9, ^r (\ 
 
 IMAGE EVALUATION 
 TEST TARGET (MT-S) 
 
 4r 
 
 
 ^^O 
 
 1.0 
 
 I.I 
 
 
 us 
 
 145 
 
 2.5 
 2.0 
 
 1.8 
 
 
 1.25 
 
 U 1.6 
 
 
 ^ 
 
 6" 
 
 »• 
 
 9% 
 
 c^ 
 
 ^i 
 
 c" 
 
 ^^^ 
 
 <r 
 
 
 ^^l-V' 
 
 -p^ 
 
 '^i 
 
 u 
 
 ^ 
 
 ■:^ 
 
 Photographic 
 
 Sciences 
 
 Ccrooration 
 
 m 
 
 #> 
 
 V 
 
 <^ 
 
 <N 
 
 -.'^ 
 
 *^ 
 
 
 23 WtST MAIN SIRliT 
 
 WIBSTIR.N.Y. MSIO 
 
 (-/ 16) 872-4303 
 
 
 ;\ 
 
%> 
 
 
 ^^jO 
 
 CIHM/iCMH 
 
 Microfiche 
 
 Series. 
 
 CIHM/ICIVIH 
 Collection de 
 microfiches. 
 
 Canadian Institute for Historical MIcroreproductlons / Instltut Canadian de microreproductlons historlques 
 
Tschnical and Bibliographic Notaa/Notas tachniquaa at bibliographiquas 
 
 Tha Instituta has anamptad to obtain tha bast 
 original copy availabia for filming. Faaturas of this 
 copy which may ba bibliographically uniqua, 
 which may altar any of tha injagas in tha 
 reproduction, or which may significantly changa 
 tha usual mathod of filming, ara chacktd baiow. 
 
 D 
 
 Coloured covers/ 
 Couverture de couleur 
 
 [~~| Covers dami^ad/ 
 
 Couverture endommagie 
 
 Covers restored and/or laminated/ 
 Couverture restaurie et/ou pelliculAe 
 
 Cover title missing/ 
 
 La titra da couverture manque 
 
 Coloured mapa/ 
 
 Cartea giographiquaa m couleur 
 
 Coloured ink (i.e. other than blue or black)/ 
 Encra da couleur (i.e. autre que bleue ou noire) 
 
 Coloured plataa and/or illustrations/ 
 Planches et/ou illustrations an couleur 
 
 Bound with other material/ 
 RaliA avac d'autres documents 
 
 n 
 
 n 
 
 n 
 
 Tight binding may cause shadows or distortion 
 along interior margin/ 
 
 La re liura sarrAe paut causer de I'ombre ou de la 
 diatorsion l« long da la marge int*riaure 
 
 Blank leaves added during restoration may 
 appear within the text. Whenever possible, these 
 have been omitted from filming/ 
 II se peut que certaines pages blanches aJoutAas 
 lors d'une restauration apparaiaaant dana la taxte, 
 maia, lorsque cela Atait possible, ces pagea n'ont 
 pea it* filmiea. 
 
 Additional comments:/ 
 Commentairas iupplimentaires; 
 
 L'Institut a microfilm* la mailleur axemplaire 
 qu'il lui a iti possible de se procurer. Las details 
 da cat axemplaire qui sont peut-dtre uniques du 
 point da vue bibliographique, qui peuvent modifier 
 une image reproduite, ou qui peuvent axignr una 
 modification dans la mithoda normale de filmage 
 sont indiquis ci-dassous. 
 
 D 
 D 
 D 
 
 y 
 
 D 
 
 Coloured p^ges/ 
 Pagea de couleur 
 
 Pages damaged/ 
 Pagea endommagies 
 
 Pages reatored and/or laminated/ 
 Pages reataurias et/ou pelJicuiies 
 
 Pages discoloured, stained or foxed/ 
 Pages dicolories, tachatias ou piquies 
 
 Pages detached/ 
 Pages ditachies 
 
 Showthrough/ 
 Trar.iparance 
 
 I I Quality of print varies/ 
 
 Quality inigaia da I'impraitsion 
 
 Includes supplementary material/ 
 Comprand du matiriel supplimentaire 
 
 Only edition available/ 
 Seule Mition disponible 
 
 D 
 
 Pages wholly or partially obscured by errata 
 slips, tissues, etc., have been ref limed to 
 ensure the best possible image/ 
 Lea pages totalement ou partiallement 
 obscurcies par un feuillet d'arrata, una pelure. 
 etc., ont iti fiimies A nouveau de faqon i 
 obtenir la mailleure image possible. 
 
 This item is filmed at the reduction ratio checked below/ 
 
 Ca document est filmi au taux de rikduction indiqui ci-dessoua. 
 
 10X 
 
 14X 
 
 I I I I 
 
 18X 
 
 22X 
 
 l_JL_i 
 
 12X 
 
 y 
 
 1SX 
 
 20X 
 
 2ex 
 
 30X 
 
 24X 
 
 28X 
 
 32X 
 
The copy filmed here has oeen reproduced thanks 
 to the generosity of: 
 
 National Library of Canada 
 
 L'exemplaire filmi fut reproduit grAce d la 
 g^n^rositd de: 
 
 Bibliothdque nationale du Canada 
 
 The images appearing here are the best quality 
 possible considering the condition and legibility 
 of the original copy and in keeping with the 
 filming contract specifications. 
 
 Original copies in printed paper covers are filmed 
 beginning with the front cover and ending on 
 the last page with a printed or illustrated impres- 
 sion, or the back cover when appropriate. All 
 other original copies are filmed beginning on the 
 first page with a printed or illustrated impres- 
 sion, and ending on the last page with a printed 
 or illustrated impression. 
 
 The last recorded frame on each microfiche 
 shall contain the symbol — ^> (meaning "CON- 
 TINUED"), or the symbol V (meaning "END"), 
 whichever applies. 
 
 Les Images suivantes ont 6t4 reproduites avec le 
 plus grand soin, compte tenu de la condition et 
 de la nettet6 de l'exemplaire ;ilm«, et en 
 conformity avec les conditions du contrat de 
 filmage. 
 
 Les exemplaires originaux dont la couverture en 
 papier est imprimis sont film6s en commenpant 
 par le premier plat et en terminant soit par la 
 dernlAre page qui comporte une empreinte 
 d'impression ou d'illustration, soit par le second 
 plat, selon le cas. Tous les autres exemplaires 
 originaux sont filmis en commenpant par la 
 premiere page qui comporte une empreinte 
 d'impression ou d'illustration et en termir.ant par 
 la derniire page qui comporte une telle 
 empreinte. 
 
 Un des symboles suivants apparaitra sur fa 
 dernidre image de cheque microfiche, selon le 
 cas: le symbols — ► signifie "A SUIVRE", le 
 symbols V signifie "FIN". 
 
 Maps, plates, charts, etc., may be filmed at 
 different reduction ratios. Those too large to be 
 entirely included in one exposure are filmed 
 beginning in the upper left hand corner, left to 
 right and top to bottom, as many frames as 
 required. The following diagrams illustrate the 
 method: 
 
 Les cartes, planches, tableaux, etc., peuvent dt^e 
 filmis A des taux de rMuction diffirents. 
 Lorsque le document est trop grand pour £tre 
 reproduit en un seul cliche, 11 est fi!<n6 i nakttr 
 de Tangle supirieur gauche, de gauche d droite, 
 et de ha'Jt en bas, en prenant le nombre 
 d'images nicessaire. Les diagrammes suivants 
 iliustrent la mithode. 
 
 1 
 
 2 
 
 3 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
GRAFTON'S 
 
 GRADED ARITHMETIC 
 
 BOOK IV. 
 
 BY 
 
 E. W. AliTHY, 
 
 SUPERINTENDENT OK CITY SCHOOLS, 
 MONTREAL. 
 
 LOGARITHMS 
 
 BY 
 
 S. p. ROIUNS, LL.D., 
 
 PRINCIPAL OF THE Mc(ilLL NORMAL SCHOOL, 
 MONTREAL. 
 
 Authorised for use iu, the Froviuce of Quebec. 
 
 E'RIOE, 25 OEOSTTS. 
 
 MONTREAL : 
 F. E. GRAFTON & SONS, PUBLISHERS 
 
 1897. 
 
<p4 loL 
 
 i" ti.e Office o, the Minister of AgHcuIt.1 ' '™-^' * '°"^' 
 
NOTE TO TEACHERS. 
 
 tlie year 
 '^' & 8o\s, 
 
 This book will be found to cover the requirements of 
 both the preliminary and advanced A.A. examinations 
 and of the examination for Model School diplomas. 
 
 The examples have been carefully graded, beginning 
 with easy, straightforward exercises, and leading up to 
 others which require some thought and ingenuity besides 
 the mere accurate manipulation of figures and tables. 
 
 It is hoped that the sections on mensuration and 
 logarithms will be found especially useful, not only for 
 preparing students for examinations in which a know- 
 ledge of mensuration and logarithms is required, but also 
 as furnishing an instructive sequel to the higher parts of 
 arithmetic. 
 
 No Teachers' Manual accompanies this book, as teachers 
 of advanced work generally prefer to use their own 
 methods. Ansvvers to the examples will be found at the 
 end of tlie book. 
 

CONTENTS. 
 
 L.C.M. AND H.C.F. 
 Common Fractions 
 Recurring Decimals . 
 Ratio and Proportion 
 Proportional Parts 
 Compound Proportion 
 Averages 
 Work and Time 
 Distance and Time 
 Exchange . 
 Commission . 
 Insurance . 
 Taxes and Duties 
 Stocks 
 
 Business Exercises 
 Weights and Measures 
 Metric System . 
 Powers and Roots 
 Mensuration of Plank Fig 
 Mensuration of Solids 
 Test Exercises in Mental 
 Test Problems 
 Tables 
 Logarithms 
 Lcgarithmic Tables . 
 Answers . , , 
 
 URES 
 
 Arithmetic 
 
 page 
 
 1 
 
 4 
 
 10 
 
 15 
 
 IS 
 
 20 
 
 22 
 
 23 
 
 24 
 
 26 
 
 29 
 
 30 
 
 32 
 
 34 
 
 39 
 
 46 
 
 49 
 
 , 53 
 
 56 
 
 61 
 
 . 70 
 
 . 73 
 
 . 76 
 
 . 78 
 
 . 109 
 
 . 125 
 
b3 
 
 cU 
 
 itJ 
 
 di 
 
 til 
 di 
 
 di 
 
FRACTIONS. 
 
 A number is divisible by 2 if its units digit is divisible 
 by 2. 
 
 A number is divisible by 3 if the sum of its digits is 
 divisible by 3. 
 
 A number is divisible by 4 if the number expressed by 
 its two hivest digits is divisible by 4. 
 
 A number is divisible by 5 if its units digit is 5 or 0. 
 
 A number is divisible by 8 if the number expressed by 
 its three loivest digits is divisible by 8. 
 
 A number is divisible by 9 if the sum of its digits is 
 divisible by 9. 
 
 A number is divisible by 11 if the difference between 
 the sums of its digits in alternate places is either or 
 divisible l)y 11. 
 
 Tell at gight whether the following numbers are 
 divisible by 2, 3, 4, 5, (J, 8, 9, 10 or 11 :-- 
 
 1. 288. 4. nr>. 7. 4851. 10. 16500. 
 
 2. 960. 5. 048. O. 3520. 11. 40040. 
 
 3. 912. 6. 495. 9. 2200. 12. 33165. 
 
FRACTIONS. 
 
 Find the L.C.M. of :— - 
 
 1. 7, 3, 56, 49, 21. 
 
 2. 35, 45, 55, 65. 
 
 3. 19, 38, 15, 20. 
 
 4. 12, 15, 16, 21. 
 
 I. 
 
 5. 120, 144, 24, 96. 
 
 0. 10, 14, 15. 21, 28. 
 
 7. 22. 26, 30, 32, 39. 
 
 8. 96, 110, 120, 121. 
 
 Find by factoring the H.C.F. and L.C.M. of :-, 
 9 66, 99. 13. 720, 840. 17. 60, 75 90 
 
 10. 56. 140. 14. 37, 518. 
 
 11. 51. G8. 16. 205, 287 
 
 12. 45, 81. 16. 230, 414 
 Find the H.C.F. of :— 
 
 21. 14112 and 22176. 
 
 22. 18776 and 49287. 
 
 23. 735 and 1176. 
 
 24. 1065 and 16614. 
 
 18. 26, 52, 65. 
 
 10. 24, 60, 72, 108. 
 
 20. 19, :iS, 57, 114. 
 
 25. 8874 and 17697. 
 
 26. 2079 and 33638. 
 
 27. 567, 1674 and 4041. 
 
 28. 354, 876, and 3645. 
 
 Reduce to lowest terms without using H.C.F. : 
 
 29. t^. 
 
 35. r\\. 
 
 41. 
 
 7 6.-} 
 1 4 1 T- 
 
 
 47. 
 
 1 9 5 0' 
 
 2 2 100 0- 
 
 30- tW. 
 
 36. iff. 
 
 42. 
 
 111 
 
 
 48. 
 
 1 5 <»0 
 
 18 SF" 
 
 31 « 3 
 
 37 i'5'J 
 *i(. yep 
 
 43. 
 
 4 5 5 
 
 
 49. 
 
 9 9 it 
 10 IT. 
 
 3 Q -J •■* 
 
 3ft •** '» 
 
 44. 
 
 17 7 5 
 
 2 ;f 5 • 
 
 
 60. 
 
 _8 7 
 1 7 4 IT' 
 
 33 i'''0 
 
 
 45. 
 
 9 2 5 
 10 2 5' 
 
 
 51. 
 
 -JUL-' 
 
 3715 0. 
 
 34. 2 12 
 
 4.n 7 14 
 
 ^^- ¥18« 
 
 46. 
 
 4 8.'} 
 
 9 2(r. 
 
 
 62. 
 
 116 5 
 15 8 50. 
 
 Heduce to lowest terms, 
 
 using 
 
 H.C.F. 
 
 • 
 
 
 
 53. 
 
 ti^. 59. 
 
 r> » 1 
 
 T5T6"- 
 
 
 65. 
 
 i 
 
 119 7 
 ITTT* 
 
 54. 
 
 infV 60. 
 
 17 7 5 
 
 T9 2^¥ 
 
 
 66. 
 
 7 9 
 4 8 19" 
 
 66. 
 
 tVtV 01. 
 
 tH- 
 
 
 67. 
 
 8 30 7 
 T2 9 IFO". 
 
 66. 
 
 UH- 02. 
 
 7 03 
 4 lOT. 
 
 
 68. 
 
 124 23 
 
 67. 
 
 .'J i» 1 ;$ «Q 
 
 4 7 2 
 90 6 a- 
 
 
 69. 
 
 13 6 9 
 
 68. 
 
 T5T¥. 04. 
 
 !> 9 9 
 2 8 a 5". 
 
 
 70. 
 
 9 664 
 ¥F¥T' 
 
 Define ])7 
 
 <me factor, H.C.F., L.C.M. 
 
 
 
 f 
 
FRACTIONS. 
 
 , 96. 
 
 n, 28. 
 
 52, 39. 
 , 121. 
 
 90. 
 65. 
 
 72, 108. 
 57, 114. 
 
 697. 
 638. 
 d 4041. 
 \ 3645. 
 
 Liis 0.0.0' 
 
 2 2 1 IT' 
 
 I 5 <« 
 
 18 5F* 
 
 _i> St 
 
 lITTT- 
 
 AT 
 
 I 7 4 U"' 
 _S 7 5 
 
 JTTr. oo- 
 LJ-fi 50. 
 
 : 5 S 50' 
 
 3 
 If- 
 
 O 
 IT- 
 
 II. 
 
 MENTAL PRACTICE IN SIMPLE RULES. 
 
 (Where J or J or j occurs in the miiltiplicand, instead of adding two 
 ciphers, add 50, or 25 or 75 respectively. ) 
 
 1. Multiply by 5 :— 
 
 76, 384, 9875, 671, 86|, 91i, 167J. 860^. 
 
 2. Divide by 5 : — 
 
 16, 37, 84, 356, 685, 769, 876, 687i, 769f. 
 
 3. Multiply by 25 : — 
 
 100, 350, 4750, 6845, 65J. 84^, 32f, 76f. 
 
 4. Divide by 25 : — 
 
 75, 375,^875, 764, 879, 989, 2375, 5875. 
 
 5. Multi})ly by 12i :— 
 
 840, 845, 1845^ 1840, 78i, OJ, 5}, 9i. 
 
 6. Divide by 12i :— 
 
 75, 750, 1250, 25, 125, 78, 85, 68, 79. 
 
 7. Multiply by 125 :— 
 
 60, 56, 560, 565, 1565, 76i, 9^, 75f. 
 
 8. Divide by 250:-- 
 
 1250, 3450, 4750, 8975, 2525, 932, 6845. 
 
 0. 19 X 18 ; n X 36 ; 48 x 17 ; 49 x 19 ; 68 x 25 ; 
 7x Jof81; 8xiof 80; 9x ^rof 117; 12 x f of itself; 
 168 X I of 36 ; 8i x 17 ; 9J- x 28 ; 8J x 25. 
 
 10. Give tlie prime factors of: — 84, 85, 261, 117, 143, 
 176, 484, 210, 441, 378, 963, 1605, 292. 
 
 1 1. Find the H.C.F. of :— 6, 12 ; 9, 15 ; 84, 91 ; 49, 259; 
 85, 51; 165,300; 16,84; 29, 261. 
 
 12. Find the L.C.M. of :— 3, 4, 5 ; 6, 8, 10; 6, 10, 15; 
 7,14,21: 7,11,13; 9,10,12; 20,16,24; 25,50,75; 
 5,6,7; 7,8,9. 
 
I 
 
 * FRACTIONS. 
 
 1 . To add or subtract common fractions reduce them to 
 similar fractions, and then add or subtract the numerators. 
 
 2. To multiply a common fraction by an integer, either 
 njultiply the numerator or divide Mic denominator. To 
 divide a common fraction by an integer, either divide the 
 numerator or multiply the denominator. 
 
 3. To multiply a common fraction by another common 
 fraction, multiply the numerators to find tl)c new numera- 
 tor, and the denominators to find the new denominator. 
 
 4. To divide by a common fraction, invert the divisor 
 and multiply. 
 
 5. To change the form of a common fraction without 
 altering its value, multiply or divide both numerator and 
 denomiiiator by the same number. 
 
 Find the value of :- 
 
 III. 
 
 2- ;: + ;o + i?+i^ 4. TiD-f-iyi-M + isii. 
 
 6. 8i + ->G;j + 7J-f:574+12;'4-47^+0S,V-h20. 
 6- 68,^-1- U4- 724- il +0;, + /v+ 11)^ + 12^ 
 
 7. 8-(] -v. 10. 8i;|-4,V,. 13. li:{,^^-5(),V.. 
 
 8. ;^-i^,y. 11. io]ii-(Hv- 14. 1(;|^.;-i:;i;m; 
 O. 50;^,»10. 12. 132ii-8J^. 15. ll8Hi~«^j. 
 
 16. 3-2,'V + i. 
 
 17. 4,^,-;;<;,-H|. 
 
 18. 8J-2-i-;],V 
 
 19- i-j4-^"-A. 
 
 or» 
 
 21. 
 22. 
 
 + 
 
 I rt 
 
 I H- 
 
 23. lO-HJ-i + J. 
 
 24. ri-f.;;,i-4-f-v-5. 
 
 26. 8^-f ^4.^_:5j^. 
 
 27. 7+i-fl-i-J- 
 
 I fi- 
 
 I M 
 
 + h-!^^- 28. A + ,\-(j + ^.). 
 
 10 
 
 -f 
 
 ■1 —14-4 
 
 I r, 
 
 
 29. 7-(m--'i)-(i;-})- 
 
FRACTIONS. 
 
 3 them to 
 
 30. 
 
 Tierators. 
 
 31. 
 
 er, either 
 
 32. 
 
 itor. To 
 
 33. 
 
 vide the 
 
 34. 
 
 
 35. 
 
 common 
 
 42. 
 
 iiuinera- 
 
 43. 
 
 luttor. 
 
 44. 
 
 e divisor 
 
 45. 
 46. 
 
 
 47. 
 
 without 
 ator and 
 
 48. 
 49. 
 
 
 50. 
 
 
 51. 
 
 
 52. 
 
 
 53. 
 
 
 54. 
 
 Hh 1 
 
 55. 
 
 20. 1 
 
 56. 
 
 1 
 
 57. 
 
 ■ 
 
 58. 
 
 ^ill'f 1 
 
 59. 
 60. 
 
 fflJ. 1 
 
 61. 
 
 1 
 
 62. 
 
 ^1 
 
 63. 
 
 1 
 
 64. 
 
 1 
 
 65. 
 
 
 1 tj ■ 
 
 1 
 
 1 1 
 
 WX^X 
 
 12 
 
 X 
 
 1 4 
 
 X 
 
 G^x 
 
 / o 
 
 1 
 
 1 If 
 
 X 5, 
 
 i 1 5 X - X J 1 ,y X 1 
 
 51 xl:!xl*^xi. 
 
 36. lfof^ofVx6Jx 
 
 37. lJof]Jx#of2. 
 
 38. 3].Vof|X.">lXT,V 
 
 39. lGJx§x23|xll. 
 
 40. 8ixUx2lx-.\. 
 
 It 1' 
 
 1 7 
 
 41 
 
 1 .s 
 
 V of n of 3GM X u. 
 
 JO 
 
 a4' 
 
 f !f X U X i X U X t', X 2§ X 14 X 12^: X 21 X J^ 
 41 X ^ T X 1 1 i X U X .V*Y X Uf- X A X li^ X SI. 
 
 (;! + Kx(r + /.)- 
 
 69. (HS)^T. 
 
 70- (li}-U)^o. 
 
 (2iof^)-(Uofli). 71. (5-i)- 
 
 (Uxjiof-) 
 
 72. (IK^^li)^ 
 
 li)iof-i»^of:5-15i. 73. ri| of f;-^(i + f). 
 
 5s of ^a + A of 
 
 74. (j + V+ 1 ) 
 
 - 1 'J 
 
 ffufiof:]-.-,. 75. (U + V)-fiof24. 
 (Ux,Vof7)-fof5L 76. 12i-^(19i + 7). 
 2si^lGi 
 1:51 
 
 O.T-r. 
 
 -"^■2 
 1 4- i) 
 
 -f-14 
 
 Ttr- 
 
 TT- 
 
 7. lOi^-fU^ 
 
 TT* 
 
 
 :. i 
 
 77. (fxe)~(|-i;). 
 
 78. (^x/,)^(a + ,y. 
 
 70. (11-f;J)-^(a + Hl^). 
 81. (A-^^)^(lxHxi)- 
 
 o*^- ' :i(I • :)0/ • Uo ao/' 
 83. ( 
 
 ,w 
 
 ••in 
 
 
 14^1 
 
 I- _:_ 
 
 1:i' 
 
 iXi-r4. 
 
 ^>n-rGj. 
 
 i\\ of 1^4-2 
 
 1 J 
 
 
 11) 
 
 01 
 
 84 2^^(l]^l^+:!3). 
 86. (r.^^;J^)ofIof3. 
 
 86. (S^-^V)^-^of-i 
 
 87. (l-Mi)^(n ofG). 
 
 88. (7i-f:>^)^(^xt). 
 
 89. 1 -f 5; of 3. 
 
 90. ll.i of A -fUxi. 
 
 T(T 
 
 f 
 
 00. i 
 
 67. 1 
 
 68. Oiof Jij-r 
 
 91, 
 
 
 
 f 2 of I ^ 1 1 of 
 
 HT' 
 
 1 n 
 
 X i o 
 
 92. l.V.r-fMof-l 
 
 'lli 
 
 T¥* 
 
 «yTT' 
 
 93. 
 
 r 1 
 
 o 
 
 f "■> - .:- 
 
 ii' 
 
FRACTIOXS. 
 
 Simplify: — 
 
 1. 10 
 
 3 
 -4 
 
 12^ 
 2. -0 
 
 7 
 
 IV. 
 
 3. 1-^ 
 
 1 « 
 
 1' 
 2 
 
 6. — » ::^- 
 
 7. 
 
 8-34 
 
 4_!L -^ 1 A 
 
 13f^ 
 
 8. 
 
 6. -1-1 
 
 81 — 1-1- 
 
 _3 _. ThT 
 
 01 Toi 
 
 - ;3 T- - 4: 
 
 7-3i 
 
 « . - - 4- *>! ^ 11" 1 4 
 
 U X 2^ 1-^V • U- U 1 O;! 1 
 
 3 
 
 12. J of 31- " +/ 
 •^ - 4i 1 1 
 
 > 
 
 14. f of ?|+f of 2f 
 
 t 
 
 2Gi^- 1^ 
 16. -- ' -1 
 
 i- -L 1 1 _ 1 
 
 13. 
 
 
 33 . 1 
 
 15. ^«+ +^Lofli 
 
 1 4 4. :'• 4. O 7 _ ;} 
 
 ;Ui- y J i 
 '*i2 -^ 3 J 
 
 1 " 'i' "^A 
 
 ^11 1 J 1 oTo ^ r 
 
 18. ' " V '^i V -'•I >• ••ST 
 
 19. 
 
 1 
 
 I .-I •_' 
 
 1 T^ (f ^T 
 
 .'» 4 
 
 '5 1 
 
 20 '':i^ AX^^t 
 1251 --17 
 
 22. (;:- 5)^(^-5). 
 
 21 1;'. '^ 1 <r -^ ' 2 • ' A X 1 4' 
 
 ~l'Hx/, + 2ii-M| 
 
 23 ^.fliof4i 
 * ,Vof lJof3i 
 
 24. 3+ ,^f"^y^-of 4^of 3f 
 
 oil 1 |» *■ •• ' 
 
 -If — -l^iiO- 
 
 26. 
 
 A-?^fi 
 
 . il of i + #of 5 
 
 A+iVof ;''i -(i of i'i - i) ■ 9j - IS 
 
 26. (i+i'_ui + /.)_(RS) (J + A) , (J + s) (j + j) 
 (h-!,H\-l) (A-D(i-]) (.l-iHi-J) 
 
FRACTIONS. 
 
 V. 
 
 1 . A post is }r in the ground, i- in the water, and 14 
 feet out of the water ; find the length of the post. 
 
 2. One-sixteenth of a certain number exceeds ^V of it 
 by 11 ; find the number. 
 
 3. Find the number whose eighth part and twelfth 
 part together make 10. 
 
 4. After giving away f, yV and /^ of my money, T 
 had Sol left ; how much had I at first ? 
 
 5. lieduce -^Ml to its lowest tarms. 
 
 6. What number, divided by 3f, will give 8 J for 
 quotient ? 
 
 7. Subtract half the sum of 5 and ^j- from S+J + f. 
 
 8. After spending y\ of my money, I lost i of what 
 remained, and then had S28 ; how much had I at first ? 
 
 9. If 1 _|_ ^i_ of a farm were worth $uO, what would 
 half the remainder be worth ? 
 
 10. Divide the sum of :]\ and 2?j by their difference. 
 
 11. Ex})ress § of f of 12 acres as a fraction of 17 
 square miles. 
 
 12. Find the difference between the sum and the 
 
 product of i; and 2 /o. 
 
 13. 
 
 41 
 
 Difference between ^ and 2^ ? 
 
 14. What number must be added to 4 J that ,V of the 
 sum niay be 47 j ? 
 
 16. K.\])ress .*5J inclics as a fraction of 4A yds. 
 
 16. Take i of I of £12. 12s. from 'j of J of £5. 
 
 17. Divide tlie diflerence between /v and 'l by the 
 
 product of 1 A and |. 
 
 18. I own 3 of a sliip and sell f, of my share for S914 
 how much is the whole ship worth ? 
 
8 
 
 FRACTIONS. 
 
 19. A yacht wortli $900 and insured for $540 is lost; 
 i of the yacht belonged to A, l to B and the rest to C. 
 How much did C lose ? 
 
 20. Add 23|, li and 4 of 3^. 
 
 _4-_ ** 
 
 9 
 
 21. Find the difference between the sum and the pro- 
 duct of §, -j'y- and -^%. 
 
 22. If a certain number were added to J of 12 J, the 
 result would be equal to J of 50^ ; find the number. 
 
 23. :\Iultiply the sum of J, J, J, ^^ and j-^ by the 
 difference between If and 4J ; and divide the product 
 
 by "'r 
 
 •^ 9 3 
 
 24. Which is greater, ^V of ^i or f of 8^%, and by how 
 much ? 
 
 * * 1 ^2 
 
 25. AVhich is greater, ^ or if and bv how much ? 
 
 26. Divide the sum of U\ and -- by their difference. 
 
 1* 
 
 27. Multiply the sum of i, «, § and V^ kv the difference 
 between \l and } i, and divide the product l)y f of |4 
 of 8J. 
 
 28. AYhat is the smallest increment which will convert 
 ]^ + llyV + *, ^ iiito an integer ? 
 
 29. Find tlie product of two numbers whose sum is 
 19y'\r and dilfercnce o|. 
 
 30. Find two numbers whose sum and difference arc 
 5^ay and Ij; respectively; and divide the greater by the 
 less. 
 
 31. If I is worth $270, what is the value of ^\ 1 
 
 32. If ',] be added to each term of the fraction 
 
 value increased or diminished ? bv how mucli ? 
 
 r. » 
 
FKACTIONS. 
 
 VI. 
 
 MENTAL PRACTICE IN COMMON FRACTIONS. 
 
 1. Eeduce to improper fractions: — 6^, T-J, 8/^, 9^V, 
 17i 18i 19|, 21J, 761, 68f, llli 142f. " 
 
 2. Reduce to mixed numbers in lowest terms : — V-, 
 
 XI S 1J0J5 ejUL SJlA -1^^ 2.0.0 14ii 4 4i ^_j_3. 1 «. 2.A 
 T J la'' 10' 1U>"140' 1 1 1 1' Tl 7 > VlO» 1 HJ lOOO- 
 
 3. Reduce to equivalents having a CD. : — h, §, -| ; 
 
 14 7.1 _."> _!!_ ■ 1 1_ 1 n XI. ' _J» _4_ _?_ • H. _7_ 1 1 
 3» "tT» U J '8' lU' li 4 ! lii' 15' li J 11' 2 2' .'J ;i ) 9» 24' 'SG' 
 
 A. Find llip «mTi nf • 6 I 5 i i . i s 9 1 Qn . i i !> 
 
 4. 1 Ilia Liie bum oi . — -y, §■, -g, ^ , --, j, ^~-, o- , ^j, -j j, 
 
 7 11- « « r»f j!* • H ^L nf ^ • S il 4 . _7_ i_ . _i_ _i_ . 
 TT' ^T i ' l>' 'J '• ' '/':}'-"•'.»? 3' 4' .■)"? 11' 12 * 12' 14 ' 
 
 2 r. . 2 3_ 5_. t5_ fi_ _6__ J5_. 'T 1 Oi Ol • 1 fji 1 Q 1. OQ^- 
 
 r»' "2 7" 5 TTj 1 s' "2 7 5 i j' .j 0' 4 j' 7 5 J < w, <Jo, .^2 ; -"-^l' -'•^2' -'^4 ' 
 
 17i 22f , 40f. 
 
 5. Find the difference between: — -J, Vt 5 iV' iV5 iV' 
 
 1 . 1 _1 • 'J 2 . 2. _2_ . .'L _••>_ • JJi 1 « • 71 '^1 • fi3 J.1 . 
 2 7' ) -iT' s 1 r :',> V. 5 7' 17 5 "14' 1 '.» 5 2 0' 1 Yt J • 2' "^3 J ^4' ^2 ' 
 
 11!) ni . r.i 1 A 4 . 90 s 11 
 
 6. N ahie or : — .. X -^ X ,0 '■> -j ^ 1! '^ if '■> it ^ T8 ^ -^5 j 
 4A X (U X y^^ : ( H - ^) X 14 ; ^ of U of iV ; M of iVf of 1^ ; 
 Gx8x^] 18xl()xi4 'ix^X''><I^_2 1-1 xi^^ 
 12x16' 5Gx:l6 ' " 6:3 X 36 ' 14:^x143' 
 
 7 V'lliiP nf • 2 _:_ 1 • 1 _!. 2 • ►")_:_ 'J • •". _:l a • r»l — '^1 • 
 
 • • > '^lillG 01 . y — .- , -5 — 5 J •-> — 1: , rr — d J U;;, — -t; , 
 
 '> 1 -1. r> 1 • 7 1 _:_ S 1 • 14^1 nf ■"• • J nf - -:. - "•' 
 
 - i; ~ O ^ , < ;. — O ;- ; f 5 ~ 1' OI y , ;, 01 y — yr^. 
 
 8. Reihice : — $'do to the fraction of SI ; 12s. 6d. to 
 fraction of £1; 7^.11. to fraction of Is.; 1 hr. 30 min. to 
 iniction of a day; 3 (|ts. 1 pt. to fraction of a gal. ; 1 yd. 
 1 ft. to a fraction of a mile ; 4 lbs. 8 oz. to fraction of a 
 cwt. ; 3 oz. 5 dwt. to fraction of a lb. 
 
 >. Vahie of :— 4 of Sii^l; f of Is.; ^'V of S3; fV of 2s. 6d.; 
 I- of a ton ; f of a mile ; -jV of a lb. Av. ; iV of i^ Ih. Tioy. 
 
 10. 
 
 
 1. — 1 
 
 > 3 
 
 h of 16-^. ut 
 
 13; iof63J; 26HM-2i) + 3i. 
 
10 
 
 Reduce to decimals :- 
 
 DECIMALS. 
 
 VII. 
 
 1. 
 
 2. 
 3. 
 4. 
 5. 
 6. 
 
 1 
 
 7. 
 
 1 
 
 "'J- 
 
 4 
 
 i)' 
 
 8. 
 
 1 
 
 9 0* 
 
 7 
 1 •^' 
 
 9. 
 
 1 
 
 It 0"O' 
 
 4 
 1 !• 
 
 10. 
 
 1 
 
 o 
 f5- 
 
 11. 
 
 I 
 
 '.) !• It i) 
 
 5 
 
 7 ' 
 
 12. 
 
 TrTTTT- 
 
 I -*— 
 
 13 
 14 
 
 15. m 
 
 16. 2^V- 
 
 17. 1}^ 
 
 18. 20" 
 
 •■J 0' 
 
 19. -4^. 
 
 20 ^' 
 ^* 1 1 
 
 2 1 -^U. 
 22. -S-4. 
 23. 
 24. 
 
 )1 7 • 
 It it " 
 
 25. i^t. 
 
 26. yVV- 
 
 27. G^V- 
 28. 
 29. 
 30. 
 
 1 1 J. 
 
 :.' u • 
 
 - ■"* />_ 
 
 Express as vulgar fractions in their lowest terms :— 
 
 (Examples 31-50 at sight.) 
 ■6(i. 51. 3-(J0.S. 
 
 Oo. 52. 3-Gd8. 
 
 •OOo. 53. ;;5-G0cS. 
 
 •00a. 54. 10-G8i. 
 
 •6O0. 55. 3-02083. 
 
 ■24. 56. O-2307G9. 
 
 -^4. 57. 4-71428;i 
 
 Oi. 58. -31200. 
 
 01. 59. -ooii^d. 
 
 Ooi. 60. 11-0G94. 
 
 Express at sight as non-recurring decimals :— 
 
 ( ■!?= 1, and may be replaced l.y 1 in the next place up. ) 
 
 VI. -0. 7 3. 5-9. 75. -49. 77. -G189. 79 -399 
 72. -09. 74. -009. 76. -029. 78. -G199. 80. 3-999. 
 
 31. 
 
 •1. 
 
 41. 
 
 •6g. 
 
 51. 
 
 3-G08. 
 
 61. 
 
 20^70S3. 
 
 32. 
 
 •oi. 
 
 42. 
 
 Oo. 
 
 52. 
 
 3-Gd8. 
 
 62. 
 
 -00d5o. 
 
 33. 
 
 ..1 
 0. 
 
 43. 
 
 •005. 
 
 53. 
 
 3-G08. 
 
 63. 
 
 •03Gi. 
 
 34. 
 
 ■6. 
 
 44. 
 
 •00a. 
 
 54. 
 
 10-G8i. 
 
 64. 
 
 21-003. 
 
 35. 
 
 •03. 
 
 45. 
 
 •005. 
 
 55. 
 
 3-02083. 
 
 Q5. 
 
 5-4iG. 
 
 36. 
 
 •23. 
 
 46. 
 
 •24. 
 
 56. 
 
 5-2307G9. 
 
 QQ. 
 
 ] 7-009. 
 
 37. 
 
 •1:!. 
 
 47. 
 
 •24. 
 
 57. 
 
 4-714285. 
 
 67. 
 
 G-382. 
 
 38. 
 
 ■{}(\ 
 
 48. 
 
 •oi. 
 
 58. 
 
 -31200. 
 
 68. 
 
 8-643. 
 
 39. 
 
 •81. 
 
 49. 
 
 ■61. 
 
 59. 
 
 •0012(i. 
 
 69. 
 
 17-316. 
 
 40. 
 
 •009. 
 
 50. 
 
 •ooi. 
 
 60. 
 
 11-0G94. 
 
 70. 
 
 2-005. 
 
 VIII. 
 
 Find the value correct to 5 decimal places of :— 
 
 1. 7-5 -f-G-8i + -908 + -2134. 4 -l--()9 
 
 2. 7-90 + -3410 + 3-245 + 1-8. 5. 1-13--5874G:; 
 
 3. 11 + 7-2 + -0814 + -0021. 6. 1-2-M709 
 
DECIMALS. 
 
 11 
 
 7. -Sia + O-OG + T-OSi + 'OOTU. 9. -oiGt- •28634 
 
 . -829603 + -5632 + o9-037 + -06'92. 10. -6632 --0785196. 
 
 8 
 
 11. -Oox-dS. 
 
 12. -069ix-Ti63. 
 
 13. -o906x-07. 
 
 14. 1-284 X -0307. 
 
 15. -714280 X -361. 
 
 16. 11-072x5-086. 
 
 17. -11216 X -0637. 
 
 19. 3-03 + -58. 
 
 20. 1-27 + -037. 
 
 21. -03142 + -067. 
 
 22. 2-124+ -302. 
 
 23. -026 + -7890. 
 
 24. -3 + -1156. 
 
 25. -207 + 5-294. 
 
 26. 11-063 + 3-21 
 
 18. -0041 X -725. 
 Find the recurring decimal which is eqiual to 
 
 27. -936 + -71. 
 
 28. •7312 + -89. 
 
 29. -4187 + -306 + -12o. 
 
 30. 4-6 + '25i + -02ol4. 
 
 31. 2-001 + -1818 + -O. 
 
 32. 6-6-4-8. 
 
 33. 4-35-2-7. 
 
 34. 2-4O--08. 
 
 35. 5-314-4-67. 
 
 36. 11-213-4-689. 
 
 37. -5975x18. 
 3R. 75'19tx5-2. 
 
 39. 9-7x2-4o. 
 
 40. 3-6x4-09. 
 
 41. 3-:i7x 12-83. 
 
 42. -617 + -16. 
 
 43. 5-8 + 7-06. 
 
 44. 7-3 + 2-93. 
 
 45. 3-1.8 + 1-136. 
 
 46. -758 + 4i. 
 
 IX. 
 
 Find the value in compound quantities of 
 
 1. £7-83. 
 
 2. 2-1393 days. 
 
 3. 256-073 yds. 
 
 4. 4-45 miles. 
 
 5. -08;-) of an hour. 
 
 9. 6-878 of 2 sq. yds. 2 sq. ft 
 
 10. 5-83 of 1 lb. 8 oz. (Troy.; 
 
 1 1. -706 of 5 tons 11 cwt. 
 
 12. -3865 of 7^-sq. yds. 
 
 13. 3-998 of 1 yd. 1 ft. 6 in. 
 
 6. 5-2578125 of 8 wks. 14. 375 of 65 rods. 
 
 7. 31 of 90\ 15. -0764 of 9f days. 
 
 8. -06 of a rod. 16. 15-7] 96 of 3^ miles. 
 
12 
 
 DECIMALS. 
 
 17. -6 of £4. 4s. 9(1 + -JG of £2. 5s. lOd. 
 
 18. -073 of a day + 3-75 hours. 
 
 19. -3 of a yd. + -3 of a ft. + -125 of 1 ft. 4 in. 
 
 20. -714280 of a week- -6 of an hour. 
 
 21. -09 of 40 rods +'01136 of a mile. 
 
 22. -03 of 1 11). Troy +-41(; of 1 oz. Troy. 
 
 23. -0710 of 554-4 tons +-428571 of b(j\hs. 
 Reduce : — 
 
 24. 3s. 4-kl. to the decimal of 19s. 6d. 
 
 25. 2 tons 3 cwt. to the decimal of 10 tons. 
 
 26. 3 oz. 2 dwts. to the decimal of a lb. Troy 
 
 27. 3 yds. 1 ft. to the decimal of -} mile. 
 
 28. 2 ft. 6 in. to the decimal of a yard. 
 
 29. 12 cwt. 56 lbs. to the decimal of 4 cwt. 50 lbs. 
 
 30. 2'} pks. to the decimal of 3 busliels. 
 
 31. 7} gal. to the decimal of 18 gallons. 
 
 32. 5° 13' 40" to the decimal of 12' 30'. 
 
 33. 124i ac. to the decimal of 121 sq. rods. 
 
 34. 29 ac. 120 sq. rods to the decimal of a sq. mile. 
 
 35. llf sq. ft. to the decimal of 4 sq. yds. 
 
 X. 
 
 , o. ,., 5-8-4-916 
 1. iMmpliry ~ ^- 
 
 2. Simplify 
 
 5-375-2-94 
 2-6 of -81 
 
 3-714285+4-125 
 
 o c- re 6-75 — 1-8 
 
 3. Simplify - — ; r 
 
 •583 of 1-6 
 
 4. Simplify \S-^ 
 
 6. How many pence in -583 of a shilling ? 
 0. How many cwt. in -649 of a ton ? 
 
DECIMALS. 
 
 13 
 
 7. Express 42 rods as the decimal of half an acre. 
 
 8. After spending f and -125 of my income, I am able 
 to save $117 a year ; wliat is my annual income ? 
 
 9. Express a day as the decimal of a year. 
 
 1 0. Express as a vulgar fraction the difference between 
 •(30;3 and -003. 
 
 11. What fraction having 24: for a denominator is 
 equivalent to '625 ? 
 
 12. Find by vulgar fractions sum of '98, -1)8 ^nd -08. 
 
 13. What fraction having 27 for numerator is equiva- 
 lent to •00375 ? 
 
 14. Express in lbs. the difference between -034375 of a 
 ton and -90025 of a cwt. 
 
 15. Value of -0324 of a mile. 
 
 16. Divide 1-02 by ^-i of -144. 
 
 17. Which is the greater, -765 or -760, and by how 
 much ? 
 
 18. What number multiplied by the sum of -(io-i and 
 •654 will give 1 for the product ? 
 
 19. How many times is 9-037 sq. rods contained in 
 244 ac. ? 
 
 -^ ^. ,.„ -00281 X -0625 
 
 20. Simplify — -1.^0- -— 
 
 21. Simplify (•5H--75)x(2-5--4)^(125 + -^J. 
 
 „^ ^. ,., 2-791()X 3-237 
 
 22. Snnplify - . .-, 
 
 1-861 X -80934 
 
 23. Subtract '0523 of 11 weeks from -932 of 6 davs, 
 and 2-ive the answer in minutes. 
 
 24. 
 
 ^. ,.. -iof-3, 9-25 
 Simplify 1-^-,^ + ^^,. 
 
 25. 
 26. '^ 
 
 xprcss in vards r03125 mi. --292-5 rods. 
 
 1- V 
 
14 
 
 DECIMALS. 
 
 XI. 
 
 MENTAL niACTICE IX DECIMALS. 
 
 1 . Reduce to decimals : — I, }, }, i, f , f, t, to, fV' tV< 
 
 16? 13' »' T 'J> 5 if 5~ > 1150' 40* 
 
 2. Keduce to vulgar fractions: — '5, -25, -75, -125, -025, 
 •875, -3, -SIJ, -G, -606, '66, -78, ll, -li, -li, -864, -SOi 
 
 3. Add:— 6, -6, -OG, -OOG; 67, '67, G-7 ; 16, I'G, -016: 
 834, 8-34, 83-4 ; 7-G, 8-4, 9-3 ; 8-5, 15, -65 ; ^, -}, -8. 
 
 4. Find the difference between : — '6 and "6 ; '7 and -7: 
 •18 and -18 ; -06 and '06 ; 78-91 and 36-74 ; 81-17 and 34-34. 
 
 5. Multiply :— G-8 x 5 ; 7-4 x 2*5 ; 68 x "75 ; 7-5 x 7*5 ; 
 •66 X -6; 80 X -125; 72 x -625 ; 7Sx-13; 3-3 x -6 x -75. 
 
 6. Divide:— 6-75-^5; 6-75^-5; 32 -f -4; 25-^-05: 
 27^-000.); -056 -f--7; -4 -f- 1-6; -006 -f-015; 22-5 -f-09; 
 -0451 -^-ll; -0049 -^-035; 1-7-^5; 4-64 -f 20. 
 
 7. Value of :— 3-775 of SIO ; -1235 of 81000 : 4-625 of 
 4c\vt. ; 3285 of 4 mi.; 1-0325 tons; 13-775 cwt. ; 8s. -^ 
 9-6 ; -75 of a lb. ; -72 of a ro<l ; '375 of a lb. Troy. 
 
 8. Iieduce: — 4 lirs. to decimal of a day; 2s. 7.U1. to 
 decimal of a guinea ; 3 pints to decimal of a gal. ; 3 oz. to 
 decimal of a 11). Troy ; 4 in. to decimal of a yard ; 4^- in. to 
 decimal of a foot ; 330 yds. to decimal of a mile. 
 
 9. One-tenth + one-hundredth + one-thousandth. 
 7-tenths -f 92-hundredths +'one-millionth. 
 7-tenths — 7-tliousandths. 
 
 17 — 17-tenths + 17-ten-thousandths. 
 
 10. i-f-2-fi + ll; 3x_3-125; 67*8 x ^- of ^- : 16^^ 
 of itself; S;^ +S-33?,- + S^ ; 61-f 7-75-f 8^ ; 10-8-^3/;; -l-i- 
 84; lx-33^^2; 1-5x1-25; ^of 3x-3xV; •9x-9xH; 
 •3x'6x-7;'$15-i-2-25; S120-M-44; 8-5^2-5. 
 
RATIO AND PROPORTION. 
 
 15 
 
 
 XII. 
 
 RATIO AND PROPORTION. 
 
 The relative magnitude of two numbers is called their 
 ratio, lialio is expressed by the fraction which the first 
 number is of the second. 
 
 The first term of a ratio is called the antecedent, and 
 the second term the consequent. 
 
 When two ratios are equal, the four terms are said to 
 be in proportion, and are called proportionals. 
 
 The first and last terms of a proportion are called the 
 extremes, and the two middle terms are called the means. 
 
 Test of a proportion. — Four numbers are propor- 
 tionals when the i:>7vduct of the extremes = the ijroduct of the 
 means. 
 
 If any three terms of a proportion are given, the 
 missing term may be found, for tlte product of the extreme?^ 
 divided hif either mean gives tlie other mean ; and tlie x>rO' 
 duct of the means divided hy either extreme gives the other 
 extreme. 
 
 Find at si^ht the ratio of the following : — 
 
 1. 
 
 21 : 7. 
 
 7. 
 
 2 . T 
 
 3 • if 
 
 13. 
 
 1 gal. : 1 qt. 
 
 2. 
 
 7 : 21. 
 
 8. 
 
 5 . 1 r> 
 8 • 1 • 
 
 14. 
 
 30 rods : 1 acre. 
 
 3. 
 
 20 : 5. 
 
 9. 
 
 T • TT- 
 
 15. 
 
 1 c. yd. : 15 c. ft. 
 
 4. 
 
 21. : 10. 
 
 10. 
 
 .9 . .-L 
 - • 10- 
 
 16. 
 
 4 yds. : 9 in. 
 
 5. 
 
 r:2i. 
 
 11. 
 
 •5 : 2. 
 
 17. 
 
 6 dvs. : IG hrs. 
 
 6. 
 
 
 12. 
 
 U : 50. 
 
 18. 
 
 2s. Gd. : £1. 
 
 19. Is the ratio alwavs an abstract number ? 
 
 20. What is the effect of multiplying the antecedent? 
 the consequent ? Of dividing the antecedent ? the conse- 
 quent ? (Show by examples.) 
 
 21. What is the effect of multiplying or dividing both 
 terms by the same number ? (Show by examples.) 
 
16 
 
 RATIO AND I'UOPOKTIOX. 
 
 Find the missing term in the following proportions 
 
 (Examples 22-30 at sight.) 
 
 22. X 
 
 6 : 10. 
 
 37. a; : 6 :: 31 : IS. 
 
 23. 
 
 24. 
 25. 
 26. 
 27. 
 28. 
 29. 
 30. 
 31. 
 
 / : 
 5 : 
 (J : 
 8 : 
 4 : 
 1-4 
 26 
 
 32 
 
 ,/; : 
 : 
 11 
 13 
 
 r'J ! 
 
 38. 
 39. 
 
 T) , %Xj 
 
 23 
 
 : 20 
 50 : 
 
 40. 81 
 
 41. 8J 
 42. 
 43. 
 
 ^,1 . . 1 '\ 
 
 7i 
 
 44. 4-59 
 
 45. 1-02 
 
 : 4i : 17. 
 
 • l'^ . 1 •» • 
 
 9i : : lOti- : ->'. 
 •089 : ./J : : 24 : -0984. 
 1-333 : 172 w x -. -012. 
 10-8 : : -00300 : x. 
 
 •1 
 
 32. 51 :2^ 
 
 33. 63 : X 
 
 34. 3 : X : 
 
 46. 
 47. 
 48. 
 49. 
 50. 
 51. 
 £10. 
 
 i 01 -g- 
 
 1 of 4i : X 
 1590 : 53 
 15t : 12 :: 46 :^ 
 2-07 : -051 :: -69 
 17-15 : 6-32 
 : X. 
 
 S914 : X. 
 ; X. 
 
 : : S75 : ./;. 
 ^n; 
 
 X. 
 
 1-03 :./■ 
 21. 
 :65 
 1710 : X. 
 
 1 :5 
 1 .->• 
 
 t>'. 
 
 1-87 \x. 
 
 21 : 12. 
 a: : 18. 
 
 : X : 65. 
 16 -. ^%. 
 
 : 42 : ^. 
 
 78 : 54. 
 
 : 8 : a;. 
 : 9 : 10. 
 ::,.;: 9. 
 
 :9:7. 
 4 : 11. 
 
 35. X : 17 : : 5 : 9. 
 
 36. 12 : 7 : : 8 : :/;. 
 
 52. £1. 10s. : £1. 15s. 
 
 53. 5 (Ivs. 3 hrs. : 61 dvs. 12 hrs. : ; 
 
 54. llyV inches : hi}\ yards : : 854 
 
 55. 18 bus. 3 pks. : 2116 bus. 1 pk. 
 tQ. 19 J ac. : 11 ac. 60 sq. rods : : 79 tons : .'•. 
 
 57. 60-^ 37' : 360' : : 151 dys. 13 hrs 
 
 58. X : 3 qts. 1 pt. : : 84 : 80-10. 
 
 59. 8 oz. 6 dwt. : 13 dwt. 20 c^ra. \\x\ S0.44. 
 
 60. 34 dys. 16 hrs. : 17 hrs. 20 niiii. : : 83.60 
 
 61. Assuming the earth's tixcuuiicjrence to be 25,000 
 miles find its diameter, the ratio of the diameter to the 
 circumference being 113 to 355. 
 
 62. Find a fourth proportional to {ll) the sum, (//; the 
 d'ffcrence and (>•) the product of f and ^. 
 
 63. What would 225 yards of clotli cost at the rate of 
 £1. 17s. 6d. for 7i yds. ? 
 
 
KATIO AND PROPORTION. 
 
 17 
 
 X. 
 
 64. If a loaf of "bread weighs 1 lb. 4 oz. when tlour is 
 S6.50 a barrel, what should a loaf of the same price weigh 
 when Hour is S4.25 a barrel ? 
 
 65. A workman digs out f of a cubic yard of earth in 
 \ hr. ; how long would he be occupied in excavating a 
 cellar 5 yds. square and 5 yds. deep ? 
 
 66. If the first-class railway fare from Montreal to 
 Quebec (180 m.) is S450, what should be paid from 
 Montreal to Toronto (333 miles) ? 
 
 67. A cubic foot of water weighs 62i- lbs. ; what weight 
 would a vessel 6 in. long, wide and deep contain ? 
 
 68. Pure lead is 11*3 times heavier tlian water ; find 
 the wei.dit of a block of lead 2 ft. 6 in. long, 2 ft. 5 in. 
 broad and 18 in. thick. 
 
 69. A train travels 7^- m. in 12-58 min. ; how far will 
 it travel in 5 hours ? 
 
 70. Find the yearly wages of a coachman who was 
 paid S78 for services from 10th April to 14th June. 
 
 7 1 . A clerk was engaged on 5th March at a salary of 
 S574I a vear. When he left he was paid SllSi ; on what 
 day did he leave ? 
 
 72. If I lent a friend S350 for 52 days, how long 
 ou"ht he in return to lend me $280 ? 
 
 73. On 20th Apr. a friend lent me $560 until 6th Aug. 
 I repaid the debt by lending him a certain sum from 11th 
 Oct. to 3rd Jan. How much did I lend him ? 
 
 74. 3000 soldiers were supplied with provisions for 87 
 days ; after 26 days so many men left that the provisions 
 lasted 300 days more. How many men went away ? 
 
 75. Find a fourth proportional to -98, -98 and '98. 
 
 76. Four-fifteenths of a ship's crew are able to do a 
 piece of work in 22 days ; how long would one-third of 
 the remainder of the crew take to do it ? 
 
18 
 
 KATIO AND PROPOKTION. 
 
 XIII. 
 
 rr.oroRTioNAL parts. 
 Divide at siglit : — 
 1. S-1-8 into parts having the ratio 3 
 
 ' >. 
 
 2. S?()0 into parts luiving the ratio '1 : 1 '^. 
 
 3. S2r> into ])arts having the ratio 2 : 3. 
 
 4. ??44 into parts luiving tlie ratio 7 : 4. 
 
 6. S«SO into parts proportional to the nnrnbers 0,7 and S. 
 
 6. J?28 into parts proportional to the nnniljers 4, 3 and 7. 
 
 7. SIO into parts proportional to h and J. 
 
 8. S(>4 into parts proportional to I and I. 
 
 9. S^IT) into parts proportional to "o and ^-'i. 
 
 10. S<)0 into parts having the ratios: {a) '1\:\\ {h) 
 5:1:4: (r) 7:8; (>/) J : J ; (/) 11 : : 10 : (/) "7 : -3. 
 
 11. Divide S140 among 3 persons in the })roportion of 
 («)5:7:8: (/.) 10:11:14: (r) ^ : J : §. 
 
 12. Divide S06 between A and B so tliat 
 («) A sliall liave 814 less than B. 
 (?>) A sliall have $20 more than B, 
 
 (c) A shall have i^o more than twice as much as Tl 
 
 (d) If A had S7 more lie would have twice as 
 
 much as B. 
 
 13. Divide .S4r> amongst A, ]> and (' so tliat 
 
 (a) A shall have twice as much as B, and C S?."t 
 
 more than ]>. 
 (h) A shall have twice as mudi as )'>, and C J^fl 
 
 less than ]>. 
 (c) A sliall have $10 more than B, and C ludf as 
 
 much as ]>. 
 ((/} A shall have S.' more than twice B's share and 
 
 C iialf of .V's share. 
 
RATIO AND PROPORTION. 
 
 19 
 
 1 4. Divide $105 among 4 men, 7 women and 5 children, 
 so that a man may have as much as a woman and child 
 tocrether, and a women three times as much as a child. 
 
 15. Divide 8155 among 8 men, 2 women and 10 
 cliildren, so that a man has half as much again as a 
 woman, and a woman half as much again as a child. 
 
 16. Two persons contribute respectively 81010 and 
 811 50. If the profits are 8852, what should each receive ? 
 
 17. Two copyists are employed in transcribing a manu- 
 script, and they copy respectively 224 and 288 pages. If 
 8140 is paid for the work, what should each receive ? 
 
 1 8. In l)uilding a wall one mason works -i of the time, 
 another J, and a third full time. What ought each to 
 receive out of 8340 ? 
 
 19. If 8 men or 12 boys can do a piece of work in 20 
 days, hi what time can 12 men and 8 boys do it ^ 
 
 20. How long would 15 boys be doing a piece of work 
 wliicli 8 men can do in 21 days, the work of 7 men being 
 eiiuivalcnt to that of 10 boys ? 
 
 21. Divide 078 into three parts, sucli that tlie second 
 shall be ;q of tlie first and tlie last }, of the second. 
 
 22. A and W hire a pasture for 880. A puts in 4 yoke 
 of oxen and li i)uts in 40 slieep. If an ox is e(|ual to 8 
 sheep, liow nnich ought each to pay ^ 
 
 23. A, 1) and (" enter into partnership with a comlmied 
 cai)ital of S(;0,()00. At the end of a year A's share of tlie 
 l)rolits is 82()00, IVs share 8.'U00 and ("s share 84000. 
 Wliat capital did each invest ? 
 
 24. If 15 men c;..i do as much work as 21 boys, how 
 long will 25 nu'u take to do what 30 boys do in 11 hrs. ? 
 
 25. A's rate of working is to IVs as 4 to :5, and IVs is 
 to C's as 2 to 1, How hni"' will it ta.ke C to do what A 
 would do ill davs i 
 
20 
 
 COMPOUND PROrORTION. 
 
 XIV. 
 
 COMPOUND PROPORTION. 
 
 Eesolve by cancelling ; — 
 
 6 : 
 
 4 : : 20 
 
 5. 
 
