.^^>J^>. IMAGE EVALUATION TEST TARGET (MT-3) k // ^/^/^y < ^/%i V. f/. 4a 1.0 I.I 1.25 2.0 Ml, 1.8 14 11.6 Photographic Sciences Corporation 23 WEST MAIN STREET WEBSTER, N.Y. 14580 (716) 872-4503 \ Q :1>^ \ :\ '^% KV^ ;\ pb"^' #^ %■ CIHM ICI\/IH s Microfiche Collection de Series microfiches (Monographs) (monographies) vV Canadian Institute for Historical Microreproductions / Institut Canadian de microreproductions historiques H Aft 990 Technical and Bibliographic Notes / Notes techniques et bibliographiques The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below. Coloured covers/ Couverture de couleur D I I Covers damaged/ D Couverture endommag^ Covers restored and/or laminated/ Couverture restauree et/ou pellicul6e I I Cover title missing/ Le titre de couverture manque □ Coloured Cattes g6( maps/ ographiques en couleur □ Coloured ink (i.e. other than blue or black)/ Encre de couleur D (i.e. autre que bleue ou noire) Coloured plates and/or illustrations/ Planches et/ou illustrations en couleur □ Boun Relie Bound with other material/ avec d'autres documents D n Tight binding may cause shadows or distortion along interior margin/ La retiure serree peut causer de I'ombre ou de la distorsion le long de la marge interieure Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ II se peut que certaines pages blanches ajouties lots d'une restauration apparaissent dans le texte, mais, lorsque cela etait possible, ces pages n'ont pas ete filmees. Additional comments:/ Commentaires supplementaires: L'Institut a microfilm^ le meilleur exemplaire qu'il lui a et6 possible de se procurer. Les details de cet exemplaire qui sont peut-£tre uniques du point de vue bibliographique, qui peuvent modifier une i"iage reproduite. ou qui peuvent exiger une modification dans la methode no.-male de f ilmage sont incfiques ci-dessous. □ Coloured pages/ Pages de couleur □ Pages damaged/ Pages endommagees □ Pages restored and/or laminated/ Pages restaurees et/ou pellicul^es Pages discoloured, stained or foxed/ Pages decolorees, tachetees ou piquees □ Pages detached/ Pages detachees I I Showthrough/ 1 y I Transparence Q Quality of print varies/ Qualite inejale de I'impression nuous pagination/ Pagination continue nConti Pagini □ Includes index(es)/ Comprend un (des) index Title on header taken from:/ Le titre de Ten-t^te provient: □ Title page of issue/ Page de titre de la I □ Caption of issue/ Titre de depart de la livraison □ Masthead/ Generique (periodiques) de la livraison ivraison This item is filmed at the reduction ratio checked below/ Ce document est filme au taux de reduction indique ci-dessous. 10X 14X ipv. ■>-)v Z6X 30X J 12X 16X 20X 24 X 28X 3 22X lu'il cet de vue e tion les The copy filmed here has been reproduced thanks to the generosity of: IMational Library of Canada The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications. Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impres- sion, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impres- sion, and ending on the last page with a printed or illustrated impression. The last recorded frame on each microfiche shall contain the symbol — ♦► (meaning "CON- TINUED"), or the symbol V (meaning "END"), whichever applies. Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method: L'exemplaire film6 fut reproduit grSce d la g6n6rosit6 de: Bibliothdque nutionale du Canada Les images suivaraes ont 6tu reproduites avec le plus grand soin, compte tenu de la condition et de la nettet6 de l'exemplaire film6, et en conformity avec les conditions du contrat de filmage. Les exemplaires originaux dont la couverture en papier est imprim6e sont tilm6s en commenpant par le premier plat et en terminant soit par la dernidre page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous ies autres exemplaires originaux sont film6s en commenpant par la premidre page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernidre page qui comportu une telle empreinte. Un des symboles suivants apparaitra sur la dernidre image de chaquo microfiche, selon le cas: le symbole — ^ signifie "A SUiVRE ", le symbole V signifie "FIN". Les cartes, planches, tableaux, etc., peuvent §tre filmds d des taux de reduction diff^rents. Lorsque la document est trop grand pour Stre reproduit en un seul clich6, il est film6 d partir de Tangle supdrieur gauche, de gauche d droite, et de haut en bas, en prenant le nombre d'images ndcessaire. Les diagrammes suivants illustrent la mdthode. 22-x. 1 2 3 1 2 3 4 5 6 ^^^ A B^ National Library Bibliotheque narionaie ■ T of Canada du Canada CANADIAN ARITHMETIC IN DECIMAL CURRENCY WITH METRICAL TABLES FOR THE USE OF SCHOOLS BY J. H. RICHARDSON APPROvatJ BIT THE COUNCIL OF PUBLIC INSTRUCTION IN OCT. 1870 i QUEBEC PhinTed and published dy a. GoTi & C 1871 ;,5^^Bffi(f*K;j sm^^^ r »>'j!&» '.'-- a A 103 85 Entered according to Act of Parliament of Canada, in the year 1871, by Augustin Cote, at the office of the Minister of Agriculture. \ •iiwii^^^^m^mm^m.m PREFACE. f Canada, e office of The object of the following treatise may be expressed in one • ZT\~^J''''^\ The author has aimed to make the work practically useful : with this view, the rules are expressed clearly and concisely, illustrated by many examples which are carefully explained, and followed by numerous exercises, which will afford the pupil that practice by which alone expertness and accuracy in the managemonl of; numbers can be obtained and by which the rules can be impresst-d on (ho memory of the pupils. It was thought bett to leave the explanation of most of the rules to the teacher with the blackboard; and as im pressions made on the mind by seeing, are more important and as ing than those made by any of the other senses, the instructor or educator should make a constant use of this acuity in communicating bis instruction*. It is, however. thought that the rules are so clear, and the explanations of the proS'empIo^d ' ^ ^ ' ''"^'^ '^*" ^'''^^ comprehend the Of the exercises, some are proposed in purely abstract terms, be ng mtended merely to afford practice to the learner in the rules; and many 01 the exercises will be found to furnish im- portant facts in geography, history, &c., both interesting and instructive. The exercises are graduated so as to form a pro- gressive course of instruction adapted to the different classes in aschoo ; and miscellaneous questions are scattered through the work, which are^recommended to be used as exercises when taking a review of the rules already mastered P J, A^Ik '"'' ^""^^"^ .°^ "°"^y' ^^'«hts and measures, with exeroises thereon, are inserted at the end of the work' and !^hn„r-fK'^^''°™,'"^",'^^'*.'° introduce the system into 'their l^:Z:^S^o7^.'' ''''''''' ''^ iard throughout nf ?hrh^ii?'''"^'f ?.'" /"™u^' arithmetic are Inserted at the end of the book; and the teacher is recommended to begin at as stul'whToh wi?lT'''r' 'r'''"''' }i}' P"P"« *" th'« '"^P«rtnt SS'.oTi ? T r ^% '^°""'^.^ """'^ ^"^°'^"^ "I'^ans of cultivating the intellectual faculties of his scholars and improving their reasoning powers. *»"Fiuviug lueir cnJJ'H f™^|f '"s ^re all new ; and no exertions have been spared by the author to ensure the strictest ap.c„r..,ny [p ZJZ part of the work, "^ n.^.cr^ J. H. RICHARDSON •? iBt June, 1870. To Mr. JOSEPH RICHARDSON, School Teacher, St. Dunstan. Dear Sir, I have found in your work a larger amount of information on the fundamental rules of Arithmetic, suited to the wants of schools, both as regards a text book adapted to the capacities of children, and as an efficient means of lessening the labour of the teacher, than in any other work on the same subject. I commend your Arithmetic most heartily to the notice of teachers and others, interested in the education of children and youth, and I wish your excellent work a widely extended circulation. With best wishes, I am, dear Sir, Yours truly, /• . F. E. JUNEAU, Inspector of Schools . I •J 1870. amount of , suited to adapted to f lesseniug 1 the same » notice of lildren and extended of Schools. KICHARDSON'S CAMDIAN ARITHMETIC NOTATION AND NUMERATION. Arithmetic is the science which explains the properties, and shows the uses of numbers. Numbers are expressions or characters that represent u.i. or more things. Notation is the art of expressing numbers by characters. Numeration is the art of reading numbers expressed by characters. Ten characters, called figures, are used for the expression of numbers. The figures used In writing nv.mbers are : I, 2, 3, 4, 5, G, 7 8, 9, 0, called, respectively, one. two, three, four,' fl've' six' seven, eight, nine, and zero, cipher, or naught. (5 NOTATION AND NUMERATION. Numbers higher than nine are expressed by two or more of these figures together, thus . Ten Eleven Twelv'j Ttiirleen Fourteen Fifteen Twenty Twenty-three One hundred and ten One hundred and seventy Two hundred and nine Two hundred and twenty-six is written 10. 11. \-2. 13. 14. 15. 20. 231 110. no. 209. 226. When a number consists of several Hgures, the first figure on the right hand is called the units' figure, the second figure from the right hand the tens' figure, the third figure from the right hand the hundreds' figure, the fourth figure from the right hand the thousands' liguf*?, 4q. iT/ T The cipher or zero alone is of no value ; but when used with other figures, it changes their value. Thus, the figure 6 alone denotes 6 ; but by annexing one cipher, il becomes 60 ; by an- nexing two ciphers, it becomes 600, Ac The figures 65 denote sixty-five ; but by inserting a cipher between, the value is changed to 605. To facilitate the reading of numbers expressed by several figures, they are divided into periods of three figures each, beginning at the right hand. The first period of three figures on the right hand is called units, the second period thousands, the third period millions, the fourth period, billions, the fiah period trillions, and so on, according to the following :— 3 .2 .S o 3 ^ era 3 en •a t. o r:3 c g e WHO" a o g '5 10. II. V2. 13. 14. 15. 20. 23. 110. 170. 209. 226. NOTATION AND NUMERATION. NUMKRATFON TAni,E. 11 a .2 c o 3 = £ O 3 33 in C o 3 c ■a &• 'E 1^ -3 cri D 3 3 S 3 c o ■3 — I/> C o rr en «-H .2 o ^ 3 O O en ■S -i CO e 3 s § O 33 - . -^ 3 O C t. o 3 — S 3 D .~ .3 (D ■a a ? go 5 "3 ■s § , to ^ 3 2 «■ tn j3 -a 3 t, o O XJ — 3 3 3 "3 a •r r- en ♦J 353-= -3 Q^ C 21,20,19,18,17,16,15,14,13,12,11,10,9, 8, 7,6, 5, 4,3, 2, I, m a o 3 '3 O en C o 73 (0 o ^ en n I c o en 3 3 o H 3 The periods after quintillions are called sextillions, septillions. octillions Ac but It IS seldom necessary in actual practice to express numbers exceeding millions. of the'^^^eriUds"""'^"'^^ '' '^ necessary to remember the names Thus in reading h<. .expression 472,536,000,704,006, by liv ding the number mto periods of three figures each we find that there are live periods, the tiflh jieriod from the right hand being four hundred and seventy-two trillions, the fourth five liPd nl-r^ ""'"'^-^^^^ ^"'"g "° millions, the E E.Tr\ " T''T'''\ i*y '^•1''"^^^' '" ^he second period we ha^e seven hundred and four thousand, and in the first period SIX. I he whoe ,...mher is therefore read, four hundred and seventy-two trillions, five hundred and ihirty-six billions seven hundred and four thousaud and six. „PH5L"I'f^M°'^ ^'r" ^^o^^^y "•''"ch numbers are divided into periods of three figures each, is that which is employed by the 8 NOTATION AND NUMERATION. French and ItalmriH. It is strongly ncoinmcnded for its sim- plicity, nriil it htts hof^n mloptcH in sonic EnKlish works. Fn most Enf,'lish works however, tlio periods arc made to consist of six tlgnrcs each ; and as they have the same names as thoio in thetahic given ahove, ^thonsands however heing hmiled to three places), tlie niles given above will he aiiplicable in this method, if the periods are made to consist of six figures each, instead of three, and the second period be called millions, the third billions, Ac, as in the following lalde. The answers to the exercises are given according to both methods. OLD NCMERATION TABLE. IV. Trillions. III. Billions. II. Millions. I. Units. S Hundreds of thousands of trillions. w TciiH of thousands of trillions. j3 Thousands of trillions. ^^ Hundreds of trillions. p Tons of trillions. w Trillions. ' S Hundreds of thousands of billions. ^ Tons of thousands of billions. S Thousands of billions. tn Hundreds of billions. *■ Tena of billions. ^Billions. « Hundreds of thousands of nii'Iicn:. M Tens of thousands of million?, p Thousands of iLillions. ,- Units. 2. 1 3. ! 4. i 5. 5 6. ' 7. i 8. 5 cd Tor its sim- h works. In lade to consist, 1(1 mes as thoio ing limit«(l to licnblt) in this IlK'iros tJQch, I inillions, the ho answers to i. of trillions. Uiona. of billions, lions. )f million: Uicn?. NOTATION AND NUMERATION. 9 EXEHCISE 1. Write down in words or name tho following numbers •— 1. 27 ; G3 ; 208 ; 305 ; 750 ; 932 ; 7605. 2. 5900 ; 10100 ; 25002 ; 200090 ; 402000 3. 0300200 ; 27000042 ; 600007000 ; 123456789 4. 5OI23()()()S0 ; 702300000007 5. 2600970400000 ; 900460000070004 0. 70'. 00006030002000; 500702300001 7. 6009004003002005 ; 2002002020 8. 2714683529123456742. To write numbors in figures :— /?uie.— Beginning ni the loft hand side, place each significant llgure in its corresponding period, and fill up any vacant places that may occur in any period with ciphers. ExAMi'LP— \yrite in figures the number thirty-seven millions' seven thousand and nine. * t-ujuuuons f)nT'/'^,.'-'T '""''"'' '^',""°' "'" ^''''°"'l s-^ven thousand, and the third thirty-seven millions, therefore wo write two cii)hers in iumS S7009 ^^"^ '" ^^' '"'""'^ ^^ "^^''^ ^' °'^"^'" ^^^ EXKRCISE 2. Write down tho following expressions in figures :— 1. Seventy four. 2. Two hundred. 3. Seven hundred and nine. 4. Two thousand and sixtv-seven. 5. Four thousand and two'. 6. One thousand eight hundred and sixty-nine 7. Throe thousand and six. 8. Nine thousand and sixty. 9. Five thousand seven hundred ana two 0. Fifteen thousand two hundred and thirty. 11. Ihirty-nino thousand and seventy-four 2. Six hundred and four thousand and nine eHt ""'''"^"^ *^'^"^y thousand nine hundred and 14. Two hundred and four millions seven hundred and sixly-hve thousan.l seven hundred and ninety-two 15. Ninety-seven billions six millions and thirty-four. ' in. , wo ftuiiGiiH and scvcnty-uiao *^" andVour"'^'*''^ ^'"'""^ '"'""'^ ™"'''"^ '"°"'' *ho»8a"d 10 NOTATION AND NUMERATION. M 18. Sixteen billions sixteen millions sixteen thousand and sixteen. on ^wenty-four trillions seven millions and ninety-six. ^0. Ihree hundred and sixty-live trillions two hundred and forty-seven billions six hundred and thirty-nine millions live hundred and seventy-three thousand six hundred and ninety-four. In Roman notation seven letters are used which with their values are : I.- V.- X. L. ■ One. Five. Ten. — Fiftv. C- D. M. One hundred. Five hundred. One thousand. Other numbers are expressed by combinations of these letters. When a letter is repeated its value is repeated, but no letter should be repeated more then three times. When a letter of a lower value is written after one of a higher, Uieir values are added, and their sum is the value of the whole. When a letter of a lower value is written before one of a iughor, their values are subtracted, and the dilference is the value of the whole : thus. 400. .^00. 600. 700. 800. 900. 1000. 2000. 3000. 3500. MDCGCLXX.- 1870. ■ — ■ . I A dash placed ov^r a number consisting of one or more letters, multiplies its value by 1000. Thus GLX.=160, but GLX.=1 60000. Exercise 3. Express the following numbers in fi^rures : IV, XIV, XX. VIII, XVI, XLV, LXXXf, CCCXVIt DqXLVni,^GCG, CDVII, DLIV, GMXII, MGXX, WMDCCG,' MD, XL, LXXX, XM, XLMMGXXVII, MM, VlT, MXVIf, VMMXLII, MDCGGLXVIII. I.N. sen thousand and nd ninety-six. ns two hundred d and thirty-nine rce thousand six vhich with their - One hundred. - Five hundred. - One tiiousand. IS of these letters. ted, but no letter after one of a m is the value of before one of a diiference is the — 400. — ."iOO. — 600. — 700. — 800. — 900. — 1000. — 2000. — 3000. — 3500. ID — GCLXX.- 1870. of one or more S[. CCCXVII, XX, MMDGCG. , VlT, MXVIf, SIMPLE ADDITION. Exercise 4. u Write tho following numbers in Roman Numerals • n2t' f •^'' ^^- '04, 692, 573. 896, 365, 144 5270 9650 7408 9005 2560, 10724. 49650, 50070, 78964 42763 81796 802764* 453000, 792800, 1702500, 3742508. ' ' '^^' SIMPLE ADDITION. Simple Addition teaches how to add toffpfhpr i-am «,. ™«»„ quantities of the same denomination so'af'S'mS LTnt The quantities to be added are called the addends thn ?heTr sii^"'' '' '^""' '' '''' ^''^"<^« ^^k«" together ?s called «,h^?f >^"»+i^"^^^^^".*^'-"^"^s that the quantities between which It stands are to be 3d together thiiQ 9 j. 7 »i;„r- o and 7 added together are L '''^^^^^^' thus 2 + 7 that is 2 The sign = denotes that the quantities between which it f ?s"equ:rtor ' as 3 + 2 + 4 = 9 that is the sum Sf it and ADDITION TABLE. 2 and 1 are 3 2—4 3 — 5 4 - 6 6 — 7 6-8 7 ~ 9 8 — 10 9-11 10 — 12 U — 13 12 — 14 3 and 1 are 4 2—6 3—6 4 and 1 are 6 2—6 3 — 7 6 and 1 are 6 2 - 7 6 and 1 are 9 2 — 10 3 — 8 3 — 11 9 and 1 are 10 12 and 1 are 13 4 — 7 4 — 8 4- 9 4 — 12 6 — 81 6 — 9j 5 — 10 6 — 9l 6 — 10 6 — 11 7 — 10 8 — 11 9 — 12 10 — 13 r - 11 8 — 12 9 — 13 7 — 12 5 — 13 6—14 7 - 16 8 — 13 8 — 16 9 — 14 11 — 14JI1 — 15 12 — 16 12 — 16 10 — 14|lO — 15 11 — 16 2 - 11 2 _ 14 3 — 12 3 — 16 4 — 13 4 — 16 6 — 14 6 — 17 « — 16 6 — 18 7 — 16 7 — 19 8 — 17 9 — 18 9 — 17 10 — 18J10 — 19 11 — 191:1 — 20 12 — 17JI2 — 20 12 — 21 8 — 20 9 — 21 10 — 22 11 — 23 12 - 24 12 SIMPLE ADDITION. I ' Pupils should be continued at the above addition table and similar exercises until able to add with facility ; for without practice in some such exercises the operation will be found to be tedious and difflcult. Rule. 1. Place the quantities to be added below one another so that units will ^tand under units, tens under tens, hundreds under hundreds, dec. 2. Then commencing at the right hand side, add together from the bottom the figures \n the units colnmn ; if the sum does not exceed nine set down the figure ; 3. But if the sum exceeds nine set down the right hand figure, and carry the remaining figure or figures, which is the number of tens in the number, to the next column ; because ten in any column is equivalent only to one in the column immediately to the left of it. 4. Proceed in the same manner with each coluam to the last, the sum of which set down in full. 6.- EXAMPLE. 724 40 151 742 Add together 724, 40, 151, and 742. First we arrange the quantities so that units are under units, tens under tens. Ac. Then adding together the figures in the first column — ; — we set down 7 their sum under the units co- 1657 sum lumn, the sum of the second column is 15, we th'-refore set down 5, the right hand figure and carry 1 to the next column, the sum of which with I added to it is 16, which is set down in full. Proof. 1. Bogin at the top and add the several columns downwards, which should give the same result as by the rule, or, 2. Add together all the quantities except that in the top line, then to their sum add the quantity in the top line ; and if the resL.!t is the same as that obtained by the rule the work may be considered correct. EX£RCISES. 1. 3. 3. 4. 6. 7324 2706 64736 928764 5316742 8orr 312 17;!4 236 7654321 2430 8964 83965 rsfi.sft 8978 3607 2106 27 626436 27836 10.— I i 14. Add t( ; 15. Add 1 t906vds. : 7; ] 16. Find ff 87568 + c ;s 17. Find 72564902 + • 18. Find t ^ 2463 + 3£ 19. Find t ,786 + 2794 ■ ^ 20. Add t line thousai and fin,y-sev( isixty-eight. 21. Add 1 leventy-four lUndred and iixty-five ; fc >ev6n thousa SIMPLE ADDITION. 13 lition tfible and ty ; for without ivill be found to ow one another tens, hundreds the right hand es \n the units iwn the figure ; jht hand figure, 1 is the number ause ten in any immediately to th each column IS so that units ms. Ac. Then he first column ir the units co- lumn is 15, we land ligure and sum of which i. sveral columns as by the rule, in the top line, le ; and if the e work niay be 6. 6316742 7654321 897S 27806 6. — pounds. 7.— tons. 9264 746 1835 i)67 7409 843 7863 662 6298 479 6314 843 6701 247 8.— yards. 9,— bueheli. 729 3906 463 9678 397 2847 866 3964 279 1868 768 2547 496 9870 10. — inches. 9274 3768 9ft68 2374 4680 7531 9246 8218 4667 5108 3742 6938 2714 2583 9673 6678 6013 6724 1896 11. — days. 829 766 358 902 631 790 642 812 643 678 109 367 429 681 432 667 198 268 937 12. -miles. 872 409 876 693 870 365 742 964 678 369 472 896 759 804 968 247 964 678 964 13,— feet. 9864 6957 8972 4669 8729 4596 9872 4658 2907 6784 6972 6578 9834 6786 9672 6584 9327 4686 9307 1869 lbs. ; 9724 lbs. ; 6002 yds. ; 28 yds. ; ; 14. Add together 7642 lbs. ; 9763 lbs ■ , 15. Add together 2479 yds. ; 248 vds' Doe yds. : 7592 yds ^ < l^vJ'"*^ *''^ S""i of 90068 -I- 742 4- 96742 4- S7qfiq J_ 07/ H- 87568 + 93275 -I- 87563. "^^ -^ >'0'4>i + 87963 + 974 17. Find thp sum of 2796824 + 87073064 -I- onTnARno _i_ 72564902 + 78569204 + 3041 63874 + 987653792 + 749 sS "*" 18. Find the sum of 9248 + 6702954 1^48 X TS^Ja?,? oA^,/ n #f 2463 4-3964872 + 1 8978 + 924641 + 365 + ^'^^^ + ^^"^^ 19. lell in the year ? i steamboat on mon- ; and 27 miles on iles did ho travjl in SIMPLE 8CBTRACTI0N. ^5 from thf n' '"k'"""?'' '' '^"'^'''•'' ^'^'^^ "^"'^'•^ '" ^he lower line from he one above ,t. and set down the remainder. 3 But if Bny figure in the lower line is greater than the one above .t add ton to he upger flgur^e, subtract as before and carry one -to the next figure in the lower line. 4. Because by carrying .me to the lower figure, we increase the lower line I muc^^ w mcroased the upper by adding ten. and thus the difFerence is the same as if neither had been increased. "^^Za ifX' X T^\X^!'T l^he given num. ^considered correct ; or ' ^ ' *^" ^""^^ "^^^ ^« \ 2. Subtract the remainder from the ereafftr nf \\.^ „• \ Example. 1. From 9386 take 4241, I 9386 4241 ,^I45j^emainder. The numbers being arranged according to I 9386 proof; 'Um% ^H ' ''"" V?'^ ^ '^^^^-i' i ^ ^ "".'" ^ nnd '1 remanis, 2 from 3 ant\ \ iiind the remainder to be 5145. I. N. i the difference be tion. }he g,ven numbers, which proves thfcoJre^tneL'oHlfa^orr' tence to be e.Sairth^' lXTeUTS;rSe"2o'rrtt.^"''^- E.XA.MPLK 2. Find the difference between 73049 and 26586 ^1 73049 1^- Here we say 6 from 9 and 3 remains then Signifies that 9 is to .P^^remaind.r 4^^^ a^! K t^e'Tppe^ ffgirreTnfs?^^ T73049_proof ^ '^ ^^,« — ^s a 1 , ^ ^ ■nd 6 remains, carr'y""" "''mX^ \ 1 f ""''.'' '' ^^-^ " he whole remaindei^ is t^Tifbre f6463 ™'° ' ''"' ^ '"^"^^'^^ • between two num- vs the sign, is to be 3 greater with units ming at the right. 1^ BIMPLE SUBTRACTION. l.-^miles. 361845 121432 5. — pounds. 1357960 8G9478 15.— 3126428 — 246804 16.— 156938245 — 75060458 ExERGiSKs. 1 30. By h, n . , „ yje extent r i.— inches. 3..-tons. 4.— yards, ^urope 380 68791805 9287694 7920685 i 31. Afar 12310213 3124132 2310213 ^ one perse — — . . lis ho loft "t 1 32. Whal O.-^dolJars. 7.— hours. 8.— feet. tWie being m 7598764 3100450 60750012 i^^. The : 957829 801976 30170468 ^"'ope, is „ „, _^ . npghest mot [34. Theh (tf LakeOnt if the forme J 35. North 17.— 87136924— 30271 #?»'h Amei 18.— 1401.^06— 71352 f'^l'' of eac 19.- 7325184— 820094 *'y 28 mile 20.— 24150685— 4629507 I 36. The d Wiles, ami I 21. From seven millions eight thousand, lake two hundredt |e^j^Qol°^ and forty-seven thousand nine hundred and seventeen. 22. Take twenty-seven millions and five, from thirty-foui millions. , 23. Take seven hundred and ninety-four pounds, from four I hundred thousand pounds. 24. Find the difference between 7 days and five thousand I ^^^'ltiplica days. repeated as n 25. What is the difference between eight millions eight% which it i thousand eight hundred ; and forty thousand and seven. tThe numb( 26. A person paid 3740 dollars for a house, and spent 2\ipkcand. dollars in repairs, after which he sold it for 4500 dollars, wha iThp n„rr,K. was his profit ? iltn L 27. What is the difference between the length of the riveiT ^^'^^"^ Amazon, in South America, the largest river in the world P^^ result ( 9.— 7063485 — 6724185 10.— 7999816— 870908 11.— 15280054 — 8629071 12.-64259,360 — 4759643 13.— 5000000— 846921 14.— 7305030 — 25010S6 which is about 4700 miles long ; and the river St. Lawrencf which with the lakes is about 2140 miles long ? 28. America was discovered in the year 1492 ; Canada ir 1535 ; the city of Quebec founded in 1608 ; Canada taken b Great Britain in 1629 • city of Montreal founded 1642 ; Quebei taken from the French in 1759 ; Canada ceded to Great Britair^ jn 1763 ; and invaded by the Americans In 1812. How manv years elapsed between each (if the above mentioned events, aiii the confederation of the British North Americnn Provinces 1867? The multip bduct. 