENTS OP ALGEBRA.
41
EXERCISE LXXIII [a]. (Page 233.)
1. x = y =z — 4,,
3. X=\^^, y=-l^; ^=-H
5. x=:lS', y= — 122; z=-'.9.
7. a; = 4; 2/ = 5; ^ = 6.
9. x=l; y = 2; B — d.
11. x=:S; y = 2i; = - 3. 12. a; = 3.
IS. x = e; y=8; z = 10. U. x = 6; y= -2; z
15. a? = 3; y = 6; 2- = 8. 16. a." =-5; y = 9; ^
17. x=-4\, y=-il ^=-s^.
2. a.«=l|; y/ = 7i; ^:
4. a; = 3 ; 2/ = — 3 ; 5'
6. a; = 4; .y = 3; ^ :=z
5. X--= -1; y/=_2;
10. = - Ifi .
= -2|.
2- — 5.
= -3.
= -8.
■be)
1. a; = |^; y = ^; z = — :^, Divide through by xyz in each
equation.
2. iB = 5; y = li; 2- = ^-
3. ^ = 1]^; y = -|; ^ = 2|.
^ 1 1
a;
a- " 6'
a6 4- c<2 — 6c
2a
1
= -•
c
2/ and ^ symmetrically.
6. 2' = 3«6c -^ (c — «)(& + c), aj and 2^ symmetrically.
7. ic = a — 6; y =:h — c\ z = c — a,
S. x = 2a -^ (6 4- c —a) ; y and symmetrically.
9. x = \ -rr {a — h) {a — c)] y and 2' symmetrically.
10.
12.
13.
14.
15.
^ = li
11. 05 = ^; 2^ = ^; ^=1-.
rfl
a^
a? = «'' — 6" ; y z=ilf — c^-^ z = c
^ = ^ (a + & + ) (2a + 6 + c) ; a; and y by symmetry.
_ mbp nd -f mapnf _ jt?m?2 (ac6 + 6t7c)
w6p + m/?a — wjoc ' "~ mnpd + npfc—pwfh
(a; + 2^ + 0) (a + 6 + c) = (a + & + c)'; a; + ?/ + ^ = a + 6+e;
a3 ^_ 53 _,_ gs _ (-^ ^ j^ (-J _^ ^j ^^ ^ ^^ _^ 5^j^
a; =
a" + ^'^ + t^ — ah — he — ca
42
HIKTS AND ANSWERS.
EXERCISE LXXIV [a]. (Page 326.)
1. X
2. X
3. X
4. X
5. a;
6. X
7. a?
8. a;
y = d
y = o
y = d
= 16; w = 25.
2- = 5 ; t^ = 2.
2r = 1 ; ?/. = 4.
-5t»t; 2/ = 16A; 2r=~5TP3-; 1* = 11-^.
3; y = 2; 2r=— 4; W = 5.
0; 2/=— 1; -^ = 2; v = — 4:.
— 1; y=— 2; <2r = — 3; w=— 4; ^=—5.
1; 2/ = 2; = 3; w = 4.
[&.]
1. a' = (x + 6 + c; 2^ = a + 6 — c; = a— 6+e; t = b-{-c-~a.
2. a; = 6; y = — 1; z = S; u = 2.
3. X = ^(a — 2b + c + d)] y, z, and t* by symmetry.
4. a; = ^ (a — & + c — c? + e) ; y, z, u, and «) by symmetry.
5. x = ^{2a — b — e — e + 2d) ; ?/» ^» ^^^ '* l>y symmetry.
6. a? = ^ (a + cZ) ; y, z, u, and d by symmetry.
7. a; = 30 ; ^ = 20 ; = 42 ; ?* = 72 ; (y should by in second
equation.)
8. x = a + b + c, y, z, &q., by symmetry.
9. x=:^{a + b + G + d + e — 4/) ; y, z, «&c., by symmetry.
10. Divide each side of every equation by xyz ; x = l-hb — o;
y and z by symmetry.
EXERCISE LXXV [a]. (Page 229.)
1. 03 = 714285; ?/ = 142857. 2. a; = 40; y = 65.
8. Willie 4; Charlie 8. 4. a? = 1.234; y = 5.678.
5. a; = 147; 2/ = 63. 6. 76.
7. 13 : 17. 8. 73.
9. 480 gallons; 400 gallons; 560 gallons.
10. $10260; $7560. 11. |.
