IMAGE EVALUATION TEST TARGET (MT-3) 1.0 I.I 1-41 111^ 11^ ^ IM III 2.2 m m 2.0 1.8 1-25 1.4 1.6 ■• 6" ► Photographic Sciences Corporation #> S '^ V V 23 WEST MAIN STREET WEBSTER, N.Y. 14580 (716) 872-4503 -%^ ^^ :\ \ «> 6^ «■ ^h A^ L

cciisii)n at Ks (»|- i,f)\(;i riDK. One (if llic mosl iin|H»i-taiil npcijiliuiis in cniiiicclidii willi llic oltsciviilioiis ol llir Iraiisil of Venus is fin- acciiriilc (Iclcniiiiiiilioii (»!' llic loiiniliidcs nl llic sir.lioiis. Mmiiv ot" these slaliniis arc so liir leiiioved IVdiii lclci,napliic eoiiiiiiiiiiiciifioii llial I lie loiiiriliMles must il not that, tlnro are reasons why each of the two greatest, pertnrltations of the moon's motion, — the evec- tionand tin; variation, — shonid Ix; found lar;;er from r iiiiiUii'matisvh-iiliyHiMclien CliiSHe dor Krmi);Ucli-8iivhHiNc1icii GusellHclmft der WiMoiiHulinften Baud vl. rciitly 1»(! Iiiru[<'i' tliiiii llic iicliial vniijitiitii. wlialcvcr lliis iniiy lie. 'I'liis secno a niiirli more natural and [triiltaMc cause tor tlic a|)|)anyo".3;,; Init it seems prolialile lliat llie variation derived from obser- vations alone woidil he yet lai^'er than Hansen's increased variation. In tiict, in iSi);, I tlinnd, hy coni|tarin<,f the errors of the Innar epliemeris when thel(ire liriijht ilayliij;ht in tli morniiiif- . . -fo.ogi After sunrise -|- O' ' 5.1 In the dilli'rence hctween the resnits lor e;i' h limli, the ellect of increa.sed irradia- tion seems to he o".o6. The only icmaininu: term which is larire enoniili to lie materiall.v all'eeted liy the" increasf! in (|neslion is ihe annual equation, ol' wlii(di the increaM is o".io. A ii[lance at the errors (d' Hansen's taldes, ^fiven liy nn-ridian oliservalions, will show that, the errors ahont the time of lirst (|narter, and, indeed, dnriuij; the first half of the lunation, are in the nu'an h'ss l»y helween 3" and 4" than dm-injj; Ihe seeoml half. Ilence, either the semi-dianmter, in- tlw! parallactic e(|natioii, or liolli, an^ loo larye. The parallactic etpnition nse hy prohaldy not much less than o".io. The result which I deduced in US67 from all tin; really valuahle data exiani was .S",S4,S ; and Ihe determinations \vhi(h have since been made, when revised with the h.«^t data, seem to indicate a diniinnti(Mi of this value rather than an increase. These indications are, how- ever, a.s yet, ii little loo indelinil(( to predicate ariythinif upon. I shall I heretore con- tinue; to n.se S".84S, which will dindnish Hansen's value hy o".o6S. The; correspond! njf diminution in the! ]trin<'ipal parallactic term will he o".()6, while there will he two other terms to receive a smaller dimiiiulion. This correction will still leave a diH'erence (d" ahout ::" helween i\u\ results from the first and second limbs, which will be accounted for by an error of 1" in theado]»ted semi-diameter. This correction to the semi-diameler is a priori tpnte probable, as Ihe improved meridian instruments of the present lime give a .send-diameter of the sun 1" less than Ihe older ones from wliieli the diameters adopted in onr ej)hemerides were derived. It is to Ik; expected that Ihe .stni' diumeler of the moon will exhibit a sim- ilar apparent diminution. From a note in I lansen's Ihtrleginis!; (|>age 439), it w ill be seen that one of the terms in the true longitude has cre|d into the tables with a wrong sign. AscMnployed in lhetai)les, and given on page 15 of the introduction, it is, -f o".335 sin (25- — 4 "•' + 2f.)— 40'). As revised in Wwlhtrlegnng, it is — o".285 sin Theretbre the tables need the correction — o".62 sin * Iuveiitig.-ktiou of the Distance of tlio Sun, p. 24. 2 M 'I w Kl ? ^4' 10 The f«»llo\vii)g is alist of llic roriTctinns wo Imvo so far deduced to Hansen's tables. Tliev should in slri(;lness l)e applied to Ihe mean longllude, or '^Argiin/pn/ fondu/ncndir, ■l»nt they may without serious error !)(> applied to IIk; true; lonyiliide. Put J>, the argiunent ol' parallactie ineqnalily, or mean elongalion of the moon from the sun ; iT, the moim's mean anomaly : g', the sun's mean anomaly ; fo, the disfanee ol" the moon's perigee; from the; aseending node; &>', tiie distanee of (he sun's perigee from the same node. We then have and the correetions in (piestion ar ■ 0.96 sii 0.07 sin (P J) — n _ g' -(_ f.) . M 4-0.96 sin 7' ^ — IT ) ■ rnvnUnetn- U'niis. — O.I ;, sin (/>+-') > -{-0.09 sin ii' Anniinli'iiinlH.n. 0.33 sin 2 /) Viniall.;!. — o. 10 sin (3 D — ir) f:,',rii„ii. — 0.63 sin { ^ 2 — 4 i,'' -|- 2 r.> — 4 m' Ai'riilental error. The fourth and filih terms of this expression lia\e the elfeel to remove the iiierease wliieli Hansen applied to his inetjualities on aeeonnt ol the jtosition of the eenter of gravity of the moim, while the sixth is the residt of the slight error of the eeeentrieity wliieh lie emidoyeii in eompiiting the coetVici(!nt of eveetion. In comparing with nn'riilian (d)servafions which have l»een reduced without any correction to the apparent semi-dianiet(,'r depending on the time of day, the e(»rreelion of variation may also ht; omitted, since a yet larger apparent correction, having the oppo- site alircltraie siiru. will r<,'siilf, from the apparent variations of that semi-diameter, as ulreaily explained. As regards the possiUh; correct ions to the elements of Hansen's tables, it is t(» he renuirked tlnit that investigator did not avail himself of the elements of tin; lunar orhit deducefl l>y Airy from thcM Jreenwich ohservations between 1750 mikI 1S30, but xtent of the observations thus employey tlir rccfiit oltscrvatioiis ol tlic iiiooii made at (Jrcciiwicli and Wasliiii^'loii .since iSOJ, a period duiinu wiiicli liolli series of oliservations aid carefnllv conipan-d witli llansenV taldi's. Tlie general ideas on wiiicli liie present invcslii,'atiiin ot liie>e, correeticni.s is liased are these: tile' errors ol' liie moon's laiuilar l(Hii,nliide are ol' Iwo classes, — a progressive correction, wliicli ap|)arently increases nniHtrmiy \\ ilii tiie lime; and errors ol short period, tin' principal ones of which go llironLrh their |teriu,l dnriiii,' one revolution of the moon (»r less. In determininij; the errors (if the (irst class I'roni oh.servation, those ol IIh^ second class may he reij;arded as accidental ernns, the eli'ect of which will l>e elim- inaled from the mean of a larire nnml>er of oliservations. Since, in a .series ol ohserva- lioiis e.\l('ndini( (hronifh a mnnher of years, tin; maxima and mininiaof each term ol short period will tiill indiscriminati-ly into all parts of all the other [M-riods, each periodic c()rre(;li(ni may he determined as if the c[]\'r]s of the others were |»nrely accidental errors. At the same time, as the elimiiialion of eaeh periodic ernn- from tin; ma.xima and minima of all thi; (»th(M-s cannot he complete in any iinite tinn', it is desirahle that each periodic cm-rcction of sensilde maiinitnde which we can determine beforehand shall he applied to the rcsitead ol rednciny the oliserved ernns ol riiihl ascensi(ni and polar distance to errors nf hni-iliide and lalitnde. Thi- reason lor this course is, that the apparent errors of pcdar distance, alter correcting them approxinnilely for errors of the elements easily (h'terininetl. will aii>e principally from ernn,* of obhcr- vation, and not from errors of I he taldes. In tact, I lie niisei vat ions of the moon's declina- tion are sometinn's aU'ected with accidental errors »[' ii niaunitmle which it is ditVicidt to account f(»r, especially in the case of Washinylon. (Irantinjr that the moon moves in a plane the position of which can be very accurately determined, we have at\erwurd only to determine the moon's |)()sition in that plane, and this ciin In- (hnie from an ob.scrved right ascension almo.st as well as if we had a directly observed loni,ntnde. The longi- tude thus determined will be less likely lobe aU'ecled with systematic errors than il we suppose! the position entirely unknown, and chaiii:e the einns of right ascension ami declinat'on to errors of lon^^ilude and latitude, without regard to the po.ssihle constant errors of the ineasurei{l-0) do cos S "-: — 0.92 sill {I —0) dt From the first three forniulie, it, will bo seen, that the mean error in ri 0.0 -1- 3-4 + 1.7 1 806 + 1.2 + 3-6 2.4 + 0.9 + 4-5 3.6 + 1.0 + 4'J + 2.5 1867 + 2.4 + 5-7 3-3 + 2.4 + 5.3 :.4 + 2.4 + 5.8 + 4-1 1 808 <♦- 2.f) -1- 0.0 3-4 + 2.4 + 6.6 4.2 + 2.5 -1- 6.3 + 4-4 l86() ^ 3-3 1- 5.6 2.3 + 1 + 7-4 4.0 + 3.4 •I- 6.5 + 4-9 1870 + 3-4 + u.(, 3.2 + 4.6 + 7-2 2.6 -1- 4." + 6.9 + 5-4 1871 + 5-4 + S.2 2.8 + 5-1 (- 7-8 2.7 + 5.2 + 8.0 + 6.6 1S72 + 6.0 + 8.7 2.7 + (1.2 f <)■(! 3-4 + 6.1 + 9-2 + 7-6 1873 + 6.9 + f)-4 2.5 + 6.9 + 10.2 3-3 + 6.9 -1-I0.2 4- 8.6 1874 + 8.1 +11. 4 3-3 + 7.t > lO.S 3.7 + T.(> + M.I + 9.4 'J'he last column exhibits the apparent tabular errors in mean right asccnsicii, and 13 therefore iii mean longitude, ;is tlorivfd cacli vt-ar fnun all Hit- nhscrvatiuiis. Tiic siiddfii appaicid alleralioii oi' iicaily oiio second per aiiiiiiiii in (lie mean motion ol' the moon, exiiihited in tiiis eohimn, si'ems t<» me oni; ol' the most (jxtraordinary of astronomical phenomena; bnt, as I have discussed if in sevi'ral |»a|iers during the last live years, I siiall Ju no more here tlian call attentitm lo its continuance, ami to the inipossihility of representing it by any small mindter (d periodic terms without introducing discordances into tlie longi(nse C(»rrec(ioiis throughout their s«;veral yt.