IMAGE EVALUATION TEST TARGET [Ml-3) 1.0 :!f I I.I 1.25 mil— 1^ ^. m " ^ tiS, III 2.5 20 1.8 i-4 IIIIII.6 V] <^ /] /a ^ V > .<^ ^/^ ^ tiji'it'iil Sucicty ot QiU'lu'c, once mure liu'v vci'y intcrc.-tinir, even in a p ipiila an otlierwise dry and ali-trife i^nliject, may liecuiiu ably iiaiidled. 'J'lie lectnrer sliowed tlio relaliDnsliip (if L'oonieii the indnslrie-i nf hie. He traced its (iri,i.'in Irnni aiiti(|tiity, its jiraihial ilevelopeni'iil up tii the pR'-e' He shdued h<<\\ it is tlie ha>is iil'all unr pnlihc wnri how wc are indeliteil to it lor all the cijnstrnctive a relaliun diip to ineciianics, liydranlic>, dptie-, and physical ''icnces. The t'airer portion of nianlt'all things were at li a word, Mr. Baillarge wentoverthe whole tlidd ol'g and mensuration, both plane and spherical : a diltii uitliiii the limits of asiiis-'le lecture; and kept the ai So to say, entrance.! with interest l()r two whole wiiioh the president. Dr. AiMJersoii, remarked : weri as but one ; and no doubt it must have been so t' since Mr. Wilkie, in seconding the voti- of thank-- | by Capt. .\she, alluded to the pieasiiro with whieh listctied to the lecitnre as if, he said, it were liki him, instead of the unpromi-iiig matter torcsiia I. the title. Mr. Haillargc next explaineil in u( Ptereometrical tableau, wiiicli we hope to see soon ini into all the scliools of this I)omiiiion. He show Conducive it i, ill be in slK.'tening the. time lu'relol'n'c to llie .study of solids and 'Veii to liiat ot plane an. Te'w system of determining the solid contents of a body of any shape, by one and the same rule. {lixtracl from (he " Oin-bcc/hviv Mciriiiy" o/'.b/h Miur/i, '"^Z--) on Wc'.liiesilay fvciiiiig lii>t, ji'ifiil Society of <.iiU'l>t'i;. pr.ivcil "tiiiL', even in a p ipuliir scnso, i-^L- siilijfcl, iniiy lit'Oonu', wiien I'oliilioii.-'hiii lit' i^conicli'v to iiil tr:ie("l its urijiin iVoiii I'tiiiote [ji'mMit ii|) to tlic prc-eiil time. IS iii'iill our pnlilic wiii'k^!, ainl ull the con^trnctivo arts ; its liyili'aiilios, optic-, anil all the fi'f portion oi' nianl^inil. suiil i.i>t ai>pri ciative p'ir.cption ot' es. as evidence.! in I lie dvpr- nniniily devised in tlieir desiu^ns III ciiilii'i>;dery. He slidwed its crystallizaiiiin and pnlari/.atiun ; I the laws ot' incirpholojry ; to :reatin.i^ of the circle aiiil other lite il poetical c miparison liet- ne.i's out his curves anion;: the arth, and the a^ironniner who iits amidst the starry I'lrests of la was tnlly illustrated in its ig of projiKUdes (if war, al~o as '!•, the spcakin'i trmiii)t, the which, ill hj;lit-hiMises, ji;aihers , into a bnndle. and sends them md of hnmaiiity. I ii treatinj; of ijic curve which is traced out in et that revolves almnt the sun, s ])rimary. he alindid to that -the face of lovely woman. He ranee of a comet may now be y day it heaves in si;.'lit, and or a century, and Imw in former la were nnpredicted, they Imrst 'ctel moments, carryiii^r terror •■ tonic.: le-i mai-ijiis d'lat;oii to the utility and many advantages ol the stereo- metrical talileau for purposes of e incatioii, cannot but it,; neiid and direct ild adoption in all the MchouLs of the Doiiiiiiion. MoN'CKAl^V Ml'MliKR OF 'lid-: SiUll TV FoR rili: (il.XFKAI 1/ Al |n\ "V 1". 1 H i \ IK i\ i\ 1''ran(i:, New system of measuring all bodies, segments, frustums and ungiilas of those bodies, by one and ( Patculcd ill Canada, in titc L 'nilcd States ol America , and in /in rope. > This is a Case 5 ti'cl lonj^", 3 iV'ct wide and 5 inches dec]), with a hinged ("dass C()\er. under Lock and Ke\-, exhibiting- and alTordini;- free access to sonu! 200 well-hnislied Ilardwocul .\h)dids oi'ever) conceixahle i'denientl form, each of which l)eing merel)- attached to the board, 1)\- means of a wire-peo; or nail, can l)e reiiio\ed and r(j Student or Professor. Tlifi nso of tlic Tiihl.'au To fliiii tha "O.lfS ooq| ,i,c study „r „ ,c„. ,„ ,!„„ «.;.-.,£-;; t-J::. '■""" "' ■. ■ ■■^"- ,, — „ „„, of ii .];,v or two, iind so sun- ,,,rM;iilcs, njouLT .t'l^'i'-" -^^ ^ ,., - ^,„,, ,a lluno-. v ^>« "*'"'' .,,^,,^,0.. Ot .Solid (lOOllli'tiy, tllC JNo- .'.„„. „iin\e lie I'l 11:111- en Iviiiice. || iiiviMilul on. I Jiri'ii fnir tune- tliu iiiid'-ll iiii.l iimlii, ly t ic \,v tin' sixtii imit h^i^lit or lo.igtu bo ly. iiioiicliiturc of 'iiMiiiotric'd find otluT forms, tlie devclop- iiK'nt of siirficc's, tjooinctri- c;il I'rojcctioii iind perspect- ive, pliine jiiid ourvod nreas and Splierical Geoiiicfrv. and Triixononictry. and men juration of siirfices and HiliiJs, tliat the several brandies liercinbt'fore nu'ii- tioned may now be taiii;lil even in the most elementary schools, ami in coiiv<'nts, where such study could not even liave been dreamed of lierefofoi'c. Kacli Tableau is accom- panied by ii Treatise explan- atoiy of the mode of nuvis- nrenicnt by the " I'risiiioida Formula, " ami an explana- tion of the solid, its natur.\ t^h.ipe, opposite bases, and middle section. Afrcnta Willi ..' for the snli iuilders, Contractors ,\rti/;ms and others in Canada, and e]s(n\her(> ;/' h'dii ( iHiiii III t'lUiiiii', etc., etc. ^© SUBSCRIBERS. Tlie .Arclib .»!iii;i ol' C^iit'lic, the lii.-llnp I 1' l(i.iioii-lliiii, ill ■ liis io|) ofrft. llya- (Millic, tlie iHim iiion lio.inl of Woi-kf. the .^■olioolr ol .vrt iinj Uj- .Mj;ii. the Laval l.niv rsity, Ihu J^u.nin.iry, l^., the Collui^o at Olti- w I, Xii'ilet, liimuiiski, Moiitin i- gii\, S(. Mii'l'al, 0., I'Keule Nnr- inal: Liva', lo- Keoles ih^s t'lO.es, til ■ t'oiiriicreinl Ao:i.le iiy, the liiiiirci ol' L^inJ Surveyors, the iJc- pariTiierit of EJiiealion. New Unin iwielt, the Corporation of Quebec, It. lliiiiiiion, K-«i{-, K. N. Martin, anil C. Hov, (!'ivll ICn.'ineor.s, etc., l.a .~oai^t<' pour la viil;{aii,-aiion do I'Knse gneiiieiit ilii I'euple, Kranee 1'' Teachy, .J. Lepage, elc., Ar- eliitoet.s, N. I'iton, T. Alaniiire, J. .M.iicotio, l.uililers, the Cioineil of Public liislruciioii Q., Ilie.Ia quos (,'a.riior Normal S bo 1, M. Piton Manitob:., Ilie I'oll ges of .Ayliiier, L'AsfOiiipti ,n, Ste. A n • ilo la Po- eiiti()re, ."^t. Ilyiciiittie. Ih) lligli S hool. Q., the Mor n ('ollege, t^., t.ie Laf a lee Aemlo ny, Q., Uover- n iicnt Hoar Is of Works, i)„ ilie Ij'rsulino- Convent, the Co v ni of the dooil Shepherd, (ircy .Nuns, Sib ir- do la Co igrd^aCn n, .^oeuia le Jesus .M ric, ')., and M. .S. \V. TownsenJ, UainiHon, Ao. Ae. Ao. Etc. Mc. Etc. lise Officers, Pro fe.ssor.s of Geometry and l-Schools of Art and Desijrn, Mechanics, KEY / TO BAILLAIRGE'S STEREO^IETIUCAL TABLEAU, NEW SYSTEM OF MEASURING ALL PA' ONE AND THE SAME RULE FOR THE USE OF ..o.„..™,.-i-"--rro'.r,!rrs":^^^^^^^^^^^^^ I5v CHS. BAILLAIRGE, ,„cn.T«T. ,,»<■..—. s..v.vo«, HONORARY MEMBER ..r/ATlOS OK KI.VCATION IN FUANCE e ,„UV.At,. K^'i'^OuiWuBt.SHBU, 187G. THE TABLEAU, Registered, COD formally to the act of Pailiainont of Canada, by C. P. P. Baillaiugk, the 2.'3i'd Febniary, 1871, iu the Office of the Minister of Agiicultuie; at Ottawa. Patented in Canada, tlic Uaiited States and Europe. Registered according to the act of PiulianuMit of Canada, in tlic year one thousand eight liundred and seventy four, (1874) by the author C. P. P. Baillairge, Esq., in tlie Bureau of the Minis- ter of Agriculture, at Ottawa. RKAD THE PRP^FACE. Tlio '[iicstidii iiiiiy 1)0 jislu'd '' If the system be so simple, why so vol'imiiioiis 11 "Kiev" ? Now, il will be immediiitely seen tlini, tlio preseiit- worl: is ill iciiliiy, for the iiiosf ]>iirt, u iiieic, " Meiisiirutiou of Aro.'is " wiiieli minlit [)erliM[)s have been omitted, since thei'c are already many works wliich treat, on that subject, and that the mode «)f measuring;- I Ik; surface of area (»f any solid is,;ii]>|)()sed to 1)(> known before its cubical contents can be arrived at. It is however mor<'satis- factory for 'I'cachers in gcnenil, Professors and Stiidoiits to find thus brou<;ht together in a sin;j;le volume, all that they require, than to have- to seek it elsewher". Tlie mensuration of areas is not at all suiterlluous, even in llie " K<'y " ; since, in p)iul, of fact the whole ditticulty and labor of computing; the solid contents of any body, con- sists in determining- the areas (»f crtain of its couiponcuit faces ami sections. That which also contributes lar,;;-ely tc swell tiie iit, frustum or uiigula of such bodies, the calculation ■will be found, so to say, fully worked out, since it will sulUce to take out the re(piisite areas, add them ami multi[)ly tlieir sum bv the sixth part of the length or altitmhi of tlie body ; after which ii simple multiplication or division (as the case maybe) ofth(^ units so ob- ^lined, will leduce them to inches, feet, metres, gallons, litres, &c. or to any otiier units greater or less than the lirst. At page XXIX, however j that is, after tlie testimonials will bo fouud an ABRIDGED OR SYNOPTICAL KEY TO THE TABLEAU. and, to any one -, ho understands tlie nomenclature of solid forms and the mensuration of areas, this Abridged Key contains all that is essential to tlio full and entire intelligeuce of the author's system. SDBSCaiBERS TO THE STEREOMETSICAL TABLEAU. I'lic Ari!il(isli(i]irit' of l^)iiflicc. Tlic I'lMiliiics ('^»1IV(•^^. Tlic liisliojiiic of Kiiiioiislvi. TIic Iii>.lio|)ri(' iicl»cc. 'I'ln' lii ol'cdncjltioil, l'"!.'!!!!"*'. Tlic Collc^'O, ()tl;i\v;i. Tlif College, K'iiiioiiski. TIic Collcj^r, Sto. Amu; Luixxm- tiric. Tile scliool of Arts & Design, Qneltec. Tlio J?(t;ii(l of Land Siuveyora, QiK'liec. Tlie C'oll(\^(% rAssoinpfioii. Till! Depi'. orruhlic Works, Ot- tawii. Tlie folleo-e, Nirolet. Tlie Coll'ge, St. Hyaeiiitlio. DiUVesiie's Aciulemy, Moiitiiiagiiy. Tln! Academy, St. Micliel. J. F. IVaeliy. Aiclit., (Quebec. J. Lepage, Ai'clit.. (iiiebee. Tlie Education Ot1ico,Ne\v Biuus- Aviclc. E. Tlaniilton, Esq. Quebec, for a school. The City Hall, Quebec, lor tlic Dept. of Works. Godin & Devarennes, builders. N. Pitoii, builder. F. N. Martin, Surveyor, liiniouski^ The Government, I'rovinceof Que- bec, for Model Schools & Aca- demies. C. Roy", Surveyor & Engineer. J. Maguire Plunibor, «fcc., Quebec. J. Marcotte, iron founder, Qtiebec. The Jaccpies - Cartiev Normal School, Montreal. .M. I'itoii, Manitoba. Th(^ Ministry of i'ublic Lis|niclihole in a wall, the vault or arclied ouiling of a churo' or iiall, the billiaril or the cannon-ball, or, on a larger scale, the niO' ...irtli, sun and planets. Mr. Baillairge, we may add, has recrived an oaler for a tableau from the Minister of Edu- cation of New-J5ru.iv,>!ck, with the view of introducing it into all the schools of that Province ; and Mr. Vannier, in writing to Mr. Baillairge, from France, on the ICth of January last, to advise liim of the granting of his letters-patent for that country, says that Messrs. Humbert & Noe, the Pre- sident and secretary of the society tor the generalization of education in France, have intimated their intention, at their next general meeting, of Jiaving some mark of distinction conferred on him for the benefit which his invention and discovery are likely to confer on education. Mr. Giard, in writing to Mr, Ikiillairge, on the part of the Hon. Mr. Cliauveau, Minister of Public Instruction, says : " 11 se feri un devoir d'en recomniander I'adop- " tiou dans toutes ies maisons d' education etdans tcutes les ecoles." From the Seminary and Laval University, Mr. Mainguy writes : " Plus on 6tudie, " plus on approfoiulit cctte formule du cubage des corps, plus on est en. " chante (the more one marvels at) de sasimplicite, de saclarte et surtout de " sa grande generalite. " Rev, Mr. McQuarries, B. A., " shall be delighted " to see the old and tedious processes superseded by a formula so simple and so exact. " Newton, of Yale College, United States : " considers the " tableau a niost useful arrangement for showing the variety and extent of (' the applications of the tbrmula." The College I'Assomption "will adopt " Mr. Baillairge's systen; ns part of their course of instruction. " Mr. Wil. kie has written to the author ihat " the rule is precise and simple, and will " greatly shorten the procs^es of calculation. The tableau, " says this competent judge, " comprising as it does a great variety of elementary •' models, will serve admirably to educate the eye, and must greatly facili- " tate the study of solid mensuration." *' Again," says Mr. Wilkie, the *' Government would confer a boou on schools of the middle and higher i: VIII THE STEREOMETRIOAL TABLEAU. " class by afibr ' in an eminent deiiroe for the singularly rapid progress wo have been enabled to make since the Itn of January last (only 30 k'ssons) not only in Geonietjy proper and in the Mensuration of surfaces and solids, botli plane and spherical ; but also in the study of geometrical I'rdjeclion and jjcrspective, shades and shadows, the develop- ment of sui'iaces and the lines of jicnetralion of divers solids, i'c, &c. — From an address to Chs. IJaillairge, professor of the school of Arts. Quebec, G Scptemlire 1S72. MoNsiicii!, — J'ai le plaisir lie vous annoncer Aii,i.Aii:(;K, Ecu. P. J. O. Ciiaivk.vu. Quebec, 0th January 1S72. G. W. Wkavkk, Esq. Presidtnt nf Board of Arts dj- Manufdcturcs. ]\[y Dkah Sill, — Our evening class began kv-t week. I am happy to say every thing looks promising and we have been fortunate enough, to secure again Mr. C. IJaillairge's invaluable services, as teacher, for this winter. We luive procured Irom him, for our school, the '' Steremnelrical Tableau " which is his invention, and J am so delighted with it, that I send you a photographic representation of it, and a number of letters and other documents printed which will serve to explain the tableau, and show at the same lime huw useful it ia considered by the most eminent aulhorilies in this country. You ought to get the tableau for your schools at Montrcah You sliowed nie last year when i visited your schools, several wooden models of geometrieal ligures ; I was struck with their usefulness at the lime, and thought of procuring some for our schools, but there are only a few of them and their p'ric^.' is very higli. Mr. P>aillairgc's Tableau costs only tifty dollars, and it contains ttvo hundred geometrical figures. I lancy the col- lection embraces every variety ol figure that can ever be reipiired lor practi. cal use. , X THE STEREOMETRICAL TABLEAU. They are solid figures made of wood, eacli fixed on a nail, ?o that they can be taken oil iiy tiio loaclicr for deniuiistration and handed to the pupils; who are enabled to understand and master their divers hluipes and hjrnid with much greater ease, lluui if they saw ihcm drawn un a black board, or in a book ; the ditl'crence is enormus. In addition to the great help they afford, for the study of geometry, these figures are very useful as models for earthworks, piers, reservoirs, * castings, roofs, domes, columns, cauldrones, &c., &c., &c. The tableau is most useful too for the working out of that wonderfully simple rule, which has been applied by Mr. Baillairge, for the first time, to the measurement of the solid contents of all botlics. It was known pre- vious to his discovery to apply to a certain number of boihes, but he has found out that it apjjlied to all ivithout exception. You will find that rule in the jiajjers I send you, and in his treatise on geometry. I will soon let you know, what i^rogress the school is making and remain, my dear Sir. Yours truly, (Signed,) II. G. Joi-y. President Qufbec School of Art. Cefte formuk est veritablement curieuse par sa ge- neralite et merite d'etre recomnuuulee. Enlin j'ai accompli cette f tiche, et voici le resultai : — L'anteur demontre sa formule comme rigoureusement exacte pour lui grand nombredes corps enoncea, et comme aussi approximative qu'nn vou- dra pour eeux auxqucls elle ne a'applicuie pas d'une maniere absolument rigoureuse. J'ai verifie soigneusement la demonstration de la formule pour les lers corps, ce\ix auxqnels elle s'applique rigoureusement. La proposi- tion et la demonstration sont exades et vraies dans tons ces cas. Quand aiix autres corps, il est vrai que plus on multipliera les sections, suivant le besoin, plus I'approximation sera proche de la verite. Je finis en disant que j'approuve et recommande la methode de Monsieur IJaillairge telle que jn-ojjosee par lui. — Lettredu Rev. L. Billion professeur de Math. Seminaire de St. Sulpice, Montreal, d Mgr. Larocque Evcque de St. Hyacinthe. "Montreal Gazette " 13 November I8Y3, Eni'CATiONAT.. — Last evening, Mr. C. l^aillairge, C. E., and Mr. J. Carrel, both identified with tlie Quebec School of Art, visited the rooms of our An School iu St. James street. Mr. Baillairge there exhibited his TESTIMONIALS. XI stereomctrical tableau, ami explained his system of teaching solid geometry by a iiietliod so simple as to bring tliis hitherto difficult subject within the <'rajsp of ordinary students 'I'lie tableau cannot fail to make easy and popu- lar tlie study of solid forms and the mode of measuring their surfaces and their solidities and volumes. Tiiis tableau or board, which is made up of some two hundred models, comprises almost all the elementary forms which it is possible to conce'ive. To comjiuto the volumes or cubical contents of the solids, Mr. liaiiluirge has found that it is necessary only to apply the following rule: To tlie sum of the parallel end areas add four times the midille area, and multiply the whole by one sixth part of the height ov length of the solid. The whole difficulty is, therefore, reduced to mea:?uring the areas of the opposite bases and middle section, the remainder of the work being a mere multiplication. This system, it appears, has attracted considerable attention among mathematicians and educational authorities both in thi.s country and in Europe, and its introduction into several of the colleges and schools ill Quebec has led its author to seek its adoption in similar institu- tions in Montreal. The stereomctrical tableau is well worthy of the attention of those engaged in educational work. The extraordinary progress made by the pupils, in the short space of three montiis, in stereometry or the mensuration of solids, is attributable to the grand and important discovery by their professor, Mr. Baillairge, of a rule, one and the same, applicable to every known torm, from a pyramid to a sphere, from a stick of timber to a vessel or other body of any shape or dimensions. We have seen them in a very few minutes by the help of Mr. Baillairge's new an(' beautifully simple and accurate rule arrive at the number of gallons in a cask of any size or shape. We have seen them determine by the same rule the exact weight of a shell, the true contents and weight of a hollow cast-iron colum, the size and weight of a pontoon and its draught of water. — From the Saturday Budget of May G, 1871. In the instances which I have subjected to critical analysis, I have found the rule to work most admirably — combining com- prehensiveness, utility with simplicity and great exactness. It will render a study heretofore charged with difficulty and abstruseness at once easy and acceptable — modernizing that which was ancient and which from its multi- tudinous formulaj had becume an isolated branch of Jlathematies. Believ- ing it to be of universal use, I shall heartily lend myself to the iniroducliou of your system. IIOIUTIO R. N. BiGELOW, Quebec deer. 20, 1871. M. j\. XII THE STEREOMETRIOAL TABLEATT. ;i I have coniparcil, in tlic case of several (soli-ls, the rcsnlt'i ohtaiiicd by your mode ol'cttiuiJiUutiini with lliosp resulting; iVoiii t!ic ordinary and mure lentliy procossey, and cungralulatc you sincorly on your enunciation of a formula so brief and sjinple iu its cliaracter and so precise and satitil'actory in its results. E. T. Fletcher, Inspector of Surveys Dopt. of Crown Lands. Quebec 27 deer. 1871. J'ai !u nttcntivement les appreciations quo nombre d'liommes compe- tonts out faites de votro donnee reellcmcnt mcrvcillou.-thiques d votre oeuvre et eeproposent de vous faire recompenser d leurprocl'aine assemblee generale. V. Vannteb. No. 1)4. rue de Lev s, Pauis. Ser. 2, No. 255. Education Office, Province of New Brunswick, FiiEUEiiicTON, January 25tii 1872. C. BAiLi-AiRGfe', Esq., Quebec. Dear Sir, — I am instructed by the Board of Education for this Pro- vince to apply to you for a set of your Stereometric Tableau and your text-book on Practical Mathematics. The Board desire these articles for inspection, with a viewof prescribing them for general use in all the Schools of this Province, should they be deemed suitable for the purpose. Should there be any charge for these articles, the same will be met by this Depart- ment. Your Obdt. Servt., Theodore H. Raud. Mr. Baillairge's Stereometrical Tableau seen^" tome to be a very useful arrangement for showing the variety and extent of the applications of the Prismoidal Formula. Where demonstrations are given in the study of Mensuration of Solids, it will aid a teacher in illustrating the rules, but it. would probably be much more valuable to those who try to teach that study without introducing demonstrations of the rules. H. A. Newton, Yale College, Feb. 6th 1872. Prof, of Math, in Y. College. No. 13567. Subj. 995. Ref. 20814. Department of Public Works, Ottawa, Feby. 7th 1872. Sir, — In reply to your letter of the 26 ulto., I am directed by the Minis- ter to request you to furnish the Department with one of your "Tableau Stereometrique " at the price of Fifty dollars, together with your account for the same. I have the honor to be, Sir your obt. servant, Che. Baillairge, Esq. F. Braun, Architect, etc., Quebec. Secretary. TESTIMONIALS. XV New Haven, Feb, 7th 1872. Cus. Baillaiiig'^;, Esq., Bear Sir, — I have been much interested in looking over tho papers descriptive of your usefiil, vfvluable and (as it very plainly appears) univer- sal ai)plication ol' a rule for tlie mensuration of polids. I sincerely congra- i. -'nte you on the success which your discovery has met with in all quarters in whicii IL hits at present been introduced. It mupt have been a great labour to work it out to its present state of perfection and you have the satif^faction of knowing that you cktq a benefactor and staunch pilot in that sea of difficulty : Geometry. Yours very sincerely, E. B. Barber. High School, Quebec, 7th Feb. 1782. Cns. Batllairg^, Esq., My Dear Sir, — I beg to acknowledge with many thanks the receipt of a number of papers exjtlanatory of your new formula for finding the contents of solid bodies. The rule is precise and simple, and being applicable to almost any variety of solid, will greatly shoiten the processes of calculation. I have proved its accuracy as applied to several bodies. Tlie Tableau compi sing a great variety oi elementary models will serve admirably to educate the eye and must greatly facilitate the study of solid mensuration. The Government would confer a boon on schools of the middle and higher class by affording access to so suggestive a collection. I have the honor to be, my dear sir, your obedient servant, D. WlLKIE, Rector. Votre travail est d'une utilite superieure. Votre formule est destinee, ce me semble, a siniplifier dc beaucoup les operations dans le toise des corps, et a rendre, par li, des services signales'a I'ensei- gnement comme i I'application de cette partie importante des math6- matiques. Aussi mofl plus grand desir est-il de voir adopter votre formule et votre tableau par nos Maisons d'education. En finissant, j'ai I'honneur de vous informer que nous adopteroua votre syeterae, comme partie de notre enseigncment. J. C. Caisse, Ptre., Prefet des Etudes au College de L'Assoruptioa. College T-'Assomption, 27 Janvier 1872. XVI THB HTEREOMETRICAL TABLEAP. 1 'i 'I K! From Formula} evolved by the Calculus, I find tha you'»' Theorem holds ^ and " voi. all solws produced by the REvoi.uTioif "o/'a«y Si RAiGHT LINED FiQUKE, or oi any curved lined figure of the ** second degree, around ant axis within or without tlie figure in either case." Ab to its applicntinn to aV. regular Polyhedrons, you give in your Treatit-e a clear Demonstration of ihe faoir I bc»'.e reason, moreovt;r, to suspect that your Theoreir holds good, with matheniaticai exa'jUiCPs, in more cases than you give it credit for. I hope soon to be able to present you with an analytical' Demonstration of your theorem as applied to solids of Revolution. Needless to say that your Stereometrical Tableau should be in use in every school where Mensuration is taught within the Domini jn. In conclusion, let me congratulate you on the highly remarkable, and deeply useful discovery you have made. Quebec, 26 deer. 1871. J. O'Farrell. II n'y a pas besoin d'une longue dissertation pour faire voir quelle im- mense ntilite ofFre un pareil tableau. Tons les professeurs qui ont enseigne la Giometrie dans I'espace et la Giometrie descriptive savent que, dans les classes lea mieux composeea, il y a toujours un certain nombre d'eleves, tres intelligents d'ailleurs, qui eprouvent dea difficultes oouvent insunnon- tables, a s'imaginer exactement, d'apres des lignes tracees sur un tableau noir ou flur le papier, la furine exacte d'un solide. Le tableau de M. B. eupprime totalement ces diificultes. Quand on voit il faut bien croire, et dans toutes lea classes ou I'on emploiera ce tableau, tons les eleves seront A m£me de suivre aisement et de coniprendre les explications du professeur. . II serait trop long de detailler ici les avantages qu'oflTre le meme tableau pour calculer le volume d'un corps quelconque. Ce corps fut-il de la forme la plus bizarre, on trouvera, dans le tableau de M. B., une ou plusieura figures qui representent approximativement ce corps ou les parties dans les- quelles on peut la decomposer, et il deviendra des lors facile de calculer, du moins avec une erreur tres faible et inappreciable dans la pratique, le vo- lume d'un corps de forme quelconque. Ottavra, le 27 x bre 1871 E. B. de St. Aubin, (Extrait du Courrier du Canada, ler Octobre 1873.) Nous apprenons avec plaisir qu'une nouvelle medaille d'honneur vient d'ltre decernee ^ un canadien par une societe fran9aise. M. Chs. Baillairge de cette > ille, a re^u cet honneur de la " Societe pour la generalisation de 1 'instruction en France, " et il est en meme temps nomine membre hono- raire de cette societe. Nos felicitations d M. Baillairge qui par sou travail coatribue 4 taire connaitre son pays d I'etrauger, TK8TIMONIAL8. XVII "^ )reometrical Tableau.'^ — In a large number of schools io Germany the puj are taught, from the tiin'^ they commence the alphabet^ to judge of color . nd geometrical form by the rej/n'ai use and comijariHon of colored slips and small blocks of wood representiiij.' ihe flriiuntary p'iiieiploH which will, in after years, be called into stufiy. The advantages of litis early training are very manifest, as all are aware of the superiority of this nationa- lity in that branch of science. An exceedingly ingenius device i'm the study of forms has been invei;::ed by Mr. C. 13ailiair';e, a native of Quebec, and patented in the Ijnite'i States, Canada, and Europe. It consists jf a board about five feet long, and three feet wide, on which are placed some two hundred models, comprising, so to say, all the elementary forms, their segments and sections and numerous other solids, both simple and compound. The instruction conveyed by this tableau, appealing as it does to the une- ducated eye and mind, is, the inventor thinks, destined to be of great use la developing the intelligence of the beginner and the untaught masses of mankind, M. Baillairge is in possession of a mass of printed testimonials from high officials and otlier distinguished men in Canada and Europer together with reports from educational institutions, all highly complimentary to him and the invention. A specimen of this stereometrieal tableau may be seen at No. 7 Park street, of this city, in the possession of Mr. S. W. Townsend I and we would recommend our teachers to call and inspect it, believing as we do that this method of training should be considered as & subject of great importance. — Hamilton Daily Spectator 19 Sept. 1873. baillairoe's stereometrical tableal. Our engraving is a perspective view of the above named educational device, which has been patented for its inventor, Mr. C. Baillairge, of Quebec, in the United States, Canada and Europe. It consists of a board, about live feet long and three feet wide, with some two hundred wooden mo- dels, comprising, so to say, all the elementary forms, their segments, and sections, and numerous other solids, simple and compound. The tableau is set in an appropriate frame, with glass covering, so a8 to exhibit the models while excluding the dust. The front can be opened at pleasure so as to afford access to the models, each of which is merely sup- ported on the board by a round nail or wire, which admits of its easy removal and replacement by teacher or pupil. The instruction conveyed by this tableau, appealling, as it does, to the uneducated eye and mind, is, the in- ventor thinks, destined to be of great use in developing 'he intelligence of the untaught masses of mankind. He expects to introduce it into all the educational institutions of the United States and elsewhere, as it is now being disseminated in Caaada ; and he has no doubt that the tableau will 'I '' ' I t , d XVm THE STEREOMETRICAL TABLEAU. also find its i)lace in the stiulio of the engineer and architect, to whom the i iiiodels will be 8ug;:estive of various forms and relative proportions which cannot fail to aid them in their piirmiits. The rapid success attained by a f, pchool in Quebec, in mensuration of all kinds of surfaces and yet higher mathematics, including conic sections, was attributed to the use of this tableau. Every tableau is inscribed with a rule for finding the solid con- tents of any body, called " the prismoidal formula." This formula has been shown, by Mr. IJaillairge in his treatise on geometry and mensuration p\iblishe 1 in 18G(j, to be Uas restrictive than supposed, and he has added to the known solids, measurable thereby, a long list of ^Jiers discovered by him, the whole of which are given in the tableau. Each tableau is also accompanied by a printed treatise, explanatory of every use to which the models can be put. Mr. Baillairge is in possession of a mass of testimonials, from high officials and other distinguished men, both in Canada and Europe together with reports of various educational and other institutions, all liighly complimentary to him and his invention. Dr. Wilkie, of Quebec, thinks " the government would confer a boon on schools of the middle and higher classes by affording access to so sugges- tive a collection ; " and Professor N«iwion, of Yale College, considers the tableau "of great use for showing the variety and extent of applications of the prismoidal formula. " — Scientific American June 1st 1872. 1^; Worcester Free Institute. IVorcester, Mass., 24 July, 1873- This is to certify that 1 have carefullv examined Baillairge's models as applied by him to the teaching of mensuration by the prismoidal formula and I consider them eminently useful in all schools where mensuration is taught. (Signed,) C. 0. TnoMPSON, Principal Wr. Free Inst. — Geometry, Mensuration and St er comet rical Tableau, by Coaules Baillaiuge, civil engineer, &c. ; Middkton et Dawson, edileur, Quebec, L872. M. E. Blain de St. Aubin, doune I'appreciation suivante du travail de M. Baillairge: — On salt quelle sfirie interminable de regies ou formules, dont plu- eieurs trcs-compliquees, les anciens traites de geometric donnent pour le mesurage des solides. M. B. n'en aqu'une qu'il enonce comme suit et denioutre clairement etre applicable H toute espece de solides, si bizarres TESTIMONIALS. XIX quo puisspnt etre leurs fornica, — " A hi somineileH stirfacc^ doR hafcn pftral- leli'9 ilii suliiie uevaluer, ujuiiter 4 (WiH hi siirl'iice au ci'iitrc vl imiltiiiliiT le tout pur la sixieme pariie de la liaiilcur on longueur du solide." C'est dans le but do populariner ruHugo de cotte re;;le que M. R. a ou rccourrt i son Tableau Stcrcu^tctrhjuc. ^' Ct.' tahlr.an, dit M. Ihiillairi^e, est un cadre oil .-out pliicen environ 200 nioilcioH diHercnts do Holidusi chaque niodcle pent etre deplace li volonte, en .sorte qu'on pout le nicttre entre lea mains de I'eleve pour (ju'il I'cxaniino. Le t.ibleau coinprcnd ioutcs lew f'ornics cleincntaires inuigihibles de solides, depui.s le prisnie or- dinaire jiisqii'au cone concave, cic , etc " Sur chacpie inodele, — dit jiius loin M. H. — est tracee une lii.^ne qui indii|ue la nature et les diniensiona de la section du milieu " On con9oit ais6nient les avantagea que presente I'emploi du ce Tableau. L'eleve doit apprendre en fort pen de tenqys hi maidere d'applicpuT hire- ment I'unique Ibrniule, eiionceu tout a i'hcnrc, au calcul du volume de cliacun des 200 rtoliiie.s contenuH dans le Tableau; ct. phu turd, dans la pratique, il s'habituera vite a decomposer un solide quelconqu" en parlies se rapprochant, par la forme, des modeles qu'il a ainsi etudiea. Quant aux solides de formes comparativement regulieres, tels que pieces debois, blocs de marbre ou de pierre, reservoirs et cliaudieres dans les usines A vapeur, les distilleries, etc., I'appiication de la foiinule de M. B. offre des facilites et des avantages qui deflent tout concurrence, et nul doute qu'elle se repandra universellement au grand avantage de tousles praticiens. Telle est, du reste, la prediction que n'ont point liesite a fuire plusieurs savants etrangcrs qui ont eu connaissance de la decouverte de M. Baiilai»'ge; et nos meilleurs professeurs canadiens sont tous du meme avis — Journal de I' Instruction Puplique, Nov. 1S73. Je me reserve de revenir bientot eur le tableau stereometrique de M, Bailie xge, ou nouveau systeme de toiser tous les corps, segments, troncs et onglets de ces corps par une eeule et meme regie. Ce travail, d'une im- portance majeure, comme tout ce qu'a produit M. Baillairge, est marque au cachet de I'utilito pratique. C'est un esprit progressiste, un jugcment rare et une forte conception, qui out preside a son execution. En le cou- ronnant d'un premier prix et d'un diplome, le jure a su rendre ten)oignage au merite, et nul iloute que nos colleges et autres in: titutions de premiere classe ratifieront cette appreciation en I'introduisantdans leurs classes pour aiuer I'enseignenieat arda des matheiaatiques. — ^Opinion Publique. Sept. A. N. MONTPKTIT. XX THE STEREOMETitlOAL TABLRATI. No. 2272-71. MiniaUude V Inatvuctinn Publique. Qi'KBKc, cc S('i)t. 1872. C. lUiM.AiiuJK, Ecuycr, Quebec. Moiif^ifur. — .I'ui I'lioiiiicur ile vous transmettrc, Kur rnutrc fouillct, copie lie la resolution u dames du couvent de Jesus-Marie sur le cliemin du ('a[) Rouge, ont toutes (lc>;ide que leurs eleves seraient iiiierrogees sur ce lal.leau anx prochaitis cxamcns. Un de mcs amis, in-titutcur diplome d'Ecole academiquc, nc craint pas d'allinner (pi'ii I'aidc de la t'oriiiule et du tableau stereometri(iue, il f'erait coinpreii liv en qui'l((ues le(jons seulcinent, a un eleve, ayaiit lies aptitudes (jnlinaires, les toise de toutes espeees de aolides avec plus de succes qu'il ne I'a jamais pu obtenir, en un an, et meme en dixdiuit mois, avec les lurmules t^uivies jusqu'a present. " C'est si simple, si clair, dit-il, que 9a saute aux yeux meme des enfants." Quant ^ moi, M. le Redactcur, lie d'amitie avec plusieurs instituteurs possedant leurs diplonies d'Et:ole Modele, je connais leur opinion et sais leur desir d'enseigner, p^^ ' % -1 / SECRKTAKTAT 1':NE1UL iu:k TKrKK.UT, It-, AFFUANCIIIR A i'I{i:sii)i:ni.s ii()N.. ,, . Ildiioro Ariioul. dfifi'i- iV Ariidrmw J'ri'xiiind (If III Swiiic lUnr. il tn- slrili-finil rl il'i'ihirilliiin imliilhl irif. I.Duis VxiiMvyMiil'in- ih I'aiiufi' scim- liiiic. Va'IM'KKSlDKNT.S HON'- MM. , ., ,-^ A do liiinpi'^. I'lidnir rn liilchcliiii'liii'- 11. CIuim';, uii'mhir liliilaiiv (''- hi Si«-iil( irmili-cii'ihKiii' ih- J'lin'.i. Hi- ir-/us en dira ce monsieur. Je Huis tres aisc. Ires cher Frere visiteur, que vous preniez connais- pance de ce systeme, par ce que je ne coniuiis personne qui puisse niieux que vous apprecier le merite de cette nouvelle decouverte. Ottawa, 17 Decembre 1873. J'ai cnseigne, uuii-meme, depuis de longues annees, cette f-pecialite d'evahiuiion des surfaces ct solides, et, vu rexlreme complication que comporle ceite etuiie, j'applainlis vraiment au mode somviaire que vous venez do imu reveler, lecjuel parait evideniment destine a suiiplanter le systeme suivi jusqu'ici. Sans elre revolutioiuiaire, j'aime ce-i pelits bouleverseinents tendant a reformer certains regimes parfoi- trop conservateurs, lorsqne surtout cea benins lutadysmes, n'ont d'aiure etfet (juc de vuigariser uue branche d'en- seignement qui devrait etre accessible ii tous. Voire devoue, R6vd. 1'f ere des Ecoles Chretiennes. F. Andre. IP TEST1.AI0NIAL8. XX VI ( Tfiiimlnlinii). St. Thomas, Di'ceinlicr, 1.j 1"^T;5. Siu, I ln'fT to acknowledfrc vtccipt ol 3onr Utter < ''tlip 4tli instant int;irniinr its simplicity — you will soon, I say. have the sati>factioii (jI seciii" it in n-e in all educational institutions, even the uio.st elementary, tiironi'hout the Province. I herewith send yon a letter of introduction to our venerable Ihother Patrick, in Paris, lately a visitor to the idiri-tian .-clmols in the I'nitcd States, a nuin of great merit and a very great lover of Science. The sfcon.l letter is for the Rev. Brother Li.'onti, vi'siior to Kmrland and resiiim ' in London (.'rem h) and who recently vi.-it'd (.'aiiada. When jiere he saw voiir work on (reomelry, ami pas.-ed high encoinnims mi it, [ have no doubt but that he will most willingly adopt yonr sy-item. The third Ktter is fir the Rev. Ikuther Paulian, visitor to Xew-York, a matheinatician olthe first (mier. I stopped at Quebec with the intention of seeing you, but wa-i infirnnd th:it yon were ont of Tnwn. i think that the llev. Uruthcr .\i)liraates Diivclor of Quebec, who is so well known in France, will do himself tJu. pleasure of giving you several letters of intr iduction. I have the honor to le, Sir, Ytiur very humble Servant (Signed) FiiEiiE Basiliav. ? XXVIII THE STEREOMETKrCAL TAHLEAU. (TniiLiliiliiiii). Ktk. Axxk ]n: \.\ I'kuadk, I^.'mI Driciiil.cr l-T.'!. Sir,— I liiivi' llio lioiior to ;ickii(i\vK'l.;i' ihi' receipt ol' yoiir iiit' lestiiii; letter (pftlu- 22.1 iiistHiit. Willi Vuii, I slioiilil very miicli like ti.i we ymir MereniiKtiie'iil 'I'ti'-leau fisriiriiiir in iny Selinol, nii'l if tin- (rovermiicnt will Imt li.i'l a livl|)iii(j liaiid tiicrc if* imt little liniiiit it will lie al"pi"il \>y all lur Acitli'iiies aiui Moiji'l S.OiiK)!.-'. IJclieve me, Sir, m the I'licii 1 nf vuiiiii, tn whose iiiscniction i have devoted myself for 28 years past, lui cxt.rtion will he waiiliii'j; on iiy part, \ter of J'ulijic Instruction to suhscrihe for your TaMiai; and intmliice it it) our Sc.i nils, Acaih^mie^! and M"di'i ^rl,.' 1-. 1 lou nf i!;c opinion that the yoiuli of tiic Country will ilci i vt' iircat au vanta;_'t' truiu it and that it will contrilmle n t slijililly to di-eminatc amoiiL' tin' pei p!c a ta-l'> t'^r tiie iiuehanical .'I'ls, a taste whieii, so to say, only l>.'.in-- t" lia\c txi.-!ence umoiiii us. I liave no vnu have lieen at in th' advancenicnt cf n-e|nl seieiii- tlii'iiULiliiiUt the Country. Tiie Ihitterinjr t( tiinnnial.- eonfei led np"n y^u hy !•' ranee ami the Uniie 1 States ^In^iild iniipre>s up.>n i1i..m.' at ili" liead dlUnr .^I.or.- the ju-^tie.e ot'ciiininj- III yi.iir aid ly a-kin:ol' ilie Lclt s aiiire i,i v. le ;i >iiin wdi;oh w.iuld renninerale you f^ry'iir iiiv:i!uali!e lal'nr and reiinliiii-c yon in tiie amount vou have expended. I am ihei'eliire prt pare I tf it- ulijecl tlu' introduclicui ot'your excellent Tahleau in all our Sell' ml-, or of ih man- dim' tif the l,e::i^lature to indi'iunify you tor yuur expendiinre and lali.ir. T will \Nrite to Mr. lietiairneau jiir a eopvut'ihe pftitioii I ein.: si.Mied and think 1 can assure you of ohtainiiiu' tlie siLMiatures df a j;""d m;iny persons ot inthience in this locality. With consl(U'ralion, \ remain, Sir Clis. Baillairj^e Esq. Your devoted Servant Architect &c. Quebec. (Si<.Mied) 1). N. St. t.'vii. QfEBKC, Sept. 2Ttii is";!. The un lersiirned who have witnessed the many advantages of the Stereoincirical Tahleau as applied in the teaching' of (li'Mmetry and .Men- suration, eel., to the pujiils ot' the (^nidiec Schoid of Arts and .M.innlaeiures. Would reijomniend thai the .Montreal Sclmid he also provided wiili one or more of these useful adjuncts. (Signed,) Hon. I'L Ciiixic, J. WooDI.KV, Jj. J. JJoivix, Jievd. U. At liET. Member of the Board of Arts & Manntactures for the Province of Quebec. SYNOPTICAL OK ABRIDGED KEY TO TIIK AUTIIOU'S NKW SYSTEM OF MEASURING ANY SOLID, SEGMENT, FRUSTUM OR UNGULA OF SUCH SOLID. ^ BY ONE AND THE SAME KULE. (1.) To the fium of the areas of the opposite avd parallel ends or Ixtses of the hoOij to he measured, add four times the area of a section thereof parallel to these hases and eijitidistaiit from eaeh of tlicm. and mnltiphj the whole hij the sixth part of the heiijht or length of the solid. (2) To be brief, wo will call ''intermediate or half-icay aection^^ the section in qnostion in (he formula; or .ti^ain, and at will; " centre section'''' "middle section,'''' and we shall alwiiys dcsif^nato this section by the letter M, initial letter of the word middle as wo desi solid nnder consideration, shall always be the distance between its jjarallel bases or ends, that is the perpendicular drawn from one of these bases to the other or to the plane of this base, produced if necessary. Then the formula will write : Vol unie = (area IJ + 4 .irea M + area B') x ^ L or H. or : V.= (B + 4M + B')^LorH. or, ^ to dispose the areas so as to facilitate their addition : C + area TO ^ + ^ V= < + 4 area M V x J L or H, or I + 4.M ( + area B ) (+ J5'> Sum of the areas X i L or H. XXX SYNOPTICAL OR ABHIDOKD KKY Nature and value of the bases B, B'. (1) Soiiutinu'8 OIK! of tlie (MhIs or bases of the solitl, ;is with the ItjrjMiiid, cone, eoiM»i(l, ne^^nieiit or iiiiyulii of a Hi(>int and its area, eonseciuently, null or equal to zero ( 0), Sonietinies, eaeb of tiiil to maintain entire the formula and to write, as the case I ■ may be : areas areas (+ H) ^+ '»^ V.=: , + 4 M V or, V.=- < + 4 M ^ Sum X J L or H. Sum x ^ L or II. areas ( + or,V.= Sum X J L or H. Snm x ^ L .r II. (5) REiV. It is clear from what ])reced( s that the respective surfaces in question are all i)hine surfaces, or must be considered as such, and that, with the author's system, every surface is null, to which a plane surface or a plane can touch but in one point, as in the sphere, splu'roid and conoid ; which does not prevent one from measuring in the same manner by the formula, and with the same j accuracy, a spherical cone or pyramid, or any frustum of such a body I' c(»mpris('d between paralled or c(uicei trie bases, one of which is I consequently concave and the other convex. ■i (C) These enunciations would l»e quite suflicient to give a perfect understanding of the autlun's sj-stem, but some observations concerning nnne particularly, if not each of the solids of the tableau, ( at least every category or class thereof will perhaps not bo useless. (T) We say "class" or •'category" and in fact it is pi()i)er to observe that the solids are disi)osed, on the tableau, by grou[»8 or families, each in one or several vertical rows. I'hese rows are 20 1 iu number and the horizontal rows 10 in nundiei-, forming 2(K) jiieces. TO TUB 8TEKF.0.MRTRICAL TABLEAU. XXXI Tlu^ first row to tin* rij^lit (it woulii l>c iinlifliTf-nt to rovovso tJio onlor (iiul lic.Lciii at the left) compiisos the priHiu under suiue of its varied forms. (H) The four foHowiiifj raiif^es oft'er the ])riainoi(l, under several diversified aspects (see inhoductioii, i)af;e (!) ineliidiii^ tlie re/jfuhir or i»latonio. solids, (dodecahedron, iconahodron, &c.,) ivnd certain unguhe of prisms. {\}) The sixth row, still ;^oing towards the left, is the pyramid aiul tlie frustum «>f tliat solid. (10) Hows 7 and H sliow the ri and 10 are the right and inclined cones, their frusta and unguiie. (12) II is the concave cone with its varieties and sections. 12 and I'-i are tlu'i right and ini lined parabolic and hyperbolic conoids, with their frusta, ungula! and trunciited unguhe. (i;i) 14, l."} and 1(>, the flattened and elongated spindles with their decomposed parts and varieties. (14) 17 and 18 are the sphere and its segments, frusta, ungula), &c., spherical cone and i)yramid and frusta of these bodies betwc ■; parallel bases. These solids ofl'er also to the appreciation the spherical, tri-rectangular, tri-acutangular, tri-obtusangular, &c., triangle, and facilitate to the pupil, tlie understanding of spherical geometry and trigonometry, and to the professor, the teaching of these sciences. (15) 1!) and 20, finally, are the flattened and elongated 8i)heroiJ with the decomposed parts of these bodies. See again on this subject ** The Introduction " page 7. Let us first consider the PRISM OR CYLINDER, Right, Inclined, Tvristed. ^ (JO) The prism is a body whose breadth or size is every where equal or uniform ; it is, in other terms, a solid which throughout its whole length or height is of invariable diameter or thickness, and the opposite and parallel bases or ends of which, as well as each I. See tlie liilroduction, page 11, laat, |iiuagnipli, letter of the Uevd. M. Uilliou tuuthtiiuutiuiHU ut the St. Sulpice tjeuiiuuiy, Muutreul. ' ■ !* XXXII RYNOPTIOAri Oil AiminOEI) KKY :( .t ' 1 -'■> section parallel to tli'iso bancH, are coiiHJ'ciiiciitly.Kiinilar and <'f(iial plane fi^iin'H; llicso U/^iirt;s may Indid'tTciitly bo nTtilincar, rinvili- near or nuxtilincar. We will tkeu (d)tain the solidity or volume by making C + area W ) V.= ^ + 4 area M \ ( f area \ V ) Sum of areas x ,\ L or II. and, Hn]>posiii) return to it of himself; for one soon sees that it is the siune thing to multiply any luunber by another number, or to multiply ii at tli(^ half of its altiliidc is (|ia,i;c H.'i, icni.) lialf tliat of llic liasc. Now, this same half-way incadlh of tiiC! tiiunKh; fiirnisii«'s till' concsiKtndiii^ diainclcr of the pyramid oi of thu cone ; tliat is. llic diamclcr of the iialf way scclioii of ihc solid by ii plane parallel to the plane of its Imse. The cone, if i'i;>ht, has for liasc u circle ; if inclined, an ellipse, and for its middle Ht'ction parallel to the base, a circle or ellipse siinilai- to this hase and eiiinil in snrface to the fourth part of it ; tiie other hase or end, of llie (>()ii(^ or pyramid, is a nieic point, and its area in coiisnineiicc is null or = 0. Which ^ives us: M. 15,) i <>) a. M ^ = { AM [ Sinn of the areas x^Loill. Sum of ihe areas ■ \ J,()iH. Ami supi)os. t t ) the l»as(? = S + 'I ^ \ > =\, (+ jS S. of the a. X J L or II. S. of the a. x iLor H. That is : for the pyramid, the cone, the formula icdnces to mul- tiplying thi^ surface or aica of the liase liy (lie i. nf \\\c hciolit. PARABOLIC, HYPERBOLIC CONOID Right, Inclined. (30) Hero the base is a circle or an ellipse, accordiii;^' ns tin* solid is rifrht or inclined, and the half-way section biitweeu tlie base ami the ap(>x or the opjiosite ends, is, as any othei' section parallel to the base, a li,i;ure similar to such base and in tin parabo- loid, equal { 7 ) in area to the half of it; or, which is tlic same thing, the diameter of this section is equal to tlie square root (see the tables) of half the s(|uare of the corresponding diameter of the base. The other base or end of tlu! solid is but a point, since we liave agreed to consideiMis such every curved surface wliich a plane surface or a phuu* can touch, at if time, but on an inlinitely small extent ; that is, a i)oiut. Whence : ( + area B' ) y.= ] + 4 area M [ r + area 15 N Sum of the areas Sum of the areas X > L or 11. X ^ L or II. 11' ' XXXIV 8YN0PTICAL OR AnRinnRD KK.Y ';[ ( r 11(1 SlippON. S ' 'V (+0) (;$<,', H or L lIlC 1»IIS»! = < ^ 4 X i C = +-f ^Z. < til' = 1, + 1 + 1^ (l: ) four great circles ^ or (ellipses as the ? x ^ R. case nuiy be. ) Sum of the areas x^ diam. or II. or L. Sum of the areas. X J^ D or 3 K. Ci'.l) REITI. As for the spheroid or ellipsoid, it is indifferent under which aspect it be considered, respecting its half-way section and its heiglit, lengtli or diameter : but as it is more simple, to find, either by calculation or from the tables at the end of this treatise, the area of a circht than that of an ellipse, nnitters can be managed so that its central section be a circle, which will be done by per- forming the imaginary section of the solid by a plane perpendicular to the fixed axis. The solid would eqiudly be measured in an inclined position (171, R.) being attentive however, as has been said (it) to tak(! for tlie height or length a perpendicular to the plane of sect- ion and terminated on both sides by planes parallel to such a sect- ion and both of them on opposite sides tangential to the solid under consideration. ! ,-f Uil TO THE STKnEnMF.TRICAL TABLEAtT. XXXV SEGMENT of Sphere, Spheroid. ' (•21) 'I'lic scjjiiiciit Iiiiviii;,Htiit one <'(Hii|)iitil»li' liiisc, (lie loriiiiilii to nu'iiHiiic it (Iocs not tlill't'r in any way tVoiii tiiat of tlit> cone ■ cuiioid, pxcupt lio\vcv(!r that th« relation between the ai«a of i(,s Imse and that of its intennediate Keetion vmieH witli ilic liei;;lit of the wegnient. 'J'he radiiiH of thi,s Heetion in tlie Kcynient of ii Kplieie "small eircle of the spiiere " \h tMpnil (JI71, <■.) to the H'lnaie root (sec tlie tahle) of the jiroduet <»f the haif-vers«'d sine ^neight) of tlie se;^nieut, by the remainder of llie dianicler of liic sphere of wliicJi lliese/inient is a pari, and wlien necessar\ iliis diame- ter is obtained i>y dividin;;' the .^cpiaie (see the tables) of tiie radins of the base of the segment, by its lu'lyht, to get the reiiiiiiiidcr of the diameter. ( + area !>' ) ( + " ) V= ] -t 4an"a M[ = ] I 4MC f + area US i i l^S Sum of tlie arms x I II. Sum of the areas x }. II. FRUSTUM of Pyramid, Cone, Conoid, Sphere, Spheroid. (25) 111 all these solids with two jtarallel bases, the bases and half-way section are similar liynres : circles, if (he fnis- tnm be that of a right cone or conoid, sphere or spheroid cut by planes peri)eudicular to its fixed axis ; similar regular polygons, if the frustum is a part of a regular i)yramid of th(^ same name ; and, similar rectilineal, mixtilineal or curvilineal figures, if the pyramid is irregular. (20) In each of these cases, the vertical secti(ui of tlie solid by a plane parallel to its axis, presents a trai»ezium. Now, the mean b eadth of the trapezium is obtained by taking the hail'-suni of its i)aralled sides, that is, their arithmetical mean ; and this mean is precisely the diameter of the frustum at half-height between its two bases ; whence it is easy to arrive at the fivctors of the lialf-way section of the solid, and consequently at the area of such a section (see the tables.) 1. We do not add: " fegment of pyramid, cone and conoid" simjily becaiiso all fucli8egnicn(F, tha* is, all sucii ])arts cut off fr^m tlio aj.ioes of tlicse Fulids by a ])liine pa- rallel or not to the base, is ftill a pyramid, a cono, a conoid and us voliiuie 6iibj.?t to the formula already girun. I"1 XXXVI 6YN0PTICAL OR ABRIDQEI) KEY V = + aroa B' 4- 4 aiTii M + avcn 1? Sum oftlic areas +,\ h. UNGULA of Sphere, Spheroid, comprised between planes of sect- ion passing in any direction through the centre of the solid. (S^^ In ciii'li (>r tlicKo .solids, flic ojniositi.' Itasos or cuu.: are null as to area or==(i ; tlu' ot'utral section aloiu^ lias any value and this Kectiou, ill llie spliei'e. is a sector of a circle (a jtart of a circle comprised between au arc and two ladii) Avliiist in the sjilieroid, the same sect- ion is circular, if the planes of section have their common intersection in (lie lixed axis of the solid, in the other case it is elliptical. Whence, (he ciihic content is : ( -' area 15' ) Vz^ \ ^ 4 area M \ ( r^ an'., r. ) Sinn of areas x ^ 11. or L. (2S) K • y^. in practice, the leiii;' = 5+4 area M [ .'^iiin of areas x -J^H. or L of the arc of the sector may lie (Urectly measured, by means of a metallic libboii or the like, or of a tliin rod that can be titled to tlie curve of the solid, to deter- mine its circular or elliptical circumference, or any part of such circiimfefence. UNGTJLA of any Prism, Prismoid, Cylinder, Cylindroid, Pyramid, Cone, Conoid, comprised between planes of section having their common inter- section in the axis of the solid. (3ft) It is clear that tlie ungula of a prism or prismoid, cylinder or eylindroid'is nothin.u,' else itself but a solid of the same name ; that the unnula of a ])yraniid or of a cone is simply a pyramid having for base, in the case of the pyramid, any plane tlgiire, and in the case of the cone, a circular oi elliptical sector, according as the cone of which the unnula forms part, is right or oblicpie. As for the unguhi of a conoid, it will be considered, with respect to its measurement, as the segment TO I'HE STEREOMETRICAL TABLEAU. xxxvii of i\n uiifTula of a spliere or spheroid (see the following paragraph). It is ili'iir that the apex or one of tlie bases of the uugula is but a line or point, as the case may be, and tliat lu all such cases the formula is : V.= ( area IV J + 4 ar«'a M ( + area B Sum of areas X J H. or L. that is, as tiie ease V = may be. + 4 M>orV.= 5 +4M > + B ) (+ oS Sum of areas Sum of areas X J L. or H. SEGMENT, FRUSTUM OF AN UNQUIA in the conditions of the enunciation, par. 127, of the treatise ; that is, in the conditions enumerated in the two last paragraphs (27 and 29). (30) It is plain that if the segment in question be that of an ungula of a sphere or spheroid, this segment will have but one base of an}- value, the other base being a mere point. The base \nll be a circular or elliptical sector and the section at half-height and parallel to the base, will be a sector similar to the base. We will then have for the expression of the volume of the propc^ed seg- ment : C + area IV ) V.= < + 4 area M v ( + area B ) Sum of the areas X ^ II. or L. (31) If it be a frustum of an ungul' > sphere or spher- oid between parallel bases, the expression will be : C + Sum of the areas X ^ H. or L. V= + 4 + area B' ) area M > area B ) Sum of the areas + J H. or L. (.12) Finally if it be a frustum of an ungula of a prism or prismoid, pyramid, cone or conoid (for the segment of an ungula of a pyramid, coue or conoid, is evideutly a solid of the same . i ' ! : V: i ■ { ' [ I r III I 1 I "1' i ' i J: XXXVIII SYNOPTICAL OR ABRIDQED KEY niiiuc as that of whicli the ungiila loinm part) the loiiinila will be, U8 always: ( 4- area IV ) V= J -f 4 area M [ ( -^ area 15) Sum of areas x ^ II. or L. SPHERICAL CONE OR SECTOR, SPHERICAL PYRAMID. (JilJ) To an-ivo at the voliniu' of these bodies, wc must do pre- cisely as for the ordinary cone and pyramid, .sive that the base and middle section will be convex or concave surfaces which will be measured according to the rules fomul (105, 107), the volume being always ; ( area IV ) V.= ] 4 area M [ i area 1} S Sum of the areas x J 11. Sum of the areas x J II. FRUSTUM of a spherical cone or pyramid between parallel bases. (Jll) Will 1)0 expressed as the frustum of the ordinary cono and pyramid by : area IV ) V.= < +4 areaM [ + area B ) Sum of the areas x J il. ■) FRUSTUM OF A TRIANGULAR PRISM that is, having its opposite bases or ends not parallel to one another. (35) The frustum of a triangular prism, considering any of its lateral faces as one of its bases, and the edge or opposed side as tho other base, is nothing el.,e but a ])rismoi(l ; such is the wedge when tho edge of tluit solid is of uue(iual breadth with the heatl. Under this view, the edge or side in (piestiou being but a mere Hue and consecpiently null as to area, we will have as an expression of tho volume : C area IV ) ( ^ ) V= < +4 areaM } that is V.= < 4- 4M } ( + area B > ( + \\ < Sum of thu areas x ^ H. Sum of tho areas x ^ II. TO THE STEREOMETRICAL TABLEAU. XXXIX Tf ilio frustum of the triangular prism (of tlio last para- ,a;rai>li) is itsclC truncated by a jtlaiic i>arallcl to one of its lateral faces, we will still have a piismoid whose volume will be: ( area H ) V.= ) + 4 area M \ ( + area ]} ) Sum of areas x ^ 11. SPHEROID WITH THREE AXES. (JIO) This solid, as also any scfjnient, frustum, oruiiffula thereof, seijnient or frustum of such uu;;ula, is exactly measured by the for- mula, whatever tlu^ direeticm of the ])laues of sectiou may be. There- fore, as tli(^ case may be : or < + 4 31 > or 8inn of tlic a. Sumofthea. Sumofthea. X ^ 11 or L. X A L" *>!■ il- X ^ L or H. COMPOUND BODIES. (117) The tableau jtresents a certain number of these bodies; for instance a cylinder terminated at one end by a segment of a sphere or R])heroid (such would be a mortar) ; a frustum of a cone ending in the sauu' way (a ;;uu for instance) ; a cylinder or frustum of a cone crowiKMl willi a cone (a hay-stack or ciicular tower with a conical roof) ; a cone ending at its base by a segment of a sjjhere or spheroid, like certain kinds of buoys. It is jdain that to measure tliese com- pound bodies or ;uiy other forms that can be decom])osed into ele- ments of the kind niveady treated on, the composing parts thereof must be separately coinputed, in order to nmke nj) afterwards the sum of such i)arts, according to the rules which luive just been given APPROXIMATELY. (See the genei'al expression, par. 127). (ft8) And very nearly, say generally at .00.5 or at about (i) one half 1 'r cent, more or less, often (see the detailed problems of the treatise) witii perfect accuracy or very near an exact result j is the volume obtained of Wl ' lr XL SYNOPTICAL OR ABRIPQED KEY ANY FRUSTUM of a Prism or Prismoid, Cylinder or Cylindroid, Pyramid^ Cone or Conoid, Sphere or Spheroid, comprised between non parallel bases. (39) By dcconipoKiiin; it, by an iina.!;'' iry section ])iniill('l to one of its bases and i)as8ing throu^li tlie nearest point of the otlior base into a frustum with parallel bases (tlie exact volume of which is obtained by the rules already given) and an ungula. ANY UNGULA of a Prism or Prismoid, Cylinder or Cylindroid, Pyramid, Cone or "yonoid, Sphere or Spheroid. (40) In this solid, as in the regular ungula of paragrai>h8 (27 and 29) the apex or one of the bases or ends, is but a mere line or point, and its volume is very nearly. (See the detailed ungulic of the treatise). ( area B' ) ^ i V.= •{ +4 area M \ That is V.= < 4 M V ( + area B ) ( + \\) Sum of the areas >< ^ H. Sum of the areas x } H. REM. As will be seen (H40) if the base of the cylindrical ungula be not truncated, that is, if this base is a circle or an ellipsis, the formula gives the exact volume of tlie solid, and in the sanie manner under the same conditions, the exact volume of an ungula of a prism will be arrived at. FRUSTUM OF AN UNGULA. ?a B' ) ill M } iii B S If the ungula of the last paragraph is cut off by a plane parallel to its base, of which the tableau offers examples, the volume will not the less be, as usual : ( area B' V.= < + 4 are; ( + area Sum of the areas x J H. ELONGATED SPINDLE, FLATTENED SPINDLE. (41) The spindle considered, as a whole, is not a usual solid ; it has little importance, and to be convinced that it cannnot be mea- sured at once, as with the elongated or tiattened spheroid, it is sufficient to compare it in one's mind to an exact spheroid having • M TO THE STF.nF.OMF.TRICAI, TAHT-KAH. Xhl /lio '^aiiu'' iixos or (liiinictcis. It is tluMi seen liow iiiiicli ils voIimik^ is less (liiiii tliiit of the corrcsiioiMliiiii' splicroid \\lii<'!i is inoic swollen townnls (lie fiids of its jixis in the clonuiitcd sidicjoid, iuid in the opposite dii'cctioti, if it 1»«' a tiattciicd splicroid. ('12) Unt if it 1)(" inii)ossihlt' to iirriv<' at oiwc at the volnnic of the s'lindle, one succeeds almost innneIaiie ]>assinj;' tiirou^h jts fixed axis, is an arc of a conic srction, as will generally be the case, the llattciied spindle beinn tlnii eoiisidered as two e(|iial se<;'mcnts of a sjiIk re or s)»lierni(|. niiiird Ity their bases or planes per- pendicular to the lixed axis <»f the solid, of which the composing- segments of the spindle form part. It will be seen (pnd). LI) that it is sutlicient to divide tin' spindle into two parts which will be measured separately an.i the sum of which wili be afterwards taken, to arrive at a result which shall dilter from the truth but by the Hth part to the quarter of one per cent. CENTRAL FRUSTUM OF ELONGATED SPINDLE. (Cask). (43) This solid which gives its form to the thousand and one varieties and dimensions of casks, throughout the whole world, is, res- ])ecting the measurement of its capacity or voliune. of great impor- tance, on account of the generally high jtriceof the contents. Well! as will be seen (prob. LII), it is sufhcieut to measure at once the half-cask to arrive at the exact volinne, within the (juarter to tlie fortieth part of oiw jier cent; niaxintum error of one (piart on a hundred gaUoiis or of one litre on -100 lities ami which does not exceed generally l\^ to ^\jof a gallon or litre for every J 0(1 gallons or 100 litres, and can, besides, by that itself, be rectitied, that the errcn- is known to be always in excess and that conse(piently the result may be; diminished by so much, if required. ( area 15 ) V.= < + 4 area M J ( + area M' ) Sum of the areas x J L or II. " f! ,! il i i ' li' ■ i 1 :■' t 11 1' 1 ■ XLTI STNOrTICAL OR AnRinOED KF.T CONCAVE CONE. (11) Tlic coiiciivo cone is ;iii;il(>^()u>*, ns (o its voliimo, to the f'l<>ii,<,'at(Ml lialt'-spiiidlc, wliicli iiiiiv also he ciilk'd a convex cone ; and in liie same way as we vciy nearly arrive at tlic volume of tlie lialf- s])ind1e, by nicasnrinjf it in two slices; so, if the liollow (»i convex cone is deconi]tosed into two parts, by a jdane i)arallel to that of its base, to nieasnre separately each of these ])arts and add them to/i,<'ther alterwards, the volume will be obtained at less than one halfi)er ccut loss. ^ FRUSTUM OF CONCAVE CONE "between parallel bases. (■15) A ureat rnany vessels of capacity assume the form of this solid and as the iioUow or concave cone is analogous to the half-spin- dle or carallol bast'.-*, oi-y of tliu biit^os boin;;, fur the lotrahodoii, a |)oiut — for tilt! totialiiUron is iiolhiUj; hut ii |)yramiil. — The octabudrou may b,- coiisidfrod as a double jiyraiiiid or a coiii|i(iuiid ol two i>yraniid.", bn.-o to liase, ind bo uioasuroii in this manner. As to iho dodecahedron, it will be seen that while each of its parallel bases is a re"ular i"nia>;oii, it." half-way section between these based, is a regular doca^'on or a ten ^^ided ngular jiolvgon, and each side (T which is c(|ual in length to thii half-Jia- jjonal of the ounta^ion. As to the niiddlo foction of the exahedion, if it betaken parallcd to two opposite and paiallcd sides of the solid, it will bo a twelve sided roi^ular iiolvKoii.tho pcriinct T of which it would lio too long to deterniint^ hero. If on the contrary the half-way section is supposed p irallcl to or tMiuidistaiit Irom two o|)iiosite vortices of the solid, that is, jierpondicular to tho axis or diameter uniting two opposite points or ex- tremities of tho Miliil, this -ectioii will bo a regular doi'agon each hide of which will be euual lotholialf-.'ido of the iriangle forming tho face of tho polyhedron. Finally, if any two Opposite sides or eilges be taken for the parallel bases of tho icosahedron, the half- way section parallel to th(8c ed-es and perpendicular to tho piano which unites them will bo a six sided synnnelrical pil.vg' n, two opposite and pariilled sides of which, each euual to the side of tho triangle forming the face of tho polyhel. It is hardly necessary to say that, in this treatise and in tho abiid"ed key, every thing which rohiles to tho so called tableau of 2110 models, is equalled applioalde to the reduced tableau of 105 models which tho author is preparing for elementary schools and with a view to reduce tho price of it in order to place it within the means of persons less capable of ordering it. In tho reduced tableno the moilols will be 195 in number, disposed in 15 ver- tical rows and ou 7 horizontal rows (15 x 7 = 105;, Then beginning for instance by tho left, tho 1st vertical row would be the prism, its frustums and ungulas. 2nd, 3rd, 4lh row, the pri-moid ai;d vaiious frusta and uugulo). 6th row, the pyramid, its frusta and ungulas. (Uh row, the cylinder, its frusta and ungulte. 7th row, tho cone, its frusta and ungula.>. 8th row, the conoid, its frusta and ungula. Stlh nw, the flattened spindle, its segments, frusta and ungulre. 10th row, lite ol'mgated spindle, its segments, fr,.sta and unguhe. 11th, 12th and 13th row, the sphere, its segments, frusta and ungulro. 