IMAGE EVALUATION TEST TARGET (MT-3) <* ^^ .**;v«. 1.0 I.I £ Ui 112.0 MUl. IL25 Pi 1.4 1.8 1.6 Photographic Sciences Corporation 23 WEST MAIN STREET WEBSTER, N.Y. 14580 (716) 872-4503 m \ :\ V \ V ^\ ^^\ ^^w ^ I/. CIHM Microfiche Series (Monographs) ICMH Collection de microfiches (monographies) Canadian Institute for Historical Microreproductions / Institut Canadian de microreproductions historiques H C\f\ Tectinjcal jnd Bibliographic Notes / Notes techniques et bibliographiques The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographicalty unique, which may alter any of the images in th? reproduction, or which may significantly change the usual method of filming, are checked below. Coloured covers/ Couverture de couleur D I I Covers damaged/ n Couverture endommag^ Covers restored and/or laminated/ Couverture restauree et/ou pellicul6e □ Cover title Le titre de missing/ couverture manque □ Coloured maps/ Cat tes geographiques en couleur □ Coloured ink (i.e. o Encre de couleur (i. other than blue or black)/ e. autre que bleue ou noire) D ^ n D n Coloured plates an6ht illustrations/ Planches et/ou illustrations en couleur Bound with other material/ Relie avec d'autros documents Tight binding ma i cause shadows or distortion along interior margin/ La reliure serree peut causer de I'ombre ou de la distorsion le long de la marge interieure Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ 11 se peut que certaines pages blanches ajouties lors d'une restauration apparaissent dans le texte, mais, iorsque cela etait possible, ces pages n'ont pas ete filmees. Additional comments:/ Commentaires supplementaires: L'Institut a microfilm^ le meilleur P'lempla-re qu'il lui a e\k possible de se procurer. Les details de cet exemplaire qui sont peut-itre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite. ou qui peuvent exiger une modif inatirm dans la methode normale di f ilmage sont indiques ci-dessous. □ Coloured payes/ Pages de couleur □ Page: damaged/ Pages endommagees □ Pages restored and/or laminated/ Pages restaurees et/ou pellicul^es Pages discoloured, sfiined or foxed/ Pages decolorees, tachetees ou piquees □ Pages detached/ Pages detachees 0Showt!irough/ Transparence □ Quality of print varies/ Qualite inegale de I'imp impression □ Continuous pagination/ Pagination continue □ Includes index(es)/ Comprend un (des) index Title on header taken from:/ Le titrc de l'en-t£te provient: □ Title page of issue/ Page de titre de la livraison □ Caption of issue/ Titre de depart de la li vraison D Masthead/ Generique (periodiques) de la livi :tison This Item is filmed at the reduction ratio checked below/ Ce document est filme au taux de reduction mdique ci-dcssor-r 10X 14X 18X 22X rex 12X 16X 20X 24X / 28X 32 X The copy filmed here has been reproduced thanks to the generosity of: National Library of Canada The images appearing hdrs are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications. Original copies in prii ted paper covers are filmed beginning with the fiont cover and ending on tho last page with a printed or illustrated impres- sion, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impres- sion, and ending on the last page with a printed or illustrated impression. The last recorded frame on each microfiche shall contain the symbol — ♦► (meaning "CON- lilMUED"), or the symbol ^ (meaning "END"), whichever applies. Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method: L'exemplaire film6 fut reproduit grflce d id gdndrositd de: Bibliothdaue nationale du Canada Les images suivantes ont 6t6 reproduites avec le plus grand soin, compte tenu de la condition et de la nettetd de l'exemplaire filmd, et en conformity avec les conditions du contrat de filmage. Les exemplaires originaux dont la couverture en papier est imprim6e sont ftlm63 en commen?ant par le premier plat et en tjimmant soit par la dernidre page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont film6s en commengant par la premidre page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernidre page qui comporte une telle empreinte. Un des symboles suivants apparattra sur la dernidre image de cheque microfiche, selon le cas: le symbole — »► signifie "A SUIVRE ", le symbole V signifie "FIN". Les cartes, planches, tableaux, etc., peuvent Stre film6s d des taux de reduction diffdrents. Lorsque le document est trop grand pour Stre reprod'jit en un seul clich6, il est film6 d partir de I'angle supdrieur gauche, de gauche d droite, et de haut an bas, en prenant le nombre d'images ndcessaire. Les diagrammes suivants illustrent la ridthode. 32 X 1 2 3 4 5 6 Ko. 2. CENTS ' ' '^ I l|i 'i 'iii' I I I I I I PRICe. 20 r«r» (^ o (^ (T ; .' «nt,«d «oordlng to Art 01 th. P„„.„.„, „, '-.. .» .. r.r ,„. .„„„.„„ .,,^ .„;,::;::;:;;;;:;:,^,^ ;:;:; ;;; - ""• "" "•""■'•"■• '•»• 0' '»'«««o. .t ih. Department ol Agriculture. INIRODUCTORY REMARKS. All work in Practical Ociinu^try roquiros to bo rlnne nu'chanicalU', exc('|it in llie case of ciirvts wliicli c.innot Ixi drawn liy niuans of enni)iasse8. The followiiif,'- are the nccesHiiry instnunentH ; — PENCILS -cithiT H or HFr, shariK-m-.l to a wcclg(>-slia|icnj,', witli a straigln I'dtfe, an.l divided into indies, and halve ., (piarters, eightlis, and sixteenths tit an inch, COMPASSES with steel, iH'ncil, and pen points whicli fit into a socket in one of tlie legs. The stati..naiy Ir;,' sle.idd liave a mi-dle point if IM.