IMAGE EVALUATION 
 TEST TARGET (MT-3) 
 
 1.0 
 
 I.I 
 
 1-41 111^ 11^ 
 ^ IM III 2.2 
 
 m 
 
 m 
 
 2.0 
 
 1.8 
 
 
 1-25 1.4 1.6 
 
 
 ■• 6" 
 
 ► 
 
 Photographic 
 
 Sciences 
 Corporation 
 
 #> 
 
 S 
 
 '^ 
 
 V 
 
 V 
 
 23 WEST MAIN STREET 
 
 WEBSTER, N.Y. 14580 
 
 (716) 872-4503 
 
 -%^ 
 
 ^^ 
 
 
 :\ 
 
 \ 
 
 «> 
 
 
 6^ 
 
 «■ 
 
 
 ^h 
 
A^ 
 
 L<P 
 
 CIHM/ICMH 
 
 Microfiche 
 
 Series. 
 
 CIHM/ICMH 
 Collection de 
 microfiches. 
 
 Canadian Institute for Historical Microreproductions / Institut Canadian de microreproductions historiques 
 
 ^h 
 
Technical and Bibliographic Notes/Notes techniques et bibliographiques 
 
 The 
 to tl 
 
 The Institute has attempted to obtain the best 
 original copy available for filming. Features of this 
 copy which may be bibliographically unique, 
 which may alter any of the images in the 
 reproduction, or which may significantly change 
 the usual method of filming, are checlced below. 
 
 D 
 
 
 D 
 
 Coloured covers/ 
 Couverture de couleur 
 
 I I Covers damaged/ 
 
 Couverture endommag6e 
 
 Covers restored and/or laminated/ 
 Couverture restaur6e et/ou peliiculAe 
 
 Cover title missing/ 
 
 Le titre de couverture manque 
 
 Coloured maps/ 
 
 Cartes gdographiques en couleur 
 
 Coloured init (i.e. other than blue or black)/ 
 Encre de couleur (i.e. autre que bleue ou noire) 
 
 I I Coloured plates and/or illustrations/ 
 
 D 
 
 Planches et/ou illustrations en couleur 
 
 Bound with other material/ 
 Relii avec d'autres documents 
 
 Tight binding may cause shadows or distortion 
 along interior margin/ 
 
 La reliure serr6e peut causer de I'ombre ou de la 
 distortion le long de la marge int^rieure 
 
 Blank leaves added during restoration may 
 appear within the text. Whenever possible, these 
 have been omitted from filming/ 
 II se peut que certaines pages blanches ajout^es 
 lors d'une restauratlon apparaissent dans le texte, 
 mais, lorsque cela 6tait possible, ces pages n'ont 
 pas 6t6 film6es. 
 
 Additional comments:/ 
 Commentaires 8uppl6mentaires; 
 
 L'Institut a microfilm^ le meilleur exemplaire 
 qu'il lui a 6t6 possible de se procurer. Les details 
 de cet exemplaire qui sont peut-dtre uniques du 
 point de vue bibliographique, qui peuvent modifier 
 une image reproduite, ou qui peuvent uxiger une 
 modification dans la m^thode normale de filmage 
 sont indiquis ci-dessous. 
 
 |~~| Coloured pages/ 
 
 D 
 
 Pages de couleur 
 
 Pages damaged/ 
 Pages endommagies 
 
 Pages restored and/oi 
 
 Pages restaur6es et/ou pellicul6es 
 
 Pages discoloured, stained or foxe( 
 Pages d6color6es, tachetdes ou piqudes 
 
 Pages detached/ 
 Pages d6tach6es 
 
 Showthrough/ 
 Transparence 
 
 Quality of prir 
 
 Qualiti inigale de I'impression 
 
 Includes supplementary materii 
 Comprend du materiel suppldmentaire 
 
 Only edition available/ 
 Seuie Edition disponible 
 
 r~~| Pages damaged/ 
 
 I I Pages restored and/or laminated/ 
 
 ry\ Pages discoloured, stained or foxed/ 
 
 □ Pages detached/ 
 Pages 
 
 I I Showthrough/ 
 
 I I Quality of print varies/ 
 
 I I Includes supplementary material/ 
 
 I I Only edition available/ 
 
 The 
 pos) 
 of tl 
 film 
 
 Orifl 
 
 begi 
 
 the 
 
 sion 
 
 oth( 
 
 first 
 
 sion 
 
 oril 
 
 The 
 shal 
 TINI 
 whit 
 
 Map 
 difft 
 enti( 
 begi 
 righi 
 requ 
 metl 
 
 Pages wholly or partially obscured by errata 
 slips, tissues, etc., have been refilmed to 
 ensure the best possible image/ 
 Les pages totalement ou partiellement 
 obscurcies par un feuillet d'errata, un.? pelure, 
 etc., ont 6t6 filmies A nouveau de fa^on A 
 obtenir la meilleure image possible. 
 
 This item is filmed at the reduction ratio checked below/ 
 
 Ce document est filmd au taux de reduction indiqu6 ci-dessous. 
 
 10X 14X 18X 22X 
 
 26X 
 
 30X 
 
 / 
 
 12X 
 
 16X 
 
 20X 
 
 24X 
 
 28X 
 
 32X 
 
The copy filmed here hat been reproduced thanks 
 to the generosity of: 
 
 University of British Columbia Library 
 
 L'exemplaire film6 fut reproduit grdce A la 
 g6n6rosit6 de: 
 
 University of British Columbia Library 
 
 The images appearing here are the best quality 
 possible considering the condition and iogibility 
 of the original copy and in keeping with the 
 filming contract specifications. 
 
 Original copies in printed paper covers are filmed 
 beginning with the front '^over and ending on 
 the last page with a printed or illustrated Impres- 
 sion, or the back cover when appropriate. All 
 other original copies are filmed beginning on the 
 first page with a printed or illustrated impres- 
 sion, and ending on the last page with a printed 
 or illustrated impression. 
 
 The last recorded frame on each microfiche 
 shall contain the symbol — »- (meaning "CON- 
 TINUED"), or the symbol y (meaning "END"), 
 whichever applies. 
 
 Les images suivantes ont 6t6 reproduites avec le 
 plus grand soin, compte tenu de la condition et 
 de la netteti de l'exemplaire filmd, et en 
 conformity avec les conditions du contrat de 
 filmage. 
 
 Les exemplaires originaux dont la couverture en 
 papier est imprimis sont film6s en commenpant 
 par le premier plat et en termlnant soit par la 
 dernidre page qui comporte une empreinte 
 d'impression ou d'illustration, soit par le second 
 plat, salon le cas. Tous les autres exemplaires 
 originaux sont filmds en commen^ant par la 
 premidre page qui comporte une empreinte 
 d'impression ou d'illustration et en terminant par 
 la dernidre page qui comporte une telle 
 empreinte. 
 
 Un des symboles suivants apparaitra sur la 
 dernidre image de chaque microfiche, selon le 
 cas: le symbols —^ signifie "A SUIVRE ", le 
 symbols V signifie "FIN". 
 
 Maps, plates, charts, etc., may be filmed at 
 different reduction ratios. Those too large to be 
 entirely included in one exposure are filmed 
 beginning in the upper left hand corner, left to 
 right and top to bottom, as many frames as 
 required. The following diagrams illustrate the 
 method: 
 
 Les cartes, planches, tableaux, etc., peuvent dtre 
 film^s A des taux de reduction diff^rents. 
 Lorsque le document est trop grand pour dtre 
 reproduit en un seul clich6, il est filmd A partir 
 de Tangle sup6rleur gauche, de gauche d droite, 
 et de haut en bas, en prenant le nombre 
 d'images ndcessaire. Les diagramnes suivants 
 illustrent la m^thode. 
 
 1 
 
 2 
 
 3 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 

 THE LIBRARY 
 
 F HE UNIVERSITY OF 
 BRITISH COLUMBIA 
 
 J 
 
 ] 
 
INVESTIGATION 
 
 OP 
 
 CORRECTIONS TO HANSEN'S TABLES OF THE MOON; 
 
 •vT:a n 
 
 •4 
 
 TAHLKS von TIIKIU vV rPLICATlON. 
 
 BV 
 
 S T IVt O N iNl E W C < ) M H , 
 
 I'UoKKssoi;, r. s. n.vvv. 
 
 FORMING PART III OF PAPERS PURUSIIED BY THE COMMISSION ON THE TRANSIT OF VENUS. 
 
 WASHINGTON: 
 
 a O V E R N M E N r P 11 I N T I N a O F I'M C 
 
 1870. 
 
 diiltBCHHSHBaesSS 
 
TABLE OF CONTENTS 
 
 '^^l 
 
 Vagi'. 
 
 INTROIILCTORV NOTE 
 
 i 
 
 i i.-INVICSncJATION or ERRORS OF LONGITUDE. 
 
 Evection 8 
 
 Variation 8 
 
 Mraii urior iif (alxiiar liylit a>cciisii)n at <liiri'iLnt tiiius of (lay i) 
 
 N'aliic of solar paiallax cniploved i) 
 
 l.isi of corrci lions to " .\ri;iimtiit Fonilaiiuiilal ' lo 
 
 (HMK'ral Ideas which form tlic liasis of this investigation li 
 
 Dill'ercntial cofllicients 12 
 
 Mean apparent error of Hansen's Tallies in riyht asiension 12 
 
 Siiilden apparent alteration in mean motion of the moon 1 1 
 
 Corrections for limli and oliservatory lo render oljservalioK;. sirielly eoniparalile 13 
 
 Mean ontstaiulinn talinlar error of the moon in lon.nitiule 13 
 
 Corrections of sliort perioil acliially applied 14 
 
 Ivpiation connectini; eriurs of moon's laludar right ascension with errors of Innar elements 
 
 Hnins ol eriors of moon's 1 orr^ried right ascensitiii given In ohservalioiis at (ireenwich .ind Washington. ... 17 
 
 Normal ei|ualions foi deteriiiiTiing (1/, «, and /(■ liy least sipiares 20 
 
 Values of outstanding errois of lunar elements for each year 20 
 
 .Apparent periodic character of the corrections 10 the eccentricity and perigee 20 
 
 Formuhc for the new inequality of longitude 24 
 
 Discussion of tircenwich observations of the moon Iroin 1S47 to 1S5S 24 
 
 Sums of residual errors 2(1 
 
 Corrections to eccentricity, longitude of perigee, and iiioon's longitude 21) 
 
 S 2— 1N\'ESTI(;.\TI()N OF P()L.\R DlSl'.VNCF, .\NI) I,.\TrrUDE. 
 
 Corrections to dei lination ilepending on errors of loiigiiude 
 
 Constant corrections lo reduce declinations to same luiHlaiiieiilal standard 
 
 Sums of errors of moon's corrected declination, given liy oliservaiions at (ireenwich and Washington. 
 Correction lo inclination of orliit and longilude of node 
 
 32 
 32 
 34 
 36 
 
 ^ 3.— Al'XILI.\RV T.\UI.i:S FOR FACILITA'riNt; ITIK COMPUTATION OF TDK CORRECTIONS 
 
 HANSEN'S "TAHLES DE I,A LUNE '. 
 
 TO 
 
 Summarv of corrections to mean and true longitude of the moon from Hansen's Tables 37 
 
 E.\planation of tables for applying these corrections 37 
 
 Example of the use of the tables 411 
 
 Corrections to the Ephemeris ilerived from Uaiisen's Tables of the Moon, for Greenwich mean noon of each dav, 
 
 from 1S74. September I, to 1875, January 31 41 
 
 Tables I, H, HI. the arguments,-, /),../, A', 11 45 
 
 Tables IV, V, VI, secular and empirical terms 4f) 
 
 Table VH, lernis of luean longitude 47 
 
 I'able VIII, terms of true longitude ^ . 48 
 
 Tables IX, X, factors lor reduction lo longitude in orbit ; and for correction of latitude and reduction to ecliptic 
 
 longitude 50 
 
 Table XI, factors lor convertin,g small changes of longilude and latitude into changes of right ascension and decli- 
 nation 1:1 
 
.tk%'^'w^ '.: ^ '"'I 
 
 6 
 
 
INTRODUCTORY NOTE. 
 
 6 
 
 Wiicii llie proItliMii (iC iililizin",' llie oltservalioiisorocciiUiitidiis at (he sovcnil Transit, 
 of V<;iHis siatioiis, so as to (Ictcriniuc tin; loiigiliidcs of tliosc; .slalions willj all atlaiiial»l<! 
 acciiiacy, was presented to the Comniission on the Transit of Venus, it was found neces- 
 sai-}' to make a careful detcrniinatiou of the errors of the lunar ephenieris liefore an 
 entirely satisfactory solution of the prohleui couhl he atten^pted. The Secretary of (Ik; 
 C'oinniission was therefore charged with this work, most of the computations on which 
 have been made und<'r his direction l»y Mr. 1). 1?. Todd, computer for the Commission. 
 
 Wasiuxoton, M<nj 25, 1876. 
 
I f 
 
 mu-^. 
 
CO kR i:CTI()NS '!■() 15 !■ A I' I' I. I !• I ) TO 1 1 A N S !•: N ' S I'AIU.I'.S 
 
 Ol" 111 !•: MOON. 
 
 m 
 
 
 iN\Ksri(;.\ii(i\ ()!•■ EkK">Ks (»|- i,f)\(;i riDK. 
 
 One (if llic mosl iin|H»i-taiil npcijiliuiis in cniiiicclidii willi llic oltsciviilioiis ol llir 
 Iraiisil of Venus is fin- acciiriilc (Iclcniiiiiiilioii (»!' llic loiiniliidcs nl llic sir.lioiis. Mmiiv 
 ot" these slaliniis arc so liir leiiioved IVdiii lclci,napliic eoiiiiiiiiiiiciifioii llial I lie loiiiriliMles 
 must <lc|»eii<l iiiaiiilv on llic moon. Dclerniinalions of loii^nliiile iVoiii iihkiii enlniina- 
 tinns an; lonnd Ity e\|ierieiiec lo lie snhjerl lo e(Mislaiil eirurs w liieli il is dillieiill lo 
 (lelcrinine and allow for. Il was llienjlore a pari of llie policy ol" Ihc Aiiieri<'an Coiii- 
 niission lo depeii<l on occnilalioiis rallier lliaii iip(ni moon enlminalioiis litr lli"dclermi- 
 na1i(»n ol l(Mi<riliides. The reason Tor lliis course is, 1 lial llic disappearaiwe ol' a slar 
 hohind Ihe linih <d' tin' moon is a sudden phcnonicnon, llie lime ol' wliieli can alwavs he 
 lix<!d williin a fnielion of :i second. If llic eplicmeris ol" the moon and s!ar were cor- 
 recl, and ilit^ trisk oi iiic (uriiM i ,i peii'i!cl ciirie, llic lon^nlndi' could We dclciniincd 
 from Ihe oc(Millalion wilh Ww. saiiu; dctirce of acnirac}' llial. the pheiMniienon <'oidd he 
 ohserved. 'J'lie <picslion arises, how rarlhcse sources ol" error can he diminished. The 
 iiie(|iialitics of llu^ lunar surface liniii a source of error w liich il is iinpossilile lo avoid, 
 hut which is comparalivcly innocuous when many oh.servalions arc made, since Ihe 
 errors will he purely accideiilal, and will llicrcfor(^ he eliminalr'd from llic mean ol a 
 great number of ol)sorva(ioiis. 
 
 Tlio position of llu' slar ran ho dclermiiied hy meridian ohservalions wilh alinosl 
 any rerpiired degree of accniiu'y. We have, llieii. only lo see how liir Ihe errors of Ihe 
 lunar c|)hem('ri.s can he diminished: :iiid lo reduce lliese errors lo a ininimaiii is the 
 ohject ol the present paper. 
 
 Hansen's lahles are tak<Mi for this purpose, lieeaiisc I here is reason lo heliev(! that 
 the porta rhat ions on which these tahles are ioiinded are, in the main, exlreinelv 
 accurate; more accurate and C(niipl»(le, in faci, llian any others which liiivc heen 
 tabulated. Still, before they can be used lln'the purpose in <pieslion, a number oi' verv 
 important corrections arc rcrjuin'd, which wi^ may divide inio two classes, — {'(U'lcclioiis 
 to the theory, and lo the elements. 
 
 It is well known that Ilanscm increased all tln^ iterturbations of his tables by the 
 consliuit factor 0.0001544, on account of a supi)osed want cd' coiiicidencf! between the 
 
m 
 
 
 tf'iilcr ul' lliriin; iiiul (lu! ccnttT oC ji^nivify of llic iiioon. I liiivc sliowii tliii( iriiitscii 
 
 fails to Niisliiiii tills |)usifi(iii, and that tlii'ir is no ^rtind reason to snpjtosc that tlic moon 
 
 (liirt'rs iVoni any other of tin; heavenly bodies in this respeet.* Oiir lirst course would 
 
 (liorefori! Ite (o diminish all of Hansen's ineiiualities by this liietor, \ver(> il not that, tlnro 
 
 are reasons why each of the two greatest, pertnrltations of the moon's motion, — the evec- 
 
 tionand tin; variation, — shonid Ix; found lar;;er from <d)servation than he fonnd them iVom 
 
 theory. 
 
 ErvctUm. — Tlio evection has the eccentricity as allictor; the value of the otht-r 
 
 liictor being nearly 0.4. if, then, the ad(»|»ted ccciMitricity of tin; motm be erroneous, 
 
 the computed evection will be erronc(nis by four-tenths the anninnt of the erntr. Now, 
 
 by reference to Hansen's ^^ Jhii/ri^inii:; t/ir thioirlischcn licircliiniiii; ilir in ihii Minulhi- 
 
 ffin aiigiintii(tl('ii Stiinini;c)i"\ (pa,<fe 173), it will In; seen that the eccentricity adopted 
 
 thronjfhout in the compidation of the pertnrbatiims of tin; moon is less by o.ooocxi7^ 
 
 than (he vahu! he linally fonnd from observation, and adopted in the tables, iiiid lie 
 
 nsed tim latter valne, the Ihecn'elical evretion would have been i^reuler by Ibe liactinu 
 
 .000007^ ,,,, ,. , ,11 1 I . . , , I • 
 
 rro.oooi^V llie lac(or actualU used liriiiif ').(.)( K)t s 4), tlic t'\('<'li(iii, I liiis lu- 
 .0549C)()S 
 
 creased, is t(»o lar<(e by only (J.00002 i ol its entire amount, or o".o(). ( 'ousc(|Meutly, 
 
 the tabular coeltieient of evection should be diminished by this amount. Precisely the 
 
 same result follows, if we adopt Hansen's view of a separatiim ot' the eenti'rs of liy^ure 
 
 and irravity of lh<- moon: and llauseii himself is led to il on paiie 1/5 of the work cited, 
 
 only instead ot' o".og, he says, "kein vidles Zelmlheil <'iner Secuutle.'' 
 
 Vdiitilion. — That th(! coellicicut o! varialinu residtinjj; from meridian obseivatious 
 will be jrreaterthan the actual coelilcienl may be anticipated from the litHowinLM-ou- 
 siderations. The iueipudity iu ipu-slion attains its maxima and minima in the moon's 
 octants In the lirst octant, wr have a nniximnm. The ehmgalion of the nu)on from 
 the sun is then alxMit ,^''; ami the observed position ot the union is mainly dependent on 
 observations of the first limb made in tlnMlaytime, wlntn the apparent semi-dianicter of 
 the moon will b<; diminished by the brilliancy of the surroundiiii; sky. No account of 
 this diminntjoii of the iij.parent semi-tliameler beiii<; taken in tin; reductions, the semi- 
 diameter actually applied is too lari^e, and tin; (diserved right ascension of the moon is 
 al.so too larg(\ 
 
 When th. moon reacdies the third octant, the valne of the variation attains its inin- 
 imiim. The moon then transits at 9'', and the meridian observation is made (Mi the lirsl 
 limb, while the apparent s«Mui-diametcr is increased i»y tlu; i:radiatioii coiiseipuMit upon 
 the contrast betwecMi tlu; moon and (Im sky. The result will b(! that the observed right 
 ascension will be too small. 
 
 The same causes will mak(! the observed right asoMisioii too great in the fifth 
 octant, and too small in the sciventh. 'i'hese positive and negative errors of ol)served 
 right ascension correspond to the limes of maximum and minimum ell'ects of variation 
 ill iiicriMising the longitude of the; moon. Thend'ore, the observed variation will appa- 
 
 * J'rociMMliiijfH of till) Aiiiitricitri Associiitiuu for tliu AdvnucoiURDt of yuiencn, i86S, — Hilliiiiaii'H Anieriuati Journal 
 of Seuiiicn, Noveiiilier, iS6S. 
 
 t Altliaiiillniigvii tk>r iiiiiUii'matisvh-iiliyHiMclien CliiSHe dor Krmi);Ucli-8iivhHiNc1icii GusellHclmft der WiMoiiHulinften 
 Baud vl. 
 

 
 rciitly 1»(! Iiiru[<'i' tliiiii llic iicliial vniijitiitii. wlialcvcr lliis iniiy lie. 'I'liis secno a niiirli 
 more natural and [triiltaMc cause tor tlic a|)|)an<nt excess of tlw ohscrvcil over tlic theoreti- 
 cal perturlmlions tlian tlial assigned l»y Hansen. Hansen's factor onlv increases tin- coetli- 
 cient in (jin'stion l>yo".3;,; Init it seems prolialile lliat llie variation derived from obser- 
 vations alone woidil he yet lai^'er than Hansen's increased variation. In tiict, in iSi);, I 
 tlinnd, hy coni|tarin<,f the errors of the Innar epliemeris when th<! moon cidminated at 
 dill'erent times (d' the day, that the eireet of llie <frrater irradiation at niyht was very 
 8tr(Hii,dy nuirked. Dnrinii the linir years 1X62-65 tlie mean I'rrors of the iaiiles in 
 right ascension at diilerent tinn's of day werr as follows:* 
 
 I. 
 
 Heforo snnsd — o. 1 54 
 
 A Her briifht. daylis,'ht in the eveniiii;' — 0.093 
 
 l>el(ire liriijht ilayliij;ht in tli morniiiif- . . -fo.ogi 
 After sunrise -|- O' ' 5.1 
 
 In the dilli'rence hctween the resnits lor e;i' h limli, the ellect of increa.sed irradia- 
 tion seems to he o".o6. 
 
 The only icmaininu: term which is larire enoniili to lie materiall.v all'eeted liy the" 
 increasf! in (|neslion is ihe annual equation, ol' wlii(di the increaM is o".io. 
 
 A ii[lance at the errors (d' Hansen's taldes, ^fiven liy nn-ridian oliservalions, will show 
 that, the errors ahont the time of lirst (|narter, and, indeed, dnriuij; the first half of the 
 lunation, are in the nu'an h'ss l»y helween 3" and 4" than dm-injj; Ihe seeoml half. 
 Ilence, either the semi-dianmter, in- tlw! parallactic e(|natioii, or liolli, an^ loo larye. The 
 parallactic etpnition nse<l hy Hansen citrres|)onds to a value .S".9i6 for the solar paral- 
 lax, which value is too larir(> hy prohaldy not much less than o".io. The result 
 which I deduced in US67 from all tin; really valuahle data exiani was .S",S4,S ; and Ihe 
 determinations \vhi(h have since been made, when revised with the h.«^t data, seem to 
 indicate a diniinnti(Mi of this value rather than an increase. These indications are, how- 
 ever, a.s yet, ii little loo indelinil(( to predicate ariythinif upon. I shall I heretore con- 
 tinue; to n.se S".84S, which will dindnish Hansen's value hy o".o6S. The; correspond! njf 
 diminution in the! ]trin<'ipal parallactic term will he o".()6, while there will he two other 
 terms to receive a smaller dimiiiulion. 
 
 This correction will still leave a diH'erence (d" ahout ::" helween i\u\ results from 
 the first and second limbs, which will be accounted for by an error of 1" in theado]»ted 
 semi-diameter. This correction to the semi-diameler is a priori tpnte probable, as Ihe 
 improved meridian instruments of the present lime give a .send-diameter of the sun 1" 
 less than Ihe older ones from wliieli the diameters adopted in onr ej)hemerides were 
 derived. It is to Ik; expected that Ihe .stni' diumeler of the moon will exhibit a sim- 
 ilar apparent diminution. 
 
 From a note in I lansen's Ihtrleginis!; (|>age 439), it w ill be seen that one of the terms 
 in the true longitude has cre|d into the tables with a wrong sign. AscMnployed in lhetai)les, 
 and given on page 15 of the introduction, it is, -f o".335 sin (25- — 4 "•' + 2f.)— 40'). 
 
 As revised in Wwlhtrlegnng, it is — o".285 sin 
 
 Theretbre the tables need the correction — o".62 sin 
 
 * Iuveiitig.-ktiou of the Distance of tlio Sun, p. 24. 
 2 M 
 
 'I 
 
w 
 
 Kl 
 
 ? 
 
 
 ^4' 
 
 10 
 
 The f«»llo\vii)g is alist of llic roriTctinns wo Imvo so far deduced to Hansen's tables. 
 Tliev should in slri(;lness l)e applied to Ihe mean longllude, or '^Argiin/pn/ fondu/ncndir, 
 ■l»nt they may without serious error !)(> applied to IIk; true; lonyiliide. 
 Put 
 
 J>, the argiunent ol' parallactie ineqnalily, or mean elongalion of the moon from 
 
 the sun ; 
 iT, the moim's mean anomaly : 
 g', the sun's mean anomaly ; 
 
 fo, the disfanee ol" the moon's perigee; from the; aseending node; 
 &>', tiie distanee of (he sun's perigee from the same node. 
 
 We then have 
 
 and the correetions in (piestion ar 
 
 ■ 0.96 sii 
 0.07 sin (P 
 
 J) — n _ g' -(_ f.) . 
 
 M 
 
 4-0.96 sin 7' ^ 
 
 — IT ) ■ rnvnUnetn- U'niis. 
 
 — O.I ;, sin (/>+-') > 
 
 -{-0.09 sin ii' Anniinli'iiinlH.n. 
 0.33 sin 2 /) Viniall.;!. 
 
 — o. 10 sin (3 D — ir) f:,',rii„ii. 
 
 — 0.63 sin { ^ 2 — 4 i,'' -|- 2 r.> — 4 m' 
 
 Ai'riilental error. 
 
 The fourth and filih terms of this expression lia\e the elfeel to remove the iiierease 
 wliieli Hansen applied to his inetjualities on aeeonnt ol the jtosition of the eenter of 
 gravity of the moim, while the sixth is the residt of the slight error of the eeeentrieity 
 wliieh lie emidoyeii in eompiiting the coetVici(!nt of eveetion. 
 
 In comparing with nn'riilian (d)servafions which have l»een reduced without any 
 correction to the apparent semi-dianiet(,'r depending on the time of day, the e(»rreelion 
 of variation may also ht; omitted, since a yet larger apparent correction, having the oppo- 
 site alircltraie siiru. will r<,'siilf, from the apparent variations of that semi-diameter, as 
 ulreaily explained. 
 
 As regards the possiUh; correct ions to the elements of Hansen's tables, it is t(» he 
 renuirked tlnit that investigator did not avail himself of the elements of tin; lunar orhit 
 deducefl l>y Airy from thcM Jreenwich ohservations between 1750 mikI 1S30, but <dttaiiied 
 liis final values of the elements by a comparison of his own. ()!' the nature and t>xtent 
 of the observations thus employe<l, we have no details ; but it is not likely that more 
 than a very small fraction of flw' entire mass of ol)servations was used, and iti can then;- 
 fore hardly bi' expected that the elenients were det('rmined with the last degree of 
 accuracy. Any error in the motion of the perii;ee 01 node will constantly increase with 
 the time. It', in addition to this, we rellect that Ihe meridian obs<!rvations of the lasj 
 twenty yejirs are lin* more accurate than llios<! Hansen had at his dispctsal, it will not 
 seem at all surprising to liml (piite sensible enors in Ihe present longitudes of tlu! lunar 
 perigee and node as derived !»y Hansen. Our lu'xt step will therefore be to d<;termine 
 
 ■Wi'; 
 
11 
 
 ■i 
 m 
 
 wliat corrections to liuiiscirs clciiiciils arc iiidiciiti'd l>y tlir rccfiit oltscrvatioiis ol tlic 
 iiiooii made at (Jrcciiwicli and Wasliiii^'loii .since iSOJ, a period duiinu wiiicli liolli 
 series of oliservations aid carefnllv conipan-d witli llansenV taldi's. 
 
 Tlie general ideas on wiiicli liie present invcslii,'atiiin ot liie>e, correeticni.s is liased 
 are these: tile' errors ol' liie moon's laiuilar l(Hii,nliide are ol' Iwo classes, — a progressive 
 correction, wliicli ap|)arently increases nniHtrmiy \\ ilii tiie lime; and errors ol short 
 period, tin' principal ones of which go llironLrh their |teriu,l dnriiii,' one revolution of the 
 moon (»r less. In determininij; the errors (if the (irst class I'roni oh.servation, those ol 
 IIh^ second class may he reij;arded as accidental ernns, the eli'ect of which will l>e elim- 
 inaled from the mean of a larire nnml>er of oliservations. Since, in a .series ol ohserva- 
 lioiis e.\l('ndini( (hronifh a mnnher of years, tin; maxima and mininiaof each term ol 
 short period will tiill indiscriminati-ly into all parts of all the other [M-riods, each periodic 
 c()rre(;li(ni may he determined as if the c[]\'r]s of the others were |»nrely accidental 
 errors. At the same time, as the elimiiialion of eaeh periodic ernn- from tin; ma.xima 
 and minima of all thi; (»th(M-s cannot he complete in any iinite tinn', it is desirahle that 
 each periodic cm-rcction of sensilde maiinitnde which we can determine beforehand shall 
 he applied to the rcsi<hials hcliirc the laltcrarc used to determine thi' corrections toth»! 
 
 elements. 
 
 The corrections of the elcnu-iits of loimiliidc have been made to depend principally 
 tii)oii the observed riulit ascensions, in>tead ol rednciny the oliserved ernns ol riiihl 
 ascensi(ni and polar distance to errors nf hni-iliide and lalitnde. Thi- reason lor this 
 course is, that the apparent errors of pcdar distance, alter correcting them approxinnilely 
 for errors of the elements easily (h'terininetl. will aii>e principally from ernn,* of obhcr- 
 vation, and not from errors of I he taldes. In tact, I lie niisei vat ions of the moon's declina- 
 tion are sometinn's aU'ected with accidental errors »[' ii niaunitmle which it is ditVicidt to 
 account f(»r, especially in the case of Washinylon. (Irantinjr that the moon moves in a 
 plane the position of which can be very accurately determined, we have at\erwurd only 
 to determine the moon's |)()sition in that plane, and this ciin In- (hnie from an ob.scrved 
 right ascension almo.st as well as if we had a directly observed loni,ntnde. The longi- 
 tude thus determined will be less likely lobe aU'ecled with systematic errors than il we 
 suppose! the position entirely unknown, and chaiii:e the einns of right ascension ami 
 declinat'on to errors of lon^^ilude and latitude, without regard to the po.ssihle constant 
 errors of the ineasure<l declinations. 
 
 Foriiiula- for expressing the longitude and latitude of the nuton in terms of the 
 lunar elements are given by Hansen in a posthumous memoir.* The following terms 
 are sullicient for our pres<;nt jiurpose : 
 
 Tut 
 
 /, the mooifs hnigiiude in (uiiit : 
 
 0, the hmgitude of the ascending node : 
 
 /, the inclination of the orbit to the ecliptic; 
 
 (t,^, the moon's right ascensimi and declinalioii ; 
 
 cj, the obrnpiity of the ecliplie. __^__ 
 
 • II.)b«n- ili(! Diirstolluiii; <lrr Kiaili'ii AiirstciKiiiiK inid Alnv.ic lnin- drs .MoiuleH in Kmictioii der LiiiiKo in dor Itnlni 
 und d.T Knotcniiint;!'. Ai.!iiiii(nniii;..ii d.i KiinislicIi-S.'i.liMsili.u (J.stlls.liiifl del- WlNHt-nHcliuncn, ltd. x, No. viii. 
 
