9, ^r (\ IMAGE EVALUATION TEST TARGET (MT-S) 4r ^^O 1.0 I.I us 145 2.5 2.0 1.8 1.25 U 1.6 ^ 6" »• 9% c^ ^i c" ^^^ V <^ ^^jO CIHM/iCMH Microfiche Series. CIHM/ICIVIH Collection de microfiches. Canadian Institute for Historical MIcroreproductlons / Instltut Canadian de microreproductlons historlques Tschnical and Bibliographic Notaa/Notas tachniquaa at bibliographiquas Tha Instituta has anamptad to obtain tha bast original copy availabia for filming. Faaturas of this copy which may ba bibliographically uniqua, which may altar any of tha injagas in tha reproduction, or which may significantly changa tha usual mathod of filming, ara chacktd baiow. D Coloured covers/ Couverture de couleur [~~| Covers dami^ad/ Couverture endommagie Covers restored and/or laminated/ Couverture restaurie et/ou pelliculAe Cover title missing/ La titra da couverture manque Coloured mapa/ Cartea giographiquaa m couleur Coloured ink (i.e. other than blue or black)/ Encra da couleur (i.e. autre que bleue ou noire) Coloured plataa and/or illustrations/ Planches et/ou illustrations an couleur Bound with other material/ RaliA avac d'autres documents n n n Tight binding may cause shadows or distortion along interior margin/ La re liura sarrAe paut causer de I'ombre ou de la diatorsion l« long da la marge int*riaure Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ II se peut que certaines pages blanches aJoutAas lors d'une restauration apparaiaaant dana la taxte, maia, lorsque cela Atait possible, ces pagea n'ont pea it* filmiea. Additional comments:/ Commentairas iupplimentaires; L'Institut a microfilm* la mailleur axemplaire qu'il lui a iti possible de se procurer. Las details da cat axemplaire qui sont peut-dtre uniques du point da vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent axignr una modification dans la mithoda normale de filmage sont indiquis ci-dassous. D D D y D Coloured p^ges/ Pagea de couleur Pages damaged/ Pagea endommagies Pages reatored and/or laminated/ Pages reataurias et/ou pelJicuiies Pages discoloured, stained or foxed/ Pages dicolories, tachatias ou piquies Pages detached/ Pages ditachies Showthrough/ Trar.iparance I I Quality of print varies/ Quality inigaia da I'impraitsion Includes supplementary material/ Comprand du matiriel supplimentaire Only edition available/ Seule Mition disponible D Pages wholly or partially obscured by errata slips, tissues, etc., have been ref limed to ensure the best possible image/ Lea pages totalement ou partiallement obscurcies par un feuillet d'arrata, una pelure. etc., ont iti fiimies A nouveau de faqon i obtenir la mailleure image possible. This item is filmed at the reduction ratio checked below/ Ca document est filmi au taux de rikduction indiqui ci-dessoua. 10X 14X I I I I 18X 22X l_JL_i 12X y 1SX 20X 2ex 30X 24X 28X 32X The copy filmed here has oeen reproduced thanks to the generosity of: National Library of Canada L'exemplaire filmi fut reproduit grAce d la g^n^rositd de: Bibliothdque nationale du Canada The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications. Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impres- sion, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impres- sion, and ending on the last page with a printed or illustrated impression. The last recorded frame on each microfiche shall contain the symbol — ^> (meaning "CON- TINUED"), or the symbol V (meaning "END"), whichever applies. Les Images suivantes ont 6t4 reproduites avec le plus grand soin, compte tenu de la condition et de la nettet6 de l'exemplaire ;ilm«, et en conformity avec les conditions du contrat de filmage. Les exemplaires originaux dont la couverture en papier est imprimis sont film6s en commenpant par le premier plat et en terminant soit par la dernlAre page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmis en commenpant par la premiere page qui comporte une empreinte d'impression ou d'illustration et en termir.ant par la derniire page qui comporte une telle empreinte. Un des symboles suivants apparaitra sur fa dernidre image de cheque microfiche, selon le cas: le symbols — ► signifie "A SUIVRE", le symbols V signifie "FIN". Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method: Les cartes, planches, tableaux, etc., peuvent dt^e filmis A des taux de rMuction diffirents. Lorsque le document est trop grand pour £tre reproduit en un seul cliche, 11 est fi!. 7. 4851. 10. 16500. 2. 960. 5. 048. O. 3520. 11. 40040. 3. 912. 6. 495. 9. 2200. 12. 33165. FRACTIONS. Find the L.C.M. of :— - 1. 7, 3, 56, 49, 21. 2. 35, 45, 55, 65. 3. 19, 38, 15, 20. 4. 12, 15, 16, 21. I. 5. 120, 144, 24, 96. 0. 10, 14, 15. 21, 28. 7. 22. 26, 30, 32, 39. 8. 96, 110, 120, 121. Find by factoring the H.C.F. and L.C.M. of :-, 9 66, 99. 13. 720, 840. 17. 60, 75 90 10. 56. 140. 14. 37, 518. 11. 51. G8. 16. 205, 287 12. 45, 81. 16. 230, 414 Find the H.C.F. of :— 21. 14112 and 22176. 22. 18776 and 49287. 23. 735 and 1176. 24. 1065 and 16614. 18. 26, 52, 65. 10. 24, 60, 72, 108. 20. 19, :iS, 57, 114. 25. 8874 and 17697. 26. 2079 and 33638. 27. 567, 1674 and 4041. 28. 354, 876, and 3645. Reduce to lowest terms without using H.C.F. : 29. t^. 35. r\\. 41. 7 6.-} 1 4 1 T- 47. 1 9 5 0' 2 2 100 0- 30- tW. 36. iff. 42. 111 48. 1 5 <»0 18 SF" 31 « 3 37 i'5'J *i(. yep 43. 4 5 5 49. 9 9 it 10 IT. 3 Q -J •■* 3ft •** '» 44. 17 7 5 2 ;f 5 • 60. _8 7 1 7 4 IT' 33 i'''0 45. 9 2 5 10 2 5' 51. -JUL-' 3715 0. 34. 2 12 4.n 7 14 ^^- ¥18« 46. 4 8.'} 9 2(r. 62. 116 5 15 8 50. Heduce to lowest terms, using H.C.F. • 53. ti^. 59. r> » 1 T5T6"- 65. i 119 7 ITTT* 54. infV 60. 17 7 5 T9 2^¥ 66. 7 9 4 8 19" 66. tVtV 01. tH- 67. 8 30 7 T2 9 IFO". 66. UH- 02. 7 03 4 lOT. 68. 124 23 67. .'J i» 1 ;$ «Q 4 7 2 90 6 a- 69. 13 6 9 68. T5T¥. 04. !> 9 9 2 8 a 5". 70. 9 664 ¥F¥T' Define ])7 St lITTT- AT I 7 4 U"' _S 7 5 JTTr. oo- LJ-fi 50. : 5 S 50' 3 If- O IT- II. MENTAL PRACTICE IN SIMPLE RULES. (Where J or J or j occurs in the miiltiplicand, instead of adding two ciphers, add 50, or 25 or 75 respectively. ) 1. Multiply by 5 :— 76, 384, 9875, 671, 86|, 91i, 167J. 860^. 2. Divide by 5 : — 16, 37, 84, 356, 685, 769, 876, 687i, 769f. 3. Multiply by 25 : — 100, 350, 4750, 6845, 65J. 84^, 32f, 76f. 4. Divide by 25 : — 75, 375,^875, 764, 879, 989, 2375, 5875. 5. Multi})ly by 12i :— 840, 845, 1845^ 1840, 78i, OJ, 5}, 9i. 6. Divide by 12i :— 75, 750, 1250, 25, 125, 78, 85, 68, 79. 7. Multiply by 125 :— 60, 56, 560, 565, 1565, 76i, 9^, 75f. 8. Divide by 250:-- 1250, 3450, 4750, 8975, 2525, 932, 6845. 0. 19 X 18 ; n X 36 ; 48 x 17 ; 49 x 19 ; 68 x 25 ; 7x Jof81; 8xiof 80; 9x ^rof 117; 12 x f of itself; 168 X I of 36 ; 8i x 17 ; 9J- x 28 ; 8J x 25. 10. Give tlie prime factors of: — 84, 85, 261, 117, 143, 176, 484, 210, 441, 378, 963, 1605, 292. 1 1. Find the H.C.F. of :— 6, 12 ; 9, 15 ; 84, 91 ; 49, 259; 85, 51; 165,300; 16,84; 29, 261. 12. Find the L.C.M. of :— 3, 4, 5 ; 6, 8, 10; 6, 10, 15; 7,14,21: 7,11,13; 9,10,12; 20,16,24; 25,50,75; 5,6,7; 7,8,9. I * FRACTIONS. 1 . To add or subtract common fractions reduce them to similar fractions, and then add or subtract the numerators. 2. To multiply a common fraction by an integer, either njultiply the numerator or divide Mic denominator. To divide a common fraction by an integer, either divide the numerator or multiply the denominator. 3. To multiply a common fraction by another common fraction, multiply the numerators to find tl)c new numera- tor, and the denominators to find the new denominator. 4. To divide by a common fraction, invert the divisor and multiply. 5. To change the form of a common fraction without altering its value, multiply or divide both numerator and denomiiiator by the same number. Find the value of :- III. 2- ;: + ;o + i?+i^ 4. TiD-f-iyi-M + isii. 6. 8i + ->G;j + 7J-f:574+12;'4-47^+0S,V-h20. 6- 68,^-1- U4- 724- il +0;, + /v+ 11)^ + 12^ 7. 8-(] -v. 10. 8i;|-4,V,. 13. li:{,^^-5(),V.. 8. ;^-i^,y. 11. io]ii-(Hv- 14. 1(;|^.;-i:;i;m; O. 50;^,»10. 12. 132ii-8J^. 15. ll8Hi~«^j. 16. 3-2,'V + i. 17. 4,^,-;;<;,-H|. 18. 8J-2-i-;],V 19- i-j4-^"-A. or» 21. 22. + I rt I H- 23. lO-HJ-i + J. 24. ri-f.;;,i-4-f-v-5. 26. 8^-f ^4.^_:5j^. 27. 7+i-fl-i-J- I fi- I M + h-!^^- 28. A + ,\-(j + ^.). 10 -f ■1 —14-4 I r, 29. 7-(m--'i)-(i;-})- FRACTIONS. 3 them to 30. Tierators. 31. er, either 32. itor. To 33. vide the 34. 35. common 42. iiuinera- 43. luttor. 44. e divisor 45. 46. 47. without ator and 48. 49. 50. 51. 52. 53. 54. Hh 1 55. 20. 1 56. 1 57. ■ 58. ^ill'f 1 59. 60. fflJ. 1 61. 1 62. ^1 63. 1 64. 1 65. 1 tj ■ 1 1 1 WX^X 12 X 1 4 X G^x / o 1 1 If X 5, i 1 5 X - X J 1 ,y X 1 51 xl:!xl*^xi. 36. lfof^ofVx6Jx 37. lJof]Jx#of2. 38. 3].Vof|X.">lXT,V 39. lGJx§x23|xll. 40. 8ixUx2lx-.\. It 1' 1 7 41 1 .s V of n of 3GM X u. JO a4' f !f X U X i X U X t', X 2§ X 14 X 12^: X 21 X J^ 41 X ^ T X 1 1 i X U X .V*Y X Uf- X A X li^ X SI. (;! + Kx(r + /.)- 69. (HS)^T. 70- (li}-U)^o. (2iof^)-(Uofli). 71. (5-i)- (Uxjiof-) 72. (IK^^li)^ li)iof-i»^of:5-15i. 73. ri| of f;-^(i + f). 5s of ^a + A of 74. (j + V+ 1 ) - 1 'J ffufiof:]-.-,. 75. (U + V)-fiof24. (Ux,Vof7)-fof5L 76. 12i-^(19i + 7). 2si^lGi 1:51 O.T-r. -"^■2 1 4- i) -f-14 Ttr- TT- 7. lOi^-fU^ TT* :. i 77. (fxe)~(|-i;). 78. (^x/,)^(a + ,y. 70. (11-f;J)-^(a + Hl^). 81. (A-^^)^(lxHxi)- o*^- ' :i(I • :)0/ • Uo ao/' 83. ( ,w ••in 14^1 I- _:_ 1:i' iXi-r4. ^>n-rGj. i\\ of 1^4-2 1 J 11) 01 84 2^^(l]^l^+:!3). 86. (r.^^;J^)ofIof3. 86. (S^-^V)^-^of-i 87. (l-Mi)^(n ofG). 88. (7i-f:>^)^(^xt). 89. 1 -f 5; of 3. 90. ll.i of A -fUxi. T(T f 00. i 67. 1 68. Oiof Jij-r 91, f 2 of I ^ 1 1 of HT' 1 n X i o 92. l.V.r-fMof-l 'lli T¥* «yTT' 93. r 1 o f "■> - .:- ii' FRACTIOXS. Simplify: — 1. 10 3 -4 12^ 2. -0 7 IV. 3. 1-^ 1 « 1' 2 6. — » ::^- 7. 8-34 4_!L -^ 1 A 13f^ 8. 6. -1-1 81 — 1-1- _3 _. ThT 01 Toi - ;3 T- - 4: 7-3i « . - - 4- *>! ^ 11" 1 4 U X 2^ 1-^V • U- U 1 O;! 1 3 12. J of 31- " +/ •^ - 4i 1 1 > 14. f of ?|+f of 2f t 2Gi^- 1^ 16. -- ' -1 i- -L 1 1 _ 1 13. 33 . 1 15. ^«+ +^Lofli 1 4 4. :'• 4. O 7 _ ;} ;Ui- y J i '*i2 -^ 3 J 1 " 'i' "^A ^11 1 J 1 oTo ^ r 18. ' " V '^i V -'•I >• ••ST 19. 1 I .-I •_' 1 T^ (f ^T .'» 4 '5 1 20 '':i^ AX^^t 1251 --17 22. (;:- 5)^(^-5). 21 1;'. '^ 1 "140' 1 1 1 1' Tl 7 > VlO» 1 HJ lOOO- 3. Reduce to equivalents having a CD. : — h, §, -| ; 14 7.1 _."> _!!_ ■ 1 1_ 1 n XI. ' _J» _4_ _?_ • H. _7_ 1 1 3» "tT» U J '8' lU' li 4 ! lii' 15' li J 11' 2 2' .'J ;i ) 9» 24' 'SG' A. Find llip «mTi nf • 6 I 5 i i . i s 9 1 Qn . i i !> 4. 1 Ilia Liie bum oi . — -y, §■, -g, ^ , --, j, ^~-, o- , ^j, -j j, 7 11- « « r»f j!* • H ^L nf ^ • S il 4 . _7_ i_ . _i_ _i_ . TT' ^T i ' l>' 'J '• ' '/':}'-"•'.»? 3' 4' .■)"? 11' 12 * 12' 14 ' 2 r. . 2 3_ 5_. t5_ fi_ _6__ J5_. 'T 1 Oi Ol • 1 fji 1 Q 1. OQ^- r»' "2 7" 5 TTj 1 s' "2 7 5 i j' .j 0' 4 j' 7 5 J < w, _ • JJi 1 « • 71 '^1 • fi3 J.1 . 2 7' ) -iT' s 1 r :',> V. 5 7' 17 5 "14' 1 '.» 5 2 0' 1 Yt J • 2' "^3 J ^4' ^2 ' 11!) ni . r.i 1 A 4 . 90 s 11 6. N ahie or : — .. X -^ X ,0 '■> -j ^ 1! '^ if '■> it ^ T8 ^ -^5 j 4A X (U X y^^ : ( H - ^) X 14 ; ^ of U of iV ; M of iVf of 1^ ; Gx8x^] 18xl()xi4 'ix^X''> '^lillG 01 . y — .- , -5 — 5 J •-> — 1: , rr — d J U;;, — -t; , '> 1 -1. r> 1 • 7 1 _:_ S 1 • 14^1 nf ■"• • J nf - -:. - "•' - i; ~ O ^ , < ;. — O ;- ; f 5 ~ 1' OI y , ;, 01 y — yr^. 8. Reihice : — $'do to the fraction of SI ; 12s. 6d. to fraction of £1; 7^.11. to fraction of Is.; 1 hr. 30 min. to iniction of a day; 3 (|ts. 1 pt. to fraction of a gal. ; 1 yd. 1 ft. to a fraction of a mile ; 4 lbs. 8 oz. to fraction of a cwt. ; 3 oz. 5 dwt. to fraction of a lb. >. Vahie of :— 4 of Sii^l; f of Is.; ^'V of S3; fV of 2s. 6d.; I- of a ton ; f of a mile ; -jV of a lb. Av. ; iV of i^ Ih. Tioy. 10. 1. — 1 > 3 h of 16-^. ut 13; iof63J; 26HM-2i) + 3i. 10 Reduce to decimals :- DECIMALS. VII. 1. 2. 3. 4. 5. 6. 1 7. 1 "'J- 4 i)' 8. 1 9 0* 7 1 •^' 9. 1 It 0"O' 4 1 !• 10. 1 o f5- 11. I '.) !• It i) 5 7 ' 12. TrTTTT- I -*— 13 14 15. m 16. 2^V- 17. 1}^ 18. 20" •■J 0' 19. -4^. 20 ^' ^* 1 1 2 1 -^U. 22. -S-4. 23. 24. )1 7 • It it " 25. i^t. 26. yVV- 27. G^V- 28. 29. 30. 1 1 J. :.' u • - ■"* />_ Express as vulgar fractions in their lowest terms :— (Examples 31-50 at sight.) ■6(i. 51. 3-(J0.S. Oo. 52. 3-Gd8. •OOo. 53. ;;5-G0cS. •00a. 54. 10-G8i. •6O0. 55. 3-02083. ■24. 56. O-2307G9. -^4. 57. 4-71428;i Oi. 58. -31200. 01. 59. -ooii^d. Ooi. 60. 11-0G94. Express at sight as non-recurring decimals :— ( ■!?= 1, and may be replaced l.y 1 in the next place up. ) VI. -0. 7 3. 5-9. 75. -49. 77. -G189. 79 -399 72. -09. 74. -009. 76. -029. 78. -G199. 80. 3-999. 31. •1. 41. •6g. 51. 3-G08. 61. 20^70S3. 32. •oi. 42. Oo. 52. 3-Gd8. 62. -00d5o. 33. ..1 0. 43. •005. 53. 3-G08. 63. •03Gi. 34. ■6. 44. •00a. 54. 10-G8i. 64. 21-003. 35. •03. 45. •005. 55. 3-02083. Q5. 5-4iG. 36. •23. 46. •24. 56. 5-2307G9. QQ. ] 7-009. 37. •1:!. 47. •24. 57. 4-714285. 67. G-382. 38. ■{}(\ 48. •oi. 58. -31200. 68. 8-643. 39. •81. 49. ■61. 59. •0012(i. 69. 17-316. 40. •009. 50. •ooi. 60. 11-0G94. 70. 2-005. VIII. Find the value correct to 5 decimal places of :— 1. 7-5 -f-G-8i + -908 + -2134. 4 -l--()9 2. 7-90 + -3410 + 3-245 + 1-8. 5. 1-13--5874G:; 3. 11 + 7-2 + -0814 + -0021. 6. 1-2-M709 DECIMALS. 11 7. -Sia + O-OG + T-OSi + 'OOTU. 9. -oiGt- •28634 . -829603 + -5632 + o9-037 + -06'92. 10. -6632 --0785196. 8 11. -Oox-dS. 12. -069ix-Ti63. 13. -o906x-07. 14. 1-284 X -0307. 15. -714280 X -361. 16. 11-072x5-086. 17. -11216 X -0637. 19. 3-03 + -58. 20. 1-27 + -037. 21. -03142 + -067. 22. 2-124+ -302. 23. -026 + -7890. 24. -3 + -1156. 25. -207 + 5-294. 26. 11-063 + 3-21 18. -0041 X -725. Find the recurring decimal which is eqiual to 27. -936 + -71. 28. •7312 + -89. 29. -4187 + -306 + -12o. 30. 4-6 + '25i + -02ol4. 31. 2-001 + -1818 + -O. 32. 6-6-4-8. 33. 4-35-2-7. 34. 2-4O--08. 35. 5-314-4-67. 36. 11-213-4-689. 37. -5975x18. 3R. 75'19tx5-2. 39. 9-7x2-4o. 40. 3-6x4-09. 41. 3-:i7x 12-83. 42. -617 + -16. 43. 5-8 + 7-06. 44. 7-3 + 2-93. 45. 3-1.8 + 1-136. 46. -758 + 4i. IX. Find the value in compound quantities of 1. £7-83. 2. 2-1393 days. 3. 256-073 yds. 4. 4-45 miles. 5. -08;-) of an hour. 9. 6-878 of 2 sq. yds. 2 sq. ft 10. 5-83 of 1 lb. 8 oz. (Troy.; 1 1. -706 of 5 tons 11 cwt. 12. -3865 of 7^-sq. yds. 13. 3-998 of 1 yd. 1 ft. 6 in. 6. 5-2578125 of 8 wks. 14. 375 of 65 rods. 7. 31 of 90\ 15. -0764 of 9f days. 8. -06 of a rod. 16. 15-7] 96 of 3^ miles. 12 DECIMALS. 17. -6 of £4. 4s. 9(1 + -JG of £2. 5s. lOd. 18. -073 of a day + 3-75 hours. 19. -3 of a yd. + -3 of a ft. + -125 of 1 ft. 4 in. 20. -714280 of a week- -6 of an hour. 21. -09 of 40 rods +'01136 of a mile. 22. -03 of 1 11). Troy +-41(; of 1 oz. Troy. 23. -0710 of 554-4 tons +-428571 of b(j\hs. Reduce : — 24. 3s. 4-kl. to the decimal of 19s. 6d. 25. 2 tons 3 cwt. to the decimal of 10 tons. 26. 3 oz. 2 dwts. to the decimal of a lb. Troy 27. 3 yds. 1 ft. to the decimal of -} mile. 28. 2 ft. 6 in. to the decimal of a yard. 29. 12 cwt. 56 lbs. to the decimal of 4 cwt. 50 lbs. 30. 2'} pks. to the decimal of 3 busliels. 31. 7} gal. to the decimal of 18 gallons. 32. 5° 13' 40" to the decimal of 12' 30'. 33. 124i ac. to the decimal of 121 sq. rods. 34. 29 ac. 120 sq. rods to the decimal of a sq. mile. 35. llf sq. ft. to the decimal of 4 sq. yds. X. , o. ,., 5-8-4-916 1. iMmpliry ~ ^- 2. Simplify 5-375-2-94 2-6 of -81 3-714285+4-125 o c- re 6-75 — 1-8 3. Simplify - — ; r •583 of 1-6 4. Simplify \S-^ 6. How many pence in -583 of a shilling ? 0. How many cwt. in -649 of a ton ? DECIMALS. 13 7. Express 42 rods as the decimal of half an acre. 8. After spending f and -125 of my income, I am able to save $117 a year ; wliat is my annual income ? 9. Express a day as the decimal of a year. 1 0. Express as a vulgar fraction the difference between •(30;3 and -003. 11. What fraction having 24: for a denominator is equivalent to '625 ? 12. Find by vulgar fractions sum of '98, -1)8 ^nd -08. 13. What fraction having 27 for numerator is equiva- lent to •00375 ? 14. Express in lbs. the difference between -034375 of a ton and -90025 of a cwt. 15. Value of -0324 of a mile. 16. Divide 1-02 by ^-i of -144. 17. Which is the greater, -765 or -760, and by how much ? 18. What number multiplied by the sum of -(io-i and •654 will give 1 for the product ? 19. How many times is 9-037 sq. rods contained in 244 ac. ? -^ ^. ,.„ -00281 X -0625 20. Simplify — -1.^0- -— 21. Simplify (•5H--75)x(2-5--4)^(125 + -^J. „^ ^. ,., 2-791()X 3-237 22. Snnplify - . .-, 1-861 X -80934 23. Subtract '0523 of 11 weeks from -932 of 6 davs, and 2-ive the answer in minutes. 24. ^. ,.. -iof-3, 9-25 Simplify 1-^-,^ + ^^,. 25. 26. '^ xprcss in vards r03125 mi. --292-5 rods. 1- V 14 DECIMALS. XI. MENTAL niACTICE IX DECIMALS. 1 . Reduce to decimals : — I, }, }, i, f , f, t, to, fV' tV< 16? 13' »' T 'J> 5 if 5~ > 1150' 40* 2. Keduce to vulgar fractions: — '5, -25, -75, -125, -025, •875, -3, -SIJ, -G, -606, '66, -78, ll, -li, -li, -864, -SOi 3. Add:— 6, -6, -OG, -OOG; 67, '67, G-7 ; 16, I'G, -016: 834, 8-34, 83-4 ; 7-G, 8-4, 9-3 ; 8-5, 15, -65 ; ^, -}, -8. 4. Find the difference between : — '6 and "6 ; '7 and -7: •18 and -18 ; -06 and '06 ; 78-91 and 36-74 ; 81-17 and 34-34. 5. Multiply :— G-8 x 5 ; 7-4 x 2*5 ; 68 x "75 ; 7-5 x 7*5 ; •66 X -6; 80 X -125; 72 x -625 ; 7Sx-13; 3-3 x -6 x -75. 6. Divide:— 6-75-^5; 6-75^-5; 32 -f -4; 25-^-05: 27^-000.); -056 -f--7; -4 -f- 1-6; -006 -f-015; 22-5 -f-09; -0451 -^-ll; -0049 -^-035; 1-7-^5; 4-64 -f 20. 7. Value of :— 3-775 of SIO ; -1235 of 81000 : 4-625 of 4c\vt. ; 3285 of 4 mi.; 1-0325 tons; 13-775 cwt. ; 8s. -^ 9-6 ; -75 of a lb. ; -72 of a ro7vduct of the extremes = the ijroduct of the means. If any three terms of a proportion are given, the missing term may be found, for tlte product of the extreme?^ divided hif either mean gives tlie other mean ; and tlie x>rO' duct of the means divided hy either extreme gives the other extreme. Find at si^ht the ratio of the following : — 1. 21 : 7. 7. 2 . T 3 • if 13. 1 gal. : 1 qt. 2. 7 : 21. 8. 5 . 1 r> 8 • 1 • 14. 30 rods : 1 acre. 3. 20 : 5. 9. T • TT- 15. 1 c. yd. : 15 c. ft. 4. 21. : 10. 10. .9 . .-L - • 10- 16. 4 yds. : 9 in. 5. r:2i. 11. •5 : 2. 17. 6 dvs. : IG hrs. 6. 12. U : 50. 18. 2s. Gd. : £1. 19. Is the ratio alwavs an abstract number ? 20. What is the effect of multiplying the antecedent? the consequent ? Of dividing the antecedent ? the conse- quent ? (Show by examples.) 21. What is the effect of multiplying or dividing both terms by the same number ? (Show by examples.) 16 RATIO AND I'UOPOKTIOX. Find the missing term in the following proportions (Examples 22-30 at sight.) 22. X 6 : 10. 37. a; : 6 :: 31 : IS. 23. 24. 25. 26. 27. 28. 29. 30. 31. / : 5 : (J : 8 : 4 : 1-4 26 32 ,/; : : 11 13 r'J ! 38. 39. T) , %Xj 23 : 20 50 : 40. 81 41. 8J 42. 43. ^,1 . . 1 '\ 7i 44. 4-59 45. 1-02 : 4i : 17. • l'^ . 1 •» • 9i : : lOti- : ->'. •089 : ./J : : 24 : -0984. 1-333 : 172 w x -. -012. 10-8 : : -00300 : x. •1 32. 51 :2^ 33. 63 : X 34. 3 : X : 46. 47. 48. 49. 50. 51. £10. i 01 -g- 1 of 4i : X 1590 : 53 15t : 12 :: 46 :^ 2-07 : -051 :: -69 17-15 : 6-32 : X. S914 : X. ; X. : : S75 : ./;. ^n; X. 1-03 :./■ 21. :65 1710 : X. 1 :5 1 .->• t>'. 1-87 \x. 21 : 12. a: : 18. : X : 65. 16 -. ^%. : 42 : ^. 78 : 54. : 8 : a;. : 9 : 10. ::,.;: 9. :9:7. 4 : 11. 35. X : 17 : : 5 : 9. 36. 12 : 7 : : 8 : :/;. 52. £1. 10s. : £1. 15s. 53. 5 (Ivs. 3 hrs. : 61 dvs. 12 hrs. : ; 54. llyV inches : hi}\ yards : : 854 55. 18 bus. 3 pks. : 2116 bus. 1 pk. tQ. 19 J ac. : 11 ac. 60 sq. rods : : 79 tons : .'•. 57. 60-^ 37' : 360' : : 151 dys. 13 hrs 58. X : 3 qts. 1 pt. : : 84 : 80-10. 59. 8 oz. 6 dwt. : 13 dwt. 20 c^ra. \\x\ S0.44. 60. 34 dys. 16 hrs. : 17 hrs. 20 niiii. : : 83.60 61. Assuming the earth's tixcuuiicjrence to be 25,000 miles find its diameter, the ratio of the diameter to the circumference being 113 to 355. 62. Find a fourth proportional to {ll) the sum, (//; the d'ffcrence and (>•) the product of f and ^. 63. What would 225 yards of clotli cost at the rate of £1. 17s. 6d. for 7i yds. ? KATIO AND PROPORTION. 17 X. 64. If a loaf of "bread weighs 1 lb. 4 oz. when tlour is S6.50 a barrel, what should a loaf of the same price weigh when Hour is S4.25 a barrel ? 65. A workman digs out f of a cubic yard of earth in \ hr. ; how long would he be occupied in excavating a cellar 5 yds. square and 5 yds. deep ? 66. If the first-class railway fare from Montreal to Quebec (180 m.) is S450, what should be paid from Montreal to Toronto (333 miles) ? 67. A cubic foot of water weighs 62i- lbs. ; what weight would a vessel 6 in. long, wide and deep contain ? 68. Pure lead is 11*3 times heavier tlian water ; find the wei.dit of a block of lead 2 ft. 6 in. long, 2 ft. 5 in. broad and 18 in. thick. 69. A train travels 7^- m. in 12-58 min. ; how far will it travel in 5 hours ? 70. Find the yearly wages of a coachman who was paid S78 for services from 10th April to 14th June. 7 1 . A clerk was engaged on 5th March at a salary of S574I a vear. When he left he was paid SllSi ; on what day did he leave ? 72. If I lent a friend S350 for 52 days, how long ou"ht he in return to lend me $280 ? 73. On 20th Apr. a friend lent me $560 until 6th Aug. I repaid the debt by lending him a certain sum from 11th Oct. to 3rd Jan. How much did I lend him ? 74. 3000 soldiers were supplied with provisions for 87 days ; after 26 days so many men left that the provisions lasted 300 days more. How many men went away ? 75. Find a fourth proportional to -98, -98 and '98. 76. Four-fifteenths of a ship's crew are able to do a piece of work in 22 days ; how long would one-third of the remainder of the crew take to do it ? 18 KATIO AND PROPOKTION. XIII. rr.oroRTioNAL parts. Divide at siglit : — 1. S-1-8 into parts having the ratio 3 ' >. 2. S?()0 into parts luiving the ratio '1 : 1 '^. 3. S2r> into ])arts having the ratio 2 : 3. 4. ??44 into parts luiving tlie ratio 7 : 4. 6. S«SO into parts proportional to the nnrnbers 0,7 and S. 6. J?28 into parts proportional to the nnniljers 4, 3 and 7. 7. SIO into parts proportional to h and J. 8. S(>4 into parts proportional to I and I. 9. S^IT) into parts proportional to "o and ^-'i. 10. S<)0 into parts having the ratios: {a) '1\:\\ {h) 5:1:4: (r) 7:8; (>/) J : J ; (/) 11 : : 10 : (/) "7 : -3. 11. Divide S140 among 3 persons in the })roportion of («)5:7:8: (/.) 10:11:14: (r) ^ : J : §. 12. Divide S06 between A and B so tliat («) A sliall liave 814 less than B. (?>) A sliall have $20 more than B, (c) A shall have i^o more than twice as much as Tl (d) If A had S7 more lie would have twice as much as B. 13. Divide .S4r> amongst A, ]> and (' so tliat (a) A shall have twice as much as B, and C S?."t more than ]>. (h) A shall have twice as mudi as )'>, and C J^fl less than ]>. (c) A sliall have $10 more than B, and C ludf as much as ]>. ((/} A shall have S.' more than twice B's share and C iialf of .V's share. RATIO AND PROPORTION. 19 1 4. Divide $105 among 4 men, 7 women and 5 children, so that a man may have as much as a woman and child tocrether, and a women three times as much as a child. 15. Divide 8155 among 8 men, 2 women and 10 cliildren, so that a man has half as much again as a woman, and a woman half as much again as a child. 16. Two persons contribute respectively 81010 and 811 50. If the profits are 8852, what should each receive ? 17. Two copyists are employed in transcribing a manu- script, and they copy respectively 224 and 288 pages. If 8140 is paid for the work, what should each receive ? 1 8. In l)uilding a wall one mason works -i of the time, another J, and a third full time. What ought each to receive out of 8340 ? 19. If 8 men or 12 boys can do a piece of work in 20 days, hi what time can 12 men and 8 boys do it ^ 20. How long would 15 boys be doing a piece of work wliicli 8 men can do in 21 days, the work of 7 men being eiiuivalcnt to that of 10 boys ? 21. Divide 078 into three parts, sucli that tlie second shall be ;q of tlie first and tlie last }, of the second. 22. A and W hire a pasture for 880. A puts in 4 yoke of oxen and li i)uts in 40 slieep. If an ox is e(|ual to 8 sheep, liow nnich ought each to pay ^ 23. A, 1) and (" enter into partnership with a comlmied cai)ital of S(;0,()00. At the end of a year A's share of tlie l)rolits is 82()00, IVs share 8.'U00 and ("s share 84000. Wliat capital did each invest ? 24. If 15 men c;..i do as much work as 21 boys, how long will 25 nu'u take to do what 30 boys do in 11 hrs. ? 25. A's rate of working is to IVs as 4 to :5, and IVs is to C's as 2 to 1, How hni"' will it ta.ke C to do what A would do ill davs i 20 COMPOUND PROrORTION. XIV. COMPOUND PROPORTION. Eesolve by cancelling ; — 6 : 4 : : 20 5. 17: 51::S13 8 : 9 40 : 135 / : 1 2 : : G 6. 18^ t : 49 : : o lbs. o§ oz. Tro : 14 28 :43 ft • 4 • • 1(7 7. l;3 : 24 : : 52 weeks o ' ') 3G : 1 1 1 -J ■~i 3G5 : lOi •9 : -8 : : '02 8. : 22 : : 35 yds. 1 ft. •8 It^^ : 2 "/ : -G 1^ taw : t 9. If 15 horses consume 3G0 bushels in 252 clays, how many horses will be kept with 220 bushels fur 154 days? 10. If 15 liorses consume 3G0 bushels in 252 days, how many l»ushels will 8 horses eat in 210 days ? 11. If 15 horses consume .'{GO bushels in 252 days, how long will 12 l)ushi'ls last 7 hcu-ses ? 12. AVorking lU hours a day, 14 men can finish apiece of work in 12 davs: how manv nuMi working G hours a (lav will be rcfiuired to finish it in .')5 davs ^ 13. AVorkinif 2 hrs. a dav, 180 men can Iniild 480 yds. of wall in 8 dys. : how many men, working 10 lirs. a day, can build 45(1 vds. of the wall in 18 davs? 14. A man can do a certain ])iece of work in 18 days of 9J hours each; in how many days of l()[ hours each could 3 men do foui- times as much ? 16. If J^24n <'-ain<'d .^5:M in .".(i5 dnvs. in wliat time would S225 njuu S3() at the same rate ? COMPOUND PROPORTION. 21 16. 12 men can dig a trench 108 ft. long, 6 J ft. deep and 3 ft. broad in 5 days; how long will 15 men take to dig one 100 ft. long, 3^ ft. deep and 2 ft. broad ? 17. The cost of carpeting a room 19 ft. by 15 ft. with carpet at 84 cents the yard is $67.20 ; what will be the cost of carpeting a room 24 ft. by 20 ft. if the price of the carpet is $1.14 a yard ? 18. A lends B $400 for 15 mos. at 4%; how long in return should B lend A $1500 at 3% ? 19. A locomotive making 162 strokes per minute travels 90 miles in 2 liours ; how many strokes per minute must it make to travel 200 miles in 4:h hours ? 20. If 3 men or 5 women or 8 boys can weed 18 acres in 9 days, how long would it take 5 men, 8 women and 3 boys to weed 109 J acres ? 21. If 42 lbs. of raisins cost £1. 16s., what would 35 lbs. of a liigher grade cost, 5 lbs. of the former being equal in value to 3 lbs. of the latter ? 