^silile, BO that its length may lie allei-.d to eoirespond to whichever one of the moveable point.s is in use. The Ktatioii.iry leg should lie a tritle longer than the other leg when the ]HMieil or pen jsiint is in use, and I'xactly the same length when the steel point is in use. The pencil used ill tliH [len- cil point should be a little .sofliT than that used with the ruler, i^d F or H, and should be sharpened in the same way. In drawing circles it- -I • sih.iild always be perpendienlar to the radm.-^ Properly constriuli d com- pa.sses liave a hinge joint in each leg, so that when the jiencil or jien point in in n.se, it can be kept peruendicnlar t.i the siirfai-e of the paper. If tins is not attended to in the cai- ■ of the pen point, the pen will not work pro|K'rly. The joint of the compasses can be tightened or loosened by means of a little ne tal key which accompanies them. The joint shoidd not be so loose tli.at the' legs will change their relative jiosition when the compasses are being used, nor should it be so tight as to reipiire any exertion to separate the leg«. Practice will teach just how tight it should be. Tlie compassea shoidd b« held loosely by the joint only, lietween the thumb and first finger, with the steel orneeille ]Biint restinir on the paper, without any pressure, and thi) otlier leg maile to revolve around it. The stuih-nt should practise until lie can draw several concentric circles without punctining the pa|ier with the steel point. It is absolutely necessary that the steel point should be a.s sharp as it is possible to make it. India ink only should be sed ii. the iH'iis, as other inks corrode and spoil the |ioiiits. The two steel isiints are iiserl together when it is necessary to measure or to set olf distances very accurately. A DRAWING PEN for "inking in ' straight lines. Its i«iints should be ex^ully the same length and ground to a sharp roiindeil edge. I- use it should be held nearly veitical, with the handle slightly ineliued in the direction of the ed:,'e of the ruler, and drawn along the paper at a uniform rate of sjieed witlioiit any stopiiages. It should be wiped out with a rag or piece of chamois skin every time it is tilled, and before being put away. PROTRACTOR, made of litlier metal, horn, ivory or wood ; used for mea.-uring angles. It is not absolutely necessary as the student can use iirubleiu xiv. for tliia purpose, but most boxes of mathematical instru- ments contain a protractor. Its .' irin and instructions for constructing one are give,, ,„ an exeicise on iirolilem xiii. In using it the centre of the semi-crcle ,s placeil over the point whore the angle is to be constructed with the diameter comeidiug with one line of the angle, and a pencil mark made atthecirciiinfeieiieeopiH,«ite the proper miiuber. A line is then drawn through tins point from the centre. In the form of the protractor shown in fig. lit, mside the semicircle, the point corresijonding to the centre of the semicircle is in the middle of the lower edge. A SET SQUARE, being a triangle of thin wo,h1, will W found use- ful, th .ugh not necessary, for drawing lurallel lines ali.l ereetilig perpen- diculars. The ruler is held in position and the set sipiare sli.l along, with one edge Hrmly pressed against it. A s piaie about five inches high, having angles of 30°, 00° and 'JO will be most convenient. Whin working the exerci.ses it would be well to work them first on separ- ate sheets of p..,|,er until the best form, and t'le amount of space re.piired for each IS a.scertaiiied ; then to work tlieni in pencil in the pi-oper |,osition, in the book, and afterwards " ink in " all the lines. Each step should be w..rkedoutbynieansof the methods given in the problems involved, but witlh.ut Inferring to them unless nec.-.ssary. When every probl,.m is thoroughly uielerstood mechanical methods may be adopted, that is. per- pendiculars, parallel lines and angles may be drawn by me.aiis of the ruler and .set s,piare, and the protractor. One of the objects in view sli..iild be I,, commit the different methods to memory, and this becomes ...isy if the iva- sons why each p,articular constniction is employed, are understood. The proofs of problems given will bi. helpful in this diir-ction, besides satisfying the eiirioiis of the truth of the results. Diawiiigsonagiveiimi/f arc sometimes .a,sked for. Wlien an object is represented as being A its natural size, it is evident that (i inches in the drawing will represent 1 foot in the object. This scale would be indicated by the words : (1 indies to the foot, or by a fraction, J. la - same waN- a scale of IIU Would be one of 1 inch to thi^ foot, or a "scale .' ..W oni! of ( inch to the f.M t, or a scale of IKi (3-48) one of :j inch to the foot. The fraction indicates the pro|H,rtioii which every measurenieiit i,i tin- drawing bears to the corresponding measurement in the object drawn and that for every foot in the object, 1-2, 1-12, l-Ki or 1-48 of a foot must be taken in the drawing. When measurements are ivsked for in the exercises, the distances between the proper point.s, or the length of the proper line should be taken by the coni|,assi s, the compasses appliinl to the pro|i,r s,-ale, and the measurement carefully ascertainerl and written under the .solution of the problem. Till' sign ' attached to a figure signifies /.»)