 17: 
 
 51::S13 
 
 8 : 
 
 9 
 
 
 40 : 
 
 135 
 
 / : 
 
 1 2 : : G 
 
 6. 
 
 18^ 
 
 t 
 
 : 49 : : o lbs. o§ oz. Tro 
 
 : 
 
 14 
 
 
 28 
 
 :43 
 
 ft 
 
 • 4 • • 1(7 
 
 7. 
 
 l;3 : 
 
 24 : : 52 weeks 
 
 o 
 
 ' ') 
 
 
 3G : 
 
 
 1 1 
 
 1 -J 
 
 ■~i 
 
 
 3G5 : 
 
 lOi 
 
 •9 
 
 : -8 : : '02 
 
 8. 
 
 
 : 22 : : 35 yds. 1 ft. 
 
 •8 
 
 
 
 It^^ 
 
 : 2 
 
 "/ 
 
 : -G 
 
 
 1^ 
 
 taw 
 
 : t 
 
 9. If 15 horses consume 3G0 bushels in 252 clays, how 
 many horses will be kept with 220 bushels fur 154 days? 
 
 10. If 15 liorses consume 3G0 bushels in 252 days, how 
 many l»ushels will 8 horses eat in 210 days ? 
 
 11. If 15 horses consume .'{GO bushels in 252 days, how 
 long will 12 l)ushi'ls last 7 hcu-ses ? 
 
 12. AVorking lU hours a day, 14 men can finish apiece 
 of work in 12 davs: how manv nuMi working G hours a 
 (lav will be rcfiuired to finish it in .')5 davs ^ 
 
 13. AVorkinif 2 hrs. a dav, 180 men can Iniild 480 yds. 
 of wall in 8 dys. : how many men, working 10 lirs. a day, 
 can build 45(1 vds. of the wall in 18 davs? 
 
 14. A man can do a certain ])iece of work in 18 days 
 of 9J hours each; in how many days of l()[ hours each 
 could 3 men do foui- times as much ? 
 
 16. If J^24n <'-ain<'d .^5:M in .".(i5 dnvs. in wliat time 
 would S225 njuu S3() at the same rate ? 
 
COMPOUND PROPORTION. 
 
 21 
 
 16. 12 men can dig a trench 108 ft. long, 6 J ft. deep 
 and 3 ft. broad in 5 days; how long will 15 men take to 
 dig one 100 ft. long, 3^ ft. deep and 2 ft. broad ? 
 
 17. The cost of carpeting a room 19 ft. by 15 ft. with 
 carpet at 84 cents the yard is $67.20 ; what will be the 
 cost of carpeting a room 24 ft. by 20 ft. if the price of the 
 carpet is $1.14 a yard ? 
 
 18. A lends B $400 for 15 mos. at 4%; how long in 
 return should B lend A $1500 at 3% ? 
 
 19. A locomotive making 162 strokes per minute 
 travels 90 miles in 2 liours ; how many strokes per minute 
 must it make to travel 200 miles in 4:h hours ? 
 
 20. If 3 men or 5 women or 8 boys can weed 18 acres 
 in 9 days, how long would it take 5 men, 8 women and 3 
 boys to weed 109 J acres ? 
 
 21. If 42 lbs. of raisins cost £1. 16s., what would 35 
 lbs. of a liigher grade cost, 5 lbs. of the former being 
 equal in value to 3 lbs. of the latter ? 
 
 22. An ollicer wished to convey 80,000 lbs. of pro- 
 visions in 9 days ; at the end of 6 days, IC men having 
 been employed, 15 tons only luid been carried. How 
 many men would be required to carry the remainder 
 within the time specified ? 
 
 23. 12 women make 7 dresses in 8 days; in what time 
 could 15 girls make 5 such dresses, the work of 2 women 
 being equivalent to that of 3 girls ? 
 
 24. The travelling expenses of 7 touriots for 5 weeks 
 amounted to $1505 ; a second party of 18 made tlie same 
 tour in 6 weeks, tlieir average weekly expenditure })er 
 man being ^ of that of the first party. What were the 
 total ex]>eiises of the second party? 
 
 25. Kiflcen men do a piece uf work in eight days ; how 
 
 'HI 
 
 ni 
 
 nuy men could dn .-| of the work in } of the time ? 
 
1 
 
 ! 1:, 
 
 22 
 
 AVERAGES. 
 
 XV. 
 
 AVERAGES. 
 
 1. Ill a class of 24 boys 4 are 14 years old, 6 are Vol, 
 7 are 12 J- and the rest lU. What is tlie average age ? 
 
 2. A woman's income for 3 years is S250 a year ; for 
 the next 5 years it is $294, and for the next 4 years $307. 
 What was her average income for the 12 years ? 
 
 3. In an exercise set to 35 pupils, 1 has 7 mistakes, 
 2 liave 5, 4 have 3, 6 have 2, 8 have 1, and the rest none. 
 Find their average number of mistakes. 
 
 4. If a tradesman sells on the first 5 days of the week, 
 243, 117, 112, 195 and 207 yards respectively, wliat must 
 he sell on Saturday that the daily average may be 179 yds. ? 
 
 5. In the month of April a man sle])t 7 hours on each 
 of 16 nights, 6.1 hours on each of 8 nights and 5 hours on 
 each of 5 nights. How long must he sleep the last night 
 that his average may be 6 it hours ? 
 
 6. A candidate answers two examination papers, the 
 first of which is valued at half as many marks again as 
 the second. He gains 58% of the maximum marks on tlie 
 first, and 43% of the maximum on the second. What 
 percentage of the total marks does he gain ? 
 
 7. To 112 gallons of spirits worth 21 francs a gallon 
 a grocer added as much water as re(hiced the value to 16 
 francs a gallon ; what quantity of water did he add ? 
 
 8. A merchant has teas worth 54 cents and 44 cents 
 a lb. respectively, wlii'h lie mixes in projuirtioii to 3 lbs. 
 of tlie former to 2 lbs. r.f the latter, and sells the mixture 
 at 52 cents a lb. What does he gain per cent. ? 
 
AYOUK AND TIMK. 
 
 
 9. In a wholesale business a certain number of clerks 
 receive $^)0 a week, twice as many receive $31.50, and 
 clever, times as many receive SU. The weekly pay-sheet 
 amounts to $1809. Find the number of clerks. 
 
 10. A man bought a herd of cattle, 136 in number, for 
 $3230; on the way home he lost 4, and 12 others, being 
 unable to complete the journey, were sold for $o a head 
 below cost. At how much per score must he sell the 
 others so as to gain $215 on the whole transaction ? 
 
 XVI. 
 
 WORK AND TIME. 
 
 1 . A can do a piece of work in 5 days, B in 6 days. 
 How long will they take if they work together ? 
 
 2. One pipe empties a cistern in 5 hours, another in 
 8 hours. In how long will the cistern be emptied if both 
 
 are open ? 
 
 3. One pipe fills a cistern in 4 hours, another empties 
 it in 8 hours. If both pipes are open, in how many hours 
 will tlie cistern lie filled ? 
 
 4. Two men together can do a piece of work in 5 
 hours, and one of tliem alone in 8 J hours. How long 
 would the other take to do it ? 
 
 5. Two pipes cim fill a cistern in 3^ and 4J hours 
 respectively, and a tliird empties it in 20- hours. In how 
 long will the cistern l)e filled if all the taps are open ? 
 
 6. The hot-water tap can fill a bath in 10 min., the 
 cold-water tap in 12 min., and the waste-pipe can empty 
 it in 8 min. If all three are opened, how long will it take 
 to fill ? And how long to empty again, if the hot water is 
 then turned oil'? 
 
m 
 
 24 
 
 DISTANCE AND TIME. 
 
 7. A and B separately can do a piece of work ia 4i 
 hrs. and 2| hrs. A, B and C together can do it in 1 /jAj 
 hrs. How long will C take to do it alone ? 
 
 8. A and B together can do some work in 8 days, B 
 and C together in 6 days, A and C together in 6^ days. 
 How long would each take by himself ? 
 
 9. A and B together can do a piece of work in S-^^^ 
 days, B and C together in 9^^ days, A and C together in 
 8f days. How long would each take by himself ? 
 
 XVII. 
 
 DISTANCE AND TIME. 
 
 1 . A and B are 6 miles apart, and walk at the rate of 
 4J and 3^ miles an hour respectively. How long will 
 elapse before they come together (1) if they walk towards 
 each other, (2) if they walk in the same direction ? 
 
 2 A walking 5 miles an hour starts from Bcaconsfield 
 for Montreal (16 miles) at the same time as B walking 4 J 
 miles an hour starts from Montreal for Bcaconsfield. How 
 far from Montreal will they meet, and how long after the 
 
 start ? 
 
 3. In the preceding example, if A walked 3J and B 5 
 miles an liour, where and when would they meet ? 
 
 4. A walking 5^ miles an hour gives ]i walking 3 J 
 miles an hour one hour's start. How long will A take to 
 catch B, and how far will he have walked ? 
 
 5. At 10 A.M. a train starts from Montreal to Quebec 
 (180 miles) at the rate of 48 miles an hour, and another 
 at 12.30 M. from Quebec to at the rate of 44 miles an hour. 
 How far from Montreal will they meet, and at what time ? 
 
 6. A takes 9 steps while B is taking 8, but 10 of B'.s 
 are ecpuil in length to 1 1 of A's ; which is the faster walker ? 
 
DISTANCE AND TIME. 
 
 Zi} 
 
 How 
 
 7. A train starts from a terminus at 9 A.M. travelling 
 25 miles an hour. An express starts at 10.30 a.m. and 
 travels 43 miles an hour. At wliat time and how far 
 from the terminus will the express overtake the slow train? 
 
 8. In a mile race A runs at the rate of 6 yards a 
 second, and gives a start of 140 yds. to B, who runs hi 
 yds. a second. How far from the winning post will A 
 overtake B, and by how much will he win ? 
 
 9. An express starting at 3 p.m. stops first at a station 
 77J miles distant at 4.27 p.m.; the whole journey is 104 
 miles, and 15 per cent, of the time is expended in stop- 
 pages. At what time is the train due at the terminus ? 
 
 10. An express runs 303 •} miles in hours, making 
 one stoppage of 30 minutes, three of 5 minutes eacli, and 
 one of 3 min. What is its average speed wlien in motion ? 
 
 11. A man rode a hicvcle from A to I), a distance of 
 54 miles, at an average rate of 8 m. an hour. Another 
 nuin started from A on liorsehack h hour j>fter the 
 bicycHst, and arrived at B 15 min. before him. Find the 
 ratio of their speeds. 
 
 12. A hare pursued by a greyhound was 87 yards in 
 advauce at the start; l)Ut for every 8^ yds. whicli the 
 hare ran tlie dog ran 10 yards. How far liad the dog run 
 when the liare was caught ? 
 
 13. Wlien will tlie liands of a clock be together (o) 
 between 2 and 3, (/*) iK'twccii <» and 7, (c) Itetween 10 and 1 1 ? 
 
 14. When will the hands of a clock be opposite one 
 another {a) between 3 and 4, (Ij) between 7 and 8, (r) 
 between and 10 ? 
 
 15. When wid the hands of a. clock be at right angles 
 to one another (a) lietwcen 4 and 5, (//) between 10 and 
 11, (<•) l)etween 1 and 2. 
 
 16. Two clocks point to 2 o'clock at the same instant 
 
26 
 
 COMPOUND PROPORTION. 
 
 on the afternoon of Christmas Day; one loses 8 snc. and 
 the other gains 7 seconds in 24 hrs. When will one be 
 half-an-hour before the other, and what time will each 
 clock then show ? 
 
 17. A watch which at 9.30 A.M. on Tuesday is 4 min. 
 8 .yW sec. too fast, loses 2 min. 45 sec. daily. What time 
 will the watch indicate at 5.15 p.m. the following Friday? 
 
 18. Two clocks, one of which gains 1 min. 12 sec. and 
 the other loses 1 min. 28 sec. daily, are set right at 11 
 A.M. on 1st May; on what day and at what hour will the 
 times indicated by them differ by 30 minutes ? 
 
 XVIII. 
 
 EXCHANGE. 
 
 1. If 23-85 francs are exchanged for $5, how many 
 francs will be obtained for $51.25 ? and how many dollars 
 for 17 -49 francs ? 
 
 2. If $4.95 are exchanged for £1 and £1 for 25-05 
 fr., how many francs will $33 yield ? 
 
 3. A person goes to France with £56, which hd 
 exchanges at the rate of 25 J- francs for £1. He st " '^0 
 days, spcniling 37). fr. a day, and cluuiges what he ha> 
 
 at the rate of 1 fr. for ^hd. How much English moii 
 will he liave ? 
 
 4. If 5 fowls are worth 3 ducks, 14 ducks worth 5 
 (feesc, and 3 L'eese worth 2 turkeys, what is the price of a 
 fowl when a turkey costs $2.10 ? 
 
 5. If 2 lbs. of tea were worth 3 lbs. of coH'ee, and 4 
 l])s. of coffee worth 21 lbs. of cocoa, and 7 lbs. of cocoa 
 worth 9 lbs. of sugar, and 20 lbs. of sugar worth 45 lbs. oi 
 raisins, how many lbs. of raisins would be worth 24 lbs, 
 of tea ? 
 
MENTAL PRACTICE. 
 
 T 
 
 XIX. 
 
 MENTAL PRACTICE IN AVERAGES, PROPORTION, ETC. 
 
 1. Find the average of:— (a) 11, 17-25, 18i, 19f ; 
 (Z.) i, 100, 1000 ; (e)i, i,ii; (^) 6-3|, 4-U, 3-^. 
 
 2. What is the average attendance for a week in a 
 school which has the following for each day: 80, 82, 81, 
 83, 85 ? If the number of pupils on the roll is 90, what 
 is the average percentage of absence ? 
 
 3. The temperature at 6 A.M. was 39° Fahr. ; at noon 
 47"5 ; and at 6 p.m. 3G. What was the average for the day? 
 
 4. The average of three numbers is 7J ; the largest 
 and smallest together make up t| of the whole ; what is 
 the middle number ? 
 
 6. If 27 out of 1000 die annually in one town, and 2G 
 in another, what is the average death-rate per cent, per 
 annum in the two towns ? 
 
 6. At an examination there were 4 candidates at the 
 age of 19, 3 at 20, 2 at 21, and 3 at 23. Find average age. 
 
 7. Find the missing term in the following: — (a) 
 
 3 : 5 : : U : a;; (Z>) t : I'V : : f : ^; W 6 : ^ : • *^ : «• 
 
 8. iJiVide :—[a) $350 in the ratio of 3:4; (?>) £10 in 
 the ratio of 2 : 13 ; {c) $75 into parts proportional to 2, 5, 8; 
 {d) $21 into parts proportional to '25 and J. 
 
 9. One candle lasts 4 hrs. 20 min., another lasts 3 hrs. 
 15 min. What is the ratio of the first to the second ? 
 
 1 0. A man can do a piece of work in 4 1 days. What 
 ])art of it can he do in 1] dys. ? What decimal ? What 
 per cent. ? 
 
 11. A window is G ft. 4 iu. high by 4 ft. 2 in. wide. 
 What is the ratio of the height to the width ? 
 
 12. Wliat i.s tlie ratio of 3 quarts to t gal ? G pks. to 
 5 bus. ? Is. to $1 ? ^v to •;? ? $3G.r,0 to $18.25 ? 
 
28 
 
 I'ElUlKNTAdK. 
 
 ' t 
 
 XX. 
 
 MENTAL I'llACTICE IX VRRCEN TACIEf^. 
 
 I. How much per cent, is 17 <>f 2;"); lU of ^'•oj ; 19. 
 of 20 ; :^a of 40 ; 21. of 24; U of ^ ; ^ of 12i ; 18 of 63; 
 *59of T:;; -O^of 1; 1 ?. of 5X ? 
 
 2 Express as a comniou fraction in lowest terms :— 
 
 2% ; 41% ; ^% ; G% ; 10% ; 20% ; 25% ; :M% ;^ 3:U% ; T5% ; 
 001%; l<is-%; 121%; 374%; 02i%; «T1%; !)-09%; 18-18%. 
 
 3. Tea is bought at 4s. and sold at :'.s. 4d. ; wliat is 
 
 the loss per cent. ? 
 
 4. Tea is bouglit at 4s. and sold at 4s. 8d. ; what is 
 
 the iLjain per cent. ? 
 
 6. In a school of 100 children 12r/, are absent; how 
 
 many are present ? 
 
 6. In a scliool of 78 pupils 20 are girls ; percentage 
 
 of boys ? 
 
 7. In a school of 88 pupils .Or. cannot write; what 
 
 percentage can ? 
 
 8. In a school of 27.0 pupils, per cent, learn Latin, 8 
 per cent, mathematics, and 20 ])er cent, geograpliy; how 
 many in each branch ? 
 
 9. The population of a town was 00,000 in 1881, and 
 and 70,000 in 1801 ; required increase per cent. 
 
 , 10. A bankrupt's debts are $000, his effects are $27)0 ; 
 how much per cent, can he pay, and how much per dollar? 
 
 I I. If every sliilling's worth of goods yield 2d. of gain, 
 what is gained on £77) ? 
 
 12. Sold goods for $200, by whicli $2o was gained; 
 find the gain per cent. 
 
 13. Sold at $0r and gained $12 ; find gain per cent. 
 
 14. What was lost on £25 worth of sugar bought at 
 r)d. a lb. and sold at 4.\d. a lb. ? 
 
 !:* 
 
COMMISSION. 
 
 i>0 
 
 XXI. 
 
 COMMISSION. 
 
 (For Percentage, Interest, Discount, Present Worth, etc., 
 see Book III., pp. 36-60.) 
 
 A Comxuision Merchant or Agent is a person who 
 buys or sells goods for auotlier. What he receives for his 
 services is called his commission. 
 
 A consignment is goods sent to an agent to sell. 
 
 The net proceeds are the amount left after the com- 
 mission and other charges have been paid. 
 
 1. A sold B's farm for $G750. He bought him a new 
 farm for $4825. The commission for selling was 4°/^ and 
 for buying 2"/^. How much should A receive ? 
 
 2. Wlio is the J^rincipal and who the Agent in the 
 above transaction? Is he a buying or selling agent? 
 AVhat are the net proceeds of each transaction ? 
 
 3. Find the commission {a) at 4A°/^ on sales amount- 
 ing to S34G8, {h) at oT/o o^^ '^'^'"^ barrels of apples at $2.25 
 a barrel, {c) at C|°/^ on a ton of wool at 87i cents a lb. 
 
 4. What is the amount of the sales {a) when the 
 commission at C^'Yo i^ ^^1^0, (h) when the commission at 
 3r/^ is $294, (c) when the commission at 1^/^ is $270 ? 
 
 5. Find the amount of the sales {a) when the net 
 proceeds are $4845 and the commission 5^/^, (/;) when the 
 net proceeds are $229.80 and the rate 37o, {c) when the 
 net proceeds are $15,250, the rate of commission lJ:7o> 
 with additional charges amounting to $G2.40. 
 
 6. A merchant remits to Ins agent a sum of money to 
 be invested after deducting his commission. Wliat sum 
 will be left to be invested {a) when the remittance is $7098 
 and the commission 4°/ , (A) when the remittance is $4908 
 
oO 
 
 INSrUANCK. 
 
 i f 
 
 ! ll 
 
 and the commission 4^;;. (c) when the remittance is $4454 
 and the commission 2V'//? 
 
 7 In the uh<.ve prohlems wliat represents t/,r base, the 
 pcrcfntar, the rate 7.. the ^nnomU, the dijjerenee ? ^ 
 
 8. Make rules or formuUis for finding tlie coramimon, 
 the amount of sales, the sum invested. 
 
 0. A real estate agent receives $95 for selling a house 
 for $47r.O. What is his rate. of commission ? 
 
 10 AMiat was the cost of printing 500 copies of a hook 
 which was sold at $0.90 a copy, if the hookseller's com- 
 mission and charges were 34 per cent, of the gross receipts, 
 
 and the author's profit $135.90 ? ^ ^ 
 
 11 An aoent, selling goods at 21 per cent, commission, 
 
 sent the consignor $1207.50 as the net proceeds ot days 
 sales. AVliat were the average daily sales ? 
 
 12. An agent sold goods for me amounting to $10 «G0. 
 He charged 2}. 7. commission for selling, and 2,^ tor 
 ouaranteeing liayment, and $37.50 for freight and storage. 
 How many barrels of Hour at $5 a barrel can he buy witli 
 the net proceeds, if he charges r/, commission for buying ? 
 
 XXII. 
 
 INSURANCE. 
 
 Insurance is security against loss. 
 
 The premium is the sum paid for insurance. 
 
 The policy is the written contract between insurer and 
 
 insured. . . . , 
 
 1. What premium must be paid for insuring propeit) 
 
 (ft) worth $5000 at I per cent., (h) worth $800 at 1| per 
 cent., (c) worth $05,000 at f per cent. ? . ., , 
 
 2 What is the rate of insurance (a) if $lo is paid for 
 insuring'$1000, (h) if $420 is paid for insuring $18,000 ? 
 
INSURANCE. 
 
 31 
 
 3. What amount of insurance can be obtained (a) for 
 
 S40 at 2/^, (h) for $157.80 at U"/^, (c) for $187 at 2f /„ ? 
 
 4. In each of the above problems jwint out the base, 
 rate and pereentage. 
 
 5. Make rules or formulas for finding the 2>'>'^'>niiim, 
 the rate, the ammtnt of the jioliey. 
 
 6. Pind at sight tlie premium in tlie following cases : 
 
 Amount of Policy. Rate. 
 
 {a) $100 \ (Wj^ 
 
 (h) .$1200 ' '2^7^ (9 examples.) 
 
 (e) $2000j [6='/^ 
 
 7. Find at sight tlie amount of ])olicy in the following: 
 
 Premium paid. Rate. 
 
 (a) $15 1 ay 
 
 {h) $2.50 I '•>' 
 
 00 $10.50j 
 
 8. Find at sight the rate 
 
 Amount of Policy. 
 
 (a) $50 
 
 
 |--Vo 
 
 il2iV 
 
 ({) examples.) 
 
 /o 
 
 in the following : 
 
 (b) $200 
 (e) $1000j 
 
 Premium paid. 
 
 ($0 
 
 m 
 
 y 
 
 (9 examples.) 
 
 9. AVhat sum must be insured at 4 /,, so that tlie 
 owner may receive, in case goods worth $7.'j5 are lost, the 
 value of the goods and the premium ? 
 
 10. A dealer shi[)ped 1000 barrels of Hour worth $0.50 
 a barrel; for what sum must he take out a policy at 2.y'/^ 
 to cover the value of botli Hour and premium ? 
 
 11. Find the premium for insuring 4840 busliels of 
 wlieat wortli $1.20 a bush, at 1^^/^ on •; of its value. 
 
 12. After 20 years' insurance, a mill worth $48,000, 
 and insured for J of its value at 2.^/, is destroved by tire. 
 Find the owner's loss, not counting interest. 
 
M 
 
 
 TAXES AND DUTIES OR CUSTOMS. 
 
 XXIII. 
 
 A.— TAXES. 
 
 A Tax is money assessed upon the person, property or 
 income of citizens for public purposes. 
 
 1. What is meant by real estate, personal property, 
 
 assessors ^ t • 
 
 2 The rate oE taxation on real estate in Montreal is 
 17 for nn.nicipal purposes and 1% additional for school 
 pm-poses. Find at sij^ht the an>ount levied on properties 
 assessed at $1000, S2000, !?;:!000, up to *1 0,000 rospeet.vely. 
 3. When the rate of assessn.ent is l-^« '"'"^ °" ^J'; 
 dollar, what will he jmid on a property valued at $U 000 , 
 
 4 The schools cost S:!nVl'.r>0 a year, and the rateable 
 value of real estate is $81,0oT.50. What is the rate of 
 
 scliool tax ? • • i-i 
 
 5 A tax of $^>000 is to be levied tor repairin- tlie 
 road.. Tlie assessed value of the distnct is $2,242,000. 
 What is the tax on a farm valued at $07. >0 ? 
 
 6 Wliat is tlie valuation of a piece of property that 
 pays a tax of $273 at the rate :\\ mills on the dollar ^ 
 
 7 If a tax of 1^2850 is to be raised, and tlie collector 
 receives 5°/, commission for collecting the taxes, what 
 sum must be levied ? 
 
 B.-DUTIES OR CUSTOMS. 
 
 Duties arc taxes levied by a government upon -nods 
 hiip<»rled from foreign countries. 
 
 1. Define t'lir, Irahn/r, hmtkage. 
 
 _ _ io duty on 1^-. caoPH n..i._ , .t- 
 
 tainin<M50 1))S., at 75 cents a lb. ? 
 

 
 DUTIES 
 
 OK CUSTOMS. 
 
 
 
 7^ 
 
 38 
 
 3. 
 
 What 
 
 is the duty on GIO gallons of olive oil, 
 
 at 
 
 25 
 
 cents 
 
 a galloi 
 
 I, allowing 2° 
 
 '^ tor leakage 
 
 ? 
 
 
 
 4. 
 
 What 
 
 is the duty 
 
 at r» cents a 
 
 lb. on 400 sacks 
 
 , of 
 
 coffee, 
 
 each coiitaiiiiiiiT Go 
 
 lbs., the tare 
 
 being 2°/ ? 
 
 
 
 the 
 
 that 
 
 LToods 
 
 6. Find the ad valorem duty at 2.V7o ^^^ ^^^ boxes of 
 raisins, 25 lbs. in a box, invoiced at SO. 12 a lb., the tare 
 being 3.V lbs. a box. 
 
 6. A lady brought from France 2 dozen pairs of gloves, 
 for which she paid G francs a pair. The duty was $2.25 a 
 dozen and 50°/^ ad mlorehi. What did the gloves cost her 
 in Canadian money, the franc being reckoned at %W)?i ? 
 
 7. A Montreal fruit deahsr received from Florida 8 
 boxes of oranges at $3, and 15 cases of bananas at $2.50. 
 Each box of oranges contained 250 and each case of 
 bananas 20 dozen on the average. If the dutv is 15°/ and 
 other charges $12.50, how much will be gained by sellinj"- 
 the whole at $0.25 a doz. ? 
 
 3. Find the duty at oQi"!^ ad ralornii on an invoice of 
 English goods amounting to ^1500. 10s. Gd. (£1. = .$4*.SGG.'.). 
 
 9. What is the duty on an invoice of china from 
 Vienna, the value of which is G420 liorins, at .'mS°' , a llorin 
 being worth $'407 ? 
 
 10. l{e([uired the duty and total cost of a case of 
 French silks, value 3500 francs, duty 50°/^ ad valorem, •diid 
 a case of velvets, value 28,000 francs, duty 50"/ , other 
 charges being 025 francs and commission 2.V7o» ^^ *^ ^*'^"c 
 is worth $103. 
 
 11. I)uty on a ea.se of woollen goods from Germany 
 invoiced at 8437 marks at 457o, a mark being worth $-2:58. 
 
 12. Wliat is tlie invoice cost of goods upon which $300 
 is paid in duty, if the duty is 257^ ad valorem f 
 
34 
 
 STOCKS. 
 
 XXIV. 
 STOCKS. 
 An incorporated company consists of several persons 
 who are authorised by law to transact business as a single 
 
 '"tlolkt the name given to the capital ot incorporated 
 companies. The capital stock ot a con.pany is usually 
 divided into shares ot $100. The stock is said to be 
 at par when a shave ot *100 sells tor $100 m money; at 
 a premium, ^vhen it sells for more tlian $100 in money ; 
 Z at a discount, when it sells t.,r less than $100 in 
 money. Tl>e pi-miuui or discount is the dilierence 
 
 between the (|uoted price and 100. 
 
 Consols are Kn.^Ush government securities. 
 
 1. What IS meant by thm- per cent. >:lock at 6,:- .' is 
 the stock at premium or discount > 
 
 3. Kind (a) the market value of, (h) the annual income 
 
 arising from : — 
 
 {a) $01^0 T) per cent, stock at 80. 
 {h) $204 21 per cent, stock at 90. 
 (<•) $0000 o'l per cent, stock at 87^-. 
 (^/) $ir.r>0 ;» per cent, stock at Tr)^ 
 (r) $1200 4 i)er cent, stock at 92^ 
 
 3. Find tlic amount of stock obtained and the annual 
 income derived from investing: — 
 
 {a) $910 in 4 per cent, stock at 104. 
 ih) $ir.(j0 in 5 per cent, stock at 81 1- ^ 
 (c) $1991.7'. in n per cent, stock at 9G'^. 
 
 4. Find tlie juice of stock when 
 
 (a) $4900 stock can be bought for $:i907.75. 
 (h) $2000 stock can be bought for $252;).2o 
 
 ((') X089r. stock can 
 
 be bou'dit for £7050. 2s. 9d. 
 
STOCKS. 
 
 35 
 
 5. Find the quantity of stock lield 
 
 (a) In the 5 per cents., if the income is S43.75. 
 
 (b) In the 3 per cents., if the income is $7.70. 
 
 (c) In the 5^ per cents., if tlie income is $91. 
 
 (r/) In the 4 per cents., if tlie income is £115. 4s. 2(1. 
 
 6. Find wliat sum of money must be invested to 
 derive an income of 
 
 {a) $400 from the Al ])er cents, at 75i'. 
 {h) $500 from tlie 4 per cents, at 00 L 
 {c) $:)00 from tlie 2.V per cents, at 57;. 
 {(1) £72. 15s. from tlie *v>^ per cents, at 05. 
 
 7. Find price of stock, if there is derived an income of 
 {(() $106.50 by investing $2560.4:5^ in the 3 per cents. 
 {},) $107.50 by investing $4374.62^ in the 4 per cents. 
 {r) $154 by investing $3432 in the 3.^ per cents. 
 
 (f/) £07. 10s. by investing £2302. l()s. 3d. in the 3 per cents. 
 
 8. Dctennine the rate per cent, paid by stock 
 
 {(() AVhen $3720 of stock yields an income of $139.50. 
 {})) When $2975 of stock yields an income of $133^. 
 (r) When $11 is obtained by investing $204 at 81. 
 (r/) AVhen $40.20 is obtained by investing $924 at 105. 
 
 9. What is the rate of interest on money per cent, 
 per annum 
 
 {a) AVhen 3» per cent, stock sells at 80 ? 
 (/>) When 3 per cent, stock sells at 84 ? 
 {!') AVhen 3.y per cent, stock sells at 75 ? 
 {(J) When A\ per cent, stock sells at 135 ? 
 10. Which is the better investment : — 
 
 {a) The 3.\ ])er cents, at 77 or 4 per cents at O:].} ? 
 (/») The 3 per cents, at 72 or 4 ])er cents. \\[, 90 ? 
 (r) The 3 per cents, at 82.1 or '.\\ per cents. 93.V ? 
 cents, at 90 ui 
 
 {(i) 
 
 V 
 
 P 
 
 ((') The 4.V per cents, at 120 or 3..^, per cents, at 90 ? 
 
36 
 
 STOCKS. 
 
 1 1 Find the chan^o in income caused hy transferring 
 (a) Sr.OOO from the -A per cents, at 90 to the o. 
 
 per cents, at 81. „ 
 
 (/>) $7300 from the 3 per cents, at 00 to the o 
 
 per cents at 100 H. ^ 
 
 (r) ^:>300 from the 3 J. per cents, at 89^ to the 3^ 
 
 per cents, at 94^hrokerage i per cent, on eacli tra.^actiom 
 
 (,/) $880 from the 4| per cents, at 106 j: to tlie 4 
 
 ««»fa .,<- O'V' hrokera^e I on each transaction. 
 per cents, at J-*^, lunivci.i.,^ j, ^ 
 
 (.) $4900 from the 3^. per cents, at 109 i to the o 
 per cents, at 91^ brokerage i on each transaction. 
 
 12. How much 4° „ stock nmst be l>ought to give an 
 
 income of $320 ? 
 
 13. If !?niL'5 is i„vcsW in (i° „ stock at 1021, wliat 
 
 income will Vic olitained ? , , , ^ f 
 
 14 If a person buys .V,^ slock at I -O, what rate ot 
 interest does lie receive on bis money invested > 
 
 15. yind the sun. renuired for an investment m 4/„ 
 stock at OS.', to produce an income of ^'MO a year. 
 
 16 AVbat must be tbc ,>rice of a 5\ slock m order 
 that a buyer may receive 0° „ on his i,.vcstmeut ? 
 
 17. AVhen :!°„ Onsols are .luoted at 101, what sum 
 nuist be invested°to yicl.l an income ot .EHOO ? 
 
 18 AVhat is the e.-cact interest on an mvestn.ent ot 
 $-,000 in 4.', per cents, at U+i fron, dan. I to March - . 
 
 10 If a' n,au buys stock at 177. l"'^"""'"' '"^f 1'" 
 
 cent, does he receive o« his investment, if the stock pays 
 
 a dividend of Sr„ on its par valued „,,.., , •,, 
 
 20. If S4 shares of stock, i-ayin;,' a 0°; dividend, yield 
 
 lOy on the money invested, what did tb.> slock cost ? 
 
 21 (;overnmeut bo.ids yieldin- *2-10 a year at 4,„ 
 interest wee sold at H% ,,.em,um and the vroeeeds 
 invested in land :U *7r. an ac. Mow many acres bought , 
 
STOCKS. 
 
 37 
 
 
 sum 
 
 'ieUl 
 
 22. }\y selling 3 per cent. Consols at 102^] and invest- 
 ing the proceeds in a railway stock which pays dividends 
 of 7% per annum, a man finds tliat he can double his 
 income; what is the price of the railway stocl^ ? 
 
 23. One company pays 5.V% on shares of $100 each; 
 another pays 31% on shares of $10 each ; if the sluires of 
 the former sell at 151% premium, and the shares of the 
 latter at 22^7 discount, compare the rates of interest 
 
 - /o ' •■ 
 
 which the shares return to purchasers. 
 
 24. By selling out £4500 in the India o"/^ stock at 
 112 J and investing the proceeds in Chinese 7% stock, a 
 person finds his income increased by £168. 15s. ; what is 
 the price of the latter stock ? 
 
 25. When the price of a 3 per cent, is 90, a person can 
 obtain an annual income of $1 more than he can if the 
 price is 07 ; how much has he to invest ? 
 
 26. A person has $2950 in 3 per cent, stock at 83 1 ; 
 wlien the stock has fallen 2i, he transfers his capital into 
 5% stock at 107| ; find the alteration in his income, 
 brokerage in each case being |. 
 
 27. I buy 3% stock at 89 J ; after receiving one half- 
 year's dividend, I sell the stock at 94^, and find that I 
 have gained $54 ; what sum did I originally invest ? 
 
 28. A person having 1,0:5:), 200 francs in French 3 per 
 cents, at 744 transferred to English 3| per cents, at 98|; 
 liiul the change in his income, the rate of exchange being 
 £1 = 25*2 francs. 
 
 29. Which is the better investment, stock at 25// dis- 
 count wliicli ])ays a half-yearly dividend of 4%, or money 
 lent at 10%, interest payable annually ? What % better ? 
 
 30. A ])orson sells out of the :» i)er cents, at 90 and 
 invPstK hi;-, money in 5 per cent, stock at par: by how 
 much per cent, is his income increased ? 
 
38 
 
 STOCKS. 
 
 
 XXV. 
 
 MENTAL ri!4CTICE IN STOCKS. 
 
 1 . If the o per cents, are at 82, required iiu-onie for $574. 
 
 2. 
 
 3. 
 
 4. 
 
 5. 
 
 6. 
 
 7. 
 
 8. 
 
 9. 
 10. 
 11. 
 12. 
 
 
 
 o 
 O 
 
 • > 
 
 O 
 
 «->Tr 
 
 0:! 
 
 -4' 
 
 4 
 4 
 4 
 
 
 
 84, 
 
 81. 
 80, 
 
 89, 
 93, 
 96, 
 91, 
 
 87i-, 
 85f, 
 89, 
 
 
 
 
 " $270. 
 " $250. 
 " $924. 
 
 " $979. 
 " $465. 
 " $624. 
 $500.50. 
 " $350. 
 - $686. 
 " $1157. 
 
 Kequired the price of the stock when the 
 
 13. 3 per cents. i,nun $12 for $300 invested. 
 
 14. 2f " " $30 " $1000 
 
 15. 4 '' '' $27 " $600 
 
 16. o\ " " $42 " $1000 
 
 17. 3i '•' '• $18 " $560 
 
 18. 4i " " $20 " $400 
 
 What quantity of stock can be purchased for :- 
 
 
 
 19. $300 at 75. 
 
 20. $729 at 81. 
 
 21. $656 at 82. 
 
 22. $684 at 90. 
 
 23. $760 at 91. 
 
 25. $765 at par. 
 
 26. $6:')0 at 210. 
 
 27. $700 at 175. 
 
 28. $606 at 151?.. 
 
 29. $806 at 100^. 
 
 30. $733 at 150. 
 
 31 
 
 24. $382.50 at 85. 
 
 1 receive 3=?- p.c. interest on my money by investin 
 
 m 
 
 4^- p.c. stock. At what price did I buy 
 
BUSINESS EXERCISES. 
 
 39 
 
 XXVI. 
 
 BUSINESS EXERCISES. 
 
 A.— BILLS OF ACCOUNT AND INVOICES. 
 
 A bill of account is a detailed statement of merchandise 
 sold, or of services rendered. 
 
 An invoice is a detailed statement of merchandise sold 
 
 hy one dealer to another. 
 
 1. As clerk for Arthur Fitts and Co., you sell Mr. 
 Alfred Brown, on 15th June, 1897, 3 cases of torpedoes at 
 $2.20; 12 boxes of fire crackers at $1.62^; 3 gross pin 
 wheels at $1.35 ; 5 gross sky-rockets at $3.25 ; 2 dozen 
 balloons at $2.25 ; 45 Chinese lanterns at 9,^. 
 
 Copy and fill out the following bill of account, and 
 receipt it for the firm : — 
 
 Montreal, 15th June, 1897. 
 Mil. ALFRED BROWN. 
 
 To ARTHUR FITTS & CO., Dr. 
 
 2. Mr. R. W. Stuart has bought the following goods 
 of J. R. Bradley & Co. :— 
 
 Jan. 3rd, 1897.— 9.^ yds. flannel at 32^^ a yd.; 26 yds. 
 calico at A\y a yd. 
 
 Jan. 7th.— 23 yds. muslin at 81/; 18 yds. linen at 64/. 
 
 Jan. 18th.— 15 yds. ribbon (w. T.K ; J- do/, pairs socks 
 @ 42/ a pair. 
 
 Rule and make out a bill dated Feb. Ist, 18i)7. 
 
 Receipt the bill on 5th Feb. 
 
iO 
 
 BUSINESS EXEliClSES. 
 
 3 Make out a hill for the following articles bought 
 duriiic. ]\larch aud April. Supply the names of buyer and 
 seller ; also the dates : — 
 
 23^ yds. silk ® SOf ; IJ yds. lace ® $2.40; G4 yds. 
 muslin @ ^^ : 8 spools silk @ 7f' ; 4 pairs stockings @ 
 05/ ; 6 yds. linen at S:h^ ; i doz. collars @ S2.10. 
 
 4. An upholsterer charges S:>.V5 per day for repairing 
 some furniture. He sui,plies G lbs. hair g r>0<' a lb. ; 1 . 
 yds. plush (B S1.75 a yd. ; 3 papers tacks at 10^^ a paper; 
 cord, gimp, etc., Onc He woiks 4 days. Make out his 
 bill, supplying names and dates. 
 
 5. Boston, IVIass., 10th May, 1897.-Messrs. F. E. 
 Grafton & Sons, Montreal, bou-ht of Cinn & Co., 12 sels 
 New Headers (a $2.2^ ; in sets Kindergarten Ihawmg 
 r,ooks (« $1.75; 25 Science Keaders (a $0.00; ".O IMnc- 
 tical Arithmetic @ $0.90; IS Brand's IMiVsiology di 
 $0.50; 18 Standard Elocution (a, $1.20. Less discounts 
 of 257^ and 10"/^. Make out the invoice. 
 
 6 Ottvwa, 10th Oct., 1897.— Messrs. Bulmer & Co., 
 Montreal, bought of ( lilmour & Co., 293,500 ft. pine at $42 
 per M • 132,000 ft. pine, third (luality, di $10 per M. : 
 425 250 ft.hendock fe: $22 per M. : 83,750 ft. basswood 
 (01 $20 per M. ; 48,G50 ft. elm fe, $72.50 per M. Less a 
 regular discount of 37 r/. and 57, additional for cash. 
 Make out the invoice. 
 
 7 Montreal 18th July, 1897.— Messrs. H. Morgan & 
 Sons boiudit of A. Chisholm & Co., 3 bbls. granulated 
 sugar @ $7.50 ; 17 boxes raisins 'ii $1.75 ; 4 kegs lard @ 
 $2!l5 ; 15 lUs. spice at 1G<' ; 24 boxes oranges fe $1.40 ; 2 
 bacTs Java coffee C« $27.20; 2 bbls. syrup @ $18.50; 12 
 lbs. nut mess 
 
 for cash. Cartage, $1.50. Make out the invoice. 
 
BUSINESS EXERCISES. 
 
 n 
 
 and 
 
 8. Examine the following form of account with 
 James Parker : — 
 
 Mr. James Parker, Dr. Mr. James Parker, Cr. 
 
 1897. I ! i 'I ^^97. I ! 
 
 June 3 To 10 lbs. sugar @ 10c . 1 ' 00 ^ June 5 Uy 2 days' labour. . 4 
 
 " 2 lbs. tea (floSc.; 1 10 
 June 6 •' 3 ll)s. coffee (5) 30c . | | 90 
 
 00 
 
 What does "Dr." mccin ? What does " Cr." mean? 
 What does the item on the Cr. side of the account mean ? 
 Did he work for you or did you work for him ? 
 
 9. Eule and make out the following account with 
 John Wallace : — June 1 : He owes you $2.85. June 5 : 
 You sell him 2 qts. berries @ 12/', peas W, and 2^ 
 lbs. steak @ 2^/. June 8 : He and two of his men work 
 for you 6 hours, each at 25;^ an hour. June 1) : You sell 
 him 2.V lbs. cliops @ 28f', potatoes 20/-. June 12 : He and 
 one man work for you ol hours, each at 25f' an liour. 
 June 15 : You sell him 7 lbs. lamb @ 22;^ and berries 
 28f'. June 21 : You sell him l^ lb. steak @ 28<^ and he 
 ])ays you on account $o. June 24 : Yo4i sell him 3 pks. 
 ])otatoes @ 30^', peas 12<', olives 35<', and 2[ 11)S. steak @ 
 28<^ June 28 : You sell him 61 lbs. beef at ?Af, and 
 l)erries 30/'. How does the account stand at the end of 
 
 the month ? 
 
 10. Charles Harrison, gardener, owes you rent for the 
 month of May, $25 ; but during the montli he lias done 
 3.V days' work for you @ $3.25 per day, and has furnished 
 3 rose-bushes @ 75f^ 4 grape-vines (w 50<', 11 fuchsias @ 
 30^^ 25 pansies @ lOf'. How does the account stand on 
 
 Ist June ? 
 
 11. You employ a plumber to put in a new kitchen 
 sink, '^[ake out liis bill for l.ibour done and materials 
 furnished, supplying names and dates. 
 
42 
 
 BUSINESS EXERCISES. 
 
 12. Rule and make out the following account with 
 Benjamin Smith :— Oct. 1 : You owe him $6.24. Oct. 3 : 
 You buy of him 2 doz. apples @ 25^, I lb. coffee 19f, and 
 10 lbs. sugar @ ¥. Oct. 5 : You buy 5 gal. oil @ 10c, 
 gelatine 15^, 2 lbs. rice @ 9f^. Oct. 6 : You sell him 6 
 bush, potatoes @ 68^. Oct. 8 : You buy 1 lb. tea @ 60;^, 
 spice 40;^ wicks of. Oct. 10 : You buy 10 lbs. sugar @ 
 Qf, cocoa 24^, and biscuits W. Oct. 15 : You buy coffee 
 W, and flour $1.40, and you pay $o an account. Oct. 
 19 : You buy 1?. doz. lemons @ 25^, 2 lbs. raisins @ 13^, 
 biscuits 20,^, 2 lbs. brown sugar @ 1f> and sell him ISJ 
 lbs. butter @ 28 f. Oct. 24: You buy 5 gal. oil @ 10f^ 
 walnuts 20/', and 3 lbs. oatmeal @ 6/^. How does the 
 account stand on Oct. 31st ? 
 
 $730. 
 
 B. — NOTES, DIJAFTS, CHEQUES. 
 
 A note is a wriUen 2mmiisc to pay a specified sum at a 
 
 certain time. 
 
 Montreal, 3rd August, 1897. 
 
 Three months after date I promise to pay 
 
 Henry Webster or order 
 
 seven hundred and thirty dollars, at the office 
 
 of the Bank of Montreal, for value received. 
 
 John Cox. 
 
 Tlv^ above note is payable at the Bank of Montreal 3 months and 3 
 days a.ter 3rd Aug., or Nov. 6th. It is negotiable, but needs Henry 
 Webster's enilorsenient to make it transferable. It does not bear 
 interest. 
 
 1 . Explain the terms negotiable and endorser. What 
 
 does an endorser do by his act ? 
 
 2. Distinguish between bearer and order. 
 
 3. Jolin Cox discounts the note on Sept. 15th at 9%. 
 Whnt will the proceeds be ? (See Book 111., p. 56.) 
 
BUSINESS EXEKCISE3. 
 
 4:3 
 
 4. A note for S4000, dated 3rd July, payable in GO 
 days, is discounted 1st August at 12%. 
 Write out the note, supplying names. 
 Find the day of maturity, the discount and the proceeds. 
 
 5. E'-amine the following note; — 
 
 S250. 
 
 Halifax, Feb. 10th, 189^ 
 
 Sixty days after date we jointly and severally 
 promise to pay to the order of Mr. ]t*etcr Smith, tiro 
 hundred and fifty dollars, for value received, with interest 
 at six per cent. Mortimer Jack. 
 
 Richard Shaw. 
 
 If the words " and sevtrally " were omitted, the above note would 
 be a joint note, and eaoh of the makers would be responsible for one- 
 half of the amount. Eitlier of the makers of the above note could be 
 sued for the full amount. The note bears interest from its date at 67o 
 per annum. If tlie note is discounted, tl»e discount will be computed 
 on the face of the nots with the interest added. 
 
 6. James Allen borrows $337 from Eichard Lee, and 
 gives liim a note at 3 months, which for liis better 
 security is signed not only by himself, but by his friend, 
 Fred. Harris. The note is to bear interest at 7%. 
 
 Write the note supplying dates, and make it payable to 
 order. When will it be due and what amount will be due 
 at maturity ? 
 
 7. Eichard Lee (after holding the note for 18 days) 
 has it discounted at 87, and receives cash in return. 
 
 Endorse the note before discounting. 
 How much cash should Lee receive ? 
 
 8. A draft is a written order hy one permn on another 
 for the payment of a specified sum. 
 
44 BUSINESS KXKHriSES. 
 
 SIOO. Montreal, IGth Oct., 1897. 
 
 At sif/hf pay to the order of 
 
 Mr. irUliam Duvuhou 
 
 ojic hundred dollars, 
 
 for value received, and charge to account of 
 
 To Messrs. ])avid Law & Co., Herbert Bond. 
 
 Toronto. 
 
 Tliis is a sight draft, and is paid on presentation. It nii'.st be 
 endorsed by \Yilliam Davidson. 
 
 ^.QQ Montreal, IGth Oct., 1S97. 
 
 Thirty days after sight pay to the order of 
 Mr. William Davidson one hundred dollars, for value 
 received, and charge to account of 
 
 m A/T ^^ -IT . e n . Herbert IJond. 
 
 lo Messrs. Davul Law & Co., 
 
 Toronto. 
 
 This draft must be presented to David Law & Co. for acceptance. 
 They accept the draft by writing across the face the word "accepted," 
 with the date and their signature. When accepted the draft l)econies 
 a note, payable SO days after tlie date of acceptance. 
 
 9. A cheque is a draft on a haul', /layahle on dniiand. 
 
 Sir.O.To. Montreal, 2nd March, 1897. 
 
 THE BANK OF MONTREAL. 
 
 Pav to Thomas Nicholson, Esq or order 
 
 one hundred and jifty tVo dollars. 
 
 Eobert Linton. 
 
 Tills che(|ue must be endorsed by Nicholson before being presented 
 for payment. 
 
 10. Draw a cheque on the Molsons liank for $r)7.80, 
 supplying names and dates. 
 
 11. Montreal, March 18ih, 1897.— Messrs. Henry 
 Gold & Co. buy of E. I[. Dods 320 barrels of Hour at $r».20, 
 and give in part payment their cheque for $1000. 
 
BUSINESS KXKKCISKS. 
 
 4:. 
 
 Make out Henry Gold's & Co.'s bill, and credit the 
 amount paid. Draw the cheque. 
 
 12. Montreal, ;5rd April, LSOT. — E. H. Dods draws a 
 draft at 30 days after sight on Henry Gold & Co. for the 
 balance of his account. The draft is in favor of Messrs. 
 R. Green & Sons, Toronto. 
 
 Write the draft and accept it for Henry Gold & Co., 
 date Sth April. 
 
 13. Toronto, 8th April, 1897.— Messrs. R. Green & 
 Sons have the draft discounted at the Imperial Bank at 
 10^ discount, and receive cash in return. 
 
 Endorse the draft. What are the proceeds ? 
 
 1 4. Draw a draft, at 20 days sight, in your own favor, 
 and have it discounted at Molsons Rank at 8^, supplying 
 names, dates and amount. See that it is properly accepted 
 and endorsed. Find the proceeds. 
 
 15. Montreal, May 10th, 18!)7.— Charles Wood buys 
 of Messrs. Gillespie & Sons 10 hhds. sugar, each kn'tO lbs., 
 at 4J/^, and 20 chests tea, each G2i lbs., at 53<^. On July 
 r)th Wood gives his cheque on Bank of Commerse in 
 payment. Write Gillespie's invoice and Wood's cheque. 
 
 16. Quebec, Aug. 19th, 1897. — Mr. S. Brush has on 
 deposit in the Quebec Bank $198.84. He draws from his 
 account $25.30 for himself. On the same day he deposits 
 ^422.85, and issues a cheque in favour of James Hall for 
 $14.90. Write both cheques. How does his account stand ? 
 
 17. Three Rivers, Apr. 24tli, 1898. — J. Ross borrows 
 $425 from H. Bird, and gives his note at 90 days, drawing 
 interest at 8°/^, in payment. At maturity Ross pays $132 
 to Bird, and gives a new note at 2 mos., drawing interest 
 at 10°/^, for the balance. Ross pays the second note l)y a 
 cheque on the Quebec Bank, (a) Write the first note. 
 (h) Write the second note, (c) Write tlie cheque. 
 
4G WEIGHTS AND MEASURES. 
 
 XXVII. 
 
 WEIGHTS AND MEASURES. 
 
 (See tables on p. 76, with notes.) 
 
 1. How many loads of coal, each 14 cwt. 96 lbs., are 
 contained in 5 trucks, each weighing 10 tons 8 cwt. ? 
 
 (Long ton.) 
 
 2. A dealer bought 600 tons of coal at S5.25 a long 
 ton, paid 75^ a ton for freight, and sold it for $5.75 a 
 short ton. Find his profit. 
 
 3. Sea water contains 2^7o of salt; what weight of 
 water would be required to yield half a ton of salt ? 
 
 4. Find the weight of a nnllion cent-pieces, each 
 weighing a quarter of an ounce. 
 
 6. Twelve tons (gross) of tobacco were sent to an army 
 of 1M,000 soldiers; how many lbs. should each receive? 
 
 6 A silk-worm produces 28 grains Troy of silk ; how 
 many must be kept to produce 112 lbs. Avoir. ? 
 
 7. Express in Troy weight the dilVerence between 140 
 lbs. and 2120 oz. Avoir. 
 
 8. Reduce the sum of :^00 lbs., o06 oz., 306 dwts. and 
 oOO grs. to Avoirdupois weight. 
 
 0. Find the dilit'erence in grains between the weight 
 of a pound of feathers and a pound of gold. 
 
 How many lbs. Troy are there in a long ton of gold ? 
 
 10. Express in lbs. Avoir, the weight of a nugget of 
 gold weighing 18 j- lbs. Troy. 
 
 11. A watch gains 13 seconds each hour; what will it 
 gain in a fortnight ? 
 
 12. How long would it take to count ten millions, 
 twenty thousand, three liundred, at the rate «•! uiio 
 huiulred and fifty per minute i 
 
WEIGHTS AND MEASURES. 
 
 47 
 
 eacli 
 
 13. A workman goes to work at 6.30 a.m. each morn- 
 ing and leaves at 8.15 p.m. What does he earn in 4 days 
 if he is paid 18 cents per hour till 6 p.m., and after that 
 time 24 cents per hour, but loses Ih hours of working 
 time each day for breakfast and dinner ? 
 
 14. A train travelling 45 miles an hour continues its 
 journey for 2h Ins., stopping twice for 7 min. 30 sec. each 
 time. What distance is traversed ? 
 
 15. A train leaving at 8.05 A.M. arrives at its destina- 
 tion at 2.45 P.M., travelling on an average half a mile per 
 minute. What is the distance traversed ? 
 
 16. If sound travels at the rate of 1000 ft. a sec, and 
 if a gun is discharged 5 J- mi. away, what time will elapse 
 after seeing the flash before hearing the sound ? 
 
 17. If light travels 186,000 miles a sec, how long 
 would it take to pass from the sun to the earth, a distance 
 of 02,000,000 miles ? How long to go round the earth, a 
 distance of 24,800 miles ? 
 
 18. From a rod a yard long, pieces each 057 of an inch 
 long are cut off; how many such ])ieces can be cut off, and 
 what will be the length of the remaining piece ? 
 
 10. How many roi)es, each 24 yds. 1 ft. 6 in. will 
 reach to a depth of 204 fathoms ? 
 
 20. Ho AT often is a chain contained in a mile and a 
 half ? What is the length of a chain in yards ? In rods ? 
 
 21. How many inches long is a link ? 
 
 22. The distance between two places is found to be 
 1000 chains. Express the distance in miles, etc 
 
 23. The four sides of a garden are 25 chains 10 links, 
 15 chains 8 links, 24 chains 08 links, and 16 chains 4 
 links. How many yards arouud the garden ? 
 
 24. Find in acres and sip chains the area of a rectan- 
 [^\\\nr field 17<>0 links lonr^ and 1200 links broad. 
 
i ! 
 
 48 
 
 WEIGHTS AND MEASURES. 
 
 W 
 
 25. A path is 15 links wide and 88 chains 40 links 
 long. Find the area of the path in sq. rods. 
 
 26. From a field of 6 acres, a rectangular piece 4*25 
 chains long and 2 4 chains wide is fenced off. Row much 
 is left ? 
 
 27. One field contains 4 sq. chains and another is 4 
 chains square. How many acres in both together ? 
 
 28. Take *432 of an acre from 6 J sq. chains, expressing 
 the result in square yards and a decimal. 
 
 29. A school-room having in it 45 pupils is 26 ft. wide 
 and 10 ft. 6 in, high. How long must it he to give 250 
 cub. ft. of space to each pupil ? 
 
 30. How many loads of loam, each a cubic yard, will it 
 take to cover a quarter of an acre of land 2 in. thick ? 
 
 3 1 . Find in gallons the measure to four decimal places 
 of a cub. ft. of water, and its weight in ounces Avoir. 
 
 32. Find tlie weight of water in a cistern 10 ft. long 
 4 ft. wide, the water standing 18 inches deep. 
 
 33. What weight of water does the Suez Canal contain, 
 if it be 100 miles long, 100 ft. wide and 25 ft. deep ? 
 
 34. Find the weight of air in a room 24 ft. long, 20 ft. 
 wide, 10^ ft. high, if 100 cub. in. of air weighs ;»1 grains. 
 
 36 Find the value, at ],<' a lb., of the ice taken from a 
 pond half an acre in extent, if the ice is 10 in. thick and 
 one cubic foot weighs 58 i lbs. 
 
 36. A floating body displaces it.s own weight of water. 
 How many cubic feet of water will be displaced by a ship 
 and cargo weighing 10,000 tons ? 
 
 37. A ship sails 2" DV o!ic day, 2" 35' the next, 2 So 
 the next, and 2 20' on tbe fourtb. Wbat (bslnncc is 
 traversed, reckoning fiO mibis to a degree in that latitude^ 
 
 38. A ship sails \-)^, 192, 1^7, 245, 241?, 203 and 22f> 
 knots (2000 yds.) in a week. Kind tbe distance in miles, 
 
MKTUIO SYSTEM. 
 
 49 
 
 XXVIII. 
 
 METRIC SYSTEM. 
 
 (See Book III., pp. 13-23.) 
 
 Length. 
 
 M 
 
 m. 
 
 Km. 
 
 H 
 
 m. 
 
 ]) 
 
 in. 
 
 m. 
 
 1 = 10 =- 100 =:r 1000 .:= 10,000 
 
 m. 
 
 hn. 
 
 cm. 
 
 mm. 
 
 1 = 10 = 100 = 1000 
 
 the 
 
 Construct after 
 unit of measure beiuir tlie lih 
 instruct tl 
 
 tlie above model the table of capacity, 
 
 he table of weight, the unit being the gram. 
 The theory of this system is that a metre is the 
 10,000,000tli of a quadrant of the earth through Taris: 
 the litre is a cubic decimetre in volume; the gram is the 
 weight of -J ^,\,(j^ of a litre fdled with water at 4 C. ; and 
 the franc weighs 5 grams. Hence 
 1 litre=l cubic decimetre=l kilogram. (Book III., p. 22.) 
 
 1. A wagon is loaded with 5 boxes weighing respec- 
 tively 102;ur. kilos, :\7-9:] kilos, lUl^-Ol kilos, 9S49 kilos 
 and l^o'G kilos ; what is the weiglit of tlie whole load ? 
 