22. An ollicer wished to convey 80,000 lbs. of pro- visions in 9 days ; at the end of 6 days, IC men having been employed, 15 tons only luid been carried. How many men would be required to carry the remainder within the time specified ? 23. 12 women make 7 dresses in 8 days; in what time could 15 girls make 5 such dresses, the work of 2 women being equivalent to that of 3 girls ? 24. The travelling expenses of 7 touriots for 5 weeks amounted to $1505 ; a second party of 18 made tlie same tour in 6 weeks, tlieir average weekly expenditure })er man being ^ of that of the first party. What were the total ex]>eiises of the second party? 25. Kiflcen men do a piece uf work in eight days ; how 'HI ni nuy men could dn .-| of the work in } of the time ? 1 ! 1:, 22 AVERAGES. XV. AVERAGES. 1. Ill a class of 24 boys 4 are 14 years old, 6 are Vol, 7 are 12 J- and the rest lU. What is tlie average age ? 2. A woman's income for 3 years is S250 a year ; for the next 5 years it is $294, and for the next 4 years $307. What was her average income for the 12 years ? 3. In an exercise set to 35 pupils, 1 has 7 mistakes, 2 liave 5, 4 have 3, 6 have 2, 8 have 1, and the rest none. Find their average number of mistakes. 4. If a tradesman sells on the first 5 days of the week, 243, 117, 112, 195 and 207 yards respectively, wliat must he sell on Saturday that the daily average may be 179 yds. ? 5. In the month of April a man sle])t 7 hours on each of 16 nights, 6.1 hours on each of 8 nights and 5 hours on each of 5 nights. How long must he sleep the last night that his average may be 6 it hours ? 6. A candidate answers two examination papers, the first of which is valued at half as many marks again as the second. He gains 58% of the maximum marks on tlie first, and 43% of the maximum on the second. What percentage of the total marks does he gain ? 7. To 112 gallons of spirits worth 21 francs a gallon a grocer added as much water as re(hiced the value to 16 francs a gallon ; what quantity of water did he add ? 8. A merchant has teas worth 54 cents and 44 cents a lb. respectively, wlii'h lie mixes in projuirtioii to 3 lbs. of tlie former to 2 lbs. r.f the latter, and sells the mixture at 52 cents a lb. What does he gain per cent. ? AYOUK AND TIMK. 9. In a wholesale business a certain number of clerks receive $^)0 a week, twice as many receive $31.50, and clever, times as many receive SU. The weekly pay-sheet amounts to $1809. Find the number of clerks. 10. A man bought a herd of cattle, 136 in number, for $3230; on the way home he lost 4, and 12 others, being unable to complete the journey, were sold for $o a head below cost. At how much per score must he sell the others so as to gain $215 on the whole transaction ? XVI. WORK AND TIME. 1 . A can do a piece of work in 5 days, B in 6 days. How long will they take if they work together ? 2. One pipe empties a cistern in 5 hours, another in 8 hours. In how long will the cistern be emptied if both are open ? 3. One pipe fills a cistern in 4 hours, another empties it in 8 hours. If both pipes are open, in how many hours will tlie cistern lie filled ? 4. Two men together can do a piece of work in 5 hours, and one of tliem alone in 8 J hours. How long would the other take to do it ? 5. Two pipes cim fill a cistern in 3^ and 4J hours respectively, and a tliird empties it in 20- hours. In how long will the cistern l)e filled if all the taps are open ? 6. The hot-water tap can fill a bath in 10 min., the cold-water tap in 12 min., and the waste-pipe can empty it in 8 min. If all three are opened, how long will it take to fill ? And how long to empty again, if the hot water is then turned oil'? m 24 DISTANCE AND TIME. 7. A and B separately can do a piece of work ia 4i hrs. and 2| hrs. A, B and C together can do it in 1 /jAj hrs. How long will C take to do it alone ? 8. A and B together can do some work in 8 days, B and C together in 6 days, A and C together in 6^ days. How long would each take by himself ? 9. A and B together can do a piece of work in S-^^^ days, B and C together in 9^^ days, A and C together in 8f days. How long would each take by himself ? XVII. DISTANCE AND TIME. 1 . A and B are 6 miles apart, and walk at the rate of 4J and 3^ miles an hour respectively. How long will elapse before they come together (1) if they walk towards each other, (2) if they walk in the same direction ? 2 A walking 5 miles an hour starts from Bcaconsfield for Montreal (16 miles) at the same time as B walking 4 J miles an hour starts from Montreal for Bcaconsfield. How far from Montreal will they meet, and how long after the start ? 3. In the preceding example, if A walked 3J and B 5 miles an liour, where and when would they meet ? 4. A walking 5^ miles an hour gives ]i walking 3 J miles an hour one hour's start. How long will A take to catch B, and how far will he have walked ? 5. At 10 A.M. a train starts from Montreal to Quebec (180 miles) at the rate of 48 miles an hour, and another at 12.30 M. from Quebec to at the rate of 44 miles an hour. How far from Montreal will they meet, and at what time ? 6. A takes 9 steps while B is taking 8, but 10 of B'.s are ecpuil in length to 1 1 of A's ; which is the faster walker ? DISTANCE AND TIME. Zi} How 7. A train starts from a terminus at 9 A.M. travelling 25 miles an hour. An express starts at 10.30 a.m. and travels 43 miles an hour. At wliat time and how far from the terminus will the express overtake the slow train? 8. In a mile race A runs at the rate of 6 yards a second, and gives a start of 140 yds. to B, who runs hi yds. a second. How far from the winning post will A overtake B, and by how much will he win ? 9. An express starting at 3 p.m. stops first at a station 77J miles distant at 4.27 p.m.; the whole journey is 104 miles, and 15 per cent, of the time is expended in stop- pages. At what time is the train due at the terminus ? 10. An express runs 303 •} miles in hours, making one stoppage of 30 minutes, three of 5 minutes eacli, and one of 3 min. What is its average speed wlien in motion ? 11. A man rode a hicvcle from A to I), a distance of 54 miles, at an average rate of 8 m. an hour. Another nuin started from A on liorsehack h hour j>fter the bicycHst, and arrived at B 15 min. before him. Find the ratio of their speeds. 12. A hare pursued by a greyhound was 87 yards in advauce at the start; l)Ut for every 8^ yds. whicli the hare ran tlie dog ran 10 yards. How far liad the dog run when the liare was caught ? 13. Wlien will tlie liands of a clock be together (o) between 2 and 3, (/*) iK'twccii <» and 7, (c) Itetween 10 and 1 1 ? 14. When will the hands of a clock be opposite one another {a) between 3 and 4, (Ij) between 7 and 8, (r) between and 10 ? 15. When wid the hands of a. clock be at right angles to one another (a) lietwcen 4 and 5, (//) between 10 and 11, (<•) l)etween 1 and 2. 16. Two clocks point to 2 o'clock at the same instant 26 COMPOUND PROPORTION. on the afternoon of Christmas Day; one loses 8 snc. and the other gains 7 seconds in 24 hrs. When will one be half-an-hour before the other, and what time will each clock then show ? 17. A watch which at 9.30 A.M. on Tuesday is 4 min. 8 .yW sec. too fast, loses 2 min. 45 sec. daily. What time will the watch indicate at 5.15 p.m. the following Friday? 18. Two clocks, one of which gains 1 min. 12 sec. and the other loses 1 min. 28 sec. daily, are set right at 11 A.M. on 1st May; on what day and at what hour will the times indicated by them differ by 30 minutes ? XVIII. EXCHANGE. 1. If 23-85 francs are exchanged for $5, how many francs will be obtained for $51.25 ? and how many dollars for 17 -49 francs ? 2. If $4.95 are exchanged for £1 and £1 for 25-05 fr., how many francs will $33 yield ? 3. A person goes to France with £56, which hd exchanges at the rate of 25 J- francs for £1. He st " '^0 days, spcniling 37). fr. a day, and cluuiges what he ha> at the rate of 1 fr. for ^hd. How much English moii will he liave ? 4. If 5 fowls are worth 3 ducks, 14 ducks worth 5 (feesc, and 3 L'eese worth 2 turkeys, what is the price of a fowl when a turkey costs $2.10 ? 5. If 2 lbs. of tea were worth 3 lbs. of coH'ee, and 4 l])s. of coffee worth 21 lbs. of cocoa, and 7 lbs. of cocoa worth 9 lbs. of sugar, and 20 lbs. of sugar worth 45 lbs. oi raisins, how many lbs. of raisins would be worth 24 lbs, of tea ? MENTAL PRACTICE. T XIX. MENTAL PRACTICE IN AVERAGES, PROPORTION, ETC. 1. Find the average of:— (a) 11, 17-25, 18i, 19f ; (Z.) i, 100, 1000 ; (e)i, i,ii; (^) 6-3|, 4-U, 3-^. 2. What is the average attendance for a week in a school which has the following for each day: 80, 82, 81, 83, 85 ? If the number of pupils on the roll is 90, what is the average percentage of absence ? 3. The temperature at 6 A.M. was 39° Fahr. ; at noon 47"5 ; and at 6 p.m. 3G. What was the average for the day? 4. The average of three numbers is 7J ; the largest and smallest together make up t| of the whole ; what is the middle number ? 6. If 27 out of 1000 die annually in one town, and 2G in another, what is the average death-rate per cent, per annum in the two towns ? 6. At an examination there were 4 candidates at the age of 19, 3 at 20, 2 at 21, and 3 at 23. Find average age. 7. Find the missing term in the following: — (a) 3 : 5 : : U : a;; (Z>) t : I'V : : f : ^; W 6 : ^ : • *^ : «• 8. iJiVide :—[a) $350 in the ratio of 3:4; (?>) £10 in the ratio of 2 : 13 ; {c) $75 into parts proportional to 2, 5, 8; {d) $21 into parts proportional to '25 and J. 9. One candle lasts 4 hrs. 20 min., another lasts 3 hrs. 15 min. What is the ratio of the first to the second ? 1 0. A man can do a piece of work in 4 1 days. What ])art of it can he do in 1] dys. ? What decimal ? What per cent. ? 11. A window is G ft. 4 iu. high by 4 ft. 2 in. wide. What is the ratio of the height to the width ? 12. Wliat i.s tlie ratio of 3 quarts to t gal ? G pks. to 5 bus. ? Is. to $1 ? ^v to •;? ? $3G.r,0 to $18.25 ? 28 I'ElUlKNTAdK. ' t XX. MENTAL I'llACTICE IX VRRCEN TACIEf^. I. How much per cent, is 17 <>f 2;"); lU of ^'•oj ; 19. of 20 ; :^a of 40 ; 21. of 24; U of ^ ; ^ of 12i ; 18 of 63; *59of T:;; -O^of 1; 1 ?. of 5X ? 2 Express as a comniou fraction in lowest terms :— 2% ; 41% ; ^% ; G% ; 10% ; 20% ; 25% ; :M% ;^ 3:U% ; T5% ; 001%; l0 XXI. COMMISSION. (For Percentage, Interest, Discount, Present Worth, etc., see Book III., pp. 36-60.) A Comxuision Merchant or Agent is a person who buys or sells goods for auotlier. What he receives for his services is called his commission. A consignment is goods sent to an agent to sell. The net proceeds are the amount left after the com- mission and other charges have been paid. 1. A sold B's farm for $G750. He bought him a new farm for $4825. The commission for selling was 4°/^ and for buying 2"/^. How much should A receive ? 2. Wlio is the J^rincipal and who the Agent in the above transaction? Is he a buying or selling agent? AVhat are the net proceeds of each transaction ? 3. Find the commission {a) at 4A°/^ on sales amount- ing to S34G8, {h) at oT/o o^^ '^'^'"^ barrels of apples at $2.25 a barrel, {c) at C|°/^ on a ton of wool at 87i cents a lb. 4. What is the amount of the sales {a) when the commission at C^'Yo i^ ^^1^0, (h) when the commission at 3r/^ is $294, (c) when the commission at 1^/^ is $270 ? 5. Find the amount of the sales {a) when the net proceeds are $4845 and the commission 5^/^, (/;) when the net proceeds are $229.80 and the rate 37o, {c) when the net proceeds are $15,250, the rate of commission lJ:7o> with additional charges amounting to $G2.40. 6. A merchant remits to Ins agent a sum of money to be invested after deducting his commission. Wliat sum will be left to be invested {a) when the remittance is $7098 and the commission 4°/ , (A) when the remittance is $4908 oO INSrUANCK. i f ! ll and the commission 4^;;. (c) when the remittance is $4454 and the commission 2V'//? 7 In the uh<.ve prohlems wliat represents t/,r base, the pcrcfntar, the rate 7.. the ^nnomU, the dijjerenee ? ^ 8. Make rules or formuUis for finding tlie coramimon, the amount of sales, the sum invested. 0. A real estate agent receives $95 for selling a house for $47r.O. What is his rate. of commission ? 10 AMiat was the cost of printing 500 copies of a hook which was sold at $0.90 a copy, if the hookseller's com- mission and charges were 34 per cent, of the gross receipts, and the author's profit $135.90 ? ^ ^ 11 An aoent, selling goods at 21 per cent, commission, sent the consignor $1207.50 as the net proceeds ot days sales. AVliat were the average daily sales ? 12. An agent sold goods for me amounting to $10 «G0. He charged 2}. 7. commission for selling, and 2,^ tor ouaranteeing liayment, and $37.50 for freight and storage. How many barrels of Hour at $5 a barrel can he buy witli the net proceeds, if he charges r/, commission for buying ? XXII. INSURANCE. Insurance is security against loss. The premium is the sum paid for insurance. The policy is the written contract between insurer and insured. . . . , 1. What premium must be paid for insuring propeit) (ft) worth $5000 at I per cent., (h) worth $800 at 1| per cent., (c) worth $05,000 at f per cent. ? . ., , 2 What is the rate of insurance (a) if $lo is paid for insuring'$1000, (h) if $420 is paid for insuring $18,000 ? INSURANCE. 31 3. What amount of insurance can be obtained (a) for S40 at 2/^, (h) for $157.80 at U"/^, (c) for $187 at 2f /„ ? 4. In each of the above problems jwint out the base, rate and pereentage. 5. Make rules or formulas for finding the 2>'>'^'>niiim, the rate, the ammtnt of the jioliey. 6. Pind at sight tlie premium in tlie following cases : Amount of Policy. Rate. {a) $100 \ (Wj^ (h) .$1200 ' '2^7^ (9 examples.) (e) $2000j [6='/^ 7. Find at sight tlie amount of ])olicy in the following: Premium paid. Rate. (a) $15 1 ay {h) $2.50 I '•>' 00 $10.50j 8. Find at sight the rate Amount of Policy. (a) $50 |--Vo il2iV ({) examples.) /o in the following : (b) $200 (e) $1000j Premium paid. ($0 m y (9 examples.) 9. AVhat sum must be insured at 4 /,, so that tlie owner may receive, in case goods worth $7.'j5 are lost, the value of the goods and the premium ? 10. A dealer shi[)ped 1000 barrels of Hour worth $0.50 a barrel; for what sum must he take out a policy at 2.y'/^ to cover the value of botli Hour and premium ? 11. Find the premium for insuring 4840 busliels of wlieat wortli $1.20 a bush, at 1^^/^ on •; of its value. 12. After 20 years' insurance, a mill worth $48,000, and insured for J of its value at 2.^/, is destroved by tire. Find the owner's loss, not counting interest. M TAXES AND DUTIES OR CUSTOMS. XXIII. A.— TAXES. A Tax is money assessed upon the person, property or income of citizens for public purposes. 1. What is meant by real estate, personal property, assessors ^ t • 2 The rate oE taxation on real estate in Montreal is 17 for nn.nicipal purposes and 1% additional for school pm-poses. Find at sij^ht the an>ount levied on properties assessed at $1000, S2000, !?;:!000, up to *1 0,000 rospeet.vely. 3. When the rate of assessn.ent is l-^« '"'"^ °" ^J'; dollar, what will he jmid on a property valued at $U 000 , 4 The schools cost S:!nVl'.r>0 a year, and the rateable value of real estate is $81,0oT.50. What is the rate of scliool tax ? • • i-i 5 A tax of $^>000 is to be levied tor repairin- tlie road.. Tlie assessed value of the distnct is $2,242,000. What is the tax on a farm valued at $07. >0 ? 6 Wliat is tlie valuation of a piece of property that pays a tax of $273 at the rate :\\ mills on the dollar ^ 7 If a tax of 1^2850 is to be raised, and tlie collector receives 5°/, commission for collecting the taxes, what sum must be levied ? B.-DUTIES OR CUSTOMS. Duties arc taxes levied by a government upon -nods hiip<»rled from foreign countries. 1. Define t'lir, Irahn/r, hmtkage. _ _ io duty on 1^-. caoPH n..i._ , .t- tainine pi-miuui or discount is the dilierence between the (|uoted price and 100. Consols are Kn.^Ush government securities. 1. What IS meant by thm- per cent. >:lock at 6,:- .' is the stock at premium or discount > 3. Kind (a) the market value of, (h) the annual income arising from : — {a) $01^0 T) per cent, stock at 80. {h) $204 21 per cent, stock at 90. (<•) $0000 o'l per cent, stock at 87^-. (^/) $ir.r>0 ;» per cent, stock at Tr)^ (r) $1200 4 i)er cent, stock at 92^ 3. Find tlic amount of stock obtained and the annual income derived from investing: — {a) $910 in 4 per cent, stock at 104. ih) $ir.(j0 in 5 per cent, stock at 81 1- ^ (c) $1991.7'. in n per cent, stock at 9G'^. 4. Find tlie juice of stock when (a) $4900 stock can be bought for $:i907.75. (h) $2000 stock can be bought for $252;).2o ((') X089r. stock can be bou'dit for £7050. 2s. 9d. STOCKS. 35 5. Find the quantity of stock lield (a) In the 5 per cents., if the income is S43.75. (b) In the 3 per cents., if the income is $7.70. (c) In the 5^ per cents., if tlie income is $91. (r/) In the 4 per cents., if tlie income is £115. 4s. 2(1. 6. Find wliat sum of money must be invested to derive an income of {a) $400 from the Al ])er cents, at 75i'. {h) $500 from tlie 4 per cents, at 00 L {c) $:)00 from tlie 2.V per cents, at 57;. {(1) £72. 15s. from tlie *v>^ per cents, at 05. 7. Find price of stock, if there is derived an income of {(() $106.50 by investing $2560.4:5^ in the 3 per cents. {},) $107.50 by investing $4374.62^ in the 4 per cents. {r) $154 by investing $3432 in the 3.^ per cents. (f/) £07. 10s. by investing £2302. l()s. 3d. in the 3 per cents. 8. Dctennine the rate per cent, paid by stock {(() AVhen $3720 of stock yields an income of $139.50. {})) When $2975 of stock yields an income of $133^. (r) When $11 is obtained by investing $204 at 81. (r/) AVhen $40.20 is obtained by investing $924 at 105. 9. What is the rate of interest on money per cent, per annum {a) AVhen 3» per cent, stock sells at 80 ? (/>) When 3 per cent, stock sells at 84 ? {!') AVhen 3.y per cent, stock sells at 75 ? {(J) When A\ per cent, stock sells at 135 ? 10. Which is the better investment : — {a) The 3.\ ])er cents, at 77 or 4 per cents at O:].} ? (/») The 3 per cents, at 72 or 4 ])er cents. \\[, 90 ? (r) The 3 per cents, at 82.1 or '.\\ per cents. 93.V ? cents, at 90 ui {(i) V P ((') The 4.V per cents, at 120 or 3..^, per cents, at 90 ? 36 STOCKS. 1 1 Find the chan^o in income caused hy transferring (a) Sr.OOO from the -A per cents, at 90 to the o. per cents, at 81. „ (/>) $7300 from the 3 per cents, at 00 to the o per cents at 100 H. ^ (r) ^:>300 from the 3 J. per cents, at 89^ to the 3^ per cents, at 94^hrokerage i per cent, on eacli tra.^actiom (,/) $880 from the 4| per cents, at 106 j: to tlie 4 ««»fa .,<- O'V' hrokera^e I on each transaction. per cents, at J-*^, lunivci.i.,^ j, ^ (.) $4900 from the 3^. per cents, at 109 i to the o per cents, at 91^ brokerage i on each transaction. 12. How much 4° „ stock nmst be l>ought to give an income of $320 ? 13. If !?niL'5 is i„vcsW in (i° „ stock at 1021, wliat income will Vic olitained ? , , , ^ f 14 If a person buys .V,^ slock at I -O, what rate ot interest does lie receive on bis money invested > 15. yind the sun. renuired for an investment m 4/„ stock at OS.', to produce an income of ^'MO a year. 16 AVbat must be tbc ,>rice of a 5\ slock m order that a buyer may receive 0° „ on his i,.vcstmeut ? 17. AVhen :!°„ Onsols are .luoted at 101, what sum nuist be invested°to yicl.l an income ot .EHOO ? 18 AVhat is the e.-cact interest on an mvestn.ent ot $-,000 in 4.', per cents, at U+i fron, dan. I to March - . 10 If a' n,au buys stock at 177. l"'^"""'"' '"^f 1'" cent, does he receive o« his investment, if the stock pays a dividend of Sr„ on its par valued „,,.., , •,, 20. If S4 shares of stock, i-ayin;,' a 0°; dividend, yield lOy on the money invested, what did tb.> slock cost ? 21 (;overnmeut bo.ids yieldin- *2-10 a year at 4,„ interest wee sold at H% ,,.em,um and the vroeeeds invested in land :U *7r. an ac. Mow many acres bought , STOCKS. 37 sum 'ieUl 22. }\y selling 3 per cent. Consols at 102^] and invest- ing the proceeds in a railway stock which pays dividends of 7% per annum, a man finds tliat he can double his income; what is the price of the railway stocl^ ? 23. One company pays 5.V% on shares of $100 each; another pays 31% on shares of $10 each ; if the sluires of the former sell at 151% premium, and the shares of the latter at 22^7 discount, compare the rates of interest - /o ' •■ which the shares return to purchasers. 24. By selling out £4500 in the India o"/^ stock at 112 J and investing the proceeds in Chinese 7% stock, a person finds his income increased by £168. 15s. ; what is the price of the latter stock ? 25. When the price of a 3 per cent, is 90, a person can obtain an annual income of $1 more than he can if the price is 07 ; how much has he to invest ? 26. A person has $2950 in 3 per cent, stock at 83 1 ; wlien the stock has fallen 2i, he transfers his capital into 5% stock at 107| ; find the alteration in his income, brokerage in each case being |. 27. I buy 3% stock at 89 J ; after receiving one half- year's dividend, I sell the stock at 94^, and find that I have gained $54 ; what sum did I originally invest ? 28. A person having 1,0:5:), 200 francs in French 3 per cents, at 744 transferred to English 3| per cents, at 98|; liiul the change in his income, the rate of exchange being £1 = 25*2 francs. 29. Which is the better investment, stock at 25// dis- count wliicli ])ays a half-yearly dividend of 4%, or money lent at 10%, interest payable annually ? What % better ? 30. A ])orson sells out of the :» i)er cents, at 90 and invPstK hi;-, money in 5 per cent, stock at par: by how much per cent, is his income increased ? 38 STOCKS. XXV. MENTAL ri!4CTICE IN STOCKS. 1 . If the o per cents, are at 82, required iiu-onie for $574. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. o O • > O «->Tr 0:! -4' 4 4 4 84, 81. 80, 89, 93, 96, 91, 87i-, 85f, 89, " $270. " $250. " $924. " $979. " $465. " $624. $500.50. " $350. - $686. " $1157. Kequired the price of the stock when the 13. 3 per cents. i,nun $12 for $300 invested. 14. 2f " " $30 " $1000 15. 4 '' '' $27 " $600 16. o\ " " $42 " $1000 17. 3i '•' '• $18 " $560 18. 4i " " $20 " $400 What quantity of stock can be purchased for :- 19. $300 at 75. 20. $729 at 81. 21. $656 at 82. 22. $684 at 90. 23. $760 at 91. 25. $765 at par. 26. $6:')0 at 210. 27. $700 at 175. 28. $606 at 151?.. 29. $806 at 100^. 30. $733 at 150. 31 24. $382.50 at 85. 1 receive 3=?- p.c. interest on my money by investin m 4^- p.c. stock. At what price did I buy BUSINESS EXERCISES. 39 XXVI. BUSINESS EXERCISES. A.— BILLS OF ACCOUNT AND INVOICES. A bill of account is a detailed statement of merchandise sold, or of services rendered. An invoice is a detailed statement of merchandise sold hy one dealer to another. 1. As clerk for Arthur Fitts and Co., you sell Mr. Alfred Brown, on 15th June, 1897, 3 cases of torpedoes at $2.20; 12 boxes of fire crackers at $1.62^; 3 gross pin wheels at $1.35 ; 5 gross sky-rockets at $3.25 ; 2 dozen balloons at $2.25 ; 45 Chinese lanterns at 9,^. Copy and fill out the following bill of account, and receipt it for the firm : — Montreal, 15th June, 1897. Mil. ALFRED BROWN. To ARTHUR FITTS & CO., Dr. 2. Mr. R. W. Stuart has bought the following goods of J. R. Bradley & Co. :— Jan. 3rd, 1897.— 9.^ yds. flannel at 32^^ a yd.; 26 yds. calico at A\y a yd. Jan. 7th.— 23 yds. muslin at 81/; 18 yds. linen at 64/. Jan. 18th.— 15 yds. ribbon (w. T.K ; J- do/, pairs socks @ 42/ a pair. Rule and make out a bill dated Feb. Ist, 18i)7. Receipt the bill on 5th Feb. iO BUSINESS EXEliClSES. 3 Make out a hill for the following articles bought duriiic. ]\larch aud April. Supply the names of buyer and seller ; also the dates : — 23^ yds. silk ® SOf ; IJ yds. lace ® $2.40; G4 yds. muslin @ ^^ : 8 spools silk @ 7f' ; 4 pairs stockings @ 05/ ; 6 yds. linen at S:h^ ; i doz. collars @ S2.10. 4. An upholsterer charges S:>.V5 per day for repairing some furniture. He sui,plies G lbs. hair g r>0<' a lb. ; 1 . yds. plush (B S1.75 a yd. ; 3 papers tacks at 10^^ a paper; cord, gimp, etc., Onc He woiks 4 days. Make out his bill, supplying names and dates. 5. Boston, IVIass., 10th May, 1897.-Messrs. F. E. Grafton & Sons, Montreal, bou-ht of Cinn & Co., 12 sels New Headers (a $2.2^ ; in sets Kindergarten Ihawmg r,ooks (« $1.75; 25 Science Keaders (a $0.00; ".O IMnc- tical Arithmetic @ $0.90; IS Brand's IMiVsiology di $0.50; 18 Standard Elocution (a, $1.20. Less discounts of 257^ and 10"/^. Make out the invoice. 6 Ottvwa, 10th Oct., 1897.— Messrs. Bulmer & Co., Montreal, bought of ( lilmour & Co., 293,500 ft. pine at $42 per M • 132,000 ft. pine, third (luality, di $10 per M. : 425 250 ft.hendock fe: $22 per M. : 83,750 ft. basswood (01 $20 per M. ; 48,G50 ft. elm fe, $72.50 per M. Less a regular discount of 37 r/. and 57, additional for cash. Make out the invoice. 7 Montreal 18th July, 1897.— Messrs. H. Morgan & Sons boiudit of A. Chisholm & Co., 3 bbls. granulated sugar @ $7.50 ; 17 boxes raisins 'ii $1.75 ; 4 kegs lard @ $2!l5 ; 15 lUs. spice at 1G<' ; 24 boxes oranges fe $1.40 ; 2 bacTs Java coffee C« $27.20; 2 bbls. syrup @ $18.50; 12 lbs. nut mess for cash. Cartage, $1.50. Make out the invoice. BUSINESS EXERCISES. n and 8. Examine the following form of account with James Parker : — Mr. James Parker, Dr. Mr. James Parker, Cr. 1897. I ! i 'I ^^97. I ! June 3 To 10 lbs. sugar @ 10c . 1 ' 00 ^ June 5 Uy 2 days' labour. . 4 " 2 lbs. tea (floSc.; 1 10 June 6 •' 3 ll)s. coffee (5) 30c . | | 90 00 What does "Dr." mccin ? What does " Cr." mean? What does the item on the Cr. side of the account mean ? Did he work for you or did you work for him ? 9. Eule and make out the following account with John Wallace : — June 1 : He owes you $2.85. June 5 : You sell him 2 qts. berries @ 12/', peas W, and 2^ lbs. steak @ 2^/. June 8 : He and two of his men work for you 6 hours, each at 25;^ an hour. June 1) : You sell him 2.V lbs. cliops @ 28f', potatoes 20/-. June 12 : He and one man work for you ol hours, each at 25f' an liour. June 15 : You sell him 7 lbs. lamb @ 22;^ and berries 28f'. June 21 : You sell him l^ lb. steak @ 28<^ and he ])ays you on account $o. June 24 : Yo4i sell him 3 pks. ])otatoes @ 30^', peas 12<', olives 35<', and 2[ 11)S. steak @ 28<^ June 28 : You sell him 61 lbs. beef at ?Af, and l)erries 30/'. How does the account stand at the end of the month ? 10. Charles Harrison, gardener, owes you rent for the month of May, $25 ; but during the montli he lias done 3.V days' work for you @ $3.25 per day, and has furnished 3 rose-bushes @ 75f^ 4 grape-vines (w 50<', 11 fuchsias @ 30^^ 25 pansies @ lOf'. How does the account stand on Ist June ? 