.^^>J^>. 
 
 IMAGE EVALUATION 
 TEST TARGET (MT-3) 
 
 k 
 
 // 
 
 
 
 ^/^/^y 
 < ^/%i 
 
 V. 
 
 f/. 
 
 4a 
 
 1.0 
 
 I.I 
 
 1.25 
 
 2.0 
 
 Ml, 
 
 1.8 
 
 14 11.6 
 
 Photographic 
 
 Sciences 
 
 Corporation 
 
 23 WEST MAIN STREET 
 
 WEBSTER, N.Y. 14580 
 
 (716) 872-4503 
 
 \ 
 
 Q 
 
 :1>^ 
 
 \ 
 
 :\ 
 
 '^% 
 
 
 
 KV^ 
 
 ;\ 
 
 
 pb"^' #^ 
 

 
 
 %■ 
 
 CIHM 
 
 ICI\/IH 
 
 s 
 
 Microfiche 
 
 Collection de 
 
 
 Series 
 
 microfiches 
 
 
 (Monographs) 
 
 (monographies) 
 
 vV 
 
 Canadian Institute for Historical Microreproductions / Institut Canadian de microreproductions historiques 
 
 H Aft 
 
 990 
 
Technical and Bibliographic Notes / Notes techniques et bibliographiques 
 
 The Institute has attempted to obtain the best original 
 copy available for filming. Features of this copy which 
 may be bibliographically unique, which may alter any 
 of the images in the reproduction, or which may 
 significantly change the usual method of filming, are 
 checked below. 
 
 Coloured covers/ 
 Couverture de couleur 
 
 D 
 
 I I Covers damaged/ 
 
 D 
 
 Couverture endommag^ 
 
 Covers restored and/or laminated/ 
 Couverture restauree et/ou pellicul6e 
 
 I I Cover title missing/ 
 
 Le titre de couverture manque 
 
 □ Coloured 
 Cattes g6( 
 
 maps/ 
 ographiques en couleur 
 
 □ Coloured ink (i.e. other than blue or black)/ 
 Encre de couleur 
 
 D 
 
 (i.e. autre que bleue ou noire) 
 
 Coloured plates and/or illustrations/ 
 Planches et/ou illustrations en couleur 
 
 □ Boun 
 Relie 
 
 Bound with other material/ 
 avec d'autres documents 
 
 
 
 D 
 
 n 
 
 Tight binding may cause shadows or distortion 
 along interior margin/ 
 
 La retiure serree peut causer de I'ombre ou de la 
 distorsion le long de la marge interieure 
 
 Blank leaves added during restoration may appear 
 within the text. Whenever possible, these have 
 been omitted from filming/ 
 II se peut que certaines pages blanches ajouties 
 lots d'une restauration apparaissent dans le texte, 
 mais, lorsque cela etait possible, ces pages n'ont 
 pas ete filmees. 
 
 Additional comments:/ 
 Commentaires supplementaires: 
 
 L'Institut a microfilm^ le meilleur exemplaire qu'il 
 lui a et6 possible de se procurer. Les details de cet 
 exemplaire qui sont peut-£tre uniques du point de vue 
 bibliographique, qui peuvent modifier une i"iage 
 reproduite. ou qui peuvent exiger une modification 
 dans la methode no.-male de f ilmage sont incfiques 
 ci-dessous. 
 
 □ Coloured pages/ 
 Pages de couleur 
 
 □ Pages damaged/ 
 Pages endommagees 
 
 □ Pages restored and/or laminated/ 
 Pages restaurees et/ou pellicul^es 
 
 Pages discoloured, stained or foxed/ 
 Pages decolorees, tachetees ou piquees 
 
 □ Pages detached/ 
 Pages detachees 
 
 I I Showthrough/ 
 1 y I Transparence 
 
 Q Quality of print varies/ 
 Qualite inejale de I'impression 
 
 nuous pagination/ 
 Pagination continue 
 
 nConti 
 Pagini 
 
 □ Includes index(es)/ 
 Comprend un (des) index 
 
 Title on header taken from:/ 
 Le titre de Ten-t^te provient: 
 
 □ Title page of issue/ 
 Page de titre de la I 
 
 □ Caption of issue/ 
 Titre de depart de la livraison 
 
 □ Masthead/ 
 Generique (periodiques) de la livraison 
 
 ivraison 
 
 This item is filmed at the reduction ratio checked below/ 
 
 Ce document est filme au taux de reduction indique ci-dessous. 
 
 10X 14X ipv. 
 
 ■>-)v 
 
 Z6X 
 
 30X 
 
 J 
 
 12X 
 
 16X 
 
 20X 
 
 24 X 
 
 28X 
 
 3 
 
 22X 
 
lu'il 
 cet 
 de vue 
 
 e 
 tion 
 
 les 
 
 The copy filmed here has been reproduced thanks 
 to the generosity of: 
 
 IMational Library of Canada 
 
 The images appearing here are the best quality 
 possible considering the condition and legibility 
 of the original copy and in keeping with the 
 filming contract specifications. 
 
 Original copies in printed paper covers are filmed 
 beginning with the front cover and ending on 
 the last page with a printed or illustrated impres- 
 sion, or the back cover when appropriate. All 
 other original copies are filmed beginning on the 
 first page with a printed or illustrated impres- 
 sion, and ending on the last page with a printed 
 or illustrated impression. 
 
 The last recorded frame on each microfiche 
 shall contain the symbol — ♦► (meaning "CON- 
 TINUED"), or the symbol V (meaning "END"), 
 whichever applies. 
 
 Maps, plates, charts, etc., may be filmed at 
 different reduction ratios. Those too large to be 
 entirely included in one exposure are filmed 
 beginning in the upper left hand corner, left to 
 right and top to bottom, as many frames as 
 required. The following diagrams illustrate the 
 method: 
 
 L'exemplaire film6 fut reproduit grSce d la 
 g6n6rosit6 de: 
 
 Bibliothdque nutionale du Canada 
 
 Les images suivaraes ont 6tu reproduites avec le 
 plus grand soin, compte tenu de la condition et 
 de la nettet6 de l'exemplaire film6, et en 
 conformity avec les conditions du contrat de 
 filmage. 
 
 Les exemplaires originaux dont la couverture en 
 papier est imprim6e sont tilm6s en commenpant 
 par le premier plat et en terminant soit par la 
 dernidre page qui comporte une empreinte 
 d'impression ou d'illustration, soit par le second 
 plat, selon le cas. Tous ies autres exemplaires 
 originaux sont film6s en commenpant par la 
 premidre page qui comporte une empreinte 
 d'impression ou d'illustration et en terminant par 
 la dernidre page qui comportu une telle 
 empreinte. 
 
 Un des symboles suivants apparaitra sur la 
 dernidre image de chaquo microfiche, selon le 
 cas: le symbole — ^ signifie "A SUiVRE ", le 
 symbole V signifie "FIN". 
 
 Les cartes, planches, tableaux, etc., peuvent §tre 
 filmds d des taux de reduction diff^rents. 
 Lorsque la document est trop grand pour Stre 
 reproduit en un seul clich6, il est film6 d partir 
 de Tangle supdrieur gauche, de gauche d droite, 
 et de haut en bas, en prenant le nombre 
 d'images ndcessaire. Les diagrammes suivants 
 illustrent la mdthode. 
 
 22-x. 
 
 1 
 
 2 
 
 3 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
^^^ 
 
 
 A 
 
 B^ National Library Bibliotheque narionaie 
 ■ T of Canada du Canada 
 
CANADIAN 
 
 ARITHMETIC 
 
 IN DECIMAL CURRENCY 
 
 WITH METRICAL TABLES 
 
 FOR THE USE OF SCHOOLS 
 
 BY 
 
 J. H. RICHARDSON 
 
 APPROvatJ BIT THE COUNCIL OF PUBLIC INSTRUCTION 
 IN OCT. 1870 
 
 i 
 
 QUEBEC 
 
 PhinTed and published dy a. GoTi & C 
 1871 
 
;,5^^Bffi(f*K;j 
 
 sm^^^ 
 
 r »>'<i!efeF*''4'-:>j!&» '.'-- 
 
 a A 103 
 85 
 
 Entered according to Act of Parliament of Canada, 
 in the year 1871, by Augustin Cote, at the office of 
 the Minister of Agriculture. 
 
 \ 
 
 •iiwii^^^^m^mm^m.m 
 
PREFACE. 
 
 f Canada, 
 e office of 
 
 
 The object of the following treatise may be expressed in one 
 
 • ZT\~^J''''^\ The author has aimed to make the work 
 
 practically useful : with this view, the rules are expressed 
 
 clearly and concisely, illustrated by many examples which are 
 
 carefully explained, and followed by numerous exercises, which 
 
 will afford the pupil that practice by which alone expertness 
 
 and accuracy in the managemonl of; numbers can be obtained 
 
 and by which the rules can be impresst-d on (ho memory of the 
 
 pupils. It was thought bett to leave the explanation of most 
 
 of the rules to the teacher with the blackboard; and as im 
 
 pressions made on the mind by seeing, are more important and 
 
 as ing than those made by any of the other senses, the 
 
 instructor or educator should make a constant use of this 
 
 acuity in communicating bis instruction*. It is, however. 
 
 thought that the rules are so clear, and the explanations of the 
 
 proS'empIo^d ' ^ ^ ' ''"^'^ '^*" ^'''^^ comprehend the 
 Of the exercises, some are proposed in purely abstract terms, 
 be ng mtended merely to afford practice to the learner in the 
 rules; and many 01 the exercises will be found to furnish im- 
 portant facts in geography, history, &c., both interesting and 
 instructive. The exercises are graduated so as to form a pro- 
 gressive course of instruction adapted to the different classes in 
 aschoo ; and miscellaneous questions are scattered through 
 the work, which are^recommended to be used as exercises when 
 taking a review of the rules already mastered 
 
 P J, A^Ik '"'' ^""^^"^ .°^ "°"^y' ^^'«hts and measures, with 
 exeroises thereon, are inserted at the end of the work' and 
 
 !^hn„r-fK'^^''°™,'"^",'^^'*.'° introduce the system into 'their 
 
 l^:Z:^S^o7^.'' ''''''''' ''^ iard throughout 
 
 nf ?hrh^ii?'''"^'f ?.'" /"™u^' arithmetic are Inserted at the end 
 of the book; and the teacher is recommended to begin at as 
 
 stul'whToh wi?lT'''r' 'r'''"''' }i}' P"P"« *" th'« '"^P«rtnt 
 SS'.oTi ? T r ^% '^°""'^.^ """'^ ^"^°'^"^ "I'^ans of cultivating 
 the intellectual faculties of his scholars and improving their 
 reasoning powers. *»"Fiuviug lueir 
 
 cnJJ'H f™^|f '"s ^re all new ; and no exertions have been 
 spared by the author to ensure the strictest ap.c„r..,ny [p ZJZ 
 part of the work, "^ n.^.cr^ 
 
 J. H. RICHARDSON 
 
•? 
 
 iBt June, 1870. 
 
 To Mr. JOSEPH RICHARDSON, 
 
 School Teacher, St. Dunstan. 
 
 Dear Sir, 
 
 I have found in your work a larger amount of 
 information on the fundamental rules of Arithmetic, suited to 
 the wants of schools, both as regards a text book adapted to 
 the capacities of children, and as an efficient means of lessening 
 the labour of the teacher, than in any other work on the same 
 subject. 
 
 I commend your Arithmetic most heartily to the notice of 
 teachers and others, interested in the education of children and 
 youth, and I wish your excellent work a widely extended 
 circulation. 
 
 With best wishes, 
 
 I am, dear Sir, 
 
 Yours truly, 
 
 /• . F. E. JUNEAU, 
 
 Inspector of Schools . 
 
 I 
 
•J 
 
 1870. 
 
 amount of 
 , suited to 
 adapted to 
 f lesseniug 
 1 the same 
 
 » notice of 
 
 lildren and 
 
 extended 
 
 of Schools. 
 
 KICHARDSON'S 
 
 CAMDIAN ARITHMETIC 
 
 NOTATION AND NUMERATION. 
 
 Arithmetic is the science which explains the properties, and 
 shows the uses of numbers. 
 
 Numbers are expressions or characters that represent u.i. or 
 more things. 
 
 Notation is the art of expressing numbers by characters. 
 
 Numeration is the art of reading numbers expressed by 
 characters. 
 
 Ten characters, called figures, are used for the expression of 
 numbers. 
 
 The figures used In writing nv.mbers are : I, 2, 3, 4, 5, G, 7 
 8, 9, 0, called, respectively, one. two, three, four,' fl've' six' 
 seven, eight, nine, and zero, cipher, or naught. 
 
(5 NOTATION AND NUMERATION. 
 
 Numbers higher than nine are expressed by two or more of 
 these figures together, thus . 
 
 Ten 
 Eleven 
 
 Twelv'j 
 
 Ttiirleen 
 
 Fourteen 
 
 Fifteen 
 
 Twenty 
 
 Twenty-three 
 
 One hundred and ten 
 
 One hundred and seventy 
 
 Two hundred and nine 
 
 Two hundred and twenty-six 
 
 is written 
 
 10. 
 11. 
 \-2. 
 13. 
 14. 
 15. 
 20. 
 231 
 110. 
 
 no. 
 
 209. 
 226. 
 
 When a number consists of several Hgures, the first figure on 
 the right hand is called the units' figure, the second figure from 
 the right hand the tens' figure, the third figure from the right 
 hand the hundreds' figure, the fourth figure from the right hand 
 the thousands' liguf*?, 4q. iT/ T 
 
 The cipher or zero alone is of no value ; but when used with 
 other figures, it changes their value. Thus, the figure 6 alone 
 denotes 6 ; but by annexing one cipher, il becomes 60 ; by an- 
 nexing two ciphers, it becomes 600, Ac The figures 65 denote 
 sixty-five ; but by inserting a cipher between, the value is 
 changed to 605. 
 
 To facilitate the reading of numbers expressed by several 
 figures, they are divided into periods of three figures each, 
 beginning at the right hand. The first period of three figures 
 on the right hand is called units, the second period thousands, 
 the third period millions, the fourth period, billions, the fiah 
 period trillions, and so on, according to the following :— 
 
 3 
 
 .2 
 
 .S o 
 3 ^ 
 era 
 
 3 
 
 en 
 
 •a 
 
 t. o r:3 
 c g e 
 
 WHO" 
 
 a 
 o 
 
 g 
 '5 
 
10. 
 
 II. 
 
 V2. 
 13. 
 
 14. 
 
 15. 
 
 20. 
 
 23. 
 110. 
 170. 
 209. 
 226. 
 
 NOTATION AND NUMERATION. 
 NUMKRATFON TAni,E. 
 
 11 
 
 a 
 .2 
 
 c o 
 3 = 
 
 £ O 
 
 3 33 
 
 in 
 
 C 
 
 o 
 3 
 
 c 
 
 ■a 
 
 &• 'E 
 
 1^ 
 
 -3 
 cri D 
 
 3 3 
 
 S 3 
 
 c 
 o 
 
 ■3 — 
 
 I/> 
 
 C 
 
 o 
 
 rr en 
 
 «-H .2 
 o ^ 
 
 3 
 O 
 
 O 
 en 
 
 ■S -i 
 
 CO 
 
 e 3 
 
 s § 
 
 O 33 
 
 - . -^ 3 
 
 O C t. o 
 
 3 — S 3 
 
 D .~ .3 (D 
 
 ■a 
 
 a 
 
 ? go 
 
 5 "3 
 
 ■s § 
 
 , to 
 
 ^ 3 
 
 2 «■ 
 
 tn j3 -a 
 
 3 t, o 
 
 O XJ 
 — 3 
 3 
 
 3 "3 
 
 a 
 
 •r r- en ♦J 
 353-= 
 
 -3 Q^ C 
 
 21,20,19,18,17,16,15,14,13,12,11,10,9, 8, 7,6, 5, 4,3, 2, I, 
 
 m 
 
 a 
 o 
 
 3 
 
 '3 
 O 
 
 en 
 
 C 
 
 o 
 
 73 
 (0 
 
 o 
 
 ^ 
 
 en 
 
 n 
 I 
 
 c 
 o 
 
 en 
 
 3 
 
 3 
 o 
 
 H 
 
 3 
 
 The periods after quintillions are called sextillions, septillions. 
 octillions Ac but It IS seldom necessary in actual practice to 
 express numbers exceeding millions. 
 
 of the'^^^eriUds"""'^"'^^ '' '^ necessary to remember the names 
 
 Thus in reading h<. .expression 472,536,000,704,006, by 
 liv ding the number mto periods of three figures each we find 
 that there are live periods, the tiflh jieriod from the right hand 
 being four hundred and seventy-two trillions, the fourth five 
 
 liPd nl-r^ ""'"'^-^^^^ ^"'"g "° millions, the 
 
 E E.Tr\ " T''T'''\ i*y '^•1''"^^^' '" ^he second period we 
 ha^e seven hundred and four thousand, and in the first period 
 SIX. I he whoe ,...mher is therefore read, four hundred and 
 seventy-two trillions, five hundred and ihirty-six billions seven 
 hundred and four thousaud and six. 
 
 „PH5L"I'f^M°'^ ^'r" ^^o^^^y "•''"ch numbers are divided into 
 periods of three figures each, is that which is employed by the 
 

 8 
 
 NOTATION AND NUMERATION. 
 
 French and ItalmriH. It is strongly ncoinmcnded for its sim- 
 plicity, nriil it htts hof^n mloptcH in sonic EnKlish works. Fn 
 most Enf,'lish works however, tlio periods arc made to consist 
 of six tlgnrcs each ; and as they have the same names as thoio 
 in thetahic given ahove, ^thonsands however heing hmiled to 
 three places), tlie niles given above will he aiiplicable in this 
 method, if the periods are made to consist of six figures each, 
 instead of three, and the second period be called millions, the 
 third billions, Ac, as in the following lalde. The answers to 
 the exercises are given according to both methods. 
 
 OLD NCMERATION TABLE. 
 
 IV. Trillions. 
 
 III. Billions. 
 
 II. Millions. 
 
 I. Units. 
 
 S Hundreds of thousands of trillions. 
 
 w TciiH of thousands of trillions. 
 
 j3 Thousands of trillions. 
 
 ^^ Hundreds of trillions. 
 
 p Tons of trillions. 
 
 w Trillions. 
 ' S Hundreds of thousands of billions. 
 ^ Tons of thousands of billions. 
 
 S Thousands of billions. 
 
 tn Hundreds of billions. 
 
 *■ Tena of billions. 
 
 ^Billions. 
 
 « Hundreds of thousands of nii'Iicn:. 
 
 M Tens of thousands of million?, 
 p Thousands of iLillions. 
 ,<a Hundreds of millions. 
 
 »Tens of Millions. 
 
 ,~*Millions. 
 
 < Hundreds of thousandi. 
 
 " Tens of thousands. 
 
 -'''Thousands. 
 
 -"Hundreds. 
 
 ,'«Ten8. 
 
 >- Units. 
 
 2. 1 
 
 3. ! 
 
 4. i 
 
 5. 5 
 
 6. ' 
 
 7. i 
 
 8. 5 
 
cd Tor its sim- 
 h works. In 
 lade to consist, 
 1(1 mes as thoio 
 ing limit«(l to 
 licnblt) in this 
 IlK'iros tJQch, 
 I inillions, the 
 ho answers to 
 i. 
 
 of trillions. 
 Uiona. 
 
 of billions, 
 lions. 
 
 )f million: 
 Uicn?. 
 
 
 NOTATION AND NUMERATION. 9 
 
 EXEHCISE 1. 
 
 Write down in words or name tho following numbers •— 
 
 1. 27 ; G3 ; 208 ; 305 ; 750 ; 932 ; 7605. 
 
 2. 5900 ; 10100 ; 25002 ; 200090 ; 402000 
 
 3. 0300200 ; 27000042 ; 600007000 ; 123456789 
 
 4. 5OI23()()()S0 ; 702300000007 
 
 5. 2600970400000 ; 900460000070004 
 
 0. 70'. 00006030002000; 500702300001 
 
 7. 6009004003002005 ; 2002002020 
 
 8. 2714683529123456742. 
 
 To write numbors in figures :— 
 
 /?uie.— Beginning ni the loft hand side, place each significant 
 llgure in its corresponding period, and fill up any vacant places 
 that may occur in any period with ciphers. 
 
 ExAMi'LP— \yrite in figures the number thirty-seven millions' 
 seven thousand and nine. * t-ujuuuons 
 
 f)nT'/'^,.'-'T '""''"'' '^',""°' "'" ^''''°"'l s-^ven thousand, and the 
 third thirty-seven millions, therefore wo write two cii)hers in 
 
 iumS S7009 ^^"^ '" ^^' '"'""'^ ^^ "^^''^ ^' °'^"^'" ^^^ 
 
 EXKRCISE 2. 
 
 Write down tho following expressions in figures :— 
 
 1. Seventy four. 
 
 2. Two hundred. 
 
 3. Seven hundred and nine. 
 
 4. Two thousand and sixtv-seven. 
 
 5. Four thousand and two'. 
 
 6. One thousand eight hundred and sixty-nine 
 
 7. Throe thousand and six. 
 
 8. Nine thousand and sixty. 
 
 9. Five thousand seven hundred ana two 
 
 0. Fifteen thousand two hundred and thirty. 
 11. Ihirty-nino thousand and seventy-four 
 2. Six hundred and four thousand and nine 
 
 eHt ""'''"^"^ *^'^"^y thousand nine hundred and 
 
 14. Two hundred and four millions seven hundred and 
 sixly-hve thousan.l seven hundred and ninety-two 
 
 15. Ninety-seven billions six millions and thirty-four. ' 
 
 in. , wo ftuiiGiiH and scvcnty-uiao 
 
 *^" andVour"'^'*''^ ^'"'""^ '"'""'^ ™"'''"^ '"°"'' *ho»8a"d 
 
10 
 
 NOTATION AND NUMERATION. 
 
 M 
 
 18. Sixteen billions sixteen millions sixteen thousand and 
 sixteen. 
 
 on ^wenty-four trillions seven millions and ninety-six. 
 
 ^0. Ihree hundred and sixty-live trillions two hundred 
 and forty-seven billions six hundred and thirty-nine 
 millions live hundred and seventy-three thousand six 
 hundred and ninety-four. 
 
 In Roman notation seven letters are used which with their 
 values are : 
 
 I.- 
 V.- 
 X. 
 L. 
 
 ■ One. 
 
 Five. 
 Ten. 
 — Fiftv. 
 
 C- 
 D. 
 M. 
 
 One hundred. 
 Five hundred. 
 One thousand. 
 
 Other numbers are expressed by combinations of these letters. 
 When a letter is repeated its value is repeated, but no letter 
 should be repeated more then three times. 
 
 When a letter of a lower value is written after one of a 
 higher, Uieir values are added, and their sum is the value of 
 the whole. 
 
 When a letter of a lower value is written before one of a 
 iughor, their values are subtracted, and the dilference is the 
 value of the whole : thus. 
 
 400. 
 
 .^00. 
 
 600. 
 
 700. 
 
 800. 
 
 900. 
 1000. 
 2000. 
 3000. 
 3500. 
 MDCGCLXX.- 1870. 
 
 ■ — ■ . I 
 
 A dash placed ov^r a number consisting of one or more 
 letters, multiplies its value by 1000. 
 
 Thus GLX.=160, but GLX.=1 60000. 
 Exercise 3. 
 
 Express the following numbers in fi^rures : 
 IV, XIV, XX. VIII, XVI, XLV, LXXXf, CCCXVIt 
 DqXLVni,^GCG, CDVII, DLIV, GMXII, MGXX, WMDCCG,' 
 MD, XL, LXXX, XM, XLMMGXXVII, MM, VlT, MXVIf, 
 VMMXLII, MDCGGLXVIII. 
 
I.N. 
 
 sen thousand and 
 
 nd ninety-six. 
 ns two hundred 
 d and thirty-nine 
 rce thousand six 
 
 vhich with their 
 
 - One hundred. 
 
 - Five hundred. 
 
 - One tiiousand. 
 
 IS of these letters. 
 ted, but no letter 
 
 after one of a 
 m is the value of 
 
 before one of a 
 diiference is the 
 
 — 400. 
 
 — ."iOO. 
 
 — 600. 
 
 — 700. 
 
 — 800. 
 
 — 900. 
 
 — 1000. 
 
 — 2000. 
 
 — 3000. 
 
 — 3500. 
 
 ID — 
 GCLXX.- 1870. 
 
 of one or more 
 
 S[. CCCXVII, 
 XX, MMDGCG. 
 
 , VlT, MXVIf, 
 
 SIMPLE ADDITION. 
 Exercise 4. 
 
 u 
 
 Write tho following numbers in Roman Numerals • 
 n2t' f •^'' ^^- '04, 692, 573. 896, 365, 144 5270 9650 7408 
 9005 2560, 10724. 49650, 50070, 78964 42763 81796 802764* 
 453000, 792800, 1702500, 3742508. ' ' '^^' 
 
 SIMPLE ADDITION. 
 
 Simple Addition teaches how to add toffpfhpr i-am «,. ™«»„ 
 quantities of the same denomination so'af'S'mS LTnt 
 
 The quantities to be added are called the addends thn 
 ?heTr sii^"'' '' '^""' '' '''' ^''^"<^« ^^k«" together ?s called 
 
 «,h^?f >^"»+i^"^^^^^".*^'-"^"^s that the quantities between 
 which It stands are to be 3d together thiiQ 9 j. 7 »i;„r- o 
 and 7 added together are L '''^^^^^^' thus 2 + 7 that is 2 
 
 The sign = denotes that the quantities between which it 
 f ?s"equ:rtor ' as 3 + 2 + 4 = 9 that is the sum Sf it and 
 ADDITION TABLE. 
 
 2 and 
 1 are 3 
 2—4 
 
 3 — 5 
 
 4 - 6 
 
 6 — 7 
 6-8 
 
 7 ~ 9 
 
 8 — 10 
 9-11 
 
 10 — 12 
 U — 13 
 12 — 14 
 
 3 and 
 1 are 4 
 2—6 
 3—6 
 
 4 and 
 1 are 6 
 2—6 
 
 3 — 7 
 
 6 and 
 
 1 are 6 
 
 2 - 7 
 
 6 and 
 
 1 are 9 
 
 2 — 10 
 
 3 — 8 3 — 11 
 
 9 and 
 1 are 10 
 
 12 and 
 1 are 13 
 
 4 — 7 4 — 8 4- 9 4 — 12 
 
 6 — 81 6 — 9j 5 — 10 
 6 — 9l 6 — 10 6 — 11 
 
 7 — 10 
 
 8 — 11 
 
 9 — 12 
 10 — 13 
 
 r - 11 
 
 8 — 12 
 
 9 — 13 
 
 7 — 12 
 
 5 — 13 
 6—14 
 
 7 - 16 
 
 8 — 13 8 — 16 
 
 9 — 14 
 
 11 — 14JI1 — 15 
 
 12 — 16 12 — 16 
 
 10 — 14|lO — 15 
 11 — 16 
 
 2 - 11 2 _ 14 
 
 3 — 12 3 — 16 
 
 4 — 13 4 — 16 
 
 6 — 14 6 — 17 
 « — 16 6 — 18 
 
 7 — 16 7 — 19 
 
 8 — 17 
 
 9 — 18 
 
 9 — 17 
 
 10 — 18J10 — 19 
 
 11 — 191:1 — 20 
 12 — 17JI2 — 20 12 — 21 
 
 8 — 20 
 
 9 — 21 
 
 10 — 22 
 
 11 — 23 
 
 12 - 24 
 
12 
 
 SIMPLE ADDITION. 
 
 I ' 
 
 Pupils should be continued at the above addition table and 
 similar exercises until able to add with facility ; for without 
 practice in some such exercises the operation will be found to 
 be tedious and difflcult. 
 
 Rule. 1. Place the quantities to be added below one another 
 so that units will ^tand under units, tens under tens, hundreds 
 under hundreds, dec. 2. Then commencing at the right hand 
 side, add together from the bottom the figures \n the units 
 colnmn ; if the sum does not exceed nine set down the figure ; 
 3. But if the sum exceeds nine set down the right hand figure, 
 and carry the remaining figure or figures, which is the number 
 of tens in the number, to the next column ; because ten in any 
 column is equivalent only to one in the column immediately to 
 the left of it. 4. Proceed in the same manner with each coluam 
 to the last, the sum of which set down in full. 
 
 6.- 
 
 EXAMPLE. 
 
 724 
 
 40 
 
 151 
 
 742 
 
 Add together 724, 40, 151, and 742. 
 
 First we arrange the quantities so that units 
 are under units, tens under tens. Ac. Then 
 adding together the figures in the first column 
 — ; — we set down 7 their sum under the units co- 
 
 1657 sum lumn, the sum of the second column is 15, we 
 
 th'-refore set down 5, the right hand figure and 
 
 carry 1 to the next column, the sum of which 
 with I added to it is 16, which is set down in full. 
 
 Proof. 1. Bogin at the top and add the several columns 
 downwards, which should give the same result as by the rule, 
 or, 
 
 2. Add together all the quantities except that in the top line, 
 then to their sum add the quantity in the top line ; and if the 
 resL.!t is the same as that obtained by the rule the work may be 
 considered correct. 
 
 
 
 EX£RCISES. 
 
 
 
 1. 
 
 3. 
 
 3. 
 
 4. 
 
 6. 
 
 7324 
 
 2706 
 
 64736 
 
 928764 
 
 5316742 
 
 8orr 
 
 312 
 
 17;!4 
 
 236 
 
 7654321 
 
 2430 
 
 8964 
 
 83965 
 
 rsfi.sft 
 
 8978 
 
 3607 
 
 2106 
 
 27 
 
 626436 
 
 27836 
 
 10.— 
 
 I 
 
 i 14. Add t( 
 ; 15. Add 1 
 t906vds. : 7; 
 ] 16. Find 
 ff 87568 + c 
 ;s 17. Find 
 72564902 + 
 • 18. Find t 
 ^ 2463 + 3£ 
 19. Find t 
 ,786 + 2794 ■ 
 ^ 20. Add t 
 line thousai 
 and fin,y-sev( 
 isixty-eight. 
 
 21. Add 1 
 leventy-four 
 lUndred and 
 iixty-five ; fc 
 >ev6n thousa 
 
SIMPLE ADDITION. 
 
 13 
 
 lition tfible and 
 ty ; for without 
 ivill be found to 
 
 ow one another 
 tens, hundreds 
 the right hand 
 es \n the units 
 iwn the figure ; 
 jht hand figure, 
 1 is the number 
 ause ten in any 
 immediately to 
 th each column 
 
 IS so that units 
 ms. Ac. Then 
 he first column 
 ir the units co- 
 lumn is 15, we 
 land ligure and 
 sum of which 
 i. 
 
 sveral columns 
 as by the rule, 
 
 in the top line, 
 le ; and if the 
 e work niay be 
 
 6. 
 
 6316742 
 
 7654321 
 
 897S 
 
 27806 
 
 6. — pounds. 7.— tons. 
 
 9264 746 
 
 1835 i)67 
 
 7409 843 
 
 7863 662 
 
 6298 479 
 
 6314 843 
 
 6701 247 
 
 8.— yards. 9,— bueheli. 
 
 729 3906 
 
 463 9678 
 
 397 2847 
 
 866 3964 
 
 279 1868 
 
 768 2547 
 
 496 9870 
 
 10. — inches. 
 9274 
 3768 
 9ft68 
 2374 
 4680 
 7531 
 9246 
 8218 
 4667 
 5108 
 3742 
 6938 
 2714 
 2583 
 9673 
 6678 
 6013 
 6724 
 1896 
 
 11. — days. 
 829 
 766 
 358 
 902 
 631 
 790 
 642 
 812 
 643 
 678 
 109 
 367 
 429 
 681 
 432 
 667 
 198 
 268 
 937 
 
 12. 
 
 -miles. 
 872 
 409 
 876 
 693 
 870 
 365 
 742 
 964 
 678 
 369 
 472 
 896 
 759 
 804 
 968 
 247 
 964 
 678 
 964 
 
 13,— feet. 
 9864 
 6957 
 8972 
 4669 
 8729 
 4596 
 9872 
 4658 
 2907 
 6784 
 6972 
 6578 
 9834 
 6786 
 9672 
 6584 
 9327 
 4686 
 9307 
 
 1869 lbs. ; 9724 lbs. 
 ; 6002 yds. ; 28 yds. ; 
 
 ; 14. Add together 7642 lbs. ; 9763 lbs ■ 
 , 15. Add together 2479 yds. ; 248 vds' 
 Doe yds. : 7592 yds ^ 
 
 < l^vJ'"*^ *''^ S""i of 90068 -I- 742 4- 96742 4- S7qfiq J_ 07/ 
 H- 87568 + 93275 -I- 87563. "^^ -^ >'0'4>i + 87963 + 974 
 
 17. Find thp sum of 2796824 + 87073064 -I- onTnARno _i_ 
 72564902 + 78569204 + 3041 63874 + 987653792 + 749 sS "*" 
 
 18. Find the sum of 9248 + 6702954 1^48 X TS^Ja?,? oA^,/ n 
 #f 2463 4-3964872 + 1 8978 + 924641 + 365 + ^'^^^ + ^^"^^ 
 
 19. l<md the sum of 9874 4- 69481 i? -l is/. _l tn-r-i , «« . 
 '86 + 2794 + 18965 + 742917 + 97849^8 "^ ''''' + '' + 
 
 . lU. Add together two thousand four hundred anrt <i,^vJ'r, ■ 
 ^me thousand eight hundred and sixtyS, ;7our thouSnd 
 
 ^Jn'f^r"^ together forty-six thousand nine hundred anrl 
 peven thousand two hundred an. ^ »ijirty-niae. ' ^' 
 
14 
 
 SIMPLE SUBTRACTIO^f. 
 
 i I 
 
 ill 
 
 22 Arid together eight thousand eight hundred and eightv- 
 eigh ; nine thousand and ninety-nine ; seven thousand seven 
 hundred and seven ; six thousand six hundred and sixty • five 
 hundred and ninety-eight; nine thousand nine hundred and 
 ninety-nine ; seventy-six. 
 
 r,ino h^'^H '98^^'?'^''. s'^'y thousand and sixty ; nine thousand 
 nine hundred and ninety ; eighty-seven tiiousand seven hundred 
 and ninety-four ; fifty-two ; tiiree hundred and seventy-nine • 
 seven hundred and four thousand seven hundred and four ' 
 ninety ; seventy-seven thousand seven hundred and seventv- 
 seven ; six hundred and forty-eigat. =cvcniy 
 
 24. The populations of the countries of North America are 
 Russian America sixty thousand, Danish America ten thous- 
 ?t" -f' A a. America three millions five hundred thousand ■ 
 united htates thirty-one millions five hundred thousand' 
 Mexico seven millions five hundred thousand ; Central America 
 two millions five hundred thousand ; and the West India 
 
 wtle poinXiSi;' J""' ""^ '""'"-^^ ^'^""^^"^ ' ^^^^ ^« ^l- 
 *n!^A ^ Zf"^" '■'^'^6'ves for goods sold on monday $72 ; on 
 Sh ""Lf^^' .°" woJ"esday $113; on thursday |68 ; on 
 in thJ week ^ ^" Saturday $8C ; what amount did he receive 
 
 rr^rL^ 'S'l?'^'' "'''^ 9f6 bushels of turnips the first three 
 ^Is n«,° '\l ^ff'i, 'I" ^"'*"^'' ^^'^ ««'^°»d three months ; 
 748 busho 3 the third three months ; and .S97 busiiels the last 
 thnje months ; how many bushels did he sell in the year ■' 
 ^„; f;8«n':'3inan travelled 180 miles by steamboat on mon- 
 lay 114 miles by railroad on tuesday ; and 27 miles on 
 horseback on Wednesday ; how many miles did ho travel in 
 
 hand si 
 from th( 
 any figi 
 add ten 
 .to the I 
 one to tl 
 we inert 
 Js the sa 
 
 Proof 
 
 jbers, an 
 I consider! 
 
 ? 2. Sul; 
 onumbers 
 correct. 
 
 ? EXAMPI 
 
 i 9386 
 4241 
 
 f 
 
 5 1 45 ren 
 
 9386 pr( 
 
 find the r( 
 
 ; Proof, 
 ?iven nur 
 ■he given 
 
 I By the 
 
 Irom 9386 
 
 diflference be- ^nce to h 
 
 SIMPLE SUBTRACTION. 
 
 Simple SuBTRAcxroN teaches how to find the 
 Iween two quantities of the same denomination. 
 
 The sign — called minus, when written between two num- 
 bers, signines that the number which follows the sign, is to be 
 subtracted from the number before it. 
 
 Thus 17 — 9 read seventeen minus nine, signifies that 9 is to 
 ce subtracted from 17. 
 
 Rule. I. Write the less number below the greater with units 
 under units, tens under tens, Ac. 2. Beginning at the right 
 
 ExAMPLf 
 
 '1 73049 
 f 26586 
 
 |46463~ 
 
 I 
 
 i 73049 
 
 rer 
 
 pre 
 
 nd 6 remt 
 he whole 
 
 k£ 
 
t hundred and eighty- 
 seven thousand seven 
 ndred and sixty ; live 
 id nine hundred and 
 
 sixty ; nine thousand 
 ousand seven hundred 
 3d and seventy-nine ; 
 1 hundred and four ; 
 undred and seventy- 
 
 if North America are, 
 America ten thous- 
 e hundred thousaad ; 
 hundred thousand ; 
 nd ; Central America 
 md the West India 
 lusand ; what is the 
 
 on monday $72 ; on 
 
 thursday $68 ; on 
 
 mount did he receive 
 
 ■nips the first three 
 Jcond three months : 
 «97 bushels the last 
 >ell in the year ? 
 i steamboat on mon- 
 ; and 27 miles on 
 iles did ho travjl in 
 
 SIMPLE 8CBTRACTI0N. ^5 
 
 from thf n' '"k'"""?'' '' '^"'^'''•'' ^'^'^^ "^"'^'•^ '" ^he lower line 
 from he one above ,t. and set down the remainder. 3 But if 
 
 Bny figure in the lower line is greater than the one above .t 
 
 add ton to he upger flgur^e, subtract as before and carry one 
 
 -to the next figure in the lower line. 4. Because by carrying 
 
 .me to the lower figure, we increase the lower line I muc^^ 
 
 w mcroased the upper by adding ten. and thus the difFerence 
 
 is the same as if neither had been increased. 
 
 "^^Za ifX' X T^\X^!'T l^he given num. 
 ^considered correct ; or ' ^ ' *^" ^""^^ "^^^ ^« 
 
 \ 2. Subtract the remainder from the ereafftr nf \\.^ „• 
 
 \ Example. 1. From 9386 take 4241, 
 
 I 9386 
 4241 
 
 ,^I45j^emainder. The numbers being arranged according to 
 
 I 9386 proof; 'Um% ^H ' ''"" V?'^ ^ '^^^^-i' 
 
 i ^ ^ "".'" ^ nnd '1 remanis, 2 from 3 ant\ \ 
 
 iiind the remainder to be 5145. 
 
 I. 
 
 N. 
 
 i the difference be 
 tion. 
 
 }he g,ven numbers, which proves thfcoJre^tneL'oHlfa^orr' 
 tence to be e.Sairth^' lXTeUTS;rSe"2o'rrtt.^"''^- 
 
 E.XA.MPLK 2. Find the difference between 73049 and 26586 
 ^1 73049 
 
 1^- Here we say 6 from 9 and 3 remains then 
 
 Signifies that 9 is to .P^^remaind.r 4^^^ a^! K t^e'Tppe^ ffgirreTnfs?^^ 
 T73049_proof ^ '^ ^^,« — ^s a 1 , ^ ^ 
 
 ■nd 6 remains, carr'y""" "''mX^ \ 1 f ""''.'' '' ^^-^ " 
 he whole remaindei^ is t^Tifbre f6463 ™'° ' ''"' ^ '"^"^^'^^ • 
 
 between two num- 
 vs the sign, is to be 
 
 3 greater with units 
 ming at the right. 
 
1^ 
 
 BIMPLE SUBTRACTION. 
 
 l.-^miles. 
 361845 
 121432 
 
 5. — pounds. 
 
 1357960 
 8G9478 
 
 15.— 3126428 — 246804 
 16.— 156938245 — 75060458 
 
 ExERGiSKs. 1 30. By h, 
 
 n . , „ yje extent r 
 
 i.— inches. 3..-tons. 4.— yards, ^urope 380 
 
 68791805 9287694 7920685 i 31. Afar 
 12310213 3124132 2310213 ^ one perse 
 
 — — . . lis ho loft "t 
 
 1 32. Whal 
 O.-^dolJars. 7.— hours. 8.— feet. tWie being m 
 
 7598764 3100450 60750012 i^^. The : 
 
 957829 801976 30170468 ^"'ope, is 
 
 „ „, _^ . npghest mot 
 
 [34. Theh 
 
 (tf LakeOnt 
 
 if the forme 
 
 J 35. North 
 
 17.— 87136924— 30271 #?»'h Amei 
 
 18.— 1401.^06— 71352 f'^l'' of eac 
 
 19.- 7325184— 820094 *'y 28 mile 
 
 20.— 24150685— 4629507 I 36. The d 
 
 Wiles, ami I 
 
 21. From seven millions eight thousand, lake two hundredt |e^j^Qol°^ 
 and forty-seven thousand nine hundred and seventeen. 
 
 22. Take twenty-seven millions and five, from thirty-foui 
 millions. , 
 
 23. Take seven hundred and ninety-four pounds, from four I 
 hundred thousand pounds. 
 
 24. Find the difference between 7 days and five thousand I ^^^'ltiplica 
 days. repeated as n 
 
 25. What is the difference between eight millions eight% which it i 
 thousand eight hundred ; and forty thousand and seven. tThe numb( 
 
 26. A person paid 3740 dollars for a house, and spent 2\ipkcand. 
 dollars in repairs, after which he sold it for 4500 dollars, wha iThp n„rr,K. 
 was his profit ? iltn L 
 
 27. What is the difference between the length of the riveiT ^^'^^"^ 
 Amazon, in South America, the largest river in the world P^^ result ( 
 
 9.— 7063485 — 6724185 
 10.— 7999816— 870908 
 11.— 15280054 — 8629071 
 12.-64259,360 — 4759643 
 13.— 5000000— 846921 
 14.— 7305030 — 25010S6 
 
 which is about 4700 miles long ; and the river St. Lawrencf 
 which with the lakes is about 2140 miles long ? 
 
 28. America was discovered in the year 1492 ; Canada ir 
 1535 ; the city of Quebec founded in 1608 ; Canada taken b 
 Great Britain in 1629 • city of Montreal founded 1642 ; Quebei 
 taken from the French in 1759 ; Canada ceded to Great Britair^ 
 jn 1763 ; and invaded by the Americans In 1812. How manv 
 years elapsed between each (if the above mentioned events, aiii 
 the confederation of the British North Americnn Provinces 
 1867? 
 
 The multip 
 bduct. 
 
 29. What number added to 7968, 
 millions three thousand and nine ? 
 
 will amount to thrt'l 
 
 Jn simple rr 
 only one d( 
 
 A composil 
 us 72 is a c 
 tors, 6 and 
 
 p.«The siiin x 
 !twet>n two 
 ijether. Th 
 ■ seven is eq 
 
I 
 
 SIMPLE MULTIPLICATION. 
 
 IT 
 
 
 4. — yards. 
 7920685 
 2310213 
 
 1. 
 
 8.— feet. 
 
 
 60750012 
 30170468 
 
 26428 
 38245 
 M924 
 i)1500 
 
 25184. 
 50685 
 
 — 246804 
 
 — 75060458 
 
 — 30271 
 
 — 71352 
 
 — 820094 
 
 — 4629507 
 
 take two hundred 
 seventeen. 
 3, from thirty-foui 
 
 J 30. By how many square miles does America exceed Europe 
 f.u-op?380000o"r''''' '" ''^'""''' "'"'" ^"'"^ 15500000, and of 
 J 31. A farmer has 960 bushels of potatoes, lio sells 230 bushels 
 ilsXS?"'^"'' '^^ ''"'^'''^' *° another, how many bushels 
 'f32 What is the difference between the value of two farms 
 *^oV''::''S r'"' ^^^'^ '^o''^'-^- ^^^ the otl...r 796O doHars ? 
 I 33. Ihe height of Mont Blanc, the highest -mountam in 
 LU-ope, is 15732 feet; how much higher is Chimborazo, the 
 ghest mountain in America, its height being 21424 feet ? 
 ^T oiln , '^ 'ooi ^ake Superior above the sea is 600 feet and 
 rf Lake Ontario 232 feet, ho^y many feet higher above the sea 
 1| the former than the latter ? 
 
 35, North America in its widest part is 3500 miles across, and 
 u h America 3200 miles, what is the difference between the 
 
 idth of each and the isthmus of Panama which is in o.-o part 
 ily 28 miles across ? ' ' 
 
 36. The distance of the sun from the earth is 95000000 of 
 Wi es, an-1 the distance of the moon from the earth is 237000 
 -lies, how many miles further is the sun from the earth than 
 
 ' pounds, from foui 
 
 and five thousand 
 
 ght millions eight' 
 d and seven. 
 ise, and spent 2lt] 
 4500 dollars, wha 
 
 length of the rive; 
 iver in the world 
 river St. Lawrenc* 
 
 g? 
 
 p 1492 ; Canada ii 
 ; Canada taken b^ 
 ided 1642 ; Quebc( 
 eii to Great Britair- 
 1812. How manvj 
 ntioned events, aiii 
 irican Provinces id 
 
 amount to throl 
 
 SIMPLE MULTIPLICATION. 
 
 Multiplication teaches how to find the value of a number 
 peated as many times as there are units in another number 
 y which it IS multiplied. 
 
 |The number repeated in multiplication is called the mulH- 
 
 iThe number which shows how many times the multiplicand 
 |to be repeated is called the muUiplier. 
 
 phe result obtained by multiplication is called the product. 
 
 ^J^^^P>''P''cand and the multiplier are called factors of the 
 
 lln simple multiplication the multiplicand is always a quantity 
 lonly one denomination. • J 4 ''"'■"•y 
 
 [a composite number is the product of two or more factors 
 .tnJ V^ ^ composite number because it is the product of the 
 2tors, 6 and 12, 8 and 9, ^ .r 9, 2, and 4. 
 
 fc,;'^"^'"'"''^*^^ ''Sn of ffiulliplication, when written 
 ! Pthpn T*? """I'^e'-s- S'&n''"'es that they are to be multiplied 
 l'letiis'4ua. to r05' = ^''' ^"' is read lifteen multijliad 
 
I 
 
 i ! 
 
 II! 
 
 18 
 
 MULTIPLICATION TABLE. 
 
 Twice 
 
 1 
 
 are 
 
 2 
 
 2 
 
 — 
 
 4 
 
 3 
 
 — 
 
 6 
 
 4 
 
 — 
 
 8 
 
 6 
 
 — 
 
 10 
 
 
 
 — 
 
 12 
 
 r 
 
 — 
 
 14 
 
 8 
 
 — 
 
 16 
 
 9—18 
 
 10 — 20 
 
 11 — 22 
 
 12 — 24 
 
 3 timea 
 
 I are 3 
 2—6 
 
 3 — 
 
 4 — 12 
 6 — 15 
 
 6 — 18 
 
 7 — 21 
 
 8 — 24 
 
 9 — 27 
 10 — 30 
 
 II — 33 
 12 — 36 
 
 4 times 
 1 are 4 
 2—8 
 
 3 — 12 
 
 4 — 16 
 6 — 20 
 
 6 — 24 
 
 7 — 28 
 
 8 — 32 
 
 9 — 36 
 10 — 40 
 
 6 times 
 
 1 are 6 
 
 2 — 10 
 
 3 — 16 
 
 4 — 20 
 
 5 — 25 
 
 6 — 30 
 
 7 — 35 
 
 8 — 40 
 
 9 — 45 
 10 — 60 
 
 6 times 7 times 
 
 11 — 4411 — 55 
 
 12 — 4812 — 60 
 
 1 are 6 
 
 2 — 12 
 
 3 — 18 
 
 4 — 24 
 6 — 30 
 
 6 — 36 
 
 7 — 42 
 
 8 — 48 
 
 9 — 54 
 
 10 — 60 
 
 11 — 66 
 
 12 — 72 
 
 1 
 2 
 
 3 
 4 
 6 
 
 6 
 
 7 
 
 8 
 
 9 
 
 10 
 
 11 
 
 12 
 
 11. Whentl 
 
 f' tie I.— I. 
 iplicand, 
 ight han 
 jKanulUplier 
 lOduct, belo 
 
 — 28|iuP(j or figu 
 fie next, a 
 ! to one in 
 
 |x AMPLE 1.- 
 
 ~ ^mmultipll 
 _ 5 J 7 mnltipli 
 
 — 63p2 procjuqt 
 
 — 7oi carry 6';' 
 
 _|y6; 7 tiff 
 
 — T'l-efore set d 
 
 21! 
 
 — 3: 
 
 — 84ll 
 
 8 times 
 1 are 8 
 2—16 
 
 3 — 
 
 4 — 
 
 9 times 
 1 are 9 
 
 5—40 
 
 48 
 66 
 
 « — 
 
 7 — 
 
 8—64 
 
 9—72 
 
 10 — 
 
 11 — 
 
 12 — 96 
 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 10 
 11 
 12 
 
 18 
 27 
 36 
 45 
 54 
 63 
 72 
 81 
 90 
 99 
 108 
 
 10 times 
 1 are 10 
 
 - 20 
 
 30 
 40 
 60 
 60 
 70 
 80 
 90 
 100 
 
 11 
 
 timet 
 
 
 1 
 
 are 
 
 11 
 
 2 
 
 — 
 
 22 
 
 3 
 
 — 
 
 33 
 
 4 
 
 — 
 
 44 
 
 5 
 
 — 
 
 66 
 
 6 
 
 — 
 
 66 
 
 7 
 
 — 
 
 77 
 
 8 
 
 — 
 
 88 
 
 11 — 110 
 
 12 — 120 
 
 9 
 10 
 
 n 
 
 12 
 
 — 99 
 
 — lie 
 
 — 121 
 
 — 132 
 
 12 
 I 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 10 
 11 
 L2 
 
 times 
 
 are 
 
 .T-mi|es. 
 76945 
 2 
 
 24|. — pounds. 
 
 ' 793624 
 3fi 6 
 
 — 6i 
 
 —7634 > 
 — 6319> 
 
 72».— 5607 > 
 -7328 > 
 
 __ y'wien the mi 
 t^s are higl 
 
 ~ %ie II.— Mu 
 
 - ^-Sp'y the pi 
 
 — 13S ^^^ '■'^''^* 
 
 P factor, &c. 
 
.E. 
 
 SIMPLE MULTIPLICATION. 
 
 19 
 
 times 
 
 1 are 
 
 2 — 
 
 3 — 
 
 4 — 
 
 7 — 
 
 7 times 
 1 are 
 
 12 
 
 12 
 18 
 24 
 30 
 36 
 42 
 48 
 54 
 60 
 66 
 72 
 
 if. When the multiplier does not exceed 12. 
 
 '■,^le I.— I. Placo the multiplier under the units ngure of the 
 '^'■-^iplicand, and draw a line below it. 2. Then beginning at 
 
 
 3 — 21 
 
 4 — 
 
 7 — 49| 
 
 8 — 66 
 
 14l|j^ight hand side, multipl-yeach figure in the multiplicand by 
 pjuultiplier ; set down t!»e unit or right hand figure of each 
 bduct, below the figure multiplied and carry the remaining 
 
 28i||ro or figures which is the number of tens in the product 
 "lie next, as in addition, ten in any column being equjva- 
 ! to one in the column immediately to the left. 
 
 |xAMPLE 1.— Multiply 7896 by 7. 
 
 '6 multiplicand. 
 
 7 moltiplier. Place 7 th« multiplier under 6 the right 
 
 10 
 
 11 — 7- 
 
 12 — 84 
 
 w hand figure of the muUiplioand, then 7 
 
 <2 produd. times 6 are 42, set down 2 and carry 4 ; 
 
 7 times 9 are 63 and 4 are 67, set down 7 
 
 70 carry 6 ; 7 times 8 are 56' ahd 6 are 62, set down 2 and 
 
 T6; 7 times 7 are 49 and 6 are 55 which i8 the last and i» 
 
 ■efore set down in full, the whole product therefore is ^5272, 
 
 times 
 
 are 11 
 
 12 times 
 
 are 
 
 Exercise 1. 
 
 22 
 
 2 
 
 33 
 
 3 
 
 44 
 
 4 
 
 55 
 
 5 
 
 66 
 
 6 
 
 77 
 
 7 
 
 88 
 
 8 
 
 99 
 
 9 
 
 11!' 
 
 10 
 
 121 
 
 11 
 
 132 
 
 12 
 
 .— mi|es. 
 76945 
 2 
 
 -pounds. 
 ?93624 
 6 
 
 2.— yards. 
 73648 
 3 
 
 6. — dollars. 
 
 134856 
 7 
 
 3.— pounds. 
 962847 
 
 4 
 
 7. — m inutes. 
 
 473582 
 8 
 
 4.— iji^Qjie?, 
 83169A. 
 5 
 
 8. — cents. 
 