29. What number added to 7968, millions three thousand and nine ? will amount to thrt'l Jn simple rr only one d( A composil us 72 is a c tors, 6 and p.«The siiin x !twet>n two ijether. Th ■ seven is eq I SIMPLE MULTIPLICATION. IT 4. — yards. 7920685 2310213 1. 8.— feet. 60750012 30170468 26428 38245 M924 i)1500 25184. 50685 — 246804 — 75060458 — 30271 — 71352 — 820094 — 4629507 take two hundred seventeen. 3, from thirty-foui J 30. By how many square miles does America exceed Europe f.u-op?380000o"r''''' '" ''^'""''' "'"'" ^"'"^ 15500000, and of J 31. A farmer has 960 bushels of potatoes, lio sells 230 bushels ilsXS?"'^"'' '^^ ''"'^'''^' *° another, how many bushels 'f32 What is the difference between the value of two farms *^oV''::''S r'"' ^^^'^ '^o''^'-^- ^^^ the otl...r 796O doHars ? I 33. Ihe height of Mont Blanc, the highest -mountam in LU-ope, is 15732 feet; how much higher is Chimborazo, the ghest mountain in America, its height being 21424 feet ? ^T oiln , '^ 'ooi ^ake Superior above the sea is 600 feet and rf Lake Ontario 232 feet, ho^y many feet higher above the sea 1| the former than the latter ? 35, North America in its widest part is 3500 miles across, and u h America 3200 miles, what is the difference between the idth of each and the isthmus of Panama which is in o.-o part ily 28 miles across ? ' ' 36. The distance of the sun from the earth is 95000000 of Wi es, an-1 the distance of the moon from the earth is 237000 -lies, how many miles further is the sun from the earth than ' pounds, from foui and five thousand ght millions eight' d and seven. ise, and spent 2lt] 4500 dollars, wha length of the rive; iver in the world river St. Lawrenc* g? p 1492 ; Canada ii ; Canada taken b^ ided 1642 ; Quebc( eii to Great Britair- 1812. How manvj ntioned events, aiii irican Provinces id amount to throl SIMPLE MULTIPLICATION. Multiplication teaches how to find the value of a number peated as many times as there are units in another number y which it IS multiplied. |The number repeated in multiplication is called the mulH- iThe number which shows how many times the multiplicand |to be repeated is called the muUiplier. phe result obtained by multiplication is called the product. ^J^^^P>''P''cand and the multiplier are called factors of the lln simple multiplication the multiplicand is always a quantity lonly one denomination. • J 4 ''"'■"•y [a composite number is the product of two or more factors .tnJ V^ ^ composite number because it is the product of the 2tors, 6 and 12, 8 and 9, ^ .r 9, 2, and 4. fc,;'^"^'"'"''^*^^ ''Sn of ffiulliplication, when written ! Pthpn T*? """I'^e'-s- S'&n''"'es that they are to be multiplied l'letiis'4ua. to r05' = ^''' ^"' is read lifteen multijliad I i ! II! 18 MULTIPLICATION TABLE. Twice 1 are 2 2 — 4 3 — 6 4 — 8 6 — 10 — 12 r — 14 8 — 16 9—18 10 — 20 11 — 22 12 — 24 3 timea I are 3 2—6 3 — 4 — 12 6 — 15 6 — 18 7 — 21 8 — 24 9 — 27 10 — 30 II — 33 12 — 36 4 times 1 are 4 2—8 3 — 12 4 — 16 6 — 20 6 — 24 7 — 28 8 — 32 9 — 36 10 — 40 6 times 1 are 6 2 — 10 3 — 16 4 — 20 5 — 25 6 — 30 7 — 35 8 — 40 9 — 45 10 — 60 6 times 7 times 11 — 4411 — 55 12 — 4812 — 60 1 are 6 2 — 12 3 — 18 4 — 24 6 — 30 6 — 36 7 — 42 8 — 48 9 — 54 10 — 60 11 — 66 12 — 72 1 2 3 4 6 6 7 8 9 10 11 12 11. Whentl f' tie I.— I. iplicand, ight han jKanulUplier lOduct, belo — 28|iuP(j or figu fie next, a ! to one in |x AMPLE 1.- ~ ^mmultipll _ 5 J 7 mnltipli — 63p2 procjuqt — 7oi carry 6';' _|y6; 7 tiff — T'l-efore set d 21! — 3: — 84ll 8 times 1 are 8 2—16 3 — 4 — 9 times 1 are 9 5—40 48 66 « — 7 — 8—64 9—72 10 — 11 — 12 — 96 2 3 4 5 6 7 8 9 10 11 12 18 27 36 45 54 63 72 81 90 99 108 10 times 1 are 10 - 20 30 40 60 60 70 80 90 100 11 timet 1 are 11 2 — 22 3 — 33 4 — 44 5 — 66 6 — 66 7 — 77 8 — 88 11 — 110 12 — 120 9 10 n 12 — 99 — lie — 121 — 132 12 I 2 3 4 5 6 7 8 9 10 11 L2 times are .T-mi|es. 76945 2 24|. — pounds. ' 793624 3fi 6 — 6i —7634 > — 6319> 72».— 5607 > -7328 > __ y'wien the mi t^s are higl ~ %ie II.— Mu - ^-Sp'y the pi — 13S ^^^ '■'^''^* P factor, &c. .E. SIMPLE MULTIPLICATION. 19 times 1 are 2 — 3 — 4 — 7 — 7 times 1 are 12 12 18 24 30 36 42 48 54 60 66 72 if. When the multiplier does not exceed 12. '■,^le I.— I. Placo the multiplier under the units ngure of the '^'■-^iplicand, and draw a line below it. 2. Then beginning at 3 — 21 4 — 7 — 49| 8 — 66 14l|j^ight hand side, multipl-yeach figure in the multiplicand by pjuultiplier ; set down t!»e unit or right hand figure of each bduct, below the figure multiplied and carry the remaining 28i||ro or figures which is the number of tens in the product "lie next, as in addition, ten in any column being equjva- ! to one in the column immediately to the left. |xAMPLE 1.— Multiply 7896 by 7. '6 multiplicand. 7 moltiplier. Place 7 th« multiplier under 6 the right 10 11 — 7- 12 — 84 w hand figure of the muUiplioand, then 7 <2 produd. times 6 are 42, set down 2 and carry 4 ; 7 times 9 are 63 and 4 are 67, set down 7 70 carry 6 ; 7 times 8 are 56' ahd 6 are 62, set down 2 and T6; 7 times 7 are 49 and 6 are 55 which i8 the last and i» ■efore set down in full, the whole product therefore is ^5272, times are 11 12 times are Exercise 1. 22 2 33 3 44 4 55 5 66 6 77 7 88 8 99 9 11!' 10 121 11 132 12 .— mi|es. 76945 2 -pounds. ?93624 6 2.— yards. 73648 3 6. — dollars. 134856 7 3.— pounds. 962847 4 7. — m inutes. 473582 8 4.— iji^Qjie?, 83169A. 5 8. — cents. 694273 9 I.— 7634 X 2 I.— 6319 X 3 .—5607 X 4 !.— 7328 X 5 13.— 79608 X 6 14.-J250ti3 X 7 15.— 16914 X 8 16.— 32592 X 9 17.-32649 X 10 18.— 78295 X 11 19.-32071 5^ 12 20.— 68742 X 7 _ 9^en the multiplier is a composite number, neither of whose "8 are higher than 12. 1 M^\ II-— Multiply tho multiplicand by one of the factors, and '"^piy the product thus obtained by the second factor, if xM *•*« three factors, multiply the second product by tha I factor, 4c. 141 20 SIMPLE MULTIPLICATION. ExAMPi,E 2.— Multiply 7384 by 54. Example TJ,. f . , . • M 740 ,.J I?- , ^. °^^^^ multiplier 54 beina 9 nnrf fi I 23000 we multiply the given numfcer by 9 one 5f the f«.' I gives the whole product 398736. ftS ©020000 nZblr. **' """'P''"" *' ^'8''«'- ^h«n '2 and not a composite I Example '* 3674 thft"''f ■",!• "^'"'^ the multiplier under the multiplicand so ^f^'! that umts wll be under units, ters under tens, Ac. 2 Multh) y i^^ by each figure of the multiplier in succession, etting down th products, so that the right hand figure in each will bLnTer he figure m the multiplier which produces it. 3. Then ^dd tL several^ products together and the sum will be''th" ^eTuiied^ the^3u"^tt\t'yi:aTthifoL'y the multiplicand and if is correct ^^ *^ *''** obtamed by the rule the work I Example 3. Multiply 864 by 43. 2592 3456 37152 product. When ciphers. the firs^t'%uTe oTl'if 'y ^I ? '^"^ ''^ <^'^^ the iirsi ngure ol the product under that fiffnrp KeTf rJ-ifr ^ '^ ' «°/ ''' d'ownlhte iigure 01 thd product under that figure thpn oS&H'^l^r tl'ese partial prodS we obtam the whole product 37152. multiplier or the multiplicand or both end in !. 2. 3. 4. 5. 6. 7. 8. 9. 10. II. 12. 13. 14. 15. 16. 17. 7: 2f r 92 78 7 35. What 36 What 37. Multip lundred and Zh";,„»'"° "■''"'""'"' """« ""» '*■■«- "the »daf loyei^ht,. „. _ j„_ fliuiiip •housand tw ve hundred Mii )pf. ^r54 being 9 and C, by 9 one of the fac- other factor whicli 16. 8IMPLB MULTIPLTOATION. '^ Example 4.— Multiply 740 by 23000, SI 740 23000 222 {48 17020000 ■"•r Here we multiply 74 by 23 and to the product annex 4 ciphers which gives the whole product. Id not a composite < Example 5.— Multiply 3674 by 2008. he naultiplicand so ns, Ac. 2. Multiply 1, setting down the h will bounder the 3. Then add the II be the required ultiplioand and if the rule the work and set down the under that figure, set down the first ' that figure, then ial products we 52. 1 or both end in leaving out the 5rs at the end of Set down the first figure of the first partial product under 8, and the first figure of th« second partial product under 2, then adding together these partial products we obtain the reouired product 7377392. ExEItCICE 2. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 7428 X 9205 X 7856 365 3456 287 3625 2794 6325 9637 73456 26004 3648 4905 ., 92876 X 78632 X 7013 X X X X X X X X X X X X X 63. 96. 36. 84. 56. 108. 365. 872. 704. 453. 500. 796. 406. 3672. 7005. 2405. 2064. 18. 53284 19. 392605 20. 746058 21. 7096804 22. 8193620 23. 3480006 24. 245600 25. 81243 26. 716018 27. 3576804 28. 4289654 29. 936087 30. 386790 „ 31. 8927648 X 750638. 32. 2715906 x 3724. 33. 5816927 X 30876. 34. 8603059 x 63489. X X X X X X X X X X X X X 7100. 3060. 70306. 73040. 24106. 30018. 7600. 834. 9006. 204. 7056, 8604. 36500. 35. VVhat is the product of 27648 and 7962 ? 36 What IS the product of 906874 and 27685 ? bundreTS LTfn"*^ three millions sixty eight thousand nine Ky eight ^ ' ^y^^^^" thousand two hundred and I 38. Multiply forty miliious three hundred and sixtv five 22 BIMPJLC DIVISION. 39. Multiply 2G78 feet by Sand the product will be theheiKlAn»«;n«^ of mount Chiinbortizo. :wniainen 40. How many yurds are thf-ro in 763 piocos of cloth, on-'*' *''° ^""s' piece containing 27 yards '( tir the tin 41. How many letters are there in a book, containing '' a^j ept do pages, each page containing on an average oO'J words, and ^a J " . word 7 letters '(• tS'" ' 'Viaor 42. There are 525960 minutes in a year, how muny are thdimher di in 40 years ? iividond 4:}. A clock strikes 156 times in a day, how miny times do^,- „ .' \i strike in a year ? wmg doi 44. If one barrel of Hour cost 7 dollars, how many doll:iiiP''e33 to would 1387 barrels cost? minder se 43. How many panes of glass are thorn in a house in whi there are 7 rooms ; each room containing 3 windows ; and eii window 8 panes ? SIMPLE DIVISION. Division is the method of finding, how often one giv number is contained in another. In division the number to be divided is called the divider, The number by which we divide is called the divisor. 'hoop. I ich add IS obtaii ■rect. t)XAMPLE f 1 54807 ; 7829f '54807 1 The remainder is any number which may remain, after tJ division) when tbo divisor is not contained an exact numli of times in the dividend. The dombor whioh shows how many times the divisor contained in the dividend is called the quotient. 5 over, [in which |ce and 6 'inch we w "When the dividend expresses a quantity of one denominati * the process is called simple division. When the divisor does not exceed 12 the process is call' ? short division ; when Ibe divisor exceeds 12 it is called l m this it is contained 7 times in Th- V"'?" ^^^ remainder prefixed to the next figure makes in which 7 IS contained 8 times and 2 over, then 7 into 20 Ice and 6 over, and 7 into 67 nine times and 4 over. undeJ ^aich we write the divisor ty of one iJenominati * 2 the process is call ds 12 it is called la , w.-tM placed belwi that prece'des the sii: r. oft of the dividend s| V often the divisor ■19 .a Exercise 1. 1. 2. 3. 375064 -f- 736281 -I. 9406307-1 4. 123456789 4- 5 6342587 -:. 6. 1392684 i 7. 2222222 -i- 8. 7219634 .i. 9. 6312725 -L 10 10. iiiiiiiii ^ ii 11. 5300026 J- 12 12. 748742 4- 3' 2. 3. 4. 5. 6. 7. 8. 9. 13. 1425896^ 5. 14. 638247 -f 7. 15. 2468013 JL 9 16. 1357924 4-11. 17. 64289768— 4 18. 3725872^-12' 19. 13926741^ 8 20. 7326974 -I 21. 9.'lS72fiS-L 22. 7134267 4- 23. 7248956 -i. 24. 6372485 1. 6. 7. 9. -j. I t4 SIMPLE tlVlSiOtf, ■ "Wlwi the divisor ip a composite number, none of wfioc faclcrsisliigher than 12. Rult II.— 1. Divide the dividend by one factor of the divis( and divide the quotient by the other factor. 2. To find 11 correct remaitider, multiply the last remainder by the Drst div sor and add the first remainder to the product. ExAMfLE 2, Divide 83794 by 54. 6 1 83794 $|13965"-4 first rem. First, we rfiVide by the factor 6 an obtain the quotient 13965, then % divide the quotient by 9 and obtal the quotient 1551, with a remainll 6, this remainder is then multiplif by 6, the first divisor, and 4 the fin ... , ,„ , remainder, is added to the prodi which makes 40 the true remainder, under which we write .1551 — 6 second rem I551f^ quotient the divisor 739684 421963 5324061 93^2685 537^62 6. 3625738 7. 7248964 8. 9326147 1. 2. 3. 4. 5. 18. 27. 54. 99, 121. 81. 144. 42. ExEhCISE 2, 9. 10. 11. 12. 13. 14. 15, 16. 12345678 74100632 3271496 53196482 42953684 31274635 53926845 143690782 77. 63. 108, 132, 49- •110, 84, 144, LONG DIVISION. Bute III-— 1 , Place the divisor to the left of the dividend, ad leave a space to the right of the dividend for the quotient. Place in the quotient the figure which expresses the number times th&t the divisor is contained in the least number of figur to the left of the dividend. 3. Multiply the divisor by the figi in the quotient, write the product under the number divid and subtract, 4; To the remainder annex the hext figure the dividend, place in the quotient the figure which express ^ the number of times that the divisor is contamed in the niii t ber, and continue the process till the last figure of the divide; \ is brought dowa, when if there is a remainder, place it aft I the quotient and «rrite the divisor below. u mber, none of who$*i le factor of the divis^ factor. 2. To find tl inderby the first div iu«t. ide by the factor 6 m Jtient 13965, then \i )tient hy 9 and obta^ 551, with a remaind ier is then multiplif divisor, and 4 the fin added to the prodi r which we write 2345678 4100632 3271496 3196482 2953684 1274635 3926845 3690782 7L 63. 108. 132, 49. •110. 84. -r 144, [ of the dividend, ar 1 lor the quotient. | •resses the number | jast number of figm I divisor by the figi 'l the number divid | X the taext figure 'i ure which express | ntained in the niii 4 gure of the divider | inder, place it afi I SIMPLE DIVISION. 26 If when a figure has been brought down, the number to be divided is less than the divisor, place a cipher in the quotient, bring down the next figure in the dividend, and divide as before. Phoof. Multiply the quotient by the divisor, and to the pro- duct add the remainder ; if the result is equal to the dividend the work is correct. Example 3. Divide 12345 by 49. 49| 12345 I 25!^^ quotient. 98 49 First we place 49, the di- visor to the left of 1 2345 the 2305 dividi'nd, and write 2 in the '004 quotient, 49 being contained twice in 123, then write 98, 12345 proof the product under the num- ber divided, and subtract. —• To the remainder 25, annex 46 remainder. 4, the next figure in the di- vidend ; then 49 is con- tamed 5 times in 254, leaving a remainder 9, to which we annex 5, the ne.xt figure in the dividend, place 1 in the quotient, and subtract, the remainder being 46. The quotient therefore is 251 f|. liule IV. If the divisor ends in ciphers, leave them out, and cut off as many figures from the right of the dividend as there are ciphers in the divisor. Then proceed with the remaining figures according to Rule III, and to the remainder annex the figures cut off from the dividend, which will give the true re- mainder. By proceeding according to the above rule the operation is shortened Example 4. Divide 7423654 by 2900. 29,00|74236,54|2559ff^A quotient. 58 254 245 95 49 162 145 173 145 286 261 2554 remainder. Here the two ciphers in the divisor, and the two figures at the end of the dividend being cut off, we nrnceed. according to Hule III, the remainder is found to be 25 to which 54 is annexed, dve-.thus obtain the true remamder 255|. 26 i! i TABLES or MONEY, WEIGHTS AN» MEAsmiE,' I 1. 2. 3. i. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 7235 95126 425396 729643 352864 153928 325912 415236 ■ 596432 • 702536 • 430025 - 300000 - 896528 - 235964 - 4986327 8296153 1738254 9326485 2196427 ExEHcis.-; 3. 39724685 -i- 74289642 4- 333333333 ~ 923746859 - 2468013579-^ 1357924680 931642734 . IMlimil-r 30. 31. 32. 33. 34. 296. 2745. 4268. 736. 5396. 742. 248. 7463. 20. 21. 22. 23. 24 25 26 27, 28. 213964582 i5237fi" 29. 9173245863 V- 7 ; J" "" 3926857962 -r 8392 7429638 ?4!)-r 3256 240006347 -T- 46823* 714000086 -f-JJSS' --. 3000000000 ^ 426 35. 7070707070 r ''• 36. 531724956-;- 37. 2222^445 4- 38. 7139628745 -r 5364. 792. 685. 256. 19. ?n" ?,lu^^ 95000000 hy 704029 41 lT5f '' "?^ forty-seventh part of 726349 ? ^^^e^^o^M^&r^^:^^ ^^-- " ^oys. how .any 4A n- „ f '^^^t>y iho. product of |2 and 4 ™i?i i!o:,f,St"'p,?l\r ■"''« ."■2 days, how „a„y rago lo each square niile » ' Pwsons are there on an ave- w|,4eXT„:rk",^,0^'„,ri? "■ • ^»y. ^ow ">a„y d.ya 48 n!^!^° seventy eight billions b, 869 ^^^48. U,.,de ninety Tour trillions by Lven ,„i„i„„s,„, ,,„,„.^ TABLES OF.MONEY, WEIGHTS AND MEASDHES. mnrted""!?"" *°'""" ""''""' '"» cen'» make one dollar ".oiraupuis, una live cent ten rnnt t,.,„T p ""' ^^'o^i 1 ifa. cent pieces which are silver ' ^"^'"'^ ^'^^ '^^n' ^''d fifty iiia«.S'miifi¥^»A-r»*m'^it>ii^^ " fJ MfiASURfis. 724685 -1 - 296 2S9642 -f ■ 2745 )33333 -f 4268. ^46859 ^ 736. 13579 -^ 5396. 24680 -r- 742 42734 -r 248. lllll-j- 7463. 64582 -r 52376. 45863 -r 715. 17962 -T- 8392. 38?45-r 3256. )6347 -7- 46823. )0086 -r- 74053. )0000 r 426. 7070 r 5364. 4956 -• 792. 4445 -~ 685. 8745 -r- 256. 9? hoys, how many days, how many •e miles, and the there on an ave- how many days ions and seventy MEASURES. lake one dollar, 'Jiich is made of '"(^ wei-h 1 \b. 'e cent and fifty ^ TABLES aP MONJET, WBIOflTS J^V MEASURES. 27 ' OLD CANADIAN CURRENCY. 2 farthings _ t k ip 4 farthings or 2 halfpence ~ ^*'""^'' 12 pence .. ^ = P^^liy- ^'i^-ked d. 20 shillings or 24open;;:::::::z;:;:=l^;i;;3^^ :: i UNITED STATES CURRENCY. 10 mills = 1 cent, marked ct. 10 cents = 1 dime, " d 10 dimes = 1 dollar, " $ 10 dollars = t eagle, " E. i AVOIRDUPOIS WEIGHT. I 16 oliS Z 1 pound "^'''''^^ ''^• I 25 pourids = 1 quarter, J l^' I 4 quarters = i hundred weight " T^t 20 hundred weight = 1 ton. ' ,. J^'' This weight is used in weighing meat, groceries, grain, 4c. TROY WEIGHT. 20 uennvweiffhi, ^ 1 ''^""y^^ight, marked dwt. ^u pennyweights = 1 ounce, « „, 12 ounces = i pound, « jb' quo?s.' ^"'^^' '' ""''^ ''' ^^•^^^'^^ ^°'d, silver, jewels and 11- APOTHECARIES' WEIGHT. 20 grains = 1 scruple, marked scr. 3 scruples = 1 dram, « dr 8 drams = I ounce, " oz' 12 ounces = 1 pound, » 15 LONG MEASURE. 12 lines _ 4 j„„. 12 inches ~ I !■" ,' marked in. 3 i^et Z °°*i " ft. 5i vards ~ . ^^^'^' " vd 40 perches = rod pole or perch, " ^ev. 8 ftirlongs Z 1"'/°"^' " fur. P miles - i'''°' " m. BO geographical miles or) ~ ^"^' " '^a. 69^ British miles / = * degree, 28 4 TABLES OP MONKY, WEIGHTS AND MEASURES. 2J inches 4 nails quarters quarters quarters quarters CLOTH MEASUBE. 1 nail, • quarter, 1 Flemish ell, 1 yard, I English ell, t French ell, marked SQUARE OR LAND MEASURE. na. qr. Fl. e. yd. Eng. e. F. 8. ''9 s?uar'efe"ef' f J square foot, n^arked «ii«Ml«»>iif>>«rii MEASURES. rked na. qr. Fl. e. yd. Eng. e. F. e. JRE. marked ces. IE. S(J. fit. sq. yd. sq. per. r. a. sq. m. cubic foot, cubic yard. ton. cord. 1 qt. gal. pk. bush. ch. uit, dc. larked pt. " qt. gal. bar. hhdd. pipe, tun. rked min. h. day. wk. REDUCTION. 29 11 calendar months, or 1 ^13 lunar months, or |= , year. TSMZnVweirrno^^^^^ « 'eap year, each month " ''"^'' ^^°'^' ^^^ ""mber of days in Thirty days hath September April, ,Iunp, and November ' P ebruary has twenty-eight 'alone. And all the rest have thirty-one Except m leap vear, when ' tebruary's days are twenty-nine. CIRCULAR MEASURE. 30 degrees -l^T" u s 12 s.g.:s or 360 degrees = The^circumference of a circle. MISCELLANEOUS TABLE. 12 articles = j (j^^en 20 articles 24 sheets of paper 20 quires 14 lbs. 196 lbs. 200 lbs. 4 inches. 6 feet 21 shillings = 1 score. = 1 quire. = 1 ream. = 1 stone ' = 1 b.irrel flour. = 1 barrel pork. = Vfathonr'* '" measuring horses- =^ 1 guinea. REDUCTION. Jrizzziit:i Xua^y^orthrs" '^T'l °K^-^ - d.irerent denomination. witCXing its rrue''"'' ^"' '' ' .eSjeKt?-? '^ - ^duS^-S.i;^J^-'^'- '^ « ^- deS^ira^,^^S^^:^- ^w. to a higher 30 REDUCTION. REDUCTION OF DECIMAL CURRENCY. Dollars are rpdiicod tn r.or,» i m = 7400 centsSo = 5!i ^00 Lmr""^ '^" ^'''f''^'^- Thus llnis 47274 cents --. I472 74 andM^ '" '''''' '" "'" '^'"ount •^p-^^-it, anu 90J865 cents = $9038.65. EXKRCISE I, 2: HoTSn^e"nta";:tir ^" seven doHars ? 5. Reduce .f /g^"/! tTce m? '" *'''•'' ' 6. Reduce $42965.37 to centa 7. Reduce $942.75 to cents peI°e)7o Secimll curS°° =™""y (P0-> auu cents. '"""^■7frr/"^''^'J'«.lo,la.„„ace„.,. '''^ ' X 4 = <1!ICQ far 31 X 5~ 12- ^f?,, • ■''•-- 12|i- cents. *J9o'!92'|Ti;;r~ *irst we multiply £47 hv i «n.^ ux • •4 shillings by 2SLdob'ain;"'t""''''' ''^" ""'"P'^ ^y A and Obtain .2|, cents !ho i^":,: ff "^. ^L^^^^^n^s 'he dollars and cents contained in ^47 4 f '' *^'"''^^' a 7i f cents ai f cents 0' number 4 JE19: 13 1. Ho $74.56 ? 2. Ho 1742.90 3. In there ? 4 Rec 5. Rer 6. In^ there ? 7. Ho\ 15264.48 8. Hoi $279.65 '( 'ttmitmn^^^X,,- CURRENCY. ing two ciphers. Thus tiff a (Jot or a short line from the right hand expresses the rminber '6 cents in tho amount cents = $9038.65 REDtTCTION. 31 dollars ? -four dollars ? ars ? 4? 3nlg. sents. 3ents. 'unds, shillings and uce them to dollars • ™ to cents ; 3. Then ice and farthings by ie products together nd cents. Is. = 20 cents, and s and cents. 88, then multiply 'tiply 31 farthings ddi is $190,9211 % I i Exercise 2. 1 RelcTxi/l'r'irt'^ Tu' ''' ^l"''' in £18 : 9 : 6 ? X- «e('uce A17 . 14 : IJ to dollars and cents. 3. Reduce £75 : 18 : 10 to dollars and cents l>. nuiuce i,^4J ]>) . 6i to dollars and conts. >. How many do ars and cents are there in £764 • 8 • 7* ? ». Keauce A'/b 18 . 5 to dollars and cents 0. Reduce £182 : 16 : 4 J to dollars and cents 1. Reduce £826 : 9 : II to dollars and corns 12. Reduce £248 : 4 : ^ to dollars and cents 7o reduce dollars and c^ls to pounds, shillings and pence U.h"?.;'' ^-'"^^ the dollars by 4 to reduce them to pounds, and inhere is a remainder reduce it to cents, and to them add he given cents, divide the number of cents thus obtainedby 20 to reduce them to shillings, then divide the remaining cents by f A and reduce the farthings which will thus be obtained to pence. $7? '"'i'j-.o ^!?r ^''-''^ '' P"""*^^' ^'''"'"^^ ^^^ P°nce. 2 67i = 1n- ^V^"T'^«'*- First we divide 78. the li - 18 farthings or d4f the quotient is £19. thwi cents are 267J cents, this divided by 2*o' JTs'sSaf and^'! cents over, which divided by ,4, Jl8 farthings or S/tS number of^pounds, shillings aL"\ence in m'A^ittJoll ExEnciSE 3. f74.5?7 ""^"^ '''''"^'' '^"""«« "^"d pence are there in $742.9oT ""^""^ P"""*^'' '^'"'"^^ «"^ P«"ce are there in there\" ^^^'^'^^ ^""^ '"^"^ P"™^^. shillings and pence are 5 Reduce |758'2?'tn7rr"'^'.^''''''"^^^"J P^nce. 6 In ssq^toQo i: *° °^'^ Canadian currency. there ? * ^'^^ ^°^ "^"^ P"""^^' «l'illings and pence are 15264^47? ""'"^ P"""*^'' '^'"'"^« '^"d pence are there in $279,6??' '"''"^ P"""*^'' ^'"'""^^ «nd pence are there in 32 REDUCTION. "*i.j/i to old Canadian currency REDUCTION DESCENDING To reduce a ,uanlii,j m a lower denominalion. nulron l'^n^.twe';r' ^'^^" ''^-^^^-^ '^ '^'e ti^e higher; ancnrparoTthoo "",?'"' ^'''"'^ '^'^"e^ one of lower deno,«inat on add u to T h'° '' ™'"^^^ ^« ^''^'^^ each product in succession ^nil thr ' '^^^^^'^ ^^"« ^'^'^ required denon^ination '^"'"''^ '^ ''^'"^'^ '« the them to sq poPchS: aid'a^^'^^,- them fn- P''"^"' '^^30} which deduces the^^numSr^sSr. '''? ^^ ""'^ "^S is 237160 '^"^^ y^'"''" *" ^9 acres 196 roods. 40 ''840 sq. perches 235200 1960 237160 sq. yards. Example 4.--Reduce 23 cwt, 2 qrs 17 lb. n . cwt. qrs lbs «, ^ ' ^•' '^ °^- ^o ounces. 23: 2: J7: ,3 2| 94 quarters. 25 2307 pounds, 16 I42T5 2367 37885 ounces. r^ducp'^?h^"'!'P'y ^^^ ^""dreds by 4 to reduce then> to quarters, and add 9 ♦»!„ number of quarters in the anLfX. ^? t. 2. 3. 4. 5. 6. 7. 8. ;ncy. rrency, iG. mnnaiion. omination by the hich makes one of reduced be of the Proceed thus with ' is reduced to the ds. in an acre, we ores by 4 which hen multiply 196 40 which reduces a lastly multiply ; which reduces nus we Hnd that ards in 49 acres 3 oz. to ounces. ndreds by 4 to and add 2 the 7uanlity; next >y 25 to reduce 17 the number y; and lastly the number of 13 the ounces ^es 37885 the REDUCTION. 33 REDUCTION ASCENDING. To reduce a quanlily to a higher denomination. Rule. — I. Divide the given quantity by the number of the given denomination which it takes to make one of the next higher. Set down the remainder if there is any after the quo- tient ; 2. divide the quotient by the number of that denomina- tion contained in one of the next higher, and so on, until the required denomination is reached ; and set down each remain- der in order after the last quotient. Example 5. — Reduce 28964 gills to gallons. 4 I 28064 gills. &c. First we divide the given number of gills by 4 to reduce them to pints, then divide the pints by 2 to reduce them to quarts, and divide the quarts by 4 to reduce them to gallons, we thus find that in 28964 gills there are 905 gals. 1 pt. Example 6. — Reduce 73907 farthings to pounds, shillings, 2 I 7241 pints. 