12 
 
 ■i^^^^ 
 
 Wo tlieii have, apin-oximalcly, 
 
 «_/_2'^.5Hii2/- i".! sin(2/-0)+ I ''.I sill 
 Mill 5 zz isiii ft) sill / + cos ay sin i sin {1 — 0) 
 — 0.40 sill / + 0.08 sin {1—0) 
 Tiie (lifleiciilial co-etHcionts derived iVoin tlicse cxinvssioiis are, 
 (la 
 dl 
 da 
 do 
 da 
 
 — 1 _ 0.037 eos {■?- I — 0) — 0.087 cos 2 / 
 
 — 0.018 cos 61+0018 COS {2I — O) 
 
 -'*- - 0.2 1 sill — 0.2 1 sin {2I—O) 
 dl 
 
 cos (5 '^'^ = 0.40 cos / + 0.08 COS (/ — 0) 
 dl 
 
 — (^0.40 + o.oS COS 0) cos / + 0.08 sill sin / 
 
 cos«5 '^'^ =-0.081 co>i{l-0) 
 do 
 
 cos S "-: — 0.92 sill {I —0) 
 dt 
 
 From the first three forniulie, it, will bo seen, that the mean error in ri<rht ascension 
 is very nearly the same as the- mean error in loiiiritnde; the i.eriodic corrections lieing 
 siiitposed to he eliminated from this mean. 
 
 The investigation of the corrections fnmi ohservations is now made as luHows : 
 All the apparent errors of the tables derived from the meridian observations at Green- 
 vviehaiidWashingtmi since 1S62 have been collected, arranged in the order of dates 
 and the mean taken for each year; observations of the separate limbs being kept sepa- 
 rate. The mean error in right ascension for each year is as follows: 
 Apparent cirors of Hansen's tahles in Jl. A. 
 
 
 Greenwich. 
 
 Diir. 
 
 W.ishington 
 
 
 Mean. 
 
 Year. 
 
 I. 
 
 II. 
 
 I. 
 
 II. 
 
 Dim 
 
 I. 
 
 11. 
 
 Mean. 
 
 1862 
 
 " 
 
 " 
 
 It 
 
 " 
 
 " 
 
 " 
 
 - 3-(' 
 
 - 0.6 
 
 — 2.1 
 
 l8()3 
 
 
 . 
 
 . 
 
 
 
 
 - 2.3 
 
 + 0.5 
 
 -- 0.9 
 
 1S64 
 
 
 . 
 
 . 
 
 . . 
 
 
 
 — I.O 
 
 + 1.3 
 
 + 0.4 
 
 1865 
 
 — 0.2 
 
 + 30 
 
 3.2 
 
 + 0.3 
 
 + 3-9 
 
 3.f> 
 
 0.0 
 
 -1- 3-4 
 
 + 1.7 
 
 1 806 
 
 + 1.2 
 
 + 3-6 
 
 2.4 
 
 + 0.9 
 
 + 4-5 
 
 3.6 
 
 + 1.0 
 
 + 4'J 
 
 + 2.5 
 
 1867 
 
 + 2.4 
 
 + 5-7 
 
 3-3 
 
 + 2.4 
 
 + 5.3 
 
 :.4 
 
 + 2.4 
 
 + 5.8 
 
 + 4-1 
 
 1 808 
 
 <♦- 2.f) 
 
 -1- 0.0 
 
 3-4 
 
 + 2.4 
 
 + 6.6 
 
 4.2 
 
 + 2.5 
 
 -1- 6.3 
 
 + 4-4 
 
 l86() 
 
 ^ 3-3 
 
 1- 5.6 
 
 2.3 
 
 + 1 
 
 + 7-4 
 
 4.0 
 
 + 3.4 
 
 •I- 6.5 
 
 + 4-9 
 
 1870 
 
 + 3-4 
 
 + u.(, 
 
 3.2 
 
 + 4.6 
 
 + 7-2 
 
 2.6 
 
 -1- 4." 
 
 + 6.9 
 
 + 5-4 
 
 1871 
 
 + 5-4 
 
 + S.2 
 
 2.8 
 
 + 5-1 
 
 (- 7-8 
 
 2.7 
 
 + 5.2 
 
 + 8.0 
 
 + 6.6 
 
 1S72 
 
 + 6.0 
 
 + 8.7 
 
 2.7 
 
 + (1.2 
 
 f <)■(! 
 
 3-4 
 
 + 6.1 
 
 + 9-2 
 
 + 7-6 
 
 1873 
 
 + 6.9 
 
 + f)-4 
 
 2.5 
 
 + 6.9 
 
 + 10.2 
 
 3-3 
 
 + 6.9 
 
 -1-I0.2 
 
 4- 8.6 
 
 1874 
 
 + 8.1 +11. 4 
 
 3-3 
 
 + 7.t 
 
 > lO.S 
 
 3.7 
 
 + T.(> 
 
 + M.I 
 
 + 9.4 
 
 'J'he last column exhibits the apparent tabular errors in mean right asccnsicii, and 
 
13 
 
 therefore iii mean longitude, ;is tlorivfd cacli vt-ar fnun all Hit- nhscrvatiuiis. Tiic siiddfii 
 appaicid alleralioii oi' iicaily oiio second per aiiiiiiiii in (lie mean motion ol' the moon, 
 exiiihited in tiiis eohimn, si'ems t<» me oni; ol' the most (jxtraordinary of astronomical 
 phenomena; bnt, as I have discussed if in sevi'ral |»a|iers during the last live years, I 
 siiall Ju no more here tlian call attentitm lo its continuance, ami to the inipossihility of 
 representing it by any small mindter (d periodic terms without introducing discordances 
 into tlie longi(n<le during previous years. 
 
 It will he seen that there arc discordances hetwetMi the resulls of the two oi)serva- 
 tories, sinnetimes aiiKvuiilinL' to more than a second. In delermining the correctitMis ol" 
 short period, it is desiralde to reduce the systennitic erntrs exteinling through each 
 year to a minimum ; the <[uestion whelher such error.s arc in the theory or the ol».serva- 
 (ioiis being indillerent. It is also desirable that in taking the mean of the r<'sults (d'the 
 two (djservatories, they should be nuide comparable with each other by correcting either 
 of them for the .systemaiic dillercnce. 'I'he e corrections, of course, oidy admit of 
 approximate determination, and they have been applied ea(di year to (hat observat(»ry or 
 that limb of tin- mocm in which, judiring from the deviations from unilltrm proirn-ssion, it 
 was jiidgt'd most likely that the discordance existed. The following are (he correcdons 
 actually applied to the .<evend clas.><es of tabular errors: 
 
 niLX'invii 
 
 Ii. 
 
 I. 
 
 
 II. 
 
 s. 
 
 
 s. 
 
 0.06 1 
 
 + . of) 
 
 P 
 
 
 
 
 
 
 
 1) 
 
 
 1- O.oO 
 
 o.oO 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Waslii 
 
 ngl 
 
 on. 
 
 I. 
 
 
 II. 
 
 s. 
 
 
 • s. 
 
 
 
 
 < f.Oi^ 
 
 
 
 
 (J 
 
 
 
 
 — 0.04 
 
 
 
 
 — 0.04 
 
 
 
 
 — 0.04 
 
 
 
 
 
 
 
 
 
 — 0.04 
 
 
 
 
 
 
 Ifavin;.' ap|tlied th«>se C(»rrec(ioiis throughout their s«;veral yt.-ars, the Greenwich 
 and Wasliiuirton ob.servations were considered s(riclly comparable; and when (he mtH)ii 
 was (d»served a( l»oth oli.^erviitories on the? same day, (he mean of (he correc(ed (abular 
 errors was (aken. Tin- meiin ou(s(ainlinir (abular error \\)v each vear now becomes as 
 
 oUows : 
 
 
 
 
 
 
 
 
 Vear. 
 
 ,'? 
 
 Vear. 
 
 .1/ 
 
 YuiU'. 
 
 (P. 
 
 Year. 
 
 -!?. 
 
 1S62 
 
 — 2.1 
 
 1S66 
 
 -1 2.2 
 
 1S69 
 
 + >' 
 
 1872 
 
 + 7-:, 
 
 1S63 
 
 — 0.9 
 
 1N67 
 
 + J.^ 
 
 1870 
 
 + .v6 
 
 1^7.5 
 
 4- 8.0 
 
 1S64 
 
 + 0.4 
 
 1868 
 
 + 4-1 
 
 1871 
 
 4- 6.6 
 
 1S7.1 
 
 + 9-7 
 
 1S65 
 
 + '4 
 
 
 
 
 
 
 
 'J'hese quantiti*'.*!, with the sign <'lianged, siioidd b(! considered as c(nrec(ioiis (o the 
 tundameidal argument, and we have (<» de(ermine (he corresponding correction (o (h(.> 
 right- a«'"?ii.sions which are (o be applied (o (he individual tabular ern s. To reduce 
 (hem ti. ."iM'ri'ctions o(" true Innirituile, (hey are (o be multiplied by the factor 
 
 I + - '' •■^•'^ i' =^ • + o. 1 1 cos i; 
 
14 
 
 Tin; (roiTcspoiuliiiff taclor tor correct ion of riglit ascension is, witli siitticient ui)]>rox- 
 iniiition, 
 
 Sazn {i -\-o.i \ CDS i,' — 0.04 cos (2 / — 0) — 0.09 cos 2 /) SX 
 
 In this I'orninlu, <5/V represents tlie correction ti> the mean loiif(itn»ie, while we may 
 sii|)i)ose / to represent indillerentl}' the nu-an or tlie tru(! lonyitiule ; and, during a period 
 ol' several months at a time, we in.-iy represent tht; lonijilnde as a t'unction of g. The 
 valu(! of Sa has Ih'.cm reduced to a table of doultle entry as a function of if and of tlie 
 time. To express th(! mean longitiule as a function of if, we have 
 
 /- i/+ TT 
 
 2 / — zz 2 g -[- 2 ?r — 
 I 7— 2 g -\- 2 7r 
 
 My the substitution of these values, the expression tiir Sa becomes 
 
 (5a ^; ( I -f- o. I I COS g -\- A COS 2 g -\- li sin 2 g) S\ 
 w lie re 
 
 A ZZ — .04 COS (2 /T — 0) — .09 cos 2 /T 
 
 li ■=. .04 sill (2 /T — 0) -f- .09 sin 2 TT 
 The lues ot rr, 0, A, and li \\)V periods of six months are as follow : 
 
 of tl 
 
 spoi 
 
 this 
 
 Yoar. 
 
 1862.0 
 j 1862.5 
 j 1863.0 
 1863,5 
 186.). o 
 1864.5 
 1S65.0 
 1S65.5 
 I S66 . o 
 1S66.5 
 1867.0 
 1S67.5 
 18OS.0 
 186S.5 
 
 The coeftl( 
 
 lest! sets of 
 idiiijr valin; < 
 piipcr, it is 
 The correct 
 
 T 
 
 () 
 
 „ 
 
 22S 
 
 274 
 
 2-lS 
 
 264 
 
 269 
 
 255 1 
 
 2S() 
 
 245 , 
 
 3'-iy 
 
 235 
 
 33'-> 
 
 226 
 
 .350 
 
 216 ] 
 
 310 
 
 206 1 
 
 31 
 
 "J7 
 
 51 
 
 1S7 
 
 71 
 
 ■77 1 
 
 .)2 
 
 168 j 
 
 112 
 
 15S 1 
 
 »33 
 
 14S 
 
 + 
 + 
 
 .05 
 
 .0(| 
 
 .oS 
 
 .03 
 .02 
 
 • 05 
 .06 
 
 ■ 05 
 .ot 
 .02 
 
 .05 
 .05 
 .04 
 .03 
 
 B 
 
 + 
 + 
 
 .0(J 
 
 .01) 
 .04 
 
 .oS I 
 
 ■ 07 ! 
 .04 ^ 
 
 .00 i 
 
 .03 ; 
 .03 
 
 ■ "5 
 ."3 ' 
 .00 t 
 
 .02 I 
 
 .05 i 
 
 I 
 
 Year. 
 
 18O1J.0 
 1S69.5 
 1870.0 
 1870.5 
 1S71.0 
 1S71.5 
 1872.0 
 1872.5 
 1S73.0 
 
 1S73.5 
 1874.0 
 
 1S74-5 
 1S75.0 
 
 JT 
 
 « 
 
 „ 
 
 • 
 
 153 
 
 •39 
 
 "73 
 
 129 
 
 ";4 
 
 119 
 
 214 
 
 no 
 
 234 
 
 KX) 
 
 255 
 
 90 
 
 275 
 
 81 
 
 295 
 
 71 
 
 316 
 
 61 
 
 33f> 
 
 52 
 
 SSf" 
 
 42 
 
 17 
 
 32 
 
 37 
 
 23 
 
 .07 
 .08 
 ,06 
 
 .01 
 
 .06 
 
 . 10 
 
 .09 
 .04 
 •05 
 
 .12 
 ,12 
 .04 
 
 B 
 
 .06 
 .05 
 
 ,1K) 
 .05 
 .09 
 .08 
 .02 
 .06 
 .11 
 .11 
 .04 
 .05 
 , 12 
 
 
 ient 1 + O- 1 ' t'"*'* rJ" + ^ cos 2 g -{■ li sin 2 g is next tabulated for each 
 values of A and li for every 10 ' t»f g, and multiplied by the corre- 
 
 if iiX. As these tables are superseded by those yivcii at the cIos(! of 
 
 not necessary to print them, 
 ons ol" short period, which have been actually a|»plied, are 
 
 -I-0.96 sill 1) 
 
 — 0.13 sill {D -\- g') 
 + 0.09 sill g' 
 
 — 0.62 sin (2 i' — 4 5^' + 2 6j — 4 (x)') 
 
15 
 
 The first tliroo liave been combinod info a siiiifl(> oih; olMoiihlo aii,niiii(Mit, in wliidi 
 tlie argunionts sire /> antl tlio niontli; Uk! liitliM-coiic'spontlinij; to i('. Tlic Icinis dcpcnd- 
 ent on tiiis argument nw. so small that they may l>e regarded as eonstant during an 
 entire month. 
 
 In |,his sain(> talde is ineludcd a partially conjectural correction l()rtlit! variations (tf 
 the moon's semi-diameter. The correction to Hansen's value has l)eeii assumed a.-; 
 — 2".o, when the moon is in the ntnghhorhood of the sun, so that iier limb is very liiint; 
 and as —o".4 after the dose of evening twilight. IJetween two hours of elongation 
 and the dose of twilight, it is assumed to increase uniformly. The sum ol' these l()ur 
 corrections is given in the tbllowing table : 
 
 0) — 
 Ul t, O 
 
 cT S S 
 Q 
 
 FIRST LIMR. 
 
 Jan. 
 
 14 
 
 + 2.4 
 
 13 
 
 + 2.3 
 
 12 
 
 + 2.2 
 
 II 
 
 + 2.1 
 
 10 
 
 ^■ 2.0 
 
 9 
 
 + 1.8 
 
 8 
 
 + 1.5 
 
 I 
 
 + 1.5 
 
 fi 
 
 + 1.5 
 
 5 
 
 + 1.4 
 
 4 
 
 (- 1.2 
 
 3 
 
 + 1.1 
 
 2 
 
 + 0.() 
 
 1 
 
 + o.f) 
 
 
 
 + 0.4 
 
 Full 
 
 + 2.5 
 + 2.4 
 + 2.3 
 + 2.2 
 + 2.1 
 + 2.0 
 + 1.7 
 + 1.5 
 + 1.4 
 + 1-3 
 + 1.2 
 + 1.0 
 + o.S 
 + n.6 
 + 0.4 
 
 Mar. 
 
 + 2.5 
 + 2.5 
 + 2.5 
 + 2.4 
 I- 2.4 
 + 2.3 
 + 2.1 
 + I.S 
 + 1.4 
 + 1.3 
 +• 1.2 
 + I.O 
 
 + O.S 
 + n.6 
 + o.. 
 
 .•\l)iil. ! May. I liiiu'. 
 
 + 2.6 ! + 2.5 
 -f- 2.5 I + 2.4 
 
 + 2.4 
 I 2.4 
 + 2.3 
 + 2.2 
 + 2.0 
 + 1.8 
 + 1-5 
 
 :.4 
 2.3 
 
 + 
 f 
 
 I- 2.2 
 + 2.1 
 + 2.0 
 + I-S 
 + I.f. 
 
 -H 1.2 i + 1.4 
 
 + I . I I t- I . I 
 
 + 1.0 
 
 ■1-0. (J 
 
 + 0.8 
 
 + 0.7 
 
 + 0.6 
 
 + 0.6 
 
 + 0.4 
 
 + 0.4 
 
 + 2.4 
 
 + 2.3 
 + 2.3 
 
 -I- 2.2 
 \- 2.1 
 + 2.1 
 + 2.0 
 + 1.8 
 I-- 1 . 5 
 
 + 1-4 
 H- I.I 
 + ".'J 
 + ".7 
 + 0.6 
 + 0.4 
 
 Inh. 
 
 Aug. 
 
 Sept. 
 
 -I- 2 . 3 ' -I- 2 . 2 +2.1 
 
 + 2.2 4-2.1 +2.0 
 
 (-2,24-2.1^ + 2.0 
 
 ■f 2.1 I f- 2.1 + 2. CI 
 
 1- 2.0 ' -f- 2.0 I- 2.0 
 
 + 2.0 4-1.1) 4 I.S 
 
 -I- i.() 4- I.S 4-1.7 
 
 4- 1.7 I t- 1.6 I 4- 1.4 
 
 4 I. ; 
 4- I.I 
 
 4- I . ' 
 
 4 11.9 ; 4- 1.0 
 
 + 1-5 
 + 1-3 
 t- 1 .0 
 
 I 
 
 -ho.S 
 
 4- o.S 
 
 -f 0.6 
 
 4- 0.6 
 
 -f C.4 
 
 4- 0.4 
 
 4- 1.2 
 +- 1.2 
 4- I.I 
 
 f 1.0 
 
 -f 0.8 
 -I- 0.6 
 4- 0.4 
 
 
 
 
 Oct. 
 
 Nov. 
 
 Der. 
 
 + 2.1 
 
 4- 2.2 
 
 -!■ 2.3 
 
 4- 2.0 
 
 4- 2.1 
 
 •t- 2.2 
 
 + 1.0 
 
 ■(- 2.0 
 
 4 2.0 
 
 1 1.8 
 
 -1- I..) 
 
 4 2.0 1 
 
 i 1.7 
 
 1- 1 . 7 
 
 4- I.S 
 
 4- 1.6 
 
 4-1.5 
 
 4-1.6 
 
 4- 1.4 
 
 + 1.4 
 
 + 1.5 
 
 + 1-3 
 
 4-1.4 
 
 + 1.5 
 
 + 1.3 
 
 4- 1.4 
 
 4- 1.4 
 
 + 1.2 
 
 4- 1.3 
 
 -1- 1.4 
 
 4-1.1 
 
 4-1.2 
 
 4- 1.2 1 
 
 4 1.0 
 
 f l.I 
 
 4 1.1 
 
 4-0. S 
 
 + o.<) 
 
 4- 0.9 
 
 4- 0.6 
 
 4-0.7 
 
 4 0.6 
 
 40.4 
 
 -ho.4 
 
 4-0.4 
 
 "^ r! O 
 lyi 4j O 
 
 S'S s 
 
 c c 
 
 IT O O 
 
 Q 
 
 4 
 4- 
 -I- 
 + 
 4- 
 + 
 4- 
 + 
 
 4- 
 + 
 4- 
 + 
 
 o 
 I 
 2 
 3 
 4 
 5 
 6 
 
 7 
 
 S 
 
 9 
 10 
 II 
 1 2 
 13 
 14 
 
 Jan. I Feb. 
 
 -0.4 
 
 -0.4 
 
 -0.6 
 
 -0.6 
 
 -O.S 
 
 -0.7 
 
 -I.I 
 
 -0.9 
 
 — 1.2 
 
 — I.I 
 
 - l;4 
 
 -1.2 
 
 - 1.4 
 
 — 1-3 
 
 - 1.5 
 
 - 1.3 
 
 - 1.4 
 
 - 1.5 
 
 1.7 ; - 1.7 
 
 I 
 
 — 1.9 
 - 2.0 
 
 — 2.1 
 
 — 2,2 
 -2.3 
 
 — 1.9 
 
 — 1.9 
 
 — 2.0 
 
 — 2.1 
 
 — 2.2 
 
 Mar. 
 
 April. 
 
 
 -0.4 
 
 -0.4 
 
 
 -0.6 
 
 — (1.6 
 
 
 -o.S 
 
 -o.S 
 
 
 — l.O 
 
 — 1 .0 
 
 
 — 1.2 
 
 — I.I 
 
 
 — 1.2 
 
 — 1.2 
 
 
 - 1.3 
 
 - 1.4 
 
 
 - 1.6 
 
 - 1.6 
 
 
 - I.S 
 
 - I.S 
 
 
 -2.0 
 
 -1.9 
 
 
 — 2.0 
 
 — 2.0 
 
 
 — 2. 1 
 
 — 2.0 
 
 
 — 2.1 
 
 — 2.0 
 
 
 — 2.1 
 
 — 2.0 
 
 
 — 2.t 
 
 — 2.1 
 
 
 Mav. 
 
 - ".4 
 
 - 0.6 
 
 - (I.S 
 
 - 0.9 
 
 - I.I 
 
 - 1.4 
 
 - 1.5 
 
 - 1.7 
 
 - 1.9 
 
 - 1-9 
 
 - 2.0 
 
 - 2.0 
 
 - 2.1 
 
 - 2. I 
 
 - 2.2 
 
 s 
 
 FCOND LIMB 
 
 
 
 
 
 Dec. 
 
 
 June. 
 
 July. 
 
 Aug, 
 
 Sept. 
 
 Oct. 
 
 Nov. 
 
 
 -0.4 
 
 -0. t 
 
 -0.4 
 
 -0.4 
 
 -0.4 
 
 -0.4 
 
 -0.4 
 
 
 -0.6 
 
 - 0.6 
 
 -0.6 
 
 -0.6 
 
 -0.6 
 
 -0.6 
 
 -0.6 
 
 
 -o.S 
 
 -0.7 
 
 -0.7 
 
 -o.S 
 
 — o.S 
 
 -o.S 
 
 -0.8 
 
 
 -0.9 
 
 -0.9 
 
 -0.9 
 
 - 1.0 
 
 — 1 .0 
 
 — 1.0 
 
 — I.I 
 
 
 — 1.0 
 
 — 1.0 
 
 — T.I 
 
 — I.I 
 
 — 1.2 
 
 — 1.2 
 
 — 1.2 
 
 
 - 1.4 
 
 - 1.4 
 
 — 1.2 
 
 - 1.3 
 
 - 1.3 
 
 - 1-4 
 
 - 1.4 
 
 
 - 1-5 
 
 - 1.5 
 
 -1.5 
 
 - 1.4 
 
 - 1-4 
 
 - 1.4 
 
 - 1.5 
 
 
 - 1-7 
 
 - I.S 
 
 - 1-7 
 
 - 1.6 
 
 - 1.5 
 
 - 1.5 
 
 - 1-5 
 
 
 - 1-9 
 
 — 2.0 
 
 - 1.9 
 
 - 1.9 
 
 - 1.7 
 
 - 1.5 
 
 -1.5, 
 
 
 — 2.0 
 
 - 2.1 
 
 — 2.1 
 
 — 2. 1 
 
 - 1.8 
 
 - I.S 
 
 - 1.7 
 
 
 — 2. 1 
 
 -2.1 
 
 — '* 2 
 
 - 2.3 
 
 — 2.1 
 
 — 2.0 
 
 - 1-9 
 
 
 — 2.1 
 
 — 2.2 
 
 -2.3 
 
 -2.4 
 
 22 
 
 - 2.2 
 
 - 2.0 
 
 
 — 2.2 
 
 -2.3 
 
 -2.4 
 
 - 2.4 
 
 - 2.4 
 
 -2.3 
 
 — 2.1 
 
 
 -2.2 
 
 - 2.3 
 
 -2.4 
 
 - 2.5 
 
 -2.5 
 
 - 2.4 
 
 -2.3 
 
 
 - 2.3 
 
 -2.4 
 
 -2.5 
 
 -2.6 
 
 -2-5 
 
 -2.5 
 
 -2.4 
 
 - 14 
 
 - '3 
 
 - 12 
 
 - II 
 
 - 10 
 
 - 9 
 
 - 8 
 
 - 7 
 
 - 6 
 
 - S 
 
 - 4 
 
 - 3 
 
 - 2 
 
 - I 
 o 
 
 c c 
 « o 
 
 (/I 01 o 
 
 J?E 6 
 
 a 
 
 o 
 I 
 
 2 
 
 3 
 4 
 
 5 
 6 
 
 7 
 
 8 
 
 9 
 10 
 
 II 
 12 
 13 
 14 
 
 -f- 
 
 4- 
 + 
 I- 
 + 
 4- 
 4- 
 , -t- 
 -I- 
 4- 
 ■I- 
 4- 
 + 
 4- 
 
 ■ •*'=Wrtfe«*rtSS«'HilBBWl»Slj*.i« 0tmy**'-j. 
 
 >^i.i**wm^3«w**r' 
 
i. I 
 
 I ll 
 
 ij' 111 
 
 «tl 
 
 16 
 
 ]\y tlic ii|)|)li(;i)tit)ii of tlio foroiroinir corrections to tlic errors of llic moon's taluilar 
 rii^lit asf-ensioii, these errors iiiiiy he supposed to he rediictMl to very small (piaiitities, 
 dependiiiij; on the errors of the lunar (!l(!ments, with which th(;y are eonnecleil hy the 
 
 e(piation 
 
 „ ■ (lot ^, , (In »,j , (la ^. 
 (U ^ (1.0 ^ (li ' 
 the clillercntial coelticieiits having tlie vahuvs ijiven on |)aire 12. When we snl)stitnte 
 theso values, tiie exprcission for Sa will contain the terms 
 
 (+ .01 8 (5(9 — ,03 7 '5a) cos (2 / — <9) 
 
 — .087 6a cos 2 / 
 + .018 (5 (9 cos (9 
 -|- 0.21 <5/ sin 6 
 
 — 0.2 1 (3i sill (2 / — 0) 
 
 If we represent the sum of these; terms l>y P, we shall have 
 
 SI =<'ia — 'D 
 
 In the investigation of the corrections to the; moon's eccentricity and longitude of 
 perigee, the terms of P may be entirely neglected. This arises from the circumstances 
 that tlu! appreciable terms of /or a arising tV'im tlie errors of these elements liavt; the 
 same period with f, tiw; mean anomaly, while /'contains no apprecialde pi'riodic terni 
 depifuding on g. The outstanding pmtion of ('ia prol)aldy averages not more Ihan »me 
 second or two at the utmost, so that the term .037 ('>a is (piite insignificant. The term 
 .018 SO may have a constant value of o".25, more or le.ss;* l)ut tlu; short period of the 
 term 2/ — (9, ami its inc(»mmensnral»ility witli the period of i,', permit of this error 
 i)eing regarded as liirtiiitoiis. The sanii' rentark ap[»lies to tiiiMcirms .0S7 S(t cos 2/ 
 and 0.21 r5/sin(2/ — 0). 'i'he only remaining terms liave tiie jteriod of 0, which is 
 niorf- than (Mghleen ye:irs. 'J'lie ellect ot' these possildt; errors is tlieiell)r<' eliminated 
 in th(> mean correction for each year, which has been alrea<ly applii-d to the errors. 
 
 To determine the correction to tin! (•(•(•entricity and longitude of the perigee result'- 
 ing from each year's observations, the residuals in riglit ascension, afl(!r the application 
 of the three corrections already described, have becjn arranged according to the values 
 of the mean anomaly to which they corresi»ond. The results are shown in the follow- 
 ing talde, which gives for certain limits of mean anomaly in the first ctdumn, firstly, the 
 sum of the residuals (tal>idar iiiliiii^ o!)served) in riglil asctiusion, corresponding to all 
 the values of mean anomaly between those limits; and, secondly, the number of the 
 residuals. In taking these sums, the observations at the two ob-servatories are counted 
 st^paratrly, .so tl'.at when observations wen; made at \m\\\ obs(M'vafories on the same 
 date, th(! sum of the residuals is tak(Mi, ami the observations count 2 in the column N. 
 
 "It IH iiftcrwiinl tuiinil that the viilno of this |iii>. ■■t is only o .oS. 
 
17 
 
 Sums of errors of tnoo)i\s corrected rifjht ascension, given hy ohserrations at Grccnmch und 
 
 Washington. 
 
 
 1362. 
 
 
 1863. 
 
 
 1864. 
 
 
 1865. 
 
 
 Limits of mean; 
 
 
 
 
 
 
 
 
 
 
 
 
 anomaly. 
 
 i 
 
 
 
 
 
 
 1 
 
 
 N. 
 f 
 1 
 
 £.!a 
 
 N. 
 
 S,!n 
 
 N. 
 
 D.ia 
 
 N. 
 
 . i 
 
 o i 
 
 o lo lo 
 
 + 3-9 
 
 4 
 
 H 
 + 21.5 
 
 10 
 
 + I9.f> 
 
 9 
 
 + 1-4 
 
 7 
 
 10 lo 20 
 
 + 3.f' 
 
 6 
 
 + 12.3 : 
 
 12 ! 
 
 + 6.1 
 
 7 : 
 
 + 3-4 
 
 4 * 
 
 20 to 30 
 
 — 0.2 
 
 5 
 
 + 14.2 
 
 8 
 
 + 5-8 
 
 5 j 
 
 — <i? 
 
 10 
 
 30 to 40 
 
 + 9-3 
 
 8 
 
 + 23.7 
 
 II 
 
 + 4-5 
 
 7 
 
 - 0.5 
 
 5 1 
 
 40 to 50 1 
 
 + 2-7 
 
 8 
 
 + 9'0 
 
 8 
 
 + 2.6 
 
 3 
 
 - 3.f' 
 
 6 
 
 50 to 60 
 
 + 0.3 
 
 8 
 
 + 9-8 
 
 9 
 
 - 1.6 
 
 10 1 
 
 — I.I 
 
 6 1 
 
 60 to 70 '■■ 
 
 + S.9 
 
 10 
 
 - 4-3 
 
 7 
 
 + '-.7 
 
 5 
 
 - 61 
 
 7 
 
 70 to So 
 
 - 3-7 
 
 4 
 
 + 7-0 
 
 10 
 
 - 7.0 
 
 f' i 
 
 - f>.7 
 
 6 
 
 80 to 90 
 
 + 6.7 
 
 7 
 
 - 6.7 
 
 6 
 
 — II. 2 
 
 9 
 
 - 6.1 
 
 6 
 
 qo to too 
 
 + 3-9 
 
 6 
 
 - 3-3 
 
 9 
 
 - 3-4 
 
 6 
 
 - 8-5 
 
 7 
 
 too to ito 
 
 + 3-9 
 
 11 
 
 - 0.4 
 
 5 
 
 - 2.1 
 
 5 
 
 — 0.7 
 
 5 
 
 110 to 120 
 
 - 6.4 
 
 9 
 
 - 3.9 
 
 8 
 
 - 30 
 
 3 
 
 - 7-5 
 
 8 
 
 120 to 130 
 
 - 3-2 
 
 8 
 
 - 3.9 
 
 7 
 
 + 0.1 
 
 5 
 
 - 5-5 
 
 6 
 
 130 to 140 
 
 - 7-8 
 
 6 
 
 - 8.8 
 
 8 
 
 — 12.2 
 
 7 i 
 
 + 5-0 
 
 5 
 
 140 to 150 
 
 - 0.9 
 
 5 
 
 - 15-9 
 
 8 
 
 + 0.9 
 
 3 1 
 
 i 
 
 + ... 
 