 694273 
 9 
 
 I.— 7634 X 2 
 I.— 6319 X 3 
 .—5607 X 4 
 !.— 7328 X 5 
 
 13.— 79608 X 6 
 14.-J250ti3 X 7 
 15.— 16914 X 8 
 16.— 32592 X 9 
 
 17.-32649 X 10 
 18.— 78295 X 11 
 19.-32071 5^ 12 
 20.— 68742 X 7 
 
 _ 9^en the multiplier is a composite number, neither of whose 
 "8 are higher than 12. 
 
 1 M^\ II-— Multiply tho multiplicand by one of the factors, and 
 '"^piy the product thus obtained by the second factor, if 
 xM *•*« three factors, multiply the second product by tha 
 I factor, 4c. 
 
 141 
 
20 
 
 SIMPLE MULTIPLICATION. 
 
 ExAMPi,E 2.— Multiply 7384 by 54. 
 
 Example 
 
 TJ,. f . , . • M 740 
 ,.J I?- , ^. °^^^^ multiplier 54 beina 9 nnrf fi I 23000 
 we multiply the given numfcer by 9 one 5f the f«.' I 
 
 gives the whole product 398736. ftS 
 
 ©020000 
 
 nZblr. **' """'P''"" *' ^'8''«'- ^h«n '2 and not a composite I Example 
 
 '* 3674 
 
 thft"''f ■",!• "^'"'^ the multiplier under the multiplicand so ^f^'! 
 that umts wll be under units, ters under tens, Ac. 2 Multh) y i^^ 
 by each figure of the multiplier in succession, etting down th 
 products, so that the right hand figure in each will bLnTer he 
 figure m the multiplier which produces it. 3. Then ^dd tL 
 several^ products together and the sum will be''th" ^eTuiied^ 
 
 the^3u"^tt\t'yi:aTthifoL'y the multiplicand and if 
 is correct ^^ *^ *''** obtamed by the rule the work 
 
 I 
 
 Example 3. Multiply 864 by 43. 
 
 2592 
 3456 
 
 37152 product. 
 
 When 
 ciphers. 
 
 the 
 
 firs^t'%uTe oTl'if 'y ^I ? '^"^ ''^ <^'^^ the 
 iirsi ngure ol the product under that fiffnrp 
 
 KeTf rJ-ifr ^ '^ ' «°/ ''' d'ownlhte 
 iigure 01 thd product under that figure thpn 
 
 oS&H'^l^r tl'ese partial prodS we 
 
 obtam the whole product 37152. 
 
 multiplier or the multiplicand or both end in 
 
 !. 
 
 2. 
 
 3. 
 
 4. 
 
 5. 
 
 6. 
 
 7. 
 
 8. 
 
 9. 
 10. 
 II. 
 12. 
 13. 
 14. 
 15. 
 16. 
 17. 
 
 7: 
 
 2f 
 
 r 
 
 92 
 
 78 
 7 
 
 35. What 
 
 36 What 
 
 37. Multip 
 
 lundred and 
 
 Zh";,„»'"° "■''"'""'"' """« ""» '*■■«- "the »daf loyei^ht,. 
 
 „. _ j„_ fliuiiip 
 
 •housand tw 
 ve hundred 
 
Mii 
 
 )pf. 
 
 ^r54 being 9 and C, 
 by 9 one of the fac- 
 other factor whicli 
 
 16. 
 
 8IMPLB MULTIPLTOATION. 
 '^ Example 4.— Multiply 740 by 23000, 
 
 SI 
 
 740 
 
 23000 
 
 222 
 
 {48 
 
 17020000 
 
 ■"•r 
 
 Here we multiply 74 by 23 and to the product 
 annex 4 ciphers which gives the whole product. 
 
 Id not a composite < Example 5.— Multiply 3674 by 2008. 
 
 he naultiplicand so 
 ns, Ac. 2. Multiply 
 1, setting down the 
 h will bounder the 
 3. Then add the 
 II be the required 
 
 ultiplioand and if 
 the rule the work 
 
 and set down the 
 under that figure, 
 set down the first 
 ' that figure, then 
 ial products we 
 52. 
 
 1 or both end in 
 
 leaving out the 
 5rs at the end of 
 
 Set down the first figure of the first partial 
 product under 8, and the first figure of th« second 
 partial product under 2, then adding together 
 these partial products we obtain the reouired 
 product 7377392. 
 
 ExEItCICE 2. 
 
 1. 
 
 2. 
 
 3. 
 
 4. 
 
 5. 
 
 6. 
 
 7. 
 
 8. 
 
 9. 
 10. 
 11. 
 12. 
 13. 
 14. 
 15. 
 16. 
 17. 
 
 7428 X 
 
 9205 X 
 
 7856 
 365 
 
 3456 
 287 
 
 3625 
 
 2794 
 
 6325 
 
 9637 
 73456 
 26004 
 
 3648 
 
 4905 ., 
 92876 X 
 78632 X 
 
 7013 X 
 
 X 
 X 
 X 
 X 
 X 
 X 
 X 
 X 
 X 
 X 
 X 
 X 
 
 63. 
 96. 
 36. 
 
 84. 
 56. 
 
 108. 
 
 365. 
 
 872. 
 
 704. 
 
 453. 
 
 500. 
 
 796. 
 
 406. 
 3672. 
 7005. 
 2405. 
 2064. 
 
 18. 53284 
 
 19. 392605 
 
 20. 746058 
 
 21. 7096804 
 
 22. 8193620 
 
 23. 3480006 
 
 24. 245600 
 
 25. 81243 
 
 26. 716018 
 
 27. 3576804 
 
 28. 4289654 
 
 29. 936087 
 
 30. 386790 „ 
 
 31. 8927648 X 750638. 
 
 32. 2715906 x 3724. 
 
 33. 5816927 X 30876. 
 
 34. 8603059 x 63489. 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 7100. 
 
 3060. 
 70306. 
 73040. 
 24106. 
 30018. 
 
 7600. 
 834. 
 
 9006. 
 204. 
 
 7056, 
 
 8604. 
 36500. 
 
 35. VVhat is the product of 27648 and 7962 ? 
 
 36 What IS the product of 906874 and 27685 ? 
 bundreTS LTfn"*^ three millions sixty eight thousand nine 
 Ky eight ^ ' ^y^^^^" thousand two hundred and 
 I 38. Multiply forty miliious three hundred and sixtv five 
 
22 
 
 BIMPJLC DIVISION. 
 
 39. Multiply 2G78 feet by Sand the product will be theheiKlAn»«;n«^ 
 of mount Chiinbortizo. :wniainen 
 
 40. How many yurds are thf-ro in 763 piocos of cloth, on-'*' *''° ^""s' 
 piece containing 27 yards '( tir the tin 
 
 41. How many letters are there in a book, containing '' a^j ept do 
 pages, each page containing on an average oO'J words, and ^a J " . 
 word 7 letters '(• tS'" ' 'Viaor 
 
 42. There are 525960 minutes in a year, how muny are thdimher di 
 in 40 years ? iividond 
 
 4:}. A clock strikes 156 times in a day, how miny times do^,- „ .' 
 \i strike in a year ? wmg doi 
 
 44. If one barrel of Hour cost 7 dollars, how many doll:iiiP''e33 to 
 would 1387 barrels cost? minder se 
 
 43. How many panes of glass are thorn in a house in whi 
 there are 7 rooms ; each room containing 3 windows ; and eii 
 window 8 panes ? 
 
 SIMPLE DIVISION. 
 
 Division is the method of finding, how often one giv 
 number is contained in another. 
 
 In division the number to be divided is called the divider, 
 The number by which we divide is called the divisor. 
 
 'hoop. I 
 ich add 
 IS obtaii 
 ■rect. 
 
 t)XAMPLE 
 
 f 1 54807 
 ; 7829f 
 
 '54807 1 
 
 The remainder is any number which may remain, after tJ 
 division) when tbo divisor is not contained an exact numli 
 of times in the dividend. 
 
 The dombor whioh shows how many times the divisor 
 contained in the dividend is called the quotient. 
 
 5 over, 
 [in which 
 |ce and 6 
 'inch we w 
 
 "When the dividend expresses a quantity of one denominati * 
 the process is called simple division. 
 
 When the divisor does not exceed 12 the process is call' ? 
 short division ; when Ibe divisor exceeds 12 it is called l<y" 
 division. -t. 
 
 The sign -i- called 'he fsini.' u.f division, Wuum placed betwo- *' 
 two numbers, signif ihe number that precedes the sip* 
 
 IS to be divided By the number after it. J 
 
 SHORT DIVISION. | 
 
 nubi.— i. Piaco the divisor to the k-ft ol the dividend si 
 paraling them with a line. 2. Find how oaen the divisor 
 
 1. 
 2. 
 3. 
 
 4. 12 
 
 5 
 
 6. 
 
 7. 
 
 8. 
 
 9. I 
 
 10. II 
 
 11. I 
 12. 
 
: i i»ii,.i« ii a i iiiiP 
 
 oduot will be IheheiKllntalned in the fln,t figure of the dividend, or. if not contained 
 13 piocps of cloth, oar'" ^'^^ "'"sl, how often it is contained in the number expressed 
 
 book containing v!! ,""; H"^""^?' "!! ^^ '^' '"^^ '^'•^'^ ««"••«« i" the dividend. 
 
 tge 5(i(] wordrand .« T ''\ ^°^" ^he figure denoting tho number of times. 3. If 
 
 ^ • i visor is not contained an exact number of times in the 
 
 ar, how many are tho^mber divided, prefix the remainder to the next figure of the 
 
 '. ho,v PKiny times do^Litl' "''''f'"'' l^' """^«'- ^^"^ obtained as the first, 
 
 y lilting down the next figure of the quotient, and continue the 
 
 ars, now many doUilP'^ess to tho last figure of tho dividend, when if there is a re- 
 
 . *'°*'*"* s«t it down with the divisor written below 
 irn »n a house »n whit^* uoiuw. 
 
 S 3 windows ; and eai] 
 
 how often one giv 
 
 is called the dividen 
 
 tiled the divisor. 
 
 y times the divisor 
 quolietU. 
 
 may remain, after tjj 
 ined an exact numU 
 
 L^!?''^ 1*^!?^ *^^ product of the quotient and the divisor to 
 Lchadd the remainder if there is any; and if thoDrnduc? 
 W (Obtained 13 the same as the diWdend, the wZ ?s 
 
 Example 1. Divide 54807 by 7. 
 f 1 54807 
 
 7829f quotient. 
 7 
 
 First we set down 7, the divisor, to 
 
 the idftof the dividend; then as 7 is 
 
 ■ 54807 nrnnf "?» contained in the first figure of the 
 
 :_ P™^'^' dividend, we divide it into 54, the 
 
 s^ number expressed by the first two fl- 
 A "invop th^.,tu " 8"'?s> m this it is contained 7 times 
 in Th- V"'?" ^^^ remainder prefixed to the next figure makes 
 in which 7 IS contained 8 times and 2 over, then 7 into 20 
 Ice and 6 over, and 7 into 67 nine times and 4 over. undeJ 
 
 ^aich we write the divisor 
 ty of one iJenominati * 
 
 2 the process is call 
 ds 12 it is called la 
 
 , w.-tM placed belwi 
 that prece'des the sii: 
 
 r. 
 
 oft of the dividend s| 
 V often the divisor 
 
 ■19 
 .a 
 
 Exercise 1. 
 
 1. 
 2. 
 3. 
 
 375064 -f- 
 736281 -I. 
 9406307-1 
 
 4. 123456789 4- 
 
 5 6342587 -:. 
 
 6. 1392684 i 
 
 7. 2222222 -i- 
 
 8. 7219634 .i. 
 
 9. 6312725 -L 10 
 
 10. iiiiiiiii ^ ii 
 
 11. 5300026 J- 12 
 
 12. 748742 4- 3' 
 
 2. 
 3. 
 4. 
 5. 
 6. 
 7. 
 8. 
 9. 
 
 13. 1425896^ 5. 
 
 14. 638247 -f 7. 
 
 15. 2468013 JL 9 
 
 16. 1357924 4-11. 
 
 17. 64289768— 4 
 
 18. 3725872^-12' 
 
 19. 13926741^ 8 
 
 20. 7326974 -I 
 
 21. 9.'lS72fiS-L 
 
 22. 7134267 4- 
 
 23. 7248956 -i. 
 
 24. 6372485 1. 
 
 6. 
 
 7. 
 9. 
 
 -j. 
 
 I 
 
t4 
 
 SIMPLE tlVlSiOtf, 
 
 ■ "Wlwi the divisor ip a composite number, none of wfioc 
 faclcrsisliigher than 12. 
 
 Rult II.— 1. Divide the dividend by one factor of the divis( 
 and divide the quotient by the other factor. 2. To find 11 
 correct remaitider, multiply the last remainder by the Drst div 
 sor and add the first remainder to the product. 
 
 ExAMfLE 2, Divide 83794 by 54. 
 6 1 83794 
 
 $|13965"-4 first rem. First, we rfiVide by the factor 6 an 
 
 obtain the quotient 13965, then % 
 divide the quotient by 9 and obtal 
 the quotient 1551, with a remainll 
 6, this remainder is then multiplif 
 
 by 6, the first divisor, and 4 the fin 
 
 ... , ,„ , remainder, is added to the prodi 
 
 which makes 40 the true remainder, under which we write 
 
 .1551 — 6 second rem 
 I551f^ quotient 
 
 the divisor 
 
 739684 
 
 421963 
 
 5324061 
 
 93^2685 
 
 537^62 
 
 6. 3625738 
 
 7. 7248964 
 
 8. 9326147 
 
 1. 
 2. 
 3. 
 4. 
 5. 
 
 18. 
 
 27. 
 
 54. 
 
 99, 
 121. 
 
 81. 
 144. 
 
 42. 
 
 ExEhCISE 2, 
 
 9. 
 10. 
 11. 
 12. 
 13. 
 14. 
 15, 
 16. 
 
 12345678 
 74100632 
 3271496 
 53196482 
 42953684 
 31274635 
 53926845 
 143690782 
 
 77. 
 
 63. 
 108, 
 132, 
 
 49- 
 •110, 
 
 84, 
 144, 
 
 LONG DIVISION. 
 
 Bute III-— 1 , Place the divisor to the left of the dividend, ad 
 leave a space to the right of the dividend for the quotient. 
 Place in the quotient the figure which expresses the number 
 times th&t the divisor is contained in the least number of figur 
 to the left of the dividend. 3. Multiply the divisor by the figi 
 in the quotient, write the product under the number divid 
 and subtract, 4; To the remainder annex the hext figure 
 the dividend, place in the quotient the figure which express ^ 
 the number of times that the divisor is contamed in the niii t 
 ber, and continue the process till the last figure of the divide; \ 
 is brought dowa, when if there is a remainder, place it aft I 
 the quotient and «rrite the divisor below. 
 
u 
 
 mber, none of who$*i 
 
 le factor of the divis^ 
 factor. 2. To find tl 
 inderby the first div 
 iu«t. 
 
 ide by the factor 6 m 
 Jtient 13965, then \i 
 )tient hy 9 and obta^ 
 551, with a remaind 
 ier is then multiplif 
 divisor, and 4 the fin 
 added to the prodi 
 r which we write 
 
 2345678 
 4100632 
 3271496 
 3196482 
 2953684 
 1274635 
 3926845 
 3690782 
 
 7L 
 
 63. 
 
 108. 
 
 132, 
 
 49. 
 
 •110. 
 
 84. 
 
 -r 144, 
 
 [ of the dividend, ar 1 
 lor the quotient. | 
 •resses the number | 
 jast number of figm I 
 divisor by the figi 'l 
 the number divid | 
 X the taext figure 'i 
 ure which express | 
 ntained in the niii 4 
 gure of the divider | 
 inder, place it afi I 
 
 SIMPLE DIVISION. 26 
 
 If when a figure has been brought down, the number to be 
 
 divided is less than the divisor, place a cipher in the quotient, 
 
 bring down the next figure in the dividend, and divide as 
 before. 
 
 Phoof. Multiply the quotient by the divisor, and to the pro- 
 duct add the remainder ; if the result is equal to the dividend 
 the work is correct. 
 
 Example 3. Divide 12345 by 49. 
 49| 12345 I 25!^^ quotient. 
 
 98 49 First we place 49, the di- 
 
 visor to the left of 1 2345 the 
 
 2305 dividi'nd, and write 2 in the 
 
 '004 quotient, 49 being contained 
 
 twice in 123, then write 98, 
 
 12345 proof the product under the num- 
 
 ber divided, and subtract. 
 —• To the remainder 25, annex 
 
 46 remainder. 4, the next figure in the di- 
 
 vidend ; then 49 is con- 
 tamed 5 times in 254, leaving a remainder 9, to which we annex 
 5, the ne.xt figure in the dividend, place 1 in the quotient, and 
 subtract, the remainder being 46. The quotient therefore is 
 251 f|. 
 
 liule IV. If the divisor ends in ciphers, leave them out, and 
 cut off as many figures from the right of the dividend as there 
 are ciphers in the divisor. Then proceed with the remaining 
 figures according to Rule III, and to the remainder annex the 
 figures cut off from the dividend, which will give the true re- 
 mainder. 
 
 By proceeding according to the above rule the operation is 
 shortened 
 
 Example 4. Divide 7423654 by 2900. 
 29,00|74236,54|2559ff^A quotient. 
 58 
 
 254 
 245 
 
 95 
 49 
 
 162 
 145 
 
 173 
 145 
 
 286 
 261 
 
 2554 remainder. 
 
 Here the two ciphers in the 
 divisor, and the two figures at 
 the end of the dividend being 
 cut off, we nrnceed. according 
 to Hule III, the remainder is 
 found to be 25 to which 54 is 
 annexed, dve-.thus obtain the 
 true remamder 255|. 
 
26 
 
 i! 
 
 i 
 
 TABLES or MONEY, WEIGHTS AN» MEAsmiE,' 
 
 I 
 
 1. 
 
 2. 
 
 3. 
 
 i. 
 
 5. 
 
 6. 
 
 7. 
 
 8. 
 
 9. 
 10. 
 11. 
 12. 
 13. 
 14. 
 15. 
 16. 
 17. 
 18. 
 
 7235 
 95126 
 425396 
 729643 
 352864 
 153928 
 325912 
 415236 ■ 
 596432 • 
 702536 • 
 430025 - 
 300000 - 
 896528 - 
 235964 - 
 4986327 
 8296153 
 1738254 
 9326485 
 2196427 
 
 ExEHcis.-; 3. 
 
 39724685 -i- 
 
 74289642 4- 
 
 333333333 ~ 
 
 923746859 - 
 
 2468013579-^ 
 
 1357924680 
 
 931642734 . 
 
 IMlimil-r 
 
 30. 
 31. 
 32. 
 33. 
 34. 
 
 296. 
 2745. 
 4268. 
 
 736. 
 5396. 
 
 742. 
 
 248. 
 7463. 
 
 20. 
 
 21. 
 
 22. 
 
 23. 
 
 24 
 
 25 
 
 26 
 
 27, 
 
 28. 213964582 i5237fi" 
 
 29. 9173245863 V- 7 ; J" 
 "" 3926857962 -r 8392 
 
 7429638 ?4!)-r 3256 
 240006347 -T- 46823* 
 
 714000086 -f-JJSS' 
 --. 3000000000 ^ 426 
 
 35. 7070707070 r ''• 
 
 36. 531724956-;- 
 
 37. 2222^445 4- 
 
 38. 7139628745 -r 
 
 5364. 
 792. 
 685. 
 256. 
 
 19. 
 
 ?n" ?,lu^^ 95000000 hy 704029 
 41 lT5f '' "?^ forty-seventh part of 726349 ? 
 ^^^e^^o^M^&r^^:^^ ^^-- " ^oys. how .any 
 
 4A n- „ f '^^^t>y iho. product of |2 and 4 
 ™i?i i!o:,f,St"'p,?l\r ■"''« ."■2 days, how „a„y 
 
 rago lo each square niile » ' Pwsons are there on an ave- 
 
 w|,4eXT„:rk",^,0^'„,ri? "■ • ^»y. ^ow ">a„y d.ya 
 
 48 n!^!^° seventy eight billions b, 869 
 ^^^48. U,.,de ninety Tour trillions by Lven ,„i„i„„s,„, ,,„,„.^ 
 
 TABLES OF.MONEY, WEIGHTS AND MEASDHES. 
 
 mnrted""!?"" *°'""" ""''""' '"» cen'» make one dollar 
 
 ".oiraupuis, una live cent ten rnnt t,.,„T p ""' ^^'o^i 1 ifa. 
 cent pieces which are silver ' ^"^'"'^ ^'^^ '^^n' ^''d fifty 
 
iiia«.S'miifi¥^»A-r»*m'^it>ii^^ " 
 
 fJ MfiASURfis. 
 
 724685 -1 
 
 - 296 
 
 2S9642 -f 
 
 ■ 2745 
 
 )33333 -f 
 
 4268. 
 
 ^46859 ^ 
 
 736. 
 
 13579 -^ 
 
 5396. 
 
 24680 -r- 
 
 742 
 
 42734 -r 
 
 248. 
 
 lllll-j- 
 
 7463. 
 
 64582 -r 
 
 52376. 
 
 45863 -r 
 
 715. 
 
 17962 -T- 
 
 8392. 
 
 38?45-r 
 
 3256. 
 
 )6347 -7- 
 
 46823. 
 
 )0086 -r- 
 
 74053. 
 
 )0000 r 
 
 426. 
 
 7070 r 
 
 5364. 
 
 4956 -• 
 
 792. 
 
 4445 -~ 
 
 685. 
 
 8745 -r- 
 
 256. 
 
 9? 
 
 
 hoys, how many 
 
 days, how many 
 
 •e miles, and the 
 there on an ave- 
 
 how many days 
 
 ions and seventy 
 
 MEASURES. 
 
 lake one dollar, 
 
 'Jiich is made of 
 
 '"(^ wei-h 1 \b. 
 
 'e cent and fifty 
 
 ^ TABLES aP MONJET, WBIOflTS J^V MEASURES. 27 
 
 ' OLD CANADIAN CURRENCY. 
 2 farthings _ t k ip 
 
 4 farthings or 2 halfpence ~ ^*'""^'' 
 
 12 pence .. ^ = P^^liy- ^'i^-ked d. 
 
 20 shillings or 24open;;:::::::z;:;:=l^;i;;3^^ :: i 
 
 UNITED STATES CURRENCY. 
 
 10 mills = 1 cent, marked ct. 
 
 10 cents = 1 dime, " d 
 
 10 dimes = 1 dollar, " $ 
 
 10 dollars = t eagle, " E. 
 
 i AVOIRDUPOIS WEIGHT. 
 
 I 16 oliS Z 1 pound "^'''''^^ ''^• 
 
 I 25 pourids = 1 quarter, J l^' 
 
 I 4 quarters = i hundred weight " T^t 
 
 20 hundred weight = 1 ton. ' ,. J^'' 
 
 This weight is used in weighing meat, groceries, grain, 4c. 
 TROY WEIGHT. 
 
 20 uennvweiffhi, ^ 1 ''^""y^^ight, marked dwt. 
 ^u pennyweights = 1 ounce, « „, 
 
 12 ounces = i pound, « jb' 
 
 quo?s.' ^"'^^' '' ""''^ ''' ^^•^^^'^^ ^°'d, silver, jewels and 11- 
 
 APOTHECARIES' WEIGHT. 
 
 20 grains = 1 scruple, marked scr. 
 
 3 scruples = 1 dram, « dr 
 
 8 drams = I ounce, " oz' 
 
 12 ounces = 1 pound, » 15 
 
 LONG MEASURE. 
 12 lines _ 4 j„„. 
 
 12 inches ~ I !■" ,' marked in. 
 
 3 i^et Z °°*i " ft. 
 
 5i vards ~ . ^^^'^' " vd 
 
 40 perches = rod pole or perch, " ^ev. 
 
 8 ftirlongs Z 1"'/°"^' " fur. 
 
 P miles - i'''°' " m. 
 
 BO geographical miles or) ~ ^"^' " '^a. 
 69^ British miles / = * degree, 
 
28 
 
 4 
 
 TABLES OP MONKY, WEIGHTS AND MEASURES. 
 
 2J inches 
 
 4 nails 
 quarters 
 quarters 
 quarters 
 quarters 
 
 CLOTH MEASUBE. 
 
 1 nail, 
 • quarter, 
 1 Flemish ell, 
 1 yard, 
 I English ell, 
 t French ell, 
 
 marked 
 
 SQUARE OR LAND MEASURE. 
 
 na. 
 qr. 
 Fl. e. 
 
 yd. 
 
 Eng. e. 
 
 F. 8. 
 
 ''9 s?uar'efe"ef' f J square foot, n^arked 
 
 <j squttre leei = [ square yard 
 30i square yards = i square perch 
 40 square perches = 1 rood ' 
 
 4 roods = , acre,' 
 
 Square «,re is used7„'i"S ™'«',r,^, 
 
 sq. ft. 
 sq. yd. 
 sq. per. 
 r. 
 a. 
 sq. m. 
 
 CUBIC OR SOLID MEASURE. 
 
 1728 cubic inches, _ , v. „ 
 
 27 cubic feet, = } ^"^'« 'oot. 
 
 40 cubic feet of rough timber, or 1 " '"^'^ ^'■'^• 
 50 cubic feet of hewn timber [ = ' '°n- 
 128 cubic feet of firewood ^ - 1 cord 
 
 DRY MEASURE. 
 
 2 junts — I quart, 
 
 4 quarts = 1 gallon. 
 
 j gallons = 1 peck, 
 
 36 bushels = 1 chaldron. 
 
 marked 
 
 qt. 
 gal. 
 
 Dk. 
 
 bush, 
 ch. 
 
 marked 
 
 TKio ^r. "onoio _ , cnaidron, " ch 
 
 This measure is used in measuring grain, fruit, Ac. 
 
 LIQUID MEASURE. 
 
 = I pint, 
 ^ I quart, 
 = 1 gallon, 
 
 rfcs^^^^^''°-=i£5^ad, 
 
 5 pipes = I II]' 
 
 TIME MEASURE. 
 
 4 gills 
 
 2 pints 
 
 4 quarts 
 
 31^ gallons 
 
 pt. 
 
 qt. 
 
 gal. 
 
 bar. 
 
 hhdd. 
 
 pipe, 
 
 tuu. 
 
 60 seconds 
 60 minutes 
 24 hours 
 7 days 
 
 = I minute, 
 = 1 hour. 
 = I ilay, 
 = I week, 
 
 marked 
 
 min. 
 h. 
 
 day. 
 wk. 
 
 6 
 21 
 
MMMM«tM«,*«&l«««4k'>«ii«Ml«»<v«>>iif>>«rii 
 
 MEASURES. 
 
 rked 
 
 na. 
 qr. 
 Fl. e. 
 
 yd. 
 
 Eng. e. 
 F. e. 
 
 JRE. 
 
 marked 
 
 ces. 
 IE. 
 
 S(J. fit. 
 sq. yd. 
 sq. per. 
 r. 
 a. 
 sq. m. 
 
 cubic foot, 
 cubic yard. 
 
 ton. 
 cord. 
 
 1 qt. 
 
 gal. 
 
 pk. 
 
 bush. 
 
 ch. 
 uit, dc. 
 
 larked pt. 
 " qt. 
 
 gal. 
 
 bar. 
 
 hhdd. 
 
 pipe, 
 
 tun. 
 
 rked 
 
 min. 
 h. 
 
 day. 
 wk. 
 
 REDUCTION. 
 
 29 
 
 11 calendar months, or 1 
 ^13 lunar months, or |= , year. 
 
 TSMZnVweirrno^^^^^ « 'eap year, 
 
 each month " ''"^'' ^^°'^' ^^^ ""mber of days in 
 
 Thirty days hath September 
 April, ,Iunp, and November ' 
 P ebruary has twenty-eight 'alone. 
 And all the rest have thirty-one 
 Except m leap vear, when ' 
 tebruary's days are twenty-nine. 
 
 CIRCULAR MEASURE. 
 
 30 degrees -l^T" u s 
 
 12 s.g.:s or 360 degrees = The^circumference of a circle. 
 
 MISCELLANEOUS TABLE. 
 
 12 articles = j (j^^en 
 
 20 articles 
 
 24 sheets of paper 
 
 20 quires 
 14 lbs. 
 
 196 lbs. 
 200 lbs. 
 
 4 inches. 
 
 6 feet 
 
 21 shillings 
 
 = 1 score. 
 
 = 1 quire. 
 
 = 1 ream. 
 
 = 1 stone ' 
 
 = 1 b.irrel flour. 
 
 = 1 barrel pork. 
 
 = Vfathonr'* '" measuring horses- 
 =^ 1 guinea. 
 
 REDUCTION. 
 
 Jrizzziit:i Xua^y^orthrs" '^T'l °K^-^ - 
 
 d.irerent denomination. witCXing its rrue''"'' ^"' '' ' 
 .eSjeKt?-? '^ - ^duS^-S.i;^J^-'^'- '^ « ^- 
 deS^ira^,^^S^^:^- ^w. to a higher 
 
30 
 
 REDUCTION. 
 REDUCTION OF DECIMAL CURRENCY. 
 
 Dollars are rpdiicod tn r.or,» i 
 m = 7400 centsSo = 5!i ^00 Lmr""^ '^" ^'''f''^'^- Thus 
 
 llnis 47274 cents --. I472 74 andM^ '" '''''' '" "'" '^'"ount 
 •^p-^^-it, anu 90J865 cents = $9038.65. 
 
 EXKRCISE I, 
 
 2: HoTSn^e"nta";:tir ^" seven doHars ? 
 
 5. Reduce .f /g^"/! tTce m? '" *'''•'' ' 
 
 6. Reduce $42965.37 to centa 
 
 7. Reduce $942.75 to cents 
 
 peI°e)7o Secimll curS°° =™""y (P0-><l8, shillings .„d 
 ""Hlpl, ,„e fa«hi„;/ oil's 17 '""" '° ""'^ ^ '■ -'"'" 
 
 7or( 
 
 _ ""'=> auu cents. 
 
 '"""^■7frr/"^''^'J'«.lo,la.„„ace„.,. 
 
 '''^ ' X 4 = <1!ICQ 
 
 far 31 X 5~ 12- ^f?,, 
 
 • ■''•-- 12|i- cents. 
 
 *J9o'!92'|Ti;;r~ 
 
 *irst we multiply £47 hv i «n.^ ux • 
 
 •4 shillings by 2SLdob'ain;"'t""''''' ''^" ""'"P'^ 
 ^y A and Obtain .2|, cents !ho i^":,: ff "^. ^L^^^^^n^s 
 'he dollars and cents contained in ^47 4 f '' *^'"''^^' 
 
 a 7i 
 
 f cents ai 
 f cents 0' 
 number 
 4 JE19: 13 
 
 1. Ho 
 
 $74.56 ? 
 
 2. Ho 
 1742.90 
 
 3. In 
 there ? 
 
 4 Rec 
 
 5. Rer 
 
 6. In^ 
 there ? 
 
 7. Ho\ 
 15264.48 
 
 8. Hoi 
 $279.65 '( 
 
'ttmitmn^^^X,,- 
 
 CURRENCY. 
 
 ing two ciphers. Thus 
 
 tiff a (Jot or a short line 
 from the right hand 
 expresses the rminber 
 '6 cents in tho amount 
 cents = $9038.65 
 
 REDtTCTION. 
 
 31 
 
 dollars ? 
 -four dollars ? 
 ars ? 
 4? 
 
 3nlg. 
 
 sents. 
 
 3ents. 
 
 'unds, shillings and 
 
 uce them to dollars • 
 ™ to cents ; 3. Then 
 ice and farthings by 
 ie products together 
 nd cents. 
 
 Is. = 20 cents, and 
 s and cents. 
 
 88, then multiply 
 'tiply 31 farthings 
 ddi is $190,9211 
 
 % 
 
 I 
 
 i 
 
 Exercise 2. 
 
 1 RelcTxi/l'r'irt'^ Tu' ''' ^l"''' in £18 : 9 : 6 ? 
 X- «e('uce A17 . 14 : IJ to dollars and cents. 
 
 3. Reduce £75 : 18 : 10 to dollars and cents 
 
 l>. nuiuce i,^4J ]>) . 6i to dollars and conts. 
 
 >. How many do ars and cents are there in £764 • 8 • 7* ? 
 
 ». Keauce A'/b 18 . 5 to dollars and cents 
 
 0. Reduce £182 : 16 : 4 J to dollars and cents 
 
 1. Reduce £826 : 9 : II to dollars and corns 
 12. Reduce £248 : 4 : ^ to dollars and cents 
 
 7o reduce dollars and c^ls to pounds, shillings and pence 
 
 U.h"?.;'' ^-'"^^ the dollars by 4 to reduce them to pounds, 
 
 and inhere is a remainder reduce it to cents, and to them add 
 
 he given cents, divide the number of cents thus obtainedby 20 
 
 to reduce them to shillings, then divide the remaining cents by 
 
 f A and reduce the farthings which will thus be obtained to 
 pence. 
 
 $7? '"'i'j-.o ^!?r ^''-''^ '' P"""*^^' ^'''"'"^^ ^^^ P°nce. 
 2 67i = 1n- ^V^"T'^«'*- First we divide 78. the 
 
 li - 18 farthings or d4f the quotient is £19. thwi 
 
 cents are 267J cents, this divided by 2*o' JTs'sSaf and^'! 
 cents over, which divided by ,4, Jl8 farthings or S/tS 
 number of^pounds, shillings aL"\ence in m'A^ittJoll 
 
 ExEnciSE 3. 
 f74.5?7 ""^"^ '''''"^'' '^"""«« "^"d pence are there in 
 $742.9oT ""^""^ P"""*^'' '^'"'"^^ «"^ P«"ce are there in 
 there\" ^^^'^'^^ ^""^ '"^"^ P"™^^. shillings and pence are 
 
 5 Reduce |758'2?'tn7rr"'^'.^''''''"^^^"J P^nce. 
 
 6 In ssq^toQo i: *° °^'^ Canadian currency. 
 
 there ? * ^'^^ ^°^ "^"^ P"""^^' «l'illings and pence are 
 15264^47? ""'"^ P"""*^'' '^'"'"^« '^"d pence are there in 
 $279,6??' '"''"^ P"""*^'' ^'"'""^^ «nd pence are there in 
 
32 
 
 REDUCTION. 
 
 "*i.j/i to old Canadian currency 
 REDUCTION DESCENDING 
 To reduce a ,uanlii,j m a lower denominalion. 
 
 nulron l'^n^.twe';r' ^'^^" ''^-^^^-^ '^ '^'e 
 ti^e higher; ancnrparoTthoo "",?'"' ^'''"'^ '^'^"e^ one of 
 lower deno,«inat on add u to T h'° '' ™'"^^^ ^« ^''^'^^ 
 each product in succession ^nil thr ' '^^^^^'^ ^^"« ^'^'^ 
 required denon^ination '^"'"''^ '^ ''^'"^'^ '« the 
 
 them to sq poPchS: aid'a^^'^^,- 
 them fn- P''"^"' '^^30} which deduces 
 
 the^^numSr^sSr. '''? ^^ ""'^ "^S 
 is 237160 '^"^^ y^'"''" *" ^9 acres 
 
 196 roods. 
 40 
 
 ''840 sq. perches 
 
 235200 
 1960 
 
 237160 sq. yards. 
 
 Example 4.--Reduce 23 cwt, 2 qrs 17 lb. n . 
 
 cwt. qrs lbs «, ^ ' ^•' '^ °^- ^o ounces. 
 
 23: 2: J7: ,3 
 
 2| 
 
 94 quarters. 
 25 
 
 2307 pounds, 
 16 
 
 I42T5 
 2367 
 
 37885 ounces. 
 
 r^ducp'^?h^"'!'P'y ^^^ ^""dreds by 4 to 
 reduce then> to quarters, and add 9 ♦»!„ 
 number of quarters in the anLfX. ^? 
 
 t. 
 
 2. 
 3. 
 4. 
 
 5. 
 6. 
 
 7. 
 
 8. 
 
;ncy. 
 
 rrency, 
 
 iG. 
 mnnaiion. 
 
 omination by the 
 hich makes one of 
 reduced be of the 
 Proceed thus with 
 ' is reduced to the 
 
 ds. 
 
 in an acre, we 
 ores by 4 which 
 hen multiply 196 
 40 which reduces 
 a lastly multiply 
 ; which reduces 
 nus we Hnd that 
 ards in 49 acres 
 
 3 oz. to ounces. 
 
 ndreds by 4 to 
 and add 2 the 
 7uanlity; next 
 >y 25 to reduce 
 17 the number 
 y; and lastly 
 the number of 
 13 the ounces 
 ^es 37885 the 
 
 REDUCTION. 33 
 
 REDUCTION ASCENDING. 
 
 To reduce a quanlily to a higher denomination. 
 
 Rule. — I. Divide the given quantity by the number of the 
 given denomination which it takes to make one of the next 
 higher. Set down the remainder if there is any after the quo- 
 tient ; 2. divide the quotient by the number of that denomina- 
 tion contained in one of the next higher, and so on, until the 
 required denomination is reached ; and set down each remain- 
 der in order after the last quotient. 
 
 Example 5. — Reduce 28964 gills to gallons. 
 4 I 28064 gills. 
 
 &c. 
 
 First we divide the given 
 number of gills by 4 to reduce 
 them to pints, then divide the 
 pints by 2 to reduce them to 
 quarts, and divide the quarts 
 by 4 to reduce them to gallons, 
 we thus find that in 28964 
 gills there are 905 gals. 1 pt. 
 
 Example 6. — Reduce 73907 farthings to pounds, shillings, 
 
 2 I 7241 pints. 
 4 I 3620 qts. I pt. 
 
 905 gals., qts. ' pt. 
 
 4 I 73907 farthings 
 12 I 18476 d. 3 far, 
 2.0 I 153.9 8. 8d. 
 £76 : 19s. : 8|d. 
 
 ExERcrsE 4. 
 Reduction of old Canadian currency. 
 1. Reduce £17 : 19 : 4 to pence. 
 
 2. 
 3. 
 4. 
 5. 
 6. 
 7. 
 8, 
 
 £128 : 14 : 7^ to farthings. 
 £742: 18 : 9i to farthings. 
 £1084 : 11 : 2i to farthings. 
 7968 shillings to pounds. 
 374285 pence to pounds. 
 72485 farthings to shillings. 
 73900714 farthings to pounds, 
 
RBDUOTION. 
 
 Exercise 5. 
 
 Avoirdupois Weight. 
 
 'uce 235 tons to quarters. 
 
 — ^ 6 cwt 2 qrs. to rounds. 
 ■547 cwt. 3 qrs 21 he i^, .. 
 213 cwt 23 iL 1 ; ^^ ^ ounces. 
 Starters to tons. "''^• 
 
 70604 pounds to hundreds, 4c 
 ?g^IJ °""^es to quarters. '• 
 /Wi&86 ounces to tons, do. 
 
 Exercise 6. 
 Troy Weight. 
 
 '40a grams 10 pounds, ounces Ac. 
 Exercise 7. 
 Apolhecaiies Weight. 
 2 ^°^^^^to...,ples. 
 
 3542^6^7 s?ruplX"uV; ^" '^ ^-'•-• 
 7312648 graFn^to?o^d^r„r^*<^• 
 
 73J2648 grafnrto Torr' """««« *<= 
 e'tiiiis 10 pounds, ounces 4c. 
 
 Exercise 8. 
 
 LONG MEASUflB. 
 
 49 feet 7 inches to lines 
 
 -43 perches 5 yards to Sches 
 -7 mi es 4 fur "ii n^^ * 
 
 -P57 lea. 2 m 7 it o^ P''"^^^- 
 
 inch's ^"'- ^^P^''-^ yds. 2 a. 7 in. to 
 
 -2700005 yards to miief ' 
 ■9263 lines to yard'' 
 ■73D9876 inches to .^agues. 
 
 Exercise 9; 
 CLOTH MEASURE 
 2 " ,•' >^ius to nails. 
 
 i- Reduce 
 
 2. . 
 
 3. . 
 
 4. .__ 
 
 5. .___ 
 
 6. 
 
 7. . . . 
 
 8. 
 
 8. 
 9. 
 
 10. 
 11, 
 12. 
 
)uno6s. 
 
 ins. 
 c. 
 
 grains. 
 
 5. 
 6. 
 
 REDUCTIOM. 35 
 
 1)274 nails to English ells. 
 
 408 yards to Eng. oils. 
 
 3'i'2 French ells to Eng. ells. 
 
 EXKRCISE 10. 
 
 SQUAHE OR LAND MEASURE. 
 
 1. Reduce 36 sq. perches to square feet. 
 
 2. 32 acres 3 r. 25 per. 17 yds. 5 ft. 121 in. to 8ii. 
 
 inches. 
 
 3. 93264 scjunre feet to rood^s. 
 
 4. 7500086 sq. inches to acr. . 
 
 ExERCISfi 11. 
 
 LIQUID MEASURE. 
 
 1. Reduce 27 gallons to pints. 
 
 2. 29 hhdds. 17 gals. 3 qts. 1 pt, 3 gills to gills. 
 
 3. 796425 gills to barrels. 
 
 4. 27435 pints to jiipes. 
 
 EXERCISK 12. 
 
 TIME MEASURE 
 
 1. Reduce 17 weeks 3 days to hours. 
 
 2- 24 weeks 6 d,2l h. 34 min. 46 sec. to seconds. 
 
 3. ■ 742913 seconds to days. 
 
 4. 42000134 seconds to weeks. 
 
 EXKHCISE 13. 
 
 =ls- 2 ft. 7 in. to 
 
 1. 
 2. 
 3. 
 4. 
 5. 
 6. 
 7. 
 
 In $7204.27 how many cents are there ? 
 Reduce 764285 cents to dollars and cents. 
 How many dollars and cents are there in £724 : 19 : 6|. 
 Reduce $3965.79 to pounds, shillings and pence. 
 How many farthings are there in £3: i : 16 : 7J ? 
 Reduce 796427 farthings to poundfe. 
 Reduce 7 tons 14 cwt. 3 qrs. 22 lbs. 13 oz. 11 drs. to 
 drams. 
 
 8. Reduce 1111111111 drams to tons, hundreds, 4c. 
 
 9. How many grains are there in 11 oz. 14 dwls. 13 grs of 
 
 gold ? * 
 
 10. Reduce 37096 grains of silver to pounds, ounces, Ac. 
 n. In 7 lbs. 9 oz. 7 drs. 2 Rcr. hnw m.iny scruples are there? 
 
 12. Reduce 73962 scruples to pounds, ounces, 4c. 
 
 13. Reduce 7 leagues, 2 m. 32 per. to feet. 
 
 14. Reduce 12345678901 lines to leagues. 
 
Hi 
 
 m 
 
 36 
 
 15 
 
 COMPOUNjj ADDITION. 
 
 16 
 17 
 
 18, 
 19. 
 20. 
 21. 
 
 22. 
 
 23. 
 
 24. 
 
 25. 
 
 26. 
 
 27. 
 
 28. 
 
 29 
 
 30, 
 
 31. 
 
 32. 
 
 ■ \uL7''' ' '"''' '' '-"--^ '-^^ ™«ny minutes are 
 Reduco 123045607 seconds to wo*^ks, davs *c 
 
 How ma^l 'o^^S^K^e'.'irrtKTn^ 'il^lSr ^'^^^ ' 
 low many yard.s are there in 80 french e Is ? 
 
 Kce ttjll'r). °"^ '° "^'"'«h oils ' "" ' 
 te. uce .$.37.25 to five cent pieces. 
 jn 1/ stiillinffs how many two pencps are (horov 
 
 Heduce 36 sixpences to fonrpences *'•'"• ^^ 
 Tc^Y JtETf"£r ^ ^ '^- -^h are there in 
 
 COMPOUND ADDITION. 
 
 /?u/e. Set down the quantities l5 be added so th«f fha 
 
 cm.^^""bl'i5^o'z';Tc^r2';rs^Tl J^^^'^''^^ '^ -^ 2" 
 and 139 cwt. 3 qrsl 14 IblllL "*''•' *^« '^^t- ' q--- 21 lbs. ; 
 cwt. qrs. lbs. oz. 
 
 First we divide 42, the number 
 or ounces in the first column by 
 10 set down the remainder 10 oz 
 under the first column, and carry 
 
 Li* second column with 2 lbs 
 added is 78 lbs., this we divide by 
 ^^, and set down the remainder 3 
 
 87 
 243 
 
 94 
 128 
 139 
 
 3 
 
 
 
 2 
 
 1 
 
 3 
 
 24 
 17 
 
 ?l 
 14 
 
 3 
 
 15 
 11 
 
 
 13 
 
 10 Ans. 
 
 )s. and ( 
 If the no! 
 fives 3 ci 
 indor the 
 pimple ad 
 10 oz. 
 
 KXAMPI 
 
 md .$942 
 
 $ ( 
 
 7204.8 
 
 10503.0 
 
 7248.9 
 
 942.6 
 
 1 $25959.5 
 
 I 
 
 1 $ c 
 
 73M 
 
 928.. 3 
 4275.9 
 897.3 
 2956.5 
 3724.4 
 5963.7 
 
 I 
 
 I 4. Find 
 f $3247.86 i 
 
 5. Find 
 2J yds. 2 
 39 m. 5 pi 
 
 6. Reqt 
 $7294.63 ; 
 
 7. Add 
 JE2348 : U 
 £79 : 16 
 
 8. Find 
 $94.07; i 
 and $2976 
 
 9. Add 
 4 oz. 9 drs 
 oz. 15 drs. 
 9 t. 6 cwt 
 and 16 t. i 
 
COMPOUND ADDITION. 
 
 37 
 
 in 40 Hcros, 2 r, 9.8 
 iclies ? 
 •es. 
 Is are there f 
 
 i I gals. 3qts. Ipt.? 
 
 m'lny minutes are 
 
 lays, 4c. 
 
 nt pieces are there? 
 
 71 fifty cent pieces? 
 
 yards ? 
 
 1 ells ? 
 
 re there ? 
 : 10 : 5? 
 
 . each are there in 
 
 but of more than 
 
 IN. 
 
 so that the num- 
 lination. 2. Add 
 ) the right, and 
 er denomination, 
 umn added, and 
 )coed thus with 
 e addition, 
 lbs. .3 oz. ; 243 
 (Vt. Iqr. 21 lbs.; 
 
 42, the number 
 irsl column by 
 5mainder 10 oz. 
 Jran, and carry 
 
 linn 'PU^ _.,_. 
 
 ••••■'. xfic sUlIi 
 
 mn with 2 lbs. 
 is we divide by 
 lie remainder 3 
 
 t)9. and carry 3 qrs, the quotient, to the next column, the sum 
 If the next column with 3 addod is 12 qrs., which divided by 4 
 kivcs 3 cwt. without a romaimlor, wo thoroforo place a cipher 
 bndcr that column and carry 3 to the next which is added as in 
 limple addition. The whole sum therefore is 694 cwt. 3 lbs. 
 10 oz. 
 
 Example 2.— Add together $7204.85 
 ind $942.68. 
 
 $10563.07; $7248.90; 
 
 $ cts. 
 
 7204.85 
 
 10503.07 
 
 7248.90 
 
 942.68 
 
 [$25959.50 Ans. 
 
 In addinR dollars and cents proceed as In 
 simple addition cutting off the two right 
 hand figures which will be cents and the 
 remaining llguros dollars. 
 
 1 1 $ cts. 
 
 J 73 .15 
 928,. 33 
 4275.94 
 897.38 
 2956.59 
 3724.48 
 5963.72 
 
 ExEHCtSES. 
 
 1. £ 8. d. 
 
 243 : 17 : 9 
 
 84 : 15 : 7f 
 
 976 : 9 : lOi 
 
 1348 : 14 : 111 
 
 3. cwt. qrs. lbs. or. 
 
 749 
 
 248 
 
 9456 
 
 18 : 
 13 : 10^ 
 8 
 
 : 10^ 
 
 94 
 78 
 
 135 
 79 
 86 
 
 243 
 97 
 
 2 
 3 
 I 
 
 3 
 2 
 1 
 
 23 4 
 
 14 
 
 19 8 
 
 14 3 
 
 11 
 
 7 5 
 
 8 14 
 
 ; $5326.47 ; 
 
 7 fur. 21 p. 
 2 ft. 9 in. : 
 
 4. Find the sum of $963.17 ; $485.93 ; $978 85 
 $3247.86 ; $984.76 ; $596.34 ; and $4275.98. 
 
 5. Find the sum of 34 miles, 7 fur. 38 par. 4 yds 
 n yds. 2 ft. ; 27 m. 13 p. 2f yds. 1 ft. 7 in. ; 21 per 
 39 m. 5 per. 11 in. ; and 2 m 3 l\ir. 4i yds. 9 in. 
 
 6. Required the amount of $7248.05 ; $324.96 ; $365 30 • 
 $7294.63 ; $8726.48 ; $679.84 ; $5986.77 ; $89.56 ; and $7694.37*. 
 
 7. Add together X734 : 15 : 7 ; £896 : 19 : 8J; £98 : 7 • 6 • 
 £2348 : 14 : 9J ; £3974 : 18 : 6| ; ^■'Aj : 18 : 7 ; £768 : 9 : 7 ' 
 
 I £79 : 16 : 8|; and £9872 : 4 : It. 
 
 f 8. Find the sum of $794.63 ; $9874.56^ ; $78.90} ; $863.95 • 
 $9407; $7942.18}; $1734.86; $3257.98; $704.37 ; $53.91 
 and $2976.54. 
 
 9. Add together 7 tons. 16 cwt. 21 lbs. ; 39 t 3 qrs. H lbs 
 4 oz. 9 drs : 13 cwt. 2 qr«. 1 4 oz. ; 14 t. 9 cwt. ! rr !4 Ihg 13 
 oz. 15 drs. ; 18 t. 7 cwt. 3 qrs, ll drs. ; 3 qrs. 7 "lbs.'4 oz' 9 drs ■ 
 9 t. 6 cwt. 2 qrs. 24 lbs. 6 oz. 13 drs. ; 15 cwt. 3 qrs. 17 lbs" ' 
 and 16 1. 9 cwt. 2 qrs, 10 oz. i • , 
 
38 
 
 1:1 
 
 COMPOUND ADDITION. 
 
 sec t ,^'>Sether 37 weeks fi , 
 84 yds ? J "^f^'- 17 yds. 2 qrs an, l^'^^ ' "°^ «924.68: 
 
 , '9- Add together 2«^ . «• » o^- 10 dwts. 
 
 Ihs. ; 459 cwt 2 ore .s ik"^*- ^ ^''«- 24 Jbs ■ «7 , . 
 
 736 cwt. 2 qrs 19 .^ . i«?- ^ ibs. ; 175^cwf •? ^^ ' ^^^ «wt. 
 
 qrs. 4 Ji)s. ^ -^ '^^- ' 367 cwt. J gV. J4 f,f '.3 T^s. 14 lbs. ; 
 
 9n A .J "J • '^ ics. . and 42 cwt 1 
 
 2^- Add l„„lh„ 7, . ' ^™'">' 'Id K596 87 *'■"*■ 
 
tON, 
 
 sec. ; and 36 wks 6 ,]' 
 
 grs. ''°'^' I 
 
 B176159 ; 19245.08 ; 
 ^4b.93; and $924 68 
 29 yds 1 ,p. 3 ^ ^ • 
 
 ^•2qrs.3„Js.;and 
 
 -and £578 .16. 4^^: 
 $736 14; $968.13*' 
 and $96.83. *' 
 
 '"' ' -52 gals. 3 qts 
 ' &■ ; and 38 gals.' 
 
 3 grs ; 28 ,bs. 18 
 .• 13 lbs. 7oz. n 
 *«• 9 02. 10 dwts 
 
 '•^T'-s. 14 lbs • ■ 
 • •■ and 42 cwt 3 
 
 yds. •• 37 m. 3 f 
 P- 2f yds. ; and' 
 
 ^fJ ''• '7n. • 
 ; 127 a. 3 r. 27 
 
 £5; $4253.08- 
 ^8296.87. ' 
 
 i^ yds 2 ft. 1 1 
 
 8 in. 3 i. ; J32 
 
 COM?aUl?P SCBTJaAOXION. 
 
 39 
 
 HJ\"'nlK^A ' '^i'^- ^^^-^^ ™- 2^ s. ; 92 d. 20 h, 47 m. 38 s.; 
 !l85 d. 2 h. 39 m. 8 s. ; and 47 d. 9 h. 28 m. 47 s. 
 
 25 Add together 61 gals. 1 qt. 1 pt. 3 gills; 24 gals. 3 qts. 2 
 Ig. ; 48 gals. 2 qts. 1 pt. 3 g. ; 96 gals. 2 qt. 1 pt. 2:g. ; 37 gals. 
 |2 g. ; and 59 gals. 2 qts. 1 pt. 3 g. "^ ^ e > 8 
 
 26. Add together 7 tons 14 cwt. 2 qrs. 23 lbs. ; 19 t. 18 cwt. 
 qr. 24 lbs ; 48 t 11 c. 1 qr. U lbs.; 82 t. 17 c. 9 lbs. ; and 
 13 t. 16 c. 2 qrs. 22 lbs. 
 
 COMPOUND SUBTRACTION. 
 
 Compound 8i-btraction teaches how to find the differenoe 
 between two quantities of the same kind but of more than one 
 denomination. 
 
 Rule 1. Place the less quantity below the greater so that the 
 numbers in each column will be of the same denomination. 2. 
 Then beginning at the right hand subtract each number in the 
 lower line from the one above it, but if any number in the lower 
 line is greater than the one above it, add to the number in the 
 upper line the number of units of that denomination contained 
 in one of the next higher; then subtract, set down the remain- 
 der below, and carry one to the next higher denomination in 
 the lower line ; and proceed thus with all the columns to the 
 last. 
 