11. You employ a plumber to put in a new kitchen sink, '^[ake out liis bill for l.ibour done and materials furnished, supplying names and dates. 42 BUSINESS EXERCISES. 12. Rule and make out the following account with Benjamin Smith :— Oct. 1 : You owe him $6.24. Oct. 3 : You buy of him 2 doz. apples @ 25^, I lb. coffee 19f, and 10 lbs. sugar @ ¥. Oct. 5 : You buy 5 gal. oil @ 10c, gelatine 15^, 2 lbs. rice @ 9f^. Oct. 6 : You sell him 6 bush, potatoes @ 68^. Oct. 8 : You buy 1 lb. tea @ 60;^, spice 40;^ wicks of. Oct. 10 : You buy 10 lbs. sugar @ Qf, cocoa 24^, and biscuits W. Oct. 15 : You buy coffee W, and flour $1.40, and you pay $o an account. Oct. 19 : You buy 1?. doz. lemons @ 25^, 2 lbs. raisins @ 13^, biscuits 20,^, 2 lbs. brown sugar @ 1f> and sell him ISJ lbs. butter @ 28 f. Oct. 24: You buy 5 gal. oil @ 10f^ walnuts 20/', and 3 lbs. oatmeal @ 6/^. How does the account stand on Oct. 31st ? $730. B. — NOTES, DIJAFTS, CHEQUES. A note is a wriUen 2mmiisc to pay a specified sum at a certain time. Montreal, 3rd August, 1897. Three months after date I promise to pay Henry Webster or order seven hundred and thirty dollars, at the office of the Bank of Montreal, for value received. John Cox. Tlv^ above note is payable at the Bank of Montreal 3 months and 3 days a.ter 3rd Aug., or Nov. 6th. It is negotiable, but needs Henry Webster's enilorsenient to make it transferable. It does not bear interest. 1 . Explain the terms negotiable and endorser. What does an endorser do by his act ? 2. Distinguish between bearer and order. 3. Jolin Cox discounts the note on Sept. 15th at 9%. Whnt will the proceeds be ? (See Book 111., p. 56.) BUSINESS EXEKCISE3. 4:3 4. A note for S4000, dated 3rd July, payable in GO days, is discounted 1st August at 12%. Write out the note, supplying names. Find the day of maturity, the discount and the proceeds. 5. E'-amine the following note; — S250. Halifax, Feb. 10th, 189^ Sixty days after date we jointly and severally promise to pay to the order of Mr. ]t*etcr Smith, tiro hundred and fifty dollars, for value received, with interest at six per cent. Mortimer Jack. Richard Shaw. If the words " and sevtrally " were omitted, the above note would be a joint note, and eaoh of the makers would be responsible for one- half of the amount. Eitlier of the makers of the above note could be sued for the full amount. The note bears interest from its date at 67o per annum. If tlie note is discounted, tl»e discount will be computed on the face of the nots with the interest added. 6. James Allen borrows $337 from Eichard Lee, and gives liim a note at 3 months, which for liis better security is signed not only by himself, but by his friend, Fred. Harris. The note is to bear interest at 7%. Write the note supplying dates, and make it payable to order. When will it be due and what amount will be due at maturity ? 7. Eichard Lee (after holding the note for 18 days) has it discounted at 87, and receives cash in return. Endorse the note before discounting. How much cash should Lee receive ? 8. A draft is a written order hy one permn on another for the payment of a specified sum. 44 BUSINESS KXKHriSES. SIOO. Montreal, IGth Oct., 1897. At sif/hf pay to the order of Mr. irUliam Duvuhou ojic hundred dollars, for value received, and charge to account of To Messrs. ])avid Law & Co., Herbert Bond. Toronto. Tliis is a sight draft, and is paid on presentation. It nii'.st be endorsed by \Yilliam Davidson. ^.QQ Montreal, IGth Oct., 1S97. Thirty days after sight pay to the order of Mr. William Davidson one hundred dollars, for value received, and charge to account of m A/T ^^ -IT . e n . Herbert IJond. lo Messrs. Davul Law & Co., Toronto. This draft must be presented to David Law & Co. for acceptance. They accept the draft by writing across the face the word "accepted," with the date and their signature. When accepted the draft l)econies a note, payable SO days after tlie date of acceptance. 9. A cheque is a draft on a haul', /layahle on dniiand. Sir.O.To. Montreal, 2nd March, 1897. THE BANK OF MONTREAL. Pav to Thomas Nicholson, Esq or order one hundred and jifty tVo dollars. Eobert Linton. Tills che(|ue must be endorsed by Nicholson before being presented for payment. 10. Draw a cheque on the Molsons liank for $r)7.80, supplying names and dates. 11. Montreal, March 18ih, 1897.— Messrs. Henry Gold & Co. buy of E. I[. Dods 320 barrels of Hour at $r».20, and give in part payment their cheque for $1000. BUSINESS KXKKCISKS. 4:. Make out Henry Gold's & Co.'s bill, and credit the amount paid. Draw the cheque. 12. Montreal, ;5rd April, LSOT. — E. H. Dods draws a draft at 30 days after sight on Henry Gold & Co. for the balance of his account. The draft is in favor of Messrs. R. Green & Sons, Toronto. Write the draft and accept it for Henry Gold & Co., date Sth April. 13. Toronto, 8th April, 1897.— Messrs. R. Green & Sons have the draft discounted at the Imperial Bank at 10^ discount, and receive cash in return. Endorse the draft. What are the proceeds ? 1 4. Draw a draft, at 20 days sight, in your own favor, and have it discounted at Molsons Rank at 8^, supplying names, dates and amount. See that it is properly accepted and endorsed. Find the proceeds. 15. Montreal, May 10th, 18!)7.— Charles Wood buys of Messrs. Gillespie & Sons 10 hhds. sugar, each kn'tO lbs., at 4J/^, and 20 chests tea, each G2i lbs., at 53<^. On July r)th Wood gives his cheque on Bank of Commerse in payment. Write Gillespie's invoice and Wood's cheque. 16. Quebec, Aug. 19th, 1897. — Mr. S. Brush has on deposit in the Quebec Bank $198.84. He draws from his account $25.30 for himself. On the same day he deposits ^422.85, and issues a cheque in favour of James Hall for $14.90. Write both cheques. How does his account stand ? 17. Three Rivers, Apr. 24tli, 1898. — J. Ross borrows $425 from H. Bird, and gives his note at 90 days, drawing interest at 8°/^, in payment. At maturity Ross pays $132 to Bird, and gives a new note at 2 mos., drawing interest at 10°/^, for the balance. Ross pays the second note l)y a cheque on the Quebec Bank, (a) Write the first note. (h) Write the second note, (c) Write tlie cheque. 4G WEIGHTS AND MEASURES. XXVII. WEIGHTS AND MEASURES. (See tables on p. 76, with notes.) 1. How many loads of coal, each 14 cwt. 96 lbs., are contained in 5 trucks, each weighing 10 tons 8 cwt. ? (Long ton.) 2. A dealer bought 600 tons of coal at S5.25 a long ton, paid 75^ a ton for freight, and sold it for $5.75 a short ton. Find his profit. 3. Sea water contains 2^7o of salt; what weight of water would be required to yield half a ton of salt ? 4. Find the weight of a nnllion cent-pieces, each weighing a quarter of an ounce. 6. Twelve tons (gross) of tobacco were sent to an army of 1M,000 soldiers; how many lbs. should each receive? 6 A silk-worm produces 28 grains Troy of silk ; how many must be kept to produce 112 lbs. Avoir. ? 7. Express in Troy weight the dilVerence between 140 lbs. and 2120 oz. Avoir. 8. Reduce the sum of :^00 lbs., o06 oz., 306 dwts. and oOO grs. to Avoirdupois weight. 0. Find the dilit'erence in grains between the weight of a pound of feathers and a pound of gold. How many lbs. Troy are there in a long ton of gold ? 10. Express in lbs. Avoir, the weight of a nugget of gold weighing 18 j- lbs. Troy. 11. A watch gains 13 seconds each hour; what will it gain in a fortnight ? 12. How long would it take to count ten millions, twenty thousand, three liundred, at the rate «•! uiio huiulred and fifty per minute i WEIGHTS AND MEASURES. 47 eacli 13. A workman goes to work at 6.30 a.m. each morn- ing and leaves at 8.15 p.m. What does he earn in 4 days if he is paid 18 cents per hour till 6 p.m., and after that time 24 cents per hour, but loses Ih hours of working time each day for breakfast and dinner ? 14. A train travelling 45 miles an hour continues its journey for 2h Ins., stopping twice for 7 min. 30 sec. each time. What distance is traversed ? 15. A train leaving at 8.05 A.M. arrives at its destina- tion at 2.45 P.M., travelling on an average half a mile per minute. What is the distance traversed ? 16. If sound travels at the rate of 1000 ft. a sec, and if a gun is discharged 5 J- mi. away, what time will elapse after seeing the flash before hearing the sound ? 17. If light travels 186,000 miles a sec, how long would it take to pass from the sun to the earth, a distance of 02,000,000 miles ? How long to go round the earth, a distance of 24,800 miles ? 18. From a rod a yard long, pieces each 057 of an inch long are cut off; how many such ])ieces can be cut off, and what will be the length of the remaining piece ? 10. How many roi)es, each 24 yds. 1 ft. 6 in. will reach to a depth of 204 fathoms ? 20. Ho AT often is a chain contained in a mile and a half ? What is the length of a chain in yards ? In rods ? 21. How many inches long is a link ? 22. The distance between two places is found to be 1000 chains. Express the distance in miles, etc 23. The four sides of a garden are 25 chains 10 links, 15 chains 8 links, 24 chains 08 links, and 16 chains 4 links. How many yards arouud the garden ? 24. Find in acres and sip chains the area of a rectan- [^\\\nr field 17<>0 links lonr^ and 1200 links broad. i ! 48 WEIGHTS AND MEASURES. W 25. A path is 15 links wide and 88 chains 40 links long. Find the area of the path in sq. rods. 26. From a field of 6 acres, a rectangular piece 4*25 chains long and 2 4 chains wide is fenced off. Row much is left ? 27. One field contains 4 sq. chains and another is 4 chains square. How many acres in both together ? 28. Take *432 of an acre from 6 J sq. chains, expressing the result in square yards and a decimal. 29. A school-room having in it 45 pupils is 26 ft. wide and 10 ft. 6 in, high. How long must it he to give 250 cub. ft. of space to each pupil ? 30. How many loads of loam, each a cubic yard, will it take to cover a quarter of an acre of land 2 in. thick ? 3 1 . Find in gallons the measure to four decimal places of a cub. ft. of water, and its weight in ounces Avoir. 32. Find tlie weight of water in a cistern 10 ft. long 4 ft. wide, the water standing 18 inches deep. 33. What weight of water does the Suez Canal contain, if it be 100 miles long, 100 ft. wide and 25 ft. deep ? 34. Find the weight of air in a room 24 ft. long, 20 ft. wide, 10^ ft. high, if 100 cub. in. of air weighs ;»1 grains. 36 Find the value, at ],<' a lb., of the ice taken from a pond half an acre in extent, if the ice is 10 in. thick and one cubic foot weighs 58 i lbs. 36. A floating body displaces it.s own weight of water. How many cubic feet of water will be displaced by a ship and cargo weighing 10,000 tons ? 37. A ship sails 2" DV o!ic day, 2" 35' the next, 2 So the next, and 2 20' on tbe fourtb. Wbat (bslnncc is traversed, reckoning fiO mibis to a degree in that latitude^ 38. A ship sails \-)^, 192, 1^7, 245, 241?, 203 and 22f> knots (2000 yds.) in a week. Kind tbe distance in miles, MKTUIO SYSTEM. 49 XXVIII. METRIC SYSTEM. (See Book III., pp. 13-23.) Length. M m. Km. H m. ]) in. m. 1 = 10 =- 100 =:r 1000 .:= 10,000 m. hn. cm. mm. 1 = 10 = 100 = 1000 the Construct after unit of measure beiuir tlie lih instruct tl tlie above model the table of capacity, he table of weight, the unit being the gram. The theory of this system is that a metre is the 10,000,000tli of a quadrant of the earth through Taris: the litre is a cubic decimetre in volume; the gram is the weight of -J ^,\,(j^ of a litre fdled with water at 4 C. ; and the franc weighs 5 grams. Hence 1 litre=l cubic decimetre=l kilogram. (Book III., p. 22.) 1. A wagon is loaded with 5 boxes weighing respec- tively 102;ur. kilos, :\7-9:] kilos, lUl^-Ol kilos, 9S49 kilos and l^o'G kilos ; what is the weiglit of tlie whole load ? 2. A peison paid 24 francs for 15 m. oi cloth; how much will he pay for To cm. ? 3. How many litres of vinegar can l)e put into 500 bottles, if 25 of them will hold 025 cl. ? 4. j\[;ike out the f:»lb)wing bill : — G doz. dinner plates at i'i't centimes each, 84 cheese plates at 4*45 fr. a doz., )) dislies at 1-25 fr. each, 5 doz. glasses at •(J5 fr. each. 6. Two bicyclists start from opposite ends of the same journey, which is 102-5 Km. long, and meet in 7 hr. 42 min. One rides Vfi) Km. an hour faster than the other; what is the speed of the faster ? ;o METRIC SYSTEM. KfVl Wn 'il 6. Two trains start from Paris with an interval of 2 hrs. 21 rain. The first runs 48 24 Km. and the second 54-27 Km. per liour. At wliat distance from Paris will the second overtake the first ? 7. A lawn 27 m. long and ir> m. wide has a walk round it 2 m. wide ; what will it cost to cover the walk with gravel at -oO fr. a sq. m. ? 8. Tf a pile of wood is 2 8 m. higli and 4 m. deep, how lon^ must it be to contain 112 steres ? 9. Find the weight of water in a cistern 4 m. long, 3 m. vide and 2 m. deep. 10. How many HI. of water will a tank hold whicli is 880 m. long, G m. wide and 4.40 m. deep ? 11. A bin 4-5 m. long, 2 m. wide and :) m. deep will hold how many litres of grain ? . 1 2. Eacli ediie of a cube of br.ass is o cm. long ; find its weight assuming brass to be 8 times as lieavy as water. 13. Find the weiuht of oil in a tank 5 m. x 4 m. X o m., tlie weight of oil being 92% of the weight of water. 14. What is the weight of a bar of iron 4-00 m. x 7 cm. X 1-80 cm., specific gravity iM'ing 7*8 ? 15. How many franc pieces will weigh as much as a cubic foot of water ? 16. A swimming-bath contained r»2-70 HI. of water: water was tlien allowed to run for 2.V hrs. from a tuj. which supi)lied it at the rate of .*-.2 1. i)er min. Find the (piantity and weight of water then in the balh. 17. A family burned GOO kil(»s of c«)al in 40 days. If a HI. of coal weighs 10 kilos, and 28 HI. cost oG fr., what was the cost of a day's fuel ? 18. A cubical vessel 40 cm. on an edge is full of water. n 14 1. are drawn oil and re}»laced ^.y a li(|uid wiiose weight ! IS I tliat of water, what is the weight of the mixture ? METRIC SYSTEM. 51 walk walk Metkic Equivalents. 1 laetre = 39-o7 inches. 1 litre =1-76 pints. 1 kilometre = -6214 mile. 1 liectolitre =22-01 gal. 1 S(|. metre =1'106 sq. yds. 1 gram =15*4.'>2 grains. 1 hectare =2471 acres. 1 kilo = 2-2046 lbs. Av. 1 oil. metre =l-o08 cii. yds. 1 metric ton = 1-1023 tons. AlTROXIMATE EQUIVALENTS. Metre Kilometre S(|, metre Hectare = 1-1 yds. = ^ mi. = 11 sq. yds. Cu. metre =l-o cii. yds. Litre = 1^ pints. Hectolitre = 22 gal. — 01 acres. Gram = 1 grains. Cu. centimetre =j^g- cvl inch. Kilogram =21 lbs. Av. 19. Express a metre in yards; an inch in cm.; a yard in metres ; a mile in Km. {S places of ihrimnh.) 20. Express a sq. metre in sq. inches; a sq. inch in sq. cm. ; a sq. yd. in sq. m. ; an acre in hectares. 21. Express a cu. cm. in cu. in.; a stere in cords; a cu. inch in cu. cm., a cu. vd. in cu. m. 22. Express a pint in litres ; a gal. in HI. ; a bu. in 1. 23. Express a mg. in grains; a grain in grams; an oz. Av. in grams ; an oz. Troy in grams ; a lb. Av. in kilos. 24. How many nules and rods are there in 30-675 Km. ? 25. Change 3 cu. yds. 4 cu. ft. to cu. m. 26. Express 10 cu. ft. 156 cu. in. in litres. 27. Ex})ress 1*S00 gal. in cu. m. 28. Change 1525 eg. to oz. dwt. grs. 20. Change CI 2-5 dl. to cu. ft. ami cu. in. 30. Find as tlu^ decininl of an inch the dillerence between 12 inclics and 30 cm. 31. If a cul)ic foot of cj1j»ss weish 156 lbs,, find in 11)S. and also in kilograms the weight of a pane of glass 24 inches long, 20 iuclies wide and I inch thick. 52 METRIC SYSTEM. 32. xV train goes at an average rate of 5 Km. in 6 minutes. How long will it take to go from Montreal to Ottawa, a distance of 1 20 miles ? 33. Find the weight in kilograms of a rectangular block of gold 8 inches long, o inches wide and 2 inches tliick, gold being 19| times as heavy as water. 34. A metre being oOoTl inches, show that a kilo- metre is -621385732 of a mile. 36. Express a millimetre in in. and a kilometre in ft. 36. A kilogram is ecpial to 2-2046 lbs. Av., and a cubic inch of water weighs 252-0 grains. Hence find the number of cubic inches in a litre. 37. A litre of air weighs 1-3 grams; how many grains will a cubic foot of air weigh ? 38. in 25 kilograms how many lbs. Troy ? 39. A vessel full of water weighs 5*25 Kg. ; the weight of the vessel when empty is 250 g. How many litres will the vessel hold ? 40. A piece of iron weighing 100 lbs. is made into a bar 5 cm. wide and 2-5 cm. thick. What is its length if the specific gravity of the iron is 7*5 ? 41. A bottle empty weighs 10,000 grains; full of oil it weighs 1075 grams. What part of a litre will the bottle hold if the specific gravity of the oil is -9 ? 42. Mention the standard units in the metric system, and explain how each of the other standards is derived from that of length. 43. How was the standard of length determined i 44. Express the metric standjirds in British denomina- tions, correct to o places of decimals. 45. Wliy is the system called INIetric ? 46. What is its great superiority over every other system of weights and measures i POWERS AND ROOTS. 53 ' XXIX. POWERS AND ROOTS. A. — SuUAKES AND CUBES. Find the S(|uare of 1. 41. o 4. 3. 025. 4. 01. 6. 24.U 6. 50-24. Find the cube of : — 7. :u. 8. l-i:j. 9. 1005. 10. 1:1. 11. iv". 12. ;;i 1 'J- 5 'J 8- 'O. Find the value of :- 13. 51*'. 14. (21)'. 15. 17''. 16. (;;/. 17. {l\f. 18. 2:;-+l^' + ^'. 19. l-O^P-l-O^;-. 20. ^572-5^-36^. 21. ;;8''+17'-18l 22. 39"^x4S=\ 23. (307H 307') -f 30700. 24. (1 5'^ - 1 -iW) -^ 15. 25. 1-03 (4-07 + 3-l())'. 26. 3000 (M x •031)''. K — Square Koots. Extract the square root of: — 1. 576. 2. 1681. 3. 1156. 4. 4761. 5. 18760. 6. 18;;iS4. 7. 10404. 8. 266256. 9. 1-502644. 10. 234-00. 11. -0005,3361. 12. 1073-741824. 13. 42|. 14. 30iV 15. 5021. 10. 113!-^. 17. \ii. 18. A^'V. 19. .^.^yVV. 20. 1 .•{ 8 4 (5" j'j'y (T* ^81-4. v^-OOOlH). Find to three decimal places the value of: — 21. V2. 22. VO. 23. V706- 24. 25. V4;:|. 26. x/8.V 27. s/ i. 28. 29. ^328 + ^7 + ^5. 30. V 1 142^44 -fVl 1-628 L 31. 5v/3 + :;>/.5. 32. V-07~V00. Find a mean proportional, conect to '> ])la('es, to :— r- 33. 25 and 0. 34. 8 and 18. 36. 28 and 6:; 36, 7 and 13. 37. j and I 38. 25 and 81.39. /, and .',. 40. -12 and -48. 54 POWERS AND HOOTS. 41. "What is the side of a square whose area contains 106,929 sq. yards ? 42. A rerrinieut consists of 15,876 foot-soldiers ; how many must he phiced in rank and tile to form a solid sq. ? 43. A square farm contains o6-l acres ; how many rods square is it ? 44. Find in rods the length of a side of a square piece of land containing 262 ac. 105 sq. rods. 45. A rectangle is 81 yds. long hy 64 yds. wide. Find tlie side of a sijuare that has the same area. 46. A rectangular field containing 80 acres is twice as long as it is hroad. Find its length and breadth. Hypotenuse -= x/Base' + rerpendicular'. Perpendicular = -v/Hypotenuse>' - Vynsei }^n.se = /v/Hypotenuse^ — rerpendicidarl 47. If the sides of a right- angled triangle be 2 in. and 3 in. in length, find the hypotenuse correct to j^y part of an inch. 48. If the hypotenuse be 8 ft. and base 4 ft., find the perpendi- cular correct to yoVo ^^ ^ ■^*^'^^- 49. Find the height of a window reached Ijyaladder 25 ft.long.whose foot rests 15 ft. from the house. 50. The height of a tree standing on a riverside is 100 ft., and a line stretched from its top to the opposite bank is 144 ft. ; find the width of the river. 51. A tree was broken .")5 feet from its root, and strack the crround 21 feet from it- base. Find the height of the tree. 52^42+32 POWERS AND ROOTS. 55 C. — Cube Roots. how Extract the cube root of : — 13 1. 2197. 2. 12167. 3. 19683. 4. 493039. 14. 15i 39651821. e 4 • 6. 7077888 9. 1-225043. 10. 27270-901. 7. 134217728. 11. -000300763. 8. 228099131. 12. 233-744896. 15. 37oV. 16. 13]^f. 17. 51641^^. Find, correct to 3 places of decimals, the value of : — 18. 4/73. 19. ^108. 20. v^-lT2. 21. 4^-00.3. 22. 4/^)00714 + ^32. 23. x/wi + ^301 -v^ 1607^1^ + v/24T-i40625. 24. Find the cube root of the fourth power of 112. 25. What is the length of the side of a cube which contains 9 c. yds. 11 ft. 64 in. ? 26. Find tlie content of a cube, if the diagonal of one of its faces is 12v^2 inches. 27. The areas of similar surfaces are to each other as the squares of their like dimensions. (a) If a pipe one inch in diameter will fill a cistern in 60 minutes, how long will a pipe 2 in. in diameter take? (h) If one side of a triangle containing 36 sq. yds. is 8 yds., what is the length of a corresponding side of a similar triangle which contains 81 sq. yds. ? 28. The contents of similar solids are to each other as the cubes of their like dimensions. (a) If a globe 4 in. in diameter weighs 32 lbs., what is the weight of a globe 5 in. in diameter ? (b) If a sphere 3 in. in diameter weighs 4 lbs., what is the diiimeter of a sphere that weighs 32 lbs. ? tr\ Ml |t%4 I't" 56 MENSUUATION. (liooklll., p. 27.) area What MENSURATION. XXX. 3F»X«..^ JM lEJ A. — rAllALLELOGRAMS. Area = length xjKrpcndUudar height. Area — hase x altitude. If h stands for altitude and h for base, (1) area = A x h, (2) h = %;"% (?>) h - If base and altitude are equal, h = h, then area = h"^, h = v area ; or area = Ir, h = v area. 1. The area of a square is 544^ s(j[uare yards, is the lentith of its si in., and two doors, each 8 ft. by 4 ft., at the rate of SI. 08 sq. yd. ^ 7. Two pathways, 5 ft. wide, at right angles to one another, and parallel to the side, run across a rectangular courtyard 79 ft. by 63 ft. Find the cost of paving them at 99 cents per sq. yd. (Draiv diagram.) 8. How many links lomr is a square field containin'j 9 ac. 81 sq. rods ? MENSURATION. 57 B. — Triangles. 1. Area = ^ (base x altitude.) (Book III., p. 28.) (1) area = ^-f , (2) A = «^^f^2^ (3) b = ^^'^-^\ 2. Area ui terms of the sides = >/s {s ■— a) (s —■ b) {s — e) where s is half the sum of the three sides. Rule. — F7vm half the sum of the three sides subtract each side separately ; midtiply the half sum and t, j three remain' dcrs together, and extract the sq\iare root of the product. (For hypotenuse, base and perpendicular of right-angled triangles, see p. 54.) 1 . Find the areas of the following triangles : — (a) Base, 150 ft. ; altitude, 42 ft. (b) Sides, 12, 15 and 18 yards. (c) Sides, 1200, 1450 and 1500 links. (Ans. in ac.) {(l) Sides, 4*5, 6*2 and 7 8 inches. {e) Perimeter, 120 ft. ; sides proportional to 5, 9, 10. (/) Perimeter, 27 yds. ; triangle, equilateral. 2. Base, 128 ft. ; area, 298fy sq. yds. Find altitude. 3. Area, 144 acres ; altitude, 60 rods. Find base. 4. A board 16 feet long is 22 inches wide at one end and tapers to a point ; w^hat is its value at 4\ cents a ^(\. foot ? 5. Find the area of a square field whose diagonal is 380 yards. 6. A square field contains 35 acres ; find its diagonal. 7. The area of a triangle is 6 ac. 88 sq. rods, and a perpendicular from one angle on the base measures 524 links. Find the length of the base in chains. 8. The sides of a triangular field are 300, 400 and 500 vards : if a belt 50 yds. wide is cut ofl* tlie field, find the sides of the interior triangle and the area of the belt. 5 68 MENSURATION. C. — Tkapezoid and Trapezium. A trapezoid is a four-sided figure having two of its opposite sides parallel. A trapezium is a four-sided figure having no parallel sided. Trapezoid. Trapezium. 1 . The area of a trapezoid is equal to half the sum of its parallel bases 111)01112)1 led bt/ its altitude. If b and b^ stand for the parallel bases, area = -^ {b-\-b^)xh. 2. The area of a traitezium is equal to the diagonal multiplied by half the suvi of the two p)(^Tpendiculars falling upon it from the opposite angles. If // and h^ stand for the perpendiculars, and d for the diagonal, area = ^ (A + h'^) x d. 3. Prove the two rules given above by showing that both are equivalent to the following : — The area of a trap)ezoid or trapezium is equal to the sum of the areas of the two triangles into which the figure may he subdivided. 4. A field is in the form of a trapezoid ; its parallel sides are 10 chains 30 links and 7 chains 70 links iu length, and the distance between them is 7 chains 50 links. Find the acreage. 5. Find the area of an irregular piece of ground, the diagonal of which is 320 yards and the perpendiculars 35*5 yds. and 42.} yds. MENSURATION. 50 6. Find the acreage of a trapezoid whose parallel sides are 1964 and 1250 links respectively, and whose altitude is 250 links. 7. Find the acreage of a field ABCD, right-angled at B, if AB = 525 links, BC = 440 links, CD = 875 links, and DA = 260 links. 8. In a trapezium EFGH, EF = 586, FG = 1068, GH = 766, HE = 964, and EG = 1468. Find the area. 9. A four-sided field has two sides parallel and the other two sides equal to one another ; if the parallel sides are 370 and 250 links long, and each of the equal sides 100 links long, find the area. 1 0. The opposite sides of a quadrilateral are parallel, and the distance between them is 7 chains 50 links ; if the area is 675 acres and tlie length of one of the parallel sides is 10 chains 30 sides, find the length of the other. D. — Circle. 1 . The circumference of a circle — diameter x 34 or 3-1416. (Book in., p. 30.) The letter tt stands for the ratio of the circumference to the diameter. Hence tt *= y- or 3vl416. If r stands for radius, 2r will stand for diameter, then circumference TT p. 30.) (1) circumference = 2xr, (2) 2r = 2. Area of circle = ^ {circumference x radius). (Book III. , = ^(2 7rrxr) = 2^ = 7r?'l Rule. — The area of a circle is found (a) hy multiplying the circumference hy half the radius, or (b) hy multiplying the square of the radius hy ^ or 31416. 3. Find the area of the circle whose radius is (a) 40 feet, (h) 1760 yards, (c) 5 ft. 9 in. * In the exercises of this booic tt = •^f\ unless stated otherwise. 60 MENSURATION. 4. Find ilie area of a circle whose circumference is (a) 200 yards, (h) 10 feet. 5. Find tlie radius of the circle whose area is (a) 50 sq. ft., (h) half an acre. 6. The radius of a circle is 10 ft., and a square is inscribed within it ; find the difference between the area of the circle and that of the square. 7. How many times will a roller, whose breadth is 3 ft. 6 in. and diameter 2 ft. 6 in., have to revolve to roll a cinder-path a quarter of a mile long and 7 ft. broad ? 8. A circular field contains 3 acres, and a walk round it contains ^ acre ; what is the diameter of the field, of the field and tlie walk, and tlie breadth of the walk ? 