4 I 3620 qts. I pt. 905 gals., qts. ' pt. 4 I 73907 farthings 12 I 18476 d. 3 far, 2.0 I 153.9 8. 8d. £76 : 19s. : 8|d. ExERcrsE 4. Reduction of old Canadian currency. 1. Reduce £17 : 19 : 4 to pence. 2. 3. 4. 5. 6. 7. 8, £128 : 14 : 7^ to farthings. £742: 18 : 9i to farthings. £1084 : 11 : 2i to farthings. 7968 shillings to pounds. 374285 pence to pounds. 72485 farthings to shillings. 73900714 farthings to pounds, RBDUOTION. Exercise 5. Avoirdupois Weight. 'uce 235 tons to quarters. — ^ 6 cwt 2 qrs. to rounds. ■547 cwt. 3 qrs 21 he i^, .. 213 cwt 23 iL 1 ; ^^ ^ ounces. Starters to tons. "''^• 70604 pounds to hundreds, 4c ?g^IJ °""^es to quarters. '• /Wi&86 ounces to tons, do. Exercise 6. Troy Weight. '40a grams 10 pounds, ounces Ac. Exercise 7. Apolhecaiies Weight. 2 ^°^^^^to...,ples. 3542^6^7 s?ruplX"uV; ^" '^ ^-'•-• 7312648 graFn^to?o^d^r„r^*<^• 73J2648 grafnrto Torr' """««« *<= e'tiiiis 10 pounds, ounces 4c. Exercise 8. LONG MEASUflB. 49 feet 7 inches to lines -43 perches 5 yards to Sches -7 mi es 4 fur "ii n^^ * -P57 lea. 2 m 7 it o^ P''"^^^- inch's ^"'- ^^P^''-^ yds. 2 a. 7 in. to -2700005 yards to miief ' ■9263 lines to yard'' ■73D9876 inches to .^agues. Exercise 9; CLOTH MEASURE 2 " ,•' >^ius to nails. i- Reduce 2. . 3. . 4. .__ 5. .___ 6. 7. . . . 8. 8. 9. 10. 11, 12. )uno6s. ins. c. grains. 5. 6. REDUCTIOM. 35 1)274 nails to English ells. 408 yards to Eng. oils. 3'i'2 French ells to Eng. ells. EXKRCISE 10. SQUAHE OR LAND MEASURE. 1. Reduce 36 sq. perches to square feet. 2. 32 acres 3 r. 25 per. 17 yds. 5 ft. 121 in. to 8ii. inches. 3. 93264 scjunre feet to rood^s. 4. 7500086 sq. inches to acr. . ExERCISfi 11. LIQUID MEASURE. 1. Reduce 27 gallons to pints. 2. 29 hhdds. 17 gals. 3 qts. 1 pt, 3 gills to gills. 3. 796425 gills to barrels. 4. 27435 pints to jiipes. EXERCISK 12. TIME MEASURE 1. Reduce 17 weeks 3 days to hours. 2- 24 weeks 6 d,2l h. 34 min. 46 sec. to seconds. 3. ■ 742913 seconds to days. 4. 42000134 seconds to weeks. EXKHCISE 13. =ls- 2 ft. 7 in. to 1. 2. 3. 4. 5. 6. 7. In $7204.27 how many cents are there ? Reduce 764285 cents to dollars and cents. How many dollars and cents are there in £724 : 19 : 6|. Reduce $3965.79 to pounds, shillings and pence. How many farthings are there in £3: i : 16 : 7J ? Reduce 796427 farthings to poundfe. Reduce 7 tons 14 cwt. 3 qrs. 22 lbs. 13 oz. 11 drs. to drams. 8. Reduce 1111111111 drams to tons, hundreds, 4c. 9. How many grains are there in 11 oz. 14 dwls. 13 grs of gold ? * 10. Reduce 37096 grains of silver to pounds, ounces, Ac. n. In 7 lbs. 9 oz. 7 drs. 2 Rcr. hnw m.iny scruples are there? 12. Reduce 73962 scruples to pounds, ounces, 4c. 13. Reduce 7 leagues, 2 m. 32 per. to feet. 14. Reduce 12345678901 lines to leagues. Hi m 36 15 COMPOUNjj ADDITION. 16 17 18, 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29 30, 31. 32. ■ \uL7''' ' '"''' '' '-"--^ '-^^ ™«ny minutes are Reduco 123045607 seconds to wo*^ks, davs *c How ma^l 'o^^S^K^e'.'irrtKTn^ 'il^lSr ^'^^^ ' low many yard.s are there in 80 french e Is ? Kce ttjll'r). °"^ '° "^'"'«h oils ' "" ' te. uce .$.37.25 to five cent pieces. jn 1/ stiillinffs how many two pencps are (horov Heduce 36 sixpences to fonrpences *'•'"• ^^ Tc^Y JtETf"£r ^ ^ '^- -^h are there in COMPOUND ADDITION. /?u/e. Set down the quantities l5 be added so th«f fha cm.^^""bl'i5^o'z';Tc^r2';rs^Tl J^^^'^''^^ '^ -^ 2" and 139 cwt. 3 qrsl 14 IblllL "*''•' *^« '^^t- ' q--- 21 lbs. ; cwt. qrs. lbs. oz. First we divide 42, the number or ounces in the first column by 10 set down the remainder 10 oz under the first column, and carry Li* second column with 2 lbs added is 78 lbs., this we divide by ^^, and set down the remainder 3 87 243 94 128 139 3 2 1 3 24 17 ?l 14 3 15 11 13 10 Ans. )s. and ( If the no! fives 3 ci indor the pimple ad 10 oz. KXAMPI md .$942 $ ( 7204.8 10503.0 7248.9 942.6 1 $25959.5 I 1 $ c 73M 928.. 3 4275.9 897.3 2956.5 3724.4 5963.7 I I 4. Find f $3247.86 i 5. Find 2J yds. 2 39 m. 5 pi 6. Reqt $7294.63 ; 7. Add JE2348 : U £79 : 16 8. Find $94.07; i and $2976 9. Add 4 oz. 9 drs oz. 15 drs. 9 t. 6 cwt and 16 t. i COMPOUND ADDITION. 37 in 40 Hcros, 2 r, 9.8 iclies ? •es. Is are there f i I gals. 3qts. Ipt.? m'lny minutes are lays, 4c. nt pieces are there? 71 fifty cent pieces? yards ? 1 ells ? re there ? : 10 : 5? . each are there in but of more than IN. so that the num- lination. 2. Add ) the right, and er denomination, umn added, and )coed thus with e addition, lbs. .3 oz. ; 243 (Vt. Iqr. 21 lbs.; 42, the number irsl column by 5mainder 10 oz. Jran, and carry linn 'PU^ _.,_. ••••■'. xfic sUlIi mn with 2 lbs. is we divide by lie remainder 3 t)9. and carry 3 qrs, the quotient, to the next column, the sum If the next column with 3 addod is 12 qrs., which divided by 4 kivcs 3 cwt. without a romaimlor, wo thoroforo place a cipher bndcr that column and carry 3 to the next which is added as in limple addition. The whole sum therefore is 694 cwt. 3 lbs. 10 oz. Example 2.— Add together $7204.85 ind $942.68. $10563.07; $7248.90; $ cts. 7204.85 10503.07 7248.90 942.68 [$25959.50 Ans. In addinR dollars and cents proceed as In simple addition cutting off the two right hand figures which will be cents and the remaining llguros dollars. 1 1 $ cts. J 73 .15 928,. 33 4275.94 897.38 2956.59 3724.48 5963.72 ExEHCtSES. 1. £ 8. d. 243 : 17 : 9 84 : 15 : 7f 976 : 9 : lOi 1348 : 14 : 111 3. cwt. qrs. lbs. or. 749 248 9456 18 : 13 : 10^ 8 : 10^ 94 78 135 79 86 243 97 2 3 I 3 2 1 23 4 14 19 8 14 3 11 7 5 8 14 ; $5326.47 ; 7 fur. 21 p. 2 ft. 9 in. : 4. Find the sum of $963.17 ; $485.93 ; $978 85 $3247.86 ; $984.76 ; $596.34 ; and $4275.98. 5. Find the sum of 34 miles, 7 fur. 38 par. 4 yds n yds. 2 ft. ; 27 m. 13 p. 2f yds. 1 ft. 7 in. ; 21 per 39 m. 5 per. 11 in. ; and 2 m 3 l\ir. 4i yds. 9 in. 6. Required the amount of $7248.05 ; $324.96 ; $365 30 • $7294.63 ; $8726.48 ; $679.84 ; $5986.77 ; $89.56 ; and $7694.37*. 7. Add together X734 : 15 : 7 ; £896 : 19 : 8J; £98 : 7 • 6 • £2348 : 14 : 9J ; £3974 : 18 : 6| ; ^■'Aj : 18 : 7 ; £768 : 9 : 7 ' I £79 : 16 : 8|; and £9872 : 4 : It. f 8. Find the sum of $794.63 ; $9874.56^ ; $78.90} ; $863.95 • $9407; $7942.18}; $1734.86; $3257.98; $704.37 ; $53.91 and $2976.54. 9. Add together 7 tons. 16 cwt. 21 lbs. ; 39 t 3 qrs. H lbs 4 oz. 9 drs : 13 cwt. 2 qr«. 1 4 oz. ; 14 t. 9 cwt. ! rr !4 Ihg 13 oz. 15 drs. ; 18 t. 7 cwt. 3 qrs, ll drs. ; 3 qrs. 7 "lbs.'4 oz' 9 drs ■ 9 t. 6 cwt. 2 qrs. 24 lbs. 6 oz. 13 drs. ; 15 cwt. 3 qrs. 17 lbs" ' and 16 1. 9 cwt. 2 qrs, 10 oz. i • , 38 1:1 COMPOUND ADDITION. sec t ,^'>Sether 37 weeks fi , 84 yds ? J "^f^'- 17 yds. 2 qrs an, l^'^^ ' "°^ «924.68: , '9- Add together 2«^ . «• » o^- 10 dwts. Ihs. ; 459 cwt 2 ore .s ik"^*- ^ ^''«- 24 Jbs ■ «7 , . 736 cwt. 2 qrs 19 .^ . i«?- ^ ibs. ; 175^cwf •? ^^ ' ^^^ «wt. qrs. 4 Ji)s. ^ -^ '^^- ' 367 cwt. J gV. J4 f,f '.3 T^s. 14 lbs. ; 9n A .J "J • '^ ics. . and 42 cwt 1 2^- Add l„„lh„ 7, . ' ^™'">' 'Id K596 87 *'■"*■ tON, sec. ; and 36 wks 6 ,]' grs. ''°'^' I B176159 ; 19245.08 ; ^4b.93; and $924 68 29 yds 1 ,p. 3 ^ ^ • ^•2qrs.3„Js.;and -and £578 .16. 4^^: $736 14; $968.13*' and $96.83. *' '"' ' -52 gals. 3 qts ' &■ ; and 38 gals.' 3 grs ; 28 ,bs. 18 .• 13 lbs. 7oz. n *«• 9 02. 10 dwts '•^T'-s. 14 lbs • ■ • •■ and 42 cwt 3 yds. •• 37 m. 3 f P- 2f yds. ; and' ^fJ ''• '7n. • ; 127 a. 3 r. 27 £5; $4253.08- ^8296.87. ' i^ yds 2 ft. 1 1 8 in. 3 i. ; J32 COM?aUl?P SCBTJaAOXION. 39 HJ\"'nlK^A ' '^i'^- ^^^-^^ ™- 2^ s. ; 92 d. 20 h, 47 m. 38 s.; !l85 d. 2 h. 39 m. 8 s. ; and 47 d. 9 h. 28 m. 47 s. 25 Add together 61 gals. 1 qt. 1 pt. 3 gills; 24 gals. 3 qts. 2 Ig. ; 48 gals. 2 qts. 1 pt. 3 g. ; 96 gals. 2 qt. 1 pt. 2:g. ; 37 gals. |2 g. ; and 59 gals. 2 qts. 1 pt. 3 g. "^ ^ e > 8 26. Add together 7 tons 14 cwt. 2 qrs. 23 lbs. ; 19 t. 18 cwt. qr. 24 lbs ; 48 t 11 c. 1 qr. U lbs.; 82 t. 17 c. 9 lbs. ; and 13 t. 16 c. 2 qrs. 22 lbs. COMPOUND SUBTRACTION. Compound 8i-btraction teaches how to find the differenoe between two quantities of the same kind but of more than one denomination. Rule 1. Place the less quantity below the greater so that the numbers in each column will be of the same denomination. 2. Then beginning at the right hand subtract each number in the lower line from the one above it, but if any number in the lower line is greater than the one above it, add to the number in the upper line the number of units of that denomination contained in one of the next higher; then subtract, set down the remain- der below, and carry one to the next higher denomination in the lower line ; and proceed thus with all the columns to the last. . ^««°X- '^° *^? difference add the quantity in the lower line, and If the sum is equal to the quaMity in the upper line, the work IS correct. ' r.r^^'fal ^o/™."* ^^ "^^^^^ ^ daJS'^UJiours 37 min. take 18 w. d d. h. 20 mm. wks. d. 27 6 18 3 fa. min. 11 37 6 20 17 Bc. ; 234 d. 23 1 -11 27 6 11 37 Proof. In this example as e^ich number in the lower line is le?s than the number of the same denomination in the upper lino, it is only necessary to iind the difference in each column as in simple subtraction, which shows the whole difference to be 9 weeks 3 days 5 hours 17 min. 40 COMPOUND SUBTHACTION. 15 Ans. 02.^weVdd'i-f5^'";f ^'^^^"' than 6 . from 22 leavp« \^,t- ^' ^^^^ 7 "Wch lake„"S^8 ,e„,3 tl"- ^ oarry I ,?9* Jes To' ^' $ cts. 7962.54 1326.78 fixERCJSES. 3. cwt. grs. lbs. 128 2 17 96 3 22 5" pfnTff l^l"-23 take $12345 67 ^^^e^i^^'Z^-^^^ ^ ''ons 13 ewe. 2 ,rs. ,9 I.s r. J pS:T7fdr;S^;JiP- " ^^«- ^ « ^ m. ta^e 7, a 2 15. Find the di/rereToe between r8Th'""«°'^ ^^^ '"^ ^«ft ^ 16° A V ' Sf • ^°/- ' ^'•«- 2^8 g's^'- ' ''■ ' d''^- 2 scr. 14 the cargo ril2lf5'92 wSrirthTr^l ^''?«'^«-^0' ^he value of 7. From 96 yds. 2 ft Tin 7 r "^^ "? ""^ ^^^ vessel ? •« From 117Lons fake '9yt!!nT7V^'!r^-'^■^,!f^, «-•«'• --.-. . r.„r. ^^^ 20 lbs. 9oz. 18. 7 drs, 19. 20. From 963 acres takfl 7/. n o «« 653 1. 2. 3. 4. 5. 6. 7. 8. 9. to. II. 12. 13. 14. '4 PI ON. » 16cwt. 2qrs. 18 lbs. being greater than 6 ^'ol^J« number in the ch makes 22, then 7 es 15 which we set 'arry I to 9 makes 10 quarters being more I'ne which mak(^s 6 to 8 makes 9 which rence therefore is 7 *• qrs. lbs. ^ 2 17 > 3 22 ' cwt. 2 qrs. 19 lbs. 'ks. 3 d. 47 min 32 ' qrs. 3 nb. paid on account ^ qts. 1 pt. 2 gills, •om 684 m. 3 fur. 1 in. take 71 a. 2 •S.I 7 lbs. of iron, las he left ? • 4 drs. 2 scr. 14 70, the value of vessel ? 's. 2 ft. 6 in. 8 1 •s- 20 lbs. 9 oz. fls. 6 ft. 128 in ?als. 3 qts. Ipt. COMPOUND MULTIPLICATION. 41 21. Innd Iho dilfprence between the Julian year of 365 days ' hours, and the true year of 365 days 5 h. 48 m. 50 sec. 22. The latitude of the city of Quebec is 46<> 48' 30" north md that of Montreal 45° 31' north, required the diflerence? ' COMPOUND MULTIPLICATION. Compound Multiplication teaches how to multiply a quantity [of more tlian one denomination. When the multiplier does not exceed 12. Hule.—l. Find the product of the first number on the right I hand, and the multiplier, divide this by the number of that de- nomination which makes one of the next higher, set down the remainder and add the quotient to the product of the multiplier and the number of the next higher denomination ; and proceed thus with each denomination to the last. Example 1.— Multiply 72 cwt. 2 qrs. 15 lbs. by 9. cwt. qrs. lbs. 72 2 .15 9 653 10 Ans. First we multiply 15 lbs. by 9, then divide 135 lbs., the product, by 25, the number of lbs. in a quarter, set down 10 lbs., the remainder, and carry 5 qrs. to the next product ; then 9 times 2 are 18 and 5 added are 23 qrs., which we divide by 4 set down 3 the remainder and carry 5; 72 multiplied by 9 =648 and 5 added makes 653. The whole product is therefore 653 cwt. 3 qrs. 10 lbs. Exercise 1. 1. 16 cwt 3 qrs. 17 lbs. 5 oz. x 2. 2. £29i : 17 : 9| x 3. 3. $79048.39 X 4. 4. 27 miles 3 fur. 27 per. 2J yds. x 5 5. 56 gnls. 3 qts. I pt. x 6. 6. 39 acres 2 r. 18 per. 9 yds x 7. 7. f829568.09 x 8. 8. 19 tons 14 cwt. 2 qrs. 23 lbs. X 9. 9. £794 : 18 : 7J X 10. to. f. 369085.63 x 11. 11. 23 weeks 6 days 9 h. 27 sec. x 12, 12. 243 cwt. I qr, !7 !hs. !3 r.?.. x 7. 13. 7 lbs. 6 oz. 2 scr. 19 grs. X N. " 14. $96428075.69 x 8. 15. 39 acres 2 r. 25 per. 23 yds. 8 ft. x 12, 4^ III ' iJ If I COMPOCND MTTLTIPLlCAnoN. 7 3B f/^'o^ 'I"- 2 nis. X 9. 19. $897?65V5fJlP'-3gilisx5. 20. 4 cwt. 2 qrs. 7 oz 7 drs x 6 exc^r;^!^'^ '^ « --P^-'^ number neither of whose iactoJ the one required. ^" ^^^ '^^^ product will be I I Here the factors are 8 anrl 7 J3Ans. Example 3.-Mmtip]y ^63: 5: 2|hy 252. 63 442 16 2656 19 d. f 6 «nH ft example the factors are 7 r and 6 we therefore multiniv .if •' °' quantity by onp nf f^ r ?^ ^^® S^'^'en I product by^nother^ft' ^f ^°?.^^ ^' ^he I product by 6 wE I'ivlfii.^ '"'^"'^ amount. ^'^^^ *^e required 15941 17 9 Ans. I $739278.56 x 14 2. £896: 14- 7iy' 3. $394065. 97 ^16 4. 74 cwt. 3 qr. 14 lbs. It oz y l« • ^fi"r\2r.35per.27yds X20 l?„^lt3.'Trs.2Sls.X2T-^'' U. £ 12. 8 13. 4 14. $ 15. 4' 16. 2 17. 3 18. $ 19. 6 20. 2 21. 7' 22. $' 23. 9 24. 7 25. 41 26. 8 27. r 28. $ 29. 2; 30. 11 When Inumber. Rule.— Multip Inumber ( [multiplie I required When Multip last prod duct add number ( mullipliei EXAMPl cwt. qrs. 6 2 15. 6. 7. 8. 10. ?2^b«V„?Td--'°""•'^ '*:»'■"• 26 sec. V 9. 7 lea.2 m"'6 fur'^i^ "''"• /" f'"- ^ '^4. " "' $296874?!68 X 27 P""- ^ ^^'- ^ 25. 65 3 263 46 2 n 309 2 OAHON. COMPOUND MULTIPLICATION. 43 3. 5. either of whose factorsi ' o«e factor, multiply he second product by I e last product will be bs. by 56. rs are 8 and 7, we Mhe quantity by one , 8, and multiply thej other factor. 13 lbs. 6 oz. 5 drs.^x 30. gills. X 32. X 36. 63. X 72. X 75. 147. he factors are 7 el multiply the given! ^.^ ^^ctors as 7, the! o,. and the second gives the required i It. £396: 14: 9i X 28. 12. 8 tons. 16 cwt. 2 qrs. 13. 48 gals. 3 qts 1 pt. 3 14. $7496876.48 x 33. 15. 42 wks. 3 days 17 h. 14 min. 28 sec. 16. 24 yds. 2 ft. 11 in. 7 lines x 45. 17. 37 acres 3 r. 29 per. 22 J yds. x 48. 18. $785965. 38 x 56. 19. 6 lbs. 3 oz. 6 drs. 2 scr. 13 grs. X 20. 24 cwt. 1 qr. 24 lbs. 7 oz. 12 drs. 21. 74 miles 6 fur. 37 per. 4 yds. 2 ft. 22. $9687428. 79 x 120. 23. 94 gals. 3 qts. 1 pt. 2 gills X 128. 24. 7 bush. 3 pks. 1 gal. 3 qts. i pt. x 25. 49 wks. 2 days 19 h. 12 sec. x 560. 26. 8 yds. 2 qrs. 3 nls. x 220. 27. 17 acres 2 r. 29 per. 28 sq. yds. 8 sq. ft. x 98. 28. $5976.84 X 147. 29. 23 bush. 2 pks. 2 qts. I pt. x 1000. 30. 19 cwt. 2 qrs. 18 lbs. 13 oz. 14 drs. x 504. When the multiplicand exceeds 12 and is not a composite number. Bule. — When the multiplier does not exceed 100. Multiply the multiplicand by 10, and the product by the number of tens, to this add the amount of the multiplicand multiplied by ihe number of units, and the sura will be the required product. When the multiplier exceeds 100 and is less then 1000. Multiply the multiplicand by !0, the product by 10, and tb$ last product by the number of hundreds ; and to the last pro- duct add the amount, of the first product multiplied by the number of lens, and the amount of the given multiplicand mulliplied by the number of units. Example 4. — Multiply 6 cwt, 2 qrs. 9 lbs., by 47. cwt. qrs. lbs. 6 9 10 X 7 65 15 4 V 99 263 46 2 n 10 !3 Here the multiplier 47 not being a compo- site number, we multiply by 10, the product by 4, and to this product add 46 cwt. 13 lbs. the ])roduct of the given multiplicand and 7, which gives the whob product ^09 cwt. 2 qrs. 23 lbs. 309 2 23 Ans. u -MuJiinli, -_ . ^ ««;t. qrs. iJbs. ^ '^'• ^28x5 10 ^ 20 Answer. „ - ^^ Answer. 26 iS 6^^ ^ 3 10 266 iTTi X 4 10 2667 Tr'T X 3 10 ^!!i'i_£»;^ Answer. COMPOUND MULTIPLICATION, 4ft 73 acres 2 r. 26 per. 18 ydi. X 147. $7964.78 X 237. 4J lbs. 9oz. 17 (hvts. 19 grs. X 253. 7 tons. 14 cwt. 1 qr. 10 lbs. X 246. 9 weeks 6 (1. 18 h 42 inin. x 298. £84 : 6 : 9i X 2756. 34 gals. 3 qts. I pt. 3 gills, x 759. 7 bush. 3 pks. 1 gal. 2 qts. X 365. 3 per. 4 yds. 2 ft. 7 in. 11 lines x 1700. 3 qrs. 23 lbs 14 oz. 12 drs. X 476. $895.08 x649. 4 acres 2 r. 29 per 26 yds. X 583. 5 days 18 h. 36 min. 19 sec. X 897. 3 lur. 21 per 4 vds. 2 ft. X 958. £24 : 1 1 : 7i X 3428. 27 yds. 2 qrs. 3 nls. X 249. 36 lbs. Uoz. 17 dwts. 3 grs. X 352. 25. $649.73 x 716. 26. 14 cwt. 2 qrs. 13 lbs. X 641. 9 gals. 3 qts. 1 pt. 2 gills. X 742. 13 bush. 2 pks. 1 qt. 1 pt. X 256. 7 weeks 4 d. 22 h. 13 sec. x 493. 3 qrs. 24 lbs. 14 oz. 6 drs. X 658. Knd the amount of 14 lbs. of sugar 8. 9. llO. 111. 12. 13. 14. 115, 16. 17. 18. 19. 20. 21. 22. 23. 24. 27. 28. 29. 30. at 5 lbs. 4 lbs. 7 lbs. 3 lbs. of coliee of tea of rice of raisins iFind the amount of 7 yds. of cloth 8 yds. of flannel 12J yds. of cotlL 3 pairs of gloves 11 yds. of linen 11 cents per lb. 35 " 78 " " 9 " " 12J " " at $2.70 cts. per yard « 65 " " " 16 " " " 95 " per pair. " 26 " per yard, $ ctd $7.41* I Find the amo int of 5 geographies at 75 cts. each. 7 grammars " 24 " " 6 arithmetics " 42J " " 4 Histories of Canada " 90 " " 3 algebras " $1.09 " *' $31.81 ft 4.85 ■I m ^'"^ 'h« amount of ^i' yds. of cotton o^MPotrvD Division. ^^*%20cts,pe.,«,,. 19 .< P'^'^yard. ___ Iji76., TJ'en divide h^v '^'"■'°'' '« 'he left of ,^ ^°^-est denominl? "^^ ''''' '^"otient and ' '"^'^ ''^"^ o J Phoop mT "' "^ ""'ii there is 1' ^'"''"^ '^us to the P^oduTtVe^," 'Pjy the % ^^j«« by it, set dowii '"^'^'^^ it to the nel ""^ier Of the sa,ne| jh^ nuniber thus oh-f 'i proceed thus to the 3niainder. 1 ^^;;ivisor, and If the I ^^"'^K IS correct * by 7. ■=: '^ = 3 and 6 ova" ,^°wn3andred.rc; '0 quarters then 24 "^''ters, and 2 the ^"ot.ent make 26 fe'^ Which we set '"amder 5 whiS ^5»U remainder. '^'■"^6'' of whose '''e by one of the •'^e'-- and so on 1, 2, 3 4, 5, 6. 7, 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 23." 24. 25. 26. 27. 28. 29. 30. -r 4. -f 6. ~ 10. Exercise 1. $7396874.53. -i- 2. £963 : 7 : 4. -i- 3. 7 tons 12 cwt. i qr. 17 lbs. 8 03. 68 gals. 3 qts. 1 pt. 3 gills -J- 5 91 acres 2 r. 29 per. 26 yds. "8 ft 793 yds. 2 qrs. 3 nis -^ 7 13 lea. 2 m. 7 fur. 37 per. -i- 8 $946874.25. -f- 9. 734 cwt. 2 qrs. 14 lbs. 13 oz. 8 drs 36 per. 4 yds. 2 ft. 9 in. -i. 11 734 gals. 2 qts. I pt. 2 gills -i- 12 468 bush. 3 pks. 1 gal. 1 pt. '-^ 14 £9648 : 17 : 8| -^ 18. 4263 yds. 3 qrs. 2 nls. -f- 63. 927 acres 2 r. 19 per. 28 yds. 7 ft 234 lbs. 7 oz. 4 drs. 2 scr. 16 grs 42()cwt. 3 qrs. 12 lbs. -i- 108 ' 426 lbs. I9dwts. 17 grs! - 180 $76498705.36 -^ 154 365 wks. 5 days 17 h. 56 min. 48 sec. 9-26 gals. 3 qts. I pt. 3 gills. -^ 147 £1097 : 3 : 4J 4- 243 963 bush. 2 pks. 1 gal. 1 pt. -^ 198 9364 cwt. 2 qrs. 19 lbs. 1 oz. 10 "drs. -^ 363. 793 miles / fur. 36 per. 5 yds. 2 a — 648 749 eng. ells. 3 qrs. 2 nls. -^ 294 " $9400037.04 -^ 648. 279 acres 3 r. 8 per. 7 yds. -^ 8 1 463 wks. 6 d. 23 h. 41 min. 36 sec. -^ 512 734 qrs. 18 lbs. 15 oz. 14 drs. -^ 594 -r 56. •f 96. -f 144. When the divisor exceeds 12 and is not a composite number. ^«/e.-Divide each denomination as in rule 1, and write the quotient to the right of tlie dividend. 48 B-Samplk.- 623 "^ OOMPOL'M, DIVISION. l>'vide 635 tons. 4 cwt -i n u I. 17 0. 2 3 Ans. 12 20 244 I7S 66 4 ?67 267 Operation, 8!i x 7 ~ fi9ci ^ „ i t'lis boing roducp.Mn T . ' '""^ 635-622 ■- \i remaining. thi?«" ^""laine-i txvico and 1 ». 3'J6 wks. 5 fl* 17 h t;7 . ''•■7Sfc'eV3n8'P^-^o^'"«-2746 15. 3786 tons 19 cw? T" " ^'^^^ 2 a 52 in ^ Qfi, '6- If 137 lbs" 0? sTgar' 1% V^',.' ' «^' « d-- - 3^65 «7. If f7lS7%4 h "''' "''^ «- i^H 19 if.fJ^^-costiSo-f '^^'''^«'- ''aSligst oontaininj '"• ^' a person spends SOni «« • """"«i 3 V^- by 89. = 623. and 635-622 — li ''n""ds and 4 cwt a"d' "•■"■«■" '■■'*«"'» m<><>lmLT>,ltlgM rence of llik wh.iol Mng ,? fti*""^'^ " ""''i"' ">« ciroumfe- JmlVZ.>,7"\rir """ ""'''■ ''^ <"»> distribmed, ou? ofs 7bs"'?"'' "'""■ "'°°"»' ™* * -• » -Iwls., may b, made J^"°":Tr "'■ °''"''°«' « "■ '"■ P^-- ">,. may be bought made'i°uT„ra'."nrort„"'?''""» ' ">^'- ' "- -y >« cbL^„';;.s°i.r7r,br7r';.°i;e'?iS;"'^- ' -■ "•^«'"» ^ is. "?: 7:^ orsj;?f„t.i!",?irr """ -f =' ^ '« ' bought for $220 *'^-^^' ^°w much may be .ro'y!whKa°s'i?s°we';gb'.f "'^ "^ "• "' ^«-- '^^per ounce . ,;'4io?,S itVn'", ?„"Si*' °"' "' ™''° ™' °f r.ok„„"7eaT,V;rot'urr" '"^^ '" ""l"!"* 'miles, J%?r """>■ '""•'" <"■"■»"■ " i3.78Tir y^Smay be bough. an'd" 3S?'=i,rte"°"'J' % ■"*,?" ■"'■"'"•'■y l» "...W. IV e«nmples, which may will, i™„nSv'"h.*-'? i*"" l»"»wl'ni every such operation /e,ni','^l CrStiXa'r SXK 00 'iXAMM.K 5.. 7 8. 18 15 19 Multiply n . ,x . ,, ^^^, ^^ JCl? 14 : 9 oi=|orniiiii OJ Example 6.— Divide jC.}? Wo fi.sl mnliiply by /, (h., „■ "nn, "'" product of /i jn 37 19 I 150 133 14 : OJ hy4i 8. 14 16 d. 0} 4 3 I ^7: 18 ; OAns. 1 17 20 356 19 166 15V and to 1^6 tlu pnu cTadST,?''''^'™'^^'"" t'ie result is 19 Ju w,." ^^ ^''f "'""erntor vi'lend and 4 wo ?Lf l; ^ • ^^ "'« -^i' 9 14 12 Tu 171 1. £28 19 2. £ i 1! 3. £ 4 2 4. JE 7 • 16 8f X 6| X 6 X 7i X Exercise 4. '7f. n. 5. £ 64 17 6. £847 : 12 7. £408 : 8. £ 7 : 3 7^ + ei. H -7- 47*. m -f 43 a n -f 2i| 1 N, '•«! n)l,|li,,|y by /, Ih., '""'"T, 11,,.,, /•„,, J^ jj, '''I'iiU'o vvf niuliiniy : fMli« nmlliplic,„i,i " ('ivide tJm prorluft "■'' Rives llio resiill ■ ^ji> I'lis addtHJ to I'lo product of 4 •■ '•4 -"Oiftlio product! iiuniher in the di- aler 01' tJie Irflclion d -i the niiinerntor I wo divido £150 • \-- ^ : O4 tJiedi-' )btain £7 ; 18 |) SIMPLE PROPORTION. MISCELLANEOUS QUESTIONS. I. WeJuco $73%8 42 to cf'fits. ftl 2. H"Juc„ 81000703 cont8 to dollars. ^'..'1-indS^^^^^ ^mu,, 4 '''•om$IOO(J.i7tal(o$;i74 82 ^ Multiply soifj 28 i,y 305 «• i)ividn $42()«., 8 Lctwe.,; II persons 7. Divido $37240.07 by 821 «• Hnduce 17 tons 19 owl. Ur 14 ih, t. , H-;Jucc7i6,>3284 dra.ns Avoirdupois, to tons, hundreds >!• Fn.m27Icwt 1 ar 14 Ih 1 '^'- '^ ^''«- ' ««'■• '8grs. 19 lbs. 15 0.. I4%V8 '^' ^ "^^^ '3 drams, take 3 qrs. 12. Multiply £763 : 19 .. 4^ ^y 12 13. Multiply 32 yds. 2 qr. 3 nls. by 276 .D.vue764n,^ .Uur, 26 per. 3 yd.s.' by 9 5.D.v.de9n5e.vt..cr.24 1bs..4ds.by74" 6 Rod.,,,, ,,,74 grains Troy to lbs. ' I'. Heduco £742 IQ • « <„ 1 ,, 18 o J ■ • ° 1° flollars and cents '} + 6J. 5} -i- 47J. 10} -r 43 » ■'1 + 51 j SIMPLE PROPORT/ON. 52 SIMPLE PROPORTION. m i The first of the terms in a ratio is called the antecedent, and the second the consequent. The first and fourtlz terms of a proportion are called the extremes; and the second and third the means, thus, in the jtroportion ' As 20: 15 :: 60 to 45, 20 and 45 are the extremes, and 15 and 60 liie means In any proportion the product of the extremes is equal to the product of the means. Thus in the proportion, as 12 : 9 : : 36 : 57. The product of 12 and 27 the extremes, is equal to the product of 9 and 36 tho ..IVr*^ ^!l' ''°"'"' P™P«''t^""'^l "multiply the second and third terms together, and divide the product by the first term. ExAM.-m.-Find a fourth proportional to 7, 21, and 9. 21 X 9 = 189 189 -^ 7 = 27 Ans. Exercise 1. Find the fourth proportional to 1 2 3.' 4. 5. 6. 9, 8, 6, 10, 27, 3, and 15. 24, and 13. 15, and 4. 15, and 6. 135, and 3. 32, and 16. 7. 8. 9. 10. 11. 12. 14, 36, 92, 29, 75. 12, 19, and 28. 47, and 54. 68, and 23. lie, and 14. 18, and 25. 90, and 48 fh«MtT Write the three given quantities in succession, so hauhe term which is of the same kind as the required answ h tH v: ''*'' ''"" '• ''''' «"^^- •«'- ^- ^-"r than the third term ; set down the greater of the other two hTll'V. ''''"^ P"'' ' ^"* '^ '^' ^"^^^'' '^ '° fc« less than the thud erm, set down the smaller of the other two terms in he second place. 3. Then multiply the second and third terms together and divide by the first. 4. When the first or second term IS a quanlily of more than one denomination, reduce both to tiio lowest denomination contained in either. the antecedent, and rtion are called the means, thus, in the lie means. emes is equal to the '. The product of 12 Lict of 9 and36tho le second and third !ie first term. ', 21, and 9. 19, and 28. 47, and 54. 68, and 23. IK', and 14. 18, and 25. 90, and 48. in succsssion, so 3 required answer is to be greater )f the other two is to be less than ler two terms in 1 and third terms e (irst or second ion, reduce botli SIMPLE PROPORTION. 53 PBOor^ Multiply the answer by the first term, and if the pro- duct us he same as the product of the second and third terms the woric may be considered correct. E..AM..Z.K.-I. If 3 lbs. of sugar cost 33 cents what will 5 lbs cost at the same rate ? ll)s. lbs. As. 3:5: cts. 33 3 I 165 Here as the answer is to be in cents vve write 33 cents in the third niace hen as 5 lbs. will cost more than 3 lbs. we write 5 lbs. in the second r.