 . ^««°X- '^° *^? difference add the quantity in the lower line, 
 and If the sum is equal to the quaMity in the upper line, the 
 work IS correct. ' 
 
 r.r^^'fal ^o/™."* ^^ "^^^^^ ^ daJS'^UJiours 37 min. take 18 
 w. d d. h. 20 mm. 
 
 wks. d. 
 27 6 
 18 3 
 
 fa. min. 
 11 37 
 6 20 
 
 17 
 
 Bc. ; 234 d. 23 1 -11 
 
 27 6 11 37 Proof. 
 
 In this example as e^ich number in 
 the lower line is le?s than the number 
 of the same denomination in the 
 upper lino, it is only necessary to iind 
 the difference in each column as in 
 simple subtraction, which shows the 
 whole difference to be 9 weeks 3 days 
 5 hours 17 min. 
 
40 
 
 COMPOUND SUBTHACTION. 
 
 
 15 Ans. 
 
 02.^weVdd'i-f5^'";f ^'^^^"' than 6 
 
 . from 22 leavp« \^,t- ^' ^^^^ 7 
 
 "Wch lake„"S^8 ,e„,3 tl"- ^ oarry I ,?9* Jes To' 
 
 ^' $ cts. 
 7962.54 
 1326.78 
 
 fixERCJSES. 
 
 3. 
 
 cwt. grs. lbs. 
 
 128 2 17 
 
 96 3 22 
 
 5" pfnTff l^l"-23 take $12345 67 
 ^^^e^i^^'Z^-^^^ ^ ''ons 13 ewe. 2 ,rs. ,9 I.s 
 
 r. J pS:T7fdr;S^;JiP- " ^^«- ^ « ^ m. ta^e 7, a 2 
 
 15. Find the di/rereToe between r8Th'""«°'^ ^^^ '"^ ^«ft 
 ^ 16° A V ' Sf • ^°/- ' ^'•«- 2^8 g's^'- ' ''■ ' d''^- 2 scr. 14 
 
 the cargo ril2lf5'92 wSrirthTr^l ^''?«'^«-^0' ^he value of 
 7. From 96 yds. 2 ft Tin 7 r "^^ "? ""^ ^^^ vessel ? 
 
 •« From 117Lons fake '9yt!!nT7V^'!r^-'^■^,!f^, «-•«'• 
 
 --.-. . r.„r. ^^^ 20 lbs. 9oz. 
 
 18. 
 7 drs, 
 19. 
 20. 
 
 From 963 acres takfl 7/. n o «« 
 
 653 
 
 1. 
 
 2. 
 3. 
 4. 
 5. 
 6. 
 7. 
 8. 
 9. 
 
 to. 
 
 II. 
 12. 
 13. 
 14. 
 
'4 
 
 PI ON. 
 
 » 16cwt. 2qrs. 18 lbs. 
 
 being greater than 6 
 ^'ol^J« number in the 
 ch makes 22, then 7 
 es 15 which we set 
 'arry I to 9 makes 10 
 quarters being more 
 I'ne which mak(^s 6 
 to 8 makes 9 which 
 rence therefore is 7 
 
 *• qrs. lbs. 
 ^ 2 17 
 > 3 22 
 
 ' cwt. 2 qrs. 19 lbs. 
 'ks. 3 d. 47 min 32 
 ' qrs. 3 nb. 
 
 paid on account 
 ^ qts. 1 pt. 2 gills, 
 •om 684 m. 3 fur. 
 1 in. take 71 a. 2 
 
 •S.I 7 lbs. of iron, 
 las he left ? 
 
 • 4 drs. 2 scr. 14 
 
 70, the value of 
 
 vessel ? 
 
 's. 2 ft. 6 in. 8 1 
 
 •s- 20 lbs. 9 oz. 
 
 fls. 6 ft. 128 in 
 ?als. 3 qts. Ipt. 
 
 COMPOUND MULTIPLICATION. 
 
 41 
 
 21. Innd Iho dilfprence between the Julian year of 365 days 
 ' hours, and the true year of 365 days 5 h. 48 m. 50 sec. 
 
 22. The latitude of the city of Quebec is 46<> 48' 30" north 
 md that of Montreal 45° 31' north, required the diflerence? ' 
 
 COMPOUND MULTIPLICATION. 
 
 Compound Multiplication teaches how to multiply a quantity 
 [of more tlian one denomination. 
 
 When the multiplier does not exceed 12. 
 
 Hule.—l. Find the product of the first number on the right 
 I hand, and the multiplier, divide this by the number of that de- 
 nomination which makes one of the next higher, set down the 
 remainder and add the quotient to the product of the multiplier 
 and the number of the next higher denomination ; and proceed 
 thus with each denomination to the last. 
 
 Example 1.— Multiply 72 cwt. 2 qrs. 15 lbs. by 9. 
 cwt. qrs. lbs. 
 72 2 
 
 .15 
 9 
 
 653 
 
 10 Ans. 
 
 First we multiply 15 lbs. by 9, 
 then divide 135 lbs., the product, by 
 25, the number of lbs. in a quarter, 
 set down 10 lbs., the remainder, and 
 
 carry 5 qrs. to the next product ; 
 
 then 9 times 2 are 18 and 5 added 
 are 23 qrs., which we divide by 4 set down 3 the remainder and 
 carry 5; 72 multiplied by 9 =648 and 5 added makes 653. The 
 whole product is therefore 653 cwt. 3 qrs. 10 lbs. 
 
 Exercise 1. 
 
 1. 16 cwt 3 qrs. 17 lbs. 5 oz. x 2. 
 
 2. £29i : 17 : 9| x 3. 
 
 3. $79048.39 X 4. 
 
 4. 27 miles 3 fur. 27 per. 2J yds. x 5 
 
 5. 56 gnls. 3 qts. I pt. x 6. 
 
 6. 39 acres 2 r. 18 per. 9 yds x 7. 
 
 7. f829568.09 x 8. 
 
 8. 19 tons 14 cwt. 2 qrs. 23 lbs. X 9. 
 
 9. £794 : 18 : 7J X 10. 
 to. f. 369085.63 x 11. 
 
 11. 23 weeks 6 days 9 h. 27 sec. x 12, 
 
 12. 243 cwt. I qr, !7 !hs. !3 r.?.. x 7. 
 
 13. 7 lbs. 6 oz. 2 scr. 19 grs. X N. " 
 
 14. $96428075.69 x 8. 
 
 15. 39 acres 2 r. 25 per. 23 yds. 8 ft. x 12, 
 
4^ 
 
 III ' 
 
 iJ 
 
 If I 
 
 COMPOCND MTTLTIPLlCAnoN. 
 
 7 3B f/^'o^ 'I"- 2 nis. X 9. 
 
 19. $897?65V5fJlP'-3gilisx5. 
 
 20. 4 cwt. 2 qrs. 7 oz 7 drs x 6 
 
 exc^r;^!^'^ '^ « --P^-'^ number neither of whose iactoJ 
 
 the one required. ^" ^^^ '^^^ product will be I 
 
 I Here the factors are 8 anrl 7 
 
 J3Ans. 
 
 Example 3.-Mmtip]y ^63: 5: 2|hy 252. 
 
 63 
 
 442 16 
 
 2656 19 
 
 d. 
 
 f 
 
 6 
 
 «nH ft example the factors are 7 r 
 and 6 we therefore multiniv .if •' °' 
 quantity by onp nf f^ r ?^ ^^® S^'^'en I 
 product by^nother^ft' ^f ^°?.^^ ^' ^he I 
 
 product by 6 wE I'ivlfii.^ '"'^"'^ 
 amount. ^'^^^ *^e required 
 
 15941 17 9 Ans. 
 
 I $739278.56 x 14 
 
 2. £896: 14- 7iy' 
 
 3. $394065. 97 ^16 
 
 4. 74 cwt. 3 qr. 14 lbs. It oz y l« 
 
 • ^fi"r\2r.35per.27yds X20 
 l?„^lt3.'Trs.2Sls.X2T-^'' 
 
 U. £ 
 
 12. 8 
 
 13. 4 
 
 14. $ 
 
 15. 4' 
 
 16. 2 
 
 17. 3 
 
 18. $ 
 
 19. 6 
 
 20. 2 
 
 21. 7' 
 
 22. $' 
 
 23. 9 
 
 24. 7 
 
 25. 41 
 
 26. 8 
 
 27. r 
 
 28. $ 
 
 29. 2; 
 
 30. 11 
 
 When 
 Inumber. 
 
 Rule.— 
 
 Multip 
 Inumber ( 
 [multiplie 
 I required 
 
 When 
 
 Multip 
 last prod 
 duct add 
 number ( 
 mullipliei 
 
 EXAMPl 
 
 cwt. qrs. 
 6 2 
 
 15. 
 
 6. 
 7. 
 8. 
 
 10. 
 
 ?2^b«V„?Td--'°""•'^ '*:»'■"• 26 sec. V 9. 
 
 7 lea.2 m"'6 fur'^i^ "''"• /" f'"- ^ '^4. " "' 
 $296874?!68 X 27 P""- ^ ^^'- ^ 25. 
 
 65 
 
 3 
 
 263 
 46 
 
 2 
 n 
 
 309 
 
 2 
 
OAHON. 
 
 COMPOUND MULTIPLICATION. 
 
 43 
 
 3. 
 
 5. 
 
 either of whose factorsi 
 
 ' o«e factor, multiply 
 he second product by I 
 e last product will be 
 
 bs. by 56. 
 
 rs are 8 and 7, we 
 Mhe quantity by one , 
 8, and multiply thej 
 other factor. 
 
 13 lbs. 6 oz. 5 drs.^x 30. 
 gills. X 32. 
 
 X 36. 
 
 63. 
 X 72. 
 X 75. 
 
 147. 
 
 he factors are 7 el 
 multiply the given! 
 ^.^ ^^ctors as 7, the! 
 o,. and the second 
 gives the required i 
 
 It. £396: 14: 9i X 28. 
 
 12. 8 tons. 16 cwt. 2 qrs. 
 
 13. 48 gals. 3 qts 1 pt. 3 
 
 14. $7496876.48 x 33. 
 
 15. 42 wks. 3 days 17 h. 14 min. 28 sec. 
 
 16. 24 yds. 2 ft. 11 in. 7 lines x 45. 
 
 17. 37 acres 3 r. 29 per. 22 J yds. x 48. 
 
 18. $785965. 38 x 56. 
 
 19. 6 lbs. 3 oz. 6 drs. 2 scr. 13 grs. X 
 
 20. 24 cwt. 1 qr. 24 lbs. 7 oz. 12 drs. 
 
 21. 74 miles 6 fur. 37 per. 4 yds. 2 ft. 
 
 22. $9687428. 79 x 120. 
 
 23. 94 gals. 3 qts. 1 pt. 2 gills X 128. 
 
 24. 7 bush. 3 pks. 1 gal. 3 qts. i pt. x 
 
 25. 49 wks. 2 days 19 h. 12 sec. x 560. 
 
 26. 8 yds. 2 qrs. 3 nls. x 220. 
 
 27. 17 acres 2 r. 29 per. 28 sq. yds. 8 sq. ft. x 98. 
 
 28. $5976.84 X 147. 
 
 29. 23 bush. 2 pks. 2 qts. I pt. x 1000. 
 
 30. 19 cwt. 2 qrs. 18 lbs. 13 oz. 14 drs. x 504. 
 
 When the multiplicand exceeds 12 and is not a composite 
 number. 
 
 Bule. — When the multiplier does not exceed 100. 
 
 Multiply the multiplicand by 10, and the product by the 
 number of tens, to this add the amount of the multiplicand 
 multiplied by ihe number of units, and the sura will be the 
 required product. 
 
 When the multiplier exceeds 100 and is less then 1000. 
 
 Multiply the multiplicand by !0, the product by 10, and tb$ 
 last product by the number of hundreds ; and to the last pro- 
 duct add the amount, of the first product multiplied by the 
 number of lens, and the amount of the given multiplicand 
 mulliplied by the number of units. 
 
 Example 4. — Multiply 6 cwt, 2 qrs. 9 lbs., by 47. 
 
 cwt. qrs. lbs. 
 
 6 
 
 9 
 10 
 
 X 7 
 
 65 
 
 15 
 4 
 
 V 99 
 
 263 
 
 46 
 
 2 
 n 
 
 10 
 !3 
 
 Here the multiplier 47 not being a compo- 
 site number, we multiply by 10, the product 
 by 4, and to this product add 46 cwt. 13 lbs. 
 the ])roduct of the given multiplicand and 7, 
 which gives the whob product ^09 cwt. 
 2 qrs. 23 lbs. 
 
 309 2 23 Ans. 
 
u 
 
 -MuJiinli, -_ . ^ 
 
 ««;t. qrs. iJbs. ^ '^'• 
 
 ^28x5 
 10 
 
 ^ 20 Answer. 
 
 „ - ^^ Answer. 
 
 26 iS 6^^ ^ 3 
 10 
 
 266 iTTi X 4 
 10 
 
 2667 Tr'T X 3 
 10 
 
 ^!!i'i_£»;^ Answer. 
 
 
COMPOUND MULTIPLICATION, 
 
 4ft 
 
 73 acres 2 r. 26 per. 18 ydi. X 147. 
 
 $7964.78 X 237. 
 
 4J lbs. 9oz. 17 (hvts. 19 grs. X 253. 
 
 7 tons. 14 cwt. 1 qr. 10 lbs. X 246. 
 
 9 weeks 6 (1. 18 h 42 inin. x 298. 
 
 £84 : 6 : 9i X 2756. 
 
 34 gals. 3 qts. I pt. 3 gills, x 759. 
 
 7 bush. 3 pks. 1 gal. 2 qts. X 365. 
 
 3 per. 4 yds. 2 ft. 7 in. 11 lines x 1700. 
 
 3 qrs. 23 lbs 14 oz. 12 drs. X 476. 
 $895.08 x649. 
 
 4 acres 2 r. 29 per 26 yds. X 583. 
 
 5 days 18 h. 36 min. 19 sec. X 897. 
 3 lur. 21 per 4 vds. 2 ft. X 958. 
 £24 : 1 1 : 7i X 3428. 
 27 yds. 2 qrs. 3 nls. X 249. 
 36 lbs. Uoz. 17 dwts. 3 grs. X 352. 
 
 25. $649.73 x 716. 
 
 26. 14 cwt. 2 qrs. 13 lbs. X 641. 
 9 gals. 3 qts. 1 pt. 2 gills. X 742. 
 13 bush. 2 pks. 1 qt. 1 pt. X 256. 
 7 weeks 4 d. 22 h. 13 sec. x 493. 
 3 qrs. 24 lbs. 14 oz. 6 drs. X 658. 
 
 Knd the amount of 
 14 lbs. of sugar 
 
 8. 
 
 9. 
 
 llO. 
 
 111. 
 
 12. 
 
 13. 
 
 14. 
 115, 
 
 16. 
 
 17. 
 
 18. 
 
 19. 
 
 20. 
 
 21. 
 
 22. 
 
 23. 
 
 24. 
 
 27. 
 28. 
 29. 
 30. 
 
 at 
 
 5 lbs. 
 4 lbs. 
 7 lbs. 
 3 lbs. 
 
 of coliee 
 of tea 
 of rice 
 of raisins 
 
 iFind the amount of 
 
 7 yds. of cloth 
 
 8 yds. of flannel 
 12J yds. of cotlL 
 
 3 pairs of gloves 
 11 yds. of linen 
 
 11 cents per lb. 
 35 " 
 78 " " 
 
 9 " " 
 
 12J " " 
 
 at $2.70 cts. per yard 
 
 « 65 " " 
 
 " 16 " " 
 
 " 95 " per pair. 
 
 " 26 " per yard, 
 
 $ ctd 
 
 $7.41* 
 
 I 
 
 Find the amo int of 
 
 5 geographies at 75 cts. each. 
 7 grammars " 24 " " 
 
 6 arithmetics " 42J " " 
 4 Histories of Canada " 90 " " 
 3 algebras " $1.09 " *' 
 
 $31.81 
 
 ft 4.85 
 
 ■I 
 
m 
 
 ^'"^ 'h« amount of 
 ^i' yds. of cotton 
 
 o^MPotrvD Division. 
 
 ^^*%20cts,pe.,«,,. 
 19 .< P'^'^yard. 
 
 ___ Iji76., 
 
 TJ'en divide h^v '^'"■'°'' '« 'he left of ,^ 
 
 ^°^-est denominl? "^^ ''''' '^"otient and ' '"^'^ ''^"^ o J 
 
 Phoop mT "' "^ ""'ii there is 1' ^'"''"^ '^us to the 
 P^oduTtVe^," 'Pjy the <Tuotient Z ZT"''''''''- ^ 
 
 "127- V- i^ '''''^'•^•«^^s-i)y7 '°'- ^ 
 
 Operation 27 -:. 7 « 
 ^'e therefore set dow? ?.«"? ^ over 
 f the remainder to m,. , '^"'^ '"^dMce 
 the number of „„«l"^'''e''s then 24 
 
 quarters in the^J^SnV""^ ^ the 
 ''" ■7- 7 = 3 „, ^"otient make 9fi 
 
 When the divisor fc ^ '^^t. 3 grs Iq iL ^^'na'nder. 
 
 ^«^'ors exceedr/r '^ ^ ^^^Po^ite numbe 'nei ''• 
 
 ^«^''— ResoJve,, . "'''^«'- of whose 
 
 ^«'^tors as in UnleT T'7 '"'° "'''<^^^- Divide H 
 until aJJ the fan, ' ^'^''^'^ '^e resyJt bv ^^ ""« "'"the 
 
 '" '^^^tors are used. ^^ ^""'her, and so on 
 
 2 
 3 
 
 27 
 
 8 
 
 "^Ans. 
 7 
 
 S proof. 
 
 \v. 
 |144 
 
 When th 
 quotient tc 
 
■JsroN. 
 
 ;S' per yafri. 
 
 ' per pair. 
 ' per yard. 
 
 BXA,MI'LE 
 J W. 
 
 144 
 
 COMPOUND DIVISION. 
 '2— Divide 144 weoks 6 days U hours by 72. 
 
 47 
 
 d. 
 6 
 
 ?.4 
 2 
 
 li. 
 14 
 
 Here the factors being 8 
 and 12, we divide the given 
 quaniity by one of the fac- 
 - — — tors as G, and the result by 
 
 2 11 40Ans 12 the other factor. 
 
 2 20 
 
 5roiv. 
 
 iivide 
 
 quantity con 
 
 ""^the dividend. ■>% 
 ^^j«« by it, set dowii 
 '"^'^'^^ it to the nel 
 ""^ier Of the sa,ne| 
 jh^ nuniber thus oh-f 
 
 'i proceed thus to the 
 3niainder. 1 
 
 ^^;;ivisor, and If the I 
 ^^"'^K IS correct * 
 
 by 7. 
 
 ■=: '^ = 3 and 6 ova" 
 ,^°wn3andred.rc; 
 '0 quarters then 24 
 "^''ters, and 2 the 
 ^"ot.ent make 26 
 
 fe'^ Which we set 
 '"amder 5 whiS 
 
 ^5»U remainder. 
 
 '^'■"^6'' of whose 
 
 '''e by one of the 
 •'^e'-- and so on 
 
 1, 
 
 2, 
 3 
 4, 
 5, 
 6. 
 7, 
 8. 
 9. 
 
 10. 
 
 11. 
 
 12. 
 
 13. 
 
 14. 
 
 15. 
 
 16. 
 
 17. 
 
 18. 
 
 19. 
 
 20. 
 
 21. 
 
 23." 
 24. 
 25. 
 26. 
 27. 
 28. 
 29. 
 30. 
 
 -r 4. 
 -f 6. 
 
 ~ 10. 
 
 Exercise 1. 
 
 $7396874.53. -i- 2. 
 
 £963 : 7 : 4. -i- 3. 
 
 7 tons 12 cwt. i qr. 17 lbs. 8 03. 
 
 68 gals. 3 qts. 1 pt. 3 gills -J- 5 
 
 91 acres 2 r. 29 per. 26 yds. "8 ft 
 
 793 yds. 2 qrs. 3 nis -^ 7 
 
 13 lea. 2 m. 7 fur. 37 per. -i- 8 
 
 $946874.25. -f- 9. 
 
 734 cwt. 2 qrs. 14 lbs. 13 oz. 8 drs 
 
 36 per. 4 yds. 2 ft. 9 in. -i. 11 
 
 734 gals. 2 qts. I pt. 2 gills -i- 12 
 
 468 bush. 3 pks. 1 gal. 1 pt. '-^ 14 
 
 £9648 : 17 : 8| -^ 18. 
 
 4263 yds. 3 qrs. 2 nls. -f- 63. 
 
 927 acres 2 r. 19 per. 28 yds. 7 ft 
 
 234 lbs. 7 oz. 4 drs. 2 scr. 16 grs 
 
 42()cwt. 3 qrs. 12 lbs. -i- 108 ' 
 
 426 lbs. I9dwts. 17 grs! - 180 
 
 $76498705.36 -^ 154 
 
 365 wks. 5 days 17 h. 56 min. 48 sec. 
 
 9-26 gals. 3 qts. I pt. 3 gills. -^ 147 
 
 £1097 : 3 : 4J 4- 243 
 
 963 bush. 2 pks. 1 gal. 1 pt. -^ 198 
 
 9364 cwt. 2 qrs. 19 lbs. 1 oz. 10 "drs. -^ 363. 
 
 793 miles / fur. 36 per. 5 yds. 2 a — 648 
 
 749 eng. ells. 3 qrs. 2 nls. -^ 294 " 
 
 $9400037.04 -^ 648. 
 
 279 acres 3 r. 8 per. 7 yds. -^ 8 1 
 
 463 wks. 6 d. 23 h. 41 min. 36 sec. -^ 512 
 
 734 qrs. 18 lbs. 15 oz. 14 drs. -^ 594 
 
 -r 56. 
 •f 96. 
 
 -f 144. 
 
 When the divisor exceeds 12 and is not a composite number. 
 
 ^«/e.-Divide each denomination as in rule 1, and write the 
 quotient to the right of tlie dividend. 
 
48 
 
 B-Samplk.- 
 
 623 "^ 
 
 OOMPOL'M, DIVISION. 
 
 l>'vide 635 tons. 4 cwt -i n u 
 
 I. 
 
 17 
 
 0. 
 
 2 
 
 3 Ans. 
 
 12 
 
 20 
 
 244 
 I7S 
 
 66 
 4 
 
 ?67 
 267 
 
 Operation, 8!i x 7 ~ fi9ci ^ „ i 
 
 t'lis boing roducp.Mn T . ' '""^ 635-622 ■- \i 
 
 remaining. thi?«" ^""laine-i txvico and 1 
 
 ». 3'J6 wks. 5 fl* 17 h t;7 . 
 
 ''•■7Sfc'eV3n8'P^-^o^'"«-2746 
 
 15. 3786 tons 19 cw? T" " ^'^^^ 2 a 52 in ^ Qfi, 
 
 '6- If 137 lbs" 0? sTgar' 1% V^',.' ' «^' « d-- - 3^65 
 
 «7. If f7lS7%4 h "''' "''^ «- i^H 
 
 19 if.fJ^^-costiSo-f '^^'''^«'- ''aSligst oontaininj 
 '"• ^' a person spends SOni «« • """"«i 
 
3 V^- by 89. 
 
 = 623. and 635-622 — li 
 ''n""ds and 4 cwt a"d<i 
 ^onla.ned tw.co and 1 
 
 g'\K^'V°"'ttined exact, 
 s tiierefore 7 Ions. 2 cw; 
 
 39. 
 
 3- -r 69. 
 ■-f-74. 
 drs. J.3I3. 
 
 ■i- 'J27. 
 
 '46. 
 
 
 52 in. -^ 
 oz- 8 drf.. 
 'hat will 
 
 i964. 
 -f-365. 
 one poun 
 
 ong 93 persons wl;. 
 ''acljgst containingj 
 r, how much would 
 how much will thaj 
 
 quantities of morel 
 T many timts. J 
 dend to the iowesll 
 'Simple division. 
 
 COMPOUND DIVISION. 4^ 
 
 KxAMPLK 4.— Divide 14 vds 2 ft i,, 1 1 1 
 
 H Yd'. 2 ft In I i ' ''""" ''y 3 y<i8. 1 ft. 
 
 3 yds" I ft • " ''"es=645-nines. 
 57()0 
 
 , , iW? Memnindor. thfre'ara Lsf r '"°" T ""'' "'«' 
 and 1440 in the divisor ThlTmZttaJcT '"^ho dividend, 
 the quotient 4 ■^^^, ^'"^ ^^" ^^ ^^'*0 we obtain 
 
 EXEHGISE 3. 
 
 I. Divide 248 gals. 2 qts. 1 gill by 34 sals I ninf 
 for is""* ■""">' "•■"■«■" '■■'*«"'» m<><>lmLT>,ltlgM 
 
 rence of llik wh.iol Mng ,? fti*""^'^ " ""''i"' ">« ciroumfe- 
 JmlVZ.>,7"\rir """ ""'''■ ''^ <"»> distribmed, 
 ou? ofs 7bs"'?"'' "'""■ "'°°"»' ™* * -• » -Iwls., may b, made 
 J^"°":Tr "'■ °''"''°«' « "■ '"■ P^-- ">,. may be bought 
 
 made'i°uT„ra'."nrort„"'?''""» ' ">^'- ' "- -y >« 
 
 cbL^„';;.s°i.r7r,br7r';.°i;e'?iS;"'^- ' -■ "•^«'"» 
 ^ is. "?: 7:^ orsj;?f„t.i!",?irr """ -f =' ^ '« ' 
 
 bought for $220 *'^-^^' ^°w much may be 
 
 .ro'y!whKa°s'i?s°we';gb'.f "'^ "^ "• "' ^«-- '^^per ounce 
 
 . ,;'4io?,S itVn'", ?„"Si*' °"' "' ™''° ™' °f 
 r.ok„„"7eaT,V;rot'urr" '"^^ '" ""l"!"* 'miles, 
 
 J%?r """>■ '""•'" <"■"■»"■ " i3.78Tir y^Smay be bough. 
 
 an'd" 3S?'=i,rte"°"'J' % ■"*,?" ■"'■"'"•'■y l» "...W. IV 
 e«nmples, which may will, i™„nSv'"h.*-'? i*"" l»"»wl'ni 
 every such operation /e,ni','^l CrStiXa'r SXK 
 
00 
 
 'iXAMM.K 5.. 
 
 7 
 
 8. 
 
 18 
 
 15 
 19 
 
 Multiply n . ,x . ,, ^^^, ^^ 
 
 JCl? 14 
 
 : 9 
 
 
 oi=|orniiiii 
 
 OJ 
 
 Example 6.— Divide jC.}? 
 
 Wo fi.sl mnliiply by /, (h., 
 „■ "nn, "'" product of /i 
 
 jn 
 
 37 
 
 19 
 
 I 150 
 133 
 
 14 : OJ hy4i 
 
 8. 
 
 14 
 
 16 
 
 d. 
 0} 
 
 4 
 
 3 I ^7: 18 ; OAns. 
 
 1 
 
 17 
 20 
 
 356 
 19 
 
 166 
 15V 
 
 and to 1^6 tlu pnu cTadST,?''''^'™'^^'"" 
 t'ie result is 19 Ju w,." ^^ ^''f "'""erntor 
 
 vi'lend and 4 wo ?Lf l; ^ • ^^ "'« -^i' 
 
 9 
 
 14 
 12 
 
 Tu 
 
 171 
 
 1. 
 
 £28 
 
 19 
 
 2. 
 
 £ i 
 
 1! 
 
 3. 
 
 £ 4 
 
 2 
 
 4. 
 
 JE 7 • 
 
 16 
 
 8f X 
 6| X 
 6 X 
 7i X 
 
 Exercise 4. 
 
 '7f. 
 
 n. 
 
 5. 
 
 £ 64 
 
 17 
 
 6. 
 
 £847 : 
 
 12 
 
 7. 
 
 £408 : 
 
 
 
 8. 
 
 £ 7 : 
 
 3 
 
 7^ + ei. 
 H -7- 47*. 
 
 m -f 43 a 
 n -f 2i| 
 
1 
 
 N, 
 
 '•«! n)l,|li,,|y by /, Ih., 
 
 '""'"T, 11,,.,, /•„,, J^ jj, 
 
 '''I'iiU'o vvf niuliiniy 
 : fMli« nmlliplic,„i,i 
 " ('ivide tJm prorluft 
 "■'' Rives llio resiill 
 ■ ^ji> I'lis addtHJ to 
 I'lo product of 4 
 •■ '•4 -"Oiftlio product! 
 
 iiuniher in the di- 
 aler 01' tJie Irflclion 
 d -i the niiinerntor 
 I wo divido £150 • 
 \-- ^ : O4 tJiedi-' 
 )btain £7 ; 18 |) 
 
 SIMPLE PROPORTION. 
 
 MISCELLANEOUS QUESTIONS. 
 
 I. WeJuco $73%8 42 to cf'fits. 
 
 ftl 
 
 2. H"Juc„ 81000703 cont8 to dollars. 
 
 ^'..'1-indS^^^^^ ^mu,, 
 
 4 '''•om$IOO(J.i7tal(o$;i74 82 
 ^ Multiply soifj 28 i,y 305 
 
 «• i)ividn $42()«., 8 Lctwe.,; II persons 
 
 7. Divido $37240.07 by 821 
 
 «• Hnduce 17 tons 19 owl. Ur 14 ih, t. , 
 
 H-;Jucc7i6,>3284 dra.ns Avoirdupois, to tons, hundreds 
 
 >!• Fn.m27Icwt 1 ar 14 Ih 1 '^'- '^ ^''«- ' ««'■• '8grs. 
 19 lbs. 15 0.. I4%V8 '^' ^ "^^^ '3 drams, take 3 qrs. 
 
 12. Multiply £763 : 19 .. 4^ ^y 12 
 
 13. Multiply 32 yds. 2 qr. 3 nls. by 276 
 .D.vue764n,^ .Uur, 26 per. 3 yd.s.' by 9 
 
 5.D.v.de9n5e.vt..cr.24 1bs..4ds.by74" 
 
 6 Rod.,,,, ,,,74 grains Troy to lbs. ' 
 I'. Heduco £742 IQ • « <„ 1 ,, 
 18 o J ■ • ° 1° flollars and cents 
 
 '} + 6J. 
 5} -i- 47J. 
 10} -r 43 » 
 ■'1 + 51 j 
 
 SIMPLE PROPORT/ON. 
 
 
52 
 
 SIMPLE PROPORTION. 
 
 m i 
 
 The first of the terms in a ratio is called the antecedent, and 
 the second the consequent. 
 
 The first and fourtlz terms of a proportion are called the 
 extremes; and the second and third the means, thus, in the 
 jtroportion ' 
 
 As 20: 15 :: 60 to 45, 
 20 and 45 are the extremes, and 15 and 60 liie means 
 
 In any proportion the product of the extremes is equal to the 
 product of the means. 
 
 Thus in the proportion, as 12 : 9 : : 36 : 57. The product of 12 
 and 27 the extremes, is equal to the product of 9 and 36 tho 
 
 ..IVr*^ ^!l' ''°"'"' P™P«''t^""'^l "multiply the second and third 
 terms together, and divide the product by the first term. 
 
 ExAM.-m.-Find a fourth proportional to 7, 21, and 9. 
 
 21 X 9 = 189 
 189 -^ 7 = 27 Ans. 
 
 Exercise 1. 
 
 Find the fourth proportional to 
 
 1 
 2 
 
 3.' 
 4. 
 5. 
 6. 
 
 9, 
 
 8, 
 
 6, 
 
 10, 
 
 27, 
 
 3, and 15. 
 
 24, and 13. 
 
 15, and 4. 
 
 15, and 6. 
 135, and 3. 
 32, and 16. 
 
 7. 
 
 8. 
 
 9. 
 10. 
 11. 
 12. 
 
 14, 
 36, 
 92, 
 29, 
 75. 
 12, 
 
 19, and 28. 
 47, and 54. 
 68, and 23. 
 lie, and 14. 
 18, and 25. 
 90, and 48 
 
 fh«MtT Write the three given quantities in succession, so 
 hauhe term which is of the same kind as the required answ 
 
 h tH v: ''*'' ''"" '• ''''' «"^^- •«'- ^- ^-"r 
 
 than the third term ; set down the greater of the other two 
 
 hTll'V. ''''"^ P"'' ' ^"* '^ '^' ^"^^^'' '^ '° fc« less than 
 the thud erm, set down the smaller of the other two terms in 
 
 he second place. 3. Then multiply the second and third terms 
 together and divide by the first. 4. When the first or second 
 term IS a quanlily of more than one denomination, reduce both 
 to tiio lowest denomination contained in either. 
 
the antecedent, and 
 
 rtion are called the 
 means, thus, in the 
 
 lie means. 
 
 emes is equal to the 
 
 '. The product of 12 
 Lict of 9 and36tho 
 
 le second and third 
 !ie first term. 
 
 ', 21, and 9. 
 
 19, and 28. 
 47, and 54. 
 68, and 23. 
 IK', and 14. 
 18, and 25. 
 90, and 48. 
 
 in succsssion, so 
 3 required answer 
 
 is to be greater 
 )f the other two 
 is to be less than 
 ler two terms in 
 1 and third terms 
 e (irst or second 
 ion, reduce botli 
 
 SIMPLE PROPORTION. 53 
 
 PBOor^ Multiply the answer by the first term, and if the pro- 
 duct us he same as the product of the second and third terms 
 the woric may be considered correct. 
 
 E..AM..Z.K.-I. If 3 lbs. of sugar cost 33 cents what will 5 lbs 
 cost at the same rate ? 
 
 ll)s. lbs. 
 As. 3:5: 
 
 cts. 
 33 
 
 3 I 165 
 
 Here as the answer is to be in cents 
 vve write 33 cents in the third niace 
 
 hen as 5 lbs. will cost more than 3 
 lbs. we write 5 lbs. in the second 
 
 r.<L , ^.^^^ ' '^''-'n dividing 165 the nm 
 
 ^^''"^'' ?'»ctol the second and third terms" 
 
 by 3 wo obtain the answer 55 cents 
 
 wiu'27 cwt.'3-^;s. costT' ' ''• ' ""• °^'^"°- -«^ ^"0 wha; 
 
 cwt. qr. lbs. cwt. qrs. $ 
 
 As. 28 1 9 : 21 s . . A^n 
 
 4 4 "^ • • ^^^ In this example 
 the first and se- 
 cond terms are re- 
 duced to lbs. tho 
 lowest denomina- 
 tion contained in 
 either. Tlien di- 
 viding .<$ 9352,50, 
 tiie product of tho 
 second and third 
 terms, by 2834 
 the pounds in the 
 first term we ob- 
 tain $330 the first 
 nn, . part of the answer, 
 •01 Ans. then reducing the 
 remainder to cts. 
 we obtain the se- 
 cond part which 
 is 1 cent the whole 
 answer therefore 
 is $330.0 land 166 
 remainder, 
 
 ICG remainder. 
 
 U3 
 25 
 
 87 
 25 
 
 574 
 226 
 
 435 
 174 
 
 2«34 
 
 2175 
 430 
 
 
 65250 
 8700 
 
 2834 
 
 1 935250 1 
 8502 
 
 
 8505 
 8502 
 
 
 3000 
 2834 
 
54 
 
 SIMPLE PROPORTION. 
 
 Examples. If 17 ]h<i u ,^■. .*•. 
 
 n^^Hy be bought for i^taUhe sau/: rate f ' '"^"'^"^ P°"°^« 
 
 . ,^ * lbs. oz. 
 A3. 14 ; 24 : : 17 4 
 
 16 
 
 106 
 17 
 
 276 
 24 
 
 U04 
 552 
 
 14|66il|l6(^3oz.2drs. 
 
 29 lbs. 9 oz. 2 drs. Ans. 
 
 102 
 98 
 
 42 
 
 2 
 16 
 
 32 
 
 28 
 
 ou!.^:r.-s-/xieT'° 
 
 
 4 rem , 
 
 EXKRCISE 2. 
 
 same rate ^ °''°^^^ ^"^^ ^^^^ what will 86 lbs. cost at !he 
 
 3: wl^I ^l?]^,rT^ -"-t Will 93 acres cost ' 
 bought for $6.50? ' °^"^^' cost, if 13 bushels can M 
 
 d4s i^n'^CeirrS.: K :;:;:^^?^ '" ^^ •^"^«- <" '-w .any 
 cost $m "'"'' ^^'""^ "^^y ^« ^'^"ght for $374. 16, if 28 gallons 
 
 rateof?;-.;;i1^5';i!::^^;'';Klv'T^''" ^^"^y^- ^^ the 
 
 H d ist.f 
 
4, Iiow many pounds 
 
 SIMPLE PROPORTION. 
 
 65 
 
 s. Ans. 
 
 the third term to 
 Ls in example 2. 
 
 rould be obtained 
 s. 4 02. by 24 as in 
 lUon and dividing 
 
 SG lbs. cost at the 
 
 93 acres cost ? 
 ' bushels can '.i 
 
 •ys, in liovvmany 
 ■16, if 28 gallons 
 lbs. of sue j; if 
 '29 (lay.«, pJ the 
 
 the sami ™^t'e?' °^''°''' '°'' ^^''^•'^ ^^^' ^'^' ^^ y''«- ^o^t at 
 
 9. Ifl76cwt. 3 qrs. II lbs. of flour be bought for £ 1 94 • 2 ■ s 
 how much may bo bought for £304 • 9 • ^7^"'''°'^ -^'y* ■ ^ ■ ^' 
 
 in Sh^I^ ™K-"l ^''^ '^'" ^^ required to do a piere of work 
 " M '^.T' ^^'"^^ ^ * "™^n <=an do in 48 days ? 
 
 foH4Sroil^SlLname^rr.'''^'^-'«' ^'^'^^ ""^^ '^ P^'^ 
 
 14' wValTs"th?v«ln;S'1c;'°"V 74 pounds of cheese cost? 
 per cord? ''""^^ of firewood at £l : 2: 3 
 
 HsVuonslf t^slerte^ "^"^ ^'"^ "'^"^ ™"«^ ^« P^^^ ^o'' 
 
 wouldYhl't^e'fSjfm'ontlf? '^ ''''''' ^"°-' ^-- --^ 
 
 y: "-^ ^U's ni^'co^-^^ ^^ ^ ^'''^^' °^ '^'"^h^ ^h^t w«"iJ 13 
 
 'tf. ]:• a steamship sails 3700 miles in 13 davs, how manv 
 
 ''" q' t'^Yl'^ "'^* ^^ °" «" average per day ? ' "^ 
 
 3 qr's. fost'auhelme rate"^' ^''' ''^^ "^^ ^^'^ ^^ -t. 
 
 be'boJghtfoi'J"! l[ r' °' '°^* ^'-'^ '^"^ "^^"y s^i'°"« -ay 
 
 muchl^tKS"?rarum.°" '° ^^^^™^^ *'-^« P- -^«^- ^ow 
 cwt'3Trs^Kl'ar&^r°/^T^'^°^^ ea.h weighing ,3 
 
 for lyds'Vj':tnlV. -r" '''' *''''' '°^ "^"^'^ ^"«' ^« P^'^ 
 
 ,•« ?hk ^i^ ^u!^] ^^^^ ^'^^^ ^^""o^'S a shadow of 6 ft. 2 in what 
 .IS the height of a steeple which throws a shadow of Tmt 4 
 
 25. If 56 men can reap a field of wheat in 13 days how manv 
 men would i take to reap the same field in 1 1 da/s v ^ ^"^ 
 
 26. A bankrupt owes 18472.94, but the value of his efTerts i« 
 TL'ltcS' '' "'' '' '''''' ''^ '''' ^°'^-' -'-' is !h?;|ue 
 
 27. If a regiment of soldiers consisting of 954 men occnnvin<T 
 a besieged town has provisions sufficient to last them 13 wE 
 
 moved?' ^''' '^' P'^^'^'""^ ^'''' "'^'^ «'■ the soldieJs 7revt 
 
 28. How many days would a person take to travel a certain 
 
 3 Snr4r,^iV";f..^_ i-S- ^If^y. in.e can travel thrjame 
 ui ...H in .,, ,!aj= walking i 1 hours eacli dav ? 
 
 fnn u , . P ,"^^ P!'*'^'^'""^ ^""•^'ent to last a crew of 27 men 
 !s incre:S^to'3T.a"''' "'" ^^"'^ P^-^- '-^ ^^ ^1- -" 
 
5b' 
 
 SIMPLE PROPORTION. 
 
 m 
 
 m. 
 
 2 'ats'^ll'^.rZir" '" ™ »°-"-^'* ™""' •"' ".= mte or 
 
 how oiany'r," Culj'.hrfl'";- * l"'- '"■" <■»«« i" 4 day, 
 35. A b«nKp7owes S7wLm? i"""?,."" ' '"^ ' r. 9 pe'? 
 
 M^glf ri^loTf '1 -' »™-- "-'«"• "- --y tarrals „,ay be 
 c'Lu^o'er" '""''° """ "f " lbs. 3 oz. of coirae if 3 lbs. 7 
 A'V^Vl!\'J:l'^- ' '"■ ' "'• " ■='»"- ««'. ■" '"e rate of 
 
 wiS |„t ffo%lr„.-'3?a^Lrr/v.^'e?r " ^^' ^ '* • «. 
 
 40. How much cloth nt «■? 97 „ *''P«rf 
 72 yards at $2.53 per yarj 9 ^^'^^ P"*" y^'"**' ^o«ld I'e equal to 
 
 $7 9G Jr fnTbs •/' '^"^'- ' ^^«- 20 lbs. of sugar at the rate of 
 
 Cor'WSl'r''' "^"^ ^' ^'■'' P- 3 g-l- 1 qt. may be bought 
 
 ta^ii.f,I c.Ti7%ts'falZ'^ hogshead of sugar con- 
 a T-8. 17 lbs. cost $139 ? ■■ '>«§^S"«^d containing 15 cwt. 
 
 sam^'rate v'^- °' ^'^^^ ^"^^ ^'^'^O what will 93 lbs. cost at the 
 
 4G If 17 bushels of wheat coc^t «iq 7^; u 
 may be bought for $237 ^ * •'^' '^^^ ™a"y bushels 
 
 p|"472g& AtiriS ^"^ ^^'■''' -^^' --t be 
 
 ^ SO. What cost 79 cwfo^knr^^^^^^^ 
 
 97 lbs. ? °' """'^ »^ Ihe rate of £1 : 2 : 3 per 
 
 wha't woulSte li/Teng^r^l'/fhe'raTo ' f^'"'^ '' ' ''■ ' '"• 
 137 feet high ? ^ ^'"^ shadow thrown by a steeple 
 
 ceiSpergalfonV'^"'"- ^ '^''- «^" "^^'^sses at the rate of 36 
 
N. 
 
 acii chost contain in<» 
 llie wliole at G3 cents 
 
 lb. of sugar, if 3 cwf. 
 
 weight cost $78. IG 
 lie ? ' 
 
 lounttoat the rate of I 
 
 fa fence in 4 days, 
 3 acres 1 r. 9 per ? ' 
 
 s are worth $4557.69 
 
 wes '! ' 
 
 nany barrels may be 
 
 z. of coffee if 3 J bs. 7 
 
 ^ cost, at llie rate of 
 
 ' per. is £59 : 14 • 6 
 "f 
 
 I, would be equal to | 
 
 s is f 15, how many 
 
 134.25 ? ^ 
 
 sugar at the rate of 
 
 qt. may be bought 
 
 ahead of sugar con- 
 containing 15cwt. 
 
 3 lbs. cost at the 
 
 ow many bushels 
 
 '3, what must be 
 
 3 lbs. cost ? 
 t per pound ? 
 Leofjei : 2. -3 per 
 
 idow of 8 ft. 9 in. 
 •awn by a steeple 
 
 at the rate of 36 
 
 SIMPLE PROPORTION, 
 
 67 
 
 53. How many miles can a person walk in 37 days at the rate 
 iof 40 miles 4 fur. in 3 days ? 
 
 54. If a steamship sails 2450 miles in 9 days 6 hours, how 
 [many miles would that be on an average per day ? 
 
 55. If 7 cwt. 3 qrs. 15 lbs. of sugar cost $96, how much would 
 that be per cwt ? 
 
 56. If $26 is charged for the carriage of 49 cwt., a distance of 
 180 miles, what would be the charge for the carriage of 76 cwt. 
 3 qrs. the same distance ? 
 
 57. Bought a hogshead of sugar weighing 14 cwt. 2 qrs. for 
 i$l28, how much would that be for each 12J lbs. contained in 
 ithe hogshead ? 
 
 58. How much will 24 yds. 3 cirs. 2 nls. of calico cost, at the 
 rate of 27^ cents for 3 yds. I qr. 2 nls. ? 
 
 59. How many days would it take a person to walk from 
 Quebec to Montreal, the distance being 1.80 miles, trasfelling at 
 the rate of 63 miles 2 fur. in 4 days ? 
 
 60. If 390 acres 3 r. 20 per. of land cost $964, what will 78 
 acres 2 r. cost at the same rate ? 
 
 61. What is the value of 24 oz. 17 dwts. 13 grs. of silver, at 
 $1. 35 per ounce ? 
 
 62. What cost 178 cwt. 2 qrs, 14 lbs. of flour at $4.17 per cwt? 
 
 63. If 173 lbs. 8 oz. of coffee cost $49.35, at what rate per lb. 
 must it be sold, to make a profit of $8.17 on the whole? 
 
 64. At the rate of $36. 18 for 9 cwt. 2 qrs. of flour, what must 
 be paid foi 75 cwt. 1 qr. ? 
 
 65. If a ditch 3 acres 2 r. 18 per. in length is dug by 14 men 
 in 5 days, how many days would the same number of men 
 take to dig a ditch 7 acres 1 r. 14 per. in length ? 
 
 66. If 26 acres 1 r of land cost $156. what will 74 acres 2 r. 
 20 per. cost at the same rate ? 
 
 67. If 67 cwt. 2 qrs. 14 lbs. of flour cost $210, how much 
 must be paid for 26 cwt. 3 qrs. 9 lbs. ? 
 
 68. If 37 cwt. 1 qr. of sugar cost $333, what will 49 cwt. 
 2 qrs. 12 lbs. cost at the same rate ? 
 
 69. What will the assessment on 74 acres of land amount to, 
 if the assessment on 724 acres is $17.24 ? 
 
 70. How many men can finish a piece of work in 78 days, 
 which 204 men can do in 123 days ? 
 
 71. If 47 men finish a piece of work in 63 days, in how many 
 days would 86 men finish the same piece of work ? 
 
 72. How many cwt. of flour at $4 per cwt., should be given 
 in exchange for 29 f.wt, ?. qrs. of sugar nl $9.5n per cwt. ? 
 
 73. If a person travelling II hours per day finish a journey 
 in 23 days, in how many days '\ill he travel the same distance 
 walking 9 hours per day ? 
 
 74. From 37 yds 2 qrs. 3 nls. take 9 yds. 3 qrs. 1 nl. and find 
 the value of the remaiinler at $7,50 per 2 yds 1 qr. 
 
58 
 
 ii; 
 
 COMPOUND p^OPOMlON. 
 
 75 Xfth ""^-ixuN. 
 
 COMPOUND PROPORTION. 
 
 divide both SnmT '^^."sequent, by anv n. ^l ^^^'^'ng an 
 
 ExA«p,E -.1/ th °"^'"^^ numbers '"^ '''' '''^^'^ 
 
 w^'at mustbe "aid /-or h'^^^ '''' ^0 cwt isr. „,-, 
 
 l^^OO : ,2000-* mge'oflb ol't'^^^jj^- ,««'- 
 
 480 ".^e carriage of 80 i ! *^®° 
 
 — — . P^ace 80 cwt in th« « r- '^'^ 
 
 960000 «nd 60 owTX^he^J^'^M^oe 
 
 48000 «s. the carriage for sSn'^' "P^ 
 
 ^- second place ''"O °i,ies in the 
 
 u . 00 5760000 th„ .. i" rf'viding 
 
 ^t will be fnnn 1 ^^ *^°swer 
 
 example ;fj=^;;"f;«s Possiole, as'^^iir Kf ^^ «^««el]ing all 
 reduced. ^— ^-ame as that g.lot%trw;i^%^ffif^| 
 
HON. 
 
 groods each weighiPff J 
 
 TIOJV. 
 
 of the ratio of twn I 
 't and consequent of 
 antecedents Ind con-' 
 
 equired answer 
 3d by dividing an 
 number that wiii 
 J^ using the results 
 
 ^"''«s cost $4.80, 
 ■<:00 miies. 
 
 w;rite 14.80 in the 
 Then as the car- 
 
 .of 80 cwt. we 
 in the first place 
 
 ^ the second, and 
 e for 200 miles 
 
 re than for 180 
 
 ^„y«0 miles in 
 
 ''•'O nj,ies in the 
 inen dividinj? 
 
 product of tht 
 
 'fi the third term 
 
 am the answer 
 
 ' cancelling all 
 fi t'le following 
 with the terms 
 
 COMPOUND PROPORTION. 
 
 59 
 
 by 5 
 example, 
 
 First we cancel 60 a consequent, and 
 write 3 m place of the antoce I 'nt 180 
 in which CO is contained exactly 3 
 limes, then we set down 2 in plar;e of 
 80 and 5 in place of 200, 40 being con- 
 
 «A ni. A„. «n"'^'i';^^>'^'l' ^^^''^"^ '" "'e antecedent 
 M 00 AnsSO and 5 times in the consequent 200, 
 
 and riivirKn^ h„ r multiplying $4.80 the third term 
 and dividing by G, we obtain $4.00, as in the lirst 
 
 ExEHCISES. 
 
 1. If 15 men in 12 days mow 60 acres of grass how manv 
 acres can be mowed by 24 men in 15 davs ? ' ^ 
 
 4. II $134 pay 17 men for 8 days" work, how much will ha 
 requirod to i)ay 13 men for 6 days work ? ^ 
 
 57 mnnln^s VJ'^' '" ^.'"'^H ?"^ ^^ feet in length is built by 
 b/ men in 18 days, working 8 hours daily, what leneth of wall 
 leet high can be built by 94 men in 15 'days woSg 10 Ss 
 
 msTr'ooll^y^l'lilir °" ^'^«« ^- '' '-y^ 'f the gain on 
 
 27^davs%EnS Vl'^ ™'" ^"!. P''^^'^'""^ «""'"«'^nt *« '^st 
 davs wil) H^ia^ ^^ '^""■''' Pf ^«y to -^ac'' man, how many 
 to^gOOmpn^r^r'''''""' '**«'''■ ^^^ i« increased 
 
 Ounces peTday 5 '"'^""'^ '° ^^"^^ ™^" ^'^'"«- ''^^^^^d to 12 
 8. If 15 men in 8 days earn $130, how manv dollars will qq 
 men earn at the same work in 26 days » ' ^^ 
 
 dng bvlSSf if ?/'!' '"7' '^ ''^* ^'^^l^' «"^ '^ f^^t wide, be 
 •ench 740 ^P? nni ?^^^r'' J'^'"' '"^"^^ "^'^^' ^'^ ^^ take to dig a 
 in rr '°?^' '? ^•^'^^ ^^'^P a^'^ ^ feet wide in 25 davs ? 
 
 10 If a person travels 207 miles in 8 days walking 11 houV-^ 
 
 hTurtp'^rX?""' """"'" '^''^^'^ i7da;TJilkinT9 
 
 wi'; ^'^ the value of 60 yards of cloth IJ yd. wide is $112 
 
 Ti Jard w!de ' ''' '"'"' °' "'* ^"''^^ of theMme Sd of cloth 
 
 12. Ifthe carriage of29 cwt. 210 miles cost $4 how mnnv 
 cwt. m.glit be carried 190 miles for $13 ? * ' ^"^ 
 
 gain".f37 in'e ifZtf ? '" ' '"°"^''' '^'^^ "'^"^ ^«"^'"« ^°"^d 
 14. If 24 men do a piece of work in 32 days working 10 
 
w 
 
 OMATEST COMMON MEAgunB. 
 
 men „iiu ..ke .„ Sa'p 5strda' iT'^y^", ^ "'■"• '»»' ™"y 
 
 ho :. qi-?„ S* f:n -^S ? ^'^^ ""«■■'' » 
 
 2^ y u"*- '° ''""''« each day r ^^ ^''^''^'^^ P'^^gh 29 
 
 quarters wide'cost tiiJ^h!.' ^'^^^ /^^^^ containing 29 yds S 
 
 in 17- dayfwTC&rnS IVt''"' "" ' "" «"* 
 be required to digiiren^h 10,^1 rJ'''o«- many mea would 
 days working lO^hou™ a„h ja'y%* '""« """ ' "■«»' »'"» '" M 
 
 hhdd,, each weig1,i„g"',rcw.Tq|:.''for"5^„X^",'' '''■"'^' "'» 
 GREATEST COMMON MEASURE 
 
 exX°Sutle;™^°;i=S -t,?'' 'J"","-'" "-* i' 
 are measures of 36 ^ '"""""loi-- Tlius 3, 4, 9, 12, and 36 
 
 byVh°re°.°or„?S;rm'aTbe ^xTK™^"? '^ '"^ "™W 
 a remainder. ^ ^^ exactly diviaed without leaving 
 
 thJJl^igrerntSTy^r numbers is 
 
 without leaving a remainder ""^^ ^^ ^^^^^'^ divided 
 
 isthp"r^;pVV-4''''''°'"™°" measures oi 20 „pw .q but 9n 
 t1" ; °I.^ ^'^ ^uaiinon measure ' ~ ' ^"' ^^ 
 
 To «„d the greatest common measure of two numbers. 
 
 r' 
 
ASUilB. 
 