-ars, the Greenwich and Wasliiuirton ob.servations were considered s(riclly comparable; and when (he mtH)ii was (d»served a( l»oth oli.^erviitories on the? same day, (he mean of (he correc(ed (abular errors was (aken. Tin- meiin ou(s(ainlinir (abular error \\)v each vear now becomes as oUows : Vear. ,'? Vear. .1/ YuiU'. (P. Year. -!?. 1S62 — 2.1 1S66 -1 2.2 1S69 + >' 1872 + 7-:, 1S63 — 0.9 1N67 + J.^ 1870 + .v6 1^7.5 4- 8.0 1S64 + 0.4 1868 + 4-1 1871 4- 6.6 1S7.1 + 9-7 1S65 + '4 'J'hese quantiti*'.*!, with the sign <'lianged, siioidd b(! considered as c(nrec(ioiis (o the tundameidal argument, and we have (<» de(ermine (he corresponding correction (o (h(.> right- a«'"?ii.sions which are (o be applied (o (he individual tabular ern s. To reduce (hem ti. ."iM'ri'ctions o(" true Innirituile, (hey are (o be multiplied by the factor I + - '' •■^•'^ i' =^ • + o. 1 1 cos i; 14 Tin; (roiTcspoiuliiiff taclor tor correct ion of riglit ascension is, witli siitticient ui)]>rox- iniiition, Sazn {i -\-o.i \ CDS i,' — 0.04 cos (2 / — 0) — 0.09 cos 2 /) SX In this I'orninlu, <5/V represents tlie correction ti> the mean loiif(itn»ie, while we may sii|)i)ose / to represent indillerentl}' the nu-an or tlie tru(! lonyitiule ; and, during a period ol' several months at a time, we in.-iy represent tht; lonijilnde as a t'unction of g. The valu(! of Sa has Ih'.cm reduced to a table of doultle entry as a function of if and of tlie time. To express th(! mean longitiule as a function of if, we have /- i/+ TT 2 / — zz 2 g -[- 2 ?r — I 7— 2 g -\- 2 7r My the substitution of these values, the expression tiir Sa becomes (5a ^; ( I -f- o. I I COS g -\- A COS 2 g -\- li sin 2 g) S\ w lie re A ZZ — .04 COS (2 /T — 0) — .09 cos 2 /T li ■=. .04 sill (2 /T — 0) -f- .09 sin 2 TT The lues ot rr, 0, A, and li \\)V periods of six months are as follow : of tl spoi this Yoar. 1862.0 j 1862.5 j 1863.0 1863,5 186.). o 1864.5 1S65.0 1S65.5 I S66 . o 1S66.5 1867.0 1S67.5 18OS.0 186S.5 The coeftl( lest! sets of idiiijr valin; < piipcr, it is The correct T () „ 22S 274 2-lS 264 269 255 1 2S() 245 , 3'-iy 235 33'-> 226 .350 216 ] 310 206 1 31 "J7 51 1S7 71 ■77 1 .)2 168 j 112 15S 1 »33 14S + + .05 .0(| .oS .03 .02 • 05 .06 ■ 05 .ot .02 .05 .05 .04 .03 B + + .0(J .01) .04 .oS I ■ 07 ! .04 ^ .00 i .03 ; .03 ■ "5 ."3 ' .00 t .02 I .05 i I Year. 18O1J.0 1S69.5 1870.0 1870.5 1S71.0 1S71.5 1872.0 1872.5 1S73.0 1S73.5 1874.0 1S74-5 1S75.0 JT « „ • 153 •39 "73 129 ";4 119 214 no 234 KX) 255 90 275 81 295 71 316 61 33f> 52 SSf" 42 17 32 37 23 .07 .08 ,06 .01 .06 . 10 .09 .04 •05 .12 ,12 .04 B .06 .05 ,1K) .05 .09 .08 .02 .06 .11 .11 .04 .05 , 12 ient 1 + O- 1 ' t'"*'* rJ" + ^ cos 2 g -{■ li sin 2 g is next tabulated for each values of A and li for every 10 ' t»f g, and multiplied by the corre- if iiX. As these tables are superseded by those yivcii at the cIos(! of not necessary to print them, ons ol" short period, which have been actually a|»plied, are -I-0.96 sill 1) — 0.13 sill {D -\- g') + 0.09 sill g' — 0.62 sin (2 i' — 4 5^' + 2 6j — 4 (x)') 15 The first tliroo liave been combinod info a siiiifl(> oih; olMoiihlo aii,niiii(Mit, in wliidi tlie argunionts sire /> antl tlio niontli; Uk! liitliM-coiic'spontlinij; to i('. Tlic Icinis dcpcnd- ent on tiiis argument nw. so small that they may l>e regarded as eonstant during an entire month. In |,his sain(> talde is ineludcd a partially conjectural correction l()rtlit! variations (tf the moon's semi-diameter. The correction to Hansen's value has l)eeii assumed a.-; — 2".o, when the moon is in the ntnghhorhood of the sun, so that iier limb is very liiint; and as —o".4 after the dose of evening twilight. IJetween two hours of elongation and the dose of twilight, it is assumed to increase uniformly. The sum ol' these l()ur corrections is given in the tbllowing table : 0) — Ul t, O cT S S Q FIRST LIMR. Jan. 14 + 2.4 13 + 2.3 12 + 2.2 II + 2.1 10 ^■ 2.0 9 + 1.8 8 + 1.5 I + 1.5 fi + 1.5 5 + 1.4 4 (- 1.2 3 + 1.1 2 + 0.() 1 + o.f) + 0.4 Full + 2.5 + 2.4 + 2.3 + 2.2 + 2.1 + 2.0 + 1.7 + 1.5 + 1.4 + 1-3 + 1.2 + 1.0 + o.S + n.6 + 0.4 Mar. + 2.5 + 2.5 + 2.5 + 2.4 I- 2.4 + 2.3 + 2.1 + I.S + 1.4 + 1.3 +• 1.2 + I.O + O.S + n.6 + o.. .•\l)iil. ! May. I liiiu'. + 2.6 ! + 2.5 -f- 2.5 I + 2.4 + 2.4 I 2.4 + 2.3 + 2.2 + 2.0 + 1.8 + 1-5 :.4 2.3 + f I- 2.2 + 2.1 + 2.0 + I-S + I.f. -H 1.2 i + 1.4 + I . I I t- I . I + 1.0 ■1-0. (J + 0.8 + 0.7 + 0.6 + 0.6 + 0.4 + 0.4 + 2.4 + 2.3 + 2.3 -I- 2.2 \- 2.1 + 2.1 + 2.0 + 1.8 I-- 1 . 5 + 1-4 H- I.I + ".'J + ".7 + 0.6 + 0.4 Inh. Aug. Sept. -I- 2 . 3 ' -I- 2 . 2 +2.1 + 2.2 4-2.1 +2.0 (-2,24-2.1^ + 2.0 ■f 2.1 I f- 2.1 + 2. CI 1- 2.0 ' -f- 2.0 I- 2.0 + 2.0 4-1.1) 4 I.S -I- i.() 4- I.S 4-1.7 4- 1.7 I t- 1.6 I 4- 1.4 4 I. ; 4- I.I 4- I . ' 4 11.9 ; 4- 1.0 + 1-5 + 1-3 t- 1 .0 I -ho.S 4- o.S -f 0.6 4- 0.6 -f C.4 4- 0.4 4- 1.2 +- 1.2 4- I.I f 1.0 -f 0.8 -I- 0.6 4- 0.4 Oct. Nov. Der. + 2.1 4- 2.2 -!■ 2.3 4- 2.0 4- 2.1 •t- 2.2 + 1.0 ■(- 2.0 4 2.0 1 1.8 -1- I..) 4 2.0 1 i 1.7 1- 1 . 7 4- I.S 4- 1.6 4-1.5 4-1.6 4- 1.4 + 1.4 + 1.5 + 1-3 4-1.4 + 1.5 + 1.3 4- 1.4 4- 1.4 + 1.2 4- 1.3 -1- 1.4 4-1.1 4-1.2 4- 1.2 1 4 1.0 f l.I 4 1.1 4-0. S + o.<) 4- 0.9 4- 0.6 4-0.7 4 0.6 40.4 -ho.4 4-0.4 "^ r! O lyi 4j O S'S s c c IT O O Q 4 4- -I- + 4- + 4- + 4- + 4- + o I 2 3 4 5 6 7 S 9 10 II 1 2 13 14 Jan. I Feb. -0.4 -0.4 -0.6 -0.6 -O.S -0.7 -I.I -0.9 — 1.2 — I.I - l;4 -1.2 - 1.4 — 1-3 - 1.5 - 1.3 - 1.4 - 1.5 1.7 ; - 1.7 I — 1.9 - 2.0 — 2.1 — 2,2 -2.3 — 1.9 — 1.9 — 2.0 — 2.1 — 2.2 Mar. April. -0.4 -0.4 -0.6 — (1.6 -o.S -o.S — l.O — 1 .0 — 1.2 — I.I — 1.2 — 1.2 - 1.3 - 1.4 - 1.6 - 1.6 - I.S - I.S -2.0 -1.9 — 2.0 — 2.0 — 2. 1 — 2.0 — 2.1 — 2.0 — 2.1 — 2.0 — 2.t — 2.1 Mav. - ".4 - 0.6 - (I.S - 0.9 - I.I - 1.4 - 1.5 - 1.7 - 1.9 - 1-9 - 2.0 - 2.0 - 2.1 - 2. I - 2.2 s FCOND LIMB Dec. June. July. Aug, Sept. Oct. Nov. -0.4 -0. t -0.4 -0.4 -0.4 -0.4 -0.4 -0.6 - 0.6 -0.6 -0.6 -0.6 -0.6 -0.6 -o.S -0.7 -0.7 -o.S — o.S -o.S -0.8 -0.9 -0.9 -0.9 - 1.0 — 1 .0 — 1.0 — I.I — 1.0 — 1.0 — T.I — I.I — 1.2 — 1.2 — 1.2 - 1.4 - 1.4 — 1.2 - 1.3 - 1.3 - 1-4 - 1.4 - 1-5 - 1.5 -1.5 - 1.4 - 1-4 - 1.4 - 1.5 - 1-7 - I.S - 1-7 - 1.6 - 1.5 - 1.5 - 1-5 - 1-9 — 2.0 - 1.9 - 1.9 - 1.7 - 1.5 -1.5, — 2.0 - 2.1 — 2.1 — 2. 1 - 1.8 - I.S - 1.7 — 2. 1 -2.1 — '* 2 - 2.3 — 2.1 — 2.0 - 1-9 — 2.1 — 2.2 -2.3 -2.4 22 - 2.2 - 2.0 — 2.2 -2.3 -2.4 - 2.4 - 2.4 -2.3 — 2.1 -2.2 - 2.3 -2.4 - 2.5 -2.5 - 2.4 -2.3 - 2.3 -2.4 -2.5 -2.6 -2-5 -2.5 -2.4 - 14 - '3 - 12 - II - 10 - 9 - 8 - 7 - 6 - S - 4 - 3 - 2 - I o c c « o (/I 01 o J?E 6 a o I 2 3 4 5 6 7 8 9 10 II 12 13 14 -f- 4- + I- + 4- 4- , -t- -I- 4- ■I- 4- + 4- ■ •*'=Wrtfe«*rtSS«'HilBBWl»Slj*.i« 0tmy**'-j. >^i.i**wm^3«w**r' i. I I ll ij' 111 «tl 16 ]\y tlic ii|)|)li(;i)tit)ii of tlio foroiroinir corrections to tlic errors of llic moon's taluilar rii^lit asf-ensioii, these errors iiiiiy he supposed to he rediictMl to very small (piaiitities, dependiiiij; on the errors of the lunar (!l(!ments, with which th(;y are eonnecleil hy the e(piation „ ■ (lot ^, , (In »,j , (la ^. (U ^ (1.0 ^ (li ' the clillercntial coelticieiits having tlie vahuvs ijiven on |)aire 12. When we snl)stitnte theso values, tiie exprcission for Sa will contain the terms (+ .01 8 (5(9 — ,03 7 '5a) cos (2 / — <9) — .087 6a cos 2 / + .018 (5 (9 cos (9 -|- 0.21 <5/ sin 6 — 0.2 1 (3i sill (2 / — 0) If we represent the sum of these; terms l>y P, we shall have SI =<'ia — 'D In the investigation of the corrections to the; moon's eccentricity and longitude of perigee, the terms of P may be entirely neglected. This arises from the circumstances that tlu! appreciable terms of /or a arising tV'im tlie errors of these elements liavt; the same period with f, tiw; mean anomaly, while /'contains no apprecialde pi'riodic terni depifuding on g. The outstanding pmtion of ('ia prol)aldy averages not more Ihan »me second or two at the utmost, so that the term .037 ('>a is (piite insignificant. The term .018 SO may have a constant value of o".25, more or le.ss;* l)ut tlu; short period of the term 2/ — (9, ami its inc(»mmensnral»ility witli the period of i,', permit of this error i)eing regarded as liirtiiitoiis. The sanii' rentark ap[»lies to tiiiMcirms .0S7 S(t cos 2/ and 0.21 r5/sin(2/ — 0). 'i'he only remaining terms liave tiie jteriod of 0, which is niorf- than (Mghleen ye:irs. 'J'lie ellect ot' these possildt; errors is tlieiell)r<' eliminated in th(> mean correction for each year, which has been alreaidar iiiliiii^ o!)served) in riglil asctiusion, corresponding to all the values of mean anomaly between those limits; and, secondly, the number of the residuals. In taking these sums, the observations at the two ob-servatories are counted st^paratrly, .so tl'.at when observations wen; made at \m\\\ obs(M'vafories on the same date, th(! sum of the residuals is tak(Mi, ami the observations count 2 in the column N. "It IH iiftcrwiinl tuiinil that the viilno of this |iii>. ■■t is only o .oS. 17 Sums of errors of tnoo)i\s corrected rifjht ascension, given hy ohserrations at Grccnmch und Washington. 