 5 
 
 150 to lf)0 
 
 — 0.1 
 
 5 
 
 - 18.2 
 
 9 
 
 - f>.7 
 
 7 
 
 + 1.5 
 
 4 
 
 160 to 170 
 
 - 8.8 
 
 4 
 
 - 19.7 
 
 6 
 
 + 2.5 
 
 6 
 
 + 4-3 
 
 5 
 
 170 to iSo 
 
 - 5.7 
 
 4 
 
 - 9-9 
 
 7 
 
 - 5-3 
 
 5 
 
 + 6.4 
 
 6 
 
 iSo to 190 
 
 - 17-4 
 
 9 
 
 - 33.1 
 
 14 
 
 - 8.6 
 
 7 
 
 + 8.9 
 
 6 
 
 190 to 200 
 
 - 15-5 
 
 7 
 
 - 4-3 
 
 4 
 
 - 0.6 
 
 4 
 
 + 15-2 
 
 8 
 
 200 to 210 
 
 - 3.S 
 
 10 
 
 — 1 .0 
 
 6 
 
 - 6.4 
 
 9 
 
 + 7-8 
 
 8 
 
 210 to 220 
 
 — 0.2 
 
 2 
 
 - 1.9 
 
 9 
 
 - 2.9 
 
 8 
 
 + 13 I 
 
 7 
 
 220 to 230 
 
 — 28.9 
 
 9 
 
 - 7.5 
 
 10 
 
 + 3.<i 
 
 / 
 
 + 5.1 
 
 5 
 
 230 to 240 
 
 - 7-3 
 
 7 
 
 - 1-9 
 
 7 
 
 + 0.8 
 
 7 
 
 + 10.3 
 
 5 
 
 240 to 250 
 
 + I3-0 
 
 8 
 
 + 0.4 
 
 9 
 
 + 1.6 
 
 7 
 
 4 7.3 
 
 8 
 
 250 to 260 
 
 — 2.0 
 
 4 
 
 + 7-6 
 
 8 
 
 + II.5 
 
 8 
 
 + 7-3 
 
 7 
 
 260 to 270 
 
 + 1.6 
 
 9 
 
 + 1.4 
 
 ! 5 
 
 + 11-7 
 
 7 
 
 + 16.2 
 
 12 
 
 270 to 23o 
 
 + 3-7 
 
 5 
 
 + II. 3 
 
 9 
 
 ' + 25-3 
 
 II 
 
 + 7.(' 
 
 II 
 
 2S0 to 2</3 
 
 + 4-7 
 
 7 
 
 1- o.S 
 
 5 
 
 + 18.2 
 
 8 
 
 + 9-f' 
 
 8 : 
 
 290 to 300 
 
 - 1.3 
 
 1 I 
 
 + 15-9 
 
 7 
 
 ; + 6.6 
 
 4 
 
 + 5.8 
 
 II 1 
 
 300 to 310 
 
 + 3-0 
 
 i 3 
 
 + 23.5 
 
 9 
 
 + 7.8 
 
 6 
 
 + 10. 1 
 
 7 i 
 
 310 to 320 
 
 + 2.3 
 
 1 2 
 
 + 22.6 
 
 ; 6 
 
 + 6.4 
 
 5 
 
 + 16.4 
 
 10 
 
 320 to 330 
 
 - 2.8 
 
 5 
 
 + 18.2 
 
 9 
 
 + 11.6 
 
 7 
 
 \ + 14.5 
 
 7 
 
 330 to 340 
 
 + 9-5 
 
 6 
 
 + 1.2 
 
 7 
 
 + 18.5 
 
 10 
 
 + 16.7 
 
 II 
 
 340 to 3;o 
 
 + II. 8 
 
 8 
 
 + 7-2 
 
 7 
 
 + 4-2 
 
 7 
 
 + 7-6 
 
 1 
 
 7 
 
 350 to 360 
 
 + i3.f' 
 
 5 
 
 + 14-4 
 
 8 
 
 + 16.5 
 
 6 
 
 ! + 5-3 
 
 9 
 
 j +106.4 
 
 225 
 
 + 222.0 
 
 2S7 
 
 1 +1S7.1 
 
 i 236 
 
 ; +205.9 
 
 255 
 
 
 i —116.0 
 
 1 
 
 1 
 
 1 
 
 -144-7 
 
 - 
 
 1 - 71.0 
 
 j 
 
 - 46.6 
 
 - 
 
 j - 9-6 
 
 + 78.3 
 
 + 116. 1 
 
 + 1593 
 
 Sm 
 
 »^»*>*~-"'*«»e!B«»«wss*<i«nBi4ii«»*'»» 
 
18 
 
 Slims of erron of 7noons corrected right aKcension, S^v. — Contimiod. 
 
 
 1866. 
 
 
 1867. 
 
 
 1868. 
 
 
 i86g. 
 
 
 Limitsof mean 
 
 
 
 
 
 
 
 
 
 anomaly. 
 
 £(ln 
 
 N, 
 
 Ida 
 
 N. 
 
 XAa 
 
 N. 
 
 2, In 
 
 N. 
 
 to 10 
 
 - 1.7 
 
 6 i 
 
 + 7.4 
 
 5 ! 
 
 n 
 
 - 4.2 
 
 4 
 
 - 10.7 
 
 4 
 
 lo to 2o 
 
 - 2.5 
 
 4 
 
 - 5.0 
 
 2 1 
 i 
 
 + 3-9 
 
 7 
 
 - 4.2 
 
 4 
 
 20 to 3P 
 
 - 7.5 
 
 3 
 
 - 1.7 
 
 4 
 
 - 2.5 
 
 3 
 
 - 0.8 
 
 6 
 
 30 to 40 
 
 - 7.1 
 
 5 
 
 - 7.5 
 
 3 , 
 
 - 9-4 
 
 6 
 
 + 4.2 
 
 5 
 
 40 to 50 
 
 - 14-5 
 
 7 
 
 + 5.5 
 
 ' 
 
 - g.o 
 
 5 
 
 + II. 
 
 6 
 
 50 to 60 
 
 - 0.7 
 
 I 
 
 — 2.0 
 
 4 
 
 - 0.7 
 
 7 
 
 + 5-5 
 
 3 
 
 60 to 70 
 
 + 1.3 
 
 5 
 
 - 8.5 
 
 4 
 
 + 2.2 
 
 7 
 
 + 3.1 
 
 5 
 
 70 to 80 
 
 + 5-3 
 
 6 
 
 - 4.8 
 
 3 
 
 + 4.1 
 
 8 
 
 + 7.7 
 
 7 
 
 80 to go 
 
 + 1.6 
 
 6 
 
 - 3.6 
 
 I 
 
 + 12.2 
 
 7 
 
 + 8.0 
 
 8 
 
 90 to 100 
 
 + 3.9 
 
 4 
 
 + 2.6 
 
 5 
 
 - 0.3 
 
 4 
 
 + 16.8 
 
 8 
 
 100 to no 
 
 + 4-4 
 
 9 
 
 - 0.6 
 
 5 
 
 + 14.9 
 
 7 
 
 + 5-1 
 
 9 
 
 no to 120 
 
 + 4.« 
 
 8 
 
 + 3.9 
 
 5 
 
 + 9.8 
 
 6 
 
 + 8.3 
 
 6 
 
 120 to 130 
 
 - 5-4 
 
 8 
 
 -(- 1.6 
 
 7 
 
 + 4.1 
 
 5 
 
 + 14.5 
 
 7 
 
 130 to 140 
 
 + 3-4 
 
 6 
 
 + 4.1 
 
 6 
 
 + 10.2 
 
 8 
 
 + 7.5 
 
 8 
 
 140 to 150 
 
 + lo.l 
 
 9 
 
 + 1.9 
 
 7 
 
 + 5.2 
 
 7 
 
 + 3.1 
 
 6 
 
 150 to I Go 
 
 — 4.' 
 
 6 
 
 - 2.6 
 
 7 
 
 + 2.1 
 
 9 
 
 + 20.3 
 
 7 
 
 t6o to 170 
 
 + 3-3 
 
 7 
 
 + 6.8 
 
 5 
 
 + ..3 
 
 8 
 
 + 3.7 
 
 3 
 
 170 to 180 
 
 — 0.1 
 
 7 
 
 - 5-0 
 
 8 
 
 + 0.8 
 
 7 
 
 + 12.2 
 
 7 
 
 180 to 190 
 
 + o.S 
 
 6 
 
 - 0.3 
 
 2 
 
 + 12.3 
 
 8 
 
 + 7.0 
 
 5 
 
 190 to 200 
 
 + 5-9 
 
 6 
 
 + 2.0 
 
 4 
 
 + 17.9 
 
 6 
 
 + 6.3 
 
 4 
 
 200 to 210 
 
 - 3-2 
 
 6 
 
 + 2.8 
 
 6 
 
 + 5.2 
 
 5 
 
 + 10. 1 
 
 5 
 
 210 to 220 
 
 + 0.3 
 
 6 
 
 - 1-7 
 
 4 
 
 : + 13.0 
 
 8 
 
 + 12.2 
 
 5 
 
 220 to 230 
 
 - 5.4 
 
 4 
 
 + 12. 9 
 
 9 
 
 1 + 4.8 
 
 4 
 
 + 12.3 
 
 7 
 
 230 to 240 
 
 + 4.J 
 
 8 
 
 + 8.2 
 
 6 
 
 + 15-2 
 
 9 
 
 - 1.3 
 
 3 
 
 240 to 250 
 
 - 1.8 
 
 7 
 
 + 25.4 
 
 9 
 
 i 4- 7.4 
 
 8 
 
 - 6.4 
 
 6 
 
 250 to 260 
 
 + 9-4 
 
 ' 7 
 
 + 0.9 
 
 3 
 
 '. + 14.2 
 
 8 
 
 - 3.6 
 
 2 
 
 260 to 270 
 
 + 2.7 
 
 7 
 
 + It. 7 
 
 6 
 
 : - 5.0 
 
 2 
 
 - >7.3 
 
 7 
 
 270 to 280 
 
 + 9-: 
 
 4 
 
 ; + 3-3 
 
 4 
 
 + I.O 
 
 7 • 
 
 - 18.8 
 
 5 
 
 280 lo 290 
 
 + II. 6 
 
 12 
 
 1 
 
 + 7.0 
 
 7 
 
 - 9.1 
 
 5 
 
 - 21.4 
 
 6 
 
 290 to 300 
 
 + 4.0 
 
 ! 4 
 
 + 0.7 
 
 3 
 
 - 3.2 
 
 8 
 
 — 13.6 
 
 3 
 
 300 to 310 
 
 + 6 7 
 
 4 
 
 + 16.5 
 
 7 
 
 - 8.0 
 
 i 2 
 
 - 4.8 
 
 2 
 
 310 to 320 
 
 + 3-4 
 
 2 
 
 i + 2.3 
 
 5 
 
 - 13.8 
 
 8 
 
 - 0.8 
 
 I 
 
 320 to 330 
 
 + 7-7 
 
 5 
 
 1 + 0.2' 
 
 5 
 
 — 10.6 
 
 9 
 
 - 4-2 
 
 2 
 
 330 to 340 
 
 + 9-1 
 
 5 
 
 1 + 3.5 
 
 6 
 
 - 11.7 
 
 6 
 
 - 18.5 
 
 6 
 
 340 to 350 
 
 + 10.8 
 
 6 
 
 \ - 5.4 
 
 7 
 
 . - 9-8 
 
 I 
 
 5 
 
 — 10.6 
 
 4 
 
 350 to 360 
 
 + 92 
 
 7 
 
 - 7.2 
 
 4 
 
 1 - 18.3 
 
 6 
 
 — 2.2 
 
 5 
 
 + 132.9 
 
 213 
 
 + 131. 2 
 
 182 
 
 + 161. 8 
 
 229 
 
 + 178.9 
 
 187 
 
 
 - 54.0 
 
 
 1 - 55-9 
 
 
 — 115.6 
 
 1 
 1 
 
 -139.2 
 
 
 + 78.9 
 
 1 
 
 1 + 75.3 
 
 + 46.2 
 
 + 39-7 
 
19 
 
 Sum/) of crwrs of moon\s corrected right ascension, S^r. — ('(mcliidcil. 
 
 Limits of mean 
 anomaly. 
 
 1871 
 
 
 187 
 
 . 
 
 1872. 
 
 1873. 
 
 1874. 
 
 7,,\a 
 
 N. 
 
 Sila 
 
 1 
 
 2,1(1 
 
 1 
 
 N, 
 
 V 
 
 rta 
 
 N, 
 
 S,l<. 
 
 1 
 N. 
 
 OlO 10 
 
 - 7.2 
 
 5 
 
 - 3.2 
 
 5 + 6.5 
 
 6 
 
 
 4.3 
 
 6 
 
 + 4.6 
 
 1 
 1 
 
 1 '* 
 
 10 to 20 
 
 — 2.2 
 
 5 
 
 + 1.7 
 
 n 1 + 8.5 
 
 10 
 
 + 
 
 5.2 
 
 4 
 
 + 5.9 
 
 S 
 
 20 to 30 
 
 + 5.1 
 
 6 
 
 - 0.3 
 
 7 
 
 + 5.5 
 
 8 
 
 + 
 
 5.2 
 
 8 
 
 + 12.5 
 
 i f' 
 
 30 to 40 
 
 -f 10.7 
 
 8 
 
 + 6.4 
 
 7 
 
 + 1 1. 8 
 
 7 
 
 + 
 
 3.4 
 
 3 
 
 + 5.1 
 
 i 5 
 
 40 to 50 
 
 + II. 3 
 
 8 
 
 + 16.7 
 
 9 
 
 + 6.0 
 
 4 
 
 + 
 
 6.6 
 
 4 
 
 + 4.4 
 
 i 
 j 5 
 
 50 to 60 
 
 - 7.1 
 
 5 
 
 + 9.7 
 
 6 + 13,2 
 
 6 
 
 + 
 
 4.1 
 
 7 
 
 + 2.1 
 
 5 
 
 60 to 70 
 
 + I.O 
 
 9 
 
 + 18.9 
 
 8 + 10.4 
 
 3 
 
 + 
 
 13.4 
 
 6 
 
 + 10. 1 
 
 4 
 
 70 to 80 
 
 - 2.6 
 
 5 
 
 4- 10.2 
 
 7 1 + 12.4 
 
 8 
 
 + 
 
 '3.5 
 
 3 
 
 + 6.6 
 
 6 
 
 80 to 90 
 
 + 12.0 
 
 12 
 
 + n.7 
 
 1 5 * + II. 3 
 
 4 
 
 + 
 
 15.8 
 
 7 
 
 + 6.0 
 
 3 
 
 90 to 100 
 
 + 10. 1 
 
 8 
 
 + 12.5 
 
 i 3 
 
 + 9-8 
 
 4 
 
 + 
 
 5.1 
 
 2 
 
 + 5.9 
 
 7 
 
 100 to no 
 
 + 10.8 
 
 4 
 
 + 19.7 
 
 8 
 
 + 13.0 
 
 6 
 
 + 
 
 1.5 
 
 3 
 
 + 10.9 
 
 6 
 
 no to 120 
 
 + 5-8 
 
 6 
 
 + 8.2 
 
 4 
 
 + 18.7 
 
 6 
 
 + 
 
 5.3 
 
 2 
 
 + 4.6 
 
 4 
 
 120 to 130 
 
 + 10. 1 
 
 7 
 
 + 9.7 
 
 5 
 
 + 18.3 
 
 7 
 
 + 
 
 6.1 
 
 5 
 
 - 4.7 
 
 6 
 
 130 to 140 
 
 H- 10. 1 
 
 5 
 
 + «5.4 
 
 5 
 
 + 0.2 
 
 2 
 
 + 
 
 3.3 
 
 3 
 
 + 1.8 
 
 1 
 
 140 to 150 
 
 + 18.2 
 
 8 
 
 + 2.1 
 
 3 
 
 + 2.9 
 
 3 
 
 + 
 
 8.4 
 
 5 
 
 - 0.8 
 
 7 
 
 150 to 160 
 160 to 170 
 170 to 180 
 180 to 190 
 
 + 4.4 
 
 +■ 8.8 
 +. 6.9 
 
 + I 8 
 
 3 
 5 
 3 
 I 
 
 + 3.0 
 + 8.7 
 
 + 6.2 
 
 + 3.9 
 
 7 
 4 
 6 
 
 + 2.1 
 + 6.6 
 — 1.2 
 + 1.9 
 
 8 
 5 
 3 
 
 4 
 
 - 
 
 3.9 
 5-4 
 1.7 
 2.2 
 
 3 
 4 
 3 
 4 
 
 + 1.3 
 
 — 10. 1 
 
 — 1.0 
 
 + 5.0 
 
 5 
 
 9 
 6 
 
 6 
 
 190 to 200 
 
 + 7.5 
 
 4 
 
 + 3.5 
 
 3 
 
 — 1.2 
 
 5 
 
 - 
 
 6.6 
 
 6 
 
 — 1.0 
 
 2 
 
 200 to 210 
 210 to 220 
 220 to 230 
 
 + 2.1 
 - 2.5 
 
 5 
 3 
 
 3 
 
 + 1.0 
 
 - 2.6 
 
 - 9.3 
 
 3 - 2.2 
 2 +1.2 
 7-7.2 
 
 6 
 3 
 
 5 1 
 
 
 0.9 
 6.6 
 o.i 
 
 2 
 
 3 
 4 
 
 + 3.7 
 
 - 5.0 
 
 — 16.0 
 
 6 
 
 5 
 7 
 
 230 to 240 
 240 to 250 
 
 250 to 2f)0 
 
 260 to 270 
 270 to 280 
 280 to 290 
 
 - 0.4 
 
 - 9-7 
 
 - 12. I 
 
 - 2.3 
 
 1 
 -.2.9 
 
 - 5.6; 
 
 5 
 5 
 6 
 2 
 8 
 3 
 
 - 3. a 
 
 - 9.1 
 
 - 5.2 
 
 - 4.6 
 
 - 7.1 
 -- 2.7 
 
 6 - 4.8 
 
 8 ; - 6.5 ^ 
 
 5 - 9-1 i 
 
 5 i - 13.8 
 
 7 ; - 8.4 \ 
 
 6 t — 16.7 
 
 5 ' 
 3 : 
 4 
 8 
 
 5 
 9 
 
 — 
 
 3.5 
 7.5 
 7.1 1 
 8.6 
 
 4.3 1 
 10.8 i 
 
 I ! 
 5 ' 
 4 
 
 1 
 
 3 i 
 
 4 1 
 
 6 
 
 - «3.5 
 
 - 15.1 
 
 - 23.0 
 
 - 22.6 
 
 - I?. 6 
 
 - 9.1 
 
 4 
 
 8 
 5 
 4 
 4 
 3 
 
 290 to 300 
 
 - 5.5 
 
 4 
 
 + 4.0 
 
 4 ! - 10.3 
 
 S 
 
 — 
 
 9.8 
 
 4 
 
 - 13.4 
 
 S 
 
 300 to 310 
 
 - 4.0 
 
 4 
 
 - 9.5 
 
 6-9.5 
 
 5 
 
 — 
 
 1.8 1 
 
 I 
 
 — O.I 
 
 9 
 
 310 to 320 
 
 - 8.7 
 
 3 
 
 - 6.6 
 
 5 i - 5-6 
 
 4 
 
 — 
 
 3.2 ( 
 
 4 1 
 
 - ;.3 
 
 6 
 
 320 to 330 
 
 - 13.5 
 
 6 
 
 - 4-9 
 
 7 i - 8.5 
 
 5 
 
 — 
 
 11-3 
 
 7 
 
 - 1.4 
 
 7 
 
 330 to 340 
 
 - ..7| 
 
 4 
 
 - 2.8 
 
 7 1 - 8.5 : 
 
 5 
 
 — 
 
 0.3 
 
 3 
 
 - 4.3 
 
 3 
 
 340 to 350 
 350 to 360 
 
 - 3.6 i 
 
 - 8.7 ! 
 
 3 
 
 5 
 
 - 1.7 
 
 + 6.3 
 
 4 
 4 
 
 - 5.1 ' 
 + 0.1 
 
 5 
 6 
 
 — 
 
 9.2 '■ 
 4.0 
 
 6 I 
 5 1 
 
 + 2.2 
 
 + 2.5 
 
 II 
 
 6 
 
 + 136.6 , 
 
 185 
 
 + 179.5 
 
 203 
 
 + 160.4 i 
 
 195 
 
 + 
 
 56.9 
 
 155 . 
 
 + 95.2 
 
 200 
 
 
 — 120.6 
 
 
 - 72.8 
 
 
 -118. 6 j 
 
 
 -113. 1 
 
 
 — 171.0 
 
 
 + 16.0 
 
 + 106.7 
 
 i 
 
 i + 41.8 
 
 - 
 
 16.2 '■ 
 
 1 
 
 - 75. s 
 
 
 Neglecting all tcrinr, multiplied hy the eccentricity in tlu; coefficients, each 
 ual gives an equation of the form 
 
 Jl-\- 2 sin gJe— 2 cos'g e Jtt — r 
 
 rcsKi 
 
'"•^^BBimMn 
 
 ■ r 
 
 1' 
 
 1!i 
 
 ■'! 
 
 II- 
 
 or, piittirii, 
 
 the ncjuatioii will \hi 
 
 20 
 
 h zz. 2 JSe :r — 2 ih' 
 k z=. — 2 J(i y')Tr ■=: 2c Stt 
 
 Jl -\- h ^\x\ g -\- k ros if ■=. )\ 
 
 Je nnd Jit I)i;ing tlio errom of tlio taimlar eccentricity and longitude of the perigee, 
 while 8e and fin n^proseiit IIk; corresponding corwct'ums. 
 
 The erpiations are now solved as if all the residuals within each pair of 20° limits 
 corresponded to the mean ol the limit, — that is, as if all hetween 0° and 20° corre- 
 sponded to i' zi 10° ; those l)etween g zz. 20° and if =. 40° to g — ,30° 
 
 and so on. 
 
 If. 
 
 then, w(! put 
 
 gi = 10' 
 Vi, the SI 
 
 •r-i 
 
 zz T,o^, etc. 
 
 )f all til 
 
 dual; 
 
 IS III any one year corresponding to g =zgi; 
 Hi, the corresponding iuinil)cr of observations; 
 A-.zz sin gi] 
 Ci zz cos gi : 
 the normal equations for det(!rmiiiiiig SI, h, and k, by least sciuarcs, will be : 
 i^'n,) Jl+(^„,s,) /t + (^'«;6-..) kzz^u 
 (^' ,U .V.) Jl + {:^ lU sr) h + {2 n, .s, 6v) k = 2 Si t-i 
 {2 „i d) Jl + {^ «,. .sv d) h + (^' », en k = 2 d Vi 
 The formation and solution of tli(;se erpiations for each year give; IIk; following 
 values of the oiilstiUKliiig errors of llie lunar eleiiienls l()r each year: 
 
 1862, /<zz + o.o4 
 
 1S63, —0.64 
 
 1864, — 1.07 
 
 1865, — 1.03 
 
 1866, —0.47 
 
 1867, —0.93 
 
 1868, +0.34 
 
 1869, 4- 1.67 
 
 1870, +148 
 
 1871, +1.65 
 
 1872, +2.15 
 
 1873, +1.91 
 
 1874, + 1.92 
 The periodic character of these residuals is very reiiiarivable, indicating, as it does, 
 
 either a hitherto unknown inerpiality of tlie moon's mean longitude, having nearly the 
 same period with the orbital revolution; or one of the eccentricity and longitude of 
 perigee, having a period of between tifteen and twenty years. To investigate this in- 
 e(piality, we shall assume that each value of h is of the tbrm 
 
 kzz-Y 1.23 
 + 1.78 
 
 + I -09 
 -0.15 
 + 0.10 
 
 — 0.36 
 
 — 1.46 
 -1.56 
 •- 1. 14 
 
 — 0.36 
 • — o. 1 2 
 
 + 0.16 
 + 0.60 
 
 and each value of k of the form 
 
 h — a sill (yu -{- ut) 
 /?; + a' cos (yu' +»'/;), 
 
21 
 
 3S, 
 
 he 
 of 
 in- 
 
 h k a it' fi, fi\ », aiul n' Iumms,' m.km.wii (unuilili.-s (.. I..- .Ict.-iiMin.'.l, an.l / tin- tun., 
 in v,>ars fmni unv assumrd ..,m.H.. Wr slmll tak.. for tl..- qM'«''' tl'"' "n.l.H.' -'I t "■ 
 pori.ullhn.UKli wliicl.tl..-..l.s.Tvati..ns.'xto...l;tliat is. 1868.5. If, tli.-ii, w rrpivscnt, tlw 
 
 thirtiMMi values of // and /.• in cliroiioloi^ical order by //-,„ /'-.^. ^'u' /'-r..^'-... ■ ■ • • . 
 
 k„ the e.umtioMs .>f (■on.litioi. for h and k resix-etively may Ix^ put into tlw lorn. 
 
 h; zzh — a sill // cos in — n cos /< sin / n 
 A-,. = /•+«' cos n cos / n — n sin /( sin i 11. 
 Rcuanlinii A, /.-. « sii. //, a cos /^ «' sin n, an.l «' cos /< as tin- unknown .,nantifi.-s, 
 tlic normal ecinations for determining thes.; (piantiti.'s ar.' : 
 
 (i) From the vului's of li,. 
 13// — (2' cos in) a sin /< — ^^i 
 - (V OS / «) h + (^' cos- /• n) a sin /« =: - :i' A, cos i n 
 (>;" sin-' i 11) a os /< — — ^ I'i sin ' " 
 (2) From the viiiucs of A',. 
 13/,- + {2 cos i w) «' cos /<' =: ^ ^j 
 
 (^' cos i «) ^- + (^ '''"*' * ") «' ^■"'^ ^'' = - ^'^ ****** * " 
 .^' (sin'-' i 11) a' sin /<' z= - :^" A'.- sin / « 
 
 It will 1..^ ol)s(M-vod tlnit all the coefficients having as a factor c_itl.er ^' sin I n or 
 
 2 sin i n cos i n vanish. , , 1 ^ 
 
 The value of a apparently is not r.-a.lily determined dire.-tly l.y least .scinares : wo 
 shall therefore assunu. sevral values of this .p.antity. an.l as..-rtain l.y which vahn.- tlu, 
 n.u.litions can l.est i,.. satislied. Tin- lollowing are th.' ahhreviate.l values ol the pur.'ly 
 
 triiionometric sunnnati.nis : 
 
 sin 6i n 
 2 cos f II =r . — V — = c 
 8111 2 n 
 
 1% sin n + sin 13 « _ 
 
 2 cos- in— - - 7 — -^ 1 
 
 2 sill n 
 
 ^-, . „ . 13 sin » — sin 13/; _ 
 
 2 sm* in — - . — *i 
 
 2 sin n 
 
 It we solve the preceding equations, and put, for brevity, 
 
 c 
 
 C - 
 
 C\ = 
 
 1 3 Ci — c- 
 13C1 — c- 
 
 c 13 
 
 13 c, — C'' 
 
 the resulting expressions for the unknown cpiantitics are: 
 
 // = L\2hi— C^'//.. cos in 
 « sin /( = C2hi—C^ hi cos in 
 
 a cos yu zz 2 hi sin i n 
 
 k — C\2 ki — C2 ki cos ( n 
 a' cos /i' zz — C2 ki + C^ ki cos i n 
 
 a! sin fj! — — - '^ h si" ^ « 
 «i 
 
»>»> 
 
 'I'lii- pciidil (»r/Miml It lies prolml)!}' Ixifwn'ii liriccii iiixl twenty yearn, whi(^li would 
 miikf the value nl" //, or tli(;iuiniml motion ol' llie iiiet|imlity. lie hetweeii iS'^ and 24". 
 Tlie lollowiiii; iire tlie values ol' the various t|iiaiitities *le|>eii*liiig on n tor the tlitVerent 
 values of n between these liniitri : 
 
 logf 
 
 logfi 
 
 log S\ 
 
 logf 
 
 log t' 
 
 log C, 
 
 0.756 
 
 0.715 
 
 0.S93 
 
 9.213 
 
 9.17a 
 
 9.571 
 
 0.705 
 
 0.707 
 
 0.898 
 
 9.097 
 
 9.099 
 
 9.506 
 
 0.644 
 
 0.705 
 
 0.900 
 
 8.977 
 
 9.038 
 
 9447 
 
 0.577 
 
 0.709 
 
 0.897 
 
 8.858 
 
 8.9()0 
 
 9. 395 
 
 o.4<)8 
 
 0.718 
 
 0.891 
 
 8.734 
 
 8.954 
 
 9.350 
 
 406 
 
 0.731 
 
 0.88a 
 
 8.604 
 
 8.939 
 
 9.31a 
 
 0.391 
 
 0.747 
 
 0.870 
 
 8.453 
 
 8.()0<, 
 
 9.276 
 
 0.143 
 
 0.765 
 
 o.Ssf) 
 
 8.275 
 
 8.897 
 
 9.346 
 
 n 
 
 S4|iin>M 
 
 £ hi cos 1 n 
 
 S/t<slni» 
 
 iki cos in 
 
 a 
 
 18 
 
 + 11.48 
 
 + I . '/> 
 
 - 4.66 
 
 - 4.66 
 
 '9 
 
 + 11.66 
 
 + 1.52 
 
 - 4. 08 
 
 - 5.04 
 
 ao 
 
 + ir.78 
 
 4- 1 .09 
 
 - 4 69 
 
 - 5. -to 
 
 ai 
 
 + 11.83 
 
 + 63 
 
 — 4. 08 
 
 - 5.73 
 
 23 
 
 + 11.81 
 
 + 0.29 
 
 - 4.00 
 
 — . 04 
 
 33 
 
 + 11.73 
 
 — o.oS 
 
 - 4.02 
 
 - 0.33 
 
 34 
 
 + 11.58 
 
 - 0.44 
 
 - t.57 
 
 - 60 
 
 25 
 
 1- It. 37 
 
 - 0.78 
 
 - 4-5" 
 
 - 6.80 
 
 The precediiisf e(|natioiis now jrive the following separate values of the unknown 
 quantities, eorresponding to tlu; various assumed values of «: 
 
 n 
 
 h 
 
 a 
 
 f 
 
 * 
 
 . a' 
 
 f' 
 
 
 
 1, 
 
 
 , 
 
 „ 
 
 
 . 
 