14th row, the flattened spheroid, its segments, frusta and ungulse. 15th row, tho elongated spheroid, segments, frusta and ungulaD. And if in the tableau any segment, frustum or ungula is wanting to complete tho number of th<'se included in tho nomenclature of tho solids to which 'ho formula relates, it ca» easily bo mentally supplied in the same way, as, if required, any com- pound solid may equally be decomposed by imaginary jdanes of section, into elemen- tary forms, to submit its volume to tho required computation. KEY TO THE BAILLAIRGE STEREOMETRICAL TABLEAU. INTRODUCTION TO TUB NEW METHOD OF MEASURING ALL B iDIES-SEGMEXTS, FRUSTUMS AND UNGULAS OF THESE BODIES, BY OXK AND THE SAME RULE. Tlio iiiillior of till' new in"!lio(l lias llic honor to iuibrni Lis ool- ]('a;;ii( — Aicliitcots, Eii<;iiu'ors, Surveyors, Professors of Geometry anil Matlicnialics, the Direetoi's of Uuiversities, CoUeges, Semiiuiries, Convents aiul other Educational Establisliineuts, the I'rofessoi's and rMl)ils of Schools of Art and desii^ii, M(>chanics, Measurers, (juagers, Custom House and Excise Olhcers, Ship-Builders, Contractors, Ar- tisans and others of Canada and Elsewhere. That he has perfected his *' Steroometrical Tahlean " in order to reduce to jnactice his universal fonnnhi for finding the solid content *if a hodv of anv form or dimensions. Advertiskjient. — With tho view of protecting his discovery and invention and of guarding against any iBl'i-ingoDicn; of liis right?, either here or elsewhere, the author has taliun out Letters Patent of his tableau, as well in Canada as in the United States and in Europe, 2 THE STEREOMETRICAT, TAIU.KAIT. ^\^ If k ! ii On the subject of tliis foi'mulii the (^iiclicc Sciiiiiiiuy iil'tcr Im\ iiiii' eiibiniltcd it to compelciit jwrsoiis, v\]uvsava itself tliiis : "Of tin- tlK'oicins iiiid foiiiiiiliit' r(iiiiiik;ililc for their novelty, tlie most strik- ing' is the <;eneriil rule for the content of iiny known solid. An in- volnntiiry doubt at liisf tiikes |iosses>iun of the nd.id ; luit a caiil'iil cxatniiiiition soon dispels tliis lioul»t and one rcDiiiiiifi itslmntihil til siijht ofa formula su cleiu; tio cdxif to retain, (ciil <>/ irhich the (ijipHat- iiou is so (iciufdl. " An article in the '', Journal d'l-ducatiiMi '* s]ieaks of the .si((/ur( . T/fC »;r)Jc/,s com]uise almost all the elementaiy forms that it is possible to conct'ive. or to wiiich any compound Itody, l>y division or de<'om])osition, could lie reduced. Amcui:; them will be Ibund ail the prisHLs and prisnioids, <'vlinders and cylindroids ri,i;hr and oblicpie, and the frustums and uu;;ulas (»f tlicse bodies; pyramids, cones and conoids, ri^dit and oltlicjue, witli their fiustums and uu.i;ulas; the sphere with its sul»divisions into iiemispliere, (piarter siihere, half- quarter or tri-rectangular spherical pyramid, seniuenls, /.ones, jiyra- inids, frustums and unj^ulas; the prolate and oblaie spheroid and ellipsoid, Avith their se^i'ments, half, (|uarter. fnistums. etc.; in line, the s])indles and their frustums, etc., includiu,;;' casks of all sorts ; the regular polyhednms, concentric and eccentric riitiis. and a num- ber of other varied jmietical forms too many to enumerate here. The new rule or formula dispenses with all consi- deration, all preliminary calculation as to the nature, form or dimensions of the entire solid of w^hich the body- to he estimated forms a portion. I'iius, when it is required to lind by ordinary rules, tlie tMibical contents of a segment, fruy- tum or zone ofa spheroid, for instance, it istirst necessary to tind the axes of the solid so as to take them into account; luit l»y the new system :ve proceed immediately to estiumte the solidity reipiired, by applyiuij directly to it the formula (IV ) U i- -1 M) }. II. In like man- ner, if one supposes he has to deal with the frustum of a pyramid '.;iJ! INTllODnOTION. 3 fur ox.itnpl*', llic fisl tliiiin- to asccrlain is tliiit i) is one, in order to apply to it till' nnliiiar.v lulcs of iiMiisMralion ; for iliis itiirp(»s(', it is iniiiiri'ii lo iiirasiirc llic rcsin'ctivc lfii;ft!is of tlic cdiccs or sides of till' iijiprr and lower liases, ^.o as to estaldisli tlie pioportioii between them, ami lie a^'SIl^ell lliereliy tliat tliey are, or are not pi'opoiti<»nal, ■..itiiiiMt wliieli the solid to Ite estimated is not the frustum of a pyni- iiiid : whilst, on the contrary, l>y the new fonnula, it in siitlieient to lie ecitain of Ihe jiiiiallelism itf the sides or ed^es (wldeh is seen at ii j;Iaiiee and without any measurement) to ])roeeed direetly to tlio aiiplicalion of the rule ; for, from the authors jioiut of view, the frus- tum of a pyrandd, reput<'d sucli, is re;j;ard; d as a prisnioid, and sub- ject, on that account, lo the general fonnula, in tlic same way as tlio whole pyramid which is also a prismoid. But, setting aside all preliminary consideration as to the nature of the solid to be measured, and of tlie Ion;; and alistruse calcilatioiis which must he made for that puri>ose when the ordinary rules are followed -it is to be reuuirked that the calcu- lations wiiich remain to be made to llnd tl)o content of tlie solid or liijnid in ([uestion are laborious, dillicidt, lon^, and sonietinios never- ('udinn', as for instance. Avheu they relate to tlu' j^najjii-.ti; of a cask, or the measurement of the, frustum of a spindle. There are very tVe(piently aljicbrac formulae, differential antl integral calculus, and a simple nds-print in the formula of which the mind can not pene- trate ov follow the mysterious intricacies, — an error which may not be detected and woubl cousetpuMitly r«'main uncorrected — a simple error of this sort is enou,nh to render the whole calculation nselesa> and necessitate^ itsbcuu!; formula to learn and retain, and that of the simplest nature, the mind can follow it step by step, and tin; eye itself perceive immediately it there be error. At present, there are as many difterent rules as there are solids : one for the i»rism or cylinder; one for the l)yramiil or cone : another for the frustum of the cone or p.yramid ; a third for thi> si»here ; then three others for the segment, zone and nnnula of this body; another for the spheroid, with additional formulae and in eipial number for the segment, frustum and ungula, according as the intersecting plane is parallel or inclined to the small or great axis or to any diameter whatever of the solid. How many otiiei' formulae dilfcring always from one another, and each of them from all tiiose already enumerated, when it in necessary to jinive jit • 9 J: I .i I . I ill ■ i i r\ '^ii ^Ml^ 4 TUB STEREOJIKTIUOAT, TAHr,P..\(r. (lie cniitciil of a i>aralM»lic or Iivpciltnlic foiioid. ri,:;lit or ol>Ii(|iif, <.!" a sc;;iiicnt (*f a I'iu'ulai', cllipliial or oilier spiiidlc, ol" an imniila of a (•.vliiitlcr, cone, conoid or spiiKlli". Weill we can now l;i.v aside all these rales, all these varions forniiilae wliicli it is iin|M>ssil>le for the nieiii(>r,v to reliiin, antl foi' wiiicii we alwa,vs need a liooiv ai onr dis|)osal J we «an set aside all tliese ninltifarioas fornnilae with llie books c(»ntaiiiiii;;' them, and armed with tiie new system, take hohl of any solid whatever to lind its .•onliiit l»y llie aid of a quite simple rale that may by renieudiered like the Lord's prayer, namely : "to thesnmofthe parallel end areas, add four limes the middle area, and multiply the whole by one sixth part of the hei,';lit or length of the solid.*' The calculation is thus reduced in every case, by the authors system, to that of the areas of the opposite bases and of the middle or interznediate section, *<» attain Avhicli end is j»recisely the object of tiiC taldeau in ((ueslioii, w i>.eie. (Mie may imnusdiately see the foini of tin' solid, the nature of the surfaces which foini it •; bases, and, by means of a stroke or line, the nature and dimensions of the section, surface or ba>^e half-way between the bases or o|)poslte extremities of tlu^ solid to be estimati'd. Ill this manner it will be. seen thai in the [tyramid, the cone, the conoid, tlu^ segment of a sphere or spheroid, the upper suri'ace is jeduced to zero or is nail, whilst in thi> s])here, the spheroid, and certain prismoids, ('ach of the opposite surfaces or areas l>ecomes notluiijj;, v.iiich reduces tile calcnlaiion lo multiplyinn' 4 times the middle section by the si\tli part of tlu; height of the solid. The formula is mathematically exact for pi i^ ms ami prismoids, cylinders and cyliiidroids ri^ht or olili r'> s:\lis('iU'lory Ity iirMiH of tlio ',r,Mif'- I ill r< nil I II la 1 1 1:111 (Mil he i|ii:m- liy miy of 1 lie oi licr iiiiMii.-i In w Iiii-ii \' i- roiiiiiiinily have t'ccoinsc in praclic*'. It saDit'cs t'lir iliis (o divitl* ilic halt' spiiKlIc or fnisiiMii (if (Iii.H soliil info two, or at most into ilircc |»ai't;-<, liy sections or |i'aii!'-< paralli'l to llic Iti-;"-*, aJid iipoly tlii' for- mula separately to eieli of these pai'Is. to arrive at a result ajiproi- chlii'^ almost to peil'eei aei'iiraey, and so ol' tli • unnula^ of jnisnis am! prismoids, ol" pyraiiiiils, cones, conoid-, ami spindles, of sp'ii'res iind spheroids ;inl the IViisI inn < of Ihes" inr^Mlas helwren pai',iil or the half of one jicr cent. Let UB considsr al30 th3 iintncn-J3 advantage of such a tableau for tha mere nomenclature of bodies By it, the least advanced pupil'3 in CdUo-jcs, Convents, and other schools, are enabled tc prosecviie a study from which they have hitherto been debai-red. In i'i'''i. for I'lo mind io seize and iindi'rstaud, on pip.'r, thv. t^rapliir repres -at itioii of a hitdy, ir nee led a i)!'evious iciio\vledu-<' of drawing' and ]tersp;n'rivs' which is only acquired ;^('nerally l»y advanci'd pupils ami in the last ;, ears ofcolle!;-e ; wliilst to-day ilie yoiin;;'est, tiu' least advanced may detacli the mitde! tVoiii the talilean, take it, held il, and liamlle it ; the masier or i>rolessoi', tlie nun or mistress will tell him or her tin? name of ir and poinr out an "xamide in the thousand and one objects met witli in our every day pursuits and re(piirenieiils. What the several models of the tableau may represent. The segment of an erect or reversed cone will, according to circumstances, represent ;i l"\\<'i> liuhthouse ,1 tirmbler, saltinu," tni), Imtter lirkin, Uucket, an ordinary tuh oi' vat or of 8iieh a.s are hvhu in breweries luid elsewhere ; tlie flat or dei>redsed V' 1 ■I [ ■ m ,■'1 .1' ■% m S f I 6 TTTE STKnrnMr.TRTOAL TAr.LF.Ar. coil!' will Fn'^f'^^i'st tlif' i'lci! of tli;^ (ovcv or hottoni ot"n raiiMmii. of a I'oii", ct;'., til!" pyiiiiiiil will hi' t'l ' iin;m\' of'a iiiiiiiirlc nr of tlic s]>ire of a i^.'c 'p! ' (■!:;•. ; tli ' ri'^'!u cicii: 1, t!i!' .si'^'m-iit ol' a .sphere or splio- roiil will h;' a (l:)ai > m )r>' o)' l;'s-i ('Icvateil or s;so(l, wlii'st the sud:' s)li I, ]>■/ I'.'V ■rsiii.i; if, will pr(v-;;'tii ,,> the iiiii'^'ination a basin, a r; scrvoir, a boiler savh as is I'ouiid la the sii,i^':ir luU, the (li.stilkny or oilier inainirachny. The iiioliue:! and reverssd conoid, ths sajment of a sphoroid equally inclined and rcveraed, will r'^ present the space occ'Upi(>!l by aay liquor, liquid, or tluid whatevor at llio bottoai of a vessel whieh iVoin o'.'.i cause or a: other has become inclined ti> the ]iori/:)n. 'i'he piisni, th<' prisniuid will liic-'wlsc bo the laoihl of those ihoasaail :iad one ]ilai!i oi' claitoratc roofs which crown onr douicstic habiiaUoiis, our public buil(liu;;s, oui' palaces. Tiie roof of tlif comniou doi'ni >i-v. iadow, if it lie sloped, will b(> a tri insular piisin obIi(jue o: inclined : il'it be not s >, it will be the frastuni of a i)risn), and th" body of the d.ivaier will be. imliilerently, according' to the aspect 1 ador wliieh ir is viewed, a ri'^hl triau,uular pri-ni, or the nn^i'ula of a quadran.iiular prism. Amouu'st the pi'is- mnids will also l)o found the stitdc of tinibei' o.' saw lou', the trunk of a tree, the I'aiiroad culiiun' and embankn!C^^, the leservoir. ([uay, ])iliar. caniiiin,!^' tent, the spl;iy(Ml or scpiai'e o]»cnin;;' for a window doc). uich Ol' loop-hol • in a wall. The(iuarter of a sphere or si»he- roid, the half seu'm-'iit will be tlie vault of the apsis of a clinch or of a hall tei'ininateil in the same manuer. Tiie whole s])here. the sphe- roid will lu' the billiard ball, the ball of a ^tee]de. the earlli wo inhabit, the luoon, the sun, the jilaiuts. In a word the niodcd of e:ieh of the elementary forms which it is possible to conceive will be foauil on th^ t.ibLviu, and can !»;■ iiaudled at pleasure so as to exa- mine it under eveiy possible asjject. The base!?, lateral faces, central or intermediate sections of the inodcls of the tableau, also offer to the pupil, in the previous study of the inensuration of sur- faces, the repT-esentation of each of the plane figures, and of e)ver,v sort of convex or concave surface of either single or double curvature, '['he sipiare, rectauule, lozenp,e, ijarallelorrrani, trapezium — the ciinilateral. isostades, scalene, riiiht-aiiiiied. a(aife-an,uled. obtu- se-augled triangle; — the regular, irregular polygon — the circle, ' 'l 111 INTRODITTION'. 7 scHii-circlc, <|n;i(liiiiit . sector, sc^iiicnt. Zdiif, l'iiii\ coLccntiic iiml cNcciitiir liiii; — the ciliiisc. m mi ellipse, senmeiit of elliii.se less or gre:iler lliiiii ilie half' - lli<' other eoiiic .".ectioiis. ]>;iliiliolii, iiviieilioia — tlie ('(luiljiltial, (! i-reehiii,'4i lar, I -olitiise-aii.uulai- spln-rieal Iri- an, i;le. - l!ie sjilieriral se^iiieiil, xoiie. .ne.— .se,i;'iiieiirs ami zones, &c., ol'lirolatc ami oiilati' s;ili"roiils or elli|is(ii(ls. \f. The tableau will Lave the cif: A of interesting the pupil and of makings attractive a study, heretofore dry and almost impossible. I-y ni;ai)s of llie IrJdean ami llie iU'eiieral I'oriiiiila, sleicoldiiiy ami st; reiiimtry. iliai i.^, i!ie iiomeu- clatiire. i)i()[»ci'iies and measiireiiienl ol' hodics can lie tau,^lil in e\eii e]( iiieiilai'V s.'iionls ^Vlle|■e siillieieiil ,n'e!ini<'Iiy lias iii>! !u en taui;lit to enable iIh' pnitils to deteiniine llie area of any plane limire wlial- ever : since, in icality, llie proposed system rednces the ni;'i!sural ioii of bodies or \oliinies to this — tiie leniaimlrr ol'tlie work Ixiu'^ merely an additi"ii of the areas thus fonnd j'.nd the nndli[ilicaiiou of ihiir snni by tlie sixth i)art ol the lui,i;lit (.f ijie solid. THE FOKMULA. Til!' iiri>m()id il formnla proper, is, of eonrse not m-w, -iuce it has been sonu'iimes used in ilie eoniputation of :;r!ii\vori;s on rail- ways and otherwise ; but it {\:)cs not appear to liave sn^^'^ested itself in the ease of the frustum of a eoue ov of a i)yramid. an imdined co- noid or segment of a spheroid, tlie IVus'.um of an elli[is()id (Muitained Itelween parallel i)lanes inclined in any way to tlie axesol'tlie solid and in .general to most of tin' S!)lids of my Tableau, and Ih:' ilvd. Mr, liillion, in Ins letter to IJi.shop *' Lai'oc((ue, that the author docs not uquiie tiiut oue should maku T w a TMX ' T'/VKOM: TK'CAT, TAIJI-KAI'. I I 111 '■ us (• (iriiis rnniiiili in ininiv cases Aviicrc a movi- sini])l(' cxiucs- '• sidii iii:iy ic|tlaic il. '' 'i'nic. IIh re aii'. iinl '• ma iiy ca.- ;'s. " lail some lliicc or roiir cases, wlicic till' ■.•,(ii( ral lormiiTa may lie i(])!ac(«l liy one o!' a mcic simple, iialuii': !)iil (ill' simnlilieil e\]ires.-ilc solid-.. A iiern-;il ol'llie loiio'.vin.u' lelt •!• iVoni jnol'rs.M))' LalVaiice will liowever siiow the wi.-ilom ol'liis views. OiuIht II (/(■(•;■. l,~;i. To M. ('. r> \ii.i.\[:;i.i:. " >ii, - '■ As to the coiicctiH'ss ol' the I'oi inula, none can doulil it, since w lien nromul.uat in;; it. as ycm !iav(> don<' in your treatise iMii!, you liavc youisrll' ;;iven all the necessary prool's to l>ear it out. " With res]»ect to tjie prism or cylinder, to lieuin ^^ itli. (Article Ivi.ll oi'yi'iir lreati->) il" o'ljecred to, tliat for ihi'se solids, at least, your rormula far tVom oileiiuu; any ailvaiita.m'. Imt complicates the i-ali'iihiiioii : 1 >houlil reply thai it is not so, since in this case tin- loiiuiila is inini'. dialcly leducrd to the ordinary tide. Thnstiie pupil will) !i;'-. already I;'ai ihd that every seetiou oi'a pi ism or of a cylini\iiiol' liic height is simply tlui same as muUijilyin^' once base by the whole li< ijilit : " and in 1'act; this is the case, but by appl\ ii!,u' the Ibrmnia as well to the prism iind cylinder, its use becmnes p'lieral f(M- all solids and oliviates the, necessity of learning' or lememberiiiL;' one single additional rub'. Ibr in line therein is the immense advaiita.^c ystem cuUiely dispenses w itli. INTRODUCTION. 9 Ajjain, for tlio pyramid or flic oono, as you give \t (1;')2.'> of your r.oouH'try) the surl'acc of thcintoriiiediato section is a quarter of that of tlic bas«> ; now t ^ 4 = 1, and I + 1 ~ '2, and it is dircetly seen that tlic litli i»ait of 2 is tlic sanu^ tliin^f as tli(^ tiiirdpart of I ; wlienoo it follows tliat Mic ;:>('iu'ral forniu' i ')rin;^s oiio back iinincMliatcly to the ordinary rule, and that, without tlio necessity of knowing this rule beforehand. " Again, let the ])risni, th<' cylinder, tin; pyiauiid, the cone, as lia])pens in practice, be ever so litth' convex or concave ; where should we be with the ordinary rules, whilst on the contrary in this case your fcunnila is the only one wliich can correctly cube the Ik y in question ; and for the spindle (l.v'il) the jiaraboloid (l.'SfU) be its lateral surface the least in the world too niiich or too little convex or bulged, the ordinary rule which consists in innltipiying its base by- its height and taking half the product, will give eitlier too great or too little a vohnne. How them in this case arrive at the truth, if not by y(»ur formula which, as in the case of the cask, introduces into the calculation the versed sine (or very nearly) of the greater or lesser convexity of the body to be cubed, that is to say the very ele- ment which tends to vary its cubical contents. " I have just pointed out the articles or paragraphs of your trea- tise containing the ])roofs of the correctness of the formula for the above mentioned Ixtdies ; paragraph l"))!! also proves it in the case of the predate or oblate spheri>id or ellipsoid ; — l.'ifiS, for the segment of this solid,— 15* ;t), for the hyperboloid, and 1581 to l.')U2 for the pris- moid in general. " The fact is that too few persons yet have taken the trouble to examine your l>ooks, so great is the t«'ndency with us to remain al- ways in the rut of the old routine. In fact, it has taken us 20 years to substitute for pounds, shillings and ])ence the infinitely more simi)le and exjieditious decinnil calculation of dollars ami cents, where the mere shitting of a point works wonders : it will take 10 more yet to appreciate your work, to introduce your formnla, your tableau indispensible ixa it is, into the general educaticm of this country. " 1 firmly believe, however (and it is too often the case, so little is a juoidH't heeded in his own country) that you will i>e immediately appreciated abroad, and I do not (h)ubt but that your tableau, once known in the United States and iMirope where, I am told, you have had your invention i)jitented : I do not doubt, I say, but that as soon as you have publishe*! your prospectus in a foreign country, so soon will ycm have orders and in great numbers for the introduction of the tableau in all the Universities, Schools and other institutions 10 THE STERKOMF-TRICAIi TAHLEAIT. I I iti!' !!f'' f I (It'voii'd to tlio tpiicliiiij;', iint only of \ ontli, but al-o of niaturor joarK Miiioii'j; all iialioiis. " ('. J. L.-L>! i.-VNTK. 1 'ri>/cnn(>r. 'i'lic Inllowiiit;- letter Ti'diii a distinuuisliei! iiiallieiii iiii iaii of Al- sace, I'laiice, set'J fortli visy coiicisely and j;eiieraIi/(> the nonien- clafure of solids t(» wliicli tjie Stereonietricnl fonmila lipplies. " \Vi;sTM(.i:i:i.ANi) Point, \. T... Itli X<>v. 1871. " ^^y Dear Sir. — f see tliat yon are hent on (loin;.;' all you can to render your rule foi' (indinii- the solidity of Jiny body \vha(«'V('r really useful and praetieal. I <-(tnsid;'r that a Stereonu'trieal i ablean .inch as lliat of which yon -^end nie the prnspeclus is (lie inuisiciisihlt* coniplentent of tli(> ride for the majority (d' persons who may rc(|niro to use it, and in coJlercM, etc., this will also be a j;reat liel]i to tlio jinpils who are .-^tndyiui;' analytical geometry of three dimeiisicm.s and sphericid triijononiel ry. " Ilavinji had <»ccasion to verify tlio exactness of your formula relatively to diltei-eiit kinds of bodies, I liave found in fact, as you say in other terms, that it is strictly ai)plicable to all polyhedrons without exception, the sanwofall solids <:feiierated l)y the revoln*^ioii of curves of the second order around one or other of their ])rincipal axes as w(dl as to sej;inents of these solids, Avliatever be th(> direction of tlu' plane of section. In this respect, it seems to nn- you mi.niit add to y()ur prospectus, that in general the rule is ai)plicable in a manner rigorously exact : " 1° To all solids generatetl by tlie revolution of a straight lino around two plaiu's parallel to one another limited in extent by con- tinous outlines of any form whatever and irrespective of the varia- tions of the relative vtdocities of the two extrennties of ihe moving line. " 2° To every s(did generated by a i)lane of dclinite (tutlino moving witii uniform velocity in a straight lin<' frttni one point to auotliei', whilst its surface varies in a corre.sponding maiiner as tlio square of the generating cord of a zone of any conic s» iiioii. " As to .stdids generated by regular curves of an i.rder higher than the conic si'ct ions, it is generally easy enough to sulrdivide th<'m, with an exactness luoic than sufticieut for all practical purposes, — so that tlie resultant partial solid may bc! classed in one or other of the two categories of solids which I have just dc-cribed. " Moreover, aiiart from certain kinds of ungulas of eleineiitary s(dids, I see few bodies of regular forms which may b«' nu^t with in l)ractical nieasurenu'ut of guaging or be in u.se in tiie arts and trades, for which a subdivisi(ui repeated beyond two oi- three times is neces- sary ; and as for irregularly shaped ungulas it w ill be very easy for you to refer to them iu your Key to the tableau. IKTRODUrTIOV. 11 " I foiii:'! il very ('(tiivciiinit, lately to .■>j)])ly lln' rule (j^'occcd- inu; by siil>(li\ isioii) ti> a tiiiiik of a liy pi'ilxilic ronoid yciu'ratcil I»y tlic revolution of a iiyix-rboiii of I lie "jtii order aromitl one of its asymptotes, witli (lie view of veryfyiiiLj liie dej^ree of itieeisioii broii.iflit to Ix'ur on the coiislrnetion of a eonver^iii^f eojiperlnlie havinji; that ]»arli( nlar sliajx^ wliieli I liave employed in a hydraulic! e.\l)eriment. "R. Stfckki.." Mr. Steekel, .■'''((>)• havln.n' jtroved the nia11ieniati<'al eoneetiiess of the foiiiiiila for all bodies iiienlioned by the author in his ]»ros- jtectds. has m:ide ioni;' and laborious analyses respeetin.if the •ipi)lie- alion ofllic formula to the un^culas of the cylinder, cone, eonoids, and sphei'oids, &e., &(•., r.nd lias demonstrated that in faci, as ractiee, does not ,i,'enerally exceed .Oil.') oi- the half of one p'M' cent, taking;' the whole body at one measurement, and (hat thiserror. lit ■ Ic as it, is, is easily eliminated and is reduced to nothin,!;'. so to say, by subdividin;.'; the uii^ula. the half frustum of si)indle, i\.c.. into (wo or at most into three parts, and a}ii)lyin;i' tint formula to lach of (hem and afterwards takinjj; the kuui of the com- jioneut i>ar(s. 'rhelir\(!. Ml'. Billion (Madiematician of (he seminary of St, Se.lpice, .Mniu real.) says that "the formula is ajtplicable to a whole series of other bodies \\hich the audior has n(>t sjioken of" audi here mean boilies to which it apjdies exactly. In fact, let us sujtpose any body wliatcvr mentioned by (he author, for example the frustum of a pyramid. This boily may be considered as formed by (he juxtapo- sition of an iiiliidty of jihines ])ai'allel to two bases. Now, let us sup- ])ose all tlir ,ilau<'sstrun,i; from one base lo the other by any strai.^lit or curved ,■ .. \\U;\[ ver, an^' susceptible of l»«'in!4' curved or bent in any manner whatt^ver. liy incliuinu'. bendin;^, cnrvin;j; (M twistin;i; this kind of xtrix, every section of (he said body is similarly af- fec(ed and a new solid results, of the sanu- bases and same heiiiht as the llrst, perlVfily e(|uiva1<'nt in volume, but curved to the arc of a circle, parab(>!:! or other curve under any law whatever, or bent of any an;;le ^v!latev^r, the sections r«'niainin.i,' always in the same plane. If the direction is changed into spiral and tliat the base is a circle, we have a a\ readied pillar, &:c., &c. There then are a multi- tude of bodies to which the same formida apjdies, for the reason that tliey are eipiivalent to the first ones. "The author demonstrates his forniuhi to be strictly correct for a great number (if bodi«>s enumerated anMip'o,v the ni'W system of ineasnienient. Now as to the correefncss of tlie results ^fiven by the formula in tin- ease of frusta of spindles, for instanee, and of vessels of eapaeity of this kind coniitared with those l)y tiie ordinary rules, the author could not do Ixtter than inihlish at length the pertinent remarks »>f professor Gallafi;her on this sultjeet. '' That this formula is matliematieally correct, as applied to al the solids enumeiated by you in y(»ur prospectus, there is !{. MM. Metliot and .Main^ui on part of the inofessors of mathematics <»f the Quebec Semimiry and Laval I 'ni versify, where tlu' expressions " etonne*' and "enchaute " sutlicieiitly show the hi;;h estimation in Avhicli your discovei'y is held by these comix'tent Jadiifs ; but, in my opinion, you do not sutUcii'ntiy insist on the ^leat value, the many aiul manifest advantages of your ride as applied to spimlles, the middle frusta of which are met with every day and in every i)art of the civilized world under the thousand and one forms of casks of every conceivalde size and variety, and the necessity of nu-asuring which with promptness, on account of their number, and with ac- curacy, on account of the generally valuable nature of their contents, renders some simple, easy and commodious rule, like tiie one now proposed by you, of the lirst importance to all maidvind. Now, Sir, that your rule embraces these valuable re(piisites, let me compare it, in its working and in its results, with the rules laid down l)y some of our best nuithematiciaus and authors such as Houny- castle for iustauce, see Kev. E. C. Tyson's edition of his mensuration, page 147. Problem XX\TI (for example). " To liud the solidity of the middle frustum of an elliptic spindle ; " its length, its diameters at the middle and end being given ; also *' the diameter which is half way betweeu the middle and eud dia- *' meters being known." llule, " 1° From tlie sum of three times tlu^ Sijuare of the middle *' diameter, and the s(iuare of the end dianu'ter, take four times the " square of the diameter betw^eeu the ndddle ami eml, and from four *' times the last diameter take the sum of the least diameter and ■' three times that of the middle, and 4 of the quoticut arising from 14 THE STKREOMCTniCAL TABLKAU. }]■■ § '' (lividinj;- (lie i'oiiiicr »lill( rtiicc l.;\- tlic latter will ;j,ivc the cciilral '* ilifltiiKr, *' i" Kind tliciixcs nf ilic .ilipso liy I'loblcni IF. niul llic area '* of llie elli|iliciil se;;nieiU, wlidse eord is the leii^^tli of tlie iVilstmii, " l).v I'u.ldein V. " .'{'^ Divide tlir(c t'. - tlie area tliiis I'Diiiid 1'v tlie leii;;tli of '' tlie fnistiiiii, and from t lie "laotient suliliai't the di,.k i. nee lietweeii " tlie middle diameter and that of the »'iid, and niullii)ly the ro *' inainder lt,v ei<;!it times the eentral distance. '• P Then iVoni the sum of the s(|Mare of the hast diameter, " and twice the sipiare of that in the niiddh'. take ilie inodiict last " found, and this ditl'erence miiltiidieach of these operations, irresi»ec- live of the details of the ui iltiplications, divisions and other com- ]»nta(ions necessary to ari'iv'' at them, take up twi» whole payi-s of the book, Ajtiilied, say to a cask oT'^S inches in len.^th. biinu diameter 121 inches, heaof said book, ;^ives 11,S,")-1^ cubic inches, very nearly, or 51 f;allons and .1 half-pints. Now, the same example, Sir, by your fornmla, brings out 11,- d'h).2 cubic in., which dilfers from the last result by only .<»()()( lOl.i or less than half an inch on nearly I'iOOO inches, or the :24()th part of one jter cent in excess, tiie 11th ]iait of a nill. Not only then, is your foiniula in this case to b' considered in every respect as accuratis as that of IJonnycasth'. b:;t it is really ornios ill practice; for, even if the error in excess attained tlie- nnixiniuin of .01).") or i of one per <t satisliielorily at pa.n'e 7(H, 7()!» of .\ our said treatise, in tli(< iiiinier(»use\ain|i]es y;iven hy yoii and I'lilly worked out and coin pa red ill eaeii ease wiili the results .id veil liy i'oiiiiyeastle's rules, tiiut the iiiaxiiiiiiiii enoi' in exeess ertiiieiitly icniaik, the rule would lie almost as useless in leaeliin;n- iiien>iiiation in schools, if imt in tlie i»iactice (d' it, as steam without the steam eii.uine or « leelricity without the tcde^'iapli. There are many other advantages, ap.iit from the mere meii- nuratioii of bodies, wliicli your tableau po>sesses, as enumerated by you in ycnir iHosjKM'tus and which it is useless for me to dwell upon, a.s I lully eoiieur in all that .\r»iiil(t In/ the Rei\ X. Muhiijiii, pvofexHor of MailtfmatkH at tin; Laval i'lii- rersHi/. It is easy to conclude that, in practice, unless it be known before- hand that it is reqnind to cube a sjihere, an (dli}»soid or se^nieuts of those bodiv's. it would be extremely loiij;- and dilbciilr to establish 1° the kind of ciirve to w Iiich the 2 directrices belong and 2° the posiliou of their axes. • "'"T IG TIIK STERKOMETRrCAL TABLKATT. Tlicvcrorc it is nnicli simpler to siipiMtsc tlie body to lie ciilicd iiividcti into !i Cert ill II niiinlifr of seel ions .so tlml the ciirvrfl side iiiiiy lie snisihly a sirninht line. Tlicsc scclioiis, like triiiicjitcd coni'H, aro ciibrd very readily l>y the stereoiiielricai Ibrniula. 'I'liis is moreover, the (tidy resort for all solids that the sten>o- metrical formula tan not ciilie at once. The same lemark apjilies << fofHiiri to solids terminated laterally, partly l»y planes and partly liy a eiirved surfa«'e. Hecause, in praetiee, tln^ stereometriea! foiinnla eannot ffive, at one attempt, the exact contents of certain Ixxlies, we nnisf not heiico dednce an arunmeiit ajiainsi this formnla ; and for the very siniph* I'eason that, in these cases, tiie measurement of the IkkIi/ as n irtittle is imi»ossil)le. And if in some exeeedin;;ly rare «'ases, certain very e, all this al.ycbra and calculus, all these ever varyin.H' formulas are soon, very soon forj;-ot- Yf- ten, and the piofessional, the iii;;lily educated man will lose; all trace of his mensuration of solid forms ; while the mere artizan, the me- chanic, the eufjineer ami architect, the measurer, gna;ncr and juacti- cal man of every jurade, who has never learnt aujj;ht but to computo areas of all kinds by simple rules not easily forgotten, need only- have recourse to sim|)le addititni, multiplication and division to work out the contents of the most complicated solid, or of a ves.sel of ca- pacity of any kind whatever. His less fortunate^ employer, the learned professional, will ajtpear to a (li.sadvantago in the eyes of the world at large from his incaitacity to do the same, unless he alsa shall learn how to use the formula in every case where college and univer.sity rules and formulas have been long ago forgotten. There are now a days too many other sciences to learn and college life i» 5 too short to allow of devoting yeais or even months to a study which can be mastered in a day, if old fogyism and conservatism will but I Htand aside. r' i KEY TO BAILLAIRGE'S STEREOMETRICAL TABLEAU. NEW SYSTEM OF MEASURING BODIES-SEGMENTS, FKUSTA AND UNGUL.E OP THESE BODIES BY ONE AND THE SAME KULE, (1) It is tiscful to <,Mtln'v inul jtrcscMit iiiidcr a conciso form tlie various rorinulii' or rulcvs Avliicli relate to the caleiilation of tli(! super- lieiesauil vohiinosoftlie various Ixxlios and figurcB previously Hi)okeu of.i A synopsis of tliis kind will allow one to refer more easily to tliose rules, in order to find at a glance tlie one required, con- cerning llie problem to be sol /ed ; and some practical examples of the vaiious cas(!s, will better teach the pupil the course to be followed to arrive at the result required. ("i) To determine an areji or a volume is, as Inis been seen, (itlltl iind Jl iinticisltiotl tliat tlic iiicnsiir' iii^ unit iH tilt' squiii'i- toot an < (> = ^. Likrwisc, if tlic cultif toise, ('(uilMiuN '^l(! cultic i'ctt, it l» that tlu! ^ niiit i.H rontiiincd 2U> tinit's in llic toicc, \vlii<'li Itcinji- (> lineal tVct;, its yoiuiii*' is (lOlN («.) «i (i x(i — UKI ; and if llit- niMc im tio coHtainrt 1(H)(( culiic (U'ci-irictrt'w, it is tliaL tlic nlt'a^ml•illy unit is tlie ded-UK'lro and that JOx It) < lO^KMtO. (Jl) 'I'lu' nicasiirinu unit whicli it is proper to einplov is nsmilly tlio K(|iiaro or tliticHhe (as tlw case may he) whose side is (:i;i:i and loll G«) the lineal unit which st'ived to estahlish the lineal dinn-n- sious of the li<,n»ie to be measured j but it is clear that notliinj;' jue- vents one from couiputiu;; in scpiiiic metres or yards the snifaee of H lij;uic v'hoHe dimensions are expiessed in feet or inches, &(:. j and in tliu 9i»m« way it will be indillereul to express in cubic feet, in nu^tres oi toises, &('., the content of a body or solid, whose lineal dimensions niij^ht !)'• <;iven in yards, feet, or inches, &,e. ; paying attention only to the reductions necessary to ciian^^c the.ijiveii ele- luents into elements of another ivame, that is, of a dillcrent valne. (4) The fornuila of the author, to find at once, or by decomposi- tion, the volume of any body, is as follows : • ** To the sum of the bases or opposite and pamllel iii/ " the 1)0(111 to he meo^ufed, or of aini one of Us eotrpotuntt slices, add ^^ J'oar-ti. (('« the urat of a seetion juirollel to these Ixtses and situated ** half-wan t>etn'een them, and mnttipUj the sum of these areas Ini the sixth " 2mrt of the height or length of the solid."' (5) The new system rlien reipiires but the simph* nieasMrruunit of certain surfaces and sections of the body under consideration, Bince what rcnniineto be done to arrivcat theproposed vuhinie is but a simple addition of these areas and the multiplication of their sum by the height or length of the solid, to take uftevwiirds the sixtik part of the result. («) But there is often a superficies or area to be measured iude- pendant of every consideration relating to the volunu' of the body of wliich such area forms the total or partial surface. For these various reasons^ il is then proper to treat (irst of the • mil MENStlRATION OP SURFACES. 19 MENSURATION OI^' SURFACrlS. PROBLEM I. To determine the area of any square, rectangle, lozenge, rhomb or parallelogram. (') E II 1'' : (7) IHJI.K. I Mi(Uii>hi the hrv^ (182 G.) hi/ the heiijht (ISO «.) and the product will l)c the required area (33,1 and 341 €».)• Kx. 1. What is tlio iircii of a sciiiaro wlioso Hide iiioasures 204.3 feet? Ann. 417."38.4i) s ? Ans. 104.125. 4., How many s({uare yards of painting, in a rectangle whose base is (HiM fert and hcigjjt 33.3 feet t Ans. 245.31. 5. To deternnne the area of a rectangular Iloor whose length is 12i feet, and breadth !> inches ? Ang. 91 sq. inches. (1) Sec tho component fftcog and pootions of the prisms and other mrdels of the Tablraij. Tlioso. figuros are met with every whore in tho praotio<< o/ thu measurer, geometer, surveyor, .fen. ; thus, tho floor or coiling, or one of the walls of a room or apart loent will be generally a square or a rectangle, Tho ?ame for a door orwInJ.ow, part of which at least will be rectangular, and this figure will be met again in the developed surface of a door, or any other opening which would be arched without being splayed, as well as in tlio development of tho circumference of any apartment the plan of which were a circle or any other curvilineal figure and of which it will olways be ea«y to obt.iin with snfRcient accuracy tho curvilineal dini^.,jions with the (lid of a ribbon, if tho surface to be inoa-^ureil bj convex, or by means of a rod, thin enough to be fitted to tho concave surface to 1)0 measured. As for tho oblique-angled parallelogram, such surfaces will often be met with wlicre two superposed coursos of stairs of tho same in- clination occur. The subdivisions of territories into cantons, Iota and parts generally affect for tho most part figures of this kind. 20 KEY TO TUB TABLEAU. '1 ■!, ■I I I 'I li 6. Required tlic nnmbor of square yanls of tapestry necessary to cover a puiuUelnyrani, wlioso base is S7 feet, and lieiglit 5 feet 3 inches ? An«. 21 j\. ?. How njiuiy square feet of glaziiii^ in a rectaiij;uliir window being 75 inches liigli by 37i inches broad '! Aiin. 75 < J37i-f- 144 = 19 square feet 7Ui square inche8=19[24« = 19.53125 feet, or G'. 3" X 3'.U" = J9.G5 = 19'i-J^-'i= 11)^^ = 19.53 or about 19i sq. feet. 8. How many square inche^i of fjildin<>- are reijuired to cover a 6urlac(! wliose h^Dgth is 3 feet 3 inches and deveh)ped breadth pr perimeter 13 inclies ? An§. 507. 9. Wlnit is the number of superficial feet in all the mouldings of a stone, wooden or plaster cornice, &c., whose; length is GO leet 7 inches high and developed breadth or contour 3 feet 3i inches ? A US. 199^^j (very nearly) sq. feet. REITIARK. Tiiese developed breadtiis, contours or perimeters are obtained by means of a thread or /.lybon whicli is b(Mit round tlw various mouldings, in a direction i)erpendicuhir (S>00,998^G.) to their length. 10. Required the number of square yards of varnish on a door wliose lieight is 7^ feet and developed breadtli (measured around all tlie mouldings, «fec.) 3 feet 11 inches ? Alls. 3sq, y. 2}.p s. f. = 3sq. y. 2.375 sq. 1=3^^1-^ sq. y.=3.2(j39 sq. y. say nearly 3^ sq. y. 11. How many square metres in a piece of ground being ll3.7o metres long by 10.5 metres broad ? Aiis. 1194.375. 33. Determine in scpiare arpents and perches, the area of a farm 40 arpents 5 perches deep or long, by 3 arpents 7^ perches front or broad (10 lineal perches forming a lineal arpent and conse- quently 10 X 10 or 100 square perches, a square arpent.). Ans. 151 arpents 87^ perches. (8) Rl^LiI] II. Find the product of the two adjacent sides of the pnrallelotjram, and midtiply this product by the natural sine of the included angle. It has been seen (1231,1'^ «.) that •when R=l the perpendicular D E of the right angled triangle AED is equal to tlioi)roduct of the hypolhenuse AD l)y the sine of the angle A ; bat DE is the height of the parallelogram AC, and since area AC = AH X DE and that DE=AD x siu. A, it is clear then that area A(; = ABx ADxsin. A. G D C V 1/ A J K a ! ; MENSURATION OF SURFACES. 21 Ex. 1. What is the area of arliomb or lozenge whose aide is 25 cliains and iiicluded angle 57° 3;}'. Ann. 25 x 25=G25, and 025 X .84380 (nat. sin. of 57°33) = 527.41 25 sq. ch. (9) To solve this same problem by logarithms ^ Avhere R-- 10, we have (1221) 1° G ) li. : .sin. A :: AUDE ; whence, DE -ADxsin.A . ^^^^^ areaAG = ABxDE and by substituting to DE, its value ^ ^ w AT") X '^i M A _ '■ — ^ ; that is, we must add together the logarithms of the two adjacent sides and the logarithmic sine of the inclndcd angle ; this sum, diminished hy the logarithm of the radius, will be the logarithm of the rcio- diict will lie the required area. AVi! iiiivc (ri:ji r «.) us in tlic case (H T ) of tlio panillolo- i^nim, CD=AC x sin. A or 15C x • It Af.n AM < ("I) Kin. J 5 ; or urea ACIJ= and since CD=AC x sin. A or lUJ y sill. 1), \v(> obtain lor tlic area of liic triaii,ij,le the cxprtss- hion i (AU X AC x sin. A, or i (AH x 1?C x sin. ]>). \ V 1) i; Kx. !• What is tlM> arcaoC a trian;j,lo two sides of wliicli are 30 and 40 and the oncloscd angle liO^ ? Ans. -JOO s(i. in. a. Dt'tonniiK^ tlio area of a trianjijle ono side of wliicli is 45 yards, anotlier side '.i7 yards and (lie enclosed angle =— — — =. and as area AI5C = 15A X CD, we have area AnC = ^" ^ ^^ ^ ^"'- ^=^l^J^i''-l- li It Ex. 1. Kequired tlie area of a triangle who.se sides are AB= J 25.81, AC = 57 .05, and the enclo.scd angle A=57°25' if (1) For tho tables of nntural 8ine.«, io., soo the " Now treatise of rectilineal and s|)horical gcoinetiy and trisjuiionietry, Jcc. " by tho same author. 24 KtT TO THE TABLEAU. I i| ' ■ f lit I? An§. Log.2Al]C = /^log. AR 125.81 2.000715 + !()«. AC 57.(i5 ].7ti079!) 4 1().k '.'"ti" E ed at L Finally, t'roni tlie ce.itre II, with radius FII, deijeribe the circuuiferenco '^f a circle ; this circum- ference will meet at K the prolongation of CA, pass through the point I, on account of AI=:FH=DF (wlienre, IIl^IIF), and pasa also (-144 CS) througli thii point G, becauj^e FGl is a right angle. Now, since IIA=IID=i AD and CD=CB=i CD + i CB, it is clear that CII is equal to the half sum of the sides AC, BC of the triangle ; that is CIi=i CA + i CB ; and since HK=i lF=iAB, it follows that Clv = iAC + iBC-i-iAB — iS, if the sum of the sides is represented by S. Moreover, IIK=HI=:iIF=iAB, or KL = AB; whence, CL=CK — KL=iS— AB, AK=CK— AC=iS— AC, and AL=DK=CK— CD (1) See Ihc tables at tho end of this treatise. MENSURATION OP SURFACES. 25 =iS— BC. lint, ArixOG = ar('n Af'R, find AGxFa«aroft ARE, wlionco AGx('F=tiii'ea ACI5; jiiul hy similar liiaiif^lcs, AG:CG:: DF : CF, or as AI : CF ; tlicnifon^ AG x CF (area of ACiJ) = CG x 1)F = CG X AI ; tlioii AG x Cb^ x CG x AI or, wliicli is tlio same thing, AG x (JF X CG X AI is equal Ut tlio sqiiaro of the area ACI5. But CG X CF = (57« «.) (iv x CL= JS x (JS— AR), and AG x AI - (573 « ) AK x AI. = (i.S— AC) x (iS— BC) ; whciico AG X CF x CG x Al = iS x (JS-AB) x (iS -AC) x (JS— BC) = area ACB x area ACB = (arca ABC)-. Ex. I. Say to liud tlio art-a of a triangle whoso sides are 20, .■^O an 20 :H) 40 40 — — — — 2.'>=lst remainder. ir)=2ud rem. 5 = 3rd rem. 2)J»0 45 = half-Hum. Now 45 X 2r) X 15 X .5 =- 84.^75. The square root of this product is 200.47117, <1ie required area. 2. The tlirec sides of a triangle being 24, IW) and 48 ; what is its area ? Ans. 418.282. 3. Required the area of an equilateral triangle Avhose side is 25 ? Alls. 270.r)82. (14) By l()§. 3. The three sides of a piece of laud measure '15.3, 330.7, and 402.5 metres. What is its area ? .505.3 (31!».2.^>— .505.3 = 1 l.^r>5=1at remainder. 330.7 (il!>.2.5--3;{0.7=2S8.55=2nd remainder. 402.5 (J15>.25— 402.5=21 0.75=3rd remaiuder. 1238.5 019.25 = half-sum. + h)g. half-sum 019.25 2.7018000 + log. l.st. remainder 1I3.!)5 2.0.)(!7I43 -)- log. 2Dd remainder 288.55 2.4(10221 1 + log. 3rd remaiuder 210.75 2.4350.-)! U 2)0.0447005 4.82238025 This log. corrosponda to CG432.447 which ia tho required area. 2 sissssssasm 20 KRY TO TTTF, TAni.FATT. P '^: '1. ,: (15~^ The same example by natural numbers ^vill filiow tlie iV(lvaiifii';(^ rfsulliii;;. ia the iircsciil cmsc, iVoiii rlic use of l(),i:,i lit Inns to (liiniiiifli llic wmk ; but, on their sidi-. n;iliiriil iiumbtM's liiivf this ;iilviiMt:i,u;i' ov»t h\ij;,irithiiis, th;it hy tiikinif in all tlio di'cini.ils, with even the ailiiition (»!' ciphers lo (•(nitiuiii' it' xhmmI he (ho division nr the «'xtran'cisi<»n may be canicd to any (ieniee of ai>i)ro\- iination recjiiired. whilt^t wet-annot with exactness give to theanswer obtaiiH'd by lonarirhins, a .irr<'ater nnml»er of liniires than contained in the frtictionai part of the loi^. iisi'lf, as shown by the in(!{-- i 1)1::+ i DC or I'.K - ilM-: -iDC ; now f/oii will h((i'iilWH iti.) the iH! ixiidiriihir or iiltifinlr AI5 of Ihf triaiKjIc — V A D '' — l^^or, «( f / /, c ( I a-l S> « . I i 1 1 1 . « /■ « iJiS •> « . ) A D : sin . J} ( = li ) ;: MD : sin. HAD, lo ol>l,iin (iy!:jll ii., 2') AM ■= AD x c().s i;AD, trill II K- I, //('// is, '■/■ ijDH aorl,' hi/ iKiliinii numbers or, Al} = AD X t'os. 15AD ./• Ill SI I I It 111 7.'- ;; If i/i)u irurk hi) hx/drtUni')-', where lo(j. Iv = J(). binaluj ijou will obtain area ADt: -^ J(DE x AH). A D C 15 K Ex. 'JIm' (l;itu liein^' sdlltlio same as in the last example j wo sliall Iiave accoiiling to llit' lulo AD = 4()-:2.r) AD = 402.5 DE=r)()r).;{ = biiso fAE = ;W(l.7 — AE=;{;V).7 ~2=^252.()5 = half-baso = sum 7:3:5.2 =(lir. 7l.rt DC -^ 104. |.<-U78--(i:r. of tlic scg. •4- s= 52.oi)ir)rii)=^iiaif-air. iDE-=2r)2.(r) + ^DC-= r)2.0!>ir)8!) - scs,'. 15D- ;}04,71I,^)S!» Nat. sill. I...,(i(l=-.7r>7l220 coircspomls to 40^ 12' 10^)737 "--BAD. DE : AD-f- AE :: AD-AE : HI) -»E (oi- DC) 50r).;{ : 7:{:{.2::71.H : 104.l8:M7d + --DC 71.8 7:{:« 51324 r^{)r)M)'y2tm.7(\ ( lO l. I83I78 1 I 505;j 1 It is bociiiiso thid qiioliDiit niint oiiloi iiili> III • i- ilenl iiiiiii (o Ix) iiia le to (ind the 6iue of tho aiiglo HAD tliivt it ia iipon-siiiry U> r;irry tlio duoiiirilB lar eiiuugli to .-oyuro sufficient oxaotnoss in tho last tiguros of tliiH sine, 28 KEY TO THE TABLEAU. 2.137 AD :R:: 20212 402.5:1 28175 BD :ein.BAD 304.741589: .7571220- i)2;")G 5053 42030 40424 IGOOO 151;VJ yoio 5053 39570 35371 22'.)!tl 20125 2S(;i]5 2S175 41)08 4025 8839 8050 7890 , 1. i. 1 i; :(j,i, 41990 Nat. sine fouiul-=.75712i() Next loss siuo.-=.75(il)l).51=49° 13' Dif. of COS. for 60"=2202 GU" : 2202 : 4(M»737" : 14707 2202 Diffeicnw==- I2(i!) Dif. for ()()"= IJKH) rJUU: GO" ::12G1): 40.0737" G HOI 474 801474 801474 l<)0)7(il4 7G0 -r G)882422 -^147070 1400 AB— AD X iiat, cos. BAD BAD-=49'' 12' 40.0737" Nat. cos. 40" 12' == Dif. for 40.07"^= — Nat. COS. of 49° 12' 40.0737" X AD .G53420fi0 14707 .(15327353 402.5 .'J2<)G3G7G5 1.30G54706 2(il30!)412 AD X uiit. COS. BAD-=AB^=2()2.042.5!)5825 X DE .505.3 788827787475 131471 i::}7Ui2G 13147J2!l7:il25 AB X DE--2 area ADE-- i AB.DE== 1328G48!)3()703 GG432.44G83 = area ADE. MENSnRATION OF SURFACES. 29 (11) Tlio aroa foiuul ai-cordinjc; to tliis nilo in (i(i l.'K.l 1(18 square iiietrcH. Tlio cxiU'tiicss (il'iliis rosiiU in yet, as it is hl'CM, t'anicd bat to tlio 7tli (ii^iiic, and i( camiot hv otlicrwisp sIikm* (he iiataial .siucs ascil aad wliiili cuter, as cicnicnts, into tlic solution of tlio i>rol)li'Mi, oxtond but to 7 li^iux's, tlic last of wliicli ovou is always too great or too small accordiufj; as It lias been, or not, increased by unity wLeu the foUowinj;' ligiire is greater or less than 5. (IS) Ijet usreniaiklicre that this example, the calculation of which wehavejust made, in tliieedilfereiit iiianiiers, allows one to com[)are the amouut of work required I>y .-ach mode of solution, and enables one to choose when required, whether the most expeditious means (the first) or the one admit liii!,' of the greatest precision (the second) or the one requiring no extraction (.,(' a root (the tiiird). (19) It is hardlj' nec<>ssary to renmrkthat this problem, like tho preceding one, and the one following, may also be solved by means of a graphic construction allowing one to establisli with the help of a sufficiently subdivided scale, the lengtli or value of the perpendi- cular Al? in terms of the base or sides ; and that is often enough the shortest, though uot tho moat precise mode of arriving at the required result, PROBLEM III. To find the area of a trapezium. ' A/ lU S (30) UI;l.E Find (;J1« G.) the sum of llic (wo ^HtraUel sides ; muUipli/ this sum hi/ the Iniijlitoy hreadih of the trajjczium, and half the product will he the required area. 'i I Soo tho ooraponoiit f.tcos (bases and latoral faces) ami tho sections and paral- lel planus of tho prismoids and other juodels of tiio Tibleau. The trapezium (173 Cii.) n presents itself often enough, in practice, to tho calculation of tho inea>urer. ThuB, the interior tablo of a window whoso sidoa aro generally splayed, presents tho form of a trapezium ; so for tho coiling of a window door or othur splayed opening ; and it is plain also that the developed surface AliCD, (part of a concentric ring, see tho parallel bases of the hollowed cylinder of liio Iablkau and tho latoral faces of tho Bectiona of the hollowed sphero),ol'thoj;uiib of a curvod as well as splayed J^ - — —--11 opening may also be considered as a kind of trapezium with \ / parallel curvilineal baseg,but whose area is erjually dotormin- V J edby tho rule horo given, since that figure is nothing olso but a 1* v 30 KKV TO TflE TABLF.AO. Ex. 1. In a tniiK'ziiiiii, IIh) pavnllol sides am lOi iiiid 121 feet, anil flu- nt r])('n."» I \-i:2:>) ■< -\MM ~i.lM7ri X .'M(iti = ;{t!. feet, and lieiylit (i(! feet ? AiiN. ^D.'i.'J/j. a, TIm" parallel side.s of a farm are 12. T)! and S.22 eliains, and the perpondicnlar 5.1.") fhaius j what is the area in siiuare chains ? Alls. r);}..-jri)75. PKOBLEM IV. To find the area of a quadrilateral.* <,:U) R»-'t.E. MnUiphj (:151 H.) ntlicr of the diuf/oiials (IT.t CJ.) i)/ ll'.r ,jH'uliiln(cml, liji tlie lidl/siim of the pojtcndiculars dratcn/i-ovi the opposite (inijles to the eummon base. il\. 1. What is tlic area of a quadrilateral BD whoso diagonal AC is 42 feet, and peri)endieular8 BF=18 aud DF= Ui feet ? Ans. 7J4 sq. f(. 3. ITow many scpiari^ toises of paving ar(> there in a (quadrilateral wluKSo diagonal is (i.j feet and the twoiwrpendiculava 2rf and .'{;}i feet ? Ans. r)r).52()ri:>. frustum or part of a oiroular ring, and that the modo (1145 d.) of arriving at the area of that figure is like the one that shows how to dotormino the ■.ti;ii of the trapezium go called. Tho trapezium is ;ilso ofton mot with in tlio tionr or ooiling of a room, two gidoa of which only uro parallel, ia tlio roof of a dormer-window, lliglit of stairs, roof or ceiling of a garret, and tho sides or jambs of a rectangular window a!i;iMni);il to III), two <»pp(»sile unfiles, 'JH iinii A'i iiietieM ? Alls. l!''-if) Nq. in. ■I. Delerniine (lie nnnilter of H(initre» of (l(>orin;j; t<» cover a (|Uiitlriliileijil s|)ii(e, wlio.M' (iiii^iiniil is lOH feet (I inches, iunl the i)C'i'- pendicnliuK ')(! feet M inches, iiiul (JO feet !• imiies .' Alls- <•'■{ xi(u8.(i73 i»er. PKOBLEM V. To find the area of an irregular polygon. ' (22) lWt4V,.— Mr(t>iuyv (he diittiounls trhirli irill ilirldc Iht' (jirfi} pohji/oii iiilo (jKdtlrihilcrnIx mid tria»(ih'n. Determine sejxtratehi the, (irvttH of tlu'KC eoniponenl JiifiiirH ; their sum iriH t>e Itie iireii miiiired, Kx. 1. neterniine (lie area of tlie polygon ]{K, in wliicii HD — m, CK=l2l, AD = ^7^, m.='j.-,, EH=il4, AEr::4(), and l'\i = S. Alls. 3 (151) X {'K)~l (IH.nx 12.8)=llS.|()::=area r.Cl). .l(HL l KIl) = i (V.).r, \ 14) = 11.7.-. and quadrilateral area AliDK = AD x i (BL + EII)==^7..^ X \\.7r,=:K'.i.\\ir,, area AEF - AE x iF^J =40 x 4 = HiO. Area AB(IL)EF=:J 18.40 + ;{i2;J.iar>+ l(J(»=:GOi..'-)±-). 2. Kequired the luiniber of acres (ilic acio is 1(10,000 square liidvs) ill a }»oly;u;onal piece of nround WE whose diiigoiials HD, AD aiul AIO meiisnre, respectively 1. 'J (diains ((lie lineal chain is J 00 links)— .'W links, i;} chains !>!• links, and II chains |:{ links, and whose ])erpeiidiculars CK=:I7;{ links, JJL^ti chains, E1I = ^! chains and V(i !{} chains. AiiN. I{Dx(:K = I:«;{x 17;{-'J;{0(;0!> : 2=II.ia04i = aroa BCD. AD X BL=:1.3'J!) X i]00=27080O^2=:l.'}(>200 =area ABD. AD X Ell — l'.iW X 220= 1307780 -> 2= l.WiiOO =area ADE. AE X VG = I4i;{ X 37r,=r)2!»875-:-2=2()4!»:J7^ = arca AEP. 2)ia.480(54 fi.740;i2 =areaABCDEF. G.74032 that is G acres and 740:^2 so. 1. I. 1 Sfio (he bsBeB, lateviil faces, eeclions or parallel pluuea of certaiu models of the Tableau. 32 KEY TO TUG TAlir RAH. or (5 iiori'H 2 roods jiml ;Jl(i.'!--J links (tlm road hciiio I lie loiirth part of the acre, tliiil, U KMMMtO-r -|~!;'r)(l()(» links) or(» ncroH, 2 hmmIw, ;{H immtIics, and 'JHvI links (the lim-al |>ti(li bcinj^ tli(^ four'.li pai t of a cliiiin, llial is 'J.'t links, autl I he si|m;iili.sli, mo iiuiii(!(li!it(dy aiitiliciilili' iinil without iciiiiclion to lii'ciiniil ciilcnhition. 'I'lm o|ierii. tio'i hfiii^ (ioiKi, Ci ili'cinuilt' uni oMt, oti'. Ilio iciii!iiiiin.n lit,'iiioH lo Iho Ivft bt>iii>{ ucreH Hinre thorp are 1001)00 links in the ucro nn<) that tocnt ollT) li<,'iires is eijnivnlHnt to di.' vitiini; hy 100000. It in ['lain .ilso ttiMt I'lir llin roodn wo liavo l)Mt lo niiilliply lirat the rtmiaindcr hy I and aL;aii\ nit nIlT) fii^nrcM, wliicli is crpiivMliMit to dividing' at onco l)y yr>000 (nnniher of links iuarodd) and i^ liy far niorocxpt'iiiiioiiH. Kor perclies, the aecond remainder iM tlii'ii ntnilijilii'd liy 10, cnlliriL;oir 5 liLTinx's an hcforc, ai'iCH th» peri'h is tho 10th pail ol' tin' rood : or if dcsirahlc to nciilcct tlin loods, iho first romain- iler may ho at once iniiltiplii'd hy KiO (I X '") =1"'* !^> liu'iiros oijnally cut off. Tho last romainder .ITiI'JO is (!vidi'ntly a fraction of a piMvh, that is, ^'''''f J\ of ii perch ; and tlie p(]nare perrh hcini,' CrJj links, .j.^_i^^^^ .>f(i'.'.') = .00(>-!r), t'lis nnmber multiplied hy the numerator .irjIL'O j^ivcs the tiS'i links of the answer; that, is: for the links the last remainder is simply multiplied hy (i'.'S and 5 decimals fut oil' na before. 2 The tracts of land which are near, and are hound- ed on one sidehy the wiiulinus of a road or river, &c., often present to calcnhition li^inros of this kind; or, after haviiiK determined hy the method of the last problem the areii of the rectilineal polyj^on AIUJDK whidi forms part of g/ the irregular polygon AtUUDEcdA, the ni(!thod of tho pre- sent problem will be made use of to obtain the seoondiiry aud iiregulur parts AahcB, Ad«E. mkn.si;rath»n oi' si/ukacks. :{3 Ia'\ AV.ra an iirc^iilnr lit liiii! AK. .\t llif pdiiils f^l ^^t^^^ \, \\, (', I) iMxi K, <'iiiii, (Ic, \ H T' — 11 — il I)(/, V.c and d('si;,nnlc tlicsc |mi |)cii(li(iil)iis by tli«! letttilrt (I, h, r, tl, v, 1'licn Ct'^.l «) llir nicji nf iIh- tiapoziinii AII/hj =".*-'' x AB, tlir;iica i>f (iic Irapcziiiiii \\(',h^~~ x HC, «* the arc'ioCllicfriipczimii ('I)f/r=^- x CD, \\\\{\ I lie aicii of I lie tiiipcx.iiiiii \)V.rO~ — ~ x DE ; tJien, tlM'ir s.ini, or I lie iirca of llw wliolc limine is fMinai to Ciiiico Ali, 1>C, Xc. arc ripial lo cmIi ollici. I»uf, this siun , . ( " I /' I (• ■■■ (I >■■ '- I < A I?. 13 equal l<» V>2 'jy oxpiTsmion \vhi<'li aj-rccs wilh ilii; cmiiiciatioii of the iiilc. (44) ffA^f IxTomcs vorv sniiiU. we will nunc I C r 'oh X ^""^^L the le8« havoarea. AIVk>— ^^ x A15 ai.d il <( ^^ and A auM'oiit'oiHMlcd in one <.V tiic same point. A il C D X or that tlu> trapczinin Wihn iMcontcs ( lie !ri.in,t;le .\])h, we will have ILJL '~1; in lliiscnsc it isplaintlial I lie i-\picssion tor the area of the //) /> ; <• e ! (/ (/ '■ t'\ . ,, , . 1 . the same thinf^. (I> <■!(/■ .\ r) AP.. Ami if Rrheconies also=o, the ftxpi-esaion for the area A1'.(7/'A will lake tlie lonn (/) I r \-f1) x AB. Ex. !• Tlie breadths of an irre< I' ii>« » .: f Ono of tiic extreme l)vea(Uli8= 8.2 The other extrei\io l)reiiilth= 8.(> Siunot'tlieextrcine breadths— 1(5.8 Half sum = 8.4 Ist in termedmte breadth =7.4 2d intermediate l>readth = !).2 IW intermediate l>rcadtli =IU.2 Sum of the breadths =:J5.2 the uhole ba.s(i One ()fthee:nK Sum of the b Multiplied by =:aveii, wanted = 40 :40-:-4=H> =;ir).2 10 = :irr* S. The length of an irregular figure being 84 metres and the breadths, at six equidistant points 17.4, 20.0', 14.2, U'uii, 20.1, and 21. 4 metres ; required the area. Ans. ir).50.(]4 sg. m. 3. Tlie length of a strip ofland is 125 perches and its breadth in 15 different and equidisliint points, is 5.2, 4.(;, 7.2, 8..'?, !).4, 8. 1, 7.;j, 7.9, 0.0, 7.2, 7..% 8.4, 7.4, 0.5, and 5.8 perches. What is its content '/ Ans. Tlie sum of the extreme halt-breadths and of the interme- diate breadth8= 101.7, tlie length 125-^- I4=:8.f>2857 and 8.!»2857 x 101.7=008.0:^)0 square perches. (^) (25) REHI. Some ai'thors teach how to determine! (he area of the (igure of thw pioblcni by tinding the product of tlie wliole base AE by the mean of t'.ie breadths wliicii is obtained by juldiug together all these bioadtlis and then dividing tlieir.sum by their num- ber. This rule is erroneous, and the more so the less the number of breadths or divisions in the figure to be conijjuted. Tlie error of this method, in case there were but tliree«.'oinponent parts and con- 1. If the lineal [)erck ill qiieslioti here is \S /reach fce(, tliiiliti, the. tenth ofaii ai'peiif. the iiieii just, foimd will Ixi e([iiiviileiit. to !) scjiiiU'e iiipButs, SOiiSlJ fc()iiiiifi pHirhetf, for, H8 h ht«.8 ulreiKiy been remarked, the wqciure uipeiit ia 10 X I') j)er(ilie8=l00s([iiaro p' of'.Gfl, Hill an the a(|iiai'B perch Is 18X'8=H-I square feet (or the square arpeiit w-iX '00==;J'^100 aqiiar:, feet) th .i.^cliual .OOod of a Hcjiiare peich may he rednceii if need he info hqiiarelef' ' y iiiiiitiplyiiig hy Itt), which ^ives in thia exa\iiple tl.,');{ square (eet. //", on the contrary the lineal perch irere lii.J enijlish feet which In ihat of I liutf'.i chain, we wonld have after d'vidlnj; l)y lti0,5 acres, 108. 0:);")!) percliH, ami if we desir.^d afte- wardrt tore.iacc, into S({nare feet, the decimal of a perch, it Is plain that .lie minare perch heing Ki.i X l''i=27~'.~.'> sqnaro feet (or the acrH='J7~'.'J5 X "'0 or fit) X *>')«= 1!*''>'>0 aq.iare leet) it would ho siiHicieul to lunliip., ,0',id(i by •J7ii.','5 to Inivo 9.ti!) eiifjlion txaiuj)le, ]{)7.2~]rj=7.]4m ct 7.14G/ the pohif/on hji its- f'Kjlit htiJj'-rddius, (tiid the [irdthiit iriU he the rctjiiircJ G.) sine AOG : AG.: sine OAG : OC : whence, Sin, AOG 30° a), conip, log, O.mium is to sii), OAGtiO" 0.937.')3I as AG r l.OOOOOO 18 to OG 17.32(».-)2 1 .2335G1 Now as there are (I sides, each eqiiiil to 20, we will have the pm-inieter 20x(i=120and the area=12() ^ A (I7..320J2) or which is the 8anie=]. •120.52 x A(I20)=:: 17.32052 x dd^ II),3!>.23I20 s. f. Ex. JJ. What is the siipcrlici.il coiite'it of'.iii octogon whose side i8 20 ? Ans. I!)3l.3()r). I. Seo IIk" Ji'li' ■>'. Lj-JC's (if llic ii"lil |irisiii^ nwii iiii-'iiliiiiis ol' llic Tiitili'iin ;Hi>t tlinir [miiillt I .seciiioiin, l -rrJ-l.-Jil^il suulivicu ^, =24.U1'J1 X H(i (lusir-piT.)- Ih:ji.;joS. I, ;{. lit'(iuir('.(l llic Mien of :i U(>iia.i;()ii uliiisi' sidi' iiiiMfSUit'S t< feet I luul the iK'ipeiuliciilar leet. '! ■^ ' • Aiisi. *I5.(»4 s- f. j ij . -1. Find tln^ area nf a it'unlai Ih'iiImlioii \\ hose sid»' - IK.IjHsnul the ' viyht nuliiis=='J8 1 AnN. l8S){>.;i4. 5, The 8i(h-' of a pen I a^" a "■-*■"> nniif> ami tlie distance IVum the side to the cciitie-- 17 'J nifties ; whni is iK coulciil / k - Ams. 1075 s(|. ni. (•27) With tJu- ln-l|» of this I iile. it is casN lo ohtain the area of any polyj^ou ' that is of ;i polygon of any iiiunlier of sides. Having t'iilcuhited and disposed nncU'r liie foi ni of the followinu; table, tho vehitive areas of the various ]iolv,i;ons haviai; foi sicU- unity or I ; namely : A. L'dtliiis o/' ilic ... I Uitiliua tit' IIk' jSaiiie. . •: , Shirs. . vn'vuiu.virvit'. in.scr. ciitir Triangle U,577M5(i:{ ,. M (l.'.'HS(;75l Hquiire l».7()7l(Kis 1 (».:,( i( H km it i . Pentagon ll.85(H;5Un 5 O.dHSlUlO Hexagon l.tlOUOdild .. (; (».8titi(»'J54 Heptagon J.15;2;{H',M .. 7 I.((.is-Jti()7 Octagon 2 ...i.M0{;5t;-.»8 .. ^ l.'i()7l(l'ii- Enneagon....l.4t;UH);.':2 .. !> \ .•.\r.i7'Ar'7 . Decagon l.OIHO.'JK) .. hi l.5;{c«H14S . Undecagon...l.7747:]-M . 11 l.7()--i.-<|:{(; . Dodecagon... I. !»MI 85 1 7 .. I'J I.H(i(i()-J,-)| And hecai'se (5<3'» <*•■* (tli/(ji>ii ; iniiltiplif : ' then this square b,< (he nfva of tlic poli/fiiiii of the soiiic ikiiih' irhosr side t i': /.v 1 : the product irill be the i'ciiiiii'cd tiieo. A rtii. '/'//<' lllUlIf UAB'. (1. i:(:{(»l-jr :«)^- l.(KH)(IOi)t> 45 l.7-J()4774 54 •J..5!)8y liikiii.H Iiihii tlio .si|uaie of tlio iIkiiIiIh rij"!!!, rii(iiiii< iii- m|iii|Ii(>iii on oiifl of .sidcH, lliti MCpiaic! olllm oIIkm' .liiii?, as will ln' si.-cii in i.lie iiiHiisiualioii of Holiils*. MENSUn.ATtON OF f«tJBF.\rES. 37 Ex. I. Wliiil is tiu' ;ir«'ii of n vi'gulnv hexa^'oii, wlios*' »i(l<' \u 1M» ? Ant. 20-— lOK, the mwi of the liexiijjion of the table =ii.r>9H07t)2, iiiul 2.59e07ti;i -^ im^WM.^immi), m before. 2. Determine the siipiiTuial eoiiteiit of a peiiiagou whose side is 25 yards ? Aiis. l075.!-n>8;J75 sq. y. Jl. Tiie .side of a deeaiioii measure!* "20 metres : what is its urea ? Ann. ;^077.(i8352 sq. m. 4. Fiud the aiea of a duo tb'canoii wlio.se side is G ? Ans. 40a(K)148()4. 5. Tiu sid(! of a piece of i; round liavin.ij; tiie form of au equilate- ral triangle measures li arpen ts 7per(;hes and (! feet, wlia»' is its content ? Antj. y7,'. per. x:J7.\ per= l,'J!»;r, or l:{l»a77777, x {).433()I'27=G0;J. r)l;i847»7 o'- 'i square arj^ents, '.i!, sipiare ])erelies nearly. PROBLEME VIII. To find the circumference of a circle ' -whose diameter is known, or the diameter of a circle of which the circumference is know^n. (a9) UlJf.E. Miiltiiilii («.S5 O.) (he diameter !>;/ :{.i4l(), and the product will he the eitxuin/'eience ; or dicide {0S7 W.) the circHi.i/ercnce by 3.1416, and the (inotieiit will he the diaviet r. Ex. 1. What is the tireumferenee of aclrele wliose diameter is 25 / A US. 78.54. 2. If the diainclcr of the earili be 7!tI2 miles, what is its circum- ference If Alls. 24884.6136. 3. Determin<' the dianiiU'r, to oircumfcreiiee il«)52.K)44 ¥ Alls. 3709. 4. Required tiie circuniftrenee, when tiie diameter is 17 metres 1 Ans. 53.4072. 5. The eireumfe/ nee of a riicle is given -354 feet, determine its diameter ? Aiis. 112.681. I. See the l)!i8en lunl mntioiis or |iiiiiilltil ciifliii^' plmies of the cylit)ilei'H, coiien mill tViisfti of liirhr (■(iiiHs, t'liiBlii iim' st'ijiiniiits of sphoioH, cVc, iiuionn thu luoileU of Ihe Tah/eaii. 38 KKY T(» TriK J'Alll.DAr. UI'ilTI. Tlic iflntidii 7:','-2 wttiild ji-ivf I'oi' iliis (liiinittci I J'2.(;:{.(; This lust result, is too siiinll b.v 1;*,;^, (»tii iiiiil or j,,f,|-j,, of tlit- whole, and enables one to.jii(lj;e of Ihc; leliilive cxiiclness ot'tlie two ratios. PROBLEM IX. To find the area of a circle. ■* i (JIO) RULE 1. Milltij)lii (..|:6I €i.) ///'■ <-irciniiffirii(r hi/ lidl/'tlir ItVt.K II. MuUipJji (lO'il «.) ///r .«.•,/»„,•(■ (-/■ ilu' nidiiis hii ai4J(). KULit: III. Miiltijili/ (deiii. olONI t;). ///r s.jiiiin: ti/tlic diumv- dr hji .TS.l-l, Ex. 1- Wha( is the aiea of a circle ot which the (liaiiuttei' is 10 ? All**. 7H.5-1. If the (lianietei' were 100, the, area would he 7844 If tlie diameter wove 1000, (he area would he 785400 2. The diameter is 7, and the eircuiiifer<'nc(!!21.!»!ll2, what is the area of the eireh' f Ans. .■W.484(). ti. llow many square yards are there in a circ]<' w iiose diameter is ai feet ? Alls. l.()(i!)01fi. 4. The diametei' beiii;.; 7, wliat is the area of tlu' circle 1 Alls. ;j8.484(i. 5. Find the area of a eireh; whose radius is ',\{)] perchs ? An«. i2!i'2'^.47;J4 s(iuai'e i>erelie.«(. (Rl'I..E iV.) Multijih/ the s58. 7:2 47: 4x3.1415!> ]'2.r)(J(;;i(i ia.5(U)3(; Ex I. Find the area of a circle whose circumference is 10.75. Ans, {».l[)G46375fl. MENSUIIATION OF SURFACES. 39 »1. Dct<'riiiiii(', ill jirrcs, Hit- iin'ii of a pioce of j^roiuul whoso t'irciinift'i'CiKMi m«;usuio.s one iiiik' (s;iy "^O cljiiiiisof (>untcr=OG x 80 = r)2ri() on <,'lisli fcc-t) ? Ann. 50.r)3l'2. PROBLEME X. To find the area of a circular ring or the space com- prised between two concentric circles. ^ CW) Kl'LB:: I. Fiiiil (1111 «.) hij the lust proldem the areuH of the two cirelos : their di(fervnce will he the area of the riiiij. HULl-: II. .ynliipiji C'i'7liM.) the sum (f the diameters hi/ their dijj'ereuee : this produef iimliiplied hij ./d.lJ will he the reiinired area. KUff^E 131. .)fHti:pli/ the half-sinii of the rireiiinferences of the two eireh's hij the half-differeiiee of their diameters, that is hi/ the hreadth (f the riiKj, and the proditel leill Iw. the rei/nired area. For oiic'li unit of (.lie «li;im(^t(.'i' coiiesponds to3.i4l(i units of the circunifoiciicc, ; tlicn if(« C = a A — a unit ov any part of tlie dianietcr A 15 or C I>, tli(! (!xccss of tlic ciicuniferonce a !> over tiie file. (,' D will l)<'(M|ual to tlu' excess o!" A 15 on (I h ; wluMice /, A C Kx. 1. How many s(juare inclu's in the area of a circular ring whose exterior diamefci' is :{() iiiclies and the breadth 'ik inches ? A UN. ^I5.udr>. 2. The diameters of two concentric circles are l.")and 10 : what is the ar(>a of the ring formed Ity these circles ? Alls. 08.17."). I. SiH'li wciiiM \>i: -.w iillcy iirniiii.l .i ciicMitii' i,'iii'iii'ii, ilit) liorl/.ontiil section () =().(l()872(i<; = h'n^Mi •' of the arc of one degree, to a diameter (Mpial to nnity. 