 1 17 men do tho same 
 
 ' in 10 days, how many i 
 
 ■travels 190 miles in 8 
 Bl 340 miles wallcing 7 
 
 i-iO in 5 months, how 
 14 months? 
 
 in 4 days, how many J 
 
 ■s ? •'I 
 
 by 27 men in 4 davs> 
 
 rs ? ■' * 
 
 I in 8 days working 9 
 36 horses plough 29 
 
 oontaining 29 yds, 3 
 be paid for IC pieces 
 Jntaining 34 yards, 5 
 
 ork is $60, what will 
 
 work ? 
 
 !res of land, in how 
 
 long and 4 feet wide 
 
 many men would 
 
 rid 3 feet wide in 20 
 
 ch weighing 17cwt 
 for tlie carriage of 8 
 liles ? 
 
 LKASr COMMON MIILTIPLU. 
 
 LSURE. 
 
 that will divide it 
 3- 4, 9, 12, and 36 
 
 ers is any number 
 ed without leaving 
 
 more numbers is 
 <e exactly divided 
 
 20 and \0, but 20 
 
 ro numbers. 
 
 Awfe -Divide the greater number by the less ; if there is a 
 •emamder divide the less by it, and proceed thus dividin-^ the 
 astd.visor by the last remainde until nothing romains.°Th. 
 
 ExAMPLE.-Pind the greatest common measure of 355 and 
 
 775 
 ^55 
 
 77oJ 2 
 710 
 
 65 
 
 First we divide 775 the great- 
 er number by 355 the loss, 
 this leaves a remainder 65, bv 
 which wo divide 355 the le«» 
 n"i?ber, the next remainder 
 IS 30 by which wo divide 65 
 t^e'ast divisor. Thon dividing 
 •jO the last divisor by 5 we 
 lind that 5 is the greatest 
 common measure it being con- 
 
 EXEHCISES. 
 
 Find the greatest common measure of the following numbers. 
 
 I 355 I 5 
 325 
 
 10J65I2 
 60 
 
 5 1 30 
 30 
 
 |6 
 
 gained exactly 6 times in 30. 
 
 1. 315 and 725. 
 
 2. 93 and 123. 
 
 3. 724 and 1248. 
 
 4. 968 md 8724. 
 6. 1325 and 6495. 
 6. 81 and 738. 
 
 7. 1254 and 964. 
 
 8. 5696 and 1334 
 
 9. 1023 and 1581.' 
 
 10. 6785 and 2345 
 
 11. 118 and 576 
 
 12. 348 and 3144. 
 
 LEAST COMMON MULTIPLE. 
 
 A common multiple of two or more numbers is anv n,.mK 
 Ithat can be div ded bv Mr^h nf fi,» „:,„ 's any numbtr 
 
 leaving a remainder ^ " """'^"''' ^'^^Out 
 
 I The least common mulUple rf two or morfi r.i,mK„ • ... 
 lowest number that can be divided breach o7th«^.^^'^ 'K^^"" 
 without leaving a remainder. ^ ® ^'^^" numbers 
 
 LmheS' '^" ''^' '°'°'"°'^ ™"'^'P'« °f ^^° or more given 
 
 r,n!!K !""'■ ®^* *^'"^" *^' ^'''" °'''"*'^''^ '"^ a line and cancel 
 I any that are exactly contained in any of the others. J. Find . 
 
02 
 
 LSAsr COMJfO.V MVLTlFLt. 
 
 'T: I 
 
 L last l,ne. 4. Then multmly logolher all the numbnrs in 
 
 h, .,«t l„.e and all the <ii,i,„n,, and the product win bTlh 
 
 least common multiple. ^^ win oe ine | 
 
 the multiple founci ^farno^^%y1t^testTotibr ""'^^ ' 
 Ex^MPLB.~Find the least common multiple of 
 «^ «. 4, 18, t2, 20, and 15. First we set down 
 
 the numbers in a line, 
 then on inspection 
 we lind that 6 and 4 
 are exactly contain- 
 ed in 12, they are 
 therefore cancelled, 
 and seeing that no 
 other number will j 
 measure as many of 
 bers as 2 we therefore take 2 n<. Hiuicnn iJ^^ remaining num- 
 
 quolients and the undivided numhorf^ ^'rf''"^ ^°^" ""' 
 set down the quotiSits S ur^?vTir ^''^t ^ ^^ '^'^'^or and 
 
 line, we then cJncel 2 and 5 wh^h n ^ ""'"^^'"^ ^" the next 
 and niulliplyu^g together t J 'm^ contained in 4 and 10, 
 IheL.C. M.3G0 remaining numbers wo obtain 
 
 To find the L. G. M. otherwise. 
 
 Rulell-l. Set down thogiven numbers and cancel any thai 
 are exactly contained in any of the others. 2. Divide he re 
 mairnng numbers by any number that will exactly divide on 
 
 :Lr;:^i:i;r;;;r.r\;:^^'r"°^'*'"- 
 
 dividing any of the undilir^m,:?: fyt: ^^^^0^ 
 
 3' proceed tburwi/r rT' ^"' "'" ^nai.idod numbers. 
 3. Proceed thus With each h„e until no number greater than 
 
 X 2 X 2 X 3 X 2 = 300 Ans. 
 
 Find tl 
 
 1. 3, 5, 7 
 
 2. 2,4,6, 
 
 3. 17,9,; 
 
 4. 16, 2, ^ 
 
 5. 9, 16. t 
 6- 18, 4, 1 
 
 7. 9, 2, 8, 
 
 8. 6, 3, 5 I 
 
 A fractic 
 equal pari 
 fraction ex 
 'ininator, 
 
 A vuiga 
 
 I of whirh is 
 
 The uen( 
 
 I number of 
 
 , I'he num 
 
 the numbci 
 
VULOAR JPEACTIONS. 
 
 99> 
 
 ne last hne 4. Then multiply together all the divisors and 
 
 ! 12 20,15 ""^'"^ ^''^ ^''"^' c^niraon "nultiple of 6, 8. 4, 18, 
 
 li|J6)_ 8(4) 18 12 20 15 
 81 
 
 8 
 
 6 (4) (4) 
 
 15 X 8 X 3 = 3f50 Ans. 
 
 Tn this example we use 
 the same numJbersas in the 
 first. First wo cancel the 
 numbers 6 and 4 each of 
 which is exactly contained 
 the uncancplled numbers «<» Hivi^nn'" '1' "^®" "^'."^ '^ ""^ °^ 
 highest factor c(x^i?mon7o?5thrr*°'* see.ng thai 3 is the 
 and 12, we divide thfl.n hv \ ^ '^'!'^'"' '*"'^ ^^^ numbers 18 
 
 4, we alsrdrSr20 by 5 ft be "n. fhllfT '^r '^"'^'^°'« « ^^^ 
 the divisor and 20 nn^ 1» . ^ he highest factor common to 
 
 div ided nuXr in th^nexU^nT N '?' ^"°"*^".' '^"^ « »^« "'^- 
 are each contained in s nn J • ^ o""^ ^^ '=^"'=«' * and 4 which 
 2, the hVhestTtor commit"! ^ *^ '^'^'^°'*' ^^ divide 6 by 
 qUent. Then the Dpo^rf^n^ h"'* ^ """^ ^^' down 3 the 
 uadiviaednum"beV1SsUe[!c. m:S! " '^"^ ' '''" '''' 
 
 Find the L. C. M. of 
 
 , 1- 3, 5, 7 and 9. 
 
 2. 2, 4, 6, 8 and 10. 
 
 3. 17,9,27, 18 and 11. 
 ^. 16, 2, 4, 8. 5 and 9. 
 
 fi' ?L '6. 5, 3, 27 and 28. 
 6. 18, 4, 17, 13 and 6. 
 J „9' 2, 8, 7, 5 and 4. 
 »• 6, 3, 5 and 24. 
 
 KXERCISES. 
 
 9. 12, 24, 48 and 80. 
 0. 18, 36, 14, 19 and 6. 
 11. 36, 92, 7, 4, 8 and 9. 
 2. 2, 3, 4, 9, 7, 5 and 8. 
 
 J-28,44 96. 38, 17,42and58. 
 4. 9,11, 17, 19, 21. 23 and 25. 
 
 15. 7 2, 9, 15, 18, 37 and 46. 
 
 16. 18,27,94, 108, 62, 13 and 15. 
 
 VULGAR FRACTIONS. 
 
 I equafTarts" Into Th^ch ^nn'^''''^ '"•^'•"'^^^"^^ «"« ««• "^^e of the 
 WllS^^^S',^::^^^^^^' °""^b^^ or terms, one 
 
64 
 
 III 
 
 w 
 
 VULGAR FRACTIONS. 
 
 taken. " «'|uui parts, and that seven of those parts are 
 
 SoDe??mnrnni"'^' ?fvulgar fractions, viz : 
 A7"op:XSnTnt ''™P'«-,««?H.ounrt and complex. 
 thanit,5enomina?or. a.7'."V^'"''' '''' """"^'■^'«'- '« '«8S 
 
 ie^^^'^'^^'^'-^^i^?"' "" —tor is not 
 annexed?as"27M8fj"75f o*"* whole number with a fraction 
 
 intoSVunuTsdiS^^^^^ '^ the equal parts 
 
 parts iSS'^whJcVSh" ^JiP'''^sses one or more of the equal 
 
 nute?aS;or'Sdenorna7n^'°^ '''I* t'^^^'*'" ^'"'«'- '" •'« 
 » lu us uenominator, or in both, f 9 ■•■ 2 § 
 
 thefr»clion,s„o°S„*ed "^ Uie same number the value of 
 
 REDUCTION OF VULGAR FRACTIONS 
 To reduce a fraction to its lowest terms 
 
 fraction >;:?hl''' ''''. ""'"''''''' ^"^ ^''« denominator of the 
 traction by their greatest common measure 
 
 nnmL!iZ^'T '''" """'™'°'' '^"'^ ''^^ denominator by any 
 ihnT tV . ' exactly measure both; divide the quoUemI 
 thus obtained in the same way ; and continue the process unt 
 no^number g.ater than unity can be found that ^ZlZfe 
 
 T^^^'tT!"^"^'''^ ?« to "s lowest terms. 
 
 t f «f f ? Ans By rule 1 we divide 216 the numerator and 
 ^88 the denominator by 72 their greatest com 
 
 terms. '"''"• * '" ''"^ iowesl 
 
 I 6 I ^ n An^-^By ™le 2 we divide 216 the numera- 
 tor and 288 the denominator by 12, and 
 
 12 
 
 h 
 
IS that a quantity is 
 n of thoso parts aro 
 
 iz : 
 
 nd and complex. 
 
 3 numerator is loss 
 
 le numerator is not 
 
 ibor with a fraction 
 
 of the equal parts 
 
 more of the equal 
 id, as i of J, ^ of 
 
 iction either in its 
 11111 
 
 a fraction be both 
 inber the value of 
 
 nominator of the 
 
 VULGAR FRACTIONS. 
 
 EXERCISK 1. 
 
 Reduce the following fractions to thoir lowest terms. 
 
 65 
 
 I. 
 
 -iV 
 
 5. 
 
 2. 
 
 -ilf- 
 
 6. 
 
 3. 
 
 ~m- 
 
 7. 
 
 4. 
 
 4H^ 
 
 f. 
 
 -nn- 
 
 ..7 1 
 
 9. 
 10. 
 11. 
 12. 
 
 
 To reduce an i.nprop - . :otion 1. a whole or mixed number. 
 I '"'^--D'V'dethenumvu-.opby .i.e denominator and there- 
 I suit will be the whole or r., oi number required, 
 ExAMi'LK 1. Reduce |^ to a mixed number 
 
 G3 ^ 20 = 3 ^ Ans. 
 Example 2. Reduce i]^ to a mixed number 
 146G .^ II = 132 .^ Ans. 
 
 ExEiu;isi: 2. 
 Reduce the following fractions to whole or mixed numbers. 
 
 1. 
 
 2. 
 3. 
 4. 
 
 
 5. 
 6. 
 7. 
 
 8. 
 
 -nn- 
 -mi- 
 
 9. -a^iOyia. 
 
 10. -iifpi- 
 
 11. -ZJ^lAll. 
 
 12. -fiiflwfl. 
 
 To reduce a mixed number to an improper fraction 
 ft«/e. IVlultiply the whole number by the denominator of the 
 fraction, and to the result add the numerator, below which 
 write the given denominator. 
 Example I Reduce 0/, to an improper faction. 
 
 9 X 1 1 = 99 and 99 f 6 = 105 .-, \o^^ Ans 
 Example 2. Reduce 19| to an improper fraction 
 19 X 8 = 152, and 152 + 4 = i5G .-. x^a ^ns. 
 Exercise 3. 
 Reduce the following mixed numbers to improper fractions. 
 
 1. 9-f}.. 
 
 2. ll-,\¥.- 
 <» ' 
 .1, 
 
 4. 
 
 
 5. Ul^3^ 
 
 6. 274-.}f- 
 
 7, 93-f|- 
 
 8, 204Vy», 
 
 Vr 
 
 9, 609 
 
 10, .365-*!l«'4. 
 
 11, 28 
 
 12, 96 
 
 8f - 
 
 -n- 
 
 To reduce a compound fraction to a simple one. 
 
m 
 
 $''% 
 
 11 
 
 VULGAR FRACTIONS. 
 
 If there are a denominator I 
 
 " ,"''7 J f * "'■ S '" »™pl. rmcuon. ' 
 
 Pir« *''*X9 =T80"=-4r Ans. 
 
 u . EXEHCISK 4. 
 
 Beduce to Simple fractions. 
 
 1. f 01' f off off 
 
 •^•|of|offofi-of|. 
 4. f off of _^ oH. 
 
 6- i of I of 2 Dili of 5. 
 
 M 01 i off of I of i. 
 8- ^V of -ft- of 41 0,2 
 
 -f?-ofl-^^of2|| ,,. 
 
 -.VoffoflofV.oj'i: 
 
 |onof3-^, o?6. '"' 
 
 f of I off off O/ J. 
 
 (fa 
 
 *avfng1"olS„"J^,^„^^^^ to equivalent fractions 
 
 2- Divide the commoL dlno • «^ J '°°'"°" denominator 
 denominators, and ZuuZZ ,' *'' '''^' '' ^^« »'-" 
 given numerator., and th^re stlt'f '^ ''« «^^^ «^"- 
 luirea numerator^ beioww IT ' '' '^' '^^* °^ ^'^^ ^^■• 
 'or. The other numeltls ^i^ L?'^ !'^ ^'^°''"«" '^^""^i^a- 
 
 common denominator " '^"'^'^'''"t ^^i^tions having a 
 
 3.?;T5";a'^^^^^^^ multiple of the denominators 
 
 3!?t^ = ^4^3'2^5l = ?;?H-nrstnumerator. 
 
 X ^- 126 i/ie fourth numerator. 
 
fether for a new numej 
 
 «' denominator. 
 
 ■he compound fraoticul 
 
 jple fraction. 
 
 5~ Ans. 
 
 8 the numerators bv 
 ■nen we muJtiply 4 ji 
 lalor 180, which male' 
 i to its Jowest t( rn,s iff 
 
 fraction be a mixaj 
 proper fraction. 
 
 VULGAR FRACTIONS. 
 
 67 
 
 off of I of i. 
 A-of-^f ot2 x&. 
 I-A-of2|J c/a, 
 
 of3-^, o?6. ^"•' 
 >f§offo/J. 
 
 equivaient fractions) 
 
 of the denominators I 
 mmon denominator 
 e first of the given I 
 
 tty the first of the I 
 the first of the re- 
 common denomina- 
 the same way. 
 
 fractions having a ^ 
 
 the denominators 
 
 'St numerator. 
 :t:on(i numerator, 
 ird numerator. 
 LiitJi numerator, 
 
 JThen writing 315 the common denominator below each of 
 lese we have the required fractions |f g, j^f , xas^ and |f|. 
 
 ExERcist: 5. 
 
 I Reduce the following fractions to equivalent fractions havinK 
 common denominator. '5 imviug 
 
 J. i a 4 
 
 3) 4) t- 
 
 '■• ?> ?) ., . 
 
 2- h !, h I -^- 
 3. -i^ -if , ii-, ih 
 
 •5: 1' f'2 ti ^' " ' ' 
 
 7. 
 
 l>nV,if, +f,-if. 
 
 8. 
 
 -iV> -iV, -iV, -^A" 
 
 y. 
 
 •tf;-tl-if, -JI-, if 
 
 iO. 
 
 -A,-3V,-^uS i^ 
 
 ii. 
 
 -eU-, -.V, i^^, -V, -h 
 
 12. 
 
 n,-ih f#,-if,-it 
 
 To reduce a comjplex fi-action to a simple one. 
 
 fl«fc.-Multiply together the outside numbers or extremes 
 for a new numerator, and the middle numbers or means for a 
 ficw denominator. 
 
 fmpro%Tfrrtionr"'' """^'^^'^ ^'^^ "^"^^ '^'' ^« ^^^"-'l ^° 
 Example. Reduce _A^to a simple fraction. 
 
 jA^ _ A _ 3 X 2 6 
 
 2* f II >r~5 ~ ~55 
 
 Ans. 
 
 f 11 X 5 
 
 Exercise 6. 
 Heduce the following complex fractions to equivalent simple 
 
 I ones. 
 1. 
 
 2. 
 
 3. 
 
 4. -^ 
 
 f 
 7 
 
 9 
 
 'J 
 
 T 
 
 'i 
 
 2J 
 
 6. 
 
 7. 
 8. 
 
 ii. 
 _» 
 
 9, ^ 
 10. 
 11. 
 12. 
 
 ^1 
 
 6 
 
 7 
 
 :^- 
 
 7i 
 
 To reduce a fiaclion from one denomination to another. 
 
68 
 
 VULGAa PltACTlONS. 
 
 ~5 oz. ~ -^ _±_ 1 ' 
 
 • ^ X 16 = xo = lo" lbs. 
 
 de„„=S„'!;K-«™ '*« f™- ""noes .„ ,b, „, „,„, ,_ 
 
 f Of I of 4 =: 2A -. o „p , 
 
 9/, J ^" ~ o Of a day. 
 lij<_GO_ _ 2880 _ 
 5 ~5 576 minutes. 
 
 Exercise 7. 
 
 Reduce -,V of a n i, ute o t^.f,?" f '^ ^''^rter. 
 Reduce -.iL of a nf. V "^'^ fraction of a dnv 
 
 1 0. Keduce f^„°ofY« luf 'r''" A*" "^' '™«"'«" o^" a .il] 
 quantity. ^--^^ '^^'^nfty to the fraction of anothergivH 
 
 eon.at:^tt;r ^?rSn,;? ^- -west denominatio,,' 
 
 f ction Of the other as Z^Z^'TTn'' "'"^" '^ '^ ^« "'« 
 denominator. "nio.ato,, and the othor q.iantiiy ,, 
 
 4d'ni''-,- =3420min.-|,. 
 Hero wp '^ '"• = 6^^35 min. | HU = .^^- Ans. 
 
 3420 for nnmerS 'and 21'f ""^'■'■« '« '"inute., nnd !hu- oh, ■ 
 10 ns lowest terms is ^^13'"'^ ''' ''^^"°'»i"a>o;^'Siolr;.du ^ 
 
 1. 
 2. 
 3. 
 
 4. 
 5. 
 
 I Here we 
 llain the ( 
 
 I Example 
 
 IpliS. 
 
 and ( 
 
 ' fl^re we 
 hd divide 
 I'hich gives 
 
 Find the 
 
 . I of a cw 
 . f of a bu 
 ,f of?of 
 ■f of A of 
 , f of fr Oi 
 
 ^fofaof2 
 
 Ihtle.—Ri 
 deiioininaloi 
 [and below 
 
[ONS. 
 
 J from a lower to a higL 
 or, if from a higher J 
 "■alor, as in reduciionf 
 
 '"Jefractionofapuuj 
 1_ 
 
 — 20' Jl^s. 
 '0 lbs. we multiply ti 
 day to (he fraction of] 
 a day. 
 576 minntes. 
 
 fa pound. 
 I quarter. 
 n of a d,iy. 
 ion of a perch. 
 >f an hour, 
 ition of a line, 
 fraction of an acre . 
 JJ to the fraction 4 
 
 on of a gill. 
 
 ictionofa ton. 
 
 on of another giveni 
 
 'West denominatioiii 
 y which is to Jbe i|J 
 ' otiier quantity a<\ 
 
 fsl5min.,is2days 
 
 .¥3 Ans. 
 
 ^and thusobUniii 
 ar, whic/i reducMl 
 
 ADDITION OB' TRACTIONS. 69 
 
 Exercise 8. 
 
 What fraction is 3 ars. 2 lbs. of 2 cwl. I qr. 1 i lbs. ? 
 Reduce 7s lOJd to the fraction of £3 : 7 : 6. ? 
 What fraction of 17 dollars is 28 cents? 
 What fraction of 2 weeks is 3 hours 17 unn. ? 
 What fraction is 3 yards of 17 yds. 2 qrs. 3 nls. ? 
 Reduce 2 qts. 1 pi. to the fraction of 7 gals. 1 qt. 3 gills. 
 Reduce 7 fur. 30 per. to the fraction of 2 miles, 1 fur. 17 
 
 rches. 
 
 8. What fraction is 2 oz. 17 dwts. of 9 oz. 3 dwts. 11 grs. ? 
 
 9. Reduce 7 Inches to the fraction of 4 yds. 2 ft. 3 in. 8 lines. 
 0. Reduce 1 cwt 8 oz. to the fraction oi' 7 cwt. 1 qr. 
 
 "0 express the value of a fraction in the denominations con- 
 
 ined in the integer. 
 
 !/;«/(? —Consider the numerator as so many of the given de- 
 
 [mination, and divide by the denominator. 
 
 (Example 1. — Find the value of ^ of a cwt. 
 
 4 cwt. -7- .'j = 3 qrs. 5 lbs. 
 
 Here we divide the numerator considered as 4 cwt. by 5 and 
 ilain the quotient 3 qrs. 5 lbs. the value of ^ of a cwt. 
 
 Example 2. — What is the value of & of 2 chaldrons 1 bush. 
 fpks. 
 
 2 ch. 1 bush. 3 pks. X 3 = 6 ch. 5 b. 1 pk. 
 and 6 ch. 5 b. 1 pk. -f- 7 z= 31b. 2* pks. 
 Here we multiply 2 ch. 1 bush. 3 pks. by 3 the numerator 
 nd divide the product 6 ch. 5 b. 1 pk. by 7 the denominator 
 ■hich gives the resul*. 31 bush. 2^ pks. the required value. 
 
 Exercise 9. 
 Find the value of 
 
 I of a cwt. 
 
 f of a bushel. 
 
 f off of an acre. 
 
 fof a-ofaJE 
 
 f of (\ of I of a mile. 
 
 -\^- '"■^ 1^0 of a yd long niea 
 
 iof|of2^ofalbApoth 
 
 8. f.of| of a v'jhaldron. 
 
 9. f off of 7 bushels 3 pks. 
 
 10. 2f of If off of 17 gals 3 gills. 
 
 11. -i^i- of 7| of 7 miles 6 fur. 32 per. 
 
 12. -^, of ^ of 2f of 4 acres 2r. 17 per. 
 
 1 3. ^ of f of f of 3 cwt. 2 qrs. 22 lbs. 
 
 14. I of i of -^ of 1 7 hours 29 m 53 s. 
 
 ADDITION OF FRACTIONS. 
 
 liiile. — Reduce the given fniclions to others having a common 
 Idonoininalor, add the numerators together for a new numerator, 
 land below th'-'ir sum write the common denominator. 
 
70 
 
 ADDITION OF FRACTIONS. 
 
 1 '"''^^ilUNS. 
 
 ormixcVSb^^.'" '''"P''°P«'- f'-a'^lion reduce it to a ; ■ 
 , ; /'''•""'^'■iWr j, f, 8, and J 
 
 p. 84 TTJ- -— Sg^jf Alls I 
 
 Example 2 Ari.j < , 
 
 ' 1722 = Mi 
 
 and 4 + 17 I •> 
 
 f^ind the vaJae of ^''""'' ^'^• 
 
 ^- ^ + f + f + f 
 
 f-f + ^-^f + f + A 
 
 '■ I + -h + ,^ + ,«;; ., 
 
 '■ A + 23,;. + j5.. 
 
 + 
 
 -♦• sS. 
 
IONS. 
 
 reduce it to a wJ 
 
 xed mimbors. add I 
 "J« niunhers. 
 
 'compound or coiiipj 
 
 t- H + Jr 
 - 3 A Alls, 
 
 >thers having a c„. 
 ^' ('J. 70 and 72 li 
 "'» 8'' the connni 
 viiich rerlaced to 
 
 id 3XX. 
 
 ■ + ^^'A 
 
 m 
 
 hU Ans. 
 
 fractional parts aJ 
 3ie numbers. 
 
 14. 
 jir.. 
 
 IK). 
 
 17. 
 18. 
 19. 
 20. 
 
 fiUBTRACTlON OF FRACTtONS. 
 
 zoff + 5 + 8,23 or ,v 
 
 1 + i + 1 
 L ^ -^ 
 
 fofg- + 
 3* 64 
 
 71 
 
 ^^hi 
 
 + 
 
 2 
 
 r 
 
 2* 
 
 6. 
 + 1 
 
 1( 
 
 ^ 
 
 21 
 
 .. of 77 
 
 SUBTRACTION OF FRACTIONS. 
 
 //H/e.— Reduce tha fractions to others having n nnmm r, ^ 
 N"ulor. Subtract the numerator of e subU-alS™i"nf f^; 
 the nnnuend, and set down tljo differPiirn vvi h^h„ ^ *^^*' 
 3nominator written below it. If there are who ,n ,^1?°'"'?°" 
 dilierence as in sim,,le snblraction' in t e subTracIfnn^^f 
 iiAe.i numbers the new numerator of Hip « Lnoi 1 • ^"°" °^ 
 han tliat of the nnnuend rbtract i f ' ' n o^ ^^ ^' ^''''■^''' 
 &inator, to the difference add the numerator of I'^T"" '^'T 
 (nd carry one to the whole .mmi.L oHhe t^trahend "''""'"^' 
 Example 1.— From ji- take -,a-. 
 
 l«AMi'i.E 2 -From 1 7A take 9-Li ^" 
 
 17-^ 
 
 9 i_i = 
 
 /7//4— 9>sf = 711J An.. 
 
 Having recluced fhe fractl^rs to fc Imt ni a' .n^ 
 lenommator we find that 187 the numeritor n ? ^^^mT""] 
 tgieator than 90 that of the mir u.^TTc JL'e foiV" bt?]"*;''? 
 bm W\ the crmmon denomiuianr add % to Ho .m ^^ " 
 |id carry I lo <J the whole numl er' w ich subtrao e f^n'"?-^ 
 |u.s 7. to Which the iractional r;mai;;derSa;mS mSng 
 
 „. , ,, , E.\EncjSE II. 
 
 Fmd the Value of 
 
 1. 
 2. 
 3. 
 
 4. 
 
 5 
 
 6. 
 
 7. 
 
 8. 
 
 if - P. 
 
 i + 
 
 if 
 
 ? 
 
 H 
 
 i 
 
 a + ? 
 2t-^ 
 29^ -17^ 
 12;Vi-96ff 
 +Aof^-2iy 
 
 O 
 
 10. 
 
 II. 
 
 18ff-(2| + 8 A) 
 
 12. 41 of ^^^ 
 
 ^ of 1«^ 
 17J 
 
 li^ai 
 
Mi 
 
 If i 
 i 
 
 V2 
 
 nule.- 
 
 SUBTRACTICV OF PAACTtOm. 
 
 MrjLTIPLlrAHON OK FfiA.,a()N8. 
 If any of the qtiantitias are mixe.i numbers r. 1 1 
 
 them 10 improper Iractionr o tr ' ™"'' "'""^^'"^ '•''^ 
 J^theres.tis.Hmpropern-actio„re.>c:-:r::;::;:; 
 
 'he results in lliei. place ""' measures Jjolh, and ' 
 
 Example 1. —Multiply | by f 
 
 Example 2.-Mui 'ply tTJLrSMxf ^^d -,V 
 
 numerator we^muiUp ly ^o^eiher 2rS''';o""^'J ^*^^ ">"! 
 numerator 475, and 9 ana 1 2 « IL • *"^u'^ ^h'^'' &'vesJ 
 then reducing iio imiZ ■ ' l.^r ^ F^«^' ^'^^ denominator l(J 
 4j^. ^ P' ''''^^'^" i'«4 we obtain the answ^ 
 
 „. . Exercise 12. 
 
 Find the value of 
 
 
 i X f X 
 
 -/^ X -A 
 
 5^ 
 
 "3 
 
 II 
 
 1 
 
 2 
 
 8, 
 
 4 
 
 6. 
 
 6. 
 
 7. 
 
 8. 
 
 9. 
 10. 
 11 
 
 12. (| + ^)x(A^:^ 
 
 t3. (I - f) X (f - f ) 
 
 X i 
 ,x f X f 
 -iV X -/^- X f 
 2f X 4« X 
 
 ^f X 4 X 5-S_ 
 
 X 8 
 
 i X -g 
 
 -A- 
 1 1 
 
 13 X 
 
 2 r 
 X -^ 
 
 X 1 
 
 -A 
 
 X i 
 
 X I 
 
 ;4- & X f X -/g- X W 
 
 15. 61 X 2f X 5f 
 
 16. f X 4 X 8i X ^ 
 
 6 
 
 I7.(2i+4f)x(7|~2?)x. 
 
 18- i* X H X I! 
 
 19- I X I X -S- X !! 
 20. (3i + f+|)^%^_J 
 
■ACliOMB. 
 
 ' mixed numbers redui 
 
 npound fractions reduJ 
 
 numor.if.ors together I 
 
 s< •oramwdenominaij 
 t?uc>? it to a mixed nuf 
 
 vidin,g a numerator! 
 neasuros bolli, and 
 
 Ans. 
 !i and -./- 
 
 = 4,^8- Ans. 
 
 to improper fractioia 
 fiator and 7 in the ihiij 
 nd 19 which gives tJ 
 is the denominator 101 
 we obtain the answj 
 
 '< i X Vr X 1^ 
 X 2f X 5f 
 
 X 4 X 8^ X ! 
 6 
 
 + 4?)x(7|-29)x 
 
 xHxI! 
 i 
 
 I X f X !! 
 
 3f , 
 
 + *+!) x(8i-d 
 
 DECIMAL FRACTIONS. 
 DIVISION OF FliAGTIONS. 
 
 73 
 
 Iiule.~R.Anco mixed numbers to improp'cr fractions and 
 co,npound fractions to si.npie ones Invert the terms of the 
 divisor and proceed as in multiplication. 
 
 Example I —Divide f^ by -t- 
 
 p. J .. , Exercise 13. 
 
 Fmd the value of 
 
 1. 
 
 2. 
 
 3 
 
 4. 
 
 6. 
 
 6. 
 
 7. 
 
 8. 
 
 ^- -4-2^ 
 -I- . a. 
 
 1 I -=- 13" 
 
 6* -^ f off 
 9. (12| + i)--(9f-f) 
 10. (7| X f) 4- j^ 
 
 12 iloff ^-ja.-ofii 
 
 13. 
 
 4| 
 
 -9f 
 
 
 
 
 14. 
 
 U 
 
 -^-(t+?) 
 
 
 
 15. 
 
 n 
 
 -^2f -^ 
 
 1 
 
 
 
 16. 
 
 H 
 
 --23 
 
 
 
 
 17. 
 
 (2i + 7f- 
 
 #)- 
 
 -3f 
 
 
 18. 
 
 (tx 
 
 i)Mi> 
 
 :f)- 
 
 ^23 of 
 
 2 
 
 _3 
 
 
 
 
 
 fof4^ 
 
 19 
 
 4f 
 
 4" 
 
 
 
 
 20. 
 
 8.\ 
 
 -5X^ 
 
 .fi 
 t 
 
 X 3i 
 X 2f 
 
 
 DECIMAL FRACTIONS. 
 
 In decimals the denominator is omitted nnH n rint nall„^ ^u 
 decimal point is placed to the left o^f^'nuZerato ''"'' *'' 
 Thus -,a IS written • 3, -z±^ is written ■ 74. 
 When the number of Ijgures in the numerator is less th«n 
 
 of Ii6.,res m ,t oqual ,„ ,ho number of cipherTin ule'Smi- 
 ^Thus ■ 0056 X 10 = • 056 ; 0056 X 100 =.- ■ 56 ; • 0056 x 1000 
 
74 
 
 DECIMAL FRACTIONS. 
 
 one 
 
 To cJivido a decinifll h^, m 
 plnc.!«, ,10. """" • "1 100 Iwo places ; by (ooo l|,rc 
 
 I0«0 = :1Slt '" = '"'' ■ '»*' - 100 = . 2854 ; 28-5, ^ 
 
 value. ' • ■ '^00 = /„., .za^^ .^^^^ ^^^^^ ^^^ ^^^^^ ^^^ ^^^^ 
 
 repeating or circuIaSgrorna^ called a 
 
 „ The /onU„u'arrpetu2';ri V'V ' '"'P^^'^'' ^'^ P«"od. 
 figures, isexprossed by wr"w?hfn'^^ «'' several 
 
 dot over the first figure aTdannth. P''""^ o^^e and placing a 
 figure is to be repef t"eci h\"'pS/; d7ot If ^ ' °^ '^ ^"^ '- 
 
 -Peat.g period i.eS^.^, tTsl '4^: X^ fte^^^ 
 "lai point • thus • 4 • '?9/i o„« 
 A mixed repoatL or cfrcuE.''r''''?^ ^^^'■"''^'«- 
 
 deoiSr' P™'- ■"- •MVa.iei are ™i.e, „„„„,„„„, 
 
 in fTeSiLtS'Sl-ri^-.r*?' -"»■' "-»' it is 
 dred and seven » v nno vi •?,'.' '^ therefore read, four him 
 
 ".- „„, fori?"s'e';trteL'';,,s°3Si::; """" '» -""'■»"" 
 
 Exercise J 
 
 Express the following decimal fractions in words 
 
 • '' ' ' -00072 , 9. 71042.560 
 
 2. 
 3. 
 4. 
 
 •0C4 
 •207 
 ■652 
 
 34-506. 
 30964 
 • 000063. 
 
 92,000507. 
 • 00000000724 
 671-408263. 
 
 drid^7"i;^en^>•!S' er^;;;^' ?h"'"° *^-««-' -ven hun- 
 are required to make ud tL ,. ff"""''' T """^ ^''^^^ 'hree ci,,he?s 
 
 he given number andThede Si nofn^ih^^" '''' ' "^"'"^^ ^^ 
 fore written - 0009723. "^^™ai Pomt, the decimal is there- 
 
 Exercise ** 
 1. lorty-six thousandths. 
 
 3. 
 4. 
 5. 
 6. 
 
t'eciiiial point one 
 ices; by 1000 thro." 
 
 = • 2854 ; 28-54 ^ 
 
 do nol change its 
 
 h all have the same 
 
 ised and in which 
 peated, is called a 
 
 repeater or period, 
 isisting of several 
 ce and placing a 
 last; or if but one 
 it. 
 
 is written • 345'6 
 'ne in which the 
 ire after the deci- 
 
 decimals. 
 
 i ono which has 
 
 eating period and 
 
 lixed circulating 
 
 e Ilnd that it is 
 read, four hun- 
 7 is read forty- 
 
 m words. 
 
 71042-560 
 J2,000507. 
 00000000724 
 •7I-408263. 
 
 nd seven hun- 
 at three ciphers 
 '.he 4 figures of 
 iimal is there- 
 
 DECIMAL FRACTIONS. 
 
 78 
 
 2 Nine hundn-d and eighty ten thousandths 
 
 ADDITION OK DECIMAL FRACTIONS 
 Jl'ZmZ'y ^': ""'"^'"-^ '« ^^ -^^'J^d so that the decimal 
 Seatitio:.''"^"^ ""^^^ '-'' °^'-- -^^ P-— in 
 
 cnnals repeat then, to as many places as may ho Judged neces, 
 
 and■8^'6T•~^^^ ''''''''' ''■'''^' 9-3684, -70134, 19-748, 
 
 1 • 368^^ the^Tnr °°"''""' ^^^ "^^^ ^"^1 ^""''1^ numbers 
 
 • 70l34 uS ?6 .'olm' '" ^'"^P'*^ '^'^•^'^'°" ^« obtain the 
 
 10 • 748484 '^• 
 8-63 
 
 76-94519 
 
 *^ind the value of ^"'"'''^ ^• 
 
 >- 2-43 + 7-9638 + -72+1. 9654 + 23-845. 
 
 3. 
 4. 
 5. 
 6. 
 7. 
 
 r49T: + ■''' + ''• ^^^9^ + -«3+ 1-74 + .982 + 
 
 94-026 + . 87+. 085 + 6-954 + I0-869 + .7406 
 •928 + 34 -71695 + -718 + 9- 7015. 
 
 96-74 + -9863 + -712+ 19-042 + 365-98 + 4-307 • 
 •7"^'>805+l2-93+.98i+. 34 + 91-642. 
 205 + -736 + 7- 964085 +-36 + 41 -68. 
 
 8 712-84 + -96 + -73014 + 25-63 + . 98 + 94 608, 
 
7fi 
 
 DECIMAL FRACTIONS. 
 SUBTRACTION OF DECIMAf. FMACTIONS 
 
 fr^^ointti':^^^^^^^^^ .n.,er,p,acing the -lo. 
 
 traction "^" ^'■"^^' an<« proceoij as in srimplo sub, 
 
 ^24^ ^'''°'" 24-64 take 9-7901. 
 
 , ?:Z!^1L aMZriCfir '^' ''^P^'^^"'^' decimal 
 
 l4-848ii uaction ^-''-^--enco as in simple suh. 
 
 Exercise 4. 
 
 Find the value of 
 1. 4-231 
 
 19-48 
 1-372 
 
 2. 
 3. 
 
 4. 
 5. 
 
 4-9542 
 23'-- 7 36 
 
 — 2-964. 
 
 — •68742. 
 
 — -90834. 
 
 -- -2C875. 
 
 — 79'489. 
 
 6. 
 7. 
 8. 
 
 9. 
 
 10. 
 
 14 5603 — 
 
 II 68014 — 
 
 2-863 _ 
 
 7245 — 
 
 4-35964 
 
 9 49," 
 •732. 
 1-93478. 
 
 •976387. 
 
 2-178. 
 
 inark oifin t o''K'odu cTaTnlL'"?""' f T'"'''' ""'"^-•«. "• 
 n both factors. When therTaronnf""' '""' '^'^''econtaine • 
 the product as are con a'ned ^-^h^.h ?"f ^ ^'^'='"^'^' P^^^^s ' 
 flciency by prefixing dphe"s ^ ^'''^"'■»' "" »P ^''^ . 
 
 Example I. Multiply 24 S by -23. 
 
 nrnd^Pf H ^kP'*"'''" of decimals in tho 
 produc . there being 2 figures to therisrfit 
 
 i;[u;^S^«'^"^'"*'--'-torLit' 
 
 Example. 2. Multiply • 27 Ly • 3. 
 
 nin^no'-"^ example there being 2 decimal 
 ^ e p?oducTf 'T^r^^i''^ in ti othe aTd 
 
 Exercise 5. 
 
 _ -OST Ans. 
 
 F 
 
 *he v.'ilue of 
 
 '*9 X 
 
 ■48. 
 
 -57. 
 
 -638. 
 
 67, 
 
 4. 9-49 y 
 
 5- 8-63 X 5-34 
 
 «. 28 76 X 6-48 
 
FACTIONS, 
 
 aler.placirig the do. 
 as in iriuiplo sill). 
 
 repealing decimni 
 18 in simple suh- 
 
 7t 
 
 DECIMAL FRACTIONS. 
 DiVISfON OF DECIMAL FUACTIONS. 
 liule. 1 -irtho divisor does not contH.n as many decin.al 
 places as ho d.v. end. ann.x as many ciphers as will n.ako the 
 number of dr-cmal placos oqual. !„ the same way if th(3 divi- 
 (loud do..s not contain as many decimal places as tho divisor 
 (iiinex as many ciphers as will make them equal 2 Then 
 divide as in division of whole numbers and the quotient will bo 
 a whole numb..,- 3. Ifw „ all the ligures in the dividend 
 have been uPed there is a remainder, annex ciphers and continue 
 he dmsion until nothing remains, or until the quotient has 
 been continued as far as may be judged necessary. 
 
 Example I. Divide 3^4-5 bv 6-25 
 G25)32450(51'92 Ans. ^ 
 
 Hero there are two decimal places 
 in the divisor and but one in the divi- 
 dend we therefore annex a cipher, 
 then dividing as in .vhole numbers 
 and placing tho decimal point in the 
 quotient after the \n.i figure in the 
 \t'a dividend has been used we annex 
 
 ' -^" ciphers and obtain the quotient 51-'J2. 
 
 ■0. 
 
 3125 
 
 l200~ 
 625 
 
 57;>0 
 5G25 
 
 KAMPLE 2. Divide 2-428 by 
 
 Gu. 
 
 2428 (4-04G 
 2400 
 
 2800~ 
 2400 
 
 4000 
 3600 
 
 400. 
 
 Find the value of 
 
 1. 0163 .i 
 
 2. 37 a J. 
 •"!. 87-4284 J. 
 
 4. 75-903 -L 
 
 5. 3-9184 1. 
 G. 1460-31 J. 
 
 7. 96-4 i. 
 
 8. 68-64 4- 
 
 In this example we annex two ciphers 
 to the divisor, then dividing as in whole 
 numbers we obtain the answer 4-046 
 
 Exercise 6. 
 
 •49. 
 
 3-84. 
 
 •24. 
 
 13-54. 
 
 3-16. 
 
 1267. 
 
 •7{j4. 
 
 0. 269-4 
 
 10. 174-2 
 
 11. 907-14 
 
 li 3-78 iU2 
 
 13. 2035-46 
 
 !4. !:' 7C-'i 
 
 15. 17-4296 
 
 16. 104.3u:) 
 
 •75. 
 7-5. 
 
 •9123. 
 t-06. 
 8-68, 
 
 o UoH. 
 
 7-90. 
 •79. 
 
^t ^' 
 
 I' 
 
 78 
 
 DECIMAL FRACTIONS. 
 
 BEDUCTION OF DECIMALS 
 
 then prefixing a, .oint'o I mmS^^ t'"/" ^"-»^'^'« ^ li"'es, 
 Example 2. «o,luce Wto a decimal "'' '' ^'*'' '^"s^''''' 
 
 75) 100 
 75 
 
 •013 
 
 250 
 225 
 
 25 
 
 ann.'xing anothf-r cii.h!. "^..I'"'"*' then 
 
 once, we tl.erefbro ^i^^^^ r.nu'' ^^- 'i^^i^ori:'^::;^^ 
 c.pher to 25 which btZi^O ^t 'is ^T'''' '''^ «»"«"" 
 leaving a remainder 25 which be in^h ' 'contained 3 Um.s 
 remainder it is evid.nrthat the Vi '', "' '^" P'^^vious 
 
 -i|; ho continuaiiy repeal, ^^/^^o!K ZX^^I^^ 
 
 ., . . EXEIICISE 7. 
 
 iieduce the following vu„ariractions to decimals. 
 
 o" f \ ^' ^^ I S). Ha I r^ 
 
 q ?| o- Bis- 10. -224^ 14 
 
 •^' -ffi I 7. A- I 1 . V I J*- 
 
 4- ^ 
 
 A 
 
 8. A 
 
 10. -alfa 
 
 11. .^, 
 
 12. -^ 
 
 A 
 
 H 
 
 16. 
 
 
 «^SX^i'S;f dSiS\;j';^-;^.i-Iont vulgor iVaction. 
 
 many ciphers annexed is there «n!""r" ' ^"^ ^ ""'' ^'^h as 
 thus -83 = _jia_ " "S there are hg„res in the decimal. 
 
 rp- , DECIMAL FHACTI0N8 
 
 Thus. •4 = A 
 
 •28 = g| 
 
 •4.1<5 r:r 4.6 3 _ 
 
 U H 11 
 
 Jt,„r"" " "'«''''^«'-'°'<'i"'"ocimaT,„~i,!;;-a"iS v„,«. 
 
X8. 
 
 sininatir, annexing 
 «' fJeoiiii.il p|„ces 
 "t Ic Iho fiuoiient. 
 
 "Jivicleiiditlifcomcs 
 'iit'8 leaving a ,.(,, 
 
 'wn 7 in ui(. quo- 
 
 ^i^ goes 5 times, 
 
 VI' •/,) III,' answer 
 
 lexing a cipher tlie 
 
 wiiicii (lie divi.^or 
 
 ''ore place a cipher 
 
 J'lx a point, then 
 
 .I'.'o dividend be- 
 
 ivisor is contained 
 
 'nl, and annex u 
 
 ontained 3 times 
 
 «s the previous 
 
 in the quotient 
 
 thereCore placed 
 
 iimals. 
 
 13. ^. 
 
 H 
 
 DECIMAL FRACTIONS. 
 
 79 
 
 15. ^^z 
 
 ilgar fraction, 
 ti a unit with as 
 in the decimal. 
 
 Jivalent vulgar 
 s many 9's as 
 
 — t a^ 
 3 3 3' 
 
 livalenf vulga 
 
 /fi//e.— Subtract the llmio part of tho mixed repeating docimal 
 from the whole, and write the remainder as numerator ; and 
 for denominator write as many O's as there are figures in the 
 period, with as many ciphers annexed as there are figures in 
 the Unite part. 
 
 Example. Reduce -32648 lo its equivalent vulgar fraction. 
 
 3-264« — 32 = 32616 the numerator; then lor denominator 
 wo write three 9's with two ciphers annexed, there being three 
 ligures in the repealing part of the decimal and two in the 
 Unite part. The denominator is therefore 99'JOO, 
 
 Therefore -32648 = ^ff^g = |5f. Ans. 
 
 EXEIICISE 8. 
 
 Express the following decimals as vulgar fractions. 
 
 1. -6 
 
 6. -3 
 
 11. 
 
 16-348 
 
 16. -1243 
 
 2. -74 
 
 7. -64 
 
 12. 
 
 9-63 
 
 17. -31425 
 
 3. 021 
 
 8. -923 
 
 13. 
 
 •541 
 
 18. -647 
 
 4. -432 
 
 9. -123426 
 
 14. 
 
 -362 
 
 19. 6-436 
 
 5. 6-009 
 
 10. -7642 
 
 15. 
 
 -5423 
 
 20. 2l-243i 
 
 To reduce a given quantity to the decimal of another given 
 quantity. 
 
 Bute.— Divide the number in the lowest denomination m the 
 given quantity by the number which makes one of the next 
 higher, annex the quotient to the quantity in the next higher 
 denomination, and divide by the number of that denomination 
 which makes one of the next higher, and proceed thus until 
 the required denomination is reached, the last quotient will be 
 the required decimal. 
 
 Reduce 15:, bf!. to the decimal of a pound. 
 
 li'irst we divide 3 farthings by 4, 
 
 9-75 which reduces it to -75 of a penny, 
 
 prelixing 9 pence to this and dividinc 
 
 by 12 we obtain -8125 the decimal 
 
 ■790625 Ans. of a shilling, then prefixing 15 shill- 
 ings to this we obtain -790625 the 
 
 Example 1 
 4)3 
 12 , 
 
 20 J1TST25' 
 
 decimal of a pound. 
 
80 ' ^ • 
 
 Di'CIMAL FKACTIONS. 
 
 3r 18 per 
 l"a~Tr 
 
 138 per 
 240 per 
 
 23 
 
 ^iO - 23 -f- 40 = 575 Ans. 
 
 1 Red ExEHGiSE 9. 
 
 2: Reduo'e' hTd^yi''^ ll^^^ iJ^^fl"^^^ ^fa cwt. 
 3. Reduce 5 fur 3 npn ,° ff '° '^^ decimal of a vear 
 ^- deduce 1 foot 6 f!\lTe7.T"'f ""'^ '"''' 
 5- Reduce 1 6s 1 1 4d to thP I^°"V^' °^ « yard. 
 
 6. Reduce I pint fgui^^l h?«T' "''^ P°""^- 
 
 7. Reduce 16 dwts 2 gr tj th« h'""^' P^^ ^^^^^n- 
 
 8- Reduce 35 min. 30 sec tr. fh. J^'"'-'"^' «f « 'b. 
 
 9- Reduce 4 cwt 1 qr 20 lbs i '>, '^^'"a' of a day. 
 0. Reduce 2 qrs 3 n s to h! 1 ^'^ ^^°'™al of a ton 
 
 he product to the „„„ |„„„, j.'^f „"'';"'' "■» <l«i™«l part of 
 
 '"WBt, and the numbers to lh„T„rnrT°°' °"'' ™ "" '» ">« 
 ke the required value ^ ""^ """ *«'™l Points will 
 
 ''■"S5"'°^''»™'"-fl3l5„rad.y. 
 
 24 . Pirst we multiply • I s n «h„ • 
 
 deamalby24th^LmK 
 
 iSe^ti'b'i^^rthe "'^ ''«"'' «^^^^^^^^^^^ 
 multinlv nnf? M ^'''^" decimal 
 right 'of'th.'t.ii'll""'".^^'' to the 
 
 3-15G0 hours 
 ______60_ 
 
 ~9^360rmin. 
 
 -— — ^ 
 "H^ROOiT 
 
DECIMAL FRACTIONS. 
 
 81 
 
 EXERGJSE 10. 
 
 Find the value of 
 
 1. 
 
 2. 
 3. 
 4. 
 5. 
 6. 
 7. 
 
 •43 1 5 oi" a cwt. 
 
 •0274 of a day. 
 
 •63248 of a furlong 
 3.528 of a lb Troy. 
 
 •73125 of a £. 
 
 •175 of a rood. 
 
 •0348 of a bushel. 
 2-875 of a yard. 
 
 9. '613 of an acre. 
 
 10. 4-5063 of lb avoir dupoids. 
 
 11. •OSes of a gallon. 
 •749 of a mile. 
 •268 of a cwt. 
 •9163 of a sq yard. 
 •775 of a gallon. 
 •39525 of a ton. 
 
 12 
 13 
 14 
 15 
 16, 
 
 PROPORTION OF FRACTIONS 
 
 12?;S* ^^^ '^' ^""^ '''' ^^ ^^"*^ ^^^^ '""^' be paid for 
 
 to tn ?4op,'laS •• ''•'' '' ^'^^ ''' --^ '-- reduced 
 As f yd : V yds: : f -^O th«. ^^x^ ^ X i =. ...^ cents. 
 
 Exercises. 
 
 win lo'lrSolt ? '"" "' ""''' '" ' ^ '^^^ •" ^-- --y ^ays 
 
 1 t ydTf* ""'" ^ ^ ^'^^ '^''°''' '°'^ ^' the rate of $4.70 for 
 
 co!t Sr' '"'''■ """^ ^' P"''^^*^^^^ ^^-^ ^^3.20, if ^ cwt 
 ^^4. ^If 3 a cwt of flour cost $9.30 what must be paid for 7 f 
 
 7 1 yds ? * ^ "t'^ ''"^t ""*- t''« ''ate of $28 f for 
 
 if?i^3''gdsrsrS"^^'""'^"'- ""^^^ ^°«^^' f- ^'7.42 
 
 37V;dsaVtSl^L^^^:rit"f '^'^•^'' ^-^^^ --* ^^ P-d for 
 08^c;,??''',°!"I'y pounds of coffee may be boueht fnr <r 1.124 if 
 
 th 'Ue'r^te r' "''"''' ''''^'' ^^'^l^^'" 3-28 «wt cost at 
 
 
82 
 
 PRACTICE. i 
 
 »115oP'3^™l''?»''' '■''■■ '»-"e='-35 acre... .1,0 rate .[I 
 '^^^ .Sf Ji'la'; '"= ™'- »^ »»•* '"^ Of .sa, ,r .he value " 
 
 MISCELLANEOtii QUESTIONS 
 
 t Rir.s''f',?.r,r;„,r--o»f73,a„<; la^,,. 
 
 a com,„o„ *;;;„■ 'llor' '* '° »I"'"l™t rra«i„„sh.vi„. 
 
 10- Jieduce 4278m Z iZhl , " '" '"^'^es. . 
 
 .. lo Multiply $73.5^14 '>o to ill "'"? P'^'^^ of decimals. 
 diVHletheresuliby 13 "' *" "'^ J^^^^^^f add $48.05 arid 
 
 '«, MuUiP'y the resuuif+4'f9l"f4tJ^-2^^y ^-23017. 
 piaces of decimals by -24 ~ '^^38 carried to four 
 
 W. IZn!! ofVSf ^ 1 'J + ^> «^^^9« 13. 
 
 +2^f ^^H + $-'40.63f +J792 I8i * ^^•'^* + =^^^-^6-32^ 
 2^: J'- ^e^^'S'??2?^^^^^^^ and|9e2.37,. 
 