9. The circumference of a circle is one mile ; find its area in acres. 10. Find the circumference of a circle whose area is equal to tliat of a square the side of which is 320 yds. long. 1 1 . Find the number of sq. rods in a roadway 5 yds. wide rouml a circular pond 120 yds. in diameter. 12. A circle, an equilateral triangle and a squctre liave tlie same perimeter, 120 feet. Find tlieir areas. 13. The diameters of the wheels of a bicycle are 52 and 15 inches respectively; determine how many more revohi- tions the small wheel would make than the large wheel in a distance of 13 miles. 14. The area of a square is OS acres ; find in yards the circumference of the circumscribing circle. 15. The radius of the inner boundary of a circular ring is 14 inches ; the area of the ring is 100 sq. inches. Find the radius of the outer boundary. 16. An as^ is tethered in the midst of a field so that it can feed on an acre of grounil ; what is the length of th<' tether ? MENSURATION. 61 XXXI. SURFACES AND VOLUMES OF SOLIDS. A. — Cube, Prism, Cylinder. Cube. General Rules. — (a) The area of the lateral surface of a cube, prism or ^*'"^'*'"' Cylinder. cylinder is the product of the perimeter of the figure by its altitude. • (b) The area u/' the total surface of a cube, prism or cylinder is the sum of the areas of its lateral surface and its two bases. (c) The volume of a cube, prism or cylinder is the product of the area of its base by its altitude. (See Book III., p. 31.) From the above rules we derive the following:— 1. Cube. — Tf X stands for the length of its side, Lateral surface = 4:.t^ (1), Total surface = ijji^ (2). Volume = x^S). 2. Prism. — lij) stands for perimeter of huse, Lateral Surface = pxh ( 1 ). Total Surface — (p x h)-^-- areas of two bases (2). Volume = area of base x h (.'»). 3. Cylinder. Con rex surface^ circumference of base x altitude = 2 7r;-x//(l). Total surface = {'2 IT r X h)-\- arras of two basest 2Trrxh-{-2Trr^(2). Volume = area of base x altitude = x r x h (.'> ). 4. Find the total surface of a cube whose edge is {a) l.' iu.,(/>)n ft. 10 in., (0 ft. n in., (W) 5 ft. 1 in.. 0)10 ft.;) in. 62 MENSURATION. 5. Find the total surface of a parallelopipedon which measures (a) 10 in., 15 in., 18 in. ; (h) 6 ft. 1 in., 2 ft. 10 in., 1 ft. 8 in., (c) 6 ft. 3 in., 5 ft. 4 in., 4 ft. 9 in. 6. Find the total surface of a triangular prism, the sides of whose base and lieiglit are (a) 2 in., 3 in., 3 in. and 1 ft.; (b) 2 ft. 3 in., 1 ft. 5 in., 1 ft. 5 in. and l.V ft. 7. Find the total surface of a cylinder wliose radius and height are (a) 2 in. and 1 ft. 4 in. ; (h) 1 ft. G in. and 9 in. ; (c) 9 in. and 1 ft. 6 in. 8. Find the lateral surface of a liexagonal prism, eacli edge of base being 2 ft. 3 in. and height 5 ft. 9. If 30 cubic inches of gunpowder weigh a lb, what weight of gunpowder will be required to fill a cylinder whose internal diameter is 8 in. and length 2.} ft. i 10. Find the length of the edge of a cubical block of stone containing 46 cub. yds. 513 cub. in., and the number of s(|. inches in its entire surface. 11. AVater is poured into a cylindrical reservoir 20 ft. in diameter at the rate of 400 gallons a minute. Find the rate per minute at which the water rises in tlie reservoir. 12. The length of a trough is 15 ft. and its ends are equilateral triangles; it contains 17.".,2U0 cuV)ic feet of water, liequired the depth. 13. Find the volume of a prism on a triangular base, the sides of the base being 51, 40, 13 in., and the lieiglit 58 in. 14. The .surface of a cube contains 337 sq. ft. 72 sq. in. ; find its volume. 16. The external measurements of the sides of a box are 3, 2-2, 1-52 ft. ; find its volume. Find also the culacal space inside tlie box (closed by a lid), the thickness of the wood being ^V ft. MKNSUnATION. 63 B. — PtEGULAR Pyramid and PiIght Circular Cone. pyramid. Cone. A pyramid is a solid, (he base of uhich is any plane figure, and its lateral faces are triangles meeting in a point called the vertex of the pyramid. Pyramids, like prisms, are named triangular, square, etc., as tlieir bases are triangles, squares, etc. A cone is a round pyramid with a circle for its base. Oeneral rules. — (a) The area of the lateral surface of a pyramid or cone is half the product of the perimeter of the base by the slant height. (b) The area of the total surface of a pyramid or cone is the sum of the areas of the lateral surface and of the base, (c) Tfie volume of a pyramid or cone is one-third the area of the base multiplied by the altitude. From the above we get the following formuhe : — 1. Pyramid. Lateral surface = .V (perimeter x slant height). Total surface = sum of triangular faces -\- area of base. Volume = } (area of base) x altitude. 2. Cone. — If r — radius of base, Latere^ surface = 1 (circumjerence of base) x slant height— tt r\ lant height. 'Total surface ^(ir rx slant height) + tt rl Volume — }i (area of base) x altitude = ?, tt ;•- x h. r'' 64 MENiSUIfATION. 3. Calculate the entire surface of a square pyramid whose slant height is 18 inches, the area of its base being 144 sq. ill. 4. Calculate the entire surface of a triangular pyra- mid whose three lateral faces and the base are equilateral triangles, each side measuring 2 inches. 5. l)raw the developed convex surface of a cone, the diameter of whose base is 4 inches, and whose slant height is inches. Find this surface. 6. How many square inches of paper would be required to cover the side and base of a cone inches in diameter at the base, and having a slant height of 10 inclies ? 7. Find the slant height of a cone whose altitude is 11^ inches, the diameter of its base being 10 inches. What is its convex surface ? How is a right circular cone generated ? NoTK. —The altitude of a cone or pyramid, the slant height and the peipendimilar from the centre of the base to the aide, form a right- augl"" \ triangle. 8. liequired the volume of a square pyramid lo ft. 1) in. high, the side of its base being 2 ft. G in. 9. AVhat is the solidity and surface of a cone 5 feet in diameter and 12 feet high ? (x =)V1416.) 1 0. A triangular pyramid has each side of the base 5 ft. ; the iieight is 10 ft. ; find its solidity and surface. (tt =ai410.) 11. Find the volume of a cone whose altitude is 18 metres and diameter of base 6 metres. 12. A conical tent whose slnnt height is 12 ft. requires 132 sq. ft. of canvas to cover it. Find how many feet of ground the tent covers. 13. It is requireil to cover a piece of ground 80 feet squnre with a pyramidal tent uO feet in perpendicular I # MENSURATION. 65 I lieight. Find the cost of the requisite quantity of canvas at 4^d. per square yard. 14. How many square yards of canvas will l)e neces- sary to form a conical tent whose perpendicular heiglit is 10 ft. and diameter on the around 21 f t. ? 15. Find the slant height of a cone whose volume is 19| cub. ft. and diameter at base o} ft. 16. Find the volume of a cone, the height of which is 15 ft. and circumference of base 14 ft. 17. The diagonal of the base of a square pyranud and the diameter of the base of a cone are each 16 ft. ; their altitudes are equal, but the volume of the cone exceeds that of the pyramid by 281 cub. ft. Find the altitudes. 1 8. The Great Pyramid of Egypt stands on a square ])ase, each side of which is 764 feet, and its height is 480 ft. Find its volume in cubic feet. C. — The Sphere. A sphere or globe is a solid hounded hy a curved surface, all points of which are equally distant from a point within called the centre. Sphere. Ilemisphere. Cut a sphere (a round apple, for instance) into a number of small pieces, passing tlie knife in each case through tlie centre of the sphere. Eacli i)iece is a triangular solid having for its l)ase .; portion of the surface of the sphere, and for its altitude the radius of the sphere. C6 MENSURATION. ■4:3' When the pieces are very numerous the base of each may be considered a plane and the solid a triangular pyramid. The volume of each pyramid is equal to the base X ^ altitude, and the total volume of all (which is the volume of the sphere) is equal to the total surface of all the bases (which is the surface of the sphere) multi- plied by } altitude, that is } radius. 1 . Surface = circumference x diameter = 4 tt r'^. 2. Volume = 4 TT r^ X ]^r = * x r^. 3. Find the surface of a globe 8 inches in diameter. 4. Find the surface of the earth, its diameter being SOOOmi. (tt =3-1416.) 5. Find the solidity of a 10-inch globe. *3. Solidity of a cannon-ball 9 inches in diameter ? 7. If a heavy sphere o inches in diameter be im- mersed in a pail full of water, how much water will run over ? 8. What is the weight of a cannon-ball 12 in. in diameter, iron being 7"5 times as heavy as water ? 9. Find the ratio between tlie volume of a sphere 1 ft. in diameter, and that of a cube whose side is 1 ft. 10. Find the weight of water in a hollow sphere whose internal diameter is 3 ft. 6 in. 11. A cube and a sphere being of equal volume, find the ratio of the radius of the sphere to the side of the cube. 12. What is the solid content of a sphere wljcn its surface is equal to that of a circle 4 feet in diameter ? 13. Find the ratio between ihe volume nf a sphere 4 in. ill diameter and that of a cylinder 4 in. high, radius of base 4 in. 14. Weight of a hollow spltere, specific gravity l)eiug 7'77G, inside diameter 18 in., and tliickness 2 in. ? MENSURATION. 67 5f each uigular to the liich is 'face of multi- leter. r being ycr ? be ini- ill run in. in pliere 1 ft. 3 wliose ne, find I of the }]cn its er? spliere , radius Frustum of Pyramid. Frustum of Cone. 1). — The Frustum. AVhen the top of a cone or pyramid is cut ofi' parallel to the base, the part remaining is called a frustum. The distance between the paral- lel bases is called the altitude of the frustum. General Rules. — (a) The lateral Hirrface of a frustum is equal to half the product of the sum of the perimeters b(/ the slant height. {b) The total surface of a frustum is the sum of the areas of the lateral surface aud of the two bases. (c) The volume of a frustum is equal to the sum of the areas of the two bases and the square root of their product, multiplied by one-third of the altitude. From which we derive the following formulte : — 1. Frustum of Pyramid. — If b and b^ stand for areas of the l)ases, andj?; and;?! for perimeters of bases, Lateral surface = .V {p +2)^) X siant height. Total surface — i {p -\-p^) x slant height + (h + /;,). Volume = \h (b + b^ + Jbb^). 2. Frustum of Cone. — If ;• and rj stand for radii of bases. Lateral surface = tt (>• -f- r,) x slant height. Total surface = tt (>• + >'i) x slant height + tt ( r" -f rf ). Volume = I TT h (r^ + r^^, + rr^). 3. The altitude of a frustum of a pyramid is 2^^ ft., tlie ends are 5 ft. and 3 ft. scjuare ; what is its solidity ? 4. Find the lateral surface of tlie frustum of a S(]uare pyramid, one side of the upper base measuring 2 feet, of the lower base 3 feet, and having a slant height of 4 feet. Find tlie entire surface. 68 MENSURATION. 5. Draw the patcern of a small shade for a candle. Make the upper opening 11 inches in dia- meter, the lower 2 5 inches in diameter, and the slant heicdit 2 inches. Find its convex surface. 6. How many square inches of tin will l)e required to make a circular j^^ii (open at the to])), its diameter at top being 9 inches, at bottom G inches, and slant height 4 inches. Draw the pattern. 7. Find the cost of a piece of marble in the form of the frustum of a cone, the diameters of tlie two ends beimr 11 ft. 8 in. and 8 ft. 2 in., and the slant height 18 ft. 5 in., and the ^alue of a cubic foot of marble being 12s. 8. Find the convex surface of the frustum of a cone, the circumferences of the bases being 15 inches and 20 inches, and the slant height 10 inches. 9. How many square yards are there in the entire surface of a frustum of a cone, the radius of the upper base being 3 yards, of the lower base 5 yards, and the slant heidii vards ^ 10. Find the volume of the frustum of a cone, the circumferences of wl\ose bases are G6 and 56 feet, and whose height is 4 feet. 11. Find the w-'ght of water in a tank in the form of a frustum of a cone, the radii of the ends being 10 feet and 8 feet, and tlie distance between beinsj: 5 feet. 12. How many sq. feet of tin will be required fur a funnel if tlie diameters at top and bottom are to be 28 in. and 14 in., and the slant heifdit 24 in. ? 13. How often can a conical wine-glass, 2.V in. in diameter and 2 in. deep, be idled from a cylindrical tumbler, 4 in. in diameter and ?>l in. deep ? MENSURATION. CO candle. lired to eter at ei"lit 4 form of .s being .8 ft. 5 2s. a cone, and 20 entire upper nd the we, the it, and "orni of 10 feet 1 fur a I 28 in. in. in ridrical FORMULA IN MENSURATION. I.-PLANE FIGURES. Ji b stands for base, h for altitude, r for radius, (/ for diagonal, formulae will be as follows : — Parallelogram. Trapezium. area -- bh. area - h{h + h,)x(L Triangle. area --■- \bh. Circle. ana Trapezoid. circumference ---^ \{h + b,)x h. area r= V'2 ■--- 1-414. ?/ — l-46o. V.S 1-732. ir - -3183. VV - 1-772. 1 - -5642. II. -SOLIDS. J TT r TT r' If b stands for area of base, j) for perimeter of base, r for radius of base, h for altitude, and I for slant height, formula' will be as follows : Prism. Sphere. lateral surface ph. total surface ph-h2b. volume bh. Cylinder , lateral surface = 2 t rh. total surface --^ 2 t rh + 2Kr-. volume ----^ TTr' M. Pyramid, lattral surface I pi. total surface \pUb. volume hbh. Cone. lateral surface TT rl. total surface 7Trl + -Tr\ {■olnme l^-r-h. surface volume 4 rr >• TTV Frustum of Pyramid. lateral surface ^- h {p + ])^^)xL total surface — volume -^ ^h (b + b^+ \'bb ^ ). Frustum of Cone. lateral surface ■■- ^/(>"+>"i). total surface ~ volume -■= ;\ ~ h {r- i- /■,- + rr^ ). 70 MENTAL ARITHMETIC, xxxn. TEST EXERCISES IN MENTAL ARITHMETIC. 1. 72-) articles 2. 846 articles 3. 397 articles 4. 807 articles 5. G48 articles 6. 296 articles 7. 588 articles 8. 588 articles 9. 588 articles 10. 588 articles at 15 cents each, at 3."»>; cents each, at 12^ cents each, at GG| cents each, at ?i'7\ cents each, at 62} cents each, at 87.V cents each, at 8i cents each, at 16 1 cents each, at $1.25 each. B 1. 2. 3. 4. 5. 6. Multiply 68 by 75. Cost of 68^1 articles at 8 cents each. 9 acres 90 sq. rods at $10 a sq. rod. Express -594 as a vulgar fraction. Difference between "16 an-' 'l^ in common fractions. Interest on $ooo..33^ for 5 mos. at 6 per cent. 7. L.C.M. of 1,2,3,4,5, 6. 8. 6^+7^ + 8^-21. 9. |(13 + 7) + 8; xl6 = C 1. 365x41 = 2. School of So pupils ; 45 boys. Percentage of girls i 3. $13ixl2 + (T?^ + J^). • 13x2_x8x7xJ ■ " "26 x"4S 1 lETIO. MENTAL ARITHMETIC. 71 5. Reduce 3 qts. 1 pt. to fraction of a bushel. 6. Reduce 7s. 8^d. to fraction of £1. 7. One cent and a lialf a day; liow nuicli per year ? 8. Amount of $100 for 2 yrs. at 41%. 9. $9 a year; how much a day ? 10. U : 7i :: -5 :^. 1. Value of 4-15 oi$0.o^l •^- 7 114 -*-4 i» — ' 3. Rent of 5 acres at 12^ cents a sq, rod ? 4. (V)3t price, $1.;- ; selling price, $2. Gain per cent.? 5. Difference between -J', and -^J^ in decimals. 6. What decimal of 1| lbs. is 1 oz. ? 7. Average of 13, IS, 913, li, a, 3J. 8. Total value of an article if ^\ is worth $13. 9. Sum of 3.V%+ 10^/^ on $50. 10. Number of telegraph poles 96 ft. apart in 10 miles? actions, nt. )f girls i 1. Sum of all the odd numbeis between 20 and 40. 2. A square contains 570 sq. inches. What is the length of a side in feet ? 3. Cost of paving a yard 36 yds. long, 12 yds. wide, with osphalt 3 inches deep, at $2 per cub. yd. ? 4. A man runs 220 yards in 40 seconds. What is his rate per hour expressed in miles ? 5. Number of yards of carpet, 15 inches wide, required for a room 30 feet long by 17^} feet wide ? 6. Lost 10% on $50 and gained 12% on the remain- der. Required total gain. 7. 10% lost by selling for $65.25. Cost price = ? 8- If i-hl + ^. = £2. Os. Od., what is the whole sum ? 9. Value of 31 of $15. lo. L.C.M. of 16, 24, IK MENTAL ARITHMETIC. 15 1. Simple interest on $277 for 3 yrs. at 4 per cent. 2. Divide S27.30 between A and B in the ratio 9 : 4. 3. From seven thousand take fifteen hundred and 15. 4. Add five times nineteen to four times sixteen. 5. Find the fourth term of 36 : 63 : : 20 : x. 6. Express 3s. 6d. as the decimal of £1. 7. A man rows 4 miles down the stream in 20 min., and up the stream in 40 min. "What rate in smooth water ? 8. Piequired the time for two trains to pass eacli other in opposite directions, each train being 220 yards long and uoimi at the rale of 40 miles an hour. 9. A man gave $30 for 44 cwt. and sold at $'72 per cwt. What is his gaui ? 10. Amount of annual income secured by investing $504 in 4 per cents, at 96 ? 1. 90x ;068 1-24 2. A starts at 6 mi. an hour, and in half-an-liour ]> follows at 9 mi. an hour. When will B overtake A ? 3. The surface of a cube is 150 sq. inclies ; what is the length of its edge ? 4. What sum at 7% will gain $84 in a year ? 6. A mother is half as old again as her daughter, and their united ages = 95. Find their ages. 6. Cost of 59-^- lbs. of cheese at 9.} cents a lb. 7. What are the 3 equal factors of 343 ? 8. 9 doz. hats at $1.33^ each. 9. A can do a job in 4 days, B in 6 days. How long will they take together ? 10. Present worth of $1080, due 5 years hence, at 4' per annum simple interest. 0/ c TEST I'HOHLEMS. Ho cent, io 9 : 4. [ and 15. een. 20 min., h water ? ich other fds long $-72 per nvestinir 1-1) our ]*. A? what is hter, and low long 3e, at 4'J' XXXIII. TEST PROBLEMS. A 1 . Value of # of h^^J"^!} 12^ 2v of If and express the result as a decimal. 2. A man hought a piece of ground containing OlUG ac. at r,:]^ a sq. foot. Wliat did he ])ay? 3. Find the compound interest of $320 for ?»}, years at 3 per cent, half-yearly. 4. A tradesman marks his goods at 25% ahove cost, but allows a customer a discount of 12% for Cixsh. What per cent, of profit will he make on a cash sale ? 5. A rupee is worth 2s. O.^d. and a dollar 4s. 4kl. Find the least number of rupees which makes an exact number of dollars. B 2 2 I _3_ " 1 I s 1. Simplify l]^rj^^i ^-^^±31^ 4 1 r 1 9 4 ;V -f- vj "4 2. Add together 7G95 sq. inches, -GOl of an acre, and ] *; of a s(i. rod, giving answer in sq. yds. and decinud. 3. If 4 men mow 15 ac. in 10 dys. of 7 hrs., in how many dys. of Gl hrs. can 7 men mow 19.} acres ? 4. A man receives 4% on one-third of his capital, 4.1% on one-sixth, and 5% on the remainder. 'vVhat perceiita'ge does he receive on tlie whole ? 6. Find the difference between the compound interest on $3840 for 3 years at 5 per cent, and the true discount ^^w $12,710.87 due G montlis hence at 10 o/ / 1. Divide -723905 by 2-17 and express the difference between l-5384Glo and -070923 as a common fraction. II 74 TEST I'RDBLEM.S. 2. It' three pipes separately can fill a cistern in I7i, 19i and 21 fV minutes, how long will they take when running togetlier ? 3. Divide £105 between A, B and C, so that as often as A gets 4s. 6d. B may get 7s. 6d., and as often as B gets OS. C may get Gs. 4. Find hy practice the value of ^.7° IG' 30" at G3 mi. 780 yds. for eacli degree. 6. If the :> per cents, may be bought at 88 i, what should be the price of the 4 per cents. ? 1. Simplify D •071 + -0:38r) . 3-14ir>.3-f70 7 1 _ -007 ■ -041 X -015 • 2. At what time between 2 and o o'clock will the hands of a watch intercept an angle of 90 ? 3. Find the time in the foll(»wing capitals when Greenwich mean time denotes 12 noon: — St. Petersburg 30^20' East longitude; Berlin 13° 24' East; Duldin (J' 10' West ; New York 73" 58' West. (See Book III., p. 35.) 4. If the discount on a Dill due five months hence at 3;^ per cent, is $774^, what is the amount of the bill ? 6. ]l(tw many tiles 5 inches S(]uare woidd be required to line tl»e bottom and sides of a swimnung-bath which is UK) ft. by 30 ft. and 5 ft. deep ? 1. Express V''*'.^o5«i^^ correctly to the nearest integer. 2. A and li are in partnership. A invests $4700 for 12 montiis and receives $440.50 as his share of the proiits. What shouUl li receive who invests $2300 for months ( 3. Find change of income from transferring $5400 stork fr(>i!i tlio 4H Tier cents, at 98 to tlio 3-^ per cents. V at 1 5. TEST PROBLEMS. s. Av. 1 cuhic foot (water) contains 6j gal- lons (nearly), and weighs 1000 oz. or 62i lbs. Av. Wekjiit. 16 ounces (oz.) — 1 pound (lb.) lOOpounds— 1 hundredweight (cwt.) 20 cwt. or 2000 lbs. =- 1 ton. 2240 lbs. = 1 long ton. Knislish Monfcv. 4 farthings - 1 penny (d. ) 12 pence I shilling (s.) 20 shillings - 1 p760 grains. 1 lb. Av. - 7000 grains. CiKCt'i,.\K Mkasi'iu:. 60 seconds (") 1 ndnute (') 60 minutf'a - 1 dogiee ('). 360 degiees - 1 circumference. 60/i iiiih's -- I degree. TABLES. 77 Money. 100 centimes = 1 franc (fr.) A franc weighs 5 grams. METRIC SYSTEM. Capacity. 10 millilitres(ml.):^l centilitre (cl.) 10 centilitres = 1 decilitre (dl.) 10 decilitres — 1 litre (1.) 10 litres = 1 decalitre (Dl.) 10 decalitres = 1 hectolitre (HI.) Wekjht. Length. 10 millimetres (mm.)=: 1 centimetre (cm.) 10 centimetres = 1 decimetre (dm.) 10 milligrams (mg.) = 10 decimetres - I metre (m. ) °i centigram (eg.) 10 metres = 1 decametre (Dm. ) 10 centigrams^ 1 decigram (y inspection. LOGAIUTHMS. 81 It is evident that the statement above made of two quantities multiplied together, may be extended to any number of quantities multiplied together, and the state- ment may be made and remembered in this more com- preliensive form,— /Ac logarithm of the j^roduct of any mmhcr of factors equals the sum of the logarithms of the factors. Thus : What is the logarithm of 1000 x 100 ? Answer; It is the sum of tlie logarithm of 1000, o, and of 100,2. Thatis, iti8r, + 2, f). 1. What is tlie logarithm of 10x100000? of 100 x 10000 ? of 1000 X 01 ? of 100000 X 0001 ] of -01 x '0001 ? of 100 X 10 X -0001 ? of -01 X -001 X 10 ? of -01 x 10000 x •001 ? If the factors are alike the logarithm of their product may be as easily obtained by multiplying the logarithm of one of tliem by their number as by setting down the logarithm of each and adding them toiietlier. The lo^ar- ithm of 100^ is as easily got by saying 3x2 are 6 as by saying 2 + 2 + 2-6. 1 1 is evident that the logarithm of a power of any numhcr is found hy multiply i^ig the logarithm if the number hy the index of the power. 2. What is the logarithm of 10'? (jf -r' ? of 100'-? of •OP? of -OOl-^xlOO^? of -Ol'xlOO^x-l? of -Ol'x •oor'xiooo*? Since the logarithm of a product is the sum of the log- arithms of the factors, it is evident that if the logarithm of a product and that of one of the factors be known, the logarithm of the other factor will be found by sulitracting the logarithm of the given factor from the logarithm of the ])roduct. Tfcncc the logarithm of a quotient is the logarithm of the dividend less the logarithm of the divisor. Because a fraction is ;»n exiuession indicating the division of the numerator by the denominator, the above ]»rinciple 82 LOGARITHMS. may be thus enunciated,— ^/te logarithm of a fraction equals the logarithm of the numerator less the logarithm of the denominator. Thus : What is the logarithm of 1000000 -^ 100 ? Answer : It is the logarithm of 1000000 less the logarithm of 100; that is, it is 6-2 = 4. 3. What is the logarithm of 1000-^10? of 100000 -f- 100? of 100^10000? of -01 -^ -0001? of 100 -f -001? of i\%%% ? of -,U', ? of AVt ? of ,^Uy ? of jO^V ? Since the logarithm of the square of 100, that is of 10000 is found by doubling tlie logarithm of 100, obviously the logarithm of the square root of 10000 is found by halving the logarithm of 10000. So the logarithm of the square root of any number is found by dividing the logar- ithm of the number by 2 ; the logarithm of the cube root of any number is found by dividing the logarithm of that number by 3 ; and, generally, — the logarithm of any root of a number is found hg dividing the logarithm of that number by the inde.c of the root. For example : What is the logarithm of the sixth root of 1000000? Answer: It is 1 ; because the logarithm of lOOOCOO is 6, and the logarithm of its 6th root is the sixtli part of 6, is 1. 4. What is the logarithm of the square root of 100 ^ of 10000 ? of -01 ? of -0001 ? of the cube root of 1000 ? of 1000000? of -001? of -000001? of the fourth root of 10000 ? and of the fifth root of -00001 ? Recapitulatory Questions.— When the logarithms of the numbers are known, liow can we find the logarithm of the product of any nundier of factors ? of any power of a number ? of a fraction ? of the quotient of any dividend divided by any divis(»r ? of any root of a number ? Note that the logarithm of the sum or of the diH'erence of two numbers cannot be found by any simple process frnni f.fio L^/vov^if )i*k>c< r^f 4l,«-. ..i,.w. !.,.». 4I i _ LOGARITHMS. no The table given above may be used not merely to find tlie logarithms of products, quotients, powers and roots, luit the products, quotients, powers and roots themselves. For when tlie logaritlims are found they will serve to point out in the table tlie numbers of which they are the logarithms; so indicating the answer sought. For example, if I wish to know what the quotient of 1000 times -01 divided by the cube root of -001 is, I may find the logarithm of the result first, which I know, from what has gone before, to be the logarithm of 1000 4- the logar- ithm of -01 —one third of the logarithm of -001. This will give 3 - 2 - (-/) = 3-2 + 1 = 2. But J is the logarithm of 100 ; therefore 100 is the answer soui'ht. 5. Solve all previous examples, substituting the word " value " for the word " logarithm " in each question. Thus the first question will read : What is the value of 1000 X 100 ? of 10 X 100000 ? etc. Many of the questions can be solved more easily without reference to logarithms, but the value of the exercises will appear later. 