1362. 1863. 1864. 1865. Limits of mean; anomaly. i 1 N. f 1 £.!a N. S,!n N. D.ia N. . i o i o lo lo + 3-9 4 H + 21.5 10 + I9.f> 9 + 1-4 7 10 lo 20 + 3.f' 6 + 12.3 : 12 ! + 6.1 7 : + 3-4 4 * 20 to 30 — 0.2 5 + 14.2 8 + 5-8 5 j — .7 6 80 to 90 + 6.7 7 - 6.7 6 — II. 2 9 - 6.1 6 qo to too + 3-9 6 - 3-3 9 - 3-4 6 - 8-5 7 too to ito + 3-9 11 - 0.4 5 - 2.1 5 — 0.7 5 110 to 120 - 6.4 9 - 3.9 8 - 30 3 - 7-5 8 120 to 130 - 3-2 8 - 3.9 7 + 0.1 5 - 5-5 6 130 to 140 - 7-8 6 - 8.8 8 — 12.2 7 i + 5-0 5 140 to 150 - 0.9 5 - 15-9 8 + 0.9 3 1 i + ... 5 150 to lf)0 — 0.1 5 - 18.2 9 - f>.7 7 + 1.5 4 160 to 170 - 8.8 4 - 19.7 6 + 2.5 6 + 4-3 5 170 to iSo - 5.7 4 - 9-9 7 - 5-3 5 + 6.4 6 iSo to 190 - 17-4 9 - 33.1 14 - 8.6 7 + 8.9 6 190 to 200 - 15-5 7 - 4-3 4 - 0.6 4 + 15-2 8 200 to 210 - 3.S 10 — 1 .0 6 - 6.4 9 + 7-8 8 210 to 220 — 0.2 2 - 1.9 9 - 2.9 8 + 13 I 7 220 to 230 — 28.9 9 - 7.5 10 + 3.*~-"'*«»e!B«»«wss*7.3 7 270 to 280 + 9-: 4 ; + 3-3 4 + I.O 7 • - 18.8 5 280 lo 290 + II. 6 12 1 + 7.0 7 - 9.1 5 - 21.4 6 290 to 300 + 4.0 ! 4 + 0.7 3 - 3.2 8 — 13.6 3 300 to 310 + 6 7 4 + 16.5 7 - 8.0 i 2 - 4.8 2 310 to 320 + 3-4 2 i + 2.3 5 - 13.8 8 - 0.8 I 320 to 330 + 7-7 5 1 + 0.2' 5 — 10.6 9 - 4-2 2 330 to 340 + 9-1 5 1 + 3.5 6 - 11.7 6 - 18.5 6 340 to 350 + 10.8 6 \ - 5.4 7 . - 9-8 I 5 — 10.6 4 350 to 360 + 92 7 - 7.2 4 1 - 18.3 6 — 2.2 5 + 132.9 213 + 131. 2 182 + 161. 8 229 + 178.9 187 - 54.0 1 - 55-9 — 115.6 1 1 -139.2 + 78.9 1 1 + 75.3 + 46.2 + 39-7 19 Sum/) of crwrs of moon\s corrected right ascension, S^r. — ('(mcliidcil. Limits of mean anomaly. 1871 187 . 1872. 1873. 1874. 7,,\a N. Sila 1 2,1(1 1 N, V rta N, S,l<. 1 N. OlO 10 - 7.2 5 - 3.2 5 + 6.5 6 4.3 6 + 4.6 1 1 1 '* 10 to 20 — 2.2 5 + 1.7 n 1 + 8.5 10 + 5.2 4 + 5.9 S 20 to 30 + 5.1 6 - 0.3 7 + 5.5 8 + 5.2 8 + 12.5 i f' 30 to 40 -f 10.7 8 + 6.4 7 + 1 1. 8 7 + 3.4 3 + 5.1 i 5 40 to 50 + II. 3 8 + 16.7 9 + 6.0 4 + 6.6 4 + 4.4 i j 5 50 to 60 - 7.1 5 + 9.7 6 + 13,2 6 + 4.1 7 + 2.1 5 60 to 70 + I.O 9 + 18.9 8 + 10.4 3 + 13.4 6 + 10. 1 4 70 to 80 - 2.6 5 4- 10.2 7 1 + 12.4 8 + '3.5 3 + 6.6 6 80 to 90 + 12.0 12 + n.7 1 5 * + II. 3 4 + 15.8 7 + 6.0 3 90 to 100 + 10. 1 8 + 12.5 i 3 + 9-8 4 + 5.1 2 + 5.9 7 100 to no + 10.8 4 + 19.7 8 + 13.0 6 + 1.5 3 + 10.9 6 no to 120 + 5-8 6 + 8.2 4 + 18.7 6 + 5.3 2 + 4.6 4 120 to 130 + 10. 1 7 + 9.7 5 + 18.3 7 + 6.1 5 - 4.7 6 130 to 140 H- 10. 1 5 + «5.4 5 + 0.2 2 + 3.3 3 + 1.8 1 140 to 150 + 18.2 8 + 2.1 3 + 2.9 3 + 8.4 5 - 0.8 7 150 to 160 160 to 170 170 to 180 180 to 190 + 4.4 +■ 8.8 +. 6.9 + I 8 3 5 3 I + 3.0 + 8.7 + 6.2 + 3.9 7 4 6 + 2.1 + 6.6 — 1.2 + 1.9 8 5 3 4 - 3.9 5-4 1.7 2.2 3 4 3 4 + 1.3 — 10. 1 — 1.0 + 5.0 5 9 6 6 190 to 200 + 7.5 4 + 3.5 3 — 1.2 5 - 6.6 6 — 1.0 2 200 to 210 210 to 220 220 to 230 + 2.1 - 2.5 5 3 3 + 1.0 - 2.6 - 9.3 3 - 2.2 2 +1.2 7-7.2 6 3 5 1 0.9 6.6 o.i 2 3 4 + 3.7 - 5.0 — 16.0 6 5 7 230 to 240 240 to 250 250 to 2f)0 260 to 270 270 to 280 280 to 290 - 0.4 - 9-7 - 12. I - 2.3 1 -.2.9 - 5.6; 5 5 6 2 8 3 - 3. a - 9.1 - 5.2 - 4.6 - 7.1 -- 2.7 6 - 4.8 8 ; - 6.5 ^ 5 - 9-1 i 5 i - 13.8 7 ; - 8.4 \ 6 t — 16.7 5 ' 3 : 4 8 5 9 — 3.5 7.5 7.1 1 8.6 4.3 1 10.8 i I ! 5 ' 4 1 3 i 4 1 6 - «3.5 - 15.1 - 23.0 - 22.6 - I?. 6 - 9.1 4 8 5 4 4 3 290 to 300 - 5.5 4 + 4.0 4 ! - 10.3 S — 9.8 4 - 13.4 S 300 to 310 - 4.0 4 - 9.5 6-9.5 5 — 1.8 1 I — O.I 9 310 to 320 - 8.7 3 - 6.6 5 i - 5-6 4 — 3.2 ( 4 1 - ;.3 6 320 to 330 - 13.5 6 - 4-9 7 i - 8.5 5 — 11-3 7 - 1.4 7 330 to 340 - ..7| 4 - 2.8 7 1 - 8.5 : 5 — 0.3 3 - 4.3 3 340 to 350 350 to 360 - 3.6 i - 8.7 ! 3 5 - 1.7 + 6.3 4 4 - 5.1 ' + 0.1 5 6 — 9.2 '■ 4.0 6 I 5 1 + 2.2 + 2.5 II 6 + 136.6 , 185 + 179.5 203 + 160.4 i 195 + 56.9 155 . + 95.2 200 — 120.6 - 72.8 -118. 6 j -113. 1 — 171.0 + 16.0 + 106.7 i i + 41.8 - 16.2 '■ 1 - 75. s Neglecting all tcrinr, multiplied hy the eccentricity in tlu; coefficients, each ual gives an equation of the form Jl-\- 2 sin gJe— 2 cos'g e Jtt — r rcsKi '"•^^BBimMn ■ r 1' 1!i ■'! II- or, piittirii, the ncjuatioii will \hi 20 h zz. 2 JSe :r — 2 ih' k z=. — 2 J(i y')Tr ■=: 2c Stt Jl -\- h ^\x\ g -\- k ros if ■=. )\ Je nnd Jit I)i;ing tlio errom of tlio taimlar eccentricity and longitude of the perigee, while 8e and fin n^proseiit IIk; corresponding corwct'ums. The erpiations are now solved as if all the residuals within each pair of 20° limits corresponded to the mean ol the limit, — that is, as if all hetween 0° and 20° corre- sponded to i' zi 10° ; those l)etween g zz. 20° and if =. 40° to g — ,30° and so on. If. then, w(! put gi = 10' Vi, the SI •r-i zz T,o^, etc. )f all til dual; IS III any one year corresponding to g =zgi; Hi, the corresponding iuinil)cr of observations; A-.zz sin gi] Ci zz cos gi : the normal equations for det(!rmiiiiiig SI, h, and k, by least sciuarcs, will be : i^'n,) Jl+(^„,s,) /t + (^'«;6-..) kzz^u (^' ,U .V.) Jl + {:^ lU sr) h + {2 n, .s, 6v) k = 2 Si t-i {2 „i d) Jl + {^ «,. .sv d) h + (^' », en k = 2 d Vi The formation and solution of tli(;se erpiations for each year give; IIk; following values of the oiilstiUKliiig errors of llie lunar eleiiienls l()r each year: 1862, /ars fmni unv assumrd ..,m.H.. Wr slmll tak.. for tl..- qM'«''' tl'"' "n.l.H.' -'I t "■ pori.ullhn.UKli wliicl.tl..-..l.s.Tvati..ns.'xto...l;tliat is. 1868.5. If, tli.-ii, w rrpivscnt, tlw thirtiMMi values of // and /.• in cliroiioloi^ical order by //-,„ /'-.^. ^'u' /'-r..^'-... ■ ■ • • . k„ the e.umtioMs .>f (■on.litioi. for h and k resix-etively may Ix^ put into tlw lorn. h; zzh — a sill // cos in — n cos /< sin / n A-,. = /•+«' cos n cos / n — n sin /( sin i 11. Rcuanlinii A, /.-. « sii. //, a cos /^ «' sin n, an.l «' cos /< as tin- unknown .,nantifi.-s, tlic normal ecinations for determining thes.; (piantiti.'s ar.' : (i) From the vului's of li,. 13// — (2' cos in) a sin /< — ^^i - (V OS / «) h + (^' cos- /• n) a sin /« =: - :i' A, cos i n (>;" sin-' i 11) a os /< — — ^ I'i sin ' " (2) From the viiiucs of A',. 13/,- + {2 cos i w) «' cos /<' =: ^ ^j (^' cos i «) ^- + (^ '''"*' * ") «' ^■"'^ ^'' = - ^'^ ****** * " .^' (sin'-' i 11) a' sin /<' z= - :^" A'.- sin / « It will 1..^ ol)s(M-vod tlnit all the coefficients having as a factor c_itl.er ^' sin I n or 2 sin i n cos i n vanish. , , 1 ^ The value of a apparently is not r.-a.lily determined dire.-tly l.y least .scinares : wo shall therefore assunu. sevral values of this .p.antity. an.l as..-rtain l.y which vahn.- tlu, n.u.litions can l.est i,.. satislied. Tin- lollowing are th.' ahhreviate.l values ol the pur.'ly triiionometric sunnnati.nis : sin 6i n 2 cos f II =r . — V — = c 8111 2 n 1% sin n + sin 13 « _ 2 cos- in— - - 7 — -^ 1 2 sill n ^-, . „ . 13 sin » — sin 13/; _ 2 sm* in — - . — *i 2 sin n It we solve the preceding equations, and put, for brevity, c C - C\ = 1 3 Ci — c- 13C1 — c- c 13 13 c, — C'' the resulting expressions for the unknown cpiantitics are: // = L\2hi— C^'//.. cos in « sin /( = C2hi—C^ hi cos in a cos yu zz 2 hi sin i n k — C\2 ki — C2 ki cos ( n a' cos /i' zz — C2 ki + C^ ki cos i n a! sin fj! — — - '^ h si" ^ « «i »>»> 'I'lii- pciidil (»r/Miml It lies prolml)!}' Ixifwn'ii liriccii iiixl twenty yearn, whi(^li would miikf the value nl" //, or tli(;iuiniml motion ol' llie iiiet|imlity. lie hetweeii iS'^ and 24". Tlie lollowiiii; iire tlie values ol' the various t|iiaiitities *le|>eii*liiig on n tor the tlitVerent values of n between these liniitri : logf logfi log S\ logf log t' log C, 0.756 0.715 0.S93 9.213 9.17a 9.571 0.705 0.707 0.898 9.097 9.099 9.506 0.644 0.705 0.900 8.977 9.038 9447 0.577 0.709 0.897 8.858 8.9()0 9. 395 o.4<)8 0.718 0.891 8.734 8.954 9.350 406 0.731 0.88a 8.604 8.939 9.31a 0.391 0.747 0.870 8.453 8.()0<, 9.276 0.143 0.765 o.Ssf) 8.275 8.897 9.346 n S4|iin>M £ hi cos 1 n S/t - 4.66 - 4.66 '9 + 11.66 + 1.52 - 4. 08 - 5.04 ao + ir.78 4- 1 .09 - 4 69 - 5. -to ai + 11.83 + 63 — 4. 08 - 5.73 23 + 11.81 + 0.29 - 4.00 — . 04 33 + 11.73 — o.oS - 4.02 - 0.33 34 + 11.58 - 0.44 - t.57 - 60 25 1- It. 37 - 0.78 - 4-5" - 6.80 The precediiisf e(|natioiis now jrive the following separate values of the unknown quantities, eorresponding to tlu; various assumed values of «: n h a f * . a' f' 1, , „ . 18 0.73 J.53 164.0 0.73 l.Sl 160.8 19 0.69 1.53 165.2 0.61 1. 71 159.7 20 0.66 1.53 166.3 0.49 1.62 158.5 31 0.63 1.54 167.3 0.39 '.53 • 57.2 22 0.61 >.55 168.1 0.31 1.47 156.0 23 0.60 1.57 i6q.o 0.23 1.42 154.8 24 0.58 '.59 169.8 0.17 1.39 '53.6 25 0.56 1. 61 170.4 O.II 1.36 152.6 There can he litth; serious doubt that in the case of the pnisent inerpiality the theoretical values of /j. and /<' should he the .same; and it is also |)rol)al)le that those of a and a may Ix; suhstantially identical. Th«! small ditrerenccs between the values of a; and a' and of // and //' add so much weight to this probability that we shall make 2:^ icr sdliition of Hie (■(|iiiilions on tlic siiiti»(isili(in llmt a' — ir athl /<' — /i. 'I' niiotl null i'((iiuti()iiM tliun Ix'coiik; If nnr- 13 // — frtrsin ft = ^/i^ — ck-\- iT,am\ /.i z= — ^ hi cos / n -:>■/,■. 