 ^- ^^'"'^ '^' ''^^^ °f $9264£3f - $748.61^ x 9. 
 
 p ^. practTce. 
 
 t^ractice teaches how to finri (h,. . 1 
 
 goods at a given rale iV?he"l\trU,-„'l"^" f'"^" ^"'^"'''y of 
 All aliquot pari is a nimnti^.r ■ 1 ^''^I^ot pints. ' 
 
 numhp..^r.: ':'.'*' *^ .'I"'i"tity which is p.nniaJnriH -„ 
 Tims 9 m?""? '" "^ ^'^■^" quantity. -n-mf^rj ^n exact 
 
 sli,uotpar?o1'-rdXr'^"°^P^'''"^^^^*'.-nd 10 cents is an 
 
 60 
 
 25 
 20 
 16i 
 
 10 
 8i 
 
 5 
 
 4 
 
 H 
 
acres at H,o rate oi'| 
 oftea, ifthe valueofi 
 
 noNs. 
 
 734 and I96.S, 
 uts. 
 
 6iJ-. £11 ; 14: 8i 
 43.18. " 
 
 «6, 8, 14, 12, 
 
 nt fractiuns having 
 
 !S, 
 
 lbs. 
 ?5 X 76 ? 
 
 Lces of decimals 
 add $48.J5 and 
 
 !fe 2-49346. 
 7-29 by 4-23017. 
 carried to four 
 
 il3. 
 
 f + $1246.32^ 
 
 Mnd$962.37f ? 
 
 f — 1856.37,4,. 
 X 9. 
 
 en quantity of 
 iris. 
 
 nod an exact 
 f* cents is an 
 
 PRACTICE. 
 TABLE OF ALIQUOT PARTS. 
 
 83 
 
 Of a dollar. 
 
 cents. 
 
 60 = 
 
 33J = 
 
 25 = 
 
 20 = 
 
 16i = 
 
 Ui = 
 
 10 = 
 
 8i = 
 
 6i = 
 
 6 = 
 
 4 = 
 
 n = 
 u = 
 
 5 
 ) 
 
 ? 
 
 i 
 
 i 
 
 Of a ton. 
 
 10 
 
 cwt = 
 
 ^ 
 
 6 
 
 t< — 
 
 1 
 
 i 
 
 4 
 
 It __ 
 
 ^^ 
 
 " = 
 
 X 
 
 2 
 
 '^ — 
 
 1 
 
 1 
 
 
 ^" 
 
 
 
 2U 
 
 Of a cwt of 
 
 112 lbs. 
 
 
 Of a cwt of 
 100 lbs. 
 
 qrs. lbs. 
 
 qrs. lbs. 
 
 2 or 50 = I 
 
 1 or 25 = » 
 
 20 lbs = A 
 
 3 
 
 OfjE 1. 
 
 Ofaqr. of 
 28 lbs. 
 
 2 or 66 = 
 1 or 28 = 
 14 lbs 
 7 lbs 
 4 lbs 
 3i lbs 
 
 = i 
 
 
 14 
 7 
 4 
 
 3i 
 
 2 
 
 1 
 
 lbs = ^ 
 
 I 
 
 X 
 7 
 I 
 9 
 
 h 
 
 ■A 
 
 lOs 
 
 68 8d 
 
 58 
 
 3s 4d 
 2s 6d 
 2s 
 
 IsSd 
 Is 3d 
 
 l8 
 
 I 
 
 1 
 8 
 1 
 
 = i 
 
 = A 
 
 ■A 
 
 Of a shilling. 
 
 6d 
 
 4d 
 
 3d 
 
 2d 
 
 Ud 
 
 Id 
 
 = A 
 
 When the given quantity consists of one denomination 
 Example 1. Find the value of 28 lbs of tea at 50 cents per lb. 
 
 50 = J_28 It is evident that the value of 28 lbs at $1 
 
 m Ans. P^'-'b would be $28, therefore the value of 
 or $14. "^"'^^ """'^ ^^ ^^'f that sum 
 
 Example 2.-Find the value of 246 yards at $1.80 per yard 
 
 50 cts. = i 
 25 " =i 
 
 246 at $1.80. 
 
 123 value at 50 cts. 
 
 61.50 value a i 25 cts. 
 
 12.30 value at 5 cts. 
 
 f 442.80 Ans. 
 
 Here we add together 
 $246 the value of 246 
 yds. at $1,$ 1 23 the value 
 of246yds. at 50 cts. per 
 yd., $61.50 the value of 
 246 yds. at 25 cts. per 
 
84 
 
 flr 
 
 I i 
 
 PRACTICE. 
 
 yl., and $12.30 the valup nf o/.r „ i , r 
 
 obtain tI.o amount or 246 y°s^\V*f- ?^ ^ ,^^«- P'^'' Vi- ; and thus 
 
 or taken together $1.80 per yd ' '"''•' ^^ ^'^^ ^nd 5 cts. : 
 
 2^4^ at $4.85 
 4 
 
 25 cts. z= i 
 10 cts. = I 
 
 4936 
 617 
 308.50 
 
 ,0?^? we multiply 
 1234 by 4 and obtain 
 the vahie at $4, then 
 nnd Mio value oft 234 
 IJjs.i. 85 cts. fay taking 
 aliquot parts thus 50 
 cts = J of $1,25 cts. 
 
 - f °r rl^ ^'^•' 10 OtS. 
 
 the results add $1.211- the va'nBnF J r -; i o*^ 50 cts., and to 
 g'ves the value Jf 1 2I4 J';i.I^;r$°4 I5 v z\ 'gsel.f "'^ ^^^^^ 
 cwr«- ^-«^^i--d the val or Z t^ al'.a : 2 : 4 per 
 
 value at $4. 
 
 value at 50 cts 
 vnm value at 25 cts. 
 U3.40 value at 10 cts. 
 ___i_^£[£value of J of a Ifa 
 
 $5986.1 IjAns 
 
 2s. =r 1 
 10 
 
 4d.=^ 
 
 246 
 3 
 
 738 yalueof246cwt.at£3. 
 
 4 2 - of . II ll 
 
 $ 766 14 Ans. 
 
 Find the value of 
 1- 746 lbs. at $0.87*. 
 
 2. 475 lbs. at $0.75."' 
 
 3. 1234 lbs. at $1.46 
 
 t' iT'^'^^s. at$1.57* 
 o. 286 vds. at $2 78 
 
 6. 954 yds. at $4.56.' 
 /. 354 cwt. at $24 50 
 8. 2468 at $314 18 
 9- 7694* at $87 26' 
 
 10. 4281 at $96.54. ' 
 
 11. 42502 at $220.15. 
 
 12. 796^ at $76.94 
 
 J 3. 1357, J, at $156. 13. 
 14. 7S4,5„- at .$96.35. 
 
 Exercise I. 
 
 16. 5324 at Us. 6d. 
 
 17. 948 a( £3: 7- 9 
 
 18. 3576f^at£7; 9': 0* 
 
 19. 2459gat£9: 3-8 
 
 20. 1208f at £2:9' 4" 
 
 21. 3274 at $1.35. ' " 
 
 22. 498 ,a at 2s. II Jd. 
 '"^ 4956| at $234,56. 
 
 864f at£l3 : I6 • 
 '274 ft- at $1.28. 
 3724 al, $1.17 
 3469,^-at$1.12i 
 224 at £3 : 5 ; 
 235 at £2 ; 7 • 9' 
 2485|j at $19.45. 
 
 23 
 
 24 
 25. 
 26. 
 27. 
 28. 
 29. 
 30. 
 
 4f. 
 
PRACTICE. 
 
 85 
 
 s- per yd. ; and thus 
 , 25 cts. and 5 cts. : 
 
 It $4.85 per Ux 
 
 lere we multiplv 
 4 ijy 4 and obtain 
 
 value at $4, then 
 
 'no value of 1234 
 <'ii85cts. by taking 
 not parts thus 50 
 
 = I off I, 25 cts. 
 
 of 50 cts., 10 cts 
 of 50 cts., and to 
 ^^at^|4.85 which 
 
 ■• at .£3: 2:4 per 
 
 When the given quantity consists of more than one dononii- 
 nation. 
 
 Example 1 . What is the value of 240 cwt. 2 ors 15 lbs 19 ny 
 at $7.40 per cwt ? i'- • ^-^i^^. i/ oz. 
 
 $ cts. 
 2 qrs. = i 7.40 
 240 
 
 \2i lbs. = i 
 2ilbs.=i 
 8 oz. = I 
 4 oz. = J 
 
 29600 
 1480 
 
 177600 value of 240 cwt. 
 
 3 70 
 
 925 
 
 185 
 
 37 
 
 18 
 
 2 qrs. 
 12* lbs 
 
 2i 
 
 8 
 
 4 
 
 lbs 
 oz. 
 oz. 
 
 $1780.86 Ans. 
 
 In this example we 
 multiply $7.40 the 
 value of 1 cwt. by 
 240 and obtain $1776 
 the value of 240 cwt. 
 Thentaking parts for 
 the renlainder and 
 adding we obtain 
 $1780.86 the value of 
 240 cwt. 2 qrs. 15 
 lbs. 12 oz. at $7.40 
 per cwt. 
 
 Example 2, What is the value of 12 tons. iO cwt 2 ars 
 14 lbs. of hay at $14.10 per ton. allowing 112 lbs to the cwt ? " 
 
 $ cts. 
 10 cwt. = J 14.10 '''-' S':' 
 
 12 "^' ■'■' 
 
 2 qrs, 
 14 lbs. 
 
 2^0 
 
 169.20 value of 12 tons. 
 7.05 — 10 cent. 
 352 — 2 qrs. 
 I 88 — 14 lbs. 
 
 $176.69 Ans. 
 
 s. 6d. 
 
 per 
 
 : 7: 9. 
 
 
 £7 •• 9 : 6*. 
 
 
 9:3:8. 
 
 
 2:9:4 
 
 
 35. 
 
 
 • Hid. 
 
 
 !34,56. 
 
 
 ^ : 16: 4f. 
 
 
 1.28. 
 
 Fi 
 
 7. 
 
 1 
 
 1.12^. 
 
 2 
 
 5: G. 
 
 3 
 
 7: 0. 
 
 4 
 
 19.45. 
 
 5 
 
 
 6 
 
 Example 3. What will 3 qrs. 12J lbs. of sugar cost at £2 : 
 
 value of 2 qrs. 
 — 1 qr. 
 
 — 12i lbs. 
 
 £2 8 6| Ans. 
 
 15:6 
 
 2 qrs. = 
 
 1 qr. = 
 I2J lbs. - 
 
 £ 
 
 s. 
 
 d. 
 
 2 
 
 (5 
 
 6 
 
 1 
 
 7 
 
 9 
 
 
 13 
 
 lOi 
 
 
 6 
 
 Uf 
 
 EXERCISB 2. 
 
 Find the value of 
 
 17 cwt. 2 qrs. 14 lbs. at $24.56 per cwt. 
 38 cwt. 3 qrs. 12^ lbs. at $220.16 per cwt. 
 31 tons. 12 cwt. 1 qr. 20 lbs. at $14.21 per ton. 
 3 Ts. !7 Ihs \i 07. nt "S^O ?.f. ".t>-^ .--— r' 
 374 miles 2 fur. 21 per.^at $48.05 per inile. 
 34 wks. 4 days at $9.48 per week. 
 7. 4 chaldrons 21 bush 3 pks. at $3.50 per chaldron 
 
86 
 
 \h t 
 
 8. 
 
 3. 
 10. 
 11. 
 12. 
 
 PRACTICE. 
 
 '7 Jbs. 8 oz 5 if "a ^ u^ '^^ ^^-26 per gal 
 
 15 
 16. 
 
 n. 
 
 18. 
 
 19. 
 
 20. 
 
 21. 
 
 22. 
 
 23. 
 
 24. 
 
 25. 
 
 26. 
 
 27 
 
 28 
 
 ]r f* S^als. 3 qis. I pt. atje J■ 
 14 miles 7 ffi. 3 fpe/afsfl ^,' •" «* P?*- ^^t 
 258 cwt. 3 n..« 9i*^K„ .7^t-^^Per mile. 
 
 '^Wt- 2 qrs. 23 lbs. 
 
 'o ppr acre. 
 
 3 :GJ per gallon. 
 1 / : 8 per week. 
 
 243 lbs.-14 Til' j^3\'t'|o^4 ^'s^.Per <^wt. 
 136 days 7 hours at I'fc,?!^"^ ?'''* '^• 
 74 cwt 18 lbs at Ssf \'^^^ ''"' ^^y- 
 28 fur. 35 ner 93 „ , '^^ P^'' ^wt. 
 
 1 '7 cwt iribs'i,^^tl'.'/^ •■ ^ •• ^ P^'' ^"''long. 
 
 76 gals. 1 qt I 14 at s or' '^'- 
 
 3 qrs. 24 lbs 8 oz at I fi .aP^' ^^"o"- 
 
 9 weeks 2 days at S7 S ni P^^'=^*• o'"l'2 lbs. 
 
 '■ 27 d^Ts ,4 b7urs'ariP2r ^'/'- 
 >". 90 acre«) 9 r i« *'-*4 per day. 
 
 M. 4°S V,.'," f ;■;■ ■' H«8 per acre. 
 
 Gross • h ^^^^ ^^^ ^^^^ 
 
 weight ofThe^caserbag: r&nn"US?^L^«^^^^^r with the 
 
 ^ TSnet'wSSs°;Varrl""^' '"^^^ ^- --te i„ goods 
 'r.t'-^{}Z^^^^^^ ''' -eand^Xhave 
 
 tare 6 lbs. per owf. Im ?lSs'V^r?wl '' '' ^^^- ^ 'J'^-^Aour, 
 cwt. qrs. lbs. 
 
 Gross 
 
 Tare 
 
 46 
 2 
 
 43 
 1 
 
 Tret 
 
 Net weight"42~ 
 
 2 
 _3^ 
 
 2 
 1 
 
 
 __4 
 
 21 
 _6 
 
 15 
 
 T ,u 42 cwt. 1 qr ,1 lbs'''' *^ "^^ weight 
 
 weighUstr/^^rfifr d in ^he fol/owin. «,....„„ ... . . 
 ounces. -'''^^ "^ Possible without"reducUo^"S 
 
 H 
 
 CO] 
 
 Find th( 
 
 C. 4 
 
 26 owl 
 7 ches 
 7 hhdt 
 tare 
 13 ban 
 9ib 
 120 c\\ 
 per 
 hhdd 
 11 I] 
 19 bag 
 tare 
 124 c\v 
 20 pi 
 2 ■ barr 
 14 U 
 7 hiiddi 
 19 1fc 
 9 casks 
 cask 
 17 cwt. 
 per c 
 42 bags 
 per b 
 
 14. 14 hogs; 
 
 40 1b! 
 
 15. 96 cwt. 
 
 3 lbs. 
 
 COMMIS 
 
 Per cent 
 
 Thus if a 
 to be 5, 7, 01 
 on each $100 
 
 Gommissic 
 mission raer 
 accounts, Ac. 
 
 Insurance 
 a certain sun 
 pay to the c 
 iiicicJiaiidise, 
 the property 
 Brokerage 
 elating bills, 
 
 9. 
 10. 
 11. 
 12. 
 13. 
 
wt. 
 
 ■Uon, 
 c. 
 
 3Wt. 
 5Wt. 
 
 •long. 
 12 lbs. 
 
 ether with the 
 "re packed. 
 1 which goods 
 
 in goods, 
 and tret have 
 
 J qrs. of flour, 
 
 vt 2 qrs at 6 
 be 2 cwt. 
 ed from the 
 
 cwt. 2 qrs. 
 lis at 3 lbs. 
 ' <'bs. which 
 
 net weight 
 
 eduction to 
 
 COMMISSION, INSURANCE, AND BROKERAGE. 
 
 Exercises. 
 Find the net weight of 
 
 87 
 
 1. 26 cwt. 2 qrs. 12 lbs., tare 15 lbs. per cwt. 
 
 2. 7 chests tea each weighing 194 lbs., tare 16 lbs. per chest. 
 J. i iJhddB. of sugar the gross weight being 93 cwt. 2 ors . 
 
 tare 3 qrs. 12 lbs. per hhdd. * '^ ** ' 
 
 4. 13 barrels rice each weighing 2 cwt. 1 qr. 9 lbs., tare 1 qr. 
 9 lbs. per barrel, ^ 
 
 5. 120 cwt. 2 qrs. 12 lbs. flour, tare 8 lbs. per cwt., trot 3 lbs 
 
 per cwt. 
 
 G. 4 hhdds each weighing 13 cwt. 1 qr. 14 lbs., tare 2 qrs. 
 1 1 lbs per hhdd. ^ 
 
 7. 19 bags Indian meal each weighing ! cwt. 3 qrs. 9 lbs., 
 
 tare 4 lbs per bag. 
 
 8. 124 cwt. 2 qrs. gross, tare 9 lbs. per cwt., tret 4 lbs. 
 
 20 per cwt. 
 
 9. 2 • barrels sugar each 1 cwt. 3 qrs. 14 lbs. gross, tare 
 
 14 lbs. per cwt. 
 10. 7 hhdds tobacco each 3 cwt. I qr. 2 lbs. gross, tare 2 qrg. 
 
 19 lbs. per hhdd. ^ 
 
 11.9 casks butter each weighing 2 qrs. 15 lbs., tare 14 Ibe. per 
 
 cask, tret 3J lbs. per cwt. 
 
 12. 17 cwt. 24 lbs. of flour, tare 11 lbs. per cwt., tret 4 lbs 
 
 per cwt. 
 
 13. 42 bags rice each 1 cwt. 3 qrs. 23 lbs. gross, tare 8 lbs. 
 
 per bag. 
 
 14. 14 hogsheads of sugar each 11 cwt. 2 qrs. 7 lbs. gross, ta^e 
 
 40 lbs. per hhdd., tret 2J lbs. per cwt. 
 
 15. 96 cwt. 1 qr. 17 lbs. of flour, tare 12 lbs. per cwt., tret 
 
 3 lbs. per cwt. 
 
 COMMISSION. INSURANCE, AND BROKERAGE, 
 
 Per cent or percentage means a certain rate per 100. 
 
 Thus if a merchant sells a quantity of goods, his gain is said 
 to be 5, 7, or 8 per cent, according as his prolit is $5. $7, or $8 
 on each ifilOO worth of goods sold. *• > ^ > -*" 
 
 Commission is the percentage charged by an agent or com- 
 mission merchant for buying or selling goods, collecting 
 accounts, A-c, for another. 
 
 Insurance is a contract by which a company on being paid 
 a certain sum or percentage called the premium, engages to 
 pay to the owners of certain property such as houses, shina 
 liiercliandise, ikc, a certain sum, in case of the destruction'of 
 the property by fire or other accident. 
 
 Brokerage is the percentage charged by a broker for iieffo- 
 ciating bills, buying or selling stocks, Ac. 
 
88 
 
 ■If 
 
 tl 
 
 eo«m,.,o«, ,«,™^«<,,,_ ^^^ 3,,,,^„^ 
 
 1. 
 
 2. 
 3. 
 4. 
 
 ^■-P-TalV^^^^^^^^^ or brokerage on a 
 
 the Iro^uXZ''^^^^^^^^^ 'y "- ^i van rate „er cent, divi.e 
 insurance or /rokerage' ""'"'^ ^'" '^ "'« ^^"''"iBsion, 
 
 Example l.^What is the commission on $248 n. 7i 
 
 EXA«P..2-Wha! '.h" ''' = ^''-''- Ans. 
 2i per cent?' "''^ '' ^^^ P^'^'^'um of insurance on $4560 at 
 
 and $61651 go = ?6L65. Ans. 
 
 ■C'XERCISF^ 
 
 pf ;i lit crSstn on SI/' 1.P- -nt ? 
 Required the oorSllZZfomVL':! ''''' ' 
 
 6. To wU does hTcomm" °" ^'^724.6lif ^^,S ',e„, . 
 per cent ? ''°'' ^^« commission on $7428.4oVmount at 12i 
 
 per cent? *^« ^'"o'^erage on $7964.80 amount at 7J 
 
 is: ma! rthr^^iiu^'n' $K - ^^«^«0 ^ 
 
 6. Find the hroker^Z mV!tnf. '' '* P^"" ^'^^ ? 
 cent? ^"^^ the brokerage amount on $10oS at 7^ 
 
 ,20.- ^tl pretuTTrnsu^nr'^"^^ °1! ^''^'^^ 2 Per cent ? 
 oa . _ . '^ "Je insurance nn «7/,b „. «, 
 
 per 
 
'ROKERAQE. 
 
 or brokerage on a 
 
 •ate per cent, divide 
 e the commissioii, 
 
 5^48 at 7^ per cent ? 
 
 ins. 
 
 irance cm $4560 at 
 
 ns. 
 
 40 at 2i per cent! 
 
 ns. 
 
 )er cent ? 
 percent? 
 
 H per cent, 
 er cent. 
 
 I per cent? 
 amount at 12^ 
 
 H per cent, 
 the amount of 
 
 nt to the amount 
 
 ;ent? 
 
 !enl ? 
 
 \ per cent. 
 
 r cent. 
 
 amount at 7J 
 
 1984.60 ? 
 
 per cent ? 
 
 I- 
 
 ism? 
 
 10000 at 7 J per 
 
 Oat 2 per cent? 
 J at the rate of 
 
 ent? 
 
 > must be paid 
 
 STOCK. 
 
 89 
 
 w'rti.^5f9rri|'?efc'"ntr"°^ "'^'''^ '^''^ - merchandise 
 
 vaL'rtt.2"72^?oT;^t%rtr^ " ^^"- and furniture 
 o^^:^Ii^:±7^^l^:^^^'^0, What premiu. 
 
 w o'rth S58.5Vat (1^;/? "^"""^^ °" ^ ^^^^^ ^^ ^«- 
 cent." ^'^"''■^'^^''«P''«'""^'"o''in8uranceonfl0074at 2x por 
 
 29" To wlLf l^r.l'^K""! *' -^^ commission on $20742 ? 
 cent ? ' brolcerage on $2248 amount at 4J per 
 
 $I248olo at 2I pt'ce'ir"'" '' '"^"'"'^"'^^ °" ?«°<i« ^orth 
 
 STOCK 
 
 sell for bss than the originaTcS "'"""' '^'''" '^^^ 
 
 thJnSoO U*il'aVovrp";"'r a[at'r? '^ '^ '' f' '' ^^ --« 
 §100 it is below ,ror'a a dScou'nf^^rif T'im^^^ ^'^^ 
 
 at a premium of 9 per cent its vaTe'isllOO A9 - Sq t"? 
 a d.scount of 9 per cent its value is I 00 _ ftilil ^ "^^' '^^^ 
 
 ..RoTttSjlill^Jea?^^^^^^^^^^ 
 
 Example 1.— What is the value of 'S79f» ^tnM, ,. o 
 discount? *'^" stock at 8 per cent 
 
 , ^ f 720 X 92 = $66240. 
 and $66240 -J- 100 = $662.40 Ans 
 
 sinrr.'pVTmTut'oro^^eJcS" °' *''" ='-' -"o" '« » 
 
 ^ $250 X$ 106 = 26500. 
 and $26:100 -;- sinn — atocc; nn . . 
 
 given s™.""" '""°''°' -'■ "'»«'■ ""y "» purchased for a 
 va,uf„r,ri;"J„r """"' °' '"^ «'™° '""■ '"^ '«» ^^ "' 
 
 'msmm 
 
90 
 
 INTERBST. 
 
 1. 
 2. 
 
 and 1200000 -^ %t\^n^^^ X 100 = 200000. 
 
 "W00^$,,2U,ovaluoof$I00atl2,crce„t = $r785 7U 
 
 wnat IS the value of $2400 qtnr^t „4 
 percent. '^"" ^'^^''^ «' a premium of 9 
 
 When stock is Sellinrr nf „ 
 
 ^ „,value Of $5740 Kk 1 ''"' °'°' """"' P"- "l"" i» th. 
 
 *• ^fcSkt '' ""• "'" ""o™ P" -hal ,s .he val„e .r 
 5. What amount of stnrt mo„ »,« 
 
 7. When stock Is sellinVat fpL, „ V 5f n"' ''''»™ Paf ? 
 ;■ "f;&f ""^ « ' f- -"' *eS U .hat U the valoe 
 
 „ ^p«l *ek"? " "" "'"' ■>*" P-r What is the value of 
 •2. What is the vaiue of ,4650 stock at n per cen, disceun. , 
 
 WTEREST. 
 
 re|;S'..i c'etS.J'a.etrSnf"' ""^ -^ °'"-ey, and is 
 
 SIMPLE INTEREST. 
 
 simTSnttr' " ^'^^''^'^^ «" ^''^ Pnncipal only it is .ailed 
 ^w'"l;'u1,rpryr,-/„S^^^^^^ for one or more years 
 
 product by loS^^'and fhTre's'it^^, rrelr.^*^"'- '^'^^'^'the 
 year. Thfl ipipmo* r._ ^ "^""'i wui be the mtfirpct r^- ^_.. 
 
 multiplying t£'io;e;est1SonrveTrh' J^' ^'"^^^^ ^V 
 for which the interest is required ^ ^' ""'"^''' °^ y^^rs 
 
INTEREST. 
 
 91 
 
 iircliasefj for ^2000 
 nt i 
 
 'cr cent = $1785.71} 
 
 t a prerouim of 9 
 
 3f7} per cent what 
 
 m par what is tlie 
 
 hat is the value of 
 
 i for $980, when 
 
 cent above par ' 
 ' 1 1 per cent, how 
 
 what is the value 
 
 r; cent discount ? 
 mo when it is 
 
 It is the value of 
 
 cent discount ? 
 
 f money, and is 
 
 I ; and the sum 
 
 ent interest the 
 = $105. 
 
 nly it is Called 
 
 iiore years, 
 int, divide the 
 erest for one- 
 is found hy 
 mber of years 
 
 E.\ AMPLE 1. 
 
 1 5 jici' cent. 
 
 -What is^lhe interest on $248.70 for I year at 
 
 $248 70 X 5 -1104.'} 50 
 
 nnd $[-2'i.i:,u-f I00r=$l2,4;i5 Ans 
 ^ E.\AMPi.E 2. \Vh;il is th(3 1, lerobt on $280 
 |KT cent |ier unruun ? 
 S-2«() X G* =$1820. 
 Then ;i«l8vO -r 100 = $18 20 Inten'st for I vear 
 
 I" ' years at 6J 
 
 And $18.20 X 3 z= $;)4.(iO Intei 
 
 Exercise 1. 
 Find llic interi'si on 
 1. 
 2. 
 3. 
 4. 
 5. 
 
 'st for 3 years. 
 
 55356 for 1 year at 7 per cf>nt. 
 $2540 for I year at 5 per cent. 
 $yG4 for 2 years nt b^ per cent. 
 $3248.50 for 3 yeart< at 4^ per cent. 
 $7384. 6') fur 2 years at iter cent. 
 a. $948.30 for I jear at 5f per cent. 
 
 7. $-<450 lor 2i years at 9 jier cent. 
 
 8. $1248 for 4 years * Ci pi r cent. 
 
 9. $842 for 2| years at 7JL per cent. 
 
 10. *2I46.J0 for 1 1 years at 10 per cent, 
 
 11. $11248 Air I year at 6 per cent. * 
 
 12. $789 for I year at 6f per cent. " 
 
 13. $214.00 for 1 year at 7i per cent 
 
 14. $928 for 2 J years at G per cent. 
 
 15. $398.40 for 3 years at 5^ per cent. 
 
 16. $3460 fcr 1 year at 4J^ per cent. 
 
 17. $864.90 for 2 years at 9 per cent. 
 
 18. $1654 for 1 year at 33 per cent. 
 
 19. $792 for 1 year at 7 J j)er cent. 
 
 20. $1245.50 for 2 J years at 6 per cent. 
 
 yeJr°s and aionU.r'' °" "" ^'''^'' '"" '^'''" ^^^ '™^ ''°"'''*' °f 
 Iiule—¥iud I he interest for the given number of years by 
 rule 1 ; and for the months by aliquot parts as in practice 
 
 liXAMPLE 3.— iMnd the interest on $560 for 2 years and 5 
 months, at (i per cent per annum. 
 $560 X 6 = $3360. 
 anrl $3300 -r 100 = $33.60 Interest for I year 
 
 4 months = 
 
 month 
 
 $33.60 Interest for 1 year 
 2 
 
 67.20 
 
 11.20 
 
 2.80 
 
 2 years. 
 4 months. 
 1 month. 
 
 $81.20 Ans 
 
 '■""^^"^^^mmm 
 
IMAGE EVALUATION 
 TEST TARGET (MT-S) 
 
 k 
 
 // 
 
 
 ^^%^I% 
 
 < <;^ 
 
 :/. 
 
 (A 
 
 
 V] 
 
 <^ 
 
 /a 
 
 7 
 
 'c^l 
 
 
 ^ 
 
 ■W J>> 
 
 e-P' -"^ 
 
 % 
 
 %' 
 
 1.0 
 
 i.l 
 
 118 
 
 U, 1^ 
 
 IIIIIM 
 
 ^ 1^ 12.0 
 
 IL25 III 1.4 
 
 Hiotographic 
 
 Sciences 
 
 Corporation 
 
 18 
 
 1.6 
 
 23 WEST MAIN STREET 
 
 WEBSTER, N.Y. 14580 
 
 (716) 873-4503 
 
 S 
 
 V 
 
 <F 
 
 <1? 
 
 
 
 

 1^ 
 
r 
 
 n 
 
 \ VI 
 
 92 
 
 INTEREST. 
 
 *ind the interesl. on * 
 
 3. $958.60 for 2 vears 2 ,^ '''.k ^ ^ ''«'' '''^^^■ 
 
 4. $1340 for 3 yS mor?f"h "/. V ''''' '='^"^- 
 
 5. $9r,4 50 for 2 v^ars 8 n/n ^''^ '* ^'^^ '"'^^■ 
 
 (Buno t« -. J; .'^'^ '^ months at 4f per cent 
 
 7, 
 8 
 9, 
 
 10. 
 
 11 
 
 $862.40 for Oi^onhsatV-'^P"^ 
 $1248.50 for I v3 7 ? f'^'' ^^"' 
 
 $063.72 for 1 LmLTfi''' '' ^ P^'' «'^"^- 
 $054.90 for 2 veari^i n,^ f.* P*"* ''^"*- 
 ,„ $358.60 for 3 yea s S Z"![" ^^ ^ P'"" ^«nt. 
 
 2. $1234 for 2 years ? m^n^^! S' ^* P^' ^ent. 
 
 3. $964.20 for TmLiSTr/' ^* P'"' <=«"*• 
 
 14. $2468 for 1 year 2 mn^.V^ ''"'' ^^"t- 
 
 15. $258.20 for 2 yea^s^r""' "l ^* P^'" ^«"'- 
 
 "r/ years 11 months at 8 per cent. 
 To find the interest on a eiZIT 
 
 fiule.-Find the interest oTiV""' ''' '"^ """^^^^ "^ days, 
 f- 1 year. TRen as 365 daysl to Z" ""' ^* ^'^ ^'^«° ^'^ 
 Js the interest for 1 year to til . ^""" ""'"^'^'' ^^ days, so 
 
 Example 4 Find thp ^ '"'""''' '^^^^'''^d. 
 cent per annum '"'^'''''' «" $6^0 for 98 
 
 centWe$5T2S"?hen' ''''''''' °" ^«^0 i^or 
 
 . days days 
 As 365 : 98 ; 
 
 days at 8 per 
 1 year at 8 per 
 
 .!'i;!"ii''-"iiAn». 
 
 Example 5. Find th'^YS^ ' f"'-''*f'i Ans. 
 «' 6 pe.- oenl which i,%V S„ '"'"'''»' <"> *M0 J rye„ 
 
 . days days 
 As 365 : 79 .• 
 
 130 
 
 W.49M Ans. 
 
 PinH 11 • E.XERCISE 3, 
 
 *:'"d thointore.';ton 
 : $964 fo^^f L'^y« «' 5 P- cent. 
 
 3. $248V60 f liSZ^S'^r'- 
 
 4. $796.40 for n rin vc^ . ^}, ^^ ^^'^ ^ent. 
 
 5. $496,20 for 56 da ? ! S P"'' ^'^"t. 
 
 6. $928 for "79 dav?«, r ^ ""' '^'^"^ 
 
 7. $324 50 inr4-^l ^ P"' ^6"^- 
 
 «. $2345fo 92l;vs"u4l'P'''^'°"^- 
 udys t.t 4^ per cent. 
 
COMPOUND INTEREST. 
 
 93 
 
 ■ cent. 
 c;eiit. 
 3r cenf.. 
 ' cent, 
 ler cent, 
 cent. 
 t. 
 
 'r cent. 
 
 t. 
 
 r cent. 
 3r cent, 
 cent. 
 
 cent. 
 3r cent. 
 
 'y number of days. 
 1, at the given rate 
 
 number of days, so 
 ired. 
 
 98 days at 8 per 
 >" 1 year at 8 per 
 
 20th May to the 
 
 20th May to 7th 
 '1 f 500 for 1 year 
 
 9. $500 Tor 198 days at 5J per cent. 
 
 10. SG24.40 for 204 days at 6J per cent. 
 
 1 1. $920 from June 3 to Doc. 20 at 6 per cent. 
 
 12. $428.00 from Aug. 21 to January 4 at 7 i)er oont. 
 
 13. $1234.50 from May 27 to October 2! at 5^ per cent. • 
 
 14. $805 from January 14 lo July 27 at 6J per cent. 
 
 15. $1024 from March 28 to June 4 at 7 per cent. 
 
 COMPOUND INTKREST, 
 
 When the interest is added to the principal at the end of a 
 year or any period, and llie interest is calculated on the amount 
 for the ensuing year or period it is called compound interest. 
 
 To find the compound Interest on a given sum for a given 
 time at a given rate per cent. 
 
 Rule I. —Find the interest for the first year at the given rate 
 per cent, add this to the principal and take the amount as prin- 
 cipal for the second year. 2. Find the interest for the second 
 year add it to the last principal and take the amount as prin, 
 cipal for the third year. 3. Proceed thus until the interest has 
 been found for the required number of years. If the given 
 principal be subtracted from the amount for the given time the 
 remainder will be the compound interest, 
 
 E.\AMPLE. — Find the compound interest on $500 for 3 years at 
 5 per cent per annum. 
 
 Interest on $500 for I year at 5 per cent $25. 
 
 Amount at the end of first year $525. 
 
 Interest on $525 at 5 per cent $26.25. 
 
 Amount at the end of second year $551.25. 
 
 Interest on $551.25 at 5 per cent $27.5625. 
 
 Amount at the end of thiij year $578.8125. 
 
 The amount $578. 8 125— $500 ^he original principal = $78.. 
 8125 the compound interest on $500 for 3 years at 5 per cent. 
 
 E.XERCISES. 
 
 Find the compound interest and the amount of 
 
 1. $740,60 for 3 years at 5 per cent. 
 
 2. $1240 for 2 years at ^ per cent 
 
 3. $690.40 for 2 years at ^ per cent. 
 
 4. $684 for 3 years at 6 per cent. 
 
 5. $920 for 2 years at 4 percent. 
 
 6. $2960 for 2 years at 6J per cent. 
 
 7. %9.?.1 for fi year? at 7 ppr cpnt. 
 
 8. $1000 for 5 years at 6J per cent, 
 
 9. $600 for 2 years at 5 |)or cent, 
 
/ 
 
 94 
 
 DISCOUNT. 
 
 ;° So fcl >'"'■*«' 6 per cent. 
 
 fixAAfPjE _.4, ^''^"'"^ '^^'■"^- ^'-"'^tracted from 
 
 «780-^13.65j'i'7C6^ 6 clays at 5 per Snt is s,' T-'^ "" 
 •P'uoji the present worlh. ^l3.6o and 
 
 Pi„^ .1 Exercise 1. 
 
 J A lot'"'"''"' ^"'•l'^ of 
 
 2- A not: orSo £ ? r;!" S^"^-' ^^ ^^ P- oe„t " 
 3. A note of $024.40 d.t 4 '" u^"'"^*' ^t 8 W Tn,' 
 
 '^' °^^^^y ^«e y2 days hence .f q' ^' ^'''' "^"^^ 
 J "cjx{..e at y per cent 
 
 5. 
 6 
 
 7. 
 
DISCOUNT. 
 
 95 
 
 JnlJ/at"6pV;'c!!r '""" J"- 10 at 6. nonlhs, discounted 
 Jnne2Vi";iS^' '""" April 6 at 4 months, discounted 
 
 'P«>--tora -teof Ji-^A jote^of ,,.^^0 ,^^^^^^ p,,,,,,^ , at 9 months, dis- 
 
 coiL^j'iLirfprcer^'^ "^^^ 7 at 10 months, dis- 
 cent'pP^annJm?' ''''"""* °" ^^'^'-^^ ^°^ ^^ ^^^i^^ ^^ '0 per 
 cent'peTannifmt''^°°""^ °" ^'^'-^^ ''- ^ months at 8 per 
 per anJI^m ? ^' ^^' ''''""""^ °" ^^^^ ''°' ^^^ ^^^^ ^^ ^ ?«'' ^^"t 
 
 •"nl has been doducN 
 
 f ays ;,re added to 
 on the 7lh of j,„v 
 M. 
 
 a note has to run 
 '" I'le sum for thi^- 
 iterest as discount' 
 '•willbethepn.em 
 
 fa note of $460 due 
 
 ays is found by ttio 
 n subtracted from 
 
 of a note of $78o 
 "■'- •> per cent'' 
 3m JVfay 9, we finrj 
 'A he time from 
 J.he interest on 
 nt is $13.65 and 
 
 opr cent, 
 per cent. 
 ^ per cent, 
 •ercerit. 
 3 percent 
 t!r cent, 
 cent 
 
 iofhif ,^f- h • ™''' ^'Tf" ^''°^^ '■«'' "^"^ calculation of discount 
 nn rfi IrSl'^'l " ^T'""^^^ ""^'^ '" ^^tual practice, yet it does 
 not give the true discount, for the true discount is the intprost 
 on the present worth for the time it has to run at the Kiven 
 ra e per cent. It s therefore evident that the discount foundZ 
 too small '^''^'' ^'^^ ^""^ consequently the present worth 
 To tind the true present worth of a note. 
 nule.~As $100 together with the interest on flOOatthe 
 given rate and for the given time is to the amount of the note 
 so is $100 to the true present worth. The discount is found by 
 subtracting the present worth from the amount of the note 
 
 daysS arvfpt'cenU '''' ^"""' '"''''' '' ^''' ''"^ '' 
 As $100 4- $1.44 = $101.44 : $540 : : $100 : $532 - 3343 An'* 
 
 7Ul7vVIf 7?'' ^°^'^^."' I'u^" ^"'^ ^^-^^ ^^'^ '"forest on $100 for 
 73 days at 7i per cent. Then proceeding as in simple nronor- 
 tion we obtain $532-3343 the true present worth ad tJie 
 
 l^roni this It IS evident that the process is correct for the 
 present worth with the interest added, for the given t? rt he 
 given rate amounts to the exact sum of the St ^ ' i^o bv 
 
 t';i^dist^u;!r^""^ ^^^^^ '^ ''■'' - »' -"^^ -- ^^^ 
 
 Exercise 2. 
 Find the true present worth of 
 
 1. A note of $945 due 3 months hence at 6 per cent 
 
 2. A bill of $1000 due 4 months hence at 9 per cent 
 
m 
 
 ■ t 
 
 06 
 
 3. 
 
 4. 
 5. 
 
 * DISCO UNl'. 
 
 EOUAT/ON OF PAYMFNTS 
 
 payments. '"°'« '« detunn.nerj is called B;;uaUon t 
 
 Of months „. ,„,::„, ,,: raVwhTcMftr"' "^ "^ "™'" 
 
 "e paynienl of the whole. - ° ""= "'''""»<' "mo to 
 
 Example -Ifn nn„n„ 
 
 3 monUi<; <K/.nn ■ P^'^^on owes a riobt of <ii!i9nn 
 
 -A-;''/.jn-rpa-eSiE=^^^ 
 
 too J ^ = '«oo 
 
 tnn ^ '' = 2000 
 JOO X 7 = 1400 
 
 The d- ~ ?^ 
 
 1 jf Exercises. 
 
 ihLlH^ '^ ^''^ equated time fn i! Payment of the whole^ 
 Sf !»' «f fix months. $370 Ll'^er ' -F'/'"'"* ^''^^^^ rf'- '" 
 ^{16 cad 01 Hi months ? ' "" ^"" "^ ^ '"-^"Ihs and |600 at 
 
CO at 9 per cent 
 "t «'J por cent, 
 icn at 7 per cent. 
 
 SNTS. 
 
 money which is to be 
 h'ch ihe tin^^^o for (JJ 
 
 s called IStiuation of I 
 
 3stions in equation of 
 e IS that which is 
 
 ^ment by the number 
 
 Jcomes due; 2 divide 
 
 ^y the sum of the 
 
 the equated time for 
 
 ipO payable $600 in 
 under in 7 months 
 I the whole ? 
 
 BARtfitt 
 
 9? 
 
 ducts by $1200 the 
 ent 4 i months the 
 
 tiy adding together 
 ile at any rate per 
 "Id to correspond 
 iiounls due for the 
 
 '1 2 months, $300 
 equated time for 
 
 $500 in 3 months 
 e remainder in 8 
 3nt of the whole ■■' 
 at of $490 due «i 
 Uhsand $600 at 
 
 in I! mdnths ? 'no"iiis, U.,0 in 9 months, and $6200 
 
 i4ahictn'n::;;,thrar,d'S f!^^'''! ^^ p--»^- ^-^o 
 
 equated fime for the payn.ent'of the whole y'""""'' ^'^' '^ '"« 
 
 l".yablo'$82"in '7° mTJhs" $40^1^8' mr.^"^"' f '^--^^ -»«« 
 months ? ' ^^^^ '" ^ months, and $450 in 10 
 
 BARTEH. 
 
 .sSd''';,™b;b:',l;''''"«° "feood, by i,v„ parties at price, 
 
 oik» goods «,„! ,fr , ' '>■ "«' iM^i'y orihs 
 
 g and $27.00 -^ 42 = $0.61,28 A„s 
 
 ought'rto^L^v?fb?oTo^bTr^^« "'^ ''^ ^' 60 °«"ts per lb. 
 and $24.00 - 60 = 40 lbs Xns. 
 ExEiteisKs. 
 
 ^«;-yards^?ctt:ltttle?tl^n ^"'''^ - -changed for 
 , 2. IIow many pounds of cofU at S" T^ ^'^ ^^"^ '^ 
 to receive in e/diange for 2^0 J.^J/f «<^"/^^'^''- Pound, ought I 
 3. A grocer has 72 Um nf .0, , ^"^ ^^ ^ents per lb ? 
 
 *«S«K«5«** 
 
ni 
 
 9g 
 
 VRont AND LOSS. 
 
 gallon ? ^ tiogsliearj of molasses at 31 conts per 
 
 6. A grocer owes $248 of which hn nnvc coin 
 
 8. How many bushels of wheat at « I 91 r,„„ i u , 
 
 KL%'" ^^^^'^"^« '- ^3i;sL^;;fyLPtT^rJ6^'Strp;? 
 
 vafued arSTy' o'tTSe^Zncr'"! ^^ ^'^ ^'^^'^ '^^ ' ^orso 
 many shee,, should he receive ? ^ ^'^ ""^ ^^•''" ""'^ ^°^^' 
 
 II 
 
 1,1 ! 4' 
 
 PROFIT AND LOSS. 
 
 tJS^a-ll^^-i?e^-^^--ity of goode whe„ 
 y?We.-Multiply the difference between the hnvi,,. , 
 
 and IJ cents x !« = 36.^the^v^lo"s.'"'' ^^"^ ^"^'''''- 
 Exercise I. 
 
PilOFIT ANI> LOSS 
 
 PilOFIT AND LOSS. gg 
 
 it at if 2o",'oHS''tl,^'.' '"' °"""^i"'"fe' ^J« '»^«. f-'- $105 and soli 
 
 ^. 1 Jjoughl )0,) l|,s. (,l cliopso ;it l(i cents ue' 11. and sold it -.f 
 ' ' '■?" s I'f'r II... what di.l I lose on thn wl n^« • '"^ '°"' '^ ^^ 
 
 .,,, , - ■,, — ■"■^^- '" > '"i-^u ill ID cents lie' II. 
 llj oeri s per II... what di.l I lose on the whole '^ 
 
 0^1/ 1 buy 2i;} y,ls or cloth at $:iAO j.er vrd and sell 
 b3 8o per yard, what is my gain o.i the wholo ? 
 
 it ut 
 
 selling'price";,|'gi;j; ■ '"" ^''^ ^""' ^^''^^■' ^"« P^-e cost and 
 
 ' nnf":^^' ^'" ^'''"" '°'' '' '.' '^'' ^''°'« fe''^'" O-- loss, SO is 
 
 ^lOU to the gain or loss per cent 
 
 A, «I72,S : SJ90 .• : ,|00 : lo <„ „,„ g„i„ p„ ,3„, 
 As j;792 .• »I50 : .- sioo : ,8 jj ,he loss per cent. 
 
 HXKKGISE 2. 
 
 y..f-i,';i,at'ts1h''„7^';i?e,l?/'' ■ '''" '"^ '°'^ «' *"^ P«^ 
 .b.^:''aus le'lt^r' c™ ""'=' '^^ "• '^ '""" "■»'■ '' -°'» >»- 
 
 .y ■^.ir.X'cS.JrtiloVfrc.Sr''' " '»^ *'»»» «■'- w- 
 
 flW.-As SIOO is to $100 will, the gain per com, „r dimi- 
 iirioc ' '"'' '""' """" "° " ""' '"■-" ""^ '° ">" »=I"»S 
 
100 
 
 PROFIT AND T.088. 
 
 As $100 .•$114 : .<n ,. .^ "., „ 
 
 AS ii.lOO:$y.{j: 6560: $520.80 Ans. 
 
 rnr I. ' ;;'7 -■;;™i.y or n„,„. r,.r r.m .ha. must , .„„ „ 
 
 "a i/nf 4 p™'!,'; "will;??,! >i,°',::s^"f *■]? """ -'" "«>™ 
 
 '• "Dui/ It 200 hiitil oic r.r I "^'^''ne for them ? 
 t"o wl.o„fa, ats"o'/f .0° ,: \-;,?/^f ;,.^^ P- i^usiu-, anJ sold 
 
 «. Bought a qnaiitity if firewood fnr ^1 '"•'™'.''^ ^'"' '^ ''' 
 Kim 9 per cent, what must 1 sell it Sf '" ""'"''' ' ^■'^'' '° 
 
 Boinng^^il'^aJelir."'^" "^^ ^^- o^oss per cent and the 
 
 /?«/e.-As $100 with the (?ain per cenf nn r • • u 
 ^0^8 per cent is to $100 so is Z Ji '^""'"'shed by the 
 
 E.A„P,H 7._Sold a aualti ! r ' ^'^'^^ ^° "'« "rst cost. 
 "T «';.^i ^"^ the m'stS "^ °' ^^^^ ^^'^ ^'75 gaining 8 per 
 
 A« $108 : $,00:: $175: $162,031? l,,e first cost 
 Example 8 —If i «pii .q „u J^ °^'- 
 
 'T^ ."o';.«^"-'^' '^«t OS y^"^ '"' ^'' *^-«^y losing 4 per 
 
 Ab $Q6 : $100:: $70 :$72.91| the first cost. 
 
 1 rri Exercise 4. 
 
 , 2. Sold a quanti V of flour for sU^n -'"'^ "''^^ ''•"'' g'^Hon ? 
 <m.saetion wh,,t whs tile dm co;t v '^"'"'"°" '"l"''" '^^"'«n the 
 
 oeni. w^lt^'li;:S ^^^^' ^^ ^' ^^« ^'-hy losing 5 per 
 What wa« tirfirsi\ostV'"' °" ^ ^^^''^^ ^vhich I .„id for $190. 
 
barrel at wfmt rain 
 
 • PABTNEnaillP. 
 
 101 
 
 :.. What was lIiM (irst cost of .30 cwt. of sugar sold for $350 
 till' gam on tlio wlmlc l.oiiig 13 por oi>nf' 
 
 (! Sold 3',0 l))s. of butUT for «G,J losing at the rate of 8 per 
 cnni what was the tlrst 0081? « lui^ ui o |.ei 
 
 7. If 1 gain 15 jmr cent on a farm which I sold for $3120 
 wlidt was the first cost? •p^'nu 
 
 .S. Sold l'20 yds. Of cloth for $311 gaining 7 p.r cent on the 
 IniiiSiiction, what was the first cost i* 
 
 percent and the 
 
 PARTNERSHIP. 
 
 Partnership or Fellowship is the method hy which the profits 
 or losses ol a firm or ccmpuny are divided among the rospecUve 
 
 Partnership consists of two kinds, Simple and Compound. 
 SIMPLE PARTNERSHIP. 
 
 In Simple partnership, the stocks or sums contributed by the 
 several partners, all continue in trade for the s.ime time. 
 
 /?u/e.— As the whole Slock is to each partners share of the 
 stock, so is the whole gain or loss to each partner's share of the 
 gain or loss. 
 
 Inthe same way the effects of a bankrupt may be divided 
 among h.s creditors: As the sum of all tf/claims is to each 
 
 sTare o^dSn-r '' "" "^'"' °'''' ''''''' '' ""''' '''^'''''' 
 
 ExAMPLK I.— Throe persons enter into partnership, A. nuts 
 into the busm.^ss $750, B. $840, and G.$9S0; they gain $800. 
 what IS each partner's share? j b-'" *o"v^, 
 
 The whfile stock being $2570, therefore 
 As $'2570 : $750 : : $800 : $W3.46.7^ A's profit 
 
 ' '"" : $'261. 'l7^i^|B-s profit. 
 
 • ^O^^f?j/"s profit. 
 $800.00 ^VVhole profit. 
 
 Tlie correctness of the operation is evident for thn gain of 
 each partner added together is found to be exactly ,$800 the 
 whole gain. 
 
 «!7rn,"o'^ '^■r"'^?!;"'^"-''' ^'^'''"^ '" business owes; $500 to >\, 
 $760 10 B, and $1520 to C, iho value of his effects is $1250 
 what should each creditor receive '' * -^ ", 
 
 As $2570 : $S40 : : $800 , 
 As $2570 : $980 : : .$800 
 
r 
 
 102 
 
 nAUTNEILSinp. 
 
 '''Oir profits a,.Ku,m to §,S25vvlm^i " '"" "'"^' "'" '' >""'• 
 
 »r Wheat al m.li ,,er b, h" "„„*,V' "in I,'""'?'' " «' """'I' ' 
 PW barrel ; wl,„t sl,a,e slio, i,??.„.r, '"'':'"'' ""'""'U is.so 
 
 S1600 ,„ A. S^IS^^'J-J 'I ' « » «;!."« e.lV.c., i, ,6800, „w,., 
 shouhl fad, n.ccivc ? ' '^ "" '° '"'""' S'TOO to t). wlml sbaro 
 
 SSE?'r°'^''^«S'.V-B'a°!,';r'',:,' ??""■ "'■ »""■" 
 £,JVa,r:f;iJ^o,it;:[-;;i5r«c..o,,it,,,. „r „ ba„. 
 
 ^ i;.sl,;r?U;;'^'; trir-r"?^'" •» A. S4T00 
 
Si A 'a sfiaro. 
 3^, '*'s simio. 
 
 Total eiTi-cts. 
 
 '.puts in ;!!l2H0uii,j 
 
 giiiii ()r.«<)r»'2 ? 
 
 '• A puis iiiio tliM 
 III'' end of a jciic 
 |i'.rtricr's sharo }' 
 "cnpitnl of If: 1 2000 
 y, C $.'i'250, and D 
 this siKJuld cai'li 
 
 ue of the cargo is 
 I'lt) Ijalarice to (; , 
 t'K' loss does caih 
 
 >iitrijjul"s towards 
 re), B 960 bushels 
 >lso( Hour at 45.80 
 1 again of $2000 > 
 00 towards whielj 
 sliare of the gain 
 'i the liouse I'ti- 
 
 for fg.lOO, what 
 A's share being 
 
 is $G80n, owes 
 to D, what share 
 
 SOOO, of which 
 laneo to C, the 
 isiirance ; what 
 
 '"'S of a bank- 
 aim of the Mist 
 "I of the third 
 
 to A, S',700 
 f Ills oU'ecty is 
 
 pital of J7oOO 
 bnlanci\ wh.-ii 
 
 PARTNKKHIHp. jq.j 
 
 guS^ng V;S? ^''"'" "'^" ''^^«'- «' ^'- °"'i '■'•« year tho 
 
 COMPOUND PARTNKRSrilP 
 
 .{i^^rls^a.-S^;.=^ 
 
 /?We.-MMlli,,iy the stock of e„oh partner by the time l,e 
 c ntmuos u. business Thon as the su.n of the product h! 
 
 C^$I300 for 10 months, what is the shore of each iH gain ol 
 
 SI240+ 9 = $11100. 
 $ 980 + 7 = $ 68C0. 
 $1300+ 10 = $13000. 
 
 As$3IO'?0:$|||f.O 
 As $31020:$ 6800 
 As $31020 .$13000 
 
 $31020. 
 
 f 920 : $330.98G/i A's share 
 $020 : $203.4558 B's share 
 $920 ■ $385.5577 C's share." 
 
 $920.00 whole gain. 
 