6. By the table of logarithms given on page 78 find the vahie of 1000 X'l, of 10 x 100 x 1000 x -0001, of 10 -j- •001, of -0014- -00001, of -01 X -001 + 100, of Vioooo; of ^^00001, of 4/r6x>^ioo, of 10s/-l^^-0i, of '^lOxs/YoOO s/'lx^''0i I 10 ^7^ , of - -— ^--, of ^•1 '"^ ^ooi ' "' vio^ioo-^^10 Although the exercises just given, which appear difficult to one unaccustomed to the manipulation of surds, can all be readily solved by the preceding table, yet the table is much too small to be of practical value, and must be leplaced by others of nmch greater extent. It does not fall within the scope of this little work to sliow how the logarithms of such numbers as 2, 3, 5, 7, 11, I 84 LOCJAIUTHMS. in short of all prime numbers, are calculated ; but, these being calculated, it is easily seen tliat the logarithms of all numbers that are composed of these and of ten, in any combinaLions of multiplication and diw.sion, can be found. Thus, if the logarithm of 2 were known, the logarithm of 5 could be easily found by subtracting the logarithm of 2 from the logarithm of 10, which is 1; for V- = 5. The logarithms of 4, of 8, of 16, would be respecth^ely twice, three times and four times the logarithm of 2 ; for 2^ = 4, 2" = 8, and 2^=16. The logarithms of 20, 200, 2000, etc.i would result from the logarithm of 2 by adding to it 1, 2, 3, etc. ; for these are the logarithms of 10, 100 and lo'oo' the respective multipliers of 2 in each case. In like man- ■ ner the logarithms of -2, -02, -002, etc., would be found by subtracting, from the logarithm of 2, 1, 2, 3, etc. ; for these are the logarithms of tlic divisors 10, 100, 1000, etc., by which -2, -02 and -002 are derived from 2. Because 2, 3, 7 lie between 1 and 10, and the logarithms of 1 and 10 are and 1, the logarithms of 2, 3 a'lid 7 lie somewhere between and 1 ; that is they must be proper fractions, or liOn-terminating, non-recurring decimals within these limits. They are indeed non-terminaling, non-recurring decimals, as is the case with all logarithm^' to the base 10, except 10 and its integral powers.^ Conse- rpiently the logarithms of all other numbers than those last mentioned are, and can l)e, only approximately given. 7. Tiie logarithm of 2 is approximately -30103. Find the logarithm of 5, of 4, of 20, of 25, of 200, of 32, of 3-2 of 8, of 250, of 50, of 512, of 51-2, of 512, of 125 of l->5' of 400. The logarithm of 2 being as given, the logarithm of -2 which is the tenth part of 2, is equal to the h)garithm of 2 less the logarithm of 10 : the logarithm of -2 then equals LOGARITHMS. 85 30103 — 1. This might of course be written as —.69897 : hut it is found more fonvenient in mimy ways to make cliano-es of si.ou only in tlie integral part of tlie logarithni, and so the logarithm of '2 is written i-30103,in which tlie integral part alone is negative, the decimal part remaining positive. In like manner the logaritlini of -02 which is the result of dividing 2 by 100, and of which, consequently, the logarithm is -30103-2 is written as 2-30103. Sub- joined is a table of logarithms which will prove instructive. Tlie integral part of each logarithm is called its charac- teristic, and the decimal part is called its mantissa. Natural 'N'umber. Logarithm. 2000000 C-30103 200000 5-30103 20000 4-30103 2000 3-30103 200 2-30103 20 1-30103 i J30103 € 1-30103 •02 2-30103 •002 3-30103 •0002 4-30103 •00002 5-30103 •000002 6-30103 It will be observed :— 1st. That tlie numbers differ from one another only in tlie position of the decimal point. 2nd. That the mantissa of the logarithm remains the same throughout, notwitlistanding the change of position of the decimal point in the natural nuni])ers. This is always true of common logarithms ; no change of position of the decimal point changes the mantissa. IMAGE EVALUATION TtST TARGET (MT-S) ^ <«/ A^ .•/ *>^ ^p Mr, ^ z ^ fA 1.0 I.I 11.25 l^li^ 11125 2.2 14. 11.6 V] v) ^> ^:^*' Photographic Sciences Corporation 23 WEST MAIN STREET WERSTBR.N Y. MS80 (716) 873-4503 m. lV ^^ N>" ^ ^'^^ O^ '.A '^ Kg ^ 1^ I 86 LOGARITHMS. I 3rd. The characteristic changes with every chancre of position of the decimal point in the number ; every move- ment of the decimal point one place further to the ricrht diminishes the characteristic by 1. This is in accordance with what we have already learned. 4th. The characteristic indicates in each case the dis- tance of the 2 from the units place, being positive when the 2 is to the left and negative when it is to the right of the units place. • If in any numbers the digits follow in the same order, the mantissa of the logarithms of all the numbers is the same ; the logarithms will difler only in the characteristic. Thus the logarithms of lOO^Ono, 1009035, -0001009035, 1009-035 are 000390025, 100390G25, 400390G25 and 300390625. The numbers differ from one another in the position of the decimal point only, and the logarithms differ in characteristics only. TJie characteristic, indeed, indicates the distance of the highest jdace in the numher from the unifs pl(ice, the char- acteristic Uing positive if that highest ^tace he to the left of the decimal point, and heing negative if that highest place he to the right of the decimal 'point. Thus in the example just given 1 occupies the highest place in all the numbers. In the first number it is in the sixth place to the left of the units place, accordingly 6 is the characteristic of the logarithm ; in the second instance 1 is in the first place to the left of the unit and the char- acteristic of its logarithm is 1 ; in the third instance 1 is in the fourth place to the right of the units place and the characteristic is 4 ; finally in the last instance 1 is in the third place to the left of the units place, and the charac- teristic of the logarithm is 3. Hence, /(? /?<«? the characteristic of the loaarithm of anv i \ LOGARITHMS. 87 number, count from the units place to the place of the highest fiyure in the member, the number got by this count ivill be the characteristic ; the characteristic will be positive if you have to count towards the left, negative if you have to count towards the right. Examples. — Find the characteristic of the logarithm of 743-6859. Since 7 is of the highest denomination in the number, and is in the second place to the left of the units place, 2 is the characteristic. Find the characteristic of •001392. It is 3, because 1, the figure of greatest value in the number, is in the third place to the right of the units place. 8. Find the characteristic of the logarithms of 4973, 8654-227, 3987, 000642, -0007, 00892, 1-7368, 10009, 9-538, 9000, -000008, -G271. As the characteristic of the logarithm of any number is so easily reckoned, it is not usually printed in tables of logarithms ; but it is printed in the table of logarithms, page 109, which gives the logarithms of all integers from 1 to 100. Thus the logarithm of 59 is given as 1 770852, where 1 is the characteristic and '770852 is the mantissa of the logarithm. Examples on this First Takle. Multiplication. — Multiply 17 by 3. Process: Add the logarithms of 17 and 3 together and find of what number the result is the logarithm. Logarithm of 17 1-230449 " 3 477121 The sum 1 •707570 is the logarithm of 51, which is the product of 17 and 3. 9. Bv tlie loiiarithmic table. paL'e 100, find the vhjiu' of f I W4 f:| It 88 LOGARITHMS. 3x7, 5x9, 7x8, 2x3x7, 5x9x2, 3x3x8, 11x2x3 and 2 X 7 X 7. Division.— Divide 99 hy 11. Process: Subtract the logaritlim of 11 from the logarithm of 99, the remainder will be the lo^rjirithm of the quotient. Logaritlmi of 99 1-995635 " 11 1041393 Difference, "^954242 Which is very nearly tlie logaritlmi of 9, the answer. Here it will be well to note, as was Ix'fore stated, that the logarithms are at best only approximately correct, and, consequently, some little doubt always hangs over the last figure of the logarithms which we find. 10. Divide by this table 21 by 7, 94 by 47, 68 by 17, 95 by 5 and 98 by 2. Involution.— IJaise 3 to tlie 4th ]M)wer. I'rocess: Multiply the logaritlmi of 3 by 4, the result wiil be the logarithm of tlie answer. Logarithm of 3 '477121 4 1-908484 which is very nearly the logarithm of 81, the answer. 11. Find the S(|iiiirc of 7, the cube of 4, the squjire of G, the liflli power of 2. Evoij rioN.—Find the sixth root nf 64. Process: Divide the logarithm of 64 by G the (luotient will be the logarithm of the answer. Log. 64, 1-80G180 divided by 6 is -3U1U30. Cut this is the logarithm of 2, the answer. 12. Find the sqiuire rcxtt of 64, the culte root of 64 and the fifth root of 32. Two or niorci of these processes may lie combined in one LOCJAHITHMS 89 exercise. Thus, find the square of the cube root of the thirtieth part of oo times 14 times 21. • Logarithm of of) 1-544068 14 1-146128 21 1-322219 4-0T2415 no 1-477121 :{)2^i5294 •845098 2 1-G90m wliicli is the h)garitlim of 49, the answer. 13. Divide 9 times 49 by 21. MuU-iply one seventy- fifth of 95 by 15 times '^. Muhiply one thiid of one eleventh of 9 by one tliird of 22. Wliat is the product of Iq, 24, Gi and l^V ? What is the cube root of the fourth l)ower of 27 ^ What is the cube root of the square of five sevenths of the product of 1^'.^ x 2t, x 2j\ ? Tlie table of logarithms of numbers from one to one hundred is too snudl to be of mucli practical value ; but the table which is contained in the next 15 pages, pp. 1 10-124, is much nu)re serviceable. It gives the mantissa corresponding to every possible sequence of four digits, that is, of all numbers from 1000 to 9999. The three highest digits of the nund)er whose logarithm is required are printed in the colunni headed N, and the fourth diage until under tlie fourth digit as printed at tlie top of the page; the number so found is the mantissa, which, however, nii.^L have a decimal point supplied at its left- hand side. 14. Find the mantissas corresponding to the sequences : 3928, 4765, 9827, 5903, 4790, 6800, 7495, 5300, 7370, 1952 and 1007. 16. Bearing in mind that the mantissa is the same for the same sequence ui digits, no matter where the decimal point may be, find the mantissa^ for 469,, 46.91, -04691, 8800, 880, 88, 8.8, -88, -088, -0088, 7000, 700, 70, 7, 5-3, •0867, 954000, 48-76, 9-482, -0016, 1000, 100, 10, 1, -1, -01, •001, -0001, -5408, •0006'-3, -09821. 16. ]>y su])])lying the characteristic before each man- tissa find the logarithms of the preceding 31 numbers. 17. Find the logarithms of 28.37, -9546, -48, 5-694, 7-862, 97-34, 428-7, -006832, 59-71, -05982, -5907, •0058:5, •062, •OT, -8, 95-42, 968-3, 79540, 146800, 967000. To find the sequence of digits corresponding to a given muHlissa it is, of course, nccessar ^7 })r( LOGARITHMS. 01 jn.st described. For c.van.ple, to thnl the four di-its cor- .espomlmg to the „mnti.s,sa -.SCO.Vl.S, the numti.ssa i-ivcn "ill be fomid „eur the middle of page ll'O, u.uler 3 nnd opposite /25; therefore 7253 i.s the group of di,.-t,s required. "^ •l090Q0^^^'',^oo!?"*"'"' <=«>-re.spond to the mantis«e, 102289. -415808, -563718, -700444, -780369, -S7326'> ■903090 and -937810. ' If the whole logarithm be given, characteri.stic as well as nmntLssa, the natural number corre,si,onding to it can le founo. For the mantis.,a will give the sequence of four digits, an.l the characteristic will determine the position 7«o.' nfo''"""' ^"'^ ''"'""S ""="'• Thus to the logarithm •8-3018 determines the four digits 6653, and the eharnc- leristic 4 shows that the highest figure is 4 places to the lett of the units place. 19. Find the luitural numbers corresponding to the logarithms 5-763428, 4-830011, 3-906443, 2-070858 1-189209, -330819, 1-440594, 2-527243, .3-560385, 4-597476' 5"6o5081. ' In actual work two difficulties which have not vet been discussed will be encountered. Virst, the table c-ives mantissa, corresponding to four succe.ssive di^nts o'nly- liow .shall the mantis.sa corre.spondiv.g to five o"r si.v sue' ocssive digits be found ? Secondly, how is the natural number corresponding to a manti.s.sa not in the table to be lound ? Both difficulties are met by the application of tlie prin- ciple that when numbers, and consequently their locrar- itlims also, are near one another, the diflerences betvv'een the logarithms are nearly proportionate to the diffmvnr.p« between the numbers. This may be illustrated by refer- 1)2 LOGARITHMS. enee to tlio table as given. Thus, 9984, 9987 and 9991 are three numbers whose successive differences, 3 and 4, jire small in comparison with the numbers themselves. Now, the logarithms of these numbers are respectively 3-999:505, 3-999435 and 3-999609, of which the successive ditter- ences are -000130 and '000174. But as 3:4: : -000130: •000173^, which is very nearly the same as '000174. The smaller relatively the differences are, the more nearly will the proportion give the correct result, and as the differences in practice are always relatively less tlwin those in the illustration, the approximation is always nearer than in the illustration. The proportion asserted may be applied in two ways : 1st, to iind the nmntissa of the logarithm of some number not found in the table ; or 2nd, to find the number corres- ponding to a logarithm of which the mantissa is not found in the tal)le. Thus, 1st, if we need the logarithm of 598732, the near- est numbers to this of which we can find the logarithms from the table are 598700 and 598800. The logarithms of these are 5'777209 and 5'777282. Now, the difference between the numbers 598700 and 598800 is 100, and the difference between their logarithms is '000073 ; also the difference between the numljers 598700 and 598732 is 32. Therefore by the principle stated above 100: 32:: -000073: the difference between the logarithms of 598700 and 508732. •000146 •00219 100)'002336(00002336 Therefore the logarithm of 598732 equals the logaritlmi of 59S700 increased by -00002336, i.e., 5-777209 + "X LOGARITHMS. 93 •00002336, i.e., 5-77723226. However, as we do not know fioiii the table the logaritlmi of 598700 to more than 6 (Iccini.'il places, it is a mere affectation of accuracy to carry the logarithm of 598732 further, so that its logarithm rii^lit to the sixth place is 5*777232. The labour of finding the difference between the logar- ithms of 598700 and 598800 is saved by the table. Under the heading 1), which stands for difference, the differences between the successive nuintissjc are giv(in, 8o, opposite the line in which the logarithms of 598700 and 598800 are found, tlie difference, 73, standing for -000073, is printed under I) ; and, instead of nuiking the subtraction for ourselves, we might have copied the difference from the table. Again, as this difference is the difference between two successive mantissa', it is tlie difference in logarithms cor- responding to a difference of 1 in the lowest of the 4 places for wiiich the mantissjc are calculated in the tabic. Tiiercfore one tenth of this, 7*3, would be the difference of mantissa) corresponding to a difference of one in the lowest of five successive digits, and twice, three times, four times, etc., this 7-3 would be the difference corresponding to the* difference of 2, 3, 4, etc.,' in this fifth place of the natural number. In like manner -73 would be the difference in mantissie corresponding to a difference of one in the low- est of 6 digits. The difference thus corresponding to a difference of 3 in the fifth place would be 3x7*3 = 21-9, and of 2 in the sixth place would be 2 x '73 = 1-46 ; so that the difference of 32 between 598700 and 598732 would correspond to a difference between their logarithms of 21 -9 4- 1-46 = 23-36, it being understood that 23 is of the same denomination as the 73 from which it was derived, namely, so many millionths of unity. Tlie logarithm of T Mi 94 LOGARITHMS. 598732, then, would be us before 5-777209 4--000023-;-;6 = 5-777232, omitting tlie last two figures as useless, because they transcend the limits of accuracy of the table as gi\cn. A table of the amounts to be added to the mantissic for eacli possible difterence in the fifth place of the natural numl)er, counting from its highest figure, when the differ- ence between the successive mantisste given in the table is 73, follows. l-)iffereiice in the Corresponding Nearest number iifth place of tlie difference of within the limit of natural numherp. mantiss;e. the table as calculated. I 7-3 7 2. 146 15 3 21-9 22 4 29-2 29 5 36-5 37 6 .....43-8 44 7 51-1 51 8 58-4 58 9 65-7 66 With such a table before us, the calculation of the amount to be added to the mantissa of 5987 in order to get the mantissa of 598732 would be extremely easy. The amount corresponding to the additional 3 would be found in tlie table as 22; that corresponding to the 2 one place lower down would be found from the table to be the tenth part of 15, i.e., would be one, and the total amount to 1)6 added for 32 would be 23 as before found. Such a table, modified to bring it within the limits of the table as calculated, is found in the first column of the table of mantissa'. The valu3s given above are found on page 118 under PP, which stands for proportional parts, opposite the 1, 2, 3, 4, etc., printed under 590 in the column headed 1. LOGAllITHMS. ri L> Three ways of extending the table to include more than four digits in the natural number have been discussed. They all agree in this, that tliey furnish a method of cal- culating a correction which, added to the mantissa of the highest four digits of the natural number, shall give the mantissa for one or at the utmost two additional dibits. 1. The first method of calculating the correction is to use directly the principle on which all three methods are founded, viz. ; as the difference between two numbers near together is to the difference between one of these numbers and a tliird near it in value ; so is the difference between the logarithms of the first two numbers to the difference between tlie logarithms of the .second two numbers, wliich is the correction required. Here remark that the first two numbers whose differ- ence is the first term in the proportion, must be natural numljers in the table, for their logarithms must be known in order that their difference may be known, as it is required for the third term of the proportion. Remark also that they must be as near the number whose logar- ithm is required as possible ; for the principle employed is only approximately true, and is more nearly exact the nearer the numbers dealt with are to one another. Hence it is best to take the numbers in the table that differ only in their lowest or fourtli digit by unity, one being less and the otlier greater than the number of which the logarithm is required. As an additional illustration let us discuss the question of what correction must be added to the mantissa for 7981 to give the mantissa for 79812345. As the mantissa remains the same, wherever the decimal point may be, we will try to find the mantissa corresponding to 7981 '2345. The number whose logarithm we can find in the table 9G LOGARITHMS. II next less than 7981-2345 is 79S1, of which the logarithm is 8-902057 ; and the number next greater than it is 7982, of which the logarithm is :;-902112. Therefore by our principle 7982 - 7981 : 7981-2345 - 7891 :: 3-902112 - 3-902057 : the logarithm of 7981-2345 ~ 3902057 ; that is 1 : -2345 : : -000055 : the correction required •000055 Tl72^ 11725 •0000128975 the correction required. Tf the logaritlims useantissa for 379178C2 by tl>e a.d of , colu.nn of proportional parts, Pl>> j-- f 1°-^ = Mantissafor.....3791 is -078704 Proportional part for 7 " ^ a « 8 " 9S a « G " 70 ,, u '« 2 " 2^ Mantissa for 37917862 " •5788-15023 „i which the last throe figures are "seless, and the man- tissa reciuired to six places of decimal is -o , 884o. The uselessness of going beyond the s.xth place in h se,|ue.,..e is evident froni this exau.ple also. Substitute „ •;79178G2, :i79l79, ^vlnch is the nearest sequence of 1;: ;:,aces to the sc.nonce given. The mantissa for :;79179 is then found as before : ,^„^^ . Mantissa for :^.791....^ '578704 Proportional part for 7. . . • • « " 9. ... lO'^ Mantissa for ^79179 -5788454 which, dropping the useless figure in the seventh place, is the same mantissa as tor .. , n : «0.. 23. Kind mantissa, for the s«q"'"'""f ; j^^ ^^^^^^^ [^ ^ ' 588077, 589734, 01S1937, 02.548391, 78S09o4, 893881--, (U 3.84209, 937S80.5942. ^ 24 Find the logarithms of 308271, ''-l^i.'', 'es84o, 898732 Vo378145: -0059897, -0003.082479, -OOOooooo. 100:hS42 100004. ,. . . The pupil who has mastered the preceding exercises .s , , ; ' ' , „e<.|lv !-» the tal.l-s given wdl serve, the ;rShm!;::;m.".>>er.-.l.illb^^^ 100 LOaARlTHMS. i able to use any of the more extended tables of logarithms which may be reciuired in his work at college. It remains by an inversion of one or other of the three methods just described to find tlie sequence of digits corresponding to a nuintissa not found in the table. So we may find the sequence of digits corresponding to the mantissa -902070 thus : In the table find the mantissai nearest to '902070. These are -902057 and -902112, corresponding to the sequences 7981 and 7982, between wliich the sequence souglit must lie. Then say, as the difference between the two mantissa^ in the table is to the difierence between the given nuintissa and the one next below it in the table, so is the dill'erences between the sequences in the table to the dilt'erence between the lower sequence taken in the tal)le and the sequence sought. In tliis particular instance the proportion becomes -902112 - -902057 : '902070 - -902057 ::l:the correction. That is, 55: i:'.; : 1 :the correction, whicli is tlierefore \^ = -2oiJ^-^. But as these calcula- tions cannot be relied on for more than two additional places in the sequence, and -24 is nearer -2303 tlian -23 would be, the se(pience sought may be written as 798124. 1*)V conn)arinfr this result with the inverse process on page 90 tlie pupil will understand more clearly liow it is tliat tlie finding of sequences not in the talde cannot be safely extended to more than six places in all, when a six-figure table of logit^'ithms is used. The metliod given altove is an inversion of method 1 for finding the mantissa corresjionding to a se(iuence of more than four figures, liy an inversion of the second method we may find the sequence corresi)onding to the mantissa •807382. Tlie mantissa next below it in tlie table is •8()7.".50, to which corresponds the sequence 7308. The dilVerence between successive mantissn- at this pait of the LOGAUITIIMS. 101 taV)le is given under D as 59. The difference between the civen mantisna and the mantissa of 7308 is 32. Therefore Uie di^its to be annexed after 7308 will be given as H that is -542, which cannot, however, be trusted after tjie second figure. The corrected sequence reads 730854. C^ompare with tlie inverse work on page 98. Finally, the development of the sequence may be effected by an inversion of the third method of correcting a man- tissa criven above. Thus, to find the sequence correspond- \ur,478, -111111, -2:54507, -345078. -450789, -507890. •07890l' -789012, -890123, -90123.4. Note particularly any discrepancies of result arising from dilferencc of method of working. . , . i 26 Of what numbers are the f.»llowing the logarithms : 3019876 2109870, 1-210987, 0:i21098, 1-432109, 2-54321o! 3054321, 4-705432, 5-870543, 0987054. Use the last method. llmiintidiUorii StatancM.-A^xe logarithm of the pro- ,lu,.t .)f any number of factors is the sum of the logarithms of the factors. The logaritlim nf a .ptotient is the logar- illmi of the dividcn.l less the logarithm of the divisor. Tho Incrnritlnn of a power of a number is the logarithm of thut number multiplied by the index of the power. The 102 LOdAUITH.M^. lo^Tarithm of a root of a number is the logarithm of the number, divided by the index of the root. Multiplication. Remember that mantissa^ are always positive, and that the carrying from the sum of any number of mantisste is always positive, although some or all the characteristics may be negative. 27. What is the product of 1-0378 X 1*946 x I'OOOS x 3-006 X 5-00082 x 7-48139 x 6-8735 ; of 16-437 x 286845 x 357-642 X -086824 x 00961 ; of -0632 x -07954 x 068689 x •00074368 X 7329-688 ; of 10084 x 7-3695 x -000086957 x 22-46 X 37-89 x 058276 ; of 06 x 073 x -0892 x 6934 x •82659 X -717876; of 179-63 x 482-7 x 795-687 x 555-55 x •00000687324 ; of 17 x -18 x 19 x -21 x 23 x -64 ; of 4951 X 5-368 X 7-965 x 83837 x 0001 ; of 10112 x 1-0234 x 1-1378 X 1-6654 X 1-78877 ; and of 637842 x 97918 x 654837 X -0079892 x 00004632 x 000005948 ? Division. When you have in the same exercise several quantities multiplied together, divided in any order by several divisors, add the logaritlims of all the multipliers, and from the sum subtract the sum of the logarithms of all the divisors. In subtracting remember tliat your numtissa' are always positive; that taking away a negative (luantity is etpiivalent to the addition of a positive ([uantity ; and that taking away a negative quantity is equivalent to adding a positive quantity. Each of the points in this paragraph is illustrated by an example below. ! );..Mo -ti ^ r, H V 7.« r, ]jy 07:V«4 v 5(i-67.3. . « 7 .•» 1 H 4 "^ Here 00673, 100084, 97384 and 56673 are all divisors, LOGARITHMS. 103 tlierefore add their logarithms and subtract the sum from the sum of the logarithms of 31458 and 765. Log. 00763 3-882525 " 100000 5- PP. of 80 331 4 17 Locr. 973-8 2-988470 Log. 3-145 0-497621 PP. 8 110 Log. 7-65 0-883661 Sum T-381392 Subtract... 7-624737 PP. 4. 18 Log. 56-67 1-753353 23 PP. 3. um i 0J4/O/ 7-756655 which is the logarithm of 000000571025, the answer. Divide 7-6348 by 0172. Log. 7-634 -882752 PP. 8 JS Log. 7-6348 •882708 « -0172 2-235528 2-647270 .-.log of 443-885, answer. 2-r47187 log. of 443-8 83 78 PP. of 8 50 " " 5 Divide -0172 by 763-48. Log. -0172.. 2235528 " 763-48.. 2-882708 5-3527:{0 log. of -0000225284, answer. VV. 8 PP. 4 5-352568 log. of 00002252 162 154 80 77 104 LOGAlilTHMS. i :!'.' Divide -0076348 by '0172. Log. -0076348 .... 3-882798 " -0172. 2-235528 1-647270 = log. -443885, answer. Divide 0172 by -0076348. Log. -0172. 2-235528 " -0076348.... ;-5-882798 0-352730 = log. 2-25284, answer. Divide -172 by -00076348. Log. -172 1-235528 " -00076348... 4-382798 2-352730 = log. 225-284, answer. 28. Divide 59-6834 by 47-9218, 736-68 by 795*887, 768000 by 754, 32788 by 6742-11, -76957 by -38G21, •5948 by -038797, "008255 by -018173, -0006866 by 495-371, -0068524 by -0000798, and -0000798 by -0068524. 29. Find the reciprocal of 11, of 14-682, of 97-381, of 3754-68, of -01, of -0001, of -0036827, of -0098286, of 556789. of -556789. 30. Give the value in decimals of the following frac- . 1 .'5 2_Ji.' 1 !>^t!.H Trt_2.SS. .n H .H « H 1 4 . !l « .'. tlOnS: -^i}, toT' T's&i> 0THijy» liT-TT* .Vii' .0 12> 17.su 7. - ** L*iAiL . • « >" ■- a.-> It.WO 1' .00 7 !» 1 4 s" . 31. Find the values of the recinrocals of the fractions in the preceding exercl3e. 32. Divide the product of 67 X 39-58 x -067879 by tlie product of 112x7-8868x59-473. Find the vabie in decimals of ^^^ x ,V/h x "^^i X ,-^,r. l^i"^ tlie vabie ..f •3'_«J X "'•'^" X "-''^^ — -■'''"-. Find the value of «•««'• 1 .0 » 7 -i 1 4 . U H -J It V . 