«§^S"«^d containing 15 cwt. sam^'rate v'^- °' ^'^^^ ^"^^ ^'^'^O what will 93 lbs. cost at the 4G If 17 bushels of wheat coc^t «iq 7^; u may be bought for $237 ^ * •'^' '^^^ ™a"y bushels p|"472g& AtiriS ^"^ ^^'■''' -^^' --t be ^ SO. What cost 79 cwfo^knr^^^^^^^ 97 lbs. ? °' """'^ »^ Ihe rate of £1 : 2 : 3 per wha't woulSte li/Teng^r^l'/fhe'raTo ' f^'"'^ '' ' ''■ ' '"• 137 feet high ? ^ ^'"^ shadow thrown by a steeple ceiSpergalfonV'^"'"- ^ '^''- «^" "^^'^sses at the rate of 36 N. acii chost contain in<» llie wliole at G3 cents lb. of sugar, if 3 cwf. weight cost $78. IG lie ? ' lounttoat the rate of I fa fence in 4 days, 3 acres 1 r. 9 per ? ' s are worth $4557.69 wes '! ' nany barrels may be z. of coffee if 3 J bs. 7 ^ cost, at llie rate of ' per. is £59 : 14 • 6 "f I, would be equal to | s is f 15, how many 134.25 ? ^ sugar at the rate of qt. may be bought ahead of sugar con- containing 15cwt. 3 lbs. cost at the ow many bushels '3, what must be 3 lbs. cost ? t per pound ? Leofjei : 2. -3 per idow of 8 ft. 9 in. •awn by a steeple at the rate of 36 SIMPLE PROPORTION, 67 53. How many miles can a person walk in 37 days at the rate iof 40 miles 4 fur. in 3 days ? 54. If a steamship sails 2450 miles in 9 days 6 hours, how [many miles would that be on an average per day ? 55. If 7 cwt. 3 qrs. 15 lbs. of sugar cost $96, how much would that be per cwt ? 56. If $26 is charged for the carriage of 49 cwt., a distance of 180 miles, what would be the charge for the carriage of 76 cwt. 3 qrs. the same distance ? 57. Bought a hogshead of sugar weighing 14 cwt. 2 qrs. for i$l28, how much would that be for each 12J lbs. contained in ithe hogshead ? 58. How much will 24 yds. 3 cirs. 2 nls. of calico cost, at the rate of 27^ cents for 3 yds. I qr. 2 nls. ? 59. How many days would it take a person to walk from Quebec to Montreal, the distance being 1.80 miles, trasfelling at the rate of 63 miles 2 fur. in 4 days ? 60. If 390 acres 3 r. 20 per. of land cost $964, what will 78 acres 2 r. cost at the same rate ? 61. What is the value of 24 oz. 17 dwts. 13 grs. of silver, at $1. 35 per ounce ? 62. What cost 178 cwt. 2 qrs, 14 lbs. of flour at $4.17 per cwt? 63. If 173 lbs. 8 oz. of coffee cost $49.35, at what rate per lb. must it be sold, to make a profit of $8.17 on the whole? 64. At the rate of $36. 18 for 9 cwt. 2 qrs. of flour, what must be paid foi 75 cwt. 1 qr. ? 65. If a ditch 3 acres 2 r. 18 per. in length is dug by 14 men in 5 days, how many days would the same number of men take to dig a ditch 7 acres 1 r. 14 per. in length ? 66. If 26 acres 1 r of land cost $156. what will 74 acres 2 r. 20 per. cost at the same rate ? 67. If 67 cwt. 2 qrs. 14 lbs. of flour cost $210, how much must be paid for 26 cwt. 3 qrs. 9 lbs. ? 68. If 37 cwt. 1 qr. of sugar cost $333, what will 49 cwt. 2 qrs. 12 lbs. cost at the same rate ? 69. What will the assessment on 74 acres of land amount to, if the assessment on 724 acres is $17.24 ? 70. How many men can finish a piece of work in 78 days, which 204 men can do in 123 days ? 71. If 47 men finish a piece of work in 63 days, in how many days would 86 men finish the same piece of work ? 72. How many cwt. of flour at $4 per cwt., should be given in exchange for 29 f.wt, ?. qrs. of sugar nl $9.5n per cwt. ? 73. If a person travelling II hours per day finish a journey in 23 days, in how many days '\ill he travel the same distance walking 9 hours per day ? 74. From 37 yds 2 qrs. 3 nls. take 9 yds. 3 qrs. 1 nl. and find the value of the remaiinler at $7,50 per 2 yds 1 qr. 58 ii; COMPOUND p^OPOMlON. 75 Xfth ""^-ixuN. COMPOUND PROPORTION. divide both SnmT '^^."sequent, by anv n. ^l ^^^'^'ng an ExA«p,E -.1/ th °"^'"^^ numbers '"^ '''' '''^^'^ w^'at mustbe "aid /-or h'^^^ '''' ^0 cwt isr. „,-, l^^OO : ,2000-* mge'oflb ol't'^^^jj^- ,««'- 480 ".^e carriage of 80 i ! *^®° — — . P^ace 80 cwt in th« « r- '^'^ 960000 «nd 60 owTX^he^J^'^M^oe 48000 «s. the carriage for sSn'^' "P^ ^- second place ''"O °i,ies in the u . 00 5760000 th„ .. i" rf'viding ^t will be fnnn 1 ^^ *^°swer example ;fj=^;;"f;«s Possiole, as'^^iir Kf ^^ «^««el]ing all reduced. ^— ^-ame as that g.lot%trw;i^%^ffif^| HON. groods each weighiPff J TIOJV. of the ratio of twn I 't and consequent of antecedents Ind con-' equired answer 3d by dividing an number that wiii J^ using the results ^"''«s cost $4.80, ■<:00 miies. w;rite 14.80 in the Then as the car- .of 80 cwt. we in the first place ^ the second, and e for 200 miles re than for 180 ^„y«0 miles in ''•'O nj,ies in the inen dividinj? product of tht 'fi the third term am the answer ' cancelling all fi t'le following with the terms COMPOUND PROPORTION. 59 by 5 example, First we cancel 60 a consequent, and write 3 m place of the antoce I 'nt 180 in which CO is contained exactly 3 limes, then we set down 2 in plar;e of 80 and 5 in place of 200, 40 being con- «A ni. A„. «n"'^'i';^^>'^'l' ^^^''^"^ '" "'e antecedent M 00 AnsSO and 5 times in the consequent 200, and riivirKn^ h„ r multiplying $4.80 the third term and dividing by G, we obtain $4.00, as in the lirst ExEHCISES. 1. If 15 men in 12 days mow 60 acres of grass how manv acres can be mowed by 24 men in 15 davs ? ' ^ 4. II $134 pay 17 men for 8 days" work, how much will ha requirod to i)ay 13 men for 6 days work ? ^ 57 mnnln^s VJ'^' '" ^.'"'^H ?"^ ^^ feet in length is built by b/ men in 18 days, working 8 hours daily, what leneth of wall leet high can be built by 94 men in 15 'days woSg 10 Ss msTr'ooll^y^l'lilir °" ^'^«« ^- '' '-y^ 'f the gain on 27^davs%EnS Vl'^ ™'" ^"!. P''^^'^'""^ «""'"«'^nt *« '^st davs wil) H^ia^ ^^ '^""■''' Pf ^«y to -^ac'' man, how many to^gOOmpn^r^r'''''""' '**«'''■ ^^^ i« increased Ounces peTday 5 '"'^""'^ '° ^^"^^ ™^" ^'^'"«- ''^^^^^d to 12 8. If 15 men in 8 days earn $130, how manv dollars will qq men earn at the same work in 26 days » ' ^^ dng bvlSSf if ?/'!' '"7' '^ ''^* ^'^^l^' «"^ '^ f^^t wide, be •ench 740 ^P? nni ?^^^r'' J'^'"' '"^"^^ "^'^^' ^'^ ^^ take to dig a in rr '°?^' '? ^•^'^^ ^^'^P a^'^ ^ feet wide in 25 davs ? 10 If a person travels 207 miles in 8 days walking 11 houV-^ hTurtp'^rX?""' """"'" '^''^^'^ i7da;TJilkinT9 wi'; ^'^ the value of 60 yards of cloth IJ yd. wide is $112 Ti Jard w!de ' ''' '"'"' °' "'* ^"''^^ of theMme Sd of cloth 12. Ifthe carriage of29 cwt. 210 miles cost $4 how mnnv cwt. m.glit be carried 190 miles for $13 ? * ' ^"^ gain".f37 in'e ifZtf ? '" ' '"°"^''' '^'^^ "'^"^ ^«"^'"« ^°"^d 14. If 24 men do a piece of work in 32 days working 10 w OMATEST COMMON MEAgunB. men „iiu ..ke .„ Sa'p 5strda' iT'^y^", ^ "'■"• '»»' ™"y ho :. qi-?„ S* f:n -^S ? ^'^^ ""«■■'' » 2^ y u"*- '° ''""''« each day r ^^ ^''^''^'^^ P'^^gh 29 quarters wide'cost tiiJ^h!.' ^'^^^ /^^^^ containing 29 yds S in 17- dayfwTC&rnS IVt''"' "" ' "" «"* be required to digiiren^h 10,^1 rJ'''o«- many mea would days working lO^hou™ a„h ja'y%* '""« """ ' "■«»' »'"» '" M hhdd,, each weig1,i„g"',rcw.Tq|:.''for"5^„X^",'' '''■"'^' "'» GREATEST COMMON MEASURE exX°Sutle;™^°;i=S -t,?'' 'J"","-'" "-* i' are measures of 36 ^ '"""""loi-- Tlius 3, 4, 9, 12, and 36 byVh°re°.°or„?S;rm'aTbe ^xTK™^"? '^ '"^ "™W a remainder. ^ ^^ exactly diviaed without leaving thJJl^igrerntSTy^r numbers is without leaving a remainder ""^^ ^^ ^^^^^'^ divided isthp"r^;pVV-4''''''°'"™°" measures oi 20 „pw .q but 9n t1" ; °I.^ ^'^ ^uaiinon measure ' ~ ' ^"' ^^ To «„d the greatest common measure of two numbers. r' ASUilB. 1 17 men do tho same ' in 10 days, how many i ■travels 190 miles in 8 Bl 340 miles wallcing 7 i-iO in 5 months, how 14 months? in 4 days, how many J ■s ? •'I by 27 men in 4 davs> rs ? ■' * I in 8 days working 9 36 horses plough 29 oontaining 29 yds, 3 be paid for IC pieces Jntaining 34 yards, 5 ork is $60, what will work ? !res of land, in how long and 4 feet wide many men would rid 3 feet wide in 20 ch weighing 17cwt for tlie carriage of 8 liles ? LKASr COMMON MIILTIPLU. LSURE. that will divide it 3- 4, 9, 12, and 36 ers is any number ed without leaving more numbers is ne last hne 4. Then multiply together all the divisors and ! 12 20,15 ""^'"^ ^''^ ^''"^' c^niraon "nultiple of 6, 8. 4, 18, li|J6)_ 8(4) 18 12 20 15 81 8 6 (4) (4) 15 X 8 X 3 = 3f50 Ans. Tn this example we use the same numJbersas in the first. First wo cancel the numbers 6 and 4 each of which is exactly contained the uncancplled numbers «<» Hivi^nn'" '1' "^®" "^'."^ '^ ""^ °^ highest factor c(x^i?mon7o?5thrr*°'* see.ng thai 3 is the and 12, we divide thfl.n hv \ ^ '^'!'^'"' '*"'^ ^^^ numbers 18 4, we alsrdrSr20 by 5 ft be "n. fhllfT '^r '^"'^'^°'« « ^^^ the divisor and 20 nn^ 1» . ^ he highest factor common to div ided nuXr in th^nexU^nT N '?' ^"°"*^".' '^"^ « »^« "'^- are each contained in s nn J • ^ o""^ ^^ '=^"'=«' * and 4 which 2, the hVhestTtor commit"! ^ *^ '^'^'^°'*' ^^ divide 6 by qUent. Then the Dpo^rf^n^ h"'* ^ """^ ^^' down 3 the uadiviaednum"beV1SsUe[!c. m:S! " '^"^ ' '''" '''' Find the L. C. M. of , 1- 3, 5, 7 and 9. 2. 2, 4, 6, 8 and 10. 3. 17,9,27, 18 and 11. ^. 16, 2, 4, 8. 5 and 9. fi' ?L '6. 5, 3, 27 and 28. 6. 18, 4, 17, 13 and 6. J „9' 2, 8, 7, 5 and 4. »• 6, 3, 5 and 24. KXERCISES. 9. 12, 24, 48 and 80. 0. 18, 36, 14, 19 and 6. 11. 36, 92, 7, 4, 8 and 9. 2. 2, 3, 4, 9, 7, 5 and 8. J-28,44 96. 38, 17,42and58. 4. 9,11, 17, 19, 21. 23 and 25. 15. 7 2, 9, 15, 18, 37 and 46. 16. 18,27,94, 108, 62, 13 and 15. VULGAR FRACTIONS. I equafTarts" Into Th^ch ^nn'^''''^ '"•^'•"'^^^"^^ «"« ««• "^^e of the WllS^^^S',^::^^^^^^' °""^b^^ or terms, one 64 III w VULGAR FRACTIONS. taken. " «'|uui parts, and that seven of those parts are SoDe??mnrnni"'^' ?fvulgar fractions, viz : A7"op:XSnTnt ''™P'«-,««?H.ounrt and complex. thanit,5enomina?or. a.7'."V^'"''' '''' """"^'■^'«'- '« '«8S ie^^^'^'^^'^'-^^i^?"' "" —tor is not annexed?as"27M8fj"75f o*"* whole number with a fraction intoSVunuTsdiS^^^^^ '^ the equal parts parts iSS'^whJcVSh" ^JiP'''^sses one or more of the equal nute?aS;or'Sdenorna7n^'°^ '''I* t'^^^'*'" ^'"'«'- '" •'« » lu us uenominator, or in both, f 9 ■•■ 2 § thefr»clion,s„o°S„*ed "^ Uie same number the value of REDUCTION OF VULGAR FRACTIONS To reduce a fraction to its lowest terms fraction >;:?hl''' ''''. ""'"''''''' ^"^ ^''« denominator of the traction by their greatest common measure nnmL!iZ^'T '''" """'™'°'' '^"'^ ''^^ denominator by any ihnT tV . ' exactly measure both; divide the quoUemI thus obtained in the same way ; and continue the process unt no^number g.ater than unity can be found that ^ZlZfe T^^^'tT!"^"^'''^ ?« to "s lowest terms. t f «f f ? Ans By rule 1 we divide 216 the numerator and ^88 the denominator by 72 their greatest com terms. '"''"• * '" ''"^ iowesl I 6 I ^ n An^-^By ™le 2 we divide 216 the numera- tor and 288 the denominator by 12, and 12 h IS that a quantity is n of thoso parts aro iz : nd and complex. 3 numerator is loss le numerator is not ibor with a fraction of the equal parts more of the equal id, as i of J, ^ of iction either in its 11111 a fraction be both inber the value of nominator of the VULGAR FRACTIONS. EXERCISK 1. Reduce the following fractions to thoir lowest terms. 65 I. -iV 5. 2. -ilf- 6. 3. ~m- 7. 4. 4H^ f. -nn- ..7 1 9. 10. 11. 12. To reduce an i.nprop - . :otion 1. a whole or mixed number. I '"'^--D'V'dethenumvu-.opby .i.e denominator and there- I suit will be the whole or r., oi number required, ExAMi'LK 1. Reduce |^ to a mixed number G3 ^ 20 = 3 ^ Ans. Example 2. Reduce i]^ to a mixed number 146G .^ II = 132 .^ Ans. ExEiu;isi: 2. Reduce the following fractions to whole or mixed numbers. 1. 2. 3. 4. 5. 6. 7. 8. -nn- -mi- 9. -a^iOyia. 10. -iifpi- 11. -ZJ^lAll. 12. -fiiflwfl. To reduce a mixed number to an improper fraction ft«/e. IVlultiply the whole number by the denominator of the fraction, and to the result add the numerator, below which write the given denominator. Example I Reduce 0/, to an improper faction. 9 X 1 1 = 99 and 99 f 6 = 105 .-, \o^^ Ans Example 2. Reduce 19| to an improper fraction 19 X 8 = 152, and 152 + 4 = i5G .-. x^a ^ns. Exercise 3. Reduce the following mixed numbers to improper fractions. 1. 9-f}.. 2. ll-,\¥.- <» ' .1, 4. 5. Ul^3^ 6. 274-.}f- 7, 93-f|- 8, 204Vy», Vr 9, 609 10, .365-*!l«'4. 11, 28 12, 96 8f - -n- To reduce a compound fraction to a simple one. m $''% 11 VULGAR FRACTIONS. If there are a denominator I " ,"''7 J f * "'■ S '" »™pl. rmcuon. ' Pir« *''*X9 =T80"=-4r Ans. u . EXEHCISK 4. Beduce to Simple fractions. 1. f 01' f off off •^•|of|offofi-of|. 4. f off of _^ oH. 6- i of I of 2 Dili of 5. M 01 i off of I of i. 8- ^V of -ft- of 41 0,2 -f?-ofl-^^of2|| ,,. -.VoffoflofV.oj'i: |onof3-^, o?6. '"' f of I off off O/ J. (fa *avfng1"olS„"J^,^„^^^^ to equivalent fractions 2- Divide the commoL dlno • «^ J '°°'"°" denominator denominators, and ZuuZZ ,' *'' '''^' '' ^^« »'-" given numerator., and th^re stlt'f '^ ''« «^^^ «^"- luirea numerator^ beioww IT ' '' '^' '^^* °^ ^'^^ ^^■• 'or. The other numeltls ^i^ L?'^ !'^ ^'^°''"«" '^^""^i^a- common denominator " '^"'^'^'''"t ^^i^tions having a 3.?;T5";a'^^^^^^^ multiple of the denominators 3!?t^ = ^4^3'2^5l = ?;?H-nrstnumerator. X ^- 126 i/ie fourth numerator. fether for a new numej «' denominator. ■he compound fraoticul jple fraction. 5~ Ans. 8 the numerators bv ■nen we muJtiply 4 ji lalor 180, which male' i to its Jowest t( rn,s iff fraction be a mixaj proper fraction. VULGAR FRACTIONS. 67 off of I of i. A-of-^f ot2 x&. I-A-of2|J c/a, of3-^, o?6. ^"•' >f§offo/J. equivaient fractions) of the denominators I mmon denominator e first of the given I tty the first of the I the first of the re- common denomina- the same way. fractions having a ^ the denominators 'St numerator. :t:on(i numerator, ird numerator. LiitJi numerator, JThen writing 315 the common denominator below each of lese we have the required fractions |f g, j^f , xas^ and |f|. ExERcist: 5. I Reduce the following fractions to equivalent fractions havinK common denominator. '5 imviug J. i a 4 3) 4) t- '■• ?> ?) ., . 2- h !, h I -^- 3. -i^ -if , ii-, ih •5: 1' f'2 ti ^' " ' ' 7. l>nV,if, +f,-if. 8. -iV> -iV, -iV, -^A" y. •tf;-tl-if, -JI-, if iO. -A,-3V,-^uS i^ ii. -eU-, -.V, i^^, -V, -h 12. n,-ih f#,-if,-it To reduce a comjplex fi-action to a simple one. fl«fc.-Multiply together the outside numbers or extremes for a new numerator, and the middle numbers or means for a ficw denominator. fmpro%Tfrrtionr"'' """^'^^'^ ^'^^ "^"^^ '^'' ^« ^^^"-'l ^° Example. Reduce _A^to a simple fraction. jA^ _ A _ 3 X 2 6 2* f II >r~5 ~ ~55 Ans. f 11 X 5 Exercise 6. Heduce the following complex fractions to equivalent simple I ones. 1. 2. 3. 4. -^ f 7 9 'J T 'i 2J 6. 7. 8. ii. _» 9, ^ 10. 11. 12. ^1 6 7 :^- 7i To reduce a fiaclion from one denomination to another. 68 VULGAa PltACTlONS. ~5 oz. ~ -^ _±_ 1 ' • ^ X 16 = xo = lo" lbs. de„„=S„'!;K-«™ '*« f™- ""noes .„ ,b, „, „,„, ,_ f Of I of 4 =: 2A -. o „p , 9/, J ^" ~ o Of a day. lij<_GO_ _ 2880 _ 5 ~5 576 minutes. Exercise 7. Reduce -,V of a n i, ute o t^.f,?" f '^ ^''^rter. Reduce -.iL of a nf. V "^'^ fraction of a dnv 1 0. Keduce f^„°ofY« luf 'r''" A*" "^' '™«"'«" o^" a .il] quantity. ^--^^ '^^'^nfty to the fraction of anothergivH eon.at:^tt;r ^?rSn,;? ^- -west denominatio,,' f ction Of the other as Z^Z^'TTn'' "'"^" '^ '^ ^« "'« denominator. "nio.ato,, and the othor q.iantiiy ,, 4d'ni''-,- =3420min.-|,. Hero wp '^ '"• = 6^^35 min. | HU = .^^- Ans. 3420 for nnmerS 'and 21'f ""^'■'■« '« '"inute., nnd !hu- oh, ■ 10 ns lowest terms is ^^13'"'^ ''' ''^^"°'»i"a>o;^'Siolr;.du ^ 1. 2. 3. 4. 5. I Here we llain the ( I Example IpliS. and ( ' fl^re we hd divide I'hich gives Find the . I of a cw . f of a bu ,f of?of ■f of A of , f of fr Oi ^fofaof2 Ihtle.—Ri deiioininaloi [and below [ONS. J from a lower to a higL or, if from a higher J "■alor, as in reduciionf '"Jefractionofapuuj 1_ — 20' Jl^s. '0 lbs. we multiply ti day to (he fraction of] a day. 576 minntes. fa pound. I quarter. n of a d,iy. ion of a perch. >f an hour, ition of a line, fraction of an acre . JJ to the fraction 4 on of a gill. ictionofa ton. on of another giveni 'West denominatioiii y which is to Jbe i|J ' otiier quantity a<\ fsl5min.,is2days .¥3 Ans. ^and thusobUniii ar, whic/i reducMl ADDITION OB' TRACTIONS. 69 Exercise 8. What fraction is 3 ars. 2 lbs. of 2 cwl. I qr. 1 i lbs. ? Reduce 7s lOJd to the fraction of £3 : 7 : 6. ? What fraction of 17 dollars is 28 cents? What fraction of 2 weeks is 3 hours 17 unn. ? What fraction is 3 yards of 17 yds. 2 qrs. 3 nls. ? Reduce 2 qts. 1 pi. to the fraction of 7 gals. 1 qt. 3 gills. Reduce 7 fur. 30 per. to the fraction of 2 miles, 1 fur. 17 rches. 8. What fraction is 2 oz. 17 dwts. of 9 oz. 3 dwts. 11 grs. ? 9. Reduce 7 Inches to the fraction of 4 yds. 2 ft. 3 in. 8 lines. 0. Reduce 1 cwt 8 oz. to the fraction oi' 7 cwt. 1 qr. "0 express the value of a fraction in the denominations con- ined in the integer. !/;«/(? —Consider the numerator as so many of the given de- [mination, and divide by the denominator. (Example 1. — Find the value of ^ of a cwt. 4 cwt. -7- .'j = 3 qrs. 5 lbs. Here we divide the numerator considered as 4 cwt. by 5 and ilain the quotient 3 qrs. 5 lbs. the value of ^ of a cwt. Example 2. — What is the value of & of 2 chaldrons 1 bush. fpks. 2 ch. 1 bush. 3 pks. X 3 = 6 ch. 5 b. 1 pk. and 6 ch. 5 b. 1 pk. -f- 7 z= 31b. 2* pks. Here we multiply 2 ch. 1 bush. 3 pks. by 3 the numerator nd divide the product 6 ch. 5 b. 1 pk. by 7 the denominator ■hich gives the resul*. 31 bush. 2^ pks. the required value. Exercise 9. Find the value of I of a cwt. f of a bushel. f off of an acre. fof a-ofaJE f of (\ of I of a mile. -\^- '"■^ 1^0 of a yd long niea iof|of2^ofalbApoth 8. f.of| of a v'jhaldron. 9. f off of 7 bushels 3 pks. 10. 2f of If off of 17 gals 3 gills. 11. -i^i- of 7| of 7 miles 6 fur. 32 per. 12. -^, of ^ of 2f of 4 acres 2r. 17 per. 1 3. ^ of f of f of 3 cwt. 2 qrs. 22 lbs. 14. I of i of -^ of 1 7 hours 29 m 53 s. ADDITION OF FRACTIONS. liiile. — Reduce the given fniclions to others having a common Idonoininalor, add the numerators together for a new numerator, land below th'-'ir sum write the common denominator. 70 ADDITION OF FRACTIONS. 1 '"''^^ilUNS. ormixcVSb^^.'" '''"P''°P«'- f'-a'^lion reduce it to a ; ■ , ; /'''•""'^'■iWr j, f, 8, and J p. 84 TTJ- -— Sg^jf Alls I Example 2 Ari.j < , ' 1722 = Mi and 4 + 17 I •> f^ind the vaJae of ^''""'' ^'^• ^- ^ + f + f + f f-f + ^-^f + f + A '■ I + -h + ,^ + ,«;; ., '■ A + 23,;. + j5.. + -♦• sS. IONS. reduce it to a wJ xed mimbors. add I "J« niunhers. 'compound or coiiipj t- H + Jr - 3 A Alls, >thers having a c„. ^' ('J. 70 and 72 li "'» 8'' the connni viiich rerlaced to id 3XX. ■ + ^^'A m hU Ans. fractional parts aJ 3ie numbers. 14. jir.. IK). 17. 18. 19. 20. fiUBTRACTlON OF FRACTtONS. zoff + 5 + 8,23 or ,v 1 + i + 1 L ^ -^ fofg- + 3* 64 71 ^^hi + 2 r 2* 6. + 1 1( ^ 21 .. of 77 SUBTRACTION OF FRACTIONS. //H/e.— Reduce tha fractions to others having n nnmm r, ^ N"ulor. Subtract the numerator of e subU-alS™i"nf f^; the nnnuend, and set down tljo differPiirn vvi h^h„ ^ *^^*' 3nominator written below it. If there are who ,n ,^1?°'"'?°" dilierence as in sim,,le snblraction' in t e subTracIfnn^^f iiAe.i numbers the new numerator of Hip « Lnoi 1 • ^"°" °^ han tliat of the nnnuend rbtract i f ' ' n o^ ^^ ^' ^''''■^''' &inator, to the difference add the numerator of I'^T"" '^'T (nd carry one to the whole .mmi.L oHhe t^trahend "''""'"^' Example 1.— From ji- take -,a-. l«AMi'i.E 2 -From 1 7A take 9-Li ^" 17-^ 9 i_i = /7//4— 9>sf = 711J An.. Having recluced fhe fractl^rs to fc Imt ni a' .n^ lenommator we find that 187 the numeritor n ? ^^^mT""] tgieator than 90 that of the mir u.^TTc JL'e foiV" bt?]"*;''? bm W\ the crmmon denomiuianr add % to Ho .m ^^ " |id carry I lo c:-:r::;::;:; 'he results in lliei. place ""' measures Jjolh, and ' Example 1. —Multiply | by f Example 2.-Mui 'ply tTJLrSMxf ^^d -,V numerator we^muiUp ly ^o^eiher 2rS''';o""^'J ^*^^ ">"! numerator 475, and 9 ana 1 2 « IL • *"^u'^ ^h'^'' &'vesJ then reducing iio imiZ ■ ' l.^r ^ F^«^' ^'^^ denominator l(J 4j^. ^ P' ''''^^'^" i'«4 we obtain the answ^ „. . Exercise 12. Find the value of i X f X -/^ X -A 5^ "3 II 1 2 8, 4 6. 6. 7. 8. 9. 10. 11 12. (| + ^)x(A^:^ t3. (I - f) X (f - f ) X i ,x f X f -iV X -/^- X f 2f X 4« X ^f X 4 X 5-S_ X 8 i X -g -A- 1 1 13 X 2 r X -^ X 1 -A X i X I ;4- & X f X -/g- X W 15. 61 X 2f X 5f 16. f X 4 X 8i X ^ 6 I7.(2i+4f)x(7|~2?)x. 18- i* X H X I! 19- I X I X -S- X !! 20. (3i + f+|)^%^_J ■ACliOMB. ' mixed numbers redui npound fractions reduJ numor.if.ors together I s< •oramwdenominaij t?uc>? it to a mixed nuf vidin,g a numerator! neasuros bolli, and Ans. !i and -./- = 4,^8- Ans. to improper fractioia fiator and 7 in the ihiij nd 19 which gives tJ is the denominator 101 we obtain the answj '< i X Vr X 1^ X 2f X 5f X 4 X 8^ X ! 6 + 4?)x(7|-29)x xHxI! i I X f X !! 3f , + *+!) x(8i-d DECIMAL FRACTIONS. DIVISION OF FliAGTIONS. 73 Iiule.~R.Anco mixed numbers to improp'cr fractions and co,npound fractions to si.npie ones Invert the terms of the divisor and proceed as in multiplication. Example I —Divide f^ by -t- p. J .. , Exercise 13. Fmd the value of 1. 2. 3 4. 6. 6. 7. 8. ^- -4-2^ -I- . a. 1 I -=- 13" 6* -^ f off 9. (12| + i)--(9f-f) 10. (7| X f) 4- j^ 12 iloff ^-ja.-ofii 13. 4| -9f 14. U -^-(t+?) 15. n -^2f -^ 1 16. H --23 17. (2i + 7f- #)- -3f 18. (tx i)Mi> :f)- ^23 of 2 _3 fof4^ 19 4f 4" 20. 8.\ -5X^ .fi t X 3i X 2f DECIMAL FRACTIONS. In decimals the denominator is omitted nnH n rint nall„^ ^u decimal point is placed to the left o^f^'nuZerato ''"'' *'' Thus -,a IS written • 3, -z±^ is written ■ 74. When the number of Ijgures in the numerator is less th«n of Ii6.,res m ,t oqual ,„ ,ho number of cipherTin ule'Smi- ^Thus ■ 0056 X 10 = • 056 ; 0056 X 100 =.- ■ 56 ; • 0056 x 1000 74 DECIMAL FRACTIONS. one To cJivido a decinifll h^, m plnc.!«, ,10. """" • "1 100 Iwo places ; by (ooo l|,rc I0«0 = :1Slt '" = '"'' ■ '»*' - 100 = . 2854 ; 28-5, ^ value. ' • ■ '^00 = /„., .za^^ .^^^^ ^^^^^ ^^^ ^^^^^ ^^^ ^^^^ repeating or circuIaSgrorna^ called a „ The /onU„u'arrpetu2';ri V'V ' '"'P^^'^'' ^'^ P«"od. figures, isexprossed by wr"w?hfn'^^ «'' several dot over the first figure aTdannth. P''""^ o^^e and placing a figure is to be repef t"eci h\"'pS/; d7ot If ^ ' °^ '^ ^"^ '- -Peat.g period i.eS^.^, tTsl '4^: X^ fte^^^ "lai point • thus • 4 • '?9/i o„« A mixed repoatL or cfrcuE.''r''''?^ ^^^'■"''^'«- deoiSr' P™'- ■"- •MVa.iei are ™i.e, „„„„,„„„, in fTeSiLtS'Sl-ri^-.r*?' -"»■' "-»' it is dred and seven » v nno vi •?,'.' '^ therefore read, four him ".- „„, fori?"s'e';trteL'';,,s°3Si::; """" '» -""'■»"" Exercise J Express the following decimal fractions in words • '' ' ' -00072 , 9. 71042.560 2. 3. 4. •0C4 •207 ■652 34-506. 30964 • 000063. 92,000507. • 00000000724 671-408263. drid^7"i;^en^>•!S' er^;;;^' ?h"'"° *^-««-' -ven hun- are required to make ud tL ,. ff"""''' T """^ ^''^^^ 'hree ci,,he?s he given number andThede Si nofn^ih^^" '''' ' "^"'"^^ ^^ fore written - 0009723. "^^™ai Pomt, the decimal is there- Exercise ** 1. lorty-six thousandths. 3. 4. 5. 6. t'eciiiial point one ices; by 1000 thro." = • 2854 ; 28-54 ^ do nol change its h all have the same ised and in which peated, is called a repeater or period, isisting of several ce and placing a last; or if but one it. is written • 345'6 'ne in which the ire after the deci- decimals. i ono which has eating period and lixed circulating e Ilnd that it is read, four hun- 7 is read forty- m words. 71042-560 J2,000507. 00000000724 •7I-408263. nd seven hun- at three ciphers '.he 4 figures of iimal is there- DECIMAL FRACTIONS. 78 2 Nine hundn-d and eighty ten thousandths ADDITION OK DECIMAL FRACTIONS Jl'ZmZ'y ^': ""'"^'"-^ '« ^^ -^^'J^d so that the decimal Seatitio:.''"^"^ ""^^^ '-'' °^'-- -^^ P-— in cnnals repeat then, to as many places as may ho Judged neces, and■8^'6T•~^^^ ''''''''' ''■'''^' 9-3684, -70134, 19-748, 1 • 368^^ the^Tnr °°"''""' ^^^ "^^^ ^"^1 ^""''1^ numbers • 70l34 uS ?6 .'olm' '" ^'"^P'*^ '^'^•^'^'°" ^« obtain the 10 • 748484 '^• 8-63 76-94519 *^ind the value of ^"'"'''^ ^• >- 2-43 + 7-9638 + -72+1. 9654 + 23-845. 3. 4. 5. 6. 7. r49T: + ■''' + ''• ^^^9^ + -«3+ 1-74 + .982 + 94-026 + . 87+. 085 + 6-954 + I0-869 + .7406 •928 + 34 -71695 + -718 + 9- 7015. 96-74 + -9863 + -712+ 19-042 + 365-98 + 4-307 • •7"^'>805+l2-93+.98i+. 34 + 91-642. 205 + -736 + 7- 964085 +-36 + 41 -68. 8 712-84 + -96 + -73014 + 25-63 + . 98 + 94 608, 7fi DECIMAL FRACTIONS. SUBTRACTION OF DECIMAf. FMACTIONS fr^^ointti':^^^^^^^^^ .n.,er,p,acing the -lo. traction "^" ^'■"^^' an<« proceoij as in srimplo sub, ^24^ ^'''°'" 24-64 take 9-7901. , ?:Z!^1L aMZriCfir '^' ''^P^'^^"'^' decimal l4-848ii uaction ^-''-^--enco as in simple suh. Exercise 4. Find the value of 1. 4-231 19-48 1-372 2. 3. 4. 5. 4-9542 23'-- 7 36 — 2-964. — •68742. — -90834. -- -2C875. — 79'489. 6. 7. 8. 9. 10. 14 5603 — II 68014 — 2-863 _ 7245 — 4-35964 9 49," •732. 1-93478. •976387. 2-178. inark oifin t o''K'odu cTaTnlL'"?""' f T'"'''' ""'"^-•«. "• n both factors. When therTaronnf""' '""' '^'^''econtaine • the product as are con a'ned ^-^h^.h ?"f ^ ^'^'='"^'^' P^^^^s ' flciency by prefixing dphe"s ^ ^'''^"'■»' "" »P ^''^ . Example I. Multiply 24 S by -23. nrnd^Pf H ^kP'*"'''" of decimals in tho produc . there being 2 figures to therisrfit i;[u;^S^«'^"^'"*'--'-torLit' Example. 2. Multiply • 27 Ly • 3. nin^no'-"^ example there being 2 decimal ^ e p?oducTf 'T^r^^i''^ in ti othe aTd Exercise 5. _ -OST Ans. F *he v.'ilue of '*9 X ■48. -57. -638. 67, 4. 9-49 y 5- 8-63 X 5-34 «. 