 18 
 
 0.73 
 
 J.53 
 
 164.0 
 
 0.73 
 
 l.Sl 
 
 160.8 
 
 19 
 
 0.69 
 
 1.53 
 
 165.2 
 
 0.61 
 
 1. 71 
 
 159.7 
 
 20 
 
 0.66 
 
 1.53 
 
 166.3 
 
 0.49 
 
 1.62 
 
 158.5 
 
 31 
 
 0.63 
 
 1.54 
 
 167.3 
 
 0.39 
 
 '.53 
 
 • 57.2 
 
 22 
 
 0.61 
 
 >.55 
 
 168.1 
 
 0.31 
 
 1.47 
 
 156.0 
 
 23 
 
 0.60 
 
 1.57 
 
 i6q.o 
 
 0.23 
 
 1.42 
 
 154.8 
 
 24 
 
 0.58 
 
 '.59 
 
 169.8 
 
 0.17 
 
 1.39 
 
 '53.6 
 
 25 
 
 0.56 
 
 1. 61 
 
 170.4 
 
 O.II 
 
 1.36 
 
 152.6 
 
 There can he litth; serious doubt that in the case of the pnisent inerpiality the 
 theoretical values of /j. and /<' should he the .same; and it is also |)rol)al)le that those of 
 a and a may Ix; suhstantially identical. Th«! small ditrerenccs between the values of a; 
 and a' and of // and //' add so much weight to this probability that we shall make 
 
2:^ 
 
 icr sdliition of Hie (■(|iiiilions on tlic siiiti»(isili(in llmt a' — ir athl /<' — /i. 'I' 
 
 niiotl 
 
 null i'((iiuti()iiM tliun Ix'coiik; 
 
 If nnr- 
 
 13 // — frtrsin ft = ^/i^ 
 — ck-\- iT,am\ /.i z= — ^ hi 
 
 cos / n 
 
 -:>■/,■. 
 
 1 3 A -f- ca cos ju z= ^ /{i 
 c A' 4- 1 3 a cos // — 2 ki 
 The solution ot these equations is: 
 
 cos I 
 
 n-:^h: 
 
 <ni / n — N, 
 
 sin / )i 
 
 •3 — ' 13' — '" 
 
 //. 
 
 '3 — ' '3 — ' 
 
 a cos//— ., '^ .^«S., — ,/ ., :i'/-i 
 
 A conipiiris.Mi of tiu; separate solutions ol the e(|iuilions in h and /- shows that tlu! 
 valui .tf n which best satis(i(!s the (Mtuditions lies hetweeu 22'' auil 25^. The values 
 of /(, /•, a, aiul /i were therotlu-e (hiriviid only from the last etjuations for tin: last four 
 values of ti. For each of th(!S(! separate valm-s of «, tin; eorrespondinir valin-s of //, au<l 
 ki \v(!r(! C( uiputed from the formula' 
 
 //, = /i — (r sin (/< -f- i h) 
 lii zzk -\- a cos (/< + ' «) 
 
 ii) which, it will be rcniemhcred, the index /' is simpl)- the nuniher of the year I'rom 
 1868 ; so that we have, 
 
 For 1862, iz=i — 6 
 For 1863, i zz— 5 
 etc., etc. 
 
 These computed values of //; and /<■, were then compared with (he valiuis derived 
 directly from observations, and given on page 20, and the sum of the s(puires of the out- 
 standing residuals was taken. Tlu; valutas of the unknown (piantities, together with 
 the sum of the squares of the residuals, are as t()llovv : 
 
 22 
 
 23 
 
 25 
 
 + 0.06 I + 0.34 ' 1.54 
 
 + 0.63 1 + 0.27 1.52 
 
 + 0.61 ! 4- 0.20 I. 51 
 
 + 0.58 -t- 0.14 I 1.49 
 
 /' 
 
 V 
 
 
 
 
 lf)1.2 
 
 3.207 
 
 161.3 
 
 3- '70 
 
 I6I.5 
 
 3.246 
 
 l6i.7 
 
 .1.441 
 
 The sum of the s({uares becomes a minimum for n zr 22^.8, showing a j)eriod ot 
 the inequality of 15^.8, witli a possible error of a year or more. The formula' for //< and 
 ki thus become : 
 
 A. = + o".64- i".52siu(i6i°.2 + 22^.8/) 
 
 A< = + 0".28+ l".52COs(l6l°.2 + 22°.8/) 
 
9A 
 
 S-*-! 
 
 ^^ 
 
 from whifli we liavo flio following comparison of tli(! compiilwl iiiid ol)servc(l values ol 
 hi aiitl l\: 
 
 Year. 
 
 
 
 
 h 
 
 
 /•, 
 
 
 C. 
 
 0. 
 
 O.-C. 
 
 c. 
 
 0. 
 
 0. 
 
 -C. 
 
 1862 
 
 + 
 
 O.OI 
 
 + 
 
 0.04 
 
 „ 
 + 0.03 
 
 + 
 
 1.67 
 
 + 
 
 1.23 
 
 _ 
 
 0.44 
 
 1863 
 
 ■ - 
 
 0.48 
 
 - 
 
 0.6} 
 
 0.16 
 
 + 
 
 1.32 
 
 + 
 
 t.:s 
 
 + 
 
 0.46 
 
 1864 
 
 - 
 
 0.79 
 
 
 
 1.07 
 
 — 0.28 
 
 + 
 
 o.So 
 
 -1- 
 
 1 .09 
 
 + 
 
 0.29 
 
 1865 
 
 - 
 
 0.8S 
 
 - 
 
 1.03 
 
 — 0.15 
 
 + 
 
 0.22 
 
 - 
 
 0.15 
 
 - 
 
 0-37 
 
 1866 
 
 - 
 
 0.74 
 
 - 
 
 0.47 
 
 + 0.27 
 
 - 
 
 0.38 
 
 + 
 
 O.IO 
 
 + 
 
 0.48 
 
 1867 
 
 - 
 
 0.37 
 
 - 
 
 0.93 
 
 — 0.56 
 
 - 
 
 0.85 
 
 - 
 
 0.36 
 
 + 
 
 0.49 
 
 1868 
 
 + 
 
 0.14 
 
 + 
 
 0.34 
 
 + 0.20 
 
 - 
 
 I. If) 
 
 - 
 
 1.46 
 
 - 
 
 0.30 
 
 1869 
 
 + 
 
 0.74 
 
 + 
 
 1.67 
 
 + 0.93 
 
 - 
 
 1.23 
 
 - 
 
 r.5f. 
 
 - 
 
 0.33 
 
 1870 
 
 + 
 
 1-33 
 
 + 
 
 1.4S 
 
 4- 0.15 
 
 - 
 
 1.07 
 
 
 1. 14 
 
 - 
 
 0.07 
 
 1871 
 
 + 
 
 1.80 
 
 + 
 
 1.65 
 
 - 0..5 
 
 - 
 
 0.70 
 
 - 
 
 0.36 
 
 + 
 
 0-34 i 
 
 1S72 
 
 + 
 
 2.09 
 
 + 
 
 2.15 
 
 + 0.06 
 
 - 
 
 o.iS 
 
 
 0. 12 
 
 + 
 
 0.06 
 
 1873 
 
 + 
 
 2.15 
 
 + 
 
 1. 91 
 
 - 0.24 
 
 + 
 
 0.42 
 
 ^- 
 
 0. 16 
 
 - 
 
 0.26 
 
 1874 
 
 + 
 
 1.98 
 
 + 
 
 1.92 
 
 — 0.06 
 
 + 
 
 1. 00 
 
 + 
 
 0.60 
 
 
 0.40 
 
 Tiio ]frol»al)le residual for each year is d' .2']. 
 
 We have supposed tlie hypothetical inequality of longitude to Ik; of the form 
 
 idv zz lii sin g + ^'i f^**'"* - ■ 
 Sub.stituting in this the periodic part of //(and /,, and replacing / by /, which now reprc- 
 sent.s the time in years from 186S.5, it becomes: 
 
 ^vzz i".52 sin (g'+25i°.2 4- 22^.8/) 
 
 or 
 
 Jv= i".52 sin [5-+ 22°.H ( r- IS57-5)] 
 
 The entirely unexpected character of tlu; periodic term thus brought to light ren- 
 ders its verification by a longer series of observations very desirable. For tliis purpose, 
 we need comparisons (tf ol)servati()i.s previous to 1862 with Hansen's tables, because 
 none of the older tables with which comparisons have been made are accurate enough 
 for the purpose. Now, the Greenwicii Observations for 1859 contain, as an appendi.x, a 
 Cf»mpari.<on (»i tlu; longitudes and latitudes from Hansen's tal)les with Greenwicii ob.serva- 
 tions from 1847 to 1858 inclusive; ; and I have; utilizeil the comparison of the longitudes 
 derived frciiii meridian observations in the Ibllowing way : 
 
 A list of limiting dates t tenths of a day was made out, including the whole twelve 
 years, and sliowing lietween what dates the moon's m(;an anomaly was found in each 
 sextant. Tiie sum of the errors in longitude given liy the meridian o'oservations was 
 then taken during the period that the anomaly was found in each sextant. None of the 
 corrections found in the first part of this discussion were aj olied, for the reason that 
 mo.st of them could l)e treated as accidcnital errors, and the means could be taken so as 
 nearly to eliminate the effects of tlie larger ones. A specimen of the form chosen is 
 here given. Under (;ach of tlie several values of g, given at the tops of the several 
 
 , 
 
25 
 
 re- 
 
 oulmiiiis, is .shown, firstly, liif dale al wliic.li a liail thai particiihii- vahic: and, scroiidly, 
 the sum of the residuals in h»niritu(h' dnriuir tlic period of 4''.6 Itctwct'ii that dalo and 
 the one iiiixt lidlowing, logetli(3r witli the; inind)cr of tlic i-jsiduals, tlic hitter iieinix in 
 small sidiserijit tiirures. 
 
 I. in. 
 
 V<1,. 
 
 M:ir. 
 
 .\|.ul 
 
 May 
 
 (line 
 
 [illy 
 
 Auk. 
 
 ' Auk. 
 
 j Sepl. 
 
 ; Oct. 
 
 I Nov. 
 Dec. 
 
 Jan. 
 Fcl.. 
 Mar. 
 
 April 
 May 
 May 
 I u ru- 
 in ly 
 Auk. 
 Sc-|.t. 
 f)<-t. 
 Ndv. 
 Dec. 
 
 = o + 
 
 I").li- 2.1)1 
 Id. I - 1 .(), 
 
 >5.7 . . ; 
 
 '2-3 . . ! 
 
 <).S . . 
 
 (>.2 f 2..S, 
 
 "■4- II. 3j: 
 
 28.0-t- 5.IJ;, ; 
 
 24.fH-l2.2:i ! 
 
 i 
 
 22.1 t I2.2< 
 
 l')-7- I.2i 
 16. I- 3.4.J , 
 
 I 
 I 
 
 1848. I 
 
 12-7- 7-3-' 
 9-3- S.I, 
 7.0- r.."*, ' 
 1.5 . • 
 2.0 
 2c) ,6 
 
 2^ . 2 
 
 23.7 . . 
 
 20.3+ 1.2, 
 
 I'l.9^ 22.5, 
 
 I 
 
 14.4+ 5-ii ; 
 
 I 1 . o -t- f) . ()n 
 
 S.5- (i.sJ 
 
 ,<: -■ '■') f 
 
 Ian. 
 
 I'd,. 
 
 Mar. 
 
 April 
 
 M.ay 
 
 )unr 
 
 July 
 
 Auk. 
 
 Sept. 
 
 Sept. 
 
 Oct. 
 
 N.iv. 
 
 I)i-c. 
 
 Jan. 
 Mar. 
 
 .'UMil 
 
 May 
 
 iiinc 
 
 [line 
 
 July 
 
 Auk. 
 
 Sept. 
 
 Ort. 
 
 Nov. 
 
 •)cc. 
 
 IS47. ' 
 
 2.(.2- 3, 
 
 :i..74 „, 
 
 20.3- 3 
 
 U<.<) . 
 14.4 
 in.S 
 
 S.4 . 
 
 5.') . 
 
 I.'■|^ 3 
 
 29.2 . 
 
 2f..7+ fi 
 
 23-3 ^ 
 20.7 . 
 
 1S4S. 
 
 173 . 
 13.9- fi, 
 
 12.5- 4 
 ' I . I — 4 , 
 fi.fi- 7 
 
 3-2- 8 
 30.8- 2 
 28.3 
 24. ij 
 21.5 
 l').o 
 15.6+12 
 13.1+ 5 
 
 .1,'= 120 4- 
 
 Jan. 
 Jan 
 Keh. 
 Mar. 
 April 
 May 
 June 
 July 
 
 A UK- 
 Sept. 
 Oct 
 Oct. 
 Nov. 
 Dec. 
 
 Jan. 
 Feb. 
 Mar. 
 
 April 
 .May 
 Inne 
 July 
 
 • I Aug 
 ■ I AUR. 
 . ^ Sept. 
 
 . I Oct. 
 8:, I Nov. 
 
 li Dec. 
 
 1847. " 
 
 1 . 2 I I . 
 
 2.S.S I 3. 
 
 25-3+ 4 
 
 24 ,) f o. 
 
 21.5' 3- 
 
 19.0+ 2. 
 
 15.4- I. 
 13.0 
 
 c,.(, . 
 
 f).2 
 
 3-8 ■ 
 
 3t.3+ I- 
 27.64-11. 
 
 25.3+ o. 
 1848. 
 2r.9 
 
 15. 5- I. 
 
 I7.H- 4. 
 
 13.7- I- 
 
 II .2+ I. 
 
 7.8- o. 
 
 5.4— o. 
 
 l-O- 5- 
 29.5 
 
 26 . 1 
 23.6 
 
 20 . 2 
 17-7+ 7- 
 
 3: Ian. 
 
 f. r. I.. 
 
 :: M.r. 
 
 1, Mar. 
 
 2, .April 
 8.. May 
 4, I line 
 
 ■ J'll.v 
 . I A UK. 
 Se|)t. 
 . ! Oct. 
 ri, .Nov. 
 4:1 Dec. 
 7i r)ec. 
 
 i , 
 . i Jail. 
 
 4. ' Feb. 
 
 -:. ' Mar. 
 
 5; .\pril 
 
 n, M:>y 
 
 9, I June 
 
 f., July 
 
 4. Auk. 
 
 Sept. 
 . iSept. 
 . Oct. 
 
 Nov. 
 O; Dec. 
 
 = 181/ 4- 
 
 1847. 
 
 2 . M 
 
 1.9.- 
 29.5 - 
 26.0 f 
 23.6+- 
 20 . o — 
 17.6- 
 14.2 
 
 10. 8 
 8.4 
 4 9 
 2.2 
 
 29.9 + 
 I84S. 
 26.54- 
 23.1- 
 21 . 7 
 
 18.3- 
 
 1 5 • 8 -t- 
 12. 1- 
 10. o — 
 
 6.5- 
 
 3"-7- 
 28.2 
 24. S 
 22.3 
 
 3-7i 
 3-7. 
 0.4, 
 2.71 
 
 3 ■ ',:i 
 O.6.. 
 1.6, 
 
 "■7> 
 
 0.2, 
 I.41 
 
 I ■ -I 
 1.4: 
 o . 2 . 
 
 4 • "■ : 
 
 3->i 
 6.7.- 
 1 .0. 
 
 Ian. 
 
 I'.b. 
 
 M:ii. 
 
 .\piil 
 
 .\lJiil 
 
 May 
 
 June 
 
 July 
 
 Auk. 
 
 Sept. 
 
 Oct. 
 
 Nov. 
 
 Dec. 
 
 Dec. 
 
 Jan. 
 
 Feb. 
 
 .Mil 
 
 .\pril 
 
 .May 
 
 I line 
 
 July 
 
 Auk. 
 
 .Sl;.t. 
 
 0,1. 
 Nov. 
 Nov. 
 Dec. 
 
 240 -t- 
 
 1.847. ' 
 10.4 t- 2 
 
 7"+ 5 
 (1.5 »- 2 
 3.1 
 
 30.(1 
 
 28.2— I). 
 
 21.6- 2 
 
 b, Feb. 
 
 ■3,: Ma'. 
 Apiil 
 . May 
 3.'. J line 
 1 1 June 
 
 3.61 
 
 I- 2.9, ; July 
 AiiK. 
 Sept. 
 Oct. 
 Nov. 
 Dec. 
 Dec. 
 
 1S.8 
 15.4 
 13.1) 
 
 'J- 5 • 
 
 6.S 
 
 31-5 
 1S4S. 
 31. I 
 27.7- n 
 
 2'). 3 
 
 22.9 t 2 
 
 20.4+ 9 
 
 17.0 
 
 14.6(10 
 
 I I . I 
 7-7- 5 
 5-3+ 2 
 1.8 f I 
 
 29.4- 9 
 
 26 . 9 
 
 ' Feb. 
 
 I 
 
 ; Mar. 
 
 Mil. 
 
 A|iril 
 ! May 
 Tune 
 July 
 
 . AiiK. 
 
 i:i Sept. 
 
 O:, Oct. 
 
 9.. ' Nov. 
 4:i Dec. 
 . Dec. 
 
 4i 
 
 300 t- 
 
 1847. " 
 
 ■ ■i-o . . 
 
 -b ..! 
 
 II. I . . i 
 
 7.7 t- 3 -21 
 
 5.2-1- I.O, 
 
 I.S-t- 4.1, I 
 
 29.2-)- 1.9, 
 
 2b. 8 t- 6.8:, 
 
 23.4+ S-ljj 
 
 20.04- I Ah 
 
 17-6- 7-3.' 
 
 14. 1 o.o, [ 
 
 11.4 ~ 1. 6., 
 
 3')-i- 
 1848. 
 
 4-7 
 
 3 3 
 3"') 
 27-5 
 
 2.8 
 
 Ml 
 O.Ij 
 
 21. b t- 
 
 19.2- 
 
 15.7 )-i7-4i 
 
 12.3 + 15.7:1 
 9.8+ 8.3, 
 6.4- 4-9:1 
 4.1:- 7-2:i 
 
 31-5- 5.71 
 
 If we tollow any one of these vertical columns, we shall liiid that the dates corre- 
 sjtmid sueeessively to all points of the lunation in a |»eriod of .|I2 days. Tin; first 
 (d)servations of each period will he Iho last ones of the lunation, and the last ones those 
 made immediately aftur nt^w moon. Between <'a(di pair <il' periods will lie a gap, gen- 
 erally of three or lour months, during which the moon was, at the corresponding points 
 of mean anomaly, too near the snii to he ol»served. li the t'Wservations are etpially 
 scattered Ihrongh each period, all the errors arisinir troni erroneous senu-dianietor and 
 |)arallactic inetpialily will he eliminated. Tin; <reneral minnteiiess of these errors, and 
 their approatdi to a balance during each id' the periods in (piestion, are such as to render 
 them insignificant, if we takt; the m";in results, not hy years, Iml by periods. This is 
 the course adopted; the partial periods al the iieirinninLr iiiid end of the entire scries of 
 oh.servations being omitted. The first period actually employed was that corresponding 
 4 m 
 
ii 
 
 Ismimm 
 
 20 
 
 \i 
 
 m 
 
 to tlic, soxlaiit 240 -300 ', ill wliicii llic, first ohscrvation was made 011 Jaiiiiuiy 10, 
 1847, and tlio last on Soj)tfinl>or 18 of (lie same year. Tiu* last jxirioil coricspomlcd 
 to the sextant 180-240'^', the last observation in which was on November 13, 1858. 
 There were, in all, ten periods corresponding to each sextant, and hence ten sets ol 
 (;(|uatioiis, each liiving iiu^an values of //, /i, and SI for periods extending throuiili a little 
 more than a year. Each residual gave an e(piation of con<lition, for th<! eoellicienls of 
 whi(di th(! mean value corresponding to tiie entire sextant was taken. Tiiese values for 
 tiie sev(!ral sextants areas follow: 
 
 1 
 
 ^ 
 
 sin.f 
 
 COS.!,' 
 
 sin'i' 
 
 sin^cos,f 
 
 COS«A' 
 
 1 
 
 0- 60 
 
 -(- 0.4S 
 
 + 0.S3 
 
 0.23 
 
 + 0.40 
 
 n.69 
 
 2 
 
 60- 120 
 
 + O.rjC 
 
 0.00 
 
 0.91 
 
 0.00 
 
 0.0c 
 
 3 
 
 120- 180 
 
 + 0.4S 
 
 - 0.83 
 
 0.23 
 
 - 0.40 
 
 0.69 
 
 ^ 
 
 180-240 
 
 - 0.4S 
 
 — 0.S3 
 
 0.23 
 
 + 0.40 
 
 0.69 
 
 5 
 
 240 - 300 
 
 - r-../. 
 
 0.00 
 
 0.1)1 
 
 0.00 
 
 (J. 00 
 
 6 
 
 1 
 
 300 - 360 
 
 — 0.4S 
 
 + 0.83 
 
 0.23 
 
 — 0.40 
 
 0.69 
 
 The sums of the residual errors, corresponding to each period and each sextant 
 arranged in chroiudctgical order, togetiicr with the number ol" residuals of which each 
 
 sum is formed, are as follow 
 
 Mean 
 (late. 
 
 / = 5 
 
 1 = 6 
 
 » = I 
 
 (=2 
 
 ! 
 
 = 3 
 
 » = 4 
 
 1847.8 
 
 + 6.5 
 
 -f 14. -1*1 
 
 + IS. An 
 
 n 
 
 + 
 
 . Oji 
 
 - if>.7i7 
 
 1848,9 
 
 ■ 6.7 
 
 + 8 .7 
 
 - 33-f^i: 
 
 - 1.931 
 
 -i 
 
 23.2i» 
 
 ■f- 31-517 
 
 1S50.1 
 
 f 1.5 
 
 - 34I17 
 
 — 40 ■9*1 
 
 — 9.1^1, 
 
 + 
 
 22 . 2m 
 
 + 33. 9» 
 
 .85.- 
 
 - 4 ■ 5 :l 
 
 - 5')-Ai-: 
 
 - 50. 7i'., 
 
 - 23.5.^1 
 
 - 
 
 4.821 
 
 + 20.6...,, 
 
 IS52.4 
 
 - 42.8.J 
 
 - 50.O..;l 
 
 — 48.0ir, 
 
 - 21.51S 
 
 + 
 
 35 .Oil' 
 
 + 25.4.;, 
 
 IS53.5 
 
 - 3I-2JJ 
 
 — 106.9.., 
 
 - f)3.f'ii 
 
 + I.2„ 
 
 + 
 
 6.0.^1 
 
 - 38.>>*> 
 
 1854.6 
 
 - 3"-3i; 
 
 - 94 •'^';i 
 
 - 35 •4« 
 
 + 4 • 2w 
 
 + 
 
 i.7h 
 
 - 24.48" 
 
 1S55.8 
 
 - 24-3n 
 
 — 30. 0|,. 
 
 - 7 •3:.. 
 
 - 6.9,,, 
 
 - 
 
 22.81s 
 
 - 41. Oj., 
 
 1856.9 
 
 - 3f'.2 
 
 - 23-8,. 
 
 + «5-4i. 
 
 + 4.2jf. 
 
 - 
 
 48.511 
 
 - 77.017 
 
 1858.1 
 
 - 51 •■>:•. 
 
 - 48. 9.:, 
 
 - 5f'.7ni 
 
 - 47 -Si'.' 
 
 — 
 
 7&.9« 
 
 - 46.2i„ 
 
 The dales given in the left-hand column an^ those corresponding to the mean of 
 each liori/.ontal line. 
 
 Piil'tiiig Sj Ibr I lie nieaii value of sin ij[ corresponding to the index i, as already 
 given; r, for that of cos ir ; and W; for the corresponding numi>cr of oltservatimis, tiie 
 iiornial etpialions are: 
 
 // ,. J/+ {^ V , .V,) // -I- (2 Hi c,) k = ^^ i\ 
 (V „,. .v,.) Jl + ^^ „ . ,.;^) /, + (^' ,, . ,s.. ,:.) /, - 2 .V, r, 
 (V /^. r,) Jl -f {2 », s, ci) I, -f- {:>: ;/, c-) h - 2 r. r, 
 
 The values of Ii and k thus given by the normal cfpintions formed from the system 
 ol residuals siiown in eac.ii iiorizoiital liin- are shown in tin! next tabh\ wliich also shows 
 
27 
 
 tlu! way ill wlii(;li tlifv arc tn-alfd. For tin; saUt; of C()iii|tlt'lt'ii('ss, llic corrfsiioinliiifi 
 <|iiaiiti('n's alreaily toiiiKl for tlx- jx^'riod 1S62-74 an; added, and iiRdiidcul in tlie discus- 
 sion, wliicii now procet'ds a.s follows; tin; nn;lliod adophnl l»i'in<^ one wliicli, lliouirli less 
 rijjorons than the former one, will show in a stronger liulil the evidence on which the 
 new itieqnality depends. 
 
 As the basis of the discussion, we take the indepenilenl values of // and /', derived 
 from each series of (d)servations, which values are iriven in the second and third columns 
 of the tal)le. A preliminary comparison of the first series of values ( 1S47-58) with 
 the values of // and k derived from the formuke already ifiven indicates a din)inution of 
 th(! constant terms of those (piantities, so that, insl<;ad of +o".64 and + o".2.S, they 
 
 I)econie, as a first approxim .tion, 
 
 //«:r:+o".50 
 
 A-or= + o".io 
 
 These constants an- now subtracted from the values ol h and /r, leavini,' a series of 
 residuals <fiven in the fourtli and fifth eolunnis, which, if the peiimiic leini under in- 
 vestigation has no existence, shouhl I»e regardeil as due to ernirs of i)l)servation, and, in 
 the contrary case, slutuhl be representablc by the formula' 
 
 h' z=. — a sin (yu -f nl^ -f- accidental eriors 
 k zn nr cos (//-(- w/) -f- accidental errors 
 
 To show clearly how far they are thus re|tresenteil, we deteiniine a coeflicient, ix, 
 and an anixle, A', i»y the (;(juations 
 
 (X sin A'n — h' 
 acos.V::^ /r' 
 
 Tin- next two columns ifiv(! the several values of a and A' tiius ol)tained. 'I'he 
 nearly rciiular proi^ression of the angle iV is too striking to l)e overlooked. To st.-e how 
 nearly this angle can be represented as one incrtjasing uniforndy with tin,' time, \ve .solve 
 the iH'CCSsary eipiations of condition by least sijuares. Il is ol)vious that tin; greater the 
 value of a the more certain will l)e the value of N\ we tluM-efore <rive weights propor- 
 tional to a. Moreover, weights nearly twice, as great in proportion ar<' iriviMi to tin; 
 .second .series (1862-74) as containing the results from two observatories, and beinii 
 more carefully corrected. The values of /< and n thus obtained l)y the method of least 
 s{[uares are : 
 
 // — i64'.6±4 -4 
 H — 20 .S ± o .47 
 
 Si 
 
 m 
 
 '•A 
 
 \ 
 
 an, 
 
 '31 
 
 1:^1 1 
 
 The pndiable error of a value of .\' (d' weight unity conies uiit 
 
 'i'he residuals still uutstandinif are shown in the coliiinii JS. This valui' of // is 
 2"" le.ss than that found from the secontl seri(!s of (dtscrvations alone, and an examination 
 (d'tiie residuals shows that there is a real discordaiu^e !)etween the values (d'the anu'ular 
 motion of .V uiven liy the two series. It is((uit(! liki-ly Ihat tiie relative weights a.«;signed 
 
 HP 
 
ij 
 
 iii 
 
 28 
 
 to tlic (tiller scrii's of ohseiviitiDiis an- twice as great as tliev slnmlfl l)e, and that tlie 
 most [nobalilu value (»!' tliu angle Allies nearly halt-way Ijetwecn lh(! two values 
 
 l6r\2 + 22'\^{t— 1868.5) 
 
 and 
 
 i64''.6 + 20^.8 (/— 1868.5) 
 
 tijund from the last series alone, and Iroin the two conihined. I judge that I he most 
 prohaljle value is 
 
 iV= i63'^.2 + 21^.6 (/-- 1868.5), 
 
 and that the proltaltle error of the aiinuu' motion is moni than hall' a degree, hut less 
 than a degr( e. The eohuiiii _/'.V shows the residuals ifivon hv this value ol" N. 
 
 iMc;in 
 date. 
 
 1847.8 i 
 
 1543.9 I 
 1850. I ] 
 1851.2 
 1852.4 
 
 «853.5 
 1854.6 
 1855.8 
 1S5& (J 
 1S5S.1 
 
 I 1862.5 
 1863.5 
 1864.5 
 
 ♦1865.5 
 ' 1 866. 5 
 .867.5 
 1S6S.5 
 l86c).5 
 1S70.5 
 1S71.5 
 •S72.5 
 1S73.5 
 1S74.5 
 
 - 0.08 
 
 - 0.55 
 
 - 0.20 
 
 - U.32 
 + 0.26 
 + 1. 10 
 
 + '.45 
 
 4- 0.77 
 
 f 1 . 76 
 
 - 0.17 
 
 + 0.04 
 
 - 0.64 
 
 - 1.07 
 
 - 1.03 
 
 - 0-47 
 
 - "03 
 y 0-34 
 + 1 . 67 
 + 1.48 
 f l.f.5 
 1-2.15 
 I- I 1)1 
 + i.y2 
 
 + <).55 
 
 - 1. 38 
 
 - !.<)! 
 
 - I . 1)2 
 
 - 2.45 
 
 - I. S3 
 
 - 1.40 
 
 + i>.3i 
 
 + 1 . 82 
 
 I 
 4- 11.66 I 
 
 i 
 -f 1.23 
 
 + 1. 78 
 
 ¥ I.oi) 
 
 - 1J.15 
 
 + O. ID 
 
 - '>-3^i 
 
 - I.4''' 
 
 - 1.5'' 
 
 - 1.14 
 
 - 0.3^ 
 - o. 12 
 1^ 0.16 
 H 0.60 
 
 - 0.5S 
 
 - 1.05 
 
 - o . 70 
 
 - 0.82 
 
 - 0.24 
 4- 0.60 
 + "-OS j 
 + "-27 I 
 'h 1.26 ! 
 
 - 0.67 ! 
 
 - 0.46 I 
 
 - I. 14 I 
 
 - 1-57 i 
 
 - 1-53 ! 
 
 - i>.<)7 j 
 
 - 1-43 
 
 0.16 
 
 )- 1. 17 I 
 
 + o..,S I 
 
 I 1. 15 
 
 h 1.65 : 
 
 I 1.41 
 
 ( 1.42 
 
 + 0.45 
 
 — I.4S 
 
 — 2.01 i 
 
 I 
 
 — 2.02 
 
 — 2-55 ^ 
 
 — 1.98 I 
 
 — 1.50 j 
 + 0.21 I 
 
 + 1-72 { 
 
 + 0,50 I 
 ! 
 + 1.13 
 
 + 1.63 
 
 + <'-'W j 
 
 — 0.25 
 0.00 
 
 — 0.46 
 
 — 1.56 
 
 — 1.66 
 
 — 1.24 
 
 — 0.46 
 
 — 0.22 
 + 0.06 
 + 0.50 
 
 a 
 
 1 
 
 
 
 
 0.74 
 
 52 
 
 1.82 
 
 145 
 
 2.13 
 
 i6l 
 
 2.13 
 
 15S 
 
 2.56 
 
 175 
 
 2.07 
 
 >97 
 
 1.77 
 
 212 
 
 0.34 
 
 30S 
 
 2.13 
 
 328 
 
 O.S3 
 
 50 
 
 1 .22 
 
 22 
 
 2.03 
 
 34 
 
 1.35 
 
 58 ! 
 
 ».55 
 
 99 
 
 0.97 
 
 <JO 
 
 1.50 
 
 108 
 
 1-57 
 
 174 
 
 2.03 
 
 215 
 
 1.58 
 
 2IS 
 
 1.24 
 
 248 
 
 1.66 
 
 262 
 
 1. 41 
 
 272 
 
 1.50 
 
 289 
 
 I 
 
 3 
 3 
 3 
 4 
 3 
 3 
 h 
 
 3 
 t 
 
 3 
 
 5 
 5 
 4 
 2 
 
 4 I 
 4! 
 
 SJ 
 5 
 3 
 I 
 
 :! 
 