7 4 • H !• 5 7 1 . • U J 1 J4 _i./ -.1 1 « 7 X 1 •' • ). 15-»87'vi41lsy 1U7.'J01>' Involution. Hero observe cnrefullv that the carrying from any mul- LOGARITHMS. 105 tiplication of luantissie is always positive, even although the characteristic and its product are negative^ Thus, we wish to get the cube of 9874, its logarithm is 1'994493 which wheu multiplied by 3 gives 1-983479, for the car- rying from the multiplication of^ -9 by 3 is + 2 which added to the three times 1 gives 1. As 1-983479 is the logarithm of -902672, this last is of course the cube of •9874, right to the fifth decimal place. 33. Find the square of 19-G82, and of -07975, the cube of 7-6864 and of -0777777, the fourth power of 1-897, the 5th power of 1-4158, the 13th power of -77816, the 19th power of 1-12345, the Uth power of the square of -02468 and the 9th power of the cube of 1-0124. Evolution. It will be remembered tliat to find the logarithm of the root of a number the logarithm of that number is to be divided by the index of the root. Tliis is easily done when the characteristic and the mantissa of that logarithm are positive; also when the characteristic although negative is exactly divisible by the index of the root. So there will be no dithculty in finding the logarithm of the sixth root of that number whose logarithm is 5-739874, the quo- tient, which is the logarithm of the root, being -956646.* Xor is there any difhculty in finding the logaritjun of the sixth root of that number whose logarithm is 12-358726, the nearest quotient being 2059788, and being the logar- ithm of the root sought, But if we are findi^ig the sixth root of that number whose logarithm is IU'476793 we meet the difficulty that 6 is contained in 10, 1 with a remainder 4. How can this negative 4 be so blended with * The pupil will notice that the last figure is a little too large, but it is nearer the truth than 5 in that place would be. lOG LorjAKiTinrs. : i the positive mantissa that follows it, as to give a positive quotient, and this we need because every mantissa is to be positive. Perhaps at first sight the difficulty seems insuperable ; but it may be readily overcome by saying that 6 goes into 10, 2 times with a remainder of +2; for, while it is quite true that if G be multiplied by 1 and the result be subtracted from lO, 4 will remain, it is no less true that if G be multiplied by 2, and the result be sub- tracted from 10, + 2 will remain. The necessary division is thus accomplished : 6)10-476793 T-4T2799 the quotient being the logarithm of the answer. One example more will suflice. What is the cube root of -0007585 ? The logarithm of -0007^85 is 4-879956 of which the third part is found as above to be 2-959985. This last is the logarithm of -091198 ; and this again is the cube root of -0007585, right to the last digit. 34. Find the square root of 933156, of 8335*69, of 28-4089, of -383161 and of -00168921. Extract the cube root of 804357, of 50-053, of 166-375, of 9, of 574. What is the fourth root of -938, the fifth root of -0007, the sixth root of 4-3928, the seventh root of -018195, the eighth root of 1-0789, the ninth root of 548-733, the tenth root of •0078145, the one hundred and nineteenth root of 67'7349, the two hundred and fifteenth root of -000068782, and the three hundred and seventeenth root of 115-317 ? The preceding examples demonstrate the great assist- ance that logarithms may be in effecting intricate calcula- tions that involve multiplications, divisions, involutions and evolutions only. It must never be forgotten that additions and subtractions of natural nuniljers cannot be effected logarithmically ; hence additions and subtractions LOGAUITIIMS. 107 must be done either before logarithms are introduced in the example, or after return to natural numbers has been made. Thus, to solve the following problem, which cannot be easily done witliout the aid of logarithms, the following order of operations must be followed with but slight variation : s/' /■ Loe.j> _ ^5 4 -J t -s ^ -1 n 61^)20 which is log. of 1-36873 •' l'243o8 a <.' Log. ]^^ ij) 4 i.".j»ji^. 094672 '• \ 11 >/r-3G873 -T-24358 = >^-12515 ^"g- llllA = Ii"-l'l--* •'' ^ = 1 -81 0486 = log, of -659911 LoK^^ _ 1 . 1 4 «} 1 2 8 _ -229226 = log, of 1-69521 LoK% _ .0 1. H !. 7 _ -049926 = log. of 1-12185 ^h - i/5 = 1-69521 - 1-12185 = -57336 LoK^.5rj5;5jj = r^_.VH4^^H^|.879214 = log. of -757205 •659911 + -757205 = 1-417116, answer. ;5. Find the value of (^/98?6 - ^49-59) (V^n89->^1200-G8); of (V^8-l + x/37-695) (V'4;M- V37lll)5); of ^7im~^0069~^'^b^8r^~^^^^ of VVl)^'-87xv^4877-V^6iF7^ and of (^987327 -x/683-4\'' 3i X ()83-4\'' 683-4/ !>v/'.)873!w+x/6J 36. By l()'4inithms solve the following examples from 'earlier pages: P. 5,-42, 43, 64, 67, 68, SI, 83, 86, t)l, 93; p. 6,-4, 5, 7, 10,11, 14,18,29,21,23; p. 16,-42, 43,44, 46, 47, 48, 50, 51, 54, 61 ; p. 48,-25, 26, 29, 30, 31, 33, 34^36; pp. 50-52,-13, 14, 17,31,33,36,40,41 ; ])f. 53, 5.1 _10, 11, 16, 19, 20 'N, 32,39, 41, 43,44; i». 57,-2,3. 108 LOGAKITHMS. ill iH G, 7 ; p. 50 --G, 8, 9, 10 ; p. 60—7, 8, 9, 11, U, IC ; pp. 64, 6-),—;!, 9, 10, 11, 14, 16, 18 ; p. 66,-8, 10, 11, 14. 37. What is the ainoimt at simple interest of $494*36 for 11 years at 41^ per annum ? What would it be at compound interest ? What at compound interest is the amount of 1 mill for 500 years, at 3^ per annum ? What is the compound interest of $728"36 at 4^% for 23 years ? 38. What is the acreaije of a trianj^le whose base is 74'35 chains and altitude 49-77 chains ? of a triangle whose three sides are 56'38 chains, 49-71 chains and 52-31 chains ? of a parallelogram whose base is 38-94 chains and perpendicular height 42-17 chains ? of a rectangle whose con-terminous sides are 15-69 chains and 14-48 chains? of a rectangle of which one side is 13-87 chains, and the diagonal 15-93 chains ? of a parallelogram of which two adjacent sides and me diagonal are respectively 13-47 chains, 19-63 chains and 1618 chains ? of a circular enclosure o£ which the diameter is 9-36 chains ? of a walk one rod wide around the outside of this enclosure ? 39. If 45*37 were accurately raised to the one millionth power, how many volumes of 320 pages each with 60 lines on a page and 60 digits in a line would be required to hold the answer ? LOGAllITIIMIC TABLES. 109 MATHEMATICAL TABLES. LOGARITHMS OF NUMBERS FROM 1 TO 10,000, WITH riFFERENCES AND PROPORTIONAL PARTS. Numbers from 1 to 100. No. IiOg> No. liOfi. No. liOg. No. i liOg. No. Ltog. 1 0-000000 2 0-301030 3 0-47;i21 4 O-COJOCO 5 6 0-698970 0-77Sl-)l 7 0-S-l.'>0'.)8 8 0-003090 9 0-;t->4243 10 11 1-000000 1-041393 12 1-0791S1 13 1-113043 14 M4i;i28 15 16 M7'WJ1 1-204120 17 1-230449 IS 1-255273 19 1-27875 1 SO 1-301030 21 23 24 1-322219 1-342423 1-361723 1-380211 L'j 1-397941) 20 27 23 29 30 31 32 33 34 35 36 37 3S 39 40 1-414973 l-4313o4 1-447158 l-4()2398 1-477121 1-491362 1-5051.">;I 1-518514 1-531479 1-544068 l-55630;5 1-56S:;02 1-579781 1 -591065 1-B02060 41 42 43 44 45 46 47 4S 49 50 51 52 53 54 55 56 57 53 59 60 1-6127S4 1-623249 1-633468 1-643453 1-653J13 1-662758 1-672098 1-681241 1-690196 1-698970 1-707570 1-716003 1-724270 1-732394 l-7403ti:< 1-74SI88 1-755875 1-763428 1-770852 1-T78151 CI 62 63 64 65 66 67 63 69 70 71 72 73 74 75 76 77 73 79 80 1-785330 1-792392 1-799341 1-806180 1-812913 1-819544 1-826075 1-832509 1-838849 1-845098 1-851258 1-857332 1-863,323 1-869232 1-875061 1-880814 1-S86491 1-892095 1-897627 1-903090 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 93 99 100 1-908485 1-913814 1-919078 1-924279 1-929419 1-934493 1-939519 1-944483 1-949390 1-954243 1-959041 1-963783 1-968483 1-973123 1-977724 1-982271 1-986772 1-991226 1-995635 2-000000 110 LOGAKITIIMIC TAliLES. pr N. O .'I G 9 D. 41 Ki 12 J Kit) 207 24.S 200 ■SM 37.'} 3S 7() 11,H 151 1W» 227 2()5 302 340 100 1 2 3 5 C 7 y no 1 2 3 4 6 C 7 9 I 000000 000434,000868 4321 4751 51811 8(K)0 9026 9451 1 012837 013259 013680 7033! 7451 7808 021180 021003 022016 5:506 1 5715 1 6125 93841 9789 030195 033424 03:i><2(ii 4227 7426; 7825 8223 I 35 70 104 139 174 209 244 278 313 32 64 ar 129 161 193 225 258 290 041393 5323 9218 053078 6905 061)698 4458 8186 0718.S2 5547 041787 5714 9G0() 05,31()3 7286 001075 1 4832 ! 8557 ' 072250 1 6912 120 079181 079543 1 U82785 083144 6360 6710 9905 090258 30 60 90 120 51) 180 210 MO 270 2 3 4 5 6 7 8 9 130 1 2 3 4 5 6 7 8 9 093422 6910 3772 7257 100371 j 1007 15 3804! 4146 72101 7549 110590 : 110926 140 1 2 3 4 5 6 7 8 9 113043 114277 7271! 76(13 120574 12091)3 38521 41-8 7105' 7429 130334 130655 3539 i 3S58 6721! 7037 9S79 140194 1430151 3327 042182 6105 9993 053846 766() 061452 i 5206 I 8928 072617 6276 I 079904 US3503 7071 0906 U 4122 7()04 101059 4487 [ 1 7888 ,111263 ' 114611 7934 121231 ' 4504 I 7753 130977 4177 7354 140508 ! 3639 001301 6609 9876 014100 8284 022428 05;{3 OSOCHHt 4628 1 8620 042576 6495 0503.SO 4230 8046 061829 5580 9298 072985 6640 001734 6038 010.'}00 4521 8700 022841 6942 031004 502i) 9017 002166 6466 010724 4940 9116 023252 7.V)0 031408 5430 9414 042969 688,5 050766 4613 842(; 062206 5953 96(i8 073352 7004 002598 6894 1 011147 53t«) 9532 023()64 7757 031812 5830 9811 043362 7275 051153 4996 8805 002582 6326 070038 3718 7368 003029 7321 011570 6779 9947 024075 8164 032216 6230 080266 1 3861 j 74261 0909()3 4471 7951 101403 I 4828 8227 111599 080620 4219 7781 091315 4820 8298 101747 6169 8565 ilii»34 7664 05153S 5378 9185 062958 ()699 070407 4085 ; 7731 003461 7748 011993 0197 020:i61 4486 8571 032619 6<529 040207 040602 ; 003891 i 8174 012415 I 6616 1 020775 I 4896 i 8978 033021 1 7028 040998 146128 146438 9219 9527 152288 152594 B336 5lilO 8362 ; 8664 1613i;8 161667 4353 4650 73171 7013 1702(i2 170555 3186. 3478 150 28 1 66 2 84 3 112 4 140 5 168 6 196 1 224 8 252 <9 i 5507 116940 12024;-) 3525 6781 13(W12 3219 6403 9564 142702 5818 :560 357 :555 :552 349 346 343 341 :i38 3:55 148294 151:570 4424 7457 160469 341 ;o 6430 93S0 17231 1 5222 148603 148911 309 151676 151982 1507 4728; 50;52 :505 7759' 8061 ;503 160769 161068 ;5oi 37581 4055 299 67261 7022 297 967 5 ' 996S 295 Wy^-' w-'-^'.O 2', '3 5512; rri)2 .'91 333 :5:5o :s28 :525 323 321 318 316 314 311 177825 180699 a555 6391 9209 192010 4792 7556 200303 I 3033 178113 r.'. 180986 161272 3,8:591 4123 6674 6956 94901 9771 192289 1925671 6069! 5346, 78:521 8107 1 200577 200850 3305; 3577! ..■•'.joO .^9 181558 287 4407 285 7239 283 190051 281 2846 279 6623 278 8382 276 201124 274 384S 272 LOGAKITII.MIC TABLES. Ill vv N. :{ 9 26 63 79 105 132 15S 184 210 237 leo 1 2 3 4 5 (■) 7 H 9 ion 20 204301 204G03 (•>.S2tj 7oyt)| 736") 74S4 7747 8010 22010S 221*370 220t)3l 27 It) 2970 3236 r)3ii9 Soils 5S26 r,s>s7 8144 8400 2r, 74 S9 124 14!» 174 ly.s 223 24 47 71 94 118 141 165 188 212 22 45 67 89 112 134 156 178 201 21 421 64 85 106 127 148 170 191 230449 230704 230960 180 1 2 3 4 5 C 7 8 9 204934 7634 210319 2'.I.S6 5638 8273 220S!)2 3496 C084 8657 205204 7904 ' 2105,s6 3252; 6902 1 8536 221153 3755 1 0342! 8913' 205475 8173 210,S53 3518 CI 66 8798 221414 4015 C600 9170 205746 8441 211121 37S.3 C4.50 9060 221675 4274 C.S.')8 9426 206016 87101 21iaS8 4049 C69I 9323 221936 45;j;{ 7115 9682 2!l!M) ; 3250 .').'):;si 57S1 8016! 8297 24(1540 240799 32S6 6759 8210 250420 '250664! 250008 2S53t 3096 3;J."J8 303S 5513 7973 3504 6033 8548 24104,S 3531 6006 8464 231215 231470 3757 1 4011 62851 6537 87091 9019 241297 241546 3782; 4030 6252: C199 8709 1 8954 251151 251395 3580 i 3822 231724 4264 6789 9299 241795 4277 6745 9198 251638 4064 206286 20()55(; 8979 1 9247 211654 211921 43141 4579 6957 7221 9585! 9si(; 222196 222456 ■<792j 5051 7372 76311 9938 3)193 231979 i 45171 j 7041 ( 9550 242044 4525 6991 9443 251 SSI 4306 190 1 2 3 4 6 6 7 8 9 200 1 2 I 4 6 6 7 8 255273 255514 255755 7679 791SI 8158 :6007r 260310 260548 2451 268S 2925 4S18 6054 6290 7172 7406 7641 9513 9746 9980 27 1S42 272074 272306 4158 43S91 4()20 6462 6692 6921 178754 :8io;« 3301 3557 7S02 290035 2256 4466 6liti5 8853 255996 S308 260787 3162 6525 7875 270213 2538 4S50 7151 256237 8637 261025 3309 6761 8110 270446 2770 5081 7380 232231 4770 7292 Osoo 242293 4772 7237 96S7 252125 4548 232488 232742 6023 1 6276 7544' 7795 240050 240301 25411 2790 6019; 626t; 7482' 772 9932 250176 252368! 2610 I 4790' 6031 D. 271 269 2(57 266 264 262 261 259 258 156 256477 '2567 18 88771 9116 261263 261501 2780S2 281261 3527 67S2 8026 290257 2478 46S7 6884 9071 301030 301247 20 40 61 81 101 121 141 162 182 210 1 2 3 4 6 6 7 8 9 3106 3412 5351 6566 7496 7710 9630 9S43 311754 311966 3-<67 4078 5070 6180 MI63 8272 320146 320354 322219 42S2 6336 8380 330414 2438 4454 6460 8456 340444 322426 44S8 6511 85,S3 330617 2640 4655 C660 I 8656 340642 279211 2814S8 3753 6007 8249 2904S0 2699 4907 7104 9289 301464 3628; 6781 1 7924' 310056 2177 4289 6390 8481 320562 322633 4694 6745 8787 330819 2842 4856 6860 8855 340841 270439 279667 281715 281942 3979 1 4205 6232 j 6456 8473' 8696 290702 290025 2020: 3141 6127 6317 7323' 7512 9507 1 9725 301681 3844! 69961 8137! 310268 23S0 4499 6599 8689 320769 322839 4899 6950 6991 331022 3044 6057 7060 9054 34103y 301898 4059 6211 8351 3104S1 2(i00 4710 CS09 8S98 320977 363t) 6;><.»() 8344 270679 3001 6311 7609 279895 282169 4431 6681 8020 291117 : 3363 \ 6567 7761 9943 302114 42751 6425! 8.564' 3101)93 2812 4920 7018 9106 321184 3S73 6232 8578 270912 3233 6512 7838 280 123 2396 4656 6905 9143 291369 3584 6787 7979 300161 302331 I 4491 6639 I 8778 310906 3023 5130 7227 9314 321391 256958 9:5.55 2617.39 4109 6467 8812 271144 3464 6772 8067 280.351 2622 4882 71-30 9.366 291591 3804 C)07 8198 300378 257198 257439 9594 i 9S33 '2619761262214 43461 4,5S2 6702 69,37 9046! 9279 271.377 271t)O0 3696 6002 8296 2S057S 2849 6107 7.^54 9589 291813 4025 6226 8416 : 300595 254 253 252 2.50 249 248 246 245 243 242 241 239 238 237 2;i5 234 2.33 2.32 230 229 226 32.3046 6105 71.55, 9194 331225 3246 6257 72()0 9253 341237 323252 5310 7.359 9398 331427 3447 5458 7459 9451 341435 302547 4706 6854 8991 311118 3234 6340 7436 9522 321598 302764 4921 7068 9204 3113.30 3445 6.551 7646 97.30 .321S05 32345S 65161 75631 9601 1 3316.30 3649 6658 7659 j 96.50 341632 323665 6721 7767 9805 331.S32 3850 6859 7858 9849 341830 32.3871 6926 7972 330008 2034 4051 00,59 8058 340047 2028 302980 61.36 72S2 9417 311542 3()5t.i 6760 7854 993S 322012 324077 6131 8176 330211 2236 42.53 6260 8257 340246 2225 206 205 204 203 202 202 201 200 199 198 112 LOGARITILMIC TABLES. 1.! i. ! f I 1 ■■: 1 1 i 1 " PP N. 1 it n — 1 •* 1 4 5 1 D. '.'■::) .".12423 342020 342817 343014 34.3212 i 343409 34.3600 34,38(v> ;i43<»f|9 ' 944 196 1 1971 n 1 4392 4589 47.85 4981 6178 6374 .5570 .WiO; 6902 6157 196 30 o 0353 0549 6744 69.39 7135 7330 7525 77:'Oi 7915 8110 195 5S 3 83;)5 A500 8094 8889 9083 9278 9472 9000' 9800:a''^0054 194 ^ / 4 350248 350442 3500.30 350.829 351023 35I2I6 3514:0 351003 351790 1989 193 f»7 5 2183 2.3751 2508 i 2701 29,541 3147 a'i,39 3,W2, 3724 .3916 193 IK) (■) 4108 4;?0l| 4493: 4085 4876 6008 f"60 5452 1 5643 5834 192 IT. 0)26 021/ C408: 6599 6790 6981 7172 7303! 7.554 7744 191 ^^\ 8 7:t.'55i (125 8310- 8.")00 8090: R88() 90701 9206 94.501 9646 190 174 9 ?'V) 9S35 360025 300215 360404 362105 362294 360593 I 36078,3 360972 361161 361,'J50 3615:59 189 189 .361728 361917, 362482 362671 362,8.59 36,3048 363236 363424 10 I 3)12 5.800, 39.S81 4170 4303; 4,551 4739 4920 i 5113 .5301 188 37 ?, 5J8S 5075 5802 i 6049 6236, 6423 6610 6790: 6983 7109 18/ 5C. 3 7.'W() 7542 77291 7915 8101 1 82.87 84,3 80.59 : 8845 90,30 180 74 4 92 IC 9101 9.587 i 9772 9958 370! 43 370328 370513 370098 370.883 1,S5 03 .1 ,371008 3712.-)3 371437 371022 371800 1991 2175 2300 i 2514 1 2728 184 311 r> 2912 3090 3280 3404 3617 3831 4015 4198! 4:{,82 4,565 1,84 130 4748 4932 6115 5298 6481 6G(i4 5840 0(.)29' 0212' 6.394 18:1 148 8 G.->77 0759 6942 7124 7300 7488 7070 78.52: 8031 8216 182 1G7 9 '.'10 8.398 85S0 8761 8943 9124 9300 9487 900S| 9849 3,800,30 181 :!S0211 380,392 .38057.3 380754 3S0934 381115 38 129:') 3S1470 3810,)0 381.8.37 181 18 1 2017 2197 2377 2.557 2737 2917 3097 3277 3451') 30.'50 180 3" •) 3815 3995 4174 43.5.3 4,J33 4712 4891 .5070 6219 5428 1/9 r.'f 3 51)00 578.-> 6904 6142 6321 6499 C677 6850: 7031 7212 178 71 4 7-390 7508 7740 7923 8101 8279 845ii 8031 .ssil 89.89 178 so 5 9100 934,3 9520 9098 9875 390051 390228 390405 3905 S2 3907.59 177 loo (■) 390935 391112 3912SS 391404 391041 1817 1993 2109 2.345 2.521 170 l?t t 2097 2n3 3)48 3224 3100 3,-.75 , 3751 ."{920 4101 4277 170 14'^ S 41.52 4027! 4S02 4977 61,52 6320, 5501 .507; ■) 58.-,0^ 6025 175 151) 9 •r)0 0199 0374 i 6548 0722 6S.)0 7071 ,'',98808 7245 7419, 7592 77(>o 1/4 .397940 398114 .39,S287 .398401 ,3980)34 ,39,898 i .39915 1 .399.328 399,502 1 i73 17 1 9.;74 9S 17 400020 400192 400,305 400,\{8 400711 40iK>,3 4i)lii.')(; 40121" 1/3 3t ') i()14:il 401573 1745 19:7 208'. t 2201 zm 201 15 2777 29iii 172 M 3 3121 3292 3104 3035 3807 3!)78 4149 4321) 4492 40l)3 171 OS 4 4S3i 50; (5 6170 6310 6517 5088 6858 6029 0199. 6,'{7(! •71 M 5 05 10 6710 08-; I 7051 7221 7.391 750)1 7731 7901 1 8070 1/0 111:; (1 .8211) KllO 8579 8749 8918 90,87 92,57 9420> 9595 9704 169 110 99;'.3 410102 410271 410440 410009 4rt)777 410940 411114 411283 411451 109 13ti ^W IliC.Jil r;S8 19.')0 2121 2293 2101 2029 2791; 29iU 31,'{2 108 153 9 I'd;) 3300 3407 1 3035 3803 3970 4137 4305 41.5974 4472 40,{9 48IW) 107 114973 4I5M0 41.5.307 41.5474 41,5041 415.808 410141 410,308 416474 167 ir. 1 00 tl OS(i7 0973 71.39 7300 7472 70)38 78111, 7970 81,'C) 11)6 33 •) R'iOl 8107 80.3.3 8798 8964 91 '29 9295 940)11 9025 9791 105 40 .3 995:; 420121 420280 420451 420016 420/81 420945 4211 in 421275 421439 !»« (ili 4 421001 1708 19.33 2097 22C)1 2120 2590: 2754: 2918 3082 104 8:', 5 3210 3110 3.57 J 37.37 3901 4005 4228 4:i92 4,5,-)5 4718 ItH Its C 4SS2 5045 5208 6371 6r),34 6()97! 6.8(i0 6023 1 6180 0;<49 103 11.-) 0511 007 J 6.8,36 6999 7101 7324 7486 70)48; 7811 7973 102 131 8 81,35 8297 81,59 80)21 : 878,3 8944 9100 9208 i 9129 9,591 102 148 270 97.52 9914 430075 431085 4302.30 4.30398 4305,59 432107 4,30720 ^4.308.sl 431042 431203 161 101 4313(')4 431,525 431816 4,32007 4,32;{28 4.3248S 4,3':019 4.32.809 ir. 1 2909 31,!0 3290 3I.'>0 3;io 3770 39,30 40'.l;i 4219 4409 100 31 '^ 4.')09 4729 48,88 6018 6207 6307 6520 6085 5s 14 ()00l 1.59 47 3 01 (h3 0322 6481 0040 ; 6799 6957 7116 , 7275 71.13 7.592 1.59 f)3 4 7751 7909 801)7 8226 8,384 R542 8701 1 8,8,-.9 9017 9175 1.58 70 5 9;i33 9491 90 »8 9.S06 1 990)4 440122 4402?.» -MOl.'t/ 440.V.I4 440752 1.58 O.-) <') 140909 441000 441221 44i;wi '441.5,38 1695 1M2 21M19 2100 2.'<23 1.57 ill 2180 1 2(i37 279.3 1 29.50 ' 3100 32C),'i .3119 .3.570 3732 .3.8X9 l.'.7 r.it) 8 4045 4201 4,357 451,1 400)9 4825 4981 61.'<7| .5293 6»t9 1.50 i4:r 9 6004 6760 6915 6071 6220 6382 05,37 6692, 6848 70031 IIM LOGARITIDIIC TABLES. 113 D.I li)6 195 194 193 193 192 191 190 189 189 1S« 187 ISO 1S5 184 184 18;} 182 181 181 ISO 179 178 178 177 176 17(5 175 174 i73 173 172 171 '71 r/0 1 69 1(19 1(18 107 107 l()0 105 l(« 1()4 10^ lt)3 102 1(>2 101 101 100 159 159 158 1.1^8 15T 157 150 IM pp N. 1 tf ;< 4 5 6 r 8 9 D. I'i.sO U7158 4473131 147468 447023 447778 4479,33 448088 1 M8242 44a397 44a552 1.59 15 1 S700 8S(;( 1 9015 9170 9.324 9478 96,331 9787 9941 450095 164 31 2 450249 450403! 15055T 450711 4.50805 451018 451172 45i;i20 451479 10.13 154 40 3 17^0 1940 2093, 2247 2400 2.5,53 2706 2.8.')9 3012 3105 1.53 61 4 3318 3171 3024 3777 39:w 4082 42;i5 4387 4.54C 4092 153 77 5 4845 4997 5150. 6.302 5454 6000 67.58 6910 60()2 6214 152 1 /)•) 0300 C518 6070 1 6.821 6973 7125 7270 7428 7579 7731 1.52 107 7 7S82 8033 8184 1 8336 84,S7 80;J8 8789 8940 9091 9242 161 122 S 9392 9543 9t)94 ' 9S45 99<.t5 460140 400290 460447' 400.597 460748 151 138 9 290 400398 461048! 402548 401 198 401348 461499 1049 1799 1948 2098 2248 150 4C23:i8 402097 4C28ir 402997 463140 463290 463445 463,594 46,3744 1.50 15 1 3893 4042 4191, 4340 4490 4{i39 4788 4930 6085 62,34 149 29 ?. 5383 5532 .5()S0! 6829 6977 6126 6274 6123 6.571 6719 149 44 3 0808 7010 7104' 7312 74(H) 7008 7756 7904 8052 8200 148 69 4 8347 8495' 8043! 8790 89,18 9085 92,33 9,380 9527 9675 148 74 5 9822 9909,470110 470203 470410 470,557 i 470701 4708.51 470!t98 471145 14/ SS 471292; 471438 15S5, 1732 1878 20251 2171 2318' 2404 2610 14(j 103 7 2750 2903 3049, 3195 3341 3487 30;53 3779; 3!I25 4071 140 118 8 4210 4302 45081 4053 4799 4944 6090 02.15 5,18 1 6.520 140 132 9 30;) 5071 6816 5902^ 6107 C252 477700 0397 477844 0542 C687 6832 6970 14i) 145 477121 477200 ; 477411 477.555 477989 478 1.13 '478278 478422 14 1 ,s,")00 871 1 1 SS55 8999 9143 9287 9431 9.575: 9719 9S0;j 144 29 2 480(.IO7 480151 480294 480438 480582 480725 480809 481012 481 IW 481201) 144 43 3 1143 1580 172!» 1.872 2010 21.5!» 2.302 '2445' 2588 27.'»1 I4;i 57 4 2874 3010 3159 3302 3445 3587 37,30 3872 ! 4015 41... 14,>| 72 5 4300 4442 4&^b 4727 4809 5011 51,53 52951 64:i7 &579 " ' 142 80 5721 6803 0(K»5 0147 0289 04.30 6572 0714 6a55 6997 142 100 7 7i;i8 7280 7421 7,503' 7704 7845 7!I86 8127' 8209 8410 141 114 S 8551 8092 88.33 8974' 9:14 9255 9,396 9.5,37! 9077 98 IS 141 129 9 310 9958 490099 490239 490380,490.520 490001 492002 490801 492201 490941 491081 491222 140 140 491302 491502 491042 491782 491922 492,341 '4924s I 492621 14 1 2700 2900 3040 3179, 3319 3t,58 3.^!I7 37;i7! as70 4015 139 28 '» 4155 4294 4433 4.572, 4711 48;-.0 4989 6123 .5207 640() 139 41 3 554 J 5t)S3 5822 69.io! 6099 0238 0370 («15i 00,53 6791 i;w 55 0930 70 i8 7200 7314! 7483 7021 77,5!t 7897, 80.35 8173 138 09 5 8311 8418 a580 8724 8802 8999 91.37 9275 9412 9,5.50 138 R3 9087 9-24 99(32 500(199 500230 500374 50051 1 ,500048 500785 600922 13/ 97 5011159 501190 301333 1170 10l»7 i 1744 I,S.><0 2017 21,54 2291 13/ 110 ,s 2127 25i;i 2700' 28,37 297.' 3109 3240 3.3x2 ;i518 30.55 130 124 9 3"0 3791 3927 4003, 4199 433.J ■i47l 4007 50,'.904 474. 60009 J| 4S7S 5014 130 1,36 505150 50528n 50542 1 505,557 ' 505r,:),3 ' .-.05828 V 6002.34 506.370 13 1 0505 00 in 0770 0911, 7040. 7181 7310 7451! 7.'";80 7721 i;« 27 t> 7850 7991 8120 82i;o 8.395, S,53il 8(;(;4 S7ii'.»! 8!I3I 900S 135 40 3 9203 93;;7 9471 1 9(iOO 9740' 9.S74 510009 510143 510277 510411 134 5J > 510545 510079 510813 510947 511081 511215 1349 14,S2| 1010 17.50 i;i4 07 5 1883 2017 2151 2281 2118 25,-.l 2084 1 2818, 2!I51 3084 \M 80 li 3218 sr.i 31-!4 30171 3750; ass'' 4010 ' 4149 42.82 4415 i3;> 91 t 45 J.^ A(^^\ 4813, 4911. 6079, 5211 .5344 6470' 60O9 6741 133 107 5S71 6000 0139 0271: 0403 0.5,35 0008 ' 6.S1M) 69,32 7001 132 121 », ,".:!i> 7190 51.-v.14 7328 51'^04C 7400 1 7 J9L 7721, 7855 1 1 ) 519040 519171 7987 j 6119| 8251 S3S2 1.32 518777 5180O; 519,30;i 5I!M,34 519.500 519097 131 13 1 9S28 1 9959 520090 52022 5203,'.:{ .520181 520015 ft20745 52087( ,521007 131 20 • k 521138 62120' 140(. 15,3( )j 1001 1791. 1!I21. 2053, 218;) 2314 131 39 ;i 2tH 257S 2705 1 28;i. > 2900, 309( 322( : 3,150 348(j 3011 liM 52 ■1 374ti 387( *H)f i 41.3( i 4200, 4.39( 452( , 4050 478,'! 491.' VM 05 5 504: 6174 6304 61.3 1 6.503' 609; 6821. 1 r,i\'\ OOSl 62 K 129 "8 (vVl'J 04(;< 6598 072' r 68.50' 698.' 711 ! 7:43 7.372 7.501 129 91 t 7031 775! 78H'' 80 1( i 8145| 827 840'; ! 8..3II K00( 1 87.'<> 12tf VH h 8917 904.1 ltl74 i 9.30' l\ 94,30 j 9.55! 90,^7 98151 9>i4; ( 63(Ni7i I2U 117 9 530201 ) M032t \ N'W45t . 63058 4,630712 ,'53084( » .5.'iO!IO,- i .53UI90 63122: 1 ! - . 1 136 12M 114 LOGARITHMIC TARLES. im pp N. 1 a 3 4 5 6 i 7 1 8 9 n. 340 531479 531607 531734 531S62 631990 532117 532245 532.372 632.500 532027 128 13 1 2754 2882 3009 3136 3264 3;wi a518 3045 3772 3899 127 25 2 4026 4153 4280 4407 4.534 4001 4787 4914 6041 6167 127 38 3 6294 6421 6547 5674 5800 6927 60.53 6180 6.300 6432 126 60 4 6558 608.5 6811 6937 70()3 7189 7315 7441 7507 7693 126 6;^ 6 7819 7945 8071 8197 8:^22 8448 8574 84599 8825 8951 12(> 7fi 6 9076 9202 9327 9452 9578 9703 9829 9954 540079 540204 125 88 7 540329 540455 54(J,-)8() 510705,54(K{0 540955 541080 541205 1330 1454 125 101 8 1579 1704 1829 1953 2078 2203 2.327 1 2452 2570 2701 125 113 9 2825 2950 3074 3199 3323 3447 3571 3096 3820 3944 54518;^ 124 124 350 544068 544192 544310 14440 544504 544688 544812 5449.30 545000 12 1 5;i07 5431 5,5,55 5678 5802 5925 6049 6172 0296 0419 124 24 2 6543 0(i06 6789 0913 70.36 71.59 72,82 7405 7529 7052 123 87 3 7775 7898 8021 8144 8267 8.389 8512 8635 8758 8881 123 49 4 9003 9126 9249 9.371 9494 9010 9739 9861 9984 550100 123 61 5 55022S 550351 550473 550595 550717 550840 550902 551084 551200 1.328 122 73 6 UiiO 1572 1094 1810 19.38 2000 2181 2303 2425 2547 122 85 7 2668 27!>0 2911 3033 31.55 3270 3398 3519 3040 3702 121 98 8 3883 4004 4120 4247 -:308 44,89 4010 4731 4,8.52 4973 121 110 9 360 5094 5215 5330 5457 5578 5099 6820 5940 0001 6182 121 120 556;«)3 556423 556544 556664 5567a5 550905 5.57020 5.57146 557207 557387 12 1 7507 7627 7748 7868' 79,88 8108 8228 a349 84(i9 a5.89 120 24 2 8709 8829 8948 9008 1 9188 9.308 9428 9548 9667 9787 120 m 3 9iH)7 500026 560140 560205 :6G0;W5 560504 560024 500743 56080.3 560982 119 48 4 501 101 1221 1310 14.59 1578 1098 1817 1930 2055 2174 119 60 6 2293 2412 2,531 20.50 27(i9 2,887 3006 3125 3244 3.3()2 119 71 6 3481 3(«)0 3718 3.S37 39.55 4074 4192 4311 4429 4548 119 83 1 4666 4784 4903 ,5021 6139 5257 5370 5494 5012 5730 118 9.-) 8 5848 5966 ()084 0202; 0,320 6437 65.55 0073 0791 6909 118 107 9 370 7026 568202 7144 7262 568436 7379 7497 7614 7732 7849 7967 8084 118 117 50,8319 5C,>^554 56,8671 50S7.S8 568!H)5 669023 .509140 509257 12 1 9374 9491 9608 9725 9,842 9959 570070 570193 570.309 570420 117 23 2 570543 57O0(iO 570770 570,8t)3 671010 571120 1243 1359 1470 1.592 117 ar. 3 1709 1825 1942 2058 2174 2291 2407 2523 2039 2755 110 40 4 2872 2988 3104 3220 3:m 34.52 3.508 3084 3.800 3915 116 68 5 4031 4117 4203 4379 4494 4010 4726 4841 4957 5072 116 70 6 5188 5303 5419 5534 5050 67tK5 6,880 6996 6111 622{i 115 «1 7 mn 0457 0.572 0687 6,802 6917 7032 7147 7262 7377 115 93 8 7492 7607 7722 7.836 7951 800t) 8181 8295 8410 8525 115 104 9 380 8639 6754 8868 t 8983 9097 9212 9326 ,580469 9441 9555 9669 lU 114 579784 579898 680012 680126 580241 530.V)5 580.583 530697 580811 11 1 580925 6810.39 11.53 12()7 l.'Wl 1495 1008 1722 18.36 I9.5(t 114 23 2 2063 2177 2291 2404 2518 2031 2745 2,8.5,8 2972 3085 U4 ?4 8 3199 3U2 3426 3;539 3(152 8705 3879 3992 4105 421,K 113 4ft 4 4,(31 4444 4.5.57 4070 4783 4,890 6009 6122 62:15 r>MK 113 f>7 6 54)U 6574 5(>,86 6799 69 1: 6024 6137 02,50 6.362 6475 M.3 68 6 6587 67(H) 6812 6925 70,37 7149 7202 73741 7480 7599 112 79 7 7711 7823 79;» 8047 8100 8272 8384 8496 8608 8720 112 SMI 8 K8.'