'I'liis (jnotient multiplied by tlie number of decrees in an arc, will he the length of this arc in the circle whose dianieter= I ; and this product multiplied by any diameter will give the length of the arc in n circle of (hat diameter. tti ,' 1. Hiist ■ c,(!i.lral ^cclion of the ecct>iitiif liiii: <<\' tlip Tahli'an ; projectidii oil H plati" ot tlie opposite liiiseR ot a riii.-tiiin (il'iiii ciMi-]iii> ('(inc. y. Sop Hiiioiii; tlip models (if lliH Tahhov. llie limiting,' mics nf Mie spj^tnptita iiik) R.-'flton of iicirclp, Itjisps of llic iiii^'iilii of ii cyliintpi-. coups Hiiii fnistaof riglitcoiiea, la leral H'uie8» of sptierica! pyimniiis mik) of seclioiis of hollowed eplici'ea, &c. ■1. ttliJiH ulreiiciy lieeii.oliserved iiiid iM'»i,' lo tlip dp).'ipp of piecisioii wmited, if, miiy hocouie necessary to »i«B a liirjj[er or sinnllm- niimliri- of the ilecimal.s of tiie unit of siicli element ; thus it i« deiifthiit tite solution ofiiie prol)lcuii in question here niiiy leqiiire to feplHoo the i-ntio 7r»= 3.1416 genoiiilly used, by tlie inorw exact ratio 77 = ;i,l ll.')!» or by the mtio etill move iippmximative n = It. M l.WJ, r=3-HI.> DOti, r: = :i. 1 4 1 59^)5, &c., with an •tddivional defitiml of llip tpiin or factor ;r foi' (lacli additioiiai deciiiiHl of the unit of (ht result. f!!u JIKNSIIRATION OK SIJRKACKS. 41 RtM. SS. Siin'i« !< iiiiutit** is rli(^»iO(li part oC a dHgrue, aad » socoud tlio 60tli of II minute oi f,lu' ((lOxUO) ."kJOOtli of a degree; if the arc propust-d coutiiiiis ii)iiiutes, they will be reduced, by dividing tliom bv ()(), to (lii> (l(>cini;il of ;\ (li'gr^ 1 Ann. t^.0823f)6. A. Required tli(> length of an arc ot'.>7'l7 14' ; the radius of the circle being 25 feet ? Ans. 25 feet. For .57^ 17' 44" is the ;5.l4l.>!)2()ih ]^.u■{ of lf^n\tli!it is the length of the radius in terms of the circunifer«Mice. a. Determine in a circle whose radius is 2t), the length of an arc of ,50^ 30' 3 ' ? Ans. 15.885. REM. a. If the number of degrees in the required arc were not known, it would be easily found by the nic^thod of par. (785 G.) where the chord and height of the arc are given to tind the remain- der. (35) RULE U. Defenninc (1S5 «.) the length of the whole tircumference. of which ihc tjiren arc formR apart and establish then the foUowiitg proportion, ri: : 3(i0^ ; ihc length of the fdrcumference :: the number of dcgrcc)^ in the ore : the length of the are. Ex. I. Under a radius 14, what is the length of the arc ofGO° f Ans. 146607720 3. The cluird AH of an arc ACB is 30 feet, and the heiglit or versed-sine EC is S feet ; find the length of the arc ? An»i. 35J feet, nearly. 3. What is the length of the arc whose chord is 48i and height IS\ ? Ans. t;4.767 nearly. 4. If the chord of an arc measures 20.386 perches, and its versed-sine 4 percli-^s ; what is the length of the arc t Ans. 'i:?.402 perches nearly. 5. Required the length of an arc of circle whose chord is 40 anA tli« height 15 ? An*. .W.JW nearly. 42 KKT TO THK TABLEAU. (SH) RVIjE III. ft h also nhowii fhat : Ike leiii/th of mt arc i*i i>enj nearly obtained, hy aubtracUngfrom eight tinwn the chord of half the mc^ the chord of tfie whole arc, and thcu taking one third of the dif- Ex. 1. Tho chord of an arc is .'}6,7.'> and Mm chord of half th« arc 2t3.2 ; what is fho length of tho arc ? Ana. lO.HKi nearly, Ex. 3. What ifi the length of »n arc whoso chord is .■)0.8 and the chord of half the arc .'W.fi ? An». (i4.(iti neiirly, REM. When tho chord and the height only of the whole arc are known, the chord of half tho arc, if need he, is obtained equal (30ft Cr.) t^ the square root ofthesnm of the squares of the vor- iied-frine and hclf-chord. PROBLEME XII. To find the arc of a sector of a circle. ' (St). Rr£.E I. .¥«///;% (4»0 2^ G.) the mr of the i^eefor {[\n\X i« the length of the arc) bg half the radius. RlTIiE II. Find the area of the whole circle, and then muke //«« proportion : .'WO degreett : degrees in the are of the sector :: the area of the ivhole circle : the area of the sector. Ex. 1. Required the area of a sector, wl.osp arc is 18 degrees and diameter of the circle .3 feet ? Ans. 0.35843. S. What is the area of a sector of which the arc is 20 and the ra- •iins 10 ? Ans. 100. S. The arc of a sector is 147'^29' and its radius 25, what is the •nperticial content ? Ans. 804.Jin86. i. Determine the area of a sector, when the chord of the arc =28 and the chord of half the arc = 16 ! Ans. 275.39. 5. The radius of the circle being 10, what is the area of the •eet/or of which the cord of the arc is 20 ? Ans. 157.08. «. The chord of the arc is 16 and its height (5 : what is the area of the sector ? Ans. 88.873. y. To find the content of a aector of which the height of the are =4 and the radiu e=8 ? Ans. 66.858 nearly. 1. 8«« KMOHg the modsla ot thu Tabltau^ ih« lateral fttoet o^' th« tri Rcntangntiir, kri-ffetftnr«l«r andl tii-«btaMngaUu', ipharJcNJ pyittinidt iiKNHnmATioN or bvrvaoer. 43 PROBLEM Xin. To And the area of a sector of a circular ring or tlie spaoe comprised betvreen tTvo arcs of concentric circles. ' (38). RULE 1. MulUylij (clem, of 8il, H. 111. T.) Th» UaiJ- unm of the interior and exterior ureti of the sector by its breadth j tluit ia by the breadth of the ring ofwhivh the sector forms apart, or, which »N the same thing, by th^ diff'inTnce of the radii of the convvntrie arct ifhich contain it. RUJLE II. Find by the last problem tlie area^ of the two concentric sectors : their difference will he the retjaircd area. Mix. 1. The arc AEB or CFD of a sector AB of a uiicului' riug i« 30" the breadth A C of the riug 2i ami the radius AC) of the exterior arc 15 inches If Ans- The vrea= 17.99875, say 18 sq. iii. Sj. The two radii >.>£ a sector of a circular riujj; are 10.625 aud 4.875 aud the angle at the centre (J or A B that is tJie am A E B Lb 270" ; required the area of the sector 1 Ams. 209.99(i, say 2U). 3. Tlie arcs which comprise a section of a circular riug are II feet 9 inches and lU feet 3 inches, and the breadth of the riug Ki inches ; what, is its area t Auii. llfV sq. feet. 4. Determiue the area of the space comprised betweeu two half <;ircle8 having a common centre, and whose diameters measure 20 aud 30 ? Ann. :i9.270 x ."i =. 19ti.;i'5. (39.) REin. If the componeuL sectors ABO, CD^ had not tiie same ceutre ; the area of the space CFDO wt)uld first be found by adding to the sector C'FDo, or taking from it, as the case may be, the sum of tli( triangles C'Oy, DOt/, and then taking the difference befweei; .\KBr. ;ilao t.U« liil«nil taces ol the »ecliuiiJ< (if ill*! liolluwKii ijilinif Mat 44 KKY TO TUt TATlTi«AIT. PROBLEM XIV, To find the area of a segment of circle. ' (40) RULE 1. VFind (4:W G.) 1>II inohlfin \ll the ami of the Hector of the name are. ii-" Find af'tenr(trils the area of tlte triangle formed bi/ the chord of the Kenineitl and the radii of the sector. 3" The mtiu of these areas irill be (-1.14 <«. ) tfiat of the segment, if the segment be greater ihau a semi-circle, and if the segment ie less than half a circle, its area irlll l>e eijnal to the difference of these areas. Ex. 1. Find the iii»'u ol tin- se^incnt AKH whoHe clioid A B is 12 and tlif nulius AC --10. AD : AD=iAB :; Sin. D 10 (i 90' ;ir. comp. lo.ir. !t.O(HMKKt 7rHir.i lO.OlHHIOO Sin. ACD m° o2'=;W5.87' i>.77Hir)| = 73.74'^' -1 lie dtiiU't'K in tlir aic AEI?. Then 79.74 < (34 REM. I T.) (».()()H7'2(it! x 20 = 12.87 --= k-ngMi (nearly) of the arc AEB and AKB x ,iAC= 12.87 x 5=--G4..'{5=ar(a of the sector AEBC Now C I) = VA( ' " — aT> , — VTOO".'}* ; = V «4 ~ f< ft (i X 8=48 area of the triang!'^ ACB. Thence, nect. AKBO- . v BC-t)4.35-48= 1().:]5 rrseg. AEB. 2. Required the iirt'ii of (iic 8('<;iufnt wliowe lieiglit is 18 anM6. 3138. 3. The chord of a st','j,nient^ Ki, llie diaineter=20 ; what is its surface f Ann. 44.7(»4. 4. Tlie arc of a N('<>inent contain.s !'0~ witli a radius=f> ; wliat is its area? Ans. 23.1174. 5. Determine llie area of a Hi-gnienl of wliich the cliord of the arc 18 24 and the chord ol" luilf the arc =^ 13 ? See (530 or r»3« G.) Ans. 82.533,'ftJ. (41) RULE •»• V Diridc the height or vcr.'^ed-sine by the diameter and find the tfuolient in the table of rersed-sineii at tfie end of this culiiwr. 2-' Miiltijilg then the iinml>er at the right of versed-sine hi/ the .si/iiarc of the diameter, and the result irill be the re- quired area. Hce muoiii; IIip uiodclM tif iIh' 'I'ahlfini llie !<:i*i'S iiiul |>iU';tlUI »et;tiuii:< ol «»r •liiwa imj^'*'* ot'cTlhiiitiiis, i-niies. sjiinillps, &t'. *iiAl MKNSITRATrON or BltRrArHfi. 4fi (42.) The talil<- ill qiioisfioii t'oiitiiiiiM Uk> aifuiH of tli(> noguicnlx ol'a cii'i'lc wliosf (liii!iKt»r is I and which is snppoM'il to be Uivideil into KKKI t'liiial parts. 'I'ht'ir will tic IouimI the ari-a of a st'KUieut whose liei;;lil is ihf oiii- ihnusaiitltli of the iliameter. that of a m'giueiit whose hfiglil is 2 thousamlths of the (Uameter, that of a segment who:^t' hfi To which ladd the area wlii.li ((.r. to 285 184521 To obtain the whole area of Llie segment 28.J7' of tlie table 185167 Now, multiplying by liie square of ihediam. 21 x21 = 441 We obtain for ari'a of the proiioscd segment .,..., 81.(i38()47 IMAGE EVALUATION TEST TARGET (MT-3) V / O (./ A v.. ^ %' «^ 1.0 I.I 1.25 1^ 12 8 III 2.5 liae 1^ 1^ IM 2.2 1^ = us us 1^ 2.0 u IHUI- i^ 1-4 IIIIII.6 ^^ m ^ ♦•^s ^Q> V ■%^ V ^ 1 46 MT TO THE TABLEAtT. 3. Fitnl tlie area of a Hegiuenl, wIiohp height is 2 and diama- Ui 52 ? ^i>»- 26.88. 4. The versed-sine is 5 nud the diameter 25 : what is the area of the aeginent ? Ans. 69.889375. a. The height of a segineut ia 9 iuchea aud the diameter 3J feet : find the area ? Aii«. 205.4118 square inches. PROBLEM XV. To find the area of a zone of a circle, or the space c n- prised hetw^een any tAVO parallel chords and their intercepted arcs. ^ (45). RULE I. Flint find bij Hit mrtltod of par. (574 «•) i', toliu, uplieie. Scv. MRNSURATrON OF 8URPA0KH. 47 4. If two pariillel chords of a circular zone are 20 and 15 an«8m iin«i Ui* tes and sections of the ohiiqtitt ejlinders, cones Hiid conoids, (Stc, and li nstn ot .inch bodies. Tliese oilipsus are of VArioni dograaiof «ec'«ntri(:iiy or hav« tliair dinmutiir.. in VMried rMtio«. MENSURATION OP SURFACES. 40 3.14159, &c., tlie orror being iii tliat case 4— 3.1410=8584 or nearly one fourtli. 15ut if tlic circiiiiifeienco of an ellipsis canuot be correctly obtaiiKul in this niivmu'r, it is demoustrable that it can be arrived at by tiie following' nictliou : (49) RrJLE 1, Multiplij the square root of the hnlf-stim of tho sguares of the two diameters of the cllij)sis by 3.141G, and the product will be the re(^uircd circumference. Ex. 1. The greater diameter AB of an ellipsis is 15 and the smaller diameter 13 ; what is the circumference : AlVS. '"'' 583 et 3.416 x 13.583= 42.()723528. ( ^ ) i- (a9 G.) =V184,5=13. 3. The greater and snialler axes being respectively 25 and 20 j determine tho periphery of the ellipsis ? Ans. G9.397!? 3. The semi-diameters of an ellipsis are 121 Jind 7\ ; what is the perimeter ? Ans. 04.7607. 50. It is plain that the semi-ellipsis CBD is ecjual in perimeter and area to the 8emi-ellii>sis ACB, and that each of them has for mea sure the semi-circumference and the half-area of tlie whole ellipsis. This rule and the following which show how to find the circumfer- ence and area of the whole ellipsis give then also tlie means ofar- rivinff at the iKremeter ACB or CBD or area of the scmi-cllipsis of the same name. It is moreover evident that any other diameter E 11 divides the ellipsis into two parts of the same area and jierimeter. (51). There is an important propertij of the ellipsis which permits one to trace it withfaciliti/ or to discover ivhclhc a citrvilincal figure re- sembliwj an ellipsis is reallji one or not ; it is that the sum FC f F'C, FG + F'G, of the radii drawn IVom two points, F'F' on the greater dia- meter and which are called foci or centres of the ellii)sis, to any third point C or G, &:c., on its circunUVncnce, is constant and equal to the greater diameter AB ; then it is dear that this very property permits ns to establish tlie foci. Indeed, tiic two diameters of any ellipsis being given, from the point C oiD end of tho smalhiraxis, aa centre and with radius Cl'^-('F' = OA or UU--iAlJ, AB will bo intersected in the re(inired i'oci 1"'' iiiid F', fr<»in tlio points F and F' as centres, with radii FG, F'(ji of wliu li liic sum = AB, that is, witU any radius FG less than FU and another radius F'G equal to t^e mm 60 KEY TO THB TABLBAD. difference between the first radius FG and the diameter AB, arcs may bo traced tlio intersection of which in Gr will ^ve a point, and by repeating tlic oi)eration a series of points through which may bo drawn a curve which will be the required ellipse. (5'J) Oi-, there may he fixed at F and F' needles to which will be fastened the ends of a thread of a litngth such as to give FC + F'C or FG + F'G = AB ; it will tlien be suificient to hold the thread tight by means of a pencil or point which can be moved round tlie two foci to complete the outline of the ellipsis. (53) To perform the same operation on a large scale ; after having taken FG or F'G at pleasure, less than AF'or HF' but greater than AP or BF', knowing Llie otiier radiu8 = AB — FG or AB— F'G, as the case may be, and FF' being also known = 30F=2VGF^^=^0^= 2 V0A2_0C'^ one will have but to compute eitlier FF'G or F'FG of the two angles at the base of the triangle GFF' and draw either of tiie two radii of tlie ropiired length and with the required angle to give a point G of the pn>i)osed circiinircreiice ; this operation repeated will giveaseriesof points through which may be traced aline which will be the recpiired circumference. Let us also observe that the measuring of the radius G V or (>F' maybe avoided, by computing each of the angles at F and F" and afterwards making an intersection G of the directrices FG, F'G. (54) Let us add that a geoinctrioal or graphic construction on a small scale would have the advantage of giving in a more expedi- tious manner and often accurate enough all the angles GFF', GF'P, &c. necessary to determine tiie intersections or points G of tlie requir- ed perimeter. (55) The ellipsis is also I meed as/olUrwi : Let ac— AO or BO the semi-greater a.vis,«f<= CO or DO half-smaller axis. In moving the right line ac so iia to keep tlie point e on tlie dlamet(!r DC and the point b on the diameter AB, the i>()iut c will describe the required ellipsis. In practice tlie right line ac is any rod with projecting points at a,b and c, and along thci diameters A 1?, C D are disposed rods, grooves or elides to guide the points /) and c. (50) UIJI^i: II. When the diameters are not very unequal, the circumference of the ellipsis is pretfhi correcthj obtained by multiplying the hat/-sum of these diamaters by Ji.j lJt>. Thus the three last examples computed in this manner will rea- pectively give for answers 42.41 instead of 42.67, 69.11 instead of 69.40. and 62.83 instead of 64.76 ; so that when the difference be- MENStJRATION OF SURPAOES. 51 tween the diameters docs not exceed } or } or when the ratios between the diameters are 5 : 6 or 4 : 5, the error in the result does not ex- ceed Y5TJ o"" jhsi ^"'^ when thedifforenco between the diameters is | or when these diameters are to eacli othcn- as 15 : 25 the error be- comes nearly ^^ of the whole result. When tlio diameters are to each other as 1 : 2, the circumferences obtained by the two rules are to each other as 47.12 : 49.GG, the error being in that case ^ nearly. The diameters being as I : 3 the circumferenots are nearly :: 6.3 : 70, the error being in that case r^d nearly. Wlien the diameters are :: 1 : 5, the circumferences are :: i'l : ll.'3 and the error ^ nearly. Finally if the diameters to each otiier :: 1 : 10 the pe- rimeters would be :: 173 : 223, and the error .{'., or \ nearly. Which will enable one to choose either of the rules according to the degree of accuracy required in the result. RE9f. Besides it is plain that we might also, after having found the circumference, according to this second rule, correct it bj' the ad- dition of the error or d(^ti('ienc3' jtropoitioned to tlie ratio Ijetween the diameters, and as established above. PROBLEM XVIII. To determine the area of an ellipsis. ' (51) RULE. MuWphi the product o/tlictwo diumcters hi/ .7854 ; the result will he the re.2!»28-area ABCD. 2. If the axes of an ellipsis are 35 and 25, what is its area ? Ans. 687.225. 3. Required the area of sm oval whose length is 70 and breadth 50? Ans. 2748.0. 4. The greater axis of an ellipHis measures 840 links, the siuiiller axis 612 links ; required the number of acres within this enclosure T A us. 1 acres 6 perches. (58) REin. Since the rule gives for area of the ellipsis the ex- pression AB.CD X .7854 or wliich is (§7r«)ihe8ame thing[ AB.CdV I. The component, f.icos of aevfli.il of (lie rood' t« of tho Tahle.au present ellipaes of various degieea of ecoentricity, or whoHe diameters to eiicli other in viirioua ratios. w^ 62 KEY TO THE TABLEAU. X .7854, it evidently follows that the ellipsis is equal in area toaeirdc mhose diameter would he a mean proportional between the two diame- ters of the cllijfsis. Let d this moan diamctev. we have AH : d:: d : 3 ■ 2 2 2 CD and since (104 G) AT? : d:d : C J) it is plain also that the area of the elU2)sis is a mean proportional between *hosc of the inscribed and drcumseribed circles, that is, between those of two circles having for res- pective diameters the two diameters of the clli2)sis. (50) REin. The two rn'os which show how to determine the cir- cumference and area ofau elUi),sisniay l»e witli advantage substituted to the less precise and longer mtithod of par. (13'? G.) in the com- putation of the perimeters and areas of the curvilineal, tliat is (47 T.) elliptical bases of the oblique cylinder and of the frustum of a cylinder (997 and 1099 G.) 'if' ^^ell those of tlie oblique cone and frustum of a cone (1055, 1065, 1067, 1140, &c.G.) PROBLEM XIX. To find the area of an elliptic ring. (60) RUIiE I. Determine separntch/ the areas of the two concen- tric ellipses, and taJce their difference which will be the required area. RUliE 11. Mnltiphj the half -sum of the parallel circumferences of the two limiting ellijiscs bj the breadth of the ring, Ex. 1. What is the area of an elliptic ring whose interior diameters are 10 and 20 and the exterior diameters 12 and 22 ? Ans. 10 X 20 X .7854 = 157.08,12 x 22 x .78.54=207.34.50; the difference .50.2()5(} of these two results is the required area of the ring. 2. The exterior circumference of an ellipsis is 100, the interior circumference 90, the breadth of the intermediate space being 3.5 ; reqni. ^'1 the area of the ring ? Ans. 332.5. 3. Determine the area of an elliptic half-ri;ig, whose parallel perimeters measure 93 and 77 inches and breadth 10 inches ? Ans. 8.50 square inches or 5.9028 sq. feet. 4: Compute the area of .any part Art cC of an elliptic ring, whose exterior arc AC is 15, parallel Jirc a c 12, and breadth 3? Ans. 40.5. MENSURATION OP SURFACES. fiS REW. It is lianlly necessary to retnark tliatiftlio brondth of tlio aniiulav spaco were not everywlicre ociual, or even if the interior ellipsis had any other position relatively to its exterior env<'lo])e, or any ratio whatever between its diameters, the required area would none the less be obtained by the first of the two rules of this problem. PROBLEME XX. To find the area of a segment of an ellipsis ■whose base is parallel to either of the axes of the ellipsis. ^ (61) Dmde the hriijht of the serjmcnt hj that of the two diarnvtcrit of which this hoicfht forms apart, and Jitid in the laldr annexed to this treatise the segment of a eircle u-hose versed-sine is e(iiial to the qnolieni. Next find the eontinned prodnet of the se(jment thus fonnd and of the two axes of the ellipsis ; this prodnet will be the required area. Ex. 1. Compute the area of the el- A liptic segment AGH whose heij^lit AK= ,.— ■^— -..,,^ 10, and the two axes AB, CD, lU and '2r. ? B/^^ — F-— ^T" A.1S. 102.02. t B C~0— jk 2. What is the area of the segment of an ellipsis, whose base GH is at 36 from the centre 0, the axes being 120 and 40 ? Aiis. .'5.30.7.5. 3. Determine the area of an elliptic segment whose heiglit CL is 8 inches ; the two axes being 4 and .3 feet ? Ans. (03) REM. If the segments of ellipses ACD, acd, aee, of the 6gure of par. (1140 *«.) answer to tiie definition of the enun- ciation of this prob. we may if need be apply the rale here givcm to express their areas. Tlie area of the elliptic scgnuMit whieli forms the upper surface of the uugula fig. 2 of par. (1143 O.) could be computed in the same way if required. And if the segment to be computed were the zone or part AEFB, C(tPlD, tlie required area would be equal to the ditference between the semi-ellipses ACB, CAD and their respective segments EOF, GAH. 1. Several of the nngnlas of u cyliiuier, roue iind spheroid of the Tab/mu present in their sections segmentH of ellipses, some greiiter, others sinuller thiui the semi-ellip- 818, others, semi-ellepses, luid others zones of ellipses. 64 KEY TO THB TABLtAU. PROBLEM XXI. To find the area of a parabola. ^ (63). Tliia fif,'ure is that of tlie rfection of a cone by a piano parallel to its inclined side. (ADC, fig. of par (1140 G.) gives an ideaof it). It has this peciliarity that any point E, H, &.C., of tho curve is eciuidistant from a I'oiiitF called the focus and from a straight lino MN pcrix^ndicixlar to tho axis CU) called the directrix and whoso distance SC from tho apex C of the parabola is equal to the distance FC from the focns to the apex ; so that one has always EF=EM, HF = 1IX, &e. Now it is proved that the position F of the focus is found by bisecting B D in T, joining CT and drawing TR perpendicular to CT to obtain DR=CF=CS. The focus F found and the position of the directrix MN determined, the curve is traced by drawing a series of indefinite s'raiglit lines GH (called ordiuates) parallel to A B or perpendicular to the axis CD ; tUen, from the focus F as a centre and with a radius US equal to the distance between the pariillclfi Gil, MN intersect GH in G and H, which determines two points in the perimeter of the parabola. This operation sufficient- ly repeated will give a series of i)oints, through which may be traced a curve which will be tho figure required. (64) The parabola is also traced with a square abc, whose branch be is equal to the distance between the directrix MN & the base KL of the proposed parabola. At the extremity c of the square and to the focus F, tied a thread cGF equal in length to ch. The branch ab of the square is then made to slide along the directrix MN holding at the same time the thread tight along tlie brancli be, by means of a point or pencil whose motion describes the required parabola. (65). RUIjG. AfuUiply the base by the heightand take tico thirds of the product for the required area. Ex. 1. Find the area of the parabola ACB whose base AB is 20 and height CD 18 ? Am. 240. 2. The biise of a parabola is 1.'J.5, and the height J 1.25 ; what is the area ? Ans. 101.25. 3. CD = 10,AD.-8 ; what is its area 1 Ans. 10G|. ThiB figure, like all the other tigiires, treated of iu the " mensuration of areas," is to bo foiiiid amongst the coiupouHiit faceflor KideHof the models of the Tableau, See the couicHi and oonoidai nngiilaa of the 'Tableau. MKN80RATI0N OF 8URFA0ES. 66 (66). BEm. It follows from tlio drfinition of the jmrabola that any part GCH, ECV of the parabola ACB toniiiiiatod hy a base GH, EV, parallel to A B, is still a parabola, and not a more K<'<;inci)t, aa in tlie case of the ellipsis ; for the cone may be c'on«iih're«l cut by a plane parallel to its base and this as well on the one as on the other Bide of that base at KL without ceasing to be a cone and conse- quently, without the definition of the section KCL or ECV, &.c, being in any way thereby altered. Whence it results that to arrive at the area of a zone, or segment A£VB of a parabola by any line EV parallel to its base, one will have but to tiike the diflfereuco between the entire and i)artial para bolas ACB, ECV. (67). There is still the hyperbola > (seel ion of a cone by a 1. The hyperbola ACH in hIiowii liy HeclioiiB ofceilaiii inigiilati Oi <:i)ncR iiiiiJ coiioidH which will be foiinil .inioiig the niodelB of the Tableau. This ciii've ift, but. in iicout.mry hpiiko, luia- logoiiB to the ellipHlH. 'I'liiia, whilRt. in ihn ellipBiH(51 X.)i 't' >BtliR Biiinof the raiiii iliawii from the two fuvi wliich ia roiiHtaiit or iiiva riable : in the hyperbola, on t,ti« coiitrai}', it, in the (tiffereuce of tliene Hauia imiii whicli reuininH constant ; which cmiseH tliH two halves, paita or brHnclins of the curve (conjiijjaled liypeibo Ihb afl they are called) to prentMit to one aiioilier, not their concave HideB an in the uliifiHiH, but their convex end«, apices or sides. To trace llii.s ciiive without any con.lition of dimeusions, that is, without any condition as to the diun-nf'ionri of the cone or the position of the plane of bection : having taken at will any two points, K, K, at any distance from each other, from one of tliese points or foci willi any radian, described au arc on each side of the axis (that in of the litiH wliich connects the foci), and describe, from the other focus as a centre and wiili a radius greater than the first by a given ditterence, two other area whicli at the point of their iutersection with the two first arcs will deterniine 'J points of the required curve. This operation repeated with two new radii, lalting care however that the second radius be always greater than the first by the given difference (which as has been seen, must remain constant) will give two other polniH in !ii« curve to be described ; and other points in the curve may also he determined till their sequel and direction render plain the course of the hyperbola. If now, the radii he transposed, it is plain that we will have a new series of points. that of the conjugated hyperbola. 'J'de point O which is half-way between ll.e two foci IB called the centre of the hyperbola as of the ellip«i8. The hyperbola may also as the parabola and ellipsis, be tra.-ed by a mechanical operation. Taking a ruler fasteueil at one end to one of the foci of the curve to be des- cribed, and 80 that the ruler may be movable round the said focus, the other end ot the ruler will be fastened to the second focus by a string or line whicli must be shorter thau '.h« ruler, by the required difference between tha radii ; then a 56 KEY TO THE TABLHAO. piano which moots its base at an angle greater tlian tliat made by the side of the cone with tliat l>ase) the cjclold (wliich is dos- cril)ed by a point place?iireN, whoso areas and perinuiters ono may have to i'onipule, and for which thei-eare special rules which allow of estab- lishing with all the required precision their relative or absolute areab and <'ircuniferences;but it hi to be remarked here as has already been done (113 I €1.) that generally it will bo necessary to en(|uire lirst as to the natuie of the proposed figure ; and the luere labour entailed by this preliminary operation will often be sutlicienl to cause one to deeide on resorting immeiliatcly to the method of the following pro- blem. (ON). A practized eye will often find it ditficult to umlerHtand tbe nature of the figure to be computed, and nniy sometimes make ])retty grave mistakes thereby. There is for instance the curve AKCFH, called" flat arch " {a iise-eiiings, and which one may be sometimes dis[»os- ed to consider ;is an ellipsis, so as to compute its superficial content by iho. rule ai>plical>le to that figure; now, it is seen that in this case tlie dilference Al'.Cc t- r.F('/(or::,' AECc) between the two figures, may be too grijal to allow it to be neglected. PROBLEM XXII. To determine the area of any curvilineal figure. (<$9). KIII^I'I nividc the whole JUjiin\ if it he irri'fjular, (that is, if the corrcspo)tdinr€adtk or hci(jht, and proceed then in the ntanncr of prolilem VI., douhlimj or quadrupUhj if need be the area thus found to obtain the whole area of the fujure. pencil or iioiiit wliicli will hold tlift Mtiiiig liff' iuul at tlmsiune tioie in coutHct. with the niler, will describe, the ruler jjoing round the tirwt focus, the required hyperbola iiud the trauijpoHitiou ul'tlie rulur uud utriug will allow of dencribiug at will the otiier bnvucli of the curve, MENSURATION OF SURPACKS. 67 (*) (TO) The iTKithoil of compntation by trapezium*, will be the movi accurate as there will be in the figure to be computed conca^ ' .^ and convexities adb, hcc, compensatory of each otlitr such ah are *. Ainon^ t.liHHn fiKiirea, a ig ilie ovum or ovnl ; (hiicIi is t,l/e vmticHl nectioii of thfl e^;g, fc<',.,) 6 iiftliH clIipHis, (sudi ia tln^ .•^tii'tiou of tli»* riii'Imi, &,c.,) or iuiy of.liei' (iliiiloj{oiiH (ij{iiiH, till! hiillH evu wimlow. IIih HHCtioii of tlio h|)1ihi()1), t.lio mii- phit.lieiiter, &c. ; c is the 'f-HllipsiM, oi- flit-uicli, cycloiii, llio tiiit siiclied Ijeiid of uii opening, llie s^clioii of u vdiilt., &,c, ; d, hiiv iirHK'i'''-'' *'"iviliiit!iil ligiiio ; e ii piiiultoiii oriiiiy oilier Hiiiiiliir lij^iire, liypi-iliolii, tlm iiiiscii iirc'icd IumiI of iiii opm iiij; ; lliiiHec- tion of II vault, tlie verlicul nee? ion of u coimid, iIoiuh, &(!. ; / is the niking iiroli or the section of iin inclined viuilt. g is llio develoiied concfiive or convex snifnco of an iingiilH of )i riglii, cyliniinr; /t, the developud l.itHiiil HiirliU't) of no nn^'iiln of a rij(lit. cone ; vi flio dHvulopnient. of tlie Hnrface of tlie iin^Mlii of lui oliiiqne cylinder or cone. Tlie luneitKH or int"rrtei'iioii.s of vaults, already iiieiitioniMJ at aiticle (ll'lS C) pi'eseiU alrtO surfaces the devi'lopinHiit of which (.ffer:' to the (•on«ldera- tioii ofthe iiieasiirer the l.hioe last, lii,nires which have jiMt, heen deiined. The develnp- ed lateral snrt'ace of i he Irnniiiiii of a riyht cylinder pri\si'iii« i In; loi m /-, and it. followa frotn par. (997 G.) and froai the dnin. of pie. (I0J>9 C) 'hat it, Hiifiices to multiply the half-siiin of its less and ^'ivaler hei^hi tv, is, hy the lei)).Mli oj) perpendicniar toj'Jin- i)<. this breadth heiiifj evidently eipial to the dtivelopHd cir- ciiinference of the section of a cyllinler by a )>laiie perpiMidiciilar to its axis or side. The development, of the lateral surface of an ol)li(£ii(! cylinder (f)97j prt-si ills the figure 71. the heij^lil, of which r.» which is that of i Iih inclineil side ot llie cylinder, is everywhere iinifonii, the area of the envelope being consequently equal to the (irodiict ofi'jhy the breadth oj), the perimeter of a section per|ieiiiiicnlar to the axis or Bide of the solid. It is useful to state also that if the iinirnlaof the rigu cyliinler of which the liiinre^ is the envelope, instead of heini; [laiiial asKIiX IC orKLlil'' | iit;e 401). (J is entiitMU- com- plete »8 ADrf, page 388 (i, iIim area of fj will he ohiaiiied hy lindini; f.lie product of op by the lialf of r.», for in ihiscaae (/ will he bur- the envelop.- /■; of the friistum of a cylinder whose less height w< would he e(jual t.nzeiii. Hy iiiijiistiiig to tlie lateral face of an llllgiilaor frnstum of a cylinder or cone, etc. of the Tableau, a slieetof paper, to trace or out it out afterwards at will, the pupil will get an excellent idea of the njitnre of the developed Biirfaces her* mentioned. .'4 1 '■■■ 68 KEY TO THE TABLEAU. seen in tho figiiros g, h, m, k, sinco the BOgmcnt bee which is neglected hy cousldering as a h-apezium tho part BCccb of the area to bo computed, will be compensated by the segment adb Avhich is in exce88_,iu the trapezium Aliba. \B (71) But when the figure is e.-tirely convex one will add to the prfision by taking in the sum of the segments ahd bee, &ic., determin- ing by mere inspection or otiierwiso the mean breadth which will bo multiplied l)y tlie cor- responding perimeter adbec to obtiiu its area. (Tli) Let us observe also that instead of considering as null the initial height of the figure, at the pointAoftlie springing of the curve, which would give for the area of the part AMhdaA of the figure the triangle AB6, one will obtain more accuracy by considering as a strfjght line the almost vertical part A« of the curve, which will then give for a more approximate area of this component part of the figure, the trapezium Art^B instead of tlie triangle A6B. It is also plain that a continued subdivision Y>d, Ee, suificient to allow of considering the parts ml, bd, be, &c., of the convex or con- cave circumference of the fig. as being sensibly straight lines will also have for result to add considerably to the accuracy of tlie opera- tion. (T3) There is also a pretty correct and expeditious mode of arriving at the area of an irregular figure ABCD : that of reducing it to finy equivalent rectilineal or regular figure by compensatory lines ah, be, that is, such that the sum of the parts cut off by these lines be equal in area to the sum of the parts comprised in their inclosure, a graphic or mechanical ope- ration for the accuracy of which one must often trust to an ocular estimation. (1'4) Finally, as to the evaluation of the developed lengths of the perimeters of the figures in question here, let us remark again as was done at page 596 Gr, that often the most expeditious manner and not the least exact, of arriving at them, will consist in the use of a thread or ribbon, or wooden or metallic rods thin enough to allow of a^usting them to the perimeter to be computed, in order to immtj- diately deduce from them the required dimensions. MENSURATION OP BODIES OR SOLIDS. (See the luotlels of the iStemumetrical Tableau) (T3) The meusiinitiou of solids, ooiii|nis('S that, of tlieir surfaces * as well as that of their volumes or solidities. It has already been seen (5, T.) that tlie unit of measure for plane surfaces is a square the side of whicli is the unit of lens^th. Any curve line is also referred to a unit of length, and its nu- merical value is tlie number of times the liim contains tliis unit. It is also to be observed here tliat the rule already given (page 177, 2° CJ.) to find the numerical relation between two straight lines or to determine tlieir common measure or tlie greatest common divi- sor, applies equally to any two curved linesof the same radius, since that equality of curvature will allow of the supcrpositio?i and entire and perfect coincidence of these lines in th(^ same manner as if tliey were straiglit. Now if it is supposed that the lineal unit he reduced to a straight line and that a S([uare be constructed on this line, this square will also be tlm unit of niejisure for curved surfac(!S. C^O) Thounit of volume is (1011 G.) a cube tlie component face of wliich is equal to the superficial unit which serves to compute the area of the solid, and the side equal to the lineal unit used to express its lineal dimensions. 1. The opposite bases, the liiteiul fuce.-i inid llio t:e(^ti sq. feet. a. Required (iu^ weight of copper ne- cessary to cover tiie inside of acistern the length ofAvhich measures 10 feet, breadth 5 feet and heiglit or dei)th 4 feet, the (•()i>per to be used being 5 pounds to the square foot ? An§. 850 pounds. I. 'I'lic pri^<'i of Imild. ii({8 of nil kiiiiiuMS wt'lliisiii tlie tiuiiic of the variniirt ni),ii-tn;ent,Hf(>nniiiff piirt of l.hein- It in fomul iiifiiiii in tliH wiillrt. piiliiiH imd piei-s of hM kinds of l)Mililin^rt kikI oa a Hiiuillei- nciili' in I'acli of tlw coiiiiHiMinf.; sIoiihs or bricks of tliertf> bodiMR. Giibled roofs most ofien pieweiil tlie li'/nre cif liu; ri^lit triangliii- prism imd tlie giililew of the Willis forniiii>; tlii'ir pill :illel liases are also prisms of tlie same name. 'I'lie body oi' B,'iilar prism or right, half- piirallelopipedon and the roof of a garret wimiow. if i: ho hip'd, is an ohliijiiH tritiugil- liir prism, provided the iii(diiiiiiioii of the hip he ei^iiiil to that of the roof, and if the plane of the hip lie not pirallel to that of the roof, it is then h frnstiira of H prism the solid and snperlicial coiilent of \vhi<'h is to be valued. 'I'here are also in the iirtaaiid triidesathoiHiiiid undone olijects atf-oting the form of a cube, right, obiiqiieor truncated parallellopipedon, right, oblique ortrnnoated polygonal prism or which mny be deeonipoaed into solids of this kind. 'I'lie onttingH and eitibankmentH of iHilroada Hiid other roads, ofl en enough present to thecoiisiiieratioii of the meaaurerqiiHdi'uiigiilar prima having for parallel bases triipeziumo. '2. Each of the edges or Hide.s (,\H,(;K, 1st lig. or AF, IJG, Cil, &c., Und fig.) of the prism being of the same length, it is evidently the Rame thing to multiply succes- sively each aide or edge (base of the parallelogram which goea to make up the lateral sinface of the prism) by the length of the corresponding parallelogram or to add according to the rule all these breadths ao aa to multiply them at ouce by the length of the aide of the prism. MENSURATION OF SURFAOES. 61 4> How many square motres ar« thoro in the lateral area of a building tlio length of which J8 100 metres, breadth 2J1.3 metres and haight 17 metres ? Ans. 4192.;i 5. A room mea8Xire8 40 feet by 2'^, and its height is 15 feet; how many square yards of plaBtering will be required to cover tlu; tour walls and ceiling 1 Ans. 82795. 6. What would be the cost to line witli leadof Tpounds to the foot and at 4 pence a poiiiul, tlie inside of a rec- tangular vessel the length of wliich is '3 feet 2 indies, breadth 2 feet 8 inches, and height 2i feet. 7 .'133 X .5 Ans. Area to be covered— 37. ' ^ souure feet, =263-— pounds 12 * 'Id' = £4.7.9J=$17.55.185, T. What is the lateral area of a deal of 10 feet, by 12 inches, and 3 inches ? Ans. 2.5 sq. feet. 8. How many supei-ficial fee cat stone in tlie lateral area of an octiigonal pillar whose side is i.» inches and lieiM;|it 10 feet ? Ans. 100. 9. Ho\V many squares of wainscot to cover the lateral area of a hexagonal building whose oblique radius is 20 feet and height C3 feet? Ans. 39.G0 10. What is tlie lateral area of a polygonal post 3 f<'ef [K'liineter and 10 feet high ? Ans. .30 srisiii rcchiccs tlie rule or ijc-ntMal J'orimila at the top of the t,tcreumcirical tableau to the more simple following ex- pressictn : (see : Iiitroiliietioii, page 8, last ^| j)aragraph.) RUfiE. Ihti'i luiuv first the area of the base ; mulliplti this area bij the hvitjht, the j)roduct will be (1020) the rolume of the prism. Ex. 1. What is the solid content of ii. cube whose side is 24 inches ? An§. 13.824. tS. How many cubic feet in a block of iiu'irble whose length is 3 feet 'I inches, breadth 2 feet eight inclies aii'I lieight or thichness 2^ feet? Ans. 21 J. :i. IIow many gallon.s of water contained in a cistern having the dimensions of the preceding example, the gallon being 282 cubic inches ? ^ Ans. 129||. 4. What is the volume of a triangular prism who.se height is 10 feet, and tlireo sides of its triangular basis 3, 4 and 5 feet ? Aus. 60. 5. Required tiie number of cubic feet of stone in a pillar 15 feot high and whose base is a regular liexagon the side of which is 1 foot 4 include ? Ans. 69.282. O. Determine the numl)c-r of toi.ses of masonry (the toise being 6 X ♦) X 2=72 french cubic feet) in an octagomil prism of J 2 feet high and 3 feet side ? Ans. 7 toises 17.47 cubic feet. 7. The pier separating two splayed windows, and whose base is consequently a trapezium, measures 13 feet high, 2 feet thick, 9 feet broad outside and 7 broad inside ; required the number of bricks that have been required to build it, at 20 bricks to each cubic foot f Ans. 4.160. I. N.H. T)ie eii^MiHh iiuperiiil ^ullnii is 'J77.'J74 en^lisli cubic iticlieR, the old beer giilloii=°J8!:i cubic inches and the wiue i;h1Iou Hctuully used in CauudH is 1231 english cubic iuchea. MEN8ITRATI0V OP SURFACES. 63 §. A stone gablo 3 foot tliick, measures 40 feet at its base and 20 f(M't liigli 5 how many cubic yards of masonry does it contain f Ans. 44if 9. The facade of a building is TW metres, its Iwiglit 17 inetros and tlie tliickness of tlie wall /'•'} ceutiniotres ; wliat is the vujunie in cubic metres ? Ans. 3M ^ |7 x .73=40M.r)3. 10. Required the number of cubic metres in an <'nibanknient whose length is 100 metres and eacli of tlie jianillel planes consti- tuting its ejids is a tiapezium having for ])arallel bases ."{ metres and 13 metres for its height 3.3 metres. Ans. riCIO. 11. A well must be 27 feet deep, and iti-', jdane must be a regular hexagon whose radius ofthecircuni.scribed circle be.") feet; how many cubic yards of rock are to be mined to give it its required dimen- sions ? Anil. The side of the hexagon is (Hitt G.) ."i feet ; ") — .") x ,■) = 25, and 25 X 2..'>9d07U2 (area (27 T.), of tlie hexagon whose .side is J) =04,9510 square feet = area of the given 64.0510 X 27 lexagoii, and, 27 :G4.051!) cubic yiirds. Ex. 12. What is the solidity of a rectangular iron bar 4^x1 inches and 14 feet h)ng ? Ans. 7'}G cubic inches. 13. Required the volume of an eight sided post wjiosc height is 10 feet and breadth of each side 7 inches 1 Ans. 7 x7x 4.828427 1 := (3T T.) area of the base = 23fi..-,02f>279, and X 120=28391.15 cubic inches, and-M728(or 12 x 12 x 12)= 10.43 cubic feet. PROBLEM III. To find the area of an oblique prism. (See the tableau) (80) RULE. MuUq)lii (996 G.) Ilie length AF, BO, CII &c., of the side by the pe- rimeter of a section L^INliSL perpendicular to the side. Ex. I. What is the area of the face and two sides of an inclined beam or rafter with parallel bases the length of which is 12 feet, the breadth of the face 9 inches, and that of the sides 13i inches ? Ans. 36 square feet. % The length of a cor ice under a (i '! ; ]•• 64 KEY TO THE TABLEAU. flight of stairs hotwoen parallol walls is 20 feet and the circumfei-ence or periiiH'ter of a section of tlio cornice porpentlisular to iti direc- tiou is 27 inches ; what is its doveloped area I Ans. 45 square iset. PROBLEM IV. To find the volume of an oblique prism. See the tableau. REiTI. Tlie oblique i)risni, being, as the right prism, of inva- riable diameter thiongliout its whole length, every section of this solid by a. plane i)arallel to the base would form a surface equal to that of tlie base ; whence it is plain tliat for the oblique prisna, as for the right prism, the general formula is reduced to the following sim- plified exjjression. (SI) KUI.E. .¥»//(>?// (I«20 G) the area of the base ABODE or FGHIK hu the height IPperpendicular to this base ; the product wilt be the required volume. Or, which is the same thing. MuUiphj (lO'l.-i G ) the side A F, BQ, CM, dV., oj'llic solid hji the area of a section abcdea perpendicular to this side. Ex. 1. How many cubic feet of oak will be required for the carriage of a tlight of stairs 17 feet long and 15 x 4 indies square. Alls. Gi JJ. Tlio horizontal base of the breast of a chimney built obliquely, measures 7 feet by 18 inches, tlie perpendicular height being 7 feet 3 inches ; how many bricks does the parallelopipedou contain at 18 bricks to the cubic foot ? Ans. 76\ cubic feet x 18=1370i bricks. 3. Tlie triangular sidi^ of a garret or dormer window has for its horizontal length 7 feet, for vertical height 5 feet, the breadth of th6 dormer being 4 feet; the roof of the dormer window is hip'd pa- rallel to the roof (/f the building ; the heiglit of the triangle which constitutes its vert a' section is 2 feet ; what is the total volume t Aiif- The body or square of the dormer (right triangular MBNBtiaATION O* SUttFACFS. 06 prism) 0)=i (7 X 5 X 4)=70 cubic f«et, the roof (olilique triuDKular j)ri8m) = i (7 X 4 ■< 2) = 23 cubic feet; the required vol unie is couse- quent'ij [)8 eubi'; feet. PROBLEM V. To determine the area of the frustum of a prism. (Seethe tnhlean.^ (S2) Riri.K. Find sepamtehj (]0.»« €J.) the area of eaeh of Hh companent faces ; their sum will he the area reijuired. lix. What is the number of siiperliciiil IVet of cut stone in the circumference oftlu^ toj) of u chimney situated oliliqui l.v on an inclin- eu roof, that is tiie component facesof wliich are not i>arailel to those of the building ; the \Anuv of the chinim'y bciiifj a rectangle.'? feet by 4 feet and the respective Iieights of its four sides or edges '/ , 8, 9i and Si feet ? Ans. i (7 t- 8) X 3=22 + KS f 9i) x 4 = 35 + -KIH + Si) x 3=27 + i (8i + 7)x4=3l = lloi. PROBLEM VI. To fihd the solidity of the frustum of a triangular prism. (See the tableau.) GENERAL FORMULA. (83) To the sum of the areas of either (f its three pairs of parallel bases or faces ACFD- BE, ABED-CF, BVFE~AD) add four times the area of a parallel section or plane h((lf-wai/ between them. I. Ileie the (irimii in (jm^hlioii ii()("< iiol rust ciii diu- nt it.s piiiMllel bil^^es ; liiil, tliis circiiuiHlaiicH cuiirim pieveni <)ii« fVom Hmiiiiiis; iinmediately on llie imtiirH of tho nolid to be lueHsured ; foi', it ip pviilnntly inditfeicMl, rt»s|iH(!tiiig the volume re()iiire(l, whether the poBition of the polyhedron be VBrtioal, horizontal or iiiclliied. 1; i! cc KEY TO THE TABLFAIT. This sum inul(ij)Ued hifthc sixlli iHirtof Ihc (or.cEF, cannot 1m» nicasuicd at once ]>y tlic ji't-noral formula and must br (k'coniii()s<'d liy a jtlant' of section iiaralici to one oftlioso bases and passing' tlirou^li tbe nearest point of t'lc otber base, tliat is, tlirouyli tlie end of its edge or (»f its siiortest side, into a prisui and a jn raniid, wliicli may be measured sejtaratitly by tlie general formula, to take ai'terwaids tlie sum of the results ; iiowever, if att(nition be paid to the nature of the solid, to wit, that the faces and edges or opposite sides are parallel, an*' that tlie siib's or edges being lout simplo lines, the area of each «)t' tliem is I'lual to zero (0) it will immediately be si^en how to aiiply the rule t(» measure at onco the proposed prism. (§5) Example. Let ABC-DEF (tig. of the following page) a frustum of a prism where AD=:8, ¥C = 7, IJE = iJ, CK=4, ]ieiglit,=5, (the base GIIK being considered perpendicular to the sides or edges AD, FC, BE). We will have by the formula : volume = area AGFD + 4 times thc^ area (irj'd i tlus area BE, which it null, the wUulo mul- tiplied by I of the height. The upper base BE is but a line and is equal to Tbe lower base=-^i^ x r,K = -~ x 4=7* x 4= 30 The section acj'd (Imagine such a section ((c/d parallel to the base ACFD and half-way between this base and the apex BE) , ADfBE 8 + ()q. . gives ad— ^^ =_.^_-8i, c/ FC + BE 7 ^ 9 =8, ami the breadth of the trapezium acfd isfy/i = KG-f-2=2, whence area «/hi=8J I 8, that is l(ii-.--2 or 8.ir x t2= IfiJ and four times thisarea=l(ji x4= 66 The sum of the areas is 96 which multiplied by the 6th part of the height or by JJ, gives 80 units for the volume of the proposed frustum, w'lich agrees with the result given hero below of tiie calculation of the same frustum by another method and proves evidently the accuracy of the formula. Here again, as for the prism, the general formula is reduced to the following more simple expressicm : (86) RU1.E 1. j¥m/• to these sides. KEi^. Tliiw Hccoiid iiilc, it, has ' leii said (lOIHI G.) 'lorivps evidpiiM.v IVoiii Ihiit of paraniMpli (I035 «.) but slioiild tiiiM oon- clnsiiui, pciiiaps too iiiiiiM'diatc ('t»r tlii' j»iii»il to pciroive its truth, not be Coiind ri^'oroiis and satisfactory t'uuugh, it is liowevor easy to show its oxactiioss, in did'cn'ut ways, the followinp; of wliich l!ioii.i;h llu; mo8t-«.\l»(Mlitioiisis not the least foiicliisiv*!. Let then AHC— DKF tho fnisfum of an obli(iu(> tiian!j,idai' i»risni, dividtul into two frusta of ri.i-lit prisms aiIiv-AlU\ (UIK - DEF by a plains (iHK pcipiMidiciilar to the parallel sides ;* ' ', HK, CF of tiie solid. The volume of eaclieoinposinif frustum is ecpial Cl01>fl<}.) to the jirodnct of the eommon base(}lIK by one (hiid of the sum offhe peipendiculara GD, JIK, KF GA, Jlii, KV : bui (illK x -i((iD i HE |-KF) + GHK X J(GA ) II1? + K(')=GI[K x i(GD ! GA t HE -I- IliJ i KETKC) = GIIKxKAD + BE i CF) : tlierefore. &c. Ex. I. The bas(! of tlie iViistiini of a ii,i;ht liiaiigular i)rism is 10 square feet, the sides are 7, H ami !> feet ; what is its solidity ? Aim. 80 cubic feet. 'i. The tliree sides of the frustum of an obli(iMe i)rism are 7js, 8| and Defect; tlie base and heii>lit of a section ])eiit('Mdieular to the side are respectively' .') iind •'} i\-i'i ; wliat is the solidity of the solid ? A«s. 8 J < 7}> = ii:i'l cubic feet. 3. The three sides of tin; base of an inclined prism measure res- pectively li, 4 and .') metres and tlie heii;hts of its three ai)ices are G, 7 and 8 metres j what is its solid content l Ann. 42 cubic metres. PROBLEM VII. To find the solidity of tho frustum of a prism whose base AD or section perpendicular to the side is a regular polygon or having symmetri- cal halves (1097 G ) (87) BiK^J. Here a.'j; liii llie n^neral lormulu is reiit fiuata of triiui<4iiliir prisms, hh in tlie following prohleni, and then t:iU(> tln-ii' snni. (MS^ MirtAi I. M ititi phi (tonil «.) the bns'^ bif half the sum of the he'ujhh of tiro oppositv hhIcs ; the product will be the volume re- fjuired. KI'l^l-] II. MitUipIji (hr half sum of two of the opposite fiides or cfh/cs Iff Ihr fnixlui'i bij (he una of a avetion perpendicular to thote parallel »/(/(•«. Itl'^ITI. 'riii>' HcciMid nilfdcrivcKUf^Min from par. :^0*.KI <«.) ninco one may Huppose the fniH- tnm of the polvnoiial ini.sin diviilcd into fiiista (»f tvian;nular prisms, and for each of tlicsc compo- nent ftnstamakc tlicsainc proof uh for tlic frus- tum of tiic triaii^Mdar prism of I lie last jjroMcm. Kx. I. IFow many ciihic foci of stone in I lie top of a chimney havinjf for horizontal section a regidav hexagon whose 8id«^ is 2 feet, the hei<;hts or lenytha of tvro opposito edges of the frustum heinj; IM and 17 feot f Alls. 2. -)!i8(»7f;2 X 2 X /'--t ''^"j = 15:1.884572. S. Find the luimher ol'cubic inches ofbircii in a staircase baliiRter having for liorizontal section a regular octagon 13 inches diameter and whose least and greatest length or height measure re.spcctively 37 and 2i' inches. Aii*<. 'I'lu^ rccpiired side of the (tctagon is pretty accurately ob- tained in this case liy describing a circle 3 inches diameter thence to find the choid of one eighth of its circumteretjce. This opera- lion givis for the bieadlh of one (>!" tli<' sides of the baluster l/^j inches nearly, say 11.5 ; or (l.l.j) = 1.322.). and I. ;1225 + (tJH T.) 4.8284.271, or to abridge 4.H.'5 l..'<2 -(I.M75 s(|uare inclies=:;iiea of the section of the baluster; linally, ti.-'i75 x ii27 I 29) - (i. .'575 x 28= 178^ cubic inches. PROBLEM VIII. To determine the solidity of any frustum of a prism. (See the tableau.) (89) RULE. B'rst find separately (10«8 €i.) by the preceding rules the volume of each of the frusta of the component triangular prisms, and then take their sum. MRNStlRATIOff OF StJRrAOr,*. 69 Ex. An fmbaiiktiHMit ol' enrtli pn-snits tlio form of the fiUH- tuin of a liglit priHiii liavhig for itslmsc tlit» |n»l_vj^oii AIU'DI'.A ; tlu* area of the comi»oiipnt liartc AIIC is SI) s(|iiiii'f yards, Miat of tln> Itase ADC = 73 yards and tliat of llic Itasi- ADK — im yards ; tlitt liciKlifrt or longtliH of tlic paralli'I sides A, K, (', iVc, aic vsitcctivcly 7, H, <», 18 and II ft't't ; wliat is IIki mmilM'r of niliic yards in tli*- itropost'd BoHd ? AON. (1 lOS.'-JO" O.) loO X i (Y T H ' G) I i}57Ti~(7T9Tl[3 + 585 X 1(7 + 13 I rr=3l)0() Mi.T) 1 i (i(>r)= llJ.itlKi cubic feet; divid- ing by 27 \v(« liave r)!»2i^ cubic yards. REHI. lUm'i w«i have reduced into square fe(*t, Hi<^ areas of tlie basos given in S(|nare yards, and divided i>y 27, bnt it is |»Iain lliaf, since 3 times !>--27, it woidd be ilie s;iine thing to multiply imme- diately by the yards an4 U. It EM.) ^ Ann. 6 40 + 40 + 35) X i20) X 10) = 3833.33. 70 KEY TO THK TABfiEAtJ. 3. Wliat is tlio Hulid coiitciit ofji wt-dxt' t\ni IdiHt* of wliifli mt'a- Hur«'H "t Iccl I iiiclits liy I' iiitlics, (In- U'liglli oftluf ('(lg«';H ftct iiiid the |MTlK'ii(liciilar lici^flit 24 tVct ? Ann. 4.i;JI!i cubic feet. ii. All incliiM (t pliiii*' iiK'ots a liorixoiitiil plane aiulloriiis witli tliis Inst a wcdnc the rdj^c of wliicli measures 1(11) feet; tli«» ifctan- jiuliir liasc HO feet liy~(( fct-t and tlic pi'ipciidiciilar tlistaiK'c Itctweoii tliL' edge and tlu' hum' '.M) f«'et ; what i.s tlu) voliinu' of tiie solid f AUN. SCO.OOO cubic feet. PROBLEM X. To find the solidity of a prismoid. (') REiH. A siinidc exantiiiatiou of the nindols of (he tahlcau nhowB at once tlic iiatnic of tlie intcrnicdiatc .section or phme parallel to the ba.-K s and )ialf-\vay Itctween tliciii. This (lucstion lio\'«'vor is treated of indeliiii iiiidfr tin.- licadinj; of proldeiii LIX to which one may refer for any thiiij; concerning the jiriHinoid. (!M) IIUI^E. To tluiiioii ofthi'oi-eaHoJ'thcUvoponiJlc}ha8e8,AV nv, (uhl fitur fiiiics llic (lira of a intntlld section EG equidistant from I. 'I'liis Hciliil. lilfn lliH piiHTii, is vmy oI'iimi iiihI, with liy ;lie niHiiHiirer. liectHii- >.rtiliir viilK willi iiirliiiHcl xiiicH in'K of iliis lorm ; h tint liipi'our proHHiilH I.Iih mime tljiiiit) ; liii>,'fi leriHivoiis iiin iu)t,liiii>{ Iml, iev(M'HP(l priaiuoiilB; if in found ii>,'aiii, in the ImRiiiH, wlmi'ves. |iilliin», iilinlin*-ntH and consirnctirMm of riicIi kimi ; excMvationa iind em 111 will ]».•<, riioMii'ix 1111(1 fMiliiiiiUinenlH, iVc, K'''"''i'l'y iixHiiinn liiin form ; (he conti- nuHil (Miilmiiluiiciit of 11 liiilwiiy is siiltdiviiiiMi liy viM-iii^d Hi-cMions into prinrnoiilH each reHliiuK r, slioiiid it liave been said, tlie fniRMiin of a pv- lamid wiili llif prismoid, for it evideii' y follows from the delinitioti of the prigmoid that any frnstnai of a pyramid with parallel liases is at the same time a prismoid am! can 111' nn'asnrcd by till' rule applicable to Ibis latter; but the so called prismoid in in)t the friistiiin of a pyramid, and (Mie cannot conRer(nenlly determine its solidity by the nile applicabl" to the frnsinm of a pyramid, fboiijrh however in certain cases this last rule nuiv jjive an approximation very near the truth. I^et ns add also that since wheo it is reiiuired liist to dHlerinine the iialnre of the solid to iiemeasiired, one must ill the case of the friistniu of a pyramid ascrertain the [iroporlionateness of the sides as well as their parallelism, and that their parallelism alone is siiffl- cienl to consliiiite the prismoid; one will also often save a useless work by consi- deiiii); as a prismoid any solid the lateral faces of which were inclined to one another Hiid the sides of the opposite bases parallel to each other. MENSUHATION OP SDRKAOES. 71 theiie banes : thru mitlliph/ thr sum thus ohttiinrd hi/ our nixth of the heif/iit or iH'riundicKhtr iliHldncc l>ftuceii the paralUl yWujics (IIOI <«.) and the renxlt irill Iw the rciiiiircd roliime. Ex. One of tlici bastes of u icftiiii;;iilar primiiuid in !;20 x ti') t'tet, tli«'» *l»ev if* 10 x 15 the lieiglit is 12 fee t ; wliaL i's solidity if Alls. C-iS X 20) + (l."» - 10) I k'M X 13) X 1^ = 1850x2= .1700. (i 2. A wiiatfor pillar ♦' the excavation is 10, ()()(» metres, the up- per area 14,400 metres, the half-way area between the parallel bases is 12,100 metres and th(< heigjit or de[)t]i of tlie excavation is !> metres ; how many cubic metres liave been dug out i Ann. 109200. 5. How numy cubic feet of water can Ix; contained in a reser- voir the base of whieli is a rectaii .le 1(10 x '>0 feet, its upper base a rectangle 180 x 13a feet and depth 20 feet 1? Ans. 202,G00|. 6. What is the cubic pace contained withiu a roof the base of which is a rectaugle 40 x GO feet, the upper part a rectangular flat 20 X 40 and height 12 feet ? Ans. 18,400 cubic feet. 7. What is the solidity of a piece of square timber who.se length is 24 feet and the ends parallel and rectangular [)laue8 30 x 27 inches and 24 x 18 inches ? Ans. 102 cubic inches, 8. A trough the depth of which is 20 inches, has for its parallel bases rectangles of 30 x 30 inches and 30 x 24 inches 'I O. Aus. 10.34/5 cubic feet. t^ . I ii KEY TO THE TABLEAU. O. An pnilmiikinoiit for arailwny iiuiismcs 300 \ jirds in Iciifith, its ends arc liiipc- ziiiiiis, tlu; pariillcl sidfsof one are 4 and 34 yiuds juid tlio lu'iglit JO yards, llio sides of the otlu'r iirc 4 iiiid !!• yards aud the lieiglit 5 yards ; liow many cuhic yards does it contain '! Ans. Area of one end = ^ (4 \ .'34) x 10 = 190 yards, area of the other end=i(4 i 19) x 5 - 57i yards, intermediate area -i{4 t 4) ' i (84 i 19) X i(lO ' 5) = 15.25 x 7.5 = 114..J75 square yards. 114.37.') ^4 = 4r)7..')00, 190 r .57.5 f 457.5=705, aud 705 x i(300)=705 X 50 = 35,XJ.")0 culiio yards. 10. A causeway on a sloping or iuclined ground measures 100, metres in lenj^tli ; the areas of tlie quadrihiterals with parallel sides forming the vertical ends or bases of the prismoid perpendicular to its lengtli, are I 'JO and 80 s(]uare metres, aud the area of a half- way section between these latter is 100 metres; how many cubip metres have been requiicd to form it ? Alls. 10,000. 11. What is tiie cubic space occupied by u pile of cauuon balls whose recta r)gular base is .30 feet by 10, the upper piano 25 feet by 5 and the hcnght 4 fet^t '•' AuK. 833| nearly. 12. The pedestal of an eiiuestrian statue the height of which is 10 feet, has for its parallel bases rectangles of 15 x 7 feet and 12=4 feet ; what is the solidity of the ma.ss of stone which it is formed of t Ans. 750 cu. feet. PROBLEM XI. To find the area of a regular pyramid. (See the pyramids of the stereometrical tableau.) (ft2) RULE. Miilliplij {I039 CJ ) the perimeter {ABODE A) of the base lii/ the inclined half-height (SF) ; the product will be the la- teral or convex area. To the lateral area add that of the base, when the whole area is required. MENSURATION OP SURFACES. 73 Ex. 1 . Wliat is tliP lateral area of a regu- lar triaiigiiliir pvnimid, the iucliiied hoiglit of wliicli is^Oaiidciicli side oFtlio basoU. Alls. 90. '2. IJ('i|uir('d tlH'wiiolcaii'aofa regular py- ramid liic iiicliiu'd lieiglit ot'wliicdi is 15 iiietres, and t he base a pciitiigou the side of which is 25 metres ? Ans. 2012.778 square nu'tres. Sj^IIow many squares of siiingle, zinc or otiier metal, &t'. would bi' required to cover a roof liaving the form of a regular i)yramid the base of wliieh is 200 feet perimeter, and the iuclined height '33 feet i? Ans. 33. PROBLEM XII. To find tho lateral area of ths frustum of a re^lar py- ramid with parallel bases. (Fig. to Prob. XI.) (Sec ou the tableau the models of this solid.) (ft.'J) Stl'LK. Find (lOlO G.) the product of the half sum of the 2)cri)in't('rs (A BCDEA, abcden) of the two bases by the inclined height (//<') of the fr 11^1 inn ; ijou will have the required area. Ex. 1. What is the lateral area of the frustum of a heptagonal pyramid, tlie inclined height of which is 55, each side of the inferior base 8, and cacli side of the superio, baso 4 ? Ans. 2.310. 2. An eight sided roof, terminated by a platform has for mea- sure of its iiK'liiu'd height 17 feet ; the length of the side of the regular octagon constituling its base is 20 feet, aiul the side of tho superior polygon is 10 feet ; required the weight of the lead that covers it, lead being pounds per square foot ? Ams. 12240 pounds. 3. How many superficial feet of cut stone are there in the late- ral area of of a polygomil tower the inferior and superior perime- ters of which measure respectively 100 feet and 80 feet and the inclined height of which ia 40 feet ? 8 Ann. 3600. V* KEY TO THE TABLEAU. PROBLEM XIII To determine the area of a pyramid, or of any frustum of an oblique or irregular pyramid. (See tlio inodols of tlio tableau.) RfJIjE. Get (1059 CJ.) Hrpnratetij the area of each of the connw- neni faces atidlakc their sum fur the n(piired area. PROBLEM XIV. To find the solidity of any pyramid. (See tlie models of tlio ial>leau) GENERAL FORMULA. To the sum of the areas of the tiro 1)ascsor ends of the pyramid add four times the area of a sect i or, holf-iraij l>etwecn them ; the sixth jtart of the product of this sum by the heiijht of the solid, will be the required volume. 95. REM. Here,tlieanpenorbascS, (apes of the pyruniid) in but a point iiiid its area is therefore mill, or=0, Tlui areaoftlichalf-Wiiy section Iiiis exactly and in all cases, the value of tlie fourth of that of tlio base, since its linear di- mensions arc * the Inilves of those of the base, and the figures AV, «<■,— X V/, xijg are (1033 ©.) similar polygons of which the areas are as the scpiares cf the homologous sides ; which gives, as already stated, ixi=}. Now the 1. Ill tlift Bimiliir triiiii),'l('s AlUS, ab S, tlio lioiiioloironH sidna uip (,"5»20 Cw. ) pro portionul. Therefore, -ince ah irtlmlf-wny belweeii Aniinil S, wo Imvo A art of tluit of (lie. base, and as 4 times i arc 1, tlic formula is furtliersiniplilK'dandlicc'omes : twice the area of the Itane hij the iUh part if tlie hei'jhf, expression Avliich reduces at last to tlie following'. {Iiitroductiou pa<,'o 9.) (06) Bri^K. ,¥«//;;)^/ (lOIrt «.) the area of the hase hy one third of the hci(jhl (©57 <*.) and the prod net will be the required so- lid it ij. E.v. 1. What is the solidity of a pyramid, of which tlie base is a square :}() feet each side, aiul the lufight 2a feet ? Aitg. 7500. 3. TIk! siil(!i of the e(iuilateral triangle which forms the base of a pyramid is ,'} feet, its height is 30 feet ; what is its solidity ? An§. 38.9711. ;i. Wl!." is V olid content of a hexagonal pyramid of which the lieigl't is G.4 feet and etach side of its base G inches ? Ana. 1. "38564. 4. The lieight of a pyramid is 12, and each side of its pentagonal base is 2 ; its cubic content is reciuirod ? Alls. 27.527(). 5. AVhat is tlie V(dume of tlie space occupied by the roof of an octagonal tower of which the side is 5 metres, the height of the roof being 10 metres ? Ann. 02x4.8284271 (2ST.) = 120.71 0(]77.') metres is the area of the octagoual 1 isc of the roof and 120.71 x 10 -^ 3 = 402.3G6 cubic metres. PROBLEM XV. To find the solidity of the frus .am of a pyramid "with parallel hases. (See the frusta of a pyi'amid of the tableau) («r) KITPi 1. To the sum of the areas of the two bases add (llO;2 a.) four times the area of a seetion half-way between them, tha: in, of a seetion of whieh the lineal factors are arithmetical means (l*i«5 fi.) I)etween those of the two bases ; multiply then the sum thus obtained hy one sixth of the heiyht of the frustum j the product roill be the ^•eipdred solidity. (i}S) Kllf-.li: II. Find [%(*VA) firrt a mean proportional be- tween the two bases ; then add toyclhcr this incanxn'oporiiotuUandiiM 78 KEY TO THE TAHrRAU. twohases of the frustum ; and multiplti Ihis sinn In/ one third a/ the height of the frustum ; the 2>>'<'ducl irill l>c the nijiiirrd sulidihi, REM. In the case oftlic tVnsruiii ola pyiiimitl tlic sltrcdiiutri- cal fonnulii canuot be 8inii»lii'uMl ; it ciiiiiKtl lu' rtdiiccd iis in ilic case of tlie prism or of the wliolc i>.\ramir»s- Bion. Ou tlie coiitrtny, even other nih- to olitiiiii the voliiiiic of the frustum of a pyramid is inoic lompliciilcd aiui rcijiiiics iiiorc^ work tliaii the formuhi of the tatdvau, whether we wmilil ciiIm' the frustum by taking the (lifVereiiee of the whoh' ami the jiaitial pyramids (AS, as, i\g. to \y,\roiiorlioii. tlio lineal dimensioue of the i)artial i»yrami(l wliic li is winiliii.i; in the frustum under consideration to form the whole ]tyraniid of which the frustum is a part, afterwards calculate each of tiiese pyramids ; and in the second case there is to Ix^ found a mean iiroiiortional be- tween the two bases, that is, between the aicas of tliese bases, ope- ration \tliich requires the extraction of the s(|Mare root of t lie pro- duct of these two areas the one ]>v the otlx r ; whilst by tlie rominla of the author, we arriTe immediately and without any dil1i and t! inches the side ? Ans. ^13 + 6 =90.22.'S + 3Gf 00=n.->l=(4-144) 2 feet .')1 square inches, which multiplied by one third of 24 ;;ives l!t.o (tabic feet. 2. Required the volume of a pentagonal ])edestal the height of which is 5 feet, each sidi' of the inferior base Irf inches and each side of the superior base 6 inches ? Aiin. lt.;{l!>2."). 3. A fort, the height of which is 15 metres, has fin- base a \v<^\\- lar octagon the side of whicli is 10 metres, the side of the supeiior polygon is 9 metres ; what is the solidity of the tower ? Ans. Area inf. oct.=(28 T.) 4.8281271 x 10=482.84271 square inetres, area sup. oct. = 4.8281271. x 9 = ;191.102.")!>.51, proport. mean area=V 482.84 x 391. 10=434..%, ihv: sum of the .'3 areas = 482.84 + y91. 1+434.56=1.308.50, and 1308.5 x \ (1.5)=(J542.5 cubic nu'tres. Ans. By the rule (1101 C) of the prismoid, we have for area half-way of the parallel bases (10 + 9)^-2=9.5, and (9.5) x 4.8284271 = MFNSUIIATION OF SURFACES. < < 1 i:r).7(!, X 4:=7i:5.(l|. I7I:U»U-- IHQ.SI + .'JlM.I-'^nin.lH.iiiuier.Kl.HS X }f (I. ■)) = ().") 