1 3 A -f- ca cos ju z= ^ /{i c A' 4- 1 3 a cos // — 2 ki The solution ot these equations is: cos I n-:^h: 5.7 . . ; '2-3 . . ! <).S . . (>.2 f 2..S, "■4- II. 3j: 28.0-t- 5.IJ;, ; 24.fH-l2.2:i ! i 22.1 t I2.2< l')-7- I.2i 16. I- 3.4.J , I I 1848. I 12-7- 7-3-' 9-3- S.I, 7.0- r.."*, ' 1.5 . • 2.0 2c) ,6 2^ . 2 23.7 . . 20.3+ 1.2, I'l.9^ 22.5, I 14.4+ 5-ii ; I 1 . o -t- f) . ()n S.5- (i.sJ ,<: -■ '■') f Ian. I'd,. Mar. April M.ay )unr July Auk. Sept. Sept. Oct. N.iv. I)i-c. Jan. Mar. .'UMil May iiinc [line July Auk. Sept. Ort. Nov. •)cc. IS47. ' 2.(.2- 3, :i..74 „, 20.3- 3 U<.<) . 14.4 in.S S.4 . 5.') . I.'■|^ 3 29.2 . 2f..7+ fi 23-3 ^ 20.7 . 1S4S. 173 . 13.9- fi, 12.5- 4 ' I . I — 4 , fi.fi- 7 3-2- 8 30.8- 2 28.3 24. ij 21.5 l').o 15.6+12 13.1+ 5 .1,'= 120 4- Jan. Jan Keh. Mar. April May June July A UK- Sept. Oct Oct. Nov. Dec. Jan. Feb. Mar. April .May Inne July • I Aug ■ I AUR. . ^ Sept. . I Oct. 8:, I Nov. li Dec. 1847. " 1 . 2 I I . 2.S.S I 3. 25-3+ 4 24 ,) f o. 21.5' 3- 19.0+ 2. 15.4- I. 13.0 c,.(, . f).2 3-8 ■ 3t.3+ I- 27.64-11. 25.3+ o. 1848. 2r.9 15. 5- I. I7.H- 4. 13.7- I- II .2+ I. 7.8- o. 5.4— o. l-O- 5- 29.5 26 . 1 23.6 20 . 2 17-7+ 7- 3: Ian. f. r. I.. :: M.r. 1, Mar. 2, .April 8.. May 4, I line ■ J'll.v . I A UK. Se|)t. . ! Oct. ri, .Nov. 4:1 Dec. 7i r)ec. i , . i Jail. 4. ' Feb. -:. ' Mar. 5; .\pril n, M:>y 9, I June f., July 4. Auk. Sept. . iSept. . Oct. Nov. O; Dec. = 181/ 4- 1847. 2 . M 1.9.- 29.5 - 26.0 f 23.6+- 20 . o — 17.6- 14.2 10. 8 8.4 4 9 2.2 29.9 + I84S. 26.54- 23.1- 21 . 7 18.3- 1 5 • 8 -t- 12. 1- 10. o — 6.5- 3"-7- 28.2 24. S 22.3 3-7i 3-7. 0.4, 2.71 3 ■ ',:i O.6.. 1.6, "■7> 0.2, I.41 I ■ -I 1.4: o . 2 . 4 • "■ : 3->i 6.7.- 1 .0. Ian. I'.b. M:ii. .\piil .\lJiil May June July Auk. Sept. Oct. Nov. Dec. Dec. Jan. Feb. .Mil .\pril .May I line July Auk. .Sl;.t. 0,1. Nov. Nov. Dec. 240 -t- 1.847. ' 10.4 t- 2 7"+ 5 (1.5 »- 2 3.1 30.(1 28.2— I). 21.6- 2 b, Feb. ■3,: Ma'. Apiil . May 3.'. J line 1 1 June 3.61 I- 2.9, ; July AiiK. Sept. Oct. Nov. Dec. Dec. 1S.8 15.4 13.1) 'J- 5 • 6.S 31-5 1S4S. 31. I 27.7- n 2'). 3 22.9 t 2 20.4+ 9 17.0 14.6(10 I I . I 7-7- 5 5-3+ 2 1.8 f I 29.4- 9 26 . 9 ' Feb. I ; Mar. Mil. A|iril ! May Tune July . AiiK. i:i Sept. O:, Oct. 9.. ' Nov. 4:i Dec. . Dec. 4i 300 t- 1847. " ■ ■i-o . . -b ..! II. I . . i 7.7 t- 3 -21 5.2-1- I.O, I.S-t- 4.1, I 29.2-)- 1.9, 2b. 8 t- 6.8:, 23.4+ S-ljj 20.04- I Ah 17-6- 7-3.' 14. 1 o.o, [ 11.4 ~ 1. 6., 3')-i- 1848. 4-7 3 3 3"') 27-5 2.8 Ml O.Ij 21. b t- 19.2- 15.7 )-i7-4i 12.3 + 15.7:1 9.8+ 8.3, 6.4- 4-9:1 4.1:- 7-2:i 31-5- 5.71 If we tollow any one of these vertical columns, we shall liiid that the dates corre- sjtmid sueeessively to all points of the lunation in a |»eriod of .|I2 days. Tin; first (d)servations of each period will he Iho last ones of the lunation, and the last ones those made immediately aftur nt^w moon. Between <'a(di pair or 18 of (lie same year. Tiu* last jxirioil coricspomlcd to the sextant 180-240'^', the last observation in which was on November 13, 1858. There were, in all, ten periods corresponding to each sextant, and hence ten sets ol (;(|uatioiis, each liiving iiu^an values of //, /i, and SI for periods extending throuiili a little more than a year. Each residual gave an e(piation of con.7i7 1848,9 ■ 6.7 + 8 .7 - 33-f^i: - 1.931 -i 23.2i» ■f- 31-517 1S50.1 f 1.5 - 34I17 — 40 ■9*1 — 9.1^1, + 22 . 2m + 33. 9» .85.- - 4 ■ 5 :l - 5')-Ai-: - 50. 7i'., - 23.5.^1 - 4.821 + 20.6...,, IS52.4 - 42.8.J - 50.O..;l — 48.0ir, - 21.51S + 35 .Oil' + 25.4.;, IS53.5 - 3I-2JJ — 106.9.., - f)3.f'ii + I.2„ + 6.0.^1 - 38.>>*> 1854.6 - 3"-3i; - 94 •'^';i - 35 •4« + 4 • 2w + i.7h - 24.48" 1S55.8 - 24-3n — 30. 0|,. - 7 •3:.. - 6.9,,, - 22.81s - 41. Oj., 1856.9 - 3f'.2 - 23-8,. + «5-4i. + 4.2jf. - 48.511 - 77.017 1858.1 - 51 •■>:•. - 48. 9.:, - 5f'.7ni - 47 -Si'.' — 7&.9« - 46.2i„ The dales given in the left-hand column an^ those corresponding to the mean of each liori/.ontal line. Piil'tiiig Sj Ibr I lie nieaii value of sin ij[ corresponding to the index i, as already given; r, for that of cos ir ; and W; for the corresponding numi>cr of oltservatimis, tiie iiornial etpialions are: // ,. J/+ {^ V , .V,) // -I- (2 Hi c,) k = ^^ i\ (V „,. .v,.) Jl + ^^ „ . ,.;^) /, + (^' ,, . ,s.. ,:.) /, - 2 .V, r, (V /^. r,) Jl -f {2 », s, ci) I, -f- {:>: ;/, c-) h - 2 r. r, The values of Ii and k thus given by the normal cfpintions formed from the system ol residuals siiown in eac.ii iiorizoiital liin- are shown in tin! next tabh\ wliich also shows 27 tlu! way ill wlii(;li tlifv arc tn-alfd. For tin; saUt; of C()iii|tlt'lt'ii('ss, llic corrfsiioinliiifi <|iiaiiti('n's alreaily toiiiKl for tlx- jx^'riod 1S62-74 an; added, and iiRdiidcul in tlie discus- sion, wliicii now procet'ds a.s follows; tin; nn;lliod adophnl l»i'in<^ one wliicli, lliouirli less rijjorons than the former one, will show in a stronger liulil the evidence on which the new itieqnality depends. As the basis of the discussion, we take the indepenilenl values of // and /', derived from each series of (d)servations, which values are iriven in the second and third columns of the tal)le. A preliminary comparison of the first series of values ( 1S47-58) with the values of // and k derived from the formuke already ifiven indicates a din)inution of th(! constant terms of those (piantities, so that, insl<;ad of +o".64 and + o".2.S, they I)econie, as a first approxim .tion, //«:r:+o".50 A-or= + o".io These constants an- now subtracted from the values ol h and /r, leavini,' a series of residuals .3i + 1 . 82 I 4- 11.66 I i -f 1.23 + 1. 78 ¥ I.oi) - 1J.15 + O. ID - '>-3^i - I.4''' - 1.5'' - 1.14 - 0.3^ - o. 12 1^ 0.16 H 0.60 - 0.5S - 1.05 - o . 70 - 0.82 - 0.24 4- 0.60 + "-OS j + "-27 I 'h 1.26 ! - 0.67 ! - 0.46 I - I. 14 I - 1-57 i - 1-53 ! - i>.<)7 j - 1-43 0.16 )- 1. 17 I + o..,S I I 1. 15 h 1.65 : I 1.41 ( 1.42 + 0.45 — I.4S — 2.01 i I — 2.02 — 2-55 ^ — 1.98 I — 1.50 j + 0.21 I + 1-72 { + 0,50 I ! + 1.13 + 1.63 + <'-'W j — 0.25 0.00 — 0.46 — 1.56 — 1.66 — 1.24 — 0.46 — 0.22 + 0.06 + 0.50 a 1 0.74 52 1.82 145 2.13 i6l 2.13 15S 2.56 175 2.07 >97 1.77 212 0.34 30S 2.13 328 O.S3 50 1 .22 22 2.03 34 1.35 58 ! ».55 99 0.97 - 9 A N 4 24 44 36 - H u + 2 -f 12 - ( - 55 - 112 12 21 19 1 3" 34 II : - 3u - 30 ; 1 — 12 - 12 t — 21 — 21) - 14 — 12 - 3 — I " ^ -i 'I'he old and new series ol ohservalions agree well in giving lor the value ol the eoeHieient ol' lliis li'rni. 'I'iie old series, rr — i".66 '{"he new series, n r:z l".55 The (died ol' the accidental errors will lie, on the whole, to increase the value ol' the coellicieMf. I consider thereliire that tht^ value c derivotl from all llu; ubsorvatioiis. 11' we siilitiiicl, IVoui fiicli value of // aiul k in the preceding table, tlio perindic portions //zr- i".50>iH [163". 2 + 21^.6(^-1868.5)] /,'= i".50(:os [163^.2 + 2r'.6(^- 1868.5)] \\\n\ liikc llii' iiu'iui viilue of llie outstanding remainder for (!uch scries of oltservalions we lind it to Ix; as follows : Old scries, //o = + o".33; /-o = — o".i7 New scries, h^ — -\- o".65 ; A-q = + o".36 Till! (liUcnMici's, o".oi and o".o8, between these last values and tliost; found on page 23 arise from the dillcrcnl value of the periodic term. I consider that the results of the second sciics arc entitled to three times the weight of thonc of the first, and shall there- tiirc put l()r the dctinitive values of h and k, //=z + o".57 + /'' Z— + o".23 + A' The corresponding corrections to the eccentricity and longitude of perigee arc: Sf- — 0".2() X r67r — -\-o".\2 / <5;r — +2".2 Tlie corrcclions to the moon's longitude are: / 'V n — // sin ij' — /-cosi' / r: — o".57 sin i,' — o".23 cosir+ i".50sin {g + N —c)o'^). Tlif last term istht; liithcrto-uiisus[)ected ineipiality indicated by observations, but not vet known to be given by theory. It may be either an inequality of the ecointricity and perigee having a period cd' about \(i% years, or one of the moon's mean longitude having a period of 2 7''.4304 ± o''.004o Substituting first fi)r A', and then fori,', their values in terms of the time, the expres- sion fi)r the inciinalitv of longitude becomes I w < * i".50 sin [- + 73^2 + 2i'^.6 (/ - 1868.5)] = 1 ".50 sin (56^.8 + 13^.12413 0, 7- being tiie tinn; in days (;ounted from fjrceinvich mean noon of 1H50, Jan. o. It, nould pcriiaps l)t! premature to introduce so purely (unpirical a term as this into lunar tables for p<'rmanent use; but where, as at present, it is recptisite to obtain the cnrrcelioMs In the tal)l('s (hiring a limited period with all possible accuracy, tht; eviih'nce in IJivor of the it ality of th(! term seems strong enough to justify its introduction. The niilv .ippiirciil cause to wliicii the term can i)e attributed is the attraction cd" sonic one of llic planets. In the investinalioii (d' corrections to the longitui!eii liad tlicso corioctioiis not bt;cu applied. Tliesc lor tlio second series of observalioiis are loiirid I »y taking tin; sum 01(1) the incjan of tlie small corrections, ap[)!ied on account of (>')S(!rvatjry and limb, to compensate lor the systematic dillerenees l)etvve('U results from dillerent lind>s or dilferent observatories; (2) general corrections to make the residuals in the mean very small ; (3) remaining outstanding corrciction found by solving the cipiations of condition. The corrections from l)oth series are as follow: the corrections sinc(^ 1862 may be very closely represented by a term increasing uniformly with the tiuK!, as is shown l)y the last two tolumus. First scries. Date. u>h Dalu. IS53-5 II, h 18.7.8 - 0.15 •• + 1-77 1S48..J - 0.43 iS54,f, + > • 40 1 1850.1 + 0.32 1855.8 + 1-24 1 1S51.2 + 1. 