 2. A peison paid 24 francs for 15 m. oi cloth; how 
 much will he pay for To cm. ? 
 
 3. How many litres of vinegar can l)e put into 500 
 bottles, if 25 of them will hold 025 cl. ? 
 
 4. j\[;ike out the f:»lb)wing bill : — G doz. dinner plates 
 at i'i't centimes each, 84 cheese plates at 4*45 fr. a doz., )) 
 dislies at 1-25 fr. each, 5 doz. glasses at •(J5 fr. each. 
 
 6. Two bicyclists start from opposite ends of the same 
 journey, which is 102-5 Km. long, and meet in 7 hr. 42 
 min. One rides Vfi) Km. an hour faster than the other; 
 what is the speed of the faster ? 
 
;o 
 
 METRIC SYSTEM. 
 
 KfVl 
 
 Wn 'il 
 
 6. Two trains start from Paris with an interval of 
 2 hrs. 21 rain. The first runs 48 24 Km. and the second 
 54-27 Km. per liour. At wliat distance from Paris will 
 the second overtake the first ? 
 
 7. A lawn 27 m. long and ir> m. wide has a walk 
 round it 2 m. wide ; what will it cost to cover the walk 
 with gravel at -oO fr. a sq. m. ? 
 
 8. Tf a pile of wood is 2 8 m. higli and 4 m. deep, how 
 lon^ must it be to contain 112 steres ? 
 
 9. Find the weight of water in a cistern 4 m. long, 3 
 m. vide and 2 m. deep. 
 
 10. How many HI. of water will a tank hold whicli is 
 880 m. long, G m. wide and 4.40 m. deep ? 
 
 11. A bin 4-5 m. long, 2 m. wide and :) m. deep will 
 hold how many litres of grain ? 
 
 . 1 2. Eacli ediie of a cube of br.ass is o cm. long ; find its 
 weight assuming brass to be 8 times as lieavy as water. 
 
 13. Find the weiuht of oil in a tank 5 m. x 4 m. X o m., 
 tlie weight of oil being 92% of the weight of water. 
 
 14. What is the weight of a bar of iron 4-00 m. x 7 
 cm. X 1-80 cm., specific gravity iM'ing 7*8 ? 
 
 15. How many franc pieces will weigh as much as a 
 cubic foot of water ? 
 
 16. A swimming-bath contained r»2-70 HI. of water: 
 water was tlien allowed to run for 2.V hrs. from a tuj. 
 which supi)lied it at the rate of .*-.2 1. i)er min. Find the 
 (piantity and weight of water then in the balh. 
 
 17. A family burned GOO kil(»s of c«)al in 40 days. If 
 a HI. of coal weighs 10 kilos, and 28 HI. cost oG fr., what 
 was the cost of a day's fuel ? 
 
 18. A cubical vessel 40 cm. on an edge is full of water. 
 n 14 1. are drawn oil and re}»laced ^.y a li(|uid wiiose weight 
 
 ! 
 
 IS 
 
 I tliat of water, what is the weight of the mixture ? 
 
METRIC SYSTEM. 
 
 51 
 
 walk 
 walk 
 
 Metkic Equivalents. 
 
 1 laetre = 39-o7 inches. 1 litre =1-76 pints. 
 
 1 kilometre = -6214 mile. 1 liectolitre =22-01 gal. 
 
 1 S(|. metre =1'106 sq. yds. 1 gram =15*4.'>2 grains. 
 
 1 hectare =2471 acres. 1 kilo = 2-2046 lbs. Av. 
 
 1 oil. metre =l-o08 cii. yds. 1 metric ton = 1-1023 tons. 
 
 AlTROXIMATE EQUIVALENTS. 
 
 Metre 
 Kilometre 
 S(|, metre 
 Hectare 
 
 = 1-1 yds. 
 
 = ^ mi. 
 
 = 11 sq. yds. 
 
 Cu. metre =l-o cii. yds. 
 Litre = 1^ pints. 
 
 Hectolitre = 22 gal. 
 
 — 01 
 
 acres. 
 
 Gram 
 
 = 1 
 
 grains. 
 
 Cu. centimetre =j^g- cvl inch. Kilogram =21 lbs. Av. 
 
 19. Express a metre in yards; an inch in cm.; a yard 
 in metres ; a mile in Km. {S places of ihrimnh.) 
 
 20. Express a sq. metre in sq. inches; a sq. inch in sq. 
 cm. ; a sq. yd. in sq. m. ; an acre in hectares. 
 
 21. Express a cu. cm. in cu. in.; a stere in cords; a 
 cu. inch in cu. cm., a cu. vd. in cu. m. 
 
 22. Express a pint in litres ; a gal. in HI. ; a bu. in 1. 
 
 23. Express a mg. in grains; a grain in grams; an oz. 
 Av. in grams ; an oz. Troy in grams ; a lb. Av. in kilos. 
 
 24. How many nules and rods are there in 30-675 Km. ? 
 
 25. Change 3 cu. yds. 4 cu. ft. to cu. m. 
 
 26. Express 10 cu. ft. 156 cu. in. in litres. 
 
 27. Ex})ress 1*S00 gal. in cu. m. 
 
 28. Change 1525 eg. to oz. dwt. grs. 
 
 20. Change CI 2-5 dl. to cu. ft. ami cu. in. 
 
 30. Find as tlu^ decininl of an inch the dillerence 
 between 12 inclics and 30 cm. 
 
 31. If a cul)ic foot of cj1j»ss weish 156 lbs,, find in 11)S. 
 and also in kilograms the weight of a pane of glass 24 
 inches long, 20 iuclies wide and I inch thick. 
 
52 
 
 METRIC SYSTEM. 
 
 32. xV train goes at an average rate of 5 Km. in 6 
 minutes. How long will it take to go from Montreal to 
 Ottawa, a distance of 1 20 miles ? 
 
 33. Find the weight in kilograms of a rectangular 
 block of gold 8 inches long, o inches wide and 2 inches 
 tliick, gold being 19| times as heavy as water. 
 
 34. A metre being oOoTl inches, show that a kilo- 
 metre is -621385732 of a mile. 
 
 36. Express a millimetre in in. and a kilometre in ft. 
 
 36. A kilogram is ecpial to 2-2046 lbs. Av., and a 
 cubic inch of water weighs 252-0 grains. Hence find the 
 number of cubic inches in a litre. 
 
 37. A litre of air weighs 1-3 grams; how many grains 
 will a cubic foot of air weigh ? 
 
 38. in 25 kilograms how many lbs. Troy ? 
 
 39. A vessel full of water weighs 5*25 Kg. ; the weight 
 of the vessel when empty is 250 g. How many litres will 
 the vessel hold ? 
 
 40. A piece of iron weighing 100 lbs. is made into a 
 bar 5 cm. wide and 2-5 cm. thick. What is its length if 
 the specific gravity of the iron is 7*5 ? 
 
 41. A bottle empty weighs 10,000 grains; full of oil it 
 weighs 1075 grams. What part of a litre will the bottle 
 hold if the specific gravity of the oil is -9 ? 
 
 42. Mention the standard units in the metric system, 
 and explain how each of the other standards is derived 
 from that of length. 
 
 43. How was the standard of length determined i 
 
 44. Express the metric standjirds in British denomina- 
 tions, correct to o places of decimals. 
 
 45. Wliy is the system called INIetric ? 
 
 46. What is its great superiority over every other 
 system of weights and measures i 
 
POWERS AND ROOTS. 
 
 53 
 
 ' 
 
 XXIX. 
 
 POWERS AND ROOTS. 
 
 A. — SuUAKES AND CUBES. 
 
 Find the S(|uare of 
 
 1. 41. 
 
 o 
 
 4. 3. 025. 4. 01. 6. 24.U 6. 50-24. 
 
 Find the cube of : — 
 
 7. :u. 8. l-i:j. 9. 1005. 10. 1:1. 11. iv". 12. ;;i 
 
 1 'J- 
 
 5 'J 8- 
 
 'O. 
 
 Find the value of :- 
 13. 51*'. 14. (21)'. 
 
 15. 
 
 17''. 
 
 16. (;;/. 17. {l\f. 
 18. 2:;-+l^' + ^'. 19. l-O^P-l-O^;-. 20. ^572-5^-36^. 
 21. ;;8''+17'-18l 22. 39"^x4S=\ 
 
 23. (307H 307') -f 30700. 24. (1 5'^ - 1 -iW) -^ 15. 
 25. 1-03 (4-07 + 3-l())'. 26. 3000 (M x •031)''. 
 
 K — Square Koots. 
 
 Extract the square root of: — 
 
 1. 576. 2. 1681. 3. 1156. 4. 4761. 
 
 5. 18760. 6. 18;;iS4. 7. 10404. 8. 266256. 
 
 9. 1-502644. 10. 234-00. 11. -0005,3361. 12. 1073-741824. 
 13. 42|. 14. 30iV 15. 5021. 10. 113!-^. 
 17. \ii. 18. A^'V. 19. .^.^yVV. 20. 
 
 1 .•{ 8 4 
 
 (5" j'j'y (T* 
 
 ^81-4. 
 v^-OOOlH). 
 
 Find to three decimal places the value of: — 
 21. V2. 22. VO. 23. V706- 24. 
 
 25. V4;:|. 26. x/8.V 27. s/ i. 28. 
 
 29. ^328 + ^7 + ^5. 30. V 1 142^44 -fVl 1-628 L 
 31. 5v/3 + :;>/.5. 32. V-07~V00. 
 
 Find a mean proportional, conect to '> ])la('es, to :— r- 
 33. 25 and 0. 34. 8 and 18. 36. 28 and 6:; 36, 7 and 13. 
 37. j and I 38. 25 and 81.39. /, and .',. 40. -12 and -48. 
 
54 
 
 POWERS AND HOOTS. 
 
 41. "What is the side of a square whose area contains 
 106,929 sq. yards ? 
 
 42. A rerrinieut consists of 15,876 foot-soldiers ; how 
 many must he phiced in rank and tile to form a solid sq. ? 
 
 43. A square farm contains o6-l acres ; how many rods 
 
 square is it ? 
 
 44. Find in rods the length of a side of a square piece 
 of land containing 262 ac. 105 sq. rods. 
 
 45. A rectangle is 81 yds. long hy 64 yds. wide. Find 
 tlie side of a sijuare that has the same area. 
 
 46. A rectangular field containing 80 acres is twice as 
 long as it is hroad. Find its length and breadth. 
 
 Hypotenuse -= x/Base' + rerpendicular'. 
 
 Perpendicular = -v/Hypotenuse>' - Vynsei 
 
 }^n.se = /v/Hypotenuse^ — rerpendicidarl 
 
 47. If the sides of a right- 
 angled triangle be 2 in. and 3 in. 
 in length, find the hypotenuse 
 correct to j^y part of an inch. 
 
 48. If the hypotenuse be 8 ft. 
 and base 4 ft., find the perpendi- 
 cular correct to yoVo ^^ ^ ■^*^'^^- 
 
 49. Find the height of a window 
 reached Ijyaladder 25 ft.long.whose 
 foot rests 15 ft. from the house. 
 
 50. The height of a tree standing on a riverside is 100 
 ft., and a line stretched from its top to the opposite bank 
 is 144 ft. ; find the width of the river. 
 
 51. A tree was broken .")5 feet from its root, and 
 strack the crround 21 feet from it- base. Find the height 
 of the tree. 
 
 52^42+32 
 
POWERS AND ROOTS. 
 
 55 
 
 C. — Cube Roots. 
 
 how 
 
 Extract the cube root of : — 
 
 13 
 
 1. 2197. 
 
 2. 12167. 
 
 3. 19683. 
 
 4. 493039. 
 14. 15i 
 
 39651821. 
 
 e 4 • 
 
 6. 7077888 
 
 9. 1-225043. 
 
 10. 27270-901. 
 
 7. 134217728. 11. -000300763. 
 
 8. 228099131. 12. 233-744896. 
 15. 37oV. 16. 13]^f. 17. 51641^^. 
 
 Find, correct to 3 places of decimals, the value of : — 
 18. 4/73. 19. ^108. 20. v^-lT2. 21. 4^-00.3. 
 22. 4/^)00714 + ^32. 23. x/wi + ^301 -v^ 1607^1^ + 
 
 v/24T-i40625. 
 
 24. Find the cube root of the fourth power of 112. 
 
 25. What is the length of the side of a cube which 
 contains 9 c. yds. 11 ft. 64 in. ? 
 
 26. Find tlie content of a cube, if the diagonal of one 
 
 of its faces is 12v^2 inches. 
 
 27. The areas of similar surfaces are to each other as 
 the squares of their like dimensions. 
 
 (a) If a pipe one inch in diameter will fill a cistern 
 in 60 minutes, how long will a pipe 2 in. in diameter take? 
 
 (h) If one side of a triangle containing 36 sq. yds. 
 is 8 yds., what is the length of a corresponding side of a 
 similar triangle which contains 81 sq. yds. ? 
 
 28. The contents of similar solids are to each other as 
 the cubes of their like dimensions. 
 
 (a) If a globe 4 in. in diameter weighs 32 lbs., what 
 is the weight of a globe 5 in. in diameter ? 
 
 (b) If a sphere 3 in. in diameter weighs 4 lbs., what 
 is the diiimeter of a sphere that weighs 32 lbs. ? 
 
tr\ 
 
 Ml 
 
 |t%4 
 
 I't" 
 
 56 
 
 MENSUUATION. 
 
 (liooklll., p. 27.) 
 
 area 
 
 What 
 
 MENSURATION. 
 
 XXX. 3F»X«..^ JM lEJ 
 
 A. — rAllALLELOGRAMS. 
 
 Area = length xjKrpcndUudar height. 
 Area — hase x altitude. 
 
 If h stands for altitude and h for base, 
 
 (1) area = A x h, (2) h = %;"% (?>) h - 
 
 If base and altitude are equal, h = h, then 
 
 area = h"^, h = v area ; or area = Ir, h = v area. 
 
 1. The area of a square is 544^ s(j[uare yards, 
 is the lentith of its si<le ? 
 
 2. The area of a rectangular field is 14 acres 91 sq. 
 rds. ; what is its breadtli, its length l)eing ir)7r) links ? 
 
 3. What is the pijrpendicular breadth of a rhomboid 
 n acres in area and 20,000 links in length ? 
 
 4. The paving of a square court cost £1. 7s., at the 
 rate of Is. 4d. per square yard. How long was it ? 
 
 5. 900 paving stonee each 2 ft. by 1 ft. .'5 in., are 
 required for a pathway 100 yards in length. What is the 
 width of t'le pathway ? 
 
 6. AVhat wid be the cost of painting the walls and 
 ceiling of a room 17 ft. long, 13 ft. o in. broad and 11 ft. 
 high, containing two windows, each G ft. by 4 ft. ,*> in., and 
 two doors, each 8 ft. by 4 ft., at the rate of SI. 08 sq. yd. ^ 
 
 7. Two pathways, 5 ft. wide, at right angles to one 
 another, and parallel to the side, run across a rectangular 
 courtyard 79 ft. by 63 ft. Find the cost of paving them 
 at 99 cents per sq. yd. (Draiv diagram.) 
 
 8. How many links lomr is a square field containin'j 
 9 ac. 81 sq. rods ? 
 
MENSURATION. 
 
 57 
 
 B. — Triangles. 
 
 1. Area = ^ (base x altitude.) (Book III., p. 28.) 
 
 (1) area = ^-f , (2) A = «^^f^2^ (3) b = ^^'^-^\ 
 
 2. Area ui terms of the sides = >/s {s ■— a) (s —■ b) {s — e) 
 where s is half the sum of the three sides. 
 
 Rule. — F7vm half the sum of the three sides subtract each 
 
 side separately ; midtiply the half sum and t, j three remain' 
 
 dcrs together, and extract the sq\iare root of the product. 
 
 (For hypotenuse, base and perpendicular of right-angled triangles, 
 see p. 54.) 
 
 1 . Find the areas of the following triangles : — 
 
 (a) Base, 150 ft. ; altitude, 42 ft. 
 
 (b) Sides, 12, 15 and 18 yards. 
 
 (c) Sides, 1200, 1450 and 1500 links. (Ans. in ac.) 
 {(l) Sides, 4*5, 6*2 and 7 8 inches. 
 
 {e) Perimeter, 120 ft. ; sides proportional to 5, 9, 10. 
 (/) Perimeter, 27 yds. ; triangle, equilateral. 
 
 2. Base, 128 ft. ; area, 298fy sq. yds. Find altitude. 
 
 3. Area, 144 acres ; altitude, 60 rods. Find base. 
 
 4. A board 16 feet long is 22 inches wide at one end 
 and tapers to a point ; w^hat is its value at 4\ cents a ^(\. 
 foot ? 
 
 5. Find the area of a square field whose diagonal is 
 380 yards. 
 
 6. A square field contains 35 acres ; find its diagonal. 
 
 7. The area of a triangle is 6 ac. 88 sq. rods, and a 
 perpendicular from one angle on the base measures 524 
 links. Find the length of the base in chains. 
 
 8. The sides of a triangular field are 300, 400 and 500 
 
 vards : if a belt 50 yds. wide is cut ofl* tlie field, find the 
 
 sides of the interior triangle and the area of the belt. 
 5 
 
68 
 
 MENSURATION. 
 
 C. — Tkapezoid and Trapezium. 
 
 A trapezoid is a four-sided figure having two of its 
 opposite sides parallel. 
 
 A trapezium is a four-sided figure having no parallel 
 sided. 
 
 Trapezoid. 
 
 Trapezium. 
 
 1 . The area of a trapezoid is equal to half the sum of its 
 parallel bases 111)01112)1 led bt/ its altitude. 
 
 If b and b^ stand for the parallel bases, 
 
 area = -^ {b-\-b^)xh. 
 
 2. The area of a traitezium is equal to the diagonal 
 multiplied by half the suvi of the two p)(^Tpendiculars falling 
 upon it from the opposite angles. 
 
 If // and h^ stand for the perpendiculars, and d for the 
 diagonal, area = ^ (A + h'^) x d. 
 
 3. Prove the two rules given above by showing that 
 both are equivalent to the following : — 
 
 The area of a trap)ezoid or trapezium is equal to the sum 
 of the areas of the two triangles into which the figure may 
 he subdivided. 
 
 4. A field is in the form of a trapezoid ; its parallel 
 sides are 10 chains 30 links and 7 chains 70 links iu 
 length, and the distance between them is 7 chains 50 
 links. Find the acreage. 
 
 5. Find the area of an irregular piece of ground, the 
 diagonal of which is 320 yards and the perpendiculars 
 35*5 yds. and 42.} yds. 
 
MENSURATION. 
 
 50 
 
 6. Find the acreage of a trapezoid whose parallel 
 sides are 1964 and 1250 links respectively, and whose 
 altitude is 250 links. 
 
 7. Find the acreage of a field ABCD, right-angled at 
 B, if AB = 525 links, BC = 440 links, CD = 875 links, and 
 DA = 260 links. 
 
 8. In a trapezium EFGH, EF = 586, FG = 1068, GH = 
 766, HE = 964, and EG = 1468. Find the area. 
 
 9. A four-sided field has two sides parallel and the 
 other two sides equal to one another ; if the parallel sides 
 are 370 and 250 links long, and each of the equal sides 
 100 links long, find the area. 
 
 1 0. The opposite sides of a quadrilateral are parallel, 
 and the distance between them is 7 chains 50 links ; if 
 the area is 675 acres and tlie length of one of the parallel 
 sides is 10 chains 30 sides, find the length of the other. 
 
 D. — Circle. 
 
 1 . The circumference of a circle — diameter x 34 or 3-1416. 
 (Book in., p. 30.) 
 
 The letter tt stands for the ratio of the circumference 
 to the diameter. Hence tt *= y- or 3vl416. 
 
 If r stands for radius, 2r will stand for diameter, then 
 
 circumference 
 
 TT 
 
 p. 30.) 
 
 (1) circumference = 2xr, (2) 2r = 
 2. Area of circle = ^ {circumference x radius). (Book III. , 
 
 = ^(2 7rrxr) = 2^ 
 
 = 7r?'l 
 
 Rule. — The area of a circle is found (a) hy multiplying 
 the circumference hy half the radius, or (b) hy multiplying 
 the square of the radius hy ^ or 31416. 
 
 3. Find the area of the circle whose radius is (a) 40 
 feet, (h) 1760 yards, (c) 5 ft. 9 in. 
 
 * In the exercises of this booic tt = •^f\ unless stated otherwise. 
 
60 
 
 MENSURATION. 
 
 4. Find ilie area of a circle whose circumference is 
 (a) 200 yards, (h) 10 feet. 
 
 5. Find tlie radius of the circle whose area is (a) 50 
 sq. ft., (h) half an acre. 
 
 6. The radius of a circle is 10 ft., and a square is 
 inscribed within it ; find the difference between the area 
 of the circle and that of the square. 
 
 7. How many times will a roller, whose breadth is 3 
 ft. 6 in. and diameter 2 ft. 6 in., have to revolve to roll a 
 cinder-path a quarter of a mile long and 7 ft. broad ? 
 
 8. A circular field contains 3 acres, and a walk round 
 it contains ^ acre ; what is the diameter of the field, of the 
 field and tlie walk, and tlie breadth of the walk ? 
 
 9. The circumference of a circle is one mile ; find its 
 area in acres. 
 
 10. Find the circumference of a circle whose area is 
 equal to tliat of a square the side of which is 320 yds. long. 
 
 1 1 . Find the number of sq. rods in a roadway 5 yds. 
 wide rouml a circular pond 120 yds. in diameter. 
 
 12. A circle, an equilateral triangle and a squctre liave 
 tlie same perimeter, 120 feet. Find tlieir areas. 
 
 13. The diameters of the wheels of a bicycle are 52 and 
 15 inches respectively; determine how many more revohi- 
 tions the small wheel would make than the large wheel 
 in a distance of 13 miles. 
 
 14. The area of a square is OS acres ; find in yards the 
 circumference of the circumscribing circle. 
 
 15. The radius of the inner boundary of a circular ring 
 is 14 inches ; the area of the ring is 100 sq. inches. Find 
 the radius of the outer boundary. 
 
 16. An as^ is tethered in the midst of a field so that it 
 can feed on an acre of grounil ; what is the length of th<' 
 tether ? 
 
MENSURATION. 
 
 61 
 
 XXXI. SURFACES AND VOLUMES OF SOLIDS. 
 
 A. — Cube, Prism, Cylinder. 
 
 Cube. 
 
 General Rules. — (a) The area of 
 the lateral surface of a cube, prism or ^*'"^'*'"' Cylinder. 
 cylinder is the product of the perimeter of the figure by its 
 altitude. 
 
 • (b) The area u/' the total surface of a cube, prism or 
 cylinder is the sum of the areas of its lateral surface and its 
 two bases. 
 
 (c) The volume of a cube, prism or cylinder is the product 
 of the area of its base by its altitude. (See Book III., p. 31.) 
 
 From the above rules we derive the following:— 
 
 1. Cube. — Tf X stands for the length of its side, 
 Lateral surface = 4:.t^ (1), Total surface = ijji^ (2). 
 
 Volume = x^S). 
 
 2. Prism. — lij) stands for perimeter of huse, 
 Lateral Surface = pxh ( 1 ). 
 
 Total Surface — (p x h)-^-- areas of two bases (2). 
 Volume = area of base x h (.'»). 
 
 3. Cylinder. 
 
 Con rex surface^ circumference of base x altitude = 
 
 2 7r;-x//(l). 
 Total surface = {'2 IT r X h)-\- arras of two basest 
 
 2Trrxh-{-2Trr^(2). 
 Volume = area of base x altitude = x r x h (.'> ). 
 
 4. Find the total surface of a cube whose edge is {a) l.' 
 iu.,(/>)n ft. 10 in., (0 ft. n in., (W) 5 ft. 1 in.. 0)10 ft.;) in. 
 
62 
 
 MENSURATION. 
 
 5. Find the total surface of a parallelopipedon which 
 measures (a) 10 in., 15 in., 18 in. ; (h) 6 ft. 1 in., 2 ft. 10 
 in., 1 ft. 8 in., (c) 6 ft. 3 in., 5 ft. 4 in., 4 ft. 9 in. 
 
 6. Find the total surface of a triangular prism, the 
 sides of whose base and lieiglit are (a) 2 in., 3 in., 3 in. and 
 1 ft.; (b) 2 ft. 3 in., 1 ft. 5 in., 1 ft. 5 in. and l.V ft. 
 
 7. Find the total surface of a cylinder wliose radius 
 and height are (a) 2 in. and 1 ft. 4 in. ; (h) 1 ft. G in. and 
 9 in. ; (c) 9 in. and 1 ft. 6 in. 
 
 8. Find the lateral surface of a liexagonal prism, eacli 
 edge of base being 2 ft. 3 in. and height 5 ft. 
 
 9. If 30 cubic inches of gunpowder weigh a lb, what 
 weight of gunpowder will be required to fill a cylinder 
 whose internal diameter is 8 in. and length 2.} ft. i 
 
 10. Find the length of the edge of a cubical block of 
 stone containing 46 cub. yds. 513 cub. in., and the number 
 of s(|. inches in its entire surface. 
 
 11. AVater is poured into a cylindrical reservoir 20 ft. 
 in diameter at the rate of 400 gallons a minute. Find 
 the rate per minute at which the water rises in tlie 
 reservoir. 
 
 12. The length of a trough is 15 ft. and its ends are 
 equilateral triangles; it contains 17.".,2U0 cuV)ic feet of 
 water, liequired the depth. 
 
 13. Find the volume of a prism on a triangular base, 
 the sides of the base being 51, 40, 13 in., and the lieiglit 
 
 58 in. 
 
 14. The .surface of a cube contains 337 sq. ft. 72 sq. 
 
 in. ; find its volume. 
 
 16. The external measurements of the sides of a box 
 are 3, 2-2, 1-52 ft. ; find its volume. Find also the culacal 
 space inside tlie box (closed by a lid), the thickness of the 
 wood being ^V ft. 
 
MKNSUnATION. 
 
 63 
 
 B. — PtEGULAR Pyramid and PiIght Circular Cone. 
 
 
 pyramid. Cone. 
 
 A pyramid is a solid, (he base of uhich is any plane figure, 
 and its lateral faces are triangles meeting in a point called the 
 vertex of the pyramid. 
 
 Pyramids, like prisms, are named triangular, square, etc., 
 as tlieir bases are triangles, squares, etc. 
 
 A cone is a round pyramid with a circle for its base. 
 
 Oeneral rules. — (a) The area of the lateral surface of a 
 pyramid or cone is half the product of the perimeter of the 
 base by the slant height. 
 
 (b) The area of the total surface of a pyramid or cone is 
 the sum of the areas of the lateral surface and of the base, 
 
 (c) Tfie volume of a pyramid or cone is one-third the area 
 of the base multiplied by the altitude. 
 
 From the above we get the following formuhe : — 
 
 1. Pyramid. 
 
 Lateral surface = .V (perimeter x slant height). 
 
 Total surface = sum of triangular faces -\- area of base. 
 
 Volume = } (area of base) x altitude. 
 
 2. Cone. — If r — radius of base, 
 
 Latere^ surface = 1 (circumjerence of base) x slant 
 height— tt r\ lant height. 
 
 'Total surface ^(ir rx slant height) + tt rl 
 Volume — }i (area of base) x altitude = ?, tt ;•- x h. 
 
r'' 
 
 64 
 
 MENiSUIfATION. 
 
 3. Calculate the entire surface of a square pyramid 
 whose slant height is 18 inches, the area of its base being 
 144 sq. ill. 
 
 4. Calculate the entire surface of a triangular pyra- 
 mid whose three lateral faces and the base are equilateral 
 triangles, each side measuring 2 inches. 
 
 5. l)raw the developed convex surface of a cone, the 
 diameter of whose base is 4 inches, and whose slant 
 height is inches. Find this surface. 
 
 6. How many square inches of paper would be required 
 to cover the side and base of a cone inches in diameter 
 at the base, and having a slant height of 10 inclies ? 
 
 7. Find the slant height of a cone whose altitude is 
 11^ inches, the diameter of its base being 10 inches. What 
 is its convex surface ? 
 
 How is a right circular cone generated ? 
 
 NoTK. —The altitude of a cone or pyramid, the slant height and the 
 peipendimilar from the centre of the base to the aide, form a right- 
 
 augl"" \ triangle. 
 
 8. liequired the volume of a square pyramid lo ft. 
 1) in. high, the side of its base being 2 ft. G in. 
 
 9. AVhat is the solidity and surface of a cone 5 feet 
 in diameter and 12 feet high ? (x =)V1416.) 
 
 1 0. A triangular pyramid has each side of the base 5 
 ft. ; the iieight is 10 ft. ; find its solidity and surface. 
 (tt =ai410.) 
 
 11. Find the volume of a cone whose altitude is 18 
 metres and diameter of base 6 metres. 
 
 12. A conical tent whose slnnt height is 12 ft. requires 
 132 sq. ft. of canvas to cover it. Find how many feet of 
 ground the tent covers. 
 
 13. It is requireil to cover a piece of ground 80 feet 
 squnre with a pyramidal tent uO feet in perpendicular 
 
 I 
 
 # 
 
MENSURATION. 
 
 65 
 
 I 
 
 lieight. Find the cost of the requisite quantity of canvas 
 at 4^d. per square yard. 
 
 14. How many square yards of canvas will l)e neces- 
 sary to form a conical tent whose perpendicular heiglit is 
 10 ft. and diameter on the around 21 f t. ? 
 
 15. Find the slant height of a cone whose volume is 
 19| cub. ft. and diameter at base o} ft. 
 
 16. Find the volume of a cone, the height of which is 
 15 ft. and circumference of base 14 ft. 
 
 17. The diagonal of the base of a square pyranud and 
 the diameter of the base of a cone are each 16 ft. ; their 
 altitudes are equal, but the volume of the cone exceeds 
 that of the pyramid by 281 cub. ft. Find the altitudes. 
 
 1 8. The Great Pyramid of Egypt stands on a square 
 ])ase, each side of which is 764 feet, and its height is 480 
 ft. Find its volume in cubic feet. 
 
 C. — The Sphere. 
 
 A sphere or globe is a solid hounded 
 hy a curved surface, 
 all points of which 
 are equally distant 
 from a point within 
 called the centre. 
 
 Sphere. 
 
 Ilemisphere. 
 
 Cut a sphere (a round apple, for instance) into a 
 number of small pieces, passing tlie knife in each case 
 through tlie centre of the sphere. 
 
 Eacli i)iece is a triangular solid having for its l)ase .; 
 portion of the surface of the sphere, and for its altitude 
 the radius of the sphere. 
 
C6 
 
 MENSURATION. 
 
 ■4:3' 
 
 When the pieces are very numerous the base of each 
 may be considered a plane and the solid a triangular 
 pyramid. The volume of each pyramid is equal to the 
 base X ^ altitude, and the total volume of all (which is 
 the volume of the sphere) is equal to the total surface of 
 all the bases (which is the surface of the sphere) multi- 
 plied by } altitude, that is } radius. 
 
 1 . Surface = circumference x diameter = 4 tt r'^. 
 
 2. Volume = 4 TT r^ X ]^r = * x r^. 
 
 3. Find the surface of a globe 8 inches in diameter. 
 
 4. Find the surface of the earth, its diameter being 
 SOOOmi. (tt =3-1416.) 
 
 5. Find the solidity of a 10-inch globe. 
 
 *3. Solidity of a cannon-ball 9 inches in diameter ? 
 
 7. If a heavy sphere o inches in diameter be im- 
 mersed in a pail full of water, how much water will run 
 over ? 
 
 8. What is the weight of a cannon-ball 12 in. in 
 diameter, iron being 7"5 times as heavy as water ? 
 
 9. Find the ratio between tlie volume of a sphere 1 
 ft. in diameter, and that of a cube whose side is 1 ft. 
 
 10. Find the weight of water in a hollow sphere whose 
 internal diameter is 3 ft. 6 in. 
 
 11. A cube and a sphere being of equal volume, find 
 the ratio of the radius of the sphere to the side of the 
 cube. 
 
 12. What is the solid content of a sphere wljcn its 
 surface is equal to that of a circle 4 feet in diameter ? 
 
 13. Find the ratio between ihe volume nf a sphere 
 4 in. ill diameter and that of a cylinder 4 in. high, radius 
 of base 4 in. 
 
 14. Weight of a hollow spltere, specific gravity l)eiug 
 7'77G, inside diameter 18 in., and tliickness 2 in. ? 
 
MENSURATION. 
 
 67 
 
 5f each 
 uigular 
 
 to the 
 liich is 
 'face of 
 
 multi- 
 
 leter. 
 r being 
 
 ycr ? 
 be ini- 
 ill run 
 
 in. in 
 
 pliere 1 
 
 ft. 
 
 3 wliose 
 
 ne, find 
 I of the 
 
 }]cn its 
 er? 
 spliere 
 , radius 
 
 Frustum of 
 Pyramid. 
 
 Frustum of 
 Cone. 
 
 1). — The Frustum. 
 
 AVhen the top of a cone or 
 pyramid is cut ofi' parallel to the 
 base, the part remaining is called a 
 frustum. 
 
 The distance between the paral- 
 lel bases is called the altitude of 
 the frustum. 
 
 General Rules. — (a) The lateral 
 Hirrface of a frustum is equal to half the product of the sum 
 of the perimeters b(/ the slant height. 
 
 {b) The total surface of a frustum is the sum of the areas 
 of the lateral surface aud of the two bases. 
 
 (c) The volume of a frustum is equal to the sum of the 
 areas of the two bases and the square root of their product, 
 multiplied by one-third of the altitude. 
 
 From which we derive the following formulte : — 
 
 1. Frustum of Pyramid. — If b and b^ stand for areas 
 of the l)ases, andj?; and;?! for perimeters of bases, 
 
 Lateral surface = .V {p +2)^) X siant height. 
 Total surface — i {p -\-p^) x slant height + (h + /;,). 
 Volume = \h (b + b^ + Jbb^). 
 
 2. Frustum of Cone. — If ;• and rj stand for radii 
 of bases. 
 
 Lateral surface = tt (>• -f- r,) x slant height. 
 
 Total surface = tt (>• + >'i) x slant height + tt ( r" -f rf ). 
 
 Volume = I TT h (r^ + r^^, + rr^). 
 
 3. The altitude of a frustum of a pyramid is 2^^ ft., 
 tlie ends are 5 ft. and 3 ft. scjuare ; what is its solidity ? 
 
 4. Find the lateral surface of tlie frustum of a S(]uare 
 pyramid, one side of the upper base measuring 2 feet, of 
 the lower base 3 feet, and having a slant height of 4 feet. 
 Find tlie entire surface. 
 
68 
 
 MENSURATION. 
 
 5. Draw the patcern of a small shade for a candle. 
 Make the upper opening 11 inches in dia- 
 meter, the lower 2 5 inches in diameter, and 
 the slant heicdit 2 inches. Find its convex 
 surface. 
 
 6. How many square inches of tin will l)e required to 
 make a circular j^^ii (open at the to])), its diameter at 
 top being 9 inches, at bottom G inches, and slant height 4 
 inches. Draw the pattern. 
 
 7. Find the cost of a piece of marble in the form of 
 the frustum of a cone, the diameters of tlie two ends beimr 
 11 ft. 8 in. and 8 ft. 2 in., and the slant height 18 ft. 5 
 in., and the ^alue of a cubic foot of marble being 12s. 
 
 8. Find the convex surface of the frustum of a cone, 
 the circumferences of the bases being 15 inches and 20 
 inches, and the slant height 10 inches. 
 
 9. How many square yards are there in the entire 
 surface of a frustum of a cone, the radius of the upper 
 base being 3 yards, of the lower base 5 yards, and the 
 slant heidii vards ^ 
 
 10. Find the volume of the frustum of a cone, the 
 circumferences of wl\ose bases are G6 and 56 feet, and 
 whose height is 4 feet. 
 
 11. Find the w-'ght of water in a tank in the form of 
 a frustum of a cone, the radii of the ends being 10 feet 
 and 8 feet, and tlie distance between beinsj: 5 feet. 
 
 12. How many sq. feet of tin will be required fur a 
 funnel if tlie diameters at top and bottom are to be 28 in. 
 and 14 in., and the slant heifdit 24 in. ? 
 
 13. How often can a conical wine-glass, 2.V in. in 
 diameter and 2 in. deep, be idled from a cylindrical 
 tumbler, 4 in. in diameter and ?>l in. deep ? 
 
MENSURATION. 
 
 CO 
 
 candle. 
 
 lired to 
 eter at 
 ei"lit 4 
 
 form of 
 .s being 
 .8 ft. 5 
 2s. 
 
 a cone, 
 and 20 
 
 entire 
 
 upper 
 
 nd the 
 
 we, the 
 it, and 
 
 "orni of 
 10 feet 
 
 1 fur a 
 I 28 in. 
 
 in. in 
 ridrical 
 
 FORMULA IN MENSURATION. 
 
 I.-PLANE FIGURES. 
 
 Ji b stands for base, h for altitude, r for radius, (/ for diagonal, 
 formulae will be as follows : — 
 
 Parallelogram. Trapezium. 
 
 area -- bh. area - h{h + h,)x(L 
 
 Triangle. 
 
 area --■- \bh. Circle. 
 
 ana 
 
 Trapezoid. 
 
 circumference ---^ 
 
 \{h + b,)x 
 
 h. area 
 
 r= 
 
 V'2 ■--- 1-414. 
 
 ?/ — 
 
 l-46o. 
 
 V.S 1-732. 
 
 ir 
 
 - -3183. 
 
 VV - 1-772. 
 
 1 
 
 - -5642. 
 
 II. 
 
 -SOLIDS. 
 
 
 J TT r 
 
 TT r' 
 
 If b stands for area of base, j) for perimeter of base, r for radius of 
 base, h for altitude, and I for slant height, formula' will be as follows : 
 
 Prism. 
 
 Sphere. 
 
 lateral surface 
 
 ph. 
 
 total surface 
 
 ph-h2b. 
 
 volume 
 
 bh. 
 
 Cylinder 
 
 , 
 
 lateral surface = 2 t rh. 
 
 total surface --^ 2 t 
 
 rh + 2Kr-. 
 
 volume ----^ TTr' 
 
 M. 
 
 Pyramid, 
 
 
 lattral surface 
 
 I pi. 
 
 total surface 
 
 \pUb. 
 
 volume 
 
 hbh. 
 
 Cone. 
 
 
 lateral surface 
 
 TT rl. 
 
 total surface 
 
 7Trl + -Tr\ 
 
 {■olnme 
 
 l^-r-h. 
 
 surface 
 volume 
 
 4 rr >• 
 
 TTV 
 
 Frustum of Pyramid. 
 
 lateral surface ^- h {p + ])^^)xL 
 total surface — 
 
 volume -^ ^h (b + b^+ \'bb ^ ). 
 
 Frustum of Cone. 
 lateral surface ■■- ^/(>"+>"i). 
 total surface ~ 
 
 volume -■= ;\ ~ h {r- i- /■,- + rr^ ). 
 
70 
 
 MENTAL ARITHMETIC, 
 
 xxxn. 
 
 TEST EXERCISES IN MENTAL ARITHMETIC. 
 
 1. 72-) articles 
 
 2. 846 articles 
 
 3. 397 articles 
 
 4. 807 articles 
 
 5. G48 articles 
 
 6. 296 articles 
 
 7. 588 articles 
 
 8. 588 articles 
 
 9. 588 articles 
 10. 588 articles 
 
 at 15 cents each, 
 at 3."»>; cents each, 
 at 12^ cents each, 
 at GG| cents each, 
 at ?i'7\ cents each, 
 at 62} cents each, 
 at 87.V cents each, 
 at 8i cents each, 
 at 16 1 cents each, 
 at $1.25 each. 
 
 B 
 
 1. 
 
 2. 
 3. 
 4. 
 
 5. 
 6. 
 
 Multiply 68 by 75. 
 Cost of 68^1 articles at 8 cents each. 
 9 acres 90 sq. rods at $10 a sq. rod. 
 Express -594 as a vulgar fraction. 
 
 Difference between "16 an-' 'l^ in common fractions. 
 Interest on $ooo..33^ for 5 mos. at 6 per cent. 
 
 7. L.C.M. of 1,2,3,4,5, 6. 
 
 8. 6^+7^ + 8^-21. 
 
 9. |(13 + 7) + 8; xl6 = 
 
 C 
 
 1. 365x41 = 
 
 2. School of So pupils ; 45 boys. Percentage of girls i 
 
 3. $13ixl2 + (T?^ + J^). • 
 
 13x2_x8x7xJ 
 ■ " "26 x"4S 
 
1 
 
 lETIO. 
 
 MENTAL ARITHMETIC. 71 
 
 5. Reduce 3 qts. 1 pt. to fraction of a bushel. 
 
 6. Reduce 7s. 8^d. to fraction of £1. 
 
 7. One cent and a lialf a day; liow nuicli per year ? 
 
 8. Amount of $100 for 2 yrs. at 41%. 
 
 9. $9 a year; how much a day ? 
 10. U : 7i :: -5 :^. 
 
 1. Value of 4-15 oi$0.o^l 
 
 •^- 7 114 -*-4 i» — 
 
 ' 3. Rent of 5 acres at 12^ cents a sq, rod ? 
 
 4. (V)3t price, $1.;- ; selling price, $2. Gain per cent.? 
 
 5. Difference between -J', and -^J^ in decimals. 
 
 6. What decimal of 1| lbs. is 1 oz. ? 
 
 7. Average of 13, IS, 913, li, a, 3J. 
 
 8. Total value of an article if ^\ is worth $13. 
 
 9. Sum of 3.V%+ 10^/^ on $50. 
 
 10. Number of telegraph poles 96 ft. apart in 10 miles? 
 
 actions, 
 nt. 
 
 )f girls i 
 
 1. Sum of all the odd numbeis between 20 and 40. 
 
 2. A square contains 570 sq. inches. What is the 
 length of a side in feet ? 
 
 3. Cost of paving a yard 36 yds. long, 12 yds. wide, 
 with osphalt 3 inches deep, at $2 per cub. yd. ? 
 
 4. A man runs 220 yards in 40 seconds. What is his 
 rate per hour expressed in miles ? 
 
 5. Number of yards of carpet, 15 inches wide, required 
 for a room 30 feet long by 17^} feet wide ? 
 
 6. Lost 10% on $50 and gained 12% on the remain- 
 der. Required total gain. 
 
 7. 10% lost by selling for $65.25. Cost price = ? 
 
 8- If i-hl + ^. = £2. Os. Od., what is the whole sum ? 
 9. Value of 31 of $15. lo. L.C.M. of 16, 24, IK 
 

 MENTAL ARITHMETIC. 
 
 15 
 
 1. Simple interest on $277 for 3 yrs. at 4 per cent. 
 
 2. Divide S27.30 between A and B in the ratio 9 : 4. 
 
 3. From seven thousand take fifteen hundred and 15. 
 
 4. Add five times nineteen to four times sixteen. 
 
 5. Find the fourth term of 36 : 63 : : 20 : x. 
 
 6. Express 3s. 6d. as the decimal of £1. 
 
 7. A man rows 4 miles down the stream in 20 min., 
 and up the stream in 40 min. "What rate in smooth water ? 
 
 8. Piequired the time for two trains to pass eacli other 
 in opposite directions, each train being 220 yards long 
 and uoimi at the rale of 40 miles an hour. 
 
 9. A man gave $30 for 44 cwt. and sold at $'72 per 
 cwt. What is his gaui ? 
 
 10. Amount of annual income secured by investing 
 $504 in 4 per cents, at 96 ? 
 
 1. 90x 
 
 ;068 
 1-24 
 
 2. A starts at 6 mi. an hour, and in half-an-liour ]> 
 follows at 9 mi. an hour. When will B overtake A ? 
 
 3. The surface of a cube is 150 sq. inclies ; what is 
 the length of its edge ? 
 
 4. What sum at 7% will gain $84 in a year ? 
 
 6. A mother is half as old again as her daughter, and 
 their united ages = 95. Find their ages. 
 
 6. Cost of 59-^- lbs. of cheese at 9.} cents a lb. 
 
 7. What are the 3 equal factors of 343 ? 
 
 8. 9 doz. hats at $1.33^ each. 
 
 9. A can do a job in 4 days, B in 6 days. How long 
 will they take together ? 
 
 10. Present worth of $1080, due 5 years hence, at 4' 
 per annum simple interest. 
 
 0/ 
 
 c 
 
TEST I'HOHLEMS. 
 
 Ho 
 
 cent, 
 io 9 : 4. 
 [ and 15. 
 een. 
 
 20 min., 
 h water ? 
 ich other 
 fds long 
 
 $-72 per 
 
 nvestinir 
 
 1-1) our ]*. 
 A? 
 
 what is 
 
 hter, and 
 
 low long 
 
 3e, at 4'J' 
 
 XXXIII. 
 
 TEST PROBLEMS. 
 
 A 
 
 1 . Value of # of h^^J"^!} 
 
 12^ 2v of If 
 
 and express the result as a decimal. 
 
 2. A man hought a piece of ground containing OlUG 
 ac. at r,:]^ a sq. foot. Wliat did he ])ay? 
 
 3. Find the compound interest of $320 for ?»}, years 
 at 3 per cent, half-yearly. 
 
 4. A tradesman marks his goods at 25% ahove cost, 
 but allows a customer a discount of 12% for Cixsh. What 
 per cent, of profit will he make on a cash sale ? 
 
 5. A rupee is worth 2s. O.^d. and a dollar 4s. 4kl. 
 Find the least number of rupees which makes an exact 
 number of dollars. 
 
 B 
 
 2 2 I _3_ " 1 I s 
 
 1. Simplify l]^rj^^i ^-^^±31^ 
 
 4 1 r 1 9 4 ;V -f- vj "4 
 
 2. Add together 7G95 sq. inches, -GOl of an acre, and 
 ] *; of a s(i. rod, giving answer in sq. yds. and decinud. 
 
 3. If 4 men mow 15 ac. in 10 dys. of 7 hrs., in how 
 many dys. of Gl hrs. can 7 men mow 19.} acres ? 
 
 4. A man receives 4% on one-third of his capital, 4.1% 
 on one-sixth, and 5% on the remainder. 'vVhat perceiita'ge 
 does he receive on tlie whole ? 
 
 6. Find the difference between the compound interest 
 on $3840 for 3 years at 5 per cent, and the true discount 
 ^^w $12,710.87 due G montlis hence at 10 
 
 o/ 
 
 / 
 
 1. Divide -723905 by 2-17 and express the difference 
 between l-5384Glo and -070923 as a common fraction. 
 
II 
 
 74 
 
 TEST I'RDBLEM.S. 
 
 2. It' three pipes separately can fill a cistern in I7i, 
 19i and 21 fV minutes, how long will they take when 
 running togetlier ? 
 
 3. Divide £105 between A, B and C, so that as often 
 as A gets 4s. 6d. B may get 7s. 6d., and as often as B gets 
 OS. C may get Gs. 
 
 4. Find hy practice the value of ^.7° IG' 30" at G3 mi. 
 780 yds. for eacli degree. 
 
 6. If the :> per cents, may be bought at 88 i, what 
 should be the price of the 4 per cents. ? 
 
 1. Simplify 
 
 D 
 
 •071 + -0:38r) . 3-14ir>.3-f70 
 
 7 1 _ -007 ■ -041 X -015 • 
 
 2. At what time between 2 and o o'clock will the 
 hands of a watch intercept an angle of 90 ? 
 
 3. Find the time in the foll(»wing capitals when 
 Greenwich mean time denotes 12 noon: — St. Petersburg 
 30^20' East longitude; Berlin 13° 24' East; Duldin (J' 
 10' West ; New York 73" 58' West. (See Book III., p. 35.) 
 
 4. If the discount on a Dill due five months hence at 
 3;^ per cent, is $774^, what is the amount of the bill ? 
 
 6. ]l(tw many tiles 5 inches S(]uare woidd be required 
 to line tl»e bottom and sides of a swimnung-bath which is 
 UK) ft. by 30 ft. and 5 ft. deep ? 
 
 1. Express V''*'.^o5«i^^ correctly to the nearest integer. 
 
 2. A and li are in partnership. A invests $4700 for 
 12 montiis and receives $440.50 as his share of the proiits. 
 What shouUl li receive who invests $2300 for months ( 
 
 3. Find change of income from transferring $5400 
 stork fr(>i!i tlio 4H Tier cents, at 98 to tlio 3-^ per cents. 
 
 V 
 
 at 1 5. 
 
TEST PROBLEMS. 
 
 <y 
 
 4. A straight plank is ol inches thick and 6| inches 
 broad ; what lengtli should be cut off so as to contain i3\ 
 cubic feet of timber ? 
 
 6. Find the surface and diagonal of a cube of granite 
 containing 162,144 cub. inches. 
 
 )or cents. 
 
 1. Reduce 120 grams to ounces Av. ; 63f yds. to m. 
 
 2. A grocer buys sugar at 18/^ a kg., and sells it at 
 one cent, per 50 grams. Find his gain per cent. 
 
 3. When gold ife quoted at $1.12 J, what is a $1 
 greenback worth ? 
 
 4. What income should I derive from an nivestment 
 of $6990 in 3% stock at 87;^? How much must be 
 invested in 4/^ stock at 112 to yield an equal sum ? 
 
 5. The distance between two towns is 54 miles, and 
 
 the distance between their places on a map is 6-^' inches. 
 
 What area of country is represented by a circle on a map 
 
 of one inch radius ? 
 
 G 
 
 1. Find the sum of 3], 6|, TW. ^^^»\ express the 
 result as a decimal and extract the cube root. 
 
 2. How many litres in 6 gallons of water ? 
 
 3. If a gallon contains 277} cub. inches, find appro.xi- 
 niately the number of gallons of water which would cover 
 a s(|uare mile to the depth of an inch. 
 
 4. If 8000 metres are e(iuivalent tb"^ miles, and if a 
 cubic fathom of water weighs tons (2240 lbs.), and a 
 cubic metre of water 1000 kg., find the number of lbs. 
 Av. in a kilogram. 
 
 5. Ha room is 40 feet long by 20 feet broad, and 
 contains 12,800 cubic feet, what addition will l)e made to 
 its cubic contents by throwing out a semicircular bow at 
 one end ? ( tt =.)14I6.) 
 
70 
 
 TABLES. 
 
 WEIGHTS AND MEASURES TABLES. 
 
 Time. 
 60 seconds (sec.) - 1 niimite (min.) 
 60 niimitcs —1 hour (lir.) 
 
 24 liours - 1 clay (dy. ) 
 
 7 days — lwcek(wk.) 
 
 36.1 days = 1 common year (yr. ) 
 100 years - 1 century (C. ) 
 
 Capacity. 
 2 pints (pt.) - 1 (|Uart {qt.) 
 4 quarts - 1 gallon (gal. ) 
 
 2 pints (pt.) 
 S quarts 
 4 pecks 
 
 1 (juart (qt. ) 
 1 peek (pk.) 
 1 bushel (1)U.) 
 
 1 pint (water) weighs 1 j 11)3. Av, 
 
 1 gidlon contains 277 "274 cul»ic 
 inches, and weighs JO ll>s. Av. 
 
 1 cuhic foot (water) contains 6j gal- 
 lons (nearly), and weighs 1000 oz. 
 or 62i lbs. Av. 
 
 Wekjiit. 
 16 ounces (oz.) — 1 pound (lb.) 
 lOOpounds— 1 hundredweight (cwt.) 
 20 cwt. or 2000 lbs. =- 1 ton. 
 2240 lbs. = 1 long ton. 
 
 Knislish Monfcv. 
 4 farthings - 1 penny (d. ) 
 12 pence I shilling (s.) 
 
 20 shillings - 1 p<tund (f.) 
 
 LENdTlI. 
 
 12 inches (in.) -= 1 foot (ft.) 
 
 3 feet ^ 1 yard (y<l.) 
 
 fl.i yards - 1 rod (r«l.) 
 
 320rods 1760y.rds_^j,,,.j . 
 or 5280 feet ^ ' 
 
 Surface. 
 144 square inches — 1 sq. foot. 
 
 9 square feet - 1 square yard. 
 30^ square yards = 1 square rod. 
 
 160 square rods or _^ j ^crc (ac.) 
 4840 scjuare yards 
 
 640 acres = 1 square mile. 
 
 10,000 scjuare links ^ 1 S{{. chain. 
 
 10 square chains = 1 acre. 
 
 Volume. 
 
 1728 cubic inches — 1 cubic foot. 
 27 cubic feet — 1 cul)ic yard. 
 
 16 cubic feet - 1 cord foot. 
 
 8 cord ft. or 128 cubic ft. - 1 cord. 
 
 Miscfllaneous. 
 12 units - 1 dozen. 
 
 12 dozen 
 20 units 
 
 24 sheets 
 20 <|uires 
 
 4 inches 
 6 feet 
 
 1 gross. 
 1 score. 
 
 1 (|ture. 
 1 ream. 
 
 1 haiul. 
 1 fathom. 
 
 100 Hnks 
 80 chains 
 
 = 1 chain. 
 = 1 mile. 
 
 Tr(»y Wkhjht. 
 24 grains 1 j)cnnyweight (dwt.) 
 20 dwt. - 1 ounce. 
 12 ounces - 1 pound. 
 
 1 lb. Troy -^ r>760 grains. 
 1 lb. Av. - 7000 grains. 
 
 CiKCt'i,.\K Mkasi'iu:. 
 60 seconds (") 1 ndnute (') 
 60 minutf'a - 1 dogiee ('). 
 360 degiees - 1 circumference. 
 
 60/i iiiih's 
 
 -- I degree. 
 
TABLES. 
 
 77 
 
 Money. 
 
 100 centimes = 1 franc (fr.) 
 A franc weighs 5 grams. 
 
 METRIC SYSTEM. 
 
 Capacity. 
 10 millilitres(ml.):^l centilitre (cl.) 
 10 centilitres = 1 decilitre (dl.) 
 10 decilitres — 1 litre (1.) 
 10 litres = 1 decalitre (Dl.) 
 
 10 decalitres = 1 hectolitre (HI.) 
 
 Wekjht. 
 
 Length. 
 10 millimetres (mm.)=: 
 
 1 centimetre (cm.) 
 10 centimetres = 1 decimetre (dm.) 10 milligrams (mg.) = 
 10 decimetres - I metre (m. ) °i centigram (eg.) 
 
 10 metres = 1 decametre (Dm. ) 10 centigrams^ 1 decigram (<lg. ) 
 10 decametres ^1 hectometre (Hm.) 10 decigrams =1 gram (g.) 
 10 hectometres^ I kilometre (Km.) 10 grams ^ 1 decagram (l)g.) 
 
 10 kilometres^ 1 myriametre (Mm.) 10 decagrams ^1 hectogram (Hg.) 
 
 10 hectograms ::= 1 kilog^ram (Kg. ) 
 1000 kilograms make a metric ton. 
 
 SU K FACE M E ASURE. 
 
 100 sfjuare millimetres = I square centimetre (.s(i. cm.) 
 100 s.(uare centimetres = 1 square decimetre (sq. dm.) 
 100 square decimetres — 1 square metre (s({. m.) 
 
 Land Measure. 
 100 centiares (ca.) = I are (a.) 100 ares=l hectare (Ha.) 
 A centiare is the same in size as a sq. metre. 
 Solid Measure. 
 1000 cubic millimetres = 1 cubic centimetre (en. cm.) 
 1000 cubic centimetres = 1 cubic decimetre (cu. dm.) 
 1000 cubic decimetres = 1 cubic metre (cu. m.) 
 In measuring wood the cubic metre is called a stere. 
 Metric Kquivalents. 
 
 I metre -^ 
 
 I kilometre 
 I 8(j. metre 
 1 liectare 
 1 cu. metre 
 
 Metre 
 
 Kilometre 
 
 i^q. metro 
 
 Hectare 
 
 Cu. centimetre 
 
 39 "37 inches. 
 •62N mile. 
 11% sq. yds. 
 2 ••471 acres. 
 1 308 cu. yds. 
 
 1 litre 
 
 1 hectolitre 
 
 1 gram 
 
 1 kilo 
 
 1 metric ton 
 
 Al'fKOXIMATE KgtriVAKKNTS. 
 
 1*1 yds. Cu, metre 
 
 a nii. Litre 
 
 I.' ftq. yds. Hectolitre 
 
 1« 
 
 ifl 
 
 rii'i'pa 
 
 <:• 
 
 ani 
 
 CU. inch. 
 
 I<tgram 
 
 r76 pints. 
 22 01 gal. 
 1 5 432 grains. 
 2 204()lbs. Av. 
 M023 tons. 
 
 1 -3 cu. yds. 
 1"/ pints. 
 22 gal. 
 15^ giains. 
 2i lbs. Av. 
 
ill 
 
 '8 
 
 LOGARITHMS. 
 
 XXXVI. 
 
 LOGARITHMS. 
 
 The expression 10 x 10 x 10 x 1 = 1000 is usually writ- 
 ten 10^=1000, where o indicates the number of factors 
 each equal to 10 which must successively multiply unity 
 in order to give lOoO. Each number in the latter form of 
 the expression has a name indicative of th^ relation it 
 sustains to the others. Thus 1000, derived from unity by 
 three successive multiplications by ten, is called the natural 
 number; 10, the repeated factor, is called the base; and 
 o, which indicates the number of successive factors used, 
 is called the logprithm ;— fully staged, 3 is the logarithm 
 of the natural number 1000 to the base 10. Similarly, 
 since 2*= 16, 4 is the logarithm of tlie natural number 16 
 to the base 2. 
 