1*^.1." iis Iifrurc. I'dillic (iilV('r«'iict> .(•."> Ix'twci'ii the two ic- isiilts {•oiiics only rmiii oiii' not having' t.iUcn inio tlic Iwo calciilaiinn.s ji .ifrcaiir nimilirr ol' dcfiiiials. 1ll:I.'>l. Ill this last rx:;iii|t!f, tlic area of (lie smaller Itasf — 4.f x 4.Hv!r'|-,'71 ■; 10 = 4.H-^"<4t27i.'x !) •; Kfilir si|iiaiv root (.rwliiih is l.S-J- |-J7I : !» l()-tli(i ])i'o|Mii'tioiial iiicaii area rciiiiiicil. it is tiicii plain thai in llic calcit- laMoii of the soli(!ii\ of the (■nisiiini of a pyiaiiiid ityllic fii>l of llio two vulfs lu'ic .uivcn. one will save a Ion.i;aii(l usclfss worlc by usiiijj; the lUftliodjiist indicatctl to (Ictcriiiinc llic piopoitioiial iiifaii area ic- (|iiii('il, instead of in ;ill i ply in;;' (he one l»y the other t lira I ras iS:i.H |'^71, 31 • 1 . 1 ( ••J.")! T) I . afterwards to extract its sipiaic root. This reinaiU aji- plii's also to the fiustitin of a cone, jirol). XWTII. PROELEM XVI. To find the solidity of the frustum of any pyr miid, that is with non parallel bases. ' (See iiiiioiig tlie luoiit Is of ihe /r(/)/(7n(. tlie fnisdiin of a tiiaii^i;iilai' lt\ianiid with non paralhd liases.) (Of>) IISILI-^ I. IHriilr the f nisi urn to hr nilwd hi/ a jilaiir of section c F '^ h ixinillil to <»ir af tlir Imscs ;i 15 e d. iiiiil pitssiii'j thromih the iicdrcst point f o/' tin' other thine, into tlie f'rnxtnni oj'ii jHiedniiil irilli inirnUi't tmxen base is vIO, and liei,Ltlit .")() ? Alls, ."i I 11.(1. 2. Wliat is the iiiuiilier of sajx-riirial feet of eul stoiu! in the convex siiiface of a circular pillar the, height of whicii is 7 feet and circnnif( renee 8 fcot 4 inches ? Aiis. .")8J. :t. How many yard.s of coatinji: aro thero in th" eircnnif»'renco and ceilin^'of a circular room which is 20 feet in diameter and 10 feet high ? Alls. Cir. = ;{.l 11(5x20 -02.8:32, convex area=()2.H:l2 x ]0 = (j28. :{2 area of the ceiling ="2(Tx' 20 x .78(J4 = 314.1(j, rectuired area = G2S..'{2 • Ml 1.10 -104.72 square yards. 4. Wiiat is the coat of polishing the convex area of a inarhlo column ofwliich tlie diameter is 12 inches and length 10 feet, at one dollar a snperlicial foot ? Alls. >':J1.42. 3. A cylindrical tower the height of which is 10 metres and dia- meter also 10 metres, has for lateral ar(>a ? Ans. 314.10 square metres. 6. IJequircd liow many feet in area there are in a running foot of the interior surface of a cylindrical drain the diameter of which is 3 feet ? Ans. 3. 14 [:>'.) x 3 - 0.42 177. 7. A cut stone vaidt is semi-cylindrical, its diameter is 10 feet and length .")0 feet ; what is its concave area ? Ans. 78.").4 square feet. 8. What is the umnber of square Indies of gilding in the surface ofan iron bar the length of whicli is 14 feet and the diameter It inches ? Ans. circ. .3.027 x 1(k'^-(m:).37. J>. ilow" many superficial inches of silvering would be required to cover the interior, that is the concave surface and tin* bottom of a cylindrical vessel 7 inches in diameter and inches high ? MENSURATION OP 8URFACKS. 79 Aii">». 'I'lio Itottoin =■ 7 X 7 x.7'^.">4 -38.481(J s((U;»r<' inches, tlio coiiciivc iuca --."J.! IK) x 7 x l) = l!»7.UvJ0"i 8ri>ili(rt trill he the snlidili/. Ex. I. Heqnired the solidity of a cylinder of which Ihe height is 20 and cireuniferenco of the base 5 J? Ann. (.").')) X (31, T.) .070.18 = 2.407.'} •—area of the base, and 2.4073 x 20 = 48.14(i. 2. A bucket or other cylindrical ves- sel is 1,") inches diameter and 12 iiu'lies high ; liow many gallons of wine will it contain, the gallon being 2.'J1 cubic inches ? Alls. I.") X I.-) X .78ri4 X 12 = 2120.58 cubic inches, -^ 2."U = !».18 gallons or gallons, ] pint and half a pint, nearly. 3. A bar of wrought iron is 14 feet buig and 11- inches diameter, what is its solidity in cubic inches ? Ans. 1.2.'> X 1.2.') X .7854 x 1(58 (or 14 x I2)=20(;.ir;rr>. 4. A .stone column is one foot dianioter and 10 feet high ; what is its solidity ? Ans. 7.8.")4 cubic feet. 5. What is, per lineal foot, the capacity ofapip(M)r drain of 3 feet diameter ? Ans. 7.(Mi8tJ cubic feet. U. The foundation of a chimney is a cylindrical ma.ss of which the dianuter is 10 teet and height 10 feet j how many cubic yards of masonry do«'s it contain ? Ans. 78."). 4 cubic feet-f-27— 20 cubic yards, 2 cubic feet. 7. 'I'he a>;le-tree or inMi spindle of a inill-wluM'l is 10 foot long and !• inches diameter ; what is its .solidity in cubic feet ? AUs. i) ;< Ox .78o4-T-r/28=4.4iti cubic feet. 80 KKY TO TIIK TABLEAU. PROBLEPfT XIX. To fiad the area of an oblique cylinder. (Sec (lie tal)lrau.) (Uy.l) Itrri:. Mnllli^ln {UnjU.) the IvihjIIi AV or Wo/llic side h'l llir circiiiiifcrcnrv i>/' <( scrlion LU i)trj)riHl!fiil(ir lo llic nidc or axis I'O o/'tliv iijlhitlcr ; llir proihict will he Ihc htlcrtil (irta, l!\. f. 'I'lic s= I'l.l"^.") sciuaro fe(;t= 1 yanl 1,1, feet. a. ^\ hat is ilie area of the ziiip in a jtijie (lie diameter of wliicli is !) ini'lies, and of wliirli tlie ieiij;lii, ."> feet, is lerniinalvd by tin' jiaialh'l plain's of two alleiiiate elbows (l.>Jl €r.; or faciiiy in opposite direc- tions. Asts. eir.: feet nearlv. ;J.1410 X •J = :28.-J7M, oir. x CD and-:-l4 1 = 11^^ s'lii'H'e PROBLEM XX. To find the solidity of an oblique cylinder. {S(>e the Itthlcdii.) IttlTI. 'I'he general forninla is reduced here, as for the oblitpio prism to liie following siniplllied expression. RULE I. :\lt>ltq)lii ihc (trcd of tliv base hi/ the hvirodu(t a-ill be the lateral area. RULiE II. Jf the frustum is oblique, inultiphj the half-sum of the lengths of the least and greatest sides DE, (JF of the frustum [ the perimeter of a section AB j)erj)endicular to the axis of the cylin,' dvr. Ex. 1. The diameter of a cylinder is _ 10, its least height is 0.4 and its greatest p 'y^7\~~~^-^^^ height 10.(i ; what is its convex area ? /^^rv^^T^"; 2- A half-elbow of a stovo pipe -P/iClSll^H^/ : EP, FP or of any conduit (the rectilineal /VtOx / •' olbow is nothing but a double frustum of / Ia^cTTSvV^ : a right cylinder, that is two frusta of right /^J'\-~t-^^^ : cylinders meeting at any angle what- ^(r—^^-t-^- • ever) of which the diameter is 7 inches, ^-4>_jZ.-yD p lias for its least and greatest lengths, 4 H. and 11 inches respectively ; what is its lateral area ? Ans. 3.M16 x 7 x i (4 + 11)=1G4.9 or say 1G5 square inches, or (-:-144) = l square foot and 21 square inches, or \\ square feet nearly. 3. Between the two component frust'\ of the rectilineal elbow of a cylindrical han,d railing, is a third frustum of which the greatest length is 3 inches and least length null. What is its area, the dia- meter of the rail being 9 inches 1 . . ... 9 r: 82 j:ey to the tableau. Ann. 11" is i)liiiii that the proposi «1 frustum i>i notliitip 1>ut n douMt' iiii^ulii ol'ii ri^lit (ylindcr, that is two inii^nla tiiii(«-*l li,v th«-ii' peipomlicular haws ; the nniuired uiou of which = 3.1110 < 9 a i(;{)= 28.2744 X J. 5= 42.4 Hquaie iiulM-rt. 4. In .1 cyliiuln(ial vessel iiicliucd t;i> the horizon in n liquor of wlileh the least distance IVoin tin- surtaee to the hottoni is <>7 deei- mftres and tlie greatest is ].',V.i uu-tres, th«' diameter of tiio vessel being 1 metre ; required the urea of the surface exposed to tlic action of the liquor f AiiN. lx3.14H) X i(Ct7 > l.a3)— 3.141H square metres,=latcral area, the Itottom z= I x .7854 = .78.>4 square metres, tlie whole area=;}.141G + .7854 = M.t)27n s.j. m. 5. A Hemi-cvlindrical vault is terminated hy two Avails, un- equally oblicjue to the axis or direction of the vault ; tlu^ diann-ter is 20 feet and the least and ;j;reatest lengths '>M\ and \V) teet, what is the area ? A lis. HJ:J(J.'/.J s(juure feet. 6. The drum of a circular stair of whidi tin- dianu'teris 10 feet, Is tevminjited by the inclined roof of tlie building ; its least height from the level ofthetloor of the last story is 7 fet^t, its greatest height 13 feet ; what is its lateral area in square yards ? AmN. :U4.iG-5-9=-.a4§ nearly. PROBLEM XXII. To find the solidity of a frustum of a right cylinder, or of a frustum of an oblique cylinder of which the great or small axes CD, FE or GH, LK of the opposite hases, are (1099 G ) in the same plan CDEF or GHKL. REm. To apply hero the general formula, it wou»d be neccs^ saiy to decompose the solid by a plane pandlel to one of its bases, and passing through the point F (* ) the nearest of tiie other base, into a right or oblique cylinder as the o'vse may be and the ungula of a cy- linder with a circular or elliptical base and of which the general rule gives the exact volume. (106) nVL,K I. Multiply (1099 G.) the base CHDG, that is the area of the base, hij the half-sum of the least and greatest heights EF, FP of the frustum ; the product will be the required solidity. (1) See ihi- lif,'iii-e of IIib IhhI proltloni tiiui iiiiii>;ii)(! ii pliiiiH of section piimll "I to Cl> or UN mid iniKKiiif; lliioiigli iIih jioiiil, K ; then llie Boclioii KNh of lli« iiiigiila )<)tnill<'l to tliH pliiiiH |iiiKHiiig ihiongh K will be llie uectiouof the luigulii lialf-wuv be- tweuu ita base uud ila upux U. MENSCRATfoN OF SCRFAORS. 8i ItllLE II. MullipJn (1090 0.) the area of a section AB per- l)*u(licuUu' to the axiitW of the qitimlvr, hij the half-8um of the lentjths of the leant and tjtratest nidett DE CF of thefrmtnni. T.\. I. Ill II cyliiKlricjil vj'h.s(i1 tlic bottom of wliicli sunk niul dls- ttii'btMl itrt vcrlical ji'isitioii, tlie Iciist im-liiicd lui^^litot'tlu! liquid cou- tuiiu'diH l;Me(>t atid tlicfjieatt'st liciglit 15 fti't, tlic diiiincterofthe vat \mu\i 120 loet ; rrciuircd tin* iiimibcr ot'gulloiis ol'liiiuur («ay 7i gal- lons to the cubic toot) in tl»') vat f Alts. 4.i!»8.24 cubic fwt=. 32} W5.80 gallons. *i. Tlic sriiii-cyliiidriciil coping ofa wall niectiiig two otiicrs at tincqiiiil obli(|ii<; angles, incaHiircH^rcet diainctcr and its lucuu length is 1()0 feet ; what is its solidity I Ans. area perp. sec. = 3 x 3 x .7854 x 100=353.43 cubic feet. 2 PROBLEM XXIII. To find the area and solidity of any frustum of a cylinder. (See the tableau.) (107) RUI^E I. Tmaifme the frustum cut (at AB,fi'g. to pro- blem XXI) bif a plane perpendicular to the ajcis of the cylinder, liefer to that common base, the two component frusta ; yet by the two last pro- blems the area or solidity of each of them, and take their sum; or, which is the same thiny, multiply the common base or the circumference, as the case nuty be, by half the sum of the two yreatest and two least sides AC, JiK-AF BD of the two frusta : the result will be the solidity or arca^ as the case may be, of the proposed frustum. RUIiE II. The area of the ba6e CD multiplied by the half-sum of the least and yreatejt heights FB, EB of the frustum, will give its solidity. PROBLEM X;XIV. To find the area of a right or regular cone. (See the tableau.) (108) RULE. Multijdy (ion O.) the circumference of the base BE by half the side, or inclined height AS, or BS, or dc. ; the product will be the convex area ; to t^w area add that of the baa&y if the vohole area ia required. 84 KEY TO THE TABf,KAU. El. 1. Wliiif, in tlio latcml aroii of ii c'onctlio Hidrofwliich isSO iiiid «liiiiiutcr of tliu biiHo Bi 7 A UN. (;()7.ry.). 5. Whnt in iho oniivcx urea of a coiio tlie si(l« of which is 'M and (liaincU'r of the baaolSf An«. 1272.348. 8. The bottom of a boih'v is a rcvcr- RP(l cone tlio (lianicter ofwhicli is 10 feet ard side (5 foet j what is its hit«'ral area ? AiiH. D4.248 Hqunro feet. 4. A veHsel the diameter of wliioli is 10 inches has a conical lid the bide of wiiich is 5J inches, what is the area of the latter I Ann. 10 x .3.1416 x 2.875=(l().;}-il sctnare Indies. ft. A reservoir the plan of which is circular ind tiie. vertical sec- tion of which drawn thrv)Ughthe centn! is an i^lO■^celes triangle, is (M) metres wide and the length <»f its inclined hmU; is ;3.'5 metres; iiow many bricks would bo required to line its area, at 75 bricks per square metre 1 AUfi. Diam. 00 y 3. 14 It] x Kii x 75=2.'«,2(;4. 6. A tower is 150 feet circumference and the inclined side of its conical roof measures .'10 feet ; how many squares of shingle roofing would be re(iuired to cover it ? Aiim. 22i^. 1. Wlnit will be tht weight of the conical cover of a gazoineter the circumference of which is 180 feet and the inclined side HO feet, the iron being 5 pounds to the square foot ? Aun. 13,500 pounds. PROBLEM XXV. To find the area of the frustum of a right or regular cone with parallel bases.— (^t'c the tableau.) (109) Multiply (lOl* G.) thclialf-mm of the circumferences of the two bases by the inclined height of the frnntum ; you will have the convex area ; to which add the areas of the two bases, to obtain the whole area. Ex. I. The side of a frustum of a cone is 12^, and the circum- erences of its bases 8.4 and 6 ; what is its lateral area 1 Ans. i)0. "i. What is the whole area of the frustum of a cone the side of which is 16 feet and radii of the bases 3 and 2 feet ? Ans. lat. area=251.328, area inf. ba8e=28.2744, area sup. base = 12.5664, whole area=292.1688. 3. The conical part of a funnel has for greater diameter 10 inches, the smaller diameter 1 inch, and the inclined side 15 inches j what is its hiteral area t Ans. 259. square inche8=rl.8 square feet. MENSIJUATION OF SFRFACFB. 85 4- TlKMncliiipd roof of a oirciiliir towtM' tlic (liiinictcr of wliicli is 30 ft'ct iiiid tliriiiiimtc(l lit tho top by iv platform tlut circiiiiifiM'eiircof whirli is '.].\ i\>A\t ; rriiuiicil llio iiiiiiilxtrol' nqnarcit of zinc to cover it, incliKliii;; tlic platfunii. Ann. lilt. .•\r<"ii-li27'^,lf', arc.'i siij). l.iisr^fMM)' x .n7!i5R = 8r..nG, required afeii^: IMr»i».l4 s(iiiare feet= l^i siiiKtim !l sipiare feet. 5. How many sipiare inches of j^ildin;; will Ite refpiired to cover tlie inteiior of a j,'ol)let the inferior rirciinilerence of which is C inches, the sup. circ. 7 inches and the side MJ inchoH f Antt, TIm^ lateral surface 'JH i (ti f 7> = 23.7.') sciuare inches, thebottoui = l> X tj X .{)7*X)ti = 2.tiG^>, the whole =2.^.015 square inches. PROBLEM XXVI. To determine the area of a cone or of any frustum of an oblique or irregular cone. — (.See the tableau.) (IIO) KULi:. Dirulethclaterclan'aof the cone, bi/ liitea drawn from the iijiex to the base, into trianylcs or sectors, and the lateral area of the frustum of the cone bij lines drawn between the two bases, into trapeziumt^, dc. ; calculate separately the area of each of the component parts and take their sum for the required area. PROBLEM XXVII. To determine the soliciity of a right or oblique cone. ^ (See the models.) RCm. The general formula is reduced fortlio right cone, as witli the regular pyramid, to the fol- lowing simplified expression, for oo = iAOand con- sequently half-way area o = i area and as 4o= 0, it follows that 4o~rO x ^S0=0 x JSO. (Ill) RULK. Multiply {MHO G.) the area of the base by one third of the height, and the product will be the required solidity. 1. Ueiict the nPiiei'Hl foiiimlii mid the lenmrk reUitiug to the BolUlity of the pyramid, problem XIV. 8f KEY TO THE TABLEAU. Ex. T, What is Mio solidity of a cone tlie Iioiylit of whic.li is 27 foel; iiiitl huHci n ciiclo 10 tWt (liuiiicter ? Aim. /Oii.f^H. 58. Tlici circmiiftMt'nce of tlie baso of ii ri;;lit cone i.s 9 feot, its height bciiig lOJ feet, what is its solidity ? An*. i22..")0. 3. Tiio .'Ilea of tlu^ base of an obIi([iie cone is ]()()() nietre.s and its lieiglit 30 metres ; ■what is its solid cont(;nt ? Ans. 10,000 cubic metres. 4. A roclv or hillock haviii,^;' the form of an irrej^nlar cone lia.s for its base a figure tlie area of which is il.'WO scjinue yards, the JKright of tile body being 105 yards ; how many cubic yards of stiitt' would it be necessary to take away to remove it ? Aiis. 185, .lOO. 5. What is the volume of the space included uiuhu' a conical roof the height of which is 30 feet and diameter 30 feet ? Alls. 70()8.G cubic feet. 6. How many cubic inclies of sugar i)lum8 can a cornet 3 inches diameter ami inches long contain ? Ans. 21t. T. The circumference of the conical bottom of a boiler is 10 feet and the height of the cone 1 foot ; Jiow many gallous will that part of the vessel contain ? Ans. 10 X 10 X .07958 x J=:2.G52GGf) cubic feet, x 1728 an(1^231 = 19.843 gallous. PROBLEM XXVIII. To determine the volume of a frustum of a right or oblique cone, that is, of a frustum of any cone, with parallel bases. — (See the models.) i (113) RUI.E I. To the sum of the areas of the two bases, add four times the area of a section half-icay between them, that is of a section whose lineal factors arearith-^ metical means (1365 €».) between those of the two bases ; then multiphj the sum thus obtained by one sixth of the hcifjht of the frustum; the product icill be the required so^.Ulity. BiJLE II. Find (1063 «.) first a proportional mean between the two bases ; get afterwards the continued sum of the 1, 8«3e the lemtirk wiiicli roltitea to ufruatiiin ot'a p^ruoiid, probltiui XV. MENSURATION OF 8URPACKS. 87 wean and the two luiftos of the fvuHtum ; thrn multiph/ Ihis eum hy one third of the heiijht of tlie fniHtnin and the product will be the re- quired solidHij. Hx. I. liciiuiretl the solidity of a frustuin of a ri;;lit cone, the height of wliich is 18, the diaiiKitiir of tiie inf. base d, and that of the sup. Ifiiso 4 7 An!4. Inf. haso — sTHx .7851 = 50.2050, sup. haso. = 4x4 < .7854 12..5G()4, the aritli. iiu-.an factor between 8 and 4:^i (8 i- 4)=:0, < x .7754 X 4=1 i;3.()l)7(), tlie sum of tliese areas= I75.!>2!'(), umltiplying by y (the sixth partof tlie hcij^ht 18) we obtain 527 7888. "i. How ni.iny cubic feet of water may be ootiiuin<;d in a reser- voir luivin;; th(! form of (he iVustuin of an inverted tone tlie greater diameter of which is 200 feet, .smaller 100 feet, and dci)th 25 feet ? Alls. 458.15;J cubic feet. 3. A conical ])ipe unites two drfiins of 10 and 20 inches circum- ference, its length or tlie ])er«>endiciilar distance between its two bases is 25 inches ; what is the capacity of that part of the drain ? Ans. Area small eud = (3l T.) (10> x .07!i58 = 7.058, urea large end=(2(r) x .07058 — 31. 8;J2, the arithmetical mean circ. = K10 + 20) = 15, (15/x.07058x4=:7i.G22, the 8um = ll]. 412, this sum x J(25) = 464.510G(j cubic inches. 4. What is the capacity of a firkin the height of which is 20 inches, the inf. diam. 10 inches, and the suj). diam. 10 inches ? Ansr. 2701. 87G cubic inchest- 1728 = 1.55 cubic feet. 6. A vessel presenting the form of two frusta of cones, united by their greatest bases, measures 40 inches long, 28 inches at the bun" or ceutre and 20 inches at the head or ends ; how many gallous will it coutain ? An»». 20 x 20 X .7854 = 314.10, 28 v. 28 x .7854=0. i.7530, 24 x 24 X -7854 < 4=1800.5010, the sum of the areas = 273!».4752 ; x J (20) =9131.584 cubic inches = the content of t»n»M)f the component frusta, X 2=18203.1080 cubic inches, -^ 231 = 70.00133 gallous. Ans. By the 2nd rule wo obtain : a area lesser base = .7854x20 =314.10 2 area greater base = .7854x28 =010.7536 area mean i>roport. = (98 REi^. T.) .7854x20 x 28 = 4.30.824 multiplying by cue third of the height of the frustum 1300.7370 we obtain for sol. of the frustum doubliug, wo have for total sol. as before 9131 ..5840 S 18263.1680 ' -r^ 88 KEY TO THE TABLEAU. RfJ.'Hf. It is liiwdly nocossiiiy to say t1ieterminc separatclg (10117 <*.) the respective volumes of the entire and partial cones ; the difference of these vo- lumes will be the required soliditg, '^' Ex. The inf. and su]). areas of the frus- tum of a cone with imn parallel bases are 30 and 20 metres, the respective heij^hts of the eniiio and partial cones are ;3.'} and 17 metres j what is the volume of the f ustum f .(30 X ^ 33)— (20x ^ 17) = 330-113J = 2IGf cubic metres. PROBLEM XXX. To find the volume of the ungula of a cone. (See the tableau.) (115) REM. Say the ungiila DAd with entire bases ABDEA or AbdeA, that is, each of the bases of which is an ellipsis, or the one a circle and the otln'r an ellipsis, or the ungula AliC-D with i)artial bases, that is, each base of which is the segment of an ellipsis or the one the segment of a ciirle and the other the s<'gmentof an ellipsis, a parabola or a hyperbola, according as the uugula iu each of the two MENsrnATtoN o: suhfaces. 89 \^^=r-^ c;is«'S ln' iliiit ofii vi,nlil Of (if an ol)li<|nc vnur. Ima.uiiH' a plane of scc- (i(»ii paiallrl lo cidii'i of ihf I wo liases anil riiawn lialT-uay l)el\vee)i siirli lta>e and the a|H\ 1> aiallei is an elli|p-is. and sneh s<'nii-ellijisis will alsd lie similar to th<' 4in<' lo wliii'li it is parallel : in the second case the section oi'the iin.uula A!»t" —1) will lie the sei;- inenl ofaciirle. ifihe liase jiarallel to il is a circle, or the se^^inen' of an ellipsis if the plane of seclion i- parallel to an elliji- tical lia-e. OI linall.\ a [lara liola oi a hypei- li(da. 'rio' a|iex ol iIh' n i.unia is evidi'htly liiit a point d or 1>. Doi \> and its area is ronse(|aenll_\ nnll or 0. Therefor*' the ;;('- lieral forninhi " sum of the areas of l he t\\|»|Mi>iie hases or ends, pins | times the a lea i 'MLS: I. 7'" llii' (irr.(!, inlerinediale diam. (lo ; !).()) -. 'Z ^=. \'Z.'-). Imagine a plane of section passing; lielWeeii lllc op|.osile ends of the inferior and snpeiior diaineiers ; this section will iif — ^11, T.> 12.JM iiiid tliiit of tlic nllici scirinoiit is eciuiil to lliiit (>ril(c fiiclt I he »1 in III. orwliii'li is |-J.:{ iiiiims lt2.!M - I \t*.t*'Z — 42.y4=7r>.ri8. Now. voliiiiii' iiil'ci ini- miuiiIji = 7.").HS X 4 t 17(i71 Oircu of tlitM-ir<-lc I lie (liimi. ol'wlii.li is I.")) "JO =-()=r h;()(>.7."). Ilic \vn\ solidi- t.v = l.'>!M;.!iS, tlic (litliriiiLf — 3.77 — less t'liiii the lV>iirtli part of one per cent in excess. (117; 'i'lie otliiT Mii-iilii liiis tor its solidity I'^MM 4 : 7'2.36 (nrea oftlie ciiele whose diiiiiieter is!i.(ii~ I7I.7()(! 7'J.MH=r->44.1 4ri({ x 20-f () r HI.'}.H-J!I. Tills voliniie added to l( KK 1.7") o Ives lor tlie sum of the solidity of tlie two iini;iil;e "J II 4..")7!'. 'llie solidity of (lie fnistiini = jirea circle, diani. !•.•• i- nreji. circle diani. iri-r4 area circle diam. I'Z.'S. the whole niiilliiilied liy 20 : (I 'J 1 1 l.ti;{;{7(i which dilfeis fioni the last result only l>e<'aiise we ilid not take in ail i lie decimals. Ex. 'l- With tlie same finsinm of a cone as in ilie l,i>r «\aiiiiile, suppose the pliiie of section pas-^es tiirouiih the end of liic supe- rior base and > ills the inferior Itase at ."> from the o|ipo>iie end ot that base ; then (41, T.) for i lie area of tliesenineiil of I lie i>ase tlie versed - sineof which is ."> we will have r)i.,l(;:i7,aiid as ilie an-a of ihe circle to diam. 15 isl.") x ]."> ■. .7S,")4 = 17ase the versed-sine of Avhichis Kt^lli.'). I.")|."{. Now fur the resjicclive inteiniediale h.ises of the two un^ilhe. we oltlain for tlie one w hose versed-sine is ."> (half of 10) 45.8 1!*'.2 and for the oilier semneiit whose versed-sine is l'J.:{— 5=7..'i weolttain area circle i.. diameter I'J.M -4.").:M!iVj= I IS.r^*':?'^— 45.:il!l"2 = 73.474. We coiise(iuenlly obtain f(M' the solidity of one oftlie two unjj;ula' (the one haviiij; for its Itase the int'. hase of the frnstnni) lx!5. J513 I 4 times 45.31!»"^ -3(l(i.548 and 3()t;.5IS --jo^fir- 10-^1. ?<•,>( i? ; the real solidity= 1015.701. the dilference is (! » , say the (! tenths nearly of one per cent in exctss. Ex. Jl. Another frustum ofwiiich the heij;ht~40 and of which the inf. and siijt. diani. are (>(> and 3>-<.4 and the intermediate diam. conse- quently = 4!).'J = tlO ^ 38.4 -r-2, the friisi n in divided into t woiiii;;nhe with bases n(»t truncated as in the example n. 1, j;ives for resjx'ctive areas of the segments conslitntiii,;; the iiitei mediate bases of the twoun- guhe whose versed-sines aie 1!».'^ ami 3(1, (;87. 05(1^51 and I'Jl l.J:J()105 whose 8uni = l!H>1.17(Kj5() (aica oftlie circle forming; the intermediate section of the IVnstum) ; area sup. ba.se.— 1158.1 1!M^J4, area inferior base = 28*27.44, solidity inf. nii;4iila = 5!.22li. th«^ solidity oftlie siijie- rior ungiila = 2(>.()l"i, the sum of the two -77. 2(i8- solidity of the frustum. TIm! lirst scdidity 51.22(1 is .123 more than the real solidity which is 51,1U3, the error beiiiy 0.24 or i per cent nearly, the second, MENSUaATION OF !»UR7A0KS. 91 volnini- iil.Ol"^ is ]cs^ ilnni tlic ri'iil solidity wiiidi wliicli is 'ZGACht, hy A'S-i oi iifiiil.v (lie iiiilf uf (Hi<> per ci'iit in dctt'ct. 'I lie suliilily of liic ((IIht iiii;L!:iiliV = .")i.r)iiuii (•aii'iiliilt' and -i'-i feet ; what is tiie volume of the «ii<;nla .' Alls. (^Ox yjll)— (i.-)x .'j-j;iy = ;iOU— ll.j - It^."} cubic feet. PROBLEM XXXI. To determine the solidity of the ungula of a cylinder. (See the several tiiiyiihe of a cylinder of the SU'iHoincf rival Tableau,) (HVtt) XOTK. 'riuMUignla of a cyliiHler, like the uiiguhi of the foiH' is .scmeiiiiies met with in the p'aclice of the measurer at the intersections of vaults. &;c. ; and in ilie jiract ice of the gaiiyer who lias sometinie-s to calculate the (juanlity of li(|Uoi in a cylindiioal or conical vessel inclined to the horizon. '1 h • compmient jiaits of cer- tain bodies ma;, also oll'er to calculation solids of tlii> kind, as when we decose with respect to its nieasurMiin ol'.-i cylindci- will) n(in]):iiii!l(l li;isrs ;ind whusc Iim>I li(ii:iil t(. :iihI whose so- lidity, ;is it Iims l»('en se<-ll ( I07, T.) is e(|ii;il lo 1 lie |H<>dllct ol'lh(5 iireii ol' its h;isc 1)\ h;ili liii' height ol'liiesulid: I'or I he iii c.i !s ;,h ilie case may he; now llinii's the hall'-ciicle or iiall'-ellipsis in ipiestion — t uice the itasc, anil I w ice the liase plus the hasc. , t!ial isihree limes the l)as(') iinilli|)liey the (ilh part ol' ilx' li< iL;iil ol I lie >oiil. II. ll'lhe nni;n]a is truncated l>\ a plane parallel to its liase we iiiiist^ resort to the ^ciieial rominla. I£L'Ij1I. To IhcKiiiu n/tlic iirnix nf llir iqijiDsile liiisr.s iif llir I'ninliiin of the KiMfitlK (tilil \ lii)i(!i till' tn III fij' n ^itIIhh linli'-iiiii/ lirlirmi Ilir tiro Olds iif the siitid mill Ihr iinnhul uj thin siiiii liy the iillt intit uf the heiijht of the ^(ilid irill lie Ihe reijiiind xuHililii. ilfOTi;. '!'!ie liases will lie accordini; to da(a, circh" and tlio Hejiiiieiit of a ciicle, or an < llipsis and ihe se;iiiieiil olan ellip-is ami the half-way section will he either the se:;nient of a ciicle or llie segment of an ellipsis. (I'4'i) ICI..1I. lll.\\'liin the niiLi'iiIa td' a cylinder to he coiiiim- ted is an nnunla jMopnly so called, lli.'il is, with partial hasc.ii i.s liieiisnred exactly like the iiii,niihi of the cone (jiroh. XXX; that is, hy addinfi; to the area ol'ils liasc I limes ihe area o\' {\\v half-way section to multiply afierw arils the whoie Ity I he (ii h p n i of the heii;lil of I ho solid. If the 11 nun la is that of a i i^hl cone, the iiase is the seL^meiit of ;i circle and the parallel section also a semiiein of a circle. The same if it i' lie nnunla of an ohlitpie cylinder, tlie half-way sec- tion parallel to the hase will he, lihe ihe liase. the segment of an elliitsis. In each of the two cases, the lieiMlil or versed -sine of tli(5 sejiineiif the area of w liicli is to he valued is half that of the hasi'. As to the chord of the sejiinent if this seunieiit is of a circle we will liavo («S«m, <".) the half-chord = the sipiare ro>>l of the jtrodint of tlu^ vt'ised-siiie hy the rest of the ilianieter and if the seiiimnl is of an ellipsis, we ^'i':! ohtaiii the ha!! chord hy niakiiii; : ' the uiealer axis oi" I. See, in iiilMlioii lu llii.-<, lliu ailicli-s on lliu t^Iiifduiii ;iii(i cf ijil IimI ."jiiinHe. ME.VPURATION OP SURFACES. 93 (li,nnr(cr of ilic dliiisis is to ( : ) its minor .-ixis oi (li:iMH'l< r ;is (::) tlio ,s(|iiiirc root ol'tlH' vtisid-siiir oi" the scuiiiciit iiiiiil ipliril i»y liicrcst of till- nMJitc^ ii\i> is to ; ilic liair-rlionl. licsiilis Wf iiiii\ iilso in prnc- licc olitain iliicctly lin' cliord ot'tlir sc^nirnt liv liMcing and iiica- snriii^ liial i(| on (he solid itself. (ia;J). Itl'..^l. IV. If llic nn-ula of Ihr I.ist |>,iiin,^iai>li is tinnc- .'d<'d l)\ a jilanr |iarallrl to its liiisc, foiiuini^' tlins wliai may iir called llie l'in.>tnm of an nn^iila y direct measaiemi'nt of tiie model or solid to lie cnlied, or liy calciilal ion. llie chord and \cisi'd->ine of the intei mediate section, llie \ (■ised->ine IieiiiL; t he iiall"-siiiii of tliost* of the ciicalar or elliptic segments of the opposite ha^es. (I'll) lli:'^l V. If the nnunia is ceiuial. its ajiev, diameter of the cylinder, will lie a nicic line ;ind I he area -II. In that case, t ho central oihalf-w .ly sec lion will lie the cent lal /.niie of a ciicle or cf an ellipsis, according as t he iiii'^iila lie riuhl or inclined. It' the nn.niila is eccentric, its ape\. cliord of a seciion. will still Ue a liix' .ind its area=l(. In sncli ca-e its half-way section will he the eccenli ic /.duo of a circle or an ellipsis as the case ma> l>e. (ia.">) lll-'^l. V!. If the nn?;iila. central or eccentric, is'lriinc- ated Iiy a plane parallel to the base, it will then l>e the frustum of a central or eccentiic iinuula of a ri^ht oi' olili(|iie cylinder one ot" whose liases, if entile, will lie a <'ircle or ;in ellipsis, the other liase a central or excentric zone of a circle or ellipsis and thi' hall-way section also the /.one of a circle or ellipsis either cent la I or ecceiit lic as the case m.av he. If the liase of theiin^nla is not eiitii'e. ir will Ik^ cither a central or eccentric zone of a circle or ellipsis, this se!;nieiif beinn" as I he case may he, more or Ii-ss than half the whole liase of the cylinder of which tin- miL^nla I'oinis a jiarl. I',x. I. I'Ct it '«' rerpiired to cnhe a lateral iiii:.;iiia of a ri;;hf cylinder, its lieiiilit = "^l. the versed-sine of the sinment of a cil•clt^ coiislil iitini; its liase = ^; and ihe diameter oi the cylinder of which the nnniila foi ms a ]iart = 10. The area of tin- liase = ( H, T.) V.'^ 11)=:. -^ - versed-sine of tht^ table at the end of this volnmc, and tin- tabular area correspondin;;- to this sine = .1 1 IHvi.'{ w liicli beiiin multiplied by ID or by Kit) irives I'or re(piii'ed area ll.l.~",';!. Thus ;ilso we obtain tlu' areji iif the seg- ment at half-heiuht <»f the unj;iila= I : 10=^.1 — .(Ml H/.l — tabular iircii which 1(10— l.tlri?.") .,,„| this x 4=:l(;.;r), .iddiin- II.JS'j;}. we have 27..');{"JM = suni of the areas of the base ami I timi's the half-way sec- tion, this sum X 4( = xJl ; (!) j;i\es for the volume of the proposed uiiyuhi llU.l:JL>:i. The icul bulidity is lUL/. 11531, iho diil'crciico .(iUo6= 94 KEY TO TIIR TAnr.EAU. .(5;{(», tliiit is : tlic liitc of cnoi' is h«ss tliiiii tlic jj (»f 1 per rent in excess. K\. 'I. Tile iiei^lil ol'tlie l.ilei'iil ilii;L;'illa of ii eviiiiilei' is 'J i iiiid llie (liiiiii. of llie e\ iimler HI as ii« tiie jjisl ( \;Mii|tli'. I'lie liase of I lie aii- ;;iila is a sciiii-ciicle. Kcijniied llie xiiidil v. Area Itase 10 10 x 7t^'>A : Vj — . ■{!•.. ")7. tJM' versed-sine (if tli«' half-way sennient =.'i : vi-'^..!, !i..') I |((--.'J,-) \ l,oiiesi\lii ofllie liei;;lil, welia\c j'ortlie plisiimi- le e(|nal to a scmi-iindc, is in this ."{id example ^lealei' than a semi-eiicle, its veised-siiie hein;;' - rt ~ JO— Vj; we lii\e seen tliiit tin' area of the se^iini'iit having; xi for its verscd-siiu' o; liei;;lit = 1 {.{.'^•iM and as the whole base o!' the e\ liiidei— ■ 10 < .7p'.")4 = 7H,.') I we. will olitain the aica of tins leiinired sej;inent — 7;^..")4 — 1 l.lr!"^;} — 07 ;{r)77. ''I'lie half-way section at lialf-hei^iht has f. .•i!(:i;{(i!»-tal.. area ^ iOO-!;*!). ii'M> andx 1 = II7.;M7(i,ll7.;M7(; 07.;{:)77 = lsi.7o:>:< = sum of tlici areas, wliieh < 4, (itii pari of the lieinlit ; we oht aiii 7.'}-<.H'i|-j for tlio volnnie l>y the iicneral fonniila, the K-al voliinn' =7.'n.'~ilH, ihedill'cr- ence is I.OOM-J eipial to a rale of error of .(j;i7 per cent or less than the two thirds of o'.e per cent. lix, I. A lateral mi;;iila in this example as 2 : 10 and as 1 : JO in example N' I, w«' have for tab. area as in the first »!xam[ile .J llHVI.'i and .0I0H7.") which multiplied each by 'i."). or by ()2'> ;;iv<; for area of the base tilt. HI* ami for .irea of the hal'f-way section •2r)..")4(iH7."). This last V 4 times-10;J.|S7.'», addin-;' (l!>.!^!l w<> have I7-^Ml77 whicii X JO (thehei-;ht . (I) = 17:20.77. The real soliility = ]70I>.liO, the dif- ference= I O.H7^. <»:{.") = less than two thirds of I per cent. E\. J>. r^et lis compute now the complemeiital ntii^iila to that of example 4, that, is, ihe nn^-iila which, with that of the last ex- ample, make lip the cylinder of which each of them forms a part. The, area of the base of the cylinder = VJ."> x xJ.l • .78.") t=l!)0.H7.') anil this base ,<■ the height (iO — :JL>4.W.5= .solidity- of the cylimhT. MENSURATION OF SURFACES. 95 Tilt' iiiiunlii t;i 1k' coinpiiifd Ims lor ils iiilriior biisf tin- Iiiisn of (ho cyliinln loss tin' li.isc of llir iiiijinlii iilrcjHly foiiipiilcd, lli.il is, IMO, H?.') -Illicit — 4"J(l.!lrt.'», llu' supciioi' liasc Ix-iii;;- »'?iliu' - IIM07"» ami llio liiiif-Wiiy «»'i'lioii=: l!l(I.H7.'» -•jr).r»|(iS7."i (aic;! oC tlic h<'<;iiiciiI wIiosd V. s.='^..'))-l(;r).;{:2ry ll>(<)tli part ot'tlir liri;;lii) we oidaiii for the vol. ot' I lie 11 MX II la •J77;tl.7'i."), if to this vol. we a - volii me of I lie e_\ liiider as Iiereiii aluive (letei mined, llie dilt'ti (lice liet ween .."> and I.!'.") Itein^ caused by our takin.n' (!1».^1) lor (!!t.."^HlK{7.') for the area of the inferior segment of the 1st iiiiniila. If I7(l!>.!» is ihc real vid. of llie Isl iin.nnla ; then, as 2!»l.V^>.."i istho real \ ol. of (he ryliiiiier, it follows thai I lie aeeiirale solidity .!» -:J77l'^.-.£ rA A /^. r/ ^i) 6 n 7/ 'lliiis A l>- (' licin^ iiiiv ('(Hidid, m liiilt'-spiinllc. ;i liciiii^iiilicn', a liiilt'-s|ilici. ril, tlic aica will he- (A ciic. AH ciic. ciic cic. . .|i ciic. r(/) x A a ov (If. Ifllic opposiif Imlvcs of the ,-(" in (piestion is with a concave surface, that is, fi'dieialed li\ tlie levoliilion of a curve AC or A// w liicli presents its convexity lo tiie axis CD of the « s()li(l, it is |dain lliii we will / ^ in tlie siiine in.iiiner ol)taiii tlie /V^TlV — t'^'fC A ^^/h\VH«'vi(l('iii!y from wliiil prrccdcH lliiit if tln' (jcinMiitiiiK lino 1)1 (lir sill t'.'U'f Id Itr ('iiiii|iiil<'il is iiiixttl, lliiil i>, piiiilv roiiVt'X mid |)iU'il,v coiK-iivc, or il'iliis lin*' is |i;iitlv iii;lil iiiiil pitrlly ciiiMd. llli^ Htiiiif pKx-css will <|iiitc lis simply liiitl tt» l)u- ilctii luiiiiiiioii ol' ItH iii.'ii or siipciticii's. ItlMI. Ii is to lie rcniiiikt'd llial llic ;;<')U'iii1 loi iniil.i Just vntn- lili -licii will yciit r,ill.\ {ii\ c. lor iiiiy cnnx «'X sin riicr. a rrsiill w iiicli will 1i( ill (It I'll I ot'iiic i('ipiii('■ ."J.l IU> X ^ A«l' or to 'fi:, times tin; doubh? of the area of the space Ac C(»A, orto]"^^ times the area of Ihe triangular space having 'ic for its base and for its height the developed Ungth of lln^ arc (iV ;>r 2iiritiii:i! or of crcni ri'ilit or ohliijiic cottc —of vvrrtj fnistuiii of It pi/ruinid ur cone voinprisitl hcticeeii pardlUI Ixttics—tf (lie sphere —ofccerjf sjilwriviil sector or ptjramhl—of ercrij Hpkeroid —ofeveri/ sctjuwnt of (I Hjflwrc or spheroid trilh (i siiiijlc Ixtsc or of crcriffrnsiion of these hodics irith liro ptinillcl Ixtscs inclined in an if inn/ to the axes of the soliil — if creri) rii/ht or inclincil pandndoid or parabolic conidil — vfereri/ riijht or inclined hi/jwrhidoid or hi/perlndic conoid —oj every aetjment of a paralndoid or hi/perholoiil irilh (( sinijlc hnse or of ercri/ frnstnm of Ihcsc Ixniics with tiro parallel bases inclined in anii wai/ to the <«.l hcc- tloii liiilt'-Wiiy III! wt't'ii A aixl It, {ind il l!i*- lii'i!4lil of llif soliil ; we will oid.iiii, us iIhm'ii.s«' iii;iy \ni, voliiiiic = (ai«'a A f ana IJ t-4 area S) X ,', H, or (Mii'ii A I 4 area S) x ,', If, or (4 area S) < J II, acx-oriliii^ as aivuaitcx II -0 or art'.i apcfX A i aica apex M — 0. (I!4H^ Now, oI' tlic live i('>,niliir iiolylu'droiis, tlie tctralicdi'on i.s a pyraiind, tilt' hcxliacdroii is a <-ul)(« that Ih a prism, and cachortliu tlircc oiIm-i's is a coiiipoaiid of pyramids t'(|iial to «-!icli otiit-i' ; every iViistiini of a piily;;oiial prism is a t-ompoiiiid of I'liista of tiiaii;;iilai' jirisms cacii liaviiii;' foi' its liiise one of the liiteral faces of the j;iveii fnistiimaiid the ed^'es or anises of which nil unite and hecomeeoii- fonnded in one oftho parallel edf;es ot'tliesoiidtHin any iij;lit linn ]>a- ralhd tothesidesof ihefrnstiim, situated in its inteiioraiul which may lie ciHisidered as an avis of the prism of which the frustum forms u pait ; «'veiy frustum of a cylinder may also l»e considered as a com- pound of frusta of triaiigu. v prisms, .sincethccyliiideriUelfislmt an inlinitary prism ' ; every ci ular, elliptical, paralxdic, &.c., spindle, t'lon^'jited or ll.ittened, as the case may he, will l»e, decomposed, a.s luis already been shown, by sections perpendicular to the lixed axis of tlie solid (Hits G.) into cones and frusta of eones, or, if possible, into frusta of a sphere or spheroid, or of a parabolic or hyperbolic conoid, subdivisions to which may be added if required, the cylin- der and spherical segment. 'I'he conoid orspheroid whose f,'enerating curve* is not that of a section of a c(»ne, can be decomi»osed (ll!ll> .) to the consideration of so varied a number of expressions lor the volume of the several solids iu 1. We hnve seen elsewhoro (S3 *o S8 TO that as regards the frustum ofarogiiliir prism, that is, the bases of which are regular or symmelriiHl polygons, and (lO't *o lO? T-) US to the frustum of a cylinder, this ^i b livigion or iinagt. nnry dueoin|iositinti by p'lno.'; of section is not at all Uduessarj, giuoe such bodtet wre oiiiy iuuusuroii wiliUoul lUaU 100 KEY TO TUB TAHI.nAU. qiiostioTi, iind that, •widioiit cxim iiu'liirism or eylindei', the spliere, tlie sej^'ment of a, sphere, the pvraniid oi' cone and tin- \ve(l<;e, &c., and ivhose limit iuif surfaces are iiidiil'erently plane oi curved ;>r both ; but the followiu;;' retlections will ite siitUcieni to piove the accuracy oftlu! enunciation of the proposition. (130) In I lie first place, the/>r/.s';Hor cv//)((7r/- has foi' its soli- dity (1103 1° and (('» «.) th(i area of its base midliplied by its heiglit ; but the opposite bases of ;i prism oi' eylindei' are e(piiil and every section of such solids paiallid to the base (!)i;i fi.) is equal lo the base ; the sum of the 2 bases plus 4 times the half-way section between * is then espial to six times the base, and it is the same thin<^- '.ultiply G times the base by one sixtli ofthehei;;ht or to simply multiply tlie base; by the w hole height. {131) In the sec'oiMl place, the solidity of the ptfrauiid or cone, (inlinitary jiyramid) is 1 1103 ;i^ and 7"^ C) tuu' third of the product of its base by its heiiihl : but the i)arallel section half-way between the base and theajx-x iscipial lo ihelbiiith |iai t of tie' ba.-e, since tlie sides or other honiologoiis lines of that secti:)ii are halves of those of thebaseand the areas ;ire as the stpiares of (he li'iniologoas Bides, that is, I : 1 when the sides are 1 : :.'. Therefore in thiscMse the base i)lus 1 times the section between the b;:se and the apr\ is equal to twic*; the base, and it is the same thing to miiltii>ly twice the base by oric sixlli of the height or to simplify the formula by uiultiplyiug the base by one third of the height. (133) firesides, as it is shown CIIOaG.) by the def. of tlie prismoid, //(C /'/•(/«/»») of n piirnmUl is at the same time a prismoid and {\w frustHm of a cone (frustum of an iiilinilary i»yramid) is still a prismoid, and tliese frusta, sui>i»osing that their lieight be imh li- nitely increased, will at last become the very solids of which they at first formed but a i)ar( ;and the formula (area A I area B i 4 area S) will always hold good, whatever may be thearea of tlu^ apex or of I lie superior base li, and when B is but a point and eonseipiently its area become ecpial t' 0, the foiiiiiila will become : (area A ; 4 limes area S) X ^ of the height. (133) III Ihe third place, tbe solidity of the sphere is (I07'> <".) ecpidl to its area m.iltijtlied by (uie third of ifs radius ; now tills .I'.'ea is precisely equal to four of its great circles, that is to lour times the area of a section of llie sphere eqiiidistiiut from any MENSURATION OP SOMnS. 101 two o])|»t)sito iijiiccs or iJdiius of its coi vex area ; tlioiico thercforo flic acciinicy ofllw I'onnnla, since, llic sixlli part of tiie liciyht of the splicK', tlial is of ilsdiaiiictcr, isoiio tliiid of the nidius or scmi-dia- iiictcr. (151-1) Witli rcsjx'ct to I he Jicniisiilu're, its so- lidity is cc] mil (1077 (i.) tot lie <'oiivcx a lea by one third of the radins ; hnt its convex aij'u is ecinal to two ;;reat circles, sini'c the area of the entire sphere is ecpial to 4 yreat circles, and we have (1 f,neat circles x ,^ E F; = (*J {^rea"^ circles -f^Y KK) ; bat area section (i\)h (or ED=FD)=: J are.i hiisc A15, since D//- = /d''-—I)F^- KB- ~(iFli/-^l—] =.f and as four times 'i'^'^ weobtain 4 area ncitil, had \\v to do Avith any (iin/ Kcijment V.\) of the sjilicre, its solidity is equal (lOSS H.) to the sum of the solidities of the truncated cone El) and seyineiit HD ; but the solidity of HI), that is tsf tiie solid generated by tlie revolution of tiie senmeul HI) is (IOSJ> O.) the dilference between the splierical se<'t()r gene- rated by the revolution of the sectcu' lU'I) and the solid jreneratetl by the revolution of the isosceles triangle JJC'I) ; this dilfer- ence is e(puil to(lONJ> ii.)'i~(Vli''—V =r:(i0'21 €ii.;area 'i , J 2 circle ah^ ~ ad —area circle ad and conse(iueiily " (ah — ad ) = are!i of the circular ring . It is plain also that we nniy write ~f«//— ad ) § EF or 4 ~ (ah' -ad' ),l EF, sinc< l-^-i^l ; therefore the solidity of HI) -(4 area db)x}. EF or 4 times the area of the; ring generated by the revolution oi' hd, muliii»iied by one sixth of the height EF of the segment. JJiit the solidity of the comi)onent truncated coiie = (lis T.) (area biise FD 4 area, base EH i 4 times aicji parallel sec- tion or/^ X ^ EF ; therefore the <'ntire solidity of the segment of a sphere = (aiea base FI) -t area b;,se EH + 4 area section, «fc equidis- tant from l^B and FD) x J EF ; therefore, Stc. 102 KF.T TO TITR TABLKATT. (130) In till" foiirlll place. Al'icr li.ivini; sliowii llicaccii- riK'y of (he " i/eiicriil i:rjiri'ssi(iii " in tlic o.isi' of the splicif niiil cdiio, solids uciHT.itt'tl l)y tlii' re vol ii I ion of i lie ciiclc ii.id 1 1 iiiii,!;lc, the two «'Xtr»'iiu' seel ions of lilt,' colic (iiiitl tiif most (lissiiiiiiiii j tlu; one by ii pliiiu'piiiiillcl !o ilsliiisc, tlic oilier l»y a jiiiinc |)ci |iciMliculiir toits linso jiimI i»assiiic.\ of llic cone, uc an' imliiccd to JMlicvc that it will he I lie same liy anaio^^y, with I lie liodics ;icncralc(l l»y the revolution of the lliicc otiier conic scciions |Hd|)cily so cailctl. that is: llicclli|isis (jjeiU'iatiiiH' the cili|isoi(i tn s|>iiei(titi), the jiarabolii (jiciii'iatinj; tlie |iaral)oloi(i> and liic hypciliola, (iiciiciatinn' tiic liy- Iterlioloid;, and tins on account of the inteiiiicdiate position wliich these tiiree sections occupy hetween the two otlicis, eacli of tliese latter havin:; to pass successively to the state of hypeiliola, Jia- lalioia and ellipsis, or vice-veisa, in order to liecoine from a tri- aii,i;l<', ii circle or from a circle a tiian;;le ; or which is the .-same thin;;, the i-oiie liaviii^- to jiass successively to the state of liy|tei- Ixdoid, par 'udoid and ellijisoid, to liecoine a sphere, or the sphere l»y the reverse jirocess to become a cone. And in fact, the expressions furnished by the '' dirt'ereiitial and integral I'alculns" for the respective soliilities of the spheroid, jiiul parabolic and hyperixdic conoids, or of the se,:;Mients of these bodies, are easily reduced to and translated into those contained in tlie enun- ciation of this articli' and from wiiich they (litter but by the form. {1117) Filially. Ii remains lo demon- strate tiiat when \\n- sctiiiiciit AC of a spindle, f'.u instance, orofdiii/ other soliil of rcriilt((i(ni, &,c., is not that of a s[>here, spheroid, ie<;ular conoid or c(»ne, we none the less (d)lain its s(didity, at least very nearly, by the formula (E I F i 4(ib) X I V.F. In fact we always have sol. truncated cone AC = (HreJi K * area F t 4 area ed) < ^ KF, which generally otters a very near approximation to the required solidity. We have a<;;ain (by the formula) for the volume of the solid gene- rated by the revolution of the segment HbV. about the axis EF, 4 times the area y tlic Kiohition of the st';j;ui('iits hcV, hf/W. Now, il is plain that tin- sum of tl . .>•■ latter is to the solid generated l»y the .se;;nient IU>V, in tlu^ ratio, neiiil_\ of the respeetive ai«'as of the sum of the se;;n)ents /)|{, />('to the sej;- iiient lU"; but these areas are to each other, very nearly, as 1 is to 4 ; whence il follows that the remainder (area hit ■- ,1 FF; just spoken of •will sensibly correspond to tin; solidity of the sum of the solids MS, bC whicli goto imike np the ideriMg the solid gener iled by die revolution ofthe segment li/»(' about the axis Ml' as a continuous ])rism. (or as a solid ling having for sectimi the segment i)/»l';wiih a mean length < iim of the circumfeiences nh. cil. we tak(! this length a litllr too great, since the continued prism in ques- tion loses nu)r<' of its length in C than it gains in l> ; which in- (liwes lis to observe also that since the solid ring ;;eneiated by the revolution of the segment IW'C is rather the coMtiuued t'l irsmni of a prism or a sei ies of frusta of prisms, we miiihl obtain its >olid it y with sullicient acciiiacy l>y making (IO!>»> ti.) tin- pioduct ofthe gcner.it- ing- aica UhV (sectiei pendiciilar to its >ides or edges) by one tliird of the sum ofthe ciiciimferences at H, b and (' (respectivi' lengths ofthe edges ofthe ring or frustiinri and we might still !m1(1 to the accuracy of the solidity to be obtained by multiply- ing the generating area H/iC ofthe ring by onetiflh ofthe sum (»f the live circiimfei'ences at \\, (j, b, c and C or by the sum of ai.y num- ber of ciiciiinfereiices (taken at e(iiiidistaiit points frt>m each other) divided by the number of tliese circumfeiences. (i:i9) Tlie rule which has. just been given to obtain tlie solidity of the segment of a solid with a convex Huiface, is also applicable to the srfjment of a noUd irith a cotircr siirfUcc, the same demonstration lieing adniissable in both cases, as indicated by the letters in the figure ; with tins exception only that tlie ditVerence be- tweeu the accurate and the appioximatc solidities will evidently bo 104 JfET TO TTIR TABLKAr. in ildVct iiisti'iid of 'iciiii; in ('>:coss. for in tliiscusc iIk' nuMU lciii;tli of tlic coiitiiiiird friistimi of a !»risni or of tlic solid rin;,' .u;iMifratcil l>y tlio ri'voliilioii of till- scuiiii'iil iW* (" is Ic^s ili in liic iiumii to In- oh- tiiiiicd l)y lakin'4 into considniition ilic ciiciinifi'ifnccs at li and iit C. We will thci.'foM' oltinin V(i\ niMiiy I he solidity of the .st';^incnt AC. »'i|niil to the (lilfncncc of llic solidiiics of llic frustum of a cone AC and of I hi' solid rinu prodnrcd l>y tlic rc\(dntion ot' the 8c,i,nnt'iit \U)C. til It is hy iiiiikin.:;- tin- prudiicl of tin' >ixtli part of the lu'iuht KF hy tin- snniofllic airas of the l>;iscs Ai5, CD and four times thu si'clioii a h half-way helweeii those base.s. (1 10) The saini^ rule will also i^ive with siifH- fieiit aci'iiiiicy in practiee, the solidity of the cointiil AVA\ irilli (I ciiitr.'trt' snr/'tirc, ami often we will indefi- llltely adil to the aci'iiiaev ol'tlie volume of the solid to he ohiained liy a eoiitiniied snltdivi>i.»ii of tint l»ody to he eominited, into parallel segments, sm iller and smaller aiul of eiiual hei,:;'hl. or thiekness. However ill most eases, it will not be necessary to eaiiy the nimiher of tho subdivions lieyond 3 or o to obtain a sullieient preeisicm in the l-e.sult. T L^r'" i'lT Vl\ for the solidity of the n«!Xt slice IJC we will obtain (AH > CI) 4- Acd) ,| I'Q, and so on ; «/!. JpL .nj J whence it isjdaiu that the entire volume of the ' ' ™ -i^ ' g„lid = () t 4 a^ ( 2 AB f- A cd + 2 CD + 4 cf, 2 EV • &C. + MN) - ,1 01', &e., that is : to the sum of the areas of the ends (), T, of tiie given solid, or of the <»xterior bases of the first and the last slices, we will add twict^ the MENSORATION OF SOLIDS. 105 (1-12) It is plain nlso that to arrive at the polidity of aujf frustum or sc^jfiiiciit A B ah, of a sphere, sjiheroid or coiudd with iioii ])aranel bases .\.15,n/), it will siini('et()eoiiii)iite separately the voliiiue of tin- whole solid AH— E and (liat of the. partial solid ab—enud then take tiie dif fereiiee of those solidities. We will thus ohtaiu vol. AH /)a = (areii AH t 4 area iiiterinediate fie«'tioii between AH and K x ,\ EF) less (area ab + 4 area iuterine- diale section between ab and c x ^ ef.) (1 13) Let us now apply this general formula to the solution of tlie several problems relatinj^ to it, (excepting h<)wever the prism or cylinder, tlui pyramid or cone, the frustum of a pyramid or cone, and tile prisinoid, which have ;dready been treated of), and let us also take tlie opportunity of comparing, in ccitain cases, the results thus obtained and those furnished by the ordinary rules, so as to judge of their comparative accuracy ami of the amount of labour necessary to work out tlie result. PROBLEM XXXII. To find the area of a sphere. (144) RIJL.I: 1. Mult iphi (1071 G.) the circumference of ont of its (jratt circles bij its diameter AF. RSJLE II. Mnltiiyhj (107S *••) the square of its diameter or four times the square of its railius by .7854 and by 4, or at once by 3.14 IG. Ex. 1. What is tlie area of a sphere the diameter of which is 7 ? Ans. I.'.y.!iyd4. 2. The diani. of a sphere is 24 in- ches ; what is its area f Alls. 1809.5616. How many scjuare inches of gild- ing would be re(iuired to cover a spherical ball the circumference of which is 78.54 inclies? Ans. 78.54-5-y. 1416=25= diam. and 78.54 x 25=11)63.4 sq. inch. 4. What is the area of the earth if tlie diani. is 7912 miles T Ang. 196,663,355.7504. 12 106 KEY TO THE TABLEAH. 5. How many Hiiportlfinl ft-ct of lead or other nictiil would he requircHl to cover a licmisiilu'iical douiu the iliaiiieter of wliieh is :]:i feet 4 iiichois ? Ans. H;}j X ;};i\ \ 787}^ -< 2 — 17'y't s(|iiai(> fci't ; f'oi', it" the area of the whole sphcic is (■(|Mal to I ji'icat ciich's, it is plain tiial that of the heinisplii'ie is equal to 2 nieaf circles. O. The vault of th(> apsis of a cliui<'h is in the Conn of a quarter of a sphere the radius of which is ir» feel ; required the iiiini- ber of yards of phistc^riu^ iiecessaiy to cover its siirfaee ? Alifi. ;M) X 30 X .78r)4-7-l) = 78.r)4 or 78^ yards ; for, since the eii- tii'o sphere is equal to 4 great circles, the qiuirter of a sjihere is equal to one. 7. What will be. at T) pounds p(>r sfjuare foot, the weiijht of a hemispherical copper boiler the circuiuference of which is lrf8i inches I Ans. 188.5^3.l416=:diani. =00 and 188.5x00^11310 scpniro inches of which the half oO.").")-^ 144 -3I).^i7 square feet, this area mul- tiplied by 5 (the weight perscj. foot) ;;ives lLtO.3.") [)ounds. (I'lfi) RL'IjK III. (\»isi(lcr the siir/dcc of llie t^'pliere as .01»88 of the circumferences to en- ter into the computation ; this latter x 41.31204, width of one of the zones, finally gives for answer 107,787 uuits of urea. REIII. The two first rules give each of them for area of tlic pro- posed hemisphere 108,050.0(J units. Tlie dilt'ereuco between these results is 803.5, 803.5-:-108.050=()08 nearly, whereby the rate of error is ^ of 1 per cent nearly. Wt! theretbre concliule that iu every analogous ciiae, it will sutlice to increase by .008 or. 01, nearly the result obtained by this rule, to come very near the required area. MRNSnnATION OF SOLIDS. 107 V.\. 1. Let il lie r(Miiiir((l now to opcriito willi 10 sections or y.Diifs instciid of ."), tlit' (liiiiiictcr of tlio lieiui.si)licro iTinainiiig the saiiic ? AiiN. 'I'lic !» iiiici inidiiitc (liainclfis bciii^ as follows: 200,2.^0, 2:lt. 2i:{, It^d, l.')). Ill), H',';iii(l 12 : their smii t IMJ) (iialf tlic diaiueter 2(i;} at tlu' l»asf) is 1(17 1.."), tills sum s ;{. Hid = r)2r)l.l844, Kum of tlic <'ircuiiift'r<'iic<'s to lie used as an clmirnt of tlic projiost'd coniponiiit zones will in this ras(> lie i',, of the ipiartcr of tlic ciiennifcrcncc, that is 8()22t()8-f- 4 4 10 or at once by 10 = 2(l.(ir)(i(l2 ; hut, r)2.")l .1H44 x 20.(jr)(J02 = 108, lOS.,")?. It has already heen seen that the accurate resnlt is I08.().")0.(i(i ; the ditl'erence of tiicsc results is now hut 182, equal to .0017, that is : the delicieiicy is no more than ,1 of I per cent. This rate of error added to the resnil of any other aiialont to perfect accuracy. (116) KL:JI. Ifwcput this third rule among those that may be used to determine the area of a si)her(> or p.irt of a sphere ; it is not that we should think proper to apply it to arrive at the area of a sphere proi»erly so called or at the solution of any anologoiis problem that can be solved hy more simple and direct rules ; hut it is because in practice, it is rare uuuugh that wo huvo to duid with a 108 KEY TO THE TABLEAU. perfect Bpliero, part of a perfect sphere, a s])li(>roi(l or part of si spheroid properly so calkMl, a true paraboloid or l»y|M«rl)oloid, or ill general with a solid of revolution, the j;('iieratinif eurve of \vhi(;li 18 an exact section of acone, hiicIi as the cireh'. tlieeilipsis, the i)ara- bola and hyi>erl)ola. It is therefore evident that in all cases in which we niiglit not have to operate on a perfect sph(>roid or conoid, or tho kind of which conld only bo established bnt by innch prelimi- nary labonr, it wonld b«ibetterto pnceed ininiediately by Huh! Ht than to have reconrso to another rulo wliicii did not accurately apply to tho pioposed problem. (14'7) Let ns add that if the surface to he mcamtred, instead of being every where of eqmd curvature, as that of the aphcre, were, as that of the paraboloid, cCc, of unequal currafurc, we mi«;ht, liefore proceed- ing to the 8\ibdivision into zones of <;(iMal bieadtli, lirst divide tho area to l>e compnted in two or several paits which would afterwards be subdivided into a less or greater number of zones accoiding to tho lesser or greater curvature in the corresponding part of the geiierati tin- arc. One might then calculate separately the parts of unequal cur- vature and afterwards take tho sum of those parts. (148) Usualh/ also, the n^easiirer or (jeometriiian, in considerintj the degree ofxyrccision to he brought to bear in the practice of the details of his art, will not lose sight of the importance of not devoting to the solution of a problem, a labour and time which would notbojusli/icd bij circumstances. It would for instance bo idle, we may even say- unjust, that to establish to within amillLontli, thousandth, hundredth or any other unit near of tho accurate result, a i)roi)()sed area or vo- lume, one should devote to it a time which wonld cost those inter- ested more than a fra(;tion of the value of such unit. We say *' usually ;'^ for it is plain that there may be circumstances, either in a question or cause in litigation where the cost of doing justice to the parties may be more and in fact is often more, in an unlimited proportion, than the value at stake. PROBLEM XXXIII. To find the solidity of a sphere. (See the tableau.) REOT. A piano or piano surface RS touches the sphere but in one single point D ; therefore tho areas of tho opposite and parallel ends or bases D, M are each of them null or=(), which re- duces the formula iu the case of the sphere to multiplying 4 times MEN8URATI0N OF KOLIDS. 109 B D ■^ x^^-^ h? tlio aroii of a fjiofit^ circle, lliiit is. of a section passiiij,' lliiouf;li the cciitn^ C, by the sixth paitof the height DM peiijeiuiiciihir to that seel ion. (IIO) RULE I. Miill!i>lii 51 (1075 Cir.) //((' (trcd by vue third of / the rdiliits. RL'LE II. ('i(he (1103, 10°) the (liduictcr and multlphj the num'ocr Ihiis found III/ I ^ ; that is, bij U-.V^^W or the soliililii o/d s])hcre thediitmeter of which is I ; for (10«4 CJ.) the s.)Ii(litie8 ov volinn(!.s of any two spheres are aa the cubes of their diani. RULE III. Multiply 4 times the arcd o/'itsectiou of tlic sphere eipii- M distdut from its opjiosile ends or a^iiees hi/ the sixth of the heiifht perpen- dicular to that scetion. Tliis rub', in tlie case of the sphere, is evi- dently analoi,M)iis to the first, for tlie area of the spliere is equal to 4 great circles, tli(^ jfreat circles is the section of the spheie by a plane passing througii the centre C, that is, equidistant from two opposite points D, M, of i(s surface, and the fith of the lieiglit D.M is but the sixth of tlie diameter or the third of the radius. Ex. 1. Wliat is the solidity of a spliere the diameter of which is J2 I Alls. Jlil^'ia xl2 X .r)-j;5(i = It()4.7e08. 3. Tf the mean diameter of the earth is 7018.7 miles, what is its solidity in cubic miles ? Ans. (7913.7)' x.523G = 2.-)9,092,792,fl82.G374nn8cub. m. 3. The top of a steejdc is terminated by a spherical ball the diameter of which is 2j feet, ; what is its solidity ? Ans. 2|x2§=7^-7.11inil, 7 x 2|=:rl8.()nn(3(i()(i, 2§ x J or 2.GGfiGG(;G -^ 9=2:>G29r)2,J8.()G()G()t!(] x .29G29G2=18.9(529G29 = (2§)^, and 18.9G29()29 x .523G=: 9, 9290074 cubic feet. 4. What is the solid content of a cannon ball having a diameter of 10 inches ? Ans. lo'^lOOO, ai'.d 1000 x .523G = 523.G cubic inclies. 5. How many cul)ic inches of gunpowder to till a shell tlic in- terior diameter of which is 12 inches f Ans. 12 X 12 X .7854 x 4 or 12 x 3.141G = 4r)2.3904 = area of the sphere and that area x^ radius or J diam., that is, by2 = 904.G808 cubic inches. 110 KY TO TIIK T.\Hr,KA\T. O. How iii;in\ cubic feet of nil' iiiJiv he (•(Hitainod in n buoy of a Bphcriciil torni willi an int. diainctcr of H) feel ? Ah*. .")'^.'{.() ciiliic t'cof. 7. .V sloiu' hall is ;n'('cl (lianirtcr ; wlial is ils \\«-i,i;lil at I.'jO ])OIIIm1s pel' ciibie fool .' Aii«, .'{ X ;{ X :{ -. ..Vj;{(l > l.')(» - XJI-iO..').-' poniids. ><. How manv ;;alloiis(ir li(|iior (2:i\ cubic iiiclics pcr;,'alloii) iiiay bc contaiiicil in a licniisplici i<-al boiit r 10 I'cct (liaiiictcr f AiiN. 'I'lic content of tlic vcssr'liii cubic feet - 10 x ..VJ.'Ui -: 2 = 201.8, (lie number of ^^allons per cubic foot" 17"JH enliic inclies-f-231 = 7. ISO.')l!i.'), sa,\ 71. and "^'(il.H x 7i = I'Xt'Mj {Gallons, or iikuc correctly 2()l.p*x7.J8==]!>.")H.',»ti oallons. !>. A lu'iiiisplicrical vault ol'tlie imiforni lliickuess ofone foot, ineasuics 10 feet inteiior diameter : liow manv bricks have been re- quired to built it. al 20 bricks per cubic foot ? An*. Ft is plain that the recpiiied solidity is equal to tlicdifter- eucc <»f the solidities of the exterior and interior hemispheres ; but, the ('Xteri«)r heuiisphere= 12 x .,")2."}0-=-2 ^ 4r)2.;i!» cubic feet, the interior liemisphere -- 10 x ..")2;{(i4^2 - 2(>I.H cubic feet, (he din'ereiice of these solidities is litO.")!) cubic feet and l!IO.(»x 20=:)812 bricks. lO. 'I'he thickness of a bomb is ,"> inches aud its exterior circiun- fcrence (!2.8;J inches; whal is itsweiuht, at 480 pounds per cubic foot ? Aiis- Wc have for the cxteiior diameter of (he bond) (i2.8;}-;-3. 141.2 cubic iinhes ; now, I cubic foot or 1728 cultic inches : 4l^0 pounds weiylit :: ;jtjd.j.2 cubic inches : 1018 pounds weight. PROBLEM XXXIV. To determine the convex area of a spherical segment or of any spherical zone ^ (See the tableau.) (150) RULE I. MiiUiplif (10T3 €J.) the hcujht oC, 00 of the 1. The gplhn-ionl segment is any pnrt aeft", of the sphere, cut off from the whole ■pbere by a]ilano ofsc(?tion aeh, u sinnll circle of tho sphere. The spherical zone is any part (((7;-AEB of the fphero comprifed between two pa- rallel planes ab~-Ali, It is, a^ tho case may be, lateral, ce;itral, exoeutrio- MENSl'llVTION OV R'lMDS. Ill 8Pfimeut, or the hriiihf Od of the zone hi/ the vh'cumferencr of a ijrcdt lirch'of the uplicrc : llif jtrinliicf will he the rei/iih-ed (irev tli<- iih-iIiimI of par. (5IO <«.) \t\ *li- vidiii^r till' si|iiiiic of i;iiliiiH of till* Itasi^ of lli«' si'niiHMil Ity tlic liri;;lit, to obtain tli(^ rcniaiiiilrr of tlir ilianirtrl' ; till' rcniainilcr thus fniinil ' the ;i;iv('n hcinlil. will lie liif iiiiiiiitd (lianiett-r of the splicic. Ex. TlitMliainctt'i' of a s|ili('r(' luini^ 42 (h'linu'trcs, wliat is llic toiivcx aica of a .sn^intMit the Ik i^lit of wliicli is !• drcinH'tics ? Alisi- 4-Jx;M11(J = (ire. i:U.!»47'i which x U= 1187.5248 Rasi> of llic roof of ;i lantcni in th« foiinofii s|»li( rical si'^nicnt, is iOfi'ct, the lifi^lit of tlii^ roof is 4 ffct. How many supeilicial feet of loud or other metal would bo required to cover it if Aus. 'w ~ 4 = 2.'), 2.') I 4 - diam. of the sphore=2n, 21) x 3.1416= circ. !.tl.I(» cxpcditiouH manner and a<'y a simple ;;rapliic process ■\viiieli \voiiId allow of to detenninin;n at once; the required radiuH or diam. of llie spliere, with tlic »amo scalo luadtMiHo of to llx on the paper thc^ relative proportions and positions of the data, tho centre of tlu^ circli' heinjj then easily ('ouny repeated trials on tho ])eritendiciilar (prolonged if necessary) which unites tho centres of tho two <(iven chords. S. The diainoters of tho inf. and sup. hasos of a roof in the form oftlio sejjjnient of a sphere measure respeotiv(!ly JO and 12 nietros and tht^ heij;ht 2 metres ; what is tho area of the zone forming tho lateral or convex surface of the .'oof 1 Alls. We obtain (574 O. ) either by calculation or by construction tbo () and '-i'H Irct, tlic length of (lie ;;«Mi('ratiiij; arc is 1.") I'c<'f, and tin- d(vtIo|t('d liicadtli of one of the llncc coniiMtncnt /ones is fonHcijiicnf l.\ '> fct't, ; Avhafc is the urea of till' cntiio zone I % Aw*, i'-im i^.-)(» I 5>;M I i'*i:]-7'2().r), (ids sum < 5 rr :j(i()o.r, sq„ft,.e inolit's nearly. a. 'I'lie vault, or arclied eeilin;;' of a eircidar room in tlio foim of a spherical H('<{ment has for its inf. diaii. Irtd decimetres, and for the inlermediate diani. of live component; zones 154,11!), H;J and 42 decimetres, th(?len,i;lli of IIk^ ■^eneralini,' curve, that, is, the eiirvili- neal distance from tlMwenlrci ofllie vault to its s[)riug is KW deci- metres i!H ndllinu'tres ; what is its concave area ? An«i. I(i;{.t],-' decimetres-; rj = 2().G:)li = breadth (sf one of tlic com- ponent zones, i inf. diam.nri80-f-2=y3, !):J t- 1.14 f llf) f 83 f- 4*1 = 41M), i!»() ■; :}. 1 'i(» ~ l");J!i,;{f44 sum of tlie circumferences to enter into the comi>ntation, ii«»w, 1.").'{!».HS 1 < 'JO.dKJ = .•{|,7!>7..'") atpiare decimeties or ."(17 s(|iiare metres !»7,l s(|uare decemetres, since the s(iuare metre is 10 < 1(1^ 100 s(piar»' decimetres and that by putting the decimal point 2 places back wc divide by 100. PROBLEM XXXV. To determine the solidity of a spherical segment or of any spherical zone. — (i^ei^ the models of tlie tableau.) (15:1) RI'J.TI. 1. The spheiical segment aehC or a e b D (See the li.i;ureof the paragraph (ItiO) may be smaller or greater thau a 111 unsi)here or equal to a hemisphere if the idane of section passes through the centre of the sphere. In every case the general formula gives its accurate solidity. In the same way, the splierical zone may be lateral, central or excentric. We will call it lateral when it is the zone of a liends[»here like the one which in the figure is comprised l)etween the jdanes of section, parallel circles AEli, a e b. It may be central if its phmes of section, opposite or limiting bases, are equi- distant from the centre O of tlu; sphere, and exceutric, if these bases are unequally distant from the centre. 13 114 KIT TO Tfl?, TABI.KATT. (15'i) REin. If. Toobtiiiii in tlic spliciicnl sconiciit, tlic diu- metcr of tlie central or liiill'-way section, it sntliccs to icnicnihcr (530 G.) that liic Iialt'-cliord a o (sec the lij^iin! of parajfrapli (1*50) is a mean jjiopoilictnal between the versed-sine o (! hei^lit of the se^iucnt and the remainder o I) of tli( diameter. L(^t tlieiefore AEH-(' any s(>gment of a spliere, and = f>0=iO(," : llien as (>(', lieii^ht of the solid, is known, we will obtain <>V=^OC and we will find oa or oh = i ab = \i'o C X o I). Letai>ain (i e h 1) tiie segment to be measured, and AEH its half-way suction passing; tinon.t^li a point lialf- ■way between o and 1). Knowing o 1) and cousiMpiently ()!):= V <> I)^ we will (djtain OIJ or OA - i.VB - VOl) ^ OC!, or by measuring directly the required diameter of the body to bo eoinpnted. (153) RLi^I. III. To obtain in tlie spherical zone AI51)f', for instance, the diam. of its intermediate section ; we will at lirst find, if it isnot ah'eaily known, the radius OH or OF of the sphere of which the zone to be com- puted forms a ])art. To tiiis etl'ect (574 «.) the plane figure ABCD being the vertical section of the splitMical segment in question, we will obtain EF^CE X ED-^AE, then AF - AE or dU i EF and diam. 1?F- VAJi-^ I AF'-'. The radius OH bei ng now lvnown = .li?F, we will ob- tain Oa = VO"H^— HO'-^or Oil — Vt)(.J-L'lT-, or after liaving found OG orOHweAviU obtain OH = GlI-Ori or OG^ Gil— OH ; nc.w, if we suppose the line GH prolonged on both sides to tlie circumference at XY, we will (d)tain G.