 ExuncisES. 
 
 the share of each in a gain of SfJ-iOO v ' ^' ''** '^ 
 
 whatSeTsSid'o^lSvif 'f V!;f-^"'"''^ ^''.^^^ '" ^™^«' 
 'or 9 months andB "/foo for ! I monlh;?''^ contributed .4000 
 
 >>fmmfm^'im 
 
 fl^SS'M- 
 
104 
 
 i :.f 
 
 INVOLUTIOxN. 
 
 each in a gain o/lsoS ^'^ ^ ™'"''^'' ^^"^ '« ^'^« '^^''^ of 
 
 $3800 into Iho b„4l> s li' " T"T^T '^'^'^ ^ ^''« '^'•'^"ghl 
 
 they find Ihat h y taVe ^'e'' "^^^^^^^ 
 
 should each recciveV ^ ^ '^^' ^'^^^ ^^'^^^ ^^ "»is 
 
 I! 
 
 It 
 
 INVOLUTION. 
 
 of 4, 4c. ' "' ^ ' "* ^ ^ X 4 X 4 or 256 IS the fourth power 
 
 l3eLteVr5"°5t'?2^^"^^ ^ ^ 4 = 16 ; 5 is a rod of 125 
 
 secI'rpo^ero?r,uare'o; tht7"' 'I '''''i '' '« '^'^"^^ ''- 
 timesaslactoritisSedthefhir. ''"^''■'' "^^"^ *^'^^n three 
 four times as factor'^ is el Pd thi ^e'^fr' ''"'^^ ' ^^en taken 
 5a.es as factor iri^ValS'^tl^r^^^^^^ "'^^^ '^^- 
 
 afS:nS^itra^i;r;;:",i,f,i,^e7- V ^^*'' «»-- -i-^en 
 
 on^ the root ha^fi^S l^iSr S^Io-^Stn^ 
 
 3^ -'rx'a^x F= tr th?ch"irrh"'\i:°^i"' ^''^ '^-^ ■« --t*- 
 
 written 3^ • 3 x 3 x 3 v i -s, ^"^'^^ J'^''"^^ PO^^r of 3 and is 
 is written 3^ "^ "" ^ "^ ^ "^ -- «' 's the fourth power of 3 and 
 
 Jh^e method of finding the power of a numhcr is called Invo- 
 To find any required power of a given uun.her. 
 iui,c.~tmd the continual uroducl of iim «■;„„ 
 
•1 of §3000, lowiids 
 
 Tor 16 months, aii'ic 
 
 oC the proiiits should 
 
 A contributes $ I Sou 
 $2600 for i I months, 
 lid each srslain ? 
 a capital of $2700 
 inths, B $700 for I [' 
 what is the shar.) of 
 
 tal of $4500, Ihreo 
 vith B who broiighl 
 ommenced business 
 vhat share of this 
 
 taiued by the con- 
 
 4 X4 x4or64is 
 s the fourth power 
 
 I>eing continually 
 
 ^ is arool of 125 
 
 or it is called the 
 ^'hen taken three 
 ube; when taken 
 ver; when taken 
 c. 
 
 II figure written 
 i it indicates how 
 oduce the given 
 
 'f 3 and is written 
 wer of 3 and is 
 power of 3 and 
 
 'v is called Invo- 
 cr. 
 
 given number, 
 '>y the index. 
 
 EVOLUTION. 
 
 les 
 
 When the given number is a vulgar fraction find the required 
 
 power of the numerator and of the denominator. '"'''^'^""^^'^ 
 
 When the given number is a mixed number reduce it to an 
 
 szl:tzss:"' '"" "'"'"^ ""»'" °' '"« »""■-'- 
 
 Example i. Wliat is the fourth power of fi ? 
 6x6= ,36 the second power 
 36 X 6= 216 the third power 
 216 X 6= 1296 the lom-th power. 
 Example 2.— What is the third power of 3-». ? 
 ^ = V then 
 
 -10 X -1:^^ = A on the ?econd power 
 and ^^ X -UJ = J^^fl = 37,-S- Ans. 
 ma^"hp;TnH! "P/ration of finding the 4th power of a number 
 iZ^Sth n^^fi "'r'^ ^^' ''".'^'"^ ^''^^ ^'i"^''^ "*' il^ square ; to lind 
 ube tSTmn'h V"™^'^'- ""!' ^^'^ P'-od'-ct of us squa.e and 
 cube '■ n flni f' S ' '"'''''"' "1^ """•'^^'^ "nd the square (.fits 
 it fourth nn^'^^V-P^'^l'"'^^""'"^'^'' '^'^e the product of 
 square ol its fourth power. ^^ r « 
 
 Find the value of 
 
 Exercises. 
 
 The pquare of 21. 
 
 The cube of 15. 
 
 16^ 
 
 183 
 
 The fourth power of 9. 
 
 The fifth power of 4. 
 
 The sixth power of 8. 
 
 8. 17< 
 
 9. us 
 10. 11« 
 
 1. 
 2. 
 3. 
 
 4. 
 5. 
 6. 
 
 7. 
 
 U. The second power of 27. 
 
 12. Tlie .«qiiare of 78. 
 
 13. The third power of 13. 
 
 14. The cube of 19. 
 
 15. The sixth power off. 
 
 16. The fourth power of 24-, 
 
 17. (3f)3 ^ 
 •18. (|1)5 
 
 19. The cube of 239. 
 
 20. The fourth power of ?. 
 
 EVOLUTION. 
 
 num'be?or" '' '^' ™''^°^ "'" "'''"^''"^ «">• '''' °'' « g'^en 
 
 mu1f?nHld°hv'ifilr™''^"^ °'' ""^^l"^ ^ """^''^<- ^^hich being 
 rivin^nuLi'''''^ " ^'^''" ""'"^^■'" °f ^""«^' ^i" Induce I 
 
 n J*^ 'I'^^'^u^^'^ ''°"^ '^ ^ ^'i" "f^ure wrillen a'ove the sian a/ 
 prejixed to Ih. number of which the root is re<,uired ^ ^' 
 
;,l'- I; 
 
 106 
 
 fivoLtriroN. 
 
 wii 
 
 EXTRACTION OP THE SQUARE aoOT. 
 
 To extract 'he sernnH «.. 
 
 ^"^e-,. Poi„t oft '"'" "''^ °'^ ^'^^" --h- 
 %-s eaC. cirene;:/rtrit ;"^ ^^^^^^« °^ ^- 
 highest square contained in the flJ ^"'''- ^^ ^'"'^ '''« 
 '« the quotient. 3. Subtra t the ! '"""'' ""' '^^^^^ '^« '•°o' 
 
 q"otientfro.nthefirstpe oVt theT" '/ ''' "^"''^ '" "- 
 Penod, and double the pa t of h T'?'"" '""^^ "'« "«^t 
 Of the next divisor 4 P^d hn ''°°' '''"'^''^y ^«""d for part 
 fisor is contained in th" divl7"' """ ^^'« P-' of'ti. 
 t^us Obtained to the part orttfo°?''"°^ ''' ^''' «^"- 
 the part of the diviL alreadv t h ^'^^ ""^ '"^ "'^° ^° 
 d-isor by the ,ast «,..« XJI il tht ' -^'^^ ™"'"P^>^ ^'- 
 P'-o^uct, and subtract it S the . T°'r '' ^^' '^^^^ the 
 "«>^t period to the ren^aiuderfo a n^'i'"' ' '"' ^""^^ "^^ 
 ^-^^ P--t of tl,e root found fo ' rt T.^"'^"'' '■ ^^^'^ 
 P'-oceed as before until a! , ^''^ "'^^ ^'^'^O'' and 
 
 ^-n. inhereisarl il;';^'::':^^ '"" '"'^ ^^"^"^ 
 figure of the decimal. "" ^^° "^'Phers to find each 
 
 Wact the square root ofavui,ar fraction. 
 
 n-e;ator;::;';LlX;:l-;;;e numerator for a new 
 ^'enominator if both be coL 1 '^•^"«""nator for a new 
 
 f-ction to a decimal a .d 7' Td Tl' '"' ''""' '"'^^^ ^^e 
 <"■ Whole numbers. ^ '^ "' '" ^''^ extraction of roots 
 
 To^/^nd the square root ofami.ved number. 
 who;;;ur:^;::::nX-- ^ecima., annex u to the 
 
re root of 16, that is a 
 vill produce 16; 3/,^ 
 
 at is a number whos ■ 
 
 H^rootofig, ihatisa 
 
 RE ROOT. 
 
 given number, 
 nto periods of two 
 gure. 2. Find the 
 "i and place its root 
 'f the figure in the 
 ler annex the next 
 eady found for part 
 36 this part of the 
 ig the Jast figure 
 ^otient and also to 
 Then multiply the 
 ient, set down the 
 ^ ." and annex the 
 ^•-^nd. 6. Double 
 next divisor and 
 ve been brought 
 Jhers to find each 
 
 )n, 
 
 rator for a new 
 linator for a new 
 'f not reduce the 
 Paction of roots 
 
 annex it to the 
 
 iVoLul'iof^. 
 Example I. "What is the square root of 54756 ? 
 
 lot 
 
 547561234 Ans. 
 4 
 
 43 
 
 4641 
 
 147 
 1^9 
 
 1856" 
 1856 
 
 Hero by placing a point over the 
 second llgure from liie right, and 
 over each altprnnto figure towards 
 tii9 lell wfc divide Uie given nimibei- 
 into three periods. The highest 
 square in the tirst peri( d is 4, the 
 square root of which 2 we place in 
 the quotient, then subtractinL-- 4 from 5 and to I the remainder 
 annex 47 the next period w'liicli makes the new dividend 147. 
 To find the second figure of the roi t we double the first and set 
 it down to the left of the new dividend, and finding that 4 is 
 contained 3 times in 14 we set down 3 in the quotient and 
 annex 3 to the part of the divisor already found which gives 
 the complete divisor 43; this being rnnltipliod aiid 129 the 
 product subtracted from 147 we have a remainder 18 which 
 with the next period annexed is 185G the iie.^t dividend. Then 
 we double 23 the part of tho root found and obtain 46 part of 
 the next divisor; finding that this is contained 4 times in 185 
 yve place 4 in the quotient and annex 4 to the part of the 
 divisor found, this gives the conqilete divisor 464 which is 
 contained exactly 4 times in the dividend. 
 
 The correctness of the operation is proved by multiplying 234 
 the square root by itself, the product being exactly 54756 the 
 given number. 
 
 Example 2. What is the square root of 6/g ? 
 6-,^ = 6.4375 
 
 6.437512.537 Ac. 
 
 Here we reduced -^g to a decimal 
 and annex it to the whole number 6. 
 Then finding that the highest square 
 contained in 6 is 4 we place 2 its square 
 root in the quotient and set down the 
 decimal point after it. Then bringing 
 down the next jierind we continue I he 
 process as in the first example, and 
 finding that after all the periods are 
 brought down there is a remainder 
 of 366 we anne^ two ciphers, and thus by annexing twocipiiers 
 to each successive remainder the operation may be cuntinued 
 until the required liumber of decimal places is obtained. 
 
 36600 
 35/j69 
 
 "TT31 
 
 ''^'^mmmm, 
 
los 
 
 I'inrl the s.juare root of 
 
 liVoLt'TloN. 
 
 EXEIICISE I. 
 
 I 
 
 2. 
 
 a. 
 
 4. 
 
 5. 
 
 6. 
 
 7. 
 
 8. 
 
 9. 
 10. 
 II. 
 12. 
 
 1 1 5(3. 
 
 G6G. 
 
 1 132-2. 
 30 ■57296 1 
 432. 
 
 Gf 
 
 39-25. 
 
 I72fi. 
 
 123456789. 
 •289. 
 
 3|-'8r"^^^' 
 
 30-25. 
 
 562. 
 
 78-5. 
 
 145491844 
 784. 
 
 3675068. 
 
 2490084. 
 
 8206 36. 
 
 T„„„ ?"'""'"" """« CUBE ROOT 
 
 fo Bxtract the crihe root „r 1 , , "^ """* ""mbers. 
 
 "" " "■« cul'e root of 78402752 ? 
 
SVOLtTTION 
 
 109 
 
 J X 4 = 16 X 300 = 4800 
 4X2= 8x 30= 240 
 
 Complete divisor~5044 
 
 422 = 1764x300 = 529200 
 f2 X 8 = 336 X 30 ^ Wm 
 
 ^ C4 
 
 78402752 | 428 Ans. 
 04 
 
 il402~drvid€ttd. 
 
 10088 
 4314752 dividend. 
 
 Complete divisor 539344 43l4'^5t 
 
 ■e remainder we haveT4402 for .3'^-^^'"* ^'""'^ "^ 
 divisor multipl, 16 which is the siTon^'h'"'^' . l^ «°^ *» 
 already found, by 300, this gives Sothin Pf''""^*'^«''o«t 
 divisor; although this is annfrpntivl'/^^ f'"^' P^*"* «f t'ja 
 dividend, yet on (rial it wilf K.L ?^'''"''* ^ ^''"^sjn ih. 
 lake 2 and annex it to the nart nf (h^l ?" F^""^' ^^ therefore 
 ad^ng together 4800 the part of thpS ^'^^^y^^^nd; the. 
 which is the product oT i^%%rsM^^^^^ ^'^""^^ = 240 
 
 inst figure in the nuotient and ^0 ?n^ f/ *''^ quotient, 2, the 
 or the last figure p a°"d ?n thp m,.;- ^T^^^"" ^'''^ ^' the square 
 
 divisor 5044^histultfpl^efb7rgKl0"08S'S;" S!^^ 1°™pS 
 from the dividend leaves 4314, wh ch witI??^I^ "*"' '"^'"^cted 
 
 nexed becomes 43I4752,-a new dividend Th«n f^« Pf"^"" *"' 
 
 divisor we add together 'i9q9nn A!! " ^"*^" *« ^"'1 the li'ext 
 
 300 ; 10088. the pCS of 421^^8 TuUinuL'^K T'"P''«d bj 
 
 .6 square of 8, the last figure nlacedrte '^ ^-^ ^^^ •" *nd 6*; 
 
 Exercise 2. 
 
 Find the cube root of 
 
 1. 39304. 
 
 2. 14886936 
 
 3. 175616. 
 ■'i. 80621568. 
 5. 14455457856. 
 
 9. 5735-339 
 
 6 
 
 1879080904. 
 
 1234)67 
 
 636056. 
 
 ni 
 
 11. 1777q.Voi 
 
 2. 48-627125. 
 
 3. 12895-213625. 
 
 14. 1092'727 
 
 15. 40001 T%ff_ 
 
 16. 54872. "^ 
 
Iljl' 
 
 r II 
 
 (* 
 
 
 
 EtOLUl^ro*. 
 
 EXTRACTION OF ROOTS IN GENERAL, 
 Kule, Willi exampte. , 
 Example 1. Pfnd the cuU rool of 78402752. 
 
 4800 
 244 
 
 S044 
 248 
 
 529200 
 10144 
 
 539344 
 
 78402752 ) 428 Ana 
 
 H402 
 10088 
 
 4314752 
 4314752 
 
 4 
 
 41 
 
 8 
 4 
 
 120 
 2 
 
 122 
 2 
 
 124 
 
 ,:„■,.,:, 2 
 
 1260' 
 8 
 
 126S 
 
 we place 4 the root of 64 the hSst ilZ '" ^\^ ^''^ ««'"'"" 
 first period, in the second 16 the nrnHn.. r''?"**'"^'^ *" ^''^ 
 Uself, and in the third under tl^fJnpr/^,^ multiplied by 
 which subtracted from the firsfDerfori^P- "''^ ^^ ^^^ """^^ o'' ^ 
 which the nejit period is annexed ihiit*''^' ? remainder 14 to 
 14402 Then 4 the part of the root atSi""?^ '^'^''^^"d 
 
 the lirst column making it 8 th.s Lu tS 1°""^ > ^^^^^ to 
 IS added to the second Llumn maSni^ K ^/ i '' ^^ ^^^'^J^ 
 added to the first column TaS"f 19 '"'^•^r'*'"'' ^ '^ 
 annexed to the lirst column maS 120 Z f"'''''''' [' ^''^''' 
 the second making H 4800 this is annni m ^ ^^'^ ^'P^^rs to 
 in the dividend, but on t, ikl 3 is foS?o"hI,^"",!'^ ^ ^'""^« 
 fore setdown 2 in the ouotiLt and IrfH o ♦ ?? ^'^^' *« t'^ere- 
 which makes it 122. tl^fs muU p ied by'2 s 2°44"whf h' S"!^'" 
 the second column makes it ^OU ihL ■ ,!■• ^"'^^ «c!ded to 
 10088 the product set down in the^h^rdlr'^'"'^^^^ ^^ 2 and 
 from the dividend leaving a remalider 43?1 ^ V '^^^'^^'"^i 
 next nerind jc! pr-ro-c'] -• •!,.■*"*' ^ to which 7^') *h^ 
 
 .he quotient to the «,n c„i"ft1,fo„"LS S^l'Xly 
 
EVOLUTION. 
 
 Ill 
 
 GENERA^. 
 
 '2752 ) 428 An», 
 
 2 
 8 
 
 1752 
 i752 
 
 I liJ 
 
 •tfs of three figure!? 
 in the first column 
 contained in the 
 
 4 multiplied bv 
 54 the cube of 4 
 a remainder 14 to 
 ^ea the dividend 
 '«nd is added to 
 y 4 is 32 which 
 nd anoiher 4 is 
 B Cipher is then 
 ' two ciphers to 
 ontained 3 tiniog 
 'ohigh wethere- 
 ■he first column 
 . which added to 
 |j]ied by 2 end 
 1 and subtracted 
 
 which 7.=19 if,^ 
 14752. foiind 
 igiire placed iir 
 t 124, multiply 
 
 ii\eti?S2*^^d'fdd'2^rttii;.v'^^~^ -'"- -'^-'' 
 
 I2C, one cipher is l£ ad led fnt?/«fl'?'T" ^'"^^^ ""^^^^ " 
 
 and two c phers to tSe'l ond maETt'SoT'lll^'l'?'^ 
 contained 8 times in thn Hivm„„^ ^. . ^*^200, this bo nff 
 
 tient add 8 to tlVl^lXmTtmlw tff.H '" "^V^"'^ 
 and add 0144 the nrodnnt « .'h '^ ?^ ' .^^ ^^® S"™ by 8, 
 it 539344 ; this is then mnlf ni ^\'^°o°"^ ^'''""'" which makes 
 s.t down below ?hed,virnd'^''t.S ^^'^^^^ theprodSc? 
 
 We thus find the whole root to b?428 '' '' '"'''"^ ^''"**'"«'*- 
 Example 2. Find the fifth root of 847288609443. 
 
 2 4 8 ifi 847288609443 (243 Ans, 
 
 2 » on iV oi 
 
 6 
 2 
 
 8 
 2 
 
 100 
 4 
 
 loT 
 
 4 
 
 ioT 
 
 4 
 4 
 
 He" 
 
 4 
 
 mo 
 
 3 
 
 1203. 
 
 4 
 8 
 
 12 
 12 
 
 24 
 16 
 
 4000 
 416 
 
 8 
 24 
 
 32 
 
 48 
 
 80000 
 17664 
 
 "97664 
 19392 
 
 4416 117056 
 432 21184 
 
 4848 138240000 
 448 1738827 
 
 5296 139978827 
 464 
 
 576000 
 3609 
 
 579609. 
 
 16 
 64 
 
 800000 
 390656 
 
 1190656 
 468224 
 
 16588800000 
 419936481 
 
 17008736481 
 
 5272886. 
 4762624 
 
 51026209443. 
 51026209443 
 
 In this example the fifth root i- 'n-j-,-- i^ 
 
 Pnnciple on which the rule S the ex?r«.^^/"J'i^°*'"" "'"the 
 depends. "«= i u»e jor ijie extracUon of the cube root 
 
112 
 
 KVOLUTION. 
 
 divide ir^!f;:,;'-,^'-nnum^ the fifth column and 
 
 4theproductorthe(irstcomin n^ o*^- '" ^^^ ""-st column 
 product of the second colSmnZH 9 '^ '..'"/'"^ «'^^°"fJ- « tf".: 
 of the third column and 2 rihe ?on,^h ^"^ ^t^' '^' ^''« P'-^'J"^ 
 the /ourlh column and 2 the i^.Jp ' /.""'^ ^^ ^'''^ P^'Ju^t of 
 first period, subtract am) tn..'" '''® quotient under th, 
 wh^ch give; 5.7SKift'il-r'-'er add the next %^\^:^ 
 
 ti^ri^^^^^^^^^ '0 t,at employed in 
 
 Jt^'> column, two to he second Uri f^l"^ .°"^ ^'P''^'' ^^> 
 to the fourth, the number in fhonLf ^"^ *^« ""''d. and f^ur 
 second 4000, in the third VnnS i/ •'"''V""" ^'^^n is '00. in tl" 
 next figure is found to be 4 whinT'' '" ".'^ ^°"''^h 800000 t£ 
 °^f iply 104, the sum by 4 ani ai'dThf ''' '^' "^« "^«^ '^°'"'"n 
 column, multiply 4416 the sSm h! /^ ^^'^l"^' to the second 
 the third column, mul iplv 976^4 L/"^^^^.'^^ P''od"ct to 
 the fourth column, mulLiv 1 1 oL^I 1"",^ add the product to 
 the product below the dSnd«SH ^ ' 'u^ ^°^" ^^62624, 
 the remainder. To find thp thf^H r^ """^^ ''^^ "^xt period to 
 process and find that momu^^^^^^ 
 
 ?9"e^cts --r/?S'in z Sit ;;^ss 
 
 bT^h- e°x'tSS„i^ r ~ ''"' ^° "" ''"" 
 
 the LtraSrth°e^t?S^t'^tw^" "^•^'i.*^^ -'« "-^ ^"^ 
 pends any root may be extracted I^''«°«d.ng examples de- 
 
 the'^^pScrd^Sg^S^T we^^re'xtrt T ™^^ ^'^^^ - 
 
 and the secon'dTooT of^h^e re uft"'theT^'?[ '''' ^'ven nLb 
 
 second root of the. given nimbeV Sf ^'^^"^^''oot by finding the 
 
 and the second root of lEe second rltr'^K^^^' °^ ^^^^ '"^sult, 
 
 ng the fifth root of the given Sum hepi h ^. '"^^ '""'^^ ^y find! 
 
 the result; the twelfth root hv«-?'^ ^"'^ "'^ second root of 
 
 given number, the seconSrooW^tt"^ the third root of the 
 
 root of the second result and fhno ^"^ ''^^"''' »"d the second 
 
 m every case in whfch the index ofS' ^'^ ^'^ '"^y P™«eed 
 
 composite number. ^ ^' '^^ '"°ot to be extracted is a 
 
 1 I?- J X, Exercise 3. 
 «• i'lnd the fnurfh rn-^* -^m 
 
 2 Find fhp fi«T ? . ' '9'V^dy0625. 
 
 3 PvtlM»f"^'"°°^ o*^ 6436343. 
 3. Extract the sixth root of 5289852801024. 
 
B fifth column and 
 •ce 2 wliich is thn 
 1 tho first column, 
 
 llie second, 8 tli,' 
 '"rd, Hi the product 
 
 J'^ tho product or 
 fuotient under ilin 
 Id tJie next period 
 
 that pnii)loyed in 
 hng one cipher to 
 the third, and f(jur 
 then is 100, in tho 
 'urth 800000. The 
 > the first column, 
 uct to the second 
 W the product to 
 t<ld the product to 
 Etdown 4762624, 
 he next period to 
 through a similar 
 m in the fourth 
 ■idend, the whole 
 
 by involving 243, 
 qual to the given 
 
 ■he rule used for 
 >g examples de- 
 may either uso 
 second root of 
 the result ; the 
 ' given number 
 't hy finding the 
 3t of the result, 
 ith root by find- 
 second root of 
 ird root of the 
 ind the second 
 3 may proceed 
 i extracted is a 
 
 4. 
 5. 
 6. 
 
 7. 
 8. 
 
 DUODECIMAL MULTIPLICATION. 113 
 
 Find tho seventh root of 3797498.13583241 
 Hoquirerl tho eighth root of 208«-2 7064576 " 
 KUract the ninth root of 1352G05460594688 
 Jmd the tenth root of II 25899906842024 
 nxtract the eleventh root of 116490258898219. 
 
 DUODECIMAL MULTIPLICATION 
 
 denomination r.r each tlnio thM 2 is cmL neV,'^ «? ''!? H"' 
 
 ^ Example. Multiply 6 feet 3 inches 6 lines by 5 feet 9 inches 
 
 . First placing feet under feet 
 inches under inches and lines 
 under lines, we multiply each 
 term in the multiplicand, com- 
 mencing at 6 lines the lowest bv 
 
 6 ? ^f«' the highest denomination 
 
 36 6 10 111' 6"" Ans '" '"^ multiplier and obtain the 
 — ii^" partial product 31 ft. 5 in 6 1 
 
 and obtain the partial proanoTut.T^r.f'M ^l^^ 
 
 fi"" tL";' aJilln'/,"^ t^'^'".^"^ partial product 1 in.'sT 7"' 
 
 ft. 
 
 6 
 
 5 
 
 sT 
 
 4 
 
 in. 
 
 3 
 
 9 
 
 5 
 
 8 
 4 
 
 1. 
 
 6 
 
 _9 
 
 6 
 
 7 
 8 
 
J)4 
 
 DUODECIMAL MVLTU'LlCATlos. 
 
 [«"4iyMV ":E^4■'»^ 
 8. Mult plv 10 ft 4 in V'. Y ''• ^ '"• 
 «■ Multiply 18 ft" « n' J ■ K^ ^ "• 6 in. 5 I. 
 
 i^y^nn.3m. II J. by28ft.4i„ gj 
 
 '• " J ~° "• « in. y J 
 ^ To fl rf h Rules. 
 
 I Whoi • .V Exercise 2. 
 
 ;." CUVt'a'reVoV/'^""'-^ ^ 9 in? 
 
 3- Find the area nr! f " "^"'*''« ^^^ose side is 7 ft m -^ 
 
 't »?&°SgMVS°??r, "">- '«"«"- 's n ft. e i„. 
 
 in. 
 
\T10S. 
 
 I. 
 
 7]. 
 5 1. 
 4 1. 
 
 in. 9 1. 
 
 vhich tho opposite 
 
 figure whose sidps 
 P'es. Multiply the 
 
 g, thai is a parol- 
 but whose length 
 the breadth, 
 a parallelogram of 
 fies are not right 
 cular breadth 
 a plane figure of 
 licular height and 
 
 v'm six sides of 
 el. Multiply the 
 
 s 5 ft. 9 in ? 
 's7ft. 10 in. 
 ' rt. n in. 
 f which is 7 ft. 
 
 1. in length and 
 
 8 ft. 
 
 J 111. and 
 
 'h is 1 1 ft. 6 in. 
 'S 24 ft. 7 in. 
 
 uiid 
 
 MISCELLANK()i;.S QirKSTIO.V.S. 115 
 
 .11. l!;ol,asiM,ln triaimi,. isJt 
 '■■Bill I II. .1 i., wl.al i5 i„ „„,, , 
 
 < a :, :,:';;:;:;: i:;:r;;T rrwi,;;': " "'■■'^' ' "• « - "■ '«"«"■• 
 
 10 in. and perpendicular 
 8 in. 
 
 if) 
 
 MMd thn area of a .s.|,iare wlios.. side measures 7 ft « ,>■ 
 
 ^^^•1"7 •.''/:.!•■["":''!;■"' --tent .u^'":;^! I'Jl 
 
 17 
 is 21 ft _^ 
 
 IS- What is thearoa'of' "a 
 111 
 
 ID. 
 
 whose length 
 
 II 
 
 3 in. and lici<,'iii 7 It. 4 in. 
 
 n, I ,. ^ rhombus whoso lonffth ia 9i n 
 
 and uorpondicular lieifrht <j 11. 10 ii'/ ^ * 
 
 1 ho b 
 
 "'''^'' 0' *i triangle measures 17 I'r =^ ir. 
 
 """o' ma^K'';'," " |.V'" '"■ ~ "hill.."™ .4' ■ 
 
 and its per- 
 in. long, II 
 
 MISCELLANEOUS QUESTIONS. 
 
 buli,et'raTsaffl,"iK;';;'r'"rV''^' «' ^'-^'^ P- ^^^hel. 48 
 
 .'.t 55 cents nor bu I el ■ ' '"'n'',' '''"'' ^" ^"^'^^'^ of potatc es 
 
 2 A ffrocPr bnm V'. ''''^' o'''""''' '"^ '"'^ceive for the whole' 
 
 a chest Snea Sinin'ri^ iVr:,?'';','^^"^ '' ^' ''^^ '^^'- «"'• 
 he pay for the whole" ° '"' ^^ ^'"^' ^"''^ "^ ' ^^'^at did 
 
 sl.arJsS'.^^i;::,Sv' ""'"' ^™°"^ 17 persons, what 
 ros'ilt''by"8' ^"''' "^ " ^ ' ^" ^°"^- '^"^ """^s and divide the 
 remahSSST?"^' '^ '"'"" '^■"™ ^^^«^-^0 ^o leave a 
 por annnm/' ''^' '"^'"^''"''^^ °" ^''' '^ ^^"^ ^ months at 7 per cent 
 
 <-'. IJiV.'lll' fh;i c !• - . .- .. ■ 
 
 14 cvvt. 
 
 lUll ol 
 
 / cwt 
 
 9. What is the 
 I'Pi- (!ent per aiinn 
 
 ]rs., and II cwt. I rfr. 2i II)s 
 
 5 lbs., 19 cwt. 2 qrs. 13 lb 
 
 s. into 18 eqna! parts. 
 
 ompoiind interest on $5G0 for 24 
 
 m 
 
 years at 6 
 
no 
 
 »HHCKU<ANK..IJ« QIIK8TION8. 
 
 3y 
 
 10. Find tlio valuo oC it nv j con i, 
 
 11. Hoduco 17,' r/i?.°' L ■ "" ""'• '^^■"''■'"I'ois. 
 
 M'Is. Jqls.tog,l]saM,lmuiiij,,yUi.m.ulu, 
 fr 0'. _ I 
 
 
 13. 
 
 14. 
 
 ''""^""^■«"^-^''(?X8,-|-(,^, XVi,-^^, 
 
 Hl'dlK;,. ii .) 
 
 I » 'I 
 
 ." «.u:; *VS'?,';V;«,1' f7;;-;;«i --.^.i, .„„ „,.,.«, „„„,„ 
 
 17- A, and H iwih... '■ i ' ' '"'"' I"''" 'immm? ' 
 
 «f «« for 5 mo th '1 / '' JS -.■'•'^'Vl'' A. pnl. inlo tho husi,.,.. 
 
 I 'J- He( uco •<» .«9 .7;L LvT s'- 
 
 must e sell it p.r'poui,Ks ' s ? ^^^f ".'f ^'o" ".1 ^^ ^'''^' ^'^ 
 on? cwi' :„,, X,,l l';JJl^^, «f Bugar c« „J what „,;„ ; 
 
 he^rece,vo for the wbol" ? " "' ^^ '^'"'^^ P^''' ^^^sfad, what did 
 '^^^S^^^^^^^TIT^^' of the floor or a roon. ., 
 f3?40(> •')■!!, /'hvX '™'"'"*^f'^'^ business with a nni.,! r 
 
 Wou0.whatist/.esh"reof,a,l ^''^ "''^"- '^''""'^ «"'ouni ,o 
 
 69 da,. i^I'Sr'''' •''"'''-- ^^^--.^^ .'ays ^ 
 
 cost at the sa,n;',;!L"i "''"- "''' ^ '■■^^«. what wdl 432 barrels 
 34. Reduce $296,5010 old Canadian currency 
 
0/. Avoir Inpois, 
 Ulllllijijy i|„. ,.(,.,,,11 1^ 
 
 I'lys, workiiiff !) !, 
 
 '"' "■XjK'OlO.I lo .J„i!„ 
 
 "I <i''<:iiiiHl lructioi,>. 
 oUUu^ iiitf'rostwoiiM 
 
 ' 1111111101/ 
 
 ""^''it()tli(.husiri,.*s 
 's. wliat is t|i(. Shan". 
 
 MrSCELtANEOUS QUESTIONS. 
 
 117 
 
 ' «</iiivaient viil' 
 
 71 r 
 
 2 r. 7 per. 
 
 3 whal is the value 
 
 'ntspnrlb.,2Slbs 
 '■r lo., at wiiat nuo 
 "11 tlio wfinio !» 
 ell it at $19.50 p.r 
 
 -t $42 what will 5 
 
 tsporlb,, mustbQ 
 Its ])('r U) V 
 'olfl I at 65 cents 
 biisJic'l, what (lid 
 
 loor or a room 21 
 
 'til a oapK.ii ,,|' 
 
 B S8500, and (J 
 
 rofits amount lo 
 
 3i seconds and 
 
 liis. 
 
 will 432 barrels 
 
 :y- 
 
 ;I5. ir32 horsps oat 70 biishHs of oats in 7 .iav« how tiiHnv 
 
 h.-hHs w,l 2S horsos ...t in -i dnys ,M U>. s.,,'" nil!;" ' "'""^ 
 If.. W hat wid b.. ih- .inicuiit ,d',5'(.()() ut (h.. ond of 3 vara 
 
 ill -jM'i; cnnt : .>r annum, •■nniponnd ini..r...vi / ^ ™ 
 
 .17. Fiml liio i<Mst conini.in mullipjo or2, .'), 7 « 9 IR '>« 
 
 .^0, jlrdnr,. i!)'.2r,-.S.^, gills to hn>r,bo.ids. 
 ■'.U. Divric ;| nr.S2'i7(;,S.l() by 2.i 
 , jl Ht^'l'iio ^2iH : I!) : n_ i,, dolLirs and conts. 
 
 U What IS tho anio.int ol $;'r(J I'.ir .j y^ars and 4 months 
 at '.J per cent per annum, simple interest ? ! 
 
 valnorUt'^3oT8';;l^l'''''''°'''*X''' ■' " ^"'''^ ^""^ ''"'•"iti'ro 
 \mnori ,u .>j.j.iH ni a |HN'niinm of 2^ | t cent/ 
 
 'li. Find the sipiiii-e root of ,V,'<i 
 
 4^. Heduce £!)2fi : 1 1 : in|to dollar, and cents. 
 
 ^il'olB^'l' ri'i'r^'S'r "[ ''^T ••"•'«'« i^' «724S owes A 
 ;i!|.rVcerve"v'''^ ''''''''"' ''''"-•"'' l'"^ '""•'■'■is should 
 
 47. If I buy 74 yards of cloth for |!234 aid sell it (it «1 M , on 
 jani, what do I pain on the whole ? ^' ^^'^^ f '"^ 
 
 58. Hedure 7 miles 3 fur. 2.^ per. 4 yds to feet 
 
 p.i'/Vor''3?wt'iTil.s ,I11> •"' '"^"^''' "'^' ^'0^' what must .e 
 |niii lor »,) Lwi lo Ijjs. Ill the sann' r-ate / 
 
 M ■ II"'!""'' l'«^' /." § *" '''f"'^'i''-"t '1''^' -a: fractions ? 
 ... HHuce 0^3, ii-i, i^i,. to their lowc: frms / 
 
 .;■ r^ "''^' •'' *'"• commission on 948 .'if) ai :A n-r cent ? 
 53. From f of ^. of ,*728(i.7() take $13,>i '• ', * ' "* ^ 
 
 ya'rd?^^'"" '' ^'" '"'"" °'' "^'^ i"'''^^ '" ololh at $3.70 per 
 
 ■i:). Reduce 3947208 square inches to rood- 
 
 S() A farmer sold 26 bushels of o;its ui 60 - 
 3' bushels at ,58J cents per bushel, and 3- 
 cuts per bushel, what did he receive for the v 
 
 ■•^7 Jt a person ow.-s another $250 pavab. 
 * Ltd poyable m 8 months, and ,*475 navablo n m .i ' 
 
 i-juired the ec,uat..d time W the',;I „|"?t1f h \dml""'"^ ' 
 
 •)8. It a man travels 140 miles in 5 davs wlkinff in i,n, 
 
 ;j'J. Find the compound inlerost on .?r)70 for U 
 cent per annum. ■ 
 
 Ac. 
 
 <;enls per bushel, 
 bushels at 635 
 •olc ? * 
 
 in 6 months, 
 
 (i-r^ari: .1,? '"'""''' ""''' *'(^-oO, what mu. 
 ij-2 vards at IIh> s.'imhi ivi(,> ■» 
 
 \ ears at 7 per 
 
 Ijp Jiaid for 
 
 62. J I 9 
 
 o*. ii ., men -lig a trench 00 feet long, 12 feet -vido nnri r 
 foot deep ,n o days working 10 hour, eaclf day- ; il. how" Zny 
 
m 
 
 I 
 
 118 
 
 days will |5 men d 
 
 MISCELLANEOUS QUESTIONS. 
 
 feet d 
 
 01 
 
 63. W 
 
 'p working l/j 
 
 a tiMiicii SO feot I 
 
 Ci. I< 
 
 liai. 
 
 nnu 
 
 m IS t.'ie cosL of 
 
 per diiv 
 
 ong. 10 feet wide 
 
 aii.j a 
 
 bv i 
 
 I'oni '2.1 I, 'ike i} 
 
 and divide ti 
 
 to 111 
 
 ;'*'< f''iairsat,«l.30eacl 
 
 e n 
 
 le 
 
 product hv e 
 
 "lainder add i 
 
 I ? 
 
 «^:w;:i"i;;,T!;:™°'»"^i'^« 
 
 multiply til 
 
 e Ml 111 
 
 and 18 ft. 4 
 07. Wh;,t 
 
 in. 
 
 i /or 111 
 
 2 ft. 3 
 
 is th 
 111. wide, ami 
 
 wide at 3 cents i)or 
 
 "Ji'in,!^-a room ?G ft. g in. I 
 
 price 
 
 sipiare foot V 
 
 ii.'ii 
 
 68- What is the into 
 
 ''• ■-' in Uiickat 
 
 I^HeceoltimhorSiit.Gin 1 
 
 12 
 
 months at 
 
 ■'•'•SL on $76.'[) Cr ihi 
 
 cents per solid f 
 
 'OMo 
 
 'eol. 
 
 ee years and Jb 
 
 iu uns at /per cent pr annum 
 
 each at the end ol 
 
 70. How 
 be given in 
 
 a year, the whole 
 
 and r *iocn ' , ""■ i"i 
 
 manyhush,.isofoatsatoj, 
 exclmnge,br37lh..of,:a 
 
 '.fc'ain being ;j;8;3o; 
 
 larc of 
 
 oj ('en 
 
 71. What is the cVb 
 '^. Jieduce £734 : 1 
 
 root of 13824' 
 
 73. :/ 
 
 '5 : 'J to doll, 
 
 ts per bushel, sIk 
 at '".^ceiitsper ])ou 
 
 !Oll!l, 
 
 nd :■ 
 
 be sold to 
 
 iirs and cents. 
 
 su,'arcosl,,*9..-,o per . vV .f , !' 
 .oo-ain !•) ,..„„'.' -y''- 'It What 
 
 rain 12 
 
 rate per lb. must 
 
 71 H^KiVrT'^'; "r^"«-''oio. 
 
 ^75. What amouni'Ust oTv7;'''''"f '^^'^''"^^ ^'"^'^^i 
 acres 3 roods at -5 1 7.20 per ac - '"' ''^"' "^ ^ ^^^n 
 
 UILS. 
 
 Of 79 
 
 did he sell .-' 'J^./icis to C, how many bushek 
 
 Operation.~i 4. 1 -^ 7 ti o 
 l-.^or-,., of\i;!:tvro/<^' buTS '^'^ 'I^'^-^i^y «old toG i,s 
 bushels, therefore As 5 f . ,r 'J"a>itity sold to C is 3 
 
 ^^to A^ and B.:'th^;4-bif^/;-"r'^'^'- q^-n^i^v 
 the quantity sold. ' ^"' + '^^ bush. = 86» bushefs 
 
 in 'olia^sandC ;;iKu°'ir'; '" : ' ^^^^ which B can do 
 ^ , OperaUon -A. d' as i.^of o wf \ ^'"'^ '''^" ^'^- I'" ee d^ v 
 
 iSS;^^^^Sirr'^-'-?^ 
 
 to 3^1 ^ay:,\i:;LSs.r:;n;^ '" ' "^'^ -'''''^-^r:;^.;in t£ 
 
 J „7.^7, '*'"-' ^- s'art to walk at the s nnp r r 
 I^ai.e Ucaupurt, a di.tance of 12 mi "V'!"" ^'';"" ^''^"'^'"'^ ■'^"'' 
 
 " '' ^^' ^™v-''s Irom Quebec 
 
iTIONS. 
 
 '=' 'Ofeet wicio, an.J8 
 
 • •'50 each ? 
 
 'J «^ iiiultiply the M„„ 
 
 room ?G ft. 8 in. |,„,,, 
 loot y ^ 
 
 iihor 2 5 n in i 
 ""'■" |)er soh(i IV.or/' 
 ihiee years and lour 
 
 'P- A. put into ilip 
 what is ihosharoof 
 eing $H30 '! 
 
 3 iwr bushel, shouM 
 '■^ cents per pound/ 
 
 nts. 
 
 rate per Jb. must it 
 
 dociinal IVactions. 
 air of a farm of 79 
 
 Miscellaneous OuestioNs, 
 
 y and a variety nf 
 - are no set rules 
 
 Ihe number, then 
 
 to A., I to \i, an,j 
 ow many bushols 
 
 tily sohl to G is 
 sold to G. is 3(i 
 ols, tlie quaniiiv 
 
 ''• = m tiUSh.•l^; 
 
 Which B. can do 
 '"" Uuee do it? 
 ^' 1^,, and G. 1, 
 
 /, + i = \-n. 
 
 VOr.C so IS I diiy 
 
 \>m Quebec and 
 s 'rom Quebec 
 
 119 
 
 10 Lake Beauport at the rate of 3 miles per hour, and B from 
 Like Beauport to Quebec at the rate of 4 miles per hour when 
 and where will th y nie-t? ' " 
 
 ^ Opmilion.—TbeY apiiroach each other at the rate of 3 4- a — 
 / iiules per hour, therefore they will meet in 1-2 -i- 7=: !'s7ni,r7 
 Tlieu as A travels 1^ hours at the rale of 3 miles per hour t ev 
 wi 1 meet I ^ x 3 =: 5a miles from Quebec, and as B travels 4 
 mi.es per hour 1^x4 = 6'; miles from Lake Beauport 
 
 5. A and B start to walk round a circular island 30 mile^ in 
 
 circumference from opposite sides, at the same time and in (hn 
 
 s.une direction, A ti'aveliing at the rate of 5 miles per hour and 
 
 Bat the rate 4 miles per hour how many milel wi A hl^^ 
 
 to walk be;, i-e he will overtake B ? ^ ^ 
 
 Opmitim —In evei-y 5 miles walked by A he gains I mile nn 
 
 II Thei-eforeas I mile : 5 : : lo miles half of thfcircun?erenc2 
 
 10 niiles the distance ti-a veiled by A. '"'muence 
 
 G A B, and G working together can Unish a piece ofwot^k 
 
 12 days, w uch A alone can (inish in 36 days, and B alone in 
 
 '0 days, in what time can G do it working alone ? 
 
 Operahon.^A, B, and G together can do tJie work in 12 
 'lays, therefore in 1 day they can do /, of the whole, A working 
 u^one can do t,ie work in 3(i days, therefore in I da' he can 3! 
 , , of the w.Tk, B working alone can dn the work in 40 dav^ 
 Uiorefore in I day he can do 1, of the whole Therefore A « n!l 
 fl tog,.ther can do .V + A- = .^o of the work in 1 diy B 
 
 A, B and G can do 
 
 day 
 
 A'oi'k in 
 
 ., , , ,, ofthewoi'k in I day, therefore in one 
 
 G can do i _ ^ = -^ therefore he can do the whole 
 . ./;\^ = 32/, days. 
 7. If 5 men or six boys can do a piece of work in 45 davs • 
 m what tim- can I man and I boy working together do it" ' 
 Uperahon.-ln 45 days I man will do^ and 1 boy i of the work 
 th^'refore in 45 days I man and I boy will do x . I - ax 
 01 the work, hence as |i of the work, is to 1 the whoirwoii so 
 IS 4., days to 122,^, days, the time in which 1 man and I bov 
 cin do it. '' 
 
 8. If 8 bushels of wheat cost as much as 10 bushels of barlev 
 iind as much as 15 liushels of oats ; and if the price of I bushS 
 of wheat, I bushel of barley, and I of oats is . 52 «0. whal is m 
 value per bushel of the wh.-at, the liarley, and th" oais'' 
 
 Operalion.— nm prices of one bushel of wheat, one ofbarlnv 
 and one 01 oats a.-e as x, 1, and ,1 hence by reducing these 
 Iraetioris to equivalent ones having a common denominator and 
 using the numerators we lind that the iirices are 15 19 
 "tiid 8, then •' ' 
 
-! .-m 
 
 
 120 
 
 tiio barley per jjii she 
 
 MISCELLANEOUS QUESTION,. 
 
 As I 
 
 •?'? «0 : 9(J 
 
 Ct'UlS 
 
 oats 
 
 ^+ '2 + 8 or 35 : 8 
 
 r 
 
 9. WJ 
 
 r IJiisIiL'i 
 
 .■xf) 
 
 liatuuml-erisUiatofwi 
 
 'i cents the price or i|„ 
 
 10- What is th 
 
 value ? 
 
 e value ol 
 
 '''^'' ^ + 1 + i is 230 ? 
 ii house of 
 
 Ans. 293i? 
 
 !'• Divide Si 000 bi 
 
 which ?840 is * 
 
 *j40 more thau B 
 
 12. A,_„. .„ 
 12 feet above th 
 
 twei 
 
 ■r> A, 13, a,i,J c 
 
 Ans 
 
 and B $200 more than C 
 
 Ans 
 so that A 
 
 4 •/■ 
 
 ofilc 
 
 $1900. 
 may h, 
 
 ilV(! 
 
 post ,sj Of its len.lh iu ([ 
 
 s share c^|pS0,B;sSl6i0,G 
 
 13. What 
 
 W'at 
 
 numb 
 
 what if 
 
 I'O mud, i in th 
 
 s$l3S0, 
 
 sum will equal 9« 
 14- If A can d 
 
 I or 
 
 it.'^ Iim-rh ? Ans. 28i 
 
 « water, a: id 
 
 's that to which if°i2 be 
 
 , feet, 
 a Med, twice ihr 
 
 f <iay.. a;:/s",„^v],s.f^?f ;!S ;? « -«y^. wi.ic,, B'Vr„ ,ii 
 
 together do it ? 
 15. Il'A, B, andC 
 
 ays ; in wJiat time ca 
 
 can do in 
 
 n the three work 
 
 Ans. |2a 
 
 Ul'f 
 
 tmio vx' j^' ., — K- : ^"',r*> ana li a ono r, qx i_ •' . 
 
 lo. A can build a wall 
 con do iu " " 
 
 days, 
 which 
 
 I 
 
 
 1 7. A and B 
 
 together 
 
 »"" take^to do the wor 
 days. 
 
 A 
 
 ns. I3.L 
 
 and G can ;;;- ■;:'TgT,uS"'^^,^^" '^ ^"-^^S 
 
 in what ume can A, B, and G togSr re^' ■"'y '" '' ^^«"^« 
 nnn:'r.-J.^."l^P"'-^J'aseal 
 
 $2000 of th^ cost, what 
 19- A person bought 
 
 louse A 
 
 are the sums paid b,v A 
 
 Ans. lOiQ hours 
 
 The horse cost 3 
 
 Ans. A $003:221. B^ 
 
 and B ? 
 
 half as much 
 cost of each ? 
 
 a cairiage, horse 
 '""OS as much as the h" 
 
 101.291 
 
 '"1(1 harness for I 
 
 3 1 
 
 30r 
 
 -o-asthe'ho^eanjrS^-lH'-^-i'^e 
 
 Ans. 530 ha 
 
 'arness ; wiiat w 
 
 'as the 
 
 20. A person owr Mg^'r^fb';,??' ''°T' «'«« 
 r\rtn „,!,.,*:_..,__ . » 1 '> "' a ijuildmo- en ,1 <> „,., 
 
 $1000, what is ti 
 
 carri 
 
 ■ wuo, wnai IS tUe value of dm ii„i i- * 
 
 2! Divide $250 amon/A^B; ?;.'• 
 three tunes as much as BlindV; in'.. 
 
 ngsoldf ofhissh 
 
 age, 
 are for 
 
 22. A alone ca 
 
 nuich 
 
 alone can do in 16 d 
 
 a do 
 
 Ans. $.-,000. 
 so that A will ha 
 as A and B togeth 
 
 Ans. A$|/i,i;B$4s,C 
 
 ve 
 ei'. 
 
 piece of work in I'' 
 
 . - $64. 
 'ays, which B 
 
 clays, A leav. it , '^Vont innl^'^,"'^'^ ^ "'-^^^ ^Vo''ic lo^etlTc 
 aaer by G, and they tSiT " I ll.^'^''^ and is .ioinSif 
 
 would G alone d 
 
 It 
 
 yHnish it together i„ 3 da 
 
 2d 
 ys, m wh.'ii (^ 
 
 Ans. 12 days 
 
 r 3 
 ajs 
 
 ime 
 
c«nt.s the j)rico of ihv 
 
 MWOELLANEOUS QUESTIONS. 
 
 24. The sum of the squares ofTwn'nt ^t ^'''''' ^ ^i^ acres, 
 the square of the lirst th„in Y ""'"bers is 61 and if from 
 WillbU WhalVrthe'nuLKsr' " taken the remain^ 
 
 2o. Half the trees In an orSrJ .m , '^°'- ^ «nd 5. 
 pear trees, a sixth plum trees „nH^^ ''^^ "'''°'' '^ ^°"'*''» 
 Cherry trees. How m^any tS^rthere^l.^^rhe'rl^'^"' ""^ 
 . 26. If 3 men or 4 women rnn ^« „ • -^"S- ^00 trees. 
 
 ■n w.a. .i„e wU, one =aS"„:^?r ££ i°e^.S 
 
 pncoof3gallonsoril,ese iSnc I orShTi"^ 8in, and the 
 
 "stt'nSX Sn'e^l™ and Gin ,0s. 4d. 
 
 Of a church at the distance nf 9 ,^T' V ^ 'awards the building 
 from the second, anf3Tmi?i^™'^\£°"?.t;e first, ^ rnS 
 that their share shall brrorinrn^^i.^ '^'''^- ''"d they agree 
 distances from the church iSw ^^.P''"'^"''^'^"^' to their 
 contribute ? ^- ^^°^ ™"ch must they severally 
 
 29. A merch'lnt-sdls 'soVJr'J'!' 'l '' ^* ^^'^ ^^^ ■- * : 5* 
 the stockings at 60 cents and thf^f'"^' ''"^ g^^^^s for |ho 
 Required the number of each ^ ''''°' ^' ^^ ''^"ts per pair.' 
 
 30. If A co^,ld^?aKJ'?;'iav^"''^p«'•''°^^^ 
 
 What time would botl/ together'eap if/'' it^liVI '.'^^' ''^ 
 
 S^y'L^'S^t£sS^iA'^^^"^^-----^i5" 
 
 many were there in each? ^"® """'^«'" ^^ men; how 
 
 33. D... ,.„ in. .„„ nart-lnXi/f oVo'e?dd„;^?»,, 
 
 Of 
 
 equal 36. 
 !ft; l?l^,"'.lf* '« "^^ elder of his 
 
 Ans. 80 aiid iCO 
 
 jo 
 
 P«"y.and„on,.e.,™;„dr;:;||L---«^^^^ 
 
 mmmm^ 
 
122 
 
 MtiTillC SYSTEM. 
 
 3(3. Three snirlipra a n „ i y^ ,• . , ^"S' 15 hours. 
 
 following „i,„2"^;3 th?;;a"s^?' ^;:;l%"^ SS'r'P '","'' 
 ofto„ as A lat.s 6, tak,,s 7; how man? vtiM ,Ldfl,av„r" " 
 
 15 years te worlh'«,i8oio rwl'r \v.s Ji'sTi guS ^^ral'?" "'' 
 
 the prices at wljich A tmd n cni-i •*';'^'^;^3- itcquire.l 
 
 chants liaving gai el at I .o,nf , ' ' '^^°'' °'^''« ^'"'^^e mer- 
 ■■b fcamui ai uio same rate per cent '( 
 
 direction. A t.vtve iSr ,lv ''/r '•"'•^' '""' '" ^'^^ ^^"'^ 
 days turns and loos Tikr^ ""'«« P"r day, and after 9 
 those 9 duvs he tC Imni nfo- '"' ^''^ ^ ''^^ travelled during 
 overtakes 'b 2^ iay ' S Te"u,no^r"'f '"^' ^'^^ J°"''"'^^^ 
 -luired to lindthe ite 2';,;;;^ uZuUXS^Sy '' '' 
 
 of U,e latter ...^r Sor? ij ' 1 " Tf''- ^'^'^^^ '"^^ ^^'^ P''ice 
 mixture at ^Lo^^pei^alloiiV ' ''"' ^"' gained l.y selling the 
 
 Ans. lji2.32S. 
 