28 76 X 6-48 FACTIONS, aler.placirig the do. as in iriuiplo sill). repealing decimni 18 in simple suh- 7t DECIMAL FRACTIONS. DiVISfON OF DECIMAL FUACTIONS. liule. 1 -irtho divisor does not contH.n as many decin.al places as ho d.v. end. ann.x as many ciphers as will n.ako the number of dr-cmal placos oqual. !„ the same way if th(3 divi- (loud do..s not contain as many decimal places as tho divisor (iiinex as many ciphers as will make them equal 2 Then divide as in division of whole numbers and the quotient will bo a whole numb..,- 3. Ifw „ all the ligures in the dividend have been uPed there is a remainder, annex ciphers and continue he dmsion until nothing remains, or until the quotient has been continued as far as may be judged necessary. Example I. Divide 3^4-5 bv 6-25 G25)32450(51'92 Ans. ^ Hero there are two decimal places in the divisor and but one in the divi- dend we therefore annex a cipher, then dividing as in .vhole numbers and placing tho decimal point in the quotient after the \n.i figure in the \t'a dividend has been used we annex ' -^" ciphers and obtain the quotient 51-'J2. ■0. 3125 l200~ 625 57;>0 5G25 KAMPLE 2. Divide 2-428 by Gu. 2428 (4-04G 2400 2800~ 2400 4000 3600 400. Find the value of 1. 0163 .i 2. 37 a J. •"!. 87-4284 J. 4. 75-903 -L 5. 3-9184 1. G. 1460-31 J. 7. 96-4 i. 8. 68-64 4- In this example we annex two ciphers to the divisor, then dividing as in whole numbers we obtain the answer 4-046 Exercise 6. •49. 3-84. •24. 13-54. 3-16. 1267. •7{j4. 0. 269-4 10. 174-2 11. 907-14 li 3-78 iU2 13. 2035-46 !4. !:' 7C-'i 15. 17-4296 16. 104.3u:) •75. 7-5. •9123. t-06. 8-68, o UoH. 7-90. •79. ^t ^' I' 78 DECIMAL FRACTIONS. BEDUCTION OF DECIMALS then prefixing a, .oint'o I mmS^^ t'"/" ^"-»^'^'« ^ li"'es, Example 2. «o,luce Wto a decimal "'' '' ^'*'' '^"s^''''' 75) 100 75 •013 250 225 25 ann.'xing anothf-r cii.h!. "^..I'"'"*' then once, we tl.erefbro ^i^^^^ r.nu'' ^^- 'i^^i^ori:'^::;^^ c.pher to 25 which btZi^O ^t 'is ^T'''' '''^ «»"«"" leaving a remainder 25 which be in^h ' 'contained 3 Um.s remainder it is evid.nrthat the Vi '', "' '^" P'^^vious -i|; ho continuaiiy repeal, ^^/^^o!K ZX^^I^^ ., . . EXEIICISE 7. iieduce the following vu„ariractions to decimals. o" f \ ^' ^^ I S). Ha I r^ q ?| o- Bis- 10. -224^ 14 •^' -ffi I 7. A- I 1 . V I J*- 4- ^ A 8. A 10. -alfa 11. .^, 12. -^ A H 16. «^SX^i'S;f dSiS\;j';^-;^.i-Iont vulgor iVaction. many ciphers annexed is there «n!""r" ' ^"^ ^ ""'' ^'^h as thus -83 = _jia_ " "S there are hg„res in the decimal. rp- , DECIMAL FHACTI0N8 Thus. •4 = A •28 = g| •4.1<5 r:r 4.6 3 _ U H 11 Jt,„r"" " "'«''''^«'-'°'<'i"'"ocimaT,„~i,!;;-a"iS v„,«. X8. sininatir, annexing «' fJeoiiii.il p|„ces "t Ic Iho fiuoiient. "Jivicleiiditlifcomcs 'iit'8 leaving a ,.(,, 'wn 7 in ui(. quo- ^i^ goes 5 times, VI' •/,) III,' answer lexing a cipher tlie wiiicii (lie divi.^or ''ore place a cipher J'lx a point, then .I'.'o dividend be- ivisor is contained 'nl, and annex u ontained 3 times «s the previous in the quotient thereCore placed iimals. 13. ^. H DECIMAL FRACTIONS. 79 15. ^^z ilgar fraction, ti a unit with as in the decimal. Jivalent vulgar s many 9's as — t a^ 3 3 3' livalenf vulga /fi//e.— Subtract the llmio part of tho mixed repeating docimal from the whole, and write the remainder as numerator ; and for denominator write as many O's as there are figures in the period, with as many ciphers annexed as there are figures in the Unite part. Example. Reduce -32648 lo its equivalent vulgar fraction. 3-264« — 32 = 32616 the numerator; then lor denominator wo write three 9's with two ciphers annexed, there being three ligures in the repealing part of the decimal and two in the Unite part. The denominator is therefore 99'JOO, Therefore -32648 = ^ff^g = |5f. Ans. EXEIICISE 8. Express the following decimals as vulgar fractions. 1. -6 6. -3 11. 16-348 16. -1243 2. -74 7. -64 12. 9-63 17. -31425 3. 021 8. -923 13. •541 18. -647 4. -432 9. -123426 14. -362 19. 6-436 5. 6-009 10. -7642 15. -5423 20. 2l-243i To reduce a given quantity to the decimal of another given quantity. Bute.— Divide the number in the lowest denomination m the given quantity by the number which makes one of the next higher, annex the quotient to the quantity in the next higher denomination, and divide by the number of that denomination which makes one of the next higher, and proceed thus until the required denomination is reached, the last quotient will be the required decimal. Reduce 15:, bf!. to the decimal of a pound. li'irst we divide 3 farthings by 4, 9-75 which reduces it to -75 of a penny, prelixing 9 pence to this and dividinc by 12 we obtain -8125 the decimal ■790625 Ans. of a shilling, then prefixing 15 shill- ings to this we obtain -790625 the Example 1 4)3 12 , 20 J1TST25' decimal of a pound. 80 ' ^ • Di'CIMAL FKACTIONS. 3r 18 per l"a~Tr 138 per 240 per 23 ^iO - 23 -f- 40 = 575 Ans. 1 Red ExEHGiSE 9. 2: Reduo'e' hTd^yi''^ ll^^^ iJ^^fl"^^^ ^fa cwt. 3. Reduce 5 fur 3 npn ,° ff '° '^^ decimal of a vear ^- deduce 1 foot 6 f!\lTe7.T"'f ""'^ '"''' 5- Reduce 1 6s 1 1 4d to thP I^°"V^' °^ « yard. 6. Reduce I pint fgui^^l h?«T' "''^ P°""^- 7. Reduce 16 dwts 2 gr tj th« h'""^' P^^ ^^^^^n- 8- Reduce 35 min. 30 sec tr. fh. J^'"'-'"^' «f « 'b. 9- Reduce 4 cwt 1 qr 20 lbs i '>, '^^'"a' of a day. 0. Reduce 2 qrs 3 n s to h! 1 ^'^ ^^°'™al of a ton he product to the „„„ |„„„, j.'^f „"'';"'' "■» « ke the required value ^ ""^ """ *«'™l Points will ''■"S5"'°^''»™'"-fl3l5„rad.y. 24 . Pirst we multiply • I s n «h„ • deamalby24th^LmK iSe^ti'b'i^^rthe "'^ ''«"'' «^^^^^^^^^^^ multinlv nnf? M ^'''^" decimal right 'of'th.'t.ii'll""'".^^'' to the 3-15G0 hours ______60_ ~9^360rmin. -— — ^ "H^ROOiT DECIMAL FRACTIONS. 81 EXERGJSE 10. Find the value of 1. 2. 3. 4. 5. 6. 7. •43 1 5 oi" a cwt. •0274 of a day. •63248 of a furlong 3.528 of a lb Troy. •73125 of a £. •175 of a rood. •0348 of a bushel. 2-875 of a yard. 9. '613 of an acre. 10. 4-5063 of lb avoir dupoids. 11. •OSes of a gallon. •749 of a mile. •268 of a cwt. •9163 of a sq yard. •775 of a gallon. •39525 of a ton. 12 13 14 15 16, PROPORTION OF FRACTIONS 12?;S* ^^^ '^' ^""^ '''' ^^ ^^"*^ ^^^^ '""^' be paid for to tn ?4op,'laS •• ''•'' '' ^'^^ ''' --^ '-- reduced As f yd : V yds: : f -^O th«. ^^x^ ^ X i =. ...^ cents. Exercises. win lo'lrSolt ? '"" "' ""''' '" ' ^ '^^^ •" ^-- --y ^ays 1 t ydTf* ""'" ^ ^ ^'^^ '^''°''' '°'^ ^' the rate of $4.70 for co!t Sr' '"'''■ """^ ^' P"''^^*^^^^ ^^-^ ^^3.20, if ^ cwt ^^4. ^If 3 a cwt of flour cost $9.30 what must be paid for 7 f 7 1 yds ? * ^ "t'^ ''"^t ""*- t''« ''ate of $28 f for if?i^3''gdsrsrS"^^'""'^"'- ""^^^ ^°«^^' f- ^'7.42 37V;dsaVtSl^L^^^:rit"f '^'^•^'' ^-^^^ --* ^^ P-d for 08^c;,??''',°!"I'y pounds of coffee may be boueht fnr o to ill "'"? P'^'^^ of decimals. diVHletheresuliby 13 "' *" "'^ J^^^^^^f add $48.05 arid '«, MuUiP'y the resuuif+4'f9l"f4tJ^-2^^y ^-23017. piaces of decimals by -24 ~ '^^38 carried to four W. IZn!! ofVSf ^ 1 'J + ^> «^^^9« 13. +2^f ^^H + $-'40.63f +J792 I8i * ^^•'^* + =^^^-^6-32^ 2^: J'- ^e^^'S'??2?^^^^^^^ and|9e2.37,. ^- ^^'"'^ '^' ''^^^ °f $9264£3f - $748.61^ x 9. p ^. practTce. t^ractice teaches how to finri (h,. . 1 goods at a given rale iV?he"l\trU,-„'l"^" f'"^" ^"'^"'''y of All aliquot pari is a nimnti^.r ■ 1 ^''^I^ot pints. ' numhp..^r.: ':'.'*' *^ .'I"'i"tity which is p.nniaJnriH -„ Tims 9 m?""? '" "^ ^'^■^" quantity. -n-mf^rj ^n exact sli,uotpar?o1'-rdXr'^"°^P^'''"^^^^*'.-nd 10 cents is an 60 25 20 16i 10 8i 5 4 H acres at H,o rate oi'| oftea, ifthe valueofi noNs. 734 and I96.S, uts. 6iJ-. £11 ; 14: 8i 43.18. " «6, 8, 14, 12, nt fractiuns having !S, lbs. ?5 X 76 ? Lces of decimals add $48.J5 and !fe 2-49346. 7-29 by 4-23017. carried to four il3. f + $1246.32^ Mnd$962.37f ? f — 1856.37,4,. X 9. en quantity of iris. nod an exact f* cents is an PRACTICE. TABLE OF ALIQUOT PARTS. 83 Of a dollar. cents. 60 = 33J = 25 = 20 = 16i = Ui = 10 = 8i = 6i = 6 = 4 = n = u = 5 ) ? i i Of a ton. 10 cwt = ^ 6 t< — 1 i 4 It __ ^^ " = X 2 '^ — 1 1 ^" 2U Of a cwt of 112 lbs. Of a cwt of 100 lbs. qrs. lbs. qrs. lbs. 2 or 50 = I 1 or 25 = » 20 lbs = A 3 OfjE 1. Ofaqr. of 28 lbs. 2 or 66 = 1 or 28 = 14 lbs 7 lbs 4 lbs 3i lbs = i 14 7 4 3i 2 1 lbs = ^ I X 7 I 9 h ■A lOs 68 8d 58 3s 4d 2s 6d 2s IsSd Is 3d l8 I 1 8 1 = i = A ■A Of a shilling. 6d 4d 3d 2d Ud Id = A When the given quantity consists of one denomination Example 1. Find the value of 28 lbs of tea at 50 cents per lb. 50 = J_28 It is evident that the value of 28 lbs at $1 m Ans. P^'-'b would be $28, therefore the value of or $14. "^"'^^ """'^ ^^ ^^'f that sum Example 2.-Find the value of 246 yards at $1.80 per yard 50 cts. = i 25 " =i 246 at $1.80. 123 value at 50 cts. 61.50 value a i 25 cts. 12.30 value at 5 cts. f 442.80 Ans. Here we add together $246 the value of 246 yds. at $1,$ 1 23 the value of246yds. at 50 cts. per yd., $61.50 the value of 246 yds. at 25 cts. per 84 flr I i PRACTICE. yl., and $12.30 the valup nf o/.r „ i , r obtain tI.o amount or 246 y°s^\V*f- ?^ ^ ,^^«- P'^'' Vi- ; and thus or taken together $1.80 per yd ' '"''•' ^^ ^'^^ ^nd 5 cts. : 2^4^ at $4.85 4 25 cts. z= i 10 cts. = I 4936 617 308.50 ,0?^? we multiply 1234 by 4 and obtain the vahie at $4, then nnd Mio value oft 234 IJjs.i. 85 cts. fay taking aliquot parts thus 50 cts = J of $1,25 cts. - f °r rl^ ^'^•' 10 OtS. the results add $1.211- the va'nBnF J r -; i o*^ 50 cts., and to g'ves the value Jf 1 2I4 J';i.I^;r$°4 I5 v z\ 'gsel.f "'^ ^^^^^ cwr«- ^-«^^i--d the val or Z t^ al'.a : 2 : 4 per value at $4. value at 50 cts vnm value at 25 cts. U3.40 value at 10 cts. ___i_^£[£value of J of a Ifa $5986.1 IjAns 2s. =r 1 10 4d.=^ 246 3 738 yalueof246cwt.at£3. 4 2 - of . II ll $ 766 14 Ans. Find the value of 1- 746 lbs. at $0.87*. 2. 475 lbs. at $0.75."' 3. 1234 lbs. at $1.46 t' iT'^'^^s. at$1.57* o. 286 vds. at $2 78 6. 954 yds. at $4.56.' /. 354 cwt. at $24 50 8. 2468 at $314 18 9- 7694* at $87 26' 10. 4281 at $96.54. ' 11. 42502 at $220.15. 12. 796^ at $76.94 J 3. 1357, J, at $156. 13. 14. 7S4,5„- at .$96.35. Exercise I. 16. 5324 at Us. 6d. 17. 948 a( £3: 7- 9 18. 3576f^at£7; 9': 0* 19. 2459gat£9: 3-8 20. 1208f at £2:9' 4" 21. 3274 at $1.35. ' " 22. 498 ,a at 2s. II Jd. '"^ 4956| at $234,56. 864f at£l3 : I6 • '274 ft- at $1.28. 3724 al, $1.17 3469,^-at$1.12i 224 at £3 : 5 ; 235 at £2 ; 7 • 9' 2485|j at $19.45. 23 24 25. 26. 27. 28. 29. 30. 4f. PRACTICE. 85 s- per yd. ; and thus , 25 cts. and 5 cts. : It $4.85 per Ux lere we multiplv 4 ijy 4 and obtain value at $4, then 'no value of 1234 <'ii85cts. by taking not parts thus 50 = I off I, 25 cts. of 50 cts., 10 cts of 50 cts., and to ^^at^|4.85 which ■• at .£3: 2:4 per When the given quantity consists of more than one dononii- nation. Example 1 . What is the value of 240 cwt. 2 ors 15 lbs 19 ny at $7.40 per cwt ? i'- • ^-^i^^. i/ oz. $ cts. 2 qrs. = i 7.40 240 \2i lbs. = i 2ilbs.=i 8 oz. = I 4 oz. = J 29600 1480 177600 value of 240 cwt. 3 70 925 185 37 18 2 qrs. 12* lbs 2i 8 4 lbs oz. oz. $1780.86 Ans. In this example we multiply $7.40 the value of 1 cwt. by 240 and obtain $1776 the value of 240 cwt. Thentaking parts for the renlainder and adding we obtain $1780.86 the value of 240 cwt. 2 qrs. 15 lbs. 12 oz. at $7.40 per cwt. Example 2, What is the value of 12 tons. iO cwt 2 ars 14 lbs. of hay at $14.10 per ton. allowing 112 lbs to the cwt ? " $ cts. 10 cwt. = J 14.10 '''-' S':' 12 "^' ■'■' 2 qrs, 14 lbs. 2^0 169.20 value of 12 tons. 7.05 — 10 cent. 352 — 2 qrs. I 88 — 14 lbs. $176.69 Ans. s. 6d. per : 7: 9. £7 •• 9 : 6*. 9:3:8. 2:9:4 35. • Hid. !34,56. ^ : 16: 4f. 1.28. Fi 7. 1 1.12^. 2 5: G. 3 7: 0. 4 19.45. 5 6 Example 3. What will 3 qrs. 12J lbs. of sugar cost at £2 : value of 2 qrs. — 1 qr. — 12i lbs. £2 8 6| Ans. 15:6 2 qrs. = 1 qr. = I2J lbs. - £ s. d. 2 (5 6 1 7 9 13 lOi 6 Uf EXERCISB 2. Find the value of 17 cwt. 2 qrs. 14 lbs. at $24.56 per cwt. 38 cwt. 3 qrs. 12^ lbs. at $220.16 per cwt. 31 tons. 12 cwt. 1 qr. 20 lbs. at $14.21 per ton. 3 Ts. !7 Ihs \i 07. nt "S^O ?.f. ".t>-^ .--— r' 374 miles 2 fur. 21 per.^at $48.05 per inile. 34 wks. 4 days at $9.48 per week. 7. 4 chaldrons 21 bush 3 pks. at $3.50 per chaldron 86 \h t 8. 3. 10. 11. 12. PRACTICE. '7 Jbs. 8 oz 5 if "a ^ u^ '^^ ^^-26 per gal 15 16. n. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27 28 ]r f* S^als. 3 qis. I pt. atje J■ 14 miles 7 ffi. 3 fpe/afsfl ^,' •" «* P?*- ^^t 258 cwt. 3 n..« 9i*^K„ .7^t-^^Per mile. '^Wt- 2 qrs. 23 lbs. 'o ppr acre. 3 :GJ per gallon. 1 / : 8 per week. 243 lbs.-14 Til' j^3\'t'|o^4 ^'s^.Per <^wt. 136 days 7 hours at I'fc,?!^"^ ?'''* '^• 74 cwt 18 lbs at Ssf \'^^^ ''"' ^^y- 28 fur. 35 ner 93 „ , '^^ P^'' ^wt. 1 '7 cwt iribs'i,^^tl'.'/^ •■ ^ •• ^ P^'' ^"''long. 76 gals. 1 qt I 14 at s or' '^'- 3 qrs. 24 lbs 8 oz at I fi .aP^' ^^"o"- 9 weeks 2 days at S7 S ni P^^'=^*• o'"l'2 lbs. '■ 27 d^Ts ,4 b7urs'ariP2r ^'/'- >". 90 acre«) 9 r i« *'-*4 per day. M. 4°S V,.'," f ;■;■ ■' H«8 per acre. Gross • h ^^^^ ^^^ ^^^^ weight ofThe^caserbag: r&nn"US?^L^«^^^^^r with the ^ TSnet'wSSs°;Varrl""^' '"^^^ ^- --te i„ goods 'r.t'-^{}Z^^^^^^ ''' -eand^Xhave tare 6 lbs. per owf. Im ?lSs'V^r?wl '' '' ^^^- ^ 'J'^-^Aour, cwt. qrs. lbs. Gross Tare 46 2 43 1 Tret Net weight"42~ 2 _3^ 2 1 __4 21 _6 15 T ,u 42 cwt. 1 qr ,1 lbs'''' *^ "^^ weight weighUstr/^^rfifr d in ^he fol/owin. «,....„„ ... . . ounces. -'''^^ "^ Possible without"reducUo^"S H CO] Find th( C. 4 26 owl 7 ches 7 hhdt tare 13 ban 9ib 120 c\\ per hhdd 11 I] 19 bag tare 124 c\v 20 pi 2 ■ barr 14 U 7 hiiddi 19 1fc 9 casks cask 17 cwt. per c 42 bags per b 14. 14 hogs; 40 1b! 15. 96 cwt. 3 lbs. COMMIS Per cent Thus if a to be 5, 7, 01 on each $100 Gommissic mission raer accounts, Ac. Insurance a certain sun pay to the c iiicicJiaiidise, the property Brokerage elating bills, 9. 10. 11. 12. 13. wt. ■Uon, c. 3Wt. 5Wt. •long. 12 lbs. ether with the "re packed. 1 which goods in goods, and tret have J qrs. of flour, vt 2 qrs at 6 be 2 cwt. ed from the cwt. 2 qrs. lis at 3 lbs. ' <'bs. which net weight eduction to COMMISSION, INSURANCE, AND BROKERAGE. Exercises. Find the net weight of 87 1. 26 cwt. 2 qrs. 12 lbs., tare 15 lbs. per cwt. 2. 7 chests tea each weighing 194 lbs., tare 16 lbs. per chest. J. i iJhddB. of sugar the gross weight being 93 cwt. 2 ors . tare 3 qrs. 12 lbs. per hhdd. * '^ ** ' 4. 13 barrels rice each weighing 2 cwt. 1 qr. 9 lbs., tare 1 qr. 9 lbs. per barrel, ^ 5. 120 cwt. 2 qrs. 12 lbs. flour, tare 8 lbs. per cwt., trot 3 lbs per cwt. G. 4 hhdds each weighing 13 cwt. 1 qr. 14 lbs., tare 2 qrs. 1 1 lbs per hhdd. ^ 7. 19 bags Indian meal each weighing ! cwt. 3 qrs. 9 lbs., tare 4 lbs per bag. 8. 124 cwt. 2 qrs. gross, tare 9 lbs. per cwt., tret 4 lbs. 20 per cwt. 9. 2 • barrels sugar each 1 cwt. 3 qrs. 14 lbs. gross, tare 14 lbs. per cwt. 10. 7 hhdds tobacco each 3 cwt. I qr. 2 lbs. gross, tare 2 qrg. 19 lbs. per hhdd. ^ 11.9 casks butter each weighing 2 qrs. 15 lbs., tare 14 Ibe. per cask, tret 3J lbs. per cwt. 12. 17 cwt. 24 lbs. of flour, tare 11 lbs. per cwt., tret 4 lbs per cwt. 13. 42 bags rice each 1 cwt. 3 qrs. 23 lbs. gross, tare 8 lbs. per bag. 14. 14 hogsheads of sugar each 11 cwt. 2 qrs. 7 lbs. gross, ta^e 40 lbs. per hhdd., tret 2J lbs. per cwt. 15. 96 cwt. 1 qr. 17 lbs. of flour, tare 12 lbs. per cwt., tret 3 lbs. per cwt. COMMISSION. INSURANCE, AND BROKERAGE, Per cent or percentage means a certain rate per 100. Thus if a merchant sells a quantity of goods, his gain is said to be 5, 7, or 8 per cent, according as his prolit is $5. $7, or $8 on each ifilOO worth of goods sold. *• > ^ > -*" Commission is the percentage charged by an agent or com- mission merchant for buying or selling goods, collecting accounts, A-c, for another. Insurance is a contract by which a company on being paid a certain sum or percentage called the premium, engages to pay to the owners of certain property such as houses, shina liiercliandise, ikc, a certain sum, in case of the destruction'of the property by fire or other accident. Brokerage is the percentage charged by a broker for iieffo- ciating bills, buying or selling stocks, Ac. 88 ■If tl eo«m,.,o«, ,«,™^«<,,,_ ^^^ 3,,,,^„^ 1. 2. 3. 4. ^■-P-TalV^^^^^^^^^ or brokerage on a the Iro^uXZ''^^^^^^^^^ 'y "- ^i van rate „er cent, divi.e insurance or /rokerage' ""'"'^ ^'" '^ "'« ^^"''"iBsion, Example l.^What is the commission on $248 n. 7i EXA«P..2-Wha! '.h" ''' = ^''-''- Ans. 2i per cent?' "''^ '' ^^^ P^'^'^'um of insurance on $4560 at and $61651 go = ?6L65. Ans. ■C'XERCISF^ pf ;i lit crSstn on SI/' 1.P- -nt ? Required the oorSllZZfomVL':! ''''' ' 6. To wU does hTcomm" °" ^'^724.6lif ^^,S ',e„, . per cent ? ''°'' ^^« commission on $7428.4oVmount at 12i per cent? *^« ^'"o'^erage on $7964.80 amount at 7J is: ma! rthr^^iiu^'n' $K - ^^«^«0 ^ 6. Find the hroker^Z mV!tnf. '' '* P^"" ^'^^ ? cent? ^"^^ the brokerage amount on $10oS at 7^ ,20.- ^tl pretuTTrnsu^nr'^"^^ °1! ^''^'^^ 2 Per cent ? oa . _ . '^ "Je insurance nn «7/,b „. «, per 'ROKERAQE. or brokerage on a •ate per cent, divide e the commissioii, 5^48 at 7^ per cent ? ins. irance cm $4560 at ns. 40 at 2i per cent! ns. )er cent ? percent? H per cent, er cent. I per cent? amount at 12^ H per cent, the amount of nt to the amount ;ent? !enl ? \ per cent. r cent. amount at 7J 1984.60 ? per cent ? I- ism? 10000 at 7 J per Oat 2 per cent? J at the rate of ent? > must be paid STOCK. 89 w'rti.^5f9rri|'?efc'"ntr"°^ "'^'''^ '^''^ - merchandise vaL'rtt.2"72^?oT;^t%rtr^ " ^^"- and furniture o^^:^Ii^:±7^^l^:^^^'^0, What premiu. w o'rth S58.5Vat (1^;/? "^"""^^ °" ^ ^^^^^ ^^ ^«- cent." ^'^"''■^'^^''«P''«'""^'"o''in8uranceonfl0074at 2x por 29" To wlLf l^r.l'^K""! *' -^^ commission on $20742 ? cent ? ' brolcerage on $2248 amount at 4J per $I248olo at 2I pt'ce'ir"'" '' '"^"'"'^"'^^ °" ?«°*" P-r What is the value of •2. What is the vaiue of ,4650 stock at n per cen, disceun. , WTEREST. re|;S'..i c'etS.J'a.etrSnf"' ""^ -^ °'"-ey, and is SIMPLE INTEREST. simTSnttr' " ^'^^''^'^^ «" ^''^ Pnncipal only it is .ailed ^w'"l;'u1,rpryr,-/„S^^^^^^ for one or more years product by loS^^'and fhTre's'it^^, rrelr.^*^"'- '^'^^'^'the year. Thfl ipipmo* r._ ^ "^""'i wui be the mtfirpct r^- ^_.. multiplying t£'io;e;est1SonrveTrh' J^' ^'"^^^^ ^V for which the interest is required ^ ^' ""'"^''' °^ y^^rs INTEREST. 91 iircliasefj for ^2000 nt i 'cr cent = $1785.71} t a prerouim of 9 3f7} per cent what m par what is tlie hat is the value of i for $980, when cent above par ' ' 1 1 per cent, how what is the value r; cent discount ? mo when it is It is the value of cent discount ? f money, and is I ; and the sum ent interest the = $105. nly it is Called iiore years, int, divide the erest for one- is found hy mber of years E.\ AMPLE 1. 1 5 jici' cent. -What is^lhe interest on $248.70 for I year at $248 70 X 5 -1104.'} 50 nnd $[-2'i.i:,u-f I00r=$l2,4;i5 Ans ^ E.\AMPi.E 2. \Vh;il is th(3 1, lerobt on $280 |KT cent |ier unruun ? S-2«() X G* =$1820. Then ;i«l8vO -r 100 = $18 20 Inten'st for I vear I" ' years at 6J And $18.20 X 3 z= $;)4.(iO Intei Exercise 1. Find llic interi'si on 1. 2. 3. 4. 5. 'st for 3 years. 55356 for 1 year at 7 per cf>nt. $2540 for I year at 5 per cent. $yG4 for 2 years nt b^ per cent. $3248.50 for 3 yeart< at 4^ per cent. $7384. 6') fur 2 years at iter cent. a. $948.30 for I jear at 5f per cent. 7. $-<450 lor 2i years at 9 jier cent. 8. $1248 for 4 years * Ci pi r cent. 9. $842 for 2| years at 7JL per cent. 10. *2I46.J0 for 1 1 years at 10 per cent, 11. $11248 Air I year at 6 per cent. * 12. $789 for I year at 6f per cent. " 13. $214.00 for 1 year at 7i per cent 14. $928 for 2 J years at G per cent. 15. $398.40 for 3 years at 5^ per cent. 16. $3460 fcr 1 year at 4J^ per cent. 17. $864.90 for 2 years at 9 per cent. 18. $1654 for 1 year at 33 per cent. 19. $792 for 1 year at 7 J j)er cent. 20. $1245.50 for 2 J years at 6 per cent. yeJr°s and aionU.r'' °" "" ^'''^'' '"" '^'''" ^^^ '™^ ''°"'''*' °f Iiule—¥iud I he interest for the given number of years by rule 1 ; and for the months by aliquot parts as in practice liXAMPLE 3.— iMnd the interest on $560 for 2 years and 5 months, at (i per cent per annum. $560 X 6 = $3360. anrl $3300 -r 100 = $33.60 Interest for I year 4 months = month $33.60 Interest for 1 year 2 67.20 11.20 2.80 2 years. 4 months. 1 month. $81.20 Ans '■""^^"^^^mmm IMAGE EVALUATION TEST TARGET (MT-S) k // ^^%^I% < <;^ :/. (A V] <^ /a 7 'c^l ^ ■W J>> e-P' -"^ % %' 1.0 i.l 118 U, 1^ IIIIIM ^ 1^ 12.0 IL25 III 1.4 Hiotographic Sciences Corporation 18 1.6 23 WEST MAIN STREET WEBSTER, N.Y. 14580 (716) 873-4503 S V *M0 J rye„ . days days As 365 : 79 .• 130 W.49M Ans. PinH 11 • E.XERCISE 3, *:'"d thointore.';ton : $964 fo^^f L'^y« «' 5 P- cent. 3. $248V60 f liSZ^S'^r'- 4. $796.40 for n rin vc^ . ^}, ^^ ^^'^ ^ent. 5. $496,20 for 56 da ? ! S P"'' ^'^"t. 6. $928 for "79 dav?«, r ^ ""' '^'^"^ 7. $324 50 inr4-^l ^ P"' ^6"^- «. $2345fo 92l;vs"u4l'P'''^'°"^- udys t.t 4^ per cent. COMPOUND INTEREST. 93 ■ cent. c;eiit. 3r cenf.. ' cent, ler cent, cent. t. 'r cent. t. r cent. 3r cent, cent. cent. 3r cent. 'y number of days. 1, at the given rate number of days, so ired. 98 days at 8 per >" 1 year at 8 per 20th May to the 20th May to 7th '1 f 500 for 1 year 9. $500 Tor 198 days at 5J per cent. 10. SG24.40 for 204 days at 6J per cent. 1 1. $920 from June 3 to Doc. 20 at 6 per cent. 12. $428.00 from Aug. 21 to January 4 at 7 i)er oont. 13. $1234.50 from May 27 to October 2! at 5^ per cent. • 14. $805 from January 14 lo July 27 at 6J per cent. 15. $1024 from March 28 to June 4 at 7 per cent. COMPOUND INTKREST, When the interest is added to the principal at the end of a year or any period, and llie interest is calculated on the amount for the ensuing year or period it is called compound interest. To find the compound Interest on a given sum for a given time at a given rate per cent. Rule I. —Find the interest for the first year at the given rate per cent, add this to the principal and take the amount as prin- cipal for the second year. 2. Find the interest for the second year add it to the last principal and take the amount as prin, cipal for the third year. 3. Proceed thus until the interest has been found for the required number of years. If the given principal be subtracted from the amount for the given time the remainder will be the compound interest, E.\AMPLE. — Find the compound interest on $500 for 3 years at 5 per cent per annum. Interest on $500 for I year at 5 per cent $25. Amount at the end of first year $525. Interest on $525 at 5 per cent $26.25. Amount at the end of second year $551.25. Interest on $551.25 at 5 per cent $27.5625. Amount at the end of thiij year $578.8125. The amount $578. 8 125— $500 ^he original principal = $78.. 8125 the compound interest on $500 for 3 years at 5 per cent. E.XERCISES. Find the compound interest and the amount of 1. $740,60 for 3 years at 5 per cent. 2. $1240 for 2 years at ^ per cent 3. $690.40 for 2 years at ^ per cent. 4. $684 for 3 years at 6 per cent. 5. $920 for 2 years at 4 percent. 6. $2960 for 2 years at 6J per cent. 7. %9.?.1 for fi year? at 7 ppr cpnt. 8. $1000 for 5 years at 6J per cent, 9. $600 for 2 years at 5 |)or cent, / 94 DISCOUNT. ;° So fcl >'"'■*«' 6 per cent. fixAAfPjE _.4, ^''^"'"^ '^^'■"^- ^'-"'^tracted from «780-^13.65j'i'7C6^ 6 clays at 5 per Snt is s,' T-'^ "" •P'uoji the present worlh. ^l3.6o and Pi„^ .1 Exercise 1. J A lot'"'"''"' ^"'•l'^ of 2- A not: orSo £ ? r;!" S^"^-' ^^ ^^ P- oe„t " 3. A note of $024.40 d.t 4 '" u^"'"^*' ^t 8 W Tn,' '^' °^^^^y ^«e y2 days hence .f q' ^' ^'''' "^"^^ J "cjx{..e at y per cent 5. 6 7. DISCOUNT. 95 JnlJ/at"6pV;'c!!r '""" J"- 10 at 6. nonlhs, discounted Jnne2Vi";iS^' '""" April 6 at 4 months, discounted 'P«>--tora -teof Ji-^A jote^of ,,.^^0 ,^^^^^^ p,,,,,,^ , at 9 months, dis- coiL^j'iLirfprcer^'^ "^^^ 7 at 10 months, dis- cent'pP^annJm?' ''''"""* °" ^^'^'-^^ ^°^ ^^ ^^^i^^ ^^ '0 per cent'peTannifmt''^°°""^ °" ^'^'-^^ ''- ^ months at 8 per per anJI^m ? ^' ^^' ''''""""^ °" ^^^^ ''°' ^^^ ^^^^ ^^ ^ ?«'' ^^"t •"nl has been doducN f ays ;,re added to on the 7lh of j,„v M. a note has to run '" I'le sum for thi^- iterest as discount' '•willbethepn.em fa note of $460 due ays is found by ttio n subtracted from of a note of $78o "■'- •> per cent'' 3m JVfay 9, we finrj 'A he time from J.he interest on nt is $13.65 and opr cent, per cent. ^ per cent, •ercerit. 3 percent t!r cent, cent iofhif ,^f- h • ™''' ^'Tf" ^''°^^ '■«'' "^"^ calculation of discount nn rfi IrSl'^'l " ^T'""^^^ ""^'^ '" ^^tual practice, yet it does not give the true discount, for the true discount is the intprost on the present worth for the time it has to run at the Kiven ra e per cent. It s therefore evident that the discount foundZ too small '^''^'' ^'^^ ^""^ consequently the present worth To tind the true present worth of a note. nule.