 PARTIAL TABLE OF LOGARITHMS. 
 Natural Their ■„ 
 
 Kunihers. Logarithms. Because 
 
 1000000 6 1x10x10x10x10x10x10 = 1000000 
 
 1 X 10 X 10 X 10 x 10 X 10 = 100000 
 1x10x10x10x10 =10000 
 
 1x10x10x10 =1000 
 
 1x10x10 =100 
 
 1x10 =10 
 
 1 needs no multiplier to give 1 
 
 = 1 
 = 01 
 
 100000 
 
 10000 
 
 1000 
 
 100 
 
 10 
 
 1 
 1 
 
 •01 
 
 •001 
 
 •0001 
 
 •00001 
 
 •UOOOOl 
 
 5 
 
 4 
 3 
 2 
 1 
 
 I 
 2 
 
 5 
 
 4 
 
 
 
 6 
 
 TIT 
 
 10X10 
 
 1 
 
 i 6 A 1 (» K 1 
 
 I 
 I * 1 A 1 o X 1 o 
 
 1 
 
 10 » 10 • 10 ' 16*10 
 
 10*10*1 n ■(.I OMOKIO 
 
 = 001 
 = 0001 
 = 00001 
 = 000001 
 
LOGAHITHMS. 
 
 79 
 
 An unlimited number of systems of logarithms might 
 be used ; but we shall concern ourselves only with that 
 system whose base is 10. 
 
 In the foregoing table it is easy to see the significance of 
 the first seven logarithms and the manner in which they 
 are found. The consistency of the rest of the table appears 
 when we reflect on the relation of the successive natural 
 numbers to each other and to their logarithms, and mark 
 the meaning of the minus sign, here, as in all logarithms, 
 printed above the number to which it belongs. 
 
 One factor of those which compose eacli natural number 
 ill the table, is removed from it when we divide it by 10 ; 
 consequently the number of sucli factors indicated by its 
 logarithm will be diminished by jne. In other words, — 
 dinding a natural numher h// tni tahs one from its logarithm. 
 For example, 1000 = 10 x 10 x 10 x 1 = 10^ if divided by 
 10 will give ;'^; =10^-^ = 102=100. The logarithm of 
 
 1000 is 3, of 100 is 2. AgJn 
 
 10, a single 10, a fact indicated by saying that the logar- 
 
 1000 ^10"_..,_2_.^,__ 
 
 10x10 10- -lu - 
 
 ithm of 10 is 1. Further 
 
 10^-^=100=1 
 
 1000 _10» 
 10 X 10x10 ~10'' 
 
 a immber whicli has in it no ten at all as a factor, a fact 
 iii'Hcated by saying that the logarithm of 1 is 0.* 
 
 Pushing the division still further, **^ 
 
 10^ 
 
 10 X 10 X 10 X 10 
 
 ^^ = lO*^-* = 10-'= - = 1, we reach a number which 
 
 requires to be multiplied by 10 in order to be brought up 
 ' » unity; it is one factor short of being unity; its logar- 
 i'hm is 1 less tiian the logarithm of 1, one less than 0; 
 this fact is indicated by writing a minus sign over 1, 
 
 * That 1 contains no factor of any sort, whether 10 or 2 or 7 or any 
 "Ihcr U expit'sai'd by saying 10' - I, 2" - 1, 7'^ 1, etc. In fact the 
 logarithm of 1 is whatever be the base of the gysteui of logarithma. 
 
80 
 
 LOGAKITHMS. 
 
 ■ 
 
 thus 1. Similarly when we say that the logarithm of -01 
 is 2, we are merely stating the fact that 01 has been 
 derived from 1 by two successive dU-islons by 10 ; just as, 
 on the other hand, when we say that the logarithm of 100 
 is 2, we state the fact tliat 100 is derived from 1 by two 
 successive multiplications by 10. 
 
 If any two of the first seven numbers of the foregoing 
 table be multiplied together, it is evident that the number 
 of tens, which successively multiplying u:iity give the 
 product, is equal to the sum of the numbers indicating the 
 tens contained in each of the two numbers multiplied 
 together. Thus, 1000 X 100 = 10 x 10 x 10 x 1 x 10 x 10 x 
 1 = 10x10x10x10x10x1; that is, the product contains 
 5 tens as factors; because one of tlie quantities multiplied 
 tugetlier contained :], and the other 2 tens as factors, and 
 the sum of 2 and 3 is 5. Tliis fact may be thus stated,— 
 the lofjavithm of the produd of two iiumhcrs rquals the mm 
 of the logarithms of the two vuwhers. To revert to the 
 preceding illustration, the logarithm of 1000 is 3, the 
 logarithm of 100 is 2, and the logarithm of the product of 
 100 and 1000, that is of 100000, is 5. If proper account 
 be taken of the signs of the logarithms the same statement 
 applies to all the numbers in the foregoing table. It must 
 be borne in mind that the addition of a'negative number 
 to a positive diminishes the latter, may even feduce it to 
 zero, or, indeed to a negative quantity. So while the sum 
 of 2 and 3 is o the sum of -2 and 3 is but 1, of -2 and 
 2 is 0, and of -3 and 2 is -1. So the logarithm of 1000 
 X 100 is the sum of 3 and 2, ;"., as before shown ; the 
 logarithm of '01 x 1000 is the sum of -2 and 3, 1 ; of 01 
 xlOO is tiie sum of -2 and 2, 0: of -001 and 100 is 
 the sum of - 3 and 2, - 1. All this is easily veriried and 
 understood }>y inspection. 
 
LOGAIUTHMS. 
 
 81 
 
 It is evident that the statement above made of two 
 quantities multiplied together, may be extended to any 
 number of quantities multiplied together, and the state- 
 ment may be made and remembered in this more com- 
 preliensive form,— /Ac logarithm of the j^roduct of any 
 mmhcr of factors equals the sum of the logarithms of the 
 factors. Thus : What is the logarithm of 1000 x 100 ? 
 Answer; It is the sum of tlie logarithm of 1000, o, and of 
 100,2. Thatis, iti8r, + 2, f). 
 
 1. What is tlie logarithm of 10x100000? of 100 x 
 10000 ? of 1000 X 01 ? of 100000 X 0001 ] of -01 x '0001 ? 
 of 100 X 10 X -0001 ? of -01 X -001 X 10 ? of -01 x 10000 x 
 •001 ? 
 
 If the factors are alike the logarithm of their product 
 may be as easily obtained by multiplying the logarithm of 
 one of tliem by their number as by setting down the 
 logarithm of each and adding them toiietlier. The lo^ar- 
 ithm of 100^ is as easily got by saying 3x2 are 6 as by 
 saying 2 + 2 + 2-6. 1 1 is evident that the logarithm of a 
 power of any numhcr is found hy multiply i^ig the logarithm 
 if the number hy the index of the power. 
 
 2. What is the logarithm of 10'? (jf -r' ? of 100'-? of 
 •OP? of -OOl-^xlOO^? of -Ol'xlOO^x-l? of -Ol'x 
 
 •oor'xiooo*? 
 
 Since the logarithm of a product is the sum of the log- 
 arithms of the factors, it is evident that if the logarithm 
 of a product and that of one of the factors be known, the 
 logarithm of the other factor will be found by sulitracting 
 the logarithm of the given factor from the logarithm of 
 the ])roduct. Tfcncc the logarithm of a quotient is the 
 logarithm of the dividend less the logarithm of the divisor. 
 Because a fraction is ;»n exiuession indicating the division 
 of the numerator by the denominator, the above ]»rinciple 
 
82 
 
 LOGARITHMS. 
 
 may be thus enunciated,— ^/te logarithm of a fraction equals 
 the logarithm of the numerator less the logarithm of the 
 denominator. Thus : What is the logarithm of 1000000 -^ 
 100 ? Answer : It is the logarithm of 1000000 less the 
 logarithm of 100; that is, it is 6-2 = 4. 
 
 3. What is the logarithm of 1000-^10? of 100000 -f- 
 100? of 100^10000? of -01 -^ -0001? of 100 -f -001? of 
 i\%%% ? of -,U', ? of AVt ? of ,^Uy ? of jO^V ? 
 
 Since the logarithm of the square of 100, that is of 
 10000 is found by doubling tlie logarithm of 100, obviously 
 the logarithm of the square root of 10000 is found by 
 halving the logarithm of 10000. So the logarithm of the 
 square root of any number is found by dividing the logar- 
 ithm of the number by 2 ; the logarithm of the cube root 
 of any number is found by dividing the logarithm of that 
 number by 3 ; and, generally, — the logarithm of any root 
 of a number is found hg dividing the logarithm of that 
 number by the inde.c of the root. For example : What is 
 the logarithm of the sixth root of 1000000? Answer: 
 It is 1 ; because the logarithm of lOOOCOO is 6, and the 
 logarithm of its 6th root is the sixtli part of 6, is 1. 
 
 4. What is the logarithm of the square root of 100 ^ of 
 10000 ? of -01 ? of -0001 ? of the cube root of 1000 ? of 
 1000000? of -001? of -000001? of the fourth root of 
 10000 ? and of the fifth root of -00001 ? 
 
 Recapitulatory Questions.— When the logarithms of 
 the numbers are known, liow can we find the logarithm of 
 the product of any nundier of factors ? of any power of a 
 number ? of a fraction ? of the quotient of any dividend 
 divided by any divis(»r ? of any root of a number ? 
 
 Note that the logarithm of the sum or of the diH'erence 
 of two numbers cannot be found by any simple process 
 
 frnni f.fio L^/vov^if )i*k>c< r^f 4l,«-. ..i,.w. !.,.». 4I i _ 
 
LOGARITHMS. 
 
 no 
 
 The table given above may be used not merely to find 
 tlie logarithms of products, quotients, powers and roots, 
 luit the products, quotients, powers and roots themselves. 
 For when tlie logaritlims are found they will serve to 
 point out in the table tlie numbers of which they are the 
 logarithms; so indicating the answer sought. For 
 example, if I wish to know what the quotient of 1000 
 times -01 divided by the cube root of -001 is, I may find 
 the logarithm of the result first, which I know, from what 
 has gone before, to be the logarithm of 1000 4- the logar- 
 ithm of -01 —one third of the logarithm of -001. This will 
 give 3 - 2 - (-/) = 3-2 + 1 = 2. But J is the logarithm of 
 100 ; therefore 100 is the answer soui'ht. 
 
 5. Solve all previous examples, substituting the word 
 " value " for the word " logarithm " in each question. 
 Thus the first question will read : What is the value of 
 1000 X 100 ? of 10 X 100000 ? etc. Many of the questions 
 can be solved more easily without reference to logarithms, 
 but the value of the exercises will appear later. 
 
 6. By the table of logarithms given on page 78 find the 
 vahie of 1000 X'l, of 10 x 100 x 1000 x -0001, of 10 -j- 
 
 •001, of -0014- -00001, of -01 X -001 + 100, of Vioooo; 
 
 of ^^00001, of 4/r6x>^ioo, of 10s/-l^^-0i, of 
 
 '^lOxs/YoOO s/'lx^''0i I 10 
 
 ^7^ , of - -— ^--, of 
 
 ^•1 '"^ ^ooi ' "' vio^ioo-^^10 
 
 Although the exercises just given, which appear difficult 
 to one unaccustomed to the manipulation of surds, can all 
 be readily solved by the preceding table, yet the table is 
 much too small to be of practical value, and must be 
 leplaced by others of nmch greater extent. 
 
 It does not fall within the scope of this little work to 
 sliow how the logarithms of such numbers as 2, 3, 5, 7, 11, 
 
 I 
 
84 
 
 LOCJAIUTHMS. 
 
 in short of all prime numbers, are calculated ; but, these 
 being calculated, it is easily seen tliat the logarithms of 
 all numbers that are composed of these and of ten, in any 
 combinaLions of multiplication and diw.sion, can be found. 
 Thus, if the logarithm of 2 were known, the logarithm of 
 5 could be easily found by subtracting the logarithm of 2 
 from the logarithm of 10, which is 1; for V- = 5. The 
 logarithms of 4, of 8, of 16, would be respecth^ely twice, 
 three times and four times the logarithm of 2 ; for 2^ = 4, 
 2" = 8, and 2^=16. The logarithms of 20, 200, 2000, etc.i 
 would result from the logarithm of 2 by adding to it 1, 2, 
 3, etc. ; for these are the logarithms of 10, 100 and lo'oo' 
 the respective multipliers of 2 in each case. In like man- 
 ■ ner the logarithms of -2, -02, -002, etc., would be found by 
 subtracting, from the logarithm of 2, 1, 2, 3, etc. ; for 
 these are the logarithms of tlic divisors 10, 100, 1000, etc., 
 by which -2, -02 and -002 are derived from 2. 
 
 Because 2, 3, 7 lie between 1 and 10, and the logarithms 
 of 1 and 10 are and 1, the logarithms of 2, 3 a'lid 7 lie 
 somewhere between and 1 ; that is they must be proper 
 fractions, or liOn-terminating, non-recurring decimals 
 within these limits. They are indeed non-terminaling, 
 non-recurring decimals, as is the case with all logarithm^' 
 to the base 10, except 10 and its integral powers.^ Conse- 
 rpiently the logarithms of all other numbers than those 
 last mentioned are, and can l)e, only approximately given. 
 7. Tiie logarithm of 2 is approximately -30103. Find 
 the logarithm of 5, of 4, of 20, of 25, of 200, of 32, of 3-2 
 of 8, of 250, of 50, of 512, of 51-2, of 512, of 125 of l->5' 
 of 400. 
 
 The logarithm of 2 being as given, the logarithm of -2 
 which is the tenth part of 2, is equal to the h)garithm of 
 2 less the logarithm of 10 : the logarithm of -2 then equals 
 
LOGARITHMS. 85 
 
 30103 — 1. This might of course be written as —.69897 : 
 hut it is found more fonvenient in mimy ways to make 
 cliano-es of si.ou only in tlie integral part of tlie logarithni, 
 and so the logarithm of '2 is written i-30103,in which tlie 
 integral part alone is negative, the decimal part remaining 
 positive. In like manner the logaritlini of -02 which is 
 the result of dividing 2 by 100, and of which, consequently, 
 the logarithm is -30103-2 is written as 2-30103. Sub- 
 joined is a table of logarithms which will prove instructive. 
 Tlie integral part of each logarithm is called its charac- 
 teristic, and the decimal part is called its mantissa. 
 Natural 'N'umber. Logarithm. 
 
 2000000 C-30103 
 
 200000 5-30103 
 
 20000 4-30103 
 
 2000 3-30103 
 
 200 2-30103 
 
 20 1-30103 
 
 i J30103 
 
 € 1-30103 
 
 •02 2-30103 
 
 •002 3-30103 
 
 •0002 4-30103 
 
 •00002 5-30103 
 
 •000002 6-30103 
 
 It will be observed :— 
 
 1st. That tlie numbers differ from one another only in 
 tlie position of the decimal point. 
 
 2nd. That the mantissa of the logarithm remains the 
 same throughout, notwitlistanding the change of position 
 of the decimal point in the natural nuni])ers. This is 
 always true of common logarithms ; no change of position 
 of the decimal point changes the mantissa. 
 

 
 IMAGE EVALUATION 
 TtST TARGET (MT-S) 
 
 ^ 
 
 <«/ 
 
 A^ 
 
 .•/ *>^ ^p Mr, 
 
 ^ 
 
 z 
 
 ^ 
 
 fA 
 
 1.0 
 
 I.I 
 
 11.25 
 
 l^li^ 11125 
 
 2.2 
 
 14. 11.6 
 
 V] 
 
 v) 
 
 ^> 
 
 
 
 ^:^*' 
 
 Photographic 
 
 Sciences 
 Corporation 
 
 23 WEST MAIN STREET 
 
 WERSTBR.N Y. MS80 
 
 (716) 873-4503 
 
 m. 
 
 lV 
 
 ^^ 
 
 N>" 
 
 ^ 
 
 
 
 ^'^^ 
 
 O^ 
 
 '.A 
 
 '^ 
 

 Kg 
 
 ^ 
 
 1^ 
 
I 
 
 86 
 
 LOGARITHMS. 
 
 
 I 
 
 
 3rd. The characteristic changes with every chancre of 
 position of the decimal point in the number ; every move- 
 ment of the decimal point one place further to the ricrht 
 diminishes the characteristic by 1. This is in accordance 
 with what we have already learned. 
 
 4th. The characteristic indicates in each case the dis- 
 tance of the 2 from the units place, being positive when 
 the 2 is to the left and negative when it is to the right of 
 the units place. 
 
 • If in any numbers the digits follow in the same order, 
 the mantissa of the logarithms of all the numbers is the 
 same ; the logarithms will difler only in the characteristic. 
 Thus the logarithms of lOO^Ono, 1009035, -0001009035, 
 1009-035 are 000390025, 100390G25, 400390G25 and 
 300390625. The numbers differ from one another in the 
 position of the decimal point only, and the logarithms 
 differ in characteristics only. 
 
 TJie characteristic, indeed, indicates the distance of the 
 highest jdace in the numher from the unifs pl(ice, the char- 
 acteristic Uing positive if that highest ^tace he to the left of 
 the decimal point, and heing negative if that highest place he 
 to the right of the decimal 'point. 
 
 Thus in the example just given 1 occupies the highest 
 place in all the numbers. In the first number it is in the 
 sixth place to the left of the units place, accordingly 6 is 
 the characteristic of the logarithm ; in the second instance 
 1 is in the first place to the left of the unit and the char- 
 acteristic of its logarithm is 1 ; in the third instance 1 is 
 in the fourth place to the right of the units place and the 
 characteristic is 4 ; finally in the last instance 1 is in the 
 third place to the left of the units place, and the charac- 
 teristic of the logarithm is 3. 
 
 Hence, /(? /?<«? the characteristic of the loaarithm of anv 
 
 i \ 
 
LOGARITHMS. 87 
 
 number, count from the units place to the place of the highest 
 fiyure in the member, the number got by this count ivill be the 
 characteristic ; the characteristic will be positive if you have 
 to count towards the left, negative if you have to count towards 
 the right. 
 
 Examples. — Find the characteristic of the logarithm of 
 743-6859. Since 7 is of the highest denomination in the 
 number, and is in the second place to the left of the units 
 place, 2 is the characteristic. Find the characteristic of 
 •001392. It is 3, because 1, the figure of greatest value in 
 the number, is in the third place to the right of the units 
 place. 
 
 8. Find the characteristic of the logarithms of 4973, 
 8654-227, 3987, 000642, -0007, 00892, 1-7368, 10009, 
 9-538, 9000, -000008, -G271. 
 
 As the characteristic of the logarithm of any number is 
 so easily reckoned, it is not usually printed in tables of 
 logarithms ; but it is printed in the table of logarithms, 
 page 109, which gives the logarithms of all integers from 1 
 to 100. Thus the logarithm of 59 is given as 1 770852, 
 where 1 is the characteristic and '770852 is the mantissa 
 of the logarithm. 
 
 Examples on this First Takle. 
 
 Multiplication. — Multiply 17 by 3. Process: Add 
 the logarithms of 17 and 3 together and find of what 
 number the result is the logarithm. 
 
 Logarithm of 17 1-230449 
 
 " 3 477121 
 
 The sum 1 •707570 
 
 is the logarithm of 51, which is the product of 17 and 3. 
 
 9. Bv tlie loiiarithmic table. paL'e 100, find the vhjiu' of 
 
f I 
 
 W4 
 
 f:| 
 
 It 
 
 88 LOGARITHMS. 
 
 3x7, 5x9, 7x8, 2x3x7, 5x9x2, 3x3x8, 11x2x3 
 and 2 X 7 X 7. 
 
 Division.— Divide 99 hy 11. Process: Subtract the 
 logaritlim of 11 from the logarithm of 99, the remainder 
 will be the lo^rjirithm of the quotient. 
 
 Logaritlmi of 99 1-995635 
 
 " 11 1041393 
 
 Difference, "^954242 
 
 Which is very nearly tlie logaritlmi of 9, the answer. 
 
 Here it will be well to note, as was Ix'fore stated, that 
 the logarithms are at best only approximately correct, and, 
 consequently, some little doubt always hangs over the last 
 figure of the logarithms which we find. 
 
 10. Divide by this table 21 by 7, 94 by 47, 68 by 17, 
 95 by 5 and 98 by 2. 
 
 Involution.— IJaise 3 to tlie 4th ]M)wer. I'rocess: 
 Multiply the logaritlmi of 3 by 4, the result wiil be the 
 logarithm of tlie answer. 
 
 Logarithm of 3 '477121 
 
 4 
 
 1-908484 
 which is very nearly the logarithm of 81, the answer. 
 
 11. Find the S(|iiiirc of 7, the cube of 4, the squjire of 
 G, the liflli power of 2. 
 
 Evoij rioN.—Find the sixth root nf 64. Process: 
 Divide the logarithm of 64 by G the (luotient will be the 
 logarithm of the answer. 
 
 Log. 64, 1-80G180 divided by 6 is -3U1U30. 
 Cut this is the logarithm of 2, the answer. 
 
 12. Find the sqiuire rcxtt of 64, the culte root of 64 and 
 the fifth root of 32. 
 
 Two or niorci of these processes may lie combined in one 
 
LOCJAHITHMS 89 
 
 exercise. Thus, find the square of the cube root of the 
 thirtieth part of oo times 14 times 21. • 
 
 Logarithm of of) 1-544068 
 
 14 1-146128 
 
 21 1-322219 
 
 4-0T2415 
 no 1-477121 
 
 :{)2^i5294 
 
 •845098 
 2 
 
 1-G90m 
 wliicli is the h)garitlim of 49, the answer. 
 
 13. Divide 9 times 49 by 21. MuU-iply one seventy- 
 fifth of 95 by 15 times '^. Muhiply one thiid of one 
 eleventh of 9 by one tliird of 22. Wliat is the product of 
 Iq, 24, Gi and l^V ? What is the cube root of the fourth 
 l)ower of 27 ^ What is the cube root of the square of five 
 sevenths of the product of 1^'.^ x 2t, x 2j\ ? 
 
 Tlie table of logarithms of numbers from one to one 
 hundred is too snudl to be of mucli practical value ; but 
 the table which is contained in the next 15 pages, pp. 
 1 10-124, is much nu)re serviceable. It gives the mantissa 
 corresponding to every possible sequence of four digits, 
 that is, of all numbers from 1000 to 9999. The three 
 highest digits of the nund)er whose logarithm is required 
 are printed in the colunni headed N, and the fourth di<ut 
 in the same line as N at the top of the page. The corres- 
 ]»onding mantissa, the decimal i)oint of which is omitted 
 in printing, is found opposite the first three digits and 
 under the fourth digit. 
 
 Thus, if we wish to find the mantissa corresponding to 
 T945wesiiaH find on page 121, rather more than lialf-way 
 
r! 
 
 ,lt! 
 
 • 1, 
 
 90 
 
 LOGAKITIIMS. 
 
 down the column N", tha three first digits 794 ; opposite 
 tliese digits, under 5, at the top of the page, we have 
 000094 ; this nundjer, when the decimal point is supplied, 
 •900094, is the mantissa corresponding to the digits 7945. 
 Again, on page 116, in column K, about one fourth of the 
 way down, we have 473. Erom 473 trace the line across 
 the page till we come under 8 at the top of the page. 
 Here we find the number 5595 ; but 07, printed above, 
 are the first figures of the mantissa, so that the mantissa 
 corresponding to 4738 is '675595. 
 
 Hence, to find the mantissa corresponding to any 
 sequence of four digits, find the first three digits in one of 
 the columns headed N, and trace a line from them across 
 tlie i>age until under tlie fourth digit as printed at tlie top 
 of the page; the number so found is the mantissa, which, 
 however, nii.^L have a decimal point supplied at its left- 
 hand side. 
 
 14. Find the mantissas corresponding to the sequences : 
 3928, 4765, 9827, 5903, 4790, 6800, 7495, 5300, 7370, 
 1952 and 1007. 
 
 16. Bearing in mind that the mantissa is the same for 
 the same sequence ui digits, no matter where the decimal 
 point may be, find the mantissa^ for 469,, 46.91, -04691, 
 8800, 880, 88, 8.8, -88, -088, -0088, 7000, 700, 70, 7, 5-3, 
 •0867, 954000, 48-76, 9-482, -0016, 1000, 100, 10, 1, -1, -01, 
 •001, -0001, -5408, •0006'-3, -09821. 
 
 16. ]>y su])])lying the characteristic before each man- 
 tissa find the logarithms of the preceding 31 numbers. 
 
 17. Find the logarithms of 28.37, -9546, -48, 5-694, 
 7-862, 97-34, 428-7, -006832, 59-71, -05982, -5907, •0058:5, 
 •062, •OT, -8, 95-42, 968-3, 79540, 146800, 967000. 
 
 To find the sequence of digits corresponding to a given 
 muHlissa it is, of course, nccessar 
 
 ^7 
 
 })r( 
 
LOGARITHMS. 
 
 01 
 
 jn.st described. For c.van.ple, to thnl the four di-its cor- 
 .espomlmg to the „mnti.s,sa -.SCO.Vl.S, the numti.ssa i-ivcn 
 "ill be fomid „eur the middle of page ll'O, u.uler 3 nnd 
 opposite /25; therefore 7253 i.s the group of di,.-t,s 
 required. "^ 
 
 •l090Q0^^^'',^oo!?"*"'"' <=«>-re.spond to the mantis«e, 
 102289. -415808, -563718, -700444, -780369, -S7326'> 
 
 ■903090 and -937810. ' 
 
 If the whole logarithm be given, characteri.stic as well 
 
 as nmntLssa, the natural number corre,si,onding to it can 
 le founo. For the mantis.,a will give the sequence of four 
 
 digits, an.l the characteristic will determine the position 
 
 7«o.' nfo''"""' ^"'^ ''"'""S ""="'• Thus to the logarithm 
 
 •8-3018 determines the four digits 6653, and the eharnc- 
 leristic 4 shows that the highest figure is 4 places to the 
 lett of the units place. 
 
 19. Find the luitural numbers corresponding to the 
 logarithms 5-763428, 4-830011, 3-906443, 2-070858 
 
 1-189209, -330819, 1-440594, 2-527243, .3-560385, 4-597476' 
 5"6o5081. ' 
 
 In actual work two difficulties which have not vet 
 been discussed will be encountered. Virst, the table c-ives 
 mantissa, corresponding to four succe.ssive di^nts o'nly- 
 liow .shall the mantis.sa corre.spondiv.g to five o"r si.v sue' 
 ocssive digits be found ? Secondly, how is the natural 
 number corresponding to a manti.s.sa not in the table to be 
 lound ? 
 
 Both difficulties are met by the application of tlie prin- 
 ciple that when numbers, and consequently their locrar- 
 itlims also, are near one another, the diflerences betvv'een 
 the logarithms are nearly proportionate to the diffmvnr.p« 
 between the numbers. This may be illustrated by refer- 
 
1)2 
 
 LOGARITHMS. 
 
 enee to tlio table as given. Thus, 9984, 9987 and 9991 are 
 three numbers whose successive differences, 3 and 4, jire 
 small in comparison with the numbers themselves. Now, 
 the logarithms of these numbers are respectively 3-999:505, 
 3-999435 and 3-999609, of which the successive ditter- 
 ences are -000130 and '000174. But as 3:4: : -000130: 
 •000173^, which is very nearly the same as '000174. 
 
 The smaller relatively the differences are, the more 
 nearly will the proportion give the correct result, and as 
 the differences in practice are always relatively less tlwin 
 those in the illustration, the approximation is always 
 nearer than in the illustration. 
 
 The proportion asserted may be applied in two ways : 
 1st, to iind the nmntissa of the logarithm of some number 
 not found in the table ; or 2nd, to find the number corres- 
 ponding to a logarithm of which the mantissa is not found 
 in the tal)le. 
 
 Thus, 1st, if we need the logarithm of 598732, the near- 
 est numbers to this of which we can find the logarithms 
 from the table are 598700 and 598800. The logarithms 
 of these are 5'777209 and 5'777282. Now, the difference 
 between the numbers 598700 and 598800 is 100, and the 
 difference between their logarithms is '000073 ; also the 
 difference between the numljers 598700 and 598732 is 32. 
 Therefore by the principle stated above 
 
 100: 32:: -000073: the difference between the 
 
 logarithms of 598700 
 and 508732. 
 
 
 •000146 
 •00219 
 
 100)'002336(00002336 
 
 Therefore the logarithm of 598732 equals the logaritlmi 
 of 59S700 increased by -00002336, i.e., 5-777209 + 
 
 "X 
 
LOGARITHMS. 
 
 93 
 
 •00002336, i.e., 5-77723226. However, as we do not know 
 fioiii the table the logaritlmi of 598700 to more than 6 
 (Iccini.'il places, it is a mere affectation of accuracy to carry 
 the logarithm of 598732 further, so that its logarithm 
 rii^lit to the sixth place is 5*777232. 
 
 The labour of finding the difference between the logar- 
 ithms of 598700 and 598800 is saved by the table. Under 
 the heading 1), which stands for difference, the differences 
 between the successive nuintissjc are giv(in, 8o, opposite 
 the line in which the logarithms of 598700 and 598800 
 are found, tlie difference, 73, standing for -000073, is 
 printed under I) ; and, instead of nuiking the subtraction 
 for ourselves, we might have copied the difference from 
 the table. 
 
 Again, as this difference is the difference between two 
 successive mantissa', it is tlie difference in logarithms cor- 
 responding to a difference of 1 in the lowest of the 4 
 places for wiiich the mantissjc are calculated in the tabic. 
 Tiiercfore one tenth of this, 7*3, would be the difference of 
 mantissa) corresponding to a difference of one in the lowest 
 of five successive digits, and twice, three times, four times, 
 etc., this 7-3 would be the difference corresponding to the* 
 difference of 2, 3, 4, etc.,' in this fifth place of the natural 
 number. In like manner -73 would be the difference in 
 mantissie corresponding to a difference of one in the low- 
 est of 6 digits. The difference thus corresponding to a 
 difference of 3 in the fifth place would be 3x7*3 = 21-9, 
 and of 2 in the sixth place would be 2 x '73 = 1-46 ; so that 
 the difference of 32 between 598700 and 598732 would 
 correspond to a difference between their logarithms of 
 21 -9 4- 1-46 = 23-36, it being understood that 23 is of the 
 same denomination as the 73 from which it was derived, 
 namely, so many millionths of unity. Tlie logarithm of 
 
T 
 
 Mi 
 
 94 LOGARITHMS. 
 
 598732, then, would be us before 5-777209 4--000023-;-;6 = 
 5-777232, omitting tlie last two figures as useless, because 
 they transcend the limits of accuracy of the table as gi\cn. 
 A table of the amounts to be added to the mantissic for 
 eacli possible difterence in the fifth place of the natural 
 numl)er, counting from its highest figure, when the differ- 
 ence between the successive mantisste given in the table 
 is 73, follows. 
 
 l-)iffereiice in the Corresponding Nearest number 
 
 iifth place of tlie difference of within the limit of 
 
 natural numherp. mantiss;e. the table as calculated. 
 
 I 7-3 7 
 
 2. 146 15 
 
 3 21-9 22 
 
 4 29-2 29 
 
 5 36-5 37 
 
 6 .....43-8 44 
 
 7 51-1 51 
 
 8 58-4 58 
 
 9 65-7 66 
 
 With such a table before us, the calculation of the amount 
 to be added to the mantissa of 5987 in order to get the 
 mantissa of 598732 would be extremely easy. The 
 amount corresponding to the additional 3 would be found 
 in tlie table as 22; that corresponding to the 2 one place 
 lower down would be found from the table to be the 
 tenth part of 15, i.e., would be one, and the total amount 
 to 1)6 added for 32 would be 23 as before found. 
 
 Such a table, modified to bring it within the limits of 
 the table as calculated, is found in the first column of the 
 table of mantissa'. The valu3s given above are found on 
 page 118 under PP, which stands for proportional parts, 
 opposite the 1, 2, 3, 4, etc., printed under 590 in the column 
 headed 1. 
 
LOGAllITHMS. 
 
 ri 
 
 L> 
 
 Three ways of extending the table to include more than 
 four digits in the natural number have been discussed. 
 They all agree in this, that tliey furnish a method of cal- 
 culating a correction which, added to the mantissa of the 
 highest four digits of the natural number, shall give the 
 mantissa for one or at the utmost two additional dibits. 
 
 1. The first method of calculating the correction is to 
 use directly the principle on which all three methods are 
 founded, viz. ; as the difference between two numbers 
 near together is to the difference between one of these 
 numbers and a tliird near it in value ; so is the difference 
 between the logarithms of the first two numbers to the 
 difference between tlie logarithms of the .second two 
 numbers, wliich is the correction required. 
 
 Here remark that the first two numbers whose differ- 
 ence is the first term in the proportion, must be natural 
 numljers in the table, for their logarithms must be known 
 in order that their difference may be known, as it is 
 required for the third term of the proportion. Remark 
 also that they must be as near the number whose logar- 
 ithm is required as possible ; for the principle employed is 
 only approximately true, and is more nearly exact the 
 nearer the numbers dealt with are to one another. Hence 
 it is best to take the numbers in the table that differ only 
 in their lowest or fourtli digit by unity, one being less and 
 the otlier greater than the number of which the logarithm 
 is required. 
 
 As an additional illustration let us discuss the question 
 of what correction must be added to the mantissa for 7981 
 to give the mantissa for 79812345. As the mantissa 
 remains the same, wherever the decimal point may be, we 
 will try to find the mantissa corresponding to 7981 '2345. 
 The number whose logarithm we can find in the table 
 
9G 
 
 LOGARITHMS. 
 
 II 
 
 next less than 7981-2345 is 79S1, of which the logarithm 
 is 8-902057 ; and the number next greater than it is 7982, 
 of which the logarithm is :;-902112. Therefore by our 
 principle 
 
 7982 - 7981 : 7981-2345 - 7891 :: 3-902112 - 3-902057 : 
 the logarithm of 7981-2345 ~ 3902057 ; 
 that is 1 : -2345 : : -000055 : the correction required 
 •000055 
 
 Tl72^ 
 11725 
 
 •0000128975 the correction required. 
 Tf the logaritlims use<l in the calculation were exact the 
 correction so found niight be used to the last decimal - 
 but as the logarithms given in the table are only correct 
 to the sixth decimal place, the correction is of value only 
 to the same extent, and is, therefore, -000013, which, 
 tliough a little too great, is nearer the calculated correc- 
 tion than -000012 would be. So then the logarithm of 
 7981-2340, as nearly as these tables will mve it is 
 3-902057 + -000013 = 3-902070. 
 
 If in the same way we found tlie logarithm of 7981-234 
 our proportion would be 
 
 1 : -234 : : -000055 : the correction required 
 -000055 
 
 ~ii7o 
 
 117^ 
 
 •0000128^0 
 which is practically tlie same C4)rrection as before. Ac^ain 
 tlie correction needed for 7981-23 sixnilarly found would 
 be -00001265, which to the sixth decimal place is the same 
 correction as before. We may conclude that our table as 
 given will not enable us to distinguish, the logarithms of 
 
lOGAllITHMS. 
 
 97 
 
 series of digits extending to more than 6 in number. In 
 other words, up to six places of decimals the logarithm of 
 57328-4659, for in.«tance, is the same as the logarithm of 
 57328-4862. All digits after the 4 may be cancelled, as 
 they will not affect the logarithms to be used, when as in 
 the tables before us they are not calculated beyond the 
 sixth decimal place. As, however, 57328-5 is nearer to 
 both the numbers given tlian 57328-4 would be, the lo<^ar- 
 ithm of 57328-5 would be found as tlie nearest practical 
 representative of the Icgarithnis of 57328-4659 or of 
 57328-4862. In actual work, of course, the difference 
 between the mantissa' in tlie table is not written down 
 with a long array of ciphers as in the example just 
 worked, -000055, but more simply 55 ; and the work to be 
 done is simplified into multiplying 55 by the difference of 
 the numbers, -2345, so tliat the correction is thus found : 
 
 -2345 
 55 
 
 11725 
 11725^ 
 
 12^977) = 13 practically, 
 
 which of course is added in its proper place at the end of 
 the mantissa of 7981. 
 
 20. Find the mantissa' corresponding to the following 
 sequences of digits: 13796, i;5847, 265778, 394876, 
 429948, 568872, 5088723, 5688724, 5688719, 56887198, 
 93462, 789546, 597989. 
 
 21. Find tlie logarithms of 3-6871, 45-382, -0067935, 
 -0798984, 958276000, 964-7399, 11-7184, -0005949259, 
 79-8463, 2758-458. 
 
 2. The second method of calculating the correction is 
 like the tirst^ except that instead of subtracting one man- 
 
-:::»"■ 
 
 r'-. L\. 
 
 98 
 
 LOGARITHMS. 
 
 m 
 
 tissa from the next to nnd the difference which is the 
 second term of the proportion, the difference is taken from 
 the last column on the page headed D. This method is 
 not quite so exact as the first method, because the differ- 
 ences in a few cases are not quite right. Thus the differ- 
 ence between the mantissa? corresponding to 1061 and 
 1062 is 410, but the difference given in t'ne table is 408. 
 This arises from tlie fact that the 408 given under D is 
 the average difference for the line of mantissjc opposite 
 v/hich it is printed, and is a little too small for those at 
 the beginning of the line and a liti^le too great for tliose at 
 its end. The error resulting from the use of the differ- 
 ences given in the table under D is insignificant. 
 
 It is obvious that we may find the logaiitlim of 736854 
 thus : Find the logarithm of 736800, which is 5-867350, 
 and add to it as the correction sought the product of the 
 tabular difference, given under 1) as 59, by "54, tlie t\V(j 
 digits in the fifth and sixth places. The product, 50 x •r»4, 
 is 3r86. The nearest integer to this, 32, is to be added 
 as llie correction ; it makes the logarithm of 736854 lo 
 be 5-867350-1-32 in the fifth and sixth places, whicli is 
 5-867382. 
 
 22. Find the mantissa- corresi)oudiug to tlie f(dlowiug 
 sequences of digits : 357897, 682483, 705962, 7998089, 
 8632157, 8878981, 95342, 96878215, 9736857, 99.S7119. 
 N.IV — Since yuir table will not enable you to extend 
 your sequence of digits more than to six digits, take the 
 nearest se(juence of viix digits when the mantissa of a 
 longer sequence is rccjuired. Thus, in the last two of tlie 
 ])receding exercises, substitute 973686 for 9736857, and 
 998712 for 9987119. 
 
 3. The correction for each digit ii! the fifth place is 
 calculated in the column ntanding first on the page and 
 
LOGARITHMS. 
 
 99 
 
 headed PP. That correction divided by ^ w 1 b t • 
 correctiou for each digit in the .sixth place. Accordmgl) 
 the process by which the .nantissa tor the sequence .,.91 
 cC J i"^ the n>antissa for 379178C2 by tl>e a.d of 
 
 , colu.nn of proportional parts, Pl>> j-- f 1°-^ = 
 Mantissafor.....3791 is -078704 
 
 Proportional part for 7 " 
 
 ^ a « 8 " 9S 
 
 a « G " 70 
 
 ,, u '« 2 " 2^ 
 
 Mantissa for 37917862 " •5788-15023 
 „i which the last throe figures are "seless, and the man- 
 tissa reciuired to six places of decimal is -o , 884o. 
 
 The uselessness of going beyond the s.xth place in h 
 se,|ue.,..e is evident froni this exau.ple also. Substitute 
 „ •;79178G2, :i79l79, ^vlnch is the nearest sequence of 
 1;: ;:,aces to the sc.nonce given. The mantissa for 
 
 :;79179 is then found as before : ,^„^^ . 
 
 Mantissa for :^.791....^ '578704 
 
 Proportional part for 7. . . • • 
 
 « " 9. ... lO'^ 
 
 Mantissa for ^79179 -5788454 
 
 which, dropping the useless figure in the seventh place, is 
 the same mantissa as tor .. , n : «0.. 
 
 23. Kind mantissa, for the s«q"'"'""f ; j^^ ^^^^^^^ [^ ^ ' 
 588077, 589734, 01S1937, 02.548391, 78S09o4, 893881--, 
 (U 3.84209, 937S80.5942. ^ 
 
 24 Find the logarithms of 308271, ''-l^i.'', 'es84o, 
 898732 Vo378145: -0059897, -0003.082479, -OOOooooo. 
 
 100:hS42 100004. ,. . . 
 
 The pupil who has mastered the preceding exercises .s 
 
 , , ; ' ' , „e<.|lv !-» the tal.l-s given wdl serve, the 
 
 ;rShm!;::;m.".>>er.-.l.illb^^^ 
 
100 
 
 LOaARlTHMS. 
 
 i 
 
 able to use any of the more extended tables of logarithms 
 which may be reciuired in his work at college. It remains 
 by an inversion of one or other of the three methods just 
 described to find tlie sequence of digits corresponding to 
 a nuintissa not found in the table. So we may find the 
 sequence of digits corresponding to the mantissa -902070 
 thus : In the table find the mantissai nearest to '902070. 
 These are -902057 and -902112, corresponding to the 
 sequences 7981 and 7982, between wliich the sequence 
 souglit must lie. Then say, as the difference between the 
 two mantissa^ in the table is to the difierence between the 
 given nuintissa and the one next below it in the table, so 
 is the dill'erences between the sequences in the table to the 
 dilt'erence between the lower sequence taken in the tal)le 
 and the sequence sought. In tliis particular instance the 
 proportion becomes -902112 - -902057 : '902070 - -902057 
 ::l:the correction. That is, 55: i:'.; : 1 :the correction, 
 whicli is tlierefore \^ = -2oiJ^-^. But as these calcula- 
 tions cannot be relied on for more than two additional 
 places in the sequence, and -24 is nearer -2303 tlian -23 
 would be, the se(pience sought may be written as 798124. 
 1*)V conn)arinfr this result with the inverse process on page 
 90 tlie pupil will understand more clearly liow it is tliat 
 tlie finding of sequences not in the talde cannot be safely 
 extended to more than six places in all, when a six-figure 
 table of logit^'ithms is used. 
 
 The metliod given altove is an inversion of method 1 for 
 finding the mantissa corresjionding to a se(iuence of more 
 than four figures, liy an inversion of the second method 
 we may find the sequence corresi)onding to the mantissa 
 •807382. Tlie mantissa next below it in tlie table is 
 •8()7.".50, to which corresponds the sequence 7308. The 
 dilVerence between successive mantissn- at this pait of the 
 
LOGAUITIIMS. 
 
 101 
 
 taV)le is given under D as 59. The difference between the 
 civen mantisna and the mantissa of 7308 is 32. Therefore 
 Uie di^its to be annexed after 7308 will be given as H 
 that is -542, which cannot, however, be trusted after tjie 
 second figure. The corrected sequence reads 730854. 
 C^ompare with tlie inverse work on page 98. 
 
 Finally, the development of the sequence may be effected 
 by an inversion of the third method of correcting a man- 
 tissa criven above. Thus, to find the sequence correspond- 
 \u<r to the the mantissa -578845, find the neai-est lower 
 mantissa in the table, which is '578754, corresponding to 
 the sequence 3791. Subtract the latter from the former ; 
 the remainder is 91 ; the nearest proportional part below 
 it is 81, corresponding to 7 and leaving 10 ; to this annex 
 a cipher, making it 100 ; to this the nearest proportional 
 part is 104, corresponding to 9. Therefore the corrected 
 
 setpience is 379179. 
 
 25. In each of the three ways given al)Ove find tlie 
 seduences, to six places only, corresponding to the mantissa' 
 •i:>r,478, -111111, -2:54507, -345078. -450789, -507890. 
 •07890l' -789012, -890123, -90123.4. Note particularly any 
 discrepancies of result arising from dilferencc of method 
 
 of working. . , . i 
 
 26 Of what numbers are the f.»llowing the logarithms : 
 3019876 2109870, 1-210987, 0:i21098, 1-432109, 
 2-54321o! 3054321, 4-705432, 5-870543, 0987054. Use 
 
 the last method. 
 
 llmiintidiUorii StatancM.-A^xe logarithm of the pro- 
 ,lu,.t .)f any number of factors is the sum of the logarithms 
 of the factors. The logaritlim nf a .ptotient is the logar- 
 illmi of the dividcn.l less the logarithm of the divisor. 
 Tho Incrnritlnn of a power of a number is the logarithm of 
 thut number multiplied by the index of the power. The 
 
102 
 
 LOdAUITH.M^. 
 
 lo^Tarithm of a root of a number is the logarithm of the 
 number, divided by the index of the root. 
 
 Multiplication. 
 
 Remember that mantissa^ are always positive, and that 
 the carrying from the sum of any number of mantisste is 
 always positive, although some or all the characteristics 
 may be negative. 
 
 27. What is the product of 1-0378 X 1*946 x I'OOOS x 
 3-006 X 5-00082 x 7-48139 x 6-8735 ; of 16-437 x 286845 x 
 357-642 X -086824 x 00961 ; of -0632 x -07954 x 068689 x 
 •00074368 X 7329-688 ; of 10084 x 7-3695 x -000086957 x 
 22-46 X 37-89 x 058276 ; of 06 x 073 x -0892 x 6934 x 
 •82659 X -717876; of 179-63 x 482-7 x 795-687 x 555-55 x 
 •00000687324 ; of 17 x -18 x 19 x -21 x 23 x -64 ; of 4951 
 X 5-368 X 7-965 x 83837 x 0001 ; of 10112 x 1-0234 x 
 1-1378 X 1-6654 X 1-78877 ; and of 637842 x 97918 x 
 654837 X -0079892 x 00004632 x 000005948 ? 
 
 Division. 
 
 When you have in the same exercise several quantities 
 multiplied together, divided in any order by several 
 divisors, add the logaritlims of all the multipliers, and from 
 the sum subtract the sum of the logarithms of all the 
 divisors. In subtracting remember tliat your numtissa' 
 are always positive; that taking away a negative (luantity 
 is etpiivalent to the addition of a positive ([uantity ; and 
 that taking away a negative quantity is equivalent to 
 adding a positive quantity. Each of the points in this 
 paragraph is illustrated by an example below. 
 ! );..Mo -ti ^ r, H V 7.« r, ]jy 07:V«4 v 5(i-67.3. 
 
 . « 7 .•» 1 H 4 "^ 
 
 Here 00673, 100084, 97384 and 56673 are all divisors, 
 
LOGARITHMS. 
 
 103 
 
 tlierefore add their logarithms and subtract the sum from 
 the sum of the logarithms of 31458 and 765. 
 
 Log. 00763 3-882525 
 
 " 100000 5- 
 
 PP. of 80 331 
 
 4 17 
 
 Locr. 973-8 2-988470 
 
 Log. 3-145 0-497621 
 
 PP. 8 110 
 
 Log. 7-65 0-883661 
 
 Sum T-381392 
 
 Subtract... 7-624737 
 
 PP. 4. 
 
 18 
 
 Log. 56-67 1-753353 
 
 23 
 
 PP. 3. 
 
 um i 0J4/O/ 
 
 7-756655 which is the logarithm of 
 000000571025, the answer. 
 Divide 7-6348 by 0172. 
 
 Log. 7-634 -882752 
 
 PP. 8 JS 
 
 Log. 7-6348 •882708 
 
 « -0172 2-235528 
 
 2-647270 .-.log of 443-885, answer. 
 2-r47187 log. of 443-8 
 
 83 
 
 78 PP. of 8 
 
 50 " " 5 
 Divide -0172 by 763-48. 
 Log. -0172.. 2235528 
 " 763-48.. 2-882708 
 
 5-3527:{0 log. of -0000225284, answer. 
 
 VV. 8 
 PP. 4 
 
 5-352568 log. of 00002252 
 
 162 
 154 
 
 80 
 77 
 
104 
 
 LOGAlilTHMS. 
 
 i 
 
 :!'.' 
 
 Divide -0076348 by '0172. 
 Log. -0076348 .... 3-882798 
 
 " -0172. 2-235528 
 
 1-647270 = log. -443885, answer. 
 Divide 0172 by -0076348. 
 
 Log. -0172. 2-235528 
 
 " -0076348.... ;-5-882798 
 
 0-352730 = log. 2-25284, answer. 
 Divide -172 by -00076348. 
 
 Log. -172 1-235528 
 
 " -00076348... 4-382798 
 
 2-352730 = log. 225-284, answer. 
 
 28. Divide 59-6834 by 47-9218, 736-68 by 795*887, 
 768000 by 754, 32788 by 6742-11, -76957 by -38G21, 
 •5948 by -038797, "008255 by -018173, -0006866 by 
 495-371, -0068524 by -0000798, and -0000798 by -0068524. 
 
 29. Find the reciprocal of 11, of 14-682, of 97-381, of 
 3754-68, of -01, of -0001, of -0036827, of -0098286, of 
 556789. of -556789. 
 
 30. Give the value in decimals of the following frac- 
 
 . 1 .'5 2_Ji.' 1 !>^t!.H Trt_2.SS. 
 
 .n H 
 
 .H « H 
 
 1 4 . !l « .'. 
 
 tlOnS: -^i}, toT' T's&i> 0THijy» liT-TT* .Vii' .0 12> 17.su 7. 
 - ** L*iAiL . • « >" ■- 
 
 a.-> It.WO 1' .00 7 !» 1 4 s" . 
 
 31. Find the values of the recinrocals of the fractions 
 in the preceding exercl3e. 
 
 32. Divide the product of 67 X 39-58 x -067879 by tlie 
 product of 112x7-8868x59-473. Find the vabie in 
 decimals of ^^^ x ,V/h x "^^i X ,-^,r. l^i"^ tlie vabie ..f 
 
 •3'_«J X "'•'^" X "-''^^ — -■'''"-. Find the value of «•««'• 
 
 1 .0 » 7 -i 1 4 . U H -J It V . 7 4 • H !• 5 7 1 . • U J 1 
 
 J4 _i./ -.1 1 « 7 X 1 •' • ). 
 15-»87'vi41lsy 1U7.'J01>' 
 
 Involution. 
 Hero observe cnrefullv that the carrying from any mul- 
 
LOGARITHMS. 
 
 105 
 
 tiplication of luantissie is always positive, even although 
 the characteristic and its product are negative^ Thus, 
 we wish to get the cube of 9874, its logarithm is 1'994493 
 which wheu multiplied by 3 gives 1-983479, for the car- 
 rying from the multiplication of^ -9 by 3 is + 2 which 
 added to the three times 1 gives 1. As 1-983479 is the 
 logarithm of -902672, this last is of course the cube of 
 •9874, right to the fifth decimal place. 
 
 33. Find the square of 19-G82, and of -07975, the cube 
 of 7-6864 and of -0777777, the fourth power of 1-897, the 
 5th power of 1-4158, the 13th power of -77816, the 19th 
 power of 1-12345, the Uth power of the square of -02468 
 and the 9th power of the cube of 1-0124. 
 
 Evolution. 
 
 It will be remembered tliat to find the logarithm of the 
 root of a number the logarithm of that number is to be 
 divided by the index of the root. Tliis is easily done 
 when the characteristic and the mantissa of that logarithm 
 are positive; also when the characteristic although negative 
 is exactly divisible by the index of the root. So there 
 will be no dithculty in finding the logarithm of the sixth 
 root of that number whose logarithm is 5-739874, the quo- 
 tient, which is the logarithm of the root, being -956646.* 
 Xor is there any difhculty in finding the logaritjun of the 
 sixth root of that number whose logarithm is 12-358726, 
 the nearest quotient being 2059788, and being the logar- 
 ithm of the root sought, But if we are findi^ig the sixth 
 root of that number whose logarithm is IU'476793 we 
 meet the difficulty that 6 is contained in 10, 1 with a 
 remainder 4. How can this negative 4 be so blended with 
 
 * The pupil will notice that the last figure is a little too large, but it 
 is nearer the truth than 5 in that place would be. 
 
lOG 
 
 LorjAKiTinrs. 
 
 : i 
 
 the positive mantissa that follows it, as to give a positive 
 quotient, and this we need because every mantissa is to be 
 positive. Perhaps at first sight the difficulty seems 
 insuperable ; but it may be readily overcome by saying 
 that 6 goes into 10, 2 times with a remainder of +2; for, 
 while it is quite true that if G be multiplied by 1 and the 
 result be subtracted from lO, 4 will remain, it is no less 
 true that if G be multiplied by 2, and the result be sub- 
 tracted from 10, + 2 will remain. The necessary division 
 
 is thus accomplished : 
 
 6)10-476793 
 
 T-4T2799 
 the quotient being the logarithm of the answer. 
 
 One example more will suflice. What is the cube root 
 of -0007585 ? The logarithm of -0007^85 is 4-879956 of 
 which the third part is found as above to be 2-959985. 
 This last is the logarithm of -091198 ; and this again is 
 the cube root of -0007585, right to the last digit. 
 
 34. Find the square root of 933156, of 8335*69, of 
 28-4089, of -383161 and of -00168921. Extract the cube 
 root of 804357, of 50-053, of 166-375, of 9, of 574. What 
 is the fourth root of -938, the fifth root of -0007, the sixth 
 root of 4-3928, the seventh root of -018195, the eighth 
 root of 1-0789, the ninth root of 548-733, the tenth root of 
 •0078145, the one hundred and nineteenth root of 67'7349, 
 the two hundred and fifteenth root of -000068782, and the 
 three hundred and seventeenth root of 115-317 ? 
 
 The preceding examples demonstrate the great assist- 
 ance that logarithms may be in effecting intricate calcula- 
 tions that involve multiplications, divisions, involutions 
 and evolutions only. It must never be forgotten that 
 additions and subtractions of natural nuniljers cannot be 
 effected logarithmically ; hence additions and subtractions 
 
LOGAUITIIMS. 
 
 107 
 
 must be done either before logarithms are introduced in 
 the example, or after return to natural numbers has been 
 made. Thus, to solve the following problem, which 
 cannot be easily done witliout the aid of logarithms, the 
 following order of operations must be followed with but 
 slight variation : 
 
 s/' 
 
 /■ 
 
 Loe.j> _ ^5 4 -J t -s ^ -1 n 61^)20 which is log. of 1-36873 
 
 •' l'243o8 
 
 a <.' 
 
 Log. ]^^ ij) 4 i.".j»ji^. 094672 '• 
 
 \ 11 
 
 >/r-3G873 -T-24358 = >^-12515 
 ^"g- llllA = Ii"-l'l--* •'' ^ = 1 -81 0486 = log, of -659911 
 LoK^^ _ 1 . 1 4 «} 1 2 8 _ -229226 = log, of 1-69521 
 LoK% _ .0 1. H !. 7 _ -049926 = log. of 1-12185 
 
 ^h - i/5 = 1-69521 - 1-12185 = -57336 
 LoK^.5rj5;5jj = r^_.VH4^^H^|.879214 = log. of -757205 
 
 •659911 + -757205 = 1-417116, answer. 
 ;5. Find the value of (^/98?6 - ^49-59) 
 (V^n89->^1200-G8); of (V^8-l + x/37-695) (V'4;M- 
 V37lll)5); of ^7im~^0069~^'^b^8r^~^^^^ 
 
 of VVl)^'-87xv^4877-V^6iF7^ and of 
 
 (^987327 -x/683-4\'' 
 
 3i 
 
 X 
 
 ()83-4\'' 
 683-4/ 
 
 !>v/'.)873!w+x/6J 
 
 36. By l()'4inithms solve the following examples from 
 'earlier pages: P. 5,-42, 43, 64, 67, 68, SI, 83, 86, t)l, 93; 
 p. 6,-4, 5, 7, 10,11, 14,18,29,21,23; p. 16,-42, 43,44, 
 46, 47, 48, 50, 51, 54, 61 ; p. 48,-25, 26, 29, 30, 31, 33, 
 34^36; pp. 50-52,-13, 14, 17,31,33,36,40,41 ; ])f. 53, 
 5.1 _10, 11, 16, 19, 20 'N, 32,39, 41, 43,44; i». 57,-2,3. 
 
108 
 
 LOGAKITHMS. 
 
 ill 
 
 iH 
 
 G, 7 ; p. 50 --G, 8, 9, 10 ; p. 60—7, 8, 9, 11, U, IC ; pp. 64, 
 6-),—;!, 9, 10, 11, 14, 16, 18 ; p. 66,-8, 10, 11, 14. 
 
 37. What is the ainoimt at simple interest of $494*36 
 for 11 years at 41^ per annum ? What would it be at 
 compound interest ? What at compound interest is the 
 amount of 1 mill for 500 years, at 3^ per annum ? What 
 is the compound interest of $728"36 at 4^% for 23 years ? 
 
 38. What is the acreaije of a trianj^le whose base is 
 74'35 chains and altitude 49-77 chains ? of a triangle 
 whose three sides are 56'38 chains, 49-71 chains and 52-31 
 chains ? of a parallelogram whose base is 38-94 chains and 
 perpendicular height 42-17 chains ? of a rectangle whose 
 con-terminous sides are 15-69 chains and 14-48 chains? 
 of a rectangle of which one side is 13-87 chains, and the 
 diagonal 15-93 chains ? of a parallelogram of which two 
 adjacent sides and me diagonal are respectively 13-47 
 chains, 19-63 chains and 1618 chains ? of a circular 
 enclosure o£ which the diameter is 9-36 chains ? of a walk 
 one rod wide around the outside of this enclosure ? 
 
 39. If 45*37 were accurately raised to the one millionth 
 power, how many volumes of 320 pages each with 60 lines 
 on a page and 60 digits in a line would be required to 
 hold the answer ? 
 
LOGAllITIIMIC TABLES. 
 
 109 
 
 MATHEMATICAL TABLES. 
 
 LOGARITHMS OF NUMBERS FROM 1 TO 10,000, WITH 
 riFFERENCES AND PROPORTIONAL PARTS. 
 
 Numbers from 1 to 100. 
 
 No. 
 
 IiOg> No. 
 
 liOfi. 
 
 No. 
 
 liOg. 
 
 No. i liOg. 
 
 No. 
 
 Ltog. 
 