 /I + Itt AN 
 
 94 
 118 
 141 
 165 
 IS.) 
 212 
 236 
 260 
 284 
 3<J7 
 
 40 
 61 
 81 
 102 
 123 
 144 
 165 
 1S5 
 206 
 227 
 24S 
 269 
 289 
 
 + 42 
 
 - 27 
 
 - 20 
 + 7 
 + 14 I 
 + 15 
 + 24 
 
 - 4» 
 
 - 44 
 
 - I1J3 
 
 + 18 i 
 
 + 27' 
 
 + 23 
 
 + 3 , 
 
 + 33 I 
 
 + 3(> 
 
 - 9 
 
 A 
 
 N 
 
 4 
 
 24 
 
 
 44 
 
 
 36 
 
 - 
 
 H 
 
 
 u 
 
 + 
 
 2 
 
 -f 
 
 12 
 
 - (<t> 
 
 - 55 
 
 - 112 
 
 12 
 21 
 
 19 
 1 
 
 3" 
 34 
 II 
 
 : - 3u 
 
 - 30 ; 
 
 1 — 12 
 
 - 12 t 
 
 — 21 
 
 — 21) 
 
 - 14 
 
 — 12 
 
 - 3 
 
 — I 
 
 " 
 
 ^ -i 
 
 'I'he old and new series ol ohservalions agree well in giving lor the value ol the 
 eoeHieient ol' lliis li'rni. 
 
 'I'iie old series, rr — i".66 
 
 '{"he new series, n r:z l".55 
 
 The (died ol' the accidental errors will lie, on the whole, to increase the value ol' 
 the coellicieMf. I consider thereliire that tht^ value 
 
 <f — I .50 
 
29 
 
 iiiiiy !)(■ iiiliiptrd iis llu! luosl prohabli! wliicli ciiii l>c derivotl from all llu; ubsorvatioiis. 
 
 11' we siilitiiicl, IVoui fiicli value of // aiul k in the preceding table, tlio perindic 
 portions 
 
 //zr- i".50>iH [163". 2 + 21^.6(^-1868.5)] 
 /,'= i".50(:os [163^.2 + 2r'.6(^- 1868.5)] 
 \\\n\ liikc llii' iiu'iui viilue of llie outstanding remainder for (!uch scries of oltservalions 
 we lind it to Ix; as follows : 
 
 Old scries, //o = + o".33; /-o = — o".i7 
 
 New scries, h^ — -\- o".65 ; A-q = + o".36 
 
 Till! (liUcnMici's, o".oi and o".o8, between these last values and tliost; found on page 
 
 23 arise from the dillcrcnl value of the periodic term. I consider that the results of the 
 
 second sciics arc entitled to three times the weight of thonc of the first, and shall there- 
 
 tiirc put l()r the dctinitive values of h and k, 
 
 //=z + o".57 + /'' 
 Z— + o".23 + A' 
 
 The corresponding corrections to the eccentricity and longitude of perigee arc: 
 
 Sf- — 0".2() X 
 
 r67r — -\-o".\2 / 
 
 <5;r — +2".2 
 
 Tlie corrcclions to the moon's longitude are: / 
 
 'V n — // sin ij' — /-cosi' / 
 
 r: — o".57 sin i,' — o".23 cosir+ i".50sin {g + N —c)o'^). 
 Tlif last term istht; liithcrto-uiisus[)ected ineipiality indicated by observations, but not 
 vet known to be given by theory. It may be either an inequality of the ecointricity and 
 perigee having a period cd' about \(i% years, or one of the moon's mean longitude having 
 
 a period of 
 
 2 7''.4304 ± o''.004o 
 
 Substituting first fi)r A', and then fori,', their values in terms of the time, the expres- 
 sion fi)r the inciinalitv of longitude becomes 
 
 I w < * 
 
 i".50 sin [- + 73^2 + 2i'^.6 (/ - 1868.5)] = 1 ".50 sin (56^.8 + 13^.12413 0, 
 
 7- being tiie tinn; in days (;ounted from fjrceinvich mean noon of 1H50, Jan. o. 
 
 It, nould pcriiaps l)t! premature to introduce so purely (unpirical a term as this 
 into lunar tables for p<'rmanent use; but where, as at present, it is recptisite to obtain the 
 cnrrcelioMs In the tal)l('s (hiring a limited period with all possible accuracy, tht; eviih'nce 
 in IJivor of the it ality of th(! term seems strong enough to justify its introduction. The 
 niilv .ippiirciil cause to wliicii the term can i)e attributed is the attraction cd" sonic one 
 of llic planets. 
 
 In the investinalioii (d' corrections to the longitu<le, it only remains to determine 
 tlie slowly-vaiyiiig conci'tions to the mean longitude, or to « f5r, given by the observa- 
 tions. To defeiiiiine tlu' errors of short period, we have applied several corrections to 
 I lie residuals, not as real, but only to render the various ol)servations comparable. We 
 
80 
 
 liavc ii«»\v to con.sidur (lit; jMin; results of obscivatiuiis as lliey would liavi; l>i!eii liad tlicso 
 corioctioiis not bt;cu applied. Tliesc lor tlio second series of observalioiis are loiirid 
 I »y taking tin; sum 01(1) the incjan of tlie small corrections, ap[)!ied on account of 
 (>')S(!rvatjry and limb, to compensate lor the systematic dillerenees l)etvve('U results from 
 dillerent lind>s or dilferent observatories; (2) general corrections to make the residuals 
 in the mean very small ; (3) remaining outstanding corrciction found by solving the 
 cipiations of condition. 
 
 The corrections from l)oth series are as follow: the corrections sinc(^ 1862 may 
 be very closely represented by a term increasing uniformly with the tiuK!, as is shown 
 l)y the last two tolumus. 
 
 First scries. 
 
 Date. 
 
 u>h 
 
 Dalu. 
 
 IS53-5 
 
 II, h 
 
 18.7.8 
 
 - 0.15 
 
 •• 
 + 1-77 
 
 1S48..J 
 
 - 0.43 
 
 iS54,f, 
 
 + > • 40 1 
 
 1850.1 
 
 + 0.32 
 
 1855.8 
 
 + 1-24 1 
 
 1S51.2 
 
 + 1. 13 
 
 iS50.() 
 
 + 1.50 
 
 1852.4 
 
 + 093 
 
 185S.1 
 
 + 2.40 
 
 .■.;ti 
 
 Second series. 
 
 Year. 
 
 (I) 
 
 + <'-45 
 
 (2) 
 + 2.10 
 
 (3) 
 t 0.04 
 
 II ih 
 
 a-\-l>l 
 
 
 
 + 
 
 A 
 1.07 
 
 1S62.5 
 
 + 2.5'J 
 
 + 1.52 
 
 1S63.5 
 
 + 0.45 
 
 + 1.2l> 
 
 — 0.27 
 
 T- I. 38 
 
 + 0.60 
 
 + 
 
 0.78 
 
 1.S64.5 
 
 0.00 
 
 0.00 
 
 — ".49 
 
 - 0.4IJ 
 
 — 0.32 
 
 - 
 
 0.17 
 
 1S65.5 
 
 - 0.15 
 
 - ■•>5 
 
 - 0.62 
 
 — I . 1J2 
 
 - 1-24 
 
 - 
 
 0.68 
 
 1866.5 
 
 - 0.15 
 
 — 2.m) 
 
 - 0-75 
 
 — 2. (JO 
 
 — 2.16 
 
 - 
 
 0.74 
 
 1S67.5 
 
 - 0.15 
 
 - 3-40 
 
 — 0.41 
 
 - 3')6 
 
 — 3.oS 
 
 - 
 
 0.88 
 
 1 868. 5 
 
 - 0.15 
 
 - 4.05 
 
 — 0.20 
 
 - 4.40 
 
 — 4.00 
 
 - 
 
 0.40 
 
 lS6(j.5 
 
 + o.oS 
 
 - 4.85 
 
 — 0.2I 
 
 - 4.')8 
 
 - 4-92 
 
 - 
 
 0.06 
 
 1S70.5 
 
 + 0.08 
 
 - 5.50 
 
 — o.o() 
 
 - 5-51 
 
 - 5.84 
 
 + 
 
 0.33 
 
 1871. 5 
 
 0.00 
 
 - f'-35 
 
 - 0.52 
 
 - 6.87 
 
 - 6.76 
 
 - 
 
 0. II 
 
 1872.5 
 
 — 0. 15 
 
 - 7.25 
 
 — 0.22 
 
 — 7.62 
 
 - 7.68 
 
 + 
 
 0.06 
 
 1873.5 
 
 o.ou 
 
 — 8.30 
 
 + O.IO 
 
 - 8.20 
 
 - 8.60 
 
 4- 
 
 0.40 
 
 1S74.5 
 
 0.00 
 
 - 9-45 
 
 + 0.38 
 
 - 9-07 
 
 - 9- 52 
 
 4- 
 
 0.45 
 
§2. 
 INVKSTICAIIOV OF THE TOLAR DlSTAIvICK AN'D l.ATirrDK. 
 
 It, is a siiiLnilar «-irrii!ii.staiic(' lliat diiriiig the lust six years, at least, the (li)si'rva. 
 linns of tlic niooa's |ii»lar <listaiu'(! are imicli lt>ss accurate than those di' its riulit ascen- 
 sion. Wlietlier this is to he altrilinted to lh»i instrnnients, or wlietiier it is a resiiH ot' 
 f^rent irreirnlarities in the oiitrnie of the; lunar glol)e in tiie polar reitions, cannot at pres- 
 (Mil i)e (lecitled. To whatever cause wo atlrihutt; the errors, tiieir existence renders a 
 rit'orous treatment ot the in;lividual observations of little value. We shall therefore, 
 from the wiiole of the errors in dediniition, sook to olttain the i>est corrections to the 
 inclination and node of the moon's orl»it. 
 
 Fvom the derivatives of the moon's d(;clinatiou relatively to its true lonizitinle, the 
 inclination, and the node, whieii have already boon given, wc oi)tain: 
 
 ot 4- 
 dl ^ do 
 
 „ » no 5, no „^ , (Id „ 
 
 no zr ''' + o" + ,. "' 
 
 dS .. 
 
 di 
 
 ly heing known tVoni tin; data already givcMi, the (Hjuations ol condition will be 
 
 thrown into the li>rm 
 
 d''^ ■ ^r^ . dS ^. 5. ~ dS f, 
 
 r , I OO -\- -— 01 — 00 — ,, 0/ 
 
 I do ' di di 
 
 Vrom llie numerical cxpressitnis already givcin, we have 
 
 -'''^ <S/ — sec <^ [(0.40 + o.oS cos 0) cos /+ o.oS sin sin /] rV 
 dl 
 
 If we put 
 
 fSA =:tlie (•orre<:ti(Hi to the moon's mean longitude, 
 K ziz 0.40 -\- 0.08 cos 0, 
 II =:0.oS sin 0, 
 
 wo iiave tlie quantities of the first order, with respect to tiio eccentricities, 
 — [A'cos / -f //"sin /] [i +2 r cos (A — ;r) ] see rS 
 
 The largest terms in sec S are 
 
 1.040 -f- .016 cos ^ — .040 COS 2 A — .016 cos (2 A — 0), 
 while, it" we replace / by the mean longitude. A, we shall have: 
 
 /=r A -|- 2 c sin (A— tt) 
 sin / =: sin A + '' ^^iu (2 A — w) — v sin tt 
 cos / zr cos X -{- f cos (2 A — tt) — t' eos tt 
 
 I s 
 
 If we sid>stitn(»! these various (luantitie.s in the expression tor ,, 6/ \\(> shall lind 
 
 tlf 
 
 mmmum 
 
 iPf*'i 
 
M- 
 
 ■MMH 
 
 3^ 
 
 no sciisihlo tciins (Icpciidingon tlio sine or cosine olllio argmncnl of liililiulc, A — 0. 
 we siihslitiile lor SI its vulut! in <5A, wo sliiill iind tlu; priiKiijial Icriiis in cos (!• 
 
 ,// </\ 
 
 to 
 
 1)0 
 
 A' COS A + /Tsin A + 3 « /vcos (2 A — ;r) + 3 c //sin ( :; A — /t) 
 
 -f 0.9 cos / — o.: sin / 
 
 III consoqucnco of the great number of revolutions ol' \\u\ moon tlirougli wiiicli tin; 
 ol»s(!rvations now umler discussion extend, T have considered tlml all (!xcc|)t the first two 
 l(!rms might he treated as accidental errors, which would cancel each oilier during the 
 course ol' tlu; oliservatious. Using for S\ the iiutan correclions lo liie moon's loniiididc, 
 we have the lollowiug values of the correction to the dcclinalion for Hiosi; errors of 
 h>iigitude: 
 
 Year, CoiTi'ction. 
 
 1862. 
 1S63, 
 1864, 
 I 865, 
 
 1 866, 
 1867, 
 1868, 
 1 869, 
 1870. 
 . 1S71, 
 1872, 
 
 1873. 
 1874, 
 
 The mean correction to the moon's tabular north-polar distance for ciich year, from 
 observati(ms of each limb at each observatory, was taken with a view of detec-tiiig any 
 constant error of sufficient magnitude to alfect the final results for errors of liie iioth^ 
 and inclination. These means should have been taken aller the application of the cor- 
 rections just found: actually, however, they are tlic mean corrections given by the 
 observations, allcr applying the following constant corrections to reduce tiie deilinalions 
 to tlic same fundamental standard : 
 
 + 0.6 
 
 — 0.1 
 
 — O.I 
 
 0.0 
 
 -0.6 
 
 -f 0.1 
 
 -0.8 
 
 00 
 
 — 0.1 
 
 — 0.1 
 
 - '4 
 
 — 0.2 
 
 - 1.8 
 
 -03 
 
 2.2 
 
 -0.4 
 
 - 2.8 
 
 — 0.6 
 
 
 -0.6 
 
 -3-8 
 
 -0.5 
 
 -4.2 
 
 — 0.4 
 
 To Oreenwicli obacrvationB of N. P. D. 
 
 To W.isliington observivtiniis of X. P. I). 
 
 1862-67, —0.4 
 1868-74, -f 0.2 
 
 1862-65, -}■ O.^ 
 
 1866-67, — I.I 
 
 1868, - I 2 
 
 1869, —0.6 
 (870-72, —0.4 
 •873-74- 0.0 
 
 The.SC corrections are approximately those necessary to reduce flic star-observa- 
 tions of the several years to Auwers's standard of declination. The change in the Green- 
 wich correction between 1867 and 1868 probably arises from tin; introduction of a new 
 
33 
 
 constiuit of refraction in 1868, \vliil(! tlio cliange in tlie Washington corrrclion in 1866 
 corresponds to the introduction of tlio largo transit circle in place of the old mural circle. 
 
 Year. 
 
 Correction to N. P. D. given by — 
 
 Greenwich. 
 
 Washington. 
 
 N. L. 
 
 S. L. 
 
 N. '.. 
 
 S. L. 
 
 1862 
 
 ti 
 — 0.1 
 
 - 0.8 
 
 II 
 
 - 0.3 
 
 - 0.8 
 
 18&3 
 
 + 0.2 
 
 - 0.9 
 
 - 0.5 
 
 — I.I 
 
 1864 
 
 + 0.4 
 
 - 0.6 
 
 + 0.8 
 
 - 0.9 
 
 1865 
 
 + 0.5 
 
 — 0.2 
 
 + 1.2 
 
 — 0.2 
 
 1SC6 
 
 - 0.7 
 
 - 0.3 
 
 + 1.4 
 
 - 0.6 
 
 1867 
 
 - 0.4 
 
 - 0.6 
 
 + 0.1 
 
 — I.I 
 
 1 868 
 
 - 0.7 
 
 — I.O 
 
 + 0.2 
 
 + 0.2 
 
 i86g 
 
 — O.l 
 
 - 0.6 
 
 - o.S 
 
 - 1.7 
 
 1870 
 
 - 0.6 
 
 — O.I 
 
 — 0.1 
 
 - 1.8 
 
 1871 
 
 — 0.2 
 
 - o.B 
 
 + 2.1 
 
 - 1.8 
 
 1872 
 
 0.0 
 
 0.0 
 
 - 0.7 
 
 - o.S 
 
 "873 
 
 - 0.9 
 
 + 0.1 
 
 -f- 2.0 
 
 — 0.1 
 
 1874 
 
 • • 
 
 • • 
 
 - 1-7 
 
 -0.5 
 
 The large residnals of tl.c Washington observations of the south limb led to the 
 application of the farther syslematic correction ot + i"-0 to all those observations before 
 conibining them all. The corrections arising from the error of mean longitude were 
 then ai)plie(l, and the out.standing residnals were considered to arise from accidental 
 errors and from errors of the inclination and node. The equations of condition thus 
 betiomc 
 
 0.92 sec S [sin (/ — 6) 6i — cos {I — 0) i 69] = dS 
 
 or 
 
 sin (/ — 6) Si — cos (/ — 0) i SO = 1.09 cos SX^S 
 Owing to the smallness of the final residuals, 66, the factor 1.09 cos 6 may be consid- 
 ered as a constant, and, in the actual solution, has been put equal to unity. lis mean 
 value is more exactly 1.04, and its ellect may be obtained by dividing the final results 
 by this factor. 
 
 The final values of the residuals were then arranged according to the values of 
 X— 9,or the moon's mean argument of latitude, as the residuals in right ascension were 
 arranged according to the mean anomaly. The sum of the residuals corresponding to 
 each interval of 20'^ in the argument, with the corresponding number of observations 
 for each year, is shov/n in the following table : 
 5 M 
 
n^A-'Twmsmisfm^ 
 
 I 
 
 J 
 
 II 
 
 34 
 
 Slims of errors of the moon''s eorrected dedinafiou, f/irrn />// ohserrntious at fireetnrieh 
 
 and Wiishiiif/toii. 
 
 LimliSdf ?. 
 
 iSf, 
 
 2. 
 
 1S6: 
 2.M 
 
 N. 
 
 186^ 
 
 • 
 
 186; 
 
 
 i86(: 
 
 . 
 
 1867. 
 X<J.I N. 
 
 1868. 
 
 £i1.t 
 
 N. 
 
 1S3 
 
 N. 
 
 2.M 
 
 N. 
 
 £.!<) 
 
 N. 
 
 SiM 
 
 N. 
 
 o to 20 
 
 - 3.3 
 
 8 
 
 + 1.3 
 
 3 
 
 It 
 + 4-0 
 
 8 
 
 + 5-4 
 
 9 
 
 + 26.7 
 
 II 
 
 - 2.5 
 
 8 
 
 + 0.4 
 
 9 
 
 20 to 40 
 
 + 9'f' 
 
 9 
 
 + 5.8 
 
 7 
 
 - 0.4 
 
 9 
 
 + Co 
 
 7 
 
 + 2.6 
 
 12 
 
 - 2.3 
 
 9 
 
 - 6.1 
 
 •7 
 
 40 to 60 
 
 - 1-4 
 
 9 
 
 + 6.9 
 
 10 
 
 + 6.5 
 
 6 
 
 + 9-7 
 
 7 
 
 + 4-0 
 
 9 
 
 - 4.9 
 
 10 
 
 - 7.9 
 
 «5 
 
 60 10 80 
 
 0.0 
 
 7 
 
 + 16.4 
 
 10 
 
 + 6.6 
 
 8 
 
 + 8.7 
 
 12 
 
 — I.I 
 
 16 
 
 + 14.5 
 
 II 
 
 — ".J 
 
 5 
 
 80 to 100 
 
 4- 8.6 
 
 II 
 
 + 0.4 
 
 12 
 
 + 11. 1 
 
 6 
 
 + 7.9 
 
 II 
 
 + 5.5 
 
 7 
 
 + 0.5 
 
 10 
 
 -1J.8 
 
 12 
 
 100 to 1 20 
 
 + 3-2 
 
 7 
 
 + 8.5 
 
 15 
 
 + 3.2 
 
 5 
 
 + 7-4 
 
 7 
 
 — 1.0 
 
 8 
 
 - O.I 
 
 6 
 
 + 0.2 
 
 6 
 
 :2o to 140 
 
 -',.2 
 
 12 
 
 + 3.1 
 
 8 
 
 - 6.1 
 
 S 
 
 + o.S 
 
 II 
 
 + 11. 9 
 
 14 
 
 -12.4 
 
 8 
 
 - 6.8 
 
 II 
 
 140 to if)0 
 
 - 0.3 
 
 4 
 
 - 4.6 
 
 9 
 
 — 2.2 
 
 5 
 
 - 9-7 
 
 15 
 
 - 1.2 
 
 10 
 
 - 7.7 
 
 12 
 
 + 6.2 
 
 14 
 
 160 to 180 
 
 + 0.5 
 
 9 
 
 -10.4 
 
 6 
 
 -10.4 
 
 12 
 
 + 0.5 
 
 9 
 
 + 2.2 
 
 10 
 
 - 8.9 
 
 9 
 
 — n.2 
 
 9 
 
 180 to 300 
 
 - 8.6 
 
 6 
 
 - 5-7 
 
 II 
 
 - 0.6 
 
 7 
 
 - 5.3 
 
 13 
 
 - 7-7 
 
 6 
 
 — 15.2 
 
 14 
 
 + 3.1 
 
 10 
 
 2(XJ to 220 
 
 -22.3 
 
 8 
 
 — II. 6 
 
 10 
 
 + 4.7 
 
 12 
 
 - 5.4 
 
 9 
 
 - 3-3 
 
 ID 
 
 - 6.8 
 
 14 
 
 -II. 8 
 
 II 
 
 220 to 240 
 
 -14.4 
 
 12 
 
 — 10.2 
 
 9 
 
 - 8.8 
 
 10 
 
 — I.O 
 
 7 
 
 — 2.0 
 
 '3 
 
 - 5.9 
 
 12 
 
 — 10.0 
 
 13 
 
 240 to 260 
 
 -12.4 
 
 7 
 
 -12.3 
 
 9 
 
 -4.. 
 
 8 
 
 + 4.6 
 
 II 
 
 + 1.2 
 
 9 
 
 - 0.6 
 
 9 
 
 - 9-2 
 
 15 
 
 260 to 280 
 
 -2.3 
 
 4 
 
 - 32 
 
 4 
 
 - 8.5 
 
 8 
 
 + 1.5 
 
 9 
 
 - 5-3 
 
 9 
 
 + I.Q 
 
 8 
 
 + 1.9 
 
 9 
 
 2S0 to 300 
 
 — 2.S 
 
 7 
 
 - 4.3 
 
 8 
 
 - 8.4 
 
 II 
 
 - 4.0 
 
 4 
 
 - 3.5 
 
 ■> 
 
 -II. 4 
 
 J3 
 
 0.0 
 
 «3 
 
 300 to 320 
 
 - 7.1 
 
 10 
 
 - 6.2 
 
 10 
 
 4- 9.6 
 
 8 
 
 + 3.1 
 
 5 
 
 — 0.1 
 
 13 
 
 - 8.4 
 
 10 
 
 + 0.4 
 
 8 
 
 320 to 340 
 
 + 2.0 
 
 7 
 
 + 3-4 
 
 8 
 
 + 6.0 
 
 12 
 
 + 8.6 
 
 6 
 
 + 8.4 
 
 II 
 
 + 2.1 
 
 <> 
 
 - 6.7 
 
 14 
 
 340 to 360 
 
 + 7.3 
 
 5 
 
 ~ 6.5 
 
 5 
 
 + 4.9 
 
 13 
 
 + 11. 6 
 
 8 
 
 + 7.0 
 
 14 
 
 + 2.9 
 
 3 
 
 - 3-1 
 
 12 
 
 —84.0 
 
 142 
 
 -75-0 
 
 J54 
 
 -49-5 
 
 156 
 
 —25.4 
 
 159 
 
 — 25.2 
 
 191 
 
 -93.1 
 
 '75 
 
 -85.9 
 
 203 
 
 
 +31.2 
 
 
 +45.8 
 
 
 + 56.6 
 
 
 + 75.8 
 
 
 + 69.5 
 +44.3 
 
 
 + 21.0 
 
 
 + 12.2 
 
 
 -52.8 
 
 —29.2 
 
 + 7.1 
 
 + 50.4 
 
 -72.1 
 
 -73.7 
 
■iMM 
 
 wimtm 
 
 85 
 
 Sums of vrrnrs of tin' iimotCs ainrctrd (Icclhiutioii, d'c. — C(»iitimic(l 
 
 1873. 
 
 1869. 
 
 1870. 
 
 1871. 
 
 187a, 
 
 Limits ufX, 
 
 1874. 
 
 o to 30 
 20 (O 40 
 
 40 Id 60 
 60 tu 80 
 80 to 100 
 100 to 120 
 120 to 140 
 HO to 160 
 160 to 180 
 I So to 200 
 200 to 220 
 320 to 340 
 240 to 260 
 260 to 280 
 SSo to 300 
 300 to 320 
 320 to 340 
 340 to 360 
 
 IMJ 
 
 II 
 
 + 7.1 
 
 + II. a 
 
 + 6.4 
 
 - 5.0 
 
 ! - 2.0 
 
 - «3.7 
 
 - It. 4 
 
 i - 15.4 
 
 - 2.5 
 
 - 5.4 
 
 - 5.4 
 
 - 6.6 
 
 - 18.4 
 
 - 7.7 
 
 - 11.4 
 
 + 5.3 
 
 + 5.7 
 
 0.0 
 
 -104.9 
 
 + 35.7 
 — 69.2 
 
 7 
 
 9 
 
 II 
 
 7 
 9 
 12 
 II 
 9 
 4 
 6 
 
 7 
 
 13 
 
 7 
 
 5 
 
 10 
 
 + 3-7 
 + 6.6 
 + 8.6 
 
 + 3.5 
 + 6.2 
 
 — 6.2 
 + 4.5 
 -II. 7 
 
 — 5.7 
 
 — 0.5 
 
 — 10.2 
 
 — I.I 
 
 — II. I 
 -15-4 
 
 — 10. 1 
 
 — 9.' 
 -10.3 
 
 — 1.2 
 
 ><. 
 
 ill,! 
 
 7 
 
 - 3.8 
 
 10 
 
 — 0. 1 
 
 10 
 
 - 0.8 
 
 7 
 
 + 13.2 
 
 9 
 
 + 13. 1 
 
 12 
 
 - 6.3 
 
 7 
 
 - 1.9 
 
 II 
 
 - 4.6 
 
 13 
 
 - 5.1 
 
 6 
 
 + 5.4 
 
 12 
 
 - 6.2 
 
 9 
 
 + 9.1 
 
 S 
 
 + 5-6 
 
 15 
 
 - 6.2 
 
 5 
 
 + 3.6 
 
 7 
 
 + 3-8 
 
 12 
 
 - 5.8 
 
 6 
 
 - 6-3 
 
 4 
 II 
 II 
 
 9 
 9 
 
 8 
 
 7 
 
 9 
 
 II 
 
 10 
 
 •4 
 
 8 
 
 7 
 
 8 
 8 
 9 
 5 
 
 Sil.S 
 
 N. 
 
 :;.i,i 
 
 n 
 
 
 It 
 
 - S.o 
 
 C 
 
 + 9.0 
 
 - 7.0 
 
 6 
 
 - 7.7 
 
 — 1.2 
 
 10 
 
 - 2.8 
 
 - 5-1 
 
 7 
 
 -'3.7 
 
 - 3.7 
 
 8 
 
 + 4.8 
 
 — 2.0 
 
 8 
 
 — I.O 
 
 + 0.2 
 
 14 
 
 — 2.2 
 
 - 8.9 
 
 9 
 
 + 7.4 
 
 - 4.6 
 
 12 
 
 - 3.9 
 
 - Co 
 
 3 
 
 - 8.6 
 
 - 2.9 
 
 9 
 
 + 5.2 
 
 - 4.5 
 
 10 
 
 - 2-7 
 
 + 13.7 
 
 13 
 
 + 14.8 
 
 + 2.2 
 
 II 
 
 +20.7 
 
 + 3-8 
 
 9 
 
 + 3.3 
 
 - 1.3 
 
 II 
 
 + 4.3 
 
 — 12.2 
 
 12 
 
 + 14.0 
 
 + 0.3 
 
 9 
 
 + 7.2 
 
 155 
 
 -92.6 
 
 + 33.* 
 
 166 
 
 -47.1 
 
 + 53.8 
 
 -59.5 
 
 
 •1- 6.7 
 
 153 
 
 -67.4 
 
 -47.2 
 
 167 ; —42.6 
 +90.7 
 
 +48.1 
 
 
 
 It 
 
 
 9 
 
 + 
 
 7.7 
 
 13 
 
 10 
 
 - 
 
 7.5 
 
 7 
 
 
 - 
 
 17." 
 
 11 
 
 ' 
 
 - 
 
 25.4 
 
 14 
 
 
 - 
 
 5.3 
 
 6 
 
 
 - 
 
 22.4 
 
 12 
 
 4 
 
 + 
 
 2.1 
 
 6 
 
 
 - 
 
 12.6 
 
 II 
 
 
 - 
 
 5-9 
 
 10 
 
 
 - 
 
 7-2 
 
 3 
 
 
 - 
 
 '9.3 
 
 12 
 
 
 - 
 
 15.2 
 
 6 
 
 12 
 
 - 
 
 4.6 
 
 6 
 
 9 
 
 - 
 
 3.5 
 
 6 
 
 10 
 
 - 
 
 5-5 
 
 13 
 
 S 
 
 + 
 
 0.3 
 
 lo 
 
 7 
 
 + 
 
 4.0 
 
 10 
 
 II 
 
 - 
 
 3-9 
 
 9 
 169 
 
 40 
 
 - 
 
 154.3 
 
 
 + 
 
 14. 1 
 
 
 
 
 140.2 
 
 The goiit'fiil irregiihu-ity of the residuals in (lecliiiiiliou is such that no great ad 
 tage woulil result in a separate solution ot" the equations for the separate yetirs. 
 sum of the residuals for each 20^ of the argument was therefore taken during the w 
 thirteen years of observation, with the following result: 
 
 van- 
 hole 
 
 x-e 
 
 iAr! 
 
 N. 
 
 A-O 
 
 SAct 
 
 N. 
 
 
 
 „ 
 
 
 
 
 ,/ 
 
 to 20 
 
 + 47-2 
 
 103 
 
 I So to 200 
 
 - 62.3 
 
 no 
 
 20 to 40 
 
 + 10.7 
 
 115 
 
 200 to 220 
 
 - 95-3 
 
 12S 
 
 40 to 60 
 
 + 6.1 
 
 119 
 
 220 to 240 
 
 - 73.3 
 
 126 
 
 60 to 80 
 
 + 12.3 
 
 124 
 
 240 to 260 
 
 - 32. s 
 
 127 
 
 So to 100 
 
 + 34.3 
 
 121 
 
 260 to 280 
 
 — 23.8 
 
 106 
 
 lOO to I20 
 
 — 3f'.2 
 
 III 
 
 2S0 to 300 
 
 - 50.1 
 
 123 
 
 120 to 140 
 
 - 27.4 
 
 120 
 
 300 to 320 
 
 - 5-4 
 
 115 
 
 140 to 160 
 
 - 65.3 
 
 124 
 
 320 to 340 
 
 + 19.2 
 
 122 
 
 160 to 180 
 
 - 65.4 
 
 126 
 
 340 to 360 
 
 + 20.2 
 
 no 
 
 .1 
 
 ^.m^f^fiKm^.- imt M iUi 
 
-~^—- ■—^r~——^,i-Li^:±jMiiM^At, 
 
 |w| 
 
 Ti<'uviiij( in tin; ('(|iiiilinii« a ntiiHlni\l, Irrni '"i/i, n'j»n'si'iitiiiff (lif inniii roiisluiil crinr 
 still oiilstatiiliii^ ill tlic iiicasiircs of tlt'diiialiDii, tin; solution of tin; ('(|iiatioiis of coii- 
 <litioii given \>y tin; residuals gives the l()llowing results: 
 
 Jl>--n".i7 
 
 Ji, = + o". I 5 
 
 iJO- — iy"..\o 
 
 or. 
 