12. 10a; + y = 6 (a; + y) ; .-. 4a; = 5?/; .-. 10y+a;=9a;=5a;+52/, etc.
13. 98 or 89. 14. A, 200 lbs. ; B, 250 lbs. ; C, 350 lbs.
ll
1'
21
2J
ELEMENTS OF ALGEBRA.
43
15. 82 apples; gave away 2. 16. $5000; .$3000; $4000.
17. 40; 88; 104. 18. 486.
a(b — c)^ h{c — a) ^^ .. 2h 26
19
20. x =
y
31. I, h
b~a b — a 1 — a' " 1+a
22. A, 105; B, 52^; C, 210 minutes; A, B, and C in 30 minutes.
1. First, 220 gallons ; Second, 100 gallons.
2. 3674. 3. A, $40; B, $24; C, $16.
4. d(m ■{■ n) -T- 2mn ; d{n — m) -r- 2mn.
5. X + y : x — y : xy :: 5 : 1 : 18; x = 9', y = Q.
_l(m — l){q — mr) — (1 — mn) (mp — Iq)
~ mH {\ — n)-\- mnl (1 — m) — in (1 — mn)
7. 130. 8. 315 miles. 9. 9; 8^\ miles per hour.
10. a; = (p + 1) w ; y = (pq — l)n;z—(q-\-l)n.
11. x = l^; 2/ = 2f; ;? = - 12.
^^ cj(« + &) c(6_-a), 13. _^!:!!L_ hours.
2ab 2ab qr—ps
14. A, $2.60; B, $1.26f ; C, 61^ cts. 15. ^m*. 3^ miles.
16. 3000 ft. from first station; x = distance from first station;
y = A's rate per second ; ^r = B's rate ;
,, 4000 4000 >n ^ ^ on
then — = 40 ; = 30 ;
y z y z
substitute in this the value of , viz. ^^,
y z
equation and x = 3000.
17. Gold coin, $2 ; silver, $1.
18. 11|^ miles; 7 miles; and 5| miles.
20. x = time for A, y for B, f or C ;
from first
19. $5200; $2480.
^, 11 m 111 ml w + 1
then -+-= — , or -++-=— + -= ;
y z X X y z x X x
... ^ + 1 =, ^y + yz + z ^ similarly for n + 1 and^. + 1.
yz
44
HINTS AND ANSWERS.
21. x = rate of locomotive, y = rate of coach, z = distance;
then Qx + Sy = z=:mx+1 f) + 7^ (y + 1|)
= T^V (^ - H) + ^tV 'y - H) ; ^' = 38^, y = 7,z = 387.
^/iler should be befo7'e in first line of equation.
32. Let m, n be the required dividends;
m n
then given fraction =.:
+
33
Multiply out and equate coefficients, and we get
6w + dn = 37, 7m + 4n = 34; m = 2, n=z 3.
be — ad ab — be ^. 9 6 3
cf—de'' cf—de
35. 16, 30, 43.
34.
8aj-7' 5a? -4' 3a;- l'
EXERCISE LXXVI. (Page 339.)
6. -I, -10; ±(a-6); ± (1 - a) ; ± a + |.
7. ±(3«-26); ±— t-^; 3, f.
8. 36, -3a; ±133; ±375. 10. ±3; ±3^; ± 3^.
13. ±5; ±|a; ±(a: 13. ±^{mn)\ f|, |; ».
16. ± /^(ac) -r- y^(6f^) ; ± ^(flft); ± 1.
17. ± 1 ; 3a, 36. 18. ± y'im" + w«) ; ± ,
35. See Ex. 8; n, -, —n± ^{n'' — 1).
It/
48
HINTS AND ANSWERS.
EXERCISE LXXXI [a]. (Page 264.)
1. 11 or - 24. 2. 26 and 19.
4. ^(^5-l)a, i(3-^5)a.
6. 50 coffee, 60 raisins.
8. 100. 9. 12.
11. A, 11 miles; B, 10.
3. ^ or - 6f
5. 16^.
7. $240.
13. 25 cts.
16. 7.
18. $90 or $10.
21. $3.
23. 2.414 inches.
14. 4c?. a dozen.
10. ^11 vases.
12. 3, 4, and 5
15. 3 and 18.
17. A, 72 miles ; B, 54 miles.
20. A, $1800; B, $1600.
22. ^ { y'(2/i'^ -d') +d\,:^{ y/i^h'' - d') - d\.
19. '-.
5
3. 63.
5. ^6"ti^ /
/St
[6.] (Page 266.)
