IMAGE EVALUATION 
 TEST TARGET (MT-3) 
 
 
 1.0 
 
 I.I 
 
 1.25 
 
 ■^ 140 
 
 ly ■■■■ 
 
 1^ 
 
 M 
 
 2.0 
 
 M. 1 1^6 
 
 Sciences 
 Corporation 
 
 23 WEST MAIN STREET 
 
 WEBSTER, N.Y. 14580 
 
 ( 7 . ^ ) 873-4503 
 
 
I 
 
 
 \ 
 
 CIHM 
 Microfiche 
 Series 
 (Monographs) 
 
 ICIMH 
 
 Collection de 
 microfiches 
 (monographies) 
 
 Canadian Institute for Historical Microreproductions / institut Canadian de microreproductions historiques 
 
 f\f\ 
 
Technical and Bibliographic Notes / Notes techniques et bibliographiques 
 
 The Institute has attempted to obtain the best original 
 copy available for filming. Features of this copy which 
 may be bibliographically unique, whicii may alter any 
 of the images in the reproduction, or which may 
 significantly change the usual method of filming, are 
 checked below. 
 
 n 
 n 
 
 Coloured covers/ 
 Couverture de couleur 
 
 Covers damaged/ 
 Couverture endommagee 
 
 Covers restored and/or laminated/ 
 Couverture restauree et/ou pelliculee 
 
 Cover title missing/ 
 
 Le titre de couverture manque 
 
 Coloured maps/ 
 
 Caites geographiques en couleur 
 
 Coloured ink (i.e. other than blue or black)/ 
 Encre de couleur (i.e. autre que bloue ou noire) 
 
 Coloured plates and/or illustrations/ 
 Planche« et/ou illustrations en couleur 
 
 □ Bound with other material/ 
 Relie avec d'autres documents 
 
 
 
 n 
 
 Tight binding may cause shadows or distortion 
 along interior margin/ 
 
 La reliure serree peut causer de I'ombre ou de la 
 distorsion le long de la marge interieure 
 
 Blank leaves added during restoration may appear 
 within the text. Whenever possible, these have 
 been omitted from filming/ 
 II se peut que certaines pages blanches ajouties 
 lors dune restauration apparaissent dans le texte, 
 mais, lorsque cela etait possible, ces pages n'ont 
 pas etefilmees. 
 
 
 
 L'Institut a microfilm^ le meilleur exemplaire qu'il 
 lui a exi possible de se procurer. Les details de cet 
 exemplaire qui sont peut-«tre uniques du point de vue 
 bibliographique, qui peuvent modifier une image 
 reproduite, ou qui peuvent exiger une modification 
 dans la methode normale de f ilmage sont indiques 
 ci-dessous. 
 
 □ Coloured pages/ 
 Pages de couleur 
 
 □ Pages damaged/ 
 Pages endommagees 
 
 □ Pages restored and/or laminated/ 
 Pages restaurees et/ou pellicultes 
 
 Pages discoloured, stained or foxed/ 
 Pages decolorees, tachetees ou piquees 
 
 □ Pages detached/ 
 Pages detachees 
 
 r~^ Showthrough/ 
 
 n 
 
 Transparence 
 
 Quality of print varies/ 
 Qualite inegale ds I'impression 
 
 Continuous pagination/ 
 Pagination continue 
 
 Includes index(es)/ 
 Comprend un (des) index 
 
 Title on header taken from:/ 
 Le titre de I'en-tfite provient: 
 
 lison 
 
 Additional comments:/ 
 Comme-iiaires supplementaiies: 
 
 Page 223 is 
 
 □ Title page of issue/ 
 Page de titre de la livrais 
 
 □ Caption of issue/ 
 Titre de depart de la livraison 
 
 □ Masthead/ 
 Generique (periodiques) de la livraison 
 
 incorrectly numbered page 22. Various pagings. 
 
 This Item is filmed at the reduction ratio checkeo below/ 
 
 Ce document est f ilme au taux de reduction indique ci-dessous 
 
 ^OX ,4X IPX 
 
 22X 
 
 12X 
 
 16X 
 
 26 X 
 
 J 
 
 20 X 
 
 30X 
 
 24 X 
 
 28X 
 
 D 
 
 22X 
 
The cooy filmed here has been reproduced thanks 
 to the generosity of: 
 
 National Library of Canada 
 
 L'exemplaire film6 fut reproduit grdce d la 
 g^R^rositd de: 
 
 Bibliothdque nationale du Canada 
 
 The images appearing here are the hast quality 
 possible considering the condition and legibility 
 of the original copy and in keeping with the 
 filming contract specifications. 
 
 Original copies in printed paper covers are filmed 
 beginning with the front cover and ending on 
 the last page with a printed or illustrated impres- 
 sion, or the back cover when appropriate. All 
 other original copies are filmed beginning on the 
 first page with a printed or illustrated impres- 
 sion, and ending on the last page with a printed 
 or illustrated impression. 
 
 The last recorded frame on each microfiche 
 shall contain the symbol — ♦► (meaning "CON- 
 TINUED"), or the symbol V (meaning "END") 
 whichever applies. 
 
 Maps, plates, charts, etc., may be filmed at 
 different reduction ratios. Those too large to be 
 entirely included in one exposure are filmed 
 beginning in the upper left hand corner, left to 
 right and top to bottom, as many frames as 
 required. The following diagrams illustrate the 
 method: 
 
 Les images suivantes ont 6X6 reproduites avec le 
 plus grand soin, compte tenu de ia condition et 
 de la nettetd de I'axemplaire film6, et en 
 conformit6 avec les conditions du contrat de 
 filmage. 
 
 Les exemplaires originaux dont la couvorture en 
 papier est imprim^e sont film6s b.i commenpant 
 par le premier plat et en tenninant solt par la 
 dernidre page qui comporte une empreinte 
 d impression ou d'illustration, soit par le second 
 plat, seion le cas. Tous les autres exemplaires 
 origmaux sont filmts en commenpant par la 
 premidre page qui comporte une empreinte 
 d impression ou d'illustration et en terminant par 
 la dernidre page qui comporte une telle 
 empreinto. 
 
 Un des symboles suivants apparaitra sur la 
 dernidre image de chaque microfiche, selon le 
 cas: le symbole — ► signifie "A SUIVRE" le 
 symbole V signifie "FIN". 
 
 Les cartes, planches, tableaux, etc., peuvent dtre 
 film6s d des taux de reduction diffdrents. 
 Lorsque le document est trop grand pour dtre 
 reproduit en un seul clic}.6, il est film6 6 partir 
 de I'angle supdrieur gauche, de gauche 6 droite 
 et de haut en bas, en prenant le nombre 
 d'images ndcessaire. Les diagrammes suivants 
 illustrent la mdthode. 
 
 1 
 
 2 
 
 3 
 
 1 
 
 22t 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
- r . 
 
 &f 
 
 I 
 
 IS; 
 
 
 I 
 
 i r 
 
 e 
 
 (V 
 
 r 
 
 ^A 
 
 TREATISE 
 
 ON 
 
 COilMIICIilL ARITIIIIIiTlC 
 
 TO WHICH ARE ADDED 
 
 PRACTICAL COURSES ON 
 
 MENSURATION AND BOOK-KEEPING 
 
 DESIGNED FOR 
 
 HIGH SCHOOLS AND ACADEIvIIE: 
 By The Christian Brothers. 
 
 ]S 
 
 11/) 
 
 t*. ■ f 
 
 u I 
 
 'I. 
 
 h i ( 
 " 1 
 
 i '\ 
 
 •I 
 *) 
 
 II 
 
 \\. 
 ii 
 II 
 I 
 
 1 _ 
 
 Sanctioned by the Council 
 
 of Public Instruction. 
 
 MONTREAL 
 44 COTE STREET, 44. 
 
/n 
 
 r Hi 
 
 Entered, according to Actof the Parliament of Cann da, 
 in the year one thousand eight hundred and seventy-two, 
 by Ephrem Gagnon, in the office of the Minister oi 
 Agriculture. 
 
#K*f ACE. 
 
 Our o^ec , » ,*> ,5«*ii,,»i„„ „f ,y, ^„,.^ ., ^^ 
 P y our H>g-h *<*«(;*, Ml Academies in the Dot^inio. 
 ol Canada, w* » .Wxlerate-si.ed book containino 
 ™'^".'7*'^f^-*^t*'»tf Poetical Tr,atiseson Com° 
 
 av „g, th,.rel,y, fe. lfiw,:,.u«. ,ho expense of scve": 
 
 within the read;. «l (fii,. Hi,|io„„j, ^i^^^^^ 
 
 As decimals l^(sw <fe.^™„ ,,,,, ^ ^.^^,^ 
 we have chos.* M, A,,« ,hem along with the latter 
 thorelore. they mW*»>"fa»d introduced in numeration 
 Though we iiM,^ ^^i„ll f^ii^^^j ^^^ 
 
 system, yet. the,^«,,Awl has not been neglected 
 
 Amongst lis »wi»«* ^vficular features, this work 
 otters the i«iw„to4 «**antage of proposing a far 
 greater number ^1>««»,^, q„,,,i„„^ ,^^,„ ^° ^^ 
 of he same s,«. ^ ^, ,,,„ „,„„,,^.„, ^^^^ ^^^^^ 
 
 will hnd in It .Mil *^ W*,.„,a«„„s requisite to qualify 
 
 them for the po^^l^W Ml accountants or business men 
 
 Some pers<«M, f>f^ ^ ^^^ ^^^^ ^^^^^ pl^^ 
 
 t' 
 
 lii^i^ 
 
PREtfAOK. ^ 
 
 merous examples oF application, having for principal 
 object to render the pupil iamiliar with figures. 
 
 Some desire the answers placed immediately after 
 the examples, and others desire them omitted. Both 
 methodshave their advantiig-es and their disadvantages. 
 In order, therefore, that pupils may receive the advant- 
 ages of both methods, the answers to nearly one third 
 oithtj examples in this book are omitted. They will 
 be found, together with clear solutions of ail the exam- 
 ples, in a Key to this vvoik, prepared for the use ol 
 teachers and private learners. 
 
jipal 
 
 after 
 Both 
 iges 
 raiit- 
 :liird 
 will 
 sam- 
 se ot 
 
 
 CONTENTS. 
 
 SIMPLE NUMBERS AND DECIMAIvS. 
 
 Paob 
 Definitioiii 9 
 
 SigM 10 
 
 licman Notation n 
 
 Arabic Notation , 13 
 
 Numeriition Table ]4 
 
 Rule for Notation 14 
 
 Rule for Numeration ]5 
 
 Daoitnals jg 
 
 Appiioiition of the Principles of Nu- 
 meration 18 
 
 Addition 22 
 
 I Pa4IC. 
 
 Subtraction 28 
 
 Multiplication 3fl 
 
 Contractions in Multiplication 44 
 
 Division ^ .,,, 5(, 
 
 Cnntraotions in Dirision sy 
 
 lJ>ciiiiiil Currency 53 
 
 Hediifliion <if Decimal Currency 65 
 
 Praclioal Prohloia* combining the 
 
 Fun.lamotital Mules 66 
 
 Billi and .-Vo.iuiiints. gg 
 
 Forms of Billi) «cd Accounts 7o 
 
 PROPERTIES OF NUMBERS. 
 
 Bxaot Dirliori and Prime Num- 
 bers 78 
 
 Table of I'rime Numbers 79 
 
 Factoring 79 
 
 Cancellation gj 
 
 Common DiTisor go 
 
 Oroiitost Common Divisor „ 83 
 
 Least Common Multiple 84 
 
 FRACTIONS. 
 
 DefinitioM, etc S6 
 
 Reduction of Fractiong gg 
 
 Addition of Fractions 94 
 
 Subtraction of Fractiong 95 
 
 Multiplication of Fraotion? gg 
 
 DiTinion of Fraetiona ^9 
 
 (iroatest Com. Divisor of Fractions! 103 
 Least Corn. .Multij)lo of Fractions.. 104 
 
 Practice by Aliquot I'arts ]05 
 
 .viisoellanoous Problems i09 
 
 DENOMINATB NUMBERS. 
 
 Definitions, etc ijj 
 
 Old Canadian Money 114 
 
 Knglish Money n^ 
 
 United States Money 114 
 
 Troy Weight jjj 
 
 Anothocaries' Woi^'ht 
 
 Avoiniu 
 
 116 
 
 [.r-is Weight j,^ 
 
 Linear or Lfmg Measure . 
 
 fwneh Money ^ „r , "'"^ »i>^asure 
 
 ^ ^ " "' I '^""•7«"' Long MeMurfc. „. 
 
 117 
 118 
 
 I J 
 
 
 I 
 
▼1 
 
 CONTENTS. 
 
 FRACTIONS. 
 
 PaOK. 
 
 Definition!:, itce Sfi 
 
 Reduction of Fractions 88 
 
 Addition of l?ra' ions 94 
 
 Snbtraotlon of Fractions 95 
 
 Multiplication of Fractions^ ........ 9fl 
 
 Pa«r. 
 
 Division of Fractions 9!» 
 
 flrnatest Coni. Divisor of Fractions. 103 
 Lea.st Com. Multiple of Fractions.. 104 
 
 Practice by Aliquot Parta I0& 
 
 Mipcellaneoas Probiama 19V 
 
 DI'.NOMINATE NUMBERS. 
 
 DeflnUions, Ac 113 
 
 Old Canadiftn Money 114 
 
 Knglisb Money 114 
 
 United Stntes Money 1 1 I 
 
 French Money 11') 
 
 Troy M'eight Jir) 
 
 Apotboonries' Weifiht ll'i 
 
 Avoirdupois' Weicjht ll'i 
 
 Linear or Loni: Measure 117 
 
 Surveyors' Long Measure,.... ...., !!'■! 
 
 Squfiro Measure IIS 
 
 Surveyors' Square Measure 120 
 
 Cubic or Solid Measure 120 
 
 Liquid Measure 122 
 
 Dry Measure ....- 122 
 
 Maasureof Time 12:{ 
 
 Circular Measure 124 
 
 Miscellaneous Tables 126 
 
 The Metric System of Vfe\ghtg aod 
 Measures 126 
 
 Reduction of Compound Numbers.. 1.14 
 Reduction of the Old Canadian Cur- 
 rency to the Decimal Currency.. 141 
 Re<]uotion of the Decimal Currency 
 
 to the Old Canadiah Currency... 142 
 Addition of Compound Numbers... H'i 
 Subtraction of Compound Numbers. 144 
 Multiplication of Comp. Numbers.. 14tl 
 Multiplication of Compound Num- 
 bers by Aliquot Part" 143 
 
 Division of Compound Numbers... 15.'< 
 
 Longitude and Time 15& 
 
 Duodecimals 150 
 
 Multiplication of Duodecimals 1S7 
 
 Division of Duodecimals.... 158 
 
 Miscellaneous Examples 169 
 
 RATIO, PROPORTION, AND PERCENTAGE. 
 
 Ratio 1»3 
 
 Proportion 1''4 
 
 Simple Propiirtion , Ifi5 
 
 Compound Proportion 108 
 
 Percentage 171 
 
 Misc-llaiieous Examples in Per- 
 centage 17.'> 
 
 Bituplo Interest ~ 1^^ 
 
 Partial Payments - IS4 
 
 Frobiems in Iirtofest 186 
 
 Promiscuous Examj los in Simple 
 
 Interest '■''' 
 
 Oompound Interast > 191 
 
 PromlMory w ♦!».••>»»......■..•.....»• ivw 
 
 Forms of Notos...MM'«.c ~ ••••• IM 
 
 Profit and Loss 1U7 
 
 Commission and Brokerage 200 
 
 Firo and Marino Insurance 20.'5 
 
 Assessment of Taxes 209 
 
 Custom-House Business 207 
 
 Discount and Present Worths 209 
 
 Bank Discount ^ 212 
 
 Promiscuous Examples in Disoount 21fi 
 
 Stocks - 218 
 
 Partnership 223 
 
 i'^xohan^e 228 
 
 Foreign Exchange 230 
 
 Equation of Payments 233 
 
 'nvolufli 
 KvnUith] 
 Square f 
 CuUd no 
 ^rithmol 
 Qnotnetri 
 M«n«ur«r 
 MiicolUn 
 Account* 
 Omtttl A 
 
 DtCnitUnt 
 il(M«uratl< 
 
 ficos ., 
 P"mifco«i 
 
 •al Hurlii 
 Mensaraiici 
 
 ttcDfral l'r»i 
 Doo«i,»: ^f.H^ 
 Iwfru(;fion« 
 liny Book,,,, 
 Jnurnal .„., 
 
 •^gw 
 
 Forms of JJ.il 
 Proceiis of C) 
 Order of (;|,,i 
 Pfsftfical Rx. 
 D(ni«j,K B«'(| 
 
 Dai, l>fw-l, 
 
 JonrnaJ 
 
 Trial Ualadci 
 
 Statement 
 
 Cash Bo-ilr ,„ 
 
 Bill Book 
 
 OofflBisaiofl H 
 
Piaa. 
 
 «',» 
 
 ictions. 103 
 ctioiu. 104 
 
 106 
 
 1«« 
 
 btoaad 
 
 125 
 
 mbers.. IM 
 an Cur- 
 •rency« 141 
 irrency 
 ■eney... 142 
 ibers... 142 
 iinberp. 144 
 mber?.. 14t( 
 I Num- 
 
 143 
 
 ibcrs... 16."< 
 
 15ft 
 
 156 
 
 als 1S7 
 
 168 
 
 ■ •«M ••••■ JIVv 
 
 1«7 
 
 200 
 
 5 20;5 
 
 205 
 
 , 207 
 
 th 209 
 
 212 
 
 >i8oount 2](! 
 
 21S 
 
 223 
 
 228 
 
 230 
 
 233 
 
 ''ONTUNTS, 
 
 MlSCELLANli;0US. 
 
 .^"'^""'n ^fi*rnnU^"Z l.r 
 
 'nvolufion,,, ''''' 
 
 R»''^iUrm,.J.'.',',",' 24i 
 
 Squnri- Root'"'.'.','.* ^^' 
 
 Co»(o Root,,.. "" 
 
 •••••••••••• 
 
 242 
 245 
 
 24« 
 
 **'•*«"•"«';•; K«'.mpi„..z'::::' 254 
 
 2«5 
 •••••■.• ..... 2fi<j 
 
 ••M*M..n<. 298 
 
 Oootnetrlral Pr„^,„,^ 
 
 Miicoltanooiiii | 
 
 ^a-^h JJdIance 
 
 -Account fif.Saleo 
 
 Table of Foroit^n .Monpv< 
 Examples on Kxt-hanije.. 
 
 VII 
 
 .. 275 
 ,. 27M 
 
 . 2<'2 
 
 Arbiirnfion of Exohango ....'.'.' 287 
 
 Arb.trnHon of .Merchanrli.o .'.' 21)0 
 
 - Iert<:- 
 ures,. 
 
 JSIO 
 
 Table of Foreign U'oighfs A M 
 ures 
 
 SupplefDont to Progression;".'.'.;;;;;; 29J 
 Mil IniuraunB 
 
 niuraooe 
 
 '^nnuiHes 
 
 298 
 
 Thermome't;'™,;;;;;:;:::.."*"' :]fj 
 
 Kqulralonts of M.tria Mtui^ni'.'. 3I| 
 
 MENSURATION. 
 
 '•"miicono, 
 
 •«l Surfafj** 
 
 Bx«»p>; 
 
 <■» m fcciilin- 
 
 •'•■•oraiiwj of ci^Ji 
 
 »r Surface*. 
 
 914 
 
 317 
 
 325 
 •'>27 
 
 PromJpcuoug Rxamplw in Circular 
 f^urfaoos.,..,. _ 
 
 Definitions of Solids 
 
 •nstiration of .-otitis 
 
 Miscellaneous I.:xa,npIe;i'n8orrd';; 
 lablo of Chords... . 
 
 SS4 
 3.37 
 34* 
 355 
 SM 
 
 BOOK-KF^EPING. 
 
 ;-«rtptiri, ,,r p,,„,, , y^ 
 Oen?r«l I'nncif.j©. J 
 
 ?""'-' '•:«r«r,-8r;T I .;;; j 
 
 in»fru<fion« „.. „ 
 
 Day Book Z'.'.Z'""'' 7 
 
 J«ur»il „ '""" • ' 
 
 •^g-r :';:'::::::"' ! 
 
 J«rtt,g of Oalanc, BhnttZZ s 
 
 Pro«e«» of CMbjj „ i, 
 
 Order of C|„*ir,g ; ^' 
 
 pr^cfiMi B«<.rr„M„;" ;;;;••; f. 
 
 D..t,«i,K E«t«v,_hbt I J „..; 3, 
 
 Jo^rniuT. ; 31 
 
 Trial B«ia,.«';':a";;;-;;;;;;;;;;- ,^^ 
 
 Ca*h Bo-.k ^^ 
 
 Bill «w4..., 48 
 
 48 
 
 M 
 
 Aocminf, Sales 
 
 Pra-'f.ieal Kxercise's." 
 
 '>"UBLK 
 
 KNTRr,— .srt in, 
 
 19 
 
 Coma»if.ioii ^»imUt^ 
 
 Rem.irkf 
 
 Journal Pay l;ook7.".*.;; " 
 
 Trial Balance and I'nVenfory" 
 
 Invoice B'lok 
 
 Sale,'! Book ""[ 
 
 Commigsion Sales Book 
 
 Account Sales 
 
 Check-Book ;,";;;; 
 
 Receipts, Notes, ic".*.**',".'.".* 
 
 Letter Book ~ 
 
 Practical Exercises...;;;;"*;;; 
 
 t)otjBLR i'-N7RY,— sbt'iv;;;;;; 
 
 Remarks ""* 
 
 Routine. ' 
 
 Domestic Invoice Book!!;;;.;.;;;*;" 
 
 Foreign Invoice Book... 
 
 8»lat Book.........^ """" "*"" 
 
 u 
 
 51 
 
 M 
 
 5e 
 
 n 
 
 05 
 «7 
 •» 
 
 11 
 
 U 
 
 u 
 
 11 
 
 u 
 
 84 
 00 
 »• 
 
 »1 
 93 
 
 M 
 
 ^ •;•. 
 
Tin 
 
 J0NTRNT8. 
 
 Paok, 
 
 <'n'h nook ,...„.. „ 104 
 
 U'll li.M lOS 
 
 IrTPtit.iry 11 ok 110 
 
 Jcmal ni 
 
 B i'»noo ^heot m 
 
 Si>G',R Kntrt lift 
 
 Rr-j-arkj I in 
 
 bkj Bok 117 
 
 PiOR. 
 
 Cash Book « V.'« 
 
 UJ-or 121 
 
 Statement , 124 
 
 Chanoinq Sixqlk to D0CBf.K Ex- 
 
 TIIY I2A 
 
 l'rncti>:al Ezerci<o.'< I2T 
 
 flint-! as to Kefourcus und Liabil- 
 ities > 131 
 
COMMEiiClALAIIlTHMETIC 
 
 J)EPINITIONS. 
 
 *» 'ViS-^'^^J^*' i' *^' ««^«"o« of numbers. 
 
 ?■ M ^"^.^ " *"""• °'' • "»"^'« thin- 
 i..ci« of wt'e" ^"'"'^'y' •« *"^ ^"^^-^ *h'^t will acl.it of 
 
 6. JJ°o;berfl in general, are either abstract or concrete 
 
 u aVpa'SSS!!.? r;:ru?r'?"„n' "^'^'->-™ 
 
 ■ The, .r, diviJcd into IT.^iaLj*""'-^'"' •"""'J'^"^ 
 
 «raa aeci„.U fraction., X'.^uZl'^Y.' ""'' "^ "'"<«' "^ 
 
 >». Concrete Wumbers m .mmbo™ u^d .itk .■ 
 »•» paruoular thiog or qatDtit, Tbu. J[^ «terM06 to 
 
 
10 
 
 D1FINITI0N8. 
 
 I I 
 
 They are also subdivided into threo olassefl : 
 poinds^^'"'' '''"'^' '^"**'"° ""^ «°bdivi8ion8, as «> yards, deven 
 
 /fJ"i;//I''T"''V''^i:*''^*°°^'"P*"'*'^^'*^ ^'C''"*' subdivisions, as 
 fioe dollars twenty Jive cents. =«""«, »s 
 
 3rd. And la.stly, those which contain decimal subdiviMong onJv ao 
 twtntyfioe cents ($0.25). ^' *' 
 
 O. A Simple Number is either hd abstract or a concrete 
 number of but one denomination; as, two, <en dollars, ;?>m hats. 
 
 10. A Compound Number is a collection of concrete units 
 whose subdivisions are not decimals, but represent several deno- 
 mmations, taken collectively; as, «x pounds /our shillin-a nine 
 pence, three ftctfivc inches, etc. "* 
 
 11 . A Power is the product arising from multiplying a num- 
 ber or quar.tity by itself, or repeating it any number of times aa 
 a tactor. 
 
 .^ 12. A Root is a factor repeated to produce a power. 
 
 13. A Demonstration is the prooeeg of reasoning by whioi 
 
 r truth or principle is established. 
 
 14. An Operation is the process of finding, from given auan. 
 titles, others that are required. ^ 
 
 15. A Problem is a question requiring an operation. 
 
 16. A Rule is a direction for performing an operatioa. 
 
 17. Analysis, in Arithmetic, is the process of investigstiiu 
 principles, and solving problems, independently of set rules! 
 
 \H. The Principal or Fundamental Operations of Arith- 
 metic arc, Notation and .Nuuieration, Addition, Subtraction 
 Multiplication, and Division. ' 
 
 SIGNS. 
 
 19. A Sign is a ^mbol employed to indicate the relations of 
 numbers, or quantities, or operations to be performed upon them. 
 
 (.) is the decimal sign indicating that the number after it is a 
 oecimaL 
 
 I lueaos dollar. 
 
 ». ir*aiii«gimpI,auiBb«rt- 10. »fA«< ». aoompound nuiaberT-ll. WkM 
 . r"--- — ■■•----- .•••'^- • — '<" 'r««« w a aemoasirauon T — 14. Wkai 
 
wotatiow. 
 
 'J'hns 
 
 -h the sign oi addition, is renrt plu, 
 be added to 8. 
 
 tob;M!£Sd^rr^'^'--^-^«-Thus.8 
 
 11 
 
 7 siprnifips that 7 is to 
 7 signifies that 7 is 
 
 ^4, „ „, i. , , - 1+,,^'^ x^ . f n: i;"- '-uf 
 
 fi>niirf,^,b.fi)rctlio».i„Jir,rj I .! P«.n""I'««. ba« b»m mr- 
 Thn,, [(8 XT) + U1 i T"^'i*''e°'««'l«<*cbrackeu. 
 = 70; 70 +V= M-' "^ *'»»-'"8 X 7 -= »«; S6 + ll 
 
 ..d u tdtifjr- ^'"'' ' = * ■"'•"• *« »'■» »f » •» 4, 
 
 >»,".»..». IJ, M read, 6 l» '« 9 as 8 is to 12, 
 NOTATION AND NUMERATION. 
 
 e.p**. "b"""" " '"^ ■"^'"' -' '«^'"» ■""■"«™ when 
 .ifhs^T™™""'' "' ''°""'°" •" '" «»'-"»" ""- "■• ««a« 
 
 ROMAN NOTATION. 
 
 nun.bers, viz : ' ""^''"^'^ *^''*'» °^P^*^1 !«"«" to ^express 
 
 ^ ^ * t D M 
 
 l^r., 
 
 Un, 
 
 fifty. u °^ , , "»• «>• 
 
 hundred, hundred, thowand. 
 
 
 r» 
 
IS 
 
 HOTATION. 
 
 I 
 
 It will be seen from the following Table, that al! numbers may 
 be expressed by the mo of these letters, cither by re|>etition8 or 
 ooDioinatioris. 
 
 U\ Eyery repefifion of n letter repeats if^ valne: thus II 
 represents two; ITI, represents thrrr ; XX, (wentf/, etc. ' ' 
 
 2n(i. Wnen a letter of any value is placed after one of greater 
 
 valud, it ad(I« its own value to 
 
 the .greater; but when placed 
 
 before, its value is to be subtracted ; thus, VII represents seoen ; 
 XI represents eleven; while IX represents nine, or one les, thai 
 ten ; jLL, forty, etc. 
 
 3rd. A bar or dash (-) placed over a letter, increases its value 
 » thousand-fold; thus V denotes Jive thomami ; TV, four thou- 
 $and; X, ten thotuand, eto. 
 
 I 
 
 II 
 
 Ill 
 
 IV , 
 
 V , 
 
 VI 
 
 VII 
 
 VIII.... 
 
 IX 
 
 X 
 
 XI 
 
 XII.... 
 X II... 
 XIV.... 
 
 XV 
 
 XVI. . 
 XVII.. 
 
 xvni. 
 
 XIX.... 
 
 XX 
 
 XXL... 
 XXII.. 
 XXtll. 
 XXIV. 
 XXV... 
 
 u 
 
 (( 
 
 i( 
 
 (( 
 
 (( 
 
 li 
 (( 
 
 18 Ono. 
 Two. 
 
 Three. 
 Four, 
 Five, 
 Six. 
 Seven. 
 Eight. 
 Nine, 
 Ten, 
 " Eleven. 
 " Twelve. 
 " Thirteen. 
 " Fourteen. 
 " Fifteen. 
 " Sixteen. 
 Seventeen, 
 Eighteen. 
 Nineteen. 
 Twenty. 
 Twenty -one. 
 Twenty-two. 
 Twenty-three. 
 Twenty-four. 
 Tweaty.five. 
 
 WAMLM. 
 
 XXVtl i, 
 XXIX. " 
 XXX .. ' 
 
 XXXVI " 
 
 XL •• 
 
 XLIX •' 
 
 L 
 
 LX ' 
 
 LXX .. ' 
 LXXXT " 
 XC. . 
 XOIV 
 c 
 
 coc 
 
 CD.... 
 
 D 
 
 DC... 
 CM.... 
 
 M 
 
 MC... 
 MD... 
 MM... " 
 MMM. - 
 
 X - 
 
 M « 
 
 .'( 
 
 >< 
 
 >( 
 
 It 
 
 « 
 
 <l 
 
 (( 
 
 1( 
 
 (I 
 
 Twenty.sev«n. 
 
 Twenty-nine. 
 ' Thirty. 
 
 ' Thirty-gix. 
 
 ■ Forty. 
 
 ' Forty-nin*. 
 
 ' Sixty. 
 
 Seventy. 
 
 Eightv-ont. 
 
 Ninety. 
 
 Ninety-four. 
 
 One iiundred. 
 
 Three hundred. 
 
 Four hundred. 
 
 Five hundred. 
 Six hundred. 
 Nint- hiindi id. 
 One thousand. 
 Eleven hundred. 
 Fifteen hundred. 
 Two thousand. 
 Three thousand. 
 Ten thousand. 
 <W milllM. 
 
irabers may 
 >etition8 or 
 
 1 thU8, II, 
 to. 
 
 of greater 
 ica placed 
 ints seoen ; 
 I hat than 
 
 58 its value 
 four thou- 
 
 le. 
 
 (1. 
 
 red. 
 
 cA 
 
 id. 
 
 i 
 
 '.d. 
 
 1(1. 
 
 [red. 
 
 Ired. 
 
 id. 
 
 [ind. 
 
 1 
 
 1. Six. 
 
 2. Right. 
 .^. Ten. 
 ^- Thirteen. 
 
 6. Fifteen. 
 "5. Seyenteea. 
 
 7. Nineteen. 
 
 8. Twentj-five 
 
 NOTATION. 
 
 BXBRCrSES IW ROMAN NOTATION. 
 
 B«pre8. tf.e following nu.nhers by letterBt 
 An». VI. 
 
 13 
 
 ajx. 
 
 9. Thirty. 
 
 10. Forty-^ix. 
 
 11. Fiflf-four. 
 
 12. Sixt>. 
 
 13. Sixty-eight. 
 1*- Righty-four. 
 15. iVinety-nirie. 
 
 18 ^ "J".'l""'*r^ ^''d nineteen. 
 
 }8. Jight hundre<J an.l .«eventy.five. 
 
 19. Nme hundred and .ixty-five. 
 
 20. Pour hundred and fJ.rtv-one. 
 
 22 Siv"[ "f'T^ *?*^ eiglity-seven. 
 22. Su hundred and ninety-five. 
 M. One thousand six hunrired and fifty 
 24. 0«e thounand eight hundre<i and fony. 
 
 ARABIC NOTATION. 
 
 explt rfu'nbi^^f.^f *°° ""P'"^'^ ^^ ^^^-^--^ or figure.,, to 
 1 2 ^ .i ''' 
 
 f^iV'V.c from thp T nf.-n r i J ^ -^"®y ^'"'^ sometiuios caller, 
 
 ct>A^' is called „, /I "^'^u""' '''"°*^ «^.^'"'fi^« /"9"-- Th 
 
 26 In ordt ? i T'' ^'"''^"^^ ^' '^"^ "^ value of its own 
 
 Thus, the fir«^eZsen^Th.-^^u" ^^' P^''' '* ^'"''"P'^^ 
 third,, the A.,./ X the fourth C *^^ r^"**' *^« ''"' '^ 
 each succeeding. fiuVe to th«,jy/r'-^^^^^^^^ ^"^^ ^^^ o--'. 
 
 the unit of which Trt^nfoM^hl . '""/'"^"^ *^ ^ distinct orde, 
 the riaht. '^ '^^ ^''•"^ ''f » '^"it of the order f 
 
 pen"druptV.!';,:ttL''irtr™^"'-'p''""^^^*^^ e^^- ^e 
 
14 
 
 •nniKRAtioK. 
 
 S'nr«!. ?nr/ ^T"*^ ^^ * ^"'" "««<^ inoorabin.tion with other 
 fiK'ures and deKendin- upon the place the Qcmre oecutj^s ThI 
 Cipher be,V3me8 significant when 'eonneoted with other ti^eu;s ollt 
 by filhng a place which otherwise, would be vucan7(No 28) ^'^' 
 
 hand^JrJn/l*^', '''I '"?P'' ^*'"« ^^ *•'« first. figure on the -eft 
 iureofthrlrthn';;?' ^*r ^ "r^^^^ 'l^o»"and«f because iti.. 
 andfts local valn^^" ' v^^'' """P *^ "*'"« ^•^' ^^« ^^ird H^ure i« 4, 
 eirnple value of h/fiT-' ^°»"?.'' '? « «g»re of the 2nd o?d.r ; the 
 
 NUMBRiTION TABLE. 
 
 i 
 
 «M '-S 
 O H 
 
 *> «t-i .2 
 
 3 g K 
 
 'si 
 
 o 
 
 3 " 
 
 c 2 c 
 
 e 
 o 
 
 T a 
 
 •^ o 
 
 CE ~ 
 
 s :=; 
 
 S D « 
 
 a 
 o 
 
 ^.2 
 
 45 ® o 
 a « = 
 
 a 
 
 o 
 
 o ^ 
 
 2 ° 
 
 0:3 
 
 a 
 cs 
 
 us 
 O 
 
 B 
 3 
 
 O 
 
 cog 
 
 1 2 7, 8 9 4, 2 3 7, 8 6 7, 5 2 3, 6 7 
 
 a> «♦, <« 
 fc> o c 
 
 a ^-^ 
 
 W'^ r-*" i=; ki « -= = 5 s 
 
 a •- 
 
 s,!' s^^ 5s^' s- •^i-f SsS 
 
 ^ RULE FOR NOTATION. 
 
 28. To write in tigureg any number without difficulty 
 
 of I"u;!t;on"iitn',the?i?L""S°'''l"'^^^^ *^« « '« *^« -der 
 in the order of hund^s of iniS" i^f *''^^**"' k^^ thousands, the 6 
 places. Thus ^^'^'^ "^^ "'"'^ •«'^ P"* ciphers in the vacant 
 
 4 006 020 ftOO 
 
 1. 
 3. 
 
 3. 
 4. 
 6. 
 8. 
 
 1. 
 2. 
 3. 
 4. 
 
 5- 
 6. 
 
 as. Wkt^i»tkaritU/m- 
 
 U»**Jiamf 
 
= « a 
 
 NITVKUriOIf. 
 
 RULE FOB NUMERATION. 
 »». To r^ad numbers represented by figures 
 JJ'^tn at th. right hand, and point off Z 7' - 
 of three placet each. The first .Cw ■ .; ^^'"''* *"'« P«^A 
 thousands; the third, .£ lovs 1^/"/ "^.?"^"«' '^«^''«>»rf, 
 
 mK TRILLIONS, &c. yA* w ^',; /t.lT'^' ^''^^^^-^^J '^« 
 
 i5?*. The number 345 678 907 654 \7^ ""' '''"''fiacres. 
 
 «n»aner: three hnndred ami fortvL f •,',' '""^ '■" 'he followmg 
 r/S^T^* l[iilioi.«, nine hldre7a^7,,^"j^»«?,,«« ''""^''^d anf 
 -d fi%-four thousand,, three hunl^f ^^rweSj-^'unl' '""'^^ 
 
 EXERCISES IN NUMERATION OF SIMPLE NUMBERS. 
 
 400 
 
 6004 
 
 80067 
 
 670005 
 
 9006014 
 
 92100121 
 
 7. 
 
 8. 
 
 9. 
 10. 
 11. 
 12. 
 
 800800003 
 87974015 
 35000918 
 30150900 
 
 70S000549 
 4050300 
 
 28764105 
 
 1000500 
 3008727 
 
 605054045 
 78592835 
 
 106405021 
 
 EXERCISES IN NOTATION AND NUMERATION OP 
 SIMPLE NUMBERS 
 
 1. Twentj-eeren, forty-eight, si^^ty-five 
 
 3 or S'lS r 1 f '^"^' ^''' ^-d-d- 
 
 4. Thre hu dred a,5'Skv"' ^'""^'^'^ *"'^ ^wenty-four. 
 
 6. Four hur. 'ed and nfarnnV'"*- ^"l^'^''^'^ ^"'^ '^^o- 
 
 6. One thousand Z. one Ke hllnl ^T^''^^ *"^ "'°«- 
 
 7. Eight tliou^and one lu/r.S ^aid S *"'^i '^'■^*- 
 
 8. N.ne hundred and sevenS Sfotrntfi'v /"^^-r i^^"^'^"^. 
 
 9. SercD hundred and eiditPPn H?^. . , " ^""'^reJ and two. 
 
 CD 
 
 CMfV 
 
 DCCXXX 
 
 CMXLLY 
 
 XlX 
 
 MM 
 
 39 
 
 What u the ruU/or num^ratitn t 
 
 mn 
 
1^ 
 
 li 
 
 DBCIMALS. 
 
 DECIMALS. 
 
 » th?' ^^?^'^^"»a^S arc meant, parts ten times, ., hun-lred times 
 t thousand tnnes. etc, smaller than the unit ., which are TnS 
 cessivelj ten tin.es smaller than the other ' 
 
 **f^. A whole number and deeimaln in « <^;, i " ■ 
 
 constitute a Mixed Number ' '""'' ^•■^P--'""- 
 
 «i^i huSr^s,r;'^s^ j;;^"':::^ "I'^r d^^^^V' ''"^ ;^^^'"'^' 
 
 and eight thuu.sandth6. •*'"^' '^"'^'' '"^'•^ a»J decimal two hundred 
 NUMERATION TAHLE 
 
 »Oa WHOLE Nl'MBElis AND DBCtMAI.S. 
 ISOK.VDINQ rROGKRSBION. 
 
 1>E8CKNDIN0 PtOORWSlOf. 
 
 
 8. 
 
 
 
 9 3. 
 
 sandths. ionihs. ioiths. 
 
 •As 18 easily seen, decimals," with regard to their order folh.™ 
 
 inver.oly the systen> of numeration of whole nuXs the ? Ij 
 
 n^ times .nullor than the unit, wherea. ^e„ is tre unit cpe^ted 
 
 Tit a^nll^'l'ff'^^^P'"^^'^'^ '^' hundredth pa toTh« 
 unit, and a hundred, the unit repeated hundred ti.u.s &o r 
 
 wit iT^ m:^:/S"S^ ''■ '^"' ""•"•^ -• ^••^ "> -^-^ --^ - 32. 
 
DMOIMAIM. 
 
 It au Huule tin: jtii-ii^ • ■ 
 the teiuli ^.,,,'^, ■,7'*'*^ '»to ten enual nans p..„i • 
 
 point ; tic,riim/l(fr''J^ '*T**'"' "/'''''• "^hich place th. l , 
 
 6. Three ^W^Jfki'fi, Lp L ' , ^""^''■*''^'''«- 
 «»^#^t»tt, a„,j a,, huadredth.. 
 
18 
 
 THE PRINCIPLES OF NUMERATION. 
 
 P. Twol,„„rl,.o.l an.l Mvc.tv. n,,,! nino lunulrcl-thoimndths. 
 10. One thousand an.l six, and five ten-thouPandth* 
 
 1. Joi.r tliousan.l and seven, and three hundred-thou^andtlw. 
 .o* ^.''^^■"'n^ «*"'! twent/.two millionth^. 
 
 3. hji^hty-two, an.l thirty-BJx hundred-n.illionths. 
 
 14. higi.t lmndre.1 and fifteen, and sixteen thonsandthi. 
 
 15. Iwenty-seven, and one hundred and two biUionths. 
 lb. Twenty thousand and ten, and thirty milliontha. 
 
 BJU-HMS ORALLY AKD WR.Ti: IX WORD„ THK rOLLOWjNO IflXn 
 
 mruBKRa ajtd sisolk decimal*. 
 
 1. 
 2. 
 
 3. 
 
 4. 
 
 1. 
 3. 
 3. 
 4. 
 
 6.90 
 9.908 
 641.400 
 703.2004 
 
 0.004 
 0.000607 
 0.005 
 0.00OT0O7 
 
 Mijted number*. 
 
 6. 354.0064 
 
 6. 352.06046 
 
 7. 76.26007 
 
 8. 375.60050( 
 
 Singlt decim^ila. 
 
 0.4072 
 0.401950 
 0.9540626 
 0.075003 
 
 9 
 
 10 
 11 
 12 
 
 9. 
 10. 
 11. 
 11 
 
 41.004064 
 452.010778 
 7657.008007 
 1898.04 
 
 0.69804445 
 0.736050210 
 0.000500019 
 0.00000501 
 
 •PPLicATioN OP thk: pkinciples of numeration 
 
 A8 LAID DOWN IN N08. 27 A 31. 
 
 it fo^owt°''°"^'"° '"^ *^^ principles laid down in No8. 27 & 31, 
 1st. That, to render a who/e number, ten, a hundred, a thousand 
 times greater, we must write at the right-hand side of he number 
 one, two, three nau-hts or ciphers (1). numoer, 
 
 tl. Jfi "fL*?' "?'"^'' ^*^ ""'^'' ''""'''"^'^ 260 in adding a cipher after 
 the b, that ,s, ten Un»e« greater than the first, since the units becomi 
 tens, and the ten«, hundreds; or, in otherwJrds, thefl'ur of tbeTst 
 order becomes a figure or the second order, and that onhe second 
 we obtarSn ' ??»re of the third order. If we ^d another cTphet 
 we obtain 2600 which is a hundred time, greater than the first num^ 
 ber since the 260 units have become 26 hundreds. ^ 
 
 Thus, 26..S5 beoome/i tea Umes greater if written a«3.6. tixM tk« 
 tenths become unit*, the units tens, 4c. ' ** 
 
 fraatar Y- 3«. Do. A uhoi. N«Mi^.r witA a d^Mmal •mumIV ^■*'** '^^ 
 Uiiy T''"',?"'"' "'ti "" '"»■'*' "«»t.iD.(i, «qa»U ton. a hondrwl d.^ A. 
 
 1. 
 
 !«» 
 2" 
 3'» 
 
 4" 
 
*" «WO»LM or NDMERATION. 
 
 •"'.', two, throo, &J., jg„™'- "• "'" »a from the right-hand side 
 Thus, in the nuiDher 99*; . if 
 
 place of the units. ^ """ °"= ^main to talte the 
 
 numbers beco,,;, O.0O8 8,"d o o02fi'« ""f ■ 'T""' '^'«^; ZTZ 
 
 &sr*^'"''-4re^s:S"brsri^hrj^ir 
 
 1. 
 
 1" 
 
 3" 
 
 50 
 
 PRACTICAL EXERCISES 
 Render the whole number 38 
 
 10 
 
 100 
 
 1000 
 
 lOOOO 
 
 100000 
 
 «* 1000000^ 
 
 times greater. 
 
 Afu. 
 Ans. 
 dns. 
 Ant. 
 Ans. 
 Ant. 
 
 380. 
 
 38000. 
 
 3000000. 
 
 V,'i 
 
so 
 
 THK PBOPRRTIBS OF NUMKllATION. 
 
 8. Render the mixed niimber 42. 1 064231 
 
 1«» 
 
 2" 
 
 40 
 «° 
 60 
 
 10^ 
 
 100 
 
 1000 
 
 10000 
 
 100000 
 
 1 000000 
 
 >■ times greater. 
 
 3 Render tiie mixed number 4.20 
 
 1 
 
 1» 
 20 
 3» 
 40 
 5" 
 
 10 
 
 100 
 
 1000 
 
 10000 
 
 100000 
 
 times vreater. 
 
 6° 1000000 j 
 
 4. Render the decimal 0.05 
 
 2«> 
 
 3" 
 4» 
 60 
 
 10^ 
 
 100 
 
 1000 
 
 10000 
 
 lOOOOO 
 
 tiniea greater. 
 
 fio 1000000 
 
 5. liender the whole mini her 6705415 
 
 l* 
 2" 
 
 30 
 
 101 
 100 
 1000 
 10000 
 100000 I 
 1000000 J 
 
 • times greater. 
 
 ©. Render the mixed number 7610438.06 
 
 10 
 
 30 
 6« 
 
 lO'i 
 
 100 
 
 1000 
 
 10000 
 
 100000 
 
 1000000 
 
 timef smaller. 
 
 7. Render the mixed number 5.45 
 
 1» 
 
 JO 
 
 40 
 6* 
 
 101 
 
 100 
 1000 
 
 10000 
 190000 
 •• IfMOOO 
 
 tiracR smaller. 
 
 Ann. 
 An«. 
 Aug. 
 An:i. 
 Ang. 
 Ans. 
 
 Ant. 
 Ans. 
 '■ns. 
 Ans. 
 Ans. 
 Ant. 
 
 Ans. 
 Ans, 
 Ans. 
 Ans. 
 Ans. 
 Ans. 
 
 4210.64231 
 421064.231 
 42106423.1 
 
 iS. 
 
 42000. 
 
 M 
 
 60. 
 
 Ans. 
 Ans, 
 
 Ans. 
 
 ^n*.67054150000. 
 
 Ans. 
 
 Ans. 
 
 Ant. 
 Ans. 
 Ant. 
 Ant. 
 Ant. 
 Ant. 
 
 Ant. 
 Ana. 
 Ant. 
 Ant, 
 
 76104.38M 
 
 76.10438M 
 
 •.•dS4f 
 
 Ant. 
 
 2* 
 
 4* 
 
 »• / 
 
 «" JO 
 
 10. Jl 
 
 14. 
 
 19. 
 
 1«. 
 
 17. 
 
 IS. 
 
 19, 
 
 80 
 
 81. 
 
 8a 
 
 84. 
 
 85. 
 
 8«, 
 
 87. 
 
 88. 
 
 8». 
 
 80. 
 
 31. 
 
 »8 
 
 88. 
 
 •4. 
 
 ISMKifci;.< iiJtaba!8{MM«lii"j'J;yi 
 
«. 
 
 '*«"'«'' '»" rl.cimal 0.05 
 
 KM 
 
 100 
 
 1 0(10 
 1 0000 r 'injefi «ri,a|ler 
 » 00000 I 
 'OO'^OOO j 
 
 81 
 
 »• ''"'"iT r.H. mucd n„„.ber 206.007 
 
 An§, 
 Ana. 
 Aug. 
 
 A}ig. 
 An 8. 
 Ans. 
 
 0.000006 
 
 2* 
 
 101 
 
 /oo 
 
 J 000 
 
 1 0000 
 
 '00000 , 
 
 'ifiw fMialUr. 
 
 ^J" i 000000 J 
 
 A7)8. 
 
 Ans. 
 Ana. 
 Ana. 
 Ans. 
 
 
 101 
 
 100 
 1 000 
 J 0000 f ""•«"< "tnaller. 
 
 '00000 I 
 '000000 J 
 
 
 19, 
 
 14 
 
 19. 
 
 1<I. 
 
 17. 
 
 IH. 
 
 l», 
 
 90 
 
 81, 
 
 93, 
 
 99. 
 
 84. 
 
 89. 
 
 80. 
 
 87. 
 
 8a 
 
 89. 
 
 80. 
 
 31. 
 
 38 
 
 ««. 
 
 84. 
 
 44 
 4* 
 
 44 
 
 44 
 
 46 
 44 
 44 
 44 
 
 165. 
 .'<867. 
 2004,16 
 
 040.4 
 74. 
 
 746. 
 
 ^ »..'{.') 
 76874. 
 
 6.46H 
 
 0.46 
 
 I^IO 
 
 CO.--, 
 
 i'.678B 
 
 Ann. 
 Anx. 
 A nn. 
 
 A?l!i, 
 
 Ann. 
 Ann. 
 
 0-00206007 
 
 146.2.309 
 
 100 
 lOOO 
 
 IIH) 
 1000 
 
 loooo 
 loo 
 
 10000000 
 1000 
 1000 
 1000 
 1 000 
 lO'jOO 
 
 10 time.f -/reater 
 
 4,0000007 ](;o 
 
 0.0007 jo';; 
 
 I4M0 ,o(,j,^, 
 
 10 
 «74,^f;7 10000000 
 
 l^'«^e4 1000 
 
 Mfl 1 0000000 
 
 n't ^'^OOOO 
 
 "•'''a 1 0000 
 
 II 
 
 (1 
 
 u 
 
 t( 
 
 <( 
 
 a 
 
 li 
 
 (( 
 
 (I 
 
 « 
 
 '^mailer. 
 
 greaier. 
 
 it 
 
 PMiallor. 
 
 ^^"f. 1650. 
 
 ^"*"- .38.67 
 Ans. 
 
 An.s.Umo. 
 
 it 
 n 
 
 li 
 
 li 
 it 
 
 grcatt-r. 
 enialler. 
 
 greater. 
 
 ' i 
 
 ii 
 
 Mjiallfr. 
 it 
 
 greater. 
 
 siJialler. 
 
 greater. 
 
 H»>ialler. 
 
 a 
 
 greater. 
 
 H»na]ler. 
 
 greater. 
 
 f'tnaJJer, 
 
 'e«t«r. 
 
 Alls. 
 
 An..'. 
 
 Ans. 
 
 Ans. 
 
 Ans. 
 
 Ans. 
 
 Atui, 
 
 A71N. 
 
 An.i. 
 
 Ans. 
 
 An,'<. 
 
 Ans. 
 
 Ans. 
 
 An.'i. 
 
 Ans, 
 
 Ana. 
 
 Ans. 
 
 Ans. 
 
 Afia. 
 
 Ana. 
 
 0,074 
 
 4.50. 
 0.00005 
 
 6060.0867 
 
22 
 
 ADDITlOir. 
 
 ADDITION. 
 
 OPBRATIUN. 
 
 428 
 635 
 874 
 
 193 7 
 
 ber^of- 1^"*?^""?"/' " P"x-« of un.tinj: together wreral num- 
 Sum t Amount • ^ "* ^« ^-^ * -'^''« nu,„ber called th. 
 
 de,H>!!!i,.!;!- f "'• "' '^' "'"•' '^'"' '''"" ^^^^ ^*- ^^« "- 
 
 ForinHtance, .lollar- cur, be tt<l.Jed to .lodarH, pounds to Donnds and 
 
 t:xampU of an Addition with whole numbera. 
 ^^WhatiatheBumofUi. three following numbers: 428, 635, and 
 
 ..nuI!*.Oh!f ■"""'".*'' ■[.'■•■'"8«'^ 'l>» n">ober«, so that all th« 
 
 flret ad.l the oolnmu ..t «n«V* ,• thug, 8 and fire aiti 13. and 4 
 
 arel7 un,t, .^ I te„ a„d 7 units. Wo writ, tho 7 "iniU 
 
 under the column ot uniui. and e<urg or add the 1 ten to fbn 
 
 column ot tons ; thue, I Hdd.U t,. 'f m»k« S and 3 »,. • 
 
 and 7 are 13 tens - 1 hundred and 3 i" ' W, IZ^L 
 
 3 lens under the oolumn of tens, and oarr ih. 1 h«dn,d U 
 
 ntfh?' •^I?^''^'!," -5' addition by the figures of the first colu.nn 
 at the nght-h:ind side, 80 that iii whole numbers, we may carry 
 the tens proceeding from the addition of the units to the colunm 
 ot the tens, the hundreds proceeding from the tens to the column 
 of the hundreds &c.; and also in decimals, carry the tenths 
 proceeding from the hundredths to the column of the tenths and 
 the units proceeding from the addition of the tenths to the ooluma 
 of the units, and so on. 
 
 41. From the preceding illustrations we deduce the following: 
 Rule.— 1. Write the numbers to be added so that all the unite 
 
 oftM tame order shall stand in the same column; that is, unite 
 
 under units, tens undpr tens, etc. 
 
 II. Beginning at un^ add downward, or upward, each column 
 eeparateUj, and u>rUe 'h -., nd.-r,ath, if it be Us. than ten. 
 
 ,1.: /V^ *"? "^"".^ "•'"'" ^* '«•» ^ ^'-^ ^^«» ^««, ^rite 
 the umt figure only, af.{ .../„ 'h, ten or te.: to the next oolLmn.. 
 
 IV. Write the whole sum of the laet cobunn. 
 
 w uiMiNMm to «• immmmMdt^ 41. Wka$ w tk« tm m-m i nUe/m- mddHim t 
 
 5)^V 
 
 " ' 'fi: - i' ^ ^y ] "\ ^~i""-' — — 
 
m^ 
 
 r^ . by a pointy ,, ^,„,^ drriZr' ^1'"' '^'. "//-m th. 
 
 
 //t« number 
 
 areciths, 4682 uni* , l> i .T" 
 
 """» 7'. l.,m.lr,.,W„, and 
 
 Orit, CATION. 
 
 »S79.26 
 
 46 8 2 
 i) 7 3 
 
 78 56 
 ^n*. 1 6 6 9 I . c o 
 which is road in the following 
 
 05 
 75 
 HO 
 
 86 
 
 hundr«dlha'JTi*;";„^/r« '". «nri 5 are (5 
 write the 5 hundr,d!h! *. ''"'"''•<"''»>«• VVe 
 
 than two. "•'*'''' '"^^ ^ .^''•^'ater nuniber of parts 
 
 Ana. 
 
 OPSRATlOjr. 
 
 128.24 
 
 349 00 
 
 5(1 >5 
 
 I49.d4 
 
 __967^ 
 
 "1645715 
 
 PliOOF-. 
 
 ?flt. Part. 
 123.24 
 349.00 
 
 472.24 
 
 2n.i. Part. 
 
 5G.25 
 
 149.34 
 
 967.32 
 
 1 172.91 
 
 Addition of 
 partial io/uia. 
 
 1172.91 
 
 __47l\^24 
 
 1645715 
 
 which k read 1645 unita 15 hunc^redthl 
 
 USE op ADDiTrnv iJi'i- 
 number.: the whol^^Tstt t rthT Z^ '"^^^'^ -- ^^-voral 
 pan-a. are given. The selli g p'^^ ^S^ P"°« -'^ other ex- 
 pr^t are given, <fec. ° ^ ^^^° "»« buying price and 
 
 ?. We know that the rP^./u,.'^,^ ^^ ,., • - 
 »n addition, when we must find / T^k^ ^^ ** P'"''^*^"" ''^'quires 
 *:!:^^f several othe^r^ number equal to the sL or 
 
 
24 
 
 ADDITION. 
 
 PRACTICE IN ADDITION. 
 
 I. 
 
 600 f 850 + 501 + 49 + 904 + 
 604 + 810 + 333 
 
 3. 
 
 4. 
 
 6. 
 6. 
 
 7. 
 
 759 + 216 + 655. 
 
 Ans. 4433 units. 
 1226 +3004 + 4004 + 5105. 
 
 Ant ] ^cmc 
 19223 + 125979 + 189023 + 100610 + :5300. Am. 4.38135." 
 15879 + 15957 -^ lOOlUl + 8107S9 + 975020 . lOOUO. 
 
 ?uwn<?* "^.nM"*" '*'•' ^ ^* ' ^'^ + "^"^ ^ '012. 4hs. 1390. 
 
 110200 + 9104 + 4610 + 10110 + 95303 + 8888. 
 
 100989 + 100001454 + 77777707 + lOllOOOO + 100000090. 
 ^oo;n. ?i„^.J" 1^0^^+ 132 + 20000020 + 109909 . 8888888 
 I L'^ 11^^"^^- ^ns. 80317134. 
 
 9. 49 + 97 + 68 + 45 + 64 f- 68 + 3S • 97 + 75 -*- 03 + 49 - 
 
 in ^L'^ ^t" 59 + 87 + 65 + 43 + 21 + 10. Am. 1238. 
 
 u \tl\: ^l:^ '^+ 67 + 86 + 3y ,. 47 + 74 t 98 + 57. 
 Aa' ^L"*" *?. "^ ^* "^ 46 + 67 + 86 + 64 + 3G + 95 + 34 + 66 
 t ^7^ ^t'^ ^f +65 + 67 + 66 + 77 + 59 + 96 + 69 + 49 + 95 
 + 67 + 27 + 45 + 36 + 97. 
 
 i^Q ^^.t '^^ "*■ "^^ + ■'^'^ + -^23 + 695 + 987 + 429 + 678 + 542 
 + 249 + 75 + 99 + 88 + 8') + 98 + 36 + 674 + 99 + 89 + 69 + 
 429 + 98 + 103 + 138 + 274 + 39lT + e» + bJ + 
 
 ■ I?; ^tt ^^.^ "'' "^"^'^ + -^^0 + 694 + 678 + 534 + 864 + 684 + 468 
 
 875 + 708 + 1075 + 3548 + 739. 
 
 14. Express byfigurtHaiid add up the followini? uutuber.,: eighteen 
 units, + ninety-five, +cae iiuudredand one, +oaeluDdrf.l ^ud twenty- 
 thre^e, + three liundred and ten, + six hundred. Attn. 1247 ' 
 
 Ij. l^«quired the sum of six hundred unit*H, + eight hundred and 
 any, + five hundred and one, + forty-aiae, + nine hundred and four, 
 + seven hundred and fifty-nine, + two hMndred a.wl fifteen, and five 
 hundred and hfty-fivc 
 
 16. Express by figures one hundred and ninetv-five, i two hundred 
 and eleven, + one hundred and ten, + one hundred and nioety-nine, 
 t eight hundred and one, + f«ven hundred and Beveniy-eercn. + 
 Bine hundred and one. ^„g^ 31(jj 
 
 17. Express by figuren two thousand nine hutidre,! and ninety- 
 ■even, + twenty-three thousand six hundred and fiftoen, + twelve 
 thousand 8IX hundred and ten, + one thousand and fifteen, and make 
 up the sum. 
 
 18. Required the euni of nineteen thousand two liundred and twenty- 
 tlireeuniu?, ; one hundred and twenty-five thou-iand nine hundred 
 and eeventy-nine, - one hundretl and ei-hty nine tliouarod aad 
 twenty three. + one hundred thousand six kundrei^ wid t«D, + three 
 thousand and three hundred. 
 
 19. Required the nnni of fift<.en tboB^r^ eight hundred ands«veB«'. 
 nmt uniui T fifteen thousand nine hundred an.i (iftv-sMtn, -f-.one 
 J»(-ndred thousand one hundred and one, + eigUl hundr«i and ten 
 Wiousand beven hundred and ninety nine, + nine hundred and wveatv- 
 tive thousand, + one hundred thousand and ten ? Ang. 2017746 " 
 
Ant>iTTo?r. 
 
 n 
 
 'i^^'l and thirtv-tw. . :..::_°"**''...V>o»«and and fifteen, + on. hun 
 
 2i.40.()n 4- 104.8 + 100.-..025 + 7.;J87ri7 
 
 22. 0.4 + 0.20 + o.O.O. , ,,0, ^ o:'2ro +'^.^1' VS*"'''^" 
 
 23. COo + 0.00012 + lio ^ ,1 •..;'"*• V-^^"*** ten-thousandths. 
 
 2 . G.% + ;^.99 ^ g 7 \ Jfi.V^''^^^ +0.0001005 + 1 
 
 + 'SSO. ^ ' ■'■' + ■'.■i> + 7.77 + 3.7S+ 9 0- 
 
 26. 4.95 + 9.54 ^ « ,,, ^».. 1 1 7.929 tl„„„.„dTh8: 
 
 tw™t.v.(i,, lhoa,"tl., "1 «"''''• f ""' ."■»-an,i .l,r <.„„?,' .nd 
 
 , ^0. Kequirfd the «„ni of f„„r L».k "P' ^"»- 1167.:i2:-.. 
 hundrt.,! f.„.,i 1. '.''"" '«»"", -r twenty tlmu««i,dt|„, + 
 
 Jjii-ce hundred ten-llmu,indth«' * „„„ 1. ', "rV ■""■"»"iiiii«, + 
 ^ • Required the mm of four hn„,7. "'; ''8l"«n liundreiltli,. 
 
 '''"3^^=' + "'"etren thou^saldthr **""^'^^-^^0"«'*ndth«. + eiglu bill 
 
 ^- h„ndreatn?h'3,;:^^ ;-ndred.tho««.ndch^ , 
 
 sand hundmUh,, 4- thirlMnl^tJ hundred tenths, + one thou- 
 e>^'ht Imndredth. -f- ele«!f u "' '""."T^****' + ^''^"ty miliicnthri 
 -nd ni ,,,„ ,^ili^^;^^- hu„,ired-thou«»„dth^ . ^hrie thoi'.knd 
 
 ^4. Kequired th« sum of nn. .i i ^""'- 40.174529. 
 
 thousandths ^ two thSandCdS"'^ tenth., -f- f.„r hun.l ed 
 
 4- twenty thou,.and miIJioath« Tten tr ''"•"*" ''""-Jml tenths, 
 
 faousandth., + one thoS 'and fl.V r'^lr **";' ''^^'^^ '^""^reV' 
 
 thousaad raiilionthB ? *'' ^^^ *«^"-«n»ll'onths + one hundred 
 
 •»o- What iH tht? ■»>?. ^r u,„ ,.,,. ■ 
 seven miliionths: one hn Jrl) f'""!.'''^ nuna>er« ; twenty-five an.i 
 
 jwandth«, on;rndr:f:if:tf:r;flt '-^'-^ -^d'rc!!;;:^^ 
 
 dnfdthH; »erenteen, and three h»n?5^ ' /"'' ^''^''ty-nine hun 
 tkouwndths? *"'"" ^""dred and forty .i^ht hu^j^J 
 
 viiM. 3(;.^.63«487. 
 
 'I 
 
I ki 
 
 ADDITIOn, 
 
 PBACTICAL PROBLEMS OR QUESTIONS IN ADDITION 
 
 1 56 
 
 2 3 8 
 
 * 2 7 6 4 3 Ans. 
 
 2. I bought some merchandise for the sum of S94.'; fi*;. i 
 must I sell them to gain $25.20 ? «^45.65 ; how much 
 
 $ \T5T5 ' equate" h;7it?03t";.l S It r wK" -^^ \P"°' 
 25 .20 245.66 + 26.20 = $^70 85 LlUng pri^e "" ^'"" ' ''" "• 
 
 » 2 7 . 8 bAns. 
 
 thano1.MtlriSj2"o^rt «4.75; onTueadaj, $1.15 more 
 spent duringSseXedtsT '^'" '" ^""'^^^ = ^^^^ "'«°»^ ^*« 
 the'^7''8'p?nr4;7^ +"*[ IfAV-KnT f Tuesday and Sunday. On Tuesday. 
 
 «69;l'rj;l{,;r7liS' t^'f-^'^^' the butcher, ^16 ; th^^ shoe-maker, 
 famiV owe i^ 111 ? ' *»J f«'' houHe-rent, 145; how much does th^ 
 
 6.' Th"e"'^;j;.Sn"of Mo' '" t*' ^?^ ^"' '^ '^ ^^''^-fold ? 
 Quebec, 64^, Se^Rifers sto' f'"^ '•^•^.O;? -»'«» that of 
 Levis, 6300: Screl 5250 Shirhl ?.' h,3^^T^^'^ ^^^'^'^ P^^'^t- 
 Pulat.c>„ of tLos;:ev:n-io;n''r'"^'^' '''' = ^^"^^ '^i'- .^^'^ P^' 
 
 $45ooV}^t:':orn^!7/5S'';^^^^ 
 
 owes $92. How much did he'o^e'l'fir* '/•''' '%:^'t^\r 
 ^>eforetheeng^ageme„t? re„.a,„mg. How many had Vo v 
 
 86iSmi;Th72rd"mo^;*i;rtL«?r«^^^^^^^ ^'^- -"'^■■- 
 
 there in the army? ' ^ *''* •^'^- '^^^^^ ^T '"^''^^ "'«» "<" 
 
 „ui:;.I\«ori'^^'^^^-/>^- o, weigh 390 poun1reach??hr;;- . 
 
 nc gmined »176. How much did h» sell thora for? An$. $486. 
 
ABDinOM. 
 
 27 
 
 10. How miiQv v^u.r>i piurv^^j !• •''-•»"' ' An$. .^7240 hush. 
 
 .ujr^i n84,e.iS;;;?£iS^^^^^^^ which oc 
 
 "• .^ Powon who WM bova ia lijl dlS^ ifJu °^ ^^"^ Christian era ? 
 
 year did ahe di« ? ' **"*' *•<* •* '!»• «ge of 37. In what 
 
 tkio ^^^ ^'' o^^he Dominion of P«n.^. • "*"*• *3174.55. ' 
 
 Jh« Province of Ontario iSnL'^V* computed a« follows- 
 bee, 210000 .quaremfea the pZr"';';^'' ^^•^'ovince af Quei 
 
 »»nat 18 the whole area? aJ^^ \oilli^ ^"*''« ""'les. 
 
 !»• A tanner bouirht 25 hide« fnr *%. ^»». 4J7360 square mile*, 
 g-epared them, he e^old tLm for Ju2 67°^'*^^^^'' ' ^'^" J'^-^ng 
 How,auehd,dhe«ellthemfor? ^" '"""" '^•'i ^^'^ t»ad paid^ 
 20. A «„-*„ . ^„,_ $277.40. 
 
 ''"• -*■ certain sun, of moner wm h;-;^ ^ "**"• *277.40. 
 
 '^ved$65;thT2nJT6-in "r^^, ^hree persons : 
 
 tk.lst.,rece^ „^.^^^ 
 
 J32. more than the geeond 
 ^M the sum divided f 
 
 ^i*. i8t. $65; 2nd $91 3fl. 
 21. A merchant in fl«Hm» Jf^^'.^^^M^' ^^o'e sum ^279 70 
 1143.40 bj the ba gaijf hoVm^^^^^^ "'""""^ '' $6218 So", lost 
 
 . 22. At the censul of im tT " *'^ P*^ f"'' ''' 
 1409430 inhabitant that iri^^ Papulation of Upper Canada wa« 
 fOOOOOj New Bra„a«^^J Is^om/ ""h r^' '''''^' ^-^tit 
 tbere in those four ProvinnJ.lu ^"'^ "'^"^ inhabitants were 
 o*' Canada? '^"'''""''' ''^'°»» «on'POHe the pre<«nt Dominion 
 
 23. The battle of Marathon took niai"/:.r;^*^.^?^® '"^^^itants. 
 9"/ ^pf*!:' '''"°^ *^»t period to 1868^? "^ ^'5^'" ^^"«'- How 
 
 24. Eighteen tanned honw-hideswelh ^«fi ^Z'" ^'^'^^ ^^"s. 
 324 pounas ,n being tanned WJa7H55 thl^""'^''- l^'^ ^^'^^ '<>«» 
 
 26. A number ia such thaf ;<"!!•• *f , '^"^ ^^"^ weight? 
 5976. What is the nut ber ? ''^'™'""''^ ^^ ^^^^ th"^ remains but 
 
 io. Kawwooi is worth ^n 'r« . *'*««. 1246'? 
 
 *2.45. What is the price !f k n ^^Ti^"*^' *^''" P«-^P*red .t aulrnenta 
 , 27. The populatiuTof EnJon.""^ ''• ^''^'''^ ^^ooU An^^^To 
 
 that of Nort'i Anieirc;l3^8a8''Z':>f1 ' Vh^'*'"' '"•-^''•"^« - 
 that of Asia, 5H8700000 • thltlr a r . ^""*** America, 22007823 • 
 
 20600000 : That of A u!:.U,:?^'^/4f"«^. WO.^5000; thaiofO.eapr.a 
 What IS the whole pop'uiltrcU^'o^rhe^g'loreV"' of Polynesia. ;r90o1: 
 
 Ant. 1020360878 inhabitant.. 
 
 
•" SDBTRAOTION. 
 
 SUBTRACTION. 
 
 between two numbers of the eame kind. 
 
 ,1,/ ^•^"■'^J """'^\'' ^"* ^^'^t ^'''«^ '■« t« be diminished, is called 
 
 tt fc:i;"' ^'^ ^'"'^"^^' - ^^-^ -'-»^ « ^ ^e -btracted, 
 
 cerordl^erTnte!'""^'""''"""^^^^ ''^ remainder, ex- 
 
 tk^J'fl^ ^r'"^"" «"6W »/;/i.7. each figure in the mbtmhend i$ leu 
 than the figure alove if in the minuend. 
 
 Ex. From 547 take 324. 
 
 ortv.kriov. 
 Minuend 6 4 7 
 Subtrahend 3 2 4 
 Remainder 2T3 
 
 w» writo in hundreds' 
 >«I9, Mid 3 uniti, or 2 
 
 AvAi.Y^rs-Wowrit* the leaa number under the 
 
 Rreuier, ,.., tb«t uuiu of tbe same order shall (taad in 
 the same column; thoD, wo begin nt th« right and 
 f)rnoec<l a« foliown : 4 unit* fiorn 7 unit^ ieare 3 units 
 whuih we write in unit.' piaoe. Two tens from 4 tens 
 loave two ten<. which w., writo in tons' place. Three 
 hi.ndred»(ro.n5hnndrc,itf lenre 2 hundred*, which 
 pirtoe. Henoe we hare for tho remainder, 2 hundreds, 2 
 
 fiXAMPLKS Pon PRAOTICB. 
 
 (1.) 
 Minuend 457 
 
 Subtrahend 325 
 Remainder 132 
 
 From 
 Take 
 
 11. 3692 — 
 
 12. 7634 — 
 
 13. 8742 — 
 
 14. 41763 — 
 
 15. 7839 — 
 
 16. 3724 — 
 
 17. 2945 — 
 
 18. 69524 — 
 
 19. .56247 — 
 
 20. 72365 — 
 
 Cask IL- 
 greater than 
 
 (6.) 
 
 648 
 2.34 
 
 1212 = 
 
 Ana. 
 
 3132 = 
 
 Ang. 
 
 5331 = 
 
 Ans. 
 
 11522 = 
 
 Ans. 
 
 5427 :-- 
 
 Ang. 
 
 2502 =-- 
 
 An.'i. 
 
 832 = 
 
 A na. 
 
 47321 - 
 
 Ans. 
 
 15123 = 
 
 Ans. 
 
 1243- 
 
 Am. 
 
 (2.) 
 
 273 
 13J 
 
 m 
 
 a.) 
 
 376 
 264 
 
 2480 
 
 4502 
 
 3411 
 
 3024! 
 
 24 1 2 
 
 1222 
 
 2113 
 
 22203 
 
 41124 
 
 71122 
 
 (3.) 
 936 
 7U 
 
 222 
 
 (8.) 
 
 857 
 622 
 
 (4.) 
 
 666 
 423 
 
 262 
 
 (9.) 
 
 498 
 176 
 
 974 
 
 631 
 
 343 
 
 (10.) 
 645 
 642 
 
 21. 
 22. 
 
 23. 
 24. 
 
 25. 
 26. 
 27. 
 28. 
 29. 
 30. 
 
 1243 
 48673 
 34272 
 
 79832 ■ 
 15475 
 1576«- 
 982S76 • 
 217951 • 
 760142- 
 391657- 
 
 -To subtract when any figure in 
 the figure above it in the minuend, 
 
 - 2I3=itn»... 
 
 - 163.30= Ant... 
 
 - 13051 = v4n«... 
 
 - 67411 = Ans... 
 
 - 4050 = Ans. . . 
 
 - 4327 = Ans... 
 -120341 = Ans... 
 
 - 5430 = Ans. . . 
 -570031 ^Ans... 
 
 - 141322 = A«,..,. 
 
 the subtrahend w 
 
 47. 
 
 JS; ^^» ""bkr-otion ?_ Ueflne minuend.- subtrahend.- 4i. A.,, fc H. 
 
(6.) 
 974 
 
 Ml 
 
 343 
 
 (10.) 
 
 145 
 642 
 
 -SOBTEAOTION. 
 
 ». Find the difference between 853029 a»d 3^16. 
 
 29 
 
 OPKKATION. 
 
 METHOD BY HoaHOWlNU. 
 
 M^ \?"'^'- '^' «™'^'«^' ''i'l' ""i^- under 
 wesar.?f"'>^T""'°« "tth" right-hand 
 
 Proceed ?'r»l7K"'!^ r-l'iee below. Wo than 
 above. ^ but ?h' "*" ^ '"^^ ^'•"'» »h« 2 tons 
 
 equals JO hundreds, learini; 9 above tha oi- 
 pher anladd the 1 hunl^od equ,!l to ij 
 ten.., to the 2 ton., makin - 12 ten.- 7 ten« 
 f fj; ni 9 I.ares 5. which we write In hu^dVeii'n? ' 'l"V "'^'"^^ ''^' ""'•' "°der ; 
 ' th-;usand from the 3 thousands 2 thn,",n^ ^ *"■" ^®'^*- ^^ ''• h'^ve taken 
 wh,ch we write under. We cS take 6 I 1^"^" '"^ J """S^t from 2 leave, 2^ 
 so from the 8 hundred-thousSwe take 1 h ; 5*""^"^^' ^'""^ ^ tea-thousands 
 ton-thousands, ,.nd adding them tl the 5 ten »h '^■'^"''»"'^' "^'^'^'^ «q"al- 10 
 « ten-thousands fr.n, 15 ton-thou?ands l«a« q ?* '"u"' '"'''*« ^^ ton-thous.nds: 
 und.r Having taken J hu.dredXu^S fL^'^V ''''2'^f^^' '^'''^^^^ ^« ^"te 
 h mdrel-thousands are left; 3 hundred hnn,"'; ^ ^"'''''«'' t^o sands, 7 
 leave 4 hundred-thousand,, which we wJft^uM?,'^' 'Tu ^ '^""I'-oJ-thousaids 
 or reinamder, to b.' 492554. ° '"*^"^' "'"^ t^"'" SnJ the dirwence 
 
 Minuend 
 
 Subtraliend 
 fieniainder 
 
 •3 
 
 a " 
 e 9 
 
 S° • 
 
 H 6 3 2 y 
 3 6 0475 
 
 47nrT54 
 
 OPKKATION. 
 
 8 53029 
 3_6_0^4 7 5 
 
 4 9 2 r5~4 
 
 METHOD BY ADDING lU. 
 
 S:to2t^--^^-s-^;^-^p:^i?;:\a 
 
 5 ten,. But havng .iJdded i, UL °' f""^'" ^^ tens leave 
 
 « mousand, to the minuend wn sKmII k„ ' ''^ °^^° added 10 hunflr«,il 
 unless we add 1 thousand to the of ,h ^h ■' * ':?'".»'°J«'- 1 thous.ond tooJaTi' 
 
 tte°.oM"" >^ t^>-\VotandT£e"'ir?en'^"''""J' t^'-tbo^usI^dT ' 6 ie^ 
 t^nrmakSr/hunlLVi^' '" ''^ --i.-^ ^ "rPen-^e 
 
 4 hun^,,a J,^J2f ed-t ousands and subtract theVf^m'tl^'^th^f '^'^■ 
 before. ■^»>"«' w. flad the remainder to be 492554;' the simr? 
 
 *L-i"' trrr '"""r'-"^ "^ ^^^'^ "- '^"--« 
 
 c Wkt^ i, tk >- y : ■ — — . 
 
 «' ^'^^i't^m^for^traciumt 
 
 m 
 
 #1' 
 
 It r ' 
 
80 IITBTBAOTIOIt. 
 
 IT. Commmnng at the right-hand, take each figure of the mh- 
 ^rahendfrom the figure above it, and write the rZlt und'rneTth 
 
 III. If any figure in the subtrahend be greater than the corre*. 
 oondmg figure abooeri add 10 to that upper figure beforTsl 
 imS; " " "^ "" '^' '""'' Wt-hanrfigure Iftl ll 
 
 PaOOF OF SUBTRACTION. 
 
 4S. We make the Proof of Subtraction in a.JJin:,. the re- 
 .nainder to the subtrahend, their sum will bo o(,ual to tlie minuend. 
 «t the work la correct, ' 
 
 Ex. From 35678 take 27899. 
 
 Rem. 
 Proof 
 
 356 78 
 
 2 7 8 9 9 
 
 7 7 7 9 
 
 3 5 6 7 8 
 
 Akaitsis — ToproTethij operation, we ada 
 the remainder 7779 to theaubtmhend 27899. and 
 obtain 35(578, whiohsnmisequalto the minuend 
 or greater number. Henoe we coaolude that the 
 operation u correct. 
 
 This method of proof depends on the principle, that the greater 
 0/ any two numbers %s equal to the less added to the differlr,c». ■ 
 
 Use of subtraction.— ^«6^rac<ion serve$ to find the qain or 
 u)i> on goods; what we still owe on a turn of money of which 
 we have already paid a part; in general to find the 'sufilus of a 
 nvmber over another; the difference between two numbers, dec. 
 
 We know that the solution of a problem requires a subtraction 
 when wemustfind the difference between two numbers, or the excess 
 of a number over another; and when it is required to find one of 
 two numbers forming a total, that total or amount, and one of 
 the numbers, being given, '' 
 
 EXAMPLES FOR PRACTICE. 
 
 (1.) 
 
 Minuend 76518 
 Subtrahend 49359 
 
 (2.) 
 
 57813 
 .38675 
 
 19138 
 
 Proof 57813 
 
 (3.) 
 
 13042 
 9176 
 
 (4.) 
 
 250143 
 
 176158 
 
 Remainder 27159 
 
 .3866 
 Proof 13042 
 
 73986 
 
 Proof 76518 
 
 
 Proof 250143 
 
 48. Uvm d* yon prore tubtraetion f 
 
 6. 
 
 i. 
 
 7. 
 8. 
 9. 
 
 10. 
 
 II. 
 
 12. 
 
 13. 
 
 14. 
 
 16. 
 
 16. 
 
 ly. 
 
 18. 
 19. 
 'M. 
 tl. 
 
 a. 
 as. 
 
 24. 
 26. 
 
 26. 
 2t. 
 
 29. 
 
 36. 
 
 31. 
 
 39. 
 
 33. 
 
 34. 
 
 36. 
 
 36. 
 
 37. 
 
 38. 
 
 39. 
 
 40. 
 
 41. 
 
 42. 
 
 43. 
 
 44. 
 
 45. 
 
 46. 
 
 47. 
 
 48. 
 
 49. 
 
 .'0. 
 
 JI. 
 
 J2. 
 
 53. 
 
 a. 
 
 ( 
 
 u 
 u 
 « 
 
 « 
 U 
 
 u 
 u 
 u 
 u 
 
 u 
 u 
 it 
 u 
 
 a 
 
 it 
 
 ti 
 
 « 
 
 It 
 
 it 
 
 u 
 
 a 
 
 a 
 
 « 
 
 ti 
 
 a 
 
 n 
 
 a 
 it 
 a 
 «< 
 
 »-SU 
 
m 
 
 6. I Frpip 
 
 7. 
 
 8. 
 
 9. 
 10. 
 II. 
 12. 
 13. 
 14. 
 16. 
 It. 
 
 ir. 
 
 18. 
 
 19. 
 
 ^. 
 
 tl. 
 
 32. 
 
 33. 
 
 24. 
 
 26. 
 
 26. 
 
 ar. 
 
 29. 
 
 36. 
 
 31. 
 
 39. 
 
 33. 
 
 34. 
 
 36. 
 
 36. 
 
 37. 
 
 38. 
 
 39. 
 
 40. 
 
 41. 
 
 42. 
 
 43. 
 
 44. 
 
 45. 
 
 46. 
 
 47. 
 
 48. 
 
 49. 
 
 ;'0. 
 
 51. 
 
 J2. 
 
 53. 
 
 »<. 
 
 (I 
 
 « 
 
 it 
 
 u 
 
 (4 
 
 (4 
 
 U 
 
 it 
 
 u 
 
 a 
 
 M 
 U 
 
 il 
 
 a 
 M 
 
 H 
 
 it 
 
 u 
 u 
 ti 
 
 M 
 
 u 
 u 
 
 u 
 u 
 it 
 
 it 
 
 it 
 
 it 
 
 it 
 
 it 
 
 it 
 
 n 
 
 n 
 
 a 
 
 it 
 
 ti 
 
 it 
 
 ti 
 
 It 
 
 n 
 
 it 
 
 ti 
 
 11 
 
 ti 
 
 « 
 
 it 
 
 «4 
 
 .#00 
 46U9 
 
 l^iW'-,40 
 
 mm 
 .mma 
 
 mmm 
 
 mmm 
 
 mmm 
 
 fWBTEAOTlOIf. 
 
 take 
 
 mwm 
 
 mmm 
 w>^mm 
 
 fMmm 
 
 
 (I 
 
 « 
 
 it 
 
 it 
 
 tl 
 
 (I 
 
 (( 
 
 it 
 
 It 
 
 It 
 
 (t 
 
 It 
 
 It 
 
 .( 
 
 tt 
 
 it 
 
 a 
 
 tl 
 
 tt 
 
 if 
 
 ft 
 
 it 
 
 II 
 
 ft 
 
 tl 
 
 it 
 
 It 
 
 tl 
 
 ft 
 
 it 
 
 tt 
 
 ft 
 
 It 
 
 rt" 
 
 tV 
 
 iV 
 
 ft 
 
 ft' 
 
 ti' 
 it 
 & 
 tV 
 & 
 iV 
 
 ft' 
 .1* 
 
 351 
 
 15574 
 16134 
 30409 
 97J25 
 179127 
 471097 
 198576 
 55595 
 608578 
 4137976 
 988827 
 154379 
 737898 
 14550045 
 49876579 
 4007.S049 
 91791994 
 4590489 
 64834795 
 9068073 
 1300476 
 27740761 
 15007.34 
 3740056 
 6475904 
 74375676 
 97050654 
 277451794 
 9737.350 
 476294474 
 49.5647562 
 676489672 
 475207454 
 45612495 
 798435496 
 1&4289778 
 93457897 
 i>8047775 
 71904267 
 677469579 
 276499619 
 203405604 
 93235945 
 7456,:$yaa5 
 
 39787496 
 746855472 
 ^78809709 
 
 17073969 
 
 1977988S 
 
 31 
 
 »«. ^49 
 
 33895 
 
 63772 
 
 160131 
 
 14-7415 
 
 268973 
 3';882!i 
 
 388374 
 48I2'00 
 130I449« 
 16835321 
 20792702 
 83110009 
 
 2969.35925 
 
 62608006 
 
 185463520 
 
 689840100 
 
 939476 
 
 126030680 
 
 3902S9G89 
 
 805265.154 
 484533172 
 77.3277878 
 753019798 
 2693,v5?«I 
 91272751 
 
 18180721)2 
 
 88437502 
 
 474868620 
 
 411088255 
 
 77671553 
 
 668807729 
 
 58P006779 
 360796512 
 
 377406:75 
 
 176507908 
 
 881264755 
 
 93767519 
 
 ^078f.U81 
 
 *o83&.J74 
 
 4006736236 
 *6e722070S 
 
 !• H 
 
31 
 
 ilTBTTl.AOTION. 
 
 \P 
 
 SUBTHACTiON OF I)ECr\fALS. 
 f^r. From «(;.? take 6;).3r)4. 
 
 OI'ERATlo.V. 
 
 •^6.700 
 i 7 . 3 4 C 
 
 
 Rttt E - T ir • nuiab«r. 
 
 6. 
 
 6. 
 7. 
 
 8. 
 9. 
 
 10. 
 
 1]. 
 
 i2. 
 
 13. 
 
 14, 
 
 15, 
 
 16. 
 
 17. 
 
 18. 
 
 19. 
 20. 
 21. 
 22. 
 33. 
 24. 
 25. 
 26. 
 27. 
 28, 
 
 at. 
 at. 
 
 EXAMPLES B-oa PftACTIOl. 
 
 From 
 Take 
 
 Ans. 
 
 1.3581 
 
 From 
 
 28.98S08 
 
 « 
 
 « 
 It 
 « 
 
 « 
 
 M 
 M 
 
 90.49 
 
 109.191 
 
 5409.0r.5 
 
 764907.05 
 
 '^97450.07 
 
 4(JiJ742.6 
 
 !?70079.04 
 
 400048. 2i;i6 
 
 409004.9099 
 
 670075. yo04 
 
 49.1019 
 
 610011.050 ' 
 
 71079.0013 < 
 
 79073.07 « 
 
 12G001.0001 *> 
 
 191279.9709 '- 
 
 40IG45.1005 <i 
 
 700007.0238 «« 
 
 411978.10359 « 
 
 960945.00005 «< 
 
 0.0707 " 
 
 0.0006 « 
 
 0.90019 '- 
 
 Q.QQ89 « 
 
 0.0904 M 
 
 6.7009 M 
 
 O.Odtl « 
 
 take 
 
 (4.) 
 
 1.0062 
 0.43 
 
 0~57G2 
 
 i( 
 
 39.69 
 
 49.073 
 4045.997 
 87929.795 
 98776.095 
 76908.075 
 1987.-9.958 
 9372.016 
 100.137 
 4053.509 
 35.708 
 31971.9999 
 7482.1736 
 7398.1204 
 98996.9088 
 60056.0099 
 498.6709 
 79797.0098 
 36730.09871 ' 
 600979.00007 
 0.000007 
 0.0000076 
 0.7300007 
 e.0070S76 
 0.00289709 
 A 190007 
 0.004600008 
 
 An»- 50.90 
 " 60.118 
 
 " 1363.0.58 
 " 676977.255 
 
 " 388834.425 
 " 671289. 0S2 
 " 39067(;.i;)76 
 " 408904.7729 
 " 5G6022.39I4 
 
 '' 5780:);<.o.)01 
 " 63.''.!)(;..'^277 
 " 71671.9496 
 ** 27004.0913 
 " 14122.19610 
 " 401146.4296 
 
 " 375248.00688 
 " 35996.5.99998 
 
 « 
 (I 
 « 
 
 u 
 
 0.070093 
 
 0.0005926 
 
 0.1701893 
 
 0.00 1 8325 
 
 0.08760291 
 
 0.610893 
 
 0.004599991 
 
 33. 
 34. 
 36. 
 3S. 
 
•r iimier th« 
 J^lit'L' htnnd 
 thv II. ht of 
 <ay tlrisnU 
 »» in i«h(iie 
 t IB thf i«- 
 iber. 
 
 /Au/ the 
 
 null point 
 
 (4.) 
 
 1.0062 
 0.43 
 
 0.67C2 
 
 
 
 18 
 58 
 •).5 
 
 15 
 <2 
 
 )76 
 ■29 
 'U 
 
 01 
 77 
 96 
 I.^ 
 10 
 1)6 
 
 )88 
 
 »y8 
 
 )o926 
 
 K325 
 60281 
 
 33. 
 34. 
 36. 
 36. 
 
 M 
 
 « 
 1< 
 
 ■VBTBAOnoM. 
 
 •.077f take 
 0.900 « 
 0.19100 " 
 0.4500 M 
 0.09839 « 
 
 0.01011001 I Ant 
 0.0019904 
 0.09900036 
 0.00660046 
 .09600969 
 
 « 
 « 
 
 0.0 
 PRACTICAL PB0BLEM8 IN SCBTBACnON 
 
 field whinh koJ . A» • 
 
 3S 
 
 0.0677H999 
 0.898009fi • 
 0.091 <>9.965 
 0.44449956 
 0.00338041 
 
 ..in r '" "'""' ""^ -«« «'«« ™ »,d for «638. ^ba. ,. ,,. 
 
 op*:ratio». 
 
 $26 2 8 
 $2 3 fi 
 
 $268 
 
 ing tho coat Drioe S2<fin fv .V °°'^''^"''°' '"""bfraot- 
 *^" ^'M. $268 gain. 
 
 -hL^oZT.'l^Vsru'oT"'''"''"* '■«'«"=' ■'"' W8J5.76 good. 
 
 OPiriATIOW. 
 
 $5174.10 
 $4825.76 
 $ 
 
 bV.n« pri«. I6174.1Q. wVoSfSo,/""" '^^ 
 
 ^n». $348.36 low. 
 
 . -^ 3 4 8. g6 -----.„„. 
 
 •' A merchant bought flnni. f«, •cao- . ■*»«. S348.36 low. 
 
 «68r,3: how much didTgJS^^"''^*^^' •°'* •**" «»«> whole of it for 
 
 fi Si"*.*?"" difference between 70401 and fiOi9 . ^''*- *^227. 
 
 6. What ,3 the difference between fi^V^o aV. » -*»«• ^3459. 
 
 6. I owe.i J1628 : 1 mid «q7] • f,"i ^^V","* ^**^8- ^'W- 30952. 
 ^ 7. The greater of twriuilera is nn"^"'^ .^° J "^'^ ^^^ ^ 
 what is the smaller » °«»»fera is 1302, and their dUFennce is Dsi . 
 
 8 A merchant sold in one dav '?9';7i in _u '^"*- *21. 
 
 s-by o,«„d . p.,a. „r »Af 'i,'.r:;rd?i tK IS -^ 
 
 ■"any year. ti„, ,i^, ,«„;« /»-nd„d by Cha,„pl.i„ i„ ,5„3 ^ ^„ 
 
 n. iiie area of the Provinnf ^.f /» • ^'"' 262 years, 
 
 that of the Provuice of oXno iSOOn^n" '' '' ^^'^^"<^ »quare^u Ss • 
 mi es does the fonner exceed Se latte ' '^' "^ = 'i^'"" "'^y «1-- 
 12. A father was 28 years old .* Vj,L u--.i. . '*"*• 30000 sq. m 
 
 J*. What namh«r mn^ u jj . jt^ais oia , ^7,, 57 „. 
 
 .»'^ Jr*"' """"'*' "■"" •- 'JJ-l .0 4 unit. 5 l^JX! n*.,. 
 
 •» ^«J». 1769. 
 
9% 
 
 •VBTKAOTION. 
 
 "♦• What number inuat be ad.l«d .« -4 .. , " '^'^'•^'' "'*•" 
 
 hiindre-lthfl? °^ ■*^'^*' '*» ^ Hiousttndtl.H, to hare 12 
 
 London 28(J,SU1 • how mn^V Yi^^ inhabitants and that of 
 that of Paris ? ' ^^^ '""^'^ ^^•'^ '*'* population of London exce^ 
 „ 21. Alfred the Great .lied in 901 at th« "*' l^to^^ inHabitant«. 
 24 years: in what^e^i tt helln ''" •*" "' "' ^j » '^^^ of 
 . f ^- Oharlemagne was hnm in -7^9 i. •^'••' ^^^^ 
 
 he, lat. at his coronation as king- 2nd il . ^T "'"^ ^^ 
 
 age did he die; and 4th how m J, ^"P^^-orj ^rd. at what 
 
 until 1869? UmU? oY ^u" *^»P^ fr^^*" hi. death 
 
 at $1 1 7000 and adjud|ed fo ^e pH' gT ^"*'^^ knocked^dm t 
 
 ■n the museum of the louvre ^uTred?h^^ *^« P'«c«i ^ 
 
 l8t. and the last bidding ? «^"»«d 'he difference between the 
 
 24. The population of Montreal in iTan . •. , ^'»'- fHTOOO. 
 'tant8; in 1861, it wa« 57715 In 'l856 f^^^r?^"'''*",^ "^ ^000 inhab, 
 '" 1868, about 136000. What i« thf i ^^' !•" ^^^^' ^0000 5 aad 
 1851 to 1868? *^''"^*'"«''^*«eofthepopulationVroM 
 
 25. A farmer reaoed 1689 h»ak^i , ,' ^^^^^ '"habitants. 
 
 oat« He sold his CigLS John 89? h^r!' ".""^ ?'^'' '-^»^«'» of 
 bushels oats, and the rema3«,. t , hu^shels of wheat and 478 
 
 97 iT„ 1 r *i^^ '""' "' *°^ second ? 
 
 -..Id have $75 lel{; how mVh have J^ ' ^'^' «^ *J0I6.80, and 
 28. A merchant sold ti ifian It <• , ^"*' ^^582.30. 
 
 dit it cost ? °"°" "^ ■" '"J P«"i i' «300 lore. How mSok 
 
 hJL S.'^f""'" "M in.Mted in the jeu nia u "*?' *'^'^°- 
 b.fo« th. „„.ntio, o( prioUns, -iich .X 1«1 ', ''i':,''i'i« ;^^''» 
 
 PRACTICAL PROBLBMai cOMBmmO ADDITION aT 
 SUBTRACTION. 
 
 -ond^.':?ilKrt7V^8^^ !!;«.<'--^or change; on 
 
 of $43.2? .ndUi^'mo 76 fo°\«lPr * «*" of SSS-.o/anotl.:, 
 •MMMns to him in cash » .«» -r •llT"^ «pen«w, and then there 
 
 M» hu Moounto right ? 
 
■UBTRAOTION. 
 
 Xl.t;a^Srw\"ir :ii". !r..^ '-"» "-^ ««•<» •' b, had 
 
 ri 
 
 I««> Si'.'J, 4»,'i« f 7».H6 4. 68,46 4. «« J. 128 80 -U f.A ar, < 
 
 aft 
 
 not paid 
 
 7:^.16 -.|J30. 
 
 nhimlil bo left 
 Ant. $0.50 Hgainat 
 
 y,l^ •*»l».l>» «. 9IM.6O ; diffarenofl 160.60 — 160 
 
 bow ;„i;;'';;*i:2n t' •"**••' ^^' *" '"'^'^" 2*' *°^ ^^--^^^^^r 6 ; 
 
 ^- A Htntleumn having 11128, lost i«a8 And b~.„» •it!^? 
 triMch |„j,| 1,^ rM,uvn]w'^ ' «P«nt $172: how 
 
 ;J. Tf.e water, of the'^St. Lawrence eorer an area of 5G500n*»n"* 
 >i..''e«, twoof.tstributaric'fl, the Saguenav and St Man. ^""* 
 <ii^ on. an ar«l of 27000 nq/.are rn?fe" and *he othef 21oSo' T'"' 
 m,!*!,. Ih^ ,„uch doea the area of the St Lawrence exceed fh'^^ 
 
 <i 1 ■ ^ns. 017UOU fniiare m »a 
 
 i4%r u J"'"^»'5'>70.30; for the 2nd., $3674.60; for the "/rd 
 -ii .^" u" r*" '""" »'»"' '"' ^'»" *»«"• Christ, lie left Eainl 
 
 ■.t'l;t^;"'i'«.'trf'"fV''''°"-''u''"''' •■"' ^-j -mS 
 
 u YL» » " •'^••' '*°^ '^^'"« Christ. What age was he IaL »>..» 
 hel«ftK^pt, 2nd. at hiB death; and 3rd. how log from tht rJriod 
 «rk3« death to the jear 1871 of the Christian era? ^ 
 
 ' j4n#. l«t. 80 years; 2nd. 120 years; 3rd. 3222 years 
 
 E Wtif ?k ?7u^u*^' the 3rd., he gamed $685.30 ; the 4th. 
 Wa^rS Ivn ^***'' »»«g*'"«d $4320.95 ; and the 6tl ., he los 
 •gau, 1.1000, I).-U.r.i5ainorlo«e, andhowmuch? Ans. $169.651oe8 
 
 10 A ow«« a .u,.. of fC90, plus $5.5.20 for intere^. He reimbursed 
 -d,ffi««tum« $87.50, $210.00, $318.45; how much doe^ he Stll 
 
 ♦«4 ?/7J;^it2;:^8\r?Jir.'s^'rT' .*»•!-" Jliiitt 
 
 a Bank lin* /y « nnn A if- t 1®* *^°*"^' »° «*"''««» he gave 
 
 
 'M\ 
 
 ! 
 </ 
 
 % 
 
 I'l' 
 
 M! 
 
 ,' ll 
 
 '-ill 
 
M 
 
 MULTIPLIOATION. 
 
 m 
 
 16. A spfoulatwr bought 217 cords of wood for I1085 R. '• 
 much does he ow«yatT '^ "**^ •^"•' ^" *^2. H.<vr 
 
 " « ' 1!;°:, r'^^ *• *TH°°c:sr. r """^ ^r,"?! '" 
 
 R«qi'ired th. prio. of ,!,. s i^^'A''" T' °^° '"""' <' "'W- 
 l><>»e C0.1 »4.{o 7 ^^ kMwing <h«l ihe ulr bih, 
 
 I>" ihop Wore hi/lM ,,',,~h.„ S •" ■"" '•■" i'*'f "h" I", bi^l i. 
 
 hospital.. Having Lked 3500 mLTh™ ^•''*r "^''«*'^ *° '«»^« "' 
 
 AIM. Io730 niMi. 
 
 MULTIPLICATION. 
 
 OA. Ihe multiplicand and mnltini;-. „p- „!!-» «^-^ 
 because they ;,.orfa« or m«feth7-pr,;& '^"^'*' 
 
MULTIPLICATION. 
 
 MULTIPLICATION TABLE. 
 
 ^1 
 
 i 
 
 
 
38 
 
 l\^ 
 
 IHTLTTPLTOATIOIf. 
 
 no^^^c'i'12^''^'''""*"^^^'^-^^^^^ ^he multiplier doe. 
 
 ^^ Multiply 642 bj 7. 
 
 OP«RATIOW. 
 
 ^Multiplicand 542 
 Multiplier 
 
 Product 
 
 7 
 3794 
 
 *42^re?L";? ??,«^^^^^^^ "quired to t»k. 
 ' ' ■"« "8 product u 3794 
 
 Multiplicand 
 Multiplier 
 
 Product 
 
 EXAMPLES FOB PRACTICE. 
 
 (6.) 
 16812 
 
 (8.) 
 68607 
 
 3 
 
 4 
 
 4 
 
 5 
 
 6 
 
 8 
 
 7 
 
 9 
 
 11 
 9 
 
 12 
 
 X 
 X 
 
 X 
 
 X S = 
 
 X 7 = 
 
 X 11 = 
 
 X 12 = 
 
 10. 873 
 
 n. 946 
 
 12. 4731 
 
 13. 5607 
 
 14. 6924 
 16. 8667 
 
 16. 27693 
 
 17. 61786 
 
 18. 45678 
 
 19. 36397 
 
 20. 634576 
 
 0a8r TI.. 
 owA 12. 
 
 Eof. Multiplj 478 
 
 OPERATIOK. 
 
 Multiplicand 473 
 Multiplier 34 
 
 Partial ) "TsTI 
 products. { 2868 
 Kntire product 30692 
 
 ' Ant. 
 Ant. 
 Arts. 
 Arts. 
 Ana. 
 Ans. 
 Ans. 
 Ans. 
 Ant. 
 Ans. 
 Ant. 
 
 2619 
 
 3784 
 16924 
 28035 
 41544 
 69256 
 193851 
 466074 
 502458 
 327573 
 7614912 
 
 21. 
 
 22. 
 23. 
 24. 
 25. 
 26. 
 27. 
 28. 
 
 76394 
 &7631 
 266532 
 83545G 
 541378 
 367542 
 426985 
 - 576483 
 
 29. 6932574 
 
 30. 397466 
 
 31. 3745178 
 
 71, .«^ ^n».., 
 
 by 64. 
 
 8 unita »re 32 onita i P~«««d tfiug. Four time, 
 
 the 2 unit, in rpC'oftit?!';"!.'!' ''« ^^^ 
 to the nrodi./,* »P*i.I.- .t """'» and add the 3 t<.«= 
 
^TFTTrPLrOAlHw. 
 
 3f 
 
 (4.) 
 
 8634 
 
 6 
 
 51804 
 
 19 hnndrels, wUieh we writ* in it. «- 
 
 obu.ned by this .Dulfiplioation. in WnSf„ $• *7 *' ""*• *»•• «Mt fl«;a« 
 hpi.er; and. addin,- tho ;,ar<u^' prSut „*?l"^ I"**"'" *« « of the *"" 
 w.nndthewho!,producU478CA2i^5|,";4''^ ">• two mmdp&o^, 
 
 N<.TR:,-.When there ure oiphen betwrnin th- ■ •« 
 plier. paw orer them in the JTr^ioi «nd Sf.iH*!"''!*** '»"•" '^' the ■«!«. 
 
 rfraw « fine underneath. ^^ ^*^ '^ '^ther, and 
 
 n Multiply tach figure of the multiplicand bw ea^ 4^ . 
 
 PROOF OP MULTrPUCATIOlf. 
 
 •??; . '^'l^ P'OOf of multiplication is generallT m,,A^ k, *.. 
 Miultiphcition (1) in which onp nf .,," 7 T™'^ "»***« ^J another 
 
 the third, or the fourth etc ofon«lm .7 T"'^ ^'^^ ^^^^^ 
 
 and the other equals t^t^^^Ztrt^^^^^^^^^^^^^ 
 
 faotor of the operation. Or. "i^r umea, etc., the other 
 
 In multiplying the multiplicand by the multinlipr M - - l j 
 by 1. and to the product addin. the multipSd Tf tt "^ 
 Jhe^same as the product by tho".hole of ntZ^^^::^ 
 
 USB Of il^hTlPLlCATlON.— Multiplication ,BrvPM tr. . / 
 numherno man, time, greater ; to takeZ7al7:Z%a:t;:i' 
 to find the value of several units or part, of £, L L **""**^i. 
 ihem is known; to bring a number^eZressL T^, T *"** ^-^ 
 mature to another nunZ .x/rmL S Xa ' "-^^ .^r'«^« 
 of the first, d;c. presnng umts which are subdivisions 
 
 Omtrally tee knov) that the solution of a nmhl^ 
 
 tn. ...,,. oj .e..n,. «.- rcqairea, or that of some parts of the unity . 
 
4U 
 
 ■I, ^ 
 
 4. 
 6. 
 I. 
 
 7. 
 8. 
 9. 
 10. 
 11. 
 12. 
 13. 
 14. 
 16. 
 16. 
 17. 
 18. 
 19. 
 20. 
 21. 
 22. 
 23. 
 24. 
 26. 
 2C. 
 27. 
 28. 
 29. 
 30. 
 31. 
 32. 
 33. 
 34. 
 36. 
 36. 
 37. 
 38. 
 39. 
 40. 
 41. 
 41. 
 43. 
 44. 
 
 Multiply 
 
 (1.) 
 
 8621 
 
 47 
 
 60347 
 344S4 
 AlU. 406187 
 
 976 
 697 
 749 
 
 8386 
 7.5.S537 
 1.^4679 
 824956 
 984765 
 66r)4 
 97248 
 €89834 
 867894 
 807497875 
 84966 
 643966 
 96824 
 43208 
 90480 
 43 
 76496 
 7674 
 3696 
 69421 
 4321 
 766849 
 908708 
 4916 
 766420H 
 
 80097 X 
 900007 X 
 4300407 X 
 460004 *'■ 
 960076 X 
 690800 X 
 7006924 X 
 786530746 x 
 4i6.'i4Z0Uo X 
 898302466 x 
 496307429 x 
 767489007 x 
 879407864 X 
 
 MtTLTIPLIOATION. 
 EXAMPLES FOR PRAOTIOK. 
 
 (2.) 
 
 37216 
 65 
 
 X 
 X 
 X 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 186076 
 223290 
 
 An*. 2418976 
 
 27 
 34 
 46 
 67 
 68 
 79 
 387 
 766 
 789 
 866 
 943 
 996 
 966 
 7649 
 9475 
 4696 
 4962 
 9007 
 89006 
 87969 
 12478 
 819162 
 21764 
 987664 
 74323 
 70469 
 69678 
 20963 
 74269 
 700608 
 700608 
 99804 
 90708 
 456007 
 640(JK6 
 36781)4 
 987405 
 94376f> 
 936704 
 900076 
 698765 ' 
 
 An$. 
 
 « 
 
 «< 
 « 
 
 « 
 
 « 
 
 « 
 
 it 
 
 u 
 
 « 
 
 ti 
 
 II 
 
 u 
 
 « 
 
 «( 
 
 (( 
 
 u 
 
 u 
 
 It 
 
 u 
 
 tt 
 
 u 
 
 « 
 
 u 
 
 u 
 
 tt 
 
 tt 
 
 tt 
 
 tt 
 
 tt 
 
 tt 
 
 tt 
 
 tt 
 
 tt 
 
 tt 
 
 tt 
 
 if 
 
 It 
 
 It 
 
 tt 
 
 (3.) 
 
 167034 
 
 304 
 
 668136 
 
 60I1(;20 
 
 Ans. 50778336 
 
 26362 
 23698 
 34464 
 478002 
 61240516 
 10639641 
 319257972 
 744482340 
 6250006 
 84119520 
 650513462 
 864422424 
 779235449372 
 6499049.34 
 6163983100 
 464686604 
 214398096 
 814953.360 
 3827268 
 €729276624 
 95766172 
 3027622762 
 1610184434 
 4267652934 
 66261288227 
 69109612052 
 342637048 
 160465162304 
 694872409.'{ 
 €30562104266 
 3012899647466 
 46910239216 
 87086673808 
 315009635600 
 3784.341 5654 6< 
 "•■'■■T^-fs.stovrjVzi 
 411098671149.525 
 845888887386840 
 46.3956449974016 
 681797676464532 
 €1449942(1100310 
 
MVLTIPUOATION. 
 
 41 
 
 a) ■ 
 
 167034 
 304 
 
 668136 
 11(20 
 
 778336 
 
 26352 
 
 23698 
 
 34464 
 
 478002 
 
 61240516 
 
 10639641 
 
 319257972 
 
 7444S2340 
 
 5250006 
 
 84119520 
 S50513462 
 364422424 
 236449372 
 549904934 
 153983100 
 164685604 
 114398096 
 14953360 
 
 3827258 
 29276624 
 95766172 
 27622752 
 10184434 
 57652934 
 51288227 
 )9512052 
 12537048 
 •5162304 
 -8724093 
 2104256 
 9547466 
 0239216 
 6673808 
 9635600 
 155546< 
 icui- ;;;:■} 
 1149626 
 ^^86840 
 •974016 
 464532 
 
 ioosie 
 
 45. 
 
 964907089 
 
 X 
 
 46. 
 
 457907842 
 
 X 
 
 47. 
 
 856407809 
 
 X 
 
 48. 
 
 674396856 
 
 X 
 
 49. 
 
 1864321 
 
 X 
 
 50. 
 
 2465783 
 
 X 
 
 kl. 
 
 72400.36 
 
 X 
 
 62. 
 
 J08007004 
 
 X 
 
 600789 
 796807 
 305407 
 285679 
 609649 
 3686407 
 4029008 
 500123 
 
 u 
 
 ti 
 a 
 u 
 ii 
 n 
 
 673697675093221 
 
 364864173860494 
 
 261552939723263 
 
 192661019425224 
 
 1136581433329 
 
 9089879711681 
 
 29170162964288 
 
 46411618686U92 
 
 MULTIPLICATION OP DROIMALS. 
 
 Et. 1. Find the product of 4.35 by 8.26. ^ 
 
 ANALT3I8.— We multiply m in whole numben. and poiat off 
 on me right-hand of the product ai many fignreti for deoimalf 
 a« there are decimal places in the multiplioand and multiplier. 
 
 The reMon for pointing off Jie deoimala in the product la. 
 that in multiplying 4.35 by 8.26, or by 82« hundredtho, which ii 
 the same thing, wo take 826 times the hundredth part of 4 36 
 but we obtain the hundredth part in removing the point two fi- 
 
 ,-Qaift A l"""' *"''*■'*'' *>' '1" (*^"' "' 2nd-) which will gire 0.04S5; 
 
 i6.9310 ilns.there remains then but to repeat 826 times thia hundredth part 
 
 to obtain the product required. Ai the number repeated oon- 
 
 mak nfth. aan,-"*^ of ten-thomandths, the product will bo composed of deci- 
 
 matoofthe same nature; to separate the n hits it ia then necaesi^ to take its 
 
 fcSjL'^UmaU^atL'rUi^lir""'" '"P""*"* '*-- "^^ ^"•' 
 
 If the factors are decimalg only, we multiply aa usual and cut off 
 M many decimals m the product as there are in both factors; but if 
 the product does not contain a sufficient number of figures, we fill up 
 the vacant places by ciphers, placing one alec for the unite. 
 
 Ex. 2. Multiply 0.054 by 0.066. 
 
 ANALT8ffl.-MultipIying 54 by 5«, we oktaia 3024: bat as 
 .J? VI i'^'^^a's «n th« two factors, we place two oiphen 
 at the left aide of the product and having put the decimal 
 point, we place another cipher for the units, and thus we find 
 the number 0.003024, which ia iwad 3 thouaandtha 24 mill- 
 lontha. 
 
 •PBRATIOV. 
 
 64 
 56 
 
 324 
 
 270 
 
 f.003024 
 
 (54. Henoe the following 
 
 Rule.— I. Multiply as in whole number$, and point of eu 
 
 ffMUiiJigures/or decimals, in, the product, as there are decimal, 
 %n the multiphcand and multiplier. 
 
 II. If there are not a« many figure* in the product at tk*re ar^ 
 ^cimal places %n the multiplicand and multiplier, supply the d^ 
 Jiciency by prefixing dphtrt. ^ ft- 3 
 
 Won.— To multiply ^at&maiM by 10. 100. 1000. eie, (Me. M). 
 
 I 
 
42 
 
 MULTIPLIOATIOW. 
 
 olr/-"" """'" "" "»■"« »■ '» maUipli,..i„„ of whoU 
 
 EXAMPLES FOR PRACTICE. 
 
 3807.4/) 
 489.04 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 9. 
 98. 
 «75. 
 66. 
 976. 
 696. 
 4.C5 
 6.96 
 3.95 
 9.475 
 7.789 
 2.967 
 6.694 
 28.9005 
 60.705 
 13001.4 
 42S1.45 
 13808.927 
 5321.807 
 37.00845 
 
 
 P:JACTICAL PftOBLEMS IN MULTIPLICATION 
 
 »*• 137.43 
 622.3 
 6001.7* 
 11042.64 
 95403.76 
 41588.88 
 4403.55 
 6048.24 
 1362.75 
 640.076 
 6122.154 
 1109.658 
 
 63.39218 
 1140.702736 
 41066.32546 
 521913.456 
 41175089 9806 
 93749640.72768 
 20262510.2547 
 18098.612388 
 
 9 ieekaV"'"'^'''"" '"" *15 per week: how much wil 
 
 he eara m 
 
 tain the mux wquired « 15 vT« ifl' '''«'?f°'^«'n multiplying by 9 we ob- 
 2. How much W.J1 126 yard, of cloth coBt at |3.25 a yard ? 
 
 drSJir.^yiTcoftf'''^^^''^^^-^^' ^- ^"Ch will 75 h«. 
 
 o'^"'*S"'^'- '*«<»!^'"^' ;."!'%?t'L''r™'^^ "^» ^"^ -i" •>. 
 
 0.76. w. Ui the ,« ,.,,i^ ^2.£xQ.7i - /l 80™' '""'"P'^^"* *2.40 by 
 
 6. What will 6679 bSheirofSheat L/ *; «f ^^^^ ^' *28260. 
 
 7. How many pound, olflm.ra^i'- *oo^ '^^"^'^ * b"«^el ? 
 198 pound, in ew'h bSS^fr *^*'* '" ^^^ ^*"^^«' '^^^^ being 
 
 coLSi UaY liSTr"' ***"* '" • ''^^""'^ :i^" 7 ^ ^ pa^sMSif ^ag. 
 9. A booM haa 296 windovii ^i^a -,o.,u j ^ l*^^-"^*! letters. 
 
 •rgu., bow -r,«rxrkori,rrz°.i^„^^r- 
 
MULTIPLIOATION. 
 
 43 
 
 10. Required how many trees in a nursery composed of 95 rows, if 
 ^ach row contains 1 78 trees ? Ans. 16910 trees. 
 
 11. The circumference of the earth is dirided into 360 deerewi 
 and each degree into 69.6 English miles ; required how many miles 
 •'ound the earth? i4fM. 25020. 
 
 12. Required how many hours in a year of 366 days ? An$. 8760. 
 
 13. How many days in 1000 years? Ans. 36600o! 
 U. A man deposit* $15 every week in aSaTiogsBank ; how much 
 
 does he deposit in one year or 62 weeks ? Ang, $1S0. 
 
 16. A ream of paper oontains 20 (|«irea; how many quires an 
 there in 672 reams? /Iim/ 11440. 
 
 16. If a cask of wine oontains 213 qnarta; required how many 
 quarts m 136 casks ? Ant. 28968 quarts. 
 
 17. How many eggs are there in 37 doaen ? Ana. 444. 
 
 18. How many days has a person aged 84 years lired, reckoning 
 3«6 days to the year ? An$. 30660 days. 
 
 19. How many pens are there in 200 boxes each containing a ltuss 
 
 ^„1**P«'^«^ _, , ,, , ilm. 28800 pens. 
 
 20. How many days elapsed from the birth of J. C. till the Slst. 
 Dec 1869 inclusively? (Nc , counting leap years.) ^Iim. 682186. 
 
 21. Europe produces yearly 3466 pounds of gold; whatis the value 
 in dollars knowing th»t a pound of ttis precious metal is estimated 
 •*J}"8.60? iliM. 16966321. 
 
 22. A library is composed of 76 shelves and each shelf contains 86 
 Tolumes; how many pages are there in all the Tolumes supposing 
 each volume to contain on an a«^erage 420 pages ? An$. 2709000. 
 
 23. A speculator has purchased 268 horses and 274 times as many 
 sheep ; how many sheep has he purchased ? An$. 73432. 
 
 24. There are 12 hags of wheat on a trick, each bag containing 
 3 bushels ; how many pounds are there in the whole load, if the bushel 
 weighs 50 pounds? Ana. 1800 pounds. 
 
 26. A workman earns $8 a week : how much wiU he earn in 7 
 7e^^„ , ;, ilfw. 12912. 
 
 26. How much will 240 pieces of cloth, each oouMining 44 yds. cost, 
 at $6.40 per yard? An$. $67024. 
 
 27. How many pair of shoes can be made in 265 days, in a factory 
 in which 86 pair can be made in 1 day ? 
 
 28. If, at one load, a span of horses can draw 2997 pounds; how 
 many pounds can they draw in 327 loads ? 
 
 29. A field of 7 acres of land yields 46 bushelaoats per acre ; what is 
 the value of the crops of the 7 acres at $0.40 aJt)U8h. ? Ant. $126. 
 
 30. Supposing a sheep gives 6 pounds of wool a year ; how many 
 pounds will 28 sheep give in 3 years and what sum would it bring at 
 
 24 aentu rM>r munH ? J... •■ on ae 
 
 31. What is the value of the crop of a field containing 4 acres, if aa 
 acre yields 62 bush, oats worth 46 cents per hush. ? Ant. 11160 eta. 
 
 32. A laborer thrashes 46 sheaves of wheal per day, giving 16 
 pecks; how many sheaves could 14 laborers thrash in 9 days, and 
 what would be the quanUtv of crrain obtained ? 
 
 A»t». 6670 sheaves and 1890 peeks grain. 
 
 «1| 
 
Hi 
 
 If- 
 
 HA 
 
 MUL^IPBIOATIOWi ' 
 
 CONTRACTIONS IN MULTIPLICATION, 
 
 OR MULTIPLICATION BT FA0T0R8. 
 
 6. 15, l^,are^eo.posUe numbers; for dL 3 X 2??! ='6'">5' 
 
 mufMieKhlr^^lu^rr^" '" '^' l^^«^^^ nun^bers which, 
 or 2 and 3 and 4 (2% 3 xl = 24)'' * *°^ ^ (* X 6 = 24) ; 
 
 whn'"?^^ ^« » «=on>po«ed .« «^nS 4, % i f i' £ \l Z ^*) •' »»>«• the jJt', 
 
 i7*. 1. What will 46 acres of land cost, at |367 an acre ? 
 
 kr bought. H«o, th. foirow", ^' " ** •*='-' '^^ ««- 
 
 fr® ■^^"r'; '^'5''''''''* '** m«/rt>/i«. into tu,o or more fact^ 
 
 ■ZAlfFLJBS FOR PRAOKOB. 
 
 2. Multiply 2T45 by 28 ^ 4 x 7 
 
 3. Mnltinlr Rf^^Ao u. «< *.^ '1 An*. 7C860. 
 
 ilii*. 6618692. 
 -i««. 2979423. 
 An$. $9968. 
 
 3. Mttltiply 65742 by 36 - 6x7 
 
 4. Multiply 78036 by 72 - 3 X 3x 8 
 6. Multiply 36783 by H. 
 
 7.- wJ;t';;ii4l5\rKir,i!i?j.^«.«-^' . .. ^«. i99«8: 
 
 8,. What will 64 7>^dBoime^nT'Z.r"\^^ ^^ *"'"^ * ^""^^^l ? 
 9: In 1 mile there" e 6336 o"nir^Y *' ^^ °*"**' * ^^ ? 
 miles?- 2nd. in 64 Ss? ' **"'' '""^ •''*^'^««' l«t- i" *« 
 Xr-= ._. ^'W- let. 28.51200 ; 
 
tf 
 
 3N, 
 
 t, aa it will 
 
 ing togeth- 
 er, Thus, 
 6 = 6X 
 
 >ers which, 
 the factors 
 6 = 24;; 
 
 nb«r. Thai, 
 Ills the jmrtt 
 
 >lier 
 
 u a 
 
 if we mul- 
 f 6 acres ; 
 
 8, w« eri- 
 I Uie aua- 
 
 '/aetan. 
 ind that 
 en u$ed. 
 
 vw order 
 
 (860. 
 
 8692. 
 9423. 
 9968. 
 heir 
 
 mTLTITLIOATIOll. 46 
 
 aAt^Z^^K*^^,^'^^''^^^^^*^^*''^ '»o* ra*"^ hours, Ist. lu 
 
 DO. ;/ Jllfili''!!!!""*" ' '-^^^'^ P^""'^" «^ *»'«•- '» «°« day ; how many 
 pound, wxl ^^wm\s* oon«um«, Ist. in 72 days?- 2nd. in 96 ? 
 
 19 A«-«.- >-,i An*. l8t. 897804; 
 
 Sni TfVliS^'^r*** '^^^^ •^^^ = what will cost, 1st. 15 acres ?- 
 2nd. TOiw^jt^.^, 144acre8? A„,. i^,. 7125; 
 
 \M\^tl^.fjf^'^^^^^^P^^^^^*^^^^ '^« multiplier i»\0, 
 1"^' lv09,.^- ((1^.36, l9t,). 
 
 ^* ^ii^^^fiw; to <Ae multiplicand at many dphera a$ 
 
 i^JlltrLtH fOR PRAOTIOE (p. 19). 
 
 «i ^^f . ¥^'T^ ^/^^* multiplication when there are ciphers at 
 tf^ r^M^m46f<m^ Mth of the factors. 
 
 ^- \\' MyWW^'f im by 80. 
 
 •PIRATIC'. 
 
 80 
 
 uaooi) 
 
 - ^e reTOlre the raultipHosnd into the faotors 14 
 «ui. .*'','lv*''*c'""'*?P''" '°'^ *•»« ^""^o" 8 and 10. Now, it 
 S^^^i.- ' ^' *' '^ ^''®" soTeral faotors be multiplied 
 !J°T2 **y ^^l' produce che same product aa the given num- 
 
 ti 2. "'*<,''" ^*"'"' 1* X «- "2. ">d 112 X 100 =. 
 ^^^.rfWr* H900 X 10-112000, the same reiolt as In ^he 
 
 <M>- i^i'fftff tlitf rtiywdinp' illTiatration we derive the following 
 
 a^?^'7^^Ji^ '''O^^MntJiguret of the multiplier under 
 *t*^'^ of ^,iem^lfl^a^J, and multiply them together: To their 
 product, urmf^mmy dpher, a, there are on the right of both 
 
 n^^%3^m^\4m^m!dtipiier. if j »* 
 
 mm^ 
 
 MAMPLIS for PttAOTIOX. 
 
 M^STOoooo 
 
 13069S0000 
 600800 
 
 4. MuUjpU'^l^pJ^lly 700500. 
 J. Mutipfy mm$ by 7007000. 
 6. MutjpUrj^^y^^kji^iijy ^0302000. 
 
 1045560 
 T84170 
 
 785215660000000 
 
 An: 427606215000. 
 Ana. 21515743249000. 
 iiiM. 814249517400000. 
 
 j-ll * J 5}?f }r'**3''^l»t millioofl find four thousand, by three hun- 
 
 -J. ^^ 8541220000000. 
 
 -i/ii* rIlX?ff^*^ '**'"''*"'' ■•'«°t*'o«''»nd and six hundred, by 
 ^«^i^*ftP*WWiIuttd«d and sixty. Ana. 660114005776000. 
 
 M»»ft<trT 
 
 
 f,< Iff both r 
 
 art tifhm-t ut M# rigkt-hand of the 
 
4€ 
 
 •TOLTiyLIOAnOH. 
 
 h»Vk- f "'"P'^' ten billions nin«tT-«K #K. "*."*' '^ 00022000000. 
 
 12. Multmlj thirty millions nin«fr*L . ^"'' ^0;)y7J 760000.^ 
 
 «« hundred thousand and °K ^'^^^^""aml and eight hundred, bj 
 
 ^*. 1. Multiplj 7439 bj 328. 
 
 OPBBATION. a. 
 
 ^ ' "^'"^ ^"f*"'^'-' ^•''e the trne product by 328?^d ^'"^""^ •' 
 
 RuVT 7?";"r'"*"" ''^ ^«"^« *b« following 
 
 t^al product, will be the prodS^r^uM. "^ '^' '^veralpL 
 
 2. Mult,py6626b7 668. 
 
 3. Mult^phr 3786 by 721. 
 
 i U^W ^^^^^ by 2432. 
 
 6. Mu tiply 236428 by 549 ft 
 «. Jfu tiply 397821 by 25126 
 
 7. MutpIyiU6084by2481« 
 
 8. Multiply 5723606 by 4249784 
 
 Mamples rom peaotio*. 
 
 Aru. 3706768. 
 An». 2728985. 
 
 Ant. 12984152904. 
 
 ^««M. 28441220644. 
 
 - • ' ' V 
 
MTTLTr.'TJOATION. 
 
 4T 
 
 biundred and 
 240J0000. 
 te thoiiHatMl 
 22000000. 
 >t hundred, 
 'i 760000. 
 landred, bj 
 7264000. 
 
 ** th4 mut. 
 
 the malti- 
 )art8, 32 (en* 
 ' which the 
 lotor of the 
 20, is equal 
 aultiply by 
 )ro'luct for 
 Now, as 
 hat by the 
 
 obtaining 
 iroducts of 
 
 Itiplier f 
 a larger 
 ralpar. 
 
 6768. 
 
 ^985, 
 
 !904. 
 544. 
 
 !n the 
 
 to the 
 
 f-rs if 
 
 BXAMPLKs FOR pkaotioe (p. 20 and 21). 
 
 Cask Nl.~T,> .fed thr maHipUcatinn ofdecivinU when it w 
 :Sl;S" -^ .Aa' all the decimal places of ie pr..lu.t Zm ^ 
 
 S.6628 
 687.5 
 
 OPBUATIOK. 
 
 32814 = 
 
 - 6.562 
 
 X 
 
 5 
 
 
 4594- 
 
 ^6.56 
 
 X 
 
 .7 
 
 + 2 
 
 52.'! = 
 
 :6.5 
 
 X 
 
 .08 
 
 + 5 
 
 39- 
 
 •6. 
 
 X 
 
 .006 + 3 
 
 37.972 Product. 
 
 ♦k «*''"'" — ^* "Terre the order oT 
 the figures of the multiplier and write 
 them undor the multiplioand ; and, sinoe 
 thousandths is the lowest decimal figur* 
 to be retained in the product, we place 
 the uni«' (igure of the mnltinlier under 
 tho thousandths' figure of the multipli- 
 oand. Then, the unit of the product U 
 any ligiireot the iiiultiplu:iui(I by the fig- 
 ure of the muUiplier that iHlls under it 
 will be thousandths. When there are 
 figures in the multiplicand on the rlKht 
 
 of that immediatelv abovn th- «<,„,- „p >?*^"''®*, .'■",. ° '""'tiplicand on the right 
 
 fig-e being exSe'JruSLfc Sders" th^n^hS^a ^d^'*"^' "^ '\'' '"^^ 
 lected. except for the Bumose of firwiin^ Jk * '°'>^. 'no"8atidths, may be neg- 
 figure from their product^ ^^^^'^'^i what must b« oarried to the thou««dtli' 
 
 63. From this illustration we deduce the following 
 RULK.— I Write the multiplier, with the order of its finurm 
 reversed, and wU. the units' place under that figure if hem^ 
 phcnnd which ts the lowest decimal to be retained intheprTdv^ 
 
 /^n,!!" ^Y'^ *^' P/f^f fj'^f figure of the multiplier by the 
 figures above and to the left of it in the multiplicand increasiZ 
 each purtud product bv as many units as would have been ccZ7d 
 Aom the rejected part of the multiplicand, and one more 2^ 
 the highest figure m the rejected part of any product is 5, or grZTr 
 than 5 and write these partial products with the lowest fiTe 
 of each in the same column. j'-y'*re 
 
 III. Add the partial products, and from the right-hand of the 
 result point off the required number of decimal figures. ^ 
 
 NoTB.— 1. Should the number of decimal niaoea in tha miiif!«ii-..,j u . 
 th^n^the number requ,r,.d in the product. s^rpl/tV'd'eS'n^^ran^ex^nl 
 
 . l'^:rXt:t:Til^^,r^^,;^i^^^^ product it 
 
 plication should commenQe at least two places to the right, 
 v.. When the number ot units in the highest order of the rpiecfftrl nort r.f ,i. 
 
 
 'If 
 
48 
 
 *i 
 
 ■fTTLTIPLlOATIOll. 
 
 EXAMPLES FOR PRAOTroB. 
 
 tai 
 plactiH 
 
 OPKKATION. 
 
 472.350 
 
 _646:{.46 
 
 283411)0 
 
 188940 
 
 14170 
 
 2834 
 
 189 
 
 23 
 
 3040.256 
 
 orKK.inoN. 
 .^.657.389 
 3246.360,0 
 182869"" 
 10972 
 2194 
 146 
 T 
 _^ 1^ 
 
 I.9C189 
 
 9 »* , . I.9C189 
 
 3. Multiply 751.2037 bv 3H ri9« 
 
 i- he^;;fir ^^^-^^^ ^^ 0-«0^K retaini., only t^Ji^^. 
 
 in th ^"'t'P'y 1.7323152 by 3962 57302 ,-» ^"*' ^-^l 9.^095. 
 
 «n the product. "^ o»o4.o7d02, wtamiug 8 decimal places 
 
 1. The hide of an ox costs «fi i <; . * 
 
 »«-l*+»2+(|0,8xfl«$l.63) 
 ^«». $2.38 gain, ^ 
 
 
 board, 
 
MULTIPLICATION. 
 
 ^'^^!t^t':^^^i ti:^- -^ *'«^ «>^ other «pe„..: ^ 
 
 bojv rn„.h will th. rnercluf^t r e/i r?" ''* *"'''' «"'^/ ^'i" ^^^^^^ 
 «'»••» at «1.20; L'4.s at ftmn ^^t "^^ ^oo^^as follows.- l2o vol. 
 
 HniJo„r.re.p.ctivel,.andh:lVnfrtVeUr^^ have Pete? 
 
 1». A merchant f-on^Jais'Siecfs'IJli'^''*'",' ^"^^^ ' ^'"^ *"• *600. 
 '^'«, •».] 12 pieces of I. acHjot . ««:i! °^''"''. *•»*"' co»tai,ur.g 37 
 
 jar 
 
 '(>. if HC<>ir cost §28 a hoMP « r. *'°'^" altogether ? 
 
 •* rna.h .Mh. C(>w and C*e t t?h ^' ™"'^'' andalarn. y times 
 '^^•vilithe farmcoHtthaosTor L^^^^^^^^^^^ ^^'^ J^ow „,uS 
 
 1 1. A H'f.oro.ale ,,r„c.r bouiht 4^ ? , '^''"'^' ^^ '^^ «anie rate ? 
 WI ; h. «.Id ,4 »rarre?Hof tS at $Sf 'V^'""^" '''^ ^^'-^^ ^ 
 
 bu^hfl. of i,«ed ; it i« requ red t'knowtni ^*'""*''^ ^''<^*« ^"d 11 
 how i„.f,j bush. 0/ .eed will 7 tTJ , "'*"-^ P"""^'« of flax and 
 
 ftl l^-.-^.. per U,h. ? An,. 2534 pounlsflaf 77 k^?"^ ^"^ ^'^^ ^''^''^J 
 I.{. In a Wa,ry, there are 27S Jotf ' 7^!"^ -• '''^'' ' ^'^-^^-Sa. 
 
 U T' ^/'.'* ('<>""dH of butter wha eZ wm^'f.^ ^?' ''''^'' «» ^n 
 
 io^«)).nghii»!.utter»t?0.18anou„dy i ^he da.rj^.n.an make 
 
 it. A [arrner desire, to manuTl « m A"*' ^^'■^'^'^^^ 
 
 mauur. worth $4 the bundrTdSh? S ''^ ' ^^ f '•^ «^ '^nd with 
 
 »upp««f,g h0 requires 2 hundrj wi f. ^'"' ^^ "'""»'« ]. is Held 
 
 . '-'. A cabinetmaker earns dailTS'^if^"*^^ /^ '^n,. mo.HO ' 
 
 tlMWion*, f 0.65 each- hown^m^K ^ ^ hinyfiie. !f!120 : and his 
 
 d«.r#Jpe„.e«ofth?;h'olefrm7;beir4V^^^^ by every week, tie 
 
 f^«i*2, .Arm 4 times as much as the Lt^ ''^^ ^^ '^« ^'"ount of 
 »i»e retnaiiider in cash • how m.fl bank , tuck- $1938, and nays 
 
 .r *'«' .-t >-''*^'*' b^-'^W a cc^tat ll ?»^ ^ ^^ ^ ' ^»'- ^^S 
 fM0 7«f;c.r pound ; had he bou"h?S*^ ofivorjat the rate of 
 
 ^!u '';? '"•'^^^^doneeig uh SSwlSr."^^^^^ '^'^ °"-^^ ^««Jd 
 
 H. The repair, and super it'enZ.^ t '^"^•^' P'^^ ^«' ^''^ '^orj ? 
 
 «&y3 per in le ; the cxr.f rfl« r • •*• ^'^ * fajlroad tract co.st yearly 
 
 »«••<'*! /Ofljf 7 - ./ — P^'^stinifB for a track 132 
 
 -y. A pJu,„b«rfurni«hM ti,— b 1 . . ^n*. $136045. 
 
 tit ^'"^ \ 2 inches r^oXe'rlarf'r ''^- V^.' ^'^''"^^^ 
 
 tM4i wa (he third, 8 iDchesat «0%fi .1 '"':, ''°^P**' ^ '"^^es at 
 
 I •"»'aeeati|)0.y6per)'ard. The first kind jp 
 
 ■i..i 
 
 •i 
 
60 
 
 DiyrsioN. 
 
 ;;j:?'«i::ri-™sv;r5.x,«..-s: 
 
 ^'M. $244. 
 
 DIVISION. 
 
 nu^wS^^SJdL'^^^^^ --T tia.ea one 
 
 the factors, the product and tJ«'n*if ^^ P'°^ °^ fi"<ii"g one of 
 To divide 12 by 3 i!t V "' ^^'''' ^^'-^^ ^"^^^^ Thus 
 
 Sj.given i2forp7od!;c" or"t:Vad"r'? "^'"''' being ,„ultiplied bv 
 plied, to obtain*12 iu th'e p^cSua ^ ''^^'*' ""'"'*«' "^ ™"« be nmlli^ 
 
 an/tect".;^^^^^^^^^^^^ '^e .nown factor, Divisor. 
 
 •nd mu«t be less than the divii>l ^ "^"^ ^^'^ «euial«Uer. 
 
 ^*. 1. How many twnw ,e 7 contained in 994? 
 
 OPBRATION. 
 
 Divisor 7 ) 994 Dividend 
 142 Quotient. 
 
 
>d •'•4 moi« 
 bor fi>r )„•. 
 
 *li4.64. 
 
 •tJpio.r)*' 
 
 ? expenses J 
 ► dozeu of 
 n? 
 
 '• $244. 
 
 times one 
 ng one of 
 n. Thus, 
 
 Itiplied by 
 be iiiulti. 
 
 Divisor. 
 
 nuiubei 
 iuder. 
 
 2. 
 
 > quotioat 
 
 • on the 
 MO them 
 d; then, 
 7 is oon- 
 remain- 
 he 7, ita 
 ) of the 
 qjual 29 
 aining ; 
 laininjf, 
 liike 14 
 ljure of 
 
 'i divi- 
 'Heath 
 
 (tieot? 
 
 DiTmow. II 
 
 '•^ 'M prL^l tV ''T';*' 'tV^^'^-iing any figure, r.n,ukr 
 before''^ '^' "'*' ''^'^ «/ '*« ^»'»'**«<', ««'/ ^t'^tofe « 
 
 equii to the dividt^Tht' woTk Is ZU^J ^'^ '""'^ ^^^'^^^ »- 
 pliSnTcM)"*''"* "' P"«^ '°"'''- f~» di-W« Wnt the ™^r.. „r «alti. 
 BXAMPLK8 roi PftAOTIOS. 
 
 1. DiTide 8164 bj «. 
 
 OPKgATIOV. 
 
 Dirisor 6 ) 8164 Diridt^L 
 
 (3.) 
 5 ) 714326 
 
 142866 
 
 1. Divide 
 
 8. Divide 
 
 9. Divide 
 
 10. Divide 
 
 11. Divide 
 
 12. Divide 
 
 13. Divide 
 
 1359 QuotiMU 
 
 S ) 893rM 
 
 rsoor. 
 1869 QuoUeok 
 6 Divisor. 
 
 8164 Dividend. 
 
 6376 by ft. 
 5692 br C. 
 38776 bj 8. 
 174321 bj 9. 
 1643784 b7 12. 
 46216796 by 11. 
 63412632 bv 12. 
 
 t ) Nfllt 
 
 lamfi 
 
 (6.) 
 4 ) 662846 
 
 QaoMenti. 
 
 127.0. 
 
 932. 
 
 12347. 
 
 19369. 
 
 136982. 
 
 4201436. 
 
 14. 
 1ft. 
 16. 
 17. 
 \x. 
 19. 
 
 Divide 
 
 rv;_.- J 
 
 Divide 
 Divide 
 Divide 
 Divide 
 
 10. Divide 
 
 2271582 hy 7. 
 I i. 15721 2 by 6. 
 4056360 by 9. 
 12980400 by 8 
 4208479,5 by 6 
 4607060 by 12. 
 ^023620 bf M. 
 
 6. 
 2. 
 C. 
 
 t. 
 4. 
 

 BITmON. 
 
 FRACTICAL PROBLEMS. 
 1. Fine jurda of silk velvet at,ai *T'> u 
 J«fti? '^*"''" ^^^^ *^2; how much did it cost • 
 
 Alf AI,T«I8.— If the Drioa nfm^w.^l 
 
 7ald obtain $72; thep^w 72 TA^r!!;^ ^°u'"'; '" '^^"'«P'ri"g it by 9 wt 
 of a 7»rd. Then/in dirE 2e nro C^T u^'T^i *''*'" f^*»" " »nd the pri« 
 of • r»rd , 72 ^ i = ^w §8 j?r ''^. ''•"" ''"*«'• *•• "e obtain the E 
 
 wtain thu prioe of m yard. ^ ' "'"°' '" diT'ding 72 by «, w« 
 
 .hilii=p? """'"«• "•*• • ■'■>"•' i 1"- m».y JollT, in 8890 
 
 ^4. Ho, „.„y barrels of «„„,„„. ^,_ „,„ ^bof/if-,^, 
 6. If 12 inches make onp fnnt . i. . ^ .'^"*- ^^ barrels. 
 
 $1152? "^ ^""o »t> a cor.i ; how many oorde will be had for 
 10. A person wishes to distrihnu ifiQ „ i "?."'• ^^^ cords. 
 
 ^«.";«»1'.^" ^'•^ ''''«'• P™<»- Of <ii-i«.on i, wHtten. the ope^tion i« termed 
 
 £;3r. 
 
 Divide 4738 by 34. 
 
 OPBBATIOK. 
 ^•Th*"'- ^^^'<*- Quotient. 
 
 2nd. partial dividend 
 3rd. partial dividend 
 
 34 ) 4738 
 34 
 
 NAi,Tsia._Taking 47 aun- 
 
 - — f ^1* ^"^ *^* «'^t partial divi- 
 
 l X 3911. ^?°?',!'« ""y 135 is oont.in«d in 
 
 fh' ""If- ^•'^ > "« '^te in 
 the quotient; 34 x 1—34. 
 which we write undtr dTe 47; 
 « — 34 « 13, to which brin/rine 
 down the next figur, of the di? 
 
 I??"f,5'"«*> '" 3. we form 133; 
 34 in 133, 3 timei. The 3 we 
 
 Remainder. JT^/'^'" *^« S'^^wnt ; 34 x » 
 u. u . r ..i "'"''*' ''^ write under 
 
 which bringing down tfcan«»f «»,..- f*i. i- . ,^"« *"; 133 — 102 -, ai II 
 
 133 
 U)2 
 
 318 
 306 
 l2 
 
 «6 
 
 vino7i, 
 
 ..^:^^^rr-t.lt^2--- 
 
 ''^*«* •• '*• ml* «• iWwtfa »»f„ 14, 4j^j^^ , 
 
 1911 
 
 •'«^^ 
 
iid it cost • 
 
 ? it by 9, we 
 «nd the price 
 
 btflin the prjoe 
 yard wiil eoat 
 
 '« 72 bj «, w« 
 
 krfl in 8890 
 8 dollars, 
 ildren; how 
 i#. $9958. 
 bought for 
 5 barrels. 
 164 inches? 
 'erage sum 
 
 ns. $2:n. 
 
 ing 4 cento 
 Ans. 66. 
 did he re- 
 
 Iw. $62. 
 be had for 
 '2 cords, 
 ong 4 bojs 
 Ans. 24. 
 
 >o is termed 
 
 g 47 aun- 
 irtial diFi- 
 ontained in 
 e write in 
 
 ' - H 
 
 ir the 47; 
 h bringing 
 of the di- 
 form 133: 
 rhe 3 we 
 .34 X » 
 >te under 
 « 31, t* 
 in 318, 9 
 ite under 
 Bft ondi- 
 mpletiiiff 
 
 ^lidend. 
 
 tfrrmton. •• 
 
 II. Take for ihtprtt pt^rtial dividend the yn»f *««.A^ ^ 
 
 ^ the. ««( «™, „/rt, dh{A,nd,/0T the .u^d p.,rli,a. divi. 
 
 7' J/^^^y jx^rtial di^iaerui will not eonfain the divi^,or place 
 J.Ji' /'*"■' '' ? '""^'Wtr o/Ver AVWinj „« th, figure, of the 
 
 PROOV.— It is the same aa in short diviBion. 
 
 DIVISION ACCORDINO TO THK FRENCH MBTHOD. 
 
 Ex. Divide 11812 by 72. 
 
 OPIRATION. 
 
 Dirideod 11812 (J^2 Divi.-^cir. 
 
 !!. iGi^"" Quotient. 
 461 
 
 432 
 
 292 
 
 288 
 
 4 Remainder. 
 
 Omkbtatioh.— We lee by ti.. ex- 
 ample m the margin, that the dirisor 
 M placed on the right of tlio dividend 
 and the quotient below it. This mode 
 JiTei the work a more compact and 
 ■eat appearance, and posieisieR the 
 adTantiigo of haying tho ligares of the 
 quotient near tho dlTisor, by which 
 means, tho practical aiffijulty of mul- 
 tiplying the (lirigor by a figure placed 
 at a distance from it, ij reraored. 
 
 ABBREVIATION OF LONG DIVISION. 
 
 «7 By the following method, we avoid writing the products 
 in ic... r division, as m the example of Case II, above. 
 
 Ex. 1. Divide 8764 bj .365. 
 
 Analtsis.— In this operation, wo say : 3 is 
 «)ntaiacd2time«in8; we write 2 at the quo- 
 
 OPEIUTIOV. 
 
 365 ) 876.4 ( 24 
 146 4 
 ... 4 remainder. 
 
 tient and multiply the dirisor saying : 2 " 
 times 5 are 10, which sabtracted from I« 
 (because wo iiioroaae the « by 10), laarcs tf 
 
 irhich ■■)itr»«t<yl Ai^ IV I. A """J^ oarry one; 2 times 6 are 12 and 1 i« l.V - 
 
 WBicn Hbtraoted fMm IT laayei 4 and carry 1 ; again 2 times S aia A and t # '- 
 
 ■»* ■ 
 
64 
 
 onrnioii. 
 
 I 
 
 '. which, subtracted from 8 !«•«. i i. . 
 
 ^RULB.-I. Obtain tUjir,>fy„eo/. He j^^^, <,«..«*, 
 remainder. ^ <iividm.d, and xorite underneath thi 
 
 the former, till the work i$ finished ' ''^ proceed a, with 
 
 the SnT"her;i;Tt!lf ^^ all the figure, of 
 
 firstly in tenths by adding a ciX? »[' Tl'^J'^Z'^T^^^^^^^^^^] 
 ^e division J but then, af we cannot have anf °^ "' i*"*^ «°»^'°"e 
 point at the quotient. When m»^LTJ ?J T*** "«'*«» replace a 
 
 rema.nderi8;educedintohund^dt^bvri^^^•^''^'^^^^ *»»« »«^d 
 but place no more points at Jhe quoLL .u!'^^^ 
 ^he order ih^y occupy. (Nos. 27\nd VSV "" '*'"«*'«*'«^ bj 
 Ex. Divide 679 bj 28. 
 
 OPBRATION. 
 
 28 ) 679 (24.25 
 119 
 .70 
 140 
 
 pher at the right-hand rf if "i ^ """"« " «»- 
 the quotient fnd th" p/oiwd ^ L'f ''''*^'' '»'« •» 
 
 hundredths by the ^l\^\t°t "*"* ■nnUr t» 
 
 qwtl.nt of 679 by 28 a. .h?°'i°'' u ^•''°« ''• -wMiTSTtVl «**•***?* "*^'»« 
 .Had there h^^IinlZl\Z!'^l *''• ?"»'• " *^* *"««* 
 
 'h«, we oan carry the *n!^^"*""*"' "• "•"W h*v» .dd.rf « 
 
 rry the approximation to any order ^13 "^tT"^ •*»*"• 
 
 '^e first place a cipher an?« • '^i^''^*"'* " •'"•"w than the Ai^i^ 
 are n integers or^^.t^X"* Th^n' r '^T* ^ •'"''>^^*^'^' 
 ^•^ths, hundr^ths, *e. cNo. T),' an'd;r:cVdt;a'r: ''^'"^ *^ 
 
 ^- C>iven6to be divided by 25,. hat ^„ Bet., operation. 
 
 OPKRATION. 
 
 25 ) 6.0 ( 0.24 
 1 00 
 
 
 in J?a"SoUonTa?:5"^we'rr *1«i«"»«. we«y: » 
 the quotient. S' ^ JIH^^VjP*.'"- -^d • point Jl 
 fay placing a oil'her at thVrirtr-hanVr',!? '"" *•""» 
 26 ,n 80 J, contained 2 and ?0 tonS/ '*' V»d "7 •' 
 pher, and say : 26 h lOO IntZ'^T}'''^ hnndredths by Uie !d5?Mo»"!:r ^» 
 
 2. 
 3. 
 4. 
 
 5. 
 6. 
 7. 
 
 8, 
 S». 
 
 11. 
 12. 
 13. 
 U. 
 
 16. 
 
DIT18I0N. 
 
 form th« 8«Qoa4 
 we write at fh* 
 
 n the second pM- 
 be added to t^ 
 
 t in the unktl 
 
 lotimt Jigun, 
 nderneath the 
 
 8 next figure 
 oceed as with 
 
 the figures of 
 lia remainder, 
 ind continue 
 ta, we place a 
 the aecond 
 other cipher; 
 iodioatad bj 
 
 I rtmaiat 7* 
 rritlnj a af.' 
 
 ^» point a» 
 
 Bat w then 
 
 a aonber t» 
 
 iphnr. Mai. 
 
 Ithataothin* 
 utheeoiTC^ 
 
 ■on oipk»r. 
 
 le diriflor,. 
 
 thacther» 
 ndend ti*. 
 
 ktionf 
 
 we»ajr: » 
 1* point at 
 >n tenth* 
 ' ud lar ; 
 
 on of a «u 
 
 therefore, 
 
 66 
 
 Use of my isicm.— Division seruM t^ Ai^A. i 
 
 « *o» ^ny Unu, a numUr i, contained into aZLTuSnk t 
 "hal »am6,r muMi a given number be muHi„lZl?rZ^' '"■'"'"''* 
 Siven number. Division serve, aZ rJni'ttZ^fT"'''T 
 
 EXAMPLES FOR PRAOTrOE. 
 
 i. Find how many timea ie 72 coataiaei ia 2S50Q. 
 
 ^ . Divid'd. 
 
 I>'v.8or. 72 ) 23596 ( 327 Quotient. 
 
 216 
 
 ~T99 
 144 
 
 666 
 
 604 
 
 62 
 
 Bomaiiider. 
 
 Paoos- By MULTIPUOATIOM. 
 
 ^27 QuoticDt. 
 72 Divisor. 
 654 
 2289 
 
 23544 
 
 . ^ Keniainder 
 
 23596 Diviiiend. 
 
 2. 
 3. 
 4. 
 
 5. 
 6. 
 7. 
 8. 
 9. 
 10. 
 
 ii. 
 
 12. 
 13. 
 
 14. 
 i6. 
 
 27939 
 38582 
 406683 
 743241 
 964992 
 173469 
 497699 
 218579 
 
 ox J ^00 
 
 41126 
 432606 
 845002 
 8«7632 
 
 sum 
 
 
 16 
 18 
 20 
 26 
 30 
 o6 
 40 
 
 42 
 
 47 
 
 49 
 
 60 
 
 63 
 
 69 
 
 CO 
 
 Quotients. 
 
 1746 
 
 2143 
 
 20284 
 
 31833 
 
 12442 
 
 13006 
 
 8662 
 
 14703 
 
 ftem. 
 
 3 
 
 8 
 
 3 
 
 16 
 
 2 
 
 21 
 
 19 
 
 n 
 
 4 
 
 16 
 
 5 
 
 23 
 
 66 
 
 41 
 
56 
 
 DnrisioN. 
 
 1^ 
 
 16. 
 17. 
 
 18. 
 
 19. 
 
 20. 
 
 21. 
 
 22. 
 
 23. 
 
 24. 
 
 25. 
 
 26. 
 
 27. 
 
 28. 
 
 29. 
 
 30. 
 
 31. 
 
 32. 
 
 33. 
 
 34. 
 
 35. 
 
 36. 
 37. 
 38. 
 
 39. 
 
 40. 
 
 41. 
 
 42. 
 
 43. 
 
 44. 
 
 45. 
 
 46. 
 
 47. 
 
 48. 
 
 49. 
 
 50. 
 
 51. I 
 
 52 
 
 53, 
 
 54. 
 
 55. 
 
 56. 
 
 57. 
 
 68. 
 
 5y. i 
 «0. 
 
 4968 
 940025 
 445124 
 4728 
 39006 
 1679407 
 4306404 
 167008 
 7466029 
 6717890 
 
 64 
 68 
 70 
 75 
 79 
 
 80 
 
 86 
 
 87 
 
 90 
 
 98 
 
 (juotieata. 
 77 
 
 6358 
 
 493 
 
 60663 
 
 82844 
 
 To ealculate with two decimals in the quotient. 
 
 67980 
 432101 
 
 470896 
 680094 
 666648 
 767642 
 124674 
 964321 
 7246579 
 7H90645 
 9120128 
 687621 
 3466604 
 4268901 
 2486930 
 *l0712d 
 81267904 
 69267421 
 8IMJ640IO 
 6947:^0210 
 468904008 
 389006753 
 86742807 
 707070709 
 654380316 
 987664321 
 8606000041 
 61247680241 
 742.^8961401 
 9649646664 
 8674289646 
 4247698734 
 63 .' 241)0086 
 45t)»010ti007 
 378942UU4$ 
 
 96 
 69 
 72 
 67 
 441 
 386 
 126 
 216 
 <12 
 367 
 637 
 4691 
 1279 
 1467 
 7614 
 7614 
 617* 
 7186 
 7908 
 9087 
 7064 
 d004 
 8906 
 4260 
 49060 
 49068 
 6004: 
 74086 
 48647 
 42867 
 74651 
 S4672 
 59866 
 300462 
 9S7684 
 
 Quotients. 
 708.12 
 6262.33 
 
 10150.66 
 1511.67 
 
 989.47 
 4464.44 
 
 21500.39 
 
 146.68 
 
 2909.96 
 
 539.41 
 
 9639.21 
 
 76463.74 
 
 48601.64 
 
 166979.03 
 
 20129.09 
 
 826721.74 
 
 225106.64 
 
 44867.62 
 
 162037.95 
 
 4i0 
 61 
 64 
 3 
 69 
 47 
 4f 
 66 
 %9 
 98 
 
 H«m. 
 48 
 23 
 16 
 46 
 163 
 380 
 78 
 196 
 328 
 187 
 153 
 1422 
 240 
 435 
 4532 
 6126 
 3592 
 6794 
 184 
 7462 
 6768 
 2684 
 5914 
 4120 
 37440 
 39106 
 49042 
 13310 
 11893 
 32712 
 48424 
 88056 
 46810 
 186360 
 88764 
 
 s. 
 
 \ 
 
 4. 
 
 6 
 
 6. 
 
 
 6. 
 
 
 7. 
 
 i 
 
 8. 
 
 
 9. 
 
 1 
 
 10. 
 
 
DITmiOR. 
 
 DTVISrON OF D8CIMAI>8. 
 M». 1. Divide 3.466 by 2.4. 
 
 M 
 
 OFBRATION. 
 
 1.4)5.466(1.44 An$. 
 24 
 
 IM 
 N 
 
 H 
 
 M». 2. Diride 0.626 by 7.6. 
 
 AifAi.T9T».--W« diTld. M i. vrhftle nura- 
 
 n Jk*"?!. *'^'"' *'*• <*'^'»'"' »ud quoU»nt 
 
 r / . '^° f*«»*»". »'bioh. being multi- 
 
 plied together, produce the d.Tidend. w« 
 
 to «*• uabcr te th« pndNet « (tfridewL 
 
 OPfiRATIOK. 
 
 TfM ) 626.00 ( 0.07. 
 626 00 
 
 .dend«oeed tfco.e in the d,W, w Lake 
 fe.m equal b7 npnexing two ciphers to the 
 2^ AL'V* '"'^"» P">o«eded in the divUioQ 
 oVT ^' '.P;1*' '"'^ ''°*^ *• quotient to be 
 9.t7, or ff unit 7 hundredths. 
 
 «7. Prom the preoediog illuBtrations we deduce the following 
 Rui,« I.-Z?tt;irf«- «* »n «,^fe numherM, and point off as manv 
 
 2^.e of the divisor; hut if thw$ ar0 mt as many, mmply th, de- 
 fiotmey bi/ prefixing ciphtrs. '' '^^ 
 
 Or, 
 
 Rule }l~lf the dividend and divie^ hawe not the ,amt 
 number of decimal,, annex cipher, at the right^de of the term 
 
 ^l^Unur^bL ''"'^' "*''*'•" '"^ '•^^'^''^ tothepointra, in 
 
 »OTB l.-To diride deoimali bjr !•, 100, ItOO, .i*. (jr.. jy^, 
 ^mooF.-The proof i. the .ame a« in diyision of whole aam- 
 
 ■XAMPLB8 FOR PRACTICE. 
 
 s. 
 
 79.1 
 
 4. 
 
 67.8032 
 
 6. 
 
 2.3421 
 
 €. 
 
 0.338 
 
 7. 
 
 14. 
 
 8. 
 
 0.21318 
 
 S. 
 
 10.86 
 
 10. 
 
 0.1728 
 
 2.6 
 U.4 
 42.2 
 
 0.16 
 
 Quotients 
 31.64 
 4.174 
 0.055 
 
 0.7852 
 
 8.34 
 
 17. 
 
 0.0776 
 0.012 
 
 140. 
 
 N 
 
 tu 
 
 8 
 
 0610 
 
 400 
 
 «7. What i, «^ rule /or tht dMtion of dediMta f 
 
58 
 
 DivwroN. 
 
 To calculate ^hh five decimals in t) • *• 
 
 '*"' '" tue quotient. 
 
 Quotients. 
 1.62745 
 
 1.19201 
 
 8.23846 
 
 «. 78318 
 
 1.62197 
 
 0.189IH 
 
 0.13680 
 
 PRACTICAL PROBLEMS 
 
 Ham. 
 34 
 740 
 18478 
 6984 
 296 
 1998 
 528 
 960 
 17178 
 
 34 
 
 240 
 4 
 
 1. If 4.') yards of cloth co8t SI 2^ fn i 
 
 »4 . .70 ? * oo per d»j ; ,„ ij^^ ^ 
 
 in«4T7n ■~^''P»ny"'M«*,«2 8S fi, • . ^'«»- 18 days, 
 
 in f 47.70, u many davn wni k *'*•''*' «« pnoe of a day's UKn, 
 
 j: One Of" ^''rS^;*''^ t"!r"""ir* "^ " -"u" '/oS* , 
 
 Other factor ? »« *• /& and their product 4222 fS PinH ft 
 
 ^M. 182 milM. 
 
BTTMIOII. 
 
 59 
 
 int. 
 
 '.8. 
 
 5 
 
 Kam. 
 34 
 740 
 18478 
 6984 
 296 
 1998 
 528 
 960 
 17178 
 
 34 
 
 240 
 4 
 
 yard cost 7 
 t by 46, we 
 otors 45 and 
 f » yard = 
 •«». 12.76. 
 
 iJl he eaFD 
 18 days. 
 
 ■ oontained 
 70 by 2.65, 
 . 18 days. 
 
 umbers ia 
 »• 7777. 
 re 70344 7 
 
 Find the 
 redths. 
 
 that per 
 
 )76? 
 r*69? 
 
 can be 
 r. 215. 
 
 pages? 
 *. 80. 
 
 bought 
 ards? 
 ^" will 
 ». 32. 
 I work, 
 r. 23. 
 howlkr 
 nilM. 
 
 <»it.«mf6yp. ii^i'J^it^^^Ysilj,^^^^ r^**^ '° • kiln which 
 ihe value uf ii^^ijiS? Sfo \?^ " ''^^"^^ <«>' ^^^e operatioa and 
 of 10.28 per ^ff^Lf^S'.^ '« *«*>™««d at $231.14, aUhe rate 
 prf^%*A^7*^ '"" ""'^^ b^ahelsof coal have b^ 
 
 ength»8abowt#/S^ ftirr^uirjr^ <'" F^'^^'^a, the meat 
 die yearly, 4wJ^, ^TTour .i/eTrrll^^ l^ow many person. 
 
 for6every44<«?i«rifi.y ^ "*^"'» ^^ •»•»•/ minutt 
 
 ^^^S^^i^^lTONS IN DIVISION, 
 
 <ftf lityrsiON BY f AOTOM. 
 
 ^*- 1 • ftM^fri^^l^^umiy ««>ng 28 person. 
 .r«A.:<ft«. ^^**«.-Th. raptor. ^ 28 ar. 4 «.d r We d" •. 
 
 ««^W^^^^»^^W^^^ <>/ ^^ facto., an. 
 
 7 ) 39? 
 
 
 I 
 
 ■lii' 
 
'•*?«»m/ quotient. ""'^' ^^' ^' ?««<»■««/ will beZ 
 
 2. 
 3. 
 4. 
 5. 
 6. 
 
 BXAMPLE8 FOR PaxOTlOB. 
 
 Divide 4536 by 14* a x 7 
 Divide 9774 bj 18 =r 3 v « 
 
 Divide 14560 Jj 35 =Vx*V 
 Dividel26375br76 -3 V fi r 
 - Dir de «9384 Ht 49 --.3x6x6. 
 
 ». Diride 57456 br 72' "'-"^ '^' ^*«'^"- 
 
 «. Divide 246792 by «4 ""'"^ '*•" **^'""- 
 
 ». Divide 2962876% 1^5"?^ ^^.^*«'«'»- 
 <"o Dj U6, Being It* factor*. 
 
 iliM. 324. 
 
 An». 643. 
 
 ^n#. 41 «. 
 -4««. 1686. 
 ^»»«. 1662. 
 
 ^»». 79a 
 Ant. 2938. 
 ^fM. 2370S. 
 
 ,4 
 6 
 
 3 = 12 
 3 = 9Q 
 
 103 
 
 , „. . «IA"»L«S rOB PRAOTtOi. 
 
 • 4,j:f ^"^ '"'• »-« «.. '«- . .„. ., .„, ,„, .,. ^ 
 
 -T — '. niin the "*•— 
 
nt loill he the 
 
 Ant. 334. 
 
 An$. 643. 
 
 Ana. 41 «. 
 Ans. 1686. 
 it.*. 1663, 
 An$. 79a 
 ln«. 2938. 
 M. 23701. 
 
 DITIBIOII. 
 
 fl 
 
 I the 
 
 opm. 
 
 ^Qd 7, and 
 
 ■Diridlag lo 
 T« A quotient 
 •maiiuler of 
 
 in diridond, 
 part of tho 
 Tho 3Stf4 
 •rising froa 
 « unita %t% 
 io Talus M 
 lave a quo- 
 . it muat bo 
 >s makM« 
 7, wo hkTo 
 be uQita of 
 S3; there'- 
 » dividend, 
 oom dirid- 
 > true r*. 
 
 aU tht 
 the 
 
 tnfe rl::^:lT '^ ''' "-« »^« ^-tor, 3, 4, .nd 7, and find th. 
 
 thetrS^;f:;,LS^ '^ ''^ -^-^ ^^^ ^^-^ 3, 6, a„d 6"r,i^ta 
 
 i^^e^S^' '^ ''' --S»^e ^-tor, 2, 6, and .""aJd^Ld 
 
 V- -ii^c^^^^^ '''' "'^"' ^^« ^-- ^' '' *^ -d ,t';/Ld 
 
 «-e Sdtf ^ '^ ^^^' -^"^ '^e ^--« 3, 6, and 9, a;?.r^'.!^/tb. 
 
 C TT ******* *• 
 
 (No.3?,i;t7^'''*"'^"«'*«'«"»"»^^%10, 100, 1000, etc 
 
 1. Divide 87 by 10. 
 
 2. Divide 5813 bj 100. 
 
 3. Divide 7009 bj 1000. 
 
 J- Pl'^iJe 510040 bj 10000. 
 6. Divide 200371 by 100 
 
 BXAMPLB8 FOB MAOTld. 
 
 Atu. 2003^ 
 
 £». 1. Diride 85726 by 4600. 
 
 46100 ) 857126 ( 19^yy^. 
 45 
 
 407 
 405 
 
 226 ReiDUQder. 
 
 »r the entire quotient Isi^^JL 
 III. Place the entire <i.W.-- „-,^^^ ^i , 
 
63 
 
 BiraioM. 
 
 J^lv'SiSS^i'-rSooo.. "--ems*. 
 
 ¥' •■''^reZTc^'i^f.f^!'^'' point « ma», .fa«, ,„ ,;.. 
 
 OOKMOir OFM„IO». 
 
 M.647.8)6„.«,63( 28.684 
 
 -"^iF^rs"- 
 
 llii^ = product bj 2. -f. 1 
 204 50 ' 
 
 1«^ = product bj 8, + 6. 
 J*i| = product bj 6, +3. 
 l|8 = productb7 8,+4. 
 » = product bj 4, + I. 
 
 470 94 176 
 
 204 SolsTO 
 188 37 904 
 
 9660 
 8428 
 
 12H20 
 37904^ 
 
 744160 
 418962 
 
 325208 
 
 figures the aboT« Biftr»,.u •„ *? """'nod Wo flnt MMrt.in i. 
 
 of the divisor wUh the jn«7^^ "t"^ ?'««« •? 
 
 quotient fiL'urTwSi h. „Ai " P^'* "^ "»• cirTidend it irP"?°« "•« •""re part 
 
 "?^?Uontain>. fij °",:''^" J •'^d « there itre to be 'wXet''"/ 7''' '^°'*"> 
 diTisor, oountine them fmm 1 ^ 7* "^-^de «t fint bv fi« « '^ <>f deoimals, |t 
 and r.jecti4tliVfi^Tre« ?«'•'*' 'T'* '"»»^<». the "kK JL,»«"''?' ''^ *»»• given 
 
 le abb»«iia»,4 T"7?r'"*«d with 
 
 anarejectiii»thefiiriirB<.^T" "**•■<*« the ri^ht th... • °' '"• «»ven 
 vifior bj iU anoii.»f « ^^' ®" *•«» "ght. In in., H»i • "*' ""°« ^^^ 23.647 
 
 the abbKnii»;»9 ._a ^^'"■"'ea with the oommnn .i~*u-j ' P ^')- 
 
 'raJ«to<MM^, 
 
 i: 
 
wrm»t^ 
 
 «8 
 
 •>«m«rt8, 14. WoS!^ *••'***•' '^""''•"^ <»' <iiri«c. wh.B — - ^, 
 
 "^conj dedm^j place. ^ "•""^i'fi-^ extending the quotient to the 
 
 ■*«. 9876.54321. * 
 DKCIMAL CURRENCY. 
 
94 
 
 DKOnCAL OTTHUNOT. 
 
 The *,:W coins are tl.e fifty^ent piece, the twenty-fivc-cent 
 p.ec. the ten-oent piece, and the five-cent piece ^ 
 
 loJ^gLT'^lJooi^edl'"* "'*'"*'■••■* P'**"' "»-«»« 'till in olroulatlon. i. no 
 
 The copper coins are the twoKjent piece and the cent. 
 
 nilt The Coins of the United Stat« arc of gold, silver, and 
 
 e^IleXi^^^^^^^ -«'«- »^^i^-.le. quarter- 
 
 a„d^h:i^il"'" '" "^^ '^""' ^»>^-<*°"-' qunner-dollar, din.e, 
 
 Th^„.cA./coina are the 5^nt,3^nt,2-cent, and 1 -cent pieces. 
 
 weight of gold and 1 part •# « XJ ^Tl^Mn i ' ? . ~'" ~""**'' *» ?"•*« ^y 
 
 TABLB OF TH« DNITID 8TAT«a OTBEINOT. 
 
 }J Sn^"^^"!^ ! r*' '^^ let. ore 
 10 dollar. « i^K,' " li? 
 
 Ja^aPd\r;;Stir.;^^'/r;^^ 
 
 centt, and mi/t'.. «wuaw are kept in dollarg, 
 
 Dimes, o^nts, and miUa. bcioff tr^tinnm nf - j«ii 
 from th. doJIw kj lb. CiiKlJ T.f fc i ■;', '"'•'^""^i 
 
 are written I-V236. nunarea thirtj-five luills, 
 
 To exprrjB any number of centa I<mm th^n i n - • l 
 placed brtween the fignre exp^JriLlThat nu™Sl "J^.^ T^'^-* ^' 
 point; thus, 8 cent. ^writSL^^or oS ^'''"^'^ 
 
 JSoTKB. — 1. BuBin»M men fraaaaaUv w^t. —.k. 
 doUar ; thu., ,3 ,4 i, a,^ wn'ZS^^y^^Tj^,':^^?^^^ '"^*^-" ^ ' 
 
 2. In buiiueas tr»rn«otionj, whan tKiL./ ».„■» * "»^ ao"»" 
 
 
 EXAMPLOS FOR PRACTIOK. 
 
 Write fifteen dollaru twenty-three oe«i;«. 
 Write eeven dollars sb. centa. 
 loiiaFa niue oeo;^ 
 o oeais. 
 
 Write ten d-"==- 
 
 Ang. ^15.23, 
 
6 
 6 
 
 7 
 
 H. 
 
 9. 
 
 10, 
 
 Ama. 15.008. 
 
 DKrr.MAL CDRRBNOT. 
 
 Write five dollars eight mills. 
 Vvrite tiiirty cents. 
 Write one huiiiircil cents. 
 Write one tlion.-anil mills. 
 Write one cent five mills. 
 
 1 1 ^"^'^ :;eventeen dollars four mills. 
 
 11. Write $6 and 7 cents. 
 
 12. Write 3 eagles -t .iollars 3 dimes 3 mills. 
 
 REDUCTIOX OF DECIMAL CUriRB>07 
 «0. Reduction is the procons of chuntrin" a .iumi.>, of r -.. 
 
 II. Tochmg,. dollars ,o mill.,, „nnex Ihre,- cipher,. 
 HI. lo change cml$ to mill,, annex on,, cipher. 
 
 Conversely, * ' 
 
 U ^n-'!'"^^" ^^.<^^^'«^« '•««<« 'o rfo^^ara, r/twWe 6« 100.- <Aa< 
 ^,po>ntof two Jigures/rnm the right ^ "", «rta« 
 
 TTT ^''''^"["d'' mills to dollars, point off three fynret. 
 
 All. lo change mills to cents, point off one figure, 
 
 EXAMPLES POH PHAOTIOE. 
 !• In $7 how many milln ? 
 
 -^7000 mlllr^" *' '^"*' "" '""« '"""' "^ '° «' »»«"« *" ' time. 1000 ndlk 
 2. In 3"j6 cents how many dollars ? 
 
 Analysis.— In $1 there aro 100 oents. therefore i nctu«. u 
 
 •quale the n«n.bor 01 dollar, ^^ onit-tl^ """'" "''""*' 
 
 3. Change $464 to cents. 
 
 4. CJiange 612 cente to dollars. 
 6. Reduce $3.10 to mills. 
 
 6. Reduce 35 cents to mill*. 
 
 7. Reduce 704.5 mills to dollars. 
 «. Change 10426 cents to dollars, 
 y. tieduce $4005 to mills. 
 
 !''• In 20GI liiillg h<.\v many ceuitJ ? 
 
 Ana. 46400 cts. 
 Ana. $6.12. 
 
 
 dnllart in cr».'« onrf 
 MM* to dnlUirit— 
 
. -~J«™.«r..-fvs«K-»»Ta.-i-.':.'3^V' 
 
 S6 
 
 PRAfTrCALPK-ORLEMS COM 
 
 PRAOTTOAL PROULBMH. 
 
 1- A broker bo 
 
 RULEs'^"^'' 'i'HE FUNDAMENTAL 
 
 2. m 
 
 -ugiit stocks lor .•3);^729.90, and 
 
 ii'w much (lid he gain? 
 
 sold tlieni for 
 
 An.9. $43«.2;{.j 
 
 wa^e- ain.miit to?^^'*^^*' """^"'** "'' •p.'.'.iju, wnai will 12 mouths' 
 co.r; ^ '*""' "' ""•'"•be™e» cost $0.9376, »hal will I ,„„. 
 
 h»w ,n»,,y of each 't H S .."..; 'j' ""'^ ">/ ««;«« " 
 
 «^ c..„., eacl, . how ,na,7of e;o-h'w;;d ZZ^^J^ An, 15 
 
 a i:,,n.ri,f u Y, •" '^^'^" '^'nd did he te 
 
 gain by ti,e bargain ?'' *•''■ '^''** '* °«^'; how much did I 
 . '• ^^'"^'ifi"!?! J ;^5 bushels of wheat at !Rnfi9oK . ;^"«-;^^235. 
 
 -t *().:^7.-. a pound, and he ?ema ni^ • ^1""*^^ ^'^ P*^"'"^'^ ^<" coffee 
 he receive ? ' '^ ^ejuainder in cash ; how much ca.sh did 
 
 ^- I'' a gentleman's incom*. ho i^'mnn . , .'^"*- *66.586. 
 
 <5l:iO; andto he8eco;7J2TI^^^ *« the «rst he gare 
 
 the third receive? ' *^ '^'' ^''*" '^ *^« ^"1: how mucli did 
 
 10. A lumber merchant boucrht «8n ln„. f m "*"'' ^^^O. 
 
 what i,s the price of each 10^?' '*^'^°'' *^« «"'» o*" *'^644.80, 
 
 li. With a Bank note of Siinnn i -j ., ■^"*'- •'^S.se. 
 
 my shoe„.ak.r's of srfand m^'o, se'rfnt 7s8?5"h ''" ^*' *'^«' 
 lar.M have I left ? ^ ^"' °* *^'5 5 liow many dol- 
 
 12. If a hat cost $4.25. how mi,ol> .„iii a j '^"'- '^202. 
 
 cost ? ^ ' '*°* '""<5^' ^^'" five dozen of similar hate 
 
 ^3. Anarmv comnosed of fi2]fifi ,„»„ ^ .i_ -^ns. $255. 
 
 13708 men lesfafterTleenial^ern^ '"' °^ ^ battle, has 
 
 in the army? engagement; how many men are there yet 
 
 15. Uow much £ I sellllod ''?'';!'''' ^'^^^ *'^^ ^ ? ^- ^-^«- 
 in giving ,^18 comnZtn ? ^ '"^ ""'' "^' ^^^^ '^ ^^^ «76 
 
 1 1>. Jo.oph bought 73 casks of t^vrun at S'^iQ fl « , ^",*- *^^^- 
 again for §,-,2 ; what is hi« nn 'fit ? ^ *^ "*® ^'-''''' ^'"^ ^^'d them 
 
 17. A IJauker is to receive .'Sl^^'fin i^ »u ■ -• --• 
 
 an.ouutingto^aHOO, and he se^tud Z S^^lo^^'T"'' './^^ «^^» 
 Hit of the third? second, to |.4.^20 j what will be the 
 
 '1 
 
 Ana. $3830. 
 "ozen of similar 
 
 amount of the third? 
 
 oue'-cit?''" '"■" ''"'''' ""''■''' »-^ »""«'» -ill 
 
 ^ 19. I bought 150 applea for «1 0^ u ^'"' '^'^^^'S*^- 
 
 - ' -■ """ ^ ""7 lor 
 
 20. A banker received dnrin.r »j.^ a * '^"*' 2656. 
 
 H2769. Ho paid out duriL tt wi vear ^P^^T"*^ "^^^ '^«''^»» 
 niuch he lias fell supposing le had «ii-4|^?^ •V96843 ; required how 
 of the year ? *^^ * *** ***^ '-^^^^ « bis »aA» at the b^nniac 
 
OMENTAL 
 
 them for 
 43H.2;{.). 
 
 2 iiiuuths' 
 IS. $426. 
 5?1H? 
 
 IJ 1 quart 
 Ji0.062o. 
 md geese, 
 le geese at 
 ins. 15. 
 