\, = OH-OG and IIV=OH— Oil and theiu'e we will easily obtain, as in HEW. II, the intermediate diam. half- Avay between AB and (T). (156) KIJL.i': 1. MiiltiphiilOHHU.') the half-siim of the areas of the 2)araUe^ bascfi hij the hei(/ht of the se;imeiit ; add to this jjfoditet the soliditj/ of a .sphere the diauieter of ichieh is equal to the heifihl of the seipnent; tlic sum of these two so/i-Af dities icilll be the reqitireil volume. REi^I. Wlicn the segment has but one single base, the other is considered = 0. RrLE *t:\To the sum of the areas of the hi f. and sup. bases of the seymeut, add i times the area of a BIENSURATION OF SOLIDS. 115 section equidistant from those Ixh^cfi, and mnUipUj tlie whole hij the sixth imrt of the hvitjht ; the result will he the required soliditi/ (135 T.) ICx. i. Wliiit is tlic solidity of ii scf^iiiciit loriniiin ]»iiit of ji Rplii'i-c tlic (liiiiiH'tcr (»f wliicli is 10, tin' ;<'sp('ctivf (lisiaiices from the cuiitrc to ciicli of tin- pliiiics of section being 1(5 iind 10 ? Ans. \\'(' must tiist (ioterniiiie tlic iiroas of tlie i»arjil lei bases of ilic, given segment ; but, tli(i diameters of these bases are parallel <'lioids of a great ciiele of tlie spliere, distant fiom the. centre of tlie eirele, tlie one by 1(1 and the other by 10 units of ii 'asnre, tlie seg- ments of the diameter of the great circle peri»endicular to tliese choids are respectively, ol'one of tliiMu, lti4-20 = 8(i and 40 — ;j()=4, of the other, 1() + 20=:.'J0 and 2(»-10 = 10 ; now we havt> (.ItOG.) ;{(; X 4-114 ^the s(iuare of one of the iialf-chords and ;]() < 10 = ;^()() = the s(juare of the other lialf-chord ; these s(|iiares multiplied each by .78:)4 and by 4 or at once by a.l41(], give 452.8004 and 942.48 for the re(|uiied areas of the parallel bases. The sum of these areas = i;j!U.8704, this sum x'.i, the half-height (KJ — 10) of the segment, or the half-.-^um of these areas x (3^4184. t)112 = part of the required so- lidily ; the remainder of the re(iuired soliy .52;{6 sind take liall' the proiliicl foi' IIk^ solidity of iIk; liciiiis- l)htir(!. 4. How many ^tjalloiis ofwatci- may (iiid looiii in a reservoir in tli(? form of a splierical seij-meiir wiliia JOI) I'eet diameter, ami '20 iVet deep, iit 7i galhdis per euliie foot V AiiM. By the first rule, we ohtiiiii tlie re(|iiired vol.^area of tlie base of tiie segment (tiiat is, tlio sup. area of the reservoir)- tlu^ lieight (vertical dei)th of the reservoir) r !2, pins the vol. of a sphere liavin^ for its diameter sneli height ; that is, the re(pnre(l vol. - ( 101) . 100 X .78.54 X 2i) ^'2 = 7p<.-)4(») f (20 < 20 ^ 20 x ..•)2y(; — 4 1 88.8) — 82,728.8 cubic feet a 7.r)=(;20,4()(! /.allons. Alls. l>y the .second rule, we hav<' lirst (5 !<► H.) for the le- niainder of the diam. ofthe si)here or of the ;;reat circle of which tlui heii;ht of tiu^ reservoir foiins a part (.} 100) ^ 20= 12.'). 12.') : 10 (lialf-distuuce from tht? surface! to the, bottom) = I.T), IIJ.! v 10 = I-'J.'jO = rectaiigh? of tlie .segments of tlu! diam. = s two rules for the solution of this pioblcm will sometimes depend on the nature of tlie data, but especially on the doiiltt that might exist as to the particular kind (»l the (igiire to l)e computed, and tlii^ use of this formuhnvill dispense with the necessity of eiiqiiiring first of all as to the exact nature of the proposed solid. Tims, if the reservoir to be measured were the segment of a spheroid, hyjierboloid, or any other figure resembling nearly thos(! just enumerated, rule H would in any cast; give its accurate solidity (I'2T T.), or very nearly, ■while if we treated as part of a sphere proper a figure which Averc! not such and calculated it by the rule ai»plical)le to the si>heie, we might be deeply mistaken in the result. 5. A basin the form of which .seems to be that of spherical seg- ment, has for its sup. diam .15 inches, for half- way diam., 12 inches, and for depth or luuglit 7 inches ; what is its capacity in gallons of 231 cubic inches? Asis. Sup. area= 15 •< 15 X .7854 = 170.715 s(piare inclu>s, inter- mediate arca=:12 < 12 x .7854= ll.'M)l)7(), area lia.se (- 4 intermediate area = 020 1054, this sum 7 H- = 7114 cubic inches nearly; divid- ing by 2;ll we obtain 3.18 or 31 gallons nearly for the capacity of the proposed vessel. MENSURATION OP SOLIDS. 117 0. rii<- viicnity or spncc midcr !i (loiiic or iirclu'd cciliiii" of a cii- cnliir room, ]»r('.scMls ilic aspect ol" llic sc^^iiK'Ht ol'a splicrc willi paral- lel Imscs the (liaiiM'tcis ol' wliicli iiicasiir<' H'SpcciiN rly I!*. 1* metres aiui H.7IH iiH'Ires ; the diameter of Ilit! dome ('(iiiidistaiit I'rom its l>ases is I7.;{"J mctics ; reipiired the iiiimher of nihie metres of air to he iiealeil. the iiei,i;hl l)eiiix f^ metren ! Alls. (I!t.!>/ < .7."<.14=::;«i(jx .7Hr)4 = yil.(l-J, (8.718) =7(1 and 7(> X .78.")-! = .')'!( ii», {\7:.ti) =;}()(( and :«)(» x .7854 x 4=:i)4^.48, the sum KM.'}. 1!» of those areas ■. 8 ;-()=- 17.")(i.!»'J .•-(1 = 117.. '5 cubic feet, (when) we liave taken (S.72) = \^; for, <»r (i 12)- -f 2= 18, l8 + 2 = diain. of (Jie spher«' of which (he scju'ment forms a part. Now the interme- diate half-diameter=v'l!' ■■- 1 <»' 'li<' ••'mn . -\A times li>^v'7^> = S.72 nearly) and 1! 7.3 x7i = 88!) <^alloiis nearly. PROBLEM XXXVI. To determine the solidity of a spherical ungula, and the area of the lune -which forms its base. (See the tdhlain.) HK^i. The spherical uiigida is a part of the solid sphere eomi)ri.sed be- tween two half fireat circles WC, EDC meeting at any acute, rij;lit or obtuse iiujrle AOE and its solidity is evidently j^\ to (hat of \]w entire si)Iiere as its aii.i;le AOE is to ;H\{)^ or as its arc AE to the entire circ. whence it evidently follows that its solidity will immediately be obtained by the following : Rl^rK I. MuHiphiMhnrn the area of the mctor of a tinlc AOE bij I of (he diamckr Vl>, hiKjtk or Iniijht lis KKY TO TIIK TAIM.EAU. n/lhc splii'i'lral si'ipin'iil : I'm- llic iirciis of tlic uppositt' ba.s(!.s oi' ciitl.s (' iiiul I ), iu<' liolli < (|ii;il to /(TO. ttl'M'. 11. (,'rt JirsI (1075 H.) tlir circumference of (he balloon beinf<- 10 x 3.1416 = 31.41() mi'tres and the number of comjiartments 3(), it folbtws that trte bi-eadth of the gore will be 31.4 KJ-i- 3(i = .87:2:|inetres, llien, .d72| X diam. 10 = 8. 7^1 sipiare metres = re(piired area. 3. There is to be replaced one of the 10 component ungnlae of ji wooden ball 30 inches diameter, required the soiidity and convex area of the ungula. Ans. The circ. of the ball -30 x 3.14IG=:!I4.218 wlieiice it follows that the breadth of the ungula=U4.348-;-10:=9.421d, this breadth x MKNSURATION OF S(M,!r)>. Ill) s()li(lity = tli(' juv;! v one tliird llic iii(lins = v>'-J,rM - 1.') :- .•{-•'JH-J./l I x:}(»^(; = '^-<-J.744 < 10^ 'J = !2H'27.-41 : •J = J li:{;riil.ic iii.lhs or 14i;{.7-i -^ 17vJf^ (iinmhcr of chIhc iiiclics iu ;i ciiltic loot ) = >"2 iiciirly otiu-iiltic foot, let tlif lour lit'dis of II culiic loot. It. IJ('(iiiiic(l llic iiiiiiihiT ot'toiscs (M7 ciihic c ii.nl isli feet per toisc) ol" iiiiisom y in out' of lIic S coiiipaitiiiciits of ii li('iiii-si)li('rif;il Viiiilt; ofwliicli llic int. (lianii'lrr is MlllVct imd tin- tliickiicss of tlir vjiiilt 'S feet .' ylil*. Il is pliiiii (I0S;5) Miat we will oht.iin (lif r«'(iMin'(l soli- dity liv tiiUiiii; the dilltTcMic of llic coinponcnt scini-iiiiniiliU' of tlio iiiti'iior .iiid exterior licMMsplicrcs of tin' proposed \iiult. Now, t ho int. diaineler heini; ."{O, tile solidity <>{' the spinre = ;il) x .,">^';{(|^ I li:{7, llie sol. of IJH' ext. spliere=;;}(i x ..VJMt)=:-J 1 1*2!». the difl'eicncci (!iM':2!>— Ui;{7— l()-i!lri) of these solidities divided l)y the iiiinil»er (l(i) of the (-(Mil pollen I senii-iiii,i;iilae of the entire sphere, nives for llm solidity of the compart nient dlM', cnhic feet, dividing tiiis latter nnmlier liy ."^7 \vc get 7 toiscs :U\ cnldc t'vvi. Or, aj)iiroxinialively, l>y innitiplyiiiL; the liaU'-snni of tlie ext. and int. areas ot' liic eoii>.i)ai tnieiil by the thickness of liie vault f \vc have area of the int. s[>licre .'51) s .'{() x .7f*r)4 ■, 4 or ."JD x;il4l(> = ^■^■-27.44 of which the half lH;5.7'-i is the interior area ol' the entirts vault, tlie area of the ext. sphcre=::ji! x -'M 4U! = 4()71..")I."{(! ofwliicli the half ^J()M').7.')(i8 is ihcextciior area ol' tin; entire vanll, t he sum y44!).47().S of these areas :-8 is the sum of the ext. and int. areas of tile section of the vault to he. measured, and this lat ter sum 4-'?l .l^lt! x li (half-thickness of the vault) or half that sum ninitiplied l»y tlio tMitire thickness of the vault, gives Jor the cnliical content of tlio compart nieiit lilti,' culiic feet, (tr 7 toises .'57 j cubic feet. (lUl) atHni. We say " appro.ximati'ly,"" and in fact, the solid to l»e measured is notiiing hut the frustum of a spherical pyramid, comprised between parallel bases. The spiierical |»yraniid. like the ordinary pyramid, lias for its solidity (lOf^'i <«.) the third of the product of its base by its height ; but, were it true thai one could jurivc at the solidity of a frustum of a pyramid l»y multiplying llio half-sum of its [»arallel bases by the height of the frustum, it would liajtpcii also that one would correctly obtain tins s(tlidity of the entire pyramitl e(iual to the, lialf product vA'ita i)ase by its height ; for if it be supposed that tlie height of the frustum increases iiidetinitely, this height must ut last become eilii( I (if its base by ils li('i;;lit ; l)iil tliK solidity of lii(^ pyramid is on tlif contrary tiit- liiird oI'iIr' product of Itsbiiso by its lici^Iii ; and tin- difffii'ncc Ik'I ween ,V and \ is ,V ; liicrcfore tiic t'lior of tlic apinoxiniativc nictlmd nii^^iit in an cxti«'nic caso iTMicli hllj per cent. In the ubovt; cxanii»lc the error in excess is bnt .'H feet for (i l."5 feet or i per centi nearly, and would be still less if the the di'nicicr of the vault were ;nreatcr I'clativcly to its tlii(d\n(!ss, or whic ■; the same thin^-, if the hciiilit or tliickness of tlie frnstnmto be mcasnrcd formed a smaller i>arl of thi; entile lieight (»f the pyra- mid of which the frnstnni forms a part. PROBLEM XXXVII. To find the solidity of a spherical sector. (Sec tlie models t)f the tdhleaK.) (1<»2). SIB<1I. I. The scctoi' or spherical cone is, as indicated by ils name, any part of the solid si>hcre comprised between and liaving for its base a splicrical sc;j;nie,nt and foi' its lateral wall the surface generated by the revolution of the radius of the sphert^ about the circumference of the suialhu' ciicle of tin; spiiere serving as a base to the segment. Wt> may consider th<^ spherical cone under two aspects and measure it in consecpicncc : 1^ as a spciical sector or as an intinitaiy sjihcrical jiyrandd to obtain its solidity by adding to tlie urea of its spherical base 4 times the area of the inuiginary sphe- rical Itase parallel to the lirst and situated half-waw between the exteri(U' surface ami the centre or otherwise; between tlui base and apex, asi for an ordinary pyramM or cone. Now it is (-vident that as in the ca.so of the pyramid and cone properly so called or with plane bases, the area of tiie half-way section is equal to the fourth part of that of the base, which reduces the method of cubing the cone or the spherical sector to that enunciated in tiie above given rule. 2^ as ji comiiouud of a sjiherical segment and a right coue winch may be measured separately i)y the rules already given to take afterwards the sum of the compmient solidities. This nmthod evidently dis- penses with the necessary knowledge to arrive at the conve.c area of the l)asc of the sector to be measured and reduces tiie whole work to that of obtaining tlie resi>ective areas of the circle answering as a common base to the component cone and segment and of the circle parallel to this lattei and situated half-way between it and the apex pf the segment. SIKNSURATION OF SOMUH. 121 flG.D K?vtF II. r spliciiciil (*li/ (KUT tJ.) that i to ijrt the reijitired solittitj/, K\. 1. 'i'lie lu'inlit of tlie senMi'Mit, foi'iniii.if (OT^i H.) tlie base of a spliiiical .sector, is I.V metres, and the radius of tlie sphcfe of which the sector forms a part is 5 metres ; wiial is the solitlity of tlie sector ? Alls. The area of the base — ciic. of a yi'eat circle >■ tlie height of the seu'imuit, tlie circ-diaui. !(» :Mli<; ol.llt) < l..>=17,lii4 8iiaar<' nieiies. this area I radius or by .").•-.'{ — 7?^.,') I cubic metres. "i. \\ hat i- the solidity of a buoy having- the form of a spherical secioi. the length of the side being lU feet and the diameter of the biis(! o feet ? Ans. With those diita we obtain liist the height of thoaeginent= 10- MO --J..") -10- !».<)S-^') — .air,') of l(i >.iuaie feet — area of the con- vex base, this latter ■■ lO-r--'}— tid. ii)7 cubic f(!et. ii. A circular tower of whii-h the int. diam. is HO feet, hnn for its out stone vault the frnstnm of a sector with parallel ba.ses, (lie tlnck- ness of whicli i> .'> feet, (he lieight of the cap of the vault is 10 feet ; what is the c.iucave area and the solid conreiit of tin; vault ? Alls, 'riiti solidity of the frustum is (IfJSS G.) equal to the dilTerence of the eonipoiieiit entire and partial sectors=e.\t. area or of the exlradosx .\ I!, less the int. area or of the iiitradosx^ >• where II. and r are the respective radii of the ext. and int. s[)h(ires of which the sectors of the same name torni ii jiart ; now, we first obtain (.140 4ji.) ftir tlio remainder of the diameter of the great circle of 14 122 KKY TO THE TABI-EAH. which tlio lifi^'lit of tlio v.nilt r'ums a pint aii -^10 (Ihc si|iiai'c (iltlic semi- chord -:- till' vcisimI sine, thai is, thr tliaiii. of Ihc vault : its li('iu,ht ) = 2:2r)7-l()^'JC.r» ; then we olttaiii the diaiiirh'i^'J'J..') | |(l t;!'J.."> and th(* ia(liiis= Iti.'jri, and tin- (h-ptli of I he vaiill hcin;; r> feet, we ohtaiii for Ihd radins of llic «'\lia(htH |(i.r»t*-f- r) = i!l.vJ."» ; now, \vc will ohiaiii the interior art-a, oftlic vanll l)y niakin.t^ Ihc ciiciinifi rcnrc |(I^!.|(I2 (=:r3.|.||() <;{>,>..")) and liv iiiiilliplyinj;- if, h.v the lici^lif !(», wliich will give H)2l sqiiari! fccf tor the rc<|iiircd area. "\Vo will ohfaiii (107 1. 1^ G.) tho area of tlie exfrados hy mak- ing /• : i{ :: inf. ar< a : ext. area, or lil.'^.') : iilv!.". :: !()i»l : j; let 'ZiVl : 452:: 1021 : .' = 171^ ; finally the required solidily = cxt. area x ?, 1{ - int. areax J /--(iriH x 21.2.")-^ ,*}) — (1021 x l(i.25 -; 3) = 123d2— nS-'W = 6852 onhic feet of cut stone. KU.H. I, The a]»pr()xiinrtto riih' in (|iicstion in llie rem. to last ])rohlein, would yive in the actual case i d/I.S r 1021) i 5 = n!>22 tliat is an excess of 70 cuhic feet, the error heinir consc(]iiciitly K',, per cent. 4. A reservoir, the lateral Avail of which is the zone cubic feet, x 20 ^ 841)00^ bricks, or a dillerenco de 2^ bricks only in the resuU j proving MEN.SUUATlON OK TFIK SOMDS. 123 lirriiiil sictoi-, liv miillipl,\ in;;- its lii'ii^lit l>y Ilic !iiill'-sum of its pii- riilltl liiiscs. Iliiwcvcr. with ic'^fiird to iIhi iiinoiml of work (MitailtMl . l>y tlic two iiiodrs of ('III CM lilt inn, iIm- so-oikI iiicllind olVcrs no iidvan- ; .' tiij^t' over the lii.>l wliicli it, is tlii'iftort' licllcr to employ in all cases. l-lvti III. We may also in piaetiec (and this is wliat is soiiui- tim«'s (lone) when llie thickness oi a vault is iiiiirorm and its ladiiis orcmvatiire relati\cly <;reat. simidily the operation and arrive at a siillicieiitly approximate result hy mull iplyintf at onco tho * inl. or e.\t. area of the vault Ity its tliiekness. In the last, <'xam]t]« this maniii r d' proceeding- irives, hy usin<; the area of the intnulos of the brick lining-, <>vJS.'{,:j ■• H inches (»r by the '.J of a foot =41HH.H culiic feel < '^D^^J^M/Ttl, this result is delicient by ll*J;i bricks or It per cent, if on I lie conliary wf take the exi. area (i ir)2 x § we have 4301 iMiliic feet, or i^fl.OviO bricks, result which is in excess of tho truth by 1 l:;2::i bricks or 1 1- iier cent as before. PROBLEM XXXVIII. To liiid the area of a spherical triangle ^ (See the tableau.) (105) lfilir..i'l 1. Comjitilc Jirst llie aim of the splicrenf which the iriaixjlc fi>n)is a pari, and diridr the urea hy 6 to obtain (I19!S €}■) that of the Iri-rectanyitlar trianylc. Cinnpiitra/'lerirards (ISOO ii.) the Kiim of the three anf/lcfi,from it siihtraet ld()^f/»r/ diriile the remainder hifUO^ ; multipli/ then the quo- tient bij the Iri-reetantjalar triamjlc and the result will be the required area. RIJT..E II. 'MnUiphj, as for the triangle with a plane surface, the derelojicd Iciifith of the base hi/ the developed heiijlit perjtendieular to that Ixt.'ie ; the result will bo the area nearly of the 2>>'02}osed trianyle. 1. We will find among tho models of the tableau, pyramids and frusta of spheri- cal iiyriiinidti tho bnse.s of which preiont tho aoutc-aiigled, right-angled and obtuso- an^lod spherical triangle, inoludinr<»|Mtsc(l iiii^iilii) iiMil iiidiciilivs I lie iiiiiiiiitc nf proceed in;;' in ;iiiy otiicr iiiMtlonoiis cusi', 4. The simi ot'tlic llircc iuinlc^ ot'ii (iiiiii;;I(' Irjit'i'd on tlu' siii'- fiirc of tlic tcri'fsliiil splific, cxccid-i (J BUt <".)'•> oin- second (I") IriO^, wliiit is ils iire;!, siipposiiiL; tlie carlh to lie ii perfecl s|!ii( re willi a (liniiuU r of 71)1^ cii^lisli miles ! Alls. TIk^ iuvii of tli(! oiiith^ (7I>1'^) x.'M IKr l!i<;.f;i;:l.:i,M.7.'., dividing' li.v i'*. wf . 17 s(iiiiire miles : now I"-;-!lO' -1" : ;{;! l.dOK \iiiiiid)er of secoiids ill !IO°:^.-{K)=' X CO' .; CO") -r: ,j._, ;,,,,,, ^.()(»()(H):M,-^(;1v> iie.ulv inid (lie iirca of llic tii-nrtiiii-iiliir triiiii-le '-il.r.r-^i, !U!».17x .0()nO(;;i((SC|-jo,-, whieji is till! same tldii.n, divide.-^7;i"JI. An «'Xcessofom^ ndnnle v.ouhl ;;iv<} for the area of I he 1 riari'.le to he c(nn|mt,ed a, nnniliei' of miles (!0 I inns gr(!ater tlnm that uiven h,v ii .sec:icii ot'tlnni to one (piiirur of a cirt'iimtrrciii'i', iliis iiicji, ^.•l^ we, must A' t'Viilcilll.V I'f llii' "^i'll!! li.lll of 111, it of tlic hcniisplicre AlIi)A -(' or wliidi i.s tlic same thin;;' tlic i'l'tii pari of that of tln< (piai l( r ol'a licniisplifrf oi' tii-icclanuidar trian;;lc. if llic aii,;;l«' at (' is luil 1 or the (JIM !i parr of I -\ tli.' arcaol' the tiian-!<^ ACKwill he hut the (WP < (10)' 54()(ltli partot'fliat of the scmi-qiiartcr of the splKii'c. If tlie, an;;Io at I' is hui a second, the same iU'ea will he hut: {\h\ (!HP x (i!)' s liO" ;}v!l.()()()lli |)a.t of thai of ihe liair-(|Uarler of ihe ,s[iiiere, (tr as shcnvu in the ali!i\e example, of 7r).S7.'};JI sipiare ennTish miles ; whence it; is plain, that an aii;;le (' or Al'K of .1" woidil jfive 7J>r^7i'il K(pi;ire miles ; an annle A('K of .til" would <;ive .T.Vv.'i'il of a siiuaro mile ; an aii,i;le AC'li ot .001" an area of .07.>H7;J'.21 of Ji s(pnii»i mih* and so on, or, a-, just said. .O/l-^/iJiJI for eaeli thoiisandtii ofa second. Now I Miiiai-e niiU'---.")'JS(l ■; .VJ>0 eimli>h feet --tJ/.S/,-*,-!!)!) sipiaie feet; and mnllipl\ iuij hy .07.")S7:{'JI we ohtain t2. 1 1 ."),'J'i.'{. 4 I'eet which then coiTcsponds also ti> the area of a spherical Iriannle in which tlie ex- cess of the sum of its an;;!i's on ISO^ is of .001" or of the thousandtli part of a second; whence, if tlie excess it hut of 0001" the corros- pondin,!; area of ihe trian^li! will he 2il.."i>"-i.:U ; if tlie spherical ex- cess is of .00001" or of one hundnul thousandth part ofa second, tlio spherical area will he Itut of '^l,l5"i.xj:{l and linally if the sphe- rical excess is of.OOIIOOl" or of the niilliontli part of a second, the ar<'a of the spherical triauLfle corresi)on(lin'>- to such an excess Avill lie of 21 l.").'i"2:! 1 square feet or of an extent of ground not ex- ceeding a s(iiniie of lii I'eet in tlie side. ^V'hence : RL'Ll] I. To (hivn)iiiic the spherical area of antj trianf/Ie s of simil.ir flu:ures ato to ench other .as tho squares of their homo- logous sides, we will arrive nt tho !iroa of a sphorioal triangle desoriboJ on a sphere of any nidiua by making the ro'j^uired iirojiortion. MRN-TTRATION 01' SOLIDS. 127 a»f}}efi o» \fi)'^ prr '2\\'> xijit'irr Jilt, or ritch tliDiisKHiUh of n sermnl l>;/ i?l ir»,'^'J.'{ «7»(//'«' /'cr/ (>*■ /'»/ .(I7.'>."'7;{*21 siiHiirc luilcn, or aocli ,01" dniit- (Irrdllt o/a siruiiil) hi/ ,7')^7'-V2\ xt/iittrr milts, or ctirli A" (tntlli ol' (i Ki'coii(l) l»y 7,'>'-\7'i'i\ siiiiiirc niilrs of (•■•icli 1.' (hi-coikI) /*// /.'..f^?;}'^! nijiiorv ittiirs', rtihiiiiiii lo Untt rffnt llir ijnircin ( \ (iihI iiiiinitrs (') in the i/ircii I'.rccsK nf the mini iij' Ihr time iiinilix of aiicli .i/ilicricitl trhnujle orer vJ rii/iil (iiniltx, into sciaiiils, iimt tiinllijilii njlfrintriln tlii:ir scvomla hij 77>.^7'A'1\ mill llir fhiclloitu ofsct'oiulH iis linx Jiisl l)ccii saiil. *iiil C'oa* OTJiC'ly, to ilrtrniiiiir till' siilirrii-id cxcrss of llir sum of llir llirrr mi'ilcs nf oiii/ sjtlirririil IriitiKjIr on 'Z rlijlil (UhjIis, irc miiif dii'i'lc tlir iirrii jirrrioiisli/ ohUiinnl in an opjiro.i'iinalc inunner (I'l/ coiisiihrin;/ [ttiS, II. 2.) ///(' Irnijllis ofllwarrs conslitnlinii its siilca as those of I ir i*iilrs itf - tuin Ihr iiuinlirr oj' inillionlh^ of' ii smnnl iKDII.OlH ") conliiiiinl in sinh ejrcess, or hij '2Al'),'^'2'-i siiiHircfcrf i>r .(t7."»Hr.'{,J| sijimrc niilrs to ob- tain Ihc niinihrr of tlionronillhs of (I srronil (.(HM ') vonlninvd in sold excess, hij .7.")H/;{'.'I siiinirr inlirs fir the IninilreiKhs of a sreonil dH"), liij 7.')T<7''VZ\ siinure miles fir /Ac tciillis i)f' a sccoiid (.1"), liiially by 7.'i.^»^7•'{■2l square miles I'lir tlie seeomls {\" > miil Hie sn-tiiuls if reiinirnl reiliieed inio ininiiles hi/ iliriilliii/ hi/ (ill, uml the niiiniles into dri/rees hij (llridln'i hii i'l'), irill still i/ire the sjilirrleid <:rress rniiilrrd, IWaM. hi. TIk' spliericul triaii;;le ACIC on wliicli we liavo ar- gued is, as sta.ed lii-redaii.u'alar at A ami K. lliat is, tlu' aii.!;les at A uml Kiiie, aiitlevitleiilly arc, vi;;lit ; wlieiiee it foMows fliat Iho aii.i;l() at C at tlic apex oi at tliepole is the splierieal excess or the (|iiaiitity i)y Avhidi ihc .'5 aii;;lcs exceed 2 ri.iflit aii,nles and in the saau^ way as this spherical excess furnishes the area in liiecase ol'the l)i-recliin<^iihir isosceles triangle, (l*400 G.)so does Unit exi-css allord ihc means of arriving; at tlie reipiired area, or tiic area at tiic reci'.ilred excess in any other spiierical triangle. PROBLEM XXXIX To determine the area of a spherical polygon. (See the tahlean.) {Hi'7) RlfliE. Find as in the last })rolih'm tlicarcaofthctri-rcetamji'lar triiin;/le (1301 CjJ.)- From the sum of all the amjles of the poh/jon subtract asmany times il ri/jht amjles us there arc sides less two. Diride the remainder hij W^ and -nl mulliiihj the tri-reet. triaiujie hi/ the quotient thus obtained : the jjroduct will be ihc required area. 128 KET TO THE TATILKAU. I'Jv. I. AVlinli is Uio iiH'a ofiv nvuiiliii' i)oly,i,Mn o^c•i,^'llt .sides dos- crilted on llic siiifiicc of :i splicrc of wliit'h tin,' iliaiiieter is oO, each ai)gl<'. of tln^ pol.vi^-oii Itciiig \ M° f Ajis. ! 40° X 8— I :'10'"^ = Hmii o:' (ln^ !in.:,'l(>s ofllio uoly-^oii, 180° X (',= |0S()^ — as iiiiiny tiii'ics 2 ri,u,iif aii'^lrs as sidivs less two, 11:20— l()S()=4(),40-r-!tO =,; ; the, area of the. iJioposcd poly.^oii will tlioii be the i of Miiit of th • tri-roct. lnaii;j;l(', the ai'i-a of the sphen; - ;M) x 30 V ai4l() = 8.141(; X !M)0rr28'i7.1-l wliich -r-8 = 3r»3.-IM area of the tri- reet. tiiaiigle, this latter x 4 -h9 ^ JtJ/.Od the lequiied area, of the polygon. 2. 1\e()iiired tlu* av(>a of an irregular polygon of 7 sides descrihed on a splicro ^« of 8^ metres radius, th<' sum of the angles being IU80-' I 2 A US. Area of the sphere^ 17 x .'3.1410 — ;)07.!f2--*4 of which tlie eiglilh i»a,rtll.:{. 4!>0;i is the area of the tri-rei't. triangle, J()80°— .-) times 180"=I80'\ ]80^-f;M)=r2 and 1 i:l !;M).'J X 2 -- 2--20.!»8U0 area of tlu pro- posed polygon. It. The sum of the Mangles of a polygon of a geodesieal trian- giilatiou is'J;5IO^ I'.jO", what is the. area o(' tiie jjolygon in s(iaaro miles, supposing the diameter of (he eailliai tlie, survey to be 7tMiI - nglish miles, that is supposing- tiie. trigouomet^rical opcu'ation to have taken plaee. on Ji spiiere of that, diaiu(^ter. Aais. We obtain us in the la^t probhuu, for tlie area ('ori'espond- diug to au excess of 1", 75.87.'J'-Jl sipiaii; ndles.anl wo luvve seen that the area to be measured is iu direct relation wllli th(> number of units in llu^ given excess ; now ti:;- siiui of the allgh^s is in this (^x- an>ph^ U:3I0- 1' .W wliich diminished by i;l times 180^ or by 2;M0= leaves for the excess l' '>{)" or 110" ; tlie recjuired area will tiicu be 110 times 75.874.'5'2l that is 8340. 17.1.'} 1 square nnles. (KJH) lil'^M. The supposition just made seems to indicate tliat the eartn is not in all ii.s "xtent of the same curvature, that is of tlio Binnr radius or diameter, or that it is not a perfect sphere, and in fact the terrestrial globe is a s[)heroid of which the tluttening towivrds tlio poles is nearly Tf,\5f .• the diiim. at the e(iuiit< r or about vJ() nules i now th(^ areius of two opheres of ditt'ere'-t radii or of any two homo- logous parts of the sphere.-, are to eacli otlu r (iOTl G.) as the squares of the radii of ;! ose spli.'res. Let it bo reqnir 4 tlien t»» »inu the relation of tlie areas of two si- MENSURATION OP SOLIDS. 129 miliir fi'j,nrcs I ivirod on tlio forvestrial s])lieie, one at n point, wliero tlie osculatnry dianiclt'r is 7lM;i, the otiicr in alatitiidi; wlieic lliis diame- ter is 7^:50 miles, avm will make 7m2 : ,',m: I : l.n()4.>r)52; multiplying by tliis last niinihii' (lie H^lO.O.l.'U si|uare miles of the last example, Ave obtain S:{~ 1.071 s iin-hes, and ili(>, int. and ext. or concave^ ami convex areas (iOamI i^ 10s(|uare inclies, (he planes of section of the fra.unu'nt bein.i; (liii'cted towards the, ciMitrc of the sphere, of whicii the solid to be nu'i'sared forms a part, and the Aveiyht of the cast-iron beiM,<;' -ISO pounds to the < iibic loot .'' Ans. 02JO X IO^;j)- (00 : .") :-3) = 800- I00=::700 cubic indies, the cubic foot— 12 ^ IXJxlO — 172^ cubic inchi's. whence we obtaii* the reipiired weight by malviii;;' 1728 : 4>":^0 :: 700 : U)-li pounds. PROBLEM XLI. To find the area or solidity of any regular polyhedron. (See the ."> regular polyhedrons of th(^ tahlcdH.) (lOft) 161'I^B-i 1. E'or Hio ai-c.^ : mlciilaic the urcn oforcoj its component /(KCK, ninl niitlliiili/ (lllH fi.) tlud ana l^tj lite nnmlier o/fiices i)i the proj>ose(l jxilj/lietlnni. For the Holiday : Mullljilj/ {IVilli.) the area of the poli/- Jiedroii till the third of the ratJinfi (»P of the iiiserituil sphere, that is In/ the third of the perpendieular tet fall fr:nfc faces of tlicso Holid.s, uiid wo. liavo indiciilod tlio iiiaimor of establisliiiig tliis aji^lc. Wo may also by meaii.s of tlio same angle, oalciilalc (lie pci'ixMKliciilar in eacli of Hit' three otlior polylie- «lr()ii:< (of uliieli l!ial of tlu' liexahi'dion is e([ual to tlio half-.sido oftliatbodyj or obtain tiiat ixipendic-ular by tlie iiietliod of par. (lias «,) or (I i:J1 G.) a.s the case may l)e. X ^ (I'yO) It is well to calcid;it(^ and dispose umhu- the form of a table, aiJ at (2Y T.) for the iCLjnlar poly.u'ons, the areas and soli- dities of the live polyliedions havini;- for their sides the unit, in order afterwards to mak(! us(^ when reinured oft hose areas and solidities, to determiut! tlie area or the soU2or)08 (>. 110000(10 .'i.llillOlO 20.(i4.')7288 ^.0002.j40 O.I 178.-) 13 1 .0000000 0.4714045 7.0:i3ll8!l 2.1810050 (111) RULE II. 1° r/' tJic (jlvcn poli/hcilrou and mnHij/h/ lliat vnhc bij llic nulidili/ of lite ih>lijhedivn of the siDiic xanie of wliicJi I lie side is 1. For, simihir polyhedrons arc composed of a lik<' mimher of siiiii- larpyramids and the solidities of tliese pyramids or their sums are to each other (1070 CJ.) iis the cubes of their liomologous sides. S^ (U Ex. 1. Wbat is the area of a tetrahedron the side of whieh is 12 ? Ans. VI X 12 X 1.7;i;2()iJl)8=24L».4ir);3J52. ft. The area of a Lexalicdrou or cube the side of which is .30 ? Amjj. .1400. 3. llequired the area of au octahedron the eido of whieh is 10 ? Ans. 10 X !0 X 3.4G41010-y4(J.4l010. 4. Determine the area of a dodecahedron tlio sideof which '\sSl Ans. 33 X 20.(i4.-)728d:= 1 8.'>.8 1 1 .")92. 5. "What is the area of an ico>ahedrori the side -^vhich is 20 ? Ans. 8.G(;02.54x20^ = 34G4 1016. MENSITIIATION OF SOLIDS. 133 6. What is tlie solidity ofa U'lriilu-dioii llic si? .iHs. !.">' ; 0.1 I7,s-)|:}=:;}:)7.7J8. 7. Tin; solidity of a cube llii- side of wliicii is I'-J ? S. IFtlic sido of ill! octalicdioii is 10, wliat is i(s solidity ? A US. 171.-1015. 1>. Till! side ol'ii d()dl2. lO. AYliatis lliesuliiiily ot'aii icosaliedioii tiu! .^idc ofwliicli is '20 ? 4j «. J7-ij;j.j(). 11. A iiioiiiiiiuMit lias lu'oii tcrniiii.'itt'd by a ball or a ofowiiiiitr cut stoiK! having" the roiiu of a dodccalicdioii of wlucli tin; ('d,!4(M)r side nieasmes I'il inches : ro(|iiircd llic solidity ortlic block ol'stoiie iu cubic fool, and its area in sx i;j..")x20.(J4.")7i28S = :{7i siiuaro iuclu's. Wc woul(UM[Ually obtain this aica without usin;j,' that of the ta- bic by c()nii)iitini^' scpaiatcly liy the iiielhod of par. (28, T.) tho jii'ea ofoiie of thecoinponeiit i>oly!.i;oiis and niulliplyiiii;' afterwards by I'-l the element thus obtained. Thus the iirea of a pentagon (he side of wliicliis 1— 1.7ii04771, multiplying by 1 8iJ.2.) (square of the, niveii side) we obtain for theaiea of one of the faces of the pro[)osrd polylx-droii 3i;J.r).')7(MH)l.") siptaie inches ; then, muitiplyinn' by \2 (number of faces of the dodecahedron) wo obtain as before 37(i'J.(idl07.'!d .■<(|uaro incites, w ich proves also tlie accuracy of tlio tabular niulliplier. Now we 1... %e but to divide the number of inches just found by 14-4 (the square inches in a square foot) to obtained square feet lrf.tJ84 square inches, the re(iaired area. Alls. The solidity = 13.r) X 13..> x i:j..-) or (la..!) or x!(il0.rj75 x 7.(i:3;311,>0:=:187eo..'3:nt) citbic inches, dividing by 1728 (jinmber of cubic inches iu a cubic foot) we obtain 10.87 cubic inches nearly. i:^4 KEY TO TIIK T.\Br,KAU. PROBLEM XLII. Being giv^en the diameter of a sphere, to find the side of any of the rcgulal- polyhedrons, which may be in- scribed in the sphere, circumseribod about the spliere, or v/hich is equal to the sphere. (Sec tlic .'» rc.n'iil.ir polvlicdioiis ofilic luhlcdn.) (172) HULU- Jfidlipl'i llic ijircii iliiiDicIrr !>!/ Ilic nintihrr irlilrji^ i)i lln' Ihlloiriii!/ tiililr, llic ijur^llint. ii....i (I.HKillHH; iii-xaiirdioii ! (i.:.;;;r)u:{ nctaliiMl.oii I (».7o7l()(iS Dodf'calKdroii. . (l.ood.-^-i'JI Icosalicdroii ()..VJ.")7;)li:> (i!)iint Ihesjiltere, in ^;.-ll!t|S!t7 l.lllJ(IIMilii) 1.'J'JI7II7 ().llil(l:i7!» (•.(Jiilodl.") sjilicre, is l.*i|:i;M-'() i.o:r)(;;j()i) ()..|()SS|!I() S;\. Ii is r('(|uii"d to locast iiillir form of a ])i'rf('ct ciibc of !icd, \t\ r'cdiiciii;;' it the ^icaJest re.!;ulav ])olyhcdroii of ^t) sides tiiat may be ,L;ot out of it. the wci;;ht of liie wtoiio bt.-iiig siipitosed c([iial to 1.1(1 iioiiiids per cubic foot ' Ans. The solidity of the Ji;iveii splieve^o x ,5"2."5n=:()5.4.5 cul)ic feet, or (!.)..")."» n I.")0=:!)S j7i pounds in weiglit. The side of the ic- (piircd icosaliedron will be, from tin? vnle, ()..")'2.')7;5()r) x i')=2.t!28(!.')-15 ; eubini;- this laKer ir.imber, Ave obiaiii Id.lb.'} and miiliijilyiiii;' tins cube by (lie solidity '■J.l^Ui!!.") of the polylunlion of the same iiaiue the 8id(M)f which is I, we obtain for t!ie solidity of the sphere reduced to !in icosaliedron .'}!». (!•,'() cubic feet or iJl'.ti-tJ < l."i() = .")ltl.M.!» pounds iu weight J tlie ditteiuuce 3d73.G poundfi is the requiiod weight. MENSURATION 01' SOLIDS. 135 PROBLEM XLIII. Being given the side of one of the five regular polyhe- drons, to find the diameter of a sphere that may- be inscribed in the polyhedron, circum- acribed about the polyhedron or equal to it in solidity. (l^co tlic .") ic^'iiliii' polyhedrons ol' llio li(hlcati.) (IIU) -I'S'S^S^ M((l:r the Jhlloii'luii /irojxtiiioii : As the irspiciire number (if tlir aharc lalilr, innlrr llic lilli: " iiisciihed," " circniiiscrihcd,'^ " o/iKil." is h) I. so in the si'lr of llir ijircn jioli/ln Jroii lo iJic (litniictcr of ilic iiiscrihrjJ, circuiitserihrtl orequdl sphere, as lh<: case, nuiij be. In ollirr words : iis ilw side of tlic iiiscrihcd, (■irciiniscriltcd or ('(innl polylicdroii Cjis \\w cmsc may be) "'"tlic lahlc, is to tlic diiinutcr 1 of its iiiscrilx'd, circiniiscrihcd or <'(|UiiI siilicrc, so is \\\v side oCtlir .i;iv('ii ])olylicdroii to liu' diiiiiu'tcr v)!' its iiisi'rilit'd, fircumscrilicd or <'(iual sphere. Silx. J. 'i'lie side of an ieosaliedron is 0.ti-^Hiir>, it is re(jnired to reduce it to a sjthei'c of the i;'reatest possii>lc diaiiietci', wliat will its diaiiieler lie ? Ans. .ii(;i,')^ IT) : I :; 2.(iQ.'^rir» : ;5 07M, nearly the i^ccpiircd s(didi(y. The area of the i;iven icosahedron is ('iSi T. ) 2. <)">'(!.") - •JiJ'.'.'^d.') x .l:i;!(ll:i7x20-r)f).S!!'>j,-,r). Ods area x:!.!>7:i-:-(i Oliat is hy (he sixth part of the diiniieler or \\\v tiiird ol't he i ad ins oi' the inserilied sphere) iiives for the solidity of tlic icosahedron :!!>.( i"2.')l» cnltic feet or '.V,)Xrl{\^ as in example '2 of \\\v pn cediiijj,' problem, each of the two resiiUs heinn' in this way a veriiicafiim of Ihe accuracy of the other and at 8aine time a ])roof of the ace n racy of tie' fictors of t lie lal)le. JJ. I!ei|nired the diameter of a cannon hall lliat can lie obtained l>y recaslinin' a mass of iron under tiie f-irin of an ociahedron I','. indies side, V 4ns. I. {»:],")( !:5 : I :: VI: ILar-Tir*, that is, (he diam. of the bail A\ ill be 1 I.C inches nearly. PROBLEM XLIV. To find the solidity of any spheroid. (See on the lableau.ilu' that lened.ehm^aled and .'iaxed spher'oids.) (17-1). BIl'ff.K S. Miilliiilii ihe Ji.red (i.ris hji ihc si/iutrc of the rc- rohiiKj ((.lis' [or hij Ihc rcet(())(jle or jiroduct of the tiro ((.res of rerohdion, os the case (mty he) (in' tite iroduct Inj ..""J;}!; ; llie result will b(j the rc(piirc(l solidify. 130 KIY TO TIIK TAIU.KAU. ie!:i^I. It is plain lliiil tliis iiilo is in tvi'iy Wiiy jin;il(),!;(>iis to llic oiui j;iv»'ii (BOSW <«,) I'or csiahJisliin;.;' Ilic, Holidily ol' ;i spill IT ; ;ni(I in lad, llio Bjilicniid. liKc ili(> snlicic, is ciiinil t<» llic .; ii;' its circniiiscrilu'd c.vlindc)' : lor it is (I('ni(>n-;tr.il(il in '• cnnii's'' IJial if \\v liavi' \o : r/( » in llu' ellipsis :: A(.' : oi) in tlicciiclc ; we \\ ill also olilain ociiK' in tliccHip'-i ■ :: c : <)(' in ihc cirtlc ; tlicncc, siiu'c v:v may (lOOll O.) con side r llu pi' . c and Ilic splici'did as carli (•(uu|K>scd ol' an inlinily of thin sli<'<'s or .^n per posed smlaees here, I'or, whatever tlie relation ol"())i; to niC, may bii in each of these, two last solids, we Aviil have between <(jji and AO of the oniMiie same relation as be- tween itin a-id A() of liie other. (STrj) KSJJf^K IJ. ]\[iillii,l!i (127 T.) I ///»« Ihratra of a,n/ sec- tion (A!), CD, (HI, «Jcc.) i)((sxin(/ lhr(»i(jli tlicci.-ntre (O) ii.s ('(|iiiil ill cvcrvtliin^- l(t the cilipsiH ACitI) and its area is ('»•(( T.)=:A15 X CD X .7ri.'j4 ; if tlio second rule Ik^ e(»iri>i'.t, wc will then nl.liiin AU - (!I)x .7H.-)1 xj X ,\ (;i)::r:A!$ vCl) >: CI) x .re'Jd ; and in i'iU't by eliniiniilin^ Hie Ciietois AH, CD and CD coniiiioii to tiio two e.\i)re>*sions, vliere still leiiiiiins ./H.")! x 4 x J = .,W.*J() ; tlit'r<'f«)ie, &,c. Ill lli4! third plHco, it is to be denioiistrat(Ml that 4 area section OH X 1 Kl'isstill «"(iiial to CD x AI$ x ..W;^); now, the " conies "show that w iiiitever Miii.v Im- tlu^ axes oiconjiij-iite ' diameters Gil, KFinado use of, the |)aralleIo,L;r;inis cireiiiiiscrilx^d to the ellipsis aiidof which the sides are jiarallel to these conjugate axes, an^ all eciiial in area to the rectaii;;le AlJxCl) ; hilt (S, T,) the area of tlie paiall(^llo<;iam li.ivini; for its sides VAl, KF is (ill x KF x iiat. sin, an^de EOC or EFP = (illl X EF. 'J'lie area of theseetion (JJl = (for any s<'ction of a sphe- roid is J n ellii)sis) CIl x CD x .78.14 and we have Just seen that (ill X EF = A 11 X CD ; tlienslore Gil x CD x .78r)4 x 4 x J EF = AH x CD x CD X .52:{(!, CD heiiiy; conmion to both formulas, Ali x CD = Gil x EFaud .78.") I x 4 x ,'; — .rr-i.'JiJ ; therefore, &,c. KKiTI. Tn the case of the flattened spheroid j^enerated bj' tlio vevolnlion of the senii-ellii»sis DAC round the axis CD, the proof is niialo^';oiis to tli.; one* just ^dven. *" Ex. 1. ^^'hat is tlio solidity of an ellipsoid of which thcaxis of re- volution is (!(), and tiie lixed axis 80 ? Ans. uO x (!0= 3(JU0,:j(J(J() x 80 =- 288000,288000 x .5230 =150700.8 units of solidity. 3. With the same data, what will bo the solidity of the flattened spheroid! ,4un. 80x80 = 0100,0100x00=384000,384000 x .5230 = 20J 002.4 units of solidity. 3. A prolate spheroid has for its axis 100 and 200 j what is its so- lidity ? Ans. 1 ntfx 200 X ..'3230= 1 ,047,200 = the required solidity. Now let EF in this exanijile any dianieter= 100, we, will obtain its conju- gate Gil = V AJ^M^C D '^ — EF~( for it is deni'.nstrated in " conies " that the sum of the squares of any pair of eonjii or cCiZofa sphere or spheroid, or any frustum AB — ah or ah—cd, or AB — cd of a sphore or sphe- roid ; but the demonstration talies [laco by the iiguio at tho top of page 136. MENSURATrON OF SOLinS. 139 ah : AIJ :: (th : Al! in luitli Kolids, and the nrciiH of siiiiil;ir oIlipHos as of nil oilier .similiir li,;,Mii('M, an- to cacli oilier as the Hiiuarcs of Hieir diaiiictcrs or oIIm r lioiiKthi^oii.-, lines ; tlniret'oro area ellipsis afr= J area ellipsis AM ; now, solidily Iiali'-splKiroid ACI5==liy tlio last pvo- bleiu I area Al> x ,'f CO ; therefore also I liesanie soli(lity = (area AB -(- 4 area ah) :■: ^ CO. llEiYI. I. It is also a property of th« ellipsis that every diam. EF of that ii.i;iire l»is(!ct8 every chord or doiilde-ordiiiate fjh paralhd to the coiijiififalc j and wo diuiions- trat(^ that in the same way that we olttain ((•(•iiics) AV> : CD :: ^JAo.oH : or, and CD : Al> :: VC'»t. m D : ml>, so wv also obtain EF : Gil :: VEh.. hF : iih and consetiiiently that uh : Olf :: mh : OIJ :: oo : OC when On, Oni and Oo hav(! to OF, OC and OA or to iiF, mC Sc, (>\ the same relation. We then obtain area section ;ili = i area section Oil and as it is already denionstratiul that soli()('= 684 very nearly, (129(; + 4 tim(;sG34) x .78r)4 = 31()().7328, multi- plying by ^ Ao, or by J 10, we obtain 5277.888 units of solidity iu the proposed segment. 2. Required the solidity of a segment MNB of a spheroid by a plane MX perpendicular to the fixed axis A15, oB being=t)0 and AB, CD 1(10 and (!0 respectively ? Ans. If ))('*•' is iu)t given we find it=Ar'.r'B x CD-^AB (since AB : CD :: VAr'./'B : rm' or 100 : (jO :: V55 x 45 : r'»t') =29.8490208 or J^.'.W IMAGE EVALUATION TEST TARGET (MT-3) 1.0 I.I 11.25 1^12^ 125 U£ I2£ 112.2 2.0 ;!f m U 11.6 ^ ^%. /: /A 140 KEY TO THE TABLEAU. r "liil m'H'= 59.6992410, ^FN t- 4m'ii' x .7854 x ' «>B=soli of tlieso solidities in the solidify of the entire splieroid ACHD, for (171 T.) GO x (50 t- 3(MJ0,:}(i()0 x 100=;5(iO,()()0 -.unl 3t)0,(K)0 X .5230=188,49()^ which also proves the iicciiiacy of the rulo of this problem, REiH. II. In the two htst examples wo have supposC= 12 we obtain r C=Gaiid /-D — .'54,GO : 100 :: V oTTlT; 30= nn, the conjugate diam. of nn=18 (for 100 : (50 :: '.i\) : 18) and the area of the secticm mn=60 x 3(i < .7854 ; that admitted, we obtain 2 'Z Bclidity lVIXC = (area MX + 4 area mn) x '^ oC = MX + 4 mn x .7854 X 2=19(503.584 units of solidity. 4. What is the solidity of the other segment of the same si)he- roid? Ans. Wehaver'D=oD— ioC=24, and >''C = 3G, whence we ob- tain as before m' w' =-.97 .9796 ; the other diameter or axis of the ellip- sis ?»iM=58.78776 ; whence area «i'ii'=4.");7;}.904 and area MX i 4 area m'n'~2111 1.5.52, this simi x ^ 48 or by 8= IG88!»2.41G the required solidity. The two segments united give 188,496 which is in fact the soli- dity of the entire spheroid as it has been seen at the 2d example. 5. What is the so^:,iity of a central frnstnm AD of a spheroid the i)avallel buses of which are equal circles of 40 inches diameter, the greatest diameter of the frustum =50 inches and the height or distance between the parallel bases 18 inches ? MENSURATION OP SOLIDS. 141 All*, (area AlUaroa CD + 4 area EF) x J = OP=(40^-l 4(Uor twice 10 ) + 4 times 50' ) x .7854 x 3 = 31101.84 (Miljic iiiclies or 18 cu- bic fcit iicnrly. «. The rospoctivo diamotcrs of tlio laiallcl bases of tlio fnistum of a spheroid are 10 and 20, tlie diameter of a section equidistant to tiiose bases is 30 and tlie lieiglit of tiie frustum is 40 : Avikat is its solidity ? Ann. (10" ; 2o' i 4 limes 3o' ) x .7854 x 40 -f- = 3220.14 < 404-0 =64402.8 cubic inches. 7. One of the component parts of a cnl-de-lamp bearinj^ against a w;dl, ])rese«ts the form of the sei)ii-sr'4;ment or frnstum of a sjdieroid witli e!iii)tical i '1(4 bjises. The dinmcn r.", of tlie ellipses or rather of llie inf. and t .^ semi-ellips(>s measure respectively 30 and 31) inches, the intermediate diameter is 30 and tlie tliree conju- gate seini-diameters or projections of the ciil-de-lamp measnre 10, 13 .Mild 12 inches, tlie heiybt of the frustum is IS inclu's ; uliat is its solidity ? Alls. (30 >. iO + 30 X 13 f 4 times 30 x 12) x .7854 x 3 = 5972!).07 cubic inclies or 3.4 cubic feet lu-arly. 8. It is desired to kncMV iiow many <>-allons there •!r»'>(231 cubic inches to a .^;illon) in a cask of wine tlu^ len,i;th of which is 40 inches and the dianu-ters at the centie and at each end 32 and 24 inches ? Ans. (twice 24" -I 4 times 32" x .78.54 x ■!() : = 27478.5 cubic inclies, dividing;' by 231 we obtain 119 f;all()ns minus a lialf pint nearly. O. In an inclined vessel, the form of whicli seems to be that ofa semi-spheroid, is found a (pianlity of li(iiu)r, tlu^ >i,ieatest depih of the li([uor is 15 inches, the respective diameters of its ellipti»'al area are 48 and .30 inclii>s and the corresi>i)n(lin,n- diameters of the inter- mediate paralh4 ellipsis between the surface and the bottom are 30 and 221 inches ; what is the quantity of litjuor in the vessel ? Aus. (48x304-4 times 30 x 22.5) x .78.")4x 2.5 = 8t);)4.378 cubic inches, say 37^ gallons nearly. PROBLEM XL VI. To determine the solidity of the frustum of a spheroid •with non parallel bases. '— (See I'rnsta of tableau.) 1. Wo will obtain with accuracy, as in tho case of tho Bphere, tho solidity of any unj;ula ADli.VI A <>( a flattonod or elongated sjilioroid or of a S|iher(iid with 3 axes, provided the common intersection D.M of the contdiniiig or liiuitini» planus DA.\5, DB.M passes in any direction througH tho centre of tho folid of which tho unguis fi^rms put; and if tho edge D.M of tlie iiiii;ula does nut pa*s lhrou;;h tho centru (t of the ^[lheloid, we will uone th'j iers obtain very nearly the soli- 142 KEY TO THE TABLEAU. (1'9'8) RIFIil-2. Con\mdc the soUditij of the segment of a spheroid with a sintfle base of which the (jiveu ffuslum forms part, cahulate also the soliditjf of the ticgment whieh is wanting to given frustum to comph'tc the sctpiicnt ; the difference of these solidities will be that of the proposed friislii m. Ex.. 1. Lot it bo requirfdlofiiuT tlie solidity of tlie part CDrtc ofa spIiiToid coin prised between a plane CI) passing tliroiigh the centre perpen- dicularly to All and any other plant; ea not pa- rallel to the first. Ans. We must for this purpose determine the unknown axis ABol'tliesplieioid ofwiiich the hi'ight AO of the segni(>nt C"I)A foiins part. Hav- ing measured any ordinate ab and th(i abstiissae Cb, bD or rather dD=ab, ad = b\) and a> = CD—bT>, Tve will make (conies) \/Cb.b D : ab :: CI) : Ali and Ave will obtain the solidity of C1)A=4 area CD x i. AG. We will then measure ac, Oil parallel to ae, oO drawn from the centre to the middle ])oint o of ac (oO form- ing part of the diameter EF the conjugate of Gil) and the abscissa j> II of the ordinate ap parallel and equal tooO ; with those data, "WO ■will make V^i'-i'II : <'P " GH : 1"^F ; avo Avill then obtain oF and con- sequently the ix'rpendicular Fr, as at i)ar. (175, T. Ex. 3). It remains to establish the diam. mn of an intermediate section between ae and the apex F of the segmentrtc F; now we will obtain mqov Hf/half (17«, T., UE3I. 1.) of »HH by making EF : GII :: ^/Eed cy- linder, that is, this solidity = area base AIJ x J CD, or solidity 2 2 FEG— area base EF x -J Gp ; but \\ bd =i lU) we have area ab= \ area AiJ (since the parallel sections ah, AH aie circles and the si- milar lignres are to each other as the stpiares of their homcdogons lines) and area AB 1-4 area o/^ = 3 area AH ; therefoic area AH x JCD=3 area AH x I CD = (area AH + area ab) x ^ CD. Similarly area ellip tical base EF=2 area similar elliptical base c/'aud areaEFx^ Gj)= (area EF f- 4 area ef) x JCJjj. Ill the Nccoiid place, Let AH ba any segment of a paraboloid with ]»arallel bases, we demonstrate that the solidity is obtained by- multiplying by the height of this i)r«)l>lfii! is tliiit ()ii(> wliicli \v(»ul(I oll'or (lie giianiiiteu of ill! aiKMiiiU'.v very near tlio truth. Kx. 1. What is the solidity ofari,i;lit paviiltoloid the lioiyht of wliicli i.s 84, nnd tlio radius oftlus base; 2il Ans. diaiii. -18 x 48 x .7SrA x ^84 - 7(;()01.r)873 tlio voquiv. solidity. 2. Wliat is, in ij^alloiis ()f'^:j| cubic inches, the capacity of a pa- rabolic boiler the (h'pth of which is liG metres and the diameter (JO inches ? .4 IIS. r.o" X .7854 X 18-f-231 = ."50,893.!)2 cubic inches -f- 231 = 220.32 or 22().\ yallon.s nearly. 3- A vault whicji a]»pears to be parabolic, is GO inches lii,y:li, the diameter of its base is 40 metresand its intermediate diajiu'ter is 28 metres 2'^.') millimetres ; uhat is the sididity of tiie included space ? Ans. (40" +4 times 28.285"') x .78.54 x 00 -•;- = 37/)L>y.2 cubic metres. ■i. In an inclined vessel whicli may be a paraboloid or the seg- ment of a spheroid, is a (]uantity of iifpior tli((ylial iiarabohid or srijinent EFfr wanting/ in the t/iren frustum to complete iho entire paraboloid : the dijf'erenee of these solidities tcill be the required solidih/. Let ABEF (figuro oftlio last pro 1>1 (Mil) a section of the given finstuni l>v a ])laiH' innpciidiciilar to tlie centre D of its base ; take on tlie axir* ])d of 1 lie section any Icn^ftii Dd, measure Dli, (16 and since (lt«),T.) \veIiaveCD:C(Z::DIi"(Z/>'niaki'(l)«, oftlui segment FGE, to compute afterwards th(! respective solidities of the entire ami partial conoids and their dillereuce, which will resolve the problem. (IS'l) REin. If the frn<«tum to bo measured ABEF (See figure to problem L and suppose it to be the frustum of a parabo- loid) is tliat of iin oblique paraboloid ; draw from A to F .any stiiiiglit lino V)b parallel to FE, bisect in /(', li' these double ordi- nates and draw G/i' H Avhicli will pass through the apex G' of the segment FEG' ; draw afterwards Ee iiarallel to AB, bisect these pa- By^^B We inny n!so obtdin ns for tho ungula ot the prism, pyrnmid, i^ono or cylinder, tlio solidity very nonrly of tho ungula ABC-D, AB(J-D', AOU'-D of a right or in. clined parabiilic-couoid, and th.it, absolutely in tho eaino manner a9 for those varioas Bolidd. (See pro- blem XXXI, &0.) 77 146 KEY TO THE TABLEAU. ralleU in 11', h ajid diinv tlio dimnotor G/( IT wliich will iiicct tin- apex G of the obliciiic pjuaboloid AlWl ; wc will ciiliiiliilc. iis Itdor*', the lioightH GP, (Vp ot'tlio ontiic aiul i»;iitiiil conoids, witli the iiid of the t'.iigles ir'li'E, (MI15 iiiid of tlu* strai'^Iit lines (■// iili' of wliicli wo "will establish tlu^ leiif^tlis as already staled, and we will obtain tlio solidity of the fiustiiin==soIidity AUG— solidity FKG' ^ ar«'a Alix i GP — area EFx^G'j). To obtain if reiiuired, CI), we will draw from any point between A and F a stiai.niit line m o « (suppose a stiaij;lit lino m o n perpeudicnlar to the ])araliels G'li, (ill and of wliicli <> in the middle point) perpendicular to Gil or to G'H', llie perpendicular CD, where m = ii Avill bo the reciuired axis. PROBLEM XLIX. To find the solidity of a right or oblique hyperholoid, or of any frustum of a hyperboloid, comprised between par'fllel bases, perpendicular or not, to the axis of revolution. (See the tableau.) (183) RIJIjR. To the sum of the areas of the opposite Imses of the tolid, add 4 times the area of a .icclion half irai/ between them, multlpJji ike whole by \ of the height and the product will be the required sulidity. In the case of the right hyperbo- loid ABC or of tlie frustum A]\ba of a right hyi)erboloid with parallel bases, this rule is, in other terms, the very cue given by the ** ditl'erential and in- tegral calculus " aud since the inter- mediate diain. is here essential to the calculation to be nuvde, it is to be de- monstrated how it can bo obtained when it is not among the necessary data. The hyperbola is such that its centre is outside the circumference of the c.n-ve, and as in the circle, the ellipsis and parabola, so in the hyperl)ola any diameter produced OC, OG bisects the chord or double oidinate AB, <«/>— EF, ef parallel to the tangent tg, t'(f drawn through the i)oint C or G where such diamt'or meets the curve. It follows then that to deter- mine the centre of the hyperbola, it sutfices to draw and bisect lu D, d, — fii, /t, any two pairs of parallels AB, ab, — EF, ef, and to pro- duce outside the figure the straight lines D(?, lI/( uniting the points of section, to their nu^eting at O which Avill be the retpiired centre j pr, if the direction OD of the axis is known, the iuteraectiou of that MEN«nRATION OP soLins. 147 nxisbytlio 8friii/j;-1i( lino H/f ])io(lnci'(l will lU'torniino the required <'(Mitr('. Now, l)y tlio nature of tlie liyiMnbolii, we demonstnito in "conies" tliMt 2()C.CD\-V.D': 2 OC.VdbQd:: !)»': r76 , or that iiOr,.f!II I (;il":i2(KT.(i/( I (ill':: H^:^ la'; this is tlien the manner to <»l)t!iin the intt'iiiicdiiitc (liiiiu. «6 or !)1 cubic inches. 2. A vessel which seems to be a right hyperbolic conoid, has for its heii,dit or depth .50 inches, for su|>. diam. 104 inches and for intermediate diam. (!8 inclu's : what is its capacity in wine gallons. Alls. 104" X .78.54-- 8404.88(5 l=:area of the superior base, 4 times 08% .78.5 ! = 08' X .•]. 14 11)^14.5^0.7584, the sum of these areas is 23021. 0448, this sum x \ oO or, whicii is the same thing .< 50 and the pro- duct^-l]= 101847.04 cubic inches, -r 231 = 830i gallons. 3. Ilow many cubic metres of space are there under a vault whicli ajtpc^ars to l)e hyperbolic and the height of whicli is 1;5 metres, the diameter of (he base .■'.2 metres and tlu) intermediate diam. 20 metres 1 Ans. 51.52.224 cubic metres. 4. A boiler in the form of a hyperboloid, contains a quan- tity of liciuor ; it is askcil how many more gallons would be re- (jiiiicd to till it, the part of tlie vessel to be tilled having conse- quently the foini of the frustum of a hyperboloid Avith jiarallel bases ; the dianicteis of th(;se bases are 24 and 32 inches, the inter, diam. 28.1708 and (he height of the frustum 20 inches ? All*. (21 i 32' f 4 tinuis 28.1708') x .78,54 x 20-=-0=12499i cubic inches or 54.108 gallons, or 7.2334 cubic I'eet. ft. One of the component parts of a cul-de-hunpe or other object to be njeasured, presents the appearance of the frustum of a hyper- 'lM)loid of whicli the height is 12 inches, the smaller diam. 6 inches the grcatei' diaju. 10 inches and the intevm. diam. 8i inches : what is its solidity ? A IIS. GG7.59 cubic inches. (1§'1) UE!tI. For the oblique hyperboloid or the segment of a right hyperboloid by a [»lane not perpendicular to the axis, the *' cal- culus" shows li(»w to obtain the solidity by making the following proportion : Gil r 2(jrO :: § Gil i 2G0 :: i cylindroid of tlie same base and lieight : required solidity. 148 KEY TO THK TABLEAU. 6. Let iMi«^ vc iniulc 2(iO.GU + Gil': 2 GO.G/( I- GA':: he'': /«/, or (wliieli (73, Ax. G.) is t'le .siiiik- tiling) ::EF't/ , that is, in fignies, 2()4:].M() : lej.C? :: (108 1 : '^7'i().l8=xan)plc, ,!;ivi's J{K5.2 : 'J(\,G :: 33490.2723: 31,348.4525, the ditlerence sj^i'Jir.zij <'>i .0(HH)(I(H)5 being due to tlie neglected decimals. PROBLEM L. To determine the solidity of any frustum ABEF of a hyperboloid -with non parallel bases AB, EF. ^ (See the Uihleaii.) (185) RTLE. Get nei'anilcl'/ fhe irspcctire solUlilics of the entire hyperboloid AUG and of the partitd hijperboloid EFG, mid take the dif- ference of these solidities vhieh u'ill he the required Holidity. Draw B6 parallel to EF, Ec ivirallel to AB, bisect these two pairs of parallels and through the points of bisection draw the straigljt lines HO, H'O of Avliich the intersec- tion at willl)e the centre of the 'c<'iierat- ingcurve. Througli the points of intersec- tion G, G' draw the ]>erpendicuiars GP, Qi'p to the bases AB, EF and the re(iuired solidity will be (area AB i- 4 area internte- diato section between AB and G> -< JGI*, minus (area EF I- 4 area inter, sect, be- tween EF and G') x \ G'j^>. Item I. To fix the direction of the axis CDof rerolutiou : from the centre O with any radius, intersect the oi)posite sides of the 1. We may niso obtain as for the ungnln of a prism, pyramid, oono or cylinder^ the solidity nearly of the ungula of a right orinolrned hyperbolic conoid, and that, ab- Bolately iu the same manner as fur those various solids. (Sue the problem XXXI, &e MENSUHATION OF SOLIDS. 1 19 curve, join lli('s(> iiilcrsrctioiis 1»y :i slriii,i;lit liin'. iiiid 01) dnnvii pcr- pciuliiMilar IVom tl;«' ccntii' O to tliis lath r will lie tlir r('l. II, To tiiid tlic points (i jind ('.', Unit is, the liirtois (il>, Pi';* niul llic other clcniciits nccessiiiy to (lie ealeiilation of the areii.s of tilt! iiilerniediale Kcclions ami oftlie solidities of the enliic aiul jmilial solids, we have seen (iS:j T.) that:2 OG.iill I- (ill : XJOU.l.J/t + G/j':: Aw'v H"', whieli pves (JMi €1.) //()— (20G.G/t i G/iO = GO'VGO^^GO, IIU— GU = GI1 and with Gil and tliu ungk GHIJ wo determine GT, \:c., ''cc. PROBIEM LI. To determine the solidity very nearly of any spindle, either circular, elliptic, parabolic or hyperbolic. (1S5) Um.E. 7)ir!(lc the svini-npintVe (A("l) or r,("l)) into iwo parallel seclioiis or slircs- (AKF, E('i)F) oftldchiiess or liei'jht (AL, LK) equal or nearlij eijiial, bti iilaiiex j)erj>citilifiilar to the axis of revolution (AH) of the (leiierafiitif eiirre {\V,\> <»/• AI)1>;) 'iven or may he direct- ly obtained by Ww uieasurement of tlie solid to be computed, it will be easy to determine (Jieni by cal- 150 KKT TO TnE TATII.RATJ. t''i dilation ; fliiis we will obtain iniincdintcl.v llio liMliiis oC ofllie nrc Af'll li.v (lie iiutlmd of ] tar. (.110 ii.) : 2J V 18:=;ii2 - tlio ir- maiiitlci' of llic di;iiii, of wliicli ("Iv forms part", flic diani. — l]^ i 18 = 50 and the ladiiis constMiiicnlly^iJ."). Now we will ohiain op, oij and «)/• ri'Sjicciivrlv ( (|iiiil to llic s(|iiai'c roots (if llic dilVcrcnccs lictwocn tlic s(iuan' of the radius and lln) s(|iiarcs of ip Iv/ ""d <•*•, wliicli is ('\-idi'iit ; now, if we sii[iii(is(' AL -■ Kii \\v, will iiuvr A/( = Hli -- Lm = «hK, or ry - t), Iv/=1^, ryHH, r*y> -ov — vp - (1-2.")— .'}'2I - .'{()l oFwIiich tluu' it 17.yH'.'i.'>',J from wldfli sulitrartiM-in/. — 7 = 11.") — Mtlicic remains Kji or /'« = J()..'}l!>;r"2 and oonscciiicnlly <;/' or 2 r»— ijl).(ll)87(ll or say StJ.dlir*?, for, !is tll«^ ditVcriMKu^ of Volume aceordini,'- to this rnlo is always in I'xcess w(^ may ne,!;leel at. least the Ia>.l deeimals ; in tho sanii' manm^r we liiid diaiii. KF = iJ!t.f«()3 and vil -''-\\J)'M{\, The solidity of EC - (I)C^ 4 4 cd^ v EF ') x .7d:)4 x ,\ KL or by 2 .^lOlt.'H.e'-i, the solidity of f/A=(EF" -I 4 r/) x .78.11 x ;J = 4()!»2.72, lliese solidities added to,i;'ether and the Tvliolo x !2, ^ives for the soli- dity of the entire spindle MOO ID cubie niiits. ill-]i>l. The accurate solidity of the spindle ol thoiast examido is i2;)!)l(J.()7J4, Ihatis tlu^ ai»proximat«i solidity exceeds by .ii,;';'j:T or .01)44 (less than the half Imndicdth; the real solidity, which in practice is iii centre of tlie ellipsis. Let now CO = 30, VkO, have a diameter of the i'llipsis = 2C0, an ordinate AK or KD=iAL>=40, au abscissa CK or segment of the diam. = J2 MENSUn \T10N OF SOLIDS. 151 iiiitlicr,-.«'L;iiUMit='i C'( )— Olv^fiO — 12 -4.'^, fo (iud (l^ii i\ le. I.) iIk' oiliiT (liaiiiclcr MX of (Imi cllijisis i>y iiiiiUiiij^ VCiv A C-i ^JO-CK; : IvB :: :» CO: MX m /l^ x 4ri : l(» :: tlO : |(»l» -Mx" MX iM'iii.i,' tlu; siiiiillcr ov tlic •,'i'c;iicrro|»()rlioii ]\[N':iJ('() or (wliicli JKtlicaimu'tliiii.i;) MO : Co :: v'Mv-'/X : ./('or.")!) : :{() :: ^xJOxHO: P7 = i24 iiiid iis »7~K<)-C()-CK — .•«! -1-2 -1"^, wv, will olihiin nr~ 21— IH-ri; iiiiddiiiin vJ'='*(n-\2 ; wo will (••piiilly liiol (w-v.':'-'!:) Ili, cs'— ))(,v r^l |:}!)4l2--c;« and C c»i~-=^(li!iiii. (•(Z=22.7dd;J4. It'KF wi-rt; not givou it could ht.' equally ilctci-Miiiicd. Diuiu. EF18.!)!)0IM = .'{(lO.lM.l-i Diaiu. KF IS.DIHMn'' = .'KiO.(!5.)ri 4 Diaiii. n? 227Hd:i4" =;»()7'7.'il.")." 4 Diaiii. if. l±mwu = o/li.OOOO Diain. CD 24.0()(»(l()" = .Wi.OOOl) — — Sn!i>=!);{(;,(irM. ^ .;>4 Prod net =7y.j.(J41M')t; rr()diict=2:3U7.0!i:!') x 40 X 40 -^r»)ji!th';..!»7rt; -4-0) 01(i-i:!.7l Qiioticiic= l:M)|.:{-2It7(; Quotioiit -^ V>7r{}Al-2 —'2 vA. EFA -2 vol. ECDF sol. 2 FC =1.-7H0,(;2 Bol. 2 EFA= 4'I01.;W sol. AI5 = 20Ud4.0r> The sum 20,084.85 of tlicso solidities is that of tho i>i'oposed spindle and dilfcrs but hy 57 units in excess, or the, fourth i);ut of I per cent, from the accurate sol. 20iJ2S.;Jl ofwliich the calculation hy oidi- uary rules requires as much nioie labour, and otlers in cons(!- quenco of the diversity of the operations to be performed (as de- tailed in an enunciation of 15 lines of text) many more chances of error, as of cours(! it is ahvays the case, more or less, when tho process to be followed is not so simple and dir((ct that we may easily account, by following the details of tho calculation, for each of them. This is the enuutiation in question. I'' From three iiincs ilic s(piarc of the diameter at the centre (CD) subtract four times the square uf the diameter (V.IP) hetvcca the middle and the cud ; a/so, from, four ti men this last diameter^ subtract three 152 KEY TO THE TABLEAU. -'■i •X, ■ >•' tiiiirfi till' ilidmrtcr (if the mil re ; t all t!ial is cs.M'ntial to tlic ciuincialioii of Ihc iiilti ,i;ivt'ii Ikto is ifsnnu'd in (iu'sc words : Miillijili/ the sixth jKirt o/ Hie heii/ht ofeaeh of the eomponeiit sliees bij the sum of the areas of its Ixises plus four times the area oiic .spindle, (that is geiieratetl by th«^ revolu- tion of a i)aral)olii ACH or AD 15 about a per- pendicular to tiie axis (."K.) of which tlic lcnj;th Al> is (JO and the great- est diam. CD 34 ? Ans. Ill lilt' t'ii'^i^ <^f <1it- I'iirabola and oqu il distances A?/, nL, Li», )nM, the iuteriuediate diameters (;/', EK, ed, if not given, are very easy to be deternuiu'd, since as seen (B7J>, T.) the abscissae or segments Cj), C//, Cr, of the axis are sa the squares of the corres- ponding ordinates ep, El], Cr and when these ordinatesare equal mul- tiples ov siib-iniilliples of one another, tlu* segments or abscissae ai'c ab'.o simple multiples or siib-nndliples of the entire iixis Civ ; now 2 2 (215 W.) on account of Er/ — i AK Ave will obtain E7 — JAK and consetiuently C(/ = i CK, we will equally obtain C<'= IC7 or j\, CK since cp : AK :: 3 : 4 and that 3:4 :: !) : l(J ; we will (> 1 J MKNSITRATION OF SnLins. 153 ilicii liml in ihi^ iii.iiu'.cr f'/ \7 f -I 4. ',!."», L'y 4.2r)4-4 or l7-:-l(i-= J.dC:^*'). I'/' ," 1'" }f,\i ■■^.•'> • 1 ()(ivJr)-!t.:;(i-.>r., fmiii wliicli wcoMaiii ^liniii. (;/'- Vi;/K— 1 l.r?."), Kl' — •Jl\'/ - '-J.").."), cJ "J l\/-~;ll.r^7r) ; now sol. A1;F=::(;uvi i:i't4 iiivii (;/')x,', AL=ii;K ■ Irf) ^.7.-'r.4x,\ AL — ('J.').."> ! I limes I I.S7.') )■•: .7Sr»l vjl oi' ill onct' liy ."> (since tlicic iirc I w (I ('(MKiids oittpnil scunnnls in llic s|iin(ii(' to lie cnlicd) ~<)(>.'{;{.l cnliic nniis ; ilic soliditv (.I'tlie tViisliini FC — (.'M I 4 times .•{1.^7.")" i 'j:..:,') X 7^.')I-^A or l.v ."i to oUlain •^KC:=i2.'{(».VJ.7 n-^'--, nnils : the sum •,'l'iH.").S of ilicsv solidities is llie solidil v of the jut. ])os<'d spindle : it dil'leis iVom tlie iic( urate solidity ■■Jli((r);{.4 lint \>y rV2 units, tlnit i-<. .;,,',;; <»i' ."iHl, .-av ,', ol 1 per rtii! in excess. KEiYI. However coinitlicali'd ordinary rnles lor the solidify of tlu' circular and elliplic spiud'es may he, the rnle lor the para- holic spindle is on t he contiary wvy simple; it consists only in ninl- liplyini;- the siinare ol' the central y the len,:;lli (»f the. s[)indle and tlie prodiui a^aiii hy .!|SS7!I( ;M4l.">!»-f-7i) ; hut, there is always this to he considere(J that if the spindle were not properly paiaholic, this last rnle nii,i;hl he jtretly far from giving an accmaK^ resnlt, wliilst wilii the i;('iit'iri>(»li<' (that is, L^ciuMated hy the revcdntion of a iiyper- bo!a ACK or ADI!. about a eord or donhlo oidiiiate AKll i>er|>endicuhir to its axis ("K or K 1 )) and of w iiich iheureater diamelei t'l) = 71 inches, measures JIMJ inches in leni;(li AI), and its intiiinediile diameters taken at 3 places III, li, n, eipiidistant iVoni ejich other and each di.-taiice «'ciual to the fourth part of the half len-lh AK of the si)indie, are resfpectively , <■(/ = (;."). 4 : what is its solidity ? Aii»i. (CI )" - 4 c" i 4 (■(/' • t2i;F' , 4 (;/•") • .7,'<.")4 - }, LK or AL, or by J, LK or AL to obtain at once llie solidity of the entire s[)indle = (7l + 4 tinu s (m.4 ' x twice 4I> ■ 4 limes '2(i.S ) x .7d.">4 -- 53.-0 = :i0tl,!i 14 cubic inches or IID.74;^ cubic i'cul. 18 154 kj;y to tfib tableau. To find Op or Vp and consoqncntly plv ~ Civ — Q) - cii=^=i inter. diam. ef, avo first obtain AK : cp 1: 'JOC'.Clv + VK ': 20C. Cp • f>", llicn, as we said (Rii:]VI. II.) (!>()C.CIv + Cic')— (20('.(> -\- Vp')=-'-2Kp.p (- Kj)'j now it is jdain (»»»,«.) that 2Kp.2)() i Kp^ + jiO ==K0^ ; wlience, pO ==K0^—{2Kp.j}0 + Kp ) or j)0"==KO— (20C.CKT"CK 2 2 — 20C.C;) + Cp ) and Op==^{)p . Wo will tiicn equally obtain //o by finding fust SOCXVjf + C// ==:( 20C.('K + C k') x Iv/ and by extracting AK2 afterwards the square root of the ditfcrence or remainder KO - (200. CK + 6'K'— 20 C.(Vjr ! C//'-), H'*'ii tl»'i« will eonie ()/--=v'K(J---(20CJ.' (Ck f- CK'^ — 20iJ.Cr I €/•■•'), and eonse(|iientIy the other necesssury diameters EF, cd. AVe have already shown that to find the centre O, and consequently OC or OK it sulHces to draw and bisect any two parallel chords cli, Ct of the generating curve and then unite the points of bisection by a straight line the prolongation of which will intersect the axis of the cuive (produced if necessary) in a point which will be the required centre. (191) REin. If we have devoted to the study of tlie spindlo considerable space, it is not because this solid propeily so called offers itself very often to the valuation of the measurer ; but it is with the viewof arriving at the consideration of the fiustum of a spindle which forms the subject of the following problem and which presents itself every day under the thousand and one forms of casks, bar- rels, tuns, puncheons, (luaiters, &c., such as iu-e used to contain and transp.H't tobacco, sugar, tiour, pork, oils, molasses, beer, brandy, liquors in general and a thousand «)tlier substances capable of adapt- ing themselves to the form of such vessels. PROBLEM LII. To determine the solidity very nearly of the cen- tral frustum of any spindle, that is of the frustum of a spindle of which the opposite and parallel bases EF, GH are equidistant from a plane CD parallel to the bases and passing perpendicularly through the centre O of the axis of the spindle of -which the frustum forms part. (193). Kf'i^E To the area of one I'lP of the equal hoses, add that of a parallel section CI) taken at the centre of the 1 rnsi nm and\ timen the area of an intermediaie parallel section cd e t'<]iial to tlic liiiir-diUViciu'C! Ix'twt'Cii tlio diameters CI), EF and tliat wcarterwardrt liiid Clein. If we. have to ineasme tlie eapa- city ol'ii oasic we will obtain its interior diameter CD by introducing tlironj^li the buny liole a sealo ofinciies or otlier c(iiial parts. We will obtain tlie intermediate diani. trfby measurinf^ the distance rtc between the cask and a rectilineal rod ()li(lity '! Alls. 1.'