< or./Vrf, and the sign ", inch or i>. ■Ii. K : thus, ;' d" reads 1 foot (i inches, and i" J" le.ads, 2 feet 1 inch, and *Vn/f 4' III I" reads, Scale 4 feet to the inch. In the exercises, bisecting lines are siijiiKised to Im> tenninated by the points of intersection of the arcs employed. Students are supisised to be familiar with Kuclid's Elements. Points ore supposed to be joineti by straight lines, and when the word line is used, a straight line is understood. I are < > and HIGH SCHOOL DRAWING COURSE. PRACTICAL GEOMETRY. PROBLEM L To Bisect a Given Line. A B.-r/v,. i. I " itii A (IS a centre, "siiig as a radius any ciistaiico greater tliaii lialf tlie length of A Ji, as A X, dravv an arc C X D. Witli n ns a centre, nsin,- the sanio •« radius, draw anotlier arc cuttiMR the first one in C and D. Join CD. This line will bisect A Jt in E. Proof.— Join. -1^. AD 11^ ;™V''''- Then ni Hio A8^Ci>and7.'t'y; AC, AD, lie rM bJJ wo all equal, because thev »,.„ , i- f ^^' A ^' ^' '^ a''^' -'>'i> <^CZ>Lt/,,^'^''y«^t'>«yao fu c^ e<,„a circles, and the < ^ Oi'.' ,. the ilt^AK ': .7™:"'""- ?"1 *"? < .-«. C ^ = the fi,„ 1 ' T ;; "-"iiiinun, and t lo < A O f, the ba«e A E .. the base £ A (eZcM i 4 ) EXERCISES. • J)raw a horizontal lino U inches long and bisect it. PROBLEM 11. To Bisect a Given Arc, A'B.—(Fig. s.) Fio. 2. With A and B ns centres, using any radius greater tlian Imlf tho lengtli of A Ji, draw arcs to in- tersect in C and 3. Join C £>. This lino will bisect the arc in £. Pkoop.— If ^ and S he joined this problem will become similar to the preceding one. (Eu- clid iii. 30.) PROBLEM IIL To Erect a Perpendicular to a Given Line, A B, at one of its extremities.— r/ty. 3.j Select any point, as C. Using this as a centre and C A, tho distance from it to the nearer extremity of tho given lino, as a r.adius, draw an arc cutting the given line or tho given line produced in D. From B draw a line through C, cutting the arc in £. Join A E. This is the required perpendicular. Proof.— Tho arc E A D, containing the < E A D, ia a aemicircle, ,". this Fio. 3. 0i/' is an > A', ': DCKi^l '^ "^ ^'''• PBODLEM IV.— ANOTUEB MBTHOD.— ('/'i^ ..;j With C as a centr, and with any radius, draw a semicircle, cut- ting AS in J) and £. With £> and ^ as cen- tres, and with D H as radius, draw arcs to intersect in/'. Join C/'. Tills is the required per- Jiendicular. 'PKOOF.-Join DF^EF SFC, DC ^ nc FP i. . J hen in the /^^ i) },^ c and base FF, ^'^reZ^'Z'^ht'J^riiJ':^^^/^ j!/. = "'o these are adjacent <8 < i C f (iwlid i. 8) and 6 EXERCISES. 7. (a) Drawa vrtical JinrUl, "'"■'' ^"^''■ i"it .1 iu^htintsfi";:;:? '•''^'"'''' ^""" -M-int w withthep,,i,.,.n;:^i;^rs ,,s::u:;^''«-,:'>-, nsa ocnhe, ,|t;nv an .,,•-. .,f i • V Pt'i'^'^ndioulars and bisect tl,isa,v "" '' ■■"'""" '° ""-"' f'^n., I'liUlJLEAI V. To Erect a Perpendicular to a Given Line, A B, from a Point, C, lying away from it-rriff. 6.) ' With C as a cpiitre draw an arc to cut A B in D and E. ^Vith D a and A' as centres, and witli imy radius, diaw arcs to intcrsoot in /'. Join C /■; This is tlic required perpendicuhir. < il 7/ f (/!«.•/„/ ,.4); and tlif«ea.o adjacent and C/. AN'ith />as a c<>ntro and D C as radius, draw an arc C K F. AVith r,' as a eentri! and 6' C as ra- dius, draw an arc tu cut tho first arc in C and /A Join C If. This is the required j'crpen- dicular. Proof.— .Toin^/r*, OIT, IX'tmaJtll. In tho As - j3r J. ''i^" ''"'' '^^ '■'' common. .-. tho < f,'(; 1) L tlm ^ ir'r, ^y^-"^'- ^'>- -'^«'^'" '" t''" As COK and i/f/A', CV; the < G A C = the < GKa{Eudid i. 4), and these are adjacent EXERCISES. 9. (rt) l>iaw an oblique line 1} inches long and from a point in It, [j meh from eitlier extronuty, erect a perpendicular H inelies loni; (liy method sliown in f]fr. r>.) {h) .Toin the mori' distant extremities of these perpendiculars and dix iiUi this lino into four ecjual parts. 10. iJrawa verti.al lino 1 J J inches lon^ and select a point j inch away from it and about opposite to its centre. From this point erect a perpendicular to tiie lino. "■ ':','} V'"''' "" '''^'''* '"'"'" ^"'""''' ''y ''"™ '* ""'"'3 long. (A) \\ ith their point of contact as a centre" and a radius of LI inches draw an arc to join their extremities and bisect it. (c) I'Voin the centre of this are draw a lino pertx'ndicular to one of the original lines. ar to Si It in ular lars •It I tre. )nn;. liii.i ti('s liar PROBLEM VI To Draw a Line Parallel to a Given Line AB at ■' ^^^^'^ °i«tance, O, from it.-r^Z'.^ JnA n t;,k„,iny t«(j]„)iiit<. Z;,.,,,]^' I'^om th.-so points erect pcrpeiulieu- Inrg DF andi'(7 (ri'oi)i,.iiiiv.). -Witii ^^nn.l/.'M.s.'ontn.g, »'"1 with a r,„li„s -- to cut tl,„ ,K.,.pcn,lic„l,.,, ;,. ,. „„, 'T''W C'. /'-- t'Tough these points wi!n,ep,„,„;/toTi ' '''""" ^^ ^' (A«<..^»^ i. 5 ^ '^ "™ -iual and ,.,.all„I, ,. i^ a i« p,,a.lol toiV, KXERCISES. 12. (n) T),wv a vortical j;,,,, ] i ;,„,. ,^ , t'xtromiti,.s,.,..,,t a .,,-,,"" "'"' '^f'""' <'f i(s . . „i"-'i-n,ii,.„i,. ., ,„„i hi!::;" t^ "'" ^^"--t-^ of -^ho r;:ii.uiarto,hov;'K;:;:ni:;:'':^;^^ '. >"li,,uo lines U ;,„K , , . raw a linn j.araljol "":!;S;ni;'';,^li;;'^''-'r.-''''tapoint3inch PROBLEM VIL To Draw a Line Parallel to a Given Lin« A p ■ pass ^through a Given Point o^/^S .;' '" ^\ ith Casaccnti-o "'»''« ]'li()j;!j;.M VI 11. To Divide a Given Line. A B, into any number ot equal parts. -r^'Vy. lo.) Dniw CD immllcl to A II lit iiiiy (listuiiro fiiJiii it (indlilciii vi,). Ori C n N,t otr any (lisfiimc, ns C /, n'n niiiiiy tiiiicH ax tliii imniliiT of cli\iNioiiM ' '■'•i|'iii''''i".( /-'. 'I'liiH n..iy 1,0 con., l,y nwuMS ..f tl„. .livi.l.Ts, or, l,y „„.,.„. .,f „ .".■asm,., ior lauiM.h ,n,:y l.u «..t olF ,!,„ „.,,ui,v,l „n,Ml,fr of tn,„.s. ll,ro„gl, C ,in,l .1 ,1,,.^, „ ]!„„ of in,l,.rmito I,.,,,,,), and tluough 2> and /,' draw a li„„ to .,„vt it in E. Fro„i ] ^, .