 3 of it at 
 ich did I 
 
 $1235. 
 i received 
 H of coffee 
 
 cash did 
 66.586. 
 iseH$4.20 
 
 t he gave 
 luoh did 
 
 $120. 
 .S644.80i 
 .«5.36. 
 )f $348 ; 
 any dol- 
 $202. 
 far hatfe 
 $256. 
 ttle, has 
 lere yet 
 8392. 
 U.80. 
 ;aiQ $76 
 $380. 
 Id them 
 5949. 
 he firat 
 
 be the 
 5830. 
 similar 
 3.80. 
 
 'iij for 
 I66d. 
 during 
 fourth, 
 (1 how 
 
 pafd 52 Tu ;?K TY *. ^"'*'"'' ^^ '^^'^^^'^ **f bft'-'^y ♦«' which I had 
 ^^22. Frank was bora m 1857, in what year will he be 21 year- 
 
 the age of the non when the father will be 75 year, old?' ^^.4 
 24. An omnibus able to seat 18 per-on. ,nakes 12 trm^ oer .lav 
 
 how many travellers will it carry io one vear ot 365 day^s .^on SL 
 
 that there are always 1 8 persons at each irip ? T..' 7f?40 
 
 2o. If we can buy a yard of tiannel for $1.76 ; how many yards of 
 
 the sarne quality can be got for .$626.56 ? ' A J Si 
 
 lJr.m^,^ZTV''\r'!'''^ ?"/^^ ^ '^'^"^'•^*'' the" distance 
 bemg i«y uide^. he ^^Iks during 5 days at the rate of 27 miled ner 
 
 V ^q^'red what distance he has yeUo go? ^n,. ^fmiles^ 
 
 remains vet'.'?!;r "'"A '^PT*^'" ^''' ^^«^'^^'^ «»*-'' «24 all^ th'ere 
 remams j et * {6.40 ; what is that sum ? Ans. $2004 40 
 
 28 I bought 15 yards of linen at $0.25 a yard, 37lJ lo, "^-'oU at 
 
 29 Ahfu'^T^'i^ '•«1»«'-«d/lie amount of my Bill? ^. $123.81. 
 
 earn p'; dly ? " '^*^' '^ '^^ *^* """'^ = ''^^^ ™"°i' '^'l' J»<» 
 
 • ealio?*I lo!t^"» n' * ^"7' ?'''^'' contaming 28 gallo1.r Jt^ 'lo^.^b 
 SefiSn d 1 if '"' ^y. '^^kage and sold the remainder for |l.20 
 per gahori ; did I lose or gain and how much ? Ans. Gained $4.20. 
 
 «»i ofl?l3"s" Y:^l'^ ^T^ *"'* *'^'^ *"^ '"*^'"g repairs for he 
 L^t I fell 'it ? '* ' «t 80 as to gain $60o1 foriiow much 
 
 32. What sum of money is required to pay 34 wu-l^^n^fleh* of 
 whom has worked during 28 day^ at$0.80^^r<iay ? A^i^i^ei 60 
 
 33. I bought 97 barrels ofcodfish at $5 a barrel, I gave 17 barrels 
 rail'i^n^f^tU^^— '"'^-^^^^ - '-± ^J^ 
 
 34. Louis bought 500 acres of land for the ..ZTmsU Re 
 •fterwards sold it ,n lots as follows: 127 acres, at *47 : 21 'aero: 
 Jt$96; and the remainder, at $37; how much di, I he .a,n llv h. 
 
 35. Henry receives 45 cents to buy 6 pounds brea i a. ! ceuH' ^ 
 pound,and2copiesat3cea^api.«e; what is his change ? 
 
 36. The overcoat of Wilfrid costs 3 times as much as the hat cf 
 
 alett rr b^lLr «- -- ^^- theothef ; h^w^L^^^^^^^ 
 
 38. A milliner bought silk ,n a shop tor .3« oentT thread fJr2(i 
 cents, needles for 9 G'»nte ...i.j ..,,fu.n/^r iZ-^^ T' , ■» 
 
 ■itfl hftH ?•> /^.n/.. I^ft u " -'W'a''^r !Hc«ai»,- afier paying herb 
 
 ^8 wiaf ll ?•' .'•«'^'"«°^ money had she? !j,,«. $1.55. 
 t.W6 ? " '^•'^Klend when thc^ divisor is 3061 and thequoUent 
 
 At, A i^.,^ „ . 4iM 198,966. 
 
 "^ntH ; what proflt does h« ,„ake or. I 76 pounds ? 4*m. $5 25 
 
LfH^i^- i 5>f.^, ' ^-.g;^ 
 
 MAOnOAL raoB 
 
 n 
 
 48. How much will 3550 laths cost at 22 ceuM ner hT.^'ri ? 
 $13^0^?"'' '"*"^ '"■'^' °** '^^^ ^' *^-=^5 * ««'d did I buy for 
 
 co^t^^f2^r;sr ^' ^^-^^^ ^- ™"^ i,w^ 
 
 53. A cabiaet-.naker km earned $45 in a certain number of dav. 
 
 35tdT'^" ^rS^^" '^ "- -^^ ^vear« old, wlrJ^hrXLi was 
 mother^"' "" ' "^*' ""'' '^^ "''"*' *S^^ ^^ »^« f^*^^'^»^ 
 
 thfratfo7'^?75rrH"'"'rfa'"\''^^'^'^''^»' ^ bouglu 'tfo ^f^J^s 'at 
 ttie rate of «l7o0 each, and 19 shares of Bank Stock at $103 iJr 
 
 57 In celling cloth for $610, a merchant gained a« ^mch^^frthe 
 cloth cost hun, lesH $5)0 ; what was the cost? i^ *656 
 
 58 Althou,rh I wa« robbed of $25, yet after havin«^id $546 
 which I owed, I haTe $17 left; how mui mowy hi J? ^ * *^ 
 
BILLS AND AOOOUNTe. ff 
 
 BILLS AND ACCOUNTS. 
 
 82. A Bill, in business transactions, is a written statement of 
 articles bought or sold, together with the prices of e,ich. and the 
 whole cost. 
 
 N0TK8.-I. The party who buje, or who receives money, goods, or serrieM. 
 
 83. An Account is a registry of debts and credits. 
 friJ^rH'.rV/'' account should always contain the names of both parties in th« 
 
 if L^Zi'°i' °"*y '"*^« "?^y T «'le. which may be either debit or credit: or 
 It may haTe two sides, debit and credit. . « u.i. , ur 
 
 84. The Balance of an Account is the Jifference between 
 the amount of the debit and credit .«iues. 
 
 85. An Account Current is a full copy of an account giv- 
 ing each Item of both debit and credit sides to date. ' 
 
 /«e^"'~"^° -ooount current hiiTing only one side is sometimes eaUeu a BiU mf 
 
 86. An Invoice is a full statement in detail of goods sent to 
 a purchaser or agent at the time the goods are forwarded, giving 
 the marks and coatenta of each package, the charges paid? and 
 how sent. 
 
 87. The Footing of a Bill is the total amounr, or cost of all 
 the Items. 
 
 r^^T^T^" ^^^^ •creditor receives the amount of a bill or an account cur- 
 Z :, » If ^°ri^1?^' '^ ^ ^ PT'^.'^J'. »»riting r.t the bottom of the bill or »«. 
 oouni "lleceivedPaymem" and sigi:ing his name. If tho payment be trade 
 
 aooount by writing the creditor's name first and his own t,ame under it. as in 
 rorm I. ' '" 
 
 2. Bills and aocounts are sometimes paid by the debtor -iving to the creditor 
 a promisfory note for the amount. n e, <-" i/iouiun- 
 
 In the following bills and accounts the abbreviations are : 
 
 Dr. for debit or debtor. 
 Or. for credit or creditor. 
 yd. for yard. 
 elos. for docen. 
 
 bbl. for barrel. 
 
 bush, lor bushel. 
 
 lb. for pound. 
 
 cwt. for hundred weight. 
 
 82. What w a Bill ?- 
 
 M-r««i.» ^fl*^*i^"7~ What i, meant by debtor and creditor?- i^v « BUI <rf 
 Par«l.t-83. W*a«w«m Account?- 84. The Balance of an Account T-8» 
 
70 
 
 Mr. G. Murray, 
 
 rorms of bills and aooountb. 
 (Form 1.) 
 
 Kingston, Sept. 8, 1870. 
 Bought of E. P. Healet & Co. 
 
 15 
 24 
 16 
 34 
 
 8 
 4 
 
 2 
 
 32 yards Ca.ssimere, . . . 
 
 Blue Cloth, m 
 
 Flanuel, (co 
 
 Drilling, ^ 
 
 Fine Muslin, /® 
 
 Gin<;hani, (® 
 
 doz. Shirt Bosoms, m 
 
 Wool Hose, ^ 
 
 ra> $1.70 
 
 3.25 
 .67 
 .12 
 .18 
 .30 
 5.60 
 3.25 
 
 *, fi 
 
 54 
 48 
 16 
 
 40 
 
 75 
 08 
 
 Received Pavment, 
 
 E. P. Hbaley & Co, 
 per N. Ryan. 
 
 |158|45 
 
 Mr a. Seymour, 
 
 (Form 2.) 
 Montreal, Sept. 17, 1870. 
 Bought of T. McGiiBRVY & Co. 
 
 May ej 4 
 June 10 
 July 21 
 
 << 
 
 24 
 
 Aug. 3 
 «' 12 
 
 Sept. 2 
 
 15 
 3 
 4 
 
 7 
 
 15 
 
 10 
 
 150 
 
 boxes Oranges, ^ $ 3.55 
 
 " Raisins, rs> 2.90 
 
 cheats Black Tga, ^ 25.00 
 
 ' Green Tea, /® 28.50 
 
 ' Imperial Tea, ^ 45.10 
 
 bbls. Coffee Sugar, /© 27.20 
 
 sacks Coffee, ^ I8.6O 
 
 bushels Corn Meal, /© .85 
 
 Credited by Cash, 
 
 Beoeivtd Payment, 
 
 T. Moaauv Y k Oo. 
 
 B*^ 
 
FORMS OF BILLS AND AOOOUNTa 71 
 
 (Foam 3.) 
 
 Quebec, June 2, 1870. 
 Mr. D. Johnson, 
 
 Bought of Byrne, O'Brien & Co. 
 
 No. 
 
 2 
 
 7 
 
 U 
 
 10 
 
 40lpair Gaiters, ^.^2.30 
 
 75 " Rubbers, i^o 72 
 
 ;; C^fi; Boots ra> 3!S0 
 
 ' ^'"«k " (3) 2.65 
 
 tooperage and Cartage, 
 
 Insurance, 
 
 108 
 67 
 
 $ 92 
 
 54 
 
 410 
 
 177 
 
 4 
 
 1 
 
 00 
 00 
 40 
 55 
 37 
 30 
 
 L. Jackson & Co., 
 
 Bj " Canadian Express Line." 
 (Form 4.) 
 
 Toronto, 0«t. 6, 1870. 
 
 $739 
 
 62 
 
 To W. Price & Son. Dr. 
 
 1870. 
 
 i u ?Lk„„J*--^ ^ 18.50 1757 
 
 Aug. 9 
 
 36 chests Green Tea, . . ./a 31.80f| 1144 
 Or. 
 
 1870. 
 
 '"'^ ?j|^f l^.^ ^*''*^' Bro^'cioth, . . . .® $5.10 
 " 27 - 76 " Black Cloth, . . . ® 4 67 
 Aug. 4 ;| 280 « Red Flannel; . . . ® ""Ta 
 < 24 gross Silk Buttons, . . . <© .43 
 
 Balance due W. P. A Son 
 
 •ot 
 
 0.1 
 50 
 80 
 
 $3966 
 
 $102000 
 35025 
 201 60 
 10 32 
 
 30 
 
 $1682 
 
 17 
 
 Received Payment, 
 
 jf2384{ll 
 
 W. Pwoi t Son. 
 
s^^SSlSSSS. 
 
 ''^'::f^:I'Pfiyli- 
 
 It 
 
 FOEM8 OF BILLS AND ACCOUNTS. 
 
 'O O C5 O SM 
 _^ •^ tO fO 00 
 
 CC *^ O 00 
 
 O 
 QQ 
 
 I 
 
 <o o esi 05 1- 
 
 I 22 ''O 05 o <-< 
 
 II 0» t- kC •»» 
 
 II -. 
 
 &H- - 2 5 
 
 <o o 
 OS eo 
 
 C<» *» 00 Tj* 00 o «o 
 
 c^ e^ <—• n I— I 
 
 ۥ^3 ^ 
 
 100 ,_^ 
 
 sS-'S 
 
 nz. 
 
c 
 en 
 
 -Id 
 CI 
 
 o 
 
 00 
 
 M 
 
 **6i AND AOOOTTNTB. 
 *ft#^'-'a*J^ 1^ m MADK OUT, A8 INDIOAIB). 
 
 71 
 
 On Form 1. 
 
 b v«»i*;.;,ijg5iij«;flour, at24ct8. Footineoftb 
 
 to Mr. A. Lame, 
 t22cts. ; 121ba. 
 r the bill, $11.17. 
 
 On Form 1. 
 
 infflton sold to T. Le«, Feb. 10, 1870, and 
 ■ed the amount of the bill : 15 lbs. butter, 
 20 ct8. ; 750 lbs. maple sugar, at 9 ota. • 
 Footing of the bill, $176.13. 
 
 On Form 2. 
 
 Irish liuen, i#lr #w' i ^'^'^ l^^' ^\ ^^ *'*"' ' ^*^- ^i ^6 7^^- 
 at 16ot«. *^'^;' 2<Wyd8. inuahn, at U oto.; .330 yd., dowlas, 
 
 Footing of the bill, $160.69. 
 
 (hi Form 4. 
 
 ^'eb. 20 40DaU- «!iL^SS^ ** «3.75; 28 pair buskins, at 86 cts. ; 
 $115 120 SiT^l^'^ ^^ ^*"- ^^^«i^ 2, 67 pair gaiters, a 
 credit/Feb'^2^,^-'jE!^5^^^^^^ ,9"^ f^jf -' thf follo;ing 
 
 account wj,ffl?*^'"* «• ^^ * Co., March^2jJ, when \he 
 
 settled hvkZirX "^'' ^"^ ^'*'»- Ontario Flour, at $7.20 ; and 
 What wt Vilf iSfe ^"8- i' '»»• bal. then due L. A. C. 4 Co 
 vrnat was tt^ei^^j^^rtle note? Ana. $163.28. 
 
 On Form 2. . 
 
 tobacco' a'tTloS'^^li'^*'^^* ^»""«e= M«ch 1, 1870, 18 lbs. 
 !^^ "ilbn't;^]"^ ^fLf''*-^ 72 lb. tobacco leaf; at 
 
 mol4Wtt3g,d|t3^7^, April 6, credited by cash, $18. What 
 
 bftlince waa dwtW!'%yjl^] g? 
 
 }i , '' 
 
 4n«. $36.66. 
 
r4 
 
 BILLS AMD AOOOUNTB. 
 
 On Form 3. 
 
 7. Sold, May 2, 1870, by L. T. Nolan, dealer in fruits to R ft 
 Lemome Toronto: 32 bbl«. Montreal 4p^es,ZarkeiT\T tf^t 
 
 Ana. *380.10. 
 
 On Form 1. 
 
 ^^L^-^'^^'^^^^^^^^'i^^<i,so\d to S. Montienr Mav S ism. 
 20 lbs. K.0 coffee, at 24 ct8. .-'sO Iba. W. I "S Jt 7 cYa ' 7^ [h. 
 
 thTbiS; $39.89! ' ^^- P''"'° *''"^'^^"' •* ^1 ct..-Footing o5 
 
 0» Form 5. 
 
 li**llin"?7?'*^n' g'^<f^Tp'•o«to, «old to W. Morrin & Co.: June 
 i\\ \'J\^ ^^""^"^ *'*'^^^°'' ^^ 93 cts. ; 308 gal. old rum at$l 9rt! 
 610 gal. Holland gin, at $1.05 ; Aug. 5, 207 gfi. rum at *I 75 ??4 
 gal. cognac, at $2.10; Sept. 22, 401 gal. Scotcl dn rT*! is ' n^ 
 
 Ana. $1965.86. 
 On Form 4. 
 
 9Q*"; ^^''.f • ^/n^^'^^"' K'ngston* ^old to J. Kelly: June 16 1870 
 23 yds. eslk, at 96 cts. : 16 yd. ribbon, at 45 otR • 1 9 Jwl ' r "' 
 
 18 ct^. ; July 10, 4 yds! blue doth, a?'$3 60 • 3 ids ^broadHn !"' *f 
 $4.60; 9yd8. doeskin, at $1.25- 1 cravat Vl '-in -a *"^^trH^^'' ** 
 boote,at.ii.60 5 ^ doz^ol^t kLoTt^^lIt^^^^^ L^' 
 
 .^sVo^^lTV^? 'f'T^ '''^''' -' -^"'^20, by 3 bwl green apples al 
 4^.20; 16 bushels potatoes, at 22 cts. ; Aug. 20 bv canh *7%n 
 What balance was due P. I. G. Au^ 24. thill' ^iT ^' *^"^"' 
 settled? ' ^' ' ^"®° *^® account was 
 
 Ana. $91.21. 
 
 On Form 2. 
 On /'•rm 3. 
 
 8^01 
 
blLLM ANI> AOnOUNTS. 
 
 71 
 
 5, 1 879 1 
 ; 75 lbs. 
 3. liutter 
 >otiDg of 
 
 tilop 
 
 at 
 
 m 
 
 C0( 
 
 the " Maine Express Line." Amount of Inmce, $^11)3.01. 
 
 On Form 4. 
 
 . » ■ i?^w •'; F^" * Brothers, St. John, N. B., p,.1,1, June 1, 1870, 
 toI>. N. WaL^h, 15260 lbs. pork, at 5} cts. ; 72.15 lbs. cheese, at 
 8, cts. ; July H, llo2l bushels corn, at 50 cts. ;.Julv 10, 15(50 bbls. 
 Hour at $G.12,Ji. On the above are the followin;? credits : June 25, 
 by lloOlbs. cotton, at (Ji cts; June 30, by cash, $750: July 12, 
 H2,jh lbs. maple sugar, at 7 cts. ; 6450 gallons, molasses, at 37i cts. 
 1 , Vo 9 *™""°' *^*' ^^'^'^ requisite to balance the account on 
 '^^^y ^^f ^ns. 1121)53.78. 
 
 0)1 Form. 2. 
 
 A ^^' P\ ?;n^'^'-' t' ^''"^l'* ?!" '^- ^^^"'Phy * ^°-' publishers, Montreal : 
 Aug. 4, 1870, iii Juneau's Mental Arithmetic, at 15 cts. ; 50 Smith's 
 Practical Arithmetic, at 37 cts. j 2 doz. Miller's lieador, at H.50 : 
 Aug. 12, 60 lleiiry'8 Grammar, at 7 cts. ; :iG Kerney'a Compendium 
 oi History, at 72 cts.; Sept. 1, 30 Walkingame's Priinarv Ah^ebra, at 
 18 cts.; Sept. 1, credited by 50 Commercial Arithmetic'.. I' the Chris- 
 tian Brothers, at 40 cts. What balance was due A. M. & Co., Sept. 2 ? 
 
 Ans. $54, 27. 
 On Form 5. 
 
 15. S. N. Kelly bought ofH. Hamel & Co., Quebec, Feb. 3, 1870 
 IB yds. cambric, at 14 cts. ; 60 yds. calico, at 42 cts. ; 39 vds. cassi'- 
 ";\^^*^^t/''i./^f,y«^10 37 yds. cotton, at 35 cts. ; 'e yds. velvet, 
 a H.70; May 2 .^Oyds. uien, at $2.65 ; May 4, 24 yds. merino, at 
 a"" X r N. Kelly's credits are ; April 1, 50 lbs. cotiee, at 25 ct-. • 
 April 9,_7 cords of maple, at $3.50 : May 20, draft on Halifax, $78 
 
 t""%«"' ii/.^i' "''' *^-^^- ^^*' balance was due Hamel & Co. 
 June 26, 1870? ^««. $196.12. 
 
 Let the pupils make out Bills or Accounts, as the case may be, in 
 properform, from the following. 
 
 5 ^.^.-O^^IhT ??'''*" ,''*'^'\'''T^'T'''°'*^*« '^"^'" Gossehn, July 
 6, 870, and I. Kane, his clerk, collected the amount of the bill • 
 3b bs. map e sugar, at 13 ci^. ; 16 lbs. coilee, at 15 ct.s. ; 13 lbs tea 
 aty8et«.: 13 lbs. chocolate, at 61 ct<*. : ■- >b". --in-4 a ] 7 r^ 
 47 lbs. cheese, at 9 cts.; 12 lbs. peppe,, .. 19 ct^.f 20 tbs. but^eV 
 at lb cts. ; 2 gal. vinegar, at 68 cts. Footing of the bill, .$40.S ' 
 17. I'orwarded per the Eastern Line, June 3, 1870, by B. Ellis & 
 
 S'ol'e S'^^'l^5i^""'''^C-^n^«\ ''^^''' womeVstockings 
 IMo. 6, at 90 ets. ; 16 doa. napkias, No. iO. at 47 ote. : 24 pair men's 
 
 '■' nlJ! 
 
 
76 
 
 ■ILLS AND AOOOUOTS. 
 
 V(^ 
 
 g'.OV 
 
 packing, $1.60. ' ^ ""'* ^^"^ '•^'^«'; <- cu. ; charges for 
 
 IH. Sold by J. M O'Roillv nr * , ., Amount . 51101.95. 
 
 thier- *27w ill ^ "eilly, Montreal, inr 10 Im7(i tr. a 7i 
 tuier. ^7a ibfl. coffee, at .S6 cts • I'i7(i iho i ' , ' ^ A' C^au- 
 oam, at II ota . ifjAVi ', ^^'" 'bs. lard, at 13 cts • hnn ik- 
 
 160 bushels oat8, at io cts il '^> *^^'- *g^'«' •' '2 ^♦V • 
 
 Julia Meredith, andt/e bS pai'd alz^^"^ ?f*'"'^"«' ^ Mrs. 
 •doz.; 2 doz. silver table TO L t^'^'i'^" **^ f '^'^'•^^' "'^^.TS 
 spoons at $18.60 a doz.. if] "/^'ffut^^^^ ^'^''^ tea- 
 
 doz.j 1 gold guard chain at * I- fi -p '"'^'^ ^""^«''' »t $7.60 a 
 
 20 P. Barfy 4 Son Kinlta ;old toT'^u^ 'K^^^' ^394.76. 
 M follows: 2ioave8white"W'52l« ;,!.""' ^*''«*' «» '870, 
 flour, jt $7 80, 9ilbs:l^""^,"itf6i^.*lVlh, ''"'•' ^^''- "^"-^ 
 - lbs. black pepper, at 42 ct« 9ft iku',. '^^- ''*''''"^ «^ !•> otM . 
 
 ps. at 70 cSf 6 bush bean: aflUO^" Ui' fh 't ''' ' ' ^^^'^^^ 
 I gal. molasses, 60 cts. ' * '^"t]; ^f ^ ^'^^l ^*con, at 16 cts. ; 
 
 ^ 21. M. Peter Nelson owes D T W. ^^ooj'ng of the bill, $60.83. 
 6, 1870, 3 gross «hi?t sJud' ^t 85 i^' T^''""??' «« follows: June 
 stockings, at ,$3.18i; 3 doz.\sL fron/;'i«?'ni^' J^ ^'''' ^"^l^n 
 ribbon at 25 cts. ; 30 pair si kl lovef I't Jl^Af '. ^"S" ^' ^^i yds. 
 at $2.85 ; 22i yds ticking at 45 p^I V !• '^^ ' ,* "^^^^ ''"«« towels, 
 ,22. G TurVer & Son §- .btc sold lT"l^ r '^'' ^'i'' '^'"^^ • ^n^ 
 17 pair boots, at«3.00: March 'l«iq ^' \- ^''■'^"' ^^^ch 6, 1.4o. 
 80 pair hose, ;t$L20%3 pair IVe^^P^^^^^^ %fl-«8; A'pril 9 
 
 A. 1-t^reen, the following as credl^VnWifi 97 «^*^. "''^'''^'^ «<" 
 20 cts. ; 10 Third Keaderf atTs 9o ." Affn . o^'^"""^ ^otdetB, at 
 at *4. 75 ; 1 9 Golden Cnuat at *^ J?^ • i'p^. ^''"."'"''' I>"^'-'onanes, 
 ot«. Tlie balance due Q T% Son whfij^ ^^""''•^J*" ^"^'^^^^ -t 37 
 amounted to $44.05. ' "^^'^^ ^'^ Pa«<l, May 16, 1 70, 
 
 Pelt^lr/S^Lt^'J? *^^"«^«' Kingston, Ju. M ..;o ,^ ,. o' 
 
 ^^^^'^^^S^t::; r$V4 15.. bV^nlr^ L ; 
 
 82cts.j 326bush.v,heatt"at $T'6?i*i^»; ^i* ^""^^^'^ co'". a 
 500 bush, rye, at $1.06. *'-^2i .300 bush om.s, at 91 cf ; 
 
 24. Joseph R. Simon, bought of C T S ^'^'fe ^'"' ^^^^^-'^S- 
 1870 a^fol-ows: 5 yds: blac\ cth at ^3 ?o''. f^"'' V" 20. 
 •O.50 Trimmings, $3.75 . s v^. Jlli^ f.'^^t 1 «atin waistcoc, 
 gray fringe, at esVts*. 3 ^eJatf Jfj^^^ ^'f "' •* '9 ct,.,- ri .Js 
 eassimere, at$2?5- 71 vhI „f ^°' *' ^^ cts. j 3 y-' /„, 
 
 9 yds. „i„w a.„„ei, „ 80 to." ? t«™L J? ;rr?'.''"?' ' "•- > 
 
 i iu<ia.B ™.inl?' ,• ^' '^ P'^«« muslin, each 37 vds *r«!i^^ 'j*" 
 !»*«.« pnnt«i calico, ..ah 47 yd.., ^ 82 •i\^y^',* ^^J,* * ^^^'^ 
 
 
at 
 
 •ILLS AWD AOOODIfTi. fj 
 
 £ljrii;il?%""r' ^^L^Or-l'., »t 70ct8. ayarl; July 10, 11 piece* 
 
 |H..I It, ,mft WM,. .vi.at balance was ,|„e P M & \, \,;;* -J^ Y ' 
 
 ^rsi;:r Tzr o'f/ >, . . ^i^.: ^ni. S^" 
 
 r»:r/''««'<--n.aK No.' 22, at\?12'50 Vr |;;.:?fdo;'w« 
 
 2S-in., at .?l.7.5; 
 
 P.ar h;u. No. M at $27 per doz. : .5 urnlfreflal 
 
 l«7j' iV'"'^^^{ «• W.lliarn^ Quebec, by H S. Con" ily .[.in^, 
 
 .'^*!'.S'/'i!''' 'r- ' '•"''«l Mo^- al, to J. B. Po«ton. a« follow. 
 
 doz. 
 
 Oct 
 
 pewter-polJHhed biti^, at 
 
 w, 1870, 4H pair t.,„g^, at .1", ^ ctn.'; ? 
 
 S^ck n«*rii,ck*t Vr!; l-^rV \ ' h'^'' -shoemakers' awls, at 
 rm-Sc^K I V^ i ; • ,' ^'* P^''J^ets .4 1,1. Hcrews, at 95 ctH ner 
 
 ^x i, . ^'"'^*'' rcce.yci yf J ,j p^„,^^ account- N.w s 9 
 
 7'J' fh**P^l=bi^tt'ki ;?::acr2r'pi^^- i 
 
 ete,T%? ' ''»«*"^"P*'-'«»«J04? chaVi for packing; car^ 
 . »i ». .t,u . Sent. 25^ 3.^ yh. Bheetiru, at 1 1 cts. ; 3 yards 
 
 ♦'i ydH. bioadcloin, at $4..S7A; Oct. 29. 20 Wdf 
 
 tL^^r^f ^""'' '**.'^ ' ^**.V ^^ yi'' n^eriQo, at 70*ct. 
 
 the foi 
 
 mmp crwl.t. N.v. 1, by 22 lbs. butt 
 
 On this bill 
 
 cherry wyrxl, «t k:iM 
 
 l»l>or, attl.so. Wl, 
 
 J) 
 
 . . --.er ut 20 cl^^ 
 
 '«c. 4, by cash, «1 6.00; Dec, d. 
 
 ■MOtlMWMMItMr 
 
 fiat i uiace wmiIiu N. P. M. k 
 
 are 
 
 cords 
 days 
 
 <vO., Dec. 30 
 •2I.T62 
 
 ■■:! 
 
®9Ksif«'- -'*mtikm^mmmtt.ii 
 
 *• FBOPBRTIM OF IflTNBIllfl. 
 
 PROPERTIES OP NUMBERS. 
 
 EXACT DIVISORS AND PRIME NUMBIBRS. 
 
 HH. An Exact Divisor of a number 13 one th^t A' -a • 
 
 »W. Ail niuubfrB are either even or odd. 
 
 00. \n Even Number is a number of whioh 9 ;= « 
 divixor ; as 2. 6, 8, 24. ^ *° ^^^^f 
 
 »1. An Odd Number is a number of which 2 ;« n«f 
 divisor ; as 1, 3, 7, 16. ^^ °" ^ '^ "o* »n exact 
 
 Every number must be either pmn. or r^mposite. 
 »'« \ Prime Number is one which can not h« ..nc^i J 
 ««pararH into two or more integral f .ctors? as ? 357''^ '' 
 N0TM.-I. All prime number! except 2 aw odd number. 
 
 »5. Tile Power of a number i, the product obtained hv 
 
 ^ »«. The Exponent of a power is a flexure written nf tu 
 nght^of a number, and a little above it, to show hrmanv iml' 
 
 t IS taken as a factor ; thus, in the expression 5 ^Th^ezUent 
 M 2, and the whole is read 5 second power. exponent 
 
 Prom thes« principles, 
 *«•• priBM <o «mA o«A«r ?_ 9 { HTAfl, i, ^^^li^ number ?— Jf A«» „re num. 
 
 1 
 
 
 2 
 
 
 3 
 
 
 5 
 
 
 7 
 
 
 11 
 
 
 13 
 
 
 17 
 
 
 19 
 
 
 23 
 
 
 '2» 
 
 
 31 
 
 
 37 
 
 
 41 
 
 
 43 
 
 
 47 
 
 
 53 
 
 
or 
 
 FAOTORINQ 
 
 We derive the following properties : 
 
 r. Two is an exact divisor of all even ^cmborH. 
 
 11. Three is an ox ict divisor of every number the sum of' whoso 
 diijits It will exactly divide. 
 
 in. Four is an exact divisor when it will exactly divide tho 
 tens and units of a number. 
 jV. Five is an exact divisor of every number whose unit figure 
 
 f 0. 
 
 V. Six is an exact divisor of every even number, tho sum of 
 whofe dicjits it will exactly divide, or that 3 will exactly divide. 
 
 VT. Eight is an exact divisor when it will exactly divide the 
 hundreds, tens, and units of a number. 
 
 VII. M'ne is an exact divisor when it will pxaotlf divide the 
 sum of the digits of a number. 
 
 TY^^if^'" '• *° ^^^^^ divisor when occupies the units' place. 
 
 IX. Etevm is an exact divisor of every number who.se sum of 
 the digits, standing in the even places is equal to the sum of the 
 digits standing in the odd places. 
 
 TABLK OF PftlME NUilBEUH FROM I TO 1109. 
 
 !l 
 
 1 
 
 59 
 
 139 
 
 233 
 
 337 439 
 
 557 
 
 653 
 
 769 
 
 8S3 
 
 1013 
 
 2 
 
 61 
 
 149 
 
 239 
 
 347 
 
 443 
 
 563 
 
 659 
 
 773 
 
 887 
 
 1049 
 
 3 
 
 67 
 
 151 
 
 241 
 
 349 
 
 449 
 
 569 
 
 661 j 7.-i7 
 
 907 
 
 1021 
 
 5 
 
 71 
 
 157 
 
 251 
 
 353 
 
 457 
 
 571 
 
 673 797 
 
 911 
 
 1031 
 
 7 
 
 73 
 
 1G3 
 
 257 
 
 359 
 
 461 
 
 577 
 
 677 
 
 .-^09 
 
 919 
 
 1033 
 
 11 
 
 7y 
 
 167 
 
 263 
 
 367 
 
 463 1 587 
 
 683 
 
 811 
 
 929 
 
 1039 
 
 13 
 
 83 
 
 173 
 
 269 
 
 373 
 
 467 
 
 593 
 
 691 
 
 821 
 
 937 
 
 1049 
 
 17 
 
 89 
 
 179 
 
 271 
 
 n'd 
 
 479 
 
 599 
 
 701 
 
 823 
 
 941 
 
 1051 
 
 19 
 
 97 
 
 181 
 
 277 
 
 383 
 
 487 
 
 601 
 
 709 
 
 827 
 
 947 
 
 1061 
 
 23 
 
 101 
 
 191 
 
 281 
 
 3S9 
 
 491 
 
 607 
 
 719 
 
 829 
 
 953 
 
 1063 
 
 2tf 
 
 103 
 
 11)3 
 
 283 
 
 3D7 
 
 iii9 613 i 
 
 727 
 
 839 
 
 967 
 
 1069 
 
 31 
 
 107 
 
 197 
 
 293 
 
 401 
 
 503 
 
 617 
 
 733 
 
 853 
 
 971 
 
 1087 
 
 37 
 
 109 
 
 199 
 
 307 
 
 409 
 
 509 
 
 619 
 
 739 
 
 857 
 
 977 
 
 1091 
 
 41 
 
 113 
 
 211 
 
 311 
 
 419 
 
 521 
 
 631 
 
 743 
 
 859 
 
 983 
 
 1093 
 
 43 
 
 127 
 
 223 
 
 313 
 
 421 
 
 523 
 
 641 
 
 751 
 
 863 
 
 991 
 
 1097 
 
 47 
 
 131 
 
 227 
 
 317 
 
 431 
 
 541 
 
 643 
 
 757 
 
 877 
 
 997 
 
 1103 
 
 53 
 
 137 229 
 
 331 
 
 433 
 
 547 
 
 647 
 
 761 
 
 881 
 
 1009 
 
 1109 
 
 FACTORING. 
 
 
 3*7. Gas,-. _. — To resolve <t numhrr into its prin 
 
 lef actors,. 
 
 •'Jo*"-— The prooe«8of faotoring nurabers depends upon tb« 
 
 ) foUowlag p(to< 
 
 
 
 Wkm it S mntantnUtUor f—S T— 4 »— 6 T— • I— 8 T— « ?— !• T— 11 / 
 
so 
 
 rAOTOKme. 
 
 J:j!fry^^^^^^^^ ^^If'^^- "^ ^^"^t number, 
 
 «>»t'"n> of ,u prime factors. °»a»ber are its prime factors, or 8om( 
 
 ^^■■- What are the prime /actors of 15% ? 
 
 oombi- 
 
 tho^?s'm?;l^fhf Jt,^-^,2 the least prime (actor, and 
 
 Proof. Tl . product of .11 tK. ''"^/"^^^/^^^^^^ n'j«„-.^. 
 aumber. ^ '^ '" *^" P"'"^ ^^^tors mil be the given 
 
 EXAMPLES FOR PRAOTIOE. 
 Required the prime factors of 
 
 6. 1140. Am. 
 
 7. 3420. Am. 
 
 8. 2445. Ana. 
 9- 2431. Am. 
 
 10. 2205. Am. 
 
 1. 28 
 i. 36. 
 
 3. 86. 
 
 4. 144. 
 
 5. 360. 
 
 .4n/.. 1, 2, 7. 
 
 Ann. 
 Arts 
 
 »o. 
 
 H. 12673. 
 
 12. 12496. 
 
 13. 21504. 
 
 14. 1.3981. 
 
 15. 17199. 
 
 Ans. 
 Ana. 
 Ana. 
 Ans. 
 Am. 
 
 more innnhern. 
 
 ?Zl '^-^"fi'"'"^P^--M,or> common u. ,„. 
 
 •r 
 
 Ex. 
 
 What are the prime factors common to 84, 126, , ,d 210 ? 
 
 OPBRATlOlf. 
 
 2|8_4, 126, 210 
 
 3|i2r~637 
 
 7 
 
 it 
 2, 
 
 3, 
 
 105. 
 3^ 
 6. 
 
 ANALT8I8 We find 2 1^ !.» 
 
 divisor of all the numbers it^^ fu" ^'^■'*°' 
 a oommon tn-'tor • Tio ' '^ *• ''»ereforo, 
 
 the flrstlJ^f quotit "t«?rciTof ttr" ?l 
 set of quotientl. therefore 3 LJ 7 ''°?'^ 
 
 common factore'of tl, nui" Th! '"'° 
 no exact divinnr nf >>,.. "uraoers. There is 
 
 prime factors. ^'- "«^ '«« common 
 
 98. (F^// 1» «/i(? rule #0 »w»ri/«« « _„ZI ^ T~ ■-- ■ 
 
CANOSLLATIOM. 
 
 81 
 
 EXAMPLES POE PRAOTIOl. 
 
 Required the prime factors ooramoo to 
 
 1. 12, and 24. 
 
 2. 48, 96, and 120. 
 
 3. 42, 6;^, and 105. 
 
 4. 225, 4;«, and 540. 
 
 5. 48, 72, and 9G. 
 
 6. 140, 210, and 280. 
 
 7. 252, 336, and 420. 
 
 8. 960, 1568, and 5824. 
 t>. 330, 495, and 165. 
 
 10. 2340, 11934, 12987, and 1485J. 
 
 Ans. 2, 2, and 3. 
 An$. 3 and 7. 
 
 Ans. 2, 5, and 7. 
 
 CANCELLATION. 
 
 lOl. Cancellation is the process of rejecting eouai far-for, 
 fr«.bers sustaining to each other the ^relation^rdiviS 
 
 Ex. 1. 
 
 Divide 112 by 56. 
 
 U2 
 66 
 
 OPERATION. 
 Ll^J.X ^ X 2 
 
 ^ X ^ X %ir%~ 
 
 = ! = «• 
 
 Analtsio.— The factors of 
 the dividend are 7, 2, 2 2 
 and 2, The faotora of th« 
 divisor are 7. 2, 2, and 2. 
 Kejeoting the common fac- 
 tors 7, 2, 2. and 2, we obtai. 
 i for the quotient. 
 
 2. When a factor is oancellod. I is supposed to take it. place 
 14^-^18 'xT'^''^'^'"''""*"^' ^ '^ ^ ^=» X 5 by the product of 
 
 Dividend, t 
 Divisor, 
 
 OPERATION. 
 
 5 \ 
 
 
 ■< ^^ X 5 25 
 
 Ifil X IS - "F = ^^• 
 
 Oi».— -W e hare perform- 
 ed this division without 
 factoring the dividend and 
 divisor, by rejecting th« 
 factors that are common t« 
 both dividend and divisor, 
 and writing the remaining 
 raotoM in their proper places. 
 
 103 RULE.-I Wnte the dividend above and the. divisor 
 below a horizontal line. aivtsor 
 
 II. Cancel all the factor, common to ..th dividend and diiftmn: 
 
 III. Divide the product of the remaining factors of the divid^mA 
 hy the product of the remaining factors o^the d':^^^:^ 
 result will he the quotient. ' 
 
 Ml. Wht w cancellation T- 102. What m Ifc.TiliT/bi^'i^iii^a^i^ 
 
 4* 
 
 Sf 
 
 f 
 
 i. 
 
 i4 
 
 li 
 
11 
 
 Ans. j\. 
 
 Ans. 17|. 
 
 Ans. Vil 
 
 Ana. 4. 
 
 Ans. 6. 
 
 Ans. 15. 
 
 •■ DIVISORS 01" KUMBIBS. 
 
 EXAMPLES FOR PRACTIOC 
 
 3. 16 X 24 X 48 -^ 32 X 36 X 38 = 
 
 4. 12 X 7 X 6 -f- 2 X 4 X 3. 
 
 £. 16 X 6 X 10 X 18 -=- 8 X 6 X 2 X 12. 
 
 f . 84 X 12 X 18 -r- 21 X 24 X i). 
 
 "• 72 X 18 X 16 -^ 24 X 16 X 9. 
 
 'i. '^2 X 9 X 12 X 5^ 3 xll X 6 X 4. 
 
 3. 76 X 34 X 96 ^ 17 X 51 X 32. 
 
 JO. 25 X 7 X 14 X 36 •^ 4 X 10 < 21 X 64. 
 
 n. 184 X 145 X 80 -^ 23 X 29 X SO. 
 
 }q* ?o ^ f \!!> X 15 X 18 - 7 X 54 X 7 X 3 X <J. 
 
 u" J^"" fl."^ ^®?o^ ^^o^ 70 -f 3 X 14 X 9 X 6 X 20 X 6. 
 14. 213 X 84 X 190 x 264 -r- 30 x 66 x 36. 
 
 DIVISORS OF NUMBERS. 
 103. A Common Divisor or Measure of two or more 
 
 °"iaT '!,^"y """iber that will exactly divide each of them. 
 
 i«4. 1 he Greatest Common Divisor of two or more num. 
 
 beis IS the greatest exact divisor of each of them. 
 
 105, Gknkral pRI^x-IPl,Es.-L One is a dwiaor of all integers. 
 
 II. Every number is a divisor of itself. 
 
 m. Every prime factor of a number is a divisor of that number. 
 
 A.IT: w-*^ ^"■"J.'f "/(^^T/jwo or more pnme factors of a nuwr 
 ber 18 a divisor oj that number. r j uj u. jiuuir 
 
 V. Every number equals the product of its prime factors. 
 
 VI. A number has no divisors except its prime factors and thp 
 product of every two or more of them' He/ce, the product ,^ aU 
 
 the prime factors comvwn to two or nu>re numbers is their crr/atest 
 tommon divisor. '» '"cir ^reafesi 
 
 COMMON DIVISOR. 
 106. To find a common divisor of two or more numbers. 
 B.T. Required a common divisor of 9, 15, and 21, 
 
 OPKRATION. 
 9 = 3x3 
 
 16 = 3 X 5 
 21 = 3 x 7 
 
 A.VALTais.— Wo resolve each of the given 
 numbers into two factors, one of which is 
 common to all of thorn. In the operation 3 
 IS the common factor, and is therefore a 
 common divisor of the numbers. 
 
 lOT. Rule. — ■ Resolve the given numbers into tk 
 
 eir prime 
 
 factors, then xf any factor be common to all, it will be a common 
 mvMor. 
 
 m. What w a eommuB iiymr 1- 104. What it tA« gceatMt ooinmon diTisor T 
 
ORfiATIgT COMMON DIYIBOR. 
 
 83 
 
 EXAMPLES FOR PRAOTIOB. 
 Piad the common divisors of the following numbers i 
 
 1. 10, 15, and 25. 
 
 2. 15, 18, 24, and 36. 
 
 3. 3, 9, 18, and 24. 
 
 4. 21. 77, 35, and 42. 
 
 Ans. 5. 
 Ana. 3. 
 
 5. 28, 14, 42, and .S6. 
 
 6. 10, 35, 50, and 75. 
 
 7. 4, 12, 16, and 28. 
 
 8. 82. 118, 48, and 146. 
 
 Ans. 7. 
 Ans. 6. 
 
 108. 
 
 numbers. 
 
 GREATEST COxMMON DIVISOR. 
 To find the greatest common divisor of two or more 
 
 Ex. What is the greatest common divisor of 168, 210, and 252^? 
 
 FIRST METHOD. 
 
 OPBRATION. 
 
 168 210 
 84' 
 
 252 
 
 105 
 
 126 
 
 28 
 
 36 
 
 42 
 
 Analtsis — First find the y^vime 
 factors common to the numbers, (IW), 
 which are 3, 3, and 7. Therefore the 
 greatest common divisor is 2 v 3 
 X 7 =.42. (105, VI). 
 
 109. Rule. — Find the prime factors common to all the v um- 
 bers (99), and their product will br the greatest common divisor. 
 
 The prime 
 
 factors of 
 
 SECOND MliTHODo 
 OPERATION. 
 
 168 = ?, X 2 X 2 X 3 X 7 
 210 = 2 X 3 X 6 X 7 
 252 = 2x2x3x3x7 
 
 AHAtvsts.— The prima 
 factors common to the 
 three numbers are 2, 3, 
 and 7.Therefore the great- 
 est common divisor is 2x3 
 X 7 = 42. (105, VI.) 
 
 IIO. Rule. — Resolve the numbers inio their prime factors, 
 and find the product of the common prime factors. 
 
 THIRD METHOD. 
 
 ill. PftixoiPLEs.— I. If the less of two numbers i» a divisor o 
 the greater, it is their greatest common dhrisor. 
 
 II. .1 divisor oj a number is a divisor of any number of times 
 that number. 
 
 III. A common divisor of two numbers is a divisor of their sum, 
 and also of their difference. 
 
 IV. The greatest common divisor of the diference of tw^> num- 
 bers and one of them, is the greatest common, divisor of the tioo 
 numbers. 
 
 109. What it the rule to find the grtattH eommon divitor.flrtt method t— Stcond 
 MMhod t — Third mMhod t 
 
 '.t*W 
 
 f-rl 
 
 5-i 
 
 Ml 
 
84 
 
 LBA8T OOMMOW MULTIPLE. 
 
 Ex. Required the greatest common divisor of 117 and 1366. 
 
 fhli! ' ^"^ ''^ * '^'^'sor of 13t)5, it will be 
 their greatest common divisor. J3y trfa^ I17 
 « found not to bo a divisor of 1365 sinj 
 there is a remainder, 78 
 
 of 7b and ?i 7 ^ *^' «:^*'"«' ""'^'"on d'^isor 
 r II IV^ R'f"**. ^'f°' °^ "7 and 1365. 
 
 OBa.— A knowledge of the PrinoiDles mn »jn 
 
 u ^°™'~T''« greatest common divisor of fhro^ „, 
 
 by findmg the greatest common diSr of two of ^^^^^ °«" be found 
 
 ^ommon d.v^or of this greatest common divlsoraid°r^/'"'' ^^""^ ^^^ S'-*^'»^*«t 
 The laat common divisor will be the g-atr^oro.^tTst^^f^S'thrn'umU: 
 
 common divisor of 117 and 1365. 
 
 EXAMPLES FOR PRAOTiOB. 
 
 Find the greatest common divisors of the following numbers ■ 
 72andIfiB A^^ ^. .. 6 lumoers. 
 
 1. 72 and 168. 
 p. 175 and 455. 
 
 3. 169 and 866, 
 
 4. 84, 126, and 210. 
 5- 12, 18, 24, and 30. 
 
 6. 385, 462, and 154. 
 
 7. 12, 16, and 18. 
 
 5. 210, 350, and 770. 
 9- 70, 105, and 216. 
 
 Ans. 24. 
 
 Ans. 35. 
 
 Ans. 1. 
 
 Am. 42. 
 
 Am. 6 
 
 10. 
 II. 
 12. 
 13. 
 14. 
 15. 
 
 16, 20, and 24. 4,^^ a 
 
 78, 234, and 468. * 
 
 2041 and 8476. 
 286, 429, and 716. 
 1649 and 5423. 
 ,^ 92, 116, and 124. 
 
 ?"S.P'/^2^'^"dl386. 
 
 17. 49373 and 1477;j 
 
 18. 3013, 2231, and 2047. 
 
 LEAST COaiMON MULTIPLE. 
 ,.n o*;.±°„??"^«^„?^«^<^ipIe ^^ a number exact). A'..:.;u. u. 
 
 2)J_ 
 2)_j 
 2) i 
 2) .' 
 
 as. 
 
LEAST COMMON MULTIPL*. 
 
 
 PIBST METHOD. ' 
 OPERATION. . ' f V. iu t 
 
 SECOND MJ^THOD 
 
 lae second I, :<^c..rAi-r^„ the facfnr 9 
 
 «r. 6 in a line undorneath a. before W , ^.^^ '!°"*°'*' ^»« *^« "n Ji^hled'SiVm" 
 •wr, ti 1 the dirisor and r-.»,r j "'^- "J continue 'a divida ht, „ ^"."'^'^ "um- 
 
 ' 1 
 1; 
 
 it 
 
86 
 
 r&AOTIOM. 
 
 IS 
 
 
 118. Rule. -I. Divide hy the smallest prime number that is 
 'mi-xacfdioisoro/twoor more of the nmnhers, and write the 
 quotients and the undivided numbers underneath. 
 
 II. Proceed with the restating numbers in like manner, until 
 ffiere is no exact divisor of any two of them. 
 
 III. The product of the divisors and the resulting numbers will 
 be the least common multiple, sought. 
 
 lasuo™ Jfi^^e"""'"' '" P""' '' ''"'' °'^'"-' *'»-'' F^'J""* « **"' 
 EXAMPLES FOR PUAUTICK. 
 
 Required the least common multiples of the following numbers : 
 
 1. 24, 36, and 20. 
 
 2. 7, 14, 21, and 15. 
 
 3. 14, 19,38, and 57. 
 
 8, 12, 16, and 20. 
 32, 34, and 36. 
 20, 36, 48, and 50. 
 
 9, 18, 27, and 54. 
 12, 16, 42, and 60. 
 
 Ans. 360. 
 Ans. 210. 
 Ans. 798. 
 
 9. 10, 45, 75, and 90. 4ns. 450. 
 
 10. 12, 15, 18, and 35. Ans. VZiiO. 
 
 11. 25, GO, 100, ami 125. 
 
 12. 22, 12, 44, ami 11. 
 
 13. 18, 27, 36, and 40. 
 
 14. 270, 189, 297, and 243. 
 
 15. 64, 84, 96, and 216. 
 
 16. 84, 100, 224, and 300. 
 
 FRACTIONS. 
 
 11». A Fraction is one or more of the equal parts of a unit. 
 
 130. Two integers are required to write a fraction one to 
 express the number of parts into which the whole number is 
 divided, and the other to express the number of these parts taken. 
 
 If an apple be divided into 2 equal parts, one of the narts is o«]UA 
 one half; if divided into A equalVt^ on^ of the prrt^f ca ,e5 o^ 
 third, two of the parts two thirds; if divided into 4 equal nartl oZ 
 01 the parts is called onejourth, etc. ; if divided into fLuT^^t. 
 one of the parts is called one fifth, etc. ^ ^ ' 
 
 The parts are expressed by tigures ; thus, 
 
 i 
 
 One half is written 
 One third »* 
 Two thirds " 
 One fourth " 
 
 'i 
 h 
 
 Three fourths is written 
 One fifth « 
 
 Four fifths «« 
 
 Five sevenths « 
 
 J£pi".t^^r,^ix'^„,Xr3:r*>Arr,.":r: 
 
' 
 
 rRAOTIONft 
 
 /..wffhellleT^^'i^^^^ the one 
 
 munfof thirnf ."^f **^' """'^^^' '^' V^'''' ^°d shows how 
 124 S f^i^'l^"" ^' ^*^P'-«^^sed by the fraction. 
 T Ti" ^T'^^f^'going definitions, it follows 
 
 divided the\iti!^^.!^''x'-''"^'^^"^'^^^^ ""it or quantify 
 
 of i;i:^'^i;:''^^«3^'^? ^--•- " f y^r^-> the part or fractional unit. I 
 i. thi da.onuu«^;3X^S'r '*' ''";^ "P'-^^^-'d or numbered is 5. Si| 
 is the nuu.er*tar^iT„t1 n^ " '?'''""' ^ ' ''^"^' '"*^'«- ^''-« 
 
 ^.^Pt. "'^''^^'''"^^^^^^ - '^'->>^^> ^W,W, and 
 *74^J-.'''''*'^"''^^'^>^^'^'^^ '« distinguished as P.o;,e. and 
 as l^^-^^^^^^^^^i^'^ i« o°e whose terms are integral ; 
 
 f ^'^' ^ f ^»f|^^«tion'- fraction of a fraction ; a« 
 1«^ -^ i4ftft^#ractiOn is one having a fraction or a 
 mixed number ;ip,<j^,li«,rtf both of its terms: as f L^ H 
 
 *«« A ffit|Ci^ts]Sfeniber is an integer and a fraction unii^A 
 in the same e^jnii/j^j^j., ^ 5^ » ""** '^ iraction united 
 
 y-iU iuSatr^:^'lSF5£'*^^^ '-- 122. .^ej^r^iTelenominat^iT^ri^. 
 
 fraction?- I. y. HV*,?,^*^!,iT;:^ "'r'^^rl'-J^*^- '^'"" « « «impl« 
 
 131. ^ 0«iW«»w»d.iw«uiwy^^ >. 1" ^T ' *^- ^" improper iniction f- 
 
 -,«««« WWWttWi- 11J8. ^ complex fraction f— 133. ^ nixsd mub- 
 
 ^'ll 
 
 . l^M 
 
 ii 
 
 ■il 
 
 ji 
 
68 
 
 REDUCTION OF FRAOTIONS. 
 
 1»4. Since fractions are expressions indicating the division of 
 one number by another, it follows, 
 
 1st. That if the nvmerator he multiplied, or the denominator 
 number ""^ """*^'''' '^'•^''"'■^''^^ *'* multiplied hy the same 
 
 2nd That, if the numerator he divided, or the denominator 
 mm£ ""^ numher, the fraction is divided hy the same 
 
 3rd. That if the numerator and denominator he hoth multi- 
 plied, or hoth divided, by the same number, the fraction will not 
 oe changed %n value. 
 
 REDUCTION OP FRACTIONS. 
 
 135. The Reduction of a fraction is the process of changini; 
 Mb terms, or its form, without altering its value. 
 
 136. Case l.~Tunducea whole or mixed number to an 
 equivalent improper fraction. 
 
 Ex. 1. Reduce 12 yards to fifths. 
 
 OPERATION. 
 
 5 X 12 = ^, Ans. 
 iJt^"^' ^V^\'~^^Jipi^ '*« wAofc number by the aiven denowu 
 
 E.v. 2. To reduce 15| to fourths. * 
 
 ANALTSis.-ln 1 there are 4 fourths; therefore, 4 
 times the number of whole ones equals the number of 
 
 .*?*• ^^^^"-Multiply the whole nvmhr by the denominator 
 
 ANALYsjs.-In 1 yard there are 6 fifth?, and in 
 \Z yar.i8 there are 12 times 6 fifths = 6 0. 
 
 OeiRATION. 
 
 16J 
 4 
 
 1. Reduce 
 
 2. Reduce 
 
 3. Reduce 
 
 9 to thirds. Am. ^. 
 12 to eighths. Am. »^. 
 25 to fwurthe. 
 4. Reduce 36 to fiftlie. 
 
 EXAMPLES FOR PRACTICE. 
 
 136, What 
 whole nnmher 
 Mtm^toaR 
 
 Reduce 16 to ninths. Ans.^^. 
 
 Reiiuce 70 to tentlifc;. 
 
 Reduce 52 to fifteenths. 
 
 Reduce 35 to sevenths, 
 
 ^^^ ^Reduce 81 to elevenths. 
 
 ♦• redaction fa/ra^tionf— 137. What i. ti^ w,i« /■ Z — : 
 
 eqwvaimt imj»roftr/rattumt '^ rMuemg a 
 
 6, 
 
 7. 
 
 8. 
 
 9. 
 
 10. 
 
 Reduc 
 
 11. 
 12. 
 13. 
 14. 
 16. 
 16. 
 17. 
 18. 
 
 37|. 
 
 2"-i 7 
 1 'A V <i 
 I34« 
 
 1 30. 
 
 nU'iil wh 
 
 Ex. Ii 
 
 Of 
 
 V = 37 
 
 140 
 
 the quoti 
 
 Reduce 
 
 1 18 
 
 2. 2/. 
 
 3. ifl. 
 
 4. 2-04. 
 
 5. «^. 
 
 6. 1//. 
 
 7. i-OyOJ). 
 
 141. I 
 
 Note.— A 
 •re prime to 
 
 Ex. Rei 
 
 OPE 
 
 2)11 
 
 »)H 
 
 ST 
 
 3) 
 
 12) if 
 
 140. What 
 t 
 
RTinnoTTor* o? rn actio vs. 
 
 11. 
 12. 
 13. 
 14. 
 15. 
 16. 
 17. 
 18. 
 
 Reriuce the following mixed nu.nbers to improper frac 
 
 89 
 
 4yJ. 
 
 I3lif 
 1H4«. 
 96 iV 
 
 .18. 
 
 Ans. i§-8. 
 Ans. ^S-t. 
 
 i4n«. 
 
 121,4 
 
 3 • 
 
 19. 
 20. 
 21. 
 22. 
 23. 
 24, 
 25. 
 26. 
 
 25^. 
 
 I72^V 
 260^. 
 
 171f 
 331^. 
 
 net-. 
 
 Ans. iffA. 
 Ans. M^. 
 
 I»». Case II.— To reduce an improper ^fr^tcH^m to an egutp. 
 
 'I' flit whok or miaed numher. ^ 
 
 Ex. In ^ of a yard, lnow many yards? 
 
 OPERATIOK. 
 
 V = 37 ^ 8 = 4j, Ant. 
 
 ANALTsra—Since 8 eighths make 1 yard, 
 there will be a» many yards in 37 eighths of » 
 yard a? il oontaiiu times 8, or 4| yards 
 
 1. 
 2. 
 3. 
 
 4. 
 6. 
 6. 
 7. 
 8. 
 9. 
 
 EXAMPLES FOB PRACTICE. 
 Reduce the following iniproper fractions to whole or mixed numbers : 
 
 Ans. 14^f^. 
 
 Ans. 17 If. 
 
 Am. 12. 
 
 
 Ans. .3 
 s. ( 
 Ans 
 
 Ans. 6^ 
 
 24^. 
 
 I_0QO 
 
 10. 
 
 II. 
 
 12. 
 13. 
 14. 
 15. 
 
 16, 
 17. 
 
 18. 
 
 10, ■jj 
 
 nir- 
 
 "7.8 
 7)11 • 
 
 1U2 
 18 • 
 
 ¥/. 
 
 2;<2()i 
 
 141. Case TII.-_7b reduce fractions to their lowest terms. 
 Ji'^Tt eaS'oThlV" ''^ '"""' "''■"*' ^^«° ^'^ ''"'"^rator and denouainator 
 Ex. Reduce If to its lowest terms. 
 
 OPKKATION. 
 
 * ) if - A 
 
 Or, 
 12)11= ^ 
 
 Analysis. -Dividing both terms of the frac- 
 tion by the .^arae number does not alter the 
 value of tho traction (l;U, 3rd.)j honco, we 
 divide both terms of .^J by 2, both terms of the 
 result, 4 « '— T 1..-L--- .... 
 
 .J I . l>y 2, both' terras of this result by 3 
 and obtain | for tho final result. As 3 and 7 
 are prime to each other, the lowest terms of 
 
 Inst ead of drndipg by the factors 2, 2, and. 
 
 HO. What M the rule /or redvctM n»^.»....i^~.f— ^.— . TT" 
 
 ■ \, 
 
 %-\i 
 
pi 
 
 90 
 
 I 
 
 ! k 
 
 RSDUCTION OF FRAOTrONS. 
 
 Dmde both terms hy their greatest common divisor. 
 
 1. 
 2. 
 3. 
 
 4. 
 
 5. 
 6. 
 
 7. 
 8. 
 
 EXAMPLES FOR PRACTICE. 
 
 Reduce the following fraction8 to their lowest term, : 
 
 SiT- 
 27 
 
 lite 
 
 n- 
 
 m- 
 m- 
 
 143 
 
 A- 
 
 Ans. 
 
 Ans' ^. 
 
 Ans. g. 
 Ans. 3?j. 
 
 17. 
 18. 
 IS. 
 20. 
 21. 
 22. 
 23. 
 24. 
 
 2H8 
 
 fNv 
 fft#. 
 
 .Tn + o* 
 
 4n» f. 
 /1ms. I 
 
 Case lY.—To reduce a fraction to a decimal 
 Ex. Reduce % to its equivalent decimal. 
 
 7 _ 
 > 
 
 FIRST OPERATION. 
 
 = f"So- = AVV = 0.875, Ans. 
 
 SECOND OPERATION. 
 
 8) 7.000 
 0.875 
 
 annex tlui 
 
 ANALY3I8.— We firit .,. .^ 
 
 same number of ciphers to both 
 ticinvj! (;" the fraction; this does not 
 
 »''«V'"'\ ''^'"°' ('-'^.ard.) J we then 
 <irn'M 'oth resuliitig terras by 8 
 tftii 0.,; .ifioant figure of the denom-' 
 isfttfi;,-, io obtnin the decimal de- 
 asixr-Mfcor, 1000. Omitting the de- 
 aoMiiiiator, and prefixing the sign, 
 
 wo have the equivalent decimal 0.875 
 
 pr,t;£irby tn^e^Sh^ ^*«''«' -'^^ ^^'^^ '"e rosult, 
 
 result by [he de-^omSr.S. ^ "' *° "^^ numerator. 7. and dividing the 
 
 cipL^:nnS'' ""^ ^--«^^^«- - ^/"' W.- a, .^... are 
 
 have"ree7S5rnt'i'r irr tafblYnn^fi^ °^ ^--''» «g-- 
 
 there is still a remainder. ^' ^ annexed to the decimal to indicate that 
 
 KXAMPLES FOR PRACTICE. 
 
 Reduce the following fractions to equivalent decimals 
 
 1. 
 2. 
 3. 
 4. 
 6. f -4*13. 0.714 + 
 
 Ans. 0.5. 
 ^ns. 0.75. 
 /In^. 0.8. 
 
 7. 
 
 8. 
 
 10- T^. 
 
 ilna. 0.04. 
 
 Ana. 0.86. 
 
 11, 
 12. 
 13. 
 
 14. 
 15. 
 
 
 ilns. 0.3.S3 + 
 
 H '^-rl'priiz^:^:^:^^^^^^ '— * ^^./^t^t^ 
 
 I 
 
 twi.i« 
 
». ,v^. 
 
 ■BPTTOTTON OF FKAPTIOrfi. 
 
 t4li. Cahe y.— ro reduce a ikcimul to a fraetion. 
 Ex. J. ili^Iuc. 0.875 to an equivalent fraction. 
 
 OCKKATfO*. 
 
 11 
 
 Analysis.— Writing the deoimal figureg, 
 ^M76, oyer tho ootnmtin doiioininator, lOOH, wo 
 i- Honco, the 
 
 »■"" iVdh 
 
 deLmim^!'^'^^"''' -^' '^""'^'i''''*'. ««^ »"y>/'^.'/ th. proper 
 
 I 
 
 Ex. 2. U«<Juce 0.54 to a fraction. 
 
 OPERATION. 
 
 .51 = i* = ¥- L« - 1 
 
 10 -- .30 ~ 15' 
 
 147. RfJhM,— Omitting the dteimo! point, write the dennmU 
 fiutor und^the ^^mal, and reduce he fraction to its lowest 
 
 BXAMPLB8 FOB PItACTICE. 
 K«'luce the following decimals to equivalent fractions: 
 
 1. 0.0«. 
 
 2. U.75. 
 
 3. 0,12. 
 
 4. 0.125. 
 r>. 0.024. 
 
 <5, o.e.'is, 
 
 7. 0.0008. 
 
 8. 0.6H. 
 
 Am. A. 
 
 ^«''- TlViJ- 
 
 9. 0.000125. 
 
 10. 0.8|. 
 
 11. 4.00075. 
 
 12. O.OC'I. 
 
 13. 0.57}. 
 
 14. 0.1 GJ. 
 
 15. 5.62JJ. 
 
 4 3 
 
 .4n». i 
 
 1.4H. Ca«H5 VI. — yo reduce a compound fraction to a sirnole 
 one, ^ ^ r 
 
 Ex. t li«»lMC<r I of f to a .simple fraction. 
 
 orKHA'tUfK, A.VALTsis.— By multiplying the donominator 
 
 ] X ^ sz l^, Ans. '^^ r ^y ."*' ^^^ 'lenoininator of j, it is evident we 
 
 wo obUin J ot ^ = ^5^., gjuce the parts into whi(-h 
 the number h divided nve 3 times as ranny, and 
 eonsoqu«."<rty mij J Me Urge tu before; and, since i of « = r, j „f 5 „n, j,g 
 twias^j ^ ^^. r 2r 7 
 
 i^ar. 2. U<*lnc* | of J of J ot ^ of | of 3'| to a simple fraction. 
 
 OPERATION. 
 
 X r X -=: X 
 
 11 
 
 5?« 
 
 rri i4n«. 
 
 14«, 147. ff)Utf Ma«na«y0/- raUnvt/t^ u liammui to ajractumt 
 
 f 1 
 
 HI 
 
 <M 
 
 '^l 
 
IMAGE EVALUATION 
 TEST TARGET (MT-S) 
 
 ^/y. 
 
 f 
 
 // 
 
 % 
 
 
 if/ j^:t9 
 
 <v 
 
 
 /_ 
 
 K, 
 
 ^ 
 
 1.0 
 
 1.1 
 
 1^128 
 
 • 50 l*^" 
 
 IL25 ■ 1.4 
 
 — 6" 
 
 2.5 
 
 2.2 
 
 2.0 
 
 in 
 
 1.6 
 
 =1 
 
 V] 
 
 <p 
 
 /i 
 
 ^>. 
 
 
 <^ 
 
 ■J 
 
 Sciences 
 Corporation 
 
 23 WEST MAIN STREET 
 
 WEBSTER, N.Y. 14S80 
 
 (716) 872-4503 
 
 
 >^^ 
 
 '%■: , 
 
93 
 
 ■•DUOtlOH or FRAOTTONS, 
 
 II MMIpl^ the remming numerator, together for „ new n,^ 
 merator. una the remaining de„om{natore /oL nJZJo^iZZ 
 
 EXAMPLES FOR PRACTICE. 
 
 1. Whatis Joff of|? 
 
 2 
 3, 
 4. 
 6. 
 6. 
 7. 
 
 What is i of|of|? 
 
 Whatis Jof^ofjof f? 
 
 Required the value of « of 1 of A of 21 
 
 WiS.^h"'"' f * ".^f V'<^ 'oV.unp{e fraction. 
 What 19 the value of | of i of 5 of f' nf 24 ? 
 
 Reduce A of J of A I a !nnp!efra^tily^ ' 
 8. Reduce ^ of X of M of 9| to a whole number. 
 1 n' wu *' • ' '^^ ^^'"« of J of 2i of 1 A ? 
 10. What IS the value of A of # of A of ii of «3 ? 
 
 12. Required the value of J of 7^ of 1t% of ^ of :"(. 
 
 150. Casi VII.. 
 nator. 
 
 Am. ^. 
 
 Ans. ^. 
 
 Ans. ^^. 
 
 Ans. 2^. 
 
 Ana. |. 
 Ans. ^. 
 
 -To reduce fraction, to a common dmomi- 
 
 a CGI 
 
 »^m„o„1,ro?,;iLr' *'°°'''"'''"''™'°'«l™' -'-• having a 
 
 l«"lRaT OPERATION. 
 
 2 
 
 3 
 3 
 
 4 
 4 
 
 6 
 
 X 4 
 
 4 
 3 
 
 3 
 3 
 
 3 
 
 6 
 
 6 
 6 
 
 5 
 4 
 
 4 
 
 40 
 60 
 45 
 
 6t! 
 
 48 
 
 60 
 
 ANALTSia.-The product of the denomi- 
 nators is evidently a common multiple of the 
 denominators. Multiplying both terma of 
 the fraction § by 4 and 5, and of | Ly 3 and 
 5, and of 4 by 3 and 4, does not change the 
 ralueof the fractions (134, 3rcl.), and to- 
 duces them to equivalent fractions having a 
 common denominator. Hence, the 
 
 SECOND OPERATION. 
 
 i' *' *» = *8, M, n- 
 
 15». RiiLE.~Multipl^ the terniH of each fraction by all the 
 
 , I a, 
 
 . 2 ai 
 
 . f a> 
 
 7. 
 
 8. ; 
 
 9. ; 
 
 10. J 
 
 11. ; 
 
 12. 1 
 
 13. } 
 14 * 
 lo. 1 
 
 quotient. 
 
 ReduoA 
 1. 
 2. 
 
 16«. 
 
 s 
 

 BKBUOTION OF FRACTIOl^g. 
 
 93 
 
 EXAMPLES FOR PRACTICE. 
 
 Reduce the following fractions to their comrT,on denominator — 
 
 i Am S. J»« 1A in . . . ' 
 
 i and f 
 
 2. ^ and a. 
 
 3. f and |. 
 7. 7j. ^, and ^• 
 
 3 ft « 
 
 /Ins 
 
 18 2 
 
 5 4) 2T' 
 
 ■"i (I 
 
 lot 1(7- 
 
 1 II li 1 
 
 4. ^ and f, 
 ind . 
 and 
 
 5. ^ and ^7.. 
 
 i47l.f. •?§. 25_ 
 
 6 '8 
 
 Ans. 4i|), 
 
 8. 
 
 9. 
 10. 
 11. 
 12. 
 13. 
 14. 
 
 IT- 
 
 ^««- ^. f§) If." 
 
 2 
 
 ' ,f ' ''3 
 
 4 7 
 V< II' 
 
 5, ail' 
 I 
 
 
 1 
 
 3' 
 
 and ^. 
 
 and .'^. 
 and I or 
 
 ^"«-Hi, r,M, ^ 
 
 2 3 1 ;< ,-! 
 
 ^• 
 
 Ans. f2|, ^ ^^8^, 11^. 
 ir. H/i'oTe; and iil ^"*- A^^' A^A, Ifll- 
 
 JI54. Ca.E VITI._ro r.^«c^/mc.'/on, ^0 their least common 
 (fcnominafor. common 
 
 155. The Least Common Denominatni- ^p f„ 
 
 fractions is the least denominator to"rcrtheVara"be"r 
 duced, and it must be the least common multiplj of their denom- 
 
 ve.r. Reduce l J, and ^ to their least common denominator. 
 
 AHALr»iB.~Wt find tb« loaatcom- 
 mon denominator, by (i.i^, to be 24. 
 We then take such a part of it aa i« 
 
 OPERATION. 
 637 
 
 2)6; 8' V2' 
 
 2)37 
 
 3)3, 
 
 2 X 2 X 3 X 2 = 24-] 
 f = 12 
 
 2, 
 
 1. 
 
 Ans. 
 
 expressed by each of the fractions sep- 
 «ately for their reapectiye new nu- 
 merators.Xhus, to g^t a new numer- 
 ator for |, we take | of 24, the least 
 oommon denominator, by dividing it 
 by 6, and multiplying .he qMotientby 
 6. He proceed in like manner with 
 each ot the fractions, and write the 
 numerators thus obtnined over the 
 least common denominator. Hence, the 
 
 ; - - -.-■ "-""• -• -^ "'" ine imst common mult 
 dmominators, for the least common denominator " - 
 
 11. Urnde this common denominator by each of th,> ^;, 1 
 nomi:vUors, and multiply each numerator huthi ^^'''^'h- 
 
 quotient. The productf Millie theZTZutors. "'""^^"^-^ 
 
 EXAMPLEH FOR PRACTICE. 
 Reduce the followinL- frufitinns fo thfir Ifaat » 
 
 2. I, ^,V audi .«. ^r-»tii^J§- 
 
 ^2 - U 
 
 ■ -5« T, - „ """""uior. iienee,the 
 
 !»>«». RULE.— I. Find the least common multinle nf t\. • 
 nominators, for the least cnr»m^.. .7...!, ".!^""'^'' of the given 
 
 156. 
 
 W^.t.i>^ ru„y«. re4.<,i^J-;~;;^^ 
 
 n 
 
 m 
 
 ^m 
 
94 
 
 ADinriON OF PRA0TION8. 
 
 Ii' ib 
 
 I 
 
 3. I I I, and ^. 
 
 4. H- i, f ?. and f 
 ^ /k, A, ^X, and 2f; 
 6. I I 6, and ,V- 
 
 I- ih ^, I, and h 
 
 7' TT> 'i) and 51. 
 
 9- A- e»"5, and 7i. 
 
 10. 5/^, 7, 7 1, and 8. 
 
 12. i !), 7, 5, and 4. 
 
 J^- Br T^j, T^, and ^^. 
 
 Jt- M, 7^5, -li, and A- 
 
 15- 1^, A; ^f, and i«. 
 
 ^«s nU' im. tVa, im- 
 
 4mo 2J 20 00 28 
 --X/IA. ^, yjj, ^^, Ijj. 
 
 ^n»- m, hm m, ^' 
 
 ADDITION OF FRACTIONS. 
 
 NoTES.—l, Fractions, to bo added c subtracteil, must be abstract or of iik« 
 denomination, and must have a common denominator. 
 
 2. Only units of the same kind, whether fractional or integral can be added 
 ^together. i 
 
 Ea:. 1, What is the sum of |, f, and ^j? 
 
 s 
 
 
 ^T^. 
 
 OPERATION. 
 9+20+14 
 
 24 
 
 — 43 
 
 Hf, Ans. 
 
 Analysis.— M'e first reduce the given fractions to a common denominator. 
 And as the resulting fractions, ^Pj., |o, and i.| have the same fractional uuit! 
 we add them by uniting their numerators into one sum, making 43 __ i ^ 
 the answer. ** 
 
 Ev. 2. Add 7 1, 8^j, and I J. 
 
 OPBRATION. 
 
 7 + 8 + 1 =. 16 
 I + A + S - _lf 
 
 17|, Ans. 
 
 Analysis.— The sum of tne integers, 
 7, 8, and 1, is 16; the sum of the frac- 
 tions, f , ^5^,, and 1, is Ig. Hence, the 
 sum of both fractions and integers ie 
 16 4-1^= 17|. Hjnoethe 
 
 157. Rule. I. To add fractions. — When necessary, reduce 
 the /ructions to their least convnon denominator ; then add tht 
 numerators and j)lace the sur.i over the common denominator. 
 
 II. To add mixed numbers.— ^rft/ the integers and fractiont 
 aeparately^ and then add their sums. 
 
 Note. — All fractional results should be reduced to their lowest terms, and if 
 improper fraotions, to whole or mixed numbers. 
 
 11. 
 
 16T. What M «A« general rule /or addin fractiont ? 
 
w. 
 
 
 SUBTRACTION OF ^XAnTjONS. 
 KXA.VPLE8 FOR PRACTICE. 
 
 95 
 
 1. 
 2. 
 3. 
 
 4. 
 5. 
 6. 
 
 t 
 i . 
 
 8. 
 9. 
 
 10. 
 
 11. 
 
 12. 
 
 13. 
 
 14. 
 
 15. 
 
 16. 
 
 17. 
 
 18. 
 19. 
 20. 
 21. 
 22. 
 
 Whatisthr ^muufl 3^ ami 3? 
 Wliat IS the sum ui'i, 7.. anil ' •! 
 What IS the sum (A-1,X, * and 1 " 
 Add h /„ I an,| g^' ^' '' ' * • 
 
 FindthesumofJ, I, §, and||. 
 Finu the sum of i, » ii arui 29 
 
 Awll^^' •'- - -^"" 
 '^'J^ V'^. ^2^. and 2A. 
 
 A;d4i, l.,aad4A.^' 
 
 Adddofi, 4of^, andr ^ 
 
 Addf of^, iof^ofl, ami^. 
 
 Add 254, 327^, and 25^. ' 
 
 t^'\ 5. I Ar A, and H.* 
 ti>KlthesumofI7|, 18^, and US. 
 
 Ad.Uuf/rof|2toYof|! '^ 
 
 Add3^ol5i, 2^ol-7i, am]^,^4. 
 
 /In.s. 2|J. 
 Ans. 2/5. 
 
 .ln«. 2Ifg. 
 
 4n^. 10^. 
 
 /Ins. IfJ. 
 
 Ans. I161f^. 
 
 4n.s. Iff. 
 
 Ans. 40^. 
 
 SUBTRACTION OF FRACTIONS. 
 
 ^^. 1. From I take %. 
 
 Ex. 2. From 24f take I6<. 
 
 ANALTsis.-We reduce the given fm- 
 tions '0 a common denominator, and have 
 j-^ and /^ which express fractional unita 
 oi the same value, ^hen 9 twelfths less 8 
 twelfths equal 1 twelfth = ^, the answer. 
 
 FinST OPERATION. 
 
 24^ = 2414 
 16i=._16|f 
 
 7|| Am. 
 
 A.VALYsrs.-We fir.t reduce tho fractional parts 
 and i. toacommond.n.„.i„„t.r,35. sL'e "e 
 
 cannot take 2,8 f,o,n 15, we add 
 
 1 
 
 SECOND OPBRATI«N. 
 
 24^ =. i|i = ass 
 
 w = m- 
 
 we hi:: fcV^r ^"^''^'^-^' an^subtT^t g 
 we have 7|2 for the entire remainder. 
 
 duce, he mixed number^Sp^peTfr™: 
 t.on.0. and these tractions to acoKnX 
 
 Si?""/- ^l" ^''''" subtract the liL 
 frMt.o,. from the groater. and, reduoio* 
 
 
 .r 
 
M 
 
 Mk 
 
 til m 
 
 f6 
 
 >t*<^w->'-- 
 
 MTTLTTPLIOATION OF FRAOTlonB. 
 
 158 RuLB. I. To subtract fractions. - fT/ien necfsmry, re> 
 duce the fractions to theh least common denominator. Subtract 
 the numerator of the subtrahend from the numerator of the min- 
 uend and place the di/erence of the new numerators over the com. 
 mon denominator, 
 
 II. To 8ubt,act mixed numbers.— /e-Y?«ce the fractional parts 
 too, comrrwn denominator, and thai subtract the fractional and 
 integral parts separateh/. Ov,-Reduce the mixed numbers to 
 improper fractions, then to a common denominator, and subtract 
 the less fraction from the greater. 
 
 i7i = 
 
 Ans. 
 An^. 
 
 
 I. 
 2. 
 3. 
 
 4. 
 
 6. 
 
 6. 
 
 7. 
 
 8. 
 
 9. 
 10. 
 11. 
 12. 
 13. 
 14. 
 15. 
 16. 19^ -'m= Ans. 15 
 
 33. From 'i offtake J of ^. 
 
 34. From I of I take | of i. 
 
 35. From ^ of } take f of ^. 
 
 36. From « of ^j; take i of ^ 
 
 EXAMPLE.S FOR PRACTICK 
 
 Ans. i 
 
 
 21 
 
 If- -„ 
 
 4 - iH = 
 lof - 4- 
 
 ^h - H = 
 
 8^ 
 
 65. 
 
 Ans. i§. 
 Ana. ^f. 
 
 Ans. 10 J. 
 Ans. 5^. 
 
 17. 
 18. 
 19. 
 20. 
 21. 
 22. 
 23. 
 24. 
 25. 
 26. 
 27. 
 28. 
 29. 
 30. 
 31. 
 32. 
 
 71^ - 13^ =. 
 75 - 1\. 
 
 \r 
 
 ^2 _ 
 
 'i — 
 
 Ans. 
 Ans. 
 
 ^729 
 
 ff?T' 
 
 ^'"M - ;^A = 
 
 ^s - 2|. 
 165J - 77f = 
 
 h^ - ^^^ = 
 
 Ul - HI 
 
 n - 2f = 
 
 47 - Ij^. 
 1015 
 
 12-7 
 
 Iff- 
 
 ••^^ = 
 
 93i. 
 
 63^1 - 342iJ = 
 
 25f - 
 
 13'i 
 
 17| 
 
 Ans. 24^. 
 
 Ans. 87^^.. 
 Ans. 3^. 
 
 4ns. 4|f. 
 
 Ans. 5|f 
 /4?i.s-. 291 f. 
 
 /Iras. j^. 
 4n.<?. |§. 
 
 Ans. j^j. 
 
 lbs., and ai 
 
 37. From | of f of 3^ take J of 1^. 
 
 38. What i.« the value of i of 3 — i of 2. 
 
 39. From 72 lbs. there were taken at one time i 
 another, 28,^ lbs.; what quantity remains? Ans. 25i^ lbs. 
 
 40. irom *15, $3i were given to A, $44 to B, $2i to C, and the 
 remainder to D; what did 1) receive? ' 
 
 MULTIPLICATION OF FRACTIONS. 
 
 15». Case I. — To mnlliply a fraction hj an integer. 
 Ex. Multiply I by 3. 
 
 FIRST OPERATION. 
 J X 3 = V = 21 
 
 ANALT8I8. — In the first operation, wo inaltiply 
 th« numerator of the fractiou by the integer, 3, 
 and obtain 2^ for the answer. It U9 erident that 
 
 8EC01 
 THlli 
 
 7 
 
 3 
 
 by diviilinj^ 
 fraction is c 
 before, whil 
 
 Mnltlp 
 fraciiim h 
 
 NOTK.— I 
 
 fraction, ind 
 
 too. 
 
 finil afr't 
 E.V. Mil 
 
 FIRS] 
 
 SKCON 
 
 24 xf 
 
 THIUI) 
 
 ^V 
 — ) 
 
 1 
 
 Multiply 
 eand denott 
 
 Note, — In I 
 fraction, \ndioi 
 
 lei. c. 
 
 NUTK. — To I 
 fraction. 
 
 Ex. Mult 
 
 FIRST C 
 BfiCONO 
 
 .1 ! 
 
 168. Whet t» :kl rate /or tvAtriMf - 7./' oeliovg f 
 
 I 
 
 1^ ^ 
 
12aV 
 
 ;^^. 
 
 MULTIPLrCATfON OF rftACTlCNS. 
 SECOND OPERATIOV. 
 
 97 
 
 ih 
 
 THIIin OI'KIJATIO.v 
 
 i| 1 3 ~ "3 
 
 3 
 
 rtie frncfion ^ is multiplied by ra,riti,,lvin,r iu 
 "■""orntor by 3, «ince tho par J t.ken 'il fre 3 
 tune<as,„a,„y as before, whilo tho ,a t's "1 
 -^ch.. . „.,of the fraction i.di^d'n.;;^ 
 
 lB,^tnI nf '.r",'^ operation, wo divide tho d.noru- 
 ootam ^i for thn answer, as before. If i^, .,vi. 
 by dividi,,^ ite den min:.tor bv slt'V^"' ""' ^'"^'''"' ' '« '"-''tipliod by 3 
 fraction i» divided are onivl as m^r f ''"■'' '"'" ^'"'°'" '^^^ ""it of L 
 before, while tho par,. ta4n re JirfbVie'ir:"^' "'"''• " '"^^' *' 
 
 
 or I'll 
 
 JE.T, Multiply 24 by 4, 
 
 FIKST OFEIiATION-. 
 2^ X if = i|Q ^ 20. 
 
 SECOND OPERATION. 
 
 24 X f :- 4 X 5 = 20. 
 
 THIHI) OI'EIJATION. 
 
 7 X ^ = 20. 
 
 AxALT8ia.-In the first operation, we first 
 -.1 .ply the integer. 24, by "the ..nnerator of 
 the- fr.cn :,n, then divide the product by the 
 den.tu.nator, Mnd obtain 20 for tho a,.,-wer 
 
 lu the second operati-m, we divide tho in- 
 teger, H by tho denominator of tho fraction 
 
 and obt,un; of 24 „ 4, which multiplied by 
 S. the numerator of the fraction, gives a of 24 
 »■ z\). uenoe, ° 
 
 frJ:siSicS:Siizt-a-:K:srti^'s^^ - a 
 
 lei. Case lll--To.udtlpl!jafrn.cnonbyafracnon. 
 fra^^Uon:~'° -"'"P'^ » ^-ction by a fraction is to find a fractional part of . 
 
 Ex. Multiply ^ by |. 
 
 FIRST OPERATION. 
 
 A X ^ = n 
 
 1 
 
 8- 
 
 SECOND OPKKATION. 
 
 I 
 
 1^ "" ^ - 3' 
 
 Analt«!8.-To multiply 5^ by ^ is tot^ke 4 
 of the irulfphoand, 3 Now, to^ obtain 4 I 
 ^j, wo simply multip-ly tho nameratorg tog^. 
 er for a new numerator, and the denomina- 
 tors together for a new denoninator nso) 
 Ther»for«, ^ *' 
 
 
fcTJLTIPLIOATION OF fRAOTIONS. 
 
 Multiph/ing one fraction hy (mother i$ the same a» reducing 
 compound fr< I ctions to simple ones. 
 
 From tht! foregoing we deduce the following general 
 
 103. RuhE. — I. Rechice all integers and mixed imnihers to 
 improper fnictions. 
 
 II. Miilllplij together the vunierntors for a new numenitor, and 
 the dtuiDiniiiitorsfor a new denominator. 
 
 NoTKs.— 1. Cancel allfiiotms common to numerators and denomiiiatorit, 
 2. The word of between fractions is equiyalent to the sign of multiplication. 
 
 KXAMPLKS FOR PRACTICE. 
 
 i X 7 == 
 J X 4. 
 
 ^ X 8 = 
 
 I. 
 2. 
 3. 
 4. 
 
 5. {\ X 6 
 
 6. 12 X 1. 
 
 7. 13 X f = 
 
 8. 1« X ^.g. 
 
 9. 11 X 1^ - 
 10. 21 X \. 
 
 12. \ X 
 
 1.3. ■ 
 14. 
 
 oij. 
 
 \ 1 
 
 8 
 
 Ana. 
 
 Ann. 
 Ans. 1 
 
 An». 
 Ans 
 Ann. ^ 
 
 Ans. ■jf'y 
 
 16. 3| X 1 = 
 
 h\\ 
 
 17. v^ X 15 
 
 18. m X 1| = 
 
 ly. !> X m. 
 
 20. 7i X Hi = 
 
 21. Ux,7^. 
 
 22. « X 71* = 
 23. 
 24. 
 25. 
 26. 
 27. 
 2H. 
 
 2y. 
 
 30. 
 
 i'^llolli 
 
 1? w (ll 
 ■Ig X .'j. 
 
 12| X IIS = 
 4i X ^ 
 
 i X J X 
 
 i) V 2 
 Iff ^ 7 
 
 I X li X ii X v 
 
 lit X I X 2 X 5^ 
 
 ,7 y 4 3 y 54 - 
 
 3 _ 
 5 - 
 
 V 5 
 
 I 
 
 Ans. 2\. 
 
 Ang. 2i. 
 
 4ns. 60^. 
 
 Ans. 63|^. 
 
 /4ns. U7i. 
 
 Ans. ^. 
 
 Ans. |. 
 
 15. l\ X 21- = /Ins. 5^, 
 
 31. Find the value of 2^ times , 
 
 32. Kinti the value off of If offg of » 
 
 33. VViiat is tjie product of ^ of j of J by 11 ? 
 
 34. What is the product of 12^ by 5^ times 6|? 
 
 PRACTICAL PROBLEMS. 
 
 Ana.l. 
 Ans. 3^. 
 
 NoTC. -In buflineBs transiictions it is customaiy to add 1 cent when the fraotion 
 iseqnal to or gie!it€r than a hailof a cent, and to omit it when it is less than the 
 half of a cent. ThL' fraction is retained in the following answer''. 
 
 1. 
 2. 
 3. 
 4. 
 5. 
 
 Required the cost of 
 
 (;} lbs. of ham, at 12^ cts. per lb. 
 T^ yds. of tape, at .''>| cts. per yard. 
 1)5 quarts ol plutiif, at 7| cts. per qt. 
 .'iG lbs, of chalk, at | of a cent per lb. 
 T^ yards of nuislin, at 9 J cts. per yard. 
 
 6. 7 A lbs. of beel', ut .0 cts. per lb 
 
 7. 6^ bush, of apples, at 74^ cts. per bush. 
 
 8. 12^ bush, of oats, at 62^ cts. per bush. 
 
 Ans. f 0.85^. 
 Ans. |!0.75JJ. 
 
 Ans. .'5!0.74|. 
 
 Ans. .'i!4.84J. 
 
 IW. What it tht rule/W the muUijAieation of fraotion* t 
 
9. 
 
 10. 
 
 11. 
 
 12. 
 
 13. 
 
 U. 
 
 16. 
 
 16. 
 
 17. 
 
 18. 
 
 19. 
 
 20. 
 
 21. 
 
 22. 
 
 23. 
 
 24. 
 
 25. 
 
 26. 
 
 27. 
 
 28. 
 
 29. 
 
 30. 
 
 31. 
 
 32. 
 
 34. 
 35. 
 36. 
 
 37. 
 38. 
 39. 
 40. 
 
 DIYIBION OF FRAOTljNS. 
 
 79 bush, ol'salt, at J of a dollar per liusb. 
 
 6i quarts of nuts, at [)% cts. per quart. 
 
 2| yurdrt of cloth, at J ,,f a .iullar per yd. 
 
 y barrels of vinegar, at $6 J per bid. 
 
 15 lbs. of almonds, at U.^ cts. per ib. 
 
 8 J yds. of cloth, at S*n per yard. 
 
 15 yds. of ribbon, at 2(ii cu^. per yd. 
 
 7| lbs. of coffee, at ^ of a dollar per lb. 
 
 8S cords ol' woo(J, at .:<2| per cord. 
 
 12 cords of wood, at $i;,37i per cord. 
 
 42 budh. of apples, at (13^ cts. per bush. 
 
 11 cwt. of sugar, at ^'J'l per cwt. 
 
 7 J do«. of eggs, at 12i cts. perdoB. 
 
 llf bble of salmon, at ^^* per bbl. 
 
 I2| bush, of potatoes, at 37^ cts. per bush. 
 
 22f yds. of seiicia, at 87^ cts. per yard. 
 
 7 J cords of maple, at $5J per cord. 
 4i bush, of rye, at $1.75 per bush. 
 
 10| yds. of calico, at 15| cts. per yd. 
 
 35| lbs. of raisins, at l,s| cts. per lb. 
 
 7| yds. of cloth, at $3^ per yd. 
 
 75 J bush, of wheat, at *ld per bush. 
 
 9 doz. of adzes, at $10^ per doz. 
 
 6| bush, of turnips, at 37 ^ cts. per bush. 
 
 23| cords of wood, at |3^ per cord. 
 
 75ii lbs. of sugar, at 7| cts. per Ib. 
 
 212| lbs. of beef, at 7^ cts. per lb. 
 
 3| tuns of hay, at $12^ per ton. 
 
 14| bbls of vinegar, at $IU| per bbl. 
 
 6^ gal. of molasses, at 2oJ els. per gal. 
 
 18 handkerchiefs, at J of a dollar each*. 
 
 134 lbs. offish, at 'J| ois. per lb. 
 
 9» 
 
 Ana. ?6'Ji, 
 Ans $2.27}^, 
 Ana. $1.42^. 
 
 Ana. $3.99. 
 
 Ans. «;221 J. 
 Ana. $26.58. 
 Alls. $0.96;t 
 .ina. 
 
 Ana. *41f^. 
 Ans. 1.74^. 
 Ana. f 25||. 
 
 Ans. $i}5|. 
 
 Ans. $5.85J. 
 Ans. *1.52.|». 
 
 
 ^^1 
 
 i till 
 
 111 
 
 DIVISIOiV OF FRACTIONS. 
 163. Case 1.— To divide a/raction bjf an integer. 
 Ex. Divide f| by 6. 
 
 FIRST OPKKATION. 
 
 f I - 6 = 
 
 A- 
 
 8E0OND ePERATION. 
 
 f I - 6 = H ^ A. 
 
 Analysis.- In the fim operation, we 
 divide the tidinorator of the fraction by 6, 
 and write the quotient, 2,over thedenoin- 
 inatnr. 
 
 In the seeond operation, wa tnuU'pl? »he 
 denctuinnt'.r of the fraotion bv the .livi.sor, 
 t), and wriir the pioduot under tlio numer- 
 •tor, 12. Henoe, 
 
 /•.«f/l?7 '^' numemtor or multiplying the denominator of a 
 fmctxm by any number divides the fraction by that nmnber (1S4) 
 
IM 
 
 DIVWI05 or FRAOnOMB. 
 
 ■ •4. Cask U.— To divide an integer bt/ a fraction. 
 tiw. /fow many times wilJ 24 oofitain ^ ? 
 
 riRHT OPKUATION. 
 
 J4-?- ^= 168 ^ 6 = 28. 
 
 • f'JCONl) OPKUATION. 
 
 24-4-^ = 4x7 = 28. 
 
 OPK RATION. 
 
 3 • i - ; X I = f^. 
 
 /ANALTHis — The integer 24 will co«- 
 tain j at) many timoa a.« there are *«•- 
 «»'/(» in 24, equal 168 .-uvcuthn. Now, 
 it' 24 contains 1 seventh 168 timt's, it 
 will contain ^ at many timoa u« 168 will 
 contain (i, or 28 
 
 tt^ J t" the aei'ond operation, we divide 
 
 HW*ft " .«r by the numerator of the fraction, am multij^ly the quotient by the 
 •*w^i».m,'.r, which produces the anme re.-.mt aa in the tirst operation. Uonce, 
 
 thruluiq hji a f, action ajtisists in multlplijing by the dtnomi- 
 miw, and dividing by the. numrrator uf the' dioiior. 
 
 I<I5. Ca.-e III. — To divide a fraction hy a fraction. 
 AV |;ivi,J(. 5 by J. 
 
 Analysis.— We inrert the terms of the 
 
 diTiaur, ,nd then proofed a« in multiplication 
 of tractions ( 1 62). The reason ol this pruceas 
 J . will bo seen, if we consider that the divisor 
 
 9f M *w wpression denoting that 2 ia to bo divi.led by 3. JVow, rog.ardin' 2 as 
 «• »M«|«r, we divide the fraction J by it, by multiplying the denomi'Lator ; 
 
 "*' » X 2 ~ I'ff* ®"' '^ ' divisor. 2. is 3 times as largo aa it ought to be, 
 
 iW*"^ It w«t to be diTided by li, aa aeen in the original fraction; therefore the 
 
 Y J*f' tV '^ * »3 large as it should be, and must be multiplied by 3 ; thus 
 
 a I ' 
 
 |# = f»' thean-wer By this operation we have multiplied the denomi- 
 
 MlAy 6f |h« dividend by the numerator of the divisor, and the numerator of the 
 mfitUffid hy the denoininatoi of the divisor. 
 
 Vftm the foregoing we derive the following general 
 
 Ion. RULK. — I. Reduce integers and mixed numbers to im- 
 ffff/pf-r fractions. 
 
 It Invert the term* of the divisor, and proceed as in multi- 
 plif/tlifm of fractions (163). 
 
 ««i!!r'***Tl' ''''* liviJend and divisor may be reduced to a common denorai- 
 ^v*,ftr>d the numerator of the dividend bo divided by the numerator of the 
 mtf*»,i} (biS Will g ve the same result as tho rule. 
 
 ^' ^P1>*f e»ncellation where practicable. 
 
 EXAMPLES VOH PBACTIOE. 
 
 Ann. |. 
 Ans. tj. 
 
 4. 23 -f i. 
 6. J - ^ 
 
 Ans. H{. 
 
 31. 
 
 ttt,, WhatU Affjjoi.eral rule /or dividing fraetioni f 
 
8. aVV f. 
 
 9. 2i^l^ 
 
 10. ^ 4- I? 
 
 DIVISION or l-BAOTIONS. 
 
 ^«*- m- 1 19. J ^ ^ 
 
 /ln«. 3. 
 
 11. 7 
 
 12. J« -. I 
 
 i:ii = 
 
 Ans. 
 
 ':l 
 
 13. 7 
 
 i 
 
 14. § - KIT. 
 
 15. 63 -I- X = 
 
 5^. 
 
 16. 3i 
 
 17. i^ ^ 2S 
 
 18. i^ -- 49. 
 
 /Ins. 21. 
 
 6 
 
 An8. 117. 
 
 i20. ill -^51. 
 21. i - ^ 
 
 ins, 
 
 7 _ 
 1 J 
 
 — JiJL — 
 
 22. hi -f- 08 
 
 23. g| * 
 
 24. 15 
 2o. li) 
 
 in«, 
 
 101 
 
 :w= 
 
 I'ft 
 
 26. M - 19 
 
 27. 93 ^ 47 
 
 i:^ if.- '? 
 
 JJ = 
 
 Ans. 3J^. 
 
 31. Divide J of J by | of}. 
 I X I = A 
 
 A 
 
 
 29. 81f -f 91 = 4n#. yj^jl 
 
 A.N4tT«w._The dividend, re- 
 duced to a siiuplo fraotion, is 7 . 
 the divif'or, reduced in like man- 
 "'-''■' '* (h i ^^^ ^2 '^•'■iJed by 2 
 18 ISf, tho quotii'nt reijuivod. 0? 
 wo may apply the general rul« 
 directly by inrorting both factow 
 
 rill, , . "i the dirisor. 
 
 The Moond method of solution has the twofol 1 udTan^igesof givinc- the an.w- 
 by a single ope.at.on, and of affording greater facility for cancellSn " 
 
 W = IHJ, Am. 
 
 Or. 
 
 i X I X J X I = 18}. 
 
 33. Divide J of ^ by X of A. 
 
 34. D.vide|offb/|?f}.'^ 
 
 35. I>|videf of7^jby^j-ofl7f 
 .^(.. t)ivide^(yof4by|of3i. 
 
 37. Divide I of II of A by } of jf of j. 
 
 38. Divide|^f5iof7by§of3>;. ' 
 
 39. D,vide|offof|byiof^o't-A. 
 
 40. Divide i of I of 3G by 1} off. 
 
 41. What ia tiie value of ^? 
 
 8i 
 
 8i - ^ 
 
 66 
 
 9 
 
 OP£RATIOM. 
 
 28 
 26 _ ^^ 
 
 " 3 - V 
 3 
 
 13 
 
 ~ V X £5 = — , ^ns. 
 
 28 
 
 Ana. If 
 -in.*. 11 J. 
 
 0»8.— This example 
 IS only another form 
 
 forcxpressingdivision 
 of fractions; it is call- 
 ed a complex f motion. 
 We simply reduce the 
 upper number or div- 
 idend to an 
 
 fraction, and the lower number, or dirisor te ui imn,. J ^^""^ !° "" ''"P'oper 
 divide as before. amsor, te an improper fraotion, ancf thVn 
 
 42. What is the value of"? 
 
 43. Wliat is the value of ^? 
 
 44. What is the value of-^? 
 
 Ans. 6^, 
 

 m 
 
 ^^'^ BIVI810N OF KUAOTIONB. 
 
 45. What ia tl)« value of' 
 
 
 ? 
 
 Am. 1. 
 
 46. What is the value uf - ^ --? 
 
 ? .,t ;ii 
 
 47. What ia the value of ,-— r- ? 
 
 5nf^ 
 
 48. What is the value of t-JL^ 7 
 
 4iolg 
 
 4a. Ueduce -i-*^ ^ 
 
 ,~v — --—i- to ItM sinmk'.-*t Curtu. 
 
 Ana. {|. 
 
 60. KeduceL^J - 1' to its fliinple^it form. 
 '• ^ rr ^tV 
 
 PRACTICAL PHOIJLHMS. 
 
 1. If f of an acre of land sell for .f63, what will an acre sell for at 
 tk« HHine rate ? v4n.s-. $U7. 
 
 2. At $1 per bushel, l-,ow many bushels of onions can K" lu»ught 
 for*12? Ans.\6. 
 
 3. How many times will IGJ gallons of vinegar fill a vessel that 
 holds .{gallons? Am. j^. 
 
 4. At j^ of a cent each, how many apples can be bon;rht tor 84 
 cents? /Ins. II. 
 
 ■ ). If 15 pounds of raisins can be obtained for *3f, what will 1 
 pound cost? An-f. $0.2 1«. 
 
 tJ. A butcher expended $56f for sheep, giving $1J per head; how 
 many sheep did he buy ? Arts. 47. 
 
 7. At $5 per yard of broadcloth, what part of a yard can be bought 
 for f of a dollar ? Ans. A.. 
 
 H. If I pay 5"^ cents for riding 1 mile, how many miles can I ride 
 for 1134 cents? Ans. 20. 
 
 9. How many pounds of tea, at$li per pound, can be obtained 
 for$13i? Ans. 12. 
 
 10. li'j men consume | of 'Jf pounds of meat in a day, how much 
 does each man consume ? Ans. | of a lb. 
 
 11. A man bought 37| yards of calico for $5.61, how much did it 
 cost per yard? /In.s. $0.15. 
 
 12. Huw many tons of coal, at $5| per ton, can bebou^ihi for $57 ? 
 
 13. A horse eats jj of a bushel of oats in a day, in how- 1 nan v days 
 will he eat 15| bushels? Ans'. 42. 
 
 14. A merchant bought 97 sheep for *1002|, how much did he 
 give per head? " Ans. i^\.04. 
 
 15. If a boy earn } of a dollar a day, how many days will it take 
 him to earn ^9|? Ans. 26. 
 
 10. I'(.ter paid $513| for a farm, giving $2 1| per acre ; of how many 
 acres did the farm consist ? Ans. 25. 
 
 17. If $2f is paid tor 5^ pounds of grapes, how much is that pei 
 pound? Ana. $0.50. 
 
 18. 
 per ton 
 
 19. , 
 
 20. , 
 
 il. I 
 get for 
 
 22. I 
 > yards 
 
 2;{. I 
 
 21. I 
 would a 
 
 2:>. A 
 
 •31 per 
 
 20. a 
 
 ooTer a 
 
 27. H 
 each b(jt 
 
 2H. If 
 chased f 
 
 29. H 
 • 4 .vards 
 
 30. A 
 e*ch, aiK 
 did he ga 
 
 GRE. 
 
 167. 
 
 tions is t 
 them, gi\ 
 
 liiH. 
 
 fractions. 
 
 Ex. W 
 
 Greatest ci 
 Least com 
 
 ANALTBia. 
 
 least coiumo 
 tors 112, HO. 
 fifth*, their g 
 fifths; then I 
 1^ aa the an 
 
 167. Wm 
 
low 
 
 6 
 
 I nde 
 
 
 18. H 
 per ton ? 
 
 QREATBST COMMON DIVrsOR Or rRA0TION8. 
 
 *nyton<,ofUyc.nbepure»,aH.<l for 
 
 vw ni 
 
 108 
 
 Aff'Ir/lr^i'Jr'-"^.:^'^^— t 
 
 ^ork lor $37jyj ? 
 
 11). 
 
 for $A r ' * '""*^ P**"" '^'*"«". '"- n.ucl. b.er can be bouSJ 
 
 -'• 't 2^ apples are worth il »«,,»= t ^^'- 2* cal. 
 
 get for 1 cent ?^ """ '** *^'"^«' "'f"*' pa-t o( an apple can ' ou 
 
 f.vSdi'c^sy^^'"'-^''""-^*-'i. how ...uch lea, iU.utl L 
 
 would 8| b«.i.el.s Huppl'^rl'L';;: ,;^ ■; -? ''^^' '-- '"-; horee. 
 
 J^'. A young man, iiuvin.r.^jo ,rav,. i % i • ^"*- ^• 
 
 •31 per ream; how much Tui he' l^.v ? ^ ' ""'"7 '''"" P^P^^ at 
 
 ^o. Uow many tieet of caroct •'■''/;.,.( ;„ • i.. .;;"•'• ^ reams, 
 corer a floor ,4i f.ec m lenXl?, uj e^ in w iti;" .'" '''''''''' '« 
 
 29. Huw much more than Fi vnrJc ^<- * ^"*- 27. 
 
 'i yards ,.f calico co.st at U ct!.'a ^td ? ^^' ^* ' ''l- ** >'*^^^' ^i" 
 
 An$. $4. 
 GKEATBST COMMON DIVISOR OP FRACTIONS. 
 167. The Greatest Common Divisor nP, 
 
 tions ,s the greatest number which w re/.cl ^ '-^''^ ?'" 
 them, giving a whole number for a quotient. ^ ^'^' '''^ °'' 
 
 E». What is the greatest conunon dirisor of^, 1|, .^ ^ , 
 
 OPEKATION. 
 
 3i If, }| = y, y, ^^ ^ ^^ ^^ 
 
 Greatest comn^on dirisor of the numerators = 4 ) Ore«.-»^ 
 Least common denominator of the fractions = 35 \ d'rZl^i;::, 
 
 l^^^^stP^^^^^^^^ ,.na, Che 
 
 tors 112. HO. nn'i -'J *.- h" V """°<i tne greatest oommon diriaor nf »i.- -..*.:" 
 
 ^y;j.. their greato"st ^omoTon fc/'u'no'^ 4 'iVho'./°'ii'-Pr«««"'*^'4'- 
 fafths J then fore we write the 4 oyer th, ult\omm^«^ '""^'' ^' * "«irty. 
 ^ ai the answer. " "••* •ornmen denemmuwr, 3*, luia baire 
 
 ; t 
 
 ii jtf 
 
 '.■'f' 
 i'-*' 
 
 -"I; 
 
 WT. 
 
 »»* « tA« gntiU^t remmoD dJrigor •/ f*n0tm^l 
 
Siv'i 
 
 104 
 
 fe».»^Wii 
 
 LKART COMMON MULTIPLE OF FRACTIONS. 
 
 169. Rule. — Reduce the fractions, if nece$»ary, to thdr b/ut 
 common denominator. The greatest common divisor of (f/w numer- 
 ators, written over the least common denominator ^ will aim (h$ 
 ifreatett common divisor required. 
 
 EXAMPLES FOR PRACTICE. 
 
 Kequired the greatent common divisor of 
 
 1. 'i, U, and |. 
 
 2. t. I, andl|. 
 
 3. ^l I, and If. 
 *• f a, if, and f 
 
 Ans. ^g. 
 Ans. ^l^. 
 
 5. 3|, 5/5, and 2^.. 
 
 6. 2i. 4, ff, and 4. 
 
 7. Hi, 12|, and<4. 
 
 8. -^i 4, iftx, and 2f 
 
 An0. 1$, 
 
 LKAST COMMON MULTIPLE OF PKACTIOm 
 
 ITO. The Least Common Blaitiple of two or more frdAitUm§ 
 18 the least number which can be exactly divided by each of ihmUf 
 giving a whole number tor a quotient. 
 
 ITl. To find the least common mnltiple of two ormorefrnAtU/m, 
 Ex. What is the least common multiple of 7 J, 5^,, aad 3j[| ? 
 
 OPBRATION. 
 
 Least comnioo mult, of the numer. = 63 ^ | Leatst wmiwrn 
 
 Greatest com. div. of the denom. = T ~ *^' | multip. t^^itrnX* 
 
 Analysis.— Haying reduced the fraotiii » to their simplest form, we |$m4 it^ 
 least common multiple of tho numerators, 63, 21, and 63, 10 be fiS. Wv», mm 
 the 63, 21, and 63 are, from the nature of a fraction, divideiiit, of whicfe itt*jf 
 respective denominators, 8, 4, and 16, are tho divisors (118), the leaj-t 'i»mmm 
 multi{ilo of the fractions is not63, a whole number, but so luany fracdi/i«J yi^f^ 
 of tho greatest cotumon divisor of the denominators. This common ^fin^r W9 
 find to be 4, which, written as tiie denominator of the 63, gives «/ = 16 j «« ftf^ 
 leaet number that ono be exactlj divided by the given fraotiong, 
 
 17 m». Rule. — Reduce the fractions, if necessary, (/) their hfg, 
 est terms. Then find the least common multiple of the numMraUrfti^ 
 which, written over the greatest common divisor of the d^mmi' 
 nators, will give the least common multiple required. Or, 
 
 Reduce the fraetioru, if necessary, to their least comm/m dmm^ 
 inator. Then find the least common multiple of the nutmratttfi^ 
 mnd write U over the least common denominator, 
 
 169. What it therule/or Jinding the gre^itewt oommon diwUnr 0/ frnetiitmf^' 
 ITO. Whit in th« leaet common multiple offraetiom t— 172. What it tlu W<#/*r 
 ^md%%y tht Ua»< "MimoM m^Atipie of frm«ti<m* t 
 
 R«qui 
 
 1 ^ " 
 2. S 15 
 
 n V 55 
 
 3- f , h 
 
 PRA( 
 
 17» 
 
 part as ^ 
 4, and 6 
 
 NOTK.— 
 
 must be a 
 
 50 cents 
 33^ cents 
 2a cents 
 20 cents 
 16j| cents 
 
 174. 
 
 price of a 
 Ex. At 
 
 OPEI 
 
 ) 
 
 An 
 
 175 f 
 
 as the pric 
 
 1. What 
 pound ? 
 
 2. What 
 
 3. At ^ 
 
 4. At KJ 
 6. Wiiat 
 6. At.i«3. 
 
 173. Whati 
 thf cn$t 0/ em^ 
 a doi/ar t 
 
^»«a»«»i»teia ^iW ija ^ii irf;' 
 
 
 ANALTSfS BY ALIQUOT PABTS. 
 
 105 
 
 KXAMPLBS FOR PRACTIOE. 
 
 Required the leant common muKipla of 
 Ans. 8^. 
 
 Ana. 24. 
 
 1 A- I and 2X, 
 
 2 n I - 1.4' 
 
 f,|f, and^ 
 ^- I, f and f 
 
 5. 5i, ^2^, and I i. 
 
 6- IH,^,eA,and2|| 
 
 7. fl, i, and ^jj. 
 
 ^- A. «, t)l, T^, and 2i 
 
 i4nt. lOi. 
 Alts. 3|. 
 
 *' /ff' Mj A> *n<i f . 
 PRACTICE, OR ANALYSIS BY ALIQUOT PARTS. 
 
 4, and G are aliqlVpartt^^^^^^^^ ''"^"^''>'= ^»»-> 2, 3, 
 
 -^rberiho&iC/ "^^ '' '^ '''^'^'- - • -«•<* -»»>.. whi.. . faetor 
 AI.IQUOT PART8 OF ONE DOLLAR. 
 
 50 cents =^ of 1 dollar. 
 fh cents = i of t dollar. 
 2a cents = i of 1 dollar. 
 fO cents = ^ of 1 aul!ar. 
 Ib|cent8 = ^of I dollar. 
 
 }23caits = iof 1 dollar. 
 10 cents = ,V. on dollar. 
 
 Hg cents =^ of 1 dollar. 
 
 t'i cents = ^ig of 1 dollar. 
 
 cents = ^ of 1 dollar. 
 
 e^. M .21 ce„« a j,ar,i, „.],»., „i|| 4I6 yards of „,u.li„ co,.T 
 
 OPERATION. 
 8) 416 
 
 Ans. $52 
 
 
 EXAMPLES FOR PKACTICE. 
 
 ^1. What will b. the cost of 724 pounds of coffee at ... cts. a 
 2. What cost 376 yards of calico, at 25 cts. per yf/" ^'''^''^' 
 
 j6_At.*3.1Gi each,^hat wniti'hitfco.^P"^'-' ^«'- «1«6*- 
 173. W*a<M rtn aliquot part of » n>jmh«r» itk »r . • i ' -^ 
 
■:I:I 
 . l! 
 
 PRACTICAL QUESTIONS BY ANALYSIS. 
 , QUESTIONS 
 INVOLVING THE RELATION OP PRICE, COST, AND QUANTITT. 
 
 170. Case I. — The price and the quantity being given, to 
 find the cost. 
 
 Analysis.— The cost of 5 units must be 6 times the price ot 1 unit ; of 6 unita, 
 tj tiineg the price of 1 unit ; of 4 of a unit, ^ tim^s the price of 1 unit, etc. IIuuos, 
 tho 
 
 ITT. Rule. — Multiply the price of one by the quantity. 
 
 ITH. Case II. — The cost and the quantity being given, to 
 find the price. 
 
 Analysis. — By Case I, the cost is the product of the price multiplied by the 
 quantity. Mow, having <he cost, which is a product, and the quantity, which is 
 one of two factors, we have the product and one of two faetors given, to find tha 
 other factor. Hence, the 
 
 ITtt. Rule. — Divide' the cost by the quantity. 
 
 ISO. Case III. — The price and the oost being given, to find 
 the quantity. 
 
 Analysis.— iieaaoDing as in Case II, we find that the «ost is th* produot of 
 two factori, and tke price is one of tha factors, iienoe, tha 
 
 1^1. Rule. — Divide the cost by the price. 
 
 183. Case IV.— The quantity, and the price of 100 or 1000, 
 being given, to find the cost. 
 
 Analysis.— If tha price of 100 units be multiplied by tha number of units in a 
 given quantity, the product will be lUu times the required result, haoause the 
 multiplier used is 100 times the true multiplier. For a similar reason, it will 
 be the same if the given price be 1000 units. The true value will be obtained 
 either by dividing the product by lUO or lOOU, as tho case may be, or, by ruJucing 
 the given quantity to hundreds and deoimuls of a hundred, or to tbuusands and 
 decimals of a thousand. Hence, the 
 
 183. Rule. — I. Reduce the given quantity to hundredt and 
 decimals of a hundred, or to thousands and decimals of a thoneand. 
 
 II. Multiply the price by the quantity, and point ujf in ihe re- 
 sult as in multipiic 'tion of decimals. 
 
 184. Case V. — To find the cost of articles sold by the ton 
 of 2000 pounds. 
 
 Analysis. — If the prioa of I ion or 2000 pounds be divided by 2, the quotient 
 will bo the price of j ton or 1000 pounds. We then have the quantity and the 
 price of 1 000 to find the eoat. Hence, the 
 
 177. What M tht tale for finding the coit of articles, tk« price and the quantity 
 being given ? — 179. For finding the priee of urtioleg, the eott and the quantity 
 b'-ing given? — 181. For finding the qurtntity, theprice and the eoit being gi^enf— 
 IM. For finding Ikt mtt of artielee, the quantity, or tht priee y 101 or lOOO, iinMf 
 given f 
 
i9ent- 
 
 h$m f i 
 
 PRAOrrOAL QUESTIONS BY ANAJUTSIS. 107 
 
 lh.*2^r '^''}''\\'^^''^<l't^^'P^!<^eof\ ton b}, 2, and. multiply 
 the qaolmit by the number of pound, expressed a, thousandths. 
 
 EXAMPLES FOR PRACTICE IN THE PRECEDING OASES. 
 
 fo/s2t7 5o"?^ ^'' ^"*''' ^""'^ '"^"'' ''*""^''' °^^'""" ^'^ ^>« obtained 
 9 rei 1 V ,• ■^"«- 29 barrels. 
 
 _^. it I jurd of calico cost 23 cents, what will 3 U yards cost ? 
 
 • pmul/r''''"^ ^^^^ ''"""'' '*'''^' containing 70^ lbs., at $^ 
 
 ^5.^ If board for a family be $342.18| for I je«, how much is ii'p^r 
 R VT J - Ant. $0,931, 
 
 adozenT'"*"^ ^*'" ^^'°*°^' ^"^^'* ^' •*-^*' *^ ^(^iot*- 
 7. What will 3921 feet of pine boards cost, at $17.25 per Tooo ? ' 
 
 at $I7| a ton? ""^^^^ ''^^' ''^ "'''"'' *^°^ ^eig^^'ng 162^ Ibfl., 
 
 Ill's Oiin ^ * ^'"''^^^' ^^'^ ™*°^ '^"''^''''' *^*" ^^^^ °*'* ^* ^°*'«^* ^<* 
 in*Af,-„ . , , 4n«. 75| bushels. 
 
 iJl'n^L o v" P''"",'^' ^'^'!: ™^°^ ^^""'^ of codfish, each contain- 
 
 12" aT^/?.^ ^V''lT'?*'^*^'^?,*PP^^^''^«^»t*^6i per hundred? 
 12. At 373ct3. a bushel, what will I ot 456 bushels of j^tatoes cost ? 
 
 lOon . ?«Ti "^"^^"^"'^^ ,^^e P'^i'i ^'-^r 48« feet of boards, at .^20.25 per 
 
 i?";7.'5j%^rrom"""''"=' "'^-'^^ ''' '"'-^ "'V^fjvr^t;.^^ 
 
 per barre'r?^ ^"*'^ of Montreal apples cost $97.50, what is the price 
 ^^16. How many acres of land can be bought for *2117.lsi"at '$5| 
 
 tAinln^l il^ I***, '^^ ^"f ''^"' ^T'' '"^"y ^*"^^« «f potatoe"*" eacSon- 
 I « f «> i )i»''hel9, can be purchased for $50.62^ ? Jlng 54 
 
 q w\ ."^ of » barrel of rels be worth $6.42, what is a barrel woKh ? 
 poindsT *"" ' P^'^ ^""^ ^^^ ^^'' ^*" ™***' •' ^'' P" l»""'i'-«d 
 
 20 Wha^. cost 1080 lbs. of hay. at $12.75 a ton. a"l'l3«^'ibs'* ol 
 «.h feed at^^l5.50 a ton ? ^^. ^17.487. 
 
 1344 feet of siding, at !^1. 62 i per 100; and 2216 bricks' ir$4rpir 
 
 AHS ^4i H4jI 
 
 22 A grocer bought 108 gallons of oil for $145.80, and lo^t'l2 gal. 
 I'ch'didtelL?"^* "''*'' """"'•' •* *'■'' P*' «»l'-5 ^- 
 
 1; 
 
 
 4 
 
 ;? 
 
 •I 
 
 I 
 
 .ir!M 
 
 IM. ir4a«M 
 
 «*• nl9/»rJln<Ung (A« «oi( ^«r(MiM *y«ft« Im ^SM« »•,? 
 
108 
 
 BXAMPLIS ON BILLS AMD AOCN>UNTB. 
 
 fffi 
 
 23. A lumber dealer bought 106250 feet of lumber at $14.ST6 per 
 
 I 000, »nd retailed it out at $1.75 per 100 ; how much was his whole 
 i^ain ? Ans. $;^;!2.0:^ + . 
 
 24. A load of plaster weighing 3.360 ponnde cost $6.71 j^, how much 
 will a ton cost ? 
 
 25. If |6.97i be paid for 0.93 of a hundred pounds of beef, how 
 much will one hundred pounds cost? 
 
 26. A farmer exchanged 42| bushels of barley w(^th ^1^ cts. per 
 bushel, and 679^ lbs. of hay worth 75 eta. per hundred, for 18780 lbs. 
 of plaster; how much was the plaster worth per ton? 
 
 27. If 42 yards of cassimere cost $147, what will be the cost of 
 34f yards? i4n». $121.80. 
 
 28. What is the value of 12 pieces of black cloth, each piece con- 
 taining 27'| yards, worth $2J[ a yard ? Ans. $954.50. 
 
 29. At .^5 psr bushel, how many bushels of wheat may be bought 
 for 118.90? Ans. 21^. 
 
 30. A farmer sold to a merchant three loads of hay weighing res- 
 pectively 2739, 2217, and 2884 llj"-> at $8. "') per ton, and 42i; lbs, 
 of pork, at $5.25 per hundred. He received in exchange 46^ yards c 
 mwthD at $0.09, 9| yards of carpet ui S4.50, and the balance in m' 
 a«y ; how much money did he receive ? 
 
 Let thepupilB makt out, in proper fornix as the case may 60, 
 
 the following: 
 
 1. Sold by R. S. Gruham, Monkeal, to E. Dudley, as follows : 
 1870, Jan. 3, 109^ yds. calico, at 18^ cts. ; Feb 11, 430 yds. muslin, 
 at islets. ; March 2, 37i yds. sheeting, at 23^ cte. ; May 16, 75| 
 yds. Irish linen, at 4K eta. ; 43^ yds. lace, at 7K| cts. 
 
 Footing of the bill, $161,007 -t- . 
 
 S. T. E. Clark bought of F. Larose & Co., Quebec : 1870, June 10, 
 731 gal. Irish wliisky, at 86 cts. ; 108^ gal. fine old rum, at $2.12^; 
 67^ gal. Holland gin, at $1.45; Aug. 14, 89^ gal. old cognac, at 
 $2.67i; 107 gal. brandy, at$1.37i; Sept. 7, 201^ gal. Scotch gin, 
 at f 1.20. T. E. Clark gave in pait payment, Sept. 11,4 chests green 
 tm, each 67 4 lbs., at 56 cts. per lb. What balance was due F. L. A 
 Co., Sept. 12, when the bill was made out? Ans. $867,714. 
 
 3. J. N. Webster, butcher, Kingston, sold to A. O'Regan, Oct. 6, 
 1870 : A illet of veal, weight 16| lbs., at 10^ cts. ; a loin of lamb, 
 weight 74 lbs., ui 17^ cts. ; a leg of mutton, weight 13| lbs., at 6| 
 cts. ; a leg of pork, weight 164 lbs., at 9^ cts. ; a pig, weight 24ilbs., 
 at 124 cts. ; a buttock of Ijeef, weight 374 ^^^-i ^^ 7^ cts. 
 
 Footing of the bill, $11,314. 
 
 4. E. Lemay & Co. bought of Messrs. A. Roche & Son, Toronto, 
 Sept. 3, 1870 : 123| lbs. eutn lac, at $1.15: 65| lbs. quinquina, at 
 $14.10 : 1074 lbs. rhubarb, at $2.40 ; 1 20i^ lbs. sassafras, at lU cts. : 
 356i Iba. mastic, at 21 1 cte. Footing of the bill, $1415.911. 
 
 6. Sold by B. H. Porter, Ottawa, to Miss D. Valcour, Aug. 20, 
 1870: 27f yds. Dresden lace, at $3.09; 194 jda. Flanders lace, at 
 $1.62^; 83^ yds. gauEe, at 454 ets. ; 364 Y^^- muslin, at 18^ ots. ; 
 iO pair kid gloves, at 32 cts. ; 25{ dosen napkins, at $6. 1 2^. 
 
 Footing of th9 bill, $335.3«| 
 
>*^ .■•sfW3fc'*^<toft ■ -^i 
 
 !U Ibe. 
 
 at 
 
 MISOBLLANIOUS PROHLUMS. 
 
 lot 
 
 «. Inroice<J per Canadian Expresn, by 8. Blanchard & Co., Qnebec. 
 
 .o J. IJutler, Kingston, July 6, 1870: 25 aack 
 
 bush 
 
 at 04 ctH. per bush. ; 32 sackn pease, .Vo. 4 
 
 tares, N',x 3. each 2^ 
 
 H7i ctH. per bush. ; 20 Hacks oats, No. (], cacli 'M biinh 
 
 each 3 bush., at 
 at 56^ cts. 
 
 each 2^ bu.h._, at $1.37 J per 
 
 2i bush,, at 85 ctn 
 
 per bu.-h. 
 
 per bush. ; 8 sacks malt, No. 5, 
 bush. ; 16 sacks beans, No. 7, each 
 
 Insurance and cartage, $3.40 Amcn.t of Invoice, $'i:21.5o. 
 
 & O'Npil M f f Co., wholesale n.ercharu., Halifax, sold to Lenoir 
 AONeil, Montreal, as follows: May 19, isTO, 85 nieces Norwich 
 tlT'i^'Tf' ^«^P'.^«^« Liverpool cottons,' at ^7.6 ; June 5 
 1 5i yds. Antwerp sheeting, at 24| cts.; 698^ yds. Amions' velvet, a 
 Jl .feO ; Au^^ 8, 375J yds. Yorkshire drab, at 65 cts. ; 872^ yds aI 
 
 iV^fir^S w'l^'tri^^"' at $7.50; Aug. 12, by draft. at3day'a 
 sight, for $oOO. What balance wae due T. McC. & Co., Sept. 3 when 
 the account was settled ? ^^g fl^^^j Ji^*° 
 
 fi tfiS^-^^""^^^'?»«eofMontrea1, soldtoMrs. F. Stepbens, 'April 
 6, 1870, and Ed. Noonan, hie clerk, collected the amount of the b^ 
 39i yds. camb et, at 31 ^ cts.; 47J yds. shalloon, at 32 cts. , 271 yds 
 
 90i cts. ,_34i yds. calin.anco, at 37^ cts. A„-,i. of the bill, m.i)2^h 
 
 .1 «."7'ir''^^''",?.n''"; ^V^^''''' '°^^ ^^ '^««^''^- <^- Cooper & Co., Sur- 
 el as follows : 1870, April 5, 12^ doz. palm sack, at $li.42 ; May 12, 
 Port wme, red, 6oi gal., at $1 68 ; 42^ gal. Claret, at J2.17J ; June 
 
 at%6i1t:.Twt'?-''M^^^^^ ***^«'«- 3^H'al. Rhenisi; wine 
 at Oba cts. , July 8, 25^ gal. Slierry wine, at .$1.33. Received in nar 
 payrnent July 9 150 bush, oats, at 67^ cts., and $60 in cas 1. vTa 
 was the balance due to L R. & Son, July 10 ? Ans. *240..i3 
 
 l42" T.ii^^'T. '•^''"^^''''f^'^'^'r*^''^^'' Montreal, as follows: 
 ibjo, June 18, 4^ pieces n.uslin, each 37^ vds., at $2.15; 7 J r,iecea 
 chintz each 47^ yds., at 92^ cts. ; July '2; 4^ 'pieces Holland hnen 
 
 ton^'at'lb cti ^ Whi'"^**' fi?"""'' "' ^1 ""''' ' '^''^ >'^i- Lowell cot: 
 ton, at 18a ct^- What was the amount due, Aug. 3, to T. & G ? 
 
 Ana. *1 335.47 
 MISCELLANEOUS PROBLEMS. 
 
 ,»indT^** "^'^ ^' '^^"^ *'°''' °^ ^^* P*"""*^' Of honey, at I6| cts. per 
 
 2. At $4i per yard, how many yards may be bought "br $ni ?'* 
 
 3. Reduce W to a mixed number. ^ 4n/l25i? 
 ^Lwnr '' •' ^' ^"'^ • '° «q"'^*'^"* fT^*°"^ having a common 
 
 lenominator. 
 
 Ans. 
 
 ^ff. 
 
 .lfat^^\V'''"*;'"° "T^r '" 2378i and'tSlf; &Se,^li^i; 
 A liat IS the greater number? ^^^ 244" U 
 
 bought fcrlafctr/ ""*"' "" •""" '"'""" "'/"'"l "-t'l" 
 J.t^'ii^^J^'^t^J' ^— '"■^» ^-- ^IK^"" 
 

 ii: 1 
 
 11 
 
 110 
 
 MTSOBLLANBOUS PROBLXMB. 
 
 8. What will 15i cords of wood cost at ^ of $9j per cordr 
 ». H.iw many pounds in 4 b:ig8, the first containing 
 Mcond _680|, the third 296i, and tlie fourth STa,".? 4na. 16 
 
 3605, 
 
 10. Andrew spent f, J, and \ of his money, am 
 
 i, and the fourth BTaj^j? 
 
 i had i?54.r)0 
 
 ike 
 
 h- r-"- 5) 8,' """J s v^i mo iiiuiic^, aim iiaii .to^.oO left t 
 
 ow much had he at first? Ans. $8H4.70|^. 
 
 11. A servant had J of his savings in one bank, ^ in another, and 
 
 the remainder, which was 877, in a third bank; how much money 
 tad he? ' ^„g jji4Q_ ^ 
 
 12. Leo had I of g of 7i times $7862, and paid i of i of" it for" a 
 ," ; how much had he remaining ? Ans. $3.3379. 
 
 lA-'/o ,,^ bogheads of sugar containing, respectively, 9451 lbs., 
 
 itAJ^^-' ^^'-^^ '^^-^ ^^''ff' a"'J 899|, how many pounds? 
 i -*•, ^^"''y bought a bale of cloth for $96.87^ ; he disposes of it for 
 I of the cost, and by so doing, loses $2 on a yard : required the 
 number of yards in the bale. Ans: 18,4^. 
 
 15. What is the value of 376U acres of land, at $7.5J per acre? 
 _^ lb. If the transportation of 18| tons of iron co.sts $4S.15|, what is 
 u per tea? Am. $2M-X. 
 
 17. A man purchased I of a yard of velvet at the rate of $3.62i per 
 yard ; what di.l it cost him ? Ans. $3.11 jJ. 
 
 I H. Charles has 634 sheep, which is 94 more than i of 3i timea 
 David 3 number; how many has David ? Ans. 243. 
 
 • ^i^i'."^ ™^" travels 4 miles in | of an hour, how far will he travel 
 m 1 3 hours at the same rate ? Ans. 10 miles. 
 
 20. A merchant owned i of a ship, and sold ^ of J of his share for 
 
 i^^^'vt^ ^^*' ^^'^' ^*^^*' ^*^ ^^^ "'^''^^^ "'o^''' ^ ■^"«- ^1 ^^00. 
 
 il. What will i (,f lOj tons of coal cost, at ^% of $42 per ton ? 
 
 . 1^^; }H of * •^'•^8 be multiplied by ^ of itself, and the product di- 
 Tided by i, what will be the ret^ult? Ans. ^A. 
 
 23. Band C own 3144 sheep; how many has each, if B has 11 
 tunes as many as C ? Ans. B 1834, C 1310. 
 
 24. Edward has I of a dollar ; he gives Loui-^ ^ of this amount, 
 and then divides the remainder equally among three boys : what part 
 does each of the 3 boys receive ? Ans. f. 
 
 V.'3. James obtains from two fields 344 bushels of oats ; if the first 
 yielded 4 as much as the second, required the yield of each field ? 
 
 26. How long will it take a man to travel 553 miles, provided h« 
 travels 3^ miles per hour, and 9} hours per day ? Ans. 16 days. 
 
 27. 1 bought 15 loads of wood, each containing 11| feet, cord meaa. 
 ure, and divided it equally among 9 persons : what did each receive ? 
 
 28. A tree, whose length was 136 feet, was broken into two pieces 
 >y ailing; | of the length of the longer piece equaled | of the length 
 
 •f die .shorter. What was the length of each piece? Ans. 72 and 64 fl. 
 
 29. How many bushels of wheat worth 80 cts. a bushel, will my 
 for f o( a barrel of flour at $7i a barrel ? Ans. 7^ bush. 
 
 30. Lought i of g of 5^ yards of blue cloth at the rate of $3.50 per 
 yard; what is the onst? Am. $8.02 ' . 
 
 31. Ill of » barrel of eels costs $5, how much will 2 tubs ofe'ela 
 «OHt, one containing J of a barrel, and the other f of a barrel ? 
 
 32. If,^ of a gal. of porter is worth i of a gal. of ale, and ale is worth 
 $i per gal., how many gal. of porter will $20 buy? Ans. 24. 
 
 
".0 left; 
 
 MI8r«LLA,X10US PROBLEMS. 
 
 wi!Ln;r[;tri"!;:if/^^'-.'«/^!?^ divided 
 
 111 
 
 remainder, wliich 
 
 ave 4, John 1, Peter ,»„, Tl 
 
 '■morit; 
 
 >« 24 ; what is the wiio! 
 
 5 boyg 
 
 i*n. lipomas ^^. an.] Paul the 
 
 34. What Will be the'co t of Hv J« r ' T-'^"''^-' " """ '''^'i''^'^? 
 d 121 v,^« ,..• ,' ^" . ^J '3 y<>8- of calico, at i-'a .-t- ..„- .. 
 
 nJ I2i yds. ol'nuKl 
 
 35. PI 
 
 !>. at 1x5 ct 
 
 J'lipovns/^ofa,sin|: 
 
 per yard ? 
 
 ;> .>^ c;irM;o, value.] 
 
 ■3 ots. per vd. 
 
 owns 
 
 ^n«. ^, owns $87000: D $2 0^ J $sm^ 
 
 -n I of a steamboat, and UnV';.''?'^.' .'J"'' ^' *106»00. 
 
 45 0o'TJ.l^.^^-'"'-^-d«;il 
 
 
 «45000. VVha\ p^rt o ZXa-roaTh ' f,T ^''^''^ to Ow;n for 
 at that rate ? ^ ' "" '^^ stea.nhoat have I left, and what is it worth 
 
 i. inUef :n' oWoVJ r;;:,:, TJ " f * •*' ■»,»■ "^ P«'^ "^^ 
 BO pay for the coal ? ^ ' ^^'^ ""^"^ PO""^^ were required 
 
 39. I have *800 and wish to lav out S'Urt n<-.> • '^"'- ^'"^^ "^'^• 
 
 • pound, and the remainder in tea at 52' ct! 1 '" 'T^l ^' '^ ""^ 
 pounds of tea do I bu y ? ' ^" * P*'""'' ' ''^«' "lany 
 
 40. A merchant expended .^840 for drv .. ^« '' ?^^^^^^ ^^'- 
 
 house-lots of the same extent ii.t, Lk;m ^i V J , ^^'-' 'argest-sized 
 
 •nd .1.0 .he „.,„^e/„;s ^^'s v 'fV.tuol'r'rr 'i;'r''"'' 
 
 42. A man own ns 135 J acres nf l«n i n 1 ..: ^^r*- ' '*^ '"^s- 
 to his son; what wL the vl'ue of th/ "^ '-^V*' ^"^ ^ 
 acre? ^*^'^* ^^ the renoainder. at $57.80 per 
 
 43 A merchant owns 5 of a factory worth >«!4«nr:n'**'l^^^n'''«' 
 hie share to A, and i the renmi .W f^ n if ^^^- ^« ^^l'*^ * 
 ceive from A and S respectiX and . . ^"^T '""^^'^ <^^'' ^ « re- 
 ^ns. From A $25200 p'""' ?.*'' ^'^'^ ^'^ remaining? 
 
 44. A drover bou4t 257 sheen L/'''\'^' ^^f^ '' ^'^^ ^^'^^ A- 
 bought348at$1.87fperLad ?hpn ^frf P/^ ^^^'^ 5 lie aft'erward 
 $1.75 per head, and^th'L / L^,;,£^;,«<i'^> tf.tlje, whole number at 
 and how much? ^^^naei &i $^.12^; did he gam or lose, 
 
 45. A mother divided a basfc*.fr,f^-„ ^n»- Lost $,{5. s 7 ^ 
 ters; to the first ehe^e 12 o/a,^^^^ three daugi 
 and to the thir.i as much as to tKfi . . ^""""-^ ' ^* ^''« ^hole, 
 the third have ? ^^^ '''''''' '"'^ ' ^"^ ' "^any oranges did 
 
 46. What IB the smallest sum of monev with ,v5^1*' "^^ '^'■*"g^«- 
 purchase a number of sheep at -^2' Ta^K V V''''\>' f^^er couW 
 
 each,andanumberofyeaiKsa?lAoK"7"'''^'l^^"^'"^« "^^ »4i 
 could he buy with this moneyl ^ ' ^^''^^ ^""^ ^°^ '"*"7 o-^«acb 
 
 -^. Induing .ef^rdi^-^L-S^tl^^ 
 
 ^°s: b!. K Hf brofcoTon^?;? I \ ' ^ ^- ^' 31B^"/:"« 
 
!■■ 
 
 112 
 
 MlgOKLLANXOUS PROBLIMf. 
 
 49. The 
 
 le A of a farir. j^re sown with corn ; the A with barley and 
 50. How n.aMv huHhels of oats at 62^ cents perlnlh' 1^ remSed 
 
 61. Ifit requir^ 34 days for a mason and his JnZ nK;v^23 cubic 
 
 ^ 2 IfTrof 'r 'T^T^' ',' ''^'^^^''^™ ^« ".alee ucuLic yard? 
 n„?r ",,fi.:'f"^?""'''"^'l^^'^"'e8 of Riienish wine cost ,:;j.:U) • how 
 much will .^482 Lotties come to? j„,. " 
 
 the .'^atne 
 
 wi ■ 11 1 1 --■-.-"""• •««.'»•. .'§543. 192. 
 
 Whal will |.e the pnce of 57^ bushels of rye, if 17,31 bushels of 
 me (Ilia if.v f-r.wt ^«A3 9 " ^ > . ' ' i j "": "*^"* O' 
 
 jiiulity cost $52? 
 
 Ans. .$;i0.6G 
 
 . 54 A piece of silk vei;et would bring $210 were .Tllm'er""know 
 •ng^the pnce of a yard to be $7.50, required the fength ^flhe thoTe 
 
 • 65 A market woman sold the f of a basket of e.m'^a^"addmt'*28 
 
 66. A man has an income such, that ifit were au-Mifented t^'^the 
 pr.ce he pau for a mahogany writingdesk, thatis-WlT heluld spend 
 $2 02i per day. What is h.s income ? ^ns. $685. 1 2^* 
 
 it tI^^A■''T^' ''^'' "'f ^^* y^'"^ '^f >'"en in 1} hours ; how lon^^will 
 It take him to weave : Lu. 15 yds. ; 2nd. 2& yds. • 3rd 44 vd« • il^ 
 
 ^r'^'^y'}- ' ''^: n of a yd. ?' 'Ans. l'^28i L!; l^'si^h e'tc 
 
 tHe , and the^ of he sum paid for 93 lbs. be 60 cts. ? Ans. $2.25. 
 
 5 ). In mixmg 10 lbs. of bismuth with 6 lbs. of pevtor and 4 lbs of 
 lead we ob.a.n an alloy which melts at the temperature of boiin. 
 water ;requu-ed Ist what quantity of each metal enters into the m ixt^ 
 «fv f h'K',^"'^- li^bs.; 3rd.3|lbs.; 4th. lllbs.; 5th. 27! lbs 
 
 2° » Tk r . ?u ^'r,f ^' ^ ^^- ""^ ?«''*«'•' a»d f lb. of lead] 
 2 *lb.ofb.smuth,/j,lb. of pewter, and ,1^ lb. of lead, etc. 
 
 60. A weaving, mac „ne makes 135 yards of cbth per ,ia; ; how 
 many yards wl .t make, Ist. in 3 days; 2nd. in ,7^ of a day; rd in 
 4idays; 4th. m 15 days; 5th. in 32^ days; 6th. in 47^1 days 
 and 7ih. m 27m days ? Ans. 1 ° 41| ycis. 2^X1 yt eT ' 
 
 61. It would require 1800 yards of cloth f yds', wide lolfake cloLs 
 for a regiment 5 but, on delivery, the cloth is found to be too Sarrow 
 the cbthT'"^°' " "^^^""^ "^ ^"^ ^^^^ ^"""^^ -■ ^^^^ ''' ^''^ -iJ^" of 
 
 remn . ^^^ f!f^-V'' ' ^'''''' ^^ broadcloth of equf HenJ^hi . 
 Z:^1^^ ^..uiredthelengthofa P^-^knotjng tha! 
 
 63. The breadth of a painting is but the J. of its height' If ^th« 
 breadth equa the f of 2 -, yar.ls, what is tS height ?It% yds 
 ^6<. A teacher ofa select school has 60 pupils ; 24 of Sm mv 
 Rnw „ "k "1 ^f ^'' ^^^- ^ "*" '"'^ remainder, ;^1.75, and the rest $2.?.0. 
 
 T^ Tu v^J' ''' '■^^.^''^^ ^"""^ ^'^ P"P'1« '" 8 months ? ^n«. $846. 
 «„'!v.u"?''^"°n''0'»'e between two watches is | of an hoar- 
 
 LI ri^'"'' ^*K ' ** ""'""i"' ^''' ^^y' ^^"« ^^^ other loses 5', in the 
 same time: m how many day. will they again mark the Mme tu».f 
 
4th. 
 
 '^7 6 
 
 '"21 
 
 DlNOMKCATl NtTMllM. 
 
 Ill 
 
 
 " A dealer in poroelam l,oud,t a J,»t '"""'«' ^ *»-64. 
 
 -'"••■j:..tE~SS;i;;sB»r 
 
 DENOMINATE NUMBERS. 
 
 pounds 
 
 ^ing one bushel ISO are ^o^nav^ of '.'^' '"^"^^""^^ "°i^ 
 fractions '^ ***^' * °^ * yard, etc., denominate 
 
 „.f;!l^:-^'°°°^^°ate Numbers express Curr«n«| 
 
 An 
 
 IVsights, 
 
 188. FFia^waijrapI, nu^j^ - ... 
 ■oimnate number T~W/d.aVmJ«j!*^ oompoand aumb«r?- 
 
 ■88. .i de- 
 JDominato 
 
 s l< ' •' 
 
II • 
 
 lU 
 
 lUii 
 
 flffrl 
 
 OURBBNOIW. 
 
 OtlRRKNOIM. 
 
 1. Df.MivioN OF Canada Monet (77). 
 
 li Old Oanabian Monit, ou Halifax Currenct. 
 
 TABLE. 
 
 d. 
 
 §. 
 $. 
 
 £. 
 
 4 t'lrthingfl mak* 1 penny, 
 
 12 pence «* I Bhilling, 
 
 6 shillings " 1 dollar, 
 
 4 d( liars ** 1 pound, 
 
 d. qr. 
 
 t. 1=4. 
 
 $ 1 - 12 = 48. 
 
 £ 1 « 6 = 60 = 240. 
 
 1 = 4 = 20 = 240 = 960. 
 
 *•■■» •»•*/ id. rf th« old oaiaag* if equal to 6 eenta of the new. 
 
 III. Enqluh Monet. 
 
 TABLE. 
 
 4 krthingn (far. «» tr.^ make 1 nennr g, 
 
 ii P^Cf •• 1 Bbilling ,,' 
 
 W •iMdIififp n 1 pound or sovereign £ or sow. 
 
 «. 
 £ 1 
 1 = 20 
 
 d. Jar. 
 I = 4. 
 
 12 = 48. 
 240 = 960. 
 
 I ^"L^t *"*"*'»«« "• generally exprosBed as fraotiona of a peaay: tkui 
 i m^ mmtAHimm oailed one quarter, \qr.) ^^\d.;Z far. wm Id. ' 
 
 k^S^J^/' tfc» original abbreTiatioD for shillingg, was formerly written 
 ^^ »^H,»»* and pence, and rf. tbo abbreviation for pence, wm omitted! 
 ^JT**;!*' ^'^^ Wf'tton 3/0. A gtraight line is now used in jplaoe of the/, and 
 mtfmmgt ace written on the left ot it, and pence on the right. Thus, 3^6, 7j3, eto. 
 
 *4jMS*-nT"* ""u"* f ^H •'«"■''"« pound '1 the Dominion of Cani» k 
 9*^999^, Mttrl fe«Dce the value of an English shilling is 24J oenta. 
 
 ..«j *tt *?!*••'*■*'*■* *° goneral oiroulation are: the Mvereirn {=., £1\ 
 «Mtt#Wl.»6^ereign^- 10«.), made of gold; the crown (-.5..), tfie fcalf-' 
 *My*J-^(W)^ the io.-in (- 2..), the shilling, the aix-peace. the^our peno., 
 SKfr^UST*?*^' ' ^'^^'P'^^^' "»" haJi-penny, end the far- 
 fc Ifc* gUtodfad gold eeia of Inland ii 11 parts /jure gold and 1 part '^Uoy 
 j^^^ ^ ■ »" \f5 • "" / 1 — --»..-. aim u parw (-1, ;^ 
 
 ■W^ a^pyw/ M foaee, la eopper coin, wotgh a pound avoirdupoia. 
 
 rr. Unitw Statu Mon£t ( t 
 
f RBNCH MONKT. 
 
 Ill 
 
 C«l.ada u,„„,/; "l°'«l »■ '»lue to 80.188 Do,„i„i„„ of 
 
 TABLE. 
 
 }0 roillimes make 1 oentini., 
 centimes " I deoime 
 fr ,^ '°'^**^""«^ '• 1 franc. 
 
 _, OOMPAIIED. 
 
 •4 «(•«"'■ I centime 
 
 1«. 
 
 WEIGHTS. 
 
 D. C. 
 
 I0.00018«. 
 
 *0.00I86. 
 
 «0.186. 
 
 8Calo8 of weight are usedTZn °'"' ^^"^'^ standard. Three 
 
 tain, and tho'^Uniid S ates" ^^ .^S'a 'l.^^"^-'^' ^^'^^ «'• - 
 d"po»s. "'*'' ^^^- • A roy, Apothecaries', and Avoir- 
 
 ^- Troy Weight. 
 
 TABLE. 
 
 24 grains (er. ) kiaIt. i 
 
 20 pennywdghta * J'"7''''°'^'' ^"*- "«• '*«*• 
 12 ounce*. « i °""*'5' o«- 
 
 I pound, /ft. 
 
 'f- 1 = 30= 480." 
 1 = 12 « 240 = 5760. 
 WoiBa— 1 ©iaoaond*. eto.. ara ••i.k.j u 
 A era. w.igh.4^„H« ^o/^^^r* ' '^ •^'^' ""*>««<-« .f a oar.t 
 -i. in .peaking .f the purity >f Im . ^^ ^ 
 
 «• A T«v p,«i i. ^, J*]r 3^^^^ ^ ^ ^^^^ 
 
 ( . 
 
116 
 
 II. APOVHEOARIEri' WeIOWT. 
 
 1S>4. Aiiotbi-c tries' tUTeight is used b^ 
 physicians in niixiti- medioines; but modiciries, 
 are bought and sold by Avoirdupois weight. 
 
 TABLE. 
 
 ipothecaries nnd 
 in the (juuiitity, 
 
 20 grains (gr.) make I scruple, sc. or i. 
 
 3 acruplcH <• I dram, dr. or s. 
 
 1 ounce, oz. or 3 
 
 Ik. 
 
 I 
 
 8 dranifl 
 12 ounces 
 
 1 
 
 12 
 
 n 
 
 41 
 
 1 pound, lb. ur lb. 
 
 ir. 
 
 I 
 
 8 
 
 i^6 
 
 1 
 
 3 
 
 24 
 
 288 
 
 fr. 
 
 - 20 
 = 60 
 
 = 480 
 = 5760 
 
 m 
 
 ril. AV01B.'»DP()I8 WeIQHT. 
 
 -«5. Avoirdupois Weight is used tor all the ordinary pur- 
 poses of weighing. 
 
 16 drama (dr.) 
 16 ounces 
 25 pounds 
 4 quarters 
 20 owt., or 2000 lb«., 
 
 TABLE. 
 
 make 
 
 n 
 « 
 
 1 ounce, OM. 
 
 1 pound, lb, 
 
 1 quarter, qr. 
 
 1 hundred weight, cwl. 
 I ton, T. 
 
 r. 
 
 1 
 
 curt. 
 1 
 
 20 : 
 
 qr. 
 I 
 4 
 
 80 
 
 lb. 
 1 
 
 25 
 
 100 
 2000 
 
 oz. 
 1 
 16 
 
 400 
 
 1600 
 
 32000 
 
 dv. 
 
 16. 
 
 256. 
 
 6400. 
 
 25600 
 
 512000. 
 
 NoTt — The long or grot* ton, hundred weight, and quarter, were formerly ia 
 oommon use; but they have now fallen intodiiuse am»ng merchants in Crntid* 
 The Custom-Eouses continue to use it. Farmera and others weigh still some few 
 trtioles by the long tan. 
 
 LONQ TON TABLB. 
 
 28 lbs. 
 
 4qr. = 112 1k. 
 aOewt. = 22n 
 
 miike 
 it 
 
 I 
 
 quarter, marked qr. 
 
 hundred weight, ♦* cwt. 
 tvn. " T. 
 
 OOMP 
 
 1 pD«nd 
 
 1 OQBOe : 
 
 K V 4BLB or WBI0HT8. 
 '!&*:/. ApothaoMict'. AToirdupoU. 
 
 6760 grains, = 7000 vubii. 
 480 " — A9W t^ ,. 
 
 ■■ 6760 grains, 
 480 " 
 
 irs 
 
 480 " xs 480 " E 43r.6 " 
 VawtdM, IB 176 pMiBda, = 144 poands. 
 
MKASU'KES. 
 
 or ^mounufaSatS^^ dimension, oapaoitj 
 
 standard. It majt 'o^r v ZfT^. •"'^^^^'"^ ^ «ome^fixed 
 •res <>f J^-tenaionf and'Z'L'o" Capacit;:"° °'--«-^^^«- 
 
 *'^'^''^*''*' ®^ EXTENSION. 
 
 thick,.I;.'^'^^"«^«'» »^- ^'^^ di-nsion«- length, l^eadth and 
 
 ^ A Sol.d or^BodyhLYhrerd.- ''"'"'''" '^""^'^ ^"^^ breadth. 
 ihickne.8. "^ ^^''' d.mens.or.s- length, breadth, and 
 
 I. Linear or Long Measure. 
 or Ztce!""'" " ^°"^ Measure, is used in measuring line. 
 
 I incV (fn.)ss 
 
 12 inch's 
 
 3 feet 
 
 H yd., or I6i ft. 
 
 40 rofis 
 
 8 furlongs, or 320 rod. 
 •^ in Ilea 
 
 69J miles (nearly) 
 attv degrees 
 
 TABLE. 
 
 0.3363 French inch, 
 "lake I fo.jt, 
 
 1 yard, 
 
 I rod, 
 
 1 furlong, 
 
 I mile, 
 
 I league, 
 
 it 
 
 (t 
 
 u 
 
 « 
 
 « 
 
 u 
 
 u 
 
 yd, 
 rd, 
 fur. 
 mi. 
 lea. 
 
 J degree'on the equator, rfS' or • 
 1 great circle of the earth. ' 
 
 mi. 
 1 
 
 1 
 
 8 : 
 
 rd. 
 
 1 
 40 
 
 320 : 
 
 ¥d. 
 1 
 
 220 
 1760 
 
 A 
 1 = 
 3 = 
 
 16i=. 
 
 660 = 
 
 6280 3 
 
 in. 
 
 12 
 
 36 
 
 198 
 
 7920 
 
 63360 
 
 .'?•' 
 
F-TH 
 
 ■■! i; 
 
 n« 
 
 MBASUBS6. 
 
 Sotn.—l. For th« purpon «f mauuriog oloth u4 other goodc soU W ife^ 
 
 JMrM^'/T'u" *"^'*"^ '°'" '"''^•«' '■°"'*'^»' «'«»»»'»•• "»<» ^i«u*«U« fl* 
 oia table of oloth measure is practically obsolete. 
 
 1 f^i.^° ^Miners' Measure, 12 lines make I Mohj4 inches, 1 hand: *5fo#«, 
 1 lathom; 120 fathoms, 1 cable-length ; 7i cable-lengths, 1 mUe; X of a <i»«i», 
 of the oircumference of the oarth, 1 knot, or geographical mile, equaJ to*M 
 statute miles. ^ " 
 
 3. The length of a degree of latitude varies, being 68.72 miles at the «4uM«ir 
 B8.9 to 69.05 miles in middle latitudes, and 66.30 to 69.34 miles in the mW 
 regions. The mean or ayerage length is as stated in the table. A degr-w^ 
 longitude is greatest at the equator, where it is 69.16 mUes, and it «»di*««* 
 dooreaaes toward the poles, where it is 0. 
 
 Table of the old French Linear Measubu. 
 
 1 line = 
 12 lines (<. ) 
 12 inches 
 
 6 feet 
 
 3 toises 
 10 perches 
 84 arpents 
 1000 French feet 
 
 0.089 Engl. inch, 
 
 make 1 inch, in. 
 
 " I foot, Jt. 
 
 1 toise, tu. 
 
 1 perch, per 
 
 I arpent, arp. 
 
 1 league, lea. 
 
 « 
 n 
 
 H 
 
 1068 Engl. feet. 
 
 NOTM.— 1. The French linear measures are in frequent u'« in the Pnefaaa 
 of Quebec. ^^ 
 
 i;i'^^''T.^°'^*^^''^°='^^^**'^"«'-f««*''''"* t'je B-renoh league of C«*«<<« 
 308.16 Engl, ft., or 268^ French ft. 
 
 Surveyors' Linear or Long Measure. 
 
 I??- ^ Gunter's Chain, used by land survejora, is 4 roth 
 or be feet long, and consists of 100 links. 
 
 7.92 inches 
 
 mi. 
 
 2.^ 
 4 
 
 10 
 8 
 
 fur. 
 1 
 8 
 
 links 
 
 rods, or 66 feet, 
 
 chains 
 
 ftirlongs 
 
 TABLE. 
 (in.) make 
 
 a 
 it 
 <« 
 <t 
 
 link, /. 
 
 rod, rd. 
 
 chain, rh. 
 
 furlong, fvr. 
 
 a. 
 
 1 
 
 10 
 
 RO 
 
 1 
 4 
 
 40 
 320 
 
 1 mile, 
 I. 
 
 1 
 26 
 
 100 
 1000 
 8000 
 
 nn. 
 
 in. 
 7.W 
 
 198. 
 792. 
 
 vno. 
 
 II. Square Mbasttrr. 
 900. A Square is a figure bounded by four equal Ums 
 perpendicular to each otker. Tt is the Unit 9/ M^ntur* fer ' 
 
■■UVBM, 
 
 IK 
 
 
 •^ 
 
 
 
 'Kr 
 
 II 
 
 
 
 
 d 
 
 — _ 
 
 
 m 
 
 • 
 
 
 The squar. in the margin ii called tkrmi fmt 
 
 ^h^Tm^n' '' " *••''• .''«* °" ^^""^ aide. B "/'S 
 the smail squaree, within the large square, re- 
 preaenta X.q^arefoot. or 1 foot fqml. %Z^ 
 thore are 3 square feet in each row, and 3 ro^Js 
 
 inil?#«T"' '^T ^r. 3 times 3 square feet 
 equal to 9 square feet in 3 feet square. Hence 
 
 3 ft. = 1 jd. 
 
 TABLE. 
 
 1 «q»are inch (sg. in.) = 0.8767 French inch 
 U4 squar. inches make 1 square foot, .^X 
 
 ffq. yd. 
 iiq rd. 
 
 30^ 
 
 40 
 
 4 
 
 640 
 
 square feet 
 square yards 
 square roda 
 roods 
 acres 
 
 <i 
 
 I square yard, 
 
 1 square rod, 
 
 1 rood, 
 
 1 acre, 
 
 I square mile, 
 
 R. 
 4. 
 
 sq. 
 
 wit.. 
 
 R. 
 
 . A 1 
 
 sq.vii. 1 = 4 
 
 I SB 640 = 2560 
 
 »q. yd. 
 sq. rd. I _ 
 
 1 = 30i = 
 
 40= 1210 = 
 160 = 4840 = 
 
 sq.ft. ^ 
 
 9 Z 
 
 10890 = 
 43560 = 
 
 sq. in. 
 
 144 
 
 I29(; 
 
 39204 
 
 I5tiSl()0 
 
 6272640 
 
 .02*00 =3Cm0O =278784°:;' =40,Sl: 
 
 TABLE ot THE OLD FRENCH SQUAIiE ,„.;,A,,URES 
 
 I square JQcb (.}. in.) . 0.007921 Enel fooi 
 U q,..r.,„ch« make }.q„ar. foot, 'trfi. 
 
 36 feet 
 9 toiees 
 100 perches 
 
 iotjv arpcnig 
 
 it 
 
 H 
 U 
 
 (S 
 
 1 square toine, 
 1 square perch, 
 1 square arpent, 
 1 sq'uare league, 
 
 ^"^^S:::it±'^,!^: work a. fbllow, vi. 
 
 sq.ft. 
 ■s^. to. 
 sq. per. 
 sq. arp. 
 sy. L. 
 
 the square of 100 2quare'feet:'brXKl*t'."^^^^^^^^^ ■• ' ■ 
 
 glaiingand stone- 
 
 r,"a< "J "ii: oquBi'e yards: floorinir rini»;n„«;«™ ?' "■""«• »>'u paper- 
 the square of 100 Square feet j' brX gC -/Sru^aVrL"*;', "'^i*"^'' '"'"« ''^ 
 by the .quare yard, and by tie .quare of foi squZ f^'Jt^ '^' ^°»'"'' '"^cks. 
 
 1 I 
 
 f I 
 
»j::^'i,iiiaiae^--.T„'i;;ij£!^_.7.^2.v:?^'" 
 
 1^ 1- 
 
 ISO 
 
 MIASUftBS. 
 
 Ih. w.alh:"'*'" '"°«'" "™ °^*'"'»»«'l 'o «-" 1 -quare. being laid i i..h„ to 
 surveyors' SQUAttE MEASURE. 
 
 TABLE. 
 
 626 square links (_tq. I.) 
 
 16 poles it 
 
 10 square chains u 
 
 640 acres « 
 
 36 square miles (6 miles square) " 
 
 make 1 pole, p, 
 
 1 square chain, aq. eh. 
 1 acre, A. 
 
 1 square mile, so. rnu 
 1 township^ '/p^ 
 
 mUe oflandie also called a""«.-^' ' "^^ «"'°« '"'° ^""««' ^ 8quai« 
 
 III. Cubic oe Solid Measure. 
 
 -olH u^^^^ Measure is used in estimating the contents of 
 solids^ or bodies ; as timber, wood, stone, etc. 
 
 nf ??*^\ p?»*ents, or Solidity, of a volume, is the nun.ber 
 of times It contains a given unit of measure. «numDer 
 
 tl,P^.™^-^'T"''°5,?''''''*'"P''*^"-«<^"di*y«'-e always taken in 
 the denominations of linear measure. 
 
 If each of the sides of a cube is 1 foot, it is called a cubic foot 
 
 fiJn^'' ■|!"V:l^ °'?"'° '•opresents a oubio yard. 
 Since each of the edges of a cubio yard is .rfeeL 
 •uch of Its faocB will contain 3 times .3 equal to 9 
 «qu are feet. If, from one fane of this ou be, wo cut 
 oflfa p.Goe 1 foot in thiokne... wo evidently hare 
 9 »oUd/ee(i and as tho whole block is 3 feet 
 tmck, It must contain -i fimoc o _ ot . i; , « . 
 
 Henoe, " " "' '"'*'' ^°^^ 
 
 1yd. 
 
 ^flnd the $oM contents of a cube, multiphj its length bmrdth 
 «md thickness togethc, ^ • t 
 
MEASTntm. 
 
 121 
 
 1728 cubic inches (eu. in.) 
 27 culiic leet 
 
 40 cubicleet of round timber, or ) 
 f<? " " "hewn '« i 
 
 lb cubic feet ' 
 
 8 cord feet, or i 
 128 cubic feet t 
 
 24| cubic feet 
 
 TABT.l. 
 
 "lak-o 1 cubic foot, cu.ft. 
 
 Ic'ibicjard, cu. yd. 
 
 1 ton or load, J\ 
 
 I cord foot, cd.Jt. 
 
 1 coni of wood, Cd. 
 
 n 
 
 u 
 
 u I I perch of stone > p . 
 ( or manonry. | ''^* 
 
 1728 ('ubic inches 
 21(> c, bic feet 
 1000 French cubic feet 
 iO(»0 cubic toise-i 
 
 TABLE 01- FRENCH MEASURES. 
 
 make 1 cubic fool, cu fi 
 
 i toise, cu. to. 
 
 " 1218. 186432 Engl. oi)b. feet. 
 ■• "J745. 491456 cub. yd. 
 
 th^i;;.^S!j::i:'];:^«^--r;-i^ freight b^ 
 
 .tc.,of s.ffi'e':p„';/,;;r/u:.t. ''"Brir*"°« ^"S'^'''^"-' '^-". 
 
 mit.ng their work by oubio me Jb««T Bn«l'l»yers and masons, inesti- 
 
 wallsofhouees.eelli^^rflto h,?? I!;- ^*°u *''°^*°ce ^o"" '^e corners of the 
 
 •Btire length of thrwdlo^tbeoJwl™''''' '''"'' ''°^' ''^ '^^ y-'. that i' the 
 
 ditn^Sra'a^re'^^^m^^'iCu'^^^^^^^^^^ and embankment., take the 
 
 eomnutation« are made inlet n 1 SI. Ti"""^ decimals of a foot. The 
 yards. In civil enginoo W thH /il ^ri'''^^ •"""' "" "**"°''^ *° *'"^'<' 
 e«a.ationsaBde;,fb..nk"f^tsaVefitli;;tluo^ "'* '" "'''■''' •'^"™''*«« '<>' 
 
 ~LJ;;^fc^^™rCa5^;^!or^ir;rnn. or tVei,ht,„g. ^ of the solid 
 that will make 36 foot of hewn or sawed dmhL- " 'T'm^ "' ''^^'''S- '^•'">'' '"^ '°g 
 by measurement; but its mrket 'a^e k - .^^^ ** ° "''''' ^"^^^ 
 
 •awed ti.uber. Henee. the cubic content, ,?fi^« f '^""'/" ^^°"^'° ^''^ «'' '>«^" «' 
 timber, ns estimated for marked are irfentlfaf "^'"°"°'^ '^"'^ *^ ^'^«' "^ '^«'^'' 
 
 «>ld- by ^hlttir^tVS':::^^^ ''•""^"•'•^- "^^ "- 6--a>'y bought and 
 
 aej .td'';ke;lr;'e'itSrnrs*^!st^^^^ '.f^''^' "^ '''^ '-'-" o^ th. 
 
 ATolfdupois. ""• '* ^•l"'*' '" ^«gbt to 62i lbs. or 1000 oi. 
 
 MEASURES OF CAPACITY, 
 nifies extent of space. "^ "liferent unit«. Capaaty Big. 
 
 two .IMMS. Mtmmre. of L.y^nrf, and Jf««vr« «/ Dry SuhHan^ 
 
 i V , - .^P 
 
 Mil 
 
 riiiHi 
 
■"— ''"imTrr"'"-" 
 
 122 
 
 inBABtniRs. 
 
 I. Liquid Measure. 
 
 208. Liquid Measure, also called Wine Measure i« nnw 
 used for measuring all kinds of liquids. ^'^easu.re, is now 
 
 TABLE. 
 
 4 gills (gi.) 
 2 pints 
 4 quarts 
 31 i gallons 
 2 barrels 
 2 hogsheads 
 2 pipes, or 4 hogsheads 
 
 make 
 
 tt 
 
 
 1 pint, 
 I quart, 
 1 gallon, 
 
 barrel, 
 
 hogshead, 
 
 pipe, 
 
 tun, 
 
 tun. 
 1 
 
 66/. 
 hhd, I 
 pi' i = 2 
 1=2 = 4 
 
 = 2 = 4 = 8 
 
 gat. 
 
 1 
 
 63 
 126 
 252 
 
 [j = 
 
 (ft. 
 
 1 ^ 
 
 4 = 
 
 126 ^ 
 
 252 = 
 
 504 = 
 
 1008 = 
 
 Ft- 
 
 I 
 2 
 
 8 
 
 252 
 
 604 
 
 1008 
 
 2016 
 
 pt. 
 
 qt. 
 
 s^al. 
 
 bhl. 
 
 Mid. 
 
 pi. 
 
 tun. 
 
 gi- 
 
 4. 
 
 8. 
 32. 
 
 1003. 
 2016. 
 4032. 
 
 .'-■064. 
 
 2o1;*S''«»«'°Tk*"^''°'u*'y!''®^*"''"5 "'"letimes, howerer. in casks of 6 10 
 20 gala. etc. The beer barrel contains 36 gallon,, anl the hothead! 54 gallon.: 
 
 II. Dry Measure. 
 
 aOSI. Dry Measure is used in naeasuring articles not liaaid 
 M gram, salt, fruit, roots, &c. ^ ' 
 
 2 pints (pt.) 
 4 quarts 
 2 gallons 
 4 pecks 
 36 bushels 
 
 1 
 
 Imsh. 
 
 1 
 M 
 
 pk. 
 1 
 4 
 144 
 
 TABLE. 
 
 make 
 
 u 
 
 n 
 u 
 II 
 
 gal. 
 I 
 2 
 8 
 
 288 
 
 1 quart, 
 
 qt. 
 
 1 gallon, 
 
 gal. 
 
 1 peck, 
 
 vk. 
 hush. 
 
 I bushel, 
 
 1 chaldron, 
 
 ch. 
 
 qt 
 
 pt. 
 
 1 
 
 2. 
 
 4 
 
 8. 
 
 8 
 
 16. 
 
 32 
 
 64. 
 
 = 1162 
 
 = 2304. 
 
»a.-»«j«i<iS(ji!lo»;. *,^v 
 
 viAsuftsa. 
 
 MEASURE OP TIME. 
 
 
 60 seconda (sec.) 
 60 minutes 
 24 hours 
 
 7 days 
 
 4 weeks 
 
 365 days 
 
 366 days 
 
 12 calendar months 
 100 years 
 
 Table. 
 make 
 
 tt 
 
 
 1 minute, 
 
 1 hour, 
 
 I day, 
 
 I week, 
 
 1 lunar month, 
 
 1 common year, 
 
 1 leap year, 
 
 I year, 
 
 1 century. 
 
 N«. of months 
 
 The calendar year is divided as follows :- 
 
 2 
 3 
 4 
 
 6 
 6 
 T 
 8 
 9 
 
 10 
 
 II 
 
 12 
 
 Seasons. 
 Winter, 
 
 Spring, 
 
 Summer, 
 
 Autumn, 
 Winter, 
 
 Names c •• months. 
 I January, 
 ( Hebriiary, 
 (March, 
 
 SJune, 
 July, 
 August, 
 ( September, 
 < October, 
 (November, 
 t)ecember, 
 
 AbbroTiations. 
 Jan. 
 Feb. 
 Mar. 
 Apr.. 
 May. 
 lun. 
 July. 
 Aug. 
 Sept. 
 Oct. 
 Nov. 
 Dec. 
 
 min. 
 k. 
 da. 
 wk. 
 
 IIIO. 
 
 yr. 
 
 yr- 
 
 C. 
 
 No. of dajrg, 
 
 31. 
 
 28 or 29. 
 
 31. 
 
 30. 
 
 31. 
 
 30. 
 
 31. 
 
 31. 
 
 30. 
 
 31. 
 
 30. 
 
 31. 
 
 — ^*"""> uec. 31 
 
iii^22 
 
 &SSB^^S!Sss^^^m^:,^ ' 
 
 124 
 
 mBAmiwu. 
 
 V • 
 
 2. Th« J«<io»» Ttar, lo oalled «rom th« calendar instltnud by Jnllni CMsar, 
 •ODtains 3fi5i dayi, as a medium ; three yeara in succession containing 365 dayi, 
 and the fourth year 366 days; which, aa Roinpared with the true solar year, pro- 
 dnoes a yearly error of 1 Im. 10^^^ sec, or of 1 whole day in about 120 years. 
 
 3. The Giftforian Year, or that instituted by Pope Gregory Xltl, in the year 
 1682, and which is nnw the Civil or Legal Year in use among the different na- 
 tions of the enith, cwiitains 365 days for three years in succession, and 368 days 
 for the fourth, exoptin;/ centenniril years whose number cannot be exactly di- 
 Tided by 400. The Gregorian year gives an error of only 1 day in 3866 days. 
 
 4. The eivU day begins and ends at 12 o'clock, midnight. The dutronomieal 
 day, u?eu by astronomers in dating events, begins and ends at 12 o'clock, noon. 
 
 8. In most business traosaotions 30 days are oalled 1 month. 
 
 TABLE 
 
 SHOWING THK NUMBIR OF DATS FROM ANT DAT OP 0N« MONTH TO THl 
 SAME DAT OF ANT OTHER MONTH IN THIC SAME YEAR. 
 
 VROll ANT 
 BAT OP 
 
 TO THB 8AM« DAT OF 
 
 Jan. 
 365 
 
 Feb. 
 
 31 
 
 Mar, 
 69 
 
 Apr. 
 90 
 
 May 
 120 
 
 June 
 151 
 
 July 
 
 181 
 
 Aug. 
 212 
 
 Sept. 
 243 
 
 Oct. 
 273 
 
 Nov. 
 .304 
 
 Deo. 
 334 
 
 January 
 
 February 
 
 334 
 
 365 
 
 28 
 
 59 
 
 89 
 
 120 
 
 150 
 
 181 
 
 212 
 
 242 
 
 273 
 
 303 
 
 March 
 
 300 
 
 33/ 
 
 365 
 
 31 
 
 61 
 
 92 
 
 122 
 
 153 
 
 184 
 
 214 
 
 245 
 
 275 
 
 AprU 
 May 
 
 2V6 
 
 306 
 
 3S4 
 
 365 
 
 30 
 
 61 
 
 91 
 
 122 
 
 153 
 
 183 
 
 214 
 
 244 
 
 245 
 
 2Vri 
 
 304 
 
 335 
 
 365 
 
 31 
 
 61 
 
 92 
 
 123 
 
 163 
 
 184 
 
 214 
 
 June 
 
 214 
 
 245 
 
 273 
 
 304 
 
 334 
 
 365 
 
 30 
 
 61 
 
 92 
 
 122 
 
 1,53 
 
 183 
 
 July 
 
 184 
 
 215 
 
 243 
 
 274 
 
 304 
 
 335 
 
 365 
 
 31 
 
 62 
 
 92 
 
 1 \3 
 
 153 
 
 August 
 
 lo3 
 
 184 
 
 212 
 
 243 
 
 273 
 
 304 
 
 334 
 
 365 
 
 31 
 
 M 
 
 92 
 
 122 
 
 September 
 
 122 
 
 153 
 
 181 
 
 212 
 
 242 
 
 273 
 
 303 
 
 334 
 
 365 
 
 30 
 
 61 
 
 91 
 
 October 
 
 «2 
 
 123 
 
 151 
 
 182 
 
 212 
 
 243 
 
 273 
 
 304 
 
 335 
 
 .^65 
 
 31 
 
 61 
 
 November 
 
 61 
 
 92 
 
 120 
 
 161 
 
 181 
 
 212 
 
 242 
 
 273 
 
 304 
 
 3;;4 
 
 .■^65 
 
 30 
 
 . December 
 
 31 
 
 62 
 
 tfO 
 
 121 
 
 Ul 
 
 182 
 
 212 
 
 243 
 
 274 
 
 304 
 
 335 
 
 3<6 
 
 For example, to find the number of days from April 4th to November 4th w« 
 look for April in the left vertical column, and November at the top, and, where 
 the lines intersect, is 214, the number sought. Again, to find the numberof d' vs 
 from June lOth to September I6th, we find the difference between June 10th and 
 September 10th to be 92 days, and add 6 days for the excess of the 16th over the 
 10th of September, so we have 98 days as th ■ exact difference. 
 
 If the end of February be included between the points of a time, a dav must 
 be added in leap year. j '^ •><, 
 
 When the time exceeds one year, there must be added 305 days for each yea*. 
 
 CIRCULAR MEASURE 
 
 211. Circular Measure, called also Angular Measure, Is 
 used principally in surveying, navigation, astronomy, and geogra- 
 phy ; for reckoning latitude and longitude, determining locatfoaa 
 of places and vessels, and eomputing difference of time. 
 
MI801LLANROIT8 TABL18. 
 
 12ft 
 
 212. An Angle i$ the differtncc of direction 
 
 of two lines which meet at a point; thus, A, 
 B. (!, is an ;tii.j;le. The lines are called the 
 sid w of the angle, and the point where they 
 meet is called tlio ' / 
 
 V. 
 
 Deo. 
 
 i 
 
 334 
 
 i 
 
 303 
 
 j 
 
 275 
 
 i 
 
 244 
 
 i 
 
 214 
 
 i 
 
 183 
 
 i 
 
 153 
 
 i 
 
 122 
 
 L 
 
 91 
 
 . 
 
 61 
 
 » 
 
 30 
 
 ) 
 
 3«& 
 
 2i:$. A Circle is a plane figure 
 bounded by a curved line, all the parts 
 of which are ecjuallj distant from a point 
 within called the center. 
 
 A circumference is the curve line which 
 bounds a circle, and always contains 360 
 degrees. 
 
 An arc is any part of the circumference, as C D, D E. 
 
 Tho are within the sides of an angle whose vertex is on the 
 center of a ciicle is the measure of the angle; thus, the arc C V. 
 IS one fourth of the circumference, and measures the an-'leE B C 
 which contains 90 degrees. "^ ' 
 
 TABLE. 
 
 60 seconds (") 
 60 minutes 
 30 degrees 
 12 sigoa, or .360° 
 
 0. 
 
 1 
 
 ■. 
 
 1 = 
 
 = 12 = 
 
 1 
 
 30 
 
 360 
 
 make 1 minute, 
 
 *' 1 degree, 
 
 " 1 sign, 
 
 " 1 circle, 
 » 
 
 1 
 
 60 = 
 
 1800 = 
 21600 
 
 9 
 
 o 
 
 s. 
 c. 
 
 60. 
 
 3600. 
 108000. 
 1296000. 
 
 of S '■m^aT'^X''-"' "if^' ''"^''' '' °"<'-fo"E'»» of » oiroumferenoe. or an m 
 01 «()u ; aa A U. 60" is called a sextant, or I of a oircle. 
 
 12 units 
 12 dozen 
 
 24 sheets 
 20 quires 
 
 MISCELLANEOUS TABLES. 
 
 COUNTING. 
 