1. 3 hours and 5 hours. 2. 36 and 30.
4. _i(a + 6) ±y/^^ + ^V(« + *)=)•
6. 4200 ; read 780 in question. 7. 14 acres at $75.
8. 10 seconds. 9. 5f miles. 10. 5 miles an hour.
11. 15 miles.
12. If X be cost and s selling price, then x = s -{- -— ; on solving
it is seen that 4s cannot be greater than 100 ;
see Art. 175 (i).
13. $333^, $666|.
14. 72, 12, 8 ; Let x"^ = number remaining in smaller bag after
handful is taken ; then x^ is left in Imager bag, and x^ =
number in handful, and a;* is number in larger after
second lot is taken out ; then x^ + .-r'* = |- {x^ + x^)^ and
a; = 2, etc.
15. If X represents per cent, then 620 = 82a; + (3790 + 82;f) — ^•
X =3 22.
x = 5.
16. Let 2x = distance, then ■ H
X — b X —
6 _3^.
7 ' x~-^'
ELEMENTS OF ALGEBRA.
49
17. Let X = rate backwards, Ax = rate forwards, tlien •
d\.
i + ^ , i.e. j\x = J
+ , ^^ e. yVa; = -— ^ — - ^ 5:.. • i mile an hour.
X " 4a; + 3 it' — i
18. 90. 19. 4900 ; x^ being number of lines, equation is
\%\ {X - 10) p = 2 {a;" - ^^ {x - 10) f , or 601a;^ - 20a;. 3254
= — 100.49-43; a; = 70.
20. A, half -past 4 o'clock ; B, 5 o'clock.
EXERCISE LXXXII \a\ (Page 273.)
1.
3.
X
X
\,V = \, -If
5. X —
±6, y = a± h.
3, ■
4, -10^,2/ = 5, -13H-
± 20, 2/ = ± 16.
30, 10, y = 10, 30.
7. X
9. a;
11. a;:-3, -3|, 2/ = 4,
Q19
13. a; = l, -f, 2/ = 2, 2f
15. a; = 7, - 4|, y = 3, - 2|.
17. a; = ±7, ±5, 2/=±ll, ±9.
19. a; = 2, 5, y = 6, 3.
21. a; = 7, 1, 2/ = 3, 9.
23. a; = 3, y = l.
3. a; = ± 6, y = a^^h.
4. a; = 3, - 2^, 2/ = 3, - 8.
6. a; = ± 7, 2/ = ± 3.
8. a; = ±15, 2/= ±3.
10. a; = l, — 5, 2/= — li
12. a; = 2, - i, 2/ = 3, f .
14.
16.
18.
20.
22.
24.
'i.
a; = 10, 115, 2/ = 6, -69.
x = \, -If, 2^ = -4, HH-
a; = 2, 3, 2/ = 5, 4.
a; = 5, I, 2/ = 3, - 1^.
a;= ± ^13, 2/= ± 'v/13.
i« = 3, f , 2/ = - 'J',-
1
1. a;
3. a;
5. X
7. a;:
9. X
11. a;
12. a; =
13. X
15. a; =
16. X —
17. a; =
[&■]
= ± 5, 2/ = ± 1. 2. a; = ± 11, 2/ = ± 2.
= 0, ±2, 2/ = ± V-B^, ±1. 4. a; = 0, ± 3, 2/ = ± B, ± 9,
= ± 3, ± i[, 2/ = ± 5, ± -V. 6. a; = 0, ± 1, 2/ = V?' ± 1-
= ± 2i, 2/ = ±i. 8. a; = ± 3 ./f , 2/ = ± i Vt
= ±2^, ±1, 2/=±l, T3. 10. a; = ±7, ±3, 2/ =±3, ±6,
= ±1, ±H, 2/=±5, =Flf.
= ± « -^ V(^ + 6), 2/ = ± & ^ V(^ + ^)-
= ± 6, 2/ = ± 3. 14. a; = ± 3, ± 8, 2/ = ± 5.
± 2, ± v'f , 2/ = ± ^, T 3 ^|.
± 4, ± 3 -v/3, y = ± 5, ± ^3.
7, 4, 2/ = 4, 7. 18. a; = 7, - 5, y = 5, - 7.
50
19.
21.
23.
25.
27.
29.
1.
3.
5.
7.
8.
9.
10.
12.
14.
15.
16.
18.
19.
20.
21.
22.
23.
24.
25.
27.
29.
31.