~As $100 together with the interest on flOOatthe given rate and for the given time is to the amount of the note so is $100 to the true present worth. The discount is found by subtracting the present worth from the amount of the note daysS arvfpt'cenU '''' ^"""' '"''''' '' ^''' ''"^ '' As $100 4- $1.44 = $101.44 : $540 : : $100 : $532 - 3343 An'* 7Ul7vVIf 7?'' ^°^'^^."' I'u^" ^"'^ ^^-^^ ^^'^ '"forest on $100 for 73 days at 7i per cent. Then proceeding as in simple nronor- tion we obtain $532-3343 the true present worth ad tJie l^roni this It IS evident that the process is correct for the present worth with the interest added, for the given t? rt he given rate amounts to the exact sum of the St ^ ' i^o bv t';i^dist^u;!r^""^ ^^^^^ '^ ''■'' - »' -"^^ -- ^^^ Exercise 2. Find the true present worth of 1. A note of $945 due 3 months hence at 6 per cent 2. A bill of $1000 due 4 months hence at 9 per cent m ■ t 06 3. 4. 5. * DISCO UNl'. EOUAT/ON OF PAYMFNTS payments. '"°'« '« detunn.nerj is called B;;uaUon t Of months „. ,„,::„, ,,: raVwhTcMftr"' "^ "^ "™'" "e paynienl of the whole. - ° ""= "'''""»<' "mo to Example -Ifn nn„n„ 3 monUi<; ■ "«' iM^i'y orihs g and $27.00 -^ 42 = $0.61,28 A„s ought'rto^L^v?fb?oTo^bTr^^« "'^ ''^ ^' 60 °«"ts per lb. and $24.00 - 60 = 40 lbs Xns. ExEiteisKs. ^«;-yards^?ctt:ltttle?tl^n ^"'''^ - -changed for , 2. IIow many pounds of cofU at S" T^ ^'^ ^^"^ '^ to receive in e/diange for 2^0 J.^J/f «<^"/^^'^''- Pound, ought I 3. A grocer has 72 Um nf .0, , ^"^ ^^ ^ents per lb ? *«S«K«5«** ni 9g VRont AND LOSS. gallon ? ^ tiogsliearj of molasses at 31 conts per 6. A grocer owes $248 of which hn nnvc coin 8. How many bushels of wheat at « I 91 r,„„ i u , KL%'" ^^^^'^"^« '- ^3i;sL^;;fyLPtT^rJ6^'Strp;? vafued arSTy' o'tTSe^Zncr'"! ^^ ^'^ ^'^^'^ '^^ ' ^orso many shee,, should he receive ? ^ ^'^ ""^ ^^•''" ""'^ ^°^^' II 1,1 ! 4' PROFIT AND LOSS. tJS^a-ll^^-i?e^-^^--ity of goode whe„ y?We.-Multiply the difference between the hnvi,,. , and IJ cents x !« = 36.^the^v^lo"s.'"'' ^^"^ ^"^'''''- Exercise I. PilOFIT ANI> LOSS PilOFIT AND LOSS. gg it at if 2o",'oHS''tl,^'.' '"' °"""^i"'"fe' ^J« '»^«. f-'- $105 and soli ^. 1 Jjoughl )0,) l|,s. (,l cliopso ;it l(i cents ue' 11. and sold it -.f ' ' '■?" s I'f'r II... what di.l I lose on thn wl n^« • '"^ '°"' '^ ^^ .,,, , - ■,, — ■"■^^- '" > '"i-^u ill ID cents lie' II. llj oeri s per II... what di.l I lose on the whole '^ 0^1/ 1 buy 2i;} y,ls or cloth at $:iAO j.er vrd and sell b3 8o per yard, what is my gain o.i the wholo ? it ut selling'price";,|'gi;j; ■ '"" ^''^ ^""' ^^''^^■' ^"« P^-e cost and ' nnf":^^' ^'" ^'''"" '°'' '' '.' '^'' ^''°'« fe''^'" O-- loss, SO is ^lOU to the gain or loss per cent A, «I72,S : SJ90 .• : ,|00 : lo <„ „,„ g„i„ p„ ,3„, As j;792 .• »I50 : .- sioo : ,8 jj ,he loss per cent. HXKKGISE 2. y..f-i,';i,at'ts1h''„7^';i?e,l?/'' ■ '''" '"^ '°'^ «' *"^ P«^ .b.^:''aus le'lt^r' c™ ""'=' '^^ "• '^ '""" "■»'■ '' -°'» >»- .y ■^.ir.X'cS.JrtiloVfrc.Sr''' " '»^ *'»»» «■'- w- flW.-As SIOO is to $100 will, the gain per com, „r dimi- iirioc ' '"'' '""' """" "° " ""' '"■-" ""^ '° ">" »=I"»S 100 PROFIT AND T.088. As $100 .•$114 : .i,°',::s^"f *■]? """ -'" "«>™ '• "Dui/ It 200 hiitil oic r.r I "^'^''ne for them ? t"o wl.o„fa, ats"o'/f .0° ,: \-;,?/^f ;,.^^ P- i^usiu-, anJ sold «. Bought a qnaiitity if firewood fnr ^1 '"•'™'.''^ ^'"' '^ ''' Kim 9 per cent, what must 1 sell it Sf '" ""'"''' ' ^■'^'' '° Boinng^^il'^aJelir."'^" "^^ ^^- o^oss per cent and the /?«/e.-As $100 with the (?ain per cenf nn r • • u ^0^8 per cent is to $100 so is Z Ji '^""'"'shed by the E.A„P,H 7._Sold a aualti ! r ' ^'^'^^ ^° "'« "rst cost. "T «';.^i ^"^ the m'stS "^ °' ^^^^ ^^'^ ^'75 gaining 8 per A« $108 : $,00:: $175: $162,031? l,,e first cost Example 8 —If i «pii .q „u J^ °^'- 'T^ ."o';.«^"-'^' '^«t OS y^"^ '"' ^'' *^-«^y losing 4 per Ab $Q6 : $100:: $70 :$72.91| the first cost. 1 rri Exercise 4. , 2. Sold a quanti V of flour for sU^n -'"'^ "''^^ ''•"'' g'^Hon ? nf' (! Sold 3',0 l))s. of butUT for «G,J losing at the rate of 8 per cnni what was the tlrst 0081? « lui^ ui o |.ei 7. If 1 gain 15 jmr cent on a farm which I sold for $3120 wlidt was the first cost? •p^'nu .S. Sold l'20 yds. Of cloth for $311 gaining 7 p.r cent on the IniiiSiiction, what was the first cost i* percent and the PARTNERSHIP. Partnership or Fellowship is the method hy which the profits or losses ol a firm or ccmpuny are divided among the rospecUve Partnership consists of two kinds, Simple and Compound. SIMPLE PARTNERSHIP. In Simple partnership, the stocks or sums contributed by the several partners, all continue in trade for the s.ime time. /?u/e.— As the whole Slock is to each partners share of the stock, so is the whole gain or loss to each partner's share of the gain or loss. Inthe same way the effects of a bankrupt may be divided among h.s creditors: As the sum of all tf/claims is to each sTare o^dSn-r '' "" "^'"' °'''' ''''''' '' ""''' '''^'''''' ExAMPLK I.— Throe persons enter into partnership, A. nuts into the busm.^ss $750, B. $840, and G.$9S0; they gain $800. what IS each partner's share? j b-'" *o"v^, The whfile stock being $2570, therefore As $'2570 : $750 : : $800 : $W3.46.7^ A's profit ' '"" : $'261. 'l7^i^|B-s profit. • ^O^^f?j/"s profit. $800.00 ^VVhole profit. Tlie correctness of the operation is evident for thn gain of each partner added together is found to be exactly ,$800 the whole gain. «!7rn,"o'^ '^■r"'^?!;"'^"-''' ^'^'''"^ '" business owes; $500 to >\, $760 10 B, and $1520 to C, iho value of his effects is $1250 what should each creditor receive '' * -^ ", As $2570 : $S40 : : $800 , As $2570 : $980 : : .$800 r 102 nAUTNEILSinp. '''Oir profits a,.Ku,m to §,S25vvlm^i " '"" "'"^' "'" '' >""'• »r Wheat al m.li ,,er b, h" "„„*,V' "in I,'""'?'' " «' """'I' ' PW barrel ; wl,„t sl,a,e slio, i,??.„.r, '"'':'"'' ""'""'U is.so S1600 ,„ A. S^IS^^'J-J 'I ' « » «;!."« e.lV.c., i, ,6800, „w,., shouhl fad, n.ccivc ? ' '^ "" '° '"'""' S'TOO to t). wlml sbaro SSE?'r°'^''^«S'.V-B'a°!,';r'',:,' ??""■ "'■ »""■" £,JVa,r:f;iJ^o,it;:[-;;i5r«c..o,,it,,,. „r „ ba„. ^ i;.sl,;r?U;;'^'; trir-r"?^'" •» A. S4T00 Si A 'a sfiaro. 3^, '*'s simio. Total eiTi-cts. '.puts in ;!!l2H0uii,j giiiii ()r.«<)r»'2 ? '• A puis iiiio tliM III'' end of a jciic |i'.rtricr's sharo }' "cnpitnl of If: 1 2000 y, C $.'i'250, and D this siKJuld cai'li ue of the cargo is I'lt) Ijalarice to (; , t'K' loss does caih >iitrijjul"s towards re), B 960 bushels >lso( Hour at 45.80 1 again of $2000 > 00 towards whielj sliare of the gain 'i the liouse I'ti- for fg.lOO, what A's share being is $G80n, owes to D, what share SOOO, of which laneo to C, the isiirance ; what '"'S of a bank- aim of the Mist "I of the third to A, S',700 f Ills oU'ecty is pital of J7oOO bnlanci\ wh.-ii PARTNKKHIHp. jq.j guS^ng V;S? ^''"'" "'^" ''^^«'- «' ^'- °"'i '■'•« year tho COMPOUND PARTNKRSrilP .{i^^rls^a.-S^;.=^ /?We.-MMlli,,iy the stock of e„oh partner by the time l,e c ntmuos u. business Thon as the su.n of the product h! C^$I300 for 10 months, what is the shore of each iH gain ol SI240+ 9 = $11100. $ 980 + 7 = $ 68C0. $1300+ 10 = $13000. As$3IO'?0:$|||f.O As $31020:$ 6800 As $31020 .$13000 $31020. f 920 : $330.98G/i A's share $020 : $203.4558 B's share $920 ■ $385.5577 C's share." $920.00 whole gain. ExuncisES. the share of each in a gain of SfJ-iOO v ' ^' ''** '^ whatSeTsSid'o^lSvif 'f V!;f-^"'"''^ ^''.^^^ '" ^™^«' 'or 9 months andB "/foo for ! I monlh;?''^ contributed .4000 >>fmmfm^'im fl^SS'M- 104 i :.f INVOLUTIOxN. each in a gain o/lsoS ^'^ ^ ™'"''^'' ^^"^ '« ^'^« '^^''^ of $3800 into Iho b„4l> s li' " T"T^T '^'^'^ ^ ^''« '^'•'^"ghl they find Ihat h y taVe ^'e'' "^^^^^^^ should each recciveV ^ ^ '^^' ^'^^^ ^^'^^^ ^^ "»is I! It INVOLUTION. of 4, 4c. ' "' ^ ' "* ^ ^ X 4 X 4 or 256 IS the fourth power l3eLteVr5"°5t'?2^^"^^ ^ ^ 4 = 16 ; 5 is a rod of 125 secI'rpo^ero?r,uare'o; tht7"' 'I '''''i '' '« '^'^"^^ ''- timesaslactoritisSedthefhir. ''"^''■'' "^^"^ *^'^^n three four times as factor'^ is el Pd thi ^e'^fr' ''"'^^ ' ^^en taken 5a.es as factor iri^ValS'^tl^r^^^^^^ "'^^^ '^^- afS:nS^itra^i;r;;:",i,f,i,^e7- V ^^*'' «»-- -i-^en on^ the root ha^fi^S l^iSr S^Io-^Stn^ 3^ -'rx'a^x F= tr th?ch"irrh"'\i:°^i"' ^''^ '^-^ ■« --t*- written 3^ • 3 x 3 x 3 v i -s, ^"^'^^ J'^''"^^ PO^^r of 3 and is is written 3^ "^ "" ^ "^ ^ "^ -- «' 's the fourth power of 3 and Jh^e method of finding the power of a numhcr is called Invo- To find any required power of a given uun.her. iui,c.~tmd the continual uroducl of iim «■;„„ •1 of §3000, lowiids Tor 16 months, aii'ic oC the proiiits should A contributes $ I Sou $2600 for i I months, lid each srslain ? a capital of $2700 inths, B $700 for I [' what is the shar.) of tal of $4500, Ihreo vith B who broiighl ommenced business vhat share of this taiued by the con- 4 X4 x4or64is s the fourth power I>eing continually ^ is arool of 125 or it is called the ^'hen taken three ube; when taken ver; when taken c. II figure written i it indicates how oduce the given 'f 3 and is written wer of 3 and is power of 3 and 'v is called Invo- cr. given number, '>y the index. EVOLUTION. les When the given number is a vulgar fraction find the required power of the numerator and of the denominator. '"'''^'^""^^'^ When the given number is a mixed number reduce it to an szl:tzss:"' '"" "'"'"^ ""»'" °' '"« »""■-'- Example i. Wliat is the fourth power of fi ? 6x6= ,36 the second power 36 X 6= 216 the third power 216 X 6= 1296 the lom-th power. Example 2.— What is the third power of 3-». ? ^ = V then -10 X -1:^^ = A on the ?econd power and ^^ X -UJ = J^^fl = 37,-S- Ans. ma^"hp;TnH! "P/ration of finding the 4th power of a number iZ^Sth n^^fi "'r'^ ^^' ''".'^'"^ ^''^^ ^'i"^''^ "*' il^ square ; to lind ube tSTmn'h V"™^'^'- ""!' ^^'^ P'-od'-ct of us squa.e and cube '■ n flni f' S ' '"'''''"' "1^ """•'^^'^ "nd the square (.fits it fourth nn^'^^V-P^'^l'"'^^""'"^'^'' '^'^e the product of square ol its fourth power. ^^ r « Find the value of Exercises. The pquare of 21. The cube of 15. 16^ 183 The fourth power of 9. The fifth power of 4. The sixth power of 8. 8. 17< 9. us 10. 11« 1. 2. 3. 4. 5. 6. 7. U. The second power of 27. 12. Tlie .«qiiare of 78. 13. The third power of 13. 14. The cube of 19. 15. The sixth power off. 16. The fourth power of 24-, 17. (3f)3 ^ •18. (|1)5 19. The cube of 239. 20. The fourth power of ?. EVOLUTION. num'be?or" '' '^' ™''^°^ "'" "'''"^''"^ «">• '''' °'' « g'^en mu1f?nHld°hv'ifilr™''^"^ °'' ""^^l"^ ^ """^''^<- ^^hich being rivin^nuLi'''''^ " ^'^''" ""'"^^■'" °f ^""«^' ^i" Induce I n J*^ 'I'^^'^u^^'^ ''°"^ '^ ^ ^'i" "f^ure wrillen a'ove the sian a/ prejixed to Ih. number of which the root is re<,uired ^ ^' ;,l'- I; 106 fivoLtriroN. wii EXTRACTION OP THE SQUARE aoOT. To extract 'he sernnH «.. ^"^e-,. Poi„t oft '"'" "''^ °'^ ^'^^" --h- %-s eaC. cirene;:/rtrit ;"^ ^^^^^^« °^ ^- highest square contained in the flJ ^"'''- ^^ ^'"'^ '''« '« the quotient. 3. Subtra t the ! '"""'' ""' '^^^^^ '^« '•°o' q"otientfro.nthefirstpe oVt theT" '/ ''' "^"''^ '" "- Penod, and double the pa t of h T'?'"" '""^^ "'« "«^t Of the next divisor 4 P^d hn ''°°' '''"'^''^y ^«""d for part fisor is contained in th" divl7"' """ ^^'« P-' of'ti. t^us Obtained to the part orttfo°?''"°^ ''' ^''' «^"- the part of the diviL alreadv t h ^'^^ ""^ '"^ "'^° ^° d-isor by the ,ast «,..« XJI il tht ' -^'^^ ™"'"P^>^ ^'- P'-o^uct, and subtract it S the . T°'r '' ^^' '^^^^ the "«>^t period to the ren^aiuderfo a n^'i'"' ' '"' ^""^^ "^^ ^-^^ P--t of tl,e root found fo ' rt T.^"'^"'' '■ ^^^'^ P'-oceed as before until a! , ^''^ "'^^ ^'^'^O'' and ^-n. inhereisarl il;';^'::':^^ '"" '"'^ ^^"^"^ figure of the decimal. "" ^^° "^'Phers to find each Wact the square root ofavui,ar fraction. n-e;ator;::;';LlX;:l-;;;e numerator for a new ^'enominator if both be coL 1 '^•^"«""nator for a new f-ction to a decimal a .d 7' Td Tl' '"' ''""' '"'^^^ ^^e <"■ Whole numbers. ^ '^ "' '" ^''^ extraction of roots To^/^nd the square root ofami.ved number. who;;;ur:^;::::nX-- ^ecima., annex u to the re root of 16, that is a vill produce 16; 3/,^ at is a number whos ■ H^rootofig, ihatisa RE ROOT. given number, nto periods of two gure. 2. Find the "i and place its root 'f the figure in the ler annex the next eady found for part 36 this part of the ig the Jast figure ^otient and also to Then multiply the ient, set down the ^ ." and annex the ^•-^nd. 6. Double next divisor and ve been brought Jhers to find each )n, rator for a new linator for a new 'f not reduce the Paction of roots annex it to the iVoLul'iof^. Example I. "What is the square root of 54756 ? lot 547561234 Ans. 4 43 4641 147 1^9 1856" 1856 Hero by placing a point over the second llgure from liie right, and over each altprnnto figure towards tii9 lell wfc divide Uie given nimibei- into three periods. The highest square in the tirst peri( d is 4, the square root of which 2 we place in the quotient, then subtractinL-- 4 from 5 and to I the remainder annex 47 the next period w'liicli makes the new dividend 147. To find the second figure of the roi t we double the first and set it down to the left of the new dividend, and finding that 4 is contained 3 times in 14 we set down 3 in the quotient and annex 3 to the part of the divisor already found which gives the complete divisor 43; this being rnnltipliod aiid 129 the product subtracted from 147 we have a remainder 18 which with the next period annexed is 185G the iie.^t dividend. Then we double 23 the part of tho root found and obtain 46 part of the next divisor; finding that this is contained 4 times in 185 yve place 4 in the quotient and annex 4 to the part of the divisor found, this gives the conqilete divisor 464 which is contained exactly 4 times in the dividend. The correctness of the operation is proved by multiplying 234 the square root by itself, the product being exactly 54756 the given number. Example 2. What is the square root of 6/g ? 6-,^ = 6.4375 6.437512.537 Ac. Here we reduced -^g to a decimal and annex it to the whole number 6. Then finding that the highest square contained in 6 is 4 we place 2 its square root in the quotient and set down the decimal point after it. Then bringing down the next jierind we continue I he process as in the first example, and finding that after all the periods are brought down there is a remainder of 366 we anne^ two ciphers, and thus by annexing twocipiiers to each successive remainder the operation may be cuntinued until the required liumber of decimal places is obtained. 36600 35/j69 "TT31 ''^'^mmmm, los I'inrl the s.juare root of liVoLt'TloN. EXEIICISE I. I 2. a. 4. 5. 6. 7. 8. 9. 10. II. 12. 1 1 5(3. G6G. 1 132-2. 30 ■57296 1 432. Gf 39-25. I72fi. 123456789. •289. 3|-'8r"^^^' 30-25. 562. 78-5. 145491844 784. 3675068. 2490084. 8206 36. T„„„ ?"'""'"" """« CUBE ROOT fo Bxtract the crihe root „r 1 , , "^ """* ""mbers. "" " "■« cul'e root of 78402752 ? SVOLtTTION 109 J X 4 = 16 X 300 = 4800 4X2= 8x 30= 240 Complete divisor~5044 422 = 1764x300 = 529200 f2 X 8 = 336 X 30 ^ Wm ^ C4 78402752 | 428 Ans. 04 il402~drvid€ttd. 10088 4314752 dividend. Complete divisor 539344 43l4'^5t ■e remainder we haveT4402 for .3'^-^^'"* ^'""'^ "^ divisor multipl, 16 which is the siTon^'h'"'^' . l^ «°^ *» already found, by 300, this gives Sothin Pf''""^*'^«''o«t divisor; although this is annfrpntivl'/^^ f'"^' P^*"* «f t'ja dividend, yet on (rial it wilf K.L ?^'''"''* ^ ^''"^sjn ih. lake 2 and annex it to the nart nf (h^l ?" F^""^' ^^ therefore ad^ng together 4800 the part of thpS ^'^^^y^^^nd; the. which is the product oT i^%%rsM^^^^^ ^'^""^^ = 240 inst figure in the nuotient and ^0 ?n^ f/ *''^ quotient, 2, the or the last figure p a°"d ?n thp m,.;- ^T^^^"" ^'''^ ^' the square divisor 5044^histultfpl^efb7rgKl0"08S'S;" S!^^ 1°™pS from the dividend leaves 4314, wh ch witI??^I^ "*"' '"^'"^cted nexed becomes 43I4752,-a new dividend Th«n f^« Pf"^"" *"' divisor we add together 'i9q9nn A!! " ^"*^" *« ^"'1 the li'ext 300 ; 10088. the pCS of 421^^8 TuUinuL'^K T'"P''«d bj .6 square of 8, the last figure nlacedrte '^ ^-^ ^^^ •" *nd 6*; Exercise 2. Find the cube root of 1. 39304. 2. 14886936 3. 175616. ■'i. 80621568. 5. 14455457856. 9. 5735-339 6 1879080904. 1234)67 636056. ni 11. 1777q.Voi 2. 48-627125. 3. 12895-213625. 14. 1092'727 15. 40001 T%ff_ 16. 54872. "^ Iljl' r II (* EtOLUl^ro*. EXTRACTION OF ROOTS IN GENERAL, Kule, Willi exampte. , Example 1. Pfnd the cuU rool of 78402752. 4800 244 S044 248 529200 10144 539344 78402752 ) 428 Ana H402 10088 4314752 4314752 4 41 8 4 120 2 122 2 124 ,:„■,.,:, 2 1260' 8 126S we place 4 the root of 64 the hSst ilZ '" ^\^ ^''^ ««'"'"" first period, in the second 16 the nrnHn.. r''?"**'"^'^ *" ^''^ Uself, and in the third under tl^fJnpr/^,^ multiplied by which subtracted from the firsfDerfori^P- "''^ ^^ ^^^ """^^ o'' ^ which the nejit period is annexed ihiit*''^' ? remainder 14 to 14402 Then 4 the part of the root atSi""?^ '^'^''^^"d the lirst column making it 8 th.s Lu tS 1°""^ > ^^^^^ to IS added to the second Llumn maSni^ K ^/ i '' ^^ ^^^'^J^ added to the first column TaS"f 19 '"'^•^r'*'"'' ^ '^ annexed to the lirst column maS 120 Z f"'''''''' [' ^''^''' the second making H 4800 this is annni m ^ ^^'^ ^'P^^rs to in the dividend, but on t, ikl 3 is foS?o"hI,^"",!'^ ^ ^'""^« fore setdown 2 in the ouotiLt and IrfH o ♦ ?? ^'^^' *« t'^ere- which makes it 122. tl^fs muU p ied by'2 s 2°44"whf h' S"!^'" the second column makes it ^OU ihL ■ ,!■• ^"'^^ «c!ded to 10088 the product set down in the^h^rdlr'^'"'^^^^ ^^ 2 and from the dividend leaving a remalider 43?1 ^ V '^^^'^^'"^i next nerind jc! pr-ro-c'] -• •!,.■*"*' ^ to which 7^') *h^ .he quotient to the «,n c„i"ft1,fo„"LS S^l'Xly EVOLUTION. Ill GENERA^. '2752 ) 428 An», 2 8 1752 i752 I liJ •tfs of three figure!? in the first column contained in the 4 multiplied bv 54 the cube of 4 a remainder 14 to ^ea the dividend '«nd is added to y 4 is 32 which nd anoiher 4 is B Cipher is then ' two ciphers to ontained 3 tiniog 'ohigh wethere- ■he first column . which added to |j]ied by 2 end 1 and subtracted which 7.=19 if,^ 14752. foiind igiire placed iir t 124, multiply ii\eti?S2*^^d'fdd'2^rttii;.v'^^~^ -'"- -'^-'' I2C, one cipher is l£ ad led fnt?/«fl'?'T" ^'"^^^ ""^^^^ " and two c phers to tSe'l ond maETt'SoT'lll^'l'?'^ contained 8 times in thn Hivm„„^ ^. . ^*^200, this bo nff tient add 8 to tlVl^lXmTtmlw tff.H '" "^V^"'^ and add 0144 the nrodnnt « .'h '^ ?^ ' .^^ ^^® S"™ by 8, it 539344 ; this is then mnlf ni ^\'^°o°"^ ^'''""'" which makes s.t down below ?hed,virnd'^''t.S ^^'^^^^ theprodSc? We thus find the whole root to b?428 '' '' '"'''"^ ^''"**'"«'*- Example 2. Find the fifth root of 847288609443. 2 4 8 ifi 847288609443 (243 Ans, 2 » on iV oi 6 2 8 2 100 4 loT 4 ioT 4 4 He" 4 mo 3 1203. 4 8 12 12 24 16 4000 416 8 24 32 48 80000 17664 "97664 19392 4416 117056 432 21184 4848 138240000 448 1738827 5296 139978827 464 576000 3609 579609. 16 64 800000 390656 1190656 468224 16588800000 419936481 17008736481 5272886. 4762624 51026209443. 51026209443 In this example the fifth root i- 'n-j-,-- i^ Pnnciple on which the rule S the ex?r«.^^/"J'i^°*'"" "'"the depends. "«= i u»e jor ijie extracUon of the cube root 112 KVOLUTION. divide ir^!f;:,;'-,^'-nnum^ the fifth column and 4theproductorthe(irstcomin n^ o*^- '" ^^^ ""-st column product of the second colSmnZH 9 '^ '..'"/'"^ «'^^°"fJ- « tf".: of the third column and 2 rihe ?on,^h ^"^ ^t^' '^' ^''« P'-^'J"^ the /ourlh column and 2 the i^.Jp ' /.""'^ ^^ ^'''^ P^'Ju^t of first period, subtract am) tn..'" '''® quotient under th, wh^ch give; 5.7SKift'il-r'-'er add the next %^\^:^ ti^ri^^^^^^^^^ '0 t,at employed in Jt^'> column, two to he second Uri f^l"^ .°"^ ^'P''^'' ^^> to the fourth, the number in fhonLf ^"^ *^« ""''d. and f^ur second 4000, in the third VnnS i/ •'"''V""" ^'^^n is '00. in tl" next figure is found to be 4 whinT'' '" ".'^ ^°"''^h 800000 t£ °^f iply 104, the sum by 4 ani ai'dThf ''' '^' "^« "^«^ '^°'"'"n column, multiply 4416 the sSm h! /^ ^^'^l"^' to the second the third column, mul iplv 976^4 L/"^^^^.'^^ P''od"ct to the fourth column, mulLiv 1 1 oL^I 1"",^ add the product to the product below the dSnd«SH ^ ' 'u^ ^°^" ^^62624, the remainder. To find thp thf^H r^ """^^ ''^^ "^xt period to process and find that momu^^^^^^ ?9"e^cts --r/?S'in z Sit ;;^ss bT^h- e°x'tSS„i^ r ~ ''"' ^° "" ''"" the LtraSrth°e^t?S^t'^tw^" "^•^'i.*^^ -'« "-^ ^"^ pends any root may be extracted I^''«°«d.ng examples de- the'^^pScrd^Sg^S^T we^^re'xtrt T ™^^ ^'^^^ - and the secon'dTooT of^h^e re uft"'theT^'?[ '''' ^'ven nLb second root of the. given nimbeV Sf ^'^^"^^''oot by finding the and the second root of lEe second rltr'^K^^^' °^ ^^^^ '"^sult, ng the fifth root of the given Sum hepi h ^. '"^^ '""'^^ ^y find! the result; the twelfth root hv«-?'^ ^"'^ "'^ second root of given number, the seconSrooW^tt"^ the third root of the root of the second result and fhno ^"^ ''^^"''' »"d the second m every case in whfch the index ofS' ^'^ ^'^ '"^y P™«eed composite number. ^ ^' '^^ '"°ot to be extracted is a 1 I?- J X, Exercise 3. «• i'lnd the fnurfh rn-^* -^m 2 Find fhp fi«T ? . ' '9'V^dy0625. 3 PvtlM»f"^'"°°^ o*^ 6436343. 3. Extract the sixth root of 5289852801024. B fifth column and •ce 2 wliich is thn 1 tho first column, llie second, 8 tli,' '"rd, Hi the product J'^ tho product or fuotient under ilin Id tJie next period that pnii)loyed in hng one cipher to the third, and f(jur then is 100, in tho 'urth 800000. The > the first column, uct to the second W the product to tg examples de- may either uso second root of the result ; the ' given number 't hy finding the 3t of the result, ith root by find- second root of ird root of the ind the second 3 may proceed i extracted is a 4. 5. 6. 7. 8. DUODECIMAL MULTIPLICATION. 113 Find tho seventh root of 3797498.13583241 Hoquirerl tho eighth root of 208«-2 7064576 " KUract the ninth root of 1352G05460594688 Jmd the tenth root of II 25899906842024 nxtract the eleventh root of 116490258898219. DUODECIMAL MULTIPLICATION denomination r.r each tlnio thM 2 is cmL neV,'^ «? ''!? H"' ^ Example. Multiply 6 feet 3 inches 6 lines by 5 feet 9 inches . First placing feet under feet inches under inches and lines under lines, we multiply each term in the multiplicand, com- mencing at 6 lines the lowest bv 6 ? ^f«' the highest denomination 36 6 10 111' 6"" Ans '" '"^ multiplier and obtain the — ii^" partial product 31 ft. 5 in 6 1 and obtain the partial proanoTut.T^r.f'M ^l^^ fi"" tL";' aJilln'/,"^ t^'^'".^"^ partial product 1 in.'sT 7"' ft. 6 5 sT 4 in. 3 9 5 8 4 1. 6 _9 6 7 8 J)4 DUODECIMAL MVLTU'LlCATlos. [«"4iyMV ":E^4■'»^ 8. Mult plv 10 ft 4 in V'. Y ''• ^ '"• «■ Multiply 18 ft" « n' J ■ K^ ^ "• 6 in. 5 I. i^y^nn.3m. II J. by28ft.4i„ gj '• " J ~° "• « in. y J ^ To fl rf h Rules. I Whoi • .V Exercise 2. ;." CUVt'a'reVoV/'^""'-^ ^ 9 in? 3- Find the area nr! f " "^"'*''« ^^^ose side is 7 ft m -^ 't »?&°SgMVS°??r, "">- '«"«"- 's n ft. e i„. in. \T10S. I. 7]. 5 1. 4 1. in. 9 1. vhich tho opposite figure whose sidps P'es. Multiply the g, thai is a parol- but whose length the breadth, a parallelogram of fies are not right cular breadth a plane figure of licular height and v'm six sides of el. Multiply the s 5 ft. 9 in ? 's7ft. 10 in. ' rt. n in. f which is 7 ft. 1. in length and 8 ft. J 111. and 'h is 1 1 ft. 6 in. 'S 24 ft. 7 in. uiid MISCELLANK()i;.S QirKSTIO.V.S. 115 .11. l!;ol,asiM,ln triaimi,. isJt '■■Bill I II. .1 i., wl.al i5 i„ „„,, , < a :, :,:';;:;:;: i:;:r;;T rrwi,;;': " "'■■'^' ' "• « - "■ '«"«"■• 10 in. and perpendicular 8 in. if) MMd thn area of a .s.|,iare wlios.. side measures 7 ft « ,>■ ^^^•1"7 •.''/:.!•■["":''!;■"' --tent .u^'":;^! I'Jl 17 is 21 ft _^ IS- What is thearoa'of' "a 111 ID. whose length II 3 in. and lici<,'iii 7 It. 4 in. n, I ,. ^ rhombus whoso lonffth ia 9i n and uorpondicular lieifrht •')■!!, /'hvX '™'"'"*^f'^'^ business with a nni.,! r Wou0.whatist/.esh"reof,a,l ^''^ "''^"- '^''""'^ «"'ouni ,o 69 da,. i^I'Sr'''' •''"'''-- ^^^--.^^ .'ays ^ cost at the sa,n;',;!L"i "''"- "''' ^ '■■^^«. what wdl 432 barrels 34. Reduce $296,5010 old Canadian currency 0/. Avoir Inpois, Ulllllijijy i|„. ,.(,.,,,11 1^ I'lys, workiiiff !) !, '"' "■XjK'OlO.I lo .J„i!„ "I . oUUu^ iiitf'rostwoiiM ' 1111111101/ ""^''it()tli(.husiri,.*s 's. wliat is t|i(. Shan". MrSCELtANEOUS QUESTIONS. 117 ' «. s.,,'" nil!;" ' "'""^ If.. W hat wid b.. ih- .inicuiit ,d',5'(.()() ut (h.. ond of 3 vara ill -jM'i; cnnt : .>r annum, •■nniponnd ini..r...vi / ^ ™ .17. Fiml liio i« .^0, jlrdnr,. i!)'.2r,-.S.^, gills to hn>r,bo.ids. ■'.U. Divric ;| nr.S2'i7(;,S.l() by 2.i , jl Ht^'l'iio ^2iH : I!) : n_ i,, dolLirs and conts. U What IS tho anio.int ol $;'r(J I'.ir .j y^ars and 4 months at '.J per cent per annum, simple interest ? ! valnorUt'^3oT8';;l^l'''''''°'''*X''' ■' " ^"'''^ ^""^ ''"'•"iti'ro \mnori ,u .>j.j.iH ni a |HN'niinm of 2^ | t cent/ 'li. Find the sipiiii-e root of ,V,' •"' '"^"^''' "'^' ^'0^' what must .e |niii lor »,) Lwi lo Ijjs. Ill the sann' r-ate / M ■ II"'!""'' l'«^' /." § *" '''f"'^'i''-"t '1''^' -a: fractions ? ... HHuce 0^3, ii-i, i^i,. to their lowc: frms / .;■ r^ "''^' •'' *'"• commission on 948 .'if) ai :A n-r cent ? 53. From f of ^. of ,*728(i.7() take $13,>i '• ', * ' "* ^ ya'rd?