 12 gross make 1 great gross. 
 20 units •« I 8core. 
 PAPER. 
 
 make 1 dozen, 
 
 " 1 gross. 
 
 make 1 quire. 
 ** I ream. 
 
 2 reams 
 5 bundles 
 
 make 1 biuidle. 
 " 1 bale. 
 
 BOOKS. 
 A sheet folded in 
 
 2 leaves is called a folio. i 16 leaves is called a IGrao. 
 
 4 " " aquarto, or4to. I 18 " « an 18mo. 
 
 8 <♦ anoctavo, orHvo.i 24 " '< a 24mG 
 
 I* " " • 12mo, I 32 " « » 32010. 
 
 
lU 
 
 T«i mTMQ arsTSM. 
 
 THE METRIC SYSTEM OP WETOHTS AND MEASURES. 
 
 The metric system of woi>ht8 and measures-so called bpcaase 
 '^^'''%]'^\--^' ^rom ^.hloh the other units of the sptem 
 whether of length, area solidity, capacity, or weight, are derived 
 --originated m France m 1790. It was determined and established 
 as foUows : a very accurate survey of that portion of the terrestrial 
 meridian or north and south circle, between Dunkirk in the 
 
 Wthnf ^T°'"'">''''^^''°'^ ^^'' measurement the exact 
 
 hetuatoVtotr' f ^^V'^*"^ "^"^^^'^' ^^ *h« distance from 
 Dart of ?M, ! "°/*^ P"'"' ^"^ ^^"^Puted. The ten millionth 
 
 Ffo 7 i ?'^ V^ denominated a metre, and from this all the 
 standard units of measure and weight are'derived and deLm ned 
 t1,r? r' 'iJ '^'^"^ ^'« ^•^^"y ™^de the only le4l sZem 
 
 Mooted W 9°' • ''^'r' ^" ''''' Since th'at time, Thas 
 Deen adopted by Spam, Belgium, and Portugal, to the exclusion 
 of other weights and measures. In Holland^ other weights Tre 
 used only m compounding medicines. In 1864, the Iv t'em wis 
 egahzed in Great Britain ; and its use, either ^s a whole oMn 
 C/^t P'''''^"' been authorized in Greece. Italy Norway 
 Sjreden, Mexico, Guatemala, Venezuala, Ecuador UdtedsTates 
 fn mt^; ^--1' Chili, San Salvador and Argendn RepubHo 
 In 18b6 the use of the metric system of weights and measures 
 was authorized by Congress for the whole of the United States 
 
 TABLES AaTHORIZED BY CONGRESS OP THE UNITED 
 
 STATES. 
 
 MEASUHE8 OP LENGTHS. 
 
 Metric Denominations and Values. 
 
 Myriametre,... 
 
 Kilometra, 
 
 Hectometre,... 
 Decametre,. ... 
 
 Mkthb, 
 
 Decimetre, 
 
 Centimetrs,.... 
 Millimetr*, ..... 
 
 lO.OttO metres,- . 
 
 1,000 metres,-.. 
 
 100 metres,...., 
 
 10 metreSi^ ., 
 
 1 metre, , 
 
 ^^ of a metie, 
 y^ of a metro, 
 
 Equivalents in Denominations in use. 
 
 6.2137 miles. 
 
 0.62137 miles, or 3280 feet, 10 inches. 
 
 328 feet and 1 inch. 
 
 3'J3.7 iQehc!». 
 
 39.37 inches. 
 
 3.937 inches. 
 
 0.3937 inch. 
 
 U.0394 inch. 
 
TH* Miraia stitkk. 
 
 HRASURRS (.p SCRTAOM. 
 
 127 
 
 Motrio Denominations and Values. 
 
 Hectare, .. 
 A»«, 
 
 Centiare,. 
 
 EquiyalentH in Denotninationa 
 
 in use. 
 
 10,000 squaro metres, 
 100 gquaro metres, 
 1 square metre, I I55o"8qVa"reinchei' 
 
 2.471 aores. 
 
 11'.».6 square yarda. 
 
 MEASURES OF SOLIDS. 
 
 Metric Donominations and Values. 
 
 Decaatere, 
 
 Stkrb, 
 
 I>eoist«r*,„. ... 
 
 10 cubio metres, 
 
 1 cubifl metre, 
 
 BquiTalenta in DenominatioBa in 
 
 DM. 
 
 13.079 oubio yards. 
 0.2759 of a cord of wood. 
 
 100 cubic deoimetrea,. 3.63144 cubic feet. 
 
 Mf:ASURES OF CAPACITT. 
 
 Metric Denominations and V»l 
 
 ues. 
 
 Names. 
 
 Kilolitre, or atero, 
 
 iieetolitre,.,, 
 
 Decalitre, 
 
 LtTHB, 
 
 Decilitre, 
 
 Centilitre, .... 
 Millilitre, 
 
 No.of 
 litres 
 
 1000 
 
 100 
 
 10 
 
 1 
 
 1 
 
 TU 
 
 Cubic Measure. 
 
 Bq-iTalents in Denonrioatione 
 in use. 
 
 Drj Measure. 
 
 1 cubic metre, 
 
 jJjj. of a cubio metre,.... 
 10 cubio decimetres,,.,. 
 
 1 cubic decimetre, 
 
 ^ of a cubio decimetre, 
 10 cubio centimetres, 
 
 1.308 cubio yd 
 2 bu. 3.35 pk... 
 
 y.08 quarts 
 
 0.908 quart,..,. 
 6.1022 cubio in. 
 0.6102 cubio in. 
 
 Liquid or wine 
 measure. 
 
 1 cubic centimetre,. ...„jo.061 oubio in.. 
 
 284.17 gallons 
 -'6.417 gdllona. 
 2.6417 gallons- 
 1.0567 quarta 
 
 0.845 gill 
 
 0.338 fluid 01.. 
 0.27 fluid dr... 
 
 WEIGHTS. 
 
 Metric DenominatioM and Val 
 
 ues. 
 
 NMaea. 
 
 Millier, or tonneau,. 
 
 Quintal, 
 
 Mjriagramme, 
 
 Kilogramme, or kilo. 
 
 Hectogramme, 
 
 Decagramme, «.,., 
 
 GIkaiqik, , 
 
 Decigramme , 
 
 CantigraBUBe, ...... 
 
 MilligranaM,.^..., 
 
 Number of Weight ofwhat quantity of 
 grammes, w.-vter at maximum density 
 
 Equivalents in De- 
 nominations in nse. 
 
 AToirdupoia weight. 
 
 1,000,000 
 
 100,000 
 
 10,000 
 
 1,000 
 
 100 
 
 10 
 
 1 
 
 fir 
 
 TffTT 
 
 ••••••(•• 
 
 1 oubio Miecro,. 
 1 hectolitre, ... 
 10 litres,. 
 
 1 litre, ^..., 
 
 1 tlet'ilitre. ,„, 
 
 10 cubic centimetrefi, 
 
 1 cubic centimetre 
 
 ^lyOfa oubiooentimetro,. 
 
 10 cubic millimetres 
 
 1 aubio millimeb'e, 
 
 2204.6 
 220.46 
 22.046 
 2,2046 
 
 0.3527 
 15.432 
 1.543S 
 0.1643 
 0.0164 
 
 pounds. 
 
 pounds. 
 
 pounds. 
 
 pounds. 
 
 ounces. 
 
 ounoe. 
 
 gr. Tr. W. 
 
 grains. 
 
 of a griUn. 
 
 •fa grain. 
 
^n 
 
 ( "i- 
 
 m 
 
 TfIB MBTRIP STSTKM. 
 MKAfiiraRS OF ANqLBM. 
 
 'M'V; rienominationfi nn,] V;iluo!>. 
 
 EquiTalenta in Denomination* in we. 
 
 NOMEf^CLATLTRE AND TABLES 
 
 W^^^ V;iue,, Timet anf^^"^ "'" ^"''^•''' ^'''P««'^'«'S 
 T<«^ i* fhe same S m" • ^ - "'^^ ^'■''- '^^'^« ^^^lo fo 
 
 • .J^,r,.l ..aie. In iach of X .'^ m"*;-''' r *'' «°"«t^"°ted upon 
 
 ««i^ i« princVara J '^t'dti;:;:" -^lif -.-Potions of 
 »r# «lM? »t^/y« which i«.f>,oK/.!,- -^^^ principal units 
 dirmly fmrr it The two filuo^ ''^Vf ^f™' *"d those deriveu 
 
 i^ Mm the menrrr "''"' ""^''' ^'^^''^ «^°"'^ 
 
 I •!' Tu'"°'P*' unit of lengths. 
 h M*TRR, ... J ^" ^ '** ^*«^ o^^he metric system, and near) v 
 ' • < one ten-mi, honth part of a quadrani 
 
 ^the earth's meridian. 
 .•<■ Equivalent, 39.3708 inches. 
 
 n. Am J .i* ?""<^'Pa^ unit of surfaces. 
 
 ' 1 ^- ^ '"^^''^fe whose side is ten metres. ' 
 
 ( ^. Equivalent, 119.6 square yards. 
 
 III. Stbrf I i' a'"'"*:' ^*' ""it of volumes or solids. 
 
 »T.RB, .... j 2. A cube whose edge is one metre. 
 ' 'i- i-quivalent, 1.308 cubic yards. 
 
 IV, LiTRi,. 
 
 7. WK 
 
 'AHifR 
 
 '» • • 
 
 f 9' ^""•''P'' ""'t of capacities. 
 I -i. A vertsel whose rolume is equal to a cube 
 1 q T. *''^?«^ ^'%« '« one-tenth of a metre. 
 
 Equivalent, .'JOH quart dry measure, or 
 k 1.0567 quarts wine measure. 
 
 /J- Principal unit of weights. 
 I -2. The weight of acul:>e of pure water whose 
 
 ed£r*» ia ni nf .^ .^-i. 
 
 o m, e^ge'8-01 Of a metre, 
 d. 1 he water must be w 
 4° C, or 39.2° F 
 
 eighed in a vacuum 
 
 4. Equivalent, 15.432 g^ns, 
 
 CO 
 
 H 
 
 Hi 
 
 D 
 
 o 
 
TWi MFTRIO 8TRTBM. 
 
 12f 
 
 CO 
 
 Eh 
 t— ( 
 
 D 
 > i 
 
 < 
 
 Id 
 
 O 
 
 1. 
 
 Q 
 
 a 
 o 
 
 o 
 
 n 
 
 en 
 u 
 
 ' 
 
 "'to tenths, hundmithfl. and tii.iusaii.ltli.s. 
 
 Z^^T^y con.sMj.ri„g as a u.ut' to,. ,i,„e u 
 
 time" each of r'hl""' ' •''"r'*"^^ ''"'^-^' ^'"^ '«" ^^»«»'^^»d 
 wmuM, eacii ol the principal unitf. 
 
 The na.nea of derivative units are formed bv 
 attaching a prefix to the name of the princi- 
 
 S.nT* ^\T- "'''!'''' ^''^-^ "'■'^ ^'"'^^'J. vvi.ioh 
 indicates their relation to the principal uniu 
 
 ^'M^r'^i""'"' ?"'' thousandth, contracted 
 M^i. je^am;,/e MiHilitre ^ ^^ of a litre 
 8 miUilitreH = ^^ of a htre. 
 
 ^*centr''''i'?l"''p''"- *^"°J'edth, contracte.^ 
 
 cenu. tux., Centiare = ^^tt of an ar*. • 4 
 
 centiare8 = ;j^ofanare. ' ^ 
 
 3. Decivims, tenth, contracted deci. Ex De- 
 
 raeTrr^" = i^ »»etre ; 3 decimetres L ^ 
 
 
 a. 
 
 •r: tn 
 * £ 
 
 III 
 
 S s 
 
 
 -2 
 
 09 
 
 a 
 * g 
 
 oft) 
 
 CO '^ 
 
 c « 
 
 c c 
 
 i 
 
 s. 
 
 '1. Deca, ten. Example, Decametre, = 10 
 metres ; 5 decametres = 50 metres. 
 
 2. Hecaton, one hundred, contracted hecto. 
 
 7<^r»^'f''''^'''=^^^^'^^«'^' 7 hectolitre* 
 = 700 litres. 
 
 a, I.*, 
 
 3 o S ^ 3. Kilioi, one thousand, contracted kilo. Ex 
 2"^ Kilogramme = 1000 grammes. 
 
 *■ iKn' f^" '^^"'^"^^ ^'^•' Mjriastere = 
 10,000 steres ; 3 myr asteres -. 30,0U0 steres. 
 
 ^' J'JIm '" ^^''^^"d "'yria, and the o in hecto 
 I, and kilo, are dropped wh«a prefixed to are. 
 
 "^'Ifniri"' f^^f'"^ constructed upon a decimal scale, ten 
 
 The facts in the preceding views being mastered, the tables can 
 be constructed by the pupil at sight. For exampk The „Imc^ 
 of the den.atiy« units are formed by attaching the seven prefi^e^ 
 
 c - 
 
 K * S 
 
 11 
 
 t ! r 
 
 i iJi 
 
 I ul 
 
i 
 
 ; f 
 
 I! f 
 
 180 
 
 THB MRTRTO STSTRM. 
 
 in their order to the principal units of the tnblee. The order of 
 pragres«,on bo,n. ten, tho table of cnpa.itio,, will be written TZ^ 
 
 lOMillilitres =1 Centilitre, 
 10 Centilitres = 1 Decilitre. 
 10 Decilitres = 1 Litre. 
 
 10 KiloiitroB 
 
 10 Litres 
 10 Decalitres 
 10 Iloctolitres 
 I Mjrrialitre. 
 
 - 1 Decalitre. 
 
 - 1 riccfolitre. 
 = 1 Kilolitre. 
 
 ^.tit' .^'''^'^"' ^'"^^^^^^^^^ are presented to- 
 
 gether in a convenient form in the two following tublea :- 
 
 TABLE OP SQBMlJLTrPLES AND PHINCIPAL UNITS. 
 
 Names of Units. 
 
 PREFIX. 
 
 BASE. 
 
 10 Milli. 
 Equal 
 1 Centi- 
 
 10 Centi- 
 Equal 
 1 Deoi- 
 
 10 Deci- 
 Equal 
 1 Principal Unit. 
 
 10 Principal Units 
 
 Equal 
 IDeoa. 
 
 ' Metre 
 
 Are 
 • Stere 
 
 Litre 
 
 Gramme 
 f Metre 
 
 \.'. 
 
 ■ Stere 
 Litre 
 
 ^ Gramme 
 
 ' Metre 
 
 Are 
 •I Stere 
 
 Litre 
 
 . Gramme 
 r Metre 
 
 Are 
 
 Stere 
 
 Litre 
 { Gramme 
 
 PaoNnifoiATioir. 
 
 Mill'-e mee'-ter 
 
 Mijl'-e-ftre 
 
 Mill'-e-st«r 
 
 MiU'-e-li'-ter 
 
 Mill'-e-gram 
 
 Sent'-emee'-ter 
 
 Sent'-e-Are 
 
 Sent'-e-stir 
 
 Sent'-e-Ii'-ter 
 
 Sent'-e-gram 
 
 Des'-e-mee'-ter 
 
 Dee'-e-ftre 
 
 Des'e-st^r 
 
 Des'-e-li'-tw 
 
 Des'-e-gram 
 
 Mee'ter 
 
 .\re 
 
 St6r 
 
 
 Grana 
 
 Stubolr. 
 
 »M 
 .A 
 
 .8 
 
 .1^ 
 
 ,M 
 
 .A 
 
 .S 
 
 .0 
 iM 
 lA 
 
 |8 
 iL 
 .0 
 M 
 A 
 8 
 L 
 O 
 
THl M»TniO BTRTiM. 
 
 TABLE OF MULTIPLES. 
 
 lai 
 
 N'amks of Units. 
 
 PKKFIX 
 
 10 Deca- 
 
 Equal 
 1 Hectd. 
 
 10 Hecto 
 Equal 
 1 Kilo 
 
 10 Kilo- 
 Equal 
 1 Myria 
 
 Myria 
 
 Pronunciation. 
 
 Dek'-ameeter 
 
 Dek'-4re 
 
 Dek'-a-ptdr 
 
 Dek'-a-li'.tep 
 
 Dek'-a-gram 
 
 Hec'-to-meeter 
 Hec'-t^re 
 
 Hec'-to-stfir 
 
 Hec'-to-Ii'-ter 
 
 Hec'-to-gram 
 
 Kill'-o-mee-ter 
 
 Kill'-Are 
 
 Kill'-o-stgr 
 
 KiJl'-o-li'-ter 
 
 Kill'-o-grarn 
 
 Mir'-e-a-mee-ter 
 
 Mir'-e-are 
 
 Mir'-e-a-8t5r 
 
 Mir'-e-a-Ii'-ter 
 
 Mir'-e-a-gram 
 
 M 
 
 Q 
 
 2 
 
 M 
 
 G 
 
 L 
 
 ABBREVIATED NOMENCLATURE. 
 
 -.that the na.o. u^XuTfe^t"^^^^^^^^^ 
 
 tl-ey should be identical in al! kngLti' "" "'' ^*'"' "^^ ^^^^ 
 
 1 
 
m 
 
 182 
 
 fmrn wgMtiK arsTicM. 
 
 eosraopolitan in its character: it belong to their hn<ma^» «* 
 more than to ar.v other. The former, however, is nT^',,^ 
 It ,s evider.t to .Ii, that, for business purposes, he Ion 'n^lf 
 the metric system are inconvenient, and tha to shoCXf 
 would prove a great advantage. Efforts have been made t" ir Z 
 duce short names; but these ofForts have invariably s^c^wS 
 un versal and ezpressive ch.r.cter, which is of inore T^^Z! 
 to the business world than their shortness. '^P'^nmm 
 
 The only true course which seems to be open, is to ubhrmU^* 
 the names already introduced, in such a way U to retbT^ 
 peculiar characteristics. ^ ^° ^'^^ 
 
 Tosecure this, the following plan of abbreviation is 8ugge«t^w 
 First. Let the prefixes be abbreviated thus ; Mvr kil hl^ 
 dec, des, cent, mil. •' ' '' '****♦ 
 
 Second. Let the initial letter of the names of the five mind^i 
 units be used instead of the names themselves, thu : XS 
 use a capital M ; for are, use a capital A; for' stere a capi^lg^r 
 for litre, a capital L ; and, for gramme, a capital G. ^ ^ ' 
 
 ♦^ ♦^^''*"^- -J?' *^^ °f ?'®' °^ multiples and sub-multiples, Utm% 
 to these initial capital letters the abbreviated prefixes' thi^^ 
 M, pronounced kill-em' ; Kil S, pronounced kill-ess', &c 
 
 By this method of abbreviation, the elements of ' the orlsimi 
 
 TABLES WITH ABBREVIATED NOMENCLATUBK, 
 
 Written. 
 
 10 Mil M, 
 10 Cent M, 
 10 Dee M, 
 10 M, 
 10 Doc M, 
 10 Hect M, 
 10 Kil M, 
 MyrM, 
 
 MBASUBBS OF LENQTHS. 
 
 Pronoun««d. 
 
 Millem', 
 
 Cent-em', 
 
 Des-eni', 
 
 Em, 
 
 Dek enr 
 
 Hect 
 
 K 
 
 em 
 ill-em'. 
 
 make 
 
 it 
 « 
 
 it 
 « 
 41 
 
 Mir- 
 
 em' 
 
 I Cent M. 
 1 De8 M. 
 1 M. 
 
 I Dec M. 
 I Hect M. 
 1 Eii M. 
 1 Myr M. 
 
'ten th«« 
 3 to mtfO' 
 
 nportaifl^ 
 
 
 iS, 
 
 ¥■■ mnUO STBTHH. 
 
 MEASURES OF 8URPACB8. 
 
 1S8 
 
 f ritten. 
 10 Mil A, 
 10 Cent A. 
 10 Dee A, 
 10 A, 
 10 Dec A, 
 10 Hect A, 
 10 Kil A, 
 MyrA, 
 
 Prononnoed. 
 MiJl-a', 
 Cent-a', 
 Des-a', 
 
 Dck-a', 
 Hect-a', 
 
 Kill-aV 
 Mir-»'. 
 
 make 
 
 a 
 
 u 
 u 
 u 
 « 
 
 1 Cent A. 
 1 Des A. 
 1 A. 
 
 1 Dec A. 
 1 Hect A. 
 1 Kil A- 
 1 Myr A. 
 
 MEASURES or VOLDMIS, OR SOLIDg. 
 
 Written. 
 10 Mil S, 
 10 Cents, 
 10 Des S, 
 10 S, 
 10 Dec S, 
 10 Hect S, 
 10 Kil S, 
 
 MyrS, 
 
 Written. 
 10 Mil L, 
 10 Cent L, 
 10 Des L, 
 10 L, 
 10 Dec L, 
 10 Hect L, 
 10 Kil L, 
 
 MjrL, 
 
 Prononnoed. 
 
 Mill-ess'. 
 
 Cent-ess', 
 
 Des-esa', 
 
 Ess, 
 
 Dek-ess'. 
 
 Hect-ess, 
 
 Kill-ess', 
 
 Mir-ess'. 
 
 MEASURES OF 6APA01TT. 
 
 Pronounced. 
 
 Mill-ell', 
 
 Cent-ell', 
 
 Dess-ell', 
 
 Ell, 
 
 Dek-ell', 
 
 Hect-eir, 
 
 KiU-ell', 
 
 Mir-ell'. 
 
 make 
 
 1 Cent S. 
 
 < t 
 
 I Des S. 
 
 « . 
 
 1 S. 
 
 ii 
 
 1 Deo 3. 
 
 u 
 
 1 Hect S. 
 
 tt 
 
 1 Kil S. 
 
 u 
 
 1 Myr S. 
 
 lake 
 
 1 Cent L. 
 
 <( 
 
 I DesU 
 
 u 
 
 IL. 
 
 u 
 
 1 DecL. 
 
 <( 
 
 1 Hect Lb 
 
 i« 
 
 1 KilL. 
 
 u 
 
 1 MyrL. 
 
 Written. 
 10 Mill Q, 
 10 Cent G, 
 10 T)cB G, 
 10 G, 
 10 Dec G, 
 10 Hect G, 
 10 Kil G, 
 
 MEASURES OF WEIGHTS. 
 
 Pronoaaevd. 
 
 M)ll-ge«, make 
 
 Cent-<!;ee', 
 
 Des-gee', 
 
 Gee, 
 
 Dek-gee', 
 
 Hect-^ee', 
 
 Kill-gee', 
 
 Mir-gee'. 
 
 1 Cent G. 
 1 Des G, 
 1 G. 
 
 I DecG. 
 I Hect G. 
 r Kil G. 
 1 Myr O. 
 
> I 
 
 
 13;4 RSDUOTION OF COMPOUND NUMBERS. 
 
 REDUCTION OF COMPOUND DENOMINATE 
 NUMBERS. 
 
 214. Reduction is the process of chanrrinrr numbers from 
 one denomination to another, without alterin-; their value. 
 Keduction IS of two kinds, Descending and Ascending, 
 -v»>. deduction Descending is changing numbers to lower 
 denominations without altering their value; as pounds to shil- 
 lings prds to feet, etc. It is performed by Multiplication. 
 
 >5if>. deduction Ascending is changing numbers tohi<^her 
 denominations without altering their value ; as farthings to pelioe, 
 inches to feet, etc. It is performed by Division. 
 
 REDUCTION DESCENDINQ. 
 
 217. Case l.—To reduce a compound number to hvovr de- 
 nominations. 
 
 Ex. Reduce £45 Is. 8d. to pence. 
 
 OPERATION. 
 
 £45 7a. 8d. 
 _20 
 
 907#. 
 
 12_ 
 
 10892d. 
 
 ANALYSis.-Thore ar« 20.. in £i, therefow, 
 20 times the number of .£ =, the number of 
 ehilluigs. 20 times 45 = 9ii0«., to which we add 
 7»., and obtain <J07». There are I2d. in 1« • 
 therefore, 12 times the number of shillings equ J 
 th3 number of pence. 12 times 907 = 1088W 
 to which we add 8d., and obtain 10892(<. Hence 
 the following 
 
 _ 218. RuLK.— I. Mid/i/)li/ the highest denomination of the 
 given number by that number of the scale which will reduce it to 
 the next lower denomination, and add to the product the given 
 number, if any, of that lower denomination. 
 
 II. Proceed in like manner with the results obtained in each 
 lower denomination, until the reduction is brought to the denomr 
 ination required. 
 
 Ana. 848». 
 
 EXAMPLES FOR PRAOTIOK. 
 
 1. In £35 6s. 8d., how many pence? 
 
 2. In £28 VJs. 8|rf,, how many farthings? 
 
 ^ I" fp-Vl'*"^- ^^^^*- ^^^*'' ^^^ niany grains? ^n». 85894. 
 4. In IG:>T. iScurt. Aqr. 19/6. l4oz., how many ounces? 
 6. In 2'm 93 05 29 l:^ gr., how many grains? 
 6. In I2rd. Hyd. 2ft., how many feet? Ana. 224. 
 
 7. Flow manv in/iliaa ji» '? m't A fiiv •-Jl-i-^ l---» « 
 
 8. DiGOarp. 7per. Uo. 5ft., how many feet? 
 
 214. What IB tedaotioa!— Hoto mant/ kindt of reduction f— 215. What w r«. 
 da^ot. o^ d em^ending?- 216. Redaotioa'Lcaading?- 218. JFAa/i. ,Wul. /^i 
 
 Ea:. 
 
 gal. 
 
 ii 
 
 112 
 
 28 
 
MDUOTION or OOMPOTTNT) NFMBRR8. 
 
 136 
 
 16. How many cubic ih^t in «? <, j , » ^^*' 34080952. 
 
 ^0. Hov, manj' pints in lOte. S.L*. 7j„, T^' , ' 
 
 22-. fnT^'S IS 'LtJ* «'"'<"0"vV.H?bu»h.ls e«h, 
 
 2fi TT^I ■ ' oo»^ many seconds ? iln/ 489n94a»' 
 
 ^6. How many minutes in lUC. IS. l* 1' ? "*' ^^20243 '. 
 
 27. Reduce 38tt> 6s 33 l», tolrains. 
 
 iti». 
 
 Case Ih^To redu^ a dmominate fraction to one of 
 a lower denomination. ^ 
 
 gal. 
 
 JTff 
 
 224 
 
 112 
 
 28 
 
 OPBKATIOH. 
 
 Ex. Reduce ^J^ of a gallon to the fraction of a gill. 
 
 A»ALTsw.-To redaoe gallons to mllg -• 
 
 bcM m the scale. And, since the given num 
 bens a fraction, we indicate the p^oew m" 
 m multiphoation effractions; and^Xr fi'a^ 
 celling, obtain ,^. the answe . H „ot the 
 
 ♦ M 
 
 
 tio^f^ihf:u^}7rf^^^^^ ^-f ^^^ ^-9her denomina- 
 
 the giL and thr "o^^ .^Sfo^^:'' --..,,«?,, 6e...«. 
 
 8XAMPLE8 FOB PRACTIOB. 
 1. What part of a farthing is ^-U of a £ ? j . ^ 
 
i ! 
 
 
 |W 
 
 136 
 
 3. 
 
 4. 
 6. 
 6. 
 7. 
 
 RlDUOTfOlf or COMPOUND NUMBBRi. 
 
 Kec uce ^Jjyj of a lb. Troy to the fraction of a grain. 
 
 Kednce 4-ff of a £ to a fraction of a penny. Aus. Id 
 
 Keduce s^f^of a cvvt. to the fraction of an ounce. 
 
 What part of a puuul i.s ^-^^ of a ton? 
 
 What part of a link ia ^ of a rod ? ^„, «/ 
 
 Keduce -j-^^^ of a furlong to a fraction of a foot. * 
 
 W liat part of a pint is ^f ^ of a bushel ? Ans J.et 
 
 Keduce f of | of ^/6. to the fraction of an ounce Troy. "^ ' 
 
 w imt fraction of a yard is f of ^ of a rod ? 
 
 .421. Case III.— 7b reduce a denominate fraction to integers 
 • • of lower denominations. 
 
 Ex. What is the value of ^ of a £ ? 
 
 8. 
 .9. 
 10. 
 11. 
 12. 
 13. 
 14. 
 
 is; 
 
 OPKBATION. 
 
 £ 8.' d. far. 
 ?). 3 Q 
 
 8 6 3^, ^n« 
 
 Ahaltsis— 8 of£l is the same u l 
 ^ =» 8«. 6d. 33/ar. Henoe,.Uie 
 
 of 
 
 22a. livh^.--.Gonsider the numerator of the fraction as so 
 •S^^;;j^^;/'^^^^«^»rfe«omtna^ion, and divide the^ 4 the 
 
 EXAMPLES FOB PaAOTIOK. 
 
 1. 
 2. 
 3. 
 4. 
 
 6. 
 
 6. 
 
 7. 
 
 8. 
 
 9. 
 10. 
 11. 
 12. 
 ' 13., 
 14. 
 15. 
 what 
 
 , What k the value of 
 
 ,5rOfa£? 
 
 I of a bushel ? 
 
 I ofaehilhng? 
 
 fofaowt.? 
 
 I of a yard? 
 
 f of a lb. Avoirdupois? 
 
 ^^ of a day? 
 
 |ofl5cwt.? __ ^ 
 
 I of 2^ po'inds Apothecaries' weight?* 
 
 o?6j toTr* ■**"■ ^*- ''■''• ""'• "* ''■''•■^- '"A'j. '». 
 
 I of a Sign? iln«. 12'> 5P 25"! 
 
 Jromapiecftof velvfetoontaining Syd. 3gr. I cut 2«rf. 2^1 
 Vtvt VI ihe wnoie piece did 1 take ? ^ ' 
 
 Ans. 58. 5d. l^^far. 
 Ans. Ipk. 4qt. ]§pt. 
 
 Ans. 3qr. 2/6. 12o«. 7^rfr. 
 
 Am. loz. \ldr. 
 
 Ans. Ucwt. 85/6 Uoz. &Ur. 
 
 «a». Case IV.— £0 reduce a denominate decimal to integers 
 V lower denominationik 
 
 
Kt. 
 
 OPKBATION. 
 
 ^0.628125 
 
 20 
 
 12.562500#. 
 
 I^ 
 
 6.750000rf, 
 
 ———J 
 
 3.000000/ar 
 *0 12,. 6|./. Aiu. 
 
 BW^OTIW OF OOMFOWD N^K„. 
 
 ofa£ to shillings and pence. 
 
 deduce 0.628125 
 
 137 
 
 '"g^S and the refluU^f f.. fH"l'^*'«»^>"■ 
 J. to reduce it J/l'Trl"°S rhr "'"^f '^-^^^ 
 
 «' 'Ae Uft u>iil he the a«,«,er r?;"^/''''";^""'*'''"- ^^« •«'«!J^e-' 
 
 £XA':PLfc8 FOR PKAOTIOt 
 
 What is the value of 
 1- 0.45iofȣ? 
 
 2. 0.748 of a bushel? 
 
 3. 0.765 ofa pound Troy T 
 
 4. (-.7525 ofa mile? ^ 
 
 5. 0.659 ofa week? 
 
 6. 0.217«? 
 
 7. 0.876 ofa hhd.? 
 
 8. 0.865 of an aor«? 
 
 9. 7.88126 acres ? 
 10. 0.626 ofa fathom? 
 U. 0.78S75 ofa long ton? 
 12. 0.R46yofadegi^? 
 
 * /!»». 9». Id. 21 far 
 Ant. ipk. iqt. Ipt. SASHgi. 
 
 AnM. 6/ur. ord. 4yd. i/t, '^in. 
 ^*«. 13' 1.2". 
 
 Ant. 16CV7/ Sqr. 2/M 2.812. 
 
 ^^'D^OTION A8C1ND1NO 
 
 OPKKATION. 
 
 24 ) 78692^r 
 20 ) 'S2THpm. 2L*gr, 
 12) 163os. lapuft. 
 13/6. 704. 
 
 IWft. 7««. 18^. 20|T., Jim, 
 
 A«ALr8is._24fr..ljH;,.. there- 
 »". jJj of the number of grains ^ 
 
 «6«2 3278;,v,,..a.a2V.reSlin. 
 
 01 the number of ,M,nny weights • tK " 
 number of ounoei. ^ of 3278 = 
 
138 
 
 ■IN 
 
 ii 
 
 I 
 
 RtDUOTION OF COMPOUND NHMBBRS. 
 
 ih^^!^' ,?"^«-7-I- ?J^i*^^e the given number hy thM numher of 
 taZ,u ""^ '""^ '"^"'^ '' '". '^' "^^^ ^''0^'' ^'^^^ 
 
 n^Lf'^l'^'^J'- ^'t '■"r"''" ^^' ^"'''*'^' ^'"'-^ obtained, and so 
 ZttXti\l' *''"^^^ '^ '^'- denornination required. The last 
 ZiTJi, ' ""'''''^ remainders annexed in a reversed order' 
 
 ^nn oe toe answer. ' 
 
 Ant. £17 2*. 9rf. 
 Ana. 4ft) 5S IS. 
 
 EXAMPLES FOR PRACTIOB, 
 
 1. In 16462/or., how many £? 
 
 2. In 90720 pence, how many £ ? 
 
 3. How many pounds in 4253? 
 
 4. In 78692^^., how many pounds Troy wei<'ht ? 
 •ach ^,P^y«'Cian who averages daily 5 presc^riptions of 20 grains 
 •ach,^how many pour.ds of medicine will he use ,n one year, or S8o 
 
 : M;Jr2?^^^^^^^^ .t4lV.r- '''''• 
 
 10 At ai. ^ I' ^u'' '"*"-'' ^"'^'"'^ ^ ^"••'- 19*«- ¥^- ip<. 
 
 11 ' nil ^J' ^"^^ "'"^'' ^"""P 0*0 be bo.ight for $;184? 
 11. How many francs in $176.70 ? >i«„ Qsn 
 
 1 J- S,'''' ""^"^ ^"^y' •" 9^^^o ««cond8 ? ' ^"''^- 
 
 20. How many tons of round timber in 622080 cu. in'r ' 
 n.^k ^•J' • *' T*"'i2/?. by 24j?. is 6ft. high and 1 },n. thick. How 
 
 2» T^r,if • -^^i '''^u' *° ""'^^- ^^'- ••^'«'- ^''^^^ i 
 
 Z8. In 161384 mthes, how mtunj milts ? 
 
 -easur^T """^ beergallooe M-e then, ia 1*W. i^;. 2^., wi«, 
 
 9A- Sii ^^^i?l^'»""* >"«h««' bow many rood« ? "****■ ^^'^• 
 26. Reduce 20937 minutes to signs. An$ US l«o ^7- 
 
 * ' 4iM. 13/6. tio«. 
 
 far. 
 ^1 
 
RBDUCTION OF COMPOUND NUMBBIW. I39 
 
 2S». Huw many ^re'^ uf Scafu^ «"'! m.nutefi did ,.he change ? 
 
 JO. la 13360128 drams, how many tona? 
 
 2S7. Case 11.- To reduce a denominate fraction from « 
 foir^?/- to a higher denomination, ^ 
 
 Ex. Reduce * of a farthing to the fraction of a £. 
 
 OPERATION. 
 
 9 ^ 
 
 liugs. 
 
 I 
 
 1 
 
 1 
 
 ANALT«r8.-There are ifar. io 
 Irf., therefore 1 of the number of 
 farthings equali the nnmbor of 
 peme. There are 12rf. in |, 
 therefore ^ of the number of 
 There are 2«.. in ^1, therefore , P*°°^^'i"f '"'»»« ""mber of shil- 
 ber of ^. Hence i/ir 1 1 x ^t 1 ."" "' ^''"°^^ ^l"*"* 
 
 H "^ 12 "* 20 * 
 
 £ 
 
 1 
 
 2160 
 
 Ah$. 
 
 the number of 4; 
 
 
 What part of 
 
 I. a pound Troy i8 I of a grain T 
 ^. a pound IP f of a scruple? 
 i>- a rod is I of a foot? 
 
 EXAMPLES FOR PRAOTIOB. 
 
 ' Ans. rhrd. 
 
 4. a iDileisSofarod? 
 
 5. a hundreJ-weight is f of an ounce . 
 b. an hour 18^ of 20 seconds? 
 7. an acre is I of a, square foot? 
 a. 6 hhd. 18 i of a quart? 
 9. 4 days is | of a tiiinute? . 
 
 10. a cord of wood is a nile 71 A ]nna 9/> i • u i . ,/' t^^W- 
 
 11. a rod is 2| of ^ of an inoL?' ^' ^•^' *"«^' ^"'^ "V^- ^'^e? 
 2. an acre is ^ of -*, of 9^ square rods ? "*"'• '^• 
 o. Reduce 9.312/«r. to the decimal of a £. An. £o OflQ* 
 
 i4. Reduce 517.44/i!. to the decimal of a mile. ^^®^^- 
 
 22». Cask III.-- To reduce a impound number to afractum 
 
 of a higher denomination. 
 Ex. Reduce 8.. 6rf. 2/ar. to the fraction of a £. 
 
 QPERATJOX. 
 
 8«. id. Ifat. = 410/ar. 41 
 1^ = WO/or. ~ 96^' 
 
 A!^Ai,T8M.-:3yr^uetionofd««ia- 
 
 >nate numbers (217), we find 8.. M 
 ijar. «= 410/ar., and that jEI „ 9^ 
 
 ||«ra^ »»ff - til = 
 
I 
 
 ilj: 
 
 140 
 
 RIDUOTION or OOMTOUMD NUMBSBB. 
 
 230. RULK. — Reduce the given number to itt loweet denomi- 
 nation/or the numerator, and a unit of the required denomination 
 to the tame denomination for the denominator of the required 
 /raction. ■* 
 
 BXAMPLSS FOB PBAOTIOB. 
 What part of 
 
 1. »£is 10». lOd.1 
 
 2. R ton 18 icwt. Sqr, 12/6. ? 
 
 3. an acre is 2/4. 20/)er. ? 
 
 4. a mile is \fur. I2rd. iyd. 2ft. ? 
 
 5. a hogaliead of wine is iHgai. 2qt.1 
 Qj. a square rod is 144/jf. ]i)^in.'l 
 
 7. 2civt. iiqr. is icwt. 2qr. 20/6. ? 
 
 8. :■{() dayti is Sua. llh. lOmin.l 
 
 9. a bushel is 1| pecks? 
 10. a pound Troy is lOoz. I'Spwt. 8gr. ? 
 
 231. Case IV. — To reduce a compound number to a decimal 
 • . of a higher denomination. 
 
 Eit. Reduce 12«. 9d. ifar. to the decimal of a pound. 
 
 OPBRATION. 
 
 3.00/ar. 
 
 An$. ff . 
 Ans. ^. 
 
 . 4 
 
 12 
 20 
 
 9.7500rf. 
 
 12.812508. 
 
 0.640625£. Ana. 
 
 AwALTSia.— Since there are 4 farthingfi 
 in Id., i of the number of farthings equala 
 the number of pence, i of 3 = o.75<^ 
 which added to 9d. « 9.75d. There are 
 12ii. in 1«., therefore, ^ of the number of 
 pence equals the number of shillings, i 
 
 Or, 12«. 9d. 3/ar. = 61 r/ar. 
 £1 = 960/ar. 
 
 = £0.640625, Ans. 
 
 of 9.76rf.=i0.8126». which added to" t2«." 
 12.8125.. There are 20«. in £1, therefore, 
 jljj of the number of shillings equals the 
 number of pounds, J^ ot 12.8126 = 
 £0.640625. Hence, the 
 
 2i3S. Rule. — Divide the lowest denomination given by that 
 number in the scale which will reduce it to the next higher denom- 
 ination, and annex the quotient as a decimal to that higher. Pro- 
 ceed in the same manner until the whole is reduced to the dcnomr 
 ination required. Or, 
 
 lieduce the given number to a fraction of the required denomir 
 natwn, and reduce this fraction to a decimal. 
 
 EXAMPLES FOB PRACTICE, 
 
 What decimal part of 
 
 1. a gallon is '6qt. \pt. 2gi. ? 
 
 2. a, week ia bda. dh. 46min. iSsec. ? 
 
 3. a mile is 5fur. 35rd. 2yd. 2ft. J)tn. ? An*. 0.V3603219 h- mi 
 
 4. a Imehel is Zfk. 6ft. \ft. ? 
 
 An: 0.9315gal. 
 
RBDITDT105 9W 0ITE1UINOIK8. 
 
 141 
 
 6. a ponnd Troy is lOox. \2pwt. \^gr. ? Ans. 0.8864581/6. 
 0. a fathom is ^%ft. ? 
 
 7. a ton is UcwLciqr. l6A5lb. ? Ans. 0.H857257'. 
 
 8. 14 bushels IS 0.t5 of a peck ? 
 
 r.f.\ ^^]'^"f ^^T* '^''■*^- '^^'■- 20/6. tohundred-weightnand tlie decimal 
 of a hundred-weiglit, .j,,,. .,,f^ 7 
 
 1 7]^k£^'^"*'*4 ^2 ^K<^««'-""a' of a pound, 19». 11 |rf., I d.,. ' i)Jd.', " and 
 1 ^». bia., and find their sum. Ans. £2.710416 1- . 
 
 REDUCTION OF THE OLD CANADIAN CrjRRBNCY 
 TO THE NEW OR DECIMAL CURllBNCY. 
 
 £af. Reduce £72 13 9 1 to cents. 
 
 OPBRATION. ANAtTSia.— We malHply 
 
 £72 X 400 — 9«snn «.«♦„ ^^ ^y *'"• because each 
 
 <Ji 00/- r ,« "^ ^^" or 400 cents; next we mul- 
 
 »| = 39/or. X 6 -^ 12 = 16^ " tij.ly 13, the number of shil- 
 
 £72 IH 9a = 29076T « '''^'''''' ^^ "*^' b«°'^"'''e each 
 
 or $290.7f>l, Ant. f'' '!!'"» '' '^'^u-' /° .l** °'"'* ' 
 
 «. n/fs. lastly, we multiply the num- 
 
 anii ro.fk;„_ u c , ,. . , ber (if farthings in the pence 
 
 ejaa^ to l*of /cent *'" remainder by 12. because each farthing Ib 
 
 farThinl!'^'* farthing ia equal to ^^ of. oent, ie evident from the fact that 48 
 anrl n^f r ^Tv.? '^ shilling) are equal to 20 rents ; or 12 fnrihings equal 5 cents, 
 and one farthing equals^ of a cent. Hence, the following ^ 
 
 ;. ^?*' ]^^^^'— I- M'lltiply the pounds by 400, /Ae shillings 
 oy ^«», and take five-twelflhn of the number expressing how many 
 farthings there are in the given pence and farthings. 
 
 II. Add the three results together, and their sum voill he the 
 number of cents required, 
 
 III. Consider the last two figures as cents, and the result will 
 be dollars and cents. 
 
 ■ i 
 
 EXAMPLES rOR PRACTICE. 
 
 1. 
 
 2. 
 3. 
 4. 
 a. 
 6. 
 7. 
 8. 
 9. 
 
 How many dollars and centa in 
 
 £4 3 li? 4n«. $16.62X. 
 
 27 16 3^? " 
 
 27 16 Hi? Ans. $111,381. 
 69 15 6 ? 
 
 14 8i? /ifw.f 2.944. 
 
 77 19 4^? ^ 
 
 17 16 6|? .In.-.. $71.29X. 
 
 18 18 lOi? " 
 9 8 61? iifw. $36.69^. 
 
 10. £16 6 
 
 11. 97 3 
 
 12. 46 17 
 
 13. 121 
 
 14. 12 
 
 15. 1 12 
 
 16. 173 13 
 
 17. 91 8 
 
 18. 19 11 
 
 Am. $66,231. 
 
 7 
 9 U 
 
 2 ? 
 11^? 
 7^? Ans. $187.62^. 
 
 Ans. $49,984 
 9i? ' 
 
 4 ? Ans. $694.66i 
 
 K ? 
 
 4| 7 Ans. $78.27|f . 
 
: :! 
 
 I I 
 
 142 
 
 ADDTTIOlf O? PfiMPOnivn IVTTMBWRfi. 
 
 mmwnos of the dkcimal ciiruency to the 
 
 OLD CANADIAN CURREN(.T. 
 ear, K«(|„ce *246.88 to the old Canadian ci.rn^ncv. 
 
 <»rBRATION. 
 
 20 
 
 4Md. 
 
 4 
 
 Analy8I3.~Wo divide 246.88 by 4. 
 the number of dollnr. in a pound, and 
 
 lVr,T\v ^"' •*"" " hundredth, ofa 
 
 pound. We multiply 72 by 20 r24\ 
 
 he nu.nber of .hillin^^ in a pound, and 
 
 a 8h llmg. A-am, we multiply 40 bv 
 12 tijo number of penoe in k' shilling 
 and the rrsult ,s U. and 80 hundredth 
 ofa penny Lastly, wo multiply 80 by 
 4. the number of farthinp. in a nennv 
 and the resnlM. 3/W,.. anr20 huodSh^,' 
 or ^ of a farthing. Hence, the 
 
 .^Un^' ^^'l'^---fi"''J^ the given number bi, 4, and thnnotient 
 
 EXAMPLES FOR PRACTICE. 
 tiedttce to the old Canadian currency :— 
 I, $m.W= Ans. £40 11 6 10.$319.13i. -ins. £79 16 
 
 2, 
 4, 
 
 9, 
 
 mAd 
 
 Ana. 97 16 lOJ 
 
 Ana. 20 10 
 
 -Ins. 142 5 
 
 -<Jn». 231 
 
 If 
 
 Hh\ 
 
 44 
 
 U. 93.S.04i 
 
 12. 601.53 = 
 
 13. 293.17 
 
 14. 39.06^- Ans. 
 
 15. 436.99 
 
 16. 152.18^= Ans. 
 
 17. 846.071 
 
 18. 719.11= Ana. 
 
 3A 
 
 ADDITION OF COMPOUND NUMBERS. 
 
 Ana 160 ( 
 9 15 
 38 11,V 
 179 16 6} 
 
 IV?**^' ^^^/^'^"' Subtraction, Multiplication, and Division of 
 
 a# »f«^ployed for like operations in Abstract Numbers. The 
 mif *M(^ence arises from vuri/mg, instead of uni/orm scales. 
 
 miU \I,lf.\" "'' '""^ °'^' ^''- ^^- ^' '^'- lOrf., £8 Us. 6d, 
 
 #!n^1*T'^"~^''1"^ '^"''«° "°**8 of the samedenomina- 
 
 i .hf v.^^^/"?' '°'"'^°' ""^ fi"'* 'h« «"°> of pence in ?ha 
 right-hand column to be 29 pence =- 2.. 5rf. We wr te tbl 
 
 umn" of'2n- °"'"T "^ ^''""'J '^"'^ """^ 'l^o 2.. to the col- 
 umn of shilhngs; the sum of which ia fin., = fo i«!. 
 
 fo^^H.'^'io *" '^' ^^*- "°«*" t»»e column of shillinss we 
 
 ^ to 4 
 4 in » 
 
 IH 
 61 
 78 
 17 
 28 
 
 205 
 "205" 
 
5 8A 
 6| 
 
 ADOITIOK or 0OU9eVND NUMBBR6. 
 
 £.'a:. 2. Add^iTyofaXtof ofaahilling. 
 
 143 
 
 il 
 
 OPERATION. 
 
 /5ora£ = 
 ^ of a a. - 
 
 1 1 
 
 9». 4d. 
 
 Oa. Hd. 2^/ar. 
 10«. Orf. 2^/1?: 
 
 Or. 
 
 10s. Orf. 2^/ar. 
 
 ANALT8is.-We first find the ralueol 
 each fraction in inteafers of less (ienom- 
 inations (221), and thon add the result- 
 ing or equivalont compound numbers. 
 
 Or, we may reduce the fiven fraotiona 
 
 >?„,,^°'.'l"'' "'" '•'• *»">« clenomination 
 (-219), then add them, and find the vol- 
 ue of their sum in lower denomination*. 
 Ueooe, the following 
 
 aae. RULE.—I if any 0/ the number, are denominate frao. 
 t^omoryanyofthedenonunatlomare mu,ed numbers, reduce 
 the fractions to integers of lower denominations. 
 
 .nnh, ^?-' !?' ""'"*'''? '"^ '^°' "'**■'' ^/'^^ ««^^ denomination, 
 will stand in the same column. "■"'"w 
 
 ««iV' ^'^''""'> "'^■^^ ''i* ^^'''^^^ ^?^«.m*««<io», add as in simple 
 numbers, carrying to each succeeding denomination one f^ as 
 many un^^ as U takes of the denomination added, to make one of 
 the next higher denomination. ' -^ 
 
 EXAMPLES FOR PRACTICE. 
 
 (1.) 
 
 T. cwt. qr. lb. ox. dr. 
 
 " ' 27 U J3 
 
 15 15 15 
 13 12 
 
 16 15 11 
 13 U 13 
 
 (2.) 
 
 71 19 3 
 
 14 13 2 
 
 14 13 1 U 
 
 11 17 3 
 
 13 18 2 
 
 127 3 2 U 8 
 
 yr. 
 
 da. 
 
 h. 
 
 min. 
 
 see. 
 
 12 
 
 10 
 
 i;{ 
 
 42 
 
 27 
 
 16 
 
 102 
 
 18 
 
 24 
 
 36 
 
 19 
 
 8 
 
 21 
 
 54 
 
 57 
 
 23 
 
 13 
 
 19 
 
 49 
 
 48 
 
 29 
 
 18 
 
 2li 
 
 58 
 
 56 
 
 ^1 
 
 1 
 
 If! 
 
 (3.) 
 
 deg. mi. fur. rd. ft. in. 
 
 1« 19 7 15 II 1 
 
 61 47 6 39 
 
 78 32 5 14 
 
 17 59 7 36 16 
 
 28 56 1 30 16 
 
 20i: 
 
 10 II 
 9 9 
 
 10 
 1 
 
 8^ 5 17 14^ 8 
 i=6 
 
 d=4 
 
 205 9 i 17 15 2 
 
 A. 
 
 140 
 320 
 111 
 214 
 100 
 25 
 104 
 
 (4.) 
 
 R- per. so. yd, so. fi. 
 
 3 17 27 y 
 
 I 
 
 2 
 3 
 I 
 2 
 
 30 
 
 7 
 
 15 
 
 36 
 9 
 
 14 
 3 
 
 22 
 6 
 
 1 
 
 6. What ia the sum of 20/6. iio^. \^piot 23fi-r 
 l****--. llo*. ^gr., aad lib. Box. n9U>t.2lirr. ? An 
 
 2 
 
 T 
 
 I 
 
 3 
 4 
 
 , - , „ , 10/6. 7oz. 
 7/w/. 21^r.?4n». 34/6. \oz. 
 
 1 5/Jtrt, 
 I'Spiot, 
 
1 1 1 
 
 144 
 
 «TT.TaAOTicm o, coim,tm„ ^„,t«ki. 
 
 ^ ' '^^ ^* *» •» I'fr., 6Ifh I Is 33 2» 3^. *^ ' 
 
 ■^^vii.7fur.lch.2on ^^'' '^^i- «/«^- «^A- Ird. 16/ 
 
 l2<'36M7.8",and57.3M ^ 25.7'Mr 18 2", IS. 3o^2' 15.5", 
 , 10. Find the sum of A ofa mi?, i r ^^'- *''^- ^"^ ^^' ^^.S". 
 
 i«. find th. .„,„ rfi J* i ^»- r?,,"'*- y- .'•?■;?• 1 1.1J.?. m. 
 
 .15. A farmer recei^JeoVt. Jhi-^'J f'r/r A"?' *■' '""S '"» ""W.. 
 
 £Jar. I 
 
 SUBTEACTION OP COMPOUND NUMBERS. 
 Krom £U 6.. 1,W. 1/a,. ,ak. f ,4 15,. ,^ 3^^^_ 
 
 OPERATION. 
 
 der the S" T"f"'« '^« «"btrnhend «- 
 
 dtotn=S£t:ro?i;;a^;r"?- 
 
 ^/or. from l/«r., we add Irf. or 4; ,/ t« 
 
 makin. 9,^. ; and id. fJom loTle ve^ 7d ""1-1' ' '^^ '» ">« » '» the sSh ndj 
 Next.n.weonnnottakeI5,.fromr wf';.^!^^^^^ '^f. ""^ i° the remainder 
 
 IrH^^" .u '^'^'"^•^''''•^■''*.''e subtract i^Sfrnm"^^^;" '^" denomination of 
 •nd wnte the remainder, ^20. under the column of^f' "* '° ""?'• °"""^«". 
 
 ^.r. 2. From | ofa mile subtract ^ ofa Airlong. 
 
 OPERATION. 
 
 |m. =4/„r. 1 7rrf4yrf.0/<. I otn. 
 -y«r. _ ^2 4 2 1 '5 
 
 22^ 
 
 ^n». 3 34 
 
 4i 
 
 82 
 
 ANALTBI8.. \ye perform the 
 '*™f "?"l»«tk)n M in addition of 
 denominate fractions, (234), and 
 
 hen subtract the lesevalu. from 
 the srealAr, 
 
 3/ur. 34rc<. 4iyd?7;»:8|,„. 
 
Jl. *j„„,„-„„„(,j ""'"""Xl <m<ler ,„,-h. „il,„. 
 
 EXAMPLES FOR PiUCTIOE. 
 
 ,;*; f P' ft. in. 
 
 ^ ^ 35 171.— 140 
 5 p . ^36^72 32 
 
 ,,;o. P„„ ,,„, ,^„,. „^^ .,^^ .„,.^3s. ,«. ^^l>r:.^- 
 
 i-i. From 5i66/. tak7l nf u^ ^^'^^ ^o°8- """ ' ^'*' 
 
 15. Subtract%;65rw:eU:rnr''l'-o ^^--^^^Ml^./ ,^ 
 
 -- -"""»««• u.ooy week I'mm •> i „ ■*"*• 4oW. Mp-,,/ 
 16. Prom a hoffah^aw r • ™ ^ *^^'<^k8 34 davs ^ '" 
 
 OUtj 
 
 ^liiiM.Tfi^''' 
 
l4lt 
 
 MULTIPLIOATION OF COMPOUND NVMBBM. 
 
 PRACTICAL PROBLE]rfS IN COMPOUND ADDITION AlfO 
 
 SUBTRACTION. 
 
 onl'ol'l^^nl^^^^^^^^ two bou^-M^ 
 
 have I remaining ? '^ ' ^* ''*''" ^^- -^^^ ^i'*''- ? »^ov M««^ 
 
 di«.nc, how fa. ar. Z', a^rt" 1^ 4r .%ir' ^'".'^ ^j^l"* 
 , 6. A man agrees to build 1S6 rd an<J inf> if.; ^' ^ ^^**' 
 time, he builds 36rrf. 2ft. ^ ^iJoihtr^^^^ ** ^ 
 
 otherUme, lOrrf. l^/^^^kV mu^r'^JH':: kinT^^-bf^^^^ ** •* 
 
 7. A hogshead ofir^ne los^bl Kv J^"' '""'^ '""*'"' ^'^^? 
 including two leap jiws W^ni nf^!!*"^ an average, for5y*«^ 
 mained? ^ ^ ' °°® «'" °^ '"°« a.^^ayj how muci, ,J 
 
 «, Suppose a person was boro Fehvniry 2! mt l^'' ^«*' 
 anmversanee of hfs birthday will he have ffi on Feb 29 \7uTi^ 
 
 9 How long has a note to run, dated ADril 23 1870 i 1 *. 
 payable Dec 9, 1874? ^pnJ ^^J, 1870, and im4« 
 
 10. From a mass of silver weighin^z lOfilh « i^" '^■T' '^^' 
 
 spoons, weighings/ft. llo^^^z^fsUTaUlrdSrLr 
 14Fr. : a rase. 7/& IIak i^nw 00 *'• > » lansara, oio. Oo^. I3|^ 
 
 remain.? ' "^' "''*• '*^- ^^^L' ^Tm"*;^?** unv;rouglu 3^ 
 
 Howlo7gTa;\LTol^rSt,i^:^^^^^^^^^^ 
 How long, if the time is computed by days ? ^^ ^^^' "^ '^'^ «^ * 
 ^n«. let. llyr. 5«io. 25rfa. ; 2nd. 4130 day». 
 
 MULTIPLrCATION OP COMPOUND N[mBJ5m 
 
 Ex. 1. Multiply £8 9,. M. by 6. 
 
 OPERATION. 
 
 £ ». d. 
 
 8 9 6 
 
 6 
 
 write tho M. wder the pence, .nd addfhe £,'. Jt 
 C fr ."i" Of s»>iling8. 6 times «.. are 64*'.~«Zi 
 2. aro56».-£2 Iti,. Rewrite the 16# uiidS- 
 the sh.H.ngs and add tho £i with the prodrt^ 
 
 we wntound« pound.. Tberrfore 6 tia... <|'£* 
 
. 'CSiH. Rule T Wr,;. ti , . 
 
 A7j. 9 wu "''''®''^ these leveral parts. 
 
 .>p...„oK. -^2 3,. 6rf. per yard ? 
 
 £ 
 
 iT 
 
 -tprod„rtistheanLWe'c 
 
 •e «. rf. 
 
 6 16 9 = value of 3 bbl. 
 
 "'^ 6 = price of I yard. 
 
 
 '^ 6 = priceof5yardfl. 
 
 £97 n> 2; J 
 
 *• ^'''•= price of 45 yds. 
 
 ^•a^. 3. What cost 643 barrpls ,.f a 
 
 ■»•' uarrejs of flour, at £2 *>« -rw i.t . 
 
 ' *-" ^*- 'a- per bbl. ? 
 
 OPERATION. 
 
 1 bbl. = 2 5 7, X 3 =. 
 
 10 bbl. =--2rrrT^, . 4 == 
 
 ^''^ i» 4, X 6 = 1367 10 . 
 
 Analtsis^S . ^ - ''a'«eof643bbl. 
 
 barrel by 3? I'dZt th '^ ''>«/al"« of 3 barrel ie m?, "^ { **"« '^^'''^ »f 
 •«wer.\eace tt^'''"''"''^'^ P'«<l"°t8. wo'obt^nll'^5^iJ.^;"'"4<»J^J 
 
 240. Rule — wu^. .. 
 ber re,.olve i^^uo .7.; ^^'^.^^^'f ^ ^« °ot a compoaite nam- 
 
 •btatned/or the r^uirJrJnii ^^"'^"^ '^ ^«»''«<'*' <Aw 
 
 91 
 
 3 4 = value of 40 bbl. 
 
i ! 
 
 148 
 
 JIULTIFLIOATION OF OOMPOUND NUMBIRK. 
 
 It V '. 
 
 if i; 
 
 m 
 
 
 
 IXAMPLES FOE PRAOTIOI. 
 
 
 
 (1.) 
 
 
 (2.) 
 
 
 («.) 
 
 
 cwt. qr. lb. 
 18 3 17 
 
 113 2 5 
 
 oz. 
 
 10 
 
 6 
 
 12 
 
 lb. oz. pwt. gr. 
 
 32 8 17 12 
 
 8 
 
 J61 U 
 
 
 lb S S B 
 38 10 5 2 
 
 427 10 2 
 
 14 
 11 
 
 14 
 
 (*.) 
 
 
 (5.) 
 
 
 («.) 
 
 
 mi. fur. rd. 
 14 6 36 
 
 14 
 9 
 
 A. R. p. aq. yd. 
 
 7 1 33 21 
 
 sq.ft. 
 7 
 6 
 
 rfeg-. mi. fur. 
 18 12 6 
 
 rd. 
 
 1& 
 8 
 
 7. How much cloth will it take for 8 suits of clothes, if each suit 
 require Syd. \qr. 3na. ? Ana. eiyd. 2qr. 
 
 8. A man gives each of his 9 sons 23.1. 3iJ. 19^p., what do they 
 all receive? An». 2UA. m. Up. 
 
 9. Mow long will It take a roan to saw eleven cords of wood, if it 
 take him 8A. 45mtn. 50sec., to Ha\'? 1 corl ? 
 
 10. If 1 share in a certain stock be valued at £13 8». 9irf., what 
 18 the value of 96 shares? Ana. £1290 \$. Od. 
 
 11. If a family consume ligai. 3qt. Ipt. of molasses in one week. 
 what quantity will they consume in 1 year? 
 
 12. If a man be 2da. 5h. 17 win. I9«cc, in walking 1 degree, how 
 long would 11 take him to walk round the earth, allowing 3651 days 
 
 ^°^^^wJ -n. . Ana. 2y. 68da. m. 5imin. 
 
 Id. What will t>e the value of I dozen gold cups, each cud weiffh- 
 ing 9ox. V^pwt. »gr., at $212.38 a pound? ^ 
 
 ^A^f' K^ ^^'P "*''^ ^** 2*' ^0" F^J" day, how far will she sail in 
 ^",la^« ^ Ana. 204" 10'. 
 
 15. One ton of copper ore will buy 17T. I4cwt. 3qr. Wb. 14o«. o| 
 iron ore j how much will 451 tons buy ? 
 
 ^^i K^^'^ ^'" ^"y "^^ ^'^- -^P^r. 208q. yd. Ssq.Ji. of land, how 
 much wil $4800 buy ? "^ ^ ^Ans. 295^. lOaq yd 
 
 17. 11 1 cask of oil contains H{]gal. 2qt. Ipt., how much will 100 
 casks of the same size contain? 
 
 . l^r.' J}'^^ '^ *^® °°^* °^* ^°^^^ ^^f^' 9»'»- '0D& and 2«. 3 Am. wide. 
 at $0.05 J per loot? ilns. $2 27711. 
 
 19. Bought 17 bags of hops, each weighing icwt. ''Aqr. 7/6.7* at 
 !t)6.«Ti per owt. ; what was t4ie cost ? 
 
 20. What cost 27 r. \5cwt. \qr. S^lb. of hemp, at $183.62 per 
 
 o? A ^,or,, 4ns. $5098.07 + . 
 
 ^i. At *li5.75 per acre, what coet 374. 'SR. 35rd. ? 
 
 «q5!; Ill^*^ "^^^f ^^^ construction of 17 mi. 6/wr. 36rrf. of railroad, at 
 $3765.60 per mile? Ana. $67263.03 + . 
 
 *o. Dougni a iarm containing 14i/i. 3R. 30ocr., at $97 62* ner 
 acre ; what was the cost of the fa^t ? Ana. $ 1 4149 62 + 
 
 24. At $9.26 per cwL, what cosf 19cw*. 3qr. 14/6. ofixomt 
 
 6 d. 
 4 d. 
 3 d. 
 2 d. 
 
 lid. 
 1 d. 
 
 lo. =; 
 
8 
 
 > 2 
 
 14 
 11 
 
 ) 2 
 
 14 
 
 5.) 
 
 
 fur. 
 6 
 
 rd. 
 
 18- 
 8 
 
 MIILTIPLICATION OP COMPOU.VD NUMBERS 
 
 SOLVED BY ALIQUOT PARTS. 
 TABLL OP ALIQI'OT PARTS (173). 
 
 f'arts of 8 n I 
 
 cwt. (1) Parte of I lb. Parts of lo«. Parts of* 
 
 ofU2U). Avoirdupois. TroT ^'ansofa 
 
 "'• year. 
 
 '56 lb.= l 
 
 28 ib.= r 
 
 16 Jb.= |: 
 14 lb.= [ 
 
 Jb.=-i., 
 I. i<> 
 
 802. 
 
 402. 
 
 2oz. 
 loz. 
 
 ,ij5p;yt.0gr.=|)6 mo„ae= 
 
 -^1 
 
 Part- ,fiib. 
 -roy. 
 
 " "= 1 
 
 Parts of a 
 
 [quarter of 
 281b. 
 
 '4oz. _ 
 
 .Soz. _ 
 
 2oz. — . 
 
 Jo*.10pwt.:=||2(;per. 
 
 loz. _. 1 i/>^ 
 
 — T? loper. 
 
 Parts of 
 1 aere. 
 
 Parts of a 
 month. 
 
 = i, 
 
 14 lb.= i 
 
 7 lb.= i 
 lb.= | 
 
 Parts of loz. 
 Troy. 
 
 Parts of 
 1 rood. 
 
 lOpwt. Ogr. = ^ lOper. =1 
 
 /ar^A%,. -^ ''^'"^S 4 pon.uh, ghUUngs, pence ^ni 
 
 ^- Find th, price Of 944 pen«, at M. per pen. 
 
 944 pens at Irf. = 944rf. = £./ 18 8 
 
 /?• "^ ?«!?•; i of £3 18 8 = £719-1 , 
 
 !«. - j of irf.; I of £1 19 4 « li {9 J = ^T V\t P!f' f i* 
 
 ^«- m i» -■ « 
 
 i< 
 
IM 
 
 MITLTIPLMAnON BT ALIQWOT FARTS. 
 
 «um W?y aTeno?- b Jt^^ ^c/ i^ HZ ''«'°«/'"-^*-?*. "e multiply the glr- 
 it into i AnrK^iS .ttihl ?,7!*" ^^«" P^f j"' * P''""^' we deoompc 
 the half of id St^hen take the I of /"irs f''V/-' '■''" f»"/'h °f a penn/, or 
 then irf orS of id., 't^at b.'oSeValf'ol :£ ' iVl L^iTs^ 'whr '' ^LL' tl 
 ■£1 1» 4; the.ua. the- giv ,£2 IS 0, iJr the ansl^er ' '* "^ ** 
 
 i7*. 2. 
 
 What cost ltf38Ib. of Bugar, at 8 id. per lb. T 
 
 OPERATION. 
 
 16381b. at U. = 1638t. = £81 18 
 Odrf. = iof2rf.; iof£13 12 = ££_8J= n « u ,, ^J. 
 
 £58 3= " " 
 
 << 
 
 " 8irf. 
 
 pose ii into 6d/2d.,t^d'ilfl'^Ar;rS 
 ^*. 3. Find the price of 252 yards of merino, at 3.. 9^^. per yd. 
 
 OPBRATIOX. 
 
 252 yards at £1 = £252 
 3». 4 rf. = 1 of £1 
 0#. 6 d. = J of 3$. 4d. 
 Ot.Oid. = ^^of5d. 
 
 Ans. 
 Ea^. 4. What cost 694 cwt. of butter, at £5 II 6^ per cwt ? 
 
 OPERATION. 
 
 •^694 =priceof694cwt. at£l « 
 
 £42 = price at 3*. 
 
 5 5 0= '< « 0,. 
 10 6= « « 0,. 
 
 4 d. per yd 
 
 5 d. « <« 
 O^rf. " « 
 
 £47 15 r? = «' " 3^ 
 
 9^rf. " " 
 
 694cwt. X £5 = £3470 = 
 
 10s. d. = ^o{£l I 347 = 
 
 1«. 3 d. = J of 10s. 43 7 6 = 
 
 e«. 3 rf. = ^ori«..Srf.i 8 13 6 = 
 
 Or Oid.=jofO»..'^rf.j 1 8 11 = 
 
 Ans. 
 
 « 
 
 "694 
 
 
 
 << 
 « 
 
 £3870 9 11= " " .< « 
 EXAMPLES FOB PRACTICE. 
 
 " £5 " 
 
 " 10 " 
 " 1 3 •< 
 " 03" 
 " _0 OOi" 
 
 " £5 iTej" 
 
 cwt 
 
 « 
 
 1. 
 
 2. 
 
 664 X 
 
 if. 
 
 Oi = 
 
 3. 1984 X %\ 
 
 i. less X oi 
 
 £ $. d. 
 13 10 
 3 12 2 
 
 S 12 8 
 
 5. 1078 
 
 
 
 d. 
 
 01 := 
 
 6. 1683 X 2A 
 
 £ ». d. 
 
 1 2 6i 
 
 7. 2142 X 6|= 61 6 41 
 
 8. 1053 X 54= 23 sf 
 
 U. 6d. = 
 
 ©«. 5a. = 
 
MtrWlPLIOATION BT ALIQUOT PARTS. 
 
 9. 
 
 10. 
 
 5728 
 54 HO 
 
 11. 24.S6 
 
 12. 2147 
 I.>. 7028 
 14. 2708 
 16. 5491 
 16. 49.36 
 IT. 4967 
 
 18. 2522 
 
 19. 2897 
 
 20. 7509 
 il, 1870 
 
 2244 
 392 
 576 
 465 X 
 425 X 
 1349 X 
 
 28. 7045 X 
 
 29. 2426 X 
 
 30. 1454 X 
 
 31. 3632 
 
 32. 6741 
 
 22. 
 
 ?3. 
 
 24. 
 
 25. 
 
 26. 
 
 27. 
 
 X 
 X 
 
 «. d. 
 < 71 
 
 < a : 
 
 ■ 6i 
 
 : 3j: 
 
 S\z 
 
 6| 
 
 J ^^ = 
 8| = 
 
 lOA 
 
 11 = 
 
 10J = 
 11^ 
 9| = 
 
 l]\ = 
 
 1 8 
 1 9i = 
 
 3 7i = 
 
 4 111 
 
 5 8 = 
 J 7 
 7 4i= 
 
 6 5i 
 9 7 = 
 2 6|= 
 
 ■£ *. rf. 
 
 173 8 
 67 17 6 
 
 31 6 2i 
 241 11 9' 
 
 33.1893x0 4 IDA 
 34. 604 X 8 "J 
 35.2916x0 5 ll| 
 
 151 
 
 An»w«rt. 
 
 •e «. rf. 
 
 36. 5.'J48 X 7 ,s^ 
 
 - 248 10 5 
 
 - 868 U 6 
 
 X 
 X 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 X 
 X 
 
 = 171 11 101 
 = 179 19 2 
 
 ■■ 115 11 10 
 
 ■■ 129 U 2% 
 
 75 19 4i 
 105 3 9 
 
 51 
 
 84 5 
 
 
 
 n 
 
 382 4 4 
 
 892 1 2J 
 
 1740 6 
 863 1.3 
 
 8 
 91 
 
 •^7. .3720x0 10 d 
 38.1509x0 14 6 
 39. 878x0 11 4.1 
 40.4571x0 1.3 
 
 41. 54 X 1 2 9' 
 
 42. 62 X I 7 44 
 *3- 17x4 3 11 
 
 44. 24 X 3 13 ■': 
 
 45. 472 X 6 10 34 
 
 46. 1958 X lis 8 - 
 47.2471x5 14 91- 
 48. 972x3 15 10 
 49.1077x7 12 .3 = 
 50.3714x2 13 11%= 
 i*!. 1415x4 11 10' 
 52.2150x9 16 1? 
 53.2175x6 17 10?- 
 54. 7251 X 8 7 7I 
 55.6494x6 19 5'L 
 56.7122x9 13 4^= 
 
 -^ 1960 15 
 ^ 1094 6 
 
 I _ 
 
 3113 19 101 
 61 8 6 
 
 71 6 7 ' 
 
 88 2 6 
 
 ■■ 3785 9 4 
 =14179 18 8| 
 
 = 8198 13 3 
 ^'0023 18 7i 
 
 21083 8 9 
 l-'818 18 li 
 
 45288 17 81 
 t>!:i860 16 9 
 
 
 Ex. 
 
 Required the price 0/ 1581 yards of cloth, at £1 
 
 2#. 6rf. = £• 
 6rf. = ^ of 2s. 
 iof£\ 2 11 
 loflU. 5^rf. 
 
 Ans 
 
 OPERATION,^ 
 
 158| varde, at £1 2 11 
 19 15 = price of 158 yd. at 2a. Gd. 
 
 __8| = 
 
 2 11 perjd. 
 
 
 
 i 
 
 
 -3 
 
 li 
 
 SSil/?^^^S:^£'S:iX^ (^~?"«» 
 
 ANOTHER METHOD 
 
 - I 
 
 158 
 
 i yards, at £1 2 11. 
 
 2a. 6d. = £1 
 
 ^.Ba 
 
 k of 2«. 6d. 
 Atu 
 
 £158 
 
 19 
 
 3 
 
 15 
 
 16 
 
 6 
 
 
 
 £181 
 
 19 
 
 Oi 
 
 = price at £1 
 
 
 « 
 
 
 n 
 
 per yard. 
 
 28. (id. *t u 
 _0 Us. 5rf. tt u 
 
 £i~?~rr " «i 
 
 i 
 
H ! 
 
 ] ( 
 
 !i 
 
 
 it I 
 
 M 
 
 162 
 
 MULTIPLICATION BT ALKJUOT FABT8. 
 
 AntALTsrs.— In this method, we Orst find th« nrin* nt isua j 
 7ard. Thi«is£Io8 15 0; fo; tho price of SS Ts £168 I^hV' ^ P*' 
 iquarterofa yardbein'^evidentlv 5. it>f thJ^r T I '.^°^' *•"» P"oe of 
 
 pnce at £1 por%ar,l bein. ^Fsl fs, h tico at 2 Id ^"-f, t}^'' '^^''>' '^'^ 
 
 ^ 6 U. The sum of these is £181 18 Oi, the whole price,'^» before ' " 
 
 1. 
 2. 
 3. 
 4. 
 6. 
 6. 
 7. 
 
 187 ^ 
 S28 3 
 208 5 
 971 1 
 675 ] 
 3714 
 638 1 
 
 EXAMPLES FOR PRACTICE. 
 £ .f. d. 
 
 8. 495 
 
 J. 917 
 
 10. 
 
 11. 
 12. 
 13. 
 
 14. 
 
 515 g 
 63 g 
 
 85? 
 
 176 1 
 
 15. 785 a 
 
 16. 239 I 
 
 17. 375 I 
 
 18. 759X 
 
 19. 774 4 
 
 20. U9^ 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 X 
 
 17 8 
 
 6 6 
 
 13 10 
 
 15 2 
 
 1 
 
 
 
 
 
 3 
 
 1 
 
 3 
 
 
 
 3 
 
 4 
 
 2 
 
 3 
 
 2 
 
 3 15 10 
 
 11 8 
 
 Ana. 
 Ann. 
 
 £ 
 
 353 
 106 
 
 7 
 14 
 
 4 
 
 5 
 18 
 
 9 
 18 
 
 7 
 
 2 
 
 'a 
 
 8 
 
 9|: 
 
 10^ 
 
 4 : 
 9 : 
 
 '6 
 
 Ans. 3650 
 Ana. 917 
 
 7 
 1 
 4 
 2 
 9 
 8 
 
 6 3| 
 
 10 10 
 19 111 
 15 94 
 
 11 6 : 
 19 lOi : 
 
 Ans. 
 Ana, 
 
 Ans, 
 Ana. 
 
 Ans. 
 Ans. 
 
 '25 
 1630 
 
 «. 
 
 2 
 
 16 
 
 11 
 
 14 
 13 
 
 1271 14 
 249 12 
 
 6.54 
 103 
 
 Ans. .Sd9 
 Ana. 1877 
 
 16 
 2 
 
 12 
 7 
 
 d. 
 
 6 
 
 lOi 
 
 n 
 
 I 
 
 2 
 9 
 
 9 
 
 6 
 
 1 
 
 34 
 
 5i 
 
 Ana. 7416 16 104 
 Ana. 6736 ft 9}^ 
 
 perlwtT^"' '' *^' ^°'^* ^^^^'•^'- 2?r. 15Z6. of tobacco, at £5 12 6 
 
 £94: 
 94tw/, X £5 = £470 
 
 10s. {)d. .-.: £^. 
 2». (irf. =^of io* 
 2qr.= \oncwt. 
 10/6. -.. ^of27r. 
 6/6. ■= ^ of 10/6. 
 
 47 
 
 11 
 
 2 
 
 
 
 
 
 '' Us. 
 " 2s. 6rf. 
 at £5 12 6 
 
 ^«* £632 
 
 £5 12 
 
 f 5 12 6 X 94 = £52815 
 
 2 16 
 
 U 
 
 6 
 
 
 2qr. = ^cwt. 
 10/6. ,^of2gr. 
 §/6. = |ofl0/6. 
 
 •4«#. . , .J6632 8 
 
 OPERATION. 
 
 = cost of 94cwt. at £1. 
 0= cost of {)\cwt. at £5 
 
 :r= a il it 
 
 15 = << « .< 
 
 16 3 = " a 2or. 
 11 ;^ = " " 10/6. 
 
 ■ " " 5/6. 
 
 8 1^= cost required 
 
 ANOTHER METHOD. 
 
 ^ = ooat of I cwt. 
 = cost of dlcwt. 
 3 = " " 2yr. 
 3 = " " 10/6. 
 H= " " 6/6. 
 li« 
 
 per cwt 
 
 
 
 U 
 U 
 
 at £5 I ii S ucr cwt. 
 
 << (< «< U u It 
 
 « « U 41 « M 
 
 « « « << u M 
 
 I. 
 
 2. 
 3. 
 4. 
 
 6. 
 
 6. 
 
 7. 
 
 8. 
 
 9. 
 10. 
 11. 
 12. 
 13. 
 14. 
 16. 
 
 "94 2 16 at £6 12 c perciT 
 
DIVISION OF OOMPOriNn NDMBEI18. 
 
 15S 
 
 1. fiBcwt. 
 
 2. iHcwt. 
 
 3. I'Jcw/. 
 
 4. I2'.)cwf. 
 
 6. Hlctvf. 
 
 7. 2Hr,afr/. 
 
 8. 3U\cwt. 
 
 9. I Slow,'. 
 
 EXAMPIEs Foil PHxcTlCK. 
 
 2qr. 
 
 'qr. 
 
 ■Aqr. 
 Iqr. 
 'qr. 
 Iqr. 
 Mfr. 
 \qr. 
 
 I per cwt 
 
 (i 
 
 6 
 
 8 
 9 
 
 (( 
 
 a 
 
 ./n.s-. 
 
 £ 
 
 74 
 
 u 
 u 
 u 
 u 
 
 Jns. £ 
 Alls. £ 
 
 Ans. £ 
 Ans. £ 
 
 ii2 
 
 -A -.',9 
 G20 
 
 '(tfj. at £0 17 
 21/6. !U £4 14 
 lUh. at £4 11 
 l(i/6. at £2 12 
 
 S/A. at £4 5 
 17/6. at £2 15 
 
 7/6. at £1 IS 10 
 
 4/6. at £1 12 7 
 lA i^r ■"^'- •''■^^/'- at £2 IH 4 " " 
 
 1! 
 
 14 
 
 7 
 
 .051 19 
 nG4 3 
 
 
 4 
 
 2J|. 
 •-'•1+ 
 
 4 + . 
 
 1|. 
 
 4 + . 
 1 
 
 1 
 
 15. IM.Ji^. 2Mper.at£l 8 7iperacre. 
 
 7 
 
 Ans. £ 148 10 
 
 
 DIVISION OP COMPOUND NUMBERS. 
 
 I £Sel wifgh ?*"''' "^ '"^" "'"'^^ ^'^^■'' ^^^- ^«'*-' ^«^ ™««i^ will 
 
 OPERATION, 
 owt. qr. lb. 
 fi) 9 1 10 
 
 ANAt,Y8i8.-0ne fifth of Qewt. is icvt. audicwt 
 nmldjr. remaining, to which we add the lor ' 
 and hhve U^r. I fifth of 17.;r. ia 3yr. and 2?r. « 
 1 q ,s *"'*• l,*!"*'?"^' t<> Which we add the lOlb, and 
 
 1 3 12 hav, fi0i6.1 fifth 016,1/6. is im Therefore.) 
 
 fifth of ^met. Iqr. Wb. = lewt. 3qr. UCb. 
 
 ^bers and each succeeding denommation in the same JZ' 
 %f there be no remainder. mannet, 
 
 redLVttlJ'l^u'^t aArci«,tVm^ any denomination, 
 ZrTnLi 1 ^ !•"'"' denomination, adding in the given nun^ 
 berof that denonnnuttan, if any, and divide as be/ore. 
 
 MMv^n/ « T1 '" '^ '^"'^'" *^*'* °^' *^'^ denominations. The 
 several partial quotients will be the quotient required. 
 
 -.S^^io^^ »-^. w. .., 
 
 J;crdttt%lS';[.si£;frsr^^^^^^^^^ ^'^•^--» ", 
 
 pie numfceri. »"»w»»twM, Mia thu division then 18 the &ame as in gim- 
 
 OPCRATIOV. 
 
 € ) 67 10 = priM of 24 yardi. 
 * ^ ^ 11 ^ = pri«« of 4 jarcU, 
 
 rnr-pricof ijHd. 
 
 7 
 
 We therefore divide the prior bj 
 •ne of these faetorg, and the quo- 
 ^nt arising bj the other. Henoe, 
 
 
Ilh 
 'I? 
 
 IJ! 
 
 : I I 
 
 i 
 
 II I "' 
 ! f i 
 
 154 
 
 24»5. Rule 
 in succeessio?} . 
 
 Ex. 3, Divide 
 
 OPERATION. 
 
 £> 8. d. 
 173) 360 8 4 
 
 14 
 
 _20 
 
 173^) 288 ( I,. 
 
 m 
 
 115 
 12 
 
 DIVISION or OOMPOUND NUMBBE8. 
 
 —Divide hy the factors of the composite nwnber 
 
 £360 8 4 by 1 73. 
 
 (£2 
 
 ANALyaiB.-We dWde the pounds by ITS 
 and obtain £2 for the quotient, and £14 remain- 
 ing, which we reduce to shilling., and add the 
 H». ; and again, .livide by 17.^, and obtain 1«. for 
 the quotient. Tho remainder. 115*., we redi-o. 
 to pence, and add the id., and again divide by 
 I7rf, and obtain 8d. for the quotient. Thus, the 
 method is the same as by general rule (244). 
 5^ ,"°"IPS the several quotients, we obUur 
 *^ I a, for the answer. 
 
 173 ) 1384 ( ad. 
 1384 
 
 Ex. 4. Divide £24 3 8 by £3 5^. 
 
 OPERATION. 
 
 ^t^^^L^±J/Sr:__232]Qfar. 
 £ 3 0«. 5d. Ifar. ~ 2^{)2 far. 
 
 8. 
 
 Analtsib.— Rednoing both 
 
 dividend and divisor to the 
 lowest don aination mention- 
 ed meithei, and then iivid- 
 fng as in simple numbers, we 
 have 8 for the quotient. 
 
 EXAMPLES FOR Pi ACTIOS. 
 
 (1.) 
 
 T. ctfft. lb. 
 
 T) 45 15 25 
 
 6 10 76 
 
 lb. 
 9) 143 
 
 (2.) 
 
 oz. 
 
 5 
 
 dr. 
 5 
 
 15 14 13 
 
 (3.) 
 hhd. gal. at. pt. 
 12) 9 28 2 
 
 49 2 I 
 
 1 dayt '"*° •■ ^ '^'"'^^ ^'^^"'^ ^^^"»»' ^/"'••' ^0^ fer doe« he go in 
 
 7. Divide 280 51' 27.766" by 2.754. ^'"- Zs 'iT :^^,','i^' 
 
 % When 96 shares of a cfXin sfockt^v^ K^ t^, 
 what would be the coat of 1 share ? *' 
 
 hoi;iV3eU"^rro;i.^:?^«'^ r%^%i,^^ f?r' '^'^ 
 
 1. Divide 6rr. 19c«,f. 42/6. 14o*. by 123 ' ^^^^''*^' 
 
 long woulau cake i.i» to walk 1 degree,- allowing -3654 -dlyrt-o"; 
 
 13. Divide 916m. 3>r. 30ni. l,fi^^l IfJ!"' ^^^^'«- ^«"*^ 
 
 14. Howm»aytiinaB«wje5 10 10 oo.tained in £537 10 10 T 
 
LOIfOrrVDl AND TIMI. 
 
 
 166 
 
 Ana. 70. 
 
 lyk. 7^;:f;;L;":^;e7^'?J\°^*«frt*i" "-'nber of farmers Cbu. 
 !«. ftvide 3794c». yd. 20c«. ^ 7094c«. m. by 334. ^"'' ^^' 
 
 LONGITUDE AND TIMB. 
 
 24y Anl , ,.'""*'' P°'«' "-casing the equator at riiht angle™ 
 
 •rally on the ocean the mlriJu ^^ f^^"*^ <^» ti»'« continent, al.u gen- 
 " the determiS "leSaT AllntS'lT'"^'^*^^ E"g'«"d 
 
 considered to hare noToS^tude ^ '^'' '''''^^ ^^ '^'« ^*»« »'« 
 
 w«t of thi. meridian the Z.L£^ '''^^ P'-. -d at place. 
 
 BMD. "•MDerorenoonj at those east, the time is after 
 
 2. The whde circle of the aartli ^nnn u- t. 
 aud in one hour parses i of 3M» I iZ "^'^f^' ^^^' th" sua in 24 hours. 
 
 One minuto ^ 6D seconds • 
 
 1 minute passes iV"^ 1^*^ - M« - i« = Ifi' 
 
 •>Mo«, in 1 sMond passes O, on6' .. H' „ i' " , .» „ ' °°""""'' 
 
 ^«no«.^«j^ 14„, g^y^^ the following 
 
 COMPARISON OF LONOITDDB AND TIMI. 
 
 15 of longitude ss 
 16* of longitude s 
 16" of longitude s 
 
 1 hour of time. 
 1 minute of tim*. 
 1 second of time. 
 
 exprtt'i fndeg^^s' 11' tf 'T '^^T''''^ ^^''^'^^^ tu,o places, 
 
 their dlfferenc7rtC^^ ^'■"^'^^'^ ^V 15 u^l gioi 
 
 II Th, rff ''"^^ f pressed m hours, mmut,,, and seconds. 
 
 ^;«:;..;t?-^'''T'''^'r''" ""' P^*- ^Pre'^^'t '■» hour'- 
 
I . 
 
 IM 
 
 MWDSOniAIA 
 
 ^imkTJ^TJL '^^'^^ >»«>« from oMt to wert, when It b ezMtly II 
 !?3iil^.tf^;i '"f K*^f 2^ ^^ °'°'°<"^ *» "" P' "-"^ <"^«t, and be/ore f2 at 
 £■ STttl. at ih^^rll?"^ f 'fforonoo of tiiM betwoeu two plioea. be LbtraJd 
 JSrlrf ff^hin^ff. ^f'*"!'.*^''*''"'^'''" b« "'« li"« *t the westerly 
 
 EXAMPLES I-OE PBAOTIOB. 
 
 wL^'iT^l/", '"^t*^!"-^* ^^! ^fi'r"*' »"d Toronto, 79*^ 21' west. 
 wii#i» ,t w l2ro'olock at Toronto, what is the time at Quebec ? 
 
 7>^ 21' 
 71* 16' 
 
 U)^^-^ 
 
 13 
 
 32mi. 2Q$ec 
 15*. 32w». SOMe. 
 
 AHAtTSM.— The difference of longitude i« 
 »• 5 . Jpmding by 15 and changing to time 
 flTef 32«r,». 20»e«. for the diflTcreDoo of time 
 
 '^*?'i,**' **o P'o^oes; and, aa Quebec is 
 V* *• "*'™°'"» ^°« '•°>e is later, and we add 
 the difference of time, which giyes 12A. 
 32m». 20mo. the tiaa at Quebeo. 
 
 iM L% «!f^"'*l*'* ^••'"'^ '•, •' V^' 3«" ''•«*' •"'^ that of Ottawa 
 
 «fL2S*i^20^i'w °^y*'^'*'?^>,V'',^.^',^««t, and the longitude 
 > 'JT , .8 the time at Rome? iln«. 23 wm. 28»ec. past 5 P M 
 
 « wiJ-»^'P^"*^ a « „ An8.1h.20min.52,ec. 
 
 u iJ /« '* '^, P^*" ^' ^^ Paul'i, Minnesota, longitude 93° 6' west 
 IJ^^Bjn,. U. 37..V 12.ec. P. M., ^l-£the lon^^^^^^^^^^^^^ 
 
 ut^i'X'^^ of Jeru»l«» !• 360 32' east, and the longiTude of 
 tiZi^Jl, \ ""rl' ''*'*"' •* " ^®y<''- ^- ^- a^ Jerusalem, what 
 
 ^I'JKf M^^'r **f^^J^."i*Vr 1' ^" ^^'t, and when it S 10 
 -£f^ i' ^' '" ^^**^"' '* •« 8 o «look »3'.«ii. 574*ec. in Chicago • 
 ^^**f loagriude of Chicago ? aZ. 87^^ 34' 45' ^ ' 
 
 W^longituda of Constantinople k 28» 48' east, and of Kingston, 
 «^«««dll» 76'> 41' west; when it s 3 o'cl. P. M. at the latter nl*r^« 
 whM Um^ w it at the former? Ans. 9A. rllmii lesecp T ' 
 
 «»Lp**Ef*"* ♦*?!"** ^''- 'f ^^ J*'' chronometer that it is 3A. 40min. 
 
 S^Lf:;,K-. **°T'^^' '^u'"!* '* ^*- ^'^^^■"' 4°«''<'- by solar 
 •«»« ©• bo«rd hit vessel j m what longitude is the vessel ? 
 
 iln*. 370 26' 16" west. 
 DUODECIMALS. 
 
 ^»», Duodecimals are deaominato numbers, the denomina. 
 »•■•« Which iQcreaae according to the scaU of 12; or denom- 
 
MVLTITLIOATIOIf OF DnODlOTMALS. 
 
 1B7 
 
 west. 
 
 inate fractions, whose denominators are 1, 12, 144, 1728 etc. In 
 practice, duodecimals are applied to the measurement of extension 
 the foot being taken as the unit. ' 
 
 TABLK. 
 
 12 fourths, marked (""), make 1 third, marked 1'" 
 
 12 thirds " I second, « I»» 
 
 12 seconds " 1 prime, or inch, " V 
 
 12 primes, or inches, " I foot, « ft. 
 
 The marks ♦, ", '", "", are called indices. 
 
 251. Duodecimals are added and subtra(-„a in the same 
 manner as compound numbers. 
 
 MULTIPLICATION OF DUODECIMALS. 
 
 Ea:. How many square leet in a floor O/i. 7' long and 7/i. 9' wide? 
 
 OPKKATION, 
 
 74/r 
 
 ANALT8I3.— Beginning at tha right, 7' x A' = 
 «3" =. 5' 3"; writing the 3" one place to the right, 
 we reserve the 6' to be added to the next nroduot 
 Then, 9/<. x »' + 5' ^ 86' = 7/t. V, w^ich we 
 write in the places of feet and primes. ^Jext, mul- 
 tiplying by 1fu, ne have V x 1ft. = 49' _r 4/t. 
 V; writing the I' in the place of primes, we resei ve 
 the 4/t. to be added to the next product. Then, '.^/^ 
 X 7/t. -f- 4ft. = 67ft., which we write in the place 
 
 >>, «., r »u J . ■ ,„ Adding the partial products, we hare 
 
 3' 3" for the prodact required. Hence, the 
 
 _7>. 
 
 6ijt. 
 
 ufi: 
 
 r 
 
 ^ 
 
 2' 3" 
 j7 
 
 3' 3" 
 
 353. Rule. — I. Write the several terms of the multiplier un- 
 der the cornsponding terms of the multiplicand. 
 
 II. Midtiply each term of the multiplicand hy each term of th* 
 multiplier separately, beginning with the lowest denomination in 
 the multiplicand, and the highest in the multiplier^ and write the 
 first figure of each partial product one place to the right of that of 
 the^ preceding product, under its corresponding denomination, car- 
 rying 1 for every 12. 
 
 III. Finally, add the several partial products ; thtir sum will 
 be the required answer. 
 
 EXAMPLES FOR PRAOTIOE. 
 1. How many square (ieet in a piece Of marble 12/1. 7' long, and 
 
 i/l. 3' wide ? 
 
 Ans. 53ft. 5' 9". 
 
 2. What i.« the area of a floor, the length of which is dft. 8' ll" 
 and width yt. V ? Ans. Uft. 10' 11" 6'". ' 
 
 3. How many square feet in 10 boards, each \m. 10' lone and 
 l/l. 8' wide? Ang, 313^. 10' 8". 
 
 lij 
 
 i 
 
 %v 
 
 
 
158 
 
 OIVIHIOIf OF DTTODIOTMAU. 
 
 6in. hliih? ^' "'"^ ^^^■^'' ^"»' ^de, with a clone fence 7/? 
 
 of ceiling K/?.^4' ? ^' ^^**-' '^^'h 24/);. .;m., and hii^.h, 
 
 Ant. $33.66. 
 
 DIVrsiOxN OF DUODECIMALS. 
 
 OPKRATION. 
 
 •V»-9')8A5;3"(2/<.3', H„,, 
 
 11' 3'* ' 
 
 IV 3" 
 
 
 
 g. xaereiore, tbo marble slab waa 2/V. 3' in width 
 
 ANALTai8.--3A. M contained i,. 
 
 dfJiior h^'f^, M>?ltiplying the whole 
 diTisor bj y*. pveH 7/^ 6' fo, the 
 produot. which wo subtractfrom he 
 corresponding denominations of the 
 dividend, and obcain 11' for a re- 
 mainder, to which we annex the next 
 Sr,7"'Sr","f f'"' dividend, and 
 nave 11 d> 4/if- " oontained in IT, 
 •J timi's. The divisor beinit multi- 
 
 'A 
 
 of me ,„„,.«.,, and .,„„., tke .ro.^J/rjfZZv^. """ 
 
 EXAMPLES FOR PRAOTIOJS. 
 
 1. Divide 184/if. 3' by 40rt. II' 4" a .^ 
 
 2. Divide 4I/i. 8' 7" 6'" bv 1ft 4' a . ; ^-''-o^' 
 
 3. A table who6e length M \y V" h.« ^***- .^^''- *' '^"2'" 
 11" 2'"; what i8 its width? ^ ' »»*« »° *>•«* jf 28«^./^ ;r 
 
 and wit /U' V^T?' ^'*" ^^'^^ ^'^^^^ *- - ;^^/'"«' ■^'' '2'", 
 
 5 A block of raarble contains 64/?. 2' 5". its ^\dth^&^'f'' a 
 
 Its thickness 3fi. V • what Ih its length ? ' ^ ^^n^-^W 'of °^ 
 
 6. What 18 the wdth of a rectar.miiar r.«„^ u , , '•^- ^ ' 
 9' 6" aiidarea I076,,.i^^^1f//f -Ir^P^^' "'iVli;^^ ^^l?*^^ 
 
 7. A stick of Umber is IW. 2' u,;.]. ■>/> ,,, ,/^"f- ^Vf ^ ^ • 
 135c«/f. i0'2"l"'. Wliatisits fe„;fh? ^^^' ^"'^ <^""tams 
 
 -4««. 47 feet. 
 
MlSOlLLAIfBOUH SXAMPLIM. 
 BHSCELLANEOUS FilXAMl'LES. 
 
 159 
 
 boigh^forVs^'/ef'''''"^"'^'' Low many yanlH of linen may be 
 
 f fft'^'flf ^'^'*'"^"'r""^'^' Apothecaries' weija ^'^''• 
 \ l^^^l'^^^ of wino be bou-l.t f,.r £30 2 
 
 of each gallon? 
 4. What is the value of I5curt 
 
 '■^qr. 
 
 lOJ, what is the cost 
 , ,. Am. £1 G (]. 
 
 I It", of tea, at .■i;9")() per cwt. ? 
 
 „f « ^ ?■■.';'" *""'."« '^""- 2?r. I'Jrt. of porf , , M ?ro,^i 2i;a 
 
 3.- '.i^-oTr^.ti ?^^? ' '""^ °^"™''- •'£"|' S>' 
 
 19 Wl,„. :- Y- , .i". .. . Arts. boAi)b>r</t. 
 
 12, 
 
 l^iltf ^"'"'^ "^^ ^'^^ ''""- 75'- 'o"g, anTi'cii! 
 
 at $04 per^acre'?" '"'"" "' " """" """*' "''' ""'"' ^"'^ '^cA. 50/. v^ide, 
 
 13. What part of igcU. Sqt. is 2yt. \pt. 2gi. ? ^"'Anl'n 
 
 p\lt^ttu!:"lS2r''''?'' f"^'- V^r^2rd. of road ; aXAom- 
 
 Ifi Tf., • :^/**' -^Z"^- ^•^»^- 'before, and 4/ur. 302rrf after 
 
 17. Bo"ght 4 barrels of cranberries, ,ach contaimn! 2 L 'k"" '*« 
 
 re/A. and 80Z. more than Edward. '^How nn^ch it ea'cht ":?'" 
 
 iQ A .^".^•^'■^■«e«ved2I0|/6., E 13S'/6., andLlP8^Z6 
 
 rH\J^ "^f » havmg a hogshead of liru'p, sold % of i^ to F rof tb« 
 ^emamder to G, and i of the residue to^ H?w manj g'altons t 
 
 20 Find the value in Troy wei.ht of im^l^f; \t 'tt^:, 
 weight. ' "j„„ ,^1, , 7" — ""'Oiruapu:i 
 
 91 w^ , , Ana. 16/6, 5oz. lOptvt. 11.7 + p-r 
 
 12^a/ W^7'^^""''■'*V,^' «^"^'' ^ P'*""-^. must te given for 
 *lf-i9'- of molasses at 37^ cents a gallon ? ^ 
 
 aJ U wT i^.f ""'"^V" ^^ ^''^ ^q»»'-^ "" tl»e inside, 8 feethieh 
 •«d 14 feet ,n thioknew; how many perches of mawniy'Je the«f ' 
 
 '!l 
 
 t 
 
 l-H 
 
 J 
 
*!■ 
 
 ,1 5 
 I 
 
 180 
 
 MISCELLANEOUS EXAMPLES. 
 
 1 ^^1 7,}^^ •^^?l?i®''* °^ nine copper mines in 18(>8, was 39427' fliSMtf 
 l^r. 1/6.; ,» 1869, the same nlines yielded 41017'. Sev^tLmi 
 If copper was worth 20 ct.«. per lb., of l,ow much greater y>i\ul^m til 
 amount province,! in 1«69, than IHf;8 ? * ^«„ *fiS-VjS 
 
 R'-^'lh"''^'.' ?^ « ^-^'^ * «"^t. How m.ich would be gained hyZmm 
 
 the whole at 4^ cts. a potnid ? 
 
 Ans.^n.ui, 
 
 ^0. bought a lot 2o roda long and 20 rods wide for * 10000. mi %M 
 
 9^ «'n^f 'i'- P""" '^^"^'•'^ ^'^"^- How much was n,v .ai»? 
 
 ^b. Sold 72 yds. carpeting at ^\.?,1\ a yd., and gained %\%, ftw 
 much did It cost me per yar,i? ^ aJ.UA^ 
 
 ^11 f. f^^y'nany square yards in the walls of a room 40 t^ jJwr 
 •il i feet wide and 1 2 feet high ? ^^ 
 
 28. How many tons of hay, at $0.76 per cwt., must b<? »»«# for 
 35 con Is of wood at $0.60 per cord foot ?^ Annl if I^ 
 
 *.i ."'? !?^'^. * ^^'■»"' containing 176^. 3iJ. 2.0rrf., at $75,371 My 
 acre ; wliat did .t cost ? ^^i,. |'i -^^^u.ZmVr 
 
 :??• _^l'^L^i.'^ ^? *'*« expense of plastering a room 40J^".'*lonX mV/, 
 
 Its a sq. yd., allowing \Z1^>sq, ft, ft^ 
 
 Wide, and 22i/2. high, at 18 cents 
 
 doors, windows, and base board ? " ' ^Am. $hf7HL 
 
 ^h AiltV^ '' ^ ^»V^- *^ * P^*°« 30« east of Greenwich |^ iw 
 
 l^t'rB„s ^- ''^ " ■'"-'°' ^"'- ^••'^-.t^-.L^ 
 
 .,/t' ^'"/^!'f,V'*t«ofeq"alsi« contain 159.4. 2/J. 17»«. r<<, 2i5*» 
 
 worth 50 cts. per square foot? At^. $lHm^.n. 
 
 .ni *i bu.ldmg lots of ground ; the fir.^t contained 4 of I ^«# 
 
 acre; the second. 402 rods: the tliir,^ i nr«n o«.». „.,.!. u. l^JT 
 
 fof| 
 34. 
 
 l2oz. 
 35. 
 
 the second, 40'| rods; the third, i of an acre; and 'the ImfK 
 of an acre. How much land in the four lots? Ant. 3R. UpJr 
 How much beef, at 7rf. per pound, ought I to receive It tllb. 
 
 Mo ;. Qn/fnr^"^f "* longitude between London and St. &, 
 Mo., .9 90- 20' 5 at a certain time each day it is as mucfaS 
 noon in London as it lacks of noon in St. Louis. What is th" SZ 
 .nSt.Loui8? 4ns. HA. 59mtn. 20*eo. A, i 
 
 db. hixpress in acres and the decimal of an acre the area of dS 
 square ots, each measuring 5rd. S/l. Sin. on a side. ^ '^ *» 
 
 ST. On an acre of ground there were erected 21 buildings occuo*W 
 on an average Ssq. rd. U28q. ft. ^sq. in. How much of *U mK 
 remained unoccupied ? Aa^. ^fiper. 9l8a ft Uaa^ 
 
 38. Reduce ^ of i of 45^/6. to the dec-,oaUf a short"ton. ^' ^' 
 dy. A person lived in Montreal until he was I8yr. 8mo. tida,m 
 loronto, 4 as long; in Kingston, % as long as in Toronto, and 4a*<i<w^ 
 Quebec as in Kingston. What was his age ? A. 31yr. 2m^. tm 
 40. A farmer owninir 19r,>l QW -^ao^ -.3 „^)..„j^ j- • , j 1.^*'^ . 
 
 m 
 in 
 
 «4ii 
 
 40. A farmer owning 19^4. 3//. 38s^. rd. of land,' divided i 
 equally among his four sons. How much did each eon recejyj 
 how mucl! ha.d the father remaining ? ' 
 Am. 364. 2/i. :59|sj. rd. '-ach, and 484. 3ii. Z^8q. rd. x^xnuaing, 
 
 41. A steamer, going uom Halifax to Liverpool, t ra versed ll«l 
 degrees of longrtude d«ly. What length of Ume was it froru om mm 
 to tM Mzt 7 Am. 23*. 1«M^ 
 
 
II180EL1.ANJEOU6 IXAMPLB8. 
 
 161 
 
 I': r„^tTavni!!''fi'l?'.; *°" ''''''' ** 20 cents per pound ? 
 
 «i<ii8 iieinhbo-fl -„7,-", : j-"*^"^^'l»»'-«»soia :;o square rotls to -nc 
 
 WliatiiiddicMvood 
 
 he lounu that it contained ocd. Gcdyft V>cu fi 
 cost him per -lord ? '' '-^*--^- 
 
 iSi^t^Sko^;;:;.!;;^;^s^'^^^^^^^-^-«-'^-■-'^^ 
 
 «fi ]?«,w'"^"*'" ■^'"'^'''* ^"': '""''^^'^ °"'' a"d 54.1 1| ra/. remained 
 
 ,jLgs;c zr. taC.%rs''f, "^ t'%4"«"' «-■ -- 
 
 $5.:^ 2, fa yard? ' '^^^""^^'^ ^*^« value of the remainder at 
 
 47. Ifagallonofdistilled water weigh 8^6. 5oz, 6.74dr what "is 
 the weight of 17fi.a/.,39M;,M<,/.? 4n». 14^ 5or'l.r9rfr 
 
 meturinVle/rS'' ?" ''''' "'^^ "'" '^ ^'^ °^^^ ^^ ^1^13^^' 
 
 24o!' i^nr^n" ''^l** i" ;^ortli <i«. 3d. per bushel, a S-ceni loaf w"e.gh> 
 Uoz., and allows the baker I^ cts. a loaf for his labor, what Bhoula 
 
 pro7t'taraff^^^'^''-'''-P^^'^"^'^^'' ^^^«-^ ^J ^^« -- 
 
 «;fi;;o. "[-'""s 7'' '^ T^ ''• ^^'■P^'' '^ ''^•^'" 2iyj!. long, 15/?. wide, 
 
 61. What 18 the value of a pile of wood that is lOrd. lon^ 4fi. 
 wide and 1 iyd. high, at $5.75 per cord ? ^n«. $13.3.42 - 
 
 >IJ "-''t^:^"'''^ /«"ce ..i/i. high. How much will it cJst to paint the 
 fence on both sides at 12 ct... per .q. yd. ? Ana. $93,862 
 
 o3 A merchant purchased in Manchester 34 bales of cloth for 
 t-« ly f> per bale ; he dieposed of the clnih at Porto-Rico for 212c«* 
 
 .^»ga'; at £1 5 per cwt. Did he lose or gain ? and how much ? 
 ; 04. If a person spends in 6 month, what he earns in 4i months : 
 now n,a„v dollars can he lay by in a year, supposing he earns $325 
 m2i months? "^"^ ° Ana $390 
 
 00 A man has a piece of land 201 J rods long and 411 rods wide, 
 which he wishes to lay out into square lots of the greatest possibte 
 ■^ize.^ How many lotp will there be ? .Itw 396 
 
 56. If a man can pay his creditors only 48 o«nt8 on a dollar, how 
 ranch can he pay on a debt of $52.50 ? ' 
 
 67. How many bricks, ::!tii. long, 4tn. wide, and 2itn. tWck, are 
 required to build the front ofa house whose wall is 3ok long, 24/t 
 high, and 2JI. thick, allowing the doors and windows to occupy i the 
 
 ^,'^''^*}..^7USgat.2it. of melMnet. at 20 eta. ami., 'm^'fm 
 
 ou ?«?. 01 It, now uiuHt I m>U tiu wmamder per gal.. wT&a'to reoeirt 
 
 X'ul ?' "lot '?f* * , ^"-- «0.263+. 
 
 ,AA A \ . .7 ^^^ ^""°^ °f ™"™ f**"" «75. how much water must be 
 tdrted to It that I may seU it at 60 centa per gallon, and gain $15 in 
 taesaieolit! Am. &Q gai. 
 
 
■:l F 
 
 162 
 
 MISOBLLANBOTO EXAMPLKtS 
 
 60, Sold 1 25 equal loads of wood, measuring 115Crf. 3cd.Ji. leu. ft. 
 for V 492.50. What is the quantitj per load, and price per eord ? 
 „, „ ^»s. 1 la^cu./t. each load, $4.26'i per cord, 
 
 bl. How many francs must a merchant in Paris send lo Montreal 
 m payment lur u doht of $15y8t).862 ? 
 
 (>-i. If a man fill J of a cask with brandy, J with wine, and i with 
 \yaitr. and if it lack 21^ gallons of being full, how manv gallons will 
 tlwt citsk contain? Ans. lOOgcU. 
 
 b.S, U oy Pellmg cloth at lOs. 6rf., ^ of the price is gain, what part 
 01 the co.st would be gained by selling it at 138. ? 
 
 64. A ship's chronometer, set at Greenwich, points to 6A. 45wn'rt. 
 Msfc. P. M., when the sun is on the meridian. What is the ship's 
 lori^itude? An8.86"2VE. 
 
 ho. A grocer bought 15 barrels of salt, of 4 bushels each, at ^U a 
 barrel, and retailed it at i of a cent a pint. How much wa^ his whole 
 S*'"/ , . Ans. $4.60. 
 
 Of). James own8 Aj of a field, and Leo the remainder; | of the 
 difference betweeo their shares is !SA. 3R. l^l^per. What is Leo's 
 
 ^^'%^\ ,, , . ■ Ans. 20A. .'.R. dlper. 
 
 t>/. A gentleman desirous of giving Is. 6d. apiece to some needy 
 boys, found that he hi^d not money enough in,hia pocket by od. ; he 
 therefore gave them is. 4d., and had 9rf. left. Required the number 
 of bojrs. jj J^J^g 7 
 
 68. A liquor agent has 50 gallons of wine of superior qnalitv, worth 
 ?7..jO a gallon ; he wishes to reduce its quality by the addition of 
 water so that he may sell it at $6.25 a gallon. How much water 
 must he add ? j^^s. 2ligal. 
 
 69. A clothier has 960 soldiers' coats to make, each coai contain- 
 ing 2\yd. of cloth ]li/d. wide, and lined with drilling lyd. wide. How 
 many yards of lining will be required ? 
 
 70. A ship captain, sailing from London to Portland, found, on 
 taking an observation, that the sun at noon was 3h. 25min. 40«ec. 
 arieniiaii the London time, as shown by his chronometer. How 
 many degrees west had he sailed ? 
 
 71. My father's garden is 10 J rods long, and Sf rods wide, and sur- 
 rounded by a fence 7§ feet high ; he has laid out a walk around it, 
 within the fence, 7^ feet wide on the two sides, and 5^ feet wide on the 
 ends. How much remains for cultivation ? Ans. 21296*0. /^ 
 
 72. A bi)y having been sent > a store with 5^ doz. of eggs, was 
 directed to purchase with them equal quatitities of sugar, coffee 
 butter and tea; he disposed of his eggs at the rate of 2 for 6 cents, 
 and paid forthe articles purchased 17, 28, 37^ and 1374 cents per 
 pound, respectively. What amount ol each did he purchase T 
 
V eord ? 
 per cord. 
 
 10 Montreal 
 
 and \ with 
 L^alions will 
 f. lOO^a^. 
 I, wbat part 
 
 6A. Aomin. 
 I the ship'p 
 I" 21' E. 
 5h, at$l| a 
 IS his whole 
 19. $4.60. 
 
 ; i of the 
 at is Leo's 
 
 orne needy 
 by oof. ; lie 
 be number 
 
 Ans. 7. 
 ility, worth 
 addition of 
 luch water 
 
 u coiitaiD- 
 ivide. How 
 
 found, on 
 in. 40sec. 
 ter. How 
 
 iy and 8ur- 
 iround it, 
 ■ide on the 
 6sq.ft. 
 sggs, was 
 IT, coffee, 
 6 cents, 
 cents per 
 
 BATIO. 
 
 RATIO. 
 
 IM 
 
 254. Ratio is that relation between two numbers or quan- 
 tities, wliich is expressed by the quotient arisin<r from the division 
 of the one by the other. Thus, the ratio of 12 to 4 is 12 -=- 4 v= 3, 
 
 255. The Terms of a ratio are the two numl)ors compared. 
 
 256. A Couplet is the two tonus of a ratio takoti to»ether. 
 
 257. The Antecedent is the first term, or dividend. 
 
 258. The Consequent is the second term, or divisor. 
 25fl. A ratio may be expressed either by two dots (:) between 
 
 the terms ; or in the form of a fraction, by innkinj,' the antecedent 
 the numerator and the consequent the denominator. Thus the 
 ratio of 8 to 4, may be expressed as 8 : 4, o: as f , 
 
 260. A ratio is either direct or inverse. 
 
 261. A Direct Ratio is the quotient of tlie antecedent bv 
 the consequent, Thus, 8 to 4 is | or 2. 
 
 262. An Inverse, or Reciprocal Ratio, is the quotient of . 
 the consequent by the antecedent. Thus, 8 to 4 is | or i, 
 
 263. A Simple Ratio is that having but one autra'Jent and 
 one consequfnt; it may be either direct or inverse. Thus 6 • 3 
 ori:i ' ■ ' 
 
 264. A Compound Ratio is the product of two or more 
 
 3 and 8 : 4 is 4 
 
 Xf 
 
 ratios. Thus, the ratio compounded of 6 
 = M = 4, or 6 X 8 : 3 X 4 = 4. 
 
 265. From the foregoing we deduce the following principle* 
 of ratio. ^ 
 
 Ist. Multiplying the comequent divides the ratio ; dividing the 
 consequent multiplies the ratio. 
 
 2iid. Midflplj/ing the antecedent multiplies the ratio; dividing 
 
 the oiitccedent divider the rutin. 
 
 3rd. Multiplying or dividing both antecedent and couspqneni 
 by the tame number does vnt niter the ratio. 
 
 KXAMPLKS FOR PRACTIOB. 
 What is ths direct rati<i of 
 
 1. 
 
 64 to 6? 
 
 2. 
 
 108 to 18? 
 
 3. 
 
 7 to 21? 
 
 4. 
 
 ITtoCS? 
 
 i. 
 
 Mtoll? 
 
 4ns. 9. 
 
 6. 
 
 
 7. 
 
 Ant. \. 
 
 8. 
 
 
 9. 
 
 
 10. 
 
 13 to 62? 
 5:Uo212? 
 72yd. to ^yd. ? 
 60w»t. to 4/ar. ? 
 m. to 2Qg<d. ? 
 
 Ant. 120. 
 
■Si 
 
 II ^11 i i 
 
 ! 
 
 164 
 
 PROPOBTIOII. 
 
 Requirtd the inverse ratio of 
 
 11. 27 to 81. An». 3 
 
 12. 72 to 8. 
 
 13. 16 to 48. 
 
 14. 
 15. 
 
 IG. 
 
 42 to 6. 
 
 .02 to 2.503. 
 256 to :V2. 
 
 Ana. ^. 
 
 -~ .^ .... ^^,^ 20b to ,yi. 
 
 \l' wl''^'* '^ ^^* greater, the ratio of 86 to 240, or of 45 to 72 ? 
 10. VVlmt is the ratio comDounded of .^.'i In ift. fin tn 7?; anrl 
 
 hat 
 
 10. VVlmt IS the ratio compounded ol 35 to 40, 
 to 1 9 ? ' 
 
 19. Tfthecone-equent be 32 and the ratio 4?, w 
 cedent? '' 
 
 20. Ifthe antecedent be 7^ and the ratio S, what 
 queat? *' 
 
 PROPORTION. 
 
 60 to 75, and 21 
 
 Aus. Ul. 
 is the ante- 
 
 Ans. 7'. 
 is the conse- 
 Ana. 12. 
 
 266. Proportion is the equality of ratios. It is indicated 
 thus, 6 : 3 : : 8 : 4 ; or thus, 6 : 3 r^ 8 : 4, and is read 6 is to 3 
 as 8 IS to 4 ; or the ratio of 6 to 3 = the ratio of 8 to 4. Hence 
 every proportion has two couplets and four terms. 
 
 267. The Ext-omes are the first and fourth terms. 
 26H, The Means are the second and third terms. 
 
 265>. .^inoo in a proportion, the ratio of the first tothesccon(! 
 term is equal to the ratio of the third to the fourth term, the pro- 
 portion, 6 : 3 : : 8 : 4, becomes f = |, multiplying eacb member 
 by 3 and 4, we have 6x4 = 8x3. Hence, 
 
 In every proportion, the product of the means is equal to the 
 product of th^ exirerues, 
 
 270. From the foregoing principles and illustrations, it fol- 
 lows that, any three terras of a proportion being given, the fourth 
 may readily be found by the following 
 
 271. RiTLE. — I. Divide the product of the extremes by one of 
 the me. ins, and the quotient will be the other mean. Or^ 
 
 II. Divide (he product of the means hy one of the extremes^ and 
 the quotient will be the other extreme. 
 
 NoT«.— \V« will denote tke required term of a proportion by the letter «. 
 
 EXAMPLES FOR PRACTICE. 
 
 Find the value of a? in the proportion. 
 
 9 : 16 :: 36 : a,'; a? = 
 
 16 X 36 
 
 = 64, .In*. 
 
 1. 
 2. 
 3. 
 
 24 
 
 7 
 
 16 
 
 What is the value ui x in each of the following proportions; 
 
 4. 42 
 
 96 
 42 
 
 X 
 
 70 
 
 14 
 ; X 
 
 10 
 : 3 
 
 . xl 
 96? 
 40? 
 x1 
 
 Ans. 56. 
 Ans. 16. 
 Ans. 64. 
 
 X : 15 
 
 ^ 3:9? Ana. 5. 
 
 6. .17^ $10 :: 366a. -.xbu.'f 
 
 7. 2yd. : 8yd. :: $34 . x'} 
 
 8. 7.50 : 18 :: xoz. : 7^o«. 7 
 
8IMPLK PROPORTION. 
 
 SIMPLE PROPORTION. 
 
 165 
 
 Jlll^Xtl/Z.l''''' '' " ^q-lityof t.o.i.nple ratio-, 
 the^Le'rafJ? "^"^' ^^ '^''^ ""''' *^^' ^^^^ ^'^^ ^2 yards co«t »t 
 
 yd. 
 13 
 
 $ 
 
 OPEIIATIOW. 
 
 yd- I 
 
 : 42 :: 30 : 
 ___42 
 
 60 
 j20^ 
 
 12) mo 
 
 * = $105, Am. 
 
 Eldcidation.-To arrange the g.vennumberBin 
 1 V *on°.u FoP'>''t'on. or "<"<« tht. qwMion, we 
 miiKe iSdO the i-A.rci term, beeause it is of the same 
 kind as the required /owiA term; and, as from 
 the nature of the question the latter raustbe great- 
 er than the third term, we make the greater of the 
 other two numbers the leeond term, and the less 
 tney»r»«; and then, the product of the me» -3 di- 
 ▼ided by the rlren extreme, givws the ^ .oina 
 
 THB GAME EXAMPLE BV ANALYSIS. 
 
 Yi^^/t ?f i^®'-n y*^^7'" cost ^j of $30 = $2.50; then, if Ivi 
 8t^$2..0, 42j.d. will cost 42 times $2.60 = $106, the answer, a. 
 
 oost 
 before 
 
 Aa^f'v}' f-^^so'/ljeM consume a certain quantity of flour ia 28 
 days, how long will it take 70 soldiers to consume it ? 
 
 OPERATION. 
 
 tSolJien. Soldien. dayi. 
 49 ;: 28 
 
 70 
 
 days. 
 
 7 
 
 14 
 
 5 
 
 = 19|, ^IM. 
 
 Elo«idatiok.— SiDoe the reqaired 
 answer t days, we make the (ivan 
 dajs the -'i term. Then, as the 
 flour wiU nut last 70 soldiera lo lone 
 »« It wiU 4a soldiers, we make 49 mU 
 diers, the snalUr of the two termi, 
 the Hi>cund term, and 70 soldiere the 
 firtt term j and proceed aa in the firei 
 ezaiuuie, ezoept that we ahertea tiH> 
 work by eaneeUatioa. 
 
 THB SAIIB EXAMPLB IT ANALTSIg. 
 
 times 28 dai/ TATf ^^" '^f" \^^ ^""^'^ '^ ^"1 "^^^ 1 «-'^ier4. 
 IdU days, 70 soldiers will con.sume it in ^^ of 1872 davH = 19^ day* 
 
 27». KuLE.— I. Writ§ the givm numben^ that u •/ th§ imm 
 name or kind a$ the required fourth Urm, or anmer, /^r OU 
 third if.rtrk nf thm 9i#>/».ui ../.'«•. "^ 
 
 II. Of the other two numbers, write the larger for the eeesnd 
 term and the less for the first, when the answer shmdd exceed ih4 
 third term; but write the lets for the tecond term, and th* larg» 
 for the JU'tt, whm the amwrnr ehomld be hu than the third tmm. 
 
 \% 
 
 s 
 
 
 
t i f! 
 
 I 
 
 .1 ( * 
 
 166 
 
 WMPLE PROPORTION. 
 
 III. Multiply the strond and third tenna togethm-, and divitU 
 *Jieir product by the first; or divide the third term by the ratio «»/" 
 ihr first term to the second. 
 
 N0TK8.— 1. When the first and s.-oond tefus are of diffornnt denfjiainatioE,? 
 they must bo reduced to the same denomination; and when the thir ; terra n % 
 co!i)|miin 1 number, it must be roduced to the Soweat donouiinat^om mei^tiooed io 
 '^'o "u '*"''*'.®'' ^'" ^^. of the same denomimition oa the thinJ term. 
 
 2. I'ho pupil should 'perform these questions bf analysis, 3 4 well ae by p»»- 
 portion, and introduce oanoellatioa when it will i tbreviate iiid wvjration. 
 
 EXAMPLES FOR PRAOTIOE. 
 
 1. Six laborers earn $7.68; l.ow much wiiJ 10 laborers tHrn? 3« 
 
 'a'^^rer^? Ana.%\2M; $46.08 
 
 2. Il2.ilyd. of c!'^;!i cost £25 3 3; how much will 198vil coi't? 
 
 12t)yd.? 137y.l.? 
 3. One-half a bu 
 
 ..«». £11% 15 ^%^ £139 4 3fJ; £1517 4J|. 
 -"hvii ai «> H coats ^i,S\ eta. ; how much will 16 
 buphelscost? U buflheic.- T:^, hiuIjplsY 86^ bushels? 90| bushels? 
 105^ bushels? Am. $14.56; $30.94; $65.62; eu;. 
 
 4. TiGlb. of butif-r C6t,v ^^iS.lJb ; how many lb. can be had for 
 112.61? .125.74? 8o2.b7? -$36.40? An$. 971b.; 1981b. 
 
 0. "* 
 7^cwt. 
 
 , wu.u. ^ e*c. 
 what is the value of I il 
 
 a c\v 
 
 . If a cwt. of tobacco is worth $39.25 : 
 
 wt. ? 561b. ? 931b. 4oz. V 107|lb. ? Ans. $0.3925 ; $294.37^; etc. 
 6. The I of a cwt. ofen.a;r,r cost?6.48 ; what will be the cost of *ci 
 :\vt. ? f cwt. '■! ^ cwt. ? ^ cwt. ? An.$. $6.72 ; $7.20 ; etc. -f 
 
 7. If 40^ arpenti? of land are worth $215.50 ; what is the value of 
 }} arpents V 70 nerchM ? 90 toises ? 25^ arpeuts ? 10 per. 4 to. 10 ft. ? 
 liOi arpents ? Ana. $31.92^^ ; $3.72|J ; $a,53U ; etc. 
 
 8. The 1*^ of an acre produce 18. cwt. 1 qr. 12 i)L of hay ; what 
 quanuiy will 1 Mr« produce ? 8^ acres ? 36^ pert 
 
 9. At Is. 8d. per lb., what quantity of coffee can be had for £3 68. ? 
 ^^ }^,^^^H.^ 2i? £14 lOJ? Ans. 39|lb. ; in/^lb.; etc. 
 
 16 tons? 3| tons? 18| tons? Ans. $107.45 A ; $24.67 + ; etc. 
 
 12. If3|lb. of coflee cost 72 cts., how much must be paid for 
 74ilb. ? 96ilb. ? 10911b. ? 2lcwt. ? Am. $14.62 f- ; $18.90 ; etc 
 
 13. Six cwt. Iqr. lib. of beef cost £13 7 6, what quantitr can be had 
 tor£8 12 3?£1 8?£17 12 6? 
 
 14. For 171 days' work, $26.44 were paid ; how much will be paid 
 tor 1 day's ? 45^ days' ? 89^ days' ? Ah$. $1 .44 : $65.52 ; etcT 
 
 16. The rent of a farm containing 12A. 2R. .30per.is$ : 13.75 ; what 
 is the rent of another containing 5A. IR.? 16JA. ? 59A. 2R. 20per ■ 
 10|A. ? An». $47.06i + » $145.24 
 
 1 fi. Savon KtiaKAlfi ^^'«n<«A -*^«* ©O *TC: . 1- -v-— 1- *ii 10 
 
 «.«,w.. ,,,..,-,-,,,, .!i Tl\ra wcsts;c7. ju j UuW UiUt/U Will I in 
 
 cost? 18^ bushels? 26J bush 
 
 etc. 
 
 17. In paying $11| for M28 . v of bowda. irkat quantit 
 
 badfor$119j^? $230.60 : %iU,m 
 
 Ans. lU54( + ft 
 
 >^ 
 
 '-•W. 
 
 18. I can get 336 pens for 3«. id. ; how maajr o«d I get Ir^ S.I t 
 
 44T£3 10 14? £0 1 1«4? 
 
 2944: 
 
srMFLIC PEOPOBTIOM. |f^ 
 
 ^anuxi had l.e worked 6 dayt more ? ^' ' *'"'' much would he have 
 h«i /i -^ P"*«''^« cost as ,„uch a7 7 Hnnl« ^ ^"*- ^^82. 
 
 be had for H5 peaches? 280 S^^^^^ how „.any applet e.n 
 
 ti« creditors to pay ^O.e/on the douL K "P^^' r'"Pr-n»i«ed with 
 on a debt of $256;^.50 ? "*'^' ^^''^ """c^ ^i" one receive 
 
 26. What will be the orice of 21 A tn on ,^"'- ^1640.64. 
 cost £815 ? P"°® ^* ^^^- 3». 20per. of land, if 36A. 3R. 
 
 27. If lOcwt. 2ar Ulh r.e ■^"*- ^187 10 
 pay for 8cwt. Inr.^U lb ?' '^^'"^*' °^"* ^^04, how much should w. 
 come M P^-S'"""" «, 40 „.,. ti, k„„j,^_ ,^„ ^„ _,^_^^^_^ 
 
 <»il each creditor rwei.e ? i^ B t« I P?"^/,'^ '■'^^'*»'' = '^^ ""■"l' 
 
 33. If a bowl containing 2 cul.io v,i io .• ^ • "*"*• -^^ ^^ 3. / 
 niany hours will b- reaum^d t?. «. ^ " ^""^^'^ '" ^^ miautM; how 
 and 21v,i. deep ? ^"""^ '^ ^'•"P'^ * °'«tern 4yd. long, 3yd. 'wideT 
 
 34. One of two pieces of cloth costs &^-i^ ^u .u '^^'- ^ **°"''«- 
 the ,e„,.b „,eact^„o,i„, rtr:S^?f,t^t^»J^-*„^^^^^ 
 
 ,^ ■• WM„ .t.„,„eo4 «*'.^s.Tk„o.■„g.bat''.re*/;l. 
 
 . 38. If the raooa mov-a H" in» ^irm • ^ '*"*• ^^0 ^8 6f 
 
 itp'.rforra its revoIuT.on"? " ^^ "» ^P^ ^*^' '« "hat time will 
 
 4L''"T'''' ^'^p'- - condition ir; ?lt 'd-*' ' "i" 
 
 "".A iif^' ^'**' '"any ehall I receiva?" ' -aou.d receive o per 
 
 40. What is the value of 7 b Tin. .<• >'^'- ^«*. 6247. 
 worth $120 T "*• ^^^■- o^goH knowing that 7oz. are 
 
 41. The I of a bushel of prune, ao-t fill k * ^»*- «i«28.67f. 
 b« bought for lA ' ^' * P*'* ^'^ • bMheloao 
 
 m 
 
 Ji 
 
te I 
 
 IM 
 
 COMPOUND PROPORTION. 
 
 
 !l 
 
 *^' i,^r**J^'"^ merchandifie for the mm of «5600, Iloat f4.60 ob 
 every $100 ; how mucli did I disburse? »».o^ o« 
 
 4H. A pound uf cin.ianu.ii co.st. $1.10; for how much Hhould 1 re- 
 tail It to gam at the rate of $-.0 on every $1000 ? Ant. $1.15A 
 
 44. Who,, metallic pens are (V^ cts. a doBen, how much will 101 
 gross cost? 16J gros.Y 25J gros8? Ans. $H 061 ; etc ^ 
 
 4o. When profitH are :j;5U on every 100 yards of cloth, how many 
 yardH jnust be sold to raise a profit of $850 ? Am. 1700yd. 
 
 48. Two pieces of cloth are respectively 41 and 36 yards • the first 
 piece costs $46 more than the second ; required the price of each. 
 
 AQ wi. u . • .J » 4««. let. $369; 2nd. $324. 
 
 49. When wheat is sold at Ts. 6d. the bushel, a loaf of bread 
 weighs 9 ounees; what should be the weight if wheat i<, but 6s. the 
 
 bUBUel J 4njj I 1 1 
 
 50. Every soldier in a regiment of 1000 men is to have' a Jatch- 
 wat;eachcoatw.ll take 4yd. of cloth which is 1 5yd. wide, and is 
 
 be l.ned with flannel, 14yd. wide; how many ya'L of fla. nel wiU 
 V. required to hne the whole ? Ans. 6625yd 
 
 61. Jo draw success on my business, I propose to give $5 to thf 
 poor every time I gain $150; how much willYhave gained when Z 
 al.^ amount to §100? ^ A^s. IsX'^ 
 
 62. John can plough a certain field in 6 days, and Maurice in 6 
 days: what time will both take, working together, to plough the 
 
 63. A father earns 68. 6d. per day, his son, Ss. T^d ; in whaUimc 
 vnH^they have economised £1 iO 3, if they exjend but 58. ^J 
 
 5^*.?"'^'>""*'?,T.^^ ' 5*y ^''' P*^'"g * y*^ ''^•ch i8"'60^5ft*ng 
 and 44ft. wide, if 14258q. ft. cost 5>;!41 ? ^ 
 
 65. Two gangs composed of 20 and 30 men respectively, did 1600 
 vards of a certain work in 25 days ; how much would the/have done 
 had their number been aug nented by 15 ? Ans. 1960 yards. 
 
 66. One hundred degreer. of Centigrade are equivalent to 80 degrees 
 3f Reaumur; to how many degrees of Reaumur will 232 degrees of 
 Centigrade equal 7 ^^. ig^o ^f Laumur. 
 
 COMPOUND PROPORTION. 
 
 »74. Compound Proportion h an expression of eqwtlitr 
 oetween a compound and a simple ratio, or between two compound 
 
 8 : 4 I ■ * ^* • 6, li » eompound proportion. 
 Tfc*t «, 12)>C8 : 6X4 1 : 24 : 6 ; for, 12 X 8 X 8 =« 6x4x14 
 
OOMPOUND FBOPO»TIO» 
 
 >st f 4.60 OB 
 
 'Ijoiild I re- 
 t. $1.15^. 
 h will 10\ 
 06i; etc. 
 how manv 
 . 1700yd. 
 nng2|cwt., 
 
 he smaller 
 
 a ; the first 
 of each, 
 id. $324. 
 if of bread 
 but 68. the 
 
 9. IlioZ. 
 
 ; a watch- 
 <le, and is 
 lannel will 
 
 6625yd. 
 
 $5 to thf 
 i when my 
 f. $3000. 
 urice in 6 
 )lougli the 
 
 A days. 
 
 what tinae 
 ut 5s. per 
 ■ 6 days. 
 i05ft. long 
 
 , did 1500 
 have done 
 yards. 
 80 degrees 
 degrees of 
 taumur. 
 
 equfilitj 
 ompound 
 
 lit 
 
 .n??!';""^" *4'° "raembering the questioi 
 ?!,« «„n5"'."''°« '^'"^^- th. punil ,ho,ad writ. 
 
 9 
 
 SyATKllgNT. 
 $• Da. 
 
 72 10 
 
 * 6 
 
 Hr. 
 
 8 
 
 12 
 
 MU'HOD BY PROPORTIOlf. 
 
 I 
 
 MBTHOD BY ANALYSIS. 
 If 6 iHen in 10 days of 8 hours each earn «79 i «.— • .u 
 
 * ^Lr^k ♦'"^.-'P'0.80; and in 5 days, 5 x $10.80 = $54 Tf in 
 
 day,^hey U earn ?2' x 16 76~i$8f.' '"'' '^^ "^^'"« ^' ^^"'^ » 
 275. Rule.— I. Make that number which U of the Kitne kind 
 
 U. 2 hm take the othernumher, in pair,, Sr two of a kind 
 mid arrange them as in nmple proportion. ^ ' 
 
 iU.}' ^*'*?.%'»»«^'»><J^ theproduct of the second terms by the 
 
 •tthwr Mrthod «r 
 
 •i«ticanj.o plain M to im«iMw,rul,. -^'■"* 
 
 ■XAMPLK8 POl FKAOTIOB. 
 
 «1!! 5*^ /^f ?^ ^^^^ P°""^ " 5 how much should be receivad in 
 promf lu'°^," °"",'l''^, -Wok ""t m. «.60 eaosYnS'.' . 
 
f7« 
 
 OOMMUND FmoPOmTIOK. 
 
 »««. NruU another wall bott. k. , „. „ a„ d rThlS " 
 
 f'H .t require 45 tailors tc u,ak.> :JOJ ccatetn "^ d- v ^ L 
 mU I* required to make 200 in 27 .lays? ^ ^" i"''^ "!f"^ 
 
 Jl- »"""^ '?.'''■■'"' •"' 8 hr. each' M laborers were^m'S „ h 
 
 a fftbe carriage of 5cwt. 3qr. a distance of if i'J^ ''LZs^"^i%H 
 
 J^./« a fort there are provisions enough for 152r8oldierf for* 6 
 mmth,. If the garrison be augmented bv 1 00 men, whaVdS ration 
 >wedthflm. ifthevr. uHin i i^ o' ''"«**"'"'/ ranon 
 
 «*« »* allowed thflm, if they n 
 
 uain ' , .uc 
 
 longer ? 
 
 l<» 1* f3 1 • • '/ / " "«"! ■„ .uc. longer r 
 
 ikliLi r ^!* ^'^"^ ^^^ ^ ^'^''^^'> weighing 7ioz., when vV, at i^ 4s 2d 
 Sffe^^'i what should a Is. 2d. foafUjh ;hen wheat iest 6d 
 
 ««•, Kr»6wing that 1500 give $lo interest in H r 
 |«M *»w/f»kJ r plac- at interest to give me $200 in 
 
 TS * work 86 7 mer hd in 28 day.s, or 10 hr. - 
 
 ^»iv l6J§«oz. 
 iths, hat'princi- 
 
 ar l.$2500. 
 ' n work, to do 
 h? ..iw. oda. 
 was Woven with 
 
 , . .•',-• ""■'-' s "' « yaiii wiuc , was Woven witl 
 f4^,^SrL^;u!.i'lJ7^«^^«f^P'«««i-f«* yard wide: 
 
 -4fM. .HS^y yards. 
 
171 
 
 MROINTAOK. 
 
 PKRCENTAGB. 
 
 signify 6 oer>ts of eVerv 100 "'f^'^^o^evcry hundred. a„d may 
 ^^ every 100 cents, 6 dollars of every 100 dollars, 
 
 ooS.'^'''®*'®''*^'"""'^''- ''" ""^^^'^ '^' Pe'-eentage ig 
 the pI,Z:,^. "" -'"'"""' - "" P'r«ntage, I iU Oifferenc + 
 
 ■ijrmDoit. 
 
 Decimals. 
 
 ^% 
 
 1% 
 
 4fc 
 
 5% 
 
 6fc 
 
 Hfo 
 
 10% 
 
 l^% 
 
 75% 
 
 \QOfc 
 \2b% ^ 
 
 h7c 
 1% 
 
 % 
 
 of a fm„iber 
 
 Common fraotions. 
 
 \7o 
 
 « « 
 « « 
 
 « « 
 
 « <( 
 << <. 
 
 « 
 
 « 
 
 « 
 « 
 
 .01 
 .02 
 .04 
 .05 
 .06 
 .08 
 .10 
 .18 
 .75 
 " 1.00 
 " 1.25 
 " 005 
 
 « 
 
 of it 
 
 « u 
 
 it « 
 « « 
 
 « « 
 
 « << 
 
 « « 
 « « 
 
 t5^ 
 
 TffO 
 
 « 
 
 .0075 " " „ 
 .076 « " = 
 
 Tffcr 
 
 TffCf 
 
 T^f 
 
 /a 
 
 2 
 
 t 
 
 1 
 i 
 
 1^ 
 
 «-^^l. Cask T. — Given, the ha.se and raff //» «*>^«i. 
 t.x. What 18 6% of 512 yards of cloth? 
 
 ■JPEKATIOK. 
 
 ^-'' *> = 4' Th.«for., 6^ of 512jd. 
 
 96 
 
 ,ft,'?™T^% =.06. Therefore. 6« 
 «f 61 2yd. li. 08 of 5 12 « 30.72yd. ^ 
 
 Or ^ J«-^2yd.^«. i.^o/!,^4 
 
 ' 3«.7Jyd. 
 
3fe:J«^Sfota, 
 
 ITl 
 
 0», 100% = 612ytl. 
 1% = 6.12y.l. 
 6% = 30.72j'<l. Ant. 
 
 Ptao«NTA(J*. 
 
 Or, If lao^ _ 
 
 = S0.72jrd. Hence the following 
 
 511/d., 1% =^ of 
 a. 11yd, 
 
 mally^ and point off a, in dedmah. Or, ^ ^^^^^^ rf««- 
 
 A'firf that part of the hate which the rate % U of 100. 
 
 BXAMPLE8 FOE PRACTICE. 
 1. Wh.t « 5fc . < 1462? 4% of 1560? 8% of $630. J5? 7* of 
 
 ^2. WH.i«., orsrorr r, »/2yi>t^Ll'?-^-, 
 
 ^^3.^Whati«32^ or.n60.60? 4*^. of 4M^^oP34t?n|Tof 
 ^^4^Whati« 20/. ofOOcwt.? i% off«50? i /Tf " S'sfb jt of 
 5. What i« 15% of^? 1% of.*80? 2^^^:^'? -rii ^Jfaj, ^g? 
 
 much did he spend for each ? 6 7»; '^ r sugar, now 
 
 « A u***; f'"" f* «S92.05; T. $986.75; C. |I776.ir,. etc 
 
 ml* ^rTi^n*"* v*""^'!' ^^•'^ ^*"«''' o^ '"<'l«««e« for $7125 ; ^adlold 
 
 for^wia iJcS 'nr'' '?*.f f ' * i'*^'^''- *"d *he remainder 
 tor what It cost. How much did he gam ? An». $1567.60. 
 
 2^3. Oasb ll.—aiven, the hate and percentage, to find the 
 
 rate %. 
 
 Bx. What per ceot of $450 w 27 ? 
 
 OPKRATIOK. 
 100 
 
 27 
 460 ) 2700 ( 6^. An$. 
 000 
 
 Of, A ^ 100^ = 65iJ,4fM. 
 Or, $450 = 10051^ 
 
 1= 1% 
 $ 27 = 6^, Aft«. 
 
 Ahalt«m.-|450 101005^ of itself. $27 i« 
 ^/ij of $450; therefore, $27 is ^2 7 of 100 <^ 
 •r^of27 times IOO5K = 6j'of$450. 
 
 Jtk^oflOOjij = (J5tof$460. 
 
 Or, $450 is 100^ of itjelf; therefore, $1 ii 
 ihi^'^'^^H = 1%. "Hi$i27 i» 27 timw 
 1^ = 65^ of $460. Ueiicethe 
 
 ' " ^Zy ■^'—'^'^'^'F'y ^"":» «y the percealage and divide by 
 P*^d that part 0/ 100 jper unt. which the percentage . o/th* 
 
 % 1 
 
% = 
 
 ik,t 
 
 eued deei- 
 
 )0. 
 
 15? 75 of 
 i2; etc. 
 lib.? 11% 
 .6; etc. 
 ? 6J,'« of 
 192, etc. 
 (? 9*% of 
 t5; etc. 
 E20 16 8? 
 B8 to with- 
 
 for tea; 
 w. How 
 
 ry; etc. 
 ; and sold 
 'emainder 
 567.60. 
 
 Jind the 
 
 self. $27 ii 
 
 , of 100^, 
 , of $450. 
 
 tharefon, 
 
 Bfore, $1 if 
 27 timM 
 
 livide by 
 tofih* 
 
 PMUMINTMn. 
 
 BXAMPLBU FOR PBAOTIOl. 
 
 ITS 
 
 1. At what rate i)er cent. miuhI we place $20 to have f 2 ? |5 to 
 have*0.2y? *1440 to have $2l.G0 .' xlHO 5 to have £12 16 4^? 
 |4to liMve$0.30? Arts. 10^; f,^; etc. 
 
 2. Wliat. per cent, of 40 in 15? ut 180 perches in ;Miicr. ? of \^\ ifl 
 "A? ofi IS i? ofy2gal. iH llgal. 2^it.? Ans. 'M^^: ^%; etc. 
 
 3. What fK>rc«nt. of 148 i8 24'!? of 30lb. Avoirdupois is Ulb. 
 4oi.? of 720lb. ie 601b.? of G20jd. in 46iyd. ? of 1401b. is 771b. ? 
 
 An$. \(yi%; 37^^; etc. 
 
 4. What per cent of $578 iu $26.01? of $250 is $H0 ? of I is A? 
 of£.H 15 is.'l^. 9d.? Afif. 4i%; *-ic. 
 
 6. Whiit per cent, of $3(iO will give 25% of $72? Ans. ^%. 
 
 6. Bought a horse for $840, and wold him lor $560; how much did I 
 Ioa« per ceiit. ? Ans. 'i:\\%. 
 
 7. A number increaHed hy 2 equals 14; required the iucreaee per 
 cent. 
 
 J885. Case III. — Givm, the rate per cent, and percentage, to 
 
 Jind the hate. 
 
 Ex. I lof?t $27, which is 6% of the money I had ; how much had 
 I at HrHt ? 
 
 OPERATION. 
 
 $27 4- .06 = $^'.0, Ana. 
 Or, $27 -^- A = i*60 An». 
 Or, &% - $ 27. 
 
 100% = $460i Afm 
 
 Analysis.— If 6%, or .06 «f lome 
 number \a $27, that numbar Bust b« 
 $27 -^ .06, or ^, -: $460. 
 
 Or, 6% of some number ia $27, 1% 
 of it ii J of $27 = |, and 1 tin^, or the 
 whole number, is lOU timet^ 'i » $460. 
 Henoe the 
 
 3S0. llULE. — Divide the percent <ige by the rate % expressed 
 decimally, or in the form of a common fraction. Or, 
 
 Divide the percentage by the rate %, and multiply by 100. 
 
 EXAMPLES FOR PRAOTIOE. 
 
 1. 36 is 10% of what number? 84 is 7% of what number? $3.60 is 
 15% of what number? $55.50 is 4^% of what number? 240 is 12i% 
 of what number? ilna. 350 ; 1200; etc. 
 
 2. $66 is 5^% of what sum? 1^ is I ^% of what wum ? J is 30% of 
 what sum ? /Ih,. $1200 ; etc. 
 
 3. £32 8 Bis 7^% of how much? 207 is 60% of how much? $1.82i 
 12i%ofhow n)uch? Ans. £432 3 4 
 
 4. $2.81i Ih 121% of how much ? 3mi. lfur= Iper. i.» (>1% 
 
 is 12^ 
 
 much ? 16i is 2^% of how much ? 
 
 -, etc. 
 
 Ans. $22.50; etc. 
 
 5. Jfthe perceiitage be $.^7.50, ind the rate 2.^%: what is the 
 
 Ana. $\ 500. 
 annually $145.60, which was 33|%of hie aaoual 
 
 base? 
 6. A 
 
 fkrmer saved 
 
 ; required hi« ia«om« ? 
 
^ i I 
 
 
 iij 
 
 I i,. 
 
 174 
 
 pmMmr7A«Hi. 
 
 3«7. Case W.—Oivm, the rate per cent, <md «w/yy,#^ «r 
 difference, to find the bote. 
 
 Ex. What nun)ber increased by %% of itself is equal to 477? 
 
 OPERATION. 
 
 1 4- .OG = 1.06 
 ^77 -f LOG = 450, Ant. 
 
 ^f' f5 = 477 
 
 ^S- = 450, ^n». 
 
 Analysis— A number increjis*.)! (^ (^'/^ 
 of iwelf, equal- loejjj, or 1.0(5 t4'il«^^<rtiiaife^ 
 by the condition of tbe qu«8UQ«, j^ 4J^ < 
 hence, once the number equal* 41T .-t. IJW 
 - 450. «' -•r »^ 
 
 Or, 65$ of .1 number is ., fi^ = J rf g|» 
 nun.b e,^„,, fg o^he number, ^^^"u^l^ Z^:::V%A ^ 
 
 2«« Rule— Divide the amount by 1 plug the rate %, ^mm^ 
 the rate %, expressed decimally, or as a common /ractiol 
 
 EXAMPLES FOR PRAOTIOB. 
 
 429.47?'^^ '' *''** """'^^'' ''^'''*'' ^*'»'°'^b«d by 59( „f k^if. ^^^ 
 2. What Humber increased by 5^ of itself, gives £7 J 1*^' ^*^ 
 ;'; i.Il?,:^.*'lll%''' '^^ •"'^'•^ ^''•" -y neighbor, wiaat^^^^fe^ 
 
 my neif^hbor possess? 
 
 4. The diflerence is $9.48i, and the rate, 12a* 
 base ? ' ' 
 
 5 Andrew has £189 9 8, which ib 751J leee than .l 
 what sum has the latter? An$ £'i^^ 
 
 $52"3n"'* ''^^ nuniber which, augmented by the 1% 0/ 
 
 
 7. A teacher spends 45^ of his inoome, and saves f85fc: miK** 
 ■18 income? » "o, vm«« w'm 
 
 8. After taking 1 2% of a pile of wheat, there remain 44 im4i^M< 
 how many bushels were in the pile? jt^a 7ti^ 
 
 «^fi89^Krr'? '"«''^*«1'»/ capital by 15^^ of itself, I find Vt^ 
 »5b82.b() ; how much had I at first ? |«w>««wi 
 
 10. A shepherd lost, by disease \2% of his flock : how luawy .J,*^ 
 
 oomposed his pr.n.tive flock, knowing that there rlrnZ TSif^ 
 
 1. A clerk sp-nds 20^ of6Gj% ...ore than i of bis incouW-^l-A 
 
 ic his income, iflie saves $533? '"^vw*», W'MM 
 
 12. A gentleman sold two horses at $120 each ; for one Uft^^sA 
 2b% more, and for the other 25* less tha,. hi« v«l..» • Ji I :^/?^^ 
 
 13. A man wishing tr. sell a horse, asked 25i;^r;';ilnr!S! 
 he finally so d It for 15^ less than his asking price,Tnd gSu*d f?£^ 
 H«m much did the horse cost him, .ad wba! iras his m£w «£f 
 
 Am. cont, $120 ; wkiiii prt5 !iS; 
 
175 
 
 omiifftt #f 
 
 MISCELLANEOUS EXAMPLES IN PERCENTAGE. 
 
 An 
 
 :.s\ ] !. 7! jl. 
 
 J-^;»'^Jf ;'<"70cut. Iqr. im. 
 
 2. *lg IS 1% „f what nnm^T? .„, 3.,on 
 
 3. P.nd H munler which, .!Hr,ini-he,l bv \i^% of itself ^ive. iJS" 
 
 nianyremaln? ' ^"''^'' remainder by sickness; how 
 
 6. I 8oJd cloth at :£! in q « . j i- , . •^'»«. 819 men. 
 
 how mucl, did i, "i!. ^L , ^ ' "'"'"' " ''"' "i* "f ""• <=»»' i 
 
 -hat LZ ;aS."t '"' "'''°'" ■' '■'*«"- "- hi "weetlv ™1 +; 
 
 baL4'r'hS:tsct:^3fd fo-ii,"^'"' ' """ '^- «^i=o '"''■ tui:\e 
 
 Jj. Waatp.. cent, of a „,„„b„ ,ive. 3.J« „f ,,e |*„T,f,lt.. 
 
 did tbe cargo TOtbim? '"°'' """ "' " '»« "f-'-^i li«' •"»ol, 
 
 H. There remains 2^,' vd fl »; >. *• ■• "*"'''• •^J827..'50. 
 
 or iy „„a, .™, 0. liX"',,:^';: ,°' ""™' """t;'?i'tV''* 
 
 ».«; ^.t^M^S or bf ';„,:S'!"" ,'--. .<;.."« tLe'Veattas 
 habitants ? ** population j what is the number of its in- 
 
 16. A fi8h.n,onger had 720bbl. offish, and sold 2Sftlf ^ ^T^"^' 
 cent, remamed unsold? ' ^«Hbbl. ; what per 
 
 {s* Gav- J'^'p'^ ^'^^ «^h"- "'-"V lb. ? .,„, ifSt s'?' 
 
 lo. viave to aBenovo enf R,,f.;rf,. 901 i i. . I'THI), boz. 
 
 of my entire crop ■^Z^^^^T^f''^'^^ "'^J'^'' ^^^ I'45^ 
 
 19. What per^cent. of ^0"^ o 1 jve^ ? '"'"'"'"^ ^ '}'''' ^^' 
 
 20. Joseph having received^aiiiv V • ,- Ano.'lh%. 
 A short tinfe after, hl^^l^lJfSTl"^ 'V^^ "']' '" ^^^°k' 
 
 remained £1280 17 6- wLt wiV S. o^'^,''^''' ''"'^ ^''"e still 
 
 'ji r . . ' wudi was the Giracv ? Ai^i +'9ij'i ik on 
 
 ?o«fo, oLrirr„r4 L^eur.', rs ■ ,^ ,;''^- ."■ •- -*>* -i^ 
 
 battle, and 6* 5?S" eLfder di^'n'ni; ^'''' ''^^f. ^" ^''^' ''^^'^ of ' 
 The ditfer«a*betweeri?numbe^onlrH ^^"t^ ''^^ ^'"'^P'^^'^' 
 wounded WM 164, fcow«»lv Z« . ^^!?'^ ""'^ ^'^^ "»"'l«"- ^fth*. 
 
 «i io» J MOW muv BMB compofltd th* army ? ,*«,. 22d00. 
 
17< 
 
 PEBetJHTAat. 
 
 Lef>' r ^r, ce :* Va^ T^^'^^l *^« ^itj. whieh distance i, 9A %o( 
 
 ^^. Th. taies orr, rca'm&ah 1!''''"^ ^'^''' the co,ui,at ? 
 
 yearly; tiieVonhe^"^"'*'^'''^^"^^"' *'«^""t to $i^ 
 
 the value of ih.Clorj ? ' " '''' '*'"' '*''' i«' '^^^^'J" 5 '^i-at i. 
 
 30 Mv ..Jn.. .<• . : . .""'^" *'^^ Pa»' more than Leo? 
 jear/aSfZe/aJS 8'^^'" '»^*° 'hVt of last 
 
 increase at the rate of 271^? " "> oe in 1879, euppoamg it to 
 
 nnt ^^' V ^«'»" of a nursery in two years wb £2?1% ''f ^'^^• 
 of the second year were 6* ffr«.«f^r *hu« fi! ^/^ *2178 ; the gams 
 
 ^re thegaia« ofeach year?^ *^^ ^*'** '^"^ y^*-^' *hat 
 
 i4n« -twiner s % «n :; 
 
 — o— «••■» wi ratjii year i 
 
 I4 4j^,2iid.yr. 
 t 2L% then, 349( of 
 
 q^i T I J 1,X^^' gwnsof ide let. year; £1120 1 
 much remaios i„ the bank?^ ^'^ °^^^** ' '^1 tro'^'o^"^ 
 
 what per cen? of hi' rlrenuf ,?;afh'ar"t!^t/' *'! ' 1""J"««. W6 ; 
 remains? T«? 9I 3!^ oroS®' ^""^ "^''^^ P*' cent. 
 
 35. Ifanomberbeaugmentedtfli/Jf il/*'^^^^^ ^^*^- 
 
 whirrs "KS^'V^'^-^^r •" ^»»^ PU'«haL'%oe, 
 the whiHkJy ; but he lost Ji^' ^'^ ^^^J^ «» the -ine *i»d 5% on 
 
 entire sal JifiS 10 ^hoi1?Jh\^\^*'''.*'' '^««'^«^ *'«>'"»'•« 
 ehaodiaer ' ""**'^ •^'** ^e pay for each sort of mer- 
 
 Maurice? ^'*^'''^*^«*^?«*her $22320, how much has 
 
 wiiL\taStf"^5?0o"TtTr 'f ?rn^ ^° ^''^ Ist.'trFtw, 
 er as fuUom Feb Si' .t l v"*^ ^^ '? "^""'h«' I read in his Ledgl 
 
 S,,,;, 1 ^ ' ^ - '^^ S'"" ' *^"'V' J 3* loft« : A n«ua« .lo< „„:.« ! 
 
 — ^.- ...J . «»^ain, jNov. 4^% gain; what were the net 
 
 monthe ? 
 
 !-■ - /w .^jo, v^cL. ^ijt iruiii: J^ 
 profile o( hi* businesa during the 
 
 :li 
 
nVPLI IJfTlRlBT. 
 
 SIMPLE INTEREST. 
 
 in 
 
 .u*i*'?" 'i**6f®St J8 tbc compensation mado bv the hor«— , t. 
 the lender for the use of money ^ Dorrower to 
 
 22?" J''^ P^inciral is the sum lent. 
 of 8100 Jl^4 ^/® per. cent, is the interest paid for the loan 
 %yTyJ '^ ''"' '"""" "^^ *'"^« -hateverfwhioh is ordr 
 No«._The rate par -at. i. ootnmon.y a,pr„,ed d,oia.ally « hundredth.. 
 
 §22" I^^ Amount is the sum of the principal and interest 
 2»3. Simple Interest is the sum paid for th« „J T!? 
 principal only, durin,. the tin.e of the lof.' ' "** ^^ '^' 
 
 It T^nf;,- f ff^ Interest is the rate per cent, established by law 
 It varies m different countries. ^ ^' 
 
 ?oX-^''2t:^r,lfZZS^^^^^^ ^e ,aws of tl. 
 
 intended by the partie*. ^ ' "'"'^y* "nd«*"tood to be the one 
 
 a»5. Usury is a higher rate % than ie allowed by law 
 N0T.._The law prohibit, u.ury and uiake. it subject to a penalty. 
 
 296. '^<>Md the interest on any sum, at an, rate %, for any 
 number of years and numiks. " 
 
 Ex. What is the interest of $780. for 5 v(^'a.t» am< a .l .,. 
 
 years), at 7515? What is the amount ? ^ •°*^ ^ ™'*°***'' (^* 
 
 OPKKATION. 
 
 $780 Prin. 
 .07 Rate. 
 
 154.60 Int. lyr. 
 
 5i 
 
 1273.00 " 5yr. 
 13.66 <' 3rao. 
 
 $ 286.65, ,^.. 
 
 780.00 Prin. added. 
 
 >Hyr. 
 
 ANAtTsrg.-The intereet of ,j,l for I yea- at 
 
 — :*o^.'jO. If the interont Of $780 for I year 
 
 Or, jj,j of the principal « the interoat for 1 
 year at 7^, The amount u found by adding 
 the principal and intermt together. 
 
 $1006.65, Amount. 
 
 397. Rule —I. Multiply the principal by the rate % »• 
 
 pressed decimally, and the product will give the interttt for <>m^ 
 year, ^ ^** 
 
 II. Multiply this product by the number o/ year$, and the month* 
 
 as a fraction <}J a year, for the interegt required 
 
 The amount {» found by adding the principal and interett to- 
 gether. 
 
 NoM.-When part of the time for interest >■ giren ia aeBtha er d^n 
 
 .»onth u eonrider.4 « ^ of a year, aad one day*a. ^ of TmouA ^' "^ 
 
 6* 
 
 t I' 
 

 1ft 
 
 SIlfPLl INTBU0T. 
 
 1. 
 
 2. 
 
 3. 
 
 4. 
 
 5. 
 
 6. 
 
 7. 
 
 8. 
 
 9. 
 10. 
 11. 
 12. 
 13. 
 14. 
 16. 
 16. 
 
 17. 
 18. 
 19. 
 20. 
 21. 
 22. 
 23. 
 24. 
 
 BXAMPLE8 FOB PRAOTIOl. 
 What ie the interest of 
 
 * lb tor 7 years, at ,9^ •/ 
 J656 for 2 years, at 7^ ? 
 
 SlUO for 3 years, at 8^% ? 
 
 M7 I'J Z'"'.* y^ar« 6 months at 856? 
 
 $76^50 for 2 years 2 months at 5?? 
 |444.44 for ..years, at 6f5«? 
 I2^2i fl/*"/ * r**'' 2 months, at 75^? 
 
 fIfe7I.32for 14 months, at ()56? 
 What i!^ tlie amount of 
 
 181.81 for 8 year« 4 months, at 6%'f 
 
 $894 for 20 months, at 65<? 
 
 »760 for 6 years 7 months, at .5^^ ? 
 
 An$. $54 
 4n», $8.96. 
 
 iln/?. $155.62. 
 
 Ana. 1435. 
 
 -4n«. $166.86|. 
 
 Ans. $45.27. 
 
 /Ins. $8,258. 
 
 /ln«. $12,892. 
 
 ^ns. $8.28 + . 
 
 Ans. $78,414. 
 
 Ans. $656.5125. 
 
 Ans. $116.99. 
 
 Ans. $60.39. 
 Ans. §1110.284. 
 Ans. $8797.25 
 Ans. $122,715. 
 
 a»S. rojind ths interest on any sum, for any time, at any 
 
 rate %. * 
 
 SIX PER CENT. METHOD. 
 Jo^flnd .be i.to«. of »I for .„, «„«, ., e*, .!«,, « aaj- oth., 
 
 I .'a.u' ■'' "'''' '*'■■ " '^ ""'' ''''•' " -"""J- Hence, 
 Sdaj's. Hence the "'""* P^^ ^ay, or 5>U(U for every 
 
 Sll>1^. Rule. —I. To find the rate —Galle.jpt^ uo.,^ « nc 
 
«atrht iimftMT, 
 
 17f 
 
 IL To find the interest :-^„,,y, the pnndpan, eke rate. 
 27 dryeV "^^'^ '' ^^^ •"^'^«' ^^*«fiO, at 6%, for 3 years 7 months 
 
 OPERATION. 
 
 Tnt. offl forSyr. 
 " 7 mo. 
 *' 27 days. 
 
 " 3yr. 7mo. 27da. = $0,219^ 
 Principal, $660 
 
 « 
 
 « 14 
 
 « «< (i 
 
 = $0.18 
 = 0.0.S5 
 = 0.004^ 
 
 Analtsw,— The intoiwt <i( 
 the given principal it 600 timea 
 the interest of $1 for 3 years 7 
 "°i',"l«27day8. Ae the int. 
 ?/»'f9rl/''.«$.0«, for 3yr. 
 It will be $.18 ; and lince the 
 interest for 2 months ia $.01. 
 for 7 months it will be as manr 
 bmesS.OI.M 2 is contained 
 m 7, or Sjots. ; again, g.nce the 
 Interest for daya is $.f07, for 
 2T days, it will be as many 
 times $.0f 1, ds rt is contained 
 
 :-- jn 27 or 4i milU. Adding 
 
 I»e.««, ,,44.87-0 ^.TJo'^O^IST'llEu'S 
 
 OPERATION. 
 
 10.48 
 0.04 
 
 0.001 i 
 
 = Int. on II for 8yr. 
 = " " '* " 8mo. 
 
 — « 
 
 « 
 
 « 
 « 
 
 <4 « 
 
 « 
 <i 
 
 II 
 
 « <i 
 
 9 days. 
 8yr. 81110. 
 
 dda 
 
 « « u u 
 
 4( 
 
 at I^l^ 
 «7jt. 
 
 $0.521^ = 
 |0.086U== 
 
 tJ 
 
 10.608^= 
 
 $750 
 ».608A 
 
 6000 
 46000 
 312^ 
 
 $466.312i =» Int. required. 
 AHALTflii — After findinj? the inferii«t nf m *.- u • 
 method laid down in the pfo eiin?ra " ,e wL' "f !!° """' ^ «5l5. by the 
 find the interest at l^; I then mu- ipTy' . VT't ''" 'T' '''■ '^' -^ then 
 interestonJIfortfaofHventime atrT J .: ,^ '^"'' ^- *"^ obtain th-> 
 
 _?*?;»?.l•;!r.^:..^|■«^'¥J■ ■■- greater „, l«. .k,„ „! . 
 
IM 
 
 h 
 
 i -' i' 
 
 '.nil 
 
 
 I 
 
 I '1 
 
 I 'i 
 
 SIMPLE rifTMMT. 
 
 
 i.f-Ml.n.1 p„. ,f i,,e,f „ tt. Z; ^imT.".':*"' ';»» "■.'" '"'""• "4 
 
 unr 
 
 When the ,i,„e i, short, b„,i.«, „e„ „,e the following 
 
 >ou,aMA (TheVirZ a^tir^'f 'tT'''"'^ 
 eeed at in the above rule. "iweat at b%,) Th, r, pro- 
 
 METHOD BT ALIQUOT PARTS 
 
 .09 
 
 Rate %, 
 
 Interest for 1 year, jSTTglsO 
 
 _ 3 
 
 Int. for 3 years, #113.8050" 
 
 Int. for 6ino. = i of lyr. 18.9675 
 Int. for2mo. = iof6mo. 6.3225 
 Int. for I5da. = J of 2mo. 1.5806^ 
 !nt. for 3yr. 8mo. I6da. ?140.6756i, An$. 
 
 AK4LVfis.-HaTingfound 
 the f.pferest for lyr. and 
 then for 2 jr., the int for 
 .''mo. la ohtained by finit 
 taking i of I j0u's int.. 
 tor (imo., ud tboii ji of 
 this last int. for 2mo. And 
 ^mcolSdaygareloflme., 
 or i of 2ino., we take i of 
 imo.V int. for 15 days. 
 The int. ag found for tht 
 fccreral parts of the wholt 
 time, added together, girt 
 the interest required. 
 
 VnTB wi,« ^i. . tne interest required, 
 
 ample is called $140.68 *' *''•' '°**'"«*' »" *•>• »koT« ex- 
 
 II. Anrf ^Ae interest /or the months and day, by aliqxmt na^t. 
 The sum 0/ the partial interests mil he the interest reqXed 
 
 METHOD BY MONTFLS. 
 
 Ex. What i« the interest of,m.20 for 4yr.7mo. and 15da. at6^^? 
 
 f X ^ 
 
 = $6.7166. 
 
 ^. The above u th* product of the prin- 
 olpnl, rate percent., decimally oxpru-eed 
 in souths ani «1i»«imaU of a mo«th. dir 
 U«i hy IS <-■ I X i. 
 
 ^ 
 
 12) 1.4520 = Int. fori jr. 
 
 .1210 XI Int. for 1 mo. 
 
 55.6 
 
 6050 
 6060 
 6050 
 
 fCTUMo. lai. 1^ 54 5 ^^ 
 
8UIPLE ranBMT. 
 
 181 
 
 METHOD BY PKOPORTiON. 
 
 «f fo .II^'sl " "" '"'"■<'" <"»^2'=»' " ««. for 4 ye.rs 6 „.<.,.tba 
 Sol. 100 , 6 X 4rr. 6„,„. loja. :: ,52.50 ;«, whence the 
 
 ■XAMPLDS FOR PI'vACTrOB 
 «• n BOLTED BV A«T OF THB ^OVE METHODS. 
 
 What 18 the interest on 
 
 i* t3s22''r2l7 ^^"•^»'>d I6da.. at 651;? 
 
 fi. f H3 for 2yr. and I'rnc, at i^% ■? 
 ;• f**.-^,^ '•^r lyr. and 6mo., at 6<fe'' 
 
 S* f f J'?J ^'"^ ""o. 4da., at 6^ ?' ^ 
 
 J-|i;-^*^'«^'y-«n'nOmo,at756? 
 
 10. i,b Jl ^ for 2yr. 4nio., at l^-' 
 16. $3^56 for fimo. ir.da., at 5%? * 
 
 18. $72.1 2A (nr i\y\. o„J = L ,i*'^ 
 
 21. $7671.09 for .iyr. Sino. 5da a. <a:? 
 
 u. ^tLWr" '°"'» " '»* 
 
 W. iS68.8« for Ifimo. and Ma., at 10% ? 
 
 Ans. 
 Arts. 
 
 /4 ns 
 
 Ana. 156.25. 
 
 ■ $1347.82 + , 
 ^ns. $14.84. 
 i^IlI.177 + . 
 Ans. $31.46. 
 Ana. $4,254. 
 
 ;• -^8 15 2^. 
 
 ^ns. $5.01 + . 
 '-!«*•. $16.86 + . 
 -ins. $;^6.396 + . 
 Ans. $1:M],S48 + , 
 Ans. $20.04|. 
 Ans. $6,468. 
 Ans. $75,208;. 
 ^n». £1 1 5I. 
 /!«». $7.70. 
 ^n«. $459,94 + 
 Ans. $18.51* + . 
 Ans. 137.37 + . 
 Atu. $21.0.39 + . 
 Am. $2258.70 + . 
 ^na. $10. U| 
 
"^^ 
 
 
 182 
 
 24. 
 
 26. 
 
 26. 
 
 2T. 
 
 28. 
 
 29. 
 
 30. 
 
 31. 
 
 32. 
 
 33. 
 
 34. 
 
 35. 
 
 36. 
 
 37. 
 
 3H. 
 
 39. 
 
 40. 
 
 41. 
 
 42. 
 
 43. 
 
 44. 
 
 45. 
 
 46. 
 
 47. 
 
 48. 
 
 49. 
 
 oO. 
 
 BIMPLI INTEBBST. 
 
 $1040 for 6yr. Umo. 29da., at 7 %? 
 £24 18 8 for lOmo.'aud 20da.. at 7%? 
 $.')!. 17 for lOino. and 29da., at I %1 
 e048.12 for 6yr. Imo. 3da., at 7 % ? 
 $500 for 2yr. Cmio. 12da., at G% ? 
 f t)09.50 for .Oyr. oino. 4da., ai i< % ? 
 £92 12 for 2yr. lOiiio., at C^ %1 
 $G80 for 4yr. lino. 16da., at (I % ? 
 $2000 for lyr. Smo. lOda., at D ^? 
 $471.11 for4yr. and 8nio., at 7', %? 
 
 $190,016 for ;^n.o. 24da., al 
 
 H^'l 
 
 £427 8 8 for lyr. 5mo., at 5^%? 
 $708.20 for 2yr. 2mo. 12da., at ■[%%'{ 
 $640.70 for Brno, and 26da., at 5^ % ? 
 $730.50 for IBino. and 23da., at (IJ %? 
 $'j50 for 4yr. 7nio. 9da., al i^4 %? 
 £81 10 for 2yr. and onio., at 4| % ? 
 $150.80 for 7ino. and 20da., at 7 J % ? 
 $1072.40 for 5 yr. lOnio. 5da., at •;.', ^? 
 $601.20 for 4vr. 2mo. 3da., at 8^ %'>. 
 $1425.20 for iyr. and lOda., at4.i%? 
 £319 10 9 for lyr. lOmo., at 4g %? 
 $742.30 for 4yr. 9mo. 19da., at (>l%'i 
 $1370.40 for 3yr. 4mo. 27da., al 7.^ 9^? 
 $160.76 for 2vr. llmo. 4da., at o| %? 
 $1463.60 for 7yr. 7mo. 22da.. at 6^ % ? 
 £184 18 8 for lyr. 9mo. 6da., at 3i ^l 
 
 What is the amount of 
 
 An«. $436,596. 
 Ans. £1 11 0i + . 
 
 ^ns. $233.72 + . 
 
 Ana. $296.19 + . 
 
 Ans. $168.30. 
 
 Ant. $164,888 + . 
 
 Ans. £34 16 4 + , 
 
 Ans. $26,037 + . 
 Ana. $:iGI.178 + . 
 
 Ans. $6.98 + . 
 
 Ans. $213.35 + . 
 
 Ans. $102,618 + . 
 
 Ans. $350.30 + . 
 
 ^ns. $727.24 + . 
 
 51. $0,146 for 9yr. 9nio. and 9da., at 6 ^ ? 
 
 52. $1051.60 for 2yr. lOrao., at 7 % ? 
 
 53. $168.13 for 8yr. 5mo. 3da., at (i ^? 
 
 54. $100.25 for 2mo. and 29da., at 4 % ? 
 56. $1,011 for lOyr. lOmo. lOda., at (i ^? 
 56. $1000 for Syr. 3imo. 29da., at 5^%? 
 '".7. $168.60 for lyr. omo. and lOda., at 6i%? 
 6%. $2000 for Imo. 6da., eX&l%? 
 
 59. $0.06 for 20yr. lOmo. 15da., at 8 ^? 
 
 60. $326.25 for 2yr. 9mo. 12da., at 6^^? 
 
 61. $496.95 for 6yr. 5mo. 6da., at 6| %? 
 
 62. £109 3 9 for 7yr. 9mo. 18da., at 3|^? 
 
 63. $2560.75 for 4yr. 3mo. 26da., at 6^51^? 
 
 64. What is the interest of $1660 from April 9, 
 
 65. What is the amount of $175.08 from May 7, 
 
 ».'^l uv. 
 
 
 Jns. $0.23 + . 
 
 Ans. $1260.045 + . 
 
 ^«s. $253,119. 
 
 Ana. $101,241. 
 
 ^ns. $1183.18. 
 
 Ans. $2013.12i. 
 
 Ans. $384.09 + . 
 
 to November 10, 
 Ans. $50.2S|. 
 1861, to Septeni- 
 Ans. S204.2r 
 
 66. What is the interest of $176.89i fix)m January 6, 1868, tc July 
 22, 1869, at 6^^? 
 
 «7. What is the amount of $175«.76 from Jun« 29, 1860, to Febru- 
 ary 12, 1863, at 7 f(? 
 
•nfPU INTBftlM. 
 
 183 
 
 T, «7J»" '"'•'"""' °' ^' 2 « fro., i'aroh 17, to D«>,aib« 
 
 IMS. Ti%l" ""' '"'"*'■ °'»l"8-'9. ffon- Ma; 7, 1868, tojuly IT, 
 July ..TS,'..'^*?"'""^'' ' ' *°'" S«P««-*^"^ri8«;to 
 
 EXACT MBTHOD OF OOMPUTINQ INTEREST. 
 
 805. In the preceding methods of computing interest, which 
 are in general use, we have reckoned 30 days to the n.on h and 
 12 months to the year which allows to ea^ch year 3 b" instead 
 oofL^f oor^r'' ""''^ '^'""^' " these calculations are 
 
 The following exaet method is used hy business men in oom- 
 puting interest when the time is short. 
 
 p^e^^I'r^*** '*"' "°^ '"•*'' '* " '«" """» • y*'- •■ «■<"««» by the table o> 
 
 aO«. KuLE.--Jf«/<i>,/y <Ae interest of the principal for 1 «ear 
 
 Inf Tt'^Tn'' "-^ ^"^* *' ^ ^^^'^ '^^ *'"'^^««^' and divide the 
 product by 3b5, /Ae jao<jm^ will he the interest required 
 
 0,^'l8Ti;" 'ViV"'*'*'' of #346.60, from February 5, 1869, to Aug. 
 llt'imlH"^"^*' ^' '^ *• "^•^26.60, from J^^^^^^ 
 
 20, 
 
 November 20th. ? .^ ^-ofl 2(i' 
 
 4: ^^ ^fiSf i""*^ "8* "f*""". from M«7l,ih:, 1868,' to 
 
 .. tr"4.,*m'r^ " '* *■ °' »'""'•«■ *»" '""^ »•*- '»«», 
 
 ..^ «1'4:i5ris?f,"^» o.- *a u ,. •« ^. ,„,.. 
 
 ii 
 
...4^ 
 
 Hi 
 
 •4| 
 
 I J J. 
 
 *^ FAMTAL PATMflMM. 
 
 PARTIAL PAYMENTS. 
 
 2M»r. Partia' Payments are payn.entB of part (»f » not*, 
 
 Bw»«jOroth'rmoihyed obligation, made at different tim.M. 
 
 J he payments are acknowledgod by reooipta written by the 
 
 Skliwsement '^ ^^*^°"°^*'''" '''^''^''^'""' ''^'°^ "'^ ^*"«<^ 
 
 ,*f^*^'.^^y^«-— I- If *he iDt«r«Mt be paid by days .—Multiply 
 m pnneipal by the number of day which have. tUumd before any 
 payment was made. Subtract the /i^$t payment, and multiplu tht 
 nmnnderby the number of day which passrd between the firit 
 '*ml »eMndpayrnetU: Subtract the ueamd payment, and mtUiiply 
 thu fm^nnd^r by the number of day, irhich passed between the 
 
 U Ti '^"•^i'"^»»«»»'- Subtract the third payment, eti'.. 
 «.i > '*," ^AeprodMC^A' together, audfind the intertst or i'heir 
 
 ntmfr/r one day. 
 
 m. If the interest is to be paid by the week or month :~ 
 mm%iufe weeks or months for days, in the above rule. 
 
 £je. 1 . How much principul nnd intercBt have 1 1.> pay on the lol- 
 Kmttg note, due Dec. 29, 181 i .' ^' 
 
 ^ ^^' Quebec, Sept. 8, 1868. 
 
 U^^tlZ^'^'r'^J I prun^r . to pay Jame. Carroll, or order, foar 
 hmdf^d Md twenty dollars, with interest, at 7 % ? Tlic.n.aa Brown. 
 