■?, 4aml S draw Ii„..s to i; to out yl /y i„ „, J, ^, ,/,„„, ^ rJiesn points will divide A li into ciual parts. a,.,,li.d to any of' thu dh-isi'l: " '' ' • '^ ^ • -^ ^- Tlu« proof „,uj. |,„ A.VOTHER MKTHOn (F'oj. 11.) At ono nxtreniifv of A Ji, as A, draw n lino A C, forming an angle will, J 7j',andoii it M't ofT any convrn. iiMildistanic, as iiianv liiiii'S as tl;o niiiiilicr of (livi>i()ii.s riM|iiir(.|| in A Ji. IVoni tlio EXERCISES. Fio. 11. la.st of tl.pso points, as /7, dr„w a linn to Ji. Pr,-,,,, t|,„ other points, .;, ,J, Q ,,„d J, draw li„,..s parall-l to /; JI (proll,,,, vu ). Thoso linos will div ido A Ji o.p.dly in tho points u, k a and d. (Euclid vi. 2.) i . . 10. Tiraw a liorizonlal lino 2 incla's long and divi.lo jt into Bi'Viii ocjiial parts hy mctliod kIiowh Ui lig. 10. 17. ]>rawav..rti,alIinolJincli..a long and divide it into ton I'lpial par ts liy inctliod shown in lig. 1 1. 18. A person is sitting out cabl.ago plants^at r ,,,„„!1M to ■'' A lit niiy dii). Ki.i. ]o ' ' t""™ fiom it (pro'l,. "^^ °«: -'^ -- i-tf ^listanc, f,„n. tinn-IZm J;':' r ""^ miio tiiiii'M fi„ni /•'(„ /; Ti.„ 1 . '"""'"Ill to /,nii(l ^^.n^>^-z>i.to\^tc'^,,r:fi:^'^^"-fr''-v''r"«'. p.j^r-'^'"' '-""<• ""- '■• -w. n .,., ,. .„„;,„, ,^„^„.,^ ^^^^ PROBLEAI " Angle, D E.-r/^ /.?.; ^° "^ "li ^ ns a contiu nii'I with any mdius, diiuv an (1,0 to cut D C in // and D E in F. Usinif tlio siiino riidiiin and 7/ as a ccntic, draw an arc (o cut A B in A'. With A' as a contra and i--// as radius, dniw A an arc to cut the arc at K in T , ll f '"'''""' '''''* from Ji TI,„ ? .^ r ' "'"' *'"'°"-''' ^' draw a lino from £. Tho angle ABLh equal to the angle £DC. (Hwlui i, 8.) ' • • "" < ■tt-L-.B' = tho < LJiK. KXERCI8KS, '''"'';;v::;:;;'i:;;:;;S^'r"«' •.--■ 20. D.vrid,, ,1 vcrti.al iiro 3 iM,'i„.M i,„ • . „, ,,, '7<— t,„.ra:;;^:;':::^r''"""^^- ''^^'" w-'.todnid,,itHothattl S,'S,V''''%^ I'lii'S a.s nuHh as the (jr.t ■„ l '"' "'"'"•■ three 'lalf as n„n I, as the in V'' ""■" ^"^^ «'"«" '""'o Biiow I.W the ciivij^J';tii^;;;;;;: ::;:.:;: ''^'"^'-" >- VnoiiLEM XL To BiHoot a Given Angle, A B O.-r/'iy. ^.j .A A\"itli 11 IIS a cpii- tio, (Iiaw ;ni .-uo to I'lit A Jl iu J) iuiil cii iu ]■:. Aviti, /) .111(1 /,'ns cciidvs iiiiil with any radius, draw aivsto intersect in /'. J'liu J', F. Tliis lino will bisect tliu iiiiglo A 11 C. BdTf ^'lt"n ''nr ^;: '!'"As«/>Fa,„l lUCF, thomaos KXEKCISES. 22. At tlie oxtreiiiitios „f a linmontal line ] J i,H-I„.s 1„„„ .„„! '"lopi'osite sides of it ennstniet e,|ual au.dc.s wi'iid, ^vlil be tegetlier le.ss tliau a right anVde. 23. Const met a right angle and biseet it. 24. (a) AVilh lines one iiieh lung construct an ngle c,,ual lo Halt a I'igiit angle. (/-) Ou the opposite side of one of then, .•onstr-iet an aiede ocjual to one-,piarter of a right an-h'. 25. („) Draw two lines 1 ineh long forming a„ ,.„,,, , ,,,i t„ two-thirds of a right angh'. "ji'.u to (/') At the other extremity ot^one of them on the opposite side of It construct an angle e,i«al to one-thin of 1 nglit angle. PKOF'.LEM XIT. iiO'(Emli,l i, of 30'. 10 To 'JVi.M.Hit; a Right Angle—fF!^. j.;.j Construct the right angle A Jl C (iHo\)U;in iii,). Withi)';is acentrodraw an arc to culT? J in n and IlC in 7;'. With D and ^ as cen- , ^s and .vith J) Ji as radius, draw arcs to cut the are /; /; iu /' and G. Join Jl I , I! <;. I'heso linos trisect the light angle ^ /y (7. PifioF.-^^ ,Joiiii>^7, jcji'. Tlicu J< I'' Jl is nn eciuilateiiil A n "I'd tlxi < h' Jl /•• iu T,. - t '■' '■«' . "ImI '. IIJ, an < of 30°, /. FB(! is also au < mt the a;i fori lias a sc I I'l^OBLEM Xlir. 1 ! '^^ -—(I'l'j. 16.) ConstnictanViitanglo nnd ti-isoet it (prohlem -'^"•)- J^y foiitinuiiig tli« "f which will ..ep,.ese„t 1 A li i ""^'° P'"''^' --'' -" i{ will n,,..ko (7/y A' an angi o ,' '"? '■'"" '^ "^ "'--•- will n>ake Ci?//an angle of 19°. ' '^ " '""^ *" ^'^''^i"'^ ^^ Note.— It will be a use- ful exercise to draw on a piece of thin but. still" card- board a .senii- <;'rele, and di- ' vide the cir- into 180 parts, as .shown in //„ /^ cnmfercnce l.a.s^already been explainerl ' "'^' ^'°°'' O"- ''orn, Its use EXEKCISES. 26. («) AtonocvtremityofTH^n ;, i , ^^^ ■i"f;leof,5i>°. ^ "^'-'"^'"'^ long construct an («') At the other extremity nn ti -teen o^:l^:'^,'\tZT:iT'' '"^'^ - ''-' «..xteen feet fron, the ^ven"; ntl t"""' l^f"' "'"' d'-'iwn,g on a scale of J ,ol t ' f I' .,^^"'"' '^^ " cSm«r''^^'-^-"'''-thi^::ii'St ''■ '" '-i^:;^;;::; --S^t ^ -»^^'-'ar protector ■ PROBLEM XIV. To Construct a Scale of Chords. (J'ig. 18.) Oonstruct a right angle CA li (problem iii.). "With ^ as a centre draw "11 arc to cut A B in B and ^CiuC. Tri- sect tlie right ■•iiigle, and fur- ther sub^.T'' T '' ■'^ ^""^'^""^^'^S the fdloiingU"; r 30. At the left hand extremity of a horizontal !,„„ i • 7, construct an angle of 04° '""^ ^ '""'' ^°"fe'' 31. At the right hand extremity of a horizontal lin,. lU u long, construct an angle of 75° ^^ '""''^" a /I L 13 ar mciies ingles, h long, inches PROBLEM XV. With ^ and/; as centres ana ^ ^ as radius, draw arcs to in- tersect in a Join AC, £0. The triangle Cl if is equilat- eral. (Sudid i.l.) Fw. 19. PEOBLEM XVI. To °°°"™ot - E,„.a^,, Triangle „, a Given * o Draw a straight line, 7/ C. Prom any po-nt, D, in it, erect I perpendicular D E equal to A (problem IV.) Througli^draw "• 'ine, /' r/, parallel to ^C (problem vii.). With 7) as a centre drawa semicircle cut- ting .fii)6' in J5 and C-. With li and C as radius, draw arcs to cut the semicircle i:;CT; Th "^ f A and 7/ draw lines from D to out /■ P. r i 7 J,, r''rf' Dj-Gis the triangle required. ^'"'" probt'.ir)i".