 1 
 
 0-000000 
 
 2 
 
 0-301030 
 
 3 
 
 0-47;i21 
 
 4 
 
 O-COJOCO 
 
 5 
 6 
 
 0-698970 
 
 0-77Sl-)l 
 
 7 
 
 0-S-l.'>0'.)8 
 
 8 
 
 0-003090 
 
 9 
 
 0-;t->4243 
 
 10 
 11 
 
 1-000000 
 
 1-041393 
 
 12 
 
 1-0791S1 
 
 13 
 
 1-113043 
 
 14 
 
 M4i;i28 
 
 15 
 
 16 
 
 M7'WJ1 
 
 1-204120 
 
 17 
 
 1-230449 
 
 IS 
 
 1-255273 
 
 19 
 
 1-27875 1 
 
 SO 
 
 1-301030 
 
 21 
 
 23 
 24 
 
 1-322219 
 1-342423 
 1-361723 
 1-380211 
 L'j 1-397941) 
 
 20 
 
 27 
 23 
 29 
 30 
 
 31 
 32 
 33 
 34 
 
 35 
 
 36 
 
 37 
 3S 
 39 
 40 
 
 1-414973 
 l-4313o4 
 1-447158 
 l-4()2398 
 1-477121 
 
 1-491362 
 1-5051.">;I 
 1-518514 
 1-531479 
 1-544068 
 
 l-55630;5 
 1-56S:;02 
 1-579781 
 1 -591065 
 1-B02060 
 
 41 
 42 
 43 
 44 
 45 
 
 46 
 47 
 
 4S 
 49 
 50 
 
 51 
 
 52 
 53 
 54 
 55 
 
 56 
 57 
 53 
 59 
 60 
 
 1-6127S4 
 1-623249 
 1-633468 
 1-643453 
 1-653J13 
 
 1-662758 
 
 1-672098 
 1-681241 
 1-690196 
 1-698970 
 
 1-707570 
 1-716003 
 1-724270 
 1-732394 
 l-7403ti:< 
 
 1-74SI88 
 1-755875 
 1-763428 
 1-770852 
 1-T78151 
 
 CI 
 62 
 63 
 64 
 65 
 
 66 
 67 
 63 
 69 
 70 
 
 71 
 72 
 73 
 74 
 75 
 
 76 
 
 77 
 73 
 79 
 80 
 
 1-785330 
 1-792392 
 1-799341 
 1-806180 
 1-812913 
 
 1-819544 
 
 1-826075 
 1-832509 
 1-838849 
 1-845098 
 
 1-851258 
 1-857332 
 1-863,323 
 1-869232 
 1-875061 
 
 1-880814 
 1-S86491 
 1-892095 
 1-897627 
 1-903090 
 
 81 
 
 82 
 83 
 84 
 85 
 
 86 
 87 
 88 
 89 
 90 
 
 91 
 
 92 
 93 
 94 
 95 
 
 96 
 97 
 93 
 99 
 100 
 
 1-908485 
 1-913814 
 1-919078 
 1-924279 
 1-929419 
 
 1-934493 
 1-939519 
 1-944483 
 1-949390 
 1-954243 
 
 1-959041 
 
 1-963783 
 1-968483 
 1-973123 
 1-977724 
 
 1-982271 
 1-986772 
 1-991226 
 1-995635 
 2-000000 
 
110 
 
 LOGAKITIIMIC TAliLES. 
 
 pr 
 
 N. O 
 
 .'I 
 
 G 
 
 9 
 
 D. 
 
 41 
 Ki 
 12 J 
 Kit) 
 207 
 24.S 
 200 
 ■SM 
 37.'} 
 
 3S 
 7() 
 11,H 
 151 
 1W» 
 227 
 2()5 
 302 
 340 
 
 100 
 1 
 2 
 3 
 
 5 
 C 
 7 
 
 y 
 
 no 
 1 
 
 2 
 3 
 4 
 6 
 
 C 
 
 7 
 
 9 
 
 I 
 
 000000 000434,000868 
 4321 4751 51811 
 8(K)0 9026 9451 1 
 
 012837 013259 013680 
 7033! 7451 7808 
 
 021180 021003 022016 
 5:506 1 5715 1 6125 
 93841 9789 030195 
 
 033424 03:i><2(ii 4227 
 7426; 7825 8223 
 
 I 
 
 35 
 70 
 104 
 139 
 174 
 209 
 244 
 278 
 313 
 
 32 
 
 64 
 
 ar 
 
 129 
 161 
 193 
 225 
 
 258 
 290 
 
 041393 
 5323 
 9218 
 
 053078 
 6905 
 
 061)698 
 4458 
 8186 
 
 0718.S2 
 5547 
 
 041787 
 
 5714 
 
 9G0() 
 
 05,31()3 
 
 7286 
 
 001075 
 
 1 4832 
 
 ! 8557 
 
 ' 072250 
 
 1 6912 
 
 120 079181 079543 
 1 U82785 083144 
 6360 6710 
 9905 090258 
 
 30 
 60 
 90 
 
 120 
 51) 
 
 180 
 
 210 
 MO 
 
 270 
 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 130 
 1 
 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 093422 
 6910 
 
 3772 
 7257 
 
 100371 j 1007 15 
 3804! 4146 
 72101 7549 
 
 110590 : 110926 
 
 140 
 1 
 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 113043 114277 
 
 7271! 76(13 
 
 120574 12091)3 
 
 38521 41-8 
 
 7105' 7429 
 
 130334 130655 
 
 3539 i 3S58 
 
 6721! 7037 
 
 9S79 140194 
 
 1430151 3327 
 
 042182 
 
 6105 
 
 9993 
 
 053846 
 
 766() 
 
 061452 
 
 i 5206 
 
 I 8928 
 
 072617 
 
 6276 
 
 I 
 
 079904 
 US3503 
 
 7071 
 0906 U 
 
 4122 
 
 7()04 
 101059 
 
 4487 [ 
 1 7888 
 ,111263 
 
 ' 114611 
 
 7934 
 
 121231 
 
 ' 4504 
 
 I 7753 
 
 130977 
 
 4177 
 
 7354 
 
 140508 
 
 ! 3639 
 
 001301 
 6609 
 9876 
 
 014100 
 
 8284 
 022428 
 
 05;{3 
 OSOCHHt 
 
 4628 
 1 8620 
 
 042576 
 6495 
 
 0503.SO 
 4230 
 8046 
 
 061829 
 5580 
 9298 
 
 072985 
 6640 
 
 001734 
 6038 
 
 010.'}00 
 4521 
 8700 
 
 022841 
 6942 
 
 031004 
 502i) 
 9017 
 
 002166 
 6466 
 
 010724 
 4940 
 9116 
 
 023252 
 7.V)0 
 
 031408 
 5430 
 9414 
 
 042969 
 688,5 
 
 050766 
 4613 
 842(; 
 
 062206 
 5953 
 96(i8 
 
 073352 
 7004 
 
 002598 
 6894 1 
 
 011147 
 53t«) 
 9532 
 
 023()64 
 7757 
 
 031812 
 5830 
 9811 
 
 043362 
 7275 
 
 051153 
 4996 
 
 8805 
 002582 
 
 6326 
 070038 
 
 3718 
 
 7368 
 
 003029 
 7321 
 
 011570 
 6779 
 9947 
 
 024075 
 8164 
 
 032216 
 6230 
 
 080266 1 
 3861 j 
 74261 
 
 0909()3 
 4471 
 7951 
 
 101403 
 
 I 4828 
 8227 
 
 111599 
 
 080620 
 4219 
 7781 
 
 091315 
 4820 
 8298 
 
 101747 
 6169 
 8565 
 
 ilii»34 
 
 7664 
 05153S 
 
 5378 
 
 9185 
 062958 
 
 ()699 
 070407 
 
 4085 
 ; 7731 
 
 003461 
 7748 
 
 011993 
 0197 
 
 020:i61 
 4486 
 8571 
 
 032619 
 6<529 
 
 040207 040602 
 
 ; 003891 
 i 8174 
 
 012415 
 I 6616 
 1 020775 
 I 4896 
 i 8978 
 
 033021 
 1 7028 
 
 040998 
 
 146128 146438 
 9219 9527 
 
 152288 152594 
 B336 5lilO 
 8362 ; 8664 
 
 1613i;8 161667 
 4353 4650 
 73171 7013 
 
 1702(i2 170555 
 3186. 3478 
 
 
 150 
 
 28 
 
 1 
 
 66 
 
 2 
 
 84 
 
 3 
 
 112 
 
 4 
 
 140 
 
 5 
 
 168 
 
 6 
 
 196 
 
 1 
 
 224 
 
 8 
 
 252 
 
 <l 
 
 146748 
 9835 
 
 152900 
 5943 
 8965 
 
 161967 
 4947 
 7908 
 
 170818 
 3769 
 
 114944 
 
 8265 
 
 121560 
 
 4S30 
 
 8076 
 
 131298 
 
 4496 
 
 7671 
 
 140822 
 
 ., 3951 
 
 147058 
 
 150142 
 3205 
 6246 
 92(i6 
 
 1622()6 
 5244 
 8203 
 
 171141 
 4060 
 
 11527S 
 8595 
 
 12 1888 
 6156 
 8;»9 
 
 131619 
 4814 
 7987 
 
 141136 
 4263 
 
 080987 
 4576 
 8136 
 
 091667 
 5169 
 8644 
 
 102091 
 6510 
 8903 
 
 112270 
 
 j 
 
 115611 
 8926 
 
 122216 
 i 6481 1 
 I 8722' 
 
 131939 
 6133 
 8;W3 
 
 1414.50 
 4574 
 
 081347 
 4934 
 8490 
 
 092018 
 
 5518 
 
 ' 8990 
 
 102434 
 5851 
 9241 
 
 112605 
 
 044148 
 
 80531 
 
 051924 
 
 57601 
 
 95()3 
 
 06.'«3,3 
 
 7071 
 
 070776 
 
 4451 
 
 8094 
 
 081707 
 6291 
 8845 
 
 092370 
 5866 
 9335 
 
 102777 
 6191 
 9579 
 
 112940 
 
 044540 
 
 8442: 
 
 052309 
 
 6142 
 
 9942 
 
 063709 
 
 7443 
 
 071145 
 
 4816 
 
 8457 
 
 082067 
 5t)47 
 9198 
 
 092721 
 6215 
 9681 
 
 103119 
 6531 
 9916 
 
 113275 
 
 432 
 428 
 424 
 420 
 416 
 412 
 408 
 404 
 400 
 397 
 
 044932 
 8830 
 
 052694 
 6524 
 
 060320 
 4083 
 7815 
 
 071514 
 5182 
 8819 
 
 082426 
 
 6004 
 
 I 9552 
 
 093071 
 
 6562 
 
 100026 
 
 , 34()2 
 
 ' 6871 
 
 110253 
 
 I 3609 
 
 393 
 390 
 3.S6 
 383 
 379 
 376 
 373 
 370 
 366 
 363 
 
 17C091 176381 
 8977 i 92C)4 
 
 18'.844; 182129 
 4691 4975 
 7521 1 7803' 
 
 190332 190612 
 3 125 1 3403 
 snoo: 6176 
 8-., 7 8932 
 
 ;:ci:'i'"? 201670 
 
 176670 
 9552 
 
 182415 
 5259 
 8084 
 
 190892 
 3()81 
 6453 
 9206 
 
 r01943 
 
 176959 
 9839 
 
 182700 
 6542 
 8366 
 
 191171 
 3959 
 6729 
 9481 
 
 202216 
 
 147367 
 
 150449 
 3510 
 6549 
 9567 
 
 162564 
 5541 
 8497 
 
 171434 
 4:551 1 
 
 177248 
 
 180126 
 2985 
 5825 
 8()47 
 
 191451 
 4237 
 7005 
 9755 
 
 202488 
 
 147676 
 150756 
 
 1 3815; 
 
 I 6852' 
 I 0868 
 
 1628631 
 ! 68:53; 
 1 8792' 
 
 171726 
 
 1775:56 
 
 180413 
 3270 
 6108 
 8928 
 
 1917:50 
 4514 
 7281 
 
 200029 
 2761 
 
 115943 
 
 9256 
 
 122544 
 
 6806 
 9045 
 
 132260 
 6451 
 8618 
 
 141763 
 4885 
 
 147985 
 
 1510()3 
 4120 
 7154 
 
 160168 
 3161 
 6 1:54 
 908() 
 
 172019 
 4932 
 
 116276' 
 95861 
 
 122871'; 
 6131 
 9368! 
 
 132580! 
 6769 
 89341 
 
 142076 
 61961 
 
 116608 
 9915 
 
 123198: 
 6456 
 9690 
 
 132900; 
 60S6' 
 9249 
 
 142:5.><9 
 
 i 5507 
 
 116940 
 
 12024;-) 
 3525 
 6781 
 
 13(W12 
 3219 
 6403 
 9564 
 
 142702 
 5818 
 
 :560 
 
 357 
 
 :555 
 :552 
 349 
 346 
 343 
 341 
 
 :i38 
 
 3:55 
 
 148294 
 
 151:570 
 
 4424 
 
 7457 
 
 160469 
 
 341 ;o 
 
 6430 
 
 93S0 
 
 17231 1 
 
 5222 
 
 148603 148911 
 
 309 
 
 151676 151982 
 
 1507 
 
 4728; 50;52 
 
 :505 
 
 7759' 8061 
 
 ;503 
 
 160769 161068 
 
 ;5oi 
 
 37581 4055 
 
 299 
 
 67261 7022 
 
 297 
 
 967 5 ' 996S 
 
 295 
 
 Wy^-' w-'-^'.O 
 
 2', '3 
 
 5512; rri)2 
 
 .'91 
 
 333 
 
 :5:5o 
 :s28 
 
 :525 
 323 
 321 
 318 
 316 
 314 
 311 
 
 177825 
 
 180699 
 
 a555 
 
 6391 
 
 9209 
 
 192010 
 
 4792 
 
 7556 
 
 200303 
 
 I 3033 
 
 178113 r.'. 
 
 180986 161272 
 3,8:591 4123 
 6674 6956 
 94901 9771 
 
 192289 1925671 
 6069! 5346, 
 78:521 8107 1 
 
 200577 200850 
 3305; 3577! 
 
 ..■•'.joO 
 
 .^9 
 
 181558 
 
 287 
 
 4407 
 
 285 
 
 7239 
 
 283 
 
 190051 
 
 281 
 
 2846 
 
 279 
 
 6623 
 
 278 
 
 8382 
 
 276 
 
 201124 
 
 274 
 
 384S 
 
 272 
 
LOGAKITII.MIC TABLES. 
 
 Ill 
 
 vv 
 
 N. 
 
 :{ 
 
 
 
 9 
 
 26 
 63 
 79 
 105 
 132 
 15S 
 184 
 210 
 237 
 
 leo 
 
 1 
 2 
 3 
 4 
 
 5 
 (■) 
 7 
 
 H 
 9 
 
 ion 20 204301 204G03 
 (•>.S2tj 7oyt)| 736") 
 <t5ir)I <)7S3 21O0')l 
 
 2r2ls,s 2124.'J4 27:^" 
 4.S44! 5109 63(.> 
 74S4 7747 8010 
 
 22010S 221*370 220t)3l 
 27 It) 2970 3236 
 r)3ii9 Soils 5S26 
 r,s>s7 8144 8400 
 
 2r, 
 
 74 
 
 S9 
 
 124 
 
 14!» 
 
 174 
 
 ly.s 
 
 223 
 
 24 
 
 47 
 71 
 94 
 118 
 141 
 165 
 188 
 212 
 
 22 
 
 45 
 
 67 
 
 89 
 
 112 
 
 134 
 
 156 
 
 178 
 
 201 
 
 21 
 
 421 
 
 64 
 
 85 
 
 106 
 
 127 
 
 148 
 
 170 
 
 191 
 
 230449 230704 230960 
 
 180 
 1 
 2 
 3 
 4 
 5 
 C 
 7 
 8 
 9 
 
 204934 
 7634 
 
 210319 
 2'.I.S6 
 5638 
 8273 
 
 220S!)2 
 3496 
 C084 
 8657 
 
 205204 
 7904 ' 
 
 2105,s6 
 3252; 
 6902 1 
 8536 
 
 221153 
 3755 1 
 0342! 
 8913' 
 
 205475 
 8173 
 
 210,S53 
 3518 
 CI 66 
 8798 
 
 221414 
 4015 
 C600 
 9170 
 
 205746 
 8441 
 
 211121 
 37S.3 
 C4.50 
 9060 
 
 221675 
 4274 
 C.S.')8 
 9426 
 
 206016 
 87101 
 
 21iaS8 
 4049 
 C69I 
 9323 
 
 221936 
 45;j;{ 
 7115 
 9682 
 
 2!l!M) ; 
 
 3250 
 .').'):;si 57S1 
 8016! 8297 
 24(1540 240799 
 
 32S6 
 
 6759 
 
 8210 
 
 250420 '250664! 250008 
 
 2S53t 3096 3;J."J8 
 
 303S 
 5513 
 7973 
 
 3504 
 6033 
 8548 
 24104,S 
 3531 
 6006 
 8464 
 
 231215 231470 
 3757 1 4011 
 62851 6537 
 87091 9019 
 
 241297 241546 
 3782; 4030 
 6252: C199 
 8709 1 8954 
 
 251151 251395 
 3580 i 3822 
 
 231724 
 4264 
 6789 
 9299 
 
 241795 
 4277 
 6745 
 9198 
 
 251638 
 4064 
 
 206286 20()55(; 
 8979 1 9247 
 
 211654 211921 
 43141 4579 
 6957 7221 
 9585! 9si(; 
 
 222196 222456 
 ■<792j 5051 
 7372 76311 
 9938 3)193 
 
 231979 
 
 i 45171 
 
 j 7041 
 
 ( 9550 
 
 242044 
 
 4525 
 
 6991 
 
 9443 
 
 251 SSI 
 
 4306 
 
 190 
 1 
 2 
 3 
 4 
 6 
 6 
 7 
 8 
 9 
 
 200 
 1 
 2 
 
 I 4 
 6 
 6 
 7 
 
 8 
 
 255273 255514 255755 
 7679 791SI 8158 
 :6007r 260310 260548 
 2451 268S 2925 
 4S18 6054 6290 
 7172 7406 7641 
 9513 9746 9980 
 
 27 1S42 272074 272306 
 4158 43S91 4()20 
 6462 6692 6921 
 
 178754 
 
 :8io;« 
 
 3301 
 3557 
 7S02 
 290035 
 2256 
 4466 
 6liti5 
 8853 
 
 255996 
 S308 
 
 260787 
 3162 
 6525 
 7875 
 
 270213 
 2538 
 4S50 
 7151 
 
 256237 
 8637 
 
 261025 
 3309 
 6761 
 8110 
 
 270446 
 2770 
 5081 
 7380 
 
 232231 
 4770 
 7292 
 Osoo 
 
 242293 
 4772 
 7237 
 96S7 
 
 252125 
 4548 
 
 232488 232742 
 6023 1 6276 
 7544' 7795 
 
 240050 240301 
 25411 2790 
 6019; 626t; 
 7482' 772 
 9932 250176 
 
 252368! 2610 
 
 I 4790' 6031 
 
 D. 
 
 271 
 269 
 2(57 
 266 
 264 
 262 
 261 
 259 
 258 
 156 
 
 256477 '2567 18 
 
 88771 9116 
 
 261263 261501 
 
 2780S2 
 281261 
 3527 
 67S2 
 8026 
 290257 
 2478 
 46S7 
 6884 
 9071 
 
 301030 301247 
 
 20 
 40 
 61 
 81 
 101 
 121 
 141 
 162 
 182 
 
 210 
 1 
 2 
 3 
 4 
 6 
 6 
 7 
 8 
 9 
 
 3106 
 
 3412 
 
 5351 
 
 6566 
 
 7496 
 
 7710 
 
 9630 
 
 9S43 
 
 311754 
 
 311966 
 
 3-<67 
 
 4078 
 
 5070 
 
 6180 
 
 MI63 
 
 8272 
 
 320146 
 
 320354 
 
 322219 
 42S2 
 6336 
 8380 
 
 330414 
 2438 
 4454 
 6460 
 8456 
 
 340444 
 
 322426 
 
 44S8 
 
 6511 
 
 85,S3 
 
 330617 
 
 2640 
 
 4655 
 
 C660 
 
 I 8656 
 
 340642 
 
 279211 
 
 2814S8 
 3753 
 6007 
 8249 
 
 2904S0 
 2699 
 4907 
 7104 
 9289 
 
 301464 
 3628; 
 6781 1 
 7924' 
 
 310056 
 2177 
 4289 
 6390 
 8481 
 
 320562 
 
 322633 
 4694 
 6745 
 8787 
 
 330819 
 2842 
 4856 
 6860 
 8855 
 
 340841 
 
 270439 279667 
 281715 281942 
 3979 1 4205 
 6232 j 6456 
 8473' 8696 
 290702 290025 
 2020: 3141 
 6127 6317 
 7323' 7512 
 9507 1 9725 
 
 301681 
 3844! 
 69961 
 8137! 
 
 310268 
 23S0 
 4499 
 6599 
 8689 
 
 320769 
 
 322839 
 4899 
 6950 
 6991 
 
 331022 
 3044 
 6057 
 7060 
 9054 
 
 34103y 
 
 301898 
 4059 
 6211 
 8351 
 
 3104S1 
 2(i00 
 4710 
 CS09 
 8S98 
 
 320977 
 
 363t) 
 6;><.»() 
 8344 
 270679 
 3001 
 6311 
 7609 
 
 279895 
 
 282169 
 
 4431 
 
 6681 
 
 8020 
 
 291117 
 
 : 3363 
 
 \ 6567 
 
 7761 
 
 9943 
 
 302114 
 
 42751 
 6425! 
 8.564' 
 
 3101)93 
 2812 
 4920 
 7018 
 9106 
 
 321184 
 
 3S73 
 6232 
 8578 
 270912 
 3233 
 6512 
 7838 
 
 280 123 
 2396 
 4656 
 6905 
 9143 
 
 291369 
 3584 
 6787 
 7979 
 
 300161 
 
 302331 
 
 I 4491 
 
 6639 
 
 I 8778 
 
 310906 
 
 3023 
 
 5130 
 
 7227 
 
 9314 
 
 321391 
 
 256958 
 9:5.55 
 
 2617.39 
 4109 
 6467 
 8812 
 
 271144 
 3464 
 6772 
 8067 
 
 280.351 
 2622 
 4882 
 71-30 
 9.366 
 
 291591 
 3804 
 C)07 
 8198 
 
 300378 
 
 257198 257439 
 9594 i 9S33 
 '2619761262214 
 43461 4,5S2 
 6702 69,37 
 9046! 9279 
 
 271.377 271t)O0 
 3696 
 6002 
 8296 
 
 2S057S 
 2849 
 6107 
 7.^54 
 9589 
 
 291813 
 4025 
 6226 
 8416 
 
 : 300595 
 
 254 
 253 
 252 
 2.50 
 249 
 248 
 246 
 245 
 243 
 242 
 
 241 
 
 239 
 238 
 237 
 2;i5 
 234 
 2.33 
 2.32 
 230 
 229 
 
 226 
 
 32.3046 
 6105 
 71.55, 
 9194 
 
 331225 
 3246 
 6257 
 72()0 
 9253 
 
 341237 
 
 323252 
 5310 
 7.359 
 9398 
 
 331427 
 3447 
 5458 
 7459 
 9451 
 
 341435 
 
 302547 
 4706 
 6854 
 8991 
 
 311118 
 3234 
 6340 
 7436 
 9522 
 
 321598 
 
 302764 
 4921 
 7068 
 9204 
 
 3113.30 
 3445 
 6.551 
 7646 
 97.30 
 
 .321S05 
 
 32345S 
 65161 
 75631 
 9601 1 
 
 3316.30 
 3649 
 6658 
 7659 j 
 96.50 
 
 341632 
 
 323665 
 6721 
 7767 
 9805 
 
 331.S32 
 3850 
 6859 
 7858 
 9849 
 
 341830 
 
 32.3871 
 6926 
 7972 
 
 330008 
 2034 
 4051 
 00,59 
 8058 
 
 340047 
 2028 
 
 302980 
 61.36 
 72S2 
 9417 
 
 311542 
 3()5t.i 
 6760 
 7854 
 993S 
 
 322012 
 
 324077 
 6131 
 8176 
 
 330211 
 2236 
 42.53 
 6260 
 8257 
 
 340246 
 2225 
 
 206 
 205 
 204 
 203 
 202 
 202 
 201 
 200 
 199 
 198 
 
112 
 
 LOGARITILMIC TABLES. 
 
 1.! 
 
 i. ! 
 
 f I 
 
 1 ■■: 
 
 
 1 
 
 
 
 1 
 
 i 1 
 
 " 
 
 PP N. 
 
 
 
 1 
 
 it n 
 
 — 1 •* 
 
 1 
 
 4 5 
 
 1 
 
 D. 
 
 
 '.'■::) 
 
 .".12423 
 
 342020 
 
 342817 343014 34.3212 i 
 
 343409 
 
 34.3600 34,38(v> ;i43<»f|9 ' 944 196 
 
 1 
 1971 
 
 n 
 
 1 
 
 4392 
 
 4589 
 
 47.85 
 
 4981 
 
 6178 
 
 6374 
 
 .5570 
 
 .WiO; 6902 6157 
 
 196 
 
 30 
 
 o 
 
 0353 
 
 0549 
 
 6744 
 
 69.39 
 
 7135 
 
 7330 
 
 7525 
 
 77:'Oi 7915 8110 
 
 195 
 
 5S 
 
 3 
 
 83;)5 
 
 A500 
 
 8094 
 
 8889 
 
 9083 
 
 9278 
 
 9472 
 
 9000' 9800:a''^0054 
 
 194 
 
 ^ / 
 
 4 
 
 350248 
 
 350442 
 
 3500.30 350.829 
 
 351023 35I2I6 
 
 3514:0 
 
 351003 351790 
 
 1989 
 
 193 
 
 f»7 
 
 5 
 
 2183 
 
 2.3751 
 
 2508 i 
 
 2701 
 
 29,541 
 
 3147 
 
 a'i,39 
 
 3,W2, 3724 
 
 .3916 
 
 193 
 
 IK) 
 
 (■) 
 
 4108 
 
 4;?0l| 
 
 4493: 
 
 4085 
 
 4876 
 
 6008 
 
 f"60 
 
 5452 1 5643 
 
 5834 
 
 192 
 
 IT. 
 
 
 0)26 
 
 021/ 
 
 C408: 
 
 6599 
 
 6790 
 
 6981 
 
 7172 
 
 7303! 7.554 
 
 7744 
 
 191 
 
 ^^\ 
 
 8 
 
 7:t.'55i (125 
 
 8310- 8.")00 
 
 8090: 
 
 R88() 
 
 90701 
 
 9206 94.501 9646 
 
 190 
 
 174 
 
 9 
 
 ?'V) 
 
 9S35 
 
 360025 
 
 300215 360404 
 362105 362294 
 
 360593 
 
 I 
 
 36078,3 
 
 360972 
 
 361161 361,'J50 3615:59 
 
 189 
 189 
 
 .361728 
 
 361917, 
 
 362482 
 
 362671 
 
 362,8.59 
 
 36,3048 363236 363424 
 
 10 
 
 I 
 
 3)12 
 
 5.800, 39.S81 
 
 4170 
 
 4303; 
 
 4,551 
 
 4739 
 
 4920 i 5113 .5301 
 
 188 
 
 37 
 
 ?, 
 
 5J8S 
 
 5075 
 
 5802 i 
 
 6049 
 
 6236, 
 
 6423 
 
 6610 
 
 6790: 6983 7109 
 
 18/ 
 
 5C. 
 
 3 
 
 7.'W() 
 
 7542 
 
 77291 
 
 7915 
 
 8101 1 
 
 82.87 
 
 84,3 
 
 80.59 : 8845 90,30 
 
 180 
 
 74 
 
 4 
 
 92 IC 
 
 9101 
 
 9.587 i 
 
 9772 
 
 9958 
 
 370! 43 
 
 370328 
 
 370513 370098 370.883 
 
 1,S5 
 
 03 
 
 .1 
 
 ,371008 
 
 3712.-)3 371437 
 
 371022 
 
 371800 
 
 1991 
 
 2175 
 
 2300 i 2514 1 2728 
 
 184 
 
 311 
 
 r> 
 
 2912 
 
 3090 
 
 3280 
 
 3404 
 
 3617 
 
 3831 
 
 4015 
 
 4198! 4:{,82 4,565 
 
 1,84 
 
 130 
 
 
 4748 
 
 4932 
 
 6115 
 
 5298 
 
 6481 
 
 6G(i4 
 
 5840 
 
 0(.)29' 0212' 6.394 
 
 18:1 
 
 148 
 
 8 
 
 G.->77 
 
 0759 
 
 6942 
 
 7124 
 
 7300 
 
 7488 
 
 7070 
 
 78.52: 8031 8216 
 
 182 
 
 1G7 
 
 9 
 '.'10 
 
 8.398 
 
 85S0 
 
 8761 
 
 8943 
 
 9124 
 
 9300 
 
 9487 
 
 900S| 9849 3,800,30 
 
 181 
 
 :!S0211 
 
 380,392 
 
 .38057.3 
 
 380754 
 
 3S0934 
 
 381115 
 
 38 129:') 
 
 3S1470 3810,)0 381.8.37 
 
 181 
 
 18 
 
 1 
 
 2017 
 
 2197 
 
 2377 
 
 2.557 
 
 2737 
 
 2917 
 
 3097 
 
 3277 3451') 30.'50 
 
 180 
 
 3" 
 
 •) 
 
 3815 
 
 3995 
 
 4174 
 
 43.5.3 
 
 4,J33 
 
 4712 
 
 4891 
 
 .5070 6219 5428 
 
 1/9 
 
 r.'f 
 
 3 
 
 51)00 
 
 578.-> 
 
 6904 
 
 6142 
 
 6321 
 
 6499 
 
 C677 
 
 6850: 7031 7212 
 
 178 
 
 71 
 
 4 
 
 7-390 
 
 7508 
 
 7740 
 
 7923 
 
 8101 
 
 8279 
 
 845ii 
 
 8031 .ssil 89.89 
 
 178 
 
 so 
 
 5 
 
 9100 
 
 934,3 
 
 9520 
 
 9098 
 
 9875 
 
 390051 
 
 390228 
 
 390405 3905 S2 3907.59 
 
 177 
 
 loo 
 
 (■) 
 
 390935 
 
 391112 3912SS 
 
 391404 
 
 391041 
 
 1817 
 
 1993 
 
 2109 2.345 2.521 
 
 170 
 
 l?t 
 
 t 
 
 2097 
 
 2n3 3)48 
 
 3224 
 
 3100 
 
 3,-.75 , 3751 
 
 ."{920 4101 4277 
 
 170 
 
 14'^ 
 
 S 
 
 41.52 
 
 4027! 4S02 
 
 4977 
 
 61,52 
 
 6320, 5501 
 
 .507; ■) 58.-,0^ 6025 
 
 175 
 
 151) 
 
 9 
 
 •r)0 
 
 0199 
 
 0374 i 6548 
 
 0722 
 
 6S.)0 
 
 7071 
 
 ,'',98808 
 
 7245 
 
 7419, 7592 
 
 77(>o 
 
 1/4 
 
 .397940 
 
 398114 .39,S287 
 
 .398401 
 
 ,3980)34 
 
 ,39,898 i 
 
 .39915 1 .399.328 
 
 399,502 1 i73 
 
 17 
 
 1 
 
 9.;74 
 
 9S 17 
 
 400020 400192 
 
 400,305 
 
 400,\{8 
 
 400711 
 
 40iK>,3 4i)lii.')(; 40121" 
 
 1/3 
 
 3t 
 
 ') 
 
 i()14:il 
 
 401573 
 
 1745 
 
 19:7 
 
 208'. t 
 
 2201 
 
 zm 
 
 201 15 2777 29iii 
 
 172 
 
 M 
 
 3 
 
 3121 
 
 3292 
 
 3104 
 
 3035 
 
 3807 
 
 3!)78 
 
 4149 
 
 4321) 4492 40l)3 
 
 171 
 
 OS 
 
 4 
 
 4S3i 
 
 50; (5 
 
 6170 
 
 6310 
 
 6517 
 
 5088 
 
 6858 
 
 6029 0199. 6,'{7(! 
 
 •71 
 
 M 
 
 5 
 
 05 10 
 
 6710 
 
 08-; I 
 
 7051 
 
 7221 
 
 7.391 
 
 750)1 
 
 7731 7901 1 8070 
 
 1/0 
 
 111:; 
 
 (1 
 
 .8211) 
 
 KllO 
 
 8579 
 
 8749 
 
 8918 
 
 90,87 
 
 92,57 
 
 9420> 9595 9704 
 
 169 
 
 110 
 
 
 99;'.3 
 
 410102 410271 
 
 410440 
 
 410009 
 
 4rt)777 
 
 410940 
 
 411114 411283 411451 
 
 109 
 
 13ti 
 
 ^W 
 
 IliC.Jil 
 
 r;S8 19.')0 
 
 2121 
 
 2293 
 
 2101 
 
 2029 
 
 2791; 29iU 31,'{2 
 
 108 
 
 153 
 
 9 
 
 I'd;) 
 
 3300 
 
 3407 1 3035 
 
 3803 
 
 3970 
 
 4137 
 
 4305 
 41.5974 
 
 4472 40,{9 48IW) 
 
 107 
 
 114973 
 
 4I5M0 41.5.307 
 
 41.5474 
 
 41,5041 
 
 415.808 
 
 410141 410,308 416474 
 
 167 
 
 ir. 
 
 1 
 
 00 tl 
 
 OS(i7 
 
 0973 
 
 71.39 
 
 7300 
 
 7472 
 
 70)38 
 
 78111, 7970 81,'C) 
 
 11)6 
 
 33 
 
 •) 
 
 R'iOl 
 
 8107 
 
 80.3.3 
 
 8798 
 
 8964 
 
 91 '29 
 
 9295 
 
 940)11 9025 9791 
 
 105 
 
 40 
 
 .3 
 
 995:; 
 
 420121 
 
 420280 
 
 420451 420016 
 
 420/81 420945 4211 in 421275 421439 
 
 !»« 
 
 (ili 
 
 4 
 
 421001 
 
 1708 
 
 19.33 
 
 2097 
 
 22C)1 
 
 2120 2590: 2754: 2918 3082 
 
 104 
 
 8:', 
 
 5 
 
 3210 
 
 3110 
 
 3.57 J 
 
 37.37 
 
 3901 
 
 4005 4228 
 
 4:i92 4,5,-)5 4718 
 
 ItH 
 
 Its 
 
 C 
 
 4SS2 
 
 5045 
 
 5208 
 
 6371 
 
 6r),34 
 
 6()97! 6.8(i0 
 
 6023 1 6180 0;<49 
 
 103 
 
 11.-) 
 
 
 0511 
 
 007 J 
 
 6.8,36 
 
 6999 
 
 7101 
 
 7324 7486 
 
 70)48; 7811 7973 
 
 102 
 
 131 
 
 8 
 
 81,35 
 
 8297 
 
 81,59 
 
 80)21 
 
 : 878,3 
 
 8944 9100 
 
 9208 i 9129 9,591 
 
 102 
 
 148 
 
 270 
 
 97.52 
 
 9914 
 
 430075 
 431085 
 
 4302.30 4.30398 
 
 4305,59 
 432107 
 
 4,30720 ^4.308.sl 431042 431203 
 
 161 
 101 
 
 4313(')4 
 
 431,525 
 
 431816 4,32007 
 
 4,32;{28 4.3248S 4,3':019 4.32.809 
 
 ir. 
 
 1 
 
 2909 
 
 31,!0 3290 
 
 3I.'>0 3;io 
 
 3770 39,30 40'.l;i 4219 4409 
 
 100 
 
 31 
 
 '^ 
 
 4.')09 
 
 4729 
 
 48,88 
 
 6018 6207 
 
 6307 
 
 6520 
 
 6085 5s 14 ()00l 
 
 1.59 
 
 47 
 
 3 
 
 01 (h3 
 
 0322 
 
 6481 
 
 0040 
 
 ; 6799 
 
 6957 
 
 7116 
 
 , 7275 71.13 7.592 
 
 1.59 
 
 f)3 
 
 4 
 
 7751 
 
 7909 
 
 801)7 
 
 8226 
 
 8,384 
 
 R542 
 
 8701 
 
 1 8,8,-.9 9017 9175 
 
 1.58 
 
 70 
 
 5 
 
 9;i33 
 
 9491 
 
 90 »8 
 
 9.S06 
 
 1 990)4 
 
 440122 4402?.» 
 
 -MOl.'t/ 440.V.I4 440752 
 
 1.58 
 
 O.-) 
 
 <') 
 
 140909 
 
 441000 
 
 441221 
 
 44i;wi 
 
 '441.5,38 
 
 1695 1M2 
 
 21M19 2100 2.'<23 
 
 1.57 
 
 ill 
 
 
 2180 
 
 1 2(i37 
 
 279.3 
 
 1 29.50 
 
 ' 3100 
 
 32C),'i 
 
 .3119 
 
 .3.570 3732 .3.8X9 
 
 l.'.7 
 
 r.it) 
 
 8 
 
 4045 
 
 4201 
 
 4,357 
 
 451,1 
 
 400)9 
 
 4825 
 
 4981 
 
 61.'<7| .5293 6»t9 
 
 1.50 
 
 i4:r 
 
 9 
 
 6004 
 
 6760 
 
 6915 
 
 6071 
 
 6220 
 
 6382 
 
 05,37 
 
 6692, 6848 70031 IIM 
 
 
LOGARITIDIIC TABLES. 
 
 113 
 
 D.I 
 
 li)6 
 195 
 194 
 193 
 193 
 192 
 191 
 190 
 189 
 
 189 
 1S« 
 187 
 ISO 
 1S5 
 184 
 184 
 18;} 
 182 
 181 
 
 181 
 ISO 
 179 
 178 
 178 
 177 
 176 
 17(5 
 175 
 
 174 
 
 i73 
 173 
 
 172 
 171 
 
 '71 
 
 r/0 
 
 1 69 
 1(19 
 1(18 
 107 
 
 107 
 l()0 
 105 
 l(« 
 1()4 
 10^ 
 lt)3 
 102 
 1(>2 
 101 
 
 101 
 100 
 159 
 159 
 158 
 1.1^8 
 15T 
 157 
 150 
 IM 
 
 
 pp 
 
 N. 
 
 
 
 1 
 
 tf 
 
 ;< 
 
 4 
 
 5 
 
 6 
 
 r 8 
 
 9 
 
 D. 
 
 I'i.sO 
 
 U7158 4473131 
 
 147468 447023 
 
 447778 
 
 4479,33 
 
 448088 1 
 
 M8242 
 
 44a397 
 
 44a552 
 
 1.59 
 
 15 
 
 1 
 
 S700 8S(;( 1 
 
 9015 9170 
 
 9.324 
 
 9478 
 
 96,331 
 
 9787 
 
 9941 
 
 450095 
 
 164 
 
 31 
 
 2 
 
 450249 450403! 
 
 15055T 450711 
 
 4.50805 
 
 451018 
 
 451172 
 
 45i;i20 
 
 451479 
 
 10.13 
 
 154 
 
 40 
 
 3 
 
 17^0 
 
 1940 
 
 2093, 2247 
 
 2400 
 
 2.5,53 
 
 2706 
 
 2.8.')9 
 
 3012 
 
 3105 
 
 1.53 
 
 61 
 
 4 
 
 3318 
 
 3171 
 
 3024 
 
 3777 
 
 39:w 
 
 4082 
 
 42;i5 
 
 4387 
 
 4.54C 
 
 4092 
 
 153 
 
 77 
 
 5 
 
 4845 
 
 4997 
 
 5150. 
 
 6.302 
 
 5454 
 
 6000 
 
 67.58 
 
 6910 
 
 60()2 
 
 6214 
 
 152 
 
 1 /)•) 
 
 
 
 0300 
 
 C518 
 
 6070 1 
 
 6.821 
 
 6973 
 
 7125 
 
 7270 
 
 7428 
 
 7579 
 
 7731 
 
 1.52 
 
 107 
 
 7 
 
 7S82 
 
 8033 
 
 8184 1 
 
 8336 
 
 84,S7 
 
 80;J8 
 
 8789 
 
 8940 
 
 9091 
 
 9242 
 
 161 
 
 122 
 
 S 
 
 9392 
 
 9543 
 
 9t)94 ' 9S45 
 
 99<.t5 
 
 460140 
 
 400290 
 
 460447' 400.597 
 
 460748 
 
 151 
 
 138 
 
 9 
 290 
 
 400398 
 
 461048! 
 402548 
 
 401 198 401348 
 
 461499 
 
 1049 
 
 1799 
 
 1948 2098 
 
 2248 
 
 150 
 
 4C23:i8 
 
 402097 4C28ir 
 
 402997 
 
 463140 
 
 463290 
 
 463445 463,594 
 
 46,3744 
 
 1.50 
 
 15 
 
 1 
 
 3893 
 
 4042 
 
 4191, 
 
 4340 
 
 4490 
 
 4{i39 
 
 4788 
 
 4930 6085 
 
 62,34 
 
 149 
 
 29 
 
 ?. 
 
 5383 
 
 5532 
 
 .5()S0! 
 
 6829 
 
 6977 
 
 6126 
 
 6274 
 
 6123 6.571 
 
 6719 
 
 149 
 
 44 
 
 3 
 
 0808 
 
 7010 
 
 7104' 
 
 7312 
 
 74(H) 
 
 7008 
 
 7756 
 
 7904 8052 
 
 8200 
 
 148 
 
 69 
 
 4 
 
 8347 
 
 8495' 
 
 8043! 
 
 8790 
 
 89,18 
 
 9085 
 
 92,33 
 
 9,380 9527 
 
 9675 
 
 148 
 
 74 
 
 5 
 
 9822 
 
 9909,470110 470203 
 
 470410 
 
 470,557 i 
 
 470701 
 
 4708.51 470!t98 
 
 471145 
 
 14/ 
 
 SS 
 
 
 
 471292; 
 
 471438 
 
 15S5, 
 
 1732 
 
 1878 
 
 20251 
 
 2171 
 
 2318' 2404 
 
 2610 
 
 14(j 
 
 103 
 
 7 
 
 2750 
 
 2903 
 
 3049, 
 
 3195 
 
 3341 
 
 3487 
 
 30;53 
 
 3779; 3!I25 
 
 4071 
 
 140 
 
 118 
 
 8 
 
 4210 
 
 4302 
 
 45081 
 
 4053 
 
 4799 
 
 4944 
 
 6090 
 
 02.15 5,18 1 
 
 6.520 
 
 140 
 
 132 
 
 9 
 30;) 
 
 5071 
 
 6816 
 
 5902^ 
 
 6107 
 
 C252 
 477700 
 
 0397 
 477844 
 
 0542 
 
 C687 6832 
 
 6970 
 
 14i) 
 145 
 
 477121 
 
 477200 ; 
 
 477411 
 
 477.555 
 
 477989 
 
 478 1.13 '478278 
 
 478422 
 
 14 
 
 1 
 
 ,s,")00 
 
 871 1 1 
 
 SS55 
 
 8999 9143 
 
 9287 
 
 9431 
 
 9.575: 9719 
 
 9S0;j 
 
 144 
 
 29 
 
 2 
 
 480(.IO7 
 
 480151 
 
 480294 480438 480582 
 
 480725 
 
 480809 
 
 481012 481 IW 
 
 481201) 
 
 144 
 
 43 
 
 3 
 
 1143 
 
 1580 
 
 172!» 
 
 1.872 2010 
 
 21.5!» 
 
 2.302 
 
 '2445' 2588 
 
 27.'»1 
 
 I4;i 
 
 57 
 
 4 
 
 2874 
 
 3010 
 
 3159 
 
 3302 
 
 3445 
 
 3587 
 
 37,30 
 
 3872 ! 4015 
 
 41... 14,>| 
 
 72 
 
 5 
 
 4300 
 
 4442 
 
 4&^b 
 
 4727 
 
 4809 
 
 5011 
 
 51,53 
 
 52951 64:i7 
 
 &579 " ' 
 
 142 
 
 80 
 
 
 
 5721 
 
 6803 
 
 0(K»5 
 
 0147 
 
 0289 
 
 04.30 
 
 6572 
 
 0714 6a55 
 
 6997 
 
 142 
 
 100 
 
 7 
 
 7i;i8 
 
 7280 
 
 7421 
 
 7,503' 7704 
 
 7845 
 
 7!I86 
 
 8127' 8209 
 
 8410 
 
 141 
 
 114 
 
 S 
 
 8551 
 
 8092 
 
 88.33 
 
 8974' 9:14 
 
 9255 
 
 9,396 
 
 9.5,37! 9077 
 
 98 IS 
 
 141 
 
 129 
 
 9 
 310 
 
 9958 
 
 490099 
 
 490239 490380,490.520 
 
 490001 
 492002 
 
 490801 
 492201 
 
 490941 491081 
 
 491222 
 
 140 
 140 
 
 491302 
 
 491502 
 
 491042 491782 491922 
 
 492,341 '4924s I 
 
 492621 
 
 14 
 
 1 
 
 2700 
 
 2900 
 
 3040 3179, 3319 
 
 3t,58 
 
 3.^!I7 
 
 37;i7! as70 
 
 4015 
 
 139 
 
 28 
 
 '» 
 
 4155 
 
 4294 
 
 4433 
 
 4.572, 4711 
 
 48;-.0 
 
 4989 
 
 6123 .5207 
 
 640() 
 
 139 
 
 41 
 
 3 
 
 554 J 
 
 5t)S3 
 
 5822 
 
 69.io! 6099 
 
 0238 
 
 0370 
 
 («15i 00,53 
 
 6791 
 
 i;w 
 
 55 
 
 
 0930 
 
 70 i8 
 
 7200 
 
 7314! 7483 
 
 7021 
 
 77,5!t 
 
 7897, 80.35 
 
 8173 
 
 138 
 
 09 
 
 5 
 
 8311 
 
 8418 
 
 a580 8724 8802 
 
 8999 
 
 91.37 
 
 9275 9412 
 
 9,5.50 
 
 138 
 
 R3 
 
 
 
 9087 
 
 9-24 
 
 99(32 500(199 500230 500374 
 
 50051 1 
 
 ,500048 500785 
 
 600922 
 
 13/ 
 
 97 
 
 
 5011159 
 
 501190 
 
 301333 1170 10l»7 
 
 i 1744 
 
 I,S.><0 
 
 2017 21,54 
 
 2291 
 
 13/ 
 
 110 
 
 ,s 
 
 2127 
 
 25i;i 
 
 2700' 28,37 
 
 297.' 
 
 3109 
 
 3240 
 
 3.3x2 ;i518 
 
 30.55 
 
 130 
 
 124 
 
 9 
 3"0 
 
 3791 
 
 3927 
 
 4003, 4199 
 
 433.J 
 
 ■i47l 
 
 4007 
 50,'.904 
 
 474. 
 
 60009 
 
 J| 4S7S 
 
 5014 
 
 130 
 1,36 
 
 505150 
 
 50528n 
 
 50542 1 505,557 ' 505r,:),3 ' .-.05828 
 
 V 6002.34 
 
 506.370 
 
 13 
 
 1 
 
 0505 
 
 00 in 
 
 0770 0911, 7040. 7181 
 
 7310 
 
 7451! 7.'";80 
 
 7721 
 
 i;« 
 
 27 
 
 t> 
 
 7850 
 
 7991 
 
 8120 82i;o 8.395, S,53il 
 
 8(;(;4 
 
 S7ii'.»! 8!I3I 
 
 900S 
 
 135 
 
 40 
 
 3 
 
 9203 
 
 93;;7 
 
 9471 1 9(iOO 9740' 9.S74 
 
 510009 510143 510277 
 
 510411 
 
 134 
 
 5J 
 
 > 
 
 510545 
 
 510079 
 
 510813 510947 511081 511215 
 
 1349 
 
 14,S2| 1010 
 
 17.50 
 
 i;i4 
 
 07 
 
 5 
 
 1883 
 
 2017 
 
 2151 2281 2118 25,-.l 
 
 2084 
 
 1 2818, 2!I51 
 
 3084 
 
 \M 
 
 80 
 
 li 
 
 3218 
 
 sr.i 
 
 31-!4 30171 3750; ass'' 
 
 4010 
 
 ' 4149 42.82 
 
 4415 
 
 i3;> 
 
 91 
 
 t 
 
 45 J.^ 
 
 A(^^\ 
 
 4813, 4911. 6079, 5211 
 
 .5344 
 
 6470' 60O9 
 
 6741 
 
 133 
 
 107 
 
 
 5S71 
 
 6000 
 
 0139 0271: 0403 0.5,35 
 
 0008 
 
 ' 6.S1M) 69,32 
 
 7001 
 
 132 
 
 121 
 
 », 
 
 ,".:!i> 
 
 7190 
 51.-v.14 
 
 7328 
 51'^04C 
 
 7400 1 7 J9L 
 
 7721, 7855 
 
 1 1 
 
 ) 519040 519171 
 
 7987 
 
 j 6119| 8251 
 
 S3S2 
 
 1.32 
 
 518777 5180O; 
 
 519,30;i 
 
 5I!M,34 519.500 
 
 519097 
 
 131 
 
 13 
 
 1 
 
 9S28 
 
 1 9959 
 
 520090 52022 
 
 5203,'.:{ .520181 
 
 520015 ft20745 52087( 
 
 ,521007 
 
 131 
 
 20 
 
 • k 
 
 521138 
 
 62120' 
 
 140(. 15,3( 
 
 )j 1001 1791. 
 
 1!I21. 
 
 2053, 218;) 
 
 2314 
 
 131 
 
 39 
 
 ;i 
 
 2tH 
 
 257S 
 
 2705 
 
 1 28;i. 
 
 > 2900, 309( 
 
 322( 
 
 : 3,150 348(j 
 
 3011 
 
 liM 
 
 52 
 
 ■1 
 
 374ti 
 
 387( 
 
 *H)f 
 
 i 41.3( 
 
 i 4200, 4.39( 
 
 452( 
 
 , 4050 478,'! 
 
 491.' 
 
 VM 
 
 05 
 
 5 
 
 504: 
 
 6174 
 
 6304 
 
 61.3 
 
 1 6.503' 609; 
 
 6821. 
 
 1 r,i\'\ OOSl 
 
 62 K 
 
 129 
 
 "8 
 
 
 
 (vVl'J 
 
 04(;< 
 
 6598 
 
 072' 
 
 r 68.50' 698.' 
 
 711 
 
 ! 7:43 7.372 
 
 7.501 
 
 129 
 
 91 
 
 t 
 
 7031 
 
 775! 
 
 78H'' 
 
 80 1( 
 
 i 8145| 827 
 
 840'; 
 
 ! 8..3II K00( 
 
 1 87.'<> 
 
 12tf 
 
 VH 
 
 h 
 
 8917 
 
 904.1 
 
 ltl74 
 
 i 9.30' 
 
 l\ 94,30 j 9.55! 
 
 90,^7 
 
 98151 9>i4; 
 
 ( 63(Ni7i 
 
 I2U 
 
 117 
 
 9 
 
 530201 
 
 ) M032t 
 
 \ N'W45t 
 
 . 63058 
 
 4,630712 ,'53084( 
 
 » .5.'iO!IO,- 
 
 i .53UI90 63122: 
 
 1 ! - . 
 
 1 136 
 
 12M 
 
114 
 
 LOGARITHMIC TARLES. 
 
 im 
 
 pp 
 
 N. 
 
 
 
 1 
 
 a 
 
 3 
 
 4 
 
 5 
 
 6 i 7 
 
 1 
 
 8 
 
 9 n. 
 
 
 340 
 
 531479 
 
 531607 
 
 531734 
 
 531S62 
 
 631990 
 
 532117 
 
 532245 
 
 532.372 
 
 632.500 532027 
 
 128 
 
 13 
 
 1 
 
 2754 
 
 2882 
 
 3009 
 
 3136 
 
 3264 
 
 3;wi 
 
 a518 
 
 3045 
 
 3772 
 
 3899 
 
 127 
 
 25 
 
 2 
 
 4026 
 
 4153 
 
 4280 
 
 4407 
 
 4.534 
 
 4001 
 
 4787 
 
 4914 
 
 6041 
 
 6167 
 
 127 
 
 38 
 
 3 
 
 6294 
 
 6421 
 
 6547 
 
 5674 
 
 5800 
 
 6927 
 
 60.53 
 
 6180 
 
 6.300 
 
 6432 
 
 126 
 
 60 
 
 4 
 
 6558 
 
 608.5 
 
 6811 
 
 6937 
 
 70()3 
 
 7189 
 
 7315 
 
 7441 
 
 7507 
 
 7693 
 
 126 
 
 6;^ 
 
 6 
 
 7819 
 
 7945 
 
 8071 
 
 8197 
 
 8:^22 
 
 8448 
 
 8574 
 
 84599 
 
 8825 
 
 8951 
 
 12(> 
 
 7fi 
 
 6 
 
 9076 
 
 9202 
 
 9327 
 
 9452 
 
 9578 
 
 9703 
 
 9829 
 
 9954 
 
 540079 
 
 540204 
 
 125 
 
 88 
 
 7 
 
 540329 
 
 540455 
 
 54(J,-)8() 
 
 510705,54(K{0 
 
 540955 
 
 541080 
 
 541205 
 
 1330 
 
 1454 
 
 125 
 
 101 
 
 8 
 
 1579 
 
 1704 
 
 1829 
 
 1953 
 
 2078 
 
 2203 
 
 2.327 
 
 1 2452 
 
 2570 
 
 2701 
 
 125 
 
 113 
 
 9 
 
 2825 
 
 2950 
 
 3074 
 
 3199 
 
 3323 
 
 3447 
 
 3571 
 
 3096 
 
 3820 
 
 3944 
 54518;^ 
 
 124 
 124 
 
 
 350 
 
 544068 
 
 544192 
 
 544310 
 
 14440 
 
 544504 
 
 544688 
 
 544812 
 
 5449.30 
 
 545000 
 
 12 
 
 1 
 
 5;i07 
 
 5431 
 
 5,5,55 
 
 5678 
 
 5802 
 
 5925 
 
 6049 
 
 6172 
 
 0296 
 
 0419 
 
 124 
 
 24 
 
 2 
 
 6543 
 
 0(i06 
 
 6789 
 
 0913 
 
 70.36 
 
 71.59 
 
 72,82 
 
 7405 
 
 7529 
 
 7052 
 
 123 
 
 87 
 
 3 
 
 7775 
 
 7898 
 
 8021 
 
 8144 
 
 8267 
 
 8.389 
 
 8512 
 
 8635 
 
 8758 
 
 8881 
 
 123 
 
 49 
 
 4 
 
 9003 
 
 9126 
 
 9249 
 
 9.371 
 
 9494 
 
 9010 
 
 9739 
 
 9861 
 
 9984 
 
 550100 
 
 123 
 
 61 
 
 5 
 
 55022S 
 
 550351 
 
 550473 
 
 550595 550717 
 
 550840 
 
 550902 551084 
 
 551200 
 
 1.328 
 
 122 
 
 73 
 
 6 
 
 UiiO 
 
 1572 
 
 1094 
 
 1810 
 
 19.38 
 
 2000 
 
 2181 
 
 2303 
 
 2425 
 
 2547 
 
 122 
 
 85 
 
 7 
 
 2668 
 
 27!>0 
 
 2911 
 
 3033 
 
 31.55 
 
 3270 
 
 3398 
 
 3519 
 
 3040 
 
 3702 
 
 121 
 
 98 
 
 8 
 
 3883 
 
 4004 
 
 4120 
 
 4247 
 
 -:308 
 
 44,89 
 
 4010 
 
 4731 
 
 4,8.52 
 
 4973 
 
 121 
 
 110 
 
 9 
 
 360 
 
 5094 
 
 5215 
 
 5330 
 
 5457 
 
 5578 
 
 5099 
 
 6820 
 
 5940 
 
 0001 
 
 6182 
 
 121 
 
 120 
 
 556;«)3 
 
 556423 
 
 556544 
 
 556664 
 
 5567a5 
 
 550905 
 
 5.57020 
 
 5.57146 
 
 557207 
 
 557387 
 
 12 
 
 1 
 
 7507 
 
 7627 
 
 7748 
 
 7868' 79,88 
 
 8108 
 
 8228 
 
 a349 
 
 84(i9 
 
 a5.89 
 
 120 
 
 24 
 
 2 
 
 8709 
 
 8829 
 
 8948 
 
 9008 1 9188 
 
 9.308 
 
 9428 
 
 9548 
 
 9667 
 
 9787 
 
 120 
 
 m 
 
 3 
 
 9iH)7 
 
 500026 
 
 560140 
 
 560205 :6G0;W5 
 
 560504 
 
 560024 
 
 500743 
 
 56080.3 
 
 560982 
 
 119 
 
 48 
 
 4 
 
 501 101 
 
 1221 
 
 1310 
 
 14.59 
 
 1578 
 
 1098 
 
 1817 
 
 1930 
 
 2055 
 
 2174 
 
 119 
 
 60 
 
 6 
 
 2293 
 
 2412 
 
 2,531 
 
 20.50 
 
 27(i9 
 
 2,887 
 
 3006 
 
 3125 
 
 3244 
 
 3.3()2 
 
 119 
 
 71 
 
 6 
 
 3481 
 
 3(«)0 
 
 3718 
 
 3.S37 
 
 39.55 
 
 4074 
 
 4192 
 
 4311 
 
 4429 
 
 4548 
 
 119 
 
 83 
 
 1 
 
 4666 
 
 4784 
 
 4903 
 
 ,5021 
 
 6139 
 
 5257 
 
 5370 
 
 5494 
 
 5012 
 
 5730 
 
 118 
 
 9.-) 
 
 8 
 
 5848 
 
 5966 
 
 ()084 
 
 0202; 0,320 
 
 6437 
 
 65.55 
 
 0073 
 
 0791 
 
 6909 
 
 118 
 
 107 
 
 9 
 370 
 
 7026 
 568202 
 
 7144 
 
 7262 
 568436 
 
 7379 7497 
 
 7614 
 
 7732 
 
 7849 
 
 7967 
 
 8084 
 
 118 
 117 
 
 50,8319 
 
 5C,>^554 56,8671 
 
 50S7.S8 
 
 568!H)5 
 
 669023 
 
 .509140 
 
 509257 
 
 12 
 
 1 
 
 9374 
 
 9491 
 
 9608 
 
 9725 9,842 
 
 9959 
 
 570070 
 
 570193 570.309 
 
 570420 
 
 117 
 
 23 
 
 2 
 
 570543 
 
 57O0(iO 
 
 570770 
 
 570,8t)3 671010 
 
 571120 
 
 1243 
 
 1359 
 
 1470 
 
 1.592 
 
 117 
 
 ar. 
 