13 iS50.() + 1.50 1852.4 + 093 185S.1 + 2.40 .■.;ti Second series. Year. (I) + <'-45 (2) + 2.10 (3) t 0.04 II ih a-\-l>l + A 1.07 1S62.5 + 2.5'J + 1.52 1S63.5 + 0.45 + 1.2l> — 0.27 T- I. 38 + 0.60 + 0.78 1.S64.5 0.00 0.00 — ".49 - 0.4IJ — 0.32 - 0.17 1S65.5 - 0.15 - ■•>5 - 0.62 — I . 1J2 - 1-24 - 0.68 1866.5 - 0.15 — 2.m) - 0-75 — 2. (JO — 2.16 - 0.74 1S67.5 - 0.15 - 3-40 — 0.41 - 3')6 — 3.oS - 0.88 1 868. 5 - 0.15 - 4.05 — 0.20 - 4.40 — 4.00 - 0.40 lS6(j.5 + o.oS - 4.85 — 0.2I - 4.')8 - 4-92 - 0.06 1S70.5 + 0.08 - 5.50 — o.o() - 5-51 - 5.84 + 0.33 1871. 5 0.00 - f'-35 - 0.52 - 6.87 - 6.76 - 0. II 1872.5 — 0. 15 - 7.25 — 0.22 — 7.62 - 7.68 + 0.06 1873.5 o.ou — 8.30 + O.IO - 8.20 - 8.60 4- 0.40 1S74.5 0.00 - 9-45 + 0.38 - 9-07 - 9- 52 4- 0.45 §2. INVKSTICAIIOV OF THE TOLAR DlSTAIvICK AN'D l.ATirrDK. It, is a siiiLnilar «-irrii!ii.staiic(' lliat diiriiig the lust six years, at least, the (li)si'rva. linns of tlic niooa's |ii»lar ss accurate than those di' its riulit ascen- sion. Wlietlier this is to he altrilinted to lh»i instrnnients, or wlietiier it is a resiiH ot' f^rent irreirnlarities in the oiitrnie of the; lunar glol)e in tiie polar reitions, cannot at pres- (Mil i)e (lecitled. To whatever cause wo atlrihutt; the errors, tiieir existence renders a rit'orous treatment ot the in;lividual observations of little value. We shall therefore, from the wiiole of the errors in dediniition, sook to olttain the i>est corrections to the inclination and node of the moon's orl»it. Fvom the derivatives of the moon's d(;clinatiou relatively to its true lonizitinle, the inclination, and the node, whieii have already boon given, wc oi)tain: ot 4- dl ^ do „ » no 5, no „^ , (Id „ no zr ''' + o" + ,. "' dS .. di ly heing known tVoni tin; data already givcMi, the (Hjuations ol condition will be thrown into the li>rm d''^ ■ ^r^ . dS ^. 5. ~ dS f, r , I OO -\- -— 01 — 00 — ,, 0/ I do ' di di Vrom llie numerical cxpressitnis already givcin, we have -'''^ stitn(»! these various (luantitie.s in the expression tor ,, 6/ \\(> shall lind tlf mmmum iPf*'i M- ■MMH 3^ no sciisihlo tciins (Icpciidingon tlio sine or cosine olllio argmncnl of liililiulc, A — 0. we siihslitiile lor SI its vulut! in <5A, wo sliiill iind tlu; priiKiijial Icriiis in cos (!• ,// iigitude: Year, CoiTi'ction. 1862. 1S63, 1864, I 865, 1 866, 1867, 1868, 1 869, 1870. . 1S71, 1872, 1873. 1874, The mean correction to the moon's tabular north-polar distance for ciich year, from observati(ms of each limb at each observatory, was taken with a view of detec-tiiig any constant error of sufficient magnitude to alfect the final results for errors of liie iioth^ and inclination. These means should have been taken aller the application of the cor- rections just found: actually, however, they are tlic mean corrections given by the observations, allcr applying the following constant corrections to reduce tiie deilinalions to tlic same fundamental standard : + 0.6 — 0.1 — O.I 0.0 -0.6 -f 0.1 -0.8 00 — 0.1 — 0.1 - '4 — 0.2 - 1.8 -03 2.2 -0.4 - 2.8 — 0.6 -0.6 -3-8 -0.5 -4.2 — 0.4 To Oreenwicli obacrvationB of N. P. D. To W.isliington observivtiniis of X. P. I). 1862-67, —0.4 1868-74, -f 0.2 1862-65, -}■ O.^ 1866-67, — I.I 1868, - I 2 1869, —0.6 (870-72, —0.4 •873-74- 0.0 The.SC corrections are approximately those necessary to reduce flic star-observa- tions of the several years to Auwers's standard of declination. The change in the Green- wich correction between 1867 and 1868 probably arises from tin; introduction of a new 33 constiuit of refraction in 1868, \vliil(! tlio cliange in tlie Washington corrrclion in 1866 corresponds to the introduction of tlio largo transit circle in place of the old mural circle. Year. Correction to N. P. D. given by — Greenwich. Washington. N. L. S. L. N. '.. S. L. 1862 ti — 0.1 - 0.8 II - 0.3 - 0.8 18&3 + 0.2 - 0.9 - 0.5 — I.I 1864 + 0.4 - 0.6 + 0.8 - 0.9 1865 + 0.5 — 0.2 + 1.2 — 0.2 1SC6 - 0.7 - 0.3 + 1.4 - 0.6 1867 - 0.4 - 0.6 + 0.1 — I.I 1 868 - 0.7 — I.O + 0.2 + 0.2 i86g — O.l - 0.6 - o.S - 1.7 1870 - 0.6 — O.I — 0.1 - 1.8 1871 — 0.2 - o.B + 2.1 - 1.8 1872 0.0 0.0 - 0.7 - o.S "873 - 0.9 + 0.1 -f- 2.0 — 0.1 1874 • • • • - 1-7 -0.5 The large residnals of tl.c Washington observations of the south limb led to the application of the farther syslematic correction ot + i"-0 to all those observations before conibining them all. The corrections arising from the error of mean longitude were then ai)plie(l, and the out.standing residnals were considered to arise from accidental errors and from errors of the inclination and node. The equations of condition thus betiomc 0.92 sec S [sin (/ — 6) 6i — cos {I — 0) i 69] = dS or sin (/ — 6) Si — cos (/ — 0) i SO = 1.09 cos SX^S Owing to the smallness of the final residuals, 66, the factor 1.09 cos 6 may be consid- ered as a constant, and, in the actual solution, has been put equal to unity. lis mean value is more exactly 1.04, and its ellect may be obtained by dividing the final results by this factor. The final values of the residuals were then arranged according to the values of X— 9,or the moon's mean argument of latitude, as the residuals in right ascension were arranged according to the mean anomaly. The sum of the residuals corresponding to each interval of 20'^ in the argument, with the corresponding number of observations for each year, is shov/n in the following table : 5 M n^A-'Twmsmisfm^ I J II 34 Slims of errors of the moon''s eorrected dedinafiou, f/irrn />// ohserrntious at fireetnrieh and Wiishiiif/toii. LimliSdf ?. iSf, 2. 1S6: 2.M N. 186^ • 186; i86(: . 1867. X -II. 4 J3 0.0 «3 300 to 320 - 7.1 10 - 6.2 10 4- 9.6 8 + 3.1 5 — 0.1 13 - 8.4 10 + 0.4 8 320 to 340 + 2.0 7 + 3-4 8 + 6.0 12 + 8.6 6 + 8.4 II + 2.1 <> - 6.7 14 340 to 360 + 7.3 5 ~ 6.5 5 + 4.9 13 + 11. 6 8 + 7.0 14 + 2.9 3 - 3-1 12 —84.0 142 -75-0 J54 -49-5 156 —25.4 159 — 25.2 191 -93.1 '75 -85.9 203 +31.2 +45.8 + 56.6 + 75.8 + 69.5 +44.3 + 21.0 + 12.2 -52.8 —29.2 + 7.1 + 50.4 -72.1 -73.7 ■iMM wimtm 85 Sums of vrrnrs of tin' iimotCs ainrctrd (Icclhiutioii, d'c. — C(»iitimic(l 1873. 1869. 1870. 1871. 187a, Limits ufX, 1874. o to 30 20 (O 40 40 Id 60 60 tu 80 80 to 100 100 to 120 120 to 140 HO to 160 160 to 180 I So to 200 200 to 220 320 to 340 240 to 260 260 to 280 SSo to 300 300 to 320 320 to 340 340 to 360 IMJ II + 7.1 + II. a + 6.4 - 5.0 ! - 2.0 - «3.7 - It. 4 i - 15.4 - 2.5 - 5.4 - 5.4 - 6.6 - 18.4 - 7.7 - 11.4 + 5.3 + 5.7 0.0 -104.9 + 35.7 — 69.2 7 9 II 7 9 12 II 9 4 6 7 13 7 5 10 + 3-7 + 6.6 + 8.6 + 3.5 + 6.2 — 6.2 + 4.5 -II. 7 — 5.7 — 0.5 — 10.2 — I.I — II. I -15-4 — 10. 1 — 9.' -10.3 — 1.2 ><. ill,! 7 - 3.8 10 — 0. 1 10 - 0.8 7 + 13.2 9 + 13. 1 12 - 6.3 7 - 1.9 II - 4.6 13 - 5.1 6 + 5.4 12 - 6.2 9 + 9.1 S + 5-6 15 - 6.2 5 + 3.6 7 + 3-8 12 - 5.8 6 - 6-3 4 II II 9 9 8 7 9 II 10 •4 8 7 8 8 9 5 Sil.S N. :;.i,i n It - S.o C + 9.0 - 7.0 6 - 7.7 — 1.2 10 - 2.8 - 5-1 7 -'3.7 - 3.7 8 + 4.8 — 2.0 8 — I.O + 0.2 14 — 2.2 - 8.9 9 + 7.4 - 4.6 12 - 3.9 - Co 3 - 8.6 - 2.9 9 + 5.2 - 4.5 10 - 2-7 + 13.7 13 + 14.8 + 2.2 II +20.7 + 3-8 9 + 3.3 - 1.3 II + 4.3 — 12.2 12 + 14.0 + 0.3 9 + 7.2 155 -92.6 + 33.* 166 -47.1 + 53.8 -59.5 •1- 6.7 153 -67.4 -47.2 167 ; —42.6 +90.7 +48.1 It 9 + 7.7 13 10 - 7.5 7 - 17." 11 ' - 25.4 14 - 5.3 6 - 22.4 12 4 + 2.1 6 - 12.6 II - 5-9 10 - 7-2 3 - '9.3 12 - 15.2 6 12 - 4.6 6 9 - 3.5 6 10 - 5-5 13 S + 0.3 lo 7 + 4.0 10 II - 3-9 9 169 40 - 154.3 + 14. 1 140.2 The goiit'fiil irregiihu-ity of the residuals in (lecliiiiiliou is such that no great ad tage woulil result in a separate solution ot" the equations for the separate yetirs. sum of the residuals for each 20^ of the argument was therefore taken during the w thirteen years of observation, with the following result: van- hole x-e iAr! N. A-O SAct N. „ ,/ to 20 + 47-2 103 I So to 200 - 62.3 no 20 to 40 + 10.7 115 200 to 220 - 95-3 12S 40 to 60 + 6.1 119 220 to 240 - 73.3 126 60 to 80 + 12.3 124 240 to 260 - 32. s 127 So to 100 + 34.3 121 260 to 280 — 23.8 106 lOO to I20 — 3f'.2 III 2S0 to 300 - 50.1 123 120 to 140 - 27.4 120 300 to 320 - 5-4 115 140 to 160 - 65.3 124 320 to 340 + 19.2 122 160 to 180 - 65.4 126 340 to 360 + 20.2 no .1 ^.m^f^fiKm^.- imt M iUi -~^—- ■—^r~——^,i-Li^:±jMiiM^At, |w| Ti<'uviiij( in tin; ('(|iiiilinii« a ntiiHlni\l, Irrni '"i/i, n'j»n'si'iitiiiff (lif inniii roiisluiil crinr still oiilstatiiliii^ ill tlic iiicasiircs of tlt'diiialiDii, tin; solution of tin; ('(|iiatioiis of coii- y tin; residuals gives the l()llowing results: Jl>--n".i7 Ji, = + o". I 5 iJO- — iy"..\o or. Correetioii to the iiielination, — o".i5 Curr(!elioii to the longitude of node, +4". 