^^'"" '' ^'" '"'"" °'' "^'^ i"'''^^ '" ololh at $3.70 per ■i:). Reduce 3947208 square inches to rood- S() A farmer sold 26 bushels of o;its ui 60 - 3' bushels at ,58J cents per bushel, and 3- cuts per bushel, what did he receive for the v ■•^7 Jt a person ow.-s another $250 pavab. * Ltd poyable m 8 months, and ,*475 navablo n m .i ' i-juired the ec,uat..d time W the',;I „|"?t1f h \dml""'"^ ' •)8. It a man travels 140 miles in 5 davs wlkinff in i,n, ;j'J. Find the compound inlerost on .?r)70 for U cent per annum. ■ Ac. <;enls per bushel, bushels at 635 •olc ? * in 6 months, (i-r^ari: .1,? '"'""''' ""''' *'(^-oO, what mu. ij-2 vards at IIh> s.'imhi ivi(,> ■» \ ears at 7 per Ijp Jiaid for 62. J I 9 o*. ii ., men -lig a trench 00 feet long, 12 feet -vido nnri r foot deep ,n o days working 10 hour, eaclf day- ; il. how" Zny m I 118 days will |5 men d MISCELLANEOUS QUESTIONS. feet d 01 63. W 'p working l/j a tiMiicii SO feot I Ci. I< liai. nnu m IS t.'ie cosL of per diiv ong. 10 feet wide aii.j a bv i I'oni '2.1 I, 'ike i} and divide ti to 111 ;'*'< f''iairsat,«l.30eacl e n le product hv e "lainder add i I ? «^:w;:i"i;;,T!;:™°'»"^i'^« multiply til e Ml 111 and 18 ft. 4 07. Wh;,t in. i /or 111 2 ft. 3 is th 111. wide, ami wide at 3 cents i)or "Ji'in,!^-a room ?G ft. g in. I price sipiare foot V ii.'ii 68- What is the into ''• ■-' in Uiickat I^HeceoltimhorSiit.Gin 1 12 months at ■'•'•SL on $76.'[) Cr ihi cents per solid f 'OMo 'eol. ee years and Jb iu uns at /per cent pr annum each at the end ol 70. How be given in a year, the whole and r *iocn ' , ""■ i"i manyhush,.isofoatsatoj, exclmnge,br37lh..of,:a '.fc'ain being ;j;8;3o; larc of oj ('en 71. What is the cVb '^. Jieduce £734 : 1 root of 13824' 73. :/ '5 : 'J to doll, ts per bushel, sIk at '".^ceiitsper ])ou !Oll!l, nd :■ be sold to iirs and cents. su,'arcosl,,*9..-,o per . vV .f , !' .oo-ain !•) ,..„„'.' -y''- 'It What rain 12 rate per lb. must 71 H^KiVrT'^'; "r^"«-''oio. ^75. What amouni'Ust oTv7;'''''"f '^^'^''"^^ ^'"^'^^i acres 3 roods at -5 1 7.20 per ac - '"' ''^"' "^ ^ ^^^n UILS. Of 79 did he sell .-' 'J^./icis to C, how many bushek Operation.~i 4. 1 -^ 7 ti o l-.^or-,., of\i;!:tvro/<^' buTS '^'^ 'I^'^-^i^y «old toG i,s bushels, therefore As 5 f . ,r 'J"a>itity sold to C is 3 ^^to A^ and B.:'th^;4-bif^/;-"r'^'^'- q^-n^i^v the quantity sold. ' ^"' + '^^ bush. = 86» bushefs in 'olia^sandC ;;iKu°'ir'; '" : ' ^^^^ which B can do ^ , OperaUon -A. d' as i.^of o wf \ ^'"'^ '''^" ^'^- I'" ee d^ v iSS;^^^^Sirr'^-'-?^ to 3^1 ^ay:,\i:;LSs.r:;n;^ '" ' "^'^ -'''''^-^r:;^.;in t£ J „7.^7, '*'"-' ^- s'art to walk at the s nnp r r I^ai.e Ucaupurt, a di.tance of 12 mi "V'!"" ^'';"" ^''^"'^'"'^ ■'^"'' " '' ^^' ^™v-''s Irom Quebec iTIONS. '=' 'Ofeet wicio, an.J8 • •'50 each ? 'J «^ iiiultiply the M„„ room ?G ft. 8 in. |,„,,, loot y ^ iihor 2 5 n in i ""'■" |)er soh(i IV.or/' ihiee years and lour 'P- A. put into ilip what is ihosharoof eing $H30 '! 3 iwr bushel, shouM '■^ cents per pound/ nts. rate per Jb. must it dociinal IVactions. air of a farm of 79 Miscellaneous OuestioNs, y and a variety nf - are no set rules Ihe number, then to A., I to \i, an,j ow many bushols tily sohl to G is sold to G. is 3(i ols, tlie quaniiiv ''• = m tiUSh.•l^; Which B. can do '"" Uuee do it? ^' 1^,, and G. 1, /, + i = \-n. VOr.C so IS I diiy \>m Quebec and s 'rom Quebec 119 10 Lake Beauport at the rate of 3 miles per hour, and B from Like Beauport to Quebec at the rate of 4 miles per hour when and where will th y nie-t? ' " ^ Opmilion.—TbeY apiiroach each other at the rate of 3 4- a — / iiules per hour, therefore they will meet in 1-2 -i- 7=: !'s7ni,r7 Tlieu as A travels 1^ hours at the rale of 3 miles per hour t ev wi 1 meet I ^ x 3 =: 5a miles from Quebec, and as B travels 4 mi.es per hour 1^x4 = 6'; miles from Lake Beauport 5. A and B start to walk round a circular island 30 mile^ in circumference from opposite sides, at the same time and in (hn s.une direction, A ti'aveliing at the rate of 5 miles per hour and Bat the rate 4 miles per hour how many milel wi A hl^^ to walk be;, i-e he will overtake B ? ^ ^ Opmitim —In evei-y 5 miles walked by A he gains I mile nn II Thei-eforeas I mile : 5 : : lo miles half of thfcircun?erenc2 10 niiles the distance ti-a veiled by A. '"'muence G A B, and G working together can Unish a piece ofwot^k 12 days, w uch A alone can (inish in 36 days, and B alone in '0 days, in what time can G do it working alone ? Operahon.^A, B, and G together can do tJie work in 12 'lays, therefore in 1 day they can do /, of the whole, A working u^one can do t,ie work in 3(i days, therefore in I da' he can 3! , , of the w.Tk, B working alone can dn the work in 40 dav^ Uiorefore in I day he can do 1, of the whole Therefore A « n!l fl tog,.ther can do .V + A- = .^o of the work in 1 diy B A, B and G can do day A'oi'k in ., , , ,, ofthewoi'k in I day, therefore in one G can do i _ ^ = -^ therefore he can do the whole . ./;\^ = 32/, days. 7. If 5 men or six boys can do a piece of work in 45 davs • m what tim- can I man and I boy working together do it" ' Uperahon.-ln 45 days I man will do^ and 1 boy i of the work th^'refore in 45 days I man and I boy will do x . I - ax 01 the work, hence as |i of the work, is to 1 the whoirwoii so IS 4., days to 122,^, days, the time in which 1 man and I bov cin do it. '' 8. If 8 bushels of wheat cost as much as 10 bushels of barlev iind as much as 15 liushels of oats ; and if the price of I bushS of wheat, I bushel of barley, and I of oats is . 52 «0. whal is m value per bushel of the wh.-at, the liarley, and th" oais'' Operalion.— nm prices of one bushel of wheat, one ofbarlnv and one 01 oats a.-e as x, 1, and ,1 hence by reducing these Iraetioris to equivalent ones having a common denominator and using the numerators we lind that the iirices are 15 19 "tiid 8, then •' ' -! .-m 120 tiio barley per jjii she MISCELLANEOUS QUESTION,. As I •?'? «0 : 9(J Ct'UlS oats ^+ '2 + 8 or 35 : 8 r 9. WJ r IJiisIiL'i .■xf) liatuuml-erisUiatofwi 'i cents the price or i|„ 10- What is th value ? e value ol '''^'' ^ + 1 + i is 230 ? ii house of Ans. 293i? !'• Divide Si 000 bi which ?840 is * *j40 more thau B 12. A,_„. .„ 12 feet above th twei ■r> A, 13, a,i,J c Ans and B $200 more than C Ans so that A 4 •/■ ofilc $1900. may h, ilV(! post ,sj Of its len.lh iu ([ s share c^|pS0,B;sSl6i0,G 13. What W'at numb what if I'O mud, i in th s$l3S0, sum will equal 9« 14- If A can d I or it.'^ Iim-rh ? Ans. 28i « water, a: id 's that to which if°i2 be , feet, a Med, twice ihr f ana li a ono r, qx i_ •' . lo. A can build a wall con do iu " " days, which I 1 7. A and B together »"" take^to do the wor days. A ns. I3.L and G can ;;;- ■;:'TgT,uS"'^^,^^" '^ ^"-^^S in what ume can A, B, and G togSr re^' ■"'y '" '' ^^«"^« nnn:'r.-J.^."l^P"'-^J'aseal $2000 of th^ cost, what 19- A person bought louse A are the sums paid b,v A Ans. lOiQ hours The horse cost 3 Ans. A $003:221. B^ and B ? half as much cost of each ? a cairiage, horse '""OS as much as the h" 101.291 '"1(1 harness for I 3 1 30r -o-asthe'ho^eanjrS^-lH'-^-i'^e Ans. 530 ha 'arness ; wiiat w 'as the 20. A person owr Mg^'r^fb';,??' ''°T' «'«« r\rtn „,!,.,*:_..,__ . » 1 '> "' a ijuildmo- en ,1 <> „,., $1000, what is ti carri ■ wuo, wnai IS tUe value of dm ii„i i- * 2! Divide $250 amon/A^B; ?;.'• three tunes as much as BlindV; in'.. ngsoldf ofhissh age, are for 22. A alone ca nuich alone can do in 16 d a do Ans. $.-,000. so that A will ha as A and B togeth Ans. A$|/i,i;B$4s,C ve ei'. piece of work in I'' . - $64. 'ays, which B clays, A leav. it , '^Vont innl^'^,"'^'^ ^ "'-^^^ ^Vo''ic lo^etlTc aaer by G, and they tSiT " I ll.^'^''^ and is .ioinSif would G alone d It yHnish it together i„ 3 da 2d ys, m wh.'ii (^ Ans. 12 days r 3 ajs ime c«nt.s the j)rico of ihv MWOELLANEOUS QUESTIONS. 24. The sum of the squares ofTwn'nt ^t ^'''''' ^ ^i^ acres, the square of the lirst th„in Y ""'"bers is 61 and if from WillbU WhalVrthe'nuLKsr' " taken the remain^ 2o. Half the trees In an orSrJ .m , '^°'- ^ «nd 5. pear trees, a sixth plum trees „nH^^ ''^^ "'''°'' '^ ^°"'*''» Cherry trees. How m^any tS^rthere^l.^^rhe'rl^'^"' ""^ . 26. If 3 men or 4 women rnn ^« „ • -^"S- ^00 trees. ■n w.a. .i„e wU, one =aS"„:^?r ££ i°e^.S pncoof3gallonsoril,ese iSnc I orShTi"^ 8in, and the "stt'nSX Sn'e^l™ and Gin ,0s. 4d. Of a church at the distance nf 9 ,^T' V ^ 'awards the building from the second, anf3Tmi?i^™'^\£°"?.t;e first, ^ rnS that their share shall brrorinrn^^i.^ '^'''^- ''"d they agree distances from the church iSw ^^.P''"'^"''^'^"^' to their contribute ? ^- ^^°^ ™"ch must they severally 29. A merch'lnt-sdls 'soVJr'J'!' 'l '' ^* ^^'^ ^^^ ■- * : 5* the stockings at 60 cents and thf^f'"^' ''"^ g^^^^s for |ho Required the number of each ^ ''''°' ^' ^^ ''^"ts per pair.' 30. If A co^,ld^?aKJ'?;'iav^"''^p«'•''°^^^ What time would botl/ together'eap if/'' it^liVI '.'^^' ''^ S^y'L^'S^t£sS^iA'^^^"^^-----^i5" many were there in each? ^"® """'^«'" ^^ men; how 33. D... ,.„ in. .„„ nart-lnXi/f oVo'e?dd„;^?»,, Of equal 36. !ft; l?l^,"'.lf* '« "^^ elder of his Ans. 80 aiid iCO jo P«"y.and„on,.e.,™;„dr;:;||L---«^^^^ mmmm^ 122 MtiTillC SYSTEM. 3(3. Three snirlipra a n „ i y^ ,• . , ^"S' 15 hours. following „i,„2"^;3 th?;;a"s^?' ^;:;l%"^ SS'r'P '","'' ofto„ as A lat.s 6, tak,,s 7; how man? vtiM ,Ldfl,av„r" " 15 years te worlh'«,i8oio rwl'r \v.s Ji'sTi guS ^^ral'?" "'' the prices at wljich A tmd n cni-i •*';'^'^;^3- itcquire.l chants liaving gai el at I .o,nf , ' ' '^^°'' °'^''« ^'"'^^e mer- ■■b fcamui ai uio same rate per cent '( direction. A t.vtve iSr ,lv ''/r '•"'•^' '""' '" ^'^^ ^^"'^ days turns and loos Tikr^ ""'«« P"r day, and after 9 those 9 duvs he tC Imni nfo- '"' ^''^ ^ ''^^ travelled during overtakes 'b 2^ iay ' S Te"u,no^r"'f '"^' ^'^^ J°"''"'^^^ -luired to lindthe ite 2';,;;;^ uZuUXS^Sy '' '' of U,e latter ...^r Sor? ij ' 1 " Tf''- ^'^'^^^ '"^^ ^^'^ P''ice mixture at ^Lo^^pei^alloiiV ' ''"' ^"' gained l.y selling the Ans. lji2.32S. MKTllIC TAIiLli OP MONEY 16 c",.s?:a„ad "„°S,;5 ="""'' " "■'"'■ »'■'«" i» worth abo,u also two Sous, seldom a Decime centimes called fr|i:Tr,s°„r5 s.s:"r,;;ii', »,.?"""-■ -"»^ «-- ^■■i'-* es, it being fournl the youiij,'er. i'^iO ; and $57G0. ^ould do a jdoce of Hi, 3 women, and i Ans. 15 Jiours. TO carti-idges in the B takes 3 ; and as 11 each liave 'i B, 1 98 ; C, 308. is ca|)ital by a liftl, , and at tlie end of gin&l cajiital? .lis. §10590.21-2. !iiin «'J8G.40 to B ; (iG.3G^. Required' of tlio three mer- B for $1342.60. and in the same 1" day, and after 'J i travelled during Jiiig his journey, irst set out. It is ■ travelled '(• miles per day. per gallon, to be lal was the price 3 i iij ' METRIC SYSTEM. metres? ^ "linamelres are there in G4209750 milJi- 7" Re'duco o^rf'""^? '° milligrammes. graLfes'"'' ' ''"'''■ ' ^™-"--' ' ^^cigs, 3 milligs. to milli- gramm'ST "^'"^ '^^'^g^^n.mes are there in 2409048 miUi- 6 hectoms 5 decams 4 metres 3 dPHm« 7^ '^T""' ' '"''"'"; grammes 9 centigs 8 SS gsTSA'^^^ ^ mill.gs ; and 32 kilogs 4 hectors 7 H°°'^ grammes 6 dodgs 7 milligs. ^ nociogs 7 decags 3 decigs 8 cenligs 4 1^- {■>■? 38 francs 4d 8c take 21 fr 6d 3c 4 hectoms 3 decams SZ^tresT, e.,n.f/' '^ ""^'''^"^^ ^ kiloms H. From 39 kilogs 7 dec .1 4 ^^n t ?"" '"^^ ^ '"i^'ims. IS' n'"'l° ?S '"""^ ^0 8« by 6. by 2 2?: Sivit lK™r,?/„t'i'r/'' '■ "y »• by 45. by 4, by G9. " ''^'^'°^' ^ grammes 9 decigs 2 centigs ^ 2l- wSStle^'^rfo^/i™^^^^^^^^^ ?'• P- ^"°^™-o. 6c per kilogramme, 1-y practice v^' ^ ''''^^''' ^^ ^ f''ancs 5d 5d 4c ? '''^ "'"i' ^° l)urchased for 34 francs 5d!thaV mus7S'T«idtt uii'^^/"'' ' "^7™^ «°«t 2! francs for IJ myriams ? ' ''' ''^'^"^'''^ °' 274 kilogs 8 hectogs J docims, 5 ccnlims, •i8 contimelros ? in 04209750 milJi- 3 milligs. to milli- in 2409G48 milli- 1 9c ; 6d 7c ; 87 A- '' decams 4 deciras enliins 1 millim • ntiins 8 milJims ; ammes 4 dccigs 5 fitigs 9 milligs ; 5 ammes 6 denigs 7 iecigs 8 ceiitigs 4 ams 3 kiloms 9 nyriams 2 kiloms MS 7 millims. kilogs 4 lieclogs 's. 34. ns 3 metres by 8 ammes 8 centigs 9, by 45. dpcigs 2 cenligs 5r kilogramme? >, at 4 li'ancs 5d 8 deoimes 9c, ogs 5 decags if d ? purcliased for for 34 francs cost 2 1 francs ilogs 8 liectogs MENTAL ARITHMETIC. 125 ^S n J moil dig a drain 9 decams long, and 4 dccim^ rl..Pn l.er cenrr' " "'" '"^'-'''^''^ °" '^^'^'^ ''^^'^s at 6. at 7, at 9 pnr^co.d '/"' '' "'' '■"'''''^^' °" 9^"^ '"'•''^"^s 8d at 5, at G, at 8 31. Find the interest on G93 francs 4d at U per cent 1 1 !:'": ''^\"l'''-««ton 1248 francs at 81 percent at 4i;:;^tUVe"arZ;;r' '"''^"^^' '^^ 7600francsfor 3 years irj!^sli;i';^^r^T/:^!-^;"^--^-'^the amount of 4500 MENIAL ARITHMETIC. Exercise I. 1 . Flow many are 70 + 30 4- 24 '' 2. How many are 80 + 36 + 40 + 21 ' ^. Ilow many are 31 + 3G + 72 + 9 + 14 ? ;i. How m,.ny are 73 + 16 + 28 + 15 + 1 1 +. 18 ' 5 6. 7. 8. 9. to, II. 12. 13. 14. How many are 84 - 13, 104 - I7,l34 -06 V How many are 96 _ 7, 756 - 382 964 - 728 ? How many are 237 — 68 — 54 ? How many are 754 — 231 — 120 — ''7 ? Fmd the i,roduct oCig x G, 17 x 8, 2^9 x 9. iMiid the jirodiict of 92 x 3, 274 x 3 G23 x 5 I'.nd the product of 327 x 10, 24G x' II,' 754 X 12 Hmd the |)rodiict of 18 x G x 8 x 10 x 12 D.v,do928by4,627by. ll,852by 12 1 ^ n'^'-f ?ro' !'^ ' ^ ' ' ''"^ ^y 23, 429 by 39. 5. ivi, e 468 by 26, 666 by 74, 696 by 87 G. Divide 6300 by 36 and the product by 25 17. How many are 42 + 56 — 28 -i- 5 •/ 18. How many are 132 + 48 72 '-i- <) v 19. How many are 942 — 324 — o' -f 97 ? 20. Huw many are 349 + 357 — 86 -^ 31 ? EXEUCISE 2. To multiply by 20, 30, 40, 50, 60, 70, 80, or 90 r ^o?T^""'' ** '"'P^^' ^° "-^^ nHillipiicand and multiply by 2 or 20 : 3 for ,3 ; 4 for 40 ; , for 50 ; 6 for GO ; 7 for 7i f 8 or 80 ; and 9 lur 90. To multij.Iy by 200, 300, 400, 500, 600, 700, 800 or 900. 126 MENTAL ARITHMETrO. II t 8. Multi )Jv 96 hv sn •' k^ Inn = ^^ ^""0. rp. ,. . , , Exercise 3. 1- Divide IJOOOby 10 CmS P'?»S'^"""'l"Sor. 1 Wh Exercise 4. $2.76 andjVsV^ ^""^ «' ^'••^^' $2.40, $3.20, $4.80, $5 60- 3.' Mul?ip|? %'i .'if,7,- ^^,f--n 174.82 and $36.40 ? + m7''' '^ "" ^-^'"^ «f ^ «f ^72.90 X 2 + $73.60 -$42.30 ixru 4- ■ , Exercise 5. What IS the value of 1. 18 lbs. ofsiinfar at in r^Pnt'^ nor Ih nt 1 1 2. IG lbs. of beer at 12^ cents r er lb 'nt 1 1 *"'"/" ^"^ '^- '' s wi.uib per ID., at 1 1 cents per lb. ? ■ "i"L''P'y J^y 2 for f 600 ; 7 for 700 ; MENTAL ARITHMETIC. 127 p, 2000, 3000 4c, idend as many and divide the e divisor. . $4.80, $5.60- I $.36.40 ? by 12. 10? ? t by 36. X 2 + f 64 — 3.60 —$42.30 Us per ]b. ? ts per lb. ? ""•'""""""""•''""'M^ryarU.atlJoe^lspor 3. 25 yard ? 0. 49 yard, l,„c„ „i 3„ coirts por yard / 8. 28 yards cloth at $3.50 per vani nt «A nn 9. 9 cows at $27.50 each, at iJo each ?^ ^^° ^'' ^"'"^ ^ 0. 347 slates al 20 cents each ? 2 9?Ah ""?'', "°"'" '^^ •«5.25 per barrel ? 12. 234 bushels potatoes at ih cents pi/bushel ? , ^ . EXEBCISE 6. 1 irfiihc r ExEncisE 7. the same rSj.;'^"^^'- ^°«' ^4 cents, what will 10 lbs. cost at theU?rK' ''''''''' '''' *^-28. what will 6 yards cost at cent's f^ 2I0S''' P*^'' ''' '' ^°^«"' ^ggs at the rate of 41 samt rite^? ^^'^ '' ''^ '''' ^38.40, what will 10 lbs. cost at the be bought for $10 ? ^* ^^' ^'^^ many bushels may purchased'for $6"?'"'' '''' *'-'^' ^°^ °^«"y dozen may be purcha''sejfr$l 2^0""'' ''''^°""'^" '' '' '^^-^^ Vev 3 lbs. may be value/'' °''''""^"«''''* house is $1350, what is its whole bu'shelT''' "''' '' ^"^'^<^'« °^ «ats at the rate of $,.80 per at Ihe samVr'ate?'"^'*'' '"'' ^ ''^''■^'' ^^at will 8 lbs. cost i 128 MENTAL AUITIIMETIC. \'l What, must l)o pai.l i;.r G yiirds of sillc. if tho vnluo nf « pi'Jco coiitaiuint; 30 yards is .^ij ? ' ^'"° °' "^ Exercise 8. Tnko aliquot pai Is as in practice. KxA^PLK.-Fiml ihe value of 280 nrticlos at 25 ceuls each • 25 coiils=i of a dollar audi of 280 = $70 Aps. """'» ^'"'" - •'^ Find tho vaiut! of I. mi lb? al 25 cents per lb., at 20 cents per lb. .f $J^/' «• ''S*'-'^*^ l"-'- yard, at $1 per- yard. .}. ^/|,)J (U.i at 50 cents pe- dozen 0. 40| yds at ^l.oO per yard, at $1. 25 per yard. S o,,u ih" ^\ L'''!^'^ P*"" P°""''' "i' 8 cents per lb. 8. . Oi lbs. at ^1 20 per lb., at ,^1.25 per lb.' I f ^ yds. atiji2.40 per yard, at «2.50 per yard, ir'i V""^^-'' It '2J cents per oz., at 20 cents per oz 2" iol'.u!^'"; ^im^"-""'^ ^'' '^«^'^"' <»' 75 cents Jer doz. 1^. JOi cwt. at 1^10. 9o per cwt., at $10.50 per cwt. E.\ERCISE 9. "■ Knl fl"^ ^"'"'"ission on $300 at 5J per cent, at 6 per cent ^. iMnd he comunssion on ,?450 at 5 per cent. ' J. 1' ind the commission on $800 at 6 per cent 4. iMiid the commission on 1^1250 at 6 per cent «. Howmuchis8percontof$950, orsiOOO? 7. ovv much IS 12 per cent of $2150, of $1500' H. Jiow much 1,^ 1 1 per cent of $1800, of .$2000 ?' 10 W ,"!t !' 1/" {"•"'^'^'•'^So on $980 at 5 ,,er cent ? I ■ W ; k H .^'"f •^''«^° «n «''^^»0 at 8 per cent ? • ■ W ^ n" t''''"''"''-° «" =^*^'''^ It « P'-^ cent? V W ; 1" ^'■"'^■'^'■i^^'c 0" «960 at 1 1 per cent ? CO tal^ii;^,;!^^'^';;-^,;;;;---- on $1120 at 5 per at 8*: ^"ul^'J ;S^;i;- °'''— '- «« $8^0 at 7 per cent, at 'rfpo^S; Vt 7 I'J" 'Sn'tT ' '"'"'"'^"^^ °" ^ ''~^« ^^ '^ P^- °^n'. 17. Find the commission on $2170 at .3 per cent, at 4 per cent n liru '""^^^ "^ ' '-^ PC c™t of $ I dGO'' P ce.,?." ' " "''^■^''o'^cmge on $7500 at II per cent, al 10 per c«nlM?pi;'cenT. '"'"'"'"^- "' ^"^"'■^"«<^ ^^ ?-^600 at 2^ per if tlio value of a 25 ooiils each ; 25 WENITAL ARirnMRTIC. 129 ,_,. ^ , , KxKnciSE 10. What IS tho interest on 3;iS£^^ J J;:^^-;i-ann,.,n? 4. $ia',0 for '] v<.,rre „. B ' "' '"''■ '"'"I'm ? 8 $ '(i or3 ^ a's ''5\'rr!* Porannn,„ ? a. $10.-0 for 2 SsaJo'SrrTf'''"'" ''''''*''"■ l2.$l050ibr4i;eJSsU!;:sf:=;- Find the interest on 9. J ,800 jbr 4 months at LT cen fZ ZZ' ?■ S-nn r"' ' '"'^"^''S at per cent per an Z" 12. $920 lor 6 months at 8 per cent per annum T,. , ., . Exercise 12. Find the interest on 3. $1000 ",r 2 Years and ^Tnn X^''^'' """"^ P^'' ""'i^'m. 4. $2500 for 3 year ad 3 mon n I ^'' "'''' ^'^ """"'"• 5. $1600 for 2 years and 9 mon hs Tt I f '""! P^'" """"'"• 6. $3600 for 5 years and 2 men . n \ ' ^ •""" P"'' '"^"""ra- 7. $4800 for 4 Jears and I inon h nf^ ''''' '""' P'^' «"""'^- 8. $2460 for 2 Jears a 3 mo" s at s''"" """' ^''' •'^"""'"• 9. $2740 for 3 years and 4 iZ t ,s ,fi ? ^ ''"^ P"" """""'• to. $5000 for 2 years an 8 n on s n r '''' "'"' P"'' """"'"• 11. $4600 for 3 Jears an 6 n on Is a 8 f.!r ?'".' ^'' ''^""""'• 12. $6200 for 4 years and 2 monS a^t^ ? ^ ^ j^ ---• EXEIICISE 13. irewood honght for 7 Z'!^,f r!!!';?;!'" °" ^ ^"«"tity of $3 17 and sold for .^i ufl ? 2. What is my loss for $2975 ? on a house bought for $3460, and sold 180 ANSWERS TO THE EXERCISES. b If ■ I lb., wha7?,',he "o'fr" °°" *"*•"> """ '■ ""i " IS '='">■» l»r cw^a„'J'S!a':.7,SVr^;v'.r'- »'-''«■' '-""at »^'P» ANSWERS TO THE EXERCISES. NOTATION ANMLMERATION. Exercise 1. ^ndIST-\]Z'lunt^^^^^^^^^ '^0 hundred fiily; nine Sred and h ^ ' ""^^"''^"^ ' '"^«° ^""dred and dred and five tJi.rty-two ; seven thousand six hun- twlntHlve'Z:LVd"si^hS = f'" ^5°"^°"^ one hundred; thousand anS £ h^dS an^J wl>ThouSd'""'^^^ twcnSl^e^e^Soi^Tnd'rfv^'l ^'— t^^'undred ; seven thousand Z hnrli^iJ'^^f = 'I^ ^"*^''«'^ ™"»io»s hundred and SftJ <,Tfhn?, ,^ ^"'^ twenty-three millions four ought at f 9.20 per its bought for $39, cost 70 cents por lid at 18 cents i)er PI 20 and sold at lo? Its por gallon and )n the whole ? 01. r which I pup. r barrel ? nought at $21 per J them at $4.45 ib. and sold at 5ES. IN. ; two hundred n hundred and ousand six hun- id one hundred ; ; two hundred lousand. two hundred ; indred millions ee millions four .nd eighty-nine, d thousand and three hundred hundred and undred trillions d and four, ns six billions billions seven id and one. three millions s two thousand ANHWRRs to the EXERf1fHK.S. 131 ^iv inMui?. ' ""."1"",'''" ''""'"'•t'd and fonrtoon rjiiadrillion^ •SIX hundvd and .MKlity-liin'o tnliions llvo Ini.idn-d and tu iiv- nine In hons o„H hundred and twenly-tl.r ^ . II Irs ur hundred and lilty-six ll.ousnnd^ven hundred and fo.^ly-iwo. COMMON NOTATION. 4 Five thousand and twelve millions tlir-sn hundred thousand Sliliiolill'JjHrilevr"" """'"••"* """ '-"--"^ ^"- '-":^"' 0. Two billicms six hundred thousand nine huiidrefl /inrl s«^venty millions four luiiidred thousand ; nine "nm ' h lioni aml^l'iu- ""' """ '''''' ^'""^""•' '"'"'"- -v-'" 'y 'l.ouiand G Seventy thousand four hundred billions six thoiisnini nnrl fli.rty millions two Ihousaiul ; live hundn.l u I ' tvon . bix thousand and nine billions I'.iir Ihousand ami three u;orur;'r;rr.;r;'' "^^ • ^^° '"-"-"'^ -^ ^^^^^i^^ l7rZ^ «"« hundred ami twenty-lhren million four hunS and lifly-six thousand seven hundred and forty-two. ""'^^'^ KXEUCISK 2. 1. 74. 2. 200. 3. 709. 4. 2007. 5. 4002. 6. 1809. 7. 3006. 8, 9000. I,"i 9. 5702. 10 10. I.V2;i0. 17 11. .11)074. IS 12. 00i009. l 34681 bushels. 10. 11. 12. 13. 14. 15. 16. 17. 18. 104275 inches. 10819 days 13449 miles. 135743 feet. 28998 lbs. 17255 lbs. 544895. 1697762131. 12668043. 19. 17519901. 20. 25300 21. 112980. 22. 43027. 23. 941494. 24. 48970000, 25. $519. 26. 3718 bushels. 27. 321 miles. 1.240413 miles. 2. 56484652inche3. 3. 6163562 tons. 4. 5610472 yards. 5. 488482 pounds. 6. 6640935 dollars. 7. 2298474 hours 8. 30579544 feet. 9. 1239300. 10. 7128908. 11.6650983. 12. 59499717. 13. 4153079. SIMPLE SUBTRACTION. 14. 4803944 15. 2879624. 16. 81877787. 17.87106653. 18. 1330154. 19. 6504490. 20. 19521178 21.6760083. 22. 6999995. 23. 399206 pds. 24. 4993 days. 25. 7968793. 26. 554 dollars. 27. 2560 miles. 28. / 375,332,259,238,225, 29.i9ffir'^^^-- 30. 1 1700000 sq. miles. Jl. 554 bushels. 32. 3978 dollars. 33. 5692 feet. 34. 368 feet. 35. 3472; 3 172 miles. 36. 94763000 miles 1. 153890 miles. 2. 220944 yards. 3. 3851388 pounds. 4. 4158475 inches. 5 4761744 pounds. 6. 943992 dollars. 7. 3788656 minutes 1. 467964. 2. 883680. SIMPLE MULTIPLICATION. Exercise 1. 4. 30660. 8. 6248457 cents 9. 15'>68. 10. 18957 11. 22428. 12. 36640. 13. 477648. 14 175021. Exercise 2. ( 5. 193536. 6. 30996. 7. 1323125. 8. 2436368. 15. 16. 17. 18. 19. 20. 135312. 293328. 326490. 861245. 384852. 481194. 9. 4452800. 11.36728000. 12. 20699184. 13. 1481 14. 180; 15. 6505 16. 1891 17. lUl 18. 3783 19. 1201 20. 5245: 21. 5183i 22. 19751 23. 1044e 1. 1875 2. 2454 3. 2351 4. 2469 6. i057( 6. 1989/ 7. 2777; 8. 802U 1. 41093 2. 15628 3. 98693 4. 94774 6. 4445 f> 6. 44762, 1. 267fft, 2. 26421^ 3. 106.S45 4. I5200f 6. 6980H 6. 2368«% 7. 4404ff 8. o063f^. 9. 6413§|; 10. 4l325i-J 11. 15358gJj 12. 4285||. 13. 7230t#^ 14. 864,9jf.' 15. 13661 Ai 16. 16965|1 mmmMmt. 17519901. 25300. 112980 43027. 541494 i8970000, 5519. i7 18 bushels. !21 miles. lars. lies. J2,259,238,225, )4,55 years. Osq. hels. liars, t. miles. 72 miles. ) miles. 312. 328. 490. 245. 852. 194. 00. Ml. )00. 184. :3. 1481088. 14. 18011160. 15. 650596380 16. 189109960. 17. 14474832. 18. 378316400. 19. 1201371300. 20. 52452353748 21. 518350564160 22. 197515403720.' 23. 104462820108 1. 187532. 2. 245427. 3. 23515761. 4. 246913574. 5- 1057097S. 6. 1989544. 7. 277777f. 8. 802l81f. 1- 41093-ff 2. 156283V 3. 98593^. 4. 94774||. 6. 4445 f4-. 6. 44762|f. AN8VERS TO THE EXBRcrSEs. 1. 267ff, 2. 264'2Xf 3. 106.34ff. 4. I5200ff. 6- 6980H. 6. 2368g%. 7. 4404ff. 8. o063f^. 9. 6413f|, , 10. 41325+1 11. 153585V. I 12. 42851^. 13. 7230x|x. 14. 864M.^ 15. 13661 AJl. 16. I5965f|l. 17 18, 19. 20. 21. 22. 23. 24. 25. 28. 27. 28- 29. 30. 31. 32. 1866560000. 5. 67756662 5. 6448458108 ^ 729668016 ' '■ 30267798624. •• 8054092548 • 14117835000 • 6701431839424 . 10114033944. ' . 179603438052 ■ 546199612851.' simple~dFvision ExERcrsE 1 9. 631272A.. 10. lOlOIOlOA 11. 44166844. 12. 2495802 13. 2851791. 14- 91l78f 15. 2742234. 16. 123447^. Exercise 2 r. 50340Tf^.' 8. 222051 A. 9. 16033311. 10. 1176200M 11. 39291-,t6p 133 I 35. 220133376 I 36. 25106806690. 37. 530334468132 It- i?1^^344006640. 39. 21424 feet 40. 20601 yards. 41. I903S74 letters 42. 21038400 m r 43. 56940 timS 44. 9709 dollars. ^5. 168 panes. I''. 16072442. 18. 310489A-. 19. 1 740842 & 20. I22II62I. 21. 1341038?. 22. 792696*. 23. 1208159?. 24. 708053|. Exercise 3. 12. 403003 4A 13. 87660511'* 14. 284314^5 15. 641986*1''* 16. 997852;v; 3343,^,fly. 134205^V 27063im. 78l00fS|3. 1255096|||. 457378m||. 1830087|||. 3756623^ff. 148882ff*f. i282'^Tf4m. 467928fJ|: 228l830j^.. 36. 671369?||T 37. 324444^11. 38. 278891 fllei 40. 15454|-f. 41. 3 apples.' 42. 91 ff 43. I65f|. 44. 225 miles. ii- 25||^{f '^««"«- 47. 89758,342#e^ 48. I3428429?}||^5j. I }■ 134 ANSWERS TO niE EXERCISES. REDUCTION. 1. 700 cents. 2. 9400 cents. 3. 1900 cents. 4. 92424 ceiits, 1. $?3.90. 2. $70,82J 3. $803.7()§ 4. $599. 29, V 1. £18: 12: 9^ 2. £185 : 14: 6. 3. £246 : 18 : 3. 4. £436 : il : 2i 6. £189 : 11 : 0^ Exercise I. 5. 964258 cents. 6. 4296537 cents. 7. 94275 cents. EXEftCISE 2. ?1025.93|. «975.90g. $3057.72-,V. $1579.33|. Exercise 3. 8. $704.28 9 $4950.64, 10. $286.05. 9. 10. 11. $307.68J $731,274 $3305.98 12. $992.96i 5- 19: 7- f. lOA. 1. 4312pen6e. 2. 123583 farthings. 3. 713221 farthing.". 1. 18800 quarters. 4. 2. 45650 jioonds. 5. 3. 556739 ounces. 6. 1. 