 Correetioii to the iiielination, — o".i5 
 
 Curr(!elioii to the longitude of node, +4". 5 
 This correction to tlie longitude of the node from Hansen's tabl(!S iniplies a diiiii- 
 luition of the seeiilar retrograde; motion of the node, which is (|uitr; aecor<lant with the 
 results derived from ancient eclipses. Hansen remarks that an increase of 12" per cen- 
 tury in the longitiuh; of tli<; moon's node will improve the agreeni(;nt of his tables with 
 ancient eclipses;* and, if wesui»pose the tubular longitude of the node to have l)e(;n (;or- 
 reet in 1825, this would imply a correction of-f5".2 to the longitude; of tlu; node 
 in 1868. 
 
 ' l)iirli';;iiiijj, t'tL'.,Tli. il, p. y)l. 
 
 If i 
 
 ^^ W( 
 
 4 , 
 
 
37 
 
 HH 
 
 Al'Ml.lAKV lAII.KS R)K !• \( I I.I I A 11 N ( ; rill', (( )M I'l I \ IK ).\ oh llll, CoKkir 
 •I'lONSTO IIANSKN'S '-rAIILKS Dl', I, A I.INK ", (ilVKN \\\ IIIK I'K lai I >l NC DIS 
 CUSSION. 
 
 Tlio loUowiiiif is a siiintuiirv of Ww, ('(trrccrKtiis to (lie l(iii^itii(l(! id' llic inooii riom 
 IIiiiiscm's lul)lcs 1,'ivcti by llic preceding disciissioii. I'iie first six leniis an; iippliciililt! 
 (() tli(! (lisliirhed mean Ningilnde, or '^'■Ari^itmen/ foiifliimr/i/ii/"; Ihe remainder lo Hie 
 (rue loiigididi!; but tiic}' may all lie used as correclions of the "Ji^mnr/il foudaiiiinlnl" 
 widioiit serious error: 
 Concclioiis on accuitiil of (liiiiinution of the sular pdntl/nx . . n <5c z= + o" .(.)6 sin I) 
 
 -\-o".o7m\{l)-g) 
 
 On (icrount of /iif:r)//u'xis [lure in'orisioiHillij sef oxldr), that 
 the moons atilcr of i^rorily t/oc^ not coincide with the 
 center of figure, together with the correction to the erec- 
 tion resulting from llie correction lo the eccenlr'iciti/ . . . n i^z rz + o".09 sin g' 
 
 — o".3,^ sin : I) 
 
 — o".2i sill (2 I) — ii) 
 On iiccoiiiil of term nceidenlallu iiitroiliieed into 
 
 the tiihles with a wrong sign ('ir — — o".62 sin {2 g — 4 g' -{- 2 m — 4 <>>') 
 
 On account of correction to the eccentriciti/ ond perigee 
 
 found from observations during i S47-74 6r zz — o".57 sin g — o".23 cos g 
 
 =z o".62 sin (g'-f 202'^.o) 
 Empirical term, neceamri/ to satisfy ohserratio)/s, 
 
 hut not verified by theory + i"-5" '*'" [a' + 2 1 .6 ( >'— i S65. i ) J 
 
 Unexplained correction to the mean longitude, changing slowly from year to 
 
 year See Table IV. 
 
 The deduction of all these terms, except th(! last, has been fully given in the pre- 
 ceding pages. This secular correction to the mean longitude has been derived from the 
 outstanding errors of mean longitude given on pag(! 30, in the C(dumn n Sz, l»y suppos- 
 ing this quantity to vary according to some simple law, which law changes Avhen necessary, 
 so as to satisfy the observations witliin the mean limits of their probable error. An 
 examination of Table IV sliows, that, from 1848.0 to 1855.5, t''*' eornjctiou is supposed 
 to increase uniformly at the rate of o".20 per annum. It is then supposed to remain 
 constant until nearly 1S63.0, a period during which the observations are not continuous, 
 there being no comparisons with theory from 1859 to 1861 inclusive. From 1863.0 
 until the present time, the observations are well represented by the corrcctioii 
 
 — 5"-53 — o"-S6(^— 1870.0) -fo".02 (^-1870.0)- 
 The continuance of this correction beyond 1875.0 is, of course, purely conjectural. 
 
 TAr5I,ES FOR APPLYING TIIK PRIXKDIXG CORRECTIONS. 
 The following tables are designed to facilitate the computation of the corrections 
 
mmm 
 
 m 
 
 
 .■■} 
 
 M 
 
 38 
 
 just <.'ivfi). To avoiil tlic iicccs.sity of lelcniii^ to Huiiscir.s (aides, the valiU's olall the 
 necessary argimieiils arc yiveii lor the years 1850 to 18S9 in 'lalth's I to 111. 
 
 Talile I: tlie epochs are January o, Greenwich mean noon of common years, and 
 January i »d' leap years. All the ar^fumeids increase iiniforndy i)y a unit in a day. 
 
 Ar^rnment g is the moon's mean anomaly, converted into days hy dividing its ex- 
 pression in deirrees l)y 13.065. It is equal to llan.sen's argument g diminished l»y 15 days. 
 
 Argument D shows the number of days since mean new moon, or, it is the mean 
 departure of the moon from the sun expressed in days. It is ecpial to Hansen's argu- 
 ment ^^ diminished by 30 days, or, which amounts to the same thing, by o''.47. 
 
 Arirument A gives the number of davs from the time when the anjjle 
 
 2g — 4g' + 2a) — ia)' 
 was la.st zero. 
 
 Arirnmeiit li is that of the empirical term indicated by observations, but not given 
 by theory. 
 
 Ar<rnment u is that of latitude, or the number of days since the mean moon last 
 passe«l her ascending no>l('. 
 
 Tiddes II and III do not seem (o U(.'ed explanailoii. In using the former, ean; must 
 l»e taken 1<i diminish by ou(! day tiie dates for Jauu.iry and ^"ebruary of leap years. 
 
 Talde IV gives tht; secular corrections to the mean longitude, or to n6~, obtained 
 from ol)servatioiis in the manner aln^ady described. 
 
 Table V, argument J, gives the correction for the t(.'rm introduced into the tables 
 lescribcd on paye o. I 
 
 witli a wrong sign, 
 
 tilde, and is therefore designated as 6v. 
 
 properly 
 
 ippli 
 
 Talde \l irives the empirical term, whis'li, so far as is known, may be a)t|ilied to the 
 
 true loiiiritude. 
 
 Talde VII "fives the sum of the terms of mean hjngitude 
 
 + o".96 sin 1) 
 
 o 
 
 ■OJ 
 
 Sin 
 
 I) 
 
 -o".i3sin(7> + ir') 
 4-o".09 sin g' 
 
 Tl 
 
 le sun's mean anomaly, g', having a ])erio( 
 
 dof 
 
 I year, the sum of these terms can 
 
 lie expressed as a function ol' .'> and llie nioidli, and is given in the table for the middle 
 of each monili, and for each day of J). 
 
 Table VIII gives (h(! sum of (he terms ol true longKnde which depend wholly or 
 partly on the moon's mean anomaly, namely: 
 
 + o".62 sin (g -f 202".o) 
 + o".o7.sin(/; — 5-) 
 — o".2i sin (2 D — g) 
 
 Tin- sun; of the terms of n S: are to bo reduced to eorreclions ol the 'ongitude in 
 orbit by multiplication by (he fad or 
 
 1 -f- 2 f cos r -f -^ c'- cos 2 g. 
 This factor, less nnitv, is iriven in T.ible IX. 
 
 !^ 
 
39 
 
 'or 
 
 convenience, the unit of the faclor is uniittctl from the lahiilar luiiiil 
 necessary to adt 
 
 icrs, so llial 
 
 it IS only necessary to add the product / X « '^- i" ""i<h n S: and Sr to hav(> tiic cor- 
 rection of the true longi(nd<' in orlnt. 
 
 These corrections being applied to llie longitude of the moon's center from Han- 
 sen's taldes, that longitude may he regarded as correct, exce[)ting a small correction, 
 wiiicli may probably be regarded as constant during any one period not exceeding six 
 months, and which may be attributed to tiie adoi)ted position of the e(piinox. It will 
 l)e best determined from occultations of stars observed at points whos(! longitudes from 
 Greenwich are accurately known by tehigraph, and will then be applicaljle to the 
 determination of the longitude of any station from occultations. 
 
 If the corrections here deduced are applied to the (,'rrors of the lunar eplunneris 
 derived from meridian oliservations, it must bo remend)ered that thesi; observations are 
 made on the moon's limb, while the corrections are applicable to the center. Hence, 
 the value of the moon's semi-diameter must, if great refinement is aimed at, be varied 
 with the ob.servef, the instrument, and tin; brightness of the sky. For large instru- 
 ments, Hansen's semi-diameter is about i" too great, even at night. 
 
 The sum of all the terms of n S:, Sr, and FX" ''^- f'''>"^ the tables will l)e the 
 correction of the longitude in orl)it. Tliis will not be rigorously the same as the correc- 
 tion to the ecliptic longitude. 
 
 Table X gives the small factor (F. I) liy which the orl)it longitude must Ijc increased 
 or diminished to ol)tain the ecliptic lonirituile. This tiictor may g(.'nerally be disregarded. 
 
 Table X al.so gi\es the data tor the- correction of the moon's latitude, namely, (i) 
 a flictor (i\ /?) by which the correction of the moon's argument of latitude must be 
 multii»lied; and (2) the term 
 
 •^/^ = — o". I 5 sin u 
 
 arising from tlie correction to the t.djulav ni,-lin.uion of <lic moon's orliit. The correc- 
 tion of the moon's arguaient of latitude being that ol' her lon:;itu(le, miinis the correction 
 of her node, the wlude correction to the latitude will l)e 
 
 dft-dft, + (F.ft) {6l--^".s-) 
 Table XI gives the factors for converliuL' correction'-' of loniritude and latitude info 
 corrections of right ascension and declinatio!:. The nn ninhv are 
 
 S.Al — or + (f . a) Si- + (/? . a) 6/i 
 S . Dec. =: S/i + (/• . S) Sr f (/? . S) Sft 
 
 The side argument is the moon's longitude, auil in the coefHcients iv . n) and perhaps 
 (/y .«) regard must be had to the moon's latitude also Tlirci; columns are therefore 
 
 given for latitude, 
 
 and + 5 respectively. 
 
mmm^ 
 
 40 
 
 -'■ I 
 
 As an example of the use of the tables of corrections, we will commence the 
 deteniiinatiou of the corrections for Scsptembcr, 1S74. AVe find the values of the argu- 
 ments for September i, from Tables I to III, a.s tbllows: 
 
 
 g 
 
 D 
 
 A 
 
 li u 
 
 1 
 
 1874 . . . 
 
 Sept. I . . 
 I'eriDtls . . 
 
 Arg. Sept. I . 
 A TR. Oct. I . 
 
 5..» 
 
 23.6 
 
 -27.6 
 
 12. t 
 
 7.8 
 
 S.o 
 1.9 
 
 20.0 
 
 24.6 
 
 -27.4 
 
 1.9 
 26.2 i 
 — 27.2 ' 
 
 1.4 
 
 19.9 9.9 1 17.2 
 
 0.9 1 
 
 3.3 
 
 20.3 
 
 1 ; 1 
 
 39-9^! 47-2)' 30.0/: 
 or 7.8 i^ or 19.8 ) or 3.7 ) ! 
 
 1 1 
 
 
 rig.g 
 
 : 1.4 
 
 
 
 
 D-j;-. 
 
 -18.5 
 
 
 
 The tabular numbers are then found as follows, with an argument incrc 
 unify each day. From Table VIII, we take a mt-an from columns i8 and 19. 
 
 a.-<ing by 
 
 September 
 
 Ta 
 
 lilc 1V(h,1 
 VI (,lr. 
 
 
 
 VII (.( 
 
 fc). 
 
 
 VIII ( 
 
 r) . 
 
 n< 
 
 :XA,Tal,l 
 
 ■IX 
 
 6v 
 
 . . . 
 
 
 ih' 
 
 -4".5 ■ 
 
 
 Ta 
 
 lili: X (F . 
 
 /J) . 
 
 (■'■ 
 
 -4".5)(1^ 
 
 /^). 
 
 •Vi 
 
 . . 
 
 
 I — 9. II 
 I + 0.40 
 
 — 1.07 
 
 — 1.29 
 
 — o,f)5 
 
 - 9. 1 1 - 9.11 
 
 i 
 +0.55 +0.62 
 
 - 1 .29 — 1 .42 
 
 - 1.25 - I. 12 
 
 0.72 
 
 0.77 
 
 - 9. II 
 + o 59 
 
 - 1.50 
 
 - 0,95 
 
 - 0.7S 
 
 — 9 12 —9.12 
 + 0.4S ' (- 0.28 
 —1.48 1 — 1.40 
 
 — 0.76 I — 0.50 
 
 0.75 
 
 o.f)9 
 
 — 9. 12 
 + ti.05 
 
 — 1.23 
 
 — 0-37 
 
 — 0.60 
 
 -11.72 
 
 -II. 82 
 - 0-93 
 
 - 1 1 . 80 
 
 ■11.75 
 
 — 11.6J , —11.49 
 
 0.71 , - 0.47 
 
 -12. 84 
 
 -17.3 
 -+- 0.088 
 
 - 0.03 
 
 - 1.52 
 
 J's longitude 
 
 (i +(».'>)) i!f , 
 (,3.«).V . . 
 AM . . . 
 
 (v . il) M' . 
 (I ■<-/)..)) iVi 
 iIDcc. , , 
 
 1-55 
 
 46.5 
 -i3.o8 
 
 -12-75 
 
 ^17.2 
 
 -t- 0.082 
 
 — 0.07 
 
 - 1.3S 
 
 — 12.51 —12.22 
 
 -17.0 
 
 -16.7 
 
 + 0.070 + 0.056 
 
 O. 10 : — O. 12 
 
 1. 19 
 
 0.93 
 
 0.28 
 
 0.06 
 
 — 11.27 
 -1- o.i3 
 
 — 11.91 
 
 - IC.4 
 
 -I- 0.038 
 
 - 0.14 
 
 - 0.63 
 
 -11-55 
 
 — 11.09 
 
 - I--I5 
 
 Co. 7 
 
 13.49 
 
 -+- 0.47 I + 0.32 
 
 — 1.29 
 
 74.6 
 
 83.1 
 
 -13.84 j -13.81 
 
 -1-0.16 ! -f 0.02 
 
 0.77 
 
 101.5 
 
 —16.0 —15.6 
 -f 0.019 ~ 0.002 
 
 - 0.15 
 
 — 0.30 
 
 0.15 
 
 o , 03 
 
 9.12 
 0.18 
 
 I .0! 
 0.22 
 0.48 
 
 + "-37 
 
 -10.64 
 
 -15-I 
 
 — 0.14 
 + 0.33 
 
 - 0.45 
 
 114-5 
 
 -13- 
 
 -12.6 
 
 -0".84 
 
 - 3-70 
 
 - 1.50 
 
 - 5-2 
 
 -13-2 
 
 -o'.88 
 
 — 2.64 
 
 - 1.42 
 
 4.1 
 
 -13-7 
 — o". 91 
 
 - 1. 41 
 
 - 1.23 
 
 2.7 
 
 •13-8 
 
 -0-.92 
 
 - o,l3 
 
 n-5 
 
 .90 
 
 — I2.6r 1 — 
 
 — 0.09 
 
 -12.7 
 
 — o'.85 
 
 -t- 1.02 -(-2.05 
 - 0.77 - 0.44 
 
 + 0.2 
 
 -j- 1.6 
 
 + 3-5 
 
 ^ 
 
 
•tmm S*:s . sS3KS S S 
 
 ■^ 
 
 
 41 
 
 This (..miMifalion Ims Ik.-.;,, cm.fiu,.,,-.! tu .875, Jai,u,-,-y 3 ., an.! ll.r n..s,.lls ;nr 
 slKtwii III ilic lollowiiiy tal)Ie: 
 
 Corrections to tlw Ephrnirris drrircl from Jfansnfs Tables of the ^foo^, fhr firrninhh 
 inmn ,»,.>„ of cuh itnij, from 1S74, Srpfemhrr 1, to \^--^, .htnnor], 31. 
 
 D.itc. 
 
 Corrociion to latnil.ir — 
 
 Date. 
 
 Coircciicui lo i.ij.iihir- 
 
 GM 
 
 Gr 
 
 . nicm 
 
 
 ~ 
 
 
 — 
 
 
 I 
 
 -T 
 
 
 ^- 
 
 
 
 n 
 
 oon. 
 
 ^:-i. 
 
 Lonif. 
 
 Lat. 
 
 i R.A 
 
 Dec. 
 
 tir. nu-; ii i 
 no„n. I ■-on,^^ 
 
 Lat. R. .A. 
 
 Dec. 
 
 
 
 ■ . 
 
 ^^ 
 
 lS7(. ' 
 
 
 
 St 
 
 r'- 
 
 — I2.S 
 
 — I. 
 
 <■ —12, 
 
 <> - ■;.: 
 
 (JlI. II — 7.5 
 
 + '.I - '>.1 -r 3.6 
 
 
 2 12^ 
 
 I . 
 
 '- '3- 
 
 2 4.1 
 
 >2 7.2 
 
 1.0 6.S ^ 3.2 
 
 
 3 
 
 12 5 
 
 '• 
 
 3 13. 
 
 7 2.7 
 
 13 ('.') 
 
 I.O 6.S ' 2.7 
 
 1 
 
 A 
 
 12.2 
 
 I. 
 
 ' >3. 
 
 ^ — 1.2 
 
 14 i 6.6 
 
 "•8 : 7.0 2.., 
 
 ! 
 
 5 
 
 II. 9 
 
 0. 
 
 5 ; 13. 
 
 5 + 0.2 
 
 '5 j f).4 
 
 ^•7 7.0 1.3 
 
 1 
 
 t 
 
 -W.I, 
 
 — 0. 
 
 5 j —12. 
 
 7 4- 1.6 
 
 If) i — 6.2 
 
 + 0-5 - 7.0 + 0.6 
 
 
 7 
 
 II. I 
 
 — 0. 
 
 I II. 6 2 7 
 
 17 
 
 fi.i 
 
 0.3 6.9 ' - 0.2 
 
 
 3 
 
 10.6 
 
 + 0. 
 
 : i 10. < 
 
 > , 3-5 
 
 18 
 
 6.2 
 
 ! + 0.1 6.S I.O 
 
 
 9 
 
 10. 1 
 
 0. 
 
 > i 9.< 
 
 >\ 4.1 
 
 '9 
 
 6.4 
 
 f — "•' 6.6 i.s 
 
 r 
 
 i 
 
 10 
 
 .J.6 
 
 o.- 
 
 j %.i 
 
 ' i 4-3 
 
 1 
 
 20 
 
 1 „ 
 
 6.8 
 
 ; 0.4 6.6 2.5 
 
 
 II 
 
 - 9.0 
 
 + C.f 
 
 ) - -■' 
 
 ) ' + 4.4 
 
 - 7-5 
 
 — 6 
 
 — f'-O 1 — 3-3 
 
 
 12 
 
 5-3 
 
 I.' 
 
 7 • ' 
 
 4.2 
 
 22 j 3.3 
 
 1 0.9 
 
 7-3 ', 4-1 
 
 
 '3 
 
 7.'j 
 
 1. 1 
 
 ''■: 
 
 3.S 
 
 23 9.3 
 
 I . t 
 
 ■^•i 4.7 
 
 
 M 
 
 6.3 
 
 I.I 
 
 6.2 
 
 3-3 
 
 24 ! I". 4 
 
 '■3 
 
 9-2 5.2 
 
 
 ■5 
 
 6.2 
 
 I.U 
 
 5.Q 
 
 1 2.8 
 
 11 '' ■'•■' 
 
 I .; 
 
 10.6 5.2 
 
 
 \U 
 
 — £.6 
 
 + 0.9 
 
 . - 5-7 
 
 + 2.2 
 
 ii 
 
 2(, — I 2 . .4 
 
 - I.= ■ -12.2 - 4..S 
 
 
 >7 
 
 5-2 
 
 c. 7 
 
 5 5 
 
 1.6 
 
 27 13.2 
 
 '.4 13-9 3.8 
 
 
 H 
 
 50 
 
 0.6 
 
 5.5 
 
 I.O 
 
 ll 28 13.6 
 
 1.2 15. I 2.3 
 
 
 19 
 
 5.» 
 
 0.4 
 
 c.? 
 
 •i- 0.3 
 
 29 13. s 
 
 10 15-7—06 
 
 
 20 
 
 ■•4 
 
 + 0.2 
 
 6.1 
 
 - 0.4 
 
 3" 13. f' 
 
 0.6 13.3 4- I.I 
 
 
 21 
 
 - 6.1 
 
 0.0 
 
 - 6.6 
 
 — 1.2 
 
 ■' 31 1 -13-2 
 
 - ".3 -14.2 -r 2.6 
 
 
 22 
 
 7.0 
 
 — 0.2 
 
 7-2 
 
 2.2 
 
 ■N''n-. I 12.4 
 
 + 0.1 12.6 3.6 
 
 
 23 
 
 S.I 
 
 0. 5 
 
 7-5 
 
 3.2 
 
 2 11.4 
 
 0.4 II. I 43 
 
 
 24 
 
 9-4 
 
 0.5 
 
 8.5 
 
 4.3 
 
 ji 1 
 
 1 3 I'l-S 
 
 "•7 9-6 4.5 
 
 
 2; 
 
 »o.6 
 
 I.I 
 
 9-3 
 
 5.2 
 
 4 ; 9-5 
 
 o.S 
 
 8.4 4.5 
 
 
 20 
 
 — II.S 
 
 - '3 
 
 -10.3 
 
 - 5.8 
 
 5^-8.5 
 
 + I.O 
 
 - 7.4 + 4.3 
 
 
 27 
 
 12.7 
 
 '•5 
 
 11.5 
 
 6.0 
 
 6 7.7 
 
 I.O 
 
 6.7 3-0 ■ 
 
 
 25 
 
 '3-4 
 
 1.6 
 
 12. S 
 
 5.7 
 
 7 7.1 : 
 
 I.O 
 
 6.3 
 
 3-5 
 
 
 29 
 
 '3-7 
 
 '•5 
 
 «3.9 
 
 4.8 
 
 8 6.6 
 
 1 .0 
 
 6.2 
 
 3.1 \ 
 
 
 30 
 
 13.? 
 
 1.4 
 
 M.9 
 
 3.4 
 
 9 6.4 
 
 I.O 
 
 6.2 
 
 2.6 
 
 Oct. 
 
 I 
 
 -13 5 
 
 — 1.2 
 
 -15.2 
 
 - '.7 
 
 10 ' - 6.3 
 
 + 0.9 
 
 - 6.5 
 
 + 2.1 
 
 
 2 
 
 130 
 
 0.9 
 
 '4.7 
 
 -o.t 
 
 II 6.3 
 
 0.7 
 
 6.9 
 
 '•5 
 
 
 3 
 
 12.2 
 
 0.5 
 
 ■ 13.6 
 
 4. ,.4 
 
 12 6.5 
 
 0.6 7.3 
 
 + 0.8 
 
 
 4 
 
 I I . 5 
 
 — 0,2 
 
 12.2 
 
 2.6! 
 
 13 6.8 
 
 0-4 ; 7.7 
 
 — 0.: 
 
 
 S 
 
 ro.6 
 
 -t- 0.1 
 
 10.? 
 
 3-3! 
 
 14 7.r 
 
 + O.I 1 7.8 
 
 I.O 
 
 
 6 
 
 - 9-9 
 
 -^ 0.4 
 
 - 9.4 
 
 + 3.g 
 
 »5 , - 7.4 
 
 — 0.1 , _ 7,8 
 
 - 1.3 
 
 
 7 
 
 9-2 
 
 0.6 
 
 8.4 
 
 4-1 
 
 16 
 
 7.7 
 
 ■-'•4 7.7 
 
 2.7 
 
 
 8 
 
 8.7 
 
 0.3 
 
 7-7 
 
 4.2 
 
 '7 
 
 8.1 
 
 ( 
 
 0.6 7.6 
 
 3.4! 
 
 
 9 
 
 8.2 
 
 I.O 
 
 T.2 
 
 4.2 
 
 18 
 
 8.4 
 
 0.8 
 
 7.6 
 
 4.0 
 
 
 to 
 
 7-8 
 
 I.O 
 
 6.8 
 
 4,0 
 
 19 
 
 8.9 
 
 I.O 
 
 1 
 
 7.8 
 
 
 4.5 , 
 
 •t ' 
 
 i 
 
 St 
 
42 
 
 
 M ' 
 
 »4 
 
 '#? 
 
 ,.„,.,.,.,„■„„. ,„ <,..■ r:,.i. :^ .i^rirM /,■ //»»«■«•» ''«'■'■- •:' "- ^' "-<■---'• 
 
 [);ilc. 
 
 Cil. HUM 
 
 ■ i?74- 
 
 Nciv. 
 
 I 
 I.uMK. Lai. K. A- n^'<--- 
 
 20 i 
 
 21 ; 
 
 I 
 
 22 I 
 
 '-3 
 24 
 
 25 
 
 Dec. 
 
 2S, 
 2.) 
 
 3" 
 I 
 
 2 
 3 
 ■1 
 
 5 
 
 6 ^ 
 
 7 ; 
 
 8 i 
 
 10 
 II 
 12 
 13 
 14 
 
 15 
 16 
 
 17 
 
 IS 
 
 19 
 
 20 
 
 21 i 
 22, 
 
 23 i 
 
 24 I 
 
 25 
 2f) 
 
 - <)-4 
 
 1 0.0 
 
 10, f) 
 
 1 I .2 
 
 I I .7 
 
 -12.2 
 
 ..2.5 I 
 12.f) 
 
 12.5 ; 
 
 [2. I 
 
 -11-7 
 
 II. II 
 10.3 i 
 
 94 
 
 S.5 
 - 7-7 
 
 6.4 
 6.1 'j 
 fi.o 
 
 -6.1 
 fi.4 
 6.S 
 7-4 
 
 S.o 
 
 - 8.7 
 9'3 
 ')■') , 
 10.3 ', 
 10.7 
 
 — I I . o 
 11.2 
 I1..1 
 11.4 
 
 II. 4 
 
 -II. 3 
 i II. I 
 
 - I . 
 
 1.3 
 1 . 3 
 1-3 
 1 .2 
 
 - 1.11 
 
 o.fi ■■ 
 
 I 
 
 - 0.3 . 
 
 (l.O 
 
 h ".4 
 
 + 0.7 
 
 I .1 I 
 1.2' 
 1 .2 
 
 + I.I 
 
 I .0 
 U.() 
 
 ' 0.8 
 ' .).fi 
 
 + 0.4 
 
 + 0.2 
 
 0.0 
 
 - 0.3 : 
 o.fi 
 
 - 0.8 I 
 1 .1 i 
 I .2 
 
 1-3 
 
 1.4 
 
 — 1-3 
 
 1 .0 
 0.7 
 0.4 
 
 — O.I 
 + 0.3 
 
 - S.2 
 
 m. 1 
 
 11-4 
 
 12.7 
 
 — 13.S 
 14. I 
 
 '3-^ 
 13.(1 
 ii.y 
 
 -ID. J 
 ')■') 
 ')■" 
 
 .S.2 
 
 7-5 
 
 - 7-" 
 6.8 
 (i.f) 
 6.5 I 
 6.7 I 
 
 7-3 
 7-5 
 7.f) 
 
 - 4.S 
 4.3 
 
 3S 
 
 2.1' 
 — 1.2 
 
 + "'S ;, 
 
 2.0 \\ 
 
 I; 
 3-3 1; 
 
 4.3!! 
 -t- 4.<) !| 
 
 1 
 
 5 -Ml 
 
 11 
 
 J 
 -f- 3.6 ii 
 
 3.0 
 2.3 
 
 o.g « 
 
 + 0.1 , 
 
 I ~ °-" i^ 
 1.5 :. 
 
 2.4 
 
 3-3 
 
 DaU'. 
 
 Gr. mean ! 
 
 nnoii. I 
 
 i 
 
 1374- ' 
 Dec. 27 
 
 Coiroclioii Ici laliiilai — 
 Long. L^t. R-^- ^'=''- 
 
 10.8 
 10.4 
 
 •'). I 
 . 6 
 
 I.m. 
 
 - 7-8 
 S.l 
 8.6 
 ■).2 
 10. 
 
 — II.O 
 
 12.0 
 
 12.7 
 12.9 
 ! 12.6 
 
 — 12.0 
 II. I 
 
 I 
 
 4-7 
 5.0 
 
 5-' 
 4.8 
 
 - 4.1 
 
 31 
 1-7 
 
 — 0.2 
 
 + 1-3 
 + 2.6 
 3-<> I 
 
 3 ; 
 5 ! 
 
 7 
 III 
 
 - 8.7 
 8.2 
 7-8 
 7.4 
 7-1 
 - 6.,) 
 1 6.8 
 6.., 
 
 7.6 
 
 4- 0.6 
 o.S 
 l.o 
 1 .2 
 1 .2 
 
 + 1.2 
 I I 
 1 .0 
 
 — 10.2 
 
 ')-5 
 
 ,5.() 
 S.4 
 S. 1 
 
 - 70 
 7') 
 7- 9 
 
 1 
 
 '3 
 14 
 
 I 5 
 
 16 
 17 
 iS 
 
 ■9 
 20 
 
 23 
 24 
 
 2"; 
 
 26 
 
 27 
 
 28 
 
 2>) 
 30 
 
 3« 
 
 - S.o - 
 8.6 
 ().2 
 
 0-7 
 10.3 
 
 -in.S 
 II 2 
 11? 
 II .•' 
 1 1. 6 
 
 — II .; 
 II. I 
 
 10.7 
 10.2 
 
 0.6 
 
 - ')•' 
 8.5 
 8.1 
 
 7.7 
 
 7- 5 
 
 0.6 
 
 + 0.4 
 
 + 0.2 
 
 11.1' 
 
 - <i.3 
 0.5 
 
 - 0.7 
 1 .0 
 1 .2 
 1-3 
 1-4 
 
 - 1.3 
 1 .2 
 
 1 .'' 
 0. s 
 '1- ? 
 — 0.1 
 't- n . 2 
 0.5 
 0.7 
 
 7.') 
 7-3 
 
 7.8 
 
 + 4-3 
 4-7 
 4.9 
 4-9 
 4.f. 
 
 i- 4-> 
 
 3-5 
 2.9 
 
 2. 1 
 
 1 .2 
 
 + <>.4 
 
 — 0.5, 
 
 1. I 
 
 1 .0 
 
 1 .1 
 I . I 
 
 1 . I 
 1 . 1 
 I .u 
 
 7- i 
 
 7-3 : 
 
 — 7.3 
 7 5 
 8.1) 
 8.6 
 9.5 
 
 -10.6 
 11.7 
 12,6 
 13.1 
 13.0 
 
 -12.4 
 
 11.4 
 
 10.3 
 
 9-3 
 
 S.5 
 
 - 7-9 
 7.5 
 7-2 
 7-2 
 7-4 
 
 3.0 I 
 
 - 3-7 ; 
 
 4-3 ; 
 
 4.7 ! 
 4.9 
 
 4.8 i 
 
 - 4-3 ' 
 
 3-4 ' 
 
 2.2; 
 
 - 0.8 1 
 
 + 0.8 
 
 I 
 + 2.2 ' 
 
 3-3 1 
 41 
 
 4.5 I 
 
 4.6 I 
 
 i 
 
 + 4. ft j 
 
 4-3 I 
 
 I 
 
 4.0 1 
 
 3-5 , 
 2.0 1 
 
 - 7.4 . -I- 0-9 - 7-7 + 2.3 
 
 II 
 
"W! 
 