?2 8914 90,56 9167 9270 9391 9.50,3 9615 9726 9^]X 112 io:j 3£K) 9950 5910ft5 590001 690173 690284 690390 690507 691021 690()19 691732 5907;W, 691843 690842 691956 590953 112 691176 601287 591399 69ir,10 692000 11 1 2177 22,88 23!«» 2510 2(i21 27.32 2,843 2954 3064 3175 111 22 2 328(; :if97 3508 3018 3729 8840 3'.m 40()l 4171 4282 111 X\ 3 4393 4'm 4014 4724 48.34 4945 60.Vi 6106 6276 6;m; no 44 4 6196 bm] 6717 6,827 69.37 6047 61.57 6207 6377 648 f no M fi 6597 0707 6817 6927 70.17 7UA 72.56 7306 7476 758^1 no 64) 6 7695 7805 7914 a»24 81.34 8243 8.'J63 8462 8572 8081 no 77 7 8791 8!KM) «(»09 9119 9228 9.337 9146 95.56 Vim 9771 109 8H 8 98,H3 9992 Cfl'.MOl 600210 6(10319 600428 C0O537 6Wt640 60075.5 6008(M 109 99 000973 6IUU82 liUl 121191 140H lftl7 16261 1734 1843 1961 109 1 LOGARITHMIC TABLES. 115 9 D. J2627 128 3899 127 5167 127 6432 126 7693 126 89.") 1 126 020-1 125 1454 12,5 2701 125 3944 124 518;^ 124 6419 124 76,52 123 8881 123 1OIO6 123 1328 122 2547 122 3762 121 4973 121 6182 121 7387 120 8.589 120 9787 120 0982 119 2174 119 m>'2 119 4548 119 573(1 118 6'.K)9 lis 8084 118 9257 117 0426 117 1592 117 2755 116 3915 116 5072 116 622(i 115 7377 115 8525 115 9669 lU 0811 114 1950 114 30,S5 114 421,'- 113 5;ms 113 6475 113 75'.i'.» 112 8720 m 9,-(.3S 112 9953 112 J»66 111 3175 111 42S2 111 r):tMi 110 (H»' 110 75,H(-. no 8<;st 110 9771 109 OSIhl m 1961 ll>9 pr N. 6 8 9 11 21 32 43 54 64 75 86 96 400 1 2 3 4 6 6 7 8 11 21 32 42 63 63 74 84 95 410 1 2 3 4 5 6 7 8 9 602060 3144 4226 5305 6381 74,55 8526 9.594 610660 1723 602169 3253 4334 6413 6489 7562 863;i 9701 610767 1829 602877 3361 4442 5521 6.596 7669 8740 9508 610873 1936 602386 3469 4550 5628 6704 7777 aS47 602494 8577 46,53 5736 6811 7884 8954 612784 '612890 10 20 ;w 40 50 60 70 80 90 420 1 2 3 4 5 6 7 8 9 3842 4897 59.50 7(X)0 8048 9093 620136 1176 2214 1)23249 4282 5312 6340 7366 8389 9410 630428 1444 2457 430 1 2 3 4 5 6 7 8 9 3947 6(K)3 6055 7105 81.53 9198 620240 1280 2318 9914 610021 6109791 1086 2042 2148 6233.53 4385 .54 '5 64^3 7468 8491 9512 6305;i0 1,545 2559 6;«4(W 4477 5484 64fl8 7490 8489 9486 6I04S1 1474 2465 612996 40.53 5108 6160 7210 8257 9302 620344 1384 2421 •6234,56 4488 1 5518 6.546 7.571 8,593' 9613 630631 1647 1 2660 613102 4159 5213 6265 7315 8S62 9406 620448 1488 2525 602603 3686 4766 5844 6919 7991 9061 610128 1192 2254 J. 623i)59 4,591 5621 6648 7673 8695 9715 6307,'« 1748 2761 613207 4264 5319 6370 7420 8466 I 9511 620552 1.592 2628 623663 4695 5724 6751 7775 8797 9817 6.30,H.'» 1849 2862 613313 4,370 6424 6476 7.525 8.571 9615 620a56 1695 2732 602711 3794 4874 5951 7026 8093 9167 610234 1298 2360 613419 4475 5.529 65.SI 7629 8676 9719 620760 1799 2835 602819 3902 4982 6059 7133 8205 602928 4010 .5089 6166 7241 8312 9274 9381 61034r 610447 1405 2466 1511 2.572 613,525 61.36.30 603036 4118 5197 6274 7343 8419 94AS 610554 1617 2678 4.581 5634 6586 7734 8780 9824 4()86 5740 6790 7S,VJ aS84 992,^ 633569 '633670 10 19 29 ;J8 48 68 67 77 86 440 1 2 3 4 5 6 7 8 9 4578 5584 6588 7590 8589 9.586 6405S1 1.573 2563 4679 1 5685! 66,S8l 7690! 8689 9686! 6406S0 1672 2662 633771 4779 5785 6789 7790 8789 9785 640779 1771 2761 623766 4798 5827 6853 7878 8900 9919 630936 1951 [ 2963 620864 620968 1903] 2007 2939 3043 6137.36 4792 5845 6895 7943 8989 620032 1072 2110 3146 D. 108 108 108 108 107 107 107 107 106 106 62.3869 49(M .5929 69.56 7980 9002 630021 1038 2052 3064 633,872 4.S80 &S86 6889 7.890 8888 9.8.>« 640S79 1871 2,S60 6431.53 64,^551 44.39 .5422; 6404: 7:V83, KKK) 9;«5' f>,50,308 650405 12781 1375 2246 i 2343 4.50 1 2 3 4 6 6 7 8 9 45,37 .5.521 6.502 7481 8-J.58 9432 6436.''0 4636 .5619 66(K) 7.579 8555 95;w 650502 1472 2410 4177 51.'W 609S 7056 8011 R lao; 2(UI2 653.502 44t).5 6427 63.S6 7343 8298 92,50 660201 11,50 1 20M 653.598 4562 6,523 6482 71,'VS 8.393 \KW> 6602% 1245 3191 65.31)95 4(i.58 6619 6.577 7.5,34 84S8 9441 66U:{91 i;^i9 2286 63427<) 52.S3 62X7 7290 8290 92.S7 64028;^ 1276 2267 3255 634.376 .5383 63.88 7390 8389 9387 640382 1375 2,366 3354 644143 5127 6110 7089 8067 '.H)»3 6.5(MI16 09 7725 8679 5226 6208 7187 8165 9140 6,50113 lOSJ 205;i 3019 5324 6;i06 7285 8262 9237 6,50210 1181 21.50 3116 98 98 93 98 98 97 97 97 97 97 6.5.39.84 6540801 6604«6|6C0.'>81 14.34 1.529 2.38U 2476 4916 .5iHl6 6861 7.820 8774 9726 660676 1623 2669 .504 t)4H)2 m'M 7916 8870 9821 660771 1718 26*KI 96 96 96 96 96 95 95 95 95 06 116 LOGAKITILMIC TAllLE.S. 1' If* ' i pp N. 1 1 3 3 4 3 6 r S 9 D. 460 t>li2758 662852 662947 663041 '663135 663230 663324 663418 ! 663512 663607 94 9 1 3701 3795 3889 3983 4078 4172 4266 4;}60 4454 4548 94 19 2 4G42 4736 4830 4924 5018 6112 6206 5299 5393 5487 94 2y 3 5381 6675 6769 5862 5956 6050 6143 6237 6331 6424 94 38 4 6518 6612 6705 6799 6892 6986 7079 7173 7266 7360 94 4/ 6 7453 7546 7640 7733 7826 7920 S013 8106 8199 8293 93 5« 6 8386 8479 8572 8665 8759 &S32 8945 90.38 9131 9224 93 66 7 9317 9410 9503 9596 9689 9782 9875 9967 670060 6701.53 93 ib 8 :i70246 670339 670431 670524 670617 670710 070.802 670.895 0988 1080 93 8ii 9 470 1173 i265 1358 1451 1543 1636 1728 1821 1913 2005 93 ,572098 672190 6722,83 '672375 672467 672560 672652 672744 672836 672929 92 •J 1 3021 3113 3205 3297 3,390 34.82 3574 3666 3758 3850 92 IS 3942 4034 4126 4218 4310 4402 4494 45,86 4677 4769 92 2» 3 4861 4953 5045 5137 6228 5320 5412 6503 6595 5687 92 3/ 4 5778 6870 5962 6053 6145 6236 6328 6119 6511 6602 92, 46 5 6694 C785 6876 6968 7059 7151 7242 73,33 7424 7516 91 65 6 7607 7698 7789 7881 7972 8063 8154 8245 a336 8427 91 64 7 8518 8609 8700 87^1 &882 8973 9064 9155 9246 9337 91 n 8 9128 9519 9610 9700 9791 9882 9973 680063 680154 6802451 91 9 4S0 ;8033i) 680426 1 680517 6S0607 680698 680/89 680879 0970 681.874 1060 1151 91 90 381241 681332 681422 681513 681603 681693 6817.84 681964 682055 9 1 2145 2235 2326 2416 2.506 2596 2686 2777 2867 2957 90 18 2 31147 3137 3227 3317 3407 3497 3587 3677 3767 3857 90 21 3 3947 4037 4127 4217 4;W7 4396 4486 4576 4666 47.56 90 36 4 4845 4935 5025 6114 5204 5294 63S3 6473 6563 6652 90 46 6 5742 6831 6921 6010 6100 6189 6279 6368 64,58 6547 89 64 6 6ii36 6726 6815 6904 6994 70.8;i 7172 7261 7351 7440 89 63 7 7529 7618, 7707 7796 7886 7975 8064 81.53 8242 8331 89 a 8 8120 8509 8598 8687 8776 8,865 8953 9042 9131 9220 89 81 9 490 9309 9398, 9486 9575 9664 9753 9841 9930 090019 690905 690107 090!)93 89 89 ;90196 690285 690373 690462 690551) 690639 690728 690816 9 1 lOSl 1170 1258 1347 14.i) 1.^25 1612 1700 1789 1877 ,S8 18 2 1965 2053 2142 22;}0 2318 2406 2J91 25,83 2671 2759 ,88 •J6 3 28471 2935 3023 3111 3199 3287 3375 3463 3.551 3639 .88 3.) 4 3727 3815 3903 3991 4078 4If;6 4254 4312 44,30 4517 88 44 6 4i;o5 4i;93i 4781 4868 495(i 5044 6131 6219 6307 5394 88 63 6 51-^2 551)9 5657 6744 6832 6919 6007 6094 61,82 62()9 87 62 ( (i:!.')6 6144 6531 6618 6706 6793 6S80 6968 7055 7142 87 <0 8 7229 7317' 7404 7491 7578 7665 7752 7,839 7926 8014 87 /y 500 8101 1 198970 8188, 8275 8362 8449 8535 699104 8622 8709 8796 8883 87 87 699057 699144 (599231 699317 699491 699578 699664 699751 9 1 '.I.S3S 9924 7090111 70009s 7001s 1 700271 700.35 •; 700444: 700,531 i:(»0i;i7l 87 1/ ;0;i701 700790 0877 1 09(13 lO.Wl 11.16 1222 1.3091 1,395 1482 Aii\ i.'(. 3 15(iS 1654 17411 1,S27 1913 1999 2tHi> 21721 2258 23 U ,86 3( 4 2131 25171 2603 20,89 2775, 2S61 29 17 39,33 3119 3205 86 43 5 3291 i 3377 3163 3549 36.3.5 372 1 3S07 3>9;j: 3,)79 4065 86 62 6 4151' 4236 4322 4108' 4194 4.V:) 4i;ii5 47511 4.S37 4922 8() 60 7 501)8 60:(4i 6179J 5265 j 5;r»o 613;; 6522 61071 6693 5778 86 (il) 8 5>6I 69 19 6035 6120 6206 62.11 6.'i76 6162! 6517 6632 s,-< ;; 9 510 6718j 6S03^ 707655 6888 6974 j 7059, 7144 1 7''"0 7315, 7100 7185 85 707570 707740 ' 707.826 ' 707911 ' 707990 70,8081 70S166' 708251 70.8336 85 8 1 8121 850;j KV.dj 86761 8761! 8s46 8931 9015 9100 91.S5 .85 i; 2 9270 9355 9140i 9524 9(;09 9694 9779 \\>.K\ 9948 7100,33 85 i!6 3 710117 710202 710287 710371 710456,710540 710(;25 710710 710J94 OS79 85 34 4 0963 1018 1132 1217 1.301 13,S5 M70 1.V.4 16.!9 1723 84' 4:2 6 I8071 1892i 1976 2060 2144 2229 2313 2397 2181 2566 84. W 6 2650, 2731' 2818 2902 2980 3070 3151 3238 3.32,3 3107 84 j 69 V 3191, 3575; 3659 3742 3826 3910 3994 4078 4162 4246 84 6/ 8 43;K)I 4414; 4497 4581 4665 4749 4,S3,3 4916 6000 6084 84 V6 9 6167 6251 6335 6418 ft502 6586 6669 6753 6836 6920 84 LOGAKITILMIC TAJ5LES. iir D. 07 94 48 94 87 94 24 94 m 94 93 93 24 93 53 93 ^) 93 )5 93 92 92 92 }2 92 fi 91 27 91 17 91 5 91 )l 91 )5 90 )7 90 )7 90 >6 90 .2 90 7 89 89 I 89 89 7 89 3 89 7 88 9 sm 9 .8,8 / 88 4 88 9 87 2 87 4 87 13 87 1 87 1 87 2 8ti J 8(5 ■) 8(5 .1 8(5 ■) 8(5 S 8(5 •) S.^ 5 85 fi 85 ,"> 85 3 85 9 85 3 841 li 84: 7 84 f) 84 1 84 84 PP N. 1 t> 3 4 5 G 7 S 9 D. 520 716003 716087 710170 7162541 716337 716421 716504 716588 716671 716754 83 8 1 6838 6921 1 7004 7088 7171 7254 7338 7421 7504 7587 83 17 2 7671 77541 7837 7920 8003 8086 8169 8253 8336 8419 83 25 3 8502 8585 8668 8751 8834 8917 9000 9083 9105 9248 83 33 4 9331 9414 9497 9580 9663 9745 9828 9911 ^094 720077 83 41 6 720159 720242 720325 720407 720490 720573 720655 720738 7::ii82l 0903 83 50 6 0986 1068 11511 123:1 1316 1398 1481 1563 1046 1728 82 5S 7 1811 18931 1975 2058 2140 2222 2305 2387 2409 2552 82 60 8 2034 2716: 2798 2881 2963 3045 3127 3209 3291 3374 82 75 9 530 3456 3533, 3620 3702 3784 724604 3866 3948 4030 4112 4194 82 82 724270 724358 724440 724522 724685 724767 724849 724931 725013 8 1 5095 6170 5258 5340 5422 6503 5585 5667 5748 5830 82 Ifi 2 6912 6998 6075 6156 6238 6320 6401 6483 6504 6646 82 24 3 6727 0809 6890 6972 7063 7134 7216 7297 7379 7460 81 32 4 7541 7623 7704 7785 7866 7948 8029 8110 8191 8273 81 41 6 8354 8435 8516 8597 8678 8759 8841 8922 9'>03 9084 81 49 6 9165 9246 9327 9408 9489 9570 9651 9732 9813 9,893 81 57 7 9974 730055 730 13{) 730217 730298 730378 730459 730540 730621 730702 81 (W 8 730782 0803 0944 1024 1830 1105 1186 1266 1347 1428 1508 ai 73 9 540 1589 1669 1750 1911 1991 2072 2152 2233 7330.37 2313 733117 81 80 732394 732474 732555 732035 732715 732796 732876 732956 8 1 3197 3278 3358 3438 3518 3598 3(579 3759 38:59 3919 80 If) 2 3999 4079 4160 4240 4320 4400 4480 4500 4640 4720 80 24 3 4800 48S0 49()0 5040 6120 6200 6279 5359 6439 6519 80 32 4 5599 5G79 5759 6838 6918 6998 6078 6157 62:57 6317 80 40 5 0397 6470 6550 6035 C715 6795 6874 6954 7034 7113 80 48 C 7193 7272 7352 7431 7511 7590 7670 7749 7829 7908 79 ftfi t 7937 8067 8140 8225 8305 8384 8403 a543 8022 8701 79 64 8 8781 8860 8939 9018 9097 9177 9256 9335 9414 9493 79 72 9 550 9572 9051 9731 9810 9889 9968 740047 740126 740205 740284 741073 79 79 740303 740442 740521 740000 740078 740757 740830 740915 740994 8 1 1152 1230 1309 13S8 1I()7 1646 1624 1703 1782 1860 79 Ifi o 1939 2018 2090 2175 2254 2332 2411 2489 2568 2047 79 23 3 2725 2804 2882 2901 30.39 3118 3196 3275 3:553 3431 7ft 31 4 3510 3588 3007 3745 3S23 3902 3980 4053 41.-56 4215 7ft 39 5 4293 4371 4449 4528 4006 4084 4762 4840 4919 4997 78 47 5075 5153 6231 6309 63S7 5405 6543 5021 5099 6777 7ft 55 / 5855 6933 0011 6089 6107 6245 6323 0401 6479 6550 7ft r.2 8 66:54 6712 0790 0808 6945 7023 7101 7179 7250 7334 78 70 9 560 7412 748188 7489 7507 7045 7722 7800 7878 748053 7955 8033 748808 8110 78 748200 748343 748421 74.S49S 74.8.570 748731 74,8.885 77 8 1 8963 9040 9118 9195 9272 9350. 9427 9504 95,S2 9(559 77 15 2 9736 9814 9S91 9908 750045 750123 750200 750277 750354 750431 77 23 3 750508 750580 750003 750740 0817 0894 0971 1048 1125 1202 77 31 4 1279 1356 1433 1510 1.587 1064 1741 1818 1895 1972 77 39 5 2048 2125 2202 2279 2.350 24:53 2509 2580 2(!(»;5 2740 77 4(5 li 28)6 2893 2970 3047 3123 3200 .3277 3:553 3430 3500 77 51 1 3.583 3600 3730 3813 3S89 39()0 4042 4119 4195 4272 77 OJ 8 4348 4425 4501 4578 4054 47:50 4,><07 4883 49(50 50:50 76 (3'J 9 570 6112 6189 5205 5341 6417 6494 5570 75(5.r.2 6040 6722 6799 76 76 755875 755951 750027 750103 756180 750250 75040S 750484 750500 8 1 6030 6712 6788 680 J 6940 7'I16 7092 7168 7244 7320 76 15 2 7390 7472 7548 7024 7700 7775 7a5i 1 7927 8*H)3 8079 76 23 3 8155 82:50 R'500 8382 8458 8533 8609 , 80S5 8701 883(1 76 30 4 8912 89S8 9003 &139 9214 92!H) 9300 9441 9517 9592 76 38 5 9r;'\ 8 9377 9151 9525 9599 9673 9746 9S20 9.S94 9968 770042 74 67 500 770115 — . 770852 770189 770263 77o:«6 770410 771146 770484,770557 770631 770705 0778 74 770926 770999 771073 771220 771293 771367 771440 771514 74 7 1 1587 1661 1734 1808 1881 1955 2028 2102 2175 2248 73 IT) ?. 2322 2395 2468 2542 2615 2688 2762 2835 2908 2981 73 1 ^•^ 3 3055 312.S 3201 3274 3348 3421 3494 3567 3640 3713 73 ?') 4 3786 3860 39;w 4006 4079 4152 4225 4298 4371 4444 73 37 5 4517 4590 4663 4736 4809 4882 49551 6028 5100 6173 73 44 6 5246 6319 6392 6465 5.538 6610 5683 6756 5829 5902 73 .'•I 7 5974 6047 6120 6193 6265 6:j:J8 6411 6483 6.')56 6629 73 SS 8 6701 6774 6846 6919 6992 7064 7137 7209 7282 7354 73 66 11 600 7427 7499 7572 ;644 7717 7789 7862 7934 8006 8079 778802 72 72 778151 778224 778296 778,368 778441 77a513 778585 778658 778730 7 1 8874 8947 9019 9091 9163 9236 9308! 9380 9452 9524 72 14 2 9596 9669 9741 9313 9885 9957 780029 780101 780173 780245 72 22 3 780317 780389 780461 780533 7»}605 780677 0749 0821 0S93 0965 72 20 4 1037 1109 1181 1253 1324 1396 1468 1540 1612 1684 72 36 5 1755 1827 1899 1971 2042 2114 2186 2258 2329 2401 72 43 6 2473 2544 2616 2688 2759 2S31 2902 2974 3046 8117 72 fM) 7 3189 3260 ai;}2 3403 3475 3546 3618 3089 3761 3832 71 68 8 3904 3975 4046 4118 4189 4261 4332 4403 4475 4546 71 65 9 610 4617 4689 4760 4831 4902 4974 6045 6116 6187 785899 6259 71 71 7&5a30 785401 785472 785543 785615 785686 785757 785.828 785970 7 1 6041 6112 6183 6254 6325 6396 6467 6538 6609 6680 71 14 2 6751 6822 6893 6964 7035 7106 7177 7248 7319 7390 71 21 3 7460 7531 7602 7673 7744 7815 7885 7956 8027 8098 71 28 4 8168 8239 8310 8381 8451 a522 8693 8663 8734 8804 71 36 5 8,S75 8946 9016 9087 9157 9228 9299 9369 9440 9510 71 43 6 9581 9651 9722 9792 9863 993;i 790004 790074 790144 790215 70 50 7 790285 790356 790426 790496 790567 790637 0707 0778 0848 0918 70 57 8 (1988 1059 1129 1199 1269 1340 1410 14,80 1550 1620 70 64 9 620 1691 1761 1831 1901 1971 2041 2111 2181 2252 2322 70 70 792392 7924<)2 792532 792602 792672 792742 792812 792,S,82 792952 793022 7 1 3092 3162 3231 3301 3371 3441 3511 3rM 3651 3721 70 14 2 3790 3.860 3930 4000 4070 4139 4209 4279 4349 4418 70 21 3 4488 4558 4627 4697 4767 4836 4906 4976 6045 6115 70 28 4 6185 6254 5324 6393 6463 6532 6602 667i 6741 6811 70 35 5 588<) 5949 6019 6088 6158 6227 6297 &366 6436 6505 69 42 6 6574 6644 6713 6782 6852 6921 6990 7060 7129 7198 69 49 7 7268 7;«7 7406 7475 7545 7614 76.83 7752 7821 7890 69 56 8 7960 8029 8098 8167 8236 8;W5 8374 8443 8513 8682 69 63 630 8651 799341 8720 1 8789 1 8868 8927 8996 9066 9134 9203 9272 69 69 799409 '799478 799547 799616 799685 799754 799823 799892 799961 1 800029 800098 800167 800236 800305 800373 800442 800511 8005,80 800648 69 14 2 0717 0786 0854 0923 0992 1061 1129 1198 1266 133,5 69 21 3 1404 1472 1541 1609 1678 1747 1815 1884 1952 2021 69 28 4 2089 2158 2226 2296 2363 2432 2500 2568 2637 2705 69 !V> 5 2774 2842 2910 2979 3047 3116 3184 3252 3:J21 a^89 68 41 6 3457 3525 3594 3662 3730 8798 3867 3935 4003 4071 68 48 7 4139 4208 4276 4344 4412 4480 4548 4616 4686 4763 (Hi 55 8 4821 4889 4957 6()25 6093 6161 6229 6297 6365 64.33 68 62 9 65U1 6569 6637 67U6 6773 6841 6908 6976 6044 6112 tia, LOGAPJTIDIIC TABLES. 119' D. 34101 75 4848 75 65;»4 75 6338 74 7082 74 7823 74 mm 74 9303 74 mi2 74 0778 74 ri5i4 74 2248 731 2981 73 1 3713 73 4444 73 6173 73 6902 73 6(529 73 7364 73 8079 72 r8802 72 9524 72 S0246 72 0965 72 1684 72 2401 72 8117 72 3832 71 4546 71 6259 71 85970 71 6680 71 7390 71 8098 71 8804 71 9510 71 30215 70 0918 70 1620 70 2322 70 93022 70 3721 70 4418 70 6115 70 6811 70 6505 69 7198 69 7890 69 8582 69 9272 69 999«51 69 O0(;48 69 i:«,5 69 2021 69 2705 69 ,W9 «8 4071 68 4763 69 6433 68 6112 68, 1 PPjN. 1 2 :{ 4 3 6 r 8 D. 640 806180 806248 806316 806384 806461 806519 806587 8066551 806723 806790 63 7 1 6858 6926 6994 7061 7129 7197 7264 7332 7400 7467 63 13 2 7535 7603 7670 77;i8 7806 7873 7941 8003 8076 8143 63 20 3 8211 8279 8346 8414 8481 8549 8616 8684 8751 8818 67 27 4 8886 8953 9021 9088 9156 9223 9290 9358 9425 9492 67 34 6 9560 9627 9694 9762 9829 9896 9964 810031 810098 810165 67 40 6 81023,3 810300 810367 810434 810501 810569 810636 0703 0770 08,37 67 47 7 0904 0971 10,39 1106 1173 1240 1307 1374 1441 1,508 67 64 8 1575 1642 1709 1776 1843 1910 1977 2044 2111 2178 67 60 9 2245 2312 2379 2445 2512 2579 813247 2646 2713 2780 2847 67 67 6,50 812913 812980 813047 813114 813181 813314 813381 813448 813514 7 1 3581 3648 3714 3781 3848 3914 3981 4048 4114 4181 67 13 2 4248 4314 4381 4447 4514 4.581 4647 4714 4780 4847 67 20 3 4913 4980 6046 6113 6179 6246 6312 5378 6445 6511 66 26 4 6578 6644 5711 5777 5843 6910 6976 6042 6109 6175 66 as 6 6241 6303 6374 6440 6506 6573 6639 6705 6771 6838 66 40 6 0904 6970 7036 7102 7169 7235 7301 7367 74.33 7499 66 46 7 75()5 7631 7698 7764 7830 7896 7962 8028 8094 8160 66 63 8 8226 8292 8358 8424 8490 8556 8622 8683 8754 8820 66 59 9 660 8835 8951 9017 9083 819741 9149 9215 9281 9346 9412 9478 66 66 \ 819544 819610 819676 819,807 819873 819939 820004 820070 820136 7 1 820201 820267 8203;« 320399 820464 820530 820595 0661 0727 0792 66 1, 13 ?. o858 0924 0989 10.55 1120 1186 1251 1317 1382 1448 66 20 3 1514 1579 1645 1710 1775 1841 1906 1972 2037 2103 65 26 4 2168 2233 2299 2364 24;iO 2495 2560 2626 2691 2756 65 33 6 2822 2887 2952 3018 3083 3148 3213 3279 3344 3409 65 39 6 3474 3539 3605 3670 3735 3800 3865 3930 3996 4061 65 46 7 4126 4191 4256 4321 4386 4461 4516 4581 4646 4711 65 62 8 4776 4*11 1906 4971 6036 6101 6166 6231 6296 6361 65 69 9 6426 5491 5556 826204 6621 6686 6751 826399 6815 6880 6945 6010 65 65 670 826076 826140 826269 826334 826464 826528 82f..593 826658 6 1 6723 6787 6852 6917 6981 7046 7111 7175 7240 7305 65 13 2 7369 7434 7499 7563 7628 7692 7767 7821 7*86 7951 65 19 3 8015 8080 8144 8209 8273 8333 8402 8467 8531 8.595 64 26 4 8660 8724 8789 8853 8918 8982 9046 9111 9175 9239 64 32 6 9;i04 9368 9432 9497 9,561 9625 9690 9754 9818 9882 64 38 fi 9947 830011 830075 830139 830204 830268 830.332 830396 830460 830525 64 45 7 830589 0653 0717 0781 0845 0909 0973 1037 1102 1166 64 61 8 1230 1294 ia58 1422 14,86 1550 1614 1678 1742 180(i 64 68 9 1870 1934 832573 1998 2062 2126 2189 2253 2317 2381 2445 64 64 680 832509 8326.37 832700 832764 832828 832,892 8329,56 83;W20 833083 6 1 3147 3211 3275 3;i38 3402 3466 3530 3593 3657 3721 64 13 2. 3784 3848 3912 3975 4039 4103 4166 42;w 4294 4;«7 64 19 3 4421 4484 4548 4611 4675 4739 4802 4866 4929 4993 64 • 25 « 6056 6120 6183 6247 6;J10 6373 64.37 6500 6.564 6627 63 82 6 6691 6754 6817 6asi 6944 6007 6071 6134 6197 6261 63 38 6 6324 6387 6451 6,514 6.577 6()41 6704 6767 6a30 6894 63 44 7 6957 7020 70,83 7146 7210 7273 7,3;i6 7399 7462 7525 63 60 8 7688 76;72 7715 7778 7841 7904 7967 8o:w 8093 81.56 63 57 9 8219 8282 8345 8403 8471 8534 8597 866U 8723 8786 63 "63 ()90 838849 838912 838975 8390;i3 839101 839164 839227 839289 839,352 a39415 ' 6 1 9478 9.541 9()04 9667 9729 9792 9855 9918 9981 840043 63 13 2 840106 840169 840232 840294 840;«7 840420 840482 840545 840608 0671 63 19 3 mxi 0796 0859 0921 0984 1046 1109 1172 1234 1297 63 ?5 4 ia59 1422 1485 1547 1610 1672 17a5 1797 1860 1922 63 32 6 19S6 2047 2110 2172 2235 22i»7 2360 2422 248-1 2547 62 38 6 2609 2672 2734 2796 2,859 2921 2983 3046 310S 3170 62 44 7 323:i 3295 3;«7 3420 3482 3514 3()0« 3669 3731 3793 62 60 8 3855 3918 3981J 4042 4104 4166 4229 4291 4355 4415 62 67 9 4477 45;« 4<)01 4664 4726 4788 4860 4912 4974 60.3f 02 120 LOGARITHMIC TABLES. i p ' If I, I 1 pp N. O 1 '2 :i 4 "i « 7 H D 700 m5093 845160 8452221 846284 845346 845408 845470 846532 845594 845656 62 6 1 6718 5780 6842 6904 6966 6028 6090 6151 6213 6275 62 12 2 6337 6399 6461 6523 6535 6646 6708 6770 6832 6894 62 19 8 6955 7017 7079 ;i41 7202 7264 7326 7388 7449 7511 62 2.1 4 7573 7631 7696 7758 7819 7881 7943 8004 8066 8128 62 :i\ 5 8189 8251 8312 8374 8435 8497 8559 8620 8682 8743 62 V 6 8805 8866 8928 8989 9051 9112 9174 9235 9297 9358 61 4.3 7 9419 9481 9542 9604 9665 9726 9788 9849 9911 9972 61 M 8 850033 850095 850156 550217 880279 850340 850401 850462 850524 8505a5 61 56 9 0646 0707 0769 0830 <:891 0932 1014 1075 1136 1197 61 61 710 851258 851320 851.381 851442 851503 851564 851625 851686 851747 &51309 f) 1 1870 1931 1992 2053 2114 2175 2236 2297 2.358 2419 61 12 2 2180 2541 2602 2663 2724 27J5 3394 2846 2907 2963 3029 61 1« 3 .3090 3150 3211 3272 3333 34.55 a5i6 3577 3637 61 24 4 30!»3 37.59 3820 3881 3941 4002 4063 4124 4185 4245 61 81 5 4.306 4367 4428 4488 4549 4610 4670 4731 4792 4852 61 37 6 4!»I3 4974 5034 5095 5156 6216 5277 6337 5,398 5459 61 43 7 .W19 55,80 5640 6701 6761 6822 5882 5943 6003 6064 61 49 8 6124 6185 6245 6306 6366 6427 6487 6543 6608 6668 60 65 9 720 6729 6789 6850 6910 8.57513 6970 7031 7091 7152 7212 7272 60 8.^>7.332 857.393 8.574.53 857574 857634 857694 8577.55 857815 857875 60 6 1 7it:« 7995 i 80.56 8116 8176 8236 8297 83.57 8417 8477, 60 90781 60 12 2 8.537 8.5971 8657 8718 8778 8838 aS98 8958 9018 18 3 9138 91981 92.53 9318 9379 9439 9499 95.59 9619 9679 60 24 4 9739 9799' 9859 9918 9978 8601».38 860098 8601.5,8 860218 860278 60 0877 60 1475 60 80 5 HGO;«S 860.398 .8604.58 860518 860578 06.37 0697 0757 0817 86 6 0937 01W6 10.56 1116 1176 1236 1295 1355 1415 42 7 1534 1594 1654 1714 1773 18.33 1893 1952 2012 2072 60 48 f 2131 2' 91 2251 2310 2370 2430 24.89 2549 2608 2668 60 64 9 7'M) 2723 80;tt23 r787 2847 2906 2966 3025 3085 3144 863739 3204 86.3799 3263 60 S6;i382 86.3442 86.3501 863.561 863620 863680 8&3.S68 59 6 1 3'.'ir 3977 4036 4096 4155 4214 4274 433;i 4.392 4452 59 12 2 4y.i 4.570 46;i0 46,89 4748 4,808 4867 4926 4985 5045 59 18 8 5104 6163 5222 .5282 &341 5400 64.59 5519 5578 5637 59 24 4 5696 57.55 .5814 5,874 5933 6992 6051 6110 6169 6228 59 80 5 62.S7 6.146 6405 6465 6524 6583 6642 6701 6760 6819 59 a-) 6 6878 69.C 6996 7055 7114 7173 7232 7291 7350 7409 59 41 7 7467 7526 :.>s5 7644 7703 7762 7821 78,80 7939 7998 59 47 8 8056 8115 8i/4 82;i3 8292 8;«o 8409 8468 8527 8586 59 63 9 740 6644 8692:« 8703 8762 8821 8879 8938 8997 869584 9056 9114 9173 59 59 869290 869319 869408 869466 869.525 869642 869701 869760 6 1 9818 9877 99.35 9994 8700.53 870111 870170 870228 870287 870345 59 12 2 870404 870462 870.521 870.579 06;i3 1 0696 0755 0813 0872 0930 53 17 8 0983 1047 1106 1164 1223 1281 1.339 1398 1456 1515 58 28 4 1573 1631 1690 174H 1806 1865 1 1923 1981 2040 2098 58 29 5 21.'>6 2215 227.3 2;i3l 2.3,89 2448 2.506 2564 2622 2681 58 85 6 2739 2797 2.855 2913 2972 30,30 30,83 3146 3204 3262 58 41 7 3321 .3379 .3437 8495 3.5.53 3611 36ti9 8727 3785 3844 53 46 8 3'.K)2 3960 4018 4076 41.34 4192 42.50 430a 43(56 4424 68 52 9 7.')0 4482 4540 4598 4656 875235 4714 4772 4^311 4838 4945 5003 58 8750611 sri^l 19 876177 875293 875351 875409 875466 875.524 875.582 58 6 1 .5640 )69S 6756 6815 5,871 6929 6987 6045 6102 6160 53 12 2 6218 6276 63.3: 6:191 6449 6507 6561 6622 6681 6737 53 17 3 6795 68.5;J 6910 6968 7026 70a3 7141 7199 7256 731^ 63 23 4 7.37' 742t 7487 754^ 7602 76.59 7717 7/.'4 7835 788£ 68 29 5 7947 800-i 8062 6111 817< 82;n 8292 8349 840; 846^ 57 85 6 8522 857J 863; 869J 8752 8809 8866 8924 8981 9039 67 41 7 9096 91.5; 9211 926}^ 9325 9.38S 9440 949] 9.5.5.1 9612 67 46 8 0669 972( 978-1 9841 989S 99.56 880013 88007U 880127 88018! 67' 1^1 ' 8H0242 880299 88086e I8804U 1 880471 880528 I U689 W43 t 069S • 0756 i 67 D 5« 62 7S 62 94 62 11 62 28 62 43 62 58 61 72 61 85 61 97 61 09 61 19 61 29 61 37 61 45 ()1 52 61 59 61 (54 61 68 60 72 60 75 60 77 78 60 60 79 60 78 60 60 60 77 75 72 60 37 59 •28 59 no 59 (H) 59 m 59 m 59 73 69 '60 59 145 59 )30 58 )15 58 )98 53 m 58 J()2 58 ^44 58 124 58 J03 68 58 58 58 68 68 67 67 67 57; 571 LOGAUITHMIC TABLES. 121 PP N. 3 G 9 D. 760 880814 880871 13S5 11)55 2525 3093 3GGI 4229 4795 530 1 5926 1442 2012 2581 3150 3718 42,S5 4852 5413 59S3 SSC131 7054 7017 8179 8741 9302 9802 890421 0980 1537 880928 1499 2069 2038 3207 3775 4342 4909 5474 C039 880985 1556 2126 2695 3264 3832 4399 4905 6531 609G 6 11 17 Of* 27 33 38 44 ^9 .0 22 27 32 38 43 49 •80 1 2 3 4 6 6 7 8 9 790 1 2 8 4 6 6 7 8 9 892095 2051 3207 3702 4310 4S70 5423 5975 0526 7077 880547 7111 7074 8230 8797 9358 9918 890477 1035 1593 892150 2707 3262 3817 4371 4925 6478 6030 6581 7132 88GG04 7107 7730 8292 8853 9414 9974 890533 1091 1649 S80G60 7223 77 8348 8909 9i70 890030 • 03S9 1147 1705 881042 1613 2183 2752 3321 3888 4455 6022 6587 6152 88G71G 7280 7842 8404 6905 9520 8900S0 0045 1203 1700 881099 1670 2240 2809 3377 3945 4512 6078 5044 6209 881156 1727 2297 2866 3434 4002 4509 5135 5700 C2G5 881213 1784 2354 2923 3491 4059 4625 6192 6757 6321 881271 1841 2411 2980 3548 4115 40S2 6248 5813 C378 897627 8170 8725 9273 9821 900307 0913 1458 20'>3 254. 89220G 2702 3318 3873 4427 4980 6533 6085 6030 7187 800 1 2 S 4 "5 6 7 8 810 6 1 903090 3033 4174 4716 5256 5796 0335 6874 7411 7949 897682 8231 8780 9328 9875 900422 09681 15131 2057 1 2G01| 903144 3087 4229 4770 6310 6850 6389 6927 7405 8002 892202 2S18 3373 3928 4482 6030 6583 6140 6092 7242 88G773 7336 7898 84G0 9021 9582 890141 0700 1259 ISIG 892317 2873 3429 3984 4538 6091 6G44 6195 6747 7297 88G829 8808S5 886942 7392, 7955 8516! 9077 9038 890197 0750 1314 1872 7449 8011 8573 9134 9094 7505 80G7 8029 9190 9750 8902:)3 890309 0812 1 0308 1370 1 1420 192S, 1983 881328 1898 2468 3037 3005 4172 4739 5305 6S70 6434 88G99S 7531 8123 8085 9240 9800 8903C5 0921 MS2 2039 67 67 67 67 67 57 57 57 57 56 11 2 16 3 S 21 4 27 6 82 6 37 7 42 8 id 9 9084S5 9021 9556 910091 0624 1168 1690 2222 2753 897737 8286 8835 9383 9930 900470 1022 1567 2112 I 205:; 903199 3741 4283 4824 6364 6904 6443 6981 7519 8056 897792 8341 8890 9437 9985 900531 1077 1022 2106 2710 897847 8390 8944 9492 900039 05SG 1131 1676 2221 2704 903253 3795 908539 9074 9610 910144 0078 1211 1743 2275 2806 892373 2929 3184 4039 4593 6140 5099 0251 6802 7352 897902 8451 8999 9547 900094 0010 1186 1731 2275 2818 903307 3849 433V 4391 4878 4932 6418 6472 6958 6497 7035 7573 8110 3284 S337 908592 91281 9663 910197 0731 1264 1797 2328 2859 3390 908646 9181 9716 910261 0784 1317 1850 2381 2913 8443 6012 6551 7089 7026 S163 908699 9235 9770 910304 0838 1371 1903 2435 2966 3496 903361: 3904 4445 4986 6526 6006 6604 7143 7680 8217 924i;9' 2985 3510 4094 4048 5201 6754 6300 0857 7407 897957 8500 9054 9002 900149 O095 1240 1785 2329 2873 903416 3958 4499 6040 6580 6119 6658 7196 7734 8270 892484 892540 3040! 