{,I()4 cnliic inclies or 7.rii^'V17 cnliic feet, (lie acenrate soli- dity accoidi:>i;' to tlie <;(neial rules lieiiii; l.'MlliO. I cnliic inclies or 7, .">7.")-lG cubic feet, say an error in excess of .tltllOo or j'„ of I pi'r cent. 5. ^Vllat is tlie caiMcity of a lio^sliead the len^lli of wliicli is ."> feet, the cxtreiiu; diii.iieters .")!) and JiU inches and the interiu. diain. 45.3D4 ? Alls. f>l,-13!».89 cnhic inclies, to HI, .'302.7.') the accniate solidity, tlui ditt'erenc(^ in excess Iteiiiu,' .OOi.l or i of 1 per cenl. O. A cask appeal i II, n' to form jiart of an elliptical spindle is 2S inclies long, its greatest diani. is 2 I inches, the diam at t he head 21 .(> and the interin. diaiii. 2.'5.40itOll inches : what is its capaciiy in wiiu; gallons of 2.'JI cubic inches to the gallon '] Alls. (24* i 2i.()*-! 4 times 2a.lO!)(l!)% x .7!-r,l 28-M>---] JjS.'j.'j.a cubic inches, to J J,c^.">1.7,'j the acciirale s(d. tlie e\ce> 'icin;;' in this case but of .OOOdO,") which shows that the pio]>osed cask i \ cry nearly tlu' frnstniii of u sjiheroid, I lie rule in such case giving as seen ^S7<>, U.) the accniate solidity. The reipiired capatily in gallons is .")!.. "UO. 7. How many gallons may be contained in a tmi of elliptic cur- vature the greater diaiiu ter of which is ."52 inches, the smaller diame- ter 24 inches, the diam. at 10 inches from llie lu:ad o0.1(>7.> centre is also ;j() inches, that of the apex 20 iiiclie.'* and the interm. diam. ;J2 inches; what is itssolid conleiil in cubic feet i Ans. 27,204 cubic inches, to 27.2.'}3.!) aceui'iit to 1.j.7(J. 9. Determine the -I tiiiu's .-JO )x.7r^.'>l • -ll> ~ (I •;27,2t.'7.Q ciihic iiU'li(!S or I I7.S7 v:;iil()iis iicirly ; the acriiralc soiiiliiy is 27,2\U.fi cubic inclics, siiy an citki' nt' .OOOil-J or ,', of I per cent, ('(iiiiN-.-ilciit to 15 ot'ii .gallon or n lit lie more llian liall' a pint. 1<>. How niany<'ul)ir red arc tln'ic in a hogshead tin' (li.inictcr of wliicli at tlic ccniic is ;") t'cet, at tlic head 3 feet, its intermediate tliamcter 4.5 I'ccl and len,i;tli 7 feet .' Ann. I(»."),:}71."), to 10,1. l!)l:3l the aceiiiatc solidity, or an c.\ccs.s of J of 1 i)cr cent. 11. IIoM- many i;allonsof salt can be juit into an em[)ty llonrbar- rel the hci,i;lit of wliieli is 2'i inches, the inf. or sup. diani. 17 iniln's, the .greater diam. Xll) inches and the inteiniediatc diam. be- tween the bottom and the centre WK'-i inches 1 Aii«. (17" I L'O' . f -! times l!».;f ) or •.217;» ■< .78.'»1 x ^>r)-^(i---7!;}r» cnbic inch's, divi.2*) x .7854 < 42 ^(J :-277.274 = !iy.3.j to 99.3, aui: = 2'^ oi n sidUni. PROBLEM LIII. To find the solidity nearly, of any frustum of a spindle EFHG- or ed GH, with parallel bases perpendi- cular to the axis of the spindle. (See the tahlvdn.) flO.I) Rriii:. Compute acpdnitrli/ the nolidih/ of cdcli of the slices KFIX,', (illDC sititated of the iiiixiiM'iit i)aits of the fnis'uiii and add tlicii tonctlicr ; hut it" tlic i)ii;:illt 1 liases Ah, /15 are e(|iii('...;i lilt (Voiu the eeiitro 0, lii( ii it is jdain lliat we will liiive but one ojiemtioii to peifonn ard afrerwuids ilouhle the result. PROBLEM LV. To determine the solidity nearly of any frustum of an ungula ■with non parallel bases. (See the tahlcau.) (103) RDI^K I. J^ecainposc the fniMnni KFlKi hi/ mi iniiu/iiiiirij f.laiic imraUel U> cither Gil, J'^F (if its Imses and /inssiiii/ tlinmyh the pmiit 1' or 11 {(IS the ciise iiiiii/ he) the nearest to its other hiise, into the friisliim of a spinilh' irith puriiUel liases anil un unijnla ; then eoinputc tiepuraiehj their solidities and add them together. (IIMJ) Kl'I^U II. Ciinijiiile hij the hist prohlem the resjjccti re solidities of the tiro SCI/ rents of a sjiindle leith a sini/le hase GliU, V'VM of irhich the f/iirn frii^tinn forms part ; the difference of these solidities will be the required solidity. Rl^]n. An inclined ton or cask containing liquor and whi<'h one would not displace to la- cilit.ite its .nauuint;- will soinetinu's jiresent to the valuation of the measurer a solid of this kind. PROBLEM LVI. To value the content, nearly, of a ton or cask laying on its side and being but partly full. (See the tableau.) (107) RUEiE I. Afterharinf/ obtained the chords and versed-sines of the seijiiicnts of a circle forming the opposite bases /Ff hllh of the frus- tum FII to be valued, muUiphj the sum of those bases jyliis 4 times the area of a central section puralUi to those liases, lii/ ]. hi'i;iht oi- length Al? of the caslc, or to lie still nearer the accurate content, operate onlij on the half of the fruitum and aficnvards double the result. 1(50 KEY TO THR TABLEAIT. ^=m::v {iVfH) HI ma: II. Ifllirlv,unr ill Uic Ion iliii:-! jiiit ri Hill till' licdiJs o)' finis V.V, (III (if til'- rr'ificJ, as at cij r is at AR, axis of tht ton it is plain that ire irill obtain the content \V\)\l\\ — V\W\)—\VV',. If on the eoiit'-arijthesnrfiiee is at cdor fh, ire will first ailenlntebij theiinilniil of the last tint one prolikiii, the fnistnin of n spindle rsi/Dpr or vinlJ (as the case mill/ he) of iiiiicli. the eorrrsjiiiniliiir/ segment of ;lie ton forms jinrt, to subtract afterwards the niajnlae, or ki)ids of pi/ramids hnh\l, fmfi'' or the Kidids crpF, dsijM composed, of the semi-conoids Wp, 1511'/ and of the frusta re A}), sdW') of whirh ire irill prelti/ correclli/ obtain the solidities hij the fieneral rule nf the smn of the parallel bases jt\, re r 4 times the inter- mcdiate section, iiudliplicd bij one sixth of the heiijht. PROBLEM LVII, Determine the solidity nearly of a convex or concave co- noid Aa Cb B, AalbB or of the segment of a spindle terminated by a convex or spherical base ADB. (Sci! (he tidjleait.) (991) ICl'f^E 8. Decompose the solid hij a plane pnf;sinri throiiifh AB into the sriinnuit of a spindle or conoid ABC and the seijmcnt of a sjiliere A 1)11 irhich i/oii irill ralneseparrteli/ tnj the rules alreudij ijieen and ufterirards tii];e the sum of the component solidities. (200) KCJI.I'} II. To the area of the conrex base (ADB) add 4 times that of a /inraliii conree section a'db' equidistant from the base and apex and mnlUpl;/ the snin liy one sixth of the helfjht CD of the solid. AVhiit hiis hc'cii alrciuly stiit(Ml (1977 «, Jii7, '*'.) ('(mccriiiiii; llu! si»li('ric;il sector ami ordiiiiuv coiHiiil. siitliccs to show liiiMicdiatcly that we must h;, llial lulc anivc at a pretty eoirecl dctei uiinat ion of ihe solidity of the pro- posed solid. ItlMl. If the heipht, CI) were unequal to AC or 15C, that i.s, yicater oilii8.s tliiiii AC or bC wo would ovidoutly MENKUR/VTION OF SOMDS. 161 havotoincivnaeitlK' sol.oftlu^ proposiMl conoid, or to iliininisli itbjthe uliCl'ci'Mii'c of tlid solidities of llic icspcclivc K«' A or IK.', iis tho case may Iw. The same if t\w hasp of llic ronoid were coiicavo, wo would coinputo (lie sol. of tli(i conrspoiidin^ conoid with jdaue base, aud, aftcrwaids (hsdiict from it llic- sol. of (ho hollow sc^Mncut. (201) BSUIjI'] 15. Vompnti; the solhUt;! of the component spheri- cal sector AHH-C, then the solidilii of the coiitiitucd frustum of apriani of which llie ijenerfttiu;! set/men t .\oCa'A »c l»f*(7/'I} is the section ; the > sum of these i.>licUties uill he the required solidity. PROBLEM LVIII. To determine the solidity of any vault of -which the thickness is not uniform. (202) RlJLr. Caleuhtte separatehf (pa(ic 431 G.) by the pre- ccdiiuf prolileins, the volumes of the comp:>ucut exterior and interior solids {that is of the prisms or eiflinders, hemispheres, hemi-spheroids or conoids, or of the seijments (f those solids) and afterwards take their dijj'erenee which will be the solid content of the proposed vault. PROBLEM LIX. To determine tho solidity of any prismoid or cylindroid. (Sco tho numerous and varied prismoids and cyliudroids of the tableau.) (203) RULE. To the sum of the areas of the two parallel bases, add four times the area of a section equidistant from those bases, and multiply the whold by one sixth of the heiyht of the body; the result will be the required solidity. UKM 1. It is said (1102 G.) that "tho prismoid is a solid having for its parallel bases, any phme ligurcs with parallel sides." This definition does not exclude the equality of the parallel sides ; therefore, any prism or cylinder {infinitary prism) is at the same time aprismoid. Keither does the definition exclude the proportionality of tho parallel sides ; therefore, any frustum ofapyramidor cone (frustum of an infinitary pyramid) with parallel bases, is a prismoid. 19 162 KBY TO THE TABLEAU. Nor does tlio definition nasijnrn limits to tlic inequality of tlio pamlk'l siiUjs ; tlicierorc, ciicli of (lu^ sides of ()!ie of tlie iiiUiiliel bases inny dinniiiNli indefinitely, even so iis to become hines parallel to each othei', the solid will not have ceas<'d to exist ; there- fore a jnismoid may he stick as that its opposite bases he both of them pvnpU lines or edges. MENSURATION OF SOLID!*. 163 (JJOtt) Let IIS siiy, to sum ni), tliat : npmmoid uinij have for itspm allel Hiiises : any tico jUinrcs eqiuil or simiJur^ aun tiro Jitfiires unequal or not mniiJitr ; ainj Ji'/are and a line purtdlvl to the plane of that fif/ure, any Jlffxrc and a /uiint, any tiro linen not parallel, hat sitaalcd in phmes paral- lel to each otiicr ; siiy, Cor iiisliiiu-n : two oiiiinl oi' ini('(|Uiil HqiiaroH ; u siiiinrii and any recta iijfl(! ; any two r«H;taii;;U's or iiaralli'logninirt ; nny two ('([iial oi' siuiilur, unequal or dis.siiuilar polyiifona, of which tli(! sich'sol'tlie one eonespdiul either to |)aiallel Hides or to nnr the name oi' cylindroid) a sqiuire, rectangle, pa- rallellogiam, polygon, circle, ellipsis and a line ; a Hipnire, rectangle, paralh^logram, jtolygon, circle, ellipsis and a point ; two lineaof any lengths not parallel but situated in planes parallel to each other. * (30?) ISI^rfl II. There is now to bo considered the kind or nature of the figure answering as an intermediate section between the o])poKite bases of the priamoid to be measured. Thus, it is plain that if the opimsite bases are rectangles with parallel sides, the in- termediate ]>arallel section will also be a njctangle or a square ; if tlie two bases are ])arallellograins with parallel sides, tlie section will also be a parallellogram ; if the bases area square, rtsctangle, paral- lelogram and line jtarallel to one of the sides of such rectangle, &c., the section v.ill still be, in the first case a rectangle, in the second case a rectangle or a square ; in the third case a i)arallelogram ; if the bases are any figure and a point, the section will be a ligure similar to the base and equal (131, T.) in area to the fourth of the base ; if the '1. All thenefortns arc raetwith in practice, and more especially amnng the diversified roofs of buildings of all kind?. A tower or square turret for instance, will bo often ter- mioatod by a roof crowned by a cireular or octagon platform, or the tower will have for ground plan a circle, and for platform to roof i square or other polygon, or nguin there may be two squares of which the sides of the one are parallel to the dingoniiKs of tho oiher, that Is for prisinoids of which the parallel bases are any figures. If a building of which the horizontal srction is a square, rectangle, or poly- gon, is covered wUh a roof tonninated by a ridge long or short, we will obtain the pi'ismoid of which one of tho barges is any figure and the other base a line. The wedge is also a solid of the kind. Neither is it rare to find among the component parts of a roof or other object to be measured, prismoids of the kind of that of par (20S, T.) that is, of which tho bases AB, OD are both simple lines, without tha area of tho intorraediato section abed having any tho less for that a real and easily determined value. In this latter case the factor " 4 area alcd " =BAXCD (SOS, T.) whence, the sol. = AB X CD X height -i- 6. 164 JCET TO THK TAHT-KAH. .£'■ two hiiftos nrc liiicn (J>07, €4.) tlic! oiui [xTpcinliciiliir !<» tix" (lircctiou of tim other, tin* Hcctioii will br ii hihuiic or a vcctiuij^Ic ; if tlu^ buHcs aro liiK'8 not prrpciKru'iilar tlic one to tlic diicctioii of llic otliiT, tho section will bo ji lozt'iigo or pinaUclognun. (JIOS) Notliin;!? is I'asicr in all tlu-Mc ciiscH tlian to (IctrrniiiK! iIm^ area of I lie intt'inicdiato section of which the niiiliiplicis oi' fiu-tors ar<» ench an arillimotical mean between tlie parallel sides of the opposite bases or lielwetMi tlie sides or edges and op|)osite points orapieesas the ease maybe. For inslanee, in the i)ri'^ni(>i(l A15-('I) where eaeh of the bas(>s is a sinipic; line or «'(li;(! AH, CI) and of wlueli the area is eonseris- moidj is a solid with parallel bases ofwhieh the planes (lateral faces) pas- MKNsrRATION OP SOLIDS, 165 siiifi flinuifili the s'/V/rv or rthirs of nvr nf tfir hnsc^, rirr trrmiii<>l"(( hj junnts or bij iiiinillcl sii'rs or v(iijf:< in Ihv other Ixtsr. Ill oilier tn iii.-t : Tfir jirl'^inolil or ci/h'ndrniil is such that all its hife- riilfiKcs (irr, or its lafrnil snrfavr innii tic tlcconiposal into triinii/lcs or rtvti- liueol lr/ipc:iiiiiis, Ihift /<, iritlt plune siir/ncvs, or 2Mrts cttpal/le uj'ltdinj de- i'elo2)c(li)ttoj)lfnicmir/' lor it.H buses l!:ies, (ll-'. hi par. !iO,S, T.) ; if its two biises nre any li^'iires, into Four pyraiiiid.s liaviii.i'' tiieir buses t,wo iiiid t wo in (lie opposlto buses of tlie solid, and a prisnioid liavinj;- lines lor its bases ; or, nt l»leasnre,into pyramids, wedi-es, &:e.,and prisinoids willi lineal liases, iiccordiiii;- to (lie manner of operaliiiii' (lie division of (lie solid by planes of which the iiiimlier iiiid position may be viiricd. (211) Il'oiie \ ) and the dial. . (jh = i {CD + id). (3BSS) If one of the, baa(!s is a circb^ or an ellipsis AIJ and the other base a line KF, the, iiiterm. base nbj'vdc will be ■' inixtilineul li^^iire of which the parts (d> and vd will be strai,nlit lines pai'allel to KF, and the parts oed, hj'c simi- lar fi<-ures (103:1, ii.) to CDA, CHD. To calcu- late the area of the interni. section, we h.ive (lOIiS, 520 G.)ab and rfceach = i FF, «(? and ^c each = ^ CI), and as the component i)arf8 ACD-E, 15CD-F of the prismoid aie evidently pyramids with mixti- lineal bas(>s, we obtain (IJtl T, ) the area a('d = i area ADC, area h/e, =i area IJCI) ; that is we will obtain area section ef=ab or i EF x ad or be or i CD + i area AH, and if EF is not jiavallel to AB or perpendicular to the direction of DC, we will moreover multiply (S T.) the product ab, be by the nat. sin. of the angle bad or substi- tute for the factor ad or be the perpen() — V(\ (liavini'Ciacii lor ils Itases lines A(), KII and MO, V(i and ^tiiiTl T.) for iiitcriii. l»ase iirectaiinle ((/*//i' wliei-e «(/> — /./mi i;ii iind (tic or/(/-~i Ao, and iiral vliere linn vil =i F(i and lut or jt— A <)1>) ; .'5' I'onr pyramids AOC -II, A()l)-E, I'.OC-(; and 1!()I)-F (having' each I'orils inb-rni. section a lii^nre *)///, ru'/.', ifh and (((//'respectively equal in area to one Ibiirlli of the correspondiiii;' base A()(', AOI), 1>()C and liol), or their sum e(iUid in area to one fourth of the base Al>. (iJl I) It is jilain from the ]»rismoids or cylindroids just men- tioned that those bodies may indeiinitely vaiy tlieii' forms, but the in'ccediii;;- coiisidi-rntioiis will siillice to indicale, the manner of pro- ceedin;;' in each case to the, determination of the iiilermediatu area to enter as an element into tin; culcnlalion of the solidity to bo es- tablished ; or if necessary, to determine, immediately whether tlio jn'oi)osed solid is, or not, sncli a prisinoid or cylindroid that its soli- dity may b(( measured by the i^cneral lule here ^i;iven. Fx 1. A tent or tester (.f wlii<'li the sup. base is a circle orellip- sisoi«ine metre in area, and its inf. base a reclaii/^le of;5 rietrcrs area, has for its intermediate section ii niixtiiineal linnro of which the area is two metres, height or ptsrpendicular distance between the parallel hases 2i metres ; required the solidity^ of the sjiace or air com- prised between the cm tains i Alls. (1 I 3 I 4!ines2)x2.r)-|-0=:5 cubic mefcroa. 2. A cain]»in;:;' tent of whidi the top or sup. ba.sc is a ridge, that is a simple line or edge 2 yaids long, and of wiiich the inf. bas(^ is composed of a rectangle of 2 xJ^yaids and two semi- circles of y yards diani. is 2 yards in height ; what is its solidity ? AiiM. In tins example it is plain that the prismoid to be cubed is composed of a Avedge with cipial edges (that is (mOO, C}.)ofa triangular prism) and two semi-cones, 'i'he area ol" I he, base; of the tent is composed of that of the rectangle— 2 x ;ir:r(; s(]nare yards, and of tlittt of two Bomi-circlcs, that is of u circle \i yards dium. =3 x 3 x ^rF.NSURATION OF SOLFItS. 167 .785-1= 7.0(180 s(|iiiii-(' ,varas(* ]»Iii.s one foiirlli CJiia, T.) of tlu; two scini-ciirlcs, and lias coiisc- • liiciitly llic value of ."{ I I.7ii7]r)—A.7i'>7irt, 'I'lic aica, of the sup. base l)ciii,y,' null in ilic actual case, Mic sol. — (area Itast^ i I intcrm. area) xhfiuht :(;,-( i:5.()(;ri(; i- 4 limes J. 707 1. i) x ,1 lifi^lit=;W,i:{7xi x 2:C>---W.7l2ii'nWH' yards. I15MI. irtlic ('\f. sill lace orilic fcst-cr or of (lie caiiipiii;;- tciil of llic two last fxaiiiples, instead of Iicintj taut, that is plane or rajiaolo of l)eiii.i;' dt'veloped (|li'14M».) into a plane siiit'ai'e, were concave or not, laid, we would eipially obtain the rerpiired solidity, at Iciist veiy nearly (ltV.i, l-IO, T.) by (lie same vnle ('HKt, T.) Kx J$. An ohservatory of wliicli tlui j;roiind plan is an octo/^ou of !((() metres area, is crowned witli a roof terminated by a circu- lar |)latform of wliirli tlie area is ^J.l nietr<'s, the area (d'tlie interme- dial(^ seclion is .")'! metres ; wlnit is the solidity of the spaci' occupied by tli(! roof the height of which is (I metres '/ Aiis. lot) ■ 12.")+ I limes .''.|}:=3 1!) cubic metres. PROBLEM LX. To determine the accurate solidity of any irregular body of small dimensions or of a body composed of several elementary parts with different dimensions and forms. (215) UL'I^B]. I( it iH tlic rapacity off any vase oi* vcm- sel wiiJtBi AV<; livaiit (o measure, the idea (/nicrnJl;/ sii(/fjcf>ts itself of anieiiifj at llie result hi/ ilelenniniiiri the niimher af times irhieh such (I resscl ani ijire jilicce to or contain the contents of nmj other vessel of an eleinentori/forni of nleieh we know the cajxieiti/. (Sl<») K tit it' itisllie !«oIl:i(jld of the. contdiiiinfi rcfsel corrcxpondx lo a cidnc metre, foot, inch, or line,, iC'c, ire will hare hut lo count llm iinnihrr of siirji miils in theliei'jht of tlie lii^iihiceil Icrcl of the water lo ohtaiii iinincili'iteli/ the soli- dity of the proposal ohject. ('11^) 11° the Riixly is al>'<»i'!»f;iii, ire niai/ forinstiuice use sand or anij other Jlniil siihstiDtce, of the hiiul, that ire can heel the snrjacc of III/ means of a rou tcilh a, rectilineal cdije. Ill tliis iiiiiimcr \V(>, would arrives al, \hv. solidify ofllic most; dc- voisilicd bodies ol'tlKi iiiiiiiial, vcj^ctablc or iiiiiicral kiii.ii(loiii and of the tlioiisaitd and oii(( raw or nianiirat'turcd ohjccls wliicli we have coiislaiilly under our cy^ and of wliicli it would often Ik; inipo.ssUde to iiieasuie tlic soljditie.s l»y the ordinary rules of geometry. It is well (o I'eniind also tliat we may airive l>y a simple pro- portion at the solidity of a body by coiniiariui;- its wei^lit with that of anotliia- body of the same substance and of det«Minined solidity, that is l»y the system of s|)e('i(ie gravities whieli shows at the samci time how to obtain the solidity of a body from its weight : which will form the, subject of the next i>rolilem, Ex. 1. TluMveigiit of an irregular block of stone is 13 pounds 7 ounces : lequired to det»'rmin(! witii the help of the given piece tho weight nearly of a cubic foot of such stone f Alls. First cube the block of stone ; to that effect get a rec- tangular vessel, say 10 inches square or 100 inches in horizontal area, and the height of which is divided into inches and hHndr(!t]is of an inch ; having jtourcrd into the vessel water enough to c(»vei' the stone to be cubed, I note the height of the water which I find 8.53 i»;ches, I then immerse the stone in the vessel and I nctte again tho height of the water whichis now 9.8i5 inches ; the dillerencc^ of these heights is 1.31! inches. Since the vessel is 10 x 10 inches, it is plain that every iiuih of its height corres|>onds to 100 (Mibic inches and conse- quently, each hundredth of an inch of such a height to one cubic inch ; therefore the observed height 1.3(), of thedisidaced level of tho water Corr(>si)onds to 130 cubic inches ; therefore the solidity of the stono is 13(i, and we will now obtain the weight of the cubic foot by nmk- ing 13G:21.'i ounces (weight of the stone) :: 17:i»8 cubic inches (that is a cubic foot) : 273:i ounces, or, dividing by 10,170;^ pounds, the required weight. a. In a cyliudriciil vessel such that each inch of its height cor- MENSURATION Ol'' SOMDS. 169 V('s|)(»ii(l< lo I ciiljic incli nf s|);i('(' (ir -iili'litv , we liavc iiiiiii('vs(>(l a piece ofsilvci' w liii'ii lias (lisjil^cd li\ 7;{ liimdrcllis of an iiicli iho level ufliif liqiiitl ill llic vase ; ii'(iiiire'l llic solidily of (lie ingot of .silver / Ann. .7'-) of a eiihic iiicIi. i$. Ila'.'iii.n' I'illed widi waler any vessel, we lia\'e iinniersed in it an ol'jecl I lie suliiliiy of wliifli we want to know ; we have, j^alliered in a no! her vessel, llu^ water overllow n, the (|iiantily of wliicli is^J <^al. Xi (piarls and A pint ; what, is the solidity of the propoHed object, tlio f;'a]ion made use of iieiiii; -•{! ciihic iiiclM-s ! AtiS. I Million I -i tliat etfcct, is .M of a foot, 'he height (»f tile ve>sel lieing !.."» I'eel Alls. !..") — .;j:- \ .'2 lee I —height of (he <1 is placed level of (he Hand, and as the v-ssel is I s(inai'e foot in horizontal seeiion, it follows that the solidity of the olijecl is l.'i cnl)i(,' feet. 5. In a \( ssel ha\ing tin' form of l];e friistnm of a cone is a (piantity of li(iuid of which the di.a meter at the surface is 10 inch(^s ; wo immerse in i( an oliject which increases hy !' inches (he height or depth of the li(pii) UJ-.TI. The weight of a- enbic foot of water attlieteni- y)eratiins oi' 40'^ Fahnniieit (at which water nearly reaches it.s greatest density) is IDOD ounces arvir (:) the soliditif of the bodij in feet or inches, as the case muij l>c. Ex. 1. The Aveigiit of a shell or cast iron bailor of any fiag- nieiit of such a solid is 40 i»oiiiids : re(iiiired the solidity of the proposed body ? Alls. It is seen by table X of sjk cilic gravities that the weiglit of cast iron is 450 pounds nearly, ])er cubic foot ; we will then obtain the re(iuired solidity by making 4r)l) pounds : \7'lr^ cubic inches :: 4.) pouuds : il'Z.ri cubic inches. 3. Required the volume of a marble statue tiie weight of which is 1000 pounds, the six'cilic gnivily of tlit; niaiMe fidiii which the statue is drawn being 170 pounds nearly to thv ciil».'c loot '. Alls. 170 pounds : 1 cubic foot : : lOOO pounds : 7).\) cubic feet nearly. 3' A quantity of sand weiglis l.'J i>ouii(Is : what is its solidity ? Ans. From table X, the specilic gravity of sand is J..')20, that is, 1.5!20 tinu's the weight of an e(pial volume of water or loiJO ounces to the cubic foot (since tlm weight of a cubic foot of water is lOOO(Minces) ; we will therefore make I.V^I) ounces : 17'^^ cubic inches :: (iyx|G=) 208 ounces : X = 17'JH x -JOr* =s",*;5(jA cubic inches. i.v:io 4. 'Yhv weight of a tusk or looth of an elephant is 'ZTt pounds ; what is its .solidity ? Alls. Ivory is 1825 ounces to (he cubic foot ; we will therefore obtain (he scdidity of the tooth by nndiing 182.'> : I :: (25 imunds or) 400 ounces : .22 nearly of a cubic foot, or 1825 ounces : 1728 cubic inches :: 400 ounces : ;}78.74 cubic inclx's. .1. It is required to determine in advance the juobable weight of a cast iron grating wliicii must be cast ai-cording to a carved mo- del of pine wood the weight of wJiich ia 7 pounds 7 MKNSURATrON OP SOLIDS. 171 Ans. We will fiist obbiiii tlio solidity of tho pine model by lunlviiisj, iis i)('r iiih^ (Mio ])irio beiiiif considered in tliis case as of 25 pounds fo ( lie eubic foot) 2.") ponnds : I cubic fi)()t :: 7 pounds : .28 of a cubic foor. Xow, as tlie solidity of the cast iion will also bo = .28 of a cubic foot and the wei.n'ht of cast iron is 450 pounds jter cubic foot, we will obtain the weight of the proposed grating=:4oO x .28= 126 pounds. (S'11) KITLR. To determine the weigrlit ot a body from its volume: make the proi)orti(Mi : as one cubicfoot is to( : ) the volume of thi" in()[>oscd body, so is ( :: ) its specific gravity to ( : ) its weight. K\. 1. Tiic vohinie ot a heap of snow on the roof of a building is 7000 cubic I'eet, the weigiit of a cubic foot of this snow, made h(%' rule gives : 1 cubic foot or 1728 cubic inches : ■^r cubic iuciies :: 1!>.258 : x = 11).2.")H x 2.25=25.07552 ounces ~ 1728 3. One desires to know the weight of a lirkin of butter the vo- Innie of which oittained from the rule to article (112), is 1830 cubic inches ? An?*. The specific weight of the butter is .940 of that of wat i-, that is, ofiMO ounces to the cubic foot ; we will therefore obtain the required weight=JI830j {:) //s- irrifilit ill oiniccs, so is (::)(( vnhic ftxit of such hixhj /'»(;) the iniijlit of one foot of it in ouncvs ; that in, Inj cuttinfj off three Jitjiircs for deei- iis sjfveife (irariti/. Ex. 1. Wliiit is (lie specific \vri!;li(- of scMsoiicd l)];ick \v;il- iint, ifii sniiipl(M)l' tills wood tlic (liiiiciisioiis oi' wliicli lUf 'I ■; 7 x .!> iuclios, Avoiylis 2i oiiiucs t A1I8. II X 7 '< .*.)-(')'.). ^^ cnh'ic inclics - sol. ol'tlio proposed body ; HOW, from tlie rule (!!>.•'{ iiiclics : 21 ounces :: 17^JS iiiclies : .")!)H ounces or;J7.4 jiounds ; tlie reipiircd spe( itlc j;ra .-ity is lliei< Core .')\>6 (d'tliiit of Wiitev tlie weight ofwliicli is KMKI oi;«c<'s (o IJie cubic loot. 2. An ii'n\<;iiliir [Mice oi' chalk of wliicli tlie solidily ]i;is l)Con obtained. = ]MvJ «'uhic inches, liy the method of example 1 of the lust but one jnohleui, weijihs -1;{A pounds : ic(piiied (he s[K'ciUc gravity of tiiat substance. AnS' -J-'J^ inches : 17;JH inches :: 4.'}i ])ounds : 171 pounds : ■whence, tlio re(pured s|iecilic .iniaviry is 174 :< l(Jr:r*2.7c; J tjuu^s tlie weighlof an equal vohnne (»f water. 3. A bateau oi- pontoon of 100 feet by 20 x 10 feet and tlie total Yolume of wliicli is consecpUMitly 20,000 cubic feet, i-e((uired in its coustnu'tion .")000 feet ol'white pine half-seasoiii'd, the wei,i;ht of which is estimated at 40 [K)unds to the cul)ic foot, MOO cubic feet of elm com- puted at oO pounds to the cubic loot, and .")000 pounds wei.^iit ofirou spikes : required the draui^hft of water of the proposed body ? Ans. The weight of the pine-.')000 < 40 = 200,000 pounds, the weight of the elm = ."»00 x .")()=; 2.j000, (lie iron ilOOO pounds ; tiie total weight of the bateau is conse(iuently 2;{0,000 lbs ; (he avenige weight or the apecilie gravity of tlie pontoon is 280,000 pouiids-^20,000 cubic feet = 11.5 poH'i 'Is ^^^ tl'<' cubic foot, that is ll.."> ; 1<)= 1H4 ounces ])er cubic foot, say .184 of (he weiglit of an ''(jual voliimt! of watei'. 'I'lie height of the iioontoon is 10 i'eet, therefore! the draught will be .184 of the height of the pontoou or 1.84 feet, that is 1 loot 10 inches and .96 of an inch =^1 foot II inches nearly. 4. liy wha,t oii is •JO.OOO cuhic i',.,'r. the lolal wii^ht of tlie wuhT vliicli the ]»()iit.Miii iiinsl .lis|ilace hefoie .siiikiii-- to llic level of the wahT is ^id.dllO x Cj.r.iir |.^r,(),()()0 pomnis ; ii(i\v the weij;iit (.f the iM.at is IxH :i:j(l,()()0 puiiiids ; wiieiiee it follows lint w »>, iiii.nlit slii! wiliioiii caiisiii,!;- ihel.ateaii to l'oiiii(lei' load ii wiih a, wei.uhl e(]i!al or luaily eqiiai to the (iilfereiiei- hetwceii i-J,";i),ni((» pounds and ^.';i(».()l(lt. that is l():jO,()(K( poinnis. (22:S> Ct3 L5] II. i!nh«>i»o coiispii!l«>«l in hea- vier utiaii w;;S<"B' : _//;w/ ((•(■■■;/// Ihc hu,Iii ill air, thru 1,1 ir,,i,r, hji wcdiix <>f(i li:/(lnnilii' hahnirr ; llic (lij/rrnirc httirrrn l/ic nsiilln will lie ihc iriiijJil lost in iriilrr. or lliv irritjlit ,ifi Ihr nrii/lif: losi ill ir(ilrr{:) is lo llic ircio«1y lo be : Oisipiiitd ix lig'liicf Uiasi AVJiJrr : lie lo Ihc /irojioscd hodjihij a llinml Ihc rniqhl of which is irlod!/,siilislr(icl the wciiihl lost hi/ Ihc hairier iiodi/ as wciiaiiis. we. liavo tied a l)iec(^ ofcoppei' liie weight of which is 18 grains /// o/>- uud IG grains in water, and the conii)ounF,A'^ U. A pi'-cc orcoii])*']'. wci^Iiiiii; in iiir 27 oiinoos ntid in wnh-r^l oniKM's. is tied Id ;i picci- of cnrk \vrii;liiii'j,- i'l ;iir <> (hiiicc.-j, iiinl llid coiiipoiind \V('ii;!is in wMtcr hut.") (Ciiicc; : wliiit is (lie spec! lii; ;^Tii- vit\- (if cork ? Aj»n. ().t>lO. PROBLEM LXIII. To d teriTiiae the quatitiby of each injrvoclient or clement in a co.npound of two sub^tanoes or elemDnts. (ti'i'rl) \ii,V ijVj. P^iii'l JJ::-:! Ihe 'i)iu'ti^ clemi^nt^mcl iiitillipli/ thciliji'cir.ncr, of ci^nri/ tiro of tlK" ; what is llie (|iiiuitily of t'iic'i iiiureiliciit, tiio sju'ciHc ,i;iavity of uold l)eiii,:;i(l-ll<»:M) -. liil'^i)- i:}r,S(;i.174. Alku-. (i:>(;!()-i(;i^(;) X IH):>I— ;h.i»7;{.77I. silver. (Kll-^O ^ll<»!»|) - li»(ii()^!>S,887,4()0. (iold. i;37,8(il,17-l : ;»8.88S,4lM) :: (i;{ : !.'> ounces, -l penny wei.niiis, ID ^^rains of.'Aold. |;]7.8()i,17i : :j-^,i»7;],774 :: (JM : 17 ounces, l(J penny weiglits, "> gniins of silver. S. A mass of copper and <;()1.1 wei!j;]is 18 ounces, and its specific gravity is I7l.'j0, (lie siiecilic .-iravily of j^old is I!)(M() and that of cop- jter !>()()() : what is tlie ([Uantity of each element of the mixture f A31!«i. (i<>l ounces. 17 penny weights^! 'i;^,',!" g''"''"*- ;5. An alloy of silver and copper weighs (!l) ounces, its specific gravity l)eing lO.VT) : vequived the weiglit of each ingredient, tlieir respective six'cidc gravities being ll(l!M andDU'X) f Alls. M ounces 7 penny-weights !» jilalirTa g''Sii"^ silver, 13 ounces V2 penny-woights 14 ^^,,^."0 of copi)er. l. An alloy ofcojiper and tin weighs llxJ i)ouik1s and its specific gravity is 8784, what is the (piantitj- of eacii of the ingredi(Hits of tlio mixture, tlieir respective specilic gravities being !)()()() and 7'320 ? Alls. 100 pounds copper, 12 pounds tin, 5. Kc(piired the weight of gold, in a compouml of quartz and gold the specific gravity of which is 3500, that of gold being 19(540 and that (.f quartz 3000 ? AlKN-UllATKiN OK St'Mlis. 175 Ans. incio-Mooo— uidio, locio < ;r»()()— nn.Q'o.oodrr Fiicltii' lor I he cdiiijoiiiiiI liody. l!itil()--;rj()i) it;i !u, ini lo v ;!()()(>=:. I8,4vJ(»,(H)()= Fiictor for tlic (|ii,irlz. F'U'tor tor tlic u:J 10(10(1 : -l.-^i-JOOOO :: 100 : S:i.|:i.-r;!i;vl T oiiiicis of (iii;iit/. ; llio KMiii of tlicse iiiinilifis:^ 100 ; lliciL'forc, iVc. PROBLEM LXIV. To determine the solidity of the largest piece of squared timber that may be got out of a round log, or out of felled or standing tree. (22«) IHjL.K. Mnltiidii the duniirta- <>f l!,<: tree nr loj h;/ Ihr lialf- dutmrtcr, and tlil'^ prudnd bij the Icnijtk : the ranlt wiU be the rc'iiiircd soUditi/. Ill fact, it is plain lliat the diaiii. AI5 iiiiiUi|ilit'(l l>y tlif liair-(" (or A Al'o ^, 'i'.,) we must as already stated (JJi, i'.) add to (he sum of the areas of (lie ends of iiie ioi; or l\n- lo he measured four times the area of a section fiiken at llieceiitie and jiiiiUi[)ly (lie whole by llie sixth jiarr of tht^ length, or which is (lie same tiiiiij;', multi[)ly the sum of (he areas by tlie whole length and tako the sixth part of the result. Ex. 1. The circumference of a ht.n', tlie K'H^tii of whicli is 12 f«'et, is (!."2t^ feet, deduction beiiif^' made of the bai k if necessary : how many cubic feet of woo;! will there be in ihe slick of sijiiared tiiubur to bu yot out uf the log I 170 KI.Y TO Tin; TAlN.IAn. •' ,t >%IIS. 'I'lic circ. •!,■-'-' ('((ncspoiKl-* (o ;i diiiiii. 'i, t lie seel ion of tlio t iiiiltcr will llicrdurt' !ir '.' . I -"j sqiiaii' I'fi'l in area, and as I iif l('iij;tli is l-J, tlic s((li(lily will lie :2\ cnbic I'tfl. !5. A tn'c tlic li('i.'-'.!it kT wiiicli is '0 iVi'l, lias fi>r its snj*. diain. Mf) inclii's, and foi' its inl". diaiii. -'{il imiics. lor its intctni. diani. :{:{ iiiclics : wlial is the solidil.v ol'tlic jtiici' (if .•^inarr tiniWiT tliut may 1m' ;;()I oul (if it. Ans. Area small ('ml=2ix \\ fVct •-= 3.12.') sup. feet, invix liiif,'o i'lid- :{ l.v— l,.j s(ii>. feet, iMiciincdiatc arca^JJ.'.') < l.:!7.1 -."{.THl'-J.'), ■1 inli'inii'diatc ai« a - I.'). l'J."i, tht- sum of li»c UU'U.S=;^~.7.> and lliut sum X .')(• -(l-~- ISi'.i) ciiliic fc'l. ;5. W'c have iiicasuicd at. "> places nearly eijiudislant liy nieanH of a tiui'Iviiess eomiiass, the diam. of an irrenidar ticejnst felled ; these (li.-.meleis art- respectively ;5!», .Mi'V. 1)6, ;j7i and -M inches, and tie' 1( ii-lh of ihe tree 40 feetj what will its .solidity l»o after it has been si|iiai('d. Aois. The Sinn of the diametx-rs lf)0 inches -f-.'jzr.lS inclieH= mean diain.^JJ,'^ feet, ."{.I (it! x i.."ir':J=^."».(ll'~I nearly = ai'ea of the .section ; inuliiplyiny this latter liy theleiiyth 10, we, ;;-et '-JOOi cubic feet. PROBLEM LXV. To cube a stick of timber AB -which is but partly squared, or of which the edges or anglss are ■wanting, called " waney timber." (•i'^iJ) DIUI^E, HijHiu'c till' (limn. Al> oj' titc (iiiibcr, (iiid from such sijicirc siilitntct thdt nf (Iw (Hkiii. ah of the ndpiroiul, the difference of flie'I(!s, corners of edu'es of l!ie timber, to coniph't(^ tlie s(piare A 15, is tiie triani^h! oho, or ii tri- an.ule e(jnal to (tbo, when as it is snpi»osed, ('J'—ilh = l,!--<(b;\\t>\\ the sijiiare on ai is worth i (tbo ; tlierel'oie, &c. iiL.'ti. B. If the sides ((/;,(/, i^'Lc. are not e{[iial to caili other, we nniy tak(.- one foartii of til". Slim of tliesi four sides for u mean diameter (ib, or for <;-rcater acuMiracy, W(i \iill ma.'vc separately t!ie sipiares ol' ab, ef, &e., and llie ioui ill of the, sum of llioise .S(pia,rcs will be, or tlie, sum of tho MENSURATION OP SOLIDS. 177 fourtlia of tliortdfltiiiiucs will 1»' tho qiiuiitil^y, noarl.v, Id lie MiJjiraci d frum Mic Hqiiiuo AB to obtain tli(^ net area of tlio h( ctioii uf tiio tiiiibor. niKin. II. Lot U3ol),s(Mvraain tli«' laHtproblfiii liiat ifdic tiinbor is not tliroii;j;lioiiL its ciitiitt length of rtiiial hv/m, its Hcotioii must bo tiikeii at about tho middle of its Iciij^tli, and tiiis is ^jfc no rally what is [>osi(e ends pins four times that of the intermediat*- seetion and afterwards multiply tUo \vliolo by the leoj^tii and take the sixth part of the lesult. IlEIVI. III. We must also observe that we may arrive at the area of any re,t,nilar or symnuitrical oela^on or of llie kind here illiis- tratcd by snlttraeliii'jf fi(»m tli<^ .sqmini of the [xsriiendieular distance AH which separates any two of its i)arallel sides, the scpnuo of one ah of the sides adjacent to the first. Ex. I. An ei;,flit sided i)illar is .'{ f«'et wide or thick Al?, the side ah of tiie chamfer aoh is (J inches : what is the solidity of the pillar* its leugth or height being 10 feet f An.s. ('i + 3— (.5 X ..'))=8.75 .superlkial feet, and 8.75 < 10=87.5 cubic feet=re(iuired solidity. 3. A log of timber the edges of which are waney, rn(%'isnre.s .'30 inches square and JiO feet long, the average of the sides ah, vf, &c. of the wa!ie is !> inclies : what is the .solidity of th(! timl>er ? Ans. (30x;{0) minus (!)x!))=OI9 square inches=area of the section of the timber=e.y82 feet very nearly, and G.'362 x 30=191.46 cubic feet. 3. We have reduced to 30 inches square at the large end a tree tlio diam. of which Avas at that point 30 inches ; at the small end the diam. 30 inches has been reduced to S-l inches j tlie wane, sapwood or defect from a true s(iuare ah is from 7 to (> inches resjiectively at the tw() ends, sucih as obtained by a direct measurement of the piece of wood to be cubed, oi' by means of a sketcli made from a scale of equal parts : what is the solidity of the timber, its length being 60 feet ? Ans. Area at tlie largo end = (30 x 30) — (7 x.7) = S'A square inches, area at small end = (25 x i>.j) — (6x())i=581) sq. f., the inter- mediate area (^' x ^£±^)_(^?>6^7^N 3.(27ix27i)_ (6i X Gi)=27.5'~6..5^ =750.25 — 43.25 = 714 j 851 + 859 + 4 times 714 = 4296 square inches, dividing by 144 we obtain 29.83J3 square feet, multiplying by ^ of .the length or by 10 we obtain 298.33 cubic feet I'! i 17H K1,Y T<» TIIK TAnr.KAU. III 1 1 ivi AiiH. Aiiii Mciioii at llic roll* (^^ri-l H(iiiar«* iiioliis, 711 : 11-1 = .lltKl s«iiian« fiof, l.!».")>S;{K(i(» -2i»7.l!W ciihic (Vet, llial is, ^'^u^.^\ to tlu' accurate solidity Itylcss than one loot nearly, or by Icsm than niid .■{(lOili nearly, or hy Ichh tlian t)no lliinl nearly of 1 pur cent, Hiilli- cient iiccuracy (11^ T.) in pnictict). ItI'MI. IV. A coini»aris»»n (tf the two (iiiMwtUM of tliu hiHt pro- hh'ia indicate.-! siilih'ieiilly that the ordinary pratMice of cullers, who taki> the dinn-n.sion.s of u lo^' at. tli(> uiiddl(>. of il.s leni^th, and afterwards niulliply the area, of the Miction at that place l»y the leii!?tli of the timber, to (diiaintlniH it s soiidit \-. is, «'oii.sid(>rlng all thiug.-*, QiA*, 'II'.; —inciiiMKd '»> cm iiiu..i.iiue,> m 'js;' ^r^t. j 7.8102497 ! No. 121 Square. 14641 Sqre. root. 11.0000000 1 1 1.0000000 61 3721 2 4 1.4142131; 62 3844 7.8740079 122 rH31 11.0153610 3 9 1 .7320.J0S 63 3969 7.9372539 ' 12.! 15129 1 1 .0;i053(;5 4 16 2.0000000 61 4096 8.0000001) ! 124 15376 I ll.l;i552S7 5 25 2.2360(180 65 4225 8.0622577 i 125 15625 \ ll.lso3:;i)!) 6 36 2.4494897 66 4356 8.1240:{.S4 126 I.5S76 11.2249722 7 49 2.6457513 . 67 4489 8.1853528 1 127 16129 11.2694277 8 64 2.8284271 j 68 462 1 8.2462113 i 128 16381 ! 1I.31370S5 9 81 3.0000000 69 4761 8.306(i239 1 29 h;641 11. .•{578 167 10 100 3.1622777 70 4900 8.3(i(i(;oo:! ; 130 16900 11.4017513 11 121 3.3166248 71 5011 8.42(;i4!)S 131 17161 ! 11.4455231 12 144 3.4641016 72 5184 8.4852S14 132 17424 1 11.4-<912.53 13 169 3.6055513 73 5329 8.5440037 | 133 \1C>^'.) 1 1 1 .5325626 14 196 3.7416574 74 5476 8.602325:! ! 134 17956 11.57.5s;569 15 225 3.8220833 75 5625 8.0(102540 i:!5 1 S225 11.6189,)00 IG 256 4.0000000 76 5776 8.7177970 136 1S4I)(; 11.6619038 17 289 4.1231056 ■ 77 5929 8.7749644 137 18769 11.7016999 18 324 4.2426107 78 6084 8.S3l7(i09 i;:8 moil 11.7173401 19 361 4.3585989 79 6241 8.8881944 i 139 19.!21 11.7.S08261 20 400 4.4721360 80 6400 8.9412719 ■ 140 19i;00 11.8321596 21 441 4.5825757 81 6561 9.0000000 141 lossi 11.8743421 22 484 4.6904158 82 6724 9.0.j53,s51 i 142 20164 11.9163753 23 529 4.7958315 ' 83 68S9 9.1 1 01. 336 143 20449 1 1 .95^2607 24 576 4.8989795 84 7056 9.1(551514 144 207.((; 12.0000000 ! 25 625 5.0000000 85 7225 9.219:)4I5 145 21025 I2.i:i41594() 26 676 5.0990195 86 7396 9.273,; 185 146 21316 12.0830460 27 729 5.1961524 87 7569 9.3273791 147 21(109 12.12 i:i.^)57 28 784 5.2915026 88 7744 9.3H08315 I 148 21904 12.16.-)525l 29 8-U 5.3851648 89 7921 9.4339811 149 22201 12.2065556 30 900 5.4772256 90 8100 9.)^i(i8330 150 22500 r2.24744S7 31 9(51 5.5677644 91 8281 9.5393920 | 151 22801 12.2SS2057 32 1024 5.6568542 ; 92 8464 9.5916630 1 152 23104 12.32^8280 33 1089 5.7445626 93 8649 9.613650-: 1 153 23109 12.36:13169 34 1156 5.8309519 1 94 8836 9.6953597 154 23716 12.4096736 35 1225 5.9160798 ■ 95 9025 9.7467943 155 24025 12.449.Si)96 36 129G 6.0000000 96 9216 9.7979590 ' 156 24336 12.4S999(;0 37 1369 6.0827625 97 9409 9..848S57S 157 24619 12.5299641 38 1444 ' M14U40 i 98 9604 9.>i9949l9 15-^ 24961 12.5698051 39 1521 6.2449980 99 9801 9.949S744 , 159 2528 1 12.6095202 40 1600 6.3245553 100 10000 'O.OOOUOOO 160 25600 12.6491106 41 1681 6.40312-12 101 10201 10.049875t; 161 25921 12,6885775 42 1764 6.4807407 : 102 10404 10.0995049 ; 162 26214 12.7279221 43 1849 6.5574385 103 10609 10.1488916 ' 163 265(19 12.7671453 44 1936 6.6332496 104 10816 10.1980390 164 2r.8'J6 r2.b;Mi2485 45 2025 6.7082039 105 11025 10.2469508 165 27225 12.8452326 46 2116 6.7823300 106 11236 10.2956301 166 27556 12.8840987 47 2209 6.8556546 107 11419 10.3440804 16? 278.S9 12.9228480 48 2304 6.9282032 108 llGGt 10.3923018 168 28224 12.9614814 49 2401 7.0000000 109 11881 10.4403065 169 28561 13.00000''0 50 2500 7.0710678 110 12100 10.4880885 170 28900 13.0.3SJ048 61 2601 7.1414284 111 12321 10.5356538 171 29241 13.0766968 52 2704 7.2111026 112 12514 10.58.50052 172 295S4 13.114.^770 53 2809 7.2801099 113 12769 10.6301458 173 1 29929 13.1.-)29464 64 2916 7.3484692 114 12996 10.6770783 174 i :i027() 13.1909060 65 3025 7.4161985 115 13225 10.723S053 175 30625 13.22,S7566 66 3136 7.4833148 116 13456 10.7703296 176 30976 13.2664992 67 3249 7.5498341 117 13689 10.816()5;i8 177 31329 13.3041347 68 3364 7.6157731 118 13924 10.8627805 178 31 ('.8 4 13.3416641 59 3481 7.6811457 119 14161 10.9087121 179 32041 13.3790882 60 3600 7.7459667 120 14400 10.i»544512 1 ISO 1 32400 13.4164079 OF NUMBERS FROM 1 TO IGOO. 3 No. I Sqnnrc. 181 182 I8;{ 181 18-) 18f; 187 i 188 I 18'J 190 15)1 I l'.)2! lii;?! 11)4 i 111.-) i i;)(; j 197 I 1 98 i 1 99 j 2110 ! 201 I 202 I 2();{ 204 20") 2oi; 207 208 209 210 211 212 2l;! 214 21;-) 21() 217 218 219 220 221 222 22;) 224 225 220 227 228 229 2;iO 2:il 2:{2 2:i;i 2:i4 2:i5 2;5(; 2;{7 2;!,s 2:!9 240 :r27(;i :iri2i s;{».^9 :{:i8.-)(; ;it22r) .'M.V.li! ■ii9i;9 3-)721 ;!('.! 00 ;i(i48: :i(;8i;4 37219 ;i7(;:if> •is(i2:) ;!8ii(; 38809 :'.9204 391101 40000 40101 40^01 41209 4U;!(i 42025 424;;(; 42819 4. rid I 4:ii;si 44100 4 1.VJI 4 1914 45::(i9 4J79r, 4(122:) 4(;(ir)(i 470S9 47524 479(11 4.S400 488U 492S4 49729 r)OI7(i 50(!25 51(i7ti 51529 5P>4 5244 1 52900 5:i:{(il 5.;>24 5I2S9 5 IT 5(1 5.'):;25 5:(;9(; 5(ii(;9 5t;(;i4 57121 57(i00 Sqrp. root. i;!.45:;(;2io 1;{.490737(1 ' 13.527749:i ' i3.5(i4i;(;oo '■ i;{.(;oi4705 ! 1 ;).(;;;-< 1.^17 . 13. Cm 1791:; 13.7113092 : 13.7477271 i:!.7si()i^>! 13.^202750 13.85(1 10i;5 13.S924400 13.92S3SS3 i 13. '.Ill 12100 1 J. 0000000 ; I4.035i;(;ss 14.0712173 1 l.lOCM.'idO 14.1 121 3,-)(; I 11.177 1 109 ll.212(i70i 14.2l7.'^('(i-< 14.2S285(19 11.31 7S2 11 I4.;i52700l U.3s7l!»I.i 14.4222051 I4.45(;s,{2:! 14.491 37ti7 ll.525-!;!90 M.5.;0219-' 14.5915195 l4.(;287:!^-i i4.(;(;287s3 I4.(i9(;9;;85 ll.7.!09199 14.7ii4.^231 1 i.79st;is(; M.s;;2;!97u | I4.8(;(i0(;s7 1' 14.H9Si(it;44 II 14.9331845 li 14.9(;:'(;295 I! 15.0ii00000 1! 15.03329i;i |. I5.()(;(;5i92 !i 15.099t;i;89 |i 15.l:t274(iO I 15.1057509 ! 15.23154(12 ti 1 5. 21143375 I ; 15 29i05^5 ;. 15.329709; , 15.31122915 i 15.3948043 15.11:72480 15.459(1248 15.4919334 Xo. 211 242 243 214 245 2u; 217 248 219 250 251 252 253 254 255 250 257 258 259 2(10 2(11 2(12 2(13 2(14 2(15 20(1 2(17 208 209 270 271 272 I 273 274 275 270 277 278 279 2^0 281 2H2 2S3 284 385 2S0 287 288 289 290 291 292 293 294 295 29il 297 298 299 300 Square. I Sqre. root. 580-11 585114 59049 595.1(1 (10025 (1051(1 01009 01504 02001 02500 03001 03504 0I0O9 0451(1 05025 0553(1 (l(!0l9 00504 070s I 07000 0S121 (ISO 1 4 091(19 09(19(1 70225 70750 712S9 71824 72301 72900 73 1 1 1 739St 74529 75070 75025 70170 70729 7 7 2^4 77811 78100 7H901 79524 800.^9 80050 81225 81790 82:!(19 829 1 1 83521 84100 84081 8520 I 85S19 801.10 8(025 87010 88209 8880 1 89401 90000 1; :I174( 15.550.3492 15.58S4573 15.0204994 ; 15.0524758 ! 15.0S43871 ! 15.7102330 I 15.74S0157 I 15.7797338 15.811.3883 15.S429795 15.J<745079 15.9059737 15.9373775 15.9(1^7194 10.0000000 10.0312195 10.0023781 10.0934709 10.1215155 10.1551944 10.1^<(11141 10.2172747 10.248(4708 10.27SS2OO 10.30950(14 10.;!IOi;!40 10.3707055 10.4012195 10.4310707 10.4020770 10.4924225 10.5227110 10.5529454 10.5831240 10.0132477 10.0433170 10.078.3320 10.7032931 10.7332005 10.7030540 10.7928550 10.82200.38 10.8522995 10.^,s 194.30 10.91 15:!45 10.9110743 10.9705027 17.0000000 17.029.3804 17.0587221 17.0SS0O75 17.1172428 17.1404282 17.1755040 7.2010505 17.23.30879 17.2020705 17.2910105 17.32050H1 No. 301 302 30.3 301 305 300 307 30.S 309 310 811 312 313 314 315 310 317 318 319 320 321 322 323 324 325 32(1 327 328 329 330 331 332 333 334 335 330 I 3.37 , 338 3;!9 . 340 311 I 342 ' 343 i 344 345 i 340 347 ! 348 1 349 i 350 I 351 I 352 i 353 , 354 I 355 I 350 357 1 358 ! 359 I 300 Sqnaro. 90001 91204 91809 92410 93025 9303(5 94219 94804 954^1 90100 90721 97341 97909 98590 99225 99850 100489 101121 101701 102400 103941 1030S4 104329 104970 105025 100270 100929 107584 10M24I 1 08900 109501 110224 110S,S9 111550 1 1 2225 112890 113509 114214 114921 115000 110281 11G904 117019 118330 119025 119710 120409 121104 121801 122500 123201 123904 1 24009 125310 120025 120730 127449 128164 128881 129000 Sqre. root. 17.3193516 17.3781472 17.4068952 17.4355958 17.4042492 17.4928557 17.5214155 17.5499288 17.5783958 17.0008109 17.0351921 17.6035217 17.6918060 17.7200451 17.7482393 17.7703888 17.8044938 17.8325515 17.8605711 17,88854.38 17.9104729 17.9443581 17.9722008 18.0000000 18.0277504 18.0554701 18.0831413 18.1107703 18.138.3571 18.1059021 18.1934054 18.2208672 18.2482876 18.27560)69 18.3030052 18.3303028 18. ,3575598 18.3847763 18.4119526 18.4390889 18.4(161853 18.40.32420 18,5202592 18.5472370 18.5741756 18.6010752 18.6279360 18.6547581 18,6815417 18.7082869 18.7349940 1«. 76 16630 18,7882942 18.8148877 18.8414437 18.8679623 18.8944436 18,9208879 18,9472963 18,9736660 4 TABLE OF SQUARES, SQUARF. ROOTS No. Square. 1 30:12 ! Sqre. root. No. Squiirc. 177241 Sqre. root. No. 481 SquiM'o. 231.301 Sfjrc. root. 19,0000000 421 20.5182815 21.9317122 ;{(;2 131044 19.0202970 422 1 78084 20.54 2(i38(; 482 232324 21.9544984 :^(;8 1317t;9 19.0525589 423 178929 20.5009038 483 2332S9 21.9772010 3G4 1 32-19(1 19.0787840 424 179776 20.5912003 ! 484 2:54256 22.0000000 3(i5 133225 19.1049732 425 180625 20.0155281 4S5 2:55225 22.0227155 ;W() 13395(i 19.1311205 426 181476 20.0:!97074 480 2:56196 22.0151077 :^(;7 131(189 19.1572441 427 182329 20.(iO:!97S3 1 4S7 237109 22.0i;s07t;5 H()8 135t24 19.18;!3201 428 183184 2().0>!81i;09 ' 4S8 2:5-!l4l 22.0907220 ;{ti'j i:>(;i(;i 19.2093727 429 181011 20.7123152 : 4.S9 2:19121 22.li:;:5U4 ;J70 13t;90(l 19.235:;8I1 430 1MJ900 20.7:i01414 490 240100 22.1:559130 371 137041 19.2013003 431 185701 20.7005395 491 241081 22.1585198 H72 138384 19.2873015 i 432 180024 20.7840097 492 212004 22.1810730 373 139129 19.:U3207'> 433 187489 20.8080520 j 49:5 24.3019 22.20:50033 374 13987() 19.3390790 434 188350 20.8320607 ; 494 244036 22.2201108 375 140(;25 19.3049107 : 435 1 89225 20.85005:)0 1 495 245025 22.2485955 37G 14137(i 19.3907194 430 1 90096 20.8,<^00130 i 490 2I()016 22.2710575 377 142129 19.4104878 437 190909 2(1.9015150 ! 497 217009 22. 29:; 4 908 378 142,S84 19.4422221 438 191814 20.!t2>il495 498 218001 22.3159i:;0 37 i) 143041 19.4079223 , 439 192721 20.952;{2(;8 499 21901)1 22.:5:i,- 5079 3.S0 144400 19.4935887 i 440 1 93600 20.9701770 500 250000 22.;5(iO(.798 381 145101 19.5192213 ! 441 194481 21.0000000 501 2.-, 1001 22.38:50293 382 145924 19.5448203 442 195:564 21.02:!7900 502 252001 22.40,V5505 383 14G089 :9.570:!S58 443 190249 21.0475052 50:5 25:;i)i)',) 22.4270015 384 147450 19.5959179 i 444 197i;« 21.07i:i075 501 25|i)l,i 22.449941:5 385 148225 19.62141(;9 ; 445 198025 21.0950231 505 255025 22.4722051 38(1 148990 19.(;4(;s827 440 198916 21.11.S7121 500 2500:50 22.4944438 387 149709 19.0723150 447 1 99809 21.1123745 507 25 < 049 22.5100005 388 1 50544 19.0977150 ' 448 200704 21.1000105 50S 2.')8004 22.53sso;j:5 38'J 151321 19.7230,s29 449 201001 21.1S90201 509 2590-<99 407 1(;6049 20.1742410 407 218089 21.0101828 527 277729 22.9504800 ' 408 166404 20.1990099 i 408 219024 2l.(;:5:5:5077i 528 278784 22.9782500 409 107281 20.2237484 ' 409 219901 21.6504078 i 529 279841 23.0000000 410 108100 20.2484507 I 470 220900 21.0794834 i 5:10 2S0900 2:5.0217289 411 108921 20.2731349 471 221841 21.7025:541] 531 281901 23.01:54372 412 109744 20.2977831 472 222784 21.7255610 i 5:52 28:5021 23.0051252 413 170509 20.322J014 473 223729 21.7485632 6:53 28408!, 23.0867928 414 171390 20.3409899 474 224676 21.7715411 5:54 285150 23.1084400 415 172225 20.3715488 475 225625 21.7944917 5:S5 286225 23.1.300670 416 173050 20.3960781 476 220570 21.8174242 530 287290 23.15107:58 417 173889 20.4205779 477 227529 21.8403297 6:i7 2><8309 23.1732005 418 174724 20.4450183 478 228484 21.80:52111 538 2S9444 23.1948270 419 176561 20,4694895 479 229441 21.8860080 539 290521 23.21037;« 420 176400 20.4939015 480 230400 21.9089023 510 291000 23.2379001 OF NUMBERS FROM \ TO IGOO. No. Sijuarf- Sqre. root. No. ! fioi S (iinrc. Sqre. root. 1 24.515:501:4 No. Square. S \\-('. rtif t. 1 1 '25.7099'2j'i^ -25.729:1.1^7 541 292tiSl 2:!. 259 1067 ;4(H201 661 4:56921 512 29:i7(i4 i 2:-!.2.'<(l>-9:{5 (i02 :;(;2404 24.5:55(188:4 ' 662 4:5.s244 5<:{ 294^49 ■ 2;l;io2.S(;o4 1 i (;o:{ :;(;:56(i9 24.55(;058:5 66:4 4:59569 25.74,s78!,>i 1 , 514 2959;!(; ' 2;{.:!'J:^(i7(; i ' (;o4 :5(;isi(; 24 5761115 664 440896 25.7(lsl97a 545 1 297(125 2:!.:!i52:!5i i 005 ;5(;6025 24. 59(17 I7S 665 4422-25 25.78759'ji^ 54 1; 1 2'.)Slli; 2;{ ::i;i;(ii29 ! (lot; ;i(;72:5t; 1 2l.6170i!7:5 666 44:5556 25.>^0(197^'^ 647 1 2992(19 2:;. :!->():! 11 007 :5(iS4 19 24 (;:57:!700 667 444S89 25.826:5 l-^l ' 548 i .•iud.'ioi 2;..i(i'.i;;99s : (108 ;S(19i:64 1 24 .657 (.560 668 446224 25.84569*^0 , 54 'J :iOiioi 2:{.4:iii7i90 (509 :570.s8l ; 2I.677!)'254 669 447561 25.8650:5-i;^ 550 i .•{02500 2;i.l5207S8 (ilO ;572100 121.69.-1781 670 44S900 25.8H4:55'^2 ; 551 :!o.'!i;oi 2:5.4 7:f:!s92 (111 ;57;4:52i ^ 24.71^1142 671 450-24; 25.90:16677 ! 552 ;iOi7(ii 2:!.49l(;s02 612 ;5745i4 ; 2i.7:5si;:5:i8 672 4515st 25.92296-S 55H : ;{(i.")S09 2:!.51.")!i,')20 i 6i;5 :5757(;9 1 2l.75ss:-l6S ; 67:5 452929 25.91224-^5 ,| 554 :{(iii9i(; 2;!.5;;72(i4(; I 614 ;!76996 21.77!i(i2:;4 674 454276 •25.9615100 555 ;;()>'()25 2;!.5.')Si;{so | 615 ;57s225 21.79919:55 675 455(125 25.9S076-1 55(i ' .•{(lOll'.C. 2:5.579(;522 616 1 1579456 21. Si 9:54 7:5 676 456976 26.0(10(1000 ' 557 1 .•',10249 2;{.t;00S474 617 :580(;^9 24.s:59i,^ir 677 45.s:i29 -26.01 9'2^2-:|7j 558 i ;;ii:!i;4 2;!.ti2J02:ii; 618 ;581921 j 24.S596058 678 459(lS4 26.0:!sj:5-^l ,1 55i» .•U24S1 2;{ (;i.;i80s 619 ;5h:-5161 ' 2 I. .^797 106 679 461041 ' 26. (157(12^'! !i 5(i0 ' :ii;;(;oo 2;!.i;i;i:u9i < 620 :SH4400 21.S997992 680 462400 2(1.076-'0yt> ! 5til :il472l ; 2:!.(i>^5i:;su i 021 :!s56 11 ' 24.919-^716 6,Sl 46:1761 ' 26.09597*>7 1 5(12 ;!15,s|l 2:!.7iMi.-,:;92 (122 :iS(i>>si ■ 2l.!i:i9927S 682 4651-24 26.1151207 , , '•■* :!i(i9i;9 2:5.727(;2io i 1 62;^ ;5SS129 • 24.9599679 68:5 4664^<9 26.1 154 26f'7 , 5ii4 •11«09(; 2.i.7lNlS42 i 1 624 ;5S9:576 i 24.9799920 684 467856 26.15:1:19:57 ! 505 :{19225 . 2:i.7(i9728(; : : 625 :5!)0625 ; 25.0O0()(l0O 6«5 4692-25 '26.17250-47 i 5li(; :!20:!.".i; ' 2:!. 79117545 1 {i-H\ :59l876 1 25.0l',i!l920 1 686 470596 26.1916017 j 5ti7 ;'.214^9 1 2;!.Sll7(il8 | 1 627 ;h9:5129 ; 25.o:;99(;8i 687 471969 26.21 068»f^ , 5(i.S :i22(;2i ' 2;!.8.".27.")0i; ' t 628 :59i:584 25.05992S2 1 688 47:5:514 26.22975-41 ,1 5(1 ',» ;;2;!7i;i 2:i.>-.-,:iT-jo9 ! i 629 ;595611 25,079S724 689 474721 26.24^8005 570 ;!2 19(10 ' 2:{.s74i;72S , I 6:50 :596!»00 25.(i99S(lOS 690 476100 26.2678511 J 571 ;;2(;oti ' 2:{.8m:muiip:! : ; 6:; I ;;98i6i 25.11971:54 691 477481 26.2S68780 i 572 :!271S4 ; 2:i.91(;5215 i ! 6:52 :^9942 1 25.1:19(1102 ■ 692 47X864 26.:505'^929 57;i H'28;i29 ! 2;5.9;!7ii84 ; 1 6:5:4 4006S9 : 25.159191:5 69.4 4S0249 26.:524S9:52 574 ;i2947(; 1 2:i.9,-.s2971 j 6:54 401956 1 25.179:1566 694 4H 161-56 26.:5J:i'^7i)7 575 ;i:;o(;25 '■ 2:i.979i;-)7(i ! 6:!5 40:5225 ; 25.199206:5 695 4815025 26.:562S527 57il ;>;;i77i; • 2i.()(i(i()(ioo i 6:56 404496 •25.2190104 696 481416 26.:5818110 ! 577 ;);;2929 ■ 21. 020^21:; 6:!7 4(15769 25.2:5SS5S9 697 485S09 26.4007576 i 1 678 •!:!40S4 1 2I.OHli;!(Hi 6:is 407011 25.'25S(1619 698 487201 26.4196896 j ! 579 ;?;'.524l 1 2t.0(i2(lH8 ' 6:59 40S:52l •25.27S4I9:5 699 48S601 26.4:586081 1 ; 580 ;'.;!(!400 i 24.0s:ils91 640 409600 25.29S221;5 700 490000 26.4575i;-5l 1 581 :i;575(;i i 24. 10:19 110 641 410.-'Sl 25. ;5 179778 • 701 49I40I '26.4761046 : 582 8:58724 1 •24.124i;7ti2 642 412164 25.. •5:57 7 189 1 702 492801 -26. 495-2826 : 683 :4;;9.^S9 ; 24.145:!929 ' 64:4 4i:54l9 ■25.:557I447 7o;5 494209 -26.5141472 i 581 :141()5(; 24.1C>ti0919 i 644 4147:16 25.:5771551 ; 704 495616 26.5:52998;} 585 :M2225 24.1^il77:i2 645 416025 25.:596-^502 ! 705 4970-25 26.551«:}61 ' 58t; ;44:i:i9i; 24.2(i74:i(;9 64ti 417:516 25.41(15:501 706 4984:16 26.5706605 1 587 :il45(i9 1 24.22><0S'J9 647 418609 25.4:5111947 707 499849 26.5S94716 588 ;i45744 24.2if^7ii:; (548 419904 25.455SJ41 708 501-264 26.6082694 689 :ii()92i 24.2(;9:i222 (149 421201 25.4751784 709 50-2681 26.62705149 590 :ii8ioo 24.-2.'^9915i; 1 650 422500 25.4950976 i 710 504100 '26.6458-252 591 ;ii928i 2t.:ilOI91(i 651 42:«01 25.5147016 i 711 505521 26.66458:5:4 ; 592 :;50i(ii 24.:!:iio,')Ol i 652 4-25101 25..-):542907 , 712 506944 26.68:5:5281 59;> :!51i;49 24.:!5i:)9i;! : 65:5 426409 25.55:18647 713 508;S69 26.7020598 ' 594 ;!,v2h:!(; 24.:5721152 654 427716 '25.57:1 r2:57 714 509796 26.7207784 : 595 :{54025 2t.:{92t;2iH I 655 429025 25.5929678 715 511225 26.7:5948:49 59G ;:«52i(; 24.4i:iiH2 1 656 4:^0:4:56 25.6124969 716 512656 26.758176:4 597 ; ;i5(;409 24.4;i:55s:{4 ! 657 4:51649 • 25.6:520112 717 514089 26.7768557 598 :-i57i;o4 "24.4540:585 j {}M 4:42964 25.6515107 718 515524 '26.7955-2'20 599 :{,'i8soi 24.474 47(J5 i 659 4:54281 i 25.670995:4 719 516961 •26.8141754 (iOO i i^C.OOOO •24.49»S974 ! 660 4:55600 ' 25.6904652 720 1 518400 26.8:5-28 157 TABLE OF iJQtTARES, SaiTARR ROOTS No. Square. 519841 1 Sqre. root. ; 26.8514132 No. 781 Sqimrc. 609961 Sqrp, i't»ot. No. Square. Sqre. root. , 7:^1 27.9163772 811 7072S1 29 0000000 722 521284 26.8700577 782 611524 27.!t612il29 812 70-<96l 2!». 0172:563 72:5 522729 26..S^'S(;593 783 6130,x9 27.9-<21372 813 710619 29.03111123 724 521176 26.9072181 78 1 614656 2-<.00()(i0ll0 841 7123:16 29,051(17Sl 72iJ 525625 2(;.925S210 ' 785 616225 2S. 01 7-^515 845 7 11 025 29.0i;,s.s-i:57 i 72G 527076 26.9M3872 786 617796 2.-<,0:55tl915 816 715716 29,0-^0lo : 742 550564 27.239iI7ti9 802 6i;i201 2S.:51!'6015 862 7 1:50 14 29.:559.>^365 : 743 552019 27.2580263 803 644S09 2>^,33725I6 ] 86:5 741769 29.:576S,;i(5 , 744 55353(1 27.2763634 ; 804 646416 2S.351S0:5S 864 71619,1 29.:i93-^769 745' 555025 27.2!M68,S1 805 64M025 2-^.:!7252l9: 865 74S225 29,410'^-<23 746 556516 27.3130006 : 806 6496:5i; 2-<, 390 1391 866 74995(5 29,427.-<779 747 558009 27.331.1007 : 807 651249 2H.. 1077454 i 867 75l6-!9 29,414.^637 748 559501 27.34958^7 : 808 65286 I 2^,425:5108 868 75342 1 29,461.s:i97 749 561001 27.3ti7S644 809 651IS1 2s. 44 2925:1 869 755161 29.17S.^059 750 562500 27.3,siH279 810 656100 2x. 160 10^9 870 756900 29,4957621 751 564001 27,4013792 811 657721 2^.47s0ill7 871 758011 29,5127091 ' 762 565504 27.4226184 812 659344 2S. 1956 137 S72 76o:is 1 29,529iI16l ' 753 567009 27.4408155 813 66091.9 2M.5I31519 873 762129 29.51657.34 754 568516 27.4590601 814 662596 1 2S.5:!06H52 874 76:1876 29,56:14910 755 570025 27.4772633 815 661225 2S,54S201S 875 765625 29.5,^039.>^9 1 756 571536 27.4954512 816 W>:'>Hb\> 2S.5657137 876 767:576 29,5972972 ] 757 573049 27.51363:10 817 6(J74Si» 2S, 58:12 11 9 S77 76:tl29 26,i!14!^.-)8 758 574564 27.531 799.>< 81 S 669121 2s.f;ooi;99:i 878 770.S81 29.631 0i;i8 ' 759 576081 27.5499516 819 670761 2M.(;i,^ 1760 879 772611 29,6179:112 760 577600 27.5(;,S0975 820 672100 2S.6:{56421 880 774100 29,66179:19 761 579121 27.5862284 ' 821 674041 2^,65:!i)!)76 881 776161 29,6816142 762 580644 27.6013475 ; 822 6756S1 2^,0705421 , 8,h2 777921 29,69,^ ts!4 8 , 763 582169 27.6221546 ' 823 677329 28.fiS79766 883 7796>S9 29,715:5159 ' 764 583696 27.6405499 -i2t 67M976 . 28.7051002 8,><1 781 156 29.7:121375 765 585225 27.6586331 825 680625 2S. 72281:52 885 788225 29. 71 s9 196 '■ 760 586756 27.6767050 826 682276 2s'. 7102157 8m6 784996 29,7657521 ■ 767 588289 37.691764.^ 827 6S3929 2^.7576077 887 786769 29,7825152 768 589824 27.7128129 828 6.S55S4 28,7749S91 888 78S514 29.79932-^9 , 769 591.361 27.7308492 829 6S7241 28.792:5601 | 889 790:521 29.8161030: 770 592900 27.7488739 : 830 688900 28.S097206 ! 890 792100 29,S32.^678 ■ 771 594441 27.7668868 ] 831 690561 28.8270706 891 793SS1 29.8li)(;23I I 772 595984 27.7848880 i 832 6!)2221 28.«4I1102 892 795664 29,8(;r)3690 ! 773 597529 27,8028775 i 833 69:5'<89 28.8617394 893 797419 29,8831056 774 599076 27.8208555 834 695556 28.8790582 894 7992:56 29,899S328 775 600625 27.8.388218 835 697225 28.8963666 ' 895 801025 29,9165506 , 776 602176 27.8567766 836 698896 28,91.36646 1 896 802816 29,9:532591 : 777 603729 27.8747197 837 700569 28,9309523 ; 897 801609 29,9499583 i 778 605284 27.8926514 838 7022 14 28,9482297 \ 898 806101 29,9666481 i 779 606811 27.9105715 839 703921 28,9651967 1 899 808201 29.98:53287 , 780 608400 27.9284801 840 705600 28.98275351 900 810000 30.0000000 ; or NTTMBERS PROM 1 TO 1600. Xo. 901 Sqimre, Sqre. root. :^0. 01 00021 No. Sii'iiij'o. Sqrt'. root. ;5 1.0000000 No. 1021 Siiimre. Sqre roof. ! 31.95:50900 811S01 901 92:i521 : 1042441 902 8i:;(iO( ;-:o.o:!;!:ii4s 902 9254 14 :51.Oi0124S 1022 10 44184; 141. 9087:547 9(t;{ si 5 101) ;jo.oii»:i5wi 90.1 927.10!) ::!l.o:!22ii:i ' 102:! 1040529; :51.9S4:5712 9(1 i 8i72ii; ;!(!. 11005928 904 929290 :5!.ois:549i 1021 10H570 , ;!2. 0000000 90,'i SI 902.') .■U).os:;'jl7!) 905 9.11225 ;5I.O0 4M91 10'J5 1050025 :52. 0150212 1 90(1 S20.s.!ii ;{0.0!»9s:i;i9 : 900 9:i;5i5t; :51.0SO54()5 1021. 1052070 ;52. 0:512:548 1 907 822(;i9 ;i0.1104l07 I 907 9;S50s9 :5!. 09002:50 1027 ' 1051729 :f2. 0408407 908 H244(il :{0.i;i:!(t.iH:{ 908 9:i702 1 :S1. 11 20984 : 102; ; 1'|-)07S4 :52. 002 4:591 909 S2(;2S1 MO. M 90209 i 909 9:i'<901 :{1.12S7048 1029 ! I0,')88 4l .'52.0780298 910 828100 :io.l0O2O0:{ i 970 910900 ;5i.i4is2:!0 lo:50 1000900 ;{2. 09:50 i:ii 911 829921 :U).l.s'27705 i 971 942S41 :-!l.I00s729 lo:ii 1 00290 1 :^2. 109 1877 912 8:!1741 M0.19:):;:!77 972 914 7SI .■51.1709145 lo:52 1005021 ;52. 1247508 9l:{ 8;;;{5i;9 :!0.215s-<91l 97:! 910729 :il. 1929479 10:5:1 10070S9 :!2.i4o;5i7;^ 914 8;i5.t9(; .■{0.2:{2i:i29 '. 971 91.S070 :il.20^!»7:5i 10:54 10091.50 H2.15.')8704 915 «;!7225 :{0.24M»i;(;9 975 9.>0025 .'51.2219900 1 0:55 107r2'25 :52. 1714159 91(1 M;i905(i ;!0.205l9i9 970 952570 :il.21099s7 ' 1050 107:5290 ;52.1S095.'49 917 8108-9 :!0.2s'.'()o79 ; 977 951529 :!1.250:i992 10:57 1075:509 :52. 202 1844 918 842721 :i0.29<5!4S ' 978 9504S4 :il .2729915 10:58 1077414 :52.21S0074 919 8(4501 ;{0.;!!50!28 979 95SI4I :!1 ,2-!-<;i757 1 0:19 1079521 :12. '2:5:55229 920 8lt)40l) :{0.;{;;i50i8 ' 9 SO 90010(1 ;il.;{0l9517 1040 I OS 1000 :i2. 2 190:^10 ' 921 848241 :^(».;!i79si8 9-'l 902:101 :ii.;!2o:n95 1011 10s:50Sl ;52. •204,5:5 1(5 922 85U081 ;io.:;o 11529 1 9S2 904;!24i ;^1.;!:!0S792 1012 10S570 4 :52.2S00248 92;{ 85l!)29 :^0.;i8o9i5i 1 98;{ 900289i :{i.;!52.s:ios 104:5 10S7S19 :42. 2955105 924 S5.)77() ;io.:i97:;o.s:! ' 9^1 90^250' :!1.;!0S77I." 1041 10'^99:50 ;^2.:5I098,S8 92;-) S55li25 :{o.4i:?.si27 1 985 970225 :!1.:!SJ7097 1 045 1092025 :^2.:4-20 4598 92ti S5747i; ;!0.4;i02181 1 980 9721 '.to: ;!I.40O0:iO9 1010 109111(5 ;52,:54l92:w 927 859.129 ;iO, 4 100747 9^7 971109 :i 1.4 10.5501 1047 1090209 :^2.:557:5794 92S 801 ls4 ;!o.4(;:ioit24 988 970114 :!1.4:!2 107:5 lots 109S:504 :52.:i7'2S281 929 SOiiOll ;!0. 47950 l:i 989 97.S121 :il.4is:!704 1049 1100101 :{2.:58S2095 1 9;)0 8(11900 ;i0.4!i590l4 990 9.S01()0 :il. 40 12054 1 050 1 1 02500 :52. 40:570:55 9;;i 8(ii)7(il :)0. 5 122920 ' 991 9820811 ;!1. 4801525 1051 1104001 :r2.4i9i;«i 9.S2 8(;8.;2i :^0.52.>^0750 992 9840(;4' :!1. 1900:115 1 052 1100704 :^2. 4.545495 9:!:{ 870 1S9 :!0.5I5()187 99;^ 9S00I9 :51.511!)025 105.! 110SS99 H2. 44990 1 a . 9;i4 872;{5i; ;!0.5i;i4i;!o 991 9sso:io .'51.5277055 1051 1110910 ;{2. 405:5002 i 9;!,-) 871225 :iO. 5777097 : 9!l5 990025 :51.5i:!0200 1055 111:50-25 .■52.1S070:^5 9:5G 87i;o9(; ;i0.59lll71 990 992010 .'51. .1594077 1050 11151:50 ;^2. 49015:^6 9;i7 8779(19 :!0. 01 04557 i 997 991009 :il.575:5O0S 1057 111 7^249 :^2.511.5:{64 9:!8 879<44 .10.0207.^57 , 998 99t;004 :^l.59li:5so i 1 0.)8 1 1 1 9:50 1 .'52.5209119 9:59 881721 ;{o.(i4;;ioo9 1 999 19»J,S001 :-5i.ooo9i;i:5 1059 1121481 ;52.542'2802 940 88;!(i00 :U).05lt|!94 looo 1000000 :51. 0227700 1000 ir2:!,;oo ;!2. 55704 12 941 885481 ,•50.07572:!;! 1001 1000201 :!l.o:5.s.-)840 1001 1125721 ;^2.57299 49 942 8.s7:i(;i ;!0.0920!,s5 ' 1 002 1004004 ;5!.054:5S:!0 1 002 1127844 :i2.58S;5415 i 94 ;i 889219 ;!((. 708:1051 lOlC! 1000009 :S 1.070 1752 loo:^ 1129909 ;12. 00:50807 ! 944 89ii;{ii ;^0.72i5>^:!(i : 1001 loosoio ;si.o-'5:i590 l(i04 11:42090 :52. 01 90129 1 94.-> 89.S025 ;io. 740.^52:1 ; 1 005 1010025 ;51.7017:519 1005 ! 1:54225 .'52.0.'U;{:577 9ir, 89491.; .-10.7571 1:!0 looo loiO(i;;o :5 1.7 1750:50 1000 11:50:550 :12. 0490554 94, 890808 ;!u.77:i:!05i : 1007 1014049 :!l.7.i:52i;:5:! li'07 li:58l,i9 :12. 00 19659 948 89.S701 :!0. 7890080 10(H 101(5004 •51.7190157 1 008 1140024 :12.080209;{ 919 900001 ;io.8058i;{0 1009 101 SOS 1 ;51.7O170O:5 1009 1112701 :52.0955054 950 902500 ;10.S220700 1010 1020100 .'51.7801972 1070 1144900 :«.7 108544 9.t1 90I401 :i0.s:ix'.'s7!t 1011 1020121 :!1. 7902202 1071 1147041 ;«72(>i:^6:i 952 90(;;!()1 .so. 8.544972 : 1012 10241441 :^1. 81 19174 1072 1149184 ;«. 74141 11 95;i 90S209 ;10. 87009^1 i 101 ;5 1020109 ;5 1.8270009 107:5 1151:529 :^2. 7506787 954 910110 ;50. 8808904 i 1014 102S190 :^i.84:i'!()00 1074 115.5470 32.7719:192 955 912025 ;5o.9o;!074;^ i 1015 I0:i0225 ;^ 1.8590040 1075 11556^25 ;r2. 787 1926 950 9!a9H0 :^0. 9 192477 1010 10.T2250 HI. 8747549 1070 1157770 32.8024398 957 915849 ;^o.9:>5tioo 1017 10:54289 :^l. 8904.174 1077 1159929 ;r2. 81 76782 958 9177(i4 :10.95 15751 1018 1 o:5o:r2 1 ;^i.9oon2:5 1078 1102084 32.8329103 959 919081 :!0,9077251 1019 io:k^oi :S1. 921 7794 1079 1104241 .32.848i:«4 ! 9i;o 921000 ;40.98:-i8008 1020 1040400 :^1.9:^74H88 ; 1080 1100400 32.8633535 8 TACr-E OF t^QUAUliS, SQUARE ROOTS No. lOSl 1082 ioh;{ 1084 1085 108G 1087 1088 1089 1 0'JO 1091 1092 109;t 109-J lOUo 109li 1097 1098 1099 1100 1101 1102 llOii 1104 1105 HOC 1107 1108 1109 1110 1111 1112 1118 nil 1115 lllli 1117 1118 1119 U20 1121 1122 U2H 1124 1125 11 2G 1127 1128 1129 11 HO ii;u 1132 11H3 1134 1135 1136 1137 1138 1139 1140 ?(ini.ire, Sqrc. root. No. j Sqniirn. I ?(jrc. root. || No. j .S(|Uiirc'. i?qrp. ror/t 11085(11' 1170721 1172S.S9 1 1 750.')(; 1177225 11793:i(i 1I815G9 118;!7I-I 1185921 1188iU0 119l)2sl 11 92 KM 1191(119 119fis;;G 1199025 120121(i i2o;;iu9 12(»5(;04 1207.^01 TilOdOO' 1212201 1214101 121Gti09 121>-^8l(i 1221025 12232;;(i 1225-1-19 1227(1(;4 1229Sf3.4005f^02 :^3.4215499 ' ;«.4:i05070 33.4514573 33.4004011 :i3.4813:Wl r :13.4902084 I 33.5111921 : :«.5201092 ' .33.5410190 33.55592;i4 •i3.570s20(; :«.5857H2 33.0005952 ;{3.6 154726 I 33.6303434 [ :13. 6452077 ! 33.6000053 ! ;!3.0749105 : ;43. 68976 10 i ;53. 7015991 ! :-13.7 194:506 i 33.7340556 | :{3. 7490741 ' 33.7638860 I 1141 II 12 111;; 1144 1145 1146 1117 11 18 1149 1150 1151 1152 1153 1154 1155 11, -.0 1157 1158 1 1 59 1100 1101 1102 1103 1104 1105 1100 11(;7 1108 1109 1170 1171 1172 117;; 1174 1175 117(; 1177 1178 1179 11 so 1181 1182 1183 1184 1185 1180 1187 1188 1189 1190 1191 1192 1 1 93 1194 1195 1190 1197 1198 1199 1200 130I,s81 i:;oiioi i:;(h;ii9 i-3087:!t; 1311025 I3l3:;i0 131 50 09 i:; 17904 1320201 1322500 1321. SOI ;;3.7."80915 ' :;:;.79:;i9()5 3:;-80s2s:;o :i;;.82;;o09i :;:;.837s4st; :;:;. 85202 18 :;:;.807:;s84 :;:;.ss':i487 3:;.s'. i:i;;i7io 13:14025 I33o:!;;o 1338049 1.34 09041 i;;4:;28i! 13I560OI 1347921: i;;5(i2i4! i:;525(;9^ I:i54s9ii l:i57225; 1.359550: 1301889; i:;0422i! i:;oo5(;r i:;os9o(): 13712411 i:;t:;5s4: 1375929 i;;7827o| i:i80025i 1382970 i;;s5329 i:-187084! i;;9ooiii i;;92ioo: 1394701; 13971241 13994S9| 14018501 14042251 1400590 1408909; I41l:444' 14137211 MlOlOOi 14184811 1420.S04! 1423249| i425o:;oj 1428025! 1430416: 1432809 l4:-;5204 1437001 1440000 33.955S5:)7 :;:;. 9705755 :;:; 9-52910 :;4.(i(H)(i(Miii 34.01 17027 :;4.029:;9:io 34.0I40S90 34.0587727 ;;4,o7;;45oi ;il.0ssl211 31.i027s5s :;i.ii74i42 34.i32o:;(;:; 31.1407122 •;4.1013sl7 34.1700150 :;4.ii>oo42o ,34. 2052027 34.219S773 34. 2;; I 1-55 ;!4. 2 190,-75 34.2o:;o8;;4 34.27s27:;0 :)4.292-,>04 34.';o7i;;;;6 :;4.3220040 :;4.:;3i;5(;94 34.35112S1 :;4.:;o5(iso5 34.:;s022(i8 :;4 .39 17070 :;4.409:;oii 34.42:;s289 :;i.43s;;507 ;14 .4528003 34.407:1759 34.481 s793 :;4.49o;;700 ,34.5108078 34.525:1530 34.539S321 34.554:;051 34.5087720 31.5832329 34.5970S79 :{4.012i;U16 34.0205794 ! 