HINTS AND ANSWERS.
/
x= ±5, ±S, y
x = 4, j/ = S.
a; = 5, 4, y = 4, 5.
a; = 4, y = 3.
X = 13, 9, y = 9, 13.
a? = 3, 1, y = 1, 3.
± 2, 7. 20. x= ± 5, ± 4, 2^ = ± 3.
22. X = 14, 19, y = 19, 14.
24. a; = 4, 2, y = 2, 4.
26. a; = 3, 2, y = 2, 3.
28. a; = 7, 4, y = 4, 7.
30. a; = 3, 2, y = 2, 3.
EXERCISE LXXXIII [a]. (Page 277.)
a5 = 2, 1, 2/ = -l, — 2. 2. a: = 4, — 3, y= — 3, — 10.
^= ±1, Ti, y = |, 0. 4. x=±l,y=±7.
x=±5,y=±2. 6. a;= ±1, y= ±^.
« = i(a±26), 2/ = |(a=F26).
a; = ± (a + &), y= ±(a — b).
x= ±
a=» + 6'
, 2a6
y = ± 1-
a —
a; = 6^, y = If
± 9, ± 5, 2/ = .-t 5, ± 9.
«' = i>y = f 11-
x = 0, a, y = a, 0. 13. a;
a? = ± 7, ±3, y=±3, ±7.
^=±4, ±3, y=±3, ±4.
;r = 2, -1, y = l, — 2. 17. ir = ll, y = 9.
a;=-2, -3, 3±i^ ^56, y=-S, -2,STi ^5Q.
^ = 5, -1, ^(±^41 + 5), y = l, -5, i(± v'41-5).
Treat x + y rs the unknown ; x = }{a± ^(a^ — 48) f ,
y = i{aT ^{a^ - 48) f , where a = ^ (- 3 ± ^853).
^ = i(9±V-47, ^ = ^(9^^-47).
a! = 5, -2, -^(l±y^41), y = 2, -5.
^ = 17, - 6, ± V(118) - 4, y = 3, - 8f 2 ± i ^^118.
a;=5, P, 7, 8, y = S, 7,6, 5.
a; = ±13v/^, y=±7^/^j. 36. a; = 4, 2, y = 2, 4.
ic = l, 10, y=10, 1. 28. a? = 3, 2, 2/ = 2, 3.
a; = 8, 4, y = 4, 8. 30. a; = 1, 1^, y = 2, -^i,.
(a'c - a&y + {ah' - a'h) {b'c - be') = 0.
3.
5.
6.
7.
8.
9.
10.
12.
14.
15.
16.
17,
18.
19.
20.
ELEMENTS OF ALGEBRA.
51
(Page 281.)
x= ±4, ±9, y=±Q, etc.
£» = !, 2/ = 2, 2- = 3.
EXERCISE LXXXIV.
1. a; = 8, 2, 2^ = 4, = 2, 8. 2.
3. a; = 7, y = Q, z = 5. 4.
5. ic = f y = *, ^ = 4.
6. a; = ± t V'S, ?/ = ± .^3, = ± 2 ^3.
7. a; = 4, — 7, ?/ = 3, — 8, ^ = G, 28, - 2^ in text.
8. a? =1,9, y=±4, = 2, -G.
9. a; = 2, - 14, v/ = 3, - 15, z = \, - 16.
10. a;=l, y=z—2, z = 4. 11. a? = 4, y = — 5, 2r = 7.
12. a; = 2,. 7, y = 3, = 7,2. 13. x = y = z= ±1 -^ ^2.
14. a; = 2a6c -j- (ac + be — ab), y, z symmetrical.
15. a; = ± a'^ -T- '\/(a'' + 6' -I- c"), ?/, z by symmetry.
16. a; = ± ^{ (a + 6 — c) (a + c — 6) -4- 2 (6 + c — a)\,
y, z by symmetry.
17. a; = a6c -r- («6 + «c — 6c), ?/, by symmetry.
18. X — ^ \{e + a — b) {a -\-b — c) -^ {b -^ G — a)\.
19. Add 71^ to each equatior and factor ;
x= — n ±{a + n){t + 'n)-^{b-{- n), y, z by symmetry.
20. a; = ± a /y/Kft + c — a) -^ [(a + 6 — c) (a — 6 + c)][,
y, by symmetry.
21. a; = (6c + ca + a6) -^ a, ; y, zhy symmetry.
22. a; = l, 2, 4, 2/ = 2, 4,1, = 4,1,2.