 <t t Jm* M \ < B»i i .— if n ' i!f * ; 
 
 ppw 
 
 1 
 
 
 r A 15 J. I-: s 
 
 i. 
 
h^ 
 
 'im 
 
 
 I 
 
 i 
 
 £.1.1 
 
45 
 
 T A 1] L K S 
 
 T.Mii.i; ]. 
 
 Valiifsoj the Ar:^iiin,iih for the lu-iii- 
 
 Year. 
 
 /) 
 
 B 
 
 'VXW.Y. II. 
 
 I\i-Jiicli<iii of tin- . Ir-iiiii<n/s to ///<• zno- 
 (lijy if Cihii inoiitli. 
 
 .Montli. 
 
 D A 
 
 B 
 
 i?5o 
 
 I .S 
 
 If.. 7 
 
 f'-3 4-3 
 
 I 
 
 j 2?. 5 
 
 Jan. 
 
 0* 
 
 0.0 
 
 o.( 
 
 <I.O 
 
 0.0 
 
 0.0 
 
 '551 
 
 S.6 
 
 27.3 
 
 0.0 12.7 
 
 i 9-5 
 
 IV 1.. 
 
 0^' 
 
 3.4 
 
 '•5 
 
 '4-. 
 
 3-ft 
 
 3.S 
 
 l?52 IJ 
 
 16. 4 
 
 9-4 
 
 IlH 
 
 22. I 
 
 21.7 
 
 Mar. 
 
 
 
 3-9 
 
 0.1 
 
 1(1.6 
 
 41 
 
 4.6 
 
 >'53 
 
 23- 1 
 
 20.0 
 
 4-; 
 
 3' 
 
 = .S 
 
 .\l.Til 
 
 ^) 
 
 7-3 
 
 '•4 
 
 9-3 
 
 7- 7 
 
 S.4 
 
 1854 
 
 2.4 
 
 l.l 
 
 14. f 
 
 II .5 
 
 1 ,7.0 
 
 -May 
 
 
 
 9.8 
 
 1.9 
 
 "•'J 
 
 10.3 
 
 II. 2 
 
 >?;? 
 
 9.2 
 
 II. S 
 
 S.-l 
 
 19.9 
 
 ! 1 .0 
 
 1 11 nr 
 
 I) 
 
 13.2 
 
 3-3 
 
 S • 7 
 
 Ij-S 
 
 14.9 
 
 I-5'' H 
 
 17. i> 
 
 23.4 
 
 3.2 
 
 1-9 
 
 ; .3.3 
 
 J Illy 
 
 " , 15-7 
 
 3-'^ 
 
 3-5 
 
 '"■4 
 
 '7-7 
 
 '^57 
 
 25-5 
 
 4.5 
 
 •3' 
 
 IU.3 
 
 24.5 
 
 A UK. 
 
 
 
 19. 1 
 
 5-3 
 
 2.2 
 
 20.0 
 
 21 .5 
 
 1555 
 
 30 
 
 •51 
 
 6.. 
 
 i3.7 
 
 8.5 
 
 ."^t'l)!. 
 
 
 
 22.6 
 
 6.S 
 
 0.9 
 
 23.6 
 
 25.2 
 
 1859 
 
 9.S 
 
 25.8 
 
 0.7 
 
 27. 1 
 
 19.8 
 
 Oi;l. 
 
 
 
 25.0 
 
 7-2 
 
 14. s 
 
 26. 1 
 
 0.9 
 4-7 
 
 1S60 B 
 
 17.0 
 
 7'J 
 
 \\.( 
 
 9-' 
 
 4.S 
 
 .\'uv. 
 
 
 
 0.9 
 
 S.7 
 
 '3-5 
 
 2.3 
 
 l56i 
 
 24 4 
 
 1S.5 
 
 ^.■i 
 
 17.5 
 
 16.0 
 
 r)fc. 
 
 
 
 3-3 
 
 9.1 
 
 II.3 
 
 1 4-S 1 
 
 7-5 
 
 1862 
 
 3.6 
 10.4 
 
 29.2 
 10.2 
 
 i;.2 
 9.0 
 
 25.9 
 6,9 
 
 0. I 
 
 11-3 
 
 -^ I.. 
 
 _. 
 
 
 
 
 
 
 
 1S63 
 
 f 
 
 
 
 
 
 In 
 
 |;tmiarv ami i-jl 
 
 riiarv 0! Icaiivears. 
 
 1S64 H 
 
 1S.2 
 
 21.9 
 
 3- 7 
 
 16.3 
 
 23.6 
 
 iIk' niMijliirs lak 
 
 .11 liom Tahli 
 
 11 ai.- 
 
 to be 
 
 ise.. 
 
 2;.o 
 
 3-0 
 
 13-7 
 
 24-7 
 
 7.6 
 
 iliiiiiiiislu-d liv a 
 
 unit. 
 
 
 
 
 1S66 
 
 4-2 
 
 13.6 
 
 7-4 
 
 5-7 
 
 IS.S 
 
 
 
 
 
 
 
 1S67 
 
 II .0 
 
 24-3 i 
 
 1.2 
 
 I4-I 
 
 2.S 
 
 
 '1' 
 
 \lil.i; 
 
 III. 
 
 
 
 1 565 B 
 
 15.5 
 
 6.4 1 
 
 I-M 
 
 ~i-'> 
 
 15.1 
 
 
 
 
 
 
 
 1S69 
 1S70 
 
 25.6 
 4.5 
 
 17.0 
 27. f, 
 
 5-9 
 15-3 
 
 4.4 
 
 1 2 . S 
 
 2(1.3 
 II). 1 
 
 
 J\noili ( 
 
 /■ ///<• 
 
 .hi;/i///)///s. 
 
 
 
 
 i?7l 
 1S72 B 
 
 II. 6 
 19.4 
 
 S.7 
 
 9.6 
 
 21.3 
 
 21. d 
 
 
 1 
 
 /) 
 
 A 
 
 B 
 
 II 
 
 20.4 
 
 1- 1 
 
 3- - 
 
 
 
 
 
 
 — - 
 
 ■?T3 
 
 26.2 
 
 1.5 
 
 14-3 
 
 W.U 
 
 1 7 . l.l 
 
 
 
 
 
 ! 
 
 
 ''74 
 
 5-4 
 
 12. 1 
 
 S.o 
 
 20.0 . 
 
 1.9 
 
 /' . 
 
 . 27.6 
 
 i 
 
 29.5 
 
 16. 1 
 
 27-4 
 
 27.2 
 
 1S75 
 
 12.2 
 
 22. - 
 
 , ", 
 
 t ■!> . 
 
 13. I 
 
 2 /' . 
 
 • 55-1 ; 
 
 59-1 
 
 32.3 
 
 54-9 
 
 5*-4 
 
 I57f> H 
 
 20.0 
 
 4.> 
 
 12.7 
 
 10.4 
 
 - = ■ 1 
 
 i /' . 
 
 • 1 ^^'7 i 
 
 S3. 6 
 
 4S.4 
 
 >2.3 
 
 -1.6 
 
 •?77 
 
 ;'■- . 5 
 6.0 
 
 '5-5 
 
 26.1 
 
 6-5 
 0.3 
 
 IS.S 
 
 9-1 
 20. 7 
 
 4 /' . 
 
 . (110.2 
 
 ! 1 
 
 iiS.i 
 
 64.6 
 
 lo<j.7 io5.S 
 
 157a 
 
 
 
 
 
 
 1379 
 
 12.8 
 
 T _ 2 
 
 10.2 
 
 S. 2 
 
 ■1-7 
 
 
 
 
 
 
 
 isSoB 
 
 20.6 
 
 15. S 
 
 5.0 
 
 17.6 
 
 16.9 
 
 
 
 
 
 
 
 iS5i 
 
 274 
 
 29.4 
 
 14.9 
 
 26. 1) 
 
 1 .11 
 
 
 
 
 
 
 
 1SS2 
 
 6.6 
 
 10.6 
 
 S.6 
 
 7-" 
 
 12.2 
 
 
 
 
 
 
 
 1553 
 
 13 4 
 
 21 .2 
 
 2.4 
 
 '54 
 
 23.4 
 
 
 
 
 
 
 
 i3>4 B 
 
 21.2 
 
 3-3 , 
 
 13-3 
 
 24. S 
 
 S-5 
 
 
 
 
 
 
 
 1SS5 
 
 0.; 
 
 13.9 ; 
 
 7.1 
 
 5.S 
 
 '97 
 
 
 
 
 
 
 
 lS56 
 
 7-3 
 
 24.6 i 
 
 0.9 
 
 14.2 
 
 3.7 
 
 
 
 
 
 
 
 IS 57 
 
 14.0 
 
 5-7 ; 
 
 10. S 
 
 22.6 
 
 15.0 
 
 
 
 
 
 
 
 18S8 B 
 
 21. 5 
 
 17.3 1 
 
 5' 5 
 
 4.6 
 
 0.0 
 
 
 
 
 
 
 
 1SS9 
 
 25.6 
 
 27.9 j 
 
 5.4 
 
 13.0 
 
 11.2 
 
 
 
 
 
 
 
 «?^ 
 

 i 1 
 
 t 
 
 Taulk IV. 
 
 SfCiihir Terms. 
 
 War, 
 
 H.h 
 
 DilV. 
 
 Tahlk V. 
 
 Aij^iimcnt A. 
 
 I84S.O 
 
 0.00 
 
 + 0.20 
 
 1849.0 
 
 ■(- 0.20 
 
 0.20 
 
 1850.0 : 
 
 0.40 
 
 0.20 
 
 1851. 
 
 0.60 
 
 0.20 
 
 1S52.0 ' 
 
 0.80 
 
 0.20 
 
 lS?3.o 
 
 1 .<K) 
 
 
 
 + 0.20 
 
 I354-0 ; 
 
 1 
 
 + 1.20 
 
 0.20 
 
 1855.0 i 
 
 I 40 
 
 ■1 0.10 
 
 l>5().o 
 
 I. 5" 
 
 0.00 
 
 1SJ7.0 
 
 1,50 
 
 0.00 
 
 iSyS.I) 
 
 1 ,50 
 
 0.0*) 
 
 lS5l).0 ; 
 
 + 1 5" 
 
 O.IH) 
 
 iSfio.o 
 
 1.5" 
 
 0.00 
 
 1S61.11 
 
 1.5" 
 
 (1.00 
 
 l8fi2.o 
 
 1.50 
 
 — 0.03 
 
 I«63.() 
 
 1.47 
 
 — 1.12 
 
 lSfi|.o 
 
 + "-35 
 
 - t.oS 
 
 r.Sl.^.o 
 
 - 0.73 
 
 - 1.04 
 
 iSMi.o 
 
 - 1.77 
 
 — 1.00 
 
 1S6-.0 
 
 - 2.77 
 
 - 0.,/. 
 
 iStiS.o 
 
 - 3-73 
 
 — 0.^2 
 
 i,8(>().o 
 
 - 4.'>5 
 
 — 0. 3S 
 
 1S70.0 
 
 - 5-53 
 
 - 0.S4 
 
 1S71 .0 
 
 - f>.37 
 
 — o.So 
 
 1S72.0 
 
 - 7-'7 
 
 - 0.7(1 
 
 1S73.0 
 
 - 7-93 
 
 — 0.-2 
 
 1S74.0 
 
 - 8.f,5 
 
 - o.()8 
 
 iS75-" 
 
 - 9-33 
 
 — o.fi4 
 
 iS-O.o 
 
 - 9-97 
 
 — o.Oo 
 
 1877-0 
 
 - 10.57 
 
 - -.1.56 
 
 1S73.0 
 
 -11.13 
 
 — 0.52 
 
 1S79.0 
 
 -ii.f.5 
 
 - 0.4S 
 
 iSSo.o 
 
 — 12.13 
 
 
 iv 
 
 TAiii.i: VI. 
 
 A i-^ii nil-Ill J> {Eiiipiiiciil Term) 
 
 B 
 
 dv 
 
 B 
 
 iv 
 
 
 
 0.(X) 
 
 
 
 0.00 
 
 40 
 
 4- 0.31J 
 
 
 I 
 
 - 0.23 
 
 I 
 
 + ".34 
 
 41 
 
 + 0.05 
 
 2 
 
 - "-44 
 
 2 
 
 0.(1(1 
 
 42 
 
 - 0.29 1 
 
 3 
 
 — "-57 
 
 3 
 
 " 95 
 
 43 
 
 — (12 
 
 4 
 
 — 0.(12 
 
 4 
 
 1-19 
 
 41 
 
 — 0.91 
 
 5 
 
 - ".57 
 
 5 
 
 4- 1-37 
 
 45 
 
 - 1 . 1 () 
 
 6 
 
 — ".44 
 
 
 
 
 
 7 
 
 — 0.25 
 
 (1 
 
 1-47 
 
 4(, 
 
 - 1-34 
 
 
 8 
 
 — O.U2 
 
 7 
 
 1.5" 
 
 47 
 
 - 1.40 
 
 
 9 
 
 + 0.22 
 
 S 
 
 1-45 
 
 4* 
 
 - 1.50 
 
 
 10 
 
 0.42 
 
 9 
 
 1 .32 
 
 49 
 
 - 1.4O 
 
 
 11 j 
 
 0.5(1 
 
 10 
 
 + 1.13 
 
 5" 
 
 1.34 
 
 
 12 
 
 0.(12 
 
 1 1 
 
 0.S8 
 
 5' 
 
 - 1.1(1 
 
 
 "3 
 
 0.58 
 
 12 
 
 0.57 
 
 52 
 
 — . () I 
 
 
 14 
 
 \- 0.4(1 
 
 13 
 
 + 0.25 
 
 53 
 
 - 0.(12 
 
 
 15 
 
 0.2(1 
 
 14 
 
 — 0.10 
 
 54 
 
 — 0.29 
 
 
 16 
 
 + 0.03 
 
 
 
 
 
 
 17 
 
 — 0.20 
 
 1 5 
 
 - 0.41 
 
 55 
 
 -1- 0.05 
 
 
 1^ 
 
 - 0.4.1 
 
 lO 
 
 - "-75 
 
 5'> 
 
 0.39 
 
 iv 
 
 — 0.5(1 
 
 17 
 
 — 1.03 
 
 57 
 
 0.71 
 
 20 
 
 — 0.62 
 
 iS 
 
 - 1-25 
 
 58 
 
 "■99 
 
 21 
 
 - "-59 
 
 19 
 
 - 1.4" 
 
 59 
 
 1 .22 
 
 22 
 
 - 0.47 
 
 20 
 
 - 1.49 
 
 (10 
 
 + 1-39 
 
 -. 
 
 — 0.2S 
 
 
 
 
 
 ".) 
 
 
 21 
 
 " 1.49 
 
 (u 
 
 1.4S 
 
 24 
 
 — 0.05 
 
 
 
 
 ; 
 
 
 
 22 
 
 -■ 1.42 
 
 ()2 
 
 1 50 
 
 25 
 
 -i- o.lij 
 
 
 
 
 1 
 
 
 
 
 — 1.27 
 
 63 
 
 1.44 
 
 26 
 
 0.40 
 
 .-.> 
 
 
 
 
 27 
 
 0.55 
 
 24 
 
 — 1 . u(i 
 
 fM 
 
 1.30 
 
 28 
 
 o.f.2 
 
 25 
 
 - "-79 
 
 (15 
 
 -f- l.oS 
 
 29 
 
 0.59 
 
 2(1 
 
 — 0.4S 
 
 (1(1 
 
 0.S3 
 
 30 
 
 + 0.40 
 
 27 
 
 - 0.15 
 
 ('7 
 
 "■53 
 
 31 
 
 0.30 
 
 28 
 
 + O.ll) 
 
 6S 
 
 t* 0. 19 
 
 32 
 
 4- 0.07 
 
 =9 
 
 "•53 
 
 fi.j 
 
 - 0.15 
 
 33 
 
 — 0.17 
 
 30 
 
 + 0.83 
 
 70 
 
 — 0.4S 
 
 34 
 
 - 0.3S 
 
 
 
 
 
 35 
 
 - 0.54 
 
 31 
 
 1. 08 
 
 7' 
 
 - "^79 
 
 3f' 
 
 — 0.62 
 
 32 
 
 1.30 
 
 72 
 
 — 1 . 06 
 
 37 
 
 — 0.60 
 
 33 
 
 1.44 
 
 73 
 
 - 1^27 
 
 3S 
 
 - 0.49 
 
 34 
 
 1.50 
 
 74 
 
 - 1.42 
 
 39 
 
 - 0.31 
 
 35 
 
 + 1.4S 
 
 75 
 
 - 1.49 
 
 40 
 
 — O.OfJ 
 
 3& 
 
 "■39 
 
 7f> 
 
 - "■49 
 
 41 
 
 4- 0.15 
 
 37 
 
 1 .22 
 
 77 
 
 - 1.40 
 
 42 
 
 0.38 
 
 
 
 
 
 
 
 38 
 
 0.99 
 
 78 
 
 - 1.25 
 
 43 
 
 0.54 
 
 
 
 
 
 44 
 
 n.dl 
 
 39 
 
 0,71 
 
 79 
 
 - 1.03 
 
 45 
 4^' 
 
 o.Oo 
 + 0.51 
 
 4iJ 
 
 4- 0-39 
 
 So 
 
 - ".75 j 
 
 
 
 
 
 47 
 
 0.33 
 
 
 
 
 
 48 
 
 4- o.io 
 
 
 
 
 
 49 
 
 — 0. 14 
 
 
 
 
 
 50 
 
 — 0.36 
 
 
 
 
 
47 
 
 Taiilk VII, ;mL-. 
 
 yhx/i//ii/i/s, /> ii//,/ lilt- inoiilli. 
 
 P j.iri. Fell. Mar. Ainil. M.iy. hiiiu. July. \u\i. Sc|)t. ()i|. Nnv. |)i(\ 
 
 o 
 
 — 0.01 
 
 — 0.113 
 
 — . 04 
 
 — "."l 
 
 —0.03 
 
 — O.OI 
 
 + o,"l 
 
 + 0.03 
 
 •) 0.04 
 
 + 0.04 
 
 + "■03 
 
 + 0.01 
 
 1 
 
 + 0.03 
 
 t-O.OI 
 
 + 0.02 
 
 + "."3 
 
 +"."5 
 
 + i).oS 
 
 ' 0. 10 
 
 f 0. 1 1 
 
 + ". I 1 
 
 -♦-(). Ill 
 
 t- ".07 
 
 t- 0.05 
 
 2 
 
 o.oS 
 
 n.oi) 
 
 1). 10 
 
 0. 13 
 
 o.Kj 
 
 O.K) 
 
 (1. 21 
 
 (1. 2l> 
 
 ". I(j 
 
 (i.Ki 
 
 ( 1 . 13 
 
 0. 10 
 
 .1 
 
 0.16 
 
 O.ICJ 
 
 0.22 
 
 (>.2(> 
 
 ". 2(J 
 
 ".32 
 
 0.34 
 
 0.31 
 
 0. 2^ 
 
 (1.24 
 
 (1.21 
 
 . I S 
 
 4 
 
 0.21) 
 
 0.32 
 
 <>,3.S 
 
 "■43 
 
 0.4(1 
 
 "■49 
 
 "■49 
 
 0.4(1 
 
 ".41 
 
 o.3(, 
 
 "■32 
 
 o.3l) 
 
 5 
 
 HH--15 
 
 +0,50 
 
 + 0.56 
 
 1-0. fj2 
 
 +-().6fi 
 
 4-0.67 
 
 + 0.(17 
 
 + 0.02 
 
 + ".5.'. 
 
 (-0. 51) 
 
 ■(- 0.4(1 
 
 1- ".45 
 
 6 
 
 <)-''3 
 
 (J. (18 
 
 0.77 
 
 ()..S3 
 
 0.8; 
 
 0.S7 
 
 0.S5 
 
 "•79 
 
 0.71 
 
 o.(jr 
 
 11.(12 
 
 ( 1 . 60 
 
 7 
 
 o.So 
 
 0.S7 
 
 ...(y> 
 
 1 .02 
 
 1 .0; 
 
 l.(i(i 
 
 1 .112 
 
 "•93 
 
 o.Sd 
 
 O.So 
 
 "■77 
 
 (..76 
 
 S 
 
 0.93 
 
 I .U2 
 
 1 . 12 
 
 1 . iS 
 
 I .2(1 
 
 I.|.| 
 
 I.I? 
 
 1 . ( .( 1 
 
 (1. (/i 
 
 0. (>(i 
 
 (1. 8h 
 
 (1. 8i| 
 
 I) 
 
 1 .02 
 
 I . 12 
 
 1 .21 
 
 1.27 
 
 1 . 2. J 
 
 1.27 
 
 1 .21 
 
 1 . 1 1 
 
 1 .01 
 
 "■95 
 
 '14 
 
 0.(16 
 
 l<> 
 
 -t-l.<i| 
 
 + 1.15 
 
 + 1.25 
 
 t 1.30 
 
 + 1.3" 
 
 + 1 . 26 
 
 t 1. 18 
 
 1 1 .08 
 
 1-0. (;8 
 
 + o.()3 
 
 + "93 
 
 t 0.97 
 
 II 
 
 0.97 
 
 1.07 
 
 I.lS 
 
 1.22 
 
 I .2(1 
 
 ' ■ '? 
 
 I .(17 
 
 0. (/i 
 
 o.8() 
 
 0.S2 
 
 0.83 
 
 0. Si) 
 
 12 
 
 l).S2 
 
 0.92 
 
 1.(13 
 
 1.(.6 
 
 I .02 
 
 (i.(j(. 
 
 (1. 8() 
 
 0.76 
 
 O.flfl 
 
 0.(13 
 
 0.6(1 
 
 0.72 
 
 "3 
 
 <). ^S 
 
 ().(!>" 
 
 0.77 
 
 "■79 
 
 "■74 
 
 D.flfl 
 
 0. 5(1 
 
 0.46 
 
 0.37 
 
 "•35 
 
 0.40 
 
 0.4S 
 
 14 
 
 hO.2.'* 
 
 0.39 
 
 0.47 
 
 (..4S 
 
 0.42 
 
 t-o.32 
 
 + 0.22 
 
 + 12 
 
 H"."4 
 
 + 0.03 
 
 )- O.Oi) 
 
 + 0. IS 
 
 15 
 
 ~0.()2 
 
 + O.0S 
 
 +0.14 
 
 10.11 
 
 + ".07 
 
 — 0.03 
 
 -0.13 
 
 -".23 
 
 — ".3" 
 
 -0.3.1 
 
 — (1.22 
 
 — 0.12 
 
 ,0 
 
 — 0.34 
 
 — 0. 2. 
 
 ~0.20 
 
 - 0.22 
 
 --o.2(; 
 
 -".40 
 
 —0. 5(j 
 
 -"•59 
 
 — ".64 
 
 —0.62 
 
 - "■55 
 
 - 0.44 
 
 17 
 
 - O.dll 
 
 -0.53 
 
 — •'■49 
 
 -0.52 
 
 -0.61 
 
 — 0.71 
 
 —".Si 
 
 -"..*.j 
 
 -o.()2 
 
 -o.8() 
 
 — 0.81 
 
 — . "( ) 
 
 IS 
 
 -O.SI 
 
 -0.74 
 
 -0.72 
 
 -".7(. 
 
 — O.SO 
 
 -"■')7 
 
 — 1 .05 
 
 -1.12 
 
 -I.I 1 
 
 — 1 . 00 
 
 — 1 . (i( J 
 
 - o.S.i 
 
 •9 
 
 -o.()3 
 
 -O.S5 
 
 — o.SS 
 
 — ".S(j 
 
 — 1.02 
 
 - 1 • 1 3 
 
 — 1 . 2 1 
 
 - 1 . 2(1 
 
 -1.23 
 
 -1.22 
 
 — 112 
 
 — 1.01 
 
 20 
 
 -o.rj7 
 
 -o.(ji 
 
 -0-94 
 
 — 1 .(«) 
 
 — 1. 1" 
 
 — I . 2 E 
 
 -1.27 
 
 -1.3(1 
 
 -1.3(1 
 
 - 1 . 24 
 
 - i.i-i 
 
 ■ I.03 
 
 21 
 
 -"■93 
 
 -u.(j2 
 
 —"•93 
 
 -"■99 
 
 -l.(i(j 
 
 — 1 . 18 
 
 -1.24 
 
 — I 25 
 
 -1.23 
 
 -1.17 
 
 — I.oS 
 
 - o()(| 
 
 02 
 
 — 0.S3 
 
 — 0.S3 
 
 — 0, SO 
 
 -o.(p 
 
 — 1 .01 
 
 -:.()(j 
 
 --1.13 
 
 — 1.13 
 
 — 1.1(1 
 
 -I. (11 
 
 - o..,5 
 
 - .J.S7 
 
 23 
 
 — 0.6(> 
 
 —0.70 
 
 -0.72 
 
 — (!■ 78 
 
 -0.S7 
 
 ""■>)4 
 
 -(.../. 
 
 -"•95 
 
 -".(J2 
 
 -O.Sll 
 
 - 0.7S 
 
 - 0.67 
 
 21 
 
 -U.51 
 
 -U.54 
 
 -"•59 
 
 -().f)4 
 
 -".71 
 
 -"■77 
 
 -"•79 
 
 -"■77 
 
 — ".72 
 
 -0.67 
 
 — 0.60 
 
 — "■rS 
 
 2? 
 
 -i).37 
 
 -0-39 
 
 -"•43 
 
 -".4S 
 
 ^"■54 
 
 "'■•59 
 
 -"•."9 
 
 — (J. 5(1 
 
 -0.52 
 
 -"•47 
 
 - (I.41 
 
 — ■ 3 7 
 
 26 
 
 -0.23 
 
 -0.27 
 
 -0.31 
 
 -0.36 
 
 -".4(1 
 
 -".41 
 
 -0.41 
 
 -•).38 
 
 -"34 
 
 — (1.2') 
 
 - (1.2? 
 
 - "23 
 
 27 
 
 -0.1-1 
 
 -0.17 
 
 — 0.2" 
 
 —".2-1 
 
 -".27 
 
 — 0.23 
 
 -0.26 
 
 -".23 
 
 — 0. 21) 
 
 — 0. Id 
 
 — ".13 
 
 — 0. 12 
 
 2S 
 
 — 0.07 
 
 — u. 1 1 
 
 -0. 12 
 
 -0.15 
 
 — " . 16 
 
 —0. if) 
 
 -0.14 
 
 — (1. Ill 
 
 — 0.0(; 
 
 — 0.0(1 
 
 — "."5 
 
 - 0.05 
 
 2<J 
 
 -0.(13 
 
 — o.(}6 
 
 — 0.07 
 
 — (i.iiS 
 
 --(-i.oS 
 
 — 0.06 
 
 — ".04 
 
 — 0.(12 
 
 0.00 
 
 +".01 
 
 O.O" 
 
 - i-i . 1 
 
 30 
 
 0.00 
 
 — o.ol 
 
 — 0.02 
 
 — (,).OI 
 
 0.00 
 
 + ".02 
 
 + (1.04 
 
 + 06 
 
 (-"."7 
 
 (-).()(> 
 
 + 0.0; 
 
 + 0.02 
 
 31 
 
 + 0.05 
 
 + 0.05 
 
 +".07 
 
 1-".o3 
 
 + 0. 1" 
 
 0.13 
 
 ".15 
 
 0.16 
 
 0.14 
 
 0.13 
 
 0. 1 1 
 
 0.07 
 
 32 
 
 + 0. 12 
 
 +0.14 
 
 + 0. 16 
 
 + "• 19 
 
 + 0.22 
 
 +0.26 
 
 + 0.27 
 
 + ".26 
 
 + ".23 
 
 + 0.20 
 
 ■1- 0.17 
 
 + 0.14 
 
 Ncri'.. — Each coluinii 
 error ever exceeding o.' o; 
 
 is compiuecl for the miilclle of the inoiuh, litit in 
 If much j,'rcater accuracy ihan this is re(|uired 
 
 ly 111.' iiseil for the entire iiionlh witliout an 
 a horizontal interpolation inust lie used. 
 
 h 
 
 J 
 
If JlS5®fe!fe-}ftwTlPljS,t,W3.»»i 
 
 :4mm%'smtr^m( 
 
 48 
 
 TAiii.i.; VIM, <Sr. 
 
 /Jcrizoi./ti/ Ai;^iimriil, or . hxioiiiii/ ill A'/. /■>— ,c, <'/■ /v*— ^• + 30. / \-rt'u\il Aixiiiiinit, 1;. 
 
 i 
 
 A 
 
 I ;. 
 
 1," 
 
 I 
 
 O 
 I 
 
 2 
 
 3 
 4 
 
 5 
 6 
 
 7 
 8 
 
 9 
 10 
 II 
 12 
 13 
 14 
 15 
 16 
 
 17 
 IS 
 
 19 
 
 20 
 21 
 22 
 23 
 24 
 23 
 26 
 
 27 
 2S 
 29 
 30 
 
 ■O, 
 
 — o. 
 
 -o 
 
 -o 
 
 -o.. 
 
 -o. 
 — n. 
 
 — o. 
 •0. 
 ■0. 
 
 — o. 
 — o. 
 
 -o. 
 
 o. 
 -o. 
 -o. 
 
 o. 
 
 o. 
 
 o. 
 
 o. 
 +0. 
 
 i "• 
 o. 
 o. 
 o. 
 
 -)-o. 
 
 h<. . 
 
 o. 
 
 — o. 
 
 -o. 
 
 — o. 
 
 23 
 
 I 
 39 
 
 54 
 fjf. 
 
 75 
 
 r^ 
 
 So 
 
 78 
 
 — o 
 
 — o. 
 — o. 
 
 — o. 
 — o. 
 — o. 
 — o. 
 — o. 
 
 "' 
 
 — 0. 
 
 62 
 
 — 0. 
 
 49 
 
 -0. 
 
 33 
 
 — 0. 
 
 IS 
 
 — 0. 
 
 00 
 
 +0 
 
 >7 
 
 
 
 32 
 
 +0 
 
 46 
 
 
 
 5S 
 
 
 
 67 
 
 ° 
 
 73 
 
 
 
 74 
 
 +0 
 
 70 
 
 
 
 64 
 
 
 
 55 
 
 
 
 45 
 
 
 
 2.) 
 
 +0 
 
 15 
 
 +0 
 
 02 
 
 — 
 
 17 
 
 — 
 
 3' 
 
 — 
 
 45 
 
 — 
 
 30 
 
 60 
 71 
 77 
 81 
 Si 
 7ft 
 6S 
 
 .50 !— o 
 
 ( 
 41 j-o. 
 
 26 i— o. 
 
 I 
 oS +0. 
 
 — o. 
 — o, 
 -o. 
 
 — o. 
 — o. 
 
 — o. 
 — o. 
 — o. 
 — o. 
 