3030 3595 4150 4704 5257 58091 6301 6912 7462, 3051 4205 4759 6312 6804 6116 C907 7517 898012 898007 85011 8015 9109 9104 9050' 9711 900203 900258 56 56 56 50 56 56 56 56 50 892595 3151 3700 4201 4814 6307 6920 6171 7022 7572 07491 1295 1840 2384 2927 903470 4012 4553 6094 6034 6173 6712 7260 7787 8324 56 50 50 55 55 55 55 55 55 55 908753 9289 9823 910358 0891 1424 1956 2483 3019 3640 0804 1349 1894 2438 2981 903524 4006 4607 6148 6688 6227 6766 7304 7841 8378 898122 8070 9218 9700 900312 0859 1404 1948 2492 3030 908807 9342 9877 97.0411 0944 1477 2009 2541 8072 8602 908860 9396 9930 910404 0998 1530 2063 2594 8125 8665 55 55 55 55 55 55 55 64 54 64 903578 4120 4601 620; 6742 6281 682(t 7358 78i;j 8431 908914 908967 94491 9503 9984 910037 910518 1051 1684 2116 2647 3178 3708 0571 1104 1637 2109 2700 3231 3701 63 54 54 54 54 64 54 54 64 54 54 54 64 63 63 63 6H 63 63 63 -I ! 199 LOGARITHMIC TABLES. PF N. ! 1 3 » 4 5 G 7 8 9 D. 8?0 D138H 913867 913920 913973 914020 914079 914132 914184 914237 914290 63 5 1 4343 4396 4449 4502 4555 4608 4660 4713 4766 4819 63 11 ? 4872 4925 4977 6030 6083 6136 5189 6241 6294 6347 63 If) 3 6400 6453 6505 6558 6011 6664 6716 6769 6822 5875 63 ?1 4 5027 6980 6033 6085 6138 6191 6243 6296 6349 6401 53 ?7 5 6454 6507 6559 6612 6664 6717 6770 6822 6875 6927 53 3'^ fi C9S0 7033 7085 7138 7190 7243 7295 7343 7400 7453 53 37 7506 7558 7611 7663 7716 7768 7820 7873 7925 7978 52 4?. 8 8030 8oa3 8135 8188 8240 8293 8345 6397 8450 8502 52 48 9 s-^o 8555 8607 919130 8659 6712 8764 8816 8809 8921 6973 9026 919549 52 52 919078 919183 919235 919287 919340 919392 919444 919496 5 1 OGOll 9653 9706 9758 9810 9862 99141 9967 920019 920071 62 10 ?. 920123 920176 920228 920280 920332 920334 920430 920489 0541 0593 52 l(i 3 0045 0697 0749 0801 0853 0906 0953 1010 1062 1114 62 ?.\ 4 110(5 1218 1270 1322 1374 1426 1478 1530 1582 1634 62 ?(■) 5 1086 1738 1790 1842 1894 1946 1998 2050 2102 2154 62 31 (\ 2206 2258 2310 2302 2414 2466 2518 2570 2022 2674 52 31) 7 2725 2777 2829 2asi 2933 2985 3037 3089 3140 3192 52 41 8 3244 3296 3348 3399 3451 3503 3555 3607 3058 3710 52 47 840 3702 3814 3865 3917 3909 4021 924538 4072 4124 4176 4228 52 52 924279 924331 9243&3 924434 924486 924589 924641 924693 924744 5 1 4790 4848 4899 4951 6003 5054 5106 5157 5209 6201 52 10 ? 5312 6364 6415 5407 5518 6570 6621 6673 5725 6770 52 ir. 3 5828 6879 6931 6982 6034 6085 6137 6188 6240 6291 51 ?0 4 0342 6394 6445 6497 6543 6000 6651 6702 6754 6805 61 ?(1 5 0S57 6903 6959 7011 7002 7114 7106 7216 7268 7319 61 31 f) 7370 7422 7473 7524 7576 7627 7078 ,7730 7781 7832 51 3(i 7 7883 79;j5 7986 6037 8083 8140 8191 8242 8293 8345 51 41 8 8396 8447 8493 8549 8601 8052 8703 8754 &S05 &S57 61 4G 9 S;')0 8903 8959 929470 9010 9001 929572 9112 9103 9215 929725 9206 9317 090827 9308 929879 51 51 929419 929521 929623 929074 923770 r. 1 9930 9981 930032 930083 930134 930185 930230 9302S7 930338 930389 61 10 ? 930440 930491 0542 0592 0643 0094 0745 0796 0847 0808 51 IT) 3 0919 1000 1051 1102 1153 1204 1254 1305 1356 1407 51 ?0 4 1458 1509 1560 1010 1001 1712 1763 1814 1805 1915 61 2(i 5 1906 2017 2003 2118 2109 2220 2271 2322 2372 2423 61 31 f) 2474 2524 2575 2026 2077 2727 2778 2829 2879 2030 61 3ti 7 298 1 3031 3082 3133 3183 3234 32.35 3335 33S6 3437 61 41 8 3487 3533 3589 3639 3090 3740 3791 3841 3802 3943 51 4(5 9 S(iO 3993 4044 4094 4145 4195 4246 4296 4347 4397 4448 51 50 934498 934549 934599 934650 934700 934751 934801 934S52 931902 934953 r. 1 5003 6054 5104 6154 5205 5255 6306 5350 5406 6457 60 10 ?, 5507 5558 5608 6053 6709 6759 5809 6800 5910 5900 60 IT) 3 con 6001 6111 6162 6212 6262 6313 6363 6413 6403 60 ?0 4 0514 6504 6614 6605 6715 6705 6815 6805 6916 6000 50 •A") 5 7016 7006 7117 7107 7217 7207 7317 7307 7418 7468 50 30 (') 7518 7508 7018 7003 7718 7769 7819 7809 7919 79G0 50 35 7 8019 8069 8119 8109 8219 8269 8320 6370 8120 8470 50 40 8 8520 857« 6020 8670 8720 6770 8820 8870 8920 8970 50 45 1) 87!' 9O20 9070 9120 9170 9220 9270 9320 9369 9419 939918 9409 50 60 ;;,';9519 93956'J 939619 939669 939719 939709 939819 939869 939968 n 1 940018:94000); 940118 940168 940218 940267 940317 940367 940417 940407 50 10 2 051fc 0566 0616 0666 0716 0765 0815 0865 0915 0904 50 15 3 1014 1061 1114 1163 121J 128.^ 1313 1362 1412 1402 50 20 4 1511 15C1 1611 1600 17U 170( 1809 1859 1009 1958 60 ?5 5 200t 205f 2107 2157 2207 2256 2306 2355 2405 2455 60 30 «■) 2501 255.J 2003 2053 2702 2752 2801 2851 2901 2951 60 85 7 3001 » 804' » S09fl 314» 3198 3247 3297 3310 3306 3445 49 40 « 349; 1 354^ 1 359; 364< 3692 3742 3792 3841 3890 3930 49 45 ° 3981 ) 4i)-ii ) 408^ 4137 4186 :3fi 428S 433.1 4381 , 443;i 49 LOGARITHMIC TABLES. 123 PP N. O 6 8 9 D. 5 10 15 20 25 29 3i 39 44 5 10 15 20 24 29 34 39 44 5 10 14 19 24 29 34 33 43 5 9 14 19 24 28 33 38 42 S80 1 2 3 4 5 6 7 8 9 944483 9445;i2 4976 1 6025 5409: 6518 6961' 6010 6452 6501 6943 6992 7434 7483 7924 7973 8413, 8462 8902 8951 SOO 1 944581 6074 6567 6059 6551 7041 7532 8022 8511 8999 949300 9878 95<«a5 0851 1333 1823' 2303: 2792'; 3276; 3760 944631 6124 6616 6108 6600 7090 7581 8070 85C0 9048 900 1 949439 992C1 950414: 09001 133G 1872 2356 2841 3325 3808 944680 6173 6665 6157 6649 7140 7030 8119 8609 9097 949488 949536 99V5 950024 950162 0:M9 1)36 1920 2405 2889 a373 3656 954243 954201 4725 5207 5088' 6108 6649 7123 7607 8080 8504 0511 0997 1483 1909 2453 2938 3421 905 949585 950073: 05601 1046 1532 2017 2502 2986 3470 3953 910 1 2 3 4 6 6 7 8 9 5 9 14 19 23 28 33 33 42 4773 5255 5736 6216 6697 7176 7655 i^l34 6012 954330 4821 6303 6784 6265 6745 7224 7703 8181 8659 944729 5222 6715 6207 6698 7189 7679 8168 8657 9146 940634 950121 i 0603 1095 1580 2066 2550 3034 3513 4001 944828 6321 6813 6305 6796 7287 7777 8266 8755 9244 944779 6272 6764 6256 6747 7238 7728 8217 8706 9195 9496.83 949731 949780 950170 950219 950267 944877 6370 6862 6354 6845 7336 7826 8315 8804 9292 954387 4869 5351 6832 6313 6793 7272 7751 8229 8707 954435 4018 6399 6880 03151 6810 7320 7799 8277 8755 H50041 959089 9518! 9506 9995 960042 0604711 0518 0946 0994 1421 1469 18951 1943 2360' 2417 28431 2890 3316, 3363 920 1 2 3 4 6 6 7 8 9 963788 963835 42G0' 4307 4731 i 4778 5202 6249 56721 6719 6 9 14 18 23 28 32 37 41 6142 6611 7080 7543 8016 930 968483 6189 6653 7127 7505 8062 959137 9614 960090 05G6 1041 1516 1990 2464 2937 3410 963882 4354 4825 6206 5766 6236 6705 7173 7642 8109 954484 4960 6447 6923 6400 6888 7363 7347 8325 8803 0657 1143 1629 2114 2599 3033 3566 4049 954532 6014 6495 5976 6457 6036 7416 7804 8373 8650 0706 1192 1677 2163 2647 3131 3615 4098 954580 1 6062 6543 6024 6505 6084 7464 7942 8421 8898 9 •"'27 jil9 6912 6403 6894 7385 7875 8364 8853 9341 0754 1240 1726 2211 2096 3130 3663 4146 49 49 49 49 49 49 49 49 49 49 949829 950316 0803 1289 1775 2260 2744 3228 3711 4194 959185 9061 960138 0613 1089 1563 2038 2511 2985 »157 95923 97091 960ia5 0661 1136 1611 2085 2559 3032 3504 954628 6110 6592 6072 6553 7032 7512 7990 8468 8946 49 49 49 49 49 43 43 43 43 48 954677 6158 6640 6120 6601 7080 7559 8038 8510 8994 9592801950328 97571 9804 960233 960281 96r,029 4401 4872 6343 6813 6283 6752 7220 7688 8156 963077 4443 4919 5390 6860 6329 6799 7267 7735 8203 0709 1184 1658 2132 2600 3070 3552 964024 4495 4966 5437 6907 6376 6345 7314 7782 8249 0756 1231 1706 2180 2053 3126 3599 959375 9852 960328 0804 1279 1753 2227 2701 3174 3646 959423 90001 960376 0351 1326 1801 2275 2748 3221 3603 43 48 48 43 48 43 43 48 43 43 964071 4542 6013 6484 6954 6423 6302 7361 7820 8296 959471 9947 960423 0899 1374 1848 2322 2795 3268 3741 48 4S 43 43 47 47 47 47 47 47 964118 450O 6061 6531 6001 &170 6939 7403 7875 8343 964165 9 4037 6103 5578 6048 6517 0936 7454 7022 8390 8950 9416 9882 970347 0812 1276 1740 2203 2666 968530 8996 9463 9923 970303 0853 1322 1786 2249 2712 96R576 9043 9509 9975 970440 0904 1369 1832 2295 2758 968623 9090 9556 970021 0486 0951 1415 1879 2342 2804 968670 9136 9602 970068 0533 0997 1461 1925 2383 2851 968716 9183 9649 970114 0579 1044 1508 1971 2434 2897 968763 9229 9695 970161 0626 1090 1554 2018 2481 2943 963810 92761 9742 970207 0672 1137 1601 2064 2527 2989 4CS4 6155 6625 6095 6564 7033 7501 7000 8436 968856 1 9323 I 9789 970254 0719 1183 1647 2110 2573 3035 968903 9369 9835 970300 0765 1229 1()03 2157 47 47 47 47 47 47 47 47 47 47 47 47 47 47 46 46 46 46 2610 46 3082 46 124 OGAKITHMIC TABLES. pp N. I 3 3 4 5 6 7 8 9 0. 46 «40 973128 973174 973220 973266 973313 973359 973405 1973451 973497 9^r3543 A 1 3590 S636 3682 j72S 3774 3820 3866 3913 3959 4005 M 9 2 4051 4097 4143 4189 4236 4231 4327 4374 4420 4466 46 14 3 4512 4558 4604 4650 4696 4742 4788 4834 4880 4926 46 18 4 4972 6018 6064 6110 5166 6202 6248 6294 6340 6386 46 23 fi 6132 6478 6624 5670 5616 6002 6707 6753 5799 6845 46 28 6 6891 6937 6983 6029 6075 6121 6107 6212 6258 6304 46 32 7 6350 6396 6442 6488 6533 6579 6625 6671 6717 6763 46 37 8 C808 6854 6902 6946 6992 7037 7083 7129 7175 7220 46 41 9 7266 7312 7356 7403 7449 977906 7495 7541 7586 7632 97S0S9 7678 46 46 950 077724 977769 977815 977861 977952 97799S 978043 978135 .1 1 8181 8226 8272 8317 8363 8409 8454 &W0 8546 8591 4/) 9 2 S037 8683 8728 8774 8819 8865 8911 8956 9002 9047 ^6 14 3 9093 9138 9184 9230 9275 9321 9366 9412 9457 9503 46 18 4 9548 9594 9639 9685 9730 9/76 9821 9807 9912 9958 46 23 f, 98001)3 980049 980094 980140 980185 9S..'231 980276 980322 980367 980412 45 27 6 0458 05(t3 0549 0594 0640 0685 073" «776 0821 0867 45 32 7 0912 0957 1003 1048 1093 1139 1184 1229 1275 1320 45 36 8 1366 1411 1456 1501 1547 1592 1637 i6a3 1728 1773 45 41 9m 1819 1864 982310 1909 1954 2000 982452 2045 9S2497 2090 2135 2181 2226 45 982271 9823G2 982407 982543 9S2588 9S26a3 982678 45 S 1 2723 2769 2814 2859 2904 2949 2994 3040 30S5 3130 45 {> 2 8175 8220 3265 3310 3350 3401 3446 3491 3;J36 35S1 45 14 3 3626 3071 3716 3762 3807 3852 3897 3942 39S7 4032 45 18 4 4077 4122 4167 4212 4257 4302 4347 4392 4437 4432 45 23 fi 4527 4572 4617 4662 4707 4752 4797 4842 4887 4932 45 27 f) 4977 6022 6067 5112 6157 6202 6247 5292 6337 6382 45 33 7 5126 6471 6516 6561 5606 6651 6696 5741 6786 6830 45 30 8 5875 6920 6965 6010 6055 6100 6144 6189 6234 6279 45 41 9 6324 6309 6413 C453 0503 0548 6593 6037 6632 6727 45 9Ti1 9S0772 980S17 986801 986906 986951 98099C 987040 987085 987130 987175 45 ^ 1 7219 7204 7309 7353 7398 7443 7488 7532! 7577 7622 45 9 2 7006 7711 7756 7800 7845 7890 7934 7979 8024 8068 45 14 3 8113 8157 8202 8247 8291 8330 8381 8425 8470 8514 45 i 18 4 8559 8604 8648 8693 8737 8782 8S26 8871 8916 8960 45 23 f) 9005 9049 9094 9138 9183 9227 9272 9310 9361 9405 45 V f) 9150 9494 9539 9583 9623 9672 9717 9761 9806 9850 44 32 7 9S95 9930 90a3 990028 990072 990117 990101 990200 990250 990294 44 3(> 8 090:539 9903S3 990123 0172 0516 0561 0005 0650 0694 0738 44 41 9 ISO 0783 0827 0871 0916 0960 1004 991448 1049 1093 1137 1182 44 091226 991270 991315 991350 991403 991 492 '99:530 991580 991025 44 4 1 1609 1713 1753 1802 1846 1890 19.35 1979 2023 2007 44 n 2 2111 2156 2200 2244 2288 2333 2377 2421 2465 2509 44 13 3 2554 2508 2012 2686 2730 2774 2819 2863 2907 2t)51 44 18 4 2995 3039 3083 S127 3172 3216 32C0 3304 3348 3392 441 V. f, 3J36 34S0 3524 35G3 3613 3657 3701 3745 3789 3833 44 m f, 3S77 3921 3905 4009 4053 4097 4141 4185 4229 4273 44 31 7 4317 4301 4405 4149 4193 4537 4581 4625 4669 4713 44 3"> s 4757 480 1 4845 4SS9 49a3 4977 6021 6065 5103 6152 44 4U 9 oil) 5196 6240 6284 6323 5372 6416 6460 6504 6647 6591 44 44 095635 995G79 995723 995707 995S11 995.S54! 995898 995942 995986 996030 4 1 6074 0117 6101 6205 6249 6293 63;J7 6;J80 6424 6468 44 9 2 6512 0555 6599 6643 6687 6731 6774 6318 6862 6906 44 13 3 6949 6993 7037 7080 7124 7168 7212 7255 7299 7343 44 18 4 7336 7430 7474 7517 7561 7605 7ftt8 7692 7736 7779 44 22 f, 7823 7807 7910 7954 7998 8041 8085 8129 8172 8216 44 ?fi fi 8259 &3(13 8347 8390 8434 8477 8521 8564 8608 8652 44 81 7 8695 8739 8782 8826 8869 8913 8966 9000 9043 9087 44 35 R 9131 9174 9218 9261 9305 9348 9392 9435 9479 9622 44 40 9 9565 9609 9662 9696 9739 9783 9826 9870 9913 8967 43 ANSWERS. 125 ANSWERS. I. Page 2. 1. 5. 1176. 1440. 2. 6. 45045. 420. 3. 1140. 7. 68640. 4. 1680. 8. 58080. 9. 13. 17. 33, 198. 120, 5040. 15, 900. 10. 14. 18. 28, 280. 37, 518. 13, 260. 11. 17,204. 15. 41, 1435. 19. 12, 1080. 12. 9, 405. 16. 46, 2070. 20. 19, 114. 21. 25. 2016. 51. 22 26 . 2347. . 11. 23. 147. 27. 9. 24. 213. 28. 3. 29. 35. 41. 47. 1 IC 1 09 ■y -1 • 1 5 1 "• 30. 36. 42. 48. if. 1 •>• 1 5 9. r 8 a • 31. tV 37. h^. 43. i?. 49. }U. 32. n. 38. 'JO' 44. U. 50. h 33. 39. 45. 51. I 34. i. lU. 40. l n. 46. tJ. n/V 52. Uh 53 59 65 54. 60. 66. h 55. l 61. M. 67. MV. 56. 1?>. 62. ,Vi- 68. in- 57. 63. 69. ni 58. A- ^j^i!!. 64. N^ i\^. 70. m III. Pages 4, 5. • »;! !i I 5 • 180/.iV- 02 9 2S' 1. 6. 11. 16. 21. 26. 31. 36. 41. 46. 51. 56. 61. 66. 71. 76. <-» -t o i. . 86. h 91. *. 1 B- liTff' 2i. 33§. I ,'ihV A- 2. 7. 12. 17. 22. 27. 37. 42. 47. 52. 57. 62. 67. 72. 77. 82. 87. 92. 1 '^^ 4.1 19 129 1 ;»7 * 9 • 7i -Vt)' 9 il 5 1 o;i7 !• Its- 1 1 laJi* 1 2 5 2 • 10. a (> • 1 ;13 r2 0- 5tV 20. 6^. 7 ;( 2 • 18, 3. 8. 13. 18. 23. 28. 33. 38. 43. 48. 53. 58. 63. 68. 73. 7 8. 83. 88. 93. 28Af's. 2S.4 ^15' ■^liO* 2 :> t i O • 1200. Hh 16i. 26i. 4^i. Of,. 1 1 1 f U- n- \ 2 Co- 1.0 71! 1 »XL> T2tT0' 20Ai 46.A- 4. 9. 14. 19. 24. 29. 34. 39. 44. 49. 54. 59. 64. 69. 74. 79. 84. 89. SOi?^ 2 H 5 • Ol 9 •> I 1 y . 5 »' t .1 r, 'J . 14. 2654 1'rt. 1|- a ••.9 1 5 lO" 1 48' 13 IH- 5. 10. 16. 20. 25. 30. 35. 40. 45. 50. 55. 60. 65. 70. 75. 80 85. 90. ^90* 1187,. 1 7:> 2 1 S O" 'J 1 9 • •J 2 4H. 7 '• U ij o' 193^. 5 V 0' 2 9 srs' oi r. 14/f. Q I ') .26 ANSWERS. IV. Pauk 6. 1. 3f^. 2. m- 3. 14. 4. 17 5. 7[g 6. 2^. 7. H- 8. m- 0. /o. lO. H. 11. 2- 12. u. 13 I'i.V 14. IH. 15. I. 16. mu. 17. 4ii^ 18. A\. 19. 12,V 20. n'». 21. t> 7 ^. 14. 279i. 15. /A. 19. ^5225. 20. 43i'V 24. The latter by hU. 13. 2|. 18. $1371. 23. 6Ui^. 26. 5. 27 31. $110 A, 10. 6A. 16. 5o4 • TOt* 1 1 ^ £1. 188. 21. 1 6. 27/1. 12. m I'T 44 22. 35^. ^il^?^. 28. .."1 29. 90H^I 32. Increased by ^^q 25. The former by IjVs 30 Q257.12 8 3.91SU VII. Page 10. 1. 3. 2 -4. 3. -58.3. 4. 36. 6. 13. 6. 714285. 7. 1*. 8. Oi. 9. OOi. 10. 01. 11. 6001. 12. 023. 13. 5-230769. 14. 738. 15. 67083. 16. 2 037. 17. 168i. 18. 20138. 19. '108. 20. 4-.376068. 21. 34. 22. 106. 23. 26074. 24. 8-20. 26. 1 0099. 26. -315476196. « 27. 60571428. 28. 5045. 29. 295138. 30. 072. 61. 3D5{i!' 52. 32 U' 53. 3ie?.. 54. 10 u. 55. 3^',. 56. •'i.'i- 57. 4j 58. i» fli i{ 59. 7.'. % • 60. HA- 61. 20.u^ 62. ,,V,«- 03. ;iti 1 ft ft rt • 64. 21 ,1 .1 ;i • 65. 5.;;;''. 66. 17, 5o. 67. 6;; U' 08. tt 4.1 ^ftOO' 69. mi 70. 2^0. VIII. Pages 10, 11. 1. 15-44049. 2. 13 38482. 3. 18 28.360 4. -02020. 5. •54586. 6. -02302. 7. 16 41805 8. 60 49949. 9. •23036. 10. •52468. 11. •01952. 12. •00652. 13. •04594. 14. •03948. 15. •25793. 16. .')6 31427. 17. 00041. 18. 00298. 19. 5 r 50>)4. 20. 34.5. 21. •46359. 22. 7 03411. 23. •03293. 24. 2 -88 184. 25. 03911. 26. 3 44424. ANSWERS. 127 VIII. Pages 10, 11 {continued). 27. 1-654108. 28. l-63022ri. 29. -8502588315. 30. 4-94332696. 31. 2-738437. 32. 1-7. 33. 1-57. 34. 2-365. 35. -64431. 36. 6-5234416. 37. 10756. 38. 3910284. 39. 24. 40. 15. 41.42. 42.3-86011. 43.83. 44.25. 45.28. 46. 18213. IX. Tages 11, 12. 1 £7. 16s. 8(1. 2. 2 dys. 3 hr.«. 20 .nin. 38-4 sec. 3. 250 y^^«^2-64 m. 4' 4 mi. 800 yds. 5. 5 min. 6. 42 wks. 10 lus. 30 miu 7 280 . a 1 ft. 9. 15 sq. yds. 2 ft. 80.V^; in. 10. 9 lbs 8 oz. 13 chvt. S grs. 11. 3tous 18evvt. 36 6 lbs. 12. 2 s.,. yds. 8 ft. 12-. 8 m. 13.5 yds. 2 ft. 1 1 -892 in. 1 4. 243| rods. 15 1. In s .>2 ..uu 39-36 sec 16. 58 mi. 303 52 rods. 17. tl Lis. M. 18. 5 ilio ndn. 36 sec. 19. 1 ft. 6 in. 20. 4 dys^ 23 hrs. 20 nun. 2 1 . 40 yds. 22. 16 dvvL. 8 grs. 23. 39 tons 14.^2 lbs. 24 172+ 25. -215. 26. 2583. 27. Oii 28. '8.3. 29. 275+ 30. -22916. 31. 416. 32. 4182. 33. 168595 + 34. 0464+ 35. 3263 + X. Pages 12, 13. 1. 8. 13. 17. 20 25. •4. 2. 2-3625. 3. 5. 4. 'iU- $728. 6. 7d. 6. 13cwt. 7. -525. 9. -0027 + 14. 215 U>«- The former by -0001, 10 ;l ;l 5 11 1 5 2 1' 12. ml •-•7 15. 10 rods 2 yds. 2= in. 16. 10. 18. Hi'^- 19. 4320 times. •000125. 21 0:1 ;i (I i 22. 6. 23. 2253-456 min. 24. 1010. 1150. 26. 2061 yds. XII. Pages 16, 17. 37. 42. 47. 62. 56. 60. 64. 67. 70. 74. 101 38 21 39. m 40. 49.1 003649. 43. 09 3. 44. 0072. 45. 5 15. :i 1 -i r :t i S 48 or 49. 3(i. 50. 017 £11. 139. 45 tons 10 owt. 4d. 53. S 10,968. 54. $9720 41. 12iV 46. 51A. 51. -6891 + 55. $8465. 57. 900 days. 58. 35 gal. 59. S5.28. 7i cents, lib. 1411! o/.. 7 lbs, !3 oz. $438. 7 1 2390 men. 61. 7957 J,' mi lea. 62. ,h 65. 140 hrs. 37A mn 68. 3 tons 19th May. 75. -979. 400 ll)s. 6i o/,. 72. 65 days. 76. 24 days. 63. €56. 5s. 66. *8.32i. 69. 178 855 mi. iH. $<"*0. 128 ANSWERS. XIII. Paoks 18, 19. 11. (a) $35, m, So6. {b) $40, ^44, |56. (c) $20, $40, $80. 1 2. (a) A $26, B $40. (/>) A $43, B $23. (c) A $45t, B $20^. id) AUn, B$24i 13. (a) A $20, B $10, (' $1.5. (h) A $25.50, B $12.75, C $6.75. (c) A $24, B $14, C $7. (<0 A $23.75, B $9.37 V, C $1 1.87^. 14. Each man $10, each woiiiau $7.50, each child $2.50. 15. Each mail $11.25, each \v( iiaM $7 50, eacli child, $5. 16 $497, $355. 17. $61.25, $78.75. 1 8. $106|, $100, $1.33i 19. 9,\ days. 20. 16 days. 21. 339,226,113. 22. A $49tV, B$30i;|. 23. A $15,600, B $20,400, C$24,000. 24. 12 hrs. 26. 16 days. 2010 TIT, 7 5 1. 15. 2. 16. 3 7. 5^ wks. 8. 130 yds. 2 ft. 1 1. 18 days. 12. 8 men. 16 219 days. 16. r\ days. 19. 160 strokes. 20. 15 days XIV. PAOE.S 20, 21. 4. 1^5- 5. $34.12i. 6. 14 lbs. 2^6^07. 9. 15 horses. 13. 15 men. 17. $15.3.60. 10. 160 bushels. 14. 221;' *Ws- 18. 57'i months. 21. C2. 10s. 22. 60 men. 23. 6f days. 24. $2064. 25. 50 men. XV. PAOE.S 22, 23. 1. 12yr3. S^moa. 2. $287?v. 3. Ig mistakes. 4. 200 yds. 5. 6 hrs. 6.52%. 7. 35 gal. 8.4%. 9. 98 clerks. 10. $536^ XVI. Pages 23, 24. 1. 2 A days. 2. 3j\\ns. 3. 8 hrs. 4. 12i hrs. 5. G.J hrs. 6. 17) min. ; 24 min. 7. 3] hrs. 8. A 19» dys. ; B 13f dys. ; C \0s dys. 9. A 15 dys. ; B 18 dys. ; C 20 dys. I» ^ *4 AJ^SWKU.S. 129 XVII. Pages 24-26 (continued). 15. {a) 4 hrs. S/V i»i»- ; 4 hrs. 38i\ min. (6) 10 hr". 5i\ min. ; 10 hr.s. 88i"r "»«• (<^) 1 l^i'- 21iV "!>"• 5 1 I"- ''^*i"i """• 16. In 120 days (2 p.m. April 24tli) ; 1.44 p.m. and 2.14 p.m. 17. 5.10 p.m. 18. 12th May; 5 p.m. XVIII. Page 26. 1. 244-4625 francs ; S3.68t*,,. 4. 30 cents. 5. 56 ^^^ lbs. 2. 167 fr. 3. £11. 3s. 3d. XXI. Pa(je8 29, 30. 1. $366.50. 2. $6480 ; $4728.50. 3. («) $156.06 ; (/>) $46.41 ; (c) $109.37i. 4. (a) $2400 ; (b) $8400 ; (<•) $18,000. 5. (a) $5100 ; (/>) $2.36.9r; (o) 15,506.2.3. 6. (a) $6825 ; (/>) $4696.65 ; (r) $4,345..37. 0. 27„. 10. $161.10. 11. $260. 1 2. 2035 barrels (nearly). XXII. PAGE.S 30, 31. 1. (a) $25 ; (h) $10 ; (r) $487.50. 2. (a) 1.^ p.c. ; (h) 2^ p.c. 3. (ft) $2000; (^>) $10,523; (r) $6800. 9. $765.62.1. IQ. $6666.66^. 11. $40.84. 12. $.30,000. XXIII. Pages .32, 3.3. A. 3. $177.60. 4. 4J p.c. nearly. 5. $17.76. 6 $84,000. 7. $3000. B. 2. $20,475. 3. $149.45. 4. $1234.80. 5. $7 095. 6. $46.19. 7. $.33.44. 8. $2190.69. 9. $994.31. 10. $3039.75; $9394.88. 11. $903.60. 12. $1440. XXIV. l»AOE8 34,37. 2. (a) .$527 ; $31. (l>) $183.60 ; $5. 10. (r) $5257.50 ; $225. () $1920 ; $96. {r) .$2066^ ; $62. 4. (a)79|. {h)'Mk- ('•) in2.i. 5. (a) $875. (/;) $256.66.,. (<) $173.3. .33.^. (./) f28S0 4^. 2d. 6. (a)$673.3.V (A)$l 1.312.50. (.). $6945. (./) £1843. 7. () HSl (<•) 78. (sH of .>».;5;».^. I'fl LMttJ of .$109.50. V 'V cent >S- (r) lo.sa of 75 cents, (f/) less nf $1 .80. (r) gain of $3.50. 130 ANSWERS. XXIV. Pages 34-37 {confirmed). 12. $8000. 13. poo. 14. 4n. 15- ^4925. 16^^831. 17. £26,933. 6s. 8d. 18. $32.41. 19. 7aVP-«- ^O. $^obO. 2 1 . 86j acre.. 22. £1 19^. 23. Rates 4.V'^ and 4^ P-c. ; as lo5 to 147. 24. £90. 25. $3104. 26. $22i gam. 27. ?f/15. 28 £222. lOs. loss. 29. The former by 'OO^. 30. 607,. A. B. XXVI. PA«iEs 39 45. 1. $54.95. 2. $49.22. 3. $35.96. 4. $48.98. 5. $88.60. 6. $17,520.81. 7. $171.69. 9. Balance due from W . $1^91. 1 O. Balance due from H. $3.57.V. 1 2. Balance due to S. $0.2b. 3. $720.64. (93 days). 15. $1360. 4. 4th Sept. ; $44.71 ; $39-55.29. 6. $343.01 7. $337.36. 11- $664 balance. 13. $658.54. 16. $576.49. 17. (c) face of cheque $307.03. XXVII. Pages 46-48. 5. Uh lbs. 1. 70 loads. 2.1264. 3. 20 tons. 4. 7 tons 162., lbs. 6. 28,000 silk-worms. 7. 9 Ib... I o/. 7 dwt. 12 gvs. 8. 2.3 lbs. 6090 grs. 9. 1240 grs. ; 27221] lbs. 1 0. lo/, lbs. 1 1 1 hr. 12 min. 48 sec. 1 2. 6 wks. 4 dys. 9 hrs, 22 nun. 1 3. $9. 36. 14. 1011 miles. 15. 200 miles. 1 6. 25 43 4- sec. 17 494f]!? sec. ; a little more than | of a scond. 1 8. 631 pieces ; rem. '0.33 inch. 19. 24 ropes. 20. 120 times; 22 yds. ; 4 rods. 7-92 in 22. 12 mi. 880 yds. 23. 1788-38 yd.. 24. 21 ac. 2-28 s,.. chains. 25. 21216 sq. rods. 26. 498 acres. 2 acre. 28. 93412 s.i. yds. 29. 41 ft. 2^,' in. 30. 67H loads. 6-2321 gal.; 997136 oz. 32. 37501b,. 33. 41,250,000 tons. '>624-64oz. 35. $2637.43. 36. 512,000 cub. ft. 21 27 31 34 37. 599 miles. 38. 1694 mi. 560 yds. XXVIII. ]'AGE.s 49 52. 1.618-334 Kg. 2. 1-20 f.. 3.125 1. 4- 113 50 fr. 5 14^5 K,„. 6 1020 276 Km. 7. 92 francs. 8.10 m. 9. 24,000 Kg. -^ .11 11 o7 nrwn 12 1 Kir. 13 55 2 metric tons. 14. 45^2088 Kg. 16. 5670 francs. 16. 10,070 1. ; 10,070 Kg. 17. 3 francs. 18. 62 25 Kg. ANSWEUS. 131 19. 24. 27. 30. 33. 37. 40. XXVllI. Pages 49-52 {continued). 1093 yds. ; 2539 cm. ; 914 n». ; 1609 Km. 20. 1550016 sq. in.; 6-451 sq. cm. ; -836 sq. m. ; "404 Ha. 21. '061 cu. in ; "275 cord ; 16 386 cu. cm. ; -704 cu. m. 22. 568 1. ; 045 HI. ; 36-36 1. 23. 015 grains ; -004 g. ; 28349 g. ; 31103 g.; 453 Kg. 19 mi. 19-6 rods. 25. 2 4068 cu. m. 26. 285 71 1. 8-178 cu. m. 28. 9 dwt. 19 343 grs. 29. 2 ) 6 in. 132 ANSWERS. 11 XXX. Pages 56 60. A. 1. 70 feet. n. 37ro(lt3. 3. Glinka. 4. 4i yainls. 5. 7 ft. 6 in. B. 8. 97ii links. 6. $93.09. 7. $75.35. 1 . [a) 350 sq. yards. (/>) 89-3 sq. yds. (c) 8 ac 1 rod. ((/) 13-69 s) 27-7 yds. 6. 114-^ sq.ft. 7. 336 times. 8. 13596 yds. ; 14686 yds.; 5 44 yds. 9. 50-92 ac. 10. 640V 7r'-= 1134 08 yards. 1 1 . 641 i- s,i. rods. 1 2. 1 145-45 s(i. ft. ; 6928 s«i. ft. ; 900 sq. ft. 13. 12^432 revolutions. 14. 968 yds. 15. 15 093 in. 16. 39-25 yards. XXXI. Packs 61-68. A 4. (a) 9g sq. ft. (ft) 204i s(i. ft. (c) 2341 sq. ft. (d) 155^^ sq. ft. (e) 630':^- s) 9^ sq. ft. nearly. 7. (a) 1^ sq. ft. {h) 21 A sq. ft. {r) 10.\^ sq. ft. 8. 67.^ sq. ft. 9 16 7r = 50? lbs. 10. 10 ft. 9 in. ; 99,846 n- »»• 1 1- 245 in. perniin. 12. lOOy' 2^ - Hl'^ ^t- 13- eu. ft. 408 cu. in. 14. 421 cu. ft. 1512 cu. in. 15. 10032 cu. ft. ; 7-392 cu. ft. B. 3. 4 sq. feet. 4. 4V 3 - 6928 sq. in. 6. 37? sq. in. 6 122t sq. in. 7. 13 in. ; 204? s-i. in. 8. 321;} cu. ft. 9. 2 cu. yds. 24-54 ft. ; 12 sq. yds. 7-846 ft. 10. 1 eu. yd. 9-083 ft : 9 s 4. 20106-2400 scj. mi. 5. 523.H cu. in. 7. 14J cu. in. 8. 245.1§lb8. 9. 11 : 21. oi i,. r.n 1 O. 4r * 'Ml ft. iv. 11 \ L to 1 o _ oi f,. r.n 1 Q 4 13. 1 :6. 14. 709', 11»H. ANSWERS. 1 o*) XXXI. Pa(!Es (Jl OS (conthmed). 1,3 441 cub fl. 4. 40 K,,. ft ; 51^ s, ft. 5 lois4. in. G. 122isM.i". V. £8o8. lo.. Sd. (nearly . 11.39tl3usl8S0^;ylhs. 12. lls.i.ft. 13. Betimes. A. 1. -428571. 2. XXX III. PAfiKS 73-75. ?;7295.43. 3. §73.50. 4. 107,. 5- 1^'' rupees. li. 1 5 C. 1 1). 1. 3. 1. 2. 2942-2775 sii- yai The same, .^(505.28. h; IMI.'.-^)- 2. GMuin C .Is. 3. 8 day: 4. 4i".. p. 3. A £22. 10s. ; P. £37. 10s. £45. 4. 2:104 mi. 1480i yd.s. 5. 117.1 •0021+. 2. 27, ■"', minutes past 2. St. Tetersburg, 2 In.s. 1 n.in. ,2igeo. P.M. Belli l)ul)l in. Olu s. iJ.> mill. 30 sec. r.M. 11 hrs. 34 min. 5(5 sec. A.M. New York. 4 $50,350i. 71 U'S. 4 mill. 8 sec. A.M. 5. 24,708 tiles. K. 1. 101. 2. .S 1 03.87 i. ft. 3. S12.60gain. F. 1. 4. a. 1. 5. 5. 123-888 sq. ft. ; 7 "87 4-23 }<)/.. ; 58-293 111. $240 ; $0720. 2. 11?^ p. c. 5. 0t-=--201f s(i. 1 a lies. 4. 4Uft. 3. S0.88: 4-38 2. 7.27 1. 3. 14,479,074 gal. 4. 2 23008 lbs. 2513-J8CU. it. 134 ANSWKll.S. XXTX. Pa(iks 81 101, «•■■ •01 ; 10; 2-.3010:i ; 1-70927; •94448:^ ; •845098 •688064 •000000 6; 6; 1; 1 ; 6 ; T ; 4 ; T- 2. 4 ; :5 ; 4 ; (J ; .. ; ..; 1. 3. 2, 3, 2;2;5;I;2; 1 ; 5 ; 6. 4. 1 ; 2 ; 1;2; 1;2; 1;2; 1; . 6 1000000; 1000000 ; 10; 10; OOOOOl ; 'l ; 0001 ; "l ; 10000; '001 ; 10000 • -OOOOOl ; -00001 : 'OOl ; 'l ; 100 ; 1000 ; 01 ; 100 ; -00001 ; •1- -01 • 10; 100000; -OOOOOl; 10; 100; -1 ; '01 ; 10; 100; •! ; •01 . 10- -1. 6. 100; 100 ; 10000 ; 100 ; OOOOOl ; 100 lO-'lOo'^ 1-1. 7. -69897; 'OO'iOO ; 1-3010:); 1-39794 1-^515; 50515; -90309; 2-39794; 1-69807; 2-70927: ^ •70927 ; 2-09691 ; -09691 ; 2-60-206. 8. 1 ; 3 ; 1 ; 4 ; 4 ; o ; ; • • 3 • 6 • 1. 9, 1 O, 1 1 , 1 2 and 1 3. The answers to these exeroise/arJ easily verified hy orclinary arithmetic. 14. '5941 71 ; •678063; •99-2421; -771073; -680336; •83'2509 ; -874/ .2 ; -r242.6 ; •867467- -290480; -003029. 15. -671265; 671265; -6>126o; •944483; -944483; 944483; '944483; 944483; 944483; •845098; -845098; •84,-.09S; -7'24-276 ; 938019; -979548; •976902- -204120; -000000; -000000; -000000; -000000; ■000000; 000000; 000000; -7330.37; -828015; -992150. 16 3-671265; 1-671265; '2-671265; 3944483; 2 944483; 1-944483 0-944483; T-944483; 2-944483; 3 944483; 3 845098; iMms' 1-845098 0-845098; 0-724276; 2 938019; 5 979548; ?-688064; 0-976902; 3204120; 3000000; 2 000000; lOOOOOO ; 0-000000; 1000000; 2000000; 3 000000; 4^000000 ; 1 •73303. ; 4-828015; 2992156. 17. 1-152859; V 9.9821; -68124 , 0-755417- 0-895533; 1-988291; 2-632153; 3-834o48 ; 1//604. , l^\ r771367; 3-765669; 2792392; 2845008 ; H)03090 ; 1-979639; 2-986010; 4900586 ; 5166726 ; ^;^''- ^^■,;^\ 2605: 3662; 5017; 6157; 7469; 8000; 8666. 19. 580000, 67610- 8062- 9.351; 1546; 2142; 2758; 03367; 003634; «8 00004316. 20. 139753; -141356; -424519; -596461; •fi'^'til 5- •755015- -755015; -755015; -755015; •75;)015; 9.0b.,a; • 3 7- -to' 3.' 21. 0-566685; 1-656883; 3 832094; 2 902538; S;;0; ;-934410; 1-068869; 4-774463; 1 •.K)2255 ; ») • 22. -553757; -834092; -900893; -003034, -930119; 948.>63 , -979284; 986226; 988420; -999440. 23. •rK,4443 ; OSO.,1- , -769877- -770656- -791126; -706217; -896009; •9.)1280; -0608^ ; - ;.' 2^ 5-56 .68; 4-734984; 5 885830; 5 953631 ; 2-804695; i^^,, 4-566U1 ; 4-744723; 001 649 ; 0^00002^ 2..^ 3 ; 129153 or 5; 161620; 211655 or 6; 281.2.8 ^^'J^ '^ ^f^'f^;'^!' 477421 ; 615193 or 4 ; 776466 or 7 ; 7i)6587 or 9. 26. 1046 83 , ANSWERS. 135 XXIX. Pages 101-108 {continued). ,28-785; 10-2351; 2 0««7 , •2-'««* ' J^f ?« ' .^^.^Id ^ •000582684; 0000752562; -OOOOOS-'OT. 27. "^^ | ; ^f « « ; r;r';oor"'28-~i;^^=;mt ^tofit ISSSn- 454246; -00000 1 :W03 ; 85 8094; -0116455 Lr^OO '^«B''05- -0.02.^1; -O0O20O3-2S;10O;.O«0; 2^^ I0V743, -00000179602; 1-79602. 30. 68421; -^