33. x=i ±{—m -if-n +p)-i- /y/2 (??i + ti + ^) ; y, zhy symmetry.
24. x= ± (— be + ca + ab) -^ y'(2^^^) I Vi ^^Y symmetry.
25. a; = 0, or ± 1 -T- (c — a) ; y, zhy symmetry.
26. x = -y/(6V -f- a) ; y, z by symmetry.
EXERCISE LXXXV [a]. . (Page 285.)
1. Ml + V^), H3 -f V^)- 2. i ± ^ ^2193, -^±1 V2193.
3. 36, 16, or - 36, - 16. 4. ± ^(pq), ± ^{p -r- q).
5. 20. 6. ± i (P + g) VC^ -^M), ± i (P - 9) V(^ -^i'?)-
7. 7, 21, 35. 8. 343, 64.
11. 34, 17, 51, or - 204, 612, - 306. 13. ^M.
9. 4,
10. 36.
5^
hf ,'^^H
13
pj'^H
^''^H
14
i-*<'i ' .i^^^H
|f'?H
16
18
fI
20
I'l
22
l"l
24
4.
5.
7.
9.
10.
11.
13.
14.
15.
16.
17.
HINTS AND ANSWERS.
'V^llO ± ^ y'6 ^ y'llO. Add and subtract the equations.
8 ft., 10 ft. 15. 88 yds., 55 yds.
63 ft., 45 ft. 17. 20 m., 30 m.
6^,7^. 19. 102 from length, 114 to width.
18, 9-6. 21. 100 at $75 each.
13, 10. 23. A 40 at $1.20, B 30 at $1.60.
3, 5, 10. 25. 3, 4, 5.
[6.]
Edges (x, y, 0) are 1, 2, 4 ;
x + 7j + z=7, a;'^ + 2/' + ^' = 21, x^ + y^+z' = 73.
Cube first equation by formula H (3), p. 85, and substitute
from third, second, and square of first.
864. 3. 2, 5, 8. See Ex. LXXXV, 16. Add first two
equations and subtract third, then symmetry.
76 ; the one digit remainder is of course 9.
$2145, 2f years. ' 6. 4, 7, 10.
290 yds. 8. 48, 10.
8, 9, 10 ; see Ex. 4, p. 284.
342 ; in last line of problem read 29.
12, 4, 3. 12. 3, 6, 9. See LXXXIV, 19.
^{h±^(c-a')\ :^{a±^(c-b')\ :: ^{aTV(^-^")\
x= ^1(1 + «) (1 + b) -r-{l + c)\, y and z by symmetry.
See 4, p. 284.
28 workmen, each 45 lbs. , or 36 workmen and each 77 lbs. ;
X — number of workmen, y lbs. carried each load, z number
loads in one hour ; then ^xyz is whole weight moved, and
7 (ic + 8) (y - 5) 2r = Myz = 9 (^ - 8) (y + 11)^.
— — ^- ^-^ = 5i_ £ii where p = product of ex-
a - ^{a' -Ap) 6 + ^{h' - 4p)
tremes (or means), and = (a^ -+- b^ — <■) -4- 3 (« + b).
Of the first, 135, 62; of the second, 182, 57, (yds.). 18. 126.
1.
3.
5.
6.
8.
10.
16.
2.
4.
8.
13.
ELEMENTS OF ALGEBRA.
53
EXERCISE LXXXVI [a]. (Page 296.)
1. 05' — 2a7 — 2 = 0. 2. f|.
3. 32i»'' - 1412aj - 23205 = 0. 4. x''-a^b.=zO.
5. p^-q; Pip""- dq) ; (p' - 2q) -^ g^ ; see Art. 178.
6. x" - (4a _ 66) a; + 9a' - 10a6 + 86' = 0. 7. 3 • 14159.
8. Positive for all values of x, expression = {x—2^y. 9. 789|f .
10. p-2q + 3r. 11. See Ex. 1, p. 294.
16. Assume of* = Ax + Bq, then, since a, /? are values of x,
«" — A;r + Bq, and /?" = A^ + Bg, whence A and B.
2. 6' — ac = 0.
4. i. a'a3' - (6' - 2ac) a; + c' = ;
j^. ^V — (p' — 2g') i» + 1 = ;
.?. x^ — (p"" — q) X + q (p"" — 2q) = 0;
4. os' + \p~^(p'-4q)\x-p^/(p'-^4q) = 0.