5760 dwts. 2. 99916 grains. 1. 3744 scruples. 2. 90057 grains. f. 7140 lines. 2. 8094 inches. 3. 2437 perches. 4. 125070439 inches. i. 1248 nails. 2. 315 nails. 3. 214 yds 1 qr 1 nl. 1510s: Hd. £76979 ; J 6. £2339 7. £1316: 2 8. £69 : 18 : h 9. £198 : 12 — f . ' 10. £435 : 14 ; Exercise 4. 4. 1041178 far. 5. £39S : 8. 6. £1559: 10 : 5. Exercise 5. 341172 ounces. 7. 12 tons 1 cwl. 8 700 cwt. 4 lbs. Exercise 6 I 3. 7 oz I 4. 1 lb, Exercise 7. 3. 1368 lbs 11 oz6drs 1 scru. 4. 1269 lbs 6 oz 5 drs i scru 8 grs.j Exercise 8. 5. 11347 fur 20 per 5 yds. 6. 1534 m 30 per. 7.21yds I ft 3 in 11 lines. 8. 38 lea 2n] 1 fur 1 1 per I fl 6in.j Exercise 9. 4. 463 Eng ells 3 qrs 2 nls, 5. 374 Eng ells 2 qrs. 6. 410 Eng ells 2 qrs. 8 : 2,1. 51 qrs 7 lbs 4 oz. 21t[9cwtlllbslOoz. 15 dwts. 22 grs. 3 oz. 8 dwts. 17 grs, ANSWERS TO THE EXEECI8E8. 135 7. 1510s: Ud. i. £76979 : JS : 2.L 1 qrs 7 lbs 4 oz. lU9cwtmbsl0oz. dwts. 22 grs. )z. 8 dwts. 17 grs, ')7. 6 drs 1 scru. ! 5 drs 1 scru 8 grs. Exercise 10. 1. 9801 sq feet. •? «„ oo 4-* j , ^ 2. m43&3 s, inches | t l[ ?, ^ '///sV^S?!'"- liXERCISE II. I 3. 790 bar 3 gals 1 qt 1 gll!. ' 4. 27 pipes 27 gals 1 qt Ipt. Exercise 12. I 3. 8 days 14 h 21 min 53 iec. I 4. 69wks3d2h42minl4sec. Exercise 13. 17. 1150 nails. 216 pints. 59039 gills. 1. 2928 hours. 2. 151 11286 seconds. 1. 720427 cents. 2. 17642.85. 3. $2899.9IJ. 4. £991 .•8: UJ^f 5. 379037 farthings. 6. £829: 12:2f. 7. 3967451 drams. 8. 2170 t. 2cwt. 3 qrs 2 lbs 12 oz. 7 drs. 9- 5629 grains. 0. 6 lbs. 5 oz 5 dwts 16 grs, 11. 2255 scruples. 12. 256 lbs. 9 oz. 6 drs. 121968 feet. 5412 lea 1 m 3 fur 32 per ^4 yds 1 ft 3 in 1 1. 255171871 sq inches. ,^J^ 'per 16 yds 4 ft 101 in. 13 14 15, 16. 19. 39644 gills. 20. 2287 gals 1 qt. 21. 277740 minutes. 22. 203 weeks 3 days 3 h 20 min 7 sec, 23. 290. 24. 710. 25. 36 English ells, 26. 120 yards. 56| Flemish ells. 74o. 102 two pences, 361 five pences, 54 four pence?, 32 packages. 27 28. 29. 30. 31. 32. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. II. 12. 13. COMPOUND $27833.89. Jei3l08:19:2j 104 miles 3 fur 20 per 4* yds 2 ft, f 2 $38409.96. Jei0140:5; lU $28375. 96J. 107 tons 2 qrs 24 lbs 6 oz 9 drs. 154 wks 2 d 23 h7mirx 12 soc. 12 1 acres lr8 per 24 J yds. 292 lbs 7 oz 4 grs $38121.82. ADDITION. -14. 251 ydslqr2nl3. 15. £3619 : 1 : 4 16. $9388.82^. 17. 185 gals. 1 pint, 18. 91 lbs4oz 14 dwts 1 gr. 19. 3751 cwt3qrs4 lbs. 20. 339 miles 6 fur 38 per li yds. 21. 409 acres 3 r 25 per 22. $42174.44. 23. 539 yds 1 ft 6 in 9 lines. ^1. 006 day3 15 h 40 min 25 sec. ^,^- ?28 gals I qt I pt 3 gills. M. 172tonsl8cwt Iqrnibs. 136 ANSWERS TO THE EXERCISES. COMPOUND SUBTRACTION. 1. $6635,76. 2. i;679 : 8 : 9J 5. 7 tons 6 cwt 3 qrs 5 lbs. 6. 4.iweeks6d5min36sec o 1^*^^ 3qrs3n]s. 8. $18094.63. 9- £167:2: ll| 10. $8888.89 11. 56 gals 3 qts 1 giu. 1/. 437 miles 4 far 39 jds 1 ft per 5 4. 120 tons 1 5 c^t 3 3 15. 6 lbs 9 oz 6 grs 16. $87654.78. I». ilO tons 12 cwt 1 or 4 lbs 6 02 9 drs. 888 acres 10 per 12 mU 2 ft 16 in. ' 4hhlds 10 gals Ipint. 11 min 10 sec. 1" 17" 30'ii 19. 20. 21. 22. COMPOUND MULTIPLICATION. Exercise 1. o" «n^4264 : 10:6. 6894 yds 3 nls. 130l9 1bs9oz8dwts. $465206.68, 9377 cwt 3 qrs lbs. 7373 gals 2 qts 1 pt. 34G8 bushels. 3797 wks 1 day 23 h min 49 sec. 657 cwt 1 qr 8 lbs 2 12 drs. 40 oz 1. 2. 3. 4. 5. 6. 7. $3698437.26^. £321:2:51-. 1 ton 18 cwt 10 lbs 10 oz 13 gals 3 qts If gills. 15 acres 1 r 4 per 29 yds 6 ft 30 in. 113 yds. I qr 2|- nls. 1 lea 2 m I fur 39 per 3 yds 1 ft 3 in 9 lines. i 8. $105208.25. 9. 73 cwt 1 qr 21 lbs 7 oz 12 drs. 10. 3 per I yd 2 ft lO.in li line 11. 61 gals 1 pt 3 ,a; gill's^ 33 bush 1 pk 1 gal 3 qts I pt 2 gilis. £530 : : i i J _ 5. 67 yds 2 qrs 2f nls. 13 acres 2 r 10 per 10 yds 6ftl43?Jin. COMPOUND DIVISION. Exercise 1. 1 scr. 18ji. 12, 13. 14. 15. 16. 2 lbs 5 oz 2 drs qrs. 17. 3 cwt 3 qrs 20 lbs 4 oz. 18. 2 lbs 4 oz8dwts24Hgrs '9. .$496744 84. " ' 2 wks 3d 18 h 47 min 28i sec. 6 gals I qt lJ.i4 gills. £4: 10:3^-1-' 120. 23. 4bush3pks3qtslA8gpt. 24. 25 cwt 3 qrs 4 lbs' 12 oz 14 drs. 1 mile 1 fur 32 perl MJ ft 2 Eng ells 2 qrs 3 nls. $14506.23. 3 acres I r 32 per 2! yi?-. 20. 21. 22. 25. 26. 27. 28. 29. 30. 6 days 8 h 14" rain 57 si^ — 432 rem. 1 qr5 1bs 14 oz 12fff drs. 138 ANSWERS TO THE? EXERCISES. 1. 2. 3. 4 5. 6. 7. 8. 9. 10. $56896.05. ^25 : 4 : Syy. 49 cwt 2 qrs 9 lbs 7 oz. llgalsSqtsIptl^^gillg. f.'n'les 3 fur 2 per 5 yds. 5 week^s 5 d 6 h 10 mi„ 10 lbs 4 oz 1 scr 33? grs 1. 2. 3. 4. 5. 30 suits. 40 dozen. 5068-1^ times. 13 persons. KXERCISE 2. ^'•%™'"l%3/ur36per2ycis 12. £34 : 3 : 8 U- 13. 3gal3 2qts%5f,gills. 14. 3 acres 3 r 26 per 4 Yds 3 ft 71 in. 15. 10 tons 7 cwt 2 qrs 9 oz 8 drs. 16. 11 cents. 17. $856.4298 18. Gift cents. 19. $2.64. 20. 21,43. 72 acres 3 r 13.^ per. 20. 3p (Liys. 21. $il3.G!i. 22. $129.81. 23. 11,1. days. 24. 33 men. 25. $18.37. 1. 2. GREAT EST COMMON MEASURE. 1. 2. 3. 5. 3. 4. 5. 4. 5. 7. 8. 2. 2. 10. It. 5 2 4. 6. 9. 9. 93. 12. 12 6. 6. LEAST COMMON MULTIPLE. I"' 1. 315. 2. 120. 3. 10098. 4. 720. 5. 15120. 6. 795G. 7. 2520. 8. 120. 9. 240. 10. 4788. 11. 11592. 12. 2520. "VULGAR FRACTIONS. ExEnciSE 1. 13.692408G4. 14. 128707425. 15. 536130. 16. 10228140. 1. 1 2. f,. 4 5 6. -4''4^H=^. Jfifi. »1 9- 7. ,^. 9. -,',. 10. f 11- ffff. 12. -.Ws^,. E.XEIICISE 2. 1. 138f 2. 1. 3. 86. 4 5. 6. 105 ,¥3. 8. I0Jf^3. 9. 408'^^. 10. 6944X 11. 8610'^o, 12. 6734. 1- ^^^. 3. ^^^^±. 4. 5. 6. EXERC ''mi"-. ISE 3. 7- '^f?^. 10. ^oj)\D-,i 9. ^fj-^. 12. fy.a. ExEncisE 4. 3. 9\V 4. 5. 6. ■ 7- af^- 9. 238,. 10. ,\%%: 11- 14xV 12. « ' 10. II. 12. 1- A. 2. 22J 3. /,. 1. 2. 3. 4. 6. 7TT " 196.^, 1. 2. ■6^0. 1. 2 qrs 1 2. 1 peck 3. 2 roodf ANSWERS TO THE EXKRrrsES. Exercise 5, 141 2 .TO 40^ « J8 ■ m, 00, m, m: 2 ilWt _216(^ ma ^)0 2268 2,'320, 2520, 2520; Zm, 'mF ^ 10020 IlOll 11088 11 15 J 12012, 12012, 1201;> 12012; '''^■^^ jW5r> 5010 a5(!l 748() 4. 0. 71120, 7020; "7020, 70;X)7 "7020: 288 189 221 432 HUti .»(, 504, 50i; "504, 5047 10. 11. 12. g 48195 138«0 KW-'JO 15708 32725 ■ 08905; 58905," 58905; ,580()5, 5,S905; 7 .2;Wi2i. 57120_ H922(J_ 2;>5.%0 2154S0 271320, 271320, 271320, "2713207 "271320" g iT2S_ 3m_ 2m _832 561{i, oOUi, 5616; "Soia 9. J^Jl'L J*J"8« 1«89.>5 42H208 30J212 705132, 705132," 705-132,' "7051327 ikiSir J01680_ jmn_ 12582!} 100440 343170, 343170, 34;n76, inSlTOT _2717 J'04_ Ji688^ 5824 2816 915^ 9152, 9152, 915^ "9152; 5W76 18734 42891 32;>38 43848 53244, 53214, 53244, 532i:j; 53214: Exercise 6. 1. 2. 3. 22i. 4. 5. 6. 1. Mf of a pound. 2- 4 iir of a quarter. ^- rs^TTTT of a (lay. 4. 1 96 j\ perches. 5- H of an hour. Exercise 7. 6. 82^ lines. 10. 1-,^. 11- iH. 12. «^A. 1. 2. K ■Ns' Exercise 8. 5-/0 T of an acre. HI Eng ells. 11.4gil]s. of a ton. o -l■J■7- 3 3 .' s u u ExEiicisH n. !?• ^'^• 5^d. 1- 2qrs 12 lbs 8 02. .2- I peck 1 gal 1 qt H pt. o. ^ roods. 4. .5, G. 2.^ : 4|d - ^. 1 fur 16jB^ per. 1 ft Sin 7g^ lines. 142 AN8WEU8 TO THE EXERCISES. 7. 8oz 3dr8 12 8. 'J l)U8h«lH. y. 1 bush 3 pkH 10. 34 gal8 1 qt 1 1- lm^ 2. 2H. 3. 4.^%.. 5. 1,1/^. 6. 23VA. 7. un- 4- I-xW/«. 1. If. 2. A. 3. 1^ 4- 71M- 5. 38^f. 6. 79|J. 7.4. 1. 1*. 2. 1,^4. 3. -HI. 4- m- 6. 2Jf. 7. *i. grs. 3,/^- qts pt3/„- gills. 11. 10 miles I fur It-A per 12. 2 acres Ir 30fg^ per. 13. 3 qra 18 lbs. I 14. 6 hours 59 min 66 sec. rXEHOISE 10. 8. 9. 10. 11. 12. 13. 14. II, 6. 7. 8. 8 9, 10 11. 12. 13. 14. 8. 9. 10. 11. 12. 13. 14. mm- 46,W4 309,aVi^. . 6H. Exercise , I. iff. 26./aS-. EXEUGISE 12. .6 4 B' -A. • mi ■ m. E.\i:ncrsE 13. 17^. 7J.i Hh 6,V. 15. 16. 17. 18. 19. 20. 9. ir. 11. 12. 15. 16. 17. 18 19. 20. 17^. mi 13 uVo^Va'l • mm- 15. ^m- 16. ^. 18. Hm- 19- 2m. 20. 1, 1. 2. 3 4. 5. DECIMAL FRACTIONS. Exercise I, Thirty-six, hundrerltlis. Sixty-four, thousandths. Two hundred and seven, thousandtli') Six hundred and fltly-two, thousandths. Sevonty-lwo, hundred lliousandths 6. Thirty-four, and live hundred and six, thousandths. RorsEs. nilea 1 fiir IJ-jS^ per. 3re8 Ir 30 fg^ per. '8 18 lbs. 3ur8 59 mill 56 sec. ANSWteRS TO THE EXEUCISES. 143 15 • mh J() 17, V 17 • im- 18 'tAWift. 19 mk- 20 ■AWAWu 9. mih 10. 3.W6- 11. i^h- 12. mm- 15. 983^.V IG. m- 17. ^iUh 18 5M. 19. -^A 20. iHU' 15. ^m- 16. u- 17. 2/6¥a. IS. Hm- 19. nn- 20. 1.AV,. 5. 12' Six"ll,m,'r'l'l"' "'i'' '"■'■"ly-r""'-. Inuirli-eJ t,illi„„U,s E.\EIICISE 2. I. 2. 3. 4. 5. 1. 2. 3. •016. •OiJHO. •000640. •84000000700 •00000000350G. 30-9272. IGI-13839. II3-5.'i,)| 1. 2. 3. 4. 1. 2. 3. 460G51G. 1-267. 18-80I4G. •40366. 4-6855. •IIO'i. ■18468, •477862. 6-3583. 1. 18-7. 2. 9-765625. 3. 364-285. 4. 5-G058345 + 5. 1.;'4. 6. 79-2-6. 1. 2. •375. ■040875. thousandths. 3. •183. 4. •2. 5. •69583. •000408. •000000 1 07G00. •00001)96000. •000000-20064, •00702. 6. 7. 8. 9. 10. E.XEHCISE 3. 5. 487.7719. 6. 1)6.6120199. 7. 284-954336. 8. 835-75511. ExKncisE 4. 5. 6. 7. 155-307. 5-0G73. 10-94814. E.XERCISE 5. 46-0842. 186-3648. ■4896. •0-2548. Exehcise 0. 7. 7'608524-t- 8. 97-5. 359-2. 8. 9. 10. ■92822> •62G8858. 2'18076. 5. 6. 7. 8. 9. 10. 11 9. lu. 11. 12. 12. 13. 14. 15. 16. 23-226. 994-34396 + Exercise 7. 6. -009765625 7. -9. 8. •0-227. 9. 6 2617058. 10. 35'6883li. •6426. •3933. •262G32. 3-02778. 3 -.56 7. 234-5. 2-2119032 + 2-1896482 -f 1 32- 10759. I' I 144 11. -Tl 12. -5625. ANHWfiRS TO THE JiXEllOtStH. 13. 1623076. 1. #. 2. U- 3- xHs- 6. i. 7. 8J. H. -6 1 2244897959. 15. 134-226337448. 10 ■003O2305O76'2nG07. ExKnf;i8K 8, 8. Ul 12. 9 ,?^: j3- m. EXKHCISK 9. IS. fill. 16- iifiJi. '7. iUH- 19. 6H. 20. 21^|f J. 1. -58, » 2. •32979452054. 3. 034375. 4. -5. 5. -847918. 6. -21875. 7. -0703125. 8. -0246527. 9. -2225. 10. -6875. 11. -594948 + 12. -7808984375. 13. 031521739, 14. -0365. 15. -361445783. Exercise 10. 1. 2. 3. 4. 5. Iqr 18 lbs 2 02 6 4 drams. 39 minutes 27-36 soc 25 P''- 1 yd 1 ft 1 1 in 2-8992 lines. 3 lbs 6 oz 6 dwts 17-28 grs. 14s Ij d. 6. 7 sq perches. 7. 1-1136 quarts. 2 yds 3 qrs 2 nis. 2 roods 18 per 2 yds 3 a 112.32 in. 41bs. 8oz 1-6128 drs. 1-8176 gills. 12. 5lur39per3yds2ft2 64in. 13. I qr 1 lb 12 oz 12-8 drs 14. 8 sq ft 35-5248 sq inches. 15. 3-1 quarts. 8. 9. 10. 11. 16. 7cwt 3 yr: ib 'S o OZ. ctatti. 4i8079r)9. 26337448. 530507620007. 15- m- >6- mi- 18. m- 19. 6^4. 20. 2I*|?J. ANSWERS TO TIIK RXEllCISES. 145 14375. 1739. 783. PROPORTION OF FRACTKJNS. '• 'if Jays. 2. $16.3342. 4 $20.I9». 6- SlOgJ. 1. 2. 2. $118.67i. 7. 35-79018gaIIon8. 8. $1 17-5622807. 9. 48-I7C516 1b8. 10. $2 r)69896907. H. $34,375. 12. $105-2350877. MISCELLANEOUS. 3 4. 6. 6. 7. mi $387,701. 1008. 8. 12736 ounces. 9. 185748 inches. 10. 2 roods 29 f^q per 4 sq yds 3 so ft 1.34 sq in. 11. 2 1b8 7oz 1 dr 1 8cr4ers. 12. 143 19 ounces. j 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 138 Tf r. 11-432389937. $167.83. 100-27754. 6-1187. •704352. $321.56^+, 6 fur 8 i^rPer. $3784.75^5^. $434.04^5. $■■?<; ;5.75|J. $2.124. 35 m|. $4024.31iZj. $76640.58-4fttf. 1. 2. 3. 4. 6. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. $652.75. $356 25. $1801.64. $10059.62*. $79r).08. $4350.24. $8673. $775396.24. $671422.07. $41391 52^. $937105.16|. $61305.79i. $211967.76 A. $75625.11^. " £1278 : 15. PRACTICE. Exercise 1. j 16. £3061 : 6. 17. £3211 : 7. 18. £26744 : 16: 111 19. £22583 : 17 : li 20. £3129 : 2 : lOi* 21. $4419.90. 22. £73 : 3 : 8. 23. $1162661 79*. 24. £11945: 9 25. $1631.12. 26. $4357.08. 27. $3903.23,1-. 28. £7.'?3 • i'> 29. £561 : 1 :'3. I 30. 48347.51J. 7 7* tie ANSWERS TO l^E EXERCISES. 1. $433-23*i. 2. $8558-72. 3. $449-355725. 4. I27-2681. 5. $17985-86^- 6. $327-73f. 7. $16-1 ui 8. $7710-4375. 9. $159-53f. 10. $126-51 A. 11. JE41 : 19:2J. 12. £470 : 16 : 6|. 13. £64: Jl : 10, 14. £32 : 19 : 2. 15. $1266-09|. Exercise 2. 16 £858 : 18 : 3J. 17. $491-7234375. 18. £1136: 17: 1| 19. $678-1028125. 20. $1 87.40 ,V 21. $2858-89fa. 22. £71 :2:8i. 23. $1307- 1 7A. 24. $148-93+. 25. $9-82 .\. 26. $67-60. 27. $34-201 28. $1293-764, 29. $623-36^, 30. $2722-19^1. is 1. 22 cwl 2 qrs 13 lbs. 2. 1246 pounds. 3. 87 cwt 1 qr 16 lbs. 4. 26 cwt. 5. 107 cwt 2 qrs 14 lbs. 6. 51 cwt 12 lbs. 7. 34 cwt 20 lbs. 8. 108 cwl 3 qrs 1 lb. TARE AND TRET. 9 10 42 cwt 1 qr 2 lbs, 18 cwt 6 lbs. 11. 4 cwt 1 qr 18 lbs. 12. 14 cwt 2 qrs 23 lbs. 13. 79 cwt 3 qrs 5 lbs. 14. 152 cwt 1 qr231bs. 15. 82 cwt 1 qreibs. 1. 2. 3. COMMISSION, INSURANCE, $68.78 $58.58 $408-5544. $28-0404. $130-8853. $928.55 5. 6. 7. $2221.33 8. 9. 10. $215.32. $1008.471. $56.52. 11. $129-409. 12. $443-3756. 13. $597.36. 14. $36-102. $521-5512. $63.22. $129.07k $725. $54.80. $167.85. 15. 16. 17. 18. 19. 20. BROKERAGE. 21. $15,895. 22. $176.93f. 23. $190.64 J. 24. $206-7731. 25. $910. 26. $1532131. 27. $235.06. 28. $2540.89*. 29. -$98 35. 30. $280-91f. 1. $2616. 2. S17.14 SSOA 3. $2466. *"' 4. $11457.60. STOCK. 5. $830-5084. 6. .*,77.^2 ,",0 7. $4684.68-M. 8. $1092. 9. $8741.25. 10. $8602. 1 5-j^. 11. $6388.08 12. $4097. smmmm.- SES. 18:3J. 234375. : 17 : 1|. 328125. : 8}. H- i- L ANSWERS TO THE EXERCISES. W qr21b5. lbs. jr 18 lbs. qrs 23 lbs. qrs 5 lbs. 1 qr 23 lbs. qr 6 lbs. :erage. . $15,892. . $I76.93f. $I90.64|. 1206-7731 . , $9(0. $1532131. $235.06. $2540.89J. •$98 35. $280-91J. $8741.25. ?3o02.15-j£5.. $6388.08 $4097. \. 2. 3. 4. 5. 6. 7. $24.92. $127. $106.04. $438-5475. $886.15. $54-52725. $1901.25. 1. $140.25. 2. $196.80. 3. $103.84f. 4. $197-1329. 5. $135.03. 1. $25.13-X-. 2. $560968. 5. $59.1266. 4. $5-2475. 6. $4-3774. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. II. 12. Amount. $857-337. $1380.151. $767-5457. $814.6549. $995,072. $3341. 56 j. $1398.68. $1370.0866. $6t>:.50. $944-3327. $1045-0748, $3029-9447. 1. !?=482.40i. 2. $908.04. 3. $6i5.v3. 4. $829.71. 5. $484-9622. SIMPLE INTEREST. 8. 9. 10. 11. 12. 13. 14. 6. 7. 8. 9. 10. EXEIICISE I, $312. $134.9831. $375.63|. $674.88. $50.29|. $46095. $139.20. Exercise 2. $188.65. $45-5155. $138-3754. $42-6313. $142.44. Exercise 3. 6. $27-306. 7. $18-9899. 8. $26.59if. 9. $13.90. 10. $21.8 lyig. 15. $65-736. 16. $142.72J. 17. $155-682. 18. $55.82i-. 19. $59.40. 20. $186.82J. 11. $55-3588. 12. $210-8083. 13. $37.49§. 14. $1475658. 15. $60-2466. 11. 12. 13. 14. 15. $31.15ff. $11-1788. $27-345. $28-7345. $13.35|ff. COMPOUND INTEREST. DISCOUNT. Exercise 1. 6. $977.4246. 7. $034.77. 8. $1557.40. 9. $851.52. 10. $445.60. Interest. $116-737. $140-151. $67-1457. $130.6549. $75,072. $381.56i. $466 68. $370.0866. $61.50. $196.3327. $155-0748. $629.9447. 11. $2335 30. 12. $3387,01 13. $71-5284! 14. $13.2789. 15. $32.04. U8 ANSWERS TO THE EXEROISEg. 1. $93I-03/i4. 2. f970'8737. 3. 4. Exercise 2. f 247.4 1. fdl6'2962. 5. IGC9 C437, EQUATION OF PAYMENTS, !• 4-,^ months. 2. 6 1 months. 3. 8 ji moDihs. 4. 10^^ months. 5. 2^1 months. 6. 44 months. 7. Sjf^ months. 8. 8| moDihs. 1. 26 cents. 2. 460 pounds. 3. 128 pounds. BARTER. 4. $9.4039. 5. 2 cwi 12}? lbs. 6. 27V»3 Hia. ' ' '-; (ients. 9. 22 sheep. 6. PROFIT AND LOSS. J. $53 57. 2. $144. 1- HH percent. 2. 114 per cent. 3- 4|^^ per cent. 1. $2332.60. 2. $1030.08. 3. $1393.20. 1. 32ffi cents. 2. $2245 45 A. 3. $1840. " ' 3. 4. Exercise 1. $9.10. $12.60. EXEHCISE 2. 4. 4f « per cent. 5. 5| per cent. G. 81 per cent. Exercise 3. 4. $23-265. 5. $884.80. 6. $35.52. Exercise 4. 4. $169-64f, 5. $309.73 B1-, 6. $70-6535^1"' 5. $12.77^. 6. $95.85. 7. 6i\ per cent. 8- 7| per cent. 7. $232.50, 8. $294.30. 7. $27I304A, D' 2. A'9 6 B's - C's- 3. A's B's- C's - 4. A's g B's - ANSWERS TO THE EXERCISES. SIMI'LE PARTNERSHrP. 149 1. A's sliare$392-l5,^8 B's !f;5G!)'84-}.5l'^. 2. A's share $2;i!)0-60 ^JUO- B's $3 180-43 ,Wi! C's $2078-95 /iiJ.B- 3. A's gain $1181 25''^"' B's $975. C's $1593-75. D's $750. 4. A's loss $42i. B's $340. C's $935. 5. A's share $1622-081414, B's $424-25mfe C's $553 65^ft. 6. A's gain $2 1 95- |i|a B's $3064-88^. COMPOUND A's 8hare$108.62|ff. B's $182.1242^.. C's $122.24fg^. D's • " ■ ' 2. •$187.1 V,^. A's share $368.42 ,!^. B's $394.73if. C's $736.84,^. A's gain $1486.453^^ B's $2601. 29 „\. C's $23I2.25^f. A's gain $121i.53ii B'e $888.46,^3. A's loss $126-66^. B's $95. C's $158-331 A's share $962-83(21-. B's ^$1444-24^- C's $ 1 504-42 ^(<, D's $2888-49 ,a^l A's loss $3142-22f B's — r- $3647-224. C'8 $3310-55|, 10. A's share $3300. B's $2760. C's $36d0. A's share $2 155- 17.5* 9 . B's $2894-08.J7.|. C's $3448-27 M^'. II D's $4002-46:0-/, 8 3 12. A's gain $606-66«? B's $793-33^ PARTNERSHIP. 6. A's share $244. 02i4>!^. B'e . $209.16,^. C'8 $326.81-}^^. 6. A's Ices $209. 90f^. B's $279.87 ,Vff. C's — $400.22-ff g. 7. A's B's C's gain $87.0911. $93.J4i4. $1 19.75ff. S. A's sharp $1696 921^2 B's $1003.07V,V 1. 441. 2. 3375. 3. 256. 4. 5832. u. 6561. 6. 1024. 7. 262144. INVOLUTION. 8. 8.3521. 9. 537824. 10. 177I56I. 11. 729. 12 6084. 13. 2197. 14. 6859. 15. 16. 17. 18. 19. 20 6 V J • i4' f S fi 4-. 13651919. •a OX' m I. ANaWEBS TO THE EXERCISES. 0. 6. 7. 8. 9. 10. II. 12. 34. 2. 248. 3. 25'8069758. 4. 750-964712. 33'«81. 6031. 20.784. 2-47847879. 6-26498. 41-569219. imiuioe. •17. 1. 34. 2^.246. 3. 56. 4. 432. 5. 2436. 1. 375. 2. 23. EVOLUTION. Exercise 1. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. Exercise 2. 6. 1234. 7. 497.933859. 8. 86. 9. 179. 10- *. ^, f 11. 26-1. Exercise 3. 132. 5. 26. 12!. 6. 48. s> 'n> ft"' 6 15142259. •244948974. 1-62018517. 5-5. 23.7065391. 8-86002257. 12.062. 28 1917.04668. 1578. 90.6. 12. 3.65. 13. 23-45. 14. 10-3. 15. 34-2. 16. 38. 7. 32. 8. 19. DUODECIMAL xMULTIPLIGATION. Exercise 1. 1. 29 ft 8 in 3 lines. 2. 36 ft 2 in. 3. 38 ft 3 in 2 1. 4. 107ft II in 41. 5. 133 ft 6 in 8 1 6'" 6. 171 ft 5 in 11 14"' I. 33 ft in 9 1. 2 61 ft 4 in 4 L 3. 142 ft in 1 1. 4. 22 ft 7 in 3 I. 5. 187 ft II in 3 I. 6. 28 ft in 8 1. 7. 85 ft 3 in 6 1. 8. 288 ft 10 in .1 I 9. 78 ft 2 in 8 1. 10. 75 ft 5 in 7 I 6'" Exercise 2. 7. 68 ft 1 in 8 1 3'" 8. 96 ft 4 in 10 lines 9'" 1 9. 96 ft 9 in 5 1 4'i' ll"" 10. 170 ft 3 in 5 1 7i" 11. 550 ft II in 013'!' 12. 7704 ft 6 in 5 1 7"" 3"i" nil 11. 12. 13. 14. 15. 140 ft 8 in 8 1. 49 ft 1 in. 48 ft 5 in 9 1 41" 86 ft 3 in 7 1. 30 ft 6 in 4 1 4'" 16. 58 ft 9 in 4 1. 17. 155 ft 10 in. :!5ft U 111 2 1. 19. 100 ft 10 in 5 I 6'" 20. 1360 ft 5 in 8 1. IBS. 1 -i ' 259. 974. 517. 391. 257. )68. 3.65. 23-45. 10-3. 34-2. 38. ANSWERS TO THE EXBROISKS. 161 MISCELLANEOUS. , 7. 32. I 8. 19. ON. 8 1 3'ii 10 lines 9'" Hi"' 5 1 4"" II"" 5 I 7"' n 013"! n 5 1 7"" 3"" n 8 1. 9 1 4"' 7 1. 4 1 4"' 4 1. in. 1 2 1. in 5 1 6"" in 8 1. 1. $156.55. 2. $72.45 3. $548.48^. 4. $23.43^. 5. $1497 68. 6. $50,841. 7. $225.16. 8. 2cwt3qrs 196 lbs. 9. $88.09. 10. 8 lbs 2? oz. 11. 22152. 12. UHdays. 13. 1A\. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. •2,3-571428,-25, 75. 293. $1000. A's share $137. Olff. B's $78.98H-. 2,V 30. 31. 32. 33. 34. 35. 36. 37. 38. 31 m?. $789.42 ». 64. 73-,^- cents. 8J per cent. $204 70. 120 pounds. $60.48. 268 feet 5 in 4 1. A's share $1261. 72|f. B'o 5i734.56fA C's $803.70^4. 624. 2267 days 23 h 12 min 24 sec. 69 yds ^ nails. $2769. £741 : 2 : 6. 218i bushels. $24.00.08- 6040. 141.23ft. hhdds 9 gals 3 qts 39. 24517 1 gill. 40. $807.66.Jf. 41. $995.92^. 42. $536,461 43. $88.38. 44. 23. 45. $3706. 37^ 46. A's share $2202.35/AS7. B's $3024. C'6 $2021.04mg. $27.96. ^^ 39414 feet. $257.55 ,fi6>. 47 48. 49. 50. 51. 52. 53. 54. 55. 66. 57. 58. 59. 60. 61. 62. 63. 61 65. 66. 67. 68. 69. 70. 71. TO 73. 74. 75. .375,-671428,-54,-5. $54-5387i. $2896 33.4. $10167.60. 2 roods 20 sq per 20 sq yds 6 sq feet 84 sq inches. $61.41|. 8H .iionths. 22i? days. $152.71. $79.68^. $196.15A-. 4idays. $993.20. 742. $14.66'^. $7.7Ii. $1780.10. A's share $340.35-^. B's $255.56fi8. C's $234.07 AZj. 48|| bushels. 24. lO^f cents. •4, -875, -3, -8. $685.85. ■' 152 ANSWERS TO THE EXERCISES. ANSWERS TO EXERCISES ON METRIC SYSTEM. 9 10 11 12, 13. 14. 15. 16. 17. 1. 1795 centimes. 2. 17 francs 4 decimes 2 c. 3. 6907654 millimetres. 4. 7 decams 2 metres 4 decims 8 centims. 5. 6 myriams 4 kiloms 2 hec- toms 9 metres 7 decims 4 centims. 6. 9000 milligrammes. 7. 94703 milligrammes. 8. 2 kilogs 4 hectogs 9 grams 6 decigs 4 centigs 8 milligs. . 852 francs 5 centimes. . 66 myriams 3 kiloms 9 hectoms 2 metres 8 de- cims 7 centims 7 millims. 180 kilogs 4 hectogs d decags 7 grammes 2 decigs 2 centigs 8 mil- ligs 16 francs 8 d 5 c. 85 myriams 6 hectoms 6 decams 9 decims 3 mil- lims. 20 kilogs 6 hectogs I gram 5 decigs 7 miUigs. 1735 fr 2 d 3 c ; 2726 fr 7 d 9 c ; 8428 fr 2 d 6 c. 18 20 149 myriams 6 kiloms 7 hectoms 4 dreams 4 metres. 2245 myriams 1 kllcm 1 hectom 6 decams. 58 kilogs 8 hectogs 3 decags 3 grammes 7 de- cigs 6 centigs 5 milligs. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 418 kilogs 3 hectogs 7 decags 3 grammes 4 decigs 4 centigs. 138 francs 8 d 3 c. 416 francs 4 d 9 c. 19. 415 myriams 3 kiloms 5 hectoms. 138 myriams 4 kiloms 5 hectoms, 27 myriams 6 kiloms 9 hectoms. 199 kilogs 1 hectog 2 grams 2 decigs 3 centigs. 11 kilogs 5 hectogs 4 decags 2 grammes I decig 5 centigs 8 mil- ligs. 222 francs 3 d 2 c 440 francs 4 d. 225 francs 9 d 3 c. 194 francs 5 d. 2 deoags 4 grammes G centigs 4 milligs. 15 francs 5 d 9 c. 245 frs 9 d. 2J days. 129 frs 2 d 4 c. 150 frs 7 d 8 c. 193 frs 8 d 6 c. 46 frs 6 d 4 c. 55 frs 9 d 6 c. 74 frs 6 d 2 c. 31 frs 2d. 102 frs 9 d 6 c. 1072 frsSdOc. Amount 5248 frs 8 d. Interest 748 frs 8 d. THE END. 3ES. IG SYSTEM. 9gs 3 hectogs 7 s 3 grammes 4 3 4 centigs. 3S 8 d 3 c. 3S 4 d 9 c. •iams 3 kiloms 5 ns. 'iams 4 kiloms 5 ns. ams 6 kiloms 9 IS. s 1 hectog 2 grams ?s 3 centigs. [3 5 hectogs 4 2 grammes I > centigs 8 mil- s3 d 2 c, 3 4d. !9d3 c. 1 5d- 4 grammes G 4 milligs. 5d9c. !4c. 1 8 c. I6c. 4 c. 6 c. 2 c. 6 c. d6c. 48 frs 8 d. 8 frs 8 d. CONTENTS, Dellnitlons Numoration and Notation .'..'.....'!.'.'.'.!.*.*.'.'.'.*!!'.,'.' Numeration table '.!".'.*..!."!.'!!,"!' Old numeration table , .'.*.',**,'",'.','*".."!!!'. Exercises on numeration and notation .".".'.'.'.'.»!!'„'.*.*!.',*,*" Roman notation , , ^ * ' Simple addition ...,. .........!....!!'.['. ..,!7,..! Simple subtraction ,.,, '.'",'//",'.'.'", ".'.'.','.,', Simple multiplication '..".'.'V.'.V.'J!!',,.'.".'.*"." Multiplication table .!.'!!.'!!!!!!!*.".*."!]!"' To multiply by a number not greater than 12 !!.7.','.',i' .*.*'.'" To multiply by a composite number and by a number greater than 12 Simple division ,,,'!.'"..'.'.'".'. Short division '..**.'.' '..*.'.V.'..'!!!!![ '.!!!!!!!' To divide by a composite number...'. ,'.".!'..'!.'.','.'.",".','"' Long division , , !!!!.!!!!!!!* Tables of money, weights, and measures. .'.'.."*.'.".*!!!."'*.',**,'* Reduction of decimal currency ,....'.'.".' Reduction of money, weights arid measureB.*,*!.",*!!.','"" ""' Compound addition , , ,. [['" Compound subtraction !'.'.'. !'.!!!' '. Compound multiplication '..'.'...., .,.„",.. ".'.' Compound division ., , [ ','.','.'.'.'.'.'. Miscellaneous questions ',.'!!!!'...'.'.'.'.'.'!.* *.'.'.'."" ' Simple proportion ,.,,'.'.'.'.'/./."*".'.*.'."', ''.'.'."". Compound proportion ,. ..'..'.*.,'.'."',",'.',',"!.'."."" Greatest common measure '. „"".','.'.'.','. ",'.',','," Least common multiple '..'..'.""'.'.. Vulgar fractions, deflnitions, 4c '."..'.*.','."!!',.',".".'.*.' Reduction of vulgar fractions ....''.'.'.'.'.'.'..,,,', To reduce a fraction lo its lowest terms .",.','.".„'. m.","!!!^^' To reduce an improper fraction to a whole "or'mixed number To reduce a mixed number to an improper fraction.','".'.'.'.* To reducft .a r.nmpound fraction to a siropio fraction io reduce any number of fractions to equivalent fractions havmg a common denominator To reduce a complex fraction to a simple fraction.'.',',',',",",',',' Pag ft, I 5 7 8 9 10 li 14 17 18 19 20 22 22 24 24 26 30 33 36 39 41 46 51 51 58 60 61 63 64 65 65 65 65 66 67 li To reduce a fraction from one denominalion lo anollier Addition effractions Subtraction of fractions .'.'.'.'.'.".".'. '. Multiplication of fractions...'.*.',*.' Division of fractions .'.'", Decimal fractions, definitions,"&c*,'.".'. "" Numeration and notation of decimals ' '"' Addition of decimals ' Subtraction of decimalB .'..*.'.*.*.*.*.**.*.'.*.', ' ' Multiplication of decimals '.'.*.'. Division of decimals ....',*.'.'.! ' To reduce a vulgar fraction to'a'deci'mai'.* To reduce a finite decimal to its equivalent vii'lga'r 'fractio'n "^"gi/eXntr"..'"?:!.'!.!" "^ ""' "'«"°*"' To find the value of a given *decim'ai .'.. Proportion effractions ' Miscellaneous questions ,*.'.*.'.*.*.* ' ' "" Practice "' •"•••• Tare and Tret Commission, Insurance, Brokera«*e' Slock ^ Simple interest Compound interest .'..*.*.*.*.'. Discount Bquation of payments '.'.', Barter ' Profit and loss ,*.*!.'.*.'.*.*!!, Simple partnership ..'. *.' Compound partnership '„ Involution , Evolution..., .'.*'.!!!!!*..' Extraction of square root*.".*,".".'.'! Extraction of cube root ,*.' Extraction of roots in gene'rai". Duodecimal multiplication Miscellaneous questions Metric tables and exercises ...'. Mental arithmetic Answers to the exercises .' C7 68 69 69 71 72 73 73 74 75 76 76 77 78 78 79 80 81 82 82 86 87 89 90 93 94 96 97 98 101 103 104 105 106 108 no 113 115 122 125 13Q to another... I of another nominations ar fraction, of another 67 C8 (39 ()9 71 72 73 73 74 75 76 76 77 78 78 79 80 81 82 82 86 87 89 90 93 94 96 97 98 101 103 104 105 106 108 no 113 115 122 125 13Q