 On this note were indorsed the following payments :- - 
 
 Oct. 1, 1869, received, t22 28 
 
 Nov. 20 1869, " :;Voo: 
 
 M»7 8, 1871, " 247.87. 
 
 OPERATIOK. 
 
 FfSTO Sept. 8, 1868, to Oct. 1, 1869, there are 388 days. 
 " Oct. 1, 1869, to Nov. 20, 1869, '• '• 60 *' 
 ^ Nov. 20, 1869, to May 8, 1871 " " 534 " 
 " May. 8, 1871, to Dec. 29, 1871, '< " 235 " 
 
 ,^ .•-.-4r »f *^ *" '^^ ''''^' = »'85682.4« for 1 <Uj. 
 Balance | 99.86 for 235 days = | 2.3464.74 for 1 d»y. 
 Whole interest = that nf $,S91993.28 for 1 day 
 
PABnAL PATMKNTB. 
 
 186 
 
 Inter««flt on $391 '93.23 at 7 % for Irr - «97dSQ KOfti 
 
 Hence, the i.t. f.r 1 da, J?2743&T-. 365 = JtsSt f/ 
 
 Then interest due =$76.1767 + . 
 
 HAlance on note » 99,8500. 
 
 $ 460. 
 
 Principal and interest due $176.0267 + . 
 
 Montreal, January 13, 1869. 
 
 fJ: v.^'"? T"*^;'' *^*'" '^*^*' f promine to pay Loui. Merrill, or , 
 fo^r^hundred and Mj dollars, Vith internal 6^. "r Value re! 
 
 A, N. Moreau. 
 
 I 325,^. 
 
 Kin/?f»ton. July 26, 1866. 
 
 tl,rl"/K!!!!"7Tf •^^'■^«**^' ^^ PfomJ^P to pay Lawrence Boyce, or order, 
 e ece .; '"'^'^'y^'^ •»'' i'^ ^loHare, with interest, at 7 %. Val- 
 "^^^^"''^ ■ L. R. Whelan & Co. 
 
 26^Sy"?T?^S!'°'S' ^""-l^' »8«7,fl2l.l8; M»roh 14, 1868, $72.46; Jul, 
 ^6^by, $13J.65. How much remained d.m Sept 8, 1870 ? ^«*. I4I. U 1-f . 
 
 $1737^,. 
 
 Toronto, March 6. 1868. 
 
 4. On demand, we promise to pay Fisher & Howe, or order one 
 
 w«aSM"/;'"MVT'^°"*^'^^*^'*^^^^^^ Sept. 10, 1888, $70. How much 
 ' A*s. $466.763-|-. 
 
 1 12 to. 
 
 Ottawa, Aug. 18, 1869. 
 
 *Jj *Y ""^^"^ received, I promise to pay R. N. Kelly, or order, 
 twelve hundred at.d forty dollars, on dema.fd, with interest, at G^. ' 
 
 Joseph Rogers. 
 1869*'«4r^"rt ^"l'"*f«^,*Ji^^l^'„^^^*' *»''^5 0<"- 28,- 1869, $217.86: Deo. 12. 
 
 ^ ^"^ ^ ^- Halifax, June 2, 1868. 
 
 ri^Lff ;.-'»^fe<^«^«J. Ipfomise to pay N. J. Web.ter, or order, on 
 demand, three hundred and four pounds six shillings and six pence, 
 with interest, at 6 %. I q^ ..^^pP,^ ' 
 
 n^H^^T^M "^v^oiMSf^' ^1 1» «5 Oct «. ISflS, ^62 8 0; Dec. 
 11, 18M, £»4$} M«^ 2». 1809. £106 9 1|. How much wm due 6«t. 7 
 
 i 
 
 3;, 
 
IMAGE EVALUATION 
 TEST TARGET (MT-S) 
 
 h 
 
 
 A 
 
 
 *^o 
 
 y. 
 
 4a 
 
 1.0 
 
 I.I 
 
 I^I2.8 12.5 
 
 ^m mil 
 
 IL25 i 1.4 
 
 i 
 
 JA 
 
 1.6 
 
 Photographic 
 
 Sciences 
 
 Corporation 
 
 23 WIST MAIN STREET 
 
 WEBSTER, N.Y. MS80 
 
 (716) I.V2-4S03 
 
 # 
 
 <^'> 
 
 \ 
 
 \ 
 
 V 
 
 
 jm 
 
 ^4S 
 
 <f!^ 
 
 ^v- 
 
 
<- 
 
 A^ 
 
i86 
 
 PR0BLIM8 IN INTXRX8T. 
 
 $ 14696.50. 
 
 St. John, June 17, 1866. 
 
 '(if 
 
 ■I. I 
 
 !i: 
 
 7. ln,r value received, we jointly and severally promise to pay 
 ^ilwar.| Hiimmond, or order, on demand, fourteen thousatid .^ix Inm- 
 dred and ninety-«ix ^^ dollars, with interest, at8 ^. J. P. Rooiu-y. 
 
 S. E. Hamilton. 
 
 Rj?'^2i'f«'!.*!fn'"'''i?T' ;^?oPio^' ^^^' *4927.80 ; Deo. 7, 1866. $rS4.40 : June 11, 
 867 I1-J64.40; Feb. 7, 1868, $5685.80; Dee. 19, 1868, .*634.4(i. How much 
 ^rnained due May 1,1869? i«..$2006. 2S6+ 
 
 8. A farmer gave a mortgage on hie farm for §4875, dated June 1, 
 
 '^^^'■*f i'' P^'^ '"^ y^*''^' "''^'^ 7^5^ interest. Six months from date 
 
 ?«7r*.>*i^-^f ' ^""K^^' ^^^^' ^^^^^5 -^"1^^' ^87«' ^7.50; Jan. 1, 
 i«n, fiju ; how much was due at the expiration of the given time ? 
 
 ^fW. i8r,!l.')..Sl+. 
 
 probli^:ms in interest. 
 
 30». It will be observed that there are Jive parts or terms con- 
 nected with each of the preceding questions in interest, viz : the 
 Principal, the Rate %, the Time, the Interest, and the Amount. 
 1 he investigation of these involves five oases : I. To find the in- 
 terest; II To find the amount; III. To find the princioal : IV. 
 lo find the rate 5*; V. To find the time. 
 
 The Oases I. and II. have already been solved (296, 298). 
 
 SIO. Case IU.~ The interest, time, and rate %, being giv«n, 
 to Jin d the Principal. 
 
 Ex. What principal in .3 years, at 6%, will gain $47.70 interest? 
 
 OPERATION. 
 
 .06 int. of $1 for lyr. 
 _3 
 
 .18) $47.70 ($265, Ans. 
 
 By proportion. 
 $100 : ar :: $t; X 3 : $47.70. 
 
 AjtaIiTSis — We fiad the interest el 
 $1 for 3 yean. Since it require! 3 
 years from a principal of $1 to g»in 
 18 cents, it will require a prinoipalof 
 as many dollars to gain 147.70 m 
 $0.18 is contaiued times in $47.70 : 
 dividing, we obtain $265, the required 
 prinoipal. Henoe 
 
 311. Rule. — Divide the given interest or amount by the in- 
 terest or amount o/$l for the given time and rate, and the quotient 
 will be the principal. 
 
 EXAMPLES FOB PBACTIOE. 
 What principal will ia 
 
 1. 6yr. .Smo., at t5 %, give $66.26? Jin$ $2*50 
 
 2. lyr. 6mo., at 6 %, give $1.2924 int. T Atu. $U46. 
 
PKOBLBMs IN INMMat. 
 
 3. Jnio 18da., at 4 %, give $27.60 int. ? 
 
 7. 8yr. 8mo 12da t/-^' ^"'.^ ^^^•''16 interest? 
 
 187 
 
 ^»i«. $1800. 
 Ans. $120. 
 -4n«. $342. 
 
 8. lOvr lO.nn -ynV *' ^'^'" «'147.9485? 
 
 ''*{;;' ^^^it is f he sum ? 
 
 to produce $619.15 ? ^"^ ^^^ *^*^''' »' 7^ eg, 
 
 313. Case IV.- 
 
 iiionth, is $24 for 90 
 . $400. 
 if- sufficient 
 
 -The pHndpal, time and int^est beinggiven 
 tojind the Rate %. ' 
 
 ^-. The i„t,reat of $750 for 4 years is $,80, what is the rate ^. 
 
 OPaRATION. 
 
 $750 
 
 ^ 
 
 r^O.OO) $180.00 (65g,^„,. 
 _180^ 
 
 ^^' proportion. 
 «'00 : $750 :: ar X 4 : $]80. 
 
 A^Ai.TM8.-Wefindthe5ntereet 
 on the principal for 4 years at 1 % 
 bmce the interest of $1 at 1 % fbj 
 4 years is 4 cts., the interest of $750 
 
 will be 750 times a. much, or *30. 
 Now, If , 'tJO is I %, $180 will be ^3 
 
 T'7J' ^ f'f!> '" contained times 
 m $180 J dividing, we obtain 6, ♦he 
 required rate ^ , gence the 
 
 rate % required. ^ ' ^ *' "'^'^ ''^^ ^"^'^'^'^^ «'^'^^ ^' t^^ 
 
 EXAMPLES FOR FRACTIOE. 
 Required the rate per cent, if the interest of 
 
 \'l\lt^^V'^T- '2da.i8$1.3..36. 
 
 r «i J;; i o ^^'^ ^y**- '^'"o- 'S £3 JO .'-,3. 
 0. $125 for 3yr. 6mo. is $32..S7A 
 
 5' ll5r/'"".^^'"o^'"°- 2'^da- is $274.77. 
 
 8. $36 for .Syr. Smo. 19da. is $8,034. 
 
 .J. i 1 "^^f^ '■"^'' ^ '""'^ «^ or anj other 
 double iieeif in 14a years? / ""•t'r 
 
 Ana. 9 ^g. 
 Ans. 1 2 %. 
 
 -^ns. 6 %. 
 
 Ans. 7 %. 
 Ans. 7f %. 
 
 4n«. 5i 95. 
 
 a«m, be on interest, 
 . .ruu 01 ...10/. oy- whwi % was the dividend ? 
 
 to 
 
 814. Cass V. 
 
 ■The principal, interest, and rate % 
 given, tofttid the Tim*. 
 
 being 
 
s . 
 
 ! "! 
 
 1 I 
 
 1 ' i 
 
 1 1 
 
 1 1 : 
 'ji 1' 
 
 188 
 
 PROBLUU IN INTimiST. 
 
 Mm. Ib what time will $460 gain $64 inUrest, t,t 6 %7 
 
 OPEKATIOM. 
 
 1460 
 
 M 
 
 •27.00 ) 154.00 ( 2yr. 
 54 00 
 
 By proportion. 
 •100 : $450 :: 6 X ;f i 
 
 Ana. 
 
 $54. 
 
 AwALTgia.— W« and th« iatcntt 
 oil the given principal for 1 y»r. 
 Since the interest of |1 for 1 jear ij 
 6 < tBt?, the intercut of 1456 will b* 
 450 times aa much, or $27. Now, if 
 it require 1 year for the t^ven pri«- 
 cipal to gain «!27, it will require aa 
 many years to }?ain $64 as $27 it 
 contained times in 554j dividing, wo 
 obtain 2 years, the required time. 
 Hence the 
 
 315. Ki LJi.~Divi(k ihe given Intere.st bi/ the interest on the 
 principal for 1 year, and the quotient will he the time reonired in 
 years and decimals. ^ 
 
 aBddliJs~(bJ'2?0)i°"''''*'*°'*'" ^"°^*"*''' "y- ""^y »» reduced to «o.tlu 
 
 EXAMPLM FOR PRACTIOl. 
 In what time will 
 
 1. $26, at 6 %. give $1.95 interest ? 
 
 2. $280, at C. %, give $84 inlereet ? 
 
 3. $45.25, at, (i %, give $1.81 interest? 
 
 4. $98, at 8 %. o;ain .f 25.48 ? 
 6. $240, at t; %. uint. to $280 ? An$ 
 
 6. $70.50, a :) %, give $31. 72^ interest ? 
 
 7. $408, at 7%, amt. to $434,18? 
 
 8. £120, at 4^ 56, amt. to £140 8 0? 
 
 9. $1, or any other sum, double itself, at 5 9{ int. ? Ans '' 
 10. $2365.24 double itself, at 7 56? ' ^ "^"^ 
 
 An$. I jr. 3mo, 
 
 A7}8. 5 rears. 
 
 Ans. 8mo. 
 
 2yr. 9 mo. lOda. 
 
 Ans. [ 1 mo. 
 
 PROMISCUOUS EXAMPLES IN SIMPLE INTEKEST. 
 What principal will in 
 
 1. 6jr. 4mo., at 4 %, gi^'e $2048 int. ? 
 
 2. 6mo. 6da., at 6 %, give £136 3 6 int.? 
 . 3. lyr. 8nio., at 6^ 56, give $97.60 int. ? 
 
 4. 9mo. 21da,, at i) %, give £15 15 int.? .4 
 6. 3yr. 5mo. 18da., at oj^ %, give $288 int. ? 
 
 6. Umo. 9da., at 0^%. give £466 2 6 int. ? 
 
 7. 4yr. 6mo. 14da., at 5 %, give $150.37^ int. ? 
 «. 3yr. 6mo. I7da., at 5|%, give $1451.52 int.? 
 
 In what time will 
 
 9. $(;25, at C %, give $262,50 int. ? 
 10. £67 10 0, at 4 %, give £24 6 int.? 
 r •1779, at 6 %, give $296.6C iat. ? 
 
 Ant. $9600. 
 
 Ans £5237 10. 
 
 Ana. $900. 
 
 ns. £3H9 13 9 + 
 
 Ans. $1682.42. 
 
 Ans. £9000. 
 
 Ana. $675. 
 
 An$. $7267.71. 
 
 ^n».7yr. 
 Ans. 9yr. 
 An$. 3vr. 4ii>r 
 
PROBLKMb IN UtrBUUBT. 
 
 188 
 
 Aru. 4 jr. 9nio. 12dA. 
 An*. 2yr. 25dA. 
 An$. Ijt. 
 Ana. 6/r. inu. 
 
 Ant. HjT. 
 
 155. $242, at 4| %. give |55 int. ? 
 
 13. £460, at 5^ 9>. give £50 int.? 
 
 14. $2178, at 4/, <■/,, give $635.2;-) int. ? 
 
 15. £405, at 6%, ,Mve £151 17 6 int.? 
 
 16. $481.25, at :> %, give $1 92.51) int. ? 
 
 Required the rate %, if the intertHt of 
 
 17. $978.20 for lyr. is $18.91. An$. 6 %. 
 
 18. £110 12 6 for50da. is £1 16 lOA. Anif. 12* 
 Id. $1290 for 124da. is $19.99*. yln» 44? 
 
 20. 14340 for Hvr. i8 $.'.85.90. An>i a\%. 
 
 21. $675 for44mo. i8$l42.31i. Ana bi<jL. 
 
 22. 5^7500 for 48da. is $60. Ana. 6 5 
 
 23. $11004.75 for Ivr. is $550,231. Ana. 5 J 
 
 24. £120 for 6mo. Isda is £32 10 0. Ans. b[\%. 
 
 25. The annua) sales of a starch manufacturer amount t.' £2737 10: 
 supposing that bin profits are o % per year, in huw many years will 
 they reach £323 18 9? An». 2yr. 4mo. 12da. 
 
 26. An individual disposed of the I of hie lund> iii A % and \ at 
 6%; eT.ry year he draws as much as will pay the harne-sing of a 
 horse which ha^aess is worth $117.60 j what is ti^- Miiunnt of hia 
 <u«id8? ^7i«. $2800. 
 
 27. What is the interest of $17.18, trona July 29tli., i >i;i. to Sept. 
 let., 1868, at 6 % ? Ana. «4.214 + . 
 
 28. What will be the amount uf £19 15 9, at 1^%, from Feb. 17th., 
 
 1864, to Dec. 30th., 1867 ? 
 
 Ana. £26 10 7 + 
 
 29. If $1756.75 is placed on interest, June 29»h., 18«6, what will it 
 amount to Feb. 12ih., 1869, ai 7 ^? Ans. $2078.869 + . 
 
 30. What principal, at b %. durinj' lyr. Hnio. 12da. will amount to 
 £231 12 11|? iin*. £21.3 10 0. 
 
 31. On Aug. 15th., 1860, I lent $5269, at 6%; what amount will 
 t)e due me on May Ist., 1868 ? Ana. $7092.164. 
 
 32. An individual buys 65|^ acres of land at the rate of $509.72 
 per 100 acres: if he pays only at die end ut iJyr. Imo. 15da., the int. 
 will equal to | of the principal ; what is the rate? Ana. 4 5(. 
 
 33. A person placed a certain sum on interest at 4 %, which pro- 
 duced £427 10, in 3 years ; what is the sura ? Ana. £3562 10. 
 
 34. What is the interest on a bill of $257.81, dated March let., 
 ^865, and payable July 16th., 1867, at 7 ^ ? Ana. $42.86 + . 
 
 35. Find the amount of $17041.20, at 4^ ^, for lyr. 7mo. 28d». 
 
 36. What sum is that which will give an interest of 1900, in lOyr., 
 ai4.i%? iln». $2000. 
 
 37. A principal of £112 10 was put on interest, and at the end of 
 8yr. amounted to £144 ; at what rate was the principal placed? 
 
 38. A boy has accumulated a sum of money by his savings, and 
 wishes to obtain an annual revenue of $140; if the rate is b%, wha. 
 principal must he have ? Ana. $2800. 
 
 39. A merchant borrows the aum of £938 12 3, which is owned by 
 a minor aged 15yr. 3mo. 20da. He keeps it until the owner is 21 
 yeurs old ; what sum will be then due, at 6 % simple intere«t T 
 
ill. 
 
 ito 
 
 PROBLKMB IN IMTUlHt-. 
 
 |{ 
 
 
 40. What will be the Interest of $326, from June 6th., 1866, 
 Julj 4th., 1868, ftt7i%? - -■-' - 
 
 u. 
 
 Ana. $49.02 + . 
 
 41. A merchant eayw that his gain, during the nine years he car- 
 ried on business, equals the price of 3659 yarda of cloth at |2.08 a 
 yard; what was his annual revenue, supposinK he phiced his t'ain 
 on.nterestatS^? ^'^ !l,»,. $380,536. 
 
 4J. l^rom I85< to 1867, the population of Syracuse augmented 24|5g; 
 Knowing the Jasiyear'H number of inhabitants to be 102295, tell ne 
 what was the population in 1857 ? ,1ns. 82000 inhab. 
 
 rcot ,}^!^\ ^"'" '"»«t be placed on interest, at 4 %, to amount to 
 
 a1 a '" ^^'- *^"'° ^^'^^'^ ^»»«- ^563 2 1^. 
 
 44. A man assures me that if he places on interest a sum equiv- 
 alent to 968 yd. of cloth at $3.18 a yard, he will secure an annual rev- 
 '"Vr <^y ^•''•^•''^li 5 wJiat must be the rate ? Ans. 6 %. 
 
 4o From an investment of $35680 in commercial concerns, I 
 withdraw a gain of $223 per month ; what is the annual rate of the 
 
 IT^^ Ans. n%. 
 
 \^' ^J^^P^^'^y^'^ ^»^'^ for £2830 ; the conditions were £mO in 
 cash, £87 in 6 months, £625 in 10 months, and the remainder in 
 lyr. 3mo., with interest &tT %; what was the amount paid ? 
 
 • ,"\!L';^*"*^*^'°S raised, during the 6 years of his business, 
 *ooW o'.$29b5.10, desires to know in what time he will receive 
 $88y.u3 as interest at 5 ^g ? 4„g_ g-r 
 
 48. An individual borrowed £3750 at 7 %, and then lent it at 6 5^ • 
 
 • .*' ^o .n ^. '°^^ '" ^^^ ^*y«' ''■ th" y^^h f'^r tl^e first transaction, coii- 
 sists of 360 days, and that of the second, 365 days ? 
 
 49. During what time must a certain sum be on interest at 4A % to 
 P'^^cs I olit? Ans. 17yr. 9mo. lOda. 
 
 50. In selhug merchandise at 12s. the yard, 1 make a profit of 61 5fe : 
 what 18 the price per yard ? Avs. lis. 31 t- d. 
 
 61. Ihef ofaeumofmoney i8lentat4SlJ, andthe*,at5^; what 
 IS the sum, knowing that the annual interest is $28.82 ? Ans. $655. 
 
 62. An apparatus for astroncmical purposes cost £49 ; but, as this 
 sum could not be paid before 3vr. 9nio., the price was augmented A 
 of Its primitive value ; what was the rate ? Ans. i %. 
 
 63. A man placed on interest, at 4 ^, a certain sum of money which 
 produced m 6 years the funds requisite for the purchase of 368 lbs 
 of preserved tamarinds, at 46^ cts. a lb. ; what wtw the sum? 
 
 64. A merchant has invested in business a capital of $21840 which 
 produces him 12^% annually 5 but, for sanitary reasons, he retires 
 from mercantile allairs, and loans his monay at 7^5)^; how much will 
 
 ^f «V1 ^^^' ^"'^- ^^'^^' ^y ^^^ ^^^^"S^ ^ Ans- 12636.86 J. 
 
 . n'^ -n '? ^''*' principal the ^ of which at 6%, and the remainder 
 at 7 %, will give $4340 interest? Ans. $70000.00. 
 
 5b. A speculator desires to purcha.se a tract of land, containing 450 
 t^u' ?."?? ^^ ^- ^^^ Wire, and, for this purpose, borrows money at 
 65 >y- ..t tl-.e expiration of -ijf. llmo. 20da., he sells the f of the land 
 at £fc 10 an acre, and the i-emainder, at £8 2 S the acre ; how much 
 does he lose by ihe traueaction ? 
 
lu 
 
 CUU- 
 
 OOMFOUICD INTBBB8T. 
 
 COMPOUND INTEREST. 
 
 1»1 
 
 itl«. Gomponnd Interest i? interest on both principal and 
 
 itil. n>t, when tlie Inter is not. piiid when due. 
 
 doman" i """ '"^^'^^ '^ ''''-' *'^*'"«" «f """y- but cannot i*v"% 
 
 /•;.r. What is tlie compound interest or$390 for 3 years, at r)%7 
 
 OPL-RATION. 
 
 1390.00 
 $-iU9.60 
 $429,976 
 
 1390.00 
 .06 = J_»^50 
 
 |40'J750 
 .05 = 20.476 
 
 Principal for I at. jear. 
 Interest for Ist. jear. 
 
 Principal for '2nd. year. 
 
 . Interest for 2nd. yeur. 
 
 $429.97& Principal for 3rd.' vear. 
 .05 z= 21.^*9 875 IntereHt fur 3ril. year. 
 $451.47375 Amount for 3 years. 
 $390.01)000 Given principal. 
 $ 61.47375 Compound intsrei^t. 
 
 317. EuLE. — I. Fitvl the amount of the given principal at 
 (he gmn rate /or one year, and make it the pnncipal for the sec- 
 ond ij ear. -IT J 
 
 }l- Fmd the amount of thi« new principal, and make it the 
 principal for the third year, and so continue to do for the aiven 
 number of years. 
 
 III. Subtract the given principal from the last amount, and 
 the remainder will be the compound interest. 
 
 (a^^u^^r^' ^^«° *!»« ''™o contains yeari, months, and days, find the amount 
 
 ond interval, pjoceed.ng in all respect, as when the interest U pajablo year!?? 
 EXAMPLES FOR PRACTICE. 
 
 1. What is the compound interest of $970 
 24 days, at 6 5g ? 
 
 2. What is the compound interest of $520 
 
 3. What is the amount of ^128 for 3 years 
 at 6 %. compound interest? 
 
 4. What is the compound interest of $340 
 payahle semi-annually, at 0^? 
 
 6. What is the compound inteiMt of $737 
 -li-annualij, at 7 f( f 
 
 for 2 years 9month8 and 
 Ana. $173,295. 
 
 for 3 years, at 5 qg ? 
 
 6 niontlis and 18 daye, 
 Ana. $156,717. 
 
 for 2yr., interest being 
 
 Ant. $42.67 + . 
 76 for 2^ years, payable 
 
 I 
 
 ■ k\ 
 
'hi 
 
 1«2 
 
 OOWPOVND IirTKRn*. 
 
 6. What will $900 amount to in 1 year, at 7%, compound interest, 
 payaMo (juarterly ? Ans. $*.)64.67 + 
 
 7. VVliut IS the amount of $')00 for lyr., intereat payable every 3 
 monthH, coiiipuuiiil interest, at 8^? 
 
 8. Find I he cuinpoiind interewt of $94H for 3 years 4 months and 18 
 day^atG^? .Ins. $207,051. 
 
 iilH. Compound interest may be computed more expeditiouslv 
 by the use of the following 
 
 TABLE 
 
 Shoimng the amount o/$l , or £1, at 3, 4, 6, fi, 7, and 8 per cent., 
 compound inltrest, for any number ojf years from 1 to 34. 
 
 ^^Hh- 
 
 Years 
 
 1 
 
 t 
 3 percent. 
 
 4 per MDt. 
 
 6 per oent. 
 
 6 per oent. 
 
 7 per oent. 
 
 S per oent. 
 
 ^^Hh:;^ 
 
 1.030000 
 
 1.040000 
 
 1.050000 
 
 1.060000 
 
 1.070000 
 
 1.080000 
 
 
 2 
 
 1.0l>ii900 
 
 1.081600 
 
 1.102500 
 
 1.12;560O 
 
 1.144900 
 
 1.166400 
 
 
 3 
 
 1.092727 
 
 1.124864 
 
 1.157625 
 
 1.191016 
 
 1.225043 
 
 1.259712 
 
 ^^^■i .^.'i 
 
 ^^^^^^^^H 1 
 
 4 
 
 1.125509 
 
 I.169H59 
 
 1.215506 
 
 1.262477 
 
 1.310796 
 
 1.360489 
 
 ^^^Hi ; 
 
 6 
 
 1.159274 
 
 1.216653 
 
 1.2762.S2 
 
 1.338226 
 
 1.402552 
 
 1.469328 
 
 ^^^^H^ 
 
 6 
 
 1.194052 
 
 1.265319 
 
 1.340096 
 
 1.418519 
 
 1.500730 
 
 1.5S6S74 
 
 
 7 
 
 1.229874 
 
 1.315932 
 
 1.407)00 
 
 1.603630 
 
 1.605782 
 
 1.713824 
 
 
 I 
 
 t « 
 
 1.26(i770 
 
 1.368J69 
 
 1.4774,55 
 
 1.593848 
 
 1.718186 
 
 1.850930 
 
 
 ;■ i 
 
 " 9 
 
 1.304773 
 
 1.423312 
 
 1.651328 
 
 1.689479 
 
 1.8.38469 
 
 1.999005 
 
 
 I'l 
 
 10 
 
 1.343916 
 
 1.480244 
 
 1.628895 
 
 1.790848 
 
 1.967151 
 
 2.158925 
 
 
 
 11 
 
 1.384284 
 
 1.539454 
 
 1.710339 
 
 1.898299 
 
 2.104852 
 
 2.331639 
 
 
 , ■ '* 
 
 12 
 
 1.425761 
 
 1.601032 
 
 1.795856 
 
 2.012197 
 
 2.252192 
 
 2.518170 
 
 
 r ; 
 
 13 
 
 1.468534 
 
 1.605074 
 
 1.885649 
 
 2.132928 
 
 2.409845 
 
 2.719624 
 
 
 ,r\' 
 
 14 
 
 1.512590 
 
 1.731676 
 
 1.979932 
 
 2.260904 
 
 2.5785;H 
 
 2.937194 
 
 
 ^ 
 
 15 
 
 1.557967 
 
 1.800944 
 
 2.078928 
 
 2.306558 
 
 2.759032 
 
 3.172169 
 
 
 , ' 
 
 16 
 
 1.604706 
 
 1.872981 
 
 2.182875 
 
 2.640352 
 
 2.952164 
 
 3.425943 
 
 
 i' " 1 
 
 17 
 
 1.652848 
 
 1.94790L 
 
 2.292018 
 
 2.692773 
 
 3.158815 
 
 3.700018 
 
 
 i ! ^ . 
 
 18 
 
 1.702433 
 
 2.025817 
 
 2.406619 
 
 2.854339 
 
 3.379932 
 
 3.996020 
 
 
 - ■ i . 
 
 19 
 
 1.753506 
 
 2.106849 
 
 2.526950 
 
 3.025600 
 
 3.616528 
 
 4.315701 
 
 ^^^^^^H 
 
 :.i 
 
 20 . 
 
 1.806lil 
 
 2.191123 
 
 2.653298 
 
 3.207136 
 
 3.869685 
 
 4.660957 
 
 
 " i ' 
 
 21 
 
 1.KG0295 
 
 2.278768 
 
 2.78596:> 
 
 3.399564 
 
 4.140562 
 
 6.033834 
 
 
 i :; : 
 
 22 
 
 1.916103 
 
 2.369919 
 
 2.925261 
 
 3.603537 
 
 4.430402 
 
 5.436540 
 
 
 [■•. ' • 
 
 23 
 
 1.973587 
 
 2.464716 
 
 3.071524 
 
 3.819750 
 
 4.740530 
 
 5.871464 
 
 
 1|- 
 
 24 
 
 2.0o2794 
 
 2.563304 
 
 3.225100 
 
 4.048935 
 
 5.072367 
 
 6.341181 
 
 ^^^^^H ^ * 
 
 25 
 
 2.093778 
 
 2.665836 
 
 3.386365 
 
 4.291871 
 
 5.42743!J 
 
 6.848475 
 
 
 26 
 
 2.156591 
 
 2.772470 
 
 3.555673 
 
 4.549383 
 
 5.807353 
 
 7.396353 
 
 
 { ; 1 
 
 27 
 
 2.221289 
 
 2.883369 
 
 3.733456 
 
 4.822346 
 
 6.213868 
 
 7.988062 
 
 
 i" ! r 
 
 28 
 
 2.28792S 
 
 2.998703 
 
 3.920129 
 
 5.111687 
 
 6.648838 
 
 8.627106 
 
 
 ' i 
 
 j ' 
 
 
 29 
 
 2.356566 
 
 3.118651 
 
 4.116136 
 
 6.418388 
 
 7.114257 
 
 9.317275 
 
 
 i ; 1 
 
 5 1 
 
 
 30 
 
 2.427262 
 
 3.243398 
 
 4.321942 
 
 5.743491 
 
 7.612255 
 
 10.062G57 
 
 ^H^^^l. 
 
 1 
 
 I' 
 
 31 
 32 
 
 2.500080 
 2.575083 
 
 3.373133 
 3.508059 
 
 4.538040 
 4.764942 
 
 6.088101 
 6.453387 
 
 8.145113 
 8.715271 
 
 10.867669 
 11.737083 
 
 HHI 
 
 i' ' 1 
 
 ^1 1 
 
 i 
 
 33 
 
 2.652.^35 
 
 3.648381 
 
 5.003189 
 
 6.840590 
 
 9.325340 
 
 12.676050 
 
 ■' 
 
 • 
 
 34 
 
 2.731906 
 
 3.794316 
 
 6.253348 7.251025 
 
 9.978114 
 
 13.690134 
 
 
 - ' 
 
 
 
 Hj 
 
 L\ 
 
 ll 
 
 itk*«b 
 
 •Mtokto. 
 
 
 
 
 
 
iHtm. 
 
 •t f J? ^^^^ '" '^^ compound intewetof |9() for 7 years and 
 
 6 mon 
 
 OPIRATIOir. 
 
 Amt. of$l for Tyr., |l 
 
 Principal, 
 
 Amt. $[){} f^r 7vr., 
 Interest of $1 for 6 mo., 
 
 ,605782 
 90 
 
 Int. of amt. for Gnio., 
 Amt. added, 
 Amt. for "yr. 6mo-, 
 l^rincipal euttracted, 
 
 l'14.52"0:}so 
 
 4.;«50TU 
 .7226019 
 
 Analtsib, — We find tht 
 
 •mount of $1 for 7 yearg in the 
 table, and multiplyiiiofit by the 
 giTen |irincipal. olirain the »- 
 mount of the .j;'.i() for 7 year*. 
 Wo then (inJ vu thi,» auiount 
 tho intorest for tho « months, 
 and add it to its prinoifial. 
 From the hist nmouut snbtriicf.- 
 int; the orij,'inal principal, we 
 have left the compound inter- 
 est required. Ueuoe ttia 
 
 6.0582 1 :i'l 
 144.5 20:^.80 
 
 149.57859^.^ 
 
 Comp. int. forgiv. time, $59.57 + , Ant. 
 
 »19. RvLE.-MnlfipI^ fhr amount of $1 for the. given mh 
 cnuitcme, as found m the table, by the given prind.pal, an,] the 
 product xodlle the amount. Subtr, J the principal frmn tht 
 aowunt, and the remainder will be the compound interest. 
 
 EXAMPLES FOR PRACTICE, 
 at 7^^^*^ '" *^^ •''^'"Pound 'ntere.st of $60 for 8 years .and 6 months, 
 
 3. What IS thecomp(.und int. of $3000 for 2yr. 6mo. ISda., at 6^? 
 
 6. To what mm will $7.5, deposited in a f^aving.s bank amo.mf at 
 jampouud mt«re8^ for 17 year«^ at «%, payable feud annual];?^ 
 
 PROMTSSORY NOTES. 
 
 »20. A Promissory Note is a written or printed en-aee- 
 ment to pay^ a certain sum either on demand or at a specified Time 
 
 «i.?fj?' 7f,^akerorDrawerofa note is the person who 
 signs It and thus becomes responsible for its pay.uent when due. 
 
 33t2. The Pavfifi of » note ^h *1i'> n-rsu-- i-.-^'-, . ^ \ 
 order it is made" payable." ^ "'^""' ""' *°^^'^^ 
 
 »23. Thelndorserofa note is the person who si-ns his 
 Dame on the back of it, and by so doing guarantees its puyLnt 
 m«le« he wnta. " WiUiout fiiwurae "%ver his name at the Z«' 
 
194 
 
 PROHI880RT NOTBS. 
 
 l! I 1 
 
 fa'l • 11 
 
 ! ' » 
 
 S24. A Xegroilable Note is a promissory note which is 
 made p.-iyable to Ijourer or the ordor of some person (ifee Notes 
 ForviH, 2, 3, 4). r \ , 
 
 in.lSSm!" ^^ " ""^* '■ '""^*''* *° *'"' ***'"'^''' '* """^ ^ neifocintcd without 
 
 H i^'-n^."°So!:[d'!J w,"!';:;: i;^ r^t;;.:^""" "''^"^■"' "• •^"'^ ^'''' «"■» ^^ '"^'^^ 
 
 .•?25. A note nmy U, miide i);iyiihle on demand, as in jPrrrm 
 ivo. 1, or at the expiiMtion of a certain timn iirt,>i' its dale us 
 in Forms No. 2, 3, and 4. A note may he made i)ayal,le to a 
 particular person, as in Form No. 1 ; or to any person who is 
 the hearer or holder of it, as in Form. No. 2; or to the order 
 01 a person named in it, as in Fonn No. 3 ; and may be made 
 payable at a particular place, as in Fonn No. 4. 
 
 The Not", For7n No. 1, is due when the payee demands its 
 l)ayment from the maker of it. 
 
 llKMARK.-lf no time is fixed, in a note, it is payable on dornnnd. 
 
 The Note, Fonn No. 2, is payable to the holder of it at the 
 expiration of six eal.-ndar months from its date. 
 
 The Note. Fonn No. 3, is due at the time specified in it, to the 
 •jayee .vl,,. uhi.,r>t.s ,t. Jos. A. VViilter nuiv iiMur-,. ,1,,. „n,ein Ma„k 
 }„IU,u-H'*^r'^''"*!^''"^'»«'a"dthus make any person law' 
 
 thlVX; X '' "*• '''/^' P'^y'"' °''' ^' '"^y indorse it payableTo 
 Inntt * particular person, i^ which case such person can make 
 
 ftoother person the payee, w Jo«. A. Walter could, by indorsinHhe 
 note m blank or otherwise. ^ u<jrNi"s me 
 
 Th* Note, Form Mo. 4, is payable only at the Dank named in it/ 
 
 820. The Pace of a note is the sum named in it. 
 
 l.?*f'^:^ ^^^^ Of Grace are the three days usually allowed by 
 /aw for the payment of a note after the expiration of the time 
 specified in the note. 
 
 SaS. The Maturity ofa note is the expiration ofthedayr 
 of grace ; a note is due at maturity. ^ 
 
 be^Z'^tZ\l^a^tLTf ^""^'''^ '°*""'''' " ^"'•'^ ^' 2' «"d3. the interest 
 Deg ns at the date of the note, and continues until the note is paid. If the time 
 
 exp..s.ed ma note fur us maturity bo stated in months, calendar .nonthe a« 
 understood ; and if a note promises interest without stating the rate /itVZ 
 the iegal interest of the country in whioh it is d.t^d • T„ "'^ /^^'V- .! . *" 
 
 from the time it matures until paid. * in««weit 
 
 J:"i::;i!:'X^i^!!' -*j- -t" •* "'^*"''^ •* -'^ «- ^ "-« «»- 
 
 thoy a™ aronee'notifrd'Se;;:^: "''"•" "'' ** "'»'^"^ ^^ P*^ *' ^ 
 ^J^ a note matur« o. 0«»ia, or • legal MU^y, k .wt k. »»M « ifc, 4^ 
 
ote which is 
 
 >n {■■fee Notes, 
 
 Ifocintcd without 
 10 eum for which 
 
 , as in Form 
 : its (hx\('., (18 
 l)ayiil)le to a 
 eison wlio is 
 to the ovdor 
 uay be made 
 
 demands its 
 
 id. 
 
 L" of it at the 
 
 I in it, to the 
 iiHic ill Miihk, 
 person law- 
 t payable to 
 ion can make 
 ndorfiing the 
 
 nanaed in it.' 
 
 ' allowed by 
 )f the time 
 
 of the dayr 
 
 3, the interect 
 If the timn 
 r tnonthe an 
 %, it bears 
 vhioh does not 
 ^ of InWireit 
 
 tha same day 
 to pay It if 
 
 «i«atb*4af 
 
 Poun 9W 
 
 IM 
 
 »id?r?t*n ?"'^"f "« ?0t« ^ • note giren for a valuable con- 
 
 W«e or to an.'? k'" '^' '";''^*^ ''^^'^ ^^' *^« »»<»""* to the 
 P»jee, or to any subHequcnt bou„JiJe holder. 
 
 payee but Sll ; r u '" ""^ '''"^^'" ^^" '''^^'' ""ble to the 
 
 .oX"o„-ti::Sr\'i?r^^^^^^^^^^ r if - ^ «''»^'- *•" p-^- ^ ^^ 
 
 A?.?eraCte^±^jl 7 ''' P"^'"^"*' ^ "^'^^""^ «-^ ^'--^a 
 
 to f fpToifi'td^" ouSf. ^''' " ' """^'^ P"'"^«« ^« ^«'^-^ ^^ 
 
 «.o?^;rttferuivl?^ ^^ ^ ^«^^ ^- i- 
 
 to f!fut fh.^n?^ '' f 7'""" Obligation, authenticated by a seal. 
 
 aXer^:nSrrti\r;''"°"^^^ p-^~- - 
 
 proSc,fve??ol^'''^^';[^^'*^^8^^^«^^^^ ^ conveyance of 
 dition twlJ '"'"' *^' P"y"^"°* ^f ^ bond or debt, on con- 
 
 ^Z^az^' ^'''' ''' '''''"''''' '' '-'' -•* 
 
 FORMS OP NO i ^S. 
 Far7n No. 1.— Demand Noti. 
 
 $ 64 r%% 
 
 -^^ee, ^nuat.u. /5t/i. , /<9'/0. 
 
 
 ^a^ Msce^^^U 
 
 OtAMP.) 
 
 ^£cu^ 
 
 u 
 
 
IM rOEMB OF KOTJB8. 
 
 I 
 
 Form No. 2. — Notk Payable to Beaker (Neqotiable.) 
 
 Forrn No. 3. — Note Payable to Order (Neootiable), 
 C/ne yeca oAei f/a^e, Q/ ^iornt^ ^o Aaii. lo ^e 
 
 (•TAMF.) S S^. :^^^. 
 
 Form No. 4., — Note Payable at a Bank (Neqotiabi-e.) 
 G^oUy e^z^ aJI(gl (/a^, Q/ /iio?^nt^e lo /lo/u tc 
 
 ..^unA, &igfovU'iic'Vc7i diici, j^A ooiiuM. '^o'cicue iec^f/ifect. 
 
 ^afovu 
 
 ijnAiaf.) 
 
 lon^ ^i)oua^ 
 
itr 
 
 lOTIABLE.) 
 
 (9'/0. 
 dtiable). 
 
 )TIAB1-E.) 
 
 '•<»'» AMD LOM. 
 
 Form of Produce Note. 
 Form of Dm Bm. 
 
 $103. 
 
 (nAMp.) 
 
 fUU 
 
 PROFIT AND LOSS. 
 
 336. Profit and Loss are coinmeroial t«nii« x,^a f^ 
 the gam or lo« in business transaotions ^^^ ** "^^^ 
 
 PrKd^Lt" ":. t"^ ^""^ ^' ^^-«*i- *• »- oooridered i. 
 
 2^d The ^^5' '<i °'>'""^ "T^^""' ^^^•^ » the Base. 
 ^ Thf /? ^ •4^'^*" °'' '^**' ^hi«h i« the Rate 4 
 
 4th. The S^Uns Price, which is the Amount' I)iffere«>a 
 
 Tie questions follow the same rules as in Percental. 
 Own = Stmng Frice - Co*t. 
 
"I, r 
 
 Its 
 
 PBOVR AMS U>^^ 
 
 ' I 
 
 EXAMPLES FOR PRAOTIOK. 
 
 1. I bought cloth, at $2,.'»0 per yard, and sold it eo as to gain 26 %i 
 tor how much did I ficli it a yd. ? Ans. $HA2^. 
 
 To folre this Example, «ee Case I., 282, KuLl. 
 
 2. A farm was bought for $4500, and sold eo as to gain $900 1 
 how much was the gain % V Ans. 20 %. 
 
 !• Mlve this Example, m« Caa* II., 384. Ritli. 
 
 3. By sellinr a building lot, a man gained $175, which was 12 % 
 of the coBt ; what was the cost? Ans. $1458.3;il. 
 
 T»Mlve this Example, tee Case III., 2M, KvLi. 
 
 A. A genileman sold a horse for $180, and thereby gained 20%; 
 what was the cost of the horHe ? Ans. $150. 
 
 V» aolTa this BzMBple, «m Case IV., 288, Rulb. 
 
 f. A merchant lost 15 % oi» his old stock of goods ; how nuich did 
 Im lose on those that cost 12^ ota., $6§, .SBJ cts., 334 ctfl-, and ilSf^l 
 
 Ans. 15 cts. : $1 ; 5| cts. ; etc. 
 
 %. Bought Bugar, at 12 c4ii. a pound, and sold it so as to gain 1^ 
 •to. a pound ; required the gain %. 
 
 7. Sold butter at | of a dollai a pound, which was at a gain of 
 K % ; required the cost per pound. .4ns. ()6| cts. 
 
 8. A market woman sold oranges so as to gain | of a cent un each 
 orange, which wa« at a gain of 33^ % ; what was the cost of an 
 orange ? Ans. 2 cents. 
 
 9. SuJd a horae at 33J % gain, and with t]>e money bought another 
 horse, which I sold for 15: . 20, and lost 25 %. Did 1 gain or lose by 
 my trading ? and how much ? 
 
 10. If I make a profit of 15^ St by selling papor for '0.85 above 
 the cost per ream, how nmch m«at be added to the selling price to 
 realize a profit of 32^ % ? Ant. '^^ cts. 
 
 11. What ^llould I sell a barrel of flour for, thatcust me £1 2 6, 
 to gain \^%'t ' Ans. £1 6 3. 
 
 12. A neighbor offers his house, which cost him $6900, for 20 % 
 less than cost ; what is his price ? Ana. $6520. 
 
 13. A merchant eellfl cloth for $6 a yard, which cost him $3.76 a 
 jard ; what is his gain per cent. ? Ana. 33^ %. 
 
 14. I bought 640 yards calico at 15ots. per yd., and sold it at a 
 leduoed prioeof 2i5|J; what did I lose? Ana. $2.40. 
 
 . 15. A grocer selU coffee at 7Jd. a lb. which cost hiTii 'JJ. ; what 
 is his loss per cent, f Ans. 1 7Z %. 
 
 16. A merchant buys at auction $»562,60 worth of goods;" it he 
 sell them at an adranoe of 20 % on the cost, what will be his net 
 profits; deducting $600 for expenses? Ana. $1312.50. 
 
 17. How much ehooU I sell dilereat qualities of sugar which cost 
 Me MX 16^ £2 1 3, aad £2-12 C the owt., to gain n\%'i 
 
KiOFTP ASi 
 
 IN 
 
 freight .nd other wpeasea $5 33 Vhlt In ^"''"^ *^*t ^ P»S St 
 
 i>^-Buught ahorse for $130 Da;,r*«f u- ^n«' $28.2175 
 
 5 wecka, and then sold hi« fc^ IJil ?t£f,^'> noorishmeat da in; 
 tae whole cost ? '^'^ **20 j what^ ^^ jo^, p.^ ^JJ'^J 
 
 -su. i5oij^.|,t codfish at $4 2'i fi.^ ^ . . ^*^' fO.ll 11 
 
 ''»«"':^ gain por cent, y^^-'^'^^^^^^^^d sold it at $4 93; what 
 
 whioL coft?/;. «,:;iV^? ."'S'^fa -? •> lid. for 3«. 9d JrTb !?• 
 wa. h,sg,i f,,/-Jt^fcT;tfeV-i^' 6 for ^TsV; X 
 
 mj at 12 ^ advance : what waJ f f, » - * m selling a certain onan 
 ^ 24. A merchant bonJl.t « K . ^'"^"'•* «old ? ^n* Tl qn? 
 
 ^7. % selling cloth at .|4 the vaff T 1. on ^ ^«*- -^^^i 56- 
 
 *1- Fm, sold at 26 « loa« i. (h ^!« iT *" "* ••W oo>t f 
 or lo™ per cot in selfng^^Vu « "liV ''»""'"« b, .he g.i. 
 
 q« A . -<4fM. Iflt hnw... ^^ /^ ^.x'" 2 ^"**'' u"i each 
 
 38. A speculator sold the «,«?« nf^^!^^ ^'^^ ' ^'»'^- i^or«e £52 
 
 Is '.S'M' 
 
 ifif''! 
 
Il 
 
 MISf 
 
 )KBRA4M. 
 
 . fif^^J.t*iP"r ^^J^""' r"" '^ **-^^ P«'yd., by which I mak« 
 aprofit of 3.^i ^ I sdl lOO^d. b) wholeaale at 30 ^ reduction on the 
 retail price. Wlmt w my gain or lose per cent., aud how much do I 
 receir.ayard? ^«.. 6i ^ lose; $8.32^ a yd. 
 
 40 A merchant shells linen 2^ cts. more than the cost and realizes 
 * P , A °* '^ ^ ' '''^^'^ >« t^« coHt of a yard ? .4ns. :: I i cts. 
 
 41. A grocer deuianded for a certain quantity of prunes a price 22 % 
 above the co8t; but being a Httle musty, he sold them at 10* less 
 than his first demand, and thus gained $98 by the sale : what was 
 hid hrst demand? j^ $1220 
 
 42. At what price should I sell codfish t/hich costs 168." r>*d. mr 
 Gwt. to realize a profit of 12^^ on the cost, after deducting 1 2 A ^ of 
 ttie price/ Ans. £[ I 2U. 
 
 4.^. J^ught a quantity of cheese at 12 cts. apound. Supposing the 
 
 weiglit to be 0^ less than that calculated, and 10 % of the sales to be 
 
 m bad debits lor how mueh must it be sold a pound to make a net 
 
 proht ui ] 4 % on the cost ? Ans. 1 6 cent, a pound. 
 
 *u J— Y'^'ian &Co. bought dry goods for the amount of $6840; 
 
 ifc""^ I *' ^? * P'^^^' * *' ^^i %. i at 20 %, and the remainder at 
 J^i % prohi ; what was their total profit ? Ann. $1482.00. 
 
 COMMISSION AND BROKERAGE. 
 
 »;$S. Commission and Brolcerage are the percentages paid 
 an agent, or broker, for the transaction of business, and is esti- 
 mated at a certain rate per cent, on the amount of the sale pur- 
 chase, collection, etc., effected. ' 
 
 ?»f ^- ^ Agent, Factor, Broker, Collector, or Com- 
 mission lueroliant, is a person who transacts business for an- 
 other. 
 
 NoTOS.— I. An agent may be n S])fe[al AgfiU,—i\txASf, authorized to transact 
 only suchbuBine.s as i88| eoified,-- cr a Geiieral Agenty who, ae suob,oaa trat.g. 
 act any biJsiness of the pergon who employ! bin. 
 
 2. iVieichaudise and Produce sunt to a ]ier?on for Baloor euperiatendenct, art 
 !&\A. to he comipced. The peit-on sending them is termed » Contignor ; th» 
 person to whom they are sent, ii lermed a Consignee, 
 
 3. A oonsigDfi'; whose bu.-inega oflQje is remote from a consignor, is romettmeB 
 termed a CorresjioiideHt, and usually aota «• agent of the lirm consigning hira 
 the goods. 
 
 4. Broliers are oktssified aMordinK to the nature >f the sales and oontraots 
 they effect. Ihiig, a Bill Broker is one who n.gotiates the uiscount on bilif (f 
 exchange, etc. ; a.Real-Eita(tBrol:fr\s.onQ whonegotiiitesthe saieol' houses and 
 landn ; luxmuhcr. Bmker, SJnj» Broker. Stock BruLcr, Paivii Bioka; etc. 
 
 i). A ooUccior m ly hare the business of settling accounts between indivi- 
 duals, or he may bean officer of tho gove»nineDt, at a CoUector of Hie Port, 
 whose business is to eulleot dutiea ; a Collector nf Taxet, eto. 
 
 fro 
 
 m a 
 
 840. The Net Proceeds is the amount received 
 •ale or collection, less thtf commission and other changes. 
 
 Questions on CMnmission and Brakcrage foilow th« same rules 
 M those in Percentage. 
 
■X.iMPH!8 FOR PRAOTXOK. 
 
 201 
 
 
 '• "^^^ ^"^ ■«»»FK -. Cm, I.. 28^ B«* 
 
 wiit^rarotts^St*'^'^^*^*^- -»'•»« wood, .t5U; 
 
 ^••. $1675. 
 
 IW «,!.. tfci. B..,^ ^ 0«. UL, M,, ,1^^ 
 
 » -ol*. Aim Bx«ip»e, «, Om. IV., 288, Hvl,. 
 ■16^? "'" *l«ron $309.10 at 5if*; on $4706.2? 
 
 •1.^40.40, at T^Tofffiifl'^^'i'.^'L"'** <^^*^H It U?of 
 
 8..Soldi„er;baBd.«. a. follow,. I.t foT'JlfA''.^''^^^^'^ «^- 
 Mission; 2nd. for £16 1 1 « .» * ^ q_7 . ^*^ ^^ 0, at 4^* com 
 
 9. What amount of brokSLl '^^r '"'"• ^ ^»'- ^^ 7 5 + 
 biMJks, as follows: $590 tTr^Sri-?.^^ ^^' e-changing^g^n. 
 
 «*»d-|wluuitffbwkS;i^rr^^ '' >nre8t,ng $11730, ia Ontaria 
 liow »Mk HMk Zl k. bv? '^*^°* ■'*^'' ^' * * brokerage , 
 
 •10095.36 toKmJtttplr ^ ^ «« "^l^'^^^-- »»d r»«itt.d 
 
 -11 ♦u "^^^ owi^r tu, the a«t proceeds; for what nrW ^w i,. 
 
 -.. .„. px^pcrv, aad what was iii« oomin.MJon ? " "~ ""' 
 
 k* purchase? "««hii««ob, z^^, how manj •<>«• did 
 
 15. A nierckant kairiag on kand 470f !^,r^. .#• '^**' ***' 
 Ti '^ jp "f -cinfi^ n , wttatare the n«t|j>/i>,}e«ds, if soW at Si$ a hkL T 
 
i:l 
 
 209 
 
 COM MISSION AND BOOKlKAffB. 
 
 If I 
 
 16. I p«rehM«d 6000 bash«la of wheat ia Bmflklo, at il.ST^ 
 shipped the eame to my agsnt in Kiugstun^ who ftolol it at $1.62L 
 Uoiw much did I make, after paying $543 forexpeoM* and a eommia- 
 «ioa of 2^-%? Ant. $723. 
 
 17. A broker eharged ia« G^^^for the ezAhaage of £681 4 10 in 
 ^eeiibacks ; what was his brokerage ? Ann. £35 16 34. 
 
 18. A comniiseion merchant sulci a consignment ol oats for $12686. 
 He charged $66 for storage, and 6^91^ commiusion ; what were the 
 net proceeds? ^n«. *11827.r2i. 
 
 19. An architect charges I % tor his plan and Burvey of a building 
 which cost $24000, and l<i % tor superintending the work ; how much 
 did he receive? , Asu. $450. 
 
 20. I sent to my oorrespondent in Bordeaux £2097 10, with advice 
 to invest in the purchase of winea, after deducting his oonimiHuon of 
 
 '3} % ; what was the sum inveeted and what was his commiMsion ? 
 Jfur. £2026 U 4|, wines; £70 18 7 J,' commission. 
 
 21. An agent having a deiM of $157t to ooUect, compromises for 
 909(; what was his commission at 5^ ^ ? Ana. $77. 71^. 
 
 22. Paid Folger Brothers $5.46 for exchanging $364 in United 
 States' money ; what was the rate of brokerage? Ans 1^%. 
 
 23. A oonsigoee in Olasgow informs his constituent of the purchase 
 of Dry Goods to the amount of £396 16 6 ; what is hie commission 
 at 2i^? ^n«. £8 18 1 + . 
 
 24. Bought at Halifax a cargo of wheat, 9500 bushels, at $1.20 
 per bushel, and sent it to my a^^ent in Portland who sold it at $1.50 
 per bushel ; what did I realize on the whole atler paying $820 for 
 expenses, and commission at 3i^^? Ana. $2031.25. 
 
 25. My correspondent at Bordeaux ehargeti $74.20 lor purchasing 
 264 ewt. of honey at $10.50 per cwt. ) what was the rate of commis- 
 sion? AnM.m%. 
 
 26. A broker receives £2085 7 6 comprising the sum to be invested 
 in Raikoad stock at £20 16 a share, and his brokerage at i^%'^ 
 how many shares can he buy, and what is his brokerage? 
 
 2T. A certain piece of land was sold for $3925, but the owner r»> 
 eeived $38S6.12| as the net proceeds; what was the rate of oob- 
 misflion? Ana. 1^%. 
 
 28. I remitted $5500 to my l»x)k«r with adriec to invest in Bank 
 stock, after deducting his brokerage at } ^ ; what was the investment ? 
 
 29. The net proceeds of a sale were £1408 16, and theeommissioa, 
 .£28 15; what was the rate of commiseioD ? Ana. 2 %. 
 
 30. In charging 1^% for the investment of a oertaiu sum, a broker 
 realised $286 ; what was the amount of the investment? A. $19000. 
 
 31. My agent in Cincinnati gives me information of the purchase 
 of 4000 bushels of Indian meal at 80 cts. per bushel, and desires me 
 to remit a check on New York which he can sell to a broker aX \% 
 
 nrotnintn • arka.t oKniilH t.h* Anmnnt rkf tlia <«li«r>lr \\a Kia no»^>v,;.^ow,,, 
 
 beings^? Ans. $3271.464. 
 
 32. A ftctor received £6 12 for the sale of grain at I % commis- 
 
 sioa ; what was the amount sold ? 
 n. fteoeiyed from A $700 in specie; paid 3^ % 
 
 Ans. £140. 
 for changing it to 
 
fUB AND MARINE INSURANOB. 
 
 203 
 
 
 gold; and, after deducting the commission sA2%, employed the bal- 
 ance in the purchase of fruit ; what was pai.l for the fruit: and what 
 wa« the oommi.-sion ? ^.ns. ^iWil.^l), fruit; SKI.-) I commission. 
 
 S4 lleniitted to my correfipDudent at Rouen £265, for the pnrchaBe 
 of calico at 'M. per yard, after deduotirg his commission at 2 96; how 
 many yardn will I receive ? Am. 6666iyd. 
 
 .^5. A speculator rec >e« $4113.60 an the net proceeds of a sale, 
 allowing 5 % commission ; what was the ralue of the property ? 
 
 36. A cciiiiinission merchant who oharges 5 % commission on sales 
 and inveHtiiients, receives 260 owt. of cheese, at 6d. per lb., and £748 
 10 6, m cash, with advice to purchase a cargo of cotton for the whole 
 amount ; what will be his total cou mission ? Ans. £97 1 ' 1 U 
 
 37. A Halifax aj^ent buys 34 box28 of chocolate; he pays $7.50 for 
 freight and cartage, and his commission is l\<j(, un theam'ount of the 
 purchane. He ^ends me a bill of «740.83| for the whole; what waf 
 hiH commission; and, allowing 2501b. per box. how much did I pay 
 per lb. for the chocolate? Ans. $10.83| com. ; fsO.OBi per lb. 
 icn UL commission merchant receives 125 barrels of flour from A, 
 150 bbl. from B, 225 bbl. from C ; he finds on inspection that A'a :» 
 10% better than iJ's, and C'h is 5^% better than A's; he sells the 
 whole lot at i;57 per barrel, and charges 4 % commission. How much 
 must be remit toeaeh ? Am$. A, $842.30 ; B, $918.87 j C, $1698.83. 
 
 I 
 
 INSURANCE. 
 
 841. Insurance is a contract of indemnity, by which on« 
 party engii<res, for a stipulated sum, to insure another against a 
 risk or loas to which he is exposed. 
 
 343. It is of two kinds : insurance on property, and iniiuriiDoe 
 
 on life (1). 
 
 348. The Insurer or Underwriter is the party taking tbe 
 risk ; and the Insured or Assured, the party protected. 
 
 344. The Policy is the written obligation or contract. 
 
 345. Premium is the sum paid for insurance. It is alway< 
 reckoned ut a certain per cent, on the value of the property iB> 
 Bured, varying according to the degree or nature of the risk aa- 
 mmed. 
 
 at %% 
 
 FIRE AND MARINE INSURANCE. 
 
 346. Insurance on property is of two kinds: Fire Inturanmf 
 
 and Marine lasuiance. 
 
 34T. Fire Insurance is an indemnification of damage and 
 
 loss caused hy fire or lightning. 
 
 (1) lift iofuruM wiU b* trMto4 of later. 
 
Iji, 
 
 i 
 
 9N 
 
 'IM AMD UArnn INMntAIfOS. 
 
 an?b^c,Shwr'''"T®",*" «'*^™»'fi<»*««n of damage 
 priDdjL: '"''"'*"""' '^" «*'*'"'^*'«»'' are tM««lon the following 
 
 TT* Z^^^^^^ ^* P^c^t^ge. (278) 
 II. The sum insured is the ba*e of prcmin*. 
 in. The sum coTcred by insuraaoe is rfifertnee, 
 
 BXAMPLB8 POB FRAOTIOB. 
 
 ftMOBat 
 
 2.50. 
 
 To solve this Example, me Cue 1., MS, VmUL 
 
 To solve this Kxampie, m« Omo II., SM, Ina. 
 
 • w^'JiV'L''''"'""*^'f""".«***"''"^ <■«'!<>''*• value, at 13«. 
 WM$14.,.bO; requ.re.! the valueofthe tWDery. Am,. $11648. 
 
 To solTe this XiAMple, m. C«w III., Ml, WmA 
 
 4. What must J)e paid for an insuranoe of $6728 at 11*? 
 
 7. A hotel ralued at £8760 i« insured for i of its value at ?'* 
 
 'heiit^r? *"^^*^ ^^^'^ ^--^"^ - chtrwyir; :L't t 
 
 eur«l\j'ri*2?'*'''^.u"*''*^'"'**-^'^"^^«= ''»»•* «um muV'Jia. 
 9 {fk ?^ ^. *''''^'' ^^'^ P'^'P*"*^ *»^ premium ? An,. $<;500 
 9. What IS the premium of in«uring£t;s)5 11 8,ati5 13 9«T 
 
 a i ;f Iif*^ """T^ ** ' insurance fo? my library,' and this sum is 
 
 jCS i« 8^? P«™ujn for an msuranoe of £1486 13 9, at 
 
 .ui^ 4 *"S-Zir%X^.tl'i''?;^ ""'"*' oft^f gel! tltmW 
 
 $2000 of Me «to«k IrkJfV!!!*!*' '^,'u ' «o°«ag'-ation, he saves but 
 
 ]o ^ *°« «<f «> w«« re^ lo«a will be sustain ? Ans. $472 
 
 «. to .oi^^fh! r." "I"" ' ''"''**'. '*'""*' *^ '^^^^^^ be injured, at lA 
 *!? M ! *"*"* '"***' '^ **"* '* •" destroyed by Are ? 4. $8400 
 
 14. My goods are worth £1563 12. For what sum m.l« T 7 
 .h.^jp„o„,, i„o«,.f !«.,. both pr^J^'lTp^Zy, r« 
 
 li). rh(. premium Ota echool-hou«,iB«ared at li^k islfiVn. V., 
 whirt sum was it insured ? » area ai ij % , , ^50 . for 
 
 '"""" • iiw. $360. 
 
AMKSSMBirr OF TAXK8. 
 
 2«S 
 
 of damage 
 e following 
 
 he aaioaBl 
 $112.50. 
 
 lii house f 
 
 $11648. 
 
 'fffiMl and 
 2 14 + . 
 wrecked ; 
 
 887.50. 
 
 5 what is 
 J 15 0. 
 ist be io- 
 $6500. 
 [3 9%r 
 8 eum 10 
 >uot? 
 13 9, at 
 
 H+. 
 
 them in- 
 iaves but 
 
 «472. 
 red, at 1 A 
 P8400. 
 I iu8«rc 
 ^ at £2 
 ilGOO. 
 8*50; for 
 ^4000. 
 of build- 
 balaoce 
 $360. 
 
 oJl:^^ ''"' "•."" «"'^« ^^*^'^*' *1938 12 « be injured to 
 
 cow both ppcinmm and g(,bd8 la case oflo».H, the rate beiuK 6««? 
 
 IH. A .rig estimated at $40000 is injured for % of it« value at 
 H% and Its cargo, worth $H6000, at | ^ ; what is the insurance ? 
 •Jf^; ^ '^''"'''T'^ P""' «I450 tor premium ofinmirance on a cargo of 
 cotton com.ng from Uavana, the rate of insurance being 2^%; What 
 
 «J™i.. '^ * ^"''*" »n«"«-anoeof$1200: what is the rate of the 
 pretnium ( a . , ^ 
 
 ofJlLll^il^i.^f.]^' '^^ 7i 5* commission, and find the insur*,;ce 
 of tae sum, at 4J % ? ^„^ ^.^7 5 4^ + . 
 
 ftnl^"r ,.!*"'' l'f!i"S a cargo of SOObbl. flour, has it insured for 
 
 Klce LTte ? '* ^' ^""^ P*'^ *^"^-2^ ^«' P'-^"*'"'" 5 what was 
 tae price per bbl. ? ^na.$8.26. 
 
 R«t 1 r ^"■P-ow"?'' Ji^s two of his vessels insured for $1^0000 in the 
 rn' !/ill^'"''"1! ?^-' f ^ ^' *"'^ f-^"" *45000 in the Colonial Insurance 
 
 9** A*r ' *"*^'8 to^ rate of premium for the whole insurance ? 
 . i!4. A house estimated at £300 was insured for I .jf its vahie, dur- 
 «£)!?"' fu ^ P^*" *?'*"'"• Towards tl»e end of the third vear, it 
 
 ZZ J\^ ^^ I ^""^ ' '"^^^ '^ ^^^ *<^^"^' Jo«« o*" ^'i^' proprietor without 
 any allowance of interest? ^ /Ins £106 
 
 «.!?<» J *^-5 V"** •* '^. P'^''^-^ ^""^ P'*»«' and g ^ premium ; every 
 ^3 t"»f ^/m' ^ P^'^ J^ P'-«'"''^"'- The house having been de^ 
 hlvS'K n >'^^^ "'•'at was the loss of the insurance, no interest 
 flaring been allowed? j-,„ 419m- ok 
 
 ^t.. 1 paid $46.75 for insuring a store for the i of its value, at 
 I , % } wha IS the store worth ? ^„8 $,;hoo. 
 
 a„<V*J ? * P'^u''^ of £3011 6 for the the value of botli property 
 rj-in/'To""'' what IS the worth of the insured property, Ihe rate 
 
 -ib. A shipment of wheat was insured at 2%%, to cover 3 of its val- 
 
 ^Jk„IPPu""™P^"^.'^*' '^^^•^^5 ^^^ "'J'^a' being worth 80 cts. 
 per Dushel, how many bushels were shipped ? Ans. 2825 b». 
 
 ASSESSMENT OP TAXES. 
 
 850. A Tax is a sum of money assessed on the person or 
 property of an individual, for public purposes. 
 
 »51. When a tax is assessed on property, it is apportioned at 
 a certain per cent, on the estimated value. When assessed oa the 
 person, it u apportioned equnlly amonir the male citizens HnKl* to 
 assessment, and is called 9. poll tax. 
 
 352. Property -s of two kinds, viz. : reed estate, and personal 
 property, ^ 
 
 1 5 K * ^*^* Estate is jkAi or immovabU property, suoh as 
 
 ,i'iJ 
 
 '.mv^'-i 
 
SM 
 
 nmr 09 rAxm. 
 
 1. : 
 
 f 
 
 
 
 ji. < 
 
 ^|' 
 
 
 
 
 '' " \ 
 
 
 L. 
 
 »«4. Personal Property ia »»omW<' property, sueh as money 
 
 stocks, lurriiture, cattle, etc. 
 
 355. An Inventory is a written list of articles of property 
 with their value. "'' 
 
 350 A Schedule is a list of taxable property with its owners' 
 names an 1 its value as estimated by aaHcssors. 
 
 SST. Assessors are officers appointed to make out a schedule 
 of taxable property, and apportion taxes thoreon. 
 
 Ex. A tax of $840.76 ia to be raised in a town containing 65 polls • 
 the taxable property of the town amounts to $48000, and each poll 
 tax 18 75 ct8. : what will be the tax on a dollar, and how much will 
 be 9 tax, whose property in valued at $5600, and who oavs for 2 
 polls? *^^ 
 
 OPBRATION. 
 
 $0.76 X 66 = $48.75, amount asHessed on the polls. 
 
 $840.76 — $48.75 = f792, aint. to be assessed on the DfODertv 
 
 $792 ^ $48000 = $0.0165, tax on $1. ^ t^ 3 
 
 $5600 X $0.0165 = $92.40, C's lax on property. 
 
 $0.76 X 2 = $1.60, C's tax on 2 polls. 
 
 $92.40 f- $1 .50 = $93.90, amount of C's tax. Hence the 
 
 35*i. Rdl^:, — I. Find the amount o/poU tax, if any, and 
 subtract it from the whole tax to be raised; the remainder will h< 
 the property tax. 
 
 II. Dii^ide the property tax by the whole amount of taxable 
 property ; the quotient will be the per cent., or the tax on $1. 
 
 III. Multiply each man's taxable property by the tax on $1 
 ^nd to the product add his poll tax, if any ; the result will be the 
 whole amount of his tax. 
 
 EXAMPLS8 rOE PRACTICB. 
 
 1. The tax assessed on a certain town is $1485; its property both 
 personal and real, is valued at $42000, and it contains 300 'polls 
 which are assessed 75ct8. a piece. What per cent, is the tax- that 
 is, how much is the tax on a dollar ; and how much is A's tax who 
 pays for 3 polls, and whose property is valued at $2250 ? 
 
 . An$. 3 cts. on $1 ; i69.76, A's tax. 
 
 2. What 18 the tax of a non-resident, havinir property in the same 
 town, worth $7900 ? jifu. $ 
 
 3. How much will B's tax be, in the same Ujwii, who pays for 3 
 polls, and whose real estate is yalued at $32000, and his personal 
 property, at $18880 ? Ans. $1628.G5. 
 
 4. What aurn must be assessed in order to raise a net amount of 
 $11128, and pay the commission for collecting at 2^%t 
 
 6. The expense for repairs of a public building was $2521.06, which 
 was defrayed by a tax upon the property of the town. The rate of taxa- 
 tion was 34 mills on one dollar, and the collector's commission was 
 3i % : whttt was the yaliutioa of the proptftjr f Aiu. $80384i.<9 + 
 
aeh as money, 
 of property, 
 th its owners' 
 lit a schedule 
 
 ling 65 polls: 
 III each poll 
 V much will 
 • pays for 2 
 
 property. 
 
 the 
 
 f any, and 
 Inder voill In 
 
 of taxable 
 
 on$l. 
 tax on $1, 
 ( will be the 
 
 )perty, both 
 > 300 polls, 
 e tax ; that 
 'a tax who 
 
 I A's tax. 
 I the 0Ame 
 
 t. $ 
 
 pays for 3 
 is personal 
 $1628.()5. 
 
 i amount of 
 
 1.06, which 
 'ate of taxa- 
 niaaioD vas 
 38ii.C9 + 
 
 oiwrmf-HousB bdiinim. 
 CUSTOM-HOUSE BUSINESS. 
 
 Mt 
 
 „nn^^?' ?,"^*®^' **' Customs, are taxes levied on imported 
 fnduSry" ''' '''^^'' of govorn.nent and the proteotl 7home 
 
 861. A Custom -House is an office pst'>hli-«]ir>,i 1^, 
 
 ment for the transaction of business Snt Sut c. \fr2 
 
 cars attached toitarecdUed(7««.c,..^o,.e|^atT^^^ 
 
 s to »°«Peotthecargoesof allvesselsenteringatanyof hese^^^^^ 
 to inspect the invoice of goods, collect the duties et^. ^' 
 
 etc ; thase oLrge« are oaH.dh«"4r dues '^ "'°"' °^ ""'""« '*"» P«'*' 
 
 2. To carry on foreign oommeroe secretly, without •.»„,„,. *i, ^ .• • 
 by law, is tnugglin^. ""'^uy, mtnout paying the duties imposed 
 
 868. Ad Valorem Duty is a certain per cent on thTeo«t 
 ofgoods, as stated in the I'nyoice. ^''^ 
 
 864. Specific Duty is a tax computed on the wei-ht or 
 measure of the goods, without regard to their cost Lee alow 
 anoes are made before computing the duty. ' 
 
 865. An Invoice is a statement of goods, from the sellf-r tn 
 the^uyer, or importer, showing the qua'ntity^nTp"f th^ 
 
 866. In the United States Custom-Houses, certain Wal al 
 "ra^elSiZS Vca' f^'.^-^^^S^' ?*«•> be/o^re^Tptifi 
 
 bc,xes, etc., containing tL goodsf and Velak^^e'y gaTgin^ tt 
 
 .pe^rdT^e?aTefarJSj;frSX^a^^^ the oniy articles upon which 
 867.— To compute ad valorem duties. 
 
 Ex, What is the ad valoram dntv ai i » i^ ^. « • 
 whinh «o«r «^fi« fio » "*^' •* ^ « »' on »n invoice of 
 
 ich coat 
 
 OPERATIOir. 
 
 $a5«.60 X .18 a: $46.17, An$. 
 
 men BO 
 
 A»ALTSM._. According to Case I, 
 (MS), we multiply the invoice, $2,^650 
 which le the ba»« of the duty, bv the 
 IJTeB ratt, uui <■ in the duty, $46 17. 
 
 H? 
 
 m 
 
 
»h 
 
 111' 
 
 OUWOM-HOOM BuanMo. 
 
 th!^^^ls ^l'';^:~f''''^^^' Pfrcenta^e on the invoiced value a/ 
 ««/.ir« r^ ^'"'" "'^^ ^/^'^-i^. -*^ '^« »•««/' ^tW be the orf 
 
 3«!> 
 
 To com}.ute spfci/ic duties. 
 
 <«'...,"^::J;*^,i7, .tct.-.tu.^'^ .iTi/"' ■"'■^'"■« 
 
 OMRATION. 
 
 J 9J •'* = 716.811... tare. 
 ♦40.^. J X .02|=.|I2I.()H«, ,f„ty. 
 
 Analtsw.— We first find the 
 whole weight of the inroice which 
 u 612()lb. From this amount we 
 deduct the allowimoe for tare, 
 716.81b., and ocaijiiite tha duty 
 on the remainder. Henoe the 
 folluwing 
 
 KXAMPLKS FOB PftACTIOK. 
 
 _ 1. What is the ad valorem duty, at 19 * nn is-rsn ik <• 
 invoiced at 15 cts. per lb ? *' ^^ *> 00 16780 lb. of cordage, 
 
 llsVso? " *'' '"^^ ^^ •'•'*' - «* bale of HoUaud linens which cost 
 
 6. What is th« dutv at 20 od ^„ • • ^^- ^525.85A. 
 
 cc«t in Liver, ulS' 1 th^' 5° ""T^""! ^^ broadcloth which 
 
 6. What thetScdu^riOor'" 
 -oh weighing I20T; tare % J ? '''' P'' ^^'^ ^" ^^ *=^««t« of te'a, 
 
 aot%j^ir^1j-^r„?untrtoXt"s^^ 
 
 was the wine invoic^ ? ^ ' *' ''***^ P"«e Pe»" gal- 
 
 Ht',i6urt„"g^;dSvSTt'^^^ 
 
 Jf4 ^J on goods'i„voicJar$33lo^1h'e\^1iettV:rth. tj^ 
 16%; goods invoiced at «4800. were free ,,f rl„Tv o 1 ?^® *^^ 
 nianxler, the duties were at the Zi^nff,^ ^ J' """^ ^n the re- 
 amount of the duties? of -^0^; what was the whole 
 . 10 What is the duty at 18,^ on 60 ke.s af nr..^J:'::'{^r 
 ' l?^" '"^«'cea at if cts. per lb. ; tare m31%? ' ^ ^eighmg 
 
i value if 
 ^ ht the ad 
 
 weighing 
 
 Sret find the 
 nToice which 
 9 amount we 
 oe for tare, 
 te the dutj 
 Hence the 
 
 I compute 
 
 ' cordage, 
 1449.73. 
 egs of to- 
 re? 
 ) hhd. of 
 
 diich cost 
 25.85^. 
 th which 
 
 t$4.86|? 
 ts of tea, 
 
 is 12250, 
 
 15%. 
 ', 42 gal. 
 per gal. 
 
 invoiced 
 
 the rate 
 
 rate of 
 
 the re- 
 
 3 whole 
 JO.tO. 
 
 eighi 
 
 °g 
 
 pieces 
 
 ■y24c,j; 
 
 Ben, at 
 
 •>'8<XMTNT AJO) Wta.Nx WORTH. 20f 
 
 12. S. K. Wilson A Co., of Toronto • ,^«»- «26l.88 + . 
 
 4Ppione«oflinenof.32vd ea... ,.^"u' '""P"^' ^^om Amsterdam 
 ^t -'4 ^.« 1 84.32. andorhercWsS'if' '^^ »*'<' f**' »»»« '^S 
 «^^^ tiie invoice value tterrA S^u ^''* •'"""»* of f61.44. Wha 
 cli»-rgeH were paid? ^ ^'*-' •"** ^*»» «^» P«' ^d. after d.Uee „d 
 
 nrsoouNT and present wortr 
 
 paSo?a?e^bifo«^fi^du'^ '' '*'^"°"°" "^»^* «>r «>. 
 
 ru^r!L'':if^^^^^^^^^^^ clebt, payable at . 
 
 rayabieiaYy;;;^,'^'*'^-^^^'^ -"d discount of $25.44, .t 6^ 
 
 OPERATION. 
 
 $ 1.06, amount Of $1 
 ■^5.44-^ LOG = $24. ' 
 2o.44, given sum. 
 
 J±^, present Worth. 
 ^ 1-44, discount 
 
 $25.44 will be M mn„. I ii^° P''®'«"' ''O'^h of 
 
 worth vrhich. subtr.. oted f?,.m ii" ■ '^ '''" P'"«*«°» 
 $1.44 diacou'nt. H^c^ S:"!?/;!" ""' *''" 
 
 WORTH "^ '^''' '""^ ^^' 9^i*^t will be the present 
 
 n. ASMiimci <A(! present worth from. /A^ « 
 remainder will he the di6oount. ^"^^ '^' ""^ ^*« 
 
 I. To determine the present worth :— 
 
 100 + (6X1): 100 ;: 25.44 • x - aai- u 
 
 lowing formula ; •**•«-- ¥^ ; whenee the fol- 
 
 „ ^ ^ ". ^' ""^ ^^' ^'■^^'»^ "''^^^i 0/ this sum. 
 
 II. To deteriuine the disooant:— 
 
 100 + (6X1):6X1:;26.44:,^« 
 lollowing formula : ' • * — •! 
 
 i 
 
 ;m 
 
 ■44; whenee the 
 
I* 
 
 IM 
 
 DBOOVNT AUD nUMlNT WORfm. 
 
 traotin.' the principal from tho amount. "" ^'^"^ ' "'' ""* "''•'^''«' ^y »"»" 
 
 of tho .eroral , av nl'Kri »M ' ''''^^•u ^'''"'' ""^ '^"' '»« '^'e P'esoi.t worth 
 paymenrwrnCoth^toUldl^^^^^^^^^^ .ubtraotaU from the eum o^ the s.^erl 
 
 EXAMPLEg FOB PRAOTIOB. 
 What is the preHent worth of the following Dote«:^i; 
 
 . 2. Dated March 4th., a.nouating ,o US 10 6, on 7 nfuntt' cr«it. 
 discounted Aug. 10th., at4l»? * iiM £58 3 fi 1 ^ 
 
 r T^"**^^"'^?^'*'"^""''"*? 1«»206.16, on 4* months' credit 
 dj^counted May i^Oth., at 4A^? ' aL ^^-iu^ra.^ ^ 
 
 li. D.ted July loth., ai,j,.ia,iii,g to tZljs.ao, „„ 5 months' oredi. 
 d,,«=o„,ual Oct. 12th .t4Ji«v J«"*5m!20+^ 
 
 J^,s^!^^^^l'^-"^ - -- '^^^-^..rii^r 
 
 iJ.. Uttted Arsv • ... amountin,'. , 3J4.^6.75, on 3 niont" "' ''*' 
 
 discounted Junv, 2:iud , ut 5^ Jj? 
 
 17. Dated March 14th., amounting to $600 
 
 discouRted 
 
 Sept. 7th., at 7 ^ ? 
 
 00 
 
 (1) We letkM Mlj SO dayi to the oMth for aU the Bete« 
 
 — credit, 
 Ans. $433,110 + . 
 n 7 montlu' crcdit. 
 Ans. $696,714. 
 
 on 
 
 ia tnM 
 
ttuoommr amb nmt^T woith. m 
 
 18. D»ted F#k. fth.. amountine to £860 18 im n w»^^tk.^ u 
 
 •luKJountrd April I3th., at 7^ ? Afu, £H?^ir^^ 
 
 19. Dutcl Not. lUh., araunntini. u. JllTA ■^n f ^' ''^ ** ^ • 
 di«c<.u,.ted Mav 4th., uUJ * v""""« ^ *^^*-^«' "''' ^ month.' omiit. 
 
 20. IhiUd Aiurcl. 0th., a.MMu.ting to £701 "J « n t '"^ ^ \ 
 Ji»couiit.,J June 9th at 7A *■' «**'"' •> ♦>. on 4 moH.' oml.t, 
 
 ^^.^.^What ,. .he present worth of .5117.60, puvaM.. i„ ,' year, "at 
 
 h.nc;,'lt'?r/'' ^'■""' -'^t^ of a debt of £96 6 OJ, .iueT„.'l'?L. 
 
 2;s. What Hhould be the discount on 1373.7.'-, nu.T i I nf "L"/ 
 theterm of maturity, at 6i«? •^'•i-'-'. pui^l ''*>• before 
 
 24. What iH the diBcouMt on £200 12 6 at 7' <^ "" n'"-^^ ,■*" * 
 26. A note of $139.94 m pa^ble in 9 mon hi' ^' 1^'^>'.^'' « '" »r- ? 
 worth, .liHcount being f,*?'^^ ™onH'^; wimi^istheprewni 
 
 26. Discounted a Jote of £76, payable in 4 year""' ! f'T \ 
 8uai shall I receive? ^ " m * years, at o,^; what 
 
 i^^, *' ^'^ ""mediate payment ? \i;i. *„ in^ 
 
 month, is allowed ? ^ ^^' '**''^ Ai^£\'^''Tlt^' 
 
 «q?ikL*'''^ M*''*"'^ ''^"^ *^«* '"• *2964.12 readv money *fbr 
 ¥3660.20 payable in lyr. 6mo. : what w.ll h. ...„ ,.„;„ . •_.' ."'•^' '""^ 
 
 by oiscountinK at 8 at? 
 
 90 T 1 1 . ,1 '*. 
 
 liat will be my gain, in ready monev 
 Ana. $.i08.3^. 
 
 ^ 
 
 i ^ 
 
 32. I bought Hilkftbr $43713.60, on 15 months' 1?;iif'®£;f\ 
 payiug before the time due, I will obtain 5 * ,1 scount hTwL ^ ? 
 should I pay the debt, so an 1. disburse bur^i" illS" ' ' V.^:!^:'' 
 ^ 33. A tlour-mill was offered for $2.5000 cash. ,,r for jftM^Tna ^ ?. 
 
 « Ji*: ^<^"'« bought goods to the amount of £82 6A on 20 mn« ' 
 credit; at what time did he pay, knowing that he oltk^ned i tTr,' 
 count per month, and that he disbursed but £75 19 ? jLK^o 
 
 .«. A merchant gave out two notes : the tiret of «'M'A« . i 
 
 May 6th., 1867, the second, of $178.64, i^yal'elei^^^^^^ 
 what^sum IS required to pay th. two notes^'ct. 1 utf^seeTisl^oum 
 
 % ^^\' quantity of produce must be bought at Ss. ner Ih 
 on 22 months' credit, in order to oar but £50 1 9 ini 4p- jH^f- ' 
 the discount at 7 ^ ,' " ' ^ 5; »»s«?i acduv^iug 
 
 .37. On 9 months' credit, I bsaght 120 bales of cotton p^^k v-.i 
 w^glung 4881b., at 5Ad t\e lb. ^Selling a i^^ZSyVte^'l 
 oaeh,^I paid my own d-bt, and r.^ved 6% discount ; Lw niuch did 
 
 Ant. £390 8. 
 
 '^ 
 
212 
 
 ■AifK Dnoouirr. 
 
 38 I paid $320 for a sum 1 owed ; what w*8 this sum, knowing 
 that f>\% discount was allowed ? Arts. $386.80. 
 
 3!). Paid £23 15 for 50yd. of cloth ; having received '> 9^ dipcount, 
 how much did it cost me per yard ? Arts. Oa. ll^V- 
 
 40. Ih it more a<lvanta;^eouH to purcliane flour at |(i.25 per bbl. 
 oi> fi montiia' credit, or at $6.50 on 9 months' credit, discount being 
 8 ^ ? Ana. Flour at $6.25 is the more advantageous. 
 
 |i 1 1 
 
 ■ y .1 
 
 1) 
 
 m 
 
 
 BANK DISCOUNT. 
 
 374. A Bank is a corporation, legally established for the 
 purpose of receiving and loaning money, and of furnishing a paper 
 circulation. 
 
 375. Bank Notes, or Bank Bills, are the notes made and 
 issued by banks to circulate as money. They are payable in 
 specie at the banks. 
 
 Obb.— A bank which iggueB notes to circulate ae money, is called ». bank <> 
 ia*w»; one which lenda money, a bank of ducount ; and one which takes ohitrge 
 of money belonging to other parties, a hank of deposit. Some banks perform two 
 and some all those duties. 
 
 376. The Capital of a bank is the money paid in by its 
 stockholders, as the ba.si8 of business. 
 
 377. The affairs of a bank are usually managed by a hoard 
 of directors chosen by the stockholders, arid tho principal officers 
 are a president, a cashier, and one or more teller^. 
 
 Obb.— The president and oaahler sign the notes issued; the cashier superin- 
 tends the blink accounts; and the tellers receive and pay out money. A lj>,nk 
 eheok is an order, payable to bearer and drawn on the cashier for money. 
 
 378. Bank Discount is the simple interest of a note, draft, 
 or bill of exchange, deducted from it in advance, or before it 
 becomes due. Thus, the ha?ik discount on a note of $106, pay- 
 able in 1 year, at 6 %, i.s $6.36 ; while the true discount is but &6. 
 
 The interest is computed not only for the specified time, but 
 for three days additional called dai/s 0/ grace. 
 
 *^.^'T-L' "^^^ tlifferenoe betweeu bank discount and true diicount ia the same 
 as the difference between interest and true discount. 
 
 2. The legal rate of discount is ordinarily the same as the legal rate of interesU 
 
 S7». The Proceeds, Avails, or Cash Value of a note is its 
 face or amount minus the discount. 
 
 880. Case I.- 
 
 ■The face of a note being given, to find the 
 ditcount andprotMtU, 
 
1, knowing 
 *3H6.80. 
 5l5<IipCount, 
 8. lly'^d. 
 ^5 per bbl. 
 3()iint being 
 itageous. 
 
 Jfl for the 
 ng a paper 
 
 made and 
 payable in 
 
 A a bank " 
 tftkos nhiirge 
 porform two 
 
 in by its 
 
 y a hoard 
 HiJ ojficers 
 
 tor superin- 
 !y. A hunk 
 )ney. 
 
 ote, draft, 
 
 before it 
 
 106, \my. 
 
 is but, $i6. 
 
 time, but 
 
 is the same 
 3 of interest, 
 note is its 
 
 BAHS 
 
 213 
 
 OPBRATIOM. 
 
 Sum difloonnttfd, »RAa nn 
 
 Int. for 30 dM. «. 1 ^ foOO.OO 
 
 B.nkdis^„„t, ^^"•"^•' jIs 
 Proceede, or present worth, 
 
 f497.25 
 
 Analysis. —We find the 
 mtoreft on the gnm dis- 
 •ounted according to 297, 
 and this int. ig the bank 
 duoonat; we then su btraot 
 the disoount from the sum, 
 and obtain the present 
 worth, $497,26. Menco the 
 
 «j^_ ""AKu, .jj-itfi.io. uencothe 
 
 for fh.Z f'^^'^'—^-C'<'^P"f^ the interest on the face of the not^ 
 
 or, 1 JJ ; 500 ;; ?oo ite' x*' ^' f '* '^'''°r* ' 
 
 •■ '"" ('' X ^-,m) X, or the proceeds. 
 Note.— We take calendar months for the rAAiron;^^ ..*•*• 
 bank disconnt. and compute inte^Tas if 2 * '"' °° "" "»" °«'«» ^ 
 instead of 365. then the Lult ,s1r.a". ' f " <'«jtai-d only 360 days, 
 greater accuracy is required thl tnf Tr ?J^^' *"^ "^^ "^ '^^'«'f- Hence, if 
 
 rule, must be <Ji^inished hyVofil " or the 1'/^' "''''° "'^^'^"^^'^ '>y '•^« 
 page 1S3, must be followed^ ^ ' "'' ** "^^hod of computing intertst, 
 
 EXAMPLES FOR PRAOTIOB. 
 
 •lioo^tS'r^o'da"^^^^^^^ Of a note of 
 
 ^ 2. WhatistheprlintlrtLfaTo^eo?^^^^^^^^ pro. $989..50. 
 and discounted at the Quebec Bank ? ' ^^^^ '' '" ^" '^^^^ 
 
 ^. nesirintr to loan £9fin ,^<• a/ . i ^ ^n». JE1979. 
 
 I aJd to o„,„plc.„ the „„„„„, l;Ee7 '^''.^""r?'^ """' 
 
 5. Find the d»y of mat.iritv M,. ♦• ^ j- ^"*- ■'•''-•^'^- ^ ^"^ + • 
 of the following note.!- ^' «"»« of discount, and present value 
 
 £40 2. 
 
 Quebec, Dec. .3rd., I8G8. 
 
 Bank of Quebec. ^ ^ *'"^ ^*^ shillings currency, at the 
 
 «* ae Juoe s j 6 1869; tern, of disc. 64da. 5 pra, m 13 6^ + . 
 
 rr.ji 
 
214 
 
 BANK WSOOUNT. 
 
 $10(50^^,^ 
 
 Montreal, A.pril 19th., 1869. 
 
 i i 
 
 Ninety days afier ilate, we promise to pay C. Simson, one thousand 
 »ixty-six and ^^{\^ dollars, at the Union Bank, for value received. 
 
 Rappe, Wkbueb, & Co. 
 Discounted May 8th., at 7 %, 
 
 Ans. Due July 18 | 21 ; terra of disc, 74da. ; prooeeda, $1061.40 + 
 
 6. What is the difference between the true disco'unt and bank dis- 
 count of .1950, for '^mo., at 7 ^ ? 
 
 7. What is the ditierence between the true discount and the bank 
 discount of £2000 9, for 6 months, at ;^ %? 
 
 tiH*2. Case ll.~ The proceeds of a vote being given, to find 
 
 the face. 
 
 A'.r. What i5< the amount of a bill, payable in 60 days, which dis- 
 counted at a bank, at 6^, gives $989..0O for the proceeds? 
 
 OPBRATION. Analysis.— Sinoe $0.9896 is tJio pro- 
 
 $1.0000 oe«d8Ci'.i>l, the noteof which $989.60 is 
 
 Int of $1 for 6^ davn 01 nr. ^^^ proceeds, mu.st be as many dollars as 
 
 ini. oi J|>1 lor b.i days .0105 $o.9895 i« contained in $989.60. Honoe 
 
 Proceeds of $1 $0.9895 the 
 
 989.50 -=- 0.9895 .- $1000, Ana. 
 
 . 3^3. Rule. — Divide the proceeds of the note, by the proceeds 
 of $1, for the time and at the rate mentioned; the quotient will 
 b4 the face of the note. 
 
 By proportion. 
 
 IW - (6 X ;ft^) : 989.50 :; 100 : *= theface. 
 
 EXAMPLES FOB PRACTICE. 
 
 1. What sum, payable in 90 days, and discounted at 7 * at a 
 bank, will give £170? j^ns. £173 2 7i. 
 
 2. A merchant desires to draw $5000 from a bank, and for this 
 
 Eurpoee discounts his bill, payable in 90 days, at G%; what should 
 e the amount of it? ^ns. $5078.72 + . 
 
 3. The proceeds of a note, due in 4 months, and discounted at the 
 bank, at (i %. are £407 18 ; what is the face of the note? 
 
 4. Bought goods at Toronto for the sum of $1486.90, and gave ia 
 payment my note at 4 months, at 749J discount: what should V- 
 the amount of the note? 4>M. $1526 + . 
 
 5. A merchant wishes to borrow $750 in a bank ; what should be 
 the face of his note, payable in .SOda., allowing 1 % .lisoount per mo T 
 
 6. I gave my note at 60 days for a debt of £16* 1«; tf dtMount i* 
 UK aMtUj, wkat waa tka fiMt •f Ik* »otoT 
 
 T> 
 
iud the bank 
 
 216 
 
 disoounte^Cey^?" '"'^ of interest of a ooie payable in 90 dajH and 
 
 ^r he given time and rate yields 
 M Its proceeds $0.9845. Then, if 
 
 OFKKATION. 
 
 W-«« ^ 0.9845 = 0.06^, ^„.. _. 
 
 intere«t*f* J? '.'"pooeeds $0.9845. Then.it 
 
 « manl*' • S!'^"'; ^''•^S^^ in the same tiu. wi 1 viSiru ""'' ^''^ » "^^^ 
 ny per eent. « the given rate, .06, oontaln. 984T ' '^"" '"'•"'*' '^ 
 
 ^Jf proportion. 
 
 VXAMrLlS roB FBAOTIOl. 
 
 ^TWlf%- 
 
 I- What rate of int«reMt in imu,^ -.u 
 Ascounted at 6 5^ ? "* '* **•** ^*'«'» * note payable in 30 days is 
 
 2. A note payable in 2 moBtba .^ j- . , ^»*- 6,?*, ^ 
 
 7^f T ""^ *^« interest f^" '^ 7*^.?^ ^. ^'^o7ik , 
 3 A note, payable in 1 year, wasdigconnfj?"*^^^ annually. 
 
 ^. 5. Whm was the rate oer amnt L-. . ^"*- ^^Ui- <£, 
 
 0. tvijat 18 the rate of interest Lm^JH j?^8V%, 12f«f jg. etc. 
 «.-„., on . bill .„ i„ .oto.'IC^CX'ofl.l'^ '». '2« 
 
 •MBATIOlf. A„.. '^-^ 
 
 »0 day. + a d^. = „ d.y^ 
 Int. for 93 days, 
 
 <t « 
 
 Amt 
 
 t«.20 -T- 0.27.S77D 
 
 6.20 
 
 $106.20 
 
 for the prooeeds of » nof« tL*A"' 
 
 W«h *^^r of the note $106 20 
 
 S.» ?• ' ^o 'nt-erest, $8.20. and 
 
 «• ">• P»»oe*af <MM. II«M« tht 
 
ISJV 
 
 J«***ai»ikSS!-» 
 
 216 
 
 >»OmiOOOU8 MXAMPLiCti IN DISCOUNT. 
 
 
 'li 
 
 «i^7* KuLE.— I. Find the interest and the amou7it of $1 or 
 ^mjorthe time the note has to run. 
 
 il. Dii>ide the intereet by the interest of the a':nount at 1 % for 
 »M $ame time. 
 
 tip proportion. 
 
 10# + (J4 X ^) : 100 :: 24 : * - 22^1*, Am. 
 
 EXAMPLBS FOB PELA.OTIOE. 
 
 1. At what rate of bank diacouut must « not«, payable in 60 days, 
 b« diBOounted to obtaiu (i % interest? Am 5UW« 
 
 t.5„ « i '^l'*^ -^o* '""'^ * "*'**' ^"^ ^» 30 days, be di80ounted to ob- 
 
 rWSn « r ''^ i""^* * °*'^' P^y*^'« •" 120 day.., be digested t„ 
 obtain 8 ^1 mterent T Am 7 »<^»SJX<A 
 
 «..*• ''^^.'^'■*?V^,''.*IL'' discount, of nate8 payable in 30 7^ ^r- 
 respond to 6, 6, 7, 1 ^ interest ? Am. 4|m? % 5 \U^ «/ ete 
 
 6 What will be the rate of bank discouut,'o^f;7;otTVavle^;^ 
 and 4mo. hence, without grace, corresponding to 5 % interest ? " 
 
 pay a broker 1, 1 4, 2, 2^ ^Ij per month ? Am. U.^^%, etc. 
 
 PROMISCUOUS EXAMPLES IN DISCOUNT. 
 
 What was the present worth, at true discount, of th« followitur nolM. 
 when discounted: — . ^ ^^ 
 
 1. Dated Feb. 3rd., discounted June 6th., amounting to $813 80 
 payable in o months, at 5 ^ ? ^„, ^3,2 62 +' 
 
 •2. Hated March 4th.. discounted Aug. 10th., an,r.'"to'£175 ll's 
 payable in 7 n.o., at 4 ^ ? " '^„., I174 , „ ;^ !^^ '' 
 
 ■I Dated April 2nd., .liscounted May 30th., an..M,ntii»r to .*618.45 
 payable in 4 mo., at 4^ %? 4„^ £^^y^ 55 + 
 
 4. Dated May 15th., discounted Nov. 16th., a.nt'g' to £406 7*0 
 
 0. uated Aug. 7th., discounted Dec. .Oth., amounting to $K000 00 
 payable in 6 mo., at 5 51^? ^ns \vmSrC 
 
 6. Dat«}d Jan. 3rd., discounted Sept. 20th., amt'^r to £270 lo"« 
 payable .n 9 mo., at 7 515? Ans. £269 16 101 + ' 
 
 Darable*^3^;;n* ^,*,^^-' 1;««''«'"«d Aug. 2nd., amounting to$4682.70, 
 
 „„:.■ iV*-^d.rP*- ^^h-' d'poounted Feb. 12tb„ amounting; to 12385.30. 
 
 ^T'iir'ii'"'''^^'i''V ... /In*. $2337.89 f, ' 
 
 y. Dated Noy. 25th., discounted May 11 tb., auit'g to £2626 6 3 
 
 '"'ff n'? I r-' fu^ V •^»*- ^^««7 2 lOi -I ' 
 
 «.!.u • , , ^' 6'J»v isoountedSept. 18th., amounting to $18 9 i. 60, 
 payable m 1 1 mo., a( 6 jK r Am. $1878.97 + . ' 
 
AMPLBS IS DHOOUNT. 217 
 
 M. Dated Oct. 9ili., ,li 
 
 payable .n !)" mo" atl^ '57""^''' ^""^ ^th., a,nountin.nr to £287 5 0, 
 
 iSi,,!,'"!'"! ""-'■ 'J*.- '.li -'counted J„„e 22„d! 
 
 payaW, ,„ r. ,;Z at 54'«'i'""""'™ """" ""•>■• •'"'^'x to $1310.25, 
 P.41.:'r„1,jrt if ••'^"--ed Sept. T.h.,'^aro*:,l^„:-t1l-^eio, 
 p4a■.??r^,S^f^ ^-"-^ Ap., ,,,., a„,,, ,f/,,»^'JJ-, 
 pailFr^^al'c?'^-""-— ~?^lo&;»0, 
 
 pa^:L,fr^*!ri;t^;?4f-'''"-^""--.-?;.--5«Ve, 
 
 21. OnMnroU ]9th ,' . , . ^n«. A2091 5 51 + . 
 
 payable nL'V.M;hr^^^^^ 
 
 •^•.> .7.' ,,-"*•' what .«uiii , lid I receive? /Itj,.? .*«92 54.fi 4- 
 
 23. The contr ct Z ^ tnlvr. \^ ' /''''* ^^'^ ^^* ^lut. of ihe bill ? 
 
 ordered to do ext work for «I52J' if '"^ ^f '"f ^"'^'^^'^' ^^^ ^^s 
 -a.^0 that e.e co^^^r^l^^.^^^^^ -— ^l!: 
 
 diec'ount being oi^TaVr;? '^' "'"^ '^.l'/ 1^^,« ^'''H -^«' 
 
 25. I owe the sum of If -> 1 4. 22 as follows •«';n^^9 . 1 • f ."*" " 
 
 ^'. vvjiat IS the present worth nf -kTkq «n j. ^u "^*^- 10 -'5. 
 hence, at 6 ^ ? ^ #769.60, due .^ vfara and 5 months 
 
 14 
 
 « ':li 
 
 ; ' ''M 
 
I' I 
 
 lit 
 
 only £98 • dhi T .-Thtlf ?■ . ^^' **^® discount amounted to 
 
 After 16 montKl^lSfeO a^^^^ %^rr"' '^f »*• 
 
 remainder, knowi„g^hH^l'dl!ied\S^08:5l<i'' ''^ "*'^ *^^ 
 
 34. What «um discounted for^mf'Sd;. ' at'V?'^'' '^' P"'''^"'*" 
 produce a diornnnf wifj. „i • u ; "'•' *^ ^«^ P^r annum, oan 
 
 £>vered benSr, Jn. iT 1'*? '"^^^ purobased the makincrs of 8 
 
 V^ n^-t' f ^ ^*yd. lor each, at $1.80 per yd.? A #(i6'\7< -u 
 
 STOCKS. 
 
 8S<S. Stocks is a general name given to ffovprnm^n* k«-j- 
 and to money capital invested in corpomtTon^ ^o^^rnment bondi^ 
 
 'u^^^\ ^ Corporation is a body formed and authorised b, 
 *aw to act as a single person. "umoriaea by 
 
 390. The legal act of incorporation which detinen *K« rJ„i.t- 
 and powers .f the corporation is called a Chartef ^ 
 
 triS'o'^^ ^7'^^^ ^*°^^ of a corporation is the money con- 
 tributed and employed to carry on the business of the coinjany 
 
 for these .o^n/ontit;:'tro"h2.5jtoT?IXro°L^^^ 
 
 6 ^ aunually are called 6 per cent. Btook, or H'b] Ao. ' drawing 
 
 binVI°i^^:J^"^^"°»."'^^»•<*^hat are called co«»„,^.ei.r,h of »^ ,. . ... 
 «-e«e..rai.y «.o^.„, P-eSt^^^/ifrthi/K^od::''"'^ °°"^''"' 
 
STOCKS. 
 
 21^ 
 
 UIVJ 
 
 us. $2000. 
 ; if he pays 
 uch will h« 
 206 4^. 
 ied£120dM- 
 imounted to 
 y purohasea, 
 
 Jars' credit, 
 ant of 1 5U. 
 e settle the 
 
 purchase, 
 innum, can 
 
 ikings of 8 
 .. f (562.7!) + 
 and having 
 liscouiit, at 
 It). .'{(In. af(. 
 floor being 
 is 701b. per 
 lank, iBt 
 be obtained 
 ath. 
 
 orized by 
 
 be righto 
 
 oney con- 
 smpany. 
 
 y tt9 raised, 
 
 oiidsitHued 
 da drawing 
 
 hi-- j- 
 
 •• 'n a uuc 
 
 be amount 
 'h eoupons 
 
 wnuitMg." 
 t difforent 
 
 thJ/iiu^dTS i-slKi^i'^'r*'"'?* "^°«' """"olidated the stock or bonda 
 Mmi.annuall7MdSeLht^1''T"^ '°'°«'^^ "^'^^ I'«^ annua,. payablS 
 practically ;l^;^,Xt™^'« wfth h^ "P''°^ '^'\' g^''«™"^«"^ b^oou^inj 
 deemed. TheVuotat onrofThese 3 J t ^ ^'"'l*^' "'^'^'.^ "'^ "''^ ^''^'^ ''»« "" 
 
 siocK IB Jivided. The Talue of a share in the original oontribntiMi 
 of capital var.08 m different oompanie. ; in ban^ ^TmT^ 
 railroad compamea of recent orgrni.,ti™, it i, nsudfyilol' 
 
 ».l«e ■" "' ** ^" "^•^ *»y "» ««• '!■«!■• original 
 
 for^fet^nTeif :J;^1! E™°" °' •^"°-' "-^ '''"^ -- 
 
 th^ltlt^i^tL!' ^' " *""■"■ ""^ *^^ -" f- '- 
 
 ^^'^'i f "^ Installment is a portion of the canital sto^k ta. 
 qu.ed of the stockholder., as a p^yo^ent on th:i;SLf ?il 
 
 meft^fe loJes or'fhpT'^* '' " """^ ^'^"^^^^ «^ stockholders, to 
 meet the losses or the business expenses of the company 
 
 400. A person who buys and selb stocks, cither for him^slf 
 jiiC "^ ° '°°*''' " "^ • Stock'Broker or siock^' 
 
 KXAMPLES FOR PRAOTIOB. 
 
 .^Vi Jpti^i'„tr°'" """' °'«-^ Tr„„k Railroad 
 
 OPERATION. 
 
 $2700 X .045 = $121.50, premium. 
 $2700 + $121.50 = $282l!50, Am. 
 
 Or, $2700 X $1,045 = $2821.50, Am. 
 
 »1.«46. $2700 will coat $2700 X $1-046 - $282170' An J^'"'"'^'' ^""^^"^ 
 
 ANALTBI8. — We calculate 
 nrstly the premium on the par 
 ▼alue, which we find to be 
 *12l.60; wo add this to ,<i27oo 
 and obiam $2821.50 which is the 
 !"!•:•_ «!'■• sjno* ifl of the stock 
 
 or 
 
 t ! _ 
 
 By proportion. lOQ : 1«0 4. 4J 
 
 ST X IM 
 
.,j,i„,„^0ig;i^,^jj,i„„^y^ 
 
 If 
 
 I I i 
 
 is' I 
 
 SIO 
 
 £m. a. A broktr sold for me G4 sharos of thf Ocean Swamert 
 J-o. stock, at Jij^diacuunt, for wbicli he char-jed I % brokerage: 
 how 111 ucb did I receive? o « tw * » 
 
 $0.15 
 $1.00 
 
 OPKRATION. 
 
 ■h .0026 = 0.1525. 
 -$0.1526 = $0.8475 pr(H)»eda 
 of$l of stock. 
 •400 X $0.8476 = $5424, An$. 
 
 Analtsis.— Adding the r»t« 
 of brokerage to the rate of dii- 
 oount, we have .1626 j hence |1 
 will bring .fl ~ $0.1525 :. 
 $0.8475, and 64 sharaior $H4«« 
 will bring 6400 v .8476 « 
 9M24. 
 
 By proportion. 100 : 100 - (16 + 0.26) 
 
 84 X 100 
 
 S;^£=SS-H2"H-S« 
 
 OPBBATIOir. 
 
 fj'22~f J'I5r^2-^^' '""''•* ^ai« of$i. 
 
 JO 88 (- $0.00i -. $0,885, cost of $1. 
 $17700-f-$0.885 = $20000=200 shares, Ans 
 
 Analtsu — Sinee the 
 Btook is 12 f^ below par, 
 the market value of $1 
 will be $0.88; adding the 
 rat* of brokerage, we find 
 
 ^took win eoBt $0,885. Henoe fwSiirrnf) tu. k i. **"** ^^^'^ ^°"*'" "^ **»" 
 .885-$20000or200gh8re, '*'*''• »»~k«' o*" purchase jmo^ ^ 
 
 By proportion. 100 - (12 + .6) : lo© ;: 17700 : » ^ m, 
 
 i5f' n r'^^® ttichelieu Company declares a dividend of ISA^. 
 what will I receive for 24 shares ? 'vmena ot IQ\%; 
 
 OPBBATIOir. ANALYsrs—Aocording to 282, we maltlDly the 
 
 $2400 X .16i = $372. feend $372! *'* '"*"• -^^i- *°d"b3?2: 
 
 By proportion. 100 : 16^ :: 24 x 100 : *. 
 
 Prf *■ \ Tl^*' 'J'®^™® *^*" "^^ °''^^^'» ^3^ investing $10260 in Quebec 
 Province 6 % bonds, purchased at 95 5^ ? Vfueoeo 
 
 OPBRATION. ANALTBI8.-We divide the 
 
 $10260 -r .95 r= $10800, stock purchased. *°^f»t°?ent, $10260. by the 
 $10800 X .06 = $648, annual iticome. rS'*^wtiS'tirst: 
 
 n^"irome'' '''"'' '•'^"'^^ interest, we have $l08?o'x Toe' r^^S^hf ^1 
 
 By proportion. 96 t 104 u lOMO 1 
 
M*00K8. 
 
 iU 
 
 capital" „aetfeTresUn?i*h "r 'I *'^" *""»•' '«-««««! what 
 ne inrest ,n o % bondn, when stock is purchased at 80 %'} 
 
 OPBBATION. 
 
 f»000 X .80 = $7200, co.t, or investment. 
 
 Analysis. — siaoe $( of 
 the stook V7ill seoure $0.06 
 income, to obtain $450 will 
 req uire $450 _j_.06 = $9000, 
 ▼iilueof the stock b the market t.rina^f«i u (^^•*)- '^Multiplying the par 
 ooet of the required^tSror tt^'^uTt^'bt i'n::«Lr ■^'""" ^ '^' ^^^'oo. tl.. 
 
 By proportion. 6 : 100 :; 450 : , x .80. 
 
 OPERATION. 
 
 .07 -^ 1.05 = 6J^. 
 
 and »a!7?l7TK'^'°"° *^ *>' •*«''' ''"' ««"' $1.06 
 
 By proportion. 106 : lOO :: 7 : *. 
 
 div^:;d';nrwSwt 8"'^'t'™h^^^^°^ -d ---•d a 
 
 did he purchase? '^ "" *^'« investment; at what price 
 
 $0.0* -h 
 
 •PERATION. 
 
 $0.08i=$i08, .4n*. 
 
 ^iu», the purohase prioe. 
 
 By proportion. 8i : 100 :; 9 
 
 jr. 
 
 share, of ^0 eL, a S'Ztl'^MWdS'iSrrr?"' "^ T^r"' 
 .de^J will he receive a„„„all/? "" '°°'' ^* jtT&r'Vi' i"" 
 
 IS. If aoo shares of ihe Oitow. Bank sell f™ .^nnilj I *' ■ 
 the pren, um, e«>h share being tlOOf A^ ^1 """" " 
 
 _ 14. When the nominal ™loe of .took is ^ei •) iTJ ?.f "'""""• 
 
 is $100 per share ? '"'"" "" "'""'"''' "»'»' "f "I'ioh 
 
 1«. Bonghlwock at par, and sold i. »i 1 a . ^'" "-^ 
 
 'Im 
 
 3 '«r 
 
 3 1 t*^ 
 
yh 
 
 222 
 
 !' "^^ •■«*"'«^o*l bought, at the rate of $188.76, a namber of ekares 
 in the Pictou coalmine company, the annual income of whicli is $10 
 per Hhare. With the income he purohases $2(;0 wortli of .'ooWs ; wiiat 
 was hia mve8tii<ent, the brokerage being \%? Ana. $i:VJHA(il. 
 
 18. A merchant retiren from buHinesfl witliasum of 5134520.50 and 
 buys with thiy capital government 6'8, at the rate of .f 70.4.J ; what 
 will be his annual income? ^^s. $2940, 
 
 19. Ontario 4V« are sold at the rate of £94 17: what inconie vij] 
 I obUin for £3794 ? ^^^^ £1,^0 
 
 20. Sold $16400 worth of North Bank Stock at 13^ pren.ium; 
 what ehall I receive ? Ana. ^IHo.'Vi. 
 
 21. A person, having £2250, invests this sum in Ocean Telegraph 
 Company Stock which sells at 17 ^H discount; what amount of capital 
 doeH he purchase? Ans. £2710 16 101 + . 
 
 22. Bought 36 shares of the Western Copper Mine Company, the 
 par value of each beina $600, at 2 ^J premium, and sold it at 28 % 
 discount; what is my loss? Ana. $5400. 
 
 23. I have an investment of $16000 
 
 ID 
 
 as 
 
 of 
 
 Ana. $5400 
 in a transatlantic steamship 
 company; how many sharen shall I own after a div'lend of 8 * is 
 declared and payable in capital stock ? Ana. 162 shares of $100 each. 
 
 24. What should be the rent of a farm, which cost $16992.10 
 order that the purchase capital ma/ produce the name revenue 
 would be pro<luce<l by the same sunt, employed in the purchase 
 6i5UbondH, at91|5H? Ana. $U(iH. 80. 
 
 25. A farmer mvests £36, the price of three oxen, m die pur- 
 chase of 6 ^ bonds sold at the rate of £78 10 ; at what real rate was 
 his money placed ? Ana. 6^JL % 
 
 26. An exchange agent having $45000 invested in bonds of the 
 Canadian Transatlantic Steamship Company, exchanged them at 88 % 
 for capital stock in the same company valued at 62^°^. The bonds 
 brought 7 % annually, while the shareholders received two dividends 
 during the year, the first of 3 %, and the second of 3i « ; how much 
 did the agent gain annually by the exchange ? Ana. $968.40 
 
 27. An agent receives $25000, with instructions to deduct his bro- 
 kerage at 1 1 96, and then purchase bank stock for the balance • if the 
 stock is selling aXZ% discount, what will be the amount of his capital 
 
 «*<^^ . J- .J 1 . . il»i«. $26329.92 + 
 
 28. An individual desires to invest $11168 '\n b% bonds. The 
 market value being but .*67.35, he waits a few days, when it rises to 
 $69.10. Find, now, what income did he lose, and what income he 
 would have gained had the market value lowered to $66.25, brokerage 
 being f %? Ans. Lost $20.90+ income, wotild have gained SI 3.734- 
 
 29. I have $60500 to invest in bonds. I can purchase 4a4 bonds 
 at the rate of $95.30, and :! % bonds at the rate of $69.25 ; which would 
 be the more profitable of the two? Ans. The 4^^^ bonds, 
 
 30. How much more advantageous is it to invest $1128 in ^i(jL 
 bonds, at 91 1 9^, than $1 1 28 in 3 «6 bonds, at fiSA ^ »tft>Vprfl ,« K 
 
 ^\% 
 
 Ana. $6,923 -f 
 
 ;e oeisg 
 
 ai. A banker owba 150 shares in the Quebec Insurance Company 
 
nkWPNUlflHTP. 
 
 2]f 
 
 Charge rne ' «i I ?i,^ "*?,*"" *^» "»«, >cnewiHK th*t the a.-.-nt w,., 
 
 32 % fl " * ^''"."^^'^g^ / .In,-*. «1 5966.26. 
 
 he buv. fc' 4Vi1 °*'? ''"[ ^'l" ""'^""^ «''*'*^ •*'•'*'>• ^'^1' ihiH «un, 
 m*" an! ..!« -^2 . / '''"*^' produce an an.nial incuiiKM.f $18, at 
 ♦kJ*' *?•' •"« -^^ hoiKls, pruduch.K annually -^20 at 64 J « With 
 
 what av*rR«« J-»^ I. ?V ^^ *''^''' ''® ^".^^ '^ ^ '«»"'» at 68i % ■ at 
 
 33 Tm h..l^ ^ '^! *.^* "*'"* quantity of rerenue ? Ana. $98.43 + 
 
 110425 a? S^oTrlt'" **^*. ^^r^-^' ^«'"P^"^ <*"' the value tf 
 • ferm'er se^ur/ 1 ' '*"'* Producing $H6 for interest and lividend, 
 
 oflheik^r 1 • "''?"• "'Z*'^'*^- ^»»'-«"^ the market valu« 
 or me stock per share, and at what rate he let out hi. money ? 
 
 34 In J.n iQ..a ^ ^n§. lst.$6\}5; 2nil$5.?i'.//j. 
 £37801 9fl'ifi™?'^» 1848, the total amount of British con ho Is was 
 annually? ' ^'•*^ ''«« t^e amount of interest paid on the,,. He,„i. 
 
 belt tt''9Tr*:'t''" ^"" V''' '' ^-^-*' 7^Tih1 mISt Miue 
 95uV whlt^r.i» TJ^u • ^T '^*-^'' '°"«^' ^h^n stock risea to 
 teinerl i:.Jm * i^ *^"^.^* r*»'*«*^ ^^at los. would he have nua- 
 
 36 A mi'o?h „-w Q«- ^ ^r- *22.75 gain, and $17.60 loss. 
 
 deHires to in3 M ^'^ '^'■^^- ''^ * ^*" ^^ «21.80 per 8q. yd. He 
 
 interest aJddivid^'n J '^^ •"*' *^^^^ '^^^ ? ^^"-'^ P'^^^c^ *200 as 
 Kdence Pn th \*"'^ *'" "/r^'*'*^ "^ *« * pren.ium. In the 
 Sar?dd,V?l.,H '*'T'^'"'^^^^^**<^^' they produce $50 as in- 
 tt7nK?s adlaS ^"^ *"■! "^gotiated at 45 ^Dremium. Which are 
 he Drclm.l?n at "'iu*"^ ^y ^^'^^ '""^l* ^ i* How ,„any shares can 
 he s^ c« e r ^« tT **Jf T'' advanUgeous, and what revetiue could 
 3 aEs^'andlSo'^rrevTnuT ''' """ -^vantageous by 1.478^j 
 
 il 
 
 PARTNERSHIP. 
 
 401. A Partnership is an association of two, or more ner 
 ions ,n busmess, each of when is called a Partnrr Suda an^ 
 vocation IS called a Oompan,,, Firm, or HoZe! ** 
 
 402. Cask I.-T^o/.^.a./^ ;.,h.V,. .,Wa o/ the profit or 
 
A> 
 
 O'fl 
 Whole 
 
 8took, $276 
 " 475 
 
 " __ r>oo 
 
 OPIRATIOV. 
 
 f2T5 X 0.12 - I 33, A's profit. 
 476 X 0.12 ^- .07, IJ'm profit. 
 .OOO ^ 0.12 - _60, C'h profit. 
 
 Pr-.of !«!ir)0. ACliole profit. 
 1250 - $0.12. pmlii, ,)n$l. 
 
 Akaltsib.— Since I ho whole atook i.i'flJSK, dti.l ilm wholo i,rofit. $151), the 
 pro It on every $1 of«t„ck vTillbo as many .ioll us ii.s 150 contain-, tiinon 1250, or 
 *U.I^ on every $1 of stock. Then, each merchant's stock niulti|>liod by .lli jfives 
 oi8 part of the whole prolit. The s-ame result ul.so may be obtained, as follows :— 
 
 By proportion. 
 
 276 i 
 
 + 475 J =: 1250 
 + 500^ 
 
 160 
 
 ;'.i75i (!?:«, A'spr 
 
 475^ : .r = Ans. < 57, H'n. pr 
 500) ( (iO, (."^ pr 
 
 8 profit. 
 .tit. 
 
 ■ofll. 
 
 Proof, $150, whole profit- 
 
 40J$. Rule. — The whole profit or loss, divided by the number 
 denoting (he whole stock, will give the profit or loss on each dollar 
 of stock; and each partner a stock, multi plied by the number de- 
 noting the profit on 81, will give his share of the whole profit or 
 lots. 
 
 Or, 
 
 As the whole stock is to each partner's stocky »o it the whole 
 frofit or loss to each partner's profit or loss. 
 
 II I 
 
 EXAMPLES FOR PBAOTIOB. 
 
 1. With £200, two men gainai £50 ; the flret man contrlbuaa 
 £125, the second, £75: what part of the gain is each entitled to? 
 
 Ans. The first, £31 b; the second, £18 15. 
 
 2. Four merchants ap.suciated and rallied a capital of .^145000, to 
 which each man contributed equally. At the expiration of the part- 
 nership, the capital was found to be augmented by $20877. What 
 •ball be the part of ea^'h man, knowing that the Ist. ought to have 13 
 parts; the 2nd., li ; the .3rd., 8; and the 4th., 7? 
 
 Ans. Ist., $23959; 2tid., $20273; 3rd., $14744; 4th., $12901. 
 
 3. Three men associating together, gained £287 10; the let., put 
 in 400 yd. of velvet at £1 per yard ; the 2nd., 350 yd. of cloth at £2 ; 
 the 3rd.. 450 yd. of cassimere at ISs. ; what part of the gain should 
 each have? ^ -4fl«. £80, £140, and £67 10. 
 
 4. Four persons having joined in partnership airree that the ! wt. 
 put in £1250 ; the 2nd., \ more than the first; the 3rd., as much as 
 the two others togetiier ; and the 4th., his industry during the vcar, 
 which' was estinoated at £2000 ; what share of the profits, £1625, hliali 
 tMk reo«ve? Ana. £260, £312^, £6«24, and £400. 
 
PAftTNRMHlP. 
 
 826 
 
 eachn-ceive? ' j„ i! '' IL^-' ^- H"w much will 
 
 . 6- The firnt of five ,„en a^.^" l""' ^•^'•''*' '['^''i' '">'' *■•'»<'• 
 
 oiiii; am ho on witli iJ.n ', ""^•' ^'^^' """'i' than tlu- «i,c 
 
 7. Three «pt.culaU;rH hav« t^«rl?t'" *''^*^'^' *-^^'*' **^''"' *■<'"'' *»-'^-'- 
 fc'am, tAe 2n.|., $206 and the 3rd ftLt. w.'' *"' ''"*''^' "'' ""^ 
 
 voyage 6:>(.\o,.sw.rrtl XoveXaH °*''" ''' ^'"'^'^- ^^'"-'"y ^'"^ 
 arofle. If 250 ton. were Zi led 1. *^" accm'"' of a storn, which 
 
 J. -i^nree ta?inerM h^nvlif i^u ^i «. ^nw. oi,} auii .i7;> tons. 
 
 each receive ol' the profits? iJ«/!oi'^'''' ' '"'^^ '>'"«•' ^'i^l 
 
 the second" £527 6 104 the thir I , '-"*" «"»tr.buted £400 lA 7*; 
 received, however, £98 I's il: hi T"^ P?'"! >-^ "^t known, but he 
 contribution of th; third nerclt^ru t^^'? fl '''! T ''^^^^ '^'^'" "'^ 'he 
 the price of the -'aplingspr hundred ? ^ A *^%1"^' "'^''"'' «'« 
 
 share £494 I 3. Tl,: pK of l!. ^c-, » ^f'-Jhird .Merchant's 
 £\IS 9 per hundred!^ '" ^^^ ^ ^i' 2nd., £105 9 4^; 
 
 and' JvTr Bkt:;;' £U2'?S'LVirn;^ ''' ^^^-'^^ fox 
 
 £ 18 10 more than the second ^L T fi^ '' "i^ ^''' ^^'^'" *J^a"ced 
 ISfton the buying pr!<^^^^^^^ a profit of 
 
 gave, and the third fJ^„i«hed*o?^lltrf ? ''^^''"' ^''^ ^-"^^ 
 wha^^w^thecontributio„7eL^'''r$^^ 
 
 that the 1st. fuihed ^^^Sit"" : 'tS In'd' T^-^rh ^"'^-"S 
 not meniioned, and that the ?rH ?,?, u , ".' f"f'"-^he<l a quantity 
 tity equalled the deli™ of t fe' iTT' 5?u ^"";^'^-' ^''"'^'^ ^-'an 
 bandies? ^*'^ ""^ %i^ io*."!'*!^-' '^^''^ furnished 240 
 
 the average price of $7 37?. Tn tL ^"'■:='»?«*' ^*^ ^^"^ clock works at 
 
 Jobs of thIlS. «urpa!:;^'Lt"fterd'^'?r&t^ 'l' f'''' \^^ 
 loM and investment of each? Aiu !«♦ t^ •=1«'o'^^** ^^""^ the 
 
 I0» 
 
 h't ' 
 
 r ,. '; 
 
 '■■} J -1M 
 
836 
 
 PARTNBBSHIP. 
 
 16. Several pernonB agreed to conduct, during one year, a p«'P<v 
 manufactory. 'J'lie fiPHt put in | of the stock ; the second, $4000 lese 
 than the firnt ; tlie third, $4000 less than the second, and so on until 
 the last. If the iiivesinients had been in sums equal to the highest, 
 the capital stock would be au<,Miiented by i- The merchandise sold 
 produced a sum equal to the 4 of what wa^ put in, which was em- 
 ployed in buyin;^ rags. In admitting that the || of the sum proceed- 
 •ng from sales serve to cover the expenses of fabrication and infest- 
 ment, it is required to ascertain how many persons there were, how 
 much each one put in, and what part of the gain each is entitled to? 
 
 404. Case II.— To Jind each partner's ahare of the profit or 
 loss, when the stock is employed for different periods of time. 
 
 Ex. A and B entered into partnership ; A furnished $240 for 8 
 months, and B $560 for 6 months. They lost $118 ; what was each 
 man's share of the loss ? 
 
 . f? 
 
 
 $240 
 560 
 
 8 = $1920. 
 6 = 2800. 
 
 OPERATION. 
 
 $1920 X 0.025 x= $48, A'b loss. 
 
 2800 X 0.025 = 70, B's loss. 
 
 Proof, $118, entire loss. 
 
 $4720. 
 $118.00 -r 4720 = $0,026, lose on $1. 
 
 AMALTBfB.— It is evident that $240 for 8 mo. i? thebame as $240 X » = $'^20 
 for I mo., Binco $1920 would lose aa much in 1 mo. as $240 in 8 mo. ; and $560 
 for 6 mo. ia the •ama as $560 X 5 == $2-00 for 1 month. The question then is 
 the same as if A had furnished $1020, and 15 $28(10. for equal times. Then, if 
 $1620 4- $280(1 = $4720 lose $118, $1 will lose \j^ of $118 = $0,025. and 
 $1920 X .025 « $t8, A'8 loss; $2800 X ••)25 = $70, B's loss. The «»me re- 
 sulU may be obtained as follows :— 
 
 By proportion. 
 
 $240 
 5ti0 
 
 X 8 = 1920 
 X 5 = 2800 
 
 1 = 
 
 4720 
 
 < 1920 
 \ 2800 
 
 118 
 
 . ( $48, A's loss. 
 
 x=AiM. ^ yo^ B,g J^gg 
 Proof, $118. 
 
 405. ^y^hV,.— Multiply each partner's stock by fh" time it was 
 in tradr, and divide the whole profit or loss by the sum of the 
 several products ; by the quotient, multiply the product of each 
 partner's stock and time, and the result wdl be his share of the 
 profit or los^. 
 
 Or 
 
 Multiply each partner 
 as tlu sum of these products 
 pn^ or loss to each partner's profit or loss 
 
 stock by the time it was in trade ; then, 
 is to each product, to is the whole 
 
»7 
 
 ■il 
 
 IXAMPLSS F«S PSACTIOa. 
 
 1. Two persons contribute unequal sums towards a capital: the 
 m-at puts in !^2300 for 2 years; the second, $1500 for 18 months. 
 What part oJ the gain, $1400, should each person receive? 
 
 ., TV, •^••11 .. . , ^"^- =^940-15, $469.85. 
 
 ^A'J, individuals raised a capital sum with which they eained 
 
 £1137 10: the first contributed £200 for 2^ years; the second; £125 
 
 for 26 months; and the third, £248 16 for 35 months. What part 
 
 of the gain should each have? ^ 
 
 Am. Ist. £382 16 1^; 2nd. £199 7 Of; 3rd. £555 7 104. 
 
 d. A porter associated with a pedler and raised acapital of $16000 
 
 tributed $9000, received ^1800 ; what did his companion receive, 
 knowing that the latter left his share in the business but during 20 
 ^ojithal ji^ $1166.662. 
 
 4. i?our persons agree to form a partnership for 3 years. The first 
 puts in at the beginning $360, and 6 months after $2400 more- the 
 second puts in $8000 at firH^ and at the end of 20 months withc/raws 
 the halt of his share, and 6 months after withdraws $2400 more- 
 the third puts in $1600 in the beginning, and $5000 at the end of i 
 years ; the fourth puts in at first $600, and every six months aue- 
 ments his portion by a like amount ; the gain being $80000 what 
 part did each receive? » «•* 
 
 Ans. $14677.36 + , $33336.16-, $19232.39 + , $12754.11 + 
 
 6. Three merchants joined in business. The first put in £1001 12 
 for 10 months; the second, £1761 12 6 for 164 months: and the 
 third, £2000 3 9 for 17 mo. and 20 davs. Required each meJchant'! 
 share of the profits which amount to £360 3? 
 
 6. Two clothiers associate together; one of them contributed a sum 
 with which could be bought 90 yd. of Broadcloth at $6 per yard the 
 other put in a sum with which 60 yd. could be purchased at the same 
 rate. In supposing the Ist. to have had $6 of the profits more than 
 the 2nd., to how much did the profits amount? Am $30 
 
 7. Four farmers rent a pasture for $976. The first put 6 beeves on 
 It during 54 aays; the second, 7 cows during 63 days: the third. 8 
 heifers during 75 days; and the fourth, 6 horses during 50 days It 
 was calculated that 1 beef consumed 1^ times as much as a cow or 
 twice as much as a heifer, or H times as much as a horse ; how much 
 must each farmer pay ? ' 
 
 Ana. $238.45 + ; $259.66-; $264.94 + ; $211 96- 
 
 J{.h *^^r?J?S "1* ""."_^,^""'lg l.yff^' /hree partners g;^ 
 x^^iUA}. xhc ui.^t i;drt..er null put in ^i34oY lu in the beginnina 
 but after 2i years, hi withdrew £.{275. The second put in his share ■ 
 which was £41000, only l^ years after the commencement of thi 
 work, tinally^ the third maile his contribution of £63760 but 3 
 years after the mstalliuent of the first. What part of the profit^ shouU 
 Moh r«)«v«? Am. £3i«« 1« 0} + ; iS»8«7 « 4?-; £8816 17 7 + . 
 
 ll 
 
 i. 
 
! 
 
 228 
 
 ^ 
 
 BXCHANGR. 
 
 40f>. Exchange is the process of remitting; money from one 
 place to another by Drafts and Bills of ExchariL'e. 
 
 NoTR. — For a full treatment of this and of the following anbjecu, •«« the Com- 
 meroial Arithmetic. 
 
 F<ynn of a Ih'afL 
 
 %^, [STAMP.] M^^^ec, ^. M, (^€7^ /. /ay/. 
 
 Q/dii^ c^^ aj^/el HyM, /My^ ^ (^Jceni'U &rim7n&, 
 ^99^e t» m/^ accvun/. 
 
 407. The Drawer, or Maker, is the person who signs the 
 draft. 
 
 408. The Drawee is the person on whom the draft is made. 
 
 409. The Payee is the person to whom the draft is made 
 payable. 
 
 410. An Acceptance is the promise of the Drawee, to pay 
 the draft at maturity, and is usually acknowledged by writing the 
 word " Accepted " with his signature, across the face of the draft. 
 
 411. An Indorsement of a draft, by the payee, is made in 
 the same manner as the indorsement of a note. 
 
 413. A Sight Draft is an order to pay at sight. 
 
 41J5. A Time Draft is an order requiring payment at a 
 specified time. 
 
 414. A Draft or Bill of Exchange is at a Premium, when the 
 price paid is greater than its face; and at a Discount, when the 
 price paid is leas than its face. 
 
 415. Domestic, or Inland Exchange, is when both the 
 drawer and drawM reside ia the aamc oauntry. 
 
• ft: 
 
 416. Cas« l.~Oiven the face of a draft, the rate per cent, 
 0/ exchange, and the time, to find its cost. 
 
 1640 
 
 OPERATION. 
 
 X 1.016 = 1649.60, Ans. 
 
 ANALT3 3.--Th« oostof exchango of 
 |1 18 $1 + 10.015 = $1.(115. „d J 
 $640, 640 X $1,016, ? ■^^' «'* "^ 
 
 $649.60. 
 
 n^f' 2- What must be paid in Montreal for 
 Ualifaz, at 33 daya, exchange 2^ JjJ premium. 
 
 a draft of f 3500 on 
 
 OPBRATION. 
 
 $1,000 
 
 •006 = disot. for 3«cla. sA9%. 
 $ .994 = cost at par of $1. 
 
 '022 = rate of exchange. 
 11.016 = cost of $ I of the draft 
 $3500 X 1.016 =$3556, Jng. 
 
 Analysis.— The disooant of $1 at 6 * 
 tor 36 days is $0.0t)6, whi.^h being sub- 
 ^ed from $1 leaves $0,994, the coat 
 of $1 of the dratt, if tho (ixohsinge was at 
 
 C/wJ*" '■Y'' I'*'* ^^^ premium of $i, 
 $0,022 and wo have $I,0I6, the cost of 
 
 ♦V i '^"^ '?'*''i'' ^®"°« t'le cost of 13500. 
 to« draft, u $3500 X 1.016 « $3536. 
 
 Jw^r 1 ; :r^' ^""^ V^^^ draftB.^MHl(iply the face of the 
 draft hy Iph, the rate when exchange ts at f Lmium and t 
 1 rn^nns the rate when exchange is at a discounf ' "^ ^^ 
 
 11. J< or drafts payable after aisht— Find th^ mat n/ «i ^ j. » 
 
 leii both the 
 
 BXAlfPLM FOE PBAOTIOB. 
 
 1. A merchant in Toronto wiehee to pay in Montreal f rqqn ..j 
 ^change ih a % premium ; what will be the coafof thTdraft ? ' ^^ 
 
 „i.!^''"'i,"'" ,'Ti,'" """i "f • •'"* "'Was., Ibr M Xvf It 6« 
 
roKcion FiXOKAMn. 
 
 I 
 
 !* f^S;i 
 
 ■fn 
 
 6. A merchant in Quebec retieires from his agent 1200 bushels red 
 wheat, purchased in Toronto at 65 cts. per bushel ; in payment for 
 which he remits a draft on Toronto, at f % discount. The transpor- 
 tation of hia wheat cost $98. What must he sell it for per bushel to 
 gain $225? ^n«. 10.91 1. 
 
 4lJ!ii. Case II. — Given the cost of a draft, the rate per cent, 
 of exchange, and the time, tojind its face. 
 
 E.T. A merchant in Three Rivers paid $6856.10 for a 60 days' 
 draft on Toronto, exchange being IJ % premium, and interest 69^; 
 required the face of the draft 
 
 OPERATION. 
 91.0000 
 
 .0105 = the disflount fo 
 
 ! 63 dayt. 
 
 ANALTsn.— By 416, Caee I., 
 JPae. 2, we find the cost of $1 of 
 the draft to be $1.00825. Henoe, 
 $6856.10 -^$1.00826 » $6800, 
 if the fa«e of the draft. 
 
 $ .9895 = the cost of $1 at par. 
 .01875 = the rate of exchange. 
 $1.00825 = the oost of $1 of the draft. 
 $6366.10 -7- $1.00825 - $6800, Jfw. 
 
 41 tl. Rule. — Divide the given cost 6y the cost of a draft for 
 91, at the given rate of exchange ; the quotient will be thefac« of 
 the requir&d draft, 
 
 SXAMPLK8 rOB PBAOTIOa. 
 
 I i^;; 
 
 'Mi ■ 
 
 1 
 
 
 !■* i 
 
 
 i 
 
 
 1 ,ii 
 
 
 1 
 
 'If 
 
 
 . 
 
 J 1 
 
 
 
 ^1 
 
 
 1 
 
 1^ 
 
 
 1. What draft may be purchased for $16416.10, exchange being at 
 3) % premium ? Ans. $15860. 
 
 2. Required the face of a draft for $158.40, exchaoge i^nvi. at I % 
 discount? 4n«T$i60. 
 
 3. An dgent in Kingston is directed to make the remittance by 
 draft, of $565.32, to his employer in Quebec, drawn at60day8. What 
 will be the face of the draft, exchange being at 1| ^ premium? 
 
 4. V*hat will be the face of a draft for $962.85, exchange being at 
 I % distjount ? 
 
 5. A man in Halifax, has $4800 due him in Montreal; how much 
 mort will he realize by making a draft for this sum on Montreal and 
 selling it at i% discount, than by having a draft on Halifax remitted 
 to him, purchased in Montreal for this sum, at | ^ premium ? 
 
 ilfM. $11.73 + . 
 
 FOREIGN EXCHANGE. 
 
 420. A Foreign Bill of Exchacse is a draft in wbioh the 
 drawer and drawM Uve in di&rent wvnkriMk 
 
n whioh the 
 
 Form of a Foreign Bill of ExcJmng. 
 
 •e. 
 
 ferent times; "n tl, payment of ^om th'SL^^™"' oonreyancM, or at dif- 
 must hare a stamp attMhed ' *•>* ot»»er two are worthlew. Eaoli draft 
 
 the old pnr of o..ha„.e. inS „f "'thLew pt'" ■*' ""'^ °° 
 
 was fixed at f4.866. NoW tho ,«,« « ° **'.'.*''® ^*'"« "^ **>» PO"nd sterling 
 old par, thatl;.*4 ^44 I 9 ,v XflU' "H^t'-*" '^^ "''^P^'' P''" »* ^^ of thi 
 
 fJreat J^ritai,}. must reach the nom Lrf^Liam or Si T^T\f- °'^°'^» ""^ 
 cording to the new standard. ?««»>"«, or 9^ % before it u at par, ao- 
 
 for the bill of eX,^L? * premmm. How mnoh must h. pay 
 
 OPERATIOir. 
 
 $V X 1.11 =$4,931: 
 
 £.j60 3 6 = £o()0.176; 
 
 £560.175 X 4.93i = $2763.63, J^n», 
 
 ANAtTBig.— .Slnoe th* old par 
 •f £.\ Rterlins >= $4,444 or 
 $^, we multiply $^0 by 11^, 
 •r$1.11, the giTonrate, deci- 
 mally erprewed, and we obtain 
 rate ; multiplying the faoe of the bilL :£fi«0 1 A }^^\ *' °*** "^ ^^ *' ''"'^ 
 
rORHON IZOHAiraB. 
 
 <,ll I 
 
 Ex. 2. What will be the fao« of a bill of exohMiff* on Lirerpool, 
 purcbMed in Montreal for 95537.40, «x«b«ng« being at 1 ^ premium t 
 
 OPBBITIOH. 
 
 $5537.40 *:- 4.88| ^ £1133 IS t. 
 
 AxuLYvn. — We find, as in the 
 preoedin;; example, tbe oost of £\, 
 »ttbe ^Ton rate of exchange ; then 
 we diride $55S7.4I, th» {pren cost, 
 bT the oo8t of exohange for jQ, and 
 oMafa £1132 IS 0, the faee. 
 
 ^x. 3. What i« th« oost in ToroDto of • WU oa Paria, lot 1780 
 (htaoa, tJMkange being at 2) ^ dinooantr 
 
 OPEBATIOV. 
 
 CSonnMrcia) value of the fraoo, => ••.IN 
 IMnot 2^ % diflooant, e.004M 
 
 Valuf of 1 fhuM, ....... $0.1818* 
 
 $0.1H135 X 1780 s $321,803, itiM. 
 
 43S. From these illustrations we derive the following 
 
 Rule.— I. To find the oost of a bill, the faoe being giren.— 
 Mwltiphf thtface by the cost of a unit of the currmcy in which 
 the bill is expressed. 
 
 II. To find the faoe of a bill, the oost being given. — Divide the 
 pnen cott by the eo$t of a unit of the cwrren^ in which the bill i$ 
 Co be expretned. 
 
 RsDUCTioN or THE Stbrlino Monbt to thk Old as to 
 TH« New Oanadian Ourrbnot, niw par. 
 
 '. fiodttoe £500 3 4 nterliug, to Old Canadian CurroiMy. 
 
 Amaitsib. — The pound 
 ■torling m, $i.8«§, and the 
 Old ourreBO|- peand ib $4; 
 diff., p.8«}. Then £1 stcr. 
 
 ourreney. JS«w, ^ of a num- 
 ber =^ plu£ ^ ef J of that 
 BBmbsr. Hesss the 
 
 •PiaATlOK. 
 
 £560 3 4 
 
 4- 4 of £560 3 4 3: US 8 
 
 + J^ol 112 8 - 9 6 8| 
 
 £081 10 81, Amt. 
 
 Aad in Decimal Currency, 
 £081 10 81 (233) = $2726.131- 
 
 4SS4. RuLB. — To reduce tteriing money to Old Canadian 
 Curroney, new par, — Add to the fivm $um iti fifth pitu one 
 tmlfikofihefifik. 
 
I Uyerpool, 
 i premium ? 
 
 od, as in ^he 
 
 the ooBt of £1, 
 cohange; then 
 th» girtn cost, 
 Iff* for £1, Mid 
 the fa««. 
 
 M. for 1780 
 
 ■QUATION OF PATMBIfTt. 
 
 BXAMPLEiS FOR PRAOTIOB. 
 
 S38 
 
 ring 
 
 »g given.— 
 / in which 
 
 —Divide the 
 h the bill is 
 
 LD om TO 
 
 A. 
 
 — TIm pound 
 .8«i, and the 
 p«and _ $4; 
 Then jEI stcr. 
 
 - Xl^ oJd 
 
 «^of anum- 
 >^ «r ^ of that 
 ss tks 
 
 i Oauadian 
 'h pltu ont 
 
 « t/pi:S ^ ''' «°"' '" «-"*' "f « k^°» B°^ "., for ,2000, 
 35 Ota. ? '•*'''* a^ve par, the mai-c banco being equal to 
 
 on Lyons amounting to 49S36 fr 20 Inf """ i""^«oy» ^r a bi" 
 txohange below par"? ^^ centime. ; what waa the irate of 
 
 10. Received from L. Nelflon * r« t j i .'^*'** *0-053 + . 
 
 £381 5 0, o« J. Chllter.'&'Sot Qu^l^^'^iLf i«1Ll:i"'""^^ ''"^ 
 mal oonrencj of Canada, at 9 5« preTnS ^'CimoS + !'' 
 
 BQUATION OF PAYMENTS 
 
 be^™*d«^ ^""' ""■••""* '' "■' •^"» <» "•[««= before . deb. 
 onoe ,rith»at lj.s to debtor or ereditor! ' ^ ** ''"'' " 
 
 de?tf*./b^^frrb7XV-r """°'' '^^ ""-" 
 
 i % 
 
i I 
 
 I 
 
 1 
 
 
 ^ 
 
 ' s 
 
 * 
 
 
 
 i 11 ' 
 
 1 " 
 
 1 
 
 f ■ 
 
 1 , 
 
 vf 
 
 ll 
 
 TP '. 
 
 i '.' '» 
 
 ; a 
 
 ! 
 
 i i 
 
 
 'f, I. 
 
 '! > 
 
 23* 
 
 laco 
 
 300 
 
 ■QUATIOM OF PATMVIfTS. 
 
 •ra&ATioM. 
 
 X 30 = 7500 
 X 60 = 12000 
 
 X 90 = 27000 
 
 46r)00 
 
 9750 
 41600 -*. 750 = 62da., ayerage term 
 
 of credit. 
 March I + 62da. = May 2, Ans. 
 
 the interest of $1 for 7500da. -\- r^uOOda. -f 27000da. — ,,,«„ «„ 
 Jl nquire 46500 days to gain a certain sum, $260 -\- $200 + $300 
 
 AwALTsn. — The interett ef 
 
 9SM for 30 days is the same u 
 tlM interest of $1 for 7500 days ; 
 ud of .^200 for 60 days, the saue 
 M of $1 for 12000 days; and of 
 9390 for 90 day., the same fts of 
 $1 for 27000 days. Hence, the 
 interest of all the suns to the 
 time of payment is the same aa 
 '" ""^ 4(i000 days. Now, if 
 
 - ,- „ ^- , ,— , $750 will 
 
 require ^ of 46600 days; 46 JOOda. -;- 750 « 62 days, the averag* term of 
 eredit; ana, Maroh I, the date at which the orodits begin, -f- 62da. ■» May 2. 
 the equated time of payment. 
 
 E:c. 2. Bought of D. I. Lyons several bills of goods, at different 
 times, and on ▼arioua terms of credit, aa by the following statement 
 What ifl the equated time for the payment of the whole ? 
 
 Jan. 1, a bill ainountiug to $1^00, on 4 months. 
 Feb. 7, " " " " 185, on 6 months. 
 
 March 16, " " " " 280, on 4 montha. 
 
 April 20, « « << <• 210, on 6 months. 
 
 Due M*7 1, 
 
 July 7, 
 
 July 16, 
 
 Oct M, 
 
 M 
 
 OPBRATIO*. 
 
 $300 
 
 X 6T 
 
 X 75 
 
 X 172 
 
 12396 
 
 21000 
 .36120 
 
 69515 days. 
 
 «»516 -i- 915 = 71^ days. 
 
 May 1 + 71 days = July 11, Ans. 
 
 Amaltsis.— We first find the tim* when each of the billi will beoome dtw. 
 Then, since it will shorten the operation and not change the result, we take the 
 flr»t time when <my bill bcoomea due, instead of its date, or the point frota which 
 to compute the average time. Now, since May 1 is the perioci from which the 
 average time is computed, no time will be reckoned on the first bill, but the time 
 for the payment of the second bill extends 67 days beyond May 1, and we multi> 
 ply its amount by 67. Proceeding in the same manner with the remaining bills, 
 we find the average term of credit to be 71 days, and July 11, the equated time 
 of payment. 
 
 4t30. KuLG. — Multiply eadi payment by its own time of 
 credit, and divide the aum of the producta by the eum of the pay- 
 ments. 
 
 NoTB. — If the date of the average tia« of payment U requited, at in Ex. 2, 
 find the time when each of th» »tim»oe«ome» dme. Uu/tiply eaeh ntm ky the numbm' 
 mf day* intervening between the (UUe o/ite beooming dine and the earlieet date <m 
 whieh any nmn beeomei due. Then proceed at in the ruie, and the quotient vUl b« 
 the' average time rehired, Mt daye forvnwd frtm the date ef ike emriieH «wm k*- 
 
RXAMPLKH rOR JPRAPTIOK. 
 
 M 
 
 wim. will be ihearuounu; each p^yLe t? '"''^^^ f ^"1 '^'^'' 
 
 ^- A man owea $15%!) navabllY^ S . • ^"•- ^^50. 
 
 and the remainder ia 1 yeir :^rea„^l? = ' '" ^«^ ? i" 6 mo., 
 
 6'no.,andtheotLriiii0mo^*4'°J*^!°«'^^^^^ viz.: ^ in 
 a« to n.ake but onepaVnent? ^^"^ t.me «hott d it be paid 8o 
 
 4. Bought 25 caskfl'of wirift for tnoR u- . t'**" ^^ ® wontha. 
 follows: $526 iu 6 ma ZTiU i.^^ .***"^^ ^ ^Rreed to paj as 
 
 •«.. one pa.™e;'j;cLt'ftr^^irLti;!^f --^^ 
 
 6. On the 1* if January l«fi« „ . ^'**- '""O- 18d». 
 
 first for .^500 payab^ in^o\iav. ! ?J"*'"°^''"^ «*"* '^*'^« »^t«« = the 
 
 time of payment f P^yao^f »n »0 days. Required the equated 
 
 6. A merchant bouaht. on tli^ IS.K ^ »* '*"'f* ^^^^ 3, 1868. 
 of merchandise and SdS,i!v/l^th^/^''^^^^ ^000 worth 
 
 -gie payment, how io:;rho«iXir;!;;:;«e;? ati!&^^^* »>^ • 
 
 -*•». Hmo. 24d». 
 th, «p,r.t,on „f « ,„i„,l,8, ,h.|| I „,eth'. baling ?^ '" "*""'■ "^ 
 
 OPKEATION. 
 
 30 X 4 = 120 
 *0 X 2 = 80 
 
 ^, 70 200 
 
 „^, •I80-$70 = $llo. 
 200-5-110 = lmo.25da.,Un*. 
 
 AiTALYSM.- Iha i,tere8t on the 230 f«r 
 4 month. >. .,„., eo the intewsrofjl Sf 
 12« months, and the int . of $40 for Imonttl 
 U .4ual to that of iil for 80 mo„thf- an^ 
 Jaa the .nt on both PHtrnZymlnts^ 
 
 To equ , ,,,, ereSu otintl"fb"arrf fe 
 
 main unpaid, after the 8 „oneh. ^ ,^^0 t'^lr^l^^tt 
 
 ^ce r.n.nmn, un^ii ; and tHe V^ui^itt: J^!^ 
 
 RXAMPLES FOR PRAOriOE. 
 
 ^ equated time of the b«kiM«- '^ for «33 gal. Required 
 
 "'*'^ iiMt 12 na 22 d». 
 
fs^ 
 
 I ,!, 
 
 t36 
 
 ALUOATTOW. 
 
 i;if 
 
 ( 
 
 1(1 
 
 • I 
 
 2. Bought of C. Lyon«, at 6 mo. £432 worth of goodn ; tX the 
 end of 1 1110. I p»u\ him £7r^, ami 4 mo. after £200 more. How \oug 
 after the t-xpiration of the 6 mo. nhoulii I paj the balance? 
 
 Ang. 3 mo. 20 da. 
 
 3. A grouer bought $2829.75 worth of coffee whicii he desires 
 to pay in three diiUrent paynitrits : the drst is to the necond aa 4 is 
 to 6, and tho third is etiuai to iialf the second. The first paynient 
 should be made in 4 mo. ; the second in 7 mo. ; and the third in 1 
 year. Hut at the end of « mo. he paid $975, how long can he keep 
 the balance? 4mji. 7 muo. 18 da. 
 
 4. An undertiiker built a house for £f/0.35 payable in 15 mo. ; but 
 being in want of nome money, the proprietor pays liim £2847 10 eight 
 monthH before the time. How k)ng, in equity, can tlie proprietor keep 
 tke balance to compensate the advance he made the undertaker? 
 
 Ans. 22 mo. 4 da. 
 6. Andrew havuiji; tuAd $8400 worth of linen, at 12 mo. credit, 
 received the ^ of the prio* only 15 mo. after. Wl en did he receive 
 the I ? Ans. In 10 ino. 15 da. 
 
 5. I owed $6U0 al i;^ months; I paid 'i of this sum before it was 
 due, so that I can ki ep the remainder 2 years without -njuring my 
 creditor. Required liie time when the | were paiil ? A. '/mo. 15da. 
 
 1. A trader owes $3000 payable in 6 mo.; $4500 payable in 8 mo., 
 and 19500 payable in 10 mo. At the end of 5 mo. he pays $12000. 
 How loBg can h» keep the balance? Ant. 17 mo. 24 da. 
 
 ALLIGATION. 
 
 4S3. Alligation treats of mixing or oompouudinji, articles oi 
 ingredients of different qualities or values. It is of two kinds — 
 Alligation Medial^ and Alligation Alternate. 
 
 ALLIGATION MEDIAL. 
 
 434. Alligation filedial is the process of finding the mean 
 or averaze rate of a mixture composed of articles of different qua- 
 lities or values, the quantity and rate of each being given. 
 
 439. To find the average value of several articles mixed, thi 
 quantity and rate of each being given. 
 
 Ex. A grocer mixed 2cwt. of sugar worth $9 per cwt. with Icwt. 
 worth $7 per cwt. and 2cwt. worth $10 per cwt. ; what is Icwt- of 
 the mixture worth ? 
 
 Analysis.— Since 2owt. at $9 per cwt. is worth 
 
 «1U !«.i?f ot *7 i%ap «wt- ia worth *7. and 2cwt. 
 
 at |10 per cwt. is worth $20 ; 2owU + Icwt. 
 4- 2cwt. =o 6ewt. IB worth $18 -f $7 -|- $20 -^ 
 $46 ; and Icwt. is wocth M maay dollars a« 46 
 •rataiiu tinMi 6, or $9. 
 
 
 OPERATION. 
 
 9* 
 
 X 2 = 
 
 $18 
 
 7 
 
 X 1 = 
 
 T 
 
 It 
 
 % % = 
 
 M 
 
 1 
 
 4) 
 
 ia 
 
AXJJOATIOII. 
 
 237 
 
 How louK 
 
 D. 20 da. 
 he denires 
 jnd afl 4 is 
 t payment 
 third in I 
 %Q he keep 
 ). 18 da. 
 n>o. ; but 
 t7 10 eight 
 rietor keep 
 taker ? 
 no. 4 da. 
 310. credit, 
 he receive 
 0. 15 da. 
 ore it was 
 juring my 
 ID. 16da. 
 e in 8 mo., 
 ya $12000. 
 0. 24 da. 
 
 articles oi 
 > kinds — 
 
 the mean 
 ■erent qua- 
 on. 
 
 nixed, tht 
 
 vrith Icwt. 
 is Icwt- of 
 
 owt. is worth 
 7. and 2cwt. 
 ffU + Icwt. 
 57 + $20 ^ 
 loUuB u 46 
 
 di^L ^""''"--f ?^ '*« ^«'"* 0/ each of the article,, and 
 fhTnJ^ ""tf '^'^.^^i^ h 'f^ ^'umhe, denoting the mm of 
 ihe arttcies. Tht q,u>Umt will be the averagt value of the mixturi 
 
 BXAMPLB8 rOB PRACTICE. 
 
 1. A farmer mixes together 10 bush, of oata at 40 cts ner bu 15 
 bu. of corn at 60 cte. per bu., and 26 bu. of rye atrS c.f per bu • 
 woat .8 the; -alue of a buHhel of the mixture?^ Am 58 cts ' 
 
 2 If I ,n,x 20 pounds of tea at 70 cts. per pound with "5 ^und^ at 
 
 value 01 1 lb. of this mixture? j^„g 4. j<, , 
 
 rXn J;I J • f • " ^'?"; *'"' ^^ «»•• •* *^-10; how much IH a 
 gallon of the mixture worth? ' i^. «o 7' i 
 
 4. A man bought :i| dozen of eggs at 12 cts. a dozen, '4 doze"' at 
 lOi cts a dozen 4^ dozen at 1 1 cT.. a doz., and 5i doz at 10 en a 
 
 h^rec^vVpt dte": ^ " *° '"^'^ ^^ ^ ^» '^« ^'^ ' J^ -,-•" '^ 
 
 fl ^" A.^'^J'lu'"^"' '^' ^®^ *<^ compound 3 lb. 6 or. of gold 2i clrata 
 fine with 4 b. 8 oz. 21 carats, .3 j'b. 9 oz. 20 carats, aniTib 2 oz of 
 alloy; what will be the fineness of the composition? ^n*. 18 cara?;. 
 
 ALLIGATION ALTEBNATB. 
 
 437. Alligation Alternate is the process of finding the 
 
 proportional quantities to be taken of several articles or in-n- diente 
 
 rt"o?;ui; ^"^'"^^ ''' '"^^^" '^ ^°- ^ "-^- ^'^^y^ 
 
 in^^dtnf^L-^^'lj.^^ i>ropo./tona/ quantity to be used 0/ each 
 ingredient, v>hen the mean price or quality of the.rnixtaro. is given. 
 
 »nf Sover I^ed^lorth'J? T h"?'f «'"*'™«t»^^ ««^^ -orili s2 a bn.hel, 
 wortr$5 a bushd? ''""'' ^"''^ ''' ^'"'"'" ' "'"'"'••^ 
 
 OPERATION. 
 
 mini'-- 
 
 ANALTSig. — Since on every ingredient 
 used whose price or quality is lest than 
 the mean rate thero will be a gain, and 
 on STery ingredient whose price or quality 
 be a loM, and eince tho ./nin. .r.w 1 " ^«'"e'' than the menn rate there will 
 quantities used of each a bfsur^^^ be exactly e,,ual. the relative 
 
 one bushel of ti.nothy seed lrth%2 ft%r?h?r!"^ "■^^ "°'' f Vo^""'- ^^ ^»'"S 
 $1 would require 4 n^f/bu-h°r"hf;Hli^-*''™''^..S^^^ "^f^^-' '^"'1 ^« «•"» 
 bushel of closer seed wor«i«7'f;,-?rif''"''""fP"'" ^**" ^- -"^ «eiiin- one 
 
 -quire i Of a°bua:;K'e';;^i .ij;:^;: ^b?; ''' *' ' "'^ ^ '°^'^ *' -''••^ 
 
 •••d. V.0 take iTa btShel offllo^; V'^r* ^'^ '**'"' * of a bushel of timothy 
 
 :f 
 
 '.ail 
 
 III 
 
288 
 
 ALLIGATION. 
 
 |i ' 
 
 
 J 
 
 2 
 
 H 
 
 4 
 
 5 
 
 :\ 
 
 1 
 
 8 
 
 
 4 
 
 
 4 
 
 4 
 
 
 ^ 
 
 
 1 
 
 1 
 
 7 
 
 
 1 
 
 
 2 
 
 2 
 
 [ 10 
 
 i 
 
 
 3 
 
 
 3 
 
 i7;r. 2. Wlmt proportions of ooffeea worth reepeotiyely 3, 4, 7 and 
 8l.illings u puixud, must be taken to form a mixture worth 6 shil- 
 Imgs u pound ? 
 
 oPKftATloN. Analtbm.— To preserTe the •quality 
 
 of gu'DR and Iomos, wo must alwayncotn- 
 piiio two prioes or .-iinplee ino greater 
 and ono /««« than the uieanmte. and treat 
 eaoh pair or oouplof, as a separate ezaiu- 
 plo. In the given example we form two 
 couplois, and may compare either S and 
 10, 4 and V, or ;i and 7, 4 and 10. 
 
 We find that J of a lb. at 3i. must be 
 
 ,- . , , , taken to !,Min 1 ghilling, ami i of a lb. at 
 
 108. to lose I shilling; also j of a lb. at 4b. t.. gain 1 «hilling, and 1 lb. at 7u. 
 to looe I shilling. Thooo proportional niunbc^ra, obtained by comparing the 
 two couplets, arj placed in column,.? 1 and 2. If, now, wo reduce the numbers 
 in columns I anil 2 to a common denominator, iind use thoir numerators, we 
 obtain thu intPgrnl number.- in columns 3 and 4, which, being arranged in oolumu 
 5, give the propoitionni quantities to bo taken of eacH. 
 
 It will bu .^con that in co!ni)aring tho simples of any pair or couplet, one of 
 which IS gi-oatcr, and the otli^i- loss tli.ui fho mean rate, the proportional number 
 hnally oljtiimctl for cither term is the diirrronco between the me'in rare and the 
 other term. Tims, in comparing :', and 10, the proportional number of the former 
 is 4. whrh is the dilFerenoo between l(» and the nionn rate 6: and the propor- 
 tional number of the latter is ;{, which is the dinVronce between .s and the moan 
 rate. The same is true of every other couplet. Hence, when the simples and 
 the mean rato are integers, the intermediate stops taken to obtain the final pro- 
 portional numbers as in columns 1, 2, 3, and 4, may bo omitted, and the same 
 results readily found by taking the difference between each simple and the moan 
 rate, and placing it opposite the one with which it is compared. 
 
 From the foregoing examples and analyses we derive the fol- 
 lowing 
 
 4311. Rule. — I. Write the several prices or qualities in a 
 column and the mean price or quality nf the mixture at the left. 
 
 II. Form couplets hy comparing any price or quality less, with 
 one that is greater than the mean rate, placing the part which 
 must he used to gain 1 of /he mean rate opposite the less simple, 
 and the part that must be used to lose 1 opposite the greater sim- 
 ple, and do the same for each simple in every couplet, 
 
 III. If the proportional numbers are fractional, they may be 
 reduced to integers, and if two or more stand in the same hoH- 
 zontal line, they must be added; the final results will he the pro- 
 portional quantities required. 
 
 NOTBB. 1. If the numbers in any couplet or column have a oommoa faotor. it 
 may be rejeoted. 
 
 2, We may also multiply the numbers in any oouplet or column by any mul- 
 tiplier we choose, without aflFooting the equality ot ifie gains and loises, and thui 
 obtain an indefinite numbar of resulte, any one of which l>aiDg taken will aire a 
 eorreet final result. 
 
 li 1 .. 
 
' 3, 4, T and 
 
 irortb 6 8hil 
 
 the equality 
 t alwayBcotn- 
 I ina greater 
 I lite, nnd traat 
 parato eznui- 
 
 we form two 
 cither S and 
 QdlO. 
 
 ; 9(. must be 
 d i of a lb. at 
 I 1 lb. at 7,j. 
 jra paring the 
 the Dumbortt 
 nieralors, we 
 ij;od in oolumu 
 
 jplet, one of 
 :ional number 
 rare and the 
 of the former 
 
 the propor- 
 .ud the moan 
 
 simples and 
 bhe fanal pro- 
 nd the same 
 and the mean 
 
 76 the fol- 
 
 ilities in a 
 ! the left. 
 
 / ?ess, with 
 Kirt which 
 'ss simple, 
 'eater sim- 
 
 ey may he 
 \ame hoH- 
 be the pro- 
 
 V}* faotor, it 
 
 t)jr any mul- 
 let, aod thus 
 I will glTc a 
 
 ▲LUOAnOM. 
 
 BXAMPLEH FOB PRAOTIOS. 
 1. A grocer ha-s Mu<»ar» worth 10 cents, 11 centn, and 14 centH oer 
 P'T Ur U v''" ■;''"'"? u'"'*^ he mix them toforn. a >...xt„re worth 
 
 -. VVhutpr.)portion«ofwateratno vaUie, ami wine wi-rth $1.20 
 a gallon, nn.Ht l.e .i.se.l to form a mixture worth 90 centH a gal- 
 
 V \ ♦•... . 1 u i^' ' "*'• «»'■ water to i^'al. of wine, 
 
 ■i A Jarn.er had sheep worth $2, $2^, $.{, and U per hea<l • what 
 numl^r could he sejl of each, and r'ealize an'avera^e pr c o* V2rpe 
 
 4. What relative quantities of alcohol 80, 84, 87, 94, and 96 ner 
 "'"in^^TI-r'i ^ r^^. '^ ^'•'" ** '"'*»"^« 90 'per cent: strong ? ^ 
 of U)75th ' ^"''" ''^ *^* ^'■'*-' '^ °*'^^« '^^•»- ^"'^ 16 
 
 
 4 
 
 
 4 
 
 tV 
 
 
 8 
 
 8 
 
 A 
 
 5 
 
 5 
 
 10 
 
 20) 
 
 i4n«. 
 
 • '*^,^-/'^/«'^/'*« proportional quantity to he med of each 
 u>gre<hent, when the quantity of one of the simples is linJed 
 
 Ex. A miller has oats worth 30 cents, corn worth 45 cents and 
 
 ou cents per bu*- hej, and which shall contain 40 bushels of oom • 
 how many bushels of oats and barley must he take ? ' 
 
 OPBBATIOK. Analtsis. By tho same 
 
 prooess as in Caso I we find 
 the proportional quiintitin« 
 of each to bo 4 bushels v,. 
 oats, 8 of corn, and 10 of 
 
 each of the othTr simple" 07^ v 4 \l k "S"? *^? proportional quantity of 
 bushels of barley Ke tCfoll?„fnr " ' *"' ' ^ '" = ** 
 
 /i,^w*',i.^"^*'*~~^*"^' ^''^ P^'^portimal guajitilms as in 438 
 Ihmleihe gjven quantity by the proporLud^aniitofthe 
 same mgred.e,a, and multi^uy each hf the other proportu^ 
 quantities by the quotient thus obtained, ^ roporuoual 
 
 t 
 
 tXAMPLES FOB PBAOTICE. 
 1. A merchant has teas worth 40 fin 7^ o»^ on 
 
 76 cents, to form a mixture at 80 cents ? .P"""u« «Ji "»at worth 
 
 Ana. 20 Ibe. each of the first thr-'^ kinH« on j •«« lu 
 fuurih. Kinae, ana laO lbs. oj the 
 
 'v.\ 
 
 U 
 
 •Al 
 
 . t 
 
240 
 
 ALLIOATIOir. 
 
 ' • : I 
 
 111 'I 
 
 3. How inncb alcohol wortli 60 cents a gallon, and how maoli 
 water, muHt l,e mixe.l «r;th 180 gallons of rum worth $1.30 a -allon, 
 that the iDixture may be worth 90 cents a gallon ? 
 
 A „ ^"«- 60 gallons each of alcohol and water. 
 
 .;■ , ."^"^ "'*"y '^c"^-' <•'■ ''i"ti worth .•J;? dollars an acre must be 
 adtled to a arm of 7.0 acres, worth $50 an acre, that the average 
 value may be .^40 an acre? Am. 150 acres. 
 
 6. A mcrcijatit mixed 80 poundsof sugar woitli 61 cents per pound 
 witb some worth 8 J cents and 10 cents per pound, so that the mixt 
 lire was worth 7^ cents per pound; how much of each kind did he 
 
 442. Tojind the proportional quantity to he used of each 
 ingredient, when the quantity of the whole compound is limited. 
 
 iJar. A grocer has sugars worth 6 cents, 7 cents, 12 cents, and 
 i.i cents per pound. He wishes to make a mixture of 120 pounds 
 worlli 10 cents a pound ; how many pounds of each kind nfust he 
 
 OPBRATION. Analysis. By Case 1 we find 
 
 ^ /■ ct \ .. „ -- the proportional quantities of eaoh 
 
 , . ., „ „_ t" bo 3 lbs. at t) Ota., 2 lbs. at 7 cts., 
 
 lOK,., » ^ * 20 3 1b9. at 12cts.,and41b8. atlSota. 
 
 By adding the proportional quan- 
 tities, we find that the mixture 
 would be but 12 lbs, while the 
 required mixture is 120, or 10 
 
 tobe 10 times a., much as the ,„n» of tho prr,:,r\LaY lUS "tlfcn^he 
 
 Jo?thn!rwhST';,n"'''' •""fln^'lu'" "'"^^^^ much L"tts reject ve"pS! 
 K LJoL ;;^^^^^^ Ibs. ateot?., 20 Ibs. at 7 cts., SOlbi.at 
 
 \.i ots., and 40 lbs. iit 13 cts. Hence we deduce the following 
 
 44;$. Rule.— i^^mcZ the proportiomd numbers as in 438. 
 Ihmlc the given quantity by the sum, of the proportional qunn- 
 titxes, and multiply each of the proportional quantities bu thi 
 quotient thus obtained. * 
 
 f 6 
 
 1 
 
 
 3 
 
 
 ,S 
 
 30 
 
 7 
 
 
 k 
 
 
 2 
 
 2 
 
 20 
 
 12 
 
 
 h 
 
 
 3 
 
 3 
 
 30 
 
 Ll3 
 
 \ 
 
 
 4 
 
 
 4 
 12 
 
 40 
 120 
 
 I 
 
 Iq;; 
 
 EXAMPLES FOR PRACTICE. 
 
 1. A farmer sold 170 sheep at an average pwce of 14 shillings a 
 head; for some he received 98., for some I2s., for some 188., and 
 for others 208. : how many of each did he sell ? 
 
 AuB. 60 at 98., 40 at I2e., 20 at ISs., and 50 at 208. 
 
 2. A jeweler melted together gold 16, 18, 21, and 24 carats fine. 
 «o as to make a compound of 51 ounces 22 earats fine; how much of 
 each sort did he take ? An». 6 ounces each of the first three, 
 and 66 ounces of the last. ' 
 
 3. A inan bought 210 bushels of oats, ouni, and wheal, atuj paid 
 for he whole .5 78.50 ; (or the oats he paid .f i, for Hie corn, .1^, and 
 for the wheat *li per bushel; how many bushels of each kind did he 
 •»uy I Am, 78 bn. each of oats and goro, and 64 bu. of wheat. 
 
■VOLOTIOJI. 
 
 X41 
 
 5. Uae raau and 3 bovb received •SfSJ. fhr -.r ) .it 
 received .$3 per day, audtlie boys .U i '^;^;^!^ '^,^>-^ ^^bor; the ,„an 
 n.a.y days d,d eacTh lab.r ? ^ AnsVhl.nl ' ''rHpectively ; how 
 boys 24, 4, and 12 daya respectively " ^^ ^^•>'''' ^'"^ the 
 
 INVOLUTION, 
 many times it is used to produce the powe?-^ ' ^'''' ^'^^ 
 
 Thus, \ 3» ^ 
 
 = the first power of 3, or the root. 
 
 " 3 X ? ^ ?' ^'*?,f««nd power, or square of 3. 
 
 .(I) - i X i X j X i X j = ,«^, thefitih power of|. 
 
 Menw, from th.M iereral powers of 3. we derive the following 
 447. RvLJi.— Mult iplu the qiven nwmher h,, it^^lf ^- 
 
 1* Square 25. 
 
 2. Square 79. 
 
 3. Cul)e4r. 
 
 4. Cul)e 39. 
 6. 24* = ? 
 
 6. (1.2)6 = ? 
 
 KXAMPLE8 FOE PRACTICE, 
 
 Ans. 225. 
 
 Am. 6241. 
 
 ^ns. 103823. 
 
 Ans. 59319. 
 
 4n«. 331776. 
 
 i4«*. 2.48832. 
 
 7. (1.06)* = ? 
 
 8. (i)» = ? 
 
 9. (5)3 = f 
 
 10. (2'^)* = 7 
 
 11. (lf)« = ? 
 
 12. (2J)» = ? 
 
 Ans. 1.263476 
 Ana, A 
 
 /"»• m 
 
 Am. Soif, 
 Am. 167*^* 
 
 
 44S. Evolution is the prooeas of ertrfl«.t;no. ♦!,- * « 
 
 ° «»" The s;tr„;.r 7 ^« '-'--■-ftv„r«r • 
 
M2 
 
 SQUARS ROOT. 
 
 451. The Second Root, or Square Root, of a number, u 
 one of its two equal factors. Thus, 4 is the square root of 16 = 
 4X4. 
 
 453. The Third Root, or Oulie Root, of a number, is one 
 of its three equal factors. Thus, 4 is the cube root of 64 = 4 X 
 4X4. 
 
 453. The Radical Sign is the character, V, which, placed 
 before a number, indicates that its root is to be extracted. 
 
 454. The Index of the root is the figure placed above the 
 radical sign, to denote what root is to be taken. When no index 
 is written, the index, 2, is always understood. 
 
 455. The names of roots are derived from the corresponding 
 powers, and are denoted by the indices of the radical sign. Thus, 
 V 36 denotes the square root of 36 ; ^/ 36 denotes the cuhe root of* 
 36 ; V 36 denotes the fourth root of 36 ; etc. 
 
 450. A Rational Root is a root which can be exactly 
 obtained. 
 
 457. A Surd is one which cannot be exactly obtained* 
 
 M,, 
 
 SQUARE ROOT. 
 The roots of the first ten integers and their squares are i 
 
 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. 
 1, 4, 9, 16, 26, 36, 49, 64, 81, 100. 
 
 KoTM. — 1. It will bo obgerved that the second power or square ofeaohoftht 
 ■nmbers ouatains twice a* many figures as the root, or twice as many wanting 
 sne. IJence, to ascertoin the number of figures in the square root of a given 
 %nmheT,—Btginning at the right, point it off into ng mnny perioiU ii$ poBtible, of 
 Iwo figures eneli ; and thare will be as manyfigweB in the root at there are jperiodt, 
 
 2. When the given number contains an odd number of figures, the period ai 
 Ifc* left can contain but one figure. 
 
 Ex. What ia the square root of 40M T 
 oraaATiov. 
 
 4M«I 64, Am. 
 
 1S4 
 
 y. 
 
 Analtbu.— Beginning at the right, w* 8«f •rala 
 th« number into periods of two figures aaoh, by plac« 
 Ing a point (.) over the right-hand figure of each 
 period. Now, the greatest square of 40, the left-hand 
 
 eriod, is 36, th« root of which is 0. Placing the fl oi 
 I right c^ th« aomber, we subtract its square froa 
 the period 40, and to the right of the rennainder bring 
 4own the next period. We then double the 6, the 
 aert of ths rod aire^* found: ftsd^ pl^u^inir i| on the 
 left ef the dividend for a partial divisor, we pereeif* 
 tt is iTtrieiMJ la the dlvUlend, (oautting its right-hand figure), 4 times. Plaeing 
 the 4 ea tke right df tba Not, ako eo the rigtit of the pnrtiRl diviaor, we multipiv 
 (he diviaer thM ooaiploted 1^ 4, aad ■uMrMt the piodaet fron the iivideaC 
 fhe reel or eaevethiMt 
 
 49« 
 4M 
 
ms 
 
 lumber, is 
 tofl6 = 
 
 ber, is one 
 4 = 4X 
 
 jh, placed 
 jd. 
 
 above the 
 I no index 
 
 esponding 
 n. Thus, 
 he root c^ 
 
 )Q exactly 
 led* 
 
 ire: 
 
 0. 
 0. 
 
 f eaoh of th« 
 tiny wanting 
 it of a given 
 • poBiible, of 
 are jieriodt. 
 le period t4 
 
 IT* ssfiaral* 
 toh, by plM« 
 ure of each 
 ,he left-hand 
 oingthe 601 
 equart from 
 ainder bring 
 I the 6, the 
 ificr 11 on IMc 
 wfl pareaif* 
 lei. PIa«iDg 
 «• multiply 
 le divideiM. 
 
 fefeps^^ia& 
 
 243 
 
 figu^rs each counting from units' place tou>ard the. Inland right. 
 
 wrtte Its root on the right for the first figure in the mot. 
 
 veriod n.J7''!i *^"'"T ''^^^' root figure from the left-hand 
 JV' n 7>7 r ''^«»"^^^ '"'"«»: ff^e next period for a dividend. 
 and\:.r ^""^^ "-^ '*' "'"^ "'^'^^V /««"^ f'>' ^ (rial divisor, 
 
 TftCri2rjJ''^'' *' *f ^•""'^"■"'''^ '^ «^' dividend, exclusive 
 of tZ Z^M-hand figure, and write the quotient as the next divisor 
 0/ the root and also at the right of the trial dimmyr. 
 
 vTJ' T^ '^^'"'"■'^ ^^' product from the dividend. ^ 
 
 continue in /At« manner until all the periods are used. 
 