^ |^,f "^^^^^^^^ of 00- (.e proof of A DFO „ equilateral, and ita iititude^i'/i"/ "' «°^ ""J the EXERCISES. ''• ^"^ '':^:SttJr^ ^'^- '-« --truct an ^*^ ^Zo^:'^'' '"''' "'"^^ '^ "- P«^P-"->- to the ''• ^^^ "^JilaSSaiS: ^^ -^^- ^-^ --truct an (b) Bisect two of its angles 34. (a) C-;-t an^^equnateral t^^^^^^^ (b) Divide one side .so that its two carts, will K *i. ratio as th« «de bears to tIeEuJe ""' *'' ^""' i< II PEOBLEM XVII. To Cfonstruct a Triangle, its three sides A, B and C being given.— ('/Vy. qi.) Wake D E oqual to A. "W'jtli E as a cfintro and a radius equal to H draw an arc. WitJi D as a c(^ntre and a radius e(]ual to C draw anotlier arc to intersect ^ tlie first one in /'. Join DF, FE. Then FDE is t!ie triangle required. (£'Mc«(i'i. 22.) Fiu. 21. PROBLEM XVIII. On a Given Line. A B, to Construct a Triangle Equiangular to a Given Triangle, CDE.-r/Vy. J; At A make the angle FAB equal to the angle J'7)C, and at i5 make the angle F BA equal to the angle ■^.fi'C (problem x.). Pro- duce the lines forming •, . n . ■ . ■ , ""■"•' "' F- Then t,."o AB\% equiangular to the triangle E C D. triangiv EXERCISES. 35. Construct a triangle the sides of which will be U 13 . 2 inches rcs|irctively 'i' '*' "i'"' " <^-«atriangleth;sidesofwhichwillbeas5,7 ^ '" -I'i"-? ar':::,'S'^,;/f f-'" the end of wall l.y a 1 e . d H I '"?'"" '>' " '^""'* '^•"' "- .n...eltai elu 5 tilr, ''"rr"'"' '""i" ^'•°"> *'"' to 10 feet. '"• ^'"' "• ^^-^l" of 1 inch 36 37 14 WiOnLEM XIX. On a Given Line A vt 4-^ r, r/'Vy*. i'3 and Slj /''im.~u^t C l,o tl,., K^l^en vortical angle 0^^. Prn,l„ce /fyj to J). ^t ^ make tlio nnglo l> A E equal to C (l>''"I.Ion, X.). Bi.s,,<,.ttl,o "iiikn Uio mif^lo A li !■• '•<|iml to th,. angle yyy,g E. Join AD, DB, BE, EA. Then ADBE is the square required. Proof.— The linos CD, CH (A and CA being ucjual and the Km. 26. -■' '\ " '/' ^ ^ "'"i -t" ^i are ul»„ equal. (Enclid i. 4.) The B,B an oblong (iW W i. 34) EXERCISES. 45. Construct an oblong wh^j,, ^j„ , , . , inche.s. "'^'^ ^'" !»" 1 inch and IJ 40. Make a line 2 incheq ln„„ :ii PKOBLEM XXIV. To Find the Centre of a Given Oircle.-(/V 5.'>.) Draw any cliord A li. Bi- sect it (prol)l(Mu i.) and pro- duce the biscctinjj lino to cut the circumference of tlie circle in two points Fund G. Bi- sect F e m E (problen. i.;. Then Eis the centre of the circle. {Euclid iii. 1.^ ANOTIIKU MKTIIOl). — ('/•Vy. SO.) Draw any two chords as A II and C D. Bisect thum (prol)leni i.) and j)ro(luco tlie bisecting lines to meet in E. Then E is the centre of the circle. PitooF.— The lines biseet- "ig tlio cliords A n ami vu both contain tlio centre (A'k- <■';■'' "i.- 1). .". the point Ji', ivhioh is conniion to l>oth of these lines, is the centre. 'IS method can be used for finding the centre EXERCISES. 49. Dn-vw a circle 3 inches in diameter, and find its centre JO. Diy a penny on the paper and trace a line around its cir- cumference. iMnd the centre of this circle by n.eans r. ,,.. , ' """""' '*''°'"" '" ^'i- -'■'• ««-'" ""ti^^ rnw any chord C D. Bi- Bcot it by the line /'^(pro- blc.ni.) cutting tho arc in 6'. Join C 6'. At C, make the ai'glo G C II equal to the '"'fe'loCr/i? (problem X.) and \s produce the line (77/ to cut G E in JI. Then 7/ is the centre of the arc. 1 he lino i li bisocts tho arc VGD in 6- and tho lino C'i)in.Vaml In theA8C^Xand7)GT. Or/ /f/fr^'^V^^ tl'e chord G ZJ. base O A' ^. tiio boHo DX ' thoV>7 ' v u " «','""»"" and tho '■ 8.) Again, in th. A^clP f ^,A n'v T, ')< <-? ^' \\i- <^'"'"^ common and tho ?-<'}l i» cliil 1. 4.) But CII ~ /' If \ '•''■ With a radius of 2" draw n„ „ 1 .'*.%~ of .oine circular ol^ect draw an arc and ,ii,di,s '''''^:;,:;r?;;;rJ'''---*-'otopassthro^ 13 PKOBLEM XXVII. To Draw a Circle who"irc[rcumference wiU Pass through three Points, A, B and C. not in the same straight line.~( Fi;,. as.) bisect tlicso liiuis I)y tlio Wnea F O MuX n E {wo. blemi.). Tlicn the point of intersection of these bisecting lines is tlie eontro of tlie circle re quii-i'd. AVith G as a centre and G B as •iidius draw a circle. Note.— This problem is derived from cor. to Fio. 3.S. Euclid iW. 1). TROBLEM XXVIII. To Draw a Tangent to a Circle from a point, B, in the Circumference.— f /'('-/. 34.) Draw a radius from B. At B erect a perpendicular, B C (T>roblem iii.). Then B C is tlie tangent ■ required. (Eueliiiiii. 17-18.) ANOTHER METHOD. (^iSI- S4.) Braw any radius A D, luid produce it, making D E equal to D A. Bisect A E (pr.-.)>lvm i.). Then /' //■ is the tangent recjuired. {Eurlid'm. 10 EXERCISES. ru. Draw a Irinngh! whose sides will bo 1 J', IJ' and 1 J' long respectively, and draw the smallest circle 'hat will contain it, 5S. Draw a tangent to a circle 1 f in dinmeter. 51). Throe upright posts are placed so that the distance from the fir.st to the third is twice the distance of the second from the third, and the distance from the first to the second is two-thirds of the distance be- tween the first and third. Show the position of a fourth post which will be oquitlistant from the other three. CO. A circle L'" in diameter is touched by a lino forming an angh> of 24^ with a horizontal line. Show the point of contact. th rai the lit will from of thn -tin tlm ice be- n of n 1 other inf( (in ) point I PBOlil.KM XXIX. To "-w^ T.