34.0410102 1201 1202 1211:1 120 I 1 205 1200 1207 120s 1209 1210 1211 1212 1213 1214 1218 1219 1220 ]■'•>] 122 1 i 225 1220 1227 r22s 1229 i2;;o I2:;i 1 2:12 1233 1 2:14 12:15 12:10 1237 1 2:18 12:19 1240 1241 124 2 1243 1244 1245 1240 124 7 1248 1249 1 250 1251 1 252 1253 1 254 1 255 1 250 1 257 1258 1259 1200 1412401 1 1 1 ISO I 1 14720'.) 14191110 1 152025 1454 130 I45(;si9 1459201 1 lOlOSl 14 01100 1400521 140S944 147131)9 1473790 14711225 14 7S(150 I4S10S9 148:1524 1 185901 1488100 1490S11 149:i2S4 1 195729 1 198170 1500025 15(1307(1 15(l552!t 1507984 1510411 1512900 I 1515:101 ; 1517824 ' 15202s 9 1522756 1525225 15270!K; 1530109 15;;2044 i 15:15121 ' I5;i70oo i 15I00S1 ' 1542504 I 151504 9 1547530 ; 1550025 1552510 1 555009 1557509 1500001 1502500 1505001 1507504 1570009 1572510 j l57.-i025 ' 15775:10 15S004 9 ' 15S2504 15S5081 i 1587600 ' 34.6551160 3I.(109S716 31. OS 12904 :;i.O!»s7o:hi ;;4.713i099 34.7275107 34 .74 1 9055 ;;4. 75029 14 34.770-1773 ■54.7850543 31.7991253 :i4.si:i79()4 34.8281 195 34 8425028 ;;4.850s50l 34.8711915 34. s- 55271 ;;4 .8998507 34.91 4 ls05 34.9284984 :;4.9I2S984 3 1. 94 2S 104 :i 1. 957 1166 31.97! 1109 ; ;; 1. 9,-57 114 :V). 000(1000 35.0142828 j :;5.02s5598 | :;5.0i2s:;()9 :;5.057O903 35.07 13558 :;5.0s50096 I :i5.099-575 ;55. 1 140997 :;5.!28:i:ioi :15.I4 25508 35.15il7!fl7 :i5.17!0108 ;15.!S52242 35.1994318 35.21:10:137 ;!5. 2278299 35.2420204 35.2502051 35.270:1842 35.2845575 145.2987252 35.31 2SS72 35.3270435 35.;illl941 35.355:i:i91 ;55.:i094784 ;55.;;8:ioi20 :;5.3!»77400 35.4118024 :55. 4259792 35.4400903 35.4541958 35.4082957 35.4823900 OF Ni;.MBKU« FIIOM 1 To 1(500. No. I Squiire. SiH'm. root 2ill •Ju2 2ii:i •-'d I •2(iJ 2(1 1 i 2ti: 2i;s 270 271 272 27:5 271 27J 271) 277 27S 27'J 2S0 2Sl 2.S2 2S8 •1^1 2-j 2st; 2S7 2.-!.S 2.S'.) 2'JO 2'Jl 2112 2'J.! 2'.); 2;»J 2'Ju 2!) 7 21)8 2'.)S) ;{0J ;ioi .102 ■Mi :!i) I :{0.) :ioiJ :)07 ;{()s ;^io .'{11 ;{I2 ;^i;{ Hi 4 ;ii5 ;!i7 .'tis ;{ii» ;{2o I.V)i)l21 l.V.)2ull i.v.)7(i:ii» l'il)(l22.j ltil)27,')ti i(il),">2-!'J 1(!(>7.S21 IiilO.liil li;i2i)UO iii;:)iu it;i7:Hi li;20.')2!) i(i2.;()7ti li)2Jii2J lilJslTd \ lii:;ii72:> '■ l(i:i.;2si li;:;.)Sii Jd.iSIt);) lGi():)iU 1 i(;(;!:)2i ' llililO.S'J I llj ISil.jii lt;:>i2:i.'i lii.'):;7:M l(;."it>.M;) l(iai."y'.i ' l(i(JllUO , li!iilili". (;(»s:)s7(; ! ;i.j.(i2.i()2i;2 :;.).';:i:o.v.t.! ;i.').(;.')io-^ii!) :!.>.(;ii.iioin) ;!,'.. (;7iM2.V') :'..j. 7071121 ;:.). 72 11122 .'!.). 7^>.)I .!i!7 ;i:..7i.ii2:.s .;.').7i; ;io;).) ;>.'i.7770S7iI ;{.•). 70 loio.i I ;!.'). 80J027(! , ;;:•.>; is;)s:u ,!,■). ^.120 t.j 7 , o.ks |i;s;IiIiJ ;!.j.si;i)-(i2i ' :m.s7 17822 I .i.j.^ssTlO',) ! ;i,j.'.n)2i;ii;i .{.j.'.IJu.'iilOO .!.■). ',).;0 1881 :!!.oinoij .■;j.'j:)>;!002 .i.> 0722 11. J :;:).o-;(;i08t ;i.;. 00000(10 :U\ ■i;;8»i;2 ;!il. )277(J7l .•>i).oii(;i2(; :ii;.0.V)Jl28 ;)().()ii'.).!77i! ;iii.0i.!2.{71 .It) 007001.! ;il;. 1 100102 :u;.i2i78;{7 ;!i;.i.!8(;220 .Hi. IJ.'ili .■!(;.ii;o2S2i; ;{i;.is()io.-)0 ;!G.10:i0221 ;M.2077.M0 Ht;.221oi0(i :5G.2;{j;!4io H(J.2 101370 3t).2()2t;287 ."iO. 27071 i;{ .•{(;. 200 104; .Sli.:iO 12007 ;m..)18o:;oi) 3t;.3.U8042 i;:2i l.!J2 i32.i I.! 2 J l:!2.V I32il, I. 327 1328, 1320! l.VM) 1331; 1332: 1333 I334i 133.J, 133.;, 1.337 133S 1330 I310i 13U| 13121 1313; 13I.J I3ia i;!i7i 13 IS 1.3(0 13.-)(»' 1351; 1352: 1353: 1.35(1 13)5^ 1350: 135 7 1 135S1 1350, 13301 i:v;: 13021 13i;3| I3i;(i 13051 i30i;i 1307; 1.3(i8! 13001 13701 1371 1372i 1373] 1374 1375 1370: 1377 I37S: 1370J 13801 7(5011 1 7i:os( j 750320 752!t7t; I 755025 75S270 I 700020 7i;3584 ! 7i;02ll I 70s;)i)0 771531 ■. 774221 i 770880 770550 i 7S2225 I 78(8:); I 7S7500 j 7002(1 I 702021 I 705000 I 70S281 I 80000 I s0:!i;(0 I 8i)i;330 j 800025 I 811710 81 (100 817101 810S01 822500 825201 8270:K s:io.iOO !^:i]Mi] \ 830025 I 8 18730 I 811(10 8(4101 ; 810SS1 j 8 40000 852321 8550 4 4 857700 800 lOi; 803225 80505t; 808i;h0 871424 874101 87i;ooo 870041 882,38 [ 885120 1 S37870 i 800025 80337i; I 800120 S0SS8 4 ' 0010 11 ; 004400 j 30.3(55(;37 30.3503170 3i;. 3730370 30.3SOS10S 3i;. 1005 (01 .3ii.ll 12820 30.(JSiH12 30.4(17313 30.4,>5(523 30.4001050 30.182S727 30.40 ;5752 .30.5102725 ■.2300(7 ).{70518 ■.5133SS )05,)103 No. S.iiiare. r80S2:i ;{0.5023(si» 3i.(;o;oio( 30.oiooi;i;8 ;{0.(;333H1 .io.t;(>iooi ( 30.i;i;o,;o5i; 30.0 7 12 (It; 30.087872(; 30.701 (osi; 30.7151105 30.72S7353 3i;.7(231i;i :{i;.75505l!) 30.7005520 30.7.131483 30.7007.(00 30,81 0.32 (i; 30.8230053 30.837(800 30.8510515 30.80 k; 172 .•{0.8781778 30.8017335 30.00528(2 .30.018S200 30.0323700 30.04500,; 4 .3i;. 050 (372 30.0720031 30.0801840 37.0000000 37.01.35110 37.0270172 37.0(05184 37.0540140 37.0675000 37.0800924 37.00(4740 37.1070500 37.1214221 37.13 1«803 37.1483512 .381 ! 3s2i 3S3! 381, 3 ■'5 3S0, 387 i ,388 ' 3 so: 300 .301 : 302 i 303 30 (j ,i;)5; 30(i I 3o;: .308 300 : (00, 401 i 402: 40.3 i 401, (05 40 ; I 107, (08 400 (lOj (11 412 41.! 414 415 410 417 118 (10 420 421 422 42.! 424 425 120 427 428 420 430 431 432 433 434 435 430 437 438 CiO 440 1007101 100002 4 1012080 1015(.)0 1018225 IO2OOO1; 1 0237i;0 10205K 1020321 1032100 1034 18! I0370il( 10(01(0 10 (.3230 10(0025 10(8H10 1051000 1 05 1 (0 1 1057201 1000000 1002801 1 00.500 ( 100S(00 1071210 107 025 107i;S!0 io7o;(o 10S2104 I0<,2S| 1 0S8 1 00 1000021 10037(4 1000500 1000300 2002225 2005050 2007880 2010721 2013501 2010100 2010211 2022081 2024020 2027770 2030025 2033 470 20,30320 2030181 20420(1 2014000 20477GI 2050G24 2053489 2050350 2059225 200200G 2O040G0 20(i78i( 2070721 2073000 Sqre. root. ;!7.1(;i808» 37.1752000 37.1887079 37.2021505 37. 21. ".,5881 37.22.)0200 37.2224480 37.2.>58720 37.2002003 37.2827037 37. 20,; 1 124 37.3005102 37.32201.)2 37.330.309 1 37.3100088 37.3030831 37.37i;4032 37.3S08382 37.40,32084 47.41057.38 37.4200345 ,37.4 432004 37.4500410 37.40008S0 .{7 .4833200 37. 4000005 37.5000087 37.5233201 37.5,300187 37.5(00007 37.5032799 37.570.5885 37.5808022 37.0031013 37.0104857 37.G207754 37.0430001 37.0503407 37.G0001GI 37.G828874 37.0001530 37.7004153 |37.722G722 ! 37.7,350245 137.7401722 137.7024152 37.7750535 37.7888873 37.8021163 37.8153408 37.8235606 37.8417759 37.8549864 37.8681924 37.8813938 37.8945906 37.9077828 37.0200704 37.0.3(1535 37.'.)4;33I0 io TABLK OF SQUARES, SQUARE ROOTS No. nil 1112 I4i:t 1441 1445 144t; 1447 1441 1449 1450 1451 1452 1453 1454 1455 145G 1457 145S 1459 1460 1461 1462 1463 1464 1465 1466 1467 1463 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1431 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 87'.>:!ti I 2IIH22I9 20H5i:U) 2088025 2090!II6 20t»3H()l> 201)6701 2001)601 2102500 2105401 2108301 2111209 2114116 2117025 21190:!(; 2I22S49 2125761 21 2868 I 2131600 2131521 2137444 2140361) 2143296 3146225 2149156 2152089 2155021 2157961 2160900 2163841 2166781 2169729 2172676 2175625 2178576 2181529 2184484 2187441 2190400 2193361 2196324 2199289 2202256 2205225 2208196 2211169 2214144 2217121 2220100 2223081 2226001 2229019 2232036 Sqrt'. nxit. 3:.9iio:.i).')S 37.97:ti;7.'il 37.9S6><;!1)S 3H.()I)II(I0I)() 3X.0131556 3M 026:iO(i7 3-<.():{9l5;!2 38.0525:)r)2 3-^. 0(1573 J6 3S, 0788655 38.01)19939 .38.1051178 3S. 1182371 38.1313519 3-<.l4ll622 3.S.15756S1 38.170661);! 38.1837(;62 3S.196S,)H5 38.209916;; :W. 2230297 38.2361085 38.2491 S29 ;-{8.2ii2252i; 3S. 2753 184 38.2883791 ,38.30113(10 :iS. 314 1^-81 :^8.;!275;{5s 38.3405790 3S.:{536178 38.3666522 :58. 3796821 ;H8. 3927076 :«.4057287 38.4187454 38.4317577 38.4447656 :^8. 457 7691 38.4707681 38.4837627 :^8,49675:J0 38.50973110 ;^8. 5227206 38.5356977 :^8.5 186705 :iS.56l6;<89 38.5746030 38.5875627 :^8.6005181 38.6134691 33.6264158 33.6393582 38.6522962 No. 1 ID.-) 149:i I 197 1498 1499 1500 1501 I 1502' 1503 1504 1 505 1506 1507 1 508 1509 1510 1511 1512 1513 1511 1515 1516 1517 1518 1519 1 520 1521 1522 1523 1524 1 525 1526 1527 1528 1529 1530 1531 1532 1533 15,4 15;{5 1536 15:57 I5;i8 15.59 1540 1511 1542 1543 154 4 1545 1546 1547 Si|iiiiro. S]rc'. root. 2-.!;5')025 : 22;!Mi)i(; ' 2211009, 2241001 22170(11 ! 2250000 j 225.3001 22511001 ' 2259009 i 22620 1 lij 2265025 ; 22(i 2:101289 2;;oi:w4 2307:561 2310100 2313111 2:516181 2:! 19529 2322576 2:525(;25 2328676 2331729 2:534781 2:537811 2340900 2313961 2317024 2:550089 2:553156 2,556225 2359296 2362369 2:^65444 2:^68521 2:571600 2374681 2377761 2:580849 238:59:56 2387025 2:W0116 2393209 No. 3-<. 6652 299 :!-<.(;7><4:5 ;5y. 70 10050 .38.7 1 6921 4 :5S.729>^:5:!5 .38.7427412 :i8.755(i|l7 :18. 7685 139 , :S8.7.sll3'<9 3,>^.71)i:,29l ' 3^^.^0:52158 ; ;5s.820():i78 :!8.s;!'J:)7.-)7 ! 3H.?<15s49l I ;!S.M5,>^7IS1 I ;58. 87 15831 | .5S. 8811 142 3-i.8;)7:!ii06 :58 9101529 3S. 9230009 '■ :i'^.9:;5>!i47 1 ;^8.9i,S68ll I 3S, 96151 91 ! 3x. 974,3505 1 .38.9871774 ' 39.0000000 1 39.0128181 ' 39. 025(5326 :i9.0:H8JI2(M 39.0512483 I 39.0640199 39.076817:5 :!9. 08964 06 :!9. 1024296 :59. 1152114 ; ;r.). 1279951 i 39.1407716: ;59. 15:551:^9 I :{9. 1663 120 ' 39.1790760 39.1918:159 : 39.2045915 39.2173131 39.2300905 39.2128337 39.2555728 39.2683078 39.2810:587 39.2937651 39.3064880 :59.3 192065 39.3319208 1518 1519 1550 1551 1552 1553 1551 1555 1556 I 1557 ! 1558 1559 ! 1560 1561 15(52 156:; 1561 1565 1566 1567 1568 1569 1570 1571 1572 1573 1571 1575 1576 1577 1578 1679 1180 1581 15-12 1583, 15S4 I 1585 15,86 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 16 yO 8i|iiurr. 2:i96;50 1 2:599101 2102500 2I0,'m;0I 210^70 4 2lll-<09 211 1916 2I1S()25 2l2Ii:5(i 2 12 12 19 2127:564 24:50 1>1 2i:5:;600 2436721 2i:!l)>^l4 2112969 21160% 2119 ::!5(i ! 2|,V,|S9i 245S621 ! 2.|.il76I I 2tr,l900 2l'i80ll I 2171184 i 2174:519; 2177175 2|S0(;25 2|8:;776 2l8(i929 2I900-S4 2493211 2196400 2199561 2.->02724 2505S89 2509056 2512225 2515:596 251S569 2521714 2521921 2528100 2531281 25 5446 1 2,537619 25108156 2511025 2517216 2550109 25,53604 2556S01 2560000 Siit'i". mot. 31).:51I631I :!9.:;573:!73 39.;57()0:591 39. .3^27373 } :!9.395I3I2 I 39.1081210 3'.i. 420^067 I 39.433 MH3 I :;9.4ii;ii;58 I 39.458s:59:5 | :!9. 4715087 ;59.4SII7I0! 39.1968:55:5 ! :!9. 509 1925 ; :59.522M57 39.5 517918 ! :!9.5l7i:!99! :59.5i;OOS09 ; 39.5727179 :;9.5,s,-,:5508 | :;9. 5979797 i ;59.(;;o604i) { 39.62:52255 | 39. 6:!.)8 124 ;59.6I8|552 39.(5610640 :!9. 157:56688 :59. 6^62696 :!9.(598si;i;5 :59.7 114593 ,39.72 10 181 39.73(56:529 :59. 7492138 :59.76 17907 39.774:5636 39.7S69325 39.7991976 :S9.8l205-<5 39.8241155 159.8376646 39.8497177 ;59. 81522628 39.8748010 39.8873413 39.8998717 39.9121041 :i9. 92 19295 .39.9374511 :59. 9 199687 ;59. 9624824 39.9749922 39.9874980 40.0000000 TABLE II. a. AREAS OF CIRCLES, FROM c', TO 150. [Adiandni; by an Eighth.] Diam. Area. .00019 Uiam. Aren. Dinm. Area. Dlam. Area. Dinm. Area. Vl 4. 12. .500 1 10. 78.54 16. 201 .002 22. 380.134 1 An*!*" •? ■H 13.304 ■H 80.5157 ■'6 204.210 H 384.465 ■S3 .OOOi 7 ■'^ , 14.1802 ■U 82.5101 M 207. .391 .34 3H8.822 iV .00:!07 ■H 15.0331 H 84.5409 .% 210.597 .?«' 393.203 1 1 .0'227 15.9013 10.8001 % 80.59 88.0043 213.825' 217.073 ■'I 397.008 402.038 I'a .02701 ■H 17.7205 •H 90.7028 '% 220.353 ■% 400.493 J 4 .01909 ■i 18.0055 7 •^8 92.8858 ■jj 223.054 7 ■ 440.972 s 5. 19.0.55 11. 95.0334 17. 220.981 23. 410.477 A .07(17 ■H 20.029 ■H 97.20.55 ■)i 230.33 ■H 420.004 t .11015 21.0175 • 7tt 99.4022 A 233.705 A 424. .557 ■,'', 22.0907 101.0234 .% 237.104 .% 429.1.35 Iff .15038 A:. 23.7583 .hi 103.8091 .).. 240.628 .».. 433.731 i .1!)G;;5 ■■^8 24.8505 j .^l 100.1394 ^% 243.977 .,^& 438.303 i°j .2H5 4 25.9072 1 •'■{ 108.4343 ■H 247.45 ■H 443.014 « ..•50079 4 27.1085 ■jI 110.7536 ■Jb 250.947 •% 447.099 8 c. 28.2744 12. 113.098 18. 254.467 24. 452.39 u .;ni22 •H 29.4047 ■H 115.400 ■H 258.016 ■)i 457.115 1 •> .41178 •i'li 30.0790 ■li 117.859 •U 201. .587 1 •\\ 401.804 J« 31.9192 .% 120.270 .?8 265.182 ! .% 400.038 ii .51848 • '.» 33.1831 1 ■H 122.718 •••J 268.803 1 .>., 471.430 7 8 15 .001.12 ■'4 34.4717 ■H 125.184 .^8 272.447 1 .>8 476.259 .09029 •/8 35.7847 37.1224 •'b 127.076 130.192 A v'8 270.117 279.811 I V8 481.106 485.978 1. .7851 7. 38.4840 13. 132.733 19. 283.529 25. 490.875 •M .99402 •3s 39.8713 ^^ i:!5.297 .3^ 287.272 .38 495.796 1.2271 •M 41.2825 •H 137.886 .Yx 291.039 500.711 •?'t 1 .4848 .% 42.7184 .% 140.5 .% 294.831 505.711 • 1.^ 1.7071 .>., 44.1787 .1..' 143.139 .v.. 298.618 i .^.> 510.700 •^/8 2.07;'.9 ■•)a 45.0030 ..^ 145.802 .fi 302.489 1 .,^8 515.725 ••^i 2.4052 •% 47.173 ■% 148.489 •% 300.355 ! .?4 520.709 2.7011 •J/s 48.707 .% 151.201 A 310.215 •Ja 525.837 2. " 3.1410 8. 50.2050 14. 153.938 20. 314.' 1 26. 530.93 •H' 3.5 Ilia •;& 51.8480 .% 150.699 .38 318 >l ■^8 530.047 •>4 3.970 •h 63.4502 ■\i 159.485 M 322.063 •34 541.189 •>t 4.4302 3a 55.0885 .% 102.295 3^ ./8 320.051 ■A 546.350 4.90S7 . '.. 50.7451 .1., 105.13 .U 330.064 .>.; 551.547 •H 5.4119 ■''^ 58.4204 .'^ 107.989 .}l .334.101 '■% 556.762 '% 5.9395 ■% 00.1321 \ .% 170.873 .% 338.163 t 562.002 ■l\ 0.4918 •A 61.8025 1 J-8 173.782 7/ V 8 342.25 56'. .267 3. 7.0080 9. " 03.01 7J 15. 176.715 21. 346.301 27. ' 572.557 •'8 7.0099 •'-8 05.3908 •^8 179.672 .Vb 350.497 ■}i 577.87 8.2957 07.2007 .'4 182.651 ■3t 351.657 A 683.208 8.9402 09.029.3 .■'» 185,601 358.841 .% 588.571 ■)i 9.0211 M 70.8S'23 .1., 188.692 • »' 363.051 •3'o 593.958 .% 10.3206 ■^ 72.7599 ■% 191.748 ■H 367.284 •;^ 599.376 ■% 11.0446 •% 74.662 •% 194.828 ■\ .37l.54.'i 3-' 604.807 ■H 11.7932 •Ji 76.5887 ■A 197.933 'A 375.826 610.268 12 AREAS OF riRPLKM. • TABLE.— {Continued.) I Ditiin. 28. Aivii. 6l5.7f)t Diiiin. 35. Aroii. 9G?.115 ; Diam. Aien. 1.385.44 Diiiin. Aron. Diain. 56. Area- 2163.01 42. 49. 18-5.74 i , •}a ■■J I -JtiH •'h 9(i8.i>l)l) : •'..' i;;'.i;i,7 'H 18! 6.17 •'a 2171.02 ,? A ('.2'; Tiif< .'.t '.)7."i.90S .', 1 101.98 •\\ 19(5.01 .'.I 2185.05 :f (i:<'2.:r>7 .^. 981'. 8 12 .••'a 1410.29 .^l 1914.7 •'" 2196.11 (iHT.'JIl •'i 989. S ; •'=-• MI8.G3 .'., 1921.42 • •« 2507.19 ;| ■fi G4;t.5rj .'I 9y(i.7fl3 .'i 1 12G.9S •'^l 1931.15 • •'b 2118.3 ■'^4. (i4'J.lH2 ■li I003.7y ■% 1 1.35. 3G ' -H 1913.91 ■% 2529.43 !' ■Ji G5i.h;{().227 •}a 1024.959 : .'a I JG0.G5 •H ' 1973. .33 •)8 251)2.97 A t)7l.!>58 1032.0G5 •k^ 14G9.I3 vt 1 198.3.18 ..'4 2574.2 .H G77.7H 1039.195 .h 1477.G3 ..^-, 1993.05 .H 2585.45 .».< GH;h4 G!)j.l28 ■•ll IOGO.7.12 ■'ii 1503.;t ■'^■i 2022.85 •■■'.1 2619.36 ^ 7O0.l)Sl .^• 10G7.9G 44. 1511.9 \ -'l 20,32.82 ■>8 26.10.71 ; 30* 70G.8G 37. 1075.213 1.J20.53 51. 2012.82 .•)8. 2642.09 •% 712.7G2 .'8 1082.49 1 ■/B 1529.18 .'a 2052.85 ■H 2653.19 -H 718. Gi) •'■i 1089.792 ■.k 1537.8(; ■k^ 2062.9 ' .'4 2GGI.91 i .?» 724.G41 .■••« 1097.118! 15 IG.55 .'I 2072.98 .h 2676. .36 • .!.< ".•{0.G18 •M 11U4.4G9 ■}.i I5.)5.2s' ' .1.. 20s;{.08 .'-2 2687.8 4 .'52 7:iG.Giy .5o 1111.844! .h 15GI.0.{ ! ..^8 2093.2 .''I 2699.33 :li 742.GI4 •••4 U19.2U; ■:U 1. -.72.81! •'■* 2103.:!5: ■U 2710.86 748. Gi) I ■K 112G.GG8 , •7-8 158l.Gi 1 ■h 2113.52 •h 2722.4 i 31. 7iJ1.7Gi» 38. 11.54.118 1 45. 1590.431 52. 212.1.72 59. 2733.98 if .;J^ 7G0.8G8 .^B 1141.591 i ■}b 1599.28, • « 21.33.91 ..'b 2745.57 <* Ai 7GG,l)i)2 •H 1149.089' •^^ IGO8.I5: ••^ 2141.19' •M 2757.2 r 77:!. 14 M 115G.GI2 ' .?8 1GI7.01 .•*8 2I5I.4G: .;^B 2768.81 ! . l:i 77i).Hi;j M |iG4.159l .'.. 1G25.97 .'.. 21GI.76 .1.. 27X0.51 i '.fa 78.J.51 .5t 1171.731 1 .fu lG.il.92' .?ii 2175. OS .>6 2792.21 i • '^1 7yi.7;v2 •'i 1179.327 1 ■h 1G43.S9 ••'.I 2185.42: •■At 2S03.93 ' 71)7.1)78 •^a 118G.91S 1 •Ja 1G52.88 •ll 2195.79 ■jI 2815.(:7 1 32. 804.2.-) 39. 1194.593 ; 4G. 1GG!.91 i .53. 22()(;.19 60. 2827.44 ! -.^a 810.515 •'^ 1202.2G3I ■H 1G70.95 •H 2216.61 ■H 2,8;!9.2;! i ■ .;'a 81G.8G5 .'5 12(19.9.18 i ■k 1G80.01 ; •'^ 2227.05 ■:4 2851.05 82H.20i) • ••'n 1217.G77 1G89.1 ! .?a 22,37.52 ; 2S62.S9 1 .1.. 82D.578 .'., 1225.42 .1.; ■"S.23 .'.'. 2218.0' 1 M 2871.76 •■'^ 8;i5.<3 1 .'.^ 2970.58 i ■ >« 888.005 •;''8 129G.21 .^l 1781.39 •?-^ 2313.55' :% 2982.67 1 •'*i 894. G2 •'■1 1304.2 •% 1790.7G 1 2.351.28 •■'.i 2991,78 j 34. 901.259 ■i 1312.21 ■A 1800.14 23(;5.05 ■% .3006.92 1 ! 907.922 41. ' 1320. 2G 18. 1809.5G| -^ 55. 2375.83 ' 62. 3019.08; ' 'A 914.GI •M 1.328.32 H 1818.99 ■H 23SG.65 i 'H 30.31.26 i; 921.823 •H l3;iG.4 ■li 1828.46 ■i 2397.48 ! A 3043.47 928.0G .^ 1344.51 .h 1837.93 .% 2408.34 1 ■H 3055.71 \/ 934.822 '}'! 1352. Go .1.; 1847.45 M 2419.22 3067.97 '.H 941.609 ■h 13G0.81 ■■% 1856.99 '^ 24.30.18 .'1 3080.25 948.419 '% 13G9. ■% 1866.55 ■% 2441.07' .3092.56 955.255 •>8 1377.21 ■% 1876.13 ■'X 2452.03 ; 3104.89 i ■ i i- .» table: II. b. CIRCUMFERENCES OP CIRCLES, PROM l^ TO 150. [Adcaucimj by an Ei(jlith.\ Dium. Cii'cum. .04909 Diiuii. 1 4. Circiim. i 1 12.5ii(;4 Dium. 10, ' Cii'cum. 31.416 Dium. ! 10. Circum. Dium. 22. Circum. 69.1152 50.2656 1 .09-S17 ■ii 12.9591 1 •'a 31.8087 •^8 50.658;^ ■ •38 69.5079 M2 ■!^ 13.3518 1! ■:i 32.2014 .'i 51.051 ] .H t;9.9066 iV ,19G;!j 13.7U5 32.5911 ..•'a ; 51.4437 :h 70.2933 \ .3927 ■:4 14.1372 14.5299 ;i2.9S(;8 33.3795 •fa 51.8:i61 i 52.2291 i ■k 70.686 71.0787 A .589 •;''4 14,9226 •^4 .33.7722 •^4 52.6218 'H 71.4714 \ .7851 •J8 15.3153 •Ji- 3 1. 1(119 ■fi 53.0145 'fi 71.86J1 *■ 5. 15.708 ll. 31.5576 17. 53.4072 23. 72.2568 1% .98175 •}a 16.1007 1 'H 34.9503 ■ 'h 53.7999 • ..s; 72.6195 1.1781 il 16.1934 , yl 35.313 .Ki 54.1926 ; is 73.0122 X l.;;7415 16.8861 ■ 35.7353 .?., 51.58,53 73.4349 Iff .1.,' 17.27.S8l .'., 36,1284 1 - 51.978 .'.; 73.82^6 i 1.5708 ■'C 17. (17 15 ■'^ 36.5211 '.9^ 55.3707 .>a 74.2203 A 1.7G715 '% 18.0612 '% 36.9138 ■li 55.7631 •% 74.613 ■}i 18.4569 ■jI 37.3065 ■jI 56.1561 .% 75,0057 9 1 .9o35 6. 18.8496 12. 37.6992 18. 56.5188 24. 75.3984 U 2.159S5 -'^ 19.2423 ..'a 38.0919 .,^8 56.9415 .H 75.7911 a 2.3502 it 19.635 1 ■l-i 38.4846 >l 57.3312 i ■H 76.1838 1 4 20.0277 .■V 38.8773 57.7269 i 76.5765 15 2.55255 .1., 20.4201 .',. 39.27 .'..' 58.1196 1 .!.< 76.9692 7 2.7489 ••'0 20.8131 .91 39.6627 .9'a 58.5123 ■^' 7 7. .36 19 B 1 ■•, 2.91525 M 21.2058 21.5985 40.0554 40.4481 •78 58.905 59.2977 •78 77. 546 7i' 1473 1. 3.1416 T 21.9912 13. 40.8408 19. 59.6904 25. 78. ul 1/ ;{.5343 •H 22.3839 •M 41.2335 .H 60.0831 .H 78.9327 3.927 % 22.7766 ^ 41.6262 a 60.4758 it 79.3254 4.3197 23.1693 42.0189 60.8685 79.7181 .1.^ 4.7121 .1.; 23.562 .In 42.4116 .KV 61.2612 M 80.1102 5.1051 ■'I 23.9547 .91 42.8043 .9^ 61.6539 :9i 80.5035 5.4978 •'/a 24.3474 ■K 43.197 •H 62.0166 .H 80.8962 ■ 'a 5.8905 24.7401 .% 43.5897 •Ja 62.4393 .% 81.2889 2." 6.2832 8.-^" 25.1328 14. 43.9824 !20. G2.832 26. 81.6816 •^H G.6759 H 25.5255 •!« 44.3751 .,^8 63.2247 - •¥ 82.0743 7.0G86 >-A 25.9182 44.7678 :i| 63.6174 •K 82.467 7. 46 13 ■H 26.3109 45.1605 91.0101 .% 82.8597 ■', 7.854 .1.^ 26.7036 M 45.5532 .i.V 61.4028 .1.,' 8;}.2524 yl 8.2167 -ya 27.0963 .91 45.9459 .91 64.7955 •% 8;i.645l ■'^'A 8.6391 27.489 .% 40.3386 •■*4 65.1882 ■% 84.0378 3. 9.0.321 27.8817 .% 46.7313 ■Ja 65.5809 84.4305 9.4248 9."^' 28.2744 15. 47.124 21. 65.9736 27. 84.8232 •H 9.8175 •■^8 28.6671 .'a 47.5167 ■Vs 66.36G3 •M 85.2159 .'4 10.2102 A 29.0598 >l 47.9094 ■\^ 66.759 .Vs 85.6086 A 10.6029 A 29.4525 48.3021 .% 67 1617 86.0013 .'., 10.9956 .1..' 29.8452 .Vo' 48.0948 .'., 67.5444 •>.< 86.394 ■■'l 1 1 .3883 •>8 30.2379 •€ 49.0875 • •'a 67.9371 ■^ 86.7867 •?4 11.781 •^4 30.6306 •'4- 49.4802 .^i 68.3298 •?4 87.1794 .■4 '■ 12.1737 ■i 31.6233 .^ 49.8729 •Ja 68.7225 ■Jt 87.5721 12 (;ii!0(impe'u;ncks of circles. TAWhE.— (Continued.) Di.uu. 28. 29. ■J 8 30. •/o 31. ■n ./8 32. ■k M •/u .>8 1,-; •/8 33. 34. .^8 .38 Ciiciim. 87.9filH S8.S570 88.7502 8!).142'J «!).">;!")(; 80.1)283 00.32 1 'JO. 7 137 Dl.lOC-i yi.'I'J'Jl U 1.89 18 92.28-10 92.G772 93.0(;99 93.4026 93.8553 94.248 94.0107 95.0334 95.4201 95.8188 90.2115 90.0042 90.9909 97.3H!)0 97.7H23 98.175 98.5077 98.9004 99.3531 99.7458 100.1385 100.5312 100.9239 101.3100 101.7093 102.102 102.4947 102.8874 103.2801 103.073 104.000 104.458 101. SSL 105.244 105.030 100.029 100.422 100.814 107.207 107.0 107.993 10S.;{,S6 108.778 109.171 109.503 Diiim 35. Circuni. i' Diani. .J 8 ■k .'A 30. ^7. 18. 39. .78 40. 41. .'A .h 109.950 no.:; 19 no 711 111.134 1 1 1 .527 111.919 112.312 112.705 113.098 113.19 • 113.883 114.276 114.008 115.001 11^ ■ \ ': 0.239 110.032 117.025 117.417 117.81 118.203 118.595 118.988 119.381 119.774 120.100 120.559 120.952 121.344 121.737 122.13 122.522 122.915 123.308 123. 01 124.093 124.480 124.879 125.271 125.004 126.057 120.449 120.842 127.235 127.027 128.02 128. 'x 1 3 128.806 129.198 129.591 '29.984 130.376 130.70'> 131.102 131.554 13. 08 ■k /8 .'a 1 : Circuni. 44. ., 8 .'.1 15. ■hi ■k 1 46. ■A ■'a 47. !48. k .1., 'U -A I • « >i % 131.917 132.31 132.733 133.125 133.518 133.911 1 134.303 1;M.090 135.0S'J 135.481 135.871 130.207 l.".(i.00 137.052 137.415 i 137.838 138.23 '51 138.023 |: 139.010: 139.408' 139.801 140.191, 140.587, 140.979,: 141.372 5:: 111.705 142.157 142.55 142.913 143.330 143.728 144.121 144.514 144.900 115.299 145.092 110.081 140.477 140.87 ! 147.203 i I47.055 ' Diiiiii. '19 ! 1 •' ' St , I ' 1 . 4 ' 3-' . .78 1 1 1 1 , fi~ ! ..8 1 '3.-' •A ■'« j 50 1 v8 1 v^ ii 1" 1 1! •"!' i 1 : •, 8 1 C'irciiin. 148.018 148.441 : 148.833' U9.226j 149.019 150.0111 150.404 1 150.797 1 151.19 151.582; 151.975 I 1.52.3681 152.76 I 153.153 I 153.5 to I 54. :?: ■A \ • 8 ; k , ■ 5;^ 1 00. 1. % •A k •A I5;i 151 .938 .331 Diani. ;>(). 154.724 155.117 155.509 ; 155.902 I 150.295 I 150.687 ■ 157.08 157.473 157.805 158.258 15-:<.(i5l 159.044 159.436 ' 150.823 160.222 100.014 101.007 101.4 101.792 102.185 102.578 102.971 103.30;{ 10:!. 750 101.119. 104.541 104.9;i4 105.327 105.719 100.112 100.505 100.898 167.29 107.083 108.070 108.108 108.801 169.254 109.046 170.030 170.132 170.82rj 171.217 171.61 172.003 172.39,; 172 Tbj 173.181 173.57H 173.906 174.,359 174.752 175.144 175.537 •x8 •^1 57. I I ■58. .-1 •/8 •'8 I ■■A ■J'J. 60. ■.'8 .^8 I 61 •.'8 k . 1 . V8 . •') ' •A •l8 •'4 .1.; '% ,3, 62. ■A k i Circum. 175.93 170.322 170.715 177.108 17.7.5 177.893 178.280 178.679 179.071 179.404 179.857 180.249 180.642 181.035 181.427 181.82 182.213 182.000 182.998 183.391 183.784 184.176 184.569 184.962 185.354 185.747 18(M4 180.533 180.925 187.318 187.711 188.103 188.196 188.889 189.281 189.674 190.007 190.10 190.852 191.215 191. ''38 192.03 192.123 192.810 193.208 19.'!. 601 193.991 191 ..387 194.779 195.172 195,505 195.957 190.35 190.743 197.135 197.528 AREAS OF riitCLES. TABLE— (Coiitmted). 18 Diiim. G3. Diam. 64. 65. 1 % I 5" 66. 67. ■'I 68. .1.. •fa 69. I .1., 70. :7i. ;72. 7.3. Aiva. :51 17.25 ;{12!).0;{ .•ii i2.o; ;5l.'yl.l7 :!l66.'.):f :U7;).ti :U91.91 ;r204.M :i2i7. .'{229. oS ;^212.18 .,2.5 1, HI :i267.1(; •{2K0.LS :r292.8t :{;!05.;J6 ;«;n.09 ;^:m;{.89 :?:i5(;.7i :!;!(;!)..')(; ;{:;9o.;{;{ H408.26 :U21.2 Hi;u.i7 H4-I7.17 ;{4iiO.!9 I :{47;!.24 i . H4h(;.;{ i! . :U99.4 '] . ■}^\^-'^\\ • ;{ij2u.66 i;74. ;{5H8.8;! ;{552.02 8565.24 H578.48 8591.74 Hu05.03 3618.;i5 36:51.69 3645,05 3ii58.44 3671.85 3685.29 3698.76 3712.24 3625.75 3739.29 .3752.85 3766.43 3780.04 3793,68 3807.34 3821.02 3834.73 ■a •/8 I ■ 'h 1, lO. I' • i i Area. ! Diiirn. •}8 ! ■ .1 76. % r. "\ 3848.46 3862.23 3876. 3889,8 3903.63 3917.49 3931.37 3945.27 3959.2 8973.15 8987.13 4001.13 4015.16 4029,21 4043.29 4057.39 4071.51 )0S5. 66 4099.83 4114.01 4128.26 4142.51 4156.78 4171.08 41M5.4 4199.74 4214.11 4228.51 4212.93 4257.37 4271.84 428(i.33 4:100.85 4315.39 4329.96 4311.55 4;!59.17 4373.81 4,388.47 4403.16 4417.87 4432, K) 4447.37 4462.16 4476.98 4491.81 4506.67 4521.56 4536.47 4551.4 45(16.36 45Sl,35 4596.36 4611.39 4626.45 4641.53 77. 78. •'a 79. 80. SI. 83. Area. 4656.64 4671.77 4686.92 4702.1 4717.31 4732.54 4747.79 i 4763.07 I 4778.37 I 479;!.7 I 4809.05 I 4821.43 4839.83 4855.26 4870.71 4886.18 4901.08 I 4917.21 I 4932.75 4918,33 4963.92 , 4979,55 4995.19 5010.87 5026.56 5012.28 5058.02 507:{.79 5089.59 5105.41 5121.25 5137.12 51u3.01 5168.93 5184.87 5200.83 5216.82 5232.84 5248.88 5264.94 5281.03 5297.14 5313.28 :.„29.44 5345.63 5;i(;i.84 5378.08 0394.34 5410.62 5426.93 5443.26 5459.62 5476.01 5492.41 5508.84 5525.3 Diani. 84. Area. Diam. 85. 36. .'■4 J- '8 .'4 1 - 87. 88. ..4 •, 8 89. % ■H ■^ % 90. t .h I. 5541.78 5558.29 5574.82 6591,37 5607,95 5';24.56 5641.18 5657.84 5674.51 5691.22 5707.94 5724,69 5741,47 5758,27 5775.1 5791.94 5808.82 5825.72 5842.64 5859,59 5876.56 5893,55 5910.58 5927.62 5944,69 5961,79 5978,9 5996.05 6013.22 60.30.41 6047.63 6064,87 6082,14 6099.43 6116.74 6134.08 6151,45 6168.84 6186.25 6203.69 6221.15 6238.64 6256.15 6273.69 6291,25 6308,84 6326.44 6344.08 6361.74 6379.42 6397.18 6414.86 6432.62 6450.4 6468.21 6486.04 91. 92. '8^ .1.; 93. I 1 ' 194. % 95. •fa i 96. 97. \\ .1.; Area. 6508,9 6521.78 6589.68 6557.61 6575.56 6593,54 66' 1,55 6629.57 6647.63 6665.7 6683,8 6701.93 6720.08 6738.25 6756.45 6774.68 6792.92 6811.2 6829.49 6847.82 6866.16 6884.53 6902,93 6921,35 6939.79 6958.26 6976.76 6995.28 7013.82 7032.39 7050.98 7069.59 7088.24 7106,9 7125,59 7144.31 7163.04 7181.81 7200.6 7219,41 72.38,25 7257,11 7275,99 7294.91 7813,84 7332,8 7351.79 7370.79 7389.83 7408,89 7427.97 7447.08 7466.21 7485.36 7504,55 7523.75 14 AREAS OF CIRCLES. TABLE — (ContimmJ). — [Admncing hy a Quarter and a half.] T>- un. 98. 99. Vb 100. 101. 1,, 102. 103 •2^ 'h 104. 'h Area. 7.542.98 7502.24 7581.51 7000.82 7620.15 7039.5 7658.88 7678.28 7697.71 7717.10 77HG.0a 7750. IH 7775.00 7795.2 7814.78 7834.38 7854. 7993.32 7932.74 7972.21 8011.87 8051.58 8091.39 8131.3 8171.3 8211.41 8251.61 8291.91 8332.31 8372.81 8413.4 8454.09 8494.89 8535.78 8576.77 8617.85 Dium. il05. 100. .h 107. •H 108. 109. .h 110. 1 111. 112. .h :^4 113. Areii. 8G59 8700 8741 8783 8S24 8860 8908 8950 8992 9034 9070 9118 9160 9203 9245 9288 9;i3i 9374 941" 9luo 9503 9546 9589 9033 9070 9720 9704 9808 9852 9896 ;)9-l0 9984 10028 10073 10117 10162 Dium. 03 32 7 ,18 75 43 2 ,07 04 ,11 ,28 ,53 .91 .37 ,92 ,58 ,34 .19 14 ..9 .34 ,69 .93 .37 .91 .73 .29 .12 .00 .09 .22 .45 .77 .2 i 114. 115. 116. 3 ..-4 1 •A^ 117. ■¥ 118. 119. 120. 74 121. 122. Areu. 10207.00 10251..S8 10296.79 10311.8 l()3S(;.9l 101,32.12 10177.43 10522,84 10568,34 10613,94 10i;5!»,64 10705.44 1075 1.3-1 10797.31 10843.43 10889,62 I0;I35.9 ■ 10',>82,3 1102S,7Hl 11075,37 11122,06 11108.83 11215.71 11262.69 ll;:09.70 11. 356. 93 11404.2 11451.57 11499.04 11540.61 11594.27 11642,03, 11(189,89 11737,85 11785.91 11834.06: Diain, 123. Area. 124 1 k 1 ''i~: 125. 126! 127." 128! 129! 13o! 131 ! 132! 133! 134! 135! 1.36! 137! 138! i„:i 11882.32 11930.67 11979.2 12027.66 12076.31 12125.05 12173,9 12222.84 12271.87 12370.25 12169,01 12568,17 12667.72 12707,61; 12867,99 12968.71 13069.81 13171 •'■ 13273 13.')75 13178 13581 13(i81,81 13788,67 13:192.94 3997.54 114102,64 i 14208,07 11313,91 14420,14 14526.76 14633.76 14741.17 11848,96 14957.16 15065.73 Diain. !l39. ,140." ' .^. 141. ' Area. 142. 143! 111! 145! 146! 147. 1 148! 149! 150! 15174.71 15284,08 15393.84 15503.98 15614,53 15725,47 I 15836,8 ! 15948,52 !l60r,0,64 16173,15 : 16286,05 ; 16399.34 U 65 13. 03 (16627.11 116741,59 i 16856.44 I 16971.71 17087,36 17203,4 17319.83 1V4;!6,67 17553.89 17671,5 17789.51 To Compute the Area of a Diameter greater than any in the preceding Table. RiTLE.— Divide the dimension by two, three, four, etc., if practicable to do so, until it is reduced to a diameter to be found in the table. Take tiie tabular area for the diameter, multiply it by the square of the divisor, and the product will give the area required. ExRUPLR. — What is the area for a diameter of 1050 ? 1050-{.7 = 160; tab. area, 150 = 17671.6, VFhich x 7 =865903.."^ -rea requited. To Compute the Area of an Integer and a Fraction not given in the Table. RoLK. Double, treble, or quadruple the dimension gi^'cn, until the fraction is increased to a whole number, or to one of those in the table, as J^, \, etc., provided it is practioiibio to do i-o. Take the area for this diameter; and if it is double of ihat for wich the area is required, take one fourth of it ; if treble, tiiko one 9 th. of it and if quadruple, take one sixieouth ot it, etc., eto. ExAMPLK.— Required the area for a circle of 2. ^^ inches. 2. ^^ X 2=4|, area for which =15.0331, which -^ 4=3,768 im. f:rr.rvT.MF.:v:!N('; s ov circlks. TAWLK. -(CoDfiininl.) 17 IXmv.. Ciivuiii. Uiiiin 1 CiiTiun. ' Diaui. ('irc'iini. Dunn. Circ'iini. 1 Diaui. Circnni. (,:',. I!l7.i)21 ' 10. 219.012 77. 2 1 1 .'M)-\ ! 8-t. ; 2(11!. 894 ;9l. 285.880 .'J l'JS.,",l 1 ]„' 22().:U)5 .'a 212.29(1 1 .'ij' ; 2(1I.2S7!^ .1,; 280.278 .^.. 1 lilS.TOli •!,' 22:!.(I',I7 ..', 1 2 12. (ISO :i .'i ' 2;ii.(iH H .'!., 280.071 '•''.. i l:i;).(ii)'.' • ";'. 221.0;) '; .;':; 2i:!.0Sl ' .-;■ 2(15.07: .?,•! 287.004 y.l \ 1 ;)'.). r.)2|'i .1.. 221. -is:! : .'., 24:1.474 .1.. 2(15.4(15 > .1., 287.450 I .•f,i ' 1 '•»'.). >-^l il /•:. 221.87(1 "1 , , 2i:{.,Sl7 .■';■ 2(15. <5S 1 .fa 287.849 • '*. 1 2(10. 'JTTi! :■■■, 222.2>H •■■''.' 214.259 ."^Y 2(1(1.251 j .:ij 288.242 •Ja 2ii().(;7 i .;(, -222.(;(il •J a 2M.(152 1 .'.. 2(1(1.(148 .7|j 288.0:44 G4. 2oi.,i(;2 ; 71. ' 22:1.0 Jt ' 78. 245.015 85. 2(17.o:!tl 92.' 289.027 ■hi 2()l..|.;.j 1 .!„' i 22:i.-j-it; . .'a 2I5.4;!8 : .',: 2(17.129 .!„' i 2s;».42 .Kv "-ioi.si.^ .'n i 22:!.8:i!> ; • ,',. 245.S:! ' .1.1 2(17. S21 : .'., : 2S9.813 .•',•1 ; 2(12. -J-! I .-J! 22i.2:;2 24(1.22:; .'v, 2I1S.214 :•';.. ' 290.205 .1.. 2i)2. (;;;:; 1 1 , . 22 1.(12 t 1 I 21(1.(11(1 .'.. 2r,s.(i(i7 .'., 290.598 ..^j i 2();{.()2(; '.^ i 225.017 ; >a 217.(10>^', /\; 2(ls.999 |i .fa 290.991 .:5, : 2();!.41i) .3,- [22-,. 4 1 .'ti 217.401 .■■!,• 2(19.1192 1 .3,'- 291.:48:{ .)., 2.)::.8ili .7,, , 225.S0^ •-'a 217.794 .;„ : 2(19.7S5:| .7 291.770 G5, 204.201 72. ! 22(1. lit., 79. 2IS.lS(l 80. 270. 17S 9:?. 292.109 .}.a 20l.r,!)T .3,,' ;22G.5SS I ^ 1 2 IS. 579.' .1., 270.57 .1„- ; 292.502 .h 20J.«)8I! .'.I 22(1. 'J.sl ! •',' 2 IS. 972 .', 270.9(1:1 .1, 292.954 Ja 20,1. •is2i .h 227 .:i7:! i .'■'a 24;>.:!(15 .■•;• 27i.:;5i; ' .p., 29:i.:^47 .}... 2(lo.7TA| .1., 227.7(1(1 1 , 21:'. 757 .1.. 27 1.7 IS .1.. 29:1.74 .;'u 2(h;.i(;s .•"V i 228.15'J ".■i.' 250.15 .•>[. 272.1 11 .•'>:. 294.1:42 i 1 .-''i : 2(l(;.;-,li .'■■■i 22s. 5.M •'*i 250.5 i:i .a, 272.5:14 .:). 294.525 j Ja , 2()il.'j.j;!l .'-,. 22s. '.ti4 i 7 v a 25o.;i;;5 .'',, 272 !I2(1 .7,, : 2iM.!)18 GO. 2tl7.:MG 7;i. 22i).:i:i7 i 80. 251.;!2S\S7. 27:i.:;i9 94.' ' 295.:ii .'. 207.7;!S .,'a 22!).7:! | ■^l 251.721 .!(, 27:1.712 .(y i 295.70:5 \ .'.I 2(i,s.i;ii .'-t 2:;o.l22 •.'.' 252.1 i:i .'i , 274.105 .'i_, 1 29(1. 09(1 .>'» 20S.r)2.4 .•'a 2:10.515 1 ".» 252.50(1, .■';., 27l.l!l7 .'v, 2!>(1.489 1 , 20.s.iii(; .'•> 2:10.908 . '.► 252. S99 1 .1., 27l.s;) .1., 2!t0.8Sl ! '.% 20'.).:io;) •?" 2:iL.:{ ."j^^ 2511. 2;i2 .•'>,"; , 275.2S:5 .f 297.274! ■?i 201). 702 ■ "4 2:il.G9:! i ••■'1 25:;.(;s4 .:'( , 275.(175 .;»! 297.007 ( Ju 21(l.0'.l.J •Ja 2:12. osd 7 V 6 251.077 .J„ ' 27(1. 0(1H ' .7^ 298.059 ■ G7. 210.-l.s7 74. 2112.478 81. 254.47 88. i 270.4(11 '95.' 298.452 i i,; 210.SS .'a 2:12.87 1 •'a 25l,s(I2 .1,,' 270. S5:! .1,: 298.845 1 ! ".'I 2ii.27;i .'.I 1 2;!;i.2(i4 ' •./^ 255.255 .1.1 277.21(1 .', 299.2:17 .3?a 2ii.(;t;r) i .■■;: ! 2:>:!.(i')7 ' .'-'a 255.(1 IS .■•"■;i 277.il29 .^S, 299.0:5 1 .'.. 212,0.j,s' .1.. :2:i4.0ii) .'.. 25(1.04 .'., 278.0:12:; .1., 300.02:? ' 21 2, .I;")! :': ;2;;4.4-i2 1 ^ •- a 25(1.4:''{ .5- 278.424 ;| .5J, :ioo.4io ; .:'., 212.H-i:{ .:i :2:M.^';^5 1 25(1 820 . .-!,' 27S.817 i .3. 1400.808 • ' 2i:!.2:;(; .;., ; 2:15.227 ; ' 257.219 .-■■ 279.21 .7- 1 :?oi.2oi 08. 2i;;.()2i) 75. i 2:15.02 S'> 257.(111 89.' 2T!l.(102 90.' ' ;i01.594 1 .?»' 211.022 1 .1,;' 1 2;i(i.oi:5 '".'a 258.001 .1;) 27;).9;t5 .(,; 1 ;?0I.98G : .'.1 1 2N..ii.i , .''1' 1 2:1(1.405 . -.'.i. 25S.;!97,, .ii 2so.:is8 ' .4', ;io2.:?79 ; .?a 1 211.MJT :'..• ;2:i(1.7;)8 .:'a 25S.7s9^ .■:,, 2S0.781 ' .3,, :i02.772 .', 215.2 .'., 12:17.1111 . ' .. 259.182: .1. 2sl.l7:i .'.. :4(i:!.l04 ; • ''l! 21;J.iV.)2 .■"a 2:^.5^•i 1! •i'a 259.575 i .-V 2s 1.500 , .•■;,; ;!o:?.557 ■3' I 21ij.!)^;> ••'.I 2:17. 97(j \\ .;;., 259.9(17;, .3 2s 1.959 ..'! - :io:5.95 1 ■J a 21G.:!78 •Ja 2;is.:i(i9 1 » . > ' -.'a 2(10. :i(l i .: 1 •-^■-2.:i5i , .7 :4oi.;?4;? ! GO. 21(;.77 7G. 1 2:18.7(12 '^:;. 2tl(i.75:! '.90. ' 2S2.744 97. 1404. 7:?5! .'i( 217.1(1:) •.'a 1 2.19.154 1,, 2(11.11(1 ; .',, 2s:).i;:7 .1,; 1 2.^:1.529 ; .4" ' 2s:!.922 j .3,-; 1405. 128 j J 4 2i7.r)r)G .,',, ! 2:19.547 1 y.i 2(il.5:;s 1 .(', :405.521 1 .H 217.9IH i 2:19.94 1 ■',, 2(11.9:11 .:'.. :)05.9i:?! 1 , 2lf^.;Ml ".1,! 2-io.:i:!2 . '.. 2(12.1124 , .1 , : 2si.;!ir, J :!0(i.:ioo ; ".•^'a 2! 8. Till .•57, 240.725 .") ^ ^ 2(12.71(1 />:: ; 2SI.708 ••'^'a .•iOO.099 1 :?: 211».127 y. 241.118 i •■'1 2(11!. 109 .a" ' 2s.-,.l •■' 1407.091 1 2PJ.U1'.) .lil 241.511 i -Ja 2G;J.502,i .7. j 285.49:? , •Ja ;?07.4«4 18 TXmA-: (CoiitiiinalJ. Diaiu. CiiTiim. , Diiiiii. CiiTiim. ; Diiiin Circiun. ' DiMiii. Circnin. llliiin. ' 1 Ciiiimi. 98. 307.877 jlOj. 32!).S(;,s' 111. :{,-.s.l 12 12.3. 380.117 13:i. ' i:;.;.os2 ..^i' :{!I8.'27 1 .' ;!:)0. (;,").■! ' .1 ,' ."..'jS.il-jS •'.;! ;;s7.2(i2 .1., I i:;-.2r)3 •'•'! :MH.(;t;2 ! .'.i .?;;i..i:;;): .' .' ;!.v.».7i;; . '■''■ 3s7.!iss IJO. ' •130.821 i •'••'i 80:!. o:..") .■', :!:{2.22i ! .■' 1 i'riO.I'.i;) • "1 ;)ss.77;! .'.. ' 111. 30.-) ! .I.J :!Oi).iis 100. :;.■;:;. 01 ! 11.). i ;;.;i.2si 121. : 3^'.). ,"..>! III. i Il2.!lti0 ''l\ .".():>. SI .1 .■'):'.;!. 7:»:)/ .' .: ;;i;2.oi;',) '.,: :!:)0.3ii .'■2' 111.')!'". :!io.2:;:! .'. ;;:m.,-)S '! j ! :\\i.<:>:, .'.. ;!'.ii.i2'.) 112. 1 Hi. 107 7 : :;io. Hii„-»i :i;!7.722 .', V .".ii.'.. !»;)>; 120! ' .3;)-).s|-.> Ml. 1 -i.-2.:io ■ _:!,, .■{12.11'ti .''i :!:!s.i-,()7 1 ;!00.7S2 1 - ;;:)7.H2 .'.,. i,'):;.iioi .'.. ;!12..")S;) 108. :;:;'. 2;i:; 117. 1 !)ii7.."i()r 127! ' :\[)<.\)<\ 115. ' i.-,,-. r.32 _,57 :U2.!)S2 .' ;i 10.07-^ .' .".('.s.;!';; 1 {:)().-,:, \ .'-: ■1,'. 7. 10.3 '-■U :ii:{..H7.-i .'. ;uo.so.i 1 .' ■J :;,;;). i;!s !2s'. ' 102.12.') 110. -ir)-!.(i74 ^7_ :il:!.7(M .'i iMI.Ol'.t ' 1 :!r.'.).:i2.; 1 . -i():!.0',ii; .'.. .ioi».2n 100/'' :u-i.i«i lOD. :ii2.i:ii n^. , :i7().7(i'.t 120". ': ■10-.. 20,; 117. -i.-.i.sir) .1 . :{14.^M;-) .'i :ii;i.22 1 .' ' :i7i.r.ti .'.. 100.^37 .'j 403.:'.s0 , '. ' .' ;!i;j.7:u ' .'.' :i4i.oi),v .' ■., ;!72.2.s 130. ■108.|()-< 1-18. ! 404.0:)7 •;'4 31(;.51(i }: .'.J ;wi.7i)i .■ 1 ,'57i>.(IO."> 1 ;0!I.'.)7'J .'j| 4i;i;.r.28 101. :!17.:{02 ! no. .•u:).57o no. : :;7;!.s.-. 131'. '' 111..').") 110. 4i;s.(i'.)s ills. 087 '.' .h :mi;.:;.;i ; .' ij :;7!.o:;i'. 1 -Ii3.12 .'- 400. Olio , .'.> :!IS.872 ' .'j :!17.117 _ ■:'■ -MfyAll \-vi. ' iii.cDi i:;o. 471.21 '■ ' ,1 :!l!).(i.")S .'■'■i, ;ii7.!):;2 , ' 'li 371"). 207 '.. -110.202 .'.. 472.811 102. ;i2i).-ii:i 111. :u-!.7is :i20. i 37t;.i);)2 !:;:;! ' ■117.S33, .'.1 :!2i.22;t .'4 Mio.fjo:; .> 1 1 . 1 ( ( 1 -11;). 10 I ! .'.. 322. OM .!-j ; 800. 2SS •-•; 37s. ,ji;:; 13l'. ' -I2ii.;»7i •■'.'i ;r22.7'.)'j '' .-1 • ;i:)0.07i •I' 37l>.:il.S .'.. -122..". 1.") io;5. :!2;!.o85 112. ; :!.-)!. S;V.) 121. ' 32,0(.j ; 3-'l).'.)l'J 1 ■12.').0S7 ' 1 , 82,-).ir)(;' .■'.! :!;^;!.i:! ■-• 3S 1.701 i3i;'. " ; I27.2.JS ■f^ ir^.K'Jtl ; J.i , :!5I.21') 1, :!s2.i',) . '., -i2-^.s28 lOi. 82(1. 720 "113. 1 :{;■).->. 001 122. ! :!s;'..27.-) 137". ' .i;;o.3;)'j ■^:. :!27.r)i2|: .>, :'')r).').7.so , 'r :{S1.0il .'.. -i:;i.07 1 :{2s.2'.»7 '! .'. :i,")i).rj72 '■J :')Si.sio 13s! " ■I3:!..-)I1 ':-^i :{2i).ns:! 'i .,:*.^ :!o7..'!.J7 i 'ij 38.-). 03 1 .'.> -t3,) 112 1 ■_.. To Compute lliR I'ircuin. of ii DiiiiiU'tci' ^itiUit than any in the precciliiii Tiibli;. K I.R. — DiviJi! the iliiiicntion hy two, three, lour, etc., it' pruu'.ioaljlo t:) do so, until it i.i reduced to a (iiMiiiotor to !'0 found in (ho tiible. Take Ihu tiibuhir oircutntenMhi; tor this dimuntion, multiply it by 2, 3, 4, b, ete , according ;is it was divided, and the jjtnduct will ffive the circunilV'ri'iicc re jiiire 1. Ex.\Ml'l,K. — What is the circiiiiii'ereiice tor ii di;inieter id' Kl.'jir.' 1050-7-7 = 150; tab. cireuui., 150^^471, '-'.'JU, which x 'irraiau.UT.'', ci'/i";);. nt/nlrcd. To (lumpiite the (MrcumfiTcncc for an Integer and Friietion not given in the Tabic. liui.K. — Double, treble, or q'liidruplo the dimeiition given, until Iho frnctto'i i-; inreised to a whole number or to o'lo of those in the t ibK", it.< i. }, etc., provided 't is priflicil to do .-o. Tnko the circumfi'rcnce for thi.s iliiimetcr ; and it' il \f iluub'c of thai foi- which the ir'umforenco is required, t.iko one half of it ; if treble, t:ike o:ic t'lird of it ; anJ if q ladropU', o lo lourth of it. KxASIPliK. — Required the circunifeience of 2.21875 iiichoii. 2.21876 X 2 r= 4.4376= •Ij-jy, which x ''^ = ^■1 ; tab. oircum. = 27.S5l7, wh;ch-^4=- f,.0704 ,•„^^ To Compute the Circum. of a Diameter in Feet and Inehes etc., by the preceding Tabic. Kur.E. — Reduce the diinention to inches or eighths, as the casa may be, and takj the circumfo- rence in that terra fiom the table for thiit number. Divide this number by 8 if it U in eight'.is, and by 12 if in inoho?, and tho quotient will givj tho area in iwK ExAMPLK. — Requited the oircumforenoo of a circle of 1 foot (ii{ inehe.s. lfoot6;j ins == is;; ins. = 141 eighths. Circum. of 147 = 461.815, which -^-^=5 57.727 Inches; and by 12 = 4.81 feet. TA.15L1^ III. AREAS AND CIRCUMFERENCES OF CIRCLES, FROM i\ TO 100. [A(lr(tiirii)rf h;/ 'J'cnt/is.] Diam.l A ca. Circuui. 1 Diam. 5. Ar.'ii. Ciiriini. Diam. Area. C:ireiim. ' ]9.;;2 •> 1 21.2:!72 \ IG.Ii.ld.'J .2 8l.7i:{ :r2.oi4;i .:i ,(l7(hi-'iti 1 1.25 k; i A ! 22.0(122 i Id.OdK) .4 84.9488 :52.d72d .0 .l'.)i;:;,5 i 1.5708 :', .5 ' 2.S.75-;^ '•■ 17.2788 ..5 8d. 590:1 :i2.o.8d8 .(i .2.^274 1 l.^iS5 ;1 .(5 24. •;;!() I 1 17.5020 .(; 88.2475 8:!.:i009 .7 .:i-i|^,") ! 2.1 001 '! ■7 ! 25.517(1 17.0071 i! .7 89.9204 1 :i:5.di5i .8 .502il(i 2.5i:;:; ': .8 ' 2t;.l20S lH.2212 1 .8 Ol.doo i :i:!.9292 .'J .(;:!(; 17 i 2.S274 .0 27.:!:;o7 1.^.5:154 ' .9 o:!.:il:!:! :! 1.2 1:54 .1 .7S,-, [ :!.iiir. c. 2!-;. 2744 l8.S40d 11. 95.():i:!4 :!l.,557d .1 .'Joo:; ;!.I557 ' •1 20.2217 lo.id:i7 1 .1 9d.7d01 ;!4.8717 2 1.1 :;()'.) :!.7(;oo ' .2 1 :;o.ioo7 1 10.1779 i .2 98.5205 85.1859 •1 1 .:!27:5 AA)M .:! 1 :!1.1725 1 10.702 .:! 100.2^77 85.501 .4 1 .a:;ii:! 4.:!082 .4 j :!2.i(;o9 ' 20 10,12 .4 102.0705 1 85.8142 .5 1.7.;7l ' 4.7124 ! .5 1 :]:',.\ 1 :!I.212 1 20.7:115 1; .d 105.(l.s:i4 8d.4425 .7 2 2t;i)S 5.:il07 .7 j :!5.25i;(; \ 21.0187 1! .7 107.51:!4 8d.75d7 .H 2.r.Mii 5.(15 i 8 •^ Hii.:!Uis 1 21.:i(;28 ;i .8 109.:!59 i 87.0708 . 122.7187 80.27 .() 5.:-i()i):i 8.11181 .« 45.:Uil7 2:i.H7dl A\ 121.(1001 89.5841 .7 0.72').') 8.182:'. .7 4(1.5(i(;:! 21.100:! .7 12(1.(1771 89.8988 .8 (i.I.')7u 8,7 Oil! ; .8 47.7.s:i7 24.5014 i .8 128.(1709 40.2124 .'J ('..dO'.-! 0.1 lOi! .0 40.0i(i>! 21,S.l^'d ' .9 i:io,dO,s4 40.52dd •1 *•> 7.0i;s(; ;m2is : 8. 50.2il5o 25.1:! 28 i i;i. l:!2.7.S2d 40. S 108 .1 7.r)47(; o.7:;.^o : .1 51.51! 25.41(19 !' .1 1:14.7824 i 41.1519 .2 8.0124 l().ii5:!i .2 52.S102 25.7dll i •) 1 'Id .848 ! 41.4(191 .;{ 8. ,■);■>;■! 10.;!(iT2 51.10(12 2d. 0752 1 "."5 i:;s.0204 1 41.7882 .4 0.071)2 lo.d^M .4. 55.1178 2d.:iH04 ; A 141.02(14 i 42.0074 .0 <).(121l U). 005(1 .5 .■i(;.7451 2il,70:!d .5 l4:i.i:!oi i 42.11 Id .() 10.1787 1 li.:;oo7 .() ! 5S.08S1 27.0177 .d I45.2d75 ! 42.7257 .7 10.7521 i 11.112:10 i -7 1 50.4 1(10 27.:!:; 19 ! .7 147.4117 , 48.0899 .8 ll,:!lll il.o:i8 .8 ; (iO.S2l:{ 27.(1 id '•' .8 110.5715 i 48.854 .'J iLiMT);) 12.2522 ; .0 i (12.2115 27.9d02 ! .9 151.7471 ! 48.dd82 .4 i2.r)(ii;4 l2.5(i(i': ' 9. a:!.(;i74 28.2744 11 14. 15:!.9:!84 48.0821 .1 .:!.2025 I2.s«05 !i .1 (15, 0:189 28.5885 11 .1 15d.l45:^ 44.20d5 2 i:!.8,-)H 1;M017 il - (Id. 4 7(12 28.9027 •) I58,:id8 44.G107 /A 14.522 l:!.50-i8 !i .:■{ (17.9202 29.2 ld8 :a Id0.d0d4 44.9248 A l5.2o:.:'. l;5.s2:! ■'' A (;o.;i979 29.5111 A Id2.8d05 45.289 .r. 15.',U)1:! i4.i:;72 '} .5 70.882:1 29.8452 .5 ld5.i:!o:{ 45.55:r2 .(') i (i.e. 10 14.151:; i •" 72.:1824 :io. 150:1 M .d Id7.4l58 45.8078 .7 i7.;iiot I4.7i')55 ! .7 7:i.:i982 :-!0,47:!5 I'i .7 1(10.717 4(1.1815 .8 18.0'.t5r, 1 5.070(1 .8 75.1208 :i0.7s7d li .8 172.0:!4 4d.495d .9 18.S574 15.:50:!8 i .9 7(5. 977 1 111. 1018 II .9 174.3GGC 1 4G.S098 20 AREAS ANI> CmCC.MKRRKNCES (ip CIUCLliJJ. 'i\\\MA-:.-iO>iilii>urfJ.) Dimii.] Aiea. Circ'uin. Diiun. .0 Area. CiiTuin. 64,7101 Diuni. .2 Arcn. 1 CiriMiin. ii 1"). ITi'.Jir) 47.12-1 i 3:13.2923 5:::t.i2;>:) 82.:;o99 :: .1 1711.079 47.i;!Hl ' ,7 ;!:i(;.5:{0 05.0;! 1 1 •1 .•1 54:!. 25:!:! 82.021 i! .2 l81.4r)S,'^ 47.7r)2:; ■ .8 :i-i!l.7954 05.;i452 .4 .■■)i7.:i:i2:! S2.;);;s2 ! :.i is;;.s:,i2 •JS.OtlOi .9 ;;4:i.0705 05.051)1 .5 551.5171 i s:;.252i A isi;.2i;.u 4"<.:i.so(; ; 21. ;;io.:;oi4 O5.o7;;o .0 555.7170 s:;. 50115 .5 iHs.c'.rj;! 48.0!! IS '. .1 :;ii>.oo79 00. 2^77 •7 1 55;).;)(i:is ; 8:!.S-107 .(! l!il.l;:i'.» 49.0ll<:) ' ■> :;.-,2.9'.i()! OO.ilOl!) 1 .s 1 5(;i.i(»5i; j 81.1018 .7 in:;. 5:1:12 i'.i.:;2:;i .:! :;5i;.32si 00.010 •9 j 5i;s.;:2;!2 81.5(10 .8 I'.n;. 0(172 49.0:i72 : .4 :i5'.>.osi7 07.2;!()2 27. 572.55ii() 84.S2:;2 .9 iDs.f),^!;',) 4!). 5>^5.;i5ii:; S5.7050 .2 2()(;.i2(i;{ iJO.S!i;{!) i .8 :i7::. 25:11 OS, isos .4 5so.oiri;) sii.(i79S .:^ 20-^,(iT2'.) ')1.2(H .0 :)T0.0s5i o^.sol . .5 59:;.;'5n7 SO .■;:) 1 .4 211.2111 r)i.r)22i "''. :;,-(i. 13:10 0',),1152 ' .0 5;is 2.-0;; 80.70^1 .6 2::!.s2.-.i .Ji.s:i(it "a :is;!.5;i72 0'.>.429:! .7 0(12.11205 87.0223 .G 2ii;.i2is iVj.ir.o.') \i :i.-7.0705 0:1.71:15 .s (;oo.iiss5 87.;i;!0i 219.01(12 r)2.40l7 ,i» :!'.l().5751 7().o.v:ii .9 0!l.;i.l,12 S7.i;500 .8 221. 07 12 02.77^8 , A ;;;)4.o>2;'. 7(i.:!7is 28. OI5.75:iu 87.0018 .'J 22-1.:! IS ij:!.09:: .5 :;;i7.oo>i7 70.0S(! .1 020.1 5;»,i 8S.'27SO J 17. 22(;.9.-^0(! 5:;. 4072 .0 401.15(1'.) 71.0001 .2 (;2l,5sM ss.5:):;i .1 22'.).(;.")-;s ;').•!. 721;'. .7 401.70^7 7i.:iii.; • •1 02;».(ir.) s.-.;)ii72 .2 2:;2.::.-)27 i) 1 .():;.").3 .8 4(i8.2.-<2:; 71.02^1 .1 0:1:;. 1722 S9.2214 .3 2:;.').oi;2:! 5i.:ii:io . .9 411.S710 7i.;)i2t; .5 0:17.;' 11 1 s:i.5:;50 A 2;>7.7.S77 r)i.(i():;8 23. 415.4700 ! 72.250 -^ • .(! 042.4257 89.Sl! .')(•). S029 .7 411.1511 71.1559 : • 19 71.7t;s ; .4 07S.si;s:j 92.:;o:; .3 2(i:!.o22(; 57.1912 .9 4|.S.(;2s:! ; 75.0SS2 1 .5 Os:!.n)4:; .'-..1 i 1 .: .4 2 (■).■>. 90.") r)7.sO.-)4 24. 452.;i90l ; 75.:;:)si 1 .(! 0-s.i;;(i 92.;>;)i:t .6 2ii.^.^o:!l r.M.iioo .1 1 50.1 OS 1 75.7125 1 •" o:)2.7;i:;t 9:i.:;o55 .G 271.71(;9 r.s.4;!;:7 •) 45'.i.9010 70.(1207 1 .8 0;i7.ioOi; 9:10190 .7 27 1.0 It;.') .'5.'^. 74 7 9 •1 •10:!.77OS 7(i.:il()s .9 702.1.-)54 i):!.;):;:!8 .8 277..V.)17 5!).(02 .4 407.5:157 70.05.':! 30. 7(1(1.-^0 91.218 .y 2.<0.."..-)27 .■>;i.:i702 .5 ■ 47i.4:ii;:! 7o,:)o;)2 .1 711.5S02 :)4.502I 19. 28:i.:)29i ;V,).OM)l ^tj 475,2',)20 77,2s;;:! .2 710.:;iO2 1)4.S70:! .1 2S 1.52 17 00.00 If) . 4 ! 479.1(1-10 77.5;)75 .3 721.0078 95.!:)0t .2 28:).r)2!is 0(i.;!i,s7 .s 4h:; 0524 77,:ilU) .4 1 725.8:152 95.501(1 .3 292.5.'):!f; 00.0:128 .9 : 4S0.'J5.5,S 1 7s. 2258 .5 : 7.0.0ls;i 1)5.S|SS .4 2!)."'.'>:t:!i 00.'.) 17 '25. * 4:)o.s:5 ! 78.51- .0 ' 7:!5.4171 90.1:12!» .5 29s.(;i,-^:; (il.2(_.12 ! •' -1 ll.Sdlt.-! 7s.s5n 1 •" 74(t.2.!10 90.1471 .G ;!0i.7r.i2 01 ..■)7.j:! 1 *\ 41.^.7001 : 7S.10S:! j .S 7 15. Oh IS 90.7012 .7 ;{oi.so(; Ol.sso,') • 1 502.7200 70.|s-Jt 1 .9 719.'.;077 97.0751 .8 H07.90S2 02.2('3.; .4: j 5)0.7080 • 7!t.79.;0 31. 75 1.70') i 97.;is90 .9 311.02o2 02.5178 .5 510.7l)0:! i 8).lliiS .1 759.0107 97.70:17 20. 31 i.k; 62.832 .0 5i4.7i;)0 i S0.424-< .2 704.5.;:)7 9S.0179 .1 3l7.;!09t 0;!.I401 .7 i 518.7 I.SS : 80. 7:!:) 1 .:! 701). II S5 98. :i;;2 : .2 irio. 17-1(1 0:!.I003 .8 522.79:!i; 8|/)5:!2 .4 774. •;72;) 9S.11452 j .3 :r2:!. <;.").") 1 0:{.7744 .9 ! 520.S5I1 \ 81.:!074 .5 779. '11:!! 9S.;)0OI- 1 1 .4 :i2(i.sr)2 04.0,^,^1; 20. sio. 9:101 8i.(;sio .0 7S 1.20s:) 9:). 27 15 .5 330.001:; 1 04.4028 .1 , 555.022:1 i 8l.:)l)70 . .7 789.2100 99.5S87 AREAS AN1» CIKCl MI'Klll'.NCES OF OIHCLE? 21 TMiLE.— (Continued.) Diaiu. .8 Area. Circiim. '.. i)0.002S ' Diuin. .4 Aira. 1008,5802 t:iiciiin. 117.4958 Dinni. 43. Area. Circiim. 7!tl.227S 1452,201(5 1.35,0888 .1) 7!>i).2;!ilS 100.217 .5 llOi.liiS7 117. si 1. 1458.9i;(5s 135.1029 :vi- Mii.2i'.ii; ioo.,".;;i2 .(5 IllO.;!(i71 118.1241 2 11(55.7418 l:!5.7171 . .1 «0;(.2-t i()0.sir,:{ .7 1110.2811 ii8.i:;s:! .3 1472.5.385 l:!0.0332 ' .2 81 4.:::! II 101.1;V.)-) .8 1122.2100 118.7521 .4 1479.318 l:!(i.34,54 .'» Mi;i.:;'ji):) ■ i(ii.i7;!ii .!» 1128.1504 119.(1(5(5(5 .5 148(5,1731 1:5(5. (1590 .4 f^2l.isir) 101.747^ 1 38. 1134.!i7t; H9.;!sos .0 1493.0139 13(5.9737 .0 f^2;).:)7s7 1 102.102 ' .1 1140.0010 119.(59(9 i .7 ! 1499,8705 137.2879 .1) S:!I.G'JI7 102.11(11 i! 114(5,087 120.11001 1 .8 1 150(5,7427 137.002 , t ^:a[k <■!{)'■'. io2.7;!o;{:' .3 1152.0054 i2o.;!2;;2 ' .9 151:;, 0287 1 137.91(52 .^ Si 4. '.Ill 17 l:):!.OI44' .4 ll.')8.110l 120.(5371 44. 1520.53411 1 38.2301 :j .-^jo.rji-^ ; io:i.:iriS(; .5 1104.1501 120.051(5 , .1 1527.4537 ! 1:58.5445 • j(> • s')o.;{()in; i io;;.(i72s 1170.21 15 i 121.2(557 .2 153 4. .3888 1 138.8587 .1 s(;(i.4'.)2 lo;].!)>!(;<) .7 117(5.2857 121.5799 .3 1511.. 33 90 139.1728 8(;5.(iit!»2 ' ioi.:!i)ii .8 1182.3725 121.S91 i .4 1518.30(51 139.487 .'* 870.1)222 i lOl.ilir.l .0 lls.s, 1(151 122.20S2 .5 15.55.2S83 1 39. 80 r: A s7i;.l lilts ■ lOl.DJDt ;;o. 1101.51:! 4 122.5221 ,0 15(52.2802 140.1 1;j3 Si ssi.ii,-)! , io:..2i:;(; .1 12110.727;; I22.s;;(;5 .7 15(59.2098 ' 140.4295 .0 s-^(i.(;.s,ii io.').ri:)77 •> 120(;.S77 123.1507 .8 157(5.3292 140.7430 . i ,s!»l.l)7ll!t ; 10:).,S71i) .*'* 1213.0124 123.4018 .9 15S3.3742 141.0578 .'^ 8!)7.272:; 100. ISO A 1210.224:! 123,779 45. 1590,435 141.372 .;) Wl.')^\)') 10(l.o002 .5 1225.420;; 121,0932 .1 1597.5114 141.0801 :;i. 'J()7.'.)224 100.81 41 ' .(5 i2:;i.(i;;28 124.4073 .2 1(504.(5030 142.0003 .1 !)i:;.27i)i> 107.12S-, .7 12;; 7, 80 1 124.7215 .3 1(511.7114 142.3144 : .2 ;»is.i;:;.")2 107.1272 .8 1241.121 125,();i5)5 .4 10 1:5.835 142.0286 : ••> i»2I.Ull.) l()7.75i;s .1) 1250,3010 125.:;40S .5 1025.9743 142.9428- : .4 1)20.4101) : 1 OS. 071 40. 1250.(54 125.0(54 ,(> 1033,1293 143.2509 ; .A lt;il.,>^22:! : I0S.:;>:,V2 .1 1202. o;;i 125.9781 ,7 1010,302 143.5711 : ••' 1)10.2101 lOS.CDK.i 2 i2i;o.2;;ss 12(5.2923 .8 1047.4810 143.8852 .7 04."), (1022 : 100.();!;Vj '.ii 1275.5(502 120.0001 .9 1(554.0885 144.1994 .S o.")i.l.')()S iuo.;;o7i; .4 12.S 1.81)81 12(5.920(5 4(5. 1001,9004 144.51:56 .;) l).")(i.(;2.) 100.(i4lS .5 I2SS.252;! 127, 2:548 .1 10(59,1399 144.8277 Xk Dtili.ll'j loO.O.")!) .(> 1204,(5219 127.5489 9 1070,3891 145.1419 , .1 l)i;7.(;2l)t! 110.2701 .7 l:!01.0071 127.8031 •t ..) 1 (is:;. (5541 145.450 ; .2 1)7.'.. 142 no.fisi:; .8 1307. 40S2 128.1772 .4 1090,9347 145.7702 .•'! 1)78.1170 llO.SO.Sl .9 1313.8219 128.4914 .5 1008.2311 140.0844 .4 l)84.2:ilH ' 111.2120 41. 1320,2574 128.805(5 .0 1705,5432 14(5.3985 .0 oso.soo:; ■ iii.;V2i;s .1 l;!2(5,7()55 129.1197 . 1 1712.871 140.7127 .(1 01i.').;>Slo 1 11. SKID ') 1333.1(103 129.4323 .8 1720.2144 147.0208 .7 I000.1).S13 112.1;),-j1 i3:;o.(;4so 129.748 .9 1727,57:« 147.:ill .8 lODii.O 1 112. 4(102 .4 1310.1441 130.0022 17. 1734,9180 147.(5552 .'J l()12.2:il3 H2.7.S31 ' .5 i:!52.(;.-)5i 1:10.37(54 .1 1742, .3392 147.9093 3G. 1017.87.S4 113.0070 ' .0 1:550.1818 1:50,0905 .2 1749,7455 148.28:55 1 -1 102:!.r)lll 113.4117 ,7 1.3(55.7242 131.0047 .3 1757.1075 148.5976 ! .2 1020.2105 113.7250 .8 1372.2822 i:;i.3i88 .4 17(51,0045 148.9118 !;i lOlii.OlDl 114.04 .0 1378.85(5 131.032 ■ .5 1772,0587 149.226 .1 10U).(;2.".") 114. .35 12 42. 1:585.4450 131.9472 .15 1779,5279 149. 5:10 1 .") 10l(i.34f^l 114.(i081 .1 1302.0508 l:;2.20I3 .7 1787,0127 149.3543 .1) 10,V2.000I 11 I.0S25 .2 1308.(5717 132.5755 .8 1794.5133 150.1084 .7 10.')7.8474 115.21)(;7 .3 i405.:i083 1:52,8890 .9 1802.0290 150.4826 .S 1 Oil:; .02 11 5. 01 OS .4 1411.9007 133,2038 48. 1809.5016 150.79(58 1 .;) 10i;0.4081 115.02;") .5 1418.0287 1:53.518 ■ ,1 1817.1092 151.1109 ! ;'.7 . 107-). 2 1 20 1 11(5.2302 .(5 1425.3125 1:53,8:521 .2 1824,0726 151.4251 ; .1 10sl.0:!24 1 11(5.55:13 ! .7 1432.0119 134,1403 .3 1832,2518 151.7392 .2 I(l8(i.8ti70 i 110.8075 .8 1438.7271 1:11,4004 .4 1839,8406 152.0534 .3 1002.7101 1117.1810 1 .9 1445.458 134,7740 .5 1847.4576 152.3676 w AREAS AND riRCtrMPKHKNCKS OK » Ill.'LF.? 'TABLE— (CoHtimicd). Di; iarn.i Aivu. .G .7 .8 .9 49. 50. .1 .2 .3 .4 .5 .6 .7 .8 .9 ). .1 .2 .3 .4 .6 .6 .7 .8 .9 51. .1 .2 .3 .4 .5 .6 .7 .8 .9 52. .1 .2 .3 .4 .5 .6 .7 .8 .9 53. .1 .2 .3 .4 .5 .6 .7 .8 .9 54. .1 iHa.-j.os:?;] ls(;-j.72"):{ i lH70.;iS'J',) l878.o.)(;:! : lSS.j.74.')l ' 1H1);{.I5()1 ' liU)1.17()ii ii)i(i.t;r)S7 1 ii)2i.42t;:i ii);;.'.2()'.M r.iH).o(»si; l!t»7.82;il iu.")r).(M:is ii)7i.;!(;is i;)7'.).2;!i)i ; l!)S7.l;i2(i : l!)i)5.04li; j 2i)02.%(;:{ I 2010.iiO(i7 • 20 18. 8028 202(1. 8:5 u; 20:54.877 2042.82,>t 2050.844:! 20.j8.8784 2()(i(;.i)2i):! 207l.i)ii.):i 20S:{.0771 2o;)i.i7it; 20i)9.2878 2107.41i;G 2ii">.r)i;i2 212:!.721i; 2i;n.8;)7(; 2N0.0s'j:i 2148.2i)(;7 2i5(;.r)i:)S) 21 (14. 7.587 2i7;i.oi;{:{ 2I81.28:{5 2l89.oi;;)5 2!'J7.8712 2200.1 880 2214.02 10 2222.8704 22:51.2:55 22:59.0152 2248.0111 2250.4227 2204.8701 227:^.29:51 2281.7519 2290.2201 2298.71 05 Clrciim. i 1.52.0^17^ 1.') 2. 9 95 9 15:5.:51 i.-):5.(;2i2 1.5:5.9:581 154.2.V25 151.5007 15I.SS08 155.195 155.5092 1,55. 82:!:! i.-,(;.i:!75 150.4510 15ii.755-< 157.08 157.:!!) II 157.70s:! 15S.0221 I5s.:-):!i)() 158.050>^ 15S.90I9 15!t.27'.)i i59.59:!2 159.9071 100.2210 100.5:157 100.8199 1(;1.104 ' 101.1782 : 101.7924 I02.10«i5 102.4207 102.7:518 10:!. 019 io:!.;!ii:i2 I0:!.ii77:^ lo:i.9!):55 ioi.;!05(; 10Li;i98 ■ l(i4.9:!4 105.2481 105.502:5 j l(i5.8704 i 100.1900 I(;0.5048 li;ii.8189 1 107.1:5:51 i 107.4472 I07.7(il4 108.0750 108.:^897 108.7019 109.018 109.:5:522 109.GI04 109.9005 Diain. .2 .;i .4 .5 .0 .7 .8 .9 55. 1 .1 Aivii. .:! .4 .,5 .0 .7 .8 .9 50. .4 .5 .() .7 .8 .9 57. .1 .2 :^ .4 .5 58. 59. .0 .7 .H .9 .1 .2 .;{ .4 .5 .0 .7 .8 .9 ). .1 _2 .3 .4 .5 .0 .7 2:507.222 H 2:!15.71i : 2:521.281:5 2:!:!2.s:5i;5: 2:! 1 1.10:! 1 2:! 19.9^7 I 2:!5<.5>70 I 2:!07.2ii:;i 2:575.8:55 2:!^ 1. 1822 2:59:5.1452 2IOl.X2:!8 2U0.51S2 2119.22-^.! 2127.9511 2i:!0.(i95i> 2115.152-^ 2151.2257 210:5.0141 2 171. 81 ■<7 2IS0.0:!S7 2H9.47I5 2l9-!.:!259 2507.19:11 2510.070 2521.97:50 25:5:5. 8SS8 25 12.81 ^S 2551.7(510 2500.720 2509.70:51 2578.0'.i5'J 25,s7.7015 251)t;. 72.^7 2(iO5.7087 20 1 4. .^2 4:5 202:5.«'J57 20:52. 0^28 2012.0-^50 I 2051.2011; 2O0O.:5:i.s2 12009.4882 2078.05:18 2ii87..s:!5l 2097.0:5.^! 2700.2 t49 2715.47:1:5 2724.7175 27:5:5.9774 274:5.2529 2752.5442 2701.8512 2771.17:59 2780.512:5 2789.8001 2799.2302 Circutn. 170.2717 UO-.iS''':! 170.90:5 i 171.2172 17 1.5:11:! 17I.8l.-)5 I 172.151),; 172.47::s 172.7SS 17:1.1021 17:1.110:1 17:1.7:101 171.0110 171.:!:.-^ 171.07211 171.9771 175.:!092 175.0151 175.929 1 17i;.2l:i7 17i;.5579 17(;.872 177. H02 177.5001 177.8115 178.12S7 178.4128 178.757 179.0712 l79.:i-5:! 179.0095 ISD.OIIIO 180.:127S 180.012 180. 9511 181.2m):i 181. 5 -in I Si. 89 -ill 1S2.212S 1S2.5209 l.->2.ht-ll , 18:5.1552. 18:5.11191 ls:!.7sio Mi. 0977 1^1.4119 Is 1.720 1S5.0M)2 I85.:!54l I85.(;i;s5 1S5.9827 1 81;. 2090 180.011 180.9252 187.2:19:5 187.5535 Diuin. .9 00. 01 iiZ. 0:5. 01. G5. Area. 2808.';2IS 28 IS. 02:1 2S27 II 28:10.8720 2- 2S55.7S5 1 2-!05.2i!|s .5 2S7 l.7(;o.l 2S8 1.20J5 i 2S'.) 1.79-54 .8 290! Ill 9 21)! 2.899 1 .1 29:12. o;:!! •) 21)ll.00'^5 .:! 21)51.2897 A 21).;().9205 .,) •Jl»7(). 571)1 .0 29S().2l71 -r . 1 29-<9.9:il 1 .s •ji)!)i).i):5 .9 :!Oi)i).:!iOi :!()! 9.0770 .1 :102-<.S2II •J :!0 !8.5si;:> .:5 :50i8.:i05i .4 :505 s. 1591 .5 :io.;7.9.;s; .0 :5077.791l . 1 ' :;i)>7. 0:511 ,-•! ! :iOi)7.i9r.) .0 .7 .8 .1 .2 • > .4 .5 .G .7 .8 .9 .1 .2 .3 .Hi! 7.2520 :; 127.1501 :il:57.075s :il 17.0111 :il 50.900 I :^l0ti.92;)i :51 70.911 5 :il -'0.9097 :5 19.1.92:55 :52()0. 95:51 :i210.99-^l :5227. 059.1 :52:57.i:io :!217.22St ;5257.:5:j05 32i!7.40'):! :5277.591)S :52S7.755 3297. 92*; 3:108.1120 15:51 8.. -5 15 :5:!28.5:54 :53,1s. 70t;8 3:149.0102 C'inn 11. 1S7.8070 H^.ISM ;8s.490 ISS.SIOI I is;t.rji;{ isD.CNti I -1). 75211 1 ll';I.O0.1S , I90.:is09 j] 1-90.01)51 1111.0092 I I91.:!2.5l I9l.ti:i70 191.9517 11)2.2';59 192.58 19:i.S912 19,1.2081. 19.1,5225 I9!.s:!07 191.150-! 191.105 191.7792 11)5.09,1:! 195.1075 195.7210 19; .0:158 190.115 19.1.0011 ll).1.97.s.i 197.2921 i 197.11000 197.9208 ' 19s. 2:1 19 19S.5I91 i 19S.8.i:52 ' 191).: 771 \ 101). 191.; 199.si)57 200.1199 I 200. 4:5 4 . 200.7482 201.0024 2i)l.:5705 201.0907 202.0018 202.319 202.i;:5:;2 1 202.947:1 |20:!.2tll5 ' 20:5.5750 20:5. 8S9S 20 1.20 1 201.5181 20 4.8323 205.1401 Aiu'.As AND (MKrtrMi.'i<;aKNrKs mV circles. TABLE.— (Continued.) 23 Dinm. Aron. :<;i:)9.28i4 Cii'cniii. 1 2n:).4G0G t 'Diani. 71. Avon. Circmn. Diam. Area. CiiTuni, 240.G4G5 .4 ;59.-.9.201 1 22:5.0.j;5G .G 4'108..1-^1G ; .5 .i:ir.ii.r)(i-j:! ' 2().".771S .1 ;!;)7o.:!t;i9 22:!.:i(i77 ] .7 , 4G20.I2IS 24(1.9007 .t; ;i:;T;».><.".'^'.> '■ •joii.dss:) .2 ;;;)■< i.".:;-^i 22;!.Gsi9 .8 4G:52. 177(1 '' 211.2748 .7 ;i;iii(».i7i2 2(ni.io:u .:5 ;!992.7:;oi 22:!. 99.; i .9 ' 4(1 1 1.5492 2H.5!t87 .H : ;iuio.r.);)2 20i;.7172 .4 .|(io:;.9:i7:! 22i.:!l02 77. 405(1. G.'ltlO 211.90:52 .1) ;i410.>!|29 2(»7.();!1 1 .5 101.'). I Gil 224.G24r •I i .1008.7:590 212.217:5 GG. ;;»i!i.2(fji 2i>7.;!i:.G I .G i(i2i;.ioo2 22i.9;w:) .2 4(l<0.85s:i ! 2 52,5:515 .1 ;ii;il..'>77.'i •,!li7.i'.J97 ' .7 |0:;7.ti.').'. 22.'>.2.'.27 , ■^ : 4092.9927 ' 212,84,50 .'2 ;ii4i.'.)i;:i:; 2(17.97:59 .8 •KlH.'.l^.".! 22.').J(;i;8 .4 ! 4705,1429 24:5,1598 '1 ;il.V2.:!7l'.» 2!l-^.28-; .9 ■|(li;o.21iii 22.'i.'^.>^l : .6 j 4717.:i0S7 21:5.174 •-t i ;{m;2.71)71 •j()h.(;o22 ^ 72. |()7I..')l:!(; 22i;.19,")2 ■ .G I 4729.190:i 24:5.7881 .5 ! ;ii7;;.2.;:)i ' 20-^.'.M(;i i .1 1(H-J..><;!;!2 22(;.r)09:5 <\ .7 i 471I.0S75 241,102:5 •'• oiS.'i.Gs^S 'iOO/i;!!),) 2 10:) 1.1(1 IT) 220.82:55 1, .8 ; 475:1.9005 2I4.41G4 •7 ;ii9i.iiw i 2();»..JiiG i "..H 1105.5125 227.l:;7G! .9 ; 4700.1292 214.7:100 .8 ! ;!.')() t.tii;!2 2(t'.t.s,')'^8 ; .4 ■lll('..S79:i 227.151s: 78. .177S.:57:5G 215.0148 .9 1 i).')!.-).! i:; 2llt.l7:! i .0 H2-<.25^7 227. 7Gt; .1 4790.(1:5:50 245,:5,VS9 G7. 1 ;i.vj.').i;i;or. ■ 2i<».is72 1 .G .l,:i9.t;521 22-<.OS01 ' .2 4S02,9()9l 245,07:51 ■1 ! ;i.'>.lb.l'.)2s 'jKLsoi;! .7 4i5i.(ii;(;7 22s.:59»:5| .3 4S 15,201 245,9872 .2 ;).J4(;.7iui •iii.li.'i:) .8 I1(;2.4;m:I 22S,70-^4 .4 4827.50.-:2 2I0.:5014 .'^ ;ij.')7.:!()i;! > 211.4291; .9 Il7:!.9;!7(i 229.022G: .5 4>^:i9.8:!ll 240,0156 .4 ;),)(>7.8s;>7 ! 2ll.74.i8 7:5. (is5.:;9,;(; 229.:{:;(;8 .« 4852.1097 240,9297 .5 O.J7S.47.S7 i 212.0.')8 .1 4r.)t;.>i712 229.G509I .7 4804.5211 217.24:59 .G ;).ys9.o,sii.-. ; 2i2.;i72i ■) -I20-'.:1GN 229 9i;5i .8 4S70.S97:5 217.548 .7 ;;,vj9.vi59 2i2.G^(i:{ .:5 .i2l9.S(;78 2:50,2792 .9 48SSK2799 247.8722 .s ;m;io.;!.")s| 2i:i.oo(u .4 ij:il.:!>^'.iG 2:50.59:11 79. 4901. 0Sl4 248,lS0(: .9 ;ii;2i.oiG •ji:i.:;i Ki .5 1212.9271 2.!(l. 907(1 .1 4914.09S5 24s,a()05 G8. MG;il.GS9G 2l.'!.G2-<8 1 .G .|25l.-ls(i:! 2:51.2217 .2 4920.5:514 248,8147 .1 ;}GI2.H788 2i:i.9J29 .7 -i2(Ki.oi9:) 2:51.5:559, .3 49:58. 9S2 249.1288 .2 ;iG:):!.Os:;s 214.2.-)7l .8 4277.G.!:{:» 2:51.80 .4 4951.414:5 2 59,443 .;? oi)t);{..'so4 21I..J712 .9 42-9.2:', 1:! 2:52.1042' .6 490:5.921:1 219.7572 .4 ;501 2:)2.17Sl .G 4970.484 250,071:5 .5 :;.;>;>. 29;ii 2l.'>.l'.»9ii \ .1 I:il2.1s2l 2:52.7925 .7 4988.9:514 250,:5855 .G :i(;9ti.oui; 2ir).r>i:i7 . .2 i:!2l.l2:)t; 2:1.;. 10(17 .8 500I.458G 250.6996 .7 ;{7u<;>ii') 2i:).8279 .•^ i;;:;5.792S 2:5:5.4208, .9 5014.0014 251.01:58 .8 .■;717.(;i;!7 21ii.l42 .4 i:; 17.471 7 2:51.7:55 80. 5020.50 25l.:52.^0 .9 ;i72s.-loS7 ; 2l(i.4,M;2 i .5 -1:159. IG(">:5 2:11.0 592 .1 50:59.1:542 251.6421 1 G9. ;;7.{9.2sl(4 2IG.77Ut .G -i:i7o.s7(;(; 2:it.:^(;:;:5 i -'^ .5051.7242 251.9503 : .1 ;i7.')().i:i')7 21 7. us 1.) 1 *- i:5-<2.G02(! 2:11.(1775 .A 5004,:525S 252,2704 ') ;!7G0.9978 217.:i9.S7 1 .8 4:19 1.:! 11-^ 2:11.991(1 .4 5070,9552 252.5846 ".:? ;!77i.87r)ii 217.7128 ! .9 4 1 Oil. 1(1 18 2:15.. '5058 .5 o0<9.588;l 252,8988 .4 ;;782. 7(191 21^.027 7a. 4I17.S75 2:55. G2 .G 5102.2411 25:5,2129 .5 ;i79;].G78:i 218.:'. 112 .1 4129.(1(1:18 2:15.9:541 .7 5114.909G 253.5271 .G ;;hu j .go:!2 •iis.t;.-.;-);! .2 .H41.4(H4 2:iil. 248:5 .8 5127.59:58 253.8412 .7 ;{8i.-).r)i;{8 21 S. 909:) • > 1 l5:5.2ssG 2:1(1.5024 .9 5140.29:^7 2.54.1554! .8 ;{S2G.ol)(i2 ' 219.28:!(; .1 ■1405. 124(5 2:5(1.87(1(5 81. 515:5.0094 254.4696 .9 ;i847.4722 1 219.r)978 .5 447G.97(i:5: 2:57.1 90S .1 5165.7407 254.7837 70 :isis.4G j 219.912 .G 4H8.84:^7 2:17.5049 .2 5178.4877 255.0979 .1 :i859.l9')2 1 22().22G1 .7 4500.72(18 2:17.8191 .3 5191,2505 255.412 .2 ;{S70.4S2G 220.510:5 .8 4512.0250 i 2:58.1:5:52 .4 5204.0285 255.7262 .:^ ;{ssi.r)i74 ■ 220.8.114 .9 4524.5101 ! 2:58.4474 .6 52 IG, 82:51 250.0404 .4 ;),-<92.r)(i8 i 221.1(18(1 7G. 45:5G.4704' 2:58. 7G1G .6 5229.G:« 256.3545 .5 ;!90:?.g;uh •221.4S28 .1 4548.4 1G:5 2:5i».0757 .7 5242. 458G 256.6687 .G :59l4.7lG:i 221.79(19 .2 45(10.:5787 1 2:5y.;4S99 .8 5255.2998 256.9828 .7 ;;!)2.-).8u 222.1111 .3 4572. :555:? ' 2:h;).704 1 .8 5208.1,568 257.297 .8 ;!9:;g.927-J 222.42r)2 .4 4584.:558;5' 240.0182 82. 5281. 029G 257.6112 .9 ;^948.05u5 222.7:594 .5 459G.:i571 i240.:5:524 i •! 529:5.918 257.9253 24 AREAS AND C'lUCIIMl-'KUENCKS OF CIRCLES, 1 Diain .2 1 Arm. Ciriiiiii. 2.")8.2395 1 Diaiii. j 5;!nG.822l .;i ij;ii!).7i;ii» 25s. 55; 111 ' .9 A r>;{;{2. (;":.> 25S.sOI(; S8. .5 o;Mr).G2s7 I259.1S2 .1 .G o;{rj8.r)!)-)7 i 259. 4901 •> .7 5;{ 7 1.5983 ' 259.,^ 103 .•> .s o;{H4..'J7(;2 1200.1214 .4 .!) .'j;{'J7.5908 200.43c^0 .5 8a. 5.JI0.G20G 200.7528 .0 .1 5423. G(1G 201.000!» i .7 .2 543G.7272 201.3S1I .8 .3 5419.8012 201.0952 .9 .4 51(i2.89G8 202.0094 89. .5 517);.0(ir)l 2t;2.32:{(; .1 .G 5489.1291 202.{;.;7o ,2 .7 551)2. 2(;89 202.9519 I ..'! .8 5515.4213 203.201 1 -t .9 5528.59.')8 203.5802 ' .5 84. 5541.7824 203. s 1)4 4 i .0 .1 5554.9847 204.20S5 ; .7 .2 55(;8.2032 204.5227 .S .3 5581.4372 '204.s;)08 .9 .4 5594.0809 205.151 :9o. .5 5007.9523 205.4052 ! .1 .6 5021. 2;m 205.7793 i -2 .7 5034.5082 200.09;{5 .3 .8 5047.8428 200.4070 .4 .y 5001.171 200.7218 .5 85. 5074.515 207.030 .G .1 5087. 8740 207..3501 .7 .2 5701.25 207.0043 .8 .3 5714.041 207.9784 .9 .4 5728.0478 208.2920 91. .5 5741.4703 208.0008 .1 .G 5751.9085 208.9209: .2 .7 5708.3021 209,2351 : .3 .8 5781.832 209.5492 ■■■ .4 .9 5795.3173 209.,S034 .5 86. 5808.8^84 270.1770 1 .G .1 5822.3351 270.4917 ■ .7 .2 5835.8075 270.8059 1 .8 .3 5849.4157 271.12 ' .9 .4 5802.9795 271.4342 92. .5 5870.5591 271.7484' .1 .G 6890.1541 272.0005 i .2 .7 5903.7054 272.3707 ! .3 .8 5917.392 272.0908 .4 .9 5931.0344 273.005 .5 87. 5944.0920 273.3192 .G .1 5958. 3G44 273.0333 .7 .2 5972.0559 273.9875 .8 .3 5985.7G91 274.2G1GI .9 .4 5999.4821 274.5758 93. .6 0013.2187 274.89 .1 .6 0020.9711 275.2041 .2 .7 G040.7391 275.5183 1 .3 Area. 0051.51 49 0()0s.;;224 Ol>2.l:i70 0(l'.»5.9(;.S| 01 09. si 5 0123.0771 0i;{7.555l 0151.1191 010.").;!,")SJ 0179.2S37 0193.2215 0'J07.!S11 0-J21.15;;i 02:;5.i ii;i (12 19.145 O^O.'l.iOl I 0277.1995 0291.i;o;!5 (i;i()5.3i0.s 0.11 9.399 0:i;i.!.497 o;;i7.(;si3 03111.74 0.'!75.SS5 G3:)U.0158 0404 ,2222 0418.4144 0132.0223 0410.8474 Cirt iiiu. Diaiiv iK 0401.0^ 0475.3402 04Slt.0109 050;{,S074 0518.1 095 0532.5173 0540.8909 0501.21)81 ti575.5051 05>!).'J158 0004.3222 0018.7542 00;{3.1S2 0047.0350 0002.0848 0070.5597 0091. 0101 0705.5507 0720.0787 07.'! 1.0105 0749.1099 070.".. 7391 0778.324 0792.9240 0807,5408 0822.173 0830.8200 275.s;!21 275.1 100 270.1008 1 270.7749 277.0801 277.iO:i2 277.7174 ' 27s.():;io 1 27s.;;i57 278.(i5i)"J I 27.>.|,975 I 27!t.2SS2 I 279.';024 I 279.!) 1 05 I 2.-0.2:;07 2-0.5 148 I 2^0. .-59 2S1.!7;!2 2S1.4.S73 I 2S1.S,S25 I 2S2.115(; , 2S2.I29S j 282.744 i 2-3.0581 2s;!.;i723 I 2s;;.o,-0 I i 284.0000 284.;il48 .■;s4.(;289 281,9131 2s;i,2572 2,-5,5714 i 2S5.s»5(; ■ 2s0.;'197 2,-0.5139 i 2S0.829 i 287.1422 j 287.1504 2S7.TT05 I 288.0847 288.398si 1 288.713 2,-9.02:2 289.;i4]3 2,S9.0555 2,S!),9090 2'J0,283,S 200,598 2:)().9121 291.2203 291,5104 29 1. 8540 292.1088 292.4829 292.7971 293.1112 A .f> .G .7 .8 .9 94. .2 .3 .4 .5 .G .7 .8 .9 95. .1 2 !.3 .4 .5 .0 .7 .8 .9 90. .1 2 .3 .4 .5 .0 .7 .8 .9 .1 .2 .3 .4 .5 .0 .T . I .8 .9 98. .1 .2 .3 .4 .5 .0 .7 .8 .9 97. Area. 0851.4.^10 O.-'OO.IO;!! i (i,-.s(i.s579 ; O.S1I5.50.S:) (;9I0.2947 (;925.0,!07 0l);i9,79ll 0951,5077 (;'.)(;9,.'!50s 09SI.1014 099M.!l,-<21 7oi;;,8is;{ 702s, 0702 7(1 1. 'i. 5025 70.-..S.I1.S 707;!. 3202 70S.-.2.'15 7103.1054 7118.1110 7133.0734 7 MS. ();-,! 7103.014:; 7 17s, 053;! 7 1 9.!, 078 720S.11SI 7223. '745 72.;s.24(;i 7253.;i3:i9 7208,4371 ;2s;i,55(;i 72!!-, 01)07 73i;;,siii 732:1.0072 7:!t4.1S9 7;!59.:iS04 7371.5990 7;;.-9,s2so 7I05,07.'!2 7i2(i.3:!;;5 7i;!5.00'.)5 7150.9013 7400.2(187 7IS1.5;)I9 7490.S7O7 7512.225,3 7527. 5iJ5)! 7512.9810 755S.;is32 7573, sOOO 75si),2338 7004 .0S20 7020.1471 7035,027.3 7051,193,{ 7000, 9:;4'.) 7082.1023 CirciiMi, 293.4251 293. 7300 291,05,37 294, .1079 29I,(;S2 291.9902 295,;; 104 295,<;215 295,9;;S7 290.2i:i0 290.507 20(;.8812 297.195;; 297.5095 2I)7,S2;;0 29s.i:!78 2l)S.I52 29S.7001 29!l.072;! 29;i.:;944 2'.):>.70so I 300.0228 i :ioo.;!;;(;i) j ;ioo.(;5ii I i :!oo.9(;52 I 30|.27:'4 j ;101.5!I30 ;!01.!»077 i;i02.2219 ;!02.5;;o ; ;io2.s;j()2 303.1044 303.47.S5 I 303.7927 304.1008 I 304 .421 i301,7;!.52 i 305,0493 \ ;;o5.;{035 i 3i)r),O770 i 305.9918 , ;!oo.;;o(; ! 300,0201 3oo,9;!o;{ 1307,24-4 j :;o7,5(;2o 1 ! ;>07.8708 ! 1308.1909 : 308. .505 1 ;i0s.«192 309.1334 309.4470 ;{09.7017 310.0759 310,390 310.7042 AREA8 AND CIRnUMFKIlKNOES nv riRrLFi». TAWLE.—fCuHtmued.J 2ft Dinni, U'J. .1 .2 Aroa. 77i;!.2(;U 772s.8;{;!(; 7744.42HKi Circiini. Diam- :!1 1.0184 1 ;{ii.:!;i25: .•ui.c.ic.tI :ni.960Hi 1 .4 .:> .0 .7 1 Arcn. 77(10. o:] 17 777i"). ().">().'{ Clrrum, :!1 2.275 ;!12.:>h!t2 Diani, 77!)i.'j;»;!(;i;!i2.!to:t;i 7H0(;.'J4tJ(Ji3i:{.2176 100. .3 .9 Aroa. 7822.01 ")4 7H;{S.2'J'J8 7KiJ4. Cirfura. ;ti:{.5116 :UH.8458 .'{14. 16 To Compute the Area or f irniiiifiTcnr!^ of n Dinmpfcr greater than any in tiic proffdiiig Tnlile. Poo Ruloc, pftgos 176 nnd 1^1 . Or, /I'l/" />i,iiiii/, ,■ f.'-rnil.t lOi) iiinl i.t /i:i.* l/idli lOUI. Uunidvo 111!) (]<'ciiiial jx int, and tnko mit tho aroii or ^irniimforonoe as for n Wholo Number by removing tlio decimal point, it lor the uru.i, two (ilucoa to tiio right; iind if for tho oiroum- fcrcnpo, mio jihu'o. iLLDSTHATKiN.— Tho area of 1)6.7 is 7.';44.I«S) ; honco for y67 it ia 734418.9: and the oironm- fcrenco of i)U.7 is ^03.7927, ond for 967 it is :ii):i7.927. TABLIO HIT. AEEAS AND CIKGUMFERENCES OF CIRCLES. rniiM 1 TO 50 FEET. [Adrnncinfj by an Inch.] Diam. Area, Feet. Circtun. Diam.' i Art ,1. Foot. C'irciiui. ! Diam. Area. Feet. Cin um Feet. Ins. luet. Ins. Feet. luH. I ft. .7f^o4 :^ i-^.. ■oft. 7.0686 9 5 5 ft. 19.6.35 15 8H I .9217 '^ 4% 1 l.UXC. 9 Sk 1 20.2947 15 U-H 2 1.069 3 8 2 7.8757 9 IP,^ 2 20.9656 16 2H .3 1.2271 3 11 '1 • > 8.2ii.>7 10 2'i 3 21.6475 16 5^^ 4 1 .:{it(52 4 2 In 4 8.7265 10 5-'';i 4 22.34 16 9 .5 l.r)7til 4 bhl 6 9.1683 10 i 1 13.0952 12 9% 1 29.0649 19 iK 2 ,s.(;8(;9 6 9-'i) 2 13.6M.53 13 1 2 29.8668 19 4^ .S .3.976 7 i'( 3 14.1862 13 41^ 3 30.6796 19 7M 4 4.276 ? P' 4 14.7479 13 7I4 4 31 ..5029 19 loM 5 4. .5869 5 15.3206 13 lO'-i 5 .32. .3376 20 ig 20 4K 20 sH. 6 4.9087 7 101^ 8 1?| 8 4'.< 6 15.9043 14 I'^H 6 .33.1831 7 5.2413 7 16.4986 14 4% 7 .34.0391 8 5.585 8 17.1041 14 7?8 8 34.9065 20 11,5 9 5.9395 8 7% 9 17.7205 14 11 9 35.7847 21 2% 10 6.3049 8 io;^.i 10 18.3476 15 2)6' 10 .36.6735 21 5|^ 11 6.6813 9 1% 11 18.9858 15 5H' 11 .37.67.36 21 8^4 2G ARKAH AND t'MU'UMKI.IlKNt.'KS i)V C'lROLE^. T\\nA'].~(('initinitcit.) Diaiii. Avon. TJt 1 2 3 4 5 C 7 8 y 10 11 2 3 4 6 G 7 8 9 10 11 9//. 1 2 3 4 5 G 7 8 9 10 11 lOJt. 1 2 3 4 5 G 7 8 i ^ 10 11 1 2 3 4 6 6 F.H-I. 38.I81G 39..I0G 40.3;Wrt 4I.'2.S' 29 29 29 30 30 30 30 31 31 31 31 32 32 32 32 33 33 33 34 34 34 34 35 35 35 35 36 11 ^, 3 2'.. Oj. 9 .t I'.i' 4'.'.' 7'. lO-'i, is 11 2'h : 7 8 9 : 10 ii I2jt. I 2 ' 3 4 5 I i ! 8 9 10 I 11 I3yz I 1 ir-. 5'. 9 9'.. . 11 :?;'{ 7 10' H 4?« 7'. ■IS 5 nil 5'.. 8^a 11^ 2H 9>4 H i 4i8' 7.^4 lOflJ ?. 1; 3 4 5 6 7 !i 8 9 ' 10 '! 11 l\Jl. 1 I 2 3 , 4 5 'I ' ' 8 ' 10 ,' 11 1,15 ;7. 2 3 4 5 6 7 8 9 10 11 16 /It 1 Kcct, 10,V3791 100.',H)13 108.i;U2 109.9772 111.:.:! 19 llil.OUTO ii4.(iT;;2 110.2007 117,S59 11 9.4074 12),(IS7(; 122.7187 12 1. .15:18 121'). 01 27 127.0705 129.11501: I3l.0;!t; 132.7;;20 131.4:191 l:{0.1574 137.8807 i:ii).02O 141.3771 143.1391 114.91 11 140.0949 148.1890 159.2913 152.1109 153.9:184 155.7758 157.025 159.4852 101.;{,-)53 103.2:173 105.1:103 107.0:131 108.9479 170.87:15 172.809! 174.7505 170.715 178.08:12 lso.0031 182.0545 184.0555 ldO.0084 188.0923 190.720 192.7710 194.8282 1 90.8940 198.973 201.0624 203.1615 (!irciini. Ft'ct. Ills. 30 :»; :!0 37 ;i7 :!7 37 :i8 38 :',"< 39 :i9 :!9 39 40 40 40 10 41 41 41 41 42 42 42 42 43 43 43 I'.. : 7-'i 1 10^., 1 ^' 11',. ! 2-^:, I fl''ii 10 r.. 10^( 1-V 4 'a 8 ll'« 8^a 43 U :{. 41 44 44 44 45 45 45 40 40 40 40 47 47 47 -1 ! II 278 ) .,1 1 3'o 6%' 7' r. 4 7'n 11 '1 1'.; 47 lOJa 48 2',. 6'' 48 48 48 49 49 49 50 60 50 8' 8 4 2.^/8 6U Diam 2 3 4 5 G 7 8 9 10 11 M ft. 1 2 3 4 5 9 i 10 I 11 ' isy^.i 1 I ji 5 I 6 1 7 i 8 I 9 ' 10 i 11 19//. 1 I 2 I 3 i 4 i 5 1 G 7 8 9 10 II 20/«. 1 2 3 4 5 G 7 8 Area. C'lrciini. l-Vi-t. 205,2'. 20 2(I7,:;'.I10 209.5201 211,0703 213,8251 215.98!)0 218.1002 220.:i.'):i7 222.551 22 1 .7003 220.9800 229.2 H)5 2:11. 4. V25 2:i:i.70,-,5 I 2:15,9082 2:18,213 240.5287 2I2,«2I1 2l5.!:!i6 247.4.-) 249. i 781 252.1 HI 254.-}09t) 250.8:103 259.20:13 201.5S72 203.9807 200.:i><04 208.f-(l31 271.2293 27:1.00:8 270.1171 278.5701 281.0472 283.5291 280.021 288.5249 291.0:197 293.5041 290.1107 298.048:1 301.2051 303.7747 ;-i00.3.".5 308.9448 311.5409 314.10 316.7824 319.4173 322.003 :-i24.7182 327.3858 330.0643 3:r2.7522 3:}5.4525 Feet. Ills. 50 9M 51 ',. 