8. ec' — aa' = 0, 6'c -\-a'b = Q.
[c]
4. 579 and 135 are the roots of the first equation, 579 and — 135
those of the second.
12. 4a6' + a'c — aa'c' = ; let roots of first equation be a, /?, of
second a + in, ^ + m ; form equations from relations of
roots and coefficients and eliminate 7a.
13. (Right side of first equation should be 1.) Substitute for y
m second equation, and apply condition of equal roots to
resulting equation in ic.
^1
EXERCISE LXXXVI I [4 (Page 300.)
1. Min. 4. 2. Min. - V- 3- Max. f
4. Min. tV. 5. Min. -g^. 6. Min. - ||^f .
7. Min. f. 8. Min. 2. 9. Min. -J, Max. J.
10. Max. 36 area, i.e. line is bisected.
'\i%
54
HINTH ANJ> ANHWJiUb.
3. 81. B. Min. i«', i. e. lino in biwsctod.
4. ^a ^^2, the Hidos arc equal. 0. (a 4- ff)'^ -^ 4a/>.
7. il// numbers between ^ and 3. 8. | /y/1 -f |.
11. (6' - 4ac) -^ a' = (/*' - 4mr) + 7W». 13. ^ = 6, or g.
8.
EXERCISE LXXXVIII [a]. (Paoe 305.)
1. 1. 3. 346". 3. 5. 4. 1.
6Vr/^6; y^^ ^6 ^c ; ^«« ^?/ <^c">.
7. i. a'ft-"; a-'6-'c; a^6-» ; 7aW ; a-'-ft-"; a'ft';
« 111 711
5 6__
a-6-v' ^-fftHc**
3^-8 '
1.
[6.]
1. (a' -6")"; {x-\-y)'^', {x-yf.
8. iT^ — Ax^ ; at?> - af 6" + ^a%^ ;
a6^ -\- a^ — fi'h^ — a^b^.
- _c a _6 1 c feW 1
• a'6'' 6»-^^ ^V' 3S"^^"^/J
a^h* b^c' ' ay y+'' ryx
7. ^^+_^^_>^i7; .^.^..^1/^; 31 V^
2. fa^; 1.
X^ffyl
liLKMKf^TS or AI/n-'-HUA.
56
■ 'v^a'^^^ '^//^ ^li' ^a"
0-8; A; A; A; Vi; %-
13. 244140035; 2.
10. 1024a; « -j- 32.
12. (7a; -0^/)-"; (5a- 76)'.
14. 0.
[c] (Page 806.)
arAr. 2. re'-'--'; a^^S ;
1. ^J; aW, ?1^; .A. . .«^.; eW. ^^^-,
3. a'*6-"; ajfr-^ ; Fj . 4. a'i'-""; 6
TO"— nn
a
llmnp
; «*
.mi--mn
mn
_1 ^
5. a~T; a'^i"; ar V ; a """ -6 " . 6. a"6V; a''6"c.
EXERCISE LXXXIX [a]. (Page 309.)
m:»
2. 2""; -t; (a«.6"V'.
8. 3^ + ic* + a;^ + 2a;« + a;§ + a;''' + aj^^ + a; + 1
aj + y.
4. Q^ — \f^
5. ic* + ^x^y^ + y* — ^!/] ^^ — ^^y + y"^
x" + 2/''
6. 4a''-6'
7. 2a;'"' — 42 - 9a;" + 6ar'-"» + liar" ; 4a;'
im
9y'
2p
8. a'
+ a"" — 2 — ai — a"§ + 2ai
l_
9. a;' + 4a: V"^ — Ax^y — IGajyt + 16a;yff — Uy
10. 3 + 2a;~^ + 2a;^ + or" + a;" ; aW — h\
11. a;^ — 2/i ; a; + y + s^^y* + x^y^.
f^ — or^vz
— o'Jiiz 4- ?y*
12. x^ — xhjt + x^y^ — x^y^ + yi ; Sa"' + 7a-' + 6,
13. 56^ + 46^ + 36"^ + 26"i
56
HINTS AND ANSWERS.
14. x~^ + X »y a -I- x~^y~f 4- x sy-' + x »y s + yl -^
oT^ - 2a-''b^ + 4arh^ - 8a-'b + 16arh^ - 326^.
15. x^ — 4x + lOajt _ iQx^ + 19 — lQx~^ + 10a?~l — ix-' + x~^.