 <H,n^S'h7LS'"a^a'''l^""?'^"i"«'7.^ right-hand figure, doe, not 
 the divisor ; hen : ' ' rinifnl\ ^ '''u°''* '° ^° '«'*' *"'! »'''° ''^ t»»e right of 
 used as the divfso' ' ' new7vl!S. "'** ^ '^' '^^ '"' '^'^^^ """ »* 
 
 peri'odlifVnfc ,. ' . ''•«'«>• after all the periods hare been brought down. 
 
 be decimals? ^ ^ *°""'^' '^"'^ ^''^ fig'"-"' "^ »»>« '^ot thus obtained riH 
 
 root^■!«'lrS°i^t{^o^'Ii'"'*''™^^^ * *^°'« °"'°»>" «°d a decimal, v*,. 
 
 > point over every^cond hVurl ^^"^Tv,""" ^,!'^'^" ^^^°'« °"'°»«^' ^ P»'«^ 
 ««} period, if IncL'plS with" '^rphS *'' "^''' '"" ''' ^''P"'*'"*' ^'""« '''• 
 
 .qLe r^JtfonhrnulraToTnT [^ """ T' '^ "'''"^«" ''^ "'^"^"^^^ »»>• 
 KXAMPLES FOR PRACTIOB. 
 
 I. What ia the sqaare root of 133226 ? of 62.8 T 
 
 % X % 
 
 3x2 
 66 X 6 
 
 36 X 2 
 726 X 6 
 
 X 6 =r 
 
 OPKRATION. 
 
 133226 ( 365, Ans. 
 ±_ 7x 
 
 6 6 ) 432 7 X 
 
 J96_ 14.9 X 
 
 72 6) 3626 7.9 x .2^15.82) 
 
 3626 15.82 x M =, ' 
 
 r = 
 
 2 -=14.9)13:80 
 .9- LS.41 
 
 OPCRATIOV. 
 
 62.80(7.92 + ,4. 
 49 
 
 .3900 
 
 .0104 
 
 T0736" 
 
 .T^,i'«ii%'s;i?',oTL'';,'fr_.".';,,"" •"■. '^^r „, ,4«, , 
 
 Of 3249? o<-40»6? of 6329 7 of 6724? 
 
 or 9801 ? ononis ? 
 
 13, 24. 35, 49. 67. U, 
 
4 I 
 
 ^'•^^u^iimi^^js:ti^^Ajimmmm.-'.->>^» 
 
 tM 
 
 SQtTABS BOOV. 
 
 h ' 
 
 1i 
 
 i 
 1.* 
 
 ill 
 1 
 
 i 
 
 I ;' 
 
 J I II 
 .1. • K t 
 
 3. What i3 the nquare root of U1009? of 454276 7 of 605621 ? of 
 637821? of648132V of 738417? of80»aij? m 927748? of 977137? 
 of 9999[)9? Ans. 247, 674, 711, 798, 805, 859, 899, etc. 
 
 4. What is tl square root of 234.09? of 5.4756? of 17.3056 ? of 
 256.6401? of 0. J24 ? of 0.120409? of O.O0008836? of 609151. 761 GO? 
 
 Aru. 15.3, 2.34, 4.16, 16.02, 0.32, 0.347, 0.0094, 780.481. 
 
 5. What is the square root of f? of fiw^r? of ^AA, ? of 60J»? of 
 
 ^? off? of28||? ofjf? ofWJf? ofSsVir? 
 
 Atu. 0.86602 + , 2^. ^, 7|, \, 0.7746 + , 6|. 0.868 + , 1|» 'I- 
 
 APFLICATIONS OF THE 8QCA.RE ROOT. 
 
 1. Whnt ip the lenjjth of one side of • square (ami •ontaining 98 
 •cres? At%8. 120 rods. 
 
 2. A certain general has an army of 141376 men ; liow many must 
 he place in rank and file to form them into a square ? Ans. 376. 
 
 3. A company of persons spent $75. «9; each Hpeiuhng as many 
 cents as there were personp in the company. How nuich did each 
 exiiend? AnM. $0.87. 
 
 4. Bought 200 yard>< of carpeting 1 i yards* wide ; what is the length 
 of one side of the square room which this carpet will cover? A. 45ft. 
 
 6. A man owns three piecew of land ; the first is 125 rods long, and 
 63 wide; the second is t;2^ nxls long, and 34 wide; and the third 
 contains 37 acres : wiiat will be the length of the side of a square field 
 whose area will be equal to the three pieces f Ans. 121.11 + rods. 
 
 6. Purchased 2 house-lots ; the first is 242 feet square, and the 
 second contains 9 times the area of the firat; how many feet square 
 iu the second ? Aiu. 726 feet. 
 
 7. Required the sides of a ri'>cungnlar court-yard haviag an area 
 of 432 reds, and whose breadth is only the | of the length ? 
 
 8. A certain field contains 48020 square rods ; the length exceeds 
 the breadth by 49 rods : what are the sides ? 
 
 Ans. 246 rodr long; 196 rods wide. 
 
 9. A dchool-nia«ter says that the number of his pupils multiplied 
 by I of itself is 2523 ; how many pupils has he? Ans. 8". 
 
 10. How much will it cost to roughcast the walls of a garden, 
 having a surface of 8100 yards, at Bit, cts. per yard, the walla beiiyi 
 2^ yd. high? ^n». $1449. 
 
 11. Tiie greater of two numbers is 40, and Ih* sum of their squarM 
 1625; what is the smaller number? Ans. 5. 
 
 12. A clock-maker sold three watches whoie prioes are as 5 is to 6, 
 and as 6 is to 9; the sum of the squares of the prices is $3550. What 
 is the price of each watch ? Ans. $25, $30, $45. 
 
 13. What is the price of a raking machine, knowine that the price 
 added to its square giyea $186 tor result 7 . Atu. $13. 13 A. 
 
 4 of the number it«elf 1 obtaia $96 for result. How many barrels of 
 codfish, at $4 per burel, oaa I buy witk the inoBey I poaeese 7 
 
 fibanek 
 
*vn Kooc 
 
 S45 
 
 CUBE ROOT. 
 
 The root, of the first ten integers and their cubes are:- 
 
 > '> 3, 4 5 A n o 
 
 1» 8. 27. 64,' 125,' 216.' 343,' 512,' 729,' 1000." 
 
 ^-^''^^n.'airS.^^^^^ of the „u«. 
 
 P«2'.rf*».po^Afeo/«AreeA^«,.«^'''^«'2^^ i< o/ tnfo a. many 
 
 •^ « the^ear^pe^. ^ '^ *^' "^ ther^ **Ul U a, ma*y figure, in t£ 
 
 Ej-. What le the cube root of 157464 ? 
 
 S4 
 
 X 4= , 
 
 p«oor. 
 
 54 X 54 = 157464 
 
 167464 ( 54 
 125 
 
 32464 
 
 J2464 
 ~0 
 
 °"'^"«"- .AxALTs,8.-Begin- 
 
 ■ing at tho right, we 
 
 •eparate the given 
 
 number into periods, 
 
 by placing a point 
 
 over the unita' figure, 
 
 then over thousands. 
 
 Since the number of 
 
 periods is two. the root 
 
 will consist of two fig. 
 
 ures, tens and unita. 
 
 Then 157464 =. the 
 
 oubeoftens,plusthree 
 
 times the square of 
 
 piM thrw timed the tens into the Miiar* nf*K- . •. . ^'>« tens into the units, 
 Jhe cube 01- ten. .. thousand^. andStheref"-'^' f""'^- ° u**" °^ "^° "°'^ 
 the number. The greatest nunTSerSnlwh/l ^,°'* '" **»^ thousands of 
 sands is 6, which we write « thel^M fh^^J f ' ! ^"^.'^oef. not exceed 167 thou- 
 125 thousands, the cube of 5«st?rfcu"/S? 5,^^^ ^^° then "ubtract th. 
 82 thousands; and, »nne«ing th. nwt no^iS i k ''"''*°i'' *"'* *''"« '«°>ain 
 S24<i4, equal three times the squU of Sil Mn.T »''?u'' "" ''^ •°"^° remainder, 
 the tons into the square of the 1,*!! .,lS .h ° k'° J^.! ""'''' P'"« '»>'«« times 
 three times tho square ot^e tens nhf, rhri r^*" **£ ^^^ ""*'«• ^'^ '^^ Pr«d"Ot of 
 the square of tho\nits, mul iJ^Ted tX^'ZT'lflwT 'T.-'''' «"'^^' ?'"» 
 three times the square of the tens >f f !,« ,1? J dmdmg this reiaainder by 
 «omewhatt«,oIarle. Although it may irti,Ta*r«'r ''" ""J^' °' * ""'»»«" 
 the remainder 32464 cont.uns no onl? thre^iirJ^hl?*""''* bo too small, since 
 anit«, but three times t he tens into SeVauL^T*., "l"*"^. "^ '•"« '«"» *"'» 'be 
 units. We therefore make three times t?.erul.«„f^K'^; '''"' ^^''^ ""''« "^ th« 
 hundreds, a trial diyisor. with whiTw„ r *5 .^° ~^/^® ^^"^ "t-'he root, o= 76 
 der, disregarding the 64 uTiS Sc. th«™ ^ ^^ ''^^ ''""'^''^^^ "^ 'be remain- 
 the squarf of the%ons by .^e iS ThL^H^nffi™ ""^Kr!"* f ^'^^ P^"<'"<""f 
 units fig,:re of the root, or a number somewha l^rJ' '« ^"'•^' ^' •"""* '"^ ""• 
 oon^ lete the diyisor on the supj Jtirh;:;'^^^^.-^:^.""..:?.^-^]^?-^ '» 
 
 root, wo add to tho 75 hun-ired^^Vhefr^^i^ ^f^*' 'J"'"''"' "^ ""''« *" '^e 
 root into the 4 uuits, plus che squii^S? J ^^i""'". '-^^ ^ '"» «f '»>• 
 divisor 81 n«, thus fiUc^ by \rLDitaaL^L?J* ■"'"P'yi"? the tru. 
 from the ni«rtnd«,th«»i;it,SL"££' Slr^fi?£? ""> ET^"*". 32464. 
 M *teMMb» VMt -««iiHi •«». MMo% 1674C4 is a pmrfeot eobo, And 
 
!1 
 
 '^ ill 
 
 »h» ill 
 
 I > i 
 
 If ^ 
 
 'A' 
 
 
 S4« 
 
 4IS9. Rule. — I. Point off the givm number into periotk ^ 
 three Jigures each, counting from wUts place toward the left and 
 right. 
 
 II. Find the greatest cube that does not exceed the left-hand 
 period^ and write it$ root for the first figure in the required root ; 
 iubtracf the cube from the left-hand period^ and to the remainder 
 bring down the next period for a dividend. 
 
 TIL At the left of the dividend write three times the square of 
 the first Jig i( re of the root, and annex two ciphers, for a tried div- 
 isor ; divide the dividend by the trial divisor, and write the quo- 
 tient for a trial figure in the root. • 
 
 IV. Add to the trial divisor three times the product of the tens 
 figure of the root by the units figure with a cipher annexed, and 
 the square of the last figure, for a true divisor. 
 
 V. Multiply the complete divisor by the trial figure ; subtract 
 the product from the dividend, and to the remainder bring down 
 the next period for a neu^ dividend. 
 
 VI. Multiply the square of the root figures already found, by 
 3, and to the product annex two ciphers for a new trial divisor ; 
 and proceed as before until all the periods are brought down. 
 
 KoTB.— The observationa made in Notee 1, 2, 3, 4, and b. and«T .he rule for 
 ti»e extraction of the stjuaro root (458), are equally applicable to the extraction 
 of the cube root, except that two ciphers must be placed at the right of a true 
 dirisor when it ia nut oontiiinod in its oorreaponding dividend; and, ia pointing 
 off'deoimab, each period must contain three figurM. 
 
 Hi f 
 
 EXAMPLES FOR PRACTIOB. 
 1. What is the cube root of 12326391 ? 
 
 OPKRATIOX. 
 
 4 
 
 ,x,> ,M 
 
 !'ij. 
 
 2» - 
 
 Trial divisor, 3 x 20» - 1200 
 
 3 X 20 X 3 = 180 
 
 3« = 9 
 
 True divisor, 1389 
 
 Trial divisor, 3 x 230* = 158700 
 
 3 X 230 X 1 = 690 
 
 1« - 1 
 
 1 232ISf 1 
 
 8 
 
 3s 
 
 True divisor, 
 
 169391 X I = 
 
 432fi 
 4167 
 
 SSI 
 
 169391 
 16 939 1 
 
 2. What is the cube root of 1331 1 of 3375? ol i21ST? of 32768 7 
 of 110692? Ans. 11, 16, 23, 32, etc. 
 
 3. What is the cube root of 1861MT of 272144? of 456633? of 
 704969? of 970299? Aim. ^7, 64, 77, 89, eto. 
 
ovmm EOOT. 
 
 347 
 
 APTLicinoNa IN am goor. 
 
 i« height, and X™™ .h "filutl/'T TJ''? "^"'f '« '"« 
 contents of the box. '* """' "« "'*'>. Required the 
 
 6. How much miut he ni.,d fnr . „—■ f*"*" '"' ""b' '". 
 
 ««l, bought at i5Mnt,nS^lhl°"^."*'° '■"■»'*' of pouiid. or lin- 
 theiumllrequal^Sgi?!,^-'''""'""**" "" » "^ "« ""b^ of 
 
 >».cubee,„.,Aff'jtl':k'Re''^TrJ*^.l4^''"' 
 
 7. Required th« value of the artiVl*. -^ * • j • '^***- '^1S3.80. 
 
 r^T' " ""^ -c'«.:''.^siStrr.^ cLf a?°a'-5 
 
 8. What ia that number, whose 1 I -„-j i i"^***" *156.26. 
 give 9 for product ? *' ■' •"'^ i multiplied together, 
 
 9. Bought $164.64 worth r»f ^-„ . -^na. 6. 
 
 "-•-"n"-, each ZSw^g Sf L'T'S' "'' '■■ " -"«"' 
 there are boxes; »nd each oraui ooS. twio. .. ^^ °""'S™ « 
 
 •" boxe,. Bequired the »«mblr on.oxerL"™^""'*' " '""• 
 
 !«• In dividing the cube of » ™».i«i„ '''* .''' t"""*' ^'8 oranges. 
 jrj^.-..e uu„L, w.?b;:Sn%TaTo^e;?f K ?f ^1.3 
 
 11. A rwerroir, whost lenirth i. t^ ;.. k-„^.u _ ... ^n«- 9- 
 aeptn «a 13 is to 8. contains QOsin 7 i7 "''"•^lu sts i3 la to 6, »nd 
 dimewions of the CJvdr ? ** '"*''*' *** ^^^^^'J ^^at ar'e *he 
 
 12. Some merohaolT forS V "/rt^"' ^k**^^'^^ ''^ '''' '^^P^'^ ^4 ft. 
 
 -MMv wwMB M ti»ere wdn wsooiateB. Hari^t^adc 
 
 .11: I 
 
S4t 
 
 A»ITHlfBTIOAL PROORUMOH. 
 
 It . ' 
 
 ' rf!.''^*^,f *' ^^'y ^""^ >*^«t tW have gained the half a. mi.«h 
 the com anv ? "^ "' '^"''*"**'"'' ^"^ ™»'^J^ partnew were there ia 
 
 •HI ^A ^^ lu'*^^"", ^^"?^^* certain quantity of pearl-shella ; by^^jing 
 
 rh;\\ff!"J;;-T^™"'''p'-^T*^^ «»»" heiaiiSutb? 
 
 the f of Itself, It gives a product of 59049. Required the number of 
 108. he bought ? j^„ oc r. m 
 
 ij TT,* , , , iln.f. 35A. 'b. 
 
 a^rtlin n?,^" ..u'f* V"^'"''.**^"' P*^' ** ^S °e"t8 per lb!/ for a 
 ^,li Tu^f ""u ^*'*' ^^ «'^"'' «»«*^ ^*'*' containing Uo lb., che 
 number ^ba eg bemg such that in multiplying together its J, i, and 
 I, the product will be 8640 ? r j s, & ^^ $3828. 
 
 PROGRESSIONS. 
 
 ARITHMETIOAL PROaRBSSIOM. 
 
 4«0. An Arithmetical Progression is a series of num. 
 
 bers n.cieasino; or decreasing by a constant difforenoe. 
 
 formed Terms of a series are the numbers of which it is 
 
 m*i mf"® Extremes are the first and last terms, 
 
 tJ? i ■ m ^®a^S are the intermediate terms. 
 
 4«»4. The Common Difference is the number added or sub- 
 tracted, m order to form each sucocHsive term. 
 
 4«5. An Ascending Series is produced by adding the 
 common difference to each term successively ; as 13 5 7 Q 
 11, 13, 15, and 17. J »'.♦'.«',*, », 
 
 *®*' ^J^escending Series is produced by subtracting the 
 
 common difterence from each term successively ; as, 17 is' 13 
 11, 9, 7, 5, 3, and 1. ' ' > 
 
 467. Thesumoftheextreii . is equal to the sum of any 
 two terms equally distant from tium, or to double the middle 
 term. Thus, 
 
 13 5 7 9 
 
 U 1_5 IJ 1 1 9 
 
 18 18 18 FS r'8 
 
 .^*?^' J.'^'^ following are the Jive quantities considered, three 
 ef which being given, the other two may be found :— 
 
 1. The first term, denoted by 
 
 2. The last term, *< ** 
 
 3. The common'differenoe, « « 
 
 4. The number of terms, " « 
 6. The sum of all the terms, " « 
 
 Nort.--Hftlf the imi of mj two auubtn it MU«d their AriiAuutiwl Mtmt. 
 
 a. 
 
 I. 
 
 c. 
 n. 
 
 §. 
 
MUKtAJti* 
 
 er« th«rt ia 
 
 Ana. 8. 
 ; bypajiog 
 laid out bj 
 Dumber of 
 
 r lb., for a 
 40 lb., che 
 i aad 
 
 iS 
 
 9' 
 
 «. $3828. 
 
 18 of nam* 
 hitih it is 
 
 led or sub- 
 
 dding the 
 5, 7, 9, 
 
 icting the 
 , 15, 13, 
 
 n of any 
 le middle 
 
 red, three 
 
 a. 
 1. 
 
 c. 
 n. 
 
 8. 
 alMtmm. 
 
 ABITHJirBTioAL FIlO«RMg,o„. 
 
 4«». Case l-— Given the /ir,t ferm ,j. 
 18 ^ 19 _ 1 J- ns iy , ^i,at in the last term ? 
 
 18 =1: 19 -_ I 
 68, the last term. 
 
 iMt term ^4 T?8 ifl T°^' "*"• Therefore the 
 
 Hence the Formiia « T**/'^ ° '*,"'"°" difFerenoe. 
 
 '"■^ '*■ — 1) C =- 1, or the 
 
 ■XAMPLBS FOR PRAOTIOE. 
 
 width ofthe wide end? ^ '^^'^ '" '^"gth. What is tS 
 
 I t.l\^u^ a"t term of an aacendine eerie- be i th- « ^""'- ^ ^^ '"• 
 I, aud the number of tenne 20, whaYfeX'Taft^i'r^T'li^ii^^ll^^ 
 471. Ca8« IL--(»^ ,a, ^,,^, ■ 
 
 ></ ^A* «^;„^ difference ""^ "^^ *» 
 
 l-« 
 
 ^ALTMi, 
 
 •'♦"(■-i)c-i,e« 
 
 n-i 
 
 Henof/, th« 
 
 u — I — 
 
 473. RcLK.— ZX,^ ,4, A*jr«v«^ /■ .X 
 »wm6«- o/ferm« fcw one. "V*''*^ of the extremes hy the 
 
 ■XAMPL18 roB PBACTIOB. 
 
 « T-j }^^^^itrJ^L^^^ ^ ''' -cl the number of terma 
 
 i. Ule common 3iffe?enc: ?'" ''' *°^ ^^* »»«>'>•'• of tenna i;^?;-^.^ 
 
 3. A man has 1 eons : the Tounaeet in ft . ^ »u . . ^'»»- 3. 
 oW; their ages inoreaae o aritwS^ ' '"'^ ^^ «''^««* 44 rears 
 Aftrenoeofthairafear •"'^'"^**«^ ProgreseioB. Required thll 
 
 |1» ^••' *7««w. 
 
 J. 
 
 
 81 
 
L' 
 
 I' 
 
 !!■ 
 
 1 ( 
 
 " 'i 
 1 
 
 11 PI ll 
 
 I 1 I "5" 
 
 ^B«?S'i/. 
 
 859 AlWTHlOmOAL F»0<111W8T0W. 
 
 4.gif the extremes ar^ and 2^, and the number of termn is 18, 
 wliat is the common difference ? ^»t*- A' 
 
 473. Case III.— Given the extremes, and the common dif- 
 ference, to find the number of terms. 
 
 Ahaltsib. — Since, a + (M — 1) C « 1» H 
 
 1-a 
 
 -f. 1. HoDoe, the 
 
 474. Rule. — Divide the difference of the extremes by the 
 oommon difference, and increase the ^juotient by 1. 
 
 EXAMPLES. 
 
 1. The first term is 8, the last term 203, and the oommon difference 
 6; what ia the number of terms? -^n*- ^O. 
 
 2. A man going a journey travelled the first day 7 miles, the last 
 day 51 miles, and each day increased his journey by 4 miles ; how 
 many days did he travel^ '****»• 12. 
 
 3. The extremes are 2^ and 40, and the common difference is 7i ; 
 what is the number of terms? ^»w. 6. 
 
 4. In what time can a debt be discharged, supposing the hrstweek 8 
 payment to be $1, and the payment of every succeeding week to in- 
 crease by $2, till the last payment shall be $103 ? ^— ""* "—^'^ 
 
 Ann. 52 weeks. 
 
 475. Case IV.— Given the extremes, and thenumber of terms, 
 
 tn find the sum of all the terms. 
 
 Analysis— Sinoe, the sum of the extremes of an arithmetieal progression ta 
 equal to the mm of auy two terms equally distant from them, it follows that the 
 tornifl must average half the sum of the extremes. Henoe, § « J (a + 1) H. 
 
 476. RWL^.—Midtiply kalf of ilu sum of the extremes by 
 the number of terms, 
 
 BXAMPL18. 
 
 1. The extremes of an arithmetical series are S and 19, and the 
 number of terms 9 ; what is th: sum of the series ? Am. 99. 
 
 2. A man bought 16 acres of land, giving $1 for the first acre, and 
 1121 for the lastlvere; the prices of the successive acres form an ar- 
 ithmetical progression. How much did the 16 acres cost? Ans. $976. 
 
 3. A «^entlenian wishes to disoharse a debt in 1 1 annual payraenta 
 such that tlie last payment shall be $220, and each payment greater 
 than the preceding by $17 ; what is the amount of the debt, and the 
 first payment ? Ans. 1 st. payment, $50. 
 
 4. A merchant bought 20 pieces of cloth, giving for the first, $2, 
 and for the last $40 ; the prices of the pieces form an arithmetical 
 series ; how much did the cloth cost ? Ana. $420. 
 
 5. If 100 oranges are placed in a line, exactly 2 yards from each 
 other, and the first 2 yards from a basket ; what distance must a boy 
 travel, starting from the basket, to gather them up singly, and return 
 with each to the ba»ketT 
 
an is 18, 
 rion dif- 
 
 Henoe, the 
 \s by the 
 
 differenoe 
 ln«. 40. 
 !, the last 
 ilea; how 
 [ru. 12. 
 ce 18 7i; 
 Ans. 6. 
 rst week's 
 jek t(j in- 
 I weeks. 
 
 of ternu, 
 
 agression ii 
 )W8 that the 
 fc + 1) n. 
 
 iremes by 
 
 \ and the 
 Am. 99. 
 
 acre, and 
 )rm an ar- 
 is. $976. 
 
 payraenta 
 mt greater 
 t, and the 
 ent, $50. 
 ; first, $2, 
 rithmetical 
 19. $420. 
 from each 
 must a boy 
 and return 
 
 OIOMITRIOAL PROORISSION. 26t 
 
 GEOMKTRICAL PROGRESSFON. 
 
 SnnlT"^" '^ ^®0™elrical Progression is a aeries of numbers 
 inoreas.nn: or decrea.in^^ by a constant ratio. ^^"^ 
 
 Sfi' Z'^® "^"0 IS the constant multiplier or divisor. 
 thafl'^.f2.t8'"G".^'li*t^P^°'"°«'^^^-^-*-«-ter 
 
 lesf th,?n l^ ?sT *" i ? f 'K^r'""' "'^° ^'« ^""^ •« 
 ^twi rp'. 7. t; 2'. t. t- tV» a. A» etc. 
 
 wKr„?k' . ■^'^^**^'''^^|"f? i^re the>e qnanHde, considered <*rMof 
 which being given, the other tioo may be '. md ,_ ^' '*^'*°* 
 
 1. The first terra, denoted by a. 
 
 ^. Ihe last term, « i« « 
 
 3. The ratio, «• «« *' 
 
 4. The number of terms, « « n' 
 
 5. The «nin of all the terms, " " „* 
 
 IkSTTriTJi" ^'•'^••^^ ^-« between two a«nb«. ta the ,,„.„ ^^ 
 
 4«a. Ca8I I.^GStW ^^,/..,, ,erm, the ratio, und the num. 
 ber 0/ terms, to Jind the last term. " ''*"**^ 
 
 ^^iJ^:^'^:^^'^^^'^^^^^^^^^ and the ratio is 3 , 
 
 A...vsis.-The «rsuerm ^^ . 4, and from the nature of the series, 
 
 The third term = 4 x '^a «„,, 
 
 The fourth «„„ , \ I l. , , ^."^-^^^ ^^ 
 
 •na 80 on. Hence, the last term, 1 =- a X r""^' 
 
 ../**?■ "^^.^^--^^Mplif the first term by that power of the 
 ratio denoted by the nnmher of terms, less one ^ 
 
 ^^'"^'^'l^:i^TZ':^tX'^^^^^ «d the 
 
 EXAMPLKS. 
 
 ^rZ^r^:^-\^:^^T^^ --^r of teru.^-.., 
 
 1 ™illt 7"?!*" ^"^?* ^ ^Sg«' ^^^^''g t*^ W 1 mill for the fejt tg 
 a mills fur the second, and so on , what did the last e^ oost her ?^' 
 
 Am. $0,266. 
 
 
 - I 
 
 'J 
 
If r 
 
 tM 
 
 aOMKTBIOAL PK0«UU1I0M. 
 
 I.; 
 I 
 
 >.J,. 
 
 liii&J.i. 
 
 
 
 
 ^^^^B 
 
 1 
 
 ^B^^^B 
 
 
 Iji^ii,; V ..-J- r 
 
 ! 
 
 i. 
 
 4. If the first term of a eeriM k M, the ratio l.tf, and ttie nanbw 
 
 •f terms 6; what is the last term? An*. 40.146787328. 
 
 5. A person traveling goee 2 luileH the first, 4 mileH tke Hfcood, 
 B miles the third day, and no on, increasing in geometrical progression 
 Jor 10 days. How tar did he travel the last day ? Ant. 10';.4 miles 
 
 $. Bought a lot of land ooniaining 15 acres, agreeing to pay for the 
 whole what the last acre would come to, reokoning 5 cts. fur "the flrnt 
 aore, 16 cts. for the second, and so on, in a threefold ratio. What did 
 
 tlM lot ooet lue ? 
 
 Ans. .i;L»;^9 148.46. 
 
 4S4. Case IL— Given the txtremet and ratio, to find the 
 turn of all the termt. 
 
 B». The first term ie 2, the last term is 128, and the ratio 4 1 1*^ 
 quirvd the euui of ail the terms. 
 
 8 -». 3a + 128 -♦■ 612 = 4 
 
 1 + 8 + 32 + ris 
 
 OPiaATIOll. 
 
 X snm of the series. 
 
 = I X sum of the seriea. 
 
 612 — 2 = 3 X sum of the i^eriaa. 
 Hence »",- » = 170, the sum of the series. 
 
 AWALT8IS.— Since 512 = Ir, 2 = a, and 3 =■ r — I a = ^'' ~ • 
 Hen«e, the ' |. _ 1 • 
 
 485. B.VLE.~~Midt:ply the latt term by the ratio, mhtrnei 
 thefirsttermfrom the product, and divide the remainder by the 
 ratio lett one. 
 
 NotM.-l. If the ratio it leas thM 1. the product of th« last term. maltipHed 
 by the ratio, must be subtracted from the fint term} and, to obtain the divW 
 the ratio must be aubtraoted from the unity, or 1. 
 
 2. When a doBoending Heriea if oontinuei to infinity, it becomes what is oalUd 
 an Isnuvn aniKS, whose last tern ranst be regarded as 0, and iu ratio as • 
 traeiion. 
 
 A ^? ^^1*^" ' T *'^- *° a"*'"''^ Seriei,-i>Hri«<« tkeJtrH fn» 6y a mmU dimimMMd 
 6y th»fram*«n demitmg the ruHo. 
 
 BXAMPLE8. 
 
 1. Tha ilTHt term of a series is 4, the la.it term is 62500, and the 
 ratio 6; what is the sum of all the terms ? Ans. 78124. 
 
 2. If the first term of a series is 12, the ratio 3, and the number of 
 terms 8 ; what i>^ the sum of the series ? Ant. 39.S60. 
 
 3. The first term of a decreasing serie8 is 102, the last term 4 and 
 the ratio ^ ; what is the sum of the .series? Ans. 151. 
 
 — " — -^^-^ , " "^~-= i~ ", tiie ratiu |, Skud tne number of 
 
 terms 6 ; required the sum of the Hcriet^. ^n^. 1 31A&. 
 
 6. The first term of a decreasing series is 106, the last term t Oand 
 Ike raiM i ; r<N|uiied tke sum of the terma. Ant. 130 
 
Ih« naiab«r 
 
 6767328. 
 tbe Hfcood, 
 progresdion 
 hi raile« 
 
 pay i'oT the 
 for the first 
 What did 
 9148.46. 
 
 find the 
 
 alio 4) r»> 
 
 8. 
 
 «. 
 
 8. 
 
 . lr-« 
 
 " r- 1 • 
 
 , subtract 
 
 I, mnltiplted 
 the (iiTu«r, 
 
 bat is oalUd 
 ratio aa • 
 
 and the 
 
 , 78 124. 
 number of 
 H9360. 
 rin 4, and 
 IS. 151. 
 umber of 
 
 m • 0, and 
 iM. 13U. 
 
 Irllfi-i-fWHlB-li' -^'^ 
 
 MIAHURBMINT Of LUMBH. 2(|S 
 
 memJ?nteunfit"rL7nrn "'""''" *'''''>' di-chargad bj monthly pay 
 
 first n.orith h? il »^"*''-^ '"^* "^ * "^''^ f^r 6 "'onthn. For th« 
 were lo '^re.H d 1,^'?. ' '' ""'' T*' ;^"°««^*'i°K -onth'^ wa^t! 
 
 thelein/ttgreed to 3 1 *i f 7 ''^; '^^ '"" '"^^ * price ; he, never- 
 for the'thfrd. aud Ton ."«*"" V'f, '''■"' "'K"^^ ^ *'"• ^»'' "•^^"J' !« 
 cost hiw ? ' ' '° ' ^''"'^^'^ '■•^<> 5 bow much did that ground 
 
 Am. $34S>5.25. 
 
 MPUSUREMENT OV lu.V BER. 
 
 J™";'",:,!;!'" ■' "°"'"'"«" ""•"""'' •^ "« ">°. -"i ~".«im™ bj 
 
 4»^i. To find the contents of a board 
 
 thSthT'' ''' ''"'*'' " "*''«"°=' "''^^ ^-^f "tf -- of the width of its endB fo, 
 
 ,if?- '• ^'>^^-«^J- contents of a board .36 feet long, and l^feet 
 J. What are the conteota of a board 24 feet lonf 'and' Jl S. 
 
 3. What are the contents of a taperiu.. board 2^1^^^} '"'^' ^'u' 
 ends are, the one 24 i„(^e«, and the other 13 [n^hes wfde ? "=' ''^''* 
 
 489. To find the contents of planks, beams, joists, eto. 
 in S^f^'&,:J;,,:ff ;f ^ ^« -cAe., t, the tkickness, 
 
 w/tnf7hi^*SdstS;o''wS*^^^^ '" r'*^ *'»''« ^'^^- «"•« of the 
 
 thicknes..th« common ru^ZbtaSnf/fh^^^^ "'^^^ '^nd the 
 
 ^tk. ««H of tk. ar^ o/^L CSiifirS? »« «"bio feet i«, to ««/ay^ 
 
 In 
 
 I 
 
 
 hi 
 
354 
 
 I ' ' 
 
 ( I 
 
 I f 
 
 VnOILLANBOITS BXAMPL18. 
 
 •nf f inoheTJhtk? *^' *""*•"*" "'' P'*"*^ ^^ '^^J^^^g' 2 feet wide, 
 
 4?:s:3 ti^r sr ^^^-' -- -^ S^ 
 
 4»0. To find the contents of round timber. 
 
 fomanfThf'^^'^^^ fA« ?«n,9#^, taken in/eef, by the square of one 
 
 2dhv{A "^T ^*"1' '"*''* *« *"''^^^'' ^nd,thi4roduct,div 
 xded by 144, ?<,i?^ ^rftre the coni^ts in cuhic/eet. 
 
 i II ,1 
 
 MISCELLANEOUS EXAMPLES. 
 
 doJ; ht SeeV? "^ ^* ^"" '''"* '•^' ""'^^ P*' *^°S ^' ^'« «-• 
 .«™ ^11 be fi!"?'^' '■' ^''* ^ ^^«^' '^^^ ^^'^ * of ATit'efn^th. 
 
 3. A gentleman boughi 95 yard^ of cloth, ? of ayard widtX'Ahn 
 •nd gav. the .ame and $2f for cloth of the'sLaqSri i^S li3J' 
 How many yards did he buy 7 ^ Zl on i ^ 
 
 4. A father devined ^ of bis estate to one of his ,om' an^ 2* «/ 
 the residue to the other, and the remainder to his wife ' The ^C 
 ence of h.s sons' U.^acies was found to be £257 3 4 What mf «v 
 did he leave for h.s widow? Ans £635 Tim ^ 
 
 6 How many bncks S.inches long, 4 inches wide, and V?&„, 
 
 feet^hirkV"''"^'^"""'^"*" '' '''' '•^"g' f f-t hig,- -di 
 
 6. Ifan.aneanpaini4 ..uare yards in one h^ur^'ln^filTK 
 <^.^40 .ec. .. painting two aides'of a wall 7 feat high X 4 1 
 
Jitt^ 
 
 WTOBLLAWBOUS BXAMPLM. 
 
 7 B • *** 
 
 titj p«rdS^ bmff fVofl k for* RH^"!?'''i«r°,^3« °° ^^•q-"- 
 on the 8a,.,e quantity . How Tnanv hnlJ' * ^"^^^''' ^ «f'*" g»'" ^42 
 
 ^. A groce? bought a hoXa/nf l^ f '^!'fo^"Sht? Ans. 240. 
 must be added to reduce th^£uo 35 .'t^*^^-'Ti.^^''^">"<^^ ^*ter 
 
 9- A father, dying, left his snn I i * " P^"" «*'• ^ ^"»' 18 gal 
 months: 1 of the'WnfirL'J^^^^^^ «P«"t^o 8 
 
 which he had only «410 left Wi!!! ^ ^^ month8 Jonger, after 
 hitn? ^♦410 left. What amouut did his father be<iueath 
 
 10. A man had I of a va«l «rk- j • . ^*^' 1956 '6i. 
 
 rate of $8i per yarS^he £^.1 it VrScloth a'7«'n'°' ''' P«'^ ^^^^^ 
 of cassimere. What di.} fL Z ■ ''^^'^^cloth and 50 cents for J I vard- 
 
 States currency?^ * ^«"*i» currency, are equal to $160 United 
 
 . 13. If the lonfitude rBo^t^nls 7o'o' 1 of w.ne and 5 of brandy 
 
 m that place when it is 3 h?t Jn A M^'f "'^^ ^" ^ *»'« «"»« 
 Anji 1 n K K/« • ! ." ^- "* i'ondon f 
 
 had I at first 1 *" *" * "^^ ^nat I had left ; what sum 
 
 , 16. If I3i bushels of wheat make "^ hRrr«l- r « "*/*•' ^8248.80. 
 
 18. By selhnga lotof book«ftw.«iaQ l , ,. ■^««, Ti^t. 
 
 much should the books have ?i^ Sor ^^"^"^^'^^ 10%; how 
 
 of Itfead, when flour k $12 i^r bbl ? hoarders eat $60 worth 
 
 ^^; B hired a house for one vear fi>r «Qnft . ., "*"*• '^2^ mo. 
 he takes in C as a partner, and auireSoVR** '^?.'"? ^f l^monthe 
 _. -.1,, .n*. o, t«f year, wimt rent must each pay ? •■''° ^• 
 
 23 A person mixed 12 cwt. of slTar^lf «ij' witf ? ' ^ *'^*- 
 •-d 8 owt. at m , how much was fowt^of Ih"; mSure";^^ *'*' 
 
 

 I'li 
 
 256 
 
 MISOXLLANBOTTS BXAMPLM. 
 
 24. A shipment of wheat was insured at 2^%, to cover | of its 
 value ; the premium paid was $44.07 ; the wheat being worth 80 cts. 
 per bushel, how many bushels were shipped? Ana. 2825 bush. 
 
 25. A stack of hay will keep 24 cow8 or 18 horses one week. How 
 many days will it keep 5 cows an(i o horses? Jni^. 14f da. 
 
 26. C. of Montreal, remits to D. of Quebec, a bill of exchange on 
 Liverpool, the avails of which he wishes to be invested in goods on his 
 account. D, having disposed of the bill at 11^% advance, received 
 $9675 ; and, having reserved for himself J % on the sale of the bill, 
 and 2 % for commission, he invests the remainder. What is the amount 
 invested, and for how much was the bit! drawn ? 
 
 Ana. Investment, $9461.58^; the bill was £2025. 
 
 27. What per cent, is gained by buying oil at 80 cents a gallon, 
 and selling it at 12 cents a pint? Ang. 20 %. 
 
 28. A merchant pays $10050 for a stock of goods ; he sells them 
 ftt an advance of SiiJ % ; the Expenses connected with the business are 
 $1760. How much does he gain? Ans. $lfiOt). 
 
 29. What o'clock is it iwh«»n the time from noon is ^^ of the time 
 to midnight? Ans. 6 o'cl. 24 min. P. M. 
 
 30. A merchant receives on commission three kinds of flour ; from 
 C he receives 20 bbl., from D 25 bbl., and from E 40 bbl. He finds 
 that C's flour is 10 % better than D's, and that D's is 20 % better than 
 E's. He sells the whole at $6 per bbl. What in justice sliould each 
 man receive? An$. receives SslSym; D, $158^; E. $211^f?-. 
 
 31. For what sum must a note be drawn at 4 mo., that the proceeds 
 of it, when discounted at bank, at 7 %, shall be $875. 'ii ? 
 
 32. If 2^ yards of merino If yards wide cost $3.37|. what will be 
 the cost of 36^ yards 1 ^ yards wide? Ans. #52.779. 
 
 33. What must be the face of a note at 60 days, the proceeds of 
 which, when discounted at Bank, at 6 %, are$100 ? Ana. $101.06 + 
 
 34. A merchant sold a piece of clotii for $24, and thereby lost 26^6 ; 
 what would he have gained had he sold it for $34 ? Ana. &\ %. 
 
 36. A bankrupt compromises with bis creditors for 37 ^^(i how 
 much will he pay on a claim of $3656 ? Ans. $1371. 
 
 36. A man, dying, left $3565 to be placed at interest for bis son 
 who was 16 vr. 5 njo. 15 da. old ; how much will he receive when he 
 ia 21 years old, allowing 7 % interest? Ana. $4698.37 + . 
 
 37. A garrison, consisting of 360 men, was provisioned for 6 
 months; but at the ei. of 6 months they dismissed so many of the 
 men that the remaining provision lasted 6 months longer ; how many 
 men were sent away ? Ans. 288. 
 
 38. What sum must I invest in the New Brunswick 6 % stock, selling 
 at 2i % premium, to secure an annual income of $840 1 Ans. $14350. 
 
 39. A grocer divided a barrel of flour into two parts, so that the 
 smaller contained \ as much as the other; how many pounds were 
 there in- each? ^n«. 78f lb., U7f lb. 
 
 40. A sportsman spends i of his time in smoking, | in cunning, 
 2 ho. per oay in loafing, and 6 ho. in eating, drinking, and sleeping ; 
 how much remains for useful purposes ? Aiu. 2 ho. 
 
 ii. Exchanged 250 whares uf 6 ^j^ stock, at 1^%, for stock bearing 
 8 96, ai 120 9( ; what x* th« di£ter«n«e is nj income ? Ana. $333. 33^. 
 
ver I of ita 
 
 orth 80 ctH. 
 ?25 buflh. 
 week. How 
 '. 142 da. 
 ^change on 
 ;ood8 on hie 
 !e, received 
 of the bill, 
 the amount 
 
 ,8 £202i. 
 8 a gallon, 
 w. 20 %. 
 sells them 
 »u8ines9 are 
 9. $1600. 
 )f the time 
 
 M. 
 
 from 
 Hnda 
 
 in. P. 
 
 iiur ; 
 
 He 
 
 better than 
 
 hould each 
 
 he proceeds 
 
 lat will be 
 $52,779. 
 proceeds of 
 ;I01.06 + 
 /lo8t 265g; 
 n». 6i %. 
 ;7i%; how 
 s. $1371. 
 for hie aon 
 I e when he 
 198.37 + . 
 oned for 6 
 any of the 
 ; how many 
 ins. 288. 
 lock, (telling 
 [.$14350. 
 BO that the 
 ounds were 
 , 117f lb. 
 in gunning, 
 d flleeping; 
 ins. 2 ho. 
 Mik bearing 
 1333. 33^. 
 
 M180BLLANBOU8 EXAMPLBS. 257 
 
 42. Purchased 100 barrels liprrin(r<j «f«Kv.«.. uvi j- 
 sold them on a credit of 8U , o„thf ' ^^f P^f ^^l-.^n-t^n'^ediately 
 
 pay, I got discounted at U.e Un n' Rank "an^''^'"'^ ^ '''''''^ *'^' 
 money, I found that I had gained 20 inn. ' T" ^-^^'22!"'"? "^7 
 receivjper bbl. for the herSlg":' '' ^ " "^^ P"^«'^^r„- .^V« '"' ^ 
 
 8 in in l7nXT5^t?1' ''' '^"'T^ '^ ^^"^' ^ ^''« ^-^^t "a h o .i ' .^0 ft 
 
 at etatTofrfor"^"c?^P^\^ ^' '''' '^'^ ^'' ' ''^ '^ct'fa ''^ t'em 
 ^profit of $4 20? ' ^''' '"""^ "'"^^ «^^ b»3^ «"J «^" to uTe 
 
 .any balel^S^S'ltr^"^ '^^'"""-'^^ ^^^/l20?^^ 
 46. »-JnrrAwpi1 nf A ■51 /i;n »\_ • . /IKS. i^iDO. 
 
 $100; howlonishailtiLn-.y "'°"'^"' aOerwards I lent him 
 sum he lent meV ' '''^ '' '"^ compensate bin. for tho use of the 
 
 became worthless • T fli«r.n«n , f f ^^^f^j *iO each, and one of .'$50 
 
 »o„i. .1 L per' .. Rei.;:? ^ ';tc?;'r ;tt, z r i-, ™ 
 
 a.,d hereby I ,ataed ,.500. iiirrhSr^^ tii'S'd:^ 
 
 cWof 6 moi„Caa/7 *!>at1o,;T roS;'*''','^ "" ^ 
 
 lie mav make a clear gaia of 24 « L i ,. Sf,''' "^f l;'»,"'P™»e«, 
 
 money beiog worth Oj? '* '"' ^"' T' >" "« gooJs, 
 
 plaid^'o' a\'5*Xne''.Zt o"""'" °f ■'"'' °" ''^^ 
 
 ,ii^i;crtrd."::driiT:,rat^3i!f.-T^,;r-'^^^^^^^^^^ 
 
 m 
 
 »t 
 
 what did be give 
 An$. $600. 
 
i I 
 
 I 
 
 I 
 
 ri) 
 
 If 
 
 If 
 
 I 
 
 MIWILLANIOUS KXAMFLW. 
 
 to tL!!!fl ^''^•'»'.>»boring 7 hours a day for 16 days, were able 
 .'Jn. k^ ■ u-^nl "* *'°'' "'^"-^ '^^^' c»o they complete the res- 
 aumber r'^'' ** "'" * •^*^' '*" * workmen be a.Med to their 
 
 fn/v ^*^*^*»««? 50 Ontario boads of $1000 each, at"^*i^piSm, 
 
 he SL'r vT? ^"^' f ^^'^^ **«^' «* ^ * P'^'"''^"^- How many ot 
 me latter did I receive ? ^„, 3jq 
 
 i.fwr'i '''"^ * friend $700, which he kept 20 .nonths. Some yekra 
 ih^favor r'"" " *^°® ' how long^ehould I keep it to balance 
 
 ea u ' L. . ,. Ans. 46 J months. 
 
 on^ft -?''"* A ™«^°h«»ndiee as follows: July 3, if 85. 26; July 4, $48.65, 
 
 Z^n, ?f •;' A"^- ^^' ^^-^^ 5 ^^P^- 12, «60. What is' due on the ac^ 
 count Oct. 12, interest at 9 5l5 ? Ans. $142.60. 
 
 7 „,« *;«"'* certain «"« of money to A, and at the ev.d of Syr. 
 T mo, 20 da.. I received for interest and principal $1000: what sum 
 
 «1 rnV «.,.„, An.. $820.79 + . 
 
 «f „J ""'' "•'?' '"^''f 25 yd. of cloth, liwide, how many poundi 
 of wool are required to make 116 yd. of cloth 1 yd.' wide? Ans^ZA. 
 
 and th« r!^ • ^^"^^ ^o' *^^"?' * Pt?^*^^« '•» 3 ™<^"*'^«' * '" 6 months, 
 and the remainder in 9 months. How much ready cash ought r to 
 
 Purchased a quantity of oats, April 1; May I its value ha(^ 
 
 ncreased 2.^ ; June I it. value wa. 30 % more than May 1 , July 1 
 
 1 sold t for .u^ less than its value June 1, receiving in payment a 
 
 luSi ?°^*A^^'«^ I ««' discounted at a bank, a* ^ %: receiving 
 
 «? r^o.V How much was my profit on the oats? i4»<. $3238.52. 
 
 .ff:, fi? i " • ^"^ u ""^'^^ °/ •***^ ''^'S^ 1^ 'b-' '•^quired the i^imber 
 of feet of lead pipe that can be made ^m 80 lb. of lead, the caliber 
 of the pipe M) be 1 inch, and the thiokiieRs of it i of an inch. 
 
 cfi t\ .u J .. iiiM. 10.35 + feet. 
 
 b6. Une-third of a quantity of goods was sold to gain a certain «. 
 .one-fourth to gan, 4 times as much %, and the remainder to gain 2* 
 
 thlwhouT'' ^,. I}'""' 'I '^' «^" * "» «^^ Par^ the gaif upon 
 the whole being 21 %V ^n#. Ut.. 12sSj 2nd., 18%; Srd'VsO^T 
 . *J' ^ '"erchant in Kingston has 6000 francs due him on account 
 
 bni a.'T.i3 .r *"*° r''^'" ''" ^?^ ^'"' ^^'^ ''"'^'"'^ »»d negotiate the 
 u^ Llit I f ^' P®"" fra»V o^ he can advise his correspondent in Pari» 
 to wmit adraft on Canada, purchased with the sum due him, exchange 
 on Canada being at the rate of 5 fr. 20 centimes per dollar Wh|t 
 sum will the merchant receive by each method? 
 Aru. By drafi on Paris, $970 , yy remittance from Paris, $961.5:^ 
 
 67. A mil m IS required to grind 160 bushels of provender, worth 
 $1 a bushel, from oat« worth $.40, corn worth $.80, barley -., i; 
 $.90, and rye worth $1.10. and wheat worth $1.30 pei^ bushel, now 
 voAnj bushels of each Kind may he take? 
 
 ««. H.- ^„^ ..fl., .JrJ?':^P.* 20, 60, and 40, respectively, 
 of siVupTat $;7T;S^W ^•'"' • ■"" """ ^ ^''"' 'iJ'2T[,'b^' 
 69. A servant draw« off a gallon on each day, for 20 days, from a 
 
 Jilriwv"*^^'^ ^'''Ir ^'■'^°*' •aohtimesupplying the deficiency 
 hjr ih« addition of a galk>o of w«ter j and thea. tS !»ia^ de.eoUon. b^ 
 
MIMHLLAN10U8 BXAM»L„. 
 
 '4. Jij working 9 bourg a Hov <'^> is. j ^ns. $386 67 
 
 Wuetl ^?f ^ ^-" A Sinti;^^^^^ "^'^ wL able to 
 
 ■due be finished in 15 daye more if^h^ ^kJ'*^*^"*'^°' ^"^ t^^e rP«. 
 r hours adaj? ^ '"°'*' '^ '!»« laborers are employed only 
 
 'o. At a certain time bptwpon 9 „ j r. . ■^ns. 4 men 
 
 was between 3 and 4. WirhTn L^J^ ^ "1*^^^^' »l»e .uinuSnd 
 mmute-hand had exactly cWed^^^^^^^ the hour-hand aad * 
 
 the prece t,.e when th'e hanlst^ir S VS^^^ ^'" ^^^ 
 76. D and E traded together • n '^"^* ^«^^- ^^ '"'n- 56t«A 8«j 
 
 '7. If stock bought at 8^ dispni.»» n "4«». •t.)20 
 
 .t what rate shoulJ it be L^h ri^'te? ^ * - the inve.t,fen^ 
 aJ^K iL"f P^'^' ^^^^•i clotli to a wffieiai? I . ^"'- '^^'^ * '^'«ct- 
 i^ Jm'^^^ ^**^«' ««^*1 it to a cloThier 2 ! ^i^"" f ' ' ^ * ^•^^ance : 
 "* "^'d It at a farther advance of 25 ^ 1 !?^ * ^^^^nc^ ; the cloth' 
 much d,d.t cost the importer^ ^^^ *°^ '«<^"'«d |I452. How 
 •7an /^ , '^ tl*« difference between »h- • ^^' ^^'^ «6S. 
 
 $730, for 5 yr. 9 mo., at 8 jT? « * •°**'**^ *"<i discount of 
 
 80. A merchant sold I of hi? gooda «f o ^ ^''*- ^' 0'-«0. 
 
 them at a loss of 8 « • X of fhl^^ " *° advance of 25 f^ ■ " «/ 
 at a discount of 20 |; ^or whatVof*.r^* o*" '^0 5», and f of [ifem 
 «>ld m order to losers % Z tt'tifof .^'^ °°^ '""'^^ the renfai„der S 
 
 invest tr.::ll":?*d'-^->'^ -,Montrealcitvr.-,.tl%'^'f-^- , 
 
 8Ta'?*/^1^^' whatwastheamountoflfr ^F ^o^'t leaving in- 
 «-«. A tailor bought 40 vanl^ of T. J^ . i>^ divxlend ? 4. $1000 
 
 """3f.«'''''«^'-'''i°Ctil^^^^^^^^ 2ivd. wide* but on 
 I width. on« nail ^^A - T.-iP ">^*" every 4 yd. i'lilfn quarter a d 
 
 ^this cloth, 
 '" the whoJ« 
 
 82. A tailor bought 40 vards of L J" i™? ^'"''^^"^ ? 4- $ 
 sponging i^ it shrunk in Ct^L^*"*^'^^*^' ^i yd. wide* 
 m width o'ne nail aad L haff^reVVr^'fi V^' ^"' ^ <^"-«, 
 
 I».bou^tfUn„.U,uarterswi5:,\^Jfe^UiCwerJ;u^^ 
 
 I tm 
 
 ^ 
 
 II 
 
fll 
 
 SM 
 
 MUOILLANBOTTB BZAMn,!!. 
 
 i M 
 
 ■ 
 
 
 ■mi 
 
 i. 
 
 ■ir 
 
 ^^H' 
 
 si . .- : 
 
 ■l 
 
 1' ' •. |. 
 
 
 ^1 \i $' I 
 
 ^^Hi^ 
 
 iii V i 
 
 ■iPfiiii 
 
 ^■1 
 
 ■Jiniy 
 
 width on eyery 20 yards in I«i,^h, and in width it shruni half a 
 nail. Required the number of rards of flannel used in lit.; jg ihf 
 
 83. Stock purchased at 5 % pivniium paya 65^ on 'die inv« (..nent, 
 what % will it pay if purchased tu 15 % discount ? .ins. 7,1 %. 
 
 84. A riKTcliant failing' in business can pay 70 eta. on li dollar, ile 
 oflfers, to pay his whole indebtedneBS without ix', rest in 5 ycar.s if his 
 creditors v/iU allow him to go on w.th his b>; In ■•js; his otl'er beir>g 
 Jiccepted, how much will his crediiore lose in ii\e 6 years, money 
 being worth 7 %1 Ana. 5'^.02e on a dollar. 
 
 80. Purchased a quantity of wine for $675. 32^, a^, 85 cento i>fT 
 gaLon; but a part having ieaked out, the remainder wr.' sold'iM 
 40 ^advance, s/k! the oii(,;inaI cost was realized. Wha; quantii,^ 
 leaked out? ^ns. 2;i7gai. 
 
 86. A owes B ^i'm .'ae in 4 months, and $840 due in 6 months: 
 B owes A $1600 duo ij» 7 months, ff A should make present payment 
 of hia debts, wiieaoi;, au!! in jviBtice to pay A? Ana. In 2in-- lO^da. 
 
 87. How muny T ii.'ds of sugar at 8, 13, and 14 cts. p x- pound, 
 may be mixed with 31b. at n cts., 2 1b. at 8^ cts., and 4 1b. at 
 14 cts. alb., 80 aa so gain 16% by selling the mixture at 14* cts. 
 per lb. ? Ana. 1 lb. at 8 ; 8^ lb. at 13 ; 8 lb, at 14. 
 
 88. What IS the dift'orence between the true and bank discount ol 
 $3000, p^iyable in 120 days, at 8^ ^ ? Ana. $4,467 - . 
 
 89. A general, forming his army into a square, had 284 men re- 
 maining; but increasing each side by one man, he wanted 25 men to 
 complete the .square. How many men had he ? Ana. 24000. 
 
 90. C bought a house of i), and gave him his bond for $6000, dated 
 April 1, 1866, payable in 5 equal annual installments of $1200, the 
 ti-i St to be paid April 1, 1867; C took up his bond April 1, 1869, 
 eenM-annual discount at the rate of 7 % per annum on the payments 
 due afttr April 1, 1869, being deducted. What sum cancelled th» 
 bond Y Ana. $3365.94 + 
 
 91. I have a plank 42i feet in length, 24 inches wide, and 3 inches 
 thick; required the side of a cubical box that can be made from 
 
 '*!.o T-^ * 4n#. 48 inches. 
 
 92. IfB owes $500 due in 6 months, $400 due in 4 months, and 
 $300 due in ? months, and pays | of the whole in 3 months, when 
 ought the remainder to be paid? Ana. In 10| mo. 
 
 93. A wholesale merchant seni a quantity of goods into the country 
 to be sold at uuctiun, on a commission of 4^ %. What amount of 
 goods must be soil, that his agent niay buy produce with the avails 
 to the amount of $1910, after retaining a commission of 2^? 
 
 Ans. 
 
 94. If the annual rent of 23 A. 1 B. 27 per. of land be $18' 
 much will be the rent of 71 A. 20 per. ? An 
 
 95. A Halifax merch; ■, . hipped 1000 barrels of saiu.jn v. 
 in New Orleans, diivctii) m to fcell it, and invest t 
 cotton; his agent sold the salmon at $14 per bbl., paiu v !■• uumges, 
 and bought cotton at $.65 per lb., charging '6% comraisficK morselling 
 the salmri and 5 % for buying the cotton. How ma 7 rvu.-isof 
 wtton did he buy ? An$. 1M85. .b. 
 
 '0. 
 
 lOW 
 56t). 
 
 ' ' H aofpnt 
 .■•■;i'eds in 
 ■?'< charges, 
 
3nSffln.LAlflODS MXAMKJm. 
 
 he finds that tm^'JTL^^Z'h ^'^'^l!"* ^«'"g »"«^«<^ ^t s'j? 
 owe ? * " "^^^^ ™°°«y ^'JJ pay the debt ; how much did he 
 
 -ne,,p,u«,,,lr-,^-^Dj^B^^^^^^^^^^^ to E. 
 
 quired C's stJck aK°s an!l B 's'sain"! ^"^ ^ ' '^^'^ "'^^ *''*«• ^ 
 
 100 A ^'»*: C'e stock, $10000'; A'Bgain «3'-}6 • R'« SRsn^ 
 
 iUU. A man havinw Inst « ^V k;„ ' " g»iu, ipaao , tj s 5>504. 
 
 only ,672; ho/mich td-hfattsT^^' '^""'^ '^^ '^s'^S'^' 
 aelling tLTstt^' a^el-i^T^^^ - railro^J-st^ocHV 
 
 b7 investing tl e remaiader he'^ ^L'*^ f'^T,^' ^^f ' ^ ^^ ^""^ iavest.nent^ 
 
 money he had remS" wJich Li hi ' ""^^ ^*^'7"'''^ '"^^ '^' «*" '^^ 
 much did he invest ?^' ^'"^ possessed of $480 ; how 
 
 102. Bought a certain number of horses for 3;2fiOft 1"*! f u ^'^V 
 
 gain ? * '^^^ P"*'- What per cent, profit was his 
 
 The oonsigoM pays $1 20 40 for tS , - *' °" !"<"=«'* '>y =>'■>»• 
 «8.40 per bbl./oi;i»» 2' « ^™^ ^ """ «{«"»=«. sella the flour at 
 
 •vey 2 ho,«,, 1 acre olpMurt?""'' ' "^^ '"'''T' tj' ""' ''"" 
 
 gain on the whole? * *'''• ' '""'" "'"ch did I 
 
 1 09. I paid *93 16 0, at tij- rate of 9 . ci f ■ '''"'■ **"• 
 
 ^'?7vV''"™-°'»aetheHL^'*;etV°'""°°'°° " *« 
 
 ' 4 i*. What WM my aain ? *^ ^ '^ * premium, brokerage 
 
 ' * iliifc £26. 
 
 Ml 
 
'I 
 
 B**!*- 
 
 ( i ^ 
 
 ^"ir 
 
 15 
 
 ! i / 
 ( 
 
 i i 
 
 VTSOHLLAinOUS BXAMPLli. 
 
 112. The londtudeof Paris is 2" 20' 22" E., and of Constanti- 
 nople, 8° 59' E. When it is I A. M. at the latter place, what time 
 is it at the former? .4ns. 33 niin. 25 j^ sec. past midnight. 
 
 113. Having placed a bill of $775 in the hands of a collector, who 
 succeeded in obtaining 75 % of it, and charged 8 % commission, how 
 much did I receive ? i t> o # 
 
 114. Suppose that the earnings of the Grand Trunk R. B. for 
 December 1870 were $472240, wliich was an increase of 11J% oyer 
 the earnings for the same month in 1869. How much was the in- 
 crease? ^ ^na. $47224. 
 
 115. In a cask containing brandy and water, | of the whole +3 
 gal. 18 brandy, and ^ of the whole + 2 gal. is water ; required the 
 number of gal. of each. Ans. 43 gal. brandy, 17 gal. water. 
 
 116. Hamel, Perry, Lane, and Garneau are partners; Hainel takes 
 \ of the gains or losses; Perry \, Lane ^, and Crarneautherenminder. 
 At ihe close of the year, the resources of the firm are : Cash $10312.50, 
 Merchandise $13447.50i Bonds and Mortgages $1147", Bank Stuck 
 $4500; Hamel has drawn from the business $900, Perry $o25, and 
 Lane $285; the liabilities are : Notes outstanding $5460 ; Balance in 
 favor of Ross & Co., $1120 j Balance in favor of J. L. Murphy, 
 $3'J67.50; Hamelinvested $9547.50, Perry $7905, Lane $6270, and 
 Garneau $.'^480. What is eaclx partner's interest in the business at 
 the close of the year? Ans. Hamel, $9877.50 ; Perry, $8302.50 ; 
 Lane, $6723; Garneau, $4279.50. 
 
 117. What is the difference in cost between a draft on Toronto o! 
 $17302.80, at li^ premium, and one on St John, N. B., for the 
 same amount, at ^ ^ discount ? Ana. $302.80. 
 
 118. A mechanic received $3.75 a day for his labor, and paid $1.26 
 a day for his board; at the expiration of 100 days h'- ^-^ ' • ved$200 j 
 how many days did he work? ^l"*- ^^ ^^'J^- 
 
 119. For two successive years, a merchant annually contributed 
 $100 for charitable purposes, and added yearly to that part of his cap^ 
 ital not thus expended, a sum equal to its half; at the end of the sec- 
 ond year his capital was dq^bled. Required his capital. Ana. $1600. 
 
 120. A merchant in Halifax purchased 350 bales of cotton, each 
 containing 450 pounds, at $.80 a lb., and shipped them to Liverpool at 
 a cost of 16 % for freight and duties. How much in Canada currency 
 did he gain by selling them at 28. lOd. sterling per lb., rate of exchange 
 171^? ^***- ^23416. 
 
 121. A piece of merino cost $.80 per yard ; at what price shall it be 
 marked, that the merchant may sell it at 10 % less than the marked 
 price, and still make 20^ protit? Ana. $1.06iJ. 
 
 122. A merchant in Quebec gave $2000 for a bill of exchange of 
 £400 to remit to London ; what was the rate in favor of England f 
 
 123. What yearly debt can be discharged by monthly payments, 
 the SrHt being «2, llie second $6, and the thii-d $18, and so on. id 
 geometrical progression ? Ana. $631440. 
 
 124. A farmer sold one hog, weighing 250 lb., at 4 cts. per lb. } • 
 e'eoond, weighing 300 lb., at 4^ cts.; and a third, weighing 369 lb., at 
 
 ots. ; what was the average price per lb. for the whole 7 A. 4f^ ots. 
 
 
' tii^'iaiiMkil 
 
 Cet'Htanti- 
 ;vhat tim« 
 idnight. 
 •ctor, who 
 sion, how 
 
 R. R. for 
 llj^oyer 
 an the in- 
 $47224. 
 whole + 3 
 quired the 
 I. water, 
 aiiiel takes 
 renminder. 
 810312.50, 
 a.nk Stock 
 $525, and 
 Balance in 
 . Murphy, 
 S6270, and 
 3usines8 at 
 ^302.50; 
 
 Toronto o! 
 B., for the 
 
 $302.80. 
 paid! 1.26 
 ■ ved$200; 
 
 )J dajrR, 
 
 contributed 
 t of Ilia cap- 
 l of the eeo- 
 8. $1500. 
 )ttoD, each 
 Liverpool at 
 la currency 
 )f exchange 
 
 $23416. 
 e shall it be 
 he marked 
 (. $1.06"j. 
 xchange of 
 England f 
 
 payments, 
 I so on. in 
 $631440. 
 
 per lb.; • 
 /369 lb., at 
 
 4tHot^ 
 
 1IIB01LLANB0TJ8 BXAMPLRg. 3^ 
 
 goods. * *^' Required the cost of the 
 
 exchange ? ^ ' '^^'"^ *2o70.89. What was the course of 
 
 129 A man gave \ of his estate to his wife 1 ot^Z ri^JH"^' . 
 his oldest eon. I of the rAfliWno t 1 • 1 1 ' * , ^"® remainder to 
 what then renminedwWclwaifKon'' '''M ^^"-'>*^'' '^"^ ^ of 
 
 Mc«i^iSr^;= 
 
 waL't^ie teTh^isT^iS/r ^^"^^^'"^ ^ '^'^ «^ *i^«« ' ^hat 
 
 price supposing he should make &%. Did he 1^^0710^ ? '^"^ 
 abIe'i;2%rrrTi:'at;Trh/Lf'«'' '''> ^^^^^^^^.y. 
 
 S^elrSp-bi^h^e.^^^^^^^ ^-^^'^-^-'^^^^^^^^^ 
 
 6, i'p;o±o'r;t^f?;r;^^ - Pa1^n;nt!-i'pril 
 
 counted at theCk, IpT'lt^ll J^S-'^^f '"^'^T^ «"d had dis- 
 ceive? •'^ ' ^^ 7%; how much cash did I re- 
 
 136. Suppose bank stock is purchased at ... ^ ^"••.«344.93 f . 
 
 bank declar^a dividend of 9 /per Z^^ ^^"'^ *•»« 
 
 price of the stock ? ^ » Per snare, what % la that on the cost 
 
 137. A person, wishing to buy wheat with fh» «.^^^^* y*^* 
 sends to his agent 32 bales, each weigh n^ 380 Ih ^ T^^^' of cotton, 
 the cotton at 26 cts. per lb for wS l.I^.i? "'"o. ^S"^ ^8^"' «ell8 
 pay. for freight and ch .- a *-Ti fif ! f^'^^^ ?** commission; 
 re8shiscon.mis«in.«f'r:-T,f;/4Y^^^^ .«*Pends the remainder! 
 
 bushel, for whichhe ch ir.e f »"i rn7^"^'- '° ^u*'"'*^ '^^ «^ ct«- Per 
 
 obtained through this Sr ? ^^ ^ ^«"''»'««'««; how much wheat is 
 
 138. A pole 63 feet lone in falUn^r »aa u i. • ^^^^ + bu. 
 
 ^«. le and 46 ft. 
 
 k:j 
 
164 
 
 imOBLLAItmtVft IZAMFLia. 
 
 I ! 
 
 139. A farmer heA Hfln rv 
 
 4'\ 
 
 'SOWS, each fbrnishing 18 qt. of 
 
 milk a day, from whi.;h he rstAiC 40 tubs of butter of 60 lb. each in 
 30 (lays. Ho made a cc'Utract to deliver 100 tubs of 96 pounds each 
 •n 80 day^^. How mm.y cows mu8t he add t<i hia dairy provided each 
 additional cow furnish t gallonn of milk daily ? Ans. 27. 
 
 140. In wiiut time will $3045.20 gain $l90.:}2i if the gain of 
 $2494.75 for 1 yr. 13 da., is $258.43, and wh«t J= the rate per an- 
 oum? An 7 ii.c. iiUa. ; r»te lO^g. 
 
 141. And"ewfl, Baker, and Childs entered into partnership. Andrews 
 put in £3000, liaker £2000, and ChiMs £17?0. At the end of the 
 arst year AmlrewM drew out £500, Baker JE250, and Cliilds put in 
 £750. At the close of the second year, Andrews and Baker each 
 drew out />i 50, and Cliilda put in £500 more. At the end of the 
 third year they dissolved partnerflhip, and found that their joint prop- 
 erty was £7125. What was each partner's share? Atu. Andrews', 
 £2393 .0 4^ ; Baker's, £1597 4 5^ ; Childs', £3134 5 2J. 
 
 142. If T buy 50 sharefi Grand Trunk railroal stock at 141 %, and 
 60 shaies Canada Central railroad stock at 139 %, the former paying 
 % semi-annual divi(Jend of 4^ijj %. the latter of 5 ^ ; what rate of in- 
 terest shall I realize on my mvestment? Ana. Q^%. 
 
 143. What is the cost of a bill on Lone* m for £800 17 6 sterling, 
 when the rate of excliange is 9 J % premium? 
 
 144. J. Sheridan bought of L. H. Miles & Co., the folic -wing bills 
 of goods; Not. I, 1870, a bill of $760, on 6 mo. credit ; Dec. 16, 
 1870, a. bill of $300,on 5 ino.; Jan. 1, 1871, al)ill of|425, on 4rao.; 
 Feb. 6, 1871, a bill ot ?275, on 2 mo. What sum would settle the 
 account, May 29, 1871, interest at 7 ^? Ans. $1760.10. 
 
 145. When exchange on England is at 10 ijlj premium, itnd freight 
 at Is. 3d. sterling per Winchester bushel, how much can be paid in 
 Montreal for wheat per bushel, in an«w<;nn<; an ordir from Lon ion 
 limited to £3 10 per Imperial quarter? 
 
 146. The duty on an -oiceof ,{00 do? « London porter, at 30^ 
 was $190,512; break a^ , 2%. Required the invoiced price per 
 dozen. Ans. $2.1(). 
 
 147. Three merchants ha''e *n interest in a steam vessel ; A puts 
 in $9fii) for 6 montiij; B, j.sua unknown, f"T 12 monti^; C, $640 
 for a time not known when the accounts \ -re settled ; A received 
 $1200 for his share, stock and profit : B, $24u0 'or his, and C, i,ii040 
 for his. What was B'a stock, and C's time ^ 
 
 Ans. B's sto-\ $lv.OO; C's time, 15 mo. 
 
 148. Merrill, Wells and Roche we' rtp s inthe gi'ain b" inesa ; 
 Merrill had invested \, Wells ^, and ne of the capital. They 
 were to sbar.' equally the gains or It 's. , he business not being 
 »n<^cessful, the partnership was dissol.ed at tiie close of tlif' "ear, 
 when the resources of the firm were found to be: Cash, $l78a , bar 
 •ey ou hand. !*i'2n00: corn, *1 722; rye, $.350; oats, $1650: wheal. 
 $5000. Tiie liabilities were: Notes outstanding, $1562; they owed 
 P Myler, $1200, and P. Riley, $1875. The net losses were $730. 
 What was the net capital of the firm at conamenciog, and what was 
 lach partner's net capital 7 
 
^■Wt-m^jk,, 
 
 A00OUNT8 Of HT0RAO«. 
 
 ACCOUNTS OP STORAGE. 
 
 26fi 
 
 oJil? '% n"* """''""''" '"^^^^^ °f computing stora-e The 
 
 andratP«7^r'"''"' 'I '^' '^''^'''^^' cities, -Hlopt such ruleJ 
 and rates for storage as they dee.n equitable. Th. ch rJs fo, 
 
 •itie. an fractional ,.art« of r.^th^a.^' ^ISored fUlfrnonth;"""''' *" *«"• 
 
 bu.intsBXTr?ieTvt?a"dTii::lra th'e'.r "rr^- --'"-oa.a,i.«ion 
 « k. pt. .bowing the date and number cfbS^ ' J'' °' "'• ^^ '"''snor. an aooount 
 number sold or delivered. In cZn, ti^nrth^^^ roc,i,ed, and tbe aate and 
 
 customary to avcnM-e the time nnThlrS *'"''''^* "" '"'^*' »" account it la 
 
 It- there i/a fraction"a. par of ^ ba^ef et^o i^„ 't^""' '" '" f'?'". """"'^ "* ^" ^^J^"' 
 oat J of parta of months above. ' ' ° ""^ "''^'^'^S^' 't >^ treated 8^ in the 
 
 OP' RATION. 
 
 da. 
 
 X 15 
 
 1871. 
 
 May 1, Rec. luu 
 " 16, Deliv. 600 
 
 Eal. "500 X 10 
 " 26, Hec. 2000 
 
 Bal. 2500 X 6 
 June 1, Deliv. 1000 
 
 Bal. 1500 X 11 
 " 12, Deliv. nOO 
 
 Bal. 400 :< 20 » 
 
 prod. 
 . 16000 
 
 5000 
 
 12500 
 
 16600 
 
 8000 
 
 Analysis. — The srora'o o* 
 1000bbl.forl5da., + .50UbW: 
 for 0d,)., + 2500bbl.for5da.. 
 + loOObbl. for II da., + 400 
 bbl. for 20 da., is the f-ame as 
 the stora ire of 57000 bbl. fnrl da 
 orl'JOO bbl. for a month ofao 
 days. Ai.d the storage of IDufl 
 bbU at 6 ots. each « ^114, Jm,, 
 
 July 2, Deliv. 400 3|0 ) sTooJO 
 
 -.» s,ore,/,om eaa, dale to Ih, mu next Hlowhl^it hZL T T 
 /«• wM^i Zm ^Z ,T ''"'"fl"'l h "" rale o/,lcr„a. 
 
 
 If 
 
 I .i; 
 
?1I 
 
 tet 
 
 OINIRAL AYBRAOB. 
 
 r ! 
 
 t 
 
 ■XAMPI.RS Fori PRAOTIOB. 
 
 1. What will be the cost o{ storini: salt at 2 etc. per barrel, reoeived 
 and deli veretl a« fol lows: J ine 6, 1H71, lanbhl. ; June IH, 14<>bhl. ; 
 Jnnc'ifi, GOO bill.; July."), HOO bbl. ; July 16, IHu bbl. ; Jnlv 20, 
 ifiO 1.1)1. All delivered Au'^. 1. /Ins. $21.44. 
 
 2. What will be the ntoraj^e of flour at .'» oenta per bbl. per month, 
 received and delivered as follows? 
 
 li«ceived Jnlv I, 1871, 400 bbl.; Julv 15, M^O bbl.; July 26, 4.50 
 bbl. Deliverc 1, July 12, 200 bbl.; Julv 20, 400 bbl. ; Aug. I, 200 
 bbl.; and Aug. H, 40) bbl. ' Ans. $2.5.10. 
 
 '^. Received, and delivered, on account ot JameH O'Neil, sundry 
 bales of cotton, aw follows: Received, May 1. 1871, 1848 bales; May 
 Ki, OtibaIc«: June 1, 210 1 alea. Delivered, June 12, 800 bales; 
 July 1, 480 bales: Aug. H. H2(i bales; Aui?. 10, 2:)0 bales. Required 
 the number of bales remaining in store on September 1, and the coat 
 of storage up to that date, at the rate of 5 cents a bale per month. 
 
 Ans. In store, 334 ; cost, $240.75. 
 
 4. Received. July .3, 1871, 256 ca«ks of wine, on storage, and on 
 JnJy 1.5, 381 more were ad.iedj July IS', delivered 261, and July 26, 
 312aisk8; July 30, received 321 casks, and Aug. 8, 163 casks: 
 delivered, Aug. 16, 208 casks, Aug. IS, 103 casks, and Aug. li), 116 
 casks; received, Sept. 1, 320 casks, Sept. 2, 106 casks, Sept. 7, 342 
 casks; delivered, Sept. 12, 250 casks, Sept. 18, 321 cask.s, Sipt. 21, 
 133 casks, and the balance, Sept. 27. What was the cost for the stor- 
 age of the above, the charge being 6 cent.^ per cask monthly? 
 
 i 
 
 If I r 
 
 GENERAL AVERAGK. 
 
 49JI. General Average is the process of computing the loss 
 to be sustained by the owners of the ship, cargo, and freijrhl, 
 respectively,— when, owing to common peril at sea, any portioo 
 of the property has been dani:iged or destroyed for the common 
 safety. 
 
 404. JetSOn is the portion of th« cargo or of the equipment 
 of the vessel thrown overboard. 
 
 4»5. The Contributory Interests are the three kinds of 
 property whicli are taxed to cover the loss. These are, 1st. the 
 vessel, at its vdue before the loss; 2nd. the cargo, inoluding the 
 part Bacrificed ; 3rd. the freight, le.sa j^ as an allowance for 
 seamen's wages. 
 
 406. The loss which is subject to general average includes, 
 1st. Jetson ; 2ud. Repairs to the vessel ; 3rd. Eipeuae of de- 
 tention to which the vessel is subject in port. 
 
 N«TK8.--1. The goods, whether saved, injured, w deitroj) d, are estimated at 
 uieir valne at *he port of degtiuation, except when the adjuatment of the eeneral 
 aTerageiHiui - at the povt of lading. 
 
MNR«AL AVBRAOE. 267 
 
 .^■J?. The Hhip « ArMie,|« '> ^„ „ *• 
 
 w.tl, a car^fo of silk, tea e o ' v "i T^""-^^' ^''''"' '^''^'^"••'^ '-^ Q'^^bec 
 gaie. and the captain v. i co,;;;.?, l!,"' ^^ '''' r""^' '^ '-'< '" ^ 
 her cur^.o value.! at .?<i:i7.-. t^ w L L .'''' overl.uani a portion of 
 cargo. The vessel was va e at ^7- um'' ?'' !.''*' re-nain.ier of the 
 
 '"g $2l,'-.55 t., Murphy & F eM Of / J n * ^""""^' *"^^ ^''^ "-^-''^in- 
 belonged to P. N. GuVneaVir.iW, ..']'"'' """^'" overboanl $2150 
 •n- Ti,nM.s, a„,| $177 'to Mn , y u.rri 'lT'"\'^ ^"' ^''^ '« ^•«-^» 
 ol tlie vesflei were n.a.le af c! l\u '''• ^ ''^ ii«'ce.-t^ary reDaire 
 
 of the detention ^tZli ^InV^Zh^t^'l/''' \ ^'iV'^ ^P-^- 
 <i-nhuted a.nong the oLer. ^Vthi^^;^, SlZ^^^^ltJZ^ 
 
 OPERATIOK. 
 LOSSE8. 
 
 <co-t of repairs , goO.OO 
 
 Coat of detention 155 wg 
 
 CONTlilBClOKT IKTKiieSTS. 
 
 J;"'^^' ■•..$ 7r,ooo.oo 
 
 ri'>^",- 692ir,.00 
 
 ^'^^^'^'^t ... C400.00 
 
 .,„ ^^'^^^ n(m75 , j-,,,^, 
 
 $7030.75 -f- $14061) - P'i . . 
 S/r.nnn y^"'''-' - -05, rate per cent, of loss. 
 
 9><o()00 X .05 a f<'^7-,(\ nn 
 6!^2I5 < .05 = vJoo 75' ^''"iT ^'^^'^'''^ ''-^ ve.s.el. 
 
 ' ' * " cargo 
 
 Total .....f 140615.00 
 
 6400 
 
 •05 = rJiO.OO, 
 
 It 
 
 
 " freight. 
 
 Total coniiihntion $!70.30 75 fn l,« .j; * -i . , 
 
 6400 X .0.5 z * • 2iM 0' ''•"";:"' ^"^'^^'^ ^'y ^^'-^^^i. 
 
 175G0 X .05 « 87S 00 ' » T ''■'''-''^• 
 
 11600 X .05 „ 58000 - ^- ^"^^ ^'«rneau. 
 
 8500 X. 05 « SoS; ;; ;; ;;f;i^--n&co. 
 
 215.05 X .05 =. 1077.75 u ,, ||'-s & Tinin.s. 
 
 From tlje amount r,.M.>i 1' i ^ -Murphy. & Field. 
 
 1155.75 =V;;SKtS%^:--'-''n^'^^ $500 ^ 
 
 the general Iosm i.s .^•.^750 - §'g:,,-, 75 -- .-?^„ ,■■;':' '""^t conirilaue to 
 other owner, of coniributory interests TutX;. •'^"/'"'='' "'" ^''« 
 f;°»^\^''« amount of hi, pa/,,;;;r'jj^^^^ '" ^'^'^ •''*''"'^'«'^ 
 
 ^'Sio:'''^^^^^*^'^;'''^^;--'- 
 
 « . freight. 
 
 " <i i<^i'. A. Garneau. 
 
 i- ^•;"'"" * Co. 
 
 " Murph;' & Field. 
 
 $3750 - $655.75 
 
 .320 
 
 2150 — 878.00 « 
 
 iooO — 580. 0« » 
 
 895 — 425.»0 - 
 
 1770 — 1077.75 . 
 
 ^20.00, 
 l272,t)0 
 
 980.00,' 
 i70.00, 
 692.26, 
 
 From the analysw- of this oxampio we deduce the 
 
 ii 
 
SVB 
 
 AVERAOINO Of ACOOUNTS. 
 
 40T. Rule. — I. Divide the entire loti by the mm of the 
 
 contiibiUory interests ; the quotient will be the loss per cent. 
 
 II. Multiply each contributory interest hy ihe loss per cent. ; 
 the product will be ',he amount of its contribution to the general 
 loss. 
 
 III. The difference between the loss of each eontribntory inleresi 
 and the aviounl of its contribution will be the balance to he paid 
 hy it if its contribution exceeds its loss, and the amount to he re- 
 ceived hy it if its loss exceeds its contribution. 
 
 FXAMPLES FOR PRAOTICK. 
 
 1. The ship Nestor, in her passage from Antwerp to Quebec, was 
 eripplcd in a Htorm, in consequence of which the captain had 14800 
 worth of the cargo thrown overboard, and put into port for the neces- 
 sary repairs, which cost $1260. The charges for board of seamen, 
 pilotage, and dockage, amounted to $170.40. The contributory inte- 
 rests were: vessel, $37800; grops amount of freight $4992; cargo 
 shipped by S. Keller & Co., $2574; by Shiller & Morse, $1752; by 
 Krauss & Heir, $1152; by Lebrun & Co., $804 j and by Ross & 
 Daller, $1200. In adjusting the general average m Quebec, the de- 
 duction made from the gross amount of freight on account of seamen's 
 wages was one third. Required the several shares of the general loss. 
 
 2. A vessel valued at $.H5000, having been disabled m a storm, en- 
 tered port, and was refitted at an expense of $337.50 for repairs, and 
 $150 for board of seamen, pilotage, and dockage. Of the cargo, va- 
 lued at .10250, $3000 belonged to A, .$2312.50 to B, and $937.50 to C; 
 and the amount sacrificed for the sliip's safety was $1750 of A's pro- 
 perty, and $212.50 of B's; the gross charges for freight were flHli 
 Required the balance, payable or receivable, by each of the parti as, 
 the loss being apportioned by general average. 
 
 j_„ < $1618.75 payable by ship owners; $1585, receivable by A: 
 -*"*• j $5I.56i " " C; $85,311 « " B. 
 
 AVERAttlNa OF ACCOUNTS. 
 
 498, Averaging of Accounts (also called " Equatjon of 
 Accounts, " and " Compound Equation af Payments ") is the pro- 
 cess of finding the equated time for the payment of the balance of 
 an account that contains both debits and credits. 
 
 The debit and credit sides of an account being respectively 
 equivalent to the sum of their several items, due at the equated 
 time, the Jirsf step in equating accounts is to find the time wheo 
 each side of the account becomes due. 
 
 This may be found by equating each side of the account, with- 
 ouf. any reference to the other, commencing either at tha first or 
 the last date of each, or by using ih^firtt or last date of the tmy 
 eount as a common atarting-point for both side*. 
 
AVBRAOINO OF ACCOUNTS. 269 
 
 fl=-";l^££2^-I'L!^'liZ';i^. Thompson. Or. 
 
 April 3 
 May 1 
 " lo 
 June 24 
 July 1 
 
 To Mdse. 
 
 TiDie ofcrcflit, 
 •?220| 3,nonths. 
 
 125 
 20f) 
 140 
 190 
 
 6 
 
 6 
 
 8 
 9 
 
 
 1.^71 
 July 1 
 Oct. 3 
 Dec. 20 
 
 By Ca-h 
 
 $200 00 
 150 00 
 
 300 
 
 PIR-T METII')r. 
 
 Debitt. 
 Due, 
 1871 
 
 July '^, $220 X 00 = 
 2«. 1, 125 X 90- 11250 
 .1-7.;'' ^°'^ ^ ^^5 « 27000 
 
 Feb. 24, 140 x 236 = 33040 
 Apnl 1, 190 X 272 = 5i6so 
 
 00 
 
 Credits 
 Due, 
 
 1^-71 
 
 July 1, $200 X 00 
 Oct " 
 
 3, 150 X 94 
 
 14100 
 
 SKJOO 
 
 $87.: 
 
 ) I*22!)70 
 
 Dec. 20, 300 x 172 
 
 $650 ) 65700 
 
 101 da. 
 
 Debits are due 141 davlMom T f '"^/'"^^'-^ d',e lOI days from 
 J«?y 3, which is Nov 21 I ^ ' '''^"''^ '■' ^'^'- ^"• 
 
 The above account thus equated will .(and as follows • 
 JJr. 
 
 Due, Nov. 21, 1871, $S75. l n /w ,^''' 
 
 0rthu8: ' D.,e, Oct. 10, 1871, 
 
 S50. 
 
 Due, 
 1871 
 J'lly .3, $220 A 2 = 440 
 Oct. 1, 125 X 92 = 11500 
 
 1872 ^'■'"" Dec. 20, 300 x 172 =51600 
 
 Due, 
 
 1871 
 July 1, $200 X no = 
 Oot. 3, 150 X 94 = 14100 
 
 Feb 2^, 140 X 23S = 3;«20 
 April 1, 190 X 274 = .020^0 
 
 $875 
 
 ) 124720 
 U3 
 
 Debits due 143 days from July 
 1, which 18 Nov. 21. ^ 
 
 $650 
 
 Credits due 101 da 
 I, which id Oct. 10 
 
 yn irom July 
 
 ^ M- 
 
 I 1 
 
 i: i 
 
 fi 1 
 
 I? 
 1; I 
 
 ii 
 
I ' 
 
 270 
 
 AVERAGING OF ACCOUNTS. 
 
 The account thus eqtialed stands as before : 
 
 Dr. Cr. 
 
 Due, Nov. 21, $876. | Due, Oct. 10, $6.50. 
 
 Moth.— In the nhwe opemtion, we start from the earliest date upon which 
 any item of eithe- side of the aooount I'ecome^ due. 
 
 The next step is to find when the balance of the account, as thus 
 equated, becoined due. 
 
 Debits, $875 
 Cre<lits, 650 
 
 Balance, $225 
 Difference in time 42 days. 
 
 Or thus, by Discount : 
 
 (660 X 42) -^ 225 = 121 days. 
 
 $6.50 
 
 3.25, dis. for .^0 flays. 
 1.30, '* '< 12 '< 
 
 $4.55 ^ .0375 (dig. of $225 for 1 da.) 
 = 121 days. 
 
 $4.55, " « 42 days. 
 
 Tilt balance is due 121 days fi^jm Nov. 21, 1871, which is March 
 23, 1872. ' 
 
 isSTLANATioN-.— Assume the account settled Nov. 21, the latest date. The 
 credit side of the account haa been duo from Oct. 10 to Nov. 21, or 42 days. 
 Kov. 21, the credit side, is equal to $650, and the interest of the same 42 day.i. 
 That the debit side of tlie account may be increased by an equal amount of 
 interci't, it is evident that the balnnoe 'if the account must remain unpaid 121 
 days, or the 121 days must bo counted /brwnrd from Nov. 21. Or thus: 
 
 The above account may be stated as follows : Oct. 10, 1871, L. N. Thompson 
 paid R. Seeley & Co. $650 ; Nov. 21,1871, H. Seeley k Co. paid h. N. Thompson 
 *8.i). ^ow, since R.S. &. (^o. had the uso of $«50 for42days L N.T. is onlitled 
 to the use of $22i ^he balance) until its interest equals the interest of $ii50 for 
 42 days, which is 121 days. 121 days from Nov. 21, 1871, is March 21, 1872. 
 
 PROOF. 
 
 Dr. 
 
 Due, Nov. 21, $875.00 
 
 Int. to March 21, 1872 17.65 
 
 Cr. 
 
 $81*2.65 
 
 Due, Oct. 10 $650.00 
 
 Int. to March 21, 1872, 17.65 
 Balance, 225.00 
 
 $8!)2.65 
 
 Suppose the debit and credit Hide of the alK.'v<> account when 
 equated, to stand as follows: 
 
 Dr. Cr. 
 
 ^% Nov, 21, 1871, $660. j D«« Oct 10, 1871, |876« 
 
AVERAGINO OF ACCOUNTS. 
 
 271 
 
 Creaks* '' $87?""''^ ''""' ^'' the pay.ent of the balance ? 
 Debits, 650 f;^ ^ ^V -^ 2::r. = U3 dav.s. 
 
 — Halance due 1(];5 .lays previous to 
 
 Balance, !i!225 '^' ' ^^^^' "'^''"'' ''' J»>ie II, 1871. 
 
 Difference in time, 42 days. 
 
 toJfrTa'tdTt^^^t&tTom Vr".rif '^^^ ""Z- ''-J^' -«-^'' -^'« »' equal 
 "de of the account may beTry.reLdiJL .^'' "^ '^^ '^^''^''- Th«t the d'obit 
 
 of the account must be re4rTed ' if fiV?"''' "'""•"' "f i.i.rost. tho balance 
 Or tkm : ™oaraoa as duo 163 days p,-ev!oua to Nov. 2J , or June 11. 
 
 Jays. L N. ?^ ,t en^M.J, '^J^ ^e 're^t-of V'^,.'^'';;^'^^';! '^ "^ <'f^^r^^?^ 
 Hence, the balance must he rei^rdec Is l! if -^f ^^° ''■''"''"> ''"• '«•'* ^'-^ys. 
 simple question is : How lon^^mn,/ t'";- ? ^^ ^'''^' /"-em-.u, t.,. Nov. 21. The 
 J!875 fo?4L' days. '""^ "'"'' *"^^ ^'^ «« "ifor«'t to equal the interest of 
 
 evlT^r/nJt; mus7be*d?ted Juie Tl'^87t'' '^''' ""'^ '"' ^"^^ ''*"""'«' ^^ « 
 
 accl!!?;«,v"^^~^''''*'-^'''^ ^'"' '<l'i^ fed time for each d,le of the 
 "•ccount without any refereiiro tn h„ n rm '-"' ^^"'^r tne 
 
 »lde of the account whTf J, !/ ''''^ ^^"' '""^^'>''.'/ ''*« 
 
 haiZ'o/ttt:!:^^^^^^^^^^ t?'' f-;>.w^.ri, ,f: 
 
 LARa4,:r7«?rfi,Ht. '^""' ""'^ "'^^"^^^^'^ -^^^^ '^^ 
 ;j»frf f^^^^J^Ji^^^^^^^^ smalle. «".« of 
 
 ^'•.-.^ -« . j; i E;?r;t^;/srs;fi?st '"""^"'^ ^'- "■" ^• 
 
 ANOTHER METHOD 
 
 Due, 
 1871 
 July 3, $220 X 2 = 440 
 Oct. 1, 126 ;; 92 = usoo 
 
 Nuv. 15, 200 X 137 = 274i:0 
 
 Feb. 24, 140 x 238= .S3320 
 April i, ii;0 X 274 
 
 $876 
 660 
 
 $226 
 
 Due, 
 
 1871 
 
 July 1, $200 X = 
 
 Oct. H, i/,o X 04 = 14100 
 
 l>ec. 20, 300 X 172 = .01600 
 
 II 
 
 
/' / 
 
 272 
 
 AVBRAOrNO 0» AOOOUNTS. 
 
 ExPLAXATioB.-We assume July 1, 1871 (the earUeat date upon which any 
 Uombeeomesdue , as the «rne upon which aU the items of the Loount become 
 due. The interest of tho debit items, from this assumed date of maturity to the 
 time thoy respectively booome due, equals the interest «( $1 for 124720 days • 
 the interest of the credit items equals the interest of $1 for 66700 days. Henee' 
 the b.lanooofinfcrestiB favor of the debit side enuals the interest of $1 fo; 
 59020 day., or $225 for ,^J^ of o9fi20 days « 262 days. Since the balance ot 
 .tem« ,s also m favor of the debit side, it is evident it can remain unpaid 262 da 
 mthout mterest, or will become due 262 days from July 1. 1871, whi h is March 
 
 H ,o 9P r, •"''*°°* °^"®'"' ^"^ ^««° °° *»»» credit side, it would have been 
 
 due 262 d:)ys previom to July I, 1871. 
 
 501. Rule.— I Assume the earliest date vpon which my 
 Hein of the account becomes due to be the time ofmaturitu for all 
 the Items. ^ •' 
 
 II. Multiply each item by the nnmber »f da i/s in fervenitw be- 
 tween ths assumed date and the date upon 'lohich it brcomesdue 
 ^'^^J'^y/'yi'"^ of these products on each side of the account. 
 Ihni divide, the uiFFrRKNCB lefwecn the sums of the debit and 
 aedit products hj the bahince of the account; the quotient loill be 
 (ue time for co7isidiO(ftian. 
 
 III. Whm the d:ff,'tence of products and the balance of the 
 account fall on the same side, count FORWARD; when on opposite 
 
 SldtS, COWlt BACKWAIin. 
 
 Notes.— 1. Tho latest date may be used as a startirg-polnt. 
 
 n .™ . 1"'^'"'=' "^ ""3^ «f '^ *LT' '''"'" '^« '^^'^^♦''' 'f ""J"' '"-e less than 5». reject 
 ti em } whoL more, ad J $1. The work will ha .ufficiertiy accurate. 
 
 KXAMPIES FOR PRACTICE. 
 
 i. J. Mar|«hy has wim C. Duval an account, which, when each side 
 fe equaled, eiaitdaaa follows: 
 
 Dr. Q^ 
 
 Dae, Sopt. 5, $1542. | Due, Sept. 24 $12%. 
 
 What 18 the equated tiiue of payineit for tlie lal. ? Am May 28. 
 
 2. L. N. Carroll has with Simina & Norris au account, the debit 
 and credit ndes of wtiicli, wlien equated, are as followa : 
 
 Dr. cr. 
 
 Due, Feh. 8, $650. ) Due. Feb. 12. $2180. 
 
 WhAi inu^t be the date of a note for the balance ? Ans. Feb. 14. 
 
 3. What is the equated time for the payment ofthe balance of an 
 accoautj which, wh?n the two n^des are equated, tianu? a« toiiows. 
 
 ^r. Cr. 
 
 ' ' Due, June 12, f 540. | Da*, Aug 1. *960. 
 
 Ans. Oct. 4. 
 
AVBHAOINO or ACWOCNM. 
 
 
 Dr. 
 Due, Oct. 20, $2528. 
 
 Cr. 
 
 I Due, Nov. 25, $1800. 
 
 • Wl,at „ the balance of the foH„.i„g .„„„„„, .„, „,^„ ., .^ ^^^ 
 
 Dy T 
 
 JOHlf WOODLKT. fy 
 
 June 15( '« Mdge., ifol 
 
 II *^^^ I I 
 
 J!! f P"J 25 By Cash ||615 
 yu June 10 " <■< I ion 
 
 00 II July 20 1 " Mdse. 540 
 
 00 
 00 
 
 Ans. Balance, $615; due June 2M87l7 
 
 
 Z>r. 
 
 C. Rtan ,k ^cot. with N. Mi,,kr & Co. 
 
 Or. 
 
 Feb, 
 
 Allrch 20 I u ,; I f8 | 00 || May .. - 
 " - ' ' ,;^f 50 June 14 " « 
 
 106 00 
 
 << 
 
 22 To Mdse. $ 44 7n P.. L 
 24 '< « oo !" ^^^- * By 
 
 20 w « ?8 00 May 16 <f 
 
 May 4 
 June 2J 
 
 
 
 138 50 
 20 I 00 
 76 J 60 
 
 94 30 
 15 I 00 
 
 ^"*-25^ay8backofAprillst. = March7. 
 ' '^"''^' ^^^ ^^^-- ^^ ^'^^ ^olWin, «.oun, and .Wn . i. 
 
 A. E, Rot ?» acot. witii t t „, . „ 
 
 March 14 To Mdsp nn « ■»,. II '^''M ""^ -■■-=== 
 
 April 20 '' ""r- °? «r-i-??;: l"»e iO By Md«e. on 2 «o Uoo 
 W.„ ,J ,. ^ . , .-.O Aug. 5 '^ Cash ;S? 
 
 I &^' 20| :' Mdee. on 1 mo\ Z 
 
 due 
 Dr. 
 
 April 20 
 
 ?^y 1'' " Cash 
 'une \[,\ <' u 
 
 i^>40 
 
 
 \i 
 
 I; ;■ 
 
 *rM 
 
El i 
 
 274 AVEIRAGIiro OF JLCOOXKI'TB. 
 
 Dr. S. Thomas & Son in acct. whh R. Hill. 
 
 Cr. 
 
 1871 
 
 
 
 
 1872 
 
 
 
 
 May 11 
 
 To M(lse. 
 
 .•*680 
 
 56 
 
 Jan. 11 
 
 By Cash. 
 
 $400 
 
 00 
 
 June 16 
 
 u u 
 
 272 
 
 60 
 
 " 29 
 
 « it 
 
 352 
 
 00 
 
 July l.'j 
 
 <( (< 
 
 144 
 
 20 
 
 Feb. n 
 
 « « 
 
 80 
 
 00 
 
 Aug. 23 
 
 (( u 
 
 400 
 
 00 
 
 " 25 
 
 U H 
 
 784 
 
 00 
 
 «' 30 
 
 « it 
 
 272 
 
 32 
 
 
 
 
 
 Sept. 9 
 
 « « 
 
 64 
 
 00 
 
 
 
 
 
 Ana. 808 days back of Feb. 7, 1872, or on Nov. 21, 1859. 
 9. What is tlje balance of the following acct., and when is it due? 
 Dr. L. Murphy in account with A. Kelly. Cr. 
 
 1871 
 
 
 
 
 1871 
 
 
 
 
 May 1 
 
 To Mdse. 
 
 $218 
 
 00 
 
 May 25 
 
 By draft, at 60 da. 
 
 1200 
 
 00 
 
 June 12 
 
 a li 
 
 274 
 
 Oil 
 
 June 6 
 
 " Cash 
 
 325 
 
 00 
 
 Sept. 16 
 
 '* Sundries 
 
 156 
 
 00 
 
 Aug. 20 
 
 " draft, at 30 ia. 
 
 100 
 
 00 
 
 Nov. 14 
 
 <' Mdse. 
 
 268 
 
 00 1 
 
 Oct. 3 
 
 " Cash 
 
 42 
 
 00 
 
 Am. Bal., $249, due Sept. 22, 1871. 
 
 10. Suppose the following account was settled May 6, 1871, by 
 draft on time, how many days' credit should be given ? 
 
 Dr. P. Robinson in acct. with O'Neil & Co. Cr. 
 
 1871 
 
 
 
 
 1871 1 1 
 
 
 Feb. 1 
 
 To Mdse. 
 
 $ 73 
 
 44 
 
 Feb. rO 
 
 By Cash 
 
 $197 
 
 44 
 
 March 1 
 
 t< « 
 
 96 
 
 50 
 
 " 21 
 
 (t u 
 
 51 
 
 68 
 
 April 17 
 
 « <( 
 
 144 
 
 72 
 
 April 23 
 
 " Sundries 
 
 30 
 
 34 
 
 May 1 
 
 « « 
 
 196 
 
 96 
 
 May 6 
 
 " Mdse. 
 
 17 
 
 92 
 
 
 
 
 
 
 An8. 
 
 19 days 
 
 ). 
 
 11. When shall a draft for the settlement of the following account 
 be made payable? 
 
 Dr. S. T. Mitchell in acot. with R. S. Lee. Cr. 
 
 1871 
 June 1 
 July 14 
 Aug 16 
 Nov. 25 
 
 To Mdse. oa 2 mo, 
 " " on 40 da, 
 
 '' Sundries 
 
 $108 
 
 56 
 
 191 
 
 52 
 
 72 
 1)0 
 
 44 
 
 1871 
 Sept. 1 
 Oct. 15 
 Nov. 10 
 
 " 20 
 
 By Cash 
 •' draft, at 30 da. 
 
 " Cash 
 
 $100 
 
 60 
 
 250 
 
 300 
 
 Ana. Feb. 10, 1872. 
 
 12. When shall a aot« be madf payable to b»lanct! the following 
 wcount ? 
 
 Dr. 
 
$400 
 
 00 
 
 352 
 
 00 
 
 80 
 
 00 
 
 784 
 
 00 
 
 1869. 
 
 is it due ? 
 
 Cr. 
 
 dk. 
 
 1200 
 
 00 
 
 
 ;J25 
 
 00 
 
 \. 
 
 100 
 
 00 
 
 
 42 
 
 00 
 
 ,2, 1871. 
 
 1871, by 
 
 Cr. 
 
 $197 
 
 44 
 
 51 
 
 68 
 
 .30 
 
 34 
 
 17 
 
 92 
 
 19 days. 
 
 >g 
 
 acco 
 
 unt 
 
 when v^i] the baJannlTA"" *"' *^^« "«'"« to 
 
 and wishes to diXrAi' ir ^r""' l^> ^"<^ ^15uf, dueNoJ 1« 
 
 at an interval of 40 d^,f ,ft^^«»^,^ two equal p^ymen^ n. d^ 
 
 16. A merchant holds 3 notil ^^ i'^ '"^^ payments be made? 
 
 -^ace, !j,1080; maturity Aug. 6. 
 
 CASH BALANCE. 
 
 
''mmmmmf:- 
 
 0A8H BALAN(». 
 
 OPBRATIOIT 
 
 Debits. 
 
 88 = 14080 
 68 = 29920 
 51 = 5100 
 43 = 4730 
 31 = 10230 
 28 = 10360 
 11 = 2420 
 
 OrtdiU. 
 
 100 
 110 
 330 
 370 
 220 
 
 X 
 X 
 X 
 X 
 X 
 X 
 X 
 
 Due, 
 
 March 7, $ 270 
 
 " 28, 200 
 
 Ma7 2, 440 
 
 20, 720 
 
 $1730 6 ) 76840 
 
 Sum of debit items, 
 " " credit items, 
 
 $12,807 
 
 $1730 
 1630 
 
 it 
 
 Daift. 
 
 86 = 
 65 = 
 30 = 
 12 = 
 
 23220 
 
 13000 
 
 13200 
 
 8640 
 
 $1630 
 
 6 ) 58060 
 
 Interest of debit items, 
 " " credit " 
 
 $9,677 
 
 $12,807 
 9.677 
 
 Balance of items, $100 Balance of interes*, $3,130 
 
 True balance June 1, $100 + $3.13 = $103.13. 
 
 Explanation. Since each item of the debit side of the account was on interest 
 from its date to the time of settlement, the total interostof the several debit items 
 equals the interest of $1 (or 7(5840 days, which, at 6%, gives $12,807. (The int. 
 of .-S I for 6 days is 1 mill; hence, the interest of $1 for 76840 days is found by 
 dividing 76840 by 6, and pointing off three decimal places.) The total interest 
 of the several credit items equals the interest of $1 for 68060 days, which is 
 $y.677. Now, instead of imreaaing each side of the account by its interest, and 
 then finding the balance, this same result may be obtained by finding separately 
 the balance of items and the balance of interests. If the two balances fall en the 
 same side of the account, it is evident the true balance will bo their turn ; if, OD 
 iifferent sides, their dijerence. 
 
 METHOD BY INTEREST. 
 
 I 
 
 1 
 
 1 
 
 ■ 
 
 1 JF^ 
 
 ■ 
 
 Wp 
 
 I 
 
 
 Dv», Daye. Int. 
 
 March 5, $ 160 for 88 = $2,347 
 
 April 
 
 (. 
 
 May 
 
 <« 
 
 u 
 
 25, 
 
 440 
 
 " 68 = 
 
 4.987 
 
 11, 
 
 100 
 
 " 51 = 
 
 .860 
 
 19, 
 
 110 
 
 " 43 = 
 
 .788 
 
 1, 
 
 330 
 
 " 31 = 
 
 1.705 
 
 4, 
 
 370 
 
 " 28 = 
 
 1.727 
 
 21, 
 
 220 
 
 " 11 = 
 
 .403 
 
 $1730 
 
 112.807 
 
 Due, Oaye, ht. 
 
 March 7, $ 270 for 86 = $3,870 
 " 28, 200 « 65= 2.167 
 May 2, 440 " 30 = 2.200 
 20, 720 " 12= 1.446 
 
 « 
 
 $1630 
 
 $9,677 
 
 Balance of items = $1730 — $1630 = $100. 
 
 " " interest = $12,807 — $9,677 = $3.13. 
 True balauu«) ;ipliiO ■^■ «i3.l3 = $l03.io. 
 
 NOTK.~Tbe " Method by interest " will generally be found most eonveiuenk 
 •ither for finding the equated time for the payment of the baienoe of aooouatt, or 
 (■ iadiag tbe oaw Ma-'^^ 
 
•ASH avrAWOl. 
 
 f' 
 
 
 6 = 
 
 23220 
 
 5 = 
 
 13000 
 
 = 
 
 13200 
 
 2 = 
 
 8640 
 
 6) 
 
 58060 
 
 $9,677 
 
 9, $12,807 
 9.677 
 
 $3,130 
 
 as on interest 
 A debit items 
 7. (The int. 
 8 is found by 
 otal interest 
 l^s. which is 
 interest, and 
 ig separately 
 8s fall en the 
 : ium ! if, oo 
 
 •, Int. 
 
 < = $3,870 
 = 2.167 
 
 1= 2.200 
 = 1.446 
 
 $9,677 
 
 13. 
 
 t eonveiMent 
 aooouBta, or 
 
 277 
 
 Mar. 6 ToMdse. 
 
 " 25 
 
 April 11 
 
 * 19 
 
 May 1 
 
 4 
 
 21 
 
 June 1 Jjyint. 
 
 EnroK excepted, 
 
 Quebec, June i, i87i. 
 
 AsDREws 4 Son. 
 
 ANOTHER METHOD BY INTfiBMT. 
 
 *!f-,ilT?i»^'-.«fa"acot.$100 
 
 ;; l5;;Ca^,paiddraft 
 -fiO Mdse. on 6 mo. 
 
 By Mdseon 6nio..$I60 8# 
 ,, J^«!» 10900 
 
 .uX'"^ u.e cash ™.„. of 'i^^i^^r^;::;;;::^;;:;:^^ 
 
 OPERATION. 
 
 Mar. I 
 
 " 15| 
 Sep. 20 
 
 ^,¥JJ-i5 + .3.l38 10.'J.288 
 15|180.86~. 4621180.398 
 
 .April 1 157 
 'llJuiie 1 96 
 
 '("""15 
 
 !oot. 10 
 
 324.846 
 
 JOJ-00 + 2.617 102.617 
 
 120.00 + 1.920 121.920 
 
 inl]«n'SJ+ -"^'^ ^0.033 
 
 351 80.G0~ .'G7| 79.533 
 
 •<Ha.«36 ~ $334,841 .= ,188.J)9, ^„. 
 
 I 
 
 J I 
 
■""''■'-■•' •- 
 
 278 
 
 CASH BALANOC. 
 
 ImlLI- 
 
 «03. Rule.— Multiply each item of the account bu the number 
 
 vie time ofscitlemmt. Divuie the. sums nf the debit and credit 
 products .jeetiveJy by 6 ; the. quotient will he thht^^^Z 
 two sulcs 0/ the account, at 6^ e^cpres.ed in mills Find he 
 balance o/Uems and also the b> dan J of interests. 
 
 cashbalan^ 'Z'l T^""" ''' ''^^'^*''^ ^^d^ of the account, the 
 
 duft\t'r''''i' ''^V'^ 'temfromthe dateon which it becomes 
 t2^VsonZ\flT^T'^ ,7^5 ;A:^b,..ce between the sumZ} 
 
 JKAe« //ie lala, ce of interest falls on thi same side as the 
 balance of, te,ns the cash balance will be their SVM tolZ ol 
 "PP0>>,te sides, their mvftMESCt:. Or ' 
 
 0/ ^hT'add^^'^""' T "'.f '■'• "'^•^"'" ''^^ <^^-'-^^J^onding interval 
 
 ^(/c^ each cotwiiu of cash values, and the difference of th. 
 amounts will be the cash balance required. '^'•^*^'^"^" ''f ^f"' 
 
 EXAJIPLES FOR PRACTIOE. 
 
 1. The following account was settled Nnv ifi ib-ti uru . 
 
 Ih^caA balance, i.e.«. being corpSdt"e'ao'h «™V,„?jr« 
 
 /J- T TH ^"«- *2 15.54. 
 
 ^r. John Fbaseb ly acct. with L. R. Barry. Or. 
 
 1871 
 
 Feb. iITo Merchandise 
 
 4 « a 
 
 22 " u 
 
 19 " Cash 
 
 22 «< Merchandise 
 
 10 « <. 
 
 ]^|*' 6a/. new acc't. 
 
 April 
 
 May 
 
 July 
 <( 
 
 Oct. 
 Abv. 
 
 $ 72 
 187 
 250 
 60 
 300 
 125 
 
 00 
 00 
 00 
 00 
 00 
 00 
 
 1871 I ^~ 
 
 Feb. 16 By Cash 
 March 241 " " 
 April IG " <• 
 
 " 20 " Mdse. 
 June 27 " « 
 Sept. s\ " Cash 
 ^ov. 161 '< bal.ofint. 
 
 $100|00 
 160 
 300 
 90 
 360 
 200 
 
 00 
 00 
 00 
 00 
 
 00 
 
 Errors excepted. Quebec, Nov. 16, 1871. L. R. Bahrt. ^ 
 
 Detc r,' Ma^rT '"ZTT' '"'f"' "^^ '^^^"^^ * ^^^ ^^ f^'^^^- .- 
 A-;'9 tn m^L ' Q ' ^ inerchan.ljse, on 3 months, $721.50 • 
 
 .48 , July 14, to indse, on 2 months, $470.60. Credi or Mam 
 71. by cash on acct., «600j May lo', by iM^epUace at 30 day^ 
 
 II 
 21 
 
ACCOUNT OF 8ALM. ^ 
 
 *'^°-"'i"- -^ -"-nfa o'„"i/;i^, -■.. o" .00,., ,;o„ 
 
 Cred.tor, April ., l^Tl/by cash "mo ''/""." ^' ^^ '"d.^e,So 75' 
 
 ^n»- »23.52, 
 ACCOriNT OP 8ALES. 
 
 -f K^ ^.-5s^^: ^^S!oi^„:^;^-ent of the ,..n,:e, 
 
 ne proceeds, which n cormulXnl^'X^f "" '^'' ^.'^^■^' ''^"'^ »»>« 
 to his employer or consignor ""^'^^hant or consignee wakes 
 
 aft^ ^UhCt ^d& I? jii^V''^ ^:?^'^^^^ '^ «-'^'ed 
 at the equated ti„,e of the different 'Tes ^''"""^' ^'' ^"« '' «^«1» 
 
 ^ate. I Purchaser. 
 
 1871 
 Jan. 30 
 Feb. .s 
 " ](i 
 **■ 28 
 Marcli 20 
 April 9 
 
 May 7 
 
 " ;^o 
 
 L- N. Maguire 
 KeiJer & £ee 
 J'- A. Thibodeau 
 i>' L. Morris 
 Vanner & Simins 
 o. h. Ljnian 
 A. Hamilton 
 H. F. iJurton 
 1*. Sullivan 
 
 Description. 
 
 Wheat, white 
 Wheat, Ont. 
 Corn 
 Oata 
 Wheat, white 
 
 Corn 
 it 
 
 Wjieat, Mied. 
 
 190.00 
 
 704.00 
 
 880.00 
 
 450.00 
 
 600.00 
 
 S86.00 
 
 >03.2« 
 
 216.00 
 
 687.60 
 
 l$53US0 
 
IMAGE EVALUATION 
 TEST TARGET (MT-S) 
 
 1.0 
 
 I.I 
 
 ^1^ 1^ 
 
 ^ i^ 12.2 
 
 •yuu 
 
 Hi 120 
 
 L25 II 1.4 
 
 m 
 
 1.6 
 
 irvr'^ 
 
 Sciences 
 CoipoiBtion 
 
 23 WEST MAIN STREET 
 
 WEBSTER, N.Y. 14580 
 
 (716) 872-4503 
 
 ^ 
 
 i-C 
 
 V 
 
 \\ 
 
 ^\ 
 
 
 ^■a>^- 1^' 
 

 £^. 
 
 i/i 
 
1 I 
 
 2W AOOODNT OF 8ALM. 
 
 Charges. 
 
 ComnoiseJon on $5316,80, at 2^^ 
 Way 30, Freight on 764 bushels of wheat, 
 Drayage and sacks. 
 Advertising in " Mercury ", 
 
 $182.92 
 
 38.20 
 
 40.S0 
 
 6.26 
 
 218.17 
 
 Net proceeds to credit of C. Morgan k Co., $5098.63 
 
 Errors excepted. 
 
 Quebec, June I, 1871. 
 
 JoHK Laird & O'Nbil. 
 
 Ex. 2. AoconKT Sat.es of 1300 barrels of flour, sold for E. A. 
 O'Dow 1, Moitreal, P. Q. 
 
 1871 
 
 March 
 « 
 
 u 
 
 23 
 
 27 
 
 28 
 
 500 I arrels Flour, at $6.00 cash 
 400 " " 6.00 60 d 
 
 " 6.00 60 days $500.00 
 
 Ca^h 700.00 
 
 200 " 
 200 " 
 
 i< 
 
 3 months 
 
 CHARnxs. 
 
 Storage on 1300 Ibis. 1 mo., at 3 cts. 
 CoiLiuisijion on $7850, at 2\%, 
 
 Net proceeds, due. 
 
 K. E. 
 
 Quebfc, March 30, 1871, 
 
 L. RussfiLi. & Co. 
 
 Per Louis Bllodeau. 
 
 a 
 as 
 
 fei 
 
 •S3 
 
 ■H 
 
 eS 
 
 O) 
 
 m 
 
 h3 
 ■< 
 
 O 
 
 < 
 
 4 
 
ACCOUNT OF iALM. 
 
 218.17 
 
 $5098.63 
 
 t) & O'Neil, 
 
 M for B. A. 
 
 
 
 
 
 1250 
 
 
 
 7850 
 
 00 
 
 
 7614 
 
 75 
 
 c 
 
 03 
 
 eS 
 
 0) 
 
 CO 
 u 
 
 00 
 
 02 
 h 
 
 O 
 
 o 
 
 
 ?-^ 
 
 ■o 
 
 a 
 o 
 
 u 
 
 c 
 
 J3 
 CO 
 
 00 
 
 4) 
 
 
 9 
 
 
 Z, -• 
 
 
 9> 
 
 
 OJ ■* 
 
 s 
 
 01 
 
 « 
 
 
 
 
 
 
 .5 2 
 
 "t/J 
 
 o 
 a 
 
 c8 
 CO 
 
 
 •*3 
 CO 
 
 ■iu 
 
 ig 
 
 !J3 - 3 - 
 
 2 ■» •• 
 
 <« 
 
 —'■—<•—< i—( 
 
 -< csi esi 
 
 -H 
 
 C^ 00 »— * CVl 
 "— • c:; »— i ^-' 
 
 c^ r<4 ivi ivi 
 
 Cs 1— 1 Cs| •* i.-j 
 O C? O Oi C5 
 
 «^ CM e^ e<4 5S, 
 
 o 
 
 SM 
 
 o o 
 
 CM 5M 
 
 c: 
 
 a, 
 
 fC — 
 
 ^ 
 
 i Bilodeau. 
 
 .4 
 
 u 
 
 fi ;. 
 
 •il 
 
 » 
 m 
 
 H 
 
 i I 
 
 lil 
 
 i 
 
 ! 
 
MPTTg^ *C" i!-''nQftig*TJ ' •& 
 
 gimjg 
 
 282 
 
 EXCHANOl — fORBION OOIWi. 
 BXAMPLES FOR PRACTICE, 
 
 Montrea , by L. J. McGreevj A Son. Quebec, viz. : July 2 I87i to 
 Jo,^ Wlute. 400 bb . Ohio extra, at $8.30, 19 bbl. fine"i $5 : Ju ; 5 
 
 oSweeuey&Co 125 bbl. Canada extra, at $7.50. 'charges as fol- 
 «in J. i ' ^'"'S^** P,"" Steamboat " Quebec ", 544 bbl. It 16 cts., 
 
 in Is f ^'"^?' °'' 'ilfTrV '^^'■^«"' 3 *'*«• P^'" bbl. ; insurance 
 ai^'fl i f «;»'"'^«'"" «" ^P?,¥^' *^ '-^^ ^ ^'^^"'••^'^ 'be net proceeds 
 and the date when they shall be accredited to the owner 
 
 9 T Rn /i?*^^^*P''«ceeds,.f 4 139.46; due, July 10, 1871. 
 .f k, ; P^ fa?*"- *?^ ^^'•on'"?' received into their store an Invoice 
 of Fru.t per Grand Trunk, from the United States, on acct. of T. A 
 Kane, New Orleans, and sold it as follows: Aug. 3, 1871, 100 boxes 
 raisins, at ^3, cash, 52 boxes lemons, at $3, cash ; Ad<^. 4 25 boxes 
 oranges, at |3, and at 60 da., 200 jars olives, at $0.50, and at 60 da.^. 
 Tn^'T' :^-T^''' f* *''^' ^'^'b: Aug. 9, 25 boxes oranges, at *3, and 
 at JO da., 20 boxes lemons, at it:3, and at 90 days; AugTlO, 150 boxes 
 oranges, at $0 cash llO boxes, lemons, at $3.80, Sash 220 jars 
 T ih^i !^0.50, cash. Sold at auction the three last items amouniino 
 to .>1278; auctioneer's commission on .>1278, at 3A *. deducted" 
 Aug. 10, 4000 lb plums, at $0.50, and at 4 Months' \7llttl 
 were: duties and permit $340; freight and primage, $108; cartage 
 and labor, !t,12 ; relunded for damages, $55 ; storafe and advertising, 
 $.2.54 ; commission on $4314.27, at 5 %. Required the net oroceeds 
 ffid when due? Ana. Net proceeds, $3531.22; due, Oct. 24,*1871 
 
 TABLE 
 
 OP FOREIGN MONEYS OR CURRENCIES, W..fl THE 
 PAR VALUK OP THE DNiT, AS FIXED BY OOMMEROIAL USAGE. 
 
 Cities and 
 Countries. 
 
 Argentine Rep. 
 
 Austria. 
 
 A zores. 
 
 Baden. 
 
 Batavia. 
 
 Bavaria. 
 
 Belgium. 
 
 Denominations and MetaL 
 
 I 
 
 100 centesimos = I real; 
 8 reals = 1 dollar (silver) 
 60 kreutzers = 1 florin '* 
 120 " = 1 rix-dollur '» 
 60 batzen = 1 ducat (gold) =s 
 1000 reas = 1 niilrea (silver) = 
 60 kreutzers = 1 florin " = 
 48 stivers = 1 rix-dollar '• = 
 60 kreutzers = I fl rin (silver) : 
 crown, " 
 
 dacat, (gold 
 
 100 oentimM = 1 frano (ulTer) ■ 
 
 Value. 
 
 $1,016 
 
 0.485 
 0.971 
 2.278 
 0.830 
 0.397 
 0.782 
 0.395 
 1.072 
 2.274 
 0.186 
 
nand 4 Co., 
 2, 1871, to 
 $5 ; July 5, 
 larges as fol- 
 )1. at 16ct8., 
 ; insurance, 
 let proceeds, 
 
 10, 1871. 
 e an Invoice 
 ;ct. of T. A. 
 , 100 boxes 
 
 4, 25 boxes 
 \d at 60 da.. 
 3, at !?3, and 
 0, 150boxee 
 b, 220 jars 
 i amounting 
 , de.ducted ; 
 riie charges 
 08 ; cartage 
 advertising, 
 let oroceeds 
 24,'l871. 
 
 rHB 
 
 Ali ns^QE. 
 
 Value. 
 
 $1,016 
 
 0.485 
 0.971 
 2.278 
 0.830 
 0.397 
 0.782 
 0.395 
 1.072 
 2.274 
 0.186 
 
 «xoiiA:,MK--roREioN concB. 
 
 Cities ftnd 
 Countr'es. 
 
 Denominatirns and Metal. 
 
 Bolivia. 
 Brazil. 
 
 Bremen. 
 
 Bruno wick, 
 f^hili. 
 
 China. 
 
 Columbia. 
 DarmstiJt. 
 
 I^enniark. 
 
 Egypt. 
 
 England. 
 
 France 
 
 Frankfort. 
 
 Genoa and 
 Piedmont, 
 
 } ^ r^M= ^ dollar (silver) - 
 I doubloon r„\ul ~" 
 
 bnnkt'tcT "° ^"''''"' ''''■ «'-ling per milrea in 
 Spr:firi-?--OP-0 core. 
 
 j 100 cents* I dollar " - 
 
 i . doubloon Ccrnlfl^ 
 
 'Oca«h,,candaruif?Jern.) 
 ^ Thr "i"*^®' 10 mace = I tael i C'^'Iver) 
 
 for'?n?|;?„^K?,a^r'^°"'' ^^- «d-. -re orl«s. 
 j ''^ ^.^^'f .-^ 1 doUar (silver) - 
 i douWoon (sold) . 
 
 60kreutzers»Ig„iMer(„,ver) = 
 
 n.ark,rri:lrarUltt:i^^^^^^ 
 Frederick "or fcro hh 
 
 ^ Jxchange on London U 9^n,.bank~' daler for £1 
 
 2r.f rer^rK^f t<^-'^) f- f- 2.60 to fr. 
 
 r^reaTSerlJ^^'^^'^^'^-'^-.i 
 
 i'.xohan<re on r.nnHnr> on 
 for £1 .teWing ^' ^'^ ?'*«'«•"' "o^e or less. 
 
 Exchange on Paris ".ll •> qoa 
 f l2penc^=rSC"320a.pperl00fr. 
 
 I f/l"i;ing8 = i;iet;i.ling.C(.oId) 
 I .£1 or 1 sovereign = C 
 
 I n'New^tr'^"" '^„*^-««5 in Canada, 
 ill i\ew icork u is usually 7 to \i),- . > 
 
 sterling in London is wor'h «4 j//' t'^*" ''"'""^ 
 addiUonal, in New York * ''' '»"'i ^ to 10 % 
 
 100 centimes =1 franc (silver) = 
 ^xchange on London, fr. 25 50 fnr J^i =» .• 
 ^ Excha^nge on Na. York f^d^^^a^ 1v.^"& to 
 
 ti;^^^;;^:^rS; or tloria (silver) = 
 
 £1 8te,lin|. ^*"^ ^^-^^ '"•'^' "Hre or less, for 
 
 Bxdiange on Pgd*, 31 y^ ^ ^^ ^O. 
 
 28a 
 
 lVali»*. 
 
 , l.&M 
 
 )15.580 
 
 0.830 
 
 0.788 
 
 0.692 
 
 1.011 
 
 15.660 
 
 « 1.480 
 
 1.022 
 
 15.617 
 
 0.397 
 
 1.051 
 3.932 
 
 4.866 
 
 0.186 
 
 * 'II 
 
 ■■ 'i I 
 
 ' 
 
 II- 
 
 ;• 11 
 
 h ft « 
 
 i 1 '' ' I 
 
 ■ 5 
 
 Hi 
 
284 
 
 EXCHANOB— FOBKICMI OODII. 
 
 4;. ^1 
 
 Cities and 
 Countries. 
 
 Greece. 
 
 Hamhiirg and 
 Lubeck. 
 
 Denominations and Metal. 
 
 VaIm. 
 
 Hanover. 
 
 Hindot-tan. 
 
 Holland. 
 
 Italy, 
 
 Florence, 
 
 IjOghorn, 
 
 Lombardy, [ 
 
 Venice. J 
 
 Japan. 
 Madeira. 
 .Madras. 
 Mecklembur2. 
 
 Mexico. 
 Monte Video. 
 
 Naples. 
 
 Norway. 
 
 Persia. 
 Peru. 
 
 Port,u<'ul. 
 
 100 lepta = I dragma; 1 dra-^nia (silvar) - 
 ( 12 pfennings = 1 skilling; 16 .^killings > 1 
 < mark banco (silver) - 
 
 ( 1 ducal (gold) = 
 
 less, tor jbl sterlin'T. 
 
 ^^^^^^''ange on PfTfis, fr. 1.60 to fr. ].70 per mark 
 
 j 80 groshen = 1 florin (silver) » 
 
 I ;^0 groschen = I thaler '< > 
 
 j 12 pice = 1 anna; KJ anna« = 1 rupee(sil.)-: 
 
 ( 16 rupees = 1 niohur (gold) = 
 
 lof ^"''"r?? "" London, at^ Uoinbay, 28., more or 
 less, for 1 Comiiany'.s rupee. 
 j 100 cts. = 20 stivers « 1 guikier or florin 
 ( (Sliver) =» 
 
 Exchange on London, 11 g. 80 ots., more »t lots, 
 tor ±1 sterling. ' 
 
 guHdeJ""^^ °" ^'"■''' " ^''* ^" "*'•' ™°'^ " '"«' P«' 
 100 centesinii = 1 lira (silver) = 
 Fxi'hango on London, 30 lira, more or less, fcr £1 
 }V ■ '"/«"' '° "nd Milan; 30 lira, more or less, per 
 ±1, ui Horence and Le.,'horn. 
 
 Kx(;han,^e on f'nris^, fr. 85, more or less, 100 lira, in 
 V.nicoandjMilan; 80 to 85 centimes per lira, in 
 J lorence and Leghorn. ^ ' 
 
 10 mace = lOO candarines (silver) — 
 1000 reas = 1 milrea <* » 
 
 42 fanams = 1 pagoda (gold) -i 
 1 florin (silver) - 
 
 S S reals == 1 dollar « „ 
 
 ^ 1 doubloon (gold.) ■= 
 
 J 100 centesimos = 1 rial; 8 rials =- 1 dollar 
 ( or 4 pesos duro «■ 
 
 ^^Kxchange on London » 52d. aterling for 1 peso 
 
 ' 10 grani = 1 carlino; 12 carlini = 1 scudo 
 (silver) = 
 10 carlini =. 1 ducat; 3 ducat = 1 ounce 
 
 (golil) = 
 
 1^ xchan.^^! on London, 575 grani per £1 sterling, 
 hxcha.igo un Paris, 22 a 2a grani per L fr. 
 V lb skdliiigs = 1 mark; ) , ., 
 I 6 marks = 1 rix-dullar j ^^''^^^) = 
 100 n)aravodis= 1 tomaum (gold) 
 
 1 
 
 8 reals = i dollar 
 
 (silver) 
 
 '100 reas == 1 cruzado; 1000 reas — 1 mil 
 rea (silver) •= 
 1 crowu (gold) «■ 
 
 0.1 cs 
 
 0.3»0 
 2.25T 
 
 0.04) 
 
 0.694 
 0.445 
 7.109 
 
 0.400 
 
 0.16S 
 
 0.T60 
 
 1.000 
 1.H40 
 0.641 
 1.005 
 15.534 
 
 1.000 
 
 0.960 
 
 2.485 
 
 1.051 
 
 2.233 
 1.005 
 
 1.120 
 5.813 
 
Cities and 
 Countries 
 
 ■XOHANOR-FORKICN COINS. 
 
 Denominations and iMftai. 
 
 285 
 
 iValue. 
 
 Prussia. 
 
 Rome. 
 
 Russia^ 
 
 Sl Domingo, 
 Sardinia. 
 
 Saatony. 
 
 Sicily. 
 
 Smyrna an(i 
 Ihe Levant. 
 
 ISEF?^"^-":s-. 
 
 I grosjipn: 
 
 ;io 
 
 Irea. 
 per 
 
 ^Tosjien = 
 
 Spain. 
 
 for^J?t"r; ^°"^°"' « '»>»'-■' 25 ,.., .ore or ,es., 
 
 b.e'^Sr^^'^ "" ^°"^-' ^-'o- ^^^'^^ to 42C1. for , „>„. 
 
 roS'sK."" ^^"«' ^-- ^- ^.10 to 4.20 per 
 100 centime.s =. 1 dollar = 
 100 ccntesimi = I lira Csilvor'i :. 
 
 (iTo^oT'"^- °" "'""'"'^ ^"'^ ^-'« - for Genoa. 
 
 ilf'*'^'''"r ^ thaler ^silver) - 
 ii-xobango on London, thal«. 0^'' " ^ 
 or less, per £1. ' '"'"'" -^ 'iroschen. more 
 
 j30/ari=lL';^^^'^^'7~'--li(s^^^ 
 
 Like Constantinople. " ^^ ~ i 
 
 In the Levant are likewise u^o.i f , 
 Spanish dorars and Dr.tch H.^n •" ' """^'^ «^'ent, 
 ducat?. Likewise Ge man r^""''"'^ '""' '''^^'''i'i^" 
 $0.96 to $, being sul?:7,t:S^ tl.aler = 
 
 r 4 reals vellnn — i . f * * par piaster, 
 
 I 1 doubloon /• . ,. ^ 
 
 I 1 pistole ^"''/.'J) = 
 
 Exchange on London, 40d sfori;„» ' "^ 
 
 per peso^duro or Spanish .oiuf^'g.-- ^i-' 
 
 du^^Sar''''"^-''-^-^^'^^^- 5 30 per peso 
 
 'C4S.kHlu^.e marks. I nx-doilar specie 
 ( 12 n.arks = J j^cat (gold) = 
 
 S:o::K°r;^^^if^^'"f-^-on.^,«^.. 
 
 Kxchanc^o ot Ba«Io on I i'"'"'"^ = 
 le«8.for£l. '" °" ^^°"don. fr. 17.5, more or 
 
 li'xchange on Piu-iH fv i -„, 
 
 0.227 
 
 1.000 
 0.7;j4 
 
 o.:i«i3 
 
 0.186 
 0.61)4 
 
 O.9.S.) 
 2.4U0 
 
 1.059 
 2.267 
 
 ( 
 
286 
 
 EXCHANGE — FOUaiON OOINB. 
 
 I I 
 
 Tripoli. 
 Tuni8. 
 
 Turkey. 
 
 Tuscan V. 
 
 United States. 
 
 Wurtenibur'T 
 
 120 paras = 1 utchlik (silver) « 
 16 carobas = 1 piaster '* » 
 100 aspers = 1 piaster '< = 
 20 piasters = 1 yorniilik (gold) = 
 Exchanj,'o on London, 104 piasters, more or lew. 
 for £1. 
 
 Excb. on Parirf, from 400 to 410 piasters for 100 fr. 
 
 ' 12 soldi = 1 florin (silver) =. 
 
 1 crown or corona '* =» 
 
 1 ruspone (gold) -= 
 
 1 sequin << m 
 
 NoTA.— For Exchange on Lonaon and Paris, f«M 
 Italy.) ^ 
 
 i 10 mills = 1 cent; 10 cte. — I dime; 10 
 I dimes = 1 dollar (gold) «= 
 
 £ ftO kreutzers = 1 guilder (silver) «= 
 < 1 crown •< oa 
 
 ( 1 ducat (gold) =. 
 
 Excliango on London and Paria, the same m for 
 Frankfort. 
 
 0.149 
 0.124 
 0.026 
 0.877 
 
 0.262 
 
 6.92d 
 2.301 
 
 1. 000 
 f..H95 
 1.070 
 2.236 
 
 EXAMPLKS FOR PRACTICE ON KXCHANGE (see 406). 
 
 . « / '^''^^- "^^ Toronto cost £187 lOs. in Liverpool, exchange being 
 at 8 ^ prennum tor sterling ; required the face of the draft ? 
 
 ^ Wiiut IS the cost of a draft on St. Perersbouri,' for 6i)1.5 roubles 
 50 copecks, exchange being at 74 cts. a rou ble ? Ans. $5 1 1 7.47. 
 3 Received of J. Walter & Son, Glasgow, a bill on Messrs. S. Ross 
 
 t?Z'L f^"^''^^'-^'''i^^'^^ ^^'' W^^^ ^«« •*« value in Canada 
 currency, the premium being y% in favor of sterling currency ? 
 
 A WK * ■ .1. ,• ^"»- $5540.833 + . 
 
 4. What 18 the value in francs of a bill for $976.60, allowing a 
 premium of 3 ^, and ;-i^ fr. to the dollar? Ans. 6359 fr. 29TeQf 
 
 o. A merchant in Halifax has 8250 guilders 5 stivers due him in 
 Amsterdam, and requests the remittance by draft; what sum will he 
 receive, exchange on Canada being in Amsterdam at 2^ guillera 
 
 ^ . . , •:, . « ^ AnS' $3666.77+. 
 
 6. A broker paid m Ottawa $8030 fbr £1650 draft ou Dublin- at 
 what percent, of premium did he purchase it ? Ans 91%, 
 
 vT^l , ^' is the value in Canada currency, of 2000 florina in the 
 Welherlands, at 2^ ?« premium ? Arts. *.S20. 
 
 ». Iwenty days alter the date of a draft drawn at Genoa, Dec. 3 
 ib. I, at muety day-s, for 1820 bras 15 soldi, C.Jenkine to whose orda 
 .'t was drawn, requo.sts payment, and proposes for prepayment a 
 iisoount of 3 %. What id the value of the same in Canada curreacy 
 alldwing that the «oroDa bears a premium oi5%^ Am$. $1948.11. 
 
ARBITRATION OK EXCHANa*:. ..gy 
 
 lor tin. .„,„. .,a the rate of Sd. 'ter n / ni ?L 1''/ '''" P^'-ol^ased 
 
 'f'- f- O'lJrieiK.fMontro'il 1>^;. • . ^"*- i^"'Jf"» liras. 
 
 ;;; :£<-0(), to IVne & ^^^'1i,^^"f "S' , ^ '^'^^^ °^<^ats. val„e,l 
 
 >aoetlK^.a..etoU;ra£^;;,l';^^^^-^i^-Krauss, 11301.50, and 
 Toronto, Sept. 14, 1871 Yours &c. 
 
 „^Naple.s, Jan. 3, 1871 ^*'"'" °^^ 'T""''''^ 
 
 What i.s the value of ihe above ,^rnf> v "^'^ "f'^^« * Omim. 
 ■'^ dwoouut of 2 5^ being a lowed for n^. '^ ^'''^ "^^ '^■^^ ^^'^ ^^te, at 
 '"andingaprenuumofsiT Prepayment, and the scndi c^,»- 
 
 ^w«. |208;igJy. 
 
 AliBITliATION OF EXCHANGE. 
 
 Putl^tct't^e'^b'tl^^^^ - *^« P-eas of co^. 
 
 clrawn on one ^r .norr"t^re!l1i;r&" ^' '''^ °'^^°^-^« 
 
 ?. "Iiat must a neraon in ir!»> °' ""= ^'o »f '2-5 guililen tn f 1?I 
 
 Ol'KRATION. *' 
 
 Or thus : 
 
 ' ^ I $40 X 1.096 
 
 • * = $4«7.2fiL 
 
 -Analtsis.— Since it takes £i in 
 
 12.5g,ade„on Amsterdum.it^m 
 
 '^'^^ T2T *" ''"y a «>ill for 1200 
 
 guUder8;bnta bill on London for :£! 
 costs m Montreal 1^x1.095(42?). 
 
 Moi?l!S! "•"""V"™ ''• draw a rer- 
 Meal line, ^d pli^f, .qaividento wUk 
 
 M 
 
 ft 
 
268 
 
 ARHITaATlO.N OF RXnHANQK. 
 
 I :'■ 
 
 Squared a?i,Mv^r^r°/'^ °PP^"^ ""*> "*^«'' »>«'^"nl''(f with that oflh. 
 
 tennru^,?r ??i ^' * *•• ^1'. '":"!«"!«"<'<' i^ 'l<"n"t«d by «, and so arrange tha 
 first on^lr St .T"'k?",'''\''''^' '^'^' ''° "f 'ho same denoraination as the 
 ■0 on should there be a Enrcator number of terms. 
 
 Eof. 2. A morchant in Toronto wishes to remit 8000 franoa to Pari« 
 Jy circular o.xcl>an-e throu^'h Lotvlon. If exclnn-e at Toronto on 
 1 ans 18 at the rate of 5 francs :{0 cc-ntirnos to the dollar, that at 
 iZu ,r^" '''"' ^^'''^ "^^'^ "'■ ^^'' '''^"^8 20 centimes to tl.o £, and 
 tlmtHt Toronto on London at 9 % premium, how much le-^.s thin by 
 airectexclian^^e, will It coat him, kuowing thut he pay.s his a^ent in 
 Liondon i 91$ commission? ° 
 
 A\Ai-YSi?.— The cost of the 'lireot 
 exohanj^o would be an many ilollnrs 
 as .SOdll contiiitis 5.3 == lo()'.).43. 
 
 To (ind tlio cost of the oirculnr ex- 
 chan'j;o we [iroooed as in A*, l.ex-ept 
 that in ihis cajie the factor I -(- ^ c^ 
 == 1.005, iiuiift bo in-iluded amoni,' the 
 ftictorfl on iho right of the virtinal lino 
 to cover the commission paid to the 
 agent in London. 
 
 OI'EIUTION. 
 
 W = *150',u;i + . thecostof 
 direct exchuncje. 
 t:t I HdOO fr.' 
 26.2 fr. I £ 
 
 9 £ !P40 < i.o<> 
 
 ' 1.005 
 $T = IS14S6.6I +. 
 $1609.48 — *148().f;i = ^522.82. 
 — difference in favor of indirect 
 exchange. 
 
 50« lltiLE.— 1. Draw a vertical line, and place the equivalevt 
 sums with the characters denoting thrir rer,pecfive units direetJu 
 oppns%teeach other on the left and right of this line, representinq 
 the required sum hy x, and writing it first and on the left, and 
 arranging the other terms so that the second on the hft shall he of 
 the same denomination as the first on the right, the third on the 
 left the same as that of the second on the right, and so on. 
 
 II. When a commission is allowed for remitting, put 1 plus the 
 rate on the right (Ex. 2) if the cost, and on the left if thr proceeds, 
 0/ the^ exchange is required. When a commission ' ts nUowed for 
 drawing, put 1 minus the rate on the left if the cost, and on the 
 right if the proceeds, of the exchange is required. 
 
 III. Divide the product of the terms on the right hy the product 
 of the terms on the left, and the quotient ivill be the answer. 
 
 rinI^Z'"Jh-rP°''T'"'"^''i'P''''^«"'''Soon the price the agent who 
 T^h^UL f^u^t,"/^'"'^''"^^' ""'^ oommission on drawing i. a percentage 
 on the value of the bill at the place where the agent besides. t-ain.ige 
 
 EXAMPLES FOE PRACTICE. 
 
 h When exchan-e at Quebec on Liverpool is at 9 % premium, and 
 at Liverpool on Brusseln 25 francs per £ sterling: what wilUe^he 
 
Ilh that of the 
 so arranjje tho 
 aination as tho 
 the right ; and 
 
 inca to Parifl 
 Toronto on 
 lar, that at 
 [) tho .£, atui 
 le<s th m by 
 liii) agent in 
 
 ; nf tho 'lireot 
 many ilcillnrg 
 10011.43. 
 3 circulnr ex- 
 1 A'iC. l,ex.-e[)t 
 tor I -\- i'.^ 
 led arnoiiL; the 
 lu vortical lino 
 1 paid to the 
 
 ', equivalent 
 'ts directly 
 epreseiitiiiq 
 ^n le/t, and 
 shall he of 
 lird on the 
 on. 
 
 1 pins the 
 I- proceeds. 
 Mowed for 
 ind on the 
 
 he product 
 wer. 
 
 8 agent who 
 b percent:ige 
 
 nium, and 
 ^ill he the 
 upsda for 
 7.64 + . 
 
 AllBJTRATION OF EXOH.VNOF,. 
 
 28') 
 
 [1.0 ™.„ „f 25 rranJ h! Si ::■ t''",' , T'"", ',""'''.'" ""' l'-i» '>' 
 
 ami ren.it,, the ,Hiiie to l,h u -,.„ „ p i'"'';'"' "' ' V""»<"» "f » % 
 
 i *, '.ow ,„„„,. ,„„, Z:^ e„'l-- ^.n.i .1.; «l,i.l.^- |;;H,r,*,.„,,e 
 
 •''• When evohinrfo ;« c. i ™ '^^'«- $33(i,".s7 ; 
 
 on H„,i,,„ aTl'^" -: i4"„ :,f ^? ™ J;X'" "."' •■ '^ '"^""""'' »"'l 
 Toronto i, at parri.ow m ,oh betler i/th ^ " ■, '"■'™ ''"'"''"' ""'I 
 
 n.oney, allo"„ing *^ to be eu ,al VTp"?""' ""<""" "' '° «'"'i"S 
 pound stcrlin-? "•""' •" '^ f""'««; »">! 2l ihinos, to 1 
 
 -'Miv^"e"„L?is: rnd'TiS", °" """"I" ^- -'^'-^ 
 
 (liscount; howmuchwllK-. IT *^""'^''' <^" UamiUon Lsl'^g 
 af 4 56 Prerni'm allow J'lLfi;;.'^^*^ «» '"" '^gent in Tort.^to 
 di.scouatrbrokera<.eat i2? ^ "^ '" ''''*'"' ^° Humiltun at 1 ^g 
 
 9. A banker in°Quebec romit^ If - .w v, ,. . '^"■'- *' ' -f*-"^ "- - 
 as follows: first to Lyonrat 6 fra , .,^0^* ^'^""'^"'•g- ^y arbitration, 
 Hamburg at 181.50 fmScs per iSo ma,lr";l'"'' ^'' ^' '' *^^"°« '^ 
 3o stivers per 2 marks- then J !^ ^f f' *^«nce '<» Amsterdam at 
 sterling. &ow "^S «le Sg ^^ne^tu h?."' ''' ,^^'r" P" ^ 
 burg, an,, what .vill be ^i.^^:^;:^^^ ^I^tl^^!-, 
 4«, S Proceeds in Etiimh.,,,. ^..1,^ prem urn I 
 
 Ans. \ P'-?ceeds in Edimburg, d^ ""Tu 
 § Gain Kv afKW..o#.... ° i , , .-: .*'?' 
 
 ;" Ottawa, and for that purSbrs a ll^nT^'l'* "'^^''^^ ''^^^'''^^ 
 the rate of 2 francs per mS banco wS i ^-^^i^ange on Paris, at 
 brokerage ^%. Allowing Sfi tTrofl' L*\ ^^ '"""^ards to Ottawa, 
 ooet him ? ^"ow»ng *J6 to 100 mark bancoe, what di.i the hill 
 
 12. A of Barcdona owfti H «r r. . '^"'' 1^884 francs. 
 
 eeionaoww B of Urerpool, £lyoo. BofLirerpooJ 
 
 m 
 
 
 sLai 
 
r 
 
 290 
 
 ABUITRATiON OF MKUCUANDISR. 
 
 (-'■' 
 
 ?wn 4 '''^'""*?'"^*'"' ^ ""^ Amatenlam on I) of Bonfeaux, and 
 DofnoHeaux on A of BarceJona. Allowing £1 oxohan^.e" f .M2 
 flor.n«; I9f!onnHfor4()fmnc«. and 100 frHMO« for 1 !> Spun idoN 
 lar«, how many .loNars will pay the bill ? ^„/ -J«!| -Id 
 
 I.^. IwiHUtoreinit fruin Glasgow to Qupboo £127:. I "..s.' VVlmt 
 w I r.e Its value in Canada ourn^ncy, reinittin-,' tlvrou-l, r'aris at tlie 
 fo iow.ngrates: £1 eqnal« 26 francs 80 centimes; and 5 francs 
 ce.tnnefl, equal SI ? ^„,. $fi2l0.25' . 
 
 14. A merchant in Halifax wishes to remit to London !?f)2r)0 so as 
 
 to receive the largest possible returns for the name. Ff he reinits di- 
 
 J 2 ^TM ?V'® ^^«''''">? currency will command a premium of 
 
 f M 'Vn "-*' f't*:'^; 'f '""^t ^>P at the rate of", franca 20 centimes 
 
 o the dollar, and 2., francs .so ©entimes to tlie pound; but if ti.rou-h 
 
 per A4. VVhicli iH tlie moM desirable cour-e ? 
 
 ylrj,-*. The course through Hamburg is preferable by £8 1 1 31 to 
 the direct course, and by £39 23, to that through France. 
 
 ARBrTRATION OF MRRCriANDTSE. 
 50r Arbitration in Merchandise consists in compnrin- 
 
 tho wci-hts and measures of different countries; also, in Hnrlini^ 
 rem the value of any particularweightor measure of one countrf 
 the value of the corresponding weight or measure of another 
 country. 
 
 By tlio operations herein involved, the merchant is enabled to 
 determine in what way he can most advantageously export or 
 import any species of merchandise. The operation obviously con- 
 sists, not only in the comparison of the weights and measures of 
 different countries, but also ia the exchange of ourreneies. 
 
 tablb 
 
 op the principal weiohtb and measuee8 of the most 
 
 IMPORTANT COMMERCIAL COUNTRIES IN THE WORLD 
 REDUCED TO THEIR ENGLISH EQUIVALENTS. 
 
 AUSTRIA. 
 (Chief commercial cities, Vienna 
 
 and TiiiKnTK.) i 
 
 100 commercial lb. = 123.6 Avdp. 
 i Htaro = 2.34 Winch, bu. 
 1 polonick = 0.861 " " 
 1 aimer = 15 wine gal. 
 
 1 bMril* s 173 " •< 
 
 1 ell, woollen meas. =2C.6 in. 
 
 1 ell, silk =2i).2 " 
 
 BADEN AND BAVARIA. 
 
 (Principal com'.iercial city, 
 
 Alusuuiio.) 
 
 I pound = oiU) gram. French « 
 
 1.25 lb. Avdp. 
 1 Aug8b«rgmark=3643gr. Troy. 
 
>rtfeaux, and 
 lanires for I 2 
 Spanish <lol- 
 
 l«. !?{)I2I1. 
 
 l>s. Wlrat 
 Pari.H at the 
 
 5 francs MO 
 210.25 f. 
 ?r)2.')0, Ko a.H 
 10 rejnitH di- 
 prcmiiinj of 
 20 centimoH 
 t if tlirough 
 nark ban COS 
 
 i 11 ^, to 
 
 oe. 
 
 comparing 
 
 in (in ling 
 
 le country, 
 
 of anotlier 
 
 enabled to 
 export or 
 iously con- 
 leasuifes of 
 es. 
 
 IE MOST 
 
 = 2C.6 in. 
 
 = 2a.2 <' 
 
 ARIA. 
 al city, 
 
 French « 
 t gr. Troy. 
 
 = 11.8 in. 
 
 = .33.75 in. 
 = S-Tf) fiH't. 
 
 = 6.i2r) 
 
 I foot 
 
 1 elJ 
 
 1 klafter =r fifrpt 
 
 1 flche/fi?! for c<,rn 
 
 1 eitner of wine 
 
 1 maan 
 
 . ."RLOIUM. 
 {Hrincipnl commercial city, 
 Antwkkp.) 
 
 WWWV WrrORTR AlfD MLARim*,. 
 
 im. 
 
 = 14.062 .^al 
 = l-'^TDpint. 
 
 WeightH an.l Meanuros the same } 
 
 M in France 
 
 . , HRAZTL. 
 (/ nncipal commercial citu 
 
 It'o l)K JaNKIIU) ) 
 
 Weights an.l Mea^nres ti,e san.e 
 as in Portugal. 
 
 (U/ie of the/our Free Cities ef 
 Germany.) 
 
 { f ""'' = 1.09 a,. 
 
 I centner __ hq ^ 
 
 1 viertelofwine =1.9.-, .^.J' 
 
 1 anker = 5 vierteln 
 
 1 oxljoft .-- 6 ankers 
 
 1 scheffel of grain 
 
 1 last = 40 shettel.s 
 
 1 s;one llax 
 
 CHIXA. 
 {Principal commisrdal city 
 
 CXHTOS.) 
 
 }f"^, =i.;{;nb, 
 
 * P««"i = l;^3.3;J ib. 
 
 211 
 
 !&=:i?.^"^,,7,V«^'• 
 
 — -4.00 in. 
 KfiVPT. 
 (FrtnctpaJ nmmercial city 
 
 Al.K'XA>DHIA.) 
 
 1 rotolo Ajrforo ~ j ,r, ^^ 
 
 rotoJo zaiiro 
 
 = 3;5..]:j n-A. 
 
 y.G.l gal. 
 
 = 5^ gui. 
 
 = 2 l,u. 
 
 = -SO. 70 l.u, 
 
 ~ -'0 11,9 
 
 I covid 
 
 = U.62 
 
 lU. 
 
 CUiU. 
 
 {Principal commercial city 
 Hatana.) 
 
 .quintal = 101.75 lb. 
 
 1 arroba of wine = 4 1 ^^j 
 
 1 feuega of grain -'alu' 
 
 ^ara ~ 33.34 in' 
 
 DENMARK AND NORWAY 
 
 {Principal commercial cities' 
 
 LoPKNHAGKN and Chujstiana.; 
 
 fP'-"-^"'^ =i.iu"ib. 
 
 i centner = lOU lb. = lio.2,s|(, 
 
 I riertel of wih = 2.04" ./al' 
 
 I anker of wine =' lo ^ai 
 
 1 rotolo za(lino =r 91 -n-yr ,.„ 
 
 rotolo ,n urn = 2(1.714 oz. 
 
 I 'l"'ntaIcom.oinC!iiro=l(i;j,,;|i, 
 
 f^ = ;;.2,{:. II,. Tr.' 
 
 -Inigma =,,.,.,,. ^,^^,^^ 
 
 pik ot corn = 2,i.8 in. 
 
 robebe ot corn ~ 3,; „j,,^ 
 
 ^ "^''^'^^ = ;!y gal. 
 
 ^„ . EN'nr.AND. 
 {I^nncipftl commercial cities 
 Lo.vDoN a?)rf LivKiiiMioi,.) ' 
 The EngliHJi Weight. m,d Meas. 
 urea are tho same us j,; Canada. 
 
 FRAN(^E. 
 
 {Principal commercial cities, 
 
 rAiiis. Lyons, and Maksku.i.ks.) 
 
 Weights and 'Aia-\\i\-<,see p. 1 2(;, 
 
 FRANKFi)RT .„, the Main. 
 
 AND TH!-; 8oL-MI|..(iX I'AKTrf OF 
 (-ieUMAXY. 
 
 1 II'. heavy = iT.G.'j 02. Avdp, 
 lb. light = 1 -,.0o oz. Tr. 
 
 [ '"^"'^ = J25 oz. Tr. 
 
 1 cwt. of 100 heavy, or lua li-dit 
 
 lb. = Hi Jb. Avdp. 
 1 carat of jewels = I.32I dwt. Tr. 
 '•f^^ =11.25 in. 
 
 I ^1' , . = 21.555 in. 
 
 1 J?rankf. Brabant ell = 27.(;GG in. 
 I maker of corn = 3.1.5() bu.sji. 
 1 sinuner " = (i.312 gal. 
 
 i uiaasof wine ^ 3.156 pints, 
 f J?^"" - 31.312 gal. 
 
 I tuder - 6 ohtns ^ loT.S?;-; gal. 
 
 HAMliCJRG AND LUJf>.CK. 
 {Commercial cities o/Uki;kany.) 
 i P^^'iiJ - 1.068 lb. 
 
 % 
 
 i [■ 
 
 r. 
 
 mh. 
 
B92 
 
 rORKfON WEIGHTS AND MRASUIUCS. 
 
 ' I 
 
 
 100 commercial lb. = lOiJ.838 lb. 
 
 } '■"^^t «= 11.289 in. 
 
 1 ahrn oJwiiie ^ .S8.2o t^al. 
 
 1 ftuler = (j Hlini.s = 22D.5 gal. 
 
 I last 01' grain = 8i>.64'bu. 
 
 1 stocks l\ laht = l;u.4 bu. 
 
 1 Brabant ell = 27.58 in. 
 
 lilNDOSTAN. 
 
 (Principal commercial cities, 
 
 BoAiiJAY, Hkngai,, Cai.cltta, and 
 
 Madras.) 
 I maund «. 74.625 lb. Avdp. 
 
 I seer « 29.875 oz. Avilp. 
 
 1 Sicca =x 178.666 gr. Tr. 
 
 1 cubit, or 1 covid =^18 in. 
 
 } g"z = 36 in. 
 
 1 C0.S8 == 4000 cubits = 1.125 mi. 
 1 palhe of corn - 9.5 lb. Avdp. 
 1 candy = 500 lb. Avdp. 
 
 1 gareeofcora « 135 bu. 
 
 1 candy of corn = 24.6 bu. 
 
 HOLLAND. 
 
 {Principal commercial etfiM, 
 
 Amstkkoam, Haaklkm, The 
 
 HAeiE,itoTTBRDAM, LbJYDEIi, etC.) 
 
 |f"?ot -11. 142 in. 
 
 \ f " , = 27 083 in. 
 
 1 last for corn « 85.25 bu. 
 
 1 aam of wine =" 41 gal 
 
 1 »at = luu kan - 1 hectol. Fr* 
 
 ^ 26.42 gal. 
 1 muddle = luO hop- 1 hectol. 
 
 ^ 2.84 bu. 
 1 pound . 1.08 lb. 
 
 1 i^r. kdogramme — 2.20 lb. 
 1 last, marine -: 4410 lb. 
 
 LOMBARDY (Italy.) 
 {Principal commercial cities, 
 
 VKNJCi; A; Milan.) 
 1 libra = 1 kilogramme =» 2 lb. 
 
 3J oz. Avdp. 
 The Mea.Mures are equal to th« 
 
 French. 
 
 NAPLES (Italy.) 
 
 {Print- i I d commercial city, 
 
 Naplk.s.) 
 
 I rottulo = ],yg ]^,_ 
 
 I cantaro groeso =» 100 rottolo = 
 196.50 1b. 
 
 - 106 lb. 
 
 - 42.75 gal. 
 
 = 264 gal. 
 
 = 52.20 bu. 
 
 = 8C 
 
 ID. 
 
 1 cantaro piccolo 
 
 1 aalma of oil 
 
 1 carro of wine 
 
 1 carro of grain = 
 
 1 canna 
 
 PORTUGAL. 
 
 {Principal commercial city, 
 
 Lisbon.) 
 
 1 libra or arratel = 1.01 lb. 
 
 I arroba = 22 arratel8 = 22.2G lb. 
 1 quintal = 4 arrobas = 89.05 lb. 
 100 libra.sor arratelo= 101.191b. 
 I almude of wine = 4.37 gal. 
 1 tonelado «= 227.25 gal. 
 
 1 Canada . 13. 06 pints. 
 
 1 moyooftorn — 23,03 bu. 
 
 1 vara = 43.20 in. 
 
 PRUSSIA. 
 {Principal commercial city, 
 Bbki.in.) 
 1 pound = 1.03 1b. 
 
 100 pounds Dantzic = 103.3 lb. 
 I quintal. = 110 lb. 
 1 eimer of wine 
 1 ahm 
 
 1 sclieffel of graua 
 1 laat of grain 
 1 Berlin ell 
 1 Prussian ell 
 
 RUSSIA. 
 {Principal commercial cities, 
 St. PKTERSBLRa and Warsaw.) 
 1 pound (funt) = o.90 lb. 
 
 1 pood = 40 pounds = 36 lb. 
 100 pounds = 90.26 lb. 
 
 1 wedro of wine -= 3.25 gal. 
 
 1 eorokovy = 40 wedros = 130 
 
 gal. 
 1 chetwert of corn 
 1 arsheen 
 1 sashen 
 
 SARDINIA (Italy.) 
 
 {Principal commercial cities, 
 
 Gkkoa and Tl'uin.) 
 
 1 peso grofiPo (Genoa) = I2.1(J6 
 
 oa. Avdp. 
 1 libra (Turin) = 13 oz. Av;Ip, 
 1 pahiio (Genoa) = 9.75 in. 
 1 minaufcorn '< = 3.50 bu. 
 1 barileofwine " «= 16.31 gal. 
 
 113.42 1b. 
 
 = 18.14 gal. 
 
 = 39.66 gal. 
 
 = 1.52 bu. 
 
 = 91 bu. 
 
 ■■ 25.5 in. 
 
 = 26.28 in. 
 
 = 5.95 bu. 
 = 28 in. 
 = 7 feet. 
 
bar le of oil « = 14.35 „al 
 I P|edelipran.lo(Turi.i)= 20.5 in 
 f piede juaneJle " « 12 75 n 
 
 raso (ell) . ^ Jlf j^' 
 
 J ^acco lor wjne '« = 25.5 gal. 
 
 .-, . SAXONY. 
 
 (I^rtnctput commercial cities 
 
 IJRESDEN and Leipsic.) ' 
 
 {pound - 17.625 „..Avdp. 
 
 1 ell i'.»75 jij. 
 
 J^c,,*,ofco.„ .-|j- 
 
 "<a„,.. Mitre „ ufA' 
 OMYKNA AND THE LEVANT. 
 
 } ^}'\ = 3.25 lb. Tr. 
 
 Icantaro - 127.5 lb. Tr 
 
 Irotolo =lG..^3oz Tr 
 
 1 drachm ^ 49.6 gr. Tr. 
 
 Ikillowofcorn = u"25U'l" 
 . SPAIN. 
 (Principal commercial city 
 
 Madkid.) 
 P'^""d « 1. 01 11^ 
 
 1 arroba= 2i- pounds = 25*.38 lb." 
 
 1 quintal = 4.-rroba8 = 101.52]b 
 i cantaro or airoba of oil =. 3 75 
 gal. 
 
 4.25 gal. 
 
 Iraoyoofwine - 16 arrobaa « 
 08 gal. 
 
 1 botta » 38 arrobas of wine ^ 
 •^"aarrobasofoils. 127 5„al 
 Ifanegaofcorn « 1.^7 1m" 
 
 cah,z= 12 fanegas- 18.91 bu 
 1 vara or yard - 33.37 in! 
 
 irr. ■ r SWEDEN. 
 (.Chxefcommer.eity, Stockholm.) 
 
 J P°""*^ - 93 Ih 
 
 * pound of iron • 0*75 lb 
 
 'ORBIQN WFIOHTS AND MBASURte. 
 
 293 
 
 1 aiun -?'"' - 20-75 gal. 
 
 1 anm = 2 eimers = 41.50 gal 
 
 P-pe=3ah,n,s =124.25^1: 
 tun or barrel ofcorn= 4.16 bu. 
 *^' = 23.36 in. 
 
 . SWITZERLAND. 
 (Principal commercial cities, 
 (^imtA, Eku.v, & Basi.s.) 
 
 110.25 lb. Avdp. ^ 
 
 } lb. = ikiIog.= i 7.625 oz.Avdp. 
 
 1 foot = 0.;^ mo»^» _ 1 1 0/ .*'• 
 
 0.3 meter 
 
 11.85 in. 
 
 = 2 feet. 
 
 = 4 feet. 
 4.I2,> bu. 
 3.5 pinta. 
 7= ;!3 gal. 
 3.5 pinta. 
 
 1 foot 
 
 I ell 
 
 1 stab or staff 
 
 1 malter of corn 
 
 1 iinniir of << , 
 
 ohm of wine 
 - maas << ^ 
 
 TURKEY. 
 
 (Principal commercial city 
 
 Constantinople.) 
 
 Jpound,chequi,-ll..33uz.Avd. 
 ^^^ « 14 02. Avdp. 
 
 1 pile, commercial = 27 i,i 
 
 I kilJow of corn — 7 5 <ra.\ 
 
 1 fortin = 4 killowa « 30 °al* 
 1 almud for liquids — I.37 |al.* 
 
 ^ . TUSCANY. 
 
 (rrinapal commercial cities, 
 
 i'LORENCK and Leohokv.) 
 
 1 pound « 12o2.Avdp. 
 
 }?rS -^^5ib.Avdp^ 
 
 loo ''' , • , - 1 "^iJe 48 ;d: 
 
 lOOeacchiofcorn = oqi [J 
 bOquarn.zziofwine- loV^gal.' 
 1 ban le of oil «, 7 ■' g^ 
 
 , UNITED STATES. ' 
 (I^nncipal commercial cities 
 
 NbwYokk Boston, Chicago,' 
 NewOki.kans, etc.) 
 
 The Weights and Measures are the 
 
 1 auker of wine -. 1 n sf ' i ^*'*' ^'^'^'^^'^ ^" ^ ^^^i^nt 
 
 ^^^ _ -"••^•'^ gal. I same as in England. 
 
 he same as those of Sll onh^« '^'l"^- ''^ "" "^°'*« of Sp^nro I i nz^l 
 United States, and of H yT^esaS ^n'S ^r^^'"^''*^'^" Provi ce . f .hl' 
 
 »^ii*,t. a« .bout 8^. ''-"'^SEu^?:^?e•«^^^^^^^^ -«!J^- 
 
 M 
 
 ; ! 
 
 1 
 f 
 
 i 
 
291 
 
 FOREIGN WEIOHTS AND MEASURES. 
 
 llicinetrio system has of late been adopted by Spain and Portugal, to the 
 exolu-ion of other wei;,'hld and inea-iurcs. In lMl4, it was legalized in Qreat 
 i5ni|i!n; and its u^e, cither ii« a whole or in. ■'ome of its parts, has been authorizud 
 111 (Jreece, lloilaiiii, Italy, Norway, Swolen, Mexico, Guatemala, Venezuala, 
 I'.f iin.lor, Columbia, lirazil, Chili, riim Salvador, Argentine llepublic, and tb« 
 
 The following oxdinplos will etnbraoe operations analogous to what we have 
 already had, in addition to the exchange of weights and measures. 
 
 Ex. 1. A Montreal iiiercliant iiiiporlH from Holland 2550 ells of 
 linen, which he finds costs hiin 2 florins per yard. In payment ol the 
 tifinie, he remits throiisxh London. The amount of the remittance is 
 required, allowing 9^9^ premium in favor of sterling currency, that 
 it I exchanges for 14 florins of Amsterdam, the agent al Londoo 
 charging \% commission. 
 
 OPERATION. 
 
 2550 ells 
 2.;{ X 4 fl. 
 £1 
 
 $40 X 1.095 ' 
 1.0025 
 $« = $2725.176 + , Ans. 
 
 % X 
 .3 ft. 
 14 fl. 
 £9 
 
 Analysis.— Since 1 oil equals 2.3 ft., 2550 
 •Us X '"i'" -i- ^i == the same in yards ; the 
 yards iinilti(iiled by 4, equal the whole cost 
 in florins, which, divided by 14, are reduced 
 to sterling currency ; and this in turn ia ex- 
 changed to dollar.'! by multiplying by 40 and 
 dividing by 9, and this value i.s increased 
 *i% l>y multiplying by 1.(195, and tinally 
 the brokerage is added by multiplying by 
 1.0025. 
 
 £;.... 2. A merchant of Toronto ,^ends lard to Hamburg at f 10 per 
 cwt., and orders remittance throuL^li Liverpotd, expen.se of remittance 
 to he paid by N. Ashley of Hamburg. Allowing !iK7 excliange for 20 
 mark l.ancos, and l."^^ mark bancos exchange lor £1 ; also, that the 
 bterimg £ bears a premium of 9 96 in Toronto, and that 105 lb. Ham- 
 burg equals 112 lb. Toronto. Wliat is the cost of 1 lb. Hamburg, 
 charges for cotmnissioo being 2 %, insurance 1 %'i 
 
 AVAI.T3T8. $10-1.105 =. price of 1 
 lb. Hamburg in C.ma la currency, which 
 X j^g or £1, flinl j.'Jg makes the re- 
 quired deduction in favor of Sterling 
 currency ; then the remaining value X 
 j^n, is increased by the percentage of 
 expense, siml thatvuluu so increased X 
 13^ or y ia exchanged to mark baniofl ; 
 ifJ^l =1.3i^ inark.s, £7 =. 96 m.irka; 
 and the marks X l<^ skill, k 4 fikilliogs 
 6-f- pfenniugs per lb., A*». 
 
 OPEKATtO.V. 
 
 105 
 
 40 
 
 109 
 
 100 
 
 7 
 
 X 
 
 10 
 
 9 
 
 100 
 
 103 
 
 96 
 
 16 
 
 4 skiilings 5+ pfennings 
 per lb., Ana. 
 
 EXAMPLES FOR PRACTICE. 
 
 1. A merchant in Quebec ships 2000 lb. of butter to Bremen, and 
 Bells the same at 12 grotea per Bremen lb. The total receipts are 
 remitted to Paris, and the merchant of (Jiiebec draws on his agent 
 there. For how many francs at 6.25 to $1 mupt he draw, allowing 
 hie agent in Paris charges 2 % commission ? Ana. 1 290.44 v fr. 
 
 2. L. Enrigiit of Halifax imports from Lisbon 18 quintals of raisins, 
 tor which he pays 50 reee per arrated. He sells the same in tht 
 
 yti . ; 
 
■i-^;-. .vi2;?5.'."J!L"XZ^Z!!i!^_llj 
 
 FORErON WEIOHT8 AND MBA8UR18. 
 
 what we have 
 
 295 
 
 Hie .sau.e, allowing a Brommm of 8 ^' n 'T"^'^' V c^^'P?-"'' '° »^^>' ^^'^ 
 and 25 francs to Jt I ? IZ L i • ^ t^ '^'"'J'' "'^ '^^^'"''"g currency, 
 that R. N. B. PoM tl e flax for's'."S ^^ "'^^ ^'^'''^ "'''^^^'•^^«' ^"^ 
 did he gain on the total cost? ''"" "'* ^""'^' ^'^^^ P^^ °«"t- 
 
 4. Maple .n-ar is Whf]I/ nl? be rcnmted, an.I 29 % gained. 
 
 to Naplel android a ' 5 carii^i n^^^^^^^^^^^^ ^ P"""''' ^^^^^^P"^'i 
 
 tI>rou>rli Pari., the exc £1?? ?, ^ ^ ''''■> '""^ re.nutance is ordered 
 rateor24grui 1 (W^ ^n'^'^^' '^"'^ Paris being at the 
 
 of 5.25 francs toll A low "^ \'IT ^-'V ^"^^^'^"^ «^ ^^e rate 
 ^-nce. etc., a.no.nf l^^^^ 1^^^^:^^^^^- £ ^^ 
 
 wih'cSt^!tlJ;;t^;^r^^tft [ ^"^ that'-^SftSre 
 centinies. Alluui^^^riremium o jt":^ »""' "^/c;^"?- '^ '"^^^"'^'^ ^'"^ 
 and 5.25 francs lo the dollar T i • f ^''7''^ "** ^^'^'■^'»^' currency, 
 advantageous,, ^^^^^^^l^^^X^^f^t^^ S'pP^^^ 
 
 6. Having a ouantitv of^wLpA^ '^'l' P^ ^'^- •''! ^^"'"' «^ ^i^'-'rpoul'. 
 market, I .n"ake^ inmS a' i fiJ^^^^ ^? ^'^P^" '" ^'"^ ^''^^^ 
 
 ».ost faVorabie placera'l nLjll ^ '^'"' *"'^ A.nsterdun, the two 
 »..Hi it«. I find thS A Lit J % ^"^ '"vest.gate tlu ir comparative 
 and ren.itta. ce can £ d Icted U^^ '* conunands 127^ tlorins .er last, 
 to 80 IVancs, 5!20 L.u^ bet^ oSo l^"' 1 ^he rate of 37 florins 
 is -^J*^. 4d. 8terlin.r ner hn«»f«1 °<!^ . ^^^ ' ^""^ ** ^^""don the price 
 
 9 % ia the Ca ada^ na k T ' also t'Kt'";'"'"'^ ^T""^ * P^^'"'"'" ^^ 
 tliruugh Paris, amonnUo 1 -' tlhtc Pr""". ^^/^^'''ittance, etc., 
 
 5 %• =To whi^h u.arSt'shlll1\.S':„';r,.eaT?'" '' """"'"^^ ^^ °"'^ 
 at Ig^r^t ■" feES^-S-e^^-^^^^ 
 9%; or, tbron.'h Par s and M„5 '^ '^'''"° bearing a premiun, of 
 
 e«in per lb, anTaL'TX °L':'i'Tr»n l' *' *,'? "'""' ' 
 
 
 f 
 
1 1 
 
 ! i 
 
 296 fiUPPLRMENT TO PROaRBSSIOHB. 
 
 STiPPLEMEiXT TO PROaRESSIONS. 
 
 ARlTHiMETlCAL PROGRESSKON (460). 
 
 50H. Case V. — Given the commnn difference, ihe numbe^ of 
 terms, and the mm of all the term*, to find the first term. 
 
 Ex. The iiutnber of terma ifl 34, the common difference 6, anJ the 
 Bum of the terms, of a series of numbers in arithmetical progression 
 is 3536 ; what is the first term 7 
 
 Operation. a= " - [ (n — 1) x ^ c] = -^ — 1(34 — 1) 
 X 3] = 6, the first term, Ant, 
 
 S09. Rule. — Divide the turn of the termg by the number of 
 terms ; subtract from the quotient, if the series be ascmding, oth- 
 erwise add to it, half the product of the common difference into 
 the nmnber of terms lets t e. 
 
 EXAMPLES FOR PRACTIOB. 
 
 1. If the number of terms be 22, the common difference 5, and the 
 sum of tlie terms 1221 ; what is the flrwt term ? Ans. 3. 
 
 2. A farmer is to receive $300 in 12 payments, each succeeding 
 
 Kynjent to exceed the former by $4 ; what will his first payment 
 1 Ana. 3. 
 
 310. Cask VI. — Given the first term, the common difference, 
 (tnd the nuinlnr of terms, to find the sum of all the term*. 
 
 E.V. If the first term of a series of numln .s m arithmetical progres- 
 Biqp be 5, the number of terms 34, and the common difference 6 } 
 what is the last term ? 
 
 Operation. I = a + [(n~ I)xc]=5-f- [(34 — 1) x «] 
 • 203, the last tern). Ana, 
 
 Sll. Rule. — Add to twice the first term, if the series be ascend- 
 ing ; othermse si^jtractfrom it the product of the common difference 
 into the number of terms, less one ; multiply the sum or difference 
 by half the number of terms, 
 
 EXAMPLES POR PRACTICE. 
 
 1. If the first term be 3, the number of terms 22, and the common 
 difference 5, what is the last term ? Ans. 108. 
 
 2. A man piirciiased iOO yards of cloth; the first yard cost him 
 40 cts., and each succeeding yard 20 cts. more to the last ; what did 
 the last yard cost him ? Ans. $20.20. 
 
 3. The first lerm of an ascending series is |, the number of terms 
 16, and the common diif. |, what is ths last term? An$. Tjf^, 
 
^ vMK;.:7.'' :iy"n j;^igt-'-:'.-r 
 
 OEOMJ.TBI0AL PROflftSailolf. 
 
 Geometrical progression (477). 
 
 291 
 
 
 OPKIIATIOX 
 
 *\,r- 17 -^ ^ 3__t= 1328600, ^n,. 
 
 number uf /em«, mhtract one; divide the remainder bu the mJ 
 man raUo, less one, and multiply the ,uotienr^'7tJ^^^tt:Z 
 
 EXAMPLES FOB PBACTIOE. 
 
 An$. 64 miles. 
 »'« «y t«e rfrm«, to pid the common ratio. 
 
 mon ratio? " ^65720; wimt w ihe coiu- 
 
 Opbration. t— ^~^ = 265720 -- 1 
 
 8 — 1 265720 — 177147" ~ "'*' '^'"- 
 
 EXAMPLES FOR PRACTICE. 
 
 igjo .'"'-! '''•' *r" '"'.'*' **'* ^''''* <^rm 1372, an.? .K- - u. ,_,^ 
 
 lO'jv'; viiat is ifae ratio? "" '"" ""'" '"" "^^ terras 
 
 "lanl;, in geon,«r,o«l prL/Jon of^ttah ^.^L'^ ""'°"''' W' 
 
 m 
 
 V •' T 
 
 •it 1 
 
 h' 
 
298 
 
 LWB IM9CBANCK. 
 
 PROMISCUOUS IXAMPLES IN PROGRESSIONS. 
 
 1. A lady gare to a po<jr perKoii ..n the first dav ofthe year « 10- 
 on the second, $.2;l; and each succeeding day ^ 15 more U.t on 
 thejonner: how u.uch did thi« person receive 'on the K dav of"th: 
 
 2 For 7 day.s a captain dintrihuted Kon.e money to ifiw.ldierl^^on 
 
 he firs day he gave, hen, $.40, and on the foilouin; la^^'. '.nu" 
 
 tiplieit tliat sum t.y a certa n niunhep- finH H.Qf .,„ ,•',"*'""' 
 
 that on the 7ch dayf they received $29.) "^ "^'^ ""'"'-r k„ 
 
 J. What 8um »u,.t be paid for a thermometer, who^e price inea .ml 
 
 ofl\5T' •';*"' ,'rr •'^ '^- ^^^^ ^^-^ « ^^^er .en on"t'h;ia?5av 
 
 ner .r ^ I '^:'. ''' ^^^ '^*''' *^" '^^^ ^'"- ^'^-^^ ^' "'^' rate of r cent, 
 per U.. ; and. ./ the .ale of each day wa. triple that o. the preceding 
 
 on'th.^?.!''' ^'V^^ ""^^t ^'"^i"^^^' * confectioner leared^J^^. 
 o.Uh« 7th. year he cleared ^473850 ; required the ratio of increase pei 
 
 Ans. 3. 
 