 3 
 
 1709 
 
 1825 
 
 1942 
 
 2058 
 
 2174 
 
 2291 
 
 2407 
 
 2523 
 
 2039 
 
 2755 
 
 110 
 
 40 
 
 4 
 
 2872 
 
 2988 
 
 3104 
 
 3220 
 
 3:m 
 
 34.52 
 
 3.508 
 
 3084 
 
 3.800 
 
 3915 
 
 116 
 
 68 
 
 5 
 
 4031 
 
 4117 
 
 4203 
 
 4379 
 
 4494 
 
 4010 
 
 4726 
 
 4841 
 
 4957 
 
 5072 
 
 116 
 
 70 
 
 6 
 
 5188 
 
 5303 
 
 5419 
 
 5534 
 
 5050 
 
 67tK5 
 
 6,880 
 
 6996 
 
 6111 
 
 622{i 
 
 115 
 
 «1 
 
 7 
 
 mn 
 
 0457 
 
 0.572 
 
 0687 
 
 6,802 
 
 6917 
 
 7032 
 
 7147 
 
 7262 
 
 7377 
 
 115 
 
 93 
 
 8 
 
 7492 
 
 7607 
 
 7722 
 
 7.836 
 
 7951 
 
 800t) 
 
 8181 
 
 8295 
 
 8410 
 
 8525 
 
 115 
 
 104 
 
 9 
 380 
 
 8639 
 
 6754 
 
 8868 
 
 t 
 
 8983 
 
 9097 
 
 9212 
 
 9326 
 ,580469 
 
 9441 
 
 9555 
 
 9669 
 
 lU 
 114 
 
 579784 
 
 579898 
 
 680012 
 
 680126 580241 
 
 530.V)5 
 
 580.583 
 
 530697 
 
 580811 
 
 11 
 
 1 
 
 580925 
 
 6810.39 
 
 11.53 
 
 12()7 l.'Wl 
 
 1495 
 
 1008 
 
 1722 
 
 18.36 
 
 I9.5(t 
 
 114 
 
 23 
 
 2 
 
 2063 
 
 2177 
 
 2291 
 
 2404 
 
 2518 
 
 2031 
 
 2745 
 
 2,8.5,8 
 
 2972 
 
 3085 
 
 U4 
 
 ?4 
 
 8 
 
 3199 
 
 3U2 
 
 3426 
 
 3;539 
 
 3(152 
 
 8705 
 
 3879 
 
 3992 
 
 4105 
 
 421,K 
 
 113 
 
 4ft 
 
 4 
 
 4,(31 
 
 4444 
 
 4.5.57 
 
 4070 
 
 4783 
 
 4,890 
 
 6009 
 
 6122 
 
 62:15 
 
 r>MK 
 
 113 
 
 f>7 
 
 6 
 
 54)U 
 
 6574 
 
 5(>,86 
 
 6799 69 1: 
 
 6024 
 
 6137 
 
 02,50 
 
 6.362 
 
 6475 
 
 M.3 
 
 68 
 
 6 
 
 6587 
 
 67(H) 
 
 6812 
 
 6925 
 
 70,37 
 
 7149 
 
 7202 
 
 73741 
 
 7480 
 
 7599 
 
 112 
 
 79 
 
 7 
 
 7711 
 
 7823 
 
 79;» 
 
 8047 
 
 8100 
 
 8272 
 
 8384 
 
 8496 
 
 8608 
 
 8720 
 
 112 
 
 SMI 
 
 8 
 
 K8.'?2 
 
 8914 
 
 90,56 
 
 9167 
 
 9270 
 
 9391 
 
 9.50,3 
 
 9615 
 
 9726 
 
 9^]X 
 
 112 
 
 io:j 
 
 3£K) 
 
 9950 
 5910ft5 
 
 590001 
 
 690173 
 
 690284 690390 
 
 690507 
 691021 
 
 690()19 
 691732 
 
 5907;W, 
 691843 
 
 690842 
 691956 
 
 590953 
 
 112 
 
 691176 
 
 601287 
 
 591399 69ir,10 
 
 692000 
 
 11 
 
 1 
 
 2177 
 
 22,88 
 
 23!«» 
 
 2510 
 
 2(i21 
 
 27.32 
 
 2,843 
 
 2954 
 
 3064 
 
 3175 
 
 111 
 
 22 
 
 2 
 
 328(; 
 
 :if97 
 
 3508 
 
 3018 
 
 3729 
 
 8840 
 
 3'.m 
 
 40()l 
 
 4171 
 
 4282 
 
 111 
 
 X\ 
 
 3 
 
 4393 
 
 4'm 
 
 4014 
 
 4724 
 
 48.34 
 
 4945 
 
 60.Vi 
 
 6106 
 
 6276 
 
 6;m; 
 
 no 
 
 44 
 
 4 
 
 6196 
 
 bm] 
 
 6717 
 
 6,827 
 
 69.37 
 
 6047 
 
 61.57 
 
 6207 
 
 6377 
 
 648 f 
 
 no 
 
 M 
 
 fi 
 
 6597 
 
 0707 
 
 6817 
 
 6927 
 
 70.17 
 
 7UA 
 
 72.56 
 
 7306 
 
 7476 
 
 758^1 
 
 no 
 
 64) 
 
 6 
 
 7695 
 
 7805 
 
 7914 
 
 a»24 
 
 81.34 
 
 8243 
 
 8.'J63 
 
 8462 
 
 8572 
 
 8081 
 
 no 
 
 77 
 
 7 
 
 8791 
 
 8!KM) 
 
 «(»09 
 
 9119 
 
 9228 
 
 9.337 
 
 9146 
 
 95.56 
 
 Vim 
 
 9771 
 
 109 
 
 8H 
 
 8 
 
 98,H3 
 
 9992 
 
 Cfl'.MOl 
 
 600210 6(10319 
 
 600428 
 
 C0O537 
 
 6Wt640 60075.5 
 
 6008(M 
 
 109 
 
 99 
 
 
 
 000973 
 
 6IUU82 
 
 liUl 
 
 121191 140H 
 
 lftl7 
 
 16261 
 
 1734 1843 
 
 1961 
 
 109 
 
 1 
 
LOGARITHMIC TABLES. 
 
 115 
 
 9 
 
 D. 
 
 J2627 
 
 128 
 
 3899 
 
 127 
 
 5167 
 
 127 
 
 6432 
 
 126 
 
 7693 
 
 126 
 
 89.") 1 
 
 126 
 
 020-1 
 
 125 
 
 1454 
 
 12,5 
 
 2701 
 
 125 
 
 3944 
 
 124 
 
 518;^ 
 
 124 
 
 6419 
 
 124 
 
 76,52 
 
 123 
 
 8881 
 
 123 
 
 1OIO6 
 
 123 
 
 1328 
 
 122 
 
 2547 
 
 122 
 
 3762 
 
 121 
 
 4973 
 
 121 
 
 6182 
 
 121 
 
 7387 
 
 120 
 
 8.589 
 
 120 
 
 9787 
 
 120 
 
 0982 
 
 119 
 
 2174 
 
 119 
 
 m>'2 
 
 119 
 
 4548 
 
 119 
 
 573(1 
 
 118 
 
 6'.K)9 
 
 lis 
 
 8084 
 
 118 
 
 9257 
 
 117 
 
 0426 
 
 117 
 
 1592 
 
 117 
 
 2755 
 
 116 
 
 3915 
 
 116 
 
 5072 
 
 116 
 
 622(i 
 
 115 
 
 7377 
 
 115 
 
 8525 
 
 115 
 
 9669 
 
 lU 
 
 0811 
 
 114 
 
 1950 
 
 114 
 
 30,S5 
 
 114 
 
 421,'- 
 
 113 
 
 5;ms 
 
 113 
 
 6475 
 
 113 
 
 75'.i'.» 
 
 112 
 
 8720 
 
 m 
 
 9,-(.3S 
 
 112 
 
 9953 
 
 112 
 
 J»66 
 
 111 
 
 3175 
 
 111 
 
 42S2 
 
 111 
 
 r):tMi 
 
 110 
 
 (H»' 
 
 110 
 
 75,H(-. 
 
 no 
 
 8<;st 
 
 110 
 
 9771 
 
 109 
 
 OSIhl 
 
 m 
 
 1961 
 
 ll>9 
 
 pr 
 
 N. 
 
 
 
 6 
 
 8 
 
 9 
 
 11 
 
 21 
 32 
 43 
 54 
 
 64 
 75 
 86 
 96 
 
 400 
 1 
 2 
 3 
 4 
 6 
 6 
 7 
 8 
 
 11 
 21 
 32 
 42 
 63 
 63 
 74 
 84 
 95 
 
 410 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 602060 
 3144 
 4226 
 5305 
 6381 
 74,55 
 8526 
 9.594 
 
 610660 
 1723 
 
 602169 
 3253 
 4334 
 6413 
 
 6489 
 7562 
 863;i 
 9701 
 610767 
 1829 
 
 602877 
 3361 
 4442 
 5521 
 6.596 
 7669 
 8740 
 9508 
 
 610873 
 1936 
 
 602386 
 3469 
 4550 
 5628 
 6704 
 7777 
 aS47 
 
 602494 
 8577 
 46,53 
 5736 
 6811 
 7884 
 8954 
 
 612784 '612890 
 
 10 
 
 20 
 
 ;w 
 
 40 
 50 
 60 
 70 
 80 
 90 
 
 420 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 3842 
 
 4897 
 59.50 
 7(X)0 
 8048 
 9093 
 620136 
 1176 
 2214 
 
 1)23249 
 4282 
 5312 
 6340 
 7366 
 8389 
 9410 
 
 630428 
 1444 
 2457 
 
 430 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 3947 
 6(K)3 
 6055 
 7105 
 81.53 
 9198 
 620240 
 1280 
 2318 
 
 9914 610021 
 
 6109791 1086 
 
 2042 2148 
 
 6233.53 
 4385 
 .54 '5 
 64^3 
 7468 
 8491 
 9512 
 
 6305;i0 
 1,545 
 2559 
 
 6;«4(W 
 4477 
 5484 
 
 64fl8 
 7490 
 8489 
 9486 
 6I04S1 
 1474 
 2465 
 
 612996 
 40.53 
 5108 
 6160 
 7210 
 8257 
 9302 
 
 620344 
 1384 
 2421 
 
 •6234,56 
 4488 1 
 5518 
 6.546 
 7.571 
 8,593' 
 9613 
 630631 
 1647 1 
 2660 
 
 613102 
 4159 
 5213 
 6265 
 7315 
 8S62 
 9406 
 
 620448 
 1488 
 2525 
 
 602603 
 3686 
 4766 
 5844 
 6919 
 7991 
 9061 
 
 610128 
 1192 
 2254 
 
 J. 
 
 623i)59 
 4,591 
 5621 
 6648 
 7673 
 8695 
 9715 
 
 6307,'« 
 1748 
 2761 
 
 613207 
 4264 
 5319 
 6370 
 
 7420 
 8466 
 I 9511 
 620552 
 1.592 
 2628 
 
 623663 
 4695 
 5724 
 6751 
 
 7775 
 8797 
 9817 
 6.30,H.'» 
 1849 
 2862 
 
 613313 
 
 4,370 
 6424 
 6476 
 7.525 
 8.571 
 9615 
 620a56 
 1695 
 2732 
 
 602711 
 3794 
 
 4874 
 5951 
 7026 
 8093 
 9167 
 610234 
 1298 
 2360 
 
 613419 
 4475 
 
 5.529 
 65.SI 
 7629 
 8676 
 9719 
 620760 
 1799 
 2835 
 
 602819 
 3902 
 4982 
 6059 
 7133 
 8205 
 
 602928 
 4010 
 .5089 
 6166 
 7241 
 8312 
 
 9274 9381 
 61034r 610447 
 
 1405 
 2466 
 
 1511 
 2.572 
 
 613,525 61.36.30 
 
 603036 
 4118 
 5197 
 6274 
 7343 
 8419 
 94AS 
 
 610554 
 1617 
 2678 
 
 4.581 
 5634 
 6586 
 7734 
 
 8780 
 9824 
 
 4()86 
 5740 
 6790 
 7S,VJ 
 aS84 
 992,^ 
 
 633569 '633670 
 
 10 
 19 
 29 
 ;J8 
 48 
 68 
 67 
 77 
 86 
 
 440 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 4578 
 5584 
 6588 
 7590 
 8589 
 9.586 
 6405S1 
 1.573 
 2563 
 
 4679 1 
 
 5685! 
 66,S8l 
 7690! 
 8689 
 9686! 
 6406S0 
 1672 
 2662 
 
 633771 
 4779 
 5785 
 6789 
 7790 
 8789 
 9785 
 
 640779 
 1771 
 2761 
 
 623766 
 
 4798 
 5827 
 6853 
 7878 
 8900 
 9919 
 
 630936 
 1951 
 
 [ 2963 
 
 620864 620968 
 1903] 2007 
 2939 3043 
 
 6137.36 
 4792 
 5845 
 6895 
 7943 
 8989 
 
 620032 
 1072 
 2110 
 3146 
 
 D. 
 
 108 
 108 
 108 
 108 
 107 
 107 
 107 
 107 
 106 
 106 
 
 62.3869 
 49(M 
 .5929 
 69.56 
 7980 
 9002 
 
 630021 
 1038 
 2052 
 3064 
 
 633,872 
 4.S80 
 &S86 
 6889 
 7.890 
 8888 
 9.8.>« 
 
 640S79 
 1871 
 
 2,S60 
 
 6431.53 64,^551 
 
 44.39 
 .5422; 
 6404: 
 7:V83, 
 
 KKK) 
 
 9;«5' 
 
 f>,50,308 650405 
 12781 1375 
 2246 i 2343 
 
 4.50 
 1 
 2 
 3 
 4 
 6 
 6 
 7 
 8 
 9 
 
 45,37 
 .5.521 
 6.502 
 7481 
 
 8-J.58 
 9432 
 
 6436.''0 
 4636 
 .5619 
 66(K) 
 7.579 
 8555 
 
 95;w 
 
 650502 
 1472 
 2410 
 
 4177 
 51.'W 
 609S 
 7056 
 8011 
 
 R<M',5 
 
 9<,tl6 
 660865 
 1813 
 
 643749 
 4734 
 6717 
 6698 
 7676 
 8(i.53 
 9627 
 660.599 
 I 1.569 
 2.5.36 
 
 633973 
 
 4981 
 5986 
 69.H9 
 7990 
 8988 
 9984 
 040978 
 1970 
 2959 
 
 62,3973 
 5004 
 6032 
 70,58 
 80.S2 
 9104 
 
 630123 
 1139 
 2153 
 3165 
 
 634074 
 5081 
 6087 
 7089 
 8090 
 90 -^Si 
 
 64(Hi,s4, 
 1077 
 2069 1 
 30.58 
 
 62407»". 
 5107 
 6135 
 7161 
 8185 
 9206 
 
 630224 
 1241 
 2255 
 3266 
 
 624179 
 5210 
 62;i8 
 72t)3 
 8287 
 9308 
 
 630,326 
 1342 
 2,3.56 
 3367 
 
 106 
 106 
 105 
 105 
 1J5 
 105 
 104 
 104 
 104 
 104 
 
 634175 
 5182 
 6187 
 7189 
 8190 
 9188 
 
 640183 
 1177 
 2163 
 3156 
 
 64,3847 643946 644044 
 
 4832 4931 5029 
 
 5815 .5913 1)011 
 
 6796 6894 6992 
 
 7774 7872 7969 
 
 87.50 8848 8945 
 9724 1 9S21, 
 
 650696 6.50793 08iK) 
 
 ICxlf, 1762 1869 
 
 2«331 2730 2826 
 
 653.3(t9 
 
 653405 
 
 4273 
 
 4369 
 
 62.3,5 
 
 Km 
 
 6194 
 
 62'.H) 
 
 71.52 
 
 7247 
 
 8107 
 
 8202 
 
 90<i0 
 
 9155 
 
 660011 
 
 060106 
 
 0960 
 
 10,V> 
 
 lao; 
 
 2(UI2 
 
 653.502 
 44t).5 
 6427 
 63.S6 
 7343 
 8298 
 92,50 
 
 660201 
 11,50 
 
 1 20M 
 
 653.598 
 4562 
 6,523 
 6482 
 71,'VS 
 8.393 
 \KW> 
 
 6602% 
 1245 
 3191 
 
 65.31)95 
 4(i.58 
 6619 
 6.577 
 7.5,34 
 84S8 
 9441 
 
 66U:{91 
 
 i;^i9 
 
 2286 
 
 63427<) 
 52.S3 
 62X7 
 7290 
 8290 
 92.S7 
 
 64028;^ 
 1276 
 2267 
 3255 
 
 634.376 
 .5383 
 63.88 
 7390 
 8389 
 9387 
 
 640382 
 1375 
 2,366 
 3354 
 
 644143 
 5127 
 6110 
 
 7089 
 8067 
 '.H)»3 
 6.5(MI16 
 0<t87 
 1956 
 2923 
 
 103 
 103 
 103 
 103 
 102 
 102 
 102 
 102 
 101 
 101 
 
 101 
 
 101 
 
 100 
 
 100 
 
 100 
 
 UK) 
 
 99 
 
 99 
 
 99 
 
 99 
 
 644242 644340 
 
 653791 
 4754 
 6715 
 6<)73 
 7(129 
 8,581 
 9,5,3;". 
 
 6,538,H8 
 48.56 
 .5S10 
 67i>9 
 7725 
 8679 
 
 5226 
 6208 
 7187 
 8165 
 9140 
 6,50113 
 lOSJ 
 205;i 
 3019 
 
 5324 
 6;i06 
 7285 
 8262 
 9237 
 6,50210 
 1181 
 21.50 
 3116 
 
 98 
 98 
 93 
 98 
 98 
 97 
 97 
 97 
 97 
 97 
 
 6.5.39.84 6540801 
 
 6604«6|6C0.'>81 
 14.34 1.529 
 2.38U 2476 
 
 4916 
 .5iHl6 
 6861 
 7.820 
 8774 
 9726 
 660676 
 1623 
 2669 
 
 
 .504 
 t)4H)2 
 m'M 
 7916 
 8870 
 9821 
 660771 
 1718 
 26*KI 
 
 96 
 
 96 
 
 96 
 
 96 
 
 96 
 
 95 
 
 95 
 
 95 
 
 95 
 
 06 
 
116 
 
 LOGAKITILMIC TAllLE.S. 
 
 1' 
 If* 
 
 ' i 
 
 pp 
 
 N. 
 
 1 
 1 
 
 3 
 
 3 
 
 4 
 
 3 
 
 6 
 
 r 
 
 S 
 
 9 
 
 D. 
 
 
 460 
 
 t>li2758 
 
 662852 
 
 662947 
 
 663041 
 
 '663135 
 
 663230 
 
 663324 
 
 663418 
 
 ! 663512 
 
 663607 
 
 94 
 
 9 
 
 1 
 
 3701 
 
 3795 
 
 3889 
 
 3983 
 
 4078 
 
 4172 
 
 4266 
 
 4;}60 
 
 4454 
 
 4548 
 
 94 
 
 19 
 
 2 
 
 4G42 
 
 4736 
 
 4830 
 
 4924 
 
 5018 
 
 6112 
 
 6206 
 
 5299 
 
 5393 
 
 5487 
 
 94 
 
 2y 
 
 3 
 
 5381 
 
 6675 
 
 6769 
 
 5862 
 
 5956 
 
 6050 
 
 6143 
 
 6237 
 
 6331 
 
 6424 
 
 94 
 
 38 
 
 4 
 
 6518 
 
 6612 
 
 6705 
 
 6799 
 
 6892 
 
 6986 
 
 7079 
 
 7173 
 
 7266 
 
 7360 
 
 94 
 
 4/ 
 
 6 
 
 7453 
 
 7546 
 
 7640 
 
 7733 
 
 7826 
 
 7920 
 
 S013 
 
 8106 
 
 8199 
 
 8293 
 
 93 
 
 5« 
 
 6 
 
 8386 
 
 8479 
 
 8572 
 
 8665 
 
 8759 
 
 &S32 
 
 8945 
 
 90.38 
 
 9131 
 
 9224 
 
 93 
 
 66 
 
 7 
 
 9317 
 
 9410 
 
 9503 
 
 9596 
 
 9689 
 
 9782 
 
 9875 
 
 9967 
 
 670060 
 
 6701.53 
 
 93 
 
 ib 
 
 8 
 
 :i70246 
 
 670339 
 
 670431 
 
 670524 
 
 670617 
 
 670710 
 
 070.802 
 
 670.895 
 
 0988 
 
 1080 
 
 93 
 
 8ii 
 
 9 
 
 470 
 
 1173 
 
 i265 
 
 1358 
 
 1451 
 
 1543 
 
 1636 
 
 1728 
 
 1821 
 
 1913 
 
 2005 
 
 93 
 
 ,572098 
 
 672190 
 
 6722,83 
 
 '672375 
 
 672467 
 
 672560 
 
 672652 
 
 672744 
 
 672836 
 
 672929 
 
 92 
 
 •J 
 
 1 
 
 3021 
 
 3113 
 
 3205 
 
 3297 
 
 3,390 
 
 34.82 
 
 3574 
 
 3666 
 
 3758 
 
 3850 
 
 92 
 
 IS 
 
 
 3942 
 
 4034 
 
 4126 
 
 4218 
 
 4310 
 
 4402 
 
 4494 
 
 45,86 
 
 4677 
 
 4769 
 
 92 
 
 2» 
 
 3 
 
 4861 
 
 4953 
 
 5045 
 
 5137 
 
 6228 
 
 5320 
 
 5412 
 
 6503 
 
 6595 
 
 5687 
 
 92 
 
 3/ 
 
 4 
 
 5778 
 
 6870 
 
 5962 
 
 6053 
 
 6145 
 
 6236 
 
 6328 
 
 6119 
 
 6511 
 
 6602 
 
 92, 
 
 46 
 
 5 
 
 6694 
 
 C785 
 
 6876 
 
 6968 
 
 7059 
 
 7151 
 
 7242 
 
 73,33 
 
 7424 
 
 7516 
 
 91 
 
 65 
 
 6 
 
 7607 
 
 7698 
 
 7789 
 
 7881 
 
 7972 
 
 8063 
 
 8154 
 
 8245 
 
 a336 
 
 8427 
 
 91 
 
 64 
 
 7 
 
 8518 
 
 8609 
 
 8700 
 
 87^1 
 
 &882 
 
 8973 
 
 9064 
 
 9155 
 
 9246 
 
 9337 
 
 91 
 
 n 
 
 8 
 
 9128 
 
 9519 
 
 9610 
 
 9700 
 
 9791 
 
 9882 
 
 9973 
 
 680063 
 
 680154 6802451 
 
 91 
 
 
 9 
 
 4S0 
 
 ;8033i) 680426 
 
 1 
 
 680517 
 
 6S0607 
 
 680698 
 
 680/89 
 
 680879 
 
 0970 
 681.874 
 
 1060 
 
 1151 
 
 91 
 
 90 
 
 381241 681332 
 
 681422 
 
 681513 
 
 681603 
 
 681693 
 
 6817.84 
 
 681964 
 
 682055 
 
 9 
 
 1 
 
 2145 
 
 2235 
 
 2326 
 
 2416 
 
 2.506 
 
 2596 
 
 2686 
 
 2777 
 
 2867 
 
 2957 
 
 90 
 
 18 
 
 2 
 
 31147 
 
 3137 
 
 3227 
 
 3317 
 
 3407 
 
 3497 
 
 3587 
 
 3677 
 
 3767 
 
 3857 
 
 90 
 
 21 
 
 3 
 
 3947 
 
 4037 
 
 4127 
 
 4217 
 
 4;W7 
 
 4396 
 
 4486 
 
 4576 
 
 4666 
 
 47.56 
 
 90 
 
 36 
 
 4 
 
 4845 
 
 4935 
 
 5025 
 
 6114 
 
 5204 
 
 5294 
 
 63S3 
 
 6473 
 
 6563 
 
 6652 
 
 90 
 
 46 
 
 6 
 
 5742 
 
 6831 
 
 6921 
 
 6010 
 
 6100 
 
 6189 
 
 6279 
 
 6368 
 
 64,58 
 
 6547 
 
 89 
 
 64 
 
 6 
 
 6ii36 
 
 6726 
 
 6815 
 
 6904 
 
 6994 
 
 70.8;i 
 
 7172 
 
 7261 
 
 7351 
 
 7440 
 
 89 
 
 63 
 
 7 
 
 7529 
 
 7618, 
 
 7707 
 
 7796 
 
 7886 
 
 7975 
 
 8064 
 
 81.53 
 
 8242 
 
 8331 
 
 89 
 
 a 
 
 8 
 
 8120 
 
 8509 8598 
 
 8687 
 
 8776 
 
 8,865 
 
 8953 
 
 9042 
 
 9131 
 
 9220 
 
 89 
 
 81 
 
 9 
 490 
 
 9309 
 
 9398, 9486 
 
 9575 
 
 9664 
 
 9753 
 
 9841 
 
 9930 
 
 090019 
 690905 
 
 690107 
 090!)93 
 
 89 
 
 89 
 
 ;90196 
 
 690285 690373 
 
 690462 
 
 690551) 
 
 690639 
 
 690728 
 
 690816 
 
 9 
 
 1 
 
 lOSl 
 
 1170 
 
 1258 
 
 1347 
 
 14.i) 
 
 1.^25 
 
 1612 
 
 1700 
 
 1789 
 
 1877 
 
 ,S8 
 
 18 
 
 2 
 
 1965 
 
 2053 
 
 2142 
 
 22;}0 
 
 2318 
 
 2406 
 
 2J91 
 
 25,83 
 
 2671 
 
 2759 
 
 ,88 
 
 •J6 
 
 3 
 
 28471 
 
 2935 
 
 3023 
 
 3111 
 
 3199 
 
 3287 
 
 3375 
 
 3463 
 
 3.551 
 
 3639 
 
 .88 
 
 3.) 
 
 4 
 
 3727 
 
 3815 3903 
 
 3991 
 
 4078 
 
 4If;6 
 
 4254 
 
 4312 
 
 44,30 
 
 4517 
 
 88 
 
 44 
 
 6 
 
 4i;o5 
 
 4i;93i 4781 
 
 4868 
 
 495(i 
 
 5044 
 
 6131 
 
 6219 
 
 6307 
 
 5394 
 
 88 
 
 63 
 
 6 
 
 51-^2 
 
 551)9 5657 
 
 6744 
 
 6832 
 
 6919 
 
 6007 
 
 6094 
 
 61,82 
 
 62()9 
 
 87 
 
 62 
 
 ( 
 
 (i:!.')6 
 
 6144 6531 
 
 6618 
 
 6706 
 
 6793 
 
 6S80 
 
 6968 
 
 7055 
 
 7142 
 
 87 
 
 <0 
 
 8 
 
 7229 7317' 7404 
 
 7491 
 
 7578 
 
 7665 
 
 7752 
 
 7,839 
 
 7926 
 
 8014 
 
 87 
 
 /y 
 
 500 
 
 8101 1 
 198970 
 
 8188, 8275 
 
 8362 
 
 8449 
 
 8535 
 699104 
 
 8622 
 
 8709 
 
 8796 
 
 8883 
 
 87 
 87 
 
 699057 699144 
 
 (599231 
 
 699317 
 
 699491 
 
 699578 
 
 699664 
 
 699751 
 
 9 
 
 1 
 
 '.I.S3S 9924 7090111 
 
 70009s 7001s 1 
 
 700271 
 
 700.35 •; 
 
 700444: 700,531 i:(»0i;i7l 
 
 87 
 
 1/ 
 
 
 ;0;i701 700790 0877 1 
 
 09(13 lO.Wl 
 
 11.16 
 
 1222 
 
 1.3091 1,395 
 
 1482 
 
 Aii\ 
 
 i.'(. 
 
 3 
 
 15(iS 1654 17411 
 
 1,S27 
 
 1913 1999 
 
 2tHi> 
 
 21721 2258 
 
 23 U 
 
 ,86 
 
 3( 
 
 4 
 
 2131 
 
 25171 2603 
 
 20,89 
 
 2775, 2S61 
 
 29 17 
 
 39,33 3119 
 
 3205 
 
 86 
 
 43 
 
 5 
 
 3291 i 
 
 3377 3163 
 
 3549 
 
 36.3.5 372 1 
 
 3S07 
 
 3>9;j: 3,)79 
 
 4065 
 
 86 
 
 62 
 
 6 
 
 4151' 
 
 4236 4322 4108' 
 
 4194 4.V:) 
 
 4i;ii5 
 
 47511 4.S37 
 
 4922 
 
 8() 
 
 60 
 
 7 
 
 501)8 60:(4i 6179J 
 
 5265 j 
 
 5;r»o 613;; 
 
 6522 
 
 61071 6693 
 
 5778 
 
 86 
 
 (il) 
 
 8 
 
 5>6I 69 19 6035 
 
 6120 
 
 6206 62.11 
 
 6.'i76 
 
 6162! 6517 
 
 6632 
 
 s,-< 
 
 ;; 
 
 9 
 510 
 
 6718j 
 
 6S03^ 
 707655 
 
 6888 
 
 6974 j 
 
 7059, 7144 
 
 1 
 
 7''"0 
 
 7315, 7100 
 
 7185 
 
 85 
 
 707570 
 
 707740 ' 707.826 ' 707911 ' 707990 
 
 70,8081 
 
 70S166' 708251 
 
 70.8336 
 
 85 
 
 8 
 
 1 
 
 8121 850;j KV.dj 86761 8761! 8s46 
 
 8931 
 
 9015 
 
 9100 
 
 91.S5 
 
 .85 
 
 i; 
 
 2 
 
 9270 9355 9140i 9524 9(;09 9694 
 
 9779 
 
 \\>.K\ 
 
 9948 
 
 7100,33 
 
 85 
 
 i!6 
 
 3 
 
 710117 710202 710287 710371 710456,710540 
 
 710(;25 
 
 710710 
 
 710J94 
 
 OS79 
 
 85 
 
 34 
 
 4 
 
 0963 1018 1132 1217 
 
 1.301 
 
 13,S5 
 
 M70 
 
 1.V.4 
 
 16.!9 
 
 1723 
 
 84' 
 
 4:2 
 
 6 
 
 I8071 1892i 1976 2060 
 
 2144 
 
 2229 
 
 2313 
 
 2397 
 
 2181 
 
 2566 
 
 84. 
 
 W 
 
 6 
 
 2650, 2731' 2818 2902 
 
 2980 
 
 3070 
 
 3151 
 
 3238 
 
 3.32,3 
 
 3107 
 
 84 j 
 
 69 
 
 V 
 
 3191, 3575; 3659 3742 
 
 3826 
 
 3910 
 
 3994 
 
 4078 
 
 4162 
 
 4246 
 
 84 
 
 6/ 
 
 8 
 
 43;K)I 4414; 4497 
 
 4581 
 
 4665 
 
 4749 
 
 4,S3,3 
 
 4916 
 
 6000 
 
 6084 
 
 84 
 
 V6 
 
 9 
 
 6167 6251 
 
 6335 
 
 6418 
 
 ft502 
 
 6586 
 
 6669 
 
 6753 
 
 6836 
 
 6920 
 
 84 
 
LOGAKITILMIC TAJ5LES. 
 
 iir 
 
 
 D. 
 
 07 
 
 94 
 
 48 
 
 94 
 
 87 
 
 94 
 
 24 
 
 94 
 
 m 
 
 94 
 
 93 
 
 93 
 
 24 
 
 93 
 
 53 
 
 93 
 
 ^) 
 
 93 
 
 )5 
 
 93 
 
 92 
 92 
 92 
 
 }2 
 
 92 
 
 fi 
 
 91 
 
 27 
 
 91 
 
 17 
 
 91 
 
 5 
 
 91 
 
 )l 
 
 91 
 
 )5 
 
 90 
 
 )7 
 
 90 
 
 )7 
 
 90 
 
 >6 
 
 90 
 
 .2 
 
 90 
 
 7 
 
 89 
 
 
 
 89 
 
 I 
 
 89 
 
 
 
 89 
 
 7 
 
 89 
 
 3 
 
 89 
 
 7 
 
 88 
 
 9 
 
 sm 
 
 9 
 
 .8,8 
 
 / 
 
 88 
 
 4 
 
 88 
 
 9 
 
 87 
 
 2 
 
 87 
 
 4 
 
 87 
 
 13 
 
 87 
 
 1 
 
 87 
 
 1 
 
 87 
 
 2 
 
 8ti 
 
 J 
 
 8(5 
 
 ■) 
 
 8(5 
 
 .1 
 
 8(5 
 
 ■) 
 
 8(5 
 
 S 
 
 8(5 
 
 •) 
 
 S.^ 
 
 5 
 
 85 
 
 fi 
 
 85 
 
 ,"> 
 
 85 
 
 3 
 
 85 
 
 9 
 
 85 
 
 3 
 
 841 
 
 li 
 
 84: 
 
 7 
 
 84 
 
 f) 
 
 84 
 
 1 
 
 84 
 
 
 
 84 
 
 PP 
 
 N. 
 
 
 
 1 
 
 t> 
 
 3 
 
 4 
 
 5 
 
 G 
 
 7 
 
 S 
 
 9 
 
 D. 
 
 
 520 
 
 716003 
 
 716087 710170 7162541 
 
 716337 
 
 716421 
 
 716504 
 
 716588 
 
 716671 
 
 716754 
 
 83 
 
 8 
 
 1 
 
 6838 
 
 6921 1 7004 
 
 7088 
 
 7171 
 
 7254 
 
 7338 
 
 7421 
 
 7504 
 
 7587 
 
 83 
 
 17 
 
 2 
 
 7671 
 
 77541 7837 
 
 7920 
 
 8003 
 
 8086 
 
 8169 
 
 8253 
 
 8336 
 
 8419 
 
 83 
 
 25 
 
 3 
 
 8502 
 
 8585 8668 
 
 8751 
 
 8834 
 
 8917 
 
 9000 
 
 9083 
 
 9105 
 
 9248 
 
 83 
 
 33 
 
 4 
 
 9331 
 
 9414 9497 
 
 9580 
 
 9663 
 
 9745 
 
 9828 
 
 9911 
 
 ^094 
 
 720077 
 
 83 
 
 41 
 
 6 
 
 720159 
 
 720242 720325 
 
 720407 
 
 720490 
 
 720573 
 
 720655 
 
 720738 
 
 7::ii82l 
 
 0903 
 
 83 
 
 50 
 
 6 
 
 0986 
 
 1068 11511 
 
 123:1 
 
 1316 
 
 1398 
 
 1481 
 
 1563 
 
 1046 
 
 1728 
 
 82 
 
 5S 
 
 7 
 
 1811 
 
 18931 
 
 1975 
 
 2058 
 
 2140 
 
 2222 
 
 2305 
 
 2387 
 
 2409 
 
 2552 
 
 82 
 
 60 
 
 8 
 
 2034 
 
 2716: 
 
 2798 
 
 2881 
 
 2963 
 
 3045 
 
 3127 
 
 3209 
 
 3291 
 
 3374 
 
 82 
 
 75 
 
 9 
 
 530 
 
 3456 
 
 3533, 
 
 3620 
 
 3702 
 
 3784 
 724604 
 
 3866 
 
 3948 
 
 4030 
 
 4112 
 
 4194 
 
 82 
 
 82 
 
 724270 
 
 724358 724440 
 
 724522 
 
 724685 
 
 724767 
 
 724849 
 
 724931 
 
 725013 
 
 8 
 
 1 
 
 5095 
 
 6170 
 
 5258 
 
 5340 
 
 5422 
 
 6503 
 
 5585 
 
 5667 
 
 5748 
 
 5830 
 
 82 
 
 Ifi 
 
 2 
 
 6912 
 
 6998 
 
 6075 
 
 6156 
 
 6238 
 
 6320 
 
 6401 
 
 6483 
 
 6504 
 
 6646 
 
 82 
 
 24 
 
 3 
 
 6727 
 
 0809 
 
 6890 
 
 6972 
 
 7063 
 
 7134 
 
 7216 
 
 7297 
 
 7379 
 
 7460 
 
 81 
 
 32 
 
 4 
 
 7541 
 
 7623 
 
 7704 
 
 7785 
 
 7866 
 
 7948 
 
 8029 
 
 8110 
 
 8191 
 
 8273 
 
 81 
 
 41 
 
 6 
 
 8354 
 
 8435 
 
 8516 
 
 8597 
 
 8678 
 
 8759 
 
 8841 
 
 8922 
 
 9'>03 
 
 9084 
 
 81 
 
 49 
 
 6 
 
 9165 
 
 9246 
 
 9327 
 
 9408 
 
 9489 
 
 9570 
 
 9651 
 
 9732 
 
 9813 
 
 9,893 
 
 81 
 
 57 
 
 7 
 
 9974 
 
 730055 
 
 730 13{) 
 
 730217 
 
 730298 
 
 730378 
 
 730459 
 
 730540 
 
 730621 
 
 730702 
 
 81 
 
 (W 
 
 8 
 
 730782 
 
 0803 
 
 0944 
 
 1024 
 1830 
 
 1105 
 
 1186 
 
 1266 
 
 1347 
 
 1428 
 
 1508 
 
 ai 
 
 73 
 
 9 
 540 
 
 1589 
 
 1669 
 
 1750 
 
 1911 
 
 1991 
 
 2072 
 
 2152 
 
 2233 
 7330.37 
 
 2313 
 733117 
 
 81 
 80 
 
 732394 
 
 732474 
 
 732555 
 
 732035 
 
 732715 
 
 732796 
 
 732876 732956 
 
 8 
 
 1 
 
 3197 
 
 3278 
 
 3358 
 
 3438 
 
 3518 
 
 3598 
 
 3(579 
 
 3759 
 
 38:59 
 
 3919 
 
 80 
 
 If) 
 
 2 
 
 3999 
 
 4079 
 
 4160 
 
 4240 
 
 4320 
 
 4400 
 
 4480 
 
 4500 
 
 4640 
 
 4720 
 
 80 
 
 24 
 
 3 
 
 4800 
 
 48S0 
 
 49()0 
 
 5040 
 
 6120 
 
 6200 
 
 6279 
 
 5359 
 
 6439 
 
 6519 
 
 80 
 
 32 
 
 4 
 
 5599 
 
 5G79 
 
 5759 
 
 6838 
 
 6918 
 
 6998 
 
 6078 
 
 6157 
 
 62:57 
 
 6317 
 
 80 
 
 40 
 
 5 
 
 0397 
 
 6470 
 
 6550 
 
 6035 
 
 C715 
 
 6795 
 
 6874 
 
 6954 
 
 7034 
 
 7113 
 
 80 
 
 48 
 
 C 
 
 7193 
 
 7272 
 
 7352 
 
 7431 
 
 7511 
 
 7590 
 
 7670 
 
 7749 
 
 7829 
 
 7908 
 
 79 
 
 ftfi 
 
 t 
 
 7937 
 
 8067 
 
 8140 
 
 8225 
 
 8305 
 
 8384 
 
 8403 
 
 a543 
 
 8022 
 
 8701 
 
 79 
 
 64 
 
 8 
 
 8781 
 
 8860 
 
 8939 
 
 9018 
 
 9097 
 
 9177 
 
 9256 
 
 9335 
 
 9414 
 
 9493 
 
 79 
 
 72 
 
 9 
 550 
 
 9572 
 
 9051 
 
 9731 
 
 9810 
 
 9889 
 
 9968 
 
 740047 
 
 740126 
 
 740205 
 
 740284 
 741073 
 
 79 
 79 
 
 740303 
 
 740442 
 
 740521 
 
 740000 
 
 740078 
 
 740757 
 
 740830 
 
 740915 
 
 740994 
 
 8 
 
 1 
 
 1152 
 
 1230 
 
 1309 
 
 13S8 
 
 1I()7 
 
 1646 
 
 1624 
 
 1703 
 
 1782 
 
 1860 
 
 79 
 
 Ifi 
 
 o 
 
 1939 
 
 2018 
 
 2090 
 
 2175 
 
 2254 
 
 2332 
 
 2411 
 
 2489 
 
 2568 
 
 2047 
 
 79 
 
 23 
 
 3 
 
 2725 
 
 2804 
 
 2882 
 
 2901 
 
 30.39 
 
 3118 
 
 3196 
 
 3275 
 
 3:553 
 
 3431 
 
 7ft 
 
 31 
 
 4 
 
 3510 
 
 3588 
 
 3007 
 
 3745 
 
 3S23 
 
 3902 
 
 3980 
 
 4053 
 
 41.-56 
 
 4215 
 
 7ft 
 
 39 
 
 5 
 
 4293 
 
 4371 
 
 4449 
 
 4528 
 
 4006 
 
 4084 
 
 4762 
 
 4840 
 
 4919 
 
 4997 
 
 78 
 
 47 
 
 
 
 5075 
 
 5153 
 
 6231 
 
 6309 
 
 63S7 
 
 5405 
 
 6543 
 
 5021 
 
 5099 
 
 6777 
 
 7ft 
 
 55 
 
 / 
 
 5855 
 
 6933 
 
 0011 
 
 6089 
 
 6107 
 
 6245 
 
 6323 
 
 0401 
 
 6479 
 
 6550 
 
 7ft 
 
 r.2 
 
 8 
 
 66:54 
 
 6712 
 
 0790 
 
 0808 
 
 6945 
 
 7023 
 
 7101 
 
 7179 
 
 7250 
 
 7334 
 
 78 
 
 70 
 
 9 
 560 
 
 7412 
 
 748188 
 
 7489 
 
 7507 
 
 7045 
 
 7722 
 
 7800 
 
 7878 
 748053 
 
 7955 
 
 8033 
 
 748808 
 
 8110 
 
 78 
 
 748200 
 
 748343 
 
 748421 
 
 74.S49S 
 
 74.8.570 
 
 748731 
 
 74,8.885 
 
 77 
 
 8 
 
 1 
 
 8963 
 
 9040 
 
 9118 
 
 9195 
 
 9272 
 
 9350. 9427 
 
 9504 
 
 95,S2 
 
 9(559 
 
 77 
 
 15 
 
 2 
 
 9736 
 
 9814 
 
 9S91 
 
 9908 
 
 750045 
 
 750123 
 
 750200 
 
 750277 
 
 750354 
 
 750431 
 
 77 
 
 23 
 
 3 
 
 750508 
 
 750580 
 
 750003 
 
 750740 
 
 0817 
 
 0894 
 
 0971 
 
 1048 
 
 1125 
 
 1202 
 
 77 
 
 31 
 
 4 
 
 1279 
 
 1356 
 
 1433 
 
 1510 
 
 1.587 
 
 1064 
 
 1741 
 
 1818 
 
 1895 
 
 1972 
 
 77 
 
 39 
 
 5 
 
 2048 
 
 2125 
 
 2202 
 
 2279 
 
 2.350 
 
 24:53 
 
 2509 
 
 2580 
 
 2(!(»;5 
 
 2740 
 
 77 
 
 4(5 
 
 li 
 
 28)6 
 
 2893 
 
 2970 
 
 3047 
 
 3123 
 
 3200 
 
 .3277 
 
 3:553 
 
 3430 
 
 3500 
 
 77 
 
 51 
 
 1 
 
 3.583 
 
 3600 
 
 3730 
 
 3813 
 
 3S89 
 
 39()0 
 
 4042 
 
 4119 
 
 4195 
 
 4272 
 
 77 
 
 OJ 
 
 8 
 
 4348 
 
 4425 
 
 4501 
 
 4578 
 
 4054 
 
 47:50 
 
 4,><07 
 
 4883 
 
 49(50 
 
 50:50 
 
 76 
 
 (3'J 
 
 9 
 570 
 
 6112 
 
 6189 
 
 5205 
 
 5341 
 
 6417 
 
 6494 
 
 5570 
 75(5.r.2 
 
 6040 
 
 6722 
 
 6799 
 
 76 
 76 
 
 755875 
 
 755951 
 
 750027 
 
 750103 
 
 756180 
 
 750250 
 
 75040S 
 
 750484 
 
 750500 
 
 8 
 
 1 
 
 6030 
 
 6712 
 
 6788 
 
 680 J 
 
 6940 
 
 7'I16 
 
 7092 
 
 7168 
 
 7244 
 
 7320 
 
 76 
 
 15 
 
 2 
 
 7390 
 
 7472 
 
 7548 
 
 7024 
 
 7700 
 
 7775 
 
 7a5i 
 
 1 7927 
 
 8*H)3 
 
 8079 
 
 76 
 
 23 
 
 3 
 
 8155 
 
 82:50 
 
 R'500 
 
 8382 
 
 8458 
 
 8533 
 
 8609 
 
 , 80S5 
 
 8701 
 
 883(1 
 
 76 
 
 30 
 
 4 
 
 8912 
 
 89S8 
 
 9003 
 
 &139 
 
 9214 
 
 92!H) 
 
 9300 
 
 9441 
 
 9517 
 
 9592 
 
 76 
 
 38 
 
 5 
 
 9r;<i8 
 
 9743 
 
 9819 
 
 9894 
 
 9970 
 
 760015 
 
 760121 
 
 700190 
 
 760272 
 
 760347 
 
 75 
 
 4(1 
 
 6 
 
 700422 
 
 760498 
 
 760573 
 
 760010 
 
 760724 
 
 0799 
 
 0875 
 
 09.50 
 
 1025 
 
 1101 
 
 76 
 
 63 
 
 7 
 
 1170 
 
 1251 
 
 1326 
 
 14(12 
 
 1477 
 
 1.552 
 
 1027 
 
 i 1702 
 
 1778 
 
 1853 
 
 76 
 
 61 
 
 8 
 
 1928 
 
 2003 
 
 2078 
 
 215.1 
 
 2228 
 
 2:50a 
 
 2378 
 
 2453 
 
 2529 
 
 2604 
 
 76 
 
 (kS 
 
 9 
 
 2679 
 
 2754 
 
 2829 
 
 2904 
 
 2978 
 
 3053 
 
 3123 
 
 1 3203 
 
 3278 
 
 33.53 
 
 76 
 
I^f 
 
 118 
 
 LOGARITHMIC TABLES. 
 
 lUf 
 
 m 
 
 pp 
 
 N. 
 
 1 
 1 
 
 2 
 
 3 
 
 4 
 
 * 
 
 6 
 
 r 
 
 8 
 
 
 
 D. 
 
 75 
 
 
 580 ,'63428 1 
 
 763503 
 
 763578 
 
 76:^653 763727 
 
 763802 7638771 
 
 763952 
 
 764027 
 
 764101 
 
 7 
 
 1 
 
 4176 
 
 4251 
 
 4326 
 
 4400 
 
 4475 
 
 4550 
 
 4624 
 
 4699 
 
 4774 
 
 4848 
 
 75 
 
 15 
 
 2 
 
 4923 
 
 4998 
 
 5072 
 
 5147 
 
 6221 
 
 5296 
 
 6370 
 
 6445 
 
 6520 
 
 6594 
 
 75 
 
 ??. 
 
 3 
 
 5669 
 
 5743 
 
 5818 
 
 5892 
 
 6966 
 
 6041 
 
 6115 
 
 6190 
 
 6264 
 
 6338 
 
 74 
 
 ,S() 
 
 4 
 
 6413 
 
 6487 
 
 6562 
 
 6636 
 
 6710 
 
 6785 
 
 6859 
 
 6933 
 
 7007 
 
 70,S2 
 
 74 
 
 37 
 
 5 
 
 7156 
 
 Tm 
 
 7.'W4 
 
 7379 
 
 7453 
 
 7527 
 
 7601 
 
 7675 
 
 7749 
 
 7823 
 
 ^ 
 
 4i 
 
 6 
 
 78it8 
 
 7972 
 
 8046 
 
 8120 
 
 8194 
 
 8268 
 
 8342 
 
 8416 
 
 8490 
 
 &564 
 
 74 
 
 W 
 
 7 
 
 86;i8 
 
 8712 
 
 8786 
 
 8860 
 
 8934 
 
 9008 
 
 9082 
 
 9156 
 
 9230 
 
 9303 
 
 74 
 
 r>'\ 
 
 8 
 
 9377 
 
 9151 
 
 9525 
 
 9599 
 
 9673 
 
 9746 
 
 9S20 
 
 9.S94 
 
 9968 
 
 770042 
 
 74 
 
 67 
 
 500 
 
 770115 
 
 — . 
 
 770852 
 
 770189 
 
 770263 
 
 77o:«6 
 
 770410 
 771146 
 
 770484,770557 
 
 770631 
 
 770705 
 
 0778 
 
 74 
 
 770926 
 
 770999 
 
 771073 
 
 771220 771293 
 
 771367 
 
 771440 
 
 771514 
 
 74 
 
 7 
 
 1 
 
 1587 
 
 1661 
 
 1734 
 
 1808 
 
 1881 
 
 1955 
 
 2028 
 
 2102 
 
 2175 
 
 2248 
 
 73 
 
 IT) 
 
 ?. 
 
 2322 
 
 2395 
 
 2468 
 
 2542 
 
 2615 
 
 2688 
 
 2762 
 
 2835 
 
 2908 
 
 2981 
 
 73 1 
 
 ^•^ 
 
 3 
 
 3055 
 
 312.S 
 
 3201 
 
 3274 
 
 3348 
 
 3421 
 
 3494 
 
 3567 
 
 3640 
 
 3713 
 
 73 
 
 ?') 
 
 4 
 
 3786 
 
 3860 
 
 39;w 
 
 4006 
 
 4079 
 
 4152 
 
 4225 
 
 4298 
 
 4371 
 
 4444 
 
 73 
 
 37 
 
 5 
 
 4517 
 
 4590 
 
 4663 
 
 4736 
 
 4809 
 
 4882 
 
 49551 
 
 6028 
 
 5100 
 
 6173 
 
 73 
 
 44 
 
 6 
 
 5246 
 
 6319 
 
 6392 
 
 6465 
 
 5.538 
 
 6610 
 
 5683 
 
 6756 
 
 5829 
 
 5902 
 
 73 
 
 .'•I 
 
 7 
 
 5974 
 
 6047 
 
 6120 
 
 6193 
 
 6265 
 
 6:j:J8 
 
 6411 
 
 6483 
 
 6.')56 
 
 6629 
 
 73 
 
 SS 
 
 8 
 
 6701 
 
 6774 
 
 6846 
 
 6919 
 
 6992 
 
 7064 
 
 7137 
 
 7209 
 
 7282 
 
 7354 
 
 73 
 
 66 
 
 11 
 600 
 
 7427 
 
 7499 
 
 7572 
 
 ;644 
 
 7717 
 
 7789 
 
 7862 
 
 7934 
 
 8006 
 
 8079 
 778802 
 
 72 
 72 
 
 778151 
 
 778224 
 
 778296 
 
 778,368 
 
 778441 
 
 77a513 
 
 778585 
 
 778658 
 
 778730 
 
 7 
 
 1 
 
 8874 
 
 8947 
 
 9019 
 
 9091 
 
 9163 
 
 9236 
 
 9308! 
 
 9380 
 
 9452 
 
 9524 
 
 72 
 
 14 
 
 2 
 
 9596 
 
 9669 
 
 9741 
 
 9313 
 
 9885 
 
 9957 
 
 780029 
 
 780101 
 
 780173 
 
 780245 
 
 72 
 
 22 
 
 3 
 
 780317 
 
 780389 
 
 780461 
 
 780533 
 
 7»}605 
 
 780677 
 
 0749 
 
 0821 
 
 0S93 
 
 0965 
 
 72 
 
 20 
 
 4 
 
 1037 
 
 1109 
 
 1181 
 
 1253 
 
 1324 
 
 1396 
 
 1468 
 
 1540 
 
 1612 
 
 1684 
 
 72 
 
 36 
 
 5 
 
 1755 
 
 1827 
 
 1899 
 
 1971 
 
 2042 
 
 2114 
 
 2186 
 
 2258 
 
 2329 
 
 2401 
 
 72 
 
 43 
 
 6 
 
 2473 
 
 2544 
 
 2616 
 
 2688 
 
 2759 
 
 2S31 
 
 2902 
 
 2974 
 
 3046 
 
 8117 
 
 72 
 
 fM) 
 
 7 
 
 3189 
 
 3260 
 
 ai;}2 
 
 3403 
 
 3475 
 
 3546 
 
 3618 
 
 3089 
 
 3761 
 
 3832 
 
 71 
 
 68 
 
 8 
 
 3904 
 
 3975 
 
 4046 
 
 4118 
 
 4189 
 
 4261 
 
 4332 
 
 4403 
 
 4475 
 
 4546 
 
 71 
 
 65 
 
 9 
 610 
 
 4617 
 
 4689 
 
 4760 
 
 4831 
 
 4902 
 
 4974 
 
 6045 
 
 6116 
 
 6187 
 785899 
 
 6259 
 
 71 
 
 71 
 
 7&5a30 
 
 785401 
 
 785472 
 
 785543 
 
 785615 
 
 785686 
 
 785757 
 
 785.828 
 
 785970 
 
 7 
 
 1 
 
 6041 
 
 6112 
 
 6183 
 
 6254 
 
 6325 
 
 6396 
 
 6467 
 
 6538 
 
 6609 
 
 6680 
 
 71 
 
 14 
 
 2 
 
 6751 
 
 6822 
 
 6893 
 
 6964 
 
 7035 
 
 7106 
 
 7177 
 
 7248 
 
 7319 
 
 7390 
 
 71 
 
 21 
 
 3 
 
 7460 
 
 7531 
 
 7602 
 
 7673 
 
 7744 
 
 7815 
 
 7885 
 
 7956 
 
 8027 
 
 8098 
 
 71 
 
 28 
 
 4 
 
 8168 
 
 8239 
 
 8310 
 
 8381 
 
 8451 
 
 a522 
 
 8693 
 
 8663 
 
 8734 
 
 8804 
 
 71 
 
 36 
 
 5 
 
 8,S75 
 
 8946 
 
 9016 
 
 9087 
 
 9157 
 
 9228 
 
 9299 
 
 9369 
 
 9440 
 
 9510 
 
 71 
 
 43 
 
 6 
 
 9581 
 
 9651 
 
 9722 
 
 9792 
 
 9863 
 
 993;i 
 
 790004 
 
 790074 
 
 790144 
 
 790215 
 
 70 
 
 50 
 
 7 
 
 790285 
 
 790356 
 
 790426 
 
 790496 
 
 790567 
 
 790637 
 
 0707 
 
 0778 
 
 0848 
 
 0918 
 
 70 
 
 57 
 
 8 
 
 (1988 
 
 1059 
 
 1129 
 
 1199 
 
 1269 
 
 1340 
 
 1410 
 
 14,80 
 
 1550 
 
 1620 
 
 70 
 
 64 
 
 9 
 
 620 
 
 1691 
 
 1761 
 
 1831 
 
 1901 
 
 1971 
 
 2041 
 
 2111 
 
 2181 
 
 2252 
 
 2322 
 
 70 
 
 70 
 
 792392 
 
 7924<)2 
 
 792532 
 
 792602 
 
 792672 
 
 792742 
 
 792812 
 
 792,S,82 
 
 792952 
 
 793022 
 
 7 
 
 1 
 
 3092 
 
 3162 
 
 3231 
 
 3301 
 
 3371 
 
 3441 
 
 3511 
 
 3rM 
 
 3651 
 
 3721 
 
 70 
 
 14 
 
 2 
 
 3790 
 
 3.860 
 
 3930 
 
 4000 
 
 4070 
 
 4139 
 
 4209 
 
 4279 
 
 4349 
 
 4418 
 
 70 
 
 21 
 
 3 
 
 4488 
 
 4558 
 
 4627 
 
 4697 
 
 4767 
 
 4836 
 
 4906 
 
 4976 
 
 6045 
 
 6115 
 
 70 
 
 28 
 
 4 
 
 6185 
 
 6254 
 
 5324 
 
 6393 
 
 6463 
 
 6532 
 
 6602 
 
 667i 
 
 6741 
 
 6811 
 
 70 
 
 35 
 
 5 
 
 588<) 
 
 5949 
 
 6019 
 
 6088 
 
 6158 
 
 6227 
 
 6297 
 
 &366 
 
 6436 
 
 6505 
 
 69 
 
 42 
 
 6 
 
 6574 
 
 6644 
 
 6713 
 
 6782 
 
 6852 
 
 6921 
 
 6990 
 
 7060 
 
 7129 
 
 7198 
 
 69 
 
 49 
 
 7 
 
 7268 
 
 7;«7 
 
 7406 
 
 7475 
 
 7545 
 
 7614 
 
 76.83 
 
 7752 
 
 7821 
 
 7890 
 
 69 
 
 56 
 
 8 
 
 7960 
 
 8029 
 
 8098 
 
 8167 
 
 8236 
 
 8;W5 
 
 8374 
 
 8443 
 
 8513 
 
 8682 
 
 69 
 
 63 
 
 630 
 
 8651 
 799341 
 
 8720 
 
 1 8789 
 
 1 
 
 8868 
 
 8927 
 
 8996 
 
 9066 
 
 9134 
 
 9203 
 
 9272 
 
 69 
 69 
 
 799409 
 
 '799478 
 
 799547 
 
 799616 
 
 799685 
 
 799754 
 
 799823 
 
 799892 
 
 799961 
 
 
 1 
 
 800029 
 
 800098 
 
 800167 
 
 800236 
 
 800305 
 
 800373 
 
 800442 800511 
 
 8005,80 
 
 800648 
 
 69 
 
 14 
 
 2 
 
 0717 
 
 0786 
 
 0854 
 
 0923 
 
 0992 
 
 1061 
 
 1129 
 
 1198 
 
 1266 
 
 133,5 
 
 69 
 
 21 
 
 3 
 
 1404 
 
 1472 
 
 1541 
 
 1609 
 
 1678 
 
 1747 
 
 1815 
 
 1884 
 
 1952 
 
 2021 
 
 69 
 
 28 
 
 4 
 
 2089 
 
 2158 
 
 2226 
 
 2296 
 
 2363 
 
 2432 
 
 2500 
 
 2568 
 
 2637 
 
 2705 
 
 69 
 
 !V> 
 
 5 
 
 2774 
 
 2842 
 
 2910 
 
 2979 
 
 3047 
 
 3116 
 
 3184 
 
 3252 
 
 3:J21 
 
 a^89 
 
 68 
 
 41 
 
 6 
 
 3457 
 
 3525 
 
 3594 
 
 3662 
 
 3730 
 
 8798 
 
 3867 
 
 3935 
 
 4003 
 
 4071 
 
 68 
 
 48 
 
 7 
 
 4139 
 
 4208 
 
 4276 
 
 4344 
 
 4412 
 
 4480 
 
 4548 
 
 4616 
 
 4686 
 
 4763 
 
 (Hi 
 
 55 
 
 8 
 
 4821 
 
 4889 
 
 4957 
 
 6()25 
 
 6093 
 
 6161 
 
 6229 
 
 6297 
 
 6365 
 
 64.33 
 
 68 
 
 62 
 
 9 
 
 65U1 
 
 6569 
 
 6637 
 
 67U6 
 
 6773 
 
 6841 
 
 6908 
 
 6976 
 
 6044 
 
 6112 
 
 tia, 
 
LOGAPJTIDIIC TABLES. 
 