 MKTllIC TAIiLli OP MONEY 
 
 16 c",.s?:a„ad "„°S,;5 ="""'' " "■'"'■ »'■'«" i» worth abo,u 
 
 also two Sous, seldom a Decime centimes called 
 
 fr|i:Tr,s°„r5 s.s:"r,;;ii', »,.?"""-■ -"»^ «-- ^■■i'-* 
 
es, it being fournl 
 the youiij,'er. 
 i'^iO ; and $57G0. 
 ^ould do a jdoce of 
 Hi, 3 women, and i 
 
 Ans. 15 Jiours. 
 TO carti-idges in the 
 B takes 3 ; and as 
 11 each liave 'i 
 B, 1 98 ; C, 308. 
 is ca|)ital by a liftl, 
 , and at tlie end of 
 gin&l cajiital? 
 .lis. §10590.21-2. 
 !iiin «'J8G.40 to B ; 
 (iG.3G^. Required' 
 
 of tlio three mer- 
 
 B for $1342.60. 
 and in the same 
 1" day, and after 'J 
 i travelled during 
 Jiiig his journey, 
 irst set out. It is 
 ■ travelled '(• 
 
 miles per day. 
 
 per gallon, to be 
 lal was the price 
 3<i by selling the 
 Ans. ^2.32f. 
 
 KiHTS, AND 
 
 1 is worth about 
 
 Centime, 2 Cen- 
 centimes called 
 
 illed also half-a- 
 
 3, called also a 
 
 METRIC SYSTEM. 
 FRENCH OR METRIC TABLE OF LENGTH. 
 
 123 
 
 J^he unit .s called a m5tre and is rather more than 39 English 
 
 thJ';;etr"iT TToo! ?Soo"t^T(?ot'"'n,'""'^"'^^-^ 
 
 of length so obtained are denoted hvfhS^ ' "f '^/^ measures 
 the Greek Language) XcasSfllio''°S\^'^^ '■™°» 
 
 1000; Myria, 10 oW- nmH^P f .i^fv,^ 10 ; Hecto, 100; Kilo, 
 decametre means Tm£httlare Z'^ -f ^re ; so thai 
 1000 metres, myria.netre 10 000 "''^'■''' '^'•om^tro 
 
 mel'e^f ?r[oo™Too7and''the"Sl^ ''' '''7?" ^^ ^-'''^"^ ^he 
 are denoted by theTllowinll^f"^?' ^''^ngth so obtained 
 language) pre'fixed to tTe lorT mL'o '' nL' '''V''' ^^^'» 
 the metre is divided by 10 cJnti bi inn m Vr ^?"^^''"^ "^^^ 
 that decimetre, means liat a m^itr/ il^^,' ^''i'v^^ ^^^^ ' «» 
 mMre, by 100; millimetre bvionn-n'^'^l.'^''' ^^ '^ ^ ««""- 
 following table of lengT' ^ ^^ "^'''■*^'^°''« we have the 
 
 10 Millimetres make'' 1 Centimetre 
 
 10 Centimetres _ 1 Decimetre. 
 Decimetres 1 Metre, the unit 
 
 Metres i Decametre. 
 
 Decametres i Hectometi'e. 
 
 10 Hectometres 1 Kilometrp nnn Wr,„ i 
 
 10 Kilometres _ I MSSe^*^' ^"^- ^''^'-^^ nearly. 
 
 ^ne above are abreviated thus- IVfiiiim <-„ .• 
 Decam., Hectom., Kilom., Myriam " ' ^'"'""•' ^*^'^''°" 
 
 FRENCH OR METRI^ABLE OF WEIGHT 
 The unit of weight is called a Gramme which ~ t^iv .• u 
 grains nearly. "'<tuime, wnich = 15J English 
 
 make 1 Centigramme. 
 
 1 Decigramme. 
 
 1 Gramme, the unit. 
 
 I Decagramme. 
 
 - I Hectogrammes. 
 HM ~'7'~" — *'""o 1 Kilogramme 
 
 Ihe above are abbreviated thus- Milli.T Conti^ n/ ■ n 
 Deca., Hectog., Kilog ' "'"'fe'' ^^-nlig-, Decig , Gr., 
 
 ^"""' I SirZr-"mnl ''''■ ^voirdupois nearly. 
 
 M line, oi J on = 1 ootUalog. = 20 English cwts. nearly 
 
 '''''^^f,™^^P^:niE APPLICATION OP 
 
 WKIGHT'/iJ^H^^lIi^.lil.Sli^.S^™ ^^" 
 
 10 Milligrammes 
 10 Centigrammf^s 
 10 Decigrammes 
 10 Grammes 
 10 Decagrammes 
 10 Hectogrammes 
 
 11 
 
124 
 
 u y> 
 
 i 
 
 iij ' 
 
 METRIC SYSTEM. 
 
 metres? ^ "linamelres are there in G4209750 milJi- 
 
 7" Re'duco o^rf'""^? '° milligrammes. 
 graLfes'"'' ' ''"'''■ ' ^™-"--' ' ^^cigs, 3 milligs. to milli- 
 
 gramm'ST "^'"^ '^^'^g^^n.mes are there in 2409048 miUi- 
 
 6 hectoms 5 decams 4 metres 3 dPHm« 7^ '^T""' ' '"''"'"; 
 
 grammes 9 centigs 8 SS gsTSA'^^^ ^ 
 
 mill.gs ; and 32 kilogs 4 hectors 7 H°°'^ grammes 6 dodgs 7 
 milligs. ^ nociogs 7 decags 3 decigs 8 cenligs 4 
 
 1^- {■>■? 38 francs 4d 8c take 21 fr 6d 3c 
 
 4 hectoms 3 decams SZ^tresT, e.,n.f/' '^ ""^'''^"^^ ^ kiloms 
 H. From 39 kilogs 7 dec .1 4 ^^n t ?"" '"^^ ^ '"i^'ims. 
 
 IS' n'"'l° ?S '"""^ ^0 8« by 6. by 2 
 
 2?: Sivit lK™r,?/„t'i'r/'' '■ "y »• by 45. 
 
 by 4, by G9. " ''^'^'°^' ^ grammes 9 decigs 2 centigs 
 
 ^ 2l- wSStle^'^rfo^/i™^^^^^^^^^ ?'• P- ^"°^™-o. 
 
 6c per kilogramme, 1-y practice v^' ^ ''''^^''' ^^ ^ f''ancs 5d 
 
 5d 4c ? '''^ "'"i' ^° l)urchased for 34 francs 
 
 5d!thaV mus7S'T«idtt uii'^^/"'' ' "^7™^ «°«t 2! francs 
 for IJ myriams ? ' ''' ''^'^"^'''^ °' 274 kilogs 8 hectogs 
 
J docims, 5 ccnlims, 
 
 •i8 contimelros ? 
 in 04209750 milJi- 
 
 3 milligs. to milli- 
 
 in 2409G48 milli- 
 
 1 9c ; 6d 7c ; 87 A- 
 
 '' decams 4 deciras 
 enliins 1 millim • 
 ntiins 8 milJims ; 
 
 ammes 4 dccigs 5 
 fitigs 9 milligs ; 5 
 ammes 6 denigs 7 
 iecigs 8 ceiitigs 4 
 
 ams 3 kiloms 9 
 nyriams 2 kiloms 
 MS 7 millims. 
 
 kilogs 4 lieclogs 
 's. 
 
 34. 
 ns 3 metres by 8 
 
 ammes 8 centigs 
 
 9, by 45. 
 dpcigs 2 cenligs 
 
 5r kilogramme? 
 >, at 4 li'ancs 5d 
 
 8 deoimes 9c, 
 
 ogs 5 decags if 
 d ? 
 
 purcliased for 
 for 34 francs 
 
 cost 2 1 francs 
 ilogs 8 liectogs 
 
 MENTAL ARITHMETIC. 
 
 125 
 
 ^S n J moil dig a drain 9 decams long, and 4 dccim^ rl..Pn 
 
 l.er cenrr' " "'" '"^'-'''^''^ °" '^^'^'^ ''^^'^s at 6. at 7, at 9 
 
 pnr^co.d '/"' '' "'' '■"'''''^^' °" 9^"^ '"'•''^"^s 8d at 5, at G, at 8 
 31. Find the interest on G93 francs 4d at U per cent 
 1 1 !:'": ''^\"l'''-««ton 1248 francs at 81 percent 
 at 4i;:;^tUVe"arZ;;r' '"''^"^^' '^^ 7600francsfor 3 years 
 irj!^sli;i';^^r^T/:^!-^;"^--^-'^the amount of 4500 
 
 MENIAL ARITHMETIC. 
 
 Exercise I. 
 
 1 . Flow many are 70 + 30 4- 24 '' 
 
 2. How many are 80 + 36 + 40 + 21 ' 
 ^. Ilow many are 31 + 3G + 72 + 9 + 14 ? 
 ;i. How m,.ny are 73 + 16 + 28 + 15 + 1 1 +. 18 ' 
 
 5 
 6. 
 
 7. 
 8. 
 9. 
 
 to, 
 
 II. 
 12. 
 13. 
 14. 
 
 How many are 84 - 13, 104 - I7,l34 -06 V 
 How many are 96 _ 7, 756 - 382 964 - 728 ? 
 How many are 237 — 68 — 54 ? 
 How many are 754 — 231 — 120 — ''7 ? 
 Fmd the i,roduct oCig x G, 17 x 8, 2^9 x 9. 
 iMiid the jirodiict of 92 x 3, 274 x 3 G23 x 5 
 I'.nd the product of 327 x 10, 24G x' II,' 754 X 12 
 Hmd the |)rodiict of 18 x G x 8 x 10 x 12 
 D.v,do928by4,627by. ll,852by 12 
 
 1 ^ n'^'-f ?ro' !'^ ' ^ ' ' ''"^ ^y 23, 429 by 39. 
 5. ivi, e 468 by 26, 666 by 74, 696 by 87 
 G. Divide 6300 by 36 and the product by 25 
 
 17. How many are 42 + 56 — 28 -i- 5 •/ 
 
 18. How many are 132 + 48 72 '-i- <) v 
 
 19. How many are 942 — 324 — o' -f 97 ? 
 
 20. Huw many are 349 + 357 — 86 -^ 31 ? 
 
 EXEUCISE 2. 
 
 To multiply by 20, 30, 40, 50, 60, 70, 80, or 90 
 
 r ^o?T^""'' ** '"'P^^' ^° "-^^ nHillipiicand and multiply by 2 
 or 20 : 3 for ,3 ; 4 for 40 ; , for 50 ; 6 for GO ; 7 for 7i f 8 or 
 80 ; and 9 lur 90. 
 To multij.Iy by 200, 300, 400, 500, 600, 700, 800 or 900. 
 
126 
 
 MENTAL ARITHMETrO. 
 
 II 
 
 t 
 
 8. Multi )Jv 96 hv sn •' k^ Inn = ^^ ^""0. 
 rp. ,. . , , Exercise 3. 
 
 1- Divide IJOOOby 10 CmS P'?»S'^"""'l"Sor. 
 
 1 Wh Exercise 4. 
 
 $2.76 andjVsV^ ^""^ «' ^'••^^' $2.40, $3.20, $4.80, $5 60- 
 3.' Mul?ip|? %'i .'if,7,- ^^,f--n 174.82 and $36.40 ? 
 
 + m7''' '^ "" ^-^'"^ «f ^ «f ^72.90 X 2 + $73.60 -$42.30 
 
 ixru 4- ■ , Exercise 5. 
 
 What IS the value of 
 
 1. 18 lbs. ofsiinfar at in r^Pnt'^ nor Ih nt 1 1 
 
 2. IG lbs. of beer at 12^ cents r er lb 'nt 1 1 *"'"/" ^"^ '^- '' 
 
 s wi.uib per ID., at 1 1 cents per lb. ? 
 
■ "i"L''P'y J^y 2 for 
 
 f 600 ; 7 for 700 ; 
 
 MENTAL ARITHMETIC. 
 
 127 
 
 p, 2000, 3000 4c, 
 idend as many 
 and divide the 
 e divisor. 
 
 . $4.80, $5.60- 
 
 I $.36.40 ? 
 by 12. 
 
 10? 
 
 ? 
 
 t by 36. 
 
 X 2 + f 64 — 
 
 3.60 —$42.30 
 
 Us per ]b. ? 
 ts per lb. ? 
 
 ""•'""""""""•''""'M^ryarU.atlJoe^lspor 
 
 3. 25 
 yard ? 
 
 0. 49 yard, l,„c„ „i 3„ coirts por yard / 
 
 8. 28 yards cloth at $3.50 per vani nt «A nn 
 
 9. 9 cows at $27.50 each, at iJo each ?^ ^^° ^'' ^"'"^ ^ 
 0. 347 slates al 20 cents each ? 
 
 2 9?Ah ""?'', "°"'" '^^ •«5.25 per barrel ? 
 12. 234 bushels potatoes at ih cents pi/bushel ? 
 
 , ^ . EXEBCISE 6. 
 
 1 irfiihc r ExEncisE 7. 
 
 the same rSj.;'^"^^'- ^°«' ^4 cents, what will 10 lbs. cost at 
 
 theU?rK' ''''''''' '''' *^-28. what will 6 yards cost at 
 cent's f^ 2I0S''' P*^'' ''' '' ^°^«"' ^ggs at the rate of 41 
 samt rite^? ^^'^ '' ''^ '''' ^38.40, what will 10 lbs. cost at the 
 
 be bought for $10 ? ^* ^^' ^'^^ many bushels may 
 
 purchased'for $6"?'"'' '''' *'-'^' ^°^ °^«"y dozen may be 
 purcha''sejfr$l 2^0""'' ''''^°""'^" '' '' '^^-^^ Vev 3 lbs. may be 
 value/'' °''''""^"«''''* house is $1350, what is its whole 
 bu'shelT''' "''' '' ^"^'^<^'« °^ «ats at the rate of $,.80 per 
 at Ihe samVr'ate?'"^'*'' '"'' ^ ''^''■^'' ^^at will 8 lbs. cost 
 
i 
 
 128 
 
 MENTAL AUITIIMETIC. 
 
 \'l What, must l)o pai.l i;.r G yiirds of sillc. if tho vnluo nf « 
 pi'Jco coiitaiuint; 30 yards is .^ij ? ' ^'"° °' "^ 
 
 Exercise 8. 
 Tnko aliquot pai Is as in practice. 
 
 KxA^PLK.-Fiml ihe value of 280 nrticlos at 25 ceuls each • 25 
 coiils=i of a dollar audi of 280 = $70 Aps. """'» ^'"'" - •'^ 
 Find tho vaiut! of 
 I. mi lb? al 25 cents per lb., at 20 cents per lb. 
 
 .f $J^/' «• ''S*'-'^*^ l"-'- yard, at $1 per- yard. 
 .}. ^/|,)J (U.i at 50 cents pe- dozen 
 
 0. 40| yds at ^l.oO per yard, at $1. 25 per yard. 
 
 S o,,u ih" ^\ L'''!^'^ P*"" P°""''' "i' 8 cents per lb. 
 8. . Oi lbs. at ^1 20 per lb., at ,^1.25 per lb.' 
 I f ^ yds. atiji2.40 per yard, at «2.50 per yard, 
 ir'i V""^^-'' It '2J cents per oz., at 20 cents per oz 
 
 2" iol'.u!^'"; ^im^"-""'^ ^'' '^«^'^"' <»' 75 cents Jer doz. 
 1^. JOi cwt. at 1^10. 9o per cwt., at $10.50 per cwt. 
 
 E.\ERCISE 9. 
 
 "■ Knl fl"^ ^"'"'"ission on $300 at 5J per cent, at 6 per cent 
 ^. iMnd he comunssion on ,?450 at 5 per cent. ' 
 J. 1' ind the commission on $800 at 6 per cent 
 4. iMiid the commission on 1^1250 at 6 per cent 
 
 «. Howmuchis8percontof$950, orsiOOO? 
 7. ovv much IS 12 per cent of $2150, of $1500' 
 H. Jiow much 1,^ 1 1 per cent of $1800, of .$2000 ?' 
 10 W ,"!t !' 1/" {"•"'^'^'•'^So on $980 at 5 ,,er cent ? 
 I ■ W ; k H .^'"f •^''«^° «n «''^^»0 at 8 per cent ? 
 • ■ W ^ n" t''''"''"''-° «" =^*^'''^ It « P'-^ cent? 
 V W ; 1" ^'■"'^■'^'■i^^'c 0" «960 at 1 1 per cent ? 
 
 CO tal^ii;^,;!^^'^';;-^,;;;;---- on $1120 at 5 per 
 
 at 8*: ^"ul^'J ;S^;i;- °'''— '- «« $8^0 at 7 per cent, 
 at 'rfpo^S; Vt 7 I'J" 'Sn'tT ' '"'"'"'^"^^ °" ^ ''~^« ^^ '^ P^- °^n'. 
 
 17. Find the commission on $2170 at .3 per cent, at 4 per cent 
 n liru '""^^^ "^ ' '-^ PC c™t of $ I dGO'' P 
 
 ce.,?." ' " "''^■^''o'^cmge on $7500 at II per cent, al 10 per 
 
 c«nlM?pi;'cenT. '"'"'"'"^- "' ^"^"'■^"«<^ ^^ ?-^600 at 2^ per 
 
if tlio value of a 
 
 25 ooiils each ; 25 
 
 WENITAL ARirnMRTIC. 129 
 
 ,_,. ^ , , KxKnciSE 10. 
 
 What IS tho interest on 
 
 3;iS£^^ J J;:^^-;i-ann,.,n? 
 4. $ia',0 for '] v<.,rre „. B ' "' '"''■ '"'"I'm ? 
 
 8 $ '(i or3 ^ a's ''5\'rr!* Porannn,„ ? 
 a. $10.-0 for 2 SsaJo'SrrTf'''"'" ''''''*''"■ 
 
 l2.$l050ibr4i;eJSsU!;:sf:=;- 
 
 Find the interest on 
 
 9. J ,800 jbr 4 months at LT cen fZ ZZ' 
 ?■ S-nn r"' ' '"'^"^''S at per cent per an Z" 
 12. $920 lor 6 months at 8 per cent per annum 
 
 T,. , ., . Exercise 12. 
 
 Find the interest on 
 
 3. $1000 ",r 2 Years and ^Tnn X^''^'' """"^ P^'' ""'i^'m. 
 
 4. $2500 for 3 year ad 3 mon n I ^'' "'''' ^'^ """"'"• 
 
 5. $1600 for 2 years and 9 mon hs Tt I f '""! P^'" """"'"• 
 
 6. $3600 for 5 years and 2 men . n \ ' ^ •""" P"'' '"^"""ra- 
 
 7. $4800 for 4 Jears and I inon h nf^ ''''' '""' P'^' «"""'^- 
 
 8. $2460 for 2 Jears a 3 mo" s at s''"" """' ^''' •'^"""'"• 
 
 9. $2740 for 3 years and 4 iZ t ,s ,fi ? ^ ''"^ P"" """""'• 
 to. $5000 for 2 years an 8 n on s n r '''' "'"' P"'' """"'"• 
 
 11. $4600 for 3 Jears an 6 n on Is a 8 f.!r ?'".' ^'' ''^""""'• 
 
 12. $6200 for 4 years and 2 monS a^t^ ? ^ ^ j^ ---• 
 
 EXEIICISE 13. 
 
 irewood honght for 
 
 7 Z'!^,f r!!!';?;!'" °" ^ ^"«"tity of 
 
 $3 17 and sold for .^i 
 
 ufl ? 
 
 2. What is my loss 
 
 for $2975 ? 
 
 on a house bought for $3460, and 
 
 sold 
 
180 
 
 ANSWERS TO THE EXERCISES. 
 
 b 
 
 
 If ■ 
 
 I 
 
 lb., wha7?,',he "o'fr" °°" *"*•"> """ '■ ""i " IS '='">■» l»r 
 
 cw^a„'J'S!a':.7,SVr^;v'.r'- »'-''«■' '-""at »^'P» 
 ANSWERS TO THE EXERCISES. 
 
 NOTATION ANMLMERATION. 
 Exercise 1. 
 
 ^ndIST-\]Z'lunt^^^^^^^^^ '^0 hundred 
 
 fiily; nine Sred and h ^ ' ""^^"''^"^ ' '"^«° ^""dred and 
 dred and five tJi.rty-two ; seven thousand six hun- 
 
 twlntHlve'Z:LVd"si^hS = f'" ^5°"^°"^ one hundred; 
 thousand anS £ h^dS an^J wl>ThouSd'""'^^^ 
 twcnSl^e^e^Soi^Tnd'rfv^'l ^'— t^^'undred ; 
 seven thousand Z hnrli^iJ'^^f = 'I^ ^"*^''«'^ ™"»io»s 
 hundred and SftJ <,Tfhn?, ,^ ^"'^ twenty-three millions four 
 
ought at f 9.20 per 
 
 its bought for $39, 
 
 cost 70 cents por 
 
 lid at 18 cents i)er 
 
 PI 20 and sold at 
 
 lo? 
 
 Its por gallon and 
 
 )n the whole ? 
 
 01. r which I pup. 
 
 r barrel ? 
 
 nought at $21 per 
 
 J them at $4.45 
 
 ib. and sold at 
 
 5ES. 
 
 IN. 
 
 ; two hundred 
 n hundred and 
 ousand six hun- 
 
 id one hundred ; 
 
 ; two hundred 
 lousand. 
 
 two hundred ; 
 indred millions 
 ee millions four 
 .nd eighty-nine, 
 d thousand and 
 three hundred 
 
 hundred and 
 undred trillions 
 d and four, 
 ns six billions 
 
 billions seven 
 id and one. 
 
 three millions 
 s two thousand 
 
 ANHWRRs to the EXERf1fHK.S. 
 
 131 
 
 ^iv inMui?. ' ""."1"",'''" ''""'"'•t'd and fonrtoon rjiiadrillion^ 
 
 •SIX hundvd and .MKlity-liin'o tnliions llvo Ini.idn-d and tu iiv- 
 nine In hons o„H hundred and twenly-tl.r ^ . II Irs ur 
 hundred and lilty-six ll.ousnnd^ven hundred and fo.^ly-iwo. 
 
 COMMON NOTATION. 
 4 Five thousand and twelve millions tlir-sn hundred thousand 
 
 Sliliiolill'JjHrilevr"" """'"••"* """ '-"--"^ ^"- '-":^"' 
 
 0. Two billicms six hundred thousand nine huiidrefl /inrl 
 s«^venty millions four luiiidred thousand ; nine "nm ' h lioni 
 
 aml^l'iu- ""' """ '''''' ^'""^""•' '"'"'"- -v-'" 'y 'l.ouiand 
 
 G Seventy thousand four hundred billions six thoiisnini nnrl 
 
 fli.rty millions two Ihousaiul ; live hundn.l u I ' tvon 
 
 . bix thousand and nine billions I'.iir Ihousand ami three 
 
 u;orur;'r;rr.;r;'' "^^ • ^^° '"-"-"'^ -^ ^^^^^i^^ 
 
 l7rZ^ «"« hundred ami twenty-lhren million four hunS 
 and lifly-six thousand seven hundred and forty-two. ""'^^'^ 
 
 KXEUCISK 2. 
 
 1. 74. 
 
 2. 200. 
 
 3. 709. 
 
 4. 2007. 
 
 5. 4002. 
 
 6. 1809. 
 
 7. 3006. 
 
 8, 
 
 9000. 
 
 I,"i 
 
 9. 
 
 5702. 
 
 10 
 
 10. 
 
 I.V2;i0. 
 
 17 
 
 11. 
 
 .11)074. 
 
 IS 
 
 12. 
 
 00i009. 
 
 l<l 
 
 13 
 14. 
 
 7020908. 
 2U4705792. 
 
 20 
 
 97000000034. 
 2000000079. 
 40004000 'i004. 
 1 00 1 CO 1 00 10. 
 24000007000090. 
 365247039073094. 
 
 E\EnniSE 3. 
 
 im, \mm'''' '''''' ""«'' ^'■^■'^7- 'ooiboo.'VoooViio?; 
 
 E.NERCISE 4. 
 
 LXXIV, XLVII, XGt, LXXXIII, CIV, DGXGII DLXXIII, 
 
 DCCCXGVf , CCGLXV, CXLIV. VCCLXX, TX^DCL, VlTCDVIII.' 
 IXV, MMDLX, XDGCXXIV, XllXDGL, LLXx! 
 
 LXXVMMMCMLXIV, "XLMMDGGLXIir, LXXXMDCCXCVI, 
 DG GCMMDGG LXIV, Cl)!.MMM, DGGXGMMDGGC, MDCGMMd' 
 MMMDCGXLMMDLXVIII. 
 
132 
 
 ANSWEttS TO THE EXERCISES. 
 SIMPLE ADDITION. 
 
 1. 21457. 
 
 2. 14087. 
 
 3. 150452. 
 
 4. 1535072. 
 
 5. 13007874. 
 
 6. 43684 pounds. 
 
 7. 4677 tons. 
 
 8. 3997 yards. 
 
 0> 34681 bushels. 
 
 10. 
 
 11. 
 
 12. 
 
 13. 
 
 14. 
 
 15. 
 
 16. 
 
 17. 
 
 18. 
 
 104275 inches. 
 10819 days 
 13449 miles. 
 135743 feet. 
 28998 lbs. 
 17255 lbs. 
 544895. 
 1697762131. 
 12668043. 
 
 19. 17519901. 
 
 20. 25300 
 
 21. 112980. 
 
 22. 43027. 
 
 23. 941494. 
 
 24. 48970000, 
 
 25. $519. 
 
 26. 3718 bushels. 
 
 27. 321 miles. 
 
 1.240413 miles. 
 
 2. 56484652inche3. 
 
 3. 6163562 tons. 
 
 4. 5610472 yards. 
 
 5. 488482 pounds. 
 
 6. 6640935 dollars. 
 
 7. 2298474 hours 
 
 8. 30579544 feet. 
 
 9. 1239300. 
 10. 7128908. 
 11.6650983. 
 
 12. 59499717. 
 
 13. 4153079. 
 
 SIMPLE SUBTRACTION. 
 
 14. 4803944 
 
 15. 2879624. 
 
 16. 81877787. 
 17.87106653. 
 
 18. 1330154. 
 
 19. 6504490. 
 
 20. 19521178 
 21.6760083. 
 
 22. 6999995. 
 
 23. 399206 pds. 
 
 24. 4993 days. 
 
 25. 7968793. 
 
 26. 554 dollars. 
 
 27. 2560 miles. 
 
 28. / 375,332,259,238,225, 
 
 29.i9ffir'^^^-- 
 30. 1 1700000 sq. miles. 
 Jl. 554 bushels. 
 
 32. 3978 dollars. 
 
 33. 5692 feet. 
 
 34. 368 feet. 
 
 35. 3472; 3 172 miles. 
 
 36. 94763000 miles 
 
 1. 153890 miles. 
 
 2. 220944 yards. 
 
 3. 3851388 pounds. 
 
 4. 4158475 inches. 
 5 4761744 pounds. 
 
 6. 943992 dollars. 
 
 7. 3788656 minutes 
 
 1. 467964. 
 
 2. 883680. 
 
 SIMPLE MULTIPLICATION. 
 
 Exercise 1. 
 
 4. 30660. 
 
 8. 6248457 cents 
 
 9. 15'>68. 
 
 10. 18957 
 
 11. 22428. 
 
 12. 36640. 
 
 13. 477648. 
 14 175021. 
 
 Exercise 2. 
 
 ( 5. 193536. 
 
 6. 30996. 
 
 7. 1323125. 
 
 8. 2436368. 
 
 15. 
 16. 
 17. 
 18. 
 19. 
 20. 
 
 135312. 
 293328. 
 326490. 
 861245. 
 384852. 
 481194. 
 
 9. 4452800. 
 
 11.36728000. 
 12. 20699184. 
 
 13. 1481 
 
 14. 180; 
 
 15. 6505 
 
 16. 1891 
 
 17. lUl 
 
 18. 3783 
 
 19. 1201 
 
 20. 5245: 
 
 21. 5183i 
 
 22. 19751 
 
 23. 1044e 
 
 1. 1875 
 
 2. 2454 
 
 3. 2351 
 
 4. 2469 
 6. i057( 
 
 6. 1989/ 
 
 7. 2777; 
 
 8. 802U 
 
 1. 41093 
 
 2. 15628 
 
 3. 98693 
 
 4. 94774 
 6. 4445 f> 
 6. 44762, 
 
 1. 267fft, 
 
 2. 26421^ 
 
 3. 106.S45 
 
 4. I5200f 
 6. 6980H 
 
 6. 2368«% 
 
 7. 4404ff 
 
 8. o063f^. 
 
 9. 6413§|; 
 
 10. 4l325i-J 
 
 11. 15358gJj 
 
 12. 4285||. 
 
 13. 7230t#^ 
 
 14. 864,9jf.' 
 
 15. 13661 Ai 
 
 16. 16965|1 
 
mmmMmt. 
 
 17519901. 
 
 25300. 
 
 112980 
 
 43027. 
 
 541494 
 
 i8970000, 
 
 5519. 
 
 i7 18 bushels. 
 !21 miles. 
 
 lars. 
 
 lies. 
 
 J2,259,238,225, 
 )4,55 years. 
 
 Osq. 
 hels. 
 liars, 
 t. 
 
 miles. 
 
 72 miles. 
 ) miles. 
 
 312. 
 328. 
 490. 
 245. 
 852. 
 194. 
 
 00. 
 
 Ml. 
 
 )00. 
 184. 
 
 :3. 1481088. 
 
 14. 18011160. 
 
 15. 650596380 
 
 16. 189109960. 
 
 17. 14474832. 
 
 18. 378316400. 
 
 19. 1201371300. 
 
 20. 52452353748 
 
 21. 518350564160 
 
 22. 197515403720.' 
 
 23. 104462820108 
 
 1. 187532. 
 
 2. 245427. 
 
 3. 23515761. 
 
 4. 246913574. 
 5- 1057097S. 
 
 6. 1989544. 
 
 7. 277777f. 
 
 8. 802l81f. 
 
 1- 41093-ff 
 
 2. 156283V 
 
 3. 98593^. 
 
 4. 94774||. 
 6. 4445 f4-. 
 6. 44762|f. 
 
 AN8VERS TO THE EXBRcrSEs. 
 
 1. 267ff, 
 
 2. 264'2Xf 
 
 3. 106.34ff. 
 
 4. I5200ff. 
 
 6- 6980H. 
 
 6. 2368g%. 
 
 7. 4404ff. 
 
 8. o063f^. 
 
 9. 6413f|, 
 
 , 10. 41325+1 
 
 11. 153585V. 
 I 12. 42851^. 
 
 13. 7230x|x. 
 
 14. 864M.^ 
 
 15. 13661 AJl. 
 
 16. I5965f|l. 
 
 17 
 
 18, 
 
 19. 
 
 20. 
 
 21. 
 
 22. 
 
 23. 
 
 24. 
 
 25. 
 
 28. 
 
 27. 
 
 28- 
 
 29. 
 
 30. 
 
 31. 
 
 32. 
 
 1866560000. 
 5. 67756662 
 5. 6448458108 
 ^ 729668016 ' 
 '■ 30267798624. 
 •• 8054092548 
 
 • 14117835000 
 
 • 6701431839424 
 . 10114033944. ' 
 . 179603438052 
 ■ 546199612851.' 
 
 simple~dFvision 
 
 ExERcrsE 1 
 9. 631272A.. 
 
 10. lOlOIOlOA 
 
 11. 44166844. 
 
 12. 2495802 
 
 13. 2851791. 
 14- 91l78f 
 
 15. 2742234. 
 
 16. 123447^. 
 Exercise 2 
 
 r. 50340Tf^.' 
 
 8. 222051 A. 
 
 9. 16033311. 
 
 10. 1176200M 
 
 11. 39291-,t6p 
 
 133 
 
 I 35. 220133376 
 
 I 36. 25106806690. 
 
 37. 530334468132 
 
 It- i?1^^344006640. 
 
 39. 21424 feet 
 
 40. 20601 yards. 
 
 41. I903S74 letters 
 
 42. 21038400 m r 
 
 43. 56940 timS 
 
 44. 9709 dollars. 
 ^5. 168 panes. 
 
 I''. 16072442. 
 
 18. 310489A-. 
 
 19. 1 740842 & 
 
 20. I22II62I. 
 
 21. 1341038?. 
 
 22. 792696*. 
 
 23. 1208159?. 
 
 24. 708053|. 
 
 Exercise 3. 
 
 12. 403003 4A 
 
 13. 87660511'* 
 
 14. 284314^5 
 
 15. 641986*1''* 
 
 16. 997852;v; 
 
 3343,^,fly. 
 
 134205^V 
 
 27063im. 
 
 78l00fS|3. 
 
 1255096|||. 
 
 457378m||. 
 
 1830087|||. 
 
 3756623^ff. 
 
 148882ff*f. 
 
 i282'^Tf4m. 
 
 467928fJ|: 
 
 228l830j^.. 
 
 36. 671369?||T 
 
 37. 324444^11. 
 
 38. 278891 fllei 
 
 40. 15454|-f. 
 
 41. 3 apples.' 
 
 42. 91 ff 
 
 43. I65f|. 
 
 44. 225 miles. 
 
 ii- 25||^{f '^««"«- 
 
 47. 89758,342#e^ 
 
 48. I3428429?}||^5j. 
 
I 
 
 }■ 
 
 134 
 
 ANSWERS TO niE EXERCISES. 
 REDUCTION. 
 
 1. 700 cents. 
 
 2. 9400 cents. 
 
 3. 1900 cents. 
 
 4. 92424 ceiits, 
 
 1. $?3.90. 
 
 2. $70,82J 
 
 3. $803.7()§ 
 
 4. $599. 29, V 
 
 1. £18: 12: 9^ 
 
 2. £185 : 14: 6. 
 
 3. £246 : 18 : 3. 
 
 4. £436 : il : 2i 
 6. £189 : 11 : 0^ 
 
 Exercise I. 
 
 5. 964258 cents. 
 
 6. 4296537 cents. 
 
 7. 94275 cents. 
 
 EXEftCISE 2. 
 
 ?1025.93|. 
 «975.90g. 
 
 $3057.72-,V. 
 $1579.33|. 
 
 Exercise 3. 
 
 8. $704.28 
 9 $4950.64, 
 10. $286.05. 
 
 9. 
 10. 
 11. 
 
 $307.68J 
 $731,274 
 $3305.98 
 
 12. $992.96i 
 
 5- 
 
 19: 7- f. 
 lOA. 
 
 1. 4312pen6e. 
 
 2. 123583 farthings. 
 
 3. 713221 farthing.". 
 
 1. 18800 quarters. 4. 
 
 2. 45650 jioonds. 5. 
 
 3. 556739 ounces. 6. 
 
 1. 5760 dwts. 
 
 2. 99916 grains. 
 
 1. 3744 scruples. 
 
 2. 90057 grains. 
 
 f. 7140 lines. 
 
 2. 8094 inches. 
 
 3. 2437 perches. 
 
 4. 125070439 inches. 
 
 i. 1248 nails. 
 
 2. 315 nails. 
 
 3. 214 yds 1 qr 1 nl. 
 
 1510s: Hd. 
 £76979 ; J 
 
 6. £2339 
 
 7. £1316: 2 
 
 8. £69 : 18 : 
 h 9. £198 : 12 
 
 — f . ' 10. £435 : 14 ; 
 Exercise 4. 
 
 4. 1041178 far. 
 
 5. £39S : 8. 
 
 6. £1559: 10 : 5. 
 Exercise 5. 
 
 341172 ounces. 7. 
 12 tons 1 cwl. 8 
 700 cwt. 4 lbs. 
 Exercise 6 
 
 I 3. 7 oz 
 I 4. 1 lb, 
 Exercise 7. 
 
 3. 1368 lbs 11 oz6drs 1 scru. 
 
 4. 1269 lbs 6 oz 5 drs i scru 8 grs.j 
 
 Exercise 8. 
 
 5. 11347 fur 20 per 5 yds. 
 
 6. 1534 m 30 per. 
 7.21yds I ft 3 in 11 lines. 
 8. 38 lea 2n] 1 fur 1 1 per I fl 6in.j 
 
 Exercise 9. 
 
 4. 463 Eng ells 3 qrs 2 nls, 
 
 5. 374 Eng ells 2 qrs. 
 
 6. 410 Eng ells 2 qrs. 
 
 8 : 2,1. 
 
 51 qrs 7 lbs 4 oz. 
 21t[9cwtlllbslOoz. 
 
 15 dwts. 22 grs. 
 3 oz. 8 dwts. 17 grs, 
 
ANSWERS TO THE EXEECI8E8. 
 
 135 
 
 7. 1510s: Ud. 
 i. £76979 : JS : 2.L 
 
 1 qrs 7 lbs 4 oz. 
 lU9cwtmbsl0oz. 
 
 dwts. 22 grs. 
 )z. 8 dwts. 17 grs, 
 
 ')7. 6 drs 1 scru. 
 ! 5 drs 1 scru 8 grs. 
 
 Exercise 10. 
 
 1. 9801 sq feet. •? «„ oo 4-* j , ^ 
 
 2. m43&3 s, inches | t l[ ?, ^ '///sV^S?!'"- 
 
 liXERCISE II. 
 
 I 3. 790 bar 3 gals 1 qt 1 gll!. 
 ' 4. 27 pipes 27 gals 1 qt Ipt. 
 Exercise 12. 
 
 I 3. 8 days 14 h 21 min 53 iec. 
 I 4. 69wks3d2h42minl4sec. 
 Exercise 13. 
 
 17. 1150 nails. 
 
 216 pints. 
 59039 gills. 
 
 1. 2928 hours. 
 
 2. 151 11286 seconds. 
 
 1. 720427 cents. 
 
 2. 17642.85. 
 
 3. $2899.9IJ. 
 
 4. £991 .•8: UJ^f 
 
 5. 379037 farthings. 
 
 6. £829: 12:2f. 
 
 7. 3967451 drams. 
 
 8. 2170 t. 2cwt. 3 qrs 2 lbs 
 
 12 oz. 7 drs. 
 9- 5629 grains. 
 
 0. 6 lbs. 5 oz 5 dwts 16 grs, 
 
 11. 2255 scruples. 
 
 12. 256 lbs. 9 oz. 6 drs. 
 
 121968 feet. 
 
 5412 lea 1 m 3 fur 32 per 
 
 ^4 yds 1 ft 3 in 1 1. 
 
 255171871 sq inches. 
 
 ,^J^ 'per 16 yds 4 ft 
 101 in. 
 
 13 
 14 
 
 15, 
 16. 
 
 19. 39644 gills. 
 
 20. 2287 gals 1 qt. 
 
 21. 277740 minutes. 
 
 22. 203 weeks 3 days 3 h 20 
 
 min 7 sec, 
 
 23. 290. 
 
 24. 710. 
 
 25. 36 English ells, 
 
 26. 120 yards. 
 56| Flemish ells. 
 74o. 
 
 102 two pences, 
 361 five pences, 
 54 four pence?, 
 32 packages. 
 
 27 
 28. 
 29. 
 30. 
 31. 
 32. 
 
 1. 
 2. 
 3. 
 4. 
 5. 
 
 6. 
 7. 
 8. 
 9. 
 
 10. 
 
 II. 
 12. 
 13. 
 
 COMPOUND 
 
 $27833.89. 
 Jei3l08:19:2j 
 
 104 miles 3 fur 20 per 4* 
 yds 2 ft, f 2 
 
 $38409.96. 
 
 Jei0140:5; lU 
 
 $28375. 96J. 
 
 107 tons 2 qrs 24 lbs 6 oz 
 9 drs. 
 
 154 wks 2 d 23 h7mirx 
 12 soc. 
 
 12 1 acres lr8 per 24 J yds. 
 292 lbs 7 oz 4 grs 
 $38121.82. 
 
 ADDITION. 
 
 -14. 251 ydslqr2nl3. 
 
 15. £3619 : 1 : 4 
 
 16. $9388.82^. 
 
 17. 185 gals. 1 pint, 
 
 18. 91 lbs4oz 14 dwts 1 gr. 
 
 19. 3751 cwt3qrs4 lbs. 
 
 20. 339 miles 6 fur 38 per li 
 
 yds. 
 
 21. 409 acres 3 r 25 per 
 
 22. $42174.44. 
 
 23. 539 yds 1 ft 6 in 9 lines. 
 ^1. 006 day3 15 h 40 min 
 
 25 sec. 
 
 ^,^- ?28 gals I qt I pt 3 gills. 
 M. 172tonsl8cwt Iqrnibs. 
 
136 
 
 ANSWERS TO THE EXERCISES. 
 COMPOUND SUBTRACTION. 
 
 1. $6635,76. 
 
 2. i;679 : 8 : 9J 
 
 5. 7 tons 6 cwt 3 qrs 5 lbs. 
 
 6. 4.iweeks6d5min36sec 
 o 1^*^^ 3qrs3n]s. 
 
 8. $18094.63. 
 9- £167:2: ll| 
 
 10. $8888.89 
 
 11. 56 gals 3 qts 1 giu. 
 1/. 437 miles 4 far 39 
 
 jds 1 ft 
 
 per 5 
 
 4. 120 tons 1 5 c^t 3 3 
 
 15. 6 lbs 9 oz 6 grs 
 
 16. $87654.78. 
 
 I». ilO tons 12 cwt 1 or 4 lbs 
 6 02 9 drs. 
 888 acres 10 per 12 mU 
 
 2 ft 16 in. ' 
 
 4hhlds 10 gals Ipint. 
 11 min 10 sec. 
 1" 17" 30'ii 
 
 19. 
 
 20. 
 21. 
 22. 
 
 COMPOUND MULTIPLICATION. 
 Exercise 1. 
 
 o" «n<?,^* ^ ^""s 9 lbs 10 oz. 
 
 2. £884 : 13 : 5i-. 
 
 3. $318593.56. 
 
 4. 137 miles 2 fur J7per 1* 
 
 yds. '^ ^ 
 
 5. 341 gals. 1 qt. 
 
 10. $4059941.93. 
 
 11. 286 weeks 6 d 12 h 5 min 
 
 24 sec. I 
 
 12. 
 13. 
 
 'J03'=w»3qrs241bsllo2. 
 82 lbs 7 oz 2 drs : sen, 
 y grs. 
 
 $771424605.52 
 
 1285 yds 3 qrs 2 nls. 
 
 09 tons 8 cwt 3 qrs 1 7 lbs. 
 --■ J373 gals 2 qts 3 gills 
 
 19. $35894634.16 
 
 20. 27 cwt 2 lbs 12 oz 10 drs. 
 
 14. 
 
 16. 
 17. 
 
 18. 
 
 Exercise 
 12 
 
 1. $10349899.84. 
 
 2. £13450: 19 : 8i. 
 
 3. $6305055.52. 
 
 4. 1348 cwt 14 lbs6oz. 
 
 5. 1 134 acres 1 r 37 per 25J 
 
 yds. * 
 
 6. 774 yds 1 qr 2 nls. 
 
 7. 613 weeks 5 d 18 h 57 min 
 
 32 sec. 
 
 8. 299 lbs 1 1 oz 4 drs 
 
 9. 198 lea 2 ra I fur 33 per 
 
 1 Yd. 
 10. $80156133.36. 
 U. £11108: 14:2. 
 
 13, 
 14. 
 15. 
 16. 
 
 17. 
 
 18. 
 19. 
 
 20. 
 21. 
 
 264 tons 19 cwt lib 13 OZ 
 6 drs. 
 
 1567 gallons. 
 
 $247390923.84 
 
 1531wks.20h40min.48s. 
 
 124 yds 1 ft 5 in 3 lines. 
 18^0 acres 3 r 27 per 2IJ 
 
 yds. * 
 
 $44014061.28. 
 
 398 lbs 3 oz 1 dr 1 scr 19 
 
 grs. 
 1763 cwt 2 qrs 12 lbs 14oz 
 5615 acres 38 per 3^ yds 
 $1162491454,80; ^ 
 
 14. 
 15. 
 
iCISES. 
 
 TION. 
 
 3res 26 per 4 ft 127 in 
 .onsl5cwt3qrs3 1b^ 
 
 9 oz 6 grs. 
 54.78. 
 
 Js 2 ft 11 in 11 linn, 
 ons 12cwt 1 qr4 1bs 
 : 9 drs. 
 teres 10 per 12 v. Is 
 
 16 in. 
 
 ds 10 gals Ipint. 
 10 sec. 
 ' 30'ii 
 
 noN. 
 
 !vf3qrs24Ibsllo2 
 
 7 oz 2 drs 2 scru 
 
 4605.52. 
 
 ■res 3 r 29 per 13J 
 
 Is 3 qrs 2 nls. 
 
 3 8cwt3qrsI71bs 
 tls 2 qts 3 gills. 
 j34.16. 
 2 lbs 12 oz 10 drs. 
 
 5 19cwt 1 lb 13 02 
 
 Ions. 
 ?23.84. 
 
 i-20h40inin.48s. 
 3 t ft 5 in 3 lines. 
 es 3 r 27per 21J 
 
 11.28. 
 oz 1 dr 1 scr 19 
 
 2ffrsl2lbsl4oz. 
 '3 38 per 3i yds. 
 i54.80! 
 
 ANSWERS TO THE EXERCISES. 
 
 23, 
 24. 
 
 25. 
 26. 
 
 1. 
 2. 
 3. 
 4. 
 5. 
 
 6. 
 
 7. 
 8. 
 
 9. 
 10. 
 11. 
 12. 
 13. 
 14. 
 15. 
 16. 
 
 12152 gallons. 
 
 1173 bushels 2 pks 1 ga 
 
 2 qts 1 pt. 
 27603 weeks 2 d 9 h 52 min 
 1911 yds 1 qr. 
 
 27. 
 
 28. 
 29. 
 30. 
 
 . $58939941.06. 
 
 . .£23484 : 6 : 4*. 
 
 . $835454.70. 
 5984 cwt 1 qr 10 lbs 7 oz 
 9S2 lea 2 m 6 fur 22 per 
 
 n yds. ^ 
 
 3261 yds 1 qr2nls. 
 1353 lbs 3 oz 6 drs 2 scr 
 10828 acres 3 r 29 per lU 
 yds. 
 
 $1887652.80. 
 
 10834 lbs 6 oz 1 dwl 7 grs 
 
 1898 tons 10 cwt 10 lbs. 
 
 2970 weeks 4 d 4 h 36 min 
 
 £232442: 15:3. 
 
 26541 gals 1 qt 1 gill. 
 
 2897 bush 1 gal 2 qts. 
 
 6610 per 2 yds 6 in 4 lines. 
 
 Exercise 3 
 
 137 
 
 1733 acres 1 r 15 per 17* 
 yds 1 ft. f * 
 
 $878595.48. 
 23578 bush I gal. 
 9923 cwt 9 lbs 1 oz. 
 
 17, 
 18. 
 19. 
 20. 
 21. 
 
 22. 
 
 23. 
 
 24 
 
 25. 
 
 26. 
 
 27. 
 
 28. 
 
 29. 
 
 30. 
 
 470 cwt 3 qrs 1 1 lbs 13 oz. 
 
 $580900.92: 
 
 2732 acres 1 r8per2f yds. 
 5 1 80 days 8 h 56 min 3 sec. 
 424 miles 5 fur 10 per 4 
 
 yds 2 ft. ^ 
 
 £>^4264 : 10:6. 
 6894 yds 3 nls. 
 
 130l9 1bs9oz8dwts. 
 
 $465206.68, 
 
 9377 cwt 3 qrs lbs. 
 
 7373 gals 2 qts 1 pt. 
 
 34G8 bushels. 
 
 3797 wks 1 day 23 h 
 
 min 49 sec. 
 657 cwt 1 qr 8 lbs 2 
 
 12 drs. 
 
 40 
 
 oz 
 
 1. 
 2. 
 3. 
 4. 
 5. 
 
 6. 
 
 7. 
 
 $3698437.26^. 
 
 £321:2:51-. 
 
 1 ton 18 cwt 10 lbs 10 oz 
 
 13 gals 3 qts If gills. 
 
 15 acres 1 r 4 per 29 yds 
 
 6 ft 30 in. 
 113 yds. I qr 2|- nls. 
 1 lea 2 m I fur 39 per 3 
 
 yds 1 ft 3 in 9 lines. i 
 
 8. $105208.25. 
 
 9. 73 cwt 1 qr 21 lbs 7 oz 
 
 12 drs. 
 
 10. 3 per I yd 2 ft lO.in li line 
 
 11. 61 gals 1 pt 3 ,a; gill's^ 
 33 bush 1 pk 1 gal 3 qts 
 
 I pt 2 gilis. 
 £530 : : i i J _ 5. 
 67 yds 2 qrs 2f nls. 
 13 acres 2 r 10 per 10 yds 
 
 6ftl43?Jin. 
 
 COMPOUND DIVISION. 
 Exercise 1. 
 
 1 scr. 18ji. 
 
 12, 
 
 13. 
 14. 
 15. 
 
 16. 2 lbs 5 oz 2 drs 
 
 qrs. 
 
 17. 3 cwt 3 qrs 20 lbs 4 oz. 
 
 18. 2 lbs 4 oz8dwts24Hgrs 
 '9. .$496744 84. " ' 
 
 2 wks 3d 18 h 47 min 
 
 28i sec. 
 6 gals I qt lJ.i4 gills. 
 £4: 10:3^-1-' 120. 
 
 23. 4bush3pks3qtslA8gpt. 
 
 24. 25 cwt 3 qrs 4 lbs' 12 oz 
 14 drs. 
 
 1 mile 1 fur 32 perl MJ ft 
 
 2 Eng ells 2 qrs 3 nls. 
 $14506.23. 
 
 3 acres I r 32 per 2! yi?-. 
 
 20. 
 
 21. 
 22. 
 
 25. 
 26. 
 27. 
 28. 
 29. 
 
 30. 
 
 6 days 8 h 14" rain 57 si^ 
 
 — 432 rem. 
 1 qr5 1bs 14 oz 12fff drs. 
 
138 
 
 ANSWERS TO THE? EXERCISES. 
 
 1. 
 
 2. 
 
 3. 
 
 4 
 
 5. 
 
 6. 
 
 7. 
 
 8. 
 
 9. 
 10. 
 
 $56896.05. 
 
 ^25 : 4 : Syy. 
 
 49 cwt 2 qrs 9 lbs 7 oz. 
 
 llgalsSqtsIptl^^gillg. 
 
 f.'n'les 3 fur 2 per 5 yds. 
 
 5 week^s 5 d 6 h 10 mi„ 
 10 lbs 4 oz 1 scr 33? grs 
 
 1. 
 
 2. 
 3. 
 4. 
 5. 
 
 30 suits. 
 40 dozen. 
 5068-1^ times. 
 13 persons. 
 
 KXERCISE 2. 
 
 ^'•%™'"l%3/ur36per2ycis 
 
 12. £34 : 3 : 8 U- 
 
 13. 3gal3 2qts%5f,gills. 
 
 14. 3 acres 3 r 26 per 4 Yds 3 ft 
 71 in. 
 
 15. 10 tons 7 cwt 2 qrs 9 oz 
 8 drs. 
 
 16. 11 cents. 
 
 17. $856.4298 
 
 18. Gift cents. 
 
 19. $2.64. 
 
 20. 21,43<Vcents. 
 
 EXEKCISE 3. 
 
 12. 37 ounces. 
 
 13. 8 boards. 
 
 14. 15840 steps. 
 
 15. ll^^cwt. 
 
 16. nm yds. 
 
 £268 
 £79: 
 £18: 
 £60: 
 
 : 2 : 5f - |. 
 7:1. ^ 
 11:3. 
 13 10-1. 
 
 6. 13|| spoons. 
 
 7. 21^ lbs. 
 
 8. 5 stoves. 
 
 9. 29 parcels. 
 
 10. 976 ducats. 
 
 11. 67ff^cwt. 
 Exercise 4, 
 
 5. £10 
 
 6. 
 7. 
 8. 
 
 7 •■ 7i - H- 
 Jei7: 16:10*-rM 
 £9:8: Oi J i8s^^* 
 £0:6:7 
 
 1. 7396842 cents 
 
 2. $816007.03. 
 
 3. $7982.98. 
 
 4. 625.35. 
 
 5. $345392.20. 
 
 6. $390.56,8,. 
 
 7. $45.35Ma. 
 
 8. 35939 lbs. 
 
 9. 140 tons 2 
 
 4 drs. 
 
 MISCELLANEOUS QUESTIONS. 
 
 qrs 1 lb 14 oz 
 
 10 
 II. 
 
 12. 
 13. 
 14. 
 15. 
 16. 
 17. 
 18. 
 
 88 lbs 6 oz 4 drs 5 grs. 
 
 1= S^t I qr 19 lbs 9 oz 
 15 drs. 
 
 £9167 : 12 : 9. 
 
 9021 yds 3 qrs. 
 
 84 miles 7 fur 20 per 4 yds. 
 
 13 cwt 4 lbs 11 oz 74^ drs. 
 
 |2'9liVo^9'^-tsl8gr,. 
 
 Jei836:ll:3. 
 
 5. 
 
 39. 
 10. 
 
 SIMPLE PBOPORTION. 
 
 Exercise 1. 
 9. I 7. 38. 
 
 15 
 lOf. 
 
 8. 70f 
 
 9. 17. 
 
 10. 56. 
 
 11. 6. 
 
 12. 360. 
 
!I8ES, 
 
 s 3 fur 36 per 2 yds 
 
 AV, in. 
 
 8 s^. 
 
 ''^,^'sV'?f« gills. 
 3 r 26 per 4 yds 3 ft 
 
 3 7 cwt 2 qrs 9 oz. 
 
 nts. 
 ents. 
 
 2. 37 ounces. 
 
 3. 8 boards. 
 