 LIFE INSURANCE. 
 
 516. Life Insur=>nce Is u contract in which a companv 
 *t pulates to pay a certa.n sun. of u.oney on the death 7thJ 
 
 nually. or^u/r.erirnt^rdingtofgrTement '^ '' '"^'^"'^ '*°°"^"^' ^^'"'■a- 
 ^. The maured may designate to whom tbe amount of the policy shall be paid 
 
 u^^7'p'^^ Insurance Policies a.e of the followin-^ kmd.- 
 
 1^ An E,uhroment Insurance RAiry, that is, a contract \u which 
 an Insurance Company agrees to pay to the party insured a snec 
 
 biX T " '''''''' T^ '' ^° '"^ ''^'"-^^ should hi. death concur 
 befo e that age, on condition that he .shall pay an annual pemium 
 untd the policy matures ; 2nd. .1 mn-Zhrfeito,. ]ik or Z T 
 -^^ Pohc, IS one in which, even though the parfy insu • d .litid 
 fail to pay his annual premiun.s after the first, the company a xree. 
 
 l?fhY;;;ioT' '^ """^ '' ''^ ^"" '"^^^'^^ ^" ^^^ "''''-^? 
 
 The Expectation vf Life is the avarage number of yea.vs that 
 
)\S. 
 
 the year f.lO; 
 more, tlian on 
 last (lay of the 
 
 is -oldiera ; on 
 
 'lays lie niul- 
 
 iber, knowing 
 
 Ans. .1. 
 price iw equal 
 tlie l.Jth. term 
 inn. 50 cts. 
 n the last day 
 ate ul' C cents 
 the preceding 
 ns. 23328. 
 leured $650; 
 f increase per 
 Ana. 3. 
 
 LIFE INRURANei. 
 
 299 
 
 a company 
 
 eath of the 
 
 the insured 
 
 of tbe insured, 
 years, when ic 
 
 :mium at the 
 ally, setni-aa- 
 
 shai) be paid. 
 
 nnu; kinds: 
 ctiii which 
 red ;i spec- 
 leath occur 
 1 1 premium 
 or End >!.■}■ 
 lied should 
 any agrees 
 ni.iturity 
 
 years thai 
 etermined 
 
 In^reJ nm ;,.J» f fu P^O'"'"'" ""'^t be «uch a sura n.s will, when put at 
 
 Bnai IS easUy foand upon tho prinoipio of Life Annuities. ^ 
 
 Bnv flt![°ii°.!^,''""''^^'**'"''•"'''^^*■'^° ^■^'•'«' ^howing the premium to be pai.l at 
 B.ny ago to scour.) ad annuity cf i^ioo, during tho rern.^in.lor of life. ' 
 
 Dir1."tion"n? Thr/w'"' '' 'r^° "* '^ '^^"« °f tho polioy, and another at tho ex' 
 
 C<ul, Jo TftbrthiTn.hf '"f. '^?u"''"1 **''' fi^P^of-'ition of Life. One. called the 
 a^^^oVinih.fhi I M^ ^ Wig^lesworth Table. The Kxspeotation of Life, 
 atooraing to the two tables named, is shewn in the following 
 
 <! 
 
 1 
 2 
 .3 
 4 
 .5 
 6 
 7 
 H 
 9 
 10 
 11 
 12 
 13 
 14 
 
 ir, 
 
 16 
 17 
 
 18 
 
 19 
 
 20 
 
 21 
 
 22 
 
 23 
 
 24 
 
 25 
 
 2(1 
 
 27 
 
 28 
 
 29 
 
 ■M) 
 
 31 
 
 "7? o 
 
 .3H.72 
 
 44.08 
 
 47.5.''. 
 
 49.82 
 
 50.76 
 
 51.25 
 
 51.17 
 
 50.80 
 
 50.24 
 
 4 9.57 
 
 4S.S2 
 
 48.04 
 
 47.27 
 
 46.51 
 
 45.7.-. 
 
 45.00 
 
 44.27 
 
 43.57 
 
 42.87 
 
 42.17 
 
 4 1 .46 
 
 40.75 
 
 40.04 
 
 39.31 
 
 38.59 
 
 37.86 
 
 37.(4 
 
 36.41 
 
 .35.60 
 
 35.00 
 
 .34. J 1 
 
 33.68 
 
 §05 
 
 28. 1 5 
 
 3(;.7,S 
 
 38.7* 
 
 40 01 
 
 40.73 
 
 4U 88 
 
 40.69 
 
 40.47 
 
 40.14 
 
 39.72 
 
 39.23 
 
 38.64 
 
 3S.02 
 
 37.41 
 
 36.79 
 
 36.17 
 
 35.76 
 
 35.37 
 
 34.98 
 
 34.59 
 
 .34.22 
 
 33.84 
 
 33.46 
 
 33.08 
 
 32.70 
 
 32.3.3 
 
 31.93 
 
 31.50 
 
 .•il.08 
 
 30.66 
 
 30.25 
 
 29.83 
 
 to 
 
 
 32 
 
 33 
 
 34 
 
 35 
 
 M 
 
 37 
 
 38 
 
 39 
 
 40 
 
 41 
 
 42 
 
 43 
 
 44 
 
 45 
 
 46 
 
 47 
 
 48 
 
 49 
 
 50 
 
 51 
 
 52 
 
 53 
 
 54 
 
 55 
 
 56 
 
 57 
 
 5H 
 
 69 
 
 60 
 
 61 
 
 62 
 
 63 
 
 33.03 
 32.36 
 31,6« 
 31.00 
 30,32 
 29 64 
 
 25 96 
 28 28 
 27.61 
 26.97 
 
 26 34 
 25.71 
 25.09 
 24.46 
 23.82 
 23. 1 7 
 22,80 
 21.81 
 2i.ll 
 20.39 
 
 1 9.68 
 
 18.97 
 
 18.28 
 
 17.58 
 
 16.89 
 
 I6.2[ 
 
 15.55 
 
 14.92 
 
 I4.,!4 
 
 1.3.82 
 
 13.31 
 
 12.81 
 
 o , 
 
 2'i.43 
 
 29.02 
 
 28.62 
 
 28.22 
 
 2^78 
 
 27.34 
 
 26 91 
 
 26.47 
 
 26.04 
 
 25.61 
 
 25. 1 9 
 
 24.77 
 
 24.35 
 
 23.92 
 
 2.3.37 
 
 22.83 
 
 22.27 
 
 21.72 
 
 21.17 ' 
 
 20.61 
 
 20.05 
 
 1 9.49 
 
 18.92 
 
 18.35 
 
 17.78 
 
 17.20 
 
 16.63 
 
 16.04 
 
 15.45 
 
 14.86 
 
 14.26 
 
 13.66 
 
 <3 
 
 64 
 
 65 
 
 66 
 
 67 
 
 68 
 
 69 
 
 70 
 
 71 
 
 72 
 
 73 
 
 74 
 
 75 
 
 76 
 
 77 
 
 78 
 
 79 
 
 80 
 
 81 
 
 82 
 
 83 
 
 84 
 
 85 
 
 86 
 
 87 
 
 88 
 
 89 
 
 yo 
 
 91 
 92 
 93 
 94 
 96 
 
 
 12.30 
 11.79 
 11.27 
 10.7.: 
 10.23 
 9.70 
 9.18 
 8.65 
 8 16 
 7.72 
 7.33 
 7.01 
 6.69 
 6.40 
 6.12 
 6. HO 
 5,51 
 5.21 
 4 93 
 4.65 
 4.39 
 
 4.12 
 
 3.90 
 
 3.71 
 
 3.69 
 
 3.47 
 
 3.28 
 
 3.J6 
 
 3.37 
 
 3.48 
 
 3.63 
 
 3.63 
 
 c 
 
 ' 13.05 
 1 2.43 
 11.96 
 I1.4S 
 11.01 
 10.50 
 10.06 
 9.60 
 9.14 
 8.69 
 8.25 
 7.83 
 7.40 
 6.99 
 6.59 
 6,21 
 5.85 
 5.50 
 5.16 
 4.87 
 
 4.66 
 
 4.57 
 
 4.21 
 
 3.90 
 
 .3.67 
 
 .3.56 
 
 3.73 
 
 3.32 
 
 3. 1 2 
 
 2.40 
 
 1.98 
 
 1.62 
 
 n 
 

 8M 
 
 >.' I 
 
 I 
 
 ii 
 
 \i I 
 
 i^ge at 
 ibsue. 
 
 14 
 15 
 16 
 17 
 18 
 
 ly 
 
 20 
 
 21 
 
 22 
 
 23 
 
 24 
 
 25 
 
 26 
 
 27 
 
 28 
 
 29 
 
 30 
 
 31 
 
 32 
 
 33 
 
 34 
 
 35 
 
 36 
 
 37 
 
 38 
 
 39 
 
 40 
 
 41 
 
 42 
 
 43 
 
 44 
 
 45 
 
 46 
 
 47 
 
 48 
 
 49 
 
 50 
 
 51 
 
 52 
 
 53 
 
 64 
 
 65 
 
 UFB INSUKANOB. 
 LIFE TABLB. 
 
 ANNUAL PREMIUM ON A POLICY OF $100. 
 
 Payments 
 during life. 
 
 $1.4707 
 1.5105 
 1.5516 
 1.5940 
 1.6377 
 1.6829 
 1.7296 
 1.7780 
 1.8280 
 1.879S 
 1.9335 
 1.9891 
 2.0470 
 2. 1 07 1 
 2.1696 
 2.2346 
 2.3023 
 2.3728 
 2.4464 
 2.5232 
 2.6034 
 2.6873 
 2.7752 
 2.8674 
 2.9641 
 3.0658 
 3.1729 
 3.2.S56 
 3.4046 
 3.5303 
 3.6632 
 3.8038 
 3.9530 
 4.1111 
 4.2782 
 4.4549 
 4.6417 
 4.8393 
 5.0486 
 6.2708 
 5.5067 
 6.7577 
 
 Payments 
 To cease at 6t 
 
 Payments 
 . To cease at 60 
 
 Payincnt.s 
 . Tc)ccasoat5( 
 
 Asfo nt 
 . i^sue. 
 
 $1.4999 
 
 $1.5238 
 
 $1.6150 
 
 14 
 
 1.5422 
 
 1.5683 
 
 1.6681 
 
 15 
 
 1.6861 
 
 1.6145 
 
 1.7240 
 
 16 
 
 1.6316 
 
 1.6625 
 
 1.7826 
 
 17 
 
 1.6786 
 
 1.7124 
 
 1.8444 
 
 18 
 
 1.7275 
 
 1.7644 
 
 1.9096 
 
 19 
 
 1.7782 
 
 1.8186 
 
 1.9785 
 
 20 
 
 1.8310 
 
 1.8753 
 
 2.0516 
 
 21 
 
 1.8859 
 
 1.9344 
 
 2.1292 
 
 22 
 
 1.9431 
 
 1.9963 
 
 2.2118 
 
 23 
 
 2.0027 
 
 2.0612 
 
 2.3000 
 
 24 
 
 2.0648 
 
 2.1291 
 
 2.3944 
 
 25 
 
 2.1300 
 
 2.2007 
 
 2.4959 
 
 26 
 
 2.1981 
 
 2.2761 
 
 2.6054 
 
 27 
 
 2.2695 
 
 2.3555 
 
 2.72.^8 
 
 28 
 
 2.3444 
 
 2.4395 
 
 2.8525 
 
 29 
 
 2.4230 
 
 2.5284 
 
 2.9928 
 
 30 
 
 2.5058 
 
 2.6226 
 
 3 1466 
 
 31 
 
 2.5930 
 
 2.7228 
 
 3.3163 
 
 32 
 
 2.6851 
 
 2.8296 
 
 3.5044 
 
 33 
 
 2.7824 
 
 2.9436 
 
 3.7142 
 
 34 
 
 2.8856 
 
 3.0657 
 
 3.9503 
 
 35 
 
 2.9951 
 
 .11971 
 
 4.2182 
 
 36 
 
 3.1117 
 
 3.3:W7 
 
 4.5251 
 
 37 
 
 3.2361 
 
 3.4919 
 
 4.8807 
 
 38 
 
 3.3692 
 
 3.6584 
 
 5.2981 
 
 39 
 
 3.5120 
 
 3.8402 
 
 6.7959 
 
 40 
 
 3.6654 
 
 4.0393 
 
 
 41 
 
 3.8311 
 
 4.2588 
 
 
 42 
 
 4.0106 
 
 4.5021 
 
 
 43 
 
 4.2055 
 
 4.7735 
 
 
 44 
 
 4.4181 
 
 5.0782 
 
 
 45 
 
 4.6512 
 
 5.4235 
 
 
 46 
 
 4.9075 
 
 6.8180 
 
 
 47 
 
 6.1902 
 
 6.2?26 
 
 
 48 
 
 6.50,38 
 
 6.8032 
 
 
 49 
 
 5.8536 
 
 7.4317 
 
 
 60 
 
 6.2470 
 
 
 
 51 
 
 6.69:^6 
 
 
 
 62 
 
 7.2061 
 
 
 
 53 
 
 7.h01T 
 
 
 
 54 
 
 8.504^ 1 
 
 
 
 55 
 

 ts 
 
 Aafo nt 
 
 t5t 
 
 . isi?ue. 
 
 
 
 14 
 
 1 
 
 15 
 
 [) 
 
 k; 
 
 t) 
 
 17 
 
 t 
 
 18 
 
 
 VJ 
 
 
 20 
 
 
 21 
 
 
 22 
 
 i 
 
 2.i 
 
 ) 
 
 24 
 
 [ 
 
 25 
 
 
 26 
 
 
 27 
 
 
 28 
 
 
 29 
 
 
 30 
 
 
 31 
 
 
 32 
 
 
 33 
 
 
 34 
 
 
 35 
 
 
 36 
 
 
 37 
 
 
 38 
 
 
 39 
 
 
 40 
 
 
 41 
 
 
 42 
 
 
 43 
 
 
 44 
 
 
 45 
 
 
 46 
 
 
 47 
 
 
 48 
 
 
 49 
 
 
 50 
 
 
 51 
 
 
 62 
 
 
 53 
 
 
 54 
 
 
 65 
 
 UK INSDRANCW. 
 ENDOWMENT AS^URA^VCR TABLE. 
 
 (Ago at Polioydua 
 
 j isgae. at 40. 
 
 I> 
 
 1 
 
 i; 
 
 ■> 
 
 16 $3,356 
 
 17 3.545 
 
 IH 3.752 
 
 IS 
 
 3.978 
 
 20 
 
 4.228 
 
 21 
 
 4.504 
 
 22 
 
 4.812 
 
 23 
 
 6.156 
 
 24 
 
 5.544 
 
 25 
 
 5.985 
 
 26 
 
 6.489 
 
 27 
 
 7.082 
 
 28 
 
 7.752 
 
 2!) 
 
 8.558 
 
 30 
 
 9l 
 
 9.526 
 
 .1' 
 
 32 
 
 33 
 
 34 
 
 36 
 
 
 36 
 
 
 37 
 
 
 38 
 
 
 39 
 
 
 40 
 
 
 41 
 
 
 42 
 
 
 43 
 
 
 44 
 
 
 46 
 
 
 46 
 
 
 47 
 
 
 48 
 
 
 49 
 
 
 50 
 
 
 61 
 
 
 62 
 
 
 63 
 
 64 
 
 *5 
 
 
 
LIFB INHtTRANOB. 
 NON-PORPEITINQ TABLE. 
 
 ^B^^~:^j^^^;'^^^ 
 
 on fnr «anh '.. V • ""«:»"^'«n. »r one-twontieth of tlio sum 
 
 1 III! 
 
 Five I Ten 
 
 Paytn'>i|P*w»n»g 
 
 i 
 
 21 
 
 .'3 
 
 21 
 
 25 
 
 20 
 
 27 
 
 28 
 
 29 
 
 30 
 
 31 
 
 32 
 
 33 
 
 31 
 
 35 
 
 $7,696 
 7.8481 
 8.020 
 8.193 
 8.374 
 8.55fi 
 8.758 
 8.962 
 9.154 
 9.316 
 9.488 
 9.660 
 9.842 
 10.258 
 |14.400| 
 
 Fifteen 
 Paym's 
 
 «4.294 
 
 $3,190 
 
 4.3«(; 
 
 3.2(;0 
 
 4.482 
 
 3.;! 32 
 
 4.582 
 
 3.412 
 
 4.690 
 
 3.494 
 
 4.79S 
 
 3.574 
 
 4.914 
 
 3.(5G6 
 
 5.030 
 
 3.750 
 
 6.138 
 
 3.838 
 
 6.234 
 
 3.908 
 
 6.330 
 
 3.980 
 
 6.430 
 
 4.060 
 
 6.540 
 
 4.152 
 
 6.658 
 
 4.246 
 
 5.782 
 
 4.334 
 
 Twenty 
 Paym's 
 
 $2,656 
 2. 7 hi I 
 2.77.8 
 2.844 
 2.914 
 2.986 
 3.002 
 3.138 
 3.210 
 3.274 
 3.338 
 3.408 
 3.480 
 3.558 
 3.640 
 
 Five 
 Paym's 
 
 36 
 
 37 
 
 38 
 
 39 
 
 40 
 
 41 
 
 42 
 
 43 
 
 44 
 
 45 
 
 46 
 
 47 
 
 48 
 
 49 
 
 50 
 
 !?1 0.470 
 10.702 
 10.9;!6 
 11.178 
 11.422 
 11.664 
 11.886 
 12.110 
 12.332 
 12.566 
 12.808 
 1.!.063 
 1.3.336 
 13.648 
 13.9841 
 
 Ten I Fifteen 
 Payra's'Pnym'd 
 
 .'?5.914 
 6.050 
 6.190 
 6.336; 
 6.478 
 6.612 
 6.738 
 6.862 
 6.988 
 7.1221 
 7.262 
 7.410 
 7.574 
 7.762 
 7.972 
 
 .•?4.434 
 4..-)46 
 4. 648 
 4.758 
 4.870 
 4.972| 
 5.0621 
 5.1641 
 5.266^ 
 5.3661 
 5.478 
 5.610 
 5.752 
 5.914 
 6.10G 
 
 wenty 
 Payrn'j 
 
 $3,726 
 3.816 
 3.i)06 
 4.002 
 4.096 
 4.186 
 4.276 
 4.366 
 4.462 
 4.564 
 4.676 
 4.800 
 4.936 
 5.092 
 5.274 
 
 EXA.MPLES FOR PRACTICE. 
 
 $2750 
 
 OPERATION. 
 
 X .023728 = 165.252, Ans. 
 
 ANAtvam. - We multiply the 
 face of the policy, $2750. by the 
 rate <7f found opposite .SI ye.irs <a 
 
 malljr. aud obtain $65,252. the annual premium req^ufred^'*"'"' "P""^'"'' **'''■ 
 
 2. A person at the age of 23 Jneuree his life for $1500 • uhat w !,;« 
 annual preuiium ? p^ovv , unai is hi8 
 
 •i. U hat 8 the annual payme.u on an endowment nolicv for f:■^V•n 
 payab e at the age of 55, i.sne.l to a person at ,be aici% vLrs? ' 
 
 4 AM,a„.r2year.oId ,..„k an endowment assSLnce poitcv for 
 «8y0, dueatti*eaaeof50, and died when 49 ve^s oM ifv ' u 
 more would his heirs have reui.zed if h^ had Uk aTlife p'o c;*"; the 
 same amouat with p^ment to «*« at 50 ? W $266.40. 
 
Ti, to jeouro $100, 
 .ind ■"hould fail to 
 (ml tlic othor eon- 
 ii .<iiin j>, liable at 
 t'tcr niiL' premium, 
 n assured, ami ao 
 ^remiuiBj will b« 
 
 Fifteen 
 
 Twenty 
 
 ! Faym'i 
 
 Piiyrn'j 
 
 .«4.4;i4 
 
 ^3.726 
 
 4..-)46 
 
 ;:;.H]6 
 
 4.648 
 
 3.906 
 
 4.758 
 
 4.002 
 
 4.870 
 
 4.096 
 
 4.972; 
 
 •^.186 
 
 5.0(121 
 
 4.276 
 
 r..lGli 
 
 4. .366 
 
 5.2(J(3^ 
 
 4.462 
 
 o.HiiOi 
 
 4.564 
 
 5.478 
 
 4.676 
 
 5.610 
 
 4..'^n9 
 
 5.752 
 
 4.936 
 
 5.914 
 
 5.092 
 
 6.100 
 
 5.274 
 
 surance Com 
 »t the igsue of 
 
 B uaultiply the 
 
 $2750, by the 
 
 site .'il yeiirs -n 
 
 xpre3sed deci- 
 
 ; what IS his 
 '. $28,197. 
 cy for .•f35t.U), 
 27 .veara ? 
 ?e policy for 
 ; how much 
 policy for the 
 . $265.40. 
 
 ANNDTTIB8. «-, 
 
 ft A 
 
 a"^\i.e/:r,t''!:etT"r'lh? ''"I'^rr -" '"« "^^ •• «- a^e o, 26 
 
 an.,.„„t 01 insurance iha.! ? •**'''• '"'" "'"'^^ 'e^« will ^11?; 
 
 Ant 'KO.^^r^ 
 
 il/t«. $26^0. 
 
 AXNIITIK8. 
 
 is for a J.tto"„Sct"?v™s''"°' "'■'''' P'™"' "•■oo.mnuanoe 
 con,i:„« ilre'r""' *""""»' °' P^Petutty, is o,a. which 
 
 e»ci, pay,„e„t of an annuu/ „ a„ '" "T' '" !" ''' '■™'<oned „„ 
 sanuMis on an, other deb,/ ' "'°"' "" """""'J. 'bo 
 
 su:':*nTh^%*s\reof,r'7*'''*' "^ "" """-"y >» -b. 
 
 became d„,, ,„yr;°aV, "S '""■""• '■™'" "'^ '-' -»'" 
 
 •.-'!\b'':„^'o*<'rpi:i71r i-T'.'^' " -"po""-' '»■ 
 
 preset worth olit, floal^X TtMlf ^r""^' °' "■» 
 compound interest, wiU amoun »! ,1,/ ,• , "i""' P"' O""" 
 Ibe annuity, ,0 its 'finaUalue' '™o of the expiration of 
 
 rl-i"^- ■"•"-".-••'. ".6"^^^^ 
 
 'iJ the ordia-jry rates of inter«rt. * '^'^ * «"«° omaber of y,*,)* 
 
 I 
 
 III 
 
 i i' 
 
 ,M| 
 
 if r 
 
 f !)?« 
 
JN 
 
 Hh 
 
 \lk 
 
 ii'jj 
 
 
 TABLE 
 
 ''"'"'"5»/rL?T"**' ''^"" T^'-'J^^' "^*^ ^''^ ""'""'»• "' compound 
 i»fjrestforany number af y,i,in nul e:vcetding fifty 
 
 7 per oeot. 
 
 Ij 3pcre«nt. |8^ pececnt. 
 
 9 
 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 1) 
 12 
 J3 
 )4 
 lu 
 16 
 17 
 18 
 19 
 !20 
 v!l 
 
 y3 
 
 24 
 
 25 
 
 26 
 
 27 
 
 28 
 
 29 
 
 30 
 
 31 
 
 32 
 
 33 
 
 34 
 
 35 
 
 36 
 
 37 
 
 38 
 
 39 
 
 40 
 
 41 
 
 42 
 
 43 
 
 i.ouifooe 
 
 ;JAl3iiU(>0 
 
 .'J.O'JOJUO 
 
 4.l.-;i(i27 
 
 5.309136 
 
 i;.4»384IO 
 
 7.(ii)ilti2 
 
 1^.892336 
 
 IU.ir)9l()6 
 
 ll.4C,H79 
 
 i2J07796 
 
 14 1 921)30 
 
 15.617790 
 
 17.0r)0324 
 
 I8,./J89I4 
 
 20.156d81 
 
 21.761588 
 
 23.414435 
 
 25 nG"5G8 
 
 2d.o7o:i74 
 
 2:*.i;76486 
 
 1 OOIIOUO 
 2.035000 
 
 3 ii'(;22r» 
 
 4.21494: 
 5 3(W4ti6 
 6.5.'.Uli 
 7.779408 
 9.051687 
 i0.36d496 
 II 731393 
 
 4 per cent. 
 
 45j 
 4H 
 47(J 
 
 48 
 49 
 
 &9 
 
 30.536780 
 32.452884 
 34.426470 
 36.45!)2i;4 
 38..553(»42 
 4(1.709634 
 42.930923 
 4r).-Jl9rr50 
 47.575416 
 50.01 '2678 
 52.502759 
 55.077841 
 57.730177 
 60.462062 
 63.271944 
 6C. 174223 
 69.159449 
 72.234233 
 75.401260 
 78.663298 
 82 023190 
 a5.483b92 
 •3S).048409 
 ^~2'.)s6l 
 ;d'. 'v ! . ' 
 
 i^A^p ^; 
 
 OS..VJ, :;4w' 
 
 13.141992 
 
 14.601962 
 
 IJ.n3ii3o 
 
 17.676986 
 
 19.295681 
 
 20.971030 
 
 22.705016 
 
 24.490691 
 
 26 357100 
 
 2d.27:iL82 
 
 30.269471 
 
 32.32«9(;2 
 
 34 460414 
 
 36.666528 
 
 38.949=57 
 
 41.313102 
 
 42.75906{.' 
 
 46 290627 
 
 48.910799 
 
 51.622677 
 
 54.429471 
 
 .57 334502 
 
 60.341210 
 
 63 45315 
 
 66.67401 
 
 70.007603 
 
 73.457869 
 
 l.oiiui''"' 
 S0400UU 
 3.121600 
 4.216464 
 5 41632.1 
 6,632975 
 7.byrt294 
 9.214226 
 I0 5d2795 
 I2006I07 
 
 9 p«f oent. I percent. 
 
 77.02889r 
 80.724906 
 84.550278 
 88.509537 
 92.607371 
 96.848629 
 I0I.23S33I 
 105.7*1673 
 
 13.486351 
 
 I5.025s0i 
 16 626835 
 18 29)911 
 20.u235-:8 
 2i e24531 
 2:; 697512 
 25 64.'4I3 
 27.6TI . j}^ 
 
 29.77(r()79 
 31.969202 
 34.24797U 
 36.6 1 7 -r) J 
 3<».0b2604 
 41 645908 
 44.311745 
 47.084214 
 49.9675^3 
 52.966286 
 56 084938 
 59 323335 
 62.701469 
 66.209527 
 69.857909 
 73.652225 
 77.59=314 
 b 1.702240 
 95.9703:i(; 
 90.4091.50 
 95.025516 
 99.826536 
 104,819598 
 110.0123/^2 
 M.5.4 12877 
 121.029.392 
 !26,>7n56-:- 
 
 11. r, 3509731132.945390 
 iV0.3^8297!i:"').^G3206 
 125.601»4Ci :.>.833734 
 
 1.(1001100 
 2.0.")0000 
 3.152500 
 4 31 01 25 
 5,52.')63I 
 6 801913 
 8 142008 
 9.549109 
 1 1 ,026'64 
 12.r)77^93 
 I4.20(i787 
 15.917127 
 17 7 1 -,'983 
 1959=632 
 2 1 .57e564 
 23.657492 
 25 840366 
 a-', 132385 
 30.539004 
 3,3.06.5954 
 35.719252 
 3b.50.52 1 4 
 41 430475 
 44 501999 
 47 727099 
 51.113454 
 54.669126 
 58.402583 
 62.322712 
 66.43::; 848 
 70 7G0790 
 75.298r29 
 80 063771 
 85.06()959 
 9(t,320.307 
 95.S36323 
 101.628139 
 <07.7W)54t) 
 114 095023 
 
 I.OOOiiOO 
 2.(60000 
 .3.183600 
 4374<>I6 
 5.637093 
 6.975319 
 8393838 
 9.d974f^8 
 II 491316 
 I3.1ci0795 
 14.97 1(i4:i 
 I6.8(i9'.»4l 
 I8.8-1'J|;W 
 21.0l.-)0i;6 
 23,275970 
 25.6705281 
 28.2128t<0 
 30 905653 
 
 120.799774 
 127.83'J763 
 135.231751 
 142 993339 
 151.143006 
 159.7001.56 
 16^.6^5164 
 178 119422 
 IH8.025:{93 
 198.426663 
 
 33.75999 
 36.7tt5591 
 39.992727 
 43.392290 
 46,995828 
 50 815577 
 54. =64512 
 59.156383 
 63.705766 
 68 528112 
 73 639798 
 79.05=1=6 
 84 801677 
 90.889778 
 97.343165 
 104.183755 
 
 I.OiMlOOO 
 
 2 '170000 
 
 3 214900 
 
 4 43:i,M3 
 
 5 7.i073!» 
 7 l.'.3'29l 
 ^ 654021 
 
 1 0.25981 (3 
 1 1 9779=9 
 13816448 
 l57»,Joy9 
 17.888451 
 20. 14064 J 
 22. 5504 88 
 25 lJi^022 
 27.9=;054 
 30.P402I7 
 33 9hiyii3J 
 37..<7By05 
 40 995492 
 44.c(j5I77 
 49 005739 
 53 436141 
 58 |7o6rl 
 63.2490,30 
 68 6764'0 
 74.4=3->3J 
 80,69T(;i.»| 
 =7.346529 
 94.460786 
 102.073041 
 no •21=154 
 
 1 18.933425 
 128 258765 
 
 111.434780 1 3e,i;36878 
 I19.I2086-! 18.1M3460 
 127.2681 li>i J 'jO,;i3';4(jO 
 135.9042f/>i ti^;,,! ;ii) 
 45.058..'. ;' j4\.^i>i 
 
 154 761966 
 16,j.047684 
 175.950645 
 187.597577 
 191)758032 
 212 743514 
 226.508125 
 241.098612 
 256..->61.')29 
 .>72.9.5d401 
 
 i 130.99991 0|la2.6C70t>4[209!34797t>ja90.'3k5905 
 
 199.635112 
 214.609570 
 230.«)32240 
 247 776496 
 266.120851 
 285.749311 
 3ii(! 751763 
 32.1.224386 
 353.27(1093 
 378.999000 
 406.528929 
 
 46 
 47 
 48 
 49 
 50 
 
TAIii.E 
 
 Showinxr the present tvnrth ,,1 ,n annu,/ r-vi ., 
 
 305 
 
 3 p. eent. 
 
 0.97087.1 
 
 J.yia47(i 
 
 t'.82dGIJ 
 ;V7I70!W 
 4-.7;)707 
 5.417191 
 (».5«U-,'8'J 
 
 7.onhm 
 
 7.786109 
 
 9.-.i52(iy4 
 9.9.-)4004 
 I(».6:549.->5 
 ll.-<il)«073 
 11.9.{7!>3.-) 
 '■■i.ofi 11(12 
 I;j.l0(ill8 
 
 i:«.7r);{r,i.'} 
 14.323799 
 14.87747,'-) 
 15.4150'.>4 
 Il3.93(;9l7 
 Iti44;i()(;8 
 HJ.93r)r)42 
 I7.41314H 
 
 18. 32703 [ 
 18.704108 
 l'J.J6S455 
 19.(300441 
 
 •20.000428 
 
 0.9(;r>IH4 
 1.89:»G!)4 
 2.8(»u;;!7 
 3.()7.'J07;i 
 4.r.ir)052 
 5.328.-.5:! 
 6.114541 
 6.8739,-()| 
 7.C07G87 
 8.3IG605 
 9. 00 1 r>r) I 
 9.663334 
 10.302738 
 10.920.-)20 
 n.517411 
 12.0.94117 
 12.651321 
 13.1896S2 
 13.709837 
 14.212403 
 14.697974 
 15.16712.^) 
 15.620410 
 16.058368 
 16.48 1.'-) 15 
 
 .876842 16.8903.V2 
 1 'J.»->noi !•» <-».-.,..„_ 
 
 17.28536c 
 17.667019 
 
 i8.03r)7(;7 
 
 I A 392045 
 18.736276 
 
 .'0 338766 19.068685 
 
 20.765792 
 21.1.1J837 
 '1.487220 
 
 5l.>i32v.. 
 22 ir.7235 
 '22.492462 
 122.808215 
 •23.114772 
 23.412400 
 
 19.390208 
 
 19.700684 
 
 20,00l)t)6l 
 
 20.290494 
 
 2'».5ro525 
 
 20.841087 
 
 21.102500 
 
 21.355072 
 
 2I.O99104 
 
 23.701359 2 l.«;J4883 
 23 981902122.062689 
 24.2542741 
 
 •24..''>|f^7!; 
 24.775149 
 V 024708 
 25.266707 
 25.5016.57 
 r-25.729764 
 
 '2-2J8279I 
 
 2. t9,";45i; 
 
 22.700918 
 22.899438 
 23.091244 
 23.270564 
 23.455618 
 
 ".96 1. 538 
 1 .8r«(J09." 
 2.775091 
 3.629895 
 4.45182i 
 5.24213'/ 
 6 0020.55 
 6.7.32745 
 7.435332 
 8.110896 
 8.760477 
 9.385074 
 9.;»85648 
 10..563123 
 11.1/8387 
 11.652296 
 12.165669 
 12,6.59297 
 13.133939 
 13.590326 
 14.029160 
 14 451115 
 14.8.56842 
 15.246963 
 15.622080 
 15.982769 
 16.329586 
 16663063 
 16.983715 
 17.292033 
 17.588494 
 17.873.552 
 18.147646 
 18.411198 
 18.664613 
 18.908282 
 19.142579 
 19.3678641 
 19.584485 
 19 792774 
 19 9930.52 
 20.185627 
 2(1.370795 
 20.548841 
 20.7ii0040 
 20.884654 
 21 042936 
 2I.195J31 
 21.341472 
 21.482185 
 
 1 1.9.52.38 1 1 
 1.1.59110 
 
 3.515951 
 4.329477 
 5.075692 
 5.786:i73 
 6 463213 
 7.107ft2->| 
 7.721735 
 8 306414 
 8.8(532.521 
 9..39357:{ 
 9.6!)8641 
 I0.37i)6,58 
 10.837770 
 11.274066 
 11.689.587 
 
 o.943:{9(; 
 
 , 1.83:!:fi)3 
 2.72.V248I 2»;730I2 
 
 3.465106 
 
 4.212364 
 
 4.917.324 
 
 5.5s-j:wi 
 
 0.209741 
 
 6.80J692 
 
 7..360()87 
 
 7.886^*75 
 
 8..3S3814 
 
 8.8.52i;8;! 
 
 9.294981 
 
 0.712219 
 10.lO.5vS9.-, 
 10.4772(io 
 
 i.>,ij.;..;'.i!^'^~'^*''"V"-'-''''""" 
 
 2.08;>. 21 I J58Ji(;i0..3:!.5.578 
 12.4fi22lo ll.4{;9.12l 10.593')')7 
 12.821 1.53I 1 1.76-107; ' 
 12.04 i5-<-J 
 
 0,9,14579. 
 
 I.SOMJI? 
 
 2.(;.'13|4 
 3.3-^72(»!» 
 4.100195 
 4 7665371 
 5.3?928l) 
 5.97l29ri 
 
 6.5I582-* 
 7 023.577 
 7.498(i(i9 
 7.912(;7I 
 8.3.57635 
 8.745452 
 9.J07S9> 
 .0.44663-2 
 9.76:!20(i 
 lf».059O7O 
 
 13.16.3003 
 13.488571 
 13 798642 
 14.093945 
 14.275185 
 
 12.30.3379 
 l-.'..55035> 
 I2.78.335ti 
 I3.003l(!(i 
 
 14.64.3034 13.2 1 0.-.34 
 14.8981-7 13.406 KH 
 15 141074 13.590721 
 15.372451 13.764.^31 
 15..5928II 13.9290.S6 
 15.802677 14.08401;! 
 16.(102549! l4.23o-'30 
 16 192204 14.30814 
 16.374194 
 
 |10.8!5527 
 11.061241 
 11.272187 
 11.4693.34 
 ll.().5.3.83 
 11.8257791 
 11.9,'^6709 
 12.137111 
 12.277674 
 12.409041 
 r2..53l814 
 I2.64(m55 
 -7')o| 
 12.854009 
 
 14.498^!46 12-947672 
 
 1 6.546852 1 4.620987 13.0.35208 
 
 0.71 1287 14 730780 13.117017 
 
 10.86/893 I4.84(>019 13 1J)3473 
 
 17.017041 14.949075 |3.2(;49->8 
 
 I7.1.59/ir:'6jl5.04()297 
 '7.2943(;8il5.13eoi6 
 
 17.423208 
 17.545912 
 17.662773 
 17.774070 
 
 17.88(»067 
 17.981016 
 18.077158 
 18. IIJ87S2 
 
 15.224543 
 
 15.3()617.') 
 
 15..383I82 
 
 15.455832 
 
 15.524.370 
 
 15..589()28 
 
 15.650027 
 
 15.707572 
 
 13.331709 
 13.394120 
 13452449 
 13.506962 
 
 13.557908' 
 
 1^.605522 
 13.650020 
 13.6!)1608 
 13.730474 
 13.766799 
 
 18.2559251 15.76l86l|l3.8Q0746 
 
 f 
 
 Si 
 
 < % 
 
 t i 
 
 '■> ] m 
 
 i ' VH 
 
 
 f' ' 
 
3M 
 
 AWWniTtRH. 
 
 u 
 
 *m^. To find the amount, or final value, of an annuity certain, 
 at compound interest, in arrears, or forborne, 
 
 Ex. An annuity of $400 a year remained unpaid G years ; what re 
 the amount due, at 6^ compound interest? 
 
 OPERATION, 
 
 $6.975319, amount of SI for 6 years. (See Table). 
 
 400 
 
 $2790.1276; " $400 
 
 NoTT.— When the annuity draws timple iuterett, the amount is found as in 
 amutal interest. 
 
 52T. Rule. — Multiph/ the amount, or final value, of an an- 
 nuity q/'$l for the given rate and time,f()uii<l in the table, by the 
 given annuity, and (he product will be the required amount. 
 
 52S. To Bnd the present value of an annuity certain. 
 
 Ex. What 18 the present value of an annuity of ;j80, to continue 
 20 years, ato^? 
 
 NOTR. — Since the present value of 
 an annuity is the preaent worth of its 
 amount, or Qnal value, the present 
 value of an annuity may also be 
 found by first finding the amount, 
 and then the present worth of tbi;: 
 amount. 
 
 OPERATION. 
 
 $12.46221, present value of $1, 
 80 
 
 $996.9768 ; 
 
 $S0. 
 
 
 5S^. Rule. — Multiply the present value of an annuity of $1 . 
 /"or the given rate and time, by the given annuity. 
 
 5SO. To find the present value of an annuity in perpetuity, 
 
 Ex. What 18 the present value of a perpetual leayehold, which 
 yields an income of $840 a year, at 6 % ? 
 
 OPERATION. Analysis. — The present value 
 
 $84« ^ .06 = $14000, present val. ^^^ ^SrSanta^ ^S 
 
 $840, at 6 per cent. 
 
 5«{1. Rule. — Divide the given annuity by the interest o/Sl, 
 for one year. 
 
 Note, — When an annuity is payable semi-annually, or quarterly, interest must 
 be allowed on the hulf-yearly or quarterly pavQieDta to tho close nf the year. 
 
 5S2. To find the present value of an annuity in reversion. 
 
 Ex. What is the pre.sent value of an annuity of $500, deferred 10 
 years, and to continue 8 years, allowing 6 % compound intereet ? 
 
lity certain, 
 
 irs ; what re 
 
 ible). 
 
 18 found aa in 
 
 e, of an (in- 
 able, by the 
 mint. 
 
 tin, 
 
 to continue 
 
 esont viiluo of 
 mt xoorth oi Mi 
 I, the pro sent 
 
 may also be 
 ; the amount, 
 
 worth of thi? 
 
 luity o/^l, 
 
 '.rpetiiili/, 
 hold, which 
 
 present value 
 
 a principal 
 
 ual interest of 
 
 erest o/Sl, 
 
 interest must 
 the year. 
 
 version. 
 
 deferred 10 
 tere«t? 
 
 ANKUITIIB. 
 
 OPERATION. 
 
 ^ ' -"S^nnS^ P''^^^"^ ^*'»e Of $1 for 18 yeaw. 
 (..^60087, " ti « 10 « 
 
 $ 3.467al6, " » « 
 
 600 
 
 8 " deferrj'd 1 years. 
 
 1500 
 
 « 
 
 u 
 
 i< 
 
 to 
 He 
 
 $173^!.758000, " « 
 
 NATmv ^ i' '"''"'"J''"9 <'t once and continuing till the termi- 
 ^i'^*/^yv(y /A. r/.^Hr«c. of the^e present values, h, the given annuity. 
 
 '^£:^^t:^::s^l:^:^Si;. '^"""^ ^'"''^ °^ *^' ---en-gat 
 
 ratf ^b,!;;en:^ '" """''^' '""^ P-^^'^* - ^-1 value, time and 
 
 ^^m^^irX:^^^!^ ^ «^' --P-"^ interest, is 
 
 Analysis. —Since $6.209744 
 ate% compound interest, for 8 
 
 $623.70 will yield an annuit^ 
 ^ equal to $623.70 -i- 6.209744. 
 
 ^v?/i^m.f«/'!ff/V''T' "/ -^""^ "^^"^ of the given annuity 
 (^ijtUepH. sent or final value of an annuity of%Vfor the aim n 
 ■rate and lime. "^ "y wi-jyM/ in e given 
 
 EXAMPLES FOR PRACTrCE. 
 
 12yeaTi;'ut'ri"'^''""''"'"' '' '" '"""''^ jf $1300, to continue 
 2 A grou.Rl rent in the citv of Quebec yield-^ aT-n^nnf f f,"^^ ^ ' f 
 
 Am. |o93.86 f . 
 
 OPEKATION. 
 
 1?623.70 -f- $(5.209744 = $100.43 + . 
 
 ^i 
 
 !.:: 
 
308 
 
 ANHniTTM. 
 
 5. What is the present value of a leasehold of $900, deferred 6 yr., 
 md to run 10 yr., at 5% compound interest? Ans. $2804.43 + . 
 
 6. What is the amount of aa annuity of $1000, forborne for 15 yr. 
 at 3^5(5 compound interest? Ans. ■:'<\\)29r).(iH. 
 
 7. A widcw i,« entjtle<i to $420 a year, payable wniiarmuallv, for 
 18 3'ears; what is the pre.'>ei>t value of her interest, at 7 %, compound 
 'oterest? Ans. $42(;!. 
 
 8. A yearly pension, unpaid for 12 years, at 6%. wjmpound int., 
 amoiinted to $1)550.2762 ; what was the pension ? Ans. $1 1 :!9.1 2 + . 
 
 9. What sum should be paid for a perpetual annuity of §1500, pay- 
 able semi-annually, interest being at 6 % ? Ans. $25000. 
 
 10. A lease, whose rental is $()00 a year, is left to a son and a 
 daughter. The son is to receive the rei>tfor8 years and tlie daughter 
 for the 1 2 yr. succeedmg. What is the present value of the daughter's 
 interest, allowing 5 % compound interest? Ans. $8599. 3'J -f . 
 
 11. What will an annuity of 840, payable semi-annually, amount 
 to, in arrears for 5 years, at 6 ^ ? Ans. $458.55 + . 
 
 12. I w>:^h to purchase an annuity which shall secure to my ward, 
 at 5 5t compound interest, $300 for 15 years. What must I deposit 
 in the annuity oflBtee? Ans. $3113.89 + . 
 
 13. A laborer agreed to work for 1 year and 6 months at the rate 
 of $25 payal>le monthly ; he was paid only at the end of the 18 mo. ; 
 how much did he receive, being allowed 6% simple interest per an 
 Q»'"? Ans. $469.12^. 
 
 14. A merchant being desirous to secure a dowry k>r liis son. de- 
 posits annually a sum which, placed at simple interest, commencing 
 at his 1 2th year to his 23rd., amounts to $630, and that due for dowry, 
 to $5580 ; find the value of the yearly deposit, and the rate %. 
 
 Ans. Deposit, $300 ; rate, 30 %. 
 16. A founder wishes to economise $360 in 5 years; wliat swn 
 Bhall he have to deposit at the end of each year so as to have the 
 required sum at the end of the 5Hi. year, comprising both capital and 
 compound interest, at 5 % per annwa? Ans. $63.16. 
 
 16. What is the amount ofanannuityof$45. payable semi-annually, 
 for 3 years, at 7 ^ compound interest ? Ans. $294.75 + . 
 
 17. A servant leaves his yearly salary of $250 in the hands of hi& 
 master, on condition that he will allow him 4^% interest, per annum, 
 to be added to his capital ; find how much will be due the servant at 
 the end of 15 years. Ans. $5196.01. 
 
 18. A marbler buys divers blocks of marble measuring altogether 
 4.850 cubic yards at $1 16 a cu. yard ; lie pays $122.60 in cash, and 
 settles the remainder in 4 annuities; what ia the amount of each an- 
 nuity at 4^^ interest. Ans. $445.99. 
 
 19. Find the amount of an annuity of $225 fbr 5^yr. payable every 
 three months, interest -dt l^% also quarterly. Ane. $5729.62 4. 
 
 20. An oi! merchant bought 32 bbl. of euperfine olive oil, fur which 
 he paid'yearly $190 for 1 years. If money was worth 6 ^ per annum 
 compound int., what was the cost of a barrel ? Ans. $43.70. 
 
 21. A planter agrees to pay $598 in 13 payments, in such a maimer 
 that 6ach succeeding pa.yment shall be greater than the preceding one 
 bj 9 6 ; what will be hu first and last pajmeot 7 Au$. Last |ti2. 
 
red 6 jr., 
 4.43 + . 
 
 "or 15 vr. 
 l29r).6S. 
 lually, for 
 compound 
 
 $42(1!. 
 lound int., 
 ;0.12+-. 
 1 500, pay- 
 S25000. 
 son and a 
 ! dau-gjhter 
 laughter's 
 9.3'J + . 
 f, amount 
 8.55 + . 
 my ward, 
 1 1 deposit 
 3.89 + . 
 : the rate 
 5 18 mo. ; 
 set per an 
 :69.r2^. 
 is fcon. de- 
 uniencing 
 for dowry, 
 
 e, 30%. 
 iv\\&i som 
 ) have the 
 ^pital and 
 $63.16. 
 •annually, 
 4.75 + . 
 nils of hi& 
 ?r annum, 
 servant ax 
 196.01. 
 altogether 
 cash, and 
 f each an- 
 445.99. 
 ible every 
 29.62^. 
 for which 
 er annum 
 $43.70. 
 a mai»er 
 eding one 
 l8t|62. 
 
 AffWUITnM. 
 
 309 
 
 tl^f capital deposUed wlm canifll '^^ f f '^T ' '' ^ P"' aunum on 
 
 calculateciatl^i^gyearrv ' d ff S^. '*J!1 '^T'''' ''■ '"^^est Z 
 
 18 years and UnoSf' '^ ^' ^'""^^^^^ I'^'-^^ioo of hi« life b^ 
 
 24. A laborer, from the acre of Ifi ♦. «n ^"'^- ^^^^^ *2 5A. 
 
 23. A mechanic boucht tools fn,- tu^ , *-^"'- *'*15-45i. 
 
 m yearly, so as to cance] hird/bt in I ''*™ ""l f L^^® = ^^^^^^ ^'d he 
 pound interest ? ' ^^"^ "* ^ ^^a^^' at 5 Jg per anmim cora- 
 
 26. I have deposited $5000 at 5 <*; intPPP«* ^ :^"'- *^' ' -27. 
 withdraw only .$150 yearly, and tha flT ' °".«o»dit.on that I will 
 
 win be added to tj/e cap^ af wha? Vilf i!T''^'' «*" '^' '"»«^«t 
 years ? ^'*^""' ' "^^^^ will be due me at the end of 12 
 
 27. When dvin? a forfKo- ua . ^^s. $6591.71 
 
 a boy and a giH " yeSt oTd V, ''""^ "^'"^^^^^ *« 1"^^ twin chi Id L 
 
 deposited at 7%, If;^„^^;,,VrdtSVo?r"'^^ ''' ^^« ^oy -a« 
 'nterest, payable semi-annually • the IfJZ^'^^'h ^^ ^ ^ compound 
 
 bemg 13 3.ar5«wide and twicJ as S 'r ' '" 35 window^ each 
 $3.37 J per square yard, but oServe that a <?m ""f ' Pf ^ ^' '^'' '"^'^ ^ 
 must be added to make up frthe head n^Ll f W' of the wmdow 
 in 3 instalments tb^ fl J l ^^''^^^^ ^''"'^*'- Hewdnpaid 
 
 being at 54 qi li,!, ^'* "l^'"^"^' ^"d the others yearly • interL 
 
 is to op«, 9 years he, ce how Mmch wilf nf/"°T °''^^"'^.' ^^'**^ 
 money, if he is allowed a veaHv fi i Jii ^^*^P" ''chaser pay in ready 
 
 30. A roof of 128 smmie v nl^ -^ I '^"i'' ^'^267.41. 
 
 minous «.ment of i of an neh'^^ t '"'^ ^ ^'^ '^ ^'■'"• 
 
 The oontrastor wal paid iH W*;'^T'' ^* Z^^' ^i^. a sq. yard, 
 year, ex,«pt the k tTuch was nS"^'"*" ^T^^^ ^' '^' end V 3 
 
 hi^ stock it thl iate S- $93^6 an^"" '^'^'^ bearing 4^ 5,5 ; he Uier, seSf 
 What shall be hifyeart bco'me TZl^' ^T'"''' '". ^ "^^ ^"""i^^- 
 for selling his stock; 2- iX comnanv 1 ^^'.'^ ^^^ » 5« biK,kefa^ 
 aWr^Pa go? <;,_ ^^^.'^ '"* company w4iere heseenpf^s eb» M^n-n- 
 
 32. A defctor owfs WOOIllr^i ■ iT' . ^»«- MM5.38. 
 
 could he ye.,1, j^ *;ur«ao u?'""! P"''' "I' « ' «; ™l« .wn 
 
 ■'It 
 
 1 1f 1 • 
 
 Hi 
 
 
310 
 
 rS^UPBRATtmB>-THRRM0Mli:TER8. 
 
 Pi .' 
 
 (■;-;■ 
 
 ' i ! 
 
 1 1 1 1' 
 
 ?8 in a Savings Bank, a,i'S^%; and continues the same for 20 yeafs, 
 
 comuicricmg at the age of 26. What will Ite his capital at the end </ 
 the 20th year, including an income of $40 from etock bearing 4^%, 
 which, at his request, the bank purchased for him from his deposits 
 every second yenr, at the average rate of 93 % ? Arts. $12852.94. 
 
 34. An engineer who earns on an average §^2.30 a day, and works 
 25 days a month, spends yeasJy $1T9 for hoof?e-*ent, S«l5 for jl^mly 
 expenses, and .f6» for euiwiry expenses. We want to know; 1" how 
 nmoh he may save yearly ; 2° what will be tiie totai value of hi?« 
 yearly sayings by depositing them at 6 ^g compound interest, from Us 
 
 fh •*■ '^ ^®^*'' '^^ **^** y^^^^y income he will enjoy at the age 
 
 Of &4, If at 47 he eonverts the total value of his sayings into an 
 annuity bearing 4^96 inteffest, supposing him to live to ihe age of 76 
 aDd4montJ>8? Ana. 1»$135; Z'' 3808.74; 3» $94.3.Ib + . 
 
 TEMPB]RATIJRE— THERMOMETERS. 
 
 (586. Temperature is a term employed to denote the con- 
 dition of a body in respect to heat, or cold ; it al«>o expresses the 
 greater or less capacity of a body to excite i« us tiie sensation of 
 heat or cold. 
 
 NoTW.— Heat and cold are correlativa terms ; that is, as the former inoreaises 
 in a body, the latter decreases, and the converse. Tom|)erakure generally nten 
 to tho amount of sensible heat in a body ; eold being regarded as the absence of 
 heat. 
 
 SST. A Thermometer is an instrument used to measure <fce 
 wraperature of bodies. 
 
 NoTM;— 1. The oonstruotion of thormometera dopendi <m the prineipie, wfcieh 
 IS universal, that bodies are expanded by increasing and contracted 1:^ deoreusing 
 their tempowiture. The thermometer commonly used for measuring iempei atures 
 neither extremely high nor extremely low oonsists of a glass tube having a small 
 bore of uniform diameter, and at its end a bulb within which is mercury. 'Jihere 
 B aieo a scale which meMurea in degrees the length ot the column of morouiy, 
 wWoh by its expansion or contraction within the tube indicates the temperature 
 ^0 whioli tbo thermometer is exposed. 
 
 2. 'Ibermouiet-ers are graduated by markin* on the Uibtv, or attached plates, 
 two poinrts at which the mercury stands at fixed and easily asoerlalned teniper- 
 ntureit the lower being that of freemng water oalled tihe freewag poia^ aod«he 
 higher kbot of boiling water, when the barometer stands at 2&.M inofaes (760 
 milikm^. ^ 
 
 4*38. In the cetHiigntde thepraometer, or that of O'lsrns, the 
 freezing point is marked lero (O''), ^ bmlku; point, 100°; and 
 tiie i^tt<»uiediate spaoe is divided into 160 ecpd parts eoMed 
 
''v^^Y^r ^3fr'"" ".'■ 
 
 WMPERATTTRB-THlRMOMarmB. 
 
 idod into 180 equaip,"!" ' ""' '°'«''™' ('8"°) -s dJ^^ 
 
 o'!lt?.he\S?r„r;i„v 8orr L^^^ ^r-s p--' « -rhd 
 
 equal parts or degrera. ' '°'"'"'' ''^"'« ''■"ded into 80 
 
 Jfc£tS"'o,^t': -rrr.re«--»^ „p.^ ,„„ 
 
 (- 391" C, _ 39" p., _ 3ir,o r"! t''e freezing point for mercury 
 mercury (3481° C; 660° F ^2791^'r ^^i^^?^^ '^' boiling pointed 
 facrl'"*'r't? ^'^"^I^rature L> tl e" scales Tr''"'"^?*" ^^"'^ ««^«« 
 
 filling the tbTo.oteSr'."''"*'"' '^'^ - ^'-''o. inlt;af of Seru^fS'^o" 
 
 Since th« interval between th. a. 
 * divided into 100 eqnarpartefn «,/',"« ?"'' '','"""8 Po^" »f "ater 
 ■ahrenheifs, and 80 Mual Mrl, il'l,.*-™'*?*' ISO equal pans?' 
 
 SS,K'."i^'™- ■» ."«ktd!20.'';L"Lft„t-A»i':».-a,e t^e 
 
 <ijrraA %«e.. i»-""W<:< k<^^ 4e fAe temjieralvre in Ci," 
 
 ««. To change fton. t.^..^,,;,, ^ j^^^^^^^,^ ^^^^^ 
 
 aumur's degrees ^ ^^ "'*'* *^ <^« temperature in d- 
 
 s^.f **■ T° orange a temn«rafnr^ .,. •_ , , 
 
 ^^^\- .nto the saiue as givenljFlhrUekr ^ '^" ^''''^'''^' 
 
 ^"ri^m'^'tTX!!: S/r it^^^* ^-^ ^' -^ «^^ .^2° ^c, 
 
 ,«^ urn «;t^/ 6. ^« temperature by Fahrenheit^, 
 
 I i i?i 
 
 
r !: 
 
 i ml 
 
 V > 
 
 1 i 
 
 ; 
 
 •\ ! 
 
 l>! 
 
 '12 TKMP«RATUai5-THMlMOMBTIR8. 
 
 »44. To ehange fi^om Reaumur's to Fahrenheit's eoale. 
 o9?Y'1;~^'f '^'y f^j^^'^rees on Reaumur's scale hy |, and add 
 heif^scale '''^' '"'^ ""'^^ ''" *^'' temperature hy Fahren- 
 
 545. The degrees on the Centigrade, Fahrenheit's, and Re- 
 aumur s scales, corresponding t) temperatures differing by 10° 
 Centigrade between the freezing and boiling points of wat^r, are 
 given in the following tablo : ' 
 
 Ceutigraat. 
 
 0" Zero = 
 
 10" = 
 JO® 
 
 30» = 
 
 40" = 
 
 60" = 
 
 60« = 
 
 70O = 
 
 80» = 
 
 90» = 
 
 lOOe = 
 
 Fahrenheit. 
 
 32^ Freez'g. = 
 
 50'^ = 
 
 68" = 
 
 86° = 
 
 104" = 
 
 122" = 
 
 140" = 
 
 158" = 
 
 194" = 
 
 212" = 
 
 Reaumur. 
 
 0" Zero. 
 
 8" 
 16" 
 24" 
 32" 
 40«» 
 48" 
 56« 
 64" 
 72" 
 80" 
 
 By means of the rules (641, 542, 543, 544,) the atudent can readily 
 extend this table above and below these limits. 
 
 EXAMPLES FOK PBACTIOE. 
 
 1. What temperature bj Fahrenheit's Hcale corresponds to 176" 
 Centigrade? 'Jna 348*° 
 
 2. When the temperature of a body by Reaumur's thermometer is 
 7» , what IS It by I'ahrenheit's? j^„g 20"'" 
 
 3. What temperature by Reaumur's thermometer answers to 834° 
 Oentigrade ? ' 
 
 4. What temperature t)y Centigrade's soalfi norre-oorids to 45" 
 Fahrenheit? ' " ^ ^^^ ^^^ 
 
 6 When Fahrenheit's thermometer indicates —13°, what should 
 ttie Ceati^fradK Mi Reaumur's indicate ? 
 
 4Wf Qwtigrade, —26" j Beaumur, ■-20''. 
 
"^yr*^Tj^i»->g^qi| 
 
 A Mktrb 
 
 '^ KlI.OMIITK 
 
 An Abh, 
 
 «QrriVAL«.Tfl or mrthio measures. 
 
 « 39.37 
 — 3.284 
 = l.OQSfl 
 
 ( '■» I 
 
 <«-^«3 
 
 C =.< 
 
 7 -ifl^-.T'-^''""'^ 
 
 C — .^.953-f- yq rods _ 
 
 =«= 39.37 inches...... 
 
 .28-f- feet.... 
 
 .09S« + yards! 
 
 313 
 
 An inch 
 A foot 
 A yard 
 
 flfj^^t 10 inches I^y^rd 
 
 A »q. yard 
 A iq. rod 
 
 ~ n- ■(]. 
 
 A Hkotaub i = 2.47J acres. 
 
 ? = .0038»-f sq. mii;' T *"''° 
 
 -T- 04. miie ^ A sq. raifo 
 
 ■■i:a,tet ^«i--h 
 
 ^^■" Asq. foot 
 
 A Stkbk. 
 
 -^ a cubic raoter.. I * . . 
 
 ..3i1[!t°;:S/a:::;."L'„":?r 
 
 — •22»'l+ meter. 
 = .3048-f tneior. 
 *" •9141-1- meter. 
 
 » .OOflilH kil,.m. 
 « l.609-f- kilom. 
 
 *= '834-1- cent! are 
 «= .2629+ are. 
 
 -= .4046-f- hect. 
 « 258.99-f- hect. 
 
 =-=.0006454- cent. 
 = .0929-f cent 
 
 =.0000163-f8ter9 
 «= 3.62-f 8tere. 
 sz .7H4-J- stere. 
 = ,0283+ stere. 
 
 A IdTKa. 
 
 / ♦• * •»M«ttr« 0/ capacity , I 
 
 = a cubic dooimetcr I a 
 
 1 "= •"«8+ of a „T„^/"n:::V;- I ^ °^ f£<^'. = 23.32 liters. 
 
 •JOB I "°"""«"'r.. 
 
 ^oi.oi+oubicinfihes 
 
 A flKOT»i,rr«B,. ^ ■" ^•''^•'^-f bushels 
 
 ' =3.a317l-loHbicfeet 
 
 AaRAJi,. .. 
 
 ( ~ (35^ ^'■■*°'' ^'•°^ ^' •• A grain 
 C ~ i».d6+ ounce, At. Wl ' 
 
 A ;.r n ., = ^H.^2 liters. 
 
 A& = 3.78+ liters. 
 A fluid o«. », .02958+ liter 
 Acu.„ich =..,M63-fr,ite'r"- 
 
 A bushel 
 A ou. foot 
 
 .352+ hectol. 
 .283+ hectol. 
 
 .0648+ gram. 
 
 A &.,>«««.... j - S?t S: l;: »S- ^° -ojr. lb. ^ .4530+ kilo. 
 ^ - 2.679 1 Troy VV^ght ( l-^,--^- ^ -J^S^f kilo°|. 
 
 ^ T^"'^"*" J r ??„1;i'»> At. Weight..... 
 
 f — i,ivi-j- tons 
 
 An avoir, lb. ; 
 A ton 
 
 ilog. 
 
 = .000453+ ton. 
 : .907+ tonneau 
 
 100 grades. 
 
 ' A ton 
 
 A Gradr S **« measure of anaUii • * • u. 
 
 J =- .9 of a dog«e^^ f "S"^' «»?'« - - ,.„_ 
 
 ° A de^-ree =■ i n "'"■ 
 
 NoTBs — 1 Th "II • '='*"I' grades. 
 
MENSURATION. 
 
 i i 
 
 I i 
 
 ' 
 
 •Mi 
 
 ij < 
 
 I i 
 
 DEFINITIONB, 
 
 546. Mensuration treats of the meaearement of lines but 
 faces and solids. ' 
 
 547. A Point is that which has place, or position, but not 
 ma-jnitude. ^ ' r j 
 
 548. A Line has length without breadth or thickness, and 
 may bo straijrht or curved. 
 
 549. A Surface is that which has length, or breadth, without 
 height, or thickness. There are three kinds of surfaoes; viz 
 
 plain, convex, or curved, and concave. ' 
 
 550. A Plane Surface is one, every point of which is 
 touched by a straight line, extended over and upon it. 
 
 551. A Curved Surface is one that ha« length and breadth 
 without thickness, and is constantly changing its direction. 
 
 5S-S. A Concave Surface is the reverae of the curved, and 
 constitutes the interior surface of a hollow sphere. 
 L ^??" ^?^^}h Volume, or Body, is that which has length, 
 breadth, and^ thickness. Length, breadth, and thickness, are 
 called dimensions. Henoe, a solid has three dimensions, a surface 
 two, and a una one. 
 
 ANQLBS. 
 
 554. An Angle is the diyergenoe 
 6f two straight lines from a common 
 poiat; as the angle A. Also read 
 
 1? ^* '^^^ ^^'^ straight lines are 
 called the sides of the angle, and the 
 
 common point of intersection, the wr/«E. 
 
 555. A Right Angle is an angle 
 formed by a straight line and a per- 
 pendicular to it, and contains 90°- 
 as the angles ABE and E B 0. ' 
 
 556. An Acute Angle is one 
 less than a right angle ; as the angles 
 
 557. An Obtuse Angle is one 
 greater tiian a right aagle : ae the an- 
 gle A B D. 
 
 — 
 
 / 
 
VftUNQLKfl. 
 
 Hnee, stir 
 
 n, but not 
 
 kness, and 
 
 li, without 
 Mies; viz., 
 
 which is 
 
 d breadth 
 on. 
 rved, and 
 
 as length, 
 
 jiesa, are 
 
 a surface 
 
 [▼ergenoe 
 common 
 Jso read 
 lines fire 
 , and the 
 le vertex. 
 an angle 
 i a per- 
 ns 90°; 
 
 tc. 
 
 ) is one 
 le angles 
 
 ) is one 
 I the ao' 
 
 315 
 
 lie^??);^"*"®i.''"^««'-«^»^''««th'''t 
 ^e in the sanie direction ; they are 
 
 other ; as A B and C D. 
 
 POLYGONS. 
 
 it. mr&c. " ^"^ "'■ " "sure is the number of equare units in 
 
 TRIAN0LB8. 
 
 56«. There a„ eev.r.1 kind, of triangle,, „.„»),.. 
 e,L.*" """"""^ friangl,, the three sides of whioh .„ 
 
 . In lie right-angild trianrie tlfj J^ """* ?"° "Slit angle. 
 is oaUed thehi^LnZ^ ' *" '"''' °''1'°^"« ""= --igh "angle, 
 
 fciquilateral 
 
 leoseeles. 
 
 Scalenui 
 
 NoT«.-Ih« aottod li«« «.p,^„ ^^ ^^^^^^ ^ ^^ ^^ 
 
 Kight-anjled. 
 
 m 
 
 
 ? m 11 
 
 U' 
 
816 
 
 OF THR nrnrLi. 
 
 QUAIIRILATEKALS. 
 
 m 
 
 1 1 
 
 I I 
 
 k . I . 
 
 567. There are three kinds of quiulrilateralfl, namely : 
 o" ^t® Parallelogram, wliicli has its opposite sides para 
 o mi J'^^P^O^d) ^'I'cli li''f^ only two of its sides parall 
 3. The Trapezium, which has none of its sides parallel. 
 
 Parallelogram. Trapewid. Trape«uai. 
 
 ^56S^ Ther e are four kinds of p;.rallolograms, nauiely: 
 
 1. The Square, whose 
 
 sides are equal, and whose 
 angles are right angles. 
 
 2. The Rectangle, 
 
 which is any right angled 
 parailf ic^rani. ' 
 
 3. The Rhombus, or 
 Lozenge, whose sides are 
 equal, and whose angles 
 are not right angles. 
 
 4. The Rhomboid, 
 whose opposite sides are 
 equal, but its angles are 
 not right angles, and its 
 length exceeds its breadth. 
 
 ISquaro. 
 
 Reotnngle. 
 
 BhomJiUB 
 
 ^<^mboid. 
 
 OF THE CIRCLE. 
 
 569. A Circle is a plane figure bounded 
 by a line, every part of which is equally dis- 
 tant from a poiat within called the centre as 
 A G H B C E D. 
 
 The Circumference of a circle is the line 
 that bounds it. It is divided into 360 parts 
 called degrees. 
 5^0. An Arc is any j.ortioii of the circumference ; as A D, 
 
 3J1. A Radius is a line drawn from the centre to the cir- 
 cumference ; as A, or C. 
 
 57a. A Diameter is a line which passes through the centre 
 and IS terminated by the circumference ; as A B. 
 
MBIVSOIATIOV op suaPAOBB. 
 
 — 317 
 
 •rc^^f D 0°"'"' '" * ""«'" ""« J'»""'« ">« -femUio, of „. 
 
 drolei »> the ,,",t A * K A "•» P'--"""! chords of . 
 
 S79. A Lune, or Orescent .o ♦!, 
 
 fpaco contained be ween the !r^!' of . ' 
 intersecting circles. ''' °^ '^° 
 
 whfsf L;Lf Sf: .5et'7 '^ T 
 
 pentagon ABC D E ^"''^' "^ '^*' 
 
 MKNSUKATICN OF SURPACBS. 
 
 Probf.km T. 
 
 To find the area of any paraUelogram. 
 
 ■> n- , . * '^ * ~ ^ " square yards /It,, 
 4th ,476 00^4 ykTUlm/,'^'^ «^«-' /J- > 
 
 .-.1"5w'4'o|-,%"^.j:,^-'^«^^U.«o.^. 
 
 
 ; )3 
 
 ^ 
 
;* 
 
 i. i 1 
 
 . 1 
 
 i 
 
 li 
 
 ■li 
 
 Mi 
 
 n 
 
 n 
 
 a 
 
 A E 
 
 H p 
 
 Q1Q 
 
 ° «»NiUBATlON Of 8Ca»A0BH. 
 
 3. Find the area of a rectangle A B C D 
 
 01 wlucl. th. I,a.e A [i = 7 yard.H, and th^ 
 iiltitiide A I) = 4 yards. 
 
 Ol-KRATION. 7 < l = 2H flq. yd., -!»|«. 
 
 4. What is tlie height, or allituda, of a 
 recta..;rle who-e l.aso is II yards, and aren, 
 i IZ rtquare yards? 
 
 14 =. s yards, ^«.. ^ * ''®"°°' ""»* ^°'«^»' •'hoild bo eqiml to 112 + 
 
 ■dna. 1st 72 1. 5 1 i sq. yd. ; 2nd 10997.248 eq. yd., etc. 
 
 n M ^^''^"^ '^ "'^ ^'■^* °^ ^^^^ rhombua A B 
 L p of which the base A B is 12 feet, aad 
 ahitudeE D, 4 feet? 
 
 Operation. 12 x 4 = 48 sq. feet, Atu. 
 
 7. Find the area of the rhombus whoae 
 - 4n 99 v^ 1? n oo -.^'^ ^"'-^ »'tiMi.les are as follows : 1st A B 
 q^q-f'^^ y i^A^u'^ 32.,oyd.; 2nd D C = 105.75 yd., C P = 
 86.95 yd. ; .^rd A B = 145.20 yd., E D = 127 54 vd -4/11110 — 
 
 /)«.. UtW.n.Z(lo«i.yd.; 2nJ 9194.9625 .q.ViSfd 18518.8080 
 
 Q wu..* ■ *i ja. ■ /!»». 110 8q. ft. 10 eq. m. 
 
 .n 1*fW nf J' t'^^f'S^^fenoc between the area of a floor 50 feetsquare, 
 
 ^^•n1 r ?^''''' t^*"^ ^^ ^""^ ^"^-^^^ ^««- 1250 feet. ' 
 
 lU. iind the bases of rectangles containing each 19208 sq. vd 
 
 S'2 8(?v) /h 7n"f.n'''?''/r> ''* 100 y^-' ^»d 7,24 yj., 3rd 
 iJ52.80 yd., 4th 705.fa0 yd., 5th 940.80 yd. 
 
 M TT. 11 "^"n ,^''*- ^^^-^^ y*^- 5 2nd. 85.75 yd., etc. 
 
 11. How many boards will be required to floor a room Ifi yards 
 loDg by 8 yards wide, .f each board is 3.90 yards long by .32^ard 
 
 10 A -4 11 o- V „ . . ^w*- 102.56 board's. 
 
 12. A side-walk .3.) i\. 3 :n. long by 2 ft. 9 in. wide is to be orer-laid 
 with a nuxture ot bitume and sand. What will be the cost at $2 92A 
 a square foot? ^n... §283.54 + .' 
 
 l.-i. Ihere is a square whose area is 3600 vd. ; wh^it is the side of 
 a square, and the breadth of a walk along each .side and each end of 
 the square, which sliall take up just one half ..f the v-hoie' 
 
 fl ^A**- ^ Hi ^\*^.o*" the .square; 8.78+ yd., breadth of the walk. 
 
 \\ piece of land in the form of a parallelogram is 2i;4 yd. loa^' 
 and Its width is^j of its length ; how many bushel, of wheat will ^ 
 required to sow it, it it takes 1 4 bu. per 1000 sq. yd. ? Atu. 43.56 bu 
 
■K'^nsATroN OF nvHTAm, 
 
 PROBLRM n 
 
 319 
 
 
 aa L» 
 
 
 «'• I'ltiu tJie area <if .. . • i "^ *!•/"•) 
 
 32.2 feet. *'"'' '^'^^ "-'angle whose ba«e is 7fi , . . . 
 
 «-Afleldof»,.- , ' ^ ""«'"f l"«ifJi will covW 
 
 Pkoblem III 
 586. Rule.— I a,?^ ,, 
 
 I T . "*" "'*^'*'' "'"^ '* A"'/ 
 
 •«« te ,Ae «;„,>«;„„„ '?«'« ™»( of Ihe product, which 
 
 * "~ ^^ half ,UBa . 22 — 8 s: 13. 
 
 f 
 
320 
 
 i' 
 
 
 i. ; 
 
 1 
 
 1 
 I 
 
 
 i 1 ' 
 1 
 
 1 
 
 i 
 
 i 
 
 1.1! 
 
 I. ! r 
 
 MwisuBATioif ev mKrA<m. 
 
 3rd rem. Then. 
 
 Irtrem.; 22 - 16 = 7, 2nd rem. ; 22 - JO = 2 
 
 ^:?;?i^;';s5^^;- jrc ^ ^^ ^ ^ ^ ^= ^««^^ vioor^ 
 
 25 fiq^^t" •"*''' ''f^''''^»g"'«''fi^ld are 49 chains 50%^^ "^^ ^"^^ . 
 ^5.69 chains; what is its area? cnama, 50.25 chains, and 
 
 4. Whatis'theareaofanisosceJe^ ,ri„ . ^?- ^^-^^ 97 9 acre... 
 each of the equal sides 22 5? '' '"*"^''' '^''^^^ base ia 30, and 
 
 5. How many square vards in o ♦..: i , •^"*- 251.55. 
 10 ft. 4 in., an.i LOfeet ? ^^'' ''^°''' ^'^^^ «^« 8 ft. 5 in., 
 
 6. How many arnenta arp «1,«h^ ;„ „ . ■ . '^"'- '^•^'^■^ ^q- y^'- 
 15 to. 3 ft, 24J to.,'^!;?.^ ; ,0 'ft ? '':i^"g"^'' fi^'^i ^vhose side, are 
 
 7. There is a triangle hi in . -I"^' ^ ^'''P' ^^■^^'■^ «q- per. 
 
 shortest .ide 9 2 f et^a^d he oS m^ uf T'^'^^ ^' '^'"^ 'fe^^' ^''^ 
 contents? ' ^^ ''"'^'^ '^"^^ 10.4 feet. What are the 
 
 8. How many acres in a frian^i- i .l '^^' '^^'^'^^ ^- ^^et. 
 and 1147i yards? ^ ""'^T t'^'-^e sides are 570, m, 
 
 9. What is the area nf « t.- . '^"*- ^0 A. 3 R. 4.72 per. 
 35 perches? * ""^ ^ tnangular meadow, each side meafuling 
 
 Kl. Find the area of each offl,»f^ii • '^n*. 5;^0.44 + per. 
 
 Ides are : Ut illTalXd^^^^^^^^ 
 Ans. 1st 106.28+ bo ft. 9r.A i^l'A ' ^^d 81 yards? 
 
 square yards. ^' ^^ ' ^°^ ^^^'^^ + «q- 't. ; 3rd 2840.99 + 
 
 Problem IV. 
 
 To find the hypothenuse of a right-angled triangle when 
 the base and perpendicular are known. 
 
 giJ'cri^eRL^a^^J^^/i^^,^-^^^^^^^ whose area and altitude are 
 
 tfi^ 6a,e. * '"^ alHtude, and douUe the quotient, the rettdt ioM gve 
 
 we^a^eJ'A^R - llf^'T^^'i ^'■'^"g^^ ^ ^ C, 
 to find A C. '" '''^' ^"'^ ^ C = ^S '•eet; 
 
 Operation. 203 =_400; is^ = 2265 400 + 
 226 = 626; V 625 = 25 ft., AC. | 
 2. The height of a mast planted on the brink 
 of a pond, ,s 144 ft., and the breadth of t^^e. 5 
 
 opposite edge of the poL? ^ '^'"^ '^' ^^P f *^« "^^^^^ to the 
 ^ ^^^ Atu. 290.24+ ft. 
 
fl rem . The n. 
 04; V4004 = 
 
 in a triangle, 
 
 16i 8q. yd. 
 !5 cliains, ami 
 .4979 acres, 
 lase 18 30, and 
 ns. 251.55. 
 are 8 ft. 5 in., 
 64!) eq. yd. 
 hose side.s arc 
 )G3 eq. per. 
 
 15.6 feet, tlie 
 'Viiat are the 
 
 139 ^- feet, 
 are 570, 6{0, 
 k. 4.72 per. 
 Je measuring 
 ).44 + per. 
 angles wjiose 
 
 .vard.s ? 
 J 2840.99 + 
 
 ngle when 
 
 I. 
 
 ely. 
 
 II he the hy 
 
 i altitude are 
 'etwU wUl g ve 
 
 >gle ABC, 
 = 15 feet, 
 
 26; 400 + 
 .C. £ 
 
 II the brink 
 I of the pond 
 line which 
 iiast to the 
 ►.24+ a. 
 
 3 ««-.««„,„, „ ,„^^_^^^^ ^^^ 
 
 yorda: finf) ff °f " '"""S-lar field ,, ?„„,.„. „'<"•' lOl/rPfr. 
 
 4 Tl, " ■'"^'^''"<'" ' "'"""« I acre and 3 r 
 
 „:j • A, 'adder 50 feet Inn., .„:>, __ . Am. U:^^^ 007 ' ^ 
 
 fiide-walk. :l?l'.^^«'''?eNit will rP.nl, „ L"'_"r ^'f'. 'acMer over to 
 
 ^n.9. J4.^7I .897 yd. 
 
 '!^e other .ide c7the st'ree't l^'S,^"'^ ''> -' 
 
 tl>e^aS:oretV?iJ'^'^'^^ 
 
 . ■'^. What.;nSV''f^^!-^'2^eet? 
 
 Ans. 21.1 (eet. 
 
 '^ I'ouse, in theW. ' " 
 
 ,..e, if 
 
 Ans. I7.G7 ft, 
 on each side were 17.< 
 ^"« 24.78 ft. ^ 
 
 -'^- What would u''f'''!'!^2^eet? 
 feet? ^"'^'^'^''^^^'dtb, if the rafters 
 
 Proble.m V 
 ''•'en the h,p„,|,e„„,e ^^^ one sidl „f u 
 
 '*•• i. in the rieht- " - 
 
 riven A f <.. ., "6"' 
 
 given A C ~? '>?!• '''^^'<-a".?Ied (Wangle A R d ^. , 
 2 ■Vr'V''"'' '"'=■'«« i «25 - 400 = 225 . ^2-^ 
 
 9n fa^t — "J f^'-.i^uuse era 
 
 / 4l ,''^^* ,'« t'^e ba.se ? . ^. 
 
 ■4n*. 06 feet. 
 
 ong. anditsoppolitevokpL^',.?* ''"^ «^ t^ie rafters be \( fl 
 
 Problem VI. 
 
 -^ "^e area Of a trapezoid. 
 Orijj. Rule Mth' 1 
 
 ^^ t-o: the quotient wiulTtt^X'^'^-divi^^ 
 
 
fi ! 
 
 '1 
 
 )1 
 
 I , I 
 
 . ■ 1 
 
 1 
 
 . 1 
 ! 
 
 ! 
 i 
 
 
 si' 
 
 j 
 
 Mf 
 
 J 
 
 ii 
 
 
 322 
 
 MBI^SURATION OF SDRFACES. 
 
 Ex. I. What is the area of the trapezoi*^ 
 A BCD, having given A B = H4 yards, D C 
 = 26 yards, and D E =» 20 yards? 
 
 Operation. (34 
 
 -5- 2 = 600 eq. yd., 
 
 26)x20= 1200; 120C 
 Ans. 
 
 2. Required tlie area of trapezoids who^e perpendicular heights auJ 
 bases are: 1st H = 16 It., B = 24 k. and 36 ft. ; 2nd B = 20.15 
 ■>i.2f) yd. and 62.49 yd. ; 3rd H = 36J ft., B = Ib^^ fi. 
 
 vd., B 
 
 and85ift.: 4th H = 55 A yd., B = 106.iyd. and 134j»'„ yd. : 5lh 
 
 1st 480 sq. 
 
 ft. 
 
 H = 7(1^ ft., B = 145J ft. and lODj a. Ans. 
 
 2nd !)74.65u5 &q. yd. ; .3rd 2923.15 sq. ft., etc. 
 
 3. What is tlie area of a trapezoid, the parallel sides of which are 
 12.41 and 8.22 chains, and the perpendicular distance between Jhem 
 6.15 chains? . Ans. 5 A. 1 R. 9.956 per. 
 
 4. The parallel sides of a piece of land having the form of a trape- 
 zoid, are 2482 and 1644 hnks, and their perpendicular distance is 
 1030 links: find its area. Ans. 21 A. R. 39.824 per. 
 
 5. A field in the form of a trapezoid whose parallel sides are 76.28 
 and 60.72 yards, and the perpendicular distance 4(i yards, was sold 
 for $18768 ; what shall be the cost of another field o( the same kind 
 having a rectansular form, who#e base is 115 yards, and altitude 
 76 yards? ' Ans. $51760. 
 
 Problem VII. 
 To find the area of a quadrilateral. 
 
 500. Measure the four sides of the quadrilateral, and also 
 one of the diagonals: the quadrilateral will thus be divided into 
 two triangles^ in both of which all the sides will be known. 
 Then, find the areas of the triangles separately, and their sum 
 will be the area of the quadrilateral. 
 
 Or again, 
 
 Let fall on the diagonal two perpendiculars drawn from the 
 vertex of the opposite angles ; multiply the sum of those perpen- 
 diculars by the diagonal, half of the product will be the area. 
 
 n E^' i. Suppose (hat in the quad- 
 
 rilateral A B C D, the diagonal A C 
 = 88, the perpendicular D B = 27, 
 and B F = 25 ; what is the area? 
 
 Operation. 27 + 25 = 52 ; 62 x 88 
 -r- 2 = 2288, Ans. 
 
 2. In the quadrilateral A B C D, the 
 side A B <« 12 lieet, the side B C => 
 16 ft., the Hide C D >^ 10 ft., the eicU 
 
MENSURATION 01" 8DRPA0E8. 
 
 323 
 
 e trapezoi*^ 
 yards, D C 
 
 200; 120C 
 
 leightp and 
 1 = 20.15 
 = 75j'(» n. 
 '„ yd. : 5lh 
 I) gq. ft. ; 
 
 r wbicb are 
 weeo them 
 956 per. 
 
 o( a irape- 
 listaace ih 
 ,824 per. 
 s are 76.28 
 ii, was sold 
 
 eame kind 
 [)d altitude 
 
 $51750. 
 
 ', and a ho 
 
 ivided into 
 
 be known. 
 
 their Hum 
 
 I from the 
 one perpen- 
 i the area. 
 
 a the quad- 
 igonal A C 
 D E = 27, 
 je area? 
 
 2; 62 X 88 
 
 ^ B C D, the 
 side B C =. 
 t'l., the eida 
 
 AD = 
 
 1 P ft., and the diagonal A C = 22 ft. ; what ia the area ? 
 
 9 «,, , . , ^ns. 174.02 aq. ft., 
 
 .i. What 18 the area of a quadrilateral whose diatronal is 40.25 feet 
 and the 2 perpendiculars 12.25, and 15.05 ft.? 4.' 549.4125 sq ft ' 
 
 4. Kequired the area of a quadrilateral whose diagonal is 108 feet 
 b inches, and the perpendiculars 5« feet ?, inches and 60 feet 9 
 '"^>^|;. , ,^ Am. 6347.25 sq. ft. 
 
 .0. i;ind theareaofeachof !he follow! n^r quadrilaterals: Ist dia<'- 
 onal 65, perpendiculars, 28 an<l .^8.^; 2nd perpendiculars, 18 auTl 
 lb, diagonal, 42; 3rd diagonal, 100, perpendiculars, 35 and 30. 
 
 Ans. l.t 1998.75; 2nd 714; etc. 
 
 6. In the quadrilateral A B C D, A B = 40 yards, D C = 36 yd 
 
 Sfh " Vf-: ^ F ^ ^^'^^ y^- 5 ^'^«' F E = 8 yd.; find the area 
 ofthequadrdaterai. Ans. 1280.42 f sq. vd. 
 
 7. buppose that in the quadrilateral A B C D, on account of some 
 obstacle, we could measure only A B, D C, BF, D E, and F E which 
 measure respectively 26, 22, 20, 21, and 7 yards; what is the area 
 of tUe quadrilateral ? Ana. 585.275 sq. yards. 
 
 PaoBLEM VI i I. 
 
 To find the area of a regular polygon. 
 
 5»1. Multiply (he perimeter of the figure bij half the per- 
 pendicular let fall from the centre on one of the sides, and the 
 product imll be the area. Or, 
 
 Square (he side of the polygon, then multiply the square so 
 found, by the tabular area set opposite the polygon of the same 
 number of sides, and the product will be the area. 
 
 The following Table shows the areas of regular polygons of any 
 number of sides, from three to twelve, the side of each being unity, or 
 1 ; It also shows the length of the radius of the inscribed ci°cle 
 
 Number 
 of sides. 
 
 3 
 
 4 
 
 o 
 
 6 
 
 7 
 
 8 
 
 9 
 
 10 
 
 11 
 
 12 
 
 Names. 
 
 Areas. 
 
 Triangle. . 
 
 Square . . . 
 
 Pentagon.. 
 
 Hexagon 
 
 Heptagon . . 
 
 Octagon. 
 
 Ngnagon 
 
 Decagon. 
 
 Undecagon 
 
 Dodecagon. 
 
 0.4330127 
 1.0000000 
 1.7204774 
 2.5980762 
 ;;. 63391 24 
 4.8284271 
 6.1818242 
 7.6942088 
 9.3656404 
 11.1961524 
 
 Radius of 
 inscribed circle. 
 
 0.28S6751 
 0.5000000 
 0.6881910 
 0.86602.')4 
 1.0382617 
 1.2071068 
 1.3737387 
 1.5398418 
 1.2028437 
 l.b660264 
 
 i 
 
 I 
 
 1 
 
'1 f 
 
 I'! 
 
 I ' 
 
 
 9£4 
 
 MKNBtmATION OF SUmFAOBS. 
 
 E:v. 1, Required the area of the regular 
 pentagon ABODE, each of whose sides A B, 
 B C, etc., is 12 feet, and the perpendicular 
 P, 9 feet. 
 
 Operation. 12 x .5 x 
 
 f = 270 ft., 
 
 Ana, 
 
 tbe 8id«8 =s 18 
 
 2. Find the area of each of the following 
 regular hexagons: 1st side, = 20, perpendic 
 ular =-= 15; 2nd perpendicular = 12^, one ot 
 3rd side, = 36, perpendicular = 27. 
 , o . , , ^ns. 1st 900, 2nd 675, 3rd 2916. 
 
 3. Kequired the area of each of the following regular polyfone 
 
 1 of a pentagon whose side is 30, and the perpendicular, 24°feet- 
 
 2 of a heptagon whose side is 16, and the perpendicular, 12^ feet; 
 .irci of an octagon whose perpendicular is 20, and each side, 22 
 
 ,• w. , . , ■ , ^«»- let 1800 feet, etc 
 
 4. What IS the area of the following regular polygons: let of a 
 hexagon whose side is 25.40 chains; 2nd of a nonagon whose side s 
 ^0.5o chains; 3rd of a dodecagon whose side is 28.30 chains? 
 
 . -. ^ns. 1st 1676.174841 sq. ch.; etc. 
 
 5. Uow many pavements in the shape of a regular hexagon, the side 
 of which IS 3 incheis, are required to pave a room 6 A yards lone by 41 
 y»'"'^«^'de? ^/M. 1.31+ pavenfente. 
 
 Problem IX. 
 
 To find the area of an irregular polygon. 
 
 592. Rule. — Divide the polygon into triangles and trape- 
 zoids ; find the area of each separately according to the Proh, II 
 andYl; the sum of these areas will be the ivhole area of the 
 
 polygon. 
 
 Operation. 
 + 64) -T- 2 =. 
 = 31 X (27 
 AmB = 41 
 4464. oCD = 
 
 
 
 A/H -= 33 X 
 4032, GnpV 
 
 10) ~ 2 ^ 
 
 Ex. 1. What is the area of the 
 irregular polygon ABCDEFGH 
 measuring asfollows: A/ = 33yd. 
 In = 84 yd., np = 28 yd., pq 2. 
 31yd,, 9D = 13 yd.; A7» = 41 
 yd., mo = 96 yd., oD = 52 yd. ; 
 H/ = 32 yd., Gn = 64 yd., Fp == 
 27 yd., Ey = 70 yd. ; wB = 32 
 yd., oC = 61 yd.? 
 
 32 -^- 2 = 528, H/nG = 84 x (32 
 28 X (64 + 7) -V- 2 := 1274, F»oE 
 i>03.5. E«l> = I:-J -' ^n _i_ '> __ ^KK 
 
 l5o;- 
 
 X oi 
 
 EyD = 13 y. 70 
 
 455. 
 
 52 X 61 
 
 2 = 65(5, BwtoC = 96 X (32 + 61> -^ 2 
 + 456 + 66C , iiU^lm - 1441.8.6 ,q. yi., or 2.M6+ Je^lt 
 
the regular 
 3e sides A B, 
 erpendicular 
 
 570 ft., Ana. 
 
 he following 
 
 •, perpendic. 
 
 12^, one ol 
 
 3rd 2916. 
 T polygons, 
 lar, 24 feet ; 
 ar, 12^ feet ; 
 ch side, 22 
 3 feet, etc 
 is: Ist of a 
 rhose side 's 
 line? 
 
 ch. ; etc. 
 gon, the side 
 3 long by 4| 
 avementfl. 
 
 MENSURATION OP .-DRPA0E8. 
 
 (tnd trape- 
 \e Proh. II 
 area of the 
 
 area of the 
 !DEFGH 
 1= 33 yd., 
 yd., pq «= 
 Am = 41 
 == 52 yd. ; 
 yd., Yp = 
 wiB = 32 
 
 = 84 X (32 
 274. FdoE 
 - 2 « 455, 
 l> -^ 2 « 
 he polygon 
 I + 1503.6 
 acres, Ana. 
 
 as 
 
 2. Suppose the same irregular polygon A B 
 follows; Am = 10ft. fin.,L = 32 ft 
 
 ft. 4 in. /« — 0/ A n • ' „ "-' "" 
 
 325 
 
 C D E P G H to measure 
 6 ft. 4 in., In = 21 n. 9 V:' Tp Z % l' V"-' oU = 28 ft. ; Al 
 ■= 4 ft. 10 in.; Bm = 10 ft ;^. 7. l" ^-'.^^ = lift. 6 in. oD 
 Qn = 16 ft., FP - 4ft!Vk,%rJ^^- 2.n ; ^^ T '^"- ^ -' 
 
 "V ^q la ft. 8 in. ; what is its area ? 
 Ans. 1297.82+ eq. ft. 
 PROMISCUOUS .XAMPLBS I» R.CT.UN.AL .,™p«E». 
 
 4 yards high; allow- 
 
 ceilin„ ? P" ^^"^'^^ yard for Uie walls, and fin nf= e^°. 
 
 le 
 
 ceiling ? ''^ *'" "^"^'■'^ y^''^ fo' tiie walls, and 60 cts. for tlL 
 
 2. Some paper 15 inches lon^r an,i 10 • u • .'^"*- $1^5.56. 
 quire; what will a quire of the LmT ^^'"«^«« wide, costs 1 6 cts. a 
 long and 13 inches wide ? ' ^"^''^^ "'''' ^h'«'' >« ^^^ >nche« 
 
 3. The panelling of a room is 191 t^- 1 .'^"*- ^-^'il- 
 what must'^be paid for It Cwin^ ?hi? h' ^^"^ ^""^ ^ ^°'«^^ high: 
 I8a. 4d. a sq. toise, and tlie naTnJL r,f o^^, ^^rpenter'n work cSsts 
 
 42yar..s? * ^ ^"^"^'e, whose sides are 20, 30, and 
 
 „^^- ThehypothenuseofatriancJe is 4^; fo.f a ^'^"5" ^^^-^^ yd. 
 25 ft.; what is it3 base? "**"«'* '^ ^^ «et, and its perpendicular 
 
 32 ft. long and ISmchesZJ^^i^X 1 f''''^'' ^''^'"' ^he rolls bein"ir 
 at $1.75 Iron ? '^''' ' ^°*^ ^^^'^^ "^"^^ bo paid for the whole 
 
 9 What is the surface of a <^hepf nf -i 30 rolls; |52.60. 
 
 wide? uii^ceota sheet of paper | yd. long and | yd 
 
 10. The sides of three sauares Rr» q a A ^"^^ ^''^•> °^ "'i ^q. ft. 
 
 12. A 6ide.walk 6iyardslon-andlAvaHJl^!J' pavin.-tile.. 
 with stones, each stan% has a aurfaco o 70 sauarlt'.;' ^ ^l P*^^'^ 
 b3 the cast of the whole pavement at the rat2 of ?1h' a'' ' T^'^S^^^ 
 etonea? ''*'' '"^ '^^'^^ ol i5>18.i)0 per hundred 
 
 J 3. What ia the area of a panlpn in tl,^ »Uo * ,"^^*" ^32.5<i. 
 length of which i. 45Td an/ti;';';4dtS 2f;j7' ' ^^^^-^"^' ^« 
 _ 14. A tjquare yard of a floor r.nQt«$9 «o • h» v' • « 
 *^« .i^^^^dUy. 5- yeards ; what i7the I^'t f """'^ ^ T^f^''^^ 
 lo. A ladder 16X feet iu leu^nh stands unvlcrhr .. • . ^^i yards. 
 far must the bottom of it be d?awa out from f b TT^ ^ ^^'"' ''«^ 
 the top 8 inches ? ^"^ ^^"^ "^^''^ ^•'> »" to lower 
 
 •ud 5.2o yd. h,«h, at the r«teof $i.ia tha^. yd. 7 AZ%lt88+' 
 
 
326 
 
 MENsnaAxroN of surfacbs. 
 
 I'r 
 
 I 
 
 j 
 
 L 
 
 ' i 
 
 17. What cost a piece of cloth 12^ yards long and I A vards wide, 
 at the rate of.$1.90 a yard in length? Ans. $23.15. 
 
 18. What is the area of a trapezoid, whose diagonal is 45.10 yards 
 long and the two perpendicular?, 15,80 and 20 yards? 
 
 ,„ . , , Ans. 807.29 sq. yards. 
 
 ly. A man plastered three ceilings each 7.35 yards lono- by 5.40 
 yards w:de, and painted 6 doors each 2.05 yards high by L05 yards 
 wide ; what sum must be yet paid him, if he charges $1.22 a sq. yard 
 for tne ceiling, and fO.HG a sq. yard for the doors, havinir been paid 
 already $22.40 on account? ^ 
 
 20. Find the side of an equilateral triangle equal in area to a square 
 whose side IS 8 feet. Ans. 12.15 + ft. 
 
 21. Find the area of a piece of land comprising three trapezoids, 
 and one triangle ; the parallel sides of the first trapezoid are 36 
 and 54 yards, altitude 19.50 yards; those of the second are 110 
 and 75 yards, altitude 126 yards; those of the third 186 and 141 
 yards, altitude 219 yards; the base of the triangle i.s 69 yards, altitude 
 
 /9 A%n u 1,,-. ^ns. 10.244+ acres. 
 
 IZ. A field whose parallel sides are 630 and 436 yards, altitude 80 
 yd., 18 let for $200 a yr. ; how much is it per acre? Ans. $22.70 + . 
 
 23. A room 12 yards long by 7 yards broad was floored with boards 
 rf yards m length ; the waste made on employing those boards was I 
 oMheir gross surface, and they cost $.25 per sq. yard, gross surface. 
 Ihe work was done in 12 days at $1.10 a day, and the nails used 
 amounted to $2.50. Find the whole cost of the floor. Ans. $39.70. 
 
 24. A man wishes to plant 1815 trees at an equal distance Jrom one 
 another, so as to form a rectangle whose length is to its breadth as 5 
 18 to 3 ; how many trees should he plant on eacli line ? 
 
 ^5. Ihe g of the cost of a barn gate being paid, there still remains 
 I of that cost plus $23.40 to be paid. Suppose the barn to have two 
 gates each 3 yards in width and 5.40 yards in length : what cost the 
 square yard? ° ^^^ ^4 
 
 26. Some earth was brought and levelled upon a field whose area 
 equals that of a regular heptagon, the side of which measures 42 yd. ; 
 i^hat cost the work at 4d. a sq. yd. ? Ans. £40 1 3 + . 
 
 27. What will be the cost of roofing a building with sheet-iron at 
 $1.22 a sq. yard, if the roof comprises two equal triangles whose bases 
 are 9.40 yd. and altitudes 6.32 yd., and also two equal trapezoids 
 whose parallel sides are 25.48 and 16.08 yd., their altitudes bein<r the 
 same as those of the triangle? Ans. $392.92 + 
 
 28. The breadth of a field in the form of a parallelogram* is to 'its 
 length, as 5 is to 18; what are the dimensions of this field which 
 sowed in wheat, produced 28f bushels per acre, and 345i« bushels 
 "'o^"^ . ,. .. i«»- 460.24yd. in length; 127.84 yd. in width. 
 
 ZJ. iin indiviauai has a property forming a trapezoid whose parallel 
 
 8ide^ are 465 and 806 yards, altitude 550 yd. In the centre stands a 
 
 square pond whose side is 45 yd. Find I» the whole area of the field • 
 
 i" that of the pond ; 3° that of the cultivable part. ' 
 
 Ans. 1« 349625 sq. yd. ; 2« 2025 sq. yd. ; 3« 347500 aq. yU. 
 
MKNSURATION OP SURfACES. 
 
 I vardw wide, 
 s. $23.75. 
 I 46.10 yards 
 
 sq. yards, 
 ong by 5.40 
 y 1.05 yardfl 
 ',2 a sq. yard 
 ig been paid 
 
 I to a square 
 2.15+ ft. 
 ? trapezoids, 
 zoid are 36 
 md are 110 
 86 and 141 
 .rd3, altitude 
 I + acres. 
 , altitude 80 
 522.70 + . 
 with boards 
 (oards was ^ 
 •OSS surface, 
 e nails used 
 r. $39.70. 
 ce t'rori) one 
 )readth as 5 
 
 5 and 33. 
 till remains 
 to have two 
 lat cost the 
 
 Ans. $4. 
 
 whose area 
 ires 42 yd. ; 
 1 3^. 
 iheet-iron at 
 ivliose bases 
 trapezoids 
 ;s being the 
 392.02 + . 
 am is to its 
 ield which, 
 5J^ bushels 
 in width, 
 use parallel 
 tre stands a 
 3f the field; 
 
 10 sq. yd. 
 
 327 
 
 wlull; ^Illd'^Jd^s ^r^J^tf ITo'ir ,1> r° ^^"^^' ^^^P^^-^'ds 
 •qnal triangles wh..seba,;es are Ifi20^v'' i-jT V'"' ^'^^ ? 2" two 
 l-'ps each being lo.so v ..Ton 'hv Vv V f "^T'"^ ^''^^ ^^^ ' ^'«° '^ 
 ^l"".!,' the gutters; the'siafes wK,.?*" {!:>''*;'' P'"« ' '"'^"^ '^f'slates 
 0.21 7 yd.,"and ar'e ZrZo 19^ vd" h ^) ^- 'V"''\"'^' ^ ''^'^ ^y 
 
 are paid .r sundr? e.pe^ %^iSS Xfe io^stTtlKo? ^^^ 
 
 4ns. $265.22^. 
 Problem X. 
 
 To find the circumference of » circle, the diameter being 
 
 given. ° 
 
 wcf Will be the circumference. 
 N0T^4,« is the cireumferenoe of a circle whose diameter i. 1. 
 
 . ■^•^- ,^* What is the circnrnterenre nfo 
 circle whose diameter is 18 yards? 
 
 Op.R. 3.1416 X 18= 56.5504 yd., 4„,. 
 
 3. What are the circumferpnPf.a r.e ■ i ' , Io7.7106 yd., etc. 
 ^n». I 265.46o2 yd. ; 2" 422.482368 yd., etc. 
 
 Problem XI. 
 
 To find the diameter of a nimio ♦!,« • 
 
 •luccer 01 a circle, the circumference being 
 
 594. RVLK-Bivide (he circumference hy 3.141(; and th. 
 qmtunt will he the diameter. ' ' 
 
 1^%i'J^V''^'^'^'^''^' ^^^ «'r«'« -hoee circumference is 
 
 Operation. 25.1328 - .3.1416 = 8 yards .!«« 
 ^^^t^r^V^^f^ who. circun^,.n;es are ^ 
 
 yd': Ki;2:;^;liJ22?'2o^"'^?^r?^"T"^^«-^ '^^9.2. 
 
 60 it 6' 3" ? ^ ' 4«. 1-1/0.;,'.? i '• I ^*^- ' "' *H y^- ; P" 
 
 iiw. 1 11.02146 yd. ; 2«' 24.2105 + yd., et^. 
 
 e 
 
 M 
 
1 
 
 328 
 
 I 
 
 1 
 
 J 
 ! 1 
 
 1 
 
 ■1 
 
 1 It 1 ^M 
 
 ■ 
 
 * ^^^|H 
 
 ■ 
 
 i! 
 
 1 
 
 MKN!!5i;nATrON OP SCTllKAOliS, 
 PR'BLKM XTT. 
 
 To find the length of a circular arc, whea the number ol 
 
 degrees which it contains, and the radius of the 
 
 circle are known. 
 
 n^*'}J*' 1^''^^K.— ;)//(// /y,/y fJir. vinnhpr of degrees hy the decimal 
 .01 ^•lo, and the product arising, hy the radius of the circle. 
 
 E.v. I. Suppose the arc A B to contain 
 D 120 degree.-, tirui the railius A C be 10 teet j 
 
 what is tlie length of the arc ? 
 
 Oper. .01745 X 120 X 10 ^ 20.94, Ana. 
 
 2. What is the letjgtli of an arc containing 
 25°, the diameter of the circle licing 15 ft. ? 
 
 Ans. 3.2718 11. 
 
 E .S. Required the lengtli of each of the fol- 
 
 lowing aros: 1 1120 10',(]iainetei- 20 ; 2nd 10" 15', diameter 68 ; 3rd 
 670 17' 44i", diameter 25 ; 4th 60''. radius 14. 
 
 Ans. Lst 2.123 +; 2nd 6.0813 +, etc. 
 
 Problem XIII. 
 
 To find tho length of the arc of a circl ), the chord and 
 ridius being given. 
 
 S06. llnr.E. — I. Find the chord of half the are. 
 
 II. From 8 times the chorda/ half the a'C. subtract the chord 
 of the whole arc, divide the remainder by 3, and the quolieat 
 will be the length of the arc, nearly. 
 
 Ex. 1. If the chord A B, fig. of Prob. XIl., equals 30 feet, and the 
 radius A C be 20 feet ; what is the length of the arc A D B ? 
 
 OpEiiATioN. First draw D C perpendicular to the chord A B ; it 
 will bisect the chord at P, and the arc of the ciiord at D. Then A P 
 = 15 feet. Hence, AC^ — AP^ = oF^, that is, 400—225=176 
 and V 175= 13.228 =_ C P. 
 
 Then D C — CP = 20 —13.223 r== 6.772 = D P. 
 
 Again, A D = V A P^ -h P D2 = V 225 i- 45.859984. 
 Hence, A D = 16.457 =■. chord of the half arc. 
 
 16.457 X 8 — 30 
 Then, r^ == 33.885 = arc A D B, Ans. 
 
 2. Tf the chord A D of half the are A B I), %. of Prob. XII be 
 30 feet, and the churd A B of the whole arc. 50 feet; what ia'the 
 
 length of the uro ? 
 
 Ans. 031 feet. 
 
/E^ 
 
 
 lumber oi 
 fthe 
 
 he (decimal 
 circle. 
 
 to contain 
 be 1 teet ; 
 
 0.94, Ans. 
 
 containing 
 g 15 ft. ? 
 ;.27I8fl. 
 
 of the fol- 
 er 68 ; 3rd 
 
 + I etc. 
 
 )rd and 
 
 the chord 
 quotient 
 
 it, and the 
 
 9 
 
 lAB; it 
 rhen A P 
 25=176 
 
 84. 
 
 Ana, 
 
 >. XII, be 
 
 lat is the 
 ik feet. 
 
 MENSURATION OF 8DRPA0E8. 329 
 
 Ans. 64.42. 
 PttOBLE.M XIV. 
 
 To find the area of a circle, the diameter, or the circum- 
 
 ference, or both, being given. 
 ^597. nvLE.-AIuItip?^ the square of the diartiefer by .7854. 
 ^'^ultjply the square of the circumference by 07958 Or 
 
 Ex. 1. What is the area of a oiroie whose diameter is 12 yards? 
 
 i. Fmd tlie area of a circle whose circumference is 12 yards 
 OP.a. .07M8 X 12> - .07958 x U4 = U.459I ^. yi.', An.. 
 and.h^?£*;aX°"'"'°'= """'' ™"fere.ce is 37.70 yd., 
 0,ERi„„„. 37.70 X 8 _ U3.10 sq. yd., An.. 
 
 low'^M^^ir, .'srvr s?iL'Si t™^ 
 
 4° 86.59035, etc. *"• ^■''•' ^ "^''"i 3" '9«3-50i 
 
 PaOBLEH XV. 
 
 Oiven a circle, to find a .aiiitre i.,k,»i, .k.n v._. . 
 
 equal area. 
 
 SB 
 
 Ji?lJ:"~'- "■*" *"°""^ X -8862 = .ide of an ,^ 
 II. f A. c,>ra^«.3K» X .288J = «a. ./■,„ eyui,^, ^«,„ 
 
 «r,>| 
 
330 
 
 MENSURATION OP SURFA0E8. 
 
 ,1 i 1 n 
 
 I If 
 
 f ill 111 
 
 'i II ' 
 
 ,1 
 
 I: 
 
 f- 1 
 
 ill 
 III 
 
 • 'ill I 
 
 Ex. 1 The diameter ofaoircwlar field is 650 yards, what would 
 be the side of a square field of an equal area? 
 
 OptRATioN. 6o0 X .8862 - 676.03 sq. yd., Ans. 
 
 2. The circumference of a circular fishpond is 200- what is the 
 3)de of ;i .square of an equal area? 
 
 Opkuation. 200 X .2821 = 56.42, .4ns. 
 
 3. Find the sides of squares of equal areas to circles whose circum- 
 ference^-are l"250yd.; 2^ 300 yd. ; 3" 412.50 yd.: 4" 135.75 yd.: 
 
 L '«;..'!>'-"• J ^"*- 1° 70.525 yd. ; 2» 84.63 yd. ; 
 
 3« ll6.:{(i(;2D yd,, etc. 
 
 4. What are the sides of squares of equal areas to circles whose 
 io\ToT ff ^'^ 2^ ^^-5 2° 30 ft.; .3« 73.10yd.; 4« 45 ft. 8 in.: 
 o! f ^*?^ /.'^- ^ . ^"»- 1° 22.155 yd.; 2^ 26.5860 ft. ; 
 3" bb.5536+ yd., etc. ' 
 
 Problem XVI. 
 
 Given the diameter, or the circumference, of a circle, to 
 find the side of the inscribed square. 
 
 5»». Rule.- L— The diameter X -071 = side of the 
 inscribed square. 
 
 II. The circumference X .2261 — side of the inscribed square, 
 
 Ex. 1. The diameter A B of a circle is 
 
 300 ; what is the value of A C, the side of 
 the inscribed square? 
 
 Operation. 300 x .7071 - 212.1.S, Ana. 
 
 2. What are the sides of the inscribed 
 squares, if the diameters of the circle are 
 1«312; 2«400; Z^ 150.20: 4° 225.,S0 yd. : 
 5" 170 ft. 8 in. ? ' ' 
 
 ^ ^"«- I'' ;^20.6152. 2" 282.84; .so 106.206 + , etc. 
 
 •• Hequired the sides of the inscribed squares of which the circum- 
 ipivncos of the circle are 1^ 718 yd.; 20 180.40 yd.; 3^ 368.10- 4" 
 1.!;).70 yd. ; 50 800.20. Ans. l^ 161.6218 yd. ; 2= 40.608 + yd! i 
 .-1'^' «2..^5y31, etc. ' 
 
 PliOBLEM XVII. 
 
 To find the area, nf a ttt^p.tnr nf a n\To\»t 
 600. Rdlb.— I. Find the length of the arc by Problem XII 
 
 VII 
 
 II Multiply the arc bjf one half the rad»U9, and the prudm^ 
 
 II be the orta 
 
-f.Ti-v'i-.f'ir' ' 
 
 f^^Sffifcti" 
 
 MKNSURATION OP rtUKFACE.S. 
 
 , whnt would 
 
 what ie tbe 
 
 331 
 
 ,J. Find .he area era, actor „.„,, ,„<„„, ,. I'^anfufel;^;!,: „,■ 
 5. Wl,a. i. the area of a «„ioirole i„ „,„■„, ,b. J,"„'k ilTjf " 
 C- What i« the area of a .ertnr „f , k- i .l ''"'■ ''53-874r,. 
 •nd the r.h„, of the droit 1"l7' °' """='■ "" j}^,^; '^ o'o^sVoe' k "' 
 
 Problem XVIU. 
 To and the area of the segment of a circle. 
 
 111. V f he segment it areaier fhnn tJ.^ • • , 
 area. /.^.,A,,; L, ij. /^r L ;?Lf / /r*'"'"^'; '^/'^ '^^ ""^ 
 either case, will be thiareareqXd ' ""'^ '^' ''"'^^ *" 
 
 Or use the following 
 
 """ '-• -: -» • "-i" ^^.hf s Of .r-e-A ^o^ rj 
 
 Operation, "^ ' " =~^=^ 
 
 of C P. 
 
 ofPD. 
 -AD: 
 
 iiieasure 
 nieawure 
 
 I 
 
 26.7309, the measure 
 
■ 
 
 I 
 
 I, .1 
 
 332 
 
 MRNSURATION OF SURI-AOEH. 
 
 Jd. 20 
 
 ftniSVp^ 'n?i ^^^'^'•.a'^'"^ - 257.309, area of the «ector A D B C; 
 
 JSrvrm .,?, - //o'' CAB- aroa of Reginci.t .v D I{ ; that is. 
 267..^()J _ 1!)2 - 6r,.309, area ro(,uire.l. It is alnc cbvious that the 
 area <n the lector A D B C eul.traited from that of th "^IJh'ole drcl. 
 
 9 u ' . '^^^^ ^''^ ^"^^'^ of the wc*oP A E B C. 
 
 2. Kequired theareaofa Hej,'nient who8e arc id 220 dejiroeB the 
 radius ofthe circle heing 20 yanis. v. .« ^^ uegrees, ine 
 
 onP^^m'^'^'^^'* '^'*® '^^'"'''*' ^f 220" less 360° - 440° — 360° = 
 Vu \'»« ^'•o rectified of 220« == 3.1416 x 40 x ajja =. 76.79 yd 
 The chord of H0« (we Table of chords) = 20 x 1.2856 = 25 71 
 / 76.79 + 25.71\ 
 
 «n!l'fi^'*f V^^ f ^* ^''^''^ sejrment of a circle whose radius ia 10, 
 and the chord of the arc 16 yards ? ' 
 
 ifl^^^'VJ'"'''", J''^ *^''^'''^ '" ^•"' ^^^'^^ fof tJ»e arc of the segment - 
 
 OfiTrA ."J.^^' ^-Z' = "^'^'' ^"' -= 106.333 + ; (3.1416 x 20 x 
 
 -- nS .^■.^^T '^f ^*^^- ^'»« °^'°'"*^ ^f an arc doubled, or [360^ 
 
 --(10b«20' X 2)] - 147" 20' = 1.9193: 1.9193 x 10 == 19 193- 
 
 Lt, ^Anf' " ''■''' "- '^^ = ''-''^ sq.yd.Meaofth;seg-' 
 
 anhlTi'!!!"'!^!'^^^^*^^^'"^"^' ^^'^ '■ad'"« Of the circle being 10, 
 and the chord ol the arc 12 yards. Ans. 16.326 m. yd. 
 
 diameter of H T%r°^ ^''' ''°'"'"^ ^^'°'« ''*''"^^^' '« 27 and the 
 diameter of the circle 75 ? Ans. ] 432.3 1 + . 
 
 of the d?cTe e! **'""'' of a segment whose arc is 90^ and the radius 
 
 It T . *, nns, 28.27 + . 
 
 sf Jm„V °'f "'rV"''"' '» ^° •■*■«'' "I"' ■"■' "'" area.ofihe 
 
 'io o'j 'jioc ,. \„ ._ /ina, 1" 8.1075 sq. u. : 
 
 ^" 23.3125 eq. ft. ; 3« 170.75 sq. ft., etc. ^ ' 
 
 Problem XIX. 
 
 To find the area of an ellipse, the two axes being given. 
 
 9^^^ liULE.— 7lfMZ///'({/ the two axes together, and their prod- 
 
 uct by the decimal .7854, the result will be the required area. 
 
 s £.v. 1. What is the area of a garden in 
 
 the form of an ellipse whose transverse axis 
 
 .,_ . , A B >8 40 yards, and the conjugate axis D B • 
 
 *r I Ib is 25 yards? 
 
 Operation. 
 eq. yd., Ans. 
 
 40 X 25 X .7864 = 786.40 
 
 oA^;„^®*l"''"^'^ ^^^ ^^^^ ^^ *^« ellipses whose axes are 1«» 5 and 4 vd • 
 
 yd. 60 70.40 and 4- 66 yd. Ana. !<> 16.708 sa vd - 
 
 20 6S.1269 eq. yd. ; 30 98.1934 «,. yd., eta ^' ' ' 
 
)r A D n C} 
 
 i> ; and the 
 • 15; that ia, 
 iUH, tliat the 
 whole circle 
 
 degroes, the 
 
 — ^60° =1 
 = 76.79 yd. 
 >6 = 25.71 
 
 segt., Ans. 
 adius is 10, 
 
 segment =» 
 6 X 20 X 
 d. or [360<^ 
 = iy.l93; 
 of the seg- 
 
 ; being 10, 
 5 sq. vd. 
 !7 atid the 
 J2.31 + . 
 the radius 
 28.27 + . 
 reas of ihe 
 75 ft. ; i" 
 sq. ft. ; 
 
 given. 
 
 leir prod- 
 area. 
 garden in 
 t^erse axis 
 axis D E 
 
 = 786.40 
 
 tnd4yd. ; 
 md 34.18 
 
 1- y^' i 
 
 MBNSURATION OF SURrAOES, 
 
 Phoblem XX. 
 
 833 
 
 Given the area of an ellipse and one of its axes, to find 
 
 the other axis. 
 
 Phoblem XXI. 
 
 To find the ciroumfe, , of an ellipse, the two a«, 
 
 being given. 
 
 o„rf^^, ''"'-^-^""'f'.'/ 'he mm of the two ox,, h, 1.5708, 
 and the product ,„n gtu, ike drmmfjence, warly. 
 
 Op™*t,o»^ (20 + 16, X 1.5708 = 66.5483, nearly. An.. 
 
 Problem XXII. 
 
 To find the area of a circnlar ring, or of the space included 
 between two concentric circles. 
 
 ^ 605. '^m.^.-Midtiply the, sum oftke two tUnmeter-^ hi *Ji-!r 
 rifr'o;,""" '^''P'''^'''' «^^"^' % -7854 for the i^reanfhL 
 fr^)lZ '^^,^"'^*^ 'if'^<'<^^ ring, siihtract the square of the /ess 
 6y the decimal .7854, thejtroduct will be tht area. 
 
<?' '' 
 
 (■i- 
 
 M 
 
 334 PROMHoiroue bxamplu in oiroular subfacm. 
 
 Ex. 1. 'I'he diameter A B is 20, 
 and D B is 12; what ia the area of 
 the ring? 
 
 Operation. 20 v- 12=32, the sum ; 
 20 — 12 = 8, difference; 32 x 8 x 
 .7854=201.0624, area ofthe ring, ^ns. 
 
 Jwefn*Il?p'!ifrr*T^''^^/"'^^^' ''^^^ ^'" be the area included 
 
 •7 w ™ ^^"^^'^ ^na 122 5224 
 
 SO v3!''^^''Q'^.?®Y!^i'y^''"'"S8 whose diameters are 1" 24 and 
 •SO yards; 2" 36 and 52 ft. ; 30 60.30 and 90.50 vd. ; 40 U4..36 and 
 
 ioulrtjj '5?-'^L^"^ ?«-^« ^ ^««- ^" 254.'4696 sq yd. ; 
 ^ 1105.8432 sq. ft. ; 30 3576.8372 sq. yd., etc. ' 
 
 J. 
 PROMISCUOUS EXAMPLES IN CIRCULAR SURFACES. 
 1. V/hat is the area of a circular pond whose radius is 12 yards? 
 
 2.^Required the area of a circular ^.AZ'eV'l'eS iX 
 
 3 *A ^:ro.,io- u • . ^"«- 447.1279 sq. y,i. 
 
 a sauare thJt--^^^'V" ''^^T^' * ^^"^ ^''"^ «^ ^ S'^rden in the lorm of 
 basin? ' '"'^^^'^^^ '^ *^ y^^'^^' ^hat is the radius of the 
 
 4 WUa»;«*i - . Ans. 11.354 yd. 
 
 7. R»d the area ofa dial ^hose diameter i,-4i/er "•""'"'• 
 
 eWne:^ni:^'ss-re,e'°ev™':^r.i^,i"Se:r °'" ^^ "-' 
 
 9 Rp/,,,;^^ fk "^".f* ^024.993+ miles, or 1G74.996 leagues. 
 36 and?7 v^dl ''^ '^ ^" "'^'P'''^^^ flower-garden wliose ales are 
 
 10 WhLi^fi. 1 , . ^ns. 763.4088 sq. yd. 
 14 fek ? ^^ '^"^^^ °^^° ^'■^ '^^^«^' '» ^ circle whose radius ia 
 
 radius e^airflL*" •''^"*'' ^^^^''^ of a circular" piece oftttdwh^se 
 
 'Son'o?rJl^r"\?'r 'f'""^ P^ '^'' ^"'•^'^^ ^d^P'^'i ^"-r ^''^ con- 
 
 iT wv/,^'^:r*yf^^ '^^'"g «"0 toises. .1 J. 2234^ arp. 
 
 who'se lV«t joVn""' . u ?^^" *^^i'P"^^i basin inscribed in a rectaiiHe 
 Whose base 18 30 and he.ght 20 yards? Ans. 471.24 sq. yd° 
 
 lateral Sr* t ^''J '?^^^' ^'''^'"^^ circumscribed to 1« an equi- 
 
?K8. 
 
 5l B 18 20, 
 
 ;he area of 
 
 J, the sum ; 
 32 X 8 X 
 e ring, Ans. 
 
 sa included 
 22.5224. 
 1" 24 and 
 114.36 and 
 eq. yd. ; 
 
 ^ACES. 
 
 2 yanis? 
 i sq. yd. 
 eter ih 75 
 ) sq. y.i. 
 he iorm of 
 dius of the 
 .354 yd. 
 ow whose 
 ' sq. yd. 
 space of 5 
 65-. ft. 
 cupies the 
 U)d height 
 054 yd. 
 
 sq. feet, 
 le, 18 1.66 
 ■ by that 
 
 eague.^. 
 5 axes are 
 sq. yd. 
 
 radius is 
 + feet, 
 nd whose 
 [" tiie cori- 
 7^'i arp. 
 rectangle 
 sq. yd. 
 
 an equi- 
 is 7 yd. ; 
 de 18 lU 
 
 PROMISCUOUS EXAMPLES IN OIRCULAR BUBFAOBS. 335 
 
 1< 
 
 37.6099 sq. yd. ; 
 
 yd. ; 5" an octagon whose side is 18 yd. ? Ans' 
 2« 76.9770 sq. yd.; 3^ 183.^54286 sq. vd., elc. 
 
 iJi'v, f-f; 0°^*"'''°*' •■■° ^"'^ '''•" ''^'^^''^ '^ f^^^; what is the 
 
 length ot the arc? ^^„g '34 ^3 , ^ 
 
 . l^' \f:fr ^^^'■„*'^'i ^^*''^ ^''''c'"'' «q»«l in area to ellipses whose 
 axes are I « 2b and 12 yd. ; 2- 30 and 24 yd. ; 3« 45 and 36 yd. • 4° 
 
 52 and 42 yd. ; 5« 62.20 and 46.40 yd.? ^n» 1° 8 83 vd • 
 
 2" 13.41 yd. : 3» 20.12 yd., etc. ^ ' 
 
 16. What weight will a solid cast iron column securely support, 
 who.se diameter is .12 yd. in diameter and 3.80 yd. in height, if each 
 hundredth sq. yd. ot transversal Hection can support 666 poun.ls? 
 
 ,», ■> . . „ . , An$. 75323 lb. 
 
 fn \L S'"Jw ^!,^'^* "} ^\'^ ''"''" '^''■°'« of the earth corresponding 
 o the 49» of atitude north, knowing that the value of each degree of 
 longitude, in that latitude, is 80018.43 yards. 
 
 18. The diameters of two concentric circles are 45 and 30 ; what is 
 the area of the ring f n-med by those circles ? Ans. 883.575. 
 
 c^ : oT*^"^ I"^7 ""P*' ^ '"'^^^^ '" '^^•^'"s, can be drawn from a tin 
 on li'"°j.'^^' '°"S by 15 inches wide ? Ans. 205. 
 
 20. J he diameter of the bottom of a ba,sket is .46 yd., an! the cir- 
 cumference of its top is 2.262 yd. ; what difference is there betn-een 
 the area of the lower base and that of the upper base ? Z' 
 
 .„ c' . , Ana. 0.240977 sq. yd. 
 
 ^l. trom a iinc sheet 28 inches long by 25 mche.s broad, how manv 
 ""If ^ml ^®.*i'''*w" who.se diameters are 2^ and 3^ in. ? Ans. oil. ' 
 
 22. Ihe circumference of a circle is 314. 1 G yd. : what is the rac'lins 
 of a concentric circle half the urea ? Ans. 35.35 yd. 
 
 .ul^li^^*''?*^?.**^^*"''^'*'^ ""'"^ "'' ^ circular parterre, "knowing 
 that the exterior diameter of the parterre is 18.40 y.l., and the breadth 
 
 5^* ""S 80 yd. ? Ans. 44.233728 sq. yd. 
 
 Z4. W^at Utile Side 01 a. square equal in area to a circle whose 
 diameteria4? ^J^g 3.544 + . 
 
 25 The exterior diameter of a circular pond is 15A yard.s, the 
 breadth of the ring j»^ yd. ; required 1 ^ the area uf the ring ; 2« what 
 will be paid to have it paved in tlag-.stuues, at tiie rate of §4.16 a 
 sq. yd. Ans, $171.72. 
 
 26. A circular garden whose diameter is 26.5 yd., is enclosed l"y a 
 
 fli^^^if'"' "'^ '^'^' ^^"^'^> '^^^ '"*"y bundles of gras.s, each weighing' 
 3b. 64 b., can be gathered from this ring, knowing that when the 
 grass dries up, it io.ses 56 % of its wei>iht, and gives 2056 lb. of hay 
 
 27 Ihe radius ot a circular pond is 12 yd.; what must be the 
 width of a grassy ring around the pond, that contains the same 
 ftr**' Ans. 4.97 yd. 
 
 28. A triangular meadow wiiose sides are 6420, 6280, 340U yd., 
 eneloseH an eliiptical pond wliu-e diameters are 195 and 348 yd. Find 
 the worth of the hay produce. I by that meadow, if 5056 lb. are cut per 
 acre, and sold at 4 cents per l.undle of 10 lb. Ans. 138246.29 + : 
 
 29. A man has a ci«tern wliose diameter is 3 ft. 10| in. ; its ed"e, 
 which 18 23| in. broad, is to be covered with tin-plate at the costVf 
 W.lOasq.yd. Find the ooet a»». *b.3ti -t- , 
 
 ll 
 
!■'•; 
 
 I' i r 
 
 ■1 
 
 iii. 
 
 I' ri 
 
 336 
 
 PROMIBOUOTJS KXAMPLE8 TN CIRCULAR 8URFA0M. 
 
 he own .(ill ? ^ °' ^^ P™''/' '" diameto. What part doei 
 The field p^uMssfoolhoJh' °'^""' '"'°',"'' ^M a>"l 328 yd. 
 
 whi s^ireSJa^riirf r-""" -t i"--^ i- '«e.d 
 
 beine nart of /pS„ ^- '^^"'«"^ the arc ol" which is J70« 
 
 .h; «dtf of'.LVet^T7°/6'vr" "";■"" i™!?' ««'» i» s" and 
 
 KS^i^',?^^^^^^^^^ - ^LVthetdi^jTS 
 
^m^:. 
 
 -itr-''' 
 
 kOEB, 
 
 .50 a sq. y<J. 
 iqual in area 
 
 ircular; the 
 id the diam- 
 He pays the 
 3. a eq. yd. 
 ! ; the smith 
 
 $399.65. 
 37 a 6q. yd. 
 must be the 
 » each other 
 :^.351 yd. 
 per arpent, 
 he segment 
 le segment 
 13 + bu. 
 g 10 acres, 
 tt part does 
 I- sq. yd. 
 ' of a circle 
 ad 328 yd. 
 
 bundles of 
 bundles, 
 om a field 
 ch is J 70®, 
 e produced 
 bundles. 
 a 86", and 
 iVhat sum 
 
 bushels of 
 
 boee angle 
 8 of which 
 d 1840 lb. 
 were gath- 
 
 MENSURATION OP SOLIDS. 
 
 DEFINITIONS. 
 
 thite. ^ ^'*'" '' ' "■•'«"i'"<'»"'I,i«h ha, leogth, breadth, a„d 
 .iafsTr-"^ P'"yhedron i. a bodj, „r ™lid contained by man, 
 
 also equal t^Ce arothe" ""' '"^"'""'^ »""'' »"g'«» "« 
 
 p£jhithte^s„:t,j:i\:Cprr"^ ^^'-^ -»> 
 
 angles are un^uT °° °"""' """^ """"^ «'"'^» 
 
 n>aneq^Cai?s^fer:ir:he:/°7 7"''^f ^"^ - 
 
 «17. Ti'«'«8»i«loM«Wr«i,.«*i«„^tt„g^,„,^ 
 
338 
 
 tJ i| 
 
 MENStrRATION OP SOLIDS. 
 
 hi 
 
 ■I if 
 
 % 'I 
 
 In . > 
 
 
 Ri 
 
 fc 
 
 t i 
 
 e.|ual and sirailar triangular pyramids, whose vertices meet in 
 I lie centre ot a sphere supposed to ; iicumscribe it, 
 
 »<afes5^. 618. The regular 
 
 Hexahedron or cube, 
 
 is a solid whoso surface 
 
 present 6 equal squares. 
 
 619. The regular 
 
 Dodecahedron is a 
 «.S"S"'' "'■'"'""" "™'™ "^l""' l"'-* '""""S 
 
 the" jmmM f""'"f''''''''9>'l"'- polyhedrons are the prism and 
 „„ *?*• /■ P"™, '■■' » %iro whose bases, or ends, are any similar 
 
 cIm ?;,-,i7il.'''"°" "^'^ '^ perpendicular to the base, is 
 
 ©as. An oJ^Hc 
 prism is one whose axis 
 IS not perpendicular to 
 the base, 
 
 624. The height, 
 or altitude of a prism, 
 
 in an „b„,„ „„ ,, „„,„,„ ;, ,^^ perrndiatf'r^'il' 
 
 ««- r^'"' """"^ l'JP»«>enuse is the aris. " 
 
 „.;?*• ^ •"""S"'"'-. quadrangular, pentagonal, hexaKonal etc 
 rS^onX""" '"' '^ " '"""«'=■ aquadrilatiral, a-penL;!:;: 
 
 alle?o?r™.'* ^"»"«">P'Pe'Jon « " P™">, whose base is a par- 
 
 anS?'^],^*?"^*'"^'' 'V-^''^ "^S"™ contawed by several tri. 
 »m«oa verL " "" "" '" *' """° "'""=' """* "'™'' >■"» one 
 
 *«r»'*' pjrrjwiW, 
 
 P7t-<iiQi4. 
 
 f riMtutu ut' a |>/rftmid 
 
ices meet in 
 
 MKN80BATI0N or SOLUM. 339 
 
 nn^^i- T^® ''•'^** of the cone is the 
 perpendicular drawn from its ton to 
 
 w»s.», ihe generant or side ofthp 
 »o„c ,. th. hypo,he„„se, which" by the 
 revolution of the riohuiigled t iaCio 
 
 to the plane of itst^aTdt 2 ■L;:,^'^ "^■» '^ -'■-<' 
 
 Small oirde. *s»« m, 
 
 635, The/.«,^:,r;i of 
 
 «'i cone, is the portion re- 
 
 maininij when an upper 
 
 section is removed. 
 
 e:56. A Spheie is a 
 
 solid, bounded by a curved 
 surf'icc, every part of 
 which is equally distant 
 
 trora a point within, called 
 fSie^ Ti,« J- /. '^c centre. 
 
 to a^pJ^I£fZ:L' ^f''='« '^ " '™ -i™" from the centre 
 
 thS Jtt:?: jtS;s ^ ticts -^ " "- ^-'°^ 
 betre^tw^Lrpire;' Sh r:^";: ,i:. --™ '--- 
 
 Circular Spindle is a 
 
 o VA ,1. /. ' Spindle 18 a 
 
 solid, th<; %urc or shape oi' which 
 IS marked by the revolution of tl- 
 arc of a circle about its chord, which 
 remains stationaiy. 
 
 (Jreat circle. 
 
:& 
 
 S40 
 
 MSIfSVRATION or SOLIDS. 
 
 Sector. 
 
 Segment. 
 
 Spherical Wedge. 
 
 T^ 
 
 Segment with two bases. 
 
 643. A Spher- 
 ical Sector is a solid 
 generated by the rev- 
 olution of a sector of 
 a circle about one of 
 its radii. 
 
 643. A Spher. 
 
 ical Segment is a 
 
 portion of the sphere 
 
 cut off by any piano. The plane is the hase of the segment ; the 
 perpendic.ilar distnncc from the centre of the base to the convex 
 surface, IS the height of the .segment. 
 
 644. A Spherical Wedge is the portion of a sphere com- 
 prehended between the halves of two ^rroat circles. 
 
 645. A Spheroid, or Ellipsoid, is a figure produced by the 
 revolution of a semi-ellipsis about oi a of its rxes, that axis re. 
 maining fixed. When it revolves about its t. ansverse axis, the 
 figure is said to be prolate ; and when about its conjueate a'sis. 
 It 1.S called oblate. 
 
 
 J ' = . 
 
 Problem I. 
 
 To find the surface or area of a prism. 
 
 646. EvLE.—Muffiply thepenmeter of the base by the alti- 
 tude, and to the product add the area of the bases : the sum will 
 be. the surface. 
 
 Ex. 1. What is the sur- 
 face of a rectangular prism 
 who.-e base is 3 by 4 yd., 
 and altitude 5 yd. ? ' 
 
 Operation. The perim- 
 eter of the base is (4x2) + 
 (3 X 2) = 14; 14 X 5 = 
 70 yd., convex Hurface ; 70 
 + (4x3x2)=94yd.,yln». 
 
 ^.r. 2. Required the entire surface of a pentagonal prism, when 
 each Hide ot the base is 10 feet and the heightSO. 
 
 Operation. 10 x 6 x 30 = 1500 so ft., convex surface: 10" x 
 tabular number, or 100 x 1.720477 = 172.0477, area of one base. 
 1 hen, convex surface = 1500, square feet, 
 
 lower base =r 172.0477 " " 
 
 upper base = 172.0477 « " 
 
 ; I 
 
 B»4iTC sar&oc 
 
 1844.0964 « 
 
MlNSUaATION OF SOLIDS. 341 
 
 ri^^^^^^r^UrilugC^ ?'•'«"'» whose ba«e is an 
 
 heiglit 2a feet? ^ ' '^^ ^* ^^'°»' measures 20 inches, and ii 
 
 . 4. What is the waIl-8nrfi,/>o ^r "*' ^^"^ ^^- ^- ■'''^ "Q- in. 
 
 16/eet long and 1 St fjSf ? "^^ '"l''^'' '^-"^' -''"«^ «ides a?e each 
 
 o. A rectangular Dri,sini« •? v,^ 1 r , . ^««- 71^ sq. vd. 
 what is 1° the conve^r, rface ^^ "^' • •'•^- ^'■^'^'^' ^"'^ « ^d. h.Vh; 
 Its two ba.es ; 3° he side r a ^ .. ^"""' ' • ^^ ^''^ ^^'^°'^ m,rface of 
 
 6. What extent of 8.,r/ace is ^n oVi; '^■- ^''^' '/^ ^-^"^ «q- ^d- 
 are hexagonals, each side ,'ea 'initio '-''7' ''f ^"'^"^ ^''^'hich 
 pri^n. 20 feet, and the pe WtS ofTL • '"^''''•' .^''" ^'^'^'ht of the 
 4^ feet ? perimeter of a section perpendicular to the sides 
 
 7. Required the entire suriace of an .,,,,^"^- ^•^•60843+ eq. ft. ' 
 whose base is 15 and altitude 12 feet ""^j^"*' -E'Tj '^« '''^'^ «^ 
 
 Prohlem TI. 
 To find the solidity of a prism. 
 
 fee., a^d it, l.JgfriSfeer'wi.a.t &S.:T'' * ""»*"""S ^ 
 Upkration. 32 X 2 /iq9n7fi9 v. 1= .,,. J 
 
 2. What is the «ohdi v !f ! . " ''^'^'^^ "^ ^^'^'^ ^^^'^ ^ns. 
 
 eral triangle, eal^idf <ff whirSstes'? " f "'"^^ '^ ^ ^^-'-t" 
 the prism 18 inches ? measures 6 inches, and the length of 
 
 3. How many cub ft in q n^^i i. -4ns. 280.59+ cu. in 
 b-adU, . ft. » f„ t, fd ptS fftV „"'?'"• ""'o-'-Kli. i« 4,1. ,s"i„., 
 
 ■•■ H"» many perches of In ,,r,nr„ "' "*'"• '^"iV »ul). ft. ' 
 
 5. Jow many .rallons nf u.«fl\r • ' ^*"^- 21.G76 ner 
 
 ^osedimensio'nsCThe/amfas^^ 
 
 6; The three sides of the base of an ^^ ^"*" *^^^- 
 
 ■e V 4. A Q^.-i ^ ..„_Y ^ "^°^ "' an oblique nrism itip«o„^^ -„Z .. 
 
 whos 
 
 "«!}' 4, 5, and 6 yards, «nd the aSS „*;■?""' ?""""' '4eo- 
 P-u. are 7, 8, and . ,d. , .ilu«1Sl,;^''S'St! i"' 
 
 Problem III. 
 I. To and th. .uriace of a regular pyramid. 
 
342 
 
 M' > 
 
 MENgnRATION OF 80LID8. 
 
 II. To find the slant height of a regular pyramid from it» 
 superficial area, and the side of its base. 
 
 6..,?^,?*/ r""-:? "TT^'"'''^ '/'^"'^^^' "'''"■ '"^'^^'^^ the area of th, 
 bct^se^ and divide the remainder by one half the perimHer of the 
 
 III. To find the side of the base of a regular p] xamid from 
 Its superficial area and its slant height, the area 
 
 of the base not being included. 
 
 ««!?*^^; ^^j-J^'—^''!''^^ (hegmn area by half the slant height, 
 and that quotient again by the number of sidesf ^ ' 
 
 Ea^. 1 . What is the entire area of a trian- 
 gular pyramid, the slant height of which ie 
 iO feet, and each side of the base 4 feet ? 
 
 Operation. 4x3=12, perimeter of the 
 base; 12 X ijjO = 60 sq. ft., area of convex 
 surface; 42 x .4330127 = 6.9282, the area 
 of the base.; 60 + 6.9282 = 66.9282 sq. ft., 
 entire surface, Aru. 
 
 8n^^"n!,")Ti'^ ^r^r^'l \ '''^^".'^'" '"a"g"lar pyramid is 31.732052 
 sq. tt., an(i the side of its base 2 feet ; what ie its height? 
 
 -_°,lo'nr7-^,?;.^'^^^'"^^ 1.732052, area of base; and 31.732052 
 
 eter J thets7= io':ee;,'Z.' ""• '''" '' ^ '' ^^'^ '"^^ P^""" 
 
 E.V. 3. The superficial area of the sides of a regular trianmilar 
 Sferu'i^'Jf if "XT '"'""'' ""'°'«" ""•'"^ -'aUalrfi 
 
 Operation. 30 -^ 6 = 6, and 6 ^ 3 = 2 feet, Atu. 
 
 4. The slant height of a regular pentagonal pyramid is 40 feet anH 
 
 6. The area of the sides of a regular heiagonal DVpamiH i« qfio 
 .irs'i&V"" '" •"'°' "''«'" '' '^«' -l'at1,7he''ESt'e^ 
 
 7. What is the total area of a regular heDtaeonal n^^rJ^ ^^^ 
 slant height is 21 feet, and the meJnreofiKA^UZ^j ''"°'* 
 
 - ^•J^^.:?^«V^*'eg«Ja''l»eptagonal pyramid i8"483°9rMu2e W 
 and the side of its base 6 feet; ;^ MiUmlaoi height? ^ ** 
 
 2jm. 96.17+ X 
 
lid from itft 
 e. , 
 
 • area of the 
 meter of the 
 
 amid from 
 area 
 
 lant height, 
 
 a of a trian- 
 of which ie 
 4 feet ? 
 
 neter of the 
 a of con vex 
 2, tlie area 
 )282 sq. ft., 
 
 31.732052 
 
 131.732052 
 the periin- 
 
 triangular 
 I the liDear 
 
 feet, and 
 ', and also 
 6 sq. ft. 
 ramid, the 
 f. 160 ft. 
 lid is 360 
 r measure 
 3|feet. 
 lid, whose 
 
 58? 
 
 3 sq. ft. 
 |uare feet, 
 
 17+ ft. 
 
 ■■NSFRATION OF SOLIDS. 
 
 Problem TV. 
 
 343 
 
 T. am the „rfao. of a, tm.tnu of . regnU, py,.„M. 
 
 i^.r. •• What is the superficial area of th« 
 
 fill 91? , on^' "PP" perimeter. Then 
 (36 + 24 -. 2 = .30, and .30 x 18 = 540 vd 
 lflfi«Hj-;<7o „, area ot the sides. Again. 6 x 2 -iqwnTft') -1' 
 
 I5.5884.)72, area of lower base, and 4 x 2 598n7fi9 -. i n onio" = 
 
 what 18 its wliole surface ? ^•' ^".^ "** S,^ top 4 ft. • 
 
 3 What is the convex surface of the frustum of^T; f '*^-,^- 
 amid whose ^lant heijrht is 50 fppt ^^,.1/0^ ^.u P "^Ptasonal pyr- 
 of the upper ba.e 4 feet? ' '''^' of the lower base 7, and 
 
 Ans. 1925 sq. ft. 
 
 Problem V. 
 I. To find the solidity of a pyramid. 
 
 pentangular, etc , pyramid, from it, solidity and ha^it 
 
 and r^lrac, the sq,mre root o/,kesZ,Z ^ "''"'"'' "'"»'*'•. 
 
 in. To find the height of a regnlar pyramid from the .ide 
 01 tie base, and its solidity. 
 
 <*e ruuli bfS ^ 'net^mn o/ ilu ,uU ofm &,„, and mukify 
 
 hi 
 
344 
 
 Ut^MSURATION Of 80LID8. 
 
 * I h' 
 
 1^'- 
 
 m n 
 
 Ea:. 1. Wha* is the eoluiiljr of a triangular py»amid, the h^Tgbt of 
 wliich is 20 feet, and each side of the ba-e 4 (Wt ? 
 
 Opkrat»on. 4" X .4330127 x y = 46.188 cub. ft., Am, 
 
 Ex. 2. Ifthesolidity.ot'areg. ocfasoiuJ pyramid be 2133. r)273088 
 soU-J feet, and its height 42 f«et ; waat is th« meaHur* of oae of itt 
 •quai eiiies ? 
 
 OfERATioti. 2433.5273088-7- Vj=173.R233792 ; 173.82^3792-*- 
 4.8264272 {See Table)=:36, and V 30= 6 ft., side of the base required' 
 
 Ex. 3. A rej^ulur octagonal pyramid contains 2433.5273088 solid 
 feet, and one of its equal sides measures 6 feet ; what is its iiei"ht ? 
 
 0PER4TI0K. 2433.5273088 -f- 4.8284272 = 504, and (504 -t 62) 
 X 3 = 42 feet, Am. ^ 
 
 4. Find the soJidity of a regular pentagonal pyramid, its height being 
 15 feet, and each side of its base 2 i feet ? Ana. 53.7649 sq. ft. 
 
 5. How many cubic yards in a i.riaii.;ular pyramid, the height of 
 whk;h is S.CS yards, and the three sides of its "base 1.5, 1.9. and 2.6 
 yards? Ahs. 1.6669 cu. yd. 
 
 I. A regular pentagonal pyramid contains 45.879297 solid yarda 
 and it« aides measure 6 feet ; what is its height ? Ans. 60 feet. 
 
 7. How many solid yards are there in a pentao-onal pyramid, the 
 sirle of wluch, at the ba^p, measures 6 feet, and \U hei'jht GO feet ? 
 
 Am. 45.8794 + cu. yd. 
 
 8. What is the measure of one of the sides of a regular pentagonal 
 pyramid, containing 4678.56 solid feet, and having a height of 64 
 feet? Ans. 12.29+ feet. 
 
 9. An octagonal stone monument has a perpendicular height of 45 
 feet, and the linear measure of its side is 5 feet 10 inches. Also, each 
 side of the inner cavity measures at the base 4 feet 1 1 inches, and its 
 perpendicular height 41 feeU How many yards of stone does the 
 monument contain ? Ana. 32. 1 973 + cub. yd. 
 
 Problem VI. 
 
 To find the solidity of the frustum of a pyramid. 
 
 653. Rule. — Multiph/ the areas of the two basea together, 
 and extract the square^ root of the product. This root will be the 
 urea of a base ichich is a me<in between the other two. Take the 
 sum of the areas of the three bases, and multiply it by one third 
 of the altitude ; the product will be the solidity. 
 
 Ex. I. If the length of a frustum of a square pyramid be 18 feet, 
 the side of its greater base 27 inches, and that of its less 15 inches; 
 what is the volume ? 
 
 Operation. 27 in. = 2.25 ft., 15 in. 
 I-??! =]'^?25; 6.0625 ^ 1.5625 = 7.91015626; V 7.91015626 = 
 
 1.25 ft.; 2.252 = 6.0626, 
 
 2.8125 ; 2.8126 + h,W^ \ 1.56J6 = 9.4376 : 9.4376 x V -= 56.621 
 OHb. ft., 4f»f . 
 
MBNHUftATIOR 01" S0U08. 
 
 346 
 
 
 a ad ita 
 
 tude 1^8 fee? tlh^'^-fVL^ regular pentagonal frustum, wl.one alti- 
 
 70 and i) vd r '"''' ^''' '"="'" ^^^'Sons ti.e «id.« of whicl. are 
 4 H • ^ V • . • ^"''- ' • ' 60484 cu. yd, 
 
 •th« t«^ '"any cubic feet ,„ a nquare piece of tin.bw, the areas of 
 the two ba«efl being 504 and 372 inches/and ,t. lengHi 31^ feet? 
 
 Ana. 95.44 f- cub. ft. 
 
 Problem VII. 
 
 I. To fin 1 the sarfaoe of a cylinder. 
 
 -//S.^;^' ^['^:^-~^f¥i/ the circum/crevre of the hate hy the 
 »ltUude, and t^e product >ri(l be the conie:, snr/ace ; and fo this 
 add the areas of the two bases, when the enfj.^fnce isre^Jred, 
 
 II. To determine the area of surface in a cylindrical ing. 
 
 657. Rule.— rr, the thickness of the nnq add the inner 
 
 Ex. 1. What is the entire 
 surf, of the cylinder in which 
 the .iianieter of tlie base is 
 10 feci, and the altitude 24 
 feet ? 
 
 Opkuation. .3.1416 X 10 
 = 31.416, circumlerence of 
 the base J 31.416 x 24 = 
 102 y imi—iRKA o- fLi . 753. ys4, convex surf. Also, 
 
 = 911 064 ^T. ft fir" °'""' '^'"'' ^'"'"- "■■■■'•'»* ^ <"*•" ' 2) 
 
 6 Wliaf io ^K^\ . '^"*- 325.6968 8q. in. 
 
!! 
 
 t 
 I 
 ( - 
 
 84S 
 
 «*««.: 
 
 WENSnRADCON Of SOUJM. 
 
 .. How much must be pmd lor the painting of the wall and oeiline 
 oi i\ c r«ular room, whowe .lianicter is MO and height 1.' fret, at *2.50 
 *«<l'.y'^-- ^TM. $o89.05. 
 
 Problem VIIT. 
 
 I. To find the solidity of a cylinder. 
 
 eSH. RvLn.—Af^ltipfy (he area of th« buie ht, the altitude, 
 una the product will Lr (he mlidity. 
 
 II To find the solidity of a circular ring. 
 
 650. Rule.— ^r/<7 the inner diameter to the thickness of the 
 ring, and mnltlpl,/ the mm b,/ the nqnare of the thickness, and 
 
 this product Inj 2.4674, the result loill he the required solidity, 
 
 Ex. \. Il'a cylinder ineasur.' 8 ft-et in diameter at its base, and 18 
 leet in length ; how many solid feet does it contain ? 
 
 «n ?r'if ^''■'I'N- ^* ^ -785^ = 50.2656, area of the base. Then. 
 50.2(556 X 18= 904.7808 cuh. ft., /Ins. * 
 
 Ex. 2. If the thickness of a cylindrical ring is 2 inches, and ita 
 diameter 6 inches, wliat is its solidity ? 
 
 Oper. (6 4- 2) X 22 = 32 5 32 x 2.4674 = 78.0568 solid in., Ans. 
 
 3. What is the capacity of a circular basin, the radius of whose base 
 18 5 yards, and altitude 2 yards ? Ans. 1 57.08 cub. yd. 
 
 4. What is the solidity of a cylinder whose bape equals 2.15 ea vd 
 and aUatude 1.46 yd. ? Ans^ ■^.V^% cub. yd. '' 
 
 0. What IS the solidity of a circular ring, 4 inches in thicicnees and 
 18 inches in diameter ? Ans. 8i;s.5248 cub. in. 
 
 b. A cast-iron rod is 4 inches in diameter, and 15 feet in length • 
 what 18 Its solidity in cubic inches ? Ans. 31S.087 cub. in 
 
 7. Kequired the solidity of a cylinder whose altitii.le is 1.50 yd., and 
 the circumference of whose base :].08 yd. Ans. i.\:-\ 2391 cub. yd 
 
 8. Ihe area of the base of a cylinder is 4 ,q. yd., ana -the perpen- 
 dicular distance between the two bases is 8 yards ; what is its solidity ? 
 
 Problem IX. 
 
 I. To find the entire surface of a cone. 
 
 i^^^\ ^^^^-—MuUiphj the jm-imeter or (he circumference 0/ 
 the base by half 0/ the slant height, and to the product add the 
 area 0/ tiie bat^e. 
 
 II. To find the height or diametex of a cone, one of them 
 and its solidity being given. 
 
HiifwimATroN op nOLriM. 
 
 34T 
 
 ««1. RuLE.-/)tvir?« the solidity hy .7864; then, if (he 
 DIAMKTKR be reqmreJ, h, me third the. altitude al»o, and extract 
 the.yunre root of the quotient; hut if the ALTITDDE he required, 
 by the square of the diameter, and multipl,, the quotient hyH. 
 
 ^ E.T. I What is t!ie entire surface of the 
 
 cone vhoHp v'ti^x is C, the radius A B of 
 Its l.r, ^e being j". fleet, and the side C A, 40 
 feet? ' 
 
 Oper i-r -1.1416 X (f) x 2) = .^1.416, 
 «ircmnf. ,i base. 31.416 x Y = 628.32, 
 convex surface; 10*> x .78iJ4 = 78.54; 
 628.32 + 78.04 = 706.86 eq. ft., Antt. 
 
 i3'^: '^' ,^*'**.*? ^^^ diameter of the ba«e of a cone, if its solidity be 
 i* feet, and its ahitude 12 feet? 
 
 Opkkation. V(24-f-.7854^ V) = 2.764 feet, nearly. Ana. 
 Ex. ?,. If the solidity of a cone be 36 feet, and its diameter at the 
 base .^ feet; what is its altitude? 
 
 Opek. 36 -^.7854- .3a = 5.0i)29 ; 5.0929 x 3 = 16.278 ft., An$. 
 
 4. Acquired the entire surface of a cone whose side is 36 and the 
 diameter of Its base 18 feet. Ans. 1272.348 sq. ft. 
 
 , 5. If the solidity of a cone be 72 feet, and its altitude 30 feet; what 
 18 Its diameter? j^^„ 3 027+ {-.et. 
 
 hpi,;Ji%77."'"T"''^''f^''' •'*'" ""^ * cone is 9.50, and the slant 
 
 7^ wf ' "* ^'^^ ^"^""^ «urface ? Ana. 105 744 + 
 
 i«; 7>at will it cost to tin a circular steeple, the base of which is 
 16 feet in diameter, and the slant height 48 feet, at 7.-. ctn. ^er -quare 
 
 8. l?ind the convex burtace of a cone, whose slam hei-^ht is 40 feet 
 andthecircumferenceat its base 12 feet. ' 
 
 9. If the solidity of a cone be 3684 feet, and its diameter 30 feet ; 
 what IS Its altitude? ^n«. 15.635+ feet 
 
 Problem X. 
 To find the solidity of a cone. 
 
 662. Rule.— J/«/^ipZy the area of the base bij the altitude • 
 and divide the product hy 3, the quotient will he the solidity. ' 
 
 Ex. 1. What is the solidity of a cone, the diaineter of who^e base 
 18 4 feet, and altitude 5 feet? 
 
 mSnZ ^\ l-^lTlir ^P.^^^-'^q^^re feet, area of the base; 
 (l/.&bb4 X 5) -r- 3 = 20.944 cub. ft., Ana. 
 
 Ex. 2. What is the solidity of a cone whose side is 2.5 yards, and 
 the radius ol its hiue 1.5 yu4a ? .' "» •*"" 
 
 fP 
 
Tf?f 
 
 '^^sitt0^mmmemtmm 
 
 I > 
 
 V' 
 
 f 
 
 1 
 
 j 
 
 f 
 
 " 11 
 
 ! 
 i 
 
 i 1 
 
 1 
 
 ' 1 
 1 m 
 
 1 
 
 ■f^ 
 
 ■I 
 
 if 
 
 ^^H' 
 
 
 1 
 
 i 
 
 1 1 > 
 
 1 
 
 1 
 
 1 
 
 MBMHURATION 0» SOMDB. 
 
 Find first the altitude of ttie couo. The altitude, radius, and side of the aon. 
 
 2 v^l' Vd'il "I'^r =% i-^^ ~ 2-25 = 4 yd. ; hence, A = ^Th: 
 
 I ^J\ ^;IV K ¥ f ^•^'^^^ ^'l- y*^-' *^^* »f ^lie base; 7.0fi86 x 
 i = 4.7124 cub. yd., Ans. ' 
 
 8. The circumfejenoe of the base of a cone in 40 ft., and the altitude 
 
 /■ Wk f '!»!'' ' r!,^''^ ^ ^"'- 254(;.66 ci,b. ft. 
 
 Rf TL vil '^ ^^® '"''"i'^ of a circular pyfan.id. thedia«,eter of which 
 at the ba,e measures 4 ft., and its height 18 ft.? Ans. 75.3984 cu. i\. 
 
 5. VVhat 18 the solidity of a cone whose height is 1.35 yd., and the 
 area ol the base 3.40 sq. yd. ? Ans. 1.530^ub yd 
 
 6. Requiradthesohdityofacone who.se altitude is 1.23 yd., and 
 the circumlerenoe of its base 1.98 yd. Ans. 0.127913 cub. vd. 
 
 altttude 4 yards ? ^„^. ^^^gyg^ ^u^j. ;d. 
 
 i Problem XI. 
 To find the surface of the frustum of a cone. 
 
 663. RVL^ --Add together the drmmfennas of tiie two 
 bases ; and multiply the sum hy half the slant height of the frus- 
 aZi fP'f'''' ""f *f ^^'^ <^onvex surface, to\hich add the 
 areas of the bases, when the entire surface is required. 
 
 A „ ^^- 1- What is the entire surface of the 
 
 / \ Iruf^^umofacone, the slant height of which 
 
 18 J feet, and the circundorenues of the bases 
 S and 6 feet ? 
 
 Operation. (8 + &) x ^ = 70 sq. ft., con- 
 
 vexKurtace; B^ x .079.58 = 5.09312, lower 
 
 f"''J.n'^/'^'P= 2.86488, upper base; 70 
 
 + 0^.512 -^ 2.86488 = 77.958^^^. ft., entire 
 
 surface, Ans. ' 
 
 h.Lr T y^ the convex surface of the frustun. of a cone, the side 
 
 being .7 yd., amd the radii of the bases .3 and .95 yd. ? 
 
 s wu^tic*\. .. -4ns. 2.7489 sq. yd. 
 
 is 210 Td thlt oTZr T r ?''^*"t' vvhose diameter of the bottom 
 M ^lU yd., that of the tu]. 2..^0 yd., and slant height 3.84 yd. ? 
 
 A Ti, • » Ans. 26.5402 sa. vd 
 
 , 4. Ihere i^ a feustum of a cone, whose slant hei-ht is 12 leet th*, 
 
 Probi.km Xli. 
 To find the solidity of the frustum of a cone. 
 664. Ruus.-. y'kci the sum of tko areas if the two ends, mU 
 
 II. 
 
MENSURATION OP SOLIDS. 
 
 349 
 
 I of thfl aone, 
 me ; let A be 
 
 ■ = VT^ 
 
 7.0fiH6 X 
 
 he altitude 
 cub. ft. 
 r of which 
 !4 cu. th 
 I., and the 
 sub. yd. 
 3 yd., and 
 jub. yd. 
 ^ards, and 
 zuh. yd. 
 
 iiie two 
 ' the/i-us- 
 h add the 
 
 ace of the 
 ; of which 
 the bases 
 
 |. ft., COD- 
 
 12, lower 
 base ; 70 
 ft., entire 
 
 , the side 
 
 sq. yd. 
 le bottom 
 I.? 
 
 s({. yd. 
 i leet, the 
 id 9 feet ; 
 eq. ft. 
 
 ids, cKid 
 
 ofageometrkal mean between them ; muUlph, the i^rime hv nn. 
 third the altitude, and th. product Jill he tl 1?/?% '^ 
 
 Ex. 1. If the diameters of the two base^ of thp frii«f,..» .*• 
 be 24 and 20 feet, and tbe altitude .30 feet ; wl.at iJ^t" soHj;tv^''"' 
 . Opkration. 242 ^ .785,1 ^ ^-.^^^^ ^^^.^^^ ^^,^|_^ ^^^^^^^ • ' 
 
 .90 yd. the area of the lower base 2.25 sq. yd, and of t..e upper I "f 
 
 .{. How many cubic feet in the frnstum of a cone, whose altitude is 
 
 28 feet, and the diameters of the Li<e.s 11 and 18 feet '' ^'^'^'"^e ''^ 
 
 4. Required the solidity of the frustum of a cone, the "altitude 
 
 being 6.7D yd the c.rcun>ference of the lower ba.-^ 1 445 v and 
 
 01 he upper .628yd. ^„,. .coo,.5 ' cub.^'vcf 
 
 .■^- Wliat IS the height of the frustum of a cone, the convex surLe 
 of which IS 84 sq ,t.. knowing that the area of ihe upper 1^ "si 
 eq. ft., and of the lower base 12 sq. ft. ? JfJ^,. 12 feet 
 
 PttOBAEM XIII. 
 
 I. To find tte area of a wedge. 
 
 U^?mo^t^l'^'~^'T^ ^^'^- r« '^ '^' '^^«^^' ^^l"«h is a paralle- 
 ^A« reqmredarea. ^ ^^'''' '''''''' «''^'«« "''^^ ^« 
 
 II. To find the a»ea of a prismoid or frustum of a wedge 
 
 .TIT:-^ '.""'- ^^ "i- "'■■ »- »f "- '''•d, and n . ,0 
 „...! .1 "^- '°:t "«» "' '!« '"o sides: V 12' — n "- li ob 
 
 a«d 2 inclies, the length^and tre^lth nJtL 'r "" ^"^'"^"^ "« ^^ 
 1 inches, and the lenSh <k.m fh! l ^ f"'"*" <^"^ «^ ^''^ '» ^od 
 what is the area? ^ '^' "^^'^ '^ ^^^ upper section 10 in. • 
 
 Op.e*«o«. !• X 2 - 20 «^ in., „ea Of Ae base; !• x l . 
 
 m 
 
 '!'■ 
 
 
350 
 
 MINSIFHASION OF SOLIDS. 
 
 10 sq. in., area of the section cut off; and 10 x 10 x 2 =- 200 sq. in., 
 area of both faces. Then i-^-X =« .5 {„., one half the d iffer, betwee n 
 the thieknees of the base and the section cut off; and V 10^ — .52 = 
 9.98 in., the perpendicular distance between tlie base and upper sec- 
 tion ; and (2 4- 1) X 9.98 = 29.94 sq. in., area of the two ends. Then 
 20 + 10 + 200 + 29.94 = 259.94 sq. in., Ans. 
 
 .J^: ^.^^ ^^°^ of a wedge is 8 in. long and 4 in. broad, and each face 
 18 in. long; what is the area in sq. ft.? Ans. 2.7191 + eq. ft. 
 
 4. The length and breadth of the back of a wedge are 10 and 4 in,, 
 the length and breadth of the upper section 5 and 2 in., and the length 
 of each face 20 in. ; what is the whole surf. ? Ans. 3.26 I- sq. ft. 
 
 5. The perpendicular height of a wedge is 20 inches, the thickness 
 ot the head 3 inches, and its length 5 inches; what is its entire area? 
 
 Ans. 274.85 sq. in. 
 
 Problem XIV. 
 I To fiiid the solidity of a wedge. 
 
 667. Rule.— Multiply the mm of twice (hclenglhof the base 
 ond the length 0/ (he edge by the breadth 0/ the base, and that 
 product by one sixth the height of the wedge, the result will be the 
 solidity. 
 
 II. To find the solidity of a prismoid or frustum of a wedge. 
 
 668. Rule. — Multiply the sum of the areas of the two ends 
 and of four times the area of a section parallel to, and equalh 
 distant from, the two ends, by \ the height of a prismoid. 
 
 lo"^^; ^* '^'^^ ^eugtii of the base of a wedge is .36 inches, its breadth 
 1^ inches, the length of the edge 60 inches, and its height 18 inches- 
 what IS its solidity ? * ' 
 
 9 7^/'"'^^^^'''; (36 X 2 + 60) X 12 X 3 = 4752 solid inches, or 
 -i.75 solid feet, Ans. ' 
 
 E.V. 2. The dimensions of a rectangular prismoid are as follows : 
 length and breadt' of the base 10 and 6 inches; of the face parallel 
 tothe base 6 and t inches; and the perpendicular height 40 inches. 
 What IS Its solidity ? 
 
 Opkration. 10 X G «= 60 sq. in., area of the base ; 6 x 4 = 24 
 sq. m. of opposite section. Then (10 4- 6) -— 2 = 8, the length of 
 the central section, and (6 + 4) -1- 2 = 5, the breadth of the central 
 section. Ihen (8 x 5) x 4 = 160 sq. in., or four times the area of 
 the central section; 60 i- 24+ I GO - 244, and 244 X V - 1626 + 
 8o!id inches, Ans. 
 
 3. What is the solidity of a stone pillar, the base meat-uring 3 W. by 
 2 ft. fa in.; the top 2 ft. by 1 foot 6 inches; and the perpendicular 
 height being 8 feet ? An9. 40 cub. ft i 1 62 pub. io. 
 
*:«»»««W*Jlkf .,%.wj., »,»^|j 
 
 MENBDEATTON OF SOLIDS. 
 
 35] 
 
 200 sq. in., 
 }r. between 
 
 .0' 
 
 upper sec- 
 mis. Then 
 
 i each face 
 
 4- eq. ft. 
 
 and 4 in., 
 
 the length 
 
 I- sq. ft. 
 
 thickness 
 itire area ? 
 > eq. in. 
 
 f the base 
 
 and that 
 
 J III be the 
 
 I wedge. 
 
 'voo ejids, 
 i equally 
 
 8 breadth 
 B inches ; 
 
 iohe8, or 
 
 I follows : 
 i parallel 
 inches. 
 
 : 4 = 24 
 length of 
 e central 
 e area of 
 ■■ Hi26 + 
 
 g :^.ft- by 
 
 indicular 
 iib. in. 
 
 4. If the length of the ba.se of a wedge be 24 inches, its breadth 7 
 niches, Its edge 32 inches, and its height 33 inches; what is its solid- 
 '^y' Am. .'^OSO cub. inches. 
 
 Problem XV. 
 
 I. To find the surface of a sphere or globe. 
 
 C6S>. Rule. — Fiml the arm of a ci me of the same, diam- 
 eter as the sphere, and midtiply the same h\j 4. Or, 
 
 Multiply the diameter by the circumfireiice of the sphere, the 
 product W'll l>e the surface. 
 
 II. To find the diameter of a sphere from its surface. 
 
 670. Rule. — Divide one fourth the area by .7854, and ex- 
 tract the square root of the quotient. 
 
 III. To find the surface of a spheroid or ellipsoid. 
 
 071. Rule.— Multiply Ihe product of the two diameters by 
 .7854, and that product by 4, th.i result will be the surface. 
 
 IV. To find the convex surface of a segment or zone 
 
 of a sphere. 
 
 07S. Rule. — Multiph/ the circumference of the sphere c;' 
 which the segment or zone forms apart, by the height of the seg- 
 ment or zone. 
 
 Ex. 1. What is the surface of a globe 
 50 inches in diameter ? 
 
 OpERATioi;. The surface of a great circle 
 is .7854 X 602 .= 1963.50 sq. in. Hence, 
 the surface of the globe is 1963.5 x 4 = 
 7854 eq. inches. Ans. Or, 50 x 3.1416 =» 
 157.08, the circumfeience of a great circle : 
 157.08 X r)0 = 7854 sq. in., surface of the 
 globe, Ans. 
 Ex. 2. If the area of the surface of a sphere be 24 square feet : 
 what is its diameter ? 
 
 Operation. (24 -i- 4) -f- .7854 - 7.6394, and V 7.6394 = 2.76 
 
 an ellipsoid be 6 feet, and the 
 
 feet, 
 
 shorter 5 feet 
 
 Opkbation 
 «q. ft., Ama. 
 
 he longer diameter of 
 what is its surface ? 
 
 (6 X 5) X .7864 =- 23.662; 23.662 x 4 =- 94.248 
 
852 
 
 MKNStTBATlON OF SOUDB. 
 
 1 
 
 It ; 
 
 ;i' 
 
 ,i_i 
 
 ;. i. 
 
 Eat. 4. Ff the diameter of a sphere be 50 inches, what is the couTex 
 surface of a segment of the name 10 inches high? 
 
 Operation. 50 x ;5.1416 = 157.08, circumference of the circle, 
 and 1,)7.08 x 10 = 1570.8 sq. in., area required, Ana. 
 
 5. What in the surface of a sphere, the circumference of wliose great 
 <'''"°'«J!,« 't-'J;! yd. ? Arts. 7.4506 sq. yd. 
 
 b, 1 he diameter of a sphere is 21 inches; what is the surface of a 
 zone whose height is 4^ inches? Ans. 296.8812 sq. in. 
 
 7. If the surface of a sphere be 6.16 square yards, what is its diam- 
 
 Q rru , ,. ^««- 1.40 yd. 
 
 8. ihe longer diameter of an ellipsoid is 18 feet, and the snorter- 
 15 feet; what is its surface? 
 
 9. Required tiie surface of the segment of a sphere, comprised be- 
 tween two parallel plans at a distance of 1.25 yd. from each other, the 
 
 ,n°^mf*^^ ^P'*^''^ ^'^^"= ^-^^ yd- ^ns. 27.489 sq. yd. 
 
 10. The radms of a sphere is 3.08 yd. ; required l" the circumfer- 
 ence of a great circle ; 2'-^ the surface of that sphere. 
 
 ,, _,, ^rw. 1^ 19.852 yd.; 2o 119.2098 sq. yd. 
 
 11. Ihe area of a zone IS 2.85 sq. yd.; required the entire surface 
 of the sphere, the height of the zone being .45 yd. ? 
 
 ,o 1. , • ., ^^' 12.742 sq. yd. 
 
 12. lieqnired m miles the surfece of the two frigid zones, allowing 
 327.1i)6.-i7 miles for the height of each of them, and 39.'^5.82986 miles 
 for the radius of the sphere. 
 
 I f n''*"7^° ^^^ '■*'° ^"''f'>'"'s of irregular solidB, or bodies, the following process 
 J jIV ^'^^"^' """^ °0'°P'>sed of plane faoes.^nrf the area of each face, 
 
 ana add them together for the whole surface of the solid; if oompo^ed ot circular 
 taoes, eftmcie theee tnto a number of faces infinitely great, eo thtt each might be 
 eonndered a plane. Then proceed as above to obtain the entire surface. 
 
 PuOBLBSf XVI. 
 
 I. To find the solidity of a sphere. 
 
 673. Rule.— Multipli/ the surface hj one third of the radius, 
 and the product will be the solidity. Or, 
 
 Multiply the cube of the diameter by the decimal .5236, and the 
 product will be the solidify. 
 
 II. To find the diameter of a sphere from its solidity. 
 
 674. Rule. — Divide the solidity hy .b2^Q, and (^.'v^ ct the 
 cube root of the quotient. 
 
 m. To find the solidity of a spheroid or ellippoid. 
 
 675. RULK. — Multiply the longer axis by (he square of the 
 shorter one, and ihe product by ihe decinvd .5236. the result wiU 
 be the required Molidity. 
 
 
' '"taWtfi^'i 
 
 9 the coDTex 
 
 )f' the circle, 
 
 wliose great 
 )6 sq. yd. 
 surface of a 
 12 sq. JD. 
 ia its diarn- 
 1.40 yd. 
 the siiorter- 
 
 niprised be- 
 h other, the 
 9 eq. yd. 
 circurnfer- 
 
 8 sq. yd. 
 tire surface 
 
 2 sq. yd. 
 
 3, allowing; 
 
 29:^6 miles 
 
 ^ng process 
 >/ each face, 
 i ot circular 
 ch might be 
 
 \e radius, 
 I, and the 
 
 lidity. 
 
 ■ 'v a the 
 
 Old. 
 
 irr of (he 
 zsuk will 
 
 
 MKVSURATION OF '30ITD8. 
 
 363 
 
 IV^find the solidity of the segment of a sphere. 
 
 «T«. "^^hw..-!. From, three rime, the 
 _ h'ght afthe segment ; mnltlpU, the rema^l 
 
 ^qnnre of the radius of'JJ.'eq^n^'lZ^'J^ tlJZ' .t 
 
 V. To find the solidity of a 7or of a sphere 
 «TS. Rule.-!. To the. sum of the squares of the radii a, 
 
 bJt soiUUr^' ""'^ ''^''''' ^ ^'^^^^' and the last resuLevl 
 , ®^®. ■RULE.-.2. For the middle zone of a sphere: I\om the 
 
 Z'ZX''^'TT'^'^''P^"^'' ''/-'^-^^ ^e zone is Z^, 
 snho net one third the square of its height, and multiply tU rl 
 mmnder hy the height, a >d also hy .7854. ^^ 
 
 VI. To find the solidity of a spherical sector. 
 
 incS'does'u contn f '' "' * ^^^'^ ^« ^^ '-^-' '-- '-"7 ^ohd 
 
 Operation. 3.1416 v lo =, 5<r cooo • 
 37.6992 X 12 » 452.H904M^2.SI'1T9'^ 
 12B . .5236 - 904.7808 cub. in., L^ ^ 904..fe08 enb. m. : or 
 
 ^^' 2. What is the diamete r of a sphere containinj? \m soBd ft. / 
 Operation. «' '•"'■■■• ^ ^^~^^- 
 
 one 
 
 
 poHiJity 
 
 and Ihe shorter 
 
 Opeiution. (22 X 3) X .5236 = 
 
 6.2836 cub. ft., An». 
 
 
 "I 
 
riii-ritrfrf-firfii---' 
 
 f 
 
 i. li 
 
 \l ill 
 
 3ft4 
 
 MSNSDKATION Of R0LID8. 
 
 E.r. ;'). What jb the ixxlidity of the temperate zone, ihe vtr^p-'fT mdlifs 
 
 beiriL' ir.8«.572H2n2fi m ies.j the low«r redins 364«.bfiirMKS8 miloK- ; 
 and the height 20G2.2655 ruilee? 
 
 Opeii. [(1 r,8G. .07282526)* 4- (3G48.h8750f.38)a -t ^ (20:".'2.265fi;« 
 X 2lK)2.2(i5;;) .-, 1.5708 -- 5587777866H cubic miles, .H?7«. 
 
 Ex. G. Tlie diameter c'f ft sphere i* 15 feet. What w the solidity 
 of a pector of thcf-anie, the 'ircular h%i-f. of which la 1 ^ feet distant 
 from the central section 7 
 
 Opkiution. 15 X 3.1416 x 6 =- 282 744 ;.]. «... the convex sur- 
 face of the Hector. Then 15 -~ 2 = 7^, iuciin? of the circle : 2R2.T-44 
 X (74 -~ 3 - 2^) = 706.86 cub. ft., An$. 
 
 T. Hwriired the aiameter of a cannon-ball weighing HO lb, knowing 
 that a i- >:,.!c foot of caat-iron weighs 450^ lb. Ana. 0.6973 ft. 
 
 8. If tU? ;iiar.ctfr of t'je baHC of the Pegnientol a sphere be ;>0 feet, 
 and the he-^^ht ..vftbe sause 5 feet; what is its solidity? 
 
 Ana. 18;?2.(i cub. ft. 
 
 9. yjh&i 's t>;e 8o]i(i:;ty of a sector of a sphere 2i leet in diameter, 
 the SfifmLu- jjaae of which is 4 feet distant from the r.i'ntral flection ? 
 
 Ans. l6n;'.5616 cub. ft. 
 
 10. The surface of a sphere is 55.44 square yard.-; . what is its sol- 
 iJHy? Ans. 38.8, '! + cub, yd. 
 
 11. What is the solid content of a spheroid, the longer axis of which 
 is 16 feet, and the shorter 12 feel? 
 
 12. What is the solidity of the torrid Kone, thediameU-r of the earth 
 being 7957.75 miles, and the height of the zone 8173.14565052 
 "iJe-s? Ans. 149455081137 cub. miles. 
 
 13. The diameter of a sphere is 24 feet, what is its solid contents? 
 
 Ans. 7238.2464 cub. ft. 
 
 14. What is the solidity of a spiierical segment whose height is 2 
 feet, and the diameter of the sphere 10 feet ? Ans. 54.4544 cub. ft. 
 
 15. Required the solidity of the middle zone of a sphere, the top 
 and bottom diameters being each 4 feet, and its height 6 feet ? 
 
 Ant. 188.496 cub. ft. 
 
 16. The height of a spherical segment is 8 inches, and (he radius 
 of its base 14 in. ; what is its solidity? Atu. 2731.0976 cub. in. 
 
 17. If the eoli(iity of a sphere be 4'.62 cub. yd,, what is 1° its diam- 
 eter ; 2" the circumference of its great circle ; 3° its whole surface ? 
 
 1^. Required the volume of a spherical sector, the cuxsular base o' 
 .which is .25 yd. distant from toe central section, and the diameter oi 
 the sphere .84 yd. Ana. 2.2167 1 2 cub. yd. 
 
 19. The height o{ & spherical segment 16 .42 yd., it? sarlace 1.6632 
 eq. yd.) what is 1° the radius of the sphere; 2<» t» ^lidity ofthe 
 sphericHl .sector ? ^n«. 1« .63 yd. ; 2«> .3< .; cub. yd. 
 