5 This correction to tlie longitude of the node from Hansen's tabl(!S iniplies a diiiii- luition of the seeiilar retrograde; motion of the node, which is (|uitr; aecorl NC DIS CUSSION. Tlio loUowiiiif is a siiintuiirv of Ww, ('(trrccrKtiis to (lie l(iii^itii(l(! id' llic inooii riom IIiiiiscm's lul)lcs 1,'ivcti by llic preceding disciissioii. I'iie first six leniis an; iippliciililt! (() tli(! (lisliirhed mean Ningilnde, or '^'■Ari^itmen/ foiifliimr/i/ii/"; Ihe remainder lo Hie (rue loiigididi!; but tiic}' may all lie used as correclions of the "Ji^mnr/il foudaiiiinlnl" widioiit serious error: Concclioiis on accuitiil of (liiiiinution of the sular pdntl/nx . . n <5c z= + o" .(.)6 sin I) -\-o".o7m\{l)-g) On (icrount of /iif:r)//u'xis [lure in'orisioiHillij sef oxldr), that the moons atilcr of i^rorily t/oc^ not coincide with the center of figure, together with the correction to the erec- tion resulting from llie correction lo the eccenlr'iciti/ . . . n i^z rz + o".09 sin g' — o".3,^ sin : I) — o".2i sill (2 I) — ii) On iiccoiiiil of term nceidenlallu iiitroiliieed into the tiihles with a wrong sign ('ir — — o".62 sin {2 g — 4 g' -{- 2 m — 4 <>>') On account of correction to the eccentriciti/ ond perigee found from observations during i S47-74 6r zz — o".57 sin g — o".23 cos g =z o".62 sin (g'-f 202'^.o) Empirical term, neceamri/ to satisfy ohserratio)/s, hut not verified by theory + i"-5" '*'" [a' + 2 1 .6 ( >'— i S65. i ) J Unexplained correction to the mean longitude, changing slowly from year to year See Table IV. The deduction of all these terms, except th(! last, has been fully given in the pre- ceding pages. This secular correction to the mean longitude has been derived from the outstanding errors of mean longitude given on pag(! 30, in the C(dumn n Sz, l»y suppos- ing this quantity to vary according to some simple law, which law changes Avhen necessary, so as to satisfy the observations witliin the mean limits of their probable error. An examination of Table IV sliows, that, from 1848.0 to 1855.5, t''*' eornjctiou is supposed to increase uniformly at the rate of o".20 per annum. It is then supposed to remain constant until nearly 1S63.0, a period during which the observations are not continuous, there being no comparisons with theory from 1859 to 1861 inclusive. From 1863.0 until the present time, the observations are well represented by the corrcctioii — 5"-53 — o"-S6(^— 1870.0) -fo".02 (^-1870.0)- The continuance of this correction beyond 1875.0 is, of course, purely conjectural. TAr5I,ES FOR APPLYING TIIK PRIXKDIXG CORRECTIONS. The following tables are designed to facilitate the computation of the corrections mmm m .■■} M 38 just <.'ivfi). To avoiil tlic iicccs.sity of lelcniii^ to Huiiscir.s (aides, the valiU's olall the necessary argimieiils arc yiveii lor the years 1850 to 18S9 in 'lalth's I to 111. Talile I: tlie epochs are January o, Greenwich mean noon of common years, and January i »d' leap years. All the ar^fumeids increase iiniforndy i)y a unit in a day. Ar^rnment g is the moon's mean anomaly, converted into days hy dividing its ex- pression in deirrees l)y 13.065. It is equal to llan.sen's argument g diminished l»y 15 days. Argument D shows the number of days since mean new moon, or, it is the mean departure of the moon from the sun expressed in days. It is ecpial to Hansen's argu- ment ^^ diminished by 30 days, or, which amounts to the same thing, by o''.47. Arirument A gives the number of davs from the time when the anjjle 2g — 4g' + 2a) — ia)' was la.st zero. Arirnmeiit li is that of the empirical term indicated by observations, but not given by theory. Arl('. Tiddes II and III do not seem (o U(.'ed explanailoii. In using the former, ean; must l»e taken 1 + ir') 4-o".09 sin g' Tl le sun's mean anomaly, g', having a ])erio( dof I year, the sum of these terms can lie expressed as a function ol' .'> and llie nioidli, and is given in the table for the middle of each monili, and for each day of J). Table VIII gives (h(! sum of (he terms ol true longKnde which depend wholly or partly on the moon's mean anomaly, namely: + o".62 sin (g -f 202".o) + o".o7.sin(/; — 5-) — o".2i sin (2 D — g) Tin- sun; of the terms of n S: are to bo reduced to eorreclions ol the 'ongitude in orbit by multiplication by (he fad or 1 -f- 2 f cos r -f -^ c'- cos 2 g. This factor, less nnitv, is iriven in T.ible IX. !^ 39 'or convenience, the unit of the faclor is uniittctl from the lahiilar luiiiil necessary to adt icrs, so llial it IS only necessary to add the product / X « '^- i" ""i tiic cor- rection of the true longi(nd<' in orlnt. These corrections being applied to llie longitude of the moon's center from Han- sen's taldes, that longitude may he regarded as correct, exce[)ting a small correction, wiiicli may probably be regarded as constant during any one period not exceeding six months, and which may be attributed to tiie adoi)ted position of the e(piinox. It will l)e best determined from occultations of stars observed at points whos(! longitudes from Greenwich are accurately known by tehigraph, and will then be applicaljle to the determination of the longitude of any station from occultations. If the corrections here deduced are applied to the (,'rrors of the lunar eplunneris derived from meridian oliservations, it must bo remend)ered that thesi; observations are made on the moon's limb, while the corrections are applicable to the center. Hence, the value of the moon's semi-diameter must, if great refinement is aimed at, be varied with the ob.servef, the instrument, and tin; brightness of the sky. For large instru- ments, Hansen's semi-diameter is about i" too great, even at night. The sum of all the terms of n S:, Sr, and FX" ''^- f'''>"^ the tables will l)e the correction of the longitude in orl)it. Tliis will not be rigorously the same as the correc- tion to the ecliptic longitude. Table X gives the small factor (F. I) liy which the orl)it longitude must Ijc increased or diminished to ol)tain the ecliptic lonirituile. This tiictor may g(.'nerally be disregarded. Table X al.so gi\es the data tor the- correction of the moon's latitude, namely, (i) a flictor (i\ /?) by which the correction of the moon's argument of latitude must be multii»lied; and (2) the term •^/^ = — o". I 5 sin u arising from tlie correction to the t.djulav ni,-lin.uion of )) i!f , (,3.«).V . . AM . . . (v . il) M' . (I ■<-/)..)) iVi iIDcc. , , 1-55 46.5 -i3.o8 -12-75 ^17.2 -t- 0.082 — 0.07 - 1.3S — 12.51 —12.22 -17.0 -16.7 + 0.070 + 0.056 O. 10 : — O. 12 1. 19 0.93 0.28 0.06 — 11.27 -1- o.i3 — 11.91 - IC.4 -I- 0.038 - 0.14 - 0.63 -11-55 — 11.09 - I--I5 Co. 7 13.49 -+- 0.47 I + 0.32 — 1.29 74.6 83.1 -13.84 j -13.81 -1-0.16 ! -f 0.02 0.77 101.5 —16.0 —15.6 -f 0.019 ~ 0.002 - 0.15 — 0.30 0.15 o , 03 9.12 0.18 I .0! 0.22 0.48 + "-37 -10.64 -15-I — 0.14 + 0.33 - 0.45 114-5 -13- -12.6 -0".84 - 3-70 - 1.50 - 5-2 -13-2 -o'.88 — 2.64 - 1.42 4.1 -13-7 — o". 91 - 1. 41 - 1.23 2.7 •13-8 -0-.92 - o,l3 n-5 .90 — I2.6r 1 — — 0.09 -12.7 — o'.85 -t- 1.02 -(-2.05 - 0.77 - 0.44 + 0.2 -j- 1.6 + 3-5 ^ •tmm S*:s . sS3KS S S ■^ 41 This (..miMifalion Ims Ik.-.;,, cm.fiu,.,,-.! tu .875, Jai,u,-,-y 3 ., an.! ll.r n..s,.lls ;nr slKtwii III ilic lollowiiiy tal)Ie: Corrections to tlw Ephrnirris drrircl from Jfansnfs Tables of the ^foo^, fhr firrninhh inmn ,»,.>„ of cuh itnij, from 1S74, Srpfemhrr 1, to \^--^, .htnnor], 31. D.itc. Corrociion to latnil.ir — Date. Coircciicui lo i.ij.iihir- GM Gr . nicm ~ — I -T ^- n oon. ^:-i. Lonif. Lat. i R.A Dec. tir. nu-; ii i no„n. I ■-on,^^ Lat. R. .A. Dec. ■ . ^^ lS7(. ' St r'- — I2.S — I. <■ —12, <> - ■;.: (JlI. II — 7.5 + '.I - '>.1 -r 3.6 2 12^ I . '- '3- 2 4.1 >2 7.2 1.0 6.S ^ 3.2 3 12 5 '• 3 13. 7 2.7 13 ('.') I.O 6.S ' 2.7 1 A 12.2 I. ' >3. ^ — 1.2 14 i 6.6 "•8 : 7.0 2.., ! 5 II. 9 0. 5 ; 13. 5 + 0.2 '5 j f).4 ^•7 7.0 1.3 1 t -W.I, — 0. 5 j —12. 7 4- 1.6 If) i — 6.2 + 0-5 - 7.0 + 0.6 7 II. I — 0. I II. 6 2 7 17 fi.i 0.3 6.9 ' - 0.2 3 10.6 + 0. : i 10. < > , 3-5 18 6.2 ! + 0.1 6.S I.O 9 10. 1 0. > i 9.< >\ 4.1 '9 6.4 f — "•' 6.6 i.s r i 10 .J.6 o.- j %.i ' i 4-3 1 20 1 „ 6.8 ; 0.4 6.6 2.5 II - 9.0 + C.f ) - -■' ) ' + 4.4 - 7-5 — 6 — f'-O 1 — 3-3 12 5-3 I.' 7 • ' 4.2 22 j 3.3 1 0.9 7-3 ', 4-1 '3 7.'j 1. 1 ''■: 3.S 23 9.3 I . t ■^•i 4.7 M 6.3 I.I 6.2 3-3 24 ! I". 4 '■3 9-2 5.2 ■5 6.2 I.U 5.Q 1 2.8 11 '' ■'•■' I .; 10.6 5.2 \U — £.6 + 0.9 . - 5-7 + 2.2 ii 2(, — I 2 . .4 - I.= ■ -12.2 - 4..S >7 5-2 c. 7 5 5 1.6 27 13.2 '.4 13-9 3.8 H 50 0.6 5.5 I.O ll 28 13.6 1.2 15. I 2.3 19 5.» 0.4 c.? •i- 0.3 29 13. s 10 15-7—06 20 ■•4 + 0.2 6.1 - 0.4 3" 13. f' 0.6 13.3 4- I.I 21 - 6.1 0.0 - 6.6 — 1.2 ■' 31 1 -13-2 - ".3 -14.2 -r 2.6 22 7.0 — 0.2 7-2 2.2 ■N''n-. I 12.4 + 0.1 12.6 3.6 23 S.I 0. 5 7-5 3.2 2 11.4 0.4 II. I 43 24 9-4 0.5 8.5 4.3 ji 1 1 3 I'l-S "•7 9-6 4.5 2; »o.6 I.I 9-3 5.2 4 ; 9-5 o.S 8.4 4.5 20 — II.S - '3 -10.3 - 5.8 5^-8.5 + I.O - 7.4 + 4.3 27 12.7 '•5 11.5 6.0 6 7.7 I.O 6.7 3-0 ■ 25 '3-4 1.6 12. S 5.7 7 7.1 : I.O 6.3 3-5 29 '3-7 '•5 «3.9 4.8 8 6.6 1 .0 6.2 3.1 \ 30 13.? 1.4 M.9 3.4 9 6.4 I.O 6.2 2.6 Oct. I -13 5 — 1.2 -15.2 - '.7 10 ' - 6.3 + 0.9 - 6.5 + 2.1 2 130 0.9 '4.7 -o.t II 6.3 0.7 6.9 '•5 3 12.2 0.5 ■ 13.6 4. ,.4 12 6.5 0.6 7.3 + 0.8 4 I I . 5 — 0,2 12.2 2.6! 