 119' 
 
 
 
 D. 
 
 34101 
 
 75 
 
 4848 
 
 75 
 
 65;»4 
 
 75 
 
 6338 
 
 74 
 
 7082 
 
 74 
 
 7823 
 
 74 
 
 mm 
 
 74 
 
 9303 
 
 74 
 
 mi2 
 
 74 
 
 0778 
 
 74 
 
 ri5i4 
 
 74 
 
 2248 
 
 731 
 
 2981 
 
 73 1 
 
 3713 
 
 73 
 
 4444 
 
 73 
 
 6173 
 
 73 
 
 6902 
 
 73 
 
 6(529 
 
 73 
 
 7364 
 
 73 
 
 8079 
 
 72 
 
 r8802 
 
 72 
 
 9524 
 
 72 
 
 S0246 
 
 72 
 
 0965 
 
 72 
 
 1684 
 
 72 
 
 2401 
 
 72 
 
 8117 
 
 72 
 
 3832 
 
 71 
 
 4546 
 
 71 
 
 6259 
 
 71 
 
 85970 
 
 71 
 
 6680 
 
 71 
 
 7390 
 
 71 
 
 8098 
 
 71 
 
 8804 
 
 71 
 
 9510 
 
 71 
 
 30215 
 
 70 
 
 0918 
 
 70 
 
 1620 
 
 70 
 
 2322 
 
 70 
 
 93022 
 
 70 
 
 3721 
 
 70 
 
 4418 
 
 70 
 
 6115 
 
 70 
 
 6811 
 
 70 
 
 6505 
 
 69 
 
 7198 
 
 69 
 
 7890 
 
 69 
 
 8582 
 
 69 
 
 9272 
 
 69 
 
 999«51 
 
 69 
 
 O0(;48 
 
 69 
 
 i:«,5 
 
 69 
 
 2021 
 
 69 
 
 2705 
 
 69 
 
 ,W9 
 
 «8 
 
 4071 
 
 68 
 
 4763 
 
 69 
 
 6433 
 
 68 
 
 6112 
 
 68, 
 
 1 
 PPjN. 
 
 
 
 1 
 
 2 
 
 :{ 
 
 4 
 
 3 
 
 6 
 
 r 
 
 8 
 
 
 
 D. 
 
 
 
 640 
 
 806180 
 
 806248 
 
 806316 
 
 806384 
 
 806461 
 
 806519 
 
 806587 8066551 
 
 806723 
 
 806790 
 
 63 
 
 
 7 
 
 1 
 
 6858 
 
 6926 
 
 6994 
 
 7061 
 
 7129 
 
 7197 
 
 7264 
 
 7332 
 
 7400 
 
 7467 
 
 63 
 
 
 13 
 
 2 
 
 7535 
 
 7603 
 
 7670 
 
 77;i8 
 
 7806 
 
 7873 
 
 7941 
 
 8003 
 
 8076 
 
 8143 
 
 63 
 
 
 20 
 
 3 
 
 8211 
 
 8279 
 
 8346 
 
 8414 
 
 8481 
 
 8549 
 
 8616 
 
 8684 
 
 8751 
 
 8818 
 
 67 
 
 
 27 
 
 4 
 
 8886 
 
 8953 
 
 9021 
 
 9088 
 
 9156 
 
 9223 
 
 9290 
 
 9358 
 
 9425 
 
 9492 
 
 67 
 
 
 34 
 
 6 
 
 9560 
 
 9627 
 
 9694 
 
 9762 
 
 9829 
 
 9896 
 
 9964 
 
 810031 
 
 810098 
 
 810165 
 
 67 
 
 
 40 
 
 6 
 
 81023,3 
 
 810300 
 
 810367 
 
 810434 
 
 810501 
 
 810569 
 
 810636 
 
 0703 
 
 0770 
 
 08,37 
 
 67 
 
 
 47 
 
 7 
 
 0904 
 
 0971 
 
 10,39 
 
 1106 
 
 1173 
 
 1240 
 
 1307 
 
 1374 
 
 1441 
 
 1,508 
 
 67 
 
 
 64 
 
 8 
 
 1575 
 
 1642 
 
 1709 
 
 1776 
 
 1843 
 
 1910 
 
 1977 
 
 2044 
 
 2111 
 
 2178 
 
 67 
 
 
 60 
 
 9 
 
 2245 
 
 2312 
 
 2379 
 
 2445 
 
 2512 
 
 2579 
 813247 
 
 2646 
 
 2713 
 
 2780 
 
 2847 
 
 67 
 67 
 
 
 
 6,50 
 
 812913 
 
 812980 
 
 813047 
 
 813114 
 
 813181 
 
 813314 
 
 813381 
 
 813448 
 
 813514 
 
 
 7 
 
 1 
 
 3581 
 
 3648 
 
 3714 
 
 3781 
 
 3848 
 
 3914 
 
 3981 
 
 4048 
 
 4114 
 
 4181 
 
 67 
 
 
 13 
 
 2 
 
 4248 
 
 4314 
 
 4381 
 
 4447 
 
 4514 
 
 4.581 
 
 4647 
 
 4714 
 
 4780 
 
 4847 
 
 67 
 
 
 20 
 
 3 
 
 4913 
 
 4980 
 
 6046 
 
 6113 
 
 6179 
 
 6246 
 
 6312 
 
 5378 
 
 6445 
 
 6511 
 
 66 
 
 
 26 
 
 4 
 
 6578 
 
 6644 
 
 5711 
 
 5777 
 
 5843 
 
 6910 
 
 6976 
 
 6042 
 
 6109 
 
 6175 
 
 66 
 
 
 as 
 
 6 
 
 6241 
 
 6303 
 
 6374 
 
 6440 
 
 6506 
 
 6573 
 
 6639 
 
 6705 
 
 6771 
 
 6838 
 
 66 
 
 
 40 
 
 6 
 
 0904 
 
 6970 
 
 7036 
 
 7102 
 
 7169 
 
 7235 
 
 7301 
 
 7367 
 
 74.33 
 
 7499 
 
 66 
 
 
 46 
 
 7 
 
 75()5 
 
 7631 
 
 7698 
 
 7764 
 
 7830 
 
 7896 
 
 7962 
 
 8028 
 
 8094 
 
 8160 
 
 66 
 
 
 63 
 
 8 
 
 8226 
 
 8292 
 
 8358 
 
 8424 
 
 8490 
 
 8556 
 
 8622 
 
 8683 
 
 8754 
 
 8820 
 
 66 
 
 
 59 
 
 9 
 
 660 
 
 8835 
 
 8951 
 
 9017 
 
 9083 
 819741 
 
 9149 
 
 9215 
 
 9281 
 
 9346 
 
 9412 
 
 9478 
 
 66 
 
 66 
 
 \ 
 
 819544 
 
 819610 
 
 819676 
 
 819,807 
 
 819873 
 
 819939 
 
 820004 
 
 820070 
 
 820136 
 
 
 7 
 
 1 
 
 820201 
 
 820267 
 
 8203;« 
 
 320399 
 
 820464 
 
 820530 
 
 820595 
 
 0661 
 
 0727 
 
 0792 
 
 66 
 
 1, 
 
 13 
 
 ?. 
 
 o858 
 
 0924 
 
 0989 
 
 10.55 
 
 1120 
 
 1186 
 
 1251 
 
 1317 
 
 1382 
 
 1448 
 
 66 
 
 
 20 
 
 3 
 
 1514 
 
 1579 
 
 1645 
 
 1710 
 
 1775 
 
 1841 
 
 1906 
 
 1972 
 
 2037 
 
 2103 
 
 65 
 
 
 26 
 
 4 
 
 2168 
 
 2233 
 
 2299 
 
 2364 
 
 24;iO 
 
 2495 
 
 2560 
 
 2626 
 
 2691 
 
 2756 
 
 65 
 
 
 33 
 
 6 
 
 2822 
 
 2887 
 
 2952 
 
 3018 
 
 3083 
 
 3148 
 
 3213 
 
 3279 
 
 3344 
 
 3409 
 
 65 
 
 
 39 
 
 6 
 
 3474 
 
 3539 
 
 3605 
 
 3670 
 
 3735 
 
 3800 
 
 3865 
 
 3930 
 
 3996 
 
 4061 
 
 65 
 
 
 46 
 
 7 
 
 4126 
 
 4191 
 
 4256 
 
 4321 
 
 4386 
 
 4461 
 
 4516 
 
 4581 
 
 4646 
 
 4711 
 
 65 
 
 
 62 
 
 8 
 
 4776 
 
 4*11 
 
 1906 
 
 4971 
 
 6036 
 
 6101 
 
 6166 
 
 6231 
 
 6296 
 
 6361 
 
 65 
 
 
 69 
 
 9 
 
 6426 
 
 5491 
 
 5556 
 826204 
 
 6621 
 
 6686 
 
 6751 
 826399 
 
 6815 
 
 6880 
 
 6945 
 
 6010 
 
 65 
 65 
 
 
 670 
 
 826076 
 
 826140 
 
 826269 
 
 826334 
 
 826464 
 
 826528 
 
 82f..593 
 
 826658 
 
 
 6 
 
 1 
 
 6723 
 
 6787 
 
 6852 
 
 6917 
 
 6981 
 
 7046 
 
 7111 
 
 7175 
 
 7240 
 
 7305 
 
 65 
 
 
 13 
 
 2 
 
 7369 
 
 7434 
 
 7499 
 
 7563 
 
 7628 
 
 7692 
 
 7767 
 
 7821 
 
 7*86 
 
 7951 
 
 65 
 
 
 19 
 
 3 
 
 8015 
 
 8080 
 
 8144 
 
 8209 
 
 8273 
 
 8333 
 
 8402 
 
 8467 
 
 8531 
 
 8.595 
 
 64 
 
 
 26 
 
 4 
 
 8660 
 
 8724 
 
 8789 
 
 8853 
 
 8918 
 
 8982 
 
 9046 
 
 9111 
 
 9175 
 
 9239 
 
 64 
 
 
 32 
 
 6 
 
 9;i04 
 
 9368 
 
 9432 
 
 9497 
 
 9,561 
 
 9625 
 
 9690 
 
 9754 
 
 9818 
 
 9882 
 
 64 
 
 
 38 
 
 fi 
 
 9947 
 
 830011 
 
 830075 
 
 830139 
 
 830204 
 
 830268 
 
 830.332 
 
 830396 
 
 830460 
 
 830525 
 
 64 
 
 
 45 
 
 7 
 
 830589 
 
 0653 
 
 0717 
 
 0781 
 
 0845 
 
 0909 
 
 0973 
 
 1037 
 
 1102 
 
 1166 
 
 64 
 
 
 61 
 
 8 
 
 1230 
 
 1294 
 
 ia58 
 
 1422 
 
 14,86 
 
 1550 
 
 1614 
 
 1678 
 
 1742 
 
 180(i 
 
 64 
 
 
 68 
 
 9 
 
 1870 
 
 1934 
 832573 
 
 1998 
 
 2062 
 
 2126 
 
 2189 
 
 2253 
 
 2317 
 
 2381 
 
 2445 
 
 64 
 
 64 
 
 
 680 
 
 832509 
 
 8326.37 
 
 832700 
 
 832764 
 
 832828 
 
 832,892 
 
 8329,56 
 
 83;W20 
 
 833083 
 
 
 6 
 
 1 
 
 3147 
 
 3211 
 
 3275 
 
 3;i38 
 
 3402 
 
 3466 
 
 3530 
 
 3593 
 
 3657 
 
 3721 
 
 64 
 
 
 13 
 
 2. 
 
 3784 
 
 3848 
 
 3912 
 
 3975 
 
 4039 
 
 4103 
 
 4166 
 
 42;w 
 
 4294 
 
 4;«7 
 
 64 
 
 
 19 
 
 3 
 
 4421 
 
 4484 
 
 4548 
 
 4611 
 
 4675 
 
 4739 
 
 4802 
 
 4866 
 
 4929 
 
 4993 
 
 64 
 
 • 
 
 25 
 
 « 
 
 6056 
 
 6120 
 
 6183 
 
 6247 
 
 6;J10 
 
 6373 
 
 64.37 
 
 6500 
 
 6.564 
 
 6627 
 
 63 
 
 
 82 
 
 6 
 
 6691 
 
 6754 
 
 6817 
 
 6asi 
 
 6944 
 
 6007 
 
 6071 
 
 6134 
 
 6197 
 
 6261 
 
 63 
 
 
 38 
 
 6 
 
 6324 
 
 6387 
 
 6451 
 
 6,514 
 
 6.577 
 
 6()41 
 
 6704 
 
 6767 
 
 6a30 
 
 6894 
 
 63 
 
 
 44 
 
 7 
 
 6957 
 
 7020 
 
 70,83 
 
 7146 
 
 7210 
 
 7273 
 
 7,3;i6 
 
 7399 
 
 7462 
 
 7525 
 
 63 
 
 
 60 
 
 8 
 
 7688 
 
 76;72 
 
 7715 
 
 7778 
 
 7841 
 
 7904 
 
 7967 
 
 8o:w 
 
 8093 
 
 81.56 
 
 63 
 
 
 57 
 
 9 
 
 8219 
 
 8282 
 
 8345 
 
 8403 
 
 8471 
 
 8534 
 
 8597 
 
 866U 
 
 8723 
 
 8786 
 
 63 
 
 "63 
 
 
 ()90 
 
 838849 
 
 838912 
 
 838975 
 
 8390;i3 
 
 839101 
 
 839164 
 
 839227 
 
 839289 
 
 839,352 
 
 a39415 
 
 
 ' 6 
 
 1 
 
 9478 
 
 9.541 
 
 9()04 
 
 9667 
 
 9729 
 
 9792 
 
 9855 
 
 9918 
 
 9981 
 
 840043 
 
 63 
 
 
 13 
 
 2 
 
 840106 
 
 840169 
 
 840232 
 
 840294 
 
 840;«7 
 
 840420 
 
 840482 
 
 840545 
 
 840608 
 
 0671 
 
 63 
 
 
 19 
 
 3 
 
 mxi 
 
 0796 
 
 0859 
 
 0921 
 
 0984 
 
 1046 
 
 1109 
 
 1172 
 
 1234 
 
 1297 
 
 63 
 
 
 ?5 
 
 4 
 
 ia59 
 
 1422 
 
 1485 
 
 1547 
 
 1610 
 
 1672 
 
 17a5 
 
 1797 
 
 1860 
 
 1922 
 
 63 
 
 
 32 
 
 6 
 
 19S6 
 
 2047 
 
 2110 
 
 2172 
 
 2235 
 
 22i»7 
 
 2360 
 
 2422 
 
 248-1 
 
 2547 
 
 62 
 
 
 38 
 
 6 
 
 2609 
 
 2672 
 
 2734 
 
 2796 
 
 2,859 
 
 2921 
 
 2983 
 
 3046 
 
 310S 
 
 3170 
 
 62 
 
 
 44 
 
 7 
 
 323:i 
 
 3295 
 
 3;«7 
 
 3420 
 
 3482 
 
 3514 
 
 3()0« 
 
 3669 
 
 3731 
 
 3793 
 
 62 
 
 
 60 
 
 8 
 
 3855 
 
 3918 
 
 3981J 
 
 4042 
 
 4104 
 
 4166 
 
 4229 
 
 4291 
 
 4355 
 
 4415 
 
 62 
 
 
 67 
 
 9 
 
 4477 
 
 45;« 
 
 4<)01 
 
 4664 
 
 4726 
 
 4788 
 
 4860 
 
 4912 
 
 4974 
 
 60.3f 
 
 02 
 
120 
 
 LOGARITHMIC TABLES. 
 
 i p ' 
 
 If 
 I, I 
 
 1 
 
 pp 
 
 N. O 1 
 
 '2 :i 
 
 4 
 
 "i 
 
 « 7 
 
 H 
 
 
 
 D 
 
 
 700 
 
 m5093 
 
 845160 8452221 
 
 846284 
 
 845346 
 
 845408 
 
 845470 
 
 846532 
 
 845594 
 
 845656 
 
 62 
 
 6 
 
 1 
 
 6718 
 
 5780 
 
 6842 
 
 6904 
 
 6966 
 
 6028 
 
 6090 
 
 6151 
 
 6213 
 
 6275 
 
 62 
 
 12 
 
 2 
 
 6337 
 
 6399 
 
 6461 
 
 6523 
 
 6535 
 
 6646 
 
 6708 
 
 6770 
 
 6832 
 
 6894 
 
 62 
 
 19 
 
 8 
 
 6955 
 
 7017 
 
 7079 
 
 ;i41 
 
 7202 
 
 7264 
 
 7326 
 
 7388 
 
 7449 
 
 7511 
 
 62 
 
 2.1 
 
 4 
 
 7573 
 
 7631 
 
 7696 
 
 7758 
 
 7819 
 
 7881 
 
 7943 
 
 8004 
 
 8066 
 
 8128 
 
 62 
 
 :i\ 
 
 5 
 
 8189 
 
 8251 
 
 8312 
 
 8374 
 
 8435 
 
 8497 
 
 8559 
 
 8620 
 
 8682 
 
 8743 
 
 62 
 
 V 
 
 6 
 
 8805 
 
 8866 
 
 8928 
 
 8989 
 
 9051 
 
 9112 
 
 9174 
 
 9235 
 
 9297 
 
 9358 
 
 61 
 
 4.3 
 
 7 
 
 9419 
 
 9481 
 
 9542 
 
 9604 
 
 9665 
 
 9726 
 
 9788 
 
 9849 
 
 9911 
 
 9972 
 
 61 
 
 M 
 
 8 
 
 850033 
 
 850095 
 
 850156 
 
 550217 
 
 880279 
 
 850340 
 
 850401 
 
 850462 
 
 850524 
 
 8505a5 
 
 61 
 
 56 
 
 9 
 
 0646 
 
 0707 
 
 0769 
 
 0830 
 
 <:891 
 
 0932 
 
 1014 
 
 1075 
 
 1136 
 
 1197 
 
 61 
 61 
 
 710 
 
 851258 
 
 851320 
 
 851.381 
 
 851442 
 
 851503 
 
 851564 
 
 851625 
 
 851686 
 
 851747 
 
 &51309 
 
 f) 
 
 1 
 
 1870 
 
 1931 
 
 1992 
 
 2053 
 
 2114 
 
 2175 
 
 2236 
 
 2297 
 
 2.358 
 
 2419 
 
 61 
 
 12 
 
 2 
 
 2180 
 
 2541 
 
 2602 
 
 2663 
 
 2724 
 
 27J5 
 3394 
 
 2846 
 
 2907 
 
 2963 
 
 3029 
 
 61 
 
 1« 
 
 3 
 
 .3090 
 
 3150 
 
 3211 
 
 3272 
 
 3333 
 
 34.55 
 
 a5i6 
 
 3577 
 
 3637 
 
 61 
 
 24 
 
 4 
 
 30!»3 
 
 37.59 
 
 3820 
 
 3881 
 
 3941 
 
 4002 
 
 4063 
 
 4124 
 
 4185 
 
 4245 
 
 61 
 
 81 
 
 5 
 
 4.306 
 
 4367 
 
 4428 
 
 4488 
 
 4549 
 
 4610 
 
 4670 
 
 4731 
 
 4792 
 
 4852 
 
 61 
 
 37 
 
 6 
 
 4!»I3 
 
 4974 
 
 5034 
 
 5095 
 
 5156 
 
 6216 
 
 5277 
 
 6337 
 
 5,398 
 
 5459 
 
 61 
 
 43 
 
 7 
 
 .W19 
 
 55,80 
 
 5640 
 
 6701 
 
 6761 
 
 6822 
 
 5882 
 
 5943 
 
 6003 
 
 6064 
 
 61 
 
 49 
 
 8 
 
 6124 
 
 6185 
 
 6245 
 
 6306 
 
 6366 
 
 6427 
 
 6487 
 
 6543 
 
 6608 
 
 6668 
 
 60 
 
 65 
 
 9 
 
 720 
 
 6729 
 
 6789 
 
 6850 
 
 6910 
 8.57513 
 
 6970 
 
 7031 
 
 7091 
 
 7152 
 
 7212 
 
 7272 
 
 60 
 
 8.^>7.332 
 
 857.393 
 
 8.574.53 
 
 857574 
 
 857634 
 
 857694 
 
 8577.55 
 
 857815 
 
 857875 60 
 
 6 
 
 1 
 
 7it:« 
 
 7995 i 
 
 80.56 
 
 8116 
 
 8176 
 
 8236 
 
 8297 
 
 83.57 
 
 8417 
 
 8477, 60 
 90781 60 
 
 12 
 
 2 
 
 8.537 
 
 8.5971 
 
 8657 
 
 8718 
 
 8778 
 
 8838 
 
 aS98 
 
 8958 
 
 9018 
 
 18 
 
 3 
 
 9138 
 
 91981 
 
 92.53 
 
 9318 
 
 9379 
 
 9439 
 
 9499 
 
 95.59 
 
 9619 
 
 9679 60 
 
 24 
 
 4 
 
 9739 
 
 9799' 
 
 9859 
 
 9918 
 
 9978 
 
 8601».38 
 
 860098 
 
 8601.5,8 
 
 860218 
 
 860278 60 
 0877 60 
 1475 60 
 
 80 
 
 5 
 
 HGO;«S 
 
 860.398 
 
 .8604.58 
 
 860518 
 
 860578 
 
 06.37 
 
 0697 
 
 0757 
 
 0817 
 
 86 
 
 6 
 
 0937 
 
 01W6 
 
 10.56 
 
 1116 
 
 1176 
 
 1236 
 
 1295 
 
 1355 
 
 1415 
 
 42 
 
 7 
 
 1534 
 
 1594 
 
 1654 
 
 1714 
 
 1773 
 
 18.33 
 
 1893 
 
 1952 
 
 2012 
 
 2072 60 
 
 48 
 
 f 
 
 2131 
 
 2' 91 
 
 2251 
 
 2310 
 
 2370 
 
 2430 
 
 24.89 
 
 2549 
 
 2608 
 
 2668 
 
 60 
 
 64 
 
 9 
 7'M) 
 
 2723 
 80;tt23 
 
 r787 
 
 2847 
 
 2906 
 
 2966 
 
 3025 
 
 3085 
 
 3144 
 
 863739 
 
 3204 
 86.3799 
 
 3263 
 
 60 
 
 S6;i382 
 
 86.3442 
 
 86.3501 
 
 863.561 
 
 863620 
 
 863680 
 
 8&3.S68 
 
 59 
 
 6 
 
 1 
 
 3'.'ir 
 
 3977 
 
 4036 
 
 4096 
 
 4155 
 
 4214 
 
 4274 
 
 433;i 
 
 4.392 
 
 4452 
 
 59 
 
 12 
 
 2 
 
 4y.i 
 
 4.570 
 
 46;i0 
 
 46,89 
 
 4748 
 
 4,808 
 
 4867 
 
 4926 
 
 4985 
 
 5045 
 
 59 
 
 18 
 
 8 
 
 5104 
 
 6163 
 
 5222 
 
 .5282 
 
 &341 
 
 5400 
 
 64.59 
 
 5519 
 
 5578 
 
 5637 
 
 59 
 
 24 
 
 4 
 
 5696 
 
 57.55 
 
 .5814 
 
 5,874 
 
 5933 
 
 6992 
 
 6051 
 
 6110 
 
 6169 
 
 6228 
 
 59 
 
 80 
 
 5 
 
 62.S7 
 
 6.146 
 
 6405 
 
 6465 
 
 6524 
 
 6583 
 
 6642 
 
 6701 
 
 6760 
 
 6819 
 
 59 
 
 a-) 
 
 6 
 
 6878 
 
 69.C 
 
 6996 
 
 7055 
 
 7114 
 
 7173 
 
 7232 
 
 7291 
 
 7350 
 
 7409 
 
 59 
 
 41 
 
 7 
 
 7467 
 
 7526 
 
 :.>s5 
 
 7644 
 
 7703 
 
 7762 
 
 7821 
 
 78,80 
 
 7939 
 
 7998 
 
 59 
 
 47 
 
 8 
 
 8056 
 
 8115 
 
 8i/4 
 
 82;i3 
 
 8292 
 
 8;«o 
 
 8409 
 
 8468 
 
 8527 
 
 8586 
 
 59 
 
 63 
 
 9 
 
 740 
 
 6644 
 8692:« 
 
 8703 
 
 8762 
 
 8821 
 
 8879 
 
 8938 
 
 8997 
 869584 
 
 9056 
 
 9114 
 
 9173 
 
 59 
 59 
 
 869290 
 
 869319 
 
 869408 
 
 869466 
 
 869.525 
 
 869642 
 
 869701 
 
 869760 
 
 6 
 
 1 
 
 9818 
 
 9877 
 
 99.35 
 
 9994 
 
 8700.53 
 
 870111 
 
 870170 
 
 870228 
 
 870287 
 
 870345 
 
 59 
 
 12 
 
 2 
 
 870404 
 
 870462 
 
 870.521 
 
 870.579 
 
 06;i3 
 
 1 0696 
 
 0755 
 
 0813 
 
 0872 
 
 0930 
 
 53 
 
 17 
 
 8 
 
 0983 
 
 1047 
 
 1106 
 
 1164 
 
 1223 
 
 1281 
 
 1.339 
 
 1398 
 
 1456 
 
 1515 
 
 58 
 
 28 
 
 4 
 
 1573 
 
 1631 
 
 1690 
 
 174H 
 
 1806 
 
 1865 
 
 1 1923 
 
 1981 
 
 2040 
 
 2098 
 
 58 
 
 29 
 
 5 
 
 21.'>6 
 
 2215 
 
 227.3 
 
 2;i3l 
 
 2.3,89 
 
 2448 
 
 2.506 
 
 2564 
 
 2622 
 
 2681 
 
 58 
 
 85 
 
 6 
 
 2739 
 
 2797 
 
 2.855 
 
 2913 
 
 2972 
 
 30,30 
 
 30,83 
 
 3146 
 
 3204 
 
 3262 
 
 58 
 
 41 
 
 7 
 
 3321 
 
 .3379 
 
 .3437 
 
 8495 
 
 3.5.53 
 
 3611 
 
 36ti9 
 
 8727 
 
 3785 
 
 3844 
 
 53 
 
 46 
 
 8 
 
 3'.K)2 
 
 3960 
 
 4018 
 
 4076 
 
 41.34 
 
 4192 
 
 42.50 
 
 430a 
 
 43(56 
 
 4424 
 
 68 
 
 52 
 
 9 
 7.')0 
 
 4482 
 
 4540 
 
 4598 
 
 4656 
 875235 
 
 4714 
 
 4772 
 
 4^311 
 
 4838 
 
 4945 
 
 5003 
 
 58 
 
 8750611 sri^l 19 
 
 876177 
 
 875293 
 
 875351 
 
 875409 
 
 875466 
 
 875.524 
 
 875.582 
 
 58 
 
 6 
 
 1 
 
 .5640 )69S 
 
 6756 
 
 6815 
 
 5,871 
 
 6929 
 
 6987 
 
 6045 
 
 6102 
 
 6160 
 
 53 
 
 12 
 
 2 
 
 6218 6276 
 
 63.3: 
 
 6:191 
 
 6449 
 
 6507 
 
 6561 
 
 6622 
 
 6681 
 
 6737 
 
 53 
 
 17 
 
 3 
 
 6795 68.5;J 
 
 6910 
 
 6968 
 
 7026 
 
 70a3 
 
 7141 
 
 7199 
 
 7256 
 
 731^ 
 
 63 
 
 23 
 
 4 
 
 7.37' 742t 
 
 7487 
 
 754^ 
 
 7602 
 
 76.59 
 
 7717 
 
 7/.'4 
 
 7835 
 
 788£ 
 
 68 
 
 29 
 
 5 
 
 7947 
 
 800-i 
 
 8062 
 
 6111 
 
 817< 
 
 82;n 
 
 8292 
 
 8349 
 
 840; 
 
 846^ 
 
 57 
 
 85 
 
 6 
 
 8522 
 
 857J 
 
 863; 
 
 869J 
 
 8752 
 
 8809 
 
 8866 
 
 8924 
 
 8981 
 
 9039 
 
 67 
 
 41 
 
 7 
 
 9096 
 
 91.5; 
 
 9211 
 
 926}^ 
 
 9325 
 
 9.38S 
 
 9440 
 
 949] 
 
 9.5.5.1 
 
 9612 
 
 67 
 
 46 
 
 8 
 
 0669 
 
 972( 
 
 978-1 
 
 9841 
 
 989S 
 
 99.56 
 
 880013 
 
 88007U 
 
 880127 
 
 88018! 
 
 67' 
 
 1^1 ' 
 
 8H0242 
 
 880299 
 
 88086e 
 
 I8804U 
 
 1 880471 
 
 880528 
 
 I U689 
 
 W43 
 
 t 
 
 069S 
 
 • 
 
 0756 
 
 i 
 
 67 
 

 D 
 
 5« 
 
 62 
 
 7S 
 
 62 
 
 94 
 
 62 
 
 11 
 
 62 
 
 28 
 
 62 
 
 43 
 
 62 
 
 58 
 
 61 
 
 72 
 
 61 
 
 85 
 
 61 
 
 97 
 
 61 
 
 09 
 
 61 
 
 19 
 
 61 
 
 29 
 
 61 
 
 37 
 
 61 
 
 45 
 
 ()1 
 
 52 
 
 61 
 
 59 
 
 61 
 
 (54 
 
 61 
 
 68 
 
 60 
 
 72 
 
 60 
 
 75 
 
 60 
 
 77 
 
 78 
 
 60 
 
 60 
 
 79 
 
 60 
 
 78 
 
 60 
 60 
 60 
 
 77 
 
 75 
 
 72 
 
 60 
 
 <m 
 
 60 
 
 63 
 
 60 
 
 )68 
 
 59 
 
 52 
 
 59 
 
 45 
 
 59 
 
 >37 
 
 59 
 
 •28 
 
 59 
 
 no 
 
 59 
 
 (H) 
 
 59 
 
 m 
 
 59 
 
 m 
 
 59 
 
 73 
 
 69 
 
 '60 
 
 59 
 
 145 
 
 59 
 
 )30 
 
 58 
 
 )15 
 
 58 
 
 )98 
 
 53 
 
 m 
 
 58 
 
 J()2 
 
 58 
 
 ^44 
 
 58 
 
 124 
 
 58 
 
 J03 
 
 68 
 
 58 
 58 
 58 
 68 
 68 
 67 
 67 
 67 
 
 57; 
 571 
 
 LOGAUITHMIC TABLES. 
 
 121 
 
 PP 
 
 N. 
 
 
 
 
 3 
 
 G 
 
 9 
 
 D. 
 
 760 880814 880871 
 
 13S5 
 11)55 
 2525 
 3093 
 3GGI 
 4229 
 4795 
 530 1 
 5926 
 
 1442 
 
 2012 
 2581 
 3150 
 3718 
 42,S5 
 4852 
 5413 
 59S3 
 
 SSC131 
 7054 
 7017 
 8179 
 8741 
 9302 
 9802 
 
 890421 
 0980 
 1537 
 
 880928 
 1499 
 2069 
 2038 
 3207 
 3775 
 4342 
 4909 
 5474 
 C039 
 
 880985 
 1556 
 2126 
 2695 
 3264 
 3832 
 4399 
 4905 
 6531 
 609G 
 
 6 
 11 
 17 
 
 Of* 
 
 27 
 33 
 38 
 44 
 ^9 
 
 .0 
 
 22 
 27 
 32 
 38 
 43 
 49 
 
 •80 
 1 
 2 
 3 
 4 
 6 
 6 
 7 
 8 
 9 
 
 790 
 1 
 2 
 8 
 4 
 6 
 6 
 7 
 8 
 9 
 
 892095 
 2051 
 3207 
 3702 
 4310 
 4S70 
 5423 
 5975 
 0526 
 7077 
 
 880547 
 7111 
 7074 
 8230 
 8797 
 9358 
 9918 
 
 890477 
 1035 
 1593 
 
 892150 
 2707 
 3262 
 3817 
 4371 
 4925 
 6478 
 6030 
 6581 
 7132 
 
 88GG04 
 7107 
 7730 
 8292 
 8853 
 9414 
 9974 
 
 890533 
 1091 
 1649 
 
 S80G60 
 7223 
 77 
 8348 
 
 8909 
 9i70 
 890030 
 • 03S9 
 1147 
 1705 
 
 881042 
 1613 
 2183 
 2752 
 3321 
 3888 
 4455 
 6022 
 6587 
 6152 
 
 88G71G 
 7280 
 7842 
 8404 
 6905 
 9520 
 
 8900S0 
 0045 
 1203 
 1700 
 
 881099 
 1670 
 2240 
 2809 
 3377 
 3945 
 4512 
 6078 
 5044 
 6209 
 
 881156 
 1727 
 2297 
 2866 
 3434 
 4002 
 4509 
 5135 
 5700 
 C2G5 
 
 881213 
 1784 
 2354 
 2923 
 3491 
 4059 
 4625 
 6192 
 6757 
 6321 
 
 881271 
 1841 
 2411 
 
 2980 
 3548 
 4115 
 
 40S2 
 6248 
 5813 
 C378 
 
 897627 
 8170 
 8725 
 9273 
 9821 
 
 900307 
 0913 
 1458 
 20'>3 
 254. 
 
 89220G 
 2702 
 3318 
 3873 
 4427 
 4980 
 6533 
 6085 
 6030 
 7187 
 
 800 
 1 
 2 
 S 
 4 
 "5 
 6 
 7 
 8 
 
 810 
 6 1 
 
 903090 
 3033 
 4174 
 4716 
 5256 
 5796 
 0335 
 6874 
 7411 
 7949 
 
 897682 
 8231 
 8780 
 9328 
 9875 
 
 900422 
 09681 
 15131 
 2057 1 
 2G01| 
 
 903144 
 3087 
 4229 
 4770 
 6310 
 6850 
 6389 
 6927 
 7405 
 8002 
 
 892202 
 2S18 
 3373 
 3928 
 4482 
 6030 
 6583 
 6140 
 6092 
 7242 
 
 88G773 
 7336 
 7898 
 84G0 
 9021 
 9582 
 
 890141 
 0700 
 1259 
 ISIG 
 
 892317 
 2873 
 3429 
 3984 
 4538 
 6091 
 6G44 
 6195 
 6747 
 7297 
 
 88G829 8808S5 886942 
 
 7392, 
 
 7955 
 
 8516! 
 
 9077 
 
 9038 
 890197 
 
 0750 
 
 1314 
 
 1872 
 
 7449 
 8011 
 8573 
 9134 
 9094 
 
 7505 
 80G7 
 8029 
 9190 
 9750 
 
 8902:)3 890309 
 0812 1 0308 
 1370 1 1420 
 192S, 1983 
 
 881328 
 1898 
 2468 
 3037 
 3005 
 4172 
 4739 
 5305 
 6S70 
 6434 
 
 88G99S 
 7531 
 8123 
 8085 
 9240 
 9800 
 
 8903C5 
 0921 
 MS2 
 2039 
 
 67 
 67 
 67 
 67 
 67 
 57 
 57 
 57 
 57 
 56 
 
 11 
 
 2 
 
 16 
 
 3 S 
 
 21 
 
 4 
 
 27 
 
 6 
 
 82 
 
 6 
 
 37 
 
 7 
 
 42 
 
 8 
 
 id 
 
 9 
 
 9084S5 
 9021 
 9556 
 
 910091 
 0624 
 1168 
 1690 
 2222 
 2753 
 
 897737 
 8286 
 8835 
 9383 
 9930 
 
 900470 
 1022 
 1567 
 2112 
 
 I 205:; 
 
 903199 
 3741 
 4283 
 4824 
 6364 
 6904 
 6443 
 6981 
 7519 
 8056 
 
 897792 
 8341 
 8890 
 9437 
 9985 
 
 900531 
 1077 
 1022 
 2106 
 2710 
 
 897847 
 8390 
 8944 
 9492 
 
 900039 
 05SG 
 1131 
 1676 
 2221 
 2704 
 
 903253 
 
 3795 
 
 908539 
 9074 
 9610 
 
 910144 
 0078 
 1211 
 1743 
 2275 
 2806 
 
 892373 
 2929 
 3184 
 4039 
 4593 
 6140 
 5099 
 0251 
 6802 
 7352 
 
 897902 
 8451 
 8999 
 9547 
 
 900094 
 0010 
 1186 
 1731 
 2275 
 2818 
 
 903307 
 3849 
 433V 4391 
 4878 4932 
 6418 6472 
 
 6958 
 6497 
 7035 
 7573 
 8110 
 
 3284 S337 
 
 908592 
 91281 
 9663 
 
 910197 
 0731 
 1264 
 1797 
 2328 
 2859 
 3390 
 
 908646 
 9181 
 9716 
 
 910261 
 0784 
 1317 
 1850 
 2381 
 2913 
 8443 
 
 6012 
 6551 
 7089 
 7026 
 S163 
 
 908699 
 9235 
 9770 
 
 910304 
 0838 
 1371 
 1903 
 2435 
 2966 
 3496 
 
 903361: 
 3904 
 4445 
 4986 
 6526 
 6006 
 6604 
 7143 
 7680 
 8217 
 
 924i;9' 
 2985 
 3510 
 4094 
 4048 
 5201 
 6754 
 6300 
 0857 
 7407 
 
 897957 
 8500 
 9054 
 9002 
 
 900149 
 O095 
 1240 
 1785 
 2329 
 2873 
 
 903416 
 3958 
 4499 
 6040 
 6580 
 6119 
 6658 
 7196 
 7734 
 8270 
 
 892484 892540 
 3040! 3030 
 3595 
 4150 
 
 4704 
 
 5257 
 
 58091 
 
 6301 
 
 6912 
 
 7462, 
 
 3051 
 
 4205 
 4759 
 6312 
 6804 
 6116 
 C907 
 7517 
 
 898012 898007 
 85011 8015 
 9109 9104 
 9050' 9711 
 
 900203 900258 
 
 56 
 56 
 56 
 50 
 56 
 56 
 56 
 56 
 50 
 
 892595 
 3151 
 3700 
 4201 
 4814 
 6307 
 6920 
 6171 
 7022 
 7572 
 
 07491 
 1295 
 1840 
 2384 
 2927 
 
 903470 
 4012 
 4553 
 6094 
 6034 
 6173 
 6712 
 7260 
 7787 
 8324 
 
 56 
 50 
 50 
 55 
 55 
 55 
 55 
 55 
 55 
 55 
 
 908753 
 9289 
 9823 
 
 910358 
 0891 
 1424 
 1956 
 2483 
 3019 
 3640 
 
 0804 
 1349 
 1894 
 2438 
 2981 
 
 903524 
 4006 
 4607 
 6148 
 6688 
 6227 
 6766 
 7304 
 7841 
 8378 
 
 898122 
 8070 
 9218 
 9700 
 
 900312 
 0859 
 1404 
 1948 
 2492 
 3030 
 
 908807 
 9342 
 9877 
 
 97.0411 
 0944 
 1477 
 2009 
 2541 
 8072 
 8602 
 
 908860 
 9396 
 9930 
 
 910404 
 0998 
 1530 
 2063 
 2594 
 8125 
 8665 
 
 55 
 55 
 55 
 55 
 55 
 55 
 55 
 64 
 54 
 64 
 
 903578 
 4120 
 4601 
 620; 
 6742 
 6281 
 682(t 
 7358 
 
 78i;j 
 
 8431 
 
 908914 908967 
 94491 9503 
 9984 910037 
 
 910518 
 1051 
 1684 
 2116 
 2647 
 3178 
 3708 
 
 0571 
 1104 
 1637 
 2109 
 2700 
 3231 
 
 3701 63 
 
 54 
 54 
 54 
 54 
 64 
 54 
 54 
 64 
 54 
 54 
 
 54 
 64 
 63 
 63 
 63 
 6H 
 63 
 63 
 63 
 
-I ! 
 
 199 
 
 LOGARITHMIC TABLES. 
 
 PF 
 
 N. 
 
 ! 
 
 1 
 
 3 
 
 » 
 
 4 
 
 5 
 
 G 
 
 7 
 
 8 
 
 9 
 
 D. 
 
 
 8?0 
 
 D138H 
 
 913867 
 
 913920 
 
 913973 
 
 914020 
 
 914079 
 
 914132 
 
 914184 
 
 914237 
 
 914290 
 
 63 
 
 5 
 
 1 
 
 4343 
 
 4396 
 
 4449 
 
 4502 
 
 4555 
 
 4608 
 
 4660 
 
 4713 
 
 4766 
 
 4819 
 
 63 
 
 11 
 
 ? 
 
 4872 
 
 4925 
 
 4977 
 
 6030 
 
 6083 
 
 6136 
 
 5189 
 
 6241 
 
 6294 
 
 6347 
 
 63 
 
 If) 
 
 3 
 
 6400 
 
 6453 
 
 6505 
 
 6558 
 
 6011 
 
 6664 
 
 6716 
 
 6769 
 
 6822 
 
 5875 
 
 63 
 
 ?1 
 
 4 
 
 5027 
 
 6980 
 
 6033 
 
 6085 
 
 6138 
 
 6191 
 
 6243 
 
 6296 
 
 6349 
 
 6401 
 
 53 
 
 ?7 
 
 5 
 
 6454 
 
 6507 
 
 6559 
 
 6612 
 
 6664 
 
 6717 
 
 6770 
 
 6822 
 
 6875 
 
 6927 
 
 53 
 
 3'^ 
 
 fi 
 
 C9S0 
 
 7033 
 
 7085 
 
 7138 
 
 7190 
 
 7243 
 
 7295 
 
 7343 
 
 7400 
 
 7453 
 
 53 
 
 37 
 
 
 7506 
 
 7558 
 
 7611 
 
 7663 
 
 7716 
 
 7768 
 
 7820 
 
 7873 
 
 7925 
 
 7978 
 
 52 
 
 4?. 
 
 8 
 
 8030 
 
 8oa3 
 
 8135 
 
 8188 
 
 8240 
 
 8293 
 
 8345 
 
 6397 
 
 8450 
 
 8502 
 
 52 
 
 48 
 
 9 
 
 s-^o 
 
 8555 
 
 8607 
 919130 
 
 8659 
 
 6712 
 
 8764 
 
 8816 
 
 8809 
 
 8921 
 
 6973 
 
 9026 
 919549 
 
 52 
 52 
 
 919078 
 
 919183 
 
 919235 
 
 919287 
 
 919340 
 
 919392 
 
 919444 
 
 919496 
 
 5 
 
 1 
 
 OGOll 
 
 9653 
 
 9706 
 
 9758 
 
 9810 
 
 9862 
 
 99141 
 
 9967 
 
 920019 
 
 920071 
 
 62 
 
 10 
 
 ?. 
 
 920123 
 
 920176 
 
 920228 
 
 920280 
 
 920332 
 
 920334 
 
 920430 
 
 920489 
 
 0541 
 
 0593 
 
 52 
 
 l(i 
 
 3 
 
 0045 
 
 0697 
 
 0749 
 
 0801 
 
 0853 
 
 0906 
 
 0953 
 
 1010 
 
 1062 
 
 1114 
 
 62 
 
 ?.\ 
 
 4 
 
 110(5 
 
 1218 
 
 1270 
 
 1322 
 
 1374 
 
 1426 
 
 1478 
 
 1530 
 
 1582 
 
 1634 
 
 62 
 
 ?(■) 
 
 5 
 
 1086 
 
 1738 
 
 1790 
 
 1842 
 
 1894 
 
 1946 
 
 1998 
 
 2050 
 
 2102 
 
 2154 
 
 62 
 
 31 
 
 (\ 
 
 2206 
 
 2258 
 
 2310 
 
 2302 
 
 2414 
 
 2466 
 
 2518 
 
 2570 
 
 2022 
 
 2674 
 
 52 
 
 31) 
 
 7 
 
 2725 
 
 2777 
 
 2829 
 
 2asi 
 
 2933 
 
 2985 
 
 3037 
 
 3089 
 
 3140 
 
 3192 
 
 52 
 
 41 
 
 8 
 
 3244 
 
 3296 
 
 3348 
 
 3399 
 
 3451 
 
 3503 
 
 3555 
 
 3607 
 
 3058 
 
 3710 
 
 52 
 
 47 
 
 
 840 
 
 3702 
 
 3814 
 
 3865 
 
 3917 
 
 3909 
 
 4021 
 924538 
 
 4072 
 
 4124 
 
 4176 
 
 4228 
 
 52 
 
 52 
 
 924279 
 
 924331 
 
 9243&3 
 
 924434 
 
 924486 
 
 924589 
 
 924641 
 
 924693 
 
 924744 
 
 5 
 
 1 
 
 4790 
 
 4848 
 
 4899 
 
 4951 
 
 6003 
 
 5054 
 
 5106 
 
 5157 
 
 5209 
 
 6201 
 
 52 
 
 10 
 
 ? 
 
 5312 
 
 6364 
 
 6415 
 
 5407 
 
 5518 
 
 6570 
 
 6621 
 
 6673 
 
 5725 
 
 6770 
 
 52 
 
 ir. 
 
 3 
 
 5828 
 
 6879 
 
 6931 
 
 6982 
 
 6034 
 
 6085 
 
 6137 
 
 6188 
 
 6240 
 
 6291 
 
 51 
 
 ?0 
 
 4 
 
 0342 
 
 6394 
 
 6445 
 
 6497 
 
 6543 
 
 6000 
 
 6651 
 
 6702 
 
 6754 
 
 6805 
 
 61 
 
 ?(1 
 
 5 
 
 0S57 
 
 6903 
 
 6959 
 
 7011 
 
 7002 
 
 7114 
 
 7106 
 
 7216 
 
 7268 
 
 7319 
 
 61 
 
 31 
 
 f) 
 
 7370 
 
 7422 
 
 7473 
 
 7524 
 
 7576 
 
 7627 
 
 7078 
 
 ,7730 
 
 7781 
 
 7832 
 
 51 
 
 3(i 
 
 7 
 
 7883 
 
 79;j5 
 
 7986 
 
 6037 
 
 8083 
 
 8140 
 
 8191 
 
 8242 
 
 8293 
 
 8345 
 
 51 
 
 41 
 
 8 
 
 8396 
 
 8447 
 
 8493 
 
 8549 
 
 8601 
 
 8052 
 
 8703 
 
 8754 
 
 &S05 
 
 &S57 
 
 61 
 
 4G 
 
 9 
 
 S;')0 
 
 8903 
 
 8959 
 929470 
 
 9010 
 
 9001 
 929572 
 
 9112 
 
 9103 
 
 9215 
 929725 
 
 9206 
 
 9317 
 090827 
 
 9308 
 929879 
 
 51 
 51 
 
 929419 
 
 929521 
 
 929623 
 
 929074 
 
 923770 
 
 r. 
 
 1 
 
 9930 
 
 9981 
 
 930032 
 
 930083 
 
 930134 
 
 930185 
 
 930230 
 
 9302S7 
 
 930338 
 
 930389 
 
 61 
 
 10 
 
 ? 
 
 930440 
 
 930491 
 
 0542 
 
 0592 
 
 0643 
 
 0094 
 
 0745 
 
 0796 
 
 0847 
 
 0808 
 
 51 
 
 IT) 
 
 3 
 
 0919 
 
 1000 
 
 1051 
 
 1102 
 
 1153 
 
 1204 
 
 1254 
 
 1305 
 
 1356 
 
 1407 
 
 51 
 
 ?0 
 
 4 
 
 1458 
 
 1509 
 
 1560 
 
 1010 
 
 1001 
 
 1712 
 
 1763 
 
 1814 
 
 1805 
 
 1915 
 
 61 
 
 2(i 
 
 5 
 
 1906 
 
 2017 
 
 2003 
 
 2118 
 
 2109 
 
 2220 
 
 2271 
 
 2322 
 
 2372 
 
 2423 
 
 61 
 
 31 
 
 f) 
 
 2474 
 
 2524 
 
 2575 
 
 2026 
 
 2077 
 
 2727 
 
 2778 
 
 2829 
 
 2879 
 
 2030 
 
 61 
 
 3ti 
 
 7 
 
 298 1 
 
 3031 
 
 3082 
 
 3133 
 
 3183 
 
 3234 
 
 32.35 
 
 3335 
 
 33S6 
 
 3437 
 
 61 
 
 41 
 
 8 
 
 3487 
 
 3533 
 
 3589 
 
 3639 
 
 3090 
 
 3740 
 
 3791 
 
 3841 
 
 3802 
 
 3943 
 
 51 
 
 4(5 
 
 9 
 
 S(iO 
 
 3993 
 
 4044 
 
 4094 
 
 4145 
 
 4195 
 
 4246 
 
 4296 
 
 4347 
 
 4397 
 
 4448 
 
 51 
 
 50 
 
 934498 
 
 934549 
 
 934599 
 
 934650 
 
 934700 
 
 934751 
 
 934801 
 
 934S52 
 
 931902 
 
 934953 
 
 r. 
 
 1 
 
 5003 
 
 6054 
 
 5104 
 
 6154 
 
 5205 
 
 5255 
 
 6306 
 
 5350 
 
 5406 
 
 6457 
 
 60 
 
 10 
 
 ?, 
 
 5507 
 
 5558 
 
 5608 
 
 6053 
 
 6709 
 
 6759 
 
 5809 
 
 6800 
 
 5910 
 
 5900 
 
 60 
 
 IT) 
 
 3 
 
 con 
 
 6001 
 
 6111 
 
 6162 
 
 6212 
 
 6262 
 
 6313 
 
 6363 
 
 6413 
 
 6403 
 
 60 
 
 ?0 
 
 4 
 
 0514 
 
 6504 
 
 6614 
 
 6605 
 
 6715 
 
 6705 
 
 6815 
 
 6805 
 
 6916 
 
 6000 
 
 50 
 
 •A") 
 
 5 
 
 7016 
 
 7006 
 
 7117 
 
 7107 
 
 7217 
 
 7207 
 
 7317 
 
 7307 
 
 7418 
 
 7468 
 
 50 
 
 30 
 
 (') 
 
 7518 
 
 7508 
 
 7018 
 
 7003 
 
 7718 
 
 7769 
 
 7819 
 
 7809 
 
 7919 
 
 79G0 
 
 50 
 
 35 
 
 7 
 
 8019 
 
 8069 
 
 8119 
 
 8109 
 
 8219 
 
 8269 
 
 8320 
 
 6370 
 
 8120 
 
 8470 
 
 50 
 
 40 
 
 8 
 
 8520 
 
 857« 
 
 6020 
 
 8670 
 
 8720 
 
 6770 
 
 8820 
 
 8870 
 
 8920 
 
 8970 
 
 50 
 
 45 
 
 1) 
 
 87!' 
 
 9O20 
 
 9070 
 
 9120 
 
 9170 
 
 9220 
 
 9270 
 
 9320 
 
 9369 
 
 9419 
 939918 
 
 9409 
 
 50 
 60 
 
 ;;,';9519 93956'J 
 
 939619 
 
 939669 
 
 939719 
 
 939709 
 
 939819 
 
 939869 
 
 939968 
 
 n 
 
 1 
 
 940018:94000); 
 
 940118 
 
 940168 
 
 940218 
 
 940267 
 
 940317 
 
 940367 
 
 940417 
 
 940407 
 
 50 
 
 10 
 
 2 
 
 051fc 
 
 0566 
 
 0616 
 
 0666 
 
 0716 
 
 0765 
 
 0815 
 
 0865 
 
 0915 
 
 0904 
 
 50 
 
 15 
 
 3 
 
 1014 
 
 1061 
 
 1114 
 
 1163 
 
 121J 
 
 128.^ 
 
 1313 
 
 1362 
 
 1412 
 
 1402 
 
 50 
 
 20 
 
 4 
 
 1511 
 
 15C1 
 
 1611 
 
 1600 
 
 17U 
 
 170( 
 
 1809 
 
 1859 
 
 1009 
 
 1958 
 
 60 
 
 ?5 
 
 5 
 
 200t 
 
 205f 
 
 2107 
 
 2157 
 
 2207 
 
 2256 
 
 2306 
 
 2355 
 
 2405 
 
 2455 
 
 60 
 
 30 
 
 «■) 
 
 2501 
 
 255.J 
 
 2003 
 
 2053 
 
 2702 
 
 2752 
 
 2801 
 
 2851 
 
 2901 
 
 2951 
 
 60 
 
 85 
 
 7 
 
 3001 
 
 » 804' 
 
 » S09fl 
 
 314» 
 
 3198 
 
 3247 
 
 3297 
 
 3310 
 
 3306 
 
 3445 
 
 49 
 
 40 
 
 « 
 
 349; 
 
 1 354^ 
 
 1 359; 
 
 364< 
 
 3692 
 
 3742 
 
 3792 
 
 3841 
 
 3890 
 
 3930 
 
 49 
 
 45 
 
 ° 
 
 3981 
 
 ) 4i)-ii 
 
 ) 408^ 
 
 4137 
 
 4186 :3fi 
 
 428S 
 
 433.1 
 
 4381 
 
 , 443;i 
 
 49 
 
LOGARITHMIC TABLES. 
 
 123 
 
 PP 
 
 N. 
 