51 51 51 :l. 3'i 0.'., 10 l'» 52 7'',i 52 10'.. •J u I'-u 4'< 8 1"„ 5--'„ 53 53 53 r '• 11. > 5t 54 54 54 11.^,' 55 55 50 50 50 50 57 57 57 8'., 11 6 •I I '' H 3>., 01:, S'^8 71.; 57 lOV 1^8 58 58 4'.; 58 V^n 58 w\, 58 2 59 •Vh 59 8'., 59 II'.. 00 2'. 00 r.-'a 00 8^'.,- 00 Il7a 00 3'« 01 O'.i 61 9'.V 61 1,; 61 3^^ 62 0;*.; 62 97« 02 Ui 63 4';i 63 IH 63 11 ',i 63 li-'s 64 4% 64 TJi 64 lli.< AHEAri ANb t..'lK (Jl' ClllCI,t;.-J. rAHLK-(Cuntuiue :!(;o.2n7 (') .".i;;!.or>ii 7 :)(;."). SODS 8 .S(;;-l.7()ll i) :i7i,.")t:!2 10 ;!7i.;!!»i7 11 .•n7.2.-)S7 22 ft. .•{so.isiu; 1 as:;. 01 77 2 :{<;■>, 1(1 It ;? ;!HS,s22 4 ;!;)I.7:!S9 5 :'■',)(. (IOm;? 6 :!!)7.tiO,S7 7 400.')')^;! 8 40.!.:)201 6 40ii.i!t:;:) 10 4(1:1. IT;-;) 11 412.4707 2:5 ft. 41.").47ii(; 1 41 S. 491.-) 2 421..')r.t2 3 42l.r).-)77 4 427. (■.•).').') 5 4::0.(i(i58 6 4;{:i.7;!7i 7 4;)i;.si7') 8 4;{'j. 1)10(1 9 4-i:!.(ll4() 10 4 Mi. 1278 11 24//. 2 3 4 5 6 7 8 9 10 11 25 ft 1 2 8 CiiTiim. ; Diiiin. Ki'ct. luif. 4U).2.j;{(> 4r)2.:^90i 4.')"i..'5;i(!2 4r)'-(.(;'.)48 40 1.8(142 4.';r).0428 4(;>^.2:i4i 47i.4;!(;3 474.047(5 477.871 1; 481.1005 481.:{a06 487.0073 400.875 404.1516 407.4111 500.7415 (i.) ti5 05 (;5 (k; 00 00 00 07 07 07 08 08 08 08 00 00 00 00 70 70 70 70 71 71 71 71 72 72 72 7;! 73 73 7.'! 71 74 74 74 75 75 75 75 70 70 70 70 77 77 77 78 78 78 78 79 79 2', 2}t 9 •t •{ •> It 7 10;^ l''it 4'.. 7:^0 lO^i I'a 6 11 >« K-i 11>8 3 9;'i{ 0^.1 9% 1 4'8 7 '4 / ^s 11 ^•! 9 0'.,' 3J8 10''=^ 4 5 C 7 !l 10 11 20//. 1 :; I ^ \ « 7 t 8 9 ' 11 27//. I i I 3 I 4 I 5 7 ' 8. 1 9 i 1" 1! \ 1 ! 2 i 3 i 4 I ft ! 9 i 10 ' 11 ;29/. I ^ I 3 4 6 7 8 9 10 Aroa. iM'Ct. 501.051 507.:i7:!2 510.70(1.3 51I.0IS1 5! 7.10:; 1 520.7002 521.1 Ml 527. 5;! 18 5;i0.0;!0t 5;!i.;!:!79 537.7583 5H.lSilO 5 II, 0209 5IS.0S3 551.5171 555.0201 55S.5059 5r.2.0(l27 5(;5.5()84 500.027 572.5500 570.0019 570.0103 5s:;.2085 5.S(;.7700 5i)(i.:io;!7 503.05S7 507.5025 001.1703 001.807 oos.4i:!(; 010.1228 023.105 0.0.7!i82 030.5002 0:11.2 1 52 o;;7.om 011.(i758 (i45.l235 040.1821 052.0195 050.73 Olio. 52 14 004.3214 008.1310 071.0.587 075.7915 070.0375 (iS3.4943 087.:i.)98 001.2385 095.128 099.0203 2.oo:;i 5.753(; ClriMtin. Feel, llift. 79 70 80 80 80 SO 81 ,Sl 81 Si 82 82 82 82 83 83 83 84 81 84 84 85 85 85 85 «(! 80 8(i 80 87 87 87 87 88 88 88 89 89 89 89 90 90 00 00 01 91 91 91 92 02 92 92 93 93 93 7',^ 11 'a l'.i 4a IO.J1 ra 11 '.I 2;a 11 /a 3 9 Diam, 3 '-J O'li 9 ' It 1 4'4 8'a 11 St I'j 4'() 7U 11 01 ' *■ 8 11'.; 2''& 9 G'i, 9';i 3^*4 G'a 11,^8^ 4 a '■- 10 8 "^ 4.>. 8 8 2.^8^ 5>2 ^% 11 30//. 1 2 3 4 5 G 7 H 9 10 11 31 //. 2 'J G 7 8 9 10 11 32//. 1 2 3 4 5 G 7 8 9 10 11 33/^ 1 2 3 4 5 6 7 8 9 10 11 34/ 1 2 3 4 Area. Foot. 702.9377 700.80 710.7009 714.735 718.09 722.0537 720.0305 7.30,01 S3 731.0147 73S.02I2 7l2.(ill7 74(i.(i7;i8 750.7101 754,701»4 758.8311 7(i2.00(i2 7(i(!.0021 771.0SO(i 775.1014 770..;!31 783.1403 7S7.5S08 701.7322 7 05. s 92 2 800.0(i51 S0J,2l0ii 808.4422 812.0181 8io.S(;5 821.0001 825.3201 829,57S7 8;;3.8308 838.1082 812.3095 8IO.tis!3 850.9S55 855.3000 859.02 1 803.9009 8li8.3087 872.0(il9 877.0340 881.4151 885.801 890.2004 891.0190 890.0413 903.4703 907.9224 912.3707 910.8445 921.3232 925.8103 930.3108 (.'iiTum. Feet. Ills. 93 91 91 91 95 95 95 95 90 90 90 90 .97 97 97 97 98 98 98 98 99 90 99 100 lOo 100 100 101 101 101 101 102 102 102 102 103 103 103 103 104 104 104 104 105 105 105 106 106 106 106 107 107 107 107 108 11^8 G 94 3?! /-a 4 10^, \\ ;o a 8>'8 11;^ 2;'8 8/'8 ."'8 G.^a 9,!s. % 10 4''a 7'.. lO'a 4'J 8 2 '.I 5?| 8';8 2% 6 9}^ ^% 9|4 4 7M 1% 28 AREAS AND CIRCITM PEBENCES OF CIRCLES. T ABLY,- (Continued). Diiim. 7 8 9 10 11 35// 1 2 3 4 5 G 9 10 11 36// 1 2 3 4 5 6 7 8 9 10 11 37//, 1 2 3 4 5 6 7 8 9 10 11 38// 1 2 3 4 5 6 7 8 9 10 II 39//. Area. l<\fft. Cirfum. Feet. Ins. 9;U.8223 939.3121 943.^753 948.4195 952 972 957.538 9G2.115 9Gti.7T01 971.2989 975.9085 980.52j;4 985.1579 989.8003 994.4509 999.1151 1003.7902 i 112 1008.473Gi 112 1013.1705 1017.8784 1022.5944 1027.324 1032,OG4G 103G.8134 1041.5758 104G.3491 1051.1306 1055.9257 10G0.7317 1065.5459 1070.3738 1075.2126 1080.0594 1084.9201 1089.79)5 1094.6711 1099.5G44 1104.4687 1109.381 1114.3071 1119.244 1124.1891 1129.1478 1134.1176 1139.0953 1144.0868 II49.0892 1154.0997 1 169. 1239 1164.1591 1169.2023 1174.2592 1179.3271 1184.403 1189.4927 108 !08 108 109 109 109 109 110 110 110 111 111 111 111 112 ,112 !U3 I 113 ; 113 1113 ill4 114 114 114 115 115 115 115 116 116 116 117 117 117 117 118 118 US 118 119 119 119 119 120 120 120 120 121 121 12! 121 122 4H IOJb 5Ja' ll."ii 54 878 33,; 10 M« 4M 7s,< \^% 4^8 8 2I4 9.1^ ! 6 I 9f8' j 1 ■' I 3S', 6'l4 &% 9% lf« AH Vi WH I'e 4% 7/4 11 5'.i sH 11\' 8 75 8 3% 6% 3H SIDES OP EQTTAL SOXTABES. 29 TABLE.— (Continued.) Uiiiui 4 5 ('• 7 8 9 10 Aren. Foot. IS28jr,02 Cirs inn. Foot. Ins, 151 1 .^;! 1 7t;)i isii 1727 1>'I7 Jo7i 1 S.).'! S('S7 Is'CO ]7r, isin; :V)21 IS72 i).li;;> 152 l.-)2 1.32 15.! I5:i 7'., 1()^,{ iniiun 11 11)// 1 2 4 5 () Area. Cii Tiiin. Foot. i87!).;{.15.-) 1>*S5.7I5I IX!)2 1721 IS!)-!. 5011 l!K)5.0.1(i7 ll»ll.l!)i;5 11)17. 0'iOI) i;)2i.i2>;.i I Foot. Iii.i I !5:{ 151 151 151 5 4 1 55 i 55 1 1 H '1% I! 'n Diiiin 2^-^ 7 8 !) 10 11 \QfC. Areii. Foot. 1[):?0.01,SS 1!».!7.:!15!) IIICMIN 1!)5().4;{!)2 l!.>5ii.;>iJD] IIIG3.5 Circum. Foot. Ins. 155 1 5i; 1 50 1 5(; !5r, 157 % TABLE OF THE SIDES OF SQUARES -EaUAL IN AREA TO A CIRCLE OF ANY DIAMETER. FROM 1 TO 100. Dinm.|Si(l6 of Sq. ^ Diiini if g '% .S8tl2 l.ior.s i.;!2'.){ 1 .550;) 1.772t 1.11!) ^ 2.2 1 5i) 2.4:{71 2.(;5H7 2.8-05 i;i.95si 14.1790 14.4012 14.0227 14.814:! 15,0.;59 15.2M71 15.5'I9 ]5.7;!05 15.9521 10.17:!0 10.;!952 10.0108 lO.H.lS.i 17.0599 17.2814 17.503 17.7245 17.9401 18.1077 18.8892 18.0103 18.8:i2:i 19.05;i9 19.2754 22. 23. •/4 24. >4 ■H 25. 20. a? •/4 27 28. •x4 •5f ./-^4 19.497 19.7185 19.9»0l 20.1017 20.3832 20.0018 20.8203 21.0479 21.2091 21 21 21, 22. 22 .491 7120 ,9311 1557 .3772 22.59.S8 22.8203 23.0119 2.3.2034 23.485 23.700(5 23.9281 24.1497 24.3712 24.5928 8144 1^5.0359 25.2575 25.459 Dliiiri.iSide of Sq. 29. 30. 3i 31. 3> ./4 32. .33. .1.. .x4 34. M ./'4 35. ■11 :lf 25 7006 25.9221 20.1437 20.3653 26.5808 20.8084 27.0299 27.2515 27.473 27.0910 27.9 Kit .28.1377 28.3593 28.5808 2.-S.8021 29.0239 29.2155 29.407 29.0886 29.9102 30.1317 30.3533 30.5748 30.7904 31.0179 31.2395 31.4011 31.6826 30 SIDES OF EQIIAI, .SQUARE.- TA\\LE~( Co ntimied). Ditiin. Sido of Si|. Diiini. 49. Side of S(i.; Diniii. .Side of Sq.'JDium. 1 Side Of Sq. Diuni. : 88. Side of. Sq. 77.088 36. 81.1)012 43.1251 02. 54.940! 75. 06.407 •H wi.vi-a 'H 43.0107 .^i 55.1070 .'., 00. (;8S6 1 -v 78.2095 M H2.;M78 1 - •i:).80s2 * 55.3892 1 00.9104 1 .'.. 78.i:{10 Xi H2.ri(;,*-is '■^ 44.0898 .^4 .55.1; 107 • 1 07.1317 A, 78.0520 37. ;;2.Ti)(i[ 50. -11.3113 03. 55.8:;23 j70. 07. 35:12 89. 78.ST42 •M 3.;. 01 12 •H 41.532;) ; ..u. 5ii.05;;8 .'., 07.5748 : , .', 79.0957 .H 33.2;;:'.;) .'., 11.7515 . .> 50.2751 1 67.7904 i .'.. 79.;; 173 S 33. 1;').-)! •:*.i -il.97ii .^4 50.497 1 'A^ 08.0179 i A^ 79.5:!s9 38. 3.'i.(i7(it; 51. ■J5.I970 64. 50.7185 ;77. 08.2395 i 90. 79.7004 -)i 33.Si).S2 ■H 45.4191 •K 50.9401 j .1, 08.401 ■\{ 79.982 .'.. 34.111)7 , 1 , 45.0407 .'., 57.1010 . .'., 08.0826 .1 ; 80.20:15 :fi 31.3113 ••*4 45.8022 •i?4 5T.;!^:;2 ■ • ■ '. 1 08.9011 'A, 80.4251 39. 3l.rjti2,S 52. 40.08:i8 65. 57.0017 78. 09.1257 ; 91. S0.0I07 •M 34.7884 ■'i 40. 3051 j ■a 57.82i;3 ! -'l 09. .34 73 :!! 8O.,«0S2 l; 3'j.00(; J 40.52:i9 1 5S.0479 •t 09.5088 81.0898 ■>4 35.2275 •■'^ 40.7485 1 :-f. 58.2091 A 09.7904 A 81.;!113 40. 35,li:)l 53. 40,97 i'G6. ' 58.491 !;79. " 70.0119 1 92. 81.5:^29 .'.. 35.()70() ■H 47.1910 ■H 58.7125 ; .1, 70.2.3.35 .1:,' 81.7514 1 , 35.81)22 .'. 47.4131 .1.. 58.9.341 ! i 1.. 70.455 .'.; 81.970 :;ii 30.1137 .^'4 47.(i3l7 .;'4 59.155t; ! :r ■ 1 70.0706 1 ■■■'1 82.1975 41. 3(1.3.353 54. 47.8502 ' 07. 59.3772 80. 70..^9>1 1 93. 82,4191 .,^-1 3(j.55t)l) 'H 48.0V 78 ' ■H 59.5988 i -'l 71.1197 ■u 82.0107 1 3G.7784 A 48.2994 ' .C 59.8203 A 71.3413 A 82..^022 :?.! 37. ■^ 48.5209 ■^ 00.0419 1 .".1 71.5628 A 83.08;;,s 42. 37.2215 55. 48.7425 08. 00.20.34 '81. " 71.7844 94. 83. .•■1053 •M 37.14;il •H 48.904 1 ■ H 00.485 .'., 72.0059 • "^ 1 83.5209 • - •> 37.tl()4() .1., 49.l8,-,0 1 .'0 00.7005 .1.. 72.2275 ij 8;!. 7 184 .i?4 37.8.s(;2 •'4 49.4071 1 Sa 60.9281 i •'4 72.4491 A^ 8:(.970 43. 38.1078 50. 49.0287 ■ 69. 01.1497 ■82. 72.0706 95. 81.1916 •K 38.321)3 •^-1 49.8503 . •H 01.3712 .1-4 72.8921 •H 84.4131 Jc .38.5501) .'..1 50.07:8 i .': 01.5928 .'., 73.1137 84.0:U7 ..^4 38.7724 :fi\ .00.2934 •ill 01.8M.5 •>'4 7:i.3353 ! A, 84 .8502 44. 38.1)1)4 57. 1 50.51 19 70. 02.0359 ■■ 83. 73.5508 96. 85.0778 •M 39.2155 .^i \ .'■>0.T3(;5 ; .>a 02.2574 ! 1 - 73.7784 .^1 85.299:) .'* 31).437I .'.. 50.958 ! .'.. 02.479 1 73.9999 ' I .'^5.5209 .).i 39. 058 7 .h 51.1790 ! .3*4 02.7000 .^'4 7-1.2215 . ' A, 85.7425 45. 39.8802 58. 51.1012 i 71. 02.92:: 1 84. 7-1.1431 ' 97. 85.9046 :« 40.1018 ■H 51.(i227 ■H 03.1437 ..'4 71.0047 ' •^:| 8li.l85 40.3233 1 51.8113 1 A 03.3052 1 , 7.1.8802 1 80.1071 «;'^ 40.5419 31 52.0058 1 M 03.5808 ! 'A 75.1077 ; A, 80.628!) 40.7004 59. 52.2-74 : 72. 03.8083 85. 75.:r293 : 98. 80.8502 :« 40.988 .'•4 52.50SH 1 'H (i4.0299 ■H 75.5508 ' ■y^ 87.0718 41.2090 1 52.7:!05 t .> 04.2514 \ t •> 75.7724 i .1.: 87.29;:3 4,:^^ 41.4311 '.h 52.9521 .^4 04.4730 .'.'l 75.99:{4 ! Ax 87. .54 19 41.0527 GO. 6:;.i7;iO ■ 73. O4.(i940 80. 76.2155 i ' 99. 87.730.1 •!<< 41.8742 -'4. 53.3952 .\{ 04.9101 .':, 70.4371 .).! 87.958 ■'1 42.0958 .,'..< 511.0107 1 A i'i5.1377 1 70.0586 ' •'■" 88.1790 48:* 42.3173 X 53.8:js;i ■fi 05. .3592 1 :-'4 76.8802 ■ \ 88.4011 42.5839 61., 64.0598 74. 05 580S 87. 77.1017 '■ ■my 88,0227 .'^ 42.7004 M 51.2814 .H 05.802;; , .'.. 77.:!2.33 .'a 88.K.M;i .''. 42.982 4> 51.50.-; 1 O0.02;'9 '., 77.5419 .'.. 89.0058 ■^.1 43.2036 .^4 54.7245 :;'4 06.2455 Ai 77.7604 A 89.2874 TABLE VI. TABLE OF THE LENGTHS OF CIRCULAR ARCS. The Diiiiiictcr of a Circle assumed to he Umlij, and divided into KKK) eqmd Parts. nviit. I.02(;(.'3 Il'Kl't- Length. H'ght. Lungth. 1.09949 IlVlit. Lnifrtii. HV'ht, .292 Lfuglh. .1 .us 1 .05743 .196 .244 1.15180 1.21.381 .101 l.()2i;!)8 .149 1.05.S19 .197 1.10048 .245 1.15;!0S .29;j 1.2152 .102 1.02T.V2 .15 1 .05S9() .198 1,10147 i .240 1.15429 .294 1.21058 .io:{ i.02n0(; .151 1.0597;{ . .199 1,10247 .247 1.15549 .295 1.21794 .101 1. 02^11 .152 1 .OilOul ; .2 1,10:!48 j .248 1.1507 .290 1.21920 .lor. 1.02914 , .15:5 l.OOl.'i ! .201 1.10447 i .249 1,15791 .297 ; 1.22001 ,lOtJ 1.01197 ■ .154 1.00209 - i .202 1. 1 0548 , 1 .25 1.15912 .298 1,22203 .107 i.o;;o2(; .155 1.0028S ; .20:] 1.1005 ; ! .251 Lioo;;;! .299 1 .22;i47 .los: 1 .o;;o,-^2 .15(i l.Oii.'lOS . i .204 1.10752 .252 1.10157 .3 1 .22495 .109 i.o;;i;!9 .157 1.00149 .205 1 , 1 0855 .25;! 1.10279 .;!0i l,220;i5 .110 l.o;;i9(i .15S 1 .005;! .200 1,1095S .254 1.10402 1 .302 1 .22770 .111 l.o:{2.-.4 .159 1. 000 11 .207 1,11002 .255 1.10520 .3(t;! 1.22918 ! .112 l.o:{;!i2 .10 1 .ooo'.i:! .208 1,11105 .250 1.10049 ' \ ,304 1.230(il .IIH i.o;i;{7i ; .Kll 1.00775 .209 1.11209 .257 1.10774 i ,3ii5 1.2:1205 : .in 1 .o;i4;{ : .I(i2 i.(i(;s58 .21 I.Ii:!74 , .258 1 , 1 0899 ; 1 ,300 1.2:!349 ; .Uo 1.0:!49 .iti:{ 1.00911 .211 1.11479 ' .259 1.17024 i .307 1.23194 ! .lie l.O.-i;).-)! ; .104 1.07025 .212 1,11584 .20 1.1715 1 .308 1 .23030 .117 i.o;{(iii i .105 1.07109 .2i:{ 1,11092 , .201 1.17275 .309 1.2:i7S .lis i.o;!(;72 ' : .kk; 1.07191 .214 1,11790 .202 1.17401 1.17527 1 .31 1.23921 .119 i.o:!7;!4 1 i .107 1.07279 .215 1.11904 .2(;;! .311 1.2407 .12 I.O:!797 : .itis I .o7;;o5 ,210 1.12011 .204 1.17055 .312 1.24210 .121 i.o:;s(; ' ■ .109 1,07451 .217 1,1211s ! .205 1.177S4 : .313 1 ,2430 .122 l.o;i92:! .17 1 . 075:57 : .218 1,12225 .200 1.17912 .314 1.24506 .12:5 l.o:;9s7 .171 1.07024 .219 \.\ZVA\ ' .207 1.1804 .315 1.24054 .124 l.()40.')l i .172 1.07711 .22 1,12445 ; .208 1.18102 ,310 1.24801 .12.^ 1.0411(J .17H 1.07799 , !22l 1,12550 ! .209 1.18294 , .317 1.24940 .12(1 I.OIISI .174 1.07SS8 i ,222 1,1 200;^ .27 1.18428 i ; .318 1.25095 1 .127 1.01247 ! .175 1.07977 ' .22;! 1,12774 ,271 1.18557 .319 1 .25243 .12S i.oi:!i;^ 1 .170 1.08000 .224 1.12885 .272 1.180^8 i ! .32 1,25391 .129 1 .Ol.-iS .177 1 A)^ 1 50 .225 1.12997 ,27.'! 1.18819 ! i .321 1.25539 .i;i 1.04447 1 .17S 1.08240 .220 1. Kilos .274 1.1S90-J , .322 1,250.S(; .i;ii 1.04."ii.') ■• .179 i.os,s;<7 ' .227 l.i;!219 .275 1.19082 .323 1.25830 .1:^2 l.()l.')S4 .18 1.0V42S .228 i.i;!;i;Hi .27(1 1.19214 ' .324 1 .25987 .i;i;^ 1 .04(;r)2 .181 1.0S519 .229 l,i;il44 ; .277 1.19;!45 ' .325 1.2(;i37 .i;!4 1.04722 .182 1.08011 ,2;! l.i;)557 .278 1,19477 .320 1 .20286 .i:!;-) 1.04792 .18:5 1.08704 .2;!1 i.i;;o7i .279 1.1901 .327 1 .20437 .i;!(i 1.0!S(;2 .184 1 .0S797 .2;!2 i.i;!7so .28 1,1974;! .328 1,20588 .i;!7 1.0l9.i2 .185 1.0889 ■ ,2;!;! \.\:m)\\ . .281 1.19887 .329 1,2074 .i;{.s 1 .o.")Oo:i .18(1 1.08981 .2;!4 1.1402 .282 1 .2001 1 .33 1,20892 .i;i9 1 .orj07r) .187 1.0!KI79 : .2,!5 1.14i;5G .2s;! 1,20140 .331 1,27044 .14 1.0.-) 147 .188 1.09174 .2;!0 1.14247 1 .284 1 .20282 .332 1.27190 .141 1 .0.^)22 .189 1 .09209 ' .2;!7 i.i4;!o;! I .285 1.20419 .3:^3 1 .27;i49 .142 1.0,-)29;^ .19 1.09:;05 .2;!8 1.1448 .280 1 .20558 .334 1,27502 .M;i 1 .o.-);it;7 .191 1.09101 .2;!9 1.14597 I .287 1 .20(;90 .3;« 1 •270.50 .144 1.0.-) Ill 1 .r,)2 1.0!)557 .24 1.14714 1 ,288 1 .20828 .330 1,2781 .M.-) i.o,j.M(; 1 .19;{ 1.090.y4 .241 1.14S;!1 ,H«9 1,20907 XM 1 ,27904 .14G l.orwoi .194 1.09752 .242 1.14949 .29 1.21202 .3:48 1.2S11.S .147 1.05GG7 —— — f .195 1 .0985 .243 1.15007 .291 1.212;i9 .339 1 .28273 32 LENGTHS OP CIRCULAR ARCS. TABU:.—(Coi)tinucd.) :m .;m2 .315 .317 .3lcS .311) .35 .351 .352 .:i53 .354 .355 .35(i .357 .35S .359 .3t) .ai;i .3()2 .303 .3(;t .305 .3(iii .3(17 .308 .30'J .37 .371 .372 Length. 1.28-128 1 .28583 1 .2^!73;) 1 .288[h\ 1.3j()i;;! !|229 :9(; 1 .;i-i5i;.'! 1.31731 1.31^99 1 .3500S 1 .352;;7 1. .35 1 00 1.35575 1.35744 1.359M 1 .30084 1 .30254 1.. 30. 1 25 1 .:!0590 1.3i;7(i7 1 .30'.I39 1.37111 1.37283 1 !7455 1 .37(;28 1 .37801 1 .37974 1.3S1 18 1 .38.322 1.3S490 1.38071 1 ..38840 1.39021 1.39190 .100 .107 .408 .409 .41 .411 .412 .413 .414 .415 .410 .417 .418 .4 1 9 .42 .421 .422 .423 .424 .425 .420 .427 .428 .429 .43 .131 .432 .433 .434 .4:15 .430 .437 .438 1 .39372 l..;i51S 1.3!)T24 l.;!9!t 1.40077 1.40251 1.40432 1 .400 1.4078,S 1.40!>0i; 1.411 15 1.41321 ■ .4 1 503 1.41082 1.41801 1.42011 1.42222 1.424(12 1.425s:; 1.12701 1.42!I42 1.43127 1.43309 1.43491 1 .43073 l.i3S5(; 1.4 4039 1.4 1222 1.44-115 1 .44589 1.4477.3 1.44!i57 1.45142 light. Lc'n,y:th. 1 .15:127 H'ght. .472 1 Length. < 1.51571 .4.39 .41 1.4.1512 .473 1 .51 7(; 1 .III 1 .45,;97 : .4 71 1.5! '.158 .112 1.45s,s;!, .475 1.52152 .113 1.4(i()ii9 .470 1.52::40 .444 1.40255 .477 1.52511 .445 1.40141 .478 1 .527:!0 .440 1 .40028 1 .479 1.52931 .447 1.4(;.-^I5 .48 1.5:! 120 i .4 18 1.470(121 .481 1 .5;!322 .4 19 l.47!:-9: .482 1.5:1518 ' .45 I.l7:i77' .483 1.. 537 1 4 .451 1 475i;5 .484 1..5391 .452 1.47753 .485 1.54100 i .453 1.47912 .480 1.54302 .454 1.4Sl:il .487 1.51499 .455 1. 4.^^32 .488 1.54090 i .150 1.4S50',l .4.'-'9 l.5l>93 ' .457 1 .48011!) .49 1 .5509 .I5,S 1.4s,v89 .491 1.55288 .459 1.49(179 .492 1.55480 j .40 1.49209 .493 1 .55085 .401 1.4910 .491 1 .55854 .402 1.4!)h51 .495 1 .50083 .403 1.I!I8|2| .49i; 1 .50282 .404 1 .50():i:; .497 1.50181 .405 1 5022 1 .498 1 .5008 .400 1.5(1110 .499 1 .50879 .-107 1 .50008 .5 1.57079 .408 1 .508 .409 1 .5(l!)!)2 .47 1.51185^ .471 1.51378] To Ascertain the Length of an Arc of a Circle by the preceding Tabic. Rm," — Divide tha height, by Iho Ivt=c, ft h1 thf> quotient in th- folnmn oF hoi:ht.«. ,nnfl tnki the length (if thit height from thn nu't riiihtiiaml ciihiinn. ,\liiiti|,ly the length thus ibtninoj hy the base I f the nrc, nml the proiJiict will '^iv,> iho I 'ng;ii nf the inc. ExAMPi.R — Whatis the length of an arc of a circle, the base or Fjian of it being 100 feet, and tho height •J.'i feet? 25-=-](i0 T-- .25; and .25 per table, = M5912, t.'.f l.-m/th vt' the heme, vhich, hdix/ mnltqilial hi/ 100 = NoTK.—Whon, in tho division of a hoig'if bv the b^so, tho quotient has a rcm.iinJor after the third ilai'e if dooin !■<, an I frrent acciiritcy i.< refniToil. Take the lengt'-. tir tlio rirt three t'liinre-, giii.tri'-t it, finin tho next filh.w'n',; length: mnltiply the remainder bv the ,.nid fra^'UDna' reni;iinjcr, add tlie produ t to ll:e lir.-t length, and the s-uin will bo the Inngh fi.r the wholu qnoient. Exnu'f.if.— Wiiat is tho length of an arc of n cir. lo, tlic base of whicii in 35 feet, and tho heii'ht or vorseJ Mto 8 fcot ? 8-f- 35 = .228)714; the taV^nlar I?ngth for .228 - I.13.;;n. nn 1 for .229 = 1.13144, the difTerenco letwecn which 13.00113. Then .6714 x -00113 = .00(045032. Henoa ' .2l!8 =: l.i:r;3.. and .01.05714= .0()nri450,S2 }.V.V.n>r.Q52, tho sum by which tho base of th« arv ii to ba muiUpUed; aad 1.13395i6S3 x 35 a 29.Q&Sib/ut. XAIJLI-: VII. TABLE OF THE LENGTHS OF SEMI-ELLIPTIC ARCS. The Transverse Diameter of an Ellipse assumed to be Unity, and divided into 1000 equal Parts. nVht. .1 Len!,'tli. ! Il'glit. .148 1.09119 Iiy.t. LiMiKth. IlVlit. .244 Ll.Ml,l,'t]l. H'Kht. Lcnifth. i. 01102 1 .190 1.14531 1 .2o:;8 .292 1.20601 .101 1.01202 i .119 1 .09228 .197 1.14010 .215 1.20500 ! .293 1 .26734 .102 i.oi3i;2 ! .15 1.09.;3 .198 1.11702 .240 1.20632 .294 1 .26867 .io;{ 1.0 1102 ! .151 1.0914- .199 1.N8SM .217 1 .20758 .295 1.27 .101 1.0!.5i;2 .152 1.09558 j .2 1.15014 .218 1 20881 .296 1.27133 .105 1.01002 ' .153 I.0!)009 i .201 1.15131 .219 1.2101 .297 1 .27267 .IOC) 1.01702 : i.l54 1.0978 .202 1.15218 .25 1.211.36 .298 1.27401 .107 1,()I.S02 i . A 00 1.09891 .203 1.15300 .251 1.21203 1 .299 1 .27535 .10,S 1.011102 .15i; 1.10002 \ .201 1.151-Sl .252 1.2139 .3 1 .27009 .lOi) 1 .0.')003 , .157 1.10113 .205 1.15t;02 .253 1.21517 .301 1.27803 .11 1.05104 .158 1.10221 1 .206 1.1572 .254 1.21011 : .302 1 ,27937 .III 1 .052(i5 ' .159 1.10335 ■ .207 1.15-<38 .2,-)5 1.21772 , .303 1.28071 .112 1 .05:i(;(; .10 1.I0H7 .20^ 1.1 5:157 250 1.219 ! .304 1 .28205 .113 1.05107 , .161 1 . 1 050 .209 1.10070 .257 1.22028 ; .305 1.2S339 .114 l.()550S 1 ; .102 1.10072 1 .21 1.10190 .258 1.22150 1 .306 1.28174 .115 1. 051109 : .103 1.10781 ' .211 1.10310 .259 1.222f^4 ; .307 1 .28609 .IIG 1.0577 ! .164 I.IOSOO 1 .212 1.10130 .20 1.22 112 ^ .308 1 .28744 .117 1.05872 ; .105 I.IIOOS .213 1.10,557 .201 1.22511 .309 1.28879 .118 1.05974 .100 1.1112 ! .214 1.1(;078 .202 1 .2207 .31 1.29014 .119 1 .0 1070 : .107 1.11232 1 .215 1.10799 .203 1.22799 : .311 1.29149 .12 1.011178 .168 1.11314 i .210 1.1092 .204 1.22928 .312 1 .29285 .121 1 .Oi;28 ' .169 1.11450 ' .217 1.I70U .265 1.23057 .313 1.29421 .122 1 .00382 ' .17 1.11509 1 .218 1.17103 .266 1.23186 ; .314 1 ,29557 .12:5 1.00181 .171 1.110S2 .219 1, 172^^5 .207 1.23315 .315 1.29603 .124 1 .005SO i -1^- 1.11795 '. .22 1.17407 .208 1.23145 i .316 1 ,29829 .125 l.()!;089 I .173 1.11908 ' !221 1.17529 .209 1.23575 ' .317 1,29965 .120 1.0i;792 I .174 1.12021 I .222 1.17051 .27 1.23705 j 1 .318 1,30102 .127 1 .0(;8;)5 ; .1.5 1.12131 .223 1.17771 .271 1.238,35 .319 1 ,30239 .128 1 .01)998 .176 1.12247 ! .221 1.17897 .272 1.23900 .32 1 .30376 .129 1.07001 i.l77 1.12.36 .225 1.1802 .273 1.21097 .321 1.. 30513 .13 1.07204 .178 1.12173 I 1 .226 1.18113 ,274 1.24228 .322 1 .3065 .131 1 .07308 .179 1.12580 i 1 .227 1.18200 .275 1 .24359 .323 1.30787 .1:52 1.07412 |.18 1.12099 ' 1 .228 1.1839 .270 1 .2448 .324 1.30924 .133 1.07510 .181 1.12S13 .229 1.18514 .277 1.21612 .325 1.31061 .134 1.07021 i .182 1.12927 .23 1.180.38 .278 1.21744 .326 1.31198 .135 1.07720 ! .183 1.130H .231 1.18702 .279 1.24876 .327 1.31335 .13(5 1.07S31 .184 1.13155 i .232 1.18,S86 .28 1.2.J0i .328 1.31472 .137 1.07937 i .185 1.13209 1 .233 1.1901 .281 1.25142 .329 1.3161 .138 1.0S0t3 .186 1 . 1 3:H3 i .231 1.191.34 .282 1 ,25274 .33 1. 3 1 748 .139 1 .08149 .187 1.13197 .235 1.192.58 .283 1,25106 .331 1.31886 .14 1 .08255 .188 1.13011 .236 1.19,382 .284 1 .25538 .332 1., 32024 .141 1 .08362 ' .189 1.13726 .237 1.19506 .285 1.2567 .333 1.32162 .142 1.08169 .19 1.I38U .238 1.1963 .286 1 .25803 .334 1 .323 .143 1 .03576 .191 1.13956 .239 1.19755 .287 1 .25936 .335 1 .324.38 ,144 1.08684 .192 1.14071 .24 1.1988 .288 1 .26069 .330 1 .32576 .145 1.08792 .193 1.14186 .241 1.20005 .289 1 .20202 .337 1,32715 .146 1.08901 .194 1.14301 .242 1.2013 .29 1.26335 .338 1 .32854 .147 1.0901 .195 1.14416 .243 1.20255 .291 1 .26468 .339 1.32993 34 LENGTHS OF SEMI-ELLIPTIC ARCS. TXliLE.— (Continued.) .84 .841 .34'2 .848 .844 .845 .34t> .347 .348 .849 .3J .851 .852 ,358 .854 .855 .35t) .857 .858 .859 M .861 .362 .868 .364 .365 .866 .367 .368 .369 .37 .371 .372 .373 .374 .375 .376 .377 .378 .379 .38 .881 .382 .388 .384 .385 .386 .387 .388 .389 .39 .391 .392 .393 .394 .395 L'Uirtl). 1.. 88 182 1.88272 1.88412 1 .88552 1 .88692 1 8.8888 88974 84115 84256 84897 1.84589 1.846H1 1.84828 1.. 84 965 1.85108 1.85251 1 .85.S94 1.85587 1.8568 1 .8.J828 1.85967 1.. 861 II 1.862.')5 1 .86899 1.8(;.)48 1 .86688 ,86888 86978 ,87128 ,87268 87414 1.87662 1.87708 1,87854 1.88 1.88146 1.88292 1 ,88489 1.88585 1 .88782 1.88879 1.89024 1.89169 1.89814 1 .89459 1.89605 1.89751 1 .89897 1 .40048 1.40189 1.40385 1.40481 1.40627 1.40778 1.40919 1.41065 IlKlit. .896 .8!»7 .898 .899 .4 .401 .402 .408 .404 .405 .406 .407 .408 .409 .41 .411 .412 .418 .414 .415 .416 .417 .418 .419 .42 ,421 .422 .428 .424 ,425 .426 .427 .428 .429 .48 .481 .432 .488 .484 .485 .486 .487 .488 .439 .44 .441 .442 .448 ,444 .446 .446 .447 ,448 .449 .45 .451 LuiiKlh. 1.41211 1.4i;i57 1.41504 1.41651 1.41798 1.41915 1.42092 ' 42289 12886 .42588 1.426SI 1.42829 1.42977 1.48125 1.48278 1.48121 1 .48569 i. 487 18 1.48867 1. 14016 1.441(;5 1.44814 1.44 1 (;8 1,41618 1.44768 1.44918 1,45064 1,45214 1,45864 1.45515 1,45665 1.45815 1 .459(i6 1.46167 1.46268 1.46419 1.4657 1,46721 1 ,46872 1,47028 1.47174 1 .47826 1 .47478 1.4768 1.47782 1,47984 1 ,48086 1.48288 1.48891 1,48544 1.48697 1 .4885 1 .49003 1,49157 1.49811 1,49465 Hgbt. ,452 .4,: 8 .151 .455 .456 .457 .458 .459 .46 .461 .462 .468 .464 .465 .46i; .467 .41)8 .469 .47 .471 .4 .478 .474 .475 .476 ,477 .478 .479 ,48 ,481 ,482 .488 ,484 .485 .486 .487 .488 .489 .49 .491 .492 .498 .494 .495 .496 .497 ,498 ,499 .5 .501 .502 ,508 ,504 ,505 ,506 ,507 LPiiKlh. ;!irj.ht. Len>{t!i. | H'glit 111 1,19618 1,49771 1.49924 1.50077 5028 508,S8 50586 50689 50842 50996 1.5115 51. -101 51458 51612 51766 5192 52074 52229 1 .52884 1 .52589 > i 1.52691 1.52819 1 .5; 1 1 5;;ooi .58159 )8814 )8l69 )8625 1.58781 1.58987 1..M098 1.54249 1.54405 1,5(561 1,54718 1 .54875 1 .55082 1.55189 1,55846 1,55508 1,5566 1,55817 1.55974 1.56181 1. 511289 1.56447 1.56605 1.56768 1,56921 1 .57089 1.57284 1.57889 1.57544 1 .57699 1.57854 1.58009 1.58164 .50'^ ; .509 I .51 I .511 I .512 I .518 I .514 I .515 i .516 .517 I .518 , .519 .52 .521 .522 .528 .524 .525 ,526 .527 ,528 .529 .5,8 ,5.81 .5.!2 .588 ,5,8 4 .585 .586 .587 .588 .589 .54 .541 .542 .518 .514 .545 .546 .547 .548 .549 .55 .551 ,552 .558 .554 .555 .556 .,557 .558 ,559 .56 .561 .562 .568 1.5'<819 1.5S471 1.58629 1 .58784 l.5s!).l 1 .59096 1.59252 I.5ii-I08 1.59564 1 .5:i72 1 .5;i876 1.6(1082 1.60188 1 .60844 1 .605 1 .6(1656 1.60812 1 .60968 1.61124 1.6128 1.61486 1.61592 1.61748 1.61904 1 .6206 1.62216 1.62872 1 .62528 1.62684 1,6284 1.62996 1.68! 52 1.68.i09 1.68465 l.68ii28 l.(i878 1 .68987 1.61094 1.64251 1.64408 1.64565 1.61722 1.64879 1.65086 1.65198 1.6585 1.65507 1.65665 1 .65828 1.65981 1.66189 1.66297 1.66455 1.66618 1.66771 1.66929 I . .564 .565 .566 .567 .568 .569 .57 .571 .572 .578 .574 .575 .57() .577 .578 579 58 .581 ,582 .584 .585 .587 .588 .5^9 .59 .591 .592 .59.8 .594 .595 .596 .597 .598 .599 .6 .601 .602 .608 .604 .605 .606 ,607 .608 .609 .61 ,611 .612 ,618 .614 .615 .616 .617 .618 .619 I -. Length, 1 .67087 1.67245 1.67408 1.67561 1.67719 1.67877 1 .680.86 1.68195 1.68854 1.68518 1 68672 l.(;888l 1 .6899 1.69149 1 .69808 1 .69467 1 .69626 1.69785 1.69915 70105 70264 70424 70584 1.70745 1.70905 1.71065 1.71225 1.71286 1.71546 1.71707 1,71868 1.72029 1.7219 1.7285 1.72511 1.72672 1.72888 1.72994 1.78155 1.78816 1.78477 1.7;;688 1.78799 1.74121 1.74283 1.74444 1.74605 1.74767 1 .74929 1.75091 1.75252 1.75414 1,7.5576 1.75788 1.759 LEXG1H8 OF SEMt-KLMPTIC ARCB. TABI '\.— (Continued.) 85 HV'lit. Lcn^'th. 1 .76062 H'Kht. Li-iiKtli. 1.85215 ; ii'-iit ii .7;{2 I.,piijk'th. HV'ht LeiiKtli. IllVht .844 Length. .62 t .676 1.94.552 .788 2.04117 2.13976 .G21 1 .7ii224 1 .677 1 .S5;i79 .7.!;! 1.94721 .789 2.0429 .845 2.141.55 .022 1.76;)86 ' .678 1.85544 .7;!4 1 1.9I>9 .79 2,04462 .84 (i 1 2.14.8:84 .62;! 1 .76548 ! .679 1. 857 09 .7;!5 i 1.95059 1 .791 2.046.85 .847 1 2.14513 .624 1.7671 i.68 1 .85874 .7;!6 ! 1.95228 .792 2.04809 .848 2.14692 .625 1 .76872 i .681 1 .8(;0.'!9 .7;i7 ! 1.95;!97 .798 2.01983 .849 2.14871 .62(1 1.77084 .6-12 1 .86205 .7:{8 j 1 .95566 .794 2.05157 .85 2.1505 .627 1.771i»7 i .6s;: 1 .86;i7 .7;i9 1 1.957.85 : .795 2.05881 .851 2 15229 .628 1 .T7;!;V.) ' .684 1 .8(;5;!5 .74 1 1.95994 .796 2.05505 .852 2.15409 .629 1.77521 .685 1 .867 .741 1.96074 1 .797 2.05679 .853 2.15,589 .6H 1 .77684 , .686 1 .86866 .742 1.96244 : .798 2.058,53 .854 2.1577 .6^1 1.77S47 I .687 1.870;!1 .74;! 1.96414 .799 2.06027 ' .855 2.1595 A-^2 1.7!>00!) ' .688 1.87196 .744 1 .9658:8 :.8 2.06202 ; .856 2.1618 .6h;^ 1.78172 ' .689 1 .-^7;i62 .745 1.9675:8 ' .801 2.06377 .857 2.16309 .6;u 1 .7.><;w5 .69 1 .87527 .746 1 .9692:! ' .802 2. 06 ,"1 5 2 , .858 2.16489 .635 1.784!)8 .691 1.87i;!t;! .747 1.9709;^ : .808 2.06727 ' .859 2.16668 .6:!6 ] .7866 .692 1 .S7859 .748 1.97262 i .804 2,(16901 ; .86 2.16848 .6.S7 1 .7882;! .69:! 1 .88024 .749 1.974:12 \ .805 2.07076 .861 2.17028 .6158 1.78<)86 .694 1.8819 .75 1 .97602 ' .806 2.07251 .S62 2.17209 .6;{'J 1.7'J14!» .695 1 .88;!5i; .751 1.97772 ! .807 2.07427 I .868 2.17:^89 .6-1 1.7'J;!I2 .(;96 1 .88522 ' .752 1.97948 i .808 2.07602 .864 2.1757 .611 1 .7'J475 .697 1 .886,^^8 .75;! 1.981 1;8 1 .809 2.07777 .865 2.17751 .642 1.796;i8 : .698 1.88S54 .754 1 .98288 .81 2.07958 .866 2.179:12 .64:i 1.79801 .699 1 .8902 .755 1.98458 1 .811 2.081 -JS 1 ; .867 2.18113 .644 1.79;)()4 .7 1.S9186 : .756 1 .98628 ' .812 2.08804 , ' .868 2.18294 .645 1.80127 1 .701 1 .^9;!52 ! .757 1 .98794 .818 2.0H48 i .869 2,18475 .646 1 .8029 1 .702 1.89519 .758 1 .98964 .814 2.08656 ! .87 2,18656 .647 1 .80454 . .To;! 1 .89685 .759 1.99i;!4 .815 2.0H882 .871 2.18837 .648 1.80617 i .704 1.89,<51 '.76 1 .99805 .816 2.09008 .872 2.19018 .641) 1 .8078 .705 1.90017 . .761 1.99476 .817 2.09198 .873 2.192 .65 1.8094;! .706 1.90184 .762 1.99647 .818 2.0986 .874 2.19:^82 .651 1.81107 ; .707 1 .90;!5 1 1 .76;! 1.99S18 .8!9 2.095:W .875 2.19,564 .652 1.81271 1 .708 1,90517 i ; .764 1.99989 .82 2.09712 .876 2.19746 .65;{ 1.81 4 ;!5 .709 1.90684 i ■ .765 2.0016 .821 2.09888 .877 2.19928 .654 1.81599 .71 1 9^)852 1 I .766 2.00881 .822 2.10065 ; .878 2.2011 .655 1.8176:! .711 1.91019 ' ' .767 2.00V • .823 2.10242 ■ .879 2.20292 .656 1.81928 .712 l.;ai87 ! ' 768 2.00 .824 2.10419 : .88 2.20474 .657 1.82091 .71;^ 1.9l;!55 ■ .769 2.00.S44 .825 2.10596 , .881 2.20656 .658 1 .82255 .714 1.9152;! .77 2.01016 .826 2.10773 ; .882 2.20889 .651) 1.82419 .715 1.91691 .771 2.01187 .827 2.1095 : .883 2.21022 .66 1 .8258;^ .716 1.91859 .772 2.01:859 .828 2.11127 .884 2.21205 .661 1.82747 .717 1.92027 ! .77.8 2.01581 .829 2.11304 '• .885 2.2i;888 .662 1.829U .718 1.92195 j .774 2.01702 .88 2.11481 i .886 2.21571 .66;{ 1 .8:1075 .719 1.92;i6;! .775 2.01874 .881 2.116.59 .887 2.21754 .664 1 .8:!24 .72 i.925;!i : .776 2.02045 .882 2.11887 ; .888 2.21937 .665 1.8:}404 .721 1.927 : .777 2.02217 .838 2.12015 ; .889 2.2212 .666 1 .8:>568 i .722 1.92868 : .778 2.02.889 .884 2.12198 1 .89 2.22:!03 .667 i.8:!7;i;{ i .72;! 1.9;!0;i6 .779 2.02561 i .885 2.12871 i .891 2.22486 .668 1.8:!SU7 ] .724 1.9;i204 ' .78 2.027:!8 ; .886 2.12549 \ .892 2.2267 .669 1.84061 1 .725 i.9;i;!7;! ' .781 2.02907 1 .837 2.12121 1 .893 2.22854 .67 1.84226 .726 1.9;^541 .782 2.0:i08 1 .888 2.12905 ; .894 2.280,88 .671 1.84;rJl .727 1.9;!71 .78:8 2.08252 1 .839 2.i:'r/83 i .395 2.2:8222 .672 1.84556 .728 1 .9;!878 .784 2.08425 .84 2.18261 .896 2.28406 .67H 1.8472 .7'<;9 1.94046 .785 2.0:8598 .841 2.13439 .897 2.2:859 .674 1 .84885 ,7;i 1.94215 1 .786 2.08771 .842 2.13618 .898 2.23774 .675 1 .8505 .7.^1 1.94;i83 1 .787 2.08944 .843 2.13797 .899 2.23958 36 LENUl'HS OV SKMl-F,L!,lPriC ARCS. TABLE.— (Cuntimied.) Len)j;th. .021 Iii'n>,'th. HVht. .912 LciiKtli. 2.31852 ■ U-Kl.t. Loiijith. 2.3581 iH'gl.t. i .981 Lenjfth. 1 2.39H'?:5 1 2.2(112 2.27987 .9(1:5 .!)01 2.2i;!25 .922 2.2817 .913 2.:i20:5S 1 .9(54 2.311 1 .985 2.4001(5 i .8 ; .954 2.3)104 .975 2. .381 .99(1 2.421.3r) .91 ;{ 2.2(;521 .'XM 2.:!03:3 j .955 2.31293 .97(5 2. .38291 .997 2.42329 .914 2.2tl704 .935 2.30557 ■ .95(1 2..344S3 ; .977 2.:i8l82 .9!t8 2.42522 .915 2.2(1888 .9.S() 2.30711 1 .957 2. .34073 , .978 2..3.si;73 .999 2.42715 .91(5 2.27071 .937 2.3092(5 i .958 2.:{48(;2 ' .979 2.:is8(;4 1. 2.42908 .917 2.27254 .938 2.31111 .959 2. .3505 1 j.98 2.39055 .918 2.274:57 .939 2.31295 .9(5 2. .352 II .981 2.39217 i .919 2.27(52 .94 2.31479 .9(11 2.:i5431 1 .9H2 2.39139 ; .92 2.2780;-5 i .941 2.31 (5G() .9(52 2.:^5(;21 i .983 2.39(531 1 To Ascertain the Length of a Semi-Ellipllc Arc (right Scrai-L llipse) by the preceding Tabic. RuLF. — Divide the height by tho hn?e, find the quotient in the cnlunin of hpi;'hts, nnl tnke the length of thnt heij;ht from the ne.xt ri!;htli!ind colniiin. iMiilii|iiy the length thus obtuinod by the bate of iho ar^-, and tho product will be tlie lunj^th of the nrc. Lxamplf;.— What is the length tf tho arc if a aeini-ellipse, the ba.-:o being 70 feet, and tho height 30.10 feet. 30.10-^-70 = .43; and .43 per tablo, = 1.462fi8. Then 1.46268 x 70=::1U2.3376 feel. Wlien tlie Curve is not that of a Eight Semi-Ellipse, the Height being half of the Transverse Diameter. Buf.E. — rSvido half the bnso by twice tho beii^ht, then proceed ns in the preceding esample ; multiply tho tabular 1 njrth by twii-o tho height, .-iinl thu jiro mot vlll I e the loiisth lequirel hUMi'i.K. — What is tho length of thu uro of a souii-ollipse, the height being 3j fuut, and tho base 60 fuct? eO-i-Szz.^O, and .30- r-:i5 x ^ = ,428, tho tabular length of which is 1.45966. Then 1.45966 x 35 x :i= 102.1 7fi■2/«c^ NoTK. — If in the division of a height by the base there is a remainder, proceed in the manner given for the Lengths of Circular Arcs, page 32. TuVliT^TZ VIIT. TABLE OF THE AREAS OF THE SEGMENTS OF A CIRCLE. I'he Diameter of a Circle assumed to he Unity, and divided into lOOO equal I'arts. VtsoJ Vor.-cd jWrpeil 1 i Versed '. . Vor?cd Sine, ,Se;^ Aroa. SUie. .018 Scg. Aron. ■ 095 Srg. Area. 1 Sine. .Sog Area. C-ine. Scg Area. .001 .00004 .01882 ■ 0879 .142 .06822 .189 •10312 .002 .0(1012 .049 .01425 ■090 .0:!849 .1.18 .00.S92 ! .19 • 1089 .00;! .00022 .05 .OlIOM ■ 097 .08908 .144 .009ti2 i .191 ■ 10468 .00 1 .00081 .051 .((151 2 ■ 098 .0;i908 .145 .07088 .192 • 10547 .005 .00047 .052 .015.50 ■ 099 .04027 .146 .07108 ,198 • 10626 .OOC) .0001)2 1 .058 .01001 • 1 .04087 .M7 .07174 .194 .10705 .007 .OOOTS .05 1 .01040 ■ 101 .04148 .1(8 .07245 .195 .10784 .008 .0001)5 .0."i5 .01091 i .102 .O420H .149 .07816 .190 .10864 .009 .00118 .0."0 .01787 ■ 108 .01209 1 .15 .07887 .197 .10943 .01 .001.88 .057 .01788 ■ 104 ■0481 .151 .07459 i .198 .11023 .011 .00158 .058 .01 S8 ■ 105 ■ 04891 .152 .07581 1 .199 .11102 .012 .00175 .059 .01877 ■ 100 ■04452 .1.58 .07008 .2 .11182 .01;? .00197 .00 .01924 ■ 107 ■ 04514 .154 .07075 .201 .11262 .014 .0022 .001 .01972 ■ 108 .04575 .155 .07747 .202 .11343 .OliJ .00244 .002 .0202 .109 .040.88 .156 .0782 .208 .11423 .OIG .002(;8 .008 .02008 ■ 11 .047 .157 .07892 .201 .11503 .017 .002!,'4 .004 .021)7 ■ 111 •04708 .158 .07965 .205 .11584 .OlS .0082 .0(;5 .02105 ■ 112 .04S26 .159 .08088 .206 .11665 .019 .00817 .OtiO .02215 ■ 118 .04889 .16 .08111 .207 .11746 .02 .00875 .007 .02205 ■ 114 .04958 .161 .08185 .208 .11827 .021 .00408 ! .008 .02815 .115 .05016 .162 .08258 .209 .11908 .022 .00482 .009 .02880 ■ 110 .0508 .108 .08882 .21 .1199 .02:5 .001 02 .07 .02417 ■ 117 .05145 .104 .08406 .211 .12071 .024 .00492 .071 .0240S .118 .05209 .105 .0848 .212 .12153 .025 .00528 .072 .02519 ■ 119 .05274 .100 .08554 .218 .12285 .02(i .00555 .078 .i)l'571 ■ 12 .058;;8 .107 .08029 .214 .12817 .027 .005.S7 .074 .02024 ■ 121 .05404 .108 .08704 .215 .12899 .028 .00019 .075 .02(i70 ■ 122 .05409 .169 .08779 .216 .12481 .029 .00058 .070 .02729 ■ 128 .05584 .17 ,08858 .217 .12563 .08 .OOO.sO .077 .02782 ■ 124 .050 .171 .08929 .218 .12646 .o;5i .00721 .078 .02885 ■ 125 .05666 .172 .09004 .219 .12728 .0:52 .00750 .079 .02889 ■ 120 .057.88 .178 .0908 .22 .12811 .08;} .00791 .08 .02948 ■ 127 .05799 .174 .09155 .221 .12894 .o;]4 .00S27 .0,^1 .02997 ■ 128 .05806 .175 .09281 .222 .12977 .o;}.T .00X04 .082 .08052 ■ 129 .05983 .176 .09807 .228 .1306 .080 .00901 .OcS8 .08107 .18 .00 .177 .09884 .224 .13144 .087 .009.88 .0H4 .08102 .131 .06007 .178 .0946 .225 .13227 .088 .00970 .085 .08218 .182 .00185 .179 .09587 .228 .13311 .089 .01015 .080 .08274 .188 .00208 .18 .09018 .227 .13394 .04 .01054 .087 .0888 .1.84 .00271 .181 .0909 .228 .13478 .041 .01098 .088 .088H7 .185 .00889 .182 .09707 .229 .1.3662 .042 .01188 .089 .08444 .180 .00407 .188 .09845 .23 .1.3646 .048 .01178 .09 .08501 .187 .06476 .184 .09922 .231 .13731 .044 .01214 .091 .08558 .1,88 .00545 .185 .1 .232 .13815 .045 .01255 .092 .08010 .189 .00614 .186 .10077 .233 .139 .046 .012;>7 .098 .08074 .14 .00083 .187 .10155 .2.34 .13984 .047 .01889 .094 .08782 .141 00768 .188 .10283 .235 .14069 88 AREAS OF THE 8F.GMENT8 OP A CIRCL. TAhLE.— (Continued.) - Versed ~ Versed . Versed Vcrtted ■ ■ ■ Verred Siiio, Sag. A It'll. Sine. Sen. Aroa_ :.SiDe. .342 8eg. Area. Sine. .395 Seg. Aroa. Sine. Seg. Aroii. .230 .14154 .289 .18814 .2;!737 .2SSI8 , .4 18 .34079 .237 .14239 1 .29 .18905 .343 .2.".832 .390 .28915 ,449 ..34179 .238 .14324 1 .291 .18995 .34 1 ,2;;927 .397 .29043 1 .45 ..34278 .239 .14409 .292 .19086 .345 .21022 .;J98 .29141 .451 .34378 .24 .14494 .293 .19177 ..".1 6 .24117 ,399 .292;:9 .4.52 .34477 .241 .1458 .294 .19208 .3)7 .21212 -4 .29;;37 .453 .34557 .242 .14665 .295 .19.30 .348 .243(17 .401 .29435 .454 .34676 .243 .14751 .296 .19151 ,349 .24103 ,io-j .29.".33 .455 .34776 .244 .14837 .297 .19542 35 ,24498 .403 .290:;i I .450 .34875 .245 .14923 .298 .19034 .351 .21593 .404 .29729 .457 .34975 .24(1 .150O'» .299 .19725 .352 .2-10.S9 .405 .29827 .458 .35075 .247 .15090 .3 .19817 ,.353 .24784 .40(i .29925 ,459 .35174 .248 .15182 .301 .19908 .354 .2488 .407 .30024 ,40 .35274 .249 .15268 .302 .2 ..355 .21970 .408 .30122 .401 .35374 .25 .15355 1 .303 .20092 .350 .25071 .409 .3022 1 .402 .35474 .251 .15441 1 .304 .201S4 ,357 .25107 .41 .30319 .403 .35573 .252 .15528 1 .305 .20276 .358 .25203 .411 .30417 .404 .35673 .253 .15615 j .30(5 .20368 .359 .25359 .412 .30515 .405 .35773 .254 .15702 .307 .2046 .36 .25455 .413 .30014 .400 .35872 .255 .15789 .308 .20553 .361 .25551 .414 .30712 .407 .35972 .256 .15876 .309 .20645 .3(;2 .25047 .415 ..".O-ll .408 .36072 .257 .15964 .31 ,20738 ,303 ,25743 .410 .30909 .409 .30172 .258 .16051 .311 .2083 .364 .25839 .417 .31008 .47 .30272 .259 .16139 .312 .20923 .305 .259:^0 .418 .31107 ,471 .30371 .26 .16226 .313 .21015 .300 .26032 .419 .31205 1 .472 .30471 .261 .16314 .314 .21108 .307 .26128 .42 .31301 .473 ,.30571 .262 .16402 .315 .21201 .308 .26225 .421 .31403 .474 .30071 .263 .1649 .316 .21294 .309 .20321 .422 .31502 .475 .30771 .264 .10578 .317 .21387 ,37 .20418 .123 .310 ,470 .30871 .265 .16666 .318 .2148 .371 .26514 .424 .31099 .477 .30971 .266 .16755 .319 .21573 .372 .20011 .425 .31798 ' ,478 .37071 .267 .16844 .32 .21667 .373 .20708 .420 .31rt97 ,479 .3717 .268 .16931 .321 .2176 .374 .26804 .427 .31990 .48 .3727 .269 .1702 .322 .21853 .375 .26901 .428 .32095 .481 .3737 .27 .17109 .323 .21947 .370 .20998 ,429 .32194 .482 .3747 .271 .17197 .324 .2204 .377 .27095 .43 .32293 .483 .3757 .272 .17287 .325 .22134 .378 .27192 .431 .32391 .48+ .3767 .273 .17376 .326 .22228 .379 .27289 .432 .3249 .485 .3777 .274 .17465 .327 .22321 .38 .27386 .433 .3259 .486 .3787 .275 .17554 .328 .22415 .381 .27483 .434 .32089 .487 .3797 .276 .17643 .329 .22509 .382 .27580 .435 ,32788 .488 .3807 .277 .17733 .33 .22603 .383 .27677 .430 .32887 .489 .3817 .278 .17822 .331 .22697 .384 .27775 .437 .32987 .49 .3827 .279 .17912 .332 .22791 .385 .27872 .438 .33086 .491 .3837 .28 .18002 .3,33 .22886 .386 .27969 .439 .33185 .492 .3847 .281 .18092 .334 .2298 .387 .28067 .44 .33284 .493 .3857 .282 .18182 .336 .23074 .388 .28164 .441 .33384 .494 .3867 .283 .18272 .336 .23109 .389 .28262 .442 .33483 .495 .3877 .284 .18361 .337 .23263 .39 .26.159 .443 .33582 .496 .3887 .285 .18452 .338 .23358 .391 .28457 .444 .33082 .497 .3897 .286 .18542 .339 .23453 .392 .28554 .445 .33781 .498 .3907 .287 .18633 .34 .23547 .393 28652 .446 .3388 .499 .3917 .288 .18723 .341 .23642 .394 ,2875 .447 .3398 .5 .3927 ARRAfi OP TMR ZONKS OP A CmrLR. 39 To AsctTlftiii llie Area of a Segment of a Circle; by llic prtci'diiig Tabic. RuLK.— Diviili t'lo hoiijht or vor.'Oil siiio )>y Iho dianuilor of tho oir>!lo ; find tlm 02^'i7'J.bb/,;/. Niu'i.; — If, in tho divisj.in of a lioi'^lit by tho lia-o, tlio ijuotiDnt has roiuaindor after tho third place of do'iinals and i;-uat ii'i.iiriiiy is rofiuirod, Taku tho area for 111) lir.'t throe ligiii'iM, t'.ibtrnot it fruin Iho next following nrcn, multiply tho romaindoi by th'> fnid fraction, and add the product to tho llrst area ; tho sum will bo tho area for tho wholo (jiioticnt. 2. U'h.it is tho aroa of a 8"gtnoiit of aoirolo, tho diamotor of which is 10 f^ot, and tho height of it 1.575 f.'ot ? 1.5"5H-ltl— •'•''7'> ; tho tabubir area f-r .157=. 07Slt2, and for .loS=.U70fld, tho diiforenco between which is .')lli)7:!. Thon .5 X .00i)7a=.00(t3()5. Ilonoo .)57=.07H!)2 .U0U5=.0UII3f;.'> .079275, the Bum by which tho square of tho dia- motor of the circlo is to bo niultipliod ; and .079285 X 10^=7.1)28t)/a7. TA-ULli: IX. TABLE OF THE AREAs OF THE ZONES OF A CIRCLE. The Diameter nfa Circle assumed to he Unity, and divided into 1000 equal Parts, ! Il'ght. Arei. H'ght. .0:19 Area. ir-ht. .057 Area .05088 H'ght. Area. li'ght. Area. .11203 .001 .001 .02898 .085 .0S459 .ii;i .002 .002 .o:i .02998 .058 .057,S7 .0,S0 .0f<557 .114 .113 .oo;{ .ou;j .o:;i .o:io9;{ .059 .05S,S0 .OS 7 .0S050 .115 .Il;i98 .001 .004 .o:!2 .0;il98 .00 .05980 .088 .08754 .110 .11495 .00.5 .005 .Oil,! .0:1298 .001 .00085 .0'^9 .0885:1 .117 .11592 .OOG .000 .o;{4 .o;i;i97 .002 .00184 .09 .08951 .118 .1109 .007 .007 .o;!5 .0.5497 .oo:{ .0028:1 .091 .0905 .119 .11787 .oo.s .008 .o;{0 .0;i597 .004 .00:i82 .092 .09148 .12 .11884 M'J .OOi) .o:!7 .0;)ti97 .005 .00182 .09:1 .09210 .121 .11981 .01 .01 .o;{8 .0;i790 .000 .0058 .094 .09:141 .122 .12078 .Oil .011 i .o.so .o;i890 .007 .0008 .095 .0944:1 .12:1 .12175 .012 .012 .04 .0:5990 .008 .0078 .090 .0954 .124 .12272 .01.5 .OKI .041 .04095 .009 .00878 .097 .09(;:59 .125 .12309 .014 .014 .042 .01195 .07 .00977 .098 .097:17 .120 .12469 .Oh". .015 .04;; .04295 .071 .07070 .099 .0!>8:i5 .127 .12502 .OIG .010 .014 .04;i94 .072 .07175 .1 .099;i3 .128 .12659 .017 .017 .015 .04494 .07;i .07274 .101 .100:11 .129 .12755 .018 .018 .040 .01o9;i .074 .07:5. ;i .102 .10129 .13 .12852 .010 .019 .047 .0109:1 .075 .07472 .10:1 .10227 .131 .12949 .02 .02 .048 .0479:1 .070 .0755 .104 .10:525 .132 .1.3045 .021 .021 .049 .01892 .077 .07009 .105 .10422 .1:13 .13141 .022 .022 .05 .04992 .078 .07708 .106 .1052 .134 .132:18 .02:5 .02H .051 .05091 .079 .07807 .107 .10018 .1:15 .i:i;i;i4 .024 .024 .052 .0519 .08 .07900 .108 .10715 .136 .1343 .025 .025 .05:1 .0529 .081 .08004 .109 .10818 .137 .l:i527 .020 .0251)!) .054 .05:189 .082 .08103 .11 .10911 .i;i8 .13023 .027 .0209!) .055 .05489 .08:1 .08202 .111 .11008 .139 .13719 .028 .02799 .050 .05588 .084 .08:10 .112 .11106 .14 .13815 40 ARFAH OP TTTF, ZONKS OP A CIRCLP. TABLE.— {Continued) nVht. Area. ll'ght. Arua. 1 li'fe'l'f. 1 .._ __ ' .25;! Arou. .21175 li'ght. .;!09 Area. n'ght. Area, ' .Ill .i;i9ii .197 .19178 .2-v^'Ol .:i65 •;!29;!1 .112 .14u;>7 . 1 98 .I!t27 ' .251 .21261 .;!i .2^8,S 1 .'Mt\ .;!2999 .I4:t .1 IK),". .199 .I9;i61 1 .2.55 .21:! 17 .;!ii .2''958 ' .;!67 .;!:>067 .141 ,1419S .2 .194.W .256 .244;!;! .:!12 .2!lO;i6 .;!68 .:^;;i;!5 .1-1.') .14294 .201 .19545 .257 .21519 .;ii;i .29115 .;i69 .;!:i2o;! .14(; .1 i;!'.) .202 .196;!6 .258 .24604 .;!14 .29192 .;!7 .:^;;27 .147 .1448.'. .20;{ .19728 .259 .2169 .;m5 .2927 .;!7i .;!;!;!;!7 .14H .14.5^1 .204 .19819 .26 .21775 1 .:ii6 .29.'! 18 .;!72 .;!;!404 .lli> .14677 .205 .1991 .261 .21.^61 .H\7 .29125 : .;!7;! .:!;!47i .1.') .14772 .206 .20001 .262 .2I94(; .;!ls .29502 1 .;!74 .;!;^5:i7 .1-)1 .14St,7 .207 .2011112 .26:! .25021 .;!19 .295^ ' .;!75 .;!;)6()4 .ir>2 .1 l!i(;2 .20*^ .201.^:5 .264 .25116 ..•!2 .296,>6 .;!76 .;!;!67 . 1 ,•):; .l.''.0."ih .209 .20271 .265 .25201 .;!2l .297;!;! .;;77 .;!;^7;!5 .i.'ii .1515;'. .21 .2o;!(;5 .266 .25285 .;!22 .29^1 .;!7s ,;i;!soi .1.').') .1524S .211 .20156 .267 .25;!7 .;!2;^ .29.>^86 1 .:^79 .;i'!8(;6 .if)*; .I5;ii:5 .212 .2(1546 .2(;h .2.5455 .;i24 .29962 i .;i8 .;!;!9;!i .!r)7 .I5i:w .21;! .206;!7 .269 .255;!9 .;;25 .;;oo;;9 ! .;;si .;!;!996 . 1 "iS .i.'-.o;!:; .214 .20727 .27 .25(i2;! .;!26 .;!0114 1 .;i82 .;;i06i .1;VJ ArnviH .215 .2(I,S|K .271 .25707 .;!27 .;i0i9 • 'm>^ .;!4125 .it; .1572.-; .216 .20908 .272 .25791 .;!28 .;;o266 i .;i84 .;!419 .1(11 .15817 • 217 .2091H .27;! .25.S75 .;!29 .;!0;i4l .;!85 ..^425:! .11.2 .15PI2 .218 .21 OSS .274 .25959 .:^;! .;!0U6 1 .'AW .;^4;-ii7 .Kl.S .16006 .219 .21178 .275 .2604;! .;!;!i .;i0491 1 .;i87 .;!4:^8 .164 .16101 .22 .21268 .276 .26126 .;!;!2 .:!05(i6 .;!88 .;!4444 .165 .161115 .221 .2i;!5S .277 .26209 .;!;!;! .;!0641 .:!89 .;!4507 .166 .1629 .222 .21447 .278 .2621»;! .:^:i4 .;!0715 .;!9 .;il569 .167 .16H><4 .22:! .215;i7 .279 .2ii,>16 .;!;i5 .;i079 ^ .;!9i .;;46;!2 .168 .16478 .224 .21626 .28 .2()459 .;};!6 .;^0864 ; .:^92 .;i4694 .169 .16572 .225 .21716 .281 .26541 .;^;!7 .;!09.S8 ..•lit;! .;!4756 .17 .16667 .226 .21805 .282 .26624 .:!;!8 .;!1012 • .:m .;S4818 .171 .16761 .227 .2 181' 4 .28;! .26706 .;!;i9 .;iios5 .;!95 .;!4879 .172 .16S55 .22.S .219,s;i .284 .26789 .;!4 .;!1159 .;-!96 .;i494 .17.'{ .16948 .229 .22072 .285 .26871 .;!4i .;!12;^2 ..'i97 .;i50oi .174 .17012 .2.'! .22161 .286 .2695;! .;!4 2 .:!i;>(i5 ,;^9,s .;i5062 .175 .171:^6 .2;^i .2225 .287 .270;{5 .;!4;! .;!i;!78 ! .:!99 .;!5122 .176 .172;^ .2;)2 .22;«5 .288 .27117 .;!14 .;ii45 1 .4 .;^5l82 .177 .I7;i2;{ .2:t;! .22427 .289 .27199 .;ii5 .;!152;! 1 .401 .;!5242 .178 .17417 .2;!4 .22515 .29 .2728 .;^46 .;!1595 ' .402 .;i5;^02 .179 .1761 .2:^5 .22604 .291 ,27;-i62 .;!47 .;S1667 .40;! .;!5;^6i .18 .1760;! .2;;6 .22692 .92 .2744;! .;!48 ..■!i7;r.) ^ .404 .;!542 .181 .17697 .2;!7 .2278 .29;-! .27524 .;!49 .;!i8ii 1 .405 .;o5479 .182 .1779 .2:i.s .22.^68 .294 .27605 .;^5 .;!1882 ' .406 .:!55;!8 .18H .I78.s;i .2;'.9 .2295(; .295 .276S6 .;!5i .;!11154 ' .407 .;i5596 .184 .17976 .2.1 .■:;!04.|: .296 .27766 ,;«2 .;!2025 : .4(),s .;;5654 .185 .18069 .241 .2:^1 -ii .297 .27847 .;^5;^ .;!2096 .409 ..•!5711 .186 .18162 .242 .2:1219 .298 .27927 .;!54 .:i2167 1 .41 .;^5769 .187 .18254 .24;^ .2;!;;o6 .299 .28007 ..•!55 .;r22:!7 ' .411 ..>5826 .188 .18;M7 .244 .2;^;^94 "1 .28088 .;-!56 .:!2;^07 i .412 .;^588;^ .189 .1844 .245 .2:^481 .;^oi .28167 .;^57 ..•!2;i77 .41.-! .;!59;^9 .19 .185;{2 .246 .2;;568 .:^02 .28247 .:!58 .;!2447 ! .414 .J!5995 .191 .18625 .217 .2;-!(;55 .:^o:! .2.^;-!27 .:i59 .;!2517 i .415 .;^605I .192 .18717 .248 .2;;742 .M04 .28406 .;i6 .;!2."i87 .416 .;^6107 .19;{ .18809 .249 .2;!829 .;^05 .28486 .;^6i .:!2656 .417 .;^6162 .194 .18902 .25 .2;!915 .;^06 .28565 ..362 .;^2725 .418 ,:^6217 .195 .18994 .251 .24002 .:!07 .28644 .;w.'? .:i2794 .419 .:i6272 .196 .19086 .252 .24089 .H08 2872;^ .;^64 .:!2862 .42 .;^6;!26 ARFAS OF TMK ZONES OK A f!IKCr,F. 'VAVAA'l.— (Continued.) 41 |lH'ght. .421 Area. .3038 1 .437 AlCM. .372'i: nviit- - . .453 Area. 1 IlVht. .371)31 .4 (It) .422 .30434 .438 .3725 .451 .371)73 .47 .423 .3(;-iys .43i) .372118 .455 .3,^01 1 .471 .424 .3(;.vii .14 .37310 .450 .3.^()5(; .472 .425 .30o!)4 • 111 .3731)3 .457 ..'isoik; ' .473 .426 .300(0 .4-12 .3714 .45S ..•'.8137 i .474 .427 .3i;0l)H .443 .37187 .45!) ..38177 .475 .428 .3(;7r) .141 .;;t53;( .40 .38210 .470 .429 .30H02 .4 15 ..")757li .401 .3^3 .440 .37021 1 .402 .:;.^2i)4 1 .478 .431 .30;)04 ,447 .3700!.) i .403 .3s;;32 1 .471) .432 .30'J")4 .4 IS .37711 .401 .3s;;oi) .18 .433 .37005 .4 1'^ .37758 .405 .3SI00 ! .4Wl .434 .37054 .45 ,37M)2 .40t; .3,S.|-I3 .4^2 .435 .37101 .151 .378-15 .407 .3S.17;) .4.^3 .430 .37163 .452 .378i5« .408 .38514 1 .484 Arcn. M Il'ght. I Area. I .3,«51!» I .3H5.M;i ; .3h017 .3m;5 .3sos;{ .3h715 .3ts747 .3,S778 .3.^H08 ..■>^'S07 .3;^M)5 .3.s;»:i:{ .3M)5 .381)70 .31)001 .485 .41^0 .4>s7 .4SS .4 Si) .4i) .4'.) I .4112 ,493 .4'J4 .41)5 .41)0 .41)7 .41)8 .41)1) .6 .31)026 ..".1)05 .3',)i)73 .31)01)5 .31)117 .31)137 .31)1.50 .;;!)175 .3511)2 .31)208 .31)223 .31)230 .31)218 .31)258 .31)200 .3927 This Table ;> comi>uted only for Zones, the lonjcst chord nf which Is diameter. To Ascertain the Area of a Zone by the preceding Table. Ri'LR I. — Whrii Ihr Xone is Jj,'ss than a Si-micirc/c, DiViJo thu lloi^•'lt by tlio diameter, nn I find the quotient in ilio roliiiiiti ol' liint;ht. Tiiko mit tl\u .aioa n|i| isito to it in tlio next I'oUium on thu riijlit hand, and multipl)' it by tho quiire of the lon;^0!tt chord ; tbu piodiict will bo tho artM of tho zone. ExiUPLG. — Koquired tho nre-' 'if a zone tho di;iinetor of whioij is 50, and its height 15. 15t-o0=.3; and ..'), us pur table, = .:iSOSS. Hence .28086 X 50=^ = 702.2 arm. Rule 2. — Whi'ii the Zuie is (j, ■eater than n ffemirirr/e : Take tho hoi;;hton each sidp of tho dia- meter of tho cirein, and ascertain, t^.y llulo 1, their ro.ipoctivo area* ; aid tho ai'oaa of those two por- tions together, and the sum will bo tho area of the zone. ExAMPLK. — Requirol tho area of a zono, tli ' diameter of tho oirclo hoin:j 50, rad tho hoights of the lone on each siue of tho diameter of tho circle 20 and 15 re-poi'tivly. 20-^i0=:.4 ; .4, as per tal.lei = . 05182 ; and .35182 ■; 50-' — 87'.).55. 15-f-50 = .;i; .3, as pur table =-28088; and .28088 x 50- = 702.2. Hence 879-55 + 702.2 --= 1581-75 area. RPLR 3. — ]Vheii the toiiifrsl chord of the zmu' is /e.n- ill. imd SO llis. out. ol it ? 80 :80— 70=10 : : !)l '■> •. I I'-T) .'jyw. ^rj-aw. To Compute the Proportions of two Ingrsdionts in a Cora- pound, or to discover Adulteration in Metals. lliLK. — Take the difUTences of eacli specific gravit}' of the ingredients and the specific gravity of the compound, then nmltiply tiie gravity of the one \)\ tiie ditFcrence of the other ; and, as the hiuii of the products is to the respective products, so is tlie specific gravity of tlie body to the proportions of tlie ingredients. 1<'XAMIT.K.— A (•()m|>oiiii(l of^'iild {xpi'r. -? vr?' =I8.HS8) iiii(i Bilver (spue. grav.= I0.53.">) liiiH 11 sp(!(i:i(' ;j;iiivity of I J ; wluir, is tlm piopoilion of hucIi metiil ? I8.8SS- I 1=I.888X I0..0;i5=r)l. I!);") i4._io.r);3'j=:i. i(;.jx i8.888.=()r). 1 17 65.417+51. 1!).') : (;5.'M7 : : I J : 7.8:)5^oW, (15. 147+51. ■1!)5 : 51. 195 : : 14 : t;.l(;5 silver. Tocompute the Weights of the Ingredients, that of the compound being given. Rn.E.— Art the specific gravity of the compound is to the weight of the compound, so are eacli of tlie proportions to the weigiitof its material. KjcAMi'Li?.— The weiglit, iw iibove, being 'JS lbs., wlmt, ure the weights of theiii- giediieiits ? 14. ~a. •^c.itiy. \-2,xi silver. Proof of Spirituous Liquors. A cubic inch ot proof spirits weighs 234 grains ; then, if an immersed cubic inch of any heavy body weighs 2:U grains less in spirits than air, it shows that the spirit in which it was weighed is proof. If it lose less of its weight, the spirit is above proof; and if it lose more, it is below proof. Ii,i,i;sTPAiiON.— A cubic inch of glitss -.veiglMiiK 700 gniiiia weighs 500 graiitH V7heii weighod in u cert.nin spirit, ; wliiit is Mie p. ■ if of it ? 7QQ—rm=:^'MQ=gyaui.s=weiylt.t lost i,i ike spirit. Then UOO : lU : : 1. : i.l7==ralL0 of proof of spiriU compared lo proof spiriU, or 1. ==. 1 7 above proof. Solidt Rut, K.— Divide the specific gravity of the subBtance by 16, and the quotient will give the weight of a cuMc foot of it in pounds. 44 SPECIFIC ORAVITrES. OF DIFFERENT BODIKS AND SUBSTANCES. METALS Aliiititiniini Antimony Arsenic. . Bariinn. Bisniull) Brass, ooppe " tin METALS. copper ( zinc ',i pi lite, wire. T 84 ) Bronze, gun inetul . . . Boron Bromine Cadmium CalcMim . . . . Clirominm Ciniuihar. . . Coliait Columl)iuui Gold, pure, cast " liaminered. . . .. " 22 carats fine. . " 20 carats tine.. . Copper, cast plates wire Iridium.. . " hammered ... Iron, cast. " gun metal. . hot blast-. .... cold " wrought bars. . . " wire rolled plates.. . . cast . " rolled Lithium Manganese Magnesium Mercury— 40" " +;52" " CO**, , ♦• 212° Molybdenum... Nickei. - " cast Psmium (( n <( <( Ijeac 8s;!2 7821) 8:iso 8214 8700 2000 ;{iioo 8(;:.o i;)8(i oi)00 8(i'J,-< 8000 0000 10:501 174S(; 1,)700 8788 800- 8S8(i 1 8(;8() 2;i(U)0 72t)7 7;i08 70()j 72 is 7V88 7774 7701 I :;>.-. 2 .Spcci- ! Wi'iKlit lii' nr;i- of ii cii. 1 viiv. ibieiiKjli. ll:!88 500 8000 I7r)0 irio:{2 i:{;V.)8 i;{.-)80 i:5;!70 8000 8800 8270 10000 .002(1 I'alliidiiim L'hitinum, hammered.. •' native .... ■♦ rullcd Potassium, f)!)* .Hli»4 282; . -MVA ;U47 .072;; .los:, ;{120 0.'>7 •J i H J .2020 .3111 .217 . 000.- .70 '.'I .6:525 ..-)C82 .;jl70 i{i'({li';id khuiliiitn Iiutii('i:inm i ... I .^'.'U'liiiim ' Silic.'ium , ' Silver, pure, cast . . . . ! " hammered. I Siiiiium I Steel, plates. | ' soft . . .8:510 .2007 . 204 .2r)5.-) .201 .2'^1 .281 .2787 .410( .4110 .021:5 .280 I .0(;:^:-5 .;")00 .4918 .4012 .48:^0 ..•5111 .:518:! .2004 I i:5:.o, 2(i:5:57i lODOllj 220 Oil 80;')j 8040| lOOodj SO no, 4 .".00: temp 'reii liar.lei and! ...1 wire. Strontium Tin, Cornish, hammerd " " pure Telluiium Thalium Titanium I'uiigsten . ;^14i) l^raiiiun :5212 G7r)0 Wolfram.. . . ;ast . . rolle,!. Ziiio, cast WOODS (Dry). 10474 I Of) 11 070 78(10 7.s:5:; 7818 7817 2.V1I) 7:500 7201 OIK) 1 1 850 r):]oo 17l)U0 lOl.-iO 7110 0801 7101 Alder.. Apple. . . A.sh .... Bamboo av .... Beech iJirch . . . Bu.\, Brazilian. " Dutch... " French.. . Bullet wood.. . Butternut Campeachy . . . Cedar . " Indian. . . ,410.) .7:5:)() .".787 .7082 .o:5i:{ .:;24l .:5-<:)2 .:;iil .1027 .:5788 .:5002 .o:^.H .282:5 28;5:i 2828 .28:^8 .0018 .207:{ .20:!7 .221 .42<(\ .1017 .0119 .:5071 .2o7.) .2482 .20 (Millie t'llot. 800 fiO T03;io 84;)1.V2 00014:5 40( ):;;") 822Jrjl 8.-)2!r):5 000 '4:^ 507 lo:5i 012 i:52s 928 ;570 9i;^ 501 KSlf) ;io. 04. ;J7. 8:5. 58. 2:5. 57. :55. 82. 562 812 i2.:« :^75 25 1 25 4:^7 4:^7 002 002 157 si'EciFrc auAvri'iES. 45 WOODS, (Dry. ' Conllniicd.) Sppc.i- 1 ^\^■i!.'■llt ifu; ifi'ii- 111' It I'll viiy. I liif fiHit. I i WOODS, (Dry), {Cunlimied.) Oluircoiil, i)iiH' '• tV(',-h iiiii'iu'il '• (liik '.! " Sufi W.IUii. . . " trimiateil . . . 4Hi-J7. ir)7:!!'.)s Clion-y Clie~imt. sweet... . CiifoK Cociia Cork Cypress, SpMiii-h . Dug-\vuo:l. ...... Ebony, Atiu'ricaii. " Iiiiliaii . .. . Elder E!in Filbert Fir (Norway Space). Gmii, blue " water Hiickiiiataoic Hazel . Hawthorn Hemlock Hickory, pig-niit " she 11- bark.. Holly Jasn)ine Juniper Lance-wood Lari'li < Lemon Lignuni-vitiL' , Lime Liiuien Locu.st Lojiwood . . . Mahogany *' Honduras.. '' Spa.ii.sh — Maple " bird's eye.. MaHlic Mulberry ..... Oak, African , . " Canadian. i:-i.s(i 715 iilll 72(1 17. ;ii;! f) :!s 1 i:).;57." iot(i!(;.j. 2(0:15. (;m|io. i:>ii,n. i;}3i|H3. r2()!)j75. G'.!') I. '5 570|;i5 G7i|n. 600 ;57. 512;J2. 84;i.)2. loot! (!2. 51)2 ;n. HGU'5:5. !)I0'5G. 86^^i2:5. 71)2 11). C HO 4:5. 7r>();47. 770:48 r)6() :i5 720i45. 544 ;u. 5!;o ;55 703,4:5 1:5:5:58:5 804i50 (5041:57 728U5 9i;5;57 720!45 lOG:i,G6 5G0i;« 25 25 187 5G2 4:57 G25 i):57 5 GS7 5 75 875 5 125 5 125 ;^75 Oak, Dantriic " ■ Engli.-h " green. , heart, GO year.s. . , live, green. .... " .seasoned..., white Orange >, Pear Persimmon . . . . , PInm Pine, pitch " red " white " yellow. 'omegranale. . . . >.. .„ iplar " white... Quince Hose-wood . . , .SassiitVas ... Satin-wood. Spruce. . . . Sycamore Tamarack. Teak (African oak).. < Walnut " black. 852 750 57G 84i) 5G1 897 82:i 872 5;^ 4G ;^G 53 :i5 56 51 54 9;i: 812 25 .75 .5 ,062 !4:^7 .25 .875 062 ,062 .062 .4:i7 Willow Yew, Dutch . " Spanitili. (Well Seasoned.*) A,sh Beech Cherry Cypress Hickory, red Mahogany, St. Domg. Pme, white. yellow Poplar White Oak, upl. '. . . " Jamea iiiver, Sp>'('i- fie Hill viiy. 759 9:52 1446 1170 1260 1068 86(! 705 661 710 7S5 66 U 590 554 461 1:551 580 ;58:5 529 705 728 482 885 500 62:^ ;583 657 745 671 500 486 585 788 807 722 624 606 441 838 720 473 541 587 687 759 Waiijlit (if II (i | — Asbestos, starry |;!07o 1 92 062 . , ,, ( 00.') i>ti.i)t\2 -^^Pl^^'t"'" j 1 16:,0 103.125 Barytes, sulpl'ate... J | ^.^,;5|.^„4 o,;2 R u ( l2740;17l.25 Borax |171 4;i07. 125 Brick (II1K)0|118 75 «< fire !220ljl37.562 " work ill cement.. ;i800 112 50 ., ,, ,, ( 160(1 100. " ""'«"»>'il2000il25. Carbon .S5(i0 Cement, Portland. " Roman... Stones, Earths, &c. ii<'!rniuiM cuiiio I viiy . Font. " while... ('ornclian Duimund, Orientiil.. . , '■ iJruzilian. . Kartli, t coniirion soil " loose , ini'ist .«au(l . . moiilii, t're.'^h. nuMMied . . . , njiigh .sand. . witli oravel . . . 2550 26i:{ .1521 Chalk Chrysolite Clay " with gravel . . . Coal, Antracite " Borneo " Cannel Caking Clierry . . . . . Chili Derbyshire... Lanca.ster Maryland. . . . Newcastle . . Rive de Gier. Scotch i;]U0i ft II it (( i( tt (< xt (I (( Coke Splint , Wales, mean.. . , " Nat'I, Va. . . Concrete, mean. Copal Coral, red. 156i/| 1520J 2781 2782 i!);U) 2480 i43(; 1640 1290 12;5S i;5is 1277 1276 1290 1292 1273 1355 1270 1300 1259 1300 1302 1315 1000 746 2000 1045 2700 25 218 81 97. 95. 174. 120 625 155. «9.75 102.5 80.625 77.375 82 375 79 812 79.75 80.625 80 75 79.562 84.687 79.375 81.25 78.687 81.25 81.375 82.187 62.5 46.64 125. 65.312 :;44 1 — u u a ii Emery Flint, black. . " white . , Fhionne. ... Glass, but lie , " Crown " Hint.., gref n. . , o[)lioul. white . . , window. u ii ,1 11 (( Garnet " black Granite, I'^gyptian red.. Patapsco. . . . Quincy Scotch " Sn.-(iuehanna. Gravel, common Grindstone Gypsum, opaque Hone, white, razor. . . Hornl)lende iodine Jet Lime, hydraulic " (piick Limestone, green " whUe Magnesia, carbonate. . . Marble, Adelaide African Biscayan, black, Carara common.- Egyptian French Italian, white.. 12194 1500 2050 205(1 16(10 1920 202(1 4000 2582 2591 1320 27;!2 24si7 12933 j;l200 3450 2892 2642 41H9 3750 2654 2(i40 2t^■)2 (1 (I <• 2625 2701 1740 2143 216S 2876 1354(1 4940 1300 2745 804 3180 3156 2400 2715 2708 2695 271i; 2686 26 6 S 2649 2708 137. 93 . 128 128 100, 120. 126. 250 161 162 82, 170, 155, 183 196 165 215, 180, 165 165 1 65 . 165 164. 169 109. 133 135, 179. 221 171, 50 198, 197 150, 169, 169, 168, 169. 167. 166 165, 169. 125 75 125 125 375 1 25 5 75 437 312 1 25 (125 75 125 87.'^. 75 062 312 937 5 75 25 562 25 75 25 687 25 437 75 875 75 562 25 t Spec. grav. of tlie earth U variously estimated at from 5.450 to 5.600. 8PE01PI0 GRAVITIES. 47 Spcci I Wi'iulit Stones, Earths, &c.,ii.>i!ii. otatniii. viiy. I Tdoi. ^larble Pariiiii " X't'i'iiioiit, white Marl, iiic'iiii Mica Miirtar. ... Millstone. Miiil . . . Mure Opal Oyst(M-->liell . . . Pavinji-stoiie. . . Peal, Oriental.. Peat •1 Phosplionis Plaster (if Paris . IMiiinlia;;!.) Porplivry, red.. . J-'urcelam, China. Pumice-stone. . . Quartz , llutteii-stotie Red- lead Resin Rock, crystal. . . Ruby Salt, ooinmoii . . Saltpetre Sand, coarse ... " conunon . danip and I io.se dried and loose. . dry mortar, Ft. Rich. " Jh'ooklyn " silliciou.s Sapphire Sliale n u u Slate Slate, purple Smalt Stone, ]}ath Engl. " Blue Hill .... " Biiu'stone (basalt) " l]reakneck..N.Y. " l!ri>tol ...Engl. " (^aeti, Normandy Ci'imnon ...... 2S:{S 177 2t;r)0 lo.) 1750:1119 2S()0|17.> li^SJi Hi) 1750 Id!) 2 IS r 155 ItlSlMlUI liXlO 118 2.14| - 2(!)2!lH0 2I1(;:151 2«;50i - (;()() I :{7 i;^2i»! k;5 I77»'|ll0 ii7(;! 7H 2100 27G5 2800 '.) 1 5 2(i(;o i:!l 172 57 lOG ly.si 128 s;»4o lo;<9 2785 42.S8 2180 20!)0 ISOO 1070 18 'J 2 1560 II 1:0 1(159 1710 1701 8994 2000:102 2900I18! 2072|107 2784:174 558 08. 170. 18(1. 112 104 87, 97 88 108 107, 100, .875 57 .875 .5 875 25 <75 .75 .75 002 025 5 25 812 75 1-7 25 ,812 75 ,002 987 .125 ,025 5 875 5 75 Oi; 25 .88 n 2441) 1901 2010 2025 2704 2510 2070 252" 152 122 105. 104 109. 15(;, 129 157. .25 5 502 002 .^75 75 5 Stones, } arths, &c. .Stone. rraigletli..Enj;l. " Kentish rag " •' Kip's i?ay..N.Y. " Norlodc '(Parlia- ment House;. Portland . .Engl. Sandstone, mean " Sydney " Staten Isl'd. N Y. " Sullivan Co. " Schorl Sjiar, caieareou.s . " l''eld, blue " " green.. . . Fluor .S|iftM , Wfijriit licKra lit u Culiio vilv. I l'"(iot. (I .c..in. il\. I 1mm, 1. Mastic Myrrh Opium . . , . . Sua]). Ciiftile. Rpcrinaci'ti . Starch . . . . . Suijar .60. Tallow Wax .. LiaUIDS. Aciii, Act'tic " lU'iizoic " Citr,c.. . . " CoiiccMitrati'il " Fhioric .... " Muriatic. . . " Nitric . " Pl)usphoric. " " solid " Sulpiiuric .... Alcohol, j)iirt'. C){)°. . \>') per cent. i),J ,vn !)0 40 25 10 5 1071 );'.(; I :i:;i; 1071 :»i;) it.'iO |i(;o(i !;!•.!(; j ".'7 -J I !t-n I ;t(ii 'J70 ('.'(i7 t;7.i2:) s '> . h;{ -) r.C). ;i:i7 i,H '.i:;: .v.» ;;7.". 1oo.:j7.' s2 s7.-. 00 IT) M 812 00.2i"i 00. 02.'' Oil. .'}7"i -II OH !0;il 01 (i2."r ''"•" '.l,"),(.02 |.,V'0 ,1200 liriaH |2h()I' I.SII' O.-J 7,-) 7.') . 70.002 !)7 :!7:. 1 7 ") 1 1.'. ,"j(;2 LIQUIDS. Sp.Ti j \Vri(,'l,r flr^ni'dl'li Cllliio viiv. i Foot. .\quali>rii~. (Imililc . . . " siiii;!e Pxcr. .. ..". liiliiiD^'M, li(]u:(l r>iciii(| (iiumaii) . I Itraiiily. ;": or .) ol'f--piriti 1)2 1 ''iiicr iMher, ,n;ciic . . . ijiiiriaiic. . r-r.ipliunc. HI. 2.5 7o. 01.025 05.875 57. 75 0;i 025 Midi .vi- . iii5 l.'iOO 1200 1 0.". I s I .^; 1 05 1 (1!^ S 1 5 715 1 150 i(i:r2 ilHO '.rj:! '•I 701 lit 02L " proof f^pirit, '50 > per cent OO'^ | " pruu!' .spirit. 50 ) per cent.HO"* \ Anmionia, 27. D per ct. CoMipre.a.sion of the square inch : AlCdliol Ether HIG ho;; '.>:>, I 051 1/70 51 5H i);'.7 5 H . 1 1 7 ; I 5!) A'M (III (i2."i 1)^0 (il.0 2.'. 02. DO 2 i j 875 I HIU 58.:-575 54 OH 7 55.6H7 1) 111 Hl,-< II I 5 001) h7> I) 1 4 :i20 IldMeV .Milk." (.»;l. .\iii.M...-(.c,i. •' CoJIi-li .. . •• ('uiliin-M'Cii " l.in.-^' cil ... '• Xapiilu •■ <) ive " I'alin •• I'rlrolt llhi " l!:ipe •' HniillMwrr ■' i Miiiiiiliiie •' \VI,,-,|r >(i!ni. i( e.iitk'd. Iiir Viiu'u'ur Water, Dia.l Sea . . 00". . . " 2)2" .. 057 '• (li^lll!(Ml. ;il)"t .' 01' '' Mcuitirranean . 1020 " ram. . . . . . li'OO " sea . . Wine. nur,uiiM(ly. . " (,''anijia;:ne, " ^ .ira ... " i'ort 52 HI 2 4 1.087 00 025 1 5 01 .(i25 57.0,s7 5H.75 5;! 57,1H7 00.502 54.H75 57 125 ."m >'75 5 1 ;i75 1)2:. I .'7 0H7 H2li 5i 5 111 I.. I t;:! i;;7 liiHOl (iT .5 1240 1100 following iliiiii.s umlir a prc^-ure n . .) 02. 14!) 50.H12 02 ;>7i) 04 ■.',\2 02 5 04 125 1)112 02. 11071 01 ;i75 11 ;iHi 62.;) 12 I 0071 02.;512 lOliO of 15 11).-. per .0000210 . 000015H Mercury Water. . .00000205 (ioo(!40ii;i * K|ifcili<; gravity ut I'-mit'.Hpiiit iicconiiii^f lo l.^rc'H 'l'iil)K' Cui- ;Sylit-h'« llyiivcuiu'lfi, 'Ml t 1 cubic iiicli =.i.'ul3.tiil Tioy gniiiis. "WEIGHTS AND VOU'MES OF VAIUOTJS SUBSTANCES. 49 101a wtilr.ic.yaiiic " Muiiaiic aciil . . Niiro;j:i'n Ni;i'.i; I'xvii .... Nilroii.-. aciil . . . Nin-.iii^ li.xvd. Oxygen..: 1. , r)S',) '.•TO .'.172 ri.'i'.* 2 Al 3 :!s:i l.sl.-, . ( .1- 07 I.27S .1)12 I -'IT 1JT2 .0'.)l 2 . (l.'.s 1 ,r,2T 1.102 Pliiisi)liiirc'tc':i liydni^Tcii 1 77 •>ii!))lmrcl .■.1 1 17 Sulpmii'ij Sleaiii,* IS acitl 21 212" ■1H8:5 Sinokf, o Iiitiiiniiiijii.* coal. . 102 ii Coki' 1 o.-, (( \V( X 11 1 0!) Vajmrof. llciilldl ... ... I (ilH .4 isiiiplmreiot'carlioii 2 04 Vaifir (if liiMimiio ..... 5 1 ti cliliific ether . . , A 4t u CI her. . 2 ijSG n hy.lrucliluric etlior ■) 2.)5 u iii.iini' K 07;j II nitric acid ■■> 7;-) << spirits (.flurpentine t .7o;{ n Milpliuric ucid 2 .7 It " cilier . . •) .aSG 11 pulphur , •) .211 a water .02;! ill Oviliiisii'v XJwo. SUBSTANCES. METALS. ('iil)i(' Fiiiil '(^iit). Iiirh Lbs. '^--1: me .->■> y i.nin metal .Vi;? 7') sheets. ... |51.'> wire . .ja24 10 Co})per, ca^f, . . . " i)late.s. . Iron, ca^^t " gun metal. . . '* heavy t'orgini, " plates 1/^47.20 :.)4:{ 02") i4.j().4:!7 |4()0 5 1 179 .') ISl.a " wrunirht burH.i4S0.75 Lead, ca-t . . '■ rolled. Mercury, 00" Steel, plates. . " ,-oft,.., 709 711 S4S, 187 4S9. 7487 75 502 Lbs. 2829 .SI 47 297 ,3 179 :;io7 ,2t;07 .27 2775 .2787 2s 10 41(10 . 4 1 1 9 491 17. 2828 .2s;i:! SUBSTANCES. :c;,bicF(.ut. cuii.incii. METALS. Till.. ZiiiC, cast ... rolled. . WOODS. As], I!av .. C^i-k Cedar (.;he.-tnut.. . .. iiicktirv, i)i^ mit . '• ' i-helM)ark. LiLMiuiu-Vita' i'l.nuWCHid Malicijiany, Ho tluras . '■'-\ Lbs. 455.087 428 812 t49.4:i7 52.812 51..S70 15. 35.002 38 125 49 5 43.125 SI! 312 57.002 35 . 00.437 Lbs. . 2037 .2 Is2 .2001 Cull. I'fet it . Tun. 12.414 43.001 1 19.333 03.880 5.S.754 45.252 51.9J2 20 ^^(y ;i9.255 1. 33 714 ^ Kqmil tu .U7u!.lUJ43 lbs. avtiiidiijiiiiii. * Wfiglit lit' B culiio font, y07.353 Tro^' giiiiiiu. 50 WRIGHTS AND VOLUMKS OP VAIUOUS SUH^TVNCKS. SUBSTANCES. Oak, (\iii!iili;ui . . . " Eii^rlisli. . . . . " livcseasotied *' white, ilry.. " " nplatiil Pine, |iitcli . ... " re.l " wiiite •' well sea.^onecl " yellow .... Spruce Walnut, lilack, dry Willow " dry Miscellaneous. Air Jja.-ialt, mean. . . JJrick, fire " mean . . , I ,, _ . Cnl>. I'Vft (Juiiic Foot. |„ „.,.„„ G(j o;{ 42 •11 .'iG :u HI, .'IG, •M). li 25 75 7> WM 2.-) ^75 G25 .,<;:' 812 25 25 5G2 375 Coal, anthracite " hi turn ill., mean " Cannel " Cumbcrlaiul . . .(175291 175. l;i7.5G2 102. 81). 75 102.5 80. 9 4.875 84.G87 41 :v.] 41 52 5V (it) Gl 75 Gi; 71 71 i;i 7.{ .101 455 .55s G7J l(i9 .74; .G'.t;', .77S .24 .GS .GS .2G;^ .744 12 IG 21 21. 21. 28, 2:?. 2G 8 2s4 9i;i 9.", 8 STJBSTANCBS. Coal, Wel.-il), mean Coke Cotton, hale, mean " " pre.'Sfied | Hartli, clay " Common .«i>il U'ravcl u dry. sand. loii(;e. molil. '■ mud... " with gravel (Jranite. Quincy . . Susqueh'nii Hay, hale " pres-^^ed India ruhlier viUcanizeil Linie. G4 125 .0:)G747i Oiil). KmhI III II 'I'on. 27 5G9 35.84 154.48 114. 89.6 18 569 1 6 . 335 20 49 18.GG7 23.89.^ 17 482 17.482 21 987 17.742 13.514 1 3 . 254 235.17 89.6 39.69 1 1 . 355 13.343 22.862 35.84 34.931 A-pplicjition ol" tlio TiiLll>loH. When the \\'ei(fit of a Sidi^ttdnce is rcqniicd \iv\.v.. — Ascertani tlio volume) of the .suh.stauce in cuhic feet; mulii|ily it hy the unit in tlie second column of tables, and divide the jiroducjt hy Hi; the (piotieiit will giv(i tlio weight in pmnids. \V licit tlie Volume is r/iren or (ificerfained i)i Inches. liin,i':.— Multiply it hy the unit in the thiid eolunin of the tahles, and the product will bo tho weight in pounds. E.KA.Mi'i.K.— Wliiit is the wci^lii olii ciilio of Itiiliiiii inarhln, the sides being 3 feetl :i;) X '.iros^nii m „:.. wiiicii -h iii= i5ii'.i.75 ibs. Or of :i HplniVH of (Mst, iron ",' iiiclii'.i in (Ibinii'ier / ■j3 X •5'-!:U) X •■-!'' n-fijlit ii/a cubic t/ir/t== l.08!t lbs. Coitipsirtitivo "Weijylit of* Tiiiilx?!* in n, Green aiKl S«'^s*.!«*oiietl tStiite. TiinbtT. VVvijflit of ii{;iib. Ft. 'I'iiiiber. N\ Hifflit ot iiCul fH. Green. >S«u8oneil G leeii. Seasoned I.bs, Oz. 44. la Llm. Oz. 30.11 :,Ma i Cmlar l^ii^lis Kiga !• Lbs. Oz. 'l\. 10 4H.I',' Lbs. Oz. :.'t* 4 Ash . 1 Ouk 43 8 ».-, oil i r . . , T) 8 BALLOON. — 'WRianT OP PATTRRN'S. 61 To Oomimtti tlio Csii>n(Mty oTn Unllooii. Rdl.n. — Fniiii siiccilic i,fr,ivity uC the riir in M.-;iins )i,ir culiir luot siili- strjict tliat <•(' till' iriiz witli wlii'.-li it is iiilljitcd ; iiiiilti|i!y tlic rciri,iiiiil(,'r hy the Vdlilliic (i('tl)(( biilldiill ill ciiliic feet ; (liviilf the lUiiduct liy 70()((, ;inil from tlio (|iioti('iit, siilistnict tlio wcigiit of tlic Imilnoii niui its iilt.iclmiciits, Kx.VMI'I.i: — 'I'lii^ (liiiliii'lHi- iio i-jiissetl l>eiiij»" jfivou. By inversion of tlio procoding rnlo, g/\y X 700 -^7^s' grins per cubic foot, and d I he diameter of the balloon infect. EXAJU'I.K. — (liven llu' clcitKMit.s ill tliH jiiHCHiiiiig ciisH. ^'5!t7.'l(i+ino X 70nO-^.rJ7.0l-'!uT-.' Uien 1 , , _ ^^'ISS^JI.O'J^M.fi feet. To Ooiii]>iito tlio ^V<'i;»-lit or Caw t ]\Ietal by tlio Woij»lit ot tlio Piittei'ii. When the Fattern is of White Pine. Rui,r.. — ^rnltipiy tlic wciiilit of tlio luittcrii in jionmls iiy tlie following inultiplior, iiiid tlic iinxlnct will yivo tlic wcinlit of the casting : Iron, 14 ; Urass, I.) ; i.oad, '^2 ; 'I'm, II ; Zinc, !:{.5. When there are Circular Cores or Prints. — Mnliijdy tlic S(|naro of tlio ilifiiiictcr of tlio core or print by its iongtli in inclios, the product hy .0175, and tlio result is tlio weight of tlu^ liattoi.i of the core or print to he deduct- ed from the weight of the pattern. Jt is cnstomaiy, in the making of patterns for castings, to allow for shrinkage per lineal foot of pattern. Iron and Lead -Jtli of an inch, JJrass and Zinc I'^ths, and Tin j^2tli-