13 6.8 0-4 ; 7.7 — 0.: S ro.6 -t- 0.1 10.? 3-3! 14 7.r + O.I 1 7.8 I.O 6 - 9-9 -^ 0.4 - 9.4 + 3.g »5 , - 7.4 — 0.1 , _ 7,8 - 1.3 7 9-2 0.6 8.4 4-1 16 7.7 ■-'•4 7.7 2.7 8 8.7 0.3 7-7 4.2 '7 8.1 ( 0.6 7.6 3.4! 9 8.2 I.O T.2 4.2 18 8.4 0.8 7.6 4.0 to 7-8 I.O 6.8 4,0 19 8.9 I.O 1 7.8 4.5 , •t ' i St 42 M ' »4 '#? ,.„,.,.,.,„■„„. ,„ <,..■ r:,.i. :^ .i^rirM /,■ //»»«■«•» ''«'■'■- •:' "- ^' "-<■---'• [);ilc. Cil. HUM ■ i?74- Nciv. I I.uMK. Lai. K. A- n^'<--- 20 i 21 ; I 22 I '-3 24 25 Dec. 2S, 2.) 3" I 2 3 ■1 5 6 ^ 7 ; 8 i 10 II 12 13 14 15 16 17 IS 19 20 21 i 22, 23 i 24 I 25 2f) - <)-4 1 0.0 10, f) 1 I .2 I I .7 -12.2 ..2.5 I 12.f) 12.5 ; [2. I -11-7 II. II 10.3 i 94 S.5 - 7-7 6.4 6.1 'j fi.o -6.1 fi.4 6.S 7-4 S.o - 8.7 9'3 ')■') , 10.3 ', 10.7 — I I . o 11.2 I1..1 11.4 II. 4 -II. 3 i II. I - I . 1.3 1 . 3 1-3 1 .2 - 1.11 o.fi ■■ I - 0.3 . (l.O h ".4 + 0.7 I .1 I 1.2' 1 .2 + I.I I .0 U.() ' 0.8 ' .).fi + 0.4 + 0.2 0.0 - 0.3 : o.fi - 0.8 I 1 .1 i I .2 1-3 1.4 — 1-3 1 .0 0.7 0.4 — O.I + 0.3 - S.2 m. 1 11-4 12.7 — 13.S 14. I '3-^ 13.(1 ii.y -ID. J ')■') ')■" .S.2 7-5 - 7-" 6.8 (i.f) 6.5 I 6.7 I 7-3 7-5 7.f) - 4.S 4.3 3S 2.1' — 1.2 + "'S ;, 2.0 \\ I; 3-3 1; 4.3!! -t- 4.<) !| 1 5 -Ml 11 J -f- 3.6 ii 3.0 2.3 o.g « + 0.1 , I ~ °-" i^ 1.5 :. 2.4 3-3 DaU'. Gr. mean ! nnoii. I i 1374- ' Dec. 27 Coiroclioii Ici laliiilai — Long. L^t. R-^- ^'=''- 10.8 10.4 •'). I . 6 I.m. - 7-8 S.l 8.6 ■).2 10. — II.O 12.0 12.7 12.9 ! 12.6 — 12.0 II. I I 4-7 5.0 5-' 4.8 - 4.1 31 1-7 — 0.2 + 1-3 + 2.6 3-<> I 3 ; 5 ! 7 III - 8.7 8.2 7-8 7.4 7-1 - 6.,) 1 6.8 6.., 7.6 4- 0.6 o.S l.o 1 .2 1 .2 + 1.2 I I 1 .0 — 10.2 ')-5 ,5.() S.4 S. 1 - 70 7') 7- 9 1 '3 14 I 5 16 17 iS ■9 20 23 24 2"; 26 27 28 2>) 30 3« - S.o - 8.6 ().2 0-7 10.3 -in.S II 2 11? II .•' 1 1. 6 — II .; II. I 10.7 10.2 0.6 - ')•' 8.5 8.1 7.7 7- 5 0.6 + 0.4 + 0.2 11.1' - 3-5 2.9 2. 1 1 .2 + <>.4 — 0.5, 1. I 1 .0 1 .1 I . I 1 . I 1 . 1 I .u 7- i 7-3 : — 7.3 7 5 8.1) 8.6 9.5 -10.6 11.7 12,6 13.1 13.0 -12.4 11.4 10.3 9-3 S.5 - 7-9 7.5 7-2 7-2 7-4 3.0 I - 3-7 ; 4-3 ; 4.7 ! 4.9 4.8 i - 4-3 ' 3-4 ' 2.2; - 0.8 1 + 0.8 I + 2.2 ' 3-3 1 41 4.5 I 4.6 I i + 4. ft j 4-3 I I 4.0 1 3-5 , 2.0 1 - 7.4 . -I- 0-9 - 7-7 + 2.3 II "W! '53 23- 1 20.0 4-; 3' = .S .\l.Til ^) 7-3 '•4 9-3 7- 7 S.4 1854 2.4 l.l 14. f II .5 1 ,7.0 -May 9.8 1.9 "•'J 10.3 II. 2 >?;? 9.2 II. S S.-l 19.9 ! 1 .0 1 11 nr I) 13.2 3-3 S • 7 Ij-S 14.9 I-5'' H 17. i> 23.4 3.2 1-9 ; .3.3 J Illy " , 15-7 3-'^ 3-5 '"■4 '7-7 '^57 25-5 4.5 •3' IU.3 24.5 A UK. 19. 1 5-3 2.2 20.0 21 .5 1555 30 •51 6.. i3.7 8.5 ."^t'l)!. 22.6 6.S 0.9 23.6 25.2 1859 9.S 25.8 0.7 27. 1 19.8 Oi;l. 25.0 7-2 14. s 26. 1 0.9 4-7 1S60 B 17.0 7'J \\.( 9-' 4.S .\'uv. 0.9 S.7 '3-5 2.3 l56i 24 4 1S.5 ^.■i 17.5 16.0 r)fc. 3-3 9.1 II.3 1 4-S 1 7-5 1862 3.6 10.4 29.2 10.2 i;.2 9.0 25.9 6,9 0. I 11-3 -^ I.. _. 1S63 f In |;tmiarv ami i-jl riiarv 0! Icaiivears. 1S64 H 1S.2 21.9 3- 7 16.3 23.6 iIk' niMijliirs lak .11 liom Tahli 11 ai.- to be ise.. 2;.o 3-0 13-7 24-7 7.6 iliiiiiiiislu-d liv a unit. 1S66 4-2 13.6 7-4 5-7 IS.S 1S67 II .0 24-3 i 1.2 I4-I 2.S '1' \lil.i; III. 1 565 B 15.5 6.4 1 I-M ~i-'> 15.1 1S69 1S70 25.6 4.5 17.0 27. f, 5-9 15-3 4.4 1 2 . S 2(1.3 II). 1 J\noili ( /■ ///<• .hi;/i///)///s. i?7l 1S72 B II. 6 19.4 S.7 9.6 21.3 21. d 1 /) A B II 20.4 1- 1 3- - — - ■?T3 26.2 1.5 14-3 W.U 1 7 . l.l ! ''74 5-4 12. 1 S.o 20.0 . 1.9 /' . . 27.6 i 29.5 16. 1 27-4 27.2 1S75 12.2 22. - , ", t ■!> . 13. I 2 /' . • 55-1 ; 59-1 32.3 54-9 5*-4 I57f> H 20.0 4.> 12.7 10.4 - = ■ 1 i /' . • 1 ^^'7 i S3. 6 4S.4 >2.3 -1.6 •?77 ;'■- . 5 6.0 '5-5 26.1 6-5 0.3 IS.S 9-1 20. 7 4 /' . . (110.2 ! 1 iiS.i 64.6 lo4 B 21.2 3-3 , 13-3 24. S S-5 1SS5 0.; 13.9 ; 7.1 5.S '97 lS56 7-3 24.6 i 0.9 14.2 3.7 IS 57 14.0 5-7 ; 10. S 22.6 15.0 18S8 B 21. 5 17.3 1 5' 5 4.6 0.0 1SS9 25.6 27.9 j 5.4 13.0 11.2 «?^ i 1 t Taulk IV. SfCiihir Terms. War, H.h DilV. Tahlk V. Aij^iimcnt A. I84S.O 0.00 + 0.20 1849.0 ■(- 0.20 0.20 1850.0 : 0.40 0.20 1851. 0.60 0.20 1S52.0 ' 0.80 0.20 lS?3.o 1 .5().o I. 5" 0.00 1SJ7.0 1,50 0.00 iSyS.I) 1 ,50 0.0*) lS5l).0 ; + 1 5" O.IH) iSfio.o 1.5" 0.00 1S61.11 1.5" (1.00 l8fi2.o 1.50 — 0.03 I«63.() 1.47 — 1.12 lSfi|.o + "-35 - t.oS r.Sl.^.o - 0.73 - 1.04 iSMi.o - 1.77 — 1.00 1S6-.0 - 2.77 - 0.,/. iStiS.o - 3-73 — 0.^2 i,8(>().o - 4.'>5 — 0. 3S 1S70.0 - 5-53 - 0.S4 1S71 .0 - f>.37 — o.So 1S72.0 - 7-'7 - 0.7(1 1S73.0 - 7-93 — 0.-2 1S74.0 - 8.f,5 - o.()8 iS75-" - 9-33 — o.fi4 iS-O.o - 9-97 — o.Oo 1877-0 - 10.57 - -.1.56 1S73.0 -11.13 — 0.52 1S79.0 -ii.f.5 - 0.4S iSSo.o — 12.13 iv TAiii.i: VI. A i-^ii nil-Ill J> {Eiiipiiiciil Term) B dv B iv 0.(X) 0.00 40 4- 0.31J I - 0.23 I + ".34 41 + 0.05 2 - "-44 2 0.(1(1 42 - 0.29 1 3 — "-57 3 " 95 43 — (12 4 — 0.(12 4 1-19 41 — 0.91 5 - ".57 5 4- 1-37 45 - 1 . 1 () 6 — ".44 7 — 0.25 (1 1-47 4(, - 1-34 8 — O.U2 7 1.5" 47 - 1.40 9 + 0.22 S 1-45 4* - 1.50 10 0.42 9 1 .32 49 - 1.4O 11 j 0.5(1 10 + 1.13 5" 1.34 12 0.(12 1 1 0.S8 5' - 1.1(1 "3 0.58 12 0.57 52 — . () I 14 \- 0.4(1 13 + 0.25 53 - 0.(12 15 0.2(1 14 — 0.10 54 — 0.29 16 + 0.03 17 — 0.20 1 5 - 0.41 55 -1- 0.05 1^ - 0.4.1 lO - "-75 5'> 0.39 iv — 0.5(1 17 — 1.03 57 0.71 20 — 0.62 iS - 1-25 58 "■99 21 - "-59 19 - 1.4" 59 1 .22 22 - 0.47 20 - 1.49 (10 + 1-39 -. — 0.2S ".) 21 " 1.49 (u 1.4S 24 — 0.05 ; 22 -■ 1.42 ()2 1 50 25 -i- o.lij 1 — 1.27 63 1.44 26 0.40 .-.> 27 0.55 24 — 1 . u(i fM 1.30 28 o.f.2 25 - "-79 (15 -f- l.oS 29 0.59 2(1 — 0.4S (1(1 0.S3 30 + 0.40 27 - 0.15 ('7 "■53 31 0.30 28 + O.ll) 6S t* 0. 19 32 4- 0.07 =9 "•53 fi.j - 0.15 33 — 0.17 30 + 0.83 70 — 0.4S 34 - 0.3S 35 - 0.54 31 1. 08 7' - "^79 3f' — 0.62 32 1.30 72 — 1 . 06 37 — 0.60 33 1.44 73 - 1^27 3S - 0.49 34 1.50 74 - 1.42 39 - 0.31 35 + 1.4S 75 - 1.49 40 — O.OfJ 3& "■39 7f> - "■49 41 4- 0.15 37 1 .22 77 - 1.40 42 0.38 38 0.99 78 - 1.25 43 0.54 44 n.dl 39 0,71 79 - 1.03 45 4^' o.Oo + 0.51 4iJ 4- 0-39 So - ".75 j 47 0.33 48 4- o.io 49 — 0. 14 50 — 0.36 47 Taiilk VII, ;mL-. yhx/i//ii/i/s, /> ii//,/ lilt- inoiilli. P j.iri. Fell. Mar. Ainil. M.iy. hiiiu. July. \u\i. Sc|)t. ()i|. Nnv. |)i(\ o — 0.01 — 0.113 — . 04 — "."l —0.03 — O.OI + o,"l + 0.03 •) 0.04 + 0.04 + "■03 + 0.01 1 + 0.03 t-O.OI + 0.02 + "."3 +"."5 + i).oS ' 0. 10 f 0. 1 1 + ". I 1 -♦-(). Ill t- ".07 t- 0.05 2 o.oS n.oi) 1). 10 0. 13 o.Kj O.K) (1. 21 (1. 2l> ". I(j (i.Ki ( 1 . 13 0. 10 .1 0.16 O.ICJ 0.22 (>.2(> ". 2(J ".32 0.34 0.31 0. 2^ (1.24 (1.21 . I S 4 0.21) 0.32 <>,3.S "■43 0.4(1 "■49 "■49 0.4(1 ".41 o.3(, "■32 o.3l) 5 HH--15 +0,50 + 0.56 1-0. fj2 +-().6fi 4-0.67 + 0.(17 + 0.02 + ".5.'. (-0. 51) ■(- 0.4(1 1- ".45 6 <)-''3 (J. (18 0.77 ()..S3 0.8; 0.S7 0.S5 "•79 0.71 o.(jr 11.(12 ( 1 . 60 7 o.So 0.S7 ...(y> 1 .02 1 .0; l.(i(i 1 .112 "•93 o.Sd O.So "■77 (..76 S 0.93 I .U2 1 . 12 1 . iS I .2(1 I.|.| I.I? 1 . ( .( 1 (1. (/i 0. (>(i (1. 8h (1. 8i| I) 1 .02 I . 12 1 .21 1.27 1 . 2. J 1.27 1 .21 1 . 1 1 1 .01 "■95 '14 0.(16 l<> -t-l." 0.77 "■79 "■74 D.flfl 0. 5(1 0.46 0.37 "•35 0.40 0.4S 14 hO.2.'* 0.39 0.47 (..4S 0.42 t-o.32 + 0.22 + 12 H"."4 + 0.03 )- O.Oi) + 0. IS 15 ~0.()2 + O.0S +0.14 10.11 + ".07 — 0.03 -0.13 -".23 — ".3" -0.3.1 — (1.22 — 0.12 ,0 — 0.34 — 0. 2. ~0.20 - 0.22 --o.2(; -".40 —0. 5(j -"•59 — ".64 —0.62 - "■55 - 0.44 17 - O.dll -0.53 — •'■49 -0.52 -0.61 — 0.71 —".Si -"..*.j -o.()2 -o.8() — 0.81 — . "( ) IS -O.SI -0.74 -0.72 -".7(. — O.SO -"■')7 — 1 .05 -1.12 -I.I 1 — 1 . 00 — 1 . (i( J - o.S.i •9 -o.()3 -O.S5 — o.SS — ".S(j — 1.02 - 1 • 1 3 — 1 . 2 1 - 1 . 2(1 -1.23 -1.22 — 112 — 1.01 20 -o.rj7 -o.(ji -0-94 — 1 .(«) — 1. 1" — I . 2 E -1.27 -1.3(1 -1.3(1 - 1 . 24 - i.i-i ■ I.03 21 -"■93 -u.(j2 —"•93 -"■99 -l.(i(j — 1 . 18 -1.24 — I 25 -1.23 -1.17 — I.oS - o()(| 02 — 0.S3 — 0.S3 — 0, SO -o.(p — 1 .01 -:.()(j --1.13 — 1.13 — 1.1(1 -I. (11 - o..,5 - .J.S7 23 — 0.6(> —0.70 -0.72 — (!■ 78 -0.S7 ""■>)4 -(.../. -"•95 -".(J2 -O.Sll - 0.7S - 0.67 21 -U.51 -U.54 -"•59 -().f)4 -".71 -"■77 -"•79 -"■77 — ".72 -0.67 — 0.60 — "■rS 2? -i).37 -0-39 -"•43 -".4S ^"■54 "'■•59 -"•."9 — (J. 5(1 -0.52 -"•47 - (I.41 — ■ 3 7 26 -0.23 -0.27 -0.31 -0.36 -".4(1 -".41 -0.41 -•).38 -"34 — (1.2') - (1.2? - "23 27 -0.1-1 -0.17 — 0.2" —".2-1 -".27 — 0.23 -0.26 -".23 — 0. 21) — 0. Id — ".13 — 0. 12 2S — 0.07 — u. 1 1 -0. 12 -0.15 — " . 16 —0. if) -0.14 — (1. Ill — 0.0(; — 0.0(1 — "."5 - 0.05 2 + 0.0; + 0.02 31 + 0.05 + 0.05 +".07 1-".o3 + 0. 1" 0.13 ".15 0.16 0.14 0.13 0. 1 1 0.07 32 + 0. 12 +0.14 + 0. 16 + "• 19 + 0.22 +0.26 + 0.27 + ".26 + ".23 + 0.20 ■1- 0.17 + 0.14 Ncri'.. — Each coluinii error ever exceeding o.' o; is compiuecl for the miilclle of the inoiuh, litit in If much j,'rcater accuracy ihan this is re(|uired ly 111.' iiseil for the entire iiionlh witliout an a horizontal interpolation inust lie used. h J If JlS5®fe!fe-}ftwTlPljS,t,W3.»»i :4mm%'smtr^m( 48 TAiii.i.; VIM, — ,c, <'/■ /v*— ^• + 30. / \-rt'u\il Aixiiiiinit, 1;. i A I ;. 1," I O I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 IS 19 20 21 22 23 24 23 26 27 2S 29 30 ■O, — o. -o -o -o.. -o. — n. — o. •0. ■0. — o. — o. -o. o. -o. -o. o. o. o. o. +0. i "• o. o. o. -)-o. h<. . o. — o. -o. — o. 23 I 39 54 fjf. 75 r^ So 78 — o — o. — o. — o. — o. — o. — o. — o. "' — 0. 62 — 0. 49 -0. 33 — 0. IS — 0. 00 +0 >7 32 +0 46 5S 67 ° 73 74 +0 70 64 55 45 2.) +0 15 +0 02 — 17 — 3' — 45 — 30 60 71 77 81 Si 7ft 6S .50 !