 '■^^- ^j)»|; '■'' the solidity of a Bone whose greater ■ v jeter is 25 ft., 
 
 between theiu i 
 
 height 
 
 Am' 
 
 vf908 oub. ft. 
 
 Pkoblkm XVII. 
 
 To find the solidity of any regular i*oij i oil 
 
eurpsr radlre 
 1bu<m mile« ; 
 
 iri the solidity 
 ] ^ feet distant 
 
 he convex iJnu- 
 ircle: 'IH'LIU 
 
 ) lb. V;riu\ving 
 8. 0M13 ft. 
 !re be oO feet, 
 
 12.0 cub. ft. 
 t in diameter, 
 ral section ? 
 (il6 cub. ft. 
 'hat 19 its »ol- 
 + cub. yd. 
 ' axis of which 
 
 :r of the earth 
 173.14565052 
 cub. miles. 
 >ljd contents ? 
 464 cub. ft. 
 se height is 2 
 544 cub. ft. 
 ahere, the top 
 
 feet ? 
 
 t96 cub. ft. 
 id (he radius 
 76 cub. in. 
 ) I" its diam- 
 ale eurfax^ ? 
 xsular base < 
 e diameter o. 
 12 cub. yd. 
 jrfice 1.6632 
 
 'lidity of the 
 
 cub. yd. 
 eier is 25 ft., 
 
 1 08 onb. ft. 
 
 -OIL 
 
 MISC1LLANI0U8 MAMPLK IN sOLlDg, 355 
 
 tJ^ solidity. ^ ^^^<^ed ,pkere, m,d the product will U 
 
 «?««« ";Mj/!:.i;'iv!'L'„7"i'!^;"{ any irre,^.ular body. suol. .« a «tnne, a chain A. 
 
 tnehes, Ang. ^ n'e . lone is ^7.7274 x 12^ = 346.5925 cub. 
 
 fe .m^ersedVnXnttefou'r" rl'^ '%'"^'' ^'"' -^'«'' «» object 
 34 gallons. WhatlsMtdSty ^^^^^^^'^^^ ^ '^- -J, ia 
 
 Opkration. 5 — 35 «: I ,t ,, *' 
 
 hence 277.274 x I.5 , 415.91 i u,^ll!'7°f "'"'^ '''^'''^-^ ««h- i«- I 
 
 W;raSror%\tSfd8 wS ,';'7 .ti.'""^'' ''^. ^'^'^*°- «hem into • 
 
 division consists in taking for the Vfirfov el ^*^''^ ^^ reckoned. The easiest 
 fohd, and for base the side ophite A-, n^° P^'"'"^'^' ^^' '-^'^'^^^^^ angfe of £ 
 kinds of pyramids, is to proXoe the, h ''T J"".°°''«^' '" ^^^d the he). -hr of all 
 irfn thin plane board, anKrutr is /;.?!'' ''''^ " '"'^^" ^'^ '^^ base, by means 
 
 »ve (he hwghtof the pyramid. ^® '"^^^ ^"'' "^'« P^^e wilfevi-lentty 
 
 MISCELLANEOUS EXAMPLES IN SOLIDS. 
 
 anJ-th^\'id^SelVar^^^ ^™ - 71.1126 cub. vd 
 
 1*-; 2» the altitude She pritl^r^'' ''^"'^^*^ ^^ ^J^« a''^- Vth^ 
 
 i What is the solid contentT^f^r IV^^^ f*" ^^- ' '^^ '^■■^^^ jd. 
 of whose base is 12 i^ aS it" lu t.tief 177'^?'".?! ,^^ ^^'■^'-^- 
 
 3. A room 9.25 yd. Ion- i fi^ v •) , "*" •^'-^•I'J-l cu. ft. 
 
 Papered; the rolls of tSer are^ 2 ^f ', ^"^ ?-80 yd. high, is ^^ be 
 
 {•^12.25 ^. ,d. ,,, thi^aPtu's in^|;e'3,>;;:^7^'- -^^ Allow- 
 
 be required, and what will be ti 
 
 lie C'ist at 75 ct, 
 
 lis, liowr many roll« will 
 
 L^?'^;!l^"^!:f*.''"^'^«^<^f^^cyiin. 
 
 -^ns. 20.51'! roll 
 
 per roll ? 
 
 w f-'* yil., and ite altitude 3 of ih 
 ;^ A -...11 ■> o . . ft . ' *•" 
 
 , . 'p» and $15.38 + . 
 er, the ratims of who«e base 
 
 eoircunif. Am. 185.707 
 
 +. .^q. yil. 
 
 cuiuferenoe? """-"er ujwe b leet in Ipi,^,!. o,..j i ...... 
 
 leet in length and I foot 
 
 Ju cir- 
 
 Ana. 96.1^76 lU 
 
356 
 
 MIStOELLANKOnS KZAHPLKH IN BOLIBS. 
 
 I! 'I 
 
 !'■ r 
 
 6. Wliat is tiie w^iglii of a i^quare bri^ pillar whose aide is 0.7S 
 yani>, ami lieiglic 4.75 yards, if I cubic yard of brick inaBimry weiiilia 
 3(1 civt. ? " Ant. 96.1875 ib. 
 
 7. Tlie filaiu lieiiihl ol a regular he^caguiial pyramid is 8 yd., and iba 
 side of its base t> vards ; what is its whole surface ? 
 
 Ans. 237.5307 sq. yd. 
 
 8. A man had a wall built for $186, which was $3.20 a cub. yd. 
 What \s the height of that waJI, knowing that it is 14.5 yd. long and 
 
 •70 thick? iln*. 4.18 yd. 
 
 9. A rectangular basin is 12 to. long, 2.5 to. wide, and 1.6 to. deep; 
 how many barrels of 3! ^ gal. each does it hold, there being 231 cu. in, 
 in a gallon ? Ans. 2811.9 + bbl. 
 
 10. The convex surlace of regular triangular pyramid is 45 sq. yd., 
 the slant height is 6 jd. } required the length of one of its side-edgee. 
 
 An8. 6.50 yd. 
 
 11. The lower base of a pile of stone is 26 by 12 yd., the upper on« 
 16 by 8 yd., and the pile is 3 yd. high : find its cubic contents. 
 
 12. What is the convex surface of a right cone, the radius of whose 
 base is 1.4 yd. and its side, the | of the circumference of the base? 
 
 Ans. 29.0167 + sq. yd. 
 
 13. I desire to get a cylindrical tub made whose depth will be 3 ft. ; 
 what must be its diameter that it may hold twice as much as a similar 
 tub whose depth h 5 ft., and diameter 3^ ft. ? Ans. (5.38 tt. 
 
 14. What is the slant height of the frustum of a cone, whose convex 
 surface is 12.26 square yards, and the radii of the two bases 1.71 and 
 2.2 yards? Ans. .998 yd. 
 
 15. How many cords in a pile of wood whose length, breadth, and 
 height are respectively 15.5, 4, and 7.25 yd. ? Ans. 94.81 + . 
 
 16. What mu-^t be "the radius of a cylindrical basin holding 110045 
 gallons, its depth being 5 yd.? Ans. 5.^39^+ yd. 
 
 17. How many solid feet in the frustum of a pyramid whose bases 
 are regular octagons, the sides of which are respectively 21 and 9 in., 
 and the perpendicular distance of the bases 15 ft. ? 
 
 Ans. 119.20+ cub. t\. 
 
 18. What is the surface of the base of a quadrangular prism, whose 
 altitude is 1.15 yd., and its solidity 4.25 cu. yd. ? Ans. 3.6956 sq, yd. 
 
 1 9. Find the solidity of a beam whose length, breadth, and thickness, 
 are respectively 12.76, 0.35, and 0.25 yd. Ans. 1.115625 cu. yd. 
 
 20. A man gets a cemenieil cistern made iu the ground that will 
 hold 3000 gal. ; what will be its depth, the length and breadth being 
 respectively 1.8 and 1.75 yd. ? Ans. 4.715 yd. 
 
 21. What is the solidity of a regular hexagonal pyramid whose al- 
 titude is 3.6 yd., and the side of the base 3.6 yd. ? 
 
 Ans. 40.405651 cub. yd. 
 
 22. What is the convex surfece of the frustum of a triangular pyr- 
 amid whose ba-^es are parallel, knowing that the sides of the lower 
 bate jire 2, 3, an i 4 ft. ; the corresponding sides of tho upper base 
 ,0.95. 1.20, and 2.10 i\. ; and the height of the three traj^zoids 5, 6, 
 and 6.45 feet? Ans. 40.4537 sq. ti. 
 
 23. What are the dimeDaione of a barn whose capacity is 810 cu. 
 
elcrf '-""rail area 01 half on acre; what will bi- ih , liatn- 
 
 -7. Whali8the,«iirra(!i.nf » .«. . . 'tis. 66.50 yj. 
 
 jcal Hector who.e soM^'ifi "sX ^ ""b id"'';'.'' "^ ?• '^^V? « ^^^^^ 
 being 1.5 vj.? ^ *^""- J^'^-' "'« railius of the spltert 
 
 ,, .^^Wl.t i. the surface of the earth, its ra.Hu. I'^^^at^ ^,, 
 
 29. Find the8oHditvofaIo..9^rv/f '^"^'^'f •^.^*^-^^<^'^^q- '"'"• 
 
 ••^O- What must be the th.Vkn«. r Z^- '^•^^•«»'062 cub. yd. 
 
 aruJ external surfaces a e fand ff/v.^J/ '' '"" ^P'^^'^^^^^^ internal 
 
 •■5i. A basin hold, log- 7^ ;^: 12 yards? /i;,^,. q^ . 
 
 •^2. Keqinred the convex «nrF«?. .• a 5 ' ^"'' '^'^ dimensions. 
 
 un.^ respective,, ,.«4 and /^^afltte^irhSI^^^I^,:;: :^^--- 
 
 35. One no.,n.J JA i ' "<^"^ J*^"^' was the wire? 
 ^Hect^ cylindricairwlS-w:;; •;j:^l:^,rf^'^ «-^^^ -•' -d the wire 
 
 of each part? a' Is 9^-«9^^''' ""/^^^'-^ *''« <^«^^^e^ «"rfaoe 
 
 37. What i8 the wefX" nf '^^'^ ''^•/'^'- ' 2"'' ^^-''^^d sq. yd. 
 thkkness, if LexS d,/. ^''PPr.'P^''''^^' «'^^^' 0.985 inch in 
 weight of'a ouU:Z^£^r^l^,^^ ^P'-e is 1.35 yd., and thS 
 
 oou^yt^rS:^^-;;^- eIlipticai'fisl.pond to be digged io hie 
 eiTiaJlaxis 12.75%.! H?^^ tliat li.h-pon.l ,3 to measure 15 yd., the 
 
 digfe^ing it, if the co u alV^chle 'l "^ ""' ^^fq""-^"V^ ^''^ ^'' ^^' 
 or the maaonry. at $15.45 p^cfb^d.^'s?'?^ ' " '^"^ ^^^^* 
 
 the oapacity of tus pond. P^^ *^"'^- ■y'^- ' -^ '''e whole cost; and i^ 
 
 the t«^r'bls!'i8 6^'LSf SL ^.''■"^'""' ,K ^i cone who.e radiu. of 
 »ad itfl depth 16 inJw t'fiS^ w,thT7 '' '^^'/'^^'T/. ^^*^^^ ^' '"'^^^^' 
 ^f that acfd. ^i, U wSlh /i'^ct'^'qurr '^^"' ^'^t,i t.if ^ 
 
 ' !' 'I 
 
358 
 
 TABL» O? OHORDS. 
 
 •9 l 
 
 40. Supposing' t>»e Moon m oe a perfect sphere, what is her surface, 
 her diaiDeUT Lvi.-,' t/> .Ii.vt ci the Earth asH is to 1 1, and the diameter 
 of the Earlh I>eing 7912 miles? Ana. H(]2&158^ pq. mi. 
 
 41. A fbiiinK'r wishes to cast a semi-sphericfll lioiler whose internal 
 diameter sliall he (i^ feet, its thickness 2j^ in. Required the weight 
 oJcaHt-iron ii will lake, if we allow 10% waste in melting, knowing 
 tliat tlie hpecitic weight of cast-iron is 7.208 Ans. 8608.3(;+ lb. 
 
 42. The interior space of a blo' >.-..Hvt v.. nsist* of two conic frua- 
 tum« uniting at their larger base whose diameter is } of the height of 
 the furnace. The altitude of the upper frustum is I of the height of 
 the furnace, its less diameter is i of the greater. Tiie altitude of the 
 lower frustum is .^^ of the height of the furnace, its less diameter is ^ 
 of til > greater. If the furnace is 15 yards high, what is its interior 
 cap-icity? y47i». 41.921 cub. yd. 
 
 43. A fountain in the fomi of the frustum of a cone is filled with 
 water. Required 1'' how many gallons it contains, if the circumfer- 
 ences of its bases are 16.95 and 15. 8& yards, and its depth 5.35 yd. ; 
 2° in how many hours it will be emptied, if the water is let out by 
 tJiree pipes, of wiiich the 1st empties l^gal. in I minute; the 2nd, 
 
 11 gal. in 8 min. ; the 3rd, 13 ^;al. in ^i^ hr. ; 3" what time would each 
 pipe take to empty the whole founta n by itself? 
 
 ■' II 
 
 TABLE OF CHORDS. 
 
 Tn the table of chords, the radius of any circle is represented 
 by 1 ; and in tlocinial of the radius, is represented the length of 
 chords that subtend arcs of 1', 2', 3', &c., up to an arc of 180«*, 
 which is itself a semi-circuui^jrence. 
 
 Any chord which is not a diameter, subtends two arcs, one of 
 wliich is less, and the other great - than a semi-circumference; 
 but their sum eq As the Iroumfc noe. 
 
 In all problems treating of arcs, the smaller arc is always im- 
 plied, unless otherwi?? mentioned. 
 
 1st Rule.— To obtain the chord ( t any arc greater than a semi- 
 circumference, avbtract the degrees oj the gioen arc fro-.i .m'^ . and 
 find m the table the chord that corre"/ '. ms with the difference. 
 
 Ex.—Wh&t is the chord of a -.re o^ U0° ? 
 
 360° — 310° - 60°. Intl oV he chord of 60^ s 0.8452. 
 
 2na Rule.— To find the leng. of au cliord in any £;iven ci 
 
 muitxply the radius of the given circle by the chord in? 
 table. 
 
 ted in the 
 
 A'.r.— How long is the chord of an arc of 24o in a circle whose 
 radius 18 20 yd. ? 
 
 The chord of 24» in tb« table ie 0.4158; U x 0.4158 - 10.395 
 
'f-'wismi 
 
 B her fiurface, 
 the diameter 
 8^ pq. mi. 
 'hose it)ternal 
 ■ed the weight 
 ing, knowing 
 08.36+ lb. 
 vo conic fru8- 
 the height of 
 the height of 
 kltitude of the 
 diameter is ^ 
 is ita interior 
 II cub. yd, 
 is tilled with 
 he circiunfer- 
 pth 5.35 yd. ; 
 ' is let out by 
 ite; tlie 2nd, 
 16 would each 
 
 represented 
 he length of 
 arcof 180», 
 
 arcs, one of 
 Bumference ; 
 
 3 always im- 
 
 than a semi- 
 a 360''. and 
 Terence, 
 
 s 0.8452. 
 
 given ci;ole, 
 ited in the 
 
 circle whose 
 8 - 10.395 
 
 TABLR OF CHORDS. 
 
 3ft9 
 
 yafr;u]!e;lsrLo%no'*1o'V' ' ''''^' '" which a cl>ord ofl? 
 yJi^AZ'' ^'''^ ^'' •" '''' '^^'^ ^^ 0-^502 ; 134-0.,S502 . 34.20. 
 
 ing with tUtquotuZ ' ^ '" '^' '"^' '^'^ ''«^'"* corresponl 
 
 ^^^^l^ S^,t "' ^^« ^'-- «»>-' - 4-24 yd., if 
 4.24 - 20 ^ 0.2120; 0.21: m the table indicates 12° 10' An, 
 
 tended to any n'un.b^r ^ l^S'lX^t''''' '^ "" '""'^' ''^ *''• 
 TABLE OF CHORDS. 
 
 21 
 22 
 23 
 
 24 
 
 0,0175 
 '>,034:) 
 0523 
 0(i!)8 
 0,0872 
 0,10-47 
 0,1221 
 0,1395 
 0,1569 
 0,1743 
 0,1917 
 0,2091 
 0,2264 
 0,2137 
 0,2611 
 0,2783 I 
 0,2956 I 
 0,3129 
 0.3301 
 
 (1,0029 
 
 0,0204 
 
 0,0378 
 
 0,0553 
 
 0,0727 
 
 0,0901 
 
 0,1076 
 
 0,1250 
 
 0,1424 
 
 0,1598 
 
 0,1772 
 
 0,1946 
 
 0,2120 
 
 0,2293 
 
 0,2466 
 
 0,26.39 
 
 0,2812 
 
 0,2985 
 
 0,3157 
 
 0.3330 
 
 0,0058 
 
 0,0233 
 
 0,0407 
 
 0,0582 
 
 0,0756 
 
 0,0931 
 
 0, 1 1 05 
 
 0,1271) 
 
 0,1453 
 
 0,1627 
 
 0,1801 
 
 0,1975 
 
 0,2148 
 
 0,2322 
 
 0,2495 
 
 0,2668 
 
 0,2^41 
 
 0,3014 
 
 0,3186 I 
 
 0,0087 
 
 0,0262 
 
 0,0436 
 
 0,0611 
 
 0.0785 
 
 0,0960 
 
 0,1134 
 
 0,1308 
 
 0,1482 
 
 0,1656 
 
 0,1830 
 
 0,2004 
 
 0,2177 
 
 0,2351 
 
 0,2524 
 
 0,2697 
 
 0,2870 
 
 0,3042 1 
 
 0,3215 
 
 0,0116 
 0,0291 
 0,0465 
 0,0640 
 0,0814 
 0,0989 
 0,1163 
 0,1337 
 0,1511 
 0,1685 
 0,1859 
 0,2033 
 0,2206 
 0,2380 
 0,2553 
 0,2726 
 0,2899 
 •,3071 
 0,3244 
 
 0,0145 
 0,0320 
 0,0494 
 0,0669 
 0,0.^13 
 0,l()ls 
 0,1192 
 0,1366 
 O.IjIO 
 .,1714 
 0,188-5 
 0,2001: 
 0,2235 
 0,2409 
 0,2582 
 0,2755 
 0,2927 
 0,3100 
 0,3272 
 
 ih\ 
 
'4 
 
 i 
 ii 
 
 it- 
 
 !»'' n 
 
 P 
 
 aeo 
 
 TABLfi OF cnORnd. 
 
 D. 
 
 0' 
 
 10' 
 
 ,, 20' 
 
 30' 
 
 40* 
 
 50" • 
 
 20 
 
 0,4499 
 
 0,4527 
 
 0,4556 
 
 0,4584 
 
 0,4012 
 
 0,4011 
 
 28 
 
 0.483-< 
 
 0,4-^07 
 
 0,4895 
 
 0,4923 
 
 0,4951 
 
 0,4979 
 
 :?o 
 
 0,r)l7G 
 
 0,521) t 
 
 0.5233 
 
 0,5201 
 
 0,52m9 
 
 0,5317 
 
 32 
 
 0,5.-) 13 
 
 0,5511 
 
 0,5509 
 
 0,5598 
 
 0,5025 
 
 0,5052 
 
 34 
 
 o,r)sn 
 
 0,5875 
 
 0,5903 
 
 0,5931 
 
 0,5959 
 
 0,5980 
 
 36 
 
 0,(UH0 
 
 0,6208 
 
 0,0230 
 
 0,0203 
 
 0,0291 
 
 0,0319 
 
 38 
 
 0,6511 
 
 0,6539 
 
 0,0500 
 
 0,6594 
 
 0,00 J I 
 
 0,0019 
 
 40 
 
 O.fiStO 
 
 0,6808 
 
 0,0895 
 
 0,6922 
 
 0,0950 
 
 0,0977 
 
 42 
 
 0,71(;7 
 
 0,7195 
 
 0,7222 
 
 0,7249 
 
 0,7270 
 
 0,7303 
 
 44 
 
 0,7492 
 
 0,7519 
 
 0,7546 
 
 0,7573 
 
 0,7000 
 
 0,7027 
 
 46 
 
 0,78 1 5 
 
 0,7811 
 
 0,7868 
 
 0,78'J5 
 
 0,7922 
 
 0,7948 
 
 50 
 
 0,8452 
 
 0,8479 
 
 0,8505 
 
 0,8531 
 
 0,8558 
 
 0,8584 
 
 54 
 
 0,9080 
 
 0.9100 
 
 0.9132 
 
 0,9157 
 
 0,9183 
 
 0,9209 
 
 58 
 
 0,9090 
 
 0,9722 
 
 0,9747 
 
 0,9772 
 
 0,9798 
 
 0.9823 
 
 62 
 
 1,0301 
 
 1,0320 
 
 1,0.151 
 
 1,0375 
 
 1,0400 
 
 1,0125 
 
 ()6 
 
 1,0893 
 
 1,0917 
 
 1,09 U 
 
 1,0905 
 
 1,0990 
 
 1,1014 
 
 70 
 
 1,1472 
 
 1,1495 
 
 1,1519 
 
 1,1543 
 
 1,1507 
 
 1.1590 
 
 74 
 
 1,2030 
 
 1.2'>60 
 
 1.2083 
 
 1,2106 
 
 1,2129 
 
 1,2152 
 
 78 
 
 1,2586 
 
 1,260;) 
 
 1,2632 
 
 1,2654 
 
 1,2077 
 
 1,2699 
 
 82 
 
 1,3121 
 
 i,314{ 
 
 1,3105 
 
 1,3187 
 
 1,3209 
 
 1,3231 
 
 86 
 
 1,3040 
 
 1,3601 
 
 1,3082 
 
 1,3704 
 
 1,3725 
 
 1,3746 
 
 90 
 
 1,4142 
 
 1,4163 
 
 1,4183 
 
 1,4204 
 
 1,4224 
 
 1,4245 
 
 94 
 
 1,4627 
 
 1,1017 
 
 1,4667 
 
 1,4086 
 
 1,4700 
 
 1,4726 
 
 98 
 
 1,5094 
 
 1,6113 
 
 1,5132 
 
 1,5151 
 
 1,5170 
 
 1,5189 
 
 100 
 
 1,5321 
 
 1,6340 
 
 1,5358 
 
 1,5377 
 
 1,5;}95 
 
 1,5414 
 
 104 
 
 1,5700 
 
 1,5778 
 
 1,5790 
 
 1,5814 
 
 1,5832 
 
 1,5849 
 
 108 
 
 1,6180 
 
 1,6197 
 
 1,6214 
 
 1,0231 
 
 1,0248 
 
 1,6205 
 
 112 
 
 1,6581 
 
 l,05i)7 
 
 1,6613 
 
 1,6029 
 
 1,0045 
 
 1,6662 
 
 116 
 
 1,6961 
 
 1,0976 
 
 1,6^»91 
 
 1,7007 
 
 1,7022 
 
 1.7038 
 
 120 
 
 1,7320 
 
 1,7335 
 
 1,7350 
 
 1,7304 
 
 1,7378 
 
 i;7393 
 
 124 
 
 1,7659 
 
 1,7673 
 
 1,7086 
 
 1,7700 
 
 1,7713 
 
 1,7727 
 
 128 
 
 1,7970 
 
 1,7989 
 
 1,8001 
 
 1,8013 
 
 1,8026 
 
 1,8039 
 
 132 
 
 1,8271 
 
 1,8283 
 
 1,8294 
 
 1,8306 
 
 1,8318 
 
 1,8330 
 
 136 
 
 1,8544 
 
 1,8554 
 
 1,8505 
 
 1,8576 
 
 1,8587 
 
 1,8598 
 
 140 
 
 1,8794 
 
 1,8804 
 
 1,8814 
 
 1,8824 
 
 1,8833 
 
 1,8843 
 
 144 
 
 1,9021 
 
 1,9030 
 
 1.9039 
 
 1,9048 
 
 1,9057 
 
 1,9065 
 
 148 
 
 1,9225 
 
 l,923i 
 
 i;9241 
 
 1,9249 
 
 1,9257 
 
 1,9265 
 
 152 
 
 1,9406 
 
 1,9113 
 
 1,9420 
 
 1,9427 
 
 1,9434 
 
 1,9441 
 
 156 
 
 1,9503 
 
 1,9569 
 
 1,9575 
 
 1,9581 
 
 1,9587 
 
 1,9593 
 
 160 
 
 1,9696 
 
 1,9701 
 
 1,9700 
 
 1,9711 
 
 1,9715 
 
 1,9721 
 
 164 
 
 1,9805 
 
 1,9809 
 
 1,9813 
 
 1,9817 
 
 1,9821 
 
 1,9825 
 
 188 
 
 1.9S9') 
 
 1,9893 
 
 1,9896 
 
 1,9.899 
 
 1,9902 
 
 1,9905 
 
 170 
 
 1,9924 
 
 1,9920 
 
 1,9929 
 
 1,9931 
 
 1,9934 
 
 1,9936 
 
 172 
 
 1,9951 
 
 1,9953 
 
 1,9955 
 
 1,9957 
 
 1,9959 
 
 1,9961 
 
 .174 
 
 1,9973 
 
 1,9974 
 
 1,9975 
 
 1,997 
 
 1,9978 
 
 1,9980 
 
 176 
 
 1,9988 
 
 1,9989 
 
 1,9990 
 
 1,999. 
 
 1,9992 
 
 1,9992 
 
 179 
 
 1,9999 
 
 1,9999 
 
 1,9999 
 
 . 1,9999 
 
 1,9999 
 
 1,9999 
 
 180 
 
 2,0000 
 
 
 
 
 
 -i 
 
CULLING AND MBASUllINO. 
 
 861 
 
 50' • 
 
 0,4(>H 
 0,4!)79 
 {),fhm 
 0,5052 
 0,5!)S(; 
 
 o,G;n'j 
 o,(]Gi:t 
 
 0,6t)77 
 
 o,7;{o;? 
 
 0,7027 
 0,7'J48 
 0,H584 
 0,9209 
 
 o.;)82;5 
 
 1,0125 
 
 1,1014 
 
 1.1590 
 
 1,2152 
 
 1,2699 
 
 1,3231 
 
 1,3746 
 
 1,4245 
 
 1,'4726 
 
 1,5189 
 
 1,5414 
 
 1,5849 
 
 1,6265 
 
 1,6662 
 
 1.7038 
 
 i;7393 
 
 1,7727 
 
 1,8039 
 
 1,8330 
 
 1,8598 
 
 1,8843 
 
 1,9065 
 
 1,9265 
 
 1,9441 
 
 1,9593 
 
 1,9721 
 
 1,9825 
 
 1 9905 
 
 l',9936 
 
 1,9961 
 
 1,9930 
 
 1,9992 
 
 1,999» 
 
 Culling and Measuring of Timb.r, Masts, Spars, Deals. 
 Staves and other articles of a like natari. 
 
 (Pioiu the Consolidated Statntes of Canada. Cap. 45.) 
 
 ^ Doals^-. A Quebec Rtn,i,]a,d D.,,! h 12 fc-t !on- 11 inches 
 broad and 2^ inches thick, and contains 2. fr » i„ G^ts ^hi^ 
 ?"4Kd'a?r'''" Standard contain 229 'ftr's i^^cihTc o"; 
 u;;ill7ttchThi:k'.""''"'' '' '''' '-'' '^^'''^^ ^--'1 
 One Quebec Stunl.rd is 100 pieces oP 12 ft. hv 11 i„ hv 21 
 in an-ys equal to 1 hd. 1 c^r. 16 pes. of St. Potcrsbur's idLi^ 
 and 240 Quebec Standard Deal, are equal to 11 loa.Fs ' 
 
 1- tt'lf t'f 'Ii'''"'"';'l ^"•^'■^ '^ oquaUol20 PCS. c^ 
 
 A Load of Deals is 600 square feet by one in'^b in thickn,«. 
 equa^to^SO cubic feet J or 300 square fit oV 2 the' oV4^^ 
 
 ar/andllinntl II t'' (^'''l^'^ inches, Quebec Stand- 
 ard and equal to 36^ St. Petersburg Standard deals. 
 
 t^K ^ °:T'"'^ Quebec Standard Hundred into St Pe- 
 30 TrXters. ^ '^""^'^ ^' "'^ remainder, divide U hy 
 
 i«ct: "^"miir '''''-'' '*^^"' - ^^"^^ ^° ''' ^-^ 9 
 
 ^(PZ ^."'^^•i/"d seventy-five Standard St.aves are equ«l to 
 
 Owing to the vari«tion.s in breadth and thicknass of Staves. 
 
 to KSr'^ °'' ^^'''"' ^'"^"° ^^^""'^^^^' *« t)e equal 
 
 h=..^^lwS^"~^"' ^''^ of Latbwood is 8 feet long and 4 feet 
 fiigii, iiingiish measure. * 
 
 ■n 
 
 rf Hi 
 
 1 ; 
 
 'I'.'l 
 I'.. 
 
•l) ,* 
 
 
 U 
 
 M 'jHIi 
 
 i 
 
 I' : 
 
 1 
 
 1 
 J . 
 
 1 
 
 362 CTJI-tlNG AND ME.ASURTNO. 
 
 CUSTOMARY ALLOWANCE FOR FREIGHT AND 
 BROKEN STOWAGE. 
 
 Deals.— A Hundred St. Petersburg Standard, at twice the 
 cliiirged rate for timber per load. 
 
 _ Staves. — A Mille Standard, at six times tbe rate cbnro-ed foj- 
 timber per load. A Mille West India, at twice the rate charged 
 lor timber per load. 
 
 Lathwood. — A fathom of Lathwood, at the same rate as 
 charged for timber per load. 
 
 FREIGHT AND SHIPPING. 
 
 To find Freight measurements, or cubical contents of pnckages, 
 
 Rdlk. — MuUiphj length, breadth and thichness together /for 
 surfaces, length and brctdth only. 
 
 For Stowage.— 97 quarters of Wlieat, or 140 barrels of 
 Flour, or 80 barrels of Ashes, are considered equal. 
 
 For Grain.— 42 oul)ic ftet equal 1 ton of shinping. One 
 bushel is equal to 60 lbs. 2218^ cu. in. are equal man Imperial 
 bushel. 8 bushels are equal to one quarter =17745 cu. in., or 
 1Ot^^0 cu. ft. Therefore, 1 ton will take 4rV quarters 1 bushel 
 being = 60 lbs. ; 1 quarter = 480 lbs. ; 1 ton = 1968 bs. A 
 ship of 200 tons measurement can, therefore, carry 820 quarters \ 
 but it can generally carry much more. ^^ 
 
 CUBIC OR SOLID MEASURE. 
 
 42 solid feet equal 1 ton of shipping. 
 
 40 solid fett, round or unhewn " 1 ton or load. 
 
 .50 solid feet, hewn or squared timber.. " 1 ton or load. 
 
 50 cubiefeet " 1 barrel of flour. 
 
 8 barrels " 1 ton. 
 
 5 quarters " 51 J cubic feet, 
 
 5 quarters , ,. " 1 loud. 
 
 SQUARE MEASURE {seep. 118, 119, 120). 
 
 Engi.ish. ' Fhgnoh. 
 
 36801.7 Square Feet equal 1 Square Aipent. 
 
 0.845 " Acres " 1 «' " 
 
 2.471 " " " 1 « Hectare. 
 
 i " Foot " 0,0929" Metre. 
 
 
»!^^7it-iiyy. fW!-'~ 
 
 iiSSm 
 
 ■M 
 
 6PE01PIC GRAVTTT. 
 
 !G3 
 
 T AND 
 
 twice the 
 
 hnro'ed foy 
 te charged 
 
 le rate as 
 
 rpnckages, 
 efher ; for 
 
 barrels of 
 
 img, 
 
 One 
 
 n Imperial 
 on. in., or 
 S 1 bushel 
 68 bs. A 
 ) quarters ; 
 
 f shipping, 
 r load, 
 r load. 
 \ of floor. 
 
 )ic feet. 
 
 ENOH, 
 
 re Aipent. 
 
 Hectare. 
 " Metre. 
 
 1 
 
 
 3 955 Prchcs .. u j ^^..^^^ 
 
 The side of a s,,,^,re acre is 69^ yards i„ jen.tl,, and is ofton 
 .,>.'-t^d by Irench-Canad.ans as a unit of length I'or short Iv 
 
 1 French foot is equal to 12ff) English Inches. 
 104 lbs. arc " to 112 " Po^ndg 
 
 I Canadian Minot is " to 1.054 Imperial Bushel! 
 
 The following rules for Timber Calculations may be 
 found useful by the trade. ""'"^y "^^ 
 
 Sqm're^''^""' ^*^"'''' ^'"'^''' "^ ^"^^'•«"t ^^^es, to an Average 
 
 contrnts of (he whole fo parts ; divide 'he product by the total 
 ^alfeet; the square root of the quotient will he L average 
 sgu'ire, in inches. "I'c/ci.ye 
 
 To find the Cubic Contents of Round Timber. 
 
 ^/wy''7"Ti'^"'"V''V^'r*'''''' '^"^('Pf,y (he product hy 11 and 
 tT 'I 'f "^''^^.^ '^' result by the length of the. L ■ ^hen 
 
 TABLE OP SPECIFIC GRAVITIES. 
 
 In estimating the weights or specific gravitfes of bodies rain- 
 That n '' 1-"T"^ l'^^" "-^ '^'' ^»'''"^="'^- ^^^Poriment has show 
 that a c..b,c foot of rain-water weigh. 62^ pounds Avoirdupois' 
 
 OOsfieVsurV^' We follows that- a'cubic inch wei^h; 
 
 " bo V h n 1?- "5 "^ ''r"f • V' '^''''^''''' ^^' ^"^^^ific gravity" of 
 ci bod) bo muluphed by the above decimal, the" product r.ill be 
 
 whicTm tt^r'^^r.' :;^'^^ '^'^ in poundTirolrdu o^ 
 
 dupoi:: nsibs' Trot ' '' '''' ^"" ''' ''^- ^^^"■ 
 
 f ; vl^rti -n V' f ^Tb'^«^t of«"J one of the 
 - "in^ ariicies ic in uutices Avoudupois. 
 
 lii»» 
 
 h. 
 
SPECIFIC ORAVITY. 
 
 11'^ 
 
 Woods (Dry). 
 
 Ash 845 
 
 Apple ,. 793 
 
 Box-wood 1031 
 
 Beech 852 
 
 Birch 567 
 
 Butternat 376 
 
 Cedar 561 
 
 Cherry 715 
 
 Chcsnut 610 
 
 Cocoa, ,....,.. 1040 
 
 Cork 240 
 
 Cypress 614 
 
 Ebony (American) 1331 
 
 Elm..... 570 
 
 Fir, White 512 
 
 Haokniatiick 592 
 
 Ilazcl...., 860 
 
 Hemlock 368 
 
 Holly 760 
 
 Liirnum vitaa. , 1333 
 
 Lime 804 
 
 Logwood 913 
 
 Mahogany (Honduras). 560 
 
 Maple 750 
 
 Maple, bird's eye 576 
 
 Oak (Canadian) : 872 
 
 Oak (English) 932 
 
 Pear (i61 
 
 Pine, White. 554 
 
 Pine, Ptod 590 
 
 Pine, I'ellow 461 
 
 Pine, Pitch 660 
 
 Plum 785 
 
 Poplar 383 
 
 Spruce 500 
 
 Taraiirack 383 
 
 Walnut, Grey 671 
 
 Walnut. Black 550 
 
 Willow. 585 
 
 Liquids, Metals, &o. 
 
 Alcohol, pure, 60°, 
 
 Brer 
 
 Brandy , 
 
 Blood (human) , 
 
 Bees-wax 
 
 Brass, c;ist 
 
 Brick, fire , 
 
 Coal ( Anthracite) 
 Coal (Newcastle)... 
 
 Coke 
 
 Copper, cast 
 
 Earth, onmmon 
 
 Glass, window 
 
 Gold, 22 carats 
 
 Granite (Scotch). .. 
 
 Guttapercha 
 
 Honey,..., 
 
 Iron, cast 
 
 Lead, oast 
 
 Lime, hydraulic... 
 Marble (Vermont) 
 
 Milk 
 
 Petroleum 
 
 Plaster of Paris. ... 
 Platinum, native.... 
 
 Quicksilver 
 
 Salt 
 
 Sand, common 
 
 Silver, pure cast.... 
 
 Soap, Castile 
 
 Starch , 
 
 Steel Plates 
 
 Tallow , 
 
 Tin, pure „..., 
 
 Turpentine 
 
 Water, common.... 
 
 Water, saa,. =„,.„, 
 
 LZinCj roUed.t»«t.... 
 
 794 
 1034 
 924 
 1054 
 965 
 8396 
 2201 
 1436 
 1270 
 1000 
 8788 
 2194 
 2642 
 1748<: 
 2625 
 980 
 1450 
 7207 
 1825 
 11352 
 2745 
 2650 
 1032 
 878 
 1176 
 16000 
 13568 
 2130 
 1670 
 10474 
 1071 
 950 
 7806 
 941 
 7291 
 870 
 1000 
 1026 
 
 7iyi 
 
iS, &0. 
 
 794 
 10H4 
 924 
 ]Uo4 
 965 
 8396 
 2201 
 1436 
 1270 
 1000 
 8788 
 2194 
 2642 
 17486 
 2626 
 980 
 1450 
 7207 
 1825 
 11352 
 2745 
 2650 
 1032 
 878 
 1176 
 16000 
 13568 
 2130 
 1670 
 10474 
 1071 
 950 
 7806 
 941 
 7291 
 870 
 1000 
 1026 
 
 7iyi 
 
 BOOK-KBEPINa 
 
 neyiNiTioiw. 
 
 1. Book-Eeepiug is a syatema tie record of buameeg trane- 
 actions, or the art of keeping aocounts. 
 
 Every penon, engaged in busines 6 for himself, should ke^) a book of some kind 
 m which to record all his buBin«>8S transactions. The mechanic, the farmer, the 
 )>r»'cf8ional man, etc., should keep an account with every person with whom 
 thty denl. For no one should trust transaotionB of a pecuniary nature to his 
 memary atone. 
 
 2. All business transactions consist in an eschangc of values. 
 
 3. There are two methods of Book-keeping in general use, 
 distinguished as Single and Double entry. 
 
 4. The Double Entry is conceded to be greatly superior to 
 the Single Entry, particulaily from its more excellent tests for 
 deptermining the correctness of the work. 
 
 15. Single Entry embraces only the accounts of persons, and 
 consists of 6)<^ one debit, or one credit. 
 
 6. Double Entry is derived from the fsct that every business 
 transaction must be entered to two or more Ledger accounts, as 
 two or more persons or things ar^^ affected thereby. 
 
 T. Two books appear indispensable in Single Entry ; via., the 
 Day Book and Ledger. 
 
 8. The three main books used in Double Entry are the Day 
 Book, Journal, and Ledger. The Day Book aud Journal are 
 sometimes combined in one. 
 
 O. The number and char.j'^ter of the auxiliary books depend 
 somewhat on the nature and extent of the business, but more on 
 tiie amount and kind of information desired. Those most in use 
 are the Cash Book, Bill Book, Invoice Book, Sales Book, the 
 Oommission Sales Book, etc. 
 
 10. The Day Book is that in which are entered the busineai 
 traneactions in the date and order of their occurrence. 
 
 This book should be plain, ooncise, and unequivocal in its statemeatc. Ab the 
 records in it are supposed to be made whan the transiietions and all the circum- 
 stauMes connected tberewith are fresh ia the mind, it is tb* only book allowed in 
 court, Ml oases of litigation. 
 
 11. The Journal is a book in which the buMness transactions 
 rreordcd in the Day BoiMcare prepared to be entered in tiie Ledger, 
 by ascertaining the projKJt debits find erodits involved in each 
 ii j'.n.^action. This process is eallfAjmumaUvmg. 
 
 1*. The Ledger is the book of retuh*, — *he final book of entry. 
 
 1 
 
 $ li 
 
 f. 4 
 
 
BOOK-KBRPtNO. 
 
 rn this book, nndor approprirrte h&a*. ocUfed R<roiints, are awanaed all the 
 
 facts neoos-ory fw a full and satisfii 'tory statement of the business ; Including, 
 not only an ejditbitiofl of the present resouroee and liabilities, bnt a distinct record 
 of partioul.iT gains and losses. The proeeeB of transferring to the Ledger \e called 
 pottmff. 
 
 IS. TlieOashBaok is that which shows all the sums of 
 money which we receive or pay, with a short explanation relating 
 to each sum. 
 The entries, in «ils book, are made immediately on reoeivin,^' or paying the 
 
 of 
 
 transactions. 
 
 14. The Bill Book is that which shows a description of all 
 the notes or acceptances in our favor or against us, with their datec, 
 credits, when due, and amounts. 
 
 The notes or acceptances in our favor are entered under the head of ReaeivaUt, 
 and those against us under Payable. 
 
 15. The Invoice Book is that in which are copied all bills of 
 gootls bought, and all invoices of goods received into our posses- 
 sion. 
 
 From the Invoice Book the entries pa«B into the Day Book, either daily, weekly, 
 or monthly. This book is sometimes made of coarse paper, and the original in- 
 voices pasted into it. 
 
 16. The Sales Book gives a full description of all goods sold 
 Of passed from our h;mds, or out of our possession. 
 
 From this book the amounts are tranferred to the Day Book, either daily, 
 weekly, or monthly. At the time the purchaser selects his goods, they are de- 
 8;^ribod in tlie Sales Book— quandty, quality, and price ; and from this book wo 
 make out his bill. 
 
 17. The Commission Sales Book contains a minute descrip- 
 tion of the merchandise sold by us for others. 
 
 Tiio entries in this book are drawn from the comnnon Sales Book, and from it 
 we make tho Aeeount« of Sal** that we may have to r*«it to those for whom we 
 have sold. 
 
 18. An Account is a statement of facts pertaining to some 
 persoti, species of property or cause, \riiich enterh into the trans- 
 action, producing a debit or credit, and designated by u name, 
 which appears upon the Jjedger. 
 
 19. Every account has two sides, a DiAtor and a Creditor ; 
 each contiiiDing the resulte of separate traosaotions. 
 
 *^0. in avcry transaction the sum of debiu und oredlte must 
 
 be equal. 
 
 \ aob liodKeT aooavnt, by the uira of tbeee teraM, >• made te ibow as important 
 rMuUo( itself. 
 
trang«d all tfa« 
 ten ; Inoladinjyt, 
 
 .distinct record 
 jedgor \e called 
 
 he sums of 
 tion rehiting 
 
 or paying the 
 'cash on hand, 
 k at the end of 
 the next day's 
 
 iption of all 
 1 their datee, 
 
 i of Recfeivable, 
 
 ed all bills of 
 3 our posses- 
 
 • daily, weekly, 
 the original in- 
 
 11 goods sold 
 
 c, either daily, 
 [e, they are de- 
 n this book we 
 
 nutedeeorip- 
 
 ok, iind frotn it 
 e for whom we 
 
 ling to some 
 
 to the trane- 
 
 by a nanie, 
 
 a Creditor ; 
 
 oreditfi must 
 
 m ae importaot 
 
 BOOK-KEBPINO. 
 
 il" \ ?^??S?® •' '"""y ^"'^ ""^^^'^^ belonging to the concern. 
 tt' n ^.^^H"y '"^ ""y '^^^^ '^wif'S by the concern. 
 -*». tasa IS the title to (losignate money. 
 
 ite?^itWl SuJ^Vmon^'L. ^''^ !^'^^'^'''"^ f''^ '^" ^^''^'P" '^ <^'"', and cred- 
 tima, oxhibUare^mfrl^f ih '^'^^''^noe between the two .idee must, at any 
 
 of rL=h „. a roeouroe of the exact amount of cash on hand. The croJit aida 
 
 1 Sn^T^5r°°' "°''' ''' "''■'' ""' "'''-' '■■'"'' ''»'"^°' bo paid out than 
 
 24_ Bills Receivable are written obligations ofwh'itever 
 
 heZ'cHved!' P^^^^^'*""' ^""^ ^^'""^ ^ ««'"*^^" specified amount is to 
 
 th^ debS a5/L I • ^^"-^ /"'lu""'' °^"°''«'^- The oxceg., if any. must be on 
 trie debit side, and will indicate thnt portion of our rosouroes consistinj,' in note.: 
 
 „T??' ^^*^?/?yable are written obligations of the concern, for 
 which a specified amount is to be /nld. 
 
 B,Mhtilitiir.tT<i\T ^h«<"f 't-^''l«. our notes and acceptances M8»ed, 
 ttiiaontneaobit side, such of them as have been redeemed The diffHron^n 7? 
 the^be any. must exhibit our outstanding notes, or ourSility ta untdeJmed 
 
 2«. Merchandise i^ a tern, which usually implies all prop- 
 erty purchased or owned by the concern for purposes of traflBc and 
 remaining m store. • 
 
 Merchandise generally embraces all such property, unle.-s the menshaut bein* 
 curious to know h.s gains or los.es on a pa,. ^1^ kind, opens a seiTrate i,^^ 
 with that particular kind, under ts own <n«nial HHa tk!. .,„„ . - 
 
 '*" r^'4've titlas, is debited with th?ooro?'t''""..>p^e; 'rrTse'n^ed'Ld 
 credited with ite returns. ^ ' "^P™«»ntea, and 
 
 27. Real Estate relates to such property as houses and lands 
 and the account is similar in its objects and teachings to that of 
 Merchandise. 
 
 38. Bank Stock, Railroad Stock, etc., are not accounts 
 
 dissirniar to Merchandise and Heal Estate, inasmuch as stocks of 
 all kinds are bought and sold at their market value, rather than 
 the value written on their face. 
 
 2». Shipment or Adventure is but another h ime for Mer- 
 chandise, and is used to distinguish bpt,veen property in store and 
 out of store. 
 
 <,.,fh^l"/'"'*P^'''^''"*'''''r^^'>^'*'^'*!^'»y " '^g«°t fo' "*. we should disdn- 
 guishufrom our merc-..ad>'e;u store by ffivine it a siirnificRr.t .,«,»« mT. 
 "Shipment to Halifax. ,>r -SLipment I lrofrliIent?or""tn^r^?"t^''ch1 
 
 With their procoeds."the oiflereno^'being'a gair;r ir«I:' '^'' '^ '^'^'*^ 
 
 SO. Feraonai Accounts, that Is, accou.its representintf per- 
 sonal indebtedness, and designated by the uropei nameb- of such 
 
 •11 / 
 
 18' ''f 
 
 llllk' 
 bfel 
 
BOOK-KGEPINO. 
 
 fi 
 
 
 ■ii 
 
 ! 1 
 
 1} 
 
 ' 
 
 '•t 
 
 
 ... 
 
 persons a^ sustain relations of debtor and creditor to the oonoera, 
 
 aro capable nf showirts: either resources or liabilities. 
 
 Personal Accounts aro liebited with such suras as, from time totlme, the persou 
 miiy become indebted to the oonoern, or the concern has pidd them, and eredhea 
 wttli what they have paid the concern, or the concern may have beoome indebted 
 to them. 
 
 ♦51. Stock, used as a Ledger title, means simply the proprietor 
 of the business, or the stockholder. 
 
 There would bo no valid objeetion to using the proprietor's name inatead; but 
 as nfl real good would result from the change, authors, taftchers, and praotio«l 
 accountant?, accept (he term which custom has suggested. 
 
 This account is usually the first opened in the Ledger, and ia important to show 
 the nut investment. It i^ generally credited with the whole investment, and 
 debited with snsh liabilities as the concern assumes to pay for the proprietor. 
 The difference is the not investment, or what the concern owes the proprietor. 
 
 Fiotii the fore<roing remarks, we derive the seven principles 
 which follow, and we believe that every student who will thor- 
 oughly finiiliarizc himself with thera, will have no diflGloulty in 
 deciding upon the proper debits und credits involved in any business 
 record which he may be called upon to make. 
 
 PIUNCIPLES. 
 
 1. — The Proprietor^ 
 
 The person or persons investing in the business should be creel- 
 ited, under some title, for all such investments, and also for his or 
 their share of the gain ; on the other hand, he or they should be 
 debited for all liabilities assumed by the concern for hiin or them, 
 for all sums withdrawn from the business by him or them, and 
 for such loss as he or they are entitled to share. 
 
 2.~C(Juh, 
 
 Cash account should be debited for all oash receipts, and cred- 
 ited for all cash disbursements. 
 
 3. — Merchandise. 
 
 Merchandise, and all species of property, bought upon specula- 
 tion, should be debited, under some appropriate head, for the 
 cost of the property represented, and credited with its proceeds. 
 
 4c. — Bills Receivable. 
 
 Bills Keceivable account should ba debited with other peopla's 
 notes, acceptances, and other written obligations when they beoome 
 ourss, and credited when they are paid, or otherwise disposed of. 
 
> the oonoern, 
 
 ime, the p)er80Bk 
 in, and eredtted 
 >eoome indobted 
 
 he proprietor 
 
 ae infltead; bat 
 , and praoUoftl 
 
 portant to show 
 ]vegtment, and 
 the proprietor. 
 > proprietor. 
 
 m principles 
 
 ho will thor- 
 
 diffioulty in 
 
 any business 
 
 uld be cred- 
 so for his or 
 y should be 
 ill! or them, 
 r them, aod 
 
 BOOK-KBEPiNo. 
 
 ^.— Bills Palpable. 
 Bills Payaole account should be cr«^few «♦!. 
 anoes, or written promises to n«v »T!^ !u ^^ ^n^ notes, aooept 
 itecl when they ar^ paid or^d':eU " *''^ "" ^«^' ^^ ^^ 
 
 ^•—Persons. 
 
 or the, get „u, „f „„ ^R "'""' "' ''»°»°'« i»<lebted to them. 
 
 7. — Expense, etc. 
 
 ^^"^^^^'^'^^^^^ the out. 
 
 ^credited und«r omc name L the a^^?!;^"^ ^^'"«' should 
 The foregoing princinles al. I ! I °?.* ^^""^ Produced. 
 
 ^ g pnncipjes are all embraced in the following simple 
 
 FORMULA, 
 
 Debit what oosta the concern valup • an^ n j; ,. 
 the oonoern vake. '-^ra value, and Credit y^)xtix produce* 
 
 I 
 
 s, and cre(^ 
 
 )on speottla- 
 xd, for the 
 
 proceeds. 
 
 her people's 
 hey become 
 sposed of. 
 
BOOK-KEEPING 
 
 <> » 
 
 I 
 
 ■T 
 
 IDOUBLE3 El^TI^Y. 
 
 SET 1. 
 
 (INITIATORY.) 
 DAY BOOK, JOURNAL, AND LEDGER. 
 
 RKPRE8EKT1NG THE BUSINESS OP A SINGLE PROPRIETOR. 
 WITH KXPLANATIONS FOR JOURNALIZING, STATEMENTS, BtO. 
 
 INSTRUCTIONS FOR SET I. 
 
 The following set comprises the most simple transactions in 
 business ; the main purpose being to illustrate the foregoing prin- 
 Biples, and to initiate the student more fully into the proce'sses of 
 Book keeping. The general instructions given in connection with 
 this set, will apply with equal force to the succeeding ones . They 
 ghould, therefore, be properly heeded. 
 
 The transtictions are first recorded historically in the Day Book, 
 in the order of their occurrence ; from thence transferred to the 
 Journal, and from thence to the Ledger. In journalizing a traas- 
 
 action. the first thina* tn Yu^. annaJAoraii la tV,a nr^^~^^„ »- tu: 
 
 affected ; next, m what manner aflfeoted ; and 'aslaj, the proper 
 application of the principle. The check-mark (V) is uinde oppoiHte 
 the Day Book entry, immediate^ upon its b«ing journaUted, 
 
IT. 
 
 DGER. 
 
 :ETOit. 
 rs, BTO. 
 
 3sactions in 
 egoing prin- 
 processes of 
 lectioii wJth 
 ones. They 
 
 ! Day Book, 
 Ti-ed to the 
 sing a traos- 
 'D or Lx^Uig 
 the propor 
 ide oppodto 
 
 T>AT BOOK.—SBT I. 
 
 ftilness, and notE t ^' '"''' ^°^«^«''' a°d constant watch- 
 errors in postin. = "^"'^ '°™"^°° ^'*»> "^w beginner, thaa 
 
 «?h^Sg^:tt*Llt "r -f'tH*'^ •'°"^"^'' -^ -•»« >* 
 
 the debit or'crediljol^U ^PP^'^^' ^e in 
 
 mg side in the Ledcrgr u^ino- 1. • "^ '* °" *^^ correspond- 
 
 entry. Suppose fofeiannle th." "''^'T''' '^'' ^PP^^'^^ J«"^°«' 
 disc Dr. To Cash '' T^ i ' *^'J°!^^"a ^"try to be " Merchan- 
 
 Merchandise is to be debh^dTndT ".''"^^^ 5 «<^""«' ^^^^^ 
 chandise account in the Led .'er on P^!'t T'^-?'^- ^^^'' ^^'" 
 Cash," and carry the amounftn fi? ' '^'*'' f'^'' ""' ^^^' " To 
 Cash account on^heV.T /^ we^r^^Bf.r-. ^i" ^.'''' 
 carry the amount into the or ,}Z^?' -^y/^^erchandise," and 
 Journal, be careful to en to in , hi. i ^'"'""- u ^? P°^*^"g ^'^^ '^^ 
 thep^ge of the Ledger to whlhT"'"" "I '^' ''^^ °^ '^^ «^°^^"°'. 
 t>pon ill being entered in The tedger ^''''^' '"^^'^^^^^^i 
 
 DAY BOOK,— SET I. 
 
 (JPEBEc, January 2, ]67i 
 
 ''^ r ^S'„L7.o '.". ':"'"•' ""^ ■'•^ C..1. 
 
 ^''°'tTLf;r°»^'"-'^'"-''»^'p'ij 
 
 -Bough, of A. L,„<,l,|.„, (,»,!,, 
 
 $4500 
 
 350 
 
 16731 
 
 
it 
 
 
 1 ^- 
 
 .1 
 
 i 
 
 1 1 i.'«f 
 
 i>AY BOOK,-~SBT I. 
 
 JuBBEo, January 12, 1871. 
 
 V 
 
 V 
 
 V 
 
 V 
 V 
 
 V 
 V 
 
 Amount brought forward. 
 Sold Jos. Murray, on fc^ 
 
 16 yds. Biack Cloth, (a) $6.5'J 
 
 17 
 
 Bought of N. S. I'ower, on our uoie due Feb- 
 ruary 22, next, 
 21 yds. Black Satin, /S) $i. 10 
 
 20 
 
 Accepted R. Green's draft on us at 16 days' eight, 
 favor of M. Duval, 
 
 26 
 
 Sold J. N. Benson, on hiw note payab'e Fel». 27, next, 
 86 yds. Canada Gray Ciulh, fd) $5.40 
 
 31 
 
 Paid Ca«b m follows: 
 
 Fc\- .''-■.;■: ting of Store, 
 Eci r ;;,,',■ ;iy Expenses, 
 Fus S'Vu'. of Store, one month, 
 
 February I 
 
 115.75 
 42 60 
 30.00 
 
 Received Cash of Jos. Murray, on %j 
 
 Bought of Myler & Lee, at '?, months, 
 432 yds. Irish Linen, (d) §.45 
 
 Lent Cash to D. Murphy, until 15th inst., 
 6 
 
 Sold W. S. Reid, 84 yds. Gray Cloth, /® $5.50 
 Received in Payment, 
 .3 Shawls, rti) $60, fl80 
 
 His Note at 40 days, for 200 
 
 Balance on 5i^, »2— 462 
 
 Paid our acceptanc*, ftivor of M. Duval, in Cash, 
 
 |720!> 
 97 
 
 86 
 
 360 
 
 302 
 
 8d 
 
 60 
 
 194 
 
 120 
 
 462 
 
 70 
 60 
 
 10 
 
 40 
 
 35 
 
 350 
 
 $9310 
 
 40 
 
 46 
 
"^■X'- 
 
 |720!» 
 97 
 
 70 
 
 50 
 
 86 
 
 3dU 
 
 302 
 
 10 
 
 4-0 
 
 88 
 
 60 
 
 194 
 
 120 
 
 462 
 
 35 
 
 40 
 
 DAir BOOK,.-43BT I. 
 
 Quebec, FEBRUAar 10, 1871. 
 
 Amount brought fory,ard, \ 
 Beceired Ca.h of Joe. Murray, ia full of %, 
 
 _ 15 
 
 "*'th'io«t^°'^' ''"'*'*'"' '" '"" '"^ "^"° '' 
 
 18 
 
 Gave my Note ^ 60 clay«, for 250 
 
 Bounce on f„ 245_645 
 
 22 
 
 PuiJ^CuHh for mj Note in favor of N Power, now 
 
 25 
 
 Exehanged Notes with L. White for our mutual 
 accon.modaticn, each drawn at 40 days, 
 
 TfSTo 
 
 47 
 
 120 
 645 
 
 50 
 
 27 
 
 Received Ca-h for J. N. Bencon's Note pdvt due, 
 ■ « 
 
 Bought of I.. A. Tavlor, 
 
 500 yds. French Merino, /® $.75 
 bave in Payment, 
 
 Ciix ^^''''^ ^""^^ ^^ ^^ ^^^^^ ^""^ ^'^^^ 
 Order on W. S. Reid, in full pf «fe, _J5-375 
 
 __ 28 
 
 Paid Cash for gtoie Rent to date 
 
 " Family Expenses, etc., 
 
 $30 
 48.50 
 
 86 
 
 300 
 302 
 
 376 
 
 10 
 
 40 
 
 78 
 $11264 
 
 50 
 
 95 
 
 " h 
 
 35e 
 
 $93101 45 
 
^^^o. 
 
 IMAGE EVALUATION 
 TEST TARGET (MT-3) 
 
 
 y^ 
 
 1.0 
 
 I.I 
 
 w^ 
 
 12.2 
 
 WUu 
 
 id. 116 
 
 =d 
 
 <^ 
 
 /). 
 
 
 
 Phntnorpnlnip 
 
 Sciences 
 Corporation 
 
 4. 
 
 ■^ 
 
 iV 
 
 <v 
 
 
 33 WEST MAIN STREET 
 
 WEBSTER, N.Y. 14580 
 
 (716)872-4503 
 
 ^ 
 

 ::«» 
 
 ^ 
 
 A 
 
 h 
 
 o 
 
 '^% 
 
 
II I 
 
 JOURNAI^,— SET L 
 
 Quebec, January 2, 1871. Dr. 
 
 Ct. 
 
 1 
 
 1 Ca^h Or. 
 
 $4600 
 
 
 
 
 ^ To Stock. 
 
 
 
 $4500 
 
 Ml 
 
 ;! 
 ti 
 
 Stcck is the dtle chosen ropresent the 
 tierpon mvegtinsc; in this case, A. J. Hall. 
 It IB ere I, ltd with the investment according 
 to /■rmmple 1. Cash is here reeeivcd bv the 
 oonoem, and is made Dr., acoordinj: to Prin- 
 etpU ?.. * 
 
 350 
 
 
 
 
 1 
 
 I Stock Df , 
 
 
 r 
 
 ' To R. Green. 
 
 1 
 
 
 3S0 
 
 
 
 .;t.'>^k is debited for the liability assumed 
 by thL' eonpern, Prin. 1. R. Green is ered- 
 iteii according to Prin. 6. 
 
 ft 
 
 lei.'t 
 
 
 
 
 i 
 
 * MtRCHANDfSB Dr. 
 
 i 
 
 ' To Cash. 
 
 
 
 1673 
 
 
 
 Merchandise roH $1673, and is debited, 
 PriH. '}.-Giwh was paid for merchandise, 
 and irf credited, Prin. 2. 
 
 8 
 
 686 
 
 70 
 
 
 
 1 
 
 Cash Dr. 
 
 2 
 
 To Merchandise, 
 
 Cash is debited for its receipts, Prin. 2 
 
 Merchandise is credited for its proceeds, 
 
 
 
 6S6 
 
 " 
 
 
 12 
 
 97 
 
 fiO 
 
 
 
 3 
 
 Jos. Murray Dr. 
 
 2 
 
 To Merchandise. 
 
 Jo«. Murray Dr., Ptnm. «.— Merchandie* 
 Of,, Prim, .3= 
 
 
 
 97 
 
 50 
 
 1 
 
 
 $7307 
 
 20 
 
 $7307 
 
 '' 
 
 10 
 
Or. 
 
 ;f45()0 
 
 350 
 
 1673 
 
 70 
 
 686 
 
 TO 
 
 50 
 
 20 
 
 97 
 
 $7307 
 
 51) 
 
 20 
 
 JOURNAL,— SET I 
 
 QuKBBo, January 17, 1871. Z)^ 
 
 AiERCHArJDISK 
 
 Ancunti brought forward, 
 
 Dr. 
 
 Tfi Bills Payablr, 
 
 Crl%"°?'" Dr., Prin. 3._biiu Payable 
 
 20 
 
 To Bills Payable. 
 
 have ««ncW«rf our inJobtedness to him by 
 prom.MO« to ,,ay the amount to another 
 pe^^on whom ho has authorized to receive ir 
 
 new h .bi ity thus assumed, Prin. 6. 
 ,»,i . "^ ^ *'.'"'"8^ wrought in our affairs hy 
 ih u transaction is the transfer of a liability 
 ^^11 a ,,ersona: account to a note. We 
 rT °";i"l^''' "^" Obligation at its matu! 
 protUIeS* ^'^'"""'^ ''■^ ^"'°S our paper 
 
 26 
 
 Bills Receivable Dr. 
 
 To iVIerchandise. 
 
 •1 
 
 BxPKNSi; 
 
 Dr. 
 To Cash. 
 
 fc;«p«'j» Dr., Pr.«. 7.-Ca8hCr., Prin. 2, 
 ■ February I 
 
 CAtitJ 
 
 Dr. 
 
 To Jos. 1VIURRAY= 
 
 CMh Dr., Prxn. 2.~Jo$. Murr.y Cr., Prin. 6 
 
 u 
 
 I7307I 20 
 
 8G 
 
 10 
 
 Cr 
 
 $7307 
 
 86 
 
 20 
 
 10 
 
 302 40 
 
 m 
 
 
 i 
 
 — ii 
 
1 I 
 
 •r 
 
 i: 
 
 in 
 
 \ > < I 
 
 i, ■' 
 
 \l I) 
 
 JOURNAI^— SET I. 
 
 Quebec, February 2, 1871. Dr. 
 
 Amounts brvvght forward, 
 Mtt ^OHANDISE Or. 
 
 To Myler & Lee. 
 
 Merahandise J>r., Prim. 3— Myler A Le« 
 Cr., Pnn, 6, 
 
 D. Murphy 
 
 To Cash. 
 
 D. Murphy Dr., Prin. «.-CaAOr., Prin. 2. 
 6 
 
 Sundries Dr. To Merchandise. 
 
 Merchandise 
 Bills Receivable 
 W. S. Reid 
 
 Merchandise Dr., Pnn. 3. Bills Reeeiy- 
 able l>r., Prm. 4. W, S. Reid Dr., Prin 6 
 Merchandise Cr., Prin. 3. 
 
 The term Sundries is here used for the 
 first time. It means, simply, Sundry Ac 
 ooimtt, and is convenient as a Journal ex- 
 pre.-'. ion, and to avoid the necessity of enu- 
 inerjiiing the items which comprise the totals 
 cafncd to the Ledger accounts. 
 
 — 7 
 
 Bills Payable 
 
 Dr. 
 To Cash. 
 
 Bills Payable Dr., Prm. i,.-Cagh Cr.. 
 Prm. 2. ' 
 
 10 
 
 1 1 Cash 
 3 
 
 Dr. 
 
 To Jos. Murray. 
 
 o^« '*'■•• ^'^- 2— •'<*• Murray Cr., 
 
 $8184 
 194 
 
 120 
 
 180 
 
 200 
 
 82 
 
 06 
 40 
 
 350 
 
 47 
 
 50 
 
 $9357 
 
 Or. 
 
 18184 
 
 194 
 
 05 
 
 40 
 
 rjo 
 
 462 
 
 350 
 
 47/60 
 
 ?..!.. mill, imui yiwiii jju^A.,- 
 
 l« 
 
 t 
 
 96 
 
 $9357 
 
 95 
 
SS*SfS^^^^g*5^^!^ 
 
 pp^tsh^^^-,,-^^^,^ 
 
 Or. 
 
 18184 
 
 1»4 
 
 Ofi 
 
 40 
 
 120 
 
 462 
 
 350 
 
 47i 
 
 S9367 
 
 60 
 
 »6 
 
 !' ■ I Ill U llr II I J I IJJi l j 
 
 JOUBNAL,— SBjx l 
 
 QlTEBEO,'PBBBrAaT 15, 1871. Dr, 
 
 Atnoxmf i-rought forward, 
 
 Br, 
 
 Cash 
 
 To D. MuR«>Hy. 
 
 Sane Pri* as for the preceding entry. 
 18 
 
 $9357i ;».•) 
 120 
 
 Memchandisk Dr. To Sundries. 
 To Cash. 
 "' Bills Payablk. 
 " C. Phelan. 
 
 Merchandise Dr., Prin. 3. — Cash Cr 
 Pnn. 2 Bills P„yabIo, Cr.. />«« 5 j d' 
 Pheian Cr., Prin, fi. ' 
 
 22 
 
 Bills Payable 
 
 Dr. 
 To Cash. 
 
 Bins Pay. Dr., Prin. S.-Cash Cr.. Prin. 2. 
 
 25 
 
 Bills Ukceivable Dr. 
 
 To Bills Payable. 
 
 B. Rec. Dr., Prin. 4.-B. Pay. Cr., Prin. 6. 
 
 . 27 
 
 Cash j),.^ 
 
 To Bills Receivable. 
 
 Cash Dr., Prin. 2.—B. Kec. Cr., Prit. 4. 
 
 (( 
 
 Merchandise Dr. To Sundries. 
 
 To Bills Receivable. 
 " Cash 
 " W. S. Reid. 
 
 Mdse. Dr., Prin. 3.— B. Reo, (.'r Prin 4 • 
 Caah Cr.. Prin. 2; W. S. SeiJ Cr:'. S^^'.V. 
 
 28 
 
 EXPE.NSE 
 
 Dr. 
 
 To Cash. 
 
 BzpaD8« Dr., Prim. 7._Ca«h Cr.. i>rMi. 2. 
 
 18 
 
 646 
 
 86 
 
 10 
 
 300 
 
 302 
 
 40 
 
 376 
 
 78 
 
 50 
 
 $11264 
 
 y 
 
 a*. 
 
 !j!y357 
 120 
 
 95 
 
 150 
 260 
 246 
 
 3ft 
 
 10 
 
 300 
 
 302 
 
 200 
 
 140 
 
 35 
 
 40 
 
 78 
 
 60 
 
 $112641 96 
 
 S'fv ^^t 
 
 i^sfl 
 
 ' iHn^^l 
 
 ■HHI 
 
liEDOER,— SET I. 
 
 (5 
 
 f I 
 
 I 
 
 
 i I 
 
 ]. iii. 
 
 §e 
 
 IS| 2 1 
 
 o w 
 
 n 
 
 
 s^ 
 
 
 M 
 
 ;& 
 
 ■* 
 
 s 
 
 - 
 
 
 
 
 
 
 IS 
 
 
 ?0 ^^ eO r^ r-l O 
 
 1 
 
 
 -a 
 
 o 
 
 13 
 
 K a 
 
 5J 
 
 o 
 o 
 
 a 
 
 
 It 
 
 e 
 
 a. 
 
 — NW^ST»l>^^r»< 
 
 ei 00 
 
 Si! c,a 
 
 1-5 £ti 
 
 
 
 ^5 
 
 d 
 
 
 I o w 
 
 .£3 
 OS 
 
 „ C3 3 -M ri. 
 
 M : 5 : 5 : 3 
 
 
 lftl-^^^-0C?^^»OO_ 
 
 
 o s oo o o 
 o t- o o s « 
 
 IS 
 
 
 O «C o [» o M 
 O X) ^ •<»1 M o 
 
 o 
 
 s 
 o 
 
 1 
 c 
 
 c 
 
 « i-i N CO Tf Tj( 
 
 o 
 H5 
 
 04 00 
 
 2S 
 
 45 
 
 ^ 
 
 ■ 
 
 
 
 
 
 § 
 
 
 
 «r 
 
 
 
 
 
 
 ,a 
 
 
 
 5^ ^1 
 
 
 
 h ^ o 
 
 
 
 
 ^ 
 
 
 5 "B w . =! 
 
 ! 
 
 
 mS^ - QJS 
 
 23 
 
 
 
 o 
 
 
 M»— o>rtt- 
 
 
 
 
 — i-H cs; 
 
 
 
 ^^ 
 
 
 • 
 
 I- . 
 
 
 t 
 
 2 q j» 
 
 % 
 
 ^ 
 
 --s^s«« 
 
 1 
 
 a 
 
 14 
 
 «5 
 

 IS 
 
 1 
 
 OS 
 
 o 
 CO 
 
 
 
 r" 
 
 
 
 
 
 ! -^'■V^^ijjfv^.^n ,-. ■ 
 
 •«s^<auWUKS^|^ 
 
 LEDGER, —SET I 
 
 * 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1 = 
 
 ><» 
 
 
 1 <o 
 
 «e 
 
 
 « 
 
 s 
 
 
 o 
 
 w 
 
 
 c^ 
 
 ^ 
 
 
 Kl 
 
 
 
 
 
 
 ^ 
 
 0) 
 CO 
 
 (d 
 
 0) 
 
 r 
 
 $; 
 
 51 
 
 3 2= <>< 
 
 O d 3 o 
 
 
 ■*n< 1 
 
 
 
 ^■^ 
 
 «« 
 
 CO 
 
 6» 
 
 
 cs ro oo 
 
 y . 
 
 £? ..5 
 
 ^ flO « ® *« 
 
 O 
 fri ' ' - i ", 
 
 ■cb> e^ « 00 
 
 2&; 
 
 00 a ^ 
 
 
 
 .i 
 
 
 « 
 
 
 o 
 
 
 •« 
 
 8" 
 
 n 
 
 J 
 
 ^q 
 
 ffi 
 
 ^ 
 
 o 
 
 ■^ 
 
 r^ 
 
 00 
 
 
 cs 
 
 
 
 C 
 
 3 
 
 * 
 
 16 
 
 ^' 
 
 m 
 
 
i:«£!DQ£}JEl, -SfiT I. 
 
 3 
 
 2S§i I2i 
 
 « O 3 S I O 
 
 00 o .o = I 55 
 
 r*:: 
 
 N N ^ ■* 
 
 a 
 
 > a> 
 
 -S 
 
 ja 
 
 cj 
 
 'S 
 o 
 
 V 
 
 C4 
 
 SaSSog 
 
 s 
 
 ««• O 30 m 
 >-H CS -^ T^ 
 
 o 
 (tf 
 
 n 
 
 00 cj J © J 
 -9 Ck» 
 
 
 O O =1 
 O — o 
 
 1 = 
 
 
 o tc o 
 lO 00 >o 
 
 35 
 
 
 PS ■^ 
 
 
 
 
 
 ID 
 
 
 
 e 
 
 I. 
 
 s< 
 
 ..-■>» CO 
 
 So.a 
 
 
 '» 
 
 i 
 
 :s I s f) 
 
 
 6» 
 
 N« 
 
 CO 
 
 s 
 
 2§ 
 
 "-s 
 
 o 
 
 M 
 
 ?«• 
 
 ft 
 
 CO 
 
 o 
 
 
 o 
 H 
 
 3 
 
 
 
 <^ 
 
 16 
 
 39 2 
 
 33 -a 
 
 3 
 
 ^ 
 
 o 
 H 
 
 XI 2 
 
 
«Jii&mmmmm^ 
 
 'C^tl 
 
 3 
 
 §S? IS 
 
 
 6» 
 
 N.-O 
 
 1 
 
 
 
 LEDGER,— SET I. 
 
 a5s 
 
 ^1^ 
 
 
 3 1 => 
 
 
 1 - r- 
 
 
 - 
 
 
 
 
 s 
 
 1 >o 
 
 
 
 00 
 
 1 (A 
 
 
 «e 
 
 SO 
 
 ■ 
 
 
 <o 
 
 
 ^" 
 
 
 
 «» 
 
 
 
 
 1 
 
 
 
 
 
 
 
 o 
 H 
 
 SS 
 
 f;<ii 
 
 M* 
 
LfiDQER,— SBT I. 
 
 I i 
 
 t » 
 
 il 1 
 
 ■! * 
 
 I 
 
 S:! 
 
 
 1 
 
 IT 
 
 !8 lg|| 
 
 55 tr e^ 
 
 
 
 5 
 
 I 
 
 r- 00 
 
 
 o 
 o 
 
 00 
 
 V 
 «» 
 
 
 
 1 
 
 cd 
 
 CQ 
 09 
 O 
 
 r 
 o 
 
 o 
 
 a 
 
 o 
 
 H 
 
 S « 
 
 * 
 
 o 
 
 « 
 
 <o 
 
 o 
 
 9 
 
 
 •1< 
 
 00 
 
 CO 
 
 «» 
 
 
 •♦ 
 
 
 
 
 
 
 
 
 o 
 
 
 m 
 
 
 •o 
 
 
 :s 
 
 
 0% 
 
 
 BQ 
 
 
 00 
 
 
 c^ 
 
 
 1-^ 
 
 
 2-§ 
 
 
 &, 
 
 
 
 lO lO 1 
 
 = 1 
 
 « t- 1 
 
 «o 
 
 » « 
 
 o 
 
 cc r- 
 
 ■n< 
 
 ^- f— t 
 
 m 
 
 «» 
 
 
 •* 
 
 
 
 4> 
 
 
 
 
 c « 
 
 
 11 
 
 
 w^ 
 
 
 o 
 
 
 h: 
 
 
 OO « 
 
 (M ' 
 
 
 ••* 
 
 
 «-2 
 
 
 -2' 
 
 
 S9SS 
 
 12 
 
 
 ■O 1-1 M M 
 
 •a 
 
 
 
 
 12 
 
 O 
 
 a 
 a 
 
 •a 
 n 
 
 — ^ 
 
 «o o 
 
 3 
 
 1 "" 
 
 
 •o 
 
 x> 
 
 o 
 
 O 
 
 
 
 lo 
 
 « 
 
 o t- 
 
 eo 
 
 
 '^t 
 
 ri 
 
 => 
 
 * 
 
 
 
 OS o wj 
 
 
 M 
 
 
 
 n 
 
 
 
 lO 
 
 
 «» 
 
 
 
 
 
 
 o« 
 
 It 
 
 
 c:i a^. 
 
mMmmmmm 
 
 29SS 
 
 12 
 
 
 = •^ «o « 
 
 O 31 »«t M 
 
 o « M ec 
 
 
 
 
 
 
 
 is*- 
 
 00 
 
 
 •« O O I -o 
 us O O I M 
 
 = o t- 
 
 05 
 
 
 M 0-* 
 
 
 
 oro 
 
 M 
 
 
 C4 
 
 x> 
 
 
 s 
 
 .£:-9 
 
 53^ 
 
 3 : 
 
 : s < 
 
 
 .fl 2 m " O ° S 
 .S-3^ <- 5 2 O 
 
 T ii!fil 
 
 00 
 
 •a 
 n 
 
 OS 
 
 « 
 
 o 
 
 a 
 is 
 
 o 
 
 JS 
 
 2 o J 
 ® ^ y ° o -, 
 
 5 * 7; (t-i >' 
 
 • "-■® ^ S 
 
 8 c o >,a) 
 
 1.5 ±>^^ 
 1, 1 fc - ^a~ 
 
 3 
 
 O O 
 
 V . - gg 0) 
 
 . -3 fc a = •' '^5 
 £ §.2s 5 « 
 
 S »• * ■ 
 o a V S 
 
 - .a -o 
 
 - J; S S°£ 
 
 (-3 w CS w 
 
 •=£§§ 
 
 ^ P 
 
 ■ s fa S js ^'■ 
 ^ 1; _ "w ** £>^ ! 
 
 "3 c = .o a <« 
 
 -3 "SgSo'Sg.s* 
 
 .a. 
 
 s 
 
 
 V _ V a> 
 
 s § « « 
 
 C O c c 
 
 -2 .— ^ * 
 S'S OS "5 
 
 -O J^ JQ J3 
 
 01 
 
 .a o 
 
 ® 
 
 03 
 
 
 
 •— M N lO 
 
 If 
 
 
 IL« 
 
 a> 
 
 o 
 
 a 
 
 m" 
 
 
 o ._ 
 
 o 
 
 E- 
 
 ■n 
 
 if 
 
 ii 
 
i>\ii 
 
 wi 
 
 301 
 
 to 
 bal 
 
 foej 
 pro 
 pro 
 res{ 
 and 
 I 
 are 
 
 LlA 
 
 and 
 Rep 
 
•o 
 
 *- 
 
 
 T» 
 
 en 
 
 w 
 •a 
 
 
 
 
 • 
 
 :2 
 
 
 • 
 
 CO 
 
 35 
 
 
 
 •r) 
 
 
 t- 
 
 
 n 
 
 
 C«J 
 
 
 CO 
 
 
 "f 
 
 
 O 
 
 o 
 
 e- 
 
 
 CO 
 
 
 T 
 
 1^ 
 
 ■S 9 S 
 
 PROOEWS or CLOSING. 
 
 I'ROOESS OP CLOSING. 
 
 3r)0 
 
 570(;|fi0 
 80241) 
 
 "131; I oi 
 
 3,-)0 
 
 9700 
 166 Soi 
 
 120 
 
 «2 
 
 Steele, 
 Casli, 
 
 Mcrclmruliae, 
 Bills IJeceivablf, 
 i'ill.H Payable, 
 H. Green, 
 
 Jos. Miiiray, 
 
 Expcn-^e, 
 
 Myler & Lee, 
 
 I^. Murpby, 
 
 «'. Phelan, 
 
 VV. S. Reid, 
 
 11264 95j[ Equilibrium, 
 
 !onc usivo cvidptieo tl,,, •,! ,1 „ . ■ ''^""•"•'1; ivliicl. ;ilK>nls 
 
 ^ the Le,j''T::i:i^T;'s::^:r^j^^ ^^^^y;^y 
 now proceed to cToi:''rtyn:c rn^^'^^'v^:^'' 7^^ 
 
 for-otten that the object of closin- t T o i • ^'' '^ "°^' ^^ 
 pi-opor manner both f ],« « T" J • ^'^*^"'''" >^ *« pi'oscnt in a 
 
 resources and liabilitie^^amM « ; i"^" ^^ * ^'■'^* ofits 
 
 and losses. "'''"'^''"' '^"'^ '^^ P'ogrcss, by a list of its gains 
 
 Bj an examination of the fants ,> v-i!' V -p-. n d 
 are shown by an excess of the Dehii side of K??t ^"'"«''<'^» 
 LiAB.MT.Es by an oxce^ of thV^.w / ^j r^» accounts, and 
 and that Lnsss are Twn K '^'^ ''^" of Rkai. accounts: 
 
 ^lu^TATim accounts, and G't.in* by an excess of the Credit 
 
 21 
 
 
h '-*'^ s 
 
 I 
 
 M 
 
 iimK ii 
 
 PR00E88 OP CLOSING. 
 
 side of RkprEsentativr accounts. This will su2:a;eHt the pro- 
 priety of opcnitig two accounts for these general results: one to 
 contain the rcsouiccs and liabilitie?, and the other the gains and 
 losses. We will now open these accounts nndor the titlrs of 
 " Loss and Gain," and '• Balance," the former to contain the re- 
 sults of the Ueprksentative, and the latter of the lli:AL ac- 
 counts. Before proceeding to elose the accounts, we must ascertain 
 if they are all ill a condition to show the results desired. The 
 Merchandise account, as it now stands, shows an excess of the 
 debit side, and would therefore represent a foss, if the merchandise 
 were all sold. The account itself does not show whether the pro- 
 perty is all sold; aiii the only means of ascertaining the facts in 
 the case, is to take an actual inventory, or a valuation of that 
 which remains unsold. This we now proceed to do, with the fol- 
 lowing result : 
 
 INVENTORY. 
 Merchandise remaining unsold, February 2S, 1871. 
 
 ISC 
 
 93 yards English Black Cloth. 
 
 l&$5 
 
 $ 465 
 
 
 
 21 ♦* Black Satin, 
 
 «' 4.10 
 
 8(5 
 
 10 
 
 
 432 " Irish Linen, 
 
 « .45 
 
 194 
 
 40 
 
 
 86 " Silk Velvet, 
 
 " 7.50 
 
 (i45 
 
 
 
 600 '« French Merino, 
 
 « .75 
 
 375 
 
 
 
 3 Shawls, 
 
 " 60.00 
 
 180 
 
 
 
 $lii45 
 
 50 
 
 Hence, we see that the unsold nierohandiso is worth Si 945 50, 
 which amount we enter on tlie credit side of Merchandise account 
 in red ink, * and transfer the same immediately to Balance ac- 
 count. The accounts are now in a condition to close ; and wc 
 will take them in their order. The first account (after Stock, 
 which is the proprietor's own account) is Cash account. This 
 aooount represents a resource consisting of cash on hand ; the 
 debit side showing the money received, and the credit side that 
 disposed of. We close the account by entering the difference, in 
 red inJa, ou the credit side, and footing up the sides, drawing 
 double lines underneath. The red ink entry, or balance, is trans- 
 ferred immediately to the debit side of Balance account. The 
 Best account, Mcsrchandise, shows a g'ii», and the balance is trans- 
 
 * An entry In redink on the Ledgor, denotes that the amount thus written it 
 to be ir<tMf'err«d, either to aoine other ocoount, or to another position under the 
 s&me acoounW Ked Ink entries are always traiwfcjrred to tlie oppotUe aide from 
 wbn« they ftrst appear, f»r the roacoa tbat they indicate an oxoesv of that lide. 
 
 12 
 
1 eutrs;est the pro- 
 ] results : one to 
 lier the aaina and 
 dor tho titl(\s of 
 to contnln tlic re- 
 >f the Kkal ac- 
 tvemust nscertain 
 ts desired. The 
 i an excess of the 
 ' the merchandise 
 ^vhether the pro- 
 ining the facts in 
 valuation of that 
 do, with the foi- 
 
 !8. 1871. 
 
 ) 
 
 $ 465 
 
 
 t.io 
 
 80 
 
 10 
 
 .46 
 
 194 
 
 40 
 
 r.5o 
 
 045 
 
 
 .75 
 
 375 
 
 
 ).00 
 
 180 
 
 
 
 $11^45 
 
 50 
 
 worth Si 945 50, 
 chandise account 
 7 to Balance ac- 
 to clo?e ; and we 
 it (after Stock, 
 
 account. This 
 1 on hand ; the 
 
 credit side that 
 the difference, in 
 
 sides, drawing 
 balance, is trans- 
 ! account. The 
 ; balance is trans- 
 
 lount thus written m 
 ir position under the 
 e oppotUe aide from 
 oxoesti of that lide. 
 
 PBOCWfiS OP OLOSINO. 
 
 «oa„ balance., and we close it by simply ,-uli„„ the do ,2 1 ne" 
 
 *ow, a «<,„„., .„d is .ransfened to thelj.VoV BaL V.'^rn" 
 
 .helc- d TrT *" 7f'-' °f."Ji "■" "<"=»""'» exhibited unJ°r 
 been plerlv r? ^1' 'l^ "''"""''■ "»'' '^ '^e balances have 
 
 « next take . T-iai Balance of ^^^'ZoJ^^^ 
 
 SECOND TRIAL BALANCE. Dr, Cr. 
 
 Stock, 
 
 Loss and Gain, 
 
 Balance, 
 
 I 
 
 $4500 
 340 60 
 989 40 
 
 .tt:;: Z !;^t"l?tr Sd rfff^^r^ 
 
 side, decreasing the investment The S.A '°''' •" ""' '*"'''' 
 
 the capital invested inc'aaed b> ^'^^IZhZ'TJT''" 
 equal tho/,fMra( worlh, as shown hv the R J , ' »' <"""■*. 
 
 now close 'stoclc account in^ Bala/ce whwTusI?""/ '^' 
 eju ,b™„ „f the Balance account ; a^d cotlct" i 't^^^-t^unT 
 t.iy euurd 01 resources and liabilities. " ' " -account, 
 
 b Jness ,hich it occupied'atr oil ;:C^^^^^^^^ 
 
 the not investment, or net intae- of tile pIv^Li ' ' "'"« 
 
 I 
 

 , ! 
 
 ORDER OP OLOeiNQ. 
 
 ORDER OY CLOSING. 
 
 Th« student will <\o woW to observe particularly, and to follow 
 out in prnctioe, tlie foUowin- order of closin.i,' tho Lcd,;?er. 
 
 First.— Open ;in account with " Loss and Gain," (if not al- 
 ret.ay opened,) and aaotiier with " Bulanco " ; the former to 
 exhibit tho losses and gam-t, and tho latter the renoarces and ha- 
 
 bxll/ie.t. 
 
 Second.— Ascertain from the inventory if any property remains 
 unsold ; and, if so, credit each account lor which such property 
 was oriu'inally debited with the value of that unsold, makinp; the 
 entry in red ink. •' By Balance," and transferrin^' the amount 
 directly to the debit side of Balance account, making this entry 
 in black ink, " To Merchandise," or "To Real Estate," or any 
 other account from whicli tht^ amount is tranaferred. The Ledger 
 accounts will each show, now, one of tho four following results; 
 viz.. a Resource, a Liability, a Gain, or a Loss. 
 iThird. — Omitting Stock account, (or Partner's accounts,) 
 commence with the first account in the Ledger. First ascertain 
 which of the above results it shows, and make the closing entry 
 accordin"-ly. If the diiference represent a resource or a liability^, 
 enter upSn the smaller side, in red ink, «' To " or " Bi/ Balance " 
 as the case may be, and transfer the amount in black ink to the 
 opposite side of Balance account. Tf the difference represent a 
 gain or loss, enter on the smaller side in red ink, " To " or " By 
 Loss and Gain," and transfer the amount, in the same manner, 
 to Loss and Gain aocount. Close all the accounts (except Stock 
 or Partners',) and transfer the balances as directed. The Loss 
 and Gain account will now show, on the debit side, all the losses, 
 and on the credit side, all the gains, the difference being the net 
 gain or net loss. The Balance account will show on the debit 
 side all the resources, and on the credit side all the liabilities, 
 (excepting the result of Stock or Partners' accounts,) the differ- 
 ence being the real interest or present investment of the proprietor 
 
 or proprietors. m • i -n i 
 
 Fourth.— Take a " Second Trial Balance," or a TriaJ Balance 
 of the remaining open accounts. Stock or Partners', Loss and 
 Gain, and Balance. If the balances have been properly trans- 
 ferred, the debits and credits of these accounts, taken together, 
 must be equal. . 
 
 Fifth.— Close the Loss an;! Giin account into Stock, or, it it 
 be a partnership business, into the partners' accounts, dividing the 
 gain or loss according to agreement. Tho Stock or Partners' ac- 
 counts will now show the original investment, increased by the 
 gain, or decreased by the loss ; the difference being the jyvesent 
 
 24 
 
 
j^, and to follo\» 
 
 Lcd,2;er. 
 
 lin/' (if not al- 
 
 the I'ormer to 
 
 Honrces and Ua- 
 
 roperty remains 
 
 I such property 
 old, iniikinnj the 
 [ill the amount 
 iking this entry 
 h]st;ite," or any 
 i. The Ledger 
 lowing results; 
 
 ler's accounts,) 
 First ascertain 
 he closing entry 
 ce or a liability, 
 " Bj/ Balance," 
 ')t<ic/c ink to the 
 ice represent a 
 " To " or " By 
 e same manner, 
 :s (except Stock 
 ited. The Loss 
 le, all the losses, 
 ce being the net 
 iw on the debit 
 
 II the liabilities, 
 ints,) the differ- 
 of the proprietor 
 
 • a Trial Balance 
 
 ners', Loss and 
 
 properly traas- 
 
 taken together. 
 
 Stock, or, if it 
 
 mts, dividing the 
 
 or Partners' ao- 
 
 noreased by the 
 
 )ing the pruent 
 
 PRACTICAL EXfcROISKS. 
 
 condition Ko uSnos, '" ""^""'"^ '""''' "" «»"' P^^"' 
 
 PRACTICAL EXEllCISES. 
 
 
 MEMORANDUM L 
 
 bu^-ne"s"wftTTi'*?r'-'' \^- ^^'•""' «—ence.l the Dry good 
 ^T " 000 ■ li T"'' ^^'^■''"r«^'^= 350 yards Elbeuf Cloth, a 
 
 ai lik ;2^t-^'S:- ;!"::' at ■ • ' V ''" r*^- ^•"^^''^'^" Cloth 
 
 and the balance, at GO dav^i 1 1 1^,^'f ,,f \'x,.„' ' «' Vi" 
 
 at 40 day., 28 yd. SilktlVet* at £2 0^ ;u"-^Jo\^,i:V ^," •7,»'>t« 
 
 30 Vds. Clotfn,. Val,.-.t „» ,:. <. i' . .« " ",,'3-. *— >"J''1 l>- ^t. Just. 
 
 Received 
 ance. 
 s. 6d. 
 
 ceiled in pa,n,en., cihr^f 10, alid'tirriaC"' «' I'l;.;::'- ,"«" 
 
 100 yds. Cassiinere, at 8s. H!,l _!« C3„i,i ,^ y, v i ' 
 
 ca«h, for l,al. ot account n.^- due, £6 7 ti.-lS. Aooeuted C. Vt7;. 
 
 kin's Draft 
 
 Received of E. G. Ir 
 
 on me at 8 day.-^, in favor of A. Svk 
 
 vine, cash, on %, £1 5.-~31. IJ 
 
 epted C. Har- 
 e.-J, for £8 8.— SO. 
 
 on ,ny note at 2 months. I0,s v,].. Dutch I 
 K Aiid.bert 140 yd... Elbeuf Cloth, at £1 
 
 !i, at £i I 
 
 !o't ofS. McGill, 
 lien, ut 28. 8d.— 16,'«. Suld 
 
 uote at 16 da., for £150, and cashVor the 
 
 S 5. 
 
 Rec'd 
 
 in payiu't iii.s 
 
 26 
 
 bal.~84. Takeu from the 
 
 i') 
 
Il 
 
 niAOTICAL EXERCISKS. 
 
 Store for my own use, '4 Silk hiinclkerchiefa, at 8s. Gd. — 35. Sold 
 D. N. Fatten, 28 yds. Silk Velvet, at £2 15. Received in paynnent, 
 100 yds. B!- e Cloth, at 15*., and ca-li for the bal. — 30. Received 
 of B. Morency, 50 yds. Yellow Cotton, at Is. 4d., on %.— 37. Bo't 
 of D. St. Just .'50 yds. Sedan Cloth, at £1 2 G.J. Gave in payment 
 his note of the 12th instant, for £10; the balance on "/c — 38. Lent 
 F. Audibert, cash, £12 10, until lOtli of February next.— 30, Paid 
 cash for acceptance fiivor of A. Sykes, 19th inst.; on the same day, 
 received cash of \V. Dixon, in full of ^. — 31. — Paid cash for sundry 
 expenses, £G 10 t. 
 
 Take the detailed Inventory of the Merchandise unsold on Jan- 
 n&ry iiisty and quoted at the cost price, the amount of which is 
 £872 6 e. 
 
 £ 2G6 11 2 
 
 Net Gain realized on January Slst, 
 My Net Capital 
 
 M 
 
 (I 
 
 1465 6 2 
 
 \ '■ 
 
 I ! 
 
 if 
 
 timtstt 
 
 Mi 
 
 'i 
 
 MEMORANDUM II. 
 
 February 1, I continue the same business with the following, 
 resources and liabilities, shown in Balance account oflast month' 
 Ledger; viz.. Resources: Merchandise, us per Inventory, $1489. S3. 
 Cash, $2982. SG; Bills Receivable, MGGT.oO; E. G. Irvine's account, 
 §3.70; B. Morency's do., ^235.41 ; F. Audibert's do., $50 ; Liabiu 
 ITIES : Notes outstanding, for !?4SG.83 ; Bedard and Jordan's acct, 
 ?35; D. St. Just's do., $'J5.25.— 3. Rec'd cash of F. Audibert, in fub 
 payment of the oan of last January 28tii. — 3. Gave D. St. Just, 
 an order on B. Morency for $G(), to be p li 1 in cash. — 4. Paid cash 
 for Insurance in the Ruyal Insurance Co., un Merchandise amounting 
 to $1400, at li% premium.— O. Sold Kelly & Shea, at H months, 
 20^ yds. Elbeui Cloth, at $5.60 ; 217 yds. Belgian Linen, at G2icts. ; 
 57yd3. Cassimere, at$1.70; 69 yd^. Indian Cotton, at 22^ cts.— 7. 
 Rec d cash of L. Newton, in full for his note of $1067.50, due this 
 day.— 9. Sold H. T. Perry, 65 yds. American Cloth, at $2.70; 24^ 
 yds. Gray Cloth, at S2.75 ; 20| yds. Merino, at $1.45; 31 j'ds. Yellow 
 Cotton, at 82^ cts. Received in payment his note at HO days,'' for 
 $150, his order on F. Audibert, for $80, and cas)\ for the balance. 
 — lO. Rec'd of F. Audibert, in payment for his note of January 28, 
 last, amount'g to $600, and due this day; viz., 82 yds Silk Velvet, at 
 .^9.80, and cash for the balance.— 11. 'Bought of A. Gibb, 218 yds. 
 White Flannel, at 87^ cts. ; 195 yds. Red Flannel, at 92 cts. Gave 
 in payment my Draft, at si^ht, on B. Morency, for $150; the bal. at 1 
 month.— 13. Sold G. S. Convey on %, 7iyds. Silk Velvet, at $10.70. 
 — On the same day, sold to sundry persons, lor casli, 8, yds. White 
 Flannel, at $1.12 ; 87^ yds. Blue Cloth, at $4.20.-14. Rec'd for my 
 portion in my aunt's l>equest, $■•60.75, in ca-h, Vrhio:! I !;ave depos- 
 ited in the Union Bank. — 15. Paid in ca.^h my note in favor ol H. 
 Simon & Co., for $120, due this day.— 17. Sold C. R. McGruth, :u 
 8 days, 8 Silk Handkerchief-, ai 85 cts.--lJ»-. Bo't of A. Lane & C--.. 
 2i5| yds. Black Watered Silk, at $1.86. Gave in payment H. T. 
 Perjy's note in my favor, for $160; my note, at40 days, tV;i tsOO , 
 
 26 
 
Gd.— 25. Sold 
 I'ed in payment, 
 —30. lifccived 
 
 %.-27. Bo't 
 hive in payment 
 
 %.— 38. Lent 
 ext.— 30. Paid 
 
 the same day, 
 cash for sundry 
 
 ! unsold on Jan- 
 nt of which is 
 
 206 11 2 
 465 6 2 
 
 ith tlie following 
 of last month' 
 itory, $1489.83, 
 [rvine'p account, 
 0., $50 ; LiABiij 
 1 Jordan's acct, 
 Auilibert, in fuh 
 rave D. St. Just, 
 I. — 4. Paid cash 
 mdise amounting 
 a, at 3 months, 
 linen, at 62^cts. ; 
 , at 22^ cts. — 7. 
 1067.50, due this 
 1, at $;2.70; 24i 
 5; SlyJs. YeUuw 
 at ;-iO daya,'' for 
 for the balance, 
 te of January 23, 
 is Silk Velvet, at 
 . Gibb, 21Syds. 
 at 92 cts. Gave 
 150; the bal. at I 
 Velvet, at §10.70. 
 ih, 8J yds. White 
 14. Itec'd for my 
 i«;i I have dopo'-s- 
 ote in liivor ol H. 
 I. R. MoGrath, tii 
 of A. Lane & C'.. 
 n payment II. 'i\ 
 days, f« taOO , 
 
 PRACTICAL BXERCrSfcS. 
 and cash ibr the balance -ai» * 
 
 - ;ack watered Silk, at '^^ i\ * ^•'^'^•-24. Sold f^^r cu^^h ,i' vd. 
 yJ"- Sedan Cloth, at .s' 30 ^0' ^^ ^'^'- ^'^ ^'^""^1- at .^1. o'-^2i 
 anee of 20th in.'t, ftnr^r /'f'"'^''^-^' Di-^courit.d mvaccep 
 
 «ale at auc;;^-o Tl :*£'Sr^"' '" T'' - the?:t proc^^d'of'te 
 Store on the 24th i sL-38 R^c'd ^^^ '"■'" *!i« «^« ^'"^^ destroved my 
 cash, $1400, amt. for wh^h my \li' h^" /''^ ^°^?' ^"^"rance Co., J 
 
 "ly^viert'liandise was insured. 
 
 BALANCE ACCOUNT. 
 
 MEMORANDUM III. 
 
 March I f A J h 11 i 
 
 -^7, to my Dry Good bu.sfne^s Mv r' ?^ J"'"^^ F^-^^uce and Gro- 
 'allows : Cash on hand, £755 3% .fc. '""['''' ,^"'^ Liabilities are as 
 ^^ per Inventory, £486 7 G ■ V 's j^'^'^" »'«"^. ^75; Merchandise 
 
 Notes outstanding amt'e to £r7; 7;, ^r^ "'^"'^ '»« on %, £11 is' 
 and C. Pheian, £61 5 io„ f ^"' ^ «^e Mvler & Lee £4S 9 
 
 yds. Sdk Velvet, at £2 2 6 _o u '^,'^^"<^" Merino, at 48. 6d • 5' 
 I bbls. Superfine Flour cPu»„ J ' , "'^- ^^'^a Pour, at £1 J. « 
 pV;"? ^0 bush, i'eas, at 4s 6d • '^n 1 1 ^,' , °^^^' Oatmeal, at 
 ^"glish B ack Cloth, at £1 16 s- vVl «, P^^"*' ^^ %, 12 yds. 
 
 tco 'J^^^t ^"P^^'^"^ *^Jo"r. atii 6 2 ^""^'^r^^PJor Flour, at 
 r^n^''^^^'^!'^"' ^ Jo^en Fet hats JT**:,,^/*^^^- Crawford 
 
 
I ! 
 i 
 
 l! 
 1 
 
 PRACTICAL EXBBC18M. 
 
 Maurice fov Ca«h. 1 bbi: fi»t.a Snr>eric.r Flour, M l9.-0n the pa.ne 
 day, Accepted Myler & Lee^s DrafY on in- at 10 .lays. »" J^^^r of 1. 
 
 lJ.el,fbr£;^7 10.-8. Reo'.i of J. B. Davi"- ?;ri' •,""-,?;,/ "J^' 
 -Onthe8amr.day, 13o'tf)rca.'.h<>fSMUth & O'Ne.l ..0 lbs- coffee^ 
 at Is. 2d.; 20 U.S. Tea, at 2h. fid.; 60 X,3. Brow"^u?ar at S^.h , 
 16 lbs. Chocolate, at 1h. .5d.; 24 lb.. Cboe^e. at '-i'l-^' S^J^p,^' 
 Rolland, at one month. 15 yds. Iri.h Linen, at 38. ; .30 yd.. Red Flan- 
 nel, at 4m. 4d.~10. Bo't of A. Haniel & Co. .54^ yd.. Alpaca, at is. 
 Id. : 1 LSI yds. F»ench Me»no, ai 53. .Sd. ; 6 Carpetbags, at 5.s. 6d. ; 
 3 doz. handkerchief, at lOs. 5d. Gave in pay"^"<^^njy note at 90 
 daTs, fori:20 10; Uie bal on %.-13. Rec'd of W S. Reid, m cash, 
 £11 15, in full of %.-!». Paid £3 H 9 in cash for the purchase, 
 oartage etc., of 2^ curd, of fire-wood.-ll. Sold B. Jones on hi8 note 
 at 2 months 70 vds. Red Flannel, at 4s. 7d. ; 15 y<i«.^B"gl>;li Black 
 Cloth, at £1 16 9^: 28 yds. White Flannel, a^/^-Jf •-:1%^°,'*/ 
 for cash, 16 lb'.. Butter, at U. ; 5 bu. IJarley, at 68. n;l--l«- B^« '' 
 of J. B. Davis acheck on C. Howard, for£17 1, payable to the l^earer, 
 which was paid me this day, in cash, in full of ^.-IT. .^old ix. i.e- 
 niay, 2 bblsT Superfine Flour, at £1 7 ; 2 bbls. Extra buperiur Hour, 
 atil 17 8:1 barrel Oatmeal, at £1 1 1 : 40 lbs. Butter at 1 id. 
 Rec'd in payment, cash, £2 10 6; the balance on acct.-lO. I aid 
 L. Crawford & Co. cash, in full of %.-SO. Paid cash for acceptance 
 favor olT. Lebel, 7th inst.-31. Paid cash for a horse and harness, 
 £43 5.-22. Bought of F. R. Meredith, 6U yds. Cassiniere, at 9s. 3d. 
 Paid in cash, £18; the bal. at 20 days.--2a.. Bo't of Myler & Lee, 
 78i yds. Woolen Carpet, at 2s. 7d. ; 85 yds. Printed Calico, at lO^d..; 
 18 pair Cotton Gloves, at Is. l^d. ; 15 yds. Welsh Llannel at 2s. bd. • 
 
 6 Silk Umi<reUas, at 18 
 
 ltd. Gave in' pavinent, cash. £6 4 6; an 
 order'on G. Lemay for £5 ; the b:.!. on %.-24. Sold J. Bell on % 
 1 bbl. Extra Flour, £17; 5 bush, peas, at (.s. 2d. ; .3 l^elt Hats, at 
 58. 6d.— On the same dav. Sold to sundry persons for cash, 5 yds. 
 French Merino, at 7s. 4^d.: 1 carpetbag, Hs. 4d.; 2 Black Caps, at 
 9b. 8d.— 26. Sold B. Nolan 40 yds. French Mermo, at bs. .sd..*. Reed 
 in payments bbls. Apples, at £1 2; and cash for the balance.-27. 
 Sold S. A. Hunt, 15 yds. Alpaca, at 3s. 4d. ; 1 doz. Handkerchiets 
 129. 6d.: 25lbs. Cottee. atls. lOd.: 10 lbs. 'lea, at 3s. 5d. Reed 
 in payment his note at 40 days, for £3 11 2,^; and cash ior the bal. 
 -On the same dav, Paid cash, 3s. 6d., for carta-e ot the above sale. 
 -38. Rec'd of Gauthier & Barry, Montreal, as per their Bi 1 ot In- 
 voice of the 2bth inst. ; viz., 5 bbls. Rye Meal, at £1 7 ; oO ou-^hels 
 Indian Corn, at 4s. ; GO bu. Oats, at 3s. Dd., which I paid, pursuant 
 to their order, to J. Rogers, their agent, as follows: b. Reeve s note 
 due April 17, for £15 10 4; and «ash for the balance.— On the same 
 dav, Paid cash for freight and oiher expenses of the above Invoice, 
 £13 7.— 8». Paid cash tof 1 ptjir of pants and I overcoat for my 
 own U3- £5 10.— 30. Tafeen from the Store for Family expenses 
 durkis the month; via.. 8 lbs. Butter, at H^d. ; 5 iba. Coffee, at Is. 
 2d. : 3 lbs. Teft, at 2«. 6d.— On the same day, lant A fcwnth, m cash, 
 dSlO 12, 6, previous to babticing my accounts, »ivi whose entry I had 
 omitted —31. Paid cash for sundry expenses diiring the^ month 
 via., for Rent of 8tor«, £6 10 ; for Family expenses, etc., i* 6 « 
 
 28 
 
PRACTICAL KXER018E8. 
 
 —On *he name 
 in favor of T. 
 n %, £V1 10. 
 
 .')() lbs. coffee, 
 -^ujiar, at 5^(1. ; 
 -9. Sold W. 
 
 ydo. Red Flan- 
 , Alpaca, at 28. 
 jagfl, at 5h. 6d. ; 
 
 my note at 90 
 i. Reid, in cash, 
 r the purchase, 
 ones on his note 
 
 Engli-h Black 
 2 id.— 15. Sold 
 ^.1.— 1«. Rec'd 
 (letuthe hearer, 
 7. Sold G. Le- 
 Supei'iur Flour, 
 iiuter, at 10. id. 
 cct. — 1«. Paid 
 ,1 for acceptance 
 'i?e and harness, 
 iinere, at 9.s. 8d. 
 t)f Myler & Lee, 
 Calico, at lO^d. ; 
 ,nnel, at 2s. 6d. ; 
 ih, £6 4 6; an 
 d J. Bell, on^, 
 •^ Felt Hats, at 
 
 for cash, 5 yds. 
 Black Caps, at 
 It (is. Sd.-'*» Rec'd 
 i balance.— 37. 
 
 Handkerchiefs, 
 
 3s. 5d. Rec'd 
 cash for the bal. 
 f tlie above sale. 
 
 their Bill ofln- 
 l 7 ; 50 bu^^hela 
 I paid, pursuant 
 
 S. Reeve's note 
 e. — On the same 
 ! above Invoice, 
 
 overcoat for my 
 Fanuly eJipenses 
 bfl. Coffee, at Is. 
 . Swnith, in cash, 
 diose entry J hud 
 ing the n»onth 
 etc., i*' 6 « 
 
 £578 16 I i. ""'"'^''' "* '^« co8t pn^, the avwuni of which it 
 
 Net Loss on Miirch 31 
 M/ aet capital " << 
 
 £ 30 
 1061 
 
 5 2^ 
 
 6 04 
 
 MEMORANDUM IV. 
 
 U^Z takJrTl ;YeS e " ni:"'^ the following Resources and 
 cent.; viz., Caion 1 uL »2?'fl7 r^^^^ ininuaafew 
 
 ^2:515.3S;'Noua on h'^d Alt J} ^^^'"^'j^f'l *« P^r Inventory, 
 T^uuiydo,$8.96. J rtTl iiit' ^- <J^" 'H ''^'^''»"®^25; G. 
 
 outstandiniamte ta^4'M(?'T . ^' h^"'''^'J?-* ^^^'^'^' ^Wb 
 C. Phelaa fn?." A w 1 'A^"^*?* foWowa: Myler & Leo $88.90 ; 
 o R j! *'*^'^' -^^ Hainel & Co. $72.47; F. R. MereciithSil ^l ' 
 
 ^8h 2ft S);£^M^''''^7v'^^5 '^^^'-- Mackerel, at$7.20.-3.Bo't for 
 Cheese, aSld'cts -« SoiJ P% & ?\'''?.f*'5 ^'r ^t Z^^"' ' 24 lbs. 
 
 ve> on his note payable U the rnrin';; '''r^: ^^^"' ^- »• Col 
 -On the same day SoMP L f ' ^"^.^^.thout interest, .>f60 
 
 Bank Stock, at ^^ .t!on he^TeTaV R. ''.^''' *? i^'^'^^"'^ ^^^''^^^^ 
 in full of acct.->10. Sold J M f if ' '^u- T^' ^'■'''" ^^- ^^^''-^'H 
 Superior Flour, at" 12.45 •'> hbi^Fw ^''pf '*^^'"^'^"'^' ^ l^bls. Extra 
 
 perfine Flour J6.40 1bbi. Oatmeal ?s'^^ ^,'*^^' ^ b^'' S"- 
 
 40 lbs. Brown Snea,' at iii o^t Tl m' 1 ^ '"'' ^^''''''^'' ^^^^-m; 
 in payment, 100 bu. potatoes at'4linl""oT'i'"- " ' '"' R^^c'd 
 the balance,-On the^samedkr pLt{' o'^ ^Jf "«^ «* 60 days for 
 the above Invoice in cash S2^^^ ^1 ^o ^f*"^ Jrunk for freight of 
 in full for his Sof Mu ci^2> -i^"s Jl^^^ i^ I' «: Merfd.th, 
 
 Black Cloth, at $7.72 i- yds" RkTw Q ^'"' ''^.'^ ^^ >'*^«- ^"g'isS 
 Velvei, at J8.65 "5 Fd hLs afll •',) vi *n ^^'^^S ^^ ^^- ^ilk 
 in the Un.on Bank.-l4. Rec'd of PrR^f ?T''^'^ ^^«^' °'«h, 
 
 if- 
 
 if 
 
i li 
 
 PRACTICAL EXER0I8B8. 
 
 $17.28 on the Union Bank, in payment of his account. — 20. Rec'd 
 $84 in cash for 6% dividend on 14 Shares Montreal Bank Stock. 
 —21. Rec'd of J. Beaudry, Sorel, loO bu. Oats, at (iO cts. ; .'500 bu. 
 Rye Meal, at 90 cts., which I Hold immediately with fHO profit, to 
 E. Stephens. R*c'd in payment of the latter, a note at 2 ) days, lor 
 $200; cash, $120; the balance on %.— 23. Bo' t for cash lu bWs. 
 Extra Flour, at $4.80; .T) bbla. Fancv Flour, at $4.70; H bbl.s. Su- 
 perfine Flour, at $4.60; ■i bbls. Oatmeal, at $6.— 24» Lent cash to 
 P. Fremont on hia note at 40 days, and without interest, endorsetl by 
 A. Sauran, $65.-25. Rec'd cash of G. S. Convey in payment for his 
 note of the 9th inst., due this day.— 20. Sold C. A. Simpson, 8 Simres 
 Montreal Bank Stock, at $112. Rec'd in piiyment, 128 yd«. Eibeiif 
 Cloth, at $6 ; and cash which I deposited in the Union Bank.— 27. 
 Sold N. O. Day on his note at 2 months, 35 bu. Peas, at $1.13 ; 17 
 bu. Barley, at $1.29; 20 lbs. Cotfee, at 30 ots.; 4 bbls. HerringH, at 
 $7.85.— -28. Paid cash for Myler A Lee's Draft, in iavor of C. May- 
 nard, $62.45. — On the same day, Gave the carpenter an order on 
 N. Graham for $5. 10, for repairs of Store Fixturec^.— 30. Sold J. S. 
 O'Brien, 200 yds. Irish Linen, at 90 cts. ; 40 yds. Silk Velvet, at 
 $9.20 ; 12 Felt Hats, at $1.98| ; 12 Black caps, at $1.90. Rec'd iu 
 payment, Neil & Roche's note, at 40 days, for $240 ; cash, $203 ; 
 discount allowed for the payment in cash, $3.80 ; the bal. on ^.— 
 On ihe same day, Paid canh for sundry expenses; viz., Taxes and 
 Gas, $5.63, Family expense.^, $24.35; Rent of Store, $26. 
 
 Take the detailed Inventor}/ of the Merchandise unaold April 
 30th, and quoted at ihe cost price. 
 
 The Merchandise amounts to $22^2.96. 
 
 The Shares of the Montreal Bank Stock, to 624.00. 
 
 BALANCE ACCOUNT. 
 
 
 t 
 
 BKBODBCKS. 
 
 
 ■jr, 
 
 LIABILITIES. 
 
 S 840 
 
 
 ^■j: 
 
 ( 
 
 
 Cash, 
 
 $ 83,' 
 
 Bills Payable, 
 
 10 
 
 ^H ' i 
 
 
 ( 
 
 1 M«rcliandise, 
 
 2232 
 
 95 
 
 C. Phelan, 
 
 245 
 
 00 
 
 ^H M 
 
 $1 
 
 1 
 
 Bills Receivable, 
 
 1285 
 
 45 
 
 A. Haiiiel & Co., 
 
 72 
 
 47 
 
 ^■1' 
 
 
 J. Bell, 
 
 14 
 
 86 
 
 J. Beaudry, 
 
 3(;0 
 
 00 
 
 ^^^^^^^H ! 
 
 
 
 A. Smith, 
 
 42 
 
 50 
 
 Stock, 
 
 •4821 
 
 0',^ 
 
 ^^^■f-' ' 
 
 Montreal Bank Stock, 
 
 624 
 
 00 
 
 
 
 
 ^H liH 
 
 I \ B.Nolan, 
 
 26 
 
 98 
 
 
 
 
 
 [ Union Bank, 
 1 H. Collins, 
 
 910 
 46 
 
 72 
 90 
 
 
 
 
 ^H . i 
 
 Hi 
 
 N, Graham, 
 i i E. Stephens, 
 
 125 
 
 \l\ 
 00 
 
 
 
 
 ■1 " IIL 
 
 
 
 '- 
 
 ^ J. S. O'Brien, 
 
 1 
 
 147 
 
 85 
 59 
 
 5 
 
 % 
 
 
 ^^^^^H '< i*G^^H H 
 
 ] 1 
 
 $6338 
 
 $6338 
 
 59 
 
 
 u 
 
 L_ 
 
 ; 
 
 
 9 
 
 
 
 
 
SKT I[. 
 
 DAY BOOK, JOURNAL, CASH BOOK, BILL 
 
 BOOK, COMMISSION SALKS BOOK, 
 
 ACCOUNT SALES. 
 
 it,.] 
 
 DAY BOOK,— SET II. 
 
 QuEBKc, April l.st, 1871. 
 
 J. Byrne and F. O'Reilly Imvc tl,i. ,Iay ontore.l 
 
 BTRNfc, & Reilly, toconrluct a Produce, Grocery 
 Domestic Shipping business, and for l.uy.n" IS 
 8el mg Real Estate, Steamboat Stocks, etc : ~Tl e 
 parties to invest equal amounts of net capital ad 
 to share alike in gains and losses. ^ ' 
 
 J. Byrne's Resources are as follows : 
 
 une-half d the Tow-boat Nestor, valued at 7800 
 One-iourth of the Tow-boat Levis, *' «« 
 
 6400 
 
 His Liabilities are: 
 
 A Note, favor of Barclay & Co., due April 
 
 II th, which the Finn assume, 
 J. L. Eraser, amt. due him. 
 
 Making his Net Capital $20200. 
 
 $8750 
 250 
 
 20200 
 
 1 
 
 If 
 
 m 
 
 00 
 
 9000 
 
 00 
 
s 
 
 DAY BOOK, SET II. 
 
 Qr.f.Hiso, Apiul 1st, 1871. 
 
 V. O'Hcilly'fl Resources are: 
 
 Casl) on liathi, $19600 
 
 A Note in liis favor, drawn by 1.. Clint, 
 
 due May 25tli, 4230.60 
 
 His LialiiliticH, which the Firm assume, are 
 
 Young & Talbot, anit. iliie them 
 R. Fisher & Son, " " " 
 
 Makinfj; his Xct Capital $20200. 
 
 fl068 
 2.502.60 
 
 1 
 
 Deposited Casli in the National Bank, 
 2 
 
 Bought of C. Ross & Bro., Storo ami Fixtures, at 
 Paid thern,CliPck oil National B'k, $2000 
 
 Bond and Morlgiige for balance, 4000— $6000 
 
 Solil i of thft Tow lioat Nestor for cash dl•J.o^ilfd in 
 the National Bunk, 
 
 Bonjiht of L. II. O'Connor & Co., 
 IFiQ bhlH. Snpwfine Flour, ^ !? 
 120 ♦' Extra Mfjsa Pork, " 
 720 " MfSH B.'ef; 
 
 \'l! 
 
 Piinic Beef, 
 
 (iO «< Bed llamH, 
 6(t " Pearl Ashes, 
 8 hhde. Sugar, 8800 lbs., 
 
 (< 
 (1 
 
 Gave in payment. 
 Our two Notes— 1 ^> 10 da., fur 
 1 ® 3 nio., for 
 Our Check on the National Bank, 
 
 for 
 Balance on ^, 
 
 :"). to 
 
 10.00 
 12.00 
 
 !).00 
 KL.^O 
 
 .').50 
 .07i 
 
 $2000 
 4000 
 
 $810 
 
 1200 
 
 Hfi40 
 
 1 1 2.5 
 
 9!)0 
 
 27.5 
 
 H60 
 
 .3700 
 
 4000— $ia700 
 
 Drew Cash from National Bank, per Check, 
 
 32 
 
 2.S830 
 
 3630 
 
 60 
 
 60 
 
 18000 
 
 6000 
 
 00 
 
 00 
 
 4200 
 
 00 
 
 1.3700 
 
 00 
 
 4C9 
 
 00 
 
DAY BOOK,— SET II. 
 
 QuHBEc, April 6, 1871, 
 
 Paid cash for \ Repairs of Tow-boat Ley is, 
 
 90 
 
 00 
 
 a.H r?sk, ' ^^""■'^«'' '0 be eol.J on our ^ 
 
 200 bbl... Mess Beef, ^$12 2400 
 
 •^0 " Prime " <( ij 270 
 
 4 hhd8. Sugar, 4400 lbs., " $.07^ .S30-3000 
 
 4 
 
 Paid drayage on same in cash. 
 
 8 
 
 Bo't of E. S. Pierce, a House, 24 St. Louis street, for 
 Gave in payment, 
 
 A of Tow-boat Nestor, for $2200 
 
 Uieck on the National Bank, f:)r 1.000 
 liond, secured by Mortgage, payable 
 '" <• nio'ill'f^, tor .S.S00~700n 
 
 Received per Ora„d Trunk R. R., from L. Sha^v & 
 Co loronto, to b,^ sold on their % «..,! risk, 
 (•00 bush. Wiieat, invoiced /?» .fl.do 
 "00 •• Corn, »• «« (ig 
 
 4200 Iba. Butter, '< <« "14 
 
 Paid transportation charges, in casli, 
 
 10 
 
 W Z nf f "'"' ?" ^f '?"*' ^^"'^' ^f Lewis & 
 Wright, of this city, (heir Bill of Exchange at 
 «.gl.l on Watson & Co., Montreal, and reimtte 
 the same this day to Young & Talbot, in full ol 
 
 Faid ,n cash, i % Pretn. for the Bill, *^"^2.C7 
 
 .■?00i 
 
 7000 
 
 00 
 
 00 
 
 9.0 
 
 00 
 
 1070 
 
 
 II 
 
.! I 
 
 DAY BOOK,— SET 11. 
 
 Quebec, Apku. 12, 1871. 
 
 Rfoeivr'i ifii.'l' ''•nee (Imt the Tow-l>.iaf Lovn* Mink 
 ^estenlaj in tl, St. Lawrence river, near i. ""en 
 Inland, uml lia> Jicen dt'livercilover to the Under- 
 writers. 
 
 The boat being insured fnr $21 ')00. we liave reci'iv- 
 ed ill Casii, (wliicli we liave deposited in the 
 National Bank,) rmiu tiie Qnol)ec Ins. Co.. nnr 
 \ of same, $5:17;'). !.s« Expenses $110, = f52t»ii 
 
 Lost the Bal. of our Share ol'the cuat of 
 
 eaid Boat, ($5400 + *l)0 - $52(j.')) = 225 
 
 13 
 
 Rec'd per Steamer Anna, from F. J. Ray, Halifax, 
 N. S., to be HvUi on liis % and risk, 
 400 lil.ls. Codfish, invoiced ffi) *4.r)0 
 (iOO " Mackerel, " " 6.50 
 500 " Herriogs, " '* o.OO 
 
 Paid Freight and Insurance, in cash, 
 
 15 
 
 Bought of A. Stars & Co., per Check on National 
 Bank, 
 30 Sliarea National Bank Stock, ^ $48 per S. 
 
 16 
 
 SoldB.W. Hardy, for cash, from L. S. 
 ConsigDuient, 
 4200 ll- Butter, i9 $.\6 
 800 budb. Corn, " .80 
 
 & Co.'s 
 
 $(172 
 640 
 
 Cloped L. Shaw & Co.'e Consignment, and rendered 
 them an Account Sales of the same. 
 
 Our charges for Storage and Adver., $ 20.00 
 Our Conn-iiasion on Sale?!, 64. IM 
 
 L. Shaw & ' ';.'8 net proceeds, 2152.87 
 
 Boughl, at Aucuon, I- :)f ot^amboat S' rel, for 
 
 34 
 
 5400 
 
 0(1 
 
 150 
 
 00 
 
 1440 
 
 00 
 
 1312 
 
 00 
 
 ^ 
 
 2237 
 
 6400 
 
 00 
 
 00 
 
DAY BOOK,- SET II 
 
 QUKBKC, APIML 17, 1871. 
 
 "I'M) 
 
 ()(i 
 
 1.^0 
 
 00 
 
 1440 
 
 00 
 
 1312 
 
 00 
 
 22,-^7 
 
 6400 
 
 00 
 
 00 
 
 (^>avo ill payment, 
 The Note or L. Clint, favor of P. O'lteillv an.l 
 
 .liie 2;, 1, i.r.xiino, .':;42;{0.7lO 
 
 Our chpoko'i National B'k for inoo.OO 
 tu^li U,f Sal. inclmJHjg tlisci, 
 •^"N.ie, GfH;.l!)-642(i.7!i 
 
 The di^ct. on Note, $4230.60 for .'{8 day.s, is 
 
 it 
 
 Gave oi.r Note, ^ 40 day,, to the QneI.ec In.s. Co 
 
 ^i'riTl'\''Y ■^'""''' *^^^''" Stea.Mbout Sorel, fur 
 *0500, ^ 2 ^ = $i:;o, a,„| Policy )?[. 
 
 18 
 
 ^ W fr '"^''i^-'b^^-'^t Alfre,!. a„.| coM.i,ne.J tu 
 % and risk!' ^"^'''"' '""'''"' '^ ^^ ''^^''^' «» -"r 
 
 50 bb!s. Pearl A.^hes, fron) Store, valued 
 
 f<2>$7 
 
 !? im 
 
 4 hhd*. -1400 lbs. Sugar. " <• 
 
 I 600 bblH. Mackerel, (F. I. R'^ Consi..„. 
 
 Paid ca T' V^ *^5" ■ ° 4500 
 
 i-aul cttflh lur Ins.^Preujium and Policy, 20 
 
 19 
 
 The SteaMiboat St. Alban, on which we shipped 
 puds to McLean & Co., Montreal, got on fiS a 
 her , rnval in p..t. and our go, J.,= which w'i 
 resc .; ,„ a (hunaged condition, and upon which 
 there was no in.surance, were sold at auction lor 
 
 2H 79 
 
 Shipped, per St»>an)boat Glory, to W. S. Kellv 
 
 ^iniiJrr' ^tt^^ ^^ ^"^ ''''^''^ -^"^ -^^ i''^ % 
 
 •'0 bbls. Superfine Flour, /a $ (5.12 3GG 
 
 ■■50 '< Extra Mess Purk, " U.oo 650-9IG 
 
 Paid drayage on same in cash, 
 
 131 
 
 00 
 
 5266 
 
 00 
 
 2500 
 
 00 
 
 920 
 
 00 
 
 m.^ 
 
in 
 
 i i 
 
 ■lit 
 
 6 
 
 DAY BOOK, -SET IL 
 
 Quebec, April 20, 1871. 
 
 Sold E. G. Henry, for cash, 
 
 400 bbls. Codfish, (F. J. R'8 Con.) ^ |5 2000 
 500 '< Herrings " " '< 6 3000 
 
 Closed F. I. Roy'a Consignment, and rendered him 
 an Account Sales of the same. 
 Onr clirtrires for Storage and Advertising, 50.00 
 
 Our Commission on sales, 
 
 287.50 
 
 F. I. R. net proceeds, remitted in cash, 9062,50 
 22 
 
 Sold to J. L. Fraser, 25 Shares National Bank 
 Stock, at fn) $52 
 Received payment as follows : 
 Canceling tor our indebtedness to 
 
 5''"'. $250.00 
 
 Iiilcrest on same allowed by us, 1.50 
 Cash for the balance, 1048.50—1.300 
 
 23 
 
 Received from G. Doyle & Son, Ottawa, to be sold 
 on their ^ and risk, 
 1000 bush. Wlieat, 
 SOO *< Oats, 
 200 bbls. Tallow, 
 Paid i'^reight in cash, 
 
 24 
 
 Sold our House, No. 24 St. Louis street, toR. Fisher 
 & Son, for 
 Offset, as part payment, the am't which we owe 
 
 them on %, $2502.60 
 
 li^cM their Note at 1 8 months, 
 fieciired by Mortgage on Prop- 
 ^ ^r^y. for 5000.00 
 
 And Cash, for the balanoe, 437.40—8000 
 
 25 
 
 '\ 
 
 Sold E, F. Andrews, at 40 days, on % 
 
 200 bbls. Tallow, (G. D. & Son's Cons.) /© ?8 
 
 5000 
 
 00 
 
 9350 
 
 1300 
 
 00 
 
 100 
 
 8000 
 
 00 
 
 Od 
 
 IfiOO 
 
 00 
 
 SS 
 
l»te«,. due o„ sSrialr'^ *»"£» 
 
 ' 0.75 
 
 27 
 
 Cash paid, 
 
 I»ificount off- to May 1 7 ' '^^^■^'^ 
 
 29 
 
 Received advice from Price & Tr. w . 
 pale of 50 bbls. Pearl A.i '.^'"S^'o"' o^the 
 
 -;j 600 l>bi.;MackLet'S:iLl'^V'"'"^^'-' 
 ISlhinet. ' snipped ihein on the 
 
 Net proceeds remitted in casli, 
 
 30 
 
 1000 bush. Whear <^pn t, o . 
 /a $1.40 ' ^^- ^' * ^^^'^ « Coneignment) 
 
 CJofieiJ G. Doyle <fe «?nr,'a n 
 
 Q. Doyie i Son's „« proved, jjjf 
 
 ~- . <( 
 
 ^••0-Rei,„„.3dra„-„ cash for p„>,^„,,^ 
 
 8758 
 
 00 
 
 Pa.d sundr, expenses this month, in cash, 
 
JOURNAL,— SET II. 
 
 QuKBKC, Ai>iuL 1st, 1871. Dr. 
 
 Gr. 
 
 • The term "Mortgage Payable » i« but another name for BilU Payable : the 
 ad'ount! mZ b" kept ^separate or together. There is a dist.uctjor, between a 
 SomiSorrnote nnd^ mortgage on real estate ; and the majority of business 
 ■to would pr»fer to h«T9 U»»t distinction prwwved in tbwr aooouHts. 
 
 
 Sundries Dr. To J. Byune. 
 
 
 
 S29200 
 
 00 
 
 
 National Bank 
 
 $16000 
 
 00 
 
 
 
 
 Tow-boat Nestor Stock 
 
 7800 
 
 00 
 
 
 
 
 Tow-boat Levis Stock 
 
 5400 
 
 00 
 
 
 
 
 J. Byrne Dr. To Sdndrie*. 
 
 9000 
 
 00 
 
 
 
 
 " B. Payable. 
 
 
 
 8750 
 
 00 
 
 
 " J. L. Fraser. 
 « 
 
 
 
 250 
 
 00 
 
 
 Sundries Dr. To F. O'liKiiXY. 
 
 
 
 23830 
 
 60 
 
 
 Cash 
 
 10600 
 
 00 
 
 
 
 
 Bills Rkckivabie 
 
 4230 
 
 60 
 
 
 
 
 F. O'Reilly Dr. To Sundries. 
 
 3630 
 
 60 
 
 
 
 
 " yocNG& Talbot. 
 
 
 
 1068 
 
 00 
 
 
 " R. Fisher k Son. 
 « 
 
 
 
 2562 
 
 60 
 
 
 National Bank Dr. 
 
 18000 
 
 00 
 
 
 
 
 To Cash. 
 
 2 .. , 
 
 600( 
 
 00 
 
 18000 
 
 00 
 
 
 Real Estate Dr. To Scindries. 
 
 
 " National Bank. 
 
 
 
 200( 
 
 ) 00 
 
 
 «' MobtoagePay.' 
 
 i 
 
 • 
 
 400( 
 
 1 00 
 
Gr. 
 
 00 
 00 
 00 
 
 00 
 
 129200 
 
 00 
 60 
 
 60 
 
 00 
 
 8750 
 250 
 
 238:^0 
 
 00 
 00 
 
 60 
 
 00 
 
 00 
 
 1068 
 2562 
 
 00 
 60 
 
 18000 
 
 00 
 
 2000 
 4000 
 
 00 
 00 
 
 r BillB Payable : tha 
 listinction betwoen a 
 majority of busineas 
 
 MOOUBtS. 
 
 JOURNAL,— SET 11. 
 
 Quebec, Apiul 3, 1871. ypr 
 
 Or. 
 
 Nationat, Bank /;,. 
 
 To Tow-boat Ne.stou Stock. 
 4 _ 
 
 Mekchan 
 
 DISK Dr. To Sundries. 
 
 
 To BiM.s Payabi,).:, 
 
 
 " Nationai, Bank. 
 
 
 " L. R. O'CONNOK & Co, 
 
 — •■•- _. 
 
 5 
 
 Cash 
 
 Dr. 
 
 
 To Nationai, Bank. 
 
 
 <i 
 
 Tow-boat Levis Stock 
 
 Dr. 
 
 To Cash. 
 
 6 _. 
 
 Shipment to Montuk.m, * Dr. 
 
 To SuNDlilES. 
 
 " Mercfiandise. 
 " Cash. 
 
 8 
 
 Real Estate Dr. To Scndries. 
 To Tow-boat Nestor Stock. 
 
 " National Bank. 
 
 " Mortgage Pay.able. 
 
 * " Shipment (o iMontreal " i'? » ~ ~ ' 
 
 enterprise, and although it relates t'Jfm!?ih''"V"P'"'^ '°'"ep>-esent <^ particular 
 
 IS as 
 
 though wo had sn.'d 
 same in this advent 
 aod cash credited 
 
 our m 
 tire. 
 
 c'^Jnn,? ""i" f'*^ distinction. It 
 
 norchandi^e for 7 nn ) f '-'^^ ""''''""f' 
 
 invested thi 
 
 80 
 
 cost and morohandiae 
 
 ■f 
 
w- ' — 
 
 1 1 )i 
 
 ;; i- 
 
 i 
 
 JOURNAL,— SET II. 
 
 Quebec, april 9, 1871. Br. 
 
 8 
 
 L. Shaw & Ce.'s Cons. * Dr. 
 
 To Cash. 
 
 10 
 
 SCNDRIE3 Dr. 
 
 YOCKG & Tai.bot 
 Premium 
 
 To Sundries. 
 
 ToIa onal Bank. 
 .« Cash. 
 
 11 
 
 BiLLK Reckivabi.e Dr. 
 
 To L. Shaw & Co.'s Consignment. 
 
 12 
 
 Sundries ■''**• 
 
 To Tow-boat Levis Stock. 
 
 National Bank 
 
 Loss and Gain 
 
 . 13 
 
 F. L Ray's Consignment Dr. 
 
 To Cash. 
 
 15 
 
 Or. 
 
 $ 95 
 
 National Bank Stock Dr. 
 
 To National Bank. 
 
 1068 
 2 
 
 00 
 
 1020 
 
 00 
 G7 
 
 $ 95 
 
 00 
 
 62G5 
 225 
 
 150 
 
 1440 
 
 00 
 00 
 
 00 
 
 00 
 
 1068 
 2 
 
 00 
 
 1020 
 
 5490 
 
 GO 
 67 
 
 00 
 
 00 
 
 150 
 
 00 
 
 1440 
 
 00 
 
 rKoae. m effect, as wouia db au a^ receive, as comm ssion morchaots, 
 
 •t:';;ir"'L''t:a7C'efore ff Kur^ -count ^th the ,-. 
 
 % Ih. pro^rty, we d«bU it onij with what it haa eoBt u.. 
 
 40 
 
JOURNAL,-SET n. 
 
 Quebec, April 16, 1871. /v. 
 
 To L. Shaw & Co.'s Cons, 
 
 << 
 
 I- Shavt & Co.'s CoNsioN. Dr. 
 To Sdndiues. 
 
 " Storage & Adfertisino. 
 " CoMMisaio>f. 
 " L. Shaw & Co. 
 
 St'NDRlES />». rr,^ o 
 
 '-'^' io Sundries. 
 Steamboat Sorel Stock 
 
 DlSOOONT 
 
 To Bills Receivable. 
 " National Bank. 
 " Cash. 
 
 Steamboat Sorel Stock Dr. 
 
 To BiLr,8 Payable 
 
 18 
 
 Shipment to Kingston 
 
 To Sdndries. 
 *' Mdse. 
 
 " F. I. Rav's CoNriGw 
 " Cash. 
 
 "Jeir CoDeignmentlocounf . " ^^*'*'* '*' ^'^r business wit"h'^h"''* tbe aet amt. 
 their nronertv a/i\ "^ ""* "«ef^ «'> »how fhl #■ ? "° '^^™ «<> f*r ; and m 
 
 When iKS'o:,^ °3„d "^f '" '^ '''8'^r^nce Se7n T/'^-h''*'^ ;'^ ''"tUled to! 
 
 -ui. to the a.sw«ir,i'-i- '^^ coLgi', ru;t!"::d?;4-:^- 
 
 -u't.totheac=^'g^J':,^- 
 
 41 
 
; 
 
 
 \i 
 
 1 1 I 
 
 I [i 
 
 JOURNAL,— SET IL 
 
 Qdebeo, April 19, 1871. Dr. 
 
 Cr. 
 
 
 
 Cash Dr. 
 
 $2500 
 
 00 
 
 
 
 
 
 To Shipment to Mont heal (1) 
 
 
 
 $2500 
 
 00 
 
 
 
 W. S. Kellt (2) Dr. To Spnoribs. 
 
 920 
 
 00 
 
 
 
 
 
 '* Mdse. 
 
 
 
 916 
 
 00 
 
 
 
 " Ca3B. 
 
 
 
 4 
 
 00 
 
 
 
 90 
 
 
 
 
 
 
 t 
 
 
 
 
 Ca8h Dr. 
 
 6000 
 
 00 
 
 
 
 
 
 To F 1 Rat's Consignment. 
 
 
 
 6000 
 
 00 
 
 
 
 « 
 
 9360 
 
 00 
 
 
 
 
 F I. Ray'8 Consignment Dr. 
 
 
 
 
 To SCNDBIES. 
 
 
 
 
 
 
 
 " Storage & Advertising 
 
 
 
 50 
 
 00 
 
 
 
 " Commission. 
 
 
 
 237 
 
 50 
 
 
 
 •' Casb. 
 
 
 
 9062 
 
 60 
 
 
 
 •>2 
 
 
 
 
 
 
 Sundries Dr. 
 
 
 
 
 To National Bank Stock. 
 
 
 
 1300 
 
 00 
 
 
 
 J. L. Frasgr 
 
 260 
 
 00 
 
 
 
 
 
 Interest 
 
 1 
 
 50 
 
 
 
 
 
 Cash 
 
 1048 
 
 60 
 
 
 
 (1) Shipment lo Montreal is treated precisely as any property or represent- 
 ative aocouni ; baviog been dabiled with itn costs, we now credit ii witii its 
 proceeds. The difference will be, in this case, our losf. 
 
 (S) Here the good« are not shipped for our account, but for the account of 
 another party who oxtered them. This is therefor* a regular sale. 
 
 42 
 
"•acfteaiu. 
 
 Gr. 
 
 10 
 
 00 
 
 $2500 
 
 00 
 
 !0 
 
 00 
 
 916 
 4 
 
 00 
 OU 
 
 00 
 
 6000 
 
 00 
 
 00 
 
 50 
 
 237 
 
 9062 
 
 1300 
 
 00 
 50 
 50 
 
 operty or represent- 
 » credit i( with its 
 
 for the acoouDt of 
 rtal*. 
 
 6 
 
 JOURNAL, -SET n. 
 
 ^Quebec, Aprm. 23, 1871. /)^ 
 
 TE. 
 
 
 G.DOTI.E& Son's Consign. Dr. 
 
 To C^sH 
 
 ■ 24 
 
 i/r. lo Real Esta 
 H. FisHKK & Son 
 
 MORTGAOK HeceiVablb 
 
 Casb 
 
 ■ — - 26 
 
 E. F. Andrews ^„ 
 
 To G. Doyle 4 Son's Cons. 
 26 
 
 $ 100 00 
 
 2662 
 
 5000 
 
 437 
 
 1600 
 
 Or. 
 
 $ 100 
 
 8000 
 
 Shndries Dr. To National Bank. 
 
 Bills Payable (]; 
 
 Interest 
 
 60 
 
 00 
 40 
 
 00 
 
 00 
 
 00 
 
 J 600 
 
 27 
 
 Bills PATABLM2)i)r. To Sundries. 
 
 " Cash. 
 " Interest. 
 
 8760 00 
 8 75 
 
 00 
 
 8768 76 
 
 2000 
 
 00 
 
 1993 
 
 34 
 66 
 
 wrlti^i^n'ttS^'^^t/ thf J'ar':*^',!" '"' ^'"^'"'^ '^-^ credited with the .... 
 
 est wi h'-.h^^* "'^'«^'"-« debit Bi'ls Payabl JithtS'^""'*?!'** P^y. *» ordor^ 
 est with the amount we pay for Interest. *°*' ''^ ^° "°*e' "Wd inter- 
 
 arioyg"eKrp:;^',r,lV'$%*i^'r'V^*^^" ••• «Fe.aedvaiue a. w. 
 here debit BillSPnvublowkh the fapf' T^'f'' " **•" >«S8*^han iJC "w. 
 
 ;^Jtbe.n«t.e amount produced by ir.&^'t^'irv'^;':^'^^'^:;:^ 
 
 4S 
 
 il^;, 
 
^mi 
 
 JOURNAlw, - SET n. 
 
 QuEBKc, ApiiiL 29, 1871. Dr. 
 
 CA(?n Dr. 
 
 To Shipmkxt to Kingston. 
 30 
 
 $5100 
 
 00 
 
 Cash Dr. 
 
 To G. DoYi.K & Son's Cons. 
 
 G. DoYi B & Son's Cons. Dr. 
 To SrNDKiKS. 
 " Stobaoe &, Advertising. 
 " Commission. 
 " G. DoTLE & Son. 
 
 u 
 
 F O'Reillt 
 
 u 
 
 EZPENSB 
 
 Dr. 
 
 To Cash. 
 
 Dr. 
 
 To ClBH. 
 
 1400 
 
 2900 
 
 00 
 
 00 
 
 200 
 
 ISO 
 
 00 
 
 00 
 
 Cr. 
 
 $5100 
 
 00 
 
 1400 
 
 30 
 
 75 
 
 2796 
 
 00 
 
 00 
 00 
 00 
 
 200 
 
 150 
 
 00 
 
 00 
 
 
 We have omitted the Ledger in this Set, believing the student 
 to be fully capable to post the accounts without assistance of this 
 kind. Wo shall adhere to this plan hereafter, except in cases 
 wlicie some new principle or application may be otherwise more 
 clearly shown 
 
 The student wHl make his Ledger conform to the following 
 Trial Balance, and close it in accordance with the Statement 
 hiob follows 
 
 w 
 
'. ^■^^»-ft?;iff^:^^ff,-. 
 
 ving the student 
 issistiince of this 
 , except in cases 
 ! otherwise more 
 
 to the following 
 the Statement 
 
 rooi-ing.s. 
 
 23098125 
 140U 
 
 TRIAL BALANCE. 
 
 LEbGKJi ACCOUNTS. 
 
 J- HVIIIL- 
 
 National Hank 
 
 Tow-boat Ntvstor Slock 
 
 low-boat Levis Stock 
 
 Bills Payable' 
 
 •»• L. Fraser 
 
 Bills Receivable 
 
 Cash 
 
 Youni;; & Talbot 
 
 H. FJHlier & Son 
 
 Real Estate 
 
 Mortgage Payable 
 
 Merchandist 
 
 L- li. O'Connor & Co. 
 
 Shipment to Montrtai 
 
 L. Shaw& Co.'sConsi.r,, 
 
 Premium, Disc't, & [..t 
 
 L0H8 ami Gain 
 
 F. I Ray's Consignment 
 
 National Bank Stock 
 
 i^toragean,! Ailvfrh,^,,,;: 
 
 Coiiiiiii8ision 
 
 L, Sliaw & Co. 
 
 Steamboat SoreJ Si,oc4f 
 
 SliipmeiU lo IiHj.u«icn 
 
 W. S. Kelly 
 
 <;. Doyle & Son's Cons. 
 
 Mortgage Keceivable 
 
 i^- F. Andrews 
 
 G. Doyle & Son 
 
 Expense 
 
 INVENTORY OF Ux>^SOLD PROPEKTY. 
 
 T.)t:ll 
 
 2:)2(i() 
 
 2;v>;:{(i|i;i) 
 
 2(i;?(;(; 
 
 (>i()(i 
 
 5l!)() 
 
 J4syi 
 2o() 
 
 423(i|i;i) 
 
 31)50 7J7() 
 1()()S 
 
 2oG2|i;() 
 HOOO 
 
 7;^()() 
 'I (it; 2 
 
 40(10 
 
 2500 
 
 2332 
 
 
 
 11500 
 1300 
 
 100 
 
 376|(i:-! 
 2152S7 
 
 Uulanoeg. 
 
 202001 
 20000 
 
 4i;^l 
 
 7300 
 4000 
 
 100 
 370 
 
 03 
 
 5100 
 3000 
 
 2152 87 
 
 Merchandise, 
 
 I ofTmv-boat Nestor Slock, 
 Keai Estate, ' 
 
 I Steamboat Sorel Stock, 
 
 5 Shares National Bank Stock, ^$30, 
 
 $9325 
 
 1050 
 
 6300 
 
 6531 
 
 250 
 
 00 
 00 
 00 
 00 
 00 
 
 ,4 
 
 45 
 
 $24a56JU0 
 
STATEMENT,— SET U. 
 
 LOSSES AND GAINS. 
 
 ^^^^^^^^^^^^H! 
 
 ^^^m 
 
 I: 
 
 
 r TTT. 
 
 1 
 225 ( 
 
 504 
 33 Oi 
 
 166 00 
 
 150 00 
 1645 58 
 
 2723 r.3 
 
 «. Qaini. 
 
 
 
 Tow-B(i,\T Nksto« Stock,... i'ro«et!ds from rales. 6400 
 
 Valuf of unsold 1950 
 
 8860 
 
 Cost 7810 
 
 65t 
 )0 
 
 1300 
 
 
 
 . Gain 650 
 
 1 00 
 
 
 
 on 
 
 
 Tow-B/)AT Lkv»8 Stock, Coat 5490 
 
 ^H' 
 
 Proiceedg from Ins 5265 
 
 Lofs. 225 
 
 
 
 ^^^^^^^^^M 
 
 1 
 
 f 
 
 ( 
 I 
 
 i 
 
 1 
 
 t 
 
 Real Esjatr, .....Proceeds from siiles..''000 
 
 
 Value of Unsold 6300 
 
 14300 
 
 Cost 13000 
 
 OnAn 1300 
 
 
 1 
 t 
 
 1 
 1 
 
 
 
 
 .MRRGBANDI3R li'roceeds from B.ileo 4662 
 
 
 Mdaeun3.(porInv.).9325 
 
 139S: 
 
 Cost 13700 
 
 287 
 
 » 
 
 110 
 
 100 
 376 
 
 i 
 
 2723 f 
 
 i 
 
 00 1 
 
 ^^^^^^^H ' 
 
 Gain 287 
 
 
 
 
 
 fcHIPMBNT TO AlONTBIiSAIi,. ....Cost 3001 
 
 Proceeds 2500 
 
 
 Loss 504 
 
 ^^^^^^^H ' 
 
 
 
 Prkmium, UISO'T, l.\TEREST,..Oosr. 3'J 71 
 
 Proceeds 6.f)6 
 
 
 Loss 33.05 
 
 
 
 ^^^^B 'J 
 
 Natjonal IJA.NK Ktook, Prooceds from sales.lSOO 
 
 Value of unsold 250 
 
 1550 
 
 Cost 1440 
 
 ^^^^^^H 
 
 ^^^^^^^H 
 
 Gain no 
 
 00 
 
 ^^^^^^1 
 
 
 
 
 STORAGE AND ADVERTiaiN0,..PrOC6edS 
 
 90 
 
 ^^^^H '.H' SUl 
 
 C()M,MI8S[0N, " 
 
 33 
 
 ^^^^V ' ^'jHHI 
 
 Shipmr.vtto Kingston, Cost '5266 
 
 ^^^H tfli 
 
 Proceeds 5100 
 
 
 ^^^^^H S^H 
 
 Loss , 166 
 
 
 
 
 
 ^■■■■M ! iJiriMM 
 
 Jfc.XPKN«B^ Cost 
 
 
 ^^H 'if WW 
 
 Net gi»in • 
 
 
 
 1 
 
 53 
 
 ^g^^g 
 
 
 46 
 
 
 
 

 Lamm. 
 
 225 
 
 00 
 
 Qain 
 
 550 
 
 00 
 
 130000 
 
 287 00 
 
 504 
 
 33 
 
 GO 
 
 05 
 
 110 
 
 100 
 376 
 
 166 
 
 150 
 1645 
 
 2723 
 
 00 
 
 00 
 
 58 
 
 fi3 
 
 2723 
 
 00 
 
 00 
 63 
 
 IIESOTJRCES AND LIABILITrES. 
 
 '''■"'" ''W'en/oriM of Unmld Property. 
 
 Jifi- Liul.il, 
 
 Tow BOAT Nebtob Stock,, 
 
 HkaI, ESIATR, 
 
 Na no.vAL Bank s;ock:::. "■^• 
 Steauboat SoREt, Stock,.." 
 
 63 
 
 From Ledger Aoeountn. 
 
 CASH '"'" ^'"'""" 
 
 MOKTOAUE PAVA8I.R..;:;::0utsta 
 
 hand. 
 
 'Hiinj' Notes. 
 
 l' iuZvn^"*" ^ ^^«-'-We owe them 
 
 w. s. kkllt,..:.. ";;::;;:::J™° '^"^ 
 
 G.^.ov-u:A«uN We owe th;-;;:::;™::::: 
 
 ' ' <japitarmvested(net) 202()o;0(i 
 
 ni9 half of net gain... 822.7'J 
 
 His present interest in 
 Ike concern 21022.71^ 
 
 $1950 
 
 fi.'JdO 
 
 9;i2.0 
 
 250 
 
 6531 
 
 23098|25 
 
 1020 I 
 6230,20 
 
 920 
 5000 
 1600 
 
 4131 
 
 7. '100 
 <1000 
 2152 
 
 *'. O-Rkilly, 
 
 "Capital invested Cnet) 2020U.00 
 
 l>rawn out 200.00 
 
 His half of net 
 
 gain 822.79 
 
 622.79 
 
 His present interest in 
 the eonoern- 20822.79 
 
 87 
 
 2795 
 21022 
 
 79 
 
 62224 45 62224 46 
 
 20S22 
 
 79 
 
 his B.Lce a Juft ;hLV;o ei^/i'V^-i-f 'V 'f""- - 
 .ouroos a.d Liabilitios therelLwa, ">e bead of lie- 
 
 4T 
 
I'M 
 
 V 
 
 s 
 
 1 I 
 
 CASH BOOK, 
 
 Cash Ukciivbd. 
 
 4l 
 
 ti 
 ti 
 i( 
 
 April; !;To ['\ O'Reilly KecM of him as cupital. 
 
 " I 5i " National IJank, . . . Uec'd of it. 
 " 16 " USIjdw&Co'sCon- 
 
 sigiiineni,.. . ilecM for fale of this date. 
 " Ship't to Montreal,. Rec'd for sale at auction. 
 " F. I. liay'wCoiidign- 
 
 nienl, HecM for gale of lliifi date. 
 
 " iVtit. Bank Stock, liec'd the lialarice of sale 
 
 of this date. 
 
 *' Keal Ef-tate, Rec'd for Lai. of s.ale. 
 
 " Ship'l to Kirigstcn, . Keo'd tor sale of ciwda. 
 •' G. Doyle A Son's 
 
 Comigtiiueiit, . . Kec'd for sale of this date. 
 
 To Balance, Kroni old %. 
 
 BILL BOOK, 
 
 Bills 
 
 No. 
 
 WUon 
 
 n'c'd. 
 
 Drawars. 
 
 lit whose 
 favor. 
 
 For what 
 received. 
 
 Where pay. 
 
 1 
 2 
 
 I.Sil 
 
 April 
 • > 
 
 1 
 11 
 
 L. Clint, 
 
 H. VV. CooiKf. 
 
 F. O'Reilly. 
 Ourselves. 
 
 Investment. 
 Merchandise. 
 
 Our Offioe. 
 
 BIIJ.S 
 
 No 
 
 When 
 
 iM(l 
 Mat. 
 A pill 
 
 Drawer^ 
 
 18' 
 
 )vriit', 
 
 .1, I 
 Ourselves. 
 
 In wliOhe favor. 
 
 Hurjlay & Co. 
 
 L. R. O'Connor & Go. 
 
 u 
 
 Quebec Ins. Co. 
 48 
 
 For what 
 given. 
 
 To Hal. «;^ 
 Md 
 
 /t- 
 
 .»e. 
 
 Where 
 payable. 
 
 Quel>ec. 
 
 Insurance. 
 
 u 
 

 ital. 
 
 f 19600 
 
 <Iate. 
 
 400 
 1.312 
 
 
 ctioii. 
 
 2500 
 
 
 dale. 
 
 5000 
 
 
 I'Hale 
 
 
 
 
 1048 
 
 50 
 
 e. 
 
 4S7 
 
 40 
 
 ds. 
 
 5100 
 
 
 date. 
 
 1400 
 
 
 
 *:?()7!>7 
 
 90 
 
 
 C230 
 
 20 
 
 Where pay. 
 
 Our Offioe. 
 
 . (< << 
 
 wliat 
 'en. 
 
 il "■'. 
 aace. 
 
 Where 
 payable. 
 
 Queliee. 
 u 
 
 -SET n. 
 
 Cash Dlsbursed. 
 
 " , ,. '"."■■•",«""vi-.Sl..d<..P„Tl for rfoair. 
 
 li 
 ti 
 (( 
 n 
 
 u 
 It 
 <( 
 << 
 
 lOi 
 );{ 
 
 Ii7 
 
 18 
 
 19 
 20 
 2;! 
 
 27 
 
 ;!() 
 ;{u 
 ■M) 
 
 ' ai'l (or Drayaijc. 
 Paitl K:»r net j)riiceevl3, 
 
 '^nipin t to ]iin<»s{oM PiM / .- i 
 " W. S. Ivelly, = ^"'l.^"' ''Jf i'l.-nrance 
 
 \\ !;'• f- ^''f^ conVi^',, ■ 
 
 tr. Doyle & Son's Con 
 
 Hills Pavable -M./br Freight. 
 
 F. O'Keillv '''."'"'"• Note Xo. 2. 
 
 ''expense, p,,;, " "" ^i' 
 
 ^'^"c«; ::::::::: ;^;^^""-'T.'-^pe...e.. 
 
 
 —SET II. 
 Reoeivabli. 
 
 ':"« I Time 
 of Note. to run 
 
 April lu GO days. j,,^ |,T 
 
^^-, -; .i^..^..^ .'.-,v,.ip.-Hi,.-g:A-jfJ^ 
 
 »feB 
 
 Dr. 
 
 COMMISSION SALES 
 L. Shaw & Co.'s 
 
 i 
 
 1871 
 April 
 
 u 
 <i 
 
 /)r. 
 
 1871 
 Apr I 
 
 
 Invoice, Per Gratul Trun]< R. !{., 
 of (iOO l.u. Wheat, m .il.40 
 8(Mi Ini. Corn, iTt) .(io 
 4200 lbs. Biiiier, /a) .U 
 To Cash, Paid Frei<;lit 
 
 " Storage & Aiu'triTisiNo, 
 '* CoAtMissiox, -I'^'-^onis-l^-n 
 " L. SiiAW & Co., Net proceeds 
 
 Due by Equation May W), 187! 
 
 F. I. Kay's 
 
 l;< 
 
 Invoice, Per Steamer Anna, 
 
 ol 400 h\)U. Coillish, m .?4.50 
 (500 " M;icK-erel, 0) COO 
 HI o ^ .,, '^"'^ " Herring."-, fd) 5.00 
 
 lo Cash, Paid I<reij;lit & Tnsurauoe 
 " SToiiAaK & Advkktisino, 
 " CoMM'ssioN, 2\% on $'jr)00 
 " Cash, Net proceeds remitted 
 
 Dr. 
 
 G. Doyle & Son's 
 
 $ Hf)! 00 
 I'd I 00 
 t;i 
 
 21.VJ 
 
 $2;JH2 
 
 S7 
 00 
 
 $ 1.50 
 
 5(1 
 
 2:^7 
 
 90G2 
 
 $9500 
 
 OG 
 00 
 50 
 50 
 
 00 
 
 1871 
 Api-i 
 
 It 
 
 a 
 (( 
 
 •n 
 
 Invoice, Per Kichelieu Co.'s Line, 
 
 of 1000 bush. Wheat, 
 800 " Oat.s, 
 200 bbla. Tallow, 
 To Cash, Paid Freight 
 
 " StOIIAOE & AnVEllTIPINO 
 
 *♦ Commission, On $3000 f(b 2\% 
 
 " G. Doyle & Son, Net pro. due May 20, 1871 
 
 ^ 100 
 HO 
 75 
 
 2795 
 
 $3000 
 
 00 
 
 00 
 
 (JO 
 00 
 
 00 
 
 * The calculation for avernging'this aoeount, to ascertain when the uot proceeds 
 
 60 
 
ifeMM 
 
 '"""^"^*"^'*^^^i^i*^^^im^i!^ 
 
 05 
 
 '20 
 
 GO 
 
 00 
 
 c.ij i:; 
 
 21,VjI S7 
 
 S2;5:^2 00 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 $ 150 
 
 00 
 
 
 50 
 
 00 
 
 
 2:^7 
 
 50 
 
 
 90G2 
 
 50 
 
 
 $9500 
 
 00 
 
 
 
 
 
 $ 100 
 
 00 
 
 
 m 
 
 00 
 
 
 75 
 
 00 
 
 i71 
 
 2795 
 
 00 
 
 
 $8000 
 
 00 
 
 3U tile uot proceeds 
 
 BOOK, SET n. 
 
 Consignment. 
 
 Cr 
 
 187) 
 April 
 
 I By BIU.S Ilv:c«ivAui.;,, Suld H. W. Cooper on If I 
 
 Ins Note at CO days, i 
 
 16 
 
 QftVR 
 
 " CA.H, Sold B. w^^' :- W^^-tr^"$1.70: J $1020 
 
 '^««n[^-S"'^''''®*-^6 $672 
 a«0 bu. Corn, i® .80 640 
 
 1312 
 
 $2332 
 
 00 
 00 
 
 00 
 
 Cqn.sionment. 
 
 600 bbls. Mackerel, /© $7.50 
 
 '"^'S :; giB!^± f Voo' 12000 
 
 ^P- 25 Bv E. F. AxoH.ws, Sold hi.n, ^ 40 day«, 
 
 ■ " Cash, iS) bu'" Wh"T' f ^? II ^^^^^l 00 
 
 iuuu bu. Wheat, fa> 1.40 14QQ 
 
 " 30 
 
 •re due. will be foo^U in the Com 
 
 tneroial Arithmetic from p. 2fi«to 279 
 
 61 
 
ACCOUNT SALES,— SET U, 
 
 Account Sales 
 
 -!, 
 
 600 bii. Wheat, ) 
 
 SO) " Corn,' > on % and ri»k of 
 
 200 |l>s. Butter, > 
 
 L. Shaw & Co. 
 
 I, :/■ 
 
 !' il- ! 
 
 1871 
 April 
 
 11 
 16 
 
 9 
 16 
 
 ii 
 
 Sold H. W. Cooper, on his Note ^ 60 days, 
 600 lin. Wijeat. <® §1.70 $1020.00 
 
 Sold B. W. Hardy, for cash, 
 
 4200 lbs. Butter, r® $.16 672.00 
 800 bu. Corn, fed .80 640.00 
 
 2332 
 
 179 
 
 1 
 00 
 
 <« 
 
 << . 
 
 Charges 
 
 Paid Freight, in cash, 95.00 
 Storage «& Advertising, 20.00 
 Comiiiiseion, 2|% on $2.S32, 64.13 
 
 1.8 
 
 
 L. Shaw & Co.'s net proceeds, 
 Due by Equation, May 13, 1871, 
 E. E. Byrnb & O'Rbilly, 
 Quebec, April 16, 1871. Per J. Maguire. 
 
 $2152 
 
 87 
 
 
 
 
 Sales of Goods by order and for % of F. I. Ray. 
 
 1871 
 April 
 
 II 
 
 II 
 II 
 n 
 
 18 
 20 
 
 Taken to our account, 
 
 600 bbls. Mackerel, ^ $7.50 $4500.00 
 
 Sold for Cash. 
 
 400 bbls. Codfish, (d) .*5 2000.00 
 
 500 " Herrings, rd) $6 3000.00 
 
 -Charges . 
 
 Paid Freight & Insurance, in cash, $150.00 
 Storage & Advertising, 50.00 
 
 Commission, 2^ % on $9500, 237.')() 
 
 F. 1. Ray's net proceeds retuitted 
 
 E. E. Btrnk & O'Eeiily, 
 
 Quebec, April 20, 1871. Per J. Maguiri 
 
 52 
 
 9500 
 
 487 
 
 $9062 
 
 00 
 
 riO 
 50 
 
md risk of 
 
 00 
 
 
 I 
 
 00 
 
 
 
 00 
 
 2332 
 
 00 
 
 00 
 
 
 
 00 
 
 
 
 13 
 
 179 
 
 IS 
 
 
 *2152 
 
 87 
 
 re. 
 
 
 
 I. Bay. 
 
 00 
 
 
 
 00 
 00 
 
 9500 
 
 00 
 
 00 
 
 no 
 
 4M7 
 
 ■)0 
 
 
 $9062 
 
 oO 
 
 'ri'. 
 
 
 
 i(f^'??^--*'"^!,>i.. ■!•;•:«'■ 
 
 PEA0TIC4L EXEROrSES.—SRT „, 
 
 Sales of 5 200 bbls. Tallow, ) « «/ - „ ^ 
 
 I 1000 bu. Wbeat. ( ^°^ ^ 0^ »• Doyle & Son. 
 
 April 2; 
 •' 30 
 
 u 
 
 u 
 u 
 
 SI 600.00 li 
 1400.00 
 
 23 
 
 30 
 
 Sold E. P. Andrews, fa) 40 davs 
 200 bbl.s. Tallow, ra)$S' ' 
 oold for cash, 
 
 1000 bu. Wheat, /® .$1.40 
 Charges 
 
 Paid Freight, in cash, 
 Storage & Advertisinsr. 
 Commission, 2^^ on'^ISOOO, 
 
 G- Doyle & Son's net pro. due May 20, 1871, 
 
 E.&O. E. Byrne &0'Reiu,y, 
 
 Quebec, April 20, I87I . Per J. Maguite. 
 
 $100.00 
 
 .30.00 
 
 75.no 
 
 MEMORANDUM. 
 
 the prosecut on of a vrodurp o-i,!: ""^ "'^'» Oj tiAi.L & Guifkin, n 
 and^br buying and Sri^/nTS/cf T'^ ^"^'"^-' 
 
 the Capital &s agreed. A. J HaH i/ f i * ^^'7- ^''*' *^ ^'"'•"'•^»' 
 
 Griffin, twcthirlsofthegaL or OSes 1'7 H ii "L^' ^'"^ ^^- »• 
 Liabilities are taken from tL Ral a *^* "^"^"^ Resources an.J 
 
 April, Memoran,lum IV, ;" so R rrwr-""!/'' ^'''^ ^^^^^S^"- ^" 
 bihties are as follows; Cash Ssr.^T^n" i'r , " ,^^e^"»rces and Lia- 
 
 at 40 days, L $150 ^he balance L 7'"' ' '''''' ^^"*^''^'* ^«^^ 
 Sold J. Morgan & Co J 50 bWs 1^. p "lontks.-Un the same dav, 
 
 ^0000 ibs.. a^6i cts ' R^ ^fin pav,^:ent'hYf ?-'^ ''''''''' '^'^ 
 
 at 6 cts. ; R. S. Griffin's note tlS Zor 1 J''^'' f P'"', ' "^^^ i'^'''- 
 
 commencing business, due 2t th S foSlS ""^ ^''' l'^'' ^''•'^' ^^ 
 
 eale and for discount on note .f 2^T7'-, n- ^^^ ^ ' an'l cash for bal. of 
 
 for 27 days is $6.76.-3. SaveR l^Li.^'^V ^'" ^- ''^- ^'^^'^'^ "ot, 
 
 Hull's note thei. favor, due this dkJ^TJh,*.?^?: ? Pa^'^^ntof A. J. 
 
 cash for the balance, 5r^30 _ffih« 1 ^ ^''^'•f ^'^ ""''• > and 
 
 meucingbusi^es., date^Fe^ ,fary" t 'atfl l^lS ^^ '^' ^''"J' ^ «^™' 
 Amu of Note, $738.36. Theint for 9?,1 fLJ VI' '^''^^ "''' ^'""''^ date. 
 44.~Onthek.nedayBo'tofO c^^^^^^^^ 
 fine Flour, at $4.25f'l00 bWa E^^trk M ''^/,^^,"^ ^^^'' ^^ira S^pe^ 
 
 53 
 
 f 
 
irriPT -n— —««-—»■ 
 
 J' 
 
 i1 
 
 PftACTIOAL BXRR0rSE8^-r-8«T II. 
 
 Hamfl, at$16; 50 bbls. Pearl Ashes, at $4.30. Gave in payment, 
 
 3 bbls. Codfish, at $3.60 ; 100 buphelfl Potatoes, at 48 <tia. : 14 hhde. 
 Su^rar, 15 tOO lbs., at 7^ cts. ; and cash for the balance.— 4. Shipped 
 per^Stoiamer Prince Arthur, and consijrned to Rlanchard & Kelly, 
 Haliiax, to be pold on our % and risk, 125 bbls. Extra Super- 
 fine Flour, at $4.25 ; 200 bbls. MeP? Beef, at $11; 15 bbls. Fancy 
 Flour at $4.70. Paid dravage in ca^h, !?11.25. Passed our notf,, 
 at.SOdayo to the Quebec' Insurance Co., for S2800, at \\%.—S. 
 Rec'd of S. A. Hunt, in payment of his note of March 27, amounting 
 to $14.21. due on the Sth inst. ; viz., 2 bbl.s. Herrings, at $6 ; and 
 cash for the balance.- 7. Paid cash for repairs of Store, $25.— On 
 the same dav Bought of J. S. O'Dowd & Co. on %, 200 bbls. Mess 
 Beef, at $1 Li2i.— On the same day, Shipped per Steamer Champlain, 
 Capt. Belleau. and consigned to R. J. Wilson, St. John, N. B., to be 
 sold un our % and risk, 50 bbls. Pearl Ashes, at S4.:!0; 200 bbls. 
 Mess Beef, at $ll.l2i. Paid oaali for drayage, etc., $7; aleotothe 
 Mobtrnal Insurance Co.,- for Ins. oa $2480, at Ij fo and Policy i&l.— 
 8. v.eo'd of B. Stephens, in full of ^, hia note At 30 days, for * 1 00 ; 
 and cash for the balance, $20.—©. Disoounud, at the Omon Bank, 
 Neil & Kr-i,he 8 note, favor of J. S. O'Brien, for $240. Diset. for .3d 
 days, ^1.40- c&sh received, $238.60.-10. Paid C. Phelan cash in 
 fulKf^.— 11. Rec'd ptii Qrand Trunk R. R. from Fisher & Lee, 
 Toronto, M-ise., previoaely ordered by us, viz., 3 J hhds. Cuba Mo- 
 la^^sea, HOOOgala. at 25cta. } 30 hhds. CubftSugar, 30750 lbs. at4ict». 
 Pi^id in cash for freight, drayage, etc., $96.— IS. Bought for cash oJ 
 a. fiyor.9 & Co., their JJill of ICxcliannre on Hamel & Norris, Toronto, 
 and remitted the same this day to Fisher & Lee, in payment of am t 
 due them, $2133.75. Paid h % premium for the bill.— 14. Bo t of 
 C. L. Murray, on our note at 4 mos., 2500 bu. Red Wheat, delivered 
 on board the Steamer Victoria, Capt. Barry, at $1.03 per bush., and 
 fhipped the same to N. C. Moreau, Pictou, to be sold lor our % and 
 ri«k. I8=;ued our note, at 15 davs. to the Quebec InHiraiice Oo., lor 
 Itif. on 92608.61 at IJ ^ and for Policy $1.-15. E Sleplens' note 
 (or $200 is dup and not paid.— lO. Renewed R Jones' nole for 
 fl 98.06, now due. Rec'd his new note a1 141 days, for .f 150. and 
 cash for the bal. and 144 days int. at 1%.—V7. Sold (o Carroll & 
 Samson. 20 bhds. Cuba Molasses, 2000 ,cals., at 27 cts.; 100 bbls. 
 Prime Beet; at $9 ; 100 bbls. Mess Beef, at $11.50 RecM cash in 
 part, $1295; their note at 60 days, for balance, including discount, 
 $1 .S08.74 The lisc't on the note is for 63 days.- IS. Accepted J. S. 
 O'Dowd & Co.'s draft on us, at .^0 days' eight, favor of E. L. Tessier, 
 for $1000.— 19. B. Nolan 1ms this day renewed his note, favor of 
 A. J. Hall, for $50, assumed by the Firm, by another note for the same 
 amt. and time, endorsed bv J. Kerwin, and paid cash for 43 day.s' int 
 on the nfw note, 36 cts.— 21. Bo't. of H. Collins, 120 bols. Middlings, 
 at $4.20 ; 60 iibls. Rye Flour, at $3.60. Gave in payment. 35 bbls. 
 Mess Pork, .at :>10 ; our check on the Union Bank, for!?250 ; bal. on 
 "/c — 2;J. Sliij)i)ed per Steamer Laval, to S. Larue & Co., Caspe, for 
 their %, and pursuant to their order, 150 bbls. Mess Beef, at $11.50. 
 Paid CH.'^h lor drayage, .$4.75.-34. Sold to ndry persons, for cash, 
 3 barrels Herrings, at $7.50 : 3 bbls. Mackerel, at $8.40; 10 bW*. 
 
 «4 
 
- 7 
 
 $7 ; alsoto the 
 
 PBAOTIOAL aX8K0l8B8,— 8«T «. 
 
 oil the 14th i„st.,wa. wrecked 1^1^; a ;!.'''°A^%™^« »» Shipm't 
 20th in8t.,-Steamer and Ca/.o to^f In il^^L Lawrence o'the 
 ceptance of the 18th i, st at ?0 li ^'?T*«- '^''^coiintefj o.ir ao- 
 
 Bal. paid in ca8h.-28. Paid R q rl^fflf ?', """ '^^*^'^*^' '-^ «*-l7 
 -On the same day. .old ^. How!'. lo C F 'p P^'^^*^ "''«' '^^OO. 
 Red Flannel, at 80 cts., and 2' v^i!'r1o V" a.-^''"®*' °" %' -^^^ yds. 
 
 
 Stea.uer Victoria, which was Sreoft • W^ ^'"/i*" ^^^^^li inst^ per 
 '\^. 20tl» inst Amoul^S'luTed $2608%] '«?" .1^^- ^-^"enc'e'ia 
 which we received our note of l!«l • . -^^* I« ^ = $2(>0.86, for 
 ca.h l:.r balance.-orthe 'ame d.v '" " '?'' ''*^'' ^^'^-^'^ ? ^ "^ 
 i- J. W.isun, St. John N. T of PeLHT^ ^" Account Sales'from 
 the 7th mat. Net proceeds #2976 If Iw? T' ^^f «^"t him on 
 by them, on Viger & Roy, ^t eight Vfo; ..frt n . f t-^^^' '"'"'•"^d 
 
 paid in cash $I500.-.3O Rec?l «n a ^ P'-'^^eeds) which has been 
 & Kelly, Halifax, of 2?0 bbfs Mess Bfet'Z? «^^«^<•'•om Blanchard 
 of 4th ,n.t. Net proceeds, $2;/80 86 -On ^1^^'"^' ? ''"^'^ '« ^''«"' 
 dry persons for cash, 15 ibs. Brown SuTar^iM'?'" '^^^' ^"''^ ^^ ''»»• 
 at 30 cts. ; 44 lbs. Butter at in^^fb'h T f-'n ^^'' Chocolate, 
 3 bbls. Beef Hams, at $18 • 2 bb??" l?v, ^* ^"^'.^° ^^'•"' ^t ^0 cts. j 
 
 -31. Paid cashVor Rent of S^rel'! ^1"^''^^ Jl""'"'^ ^' ^^^'^' 
 Laborers, $38. ^^ **^' ^^^i" Clerk hire $100; for 
 
 INVENTORY OP UNSOLD PROPERTY. 
 
 Merchandise, 
 
 Shipment to Halifax, balance of Mdse 
 
 Shares of the Montreal Bank Stock, ' 
 
 The net losses, May 31, am't to 
 ?,^ry*'^^^'^- Hall's third Is 
 AndR s Griffln-.two-thirda, 
 A. J. Hall's capital is ^ 
 
 «. a. trnffin's capital is 
 
 fl477.22 
 
 4!>2.4l 
 
 i^«4.HI 
 
 432H.6I 
 
 8457.23 
 
 $275381 
 601 76 
 20800 
 
 $3563166 
 
 
 6ft 
 
LI. '• 
 
 ''M 
 
 SET III. 
 
 JOURNAL DAY BOOK, 
 
 INVOICE BOOK, SALES BOOK, COMMISSION 
 
 SALES BOOK, ACCOUNT SALES, 
 
 FORMS OF NOTES, DRAFTS, LETTERS, ETC. 
 
 PARTNERSHIP BUSINESS. 
 
 BsMABE. — The Se«e of books thue far phown in this work, have all 
 been condwcted upon the IlraUan method of hi»towcal Day Book, with 
 separate Journal. We did so ou account of its greater eimpliciiy, and 
 not to distract the mind from more important considerat-ions which it 
 was neoesffiiry to inforce. The student being now more thoroughly 
 grounded m the science, we shall henceforth give a little attention to 
 the more practical forms in use, and to a greater variety of entries 
 than heretofore. We wish him particularly to note the peculiar form 
 of the Journal Day Book introduced in this Set, that he may be able 
 to express, in this manner, any conceivable transaction, combining 
 all the eaeential points of the separate Day Book and Journal. Where 
 mo»e severely practical forma — for the purposes of condensation — are 
 not in use, the Journal Day Book meets with great favor, ae being 
 both plain and practical. 
 
 In the transactions of this Set, we have introduced a new featuie ; 
 vi«., Mdse. Co. transactions. It will, of course, be understood that 
 by "Merchandise Companies" is meant the temporary copartnerships 
 existing between the consignor and consignee, having reference to the 
 sale of particuter conpignments of merchandise. The nature of this 
 epecies of eoRartnership differs from, that of a general copartnership 
 only in its duration, and the manner of conducting its sales. In Mdse. 
 Co. business, one of th« partner s — the consignee — is the commission 
 BQ^vchaat, and, in that capacity, receives and disposes of the property 
 
 66 
 
 
 I! 
 
^OXmHAL DAT-BOOK,— TOT 
 
 HI. 
 