16. (at — it'^y^ + y^) (x's + x'syn + y^);
(x^ — 2x^y~^ + 2y~^) (x^ + 2x^y~^ + 2y~^).
17. (x^ — 8) (a;^ + 7) ; (Sx^ — ?/^) (Sx^ + 2.v^).
18. (x —l)(x — xi + l); {Sx^ - 2j/i) {2x^ — 3y^).
/a\i(»»+l)
19. —a~^{l + &-*), b~^ in denominator; 1^1 ;
a'a -f- 6¥ + c^ — a^feT _ ft^ci — c^^t
I 71 1 ' '
30. a6-' + 1 + «-'&. 21. at + 2a^2^^ + 3y^.
[6.] (Page 310.)
1. ; expression = {ab — a-^b~^) {ab + ar^b'^) — ab (ab-^ + ar^b)
+ a-'b-"^ (a-'b + ab-') = (ab-a-'b-') {ab + a-'b-')^ (ab-' + a-'b)
X (ab-a-'b-')={ab - a-'b-') (ab + a-'b-' - ab-' - a-'b)=0.
2. See last question.
3. For last term read a^. Arts, a^ — 2a* + a*.
4. {x^'y*^)^. 5. 2x (3 + x"") -v- (1+ xf.
6. air _ 2a6^ + 3a^6 — 2a^bi + 6^; in divisor read 2afe^.
7. X* + 2^" - 8a;' — Qx-\.
8. ax^ — aa^r = a^x {a^x"^ — 1), and second factor of this is con-
tained in the product of the other two quantities,
.-. L. C. M. = a^x (aV - 1).
9. ab-' + 1 — ^a-'b; in second term in text read b^ for 6~'.
10. tV; in first term read al
TJETi
11.
(x — ai) (x + a)
X — a
in second term of numerator read a.
1.
12. '^(xY) -f- ^(a'b').
ELEMENTS OF ALGEBRA. 57
13. Expression = a^ («« + 6f)s + fta (^^J _|. 6a)a =; etc.
( m — n n— m'\
Denominator = same factor x (if" + or),
15. a^ + a"'-" + a*'-""" + «.=^-="' + a""-*" + a'-'" + a-**.
16. abcde ; divisor = rf'" (say) = rZ'" x d^, apply Law IV.
17. x^ + (1 — m) a^x^ + a.
18. Expr(3Ssion = x^ — y" — (y-" — xr"^) = icy (icy-* — x-^y)
— xrHj-^ {xy-^ — x-^y), etc.
19. a'-^rc + 2 ; second remainder is — 5 (ax^ + 7a^u; + 10)
= — 5 {a^x + 3) (a^ic + o), and H. C. F. is a^ic + 2.
20. (aa;" - 1) {ax" + 1) (aV - 1) = a'a;'" - a'aj" - a'x* + 1.
21. 1 - i^a-^x\
22. asa; {a^x — 1) -;- i^d'^x — 1 ; read x^ in first term of numerator ;
denominator = {M^x + 1) {2a^x — 1) ;
(1 — a^)-^ |a(5a + a^)};
3 1 1
denominator = d^{a + a^) (5a + a^).
' ^-y + ^=-\ jpz:c)'(c^) "^ ((^:::6)^6^^) "^ (a-6) (c-a) f
= 0;
^ . — (a — 6) (6 — c) (c — a) .
Expression = —r^ — r-77 -7 r— = 1.
^ (a — 6) (6 — c) (a — c)
23
24. (a + 6)
2?nn
EXERCISE XC. (Page 313.)
1. ^x'; H^ixy'); ^^{xY)\ 6^(a;Y); ^/{a'b*)-
2. 27T; 512^; H; (#; si
3. i. -1(6")^; iia'h'f; (4-")^; UA)'}^) (a'^-'O^.
^. -|(6-«)-i; |(a-«6-^^)-i; (4")-i; KY)*f"*; (a-*ftV)-i.
58
HINTS AND ANSWERS.
6. v^(a"6); v^(a'»+»); ^| (a» - a^T (« + <») f ;
7. Sy^lO; 5^5; 3^5; 9^6; 18^2; f^l2; 7^.
8. 8^2; 6^48; 2^5; 2^3; 10^3; 2; 2^18;
12; ab^b.
10. 1^150; ^375; a« (aj + 5) ; (^- f y) ^(aj - y).
11. (a; - a) /^K^ + a) («'-«')}; a;i (a; + y) ; 2(a-b)^(ab).