 O 
 
 6 
 
 
 8 
 
 9 D. 
 
 5 
 
 10 
 15 
 20 
 25 
 29 
 3i 
 39 
 44 
 
 5 
 10 
 15 
 20 
 24 
 29 
 34 
 39 
 44 
 
 5 
 10 
 14 
 19 
 24 
 29 
 34 
 33 
 43 
 
 5 
 9 
 14 
 19 
 24 
 28 
 33 
 38 
 42 
 
 S80 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 944483 9445;i2 
 
 4976 1 6025 
 
 5409: 6518 
 
 6961' 6010 
 
 6452 6501 
 
 6943 6992 
 
 7434 7483 
 
 7924 7973 
 
 8413, 8462 
 
 8902 8951 
 
 SOO 
 1 
 
 944581 
 
 6074 
 6567 
 6059 
 6551 
 7041 
 7532 
 8022 
 8511 
 8999 
 
 949300 
 9878 
 
 95<«a5 
 0851 
 1333 
 1823' 
 2303: 
 2792'; 
 3276; 
 3760 
 
 944631 
 6124 
 6616 
 
 6108 
 6600 
 7090 
 7581 
 8070 
 85C0 
 9048 
 
 900 
 1 
 
 949439 
 
 992C1 
 950414: 
 09001 
 133G 
 1872 
 2356 
 2841 
 3325 
 3808 
 
 944680 
 6173 
 6665 
 6157 
 6649 
 7140 
 7030 
 8119 
 8609 
 9097 
 
 949488 949536 
 99V5 950024 
 
 950162 
 0:M9 
 1)36 
 1920 
 2405 
 2889 
 a373 
 3656 
 
 954243 954201 
 
 4725 
 5207 
 5088' 
 6108 
 6649 
 7123 
 7607 
 8080 
 8504 
 
 0511 
 0997 
 1483 
 1909 
 2453 
 2938 
 3421 
 905 
 
 949585 
 950073: 
 05601 
 1046 
 1532 
 2017 
 2502 
 2986 
 3470 
 3953 
 
 910 
 1 
 2 
 3 
 4 
 6 
 6 
 7 
 8 
 9 
 
 5 
 9 
 14 
 19 
 23 
 28 
 33 
 33 
 42 
 
 4773 
 5255 
 5736 
 6216 
 6697 
 7176 
 7655 
 i^l34 
 6012 
 
 954330 
 4821 
 6303 
 6784 
 6265 
 6745 
 7224 
 7703 
 8181 
 8659 
 
 944729 
 5222 
 6715 
 
 6207 
 6698 
 7189 
 7679 
 8168 
 8657 
 9146 
 
 940634 
 950121 
 i 0603 
 1095 
 1580 
 2066 
 2550 
 3034 
 3513 
 4001 
 
 944828 
 6321 
 6813 
 6305 
 6796 
 7287 
 7777 
 8266 
 8755 
 9244 
 
 944779 
 6272 
 6764 
 6256 
 6747 
 7238 
 7728 
 8217 
 8706 
 9195 
 
 9496.83 949731 949780 
 950170 950219 950267 
 
 944877 
 6370 
 6862 
 6354 
 6845 
 7336 
 7826 
 8315 
 8804 
 9292 
 
 954387 
 4869 
 5351 
 6832 
 6313 
 6793 
 7272 
 7751 
 8229 
 8707 
 
 954435 
 
 4018 
 6399 
 6880 
 03151 
 6810 
 7320 
 7799 
 8277 
 8755 
 
 H50041 959089 
 9518! 9506 
 9995 960042 
 
 0604711 0518 
 0946 0994 
 1421 1469 
 18951 1943 
 2360' 2417 
 28431 2890 
 3316, 3363 
 
 920 
 1 
 2 
 3 
 4 
 6 
 6 
 7 
 8 
 9 
 
 963788 963835 
 42G0' 4307 
 4731 i 4778 
 5202 6249 
 56721 6719 
 
 6 
 9 
 
 14 
 18 
 23 
 28 
 32 
 37 
 41 
 
 6142 
 6611 
 7080 
 7543 
 8016 
 
 930 968483 
 
 6189 
 6653 
 7127 
 7505 
 8062 
 
 959137 
 9614 
 
 960090 
 05G6 
 1041 
 1516 
 1990 
 2464 
 2937 
 3410 
 
 963882 
 4354 
 4825 
 6206 
 5766 
 6236 
 6705 
 7173 
 7642 
 8109 
 
 954484 
 4960 
 6447 
 
 6923 
 6400 
 6888 
 7363 
 7347 
 8325 
 8803 
 
 0657 
 1143 
 1629 
 2114 
 2599 
 3033 
 3566 
 4049 
 
 954532 
 6014 
 6495 
 5976 
 6457 
 6036 
 7416 
 7804 
 8373 
 8650 
 
 0706 
 1192 
 1677 
 2163 
 2647 
 3131 
 3615 
 4098 
 
 954580 
 
 1 6062 
 6543 
 6024 
 6505 
 6084 
 7464 
 7942 
 8421 
 8898 
 
 9 •"'27 
 jil9 
 6912 
 6403 
 6894 
 7385 
 7875 
 8364 
 8853 
 9341 
 
 0754 
 1240 
 1726 
 2211 
 
 2096 
 3130 
 3663 
 4146 
 
 49 
 49 
 49 
 49 
 49 
 49 
 49 
 49 
 49 
 49 
 
 949829 
 950316 
 0803 
 1289 
 1775 
 2260 
 2744 
 3228 
 3711 
 4194 
 
 959185 
 9061 
 
 960138 
 0613 
 1089 
 1563 
 2038 
 2511 
 2985 
 »157 
 
 95923 
 97091 
 
 960ia5 
 0661 
 1136 
 1611 
 2085 
 2559 
 3032 
 3504 
 
 954628 
 6110 
 6592 
 6072 
 6553 
 7032 
 7512 
 7990 
 8468 
 8946 
 
 49 
 49 
 49 
 49 
 49 
 43 
 43 
 43 
 43 
 48 
 
 954677 
 6158 
 
 6640 
 6120 
 6601 
 7080 
 7559 
 8038 
 8510 
 8994 
 
 9592801950328 
 97571 9804 
 960233 960281 
 
 96r,029 
 4401 
 4872 
 6343 
 6813 
 6283 
 6752 
 7220 
 7688 
 8156 
 
 963077 
 4443 
 4919 
 5390 
 6860 
 6329 
 6799 
 7267 
 7735 
 8203 
 
 0709 
 1184 
 1658 
 2132 
 2600 
 3070 
 3552 
 
 964024 
 4495 
 4966 
 5437 
 6907 
 6376 
 6345 
 7314 
 7782 
 8249 
 
 0756 
 1231 
 
 1706 
 2180 
 2053 
 3126 
 3599 
 
 959375 
 9852 
 
 960328 
 0804 
 1279 
 1753 
 2227 
 2701 
 3174 
 3646 
 
 959423 
 
 90001 
 960376 
 0351 
 1326 
 1801 
 2275 
 2748 
 3221 
 3603 
 
 43 
 48 
 48 
 43 
 48 
 43 
 43 
 48 
 43 
 43 
 
 964071 
 4542 
 6013 
 6484 
 6954 
 6423 
 6302 
 7361 
 7820 
 8296 
 
 959471 
 9947 
 
 960423 
 0899 
 1374 
 1848 
 2322 
 2795 
 3268 
 3741 
 
 48 
 4S 
 43 
 43 
 47 
 47 
 47 
 47 
 47 
 47 
 
 964118 
 450O 
 6061 
 6531 
 6001 
 &170 
 6939 
 7403 
 7875 
 8343 
 
 964165 9 
 4037 
 6103 
 5578 
 6048 
 6517 
 0936 
 7454 
 7022 
 8390 
 
 8950 
 9416 
 9882 
 970347 
 0812 
 1276 
 1740 
 2203 
 2666 
 
 968530 
 8996 
 9463 
 9923 
 
 970303 
 0853 
 1322 
 1786 
 2249 
 2712 
 
 96R576 
 9043 
 9509 
 9975 
 
 970440 
 0904 
 1369 
 1832 
 2295 
 2758 
 
 968623 
 9090 
 9556 
 
 970021 
 0486 
 0951 
 1415 
 1879 
 2342 
 2804 
 
 968670 
 9136 
 9602 
 
 970068 
 0533 
 0997 
 1461 
 1925 
 2383 
 2851 
 
 968716 
 9183 
 9649 
 
 970114 
 0579 
 1044 
 1508 
 1971 
 2434 
 2897 
 
 968763 
 9229 
 9695 
 
 970161 
 0626 
 1090 
 1554 
 2018 
 2481 
 2943 
 
 963810 
 92761 
 9742 
 
 970207 
 0672 
 1137 
 1601 
 2064 
 2527 
 2989 
 
 4CS4 
 6155 
 6625 
 6095 
 6564 
 7033 
 7501 
 7000 
 8436 
 
 968856 
 
 1 9323 
 
 I 9789 
 
 970254 
 
 0719 
 
 1183 
 
 1647 
 
 2110 
 
 2573 
 
 3035 
 
 968903 
 9369 
 9835 
 
 970300 
 0765 
 1229 
 1()03 
 2157 
 
 47 
 47 
 47 
 47 
 47 
 47 
 47 
 47 
 47 
 47 
 
 47 
 47 
 47 
 47 
 46 
 46 
 46 
 46 
 
 2610 46 
 3082 46 
 
124 
 
 OGAKITHMIC TABLES. 
 
 pp 
 
 N. 
 
 
 
 I 
 
 3 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 0. 
 
 46 
 
 
 «40 
 
 973128 
 
 973174 
 
 973220 
 
 973266 
 
 973313 
 
 973359 
 
 973405 1973451 
 
 973497 
 
 9^r3543 
 
 A 
 
 1 
 
 3590 
 
 S636 
 
 3682 
 
 j72S 
 
 3774 
 
 3820 
 
 3866 
 
 3913 
 
 3959 
 
 4005 
 
 M 
 
 9 
 
 2 
 
 4051 
 
 4097 
 
 4143 
 
 4189 
 
 4236 
 
 4231 
 
 4327 
 
 4374 
 
 4420 
 
 4466 
 
 46 
 
 14 
 
 3 
 
 4512 
 
 4558 
 
 4604 
 
 4650 
 
 4696 
 
 4742 
 
 4788 
 
 4834 
 
 4880 
 
 4926 
 
 46 
 
 18 
 
 4 
 
 4972 
 
 6018 
 
 6064 
 
 6110 
 
 5166 
 
 6202 
 
 6248 
 
 6294 
 
 6340 
 
 6386 
 
 46 
 
 23 
 
 fi 
 
 6132 
 
 6478 
 
 6624 
 
 5670 
 
 5616 
 
 6002 
 
 6707 
 
 6753 
 
 5799 
 
 6845 
 
 46 
 
 28 
 
 6 
 
 6891 
 
 6937 
 
 6983 
 
 6029 
 
 6075 
 
 6121 
 
 6107 
 
 6212 
 
 6258 
 
 6304 
 
 46 
 
 32 
 
 7 
 
 6350 
 
 6396 
 
 6442 
 
 6488 
 
 6533 
 
 6579 
 
 6625 
 
 6671 
 
 6717 
 
 6763 
 
 46 
 
 37 
 
 8 
 
 C808 
 
 6854 
 
 6902 
 
 6946 
 
 6992 
 
 7037 
 
 7083 
 
 7129 
 
 7175 
 
 7220 
 
 46 
 
 41 
 
 9 
 
 7266 
 
 7312 
 
 7356 
 
 7403 
 
 7449 
 977906 
 
 7495 
 
 7541 
 
 7586 
 
 7632 
 
 97S0S9 
 
 7678 
 
 46 
 46 
 
 
 950 
 
 077724 
 
 977769 
 
 977815 
 
 977861 
 
 977952 
 
 97799S 978043 
 
 978135 
 
 .1 
 
 1 
 
 8181 
 
 8226 
 
 8272 
 
 8317 
 
 8363 
 
 8409 
 
 8454 
 
 &W0 
 
 8546 
 
 8591 
 
 4/) 
 
 9 
 
 2 
 
 S037 
 
 8683 
 
 8728 
 
 8774 
 
 8819 
 
 8865 
 
 8911 
 
 8956 
 
 9002 
 
 9047 
 
 ^6 
 
 14 
 
 3 
 
 9093 
 
 9138 
 
 9184 
 
 9230 
 
 9275 
 
 9321 
 
 9366 
 
 9412 
 
 9457 
 
 9503 
 
 46 
 
 18 
 
 4 
 
 9548 
 
 9594 
 
 9639 
 
 9685 
 
 9730 
 
 9/76 
 
 9821 
 
 9807 
 
 9912 
 
 9958 
 
 46 
 
 23 
 
 f, 
 
 98001)3 
 
 980049 
 
 980094 
 
 980140 
 
 980185 
 
 9S..'231 
 
 980276 
 
 980322 
 
 980367 
 
 980412 
 
 45 
 
 27 
 
 6 
 
 0458 
 
 05(t3 
 
 0549 
 
 0594 
 
 0640 
 
 0685 
 
 073" 
 
 «776 
 
 0821 
 
 0867 
 
 45 
 
 32 
 
 7 
 
 0912 
 
 0957 
 
 1003 
 
 1048 
 
 1093 
 
 1139 
 
 1184 
 
 1229 
 
 1275 
 
 1320 
 
 45 
 
 36 
 
 8 
 
 1366 
 
 1411 
 
 1456 
 
 1501 
 
 1547 
 
 1592 
 
 1637 
 
 i6a3 
 
 1728 
 
 1773 
 
 45 
 
 41 
 
 
 
 9m 
 
 1819 
 
 1864 
 982310 
 
 1909 
 
 1954 
 
 2000 
 
 982452 
 
 2045 
 9S2497 
 
 2090 
 
 2135 
 
 2181 
 
 2226 
 
 45 
 
 982271 
 
 9823G2 
 
 982407 
 
 982543 
 
 9S2588 
 
 9S26a3 
 
 982678 
 
 45 
 
 S 
 
 1 
 
 2723 
 
 2769 
 
 2814 
 
 2859 
 
 2904 
 
 2949 
 
 2994 
 
 3040 
 
 30S5 
 
 3130 
 
 45 
 
 {> 
 
 2 
 
 8175 
 
 8220 
 
 3265 
 
 3310 
 
 3350 
 
 3401 
 
 3446 
 
 3491 
 
 3;J36 
 
 35S1 
 
 45 
 
 14 
 
 3 
 
 3626 
 
 3071 
 
 3716 
 
 3762 
 
 3807 
 
 3852 
 
 3897 
 
 3942 
 
 39S7 
 
 4032 
 
 45 
 
 18 
 
 4 
 
 4077 
 
 4122 
 
 4167 
 
 4212 
 
 4257 
 
 4302 
 
 4347 
 
 4392 
 
 4437 
 
 4432 
 
 45 
 
 23 
 
 fi 
 
 4527 
 
 4572 
 
 4617 
 
 4662 
 
 4707 
 
 4752 
 
 4797 
 
 4842 
 
 4887 
 
 4932 
 
 45 
 
 27 
 
 f) 
 
 4977 
 
 6022 
 
 6067 
 
 5112 
 
 6157 
 
 6202 
 
 6247 
 
 5292 
 
 6337 
 
 6382 
 
 45 
 
 33 
 
 7 
 
 5126 
 
 6471 
 
 6516 
 
 6561 
 
 5606 
 
 6651 
 
 6696 
 
 5741 
 
 6786 
 
 6830 
 
 45 
 
 30 
 
 8 
 
 5875 
 
 6920 
 
 6965 
 
 6010 
 
 6055 
 
 6100 
 
 6144 
 
 6189 
 
 6234 
 
 6279 
 
 45 
 
 41 
 
 9 
 
 6324 
 
 6309 
 
 6413 
 
 C453 
 
 0503 
 
 0548 
 
 6593 
 
 6037 
 
 6632 
 
 6727 
 
 45 
 
 
 9Ti1 
 
 9S0772 
 
 980S17 
 
 986801 
 
 986906 
 
 986951 
 
 98099C 
 
 987040 
 
 987085 987130 
 
 987175 
 
 45 
 
 ^ 
 
 1 
 
 7219 
 
 7204 
 
 7309 
 
 7353 
 
 7398 
 
 7443 
 
 7488 
 
 7532! 7577 
 
 7622 
 
 45 
 
 9 
 
 2 
 
 7006 
 
 7711 
 
 7756 
 
 7800 
 
 7845 
 
 7890 
 
 7934 
 
 7979 8024 
 
 8068 
 
 45 
 
 14 
 
 3 
 
 8113 
 
 8157 
 
 8202 
 
 8247 
 
 8291 
 
 8330 
 
 8381 
 
 8425 8470 
 
 8514 
 
 45 
 
 i 18 
 
 4 
 
 8559 
 
 8604 
 
 8648 
 
 8693 
 
 8737 
 
 8782 
 
 8S26 
 
 8871 8916 
 
 8960 
 
 45 
 
 23 
 
 f) 
 
 9005 
 
 9049 
 
 9094 
 
 9138 
 
 9183 
 
 9227 
 
 9272 
 
 9310 9361 
 
 9405 
 
 45 
 
 V 
 
 f) 
 
 9150 
 
 9494 
 
 9539 
 
 9583 
 
 9623 
 
 9672 
 
 9717 
 
 9761 9806 
 
 9850 
 
 44 
 
 32 
 
 7 
 
 9S95 
 
 9930 
 
 90a3 990028 
 
 990072 
 
 990117 
 
 990101 
 
 990200 
 
 990250 
 
 990294 
 
 44 
 
 3(> 
 
 8 
 
 090:539 
 
 9903S3 
 
 990123 
 
 0172 
 
 0516 
 
 0561 
 
 0005 
 
 0650 
 
 0694 
 
 0738 
 
 44 
 
 41 
 
 9 
 
 ISO 
 
 0783 
 
 0827 
 
 0871 
 
 0916 
 
 0960 
 
 1004 
 991448 
 
 1049 
 
 1093 
 
 1137 
 
 1182 
 
 44 
 
 091226 
 
 991270 
 
 991315 
 
 991350 
 
 991403 
 
 991 492 '99:530 
 
 991580 
 
 991025 
 
 44 
 
 4 
 
 1 
 
 1609 
 
 1713 
 
 1753 
 
 1802 
 
 1846 
 
 1890 
 
 19.35 
 
 1979 
 
 2023 
 
 2007 
 
 44 
 
 n 
 
 2 
 
 2111 
 
 2156 
 
 2200 
 
 2244 
 
 2288 
 
 2333 
 
 2377 
 
 2421 
 
 2465 
 
 2509 
 
 44 
 
 13 
 
 3 
 
 2554 
 
 2508 
 
 2012 
 
 2686 
 
 2730 
 
 2774 
 
 2819 
 
 2863 
 
 2907 
 
 2t)51 
 
 44 
 
 18 
 
 4 
 
 2995 
 
 3039 
 
 3083 
 
 S127 
 
 3172 
 
 3216 
 
 32C0 
 
 3304 
 
 3348 
 
 3392 
 
 441 
 
 V. 
 
 f, 
 
 3J36 
 
 34S0 
 
 3524 
 
 35G3 
 
 3613 
 
 3657 
 
 3701 
 
 3745 
 
 3789 
 
 3833 
 
 44 
 
 m 
 
 f, 
 
 3S77 
 
 3921 
 
 3905 
 
 4009 
 
 4053 
 
 4097 
 
 4141 
 
 4185 
 
 4229 
 
 4273 
 
 44 
 
 31 
 
 7 
 
 4317 
 
 4301 
 
 4405 
 
 4149 
 
 4193 
 
 4537 
 
 4581 
 
 4625 
 
 4669 
 
 4713 
 
 44 
 
 3"> 
 
 s 
 
 4757 
 
 480 1 
 
 4845 
 
 4SS9 
 
 49a3 
 
 4977 
 
 6021 
 
 6065 
 
 5103 
 
 6152 
 
 44 
 
 4U 
 
 9 
 
 oil) 
 
 5196 
 
 6240 
 
 6284 
 
 6323 
 
 5372 
 
 6416 
 
 6460 
 
 6504 
 
 6647 
 
 6591 
 
 44 
 44 
 
 095635 
 
 995G79 
 
 995723 
 
 995707 
 
 995S11 
 
 995.S54! 995898 
 
 995942 
 
 995986 
 
 996030 
 
 4 
 
 1 
 
 6074 
 
 0117 
 
 6101 
 
 6205 
 
 6249 
 
 6293 
 
 63;J7 
 
 6;J80 
 
 6424 
 
 6468 
 
 44 
 
 9 
 
 2 
 
 6512 
 
 0555 
 
 6599 
 
 6643 
 
 6687 
 
 6731 
 
 6774 
 
 6318 
 
 6862 
 
 6906 
 
 44 
 
 13 
 
 3 
 
 6949 
 
 6993 
 
 7037 
 
 7080 
 
 7124 
 
 7168 
 
 7212 
 
 7255 
 
 7299 
 
 7343 
 
 44 
 
 18 
 
 4 
 
 7336 
 
 7430 
 
 7474 
 
 7517 
 
 7561 
 
 7605 
 
 7ftt8 
 
 7692 
 
 7736 
 
 7779 
 
 44 
 
 22 
 
 f, 
 
 7823 
 
 7807 
 
 7910 
 
 7954 
 
 7998 
 
 8041 
 
 8085 
 
 8129 
 
 8172 
 
 8216 
 
 44 
 
 ?fi 
 
 fi 
 
 8259 
 
 &3(13 
 
 8347 
 
 8390 
 
 8434 
 
 8477 
 
 8521 
 
 8564 
 
 8608 
 
 8652 
 
 44 
 
 81 
 
 7 
 
 8695 
 
 8739 
 
 8782 
 
 8826 
 
 8869 
 
 8913 
 
 8966 
 
 9000 
 
 9043 
 
 9087 
 
 44 
 
 35 
 
 R 
 
 9131 
 
 9174 
 
 9218 
 
 9261 
 
 9305 
 
 9348 
 
 9392 
 
 9435 
 
 9479 
 
 9622 
 
 44 
 
 40 
 
 9 
 
 9565 
 
 9609 
 
 9662 
 
 9696 
 
 9739 
 
 9783 
 
 9826 
 
 9870 
 
 9913 
 
 8967 
 
 43 
 
ANSWERS. 
 
 125 
 
 ANSWERS. 
 
 I. Page 2. 
 
 1. 
 
 5. 
 
 1176. 
 1440. 
 
 
 2. 
 6. 
 
 45045. 
 420. 
 
 3. 1140. 
 7. 68640. 
 
 
 4. 1680. 
 8. 58080. 
 
 9. 
 13. 
 
 17. 
 
 33, 198. 
 120, 5040. 
 15, 900. 
 
 10. 
 14. 
 18. 
 
 28, 280. 
 37, 518. 
 13, 260. 
 
 11. 17,204. 
 15. 41, 1435. 
 19. 12, 1080. 
 
 12. 9, 405. 
 16. 46, 2070. 
 20. 19, 114. 
 
 21. 
 25. 
 
 2016. 
 51. 
 
 
 22 
 
 26 
 
 . 2347. 
 . 11. 
 
 23. 147. 
 27. 9. 
 
 
 24. 213. 
 28. 3. 
 
 29. 
 35. 
 
 41. 
 47. 
 
 1 
 
 IC 
 1 09 
 
 ■y -1 • 
 
 1 5 
 1 "• 
 
 30. 
 36. 
 
 42. 
 48. 
 
 if. 
 
 1 •>• 
 1 5 9. 
 
 r 8 a • 
 
 31. tV 
 37. h^. 
 43. i?. 
 49. }U. 
 
 32. n. 
 
 38. 'JO' 
 44. U. 
 50. h 
 
 33. 
 39. 
 
 45. 
 51. 
 
 I 34. i. 
 lU. 40. l 
 n. 46. tJ. 
 n/V 52. Uh 
 
 53 
 59 
 65 
 
 
 54. 
 60. 
 66. 
 
 h 
 
 55. l 
 
 61. M. 
 67. MV. 
 
 56. 1?>. 
 62. ,Vi- 
 68. in- 
 
 57. 
 63. 
 69. 
 
 ni 58. A- 
 
 ^j^i!!. 64. N^ 
 
 i\^. 70. m 
 
 III. Pages 4, 5. 
 
 • »;! 
 
 !i I 5 • 
 
 180/.iV- 
 
 02 9 
 2S' 
 
 1. 
 
 6. 
 
 11. 
 16. 
 21. 
 26. 
 31. 
 36. 
 41. 
 
 46. 
 
 51. 
 
 56. 
 
 61. 
 
 66. 
 
 71. 
 
 76. 
 
 <-» -t 
 
 o i. . 
 
 86. h 
 91. *. 
 
 1 
 
 B- 
 liTff' 
 
 2i. 
 
 33§. 
 
 I 
 
 ,'ihV 
 
 A- 
 
 2. 
 
 7. 
 12. 
 17. 
 22. 
 27. 
 
 37. 
 
 42. 
 
 47. 
 
 52. 
 
 57. 
 
 62. 
 
 67. 
 
 72. 
 
 77. 
 
 82. 
 
 87. 
 
 92. 
 
 1 '^^ 
 4.1 19 
 
 129 
 
 1 ;»7 
 
 * 9 • 
 
 7i -Vt)' 
 
 9 il 5 
 
 1 o;i7 !• 
 Its- 
 
 1 1 
 laJi* 
 
 1 2 5 2 • 
 
 10. 
 
 a (> • 
 1 ;13 
 
 r2 0- 
 5tV 
 20. 
 6^. 
 
 7 
 ;( 2 • 
 
 18, 
 
 3. 
 
 8. 
 13. 
 18. 
 23. 
 28. 
 33. 
 38. 
 43. 
 48. 
 53. 
 58. 
 
 63. 
 
 68. 
 
 73. 
 
 7 8. 
 
 83. 
 
 88. 
 
 93. 
 
 28Af's. 
 
 2S.4 
 ^15' 
 
 ■^liO* 
 
 2 :> 
 
 t i O • 
 
 1200. 
 
 Hh 
 16i. 
 26i. 
 
 4^i. 
 
 Of,. 
 
 1 
 
 1 1 f 
 
 U- 
 
 n- 
 
 \ 2 
 
 Co- 
 
 1.0 71! 
 
 1 »XL> 
 
 T2tT0' 
 
 20Ai 
 46.A- 
 
 4. 
 
 9. 
 14. 
 19. 
 24. 
 29. 
 34. 
 39. 
 44. 
 
 49. 
 
 54. 
 
 59. 
 
 64. 
 
 69. 
 
 74. 
 
 79. 
 
 84. 
 
 89. 
 
 SOi?^ 
 
 2 H 5 • 
 
 Ol 9 
 
 •> I 1 y . 
 
 5 
 »' 
 
 t .1 r, 'J . 
 
 14. 
 
 2654 1'rt. 
 1|- 
 
 a ••.9 
 
 1 5 
 lO" 
 
 1 
 48' 
 
 13 
 
 IH- 
 
 5. 
 10. 
 16. 
 20. 
 25. 
 30. 
 35. 
 40. 
 
 45. 
 
 50. 
 
 55. 
 
 60. 
 
 65. 
 
 70. 
 
 75. 
 
 80 
 
 85. 
 
 90. 
 
 ^90* 
 
 1187,. 
 
 1 7:> 
 
 2 1 
 
 S O" 
 
 'J 1 9 • 
 •J 2 
 
 
 4H. 
 
 7 '• U 
 ij o' 
 
 193^. 
 
 5 
 V 0' 
 2 9 
 
 srs' 
 
 oi r. 
 
 14/f. 
 
 Q I ') 
 
.26 
 
 
 
 
 ANSWERS. 
 IV. Pauk 6. 
 
 
 
 1. 
 
 3f^. 
 
 2. 
 
 m- 
 
 3. 14. 4. 
 
 17 
 
 5. 7[g 
 
 6. 
 
 2^. 
 
 7. 
 
 H- 
 
 8. m- 0. 
 
 /o. 
 
 lO. H. 
 
 11. 
 
 2- 
 
 12. 
 
 u. 
 
 13 I'i.V 14. 
 
 IH. 
 
 15. I. 
 
 16. 
 
 mu. 
 
 17. 
 
 4ii^ 
 
 18. A\. 19. 
 
 12,V 
 
 20. n'». 
 
 21. 
 
 t> 7 <i 
 
 T4 7 2' 
 
 22. 
 
 3|. 
 
 23. 11 24. 28. 
 
 25. 
 
 f 26. 
 
 V. Pages 7, 8. 
 3. 48. 4. 1540 
 
 1. 36 feet. 2. 880. 
 
 7. llil 8. $360. 9. $32i5>^. 
 
 14. 279i. 15. /A. 
 19. ^5225. 20. 43i'V 
 24. The latter by hU. 
 
 13. 2|. 
 18. $1371. 
 23. 6Ui^. 
 26. 5. 27 
 31. $110 A, 
 
 10. 6A. 
 16. 
 
 5o4 
 • TOt* 
 
 1 1 ^ 
 
 £1. 188. 
 21. 1 
 
 6. 27/1. 
 
 12. m 
 
 I'T 44 
 
 22. 35^. 
 
 ^il^?^. 28. 
 
 .."1 
 
 29. 90H^I 
 
 32. Increased by ^^q 
 
 25. The former by IjVs 
 
 30 Q257.12 8 3.91SU 
 
 VII. Page 10. 
 
 1. 3. 2 -4. 3. -58.3. 4. 36. 6. 13. 6. 714285. 7. 1*. 
 
 8. Oi. 9. OOi. 10. 01. 11. 6001. 12. 023. 
 
 13. 5-230769. 14. 738. 15. 67083. 16. 2 037. 17. 168i. 
 18. 20138. 19. '108. 20. 4-.376068. 21. 34. 22. 106. 
 23. 26074. 24. 8-20. 26. 1 0099. 26. -315476196. 
 
 « 
 
 27. 60571428. 28. 5045. 29. 295138. 30. 072. 
 
 61. 
 
 3D5{i!' 
 
 52. 32 
 
 U' 53. 
 
 3ie?.. 
 
 54. 
 
 10 
 
 u. 
 
 55. 3^',. 
 
 56. 
 
 •'i.'i- 
 
 57. 4j 
 
 58. 
 
 i» fli i{ 
 
 59. 
 
 7.'. 
 
 % • 
 
 60. HA- 
 
 61. 
 
 20.u^ 
 
 62. ,,V,«- 03. 
 
 ;iti 1 
 ft ft rt • 
 
 64. 
 
 21 
 
 ,1 .1 ;i • 
 
 65. 5.;;;''. 
 
 66. 
 
 17, 5o. 
 
 67. 6;; 
 
 U' 08. 
 
 tt 4.1 
 ^ftOO' 
 
 69. 
 
 mi 
 
 70. 2^0. 
 
 
 
 
 VIII. Pages 10, 11. 
 
 
 
 
 1. 
 
 15-44049. 
 
 2. 
 
 13 38482. 
 
 3. 
 
 18 28.360 
 
 
 4. 
 
 -02020. 
 
 5. 
 
 •54586. 
 
 6. 
 
 -02302. 
 
 7. 
 
 16 41805 
 
 
 8. 
 
 60 49949. 
 
 9. 
 
 •23036. 
 
 10. 
 
 •52468. 
 
 11. 
 
 •01952. 
 
 
 12. 
 
 •00652. 
 
 13. 
 
 •04594. 
 
 14. 
 
 •03948. 
 
 15. 
 
 •25793. 
 
 
 16. 
 
 .')6 31427. 
 
 17. 
 
 00041. 
 
 18. 
 
 00298. 
 
 19. 
 
 5 r 50>)4. 
 
 
 20. 
 
 34.5. 
 
 21. 
 
 •46359. 
 
 22. 
 
 7 03411. 
 
 23. 
 
 •03293. 
 
 
 24. 
 
 2 -88 184. 
 
 25. 
 
 03911. 
 
 26. 
 
 3 44424. 
 
 
 
 
 
 
ANSWERS. 
 
 127 
 
 VIII. Pages 10, 11 {continued). 
 27. 1-654108. 28. l-63022ri. 29. -8502588315. 30. 4-94332696. 
 31. 2-738437. 
 
 32. 1-7. 33. 1-57. 
 
 34. 2-365. 35. -64431. 
 
 36. 6-5234416. 37. 10756. 38. 3910284. 39. 24. 40. 15. 
 41.42. 42.3-86011. 43.83. 44.25. 45.28. 46. 18213. 
 
 IX. Tages 11, 12. 
 1 £7. 16s. 8(1. 2. 2 dys. 3 hr.«. 20 .nin. 38-4 sec. 3. 250 y^^«^2-64 m. 
 4' 4 mi. 800 yds. 5. 5 min. 6. 42 wks. 10 lus. 30 miu 7 280 . 
 a 1 ft. 9. 15 sq. yds. 2 ft. 80.V^; in. 10. 9 lbs 8 oz. 13 chvt. S grs. 
 11. 3tous 18evvt. 36 6 lbs. 12. 2 s.,. yds. 8 ft. 12-. 8 m. 
 
 13.5 yds. 2 ft. 1 1 -892 in. 1 4. 243| rods. 15 1. In s .>2 ..uu 
 39-36 sec 16. 58 mi. 303 52 rods. 17. tl Lis. M. 
 
 18. 5 ilio ndn. 36 sec. 19. 1 ft. 6 in. 20. 4 dys^ 23 hrs. 20 nun. 
 2 1 . 40 yds. 22. 16 dvvL. 8 grs. 23. 39 tons 14.^2 lbs. 
 24 172+ 25. -215. 26. 2583. 27. Oii 28. '8.3. 
 29. 275+ 30. -22916. 31. 416. 32. 4182. 33. 168595 + 
 34. 0464+ 35. 3263 + 
 
 X. Pages 12, 13. 
 
 1. 
 
 8. 
 
 13. 
 
 17. 
 20 
 25. 
 
 •4. 2. 2-3625. 3. 5. 4. 'iU- 
 
 $728. 
 
 6. 7d. 6. 13cwt. 7. -525. 
 
 9. -0027 + 
 14. 215 U>«- 
 
 The former by -0001, 
 
 10 
 
 ;l ;l 5 
 
 11 
 
 1 5 
 
 2 1' 
 
 12. ml 
 
 •-•7 
 
 15. 10 rods 2 yds. 2= in. 16. 10. 
 
 18. 
 
 Hi'^- 
 
 19. 4320 times. 
 
 •000125. 
 
 21 
 
 0:1 
 
 ;i (I i 
 
 22. 6. 23. 2253-456 min. 24. 1010. 
 
 1150. 26. 2061 yds. 
 
 XII. Pages 16, 17. 
 
 37. 
 
 42. 
 
 47. 
 
 62. 
 
 56. 
 
 60. 
 
 64. 
 
 67. 
 
 70. 
 
 74. 
 
 101 
 
 38 21 
 
 39. m 
 
 40. 
 
 49.1 
 
 003649. 43. 09 
 
 3. 44. 0072. 45. 5 15. 
 
 :i 1 -i 
 r :t i S 
 
 48 
 
 or 
 
 49. 3(i. 
 
 50. 017 
 
 £11. 139. 
 
 45 tons 10 owt. 
 
 4d. 53. S 10,968. 54. $9720 
 
 41. 12iV 
 
 46. 51A. 
 
 51. -6891 + 
 
 55. $8465. 
 
 57. 900 days. 
 
 58. 35 gal. 59. S5.28. 
 
 7i cents, 
 lib. 1411! o/.. 
 7 lbs, !3 oz. 
 $438. 7 1 
 
 2390 men. 
 
 61. 7957 J,' mi 
 
 lea. 62. ,h 
 
 65. 140 hrs. 37A mn 
 
 68. 3 tons 
 19th May. 
 75. -979. 
 
 400 ll)s. 6i o/,. 
 
 72. 65 days. 
 76. 24 days. 
 
 63. €56. 5s. 
 66. *8.32i. 
 69. 178 855 mi. 
 iH. $<"*0. 
 
128 
 
 ANSWERS. 
 
 XIII. Paoks 18, 19. 
 
 11. (a) $35, m, So6. {b) $40, ^44, |56. (c) $20, $40, $80. 
 1 2. (a) A $26, B $40. (/>) A $43, B $23. (c) A $45t, B $20^. 
 
 id) AUn, B$24i 
 
 13. (a) A $20, B $10, (' $1.5. (h) A $25.50, B $12.75, C $6.75. 
 
 (c) A $24, B $14, C $7. (<0 A $23.75, B $9.37 V, C $1 1.87^. 
 
 14. Each man $10, each woiiiau $7.50, each child $2.50. 
 
 15. Each mail $11.25, each \v( iiaM $7 50, eacli child, $5. 
 
 16 $497, $355. 17. $61.25, $78.75. 1 8. $106|, $100, $1.33i 
 19. 9,\ days. 20. 16 days. 21. 339,226,113. 22. A $49tV, 
 
 B$30i;|. 23. A $15,600, B $20,400, C$24,000. 
 24. 12 hrs. 26. 16 days. 
 
 2010 
 
 TIT, 7 5 
 
 1. 15. 2. 16. 3 
 
 7. 5^ wks. 8. 130 yds. 2 ft. 
 1 1. 18 days. 12. 8 men. 
 
 16 219 days. 16. r\ days. 
 19. 160 strokes. 20. 15 days 
 
 XIV. PAOE.S 20, 21. 
 
 4. 1^5- 5. $34.12i. 6. 14 lbs. 2^6^07. 
 
 9. 15 horses. 
 13. 15 men. 
 17. $15.3.60. 
 
 10. 160 bushels. 
 
 14. 221;' *Ws- 
 
 18. 57'i months. 
 
 21. C2. 10s. 22. 60 men. 
 
 23. 6f days. 24. $2064. 25. 50 men. 
 
 XV. PAOE.S 22, 23. 
 
 1. 12yr3. S^moa. 2. $287?v. 3. Ig mistakes. 4. 200 yds. 
 5. 6 hrs. 6.52%. 7. 35 gal. 8.4%. 9. 98 clerks. 10. $536^ 
 
 XVI. Pages 23, 24. 
 
 1. 2 A days. 2. 3j\\ns. 3. 8 hrs. 4. 12i hrs. 5. G.J hrs. 
 6. 17) min. ; 24 min. 7. 3] hrs. 8. A 19» dys. ; B 13f dys. ; 
 C \0s dys. 9. A 15 dys. ; B 18 dys. ; C 20 dys. 
 
 I» ^ *4 
 
AJ^SWKU.S. 
 
 129 
 
 XVII. Pages 24-26 (continued). 
 
 15. {a) 4 hrs. S/V i»i»- ; 4 hrs. 38i\ min. (6) 10 hr". 5i\ min. ; 
 
 10 hr.s. 88i"r "»«• (<^) 1 l^i'- 21iV "!>"• 5 1 I"- ''^*i"i """• 
 
 16. In 120 days (2 p.m. April 24tli) ; 1.44 p.m. and 2.14 p.m. 
 
 17. 5.10 p.m. 18. 12th May; 5 p.m. 
 
 XVIII. Page 26. 
 
 1. 244-4625 francs ; S3.68t*,,. 
 4. 30 cents. 5. 56 ^^^ lbs. 
 
 2. 167 fr. 
 
 3. £11. 3s. 3d. 
 
 XXI. Pa(je8 29, 30. 
 
 1. $366.50. 2. $6480 ; $4728.50. 3. («) $156.06 ; (/>) $46.41 ; 
 
 (c) $109.37i. 4. (a) $2400 ; (b) $8400 ; (<•) $18,000. 5. (a) $5100 ; 
 (/>) $2.36.9r; (o) 15,506.2.3. 6. (a) $6825 ; (/>) $4696.65 ; (r) $4,345..37. 
 
 0. 27„. 10. $161.10. 11. $260. 1 2. 2035 barrels (nearly). 
 
 XXII. PAGE.S 30, 31. 
 
 1. (a) $25 ; (h) $10 ; (r) $487.50. 2. (a) 1.^ p.c. ; (h) 2^ p.c. 
 
 3. (ft) $2000; (^>) $10,523; (r) $6800. 9. $765.62.1. IQ. $6666.66^. 
 11. $40.84. 12. $.30,000. 
 
 XXIII. Pages .32, 3.3. 
 
 A. 3. $177.60. 4. 4J p.c. nearly. 5. $17.76. 6 $84,000. 7. $3000. 
 
 B. 2. $20,475. 3. $149.45. 4. $1234.80. 5. $7 095. 6. $46.19. 
 7. $.33.44. 8. $2190.69. 9. $994.31. 10. $3039.75; $9394.88. 
 11. $903.60. 12. $1440. 
 
 XXIV. l»AOE8 34,37. 
 
 2. (a) .$527 ; $31. (l>) $183.60 ; $5. 10. (r) $5257.50 ; $225. 
 (</) $ 1 1 68. 3 1 i ; $4(5. 50. (r ) $ 1 111 . 50 ; $48. 00. 
 
 3. (a) $875 ; $.35. (I>) $1920 ; $96. {r) .$2066^ ; $62. 
 
 4. (a)79|. {h)'Mk- ('•) in2.i. 5. (a) $875. (/;) $256.66.,. (<) $173.3. .33.^. 
 (./) f28S0 4^. 2d. 6. (a)$673.3.V (A)$l 1.312.50. (.). $6945. (./) £1843. 
 
 7. (<i) 72i. (f>) HSl (<•) 78. (</) 73^. 8. (a) ^TL- (M *V/o- ('')'^r/..' OOr^R- 
 
 9. (a) Sf/v (M ar/.. ('■) 4,r/.. ('0 ^Ho- 10- (") ^^'^ '"^i 1"^'' ^•'^"<''- 
 (h) the same. (<•) the 3^ per cents. (.7) the 3',' per cents, (r) the 3,^ 
 
 1 i. (a) h>sH of .>».;5;».^. I'fl LMttJ of .$109.50. 
 
 V 
 
 'V cent 
 
 >S- 
 
 (r) lo.sa of 75 cents, (f/) less nf $1 .80. (r) gain of $3.50. 
 
130 
 
 ANSWERS. 
 
 XXIV. Pages 34-37 {confirmed). 
 
 12. $8000. 13. poo. 14. 4n. 15- ^4925. 16^^831. 
 17. £26,933. 6s. 8d. 18. $32.41. 19. 7aVP-«- ^O. $^obO. 
 2 1 . 86j acre.. 22. £1 19^. 23. Rates 4.V'^ and 4^ P-c. ; as lo5 
 to 147. 24. £90. 25. $3104. 26. $22i gam. 27. ?f/15. 
 28 £222. lOs. loss. 29. The former by 'OO^. 30. 607,. 
 
 A. 
 
 B. 
 
 XXVI. PA«iEs 39 45. 
 
 1. $54.95. 2. $49.22. 3. $35.96. 4. $48.98. 5. $88.60. 
 6. $17,520.81. 7. $171.69. 9. Balance due from W . $1^91. 
 1 O. Balance due from H. $3.57.V. 1 2. Balance due to S. $0.2b. 
 
 3. $720.64. 
 
 (93 days). 
 15. $1360. 
 
 4. 4th Sept. ; $44.71 ; $39-55.29. 6. $343.01 
 
 7. $337.36. 11- $664 balance. 13. $658.54. 
 16. $576.49. 17. (c) face of cheque $307.03. 
 
 XXVII. Pages 46-48. 
 
 5. Uh lbs. 
 
 1. 70 loads. 2.1264. 3. 20 tons. 4. 7 tons 162., lbs. 
 
 6. 28,000 silk-worms. 7. 9 Ib... I o/. 7 dwt. 12 gvs. 8. 2.3 lbs. 
 
 6090 grs. 9. 1240 grs. ; 27221] lbs. 1 0. lo/, lbs. 
 
 1 1 1 hr. 12 min. 48 sec. 1 2. 6 wks. 4 dys. 9 hrs, 22 nun. 
 
 1 3. $9. 36. 14. 1011 miles. 15. 200 miles. 1 6. 25 43 4- sec. 
 17 494f]!? sec. ; a little more than | of a scond. 1 8. 631 pieces ; 
 rem. '0.33 inch. 19. 24 ropes. 20. 120 times; 22 yds. ; 4 rods. 
 7-92 in 22. 12 mi. 880 yds. 23. 1788-38 yd.. 24. 21 ac. 
 2-28 s,.. chains. 25. 21216 sq. rods. 26. 498 acres. 
 2 acre. 28. 93412 s.i. yds. 29. 41 ft. 2^,' in. 30. 67H loads. 
 6-2321 gal.; 997136 oz. 32. 37501b,. 33. 41,250,000 tons. 
 '>624-64oz. 35. $2637.43. 36. 512,000 cub. ft. 
 
 21 
 
 27 
 31 
 34 
 
 37. 599 miles. 38. 1694 mi. 560 yds. 
 
 XXVIII. ]'AGE.s 49 52. 
 
 1.618-334 Kg. 2. 1-20 f.. 3.125 1. 4- 113 50 fr. 5 14^5 K,„. 
 6 1020 276 Km. 7. 92 francs. 8.10 m. 9. 24,000 Kg. 
 
 -^ .11 11 o7 nrwn 12 1 Kir. 13 55 2 metric tons. 
 
 14. 45^2088 Kg. 16. 5670 francs. 16. 10,070 1. ; 10,070 Kg. 
 17. 3 francs. 18. 62 25 Kg. 
 
ANSWEUS. 
 
 131 
 
 19. 
 
 24. 
 27. 
 30. 
 33. 
 37. 
 40. 
 
 XXVllI. Pages 49-52 {continued). 
 
 1093 yds. ; 2539 cm. ; 914 n». ; 1609 Km. 20. 1550016 sq. in.; 
 6-451 sq. cm. ; -836 sq. m. ; "404 Ha. 21. '061 cu. in ; "275 
 
 cord ; 16 386 cu. cm. ; -704 cu. m. 22. 568 1. ; 045 HI. ; 
 
 36-36 1. 23. 015 grains ; -004 g. ; 28349 g. ; 31103 g.; 453 Kg. 
 
 19 mi. 19-6 rods. 25. 2 4068 cu. m. 26. 285 71 1. 
 
 8-178 cu. m. 28. 9 dwt. 19 343 grs. 29. 2 <m. ft. 1502 cu. in. 
 
 •189 in. 31. 5/j lbs. ; 2457 Kg. 32. 3 hrs. 517 min. 
 
 1516 + Kg. 35. 03937 inches ; 3280[| ft. 36. 61 02 cu. in. 
 
 567 grain! 38. 66-93 lbs. Troy. 39. 5 1. 
 
 484 cm. (nearly). 41. -474 1. 
 
 B 
 
 XXIX. Pages 53-55. 
 
 855625. 4. 39t^g. 5. 592J. 
 
 8. 1 -44289;. 9. 1015-075125. 
 12. 31'255-875. 13. 17596287801. 
 
 A. 1. 1681. 2. 1156. 3 
 6. 2524-0576. 7. 29791. 
 
 10. mi 11. ^nmih 
 
 14 21^,V,. 15. 118587876497. 16. ?) = ;!. 17. mUni- 
 18 781. 19. -035012791. 20. 9210025. 21. 525. 
 
 22. 1632104.32. 23. 1580iV^\v 24. 14-885593. 
 
 25. 53-841087. 26. 118955463. 
 
 1 24 2 41 3. 34. 4. 69. 5. 137. 6. 428. 7. 102. 
 o' 516 9. 1-262. 10. 15 3. 11. 0231. 12. 32-768. 
 13. 6.1. 14. 61. 15. 2Ah. 16. 10§. 17. i- 18. I 
 19. ^V 20. i 
 21. 1-414. 22. 2 449. 23 
 27. -894. 28. 
 32. 1038. 
 
 26. 2-886. 
 31. 15-368. 
 
 28 213. 24. 9-022. 
 •031. 29. 22-992. 
 
 25. 2 091. 
 30. 37-21. 
 
 33. 15. 
 
 C. 
 
 37. 
 
 41. 
 45, 
 48 
 
 1. 13. 
 8. 611. 
 14. 2.!i 
 
 •16. 
 
 327 yards 
 72 yards. 
 6-928 ft. 
 
 34. 12. 
 38. -45. 
 
 35. 42. 36. 9539. 
 
 39. -03. 40. -24. 
 
 42. 126 soldiers. 43. 76 rods. 44. 205 rods. 
 46. 160 rods ; 80 rods. 47. 36 inches. 
 
 49.20 ft. 50. 103614 I ft. 5 1. 75-816 I ft. 
 2 23 3. 27. 4. 79. 6. 341. 6. 192. 7. 512. 
 9.1-07. 10.30-1. 11.067. 12.616. 13. J. 
 15. 3^. 16. 21. 17. 17|. 
 
 18. 4179. 19. 4-762. 20. 
 
 oo inn 94 539-'*< neiirly. 
 
 •4S2. 21. -149. 22. 3264. 
 25. 70 inches. 26. 1 cub. ft. 
 
 27. (a) 15 min. (M 12 yds 28. (a) 625 lbs. (/>) 6 in. 
 
132 
 
 ANSWERS. 
 
 11 
 
 XXX. Pages 56 60. 
 A. 1. 70 feet. n. 37ro(lt3. 3. Glinka. 4. 4i yainls. 5. 7 ft. 6 in. 
 
 B. 
 
 8. 97ii links. 
 
 6. $93.09. 7. $75.35. 
 
 1 . [a) 350 sq. yards. (/>) 89-3 sq. yds. (c) 8 ac 1 rod. 
 ((/) 13-69 s<i. in. {e) 150^14 sq. ft. (/) 70-14J8 sq. yds. 
 
 2. 14 yds. 3. 768 rods. 4. $0.66. 5. 14 ac. 4440 sq. yds. 
 6. 582-06 yds. (nearly). 7. 25 chains. 
 
 8. 150, 200, 250 yards ; 45,000 sq. yar J ■ 
 
 C. 4. 62-ac. 5. 12,480 sq. yds. 6. 4 ac. i: . ,ds. 7. 1 ac. 134 rods. 
 8. 5 ac. 155.VtH »«^l8- ©• '^^^ ac 10. 7 chains 70 links. 
 
 1). 3. (a) 5028* sq. ft. (h) 2011? ac. (c) 10311 sq. ft. 4. (a) 3181 A 
 sq. yds. ' (h) 8 sq. ft. nearly. 5. (a) 3-98 ft. (/>) 27-7 yds. 
 6. 114-^ sq.ft. 7. 336 times. 8. 13596 yds. ; 14686 yds.; 
 
 5 44 yds. 9. 50-92 ac. 10. 640V 7r'-= 1134 08 yards. 
 1 1 . 641 i- s,i. rods. 1 2. 1 145-45 s(i. ft. ; 6928 s«i. ft. ; 900 sq. ft. 
 13. 12^432 revolutions. 14. 968 yds. 15. 15 093 in. 
 16. 39-25 yards. 
 
 XXXI. Packs 61-68. 
 
 A 4. (a) 9g sq. ft. (ft) 204i s(i. ft. (c) 2341 sq. ft. (d) 155^^ sq. ft. 
 (e) 630':^- s<i. ft. 5. (a) 8h s^l- ft. ('') G4Jo sq. ft. (c-) 176.Vi sq. ft. 
 
 6. (a) (96+4V2^)-=10r656 sq. in. (/>) 9^ sq. ft. nearly. 
 
 7. (a) 1^ sq. ft. {h) 21 A sq. ft. {r) 10.\^ sq. ft. 8. 67.^ sq. ft. 
 9 16 7r = 50? lbs. 10. 10 ft. 9 in. ; 99,846 n- »»• 1 1- 245 in. 
 
 perniin. 12. lOOy' 2^ - Hl'^ ^t- 13- eu. ft. 408 cu. in. 
 14. 421 cu. ft. 1512 cu. in. 15. 10032 cu. ft. ; 7-392 cu. ft. 
 
 B. 3. 4 sq. feet. 4. 4V 3 - 6928 sq. in. 6. 37? sq. in. 
 
 6 122t sq. in. 7. 13 in. ; 204? s-i. in. 8. 321;} cu. ft. 
 
 9. 2 cu. yds. 24-54 ft. ; 12 sq. yds. 7-846 ft. 10. 1 eu. yd. 9-083 
 
 ft : 9 s<i. yds. 5-59 ft. 11. 169? cu. ni. 1 2. 38^ sq. ft. 
 13. £16. 13s. 4d. 14. 5Sh sq. yds. 15. 6i ft. 16. 77B cu. ft. 
 17. 11 H 1} ft. 18. 93391 360 cu. ft. 
 
 C. 3. 2011 sq. in. 
 6. 381? cu. in. 
 
 10. 1403 11)3. nearl> 
 
 4. 20106-2400 scj. mi. 5. 523.H cu. in. 
 
 7. 14J cu. in. 8. 245.1§lb8. 9. 11 : 21. 
 
 oi i,. r.n 1 O. 4r * 'Ml ft. 
 
 iv. 11 
 
 \ 
 
 L to 1 o 
 
 _ oi f,. r.n 1 Q 4 
 
 13. 1 :6. 
 
 14. 709', 11»H. 
 
ANSWERS. 
 
 1 o*) 
 
 XXXI. Pa(!Es (Jl OS (conthmed). 
 1,3 441 cub fl. 4. 40 K,,. ft ; 51^ s, ft. 
 
 5 lois4. in. G. 122isM.i". V. £8o8. lo.. Sd. (nearly . 
 
 11.39tl3usl8S0^;ylhs. 12. lls.i.ft. 13. Betimes. 
 
 A. 1. -428571. 2. 
 
 XXX III. PAfiKS 73-75. 
 ?;7295.43. 3. §73.50. 4. 107,. 5- 1^'' rupees. 
 
 li. 1 
 5 
 
 C. 1 
 
 1). 1. 
 3. 
 
 1. 2. 2942-2775 sii- yai 
 The same, .^(505.28. 
 
 h; IMI.'.-^)- 2. GMuin 
 C 
 
 .Is. 3. 8 day: 
 
 4. 4i".. p. 
 
 3. A £22. 10s. ; P. £37. 10s. 
 
 £45. 4. 2:104 mi. 1480i yd.s. 5. 117.1 
 •0021+. 2. 27, ■"', minutes past 2. 
 St. Tetersburg, 2 In.s. 1 n.in. ,2igeo. P.M. 
 Belli 
 l)ul)l 
 
 in. 
 
 Olu 
 
 s. iJ.> 
 
 mill. 30 sec. r.M. 
 
 11 hrs. 34 min. 5(5 sec. A.M. 
 
 New York. 
 4 $50,350i. 
 
 71 
 
 U'S. 
 
 4 mill. 8 sec. A.M. 
 
 5. 24,708 tiles. 
 
 K. 1. 101. 
 
 2. .S 1 03.87 i. 
 ft. 
 
 3. S12.60gain. 
 
 F. 1. 
 4. 
 
 a. 1. 
 5. 
 
 5. 123-888 sq. ft. ; 7 "87 
 4-23 }<)/.. ; 58-293 111. 
 
 $240 ; $0720. 
 
 2. 11?^ p. c. 
 5. 0t-=--201f s(i. 1 
 
 a 
 
 lies. 
 
 4. 4Uft. 
 
 3. S0.88: 
 
 4-38 
 
 2. 
 
 7.27 1. 3. 14,479,074 gal. 4. 2 23008 lbs. 
 
 2513-J8CU. 
 
 it. 
 
134 
 
 ANSWKll.S. 
 
 XXTX. Pa(iks 81 101, 
 
 «•■■ 
 
 •01 ; 10; 
 2-.3010:i ; 
 1-70927; 
 
 •94448:^ ; 
 •845098 
 •688064 
 •000000 
 
 6; 6; 1; 1 ; 6 ; T ; 4 ; T- 2. 4 ; :5 ; 4 ; (J ; .. ; ..; 1. 3. 2, 3, 
 2;2;5;I;2; 1 ; 5 ; 6. 4. 1 ; 2 ; 1;2; 1;2; 1;2; 1; . 
 6 1000000; 1000000 ; 10; 10; OOOOOl ; 'l ; 0001 ; "l ; 10000; '001 ; 
 10000 • -OOOOOl ; -00001 : 'OOl ; 'l ; 100 ; 1000 ; 01 ; 100 ; -00001 ; 
 •1- -01 • 10; 100000; -OOOOOl; 10; 100; -1 ; '01 ; 10; 100; •! ; 
 •01 . 10- -1. 6. 100; 100 ; 10000 ; 100 ; OOOOOl ; 100 
 lO-'lOo'^ 1-1. 7. -69897; 'OO'iOO ; 1-3010:); 1-39794 
 1-^515; 50515; -90309; 2-39794; 1-69807; 2-70927: ^ 
 •70927 ; 2-09691 ; -09691 ; 2-60-206. 8. 1 ; 3 ; 1 ; 4 ; 4 ; o ; ; 
 • • 3 • 6 • 1. 9, 1 O, 1 1 , 1 2 and 1 3. The answers to these 
 exeroise/arJ easily verified hy orclinary arithmetic. 14. '5941 71 ; 
 •678063; •99-2421; -771073; -680336; •83'2509 ; -874/ .2 ; -r242.6 ; 
 •867467- -290480; -003029. 15. -671265; 671265; -6>126o; 
 •944483; -944483; 944483; '944483; 944483; 944483; 
 •845098; -845098; •84,-.09S; -7'24-276 ; 938019; -979548; 
 •976902- -204120; -000000; -000000; -000000; -000000; 
 ■000000; 000000; 000000; -7330.37; -828015; -992150. 
 16 3-671265; 1-671265; '2-671265; 3944483; 2 944483; 
 1-944483 0-944483; T-944483; 2-944483; 3 944483; 3 845098; 
 iMms' 1-845098 0-845098; 0-724276; 2 938019; 5 979548; 
 ?-688064; 0-976902; 3204120; 3000000; 2 000000; lOOOOOO ; 
 0-000000; 1000000; 2000000; 3 000000; 4^000000 ; 1 •73303. ; 
 4-828015; 2992156. 17. 1-152859; V 9.9821; -68124 , 
 0-755417- 0-895533; 1-988291; 2-632153; 3-834o48 ; 1//604. , 
 l^\ r771367; 3-765669; 2792392; 2845008 ; H)03090 ; 
 1-979639; 2-986010; 4900586 ; 5166726 ; ^;^''- ^^■,;^\ 
 2605: 3662; 5017; 6157; 7469; 8000; 8666. 19. 580000, 
 67610- 8062- 9.351; 1546; 2142; 2758; 03367; 003634; 
 «8 00004316. 20. 139753; -141356; -424519; -596461; 
 •fi'^'til 5- •755015- -755015; -755015; -755015; •75;)015; 9.0b.,a; 
 • 3 7- -to' 3.' 21. 0-566685; 1-656883; 3 832094; 2 902538; 
 S;;0; ;-934410; 1-068869; 4-774463; 1 •.K)2255 ; ») • 
 22. -553757; -834092; -900893; -003034, -930119; 948.>63 , 
 -979284; 986226; 988420; -999440. 23. •rK,4443 ; OSO.,1- , 
 -769877- -770656- -791126; -706217; -896009; •9.)1280; -0608^ ; 
 - ;.' 2^ 5-56 .68; 4-734984; 5 885830; 5 953631 ; 2-804695; 
 
 i^^,, 4-566U1 ; 4-744723; 001 649 ; 0^00002^ 2..^ 3 ; 
 129153 or 5; 161620; 211655 or 6; 281.2.8 ^^'J^ '^ ^f^'f^;'^!' 
 477421 ; 615193 or 4 ; 776466 or 7 ; 7i)6587 or 9. 26. 1046 83 , 
 
ANSWERS. 
 
 135 
 
 XXIX. Pages 101-108 {continued). 
 
 ,28-785; 10-2351; 2 0««7 , •2-'««* ' J^f ?« ' .^^.^Id ^ 
 •000582684; 0000752562; -OOOOOS-'OT. 27. "^^ | ; ^f « « ; 
 
 r;r';oor"'28-~i;^^=;mt 
 
 ^tofit ISSSn- 454246; -00000 1 :W03 ; 85 8094; -0116455 
 Lr^OO '^«B''05- -0.02.^1; -O0O20O3-2S;10O;.O«0; 2^^ 
 I0V743, -00000179602; 1-79602. 30. 68421; -^<bo6-; 2,4892, 
 '804446 -000268455; -7-293; 7-23.^35; -836177; 1^''' j^.^^'J^] 
 f ^0-88 ;-255. H6 4. 32. -1««4« '; -049.8.8 ; -2,7178 ; 
 .^4 .' 33 387-3^1; -00636007; 454-„7; -000470505; 12^^^; 
 
 ^ ~4.»S4,rs:i:^:-o8;'^::^; 
 
 ^ nnnnnfi^n4M493 36. See answers in proper places. 
 •758415 ; -000000004444 J3. f"^' \ o o j s -502 acres ; 
 
 37. 1719.65; $772.64; $2621.20; ^1 -12. a. 38 18 oO, 
 
 \^f^ ifti-90S lores • 22-719 acres ; 13m00/ acies , -i iou« 
 
 37.8729 acres ; 164 208 '^^^^ '^^^ ^ ,j ^.^^..^es would be 
 
 acres; 6-88086 acres; 3 2o4b9 ^c^es ^ ^^^^ 
 
 needed, but the last volume would have 4 blank pages, 
 ^Ige 3 blank lines, and the last Une 50 blank spaces.