 10 
 
 2f) 
 
 42 
 
 56 
 
 63 
 
 76 i o 
 80 j o 
 7(}'+o 
 
 o 
 o 
 +0 
 o 
 o 
 
 i 
 
 .67 
 
 • 57 
 
 • 43 
 
 .25 J+-0 
 .11 ' f o 
 
 J 
 
 .06 — o 
 .22|— O 
 
 .38J-O 
 •52I-O 
 
 36 — o.3() j-0.31) 
 5" -0.53 —0.50 
 
 6j -0.621—0.58 
 
 I 
 7-.; — 0169;— o.6| 
 
 77|-"-74!-o.fi7 
 So'— 0.74 i— 0.66 
 
 I 
 76 —0.70 —0.60 
 
 i I 
 
 71 I — 0.62 1—0.52 
 
 61 i— 0.51 1—0. 2 
 
 47 —0.33 — 0.2S 
 
 33 -o.22:-o.i3 
 lO ,—0.06 1+0.03 
 
 03 +0. II O. Iq 
 
 i 
 . I9j 0.23I 0.35 
 
 .36' 0.45 I 0.50 
 
 .52;+o.59i (-0.63 
 
 I 1 
 
 .65 0.71^ 0.73 
 
 .75 I o.So 
 
 .82; 0.84 
 
 .S3: "•84 
 
 . =1 +-0.S0 
 
 ■ 1'' +"-73 
 .67 f-o.62 
 • 54'+-o.49 
 
 ■ 3) +0.33 
 
 0.79 
 0.S2 
 o.Si 
 (0.76 
 o . 67 
 
 0.56 
 0.42 
 0.26 
 
 22 -l-o. 16 j +0. 10 
 .06 -o.oi i— 0.09 
 
 12 
 
 — 0.20 
 
 -0.26 
 
 30 
 
 -0.37 
 
 -0. |2 
 
 46 
 
 -0.52 
 
 -0.^7 
 
 60 
 
 -0.66 
 
 — 0.69 
 
 1 
 
 -0.35, 
 
 I 
 
 -0.44 
 
 -o.52| 
 -0.56J 
 
 — 0.5S 
 
 -0-55 
 -0.50 
 
 -0.43 
 -0.32 
 
 — 0.20 
 —0.06 
 -1-0 09 
 
 0.24 
 0.3S 
 0.51 
 +0.62 
 0.71 
 0.76 
 
 0.77 
 
 0.75 
 
 f-0.69 
 
 . 6n 
 
 0.4a 
 
 0.3; 
 
 n.2') 
 
 •)-0.02 
 i 
 -0.14 
 
 — o . 30 
 
 — o 46 
 
 -0.59 
 
 -o.6f, 
 
 -o.aS 
 —0,36 
 
 -0.43 
 -0.47 
 -0.48 
 — o 46 
 —0.42 
 -0.31 
 
 -0.26 
 -0.14 
 —0.02 
 (-0. II 
 
 0,25 
 
 0.37 
 
 "•49 
 
 + 0.59 
 0.66 
 0.6S 
 0.69 
 0.67 
 
 +-0.61 
 
 "■53| 
 
 I 
 
 0.421 
 
 + 0. 13 
 —0.01 
 -0.16 
 -0.31 
 —0.46 
 
 -"•54 
 —0.60 
 
 — o. 19 
 —0.28 
 -".34 
 
 — ".37 
 -0.39 
 -0.311 
 
 -"■35 
 -0.30 
 
 — 0.22 
 
 — O. 12 
 
 — 0.02 
 t-O. 10 
 
 0.21 
 
 "•33 
 "•44 
 
 HO. 53 
 0,5 s 
 
 o . 60 
 0,62 
 
 "■59 
 f 0.54 
 
 0.47 
 0.37 
 0,21 
 
 + u. -2 
 
 — 0.02 
 
 — o 16 
 
 -,).3n 
 
 -"39 
 -0.47 
 — "■ 54 
 
 -o. 1 1 
 — 0.I9 
 —0.25 
 —0.31 
 -"•34 
 -"•31 
 -"•33 
 — 0.2S 
 —0.22 
 
 -0.15 
 —0.06 
 + "."l 
 
 O. 1; 
 
 0.2l'i 
 
 "■37 
 
 | + "-43 
 
 ! 0.48 
 
 "•53 
 "■54 
 0.53' 
 
 ,+-0.49, 
 0.43! 
 
 "■33 
 
 n.2| 
 
 0.13 
 
 ■fo.oi 
 
 - -"■13 
 
 — 0.22 
 -0.31 
 
 -" 3); 
 
 -"■44i 
 
 '> 
 
 10 
 
 II 
 
 12 
 
 •3 
 
 «4 
 
 -0.03 
 
 4-0.02 
 
 +0.03 
 
 o.no 
 
 — (1 . nfi 
 
 -n. 1; 
 
 -0.12 
 
 — 0.09 
 
 —0,09 
 
 - . 1 .1 
 
 — 0.22 
 
 -n.31 
 
 —0.20 
 
 -0..9 
 
 -0.21 
 
 -0.27 
 
 -0.35 
 
 -0 45 
 
 -0.27 
 
 — n.26 
 
 -0.31 
 
 -0.38 
 
 -0.47 
 
 -",58 
 
 -0.31 
 
 -"■33 
 
 -".39 
 
 -0.46 
 
 -0.57 
 
 —0.67 
 
 -"•34 
 
 —0.36 
 
 -"•43 
 
 -"•53 
 
 -:>.64 
 
 -"•74 
 
 -"•33 
 
 -0.3S 
 
 -"•47 
 
 -"■57 
 
 -0.67 
 
 -0.76 
 
 -0.31 
 
 -0.3S 
 
 -"•47 
 
 -"•57 
 
 -0.67 
 
 -"■73 
 
 -0.27 
 
 -0.35 
 
 -0.45 
 
 -o.;.| 
 
 — 0.61 
 
 -0.6.^ 
 
 —0.21 
 
 —0.30 
 
 — 0.3S 
 
 -o.)7 
 
 -"■53 
 
 -0.53 
 
 -0.13 
 
 -0.22 
 
 —0.30 
 
 -"■37 
 
 -".44 
 
 -0.4S 
 
 —0.03 
 
 —0. 12 
 
 — 0. 19 
 
 :-o.23 
 
 -0.33 
 
 -"•33 
 
 (-0.07 
 
 —0.01 
 
 — 0. 10 
 
 .-0.17 
 
 -0.18 
 
 — 0. IS 
 
 0. 19 
 
 l-o."9 
 
 0.(«) 
 
 '-0.03 
 
 -0.04 
 
 —0.01 
 
 0.27 
 
 0.17 
 
 4-0.13 
 
 '+0. 10 
 
 -fO.II 
 
 4-0. 14 
 
 *-"34 
 
 f0.2S 
 
 +0,23 
 
 +0.23 
 
 -:-o.24 
 
 -(-0.29 
 
 0.42 
 
 "•35 
 
 "•33 
 
 "•33 
 
 "■37 
 
 "•43 
 
 0.46 
 
 0.42 
 
 0.41 
 
 "•43 
 
 0.4S 
 
 0.56 
 
 0.49 
 
 0.46 
 
 "■47 
 
 0.50 
 
 0.57 
 
 0.65 
 
 ' 0.4S 
 
 0.4S 
 
 0.49 
 
 0.56 
 
 "•63 
 
 0.72 
 
 ,+0.47 
 
 +0.46 
 
 4-0.51 
 
 + 0.5S 
 
 -(-".67 
 
 + "•73 
 
 ' 0.41 
 
 0.41 
 
 0.51 
 
 0.58 
 
 0.65 
 
 0.71 
 
 "•35 
 
 0.40 
 
 "•47 
 
 <--?3 
 
 0.60 
 
 0.67 
 
 H.27 
 
 , "^33 
 
 0.33 
 
 0.4S 
 
 "•55 
 
 . 60 
 
 0.17 
 
 0.22 
 
 0.31 
 
 0.40 
 
 0.46 
 
 0.50 
 
 +0.05 
 
 ■4-O.I4 
 
 + 0.24 
 
 +-0.31 
 
 -l-o.jft 
 
 + "•37 
 
 — 0.1)4 
 
 -j-o.ofi 
 
 0.13 
 
 . 20 
 
 0.23 
 
 "■23 
 
 -0.13 
 
 -0.<)| 
 
 f 0.04 
 
 +o.of 
 
 + 0. 10 
 
 -fo.oS 
 
 —0.22 
 
 -0.13 
 
 — cr.07 
 
 —0.02 
 
 -o.oi 
 
 • 
 
 —0.07 
 
 —0.29 
 
 —0.22 
 
 -0.15 
 
 -0.13 
 
 -0.15 
 
 —0.20 
 
 -0.36 
 
 —0.27 
 
 1—0.23 
 
 —0.23 
 
 —0.26 
 
 —0.32 
 
 , 
 
^"^■Mf »■'!'?" 
 
 I ■ 
 
 41) 
 
 Taum; \'I 1 1, '"i^ — ( '(Hitiiiiicil. 
 
 lloli.oillill . h.;iiiiirilt, or . Ir^iiuii'ii/ ,it l,f. /' — -, or /;_ -4. ^o. / i rlioil . hxiiiiirii/, -. 
 
 15 
 
 I'l 17 |S I, 
 
 ■Ji -M 
 
 ■J.J y> 
 
 
 
 -0.25 
 
 -0.35 
 
 -0.41 
 
 -d. )S -0.4S 
 
 - (1.4(1 — o.4r 
 
 '—0.31 --(1.23 
 
 d , 1 1 - 1 1 d, 
 
 -0.117 -0 oS — d. 1 J .11- 
 
 11 Jii 
 
 I 
 
 —0.41 -i),5i —0.58 -II. fiii; — o,(i(> -o.5f.— 0,48 —0.40 -i( 1(1 
 
 — 0.25 - O.SO— 0.2(l - 0.22 -0 2.S -d.3: 
 
 -d 42 
 
 2 
 
 —0 56—0.64 — o.fig— 7tl~r).fifi: — 0712—0.55—0.45; —0. 3() 
 
 -"33-" 31 
 
 !— 0.3s _0.3(l;-0, (3 _0 51, 
 
 -0 57 
 
 3 
 
 --0.6S 
 
 -0. 7t — 0. 71) — (1 7S -0.74 -<i.(i7 — 0. 5S — 0, 51 -0.44 
 
 -d. |Oi-o.3()|— 0.42 -0. 17 -d ;.- d 1 i 
 
 d.7d 
 
 4 
 
 -u.7( 
 
 -o.Sj -0.83 -<).,S 1-0.71 -0,67 — o.f)0 —0.52, -0.47 
 
 -0.45 ~o. |(:-o. 511 -d.;7 0.(15 -"■7' 
 
 -"■77 
 
 5 
 
 -0.81 
 
 —0.84-0.84 -0 8(1— 0.74 -o,fif)!-o.5S — o,52|-(i 4S 
 
 -0 4S -d. ;,(■ -d. 5(1 11 (u:— 0.72 — 0. 7.S 
 
 (i.So 
 
 6 
 
 -o.Si) 
 
 — 0..S3 — o.Si — 0. 761— o.<i(j — o.fii -(1,5 J — 0.411'— 1) 47 
 
 -d. 17 -0 52 — o.i.ii -(i.(iH _i) 71 -d. 7- 
 
 11. 8| 
 
 7 
 
 -"•77 
 
 —0.77 —(1.74 --0.68,— 0. to -0.53 -0 47 -0.43—0.42 
 
 -o.4'i -11.52 —d. (id —11.(17 -d.73 (1.77 
 
 d. 77 
 
 8 
 
 — o.6() 
 
 —o.h) — o.d| — 0.571 _o. 501—0.43 — 0.31) — "•3f:-o.37 
 
 -d.42 -0. 5d — d. 57 —0.(13 — d.(ii| —0.71 
 
 -i>.7d 
 
 9 
 
 —0 60 
 
 —0.56 — (\ 51 —0,43 -0.37 -(1.31 — 0.26 -0. 2( —11. 30 
 
 -().3(. -d.43 — (1.51 -0.58—0.(12 -d (12 
 
 -<>.5() 
 
 10 
 
 -o.4^ 
 
 —0.42 —0.35 —0.2'^ -(1.22 — (1. 16 -d. [4 -d. ifi -0.21 
 
 -d.27 -0.35 —0. 13 -d, |i, -0.52 —0. 51 
 
 -11. 15 
 
 II 
 
 —0.30 
 
 —0.2? —0. 1 ()—'». 1 2 -0,05 — (i.di —0.02 — 0.04 —(1. Id 
 
 -d. iS, -0.27 -0. 34 —11.311: -0.401—0. 3(1 
 
 -11.21) 
 
 13 
 
 -0.13 
 
 —0.08—0.01 +0.07 fo.12 K). r3 + >.i2 fo.o"* o.dii 
 
 — o.di) -0.17 -0.23 -d. 2(1 -11.2: -d. 2d 
 
 11 13 
 
 13 
 
 +0.03 
 
 4-0. 10 f d. I)- 
 
 d.2J! 0.27 (1.28 d.2C d.lS t-o.ld 
 
 f 01 -0 0(1—0. 12 —0. 13— 0. 10 -o.dj 
 
 1 d 115 
 
 14 
 
 0,20 
 
 0.2S 0.35 
 
 0.411 0.43 (1 41 d.3f 0.2" 0. Ill 
 
 0. 10! 4-0. 03! o.diM d.dl| -t-O.O^'H-O. 121 
 
 d. 22 
 
 15 
 
 + 0.37 
 
 + 44 +0.51 
 
 4-0.55, +0.5; to. 51 -f- 0,44 -f-0.35 fd.2(i 
 
 4-d. 1 - -Ki. 131 +(1. I 1 I 1), 1 ■; -I (1. In K).2-^ 
 
 ! 11. 3(1 
 
 16 
 
 0.51 
 
 0.5S 
 
 0.6= 
 
 o.fjfi o.fii 0.5S 0,50 <j.4i! 0.33 
 
 0.2- 0.21J d.2l 0.25: 0.32 (1.411 
 
 d. 51 
 
 '7 
 
 0.63 0.71 
 
 0.74 
 
 (I.73 d.fll) 0.(13 0.54J 0.45 0.3C1 
 
 d.3d 0.28 d.2ij 0.35 0.42 11. =2 
 
 ■■.(■3 
 
 iS 
 
 0.73 0.7S 
 
 0.7S 
 
 0.77 d.72 d.64 '1.5 = 
 
 11.45 0^38 
 
 ".33 d.331 o^'i ".41! o.;i d,(i2 
 
 ■• 71 
 
 I') 
 
 0.77 o.Sti 
 
 O.Si 
 
 0.7'" d.71 d.'i2 d.52 
 
 0.43, "37 
 
 "•31 "3= 
 
 0.311 0.47: 0.57 o.d,'* 
 
 (1.7(1 
 
 20 
 
 + "■77 
 
 + o.Sd 
 
 + o,7() 
 
 4-0. 7 1 -f fill 
 
 +-0.5(1 -t 0.4' 
 
 -i-o.3(>'-l-o.3( +0.32 -t-o. 3' 
 
 •4-0.40 i-d. 511 +(1.(111 ( d. 71 
 
 ! d.77 
 
 21 
 
 0.76 
 
 o.^h 
 
 "■73 
 
 "■(>r 0.57 
 
 (J. 47 0,31' 0.31 0.2S 
 
 0.28 0.32 
 
 d. jd d. 51' d. ;i) d. (i,^ 
 
 ".-3 
 
 22 
 
 a . 70 
 
 0.68 
 
 ().fi4 
 
 0.55; 0.4; 
 
 0.3(1 d.2.*' 
 
 0.23. d.2d 
 
 d.22, o.2^ 
 
 0.37 d.4(' 0.55 0.62' 
 
 11.(1(1 
 
 23 
 
 o.fio 
 
 0.5S 
 
 0.51 
 
 0.42 0.32' 0.23 O.lfi 
 
 -ho.ll o.ii 
 
 11.11; 0.22 
 
 0.311 0.411 0.4,^ 0.5-! 
 
 "•57 
 
 24 
 
 0.40 0.43 
 
 "3= 
 
 0.2(1 t-d. i( ,-f ii.dS +o,or 
 
 — 0.01 -Ki.dl 
 
 T-d.d'i d.I" 
 
 0.22 d.31 d.3> 0..13 
 
 "• 14 
 
 25 
 
 1-0.34 fo.27 
 
 rd.K) 
 
 hd 1 d.di ' — d d7 — d. 1 1 
 
 -0 14 — d. 1 1 
 
 — d.115 +-".d| -|-d.l2 t-d. 2(1 -l-d.27 )il.3( 
 
 t-d. 21) 
 
 2f) 
 
 0. iS +0. 1 1 
 
 l-d.dl 
 
 —0.08-0.171-0.24 —d. 271-1). 2(1 -d.23 
 
 — 0. 15 — 0.(17 -i-d.d2 4-1). Id f (1. 14 4-11.15 
 
 r d. 12 
 
 27 
 
 •t 0.02 — O.llfl 
 
 -d.ll-. 
 
 0,25 —0.31;— d.31) ~d, 41 
 
 -0.311-0.33 
 
 — d. 26 — d. 1(1 — (.1. d,^ -~0.d2 O.du — d.dl 
 
 - (1. di> 
 
 28 , 
 
 — 0.14 -0.23 —0.32 
 
 —(1.42 — d.411, -d. 53 - (1. 54 
 
 — 0.50'— d. 43 
 
 — (1.3; -d.2f - . "1 d. 1 4 —n. I 4 -d. 17 
 
 - 11. 2d 
 
 21, 
 
 — 0.2S —0.37 
 
 -d.4S 
 
 — 0. 57;— d.f)3 — d.fif - 0.(14 —0. 58 —d. 511 
 
 -d.41 -1) 31 -.1 ■_ • 11.2(1 -11.27 -d.2i. 
 
 -d.3; 
 
 30 
 
 —0.41,-0.51 
 
 1 
 
 —0.62 
 
 . _; 
 
 -o.69J-o.73;-d.7i -d. 70,-0. 64|-o. 55 
 1 1 III 
 
 -0.471-0.41 -0.37 -d.37 -0.37 -0.42: 
 
 1 lit 
 
 -"■4'J 
 
 7m 
 
 I- « 
 
50 
 
 I Taiii.k I\. 
 
 ' Aii;:i'il<iil. A'- h'ltcli'i 1(1 hi 
 iiiii//if'/i(il I'V It "C. 
 
 ^■-. 
 
 . lixnniiiit, II. fihiiii s/iir ionrclinn of liilitliilc ,iihl itdiic 
 lion to fcliptic loii^iliiii(\ 
 
 C) 
 
 I 
 
 + I). 1 iS 
 
 D.I 1 ) 
 
 
 
 3 
 
 i>.li>3 
 
 2 
 
 3 
 
 (i.i)Sfi 
 
 3 
 
 1 
 
 (i.(/i5 
 
 4 
 
 5 
 
 •t i).o4c> 
 
 5 
 
 (. 
 
 ■k 11.1115 
 
 (1 
 
 7 
 
 -- (i.(itH) 
 
 7 
 
 S 
 
 - 0.034 
 
 •S 
 
 ') 
 
 — o.(i;4 
 
 'J 
 
 lo 
 
 — 0.(172 
 
 10 
 
 1 1 
 
 — o.oSO 
 
 1 1 
 
 12 
 
 — O.DIjf) 
 
 12 
 
 13 
 
 — 0. lol 
 
 ■3 
 
 U 
 
 — 0. 103 
 
 14 
 
 "5 
 
 - o.oo'J 
 
 15 
 
 lO 
 
 — 0.01)3 
 
 ifj 
 
 17 
 
 — o.uSo 
 
 '7 
 
 IS 
 
 — o.()'-3 
 
 I3 
 
 "> 
 
 — 0.(140 
 
 "J 
 
 21) 
 
 — 0.(124 
 
 20 
 
 21 
 
 Y o.ooi 
 
 21 
 
 22 
 
 0.026 
 
 22 
 
 23 
 
 0.05 I 
 
 23 
 
 24 
 
 0.075 
 
 24 
 
 25 
 
 + o.(i(j4 
 
 25 
 
 26 
 
 0. lOIJ 
 
 2fl 
 
 27 
 
 0. 1 16 
 
 27 
 
 28 
 
 0.II7 
 
 2S 
 
 2.J 
 
 0. 1 1" 
 
 2J 
 
 30 
 
 + 0.01/1 
 
 30 
 
 (/■■./) 
 
 — 
 
 . (Xl.( 
 
 - 
 
 0.(K)4 
 
 - 
 
 0.("'j 
 
 -■ 
 
 O.OOI 
 
 •t- 
 
 O.OOI 
 
 + 
 
 o.(X)3 
 
 
 0.004 
 
 
 0,004 
 
 
 o.0(J4 
 
 + 
 
 O.0O2 
 
 
 O.IXXJ 
 
 - 
 
 O.0( • 
 
 - 
 
 () . (K)3 
 
 - 
 
 o.(j04 
 
 - 
 
 0.004 
 
 — 
 
 0.003 
 
 - 
 
 o.(yj2 
 
 
 0.000 
 
 + 
 
 . ( W2 
 
 
 0.003 
 
 4- 
 
 0.004 
 
 
 0.004 
 
 
 o.(X)3 
 
 -t- 
 
 O.OOI 
 
 
 O.CXX) 
 
 — 
 
 . (X)2 
 
 - 
 
 . (X14 
 
 - 
 
 0.004 
 
 - 
 
 . (»4 
 
 - 
 
 . 003 
 
 — 
 
 0,001 
 
 (/•••/'<) 
 
 + O.OI}() 
 
 0.088 
 
 o.(i.Si 
 
 O.ofll) 
 
 0.054 
 ■V o .136 
 + < .017 
 
 — o.O(J4 
 
 — 0.024 
 
 — 0.044 
 
 — 0.0(10 
 
 — 0.074 
 
 — 0.084 
 
 — o.oS(j 
 
 — 0.089 
 
 — 0.085 
 
 — 0.076 
 
 — o.(jC4 
 
 — 0.047 
 
 — 0.028 
 
 — 0.008 
 4- 0.012 
 
 0.032 
 0.050 
 o . 066 
 
 + 0.078 
 0.0S6 
 o.oip 
 o . o8(j 
 0.082 
 
 + 0.072 
 
 <'/5i 
 
 
 
 0. 
 (1. 
 
 (Kl 
 03 
 
 - 
 
 0. 
 
 "7 
 
 - 
 
 0. 
 
 10 
 
 - 
 
 0. 
 
 12 
 
 — 
 
 0. 
 
 14 
 
 - 
 
 0. 
 
 »5 
 
 - 
 
 0. 
 
 15 
 
 - 
 
 0. 
 
 14 
 
 - 
 
 0. 
 
 13 
 
 — 
 
 
 
 II 
 
 - 
 
 
 
 oS 
 
 - 
 
 
 
 05 
 
 - 
 
 
 
 02 
 
 + 
 
 
 
 01 
 
 + 
 
 
 
 05 
 
 
 
 
 08 
 
 
 
 
 11 
 
 
 (J 
 
 13 
 
 
 
 
 14 
 
 + 
 
 
 
 «5 
 
 
 
 
 15 
 
 
 
 
 •14 
 
 
 
 
 12 
 
 
 
 
 10 
 
 + 
 
 
 
 07 
 
 
 
 
 .04 
 
 f- 
 
 
 
 .01 
 
 - 
 
 
 
 ■ 03 
 
 — 
 
 
 
 .06 
 
 — 
 
 
 
 .09 
 
 I ii 
 
51 
 
 Taiim-. XI. 
 
 luulois J\>i- (oiivciiiit:^ unall iluin^.s ,if lon-iliul,' ,vi,l hilitiul,- in/.' ,//,i/ixri oj 11^/1/ ,i.wtisi,>ii and ./ir/imttion . 
 
 .hxiiiii<ii/s, J) '.» lon^^ittiih- III!,/ hililiitlc. 
 
 l-'ii|;\ll I. I.: rW/ . ,1,-. f-(r'.")il,' ( ( (. "liVf; 
 
 (".") 
 
 2>'i) long. 
 
 275 
 38u 
 
 285 
 
 21)1) 
 3<J5 
 
 3"" 
 3"5 
 310 
 
 315 
 320 
 325 
 
 33i> 
 335 
 34') 
 
 345 
 35'> 
 355 
 
 o 
 5 
 
 '5 
 80 
 
 25 
 
 3" 
 35 
 40 
 
 45 
 5" 
 55 
 
 + •>33 -t- 
 ■ I3> 
 
 . I2fl f 
 + .117 
 .1)1)1 + 
 
 I- 
 
 .074 
 
 ."57 
 • 03') 
 
 .02t 
 .(X'3 
 .014 
 
 .031) 
 
 ."44 
 ."if) 
 
 - .ofifi . 
 
 ■ "74 - 
 .<)So- 
 
 .084 — 
 
 .0S5 - 
 ."85 - 
 
 .082 
 ."77 - 
 ."7" — 
 
 .of) I -- 
 ."52 — 
 . o4n — 
 
 .028 - 
 .(>l6 - 
 .""3 
 
 f)0 
 
 + 
 
 .()Ol) f- 
 
 65 
 
 
 .021 
 
 70 
 
 
 .030 1- 
 
 75 
 
 + 
 
 ."3') 
 
 80 
 
 
 .045 
 
 85 
 
 
 ■ "4') + 
 
 l)0 
 
 + 
 
 .050 + 
 
 
 /5 
 
 = -5» 
 
 .ogo + 
 
 .084 4- 
 
 ."7f) 
 .0(16 
 ."55 + 
 
 t ."41 
 .027 
 + ."11 + 
 
 ■— . IM)4 — 
 
 - ."IS - 
 
 - ."32 — 
 
 - ."45 - 
 
 - .Oj'l — 
 
 - .0(15 — 
 
 - ."73 - 
 
 - ."7S - 
 
 - .oSl - 
 
 - .0S3 - 
 
 - .081 — 
 
 - ."78 - 
 
 - ."73 - 
 
 - .065 — 
 
 - .056 — 
 
 - ."45 - 
 
 - .032 — 
 
 - .""18 - 
 
 - .""4 — 
 + ."It + 
 
 ."27 +■ 
 
 + .041 
 • 055 
 .066 4- 
 
 + ."7f) 
 .084 
 .oSg + 
 
 I- . OlJO + 
 
 -t- 5 
 
 ."5" + 
 • "4') 
 ."45 t 
 
 ■ "3') 
 .031) 
 .1)21 I 
 
 ."oi, V 
 .ws - 
 
 Ai\U -■ 
 .028 - 
 
 .f)4i) — 
 
 - .iidl - 
 
 - .070 — 
 
 - ."77 - 
 
 - .1)82 - 
 
 - ."85 - 
 .1)8 5 — 
 
 - .084 - 
 
 - .oS" - 
 
 - ."74 - 
 
 - .»(>(> - 
 
 - .1 5fi - 
 
 - .iU( - 
 
 - .030 — 
 
 - .o[4 — 
 I- .""3 + 
 
 + ."21 
 
 • "30 
 ."57 + 
 
 4- ."74 
 .091 
 . 11)5 + 
 
 '- .117 
 
 . 12fl 
 .131 I- 
 
 t- -133 f- 
 
 H-5 
 
 ,1 ^ - 5' 
 
 .1)1M) 
 
 • "43 t 
 
 ."85 + 
 
 .12(1 
 
 .235 
 . 2f)5 
 .21)2 
 
 • 33fi 
 
 •353 
 
 .3f,S 
 .37') 
 
 • ..31)5 
 
 • -3')') 
 
 ■ .4"l t 
 
 .4"l 
 .31)1) 
 
 • .31)4 -+ 
 
 ■ .3S8 
 
 ■ -371) 
 
 ■ •3'") t- 
 
 • •35''i 
 
 • -34" 
 
 • •322 f 
 
 ■ .31)1 
 .277 
 
 ■ .250 + 
 
 ■ .1.88 
 
 • 154 + 
 
 .117 
 ■"71) 
 ."4" i 
 
 .000 
 
 Ui.'>) 
 
 .(XH) 
 
 ."(1 ^- 
 
 ."81 4- 
 
 , 121 
 
 .158 
 
 ■ i'i3 
 
 (- - 
 
 + - 
 
 .22f> 
 
 .25'' 
 
 .283 (■ 
 
 ■ 3"') 
 .320 
 
 • 344 t- 
 
 ■ 35') 
 ■37" 
 .3S1 4- 
 
 .3S8 
 •3')4 
 
 • 3')7 + 
 
 •3i)S 
 
 • 307 
 
 ■ 3'J4 + 
 
 .38S 
 .381 
 
 • 371 + 
 
 ■350 
 •344 
 
 .32(1 + 
 
 . 3"^' 
 .282 
 .25() + 
 
 .22f> 
 .103 
 
 .158 +- 
 
 . 121 
 .081 
 .041 + 
 
 .000 
 
 
 (■•Ml) 
 
 
 + 5 
 
 
 
 . 1 11 H ) 
 - ."40 ) 
 
 - ■i>70 t 
 
 . 1 « «) 
 -t- .038 - 
 
 • "75 - 
 
 - 
 
 - .117 
 
 - .154 
 
 - .188 +- 
 
 f- .III - 
 
 .147 - 
 
 .181) - 
 
 — 
 
 — .2211 
 
 — .2.S1) 
 
 — .277 1- 
 
 f .212 — 
 .242 - 
 . 2fiiJ — 
 
 - 
 
 - .3111 
 
 - .322 
 
 - -34" 1- 
 
 t- . 21)3 - 
 .315 - 
 
 •335 - 
 
 — 
 
 - .35f> 
 
 - .3(11) 
 
 - -370 + 
 
 . 3'''' - 
 
 ■ 37s- 
 
 - 
 
 - .3SS 
 
 - •304 
 
 - • 30') + 
 
 ■t .380- 
 . 303 - 
 • 307 - 
 
 — 
 
 - ..("1 
 
 - .4"l 
 
 - .3'W t 
 
 + ■30>*- 
 ■3'l7 - 
 • 303 - 
 
 - 
 
 - .305 
 
 - .388 
 
 - .370 f- 
 
 + . 386 - 
 .378- 
 .3M.- 
 
 - 
 
 - .3^ 
 -- .353 
 
 - ■ 33f' + 
 
 ■1- .352- 
 • 335 - 
 •3'5 - 
 
 - 
 
 - .310 
 
 - .21)2 
 
 - .265 + 
 
 + .21)3 - 
 . 2f)q — 
 .242 - 
 
 — 
 
 - -235 
 
 - .202 
 
 - .Ifi5 +- 
 
 + .212 - 
 . iSl) — 
 .147 - 
 
 — 
 
 - .126 
 
 - ."85 
 
 - .043 + 
 
 + .III - 
 
 •"75 - 
 )- .038 - 
 
 — 
 
 .000 
 
 .000 
 
 
 + 5° 
 
 
 
 (I.ll) 
 
 ,1)1)«) 
 .0"! 
 .003 
 
 .(X)() ■ 
 
 ."II 
 .016 
 
 ."23 ■ 
 .031) . 
 •"37 
 
 • "44 ■ 
 ."51 
 
 ."58 ■ 
 
 .i.fM ■ 
 
 .of 11) - 
 
 • "74 ■ 
 
 .078 . 
 .oSo 
 ."82 - 
 
 ."82 
 .082 - 
 ."80 ■ 
 
 ."78 
 
 ■"74 
 .of") - 
 
 .064 - 
 .058 • 
 ."51 ■ 
 
 • "44 • 
 
 ■037 ■ 
 .030 
 
 .023 - 
 ."if) - 
 ."II - 
 
 .006 - 
 .003 - 
 
 27" 
 2()5 
 2flO 
 
 255 
 25" 
 
 245 
 
 240 
 
 235 
 23" 
 
 225 
 22" 
 215 
 
 21" 
 2"5 
 20(> 
 
 105 
 
 11)0 
 
 185 
 180 
 
 '75 
 
 170 
 
 if'5 
 If)" 
 
 • 55 
 
 151) 
 145 
 14" 
 
 135 
 130 
 125 
 
 120 
 
 "5 
 110 
 
 105 
 
 100 
 
 05 
 
 0" 
 
 3)'s long. 
 
 
 y