12. 10 ^3, J V3, 1^ ^3, ^ V3, i V3-
13. 4^,3^; 8*, 6^; 10,000^, lOOoi ; 33^,32^; 80^,50^;
as, a^ ; a^, a^ ; a^, a^.
14. 2^3 = 24f; 3^2 = 181; 24t = 576^ ; 18^ = 5832^;
and I ^i = (244^^)1
EXERCISE XCI. (Page 317.)
1. 2^2; 8^5. 2. - 12^ ^3 ; llf <^9.
3. 60y'3; 80^3; 24. 4. 6-5^6; 6 y3 + 3 ^30.
5. —32.
6. iV2 + iV3 + 2V5; i V6 + f ^32 + I <^120.
7. f(V"^ + -v/3); i(7 + 8>y/5).
8. ^(17-3y'5; i(16-13y^2);
^ (7 y^l4 - 13) ; 20" - 1 + 2a y(a» - 1).
9. 288 *^72 ; see 4, p. 316.
lO: x + y + z + 2 ^{xy) - 2 ^{xz) - 2 y'Cy^) ;
13a;'' + 4 + 12a; ^{x" + 1).
11. ^/x — A^a\ ict - {xa)^ — a^', a — ^{ah) + b ;
^(25~6y'2)(3-^2).
ELEMENTS OF ALGEBRA.
59
12. Square and transpose radicals, square again, then
{ax + bi/ + (izf — 4 {ahxy + hcAjz + mtxz)
4- 8 ^{ahcxyz) \ ^{ax) -f- ^Khij) + ^Jiliz)\, etc.
13. Rationalize. 14. 3.1003. 15. 3.160.
16. (/y/S + 1) {4 - ^('10 + 3 ^5)} -I- 4 ; |« + ^{a" - a;')} -r- x.
17. 4aj ^(a;» - 1) ; 1 -v- (1 - a;'). 18. %x^ -f- a^
19. a ; rationalize and substitute.
20. /y/(a — a?) -J- (y'a + ^x) ; factor out y^Ca + x) in denomi-
nator of first fraction and rationalize, resulting numerator
cancels denominator of last fraction, etc. 20. lOf.
EXERCISE XCII \a\ (Page 320.)
1. V3 + V'^. 2. y/\{ ^- \/2. 3. VlO - \/6-
4. 2 4- V2. 5. Vll + V^' 6. VS 4- Vs.
7. V^ + 1- 8. 2 + V^' 9. 2^/3 + 3 Vs.
11. ^7-^/d.
10. X4(^7_V3.
'V/2
12. 3 — V^ ; change 13 to 11.
13. 3 VS — 3. 14. 3 Vll - a/41. 15. V^ - V^-
1. -^3 (1 + ^/2).
4. 5 + V^.
7. v^6 (1 + V2).
[ft.]
2. ^5 (1 + V^). 3. -^2 ( V3 - a/2)-
5. V^ - "^^ 6- Vl7 + \/l9.
8. 'V^2 (V^ - a/2). 9. 3^/5 + 6 a/S.
10. ^ (a/3 - a/I). 11- V^O - A/f 13. \/2 + ^^.
13. v^3 (1 + a/3). 14. a/(«* - «*') - a/(«&').
Vr-Hr + a/H^. 16. 3 A/m - 5 a/^T.
18. ^{x + 2/) + /v/(^ - y)'
15.
2
17. • I-
10. j!^^ ^7^ f '' ^"^^ ^y formula G (2), p. 85.
18. — t'sVt' ~ HM 5 divide by right member, and
/I + rr\ 1 3 /I - a;\^ , .31,^
• (^— --r H 1: 1 = li or v/ + —. = 1, etc.
61
EXERCISE XCIV [a]. (Page 327.)
4« -3ir' + 2.T — 1. 2. 8a;' - 12ii;' + 6a? — 1.
,. 8u. — 12a;V + 6a:.y' — y\ 4. .^•« — 2x''y + 2xif — ?y\
T). 2 — 3.r — a?' 4- 2a;\ Q. x* — 2x^y + 3d;y' — y\
[6.] (Page 328.)
1. x"^ — X ■\-\
3. 1 + 3.X' — a?'.
5. x^ — a;',y 4- ^y'^ + y^
7. 1 +^a;-^a;' + A^''-
2. 2 — 4a7 4- a; .
4. y-'-y + 2
6. a' - ^a-' + ^a-'.
1. If.
O 1 1
5. (a* - -;■#• ■
f:-
X
^^BIPPP
/