— o ( 41 j-o. 26 i— o. I oS +0. — o. — o, -o. — o. — o. — o. — o. — o. — o. 10 2f) 42 56 63 76 i o 80 j o 7(}'+o o o +0 o o i .67 • 57 • 43 .25 J+-0 .11 ' f o J .06 — o .22|— O .38J-O •52I-O 36 — o.3() j-0.31) 5" -0.53 —0.50 6j -0.621—0.58 I 7-.; — 0169;— o.6| 77|-"-74!-o.fi7 So'— 0.74 i— 0.66 I 76 —0.70 —0.60 i I 71 I — 0.62 1—0.52 61 i— 0.51 1—0. 2 47 —0.33 — 0.2S 33 -o.22:-o.i3 lO ,—0.06 1+0.03 03 +0. II O. Iq i . I9j 0.23I 0.35 .36' 0.45 I 0.50 .52;+o.59i (-0.63 I 1 .65 0.71^ 0.73 .75 I o.So .82; 0.84 .S3: "•84 . =1 +-0.S0 ■ 1'' +"-73 .67 f-o.62 • 54'+-o.49 ■ 3) +0.33 0.79 0.S2 o.Si (0.76 o . 67 0.56 0.42 0.26 22 -l-o. 16 j +0. 10 .06 -o.oi i— 0.09 12 — 0.20 -0.26 30 -0.37 -0. |2 46 -0.52 -0.^7 60 -0.66 — 0.69 1 -0.35, I -0.44 -o.52| -0.56J — 0.5S -0-55 -0.50 -0.43 -0.32 — 0.20 —0.06 -1-0 09 0.24 0.3S 0.51 +0.62 0.71 0.76 0.77 0.75 f-0.69 . 6n 0.4a 0.3; n.2') •)-0.02 i -0.14 — o . 30 — o 46 -0.59 -o.6f, -o.aS —0,36 -0.43 -0.47 -0.48 — o 46 —0.42 -0.31 -0.26 -0.14 —0.02 (-0. II 0,25 0.37 "•49 + 0.59 0.66 0.6S 0.69 0.67 +-0.61 "■53| I 0.421 + 0. 13 —0.01 -0.16 -0.31 —0.46 -"•54 —0.60 — o. 19 —0.28 -".34 — ".37 -0.39 -0.311 -"■35 -0.30 — 0.22 — O. 12 — 0.02 t-O. 10 0.21 "•33 "•44 HO. 53 0,5 s o . 60 0,62 "■59 f 0.54 0.47 0.37 0,21 + u. -2 — 0.02 — o 16 -,).3n -"39 -0.47 — "■ 54 -o. 1 1 — 0.I9 —0.25 —0.31 -"•34 -"•31 -"•33 — 0.2S —0.22 -0.15 —0.06 + "."l O. 1; 0.2l'i "■37 | + "-43 ! 0.48 "•53 "■54 0.53' ,+-0.49, 0.43! "■33 n.2| 0.13 ■fo.oi - -"■13 — 0.22 -0.31 -" 3); -"■44i '> 10 II 12 •3 «4 -0.03 4-0.02 +0.03 o.no — (1 . nfi -n. 1; -0.12 — 0.09 —0,09 - . 1 .1 — 0.22 -n.31 —0.20 -0..9 -0.21 -0.27 -0.35 -0 45 -0.27 — n.26 -0.31 -0.38 -0.47 -",58 -0.31 -"■33 -".39 -0.46 -0.57 —0.67 -"•34 —0.36 -"•43 -"•53 -:>.64 -"•74 -"•33 -0.3S -"•47 -"■57 -0.67 -0.76 -0.31 -0.3S -"•47 -"•57 -0.67 -"■73 -0.27 -0.35 -0.45 -o.;.| — 0.61 -0.6.^ —0.21 —0.30 — 0.3S -o.)7 -"■53 -0.53 -0.13 -0.22 —0.30 -"■37 -".44 -0.4S —0.03 —0. 12 — 0. 19 :-o.23 -0.33 -"•33 (-0.07 —0.01 — 0. 10 .-0.17 -0.18 — 0. IS 0. 19 l-o."9 0.(«) '-0.03 -0.04 —0.01 0.27 0.17 4-0.13 '+0. 10 -fO.II 4-0. 14 *-"34 f0.2S +0,23 +0.23 -:-o.24 -(-0.29 0.42 "•35 "•33 "•33 "■37 "•43 0.46 0.42 0.41 "•43 0.4S 0.56 0.49 0.46 "■47 0.50 0.57 0.65 ' 0.4S 0.4S 0.49 0.56 "•63 0.72 ,+0.47 +0.46 4-0.51 + 0.5S -(-".67 + "•73 ' 0.41 0.41 0.51 0.58 0.65 0.71 "•35 0.40 "•47 <--?3 0.60 0.67 H.27 , "^33 0.33 0.4S "•55 . 60 0.17 0.22 0.31 0.40 0.46 0.50 +0.05 ■4-O.I4 + 0.24 +-0.31 -l-o.jft + "•37 — 0.1)4 -j-o.ofi 0.13 . 20 0.23 "■23 -0.13 -0.<)| f 0.04 +o.of + 0. 10 -fo.oS —0.22 -0.13 — cr.07 —0.02 -o.oi • —0.07 —0.29 —0.22 -0.15 -0.13 -0.15 —0.20 -0.36 —0.27 1—0.23 —0.23 —0.26 —0.32 , ^"^■Mf »■'!'?" I ■ 41) Taum; \'I 1 1, '"i^ — ( '(Hitiiiiicil. lloli.oillill . h.;iiiiirilt, or . Ir^iiuii'ii/ ,it l,f. /' — -, or /;_ -4. ^o. / i rlioil . hxiiiiirii/, -. 15 I'l 17 |S I, ■Ji -M ■J.J y> -0.25 -0.35 -0.41 -d. )S -0.4S - (1.4(1 — o.4r '—0.31 --(1.23 d , 1 1 - 1 1 d, -0.117 -0 oS — d. 1 J .11- 11 Jii I —0.41 -i),5i —0.58 -II. fiii; — o,(i(> -o.5f.— 0,48 —0.40 -i( 1(1 — 0.25 - O.SO— 0.2(l - 0.22 -0 2.S -d.3: -d 42 2 —0 56—0.64 — o.fig— 7tl~r).fifi: — 0712—0.55—0.45; —0. 3() -"33-" 31 !— 0.3s _0.3(l;-0, (3 _0 51, -0 57 3 --0.6S -0. 7t — 0. 71) — (1 7S -0.74 -.7d 9 —0 60 —0.56 — (\ 51 —0,43 -0.37 -(1.31 — 0.26 -0. 2( —11. 30 -().3(. -d.43 — (1.51 -0.58—0.(12 -d (12 -<>.5() 10 -o.4^ —0.42 —0.35 —0.2'^ -(1.22 — (1. 16 -d. [4 -d. ifi -0.21 -d.27 -0.35 —0. 13 -d, |i, -0.52 —0. 51 -11. 15 II —0.30 —0.2? —0. 1 ()—'». 1 2 -0,05 — (i.di —0.02 — 0.04 —(1. Id -d. iS, -0.27 -0. 34 —11.311: -0.401—0. 3(1 -11.21) 13 -0.13 —0.08—0.01 +0.07 fo.12 K). r3 + >.i2 fo.o"* o.dii — o.di) -0.17 -0.23 -d. 2(1 -11.2: -d. 2d 11 13 13 +0.03 4-0. 10 f d. I)- d.2J! 0.27 (1.28 d.2C d.lS t-o.ld f 01 -0 0(1—0. 12 —0. 13— 0. 10 -o.dj 1 d 115 14 0,20 0.2S 0.35 0.411 0.43 (1 41 d.3f 0.2" 0. Ill 0. 10! 4-0. 03! o.diM d.dl| -t-O.O^'H-O. 121 d. 22 15 + 0.37 + 44 +0.51 4-0.55, +0.5; to. 51 -f- 0,44 -f-0.35 fd.2(i 4-d. 1 - -Ki. 131 +(1. I 1 I 1), 1 ■; -I (1. In K).2-^ ! 11. 3(1 16 0.51 0.5S 0.6= o.fjfi o.fii 0.5S 0,50 '-l-o.3( +0.32 -t-o. 3' •4-0.40 i-d. 511 +(1.(111 ( d. 71 ! d.77 21 0.76 o.^h "■73 "■(>r 0.57 (J. 47 0,31' 0.31 0.2S 0.28 0.32 d. jd d. 51' d. ;i) d. (i,^ ".-3 22 a . 70 0.68 ().fi4 0.55; 0.4; 0.3(1 d.2.*' 0.23. d.2d d.22, o.2^ 0.37 d.4(' 0.55 0.62' 11.(1(1 23 o.fio 0.5S 0.51 0.42 0.32' 0.23 O.lfi -ho.ll o.ii 11.11; 0.22 0.311 0.411 0.4,^ 0.5-! "•57 24 0.40 0.43 "3= 0.2(1 t-d. i( ,-f ii.dS +o,or — 0.01 -Ki.dl T-d.d'i d.I" 0.22 d.31 d.3> 0..13 "• 14 25 1-0.34 fo.27 rd.K) hd 1 d.di ' — d d7 — d. 1 1 -0 14 — d. 1 1 — d.115 +-".d| -|-d.l2 t-d. 2(1 -l-d.27 )il.3( t-d. 21) 2f) 0. iS +0. 1 1 l-d.dl —0.08-0.171-0.24 —d. 271-1). 2(1 -d.23 — 0. 15 — 0.(17 -i-d.d2 4-1). Id f (1. 14 4-11.15 r d. 12 27 •t 0.02 — O.llfl -d.ll-. 0,25 —0.31;— d.31) ~d, 41 -0.311-0.33 — d. 26 — d. 1(1 — (.1. d,^ -~0.d2 O.du — d.dl - (1. di> 28 , — 0.14 -0.23 —0.32 —(1.42 — d.411, -d. 53 - (1. 54 — 0.50'— d. 43 — (1.3; -d.2f - . "1 d. 1 4 —n. I 4 -d. 17 - 11. 2d 21, — 0.2S —0.37 -d.4S — 0. 57;— d.f)3 — d.fif - 0.(14 —0. 58 —d. 511 -d.41 -1) 31 -.1 ■_ • 11.2(1 -11.27 -d.2i. -d.3; 30 —0.41,-0.51 1 —0.62 . _; -o.69J-o.73;-d.7i -d. 70,-0. 64|-o. 55 1 1 III -0.471-0.41 -0.37 -d.37 -0.37 -0.42: 1 lit -"■4'J 7m I- « 50 I Taiii.k I\. ' Aii;:i'il.li>3 2 3 (i.i)Sfi 3 1 (i.(/i5 4 5 •t i).o4c> 5 (. ■k 11.1115 (1 7 -- (i.(itH) 7 S - 0.034 •S ') — o.(i;4 'J lo — 0.(172 10 1 1 — o.oSO 1 1 12 — O.DIjf) 12 13 — 0. lol ■3 U — 0. 103 14 "5 - o.oo'J 15 lO — 0.01)3 ifj 17 — o.uSo '7 IS — o.()'-3 I3 "> — 0.(140 "J 21) — 0.(124 20 21 Y o.ooi 21 22 0.026 22 23 0.05 I 23 24 0.075 24 25 + o.(i(j4 25 26 0. lOIJ 2fl 27 0. 1 16 27 28 0.II7 2S 2.J 0. 1 1" 2J 30 + 0.01/1 30 (/■■./) — . (Xl.( - 0.(K)4 - 0.("'j -■ O.OOI •t- O.OOI + o.(X)3 0.004 0,004 o.0(J4 + O.0O2 O.IXXJ - O.0( • - () . (K)3 - o.(j04 - 0.004 — 0.003 - o.(yj2 0.000 + . ( W2 0.003 4- 0.004 0.004 o.(X)3 -t- O.OOI O.CXX) — . (X)2 - . (X14 - 0.004 - . (»4 - . 003 — 0,001 (/•••/'<) + O.OI}() 0.088 o.(i.Si O.ofll) 0.054 ■V o .136 + < .017 — o.O(J4 — 0.024 — 0.044 — 0.0(10 — 0.074 — 0.084 — o.oS(j — 0.089 — 0.085 — 0.076 — o.(jC4 — 0.047 — 0.028 — 0.008 4- 0.012 0.032 0.050 o . 066 + 0.078 0.0S6 o.oip o . o8(j 0.082 + 0.072 <'/5i 0. (1. (Kl 03 - 0. "7 - 0. 10 - 0. 12 — 0. 14 - 0. »5 - 0. 15 - 0. 14 - 0. 13 — II - oS - 05 - 02 + 01 + 05 08 11 (J 13 14 + «5 15 •14 12 10 + 07 .04 f- .01 - ■ 03 — .06 — .09 I ii 51 Taiim-. XI. luulois J\>i- (oiivciiiit:^ unall iluin^.s ,if lon-iliul,' ,vi,l hilitiul,- in/.' ,//,i/ixri oj 11^/1/ ,i.wtisi,>ii and ./ir/imttion . .hxiiiii'i) long. 275 38u 285 21)1) 3 335 34') 345 35'> 355 o 5 '5 80 25 3" 35 40 45 5" 55 + •>33 -t- ■ I3> . I2fl f + .117 .1)1)1 + I- .074 ."57 • 03') .02t .(X'3 .014 .031) ."44 ."if) - .ofifi . ■ "74 - .<)So- .084 — .0S5 - ."85 - .082 ."77 - ."7" — .of) I -- ."52 — . o4n — .028 - .(>l6 - .""3 f)0 + .()Ol) f- 65 .021 70 .030 1- 75 + ."3') 80 .045 85 ■ "4') + l)0 + .050 + /5 = -5» .ogo + .084 4- ."7f) .0(16 ."55 + t ."41 .027 + ."11 + ■— . IM)4 — - ."IS - - ."32 — - ."45 - - .Oj'l — - .0(15 — - ."73 - - ."7S - - .oSl - - .0S3 - - .081 — - ."78 - - ."73 - - .065 — - .056 — - ."45 - - .032 — - .""18 - - .""4 — + ."It + ."27 +■ + .041 • 055 .066 4- + ."7f) .084 .oSg + I- . OlJO + -t- 5 ."5" + • "4') ."45 t ■ "3') .031) .1)21 I ."oi, V .ws - Ai\U -■ .028 - .f)4i) — - .iidl - - .070 — - ."77 - - .1)82 - - ."85 - .1)8 5 — - .084 - - .oS" - - ."74 - - .»(>(> - - .1 5fi - - .iU( - - .030 — - .o[4 — I- .""3 + + ."21 • "30 ."57 + 4- ."74 .091 . 11)5 + '- .117 . 12fl .131 I- t- -133 f- H-5 ,1 ^ - 5' .1)1M) • "43 t ."85 + .12(1 .235 . 2f)5 .21)2 • 33fi •353 .3f,S .37') • ..31)5 • -3')') ■ .4"l t .4"l .31)1) • .31)4 -+ ■ .3S8 ■ -371) ■ •3'") t- • •35''i • -34" • •322 f ■ .31)1 .277 ■ .250 + ■ .1.88 • 154 + .117 ■"71) ."4" i .000 Ui.'>) .(XH) ."(1 ^- ."81 4- , 121 .158 ■ i'i3 (- - + - .22f> .25'' .283 (■ ■ 3"') .320 • 344 t- ■ 35') ■37" .3S1 4- .3S8 •3')4 • 3')7 + •3i)S • 307 ■ 3'J4 + .38S .381 • 371 + ■350 •344 .32(1 + . 3"^' .282 .25() + .22f> .103 .158 +- . 121 .081 .041 + .000 (■•Ml) + 5 . 1 11 H ) - ."40 ) - ■i>70 t . 1 « «) -t- .038 - • "75 - - - .117 - .154 - .188 +- f- .III - .147 - .181) - — — .2211 — .2.S1) — .277 1- f .212 — .242 - . 2fiiJ — - - .3111 - .322 - -34" 1- t- . 21)3 - .315 - •335 - — - .35f> - .3(11) - -370 + . 3'''' - ■ 37s- - - .3SS - •304 - • 30') + ■t .380- . 303 - • 307 - — - ..("1 - .4"l - .3'W t + ■30>*- ■3'l7 - • 303 - - - .305 - .388 - .370 f- + . 386 - .378- .3M.- - - .3^ -- .353 - ■ 33f' + ■1- .352- • 335 - •3'5 - - - .310 - .21)2 - .265 + + .21)3 - . 2f)q — .242 - — - -235 - .202 - .Ifi5 +- + .212 - . iSl) — .147 - — - .126 - ."85 - .043 + + .III - •"75 - )- .038 - — .000 .000 + 5° (I.ll) ,1)1)«) .0"! .003 .(X)() ■ ."II .016 ."23 ■ .031) . •"37 • "44 ■ ."51 ."58 ■ .i.fM ■ .of 11) - • "74 ■ .078 . .oSo ."82 - ."82 .082 - ."80 ■ ."78 ■"74 .of") - .064 - .058 • ."51 ■ • "44 • ■037 ■ .030 .023 - ."if) - ."II - .006 - .003 - 27" 2()5 2flO 255 25" 245 240 235 23" 225 22" 215 21" 2"5 20(> 105 11)0 185 180 '75 170 if'5 If)" • 55 151) 145 14" 135 130 125 120 "5 110 105 100 05 0" 3)'s long. y