„,ent y: „„„ o,„„ ^„^ ^ point, A, without it. -//Vy. ./,7.; Join tlio given point, J, with tho ,-,.ntr,., yy, of the cirulo. J!i,,,ct ^ J, t„ C (problem i.). AVith C as a centre and CA as nuliua draw un arc to cut tho cir- fumfercnco of the circle in O and A'. Join a D and ^ ■£■. Then either A I) „r ^ -8? will bo the tangent required. «*dm» of tho circle, .-. i> A L r'tiii''*'''' '"• «!•) Butii />";': Flu. 38. ANOTHER MKTIlOD.-Y/'iy. .J^.^ r>'-Hw a line from the «''■''" r'm.t, ^, to the ^ w'tre, y;, of the circle, cut- ting the circumference in ^- AVith yj as a centre ">'cl Ji A as .adius draw an arc, ^C Prom/) erect a perpendicular to cut this arc in ^(problem iv.). Join ■£"-» cutting the circumfor- !■"><'. 36. ei'co of the circle in /'. the t,in,7«, I ■ I •^"''^ ■^■^- Then FA is t,ingbu(, rc(iuircd. (jS-„c«(/ jji, 17^ ' -^ ^ is 31 KXMRCrSES. its axis. .Show 1 1, ..ni. f . "■ "■"* r"''-'^""' t". ^^ *-'"-'-."-wc::;ii:irsrr^^^^ '"xrs;t"Shtrr^^'°^'' '■"'-- cumleronce. '" ''" tangential to iu cir- t'!9l PROBLEM XXX. On a Given line, A B, to Oon8truc<. a Roffular Pentagon— .Sywii'.i/ .\f,i/„„/,*-( /.•;,, ,;;) AVith A itnd /( nn rtm- tri'H and A tt im mdiiiH ilraws arcH iiilm'HiM'liiijj in // 1111(1 A', With A' lis a (Miiitio mid A' A hh iiiditm (Iniw III! iini iMit- tiiif,' tlio (itlinr (w(i iki'cN ill D ttiid /■■. .1 lit, // A', ciittiiij;tlio liiHtuniiu /,. From /) mid /', lliniii),'ti /., dniw liiii'H (o cut (lid fii-xt two (U'CK ill C mid -A". Join A C and // Ji, With C imd A' iih ctMitroH mid C A iiH niiliiiH draw arcs to iiiti'iNcit in M. Join r J/ and AM/, H'lii. 37. Tliis Mii'thoil cannot lie jirovcti ANOTJIKII MKTllOI)— r.VHBn//. (fiij, ,V,S'J With A iiM u colli i'i> and A It an nuliuH dniw asriiii-circh«,cii(linK/l/i ^ l)i-oduccd. in C mid di vide tho I'irciiinfci-oiico into llvianglo. Tho length of ono bido of tho pentagon n' jst be measured oiF aiouiul tho circumference of tho circle. I'UOliLK.M \x\r. On a Given Line, A B. to Construct a Regular Hexagon -.s>c.m;j/.M.,/_r/Vi/. so). ^^'^ i''iu. ;io. 'VVith A /luH radiuHdmw ■i .iivlo wlioso circuiiuor- '■"•" will pa.s8 tlirougii A '"'J yi UmMvux xxv.'.j. Around tl,o ci.vumfcrc.ico I'liifo clior.ls A D, Dh', K r /•V,' ,111(1 (,'// oquill i^AJt Tli-n ADEFGIi^xW be tlieiwjuiml hexagon. (JF„. cHd'w. 15.) WiOBLEM xxxir. 0^2^:::^ ^^"^^V "^ '' l^o required to inscnhoiuthegivrnoirdo a reguliu- lioj)tag„„. Draw adia»i..tL.r^yya„jdi,,ij^ It lafo as many o.jual parts, J", 'istlioroarasi.ieaintho required polygon (prol,le,„ ^'"•)- With^ a„d7?„, centres and .J/yas radius draw arcs to intersect \xx C- ProM. C through the f"-'"'"^ division, '2, draw a line to cut the circunifer- ence of the cimle in J) Join A D. Around the circumference j.lace chords "qual to A D. Tlien A D I'lo. 40. iiii» method cannot be proved. KXEEC'JoKS. Cr. On a linn I' long cont '''*■ •"""■''■"•'. r..gconKt t a regi.lar hexagon method iXniui. ';;;''«"'"•'"'-«""•'>•>".-..» of 69. Construct the greatest „„ .,, „, *'y " circle I" in di,u, '"• -"rtco seven points so th fruui tlino others. 'H w "^ will be contained "0 will Lo;j'diHt„^t 33 PROBLEM XXXIIT. Octagc On a Glvon Line, A B, to Construct a Regular '^■■'--'iOn—Sj.ennl Jr,-/hod.—{Fuj. 4I.J On A Ji construct an isosceles tn'anglo A C B Iiav- iiig a vertical an;,'le of 45' (prol)Iem xix.). AVitli C aH a centre and C A as radius draw a circle and produce A C and Jl C to meet its ciicuiiiference in D and E. Through C draw diameters FG and //A', perpendicu- lar toAE and B D respec- tively, and join A 11, H F, Vm. 41, FD, DE, EK, KG and GB. Vumn. Tin, ( v ,uh1 (I ftncIf(,rasiiniI.irre,i8.mtho<8 about Care all i-MUftl anil iiro Hul.lciKhMl by equal chorda (Endid iii. 26 and 2!l) • thiiocuwm loimii-ucled on J Ji is eipiilateral. Ayain • ' CK, CG, O/., ( , ,.(,■,, nn- nil e.|Mal and the <8 contained by them are oqua ; tho. «rA,V, ((/ K, 0(!Js, C BO, CB A, C A B, etc., ^nc OMual (r.i„'l,d I, . ) ;, (1,0 ^8 K(fB, G B A, etc., are also emial. lhooct.;aoii on .1 B m Ihoroforo regular, being both e.iuilateral and I'I,M)BLEM XXXIV. Within a Given Circle, H G, to Inscribe a Regu- lar Octagon— Special jfei/iud.-fFi;/. J,;:;. J Draw any diameter, A B. Bisect it by the diameter C D perpendicu- lar to it (problem i.>. Bi- sect the right angles ai;ou t the centre of the circle, by the lines E G and U F (problem xi.). Join A E, EC, C F, etc. Then AECF n a D II will be the octagon required. S4 Ki.j, 42. Note. — This problem requires no proof. EXERCISES. 71. Construct a regular octagon whose sides will bo |" long. 72. Inscribe a regular octagon in a circle of 1" radius. 73. Inscribe a regular octagon in a circle 3" in diameter by means of method shown in fig. 40. PROBLEM XXXV. To ^-J - EI w^ the Transverse Axis AB, and Conjugate Axis. CD, are Given.-r/% 44-) Draw A B and C D, ■;i-t right angles, bisect- ing one another in E. ■With C and D as cen- V *''<"* and ^ ^ as radius draw arcs to cut A li i'l/V and /';.'. These points will be the /oct (plural of ybcu«) of the F,„. 43 ''"'P'"- Between one markotfonvl5anvnun,hn.„f • °^*''«^°".'»s^^and ^ care to ha^•o the r d^s n^ ^r'?"' "' '' ~' '' -^' ^- ^> ^'-^king PI- With /' n 1" :7"' '"■""•'■^''' ''^ *'-^ "PP--h centres an.I 1 Jl „, radius Wi^i a' f™"'" ^'''' *''« «••'"«' ^' j. and . /, .., Jl\ J^'^J^^ ';^^^ as centres and radii draw ares to interse;* ,„ 7^ ^ ^' .l"'/!^ "^•'"^'' '' d;s^;.!;-;rL-s^:- Place a pi„ i, .^h of t o fo 1 "P°" "'" P^"'^"''-''*^' = -tre„.ties of the oo,:; / ;'"^-°"- - one of tL Bt--ing tightly around the three 1« ^" " P'^'*^" "^ ^^'-^'ad or -dof the conjugate axis.td^St^rjV''^""^ ^^ '"^ If the pencil be moved aroun.I tl,« "f ^™"' '''" ^™:>'°"- EXERCISES. '' '^ '~ ISt^^ll^r -/>"P--- trans, r.^. By the practical metlJd rdX '^^'^ I-- ^°"^'- '- will be 2' and s'tngrtptS; ^""^^^ ^''-" ' i SB AN'OTlIKIl MKTri(ll). — (FiiJ. ^4.) Draw A li aiirl C D aX riglit an<,'lps bisecting one another in ^(problem i.), With K as a centre and radii E A and EC draw circles. Divide these circles into any number of equal jiarts, say 16, by the lines«A, , i)amll,.l to A n , (l"(,l.l,.m vii.), cutting tliucurveiuA Jiis^ut '}'• ''"''l CD (pioMeiu i),niiugli^',i,icl/' tli'.iw ,1 line to cut the lunoiu r,'nii,I //. Bj. "•ct a H (i>,„ble,n i.). . AVitli K as a cniitro mf,,ui.p..„t,/,.,;,^ ,,, I'lu. 40. rinuv a ciivlo to cut tlio oliipso ■•"'tl .lo„i tlioso points. Bis vt /" i/ '■'l/"v""r /,'' ■"', "' '■""' ^'. ln-ou,;li t!K.i,c,;ntres T ?' t , 1 7^ s WI,. r' / '■""' ^' ^^ -^"'J ami >'^ the conjugate axi.s. "'" ti-ansvcrso a^is, PROBLEM XXXVIII. Let A' and }' 1„, two given ix)ints. l'"iiul till? axes and tliofiH'ioftlioellip.so (l'iol)lonis.\.\.vv.ancl xxxvii.). Draw lilies from A" and }' to cacli of the foei. Pi'odueo one of tlie lilies, as /'.< ): to (1 and bisect tlieamde /'Vrr,'. Tlie bisect- ing line will bo tlie tiiugent re(|uired. Jiisect the angle y.'/ i"ii line will be the perpendicular re.iuirH^'''' '•^'"-' ^'^'•''■^ 27 EXERCISES. '9- («) By method shown i„ fig 45 draw an elii,,,! I w ,,se .ransv<.,.soaMs will be 3/ Ion-' """' "'"''^ i)]'ind us conjugate axis, and its fok " ^^^ tt:;n::^*"^,irs,^,:;'-r-r-»^-..onedraw alineperpe,Hl!cS:;:'t:'::'t«''''^"^''°--'''''''-'' PEOiiLPLM XXXIX. To Draw an Oval of a Given Width, A 'B.—(Fhj. 4s.) r Draw ,-1 cii-clo witli a radius ('(lual to oik^ lialf of A li. Draw the ciiaiiictor CD porpondiculai- to A IS (prolilom iv.). From A and Ji draw linos through D. With A as a coiitro and -I II as ladiiis draw an arc from /,', cutting,' A D jiro- diufd, ill //. AVitli n as a cciitio and li A as radius draw an arc from A, cut- ting BD inoduccd, in F. ■\Vith D as a centre and D /'as radius draw the arc Fi,;. 4,S. /'//. peoble:\i XL. To Draw the Involute of a Given Circle, A B — (Fig. 49.) Divide the tirclo into any iiumlicr of equal parts, say iL', ill the ])oiiits J, J, ,/, 4, etc., and frciM these points dniw taii- K<'nts to the circle. On the tangent from 1 measure the? len.ijth of one of tlie divisions of the eireuinferenee nf the circle, as J, J'. On tlio taiij;ent from ,.' measure tlie leii.:;th of two of th(^ divisions, as X.', !.''. On each of the tanfjent;; mea- sure the length of the iiumlier of divisions indicated by the iiuinljcrat the point from which the tangent is drawn, and through these jioint.s, F, S', S', Fia. 4'J. 4'i t-'tc,, draw the curve, 28 EXERCISES, so. The transverse axis of an ellipso is -j" long. ]ls foci are .} ■ from eacli end. Find tlu. length of the ctnju-atf axis. '' til. Draw the involute of a circle J" in diameter. 11 "^^ '< To HCl) Not: than or line am 2n Is foci am tTnju,'j;,-ito PROBLEM XU. I'l^iccfc tlio given If )• In ono of tlio 'i'i"H no ov DC hikn ['"y V'int, J'\ nml trom it erect a pfrpcndicu- J'lr, /•//, (problem iv.) c^liml in ]ongth to A. J'V/,iM // draw a lino piirallcl (o D C (prob- '"'1 vii.) to out C K '" 1^- With K as a '■'•iitronnd A or ///'as 'ifiMliuHdniwacircIc. ^'Ki. 50 PROIiLKM A'J.li, . ^^"'^ '"'y '•'"lii-M of tl,o given ""•^l", .iK r/ A, and p,.odu..o it <^t.ost,.aigbtii::;;';^;^;;;'r'' '""' "■•" ^'^"'" thanoiie-halfof'tbo'leastdisfl.','!''''',''''. "''''" '"""•*■ ""* 1"' ''■»» line and tho given circle ""'■'■"" *'"' «'^"" "f^ig'-t 2!) Fin. ni. EXEECISES. ^_^. I|r„«. an oval, ,l,e ,,„„,,,t ,,idtl. <,f .-bich vill bo "^ -'.iW_aen.loofr,.adiustot.uebbotbJinesofa;;„g,e Hfunv tbeir relative iorio,:!"'' " ''""^'^"*''' -*-■ PROBLEM XLIII. Within a Given Circle, A B C, to Inscribe any Num- ber, six, of Equal Circles, each one to Touch two Other Equal Circles and the Given Circle.— (Fi^. r,:^.) Draw any dianictor AD and at A diviw a tangent /lF(pi-oblonixxviii.). Di- vide the circlo into twico as many equal jiarts as tlio nuiidii'i- of ciivlcs n-ijuirt'd, in this casij twelve (in'oblcni xii.). Produco one of the dia- niotors closest to A D, as G II, to nicet the tangent in S. Bisect the angle AS (problem xi.) and produce the bisecting lino EXERCISES. Fio. 52. to meet A D in T. On the alternate radii N, B, d"o C, and K measure from the distance T. AViUi the points a, b, c, rf,/and T aa centres and TA as radius draw circles which will fuKil tlio conditions required. I'ROBLEj\r XLIV. To draw a Circle Touching the Three Sides of a Given Triangle, A B G.-~(Fi(j. r,s.) Bisect any two of the angles, as C i? ^ and II A C, and jiroduce the bisecting lines to meet in D. With B as a centre .and its least dis- tance, as D E, from any one of the sides, as a Fia. 63. SO radius, draw a circle. {Euclid iv. 4.) 86. A tin.sniith has a circular sheet of tin 24" in diameter and wislies lo cut out of it eight ecjual circles. Sliow by a drawing on a .scale of \ how lie would proceed to cut the large circlo. 87. What will be tlio diameter of the largest circlo which can be drawn in a right angled triangle tht; sides contain- ing the riglit angle being 1 J" and iV lung respectively 1 eq as an eqi In PROIiLEiM XLV. About a Given Circle Ann* « _ Klltl tho CPutl-O, X, of the Circle (i.i'oblPin xxiv.). Sflecfc I'lypoiMt, ^.intliooircunifer- enco a.ul witl, A as a centre ■wl A X as r.ulius draw an arocnttiM-the circumfcrenoo 1" /) and ^^ J„i|, 2) j; ■yyjj.j^ -O and B as centres and D E as radius draw ares to inter- sect in F and join D F and equilateral triangle inscribed in l^^Jt^^^^^^ as centres and /> A' as rn,!,-,,. i *> "tn -y, A and /' and K. Join ^ ^ ^.'^Vr ^l^/^^^^^ ^ ^/^ equilateral triangle rcjuired. ^^ "'" '^'^ *''" PROBLEM XL VI. r^''V. nr,.) Draw any radius 7/A- and at A draw a tangent, Zjy (problem ™.). At A', on Z J/ make the angle Z A' .V equal to the ""glo /' G D, and n,ake the angle JZA'Pequal to the angle ''-OG (problem X.). Join JT/' TiieuA-iVP will be the triangle required. {Euclid iv. 2 ) Fio. 56, EXEKCISES. Sa W,at will ,,e the length of tte sides of tho smallest e • ;;;-;;ljnang,e wbieh will contain'T^S^^l^^;; q;i Tr „ ■ . ,,, : °-^'"'-^"'''n'«wui-ement? Scale 4 IS i I I .J 81 TKOBLE.M XLVII. About a given Circle, A B 0, to Construct a Tri- angle Equiangular to a Given Triangle, DGF.-(jy.6tJ.j Produce ono side i) /' of tliu given triangle, indftlMitcly to // and A'. Draw any diameter, /. M, of the given circle. At 2f on L Jf niako the angle Jf N P ,, equal to the angle A' /' G, and make the angle M N It equal to the angle H DO (problem x.). At M, ]' and Ji draw tangents to the circle (problem xxviii.) to intersect in S, Taud V. Then 5 2" K will be the triangle required. {Euclid iv. 3.) PROBLEM XLVIII. Flu. 56. Within a Given Square, A B C D, to Construct a Regular Octagon.— ("/Vy. .77.) *fv 71 R 71 B Draw the diagonals, A C and B D, of the square, intcr.secting in E. With ^(,y;, C'and /) as centres and A E as radius draw arcs to cut the sido of tlie square in F, O, //, K, L, J/" and N, P. Join F^r, lf1\ TAUviA N K. Then N K FMN PLC will be the octagon required. Fig. 57. 32 EXERCISES. 91. About a circle 1" in diameter construct a triangle equi- angular to tiie ono mentioned in exercise '.)0. 92. A carpenter lias apiece ..J timber 12" square and wishes to make it octagonal in form. How would the change be efl'eoted t Scale J. 93. What will be length of the sides of an octagon whose diameter is 2^" 1 i'liOBLE.AE XLIX. To Find a Third PropoJ^^al to Two Given Lines. First.— Lot it bo w- 'I'lii-i'fl ('. find a third pi'oiioi'fioiml wliicli will ho groiitcr tliaii A or Ji. -{I-'i'J. o!/.) Draw any li„n C F inakiiifr C D eiiual to A and D F equal to B. From C draw a line, C6' lien 7/A wdl bo tl,e proportional re • (^ ^^ ■: ClI : II K. {Euclid vi.n.) a SEcojfD.-Letitborocjuir- ed to find a tliird propor- tional wliicli will bo less tiun A or n.—(Fi,j. GO.) Draw any lino, C^, mak- ing 6'2> e(]ual to A and D F equal to i.'. From C draw a line, CO, of indefinite length, FiQ. 58. quired, that is CD Flo. 59. forming any angle with CF and "'":;^'"°*""'''fi"ite length, B. Join 113 Fro n^^if' ^,. " '''""'"''' ^ ^^ "'l"-! to .. , ■" .1^. X loni ji draw a nie parallel to // /) /^ 1 1 vii.) to meet CG in K. Then // K J !? ^^ "'''" required, that is, CD : C }■ CU • // /'° '^ '^'"''P-"''--^' Ml EXKRCISKS. 04. D.-aw two lines V and J" Ion. respo,.,ively an,l fin.l n th.rd proportional wl.ieh will ,„! ,,,.„„.,;!' , ^ '^ J6. iinda thinl proportional (-reateri t,. tw . l' i • tiM! ratio of a and \ ^''"^'"•^'^ *" *"" '"»'•'< bearing 37- Find a third Jn'oportionnl (less) to two Jines 1 1 ' a. -1 V long respectively. ' " Jints i^ a. .1 I PR0I5LKM I.. To Fiiul a Mean Proportional Between two Given Lines, A and B.— (/Vy. .;>'.) Draw any line, f ' /■', iii;il<- iiij,' CD oi|iial to A and D F ei|ual to Jl. liiscct C/'in^'(|inibli'mi.). With 6' ns ,a orntro and C as radius draw a somicinlo. Friini J) eii'ot a jipi'pen- dicular (prolilcni iv.) to cut the circuMifercni'o of tlio i-cniicirilo in //. Tlion D 11 Fic. 60. will !)(> tli(( moan innportional required, tliat \y; C D \ I) 11 \' DU-.DF. (Euclid \i. \Z.) Note. — Thi.s problem is used when it is rponircd to con- struct a siiuaro ciiual in area to a given oblonj;. For instance : Let it bo rciiuircd to construct a scpiarc wliidi will be p(iual in area to an oblong whoso sides are eipial to A and li respec- tively. (Fi>."". ....:, " : ';::;:; r;;;:::!:--'''''^- ft:!',:;;-;:.:;..'!.-"!'" -^^ f"rtliHtiMcli,.rtn|,r„vi,|,. f,,,. ,1 POLYGONS -P„i,.„ ?7-"-t. .■.;t,!:';^x:::;::ni:'"T"'^ "■""■' •■'-r--..s 'l-«nl..s.„.anKl,.«,,„.i,„t|,,„,.t„„„,„:,"-'"l •, "'"I "■'■'r/«'-OMvl„.„ ..it|,„r at .,„ ,,„ ,., d f,„ „,„ e„„stn,.,„V f -..K^' • """•"" ■'"■""■■''< •■«". th„.l '•'"'."'■"<■'■"' >nt.tli,„|s a,-,. tli„s,. ,),:, ^ ' "■ '■^"■"'■"li'r i,,,!,-,,,, ,>„,. «'•";■'■"'■ •"■'■■• "".v'„f 0,, :",,'':;;, '''"''■ ' ■" "«- ••«-„! .,oa,„ -'- ''-vn .1,, ,1, .1,..:,::! , :"^;""' "■■• "- --» li,,,., """ 'I- > i.u „f ,,a,tH a I. '■',"■''."' "'" "'""■'■"■■•>•■ i- 'li> i.l.-l ''":":""' iti-r .■...!. ftl,..,lia ,;;"^-"'' '!'-»" tl" .'I. ll„.«,.. '"""'"■'■ "f ■■■l"Ml l.a.U ,S„,,,„„„ j, ' , f"-'l'>"lN.,Lr a .■i,-,.|,. i„,„ ,„„, \\ 'II. .t.s,.vtn.,„iti,.H as ..,„„,,. an.l a Jl ,' ''■' """''"" ''I""! I«''-. '■' ' -V- a,„l IMnuv H,,,. tl„„, .-t h,, ' '■'"■'■"'l'-""li"K t., ,; «,,. ^„. '"''""■"■ ^■'^'■■ti.-n.c , u', "it;;!";" ""'"■■■"^"-•1^.^ t..;;r:ir:;TX::;t::::;;:;::;:;r--'-"-'. ^ f •■"'l't.caIn„v,.an,!,„„atn>,.oIIi,,H,.. '"' '" "'^^^'^ ■« "" INVOLUTE OP OIRCT V t ««.ter W.U bo the ai.„™.c. ,„ ,... J,! .L.t:;:^ 11::; ;::^- ,^;" - <. u. N E=p . < Tim in(;ii SCHOOL DRAWING COURSE. 1. 2.- TIIK FOLLOW |N(i AKK TKK y.ooKS IX THIS CdCUSK: -Freehand. :>,. — Linear Perspective. -Practical Geometry. 4.— Object Drawing, a— liidusti'ial Design. These Hooks are fully illustrated, and printed on heavy drawing paper. They are sold at 20 cents each, at all bookstores. Iva.li Hook is a Te.xt-Book and Drawing- Hook combined. The Grip Printing and Publishing Company, Publishers, 26 & 2,S rkON'I' STREET WEST, TORONTO.