 •8 he would (rf a wmple conatonmpnr . A. ^i ^ur, 
 he IS mterested in the ssAns^tl ^ ^^ drfftwnce being tJiat 
 ^ »e^ and which are^^ly mt 2^" -^ ^ '^""^ '^''^'^' ^'"^ '^ 
 $Pfn»ng and closing eni-Z? In I« i' ^'^"* f "'^ ^ '•^g^^^s the 
 Mrse. 5o. a,^^,^ t fr^^. In th^ n^ethod-exen^^ified by 
 
 Lorhe & Bro. an inveice to be «o f "on • " / J^''" ^' '"^^^'^e from C. 
 A " With the invoice and exSn«io • '"^ ,^' ^^ ^l^bit " Mdse. Co. 
 cost of the invoice, til nEom?! ''■'^" '^^^ Consignors with th^ 
 ^ though it were kli our ofn °T e IT-'^'^^"''^'^ ^^^ ^^^^ Property 
 the 6a„,e principle, will beTo de J L Si?"'' !^*''^' **' recognizing 
 ohandise. In the second rnefhod tl^p%£ ' 'f ^"^''*' °'^''^* o^'l^e mer- 
 ^'r of the property is reZ„mbIe ^tT^^' ^f ^Snized is that the 
 C.Lortie& Bro., mdse to beS . • -^"^ when, we receive from 
 A ' witb o«r ot^Xre only a^d^J';! ^^' ^^ ^^^'^ "^dse. Ca 
 ««•'« entry, in this case, tf m2de ^o of'^ '^'' consignor. The .consign- 
 debt us for our share, and u |,j-L*;n?rp'^ ^''^* T'^ ^°»'J be°to 
 •hare. ' " oiiipment in Co. to Quebec " for liis 
 
 »re!cep?bytre/?rsShortl^^ P^'-'*' interested, if the accounts 
 ^euSs/co. aSnT;- M'tettir'e'c'sf"^' ^'°"^*^' ^ before debS? 
 credit the consignor with their f?uIlT-~'V'''''^ ^'^'^ expenses-and 
 «ha.e, aad any ^other ^frty ^ ^1 \ e/S"? ^"^ <3onsi|nor's) joint 
 consignor would, in auch a case dSf Jl '?'' *^^'' «^««'- The 
 
 Bhare, and each W the othorTaV^Jt,' .?-''"''^"l' ^^'^^ their joint 
 other parties would, if makLTnentrv?/'' "' ^^f «^*^'«- ^he 
 ejgnee and credit the consignor t^oH^v^ correspond, debit the con- 
 Where there are more tC ^ ^""^ ^'^ ^'^^ "^'^re. 
 are kept by the «eco^rf7ne hod 7he^'n''-'"'"''l^'^' «»d the accounts 
 Co.>ccount/orAwot;nS.td aK^^^^^ '^'^'^' "^dse. 
 
 consignor for his (the consignee's Zrpf ru '^'^'-g^^' and credit the 
 liand, should debit each of the n«r f f ' u^^ consignor, on the other 
 ; Ship't in Co." for hfs own share F«^^^^^^ «^«r««' and 
 
 debt "Shipment in Co.," and c'dit f^^^^ ^^^^^ parties shouJd 
 
 •hare. ' ""'^ ^^^^^*- the consignor euoh for his own 
 
 JOURNAL DAY BOOK,-SET HI 
 
 Quebec, Mat 3rd, 1871. 
 
 offgrLSSd'stfni- ^?^-,^-«' P--ticles 
 B^tsranTlrlfc?^^^ 
 
 5r 
 
 ma 
 
1 t 
 I 
 
 \\> 
 
 I I 
 
 u 
 
 . I 
 
 %p 
 
 JOURNAL DAY BOOK,-SET HI. 
 
 Quebec, May 3rd, 1871. 
 
 SuNDums 
 
 Dr. To C. S. Mitchell (1) 
 
 For Effects invested : 
 
 Cash Deposited. $9000 
 
 Bills Receivable Notes in his favor ; via., one 
 ""*' drawn by P. Racine, duo 
 
 May 28, • . 1^00 
 
 Another drawn by S. Lewis, 
 
 due June 6, WOO 
 
 Balance of ?i^. _^ 
 
 $12000 
 
 P. Allard 
 
 oe 
 
 a 
 
 SrNURlES 
 
 Dr. 
 
 Cash 
 
 Bills Receivable 
 
 MeIIC'HANDISE 
 A. RlNKUET 
 
 For effects invested •. 
 Deposited. 
 
 To R. A. HuDON. 
 
 $8000 
 
 Ship't to Montreai 
 
 To Merchandise 
 '« Cash 
 
 Nolo in his favor, drawn by 
 
 D. Aylwin, due Juno 1 1000 
 As per Inventory, Inv. B. 2700 
 
 Balance of %. _^ 
 
 _ 4 
 
 Dr. To Sundries. 
 
 12000 
 
 12000 
 
 00 
 
 00 
 
 Shipped per Steamboat Quebec, 
 and consigned to G. S. Walls, 
 Montioal, to be sold for our %. 
 
 Inv. of produce, as per S. B. $573 
 
 Paid Freight and Drayago 2 
 
 12000 
 
 575 
 
 06 
 
 00 
 
 S. White & Co.'s Consignment 
 
 Dr. 
 
 To Gash 
 
 Paid Freight and Drayage of nn 
 
 Invoice of Flour, as per I. B., 
 
 amt'g to §1018.25, rec'd from S. 
 
 • White&Co,tobosoldoDthefr%. 
 
 575 
 
 0(1 
 
 00 
 
 n\ TW« l« .uuTMMod 10 b« two ooUbu- lor doIUn aU o«»-rided llnoa £w 
 
II. 
 
 1) 
 
 ooo 
 
 500 
 
 000 
 600 
 
 6120C0 
 
 06 
 
 ON. 
 
 iOOO 
 
 1000 
 2700 
 
 300 
 
 12000 
 
 12000 
 
 00 
 
 00 
 
 TGS. 
 
 ebeo, 
 k'alls, 
 
 $573 
 2 
 
 12000 
 
 575 
 
 08 
 
 00 
 
 of nn 
 I. B., 
 
 omS. 
 
 675 
 
 0(1 
 
 10 
 
 00 
 
 fit»— reded lines for 
 Pi«t of roouj, ^ 
 
 JOURNAL DAY BOOK,-SET HI 
 
 QuBB-Ec, May 7, 1871. 
 
 Dr 
 
 8 
 
 To SUNDRIEH. 156l{l0 
 
 Mkrchandme 
 
 Kao'd perSteamb. Champlain.from 
 i>. C. Peachy & Son, Montreal, 
 and consn^ned to u.. for our aoot. 
 an Idv. of Wines, as per I. B 
 jTo D. C. Pkachv & Son For amount of 
 " Cash 
 
 $1549.60 
 Paid for Freight & Dray. u.5i) 
 
 . 8 
 
 National Bank 
 To Cash ' 
 
 Dr. 
 
 156110 
 
 Deposited. 
 
 « 
 
 Spndriks X)r. 
 
 Cash 
 Dmooittt 
 
 To Bills Iieceivable. I 
 
 Discounted D. Aylwin's note, far. 
 K. A. Hudon, due June 1st. 
 
 10000 
 
 looobo 
 
 Proceeds of note 
 Amount of 24 ds., at «^ 
 . 10 
 
 $•90 
 
 4 
 
 L. DOUOLAS ic Co. 
 
 [To Mdsb. 
 '< Cash 
 " Commission 
 
 100000 
 
 ^r. To Sundries, | 1272 
 
 Forwarded per Grand Trunk R R 
 pursuant to their order, an"ln- 
 voioeofAJdse., as follows! 
 
 Sundry produce, per 8. B. $1240.00 
 Paid Freight and Ins. 30.20 
 
 For Expedition ud Ins. 2.48 
 
 ■ li - 
 
 1272 68 
 
 Bills R,gnEfyjiBi,B 
 
 To S. White A Co. 'a C 
 
 Dr. 
 
 iONSIONMENT. 
 
 62400 
 
 Im 
 
JOURNAL DAy BOOK,— SET HI. 
 
 QuKEKO, Mat 12, 1871. 
 
 Cami 
 
 Dr, 
 
 To S. White * Co.'b Consionmbnt. [ 
 For RaU) of Flour, as per C. S. B. 
 
 S. Whitk a Co.'s Con. Dr. To Sundries. 
 
 Cloaed S. White it Co.'s Consign- 
 ment, an' I rendered them an 
 Account Salea. 
 To Storaqb & Adver. Our charges $ 18.50 
 
 30.20 
 1149.30 
 
 " Commission 2}% on $1208 
 
 *• S. WniTE & Co. Their net p»ooeed« 
 
 14 
 
 Merchandisk Dr. To Sundries. 
 
 Bo't of L. MoCord, produce, as per 
 r. B.. amt. $2581 90, and paid 
 OS follows : 
 To P. Am,ARD Oar order on him, for $300.00 
 
 " National Bank Our check, for 750.00 
 
 " Bills Receivable S. Doran's note of the Hih 
 
 Inst., for t)24.00 
 
 " " Payable Gave our note, at 30 d's, lor 500.00 
 
 " Discount Allowed on the bal 12.30 
 
 « Cash For balance* 895.60 
 
 " 15 . 
 
 C. S. Mitchell, Private Dr 
 
 To Cash. Drew oo private ^ . 
 
 16 
 
 Dr. 
 
 Mdse. Co. a. 
 
 To SuNoriES. 
 
 Rec'd from C. Lortio & Bro , Hali- 
 hn Riild OP our joint acct. 
 
 to 
 
 and risk, each i, .Mdse. as }«r 
 
 I. B., amount $3550. 
 To C. LorTIB & Bro. Their invoke as above 
 
 Cash 
 
 Paid freight 
 60 
 
 $35J0 
 40 
 
 584 
 
 09 
 
 1198 
 
 00 
 
 1198 
 
 2581 
 
 00 
 90 
 
 2681 
 
 30 
 
 .S590 
 
 90 
 
 50 
 
 00 
 
 3590 
 
 r 
 
JOURNAL DAY BOOK. -SET III 
 
 Qdkibc, May 17, 1871. 
 
 8- W»TB ,k Co. 
 
 To Shipiukt to Montbkal. 
 
 Received an Account t<aio8 of tha 
 Uase. sent him on the -I thinat 
 
 18 
 
 Dr. 
 
 To Bills Patable. 
 
 650 
 
 40 
 
 1149 
 
 30 
 
 19 
 
 SlTKDRIM 
 
 Dr. 
 
 To Sqnories. 
 
 10 bo gold on joint aoot.,eaoh i, 
 
 At:n%^are-«-'-^*^2«;'^^ 
 ^"•ati^, on$1290 i.-Jjl 
 
 M. BlancHET & Co. For their 4 -h. • . "^^289:20 
 «or tneir ^ above inroloe $644.60 
 SWPWaNT IN Co. 
 
 T« Merchandisb 
 " Cash 
 
 1289 
 
 1289 30 
 
 MbSE Co. B. 
 
 To SUITDRIBS. 
 
 ToO.Qo«K&Co. Forooritoroioe 
 " ^^" Paid Freight 
 
 61 
 
 wires, If,. Gary i Son, and our- 
 selves, each *. an Invoice of 
 
 ■3sP 
 
•WPIHW" 
 
 t* 
 
 • ■ I 
 
 11 
 
 m 
 
 
 JOURNAL DAY BOOK,— SET III 
 
 QuEBKO, May 22. 1871. 
 
 ■•5 
 
 Ship't to Thiibe RivEits Dr. To Si'Noku;3. 
 
 Shipped per Brig St. Maurice, and 
 oonsigneil to J. N. Oarbray/l'hree 
 Rivord, to be sold on our aooi. 
 and risk, Md:<e. ns por S. li. 
 
 To MHRCHANiiiaB 
 
 SuNOHIiCS 
 
 Biu.s EbCKiTABiii!: 
 Casb 
 
 Invoieo of proJuoe $30(5. 09 
 
 PiK 1 expenses 4.50 
 
 23 . 
 
 Dr. To Md9e. Co. A. 
 
 Sold 0. Martol, MJpe. Co. A., as 
 per C. S. B., auMunting to 
 $4140. 
 
 His note at 15 days, for $2000 
 
 For Balance 2140 
 
 i( 
 
 Mdsb. Co. a. 
 
 Dr. 
 
 To SUKDRIKS. 
 
 Closed sales in company with 0. 
 Lortie & Bro., and rendered 
 them da Account. Bale-, 
 
 To Storage & Auver. Our charges 
 " OoMMlSfilON 21% on $41110 
 
 *' C. I.QRTiE & Bro. Their i net gain 
 " L«S3 AND Gain Our «• •< 
 
 _^__ 25 
 
 $ 12.00 
 103.50 
 217.26 
 217.25 
 
 M. Blanchkt & Co. 
 
 Dr. 
 
 To Shipment in Co. 
 
 Roc'd an Account Sales uf Mdso. 
 shipped them on the 19th inst. 
 Our not proceeds as above. 
 
 310 
 
 60 
 
 310 
 
 4140 
 
 ftO 
 
 00 
 
 4140 
 
 00 
 
 550 
 
 660 
 
 00 
 
 610 
 
 60 
 
 tia 
 
._„. 
 
 1 
 
 v,s. 
 
 310 
 
 60 
 
 md 
 ree 
 
 JOt. 
 
 
 
 .oe 
 
 
 
 .60 
 
 310 
 
 50 
 
 A. 
 
 4140 
 
 00 
 
 , as 
 to 
 
 
 
 000 
 
 
 
 140 
 
 4140 
 
 00 
 
 ES. 
 
 650 
 
 
 )red 
 
 
 
 2.00 
 
 
 
 ^50 
 
 
 
 r.2£ 
 
 
 
 -.25 
 
 660 
 
 00 
 
 Co. 
 
 610 
 
 60 
 
 dso. 
 
 □St. 
 
 
 
 JOURNAL DAY BOOK,-SET III 
 
 QtnjDKo, May 26, 1871. 
 
 To Shipment to Thi-.ke Riveuh 
 
 flecd of J N. o.irbray, Throe 
 iJ"!*:"' ? iiheck fit .-k'ht on tho 
 
 proceeds of the Aldse. Mpxml 
 
 St. AIa-.ri,^e. Tho shii hayi,,* 
 
 ft'nk.ll,oMd.o.,whiol!w<.J„o''t 
 insured, was saved, but much 
 cJamagod, and ,o,d at auccion 
 
 28 
 
 D. C. PfiAUHY & Son 
 
 Dr. 
 
 To Mdsb. Co. B. 
 
 (I 
 
 Cash 
 
 Dr. 
 
 To Biixfi RecEiVABLK. 
 
 « 
 
 Mdsk Co. B. 
 
 Dr. 
 
 Closed Mdse. Co. B., and readered 
 Account Sales 01' the same to G. 
 Qu«nn & Co., Montreal. 
 
 To St.m^aoe&Adver. Our charges 
 " COMMKSSION 2f. on $1273.50 
 
 " «-QnmN&Co. Their net proeesd. 
 " E. Cabt a Son - .. .. 
 
 Loss 
 
 andGain Ow J not gain 
 
 $ 3.65 
 
 , 25.47 
 
 402.46 
 
 405.46 
 
 18.70 
 
 115 00 
 
 1273.50 
 
 Ifiojlb' 
 
 To Sundries. 868 64 
 
 868 
 
 <« 
 
 64 
 
 li 
 
 't 
 
'^^^immme^mm^ 
 
 •^^^i 'lK;:^"^^-r,"tMj-^' '■^-* 
 
 V ta 
 
 ■ 
 
 
 1 s 
 
 If J I. 
 
 lilJM'iJ: I 
 
 
 m^ 
 
 if i! 
 
 r^; 
 
 iiil 
 
 8 JOURNAL DAY BOOK, -SET HI. 
 
 Quebec, May 29, 1871. 
 
 Interest 
 
 Dr. 
 
 To Cash. 
 
 Renewed S. White &, Co.'s draft, 
 for $1 149.30, whicli we accepted 
 on the 18lh inst,, by our note 
 for same amount, to the 1st of 
 July. We paid cash for int. on 
 our note $0.32. 
 
 30 
 
 Bills Receitablg 
 
 Dr. 
 
 To L. Dotoi-As & Co. 
 
 Rec'd of L. Douglas & Co., their 
 Bill of Exchange on A. Simms 
 & Devauz, London, at 60 days' 
 sight, for$1272.68, in full of aoct. 
 
 (( 
 
 sukdries 
 Gash 
 Disco DMT 
 
 Dr. 
 
 To Biu.s Receivable. 
 
 Sold L. Douglas A Co.'s Bill of 
 
 Exch., our favor, for $1259.96 
 
 Lostl'^ 12.73 
 
 Sundries 
 
 Bit. 1.8 RECErVABT.E 
 DiacODNT 
 
 D. C. Peacht & Son 
 
 .31 
 Dr. 
 
 To Cash. 
 
 Purchase of N. Caron's draft, on 
 
 MoUon, at 8 days' eight, $260.00 
 
 Paid 2.25 
 
 « 
 
 Dr. 
 
 To Bills Receivable. 
 
 For N . Caron's draft, our favor, sent 
 them in payment aoct. 
 
 Expense 
 
 Dr. 
 
 To Cash. 
 
 For sundry expenses. 
 
 64 
 
 ^2 
 
 1272 
 
 «8 
 
 1272 
 
 1272 
 
 262 
 
 262 
 
 260 
 
 68 
 
 68 
 
 26 
 
 26 
 
 00 
 
 4S 
 
 30 
 
TRTAL BALANCE. 
 
 C. S. Mitchell 
 
 R- A. Hudon 
 
 Cash 
 
 Bills Receivable 
 
 Bills Payable 
 
 Merchandise 
 
 P. Allard 
 
 A. Rinfret 
 
 Shipnient to Montreal 
 
 8. White & Co.'8 Consi^rn't 
 
 htorage and Advertisin " 
 
 D. C. Peachy & Son ° 
 
 National Bank 
 
 Discount and Interest 
 U Douglas <fc Co. 
 Commission 
 S. White & Co. 
 
 C. S. Mitchell's private % 
 
 Mdse. Co. A. ^ 
 
 C. Lortie & Bro. 
 
 G. S. Walla 
 
 M. Blanchet & Co. 
 
 Shipment in Co. 
 Mdse. Co. B. 
 G. Quinn & Co. 
 Shipment to Tiiree Hivore 
 Loss and Gain 
 K. Gary & Son 
 Expense 
 
 f 1 1 
 
 INVENTORY. 
 The Mdse, remaining unsold, May 31, 1871, 
 
 araounts to $3530.26, 
 
u 
 
 r: 
 
 li'i! 
 
 t^wiw-agy.ij?^^ I 
 
 BBS 
 
 1 
 
 <D 
 
 •iH 
 
 ffl 
 
 u 
 
 PQ 
 
 CO 
 
 ffl 
 
 D3 
 
 n3 
 
 CO 
 
 d 
 
 BQ 
 O 
 
 C 0) 
 
 p:^ 
 
 <D 
 
 09 
 
 o 
 
 s 
 
 at 
 
 pq 
 
 O O IOCS <o o 
 
 CO — e« e<i -^ o 
 
 CO 
 
 en CO t- CN m >n 
 
 lO 
 
 -* -H !r) o5 o ' t- 
 
 
 
 '~0 t- t~ -rf CM 
 
 a> 
 
 — TC 't 
 
 
 
 «<l 
 
 en 
 
 €/;► 
 
 « 
 
 tC5 tfS 
 
 
 
 bfl c^i t— 
 
 
 
 .S »s cfl e<i 
 
 
 
 "S 2 .< - - <^ »o 
 
 
 
 
 
 5;2 '^'«^ 
 
 
 
 
 
 
 
 
 B Oi "^ 
 
 
 O^- «. -. S3 
 
 
 ^ ^ -Q,- - 
 
 
 OB «i 5 
 
 
 B-- « S 
 
 
 Cfl . «« S 
 
 
 '^'52 2 c: a. 
 
 
 ^t i." 
 
 
 S ^ H 
 
 
 KM 
 
 
 '^ r . a. ^. 
 
 
 •Q 2 c "-' <"0 
 
 
 oT t^cq ^ |J -J, 
 
 
 >. £ OJ = "^ c- tJ 
 
 
 
 
 il^OjCOj/joJ 
 
 
 
 
 fQQdotaooa 
 
 1 
 
 00 m 
 
 1 '^ 
 
 -"tOIMOOOTj-Cvl 
 
 1 ^ 
 
 Oi C5 i-O 
 
 
 
 — ■ CD fo >n lO kO 
 
 
 
 t-ooc>»ecc^?fiie^ 
 
 
 
 (M fC IX OS 1— 1 
 
 
 
 •— ( 
 
 fC 
 
 aS' 
 
 ^ 
 
 >• *: c 
 
 
 ^ . ^ 
 
 
 . 1^ >-.■::> " 
 
 
 2= -^^^^ £-3- 
 
 
 — -SO TT 
 
 
 § - § .= . --S .2 2 
 
 
 at 0) 0) a> 
 
 
 CO « « 
 
 
 C C ^ C B 
 
 
 c^ ■; . ^ •* c8 <fl «* 
 
 
 
 
 OS c3 03 0] c8 
 
 
 .;3 J2 ^ j:i -^ 
 
 
 6 
 
 
 . ^ 
 
 
 Jleceivab] 
 landise, 
 lard, 
 nfret, 
 nal Bank 
 Walls, 
 ancbet k 
 
 
 
 J? X "p .r! S -2 r/ Oa 
 
 
 
 
 2 ^ oJ . . c« . . 
 
 
 {3paSPH«5 5?:;Oa 
 
 
 1 
 
 
 
 i 
 
 BQ 
 
 CD 
 
 8i 
 
 m 
 to 
 
 0) 
 
 o 
 
 a 
 
 l-H 
 
 »o »o « «rj 
 e<i ■«# e© ff* ^- 
 
 
 ° 
 
 
 to »« ■^ 
 
 — t- a; 
 
 CO 
 
 
 oc t- re 
 
 ^ ,^ — 
 
 0^ 
 
 
 
 — eo 
 
 irt 
 
 
 %■ 
 
 
 ^ 
 
 
 a; 
 
 
 
 
 V 
 
 
 
 
 ^"^ 
 
 
 
 
 S 
 
 
 
 
 a 
 
 
 
 
 
 
 
 
 
 
 
 
 
 S C B 
 
 BBS 
 
 
 
 ^ 3 ■« 
 
 
 
 
 :i; bC SI) 
 
 
 
 bio 
 
 
 
 
 ^a 
 
 
 
 
 
 
 
 
 at a: 
 
 
 
 
 
 
 
 
 Mont 
 Adve 
 
 ^ ~ r 
 
 
 
 andise 
 ent to 
 e and 
 
 
 
 
 
 crj 
 
 
 
 iOO 
 
 
 
 rch 
 pm 
 rag 
 
 c • • 
 
 ^ Ol (b 
 
 C X CD 
 
 
 
 
 ©"^■a 
 
 
 
 oa;^ 
 
 
 
 000 
 
 c 
 
 1 
 
 
 00m 
 
 CO 
 
 cr; 
 
 
 CO ■^ >o U3 »o 
 
 CO 
 
 
 P- CO 0^ 
 
 rl( 
 
 a> 
 
 
 •— 1 
 
 CO 
 
 10 
 
 
 a» 
 
 
 ^ 
 
 
 „_^^__.^_ 
 
 ic 
 
 
 
 
 
 I^ t- 
 
 
 
 
 
 e<t e<i 
 
 
 
 
 
 in 
 
 
 
 
 
 f— 4 <m4 
 
 
 
 
 
 «^ 
 
 
 
 
 <o ao a 
 
 "■ -T 
 
 
 
 OD W U) 
 
 cc B 
 
 
 
 000 
 
 ^•5:: 
 
 
 
 
 
 
 
 t* 
 
 
 
 
 ISr 5 
 
 
 
 « 
 
 B ■< 
 
 
 
 rest, 
 eRiv 
 
 
 
 
 -' r 1- 
 
 « a; 
 
 
 
 = OJS 
 
 ;^„« 
 
 
 
 '-'OEh 
 
 
 
 ■a 
 
 M SB 
 
 
 
 CEO 
 
 tt 
 
 
 
 bj— - 
 
 
 
 
 
 B 4, £ 
 
 
 
 
 §11 
 
 
 
 
 Poo 00 
 
 
 
 
 
 
 
 1 
 
 
 
 
 
 
 
 66 
 
M.H. 
 
 M.E. 
 
 INVOICE BOOK,— SET HI. 
 
 Quebec, May 3, 1871. 
 
 lNVEvroR7 of Merchandise advanced bv R. A. 
 Hudon, as Capital:— ^ 
 
 740 lb8. I.ard, fS>$.\0 
 
 Jy«'» " Ham, 
 
 60 bbl8. Apples, 
 
 66 " Extra Superior Flour 
 
 4b " Fancy Flour, 
 
 60 bags, 7000 lbs. Coffee, 
 8 ca.sks Bordeaux Wine. 
 120 hollies Champagne Wine, 
 
 22 gala, Cyprus Wioe, 
 
 .13 
 3.72 
 5.50 
 4.50 
 .15 
 " 50.00 
 " .80 
 " 5.00 
 
 (I 
 
 $ 74.00 
 247.00 
 186.00 
 330.00 
 207.00 
 
 1050.00 
 
 400.00 
 
 96.00 
 
 110.00 
 
 Quebec, May 1, 1871. 
 
 Signpd R, A. Hddon, 
 
 Invoice of Flour sent per Grand Trunk R. R 
 and consigned to Mitchell & Hudon, Quebec, to be 
 sold on our % and risk: 
 
 80 bblt?. Superfine Flour, fS) $5.00 
 
 70 " Oatmeal, ^ 6.10 
 
 45 « Rye Flour, " 4.25 
 
 $ 400.00 
 427.00 
 191.25 
 
 Ottawa, May 4, 1871. 
 
 $101S.25 
 S. White & Co. 
 
 Into CE of Merchandise shipped per Steamboat 
 Champlam Capt. Ricard, consigned to Mitchell 
 
 fu i°"' S^^^^°> pursuant to their order and for 
 tnejr %, viz. : — 
 
 50 bble., 1600 gals. Coal Oil, ® $ .60 $900.00 
 20 660 •* Linseed Oil, " 1.00 660.00 
 
 15 Herr.ncrs u 535 7375 
 
 Herrings, 
 — Charges.. 
 
 Insurance (8) ^%oa $1650, $7 ?<; 
 
 Montreal, May 6, 1871. 
 
 $1538.75 
 
 10.8,5 
 
 D. C. Pkachy & Son. 
 "^7 
 
 $2700 00 
 
 If 
 
 1549 
 
 fiO 
 
i X! W 
 
 U itf 
 
 > '! 
 
 ; i! 
 
 } 
 
 I 
 
 o . 
 
 M.H. 
 
 M.H. 
 
 BODS 
 
 INVOICE BOOK, -SET HI. 
 
 Quebec. Mat 14, 1871. 
 
 Quebec, May 14. 1871. 
 Messrs. Mitchell & Hcdok, 
 
 Bo't ofL. McCoRD. 
 
 1600 bush. Red Wheat, td f.90 
 1200 " Oats, " Mi 
 
 360 «• Peas, " .80 
 
 42 tubi, 1846 lbs. Butter, " .15 
 
 $1350.00 
 675.C0 
 280.00 
 276.00 
 
 Received lajiuent, 
 
 16 
 
 L. MoCoRD. 
 
 Shipped per Brig Victoria, consigned to Messrs. 
 Mitcbell & Hudon, Quebec, to be sold oo joint %, 
 each i, VIZ. : — 
 
 250 boxes, 5000 iba. Soap, /© $ .07 $ 350 
 
 160 " 4000 " Chocolate, " .20 800 
 30S " Sperm Candles, " 8.00 2400 
 
 Halifax, Msy 7, 1871. 
 
 $3560 
 
 C. LORTIE & BrO. 
 
 21 
 
 Shipped per BngVaudreuil, consigned to Messrs. 
 Mitchell & Hudon, Que-jec, to be sold on joint % 
 of E. Gary & Son, Rnd themselves, each ^, viz.: — 
 
 36 bbis,, 1441 lbs. Plums, ^ $ .08 $ 115.28 
 
 90 '♦ Green Apples, '' 3.60 324.00 
 
 176 " Gray •' " 4.12 721.00 
 
 Montreal, M>iy 14, 1871. 
 
 $1160.28 
 Q. QuiNN k Co. 
 
 M 
 
 B 
 
 12581 
 
 9v 
 
 L. 
 
 MJ 
 
mmmm,,. 
 
 *■■■ •"- VS._1, 
 
 12081 
 
 9v 
 
 M. 
 
 SALES BOOK,— SET in, 
 
 Quebec. iMay 4 1871. 
 
 QuZ''Sa''n7r K'n"'"'^' ''■''PP^'^ P^'- Steamboat 
 MontSl^rf U u"'' "°^»'"»«'' to G. S. Walls, 
 aionireai, to be sold on our %, viz. : 
 
 3 bbls., 620 lus., Lard, /5)$.10 
 '='' Apples, <« 3 5Q 
 
 20 bags, 2800 ibs., Coffee, •' .'is 
 
 —Charges. 
 
 $ 62.00 
 
 91.00 
 
 420.00 
 
 $573.00 
 
 M.4H.I Drayage, 
 
 Mitchell & Hudon 
 Quebec, May 4, 1871. 
 
 — ■ iO 
 
 2.00 
 
 676 
 
 L. D. 
 
 A Co. 
 
 M.4H, 
 
 Invoice of M.rchand.se sent per Grand Trunk 
 Li2 ,v, • ^^''^'g"^'! '0 L. Douglas & Co., pi,r ^^ 
 S t^lheir order of the 4th inst" and for thS7%, 
 
 6? '^' Extra's"' """"n '^ * -16 $ 262.40 
 
 22 bags 3088 JIv'^'pT ^''"'" '' ^'"^ '^-^^O-OO 
 oags, dU8S Ib:^., Cotiee, '« .20 _G17.60 
 
 -Charges. .^ 
 
 Paid foi Drayage, $ ,^^ 
 
 Insurance, roi 2% pre- 
 niiuni on §1245, "^ 24 90 
 Our Coi«in,8. for Ins. an J Exped._2A8 ,S2.68 
 
 $1240.00 
 
 Quebws, May 10, 1871. 
 
 MiTCHKI.L & HCDON. 
 
 $1 
 
 61 
 
 II 
 
i 
 
 " 
 
 1^ '; 
 
 I 
 
 i: - 
 
 SALES BOOK,— SET HI. 
 
 QiiRBicc, May 19, 1871. 
 
 
 Invoice of Merchandise shipped per Steamer 
 dirtier, Capt. Roy, and coni?igiied to M. Blanchct 
 & Co., Pictou, to lie sold on joint %, each i. 
 
 
 Z9 
 
 e.AG. 
 
 40 bbls., 1200 gals. Coal Oil, fa) $ .60 $720.00 
 20 " 560 " Linseed Oi>" 1.00 660.00 
 
 $1280 
 9 
 
 00 
 
 
 Chnrgps. 
 
 
 
 Paid for Dray age, $2.76 
 " »• Ineurance /a ^ijif on $1290 6.45 
 
 20 
 
 
 
 $1289 
 
 •20 
 
 s 
 
 MiTCHfcLL & HdDON. 
 
 Quebeo, May 19, 1871. 
 
 
 
 
 B. B. 
 
 
 
 
 biTOicK of Merchandise per Brig St. Maurice, consigned to J. N. 
 Carbray, Three Rivers, to be sold on our % and risk. 
 
 J.N.C. 
 
 40 sacks, 160 bu. Red Wheat, rd) $.90 $144.00 
 90 " 360 " Oats, ' '' .45 162.00 
 
 $ 306 
 
 00 
 
 
 Charges. 
 
 
 
 Paid for Drayage, etc., 
 
 Mitchell & Hcdon. 
 
 4 
 
 50 
 
 
 $ 310 
 
 5t 
 
 
 Quebec, May 22, 1871. 
 
 
 
 1 
 
 B. E. 
 
 
 FW*"*- 
 
 1% 
 
mier 
 cbot 
 
 
 
 0.00 
 0.00 
 
 $1280 
 
 00 
 
 2.75 
 6.45 
 
 9 
 
 20 
 
 • 
 
 $1289 
 
 20 
 
 nslsneiJ to J. N. 
 
 and risk. 
 
 I 
 
 o 
 o 
 
 pq 
 
 CO 
 
 o 
 
 M 
 GQ 
 
 o 
 
 a 
 
 <0 
 
 o 
 
 O 
 
 O 
 
 4J 
 
 A 
 
 ^ 
 ui 
 
 ."2 43 o * 
 
 fL K <n S- 
 P^ O CO - 
 
 M 
 
 I 
 
 c^ lis 
 
o 
 
 cd 
 o 
 
 0* 
 
 '^ 
 
 1 
 
 
 OO 
 
 e 
 
 
 
 
 « o 
 
 o 
 
 
 
 
 o o 
 
 o 
 
 
 
 
 O 't 
 
 "* 
 
 
 
 
 o -^ 
 
 
 
 
 
 C-l ■>! 
 
 'f 
 
 
 
 
 ^ 
 
 vt 
 
 
 
 i o o o 
 
 o 
 
 •h 
 
 
 
 
 Ma 
 
 5.0 
 
 0.0 
 
 5.0 
 
 o 
 o 
 
 ^ 
 
 
 
 
 j>e^ oo CO 
 
 »t 
 
 (C 
 
 
 
 
 
 >» 
 
 
 
 
 Or! <M 
 
 -H 
 
 cS 
 
 
 
 
 2 ^^ r i ^ 
 
 
 
 - 
 
 
 " .r :^-5 
 
 4^ U 
 
 
 
 
 « .a <^ 
 
 03 a 
 
 
 
 
 ABLE 
 000 1 
 
 4000 
 atf 
 perm 
 .45 
 
 ..o« 
 
 
 
 
 
 
 
 
 5 to oTcZ) '3^ 
 
 - 0) 
 
 
 
 
 3 ■* wT "^ ^^^ 
 
 ec'd his 
 , for tb 
 
 
 
 
 ri-g^S^g"^ 
 
 0- a 
 
 o 
 
 
 
 
 
 
 
 03 <^ — M 
 
 
 
 
 t- 
 
 
 
 
 
 CO 
 
 
 
 
 
 fO 
 
 
 
 
 
 e^ 
 
 *• 
 
 
 
 
 — t^ 
 
 
 
 
 
 r- rt 
 
 
 
 
 
 005;! 
 
 
 
 
 
 O O 3 O lO o 
 
 
 ^ 
 
 
 
 O O O lO c^ C-l 
 
 
 o 
 
 
 
 o o «^i re r- I-. 
 
 
 o 
 
 
 
 >0 Tf — O — -— 1 
 
 
 •* 
 
 
 
 lO — . CJ Cv| 
 
 
 1— » 
 
 
 
 cc 
 
 
 t 
 
 
 
 €^ 
 
 
 ^ 
 
 
 
 m C. 
 
 sold 
 each 
 2 to 
 
 rges. 
 
 gain. 
 
 
 
 CO w 
 C4 "0 
 
 
 ^ K ^ £ O ^ 2i n 
 
 
 
 »ndered May 
 'a net procee 
 ay 29, 1871. 
 
 
 -< H o . o 
 
 
 
 Account Sales n 
 C. Lortie & Bro. 
 767.25. Due M 
 
 E. E. 
 
 O ,. ^ > « V. 
 
 
 
 m 
 
 
 «o <. en ^ ^ ^ 
 
 
 
 
 
 — " N ^ - - 
 
 
 
 
 
 I S* 3 3 3 3 3 
 
 
 
 
 
 
 72 
 
'^-^'"•^Aj&kiiUWi^MH 
 
 cc 
 
 03 
 
 
 C4 
 
 Ol 
 
 
 ^ 
 
 
 
 l>H 
 
 o 
 
 
 <i 
 
 »H 
 
 UU 
 
 
 a< 
 
 -^ 
 
 -3 
 
 
 
 Ol 
 
 C 
 0» 
 
 a 
 
 OS 
 
 Ki 
 
 O 
 
 Pi 
 
 01 
 
 
 a> 
 
 
 
 L3 
 
 03 
 
 r/1 
 
 •«Q 
 
 r! 
 
 
 • 
 
 ^ 
 
 ^ 
 
 W5 
 
 
 ^ 
 
 
 «o 
 
 ^o?: 
 ^ 
 
 
 I: 
 
 *i- 
 
 ; 
 
 I B ti <-j. 4> u 
 
 X JS « -"• 
 
 Q ffQ oj ,^ 
 
 62' 
 
 2 >• £ £ 
 
 o; O 
 
 a; i •— o8(/} 
 
 o o 
 
 
 o o 
 
 or 
 
 'o 
 > 
 
 aj3 
 
 m 
 
 = !:! ^-5 
 
 So 
 
 > 00 
 C — I 
 
 a 
 '3 
 
 oj <" ir 
 
 
 tc a 
 
 . "^j-r-go 
 
 '» 33 ,_, !r /','- — 
 
 >• », Q CM -- 
 
 " ^^W OJ 
 
 a. 
 
 I 00 
 
 
 O 
 
 3 03 Ci 1^ >ii;rf3 ■«! re 
 
 !00 
 
 
 «j ;a 
 
 
 >* T*< 
 
 
 
 
 O »ft 
 
 00 o o 
 
 c^ 
 
 -*< ^ 
 
 ^"^ 
 
 09 
 
 •^ 
 
 S 
 
 S-. 
 
 T* 
 
 
 «i 
 
 a, 
 
 b 
 
 ,^ 
 
 <u 
 
 0) - 
 
 -c 
 
 C " 
 
 c 
 u 
 
 
 w 
 
 S"^ 
 
 m 
 
 i^r/} 
 
 y. 
 
 r.-^ 
 
 
 Is' 
 
 1~. 
 
 00 
 
 
 ca 
 
'';^; 
 
 !'l 
 
 .**«^*a«itefe4fe. 
 
 Aooonnt Sales 
 
 C 80 bbls. Superfine Flour ) 
 
 of <45 " Rye <• J 
 
 . ( 70 " Oatmeal ) 
 
 I 80 bbls. Superfine Flour 
 
 Rye <' ^ for aooonnt of 
 
 Oatmeal 
 
 S. White & Co. 
 
 1871 
 May 
 
 it 
 
 
 11 
 
 12 
 
 Sold S. Derail, on liia note at 40 dayn, 
 
 80 hbls. Superfine Flour, fti) $6.00 $480.00 
 
 20 " Oatmeal, " 7.20 144.00 
 
 Sold C. Lcc, for ca-li, 
 
 60 bbls. Oiitmeal, ^ $7.00 $350.00 
 
 46 '« Hye Flour, " 5.20 2H4.00 
 
 Chiirges. 
 
 Paid Freiglit and Druyage, ii» cash, 
 Storage and Advertising, 
 CoiiimiHsiou, 2^% on $1208, 
 
 f I 0.00 
 18.50 
 30.20 
 
 S. White & Co.'h net proceeds, due June 4, 1871 
 
 E. E. MiTCHKi.i. & Hmdon. 
 
 Quebec, May 12, 1871. Per J. Madison. 
 
 624 
 
 684 
 
 1208 
 
 68 
 
 $1149 
 
 Of 
 
 9 
 00 
 
 70 
 
 30 
 
 Account Sales of Merchandise, on joint % of C. Lortie 4 
 Bro., and ourselves, each ^. 
 
 1871 
 May 
 
 23 
 
 16 
 
 23 
 
 (ii 
 
 I* 
 
 Sold 0. MarteV 
 
 250 boxes, 5000 lbs. Soap, /g) $ .08^ $425 
 160 " 4000 '' Chocolate, " .22 880 
 300 " Sperm Candles, " 9.45 2835 
 
 4140 
 372 
 
 00 
 
 
 Cash, S52140— Note at 15 days, $2000 
 
 
 u 
 II 
 
 II 
 
 Paid cash for Freight, $ 40.00 
 Storage and Advertising, 12.00 
 Commission, 2^ % on §4140, 103.50 
 Our \ net gain on Sales, 217.25 
 
 76 
 
 
 C. liOrtie & Bro.' 8 net proceeds, 
 
 INVOICE, 
 250 boxes, 5000 lbs. Soap, /d) $.07 ^350.00 
 160 " 4000 <' Chocolate, " ,20 800.00 
 300 " Sperm Candles, " 8.00 2400.00 
 4 net gain, 217.25 
 
 
 
 $3767 
 
 26 
 
 
 Net proceeds as above, $3767.25 
 E. E. Due by Equation, June Ist. 
 
 MfcCHEI.L & Hi'DON, 
 
 Quebec, May 23, 1871. Ftr J. Madison. 
 
 
 u 
 
r aooonnt of 
 
 1 
 .00 
 
 
 
 .00 
 
 624 
 
 Of 
 
 .00 
 
 
 
 .00 
 
 584 
 
 e 
 
 
 1208 
 
 00 
 
 .00 
 
 
 
 .50 
 
 
 
 .'20 
 
 58 
 
 70 
 
 871 
 
 *1U9 
 
 30 
 
 'on. 
 
 
 
 C. Lortie 4; 
 
 425 
 
 880 
 835 
 
 .00 
 .00 
 
 .50 
 .25 
 
 4140 
 372 
 
 00 
 76 
 
 .00 
 .00 
 .00 
 .25 
 
 .25 
 •on. 
 
 $3767 
 
 26 
 
 ACOOUNT SALM. 
 
 Sale, of Merchandise on joint account of G. Qulmi ft Co.. 
 E. Gary & Son, and ourselves, each |. 
 
 1871 
 May 28 
 
 u 
 « 
 
 21 
 
 28 
 << 
 
 It 
 
 ■ Charges. 
 
 Paid Freight and Drayage, 
 Storage and AdvertlHingT 
 Commission, 2 {jj on $1273.50, 
 E. Gary 4 Son'a net proceeds.' 
 ^ur i uet gain, 
 
 $ 2f 
 
 .i.fK-. 
 
 25.4 . 
 
 405.46 
 
 18.70 
 
 G. Quinn & Co.'a net proceeds, 
 
 INVOICE, 
 
 36 bbla., 1441 lbs., ^$.08 $115.28 
 175 n r "" ^PP''*'' " •'^•^0 324.00 
 175 Gray w w 4.,2 ,21.00 1160.28 
 
 
 Your and our g invoice. 
 Your i net gain, 
 
 Net proceeds as above, 
 
 773.62 
 18.70 
 
 $792.22 
 
 E- E. Due by Equation, Dec. 5. 
 Quebec, May 28, 1871. M.tchekl & Hcdo.. 
 
 60 
 
 $ 792 
 
 V'l 
 
 n 
 

 " m 
 
 n 
 
 o 
 
 S-5-: 
 
 
 
 <*J o 
 
 cjd 
 
 isi- 
 
 .S c J 
 3 «» » 
 a-S a 
 g-ffi- 
 
 ■o-^ 
 
 II 
 
 S ^"3 
 
 B I fe 
 
 " a o 
 
 I 
 
 Q 5-S^ 
 
 «r5P 
 
 
 J<J 
 
 o ^ 
 
 ^ 
 
 S3 O' 
 
 o ^ 
 
 o «s ^ 
 
 O T3 
 O C 
 J2 ej 
 
 -•-5 
 
 
 
 00 .S 
 
 
 V 
 
 .5-3 
 
 B 4* 
 
 •^ e 
 
 w 
 
 cc 
 
 M 1 S », t" 
 
 h 
 
 tQ 
 
 4 
 
 CO 
 
 eS> 
 
 ®rJ ea 
 
 |5 
 
 nt 
 
 00 
 
 S=l ' 
 
 78 
 
 II : 
 
 the 
 7b 
 
r 
 
 •@ 
 
 2 
 
 «e 
 
 X'^WS'' 
 
 as 
 
 RECEIPTS, NOTES, DRAFTS, &o. 
 
 UECBI1»TS. 
 (Prom traiMuotion of Jm. 31, p. 8.) 
 
 Quebec, .Tiinnary 31, 1871. 
 :^::i°'l'±± """' ''l"'V Dollar., in full f„r o„e ,„o„th'. 
 
 rent of Store, up to date. 
 
 E. R. T HI' DEL, 
 
 $250. ^ 
 
 (Frwn trangaotlon of Feb. 18, p. 9.) 
 Quebec, Fel-uary H, 1871. 
 
 thisdav <h5r''t'^''^^y\'^"^ ^*"' I'i-H'iotea m.^yday., dated 
 mis day, for J wo hundred & fifty Dollars. 
 
 v." Pn*r .AW. 
 
 NOTES. 
 
 $1500. ^% 
 
 (Prom traneaotion of May 3, p. 58.) 
 Quebec, April 25, 1871. 
 
 ^, I n^y^^^y, *^^^^ ^^^^ ''^*®' ^ promise to nay to A J Hall 
 order, l-iileen hundred Dollarn: vil„« ....;., J^ ■■ '"^"' 
 
 P. Racinb. 
 
 or order. Md^pn I.^.^jred Dollars'; value received 
 Due AJay 28, 1S71. 
 
 £62 10 
 
 (From transnotion of Feb. 18, p. 9.) 
 Quebec, February IS, 1871. 
 
 C Phelan ^Ifl f^^ ^™c- '^^''' ^ P'^"''^'" ^'» P^^ ^^ the order ol 
 
 Due April 22, ly 71. . , „ 
 
 A. J. Hall. 
 
 
 11149. ,!y)^ 
 
 DRAFTS. 
 
 (FrMD transaction of May IS, p, 61.) 
 
 Ottawa, May 15, 1871. 
 
 Fl^v.n 1 f * w^!i* *^^^^ ^'"^^ P^-^ ^ tl'e order of J. Raymond 
 
 7b if,7cAe« ^ ^udon. Quebec. ^' ^^"''' * ^"• 
 
 77 
 
 t '; 
 

 LETTER B 'OK, — SET in. 
 
 No«.— Pot the acoeptntion, Mlfichell A: Huelon have writtoo aorogs the 
 Wlowiog words : " Aooepted May 18, 1671," under which they havo signed. 
 
 (From traneaotlon of May 20, p. 83.) 
 
 *115. Three Rivers, May 26, 1871. 
 
 At sight, without grace, pay to the onier of Mitchell A 
 Budon, One hundred and fifteen Dollars, value received, and charge 
 to account of 
 
 To F. T. Parron, Cashier, 
 National Bank, Quebec, 
 
 J. N. Oarbrat. 
 
 
 1; 
 
 i. I 
 
 ! 
 
 n 
 
 m 
 
 i 
 
 lf|: 
 
 i 
 
 f 
 
 
 BILL OP EXCHANGE. 
 
 £36 5 6 
 
 Quebec June 2, 1871, 
 
 Fifteen days after sight of bhifi our first of exchange 
 (second and third of same tenor and date, unpaid), pay to the order 
 of Mr. D. Saucier, Thirty-six pounds Five shillings Six pence, value 
 received, and charge to account of 
 
 Your obedient servant, 
 Ih Simms ^ Devatuv, Bankers, C. S. Mitchell. 
 
 Wellington street, 
 
 London. 
 
 LETTER BOOK,— SET IIL 
 
 Remarks. — This book is used for taking copies of all business let- 
 ters of importance, written to or received from others. Hut letters 
 received are usually filed away. 
 
 We give herewith letters in connection with he transactions of Set 
 III. But we do not submit them as absolute models in their way. 
 It would be as difficult to afford a model o'' a bu^ness letter, that is, 
 one which it would be proper for evi-xy one to copy, as it would for an 
 artist to produce a cast of features that everybody would consider 
 perfect. 
 
 To be able to write a good bueinesB letter is no small accomplish- 
 ment, nor can it be acquired uv studyina: models, altliough much aid 
 may be aetured in tliis way, pertaining to form, arrangement, and 
 even style, if undertaken with no undue surrender of individuality; 
 for a good business letter sJk..; ill l>e neither more nor less than the 
 transcript of a man's thoughts, or what he vvoulil say were he to speak 
 with care and deliberation. As no ( o men ever think or talk exacU*- 
 «like, so vo two men oorild be expected to vnrrte alike. 
 
 78 
 
 
LETTER BOOK, — SET III, 
 
 ttoa Rorogs tko 
 
 idvo signed. 
 
 May 2fl, p. 63.) 
 
 V 26, 1871. 
 
 ■ji' Mitchell A 
 1, and charge 
 
 Urbrat. 
 
 lie 2, 1871. 
 
 of exchange 
 r to the order 
 pence, value 
 
 "vant, 
 
 1T0HB1.L. 
 
 I bweiness let- 
 Hut letters 
 
 actions c^Set 
 n their way. 
 letter, that ia, 
 i would for an 
 )uld consider 
 
 1 aocontplish- 
 igh niuch Hid 
 igenient, and 
 Individ uwity; 
 less than the 
 'e he to speak 
 r talk exacU** 
 
 There are, in bueinese letters, certain qualifications which are 
 equally essential to all, and with reference to which, general instruc- 
 tions may he given. We will enumerate a few of these points:— let 
 Like all other documents in manuscript, a business letter should be, 
 chiroirraphically, well written, so as to commend itself at once to the 
 reader. Ne^itness and legibility are the chief requisites in a hand- 
 writing. 2nd The grammatical construction should be faultless; and, 
 above all, nodocument should be disfigured with misspelled words. 
 3rd The subject matter should be immediately apparent, stated with- 
 out circumlocution, and in terms not to be misconstrued. A business 
 document should be written in brief terms, and yet explicitly. 
 
 There is no qualification which will more surely commend yowig 
 men to the favor of an employer than proficiency in Business Corres- 
 pondence. 
 
 (Circular.) 
 
 QvvAu c, May 1, 1871. 
 
 G. S. Walh, Esq., 
 
 Montreal. 
 Sir:— 
 
 We, the subscribers, respectfully announce to you that we 
 have formed a copartnership under the firm of Mitchem. & Hitdon, 
 for the prosecution of a wholesale Grocery, Wine Business, and 
 General Commission. We take the liberty of assuring you that all 
 business intrusted to our care, shall receive from us, personally, prompt 
 and faithful attention ; in a word, that we will correspond to the coa- 
 fidenoe placed in us. 
 
 Very respectfully, 
 
 Your obedient servants, 
 
 Mitchell & Hcdomt. 
 
 Messrs. Mitchell 6f Hudon, 
 
 (Quebec. 
 
 MoNTRKAL, May 2, 1871. 
 
 Gbntlemen :— In reply to your circular of tlie 1st inst., I beg 
 leave to solicit the favor of your patronage fur a general commission 
 business, and pledge myself for the strict <<bservance of vour commands, 
 and fHitlit'nl porlonnanoe of my duty. 
 
 Hesptfctfully yours, 
 
 G. S. Walls. 
 
 79 
 
LETTER BOOK, — SET UL 
 
 G. a. IVaUs. Esq., Qdebko, May 4, 1871. 
 
 Montreal. 
 
 Siu:— Enclosed we remit to you Bill of Lading and Invoice of 
 Merchandipe, amounting to S575, which we consign to y^n per 
 Steamboat Qaehec, to be sold for our %■ You will do H8 the tavoi 
 to uee all possible despatch in making sales and rendering account. 
 
 Yours, 
 
 MiTOHBI.l. & HCDOV. 
 
 1.. 
 
 Me»«r8. S. 
 
 White Sf Co., 
 Ottawa. 
 
 QoEBBC. May 6, 1871. 
 
 Gentlemen : — We have the honor of informing you of the 
 arrival, in good order, of your Consignment of Flour, pursuant to our 
 order, and of which, your favor of,4th inst, gave us a>lvice. 
 
 We find it conformable to the Invoice, amounting to $1018.25, 
 which we hvve placed to the credit of your %. 
 
 We beg leave to assure you that we will pay all possible 
 attention to your orders. Offering you our sincerest thanks, we 
 remain, 
 
 Your obedient servants, 
 
 * Mitchell k Huoom. 
 
 Messrs. D. C. Peachy dj- Son, Qumeo, May 7, 1871. 
 
 Montreal. 
 
 Gents : — We are in receipt of the goods you consigned to ue, 
 pursuant to our order of 3rd inst., and of wliich you gave advice by 
 your favor of oth inst. Save a few barrels of Herrings whose quality 
 appears to us inferior, the rest is satisfactory. 
 
 Your account is credited for the amount of Invoice, $1649.60. 
 
 Very respectfully yours, 
 
 Mitchell & E0OON. 
 
 Messrs. L. Douglas <fr Co., 
 
 Toronto. 
 
 QuBBEC, May 10, 1871. 
 
 Gents : — Enclosed, please find Invoice of Merchandise amoun^ 
 \ng to $1272.68, which we forward to you per Grand Trunk K. B., 
 pursuant to your order of 4th inst. 
 
 Be so kind as to credit us for the saiuc. 
 
 Truly youriH, 
 
 MlTCHlClI. Jc HWKW. 
 
 80 
 
LETIWR B0OK, — SBT HI. 
 
 May 4, 1871. 
 
 and Invoice of 
 
 gn to y^n per 
 do \iH the tavot 
 ?ring account. 
 
 & HUDOV. 
 
 May 6, 1871. 
 
 ing vou of the 
 
 pursuant to our 
 
 ilvice. 
 
 ng to $1018.25, 
 
 )a7 all possible 
 est thanks, we 
 
 tntH, 
 
 & HUDON. 
 
 May 7, 1871. 
 
 sonsigned to us, 
 
 gave advice by 
 
 ;8 whose quality 
 
 ice, $1549.60. 
 mrf!, 
 
 & HuDON. 
 
 y 10, 1871. 
 
 handise atnouD^ 
 d Trunk R. R., 
 
 urct, 
 
 QTBBBf, May 12, I9tl. 
 
 ''Messrs. S. mite <f C-a., 
 
 ^e forLX-";;T;or42?n;t.'"t,f ' f^^^""* .^"'f ^ Mer«han 
 ^•■J^ll4:t.:^0. "^ "1 4W1 int.t. Mie net proceeds, d«e on Ju«e 4, 
 
 • Re,H{)ectfully yours, 
 
 MlTCHEL), & HcDOf. 
 
 Halifax, May 7, 1371. 
 
 i»s o« ti?e1ri i^t'' Te^lt™'?' T''^ "*' ^^^^^'"^"^ "^"^'^^ between 
 
 Very respectAiDy, 
 
 C. LoRTiE Si Bro. 
 
 MoKTRKAL, May 15, 1871. 
 
 Mgasrs. MitchdL ^ Hudon, 
 
 Quebec. 
 
 ijv^iee a,.';r.„r:,.r>'e:,i;'s'; wis r^Lre-t it'^f 
 
 Your obedient servant, 
 
 G. S. Walls. 
 
 QuEBjcc, May 19, 1871. 
 
 Messrs. M. Blanchei ^ Co., 
 
 Pictou. 
 
 l.H.e debited ^ .oK'rhe'rtl"; UUif" "" """' *• ^' 
 
 y«ur outtulile 8ervant«, 
 
 MiTCHELL &, Hrdon. 
 
1 [ 
 
 bCYSDR BOOK, — 8BV IH. 
 
 Mtsart. Aikcheit d^ Hudon. 
 
 ' Quebec. 
 
 Montreal, Ms^ 14, 1871, 
 
 Gents : — We acaept witli pleasure your proposition t© j«iii in 
 a Company Speowlatio«. We, accordingly, ship you, per Schooner 
 Vautireuil, wliich is to saU to morrow, Mercliandise, as per enclofeed 
 Invoice, to be sola in joint account with yourselves, B. Oary Jc Son, 
 and ou/seives, eaeh one tliird. 
 
 We kave debirca you ft: 4 of Invoice. 
 
 Witching you c«Mi|»lete success in the salea of them, we beg t« 
 subscribe ourselves, 
 
 Very truly yours, 
 
 G. Qdinn & Co. 
 
 J. N. Corbray. I'jSq.y 
 Three Rivera. 
 
 Quebec, May 22. 1871. 
 
 Sir : — Youss of the 16th inst. is at hand. Your proposiUoae 
 are gratefully accepteii. In accordance ilierewith, we phip you per 
 Schooner St. Maurice, 40 bag? lied Wheat, and 90 itags Oats, as per 
 eneloHcd Invoice, amoniifelflg to $810.50, which we consign to you 
 to be Bold on our % and rif<k. 
 
 Hoping yoH wiM study our beat interests, we remain, sir, 
 
 Your?* respectfully, 
 
 Mitchell & Hudon. 
 
 
 .> S; 
 
 Meisrs. C. Lortie Sr Bro., 
 Hclifax. 
 
 QoEBEr, May 23, 1871. 
 
 Genti.bmkn: — We send you enclosed. Account Sales of the 
 Merchandise forwarded on 7th inst. We have been quite successful 
 in the sales of tliww, and we are of opinion, from actual appearances, 
 that the good jwarket s^Jiall continue for sometime. If you think 
 advisable to risk a new conf^ignment, we shall be happy to join you 
 in it, or to sell for you on Conmiission. 
 
 Very reepectftillf, 
 
 Mitchell k HuDoir. 
 
 Pi«*oi!, May 23, 1871. 
 
 Ms»srs. MUdiell S( Hudon, 
 Quebec. 
 
 Gkvts: — E-nclosed, please find Account Sales of the Mer- 
 tshandine y«u shipped us on the 19th inst. Your aei proweds i« 
 
 92 
 
»y U, 1871, 
 
 )SJtion t» j«in in 
 
 ju, per Schooner 
 
 as per enclofeed 
 
 E. Cary it Sod, 
 
 them, we beg U 
 
 X3, 
 
 DINK & Co. 
 
 May 22. 1871. 
 
 'oiur proposiUoM 
 
 we phip you per 
 
 nags Oats, as per 
 
 9 consign to you 
 
 remain, sir, 
 fully, 
 
 L & HUDON. 
 
 May 23, 1871. 
 
 )unt Sales of the 
 II quite succesHful 
 tnal appearances, 
 e. If you think 
 appy to join you 
 
 IV, 
 
 L & HcDoir. 
 
 May 23, 1871. 
 
 ilea of the Mer- 
 r Bfli proseeds is 
 
 
 r-KT-fFB boor:.— SBT in. 
 
 ToaIu \VV."^*': '•'""' ^^'''"*'''" '^' ^he sale of the like goods. 
 
 Please iivil u'JR^r •'"'" ^'?f",^'" ^'" ^^^ reasonable amount. 
 F lease au vi.se u,- thereupon, and believe us, 
 
 TjTjly yours, 
 
 M. Blanchet & Co. 
 
 *HREE Rivers, May 24, 1871. 
 
 i^ssps. Mitchell ^ Hudon, 
 Quebec. 
 
 but vonr p"' '"■'" ^'''''' *^" ^'"^ -''^ '•-'«^- ^'he car.o war avo " 
 proceX ' *"^^^»^<='^' 0" National Bank for |I15; ae n. 
 
 Yours respectfully 
 
 J. N. Cakbray. 
 
 QrEBKc, May 26, 1871. 
 
 •. A'. Carhray, Esq., 
 
 TfiTHj Rivers. 
 
 b^gof J;.?c;r„/roe?r£LT ""'"■""•« *'' '"'' -^ 
 
 Bel,e« us «er disposed to hoDor you .ill, our c.nfl,lence, 
 
 Truly yours, 
 
 Mitchell «fc Hrnox. 
 
 Quebec, May 28, 1871. 
 
 Messrs. G. Quinn (f- Co., 
 Montreal. 
 
 .oieeo^s^^n::it'°'^^^*°^^''' ^^^^""^ ^^'- «^^-- ^n- 
 
 Hop 
 
 ing you will fipd iJ.e reH4,!t satisfeetc 
 
 eciuibe ourfielves, Gentlemen 
 
 we b 
 
 •eg to sub 
 
 Very fcr uly youBs, 
 
 I 
 
 I 
 sit 
 
 88 
 
iMMiiMUHil 
 
 .M^^^... 
 
 Pi lCTIOAL EXERCIH18, — SET III. 
 
 Messrs. L. DougUts ^ Co., Qckbkc, May 30, 1871. 
 
 Toronto. 
 
 Gknt3 : — We are in receipt of v'uir favor of the 27th insi., 
 oontainihg a draft at sixty days oi» A. Siiii.ns & Devaiix, Tjoad(jii, foi 
 $1272.6H, which is placed to your credit. 
 
 Please accept, Gentlemen, the pinctre thanks of 
 
 Your obedient pervants 
 
 MlVtHEI.l, & ili DON. 
 
 Meaarif. D. C 
 
 Peachy ^ Son, 
 
 Montrt'i-L. 
 
 QuEBKC, May 31, 1871 
 
 Gents :--Enclosed, yon wir find a Dalt at eight days' pi^jht on 
 N. Caron for ^'260, tor which cou vvill plea.se to credit us. 
 We Lave the honor, Qeia.s^Meii, to remain, 
 
 YoiivK gratefully, 
 
 Mll'CHELb & HUUON.. 
 
 t I 
 
 
 M']\ 
 
 Efi 
 
 
 MfiMORANDUM I. 
 
 June 1, We, Mitchell & Hudon, continue our business w*h the 
 Re^-oiirces and Liabilities taken from our Balance Sheet p. 66. — SS. 
 Receiv'ed advice ffom Douglas & Co., Toronto, that they have pur- 
 chased, as per agreerwent, KO bbls. Extra Flour, to be sold on our 
 joint %, ( ich i, and that they have debited us for ^ the cost price 
 which, as per bill, amounts to $585. — 3. Shipped per Brig St. Hu 
 bert, and consigned to S. McManus, St. Johns, Newfoundland, to be 
 sold on our % and risk, produce, (S. B.) amtg. to $1864. Passed our 
 note No. 3, at 6 mos., to the North Insurance Co., for ins. on !?2010, 
 at 14 %, and paid m cash tor Policy, $1.25. — Rec'd per Grand Trunk 
 R. R., frorn L. Dion, Montreal, Bordeaux Wines (I. B.) amounting to 
 $120 ; and accepted his draft oa us, favor Jones & Co., at 20 days' 
 eight, for the amt. of invoice,— 4. Gave Merchandise (S. B.) in pay- 
 ment of an order from P. Allard, tor $369.20. — Exchanged eur note 
 No. 6 with E. Gary & Son's, for our mutual accommodation, each 
 drawn at 30 days, for $320 ; discounted theirs at the National Bank, 
 and rec'd in cash, $318.24. Discount was taken for 33 days, at 6 %. 
 —5. Bo't on joint acct. with G. S. Walls, each ^, 5000 lbs. Chocolate, 
 at 25 cts. We are to receive 5 % c»tnmisslon on the sale. Paid in 
 cash for our half, $625. — 6. Rec'ii of S. Lewis, in payment of Ins 
 I for tIOOO, due this day, Merchandi.se (L B.) utnlg. to $500, 
 
 XT_ 
 
 UULC i.1IU 
 
 and cash fo" the bal. — T. Rec'd pf"* Hrig Culumbia, Capt. Riif^se.!^ 
 fc-om C. A. Mtlson, Limewck, pm^i- nt to our order and for ol • ?-! 
 Mdse. (1. R.) due in Liaierick on . . let next, amounting to i JO, 
 Gave our bonds to th« Ctutom-house for duties, at 3 and 6 moM., ?? 
 
 84 
 
May 30, 1871. 
 
 jf the 27th inst., 
 iiix, LoadiJii, foi 
 
 of 
 infs 
 
 & tl! DON. 
 
 VRAGTrnAL RXERCI8EH,— SF.T HI. 
 
 ^l t40 ; jni.J Freight 
 
 in eash, $74. RecM at tl 
 
 mu,e]:r:,f Columhia from C. A. Mol 
 an>t. .¥;!(■:>, to be 8oM on h 
 
 le f-'amn rinip bv the 
 
 C'listo 
 
 son, 50 ca«k-s Sicily Wine (L V,.) 
 
 F. 
 (C 
 
 Laru 
 S. B 
 
 '1 : hou.se foKlnties at l^ 
 
 IS % and risk. G 
 
 av(.' our bond- (o the 
 months, for 8160r,.40; paid Frei^'l 
 
 :.7()— « «!,i,i v'j, ■■"" ^\ ."" '-^'a""-*"; paid l'reit,'ht m 
 
 vhe 5 '^^sh q •, T' "'" •';^""^*' ^^ 2 n.o.., endorsed by 
 
 Xli 
 
 ilay 31, 187!. 
 
 It days' pi^jUt on 
 t us. 
 
 HUUON.. 
 
 upiness w*h the 
 beet p. 66.-2. 
 '. they have pur- 
 be sold on our 
 ^ the cost price 
 per Brig St. Hu 
 foundland, to be 
 34. Passed our 
 ir ins. on .*2040, 
 er Grand Trunk 
 !.) amounting to 
 Co., at 20 days' 
 ! (S. B.) in pay- 
 lianged (jur note 
 inodation, each 
 National Bank, 
 33 daye, at 6 %. 
 lbs. Chocolate, 
 e sale. Paid in 
 payment of his 
 .) atiug. to,f500, 
 , Capt. Ri'iJse.l, 
 ' and for ot ■ % , 
 mting to f JO. 
 and 6 mo*., 'b? 
 
 ''S. B.) iuuUr to «2^« 7^ o I T "^"-^ ^vicrciianiiise Ironi our Store 
 . "•■'.•"'"«• lo ^^i)«.75, and an Invoice of Oaf ^ /T «: n \ i^?* /> 
 
 O. Mane 1 wmir;;, '■'',".""• *'2(i ; an.l ca-l, lor ti.e b»I.-I3. 
 .l.eh- drnli;™ Upai 1 Ga ',, "f r iir,';!;'" n "■■"■• '"■ ''?-''"''"" °' 
 
 we ii.ive g.ien our ncceptance, at 40 days, due 
 J.xpc.MM for loading, etc., aint. CoSloli. -Our 
 
 July 2(i, fur .'^.OOiid. 
 
 cou.nmsion is $77.33 -1 J rJ „t „ ^^' ^"'■\''.'"'- ^o !?lo(,. • Our 
 Bradv each ' Ml V .t ,"> x ^'^^*"*^^"^'"' ''" J^'"t»<^connt with P. 
 ui^i)' f ,t 1)^' 1 '*■ ^^' ^^•>' ^'"'S- to §«)700. Our A purchase in 
 Co -i i pIh r? f"' "'"■ ''«<=^P^^^"«<^ at ;;0 days, iJovclmut & 
 
 dt th^' •lav.-lT'B^ro'H'e.riv^- ^^'^ ^I-^^^Cord. for$.foo* 
 ainfinn „i • i •? ' Healy & Cameron, the Bri'^ MaWa f.r 
 
 Bla:2h;;i'?^.:^'^|?^S;^l!:^-= -- draaat 30 days' ^iJJ'S M^ 
 
 on National B^nk for the^.fl-^i « "t" f ' 'r ^'^^-i^ ^"'1 ""'"^'"^^'^ 
 S. White .t f\. n. ; ^'^'-—IS- Sent per Grand Trunk R. R., to 
 
 C A M'« r ^'''^' P"'-''"^"^ to .«heir order, Mdse. (C. S. B.) of 
 
 No. 2, in their fUvor fi ^ m% ^n t { n '" '^ '" P^^^ ment, our note 
 al -Itt vl^U n■{I^ f '^^'-^.-^.-^O^ and their note at 40 days, for the 
 lrPn^\fL j^' for .repairing Brig Maria, ^33.10.-30. ShioDed 
 
 n '^ ot 'hh?, .?f R^'h''^ 1° ''•.^- '^^^^^-^^ Limerick"to beS 
 »n .1 ic /c of himsclt, H. Brook, ami ourselves e'loh ' ' - " 
 
 h-om x\ld.se. Co. E -.^^ - ^ —- ■ .- • ,'. ':''.'^" 3 
 
 bal 
 per 
 on J 
 
 Suifa. 
 
 etc.. .$20.60 
 
 amt 
 
 at 2 u)o.a 
 
 . o.o-> ,. o. lOT. Wi.ite 
 
 to .VtS.;0. Paid casl, fur loading, 
 
 , lorin.s. on .i;.JOOO, at ^ %. Our 
 
 com>ni,s.sion on^^iS? ) 6' at " ^j^ .^MVai' "" •'"""•''. ''^ ^ %• Our 
 at ' <^ ;. «iVrn w I -. .^ ^^^;onrcommssonlbriiis 
 
 at , %. 1^ * 1 2.;.0. We charged for the Frei-ht hv onr Bri.^ M-rh '"^i' 
 H. hruuk-.s ^ i« ;>] 703.285- ; C. A. Moi^^on^ I '^iliVi }li^5 ' 
 
 $1703.2S|.J!2i. I„,ured%'ur Bri^l^i^ "S in th! G U f *' """^ ''A""'' 
 
 ii:e'Fiti-b;^5t i^tr otr 2^,^ i/^;:^!;; .?^"t: thr 
 
 amounting to *^97.7'J. Our i i««jj.n hT „ ] •' '^ ** ' t'le proceeds 
 o *> ^i.< ;. uur i 18^448,85, and our net gain, $156.35. 
 
 i 
 
9: ■'; i' 
 
 I 
 
 i ' ! 
 
 I ! 
 
 I 
 ( 
 
 • 
 j 
 
 i 
 
 j 
 ( 
 f 
 
 1 
 
 m\ 
 
 1 
 
 1 
 
 i^' 
 
 
 PRAOTICAI- EXERCISES, — SET III. 
 
 —34. Rec'd of S. .McManu^, St. .Tohnp, Newfoundland, Acaount 
 Sales of the Mrlse. consi.stncil to Ihiin by Brig St. Hubert. Not pro- 
 ceeds anit,2. to $2120, Reo'd in payment an Invoice of Fish (1. B.), 
 anitg. to §2120. Paid for l-'rei^ht. and other expenpes, in caah, Sfil .34, 
 Clo-ed our Invoice to St. John'p witli a .cain of $229.25.-35. P;iid 
 casli for our accpptance of L. Dion's draft, favor of Jones <fe Co., for 
 $120.-30. Sol<lJ. Merault4000 lb<. Chocolate from Mde. Co. D, 
 at 35 cts. Rec'd cash, 8800 ; the bal. at 2 mos.— Sold R. Woods, on 
 his note at ?.0 dav.^ 1000 \h^. Cliocointe from Mdse. Co. P., at 40 eta. 
 — S7. Closed Mdse. Co. D., and rendered G. S. Walls an Account 
 Sales of the pame. Our charges for Storage. Advertis-ing, etc., $23.60 ; 
 our Commij^sion. r,% on $lsOO. G. S. Walls' net gain, $21R.20. 
 
 Onr ^ net gain, ;■> —38. Rec'd from C. Lortie & Bro., Halifax, 
 
 Account Sales of the Mdse, shipped them from C. A. Molson's Con- 
 pjgnment. Net proceeds, $2962 for which wo rec'd their draft, at 60 
 (lavs, on Hamel &, ]?ros., which was accepted. — Taken to our %, at 
 2 mo.s., the remaining 10 casks, of C. A. Molson's Consignment, at 
 ?I28. Closed C. A. Molson's Consignment, and rendered him an 
 Account Sales of the same. Tlie expenses for Duty, etc., to this day, 
 amt. to $1725.85. Our Commission on Sales, at 5 i^, is $354.10 ; 
 Storage and Advertising, §12. Net proceeds due C. A. Molson, on 
 
 , $4990.05.-30, Rec'd from C. Lortie & Bro. an Account 
 
 iales of our shipment of the 10th lust. Lj Brig Victoria. Net proceeda, 
 $843. Rec'd also a draft from them, at 10 days' sight on Garneau & 
 Co. Pail carfi for clerk hire and other expenses, $104.75. 
 
 BALANCE ACCOUNT, JUNE 30. 
 
 BE30TTRCE8. 
 
 
 1 
 70 
 
 LlABU.lTIES. 
 
 '• 
 
 
 Rills Receivable. 
 
 $ 4415 
 
 Rills Payable. 
 
 $13266 
 
 90 
 
 Cash. 
 
 14185 
 
 58 
 
 G. S. Walls. 
 
 192 
 
 80 
 
 National Bank. 
 
 1210 
 
 00 
 
 D. C. Peachy & Son. 
 
 16 
 
 10 
 
 Merchandise. 
 
 12000 
 
 00 
 
 C. Lortie & Bro. 
 
 5359 
 
 25 
 
 P. Allurd. 
 
 569 
 
 20 
 
 E. Carv & Son. 
 
 405 
 
 46 
 
 A. Rill fret. 
 
 300 
 
 00 
 
 1 G. Quinn & Co. 
 
 792 
 
 22 
 
 M. Blanchet & Co. 
 
 55 
 
 20 
 
 C. A. Molson. 
 
 4886 
 
 K\ 
 
 L. Douglas & Co. 
 
 156 
 
 35 
 
 G. Morin. 
 
 180 
 
 00 
 
 N. S. Robertson. 
 
 5233 
 
 
 C. S. MitcheU. 
 
 13500 
 
 97i 
 
 H. Brook. 
 
 1703 
 
 m 
 
 R. A. Hudon. 
 
 13531 
 
 474 
 
 Brig Mctria. 
 
 1 0000 
 
 no 
 
 
 
 
 Sh'pt to Limerick. 
 
 1703 
 
 
 
 
 
 J. Merault. 
 
 600 
 
 00 
 
 ■ 
 
 
 
 1 
 
 .•P52131 
 
 931 
 
 $62131 
 
 93| 
 
 86 
 
Klland, Acaonnt 
 nbert. Net pro 
 > of Fish (I. B.X 
 in cash. .?fi 1.34. 
 '.25.-35. Piiid 
 Jones Si To., for 
 3m Mil p. Co. D, 
 )ld R. Wood.", on 
 Co. P., at 40 eta. 
 ^alls an Account 
 ing. etc., $2'!. 60 ; 
 t gain, $218.20. 
 & Bro., Halifax, 
 \.. Molson's Con- 
 their draft, at 60 
 ken to our %, at 
 Consignment, at 
 rendered him an 
 etc., to this day, 
 5^, is!?3r)4.10; 
 !. A. Moleon, on 
 3ro. an Account 
 1. Net proceeds, 
 [it on Garneau & 
 04.75. 
 
 
 — ■» 
 $13266 
 
 90 
 
 
 192 
 
 80 
 
 Son. 
 
 16 
 
 10 
 
 
 5359 
 
 25 
 
 
 405 
 
 46 
 
 
 792 
 
 22 
 
 
 48H6 
 
 7(;j 
 
 
 180 
 
 00 
 
 
 13500 
 
 97i 
 
 
 13531 
 
 47i 
 
 
 $62131 
 
 931 
 
 praotioa: exercises,— set m. 
 MEMORANDUM II. 
 
 panSip'^I ^^:^l^;,^T^^ir 'f/ -»-- -to CO 
 h^'l L.Moore's invc«tme„r i . u T 'T^^ mve-.tmont is on 
 Bo't of F. Belmonrhi "SI fote 5^" T " "^^'-'^ ^'''"'^•-»- 
 niortga^.eonf]iepronert.for$%Too S r /" 'i^-X'"^"'' ^^^'^'Hned 
 to date «12(^ ; pa^l Jasl >o the barV^^ t r' 'f '^^ "" '^''^'IP''^ 
 on %, 10 hhds; Surrar 1 rAn il * *«l-''t.— Bo t oi Fremont & Co. 
 
 .S.3^30; 15000 l«/e ,i'it'' ^fc «-lia'rca'l'%^''" '''''' f* 
 work and painting, $1 12 ".O -i Ro^' . J ^^ ' ^^"^ carpenter's 
 Toronto, to be sold on o, r"7(ifnt ^/ ':^ ^'T '^^""'"- * S°". 
 Extra Flour, at $6; l.?o ml pt/v l""^ P'J^^ ''''^' ^' ''"" ''b's' 
 same, in cash, ^t^O.-Re^ iro^;?^ i^^ ' Pi^''' '"'•^'■ghl o. 
 
 300 bbls. Extra PIm r ?i^i^ o . *"'^' "" ^"'^ "'^^e at ,".0 days. 
 
 Pork, (Mdse Co A.' 'at iTs'^lciosn'^ "' ^'■'' ' \'' ^'''- l'^^"' 
 & Son, and renderp/j .'^*'^— Closed company sales with Bennir,^ 
 
 for Storage n;Stnr«l?.T""-"^'^%^"T ^" «''^^4 « 
 our ^ net 2ain S '?"^R ' Conimission 2^ ^ on sales $ . . 
 
 company with J. Arnold A Tim if; '* '''^•35.— Closed sales in 
 Acciunt Sa'es. Our chat e/ for ^^'"S'^**^"' ^"'1 /f "d.ered tiien, an 
 
 himself P T? nL i ' ^ ,'^' , ^^^' ^o be so d on joint ^ nt 
 SSruLV;, pS^'tTl''. ™ cTlr^ '"■"'.'' ^' per oon,?4' 
 
 p^ 
 
 "& 
 
 e s a net gain, ;j;510 : P. E. O- . v' 
 
 o«rCo,nm,...,;.24<«o„.lles,?;i75.0^j:n 
 
 gam $5 -ir.. Sold W. J. Lyo, h, for clsh 
 
 i&n',K^ <>*— !«• Bo't of Jorda.' '^'^'' ^ 
 30000 lbs., at 9 cte. • p^jd in cash 
 
 vs 4 net .rain. *519: 
 
 our J net 
 
 Ian & Sewell, 30 J.hds. B 
 
 hhds. Su'-ar, 11250 
 
 'rown Sugar, 
 
 11200; bah on i:i,S.S 
 
I 
 
 I! > 
 
 PBAOTIOAL RXBROIBIS, 
 
 m. 
 
 cai?h as follows : for wlt-ek hire to 
 ^., $225.-30. H.A. (Jliakners 
 
 15tV \x\nU, $T6 ; t* L. Moore, •n 
 
 < ■** 3 it ' , di«ooui)tetl hie note 
 111 our favor, du. July 12th ; proct'eds «i'tLc lote *149fi.68 ; (MecouiU 
 off, for 22 ilayn. ^ti.'H).— RecM of '• ArnoH k Bro., an Aocount 
 SaleH of rt»e Mdse. t<ent tivxn on the 7th Mist, to be sold on our 
 joint %. Our i ne< gain, ^15u.— 22. Shipped P. E. Onslow, Sorel, 
 to he sold on jnint % of h»inBelf, J. D. Roe, Montreal, and ourselves, 
 each i, HO hluls. Brown Sugar, :^0000 !bfi., at 9| cts. ; paid fireiglit 
 in cash. <Mi Panie $75.-85.' F. Belmont has drawn ^r, tv- Quel cc 
 Bank, tor pert»onai exreoyc. >^3()0.— Paid J. .'v.lu •; bi>>'H (h -t 
 on us, favor of C. RukpoII, per check on Quebec Bank, for $1453. 12.— 
 28. Rec'd cash fur rent of part ol our Store ■^«2;7(). Per statement 
 rendered this dav, our share of earnings of lust trip of Steamboat 
 Eupopa, ai.its. to *.H75.— 29. Paid cash for sundry espenees to date, 
 38.50.— 30. Ro'd from P. E. Onslow, Accouut Sales of the 
 Sugar shipped him on the '.'2nd met. Our ^ net loss, 3172^50. P. 
 Beknont has h= i day inve^aed in the firm, irn cash, $40o,n.35.— 
 July 1st. Rc3 d irom C. R. Kerney, Halifax to be sold on hi*i and 
 ■ ui- joint ^, «ach i, 150 bbls. Mackerel, invoiced at $7 : 40 bbls. 
 Ilepnngrt, invoiced at ^'4.50 ; 75 bbls. Lini-e«d Oil, invoiced at $40 ; 
 puid Freight per check on Quebec Bank, $75. Deposited cash in 
 the Qnebto Bank, $1-2750.— 2. Shipped P. Gilmonr & Co., St. John, 
 N, B., to be sold on our joint %, each ^, 200 b.ls. Thin Mess, at 
 $*.S.5b; paid Dravage, i'n cash, $27.-3. Sold R. S. Venner, for 
 cash, 150 bbls. Mackerel, (Mdse. €o. D.,) at 87.50. »> Effected iti- 
 .-urance for $750(», at | f^' on any property that may be in our 
 warehouse, $50.25.— 4. Shijped J. O'Regan & Co., Montreal, as 
 per t^ieir order, at 60 days, the folIowingMerchandi.se; 75 bbls. 
 Linseed Oil. (Mdse. Co. D.,) at $45 ; 40 bbls. Herring.s, ^Md.^e. Co. 
 D.,) at $4.50.~Closed Mdse. Co. D., and rendered C. R. KerH( m 
 Account Sales of the same. Our charges for Storage, Adv- rtising & 
 
 Insurance, $15 ; our Commi.ssion, 2^ % on Sales $ C. R. 
 
 Kerney for his .i Invoice, $2115. and net gain, $? ;.50. Our ^ net 
 
 gain, i^ —5. Paid by check Quel <i Bank, Ivertising bills of 
 
 Morning Chronicle, $225.-6. l.eo'd from Kane Ok- Joly, Hamilton, 
 to be sold on joint % of themselves, A. C. MiHer, and ourselves, 
 each J, ]50lihds. Brown Sugar, ir-oJ'-.ed at $60; paid Freight per 
 check on Qiulec Bank, $,,')0.— /. l.'ec'd from T> Ma,«s(»n & V)., 
 Sandwich, to be sold on theirs and our joint acct., e&ih i, 500 bbls. 
 Prime Porft. at $13.50 ; 250 bbls. Lard, 50000 lbs., at 7^ cts. ; 
 paid Freight per check on Quebec Bank, $750.- '..>. Sold J. N. 
 Miles. Quebec, 150 hhds. Brown Sugar, (M'^' e. Co- K.,) ai *;f6. 
 R"c'd in payment, J. Mountain & Go's, note, ad ' irch 3, 1871, 
 due one d.iy after da'e, for $7500 ; due to dat- i Sfc note $lS5.'i0 ; 
 and cash for balance— Close<! Mdse. Co. E., ad tcidered Kane & 
 Joly and A C. Miller, each an account of th^ sales. Our charges 
 for Storage, Advertising, etc., .'?75 ; otir Commission 2.^ % on sales, 
 
 $ Kane& Joly's net prMO€ed8$338i.25 ; A. C. Miller's, $3381.25; 
 
 our net vain, .?38l.25.— f* Rec'd cash for N. Harris' note, due tuie 
 ■day, $49i'0.--lO. Depo'iited cash in the Quebec Bank, $6000.-12. 
 
 89 
 
t(« L. Moore, •n 
 
 jouoted hie note 
 9fl.68; iHecouut 
 a., an Account 
 
 be sold on our 
 
 Onslow, Sorel, 
 , and ourselves, 
 I. ; paid freight 
 \ on t*-" Quel cc 
 1« i lii'o's dr. 't 
 
 for $1453. 12.— 
 
 Per statement 
 ip of Steamboat 
 spensea to date, 
 it Sales of the 
 9, » 72.50. P. 
 -h, $4():')«.35.— 
 sold on bhs and 
 
 at $7 : 40 bbls. 
 n voiced at $40 ; 
 posited cash in 
 & Co., St. John, 
 ^. Tliin Me8s, at 
 
 S. Venner, for 
 0.»> Effected in- 
 niay be in our 
 >., Montreal, as 
 ndise ; 75 bbls. 
 ngs, #lMd>e. Co. 
 J. R. Kerm. an 
 ;, Adv. rtising & 
 
 y $ 0. R. 
 
 .50. Our ^ net 
 vertising bills of 
 foly, Hamilton, 
 
 and ourselves, 
 )aid Freight per 
 
 Map'-c'ti & Mj., 
 ftih i, 500 bbls. 
 bs., at 7^ cts. ; 
 
 *». Sold J. N. 
 o. K.,) at $15. 
 \*arch 3, 1871, 
 note$l«o.20; 
 videred Kane & 
 !. Our char>?;es 
 n "i.j 96 on sales, 
 ler's, $3381.25; 
 i' note, due taia 
 ik. $6000.— l* 
 
 PRACTICAL EXBR0r8E8.^„ ,„. 
 
 •flltOO ()7 ^- * • *' '^'^ Jays sicht fL J, •''^ Sold our draft q,^ 
 
 ;-"i^red li. Et-„ l\^-'l^\ '• cts.-Closeci AmS '^^ «¥''' ''." 
 t>'ir cliarL'es fl.rQ* ' ^*"J'^'«h, an Account «ii ?',*^-' '^^'i 
 
 fi;? o„X,f "B%i«n^««' etc.T7^'/'tr Cof """" 
 
 $li)50utJi'n ^*-^'» ^^"^ i'- I. Nolan's n.?*''V''! *""'' ^^ «cot- 
 
 ^!:^^^C'W^'^^^ ^^^"O^t^i^ bbls S£ 
 McGinn I- • Kernel's note on , « .,? ™ P/""""*'" »1200._3e 
 
 S" f: ."""i?,"" ''■■", ».wi..-8y''S ,"«'"■ '»'"'°'^" 
 
 amr. changed to . '.l^^^' ^""'""^ '-^ I•^ "hn^rf '! ^cfV^ '^^''''^" * 
 '1^- a..:t. cC4a to 'T'^ ^'"^*- P^^^^'i o St k ace? rrir *^« 
 
 JNVE ,RY, JULY 31. 
 
 Store, valued /© 
 
 r!f "»bo^^ Europa Stock 
 fntfrest due us , n V...„ . 
 
 fn 7 J '^"ropa stoc i 
 &t;,il- -\^ote. I21..95 , 
 
 -1.37 { 
 
 21. 
 
 REsoaRCfis, 
 
 i^ess, interest due from us 
 
 BALANCE ACCOUNT, JULY 31 
 
 $22500 
 15000. 
 
 00 
 00 
 
 192.68 
 
 Real Estate. 
 Cash. 
 
 QMeb, c Bank. 
 Bill? Heceivable. 
 Interest Receivable. 
 Sieaiub Europa c,--i- 
 gtearnboat Europa. 
 f. (xiknour & Co. 
 
 LuBir.iTifcs. 
 
 Mortgage Payable. 
 Bills i'ajable. 
 interest Payable. 
 J. D. Roe. 
 I*. E. Onslovv. 
 Kane & Joly." 
 A. C. Miller. 
 E. Belmont. 
 L. Aloore. 
 
 I 6750 
 
 11>17I 
 
 21 
 
 8010 
 
 00 
 50 
 37 
 00 
 
 2932 ,> a 
 
1 1 . 
 I i ! i 
 
 SET TV. 
 
 JOBBFNG AND IMPORTING BUSINESS, 
 
 EMBRACING AS PIUNCIPAL BOOKS, 
 
 CASH BOOT{. DOMESTIC AND FOREIGN INVOICE 
 BOOK;>, SALES BOOK AND JOURNAL; 
 
 AND AS ATTX1UARIB8, 
 
 INVENTORY BOOK AND BILL BOOK. 
 
 WITH A ROI'TINE TAKBX FitOM AN EXTENSIVE BUSINESS HOCSS. 
 
 1,1- ' 
 
 3i? , 
 
 Remarks. — Thr partionlir feature of this set consists in the 
 manner uiid form of original ontrios, wliich are made in separate 
 books, — cNcwhero used as ;iuxiliarie3, — from which they are 
 either jonrnilizftd, or passed directly to the Ledger at stated pe- 
 riods. Tiiis method has many advantages over consecutive en- 
 trios ill the Day Book, an'], in one form or other, is adopted gene- 
 rally in till largo establi>hiiients. The labors of the Book-keeper 
 are thu.-; divided up, and the separate departments of the business 
 receive such special record as to present all the facts in their 
 clearest light. Thus, if any particular information is desired res- 
 pecting purch.ises, all the facts can be found at once in the In- 
 voice Book; in the sime manner, the facts and condition of the 
 sales can be found in the Sales Book; the receipts ;ind disburse- 
 ments of casli, in the Cash Book, etc. 
 
 In thi' previous sets, those books are represented ; but they are 
 used only as auxiliaries, the entries of the business being made in 
 the other books without reference to them. This plan, it will be 
 evident, although possessing some merits, involves a large amouiA 
 of unnecessary labor, whieh v.ould prove a great objection in ex- 
 tensive houses. The special l.onks themselves, however, are so 
 essential in evtry well-regulateil h;,isiness, that they would receive 
 favor, even at the expense of this additional labor. If, t refore, 
 
K^as HOVSK. 
 
 '«;;r-un> their adaption. ^■'^^''^'- ■'''•g^'ncnt woi.l.] b. „oe,lo,T 
 
 AW sales and Durchases .o/lTrt ' ^ *^'''.""'''''''^''^ ''"-'•^"or 
 *° ^'^ ^^^'^-r J «'l others, iZkoLAS:^ '"'" *'^"« ^-'''^« 
 
 ROUTINE FOR AUGUST ]87I 
 
 NOTB Tosctthpfnl I 
 
 and reduction of curronnil. u-^" '"*'"'«o '''ook, involt n,, ^ '""'^'<-''f- T'"' 
 
 fended with the inv "ice b .^ "'^''""««. which beirur ,.a rJ n"* u ° '"'^•'' "'■" 
 'sporting houses thn H^lr '""^''"^ ''"""» tlio Ca^li hIoI ,''"'''• "^^' ""' ''x- 
 tbe CashVk ' "'"'^"'"'^ '^^« "ote.tend.u in tht {, voice '^f^T' '" '"■"'v 
 
 °"" "^'^1*. but only in 
 
 Cooic copled-Cash' ^7''' "'^ P^-* ^^^ -Journal entrv .T 
 fee ved per Sto,„„ ke" oSau LT^*;,?^*' C- B.-B ij jiiV 
 
 I 
 
 

 
 JOBBING AND IMPORTING BUSINESS. 
 
 $15.60, (C. B.— B. B.)— 20. Sold Stein & Co., St. Mary, P. Q., oc 
 their note, at months, Invoice of Prints, $1425.48, CS. B.— B. B.^ 
 
 Paid T. J. Colston on private acot., $100, (C. B.)— SI. Sold 
 
 Mdse. for cash, per Petty Ca<h Book. *102.50, (.C. B.)— 88. Paid 
 cash in full of note, favor ofG. H. Shills, $3800, (C. B.— B. B.)— 25. 
 Sold Bvrne & Son, Kajrionraska, for cash, Invoice of Gk)ods. $-100, 
 
 (S. B.— C. B.) Stein & Co.'s note discounted; Face of note, 
 
 $1425.48. Discount ofT, &50.44, (C. B.— B. B. . . Rec'd per steamei 
 Apia, from J. A. Knis^lit, Dublin, Invoice of Goods, $440.14; Paid 
 
 liities in cash, $105.(53, (For. I. B.— C. B.) Bo't of L. Power & 
 
 Co., for cash. Invoice of Printp, $893.63, (D. I. B.— C. B.) ...Paid 
 clerk hire in cash. $50, (C- B.)— 37. Sold Mdse. for cash, as per 
 Pettv Cash Book, $160, (C. j3.)— 88. Sold C. E. Lawson, Sorel. on 
 his note at 8 months, Invoi',e of Goods, $171.04, (S. B.— B. B.)— 29. 
 Paid C. S. Mitchell, on pri ate acct., $130, (C. B.)— 30. Sold Mdse. 
 as per Petty Cash Book, .*f2, (C. B.)— 31. Received cash of W. E. 
 Gray, in full of acct., f 14 •10.20. 
 
 • 
 
 ROUTINE FOR SEPTEMBER 1871. 
 
 1. Sold A. M. Roonej & Co., on their note at 6 months, Invoice 
 ofGoo'is, $14:'.2.H9, (S. B.— B. B.) ...Paid cash for Drayage and 
 Porterage, eiT-nO. (C. B.)~2. Lent L. Morgan, $600, (Q. B.)— 3. 
 Sold Mdse. a:? per Petty Cash Book. $70.20, (C. B.)— 5. Di.^counted 
 our note, favor of A. G. Cook; face ol' note $1500. Discount off. 
 
 $29.75, (C. B.— B. B.) Sold S. D. Hig^ins, Quebec, on liis note 
 
 at f^ nios,. Invoice of Goodn, $527, (S. B.— B. B.)— 6. A. M. Rooney 
 & Co.'s note discounted ; face of note $1432.89. Discount off, $49.60, 
 (C. 13.;— T Sold Mdse. as per Petty Cash Book, $150, (C. B.)— 8. 
 Sold J. F. Nestor, St. Thomas, on his note at 8 months. Invoice ot 
 Mdse. $752.57, (S. B.— B. B.)"— 10. Reo'dper steamer Africa, Glas- 
 gow, Invoice of Goods, $14.^.?. 19. Duties paid in cash, $276.10, (For. 
 I. B.— C. B.)— 12. Sold Mdse. as per Petty Cash Book, $218.50, 
 
 (C. B.) Paid cash for Drayage, $7.5, (C. B.)— 15. Sold 8. R. 
 
 "Woods, Ottawa, on his note at 8 months, Invoice of Goods, $908.29, 
 
 (S. B.— B. B.) Paid R. A. Hudon cash on private acct., $140, 
 
 (C. B.)— 17. Sold Mdse. as per Petty Cash Book, $302.40, (C. B.) 
 -20. Rec'd per .steamer St. Patrick, from J. Bailey & Son. Live?* 
 ;>ool, Invoice of Goods, $188.62. Paid duties in cash, $2«.29, (For. 
 I. B. — C. B.) . . .Bought of Bell & Archer, on our note at 6 months, 
 Invoice of Cloths, $1926.14, (Dom. I. B.-B. B.V . . .SoldN. B. Roy, 
 Levis, for cash, Mdse., $923.40, (S. B.— C. B.)— 23. Sold Mdse. aa 
 per Pettv Cash Book, $1S0, (C. B.)— 25. Sold E. Curran, Richmond, 
 for cash^ Invoice of Gloves, $460.75, (S. B.— C. B.) . . Paid Postage, 
 Porterage, etc., in cash, $12, (C. B.)— 27. ^old Lee & Strang, To- 
 ronto. on their note at 8 mos., Invoice of Mixtures, $3303.71, (S. B. 
 
 B. B.) — 28. Sold T. Hoss & Co., King.^ton, on 8 months note, 
 
 Invoice of Goods, $578.52, rS. B.— B. B.)--30. Sold A. R. Jacob, 
 Batiscan, o« note at 3*months, Invoice of Goods, $100, (S. B.— B. B..) 
 
 ' Sold Mdse. per Petty Cash Book, $125, (C. B.) ...pAiJcasb 
 
 in full of Drayage acct., $20.75, (C. D.) 
 
 98 
 
BOMISTIO revoiOE BOOK. 
 
 WMESTIC INVOICE BO0K.._SKT IV. 
 
 This book contains copies of .,11 ; • 
 chased from importers anrotSers „ nr"'' ^^ "^^^chandise par 
 t'ons of all such purchase. fZI .*'"', "^""^^3^' ^^^th the condi- 
 by sorue peculiar marL which Ts "f ^'f'"' '"« distin.uisred 
 ^^''v.n. an important purpo e in ch i!^'"''! '' '^' ^^^'^^^ <hus 
 disputes, etc. ^ 'P°'' ^° ^^^^^ing the articles, adjusting 
 
 QuiBEc, AuaiTsT 1, 1871.* 
 
 A. C.i 
 
 B. 
 
 S. B. Madden, 
 
 2J S2' "'° ^""*«' 
 
 19133 
 
 1935 
 
 18863 
 
 1029 20613 of 75 ., 
 
 '■'^•^ 1332 ' 
 
 J 262 158 12 
 
 n08 i222 
 
 1276 17152 58-, • 
 
 ^^ 482.9l( 
 
 Amou 
 
ri .{.'7 
 
 I' " 
 
 9f. :s! 
 
 I 
 
 DOMESTIC INVOICE BOOK, -SET IV. 
 
 QtJBBEc, August 10, 1871. 
 
 C. 
 
 794 
 800 
 834 
 704 
 
 Amount forward, 
 P. McHucjH & Co., (6 months.) 
 
 40p9.DuokDrilIing,141ia/a>17c. 239.9(5 
 ^K' '* " " 13892 " 18 250.11 
 36 « J5rowii " 14153 <' 25 353.88 
 42 '< W. li. Diaper, 21691 " 7^ 162.69 
 
 Note at G inos. from Aug. 10. 
 .^ II 
 
 N. Casey & Bro. 
 
 (8 months.) 
 
 750 
 751 
 753 
 754 
 
 CM. 
 K. A. 
 
 Vj. a. 
 
 D. C. 
 
 E. N. 
 EG. 
 
 381)2 
 5788 
 6202 
 
 4187 
 5630 
 5685 
 
 4 cases 4.4 Bleached Shirting, 
 40 17322 
 40 1736 
 40 1755 
 40 17312 6955 yds. at 9i ots. 
 
 Note at 8 months from Aug. 11. 
 
 26 
 
 L. Power &. Co., 
 52Print8,973 1858 
 
 52 
 
 1)65 1834 
 
 53 " 967 1895* 5587 Vd.® 8c. 446.98 
 
 51 " 972 1924« 
 49 " 968 19542 
 49 " 971 1920 5808 yd. /®8ic. 49.3. 6S 
 
 Discount off 6^ 
 
 940.66 
 47.0;i 
 
 C. B. 
 
 893.63 
 
 Purchases on time (taken to Ledger), 
 Cash jjurcba6es (entered iroiu C. B.), 
 
 Total for the month, 
 
 1303 
 
 76 
 
 893 
 
 1006 
 
 64 
 
 660 
 
 73 
 
 63 
 
 1667 
 
 2197 
 
 .3864 
 
 :;7 
 
 39 
 76 
 
 9* 
 
ET IV. 
 
 303 
 
 76 
 
 1006 
 
 64 
 
 660 
 
 73 
 
 393 
 
 63 
 
 1667 
 21 DT 
 
 3864 
 
 :!7 
 76 
 
 DOMESTIC INVOICE BOOE,_SET IV. 
 
 QUKBEC, SEPTf-MBKR 20, 1871. 
 
 Beij. & Archer, 
 
 i( 
 
 (6 nionthe.) 
 
 I88?!.M ""«'";: °"™"=. I «»' 
 
 1178a 
 
 1137 
 
 1094« 
 
 11513 
 
 1268 
 
 1J68 
 
 1279» 
 
 12618 
 
 }906|.0Sebastopol Checks, 11 683 
 
 12452 = 14191 vda. 
 
 ^I'Hg. $1915.78 
 
 3.00 
 
 189630 
 1915)28 
 190.3 o'O a 
 
 1737 .3 World's Pah-, 
 I77o.i0 it 
 
 1823 33 a 
 
 1834 33 
 
 1845 30 
 
 « 
 
 Cooperage 
 
 Note at 6 mo-nths. 
 
 To.al^„,3se for ae„„. (taken .0 
 
t. 
 
 ■ I 
 
 B 
 t 
 
 a 
 O 
 
 B 
 
 =: I :: 
 
 <» 
 
 (M 
 
 B 
 
 o 
 
 g 
 
 to 
 
 B 
 o 
 
 "» 
 
 OS 
 
 o 
 
 3 
 
 I! 
 o 
 
 O 
 
 PQ 
 
 «tj 
 
 CO 
 
 CV5 
 
 
 "C 
 
 o> 
 
 CO 
 
 «o 
 
 O iO I rr, »o 
 
 00 
 
 ff<l 
 
 CD vc i'j o lO cq c<i ^^1 o M M 
 
 «« 
 
 ec CO tJ< t— 1 r— c cvt in 
 
 iTfl pfl fC •<* re >o 
 
 o 
 -* 
 
 00 
 
 I— 4 
 
 c 
 
 02 
 
 CC OC n CO 
 
 o o OS CO 
 
 C^ C^ r-l VO 
 
 
 1—1 ^ 
 
 QD cc m '^ 
 
 9^ Cfi (^ ^ '^ "^ <^ 
 
 en 
 
 u 
 
 a, 
 
 > 
 
 o 
 u 
 
 •13 
 
 @ 
 
 o 
 
 ai" 
 
 so 
 o 
 
 w 
 
 «o «o 
 
 00 OD ^j t^ IK a? (« 
 oi o m c^ — e^ 'M 
 
 CO >0 O to r-C -^ C^ 
 
 @ 
 
 a 
 
 s 
 
 ^ 1 
 
 
 s 
 
 — ^ s^^ 
 
 o 
 
 a^ 
 
 
 
 
 
 
 ^ "" 
 
 •z; - - - ^ - 
 
 to 
 
 4> 
 
 00 
 
 Ol 
 
 S 
 
 1 
 
 2 
 
 
 H « V. 
 
 •* s* 
 
 
 o - ■» 
 
 
 
 -B 
 
 
 H« 
 
 tn o oi 
 e<i e<i ir<i 
 
 «— ( •-< 
 
 -* e<i -H ,^ ^ ooic 
 
 0) 
 
 O 
 
 -7^ ^ •ic'' tr: "^i: t^s 1:^ ■ 
 
 03 
 
 ev 
 
 •"Id 
 
 
 
 o 
 
 •85 
 ic 
 
 •a 
 c 
 
 o 
 
 c4 
 
 o 
 
 ■T3 
 
 lit 
 
 OB 
 
 
 
 CC 
 
 -2 
 
 03 
 
 <£ 
 
 OQ 
 -4-* 
 
 C 
 
 o 
 S 
 

 IM 
 
 
 9* 
 
 o 
 
 00 
 
 
 1"; iffl 
 
 » n 
 
 
 
 •— ' 
 
 
 
 -5 
 
 
 
 t 
 
 
 
 
 
 
 
 
 Ti 
 
 
 
 u 
 
 
 
 oj 
 
 
 
 fc 
 
 ^ 
 
 
 «£ 
 
 -ei 
 
 
 CO 
 
 
 
 ^- 
 
 
 o 
 
 •95 
 
 ^ 
 
 o 
 
 o 
 
 s 
 
 
 _c 
 
 <: 
 
 o 
 o 
 
 "2 
 
 >ft 
 
 •a 
 
 m 
 

 
 
 cS" o '|'"o 
 
 e<i ?c f 30 
 
 00 00 
 
 a* 
 
 
 to f >o «o 1 
 
 :: 1-^^ 1 
 
 F-l 
 
 
 
 
 -E 
 
 
 
 «■ 
 
 
 
 8: 
 
 
 
 ^ 
 
 
 
 «> 
 
 ■a 
 
 ts 
 
 e 
 
 « 
 
 w 
 
 s 
 
 
 ^ 
 
 o 
 
 m 
 
 aa 
 
 s 
 
 » 
 
 00 
 
 
 —I 
 
 -H 
 
 <J 
 
 ■ 
 
 • 
 
 
 a 
 
 a 
 
 
 o 
 
 o 
 
 
 -> 
 
 ^O 
 
 
 ■ «-. 
 
 5^ .^ 
 
 
 • 
 
 
 
 ■c 
 
 
 ■■« 
 
 ^-^ 
 
 
 J* 
 
 «o r 
 
 
 2 
 
 ^S 
 
 
 0/ 
 
 « 
 
 
 " 
 
 "o r 
 
 
 KlO 
 
 2i W) 
 
 
 M 
 
 t: jn 
 
 
 t, 
 
 gpH 
 
 
 ^ 
 
 go — 
 
 
 u 
 
 K 9J 
 
 
 I) 
 
 ai 
 
 
 A 
 
 £ «s 
 
 
 J 
 
 o 
 
 
 
 ee 
 
 
 
 «; 
 
 
'■■if 
 
 8ALM BOOK. 
 
 SALBS BOOK. 
 
 This book contains all the reo;ular pales, either for cash or on 
 time ; tiie cash sales beinsj extended in the inner column, are, of 
 course, not included in the amount for which merchandise is cred- 
 ited from the Sales Book. These sales, to<rc'tlier with the ]><■■ y 
 sales not entered on the Sales Book, are posted from the Cash 
 Bo<)k. The total credit of the merchandise account for the month 
 will agree, in amount, with the monthly leeapitulation in the Sales 
 Book. 
 
 Quebec, August 1, 1871. 
 
 R. 
 
 F. p. 
 AOe. 
 
 192 
 
 1289 
 
 71 
 
 46 
 
 46 
 
 1 
 
 € 
 
 68 
 
 100 
 
 101 
 
 L. Beacdry, St. Thomas, P. Q. 
 
 1 case Black Velvet, 
 
 796 yds. at 36 cts. $286.56 
 10 pea. Fancy Cassimeres, 
 
 275 yds. at 70 cts. 192.50 
 110 Robes, at $2 220.00 
 
 Note at 3 months from Aug. 1. 
 
 12 .. 
 
 F. Peters & Co. 
 
 Three Rivers. 
 
 25 dot. Ladies' Whit* Cotton Ho«e,®$l $25.00 
 
 20 
 29 
 I 
 1 
 4 
 2 
 8 
 6 
 6 
 
 
 
 1.25 25.00 
 
 1.13 32.7' 
 
 Pearl Spun Silk Hose, 8^ 8.00 
 
 " " 9 8.00 
 
 Black " 9 $7.50 .38.00 
 
 Pearl *< 20.09 40.00 
 
 Ladies' Lisle Gauntlets, 4.60 36.00 
 
 " " 4.75 23.75 
 
 " *< 9.00 45.00 
 
 Note at 6 noe. frotn Ang. \%. 
 
 A«)0unt forward. 
 
 699 
 
 0« 
 
 273 
 
 91% 6% 
 
 §2 
 
br cash or on 
 (lumn, are, of 
 ndiee is ored- 
 rith the pc y 
 oni the Cash 
 Por the month 
 n in the Sales 
 
 699 
 
 OS 
 
 273 
 
 62 
 
 97)68 
 
 SALES BOOK, -SET IV. 
 
 QUEB 
 
'W 
 
 iF . 
 
 'li 
 
 SALES BOOK, -SET IV. 
 
 Quebec, Septembbu 1, 1871. 
 
 
 
 A. M. RooNET it Co., Montreal. 
 
 
 
 
 
 U.M. 
 
 62 
 
 I bale Brown Sheeting. 663» yards at 
 14 CIS. $ 78.89 
 .00 doz, GeuV^ Linen Hdkfs., at !?5 2.'i0.00 
 
 
 
 
 
 R.X. 
 
 2.S1 
 
 1 case Cotton Damask. 540 yds., 
 
 at 20 eta. 108.00 
 Ifipcp. Black Bombasin, .558 yda. 
 
 at 11.25 710.00 
 
 1 case Silecia, 2200 yds. at 13 c. 286.00 
 
 
 
 1432 
 
 89 
 
 
 Note at 6 ino«. 
 
 
 
 S. D. HioofNS, Quebec. 
 
 
 
 231 
 
 10 pcH. Black Boinbagiin, 350 yards, at 
 !PM0 $385.00 
 
 
 
 
 
 
 19 
 
 20 pes. Duck, 710 yds. at 20 cts. 142.00 
 
 
 
 527 
 
 00 
 
 
 Note at 8 mos. 
 ft 
 
 
 
 J. F. Nestor, St. Thomas. 
 
 
 
 
 1 bale Stark Brown Sheetings, 829 yds. 
 
 
 
 
 
 
 
 at 10 cts. .i; 82.90 
 
 
 
 
 
 
 130 
 
 1 bale 4-4 Shatvr Finnuel, 3372 
 
 yds. at 5i) ai'-. 168.75 
 
 12 pes. Grei; Vfj; Barege, 200 
 
 yards, at B.) ets. 70. UO 
 
 
 
 
 
 
 1066 
 
 I case Solid Check Ginghanns, 
 
 2394 yds. at 18 cts. 430.92 
 
 
 
 752 
 
 57 
 
 
 Note at 8 mos. 
 
 
 
 
 1ft 
 
 
 
 
 
 
 S. R. Woods, Ottawa. 
 
 
 
 
 4 cases Harop Prints, 
 
 
 
 
 
 M. 
 
 481 
 
 246 1332 
 
 
 
 
 
 G. 
 
 491 
 
 1262 15812 
 
 
 
 
 
 M. 
 
 509 
 
 1108 1222 
 
 
 
 
 
 M. 
 
 97 
 
 1276 17152 5851 yds./® 12 cts. $702.12 
 
 2 bales Brown Globe Drills, 
 1141 10.328 
 1147 1029 20613 yds./® 10 cte. 206.17 
 
 
 
 908 
 
 29 
 
 
 Note at 8 mos. 
 
 
 
 
 9.0 
 
 
 
 
 
 
 N. B. Rot, Levis. 
 
 
 
 
 9 oases Cotton Bama^k, 4868 yards at 
 
 
 
 
 
 
 
 20 cts. $972.00 
 
 
 
 
 
 
 
 5 % off, 48.60 
 
 923 
 
 40 
 
 
 
 
 
 Received cash. 
 
 Amounts forward, 
 
 923 
 
 40 
 
 
 
 1 
 
 3620 
 
 76 
 
 ifta 
 
SALES BOOK, SET IV. 
 
 QtTEHKo, Sbptembib 25, 1871. 
 
 Amounts <^»rwaril, 
 
 of';- ^J'"/*^' RicJimoni, 
 
 5 n ^^",'J'<'8'I'i;>e Gauntlet.", ^$5 *450 
 
 1432 89 
 
 S. i 
 
 Krd (jlovoi, 
 5% Off, 
 
 Reaeiyed ca.sli. 
 27 
 
 00 
 *7 36,00 
 
 485.00 
 24.'25 
 
 923 
 
 40Jj .S620 
 
 4(>0 
 
 76 
 
 
 527 
 
 00 
 
 m' V\f . \^'^' Toronto. 
 
 32|»0i ''< (< nucK 1^ 
 
 oo dO» 1 1. ooj./. 1 . 
 
 V/irtn9 // '^•^^' '49. 
 
 9K A/l« rw 2^653 14 c. 
 
 dO put! s.plnoM.Miatijre?,2«772 27 c. 
 
 Note at 8 nionfefae. 
 
 41.-).fl« 
 
 416.2? 
 
 415.1ol 
 
 4I.'i.24 
 
 41.5.17 
 
 776.y2J 
 
 752 
 
 57 
 
 — 28 
 
 T. Ross & ( 0., 
 
 4 ps. White Piques, 75 1 
 
 ) 
 
 130,3 
 
 71 
 
 674 I 18 
 19 
 
 64|60| ps. Larellas, 
 
 15 
 30281 
 
 fa> .? 
 
 Note at 8 montlis 
 
 Kingston. 
 (iH $75.25 
 1.25 18.75 
 • I'i 484.52 
 
 30 
 
 908 
 
 29 
 
 923 
 923 
 
 40 
 40 
 
 3620 
 
 76 
 
 A. R. Jacob, 
 
 Bati.<: 
 
 f '^'^f • '^ie^'B Nov,- Silk Shirts, ^'S $10 
 
 I 
 
 5786J 
 
 a 
 tt 
 
 « 
 
 n 
 It 
 
 26 
 30 
 35 
 
 Note at 3 months. — 
 
 Sales on time, i 
 
 Sales for caeh, entered here anrl nn«^.^ I 
 iroTii V. u ' i 
 
 lOOOO 
 
 iroTii C. a 
 
 Pettj sales entered al 
 
 on« on C 
 
 Total sales for the 
 
 loi" 
 
^%. 
 
 .^. w. 
 
 ^7'^%^o. 
 
 
 IMAGE EVALUATION 
 TEST TARGET (MT-3) 
 
 A 
 
 
 [/. 
 
 
 1.0 
 
 I.I 
 
 ■ 50 '•"^" 
 
 Ui 
 
 u. 
 
 |40 
 
 2.5 
 2.0 
 
 IL25 ■ u 
 
 iiiiim 
 
 6" 
 
 1.6 
 
 Photographic 
 
 Sciences 
 
 Corporation 
 
 23 WEST MAIN STREET 
 
 WEBSTER, N.Y. 14580 
 
 (716) 872-4503 
 
 V 
 
 iV 
 
 >^ 
 
 
 M 
 
 ^9) 
 
 V 
 
 
 •^ 
 
 ^ 
 ^ 
 
 ^^ 
 
? 
 
 .V 
 
 
 i/.. 
 
CASH BOOK, 
 
 This ifl the mos<) convenient form for a Cash Book to be kept 
 in connection with a general merchandise business ; the feature 
 of special columns may be extended, if desirable. It will be .een 
 that all cash entries, debit and credit, are taken to the Ledfrer, 
 either through the Journal or directly, from this book, toiretb-3t 
 with all accounts producing or costing cash. Tho amounts difr 
 tinguiahed as *- per petty Cash Book," are entered here from a 
 
 Dr. 
 
 Cash. 
 
 [ (> ., j 
 
 1' '■' 
 
 JJ .! 
 
 1871 
 Au ' 
 
 e 
 
 8 
 14 
 
 JI5 
 
 '18 V 
 
 ,21 
 
 25 
 
 2h 
 
 27 
 
 30 
 
 31 
 
 Mdsb., 
 
 6. R. BOTCK. 
 
 Loam, 
 
 6. K. UoYep, 
 
 MrsE., 
 
 BiLi,8 Rkc'bi.k, 
 
 Mdsr., 
 
 Bills Ubo'blk, 
 
 Mdse., 
 
 Mdsb., 
 
 Bills Rbo'blc, 
 
 AIdsk., 
 
 Mdsb., 
 
 W. B. GBAf, 
 
 Ammmt on hand. 
 Sales, per Petty C.-Bouk. 
 Reo'd on acct. 
 Return from J. B. Law- 
 rence. 
 Rec'd in full of acct. 
 Sales, r,er F<itty C.-Book. 
 J. N. Galt'a note duo. 
 Sales, per Petty C.-Book.. 
 S. I. I'erron'snotedi^c'td. ' 
 Sales, per Petty C.-Book. i 
 SoKI Byrne &Son, (S.B.) 
 Stein & Co.'s note disd'td. 
 Sale.^, per P.Uty.C. -Boole. 
 Sales, per Petty C.-Book. 
 Rec'd m full of acct. 
 
 Mdte. 
 
 Mdte. Sales tot Cash 
 
 Total Cash reo'd during ' 
 the month 
 
 97 
 
 120 
 
 110 
 
 102 
 400 
 
 IHO 
 72 
 
 50 
 
 00 
 
 50 
 
 50 
 00 
 
 00 
 00 
 
 1032 50 
 
 Snndr. 
 
 600 
 
 00 
 
 SCO 00 
 1440 00 
 
 1264 
 
 soo 
 
 1426 
 1480 
 
 78U» 
 1062 
 
 8872 
 
 00 
 
 00 
 
 48 
 
 20 
 
 rt8 
 50 
 
 18 
 
 BfU, 
 
 7380 50 
 
 8872 
 10252 
 
 18 
 68 
 
 104 
 
3ASH BOOK, 
 
 — SKT IV. 
 
 Book to be kept 
 est' ; the feature 
 It will be ^een 
 to the Ledcrer, 
 is book, toiretb^ 
 ho amonnta difr 
 ered here from a 
 
 J500JC. The coJuim, headed " Balances " will I . r / 
 oonvenipnf f^n ti "'^uues, will be found very 
 
 ■""k,, i„ A, „„,„„„ • »»^i Th. Chcot- 
 
 D«lized. Were th.,. '"I™" have been jour- 
 
 Were these ,m„„„t, p„s,ed directly to the Ledger th, 
 
 I.ea«..p,,e w„..a be written i„,te»d of the Cheel-,,..;," ' ' 
 
 Cash. 
 
 Smdr 
 
 600 
 
 00 
 
 c<^00 0(1 
 144U OU 
 
 1264; 00 
 
 800 00 
 
 1426 
 H80 
 
 7609 
 1U62 
 
 887; 
 
 48 
 
 18 
 
 Bai. 
 
 7380 
 
 50 
 
 8872 
 
 18 
 
 1825268 
 
 3V 
 3V 
 
 EXPRNSK, 
 
 Loan, 
 
 « 
 « 
 
 6 V EXPHNSK, 
 
 ^H p. A. Hall, 
 7K R. »'. Davis, 
 
 10 . Mdsk., 
 
 '2 V JJxPKNSK, 
 
 '5 AIdsk., 
 
 18 V Intrhkst. 
 20 V T. J. (:or.8TON, 
 23UlBiLia Payable, 
 26 Mdse., 
 26 IMdsk,, 
 
 (26 Wexpensr, 
 25 V Intkbest. 
 
 |29lv C. S. MiTCHKLL, 
 
 Madden'8 Invdce, p,r Dom. 
 
 Pai'l A. Miller',- bill 
 
 Lont .'. E. Lawrence for one 
 
 PoJ4«Staa,p.s,$2,.Drayage, 
 
 Paid him on Private ncct. 
 PaulhirainCullofacct. 
 i^'ities, (K> per Foreign I, B 
 J^f'ijase and J'oitenic-o ' 
 
 I'lUies, as per JA,roign 1. B 
 
 D..conntonPorr.n'rnote 
 Un P.wvato asct 
 
 Note favor rt.n".v.-i,i,|,,j„^ 
 
 iJinics, por i-'oreiijn f U 
 
 Ck'rk hire, $;^0; $20 
 
 Discount on Stein J^ Co. '8 note 
 On private acct. 
 
 Mase. purchased for Cash 
 
 ^m'^n?h'^^"''^'"''"'"°S">« 
 BaJanQe on hand 
 
 105 
 
Bi Fi 
 
 Dr. 
 
 IR71 
 Sopt 
 
 1 
 
 3 
 
 'i 
 
 7 
 
 12 
 17 
 •20 
 t.{ 
 25 
 3U| 
 
 Belanee tm hand, 
 Mdsr.. Sales, per Petty C.-Uook 
 
 iNTBRTTgT, Disc'f on note fav, A. G. C. 
 
 Bnii.8 Kro'blk, DiPc-t A. M. Kooney k 
 
 Co. 'a note 
 MDSfc., Sa as, per PeMy t -Book 
 
 Mdsb., Sales, per Petty C.-Hook 
 
 Mdsi., Snles, per Petty 0.-13ook 
 
 M i)8«i., Sold N. JJ. Roy, per S. B. 
 
 MosB., Sales, per Petty C.-Book 
 
 Mdsh., Sold E. Curran, per S. B, 
 
 ftlnsB., Sales, per Petty C.-Book 
 
 ' Mdae. Salefl for Cash 
 
 Total Cash reo'd during; 
 the montb 
 
 Oach 
 
 Mdte. SwMlr. Bal. 
 
 70 
 
 20 
 
 L'SOjOO 
 
 21S!50 
 
 3(52 40 
 
 923!4I» 
 
 180'0l 
 
 4(i0|75 
 
 125! 00 
 
 29 
 1432 
 
 2i90 
 
 25 
 
 1462 
 2490 
 
 3962 
 
 89 
 
 8031 
 
 8S 
 
 3Hft2 
 
 12584 
 
 89 
 72 
 
 106 
 
Oach 
 
 Simdr. Bat. 
 
 29 
 1432 
 
 1462 
 249U 
 
 3952 
 
 89 
 
 8631 
 
 83 
 
 Sv*.*)! 
 
 12684 
 
 8» 
 
 TJ 
 
 Book. 
 
 1871 
 
 Septj 1 V Bjcpbnbe, 
 
 2 V Loan, 
 
 fi V Bills Patablk, 
 
 0|V jlNTlRBST, 
 
 0( j.MDse., 
 
 V iBxpRNan, 
 
 V fi- A. HoDu.t, 
 AIdsk., 
 
 V KXPKNSB, 
 
 } Porterage 
 
 Paid Drayage. 
 
 «8.50 
 Lent L. Morgan 
 Diso'td Note favor A. Q. Cook 
 LUsoonnt ou A. M. H. A Co 'b 
 
 note 
 l>ulies, at per For. I. B ' 
 
 Pnid Drayajje, on aoct. ' 
 Pmd OD privHte acct. 
 I>utle?, as per For. I. B 
 
 Paid Drayage in full 
 
 Mdae. purohiised for Ua*h 
 
 Total Cash paid for the month 
 timance on htmd 
 
 304 
 
 1760 
 
 600)00 
 150000 
 
 49 
 
 1200 
 
 20 76 
 
 2414 
 
 304 
 
 2719 
 
 12584 ' 
 
BILL BOOK, 
 
 The Bill Book can never, with advantage, be made a principal 
 book, from which to post The form presented below is the best 
 
 Bills 
 
 No. 
 
 1 
 2 
 3 
 
 4 
 5 
 6 
 7 
 8 
 9 
 
 10 
 
 11 
 
 12 
 
 l.S 
 
 14 
 
 When 
 Keo'd. 
 
 Aug. 
 
 (I 
 
 Drawer or Endorser. 
 
 W. H. Ellison. 
 D. Atkinson. 
 H. AI. & Co, 
 
 Sept. 
 
 1 
 
 
 
 5 
 
 
 
 H 
 
 
 
 15 
 
 J. 
 
 
 27 
 
 H 
 
 
 2H 
 
 
 
 30 
 
 
 1 
 1 
 1 
 
 12 
 
 14 
 
 20 J. R. East. 
 
 28j H. M. & Co. 
 
 << 
 
 it 
 
 a 
 
 J. 0. Moss. 
 H. M. & Co. 
 
 Drawee orlMaker. 
 
 J. N. Gait. 
 
 S. T. Perron. 
 
 L. Beaudrj. 
 
 F. Peters & Co. 
 
 Hazel & Poy. 
 
 Stein (t Co. 
 
 C. E. Lawson. 
 
 A. M. Rooney & Co. 
 
 S. D. Higgiiis. 
 
 J. F. Nestor. 
 
 S. R. Woodis. 
 
 Lee & Strang. 
 
 T. Rush & Co. 
 
 A. R. Jajob. 
 
 !' I 
 
 Bills 
 
 Nil. 
 
 When 
 
 Drawer or Endorser. 
 
 Feb. 20 G. H. Shills. 
 April 1 S. A. Pugh. 
 May 1 2 A. G. Cuok. 
 Aug. 1 P. McHugb &: Co, 
 
 " UN. Caeev & Bro. 
 Sept. Bell & Archer. 
 
 108 
 
 Drawee or Maker. 
 
 11. M. & Co. 
 
 u 
 « 
 
BILL BOOK, 
 
 —-SET IV. 
 
 nade a principal 
 below is the best 
 
 for general purposes, althou^rh the 
 example is more comprehensive. 
 
 arrangement in the former 
 
 Receivable. 
 
 e«oriVIaker. 
 
 > or Maker. 
 
 Date. 
 
 t. 
 
 1871 
 
 on. 
 
 Feb. 11 
 
 ■y- 
 
 April 12 
 
 &Co. 
 
 Aug, 1 
 
 ^oy. 
 
 " 12 
 
 3. 
 
 " 14 
 
 'son. 
 
 " 2n 
 
 ney & CJo. 
 
 " 28 
 
 ;ins. 
 
 Sept. 1 
 
 
 << r. 
 
 or. 
 
 5 
 
 da. 
 
 " 8 
 
 ng. 
 
 " 15 
 
 Co. 
 
 " 27 
 
 b. 
 
 " 28 
 
 
 " 30 
 
 When and How dipposed of. 
 
 PaiJ. 
 
 Discoiintod. 
 
 Difioounted. 
 Discounted. 
 
 Payable. 
 
 It9 
 
hi 
 
 INVENTOIiy BOOK. 
 
 Ths book is used to ermmernte the different articles of unsold 
 merchandise, at such times as ,n.y b., deemed desirable. It is 
 
 on hnn !"k •"''•' T:;^^, ^' f"^"'"'^- tho amount of merclw,ndise 
 on hand being included m the opening journal e„try. Inventories 
 are frequently copied into one of the Invoice Books: but a sep- 
 arate book is preferable. ' ' 
 
 M -de. on hand, August 1, 1871. 
 
 Marks. 
 
 H. M. 
 
 R 
 L. B. 
 
 V. P. 
 
 A. B. 
 R.&X. 
 
 N. A. 
 
 Nos. 
 
 192 
 1 
 8 
 
 197 
 
 2.S1 
 19 
 
 1289 
 
 62 
 M. 
 
 190 
 4 
 
 B. S. 
 
 130 
 1066 
 
 4595 
 
 3624 
 
 1 bale Brown Sheetings 
 
 I case Black Velvet 
 
 1 case Paper Cambrics 
 21 pairs Wliitc Blankets 
 41 pea. Black and White Tweeds 
 21 " Fancy Cassi meres 
 17 •' Black Satinet 
 
 1 case Woolen Shawls 
 20 pes. Black Bombasin 
 37 « Duck Canvas 
 
 2 bales Black Wadding. . ,loz. 
 lIORobea 
 
 1 case Cottonades 
 
 10 cases Cotton Damask 
 150 doz. Gent's Linen Hdkts 
 160 pes. Diaper 
 
 60J Play Linens 
 1 case Black Alpacas 
 1 " Opera Flannel 
 100 doz. Men's Gloves 
 140 « Ladies' Lisle Gauntlets 
 
 6 " " Kid Gloves 
 1 bale Stark Brown Sheet! nir« 
 
 1 " 4-4 Shaker Flannel 
 12 pes. Green Veil Ban ..rp 
 
 1 case Solid Check Gin;:iiun>- 
 25 pes. Coburgs 
 
 1 case Silecia 
 
 1 " Linaeys 
 
 1 " Corset Jeans 
 
 1 '' Delaines 
 
 1 *' D. Bege 
 
 110 
 
 Yih. : Prioo. 
 
 7!tfi 
 
 2()0f) 
 
 l.Sf)93 
 
 576' 
 
 469 
 
 60 
 
 900 
 
 i;^92 
 
 80 
 
 687^ 
 5400 
 
 19313 
 910 
 750 
 
 829 
 3373 
 200 
 2394 
 625 
 2200 
 i2(;6'^ 
 17251 
 3(1(1 
 864 
 
 .11 
 .263 
 .06 1 
 3.43 
 25 
 .60 
 .522 
 4.89 
 .872 
 .15 
 .22 
 1.50 
 .222 
 .16 
 4.50 
 .90 
 .17 
 .272 
 .372 
 2.50 
 4.46 
 6.25 
 .082 
 .45 
 .29 
 .14 
 .60 
 .091 
 .172 
 .06 
 .25 
 .11 
 
 Amount. 
 
 fil 
 212 
 125 
 7-' 
 342 
 345 
 24 G 
 293 
 787 
 208 
 17 
 165 
 154 
 864 
 675 
 135 
 328 
 
 98 
 93 
 Of) 
 03 
 37 
 75 
 22 
 +0 
 50 
 80 
 60 
 00 
 63 
 00 
 00 
 00 
 35 
 250|25 
 281 25 
 25000 
 
 624 
 
 31 
 
 7U 
 
 151 
 
 5M 
 
 3;:!5 
 
 2G2 
 
 208 
 
 221 
 
 lOH 
 
 325 
 
 85 
 
 40 
 25 
 46 
 
 .S8 
 00 
 
 n; 
 ou 
 
 50 
 64 
 5! 
 00 
 04 
 
 8299 4( 
 
firtides of unsold 
 dcsinible. It is, 
 if of meiclwiiKlise 
 try. Inventories 
 ookfl ; but u sep- 
 
 t71. 
 
 s. 
 
 Price 
 ' .11 
 
 . Amount. 
 
 :] 
 
 61 9.S 
 
 f. 
 
 .26'^ 
 
 2I2!);i 
 
 
 
 .OG' 
 
 12. 
 
 ■) 00 
 
 
 3.43 
 
 •7 . 
 
 J 03 
 
 .)' 
 
 ' .25 
 
 34i 
 
 J 37 
 
 S' 
 
 .60 
 
 ■m:- 
 
 > 75 
 
 i 
 
 .522 
 
 24 C 
 
 22 
 
 3 
 
 4.8y 
 
 29;- 
 
 +0 
 
 ) 
 
 .872 
 
 787 
 
 50 
 
 ) 
 
 .15 
 
 208 
 
 80 
 
 ) 
 
 .22 
 
 17 
 
 60 
 
 
 1.50 
 
 165 
 
 DO 
 
 •1 
 
 .222 
 
 154 
 
 63 
 
 1 
 
 .16 
 
 864 
 
 00 
 
 
 4.50 
 
 675 
 
 00 
 
 
 .90 
 
 135 
 
 00 
 
 a 
 
 .17 
 
 328 
 
 35 
 
 
 .272 
 
 250 
 
 25 
 
 
 .372 
 
 281 
 
 25 
 
 
 2.50 
 
 250 
 
 00 
 
 
 4.46 
 
 624 
 
 40 
 
 
 6.25 
 
 31 
 
 25 
 
 
 .082 
 
 7U 
 
 46 
 
 a 
 
 .46 
 
 151 
 
 S8 
 
 
 .29 
 
 5S 
 
 00 
 
 
 .14 
 
 3;s5 
 
 16 
 
 
 .60 
 
 202 
 
 ji) 
 
 
 .091 
 
 203. 
 
 5G 
 
 
 .172 
 
 221 ( 
 
 i4 
 
 
 ,06 
 
 103; 
 
 )1 
 
 
 .26 
 
 325 1 
 
 )0 
 
 
 .11 
 
 95 04 
 
 
 i 
 
 )299 4 
 
 rC 
 
 JOURNAL,— SET IV. 
 
 QuKBRc, August 1, 1871. 
 
 Cash 
 
 Mkrcha.noise 
 BiM.s Rec'ble 
 Store Rent 
 
 S. R. BOYCE 
 
 W. E. Gray 
 
 Resources ,,n.| Liabilities of A. .J 
 "all,O.S.Mitci)ell,an,iK.A.H„: 
 ??.'?• r"^[f"«" in tho firm of. 'llnll. 
 MchellA Co." doing n,-ene,; 
 Jn )l,ing and Importing l,u8ino=^ 
 
 n.m 'th'"S f ^'""'«°^ - '^^^ 
 
 Amt. on hand, per 0. Book .$738(»..')0 
 
 " I"''' " S2i)».4i1 
 
 Notes on hand, per Uni » 2084.00 
 
 Advance payment for rent 1600.00 
 
 Balance of account 2040.00 
 
 « 
 
 JJ80.20 
 22864ir 
 
 To Bills Payable Notes outstanding, per B. B. 8500.00 
 
 " R. P. Davis B.alance of account 
 A. J. Hall Net Investment 
 
 " C. S. Mitchell " « 
 
 " R. A. HlIDON " « 
 
 31 __ 
 
 Mercbandisb 
 
 To SUNDRIKS. 
 
 To Bills Payable For the fniirmin™ r 
 
 =. ror ine to h, wing Invoices per Dom 
 
 i'lie ""lO ""^ ^- '''^"""gh A Co., 
 From .\. Casey & Bro. A ug. n 660.73 
 
 "l667.3r 
 
 22364 
 
 2,574 98 
 
 
JOURNAL,— SET IV. 
 
 Qdebrc. Aiioust 31, 1871. 
 
 HiM-a Rkckivabt.k 
 
 To Mkrchandise. 
 
 Snlet for tho month, perSalM Book : 
 L. Beiiudry, Auj;. 1, $fl99.0« 
 K. Peters A Co., " 12, 273.52 
 HaielAFoy, ■- M, 869.38 
 
 Stein A Co., «< 20, 1425.48 
 
 0, B. Lawson, " 28, 171.04 
 
 <( 
 
 Cash 
 
 To SCNDRIES. 
 
 rr, ., Keceipts per Cash Book : 
 
 J o MD8E. Total Sales for Ca>h 1062.60 
 
 S. R. BoTCE Roc'don ncct.,$flOOi $1410 2040.00 
 
 ^■'''*^ Return from J. E. Lawrence MOO.OO 
 
 " Bills Rec'ble Received on Notes, *12(J4; 
 
 $800; .$1425.48 
 
 " W. E. Gray Iq full of acct. 
 
 3489.48 
 1480.20 
 
 Sundries 
 Mdse. 
 
 EXPENSI 
 
 Loan 
 
 A. J. Hall 
 R. P. Davis 
 Interest 
 
 T. J. CoLSTOK 
 
 Bills Payable 
 C. S. Mitchell 
 
 To Cash. 
 
 Disbursements per Cash Booi : 
 
 Purchases, etc., for Cash 23i'2.0« 
 
 As per Items, ,'$15.25 ; $7.50 : 
 $25; $50 
 
 Lent J, E. Lawrence 
 
 Paid on prirate aact. 
 In full of acct. 
 
 
 y7.75 
 80U.00 
 
 8U.00 
 
 175.00 
 
 Per items, $15.ti0 ; $50.44 66.04 
 
 Paid on private aoot. 100.00 
 
 Hn^lcotned noto favor G. ]]. 
 
 Shills 3800.(10 
 
 Paid on private acct. l.'^O.OO 
 
 112 
 
 .345)8 
 
 48 
 
 3438 
 
 8872 
 
 48 
 
 IS 
 
 8872 
 
 18 
 
 7620 
 
 86 
 
 rc'ifl 
 
 85 
 
JOURNAL, -SET IV. 
 
 QiiKij|.:o, Skptkmbkk 30, 1871. 
 
 Mdsk. 
 
 To Bii.r,8 Patabi I- ? ■ 
 
 '^ATABr.fc Involoe per Pen., l. B ' 
 
 '• W. MeadkAPo !''"""':l'''^^'"'".-«"Pt.20 I»2«.I4 ' 
 iiEADfc&Co. Inv..fi!e,.t.,0.,,e,F.I.U. N6;U9 
 
 " J. Baii,kv&S()n " 
 
 20, 
 
 188.62 ! 3667 
 
 BiLta RecjcivABi-B 
 
 To Mpse. I 7602 
 
 Sales for the month, as nor S. D. • 
 A. M. Roone.v A Co., Sept. I, U.f2.S9 
 
 J- F. Ne.^tor 
 S. K. Woods 
 Lee ifc Strang 
 T. Ko.<:s A Co. 
 A. R. Jaoob 
 <( 
 
 " 5, 527.((0 
 " 8, 762.57 
 " 15, 90S.29 
 " 27, 6393.71 
 " 28, 678.62 
 " 30, 100.00 
 
 Cash 
 
 7602 93 
 
 To SnNDRiEy. i 3952' 
 
 Rppoiptf., per Cash Book : 
 
 Trtal Suli's for Oiish 2490.26 
 
 To MnsE. 
 
 " ^'"■'■•' ^^'^"''"'^« R'-'-l - "0*- 1432.89 
 
 SrN'jr^RiBS 
 Mdsk. 
 
 fixPBNSE 
 
 Loan 
 
 Bii.i.s Patabi 
 
 3952 89 
 
 nifburgeiiient.s per Onsh Book : 
 Porch.'.ee^ oto., for Cash 3(14.39 
 
 I'er Items, $17.60; $76; 112 • 
 
 $3«.76 ' ,25 26 
 
 Lent L. Morgan ^OO 00 
 
 To Cash. 27 IS 24 
 
 E 
 
 Inti 
 
 lltJES'l' 
 
 R. A. HcD 
 
 Disc'W note f«r. A. 0. Cook 1500, 
 "iso'tonA.M.R.&Co.'8note 
 
 .00 
 
 ON 
 
 raid on private aect. 
 
 49.80 '■! 
 
 ! 
 140 00 !; 
 
 113 
 
.Dr. 
 
 HALL, MITCHELL A OO.'S 
 
 Balances of their Resources 
 
 in 
 
 Casu, 
 
 Mdsk., 
 
 SroitK IIkvt, 
 
 Uii,i,s Hkc'ule, 
 
 Loan, 
 
 T. J. Colston, 
 
 Resources. 
 
 Balance on hand. 
 
 Hularice on lian I, per Inventory, 
 
 Advance payment. 
 
 Balance on liand. 
 
 Balance due tliein. 
 
 Balance iu liieir favor. 
 
 $9865 
 
 7810 
 
 16011 
 
 818M 
 
 600 
 
 100 
 
 128 16.' 
 
 48 
 61 
 00 
 09 
 00 
 00 
 
 18 
 
 Dr. 
 
 Balances of their Losses 
 
 I 
 
 J' 
 
 \-r^ 
 
 
 Lossen, 
 
 EXPENSK, 
 
 Interest. 
 
 A. J.Ham/s 
 
 C. S. MlTCHEl,!,'s 
 
 H. A. HuDOJj's 
 
 Loss. 
 Loss. 
 
 9 net gain, 
 i net gain, 
 s net gain, 
 
 Net Gain, 
 
 $1661.05 
 1661.05 
 1661.05 
 
 $ 22.3 
 85 
 
 00 
 89 
 
 498;i 
 
 $.J292 
 
 15 
 
 Oi 
 
 114 
 
ELL & CX).'S 
 
 eir Resources 
 
 'their Losses 
 
 
 $ 223 
 
 00 
 
 
 85 
 
 89 
 
 1.05 
 
 
 
 1.05 
 
 
 
 1.05 
 
 
 
 
 498;i 
 
 15 
 
 
 $.^292 
 
 Oi 
 
 
 
 
 BALANCE SHEET, SET IV. 
 and Liabilities. 
 
 Or. 
 
 VV. Meadb & Co.. 
 ■'. I!aim;y & Sun, 
 
 J. IlAi.r.'s, 
 
 S. MiTC'flEM/s, 
 A. Ht'DON's. 
 
 iJalunce in their favor. 
 Halance in their favor. 
 
 Share of capita), 
 SJiareofcai)ital, 
 Share of capital, 
 Net Capital 
 
 SG.TIO.?') 
 <i26().7.5 
 6250.76 
 
 and Gains. 
 
 Cr. 
 
 lift 
 
BOOK-KEEPING 
 
 |ii^ ill 
 
 BY 
 
 Ilsra-I-iE] EUSTTIR/Y. 
 
 Ii < 
 
 M L, 
 
 If [ 
 
 REMARKS. 
 
 ^ Thouf^h we have introduced Double Entry Book-keepin: before 
 Sinjrle Entry, yet, vre admit that books may be kept by sinde 
 entry by those unricquainted with the priiiciples of double ontry; 
 but the mere keepin,:,' of accounts is not ali that is required. We 
 gave the precedence to the method by double entry, as it is con- 
 ceded to be greatly superior to that by single entry. In fact, the 
 simplest settlement of Partnership accounts involves the principles 
 of double entry ; and, if the commonest Enirlish education in- 
 cludes a knowledge of Arithmetic, Mensuration, and even of Algebra 
 and Geometry, n ought surely to include a knowledge of accounts 
 BuflScient to make a partnership settlement between two mechanics. 
 The following set in Single Entry Book-keef«ng, though shortj 
 exhibits such a variety of transactions as is necessary to an illus^ 
 tration of it. 
 
 The principles of Single Entry are so easy of comprehension a« 
 scarcely to need explanation. Accounts are kept only for persons 
 who alone have accounts in a " Ledger," and become debtors and 
 creditors as they owe us or we owe them. 
 
 The principal books of entry are a " Day Book " and a 
 I' Ledger." Besides these, there are other books tern)ed " AusiK 
 iaries," varying, as in Double Entry, in nu -.ber and form accord- 
 ing to the b'jsinees. 
 
 AH transactions requiring a debit or credit to any f.erson with 
 whom you have dealings, are entered in the Day Book. The form 
 of entry is very simple, thus: " Paul O'Neil Dr. T*. 5 yds. Linon 
 @ 1^5 cts.," or ^' Peter Howard Cr. By ish on %, $8.00 ; " in 
 every case specifying the details which constitute vhe debit or 
 credit. This is the only book from which poets are made to the 
 Ledf^r. 
 
 116 
 
^P^^ll^^^'2^'^-^ ^-n the ..Auxiliary 
 
 «ngle entry sot, we write TnlTS^lTr.'^'- ^ '^'^' ^oH 
 otherw,.e be shown io the oXdl^S^J^: ^^''' '"' ^^"''^ 
 
 Quebec, July 5, 1871. 
 
 318 09 
 
 Or. 
 
 J- ViKoBKT, Levis, 
 B7 700 lbs. Butter, ^ 15 cents 
 Or. 
 
 Tomjr„oteonhisday^,n,onthioA,]Iof^ 
 
 n 
 
 P. Clark 
 
 To C«eh lent to him 
 
 106 01 
 
 loslot 
 
 Dr. 
 
 20000 
 
 8136 
 
Qcrii'^Ko July 12. 1871. 
 
 .1 
 
 I I 
 
 1 ! 
 
 I .! 
 
 ■■ li ■ ! _ 
 
 S. Frasbr it Co. 
 
 Cr. 
 
 By 60 bbls. Oaimeal, fS) H."0 
 
 Dr. 
 To Cash on % |; 60.00 i 
 
 " my note of this (lay, at 2 raos., for 120.00 
 
 I 37s; 
 
 00 
 
 13 
 
 C. I. Lake, 
 
 To my note at "0 dayp, fbr 
 " Capl Ml full of % 
 
 Dr. 
 
 $180.00 
 20.00 
 
 16 
 
 J. Gleason, 
 
 Cr. 
 
 By 18 bags Java Coffee, 1044 lbs. net, f& 16 
 ctfl., received per steamer Florida 
 
 L. P. Clauk, 
 
 16 
 
 ByCash, mfiiP r loan of 11th inst. $200.00 
 " lent hiui this day 
 
 Cr 
 
 ).0( 
 75.00 
 
 17 
 
 8. J. Pierce, j^ 
 
 To 12 bags Java Coflfee, 696 lbs., fd) 20 cts. 
 —^ 18 
 
 L. P. Ckakk, 
 
 To Cash, in full for loan of 16th inet. 
 — 20 
 
 Dr. 
 
 8. J. Fierce, 
 
 Or. 
 
 By bis note, at 40 d^«, on % for his purchase 
 
 of 17th met. for |ieo.OO 
 
 " Cash in full of 5K 39.20 
 
 11 
 
 A. T. HVGHXS 
 
 Dr. 
 
 To 50 bbls. Ry« Flour, /© K.IO 
 
 U8 
 
 170 
 
 00 
 
 200 
 
 00 
 
 167 
 
 04 
 
 275 
 
 00 
 
 139 
 
 75 
 
 00 
 
 139 20 
 
 308 
 
 00 
 
at 65^, '" **<^'-> =»-^0«, whh intercut 
 
 ut 6^, 
 Less interest added 
 
 •^' A. T. Hl-gh.«, 
 % Casli oil ;% 
 
 1 j C. I. Lane, 
 
 ^y 40 l.blfi. Fancy Fiour, rci ,$7 
 ■ ■ . 26 
 
 S2I0,0.S 
 2.08 
 
 ' -^ pi ss„fgi:!' -,--.: 
 
 3 1 A. T. HcGHE8, 
 
 By his Draft at 3 davM «,«!,► r r^ 
 
 accepted " S'^'' °» ^' Dplorma, 
 
 To Storage o» 30 lb)**. 
 
 OommissiouoDlISO, at 4 ^ 
 
 To Lit* Draft on u- <»♦ in -lo 
 L- Water, accept'e? ^"^^ ^'S'^^' '^ ^^vor of 
 
lp:% 
 
 
 \ I 
 
 i . 
 
 
 mi 
 
 CASE BOOK,— SINGLE ENTRY. 
 
 Dr. Or, 
 
 1871 
 July 
 
 
 • 4 
 <« 
 l< 
 il 
 (I 
 
 u 
 
 Aug 
 
 
 18 
 
 
 20 
 
 
 22 
 
 
 2H 
 
 
 26 
 
 
 t« 
 
 
 31 
 
 Amount of Cash on hand at commencing 
 bui^inees 
 
 Paid for 300 bu. Wlieat, /TO 72 ota. 
 " for Freight and other expentM 
 L. P. Clark ao a Ioun 
 C. I. Lane on % 
 for Freight ami Dra^age on an 
 Invoice of apples fron* G. 
 N. Rollaud 
 S. Fraeer & Co. on % 
 C. I. Lane on % 
 for Freight and Cattau'e 
 RecM of L. P. Clark, for loan of Uth invt. 
 " of L. P. Clark as loan 
 •' for eale of 1 2 bbls. exlra Flour, /© |7 
 Paid for Advertising, etc. 
 *' L. r Clark for loan o» if,th 
 Kec'd of S. J. Pierce, (or balance ol % 
 
 Paid for Stationery 
 Kec'd of A. T. Hughet^ofi % 
 " for Sales ol Roilaud'*. apples 
 Paid G. N. Rollaud in full o(% 
 Balance on hand 
 
 13000 
 
 (I 
 « 
 
 It 
 
 Balance from Julj 31, 1871. 
 
 200 
 76 
 
 84 
 
 39 
 
 liO 
 180 
 
 c. 
 
 OO 
 
 3698 
 
 00 
 00 
 00 
 
 20 
 
 00 
 00 
 
 216 
 2 
 
 200 
 81 
 
 6 
 50 
 20 
 
 3 
 
 Q. 
 
 00 
 CO 
 00 
 25 
 
 50 
 00 
 00 
 40 
 
 2 
 75 
 
 50 
 00 
 
 30 
 
 293fi 
 
 20 
 
 35 
 
 39 
 2996 
 
 3698 
 
 30 
 36 
 
 20 
 
 120 
 
'RY. 
 
 I>r. 
 
 Of, 
 
 c. 
 
 3000 
 
 Oft 
 
 200 
 75 
 
 84 
 
 39 
 
 vm 
 
 180 
 
 3698 
 
 00 
 00 
 00 
 
 20 
 
 00 
 
 00 
 
 20 
 
 35 
 
 21 b' 
 
 2 
 
 200 
 
 81 
 
 6 
 50 
 20 
 
 3 
 
 2 
 76 
 
 39 
 2995 
 
 3698 
 
 e. 
 
 00 
 CO 
 00 
 25 
 
 50 
 00 
 00 
 40 
 
 50 
 00 
 
 30 
 
 30 
 3ft 
 
 20 
 
 Q il« 
 
! t 
 
 h ^il 
 
 III !l 1 
 
 
 i 
 
 
 Vif 
 
 ►o 
 
 %• 
 
 Cj 
 
 C4 
 
 s 
 
 n 
 
 
 «* 
 
 ^ 
 
 ^ CM 
 
 R- 
 
 r- 00 
 
 00 3 '* 
 
 d 
 
 tf 
 
 d 
 
 8 
 
 O) 
 
 (33 
 
 CM 
 
 1S71 
 July 
 
 
 <= = o 
 
 CM O f^ 
 
 §1 
 
 
 t» ec c. 
 
 r-4 
 
 o 
 
 00 
 
 r- CC 
 
 fc M ec 
 
 
 
 Q) 
 
 
 So 
 
 u 
 
 M «, s 
 
 •"« t- £ '£/ t? 
 
 esi to 
 
 o - 
 
 CO ■* 
 
 00 's "- 
 
 2 1 
 
 X 3 
 
 COO 
 
 coo 
 
 c 
 o 
 
 OCX 
 
 o e>4 o 
 
 ■X 
 
 «» 
 
 www 1 
 
 c 
 
 a 
 
 C! 
 
 5 
 
 rs • 
 
 08 '3 
 
 ^3 
 
 
 W - <M 
 »-c - W 
 
 00 
 
 3- 5 
 
 128 
 
 I 
 
 ■^ 11 f^ 
 
 Q a 
 
^ I) S II 3 
 
 •3 
 
 on 
 
 
 CQ 
 
 
 s^ 
 
 I 
 
 r-l 
 
 n 
 
 -1 ►. 
 
 
 
 
 X 3 
 
 
 — H- 
 
 
 C C: O 
 
 c 
 
 ceo 
 
 c 
 
 o o oc 
 
 ■X- 
 
 o e^j o 
 
 »- 
 
 1— C-4 
 
 er. 
 
 ^ 
 
 •» 
 
 C» M C<l 
 
 1 
 
 !• 
 
 
 l"9 
 
 
 - e 
 
 
 Nf 
 
 
 ^« 
 
 
 ^. 
 
 
 ^S5- 
 
 
 s^. 
 
 
 o e- 
 
 
 o>. - 
 
 
 H- - 
 
 
 c<i - e>« 
 
 It 
 
 — " C<l 
 
 - >. 
 
 1 
 
 59= 5 
 
 -•Hi 
 
 ll 
 
'ti:'mtti0k;h'!s^;i 
 
 iitlW^T 
 
 8TATBMENT 
 
 II 'i, 
 
 BHOWma TH£ OONDITION OF THE BUHIITISB 
 
 I 
 
 On tho 31st of July. 
 
 : i I 
 il 
 
 i I 
 
 .-.,] 
 
 Resourcu. 
 
 1. From Ltdgmr /4ccott»»to.-— Balance due bj 
 
 A. T. Hughes 
 
 %. From Cask floo/c.— Balance of Cash on hand 
 
 «. From Bill Book. 
 
 S. J. Pierce's Note, due September let 
 A. T. Hughes' Draft, due August 8 
 
 4. From Jnvmtory. —Merchandise on hand. 
 
 . Liabilitiu. 
 
 I. From Ledger i4c(>.iHite.— Balances du4 to 
 
 Ct L Lane 
 J> K. Eirouac 
 J. Gleasoa 
 
 t. From Bill Book. 
 
 Note faror R. J. Vincent, flue Aug. 1 2 
 " " 8. Fraser & Co., " Sept. 13 
 " " C. I. Lane " Aug. 15 
 
 " " S. Fraser & Co., " Sept. Ist 
 
 Present worth or net capital 
 
 Mj capital at oommeDCing business wac 
 
 Net gain rwJieed July Slst 
 
 80 
 2995 
 
 100 
 105 
 
 1188 
 
 0. 
 
 00 
 36 
 
 oe 
 
 00 
 93 
 
 4469 
 
 2S 
 
 80 
 318 
 167 
 
 105 
 120 
 180 
 210 
 
 00 
 00 
 04 
 
 
 00 
 00 
 00 
 
 08 
 
 1380 
 
 13089 
 13000 
 
 89 
 
 12 
 
 IS 
 00 
 
 U 
 
 124 
 
CHANGING SIN-GM?. TO DOaBLB ENTRY. 
 to Doulh Entry, 
 
 PrEPARATORT STATEMlflT. 
 
 •o'^Ta^;r24.'"''' ''"°"'°" ^"'^ ^biW., «Ucen 
 
 < le.|| $ 
 
 Btsourct$. 
 
 
 — LiabiixtitM. 
 
 BnJ!"p^^ Accounts Payable (already postod) 
 clJtS?.*''''' out8tanding,pr BilJ Lok ^ 
 tapiUl at commencing business 
 
 Net gain realized in buMons 
 
 SOfOO! ' 
 29953S 
 20500 
 
 1188 
 
 93i 
 
 565|04 
 
 HlolOH 
 3000 00||4380 
 
 4469|2« 
 
 1) 
 
 80 18 
 
 will lack Just the ai^ o'^'n^et'l^VsTietof ^^^^^^^ 
 Opening ,a the j^edger an accountVii; nami J J^T""-?' 
 credit, my capita at commencin^r h,L^/ f' / ''"**''■ ^« »*« 
 
 ment of a Double Entry Ledger ^^'^^ *^' commence- 
 
 Merchandise, and Bills Payable Thl; nf- ' "' J^^^^'vabie, 
 Je" change'," and will 8eC%eA Se„Tv,rrr*%T '*''''" *^ 
 
 iSft 
 
I %c 
 
 O TO 
 
 3 "5 
 
 CO 
 
 fC 
 
 — -5 
 
 CQ 
 
 00 
 
 m 
 
 s 
 
 «» 
 
 tx 
 
 I 
 
 u-5 
 
 O 
 
 <» 
 
 O 
 
 0) 
 
 o 
 
 CQ 
 
 lO 
 
 €» 
 
 OC — 
 
 » 
 
 a 
 
 a 
 
 0) 
 
 c3 
 
 w 
 
 n 
 
 -1 K 
 
 — ^ 
 
 t: ^ 
 
 2 s 
 
 30 ~' 
 
 126 
 
 Ne 
 
-HACTicAi, EXEncis.s I^^ si.r«x,.,, ei^thv. 
 
 '^"RTUit Isf, lJi7i r i> M I 
 
 ' ai, n ouHl, as follows : to W uTi / l '* P'""* ^^^ '-M cents -4 
 ^r^akle, 2 da^s' Work at 5ci. %' ' a *''^ ^^'''^ ^' ^'-Sf) to H 
 
 • ^ai,l them m part in Cash ft5^ D^r P'"' a"'"nr.ti„.r to »5'> o 
 
 ■» '^ighte 10 by 16, a -25 ct s!^- ^'' p'" ^•'^"'^™«- '^''^ forG zi„' 
 
 per Hgxeement, $15.-15 Gar 'a J>'r'^"° '^ ^«'^«'«- ^ Coa h a^ 
 
 Grand Trunk R. R. Co* for *H it* ^/i«H,*,^°- *» o'rder o, the 
 Paint at 25 cts — ■« t/ ^ f;"""''^- Rec'dca^h for 17 IK^ j. 
 
 at «f'*'?ii^L*««' "^ ^^-SO^Paiif H lilt '"'^ ^T ^ ^'>'^^^ ' '> ^'v 
 atfi.__ao. Rec'd cash of T R.. i^^V'^' ^ ca'-h, 6 days' \V',,rir 
 
 cte.-.Paid ca.h for Cair« of Shon S vJ ^!^ ^^'' ^^ite Paint u I 
 
 Glover, for Stained oC as ,' J „ '*''^' ^^ follows : '"V J 
 
 painting Church, $210.-l2S^ V*' *'"'*"f' i^^'^- ofC. HaniV,;,; 
 New Sash at Ma'nLact^ry t feV « ""^ ""'^"'^ *"•' ^i*' = for ,;! J 
 '6, *t 9 ct8. ; 1 -jy Liffi'o W^ agree.nent, to wit. 56 Li^l.t. ' |^? 
 
 110 Wioduw Frames, at 46 cts^fyLttn' P '"'"'"♦ ' '^ ■"' 
 
 ' , lor fainting Reception Re 
 
 JonesGdays' Work, at,?l, 
 
 Walter, 5^ day.s' Work, 
 
 tor Pa in tine 
 
 '?P-,^ndry, 4 plays' Work 
 $j;j.iS*^,^ Cloth tress Coil 
 
 »t$1.50jioH.Te 
 
 t" H. 
 
 leakle, 5 days' Work, at .*l 
 
 at 75cta.~27. B 
 
 'o'tof L. S. l; 
 
 P-- J « ^"'" '^'■«*8 Coat, $16- ] PfliTni , r> ' ^- '^- ^-'gers, 
 
 1^ iw ounoiy Jobs, m i>er Rill, ir 
 
 127 
 
 per Bill, in 
 
PlAOTtCAL KXRUCfWES IN SINGLE KNTRT. 
 
 
 OMh $22.fin._as. Paid ciVHh for I ft ^aN. Linflpp.! Oil, at $1,624.- 
 a». Reo'd ouch for Tin Sij^n, $10. Pai.l casJi for Tin and Jaf^nntng, 
 f4.26. — 30. Uur ly A fJulj owe riip for Painting i Hico. as per a^r*^ 
 ment, $80.— Pai(l H. TcakiW, in i;a«h, f. .iays' Worlt, at *!.— 31. 
 r^id (or Kent of Shop one m«; "»b, Id oahIi, $16.67. 
 
 Balances of the Resources and Iilabilitles. 
 
 If . 
 
 ! I 
 
 t«. .11 
 
 ; I 
 
 y ,; 
 
 Resoiircu. 
 
 Caah, balanoe on hand 
 Stock oftoolii, as per In- 
 
 ventorjr-Book 
 Stock of paints, etc 
 H. Young 
 J. WilHon & Co. 
 Grand Trunk R. R. Co. 
 Citj Hall 
 Hardy dc Gait 
 
 1540 
 
 08 
 
 
 7.-) 
 
 00 
 
 
 65 
 
 50 
 
 
 1.3-1 
 
 l:i 
 
 
 •) 
 
 00 
 
 1 
 
 8 
 
 61 
 
 
 16 
 
 ('0 
 
 
 70 
 
 00 
 
 
 911 
 
 31 
 
 
 Liahilitiea. 
 
 L. S. Rogers 
 J. O'Farrel) 
 W. G. McLean 
 
 Balance. — My net capital 
 
 16 
 3 
 
 140 
 
 159 
 751 
 
 .38 
 00 
 00 
 
 .38 
 9.3 
 
 91131 
 
 '^'huat 
 
 My net oapjtal, on Sept. let, i.•^ $7;-)!, 
 
 " " " at commencing husinc'88 was only 575, 
 
 93 
 
 00 
 
 My gains in bunnesa hare been 
 
 MEMORANDUM IL 
 
 $176.93 
 
 Sept. 1, 1871, I eomratnce businesp with the following re^ 
 souroei: Cusb, $Bol..34; Mtrehaodiie, $5120; Bills Receivable, 
 $1386.60 ; E. S. Burronghs owes me. on %, $167.04; L. N. VeMon. 
 $120.98; T. A. Maguire, $96.40 ; C. N. Darid, ^1.64.-1 owe a/5 
 follows: On Notes, $350 ; to Poston dc Co., on ^IJ, .;>.:. J. 12; to Gar- 
 neau ARoy, $180.88.— Paid L. l^avis, forrepairson t i.' S( , 18.74. 
 —Sold C. N. David, on cr«lit, 2 bbls. Flour, at V.2o.-'Z. ;JoId L. 
 N. Veldon, on %, U gals, of Sperm Oil, at $1.60 ; and 50 lbs. Pow- 
 dered Sugar, at 10 ds. per pownd.- 3. Bo't of Poston A Co., on %, 
 8 boxes Havana Sugar, 3284 lbs., net wtight, at 74 cts.— Paid in cash, 
 '■;• a Set of Account Books, $20.50.-4. T. A. Maguire ha« paid me 
 \ \ 03 hi8 old aooonnt— Sold D. S. Raymond, on account, 60 lbs. 
 Cn; \ t •ucsur, at 10 «t«. ; and 100 lbs. Brown Havana Susar. at SJ 
 c*t.- ". i?o'< (ri'Garnftdu t Eoy, on % Goods amounting 10^*406.58. 
 I'Md l-m v:.iOO in ms'h —8. Bo't of W. C. Lord, for cash, Merchan- 
 dis..' ^aiViPting to$2k^* ...lU.— L. N, Veldon has paid me !?40 on %, 
 -^. C. d. Dftvid h'j Utn |>ainting in tb« store f* wvh kL $1.26, for 
 
 128 
 
 60 
 
r. 
 
 at $l.62Jj|.~ 
 1(1 Ja[«tining, 
 as per agre** 
 , al $1.-31, 
 
 itles. 
 
 
 16 
 
 3H 
 
 
 :i 
 
 00 
 
 
 140 
 
 00 
 
 
 159 
 
 38 
 
 pital 
 
 751 
 
 93 
 
 
 911 
 
 31 
 
 751.93 
 575.00 
 
 176.93 
 
 bllowing re- 
 Receivable, 
 , N. VeMon, 
 I.- -I owe as 
 12; koGar- 
 . !8.74. 
 Z. Oold L. 
 50 lbs. Pow 
 ; Co., on %, 
 ^aid in eaali, 
 hsM paid me 
 )unt, 60 Ibfl. 
 5u2ar. at 8J 
 to !i;406.58. 
 h, Merchan- 
 ■ !?40 on %. 
 ut $1.26, for 
 
 "»v Note at '2 ,,. L r- a'"onntiri.' io ^•tflQ, ,''"''' '>f ^ 
 
 eS atts;?®-""^?^'^ ^' ^' ^^fcn mi. 7u^^"'' ^«'- Clothing, 
 
 ■uay, amountin,' (,, >;(J3 
 
 Note, dated 
 
 I vu. 
 
 ■>a;o. 
 
 •{olj's Note, No. 
 
 2, ^Y: 
 
 on, I „i- " ^ •'• ^•^- liurroii, 
 
 li in 
 
 urrou^hj 
 
 ^ft.'y^^^as.fss £r "^±-;."-;-i;^r 
 
 -as- T. A. Ala". 
 
 Note, on demand, 
 
 week amounted to 
 
 
 ^590.;i2. 
 
 . , .^. *5lJ — ao n ""' ^""'^u "e ii*| pre- 
 
 I2d 
 
 -HO. Paid 
 
■■*^^^^tej»saa 
 
 PRAOTICAL BXER0I8KR IN SINOLE EN'TIIT. 
 
 Popton & Co. $100 on account, in casli.— Paid my Clerk's salary for 
 the month, in cash, $60.~Cash Sales for the week", $338.96.— Having 
 taken an Inventory of the goods in the store, I find the amount to be 
 $5086.41. I have Nates ai^'ainst various persons, amtg. to $1 127.46. 
 I owe Not*8 amounting to !fir)14.36. 
 On September 30th, my Net Capital is $7528.73, and my Net Gain, 
 
 $!■;«. 73. 
 
 t s 
 
 MEMOFUNDUM III. 
 
 Oclober 1, 1871, W. S. Drum, Cabinet-Maker, ast-'ociateswitli 
 himsHf T. A. Graham ; — Drum transferring to the firm sucli portion 
 «>f his resources and liabilities as is mutually agreed upon, and Gra 
 ham investing tlieir equivalent in cash. The parties are to share 
 alike in gains and losses. 
 
 W. S, Drum invests in tl)o business, as follows: Cash, 100; Sun 
 dry Notes which he holds against other.s, per B.-B., $700; E. Miles' 
 balance of account, his ftvvor, 81I1.50; J. R. Nesbitt's balance of 
 account, liis favor, $74.80; Materials and Unfinished Work, as per 
 Inventory, $71:5; Stock of Furniture, as per Inventory, $420.86 ; 
 Stock of Tools, as per Inventory, !ji>302.40. W. S. Drum owes; viz., 
 Sundry Notes, as per B.-fe., amtg. to $842 ; L. McTntvre & Co., bal. 
 
 01 acct., $1.34; N. Percy & Son, bal. ofacct., $150.40. T. A. Gra 
 baiu, invests inthe business, in cash, $1206. 16. — 2. Bo'ttorcash ofC. 
 Vallee, Planks, as per Bill, *i5I.2ti.— ». Sold K. Miles 2 Hair Clotlu 
 .Mahogany Sofas, at $20. Rec'd iVom the same on account, in cash) 
 $120.-4. Sold Mrs. C. Nelson, on acct. ; viz., 18 Mahogany Chairs, 
 Cane Seats, at $1.25 ; 12 Mahogany Ciiairs, Hair-Cloth Seats, at $3 ; 
 4 Cherry Dining-Tables, at $G ; 2 Maple French Bedsteads, at $4.25; 
 
 2 Maple Low-Post Bedsteads, at $2.75.-5. Sold P. McGee on acct., 
 per wife, 2 doz. Windsor Chairs, at $12 ; 1 doz. Windsor Chairs, for 
 $15; 1 doz. Windsor Chairs, for $10; 2 Spring-Seat Black Walnut 
 Sofas, at $21.-0. Paid for Wages, per Tuny-Book, in cash, $15.— 
 8. Sold for cash, 2 Bureaux, Maliogany Veneered, at $22. Paid as 
 follows: A. Patry, for repairs ot Shop, in casli, $103 ; S. Jones, for 
 Painting Shop, in cash, $44; L. Mclntyre & Co., in full ofacct., in 
 cash, $134; lor Glazing 2 Lights of Glass, cash, 70 cts.— 9. Rec'd 
 •ash for B. Motley's Note, Drunrs favor, $250. — Bo't of N. Percy & 
 Son, Lumber, for $270. Gave in payment our Note at 30 days, in 
 full of all acct. — Sold E. Miles, per daughter, on acct., 2 Black Wal- 
 nut Footstools, at $1.50.— Sold C. T. Renaud, on acct., 6 Patent Pivot 
 Chairs for Otnce, at $5. — II. Sold for cash, 2 Arm-Chairs for Office, 
 $10. — Sold E. Miles, per wife, on acct., 2 Black Walnut Extensio.'i 
 Dining-Tables, at $40.— 1». Sold P. D. Flood, on acct., 4 Children's 
 Higli Dining-Chaire, Maliogany, at $2. — Sold Miss Anna Roy, on 
 acct.; viz., 6 doz. Windsor Chairs, at $11 ; 2 Rocking Chairs, Sec- 
 ond-Hand, at ^'J.— Paid cash for Wages, 87o.—l«5. Sold for cash 2 
 Pints of Varnish, $1. — E. Miles assumes P. McGee's account, trans^ 
 ferred to him, for .$91.-10. Boudit of L. Mclntyre & Co., Paints, 
 Varnish, Brushes, etc., as ner Bill, anitg. to $350.52. Paid to them 
 eash, in part, $100,— 17. keceived |i)r Staining Cupboard, in cash, 
 
 130 
 
T. 
 
 rk'fi salary for 
 8.9G.— Having 
 ! amount to be 
 T. to? 1127.46. 
 
 inj Net Gain, 
 
 ist-'ociateswilU 
 I) sucli portion 
 pon, ami Gra 
 8 are to share 
 
 sh, 100; Sun 
 00; E. Miles' 
 tt'a balance of 
 Work, as per 
 ory, $420.8G ; 
 n\ owes ; viz., 
 re (fe Co., bal. 
 . T. A. Gra 
 L for cash of C. 
 2 Hair Clotii,. 
 o>Mit, in cftshj 
 oguny Cliaira, 
 Seats, at $3 ; 
 ads, at $4.25; 
 jQee on acct., 
 :or Ciiairs, for 
 Black Walnut 
 
 1 cash, $1"). — 
 ^22. Paid aa 
 
 S. Jones, for 
 ill of acct., in 
 Ls.— 9. RecM 
 3f N. Percy & 
 at 30 clays, io 
 
 2 Black Wal- 
 I Patent Pivot 
 lirs for OtHce, 
 mt Extendion 
 , 4 Childrea's 
 Lnna Hoy, oa 
 
 Chairs, Sec- 
 j!d for cash 2 
 3Count, tranS" 
 ■ Co., Paints, 
 aid to them 
 mrd, in cash, 
 
 HI>TS AS TO RESOUHOES AND LIABILITIES. 
 
 '•-h2 0,..oma,^, u$7-iJS,'F"f,f''''''--^' '' ^''■~^^- Sold S 
 ■ •• • ' ^J"- ^''''' J*--- Miles, per aon, on account, 2 Hat- 
 
 , ... .lu, ^ nocKini' u lairs. at .«!I9. o a> 
 
 iJr.un's Nu.e. F. Walter's Lor 1%. P^^"^f"^ ^^^OO.-Pald cash for 
 '•■•OM. da.e, ,0 Dec. 0th an^um^^^to ^^ i'i'^P '^^ D''^^^""' 
 
 acct., ,n ca.h. *20.-Bo't of I l/h, ^3.-^.{. Pa.,1 W. S. Drum on 
 •*1 92.80.-24 Paid oZu o /i*. "=' ^" '>^'Cotinl, Lumber, ner Bill 
 
 ^ct., 2 MahogaV Bureaux, Sit^hSIa^^f-a?*', ^^ ^VJ ""'^' ^» 
 Wap:e«, a, per Time-Book, S73.30 -20 ^j' -r^^', ^""^ <^^'' ^r 
 
 hogany Hccking Chair« I'i ,< ;. , ^•^'•' <«r cash ; Tiz., 4 Ma- 
 MapIeFrenchBtd8(eaT'a/^0 2 ''^^^ at$l2.o0; 2 Birds'-Eye 
 f 4; 2doz. Child's Hl'-hCliiV.^ ;;'=^^,^;."«t:?'^^'""^Chairs/a 
 
 Chairs at ^ps.-P.idoaahasf ho;,: for B^i/of ^^^^ ^"^'^'"^ 
 
 to T. A. Graham, on acct. SJO- fnrR» Vr ^"^"'"gfJSl.go- 
 
 to Mis. Anna Uo;, onaoat iklZfT''^''^^''^^' .OOct^-Solj 
 P. D. Flood, oaLt.. TbILoI W:te'[r,„f;^7«»,^33.-.ao. Sdd 
 j^BuaRo/haa returned the Maho^av B^fl' . if' *^=^''^- Mis« 
 lastaBt, beoaitsa it wa- too large f^rLr^^^^^^ ^'^^ ^'^'h 
 
 The Stock of furniture on hand am't. r 
 
 ;; ;; ;; ««.«„ .„a3atuS wS,'?.'- ''^'■- ',? «'^j-'-^» 
 
 tools, depreciated br use - ., '*^^-^'* 
 
 Tbe'«mount ofBilla Roc. in possession of thoH " 283. 'JO 
 
 Jiilia Payabla outataadiog m ., ^^^^-OO 
 
 ' " 862.40 
 
 dlNTS AS TO RESOURCES AND LlABrLlTlMs. 
 
 ;i«r::.:fs;;5;i^;j^.::^i^^;^;;- -- e.t.siveiy in ,,. .ea. 
 
 business has been forcibly 4t beS L f .''"° "rV" condition ol tTse 
 tliat certain Ledger Aocour k • i ! '^'l''"'^' ^^'^ ''^s been tau<'in 
 
 oUiers to show liabilhS and thai' u.e'co"" 'T'^^"' '''''' '''^^" 
 
 , ttnu tiut the correspondence between the 
 
HINTS AS TO RBSOUROiSS AND LTABILITIIS. 
 
 
 repourceB and liabilltien thus shown must agree in a certain sense, 
 with the accounts phowinf» gains and losses. Any careful observer, 
 however, must be aware that all classes of resources are not equallv 
 valuable; and that,' in the course of trade, persons may become in- 
 debted to ue both on note and account who will never pay ; the re- 
 source thus represented bein^ absolutely valueless. In estimating the 
 condition of a concern, therefore, it is well to know whether the books 
 are truthful; that is whether the rt$ourcea exhibited on their pages 
 art' a'tisolute or fictitious. The liabilities are always presnmed to be 
 genuine.) The importance of this precaution will be apparent when 
 we consider that al gains in business, as shown by representative ac- 
 counts, are predicated upon the integrityof the resources. Forinstance, 
 suppose we sell A, $300 worth of Merchandise, and take hie note for 
 it. In recording the transaction, w« credit Merchandise, and debit 
 Bills Receivable. In estimating our gains and losses, we, of course 
 include among the proceeds of Merchandise this amount, which adds 
 $300 to our gains. Our Merchandise account is closed, and the result 
 finds its way into the Loss and Gain account, thus having an impor 
 tant bearing upon the apparent prosperity of the business. But sup- 
 pose this note should prove toorthleaa. It is now evident that the $300 
 credited to Merchandise account was not a legitimate product, and 
 that all gains predicated upon it are necessarily fictitious. But tliejo 
 are other resources represented in the Ledger, the exact value of which 
 is uncertain, — they may be worth their face, or half of it, or nothing. 
 How shall they be treated in a general exposition of aflUirs? Shouli], 
 we consider thein all valueless, and close them into Loss and Gain 
 the error may be a« great as to permit them to remain and represent 
 actual worth. The most approved method of diaposing of this class 
 of accounts, is to permit them to remain upon the Ledger, but to neu- 
 tralize their effect by opening an aooount showing fictitious liabilities 
 of the same account. Aa appropriate title for this account is ** Sus- 
 pense." When therefore doubtful resources exist on our Ledger, and 
 we do not wish to represent anything more than actual gains, the 
 process should be to debit Lose and Gain, and credit "Suspense" 
 with the amount of the doubtful resources. If any of these are after- 
 wards paid, or their value becomes tangible, it is very easy to restore 
 them by debiting Suspense and crediting lioss and Gain. This method 
 is far preferable to the more usual one of closing up all doubtful ac- 
 count into Suspense. The Suspense acc«unt in the latter case would 
 represent either a loss or a resource. If a loss the amount may as 
 well go at once to the Loss and Gain aooount; and if a resource, it 
 had much better remain under its own more appropriate title. But 
 the chief objection to this course would be the exhibitng ot accounts 
 as clo&ed, which are yet owing and may be paid. If Mr. A, forin- 
 stance, wliom we thus consider doubtful, ahould desire to see hie ao- 
 count i?i our Ledi^er, that he may pay it, it might be awkwaid to 
 iulbrm him that, iwving considered his account worthless we had 
 carried it into Loaa and Gain. He might not desire to change ov 
 estimate of the value of his iodebtedneee. 
 
>ITRS. 
 
 a certain sense, 
 careftil observer, 
 9 are not equally 
 
 may become in- 
 <}er pay ; the re- 
 [n estimating the 
 hether the K)ok8 
 ;d on their pagea 
 i presumed to be 
 B apparent when 
 epreeentative ac- 
 es. For instance, 
 take his note for 
 mdise, and debit 
 es, we, of course 
 lunt, which adds 
 d, and the resnll 
 laving an impor 
 inesH. But sup- 
 ent that the $3(iU 
 ate product, and 
 ious. Bat thei'c 
 :t value of whicli 
 of it, or nothing. 
 atfairs? Shoulfj, 
 I Loss and Gain 
 in and represent 
 ?ing of this class 
 dger, but to neu- 
 titious liabilities 
 ccountis "Sus- 
 our Ledger, and 
 tual gains, the 
 lit "Suspense " 
 f these are after- 
 Y easy to restore 
 n. This method 
 I all doubtful ac- 
 atter case would 
 amount may as 
 
 if a resource, it 
 riate title. But 
 itng oi accounts 
 If Mr. A, forin- 
 tre to BM hie ao- 
 
 be awkward to 
 trthleas we bad 
 
 to Changs om