 4. 15840 steps. 
 5- Hi^cwt. 
 
 6- i^m yds. 
 
 :10J-M. 
 ;* - -If? 
 
 NS. 
 
 oz 4 drs 5 grs. 
 1 qr 19 lbs 9 02 
 
 2 : 9. 
 
 3 qrs. 
 
 7 fur 20 per 4 yds. 
 lbs 1 1 oz 74^ drs. 
 : 9 dwts 18 grs. 
 
 1:3. 
 
 10. 
 
 5fi. 
 
 11. 
 
 6. 
 
 12. 
 
 360. 
 
 ANSWERS TO THE EXERCISES. I39 
 
 I. 
 2. 
 3. 
 
 $21.50. 
 $3G. ^^ 
 
 v.n- 
 
 EXEHCISK 2. 
 
 243 gals 2 qts 1 nt 
 0. 421.74 |i^. ^ ■ 
 
 7. 693 miles 2 fur 10 ner 
 
 8. f 278.3;Hf 
 
 9. 277 cwr 1 qr 13 lbs lO oz 
 
 10. 91 men. 
 
 11. $283.92 A. 
 
 12. $988.!)3 
 
 13. $14.06. 
 
 14. £21 :2:9 
 15 $468,094.3 
 
 16. $58.33i '■ 
 
 17. $50.37. 
 
 18. 284 8 miles. 
 
 19. $7 1. 38 A. 
 
 20. 180 gals 2 qts. 
 
 21. $383.76. 
 
 22. $892. 18A. 
 
 23. $1.02. 
 
 24. 196 feet 9 in." 
 
 25. 66 men. 
 
 26. $7032.545!,,-. 
 
 "• oL^I^^'^s 3 days, nearly. 
 oof days. 
 
 n weeks 3 A day^ 
 
 $140,561 ' ^ 
 
 £ti: 16:0^. 
 
 $216 39. 
 
 124.86.,^. 
 
 h\h tiays. 
 60 conty. 
 '47 bands. 
 
 37. $7.0JfV. 
 
 38. £25: 11 -. ^, 
 
 \ 39. 
 
 40. 
 
 41. 
 
 42. 
 
 43. 
 
 44. 
 
 45. 
 46. 
 47. 
 48. 
 49. 
 50. 
 51. 
 52 
 
 £31 :3:6. 
 
 55 yds 2 (jrs 3 nis. 
 
 61 cwt 2 qrs 15 lbs. 
 
 $509.91-,2i^;V- 
 
 27 gals 1 pt I gill. 
 
 $116.73. 
 
 $1-25 55. 
 
 204 bushels. 
 
 $51. 58^^. 
 
 82^ cents. 
 
 1 9^ f cents. 
 
 28. 
 29. 
 30. 
 31. 
 32. 
 33. 
 34. 
 I 35. 
 36. 
 
 £90: 12 \i. 
 
 103 feet 5 in 10 lines. 
 - $6.30. 
 
 53. 499J miles. 
 
 54. 2643f miles. 
 
 55. $I2.15W. 
 
 56. $40.72. 
 
 57. $1.10. 
 58 $2.02^]. 
 
 59. II days 9=// hours. 
 
 60. $193.60. 
 
 61. $33.58. 
 
 62. $744.92*8. 
 
 63. 33„V. cents. 
 
 64. 286.5^. 
 
 65. 10.^^, days. 
 
 66. $443,484. 
 
 67. $83.32. 
 $443.58. 
 $1.76. 
 321 men. 
 34 days. 
 70 cwt 2 qrs 155 lbs. 
 
 73. 28-1 days. ^ 
 
 74. $92.9 If 
 
 75. $I4.94|. 
 
 68. 
 69. 
 70. 
 71. 
 
 72. 
 
 1. 120 acres. 
 
 2. $24.40 
 
 3. 4662 bushels. 
 
 4. $76.85. 
 
 5. 144 foet 3 -flinches. 
 
 COxMPOUND PHOPOirnON. 
 6. $.30.16, 
 
 7. 33 (lays. 
 
 8. $1098.50. 
 
 9. 85 men. 
 to. 339 miles 
 
 a 
 
 fur. 
 
;l 
 
 140 
 
 ANSWERS TO THE EXERCTSES. 
 
 11. $l92.S8f. 
 
 12. 104 cwt I7A- 
 
 13. «IG40.3,'Ji 
 l^i. 50Af (lays. 
 15. IGjfi^ days. 
 
 i5- Ih'h ^ays. 
 
 17. $1004. 
 
 18. 10 men. 
 
 lbs. 
 
 !'•>. 72 acres 3 r 13.^ per. 
 
 20. 3p (Liys. 
 
 21. $il3.G!i. 
 
 22. $129.81. 
 
 23. 11,1. days. 
 
 24. 33 men. 
 
 25. $18.37. 
 
 1. 
 
 2. 
 
 GREAT EST COMMON MEASURE. 
 
 1. 
 
 2. 
 3. 
 
 5. 
 3. 
 
 4. 
 5. 
 
 4. 
 5. 
 
 7. 
 8. 
 
 2. 
 2. 
 
 10. 
 It. 
 
 5 
 2 
 
 4. 
 
 6. 
 
 9. 
 
 9. 
 
 93. 
 
 12. 
 
 12 
 
 6. 
 
 6. 
 
 LEAST COMMON MULTIPLE. 
 
 I"' 
 
 1. 315. 
 
 2. 120. 
 
 3. 10098. 
 
 4. 720. 
 
 5. 15120. 
 
 6. 795G. 
 
 7. 2520. 
 
 8. 120. 
 
 9. 240. 
 
 10. 4788. 
 
 11. 11592. 
 
 12. 2520. 
 
 "VULGAR FRACTIONS. 
 ExEnciSE 1. 
 
 13.692408G4. 
 
 14. 128707425. 
 
 15. 536130. 
 
 16. 10228140. 
 
 1. 1 
 
 2. f,. 
 
 4 
 5 
 6. 
 
 -4''4^H=^. 
 Jfifi. 
 »1 9- 
 
 7. ,^. 
 
 9. -,',. 
 
 10. f 
 
 11- ffff. 
 12. -.Ws^,. 
 
 
 
 E.XEIICISE 2. 
 
 1. 138f 
 
 2. 1. 
 
 3. 86. 
 
 4 
 5. 
 6. 
 
 105 ,¥3. 
 
 8. I0Jf^3. 
 
 9. 408'^^. 
 
 10. 6944X 
 
 11. 8610'^o, 
 
 12. 6734. 
 
 1- ^^^. 
 3. ^^^^±. 
 
 4. 
 5. 
 6. 
 
 EXERC 
 
 ''mi"-. 
 
 ISE 3. 
 
 7- '^f?^. 10. ^oj)\D-,i 
 9. ^fj-^. 12. fy.a. 
 
 
 
 ExEncisE 4. 
 
 3. 9\V 
 
 4. 
 5. 
 6. ■ 
 
 
 7- af^- 
 9. 238,. 
 
 10. ,\%%: 
 
 11- 14xV 
 12. « ' 
 
 10. 
 
 II. 
 
 12. 
 
 1- A. 
 
 2. 22J 
 
 3. /,. 
 
 1. 
 2. 
 3. 
 4. 
 6. 
 
 7TT " 
 
 196.^, 
 
 1. 
 2. 
 
 ■6^0. 
 
 1. 2 qrs 1 
 
 2. 1 peck 
 
 3. 2 roodf 
 
ANSWERS TO THE EXKRrrsES. 
 
 Exercise 5, 
 
 141 
 
 2 .TO 40^ « J8 
 
 ■ m, 00, m, m: 
 
 2 ilWt _216(^ ma ^)0 2268 
 
 2,'320, 2520, 2520; Zm, 'mF 
 
 ^ 10020 IlOll 11088 11 15 J 
 
 12012, 12012, 1201;> 12012; 
 
 '''^■^^ jW5r> 5010 a5(!l 748() 
 
 4. 
 
 0. 
 
 71120, 7020; "7020, 70;X)7 "7020: 
 288 189 221 432 HUti 
 .»(, 504, 50i; "504, 5047 
 
 10. 
 
 11. 
 
 12. 
 
 g 48195 138«0 KW-'JO 15708 32725 
 ■ 08905; 58905," 58905; ,580()5, 5,S905; 
 7 .2;Wi2i. 57120_ H922(J_ 2;>5.%0 2154S0 
 271320, 271320, 271320, "2713207 "271320" 
 g iT2S_ 3m_ 2m _832 
 561{i, oOUi, 5616; "Soia 
 9. J^Jl'L J*J"8« 1«89.>5 42H208 30J212 
 705132, 705132," 705-132,' "7051327 ikiSir 
 J01680_ jmn_ 12582!} 100440 
 343170, 343170, 34;n76, inSlTOT 
 _2717 J'04_ Ji688^ 5824 2816 
 915^ 9152, 9152, 915^ "9152; 
 5W76 18734 42891 32;>38 43848 
 53244, 53214, 53244, 532i:j; 53214: 
 
 Exercise 6. 
 
 1. 
 2. 
 3. 
 
 22i. 
 
 4. 
 5. 
 6. 
 
 
 1. Mf of a pound. 
 2- 4 iir of a quarter. 
 ^- rs^TTTT of a (lay. 
 4. 1 96 j\ perches. 
 5- H of an hour. 
 
 Exercise 7. 
 
 6. 82^ lines. 
 
 10. 1-,^. 
 
 11- iH. 
 12. «^A. 
 
 1. 
 
 2. K 
 
 ■Ns' 
 
 Exercise 8. 
 
 5-/0 T of an acre. 
 HI Eng ells. 
 11.4gil]s. 
 
 of a ton. 
 
 o -l■J■7- 
 3 3 .' s u u 
 
 ExEiicisH n. 
 
 
 !?• ^'^• 
 
 5^d. 
 
 1- 2qrs 12 lbs 8 02. 
 
 .2- I peck 1 gal 1 qt H pt. 
 
 o. ^ roods. 
 
 4. 
 
 .5, 
 G. 
 
 2.^ : 4|d - ^. 
 1 fur 16jB^ per. 
 1 ft Sin 7g^ lines. 
 
142 
 
 AN8WEU8 TO THE EXERCISES. 
 
 7. 8oz 3dr8 12 
 
 8. 'J l)U8h«lH. 
 
 y. 1 bush 3 pkH 
 
 10. 34 gal8 1 qt 1 
 
 1- lm^ 
 
 2. 2H. 
 
 3. 4.^%.. 
 
 5. 1,1/^. 
 
 6. 23VA. 
 
 7. un- 
 
 4- I-xW/«. 
 
 1. If. 
 
 2. A. 
 
 3. 1^ 
 
 4- 71M- 
 
 5. 38^f. 
 
 6. 79|J. 
 7.4. 
 
 1. 1*. 
 
 2. 1,^4. 
 
 3. -HI. 
 
 4- m- 
 
 6. 2Jf. 
 
 7. *i. 
 
 grs. 
 
 3,/^- qts 
 
 pt3/„- gills. 
 
 11. 10 miles I fur It-A per 
 
 12. 2 acres Ir 30fg^ per. 
 
 13. 3 qra 18 lbs. 
 I 14. 6 hours 59 min 66 sec. 
 
 rXEHOISE 10. 
 
 8. 
 
 9. 
 10. 
 11. 
 12. 
 13. 
 14. 
 
 II, 
 
 6. 
 7. 
 8. 
 
 8 
 9, 
 
 10 
 
 11. 
 
 12. 
 
 13. 
 
 14. 
 
 8. 
 
 9. 
 10. 
 11. 
 12. 
 13. 
 14. 
 
 mm- 
 
 46,W4 
 309,aVi^. 
 
 . 6H. 
 
 Exercise 
 , I. iff. 
 
 26./aS-. 
 
 EXEUGISE 12. 
 
 .6 
 4 B' 
 
 -A. 
 
 • mi 
 ■ m. 
 
 E.\i:ncrsE 13. 
 
 17^. 
 7J.i 
 
 Hh 
 
 6,V. 
 
 15. 
 16. 
 17. 
 18. 
 19. 
 20. 
 
 9. 
 
 ir. 
 
 11. 
 12. 
 
 15. 
 
 16. 
 
 17. 
 
 18 
 
 19. 
 
 20. 
 
 17^. 
 
 mi 
 
 13 uVo^Va'l • 
 
 
 mm- 
 
 15. ^m- 
 
 16. ^. 
 
 18. Hm- 
 19- 2m. 
 
 20. 1, 
 
 1. 
 
 2. 
 3 
 
 4. 
 5. 
 
 DECIMAL FRACTIONS. 
 Exercise I, 
 Thirty-six, hundrerltlis. 
 Sixty-four, thousandths. 
 Two hundred and seven, thousandtli') 
 Six hundred and fltly-two, thousandths. 
 Sevonty-lwo, hundred lliousandths 
 
 6. Thirty-four, and live hundred and six, thousandths. 
 
RorsEs. 
 
 nilea 1 fiir IJ-jS^ per. 
 3re8 Ir 30 fg^ per. 
 '8 18 lbs. 
 3ur8 59 mill 56 sec. 
 
 ANSWteRS TO THE EXEUCISES. 
 
 143 
 
 15 
 
 • mh 
 
 J() 
 
 17, V 
 
 17 
 
 • im- 
 
 18 
 
 'tAWift. 
 
 19 
 
 mk- 
 
 20 
 
 ■AWAWu 
 
 9. 
 
 mih 
 
 10. 
 
 3.W6- 
 
 11. 
 
 i^h- 
 
 12. 
 
 mm- 
 
 15. 
 
 983^.V 
 
 IG. 
 
 m- 
 
 17. 
 
 ^iUh 
 
 18 
 
 5M. 
 
 19. 
 
 -^A 
 
 20. 
 
 iHU' 
 
 15. 
 
 ^m- 
 
 16. 
 
 u- 
 
 17. 
 
 2/6¥a. 
 
 IS. 
 
 Hm- 
 
 19. 
 
 nn- 
 
 20. 
 
 1.AV,. 
 
 5. 
 
 12' Six"ll,m,'r'l'l"' "'i'' '"■'■"ly-r""'-. Inuirli-eJ t,illi„„U,s 
 E.\EIICISE 2. 
 
 I. 
 
 2. 
 3. 
 4. 
 5. 
 
 1. 
 2. 
 3. 
 
 •016. 
 
 •OiJHO. 
 
 •000640. 
 
 •84000000700 
 •00000000350G. 
 
 30-9272. 
 
 IGI-13839. 
 
 II3-5.'i,)| 
 
 1. 
 2. 
 3. 
 4. 
 
 1. 
 2. 
 3. 
 
 460G51G. 
 
 1-267. 
 18-80I4G. 
 •40366. 
 4-6855. 
 
 •IIO'i. 
 ■18468, 
 •477862. 
 6-3583. 
 
 1. 18-7. 
 
 2. 9-765625. 
 
 3. 364-285. 
 
 4. 5-G058345 + 
 
 5. 1.;'4. 
 
 6. 79-2-6. 
 
 1. 
 
 2. 
 
 •375. 
 ■040875. 
 
 thousandths. 
 
 3. •183. 
 
 4. •2. 
 
 5. •69583. 
 
 •000408. 
 •000000 1 07G00. 
 •00001)96000. 
 •000000-20064, 
 •00702. 
 
 6. 
 
 7. 
 
 8. 
 
 9. 
 
 10. 
 
 E.XEHCISE 3. 
 
 5. 487.7719. 
 
 6. 1)6.6120199. 
 
 7. 284-954336. 
 
 8. 835-75511. 
 ExKncisE 4. 
 
 5. 
 6. 
 
 7. 
 
 155-307. 
 
 5-0G73. 
 
 10-94814. 
 
 E.XERCISE 5. 
 
 46-0842. 
 186-3648. 
 ■4896. 
 •0-2548. 
 
 Exehcise 0. 
 
 7. 7'608524-t- 
 
 8. 97-5. 
 359-2. 
 
 8. 
 
 9. 
 
 10. 
 
 ■92822> 
 
 •62G8858. 
 
 2'18076. 
 
 5. 
 6. 
 
 7. 
 8. 
 
 9. 
 
 10. 
 11 
 
 9. 
 lu. 
 11. 
 12. 
 
 12. 
 
 13. 
 14. 
 15. 
 16. 
 
 23-226. 
 994-34396 + 
 Exercise 7. 
 
 6. -009765625 
 
 7. -9. 
 
 8. •0-227. 
 
 9. 6 2617058. 
 10. 35'6883li. 
 
 •6426. 
 •3933. 
 •262G32. 
 3-02778. 
 
 3 -.56 7. 
 234-5. 
 
 2-2119032 + 
 2-1896482 -f 
 1 32- 10759. 
 
I' I 
 
 144 
 
 11. -Tl 
 
 12. -5625. 
 
 ANHWfiRS TO THE JiXEllOtStH. 
 
 13. 1623076. 
 
 1. #. 
 
 2. U- 
 3- xHs- 
 
 6. i. 
 
 7. 8J. 
 
 H. -6 1 2244897959. 
 15. 134-226337448. 
 
 10 ■003O2305O76'2nG07. 
 ExKnf;i8K 8, 
 
 8. Ul 
 
 12. 9 ,?^: 
 
 j3- m. 
 
 EXKHCISK 9. 
 
 IS. fill. 
 
 16- iifiJi. 
 
 '7. iUH- 
 
 19. 6H. 
 
 20. 21^|f J. 
 
 1. -58, 
 
 » 
 
 2. •32979452054. 
 
 3. 034375. 
 
 4. -5. 
 
 5. -847918. 
 
 6. -21875. 
 
 7. -0703125. 
 
 8. -0246527. 
 
 9. -2225. 
 
 10. -6875. 
 
 11. -594948 + 
 
 12. -7808984375. 
 
 13. 031521739, 
 
 14. -0365. 
 
 15. -361445783. 
 
 Exercise 10. 
 
 1. 
 2. 
 3. 
 4. 
 5. 
 
 Iqr 18 lbs 2 02 6 4 drams. 
 
 39 minutes 27-36 soc 
 
 25 P''- 1 yd 1 ft 1 1 in 2-8992 lines. 
 
 3 lbs 6 oz 6 dwts 17-28 grs. 
 
 14s Ij d. 
 
 6. 7 sq perches. 
 
 7. 1-1136 quarts. 
 2 yds 3 qrs 2 nis. 
 
 2 roods 18 per 2 yds 3 a 112.32 in. 
 41bs. 8oz 1-6128 drs. 
 1-8176 gills. 
 
 12. 5lur39per3yds2ft2 64in. 
 
 13. I qr 1 lb 12 oz 12-8 drs 
 
 14. 8 sq ft 35-5248 sq inches. 
 
 15. 3-1 quarts. 
 
 8. 
 
 9. 
 10. 
 11. 
 
 16. 
 
 7cwt 3 
 
 yr: 
 
 ib 
 
 'S o OZ. 
 
ctatti. 
 
 4i8079r)9. 
 26337448. 
 
 530507620007. 
 
 15- m- 
 
 >6- mi- 
 
 18. m- 
 
 19. 6^4. 
 
 20. 2I*|?J. 
 
 ANSWERS TO TIIK RXEllCISES. 
 
 145 
 
 14375. 
 1739. 
 
 783. 
 
 PROPORTION OF FRACTKJNS. 
 
 '• 'if Jays. 
 2. $16.3342. 
 
 4 $20.I9». 
 
 6- SlOgJ. 
 
 1. 2. 
 
 2. $118.67i. 
 
 7. 35-79018gaIIon8. 
 
 8. $1 17-5622807. 
 
 9. 48-I7C516 1b8. 
 10. $2 r)69896907. 
 H. $34,375. 
 
 12. $105-2350877. 
 
 MISCELLANEOUS. 
 
 3 
 4. 
 6. 
 6. 
 
 7. 
 
 mi 
 
 $387,701. 
 1008. 
 
 8. 12736 ounces. 
 
 9. 185748 inches. 
 
 10. 2 roods 29 f^q per 4 sq yds 
 3 so ft 1.34 sq in. 
 
 11. 2 1b8 7oz 1 dr 1 8cr4ers. 
 
 12. 143 19 ounces. j 
 
 13. 
 14. 
 
 15. 
 
 16. 
 
 17. 
 
 18. 
 
 19. 
 
 20. 
 
 21. 
 
 22. 
 
 23. 
 
 24. 
 
 25. 
 
 26. 
 
 138 Tf r. 
 
 11-432389937. 
 
 $167.83. 
 
 100-27754. 
 
 6-1187. 
 
 •704352. 
 
 $321.56^+, 
 
 6 fur 8 i^rPer. 
 
 $3784.75^5^. 
 $434.04^5. 
 
 $■■?<; ;5.75|J. 
 $2.124. 35 m|. 
 $4024.31iZj. 
 $76640.58-4fttf. 
 
 1. 
 2. 
 3. 
 
 4. 
 
 6. 
 
 6. 
 
 7. 
 
 8. 
 
 9. 
 10. 
 11. 
 12. 
 13. 
 14. 
 15. 
 
 $652.75. 
 
 $356 25. 
 
 $1801.64. 
 
 $10059.62*. 
 
 $79r).08. 
 
 $4350.24. 
 
 $8673. 
 
 $775396.24. 
 $671422.07. 
 $41391 52^. 
 $937105.16|. 
 $61305.79i. 
 $211967.76 A. 
 $75625.11^. " 
 £1278 : 15. 
 
 PRACTICE. 
 Exercise 1. 
 
 j 16. £3061 : 6. 
 
 17. £3211 : 7. 
 
 18. £26744 : 16: 111 
 
 19. £22583 : 17 : li 
 
 20. £3129 : 2 : lOi* 
 
 21. $4419.90. 
 
 22. £73 : 3 : 8. 
 
 23. $1162661 79*. 
 
 24. £11945: 9 
 
 25. $1631.12. 
 
 26. $4357.08. 
 
 27. $3903.23,1-. 
 
 28. £7.'?3 • i'> 
 
 29. £561 : 1 :'3. 
 I 30. 48347.51J. 
 7 
 
 7* 
 
tie 
 
 ANSWERS TO l^E EXERCISES. 
 
 1. $433-23*i. 
 
 2. $8558-72. 
 
 3. $449-355725. 
 
 4. I27-2681. 
 
 5. $17985-86^- 
 
 6. $327-73f. 
 
 7. $16-1 ui 
 
 8. $7710-4375. 
 
 9. $159-53f. 
 
 10. $126-51 A. 
 
 11. JE41 : 19:2J. 
 
 12. £470 : 16 : 6|. 
 
 13. £64: Jl : 10, 
 
 14. £32 : 19 : 2. 
 
 15. $1266-09|. 
 
 Exercise 2. 
 
 16 £858 : 18 : 3J. 
 
 17. $491-7234375. 
 
 18. £1136: 17: 1| 
 
 19. $678-1028125. 
 
 20. $1 87.40 ,V 
 
 21. $2858-89fa. 
 
 22. £71 :2:8i. 
 
 23. $1307- 1 7A. 
 
 24. $148-93+. 
 
 25. $9-82 .\. 
 
 26. $67-60. 
 
 27. $34-201 
 
 28. $1293-764, 
 
 29. $623-36^, 
 
 30. $2722-19^1. 
 
 is 
 
 1. 22 cwl 2 qrs 13 lbs. 
 
 2. 1246 pounds. 
 
 3. 87 cwt 1 qr 16 lbs. 
 
 4. 26 cwt. 
 
 5. 107 cwt 2 qrs 14 lbs. 
 
 6. 51 cwt 12 lbs. 
 
 7. 34 cwt 20 lbs. 
 
 8. 108 cwl 3 qrs 1 lb. 
 
 TARE AND TRET. 
 
 9 
 10 
 
 42 cwt 1 qr 2 lbs, 
 18 cwt 6 lbs. 
 
 11. 4 cwt 1 qr 18 lbs. 
 
 12. 14 cwt 2 qrs 23 lbs. 
 
 13. 79 cwt 3 qrs 5 lbs. 
 
 14. 152 cwt 1 qr231bs. 
 
 15. 82 cwt 1 qreibs. 
 
 1. 
 2. 
 3. 
 
 COMMISSION, INSURANCE, 
 
 $68.78 
 
 $58.58 
 
 $408-5544. 
 
 $28-0404. 
 
 $130-8853. 
 
 $928.55 
 
 5. 
 6. 
 
 7. $2221.33 
 8. 
 9. 
 10. 
 
 $215.32. 
 
 $1008.471. 
 
 $56.52. 
 
 11. $129-409. 
 
 12. $443-3756. 
 
 13. $597.36. 
 
 14. $36-102. 
 $521-5512. 
 $63.22. 
 $129.07k 
 $725. 
 $54.80. 
 $167.85. 
 
 15. 
 16. 
 17. 
 18. 
 19. 
 20. 
 
 BROKERAGE. 
 
 21. $15,895. 
 
 22. $176.93f. 
 
 23. $190.64 J. 
 
 24. $206-7731. 
 
 25. $910. 
 
 26. $1532131. 
 
 27. $235.06. 
 
 28. $2540.89*. 
 29. -$98 35. 
 30. $280-91f. 
 
 1. $2616. 
 
 2. S17.14 SSOA 
 
 3. $2466. *"' 
 
 4. $11457.60. 
 
 STOCK. 
 
 5. $830-5084. 
 
 6. .*,77.^2 ,",0 
 
 7. $4684.68-M. 
 
 8. $1092. 
 
 9. $8741.25. 
 
 10. $8602. 1 5-j^. 
 
 11. $6388.08 
 
 12. $4097. 
 
smmmm.- 
 
 SES. 
 
 18:3J. 
 234375. 
 : 17 : 1|. 
 328125. 
 
 : 8}. 
 
 H- 
 
 i- 
 
 L 
 
 ANSWERS TO THE EXERCISES. 
 
 W 
 
 
 qr21b5. 
 lbs. 
 
 jr 18 lbs. 
 qrs 23 lbs. 
 qrs 5 lbs. 
 1 qr 23 lbs. 
 qr 6 lbs. 
 
 :erage. 
 
 . $15,892. 
 . $I76.93f. 
 
 $I90.64|. 
 
 1206-7731 . 
 , $9(0. 
 
 $1532131. 
 
 $235.06. 
 
 $2540.89J. 
 •$98 35. 
 
 $280-91J. 
 
 $8741.25. 
 ?3o02.15-j£5.. 
 
 $6388.08 
 $4097. 
 
 \. 
 
 2. 
 3. 
 4. 
 
 5. 
 6. 
 
 7. 
 
 $24.92. 
 
 $127. 
 
 $106.04. 
 
 $438-5475. 
 
 $886.15. 
 
 $54-52725. 
 
 $1901.25. 
 
 1. $140.25. 
 
 2. $196.80. 
 
 3. $103.84f. 
 
 4. $197-1329. 
 
 5. $135.03. 
 
 1. $25.13-X-. 
 
 2. $560968. 
 
 5. $59.1266. 
 4. $5-2475. 
 
 6. $4-3774. 
 
 1. 
 
 2. 
 
 3. 
 
 4. 
 
 5. 
 
 6. 
 
 7. 
 
 8. 
 
 9. 
 10. 
 II. 
 12. 
 
 Amount. 
 $857-337. 
 
 $1380.151. 
 
 $767-5457. 
 
 $814.6549. 
 
 $995,072. 
 
 $3341. 56 j. 
 
 $1398.68. 
 
 $1370.0866. 
 
 $6t>:.50. 
 
 $944-3327. 
 
 $1045-0748, 
 
 $3029-9447. 
 
 1. !?=482.40i. 
 
 2. $908.04. 
 
 3. $6i5.v3. 
 
 4. $829.71. 
 
 5. $484-9622. 
 
 SIMPLE INTEREST. 
 
 8. 
 
 9. 
 10. 
 11. 
 12. 
 13. 
 14. 
 
 6. 
 
 7. 
 
 8. 
 
 9. 
 
 10. 
 
 EXEIICISE I, 
 
 $312. 
 
 $134.9831. 
 
 $375.63|. 
 
 $674.88. 
 
 $50.29|. 
 
 $46095. 
 
 $139.20. 
 
 Exercise 2. 
 
 $188.65. 
 
 $45-5155. 
 
 $138-3754. 
 
 $42-6313. 
 
 $142.44. 
 
 Exercise 3. 
 
 6. $27-306. 
 
 7. $18-9899. 
 
 8. $26.59if. 
 
 9. $13.90. 
 10. $21.8 lyig. 
 
 15. $65-736. 
 
 16. $142.72J. 
 
 17. $155-682. 
 
 18. $55.82i-. 
 
 19. $59.40. 
 
 20. $186.82J. 
 
 11. $55-3588. 
 
 12. $210-8083. 
 
 13. $37.49§. 
 
 14. $1475658. 
 
 15. $60-2466. 
 
 11. 
 12. 
 13. 
 14. 
 15. 
 
 $31.15ff. 
 
 $11-1788. 
 
 $27-345. 
 
 $28-7345. 
 
 $13.35|ff. 
 
 COMPOUND INTEREST. 
 
 DISCOUNT. 
 
 Exercise 1. 
 
 6. $977.4246. 
 
 7. $034.77. 
 
 8. $1557.40. 
 
 9. $851.52. 
 10. $445.60. 
 
 Interest. 
 
 $116-737. 
 
 $140-151. 
 
 $67-1457. 
 
 $130.6549. 
 
 $75,072. 
 
 $381.56i. 
 
 $466 68. 
 
 $370.0866. 
 
 $61.50. 
 
 $196.3327. 
 
 $155-0748. 
 
 $629.9447. 
 
 11. $2335 30. 
 
 12. $3387,01 
 
 13. $71-5284! 
 
 14. $13.2789. 
 
 15. $32.04. 
 
U8 
 
 ANSWERS TO THE EXEROISEg. 
 
 1. $93I-03/i4. 
 
 2. f970'8737. 
 
 3. 
 
 4. 
 
 Exercise 2. 
 
 f 247.4 1. 
 fdl6'2962. 
 
 5. IGC9 C437, 
 
 EQUATION OF PAYMENTS, 
 
 !• 4-,^ months. 
 
 2. 6 1 months. 
 
 3. 8 ji moDihs. 
 
 4. 10^^ months. 
 
 5. 2^1 months. 
 
 6. 44 months. 
 
 7. Sjf^ months. 
 
 8. 8| moDihs. 
 
 1. 26 cents. 
 
 2. 460 pounds. 
 
 3. 128 pounds. 
 
 BARTER. 
 
 4. $9.4039. 
 
 5. 2 cwi 12}? lbs. 
 
 6. 27V»3 Hia. 
 
 ' ' '-; (ients. 
 9. 22 sheep. 
 
 6. 
 
 PROFIT AND LOSS. 
 
 J. $53 57. 
 2. $144. 
 
 1- HH percent. 
 2. 114 per cent. 
 3- 4|^^ per cent. 
 
 1. $2332.60. 
 
 2. $1030.08. 
 
 3. $1393.20. 
 
 1. 32ffi cents. 
 
 2. $2245 45 A. 
 
 3. $1840. " ' 
 
 3. 
 
 4. 
 
 Exercise 1. 
 
 $9.10. 
 $12.60. 
 
 EXEHCISE 2. 
 
 4. 4f « per cent. 
 
 5. 5| per cent. 
 G. 81 per cent. 
 
 Exercise 3. 
 
 4. $23-265. 
 
 5. $884.80. 
 
 6. $35.52. 
 
 Exercise 4. 
 
 4. $169-64f, 
 
 5. $309.73 B1-, 
 
 6. $70-6535^1"' 
 
 5. $12.77^. 
 
 6. $95.85. 
 
 7. 6i\ per cent. 
 8- 7| per cent. 
 
 7. $232.50, 
 
 8. $294.30. 
 
 7. $27I304A, 
 
 D' 
 
 2. 
 
 A'9 6 
 
 
 B's - 
 
 
 C's- 
 
 3. 
 
 A's 
 
 
 B's- 
 
 
 C's - 
 
 4. 
 
 A's g 
 
 
 B's - 
 
ANSWERS TO THE EXERCISES. 
 SIMI'LE PARTNERSHrP. 
 
 149 
 
 1. A's sliare$392-l5,^8 
 B's !f;5G!)'84-}.5l'^. 
 
 2. A's share $2;i!)0-60 ^JUO- 
 
 B's $3 180-43 ,Wi! 
 
 C's $2078-95 /iiJ.B- 
 
 3. A's gain $1181 25''^"' 
 B's $975. 
 
 C's $1593-75. 
 
 D's $750. 
 
 4. A's loss $42i. 
 
 B's $340. 
 
 C's $935. 
 
 5. A's share $1622-081414, 
 
 B's $424-25mfe 
 
 C's $553 65^ft. 
 
 6. A's gain $2 1 95- |i|a 
 B's $3064-88^. 
 
 COMPOUND 
 
 A's 8hare$108.62|ff. 
 
 B's $182.1242^.. 
 
 C's $122.24fg^. 
 
 D's • " ■ ' 
 
 2. 
 
 •$187.1 V,^. 
 A's share $368.42 ,!^. 
 
 B's $394.73if. 
 
 C's $736.84,^. 
 
 A's gain $1486.453^^ 
 
 B's $2601. 29 „\. 
 
 C's $23I2.25^f. 
 
 A's gain $121i.53ii 
 B'e $888.46,^3. 
 
 A's loss $126-66^. 
 
 B's $95. 
 
 C's $158-331 
 
 A's share $962-83(21-. 
 
 B's ^$1444-24^- 
 
 C's $ 1 504-42 ^(<, 
 
 D's $2888-49 ,a^l 
 
 A's loss $3142-22f 
 B's — r- $3647-224. 
 
 C'8 $3310-55|, 
 
 10. A's share $3300. 
 
 B's $2760. 
 
 C's $36d0. 
 
 A's share $2 155- 17.5* 9 . 
 
 B's $2894-08.J7.|. 
 
 C's $3448-27 M^'. 
 
 II 
 
 D's 
 
 $4002-46:0-/, 
 
 8 3 
 
 12. A's gain $606-66«? 
 B's $793-33^ 
 
 PARTNERSHIP. 
 
 6. A's share $244. 02i4>!^. 
 
 B'e . $209.16,^. 
 
 C'8 $326.81-}^^. 
 
 6. A's Ices 
 
 $209. 90f^. 
 
 B's $279.87 ,Vff. 
 
 C's — $400.22-ff g. 
 
 7. A's 
 B's 
 C's 
 
 gain 
 
 $87.0911. 
 $93.J4i4. 
 $1 19.75ff. 
 
 S. A's sharp $1696 921^2 
 B's $1003.07V,V 
 
 1. 
 
 441. 
 
 2. 
 
 3375. 
 
 3. 
 
 256. 
 
 4. 
 
 5832. 
 
 u. 
 
 6561. 
 
 6. 
 
 1024. 
 
 7. 
 
 262144. 
 
 INVOLUTION. 
 
 8. 8.3521. 
 
 9. 537824. 
 
 10. 177I56I. 
 
 11. 729. 
 12 6084. 
 
 13. 2197. 
 
 14. 6859. 
 
 15. 
 16. 
 
 17. 
 18. 
 19. 
 20 
 
 6 V J • 
 
 i4' f S fi 4-. 
 13651919. 
 •a OX' 
 
m 
 
 I. 
 
 ANaWEBS TO THE EXERCISES. 
 
 0. 
 
 6. 
 
 7. 
 
 8. 
 
 9. 
 10. 
 II. 
 12. 
 
 34. 
 
 2. 248. 
 
 3. 25'8069758. 
 
 4. 750-964712. 
 33'«81. 
 6031. 
 20.784. 
 2-47847879. 
 6-26498. 
 41-569219. 
 
 imiuioe. 
 
 •17. 
 
 1. 34. 
 2^.246. 
 
 3. 56. 
 
 4. 432. 
 
 5. 2436. 
 
 1. 375. 
 
 2. 23. 
 
 EVOLUTION. 
 
 Exercise 1. 
 
 13. 
 
 14. 
 
 15. 
 
 16. 
 
 17. 
 
 18. 
 
 19. 
 
 20. 
 
 21. 
 
 22. 
 
 23. 
 
 24. 
 
 Exercise 2. 
 
 6. 1234. 
 
 7. 497.933859. 
 
 8. 86. 
 
 9. 179. 
 
 10- *. ^, f 
 11. 26-1. 
 
 Exercise 3. 
 132. 5. 26. 
 
 12!. 6. 48. 
 
 s> 'n> ft"' 
 6 15142259. 
 •244948974. 
 1-62018517. 
 
 5-5. 
 
 23.7065391. 
 
 8-86002257. 
 
 12.062. 
 
 28 
 
 1917.04668. 
 
 1578. 
 
 90.6. 
 
 12. 3.65. 
 
 13. 23-45. 
 
 14. 10-3. 
 
 15. 34-2. 
 
 16. 38. 
 
 7. 32. 
 
 8. 19. 
 
 DUODECIMAL xMULTIPLIGATION. 
 
 Exercise 1. 
 
 1. 29 ft 8 in 3 lines. 
 
 2. 36 ft 2 in. 
 
 3. 38 ft 3 in 2 1. 
 
 4. 107ft II in 41. 
 
 5. 133 ft 6 in 8 1 6'" 
 
 6. 171 ft 5 in 11 14"' 
 
 I. 33 ft in 9 1. 
 
 2 61 ft 4 in 4 L 
 
 3. 142 ft in 1 1. 
 
 4. 22 ft 7 in 3 I. 
 
 5. 187 ft II in 3 I. 
 
 6. 28 ft in 8 1. 
 
 7. 85 ft 3 in 6 1. 
 
 8. 288 ft 10 in .1 I 
 
 9. 78 ft 2 in 8 1. 
 10. 75 ft 5 in 7 I 6'" 
 
 Exercise 2. 
 
 7. 68 ft 1 in 8 1 3'" 
 
 8. 96 ft 4 in 10 lines 9'" 1 
 
 9. 96 ft 9 in 5 1 4'i' ll"" 
 
 10. 170 ft 3 in 5 1 7i" 
 
 11. 550 ft II in 013'!' 
 
 12. 7704 ft 6 in 5 1 7"" 3"i" 
 
 nil 
 
 11. 
 12. 
 13. 
 14. 
 15. 
 
 140 ft 8 in 8 1. 
 49 ft 1 in. 
 48 ft 5 in 9 1 41" 
 86 ft 3 in 7 1. 
 30 ft 6 in 4 1 4'" 
 
 16. 58 ft 9 in 4 1. 
 
 17. 155 ft 10 in. 
 
 :!5ft 
 
 U 111 
 
 2 1. 
 
 19. 100 ft 10 in 5 I 6'" 
 
 20. 1360 ft 5 in 8 1. 
 
IBS. 
 
 1 -i ' 
 259. 
 974. 
 517. 
 
 391. 
 257. 
 
 )68. 
 
 3.65. 
 
 23-45. 
 
 10-3. 
 
 34-2. 
 
 38. 
 
 ANSWERS TO THE EXBROISKS. 
 
 161 
 
 MISCELLANEOUS. 
 
 , 7. 32. 
 I 8. 19. 
 
 ON. 
 
 8 1 3'ii 
 
 10 lines 9'" Hi"' 
 5 1 4"" II"" 
 5 I 7"' 
 n 013"! 
 n 5 1 7"" 3"" 
 
 n 8 1. 
 
 9 1 4"' 
 
 7 1. 
 
 4 1 4"' 
 
 4 1. 
 in. 
 1 2 1. 
 in 5 1 6"" 
 in 8 1. 
 
 1. $156.55. 
 
 2. $72.45 
 
 3. $548.48^. 
 
 4. $23.43^. 
 
 5. $1497 68. 
 
 6. $50,841. 
 
 7. $225.16. 
 
 8. 2cwt3qrs 196 lbs. 
 
 9. $88.09. 
 
 10. 8 lbs 2? oz. 
 
 11. 22152. 
 
 12. UHdays. 
 
 13. 1A\. 
 
 14. 
 15. 
 16. 
 17. 
 
 18. 
 
 19. 
 
 20. 
 
 21. 
 
 22. 
 
 23. 
 
 24. 
 
 25. 
 
 26. 
 
 27. 
 
 28. 
 
 29. 
 
 •2,3-571428,-25, 75. 
 
 293. 
 
 $1000. 
 
 A's share $137. Olff. 
 
 B's $78.98H-. 
 
 2,V 
 
 30. 
 31. 
 
 32. 
 33. 
 34. 
 35. 
 36. 
 37. 
 38. 
 
 31 m?. 
 
 $789.42 ». 
 
 64. 
 
 73-,^- cents. 
 
 8J per cent. 
 
 $204 70. 
 
 120 pounds. 
 
 $60.48. 
 
 268 feet 5 in 4 1. 
 
 A's share $1261. 72|f. 
 
 B'o 5i734.56fA 
 
 C's $803.70^4. 
 
 624. 
 
 2267 days 23 h 12 min 
 
 24 sec. 
 
 69 yds ^ nails. 
 
 $2769. 
 
 £741 : 2 : 6. 
 
 218i bushels. 
 
 $24.00.08- 
 
 6040. 
 
 141.23ft. 
 
 hhdds 9 gals 3 qts 
 
 39. 24517 
 
 1 gill. 
 
 40. $807.66.Jf. 
 
 41. $995.92^. 
 
 42. $536,461 
 
 43. $88.38. 
 
 44. 23. 
 
 45. $3706. 37^ 
 
 46. A's share $2202.35/AS7. 
 
 B's $3024. 
 
 C'6 $2021.04mg. 
 
 $27.96. ^^ 
 
 39414 feet. 
 $257.55 ,fi6>. 
 
 47 
 48. 
 49. 
 
 50. 
 51. 
 52. 
 53. 
 54. 
 55. 
 
 66. 
 
 57. 
 
 58. 
 
 59. 
 
 60. 
 
 61. 
 
 62. 
 
 63. 
 
 61 
 
 65. 
 
 66. 
 
 67. 
 
 68. 
 
 69. 
 
 70. 
 71. 
 
 TO 
 73. 
 
 74. 
 75. 
 
 .375,-671428,-54,-5. 
 
 $54-5387i. 
 
 $2896 33.4. 
 
 $10167.60. 
 
 2 roods 20 sq per 20 sq 
 
 yds 6 sq feet 84 sq inches. 
 
 $61.41|. 
 
 8H .iionths. 
 
 22i? days. 
 
 $152.71. 
 
 $79.68^. 
 
 $196.15A-. 
 
 4idays. 
 
 $993.20. 
 
 742. 
 
 $14.66'^. 
 
 $7.7Ii. 
 
 $1780.10. 
 
 A's share $340.35-^. 
 
 B's $255.56fi8. 
 
 C's $234.07 AZj. 
 
 48|| bushels. 
 24. 
 
 lO^f cents. 
 •4, -875, -3, -8. 
 
 $685.85. ■' 
 
152 
 
 ANSWERS TO THE EXERCISES. 
 ANSWERS TO EXERCISES ON METRIC SYSTEM. 
 
 9 
 10 
 
 11 
 
 12, 
 13. 
 
 14. 
 15. 
 16. 
 
 17. 
 
 1. 1795 centimes. 
 
 2. 17 francs 4 decimes 2 c. 
 
 3. 6907654 millimetres. 
 
 4. 7 decams 2 metres 4 decims 
 
 8 centims. 
 
 5. 6 myriams 4 kiloms 2 hec- 
 
 toms 9 metres 7 decims 4 
 centims. 
 
 6. 9000 milligrammes. 
 
 7. 94703 milligrammes. 
 
 8. 2 kilogs 4 hectogs 9 grams 
 
 6 decigs 4 centigs 8 
 milligs. 
 . 852 francs 5 centimes. 
 . 66 myriams 3 kiloms 9 
 hectoms 2 metres 8 de- 
 cims 7 centims 7 millims. 
 180 kilogs 4 hectogs d 
 decags 7 grammes 2 
 decigs 2 centigs 8 mil- 
 ligs 
 16 francs 8 d 5 c. 
 85 myriams 6 hectoms 6 
 decams 9 decims 3 mil- 
 lims. 
 20 kilogs 6 hectogs I gram 
 
 5 decigs 7 miUigs. 
 1735 fr 2 d 3 c ; 2726 fr 
 7 d 9 c ; 8428 fr 2 d 6 c. 
 
 18 
 
 20 
 
 149 myriams 6 kiloms 7 
 hectoms 4 dreams 4 
 metres. 
 
 2245 myriams 1 kllcm 1 
 hectom 6 decams. 
 
 58 kilogs 8 hectogs 3 
 decags 3 grammes 7 de- 
 cigs 6 centigs 5 milligs. 
 
 21. 
 22. 
 23. 
 24. 
 25. 
 
 26. 
 27. 
 28. 
 29. 
 
 30. 
 
 31. 
 32. 
 33. 
 34. 
 
 418 kilogs 3 hectogs 7 
 decags 3 grammes 4 
 decigs 4 centigs. 
 138 francs 8 d 3 c. 
 416 francs 4 d 9 c. 
 19. 415 myriams 3 kiloms 5 
 hectoms. 
 138 myriams 4 kiloms 5 
 
 hectoms, 
 27 myriams 6 kiloms 9 
 
 hectoms. 
 199 kilogs 1 hectog 2 grams 
 
 2 decigs 3 centigs. 
 11 kilogs 5 hectogs 4 
 decags 2 grammes I 
 decig 5 centigs 8 mil- 
 ligs. 
 222 francs 3 d 2 c 
 440 francs 4 d. 
 225 francs 9 d 3 c. 
 194 francs 5 d. 
 2 deoags 4 grammes G 
 
 centigs 4 milligs. 
 15 francs 5 d 9 c. 
 245 frs 9 d. 
 2J days. 
 129 frs 2 d 4 c. 
 150 frs 7 d 8 c. 
 193 frs 8 d 6 c. 
 46 frs 6 d 4 c. 
 55 frs 9 d 6 c. 
 74 frs 6 d 2 c. 
 31 frs 2d. 
 102 frs 9 d 6 c. 
 1072 frsSdOc. 
 Amount 5248 frs 8 d. 
 Interest 748 frs 8 d. 
 
 THE END. 
 
3ES. 
 
 IG SYSTEM. 
 
 9gs 3 hectogs 7 
 
 s 3 grammes 4 
 
 3 4 centigs. 
 
 3S 8 d 3 c. 
 
 3S 4 d 9 c. 
 
 •iams 3 kiloms 5 
 
 ns. 
 
 'iams 4 kiloms 5 
 
 ns. 
 
 ams 6 kiloms 9 
 
 IS. 
 
 s 1 hectog 2 grams 
 ?s 3 centigs. 
 [3 5 hectogs 4 
 2 grammes I 
 > centigs 8 mil- 
 
 s3 d 2 c, 
 3 4d. 
 !9d3 c. 
 1 5d- 
 4 grammes G 
 4 milligs. 
 5d9c. 
 
 !4c. 
 
 1 8 c. 
 I6c. 
 4 c. 
 
 6 c. 
 
 2 c. 
 
 6 c. 
 d6c. 
 48 frs 8 d. 
 8 frs 8 d. 
 
 CONTENTS, 
 
 Dellnitlons 
 
 Numoration and Notation .'..'.....'!.'.'.'.!.*.*.'.'.'.*!!'.,'.' 
 
 Numeration table '.!".'.*..!."!.'!!,"!' 
 
 Old numeration table , .'.*.',**,'",'.','*".."!!!'. 
 
 Exercises on numeration and notation .".".'.'.'.'.»!!'„'.*.*!.',*,*" 
 
 Roman notation , , ^ * ' 
 
 Simple addition ...,. .........!....!!'.['. ..,!7,..! 
 
 Simple subtraction ,.,, '.'",'//",'.'.'", ".'.'.','.,', 
 
 Simple multiplication '..".'.'V.'.V.'J!!',,.'.".'.*"." 
 
 Multiplication table .!.'!!.'!!!!!!!*.".*."!]!"' 
 
 To multiply by a number not greater than 12 !!.7.','.',i' .*.*'.'" 
 To multiply by a composite number and by a number 
 
 greater than 12 
 
 Simple division ,,,'!.'"..'.'.'".'. 
 
 Short division '..**.'.' '..*.'.V.'..'!!!!![ '.!!!!!!!' 
 
 To divide by a composite number...'. ,'.".!'..'!.'.','.'.",".','"' 
 
 Long division , , !!!!.!!!!!!!* 
 
 Tables of money, weights, and measures. .'.'.."*.'.".*!!!."'*.',**,'* 
 
 Reduction of decimal currency ,....'.'.".' 
 
 Reduction of money, weights arid measureB.*,*!.",*!!.','"" ""' 
 
 Compound addition , , ,. [['" 
 
 Compound subtraction !'.'.'. !'.!!!' '. 
 
 Compound multiplication '..'.'...., .,.„",.. ".'.' 
 
 Compound division ., , [ ','.','.'.'.'.'.'. 
 
 Miscellaneous questions ',.'!!!!'...'.'.'.'.'.'!.* *.'.'.'."" ' 
 
 Simple proportion ,.,,'.'.'.'.'/./."*".'.*.'."', ''.'.'."". 
 
 Compound proportion ,. ..'..'.*.,'.'."',",'.',',"!.'."."" 
 
 Greatest common measure '. „"".','.'.'.','. ",'.',','," 
 
 Least common multiple '..'..'.""'.'.. 
 
 Vulgar fractions, deflnitions, 4c '."..'.*.','."!!',.',".".'.*.' 
 
 Reduction of vulgar fractions ....''.'.'.'.'.'.'..,,,', 
 
 To reduce a fraction lo its lowest terms .",.','.".„'. m.","!!!^^' 
 To reduce an improper fraction to a whole "or'mixed 
 number 
 
 To reduce a mixed number to an improper fraction.','".'.'.'.* 
 
 To reducft .a r.nmpound fraction to a siropio fraction 
 
 io reduce any number of fractions to equivalent fractions 
 
 havmg a common denominator 
 
 To reduce a complex fraction to a simple fraction.'.',',',',",",',',' 
 
 Pag ft, 
 
 I 
 
 5 
 
 7 
 
 8 
 
 9 
 
 10 
 
 li 
 
 14 
 
 17 
 
 18 
 
 19 
 
 20 
 
 22 
 
 22 
 
 24 
 
 24 
 
 26 
 
 30 
 
 33 
 
 36 
 
 39 
 
 41 
 
 46 
 
 51 
 
 51 
 
 58 
 
 60 
 
 61 
 
 63 
 
 64 
 
 65 
 
 65 
 65 
 65 
 
 66 
 67 
 
li 
 
 To reduce a fraction from one denominalion lo anollier 
 
 Addition effractions 
 
 Subtraction of fractions .'.'.'.'.'.".".'. '. 
 
 Multiplication of fractions...'.*.',*.' 
 
 Division of fractions .'.'", 
 
 Decimal fractions, definitions,"&c*,'.".'. "" 
 
 Numeration and notation of decimals ' '"' 
 
 Addition of decimals ' 
 
 Subtraction of decimalB .'..*.'.*.*.*.*.**.*.'.*.', ' ' 
 
 Multiplication of decimals '.'.*.'. 
 
 Division of decimals ....',*.'.'.! ' 
 
 To reduce a vulgar fraction to'a'deci'mai'.* 
 
 To reduce a finite decimal to its equivalent vii'lga'r 'fractio'n 
 
 "^"gi/eXntr"..'"?:!.'!.!" "^ ""' "'«"°*"' 
 
 To find the value of a given *decim'ai .'.. 
 
 Proportion effractions ' 
 
 Miscellaneous questions ,*.'.*.'.*.*.* ' ' "" 
 
 Practice "' •"•••• 
 
 Tare and Tret 
 
 Commission, Insurance, Brokera«*e' 
 Slock ^ 
 
 Simple interest 
 
 Compound interest .'..*.*.*.*.'. 
 
 Discount 
 
 Bquation of payments '.'.', 
 
 Barter ' 
 
 Profit and loss ,*.*!.'.*.'.*.*!!, 
 
 Simple partnership ..'. *.' 
 
 Compound partnership '„ 
 
 Involution , 
 
 Evolution..., .'.*'.!!!!!*..' 
 
 Extraction of square root*.".*,".".'.'! 
 
 Extraction of cube root ,*.' 
 
 Extraction of roots in gene'rai". 
 
 Duodecimal multiplication 
 
 Miscellaneous questions 
 
 Metric tables and exercises ...'. 
 
 Mental arithmetic 
 
 Answers to the exercises .' 
 
 C7 
 
 68 
 
 69 
 
 69 
 
 71 
 
 72 
 
 73 
 
 73 
 
 74 
 
 75 
 
 76 
 
 76 
 
 77 
 
 78 
 
 78 
 
 79 
 
 80 
 
 81 
 
 82 
 
 82 
 
 86 
 
 87 
 
 89 
 
 90 
 
 93 
 
 94 
 
 96 
 
 97 
 
 98 
 101 
 103 
 104 
 105 
 106 
 108 
 
 no 
 
 113 
 115 
 122 
 125 
 13Q 
 
to another... 
 I of another 
 
 nominations 
 
 ar fraction, 
 of another 
 
 67 
 
 C8 
 
 (39 
 
 ()9 
 
 71 
 
 72 
 
 73 
 
 73 
 
 74 
 
 75 
 
 76 
 
 76 
 
 77 
 
 78 
 
 78 
 
 79 
 
 80 
 
 81 
 
 82 
 
 82 
 
 86 
 
 87 
 
 89 
 
 90 
 
 93 
 
 94 
 
 96 
 
 97 
 
 98 
 101 
 103 
 104 
 105 
 